
Universität des Saarlandes

Modularity and Determinism in
Compositional Markov Models

Dissertation

zur Erlangung des Grades des
Doktors der Ingenieurswissenschaften (Dr.Ing)

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

vorgelegt von

Pepijn Crouzen

Saarbrücken
März 2014

Kolloquium 14.08.2014
Promotionsausschuss:
1. Gutachter Prof. Dr. Holger Hermanns
2. Gutachter Dr. Mariëlle I.A. Stoelinga
3. Gutachter Dr. Pedro R. D’Argenio
Vorsitzender und Dekan Univ.-Prof. Dr. Markus Bläser

2

Acknowledgements

First and foremost, I’d like to thank my advisor, Holger Hermanns, for his support
during my time at Saarland University. I have learned a tremendous amount (and
not just about Markov chains). I’d also like to thank Mariëlle Stoelinga and Pedro
D’Argenio for the time they took to read this thesis and the critical comments they
made that helped me improve it.

I also want to thank all my coworkers at Saarland University for the wonderful time
working together, and especially my roommate Reza Pulungan for all the interesting
debates and discussions.

I’m also very grateful to my family for their love and support. In particular, I have
to thank Verena Wolf, since without her this thesis would never have been completed.
And last but not least I’d like to thank my daughter Heleen and my son Adriaan, just
because.

3

Summary

Markov chains are a versatile and widely used means to model an extensive variety
of stochastic phenomena, but describing a complex system as a monolithic Markov
chain is difficult and error-prone. In this thesis we show that we can construct such
complex Markov chains in a sound manner through the composition of a number of
simple input/output interactive Markov chains (I/O-IMCs), which arise as an orthogonal
combination of continuous-time Markov chains and input/output automata).

I/O-IMCs come equipped with a modular semantics in terms of interactive jump
processes, a novel variation of jump processes. We discuss the phenomenon of non-
determinism, arising from the interaction inside such models, and how we can efficiently
determine whether a complex I/O-IMC model is deterministic. Finally, we give an
example of an application of I/O-IMCs by presenting the Arcade language, which can
be used to describe complex dependable systems.

In this thesis we show that, by providing a modular semantics for our compositional
I/O-IMCs, we achieve the ’triple compositionality’ principal: a simple, but powerful
compositional syntax (Arcade), has an interactive and Markovian semantics in terms
of I/O-IMCs, which gives an intuitive description of the meaning of each syntactic
element. I/O-IMCs themselves then have a stochastic semantics in terms of interactive
jump processes which enables us to describe and compute their stochastic properties.
This triple compositionality provides a natural, non-monolithic semantics for our high-
level syntax and allows us to understand and reason about complex, incomplete, or
partially-specified stochastic models.

5

Zusammenfassung

Markov-Ketten sind ein vielseitiges und weit verbreitetes Mittel zur Modellierung einer
Vielzahl von stochastischen Phänomenen, aber es ist schwierig und fehleranfällig, ein
komplexes System als monolithische Markov-Kette zu beschreiben. In dieser Arbeit
zeigen wir, dass solche komplexen Markov-Ketten auf korrekte Weise durch die Komposi-
tion einer Anzahl von einfachen input/output interactive Markov chains (I/O-IMCs), die
als orthogonale Kombination von zeitkontinuierlichen Markov-Ketten und input/output
automata zustande kommen, konstruiert werden können.

I/O-IMCs sind ausgestattet mit einer modularen Semantik in der Form von inter-
aktiven Sprungprozessen, einer neuartigen Variante von Sprungprozessen. Weiterhin
diskutieren wir das Phänomen des Nicht-Determinismus, der sich aus der Interaktion
innerhalb solcher Modelle ergibt, und wie wir effizient bestimmen können, ob ein kom-
plexes I/O-IMC Modell deterministisch ist. Schließlich geben wir ein Beispiel fr eine
Anwendung von I/O-IMCs: die Arcade Sprache, die verwendet werden kann, um kom-
plexe zuverlässige Systeme zu beschreiben.

In dieser Arbeit zeigen wir, dass wir durch die Beschreibung einer modularen Se-
mantik für unsere I/O-IMCs das ’Triple-Compositionality-Prinzip’ erreichen: eine ein-
fache, aber leistungsfhige kompositionelle Syntax (Arcade), hat eine interaktive und
markovsche Semantik in Form von I/O-IMCs, die eine intuitive Beschreibung der Bedeu-
tung der einzelnen syntaktischen Elementen darstellt. I/O-IMCshaben außerdem eine
stochastische Semantik in Form von interaktiven Sprungprozessen, die es ermöglicht,
ihre stochastischen Eigenschaften zu beschreiben und zu berechnen. Dieses ’Triple-
Compositionality-Prinzip’ bietet eine natrliche nicht-monolithische Semantik und er-
laubt es, komplexe, unvollständige oder unterspezifierte stochastiche Modelle zu verste-
hen und zu beschreiben.

7

Contents

1 Introduction 15

1.1 Markov chains . 15

1.1.1 Syntax and semantics . 16

1.1.2 Composition . 16

1.2 IOA . 17

1.2.1 Syntax and semantics . 17

1.2.2 Composition . 18

1.3 I/O-IMCs . 18

1.3.1 A compositional semantics for I/O-IMCs 18

1.3.2 Determinism . 19

1.3.3 Expressiveness . 20

1.4 Contribution and structure . 20

2 Preliminaries 23

2.1 States . 23

2.2 Probability theory . 25

2.2.1 Stochastic experiments . 25

2.2.2 Basic laws of probability . 27

2.2.3 Stochastic Processes . 29

2.3 Laplace transform . 31

3 Continuous-time Markov chains 33

3.1 Continuous-time Markov chains . 33

3.1.1 Describing a Markov chain . 36

3.1.2 Transition probabilities . 37

3.1.3 Infinitesimal transition probabilities 39

3.1.4 Finite-jump probabilities . 46

3.1.5 Regularity . 50

3.1.6 Sufficient conditions for the Markov property 56

3.2 Bisimulation . 58

3.2.1 Basic definition . 59

3.2.2 Jump times and jump probabilities 60

3.2.3 Finite jump transition probabilities 65

3.2.4 The quotient process . 68

3.2.5 Bisimulation for irregular Markov chains 69

9

CONTENTS

3.3 Discussion . 71

3.3.1 CTMCs as graph-based models 71

3.3.2 Composition of CTMCs . 71

4 Input/Output Automata 73

4.1 Basic Definition . 74

4.2 Classification of states . 75

4.3 Executions, Traces, and Reachability . 77

4.3.1 Executions . 77

4.3.2 Traces . 78

4.3.3 Reachable states . 79

4.3.4 Reach-trace . 79

4.4 Fairness . 80

4.5 Parallel Composition . 83

4.5.1 Modularity results . 86

4.5.2 Composition and fairness . 89

4.6 Hiding . 92

4.7 Equivalences . 93

4.7.1 Reachability equivalence . 94

4.7.2 Reach-trace equivalence . 95

4.7.3 Weak bisimulation . 97

4.8 Confluence and determinism . 101

4.8.1 Confluence . 101

4.8.2 Determinism . 102

4.9 Discussion . 104

4.9.1 Particularities . 104

4.9.2 Comparison to process calculi . 105

4.9.3 IOA as a graph-based model . 105

5 I/O-IMCs 107

5.1 I/O-IMC ingredients . 107

5.1.1 State space . 109

5.1.2 Actions . 109

5.1.3 Interactive transition relation . 110

5.1.4 Markovian transition relation . 111

5.1.5 Initial distribution . 111

5.2 Classification of states . 111

5.3 Parallel composition . 112

5.4 Hiding . 115

5.5 Equivalences . 115

5.5.1 Isomorphism . 115

5.5.2 Strong Bisimulation . 116

5.5.3 Weak Bisimulation . 123

5.6 Stochastic reachability . 128

10

CONTENTS

5.6.1 Bisimulation and Stochastic Reachability 129

5.6.2 Parallel Composition and Stochastic Reachability 131

5.6.3 Hiding and Stochastic Reachability 132

5.7 Confluence and determinism . 133

5.8 Discussion . 135

5.8.1 Comparison to IMCs . 135

5.8.2 Comparison to Wu-PIOA . 135

5.8.3 I/O-IMCs as a graph-based model 136

6 I/O-IMC behaviours 137

6.1 Interactive jump processes . 137

6.2 Probability space . 139

6.3 I/O-IMC behaviour . 146

6.4 Schedulers . 150

6.4.1 History process . 151

6.4.2 Schedulers . 153

6.4.3 Finite-jump probabilities . 155

6.4.4 From scheduler to behaviour . 157

6.5 Parallel composition . 160

6.5.1 Modularity of behaviours . 164

6.5.2 Modularity of schedulers . 166

6.6 Hiding . 171

6.7 Discussion . 174

6.7.1 Relationship to CTMCs . 174

6.7.2 Relationship to IOA . 174

6.7.3 Global and local schedulers . 175

7 Closed behaviours 177

7.1 Basic definition . 178

7.2 Weak bisimulation . 179

7.3 Stochastic reachability . 181

7.4 Continuous-time Markov decision processes 182

7.4.1 Early schedulers. 184

7.4.2 Late schedulers . 185

7.5 Closed I/O-IMCs and CTMDPs . 185

7.5.1 Translation of I/O-IMCs and CTMDPs 185

7.5.2 Translation of schedulers . 188

7.6 Closed behaviours of deterministic I/O-IMCs 191

7.7 Discussion . 192

7.7.1 Markovian schedulers . 192

7.7.2 Analysis . 192

11

CONTENTS

8 Determinism 195
8.1 Confluence and reachability . 196

8.2 Spontaneously enabled actions . 197

8.3 Initially enabled actions . 199

8.4 The triggering relation . 201

8.5 Enabled sets . 203

8.6 Sufficient conditions for determinism . 209

8.6.1 Algorithm . 210

8.7 Time-divergence . 212

8.8 Discussion . 214

8.8.1 Other methods to show determinism 214

8.8.2 Determinism for networks of IMCs. 214

8.8.3 Practical repercussions . 215

9 Arcade 217

9.1 Syntax of Arcade . 218

9.1.1 Formal grammar . 218

9.1.2 Basic component . 219

9.1.3 Logical gates . 220

9.1.4 Repair units . 221

9.1.5 Spare management units . 221
9.1.6 Other Arcade elements . 221

9.1.7 Well-formed Arcade models . 222

9.1.8 Examples of Arcade models . 223

9.2 Operational behaviour of Arcade . 226

9.2.1 Basic component . 227

9.2.2 Logical gates. 230

9.2.3 Dedicated repair units . 232

9.2.4 Preemptive prioritised repair unit. 234

9.2.5 First-come-first-serve repair units 236

9.2.6 Operational semantics of an Arcade model 238

9.3 Triple compositionality . 241
9.4 Causality . 243

9.4.1 Basic components . 244

9.4.2 Logical gates . 246

9.4.3 Dedicated repair units . 247

9.4.4 Preemptive prioritised repair units 247

9.4.5 First-come-first-serve repair units 248

9.5 Deterministic Arcade models . 248

9.5.1 Destruction by failure assumption 249

9.5.2 Spontaneous and initial actions 250

9.5.3 Triggering relation . 251

9.5.4 Non-confluent pairs of actions . 253

9.5.5 Sufficient conditions for determinism 254

12

CONTENTS

9.5.6 Sufficient conditions for non-divergence 255
9.5.7 Spare management units . 256
9.5.8 Algorithm and Complexity . 256

9.6 Discussion . 259
9.6.1 Analysis of Arcade models . 259
9.6.2 Other measures . 263

10 Conclusion 267
10.1 Modular semantics . 267
10.2 Dealing with non-determinism and divergence 268
10.3 Avenues for future research . 269

10.3.1 Modular schedulers . 269
10.3.2 Analysis of infinite-state I/O-IMCs 270
10.3.3 Analysis of open I/O-IMCs . 272

A Proofs 275
A.1 Proofs of Chapter 6 . 275

A.1.1 Proof of Proposition 18 . 275
A.1.2 Proof of Proposition 19 . 277
A.1.3 Proof of Lemma 16 . 278
A.1.4 Proof of Theorem 35 . 279
A.1.5 Proof of Theorem 36 . 281
A.1.6 Proof of Lemma 17 . 282
A.1.7 Proof of Theorem 37 . 283
A.1.8 Proof of Proposition 21 . 285
A.1.9 Proof of Theorem 38 . 286
A.1.10 Proof of Theorem 39 . 291
A.1.11 Proof of Theorem 40 . 293
A.1.12 Proof of Theorem 41 . 295
A.1.13 Proof of Proposition 18 . 296
A.1.14 Proof of Proposition 23 . 298
A.1.15 Proof of Theorem 42 . 298
A.1.16 Proof of Theorem 43 . 299

A.2 Proofs of Chapter 7 . 300
A.2.1 Proof of Proposition 25 . 300
A.2.2 Proof of Theorem 45 . 301
A.2.3 Proof of Theorem 47 . 302
A.2.4 Proof of Theorem 49 . 307
A.2.5 Proof of Proposition 26 . 309
A.2.6 Proof of Theorem 50 . 310
A.2.7 Proof of Theorem 51 . 312

13

1
Introduction

Markov chains are a versatile and widely used means to model an extensive variety
of stochastic phenomena from bio-chemical reaction networks [19] to the performance
of computer systems [22], and even the structure of the internet [40]. Besides their
versatility, one of the main reasons why Markov chains are so popular is their simplicity.
Under mild assumptions, the dynamics of a Markov chain can be represented by a simple
matrix. This makes Markov chains easy to represent and analyse using linear-algebraic
techniques.

This thesis studies a way to model and analyse complex stochastic systems in a
compositional fashion. To illustrate the main innovation, consider the following scenario:
we want to study the reliability of a cooling system consisting of several pumps, valves,
and filters. Each of the components of such a system behaves stochastically: after some
random delay, a pump or a valve of the system may fail. We may be able to model the
behaviour of these components of the system using a stochastic model (such as a Markov
chain). To study the stochastic behaviour of the entire cooling system we need some way
of combining the representations of the components (pumps, valves, and filters) to define
the representation of the whole system. Input/output interactive Markov chains (I/O-
IMCs) enables us to do exactly that. The formalism of I/O-IMCs allows us to describe
both the stochastic aspect of the pumps, valves, and filters and the way in which these
components interact. A description of the entire system then arises naturally through
the composition of its components. To see how we arrive at the formalism of I/O-IMCs
we will first discuss Markov chains.

1.1 Markov chains

Markov chains come in two flavours depending on the way time is modelled: discrete-
time Markov chains (DTMCs), where time proceeds in discrete steps, and continuous-

15

CHAPTER 1. INTRODUCTION

time Markov chains (CTMCs), where time is continuous. In general, DTMCs are useful
for modelling systems where all events occur synchronously, whereas CTMCs are more
appropriate for modelling systems where different events may occur on different time
scales. In this thesis we will use CTMCs as the way to model stochastic phenomena
and we will focus on systems that exhibit widely different time-scales. For instance,
in a dependable system, the time it takes to repair some component of the system is
usually several orders of magnitude smaller than the mean time between failures of that
component.

1.1.1 Syntax and semantics

It is very common to represent a CTMC as a graph with positive real numbers on
the edges. We can induce a Markov chain from such a graph by giving it a very simple
semantics: the graph represents a jump process, namely a stochastic process with a state
space given by the set of vertices of the graph and where the probability of jumping from
a state x to a state y in an infinitesimal time interval is proportional to the real number
on the edge from x to y. Moreover, this probability is independent of any past jumps of
the jump process. It is well-known that this simple assumption is enough to construct
the complete Markov chain from the graph [1] and we will revisit this construction in
Chapter 3. We could say that the graph is the syntax or description of the CTMC,
whereas the CTMC viewed as the above jump process is the semantics or meaning of
the graph. In matrix form, the graph is usually referred to as the infinitesimal generator
matrix of the chain.

1.1.2 Composition

Let us return to our example of a dependable cooling system consisting of a number of
different components. We might hope to model such a system directly as a Markov chain,
but unfortunately the size of this Markov chain would grow excessively with the number
of components of the system we need to consider. Creating such a large, monolithic
description of a complex system is thus both difficult and error-prone. Instead, it would
be much simpler if we were able to model the components of the system individually
and then combine them to thereby obtain a faithful model of the entire system. If the
combination of components is a generic operation, this ensures that the modelling effort
grows only linearly in the number of components of the system.

This may raise the question whether we can compose different CTMCs to build up
complex CTMCs? In fact, there is a direct way of accomplishing this if one assumes
that various components of the system are independent. In terms of the graphs that
represents the component CTMCs we can indeed construct their “composition” by in-
terleaving the edges of the two component graphs (see for instance [26]). Equivalently,
we can construct the “composition” of two infinitesimal generator matrices by taking
their Kroenecker product [46]. This results in a faithful representation of the composed
system and its associated jump process, and in fact this construction is entirely modu-
lar : What we get is the jump process of the two composed graphs; by assuming the two

16

1.2. IOA

underlying jump processes are independent we obtain their cross-product jump process.
In other words, we can find the semantics of the composition of two CTMCs from the
semantics of the component CTMCs, and this semantic composition exactly matches
the syntactic composition on the graph representation of CTMCs. We will use this
simple notion of composition for CTMCs as one of the ingredients in our compositional
Markovian model.

Unfortunately, this way of composing Markov chains is very uninteresting. Our
assumption that the component CTMCs are independent, means that the corresponding
components of the system do not influence each other, so we are bound to complex
system models where components are completely isolated. But for those systems we can
model and study the components in isolation. There is no point in composing them in
the first place, if they do not interact in some way or another. What we are missing
is a way to represent the fact that components in a system may indeed interact. To
put it differently, we need a way to model that the behaviour of one component in a
system may be influenced (changed) by the behaviour of other components in the same
system. In this thesis, we will attack this problem by combining CTMCs with a purely
interaction-oriented discrete-state formalism.

1.2 IOA

The input/output automata model (IOA) was introduced by Lynch and Tuttle to study
distributed algorithms [33]. They describe distributed algorithms by modelling their
component algorithms, thus avoiding the need to give a monolithic description for the
entire distributed algorithm. In fact, the use of IOA not only allows for the modelling of
complex distributed algorithms, it also turns out to be a great aid in the analysis of them.
Lynch and Tuttle showed that, under certain fairness assumptions, properties of the
distributed algorithm can be derived directly from the properties of its components [33].
We will give a short sketch of IOA here and we will review the theory of IOA in detail
in Chapter 4.

1.2.1 Syntax and semantics

As we did for CTMCs, we will treat IOA as a graph-based formalism. In essence, an
IOA is a graph where vertices represent states and the edges are labelled with actions.
Actions represent different types of “events” that may happen. An example of a type
of event is “button is pushed” or “message X is sent”. The intuitive meaning of an
edge, also called a transition, from vertex x to vertex y with action a is that, when the
component is in state x and an event of type a happens, then the component will change
to state y. We will dive deeper into the details of IOA in Chapter 4.

We have seen that a transition of an IOA represents the occurrence of an event of a
particular type. The semantics of an IOA is then the set of possible sequences of actions
that may happen. Such a sequence of action is called a trace. It should be mentioned
that certain sequences of actions are considered unfair and are therefore not considered.
The use of such fairness assumptions makes sure that certain unrealistic or undesirable

17

CHAPTER 1. INTRODUCTION

phenomena are not possible. An example of undesired behaviour is when actions of one
component in a distributed algorithm are indefinitely postponed by other components’
actions. The set of fair traces of an IOA represents all the different sequences of actions
that may occur for that IOA.

1.2.2 Composition

IOA allow us to model the way in which components interact. We say two components
interact, if the behaviour of one component influences the behaviour of the other. That
is, the semantics of an IOA is different in the context of another IOA, than its semantics
in isolation. In terms of the graph-syntax of an IOA, interaction is modelled by synchro-
nising the transitions of IOA that we wish to compose. In essence, when we compose
two IOA, any pair of transitions that have the same action label must happen at the
same time. Pairs of transitions with different action labels are interleaved.

In this way, we can construct, given two graphs representing IOA, a graph repre-
senting their composition. The semantics of such a composite IOA is again its set of
fair traces. Lynch and Tuttle have shown that composition for IOA is sound : when
we project a fair trace of a composite IOA onto its components we obtain fair traces
of the component IOA [33]. This allows us to prove properties of complex distributed
algorithms by studying their components: if a sequence of actions if not a fair trace of
the IOA representing a component of the algorithm, then this sequence of actions will
be impossible in the complete distributed algorithm.

We have seen that both CTMCs and IOA have a sound compositional semantics.
In this thesis, we will combine these two formalisms in an orthogonal way to find a
compositional Markov model which again has a sound compositional semantics.

1.3 I/O-IMCs

IOA thus give us a way to model interaction between components, whereas in CTMCs
we found a way to model stochastic phenomena. We can combine CTMCs and IOA
to find a compositional way of modelling complex stochastic systems: input/output
interactive Markov chains (I/O-IMCs) are designed to be used to model and analyse
complex stochastic systems in a compositional way. The representation of an I/O-
IMC is a graph whose edges are labelled with either positive real values or actions.
We call the former Markovian transitions and the latter interactive transitions. The
composition operator is also an orthogonal combination of composition for CTMCs and
IOA: Markovian transitions, as well as transitions with different actions are interleaved,
while transitions where the actions have equal names are synchronised. We will dive
into the details of the graph representation of I/O-IMCs in Chapter 5.

1.3.1 A compositional semantics for I/O-IMCs

In order to use I/O-IMCs to represent the components of complex stochastic systems,
it is important to understand the semantics of an I/O-IMC model in isolation, and

18

1.3. I/O-IMCS

in composition. In Chapter 6 we will equip I/O-IMCs with a semantics, orthogonally
combining the semantics of CTMCs and IOA: Markovian transitions will occur stochas-
tically as for CTMCs and interactions will occur according to the semantics of IOA.
As a semantical underpinning of I/O-IMCs we introduce interactive jump processes a
variation on classical jump processes. This is the first modular semantics for I/O-IMCs.
A core insight is that composition of I/O-IMCs is again sound with respect to its se-
mantics. It is important to note that the semantics of an I/O-IMC is non-deterministic:
an I/O-IMC is represented by a set of interactive jump processes, in the same way as
an IOA is represented by a set of fair traces.

We can thus proceed and employ I/O-IMCs to give semantics to a complex depend-
able system, by modelling its components with I/O-IMCs. The I/O-IMC semantics of
the entire system arises naturally by composing the I/O-IMCs that represent its com-
ponents.

Still, being able to model complex dependable systems is not the end of the story.
We also wish to analyse such systems, to quantify different dependability properties. In
Chapter 7 we will study the semantics of closed I/O-IMCs, i.e., I/O-IMCs that do in-
teract among their components, but do not interact with the surrounding environment.
Such I/O-IMCs arise as models of complete dependable system and generally are the
result of composition of many component I/O-IMCs. We will see that we can trans-
late closed I/O-IMCs into continuous-time Markov decision processes (CTMDPs) [28].
CTMDPs can be seen as extensions of CTMCs where, at each state, many probabilistic
transitions are possible; the choice between these transitions is performed in a non-
deterministic fashion. The translation allows us to apply standard CTMDP analysis
techniques to analyse closed I/O-IMCs.

1.3.2 Determinism

Initially, we started off with the intention to provide a way to construct stochastic
models in a compositional way. However, the semantics of an I/O-IMC is in general not
a stochastic process, but rather a stochastic non-deterministic model, such as a CTMDP.
This is also the case for the particular instance of closed I/O-IMCs i.e., I/O-IMCs that
do not interact with their environment. It is caused by the fact that IOA are inherently
non-deterministic. The semantics of an IOA is a set of fair traces, representing a non-
deterministic selection of the possible fair traces of the model. This non-determinism
is inherited by I/O-IMCs, where the semantics gives rise to sets of interactive jump
processes. However, not all I/O-IMCs are non-deterministic. Certain I/O-IMCs in
fact do not contain non-deterministic choices. In Chapter 7 we will establish that the
semantics of such a deterministic I/O-IMC is indeed a single interactive jump process,
thus a CTMC.

When the semantics of a closed deterministic I/O-IMC is a CTMC, this allows us to
apply standard Markov chain solution techniques to analyse such I/O-IMCs. This is of
interest since CTMC analysis techniques are very well established and generally more
efficient than CTMDP analysis techniques, where efficiency and analysis improvements
are still subject of ongoing research [38, 9]. In addition, the absence of non-determinism

19

CHAPTER 1. INTRODUCTION

makes it possible to apply an entirely different class of algorithms for CTMCs, namely
those that can be applied on-the-fly, i.e. without constructing the entire graph of the
CTMC prior to analysis. For deterministic I/O-IMCs arising as the composition of many
smaller I/O-IMCs this means that we can analyse such I/O-IMCs without computing
the graph representation of the composed I/O-IMC, whose size may grow exponen-
tially in the number of component I/O-IMCs. However, in order to apply such analysis
techniques it is necessary to know beforehand which composed I/O-IMCs are in fact
deterministic. In Chapter 8 we will discuss structural conditions on the graph level that
ensure determinism, and can be computed in an efficient way.

1.3.3 Expressiveness

Finally, it is important to ensure I/O-IMCs are expressive enough to model interesting
complex dependable systems. In Chapter 9 we will present the use of I/O-IMCs as
an underlying semantics for the high-level modelling language Arcade. The latter has
been designed as a modelling language to describe complex dependable systems. We will
also apply the theory developed in Chapter 8 to provide an efficient way of determining
which Arcade model correspond to deterministic I/O-IMCs. All in all, we demonstrate
that I/O-IMCs can be used to

• model complex dependable systems by modelling their components,

• give an I/O-IMC semantics to such a system by taking the composition of the
I/O-IMC semantics of its components,

• study parts of an Arcade model in isolation, and

• prove dependability properties of the system by translating the I/O-IMC to a
CTMDP or CTMC and applying standard analysis techniques.

1.4 Contribution and structure

This section presents the structure of the thesis body, discusses the novelty of its con-
tribution, and relates it to previously published work the thesis builds on. Figure 1.1
displays how the chapters of the thesis build on each other.

• In Chapter 2 we discuss some preliminaries that will be useful throughout the
thesis. In particular, we establish our notion of a state space, which is somewhat
different from the state spaces used in the context of, e.g., process algebras. In this
chapter we also review some fundamentals from the realm of probability theory
which can be found in any textbook on the subject.

• Chapter 3 discusses Markov chains, in particular CTMCs, following the discussion
of CTMCs by Anderson, Doob, and Freedman [1, 16, 17]. In this chapter, we give a
proof for the correctness of the equivalence of weak bisimulation for CTMCs, that
is applicable to a wider range of CTMCs than earlier proofs and uses a different

20

1.4. CONTRIBUTION AND STRUCTURE

Chapter 1
Introduction

Chapter 2
Preliminaries

Chapter 3
CTMCs

Chapter 4
IOA

Chapter 5
I/O-IMCs

Chapter 6
I/O-IMC behaviours

Chapter 7
Closed behaviours

Chapter 8
Determinism

Chapter 9
Arcade

Chapter 10
Conclusion

Figure 1.1: Structure of the thesis.

proof strategy which will be relevant when we revisit weak bisimulation in the
context of the semantics of I/O-IMCs.

• Chapter 4 discusses a variant of IOA. It is based on the work on IOA by Lynch
and Tuttle [33], but we need to make some small changes to the interpretation of
IOA to facilitate combining IOA with CTMCs. We will demonstrate that these

21

CHAPTER 1. INTRODUCTION

changes do not affect the important modularity results for IOA.

• In Chapter 5 we discuss the syntax of I/O-IMCs and structural operations on it.
This chapter is based on joint work with Boudali and Stoelinga [4, 5, 6, 7].

• Chapter 6 presents a modular semantics for I/O-IMCs in terms of interactive
jump processes (a variant of jump processes, where each jump is annotated with
an action-trace). The notion of interactive jump processes, their use as semantic
underpinning of I/O-IMCs, and the modularity result of the I/O-IMC semantics
original to the thesis and have not yet been unpublished.

• Chapter 7 focusses on the semantics of closed I/O-IMCs, and provides a transla-
tion to CTMDPs. This translation is based closely on a similar translation from
interactive Markov chains (IMCs) to CTMDPs developed by Johr [30], which has
been applied to I/O-IMCs in previous joint work [5, 6]. However, instead of using
the translation to give a monolithic semantics to I/O-IMCs we establish that this
translation arises naturally from the modular semantics developed in Chapter 6.

• In Chapter 8 we proceed by developing sufficient structural conditions for the
determinism of a composite I/O-IMC as well as an efficient algorithm to deter-
mine whether these conditions are satisfied. This chapter represents novel and
unpublished scientific insights.

• Chapter 9 introduces the high-level dependability modelling language Arcade

and its semantics in terms of I/O-IMCs. This chapter is based on previously
published joint work with Boudali, Haverkort, Kuntz, and Stoelinga [3], and work
by Maaß [34]

22

2
Preliminaries

This chapter walks through several topics which are needed for the remainder of the
thesis. The first section discusses our notion of discrete states. The second section in-
troduces standard concept from probability theory and can be easily skipped for readers
with a background in probability theory. Finally, the third section briefly explains the
use of Laplace transforms.

2.1 States

In essence, a state is a snapshot of the current situation of a system. For instance, if our
system is a computer, a state describes the current content of registers, memory, hard
disk, etc. In this section we give some mathematical structure to the collection of states
we consider. Most importantly, we define a parallel composition operator for states. If
one component of a complex system occupies a state x, and another occupies a state
y, then we say that their parallel composition (i.e., the system consisting of both these
components) occupies the state x‖y. In summary, we want to define

• an infinite set of states Sall,

• which can be composed with a parallel operator ‖, and

• which can be compared with an equivalence relation =s which respects ‖.

We will now give the technical details of our interpretation of states.
Our set of all states Sall is induced by applying the parallel composition operator to

a set Sbasic of basic or atomic states.

Definition 1. Let Sbasic be a set of basic states and let (Sall, ‖) be the free semigroup
induced by Sbasic. That is, Sall is the set of all strings of elements of Sbasic. Since (Sall, ‖)
is a semigroup we have,

23

CHAPTER 2. PRELIMINARIES

• Closure
x, y ∈ Sall =⇒ x‖y ∈ Sall, and

• Associativity
∀x, y, z ∈ Sall · x‖(y‖z) = (x‖y)‖z.

Note that (Sall, ‖) is the free semigroup, which means that two states in Sall are equal
if and only if their equality can be derived from the associativity of the operator ‖. We
might expect the parallel composition operator to be commutative (i.e. x‖y = y‖x), but
this would cause problems, since it is often important to know which state in a parallel
composition belongs to which component.

We further assume that, to an outside observer, certain states are indistinguishable.
In other words, the states are partially observable. Consider, for example, a computer.
We can observe the computer’s display and the sounds it makes, however, the exact
state of the computer may include the contents of the memory and registers. We may
not be able to distinguish two computers which display the same image, although the
contents of, e.g., their memory may be different.

We assume there exists a congruence relation =s on (Sall, ‖) such that ‖ is commu-
tative and transitive with respect to =s and each equivalence class of =s is infinitely
large. This relation =s describes the observable part of a state. If two states are equiv-
alent according to =s then we cannot observe a difference between them, although the
states may be different according to the syntactic equivalence relation =. In this case,
we say that such states are observably equivalent. Note that composite states may be
observably equivalent to basic states.

For technical reasons, we will consider in this thesis only subsets of Sall which are of
a lower dimension than Sall and the equivalence classes of Sall with respect to =s. That
is, we only consider sets S such that Sall \S is infinitely large and the set [x]=s \S is also
infinitely large for any equivalence class of Sall with respect to =s. The consequence is
that, for any two such subsets S1 and S2 we have that we can always find a set S′

2 which
is disjoint from S1, but isomorphic to S2 up to =s.

It will be useful to lift the equivalence relation =s to sets of states. We interpret a
set of states as a choice between these states. Two sets of states are then equivalent, if
no matter which two representative states we choose they are always equivalent. That
is, two sets C,D ⊂ Sall are equivalent, written – by abuse of notation – C =s D, if for
all pairs x ∈ C, y ∈ D we have x =s y.

Note that neither the equivalence relation =s or the equivalence = make any state-
ments about the dynamics of processes that take values in some subset of Sall. This
means that different processes may occupy the same state at the same time, but still
behave differently afterwards.

To give some insight into our reasons to assume such an equivalence relation =s, we
now give several examples of how it may be realized.

1. We might associate with each basic state a reward or cost. That is, we have a
function fb : Sbasic → R which assigns a reward to each basic state. Now we can
use fb to induce a reward function on all states f : Sall → R by applying some

24

2.2. PROBABILITY THEORY

commutative and transitive operator on the reals to define the reward of composite
states. For instance, we could define f to be the function induced by the axioms

f(x) = fb(x), x ∈ Sbasic

and

f(x‖y) = f(x) + f(y), x, y ∈ Sall.

Now, we can define =s as equality of rewards, i.e.,

x =s y ⇔ f(x) = f(y).

Since addition is commutative and transitive, we have that the parallel composi-
tion operator ‖ is commutative and transitive with respect to =s. Other possible
operators are multiplication, maximum, minimum, etc.

2. Assume there exists a countable set L of state-labels and a function fb : Sbasic → 2L

which assigns a subset of state-labels to each basic state. These state-labels then
describe the observable part of the state. Again we can define the state-labels
of composite states by using some commutative and associative set-operator such
as union or intersection. The equivalence relation =s is then defined simply as
equivalence of the sets of state-labels of states.

2.2 Probability theory

In this section we describe several topics from basic probability theory. This section can
be skipped for those familiar with probability theory.

2.2.1 Stochastic experiments

A stochastic experiment is an experiment whose outcome is completely determined by
chance. Examples include rolling dice, flipping coins, buying lottery tickets, etc. Math-
ematically, we describe a stochastic experiment as a probability space.

Definition 2 (Probability space). A stochastic experiment can be described by a prob-
ability space, which is a triple (Ω,F , P), where

• Ω is the set of all possible outcomes of the experiment, called the sample space,

• F is a set of events, called the σ-algebra, where each event is a subset of Ω, and

– F contains Ω and the empty set ∅,

– F is closed under complement, we have

A ∈ F =⇒ Ω \ A ∈ F ,

and,

25

CHAPTER 2. PRELIMINARIES

– F is closed under countable union, for countably many events {Ai | i ∈ N},
we have

∀i ∈ N ·Ai ∈ F =⇒
∞⋃

i=1

Ai ∈ F .

• P is a probability measure function from F to [0, 1], where

– P is countably additive, for countably many pairwise disjoint events {Ai ∈ N}
we have,

P

(
∞⋃

i=1

Ai

)

=
∞∑

i=1

P (Ai),

and

– P assigns one to the set of all outcomes,

P (Ω) = 1.

The set Ω is the set of all possible outcomes of the experiment. Performing the
experiment (e.g., rolling a die or flipping a coin) means picking an outcome ω out of Ω.
The function P is used to attach probabilities to the outcomes. If Ω is finite, then we
can define P such that it simply assigns a probability to each outcome and we can pick
the simple σ-algebra F = P(Ω). An event is measurable if it is in F .

Example 1. Let’s roll a fair six-sided die. We choose as the set of possible outcomes
the number of pips the die shows,

Ω = {1, 2, 3, 4, 5, 6}.

We use the standard σ-algebra for finite sample spaces F = P(Ω), i.e., F contains all
subsets of Ω. The probability function P uniformly randomly picks an outcome, i.e.,

P ({ω}) = 1/6, ω ∈ Ω.

For finite sample spaces, we can derive all other event-probabilities from the probabilities
of the individual outcomes. For instance, the probability of throwing an odd number,
which is described by the event {1, 3, 5} can be calculated using the countable additivity
of P ,

P ({1, 3, 5}) = P ({1} ∪ {3} ∪ {5}) = P ({1}) + P ({3}) + P ({5}) = 1/2.

Note that we have some freedom in choosing the set of possible outcomes. If we throw
our die onto a one meter by one meter table, we could also note the position of the die
after rolling. The set of all outcomes would then be {1, 2, 3, 4, 5, 6} × [0, 1] × [0, 1] and
would be uncountable! Still, we can choose the same simple σ-algebra as before, namely

F = {{(i, x, y) | i ∈ v, x ∈ [0, 1], y ∈ [0, 1]} | v ⊂ {1, 2, 3, 4, 5, 6}}.

For each subset v of the original sample space, we consider the event “the number of
pips shown is in v and the die is located anywhere on the table”. This cleverly chosen
σ-algebra allows us to use our simple probability function P , despite the uncountable
nature of the sample space. In general, we cannot always perform such a construction.

26

2.2. PROBABILITY THEORY

From a single stochastic experiment we may want to derive different properties. For
instance, if we role two dice, we may be interested in the sum of pips, difference of pips,
or even the product of the pips. We describe such properties as random variables.

Definition 3 (Discrete random variable). Given a probability space (Ω,F , P) and a
countable state space S, a random variable X is a function from sample space Ω to state
space S, such that the inverse of X, written X−1 is measurable, i.e. for each x ∈ S we
have that the set,

{ω | X(ω) = x}

is measurable. The probability function P then describes the probability that the random
variable X takes on a particular value x ∈ S. We write Pr(X = x) for this probability
and find

Pr(X = x) = P ({ω | X(ω) = x}).

Example 2. Let us roll two fair six-sided dice. We are interested in the total number
of pips showing on the two dice. First we define the probability space of this experiment.
We have outcomes Ω = {1, 2, 3, 4, 5, 6}×{1, 2, 3, 4, 5, 6}, the standard σ-algebra for finite
sample spaces consisting of all subsets of Ω, and for each outcome 〈x, y〉 ∈ Ω we have
P ({〈x, y〉}) = (1/6)2 = 1/36. Note that we can construct this probability space from two
copies of the probability space in Example 1.

Now consider the random variable X which maps outcomes to natural numbers in
the following way,

X(〈x, y〉) = x+ y,

for all 〈x, y〉 ∈ Ω. We can compute probabilities for the values of X. For instance, the
probability to roll 5 pips is the probability of the event A = {ω | ω ∈ Ω,X(ω) = 5}. We
have

Pr(X = 5) = P ({〈1, 4〉}) + P ({〈2, 3〉}) + P ({〈3, 2〉}) + P ({〈4, 1〉}) = 4/36.

For uncountable state spaces, such as R≥0, we can define continuous random variables
in a similar way as discrete random variables. However, the requirement of measurability
is slightly more involved in the continuous case. As a final remark on random variables
and probability spaces, we note that we usually have a single probability space on which
all random variables are defined. If necessary, probability spaces of different experiments
can easily be combined. We have seen an example of this construction in Example 2
where the probability spaces of two die-experiments where combined.

2.2.2 Basic laws of probability

We now give some often used definitions and useful laws of probability. We fix a proba-
bility space (Ω,F , P) and let A,B,C be events in F . We then use the following notations

Pr(A) ≡ P (A),

Pr(A ∨B) ≡ P (A ∪B),

Pr(A ∧B) ≡ P (A ∩B), and

Pr(¬A) ≡ P (Ω \A).

27

CHAPTER 2. PRELIMINARIES

By applying results from set theory to the events we find the following results

Pr(A ∨B) = Pr(A) + Pr(B)− Pr(A ∧B),

Pr(A ∧B) = Pr(A ∨B)− Pr(A ∧ ¬B)− Pr(B ∧ ¬A), and

Pr(¬A) = 1− Pr(A).

We complete our discussion of basic probability theory by introducing the notion of
dependency between events and conditional events.

Definition 4 (Independence of events). Given a probability space (Ω,F , P), we say two
events A and B in F are independent if,

Pr(A ∧B) = Pr(A) Pr(B).

Definition 5 (Conditional probabilities). Given a probability space (Ω,F , P) and two
events A and B in F , such that Pr(B) > 0, the probability of A under the condition B,
written Pr(A | B) is defined as the probability of A and B divided by the probability of
B

Pr(A | B) =
Pr(A ∧B)

Pr(B)
.

For independent events A and B we have

Pr(A | B) =
Pr(A ∧B)

Pr(B)
=

Pr(A) Pr(B)

Pr(B)
= Pr(A).

We find the following laws concerning conditional probabilities. Let {Ci | 1 ≤ i ≤ n}
be a countable set of events such that

⋃n
i=1 Ci = Ω. We then have

Pr(A ∧B) = Pr(A|B) Pr(B),

Pr(A) =
n∑

i=1

Pr(A ∧ Ci), and

Pr(A) =
n∑

i=1

Pr(A|Ci) Pr(Ci).

The last two laws are two different descriptions of the law of total probability.

As a final comment, it is important to note that any event B, such that Pr(B) > 0
induces a new conditional probability space with probability function PB such that, for
any event A ⊂ Ω, we have

PB(A) = Pr(A | B).

We can easily show that the function PB is indeed a probability function.

28

2.2. PROBABILITY THEORY

2.2.3 Stochastic Processes

In the previous section we have seen that we can describe a single stochastic experiment
using a probability space and we can describe interesting properties of a stochastic
experiment as random variables. A stochastic process describes a series of stochastic
experiments. Given a set of time-points T a stochastic process defines a random variable
X for each time-point t ∈ T .

Definition 6 (Stochastic process). Given a time-domain T , a stochastic process is
a family of random variables {X(t) | t ∈ T} defined over the same probability space
(Ω,F , P) and taking values in a set S, called the state space of the process.

Example 3. Let’s roll two fair six-sided dice repeatedly. Let X(i), for any i ∈ N be
the random variable that describes the sum of the pips showing after the i-th dice roll
(as in Example 2). We first define the probability space. Each outcome is an infinitely
long series of pairs from {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}. We say the sample space
Ω is the set of all functions from N to {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}. Defining the
σ-algebra and probability function is a bit more complicated as the usual strategy of
defining a probability for each outcome fails. For instance, if we assign to the outcome
〈x1, y1〉, 〈x2, y2〉, . . . probability

∏∞
i=1 P̄ ({〈xi, yi〉}), where P̄ is the probability function

from Example 2, then we would assign probability zero to each outcome!
Instead, we use events that describe finitely many dice-rolls. For instance, F contains

the event “third dice-roll is 〈3, 5〉 and fifth dice-roll is 〈6, 4〉”. This event A contains all
the outcomes which match the description.

A = {ω | ω ∈ Ω, ω(3) = 〈3, 5〉, ω(5) = 〈6, 4〉}.

For this event we define the probability

P (A) = P̄ ({〈3, 5〉}) · P̄ ({〈6, 4〉}) = (1/36)2.

In general we find for an n-dimensional event A, which describes the state of the process
at time-points t1, . . . , tn, such that the ti-th dice-roll is 〈xi, yi〉 the probability

P (A) =

n∏

i=1

P̄ ({〈xi, yi〉}) = (1/36)n.

The random variables X(t) are defined over the same probability space, so given an
outcome ω ∈ Ω, we find for each time-point t a value x ∈ S such that X(t)(ω) = x. This
series of values is called a trajectory of the stochastic process.

Definition 7 (Trajectory). Given a stochastic process X and an outcome ω ∈ Ω, the
trajectory described by ω is a function fω : T → S such that

fω(t) = X(t)(ω).

Abusing the notation, we write ω(t) for fω(t). This also matches the usual construction
of the sample space Ω as a set of functions from T to S.

29

CHAPTER 2. PRELIMINARIES

A trajectory can be understood to be a single “run” of the stochastic process. If
the time-domain is infinite, then single trajectories are usually not included as events
and therefore do not have a probability. For instance, for Example 3 the probability of
throwing two “ones” infinitely often is not measurable, although given the definition of
P we would intuitively say the probability is zero.

We have so far left the nature of the time-domain T open. Instead of going into
detail we note that there are two common choices for T : the set of all natural numbers
N, in which case T is countable and X is called a discrete-time stochastic process, or
the set of all positive real numbers R≥0, in which case T is uncountable and X is called
a continuous-time stochastic process.

Example 4. Consider a single molecule of a radio-active material with decay-constant
λ. We can model the decay of this molecule as a stochastic experiment whose outcome
is a time-point t ∈ R≥0 which denotes the time of decay. We then have Ω = R≥0. We
consider the σ-algebra induced by the events {At | t ∈ R≥0}, where

At = {ω | ω ≤ t}.

From physics it is known that we find probabilities

P (At) = 1− e−λt.

Consider the stochastic process
{
X(t)

}

t∈R≥0
, which records the number of molecules at

every point in time. That is, for an outcome ω ∈ Ω we have

X(t)(ω) =

{
1, if t < ω,
0, if t ≥ ω.

If the trajectories of a stochastic process are piecewise constant (such as the trajec-
tories of the stochastic process in Example 4), then the stochastic process is called a
jump process.

Definition 8. Given a state space S and a continuous time-domain T , a stochastic
process {X(t) | t ∈ T} which takes values in S is a jump process if its trajectories are
piece-wise constant. The jump process X is called stable if for any state x ∈ S and any
time-point t ∈ T we have

lim
h↓0

Pr(X(t+h) = x | X(t) = x) = 1

In fact, the process described in Example 4 is one example a stable jump process.
We will now give another example of a jump process.

Example 5. Consider a queue in a convenience store. At any time zero or more
customers may be waiting in the queue depending on when they join the queue and how
fast customers pay for their purchases at the register. We will consider the stochastic
process {X(t) | t ∈ R≥0} which describes the number of customers in the queue at any

30

2.3. LAPLACE TRANSFORM

given time-point. We will choose Ω = N0 as the sample space of all X(t) and we will use
the standard sigma algebra consisting of all subsets of Ω.

Let’s say that our first customer joins the queue at time-point Y1 and the second
customer joins the queue Y2 time-points later and so forth. The time it takes for the
customers to pay at the register is given by Z1, Z2, etc. Now assume that the arrival
times are independent random variables that are all uniform distributed between 2 and
6 time-units, i.e. for all i ∈ N we have

Pr(Yi ≤ t) =
max(min(t, 6), 2) − 2

4
.

Furthermore we have that every customer spends either 3 or 5 time-units at the cash
register (depending on how they pay). We will assume that each customer has a 50%
chance of spending either 3 or 5 time-units at the cash register:

Pr(Zi = n) =

{
1/2, if n = 3 or n = 5,
0, otherwise.

Figure 2.1 gives an example of a trajectory of X. It should be clear that X is a jump
process since its trajectories are indeed piece-wise constant. This example illustrates that
the distribution of the times between jumps of a jump-process does not matter as long
as it is not zero (i.e., is zero with probability zero).

t

X(t)

0

1

2

3

Figure 2.1: Example of a trajectory for the jump process X which describes the number
of customers in a queue. The first customer arrives after 4 times units and takes 3
time-units to pay (leaving the queue at t = 7). The second customer arrives 2.5 time-
units after the first one (at t = 6.5) and leaves 5 time-units later (at t = 11.5). A
third customer arrives 2 time-units after the second and leaves after 5.5 time-units (not
shown).

2.3 Laplace transform

The Laplace transform is an alternative way to represent functions. In certain situations
it is easier to work with the Laplace transform of a function than with the function itself.
We now briefly discuss Laplace transforms without going into detail, since we will use
Laplace transforms in Chapter 3.

31

CHAPTER 2. PRELIMINARIES

Definition 9. Given a function f : R≥0 → R, its Laplace transform is a function
F : R≥0 → R, with

F (s) =

∫ ∞

0
e−stf(t)dt,

for all s ∈ R≥0.

We now give a list of Laplace transforms that we will use in Section 3.2. Below, c is
a constant and g and h are functions with respective Laplace transforms G and H.

Function Laplace transform

f(t) = c F (s) = c
s

f(t) = 1− e−ct F (s) = c
s(s+c)

f(t) = cg(t) F (s) = cG(s)
f(t) = g(t) + h(t) F (s) = G(s) +H(s)

f(t) = d
dtg(t) F (s) = sG(s)− g(0).

32

3
Continuous-time Markov chains

As noted in Chapter 1, Markov chains are a versatile and widely-used way of modeling a
variety of stochastic phenomena. In this chapter we will discuss continuous-time Markov
chains (CTMCs) in more detail.

Contribution. The first section of this chapter reiterates results on Markov chains
and is adapted mainly from Anderson [1]. We revisit several key proofs for CTMCs
from Anderson to set the stage for several similar proofs that we will need for our
compositional models in Chapters 6 and 7. A genuine contribution is our study of
bisimulation for countable infinite-state continuous-time Markov chains. We prove that
bisimulation preserves transient probabilities for infinite-state Markov chains provided
the equivalence classes are all regular. For irregular Markov chains (that do not have
a unique solution), we show that bisimulation preserves the minimal solution to their
forward and backward equations (see

✞

✝

☎

✆3.11 respectively
✞

✝

☎

✆3.9), if all equivalence classes
of the bisimulation are regular. Regularity of an equivalence class means that if we
construct a Markov chain from such a class it will have a unique transient solution for
each time-point.

3.1 Continuous-time Markov chains

Definition 10. Given a countable state space S, a continuous-time Markov process
(or chain) is a stochastic process

{
X(t) | t ∈ R≥0

}
, such that we find for any states

y, x1, . . . , xn ∈ S and any series of time-points t > tn > . . . > t1 ∈ R≥0 that:

Pr(X(t) = y | X(tn) = xn, . . . ,X
(t1) = x1) = Pr(X(t) = y | X(tn) = xn).

✞

✝

☎

✆3.1

We do not yet define a probability space (Ω,F , P) for this continuous-time Markov
chain. There are different ways of constructing such a probability space [17]. However,

33

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

we will see that it is rarely necessary to work with the probability space of a Markov
chain directly. Instead, we will make use of certain fundamental probabilities that can
be derived from

✞

✝

☎

✆3.1 .

The property
✞

✝

☎

✆3.1 is called the Markov property. For a stochastic process that
fulfils the Markov property we have that the probability of reaching a state y at time
t after occupying a state xn at time tn does not depend on the value of the process
before time tn. This means a Markov chain is memoryless and we need only know
the current state a Markov chain occupies to determine its future behaviour. We can
also say that, considering the probability space under the condition {X(tn) = xn}, the
event {X(t) = y} (which describes the future w.r.t. tn) is independent of the event
{X(tn−1) = xn−1, . . . ,X

(t1) = x1} (which lies in the past w.r.t. tn). The Markov
property

✞

✝

☎

✆3.1 then follows.

Example 6. The Markov property plays a critical role in Markov process theory. Here
are a few examples of how the Markov property can (and cannot) be used. Below x, y, z
are states in S and t1, t2, t3 are time-points in R≥0 such that t1 < t2 < t3.

First, the Markov property can be applied to “uncountable” conditional probabilities.
For instance, let’s look at the probability to be in state y at time-point t3 under the
condition that the Markov chain occupied state x from time-point t1 to time-point t2.
We can then apply the Markov property to find that this probability only depends on the
fact that X was in x at time t2, not how long it occupied this state.

Pr(X(t3) = y | X(t) = x, t1 ≤ t ≤ t2) = Pr(X(t3) = y | X(t2) = x).

It is easy to show, using the laws of probability, that conditional probabilities are also
independent of the fact that X occupied some subset D of the state space S at an earlier
point in time.

Pr(X(t3) = y | X(t2) = x ∧X(t1) ∈ D) = Pr(X(t3) = y | X(t2) = x).

However, the reverse does not hold. The probability to be in a state y at time t3,
given that X occupied a state in subset D at time t2 and a state x at time t1 is not
independent of the fact that X was in x at t1. It may then be the case that,

Pr(X(t3) = y | X(t2) ∈ D ∧X(t1) = x) 6= Pr(X(t3) = y | X(t2) ∈ D).

The reason we can not apply the Markov property is the following. The fact that the
Markov chain occupies x at time t1 influences which state in D is occupied at time t2
and the states in D may have different probabilities to reach y at time t3. We can show

34

3.1. CONTINUOUS-TIME MARKOV CHAINS

this with a simple calculation,

Pr(X(t3)=y | X(t2)∈D ∧X(t1)=x) =
Pr(X(t3)=y ∧X(t2)∈D ∧X(t1)=x)

Pr(X(t2) ∈ D ∧X(t1) = x)

=

∑

z∈D Pr(X(t3)=y ∧X(t2)=z ∧X(t1)=x)

Pr(X(t2) ∈ D ∧X(t1) = x)

=

∑

z∈D Pr(X(t3)=y | X(t2)=z ∧X(t1)=x) Pr(X(t2)=z ∧X(t1)=x)

Pr(X(t2) ∈ D ∧X(t1) = x)

=
∑

z∈D

Pr(X(t3)=y | X(t2)=z ∧X(t1)=x)·

Pr(X(t2)=z | X(t2) ∈ D ∧X(t1)=x)

We can apply the Markov property to find the above equals,
∑

z∈D

Pr(X(t3)=y | X(t2)=z) Pr(X(t2)=z | X(t2) ∈ D ∧X(t1)=x)

Now we find, that the above equals Pr(X(t3) = y | X(t2) ∈ D), if the probabilities
Pr(X(t3) = y | X(t2) = z) are equal for all states z ∈ D. In general, this is not the
case.

Given a random variable J which takes values in R≥0 and which depends only on
values of X at times smaller or equal to J , we say J is a stopping-time of X. For
stopping-times we can also apply the Markov property. I.e., we have that the Markov
chain after J is independent of the Markov chain before J . Let t1 be smaller than J and
t3 greater than J , then

Pr(X(t3) = y | X(J) = x ∧X(t1) = z) = Pr(X(t3) = y | X(J) = x).

The above is called the strong Markov property. Usually, the condition that t3 > J > t1
follows from the definition of the random variable J .

Finally we note that the Markov property must be applied to the largest time-point
in the condition. I.e., we may find that

Pr(X(t3) = y | X(t2) = z ∧X(t1) = x) 6= Pr(X(t3) = y | X(t1) = x).

We have seen that the future behaviour of a Markov chain does not depend on the
past behaviour. However, it may depend on the current time. If, instead, we have for
any two states x, y ∈ S and time-points t1, t2, t3 ∈ R≥0 that the probability to reach y
from x does not depend on the current time, i.e.,

Pr(X(t2) = y | X(t1) = x) = Pr(X(t2+t3) = y | X(t1+t3) = x)
✞

✝

☎

✆3.2

then the Markov chain is called time-homogeneous. For time-homogeneous Markov
chains we have that their future behaviour does not depend on the current time, only on
the current state of the Markov chain. In the following, we consider a time-homogeneous
continuous-time Markov chain X with countable state space S.

35

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

We consider only Markov chains which are jump processes. This means that for all
trajectories we have that they are piecewise-constant and right-continuous. In essence
this means that a run of a Markov chain behaves as follows. The Markov chain starts in
a particular state x, stays in x for a non-zero period of time and then (possibly) jumps
to a different state y where it again stays for a non-zero period of time before possibly
jumping to another state, and so forth.

3.1.1 Describing a Markov chain

Before we dive into Markov chain theory, we quickly give an overview of the different
ways to describe Markov chains. Since a Markov chain is a family of random vari-
ables on the same probability space, the first thing we need is to define the probability
space (Ω,F , P̄). Even if we restrict to piece-wise constant trajectories there are still
uncountably many possible trajectories in Ω, each of which is a function from the un-
countably large time-domain R≥0 to the countable state space S (see Figure 3.1). The
σ-algebra F could be generated by organising the trajectories into events of the form
{X(t1) = x1 ∧ . . . ∧X

(tn) = xn}, for finite series of time-points and states. As the time-
points are taken from R≥0, we have that F is uncountably large. Finally, the probability
function P̄ assigns a probability to each event. Given such a probability space, it is easy
to define the random variables: X(t)(ω) ≡ ω(t) for each t ∈ R≥0 and ω ∈ Ω.

From the above discussion it should be clear that it is very challenging to define
a Markov chain directly through its probability space. This is why Markov chains are
often described in terms of their properties. First, we have that each time-homogeneous
Markov chain has a transition function P which describes the probability to go from
one state to another in a specific time-period,

Px,y(t) ≡ Pr(X(t) = y | X(0) = x),

where x and y are states in S and t is a time-point in R≥0. We can see that the
transition function is much less complicated than the probability space of a Markov
chain, although it is still uncountably large (see Figure 3.1). We will discuss transition
functions in Subsection 3.1.2, where we will derive recursive definitions for P which can
be used in certain situations. In general, a transition function does not uniquely define a
continuous-time Markov chain. However, if the transition function has finite derivatives
at time-point zero, we say it is standard and we then have that it, in a sense, “uniquely
defines” a Markov chain. For this thesis we are not interested in Markov chains with
non-standard transition functions, as they do not appear often in practical applications.
A Markov chain with a standard transition function is called stable. For more details
on unstable Markov chains we refer to Anderson [1].

The final Markov chain representation we discuss is the most widely used in practical
applications, the infinitesimal generator Q. The infinitesimal generator is a |S| by |S|
real-valued matrix which contains, at entry qx,y where x and y are states in S, the
derivative at time zero of the transition function P ,

qx,y ≡
d

dt
Px,y(t)

∣
∣
∣
∣
t=0

.

36

3.1. CONTINUOUS-TIME MARKOV CHAINS

Since S is countable, Q is also countably large. Moreover, if S is finite, Q is finite
and can be specified directly (see Figure 3.1). In Subsection 3.1.3 we will see that
every transition function has an infinitesimal generator, and then every Markov chain
has an infinitesimal generator. Conversely, an infinitesimal generator matrix uniquely
defines the “finite-jump” probabilities of a Markov chain. That is, from Q we can derive
probabilities

P (n)
x,y (t) ≡ Pr(X(t) = y ∧ “X makes at most n jumps in [0, t]” | X(0) = x)

for states x, y, a time-point t, and a natural number n. We will discuss this derivation in
Subsection 3.1.4. Unfortunately, there are so-called irregular Markov chains that may
perform infinitely many jumps in a finite amount of time. However, we will see that if
the infinitesimal generator Q of a Markov chain is regular, then the Markov chain is also
regular and can only perform finitely many steps in a finite amount of time. In this case
Q uniquely defines P . We will discuss sufficient and sometimes necessary conditions for
the regularity of Q in Subsection 3.1.5.

Markov
chain
X

(Ω,F , P̄)

Transition
function

P

S×S×R≥0 → [0, 1]

Infinitesimal
generator

Q

S×S → R≥0 ∪ {+∞}

has a has an

uniquely defines
if P is standard

uniquely defines
if Q is regular

Figure 3.1: Overview of different ways of describing a Markov chain and the mathemat-
ical objects associated with each description.

3.1.2 Transition probabilities

We now consider the transition probabilities of a homogeneous continuous-time Markov
chain X with state space S, which are described by the transition function P .

Definition 11. For states x, y in S and a time-point t ∈ R≥0, the transition function
P describes the probability that the Markov chain X occupies state y at time t under the
condition that X occupies state x at time 0

Px,y(t) ≡ Pr(X(t) = y | X(0) = x).

37

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

We can express the probability that X occupies states x1, . . . , xn at time-points
t1 < . . . < tn under the condition that X occupies state x0 at time t0 < t1 in terms of
the transition function of X. We have

Pr(X(tn) = xn ∧X(tn−1) = xn−1 ∧ . . . ∧X
(t1) = x1 | X

(t0) = x0)

=Pr(X(tn) = xn | X(tn−1) = xn−1 ∧ . . . ∧X
(t1) = x1 ∧X

(t0) = x0)

· Pr(X(tn−1) = xn−1 ∧ . . . ∧X
(t1) = x1 | X

(t0) = x0).

Applying the Markov property we find

Pr(X(tn) = xn | X(tn−1) = xn−1)

· Pr(X(tn−1) = xn−1 ∧ . . . ∧X
(t1) = x1 | X

(t0) = x0).

Because X is time-homogeneous this is equivalent to

Pr(X(tn−tn−1) = xn | X(0) = xn−1)

· Pr(X(tn−1) = xn−1 ∧ . . . ∧X
(t1) = x1 | X

(t0) = x0).

Following this approach we arrive at

Pr(X(tn) = xn ∧X(tn−1) = xn−1 ∧ . . . ∧X
(t1) = x1 | X

(t0) = x0) =
n∏

i=1

Pxi−1,xi(ti − ti−1).

Given an initial distribution α such that P (X(0) = x) = αx we have that the probability
that X occupies states xn, . . . , x0 at times tn > . . . > t0 equals

∑

x∈S

αxPx,x0(t0)

n∏

i=1

Pxi−1,xi(ti − ti−1).
✞

✝

☎

✆3.3

From the Markov property we can also derive the following for t1, t2 ∈ R≥0

Pr(X(t1+t2) = y | X(0) = x) =
∑

z∈S

Pr(X(t1+t2) = y ∧X(t1) = z | X(0) = x)

=
∑

z∈S

Pr(X(t1+t2) = y | X(t1) = z ∧X(0) = x)

· Pr(X(t1) = z | X(0) = x).

Applying
✞

✝

☎

✆3.1 and
✞

✝

☎

✆3.2 we now have

Pr(X(t1+t2) = y | X(0) = x) =
∑

z∈S

Pr(X(t2) = y | X(0) = z) Pr(X(t1) = z | X(0) = x).
✞

✝

☎

✆3.4

38

3.1. CONTINUOUS-TIME MARKOV CHAINS

This equation is known as the Chapman-Kolmogorov equation. Expressed in terms of
the transition function of X we have

Px,y(t1 + t2) =
∑

z∈S

Px,z(t1)Pz,y(t2).
✞

✝

☎

✆3.5

We have seen that using the transition function of a continuous-time Markov chain
we can determine the probability that the Markov chain occupies countably many states
at countably many time-points. In fact, continuous-time Markov chains are almost com-
pletely described by these transition probabilities. We also find, from basic probability
theory and the Chapman-Kolmogorov equation that the transition function of a stable
and time-homogeneous Markov chain has the following properties.

1. Px,y(t) ≥ 0 for all x, y ∈ S and t ∈ R≥0 and
∑

y∈S Px,y(t) = 1 for all x ∈ S and
t ∈ R≥0,

2. for all pairs of distinct states x, y ∈ S and time-points t ∈ R≥0, we have Px,y(0) = 0
and Px,x(0) = 1, and

3. for all pairs of distinct states x, y ∈ S, we find that limt↓0 Px,x(t) = 1 and
limt↓0 Px,y(t) = 0.

Any function that satisfies the first two properties stated above and the Chapman-
Kolmogorov equation,

✞

✝

☎

✆3.5 , is called a transition function and it is called a standard
transition function if it also satisfies the third property [1]. As noted earlier, we will
consider only Markov chains with standard transition functions in this thesis. We will
now study the derivative of the transition function of a Markov chain.

3.1.3 Infinitesimal transition probabilities

Given a standard transition function P on a state space S (not necessarily associated
with a Markov chain), the following limit exists, for a state x ∈ S:

qx = lim
t↓0

1− Px,x(t)

t

✞

✝

☎

✆3.6

It is important to note that although the above limit exists, it may not be finite. If for
some state x we have that qx is finite we say that x is stable. For a stable state x we
find, for any state y ∈ S such that x 6= y that the limit

qx,y = lim
t↓0

Px,y(t)

t

✞

✝

☎

✆3.7

exists and is finite. For proofs of the above two statements we refer to Anderson [1].

Definition 12 (Stability). Given a standard transition function Px,y(t) on a state space
S, a state x ∈ S is stable if qx is finite. The transition function itself is called stable
if all states in S are stable. Finally, a Markov chain X with transition function P is
called stable if P is stable.

39

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

Without proof we note that given a stable standard transition function with finite
derivatives, we can always construct a time-homogeneous continuous-time Markov chain
X with right-continuous, piecewise constant trajectories, such that for states x, y ∈ S
and time-point t ∈ R≥0 we have

P (X(t) = y | X(0) = x) = Px,y(t).

That is, for any stable and standard transition function P there exists a Markov chain
whose transition probabilities are described by P .

We say that a stable transition function “uniquely defines” a Markov chain, although
in fact different Markov chains (with different sample spaces for instance) may be derived
from one transition function. However, all such Markov chains have identical finite-state
probabilities as given by

✞

✝

☎

✆3.3 . As for the class of Markov chains that are not stable
(unstable), we do not consider them here. Note that we will use the terms stable and
unstable in a different context in Chapter 5.

For distinct states x, y ∈ S, the values qx,y are very important for the Markov chain
X. First of all we have that they are the derivatives of the functions Px,y at time-point
zero. We have

d

dt
Px,y(t)

∣
∣
∣
∣
t=0

= lim
h↓0

Px,y(h)− Px,y(0)

h

and we have that Px,y(0) equals zero which means

d

dt
Px,y(t)

∣
∣
∣
∣
t=0

= qx,y.

We find a similar result for the derivative at zero of Px,x. We have

d

dt
Px,x(t)

∣
∣
∣
∣
t=0

= lim
h↓0

Px,x(h)− Px,x(0)

h
.

Now we have that Px,x(0) = 1 and so we have

d

dt
Px,x(t)

∣
∣
∣
∣
t=0

= −qx.

We define qx,x ≡ −qx, for x ∈ S and summarise the above results by defining the
infinitesimal generator matrix of a Markov chain.

Definition 13 (infinitesimal generator matrix). Given a stable and time-homogeneous
Markov chain X with state space S and transition function P . The infinitesimal gener-
ator matrix Q ∈ R|S|×|S| is the derivative of P at time 0.

d

dt
P (t)

∣
∣
∣
∣
t=0

= Q.

In general the entries of Q may be infinite, but if for all states x, qx,x is finite, then
every entry in Q is finite, and the associated transition function is stable.

40

3.1. CONTINUOUS-TIME MARKOV CHAINS

Forward and backward equations. We now derive two important connections be-
tween the infinitesimal generator and the transition function of a Markov chain, called
the forward and backward (Kolmogorov) equations.

Given a Markov chain X with state space S and transition function P , let x and y
be distinct states in S and let h ∈ R≥0 be a time-point. Consider the Taylor-expansion
around the origin of Px,y(h). We have

Px,y(h) = Px,y(0) + P ′
x,y(0)h +

1

2
P ′′
x,y(0)h

2 +
1

6
P ′′′
x,y(0)h

3 . . . ,

where P ′
x,y(0), P

′′
x,y(0), etc. denote the first, second, etc. derivatives of Px,y(h) at h = 0.

Since the derivatives at h = 0 are independent of h we have

Px,y(h) = Px,y(0) + P ′
x,y(0)h + o(h)

where o(h) denotes a function f such that f(0) = 0 and limh↓0 f(h)/h = 0. We now find

Px,y(h) =

{
qx,yh+ o(h) , if x 6= y
1− qxh+ o(h) , if x = y.

✞

✝

☎

✆3.8

By the law of total probability we have
∑

y 6=x qx,yh+o(h)+1−qxh+o(h) = 1 for any h.
Without proof we note that it follows that qx =

∑

y 6=x qx,y and then qx,x = −
∑

y 6=x qx,y.

We now turn our attention to the derivative of P at any time-point t. For a time-
interval h > 0 we have

Px,y(t+ h) =
∑

z∈S

Px,z(h)Pz,y(t)

=
∑

z 6=x

(qx,zh+ o(h))Pz,y(t) + (1− qxh+ o(h))Px,y(t)

=
∑

z 6=x

(qx,zh+ o(h))Pz,y(t) + (qx,xh+ o(h))Px,y(t) + Px,y(t)

=
∑

z∈S

(qx,zh+ o(h))Pz,y(t) + Px,y(t).

We can use the above to compute the derivative of Px,y(t)

d

dt
Px,y(t) = lim

h↓0

Px,y(t+ h)− Px,y(t)

h

= lim
h↓0

∑

z∈S(qx,zh+ o(h))Pz,y(t)

h
.

Given that limh↓0 o(h)/h = 0 we have

d

dt
Px,y(t) =

∑

z∈S

qx,zPz,y(t)
✞

✝

☎

✆3.9

41

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

or, written in matrix-form
d

dt
P (t) = QP (t).

✞

✝

☎

✆3.10

This equation is called the backward equation or Kolmogorov backward equation.
A similar result follows if we split the time-interval t+ h differently, i.e. if we use,

Px,y(t+ h) =
∑

z∈S

Px,z(t)Pz,y(h).

We then find
d

dt
Px,y(t) =

∑

z∈S

Px,z(t)qz,y
✞

✝

☎

✆3.11

or, written in matrix-form
d

dt
P (t) = P (t)Q.

✞

✝

☎

✆3.12

This equation is called the forward equation or Kolmogorov forward equation.
The forward Kolmogorov equation can be used to describe the dynamics of the

transient distribution of X. For a state x ∈ S and a time-point t ∈ R≥0, we write

πx(t) ≡ Pr(X(t) = x).

The vector π(t) is known as the transient distribution of X and describes the probability
that X occupies a given state at time t. From the Chapman-Kolmogorov equation it
then follows that

πy(t1 + t2) =
∑

x∈S

πx(t1)Px,y(t2),

for states x, y ∈ S and time-points t1, t2 ∈ R≥0.
We now multiply the left- and right-hand sides of

✞

✝

☎

✆3.11 from the left with the initial
probability πx(0). We have

πx(0)
d

dt
Px,y(t) = πx(0)

∑

z∈S

Px,z(t)qz,y

and then
d

dt
πy(t) =

∑

z∈S

πz(t)qz,y.
✞

✝

☎

✆3.13

In matrix form we find
d

dt
π(t) = π(t)Q.

✞

✝

☎

✆3.14

The above suggest that we can compute the transient probabilities πx(t) of X by solving
the system of differential equations

✞

✝

☎

✆3.14 . However, we will see that the forward equa-

tion
✞

✝

☎

✆3.12 and then also
✞

✝

☎

✆3.14 do not always have a unique solution. Before we discuss
under what conditions the forward and backward equations have unique solutions, we
first discuss several further properties of a Markov chain that can be derived from its
infinitesimal generator matrix.

42

3.1. CONTINUOUS-TIME MARKOV CHAINS

Jump-times and jump-probabilities. For a natural number n, let Jn be a random
variable describing the n-th jump-time of X, i.e., for an outcome ω, Jn(ω) is the time
at which X(ω) changes value for the n-th time. We can define Jn inductively as follows

Jn =

{
0 , if n = 0

inf{t | t > Jn−1 ∧X
(t) 6= X(Jn−1)} , otherwise.

✞

✝

☎

✆3.15

We see from the definition that the random variables Jn, for n ∈ N, are stopping-times
of X. That is, for an outcome ω the value of Jn(ω) can be derived by inspecting the
values of X(t)(ω) up to Jn(ω).

In particular, J1 is the time of the first jump of the Markov chain. Note that, because
of time-homogeneity we have:

Pr(Jn − Jn−1 ≤ t | X(Jn−1) = x) = Pr(J1 ≤ t | X(0) = x).

We now investigate the distribution of J1 under the condition that X starts in a partic-
ular stable state x ∈ S. This distribution,

Pr(J1 ≤ t | X(0) = x)

is also called the residence distribution of state x. We will first investigate the derivative
d
dt Pr(J1 > t | X(0) = x). To do this we develop a “backward” equation for this
distribution. For time-points t, h ∈ R≥0 such that h > 0 we find

Pr(J1 > t+ h | X(0) = x)

=
∑

y∈S

Pr(J1 > t+ h ∧X(h) = y | X(0) = x)

=
∑

y∈S

Pr(J1 > t+ h | X(h) = y ∧X(0) = x) Pr(X(h) = y | X(0) = x).

Now we have for y 6= x, that the event {X(h) = y ∧X(0) = x} implies that at least one
jump occurred in the time-interval [0, h]. Obviously, the first jump-time J1 cannot be
greater than t+ h. It follows, that

Pr(J1 > t+ h | X(0) = x)

= Pr(J1 > t+ h | X(h) = x ∧X(0) = x) Pr(X(h) = x | X(0) = x)

= Pr(J1 > t+ h | X(h) = x) Pr(X(h) = x | X(0) = x).

Note that we can apply the Markov property above since the event {J1 > t+ h} under
the condition that X(h) = x can be interpreted as the event {X(s) = x | h ≤ s ≤ t+ h}.
We now apply

✞

✝

☎

✆3.8 and the homogeneity of X to find

Pr(J1 > t+ h | X(0) = x)

= Pr(J1 > t+ h | X(h) = x)(1− qxh+ o(h))

= Pr(J1 > t | X(0) = x)− Pr(J1 > t | X(0) = x)(qxh+ o(h))

43

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

For the derivative of the conditional distribution of J1 we now find

d

dt
Pr(J1 > t | X(0) = x) = lim

h↓0

−Pr(J1 > t | X(0) = x)(qxh+ o(h))

h

= −qx Pr(J1 > t | X(0) = x).
✞

✝

☎

✆3.16

Since x is stable we have Pr(J1 > 0 | X(0) = x) = 1 and qx is finite. We then find the
following unique solution for the ordinary differential equation

✞

✝

☎

✆3.16

Pr(J1 > t | X(0) = x) = e−qxt
✞

✝

☎

✆3.17

or P (J1 ≤ t | X(0) = x) = 1 − e−qxt. We say that the residence time of state x has a
negative exponential distribution with rate qx.

We have seen that the time until X leaves a particular stable state x is determined
completely by qx. For this reason we refer to the value qx = −qx,x as the exit-rate of
state x. Recall that we have qx =

∑

y 6=x qx,y. Now the question arises, if X leaves a
state x at time J1, then what is the next state of X? In particular, we wish to know
the probability that X jumps to a state y on its first jump, knowing that it started in
state x,

Pr(X(J1) = y | X(0) = x).
✞

✝

☎

✆3.18

Note that by time-homogeneity we have, for any n ∈ N:

Pr(X(Jn) = y | X(Jn−1) = x) = Pr(X(J1) = y | X(0) = x).

The probabilities
✞

✝

☎

✆3.18 are called the jump-probabilities of X.

For any positive time-interval h < J1 we know that if X(0) = x then also X(J1−h) = x
and furthermore X(J1) 6= x then

Pr(X(J1) = y | X(0) = x)

= Pr(X(J1) = y | X(J1) 6= x ∧X(J1−h) = x ∧X(0) = x).

Since the trajectories of X are right-continuous we find that the above also equals

lim
h↓0

Pr(X(J1) = y | X(J1) 6= x ∧X(J1−h) = x ∧X(0) = x).

Recall that we can apply the Markov property for X(J1−h), because J1 − h approaches
J1 and J1 is a stopping time of X1. Applying the strong Markov property and time-
homogeneity of X we find that the jump-probability from x to y equals

lim
h↓0

Pr(X(h) = y | X(h) 6= x ∧X(0) = x).

1Note, in particular that we cannot apply the Markov property when h does not approach zero as
J1 − h is in general not a stopping time.

44

3.1. CONTINUOUS-TIME MARKOV CHAINS

Now we can rewrite to

lim
h↓0

Pr(X(h) = y | X(0) = x)

Pr(X(h) 6= x | X(0) = x)

= lim
h↓0

Pr(X(h) = y | X(0) = x)

h
/
Pr(X(h) 6= x | X(0) = x)

h

= lim
h↓0

qx,yh+ o(h)

h
/
qxh+ o(h)

h
.

We now find for the jump probability from state x to state y with x 6= y that

Pr(X(J1) = y | X(0) = x) =
qx,y
qx

.
✞

✝

☎

✆3.19

Finally, we will consider the joint probability distribution of jump times and jump
probabilities

Pr(X(J1) = y ∧ J1 > t | X(0) = x).
✞

✝

☎

✆3.20

We derive a “forward” equation for this probability, For x, y ∈ S, t ∈ R≥0, and h > 0
we have

Pr(X(J1) = y ∧ J1 > t+ h | X(0) = x)

=
∑

z∈S

Pr(X(J1) = y ∧ J1 > t+ h ∧X(h) = z | X(0) = x)

= Pr(X(J1) = y ∧ J1 > t+ h ∧X(h) = x | X(0) = x)

= Pr(X(J1) = y ∧ J1 > t+ h | X(h) = x ∧X(0) = x) Pr(X(h) = x | X(0) = x).

Above we used the fact that if X(h) is unequal to X(0), then the first jump-time must
be smaller or equal to h. Applying the Markov property, homogeneity, and

✞

✝

☎

✆3.8 we find

Pr(X(J1) = y ∧ J1 > t+ h | X(0) = x)

= Pr(X(J1) = y ∧ J1 > t | X(0) = x)(1 − qxh+ o(h)).

For the derivative of
✞

✝

☎

✆3.20 we now find

d

dt
Pr(X(J1) = y ∧ J1 > t | X(0) = x) =

− qx Pr(X
(J1) = y ∧ J1 > t | X(0) = x).

✞

✝

☎

✆3.21

Now, since x is stable we have that J1 is always greater than zero. We then find, for the
case t = 0, that

Pr(X(J1) = y ∧ J1 > 0 | X(0) = x) = Pr(X(J1) = y | X(0) = x) =
qx,y
qx

.

This leads to the following solution to
✞

✝

☎

✆3.21

Pr(X(J1) = y ∧ J1 > t | X(0) = x) =
qx,y
qx

e−qxt
✞

✝

☎

✆3.22

45

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

or
Pr(X(J1) = y ∧ J1 ≤ t | X(0) = x) =

qx,y
qx

−
qx,y
qx

e−qxt.
✞

✝

☎

✆3.23

One importance consequence of
✞

✝

☎

✆3.23 is that jump times and jump probabilities are
independent since we have

Pr(X(J1) = y ∧ J1 ≤ t | X(0) = x)

= Pr(X(J1) = y | X(0) = x) Pr(J1 ≤ t | X(0) = x).

As a final note on jump times and jump probabilities, we have that the probability
to jump twice or more in a time-interval t ∈ R≥0 is o(t).

3.1.4 Finite-jump probabilities

We have seen that the infinitesimal generator matrix Q of a stable Markov chain X
determines the time at which X jumps and the next state to which X jumps. We will
use this information to attempt to construct a transition function P from an infinites-
imal generator matrix Q. Our construction follows the construction by Anderson [1].
The reason we repeat this construction in detail is that we will need to use similar
constructions for our compositional models in Chapter 6.

Before we consider the transition function P , which describes how to move from one
state to another with any number of jumps, we examine the probability to go from one
state to another in a limited amount of jumps.

Definition 14 (n-jump probabilities). For n ∈ N, let P
(n)
x,y (t) be the probability that the

Markov chain X reaches state y from state x at time t in at most n jumps,

P (n)
x,y (t) = Pr(X(t) = y ∧ Jn+1 > t | X(0) = x).

✞

✝

☎

✆3.24

For n = 0 we have

P (0)
x,y (t) = Pr(X(t) = y ∧ J1 > t | X(0) = x).

For x 6= y we have that it is impossible to reach y from x in at most zero jumps. For
x = y we simply find the residence distribution

✞

✝

☎

✆3.17 , i.e., the probability to stay in x
for at least t time-units.

P (0)
x,y (t) =

{
0 , if x 6= y
e−qxt , if x = y.

✞

✝

☎

✆3.25

We now consider the case that n > 0. We study the derivative of P
(n)
x,y to derive a

“forward” equation. For any h > 0 we have

P (n)
x,y (t+ h) = Pr(X(t+h) = y ∧ Jn+1 > t+ h | X(0) = x)

=
∑

z∈S

Pr(X(t+h) = y ∧ Jn+1 > t+ h ∧X(t) = z | X(0) = x)

=
∑

z 6=y

Pr(X(t+h) = y ∧ Jn+1 > t+ h ∧X(t) = z | X(0) = x)

+ Pr(X(t+h) = y ∧ Jn+1 > t+ h ∧X(t) = y | X(0) = x).

46

3.1. CONTINUOUS-TIME MARKOV CHAINS

We now consider the number of jumps that may occur between t and t + h. The
probability that two jumps or more occur within h time-units is o(h). If at most one
jump occurs between t and t+ h then, since z 6= y, the event

{X(t+h) = y ∧ Jn+1 > t+ h ∧X(t) = z}

is equivalent to
{X(t+h) = y ∧ Jn > t ∧X(t) = z}.

Similarly we have that

{X(t+h) = y ∧ Jn+1 > t+ h ∧X(t) = y}

is equivalent to
{X(t+h) = y ∧ Jn+1 > t ∧X(t) = y}

when at most one jump occurs between t and t+ h. Applying the above to P
(n)
x,y (t+ h)

we find
∑

z 6=y

Pr(X(t+h) = y ∧ Jn > t ∧X(t) = z | X(0) = x)

+ Pr(X(t+h) = y ∧ Jn+1 > t ∧X(t) = y | X(0) = x) + o(h)

=
∑

z 6=y

Pr(X(t+h) = y | Jn > t ∧X(t) = z ∧X(0) = x)

· Pr(Jn > t ∧X(t) = z | X(0) = x)

+ Pr(X(t+h) = y | Jn+1 > t ∧X(t) = y ∧X(0) = x)

· Pr(Jn+1 > t ∧X(t) = y | X(0) = x) + o(h).

The statement Jn+1 > t can be completely expressed in terms of the values of X between
0 and t. This means we can apply the Markov property above to find

∑

z 6=y

Pr(X(t+h) = y | X(t) = z)P (n−1)
x,z (t)

+ Pr(X(t+h) = y | X(t) = y)P (n)
x,y (t) + o(h)

We then apply the homogeneity of X and
✞

✝

☎

✆3.8 to find
∑

z 6=y

(qz,yh+ o(h))P (n−1)
x,z (t)

− (qyh+ o(h))P (n)
x,y (t) + P (n)

x,y (t) + o(h).

We can apply the above result to the derivative of P
(n)
x,y to find

d

dt
P (n)
x,y (t) = lim

h↓0

P
(n)
x,y (t+ h)− P

(n)
x,y (t)

h

= lim
h↓0

∑

z 6=y(qz,yh+o(h))P
(n−1)
x,z (t)−(qyh+o(h))P

(n)
x,y (t)+o(h)

h
,

47

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

which leads to
d

dt
P (n)
x,y (t) =

∑

z 6=y

qz,yP
(n−1)
x,z (t)− qyP

(n)
x,y (t).

✞

✝

☎

✆3.26

The equation
✞

✝

☎

✆3.26 is a first-order linear differential equation. It is important to note

that, given the functions P
(n−1)
x,z the equation

✞

✝

☎

✆3.26 has only one unknown, namely P
(n)
x,y

in contrast to, for instance,
✞

✝

☎

✆3.14 which may contain infinitely (and countably) many

differential equations with as many variables. Using calculus we can solve
✞

✝

☎

✆3.26 to find
the unique solution

P (n)
x,y (t) = e−qyt

P (n)
x,y (0) +

∫ t

0

∑

z 6=x

P (n−1)
x,z (s)qz,ye

−qysds

 .

For t = 0 we find

P (n)
x,y (0) =

{
0 , if x 6= y
1 , if x = y.

✞

✝

☎

✆3.27

Using
✞

✝

☎

✆3.27 we then have

P (n)
x,y (t) =

{

e−qyt +
∫ t
0

∑

z 6=y P
(n−1)
x,z (s)qz,ye

−qy(t−s)ds , if x = y
∫ t
0

∑

z 6=y P
(n−1)
x,z (s)qz,ye

−qy(t−s)ds , if x 6= y.

✞

✝

☎

✆3.28

Equation
✞

✝

☎

✆3.28 can be rewritten as follows, where γx,y equals one if x = y and zero
otherwise,

P (n)
x,y (t) = γx,ye

−qyt

︸ ︷︷ ︸

x to y
in zero jumps

+

∫ t

0

∑

z 6=y

P (n−1)
x,z (s)
︸ ︷︷ ︸

x to z within
n− 1 jumps

qz,y
︸︷︷︸

z to y between
s and s+ ds

e−qy(t−s)
︸ ︷︷ ︸

stay in y
from s+ ds to t

ds

Note that qz,y is the derivative of
✞

✝

☎

✆3.22 at time zero.

In a similar way we can also derive a ”backward“ version of
✞

✝

☎

✆3.28 [1]

P (n)
x,y (t) =

{

e−qyt +
∫ t
0 e

−qx(s)
∑

z 6=y qx,zP
(n−1)
z,y (t− s)ds , if x = y

∫ t
0 e

−qx(s)
∑

z 6=y qx,zP
(n−1)
z,y (t− s)ds , if x 6= y.

✞

✝

☎

✆3.29

This equation can be rewritten as follows,

P (n)
x,y (t) = γx,ye

−qyt

︸ ︷︷ ︸

x to y
in zero jumps

+

∫ t

0
qxe

−qx(s)

︸ ︷︷ ︸

first jump
at s

∑

z 6=y

qx,z
qx
︸︷︷︸

jump
to z

P (n−1)
z,y (s)
︸ ︷︷ ︸

z to y within
n− 1 jumps

ds

For a proof that
✞

✝

☎

✆3.28 describes the same function as
✞

✝

☎

✆3.29 we refer to Anderson [1].
We now define the finite-jump transition function f as the limit of P (n) when n goes

to infinity.

48

3.1. CONTINUOUS-TIME MARKOV CHAINS

Definition 15 (Finite-jump transition function). For states x, y ∈ S, we define the
finite-jump transition function fx,y : R≥0 → [0, 1] as the limit of the n-jump transition

function P
(n)
x,y

fx,y(t) ≡ lim
n→∞

P (n)
x,y (t).

The probability fx,y(t) is the probability that X reaches state y from x in a finite
number of jumps.

Similarly, let J∞ be the n-th jump-time where n goes to infinity,

Definition 16. The time of (first) explosion J∞ is the random variable

J∞ = lim
n→∞

Jn.

The random variable J∞ is also called the explosion time. Note that J∞ may take
the value ∞.

We then have that

fx,y(t) = Pr(X(t) = y ∧ J∞ > t | X(0) = x).

It is crucial to understand the relationship between the function fx,y, which is defined
uniquely by the infinitesimal generator matrix Q, and the transition function Px,y which
(assuming it is stable) uniquely defines the behaviour of the Markov chain X. This
relationship depends on the value of J∞. If J∞ can be finite, then X may perform
infinitely many jumps in a finite amount of time. We say that X explodes. If J∞ is
infinite with probability one, then X cannot perform infinitely many jumps in a finite
amount of time.

Proposition 1. If the stable Markov chain X performs infinitely many jumps in a finite
amount of time with probability zero, then

Px,y(t) = fx,y(t),

for all x, y ∈ S and t ∈ R≥0.

Proof. By the law of total probability we have

Px,y(t) = Pr(X(t) = y | X(0) = x)

= Pr(X(t) = y ∧ J∞ > t | X(0) = x) +

Pr(X(t) = y ∧ J∞ ≤ t | X(0) = x)

If we assume that X performs infinitely many jumps in a finite amount of time with
probability zero then the probability that J∞ is less than or equal to t is zero for all
t ∈ R≥0.

The function f also has the following important properties.

Proposition 2. The finite-jump transition function f of a stable Markov chain X

49

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

1. is a standard transition function,

2. has derivative f ′(0) = Q at time zero,

3. is the minimal solution to the backward and forward equations of Q (for any other
solution f̄(t) of the backward or forward equations we have fx,y(t) ≤ f̄x,y(t) for all
x, y ∈ S and t ∈ R≥0), and

4. is the unique solution to the backward and forward equations of Q if
∑

y∈S fx,y(t) =
1 for all x ∈ S and t ∈ R≥0.

For a proof of Proposition 2 we refer to Anderson [1]. The third item can be under-
stood as follows. When a Markov chain reaches the time of first explosion, its behaviour
is not specified by the infinitesimal generator matrix. We can then find infinitely many
solutions to the backward and forward Kolmogorov equations by arbitrarily choosing the
next state of the Markov chain when it explodes. The finite-jump transition function f
represent the solution to the backward and forward equations where the Markov chain
“stops” upon exploding. I.e., the “exploding” probability mass is not assigned to any
state. All other solutions, must then be state-wise greater or equal to f , which means
it is the minimal solution to the forward and backward equations.

The fourth item follows directly from Proposition 1. Let X be a Markov chain with
infinitesimal generator matrix Q and let f(t) be the transition function derived from Q.
Then if the function f(t) sums up to one, the probability that X explodes must be zero.
By Proposition 1, it follows that the transition function P (t) of any such Markov chain
X must be equal to f(t), but there can be only one transition function P (t).

3.1.5 Regularity

If a Markov chain X performs infinitely many jumps in a finite amount of time with
probability zero (i.e., it does not explode), then we say that X is regular. By item 4 of
Proposition 2 we have seen that the regularity of X is determined by its infinitesimal
generator matrix Q. The infinitesimal generator matrix Q of a regular Markov chain is
also called regular. We now look at sufficient (and in some cases necessary) conditions
on a matrix Q to be regular.

Before we consider Markov chains in general, we first have a look at birth processes.
Given a sequence of birth rates {λi ∈ R≥0 | i ∈ N} a birth process is a Markov chain
with state space N, where for all i ∈ N we have,

qi,j =

λi, if j = i+ 1,
−λi, if j = i,
0, otherwise.

In other words a birth process models a population where at each point in time an
individual may be “born”, increasing the population by one. The probability that a new
individual is born depends on the current population. A nice property of birth processes
is that their jump chain (the sequence of states the process jumps to) is completely fixed

50

3.1. CONTINUOUS-TIME MARKOV CHAINS

by X(Ji) = i for each i ∈ N. The expected n-th jump time is then simply the expected
sum of n independent exponentially-distributed random variables,

E(Jn) =
n−1∑

i=0

1/λi

and the expected time of explosion is

E(J∞) =
∞∑

i=0

1/λi.
✞

✝

☎

✆3.30

This expected time of explosion is important because it is closely related to the proba-
bility of explosion. For any birth process we have that [1]

Pr(J∞ = ∞) = 1 ⇔ E(J∞) = ∞.

The regularity of a birth process then depends on whether the infinite sum on the
right-hand side of

✞

✝

☎

✆3.30 converges (in this case the birth process explodes with proba-
bility one) or diverges to infinity (in the case the birth process explodes with probability
zero). For general Markov chains the situation is more difficult since the jump-chain is
not completely fixed and the infinite sum in

✞

✝

☎

✆3.30 may converge for certain paths and
diverge for others. Still, we can already prove that Markov chains that are uniformly
bounded, i.e., Markov chains whose exit-rates have a finite supremum, are regular.

Lemma 1 ([1]). Let X be a stable Markov chain with state space S and infinitesimal
generator Q. If Q is uniformly bounded, i.e.,

sup
x∈S

qx <∞,

then X is regular.

Proof. Let qmax be the supremum exit-rate,

qmax = sup
x∈S

qx.

For any infinite sequence {xi ∈ S | i ∈ N} of states we have

∞∑

i=0

1/qxi ≥
∞∑

i=0

1/qmax = ∞.

This means that regardless of the sequence of states X visits, the expected time of
explosion is always infinite.

An immediate consequence of Lemma 1 is that stable Markov chains with a finite
state space are also regular.

51

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

Corollary 1 ([1]). Let X be a stable Markov chain with state space S and infinitesimal
generator Q. If S is finite then X is regular.

Proof. Stability means that all exit-rates of states of X are finite and then the finiteness
of S gives us that the supremum exit-rate must also be finite. Applying Lemma 1 then
gives us that X is regular.

Let’s return to the study of regularity for birth processes and let’s further assume
that our birth process is not uniformly bounded. It turns out that a sufficient condition
for the regularity of the birth process is the linearity of its birth-rates with respect to
the population number. For any real-valued constant c > 0 we have

∞∑

i=1

1

ci
= ∞,

but if the birth-rates grow faster than linearly we find

∞∑

i=1

1

ci1+ǫ
<∞,

for any real-valued constant ǫ > 0. So, if there exists some constant c > 0 such that
qi ≤ ci for all i ∈ N then the birth process is regular.

We will now try to find regularity conditions for general Markov chains. Consider a
stable Markov chain X with an arbitrary, countably infinite state space S and infinites-
imal generator Q that is not uniformly bounded. Since the jump times of X depend
on the states visited we cannot directly compute the expected time of explosion as we
did for birth processes. Still, we can try to see if the exit-rate of X changes linearly by
looking at the expected change of exit-rate. The exit-rate of X at time t is qX(t) . Let’s
consider the expected change of the exit-rate qX(t) given that X occupies a particular
state x ∈ S

E(
d

dt
qX(t) | X(t) = x) =

∑

y∈S

(qy − qx) lim
h→0

Pr(X(t+h) = y | X(t) = x)

h

=
∑

y 6=x

(qy − qx)qx,y.

It turns out that, to guarantee regularity, it is enough to show that this expected change
of exit-rate is linear with respect to the current exit-rate. That is, if there exists some
constant c > 0 such that for all states x ∈ S we have

∑

y 6=x

(qy − qx)qx,y ≤ cqx,
✞

✝

☎

✆3.31

then X is regular.
In fact, the above result can be improved by considering the expected change of any

function g over the states that goes to infinity as the exit-rates go to infinity.

52

3.1. CONTINUOUS-TIME MARKOV CHAINS

Lemma 2 ([1]). Let X be a stable Markov chain with state space S and infinitesimal
generator Q, such that the exit-rates of X are not uniformly bounded. The Markov chain
X is regular if there exists a series of subsets of S, {Si ⊂ S | i ∈ N} and a function
g : S → R≥0, such that

1. limi→∞ Si = S,

2. supx∈Si
qx <∞ for all i ∈ N,

3. limi→∞ infx/∈Si
g(x) = ∞, and

4. there exists a constant c ∈ R≥0 such that
∑

y∈S,y 6=x

(g(y)− g(x))qxy ≤ cg(x),
✞

✝

☎

✆3.32

for all x ∈ S.

For the proof of Lemma 2 we refer to Anderson [1]. Intuitively, the first three
conditions of Lemma 2 ensure that the function g goes to infinity as the exit-rates of
X go to infinity. The first two conditions tell us that the exit-rates go to infinity as we
traverse the state space along the series of subsets Si (or rather their inverses S \ Si).
The third condition then gives us that the function g also goes to infinity as we move
along these subsets. Finally, the fourth condition gives us that the expected change of
g is linear with respect to the value of g for all states. Note, that we find

✞

✝

☎

✆3.31 by
choosing g(x) = qx. We can then easily find appropriate subsets Si, for instance, by
choosing Si = {x ∈ S | qx ≤ i}.

Example 7. Consider a birth process X with birth-rates λi = i for all i ∈ N. We now
find

∑

y 6=x

(qy − qx)qx,y = (i+ 1− i)i = i.

It follows that this birth process is regular.

Example 8. To show that we sometimes need to choose the function g to be something
other than the exit-rate, consider a Markov chain X with state space N × {0, 1} and
infinitesimal generator Q, where

qx,y =

i/2, if x = (i, 0), y = (i+ 1, 0) or y = (i, 1),
i2, if i > 1, x = (i, 1), y = (i− 1, 1) or x = (1, 1), y = (1, 0),
−i, if x = y = (i, 0),
−i2, if x = y = (i, 1),
0, otherwise.

The states (i, 0) from a linear birth process where with probability 1/2 the Markov chain
moves from state (i, 0) to (i, 1). The states (i, 1) on the other hand form a quadratic
death process. For a state x = (i, 0) we find qx = i and

∑

y 6=x

(qy − qx)qx,y = (i2 − i)i/2 + (i+ 1− i)i/2 = 1/2(i3 − i2 + i).

53

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

Obviously there is no constant c > 0 such that 1/2(i3−i2+i) ≤ ci for all i ∈ N. However
if we select subsets Si = {(j, k) | j ≤ i, k ∈ {0, 1}} and define the function g : S → R≥0

such that g(i, 0) = g(i, 1) = i then we find that the first three conditions of Lemma 2
hold and for the fourth condition we find for a state x = (i, 0) that

∑

y 6=x

(g(y) − g(x))qx,y = i/2

and for a state x = (i, 1), i > 1 we have

∑

y 6=x

(g(y) − g(x))qx,y = −i2/2.

Finally we have for the state x = (1, 1) that the expected change of g is zero. We then
have ∑

y 6=x

(g(y) − g(x))qx,y ≤ 1/2g(x)

for all states x ∈ S and then X is regular according to Lemma 2.

We now summarise the above results in the following theorem which also gives several
necessary and sufficient conditions for regularity.

Theorem 1 ([1]). Given a stable infinitesimal generator matrix Q on a countable state
space S,

1. Q is regular if,

(a) S is finite,

(b) Q is uniformly bounded, i.e.,

sup
x∈S

qx < +∞,

or,

(c) there exist a series of subsets of S, (Si, i ∈ N, i ≥ 1) and a function g : S →
R≥0, such that

• limi→∞ Si = S,

• supx∈Si
qx < +∞ for all i ≥ 1,

• limi→∞ infx/∈Si
g(x) = +∞, and

• there exists a constant c ∈ R≥0 such that

∑

y∈S

qxyg(y) ≤ cg(x),

for all x ∈ S.

2. Q is regular if and only if,

54

3.1. CONTINUOUS-TIME MARKOV CHAINS

(a) the finite-jump transition function f is the unique solution of the backward
Kolmogorov equation,

(b) the equation Qv = λv, 0 ≤ v ≤ 1, i.e.,

∑

y∈S

qx,yvy = λvx, 0 ≤ vx ≤ 1, x ∈ S,
✞

✝

☎

✆3.33

has no non-trivial solution for some λ > 0,

(c) the inequality Qv ≥ λv, 0 ≤ v ≤ 1, i.e.,

∑

y∈S

qx,yvy ≥ λvx, 0 ≤ vx ≤ 1, x ∈ S,
✞

✝

☎

✆3.34

has no non-trivial solution for some λ > 0,

(d) the equation Qv = λv,−1 ≤ v ≤ 1, i.e.,

∑

y∈S

qx,yvy = λvx, −1 ≤ vx ≤ 1, x ∈ S,
✞

✝

☎

✆3.35

has no non-trivial solution for some λ > 0,

(e) the finite-jump transition function f is the unique solution of the forward
Kolmogorov equation, or

(f) the equation vQ = λv, v ≥ 0,
∑

y∈S vy <∞, i.e.,

∑

x∈S

vxqx,y = λvy, vx ≥ 0, y ∈ S,
✞

✝

☎

✆3.36

has no non-trivial solution for some λ > 0 such that
∑

y∈S vy <∞.

The proof of Theorem 1 can be found in Anderson [1]. For the necessary and
sufficient conditions 2a and 2e we have that the finite-jump transition function f is the
minimal solution to the backward respectively forward Kolmogorov equations. For the
Kolmogorov equations there is at least one solution g such that

∑

x∈S gx = 1 [1]. Then,
if f is the only solution to either of the Kolmogorov equations we have

∑

x∈S f(x) = 1,
which means the probability of explosion must be zero. It follows that the corresponding
infinitesimal generator must be regular. For condition 2f it is useful to interpret the
vector v as a transient distribution of some Markov chain X with infinitesimal generator
Q. The left-hand side of

✞

✝

☎

✆3.36 is then just
✞

✝

☎

✆3.13 and we can rewrite it to

d

dt
πy = λπy,

where πy = Pr(X(t) = y) for some arbitrary time-point t. Now, since λ > 0 this would
mean that the derivative of the probability distribution is positive for all states and
strictly positive for at least one (since we exclude the trivial solution v = 0). It turns
out such a mysterious probability distribution only exists when the Markov chain X is
not regular.

55

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

3.1.6 Sufficient conditions for the Markov property

So far we have studied the properties of Markov chains. We have seen that, if a Markov
chain is stable and regular, its probabilistic behaviour is completely determined by its
infinitesimal generator matrix. However, these results only hold when we know the
stochastic process in question is in fact a Markov chain. In this subsection we consider
what conditions a stochastic process must fulfil such that it is a Markov chain.

In order to be a Markov chain, a stable jump process must of course have a, possibly
time-dependent, infinitesimal generator function Q(t). However, this is not sufficient to
guarantee that it satisfies the Markov property. A sufficient condition for the Markov
property is that the stable jump process has the “Markov property up to o(h)” and is
non-explosive2.

We will consider a stable jump-process {X(t), t ∈ R≥0}, which takes values on a state
space S and which has the follow “Markov property up to o(h). For any distinct pair of

states y, x ∈ S and time-point t ∈ R≥0 we find a constant q
(t)
x,y such that for any states

x1, . . . , xn ∈ S, and time-points t+ h > t > t1 > . . . > tn ∈ R≥0 we have

Pr(X(t+h) = y | X(t) = x,X(t1) = x1, . . . ,X
(tn) = xn)

= q(t)x,yh+ o(h).
✞

✝

☎

✆3.37

As usual we denote the jump times of X by J0, Additionally we denote the i-th
jump-time after time t as

J
(t)
i =

{

t, if i = 0,

inf{s > J
(t)
i−1 | X

(s) 6= X(J
(t)
i−1)}.

First of all, we can immediately derive from
✞

✝

☎

✆3.37 that

Pr(X(t+h) = x | X(t) = x,X(t1) = x1, . . . ,X
(tn) = xn)

= 1− q(t)x h+ o(h),
✞

✝

☎

✆3.38

where
q(t)x =

∑

y 6=x

q(t)x,y.

Furthermore, we find that the probability to make two jumps in a time-interval [t, t+h]
is small, i.e.,

Pr(J
(t)
2 < t+ h | X(t) = x) = o(h).

We will now derive a forward equation in the style of
✞

✝

☎

✆3.28 using
✞

✝

☎

✆3.37 . As a first
step, we compute the residence time of a state x given a particular history. For states
x, x1, . . . , xn ∈ S, time-points s, t > t1 > . . . > tn ∈ R≥0 we write

E
(s)
x,H(t) ≡ Pr(J

(s)
1 > s+ t | X(s) = x,H),

2The following Theorem appears to be used implicitly in many papers. However, we could not find
it in the literature.

56

3.1. CONTINUOUS-TIME MARKOV CHAINS

where the history H denotes the event

{X(t1) = x1, . . . ,X
(tn) = xn}.

Lemma 3. For any state x, any history H, and any time-points t, s we have

E
(s)
x,H(t) = e−

∫ s+t
s

q
(t′)
x dt′ .

✞

✝

☎

✆3.39

Proof. In a similar way as we derived
✞

✝

☎

✆3.16 for Markov chains we can now derive the

following differential equation for E
(s)
x,H(t), namely

d

dt
E

(s)
x,H(t) = −q(s+t)

x E
(s)
x,H(t).

✞

✝

☎

✆3.40

We also have
E

(s)
x,H(0) = 1.

Then
✞

✝

☎

✆3.39 is the unique solution to
✞

✝

☎

✆3.40 .

We proceed by determining the finite jump transition probabilities of our jump
process recursively, as we have done for Markov chains. For states y, x, x1, . . . , xn ∈ S,
time-points s, t > t1 > . . . > tn ∈ R≥0, and index n ∈ N we write

P
(n)
x,y,H(s, t) ≡ Pr(X(s+t) = y, J (s)

n > s+ t | X(s) = x,H),

for the probability to occupy state y at time t + s starting in state x at time s, given
history

H = {X(t1) = x1, . . . ,X
(tn) = xn}

with at most n jumps in the time-interval [s, s+ t].

Lemma 4. For any states x, y, any history H, any time-points t, s, and any jump-index
n ∈ N we have

P
(n)
x,y,H(s, t)

= ψx,ye
−

∫ t
0
q
(s+t′)
y dt′ +

∫ t

0

∑

z 6=y

q(s+t′)
z,y P

(n−1)
x,z,H (s, t′)e−

∫ t
t′
q
(s+t′′)
y dt′′dt′,

✞

✝

☎

✆3.41

where

ψx,y =

{
1, if x = y,
0, if x 6= y.

Proof. In a similar way as we derived
✞

✝

☎

✆3.26 for Markov chains we can now derive the

following differential equation for P
(n)
x,y,H(s, t), namely

d

dt
P

(n)
x,y,H(s, t) =

∑

z 6=y

q(s+t)
z,y P

(n−1)
x,z,H (s, t)− q(s+t)

y P
(n)
x,y,H(s, t).

✞

✝

☎

✆3.42

57

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

We also have

P
(n)
x,y,H(s, 0) =

{
1, if x = y,
0, if x 6= y.

Then
✞

✝

☎

✆3.41 is the unique solution to
✞

✝

☎

✆3.42 .

Theorem 2. If the stable jump process X satisfies
✞

✝

☎

✆3.37 and it is non-explosive, i.e.,

Pr(J∞ = ∞) = 1,
✞

✝

☎

✆3.43

then X is a Markov chain with generator function Q(t) as in
✞

✝

☎

✆3.37 and
✞

✝

☎

✆3.38 .

Proof. Since X is non-explosive we have for any pair of states x, y ∈ S, any time-points
s, t ∈ R≥0, and any two histories H,H ′, that

Pr(X(s+t) = y | X(s) = x,H)

= Pr(X(s+t) = y, J (s)
∞ > s+ t | X(s) = x,H)

= lim
n→∞

P
(n)
x,y,H(s, t)

= lim
n→∞

P
(n)
x,y,H′(s, t)

= Pr(X(s+t) = y | X(s) = x,H ′).

The Markov property follows by choosing H ′ to be the empty history. The fact that X
has infinitesimal generator function Q(t) follows directly from

✞

✝

☎

✆3.37 and
✞

✝

☎

✆3.38 .

3.2 Bisimulation

In this section we will discuss when stable Markov chains can be considered equivalent.
We will consider two Markov chains X and X equivalent, when their transient state
probabilities are equal. That is, X and X are equivalent, if and only if for all states
s ∈ Sall and time-points t ∈ R≥0

Pr(X(t) =s x) = Pr(X(t) =s x).

However, we relax this condition to finite-jump probabilities, i.e.,

Pr(X(t) =s x, J∞ > t) = Pr(X(t) =s x, J∞ > t).

This restriction allows us to concentrate on infinitesimal generator matrices, since the
finite-jump transition probabilities are completely defined by the initial distribution and
infinitesimal generator matrix of a stable Markov chain. Before finding an equivalence
relation for infinitesimal generator matrices we will first define an equivalence relation
on the states of a single Markov chain. Our goal is to find an equivalence relation that
satisfies, for any pair of equivalent states x, y and any other state z ∈ Sall that

Pr(X(t) =s z, J∞ > t | X(t) = x) = Pr(X(t) =s z, J∞ > t | X(t) = y)

58

3.2. BISIMULATION

for any time-point t ∈ R≥0. It turns out we can accomplish this by defining a bisimu-
lation relation on the states of a Markov chain. Two states are then equivalent if they
can simulate each others infinitesimal jump probabilities. The bisimulation relation we
discuss was first introduced as lumpability or ordinary lumpability [8] for finite-state
discrete-time Markov chains and has later been extended to continuous-time Markov
chains. We use the name bisimulation instead of lumpability to reflect the similarity
to bisimulation relations as used in automata theory. Our contribution is the study
of bisimulation relation for infinite-state, possibly irregular Markov chains. We will
show that, even for irregular Markov chains, the finite-jump transient distributions are
preserved by bisimulation up to =s.

3.2.1 Basic definition

In the following we consider a stable Markov chainX with state space S and infinitesimal
generator matrix Q.

Definition 17 ([8]). An equivalence relation E on S is a bisimulation with respect to
Q if, for each pair of states xEy in S and each equivalence class D in S/E, we have that

x /∈ D =⇒
∑

z∈D

qx,z =
∑

z∈D

qy,z.
✞

✝

☎

✆3.44

When clear from context which infinitesimal generator is meant, we will call E a bisim-
ulation.

We will be especially interested in bisimulations that refine the state-equivalence =s,
but we will develop the theory for arbitrary bisimulations. It is worth mentioning that
the universal equivalence relation on S (that equates all states) is trivially a bisimulation
for any infinitesimal generator matrix.

From the definition of bisimulation we find that, for any two states x and y in an
equivalence class D of E , their cumulative infinitesimal transition probabilities to states
outside D is the same

∑

z /∈D

qx,z =
∑

D′ 6=D

∑

z∈D′

qx,z =
∑

D′ 6=D

∑

z∈D′

qy,z =
∑

z /∈D

qy,z.

We write q̄D for this cumulative infinitesimal transition probability,

q̄D =
∑

z /∈D

qx,z,

for an arbitrary state x ∈ D. Similarly we write q̄D,D′ for the cumulative infinitesimal
transition probability to reach an equivalence class D′ from D,

q̄D,D′ =
∑

z∈D′

q̄x,z,
✞

✝

☎

✆3.45

59

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

for an arbitrary state x ∈ D. We then define the |S/E| × |S/E| matrix Q̄ with entries
{q̄D,D′ | D,D′ ∈ S/E}, where

q̄D,D = −q̄D.
✞

✝

☎

✆3.46

Note that all row-sums of Q̄ are zero, all diagonal entries are negative and finite, and
all off-diagonal entries are positive and finite.

We will now lift the concept of jump times and jump probabilities to the equivalence
classes of a bisimulation E . Our goal is to show that they can be derived from Q̄, in the
same way as the normal jump times and probabilities of X are derived from Q. We will
see that this is only the case under certain conditions.

3.2.2 Jump times and jump probabilities

In the following we consider an equivalence relation E on S which is a bisimulation
with respect to Q. We are interested in showing that this equivalence relation somehow
preserves the jump times jump probabilities of the Markov chain. However, we will
see that this is only the case “up to” E . That is, the probabilities to jump from one
equivalence class of E to another are preserved by E .

First, we consider the jump times between equivalence classes. We define jump times
for equivalence classes recursively as we did for the state-based jump times

J̄n =

{
0 , if n = 0

inf{t | t > J̄n−1,X
(t) /∈ D,X(J̄n−1) ∈ D} , if n > 0.

We now consider the first jump-time, or residence time, J̄1 of an equivalence class D.
From the above definition we have

J̄1 = inf{t | X(t) /∈ D, where D is such that X(0) ∈ D}.

We consider the distribution of J̄1 conditioned on the starting state of X and define
the cumulative distribution function Ex : R≥0 → R≥0 for x ∈ D as the probability that
J̄1 is smaller or equal to a time-point t under the condition that X starts in x.

Ex(t) = P (J̄1 ≤ t | X(0) = x).

Lemma 5. Given a bisimulation E on S with respect to Q, let D be an equivalence class
of E. Then

1. the cumulative distributions functions Ex(t), x ∈ D satisfy, for all t ∈ R≥0,

d

dt
Ex(t) = q̄D +

∑

y∈D

qx,yEy(t), 0 ≤ Ex(t) ≤ 1, x ∈ D
✞

✝

☎

✆3.47

and

2. the Laplace transforms rx(s) of Ex(t), x ∈ D satisfy, for all s > 0,

srx(s) =
q̄D
s

+
∑

y∈D

qx,yry(s), 0 ≤ rx(s) ≤ 1, x ∈ D.
✞

✝

☎

✆3.48

60

3.2. BISIMULATION

Proof. Since Ex(t) is a distribution function it follows that 0 ≤ Ex(t) ≤ 1 for all x ∈ D
and t ∈ R≥0. It then also follows that 0 ≤ rx(s) ≤ 1 for all x ∈ D and s > 0.

1. We consider first the probability Ex(t+ h) for t ∈ R≥0 and h > 0,

Ex(t+ h) = Pr(J̄1 ≤ t+ h | X(0) = x)

=
∑

y∈S

Pr(J̄1 ≤ t+ h ∧X(h) = y | X(0) = x)

=
∑

y∈D

Pr(J̄1 ≤ t+ h | X(h) = y ∧X(0) = x)·

Pr(X(h) = y | X(0) = x)+
∑

y/∈D

Pr(J̄1 ≤ t+ h | X(h) = y ∧X(0) = x)·

Pr(X(h) = y | X(0) = x).

We would like to apply the Markov property to the probability Pr(J̄1 ≤ t + h |
X(h) = y ∧ X(0) = x) for x, y ∈ D, but we cannot do so directly as the event
{J̄1 ≤ t+h} also describes the Markov chain X before time-point h. However, we
find

Pr(J̄1 ≤ t+ h | X(h) = y ∧X(0) = x)

= 1− Pr(J̄1 > t+ h | X(h) = y ∧X(0) = x)

= 1−
Pr(J̄1 > t+ h ∧X(h) = y ∧X(0) = x)

Pr(X(h) = y ∧X(0) = x)

= 1−
Pr({X(t′) ∈ D | 0 ≤ t′ ≤ t+ h} ∧X(h) = y ∧X(0) = x)

Pr(X(h) = y ∧X(0) = x)
.

✞

✝

☎

✆3.49

Given the fact that the probability of more than two jumps (between states)
occurring in the time-interval [0, h] is o(h) we have

Pr({X(t′) ∈ D | 0 ≤ t′ ≤ t+ h} ∧X(h) = y ∧X(0) = x)

= Pr({X(t′)∈D | 0≤ t′≤ t+ h} ∧ J2>h ∧X(h)=y ∧X(0)=x) + o(h)

Now, the fact that X is in D at time-points 0 and h, and at most one jump
(between states) occurred in this time period implies that X was in D for the
whole interval [0, h]. We then find

Pr({X(t′) ∈ D | 0 ≤ t′ ≤ t+ h} ∧ J2 > h ∧X(h) = y ∧X(0) = x)

= Pr({X(t′) ∈ D | h ≤ t′ ≤ t+ h} ∧ J2 > h ∧X(h) = y ∧X(0) = x)

= Pr({X(t′) ∈ D | h ≤ t′ ≤ t+ h} ∧X(h) = y ∧X(0) = x)− o(h).

Note that for two o(h) functions f(h) and g(h) we have that the function (f(h)−
g(h))/Pr(X(h) = y ∧X(0) = x) is also o(h). Applying the above to

✞

✝

☎

✆3.49 we find

61

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

that we can indeed apply the Markov property and use the homogeneity of X to
find,

Pr(J̄1 ≤ t+ h | X(h) = y ∧X(0) = x)

= 1− Pr({X(t′) ∈ D | h ≤ t′ ≤ t+ h} | X(h) = y ∧X(0) = x) + o(h)

= 1− Pr({X(t′) ∈ D | h ≤ t′ ≤ t+ h} | X(h) = y) + o(h)

= 1− Pr({X(t′) ∈ D | 0 ≤ t′ ≤ t} | X(0) = y) + o(h)

= Pr(J̄1 ≤ t | X(0) = y) + o(h)

For states y /∈ D we trivially have that Pr(J̄1 ≤ t+h | X(h) = y∧X(0) = x) equals
one. We then find

Ex(t+ h) =
∑

y∈D

(Pr(J̄1 ≤ t | X(0) = y) + o(h)) Pr(X(h) = y | X(0) = x)

+
∑

y/∈D

Pr(X(h) = y | X(0) = x)

=
∑

y∈D,y 6=x

(Ey(t) + o(h))(qx,yh+ o(h))

+ (Ex(t) + o(h))(1 − qxh+ o(h)) +
∑

y/∈D

(qx,yh+ o(h))

=
∑

y∈D

qx,yhEy(t) +
∑

y/∈D

qx,yh+ Ex(t) + o(h).
✞

✝

☎

✆3.50

We now consider the derivative of Ex(t) and derive a “backward” equation:

d

dt
Ex(t) = lim

h↓0

Ex(t+ h)− Ex(t)

h
.

We apply
✞

✝

☎

✆3.50 and find that d
dtEx(t) equals

lim
h↓0

∑

y∈D qx,yhEy(t) +
∑

y/∈D qx,yh+ o(h)

h
.

Since
∑

y/∈D qx,y = q̄D, we have

d

dt
Ex(t) = q̄D +

∑

y∈D

qx,yEy(t).

2. We apply the Laplace transform to
✞

✝

☎

✆3.47 to find

srx(s)− Ex(0) =
q̄D
s

+
∑

y∈D

qx,yry(s).

We trivially have that Ex(0) = 0 for all x ∈ D which means that the equa-
tions

✞

✝

☎

✆3.48 must hold for the Laplace transforms of Ex(t), for each x ∈ D.

62

3.2. BISIMULATION

Lemma 6. The negative exponential distributions

Ex(t) = 1− e−q̄Dt, for x ∈ D
✞

✝

☎

✆3.51

form a solution to
✞

✝

☎

✆3.47 .

Proof. For the Laplace transform of
✞

✝

☎

✆3.51 we find

rx(s) =
q̄D

s(s+ q̄D)
, for x ∈ D.

✞

✝

☎

✆3.52

We now prove Lemma 6 by showing that, for all s > 0,
✞

✝

☎

✆3.52 is a solution to
✞

✝

☎

✆3.48 .
Substituting the former into the latter gives us

q̄Ds

s(s+ q̄D)
=
q̄D
s

+
∑

y∈D

qx,y ·
q̄D

s(s+ q̄D)

=
q̄D
s

+
q̄D

s(s+ q̄D)

∑

y∈D

qx,y.

From the fact that the rows of Q add up to zero we then find
∑

y∈D qx,y = −
∑

z /∈D qx,z =
−q̄D. We can then rewrite the above to

q̄Ds

s(s+ q̄D)
=
q̄D
s

−
q̄2D

s(s+ q̄D)
.

Since the above holds for all s > 0 we have that
✞

✝

☎

✆3.52 is indeed a solution to
✞

✝

☎

✆3.48 and

then Ex(t) = 1− e−q̄Dt, for x ∈ D is a solution to
✞

✝

☎

✆3.47 .

Lemma 6 seems to give us the expected result, that the residence time of an equiv-
alence class of a bisimulation relation is exponentially distributed with parameter q̄D.
However, the exponential distribution

✞

✝

☎

✆3.51 may not be the only solution to
✞

✝

☎

✆3.47 . In
fact, this is only the case for “regular” equivalence classes. We call an equivalence class
D regular if the infinitesimal generator matrix Q projected onto D is regular. Of course,
this projection is in general not an infinitesimal generator matrix itself as its rows do
not sum up to zero. We circumvent this problem by adjoining an absorbing state to D3.

Let Q′ be the infinitesimal generator matrix obtained by adding an absorbing state
⊥ to the equivalence class D, i.e.,

Q′ =

(
Q[D] q̄D1
0 0

)

.
✞

✝

☎

✆3.53

3This construction is necessary as we restrict our attention to so-called conservative infinitesimal
generator matrices. Markov chains with non-conservative infinitesimal generator matrices (i.e., with
non-zero row-sums) have also been studied in the literature [1].

63

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

Here Q[D] is the infinitesimal generator matrix Q restricted to the equivalence class D,
1 is a column-vector of size |D| containing only ones, and 0 is a row-vector of size |D|
containing only zeroes. We have

q′x,y =

qx,y , if x, y ∈ D
q̄D , if x ∈ D, y = ⊥
0 , otherwise.

for all x, y ∈ D ∪ {⊥}.

Lemma 7. If Q′ is regular, then
✞

✝

☎

✆3.52 is the unique non-trivial solution to
✞

✝

☎

✆3.47 .

Proof. We prove Lemma 7 by contradiction. Assume that there are two distinct non-
trivial solutions Ex(t), x ∈ D and Ēx(t), x ∈ D to

✞

✝

☎

✆3.47 . These solutions then have

distinct Laplace transforms rx(s), x ∈ D and r̄x(s), x ∈ D that satisfy
✞

✝

☎

✆3.48 , i.e.,

srx(s) =
q̄D
s

+
∑

y∈D

qx,y · ry(s), and

sr̄x(s) =
q̄D
s

+
∑

y∈D

qx,y · r̄y(s).

Subtracting the above equations we have

s(rx(s)− r̄x(s)) =
∑

y∈D

qx,y · (ry(s)− r̄y(s)).
✞

✝

☎

✆3.54

Define the series of vectors {v(s) | s > 0} on D ∪ {⊥} as follows:

vx(s) =

{
(rx(s)− r̄x(s)) , if x ∈ D,
0 , if x = ⊥.

We then find from
✞

✝

☎

✆3.54 and the definition of Q′ that

svx(s) =
∑

y∈D

q′x,y · vy(s).
✞

✝

☎

✆3.55

for x ∈ D ∪ {⊥}.
Since 0 ≤ rx(s), r̄x(s) ≤ 1, for all x ∈ D, we have −1 ≤ vx(s) ≤ 1, for all x ∈ D∪{⊥}

and s > 0. Furthermore the distinctness of r(s), x ∈ D and r̄(s), x ∈ D means that,
v(s) is not the zero-vector. It follows that

✞

✝

☎

✆3.55 is a counter-example to condition 2d
of Theorem 1 and then Q′ is not regular. This is a contradiction with our assumption
that Q′ is regular.

We say that an equivalence class D is regular, if the infinitesimal generator matrix
Q′ defined in

✞

✝

☎

✆3.53 is regular. Let ED(t) be the residence time distribution of D,

ED(t) = Pr(J̄1 ≤ t | X(0) ∈ D).

We now have that, if the equivalence class D is regular, then the residence time of D is
exponentially distributed with rate q̄D.

64

3.2. BISIMULATION

Theorem 3. If the equivalence class D is regular then the residence time of D is expo-
nentially distributed with rate q̄D,

ED(t) = 1− e−q̄Dt.
✞

✝

☎

✆3.56

Proof. We find

ED(t) = P (J̄1 ≤ t | X(0) ∈ D)

=
∑

x∈D

P (J̄1 ≤ t ∧X(0) = x | X(0) ∈ D)

=
∑

x∈D

P (J̄1 ≤ t | X(0) = x) · P (X(0) = x | X(0) ∈ D)

We now apply Lemma 7 to find

ED(t) =
∑

x∈D

(1− e−q̄Dt) · P (X(0) = x | X(0) ∈ D)

= (1− e−q̄Dt) ·
∑

x∈D

P (X(0) = x | X(0) ∈ D)

and then
✞

✝

☎

✆3.56 follows.

For the jump probabilities between equivalence classes we find a similar result as for
the jump probabilities between states.

Theorem 4. Given distinct equivalence classes D1 and D2, such that D1 is regular, we
have

Pr(X(J̄1) ∈ D2 | X
(0) ∈ D1) =

q̄D1,D2

q̄D1

.

The proof of Theorem 4 follows the derivation of
✞

✝

☎

✆3.19 .
Because X is time-homogeneous, we find that the above results also hold for later

jump times. We now turn our attention to the finite-jump transition probabilities for
the equivalence classes of E .

3.2.3 Finite jump transition probabilities

We now show that two states x and y that are related by the bisimulation E have
the same finite-jump transition probabilities, under the condition that the equivalence
classes of the bisimulation are all regular. Let J̄∞ denote the time of first explosion for
the derived Markov chain Y ,

J̄∞ = lim
n→∞

J̄n.

Theorem 5. Given a bisimulation relation E on S, such that all equivalence classes of
E are regular, we find that for two states xEy, an equivalence class D and a time-point
t ∈ R≥0, we have

Pr(X(t) ∈ D ∧ J̄∞ > t | X(0) = x) = Pr(X(t) ∈ D ∧ J̄∞ > t | X(0) = y).
✞

✝

☎

✆3.57

65

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

Proof. Given regular equivalence classes D, D̄, a state x ∈ D̄, and a natural number n,

let P̄
(n)
x,D(t) be the probability that the Markov chain X reaches equivalence class D from

state x in at most n jumps between equivalence classes,

P̄
(n)
x,D(t) ≡ Pr(X(t) ∈ D ∧ J̄n+1 > t | X(0) = x)

In the following we will refer to jumps between equivalence classes simply as jumps.
Whenever we discuss jumps between states of X, we will state so explicitly. We can
now rewrite

✞

✝

☎

✆3.57 in terms of P̄ ,

lim
n→∞

P̄
(n)
x,D(t) = lim

n→∞
P̄

(n)
y,D(t).

✞

✝

☎

✆3.58

We now show by recursion on n that for all n ∈ N we have

P̄
(n)
x,D(t) = P̄

(n)
y,D(t).

✞

✝

☎

✆3.59

For the base case n = 0 we have

P̄
(0)
x,D(t) = Pr(X(t) ∈ D ∧ J̄1 > t | X(0) = x).

For x /∈ D we have that it is impossible to reach D from x in at most zero jumps. For
x ∈ D we simply find the residence distribution, i.e., the probability to stay in D for t
time-units. Since D is regular we can apply Lemma 7 to find

P̄
(0)
x,D(t) =

{
0 , if x /∈ D
e−q̄Dt , if x ∈ D.

The same holds for state y as it occupies the same equivalence class as x, and then

P̄
(0)
x,D(t) = P̄

(0)
y,D(t).

We now consider the case that n > 0. As our induction assumption we assume
that

✞

✝

☎

✆3.59 holds for n− 1, i.e.,

P̄
(n−1)
x′,D′ (t

′) = P̄
(n−1)
y′,D′ (t′),

✞

✝

☎

✆3.60

for all states x′Ey′, any equivalence class D′ of E , and any time-point t′ ∈ R≥0.
We can derive a forward equation for the derivative of P̄ (n) in the same way as we

did for P (n) (see the derivation of
✞

✝

☎

✆3.26) to find

d

dt
P̄

(n)
x,D(t) =

∑

D′ 6=D

qD′,DP̄
(n−1)
x,D′ (t)− q̄DP̄

(n)
x,D(t).

✞

✝

☎

✆3.61

The equation
✞

✝

☎

✆3.61 is a first-order linear differential equation. For t = 0 we find

P̄
(n)
x,D(0) =

{
0 , if x /∈ D
1 , if x ∈ D.

✞

✝

☎

✆3.62

66

3.2. BISIMULATION

We can then solve
✞

✝

☎

✆3.61 to find

P̄
(n)
x,D(t) =

{

e−q̄Dt +
∫ t
0

∑

D′ 6=D P̄
(n−1)
x,D′ (s)qD′,De

−q̄D(t−s)ds , if x ∈ D
∫ t
0

∑

D′ 6=D P̄
(n−1)
x,D′ (s)qD′,De

−q̄D(t−s)ds , if x /∈ D.

✞

✝

☎

✆3.63

Similarly we find for state y that

P̄
(n)
y,D(t) =

{

e−q̄Dt +
∫ t
0

∑

D′ 6=D P̄
(n−1)
y,D′ (s)qD′,De

−q̄D(t−s)ds , if y ∈ D
∫ t
0

∑

D′ 6=D P̄
(n−1)
y,D′ (s)qD′,De

−q̄D(t−s)ds , if y /∈ D.

✞

✝

☎

✆3.64

Since x and y are equivalent according to E , they must occupy the same equivalence
class. So if x is in D then y is in D and vice versa. Furthermore, the induction

assumption gives us that P̄
(n−1)
x,D′ (s) equals P̄

(n−1)
y,D′ (s) for all s ∈ R≥0. It follows that

✞

✝

☎

✆3.63

is equal to
✞

✝

☎

✆3.64 and then
✞

✝

☎

✆3.57 holds.

As we saw in Subsection 3.1.4 we can rewrite
✞

✝

☎

✆3.63 as follows, where γx,D equals
one if x ∈ D and zero otherwise,

P̄
(n)
x,D(t) = γx,De

−q̄Dt

︸ ︷︷ ︸

x to D
in zero jumps

+

∫ t

0

∑

D′ 6=D

P̄
(n−1)
x,D′ (s)
︸ ︷︷ ︸

x to D′ within
n− 1 jumps

qD′,D
︸ ︷︷ ︸

D′ to D between
s and s+ ds

e−q̄D(t−s)
︸ ︷︷ ︸

stay in D
from s+ ds to t

ds.

Corollary 2. Given equivalence classes D,D′ and time-point t ∈ R≥0 we have

Pr(X(t) ∈ D′ ∧ J̄∞ > t | X(0) ∈ D) = Pr(X(t) ∈ D′ ∧ J̄∞ > t | X(0) = x)
✞

✝

☎

✆3.65

for an arbitrary state x ∈ D.

Proof. We apply Theorem 5 to find

Pr(X(t) ∈ D′ ∧ J̄∞ > t | X(0) = D)

=
∑

y∈D

Pr(X(t) ∈ D′ ∧ J̄∞ > t ∧X(0) = y | X(0) = D)

=
∑

y∈D

Pr(X(t) ∈ D′ ∧ J̄∞ > t | X(0) = y) Pr(X(0) = y | X(0) = D)

= Pr(X(t) ∈ D′ ∧ J̄∞ > t | X(0) = x)
∑

y∈D

Pr(X(0) = y | X(0) = D)

= Pr(X(t) ∈ D′ ∧ J̄∞ > t | X(0) = x).

67

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

3.2.4 The quotient process

Given a bisimulation E on S and a state x ∈ S, let [x]E denote the equivalence class
which contains x, i.e.,

[x]E = {y | xEy}.

We now define the quotient process as the process which moves from equivalence class
to equivalence class as the Markov chain X moves from state to state.

Definition 18. Given a bisimulation E on S, the quotient process of X with respect to
E is a stochastic process {Y (t) | t ∈ R≥0}, with state space S/E such that:

Y (t) =
[

X(t)
]

E
.

In the previous subsections we have already shown several properties of Y . Critically,
we can now show that Y has the Markov property.

Theorem 6. When X is regular, then for equivalence classes D0, . . . ,Dn, and D and
increasingly large time-points t0 < . . . < tn < t we have

Pr(Y (t) = D | Y (tn) = Dn ∧ . . . ∧ Y (t0) = D0) = Pr(Y (t) = D | Y (tn) = Dn).
✞

✝

☎

✆3.66

Proof. Since X is regular, we have that X jumps infinitely often in finite time with
probability zero. As a jump of process Y can only occur when X jumps we have that
Y is also “regular” in this sense. It is then enough to show that

Pr(Y (t) = D ∧ J̄∞ > T | Y (tn) = Dn ∧ . . . ∧ Y (t0) = D0)

= Pr(Y (t) = D ∧ J̄∞ > T | Y (tn) = Dn).

The left-hand side of this equation is equal to

∑

y∈Dn

Pr(Y (t)=D ∧ J̄∞>T | X(tn)=y ∧ Y (tn−1)=Dn−1 ∧ . . . ∧ Y
(t0)=D0)·

Pr(X(tn) = y | Y (tn) = Dn ∧ . . . ∧ Y (t0) = D0).

We can now apply the Markov property of X to find

∑

y∈Dn

Pr(Y (t)=D ∧ J̄∞>T | X(tn)=y)·

Pr(X(tn) = y | Y (tn) = Dn ∧ . . . ∧ Y (t0) = D0).

Let x be an arbitrary state in Dn we then apply Theorem 5 and the homogeneity of X
to find the above equals

Pr(Y (t)=D ∧ J̄∞>T | X(tn)=x)·
∑

y∈Dn

Pr(X(tn) = y | Y (tn) = Dn ∧ . . . ∧ Y (t0) = D0)

68

3.2. BISIMULATION

which is trivially equal to

Pr(Y (t)=D ∧ J̄∞>T | X(tn)=x).

Now we apply Corollary 2 and the homogeneity of X to find

Pr(Y (t)=D ∧ J̄∞>T | Y (tn)=Dn).

We also have that Y is time-homogeneous.

Theorem 7. When X is regular, then for equivalence classes D1,D2 and time-points
t1, t2 we have

Pr(Y (t1+t2) = D2 | Y
(t1) = D1) = Pr(Y (t2) = D2 | Y

(0) = D1).
✞

✝

☎

✆3.67

Theorem 7 follows directly from the homogeneity of X. Now we are ready to show
that Y is indeed a Markov chain. Moreover, it has infinitesimal generator matrix Q̄ as
defined in

✞

✝

☎

✆3.45 and
✞

✝

☎

✆3.46 .

Theorem 8. If X is regular, then Y is a regular, stable, time-homogeneous Markov
chain with state space S/E and infinitesimal generator matrix Q̄ which has entries
{q̄D1,D2 | D1,D2 ∈ S/E}, where, for an arbitrary state x ∈ D1 we have

q̄D1,D2 =

{ ∑

y∈D2
qx,y , if D1 6= D2,

−
∑

y/∈D1
qx,y , if D1 = D2.

✞

✝

☎

✆3.68

Proof. The regularity of Y follows directly from the regularity ofX. We have shown that
Y has the Markov property and is time-homogeneous. The fact that Y has infinitesimal
generator matrix Q̄ follows from a comparison of the unique (since Y is regular) finite-
jump transition function of Y (see

✞

✝

☎

✆3.63 , this equation also holds when we replace x

by D) and the finite-jump transition function derived from Q̄ (see
✞

✝

☎

✆3.28). It is obvious
that they are identical. Note that the transition function that has infinitesimal generator
matrix Q̄ must be unique, otherwise Y would not be regular. Finally, the stability of Y
follows from the fact that, for an equivalence class D which contains state x, we have

q̄D =
∑

y/∈D

qx,y

and, since X is stable,
∑

y 6=x qx,y is finite for any state x ∈ S.

3.2.5 Bisimulation for irregular Markov chains

Above, we have shown results for the case that X is regular. The case where X is not
regular is more difficult to handle and we do not consider it in detail. However, we note
that, if at least all equivalence classes of E are regular, then we can still construct a
finite-jump transition function as in Subsection 3.2.3.

69

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

Example 9. State space S = N× {0, 1}. We have

qx,y =

(x+ 1)2, if x = (i, j), y = (i+ 1, j)
1, if x = (i, 0), y = (i, 1)
0, otherwise.

Now the relation

E = {(x, y) | i, i′ ∈ N, j ∈ {0, 1}, x = (i, j), y = (i′, j)}

is clearly a bisimulation. However, the two equivalence classes D0 = {(i, 0) | i ∈ N} and
D1 = {(i, 1) | i ∈ N} are not regular. Consider now a Markov chain Y with state space
{0, 1} and infinitesimal generator matrix

Q′ =

[
−1 1
0 0

]

.

This is the Markov chain that we might expect to find as the quotient process of X with
respect to E. However, we find

Pr(Y (t) = D1 | Y
(0) = D0) = 1− e−t,

but, since X may explode within t time-units with probability greater than zero, it is
possible that

Pr(X(t) ∈ D1 ∧ J∞ > t | X(0) ∈ D0) < 1− e−t.

Of course, the actual transition probabilities of X are not uniquely determined by its in-
finitesimal generator matrix. This shows that Theorem 8 does not hold for bisimulations
with irregular equivalence classes.

However, if the equivalence classes of the bisimulation are all regular, we find the
following corollary to Theorem 5. Note that the proof of this theorem never uses the
fact that the Markov chain in question is regular.

Corollary 3. Given an irregular Markov chain X with infinitesimal generator matrix
Q and a bisimulation E on the states of X such that the equivalence classes of E are
regular, let f be the finite-jump transition function for Q and let f ′ be the finite-jump
transition function for the infinitesimal generator function Q′ on S/E with

q′D,D′ =
∑

y∈D′

qx,y

for equivalence classes D,D′ and an arbitrary state x ∈ D. We then have

f ′D,D′(t) =
∑

y∈D′

fx,y(t),

for any state x ∈ D.

In conclusion, a bisimulation with regular equivalence classes always “preserves” the
finite-jump transition probability function of a Markov chain, even if it is irregular.

70

3.3. DISCUSSION

3.3 Discussion

In this chapter we have studied continuous-time Markov chains. We have focused, in
the footsteps of Anderson [1], on the finite-jump probabilities of Markov chains, i.e.,
the probability of reaching a certain state with a certain finite number of jumps (recall
Definition

✞

✝

☎

✆14). The reason we have focused on the finite-jump probabilities is that
they will play a central role when we study the jump processes that underlie I/O-IMCs
in Chapter 6. We have also looked at the notion of bisimulation for Markov chains,
giving a new proof for the soundness of bisimulation which is again based on the finite-
jump probabilities of a Markov chain. This new proof is interesting for two reasons.
First, it lays the groundwork for a similar proof for bisimulation on I/O-IMCs given in
Chapter 7. Secondly, it shows, for the first time, under which conditions bisimulation
can be soundly applied to infinite-state and even irregular Markov chains.

3.3.1 CTMCs as graph-based models

As discussed in this chapter, a CTMC is a jump-process that satisfies the Markov prop-
erty. However, for regular CTMCs we find that they can be uniquely represented by
their infinitesimal generator matrix. This matrix can of course in turn be represented
as a graph with states as its vertices (if we restrict ourselves to countable state spaces)
and edges labelled with the entries of the matrix. For a CTMC with state space S and
generator matrix Q we then find the graph (S,E) with

E = {(x, λ, y) | x, y ∈ S, x 6= y, qxy = λ > 0}

as its representation. In a sense, we can consider this graph to be the syntax of the
CTMC, while the underlying jump process is the semantics of the graph. We will use
this graph-based representation of a CTMC as one ingredient when constructing the
graph-based representation of I/O-IMCs in Chapter 5. Similarly, we will use jump
processes as inspiration for the semantics of I/O-IMCs in Chapter 6.

3.3.2 Composition of CTMCs

This thesis discusses a compositional Markov model, I/O-IMCs. It then makes sense
to briefly consider what composition may mean in the context of CTMCs. It turns out
there is one natural way to compose CTMCs (see for instance Hermanns and Zhang [26]).
The idea is to compose two CTMCs by assuming they are completely independent. In
terms of the graph representation of CTMCs this can be achieved by interleaving the
two graphs. That is, we compose the graphs in a completely orthogonal way. Consider
two graphs (S,E) and (S′, E′) which represent two CTMCs {X(t) | t ∈ R≥0} and
{Y (t) | t ∈ R≥0}. The composition of the two graphs is then the graph (S′′, E′′) with
S′′ = S × S′ and

E′′ ={((x, y), λ, (x′, y)) | (x, λ, x′) ∈ E, y ∈ S′}

∪ {((x, y), λ, (x, y′)) | (y, λ, y′) ∈ E′, x ∈ S}.

71

CHAPTER 3. CONTINUOUS-TIME MARKOV CHAINS

The semantics of this graph is exactly the independent combination of the two CTMCs:
{Z(t) | t ∈ R≥0} where Z(t) = (X(t), Y (t)). We will leave it to the reader to prove
that Z(t) is indeed the semantics of the graph (S′′, E′′) and that the semantics of our
graph-based CTMC representations is thus modular.

As discussed in Chapter 1, this kind of composition is not very interesting, as the two
CTMCs X and Y do not actually influence each other or interact in any way. Still, we
will see that this composition is an important ingredient for the way we compose I/O-
IMCs. In Chapter 5 we will see that the composition rules for the graph-representation of
I/O-IMCs follows the composition of CTMCs we have just discussed (for the Markovian
aspect of I/O-IMCs). Similarly, we will see in Chapter 6 that on the semantical level, the
Markovian jumps induced by I/O-IMCs are composed by assuming they are completely
independent.

72

4
Input/Output Automata

In this chapter we discuss a variant of input/output automata (IOA), a formalism intro-
duced in 1989 by Lynch and Tuttle for the modelling and analysis of reactive systems [33].
IOA allow us to model the interactions between components, such as sub-algorithms of a
distributed algorithm. Each IOA in a composition models a set of possible sequences of
events called traces. Interaction is modelled through the fact that composed IOA must
agree on the order in which these events occur. In other words, common events must
be synchronised. One of the most important aspects of IOA is that their trace-based
semantics is sound with respect to parallel composition. Any fair trace of a composite
IOA can be projected onto its component IOA to find fair traces of these IOA.

This thesis uses IOA concepts to support the modelling of interactions between
components in a compositional Markov modelling framework. Some variations to the
original IOA theory are needed, because states – albeit viewed through state rewards
or state labels – are decisive for Markov models. In contrast, the original IOA theory
is mostly oblivious to the notion of a state, it instead develops a modular trace-based
theory. Central to our approach is the fact that we are primarily interested in state
reachability properties instead of only trace observation properties.

Contribution. In redeveloping the theory with adaptations as motivated above, we
assure that the main properties of IOA, including the modularity of (fair) executions and
traces, do extend smoothly to our setting. In particular, we establish that reach-trace
equivalence (a variation on trace-equivalence) is the coarsest congruence (with respect to
parallel composition and hiding) on IOA that preserves reachability properties. We also
introduce weak bisimulation for IOA, which is strictly finer than reach-trace equivalence,
as well as confluence to prepare for subsequent matters.

73

CHAPTER 4. INPUT/OUTPUT AUTOMATA

4.1 Basic Definition

This section gives the basic definition of IOA and briefly discusses its building blocks.

Definition 19 (Adapted from [33].). An input/output automaton (IOA) is a tuple P =
〈S,A,RI , x̂〉, where

• the state space S ⊂ Sall is a non-empty countable set,

• the set of actions A is a finite set partitioned into input actions AI , output actions
AO, and internal or hidden actions AH .

• the interactive transition relation RI is a subset of S ×A× S, and

• the initial state x̂ is a member of S.

We require that the IOA is input-enabled; for any state x ∈ S and any input action
a ∈ AI there exists a state y ∈ S such that there is a transition (x, a, y) ∈ RI . We also
require that the IOA is finitely branching, i.e., for all x ∈ S we have |{(x, a, y) ∈ RI}| <
∞.

We will use the letters x, y, z as well as their indexed versions to range over states.
The letters a, b, c, . . . will be used to range over actions. Whenever it is clear from
context which IOA is meant, we will use the predicate x a−→y to denote the existence of
a transition (x, a, y) in RI .

Definition 19 differs from the original definition of IOA [33] in two ways. First, we
fix a single starting state instead of allowing a set of starting states. Secondly, we do not
partition the locally-controlled actions into tasks. The first change is made to simplify
the discussion in this chapter, since it turns out we do not need to use multiple starting
states. The second change is due to the fact that we will use a stronger notion of fairness.

Example 10. As an example, Figure 4.1 shows an IOA model PRC of a generic re-
pairable component. It might be a processor in a computer system, a pump in a re-
actor cooling system, or a tire on a car. We only model the failure behaviour of the
component. We model how the component may break down and how it may subse-
quently be repaired. We have PRC = 〈S,A,RI , failing〉 with as its state space S =
{failing,down, recovering,up}, output actions AO = {fail , recover}, input actions
AI = {repair}, and internal actions AH = ∅. The transitions in RI are described by
Figure 4.1. Ellipses denote the states of the component. Double arrows denote the tran-
sitions (throughout this thesis single arrows are used for “Markovian” transitions, e.g.,
transitions in a CTMC and double arrows for “interactive” transitions, e.g., transitions
in an IOA). The actions of transitions are embellished with a question-mark when the
action is an input action, an exclamation mark when it is an output action and a semi-
colon if the action is an internal action. The arrow with no source ending in state
failing identifies it as the starting state. In the remainder we will assume that, unless
explicitly noted, for any action of an IOA we find at least one transition labelled with
this action. In this way, an IOA is completely defined by its graph representation.

74

4.2. CLASSIFICATION OF STATES

failing

down

recovering

up

fail!

repair?

recover!

repair?

repair?

repair?

Figure 4.1: Example of an IOA.

In the remainder of this chapter we will consider an IOA P = 〈S,A,RI , x〉 unless
otherwise specified. To the IOA P we can associate a directed, edge-labelled, graph with
vertices S, labels A, and edges RI . When we talk about the paths of P , we mean the
paths of the graph associated with P . We refer to the set AI∪AO as the visible actions of
P . The actions in the set AO∪AH are called locally controlled. If the set of input actions
AI is empty, we call the IOA P closed and if the set of visible actions is empty the IOA
is complete. Given a finite sequence of objects σ = s1, . . . , sn and an object sn+1 we will
write σ ◦ sn+1 for the concatenation of σ with sn+1, i.e., σ ◦ sn+1 = s1, . . . , sn, sn+1. We
also allow concatenation of two sequences in the obvious way. Given a set B we will
write σ↓B for the projection of σ onto B, i.e.,

σ↓B =

{
s1 ◦ s2, . . . , sn ↓B, if s1 ∈ B,
s2, . . . , sn ↓B, if s1 /∈ B.

Throughout, we will use ǫ to denote an empty sequence.

Definition 20. For a action a, we say a transition (x, a, y) ∈ RI is enabled in state x
for IOA P . The locally-controlled action a is enabled in x for P if there exists a state
y such that (x, a, y) ∈ RI . We lift enabledness to sets by saying that a set of transitions
R ⊂ RI is enabled in a state x if one of its constituent transitions is enabled in x.
Similarly, a set of actions B ⊂ AO ∪AH is enabled in a state x if one of the actions in
B is enabled in x. We denote the set of all actions enabled in a state x for IOA P as
EnP (x) and leave out the subscript whenever the IOA is clear from context.

4.2 Classification of states

This section reviews two ways of classifying the states of IOA based on their possible
behaviour. These classifications will prove to be useful throughout the thesis when

75

CHAPTER 4. INPUT/OUTPUT AUTOMATA

discussing states of an IOA.

The first way of distinguishing states looks at the presence of enabled transitions in
a state. We will see that this concept is closely related to the maximal progress assump-
tion, which states that whenever any transition is enabled that cannot be delayed, some
transition will occur instantaneously [39]. The name “maximal progress assumption”
originates in formalisms that combine timed transitions with instantaneous transitions,
where instantaneous transitions are assumed to take precedence over timed (or delayed
transitions). However, a similar assumption appears in the context of IOA as a fairness
assumption (see Section 4.4) [33]. For IOA, the transitions that cannot be delayed are
the locally-controlled transitions. This means that, when an IOA occupies a state with
outgoing output or internal transitions it may not tarry in this state and must leave it by
any transition (which may also be an input transition). We will use the name “maximal
progress assumption” also to refer to the fairness assumption for IOA. We call states
with outgoing locally-controlled transition unstable. A state that is not unstable is called
stable.

Definition 21. A state x ∈ S is unstable for P if any locally-controlled action is enabled
in x. A state x ∈ S is stable for P if it is not unstable. We use the predicate stP (x) to
denote that x is stable for P and leave out the subscript whenever the IOA is clear from
context.

Recall, that we also used the notion of stable states in the context of CTMCs to
describe states that have a finite exit-rate. To avoid confusion we will from now on use
the term stability only in the context of IOA or I/O-IMCs. By construction, all CTMCs
that we consider will contain only stable states.

Example 11. The IOA PRC from Example 10 has stable states down and up. States
failing and recovering are unstable.

An interesting situation arises when an IOA occupies a state that can never reach a
stable state. In this case the IOA is forced to move, without time passing, from state to
state indefinitely. We call this situation, in which time is not allowed to progress, time
divergence.

Definition 22. A state x ∈ S is divergent for P if there exists no path in P starting
in x and ending in a stable state. We use the predicate divP (x) to denote that a state x
is divergent and leave out the subscript whenever the IOA is clear from context.

We now give an example of IOA with divergent states.

For IOA P1 in Figure 4.2 we have that state x1 is stable as its only outgoing transition
is an input transition. However, state y1 is both unstable and divergent as it has an
outgoing output action and there is no path from y1 to x1. For IOA P2 we have that
state z2 is stable, state y2 is unstable and divergent, and state x2 is neither stable nor
divergent.

76

4.3. EXECUTIONS, TRACES, AND REACHABILITY

Example 12.

P1

x1

y1

a?

a? b!

P2

x2

y2 z2

b!

a?
a?

a? b! a?

Figure 4.2: Two IOAs with stable and divergent states.

It should be noted that time divergence is not the same as explosiveness in CTMCs.
Time divergence occurs when infinitely many interactive transitions occur instanta-
neously (i.e., without time passing). Explosion in a CTMC occurs when infinitely many
transitions occur in a finite amount of time. Specifically, explosion occurs when transi-
tions occur at ever decreasing intervals, in such a way that the series of transition times
converges.

4.3 Executions, Traces, and Reachability

We can now define the key elements of the semantics of IOA. The linear-time semantics
of an IOA is described in terms of executions, traces, and reachable states. Executions
are paths in the IOA. The trace of an execution is the sequence of visible actions that
appear along the execution. A finite execution also provides proof that its final state
is reachable. We will treat time-divergence explicitly and consider two different kinds
of executions (and traces), non-divergent (ND) executions and explicitly divergent (ED)
executions. Non-divergent executions and traces are identical to executions and traces
as defined by Lynch and Tuttle [33].

4.3.1 Executions

Definition 23 ([33]). Given an IOA P with states S, a non-divergent execution frag-
ment of P is a, possibly infinite, path σ in P . That is, σ is either a finite sequence
x0, a0, x1, a1, . . . , xn−1an−1xn such that for all 0 ≤ i < n, (xi, ai, xi+1) ∈ RI or an infi-
nite sequence x0, a0, x1, a1, such that for all i ∈ N, (xi, ai, xi+1) ∈ RI . For a state
x ∈ S we denote the set of all execution fragments of P starting in x (i.e., x0 = x) as
NDExP (x). We leave out the subscript whenever the IOA is clear from context.

An execution is an execution fragment that starts in the initial state of P . We denote
the set of all executions of P as NDEx(P) and we have NDEx(P) = NDExP (x̂).

We will model time divergence explicitly using a distinguished state ⊥ which is not
in the state space of any IOA and which only appears in its executions and behaviours.

77

CHAPTER 4. INPUT/OUTPUT AUTOMATA

Whenever an execution ends in ⊥, this represents the fact that time divergence has
occurred. Time divergence may occur due to the IOA reaching a divergent state itself
and then being forced to perform infinitely many transitions without time passing. This
is called local time divergence. However, time divergence may also occur due to another
IOA reaching a divergent state. This is called external time divergence. Since divergence
may be external, any execution may end, at any time, in the explicit-divergence state
⊥. The executions in which divergence is made explicit are called explicit-divergence
executions or ED-executions. The associated traces are called ED-traces.

Definition 24. An explicit-divergence execution fragment (ED-execution fragment) of
IOA P is a finite execution fragment of P extended by the explicit-divergence state ⊥.
For a state x ∈ S we denote the set of all ED-execution fragments of P starting in x
as EDExP (x). We leave out the subscript whenever the IOA is clear from context. An
explicit-divergence execution of P is an ED-execution fragment that starts in the initial
state of P . We denote the set of all ED-executions of P , EDEx(P) and find

EDEx(P) = {σ ◦ 〈⊥〉 | σ ∈ NDEx(P), |σ| <∞}.

The shortest ED-execution of any IOA is 〈x̂,⊥〉, where x̂ is the initial state. This
ED-execution has length zero as it contains zero transitions.

We say an ED-execution is locally divergent if the last state (before ⊥) is divergent.
Otherwise, we say that the ED-execution is externally divergent. Intuitively, if an IOA
follows an externally divergent execution, it means some other IOA performs a locally
divergent execution.

Definition 25. The set of all execution fragments of P starting in a state x is denoted
ExP (x). We leave out the subscript whenever the IOA is clear from context. Similarly,
the set of all executions of the IOA P is denoted Ex (P). We have ExP (x) = NDExP (x)∪
EDExP (x) and Ex (P) = NDEx(P) ∪ EDEx(P).

4.3.2 Traces

It is important to have a notion of what part of an execution influences other IOA or is
influenced by other IOA. The part of an execution that is used to communicate between
IOA is called the trace and consists of the visible actions appearing along the execution.

Definition 26. Given an execution fragment σ of P , the trace of σ, denoted Tr(σ),
is the sequence of visible actions σ ↓ (AO ∪ AI) along σ. A trace is non-divergent
respectively explicitly divergent if the associated execution fragment is non-divergent re-
spectively explicitly divergent. We denote the set of non-divergent traces of a state x for
P as NDTrP (x), the set of explicit-divergence traces of a state x is denoted EDTrP (x).
The set of all traces of a state x is denoted TrP (x) = NDTrP (x) ∪ EDTrP (x). We
have TrP (x) = {Tr(σ) | σ ∈ ExP (x)}. We leave out the subscripts whenever the IOA is
clear from context. The set of non-divergent, explicit-divergence, respectively all traces
of P are, denoted NDTr(P), EDTr(P), respectively Tr(P) and are the non-divergent,
explicit-divergent, respectively all traces of the initial state of P .

78

4.3. EXECUTIONS, TRACES, AND REACHABILITY

4.3.3 Reachable states

In the original treatment of IOA, the most important aspect of an IOA is its set of
traces. However, since we use IOA to describe the interactions that may occur in
between Markovian transitions, we focus on reachability properties.

Definition 27. Given two states x, y ∈ S, we say y is reachable from x in P if x has
a finite execution σ for P such that last(σ) = y. The explicit divergence state ⊥ is,
by definition, reachable from any state. We denote the set of all states reachable from
x for P as ReachP (x) and leave out the subscript when clear from context. A state is
reachable in P if it is reachable from the initial state of P . We write Reach(P) for the
set of all reachable states in P .

4.3.4 Reach-trace

From a finite execution we can derive both a trace, the visible actions along the execution
and a reachable state, the final state of the execution. We will see that this combination
of trace and final state of an execution is important to our treatment of IOA. In essence,
the trace contains all the information needed to compose IOA, and the state reached by
an execution is the information that is visible by an outside observer.

Definition 28. Given a finite execution fragment σ, the reach-trace of σ is the pair
〈w, y〉 where w is the trace of σ and y is the final state (which may be ⊥) of σ. We
denote the set of all reach-traces of a state x for P as RTP (x) and leave out the subscript
when clear from context. The set of all reach-traces of an IOA P , denoted RT (P), is
the set of all reach-traces of its initial state.

Example 13. The IOA PRC from Example 10 has, among others, the following execu-
tions.

〈failing〉,

〈failing, fail ,down〉,

〈failing, fail ,down,⊥〉,

〈failing, fail ,down, repair , recovering, repair , recovering〉,

〈failing, fail ,down, repair , recovering, recover ,up〉, and

〈failing, repair , failing, repair , failing, repair , failing, . . .〉.

The first five executions are finite; the associated reach-traces are respectively

(ǫ, failing),

(〈fail〉,down),

(〈fail〉,⊥)

(〈fail , repair , repair 〉, recovering), and

(〈fail , repair , recover 〉,up).

79

CHAPTER 4. INPUT/OUTPUT AUTOMATA

Execution
〈x1, a1?, x2, a2!, x3, a3; , x4, a4?, x4〉

(
〈a1?, a2!, a4?〉

Trace
x4

Reachable state

)

,
︸ ︷︷ ︸

Reach-trace

project on AV last state

Figure 4.3: Illustration of the connection between executions, (reach-)traces, and reach-
able states.

For the final, infinite, execution we find the trace

〈repair , repair , repair , . . .〉.

We have that every state of PRC is reachable. The explicit-divergence state ⊥ is reachable
by definition.

Figure 4.3 depicts the relationship between execution, trace, reachable state, and
reach-trace.

4.4 Fairness

We now discuss how to restrict the set of executions that are to be considered for an
IOA. The main reason to do so is to exclude unrealistic executions and consider only
fair executions.

The question what constitutes an unrealistic execution depends on the assumptions
made on the systems that are being modelled. Indeed, very many notions of fairness
have been suggested in the modelling of generative and reactive systems. In this thesis
we make somewhat different fairness assumptions than originally used for IOA, because
we aim to use IOA in the larger context of compositional Markov models.

The maximal progress assumption. Consider the IOA P1 in Figure 4.4. The ND-
executions of this IOA are x, xcy, and xcydz. We see that the first two executions stop
in an unstable state where the transitions x c−→y respectively y d−→z are enabled. We
might ask if it is reasonable for an IOA execution to simply decide to stop even if one
or more locally-controlled transitions are enabled. We consider such executions to be
unfair because we make the maximal progress assumption [23].

Whenever any transition is enabled, the execution of the next transition may not be
delayed.

80

4.4. FAIRNESS

P1

x

y

z

c!

d!

P2

x1 x2

y

z

a!

b!
c!

d!

P3

x1 x2 x3 · · ·

y1 y2 y3 · · ·

z

a1! a2! a3!

c1! c2! c3!

b3!b3!b3!

d!

Figure 4.4: A selection of IOAs that illustrate the different notions of fairness.

That is, no execution ends in a state with enabled (locally-controlled) transitions.
Note that the maximal progress assumption does not tell us which enabled transition
should be executed, but it tells us some transition must be executed immediately. This
may also be an input transition. The main consequence of the maximal progress assump-
tion is that every finite fair execution ends in a stable state or in the explicit divergence
state ⊥.

The strong transition-fairness assumption. Now, let’s look at the IOA P2 in
Figure 4.4. The following executions of P2 all satisfy the maximal progress assumption.

{x1(ax2bx1)
icydz | i ∈ N} ∪ {x1(ax2bx1)

ω}.

For the infinite execution x1(ax2bx1)
ω we see that the state x1 is visited infinitely often

and the transition (x1, c, y) is enabled infinitely often. We call such an execution unfair,
as it ignores this transition infinitely often. We make the following strong transition-
fairness assumption.

If any set of locally-controlled transitions is enabled infinitely often in an execution,
then transitions from the set appear infinitely often in that execution.

This is a strong fairness assumption since the requirement for fairness only supposes
that the set of transitions is enabled infinitely often, not that it is enabled almost
always (as is the case for weak fairness assumptions such as the one used by Lynch and
Tuttle for IOA [33]). Note also that we reason about sets of transitions and not about
actions or sets of actions (as is the case for the fairness assumption used by Lynch and
Tuttle [33]). Consider IOA P2 where all actions are identical (i.e., a = b = c = d). For
this IOA the execution x1(ax2ax1)

ω would still violate our fairness assumption, since
although the action a appears infinitely often in the execution, the transition (x1, a, y)
does not. Finally, IOA P3 shows the need to reason about sets of transitions and not
single transitions. For this IOA, the infinite execution x1a1x2a2x3a3x4a4 . . . is unfair
since the set of transitions {(xi, ci, y1)} is enabled infinitely often, but never appears in
the execution.

81

CHAPTER 4. INPUT/OUTPUT AUTOMATA

One of the reason for this very strong fairness assumption is the fact that we will use
weak bisimulation (see Subsection 4.7.3) to equate IOA. Consider the IOA P1, P2, and P3

where the actions a, b, c respectively ai, bi, ci for all i ∈ N are internal instead of output
actions. In this case we find that these three IOA are all weakly bisimilar. We also
see that each IOA has the same set of fair reach-traces, namely {(d, z), (d,⊥), (ǫ,⊥)}.
This is crucial, because we want our notion of weak bisimulation to preserve the fair
reach-traces of IOA. It is no surprise then that our notion of fairness is very close to the
notion of fairness incorporated in the axiomatisation of weak bisimulation for IMCs [23],
since weak bisimulation for I/O-IMCs, which we also apply to IOA, is very close to weak
bisimulation for IMCs. The main difference is that for I/O-IMCs the fairness assumption
is applied to sets of output and internal (i.e., locally-controlled) transitions, while the
fairness assumption for IMCs is applied only to internal transitions.

The explicit divergence assumption. From the definition of a divergent state,
it is clear that, whenever an execution visits a divergent state, all subsequent states
are divergent. This means that, the moment one divergent state is visited, (local)
time divergence is inescapable and the IOA must perform infinitely many steps in zero
time. Our last fairness assumption, the explicit divergence assumption, ensures that all
occurrences of local time divergence are made explicit.

Whenever an execution visits a divergent state, the execution is divergent, i.e., it
ends in the explicit-divergence state ⊥.

Definition 29. An execution σ of P is explicit-divergence fair (EDF) if it satisfies the
following statements.

1. If σ is finite, last(σ) is stable or last(σ) = ⊥.

2. If σ is infinite, then for any set of locally-controlled transitions R ⊂ RI we have
that if R is enabled infinitely often along σ then σ contains infinitely many tran-
sitions from R.

3. If σ visits any divergent state, then σ must be divergent, i.e., σ is finite and
last(σ) = ⊥. In this case, σ is locally divergent.

If an execution is fair then its corresponding trace is also fair. If a finite execution is
fair, then its last state is said to be fairly reachable. We write FairEx (P) for the set
of all fair executions of P , FairTr (P) for the fair traces, FairReach(P) for the fairly
reachable states, and FairRT (P) for the set of fair reach-traces. Similarly we write
FairEx (x), FairTr (x), FairReach(x), and FairRT (x) for the fair execution fragments,
fair traces, fairly reachable states, and fair reach-traces of a state x ∈ S.

From here on out we will refer to explicit-divergence fair executions simply as fair
executions. Our use of explicit divergence has an important consequence for closed IOA.

Theorem 9. All fair executions of a closed IOA are finite.

82

4.5. PARALLEL COMPOSITION

Proof. Consider a closed IOA P = 〈S,A,RI , xI〉. Since A
I = ∅ we find that RI contains

only locally-controlled transitions. It follows that all stable states of P have no outgoing
transitions. We now prove Theorem 9 by contradiction. Assume then that σ is an
infinitely long fair execution of P . Since stable states have no outgoing transitions and
divergent states may not appear in σ due to the third fairness assumption, we have that
the i-th state of σ, xi, is neither stable nor divergent. There must then be a finite path
ρi from xi to a stable state. It is obvious that not all transitions of ρi are part of σ
(since ρi contains a stable state and σ does not). Let (yi, ai, zi) be the first transition of
ρi which is not part of σ. The set {(yi, ai, zi) | i ∈ N} must be enabled infinitely often
along σ. If not, then we can find an index j after which the set {(yi, ai, zi)} is never
enabled again. But for the j + 1-th state of σ we must again find a path to a stable
state and a transition (yj+1, aj+1, zj+1), otherwise this state would be divergent. The
fact that the set {(yi, ai, zi) | i ∈ N} is enabled infinitely often but never appears in σ is
a contradiction with the fact that σ is fair.

In the next section we will see that Theorem 9 means that, for practical purposes, we
can restrict our attention to fair finite executions of IOA. The set of fair finite executions
of an IOA P is denoted FinFairEx (P) and it can easily be shown that it is simply the
union of the set of non-divergent executions that end in a stable state and the set of all
finite divergent executions.

4.5 Parallel Composition

We will now discuss a composition operation for IOA as well as its properties. This
composition operation allows us to combine different IOA to form new ones.

Two IOA may communicate with each other by sending and receiving events. Such
events are labelled with actions and we then have input, output, and internal events
labelled with input, output, and internal actions. For instance, the IOA PRC may send
an event labelled fail by executing the transition (failing, fail ,down). When the IOA
subsequently receives an event labelled repair from another IOA it will execute the tran-
sition (down, repair , recovering). We say the repair -transition of PRC synchronises
with a repair -transition of another IOA. A central feature of IOA is that it uses asym-
metric synchronisation in which, for every synchronisation, there is at most one IOA
that controls when the synchronisation may take place. For instance, the IOA PRC

has no control over when events labelled repair occur since this input-action is always
enabled.

It should be noted that symmetric synchronisation or hand-shake synchronisation is
used widely in the modelling of generative systems [35, 27]. In symmetric synchronisation
a synchronised transition can only occur if all participating components enable the
transition. We can interpret asymmetric synchronisation as a special case of symmetric
synchronisation in which it happens to be the case that each action is always enabled
for all but one of the participating components.

To make sure synchronisation is asymmetric we restrict the composition of IOA to
IOA that have disjoint locally-controlled actions. Such IOA are called compatible. The

83

CHAPTER 4. INPUT/OUTPUT AUTOMATA

result is that each action is controlled by at most one IOA.

Definition 30. Two IOA P1 and P2 with input actions AI
1 respectively AI

2, output
actions AO

1 respectively AO
2 , and internal actions AH

1 respectively AH
2 , are compatible if

1. they do not share any output actions,

AO
1 ∩AO

2 = ∅,

and

2. their internal actions are unique,

AH
1 ∩ (AI

2 ∪A
O
2 ∪AH

2) = ∅

and
AH

2 ∩ (AI
1 ∪A

O
1 ∪AH

1) = ∅.

A set of IOA is compatible if the IOA in the set are pairwise compatible.

The parallel composition of two IOA is again an IOA, whose state space is the cross-
product of the state spaces of the components. Transitions that are labelled by actions
in the shared alphabet of the two components are synchronised, whereas the rest of the
transitions are interleaved.

Definition 31. Let P1 = 〈S1, A1, R
I
1, x̂1〉 and P2 = 〈S2, A2, R

I
2, x̂2〉 be two compatible

IOA. The parallel composition1 P1‖P2 of P1 and P2 is an IOA with

• state space S1‖S2 = {x1‖x2 | x1 ∈ S1, x2 ∈ S2},

• actions A1 ∪ A2, with output actions AO = AO
1 ∪ AO

2 , input actions A
I = (AI

1 ∪
AI

2)−AO, and internal actions AH = AH
1 ∪AH

2 ,

• transitions

RI ={x1‖x2
a−→y1‖y2 | a∈A1∩A2, (x1, a, y1)∈R

I
1, (x2, a, y2)∈R

I
2}

∪ {x1‖x2
a−→y1‖x2 | a ∈ A1−A2, (x1, a, y1) ∈ RI

1}

∪ {x1‖x2
a−→x1‖y2 | a ∈ A2−A1, (x2, a, y2) ∈ RI

2}, and

• initial state x̂1‖x̂2.

The IOA P1‖P2 can easily be shown to be input-enabled and finitely branching.

Since the parallel composition of two IOA is another IOA parallel compositions of
finitely many IOA can be achieved by composing again with a third IOA and so forth.
Note that composing in parallel infinitely many IOA may lead to infinite branching and
for this reason we consider only finite parallel compositions in this thesis.

1We recycle the parallel composition operator for states. It will always be clear from the context
which of the two operators is meant.

84

4.5. PARALLEL COMPOSITION

PRC

failing

down

recovering

up

fail!

repair?

recover!

repair?

repair?

repair?

PRM

idle

busy

done

fail?

repair!

fail?

fail?

PRC ‖PRM

f‖i

d‖b

r‖d

u‖d

fail!

repair!

recover!

Figure 4.5: Example of the parallel composition of two compatible IOA. In the parallel
composition, the names of the component states are abbreviated.

Proposition 3. Parallel composition for IOA is associative up to isomorphism. Given
three pair-wise compatible IOA P1, P2, and P3 we have

• (P1‖P2)‖P3 ≡ P1‖(P2‖P3), and

• if P1 and P2 are compatible with P3 then P1‖P2 is compatible with P3.

Proof. Standard.

The associativity of parallel composition means that the order in which the IOA
are composed makes no difference semantically2. For this reason we will leave out the
brackets when parallel composing more than two IOA. That is, we write P1‖P2‖P3

instead of (P1‖P2)‖P3 or P1(‖P2‖P3).

Example 14. As an example, Figure 4.5 shows the compatible IOA PRC (from Ex-
ample 10), PRM (which models a generic repair man), and their parallel composition
PRC ‖PRM .

The inverse of parallel composition is called projection. Any state, execution, trace,
or reach-trace of a composite IOA P1‖P2 can be projected back onto one of its compo-
nents.

Definition 32. Given two compatible IOA P1 and P2, we define the following projections
from P1‖P2 onto P1.

• The projection of state x‖y of P1‖P2 onto P1, denoted x‖y ↓ P1 is x and the
projection of the distinguished state ⊥ onto P1, denoted ⊥↓P1 is again the state
⊥.

2We will see in Chapter 9 that the order of composition may make a very important difference in
practice.

85

CHAPTER 4. INPUT/OUTPUT AUTOMATA

• The projection of an execution σ of P1‖P2 onto P1, denoted σ ↓ P1 is defined
recursively.

σ↓P1 =

〈x1〉, if σ = 〈x1‖x2〉,
〈x1,⊥〉, if σ = 〈x1‖x2,⊥〉,
σ′ ↓P1, if σ = 〈x1‖x2, a〉 ◦ σ

′, a /∈ A1,
〈x1, a〉 ◦ σ

′ ↓P1, if σ = 〈x1‖x2, a〉 ◦ σ
′, a ∈ A1.

• The projection of a trace w of P1‖P2 onto P1, denoted w↓P1 is w↓AV
1 , where A

V
1

are the visible actions of P1.

• The projection of a reach-trace (w, x‖y) of P1‖P2 onto P1, denoted (w, x‖y) ↓P1

is (w↓P1, x‖y↓P1).

Projections from P1‖P2 onto P2 are defined symmetrically. All projections use the same
notation, but it will always be clear from context which projection is meant.

4.5.1 Modularity results

In the following we consider two compatible IOA P1 = 〈S1, A1, R
I
1, x̂1〉 and P2 =

〈S2, A2, R
I
2, x̂2〉. A crucial consequence of asymmetric synchronisation is that the en-

abledness of actions is preserved by parallel composition and projection.

Proposition 4. For any two states x1 ∈ S1, x2 ∈ S2 and any action a ∈ A1 ∪ A2 we
have

a ∈ En(x1‖x2) ⇔ a ∈ En(x1) ∨ a ∈ En(x2).

Proof. This is a direct consequence of the input-enabledness of IOA and the compati-
bility of P1 and P2.

We can restate Proposition 4 in terms of enabled sets. We have

En(x1‖x2) = En(x1) ∪ En(x2),

En(x1) = En(x1‖x2)↓A1, and

En(x2) = En(x1‖x2)↓A2.

Proposition 4 has as a consequence that stability of states is also preserved by com-
position and projection.

Corollary 4. For any pair of states x1 ∈ S1, x2 ∈ S2 we have

st(x1‖x2) ⇔ st(x1) ∧ st(x2).
✞

✝

☎

✆4.1

and equivalently

¬st(x1‖x2) ⇔ ¬st(x1) ∨ ¬st(x2).
✞

✝

☎

✆4.2

86

4.5. PARALLEL COMPOSITION

We will now study the relationship between executions of P1 and P2 and executions
of their parallel composition. To do this, we extend the notion of compatibility to
executions of IOA. Two executions of IOA P1 and P2 are compatible if they “agree” on
the order in which actions from the shared alphabet occurs.

Definition 33. The executions σ1 ∈ Ex (P1) and σ2 ∈ Ex (P2) are compatible if

σ1 ↓(A1 ∩A2) = σ2 ↓(A1 ∩A2)

and either both executions are non-divergent or both executions are explicitly divergent.
The traces w1 ∈ Tr(P1) and w2 ∈ Tr (P2) are compatible if

w1 ↓(A1 ∩A2) = w2 ↓(A1 ∩A2).

We define compatibility of execution fragments and their associated traces in the same
way.

Our first result is that executions are preserved by projecting and, furthermore, the
resulting projected executions are compatible.

Proposition 5. For any execution σ3 of P1‖P2 we have that σ3 ↓P1 is an execution of
P1 and σ3 ↓P2 is an execution of P2 and these two executions are compatible.

Proof. We first prove that Proposition 5 holds in the case that σ3 is a finite, possibly
divergent, execution fragment (i.e., σ3 need not start in the initial state) by induction
on the length n of σ3. For n = 0 we have that the projections are empty and the
proposition trivially holds. We now assume the proposition holds for paths of length n
and show that it follows that the proposition holds for paths of length n+ 1. We have
σ3 = 〈x1‖x2, a〉◦σ

′
3 for some path σ′3 of length n, action a ∈ A1∪A2, and states x1 ∈ S1,

x2 ∈ S2. We now have

σ3 ↓P1 =

{
σ′3 ↓P1, if a /∈ A1,
〈x1, a〉 ◦ σ

′
3 ↓P1, if a ∈ A1.

For the projection of σ3 ↓P1 onto A1 ∩A2 we then find

(σ3 ↓P1)↓(A1 ∩A2) =

{
(σ′3 ↓P1)↓(A1 ∩A2), if a /∈ A1 ∩A2

〈a〉 ◦ (σ′3 ↓P1)↓(A1 ∩A2), if a ∈ A1 ∩A2.

Similarly, we find for the projection of σ3 onto P1 that

(σ3 ↓P2)↓(A1 ∩A2) =

{
(σ′3 ↓P2)↓(A1 ∩A2), if a /∈ A1 ∩A2

〈a〉 ◦ (σ′3 ↓P2)↓(A1 ∩A2), if a ∈ A1 ∩A2.

By the induction assumption it follows that (σ′3 ↓P1)↓(A1 ∩A2) = (σ′3 ↓P2)↓(A1 ∩A2)
and then σ3 ↓P1 must be compatible with σ3 ↓P2.

For an infinite execution σ3 we prove the proposition by contradiction. Assume the
two projections of σ3 onto P1 and P2 are not compatible. Then there exists a finite
prefix σ′3 of σ3 for which we have (σ′3 ↓P1)↓ (A1 ∩ A2) 6= (σ′3 ↓P2)↓ (A1 ∩ A2). But this
is a contradiction with the fact that the proposition holds for finite paths.

87

CHAPTER 4. INPUT/OUTPUT AUTOMATA

P1

x1

y1

a!

P2

x2

y2

b!

P1‖P2

x1‖x2

y1‖x2 x1‖y2

y1‖y2

a! b!

b! a!

Figure 4.6: Example of the interleaving of independent actions.

Corollary 5. For any trace w of P1‖P2, any reachable state x‖y of P1‖P2, and any
reach-trace (w′, x′‖y′) of P1‖P2 we have that w ↓P1 and w ↓P2 are compatible traces of
P1 and P2, respectively, x and y are reachable states for P1 and P2, respectively, and
(w′, x′‖y′)↓P1 and (w′, x′‖y′)↓P2 are reach-traces of P1 and P2, respectively.

It would be natural to try to extend the notion of parallel composition to executions.
Given two compatible IOA P1 and P2, the parallel composition of compatible executions
σ1 ∈ Ex (P1) and σ2 ∈ Ex (P2) would then yield an execution of P1‖P2. However, we
will see that this is impossible, because the executions of P1‖P2 generally hold more
information than the associated executions in P1 and P2.

Example 15. Consider the two compatible IOA P1 and P2 in Figure 4.6. We can
see that the only fair, non-divergent execution of P1 is σ1 = 〈x1, a, y1〉 and similarly
the only fair, non-divergent execution of P2 is σ2 = 〈x2, b, y2〉. These two execu-
tions are trivially compatible since the shared alphabet of P1 and P2 is empty. We
could now ask what the parallel composition of σ1 and σ2 would look like, but if we
inspect the IOA P1‖P2 we see that there are in fact two possibilities. Either the tran-
sition (x1, a, y1) occurs before the transition (x2, b, y2) and the combined execution is
〈x1‖x2, a, y1‖x2, b, y1‖y2〉, or the transitions occur in the reverse order and the combined
execution is 〈x1‖x2, b, x1‖y2, a, y1‖y2〉.

The reason that component executions do not completely determine an execution is
that we use an interleaving semantics. This means that, whenever two transitions are
enabled one will occur before the other. That is, the execution of transitions is totally
ordered. The order in which enabled transitions from different components occur is
exactly the extra information contained in the executions of a composed IOA compared
to the executions of its components.

However, Lynch and Tuttle have shown a slightly weaker result. Given two compat-
ible executions of P1 and P2, there must exist some execution of P1‖P2 which projects
back onto the executions of P1 and P2.

Theorem 10 ([33]). Given two compatible executions σ1 and σ2 of P1 respectively P2

there exists an execution σ3 of P1‖P2 such that σ3 ↓P1 = σ1 and σ3 ↓P2 = σ2.

88

4.5. PARALLEL COMPOSITION

Corollary 6. Given compatible traces w1 and w2 of P1 respectively P2, and compatible
reach-traces (w1, x) and (w2, y) of P1 respectively P2, there exists a trace w and a reach-
trace (w, x‖y) of P1‖P2 such that w↓P1 = w1, w↓P2 = w2, (w, x‖y)↓P1 = (w1, x), and
(w, x‖y)↓P2 = (w2, y).

4.5.2 Composition and fairness

It turns out the modularity results we established for executions, traces, and reachable
states also hold for their fair counterparts.

Theorem 11. Let P1 and P2 be two compatible IOA. For any fair execution of σ3 of
P1‖P2 we have that σ3 ↓P1 is a fair execution of P1 and σ3 ↓P2 is a fair execution of P2

and these two executions are compatible.

Proof. We prove by contradiction that the projected executions are indeed fair. We
assume then that the execution σ3 of P1‖P2 is fair, but execution σ1 = σ3 ↓P1 is not. It
follows that one of the three fairness conditions does not hold for σ1. We consider each
condition separately.

• Consider the case that σ1 is finite and its last state x1 = last(σ1) is unstable. If σ3
is also finite, then its last state must be of the form x1‖x2 for some state x2 ∈ S2.
Corollary 4.1 then gives us that this last state of σ3 is also unstable, which is a
contradiction with the fact that σ3 is fair. For the case that σ3 is infinite, we have
that σ3 must visit infinitely many states in {x1} × S2. From the instability of x1
it follows that there is a transition (x1, a, y1) enabled in x1. Proposition 4 then
gives us that there is a set of transitions {(x1‖zi, a, y1‖z

′
i) | zi, z

′
i ∈ S2} in P1‖P2,

that is enabled infinitely often for σ3. The fairness of σ3 then proscribes that this
transition is also executed infinitely often, but this means the transition (x1, a, y1)
is also executed infinitely often by σ1, which is a contradiction with the fact that
σ1 is finite.

• Consider the case that σ1 is infinite and there is some set of actions R ⊂ RI
1 that

is enabled infinitely often along σ1 but which is not executed infinitely often by
σ1. It follows immediately from Proposition 4 and Corollary 4 that the same then
holds for σ3 for the set

R′ = {(x1‖x2, a, y1‖y2) | (x1, a, y1) ∈ R,x2, y2 ∈ S2} ∩R
I
3.

This is a contradiction with the fact that σ3 is fair.

• Consider the case that σ1 visits a divergent state but does not end in the explicit-
divergence state ⊥. From the definition of projection it follows that σ3 also does
not end in the explicit-divergence state ⊥. However, Corollary 4.3 gives us that
σ3 visits a divergent state, which contradicts the fairness of σ3.

This result also extends to fair traces, reachable states, and reach-traces.

89

CHAPTER 4. INPUT/OUTPUT AUTOMATA

Corollary 7. For any fair trace w of P1‖P2, any fairly reachable state x‖y of P1‖P2, and
any fair reach-trace (w′, x′‖y′) of P1‖P2 we have that w ↓P1 and w ↓P2 are compatible
fair traces of P1 respectively P2, x and y are fairly reachable states for P1 respectively
P2, and (w′, x′‖y′)↓P1 and (w′, x′‖y′)↓P2 are fair reach-traces of P1 respectively P2.

We have seen that we cannot construct an execution of P1‖P2 from compatible
executions of P1 and P2. However, we can easily see that given compatible executions
σ1 and σ2 of P1 respectively P2 there must exists an execution σ3 of P1‖P2 such that the
projection of σ3 onto P1 is σ1 and the projection of σ3 onto P2 is σ2 [33]. Additionally,
if σ1 and σ2 are finite fair executions, then there exists an execution σ3 as above that is
also finite and fair.

Theorem 12. Let P1 and P2 be two compatible IOA and let σ3 be a finite sequence of
states of P1‖P2 interleaved with actions of P1‖P2, i.e.,

σ3 = 〈x0‖y0, a0, x1‖y1, . . . , an−1, xn‖yn〉,

for some states x0, . . . , xn ∈ S1, y0, . . . , yn ∈ S2, and a0, . . . , an−1 ∈ A1 ∪ A2. We have
that, σ3 is a finite fair execution of P3, if and only if for any index 0 ≤ i < n it holds
that

ai /∈ A1 =⇒ xi = xi+1

✞

✝

☎

✆4.3

and
ai /∈ A2 =⇒ yi = yi+1

✞

✝

☎

✆4.4

and the projections of σ3 as per Definition 32, σ1 = σ3 ↓ P1 and σ2 = σ3 ↓ P2, are
compatible, finite, and fair executions of P1 and P2, respectively. Moreover, the same
holds for σ3 ◦ 〈⊥〉.

Proof. The “if” of Theorem 12 follows directly from Theorem 11.
To prove the “only if”, we first show that σ3 is a finite execution of P1‖P2. Given

conditions
✞

✝

☎

✆4.3 and
✞

✝

☎

✆4.4 it is easy to show that σ1 starts with state x0 and σ2 starts with
state y0. It then remains to show that for any index 0 ≤ i < n we have that the triple
〈xi‖yi, ai, xi+1‖yi+1〉 is a transition of P1‖P2. For the case ai ∈ A1∩A2 we have that the
projections σ1 and σ2 will contain the transitions 〈xi, ai, xi+1〉 respectively 〈yi, ai, yi+1〉.
It then follows from the definition of parallel composition that P1‖P2 indeed contains the
transition in question. For the case ai ∈ A1, ai /∈ A2 we have that the projection σ1 will
contain the transition 〈xi, ai, xi+1〉 and yi = yi=1, because of

✞

✝

☎

✆4.4 . Again it follows from
the definition of parallel composition that the transition in questions appears P1‖P2.
The remaining case ai /∈ A1, ai ∈ A2 proceeds in a similar way. Adding ⊥ to the end of
σ3 does not affect the fact that σ3 is a finite execution of P1‖P2.

We now show by contradiction that σ3 is fair. Assume then that σ3 violates one
of the three fairness conditions. For the case that σ3 ends in an unstable state xn‖yn
we have, by

✞

✝

☎

✆4.2 , that either xn is unstable or yn is unstable and then also one of the
projections of σ3 is unfair which is a contradiction. The second fairness condition cannot
be violated by σ3 since it is finite. Finally, assume that σ3 visits a divergent state but
does not end in the explicit divergence state ⊥. Since σ3 is an execution of P1‖P2 it then

90

4.5. PARALLEL COMPOSITION

P1

x1

y1

a!b?

b?

P2

x2

y2

a?b!

a?

P1‖P2

x1‖x2

y1‖y2

a!b!

Figure 4.7: Two IOA with infinite fair executions and their parallel composition.

follows that the last state of σ3 is unstable (since no stable state can be reached from a
divergent state). But we have already seen that this leads to a contradiction with the
assumption that σ1 and σ2 are fair.

We might ask why Theorem 12 restricts to finite executions. We will give an example
that shows why we need this restriction. Consider the compatible IOA P1 and P2

depicted in Figure 4.7. The infinite executions σ1 = (x1, a, y1, b)
ω of P1 and σ2 =

(x2, a, y2, b)
ω are infinite, fair, and compatible. Note especially that the states y1 and

x2 are stable. If we now investigate the parallel composition of P1 and P2 we find
that σ3 = (x1‖x2, a, y1‖y2, b)

ω) is the only execution of σ3 such that σ3 ↓P1 = σ1 and
σ3 ↓ P2 = σ2. However, we have that both x1‖x2 and y1‖y2 are unstable and then
both these states are also divergent. It then follows that σ3 is not a fair execution as
it does not end in the explicit-divergence state ⊥. Note that there do not exist two
non-divergent, finite, fair, and compatible executions of P1 and P2, since one of the
executions will end in an unstable state. This matches the fact that P1‖P2 has no fair
non-divergent executions.

The above counter-example is not so surprising in light of Theorem 9, which states
that all fair executions of a closed IOA are finite. Since the same does not hold for IOA
that are not closed we see that fairness of infinite executions cannot be preserved by
parallel composition. It is important to note that this is a consequence of our use of
explicit divergence. In the original treatment of IOA, explicit divergence is not used and
then infinite executions are indeed preserved by parallel composition [33].

Corollary 8. Let P1 and P2 be two compatible IOA such that their parallel composition
P1‖P2 is closed. For an infinite fair execution σ1 of P1 and a fair execution σ2 of P2 we
have that any execution σ3 of P1‖P2 such that σ3 ↓P1 = σ1 and σ3 ↓P2 = σ2 is unfair.

Proof. From the definition of projection it follows that σ3 must be infinite. Corollary 8
then follows directly from Theorem 9.

Again we have that the results extend to fair traces and reach-traces.

91

CHAPTER 4. INPUT/OUTPUT AUTOMATA

Corollary 9. Given a finite sequence of visible actions of P1‖P2, w = 〈a1, . . . , an〉 and
a state x‖y of P1‖P2, we have that,

1. w ↓P1 and w ↓P2 are finite fair traces of P1 and P2, respectively, if and only if w
is a finite fair trace of P1‖P2,

2. if x‖y is fairly reachable in P1‖P2 then x and y are fairly reachable in P1 and P2,
respectively, and

3. 〈w ↓ P1, x〉 and 〈w ↓ P2, y〉 are fair reach-traces of P1 and P2, respectively if and
only if 〈w, x‖y〉 is a fair reach-trace of P1‖P2.

Proof. Recall that the fact that 〈w ↓ P1, x〉 and 〈w ↓ P2, y〉 are fair reach-traces of P1

respectively P2 means that there must exist fair executions σ1 and σ2 that have traces
w ↓ P1 respectively w ↓ P2 and end in states x respectively y. Furthermore, these
executions must be compatible because their traces are both projections of w. Under
these considerations we see that the corollary follows from Theorems 11 and 12.

Crucially, fair reachability is not preserved by parallel composition (i.e., the reverse
of the second statement in Corollary 9 does not hold). This means that the reachability
of states in an IOA depends on its environment. Specifically, it depends on the traces of
its environment, which is why the third statement of Corollary 9 holds in both directions.
It is important to note that unreachability is preserved by parallel composition. If a state
x is not reachable in P1 then no state x‖y will be reachable in P1‖P2.

4.6 Hiding

We can make IOA models more abstract by hiding certain actions.

Definition 34. Given an IOA P = 〈S,A,RI , x̂〉 and a subset of its output actions
B ⊆ AO, hiding B in P yields the IOA P\B = 〈S,A2, R

I , x̂〉 where we have AO
2 = AO−B

and AH
2 = AH ∪B.

Hiding simply changes the role of output actions to internal actions. Note that hiding
actions in an IOA may make it incompatible to other IOA. That is, if two IOA P1 and
P2 with actions A1 respectively A2 are compatible, then P1\B is compatible with P2 if
and only if B ∩ A2 = ∅. In general, actions are hidden after they are used in a parallel
composition to synchronise different component IOA.

It is easy to see that any execution of P is also an execution of P \B. Since the
definition of fairness for IOA executions does not distinguish between output and internal
actions (both are locally-controlled), hiding actions in an IOA also does not change the
set of fair executions.

Proposition 6. Given an IOA P = 〈S,A,RI , x̂〉 and a subset of its output actions
B ⊆ AO, a sequence of states in S interleaved with actions in A is a (fair) execution of
P if and only if it is a (fair) execution of P \B

92

4.7. EQUIVALENCES

Proof. Trivial.

However, hiding does change the set of fair finite traces and fair reach-traces. This
is caused by the fact that traces only list visible actions, and the set of visible actions is
changed by hiding. In the following, we extend hiding to traces in an intuitive way. A
trace w\B is the trace w where all actions in B have been removed.

Proposition 7. Given an IOA P = 〈S,A,RI , x̂〉, a subset of its output actions B ⊆ AO,
a finite sequence w̄ of actions from AV \B, and a state x ∈ S⊥, we have

1. w̄ is a fair finite trace of P\B if and only if there exists a fair finite trace w of P
such that w\B = w̄,

2. (w̄, x) is a fair reach-trace of P \B if and only if there exists a reach-trace (w, x)
of P such that w\B = w̄, and

3. x is fairly reachable in P \B if and only if x is fairly reachable in P .

The same holds for the general finite traces, reach-traces and reachable states (i.e.,
without fairness).

Proof. Trivial.

Note, that Proposition 7 does not allow us to determine the (fair) traces of P from
the (fair) traces of P \B. However, the (fairly) reachable states of P are preserved by
hiding.

4.7 Equivalences

We have already seen in Chapter 3 that equivalence relations are an important concept,
and we now discuss some important equivalence relations in the context of IOA. Our
main focus is on reachability properties of IOA, because this links to the considerations
in the preceding and subsequent chapters.

In essence, we want to identify an equivalence relation that equates IOA with the
same reachability properties. However, given two IOA P1 and P2 with disjoint state
spaces S1 and S2, we must have a way of equating states of P1 and P2 in order to
meaningfully compare their reachability properties. Recall from Section 2.1 that we
have assumed that there is a congruence relation =s on the set of all states which tells
us which states can be distinguished.

We will only compare IOA which are comparable, in the sense that they have similar
action signatures and, for practical reasons, disjoint state spaces.

Definition 35. Two IOA P1 and P2 are comparable when

• they have the same output actions,

• they have the same input actions,

93

CHAPTER 4. INPUT/OUTPUT AUTOMATA

• an internal action of P1 is not a visible action of P2 and vice versa, and

• their state spaces are disjoint.

With respect to the restriction that the state spaces are disjoint, recall that for any
IOA P and any subset S ⊂ Sall we can find an isomorphic IOA P ′ up to =s such that
its state space is disjoint from S.

To compare two IOA it will be useful to combine their state spaces and transition re-
lations. This is purely a technicality which makes it easier to define equivalence relations
for IOA.

Definition 36. Given two IOA P1 = 〈S1, A1, R
I
1, x̂1〉 and P2 = 〈S2, A2, R

I
2, x̂2〉, which

are comparable, have disjoint state spaces S1 and S2, identical output actions A
O
1 and

AO
2 , and identical input actions AI

1 and AI
2, the disjoint union of P1 and P2 is the IOA

P1 ∪ P2 = 〈S1 ∪ S1, A1 ∪A2, R
I
1 ∪R

I
2, x̂〉.

We pick the initial state of the disjoint union arbitrarily as it will not play a significant
role in the remainder of this section.

4.7.1 Reachability equivalence

We can now define reachability equivalence. Two IOA are reachability equivalent if the
sets of states they can fairly reach are the same with respect to =s. We ignore the
explicit-divergence state ⊥, since it is fairly reachable for all IOA.

Definition 37. Given an IOA P = 〈S,A,RI , x̂〉, an equivalence relation E on S is a
reachability equivalence if for all pairs of states xEy we have,

x′ ∈ FairReach(x) \ {⊥} =⇒ ∃y′ ∈ FairReach(y) \ {⊥} · x′ =s y
′.

We say two states x, y ∈ S are reachability equivalent in P , denoted x =P
r y, if there

exists a reachability equivalence E such that xEy. We leave out the superscript when
clear from context.

Two comparable IOA P1 and P2 are reachability equivalent, denoted P1 =r P2 if their
initial states are reachability equivalent in the disjoint union of P1 and P2. I.e, we have
x̂1 =

P1∪P2
r x̂2.

Reachability equivalence obviously preserves the reachability properties of IOA in
isolation. It is also good to note that hiding actions does not affect the reachability
of states and we then find that reachability equivalence is substitutive with respect to
hiding.

Proposition 8. Given two IOA P1 and P2 such that AO
1 = AO

2 , then we have for any
set B ⊂ AO

1

P1 =r P2 =⇒ P1\B =r P2\B.

Proof. This is a direct consequence of the fact that our notion of fairness does not
distinguish between internal and output actions.

94

4.7. EQUIVALENCES

P1

x1

y1

z1

a?

b?

b?

a?

a? b?

P2

x2

y2

z2

b?

a?

a?

b?

a? b?

P3

x3

y3

z3

a!

b!

Figure 4.8: Three IOA.

4.7.2 Reach-trace equivalence

Unfortunately, reachability equivalence is not substitutive with respect to parallel com-
position. This means that IOA that are reachability equivalent may not be reachability
equivalent after composing them in parallel with the same compatible IOA.

Example 16. Consider the IOA P1, P2, and P3 in Figure 4.8. Assume that we have
x1 =s x2, y1 =s y2, z1 =s z2, and all other pairs of states are different with respect to
=s. It is then easy to see that P1 and P2 are reachability equivalent. However, P1‖P3

can reach states x1‖x3, y1‖y3, and z1‖z3 whereas P2‖P3 can reach x2‖x3, x2‖y3, and
y2‖z3. It is clear that P1‖P3 is not reachability equivalent to P2‖P3. For instance, the
state z1‖z3 is not equivalent to any of the reachable states of P2‖P3.

The fact that reachability equivalence is not substitutive with parallel composition is
not surprising, given the fact that the executions of a parallel composition are determined
by all pairs of compatible executions of its components. The compatibility of executions
in turn depends on the traces of these executions. To find an equivalence relation that
is substitutive with parallel composition, we must then take these traces into account.

Definition 38. Given an IOA P = 〈S,A,RI , x̂〉, an equivalence relation E on S is a
reach-trace equivalence if for all pairs of states xEy we have,

(w, x′) ∈ FairRT (x) =⇒ ∃(w, y′) ∈ FairRT (y) · x′ = y′ = ⊥ ∨ x′ =s y
′.

We say two states x, y ∈ S are reach-trace equivalent in P , denoted x =P
rt y if there

exists a reach-trace equivalence E such that xEy. We leave out the superscript when
clear from context.

Two comparable IOA P1 and P2 are reach-trace equivalent, denoted P1 =rt P2 if their
initial states are reach-trace equivalent in the disjoint union of P1 and P2.

95

CHAPTER 4. INPUT/OUTPUT AUTOMATA

Reach-trace equivalence is obviously coarser than reachability equivalence. Moreover
it is substitutive with respect to hiding and parallel composition.

Theorem 13. Given two IOA P1, P2 such that AO
1 = AO

2 , if P1 is reach-trace equivalent
to P2 then

1. P1 is reachability equivalent to P2,

2. for any set of actions B ⊂ AO
1 we have that P1\B is reach-trace equivalent to P2\B,

and

3. for any IOA P3, which is compatible with both P1 and P2 we have that P1‖P3 is
reach-trace equivalent to P2‖P3.

Proof. The first two statements of Theorem 13 trivially hold. For the third statement
we must show that for every fair reach-trace of P1‖P3 there is a corresponding reach-
trace of P2‖P3. Let 〈w, x1‖x3〉 be a fair reach-trace of P1‖P3. We then find a finite
fair execution σ of P1‖P3 such that Tr(σ) = w and last(σ) = x1‖x3. By Theorem 11
we have that σ1 = σ ↓ P1 and σ3 = σ ↓ P3 are compatible finite fair executions of P1

respectively P3. Obviously we have last(σ1) = x1 and last(σ3) = x3. Let w1 and w3 be
the traces of σ1 and σ3. We then have that 〈w1, x1〉 is a fair reach-trace of P1.

Now, since P1 is reach-trace equivalent to P2 we find a state x2 and an execution σ2
of P2 such that Tr(σ2) = w1 and last(σ2) = x2 =s x1. Theorem 12 allows us to combine
executions σ2 and σ3 to find a finite fair execution σ′ of P2‖P3 such that σ′ ↓P2 = σ2
and σ′ ↓P3 = σ3. For the final state of σ′ we have last(σ′) = x2‖x3 =s x1‖x3. Let w

′ be
the trace of σ′. We then find w′ ↓P2 = w1 and w′ ↓ P3 = w3. The order in which the
actions in the shared alphabet of P1 and P3 (equivalently, the shared alphabet of P2 and
P3) are then the same for both w and w′. It remains to be shown that the independent
actions (i.e., the actions in AV

1 −AV
3 or AV

3 −AV
1) in w and w′ are interleaved in the same

order. But, from the definition of parallel composition it is obvious that these actions
can occur in any order in P2‖P3 and we can then choose σ′ such that w = w′.

It is important to try to find the coarsest equivalence that preserves fair reachability
and is substitutive with respect to parallel composition. The following result shows that
this coarsest equivalence relation is indeed reach-trace equivalence.

Theorem 14. Given two IOA P1 and P2 with AI
1 = AI

2 and AO
1 = AO

2 . If P1 =r P2, but
P1 6=rt P2, then there exists an IOA P3, compatible with P1 and P2 such that P1‖P3 6=r

P2‖P3.

Proof. Given that P1 and P2 are reachability equivalent, but not reach-trace equivalent,
there must exist a state x ∈ S1 and a trace w such that 〈w, x〉 ∈ FairRT (P1) but for all
states y ∈ S2, such that x =s y, we have 〈w, y〉 /∈ FairRT (P2) or vice versa (switching
P1 and P2). Without loss of generality we assume that indeed P1 has such a reach-trace
that cannot be simulated by P2 and let σ1 be a fair execution of P1 such that Tr(σ1) = w
and last(σ1) = x. Let n be the length of w and let w = 〈a1, . . . , an〉.

We will now construct an IOA P3 = 〈S3, A3, R
I
3, z0〉 whose only fair trace is w and

show that P1‖P3 is then indeed not reachability equivalent to P2‖P3. We choose

96

4.7. EQUIVALENCES

• S3 = {zi | 0 ≤ i ≤ n+ 1},

• AI
3 = AO

1 , A
O
3 = AI

1, and A
H
3 = {τ}, and

• we choose the transition relation of P3 as follows

RI
3 = {(zi, ai+1, zi+1) | 0 ≤ i < n}

∪ {(zi, b, zn+1 | 0 ≤ i < n, b ∈ AI
3 ∪A

H
3 }

∪ {(zn, b, zn+1 | b ∈ AI
3} ∪ {(zn+1, τ, zn+1}.

It is easy to see that P3 is compatible with P1 and P2, the only stable state of P3 is
zn, and that the only fair non-divergent execution of P3 is σ3 = 〈z0, a1, . . . , an, zn〉, with
Tr(σ3) = w. We then have that σ1 is compatible with σ3 and, by Theorem 12, we then
find a finite fair execution σ of P1‖P3 such that σ ↓P1 = σ1 and σ ↓P3 = σ3. We have
that last(σ) = x‖zn is fairly reachable in P1‖P3.

We now show by contradiction that there is no fairly reachable state y‖z in P2‖P3

such that x‖zn =s y‖z. Assume then that there does exist such a fairly reachable state
y‖z. Note, first of all that we have x =s y and zn =s z and then we must have z = zn
since the other states of P3 are all unstable and thus not fairly reachable. Now, let σ′

be a fair execution such that last(σ′) = y‖zn. Such an execution must exist, since we
assume y‖zn is fairly reachable. By Theorem 11, we have that σ2 = σ′ ↓ P2 is a fair
execution of P2 and σ′3 = σ′ ↓ P3 is a fair execution of P3, such that σ2 is compatible
with σ′3. Both these executions must be non-divergent and then σ′3 must be σ3 since
this is the only fair, non-divergent execution of P3. The compatibility of σ2 and σ3 then
gives us that Tr(σ2) is w. We then have that σ2 is a finite fair execution of P2 with
trace w that ends in a state y such that x =s y. But this is a contradiction with the
fact that P1 and P2 are not reach-trace equivalent.

We have seen that reach-trace equivalence is the coarsest equivalence relation on IOA
that preserves reachability and is substitutive with parallel composition and hiding. This
means that the set of reach-traces of an IOA can be used to completely characterise its
reachable states and its reachable states in all possible finite compositions. It is then
natural to ask what the most compact way of representing this information is. In other
words, we ask, given an IOA P , what is the smallest IOA P ′ such that P ′ is reach-trace
equivalent to P . Unfortunately, since the set of fair traces is a regular language over
the set of actions A, we conjecture that finding the minimal IOA with a certain set
of reach-traces is equivalent to finding the minimal non-deterministic finite automaton
(NFA) that accepts a particular language over A. However, the problem of minimising
a NFA is NP-hard [47] and we then conjecture that minimising an IOA with respect to
its fair reach-traces is also NP-hard.

4.7.3 Weak bisimulation

As it is often infeasible to find a minimal representation of an IOA with respect to reach-
trace equivalence, we now consider an equivalence relation that is finer than reach-trace

97

CHAPTER 4. INPUT/OUTPUT AUTOMATA

equivalence, but which is computable in polynomial time and can be used to efficiently
reduce the size of an IOA while preserving its set of reach-traces. The equivalence we
use is weak bisimulation and is based on observational equivalence for LTSs, with an
extra clause to deal with stability.

Two states are weakly bisimilar if they can simulate each other’s observable be-
haviour. To characterise this observable behaviour we introduce weak transitions.

Definition 39. Given an IOA P with states S and actions A, there is an internal
transition from x ∈ S to y ∈ S, denoted x AH

−→y, if there exists an internal action
a ∈ AH such that (x, a, y) is in RI .

There is a weak internal transition from x to y, written x−։y, if there are states
x0, . . . , xn such that xi

AH
−→xi+1 for all 0 ≤ i < n and x0 = x and xn = y. The weak

internal transition relation −։ is the transitive and reflexive closure of AH
−→ . Note that

for all states x ∈ S we have x−։x.
There is a weak transition from x to y labelled a ∈ AI∪AO, written x a−։y, whenever

there are states x′, y′ ∈ S such that x−։x′, x′ a−→y′, and y′−։y.

We now define weak bisimulation.

Definition 40. Given states S, actions A, and an interactive transition relation RI ⊂
S ×A× S, an equivalence relation E on S is a weak bisimulation with respect to S, A,
and RI , if for any pair of states xEy and any action a ∈ A we have

∀x′ ∈ S ·
(
x−։x′,¬(xEx′) =⇒ ∃y′ ∈ S · y−։y′, x′Ey′

)
,

✞

✝

☎

✆4.5

∀x′ ∈ S ·
(
x a−։x′ =⇒ ∃y′ ∈ S · y a−։y′, x′Ey′

)
,

✞

✝

☎

✆4.6

∀x′ ∈ S ·
(
x−։x′, st(x′) =⇒ ∃y′ ∈ S · y−։y′, st(y′)

)
, and

✞

✝

☎

✆4.7

∀x, y ∈ S · (st(x), st(y) =⇒ x =s y) .
✞

✝

☎

✆4.8

We say two states x and y are weakly bisimilar in P , denoted x ≈P y, if there exists
a weak bisimulation that relates x and y. We leave out the subscript when clear from
context. For any IOA, weak bisimilarity itself is the largest weak bisimulation.

Two comparable IOA P1 and P2 are weakly bisimilar, written P1 ≈ P2 if their initial
states are weakly bisimilar with respect to the disjoint union of P1 and P2.

An equivalence relation that satisfies conditions
✞

✝

☎

✆4.5 and
✞

✝

☎

✆4.6 is an observational

equivalence as introduced by Milner [35]. Condition
✞

✝

☎

✆4.7 on the other hand appears in
the definition of weak bisimulation for IMCs [23]. This condition is necessary since we
want weak bisimulation to preserve the fair traces of an IOA. Finally, condition

✞

✝

☎

✆4.8

ensures that weak bisimulation preserves the fairly reachable states up to =s. This
condition is only applied to stable states, since only stable states are fairly reachable.
To underline the importance of condition

✞

✝

☎

✆4.7 , consider the two IOA in Figure 4.9. It is
clear that the relation E = {(x, x), (x, y), (y, x), (y, y)} satisfies the first two conditions,
however it does not satisfy condition

✞

✝

☎

✆4.7 since state x may reach a stable state (itself),
while state y cannot. For the fair executions of P1 and P2 we find

FairEx (P1) = {〈x〉, 〈x,⊥〉}

98

4.7. EQUIVALENCES

P1

x

P2

y

a;

Figure 4.9: Two IOA that are distinguished by the third weak bisimulation condition.
The action a is internal. We have x =s y.

and
FairEx (P2) = {〈(y, a)i, y,⊥〉 | i ∈ N}.

Note that the execution 〈y〉 is not fair for P2 as it does not end in a stable state. For
the fair reach-traces we now have

FairTr (P1) = {〈ǫ, x〉, 〈ǫ,⊥〉}

and
FairTr (P2) = {〈ǫ,⊥〉}.

In other words, P1 may reach a stable state, while for P2 we see that time divergence
must occur. It then makes sense that these two IOA are not weakly bisimilar.

For the following two lemmas we consider an IOA P = 〈S,A,RI , x̂〉. Although not
explicitly stated, weak bisimilarity preserves stability. That is, if a state x is stable,
then any bisimilar state y can reach a stable state in the same equivalence class with
internal transitions and y has no internal transition to other equivalence classes.

Lemma 8. Given two states x, y ∈ S such that x ≈ y,

st(x) implies ∃y′ · y−։y′, st(y′) and ∄y′′ · y−։y′′, y 6≈ y′′.

Proof. Easy given that x must simulate the internal weak transitions of y.

We wish to show that weak bisimilarity preserves the fair reach-traces of an IOA.
To do this we first show that weak bisimilarity preserves the fair reach-traces of states
of an IOA.

Lemma 9. Given two states x, y ∈ S such that x ≈ y we have that every fair reach-trace
of x can be “simulated” by y.

∀(w, x′) ∈ FairRT (x) · ∃(w, y′) ∈ FairRT (y) · x′ = y′ = ⊥∨ x′ ≈ y′.

Proof. We prove Lemma 9 by induction on the length of the reach-trace, that is the
number of visible actions in the trace.

For the empty, divergent reach-trace (ǫ,⊥) we have that this is a fair reach-trace
for any state, so also for y. For an empty non-divergent reach-trace (ǫ, x′) with x′ 6= ⊥

99

CHAPTER 4. INPUT/OUTPUT AUTOMATA

we have x−։x′ and st(x′). For the case that x ≈ x′, we have y ≈ x′ and then, by
Lemma 8, there is a state y′ such that y−։y′, st(y′), and x′ ≈ y′ which means (ǫ, y′)
is a fair reach-trace of y. For the case that x 6≈ x′,

✞

✝

☎

✆4.5 dictates that there is a state y′

such that y−։y′ and x′ ≈ y′. Now, Lemma 8 again gives us that there exists a stable
state y′′ such that y′−։y′′ and y′′ ≈ x′. Now we once more have that 〈ǫ, y′′〉 is a fair
reach-trace of y.

For a non-empty reach-trace 〈a ◦w, x′〉 where a ◦w is a word of length n+ 1 we use
as our induction assumption that, for any states x′′ ≈ y′′ and any word w′ of length n,
if 〈w′, x′〉 is a fair reach-trace of x′′ then there exists a fair reach-trace 〈w′, y′〉 of y′′ such
that x′ ≈ y′ or x′ = y′ = ⊥. We now show that under this induction assumption there
also exists a corresponding fair reach-trace of 〈a ◦ w, y′〉 of y. Given that 〈a ◦ w, x′〉 is
a fair reach-trace of x, there must exist an execution σ starting in x and ending in x′

such that the first visible transition of σ is labelled a. We have

σ = 〈x1, b1, x2, b2, . . . , xm, a〉 ◦ σ
′,

where bi ∈ AH and σ′ is an execution fragment from x′′ to x′. It is clear that if σ is fair,
then also σ′ is fair and the reach-trace of σ′ is 〈w, x′〉. Furthermore we have x a−։x′′.

Now, let’s see what this means for the state y. First, it must simulate the weak
transition x a−։x′′. We then find a state y′′ such that y a−։y′′ and x′′ ≈ y′′. Now, the
induction assumption tells us that y′′ has a fair reach-trace 〈w, y′〉 with x′ ≈ y′. From
the weak transition y a−։y′′ and the fair reach-trace 〈w, y′〉 of y′′ it easily follows that
y has an execution ρ with reach-trace 〈a ◦ w, y′〉. The final question is whether this
reach-trace is fair, or equivalently whether ρ is fair. Since the shorter behaviour 〈w, y′〉
is fair, we have that y′ is either ⊥ or stable. Since ρ is also finite, the only remaining way
in which it can be unfair is if it visits a divergent state but does not end in ⊥. However,
the fact that y′ is either stable or ⊥ immediately makes this impossible (in the former
case no state along ρ can be divergent, in the latter case visiting a divergent state is not
a problem).

We can now show that weak bisimilarity indeed preserves the fair reach-traces of an
IOA.

Theorem 15. Given two weakly bisimilar IOA P1 and P2 we have that, for any fair
reach-trace (w, x) of P1 there exists a fair reach-trace (w, y) of P2 such that x = y = ⊥
or x =s y with respect to the disjoint union of P1 and P2.

Proof. Theorem 15 follows directly from Lemma 9 applied to the disjoint union of P1

and P2. Since x and y are fairly reachable, if they are not equal to ⊥, they must be
stable. Condition 4.8 and the fact that x ≈ y then gives us that x =s y.

Weak bisimulation allows us to find a smaller representation of an IOA by collapsing
sets of weakly bisimilar states into a single state.

Definition 41. For an IOA P with state space S and a state x ∈ S, we write [x]≈ for
the equivalence class with respect to weak bisimulation that contains x, i.e,

[x]≈ = {y ∈ S | x ≈ y}.

100

4.8. CONFLUENCE AND DETERMINISM

Definition 42. Given an IOA P = (S,A,RI , x̂), its quotient under weak bisimulation
is an IOA [P]≈ = (S̄, Ā, R̄I , ¯̂x) with Ā = (AI , AO, {τ}) where states and transitions are
defined inductively as follows for i ∈ N:

S̄0 ={[x̂]≈}

R̄I
i ={(C, a,C ′) | C∈ S̄i, C

′∈S/≈, a∈AI∪AO,∃x∈C, x′∈C ′ · x a−։x′} ∪

{(C, τ, C ′) | C∈ S̄i, C
′∈S/≈,∃x∈C, x′∈C ′ · x−։x′ ∧ C 6= C ′} ∪

{(C, τ, C) | C ∈ S̄i,∀x ∈ C·

(∄C ′′ ∈ S/≈, x′ ∈ C ′′, a ∈ AO
P · x a−։x′) ∧

(∄C ′′ ∈ S/≈, x′ ∈ C ′′ · x−։x′ ∧ C 6= C ′′) ∧

(∄x′ ∈ S · x−։x′ ∧ st(x′))}

S̄i+1 ={C ′ | C ′ ∈ (S/ ≈) \
⋃i

j=0 S̄j ,∃C ∈ S̄i · C
a−→C ′}.

We then have S̄ =
⋃∞

i=0 Si and R̄
I =

⋃∞
i=0 R̄

I
i . For the initial state we find that ¯̂x = [x̂]≈.

Note that we have S̄ ⊂ S/E.

We will give an in-depth explanation of the weak bisimulation quotient for I/O-IMCs
in Chapter 5. We will also see that the weak bisimulation quotient for I/O-IMCs can
be computed in polynomial time and space, and then the same goes for IOA, since an
IOA can be interpreted as an I/O-IMC.

4.8 Confluence and determinism

Whenever two transitions are enabled in an IOA, the choice between these two tran-
sitions is non-deterministic, i.e., we do not know which of the transitions will occur.
In the context of I/O-IMCs it will be crucial to know whether an IOA displays such
non-determinism or not (see Chapter 7).

4.8.1 Confluence

The notion of confluence was introduced by Milner in the context of CCS [35]. In this
section we adapt these notions to IOA. An IOA is weakly confluent if, whenever two
actions are enabled in a state of the IOA it does not matter in which order these two
actions are performed. We will not need to discuss strong confluence (see Milner [35])
in this thesis.

Definition 43 ([35]). An IOA P = (S,A,RI , x̂) is weakly confluent if, for all states
x1, x2, x3 ∈ S, distinct pairs of visible actions a, b ∈ AV , we have

x1−։x2, x1−։x3 implies ∃x4, x5 · x2−։x4, x3−։x5, x4 ≈ x5,
✞

✝

☎

✆4.9

x1
a−։x2, x1−։x3 implies ∃x4, x5 · x2−։x4, x3

a−։x5, x4 ≈ x5,
✞

✝

☎

✆4.10

x1
a−։x2, x1

b−։x3 implies ∃x4, x5 · x2
b−։x4, x3

a−։x5, x4 ≈ x5,
✞

✝

☎

✆4.11

x1
a−։x2, x1

a−։x3 implies ∃x4, x5 · x2−։x4, x3−։x5, x4 ≈ x5,
✞

✝

☎

✆4.12

101

CHAPTER 4. INPUT/OUTPUT AUTOMATA

where x4 and x5 are of course states in S.

Note that the above definition uses single actions a and b, whereas Milner uses action
sequences. However, it is easy to see that the two definitions are equivalent. We now
note a few important properties of weak confluence, which have been shown by Milner.

Theorem 16 ([35]). For a weakly confluent IOA P1 = (S,A,RI , x̂) we have that

1. for any weakly confluent IOA P2 that is compatible with P1, P1‖P2 is weakly con-
fluent3,

2. for any subset of output actions B ⊂ AO, P1\B is weakly confluent,

3. for any pair of states x, y ∈ S, x−։y implies x ≈ y, and

4. for any IOA P2 we have P1 ≈ P2 implies that P2 is also weakly confluent.

It will be useful to consider the confluence properties for different pairs of actions in
isolation.

Definition 44. Given an IOA P = (S,A,RI , x̂) and a distinct pair of visible actions
a, b ∈ AV , we say that P is weakly confluent with respect to a and b if, for all states
x1, x2, x3 ∈ S, we have that the property

✞

✝

☎

✆4.11 holds.

4.8.2 Determinism

In the context of I/O-IMCs it will be extremely important to know whether a model is
deterministic4 or not. We say that a closed IOA is weakly deterministic if it has only
one non-divergent reach-trace, but since this is difficult to verify we use the following
definition which is similar to the definition of weak confluence.

Definition 45. A closed IOA P = (S,A,RI , x̂) is weakly deterministic if for any states
x1, x2, x3 ∈ S, and any pair of output actions a, b ∈ AO we have

x1−։x2 implies x1 ≈ x2, and
✞

✝

☎

✆4.13

x1
a−։x2, x1

b−։x3 implies a = b, x2 ≈ x3.
✞

✝

☎

✆4.14

For a fixed pair of output actions a, b ∈ AO, we say the closed IOA P is weakly deter-
ministic with respect to a and b if

✞

✝

☎

✆4.14 holds.

Proposition 9. A closed, weakly deterministic IOA P with no divergent states has
exactly one non-divergent fair reach-trace.

3The parallel composition operator for IOA is less general than the one introduce by Milner for LTSs,
which is why we need not introduce the notion of restricted composition (see [35, pp. 244]). In a sense
IOA parallel composition is restricted by definition.

4Note that the term “determinism” has been used in different ways in different contexts. It is not to
be confused with determinacy as used by Milner [35]

102

4.8. CONFLUENCE AND DETERMINISM

Proof. This follows from the fact that weak bisimulation preserves fair reach-traces and
the fact that weak determinism does not allow choices between different actions or
choices between states that are not weakly bisimilar.

Note that weakly deterministic IOA may have multiple non-divergent fair reach-
traces. This is caused by the inherently non-deterministic nature of time divergence.
In the following, we will assume that the closed, weakly deterministic IOA are never
composed in parallel with divergent IOA. Under this assumption it makes sense to only
consider the non-divergent fair reach-traces of such an IOA. As we might expect, the
weak bisimulation quotient of a weakly deterministic IOA has a very simple form.

Proposition 10. Given a closed, weakly deterministic IOA P = (S,A,RI , x̂), we find
for its quotient [P]≈ that for any three equivalence classes D1,D2,D3 ∈ S/ ≈ and any
two output actions a, b ∈ AO we have

D1−։D2 implies D1 = D2, and
✞

✝

☎

✆4.15

D1
a−→D2,D1

b−→D3 implies a = b,D2 = D3.
✞

✝

☎

✆4.16

Proof. Simple.

The weak bisimulation quotient of a weakly deterministic IOA P is then simply a
single chain of states and transitions which, if the quotient is finite, ends either in an
absorbing state with no outgoing transitions or a divergent state.

The connection between weak confluence and weak determinism is as follows. Hiding
a set of pairwise weakly confluent actions “preserves” weak determinism.

Proposition 11. Given a closed IOA P = (S,A,RI , x̂) and a set of output actions
B ⊂ AO, we have that the IOA P \B is weakly deterministic if

1. for any two states x1, x2 ∈ S we have that x1−։x2 implies x1 ≈ x2,

2. P is weakly confluent with respect to all pairs of actions a, b ∈ B, and

3. P is weakly deterministic with respect to all remaining pairs of actions a, b ∈
AO \B.

Proof. Simple.

For a complete IOA, we need only to check the first two conditions of the above
proposition. We can then make use of the fact that weak confluence is compositional.

Proposition 12. Given n ∈ N pairwise compatible, weakly confluent, IOA P1, . . . , Pn

and a set of actions B we have that if (P1‖ . . . ‖Pn)\B is complete, then it is weakly
deterministic.

Proof. Easy.

103

CHAPTER 4. INPUT/OUTPUT AUTOMATA

Proposition 12 provides a sound way of finding out if a system of IOA is determin-
istic in polynomial time. However, this method is not complete. That is, we can easily
construct IOA P1, . . . , Pn which are not all weakly confluent, but whose parallel com-
position is weakly deterministic. In Chapter 8 we will try, in the setting of I/O-IMCs,
to improve on Proposition 12, by developing another sound method of finding out if
a system of I/O-IMCs is deterministic with the same time complexity, which is more
complete, i.e., has less false negatives. We will see in Chapter 9 why it is so important
to find out whether an I/O-IMC is deterministic or not.

4.9 Discussion

This section reviews the material developed in this chapter, and places it in the context
of the original and mainstream work on IOA.

4.9.1 Particularities

We have presented the basics of input/output automata, together with meaningful com-
position operators, equivalence notions, and a notion of confluence that will become
particularly relevant in Chapter 8.

Since this chapter has taken strong inspiration from the original IOA work by Lynch
and Tuttle [33], the results achieved are not very surprising. Some deviations were
needed in order to prepare for the subsequent combination with the Markov chain theory
developed in Chapter 3.

First of all we are imposing stronger fairness assumptions. The fairness assumptions
of Lynch and Tuttle focus on a scenario where an IOA represents a reactive process with
several tasks where one task should not indefinitely block progress of the others. We
deviate from that treatment on the one hand to accommodate the use of weak bisimu-
lation as an equivalence relation, and on the other hand to deal with time divergence,
a phenomenon relating to the occurrence of infinitely many events in a finite amount
of time. Concretely, we extend fairness to individual transitions (rather than to sets of
actions, i.e., tasks) and secondly we consider not only the trace of actions that occur
along a path in the IOA, but also the final state of that path. Finally, we represent
infinite traces using the distinguished state ⊥. A useful consequence of our adapta-
tions is that the fair executions of a closed IOA (closed meaning that the IOA cannot
be influenced by its environment) are all finite. Either they reach a state in which no
further interactions are possible, or they reach the distinguished state ⊥ denoting time
divergence.

Secondly, we interpret the visible behaviour of an IOA not simply as a series of visible
actions (the trace) describing the types of events that occur during a fair execution, but
in addition we record the final state of the fair execution. This final state is of critical
importance when we combine interactive behaviour and Markovian behaviour. This led
us to the notion of reach-trace equivalence. As computing reach-trace equivalences is
impractical, we have also introduced the finer equivalence of weak bisimulation, which
we will lift to I/O-IMCs in Chapter 5.

104

4.9. DISCUSSION

The importance of reach-traces stems from the fact that, in Chapter 6, we will
use IOA together with CTMCs in a combined model, where sequences of interactions
(modelled as IOA) alternate with Markovian phases (modelled as CTMCs), and where
the final state of an interactive phase will be the starting point for the subsequent
Markovian phase.

4.9.2 Comparison to process calculi

In IOA, interaction between components is modelled through asymmetric synchronisa-
tion, in the sense that every action (i.e., every type of event) is controlled by exactly
one IOA, which controls when such events occur. The action is an output or internal
action for this IOA. For each action there may be zero or more passive component that
react to events associated with that action. The action is an input action for these
IOA. This asymmetry is enforced by the compatibility requirements for composing IOA
(see Definition 30). In contrast, for process calculi such as Milner’s CCS and Hoare’s
CSP more than one component may control an action and events associated with that
action can only occur if all components enable that action [35, 27]. In these process
calculi there is no distinction between input and output actions. One very important
difference between IOA and CCS/CSP is that for the latter trace equivalence is not a
congruence. For more details on the difference between IOA and process calculi we refer
to Vaandrager [49].

Another interesting related model is the input/output labelled transition system
(IOLTS) formalism as introduced by Tretmans [48]. IOLTSs are very similar to IOA,
except that the requirement of input-enabledness is more relaxed than for IOA. To be
precise, only weak input-enabledness is required. That is, for every state x and input
action a of an IOLTS, it is required that there exists a state y such that x a−։y (recall
that the input-enabledness condition for IOA requires x a−→y). This means x may not
have an outgoing a-transition, but x can reach, using internal transitions a state x′ that
has an outgoing a-transition. It is not clear what the implications of this relaxation are
on the results of this chapter. We do note that IOLTSs are mainly used to facilitate
model-based testing in which internal transitions are used to model the freedom of design
in a specification [48]. In contrast, when we use I/O-IMCs (see Chapter 5) to model
dependable systems in Chapter 9, we use internal transitions only to abstract away
from internal behaviour in parallel compositions of I/O-IMCs. In fact, none of the
elementary I/O-IMCs used in Chapter 9 have any internal transitions, so the relaxation
of the input-enabledness condition is meaningless for these models. However, there may
be other applications of I/O-IMCs where it will be useful to considering relaxing the
input-enabledness condition as for IOLTSs.

4.9.3 IOA as a graph-based model

In this chapter we have seen that IOA can be represented as a graph with actions
on its edges. We have chosen as semantics for IOA the set of fair reach-traces of
the IOA. IOA come equipped with a natural notion of composition. In terms of the

105

CHAPTER 4. INPUT/OUTPUT AUTOMATA

graph-representation of IOA, composition is achieved by synchronising transitions with
identical actions and interleaving transitions with different actions. The semantics of
an IOA composition can be obtained by combining compatible reach-traces, where two
reach-traces are compatible if they agree on the order of their shared actions. Crucially,
this semantics is modular (see Theorems 11 and 12), in the sense that the relationship
between syntax and semantics is preserved when composing IOA. Next to CTMCs (see
Chapter 3), IOA form the second ingredient of I/O-IMCs both in terms of their (graph-
based) syntax (see Chapter 5) and in the context of their semantics (see Chapter 6).
Crucially, we will use the modularity results for IOA, to show that the semantics of
I/O-IMCs is modular as well.

106

5
Input/Output Interactive Markov Chains

In this chapter we take up the foundations laid in the preceding two chapters and
introduce input/output interactive Markov chains (I/O-IMCs). Intuitively, an I/O-
IMC describes a system which may change its state either due to interaction with its
environment–in the same way as IOA–or stochastically after a certain delay–in the same
way as Markov chains. We will focus our attention mainly on the composition operators
on I/O-IMCs, together with their impact on properties we are interested in. We will
introduce means to construct composite I/O-IMCs by letting smaller I/O-IMCs run
in parallel, just as we have done for IOA. We combine the notions of bisimulation for
Markov chains and weak bisimulation for IOA to form a natural equivalence relation on
I/O-IMCs, and lift several concepts from the IOA setting to I/O-IMCs.

Contribution. The chapter develops the syntactic foundations of I/O-IMCs. Most of
this chapter is rooted in previous joint work [4, 5]. However, we here explore the connec-
tion between I/O-IMCs and IOA by decomposing the former into its IOA constituents,
This allows us to lift many of the concepts introduced for IOA, such as fair reach-traces,
confluence, and determinism, directly to I/O-IMC. Finally, we also introduce the notion
of stochastic reachability which will play a crucial role in the remainder of this thesis as
the primary notion of reachability for I/O-IMCs.

5.1 I/O-IMC ingredients

This section presents the basic definition of an I/O-IMC and discusses its building blocks.
Formally, an I/O-IMC is described as follows.

Definition 46. An I/O-IMC P is a five-tuple 〈S,A,RI , RM , α〉, where

• The state space S is a countable set of states,

107

CHAPTER 5. I/O-IMCS

• The set of actions A is a finite set, disjoint from S, which is partitioned into the
set of input actions AI , output actions AO, and internal (hidden) actions AH ,

• The interactive transition relation RI , which is a subset of S ×A× S,

• The Markovian transition relation RM , which is a subset of S × R≥0 × S, and

• The initial distribution α which is a distribution over S.

As for IOA, we require that the I/O-IMC is input-enabled; every state must have, for
every input action, at least one outgoing transition labelled with that input action. That
is,

∀x ∈ S, a ∈ AI · ∃y ∈ S · (x, a, y) ∈ RI .
✞

✝

☎

✆5.1

We will use x, y, z as well as the indexed versions xi, yi, zi, i ∈ N to indicate states in
S. We will use a, b, c as well as their indexed versions to indicate actions. We will use
λ, µ, κ, ν as well as their indexed versions to indicate rates, taken from R≥0, in Markovian
transitions. Whenever it is clear from context which I/O-IMC is meant, we will use the
predicate x a−→y to denote the existence of a transition (x, a, y) in RI and the predicate
x λ−֒→ y to denote the existence of a transition (x, λ, y) in RM .

We assume that the Markovian transition relation contains no parallel edges. This
means that for all x, y ∈ S we require that there is at most one transition (x, ·, y) in
RM . Note that any I/O-IMC with parallel Markovian edges can easily be represented
without parallel Markovian edges by replacing the parallel edges with a single Markovian
transition whose rate is the sum of the rates of the parallel transitions it replaces.

Example 17. As an example, Figure 5.1 shows an I/O-IMC model of a generic re-
pairable component. It might be a processor in a computer system, a pump in a reactor
cooling system, or a tire on a car. We only model the failure behavior of the compo-
nent, i.e., how the component may break down and how it may subsequently be repaired.
Ellipses denote the possible states of the components. Single arrows denote Markovian
transitions, double arrows interactive transitions. The actions of interactive transitions
are embellished with a question-mark when the action is an input action, an exclamation
mark when it is an output action and a semi-colon if the action is an internal action.
The small box labeled one shows that the initial distribution assigns probability one to
state “up”. Unless explicitly noted we will assume that each action in an I/O-IMC
appears at least on one transition. Under this assumption the Figure 5.1 completely
specifies the I/O-IMC. To be precise, we have

S = {up, failing,down, recovering},

AI = {repair}, AO = {fail, recover}, AH = ∅

RI = {(up, repair,up), (failing, repair,up), (failing, fail,down),

(down, repair, recovering), (recovering, repair, recovering),

(recovering, recover,up)}

RM = {(up, λ, failing)}

α = {(up, 1), (failing, 0), (down, 0), (recovering,0)}.

108

5.1. I/O-IMC INGREDIENTS

1

up

failing

down

recovering

λ

fail!repair?

recover!

repair?

repair?

repair?

Figure 5.1: Example of an I/O-IMC.

In the remainder of this section we will consider an I/O-IMC P = 〈S,A,RI , RM , α〉
with input actions AI , output actions AO, and internal actions AH .

5.1.1 State space

The state space of an I/O-IMC is discrete and represents the different states of a com-
ponent. For instance, the I/O-IMC from Example 17 has states operational, failing,
down, and recovering. The state space of an I/O-IMC may also be infinite. Consider,
for instance, an I/O-IMC that models an unbounded queue. The states of this I/O-IMC
would then count the number of objects in the queue. We would then have S = N. We
do not consider uncountably large state spaces.

In contrast to IMCs (see [24]) and other process algebras, we do not use states to
denote the dynamics of the system as well as its state. The state space S of an I/O-IMC is
a subset of our set of all states Sall (cf. Section 2.1), which comes equipped with a notion
of composition which we will use in Section 5.3 when we discuss parallel composition
for I/O-IMCs. In general, the state spaces of different I/O-IMCs may overlap.

5.1.2 Actions

Similar to IOA, I/O-IMCs are event-based models. The actions of an I/O-IMC give
names to these events. For the I/O-IMC in Example 17 we have actions fail, repair, and
recover. It is important to note that the events in an I/O-IMC occur instantaneously.
Also, during the lifetime of an I/O-IMCmultiple events with the same name may happen.
Since we have input, output, and internal actions, we also have input, output and internal
events. Input actions describe events that are not controlled by the I/O-IMC itself,
but do influence it. Output actions on the other hand are controlled by the I/O-IMC
itself and they may influence other I/O-IMCs. We will see how different I/O-IMCs can
influence each other via input and output actions when we discuss parallel composition
in Section 5.3. Finally, internal or hidden actions are controlled by the I/O-IMC itself,

109

CHAPTER 5. I/O-IMCS

but they cannot influence other I/O-IMCs or be observed. As for IOA, we say that
input or output actions are visible and output or internal actions are locally-controlled.

Definition 47. An action a ∈ A is called visible for P if it is either an input action or
an output action of P . We then define the set of visible actions by

AV
P = AI ∪AO.

An action a ∈ A is called locally-controlled by P if its either an output or internal
action of P . We then define the set of locally-controlled actions by

AC
P = AO ∪AH .

We will leave out the subscript whenever it is clear from context which I/O-IMC is
meant.

5.1.3 Interactive transition relation

We will use the interactive transition relation to describe the possible interactions be-
tween components. For a state x ∈ S the interactions that may occur when the I/O-IMC
occupies x are described by the IOA rooted at x. This is simply the IOA obtained by
ignoring the Markovian transitions in the I/O-IMC and choosing the initial state to be
x.

Definition 48. Given an I/O-IMC P = 〈S,A,RI , RM , α〉 and a state x ∈ S, the
IOA rooted at x is given by IOAP (x) = 〈S,A,RI , x〉. For the sake of simplicity, we
sometimes omit states and transitions of IOAP (x) that are unreachable. Whenever it is
clear from context which I/O-IMC is meant, the subscript is omitted.

The possible interactions, that may happen when the I/O-IMC occupies state x ∈ S,
are now exactly the fair reach-traces of IOA(x) as defined in Section 4.4. That is, given
a state x ∈ S we find a set of pairs (w, y) such that the I/O-IMC can reach y through
a sequence of interactions labelled with the actions w. We also find pairs (w,⊥) that
denote that, after a sequence of interactions labelled with the actions w, the I/O-IMC
may experience time divergence.

Example 18. Consider the state failing of the repairable component I/O-IMC from
Example 17. By looking at the IOA rooted at the state failing we see that the following
fair reach-traces are possible in this state (among others):

(〈repair 〉,up)

(〈repair , repair 〉,up)

(〈fail 〉,down)

(〈fail , repair , recover 〉,up).

Of course, divergent reach-traces, such as

(〈fail , repair 〉,⊥)

are also possible.

110

5.2. CLASSIFICATION OF STATES

5.1.4 Markovian transition relation

The Markovian transition relation of an I/O-IMC describes changes in state that may
occur spontaneously after the I/O-IMC occupies a state for some time. The label of a
Markovian transition is called the transition rate. As for CTMCs we can describe the
infinitesimal transition probabilities of an I/O-IMC using a matrix.

Definition 49. The Q-matrix of I/O-IMC P is the matrix Q : R
|S|×|S|
≥0 with entries

{qx,y | x, y ∈ S} with

qx,y =

λ, if x 6= y, x λ−֒→ y,
0, if x 6= y,∄λ · x λ−֒→ y,
−
∑

y∈S,y 6=x qx,y, if x = y.

✞

✝

☎

✆5.2

Recall that for a pair of states x, y there is at most one Markovian transition from x to
y. For convenience we will use the notation qx = −qx,x.

Intuitively, we have that a Markovian transition x λ−֒→ y from state x to state y with
rate λ, means that qx,y = λ. Just like for Markov chains we will see (in Chapter 6) that
the probability that the I/O-IMC will “jump” from state x to state y in a time-interval
of length h is λh + o(h). As for Markov chains, the infinitesimal generator matrix of
an I/O-IMC is used to compute its finite jump probabilities. However, unlike a Markov
chain, the finite jump probabilities are not completely determined by Q. We will go into
more detail in Chapter 6.

For the I/O-IMC from Example 17 the intuition is that it will move from state up
to state failing after a delay that is exponentially distributed with rate λ, given that
no repair events occur1. In Chapter 6 we will give a complete semantics to I/O-IMCs
from which we can derive these delay distributions.

5.1.5 Initial distribution

The initial distribution of an I/O-IMC dictates which state the I/O-IMC occupies at
time-point zero. For our running example we have that the I/O-IMC starts in state up
with probability one.

5.2 Classification of states

We are now in the position to lift the notions of stability and divergence (as introduced
for IOA in Section 4.2) to I/O-IMCs.

Definition 50. A state x ∈ S of P is

• stable, if it has no outgoing interactive transitions, and

1Due to the memoryless nature of the exponential distribution and the fact that any repair event
takes the I/O-IMC back to state up, the statement actually still holds if finitely many repair events
happen.

111

CHAPTER 5. I/O-IMCS

• divergent, if there exists no interactive path from x to any stable state.

Note that a state x is stable respectively divergent if and only if it is stable respec-
tively divergent in IOA(x).

For our running example we have that states up and down are stable, states failing
and recovering are unstable and no states are divergent.

5.3 Parallel composition

We now consider the possibility of letting two or more I/O-IMCs “execute in parallel”.
Intuitively, the Markovian behaviour of these two I/O-IMCs is independent and Marko-
vian transitions are thus interleaved, while the interactive transitions are synchronized
via the shared alphabet of the two I/O-IMCs. As for IOA, we only consider the parallel
composition of compatible I/O-IMCs.

Definition 51. Given the following two I/O-IMCs P1 = 〈S1, A1, R
I
1, R

M
1 , α1〉 and P2 =

〈S2, A2, R
I
2, R

M
2 , α2〉, we say P1 and P2 are compatible if

1. they do not share any output actions,

AO
1 ∩AO

2 = ∅,

and

2. their internal actions are unique,

AH
1 ∩ (AI

2 ∪A
O
2 ∪AH

2) = ∅

and

AH
2 ∩ (AI

1 ∪A
O
1 ∪AH

1) = ∅.

A set of I/O-IMCs is compatible if the I/O-IMCs in the set are pairwise compatible.

The parallel composition is found by synchronizing transitions labelled by actions
from the shared alphabet and interleaving all other transitions (including Markovian
transitions).

Definition 52. The parallel composition of two compatible I/O-IMCs P1 and P2 is the
I/O-IMC P1‖P2 = 〈S1‖S2, A,R

I , RM , α〉, where

• the state space is

S1‖S2 = {x‖y | x ∈ S1, y ∈ S2},

• the actions are given by

AO = AO
1 ∪AO

2 , AI = AI
1 ∪A

I
2 \ A

O, AH = AH
1 ∪AH

2 ,

112

5.3. PARALLEL COMPOSITION

P
1

up

failing

down

recovering

λ

fail!repair?

recover!

repair?

repair?

repair?

P̄
1

idle

repairing

done

fail?

µ

repair!
fail?

fail?

Figure 5.2: Example of two compatible I/O-IMCs.

• the interactive transition relation is found by synchronising on shared actions

RI ={(x1‖x2, a, y1‖y2) | a∈A1∩A2, (x1, a, y1)∈R
I
1, (x2, a, y2)∈R

I
2}

∪ {(x1‖x2, a, y1‖x2) | a ∈ A1−A2, (x1, a, y1) ∈ RI
1}

∪ {(x1‖x2, a, x1‖y2) | a ∈ A2−A1, (x2, a, y2) ∈ RI
2}, and

• the Markovian transition relation is found by interleaving

RM ={(x1‖x2, λ, y1‖x2) | (x1, λ, y1) ∈ RM
1 }

∪ {(x1‖x2, λ, x1‖y2) | (x2, λ, y2) ∈ RM
2 }, and

• the initial distribution is given by, for all x‖y ∈ S,

α(x‖y) = α1(x)α2(y).

Example 19. As an example we consider again the repairable component from Exam-
ple 17, which we will compose in parallel with an I/O-IMC model of a repairman. The
two I/O-IMCs are shown in Figure 5.2. The repairman is idle until the component
fails. It then starts repairing and, after an exponentially distributed delay with rate µ,
the component is repaired. It is easy to confirm that the I/O-IMCs P and P̄ , depicting
the repairable component and the repairman respectively, are indeed compatible. Their
parallel composition P̃ is shown in Figure 5.3

In the remainder of this section we will consider two compatible I/O-IMCs P =
〈S,A,RI , RM , α〉 and P̄ = 〈S̄, Ā, R̄I , R̄M , ᾱ〉 and their parallel composition P̃ .

Parallel composition for I/O-IMCs is closely related to parallel composition for IOA
and Markov chains. As a first result we find that the IOA rooted at a state x‖x̄ of P̃ is
exactly the parallel composition of the IOA rooted at x and x̄.

113

CHAPTER 5. I/O-IMCS

P̃
1

up‖idle

failing‖idle

down‖repairingdown‖done

recovering‖idle

λ

fail!

µ

repair!

recover!

Figure 5.3: Example of a composed I/O-IMC.

Proposition 13. Given two states x, x̄ in S respectively S̄ we have that the IOA rooted at
x and x̄ are also compatible. Moreover the IOA rooted at x‖x̄ is the parallel composition
of the IOA rooted at x respectively x̄, i.e.,

IOAP̃ (x‖x̄) = IOAP (x)‖IOAP̄ (x̄).

Proof. The proposition follows directly from the respective definitions.

An immediate result of Proposition 13 is that I/O-IMCs share the modularity of
stability and divergence with IOA.

Corollary 10. Given two states x, x̄ in S respectively S̄ we have that

• x‖x̄ is stable in P̃ if and only if both x and x̄ are stable in P respectively P̄ and

• x‖x̄ is non-divergent if both x and x̄ are non-divergent. Note that the reverse may
not hold.

Similarly, the infinitesimal generator of P̃ can be found by taking the cross-product
of the infinitesimal generator functions of P and P̄ .

Proposition 14. For states x, y ∈ S⊥ and states x̄, ȳ ∈ S̄⊥ we have

q̃x‖x̄,y‖ȳ =

qx,y + q̄x̄,ȳ, if x = y, x̄ = ȳ,
qx,y, if x 6= y, x̄ = ȳ,
q̄x̄,ȳ, if x = y, x̄ 6= ȳ,
0, if x 6= y, x̄ 6= ȳ.

✞

✝

☎

✆5.3

Proof. The proposition follows directly from the definitions of parallel composition and
Q-matrix of I/O-IMCs.

114

5.4. HIDING

5.4 Hiding

As for IOA, we can abstract from actions of an I/O-IMCs by hiding them or in other
words, by making them internal. When an action is hidden, it can no longer be observed
by other I/O-IMCs. As for IOA, we only allow output actions to be hidden.

Definition 53. Given an I/O-IMC P = 〈S,A,RI , RM , α〉 and a set of output actions
B ⊆ AO, hiding the actions B in P results in the I/O-IMC P \B = 〈S, Ā,RI , RM , α〉,
where

ĀI = AI , ĀO = AO \B, and ĀH = AH ∪B.

Similar to IOA (see Section 4.6), hiding actions does not affect whether states are
stable or divergent and does not affect the interactive reachability properties of the
I/O-IMC.

5.5 Equivalences

In this section we will discuss several equivalences for I/O-IMCs. We recall that the state
equivalence relation =s tells us which states are indistinguishable (see Section 2.1). Our
goal will be to find an equivalence which

1. is a congruence with respect to parallel composition and hiding,

2. preserves the finite jump probabilities (see Chapter 3) of I/O-IMCs with respect
to the state equivalence relation =s, and

3. can be computed efficiently.

We will discuss the first point in detail in this section. For the second point we will show
several important results, namely that reach-traces and cumulative transition rates are
preserved by our equivalences. However, we will postpone the question, whether our
equivalences preserve the finite jump probabilities of I/O-IMCs to Chapter 6.

Throughout this section we have left out proofs which are similar to those for
IMCs [23] or have been presented in previous work [4, 6, 7].

5.5.1 Isomorphism

Isomorphism is a very strong equivalence which equates two I/O-IMCs only if we can
find a one-to-one correspondence between their states that preserves all transitions, the
initial distribution and the equivalence relation =s.

Definition 54. Given the following two I/O-IMCs P = (S,A,RI , RM , α) and P̄ =
(S̄, Ā, R̄I , R̄M , ᾱ) with disjoint state spaces, and identical input and output actions (AI =
ĀI and AO = ĀO), a bijection f from S to S̄ is an isomorphism if and only if for all
states x ∈ S we have:

• α(x) = ᾱ(f(x)),

115

CHAPTER 5. I/O-IMCS

• x a−→x′ if and only if f(x) a−→f(x′),

• x λ−֒→ x′ if and only if f(x) λ−֒→ f(x′), and

• st(x) implies x =s f(x).

We say that I/O-IMCs P and P̄ are isomorphic, written P ≡ P̄ , if there is an isomor-
phism from the states of P to the states of P̄ .

The first three properties of isomorphism for I/O-IMCs are as can be expected. For
the fourth property we see that only stable isomorphic states need to be equivalent
with respect to =s. This technicality will be necessary later on. The intuition is that
the identity (w.r.t. =s) of unstable states does not matter, since the probability to
occupy an unstable state is in any case zero for any time-point before explosion (see
Proposition 19). Isomorphism is interesting theoretically as it is the strongest useful
equivalence on graph models. The practical usefulness of isomorphism is doubtful, as
determining whether two graphs are isomorphic is in NP. Furthermore, isomorphism is
clearly not a congruence with respect to parallel composition and hiding.

5.5.2 Strong Bisimulation

The other two equivalence relations we consider are bisimulations. Both of these bisim-
ulations will first be introduced as state-wise equivalences defined on the states of a
single I/O-IMC. We will later see how these state-wise equivalences can be lifted to
equate I/O-IMCs themselves.

We first consider strong bisimulation. We will see that this equivalence is weaker
than isomorphism. Strong bisimulation considers cumulated Markovian rates and it uses
the maximal progress assumption to abstract away from Markovian transitions that are
taken with probability zero and the identity of states (according to =s) that are occupied
with probability zero at any time-point (i.e., unstable states as per Proposition 19).

Before defining strong bisimulation, we need to introduce one more notation. Given
an I/O-IMC P = (S,A,RI , RM , α), a state x ∈ S, and a set of states C ⊆ S we denote
the aggregate Markovian transition from x into C as x λ−֒→C where

λ =
∑

{µ | y ∈ C, x µ−֒→ y}.

Definition 55 (Strong bisimulation for states). Given I/O-IMC P = (S,A,RI , RM , α),
an equivalence relation E on S is a strong bisimulation on P if and only if for all pairs
of states x1, x2 ∈ S such that x1Ex2 we have:

1. All observable interactive transitions emerging from x1 can be simulated by x2:

∀a ∈ AO ∪AI · x1
a−→x′1 =⇒ x2

a−→x′2 ∧ x
′
1Ex

′
2.

2. All internal interactive transitions emerging from x1 can be simulated by x2, pos-
sibly with a different internal action:

∀a ∈ AH · x1
a−→x′1 =⇒ ∃b ∈ AH · x2

b−→x′2 ∧ x
′
1Ex

′
2.

116

5.5. EQUIVALENCES

3. If x1 is stable, then all Markovian transitions emerging from x1 can be simulated
by x2:

st(x1) =⇒ (∀C ∈ S/E · x1
λ−֒→C =⇒ x2

λ−֒→C)

4. If x1 is stable, then x2 must be equivalent to x1 according to =s

st(x1) =⇒ x1 =s x2.

We say that two states x1 and x2 of P are strongly bisimilar, written x1 ∼P x2, if there
exists a strong bisimulation E on P such that x1Ex2. We leave out the subscript when
clear from context.

Is is straightforward to show that for two strongly bisimilar states x1 and x2 we have
that x1 is stable if and only if x2 is stable.

Theorem 17. Given an I/O-IMC P , strong bisimilarity on P is the largest strong
bisimulation on P .

Proof. Standard.

Definition 56. Given an I/O-IMC P = (S,A,RI , RM , α), its quotient under strong
bisimulation is an I/O-IMC [P]∼ = (S̄, Ā, R̄I , R̄M , ᾱ) with Ā = (AI , AO, {τ}) where
states and transitions are defined inductively as follows for i ∈ N:

S̄0 ={C | C ∈ S/ ∼, α(C) > 0}

R̄I
i ={(C, a,C ′) | C ∈ S̄i, C

′ ∈ S/ ∼, a ∈ AV ,∃x ∈ C, x′ ∈ C ′ · x a−→x′} ∪

{(C, τ, C ′) | C ∈ S̄i, C
′ ∈ S/ ∼, b ∈ AH ,∃x ∈ C, x′ ∈ C ′ · x b−→x′}

R̄M
i ={(C, λ,C ′) | C ∈ S̄i, C

′ ∈ S/ ∼,∃x ∈ C · st(x) ∧ x λ−֒→C ′}

S̄i+1 ={C ′ | C ′ ∈ (S/ ∼) \
⋃i

j=0 S̄j,

∃C ∈ S̄i · C
a−→C ′ ∨ (st(C) ∧ C λ−֒→C ′)}.

We then have S̄ =
⋃∞

i=0 S̄i, R̄
I =

⋃∞
i=0 R̄

I
i , and R̄M =

⋃∞
i=0 R̄

M
i . For the initial

distribution we find for all equivalence classes C ∈ S̄, that: ᾱ(C) =
∑

x∈C α(x). Note
that we have S̄ ⊂ S/ ∼.

The quotient under bisimulation is defined inductively to avoid the inclusion of
unreachable equivalence classes. We will see (cq. Theorem 22) that this means that
strong bisimulation quotients are unique up to isomorphism. If S is finite then the
inductive definition of [P]∼ must terminate as the set of equivalence classes S/ ∼ is
finite.

We can lift the notion of strong bisimulation from states to I/O-IMCs by considering
the disjoint union of two I/O-IMCs and showing that there exists a strong bisimulation
on this union which relates the initial distributions of the two I/O-IMCs.

117

CHAPTER 5. I/O-IMCS

Definition 57. Given two I/O-IMCs P = (S,A,RI , RM , α) and P̄ = (S̄, Ā, R̄I , R̄M , ᾱ)
with disjoint state spaces, identical input and output actions, the disjoint union of P
and P̄ , written P ∪ P̄ is the I/O-IMC (S̃, Ã, R̃I , R̃M , α̃) , where we have S̃ = S ∪ S̄,
ÃO = AO = ĀO, ÃI = AI = ĀI , ÃH = AH ∪ ĀH , R̃I = RI ∪ R̄I , R̃M = RM ∪ R̄M , and
for all states x ∈ S̃

α̃(x) =

{
1/2 · α(x) , if x ∈ S
1/2 · ᾱ(x) , if x ∈ S̄.

The disjoint union of two I/O-IMCs can be interpreted as the process that uniformly
at random picks one of the I/O-IMCs and then behaves as this I/O-IMC. In practice,
we will only use the union of two I/O-IMCs to lift the two bisimulations to I/O-IMCs.
However, we first show that there is a close connection between strong bisimulations on
the union of two I/O-IMCs and strong bisimulations on the I/O-IMCs themselves.

Theorem 18. Given two I/O-IMCs P and P̄ with disjoint state spaces, and identical
input and output actions, two states x, y ∈ S are strongly bisimilar in P if and only if
they are strongly bisimilar in P ∪ P̄ :

x ∼P y ⇔ x ∼P∪P̄ y.

Proof. We first prove the implication in the right direction. Since x ∼P y we must find
a strong bisimulation E1 for P such that xE1y. We define the relation E2 on S ∪ S̄ as
follows:

E2 = E1 ∪ {(x′, x′) | x′ ∈ S̄}.

It can be easily shown that E2 is a strong bisimulation on P ∪ P̄ and then we have
x ∼P∪P̄ y.

We now prove the implication in the left direction. Since x ∼P∪P̄ y we must find
a strong bisimulation E2 for P ∪ P̄ such that xE2y. We define the relation E1 on S as
follows:

E1 = {(x′, y′) | x′, y′ ∈ S ∧ x′E2y
′}.

It can be easily shown that E1 is a strong bisimulation for P and then we have x ∼P y.

Theorem 18 has an important consequence for the strong-bisimilarity equivalence
classes of I/O-IMCs and their unions. For two I/O-IMCs P and P̄ with identical visible
actions we have that a strong bisimilarity equivalence class C of their union P ∪ P̄
consists of exactly one strong bisimilarity equivalence class CP of P and one equivalence
class CP̄ of P̄ , i.e., C = CP ∪ CP̄ .

We now lift strong bisimulation to I/O-IMCs.

Definition 58 (Strong bisimulation for I/O-IMCs). Given two I/O-IMCs P and P̄ with
disjoint state spaces and identical visible actions, P is strongly bisimilar to P̄ , written
P ∼ P̄ , if there exists a strong bisimulation E on their union P ∪ P̄ , such that for all
equivalence classes C of E we have:

α(C ∩ S) = α(C ∩ S̄).

118

5.5. EQUIVALENCES

Two I/O-IMCs P and P̄ with non-disjoint state spaces S and S̄ and identical visible
actions are strongly bisimilar if we can find disjoint I/O-IMCs P ′ and P̄ ′ such that
P ≡ P ′ and P̄ ≡ P̄ ′ and P ′ and P̄ ′ are strongly bisimilar.

In the following we assume that whenever we consider two I/O-IMCs their state
spaces are disjoint. The following results also hold for I/O-IMCs whose state spaces are
not disjoint if we consider isomorphic I/O-IMCs with disjoint state spaces as above.

First we establish that strong bisimilarity is indeed an equivalence relation for I/O-
IMCs.

Theorem 19. Strong bisimilarity is an equivalence relation. For I/O-IMCs P , P̄ , and
P̃ with identical visible actions, we have that strong bisimilarity is

1. reflexive, i.e., P ∼ P ,

2. symmetric, i.e., P ∼ P̄ =⇒ P̄ ∼ P , and

3. transitive, i.e., P ∼ P̄ ∧ P̄ ∼ P̃ =⇒ P ∼ P̃ .

Proof. The proofs for reflexivity and symmetry of strong bisimilarity are trivial. We now
show that strong bisimilarity is also transitive. For simplicity, we assume I/O-IMCs P ,
P̄ , and P̃ have disjoint state spaces. Since we have P ∼ P̄ and P̄ ∼ P̃ we find strong
bisimulations E1 on P ∪ P̄ and E2 on P̄ ∪ P̃ . We now define the relation E3 on S ∪ S̃ as
follows:

E3 ={(x, z) | x ∈ S, z ∈ S̃,∃y ∈ S̄ · xE1yE2z} ∪

{(z, x) | x ∈ S, z ∈ S̃,∃y ∈ S̄ · xE1yE2z} ∪

{(x, x′) | x, x′ ∈ S, xE1x
′} ∪ {(z, z′) | z, z′ ∈ S̃, zE2z

′}.

It can now be easily shown that E3 is a strong bisimulation using the fact that E1 and
E2 are strong bisimulations.

As we might expect, strong bisimulation is a strictly weaker equivalence than iso-
morphism.

Theorem 20. Isomorphism implies strong bisimulation. For I/O-IMCs P and P̄ with
identical visible actions we have:

P ≡ P̄ =⇒ P ∼ P̄ ,

but the reverse does not hold.

Proof. Given that P ≡ P̄ we find a bijection f from S to S̄ that satisfies the conditions
of Definition 54. It is easy to show that the reflexive closure of {(x, f(x) | x ∈ S} is a
strong bisimulation on the union of P and P̄ . A counterexample for the implication P ∼
P̄ =⇒ P ≡ P̄ is also easy to construct, for instance by using the fact that a transitions
with a hidden action can be simulated (for strong bisimulation) by a transition with a
different hidden action.

119

CHAPTER 5. I/O-IMCS

An I/O-IMC is strongly bisimilar to its strong bisimulation quotient.

Theorem 21. Given an I/O-IMC P , we have P ∼ [P]∼.

Proof. Standard.

Finally, we wish to show that the strong bisimilarity of two I/O-IMCs is equivalent
to the isomorphism of their strong bisimulation quotients. To prove this we need the
following lemma that shows that for two strongly bisimilar I/O-IMCs strong bisimilarity
on their union relates their initial distributions. This lemma makes it easier to relate the
equivalence classes of the union of two strongly bisimilar I/O-IMCs to the equivalence
classes of the I/O-IMCs themselves.

Lemma 10. Given two I/O-IMCs P and P̄ with identical visible actions, if P and P̄
are strongly bisimilar then strong bisimilarity on P ∪ P̄ preserves the initial distributions
of P and P̄ . For each equivalence class C of (S ∪ S̄)/ ∼P∪P̄ we have:

α̃(C ∩ S) = α̃(C ∩ S̄),

where α̃ is the initial distribution of P ∪ P̄ .

Proof. From the bisimilarity of P and P̄ we know that there exists a strong bisimulation
E on P ∪ P̄ that preserves the initial distributions α and ᾱ of P and P̄ , respectively.
Now, since ∼P∪P̄ is the largest strong bisimulation on P ∪ P̄ we have for any two states
x, y ∈ S ∪ S̄ that:

xEy =⇒ x ∼P∪P̄ y.

Since E and ∼P∪P̄ are equivalence relations it follows that for any equivalence class C of
∼P∪P̄ we can find a countable set of equivalence classes D of E such that C =

⋃

D∈DD.
Now we find:

α̃(C ∩ S) =
∑

D∈D

α̃(D ∩ S) =
∑

D∈D

α̃(D ∩ S̄) = α̃(C ∩ S̄).

We now show that strong bisimilarity implies the isomorphism of strong bisimulation
quotients.

Lemma 11. Given I/O-IMCs P and P̄ , if P is strongly bisimilar to P̄ then [P]∼ is
isomorphic to

[
P̄
]

∼
.

Proof. We prove Lemma 11 by constructing a bijection from the equivalence classes of
[P]∼ to the equivalence classes of

[
P̄
]

∼
and showing that it is indeed an isomorphism.

Since P and P̄ are strongly bisimilar, we have from Lemma 10, that strong bisimi-
larity on P ∪ P̄ (i.e., ∼P∪P̄) preserves the initial distributions of P and P̄ . Furthermore,
from Theorem 18 it follows that any equivalence class C in (S ∪ S̄)/ ∼P∪P̄ consists of
exactly one equivalence class CP ∈ S/ ∼P of P and one equivalence class CP̄ ∈ S̄/ ∼P̄

of P̄ . We now construct the function f from the equivalence classes S′ of [P]∼ to the

120

5.5. EQUIVALENCES

equivalence classes S̄′ of
[
P̄
]

∼
. For any equivalence class CP in S′ let C ∈ (S∪S̄)/ ∼P∪P̄

and CP̄ ∈ S̄/ ∼P̄ be such that C = CP ∪ CP̄ . We now find:

f(CP) =

{
CP̄ , if CP̄ ∈ S̄′

undefined , otherwise.

We wish to show that f is an isomorphism from S′ to S̄′. To do this we must first
show that f is a bijection, i.e.,

• f is a total function: ∀CP ∈ S′ · f(CP) is defined,

• f is injective: ∀CP , C
′
P ∈ S′ · f(CP) = f(C ′

P) =⇒ CP = C ′
P , and

• f is surjective: ∀CP̄ ∈ S̄′ · ∃CP · f(CP) = CP̄ .

For an equivalence class CP in S′ we find some index i ∈ N such that CP ∈ S′
i.

Let C and CP̄ again be equivalence classes of P ∪ P̄ and P̄ respectively such that
C = CP ∪ CP̄ . We prove by induction on i that CP̄ is also in S̄′, using the following
induction assumption:

∀C ′
P ∈ S′ · C ′

P ∈ S′
j ∧ j < i =⇒ ∃C ′

P̄ ∈ S′
P̄ · f(C ′

P) = C ′
P̄ .

✞

✝

☎

✆5.4

For the case that i equals zero we find, by Definition 56, that α(CP) > 0. Since P
and P̄ are strongly bisimilar we find:

ᾱ(CQ) = ᾱ(C ∩ S̄) = α(C ∩ S) = α(CP).

This means CQ is also in S̄′.

For the case that i is larger than zero, we find, by Definition 56, that there exists an
equivalence class C ′

P in S′
i−1 such that there is a strong transition from C ′

P to CP . Let
C ′ and C ′

P̄
be equivalence classes of P ∪ P̄ , respectively P̄ , such that C ′ = C ′

P ∪ C ′
P̄
.

By
✞

✝

☎

✆5.4 , we have that C ′
P̄

is in S̄′. It is now easy to show from the strong bisimilarity
of states in C ′

P and C ′
P̄
that we must find an equivalence class C ′′

P̄
of P̄ such that there

is a matching transition from C ′
P̄
to C ′′

P̄
where the states of C ′′

P̄
are strongly bisimilar to

the states of CP . It follows that C
′′
P̄
is in fact CP̄ and CP̄ is in S̄′.

We have shown that f is a total function from S′ to S̄′. Injectivity and surjectivity
now follow directly from the fact that for each equivalence class CP ∈ S′ we find an
equivalence class C of P ∪ P̄ such that C = CP ∪ f(CP).

It remains to show that f is an isomorphism. For an arbitrary equivalence class CP

of P we find that:

• For the initial distributions we have α′(CP) = ᾱ′(f(CP)), since strong bisimilarity
of P and P̄ gives us that α(CP) = ᾱ(f(CP)).

• For any visible transition CP
a−→C ′

P we find, since P ∼ P̄ , that there exists a
transition f(CP)

a−→C ′
P̄
where the states of C ′

P are strongly bisimilar to the states
in C ′

P̄
for P ∪ P̄ . It must then be the case that C ′

P̄
= f(C ′

P).

121

CHAPTER 5. I/O-IMCS

• Similarly we find that hidden transitions and Markovian transitions of CP must
be matched by f(CP). Note that for both CP and f(CP) hidden transitions will
always be labelled τ .

• For st(CP) we have that all states in CP and f(CP) are pairwise equivalent ac-
cording to =s. Then, CP and f(CP) are also equivalent according to =s.

Lemma 12. Given I/O-IMCs P and P̄ , if [P]∼ is isomorphic to
[
P̄
]

∼
then P is strongly

bisimilar to P̄ .

Proof. To prove Lemma 12 we will find a strong bisimulation on the states of P ∪ Q
that relates their initial distributions.

Since P is strongly bisimilar to [P]∼ we find a strong bisimulation E1 on P ∪ [P]∼
that relates their initial distributions. Similarly we find a strong bisimulation E2 on
P̄ ∪

[
P̄
]

∼
that relates the initial distributions of P̄ and

[
P̄
]

∼
. Additionally, we find an

isomorphism f from the equivalence classes of [P]∼ to the equivalence classes of
[
P̄
]

∼
.

We use these relations to define the equivalence relation E3 on S ∪ S̄:

E3 ={(x, y) | x ∈ S, y ∈ S̄,∃C ∈ S′ · xE1C ∧ f(C)E2y} ∪

{(y, x) | x ∈ S, y ∈ S̄,∃C ∈ S′ · xE1C ∧ f(C)E2y} ∪

{(x, x′) | x, x′ ∈ S, xE1x
′} ∪ {(y, y′) | y, y′ ∈ S̄, yE2y

′}.

It can easily be shown that E3 is a strong bisimulation for P ∪ P̄ that relates the initial
distributions of P and P̄ .

Theorem 22. Given I/O-IMCs P and P̄ , P is strongly bisimilar to P̄ if and only if
[P]∼ is isomorphic to

[
P̄
]

∼
.

Proof. Theorem 22 follows directly from Lemmas 11 and 12.

Finally, we look at whether or not strong bisimilarity is a cogruence with respect to
parallel composition and hiding.

Theorem 23. Strong bisimilarity is a congruence with respect to parallel composition
and hiding. I.e., for I/O-IMCs P , P̄ , and P̃ , such that P and P̄ have identical visible
actions and are both compatible with P̃ we have

P ∼ P̄ =⇒ P‖P̃ ∼ P̄‖P̃ ,

and
P ∼ P̄ =⇒ P \B ∼ P̄ \B,

for any set of output actions B ⊂ AO.

Proof. Standard.

Although strong bisimulation fulfills all our criteria for equivalence relations on I/O-
IMCs, we will in the next subsection we will consider one more equivalence that is even
weaker, but still fulfills our criteria.

122

5.5. EQUIVALENCES

5.5.3 Weak Bisimulation

As our most important notion of equivalence we use the notion of weak bisimulation.
This equivalence abstracts from internal transitions (interactive as well as Markovian)
and cumulates Markovian transition rates. It also uses the maximal progress assumption
to abstract away from Markovian transitions that are taken with probability zero and
the identity (according to =s) of states that are occupied with probability zero. We use
weak bisimulation as our main equivalence relation as it is a congruence with respect to
parallel composition and hiding, can be computed efficiently [23], preserves the stochastic
properties of I/O-IMCs (as we will see in Subsection 7.2), and has been shown to be
effective in practice [6, 13].

Definition 59 (Weak bisimulation for states). Given I/O-IMC P = (S,A,RI , RM , α),
an equivalence relation E on S is a weak bisimulation if and only if for all pairs of states
x, y ∈ S such that xEy we have:

1. All directly observable, weak, and interactive transitions emerging from x can be
simulated by y:

∀a ∈ AO ∪AI ·
(
∀x′ ∈ S · x a−։x′ =⇒ ∃y′ ∈ S · y a−։y′ ∧ x′Ey′

)
.

2. All internal, weak, and interactive transitions emerging from x and going to a
different equivalence class can be simulated by y:

∀x′ ∈ S · x−։x′ ∧ ¬(xEx′) =⇒ ∃y′ ∈ S · y−։y′ ∧ x′Ey′.

3. If x is stable, then y must be able to reach, using an internal weak transition, a
stable state y′. Furthermore y′ must be able to simulate all Markovian transitions
emerging from x and going to a different equivalence class:

st(x) =⇒ ∃y′ ∈ S · y−։y′ ∧ st(y′) ∧

∀C ∈ S/E · x /∈ C ∧ x λ−֒→C =⇒ y′ λ−֒→C

4. If x is stable, then y must be able to make an internal, weak, transition to a stable
state y′ that is identical to x according to =s:

st(x) =⇒ ∃y′ ∈ S · y−։y′ ∧ st(y′) ∧ y′ =s x.

Two states x and y are weakly bisimilar for P , written x ≈P y if there exists a weak
bisimulation for P that relates x and y. We leave out the subscript when clear from
context.

It is important to note that the third property of weak bisimulation does not just
concern Markovian transitions, but also internal weak transitions to stable states. For
two weakly bisimilar states x and y we have: st(x) =⇒ y−։y′∧ st(y′) even if x has no
outgoing Markovian transitions. This singles out stable states as being fundamentally

123

CHAPTER 5. I/O-IMCS

different from unstable states. Consider for instance two states x and y where x has
no outgoing transitions and y has only the internal transition y τ ;−→y. These states
have exactly the same outgoing weak transitions (x−։x and y−։y), but they are not
weakly bisimilar, because y cannot reach a stable state, while x can.

Theorem 24. Given an I/O-IMC P , weak bisimilarity on P is the largest weak bisim-
ulation on P .

Proof. Standard.

We also define the quotient under weak bisimulation.

Definition 60. Given an I/O-IMC P = (S,A,RI , RM , α), its quotient under weak
bisimulation is an I/O-IMC [P]≈ = (S′, Ā, R̄I , R̄M , ᾱ) with Ā = (AI , AO, {τ}) where
states and transitions are defined inductively as follows for i ∈ N:

S′
0 ={C | C ∈ S/ ≈, α(C) > 0}

R̄I
i ={(C, a,C ′) | C ∈ S′

i, C
′ ∈ S/ ≈, a ∈ AI ∪AO,∃x ∈ C, y ∈ C ′ · x a−։y} ∪

{(C, τ, C ′) | C ∈ S′
i, C

′ ∈ S/ ≈,∃x ∈ C, y ∈ C ′ · x−։y ∧ C 6= C ′} ∪

{(C, τ, C) | C ∈ S′
i,∀x ∈ C·

(∄C ′′ ∈ S/ ≈, y ∈ C ′′, a ∈ AO
P · x a−։y) ∧

(∄C ′′ ∈ S/ ≈, y ∈ C ′′ · x−։y ∧ C 6= C ′′) ∧

(∄C ′′ ∈ S/ ≈, y ∈ C ′′ · x−։y ∧ st(y))}

R̄M
i ={(C, λ,C ′) | C ∈ S′

i, C
′ ∈ S/ ≈, C 6= C ′,∃x ∈ C · st(x) ∧ x λ−֒→C ′}

S′
i+1 ={C ′ | C ′ ∈ (S/ ≈) \

⋃i
j=0 S

′
j,∃C ∈ S′

i · C
a−→C ′ ∨ C λ−֒→C ′}.

We then have S′ =
⋃∞

i=0 S
′
i, R̄

I =
⋃∞

i=0 R̄
I
i , and R̄M =

⋃∞
i=0 R̄

M
i . For the initial

distribution we find for all equivalence classes C ∈ S′
0, that: ᾱ(C) =

∑

x∈C α(x). Note
that we have S′ ⊂ S/E.

There is one important aspect of the weak bisimulation quotient that does not im-
mediately follow from the definition of the strong bisimulation quotient. This has to
do with the presence of internal self-loops on the equivalence classes. First of all, it is
obvious that for any state x in an I/O-IMC we have x−։x. Then the question arises:
when should such an internal self-loop appear in the quotient model? One choice would
be to add an internal self-loop to each equivalence class in the quotient. However, we
have seen already that a state with an internal self-loop can be fundamentally different
from a state without one. This also means that adding no internal self-loops to any
equivalence class of a weak bisimulation quotient is equally undesirable.

To solve this dilemma, we simply apply our fairness assumptions (see Section 4.4).
If the states in a particular equivalence class can fairly generate unboundedly many
internal events, then we add an internal self-loop to this class. Now, we know from our
discussion of fairness that such an unbounded sequence of internal events is only allowed
for states that are divergent, i.e., states that cannot reach a stable state. From the third

124

5.5. EQUIVALENCES

clause of weak bisimulation it follows that divergent states can only be weakly bisimilar
to other divergent states. The consequence for the weak bisimulation quotient of an
I/O-IMC is that each equivalence class consists either of only divergent states (in this
case the equivalence class will have an internal self-loop) or no divergent states (in this
case the equivalence class will not have an internal self-loop).

As for strong bisimulation we can relate weak bisimilarity on the union of two I/O-
IMCs to weak bisimilarity on the individual I/O-IMCs.

Theorem 25. Given two I/O-IMCs P and P̄ with disjoint state spaces, identical input
and output actions, two states x, y ∈ S are weakly bisimilar in P if and only if they are
weakly bisimilar in P ∪ P̄ :

x ≈P y ⇔ x ≈P∪P̄ y.

Proof. Similar to the proof of Theorem 18.

Weak bisimulation can be lifted to I/O-IMCs in the same way strong bisimulation
was lifted to I/O-IMCs.

Definition 61 (Weak Bisimulation for I/O-IMCs). Given the following two I/O-IMCs
P = (S,A,RI , RM , α) and P̄ = (S̄, Ā, R̄I , R̄M , ᾱ) with disjoint state spaces, we say that
P is weakly bisimilar to P̄ if AO = ĀO and AI = ĀI and we can find a weak bisimulation
E on P ∪ P̄ , such that for all equivalence classes C of E we have:

αP (C ∩ S) = ᾱ(C ∩ S̄).

We write P ≈ P̄ . We say that two I/O-IMCs with non-disjoint state spaces are weakly
bisimilar if we can find two isomorphic I/O-IMCs with disjoint state spaces that are
weakly bisimilar.

As we found for strong bisimilarity we have that weak bisimilarity is an equivalence
relation.

Theorem 26. Weak bisimilarity is an equivalence relation.

Proof. Follows the proof for strong bisimilarity.

Weak bisimilarity, however, is a strictly weaker equivalence than strong bisimilarity.

Theorem 27. Given two I/O-IMCs P and P̄ with identical visible actions we have:

P ∼ P̄ =⇒ P ≈ P̄ ,

but the reverse does not hold.

Proof. It is easy to show that any strong bisimulation on an I/O-IMC is also a weak
bisimulation on the same I/O-IMC. For an example that shows that the reverse does
not hold consider I/O-IMCs P and P̄ such that P has two states x and y and Q has
one state z. The only transition in P is an internal transition from x to y, whereas P̄
has no transitions. It is easy to see that P and P̄ are weakly bisimilar but not strongly
bisimilar.

125

CHAPTER 5. I/O-IMCS

It follows of course that weak bisimilarity is strictly weaker than isomorphism. We
now show the expected result that an I/O-IMC is weakly bisimilar to its weak bisim-
ulation quotient. To do this we first establish that equivalence classes in the weak
bisimulation quotient are stable if and only if they contain at least one stable state.

Lemma 13. Given an I/O-IMC P , for any equivalence class C of [P]≈ we have:

st(C) ⇔ ∃x ∈ C · st(x).

Proof. We first prove the implication in the right direction. Assume C ∈ S′ is stable.
It follows that C has no outgoing output transitions and C has no outgoing internal
transitions to different equivalence classes in S′. We then have that no state x in C
has outgoing weak output transitions or outgoing weak internal transitions to states in
equivalence classes other than C. We also find that there is no internal self-loop C τ−→C.
This means that the condition

∀x ∈ C·(∄C ′ ∈ S/ ≈, y ∈ C ′, a ∈ AO
P · x a−։y) ∧

(∄C ′ ∈ S/ ≈, y ∈ C ′ · x−։y ∧C 6= C ′) ∧

(∄C ′ ∈ S/ ≈, y ∈ C ′ · x−։y ∧ st(s′))

does not hold for C. Since C has no visible transitions and no hidden transitions to
other equivalence classes this must mean that there is a state x in C that can reach a
stable state y via a weak internal transition. Now, if y does not lie in C then there must
be an internal transition from C to the equivalence class of y, but this is a contradiction
with the fact that C is stable. It follows that y is in C and then C indeed contains a
stable state.

We prove the implication in the left direction by contradiction. Assume then that
there is a stable state x in C, but C is not stable. Then, C must have an outgoing
output transition or an outgoing internal transition. There are three possibilities:

1. There exists a state y ∈ C and a state z in an equivalence class C ′ ∈ S′ and an
action a ∈ AO

P such that y a−։z,

2. There exists a state y ∈ C and a state z in an equivalence class C ′ ∈ S′ such that
C 6= C ′ and y−։z, or

3. We find an internal self-loop C τ−→C.

For the first two cases we find x ≈P y and then x must have a matching outgoing output
or internal transition, which is a contradiction with the fact that x is stable. In the third
case we find for x (since it is in C) that the condition

(∄C ′ ∈ S/ ≈, y ∈ C ′, a ∈ AO
P · x a−։y) ∧

(∄C ′ ∈ S/ ≈, y ∈ C ′ · x−։y ∧ C 6= C ′) ∧

(∄C ′ ∈ S/ ≈, y ∈ C ′ · x−։y ∧ st(y))

holds. This means that it cannot reach a stable state with a weak internal transition.
However, this is a direct contradiction with the fact that x is stable itself (recall: x−։x).

126

5.5. EQUIVALENCES

We now show that an I/O-IMC is weakly bisimilar to its weak bisimilarity quotient.

Theorem 28. Given an I/O-IMC P = (S,A,RI , RM , α), we have: P ≈ [P]≈.

Proof. Let E be the following relation on S ∪ S′:

E ={(x,C) | x ∈ S,C ∈ S′, x ∈ C} ∪ {(C, x) | x ∈ S,C ∈ S′, x ∈ C} ∪

{(x, y) | x, y ∈ S, x ≈P y} ∪ {(C,C) | C ∈ S′}

Given Lemma 13 it is easy to show that E is indeed a weak bisimulation on P ∪ [P]≈
that relates the initial distributions of P and [P]≈.

Finally, we show that the weak bisimilarity of two I/O-IMCs is equivalent to the
isomorphism of their weak bisimulation quotients. The proof follows the same lines as
the proof of Theorem 22, except that we must be careful in the case of internal self-loops
in the weak bisimulation quotients. The following lemma states that these self-loops do
not cause a problem. We therefor first prove a lemma regarding the self-loops of the
quotients of weakly bisimilar I/O-IMCs.

Lemma 14. Given two weakly bisimilar I/O-IMCs P and P̄ with identical visible ac-
tions, for equivalence classes CP and CP̄ of the weak bisimulation quotients [P]≈ and
[
P̄
]

≈
respectively, such that CP ≈[P]≈∪[P̄]

≈

CP̄ we find:

CP
τ−→CP ⇔ CP̄

τ−→CP̄ .

Proof. Since CP is weakly bisimilar to CP̄ in the union [P]≈ ∪
[
P̄
]

≈
we have that any

state x ∈ CP is weakly bisimilar to any state y ∈ CP̄ in the union P ∪Q. Assume now
that there is an internal transition CP

τ−→CP . We will show that it follows that there
is also an internal transition CP̄

τ−→CP̄ by contradiction. Assume then that there is no
transition CP̄

τ−→CP̄ . We have that the condition

∀x ∈ CP ·(∄C
′
P ∈ SP/ ≈, y ∈ C ′

P , a ∈ AO
P · x a−։y) ∧

(∄C ′
P ∈ SP/ ≈, y ∈ C ′

P · x−։y ∧ CP 6= C ′
P) ∧

(∄C ′
P ∈ SP/ ≈, y ∈ C ′

P · x−։y ∧ st(s′))

holds for CP , but does not hold for CP̄ . We then find for any state x in CP that it does
not have any of the above weak transitions. But at the same time we must find a state
y in CP̄ that does have one of the above outgoing transitions. This is in contradiction
with the fact that x must be weakly bisimilar to y. We find by a similar reasoning that
if CP̄ has an internal self-loop then CP has an internal self-loop.

Theorem 29. Given I/O-IMCs P and Q, P is weakly bisimilar to Q if and only if [P]≈
is isomorphic to [Q]≈.

Proof. The proof of Theorem 29 proceeds in the same way as the proof of Theorem 22,
with the addition that the presence of internal self-loops is preserved by Lemma 14.

127

CHAPTER 5. I/O-IMCS

Theorem 30. Weak bisimilarity is a congruence with respect to parallel composition
and hiding. I.e., for I/O-IMCs P , P̄ , and P̃ , such that P and P̄ have identical visible
actions and are both compatible with P̃ we have

P ≈ P̄ =⇒ P‖P̃ ≈ P̄‖P̃ ,

and
P ≈ P̄ =⇒ P \B ≈ P̄ \B,

for any set of output actions B ⊂ AO.

Proof. Standard.

5.6 Stochastic reachability

Reachability has been studied extensively in computer science. Intuitively, we say a
configuration of a system is reachable if it can be reached. For non-deterministic models,
such as the IOA we studied in Chapter 4, this means that a state is reachable if there
is some resolution of the non-determinism with which the state is eventually reached.
For stochastic models we often talk about the reachability probability of a state. This is
the probability of eventually reaching the state in question when we execute the model.
However, it is also common to say that a state is reachable in a stochastic model if
its reachability probability is strictly greater than zero. In this thesis, we are dealing
with models that are both non-deterministic and stochastic and we will say a state is
reachable if there is a resolution of the non-determinism such that the probability to
reach that state is strictly greater than zero.

For an IOA, we have seen that a state x is reachable if there is a fair path from
the initial state to x (see Definition 29). In our setting, this is unfortunately not the
case. Due to the maximal progress assumption, we have that Markovian transitions
that emanate from unstable states will be taken with probability zero. We therefore
first identify a subset of the transitions that may be taken with probability greater
than zero. We call these transitions plausible. Differently put, transitions that are not
plausible are never taken.

Definition 62 (Plausible Transition). Given a state x in an I/O-IMC P , a transition
in P starting at x is called plausible if it is either an interactive transition, or x is stable
and the transition is Markovian.

We now extend the usual definition of paths to plausible paths in the same way. A
path is plausible when it consists of plausible transitions.

Definition 63 (Plausible Path). Given a state x in an I/O-IMC P , a finite path σ in
P emanating from x is called plausible if it consists of plausible transitions. In other
words we can say: if there is a series of states x1, . . . , xn such that x1 = x and for
1 ≤ i < n,

(∃a ∈ AP ∧ xi
a−→xi+1) ∨ (st(xi) ∧ ∃λ ∈ R>0 · xi

λ−֒→ xi+1) ,

then there is a plausible path from x to xn.

128

5.6. STOCHASTIC REACHABILITY

It is useful to note here that we consider only finitely-branching I/O-IMCs, because
otherwise even plausible transitions may be taken with probability zero.

Now we are ready to define reachability for I/O-IMCs in terms of plausible paths.
Since a state is usually considered to be reachable if there is a path to that state, we
instead introduce stochastic reachability. A state is stochastically reachable if it can be
reached via a path, and this path has probability greater than zero to be taken for some
resolution of the non-determinism.

Definition 64 (Stochastic Reachability). Given an I/O-IMC P with state space S, a
state y ∈ S is stochastically reachable in P , written SRP (y) if and only if there exists
a state x ∈ S with non-zero initial probability (i.e., α(x) > 0) such that there is a
plausible path from x to y. We write SR(y) when the identity of the I/O-IMC is clear
from context.

Note that in the case α(x) > 0 we find that x is stochastically reachable, because
the empty path consisting only of state x itself is plausible by definition. Our intuition
is that a state in an I/O-IMC is stochastically reachable if and only if there is some way
to resolve the non-determinism such that the probability to reach that state is greater
than zero for all time-points greater than zero. In Chapter 7 we will prove that this
intuition is indeed correct for closed I/O-IMC.

But what about open I/O-IMCs? For an open I/O-IMC P we want that a state
x is stochastically reachable if and only if we can find a compatible I/O-IMC P ′ such
that P‖P ′ is closed and there exists some state x′ in P ′ such that x‖x′ is stochastically
reachable for the closed I/O-IMC P‖P ′.

Theorem 31. Given an I/O-IMC P with state space S and actions A, a state x ∈
S is stochastically reachable if and only if there exists a compatible I/O-IMC P̄ with
state space S̄, such that P‖P̄ is closed and there exists a state y in S̄ such that x‖y is
stochastically reachable in P‖P̄ .

Proof. We sketch the proof of Theorem 31. Given that the state x is stochastically
reachable in P there must exists a plausible path σ from an initial state of P to x. We
now construct a path σ̄ in P̄ such that the “parallel composition” of σ and σ̄ is plausible
in P‖P̄ . Each interactive transition in σ is matched by a similarly-labelled transition in
σ̄. Each Markovian transition in σ is matched by a Markovian transition in σ̄. We can
then pick P̄ to be the I/O-IMC that consists exactly of the path σ̄ where ᾱ(first(σ̄)) = 1.

It remains to show that if there exists a stochastically reachable state x‖y in P‖P̄ ,
then x is stochastically reachable in P . We will show that this is the case in the proof
of Lemma 15.

In the remainder of this section we will study how stochastic reachability interacts
with the architectural operations on I/O-IMCs.

5.6.1 Bisimulation and Stochastic Reachability

The bisimulation relations considered in this thesis are so-called forward bisimulation.
Two states are bisimilar if they can simulate each other’s outgoing transitions. This is

129

CHAPTER 5. I/O-IMCS

in contrast with so-called backward bisimulations, which equate states that can simulate
each other’s incoming transitions. Stochastic reachability is, in a sense, a “backward”
property. A state is stochastically reachability if it has an incoming plausible path from
an initial state. It is then no suprise that stochastic reachability is not preserved by
strong or weak bisimulation.

Example 20. Consider an I/O-IMC P with state space S = {x, y}, no actions or
transitions, and an initial distribution that assigns probability one to state x. We now see
that states x and y are both strongly and weakly bisimilar, but although x is stochastically
reachable, y is not.

Despite the fact that the bisimulations on states do not preserve stochastic reacha-
bility, we find that the bisimulations on I/O-IMCs (instead of on states) do, in a way,
preserve stochastic reachability.

Theorem 32. Given weakly bisimilar I/O-IMCs P and P ′, for any state x of P that is
stochastically reachable we find a weakly bisimilar state x′ of P ′ that is also stochastically
reachable:

∀x ∈ S · SRP (x) =⇒ ∃x′ ∈ S′ · x ≈P∪P ′ x′ ∧ SRP ′(x′).
✞

✝

☎

✆5.5

Proof. Let P and P ′ be weakly bisimilar I/O-IMCs as above and let x be a stochastically
reachable state in P . By the definition of stochastic reachability we now have that there
is a finite plausible path σ from an initial state in P to x. Let n denote the length of
the path σ. We now prove Theorem 32 by induction on n.

We first consider the case that the length of σ is zero. Then we have that σ consists
only of the state x. It immediately follows that x is an initial state of P , i.e., αP (x) > 0.
Since weak bisimilarity on the union P ∪ P ′ must preserve initial distributions we find
that there must exists an initial state x′ of P ′ which is weakly bisimilar to x. Since x′

is an initial state it is also stochastically reachable.

We now consider the case that the length of σ is greater than zero. We use the
following induction assumption: for any plausible path σ1 in P we find that:

|σ1| < |σ| =⇒
(
SRP (last(σ1)) =⇒ ∃x′1 ∈ S′ · x′1 ≈P∪P ′ last(σ1) ∧ SRP ′(x′1)

)
.

✞

✝

☎

✆5.6

We now show that it follows from
✞

✝

☎

✆5.6 that
✞

✝

☎

✆5.5 holds in the case that σ has length
greater than zero. We have that σ must contain at least one transition and we consider
the different possibilities for the last transition of σ. Since σ is plausible this transition
must either be interactive or Markovian, but starting in a stable state.

Case: last transition is visible. We first consider the case that the last transiton
of σ is an interactive transition labelled with a visible action. We then find a path σ1,
a state x1 in S, and an action a in AV

P such that σ = σ1 ◦ x1
a−→x. Trivially, σ1 is also

plausible and x1 is stochastically reachable. Furthermore, we have that the length of
σ1 is n − 1. By the induction assumption we then find that there exists a state x′1 in

130

5.6. STOCHASTIC REACHABILITY

S′ such that x1 is weakly bisimilar to x′1 and x′1 is stochastically reachable in P ′. We
now have that x′1 must be able to simulate the (weak) transition x1

a−։x. We then
find a state x′ in S′ such that there is a transition x′1

a−։x′, with x ≈ x′. Since x′1 is
stochastically reachable and there is an interactive path from x′1 to x′, it follows that x′

is also stochastically reachable. We have then shown that
✞

✝

☎

✆5.5 holds for the path σ.

Case: last transition is internal. We now consider the case that the last transition
of σ is an interactive transition labelled with an internal action. We then find a path σ1,
a state x1 in S and an action b in AH such that σ = σ1 ◦x1

b−→x. Again we find that σ1
is plausible, x1 is stochastically reachable, and the length of σ1 is n− 1. Applying

✞

✝

☎

✆5.6 ,
we find that there exists a state x′1 in S′ which is stochastically reachable in P ′ and
weakly bisimilar to x1. Now we have two possibilities: either x1 is weakly bisimilar to
x or not. For the former we find – by transitivity – that x is also weakly bisimilar to x′1
and then

✞

✝

☎

✆5.5 holds for the path σ. In the latter case, that x1 is not weakly bisimilar to
x we find that x′1 must simulate the weak transition x1−։x. This means there exists
a state x′ in S′ such that x′1−։x′ and x ≈ x′. Since x′1 is stochastically reachable and
there must be an interactive path from x′1 to x′, it follows that x′ is also stochastically
reachable. We have again shown that

✞

✝

☎

✆5.5 holds for the path σ.

Case: last transition is Markovian. We finally consider the case that the last
transition of σ is a Markovian transition. We then find a path σ1, a stable state x1 in S
and a rate λ ∈ R≥0 such that σ = σ1 ◦x1

λ−֒→ x. Once more we have that σ1 is plausible,
x1 is stochastically reachable, and the length of σ1 is n − 1. From

✞

✝

☎

✆5.6 we again have
that there exists a state x′1 in S

′ such that x′1 is weakly bisimilar to x1 and stochastically
reachable in P ′. We now consider whether x1 is weakly bisimilar to x. In the case that
they are, we have that x′1 is also weakly bisimilar to x, thus showing that

✞

✝

☎

✆5.5 holds for
the path σ.

If x1 is not weakly bisimilar to x, then we have that x′1 must be able to internally
reach a stable state x′′1 that simulate the Markovian transitions of x1. Since x1 moves
to the equivalence class of P ∪ Q containing x with a rate greater than zero, we have
that x′′1 does the same. There must then exist a state x′ such that x′1−։x′′1

µ−֒→ x′ with
µ ∈ R≥0 and x′ ≈ x. From the fact that x′1 is stochastically reachable and x′′1 is stable
we have that x′ is also stochastically reachable in P ′, which means

✞

✝

☎

✆5.5 holds.

5.6.2 Parallel Composition and Stochastic Reachability

We now consider the relationship between parallel composition and stochastic reacha-
bility.

Example 21. Consider two I/O-IMCs P and P̄ such that P has an input action a and
an output action b, while a is an output action and b is an input action for P̄ , let P and P̄
both have three states x, y, and z respectively x′, y′, and z′. Finally we find transitions
x a−→y b−→z in P and x′ b−→y′ a−→z′ in P̄ . We also have self-loops y a−→y, z a−→z,
y′ b−→y′, and z′ b−→z′ to ensure input-enabledness. Both I/O-IMCs have no Markovian
transitions and the initial distributions assign probability one to x respectively x′.

131

CHAPTER 5. I/O-IMCS

We now have that z is stochastically reachable in P and z′ is stochastically reachable
in P̄ , but the state z‖z′ is not stochastically reachable in P‖P̄ . In fact, the I/O-IMC
P‖P̄ has no transitions at all and only initial state x‖x′ is stochastically reachable.

From the above example we see that stochastic reachability is not preserved by
parallel composition. This is to be expected as the intuition of stochastic reachability
for an open I/O-IMC is that there exists some way of composing the I/O-IMC that
achieves stochastic reachability, not that all compositions achieve this goal.

However, we can show that the reverse property holds. Namely, that stochastic
reachability in a parallel composition is preserved when we “decompose” the parallel
composition to its constituent I/O-IMCs. This is a consequence of the following lemma
that tells us that the projections of a plausible paths are themselves plausible. We define
the projection of composite paths onto component I/O-IMCs in the same way as we did
for executions of IOA in Definition 32.

Lemma 15. Given two compatible I/O-IMCs P and P ′ and a plausible path σ in P‖P ′,
the projections σ↓P and σ↓P ′ are plausible paths in P and P ′, respectively.

Proof. We sketch the proof of Lemma 15. First, recall that if a state x‖x′ is stable in
P‖P ′ then the constituent states x and x′ are stable in P respectively P ′. It is now easy
to prove the lemma by induction on the length of the path σ.

Theorem 33. Given compatible I/O-IMCs P and P ′, we find that if a state x‖x′ of
P‖P ′ is stochastically reachable then the states x and x′ must be stochastically reachable
in P and P ′ respectively:

SRP‖Q(x‖x
′) =⇒ SRP (x) ∧ SRQ(x

′).

Proof. Theorem 33 follows easily from Lemma 15 and the fact that if a state x‖x′ has
non-zero initial probability in P‖P ′ then both states x and x′ have non-zero initial
probability in P respectively P ′.

The above results can easily be extended to parallel compositions of more than two
I/O-IMCs.

5.6.3 Hiding and Stochastic Reachability

Hiding does not affect the transitions in an I/O-IMC, but it does affect the role actions
play in an I/O-IMC. By hiding actions we can turn output actions into internal actions.
Note that hiding input actions is, by definition, not possible. Since hiding does not affect
the transition relations, the only way hiding can influence stochastic reachability is to
impact the stability of states. However, it is easy to see that hiding has no such effect,
since any state that is stable has no outgoing output actions and thus is not affected
by hiding. Conversely, any state that is unstable, will stay unstable after hiding actions
since both output and internal transitions are assumed to occur instantaneously.

132

5.7. CONFLUENCE AND DETERMINISM

Theorem 34. Given an I/O-IMC P and a set of actions B such that B ⊂ AO, any
state x is stochastically reachable in P if and only if x is stochastically reachable in P\B:

∀x ∈ SP · SRP (x) ⇔ SRP\B(x).
✞

✝

☎

✆5.7

Proof. Straightforward.

Figure 5.4 summarizes the modularity results for stability, and stochastic reachability
of I/O-IMCs.

I/O-IMCs

(P‖P ′)\B

P‖P ′

P P ′

Stability

st(x‖x′)

st(x‖x′)

st(x) st(x′)

Stochastic
Reachability

SR(x‖x′)

SR(x‖x′)

SR(x) SR(x′)

Figure 5.4: Modularity results for two compatible I/O-IMCs P and P ′. Arrows indicate
implications, the two arrows from st(x) and st(x′) to st(x‖x′) indicate that st(x)∧st(x′)
implies st(x‖x′)

5.7 Confluence and determinism

The notions of confluence and determinism can be directly lifted from IOA to I/O-
IMCs since the Markovian transitions which are – in a sense – added to IOA to obtain
I/O-IMCs are deterministic (although probabilistic!) by definition.

Definition 65. An I/O-IMC P with states S is weakly confluent (respectively weakly
deterministic) if for any state x ∈ S we have that if x is stochastically reachable, then
IOA(x) is weakly confluent (respectively weakly deterministic).

The same can be applied to confluence and determinism with respect to a pair of
actions.

Definition 66. An I/O-IMC P with states S and actions A is weakly confluent (re-
spectively weakly deterministic) with respect to a pair of actions a, b ∈ A if for any state

133

CHAPTER 5. I/O-IMCS

x ∈ S we have that if x is stochastically reachable, then IOA(x) is weakly confluent
(respectively weakly deterministic) with respect to a, b.

We can now combine the results on confluence and determinism for IOA with our
results for stochastic reachability to find that confluence and determinism behave the
same way for I/O-IMCs as for IOA.

Proposition 15. Let P be a closed, weakly deterministic I/O-IMC P and let [P]≈ be
its weak bisimulation quotient. For any three equivalence classes D1,D2,D3 ∈ S/ ≈ and
any two output actions a, b, we have

D1−։D2 implies D1 = D2, and

D1
a−→D2,D1

b−→D3 implies a = b and D2 = D3.

Proof. This follows directly from the equivalent proposition for IOA, Proposition 10, and
the fact that stochastic reachability is preserved by weak bisimulation for I/O-IMCs.

For the weak bisimulation quotient of a weakly deterministic I/O-IMC P we then
find that any state has only a single non-divergent fair reach-trace. In Chapter 6 we
will see that the consequence is that, assuming no time-divergence occurs, the I/O-
IMC is indeed deterministic, i.e., its semantics is a Markov chain no matter how the
“non-determinism” is resolved.

The connection between weak confluence and weak determinism is as follows. Hiding
a set of pairwise weakly confluent actions “preserves” weak determinism.

Proposition 16. Given a closed I/O-IMC P = (S,A,RI , RM , α) and a set of output
actions B ⊂ AO, we have that the I/O-IMC P \B is weakly deterministic if

1. for any two states x1, x2 ∈ S we have that x1−։x2 implies x1 ≈ x2,

2. P is weakly confluent with respect to all pairs of actions a, b ∈ B, and

3. P is weakly deterministic with respect to all remaining pairs of actions a, b ∈
AO \B.

Proof. This follows directly from the equivalent proposition for IOA, Proposition 11,
and the fact that hiding does not affect stochastic reachability.

For a complete I/O-IMC, we only need to check the first two conditions of the above
proposition. We can then make use of the fact that weak confluence is compositional.

Proposition 17. Given n ∈ N I/O-IMCs P1, . . . , Pn, which are pairwise compatible and
weakly confluent; and a set of actions B we have that if (P1‖ . . . ‖Pn)\B is complete,
then it is weakly deterministic.

Proof. This follows directly from the equivalent proposition for IOA, Proposition 17,
and the fact that if a state x1‖ . . . ‖xn is stochastically reachable in the composed I/O-
IMC (P1‖ . . . ‖Pn)\B then its constituent states x1, . . . , xn are stochastically reachable
in the relevant component I/O-IMCs.

134

5.8. DISCUSSION

5.8 Discussion

This section reviews the contributions of the chapter, and puts them in context of related
work.

The chapter has introduced I/O-IMCs as a combination of IOA and Markov chains
(or more precisely a combination of IOA and infinitesimal generator matrices). We
have defined parallel composition by combining the notion of parallel composition for
IOA and infinitesimal generator matrices. As for IOA, shared actions are synchronised
whereas different actions are interleaved. Markov transitions are always interleaved,
which matches the intuitive notion of composition for CTMCs discussed in Subsec-
tion 3.3.2. We have also lifted the notion of hiding from IOA to I/O-IMCs. We have
then discussed equivalences that can be used to characterize I/O-IMCs before finally
discussing the concepts of stochastic reachability and determinism, both of which are
highly relevant to later chapters.

5.8.1 Comparison to IMCs

I/O-IMCs are inspired by the IMCs of Hermanns [23]. IMCs are similar to I/O-IMCs
except that the visible actions of an IMC are not divided into input and output actions.
This means that synchronisation for IMCs is symmetric rather than asymmetric as is
the case for I/O-IMCs. We now discuss the differences between the two formalisms.
Any I/O-IMC can be interpreted as an IMC by simply ignoring whether visible actions
are input or output actions (since this distinction does not exist for IMCs). However, by
ignoring whether an action is an input or output action, states that are unstable in an
I/O-IMC because of an outgoing output transition may be stable in the corresponding
IMC.

Several results that hold for I/O-IMCs do not hold for IMCs. Most notably, stability
is affected by hiding for IMCs. A state may be stable in an IMC P and unstable in
the IMC P\B. As a result, stochastic reachability is not preserved by hiding for IMCs.
Similarly the modularity results for the enabledness of actions (Proposition 4) and for
fair traces (Theorems 11 and 12), which I/O-IMCs inherit from IOA, do not hold for
IMCs. This is rooted in our decision to base the I/O-IMC formalism on a linear-time
interactive formalism (IOA), while the IMC formalism is based on a branching-time
process algebra. On the other hand, I/O-IMCs are strictly less expressive than IMCs.
In particular, the fact that I/O-IMCs are based on asymmetric synchronisation means
that these cannot model blocking, i.e., two components mutually blocking the execution
of the other.

5.8.2 Comparison to Wu-PIOA

Although similar, I/O-IMCs are incomparable with Wu-PIOA [53]. Wu-PIOA are also
formed by combining Markovian delays and interactive transitions. However, for Wu-
PIOA every output transition is tied to exactly one exponential distribution, which is
not the case for I/O-IMCs, where an exponential distribution can be followed by zero or
more output transitions. On the other hand, Wu-PIOA allow interactive transitions to

135

CHAPTER 5. I/O-IMCS

be equipped with a discrete probability distributions, which is not possible for I/O-IMCs.
We will see in Chapter 9 that for the applications we have in mind, Wu-PIOA are too
restrictive, since we cannot guarantee the strict alternation between Markovian delays
and interactive transitions. In fact, many of the models used in Chapter 9 consist entirely
of interactive transitions. On the other hand, discrete probability distributions are not
strictly necessary for our purposes, although they may be an interesting enrichment for
I/O-IMCs. Finally, it should be noted that the strict interleaving of Markovian and
interactive transitions completely avoids the problem of non-determinism, which means
that all Wu-PIOA can be interpreted as CTMCs.

5.8.3 I/O-IMCs as a graph-based model

In this chapter we have succeeded in introducing I/O-IMCs as an orthogonal combination
of CTMCs and IOA, with the important side-note that we use the maximal progress
assumption to add a notion of time to IOA (in essence, we assume that interactive events
occur instantaneously, but in a particular order). As expected, the notion of parallel
composition arises naturally as a combination of the notions of composition for CTMCs
(see Section 3.3) and parallel composition for IOA (see Section 4.5).

In contrast to both preceeding chapters, however, we have stayed on the surface. In
Chapter 3 we showed that infinitesimal generator matrics can be interpreted as Markov
chains and in Chapter 4 we have seen that IOA can be interpreted as sets of fair reach-
traces. The underlying semantics of I/O-IMCs is the subject of Chapter 6. Crucially,
we will show that this modular semantics is sound with respect to parallel composition
(as is the case for IOA and CTMCs).

136

6
I/O-IMC behaviours

In Chapter 3 we have seen that a regular generator matrix has as its semantics a
continuous-time Markov chain, which is a specific kind of jump process, i.e., a stochas-
tic process that jumps from state to state at discrete time-points. Furthermore, if we
assume that two CTMCs are independent, then they can be combined in parallel in
a modular fashion. In Chapter 4 we have seen that IOA also have a modular and
compositionally-sound semantics in the form of sets of fair reach-traces. In Chapter 5
we have introduced the syntax of I/O-IMCs as an orthogonal combination of the syntax
of CTMCs and IOA.

In this chapter we aim to give a modular semantics to I/O-IMCs by combining the
semantics of CTMCs and IOA. This is a demanding endeavour. We will first show
that I/O-IMCs also describe jump processes, albeit jump processes with a twist. To
accommodate the interaction inherent in I/O-IMCs we will introduce interactive jump
processes, which are similar to standard jump processes, except that every jump is
annotated with a sequence of actions which denote the interactions that occur in that
jump. In a sense, each jump of the interactive jump process can be split into two parts:
a Markovian jump, and an interactive jump.

Contribution. This chapter establishes modularity results for the semantics of I/O-
IMCs. They are key for providing a simple, natural, and sound semantics to I/O-IMCs.
In particular, this chapter gives – for the first time – a concrete semantics for open
I/O-IMCs.

6.1 Interactive jump processes

We consider a countable, possibly infinite state space S and a set of actions A partitioned
into input (AI), output (AO), and internal (AH) actions. Let ⊥ denote a distinguished

137

CHAPTER 6. I/O-IMC BEHAVIOURS

state not in S as also used in Section 4.3. Let S⊥ denote the extended state space
S ∪ {⊥} and let LV denote the set of all finite sequences of visible actions, i.e.,

LV = (AI ∪AO)∗.

An interactive jump process is a stochastic process {X(t) | t ∈ R≥0} which has three
components. We have,

X(t) = 〈X
(t)
pre,W

(t),X
(t)
post〉.

The process X is constructed this way because at any point in time an instantaneous
interactive jump may occur. The stochastic process Xpre takes values in S⊥ and the

random variable X
(t)
pre describes the state of X before the interactive jump at time t. The

process Xpost is a jump process with state space S⊥, but X
(t)
post describes the state after

the interactive jump at time t. Finally, we have the stochastic process W which takes
values in LV . The random variable W (t) gives the names of the visible events associated
with the interactive jump at time t. Essentially, the stochastic process Xpost is a normal
jump process, while the stochastic processes Xpre andW are used to annotate the jumps

of Xpost. Note that, if there is no jump at time-point t, then we have X
(t)
pre = X

(t)
post and

W (t) = ǫ (the empty sequence).

Definition 67. Given a state space S and a set of actions A, a stable interactive jump

process is a triple X(t) = 〈X
(t)
pre,W

(t),X
(t)
post〉, t ∈ R≥0 taking values in S⊥ × LV × S⊥

such that

• Xpost is a stable jump process,

• Xpre is unequal to Xpost for at most countably many time-points, i.e., the set

{t | X
(t)
pre 6= X

(t)
post}

✞

✝

☎

✆6.1

is countable, and

• W is unequal to the empty sequence ǫ for at most countably many time-points, i.e.,
the set

{t | W (t) 6= ǫ}
✞

✝

☎

✆6.2

is countable.

We will not consider unstable interactive jump processes (i.e., where the jump process
Xpost is unstable).

As for Markov chains we will use the random variables {Ji | i ∈ N0} to denote the
jump-times of an interactive jump process X. We have J0 = 0 and for all i ∈ N

Ji = inf{t > Ji−1 | X
(t)
pre 6= X

(Ji−1)
post ∨W (t) 6= ǫ ∨X

(t)
post 6= X

(t)
pre}.

At each jump-time Ji, i ∈ N either a Markovian jump or an interactive jump or both
occur. A Markovian jump occurs whenever

X
(Ji)
pre 6= X

(Ji−1)
post .

138

6.2. PROBABILITY SPACE

We say this is a Markovian jump from X
(Ji−1)
post to X

(Ji)
pre . An interactive jump is indicated

by the fact that

W (Ji) 6= ǫ

or

X
(Ji)
post 6= X

(Ji)
pre .

We say this is an interactive jump from X
(Ji)
pre to X

(Ji)
post with trace W (Ji). Note that it is

possible that the stochastic process Xpost is unchanged by a jump, i.e., X
(Ji−1)
post = X

(Ji)
post.

It is important to note that the jumps of an interactive jump process indeed occur at
discrete time-points because of the requirements we place on the stochastic processes
Xpre, W , and Xpost.

For the sake of convenience, we will also use so-called “time-dependent” jump-times

J
(t)
i for i ∈ N0 and t ∈ R≥0. We have J

(t)
0 = t and J

(t)
i is the i-th jump-time after time

t, i.e.,

J
(t)
i = inf{s > J

(t)
i−1 | X

(s)
pre 6= X

(J
(t)
i−1)

post ∨W (t) 6= ǫ ∨X
(t)
post 6= X

(J
(t)
i−1)

post }.

In particular, we have J
(0)
i = Ji for all i ∈ N0. For a particular trajectory ω we write

Ji(ω) and J
(t)
i (ω) for the corresponding jump-times for ω.

The nature of a jump is mostly determined by Xpre. For a jump-time Ji we have that

the jump is Markovian if Xpre has a left-discontinuity at Ji, i.e., limt↑Ji X
(t)
pre 6= X

(Ji)
pre .

The jump is interactive if Xpre has a right-discontinuity at Ji, i.e., limt↓Ji X
(t)
pre 6= X

(Ji)
pre ,

or W is discontinuous at Ji, i.e., W
(Ji) 6= ǫ. If Xpre is both left- and right-discontinuous

at Ji (or left-discontinuous and W
(Ji) 6= ǫ) then there is a combined jump at Ji. We will

show some trajectories of an interactive jump process with the different kind of jumps
in Example 22.

We now consider a possible way of constructing a probability space for an interactive
jump process by enumerating the jumps of the process.

6.2 Probability space

In this section we will construct a probability space for a stable interactive jump process
with state space S and actions A. We describe a trajectory of this stable interactive jump
process by enumerating its jumps. This approach follows Freedman’s first construction
for the stable case [17] and is also widely used for the construction of probability measures
for CTMDPs [30]. The idea is to enumerate, for each jump, the jump time as well as the
resulting state of the system. Such a description is concise and can be equipped with
a probability measure by using the cross-product of standard probability measures [30].
The disadvantage of this approach is that it only describes the behaviour of the system
up to the time of first explosion. In particular, if the jump times converge to some finite
time-point T < ∞, then the enumeration of jumps does not tell us anything about the
behaviour of the system after time T . This is of course another incarnation of Zeno’s
paradox. We will follow Freedman and deal with this form of explosion in the same

139

CHAPTER 6. I/O-IMC BEHAVIOURS

way we dealt with time-divergence for IOA, by making it explicit. For any exploding
trajectory where the jump times converge to T < ∞ we will assume, that the system
occupies the distinguished state ⊥ for any time-point greater than or equal to T . As
we have done throughout this thesis, we will refer to ⊥ as the “time-divergence state”,
although we now use it to represent both time divergence as discussed by Hermanns [23]
and jump-time convergence as discussed above. Note that, whenever we talk about a
jump to the time-divergence state ⊥, this is always a case of time-divergence as discussed
by Hermanns. For the case that the jump-times converge, we cannot identify a particular
jump to ⊥, rather the process simply occupies ⊥ after the time of convergence T .

The trajectories of an interactive jump processes differ from the trajectories in a
jump process (such as a Markov chain) in that the jumps of an interactive jump process
consist of two parts: a Markovian jump and an interactive jump. Moreover, we associate
a sequence of actions from AV with each interactive jump.

Definition 68. Given a set of states S and a set of actions A, a finite timed path σ is
a finite sequence of states, sequences of visible actions, states, and jump-times, i.e. for
some i ∈ N,

σ ∈ S⊥ × LV × S⊥ × (R≥0 × S⊥ × LV × S⊥)
i.

An infinite timed path σ is an infinite sequence of states, sequences of visible actions,
states and jump-times, i.e.,

σ ∈ S⊥ × LV × S⊥ × (R≥0 × S⊥ × LV × S⊥)
ω.

We require that the sequence of jump-times is strictly increasing. The length of a timed
path equals the number of time-points in the path. For a finite timed path σ and a,
possibly infinite, timed-path σ′ such that the last triple of σ is equal to the first triple of
σ′ we write σ ◦ σ′ for the concatenation of both paths.

Given a timed path σ we write for an index i ∈ N, σt(i) for the i-th jump time of
σ. By convention we write σt(0) = 0 and σt(n + 1) = ∞ for a timed path of length
n ∈ N0. Similarly, we write σy(i) for the state after the i-th jump-time of σ, σw(i) for
the subsequent sequence of visible actions, and σz(i) for the subsequent state. In other
words we have,

σ = (σy(0), σw(0), σz(0), σt(1), σy(1), σw(1), σz(1), . . .).

We will now define a sigma-algebra over the set of all timed-paths for a set of states
S and a set of actions A in a similar way as is done for CTMDPs [30].

Finitely many jumps. Consider the case that the interactive jump process jumps
only n times for some n ∈ N0. The trajectory of the interactive jump process is then a
timed-path σ of length n. This means that after the n-th jump, the interactive jump
process remains in state last(σ) for ever.

140

6.2. PROBABILITY SPACE

Definition 69. Given a number of jumps n ∈ N0, the set of all timed paths with n
jumps is the set

Paths
(n)
S,A = S⊥ × LV × S⊥ × (R≥0 × S⊥ × LV × S⊥)

n.

The sigma-algebra F
(n)
S,A on Paths

(n)
S,A is the cross-product

F
(n)
S,A = FS⊥

×FLV ×FS⊥
×

n⊗

i=1

(FR≥0
×FS⊥

×FLV ×FS⊥
).

Here, FS⊥
and FLV are the standard sigma-algebras for discrete sets S⊥ respectively LV

and FR≥0
is the Borel-algebra over the positive reals.

We write FinPathsS,A for the set of all finite paths, i.e.,

FinPathsS,A =

∞⊎

n=0

Paths
(n)
S,A,

where A ⊎ B denotes the closure under complement and countable union of the union
of sets A and B. We then find the σ-algebra Ffin

S,A over the finite paths as the countable
union of the n-jump σ-algebras, i.e.,

Ffin
S,A =

∞⊎

n=0

F
(n)
S,A.

Infinitely many jumps. We now consider the case that the interactive jump process
jumps infinitely often.

Definition 70. The set of all timed paths of infinite length is the set

Paths
(∞)
S,A = S⊥ ×LV × S⊥ × (R≥0 × S⊥ ×LV × S⊥)

ω.

Given a measurable set H of finite timed-paths of length n ∈ N0, i.e., H ⊂ F
(n)
S,A,

the cylinder-set of H is the set of infinite paths CH where each infinite path in CH is
prefixed by a finite path in H, i.e.,

CH = {σ ∈ Paths
(∞)
S,A | ∃σ′ ∈ H,σ′′ ∈ Paths

(∞)
S,A · σ = σ′ ◦ σ′′}.

The σ-algebra F inf
S,A is the minimal σ-algebra generated by the cylinders of the measurable

sets of finite paths in Ffin
S,A.

We now find the σ-algebra FS,A for all timed paths as the union of the σ-algebras
for finite and infinite paths.

FS,A = Ffin
S,A ⊎ F inf

S,A.

141

CHAPTER 6. I/O-IMC BEHAVIOURS

Note that FS,A also contains sets of timed paths where the jump-times are not strictly
increasing. However, we assume that such sets always have measure zero.

We will now connect the timed-paths described above to trajectories of a stable
interactive jump process X. A trajectory ω of X is a function from the time-domain
R≥0 to triples in S⊥×LV ×S⊥. The idea is to check, for any time-point t what the last
jump was before t. The state of the I/O-IMC is then simply the state resulting from
that last jump. In other words, we find for a timed path σ the index i such that

σt(i) ≤ t < σt(i+ 1).

Here we assume that the path σ has strictly increasing jump-times. Now, it becomes
clear that time-convergence is a problem. If, for some infinitely long timed path we have

lim
i→∞

σt(i) = T

for some finite T ∈ R≥0, then the state of the system after time T is not defined by
the timed path. For such time-convergent paths (in which the sequence of jump-times
converges) we fix that, for all timed-point t greater or equal than the limit T we have that
the interactive jump process occupies the distinguished state ⊥. The same approach is
used by Freedman in his first construction for the stable case [17]. With this convention
we are ready to connect timed paths to trajectories of a stable interactive jump process.
Recall that for a finite timed path of length n we assume σt(n+ 1) = ∞.

Definition 71. A timed-path σ ∈ PathsS,A (either finite or infinite), with strictly in-
creasing jump times fully describes a trajectory ω : R≥0 → S⊥ ×LV ×S⊥ of a stable in-
teractive jump process X with state space S and actions A. For any time-point t ∈ R≥0,
we have

ω(t) = (y,w, z),

where

y =

σy(i), if σt(i) = t,
σz(i), if σt(i) < t < σt(i+ 1),
⊥, if limi→∞ σt(i) ≤ t,

w =

{
σw(i), if σt(i) = t,
ǫ, otherwise,

and,

z =

{
σz(i), if σt(i) ≤ t < σt(i+ 1),
⊥, if limi→∞ σt(i) ≤ t.

It is important to note that the sample paths of Xpost are right-continuous (as we
would expect for a stable jump process), but the sample paths of Xpre and W may be
discontinuous at countably many time-points. This matches exactly the requirements
of Definition 67.

142

6.2. PROBABILITY SPACE

Example 22. We now consider what a trajectory for the I/O-IMC from Example 17
(the repairable component) may look like. Imagine the following course of events: at
first, the component is in good working order. Then, after five hours of running time the
component breaks down, causing a “fail” event. After another two hours, a repairman
manages to repair the component which is accompanied by a “repair” event. Immediately
afterwards a “recover” event signifies that the component is up and running again. This
scenario is described by the (partial) timed-path,

σt(0) = 0, σy(0) = up, σw(0) = ǫ, σz(0) = up

σt(1) = 5, σy(1) = failing, σw(1) = (fail), σz(1) = down

σt(2) = 7, σy(2) = down, σw(2) = (repair , recover), σz(2) = up

. . .

Figure 6.1 shows the trajectory that describes the above scenario. Let’s look at the first
jump in detail. For a small time-interval h > 0 we have that before the jump, at time
5− h,

X
(5−h)
pre = X

(5−h)
post = up,W (5−h) = ǫ.

At time t = 5 our jump occurs. First we have the Markovian jump from up to
failing, signified by

X
(5)
pre = failing,

and then the interactive jump to down with a “fail” event, signified by

X
(5)
post = down,W (5) = fail .

Afterwards we stay in state down for some time. We find

X
(5+h)
pre = X

(5+h)
post = down,W (5+h) = ǫ.

Measurability of important events. We now show that several important events
of a stable interactive jump process X are indeed measurable in the probability space
that we have just constructed. First, we show that the probability of observing a par-
ticular interactive jump can be measured. Secondly, we will see that also the timing
of such a jump can be measured for any time-interval in the Borel-algebra on positive
reals. Finally, we will use these events to compute the probability that Xpost occupies
a particular state at a particular time-point. Note that we will leave the choice of an
actual probability measure for later. For now, it is enough to know that, even though
I/O-IMCs are non-deterministic, an interactive jump process has a single probability
measure. We will see in Section 6.3 that the non-determinism of an I/O-IMC will be
represented by the fact that one I/O-IMC may have many different interactive jump
processes as its semantics (similar to the way the semantics of an IOA is represented by
a choice between different reach-traces).

143

CHAPTER 6. I/O-IMC BEHAVIOURS

t

X
(t)
pre

up

failing

down

recovering

t

W (t)

ǫ

fail

repair ◦ recover

t

X
(t)
post

up

failing

down

recovering

Figure 6.1: Example of a trajectory for the I/O-IMC of a repairable component.

144

6.2. PROBABILITY SPACE

Definition 72. Given a state space S, a set of actions A, and a probability space
(Ω,F ,P) such that Ω = PathsS,A, let X be a stable interactive jump process with state
space S and actions A. We will use the notation Pr(. . .) for the probability of a certain
event of X. E.g., we write

Pr(X(0) = (y,w, z)) ≡ P({σ ∈ PathsS,A | σy(0) = y, σw(0) = w, σz(0) = z})

for the probability that X
(0)
pre equals y, W (0) equals w, and X

(0)
post equals z for a pair of

states y, z ∈ S⊥ and a sequence w ∈ LV . Of course, we will only use this notation for
events that are measurable in the probability space.

We will use a slight modification of the cylinder-set construction introduced in Def-
inition 70. Given a measurable subset of finite paths H ∈ Ffin

S,A we consider the set C ′
H

of all finite or infinite paths, that have a prefix in H, i.e.,

C ′
H = {σ ∈ Paths

(∞)
S,A | ∃σ′ ∈ H,σ′′ ∈ Paths

(∞)
S,A · σ = σ′ ◦ σ′′}

∪ {σ ∈ FinPathsS,A | ∃σ′ ∈ H,σ′′ ∈ FinPathsS,A · σ = σ′ ◦ σ′′}.

It is easy to see that all such extended cylinder sets are in FS,A.

Proposition 18. Given a stable interactive jump process X with state space S, actions
A, and a probability space (PathsS,A,FS,A,P) on the timed-paths of X, where P is an
arbitrary probability function on FS,A, the following events are measurable.

1. For any jump-index i, states xi, yi ∈ S⊥, and sequence wi ∈ LV , the set of paths
where the i-th interactive jump starts in xi, ends in yi and has sequence wi,

{ω | X(Ji)(ω) = (xi, wi, yi)}

is measurable.

2. For any time-points t, s ∈ R≥0 we have, that the set of paths where the first jump
after time t occurs before time t+ s,

{ω | J
(t)
1 (ω) ≤ t+ s},

is measurable.

3. For any time-point t ∈ R≥0 and any state x ∈ S⊥ we have, that the set of paths
where the stochastic process Xpost occupies state x at time t,

{ω | X
(t)
post = x},

is measurable.

The proof of Proposition 18 can be found in Appendix A.1.1.
Of course, any countable conjunctions or disjunctions of the above events are also

measurable. Note that there are possibly other ways of defining a probability measure
for interactive jump processes. The results in the following subsections do not rely on
our particular choice of probability measure, but it is important that the probabilities
in Proposition 18 are indeed measurable.

145

CHAPTER 6. I/O-IMC BEHAVIOURS

6.3 I/O-IMC behaviour

In the previous section we have constructed a σ-algebra for the trajectories of a sta-
ble interactive jump process. In this section we will show how the initial distribution,
interactive transition relation, and Markovian transition relation of an I/O-IMC re-
strict the probability function over this σ-algebra. Recall that although I/O-IMCs are
non-deterministic, a single interactive jump process is in fact deterministic. The non-
determinism of an I/O-IMC is illustrated by the fact that many different interactive
jump process may represent the semantics of one I/O-IMC. The choice between these
different possible interactive jump processes then represents the non-determinism of an
I/O-IMC in the same way that the non-determinism of an IOA is represented by the
choice between different reach-trace semantics.

In essence, we will given conditions on an interactive jump process such that it is a
behaviour of an I/O-IMC P . The Markovian jumps of such a behaviour must follow the
Markovian transitions of P (in the same way as the infinitesimal jump probabilities of
a Markov chain must obey its infinitesimal generator) and the interactive jumps must
follow the fair reach-traces of P , which are determined by the interactive transition
relation (as for IOA). For a state x ∈ S we use the short-hand notation FairRT (x) to
denote the set of fair reach-traces of the IOA rooted at x, i.e.,

FairRT (x) = FairRT (IOA(x)).

By definition we have FairRT (⊥) = {(ǫ,⊥)}. Note that the conditions in the following
definition do not completely determine the probability measure of an interactive jump
process. In fact, they generally cannot since I/O-IMCs are non-deterministic and many
different interactive jump processes will generally satisfy these conditions for any one
I/O-IMC.

Definition 73. Given an I/O-IMC P = 〈S,A,RI , RM , α〉, a stable interactive jump

process {X(t) = 〈X
(t)
pre,W (t),X

(t)
post〉 | t ∈ R≥0} taking values on S⊥ × LV × S⊥ is a

behaviour of P if and only if it satisfies the following conditions.

1. The distribution of Xpre at time 0 is given by α. For all states x ∈ S we have

Pr(X
(0)
pre = x) = αx.

✞

✝

☎

✆6.3

2. Only interactive jumps that correspond to fair reach-traces have strictly positive
probability. Given a jump-index i ∈ N0, states y, z ∈ S⊥, and a sequence w ∈ LV ,

such that Pr(X
(Ji)
pre = y) > 0, we have

Pr(X
(Ji)
post = z,W (Ji) = w | X

(Ji)
pre = y) > 0

implies (w, z) ∈ FairRT (y).
✞

✝

☎

✆6.4

3. The infinitesimal Markovian jump probabilities follow the Markovian transition
relation. For two distinct states x, y ∈ S⊥, a time-point t ∈ R≥0, such that

146

6.3. I/O-IMC BEHAVIOUR

Pr(X
(t)
post = x) > 0, and a time-interval h > 0 we have

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x) = qxyh+ o(h).

✞

✝

☎

✆6.5

Furthermore, we have that the probability of two jumps occurring is o(h), i.e.,

Pr(J
(t)
2 ≤ t+ h | X

(t)
post = x) = o(h).

✞

✝

☎

✆6.6

4. The probability that a Markovian jump occurs in time-interval [t, t+h] is “indepen-
dent up to o(h)” of the behaviour of X before time t and the (possible) interactive
jump at t. For time-points t, t+h ∈ R≥0 and indices i1, . . . , in ∈ N0, a sequence of
time-points 0 < s1, t1, . . . , sn, tn ≤ t, states y1, z1, . . . , yn, zn, x, y ∈ S⊥, and action
sequences w1, . . . , wn ∈ LV , we have

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x,

Ji1 ∈ (s1, t1],X
(Ji1) = (y1, w1, z1), . . . ,

Jin ∈ (sn, tn],X
(Jin) = (yn, wn, zn)) =

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x) + o(h).

✞

✝

☎

✆6.7

We further require that
✞

✝

☎

✆6.7 also holds for stopping times of X. Recall that a
random variable T is a stopping time if its value depends only on the trajectory of
X up to T . Crucially, the jump times of X are stopping times.

We denote the set of all behaviours of P as TrP .

Example 23. Consider again the I/O-IMC from Example 17. We will construct an
interactive jump process X = (Xpre,W,Xpost) which is a behaviour of this I/O-IMC.
The state space of X is given by the states of the I/O-IMC:

S = {up, failing,down, recovering}

and the visual language is given by the visible actions of the I/O-IMC:

LV = {repair, fail, recover}.

The initial distribution of X follows that of the I/O-IMC:

Pr(X
(0)
pre = x) =

{
1, if x = up,
0, otherwise.

147

CHAPTER 6. I/O-IMC BEHAVIOURS

We now choose the following transition probabilities for X:

Pr(X
(Ji)
post = down,W (Ji) = 〈fail〉 | X

(Ji)
pre = failing) = 1

Pr(X
(Ji)
post = up,W (Ji) = 〈repair, recover〉 | X

(Ji)
pre = down) = 1

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = failing | X
(t)
post = up) = λh+ o(h)

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre 6= failing | X
(t)
post = up) = o(h)

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = down | X
(t)
post = down) = µh+ o(h)

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre 6= down | X
(t)
post = down) = +o(h),

for all i ∈ N, t, h ∈ R, and h > 0. Furthermore, X satisfies both condition
✞

✝

☎

✆6.6 and

condition
✞

✝

☎

✆6.7 (i.e., the probability of two jumps occurring is o(h) and Markovian jumps
are memoryless). Lastly, we decide that the first two (interactive jump) probabilities are
also memoryless (i.e., they are independent of events that occur before Ji).

It’s easy to show that X satisfies the conditions of Definition 73 and is thus a be-
haviour of the I/O-IMC from Example 17. Let’s have a closer look at the jump process
Xpost. In particular, let’s investigate its infinitesimal jump probabilities:

Pr(X
(t+h)
post = down | X

(t)
post = up)

Since X
(t+h)
post is different than X

(t)
post there must have been a jump between t and t+h. We

now make use of the fact that the probability that 2 jumps happens in that time-period
is o(h) to find that the above equals

∑

w∈LV

∑

y∈S

Pr(X
(J1)
post = down,W (J1) = w, J

(t)
1 ,X

(J1)
pre = y ≤ t+h | X

(t)
post = up) + o(h).

The term o(h) represents the possibility of two jumps happening in the time-period (t, t+
h]. We can rewrite the above as

∑

w∈LV

∑

y∈S

Pr(X
(J1)
post = down,W (J1) = w | J

(t)
1 ≤ t+h,X

(J1)
pre = y,X

(t)
post = up)

· Pr(J
(t)
1 ≤ t+h,X

(J1)
pre = y | X

(t)
post = up) + o(h).

Applying the fact that we choose our interactive jump probabilities to be memoryless we
find that this equals

∑

w∈LV

∑

y∈S

Pr(X
(J1)
post = down,W (J1) = w | X

(J1)
pre = y)

· Pr(J
(t)
1 ≤ t+h,X

(J1)
pre = y | X

(t)
post = up) + o(h).

If we now fill in the actual probabilities that we’ve chosen, we will see that the product
inside our sum is zero (or o(h)) in all cases except when w = fail and y = failing. We

148

6.3. I/O-IMC BEHAVIOUR

then find

Pr(X
(J1)
post = down,W (J1) = 〈fail〉 | X

(J1)
pre = failing)

· Pr(J
(t)
1 ≤ t+h,X

(J1)
pre = failing | X

(t)
post = up) + o(h)

= λh+ o(h).

Similarly we find

Pr(X
(t+h)
post = up | X

(t)
post = down) = µh+ o(h).

In fact, we will see in Section 9.3 that the Xpost component of our interactive jump
process is a continuous-time Markov chain which jumps between states up and down

after exponential delays with rates λ and µ respectively. It is important to note here that
the jump process Xpost is not always a continuous-time Markov chain. In particular,
there are behaviours of I/O-IMCs for which Xpost is not memoryless.

We now derive several more useful properties for a behaviour X of an I/O-IMC P
as in Definition 73. From

✞

✝

☎

✆6.3 it follows that

Pr(X
(0)
pre = ⊥) = 0.

✞

✝

☎

✆6.8

From
✞

✝

☎

✆6.5 we can derive that for any time-point t ∈ R≥0, any time-length h > 0, and
any state x ∈ S⊥, we have

Pr(J
(t)
1 > t+ h ∨X

(J
(t)
1)

pre = x | X
(t)
post = x) = 1− qxh+ o(h).

✞

✝

☎

✆6.9

Note that the event X
(t)
post = X

(J
(t)
1)

pre denotes that the first jump after time t is non-

Markovian. Then,
✞

✝

☎

✆6.9 states that the probability that no Markovian jump occurs in h
time-units is 1− qxh+ o(h).

Finally, it follows from
✞

✝

☎

✆6.7 that for time-points t, t+h ∈ R≥0 and indices i1, . . . , in ∈
N0, a sequence of time-points 0 < s1, t1, . . . , sn, tn ≤ t, states y1, z1, . . . , yn, zn, x ∈ S⊥,
and action sequences w1, . . . , wn ∈ LV , we have

Pr(J
(t)
1 > t+ h ∨X

(J
(t)
1)

pre = x | X
(t)
post = x,

Ji1 ∈ (s1, t1],X
(Ji1) = (y1, w1, z1), . . . ,

Jin ∈ (sn, tn],X
(Jin) = (yn, wn, zn)) =

Pr(J
(t)
1 > t+ h ∨X

(J
(t)
1)

pre = x | X
(t)
post = x) + o(h).

✞

✝

☎

✆6.10

Again we have that
✞

✝

☎

✆6.10 also holds for stopping times of X.

149

CHAPTER 6. I/O-IMC BEHAVIOURS

Time-divergence. Since the pair 〈ǫ,⊥〉 is a fair reach-trace of every IOA, we have
that any behaviour of an I/O-IMC can move to the time-divergence state ⊥ at any
time. As for IOA, we can make the distinction between external time-divergence and
local time-divergence. For any interactive jump from a state y ∈ S to ⊥ with trace w,
we say that it is locally time-divergent if we can interactively reach a divergent state z
in IOA(y) via a trace w. Otherwise, the jump is externally time-divergent. We say a
behaviour of an I/O-IMC is non-divergent if it makes an externally time-divergent jump
with probability zero.

Definition 74. A behaviour X(t) = (X
(t)
pre,W (t),X

(t)
post) of P is non-divergent if for all

jump-indices i ∈ N0 and all states x ∈ S we have that Pr(X
(Ji)
post = ⊥ | X

(Ji)
pre = x) > 0

implies that there exists a divergent state y ∈ S such that y is reachable from x through
a sequence of interactive transitions. In other words, whenever there is an interactive
jump from a state x to ⊥ we have that x can interactively reach some divergent state.

Stability of Xpost. We consider a behaviour X(t) = (X
(t)
pre,W

(t),X
(t)
post) of the I/O-IMC

P and we focus our attention on the stochastic process Xpost, which denotes the state of
the I/O-IMC at every time-point. First, we have that this stochastic process occupies
a stable state (which could be ⊥) with probability one for any time-point smaller than
the explosion time J∞.

Proposition 19. For any time-point t ∈ R≥0 we have

Pr(X
(t)
post ∈ Ss ∪ {⊥} | J∞ > t) = 1.

The proof of Proposition 19 can be found in Appendix A.1.2.
Of course, if we assume that Xpost occupies state ⊥ after J∞, as we did in our

construction of the probability space for interactive jump processes in, then we can drop
the condition to find

Pr(X
(t)
post ∈ Ss ∪ {⊥}) = 1,

for any t ∈ R≥0.

6.4 Schedulers

As we did for Markov chains, we would like to derive the finite-jump probabilities for an
I/O-IMC behaviour. However, it is clear that it is not enough to know the Markovian
jump probabilities

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x), x, y ∈ S⊥, x 6= y, t ∈ R≥0, h ∈ R>0

which are defined – up to o(h) – by
✞

✝

☎

✆6.5 , but we must also know the interactive jump
probabilities,

Pr(X
(Ji)
post = z,W (Ji) = w | X

(Ji)
pre = y), x, y ∈ S⊥, i ∈ N0,

150

6.4. SCHEDULERS

which are restricted by
✞

✝

☎

✆6.4 , and the external jump probabilities

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = x | X
(t)
post = x), x ∈ S⊥, t, t+ h ∈ R≥0,

which are not restricted at all. Furthermore, we have that the Markovian jump prob-
abilities enjoy the Markov property – again up to o(h) – because of requirement

✞

✝

☎

✆6.7 ,
i.e., these probabilities are independent of the past of the behaviour. Unfortunately,
we have no reason to assume that the interactive jump probabilities and external jump
probabilities are independent of the past. To make it easier to discuss these probabilities
which may depend on the past we will now introduce the history process of a behaviour,
which records the states and transitions the interactive jump process has visited up until
a particular time-point.

6.4.1 History process

Consider a behaviour X of an I/O-IMC P with probability space (PathsS,A,FS,A,P)
as defined in Section 6.2. We now derive the stochastic process {Z(t), t ∈ R≥0} which
records all of the jumps of X up to time t, i.e.,

Z(t) =

{
X(J0) ◦ (J1) ◦X

(J1) ◦ . . . (Jn) ◦X
(Jn), if Jn ≤ t < Jn+1,

⊥, if J∞ ≤ t.

Recall that if X makes only n jumps then Jn+1 equals infinity by definition. For t = 0
we find Z(0) = X(0). The stochastic process Z then takes values in FinPathsS,A ∪ {⊥}
and we are then dealing with a stochastic process with a continuous state space. Since
Z has a continuous state space we can only consider the probability that Z occupies
a measurable set of states at a certain time. We will use the sigma-algebra generated
by extending Ffin with the set {⊥} to measure sets of states of Z. For instance, the
probability

Pr(Z(t) ∈ {x0} × {w0} × {y0} × (3, 5] × {x1} × {ǫ} × {x1})

is the probability that X starts in state x0, immediately jumps to state y0 via trace w0,
then stays in state y0 between 3 and 5 time-units before jumping to state x1 and staying
there until time t. It is clear that this event is indeed measurable.

Before we derive the finite jump probabilities of the stochastic process Z, we first
introduce some notation. Consider a time-point t ∈ R≥0, a finite timed-path of length
n ∈ N

σ = (x0, w0, y0, t1, x1, w1, y1, . . . , tn, xn, wn, yn)

such that tn < t, and a sequence of time-intervals h1, . . . , hn > 0. We are interested
in the event that the jump-times of X occur “near” the time-points t1, . . . , tn, i.e., the
event

Z(t) ∈ dσ,

where

dσ = {(x0, w0, y0, s1, x1, w1, y1, . . .) | s1 ∈ (t1, t1 + h1], . . . , sn ∈ (tn, tn + hn)}.

151

CHAPTER 6. I/O-IMC BEHAVIOURS

Obviously this event is measurable for any choice of the intervals h1, . . . , hn. Now, let
H be any measurable event that restricts only the jumps and jump-times after the n-th
jump of X. E.g., we could have

H = {σ′ | σ′t(n+ 1) ∈ [12.4, 14.6]}

describing the fact that the n + 1-jump of X occurs between times 12.4 and 14.6. We
now make the following important assumption that the limit

lim
h1→0

· · · lim
hn→0

Pr(Z(u) ∈ H | Z(t) ∈ dσ)

exists for all u > t. By abuse of notation we will denote this limit as

Pr(Z(u) ∈ H | Z(t) = σ).
✞

✝

☎

✆6.11

A similar assumption is made by Doob when considering Markov chains with continuous
state spaces [16]. The conditional probability in

✞

✝

☎

✆6.11 can be interpreted as follows given
that we know the transition function of X: consider a stochastic process that starts at
time t and fix its history up to time t to be exactly the timed path σ. Then allow this
stochastic process to evolve according to the probability function of X. The conditional
probability in

✞

✝

☎

✆6.11 is then exactly the probability that this new stochastic process
behaves according to the set of paths H.

We now define the following function: p : R≥0 × PathsS,A × R≥0 × FS,A → [0, 1]
where

p(s, σ, u,H) = Pr(Z(u) ∈ H | Z(s) = σ).

Note that for the function p we allow arbitrary sets of timed paths H, but any set of path
in H that does not conform to the prefix σ will obviously have conditional probability
zero. We make the further assumptions that

• p(s, ·, u,H) is a Borel-measurable function for fixed s, u, H, and

• p(s, σ, u, ·) is a probability measure on FS,A for fixed s, σ, u.

For any time-points s < t < u, timed-path σ, and measurable set of timed-paths H we
have

p(s, σ, u,H)

= Pr(H(u) ∈ H | H(s) = σ)

=

∫

PathsS,A

Pr(H(u) ∈ H,H(t) ∈ dσ′ | H(s) = σ)

=

∫

PathsS,A

Pr(H(u) ∈ H | H(t)=σ′,H(s)=σ) Pr(H(t)∈dσ′ | H(s) =σ),

where Pr(H(u) ∈ H | H(t)=σ′,H(s)=σ) is the obvious extension of
✞

✝

☎

✆6.11 and we take
the Lebesgue integral. That is, we select a value c ∈ [0, 1], find the measurable set of

152

6.4. SCHEDULERS

timed-paths dσ′ such that Pr(H(u) ∈ H, | H(t) = σ′,H(s) = σ) = c for all σ′ ∈ dσ′. The
timed path σ′ is then simply an arbitrarily chosen representative of the set dσ′. Now,
if the path σ is not a prefix of σ′ then the probability Pr(H(t) ∈ dσ′ | H(s) = σ) must
be zero. If, on the other hand, the path σ is a prefix of σ′ then we have that H(t) = σ′

implies H(s) = σ. We the find that the above can be simplified to

=

∫

PathsS,A

Pr(H(u) ∈ H | H(t) = σ′) Pr(H(t) ∈ dσ′ | H(s) = σ)

=

∫

PathsS,A

p(t, σ′, u,H)p(s, σ, t, dσ′).

In short we have shown that

p(s, σ, u,H) =

∫

PathsS,A

p(t, σ′, u,H)p(s, σ, t, dσ′),

which is the Kolmogorov equation for Markov processes with continuous state spaces.
We have now shown that the function p is in fact a Markov transition function as defined
by Doob [16]. As a consequence we have that Z is a Markov process with a continuous
state space and we will now attempt to derive finite-jump probabilities for Z as we have
done for Markov chains with a countable state space.

6.4.2 Schedulers

In order to find the finite-jump probabilities of Z we must fix the interactive jump
probabilities and external jump probabilities for the behaviour X. Since these proba-
bilities may not enjoy the Markov property they may depend on the history of X. We
now introduce schedulers which assign, for each possible history of X, interactive jump
probabilities and external jump probabilities.

An interactive jump scheduler simply determines which reach-trace is chosen after
traversing a path σ ∈ FinPathsS,A and then making a Markovian jump to state y (or
an external jump while occupying state y) at a time-point t.

Definition 75. Given an I/O-IMC P , an interactive jump scheduler is a function
f : {ǫ} ∪ FinPathsS,A × R≥0 × S⊥ × LV × S⊥ → [0, 1] such that

1. f(·, ·, ·, w, y) is a Borel-measurable function for fixed w ∈ LV and y ∈ S⊥,

2. f(σ, t, x, ·, ·) is a probability function on LV × S⊥ for fixed σ ∈ {ǫ} ∪ FinPathsS,A,
t ∈ R≥0, and x ∈ S⊥, and

3. For any σ ∈ {ǫ} ∪ FinPathsS,A, t ∈ R≥0, x, y ∈ S⊥, and w ∈ LV we have
f(σ, t, x, w, y) > 0 implies (w, y) ∈ FairRT (x).

To emphasize that we will usually fix the first three arguments of the function f and use
it as a probability function on LV × S⊥. We use the notation

γ(t)σ,x(w, y) ≡ f(σ, t, x, w, y),

for σ ∈ {ǫ} ∪ FinPathsS,A, t ∈ R≥0, x, y ∈ S⊥, and w ∈ LV .

153

CHAPTER 6. I/O-IMC BEHAVIOURS

The probability function γ
(t)
σ,x describes the probability of performing different inter-

active jumps at time t under the condition that the interactive jump process followed
path σ and made a Markovian jump to state x at time t (or an external jump when
already in state x). In this sense, the interactive jump scheduler place a very similar
role to the schedulers used for CTMDPs as we will see in Section 7.4. Every behaviour
of an I/O-IMC P is associated with an interactive jump scheduler.

Definition 76. If we have for a behaviour X of P and the corresponding history process
Z that, for any finite timed path σ ∈ FinPathsS,A, time-point t ∈ R≥0, states x, y ∈ S⊥,
and sequence w ∈ LV ,

Pr(X(Jn+1) = (x,w, y) | Z(Jn) = σ, Jn+1 = t,X
(Jn+1)
pre = x) = γ(t)σ,x(w, y),

✞

✝

☎

✆6.12

where this conditional probability is defined in the same way as
✞

✝

☎

✆6.11 , and

Pr(X(J0) = (x,w, y) | X
(J0)
pre = x) = γ(0)ǫ,x (w, y),

✞

✝

☎

✆6.13

then we say that γ is the interactive jump scheduler of behaviour X.

Note, that for a path σ and time-point t, the probability function γ
(t)
σ,last(σ) determines

the interactive jump probabilities for the case that an external jump occurs at time t.

The probability function γ
(0)
ǫ,x determines the interactive jump probabilities for the case

that the behaviour starts in state x. Of course the interactive jump scheduler of a
behaviour is restricted by the interactive transition relation of the associated I/O-IMC,
due to requirements

✞

✝

☎

✆6.4 and
✞

✝

☎

✆6.12 .
For the external jump probabilities we will make the following crucial assumption,

that the probability of an external jump occurring in a small time-interval (t, t + h] is
proportionate to h (as is the case for Markovian jumps). The external jump scheduler
then gives us the “rate” at which an external jump occurs after a particular path and
at a particular time.

Definition 77. Given an I/O-IMC P , an external jump scheduler is a Borel-measurable
function f : FinPathsS,A × R≥0 → R≥0. We will use the notation

η(t)σ ≡ f(σ, t).

Additionally, if for a behaviour X of P and the corresponding history process Z, we
have that, for any finite timed path σ ∈ FinPathsS,A and time-points t < t+ h ∈ R≥0,

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = last(σ) | Z(t) = σ) = η(t)σ h+ o(h)
✞

✝

☎

✆6.14

then we say that η is the external jump scheduler of X.

Note that a behaviour X of I/O-IMC P need not have an external jump scheduler,
as Definition 73 does not require the external jump probability to be proportionate to
the time-interval. However, for non-divergent behaviours of closed I/O-IMCs we have
that they always have an external jump scheduler, namely one that assigns rate zero to
every timed path.

154

6.4. SCHEDULERS

Example 24. Consider again the simple 4-state I/O-IMC from Example 17 and its
behaviour X which we introduced in Example 23. We will now show that the behaviour
X indeed has both an interactive jump scheduler as well as an external jump scheduler.
For the interactive jump scheduler we have

γ(t)σ,x(w, y) =

1, if x = failing, w = 〈fail〉, y = d,
1, if x = down, w = 〈repair, recover〉, y = UP,
0, otherwise.

For the external jump scheduler we have

η(t)σ =

{
µ, if last(σ) = down,
0, otherwise.

We can see that both schedulers are memoryless, in that they do not consider the history
of X when resolving the non-deterministic choices.

6.4.3 Finite-jump probabilities

We now consider a behaviour X of I/O-IMC P , with interactive jump scheduler γ and
external jump scheduler η and the associated history process Z. We will show that
the finite-jump probabilities of X (or rather of the history process Z) are completely
determined by the initial distribution α of P , the infinitesimal generator matrix Q of
P , the interactive jump scheduler γ, which is restricted by the interactive transition
relation of P , and the external jump scheduler η, which – in a sense – is provided by the
environment of P . As for Markov chains, our first step is to determine the distribution
of the residence time. However, instead of computing the residence time distribution per
state, we will compute the residence time distribution of X given that X has followed a
particular timed path.

Lemma 16. Given a jump-index n ∈ N0, a state x ∈ S⊥, a finite timed path σ ∈

Paths
(n)
S,A, such that last(σ) = x and Pr(Z(Jn) = dσ) > 0, and any time-point t ∈ R≥0,

we have

Pr(Jn+1 > t | Z(Jn) = σ) =

{

e
−

∫ t
σt(n)(qx+η

(s)
σ)ds

, if σt(n) < t
1, otherwise.

✞

✝

☎

✆6.15

Recall that σt(n) is the n-th jump-time of σ.

The proof of Lemma 16 can be found in Appendix A.1.3. We can see that the
residence time for an I/O-IMC behaviour is exponentially distributed just as it is for
CTMCs. However, in our case the rate of the residence distribution is equal to the sum
of the exit-rate qx and the external jump rate (which may depend on the time of the
jump), because X can make a jump both because of a Markovian jump and because of
an external jump.

Now we are ready to compute the finite-jump probabilities of a behaviour, given that
we know its interactive jump scheduler and its external jump scheduler.

155

CHAPTER 6. I/O-IMC BEHAVIOURS

Theorem 35. Given a behaviour X (with history process Z) of I/O-IMC P with inter-
active jump scheduler γ and external jump scheduler η, we find for states x, y ∈ S⊥ and
a sequence of actions w ∈ LV , that

Pr(Z(J0) = (x,w, y)) = αxγ
(0)
ǫ,x (w, y)

✞

✝

☎

✆6.16

and for a measurable set of timed paths of length n ∈ N, Hn ∈ Paths
(n)
S,A, states y, z ∈ S⊥,

and a sequence of actions w ∈ LV , we find that

Pr(Z(Jn+1) ∈ Hn × (t1, t2]× {y} × {w} × {z})

=

∫ t2

t1

∫

σ∈Hn
σt(n)<t

σz(n)=x 6=y

Pr(Z(Jn) ∈ dσ)e
−

∫ t
σt(n)(qx+η

(s)
σ)ds

qx,yγ
(t)
σ,y(w, z)

+

∫

σ∈Hn
σt(n)<t
σz(n)=y

Pr(Z(Jn) ∈ dσ)e
−

∫ t
σt(n)(qy+η

(s)
σ)ds

η(t)σ γ(t)σ,y(w, z)

 dt.

✞

✝

☎

✆6.17

Recall that σz(n) is the last state of σ, since it has length n.

The proof of Theorem 35 can be found in Appendix A.1.4. Equation
✞

✝

☎

✆6.17 is some-
what similar to Equation 3.28 which we derived for CTMCs in Chapter 3. The first
term represents the probability of following a path in Hn and then making a Markovian
jump ending up in z:

∫ t2

t1

∫

σ∈Hn
σt(n)<t

σz(n)=x 6=y

Pr(Z(Jn) ∈ dσ)
︸ ︷︷ ︸

traverse path σ
ending in x

e
−

∫ t
σt(n)(qx+η

(s)
σ)ds

︸ ︷︷ ︸

stay in x
until t

qx,y
︸︷︷︸

Markovian jump
from x to y

γ(t)σ,y(w, z)
︸ ︷︷ ︸

interactive jump
to z with trace w

dt.

The second term represent the probability of following a path in Hn and then making
an external jump to z:

∫ t2

t1

∫

σ∈Hn
σt(n)<t
σz(n)=y

Pr(Z(Jn) ∈ dσ)
︸ ︷︷ ︸

traverse path σ
ending in y

e
−

∫ t
σt(n)

(qy+η
(s)
σ)ds

︸ ︷︷ ︸

stay in y
until t

η(t)σ
︸︷︷︸

External jump
at time t

γ(t)σ,y(w, z)
︸ ︷︷ ︸

interactive jump
to z with trace w

dt.

Any measurable set of timed paths of length n+1, that is not of the form described
by the left-hand side of Equation 6.17 can be described as the countable disjoint union
of a number of measurable sets of paths of this form. Theorem 35 then gives us the
means to recursively compute all measurable finite-jump probabilities of history process
Z. However, Equation

✞

✝

☎

✆6.17 describes the probability of observing a set of paths at the
time of their last jump, not at any arbitrary time-point. Fortunately, we can derive from
Equation

✞

✝

☎

✆6.17 a recursive equation for the history process to occupy a set of paths at
an arbitrary time-point.

156

6.4. SCHEDULERS

Theorem 36. Given a measurable set Hn−1 of paths of length n− 1, let t1 < t2 be two
time-points, let y, z ∈ S⊥ be two states, and let w ∈ LV be a sequence of visible actions.
For the measurable set of paths

Hn = Hn−1 × (t1, t2]× {y} × {w} × {z}.

we find

Pr(Z(t) ∈ Hn) =

∫

σ∈Hn
σt(n)<t
x=σz(n)

Pr(Z(Jn) ∈ dσ)e
−

∫ t
σt(n)(qx+η

(s)
σ)ds

.
✞

✝

☎

✆6.18

The proof of Theorem 36 can be found in Appendix A.1.5. Equation 6.18 states
that the probability that the history process occupies a set of paths Hn at time t is the
probability that the history process occupies the set at its n-th jump-time multiplied by
the probability of not jumping until time t.

Without proof we note that from
✞

✝

☎

✆6.17 and
✞

✝

☎

✆6.18 it follows that

Pr(Z(t) ∈ Hn)

=

∫ t2

t1

∫

σ∈Hn−1

σz(n)=x 6=y

Pr(Z(s) ∈ dσ)qx,yγ
(s)
σ,y(w, z)e

−
∫ t
s (qz+η

(u)

σ′)du

+

∫

σ∈Hn
σz(n)=y

Pr(Z(s) ∈ dσ)η(s)σ γ(s)σ,y(w, z)e
−

∫ t
s
(qz+η

(u)

σ′)du

 ds
✞

✝

☎

✆6.19

where we write σ′ for the timed path σ ◦ (y,w, z).
In this subsection we have shown that the finite-jump probabilities of the behaviour

X are completely determined by the initial distribution α, the infinitesimal generator
matrix Q, its interactive jump scheduler γ, and its external jump scheduler η. In the
following subsection, we will attempt the reverse. Given initial distribution, infinitesi-
mal generator matrix, interactive jump scheduler, and external jump scheduler, can we
construct a behaviour X of P?

6.4.4 From scheduler to behaviour

We will now show that, given an interactive jump scheduler γ and an external jump
scheduler η for I/O-IMC P , we can construct a probability space (PathsS,A,FS,A,P)
for an interactive jump process with state space S and actions A. Recall that we
defined the set of timed paths PathsS,A and the sigma-algebra FS,A in Section 6.2. It
remains to construct the probability function P which assigns a probability to each
measurable set of timed paths. The basis of this probability function will be the finite
jump probabilities

✞

✝

☎

✆6.16 and
✞

✝

☎

✆6.17 . Let fi : FinPathsS,A → [0, 1], i ∈ N0 be the family
of additive functions induced by

f0({(x,w, y)}) = αxγ
(0)
ǫ,x(w, y),

✞

✝

☎

✆6.20

157

CHAPTER 6. I/O-IMC BEHAVIOURS

for x, y ∈ S⊥ and w ∈ LV , and

fn+1(Hn × (t1, t2]× {y} × {w} × {z})

=

∫ t2

t1

∫

σ∈Hn
σt(n)<t

σz(n)=x 6=y

fn(dσ)e
−

∫ t
σt(n)(qx+η

(s)
σ)ds

qx,yγ
(t)
σ,y,w,z

+

∫

σ∈Hn
σt(n)<t
σz(n)=y

fn(dσ)e
−

∫ t
σt(n)(qy+η

(s)
σ)ds

η(t)σ γ(t)σ,y,w,z

 dt,

✞

✝

☎

✆6.21

for n ∈ N, Hn ∈ Paths
(n)
S,A, t1, t2 ∈ R≥0, y, z ∈ S⊥, and w ∈ LV . It is important to

note that f(Hn) is understood to be the probability of the cylinder set of all (finite and
infinite) paths starting with a path in Hn. In contrast, P(Hn) gives the probability of
the finite paths in Hn, i.e., the paths which follow Hn and perform exactly n jumps. We
now define P as the probability function induced by

P(Hn) = fn(Hn)− fn+1(Hn × R≥0 × S⊥ × LV × S⊥),
✞

✝

☎

✆6.22

for any index n ∈ N0 and any measurable set of paths Hn ∈ Paths
(n)
S,A, and, for a cylinder

set C(Hn) which consists of all infinite paths starting with a prefix in Hn,

P(C(Hn)) = fn(Hn)−
∞∑

i=0

P(Hn × (R≥0 × S⊥ × LV × S⊥)
i).

✞

✝

☎

✆6.23

The equation
✞

✝

☎

✆6.22 tells us that the probability of all paths in Hn is equal to the
probability of all paths that start with a path in Hn minus the probability of those
paths that start with a path in Hn and then proceed to perform any other jump. The
equation

✞

✝

☎

✆6.23 gives us that the probability of all infinite paths starting with a path in
Hn equals the probability of all paths starting with a path in hn minus the probability
of a finite path starting in Hn. Recall that, following the first construction for the stable
case of Freedman [17], we assign any “missing” probability to the state ⊥. That is,
for a timed-path σ with t∞ = limn→∞ σt(n) < ∞ we have that the interactive jump
process occupies the state ⊥ after time-point t∞. Without proof we note that the
interactive jump process X, with history process Z, induced by the probability space
(PathsS,A,FS,A,P) indeed has interactive jump scheduler γ and external jump scheduler

η and satisfies
✞

✝

☎

✆6.16 and
✞

✝

☎

✆6.17 .
We will now show that this interactive jump process X with probability space

(PathsS,A,FS,A,P) as above is in fact a behaviour of P . To do this, we first prove
that the Markovian jump probabilities of X follow the Markovian transitions of P .

Lemma 17. Given distinct states x, y ∈ S⊥, a path-length n ∈ N0, time-points t <
t+h ∈ R≥0, and a measurable set of times paths Hn of length n, such that for each path
σ in Hn σt(n) < t and σz(n) = x and Pr(Z(t) ∈ Hn) > 0, we have

Pr(Jn+1 ≤ t+ h,X
(Jn+1)
pre = y | Z(t) ∈ Hn) = qx,yh+ o(h).

✞

✝

☎

✆6.24

158

6.4. SCHEDULERS

The proof of Lemma 17 can be found in Appendix A.1.6. We can now prove that
the interactive jump process we have constructed is indeed a behaviour of the I/O-IMC
P .

Theorem 37. Given an I/O-IMC P , an interactive jump scheduler γ for P , and an
external jump scheduler η for P , we have that the interactive jump process X with
probability space (PathsS,A,FS,A,P), where P is constructed as per

✞

✝

☎

✆6.22 and
✞

✝

☎

✆6.23 , is
a behaviour of P .

The proof of Theorem 37 can be found in Appendix A.1.7. Figure 6.2 illustrates
our construction of an I/O-IMC behaviour from the I/O-IMC itself, an interactive jump
scheduler γ, and an external jump scheduler η.

(Ω,F
︸︷︷︸

,P) finite-jump
probabilities

α,Q, γ, η

has

construct
(uniquely if regular)

may have

defines

P = (
︷︸︸︷

S,A,RI , RM , α)

Figure 6.2: Constructing an I/O-IMC behaviour.

A few remarks are in order. First, not every behaviour can be constructed in this
way. Behaviours that do not exhibit exponentially delayed external jumps will not
have an external jump scheduler as in Definition 77. Furthermore, we have made the
assumption that after J∞, the time of first explosion, the behaviour always occupies
the distinguished state ⊥, but this need not be the case. In fact, as we have seen
for Markov chains, the information we have (initial distribution, infinitesimal generator
matrix and schedulers) does not tell us what happens after J∞. So, as for Markov
chains, if J∞ is finite with probability greater than zero, then we may expect there
to be uncountably many behaviours of P , which all have the same initial distribution,
generator, and schedulers, but which all behave differently after J∞. If, on the other
hand J∞ is infinite with probability one (i.e., the induced interactive jump process is
“regular”), then we can say the initial distribution, generator, and schedulers uniquely
specify the associated behaviour. In this thesis we will not consider the question whether
an interactive jump process is regular and we will simply assume that all interactive
jump processes we consider are regular. Furthermore we conjecture that if we restrict
ourselves to the study of finite I/O-IMCs all interactive jump processes that occur will
be “regular” (recall from Chapter 3 that all Markov chains on finite state spaces are
regular).

159

CHAPTER 6. I/O-IMC BEHAVIOURS

So far, we have studied the properties of behaviours belonging to a single I/O-IMC.
Now we turn our attention to the architectural aspects of I/O-IMCs and how they affect
the associated behaviours.

6.5 Parallel composition

We now wish to show that the behaviours of I/O-IMCs are modular in the same way
that executions and traces of IOA are modular. First, we define a projection operator
for behaviours, which allows us to derive interactive jump processes for I/O-IMCs P and
P̄ from an interactive jump process of P‖P̄ . This projection operator simply combines
the projection operators for states and traces and applies these to the trajectories of
the interactive jump process for I/O-IMC P‖P̄ . In the remainder of this section we will
consider compatible I/O-IMCs P = 〈S,A,RI , RM , α〉, P̄ = 〈S̄, Ā, R̄I , R̄M , ᾱ〉, and their
parallel composition P̃ = P‖P̄ .

Definition 78. Given an interactive jump process X̃(t) = 〈X̃
(t)
pre, W̃

(t), X̃
(t)
post〉, t ∈ R≥0

of P̃ , the projection of X̃ onto P is the interactive jump process X̃(t) ↓ P = 〈X̃
(t)
pre ↓

S, W̃ (t) ↓A, X̃
(t)
post ↓S〉, t ∈ R≥0.

Example 25. As an example, we look at a trajectory of a behaviour X̃ of the I/O-IMC
P̃ from Figure 5.3 which represents the parallel composition of a repairable component
and a repairman. The trajectory describes a failure of the component after one time-unit
followed by a repair of the component after one more time-unit. Figure 6.3 shows the
trajectory for X̃ and the accompanying trajectories for its projections X and X̄ onto P
and P̄ , respectively. In this example, the two jumps of X̃ are also jumps for X and X̄.
The first jump of X̃ is a combined jump for both X̃ and X̄, but it is a purely interactive
jump for X. Similarly, the second jump is a combined jump for X̃ and X, but a purely
interactive one for X̄.

In general we find a strong correspondence between the jumps of a behaviour X̃ of
P̃ and its projections onto P and P̄ , X respectively X̄ .

Proposition 20. Given a stable interactive jump process X̃ of P‖P̄ and its projections
X and X̄ onto P and P̄ , respectively, for every jump-index i ∈ N0 we have that there
exists a jump-index j ∈ N0 such that

J̃i = Jj or J̃i = J̄j .

Moreover, the reverse also holds. For every jump-index j ∈ N0 there exist jump-indices
i, i′ ∈ N0 such that

Jj = J̃i and J̄j = J̃i′ .

In other words, a jump occurs for X̃ at any time t ∈ R≥0 if and only if a jump of X, a
jump of X̄, or a jump of both occurs at time t.

Proof. Proposition 20 follows directly from the definitions of projections and jump-
times.

160

6.5. PARALLEL COMPOSITION

t

X̃
(t)
pre

u‖i

f‖i

d‖r

d‖d

r‖i

t

X
(t)
pre

u

f

d

r

t

X̄
(t)
pre

i

r

d

t

W̃ (t)

ǫ

fail

rep ◦
rec

t

W (t)

ǫ

fail

rep ◦
rec

t

W̄ (t)

ǫ

fail

rep

t

X̃
(t)
post

u‖i

f‖i

d‖r

d‖d

r‖i

t

X
(t)
post

u

f

d

r

t

X̄
(t)
post

i

r

d

Figure 6.3: Example of a trajectory of a behaviour X̃ of the I/O-IMC of a repairable
component composed with a repairman and its projections X and X̄ onto the I/O-IMC
of the repairable component respectively the repairman. State and action names are
abbreviated.

161

CHAPTER 6. I/O-IMC BEHAVIOURS

It is important to note that both the interactive jump process X̃ in the above defini-
tion and both its projections X = X̃ ↓P and X̄ = X̃ ↓ P̄ have the same set of trajectories
and they then share the same probability space. This is in any case necessary to ensure
we can consider joint events. It turns out that we can express all the important proba-
bilities from Proposition 18 for behaviours X and X̄ in terms of the same probabilities
for behaviour X̃ .

Proposition 21. Given an interactive jump process X̃ for the I/O-IMC P̃ = P‖P̄
defined on a probability space that satisfies Proposition 18, we find that the following
probabilities for the projected interactive jump process X = X̃ ↓P are measurable.

1. For any jump-index i, states xi, yi ∈ S⊥, and sequence wi ∈ LV , the set of tra-
jectories where the i-th interactive jump starts in xi, ends in yi and has sequence
wi,

{ω | X(Ji)(ω) = (xi, wi, yi)},

is measurable.

2. For any time-points t, h ∈ R≥0 we have, that the set of trajectories where the first
jump after time t occurs before time t+ h,

{ω | J
(t)
1 (ω) ≤ t+ h},

is measurable.

3. For any time-point t ∈ R≥0 and any state x ∈ S⊥ we have, that the set of trajec-
tories where the stochastic process Xpost occupies state x at time t,

{ω | X
(t)
post(ω) = x},

is measurable.

The proof of Proposition 21 can be found in Appendix A.1.8. As a result, it is enough
to construct a probability space for X̃ that satisfies Proposition 18 to ensure that the
important probabilities of X and X̄ are also measurable.

We also define a notion of compatibility for behaviours. Compatible behaviours
synchronize on their shared actions and are independent of each other with respect
to their initial distributions and Markovian transition probabilities. Furthermore, we
have that compatible behaviours should also synchronize the moment at which they
experience time-divergence and we require that the probability of two jumps (for either
of the behaviours) in an interval [t, t+ h] is o(h).

Definition 79. The two behaviours X(t) = 〈X
(t)
pre,W

(t),X
(t)
post〉, t ∈ R≥0 and X̄(t) =

〈X̄
(t)
pre, W̄

(t), X̄
(t)
post〉, t ∈ R≥0 of P respectively P̄ are compatible if and only if,

1. their initial distributions are independent, i.e., for states x ∈ S⊥, x̄ ∈ S̄⊥ we have

Pr(X
(0)
pre = x, X̄

(0)
pre = x̄) = Pr(X

(0)
pre = x) Pr(X̄

(0)
pre = x̄),

✞

✝

☎

✆6.25

162

6.5. PARALLEL COMPOSITION

2. for every time-point t ∈ R≥0, the words W (t) and W̄ (t) are synchronized with
respect to the shared alphabet of P and P̄ , i.e.,

W (t) ↓A ∩ Ā = W̄ (t) ↓A ∩ Ā,
✞

✝

☎

✆6.26

3. both behaviours diverge simultaneously, i.e.,

X
(t)
post = ⊥ ⇐⇒ X̄

(t)
post = ⊥,X

(t)
pre = ⊥ ⇐⇒ X̄

(t)
pre = ⊥,

✞

✝

☎

✆6.27

4. the probability of two distinct jumps occurring in a time-interval [t, t + h] with
h > 0 is o(h), i.e.,

Pr(J
(t)
1 6= J̄

(t)
1 , J

(t)
1 ≤ t+ h, J̄

(t)
1 ≤ t+ h) = o(h),

✞

✝

☎

✆6.28

and

5. the Markovian transition probabilities of X and X̄ are “independent up to o(h)”,
i.e., for states x, x1, . . . , xn, y, y1, . . . , yn ∈ S⊥, states x̄, x̄1, . . . , x̄n, ȳ, ȳ1, . . . , ȳn ∈
S̄⊥, action-sequences w1, . . . , wn ∈ LV , w̄1, . . . , w̄n ∈ L̄V , and time-points t+ h >
t > t1 > . . . > tn, where x 6= y and x̄ 6= ȳ, let H denote the event

X(t1) = (x1, w1, y1), . . . ,X
(tn) = (xn, wn, yn)

and let H̄ denote the event

X̄(t1) = (x̄1, w̄1, ȳ1), . . . , X̄
(tn) = (x̄n, w̄n, ȳn).

We then require that

Pr(J
(t)
1 ≤ t+h,X

(J
(t)
1)

pre =y | X
(t)
post=x, X̄

(t)
post= x̄,H, H̄)

= Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x,H) + o(h),

✞

✝

☎

✆6.29

and

Pr(J̄
(t)
1 ≤ t+h, X̄

(J̄
(t)
1)

pre = ȳ | X
(t)
post=x, X̄

(t)
post= x̄,H, H̄)

= Pr(J̄
(t)
1 ≤ t+ h, X̄

(J̄
(t)
1)

pre = ȳ | X̄
(t)
post = x̄, H̄) + o(h),

✞

✝

☎

✆6.30

and

Pr(J
(t)
1 ≤ t+h,X

(J
(t)
1)

pre =y, J̄
(t)
1 ≤ t+h, X̄

(J̄
(t)
1)

pre = ȳ

| X
(t)
post=x, X̄

(t)
post= x̄,H, H̄)

= Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x,H)

· Pr(J̄
(t)
1 ≤ t+ h, X̄

(J̄
(t)
1)

pre = ȳ | X̄
(t)
post = x̄, H̄) + o(h).

✞

✝

☎

✆6.31

163

CHAPTER 6. I/O-IMC BEHAVIOURS

Given two compatible behaviours X and X̄ as above, the fifth requirement for com-
patibility allows us to derive the following useful properties. In the following the vari-
ables are as in the fifth requirement of Definition 79. For the probability that X makes
a Markovian jump in a time-interval (t, t+ h] but X̄ does not, we find

Pr(J
(t)
1 ≤ t+h,X

(J
(t)
1)

pre =y, (J̄
(t)
1 >t+h ∨ X̄

(J̄
(t)
1)

pre = x̄)

| X
(t)
post=x, X̄

(t)
post= x̄,H, H̄)

= Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x,H)

· Pr(J̄
(t)
1 >t+h ∨ X̄

(J̄
(t)
1)

pre = x̄ | X̄
(t)
post = x̄, H̄) + o(h).

✞

✝

☎

✆6.32

We also find the reverse

Pr((J
(t)
1 >t+h ∨X

(J
(t)
1)

pre =x), J̄
(t)
1 ≤ t+h, X̄

(J̄
(t)
1)

pre = ȳ

| X
(t)
post=x, X̄

(t)
post= x̄,H, H̄)

= Pr(J
(t)
1 >t+h ∨X

(J
(t)
1)

pre =x | X
(t)
post = x,H)

· Pr(J̄
(t)
1 ≤ t+ h, X̄

(J̄
(t)
1)

pre = ȳ | X̄
(t)
post = x̄, H̄) + o(h).

✞

✝

☎

✆6.33

And finally we find a similar result for the probability that bothX and X̄ do not perform
a Markovian jump:

Pr((J
(t)
1 >t+h ∨X

(J
(t)
1)

pre =x), (J̄
(t)
1 >t+h ∨ X̄

(J̄
(t)
1)

pre = x̄)

| X
(t)
post=x, X̄

(t)
post= x̄,H, H̄)

= Pr(J
(t)
1 >t+h ∨X

(J
(t)
1)

pre =x | X
(t)
post = x,H)

· Pr(J̄
(t)
1 >t+h ∨ X̄

(J̄
(t)
1)

pre = x̄ | X̄
(t)
post = x̄, H̄) + o(h).

✞

✝

☎

✆6.34

Again, we must ensure that the important probabilities from Proposition 18 are
measurable for both compatible behaviours. The easiest way to accomplish this is to
use a probability space for interactive jump processes of P̃ , since Proposition 21 ensures
us that interactive jump processes for P and P̄ are indeed measurable in this probability
space. In fact, we will now show that there is a strong connection between the behaviours
of P̃ and pairs of compatible behaviours of P and P̄ .

6.5.1 Modularity of behaviours

First we show that a behaviour of a composed I/O-IMC can always be decomposed into
compatible behaviours of its constituent I/O-IMCs. We again consider two compatible
I/O-IMCs P and P̄ and their parallel composition P̃ = P‖P̄ .

Theorem 38. Given a behaviour X̃(t), t ∈ R≥0 of P̃ , its projections onto P and P̄ are
compatible behaviours of P and P̄ respectively.

164

6.5. PARALLEL COMPOSITION

The proof of Theorem 38 can be found in Appendix A.1.9. We have now shown that
our semantics of I/O-IMCs is sound with respect to parallel composition: there is no
behaviour of a composite I/O-IMC that cannot be projected back onto behaviours of
its components. An important consequence is that parallel composition with another
I/O-IMC restricts the set of possible behaviours for that I/O-IMC. If we now consider
the possible transient distributions for an I/O-IMC in a parallel composition we find an
interesting result.

Proposition 22. Given a behaviour X̃ of P̃ and its projection onto P , X, we have
that, for any subset of states U ⊂ S of P

inf
X̃∈beh(P̃)

Pr(X̃
(t)
post ∈ Ũ) ≥ inf

X∈beh(P)
Pr(X

(t)
post ∈ U)

✞

✝

☎

✆6.35

and

sup
X̃∈beh(P̃)

Pr(X̃
(t)
post ∈ Ũ) ≤ sup

X∈beh(P)
Pr(X

(t)
post ∈ U)

✞

✝

☎

✆6.36

where Ũ = {x‖x̄ | x ∈ U, x̄ ∈ S̄}.

Proof. We prove Proposition 22 by contradiction. We will consider
✞

✝

☎

✆6.35 first. Assume
then that there exists a behaviour X̃ of P̃ such that

Pr(X̃
(t)
post ∈ Ũ) < inf

X∈beh(P)
Pr(X

(t)
post ∈ U).

It is clear from the definition of projection for behaviours that we have

Pr(X̃
(t)
post ∈ Ũ) = Pr(X̃

(t)
post ↓P ∈ U).

But now Theorem 38 gives us that X̃post ↓P is a behaviour of P , but then

Pr(X̃
(t)
post ↓P ∈ U) < inf

X∈beh(P)
Pr(X

(t)
post ∈ U)

is a contradiction. We can show a similar result for
✞

✝

☎

✆6.36 .

Proposition 22 means that, if we can determine bounds on the transient probabil-
ity distribution for some I/O-IMC P (considering all possible behaviours), then those
bounds will still apply when we consider P in parallel composition with one or more
other I/O-IMCs. As a result we will be able to prove properties of a complex dependable
system (modelled by a parallel composition of many I/O-IMCs), by analysing only a
subset of these I/O-IMCs. We will see an example of this in Section 9.3.

The reverse of Theorem 38 also holds when considering compatible behaviours.

Theorem 39. Given a stable interactive jump process X̃ for P‖P̄ , if the projections
of X̃ onto P and P̄ are compatible behaviours of P and P̄ , respectively, then X̃ is a
behaviour of P‖P̄ .

165

CHAPTER 6. I/O-IMC BEHAVIOURS

The proof of Theorem 39 can be found in Appendix A.1.10. Note that Theorem 39
only applies to pairs of compatible behaviours, not arbitrary pairs of behaviours. In
fact, for a composite I/O-IMC P̃ = P‖P̄ , we may find a behaviour X of P such that
no behaviour of X̄ is compatible with it, which also means that there is no behaviour
of P̃ which can be projected to yield X. The consequence is that the greater-equals
sign in

✞

✝

☎

✆6.35 cannot be replaced by equality (and the same for the lesser-equals sign

in
✞

✝

☎

✆6.36).

Finally, we can combine Theorems 38 and 39 to characterise the behaviours of a
composite I/O-IMC.

Corollary 11. A stable interactive jump process X̃ of P‖P̄ is a behaviour of P‖P̄ if
and only if its projections X̃ ↓P and X̃ ↓ P̄ are compatible behaviours of P respectively
P̄ .

6.5.2 Modularity of schedulers

We have shown that there is a strong connection between the behaviours of compatible
I/O-IMCs and behaviours of their parallel composition. We now investigate how this
affects the schedulers of these behaviours. We consider two compatible I/O-IMCs P
and P̄ , their parallel composition P̃ = P‖P̄ , a behaviour X̃ of P̃ , and its projections
X = X̃ ↓ P and X̄ = X̃ ↓ P̄ which, as we have seen, are compatible behaviours of P
respectively P̄ . We assume that all three behaviours are defined on a probability space
(Paths S̃,Ã,FS̃,Ã,P) as described in Section 6.2. We first define projection for finite timed
paths.

Definition 80. The projection of a path of P̃ of length zero onto P is defined by

(y‖ȳ, w̃, z‖z̄)↓P = (y, w̃↓P, z),

where y, z ∈ S⊥, ȳ, z̄ ∈ S̄⊥, and w̃ ∈ L̃V . For a finite timed path of length greater than
zero σ̃ = σ̃′ ◦ (t, y‖ȳ, w̃, z‖z̄), with σ̃′ ∈ FinPaths S̃,Ã, t ∈ R≥0, y, z ∈ S⊥, ȳ, z̄ ∈ S̄⊥, and

w̃ ∈ L̃V , where x = last(σ̃′) we have

σ̃↓P =

{
σ̃′ ↓P, if x = y = z, w̃↓P = ǫ
σ̃′ ↓P ◦ (t, y, w̃ ↓P, z), otherwise.

The projection of paths of P‖P̄ onto P̄ are defined similarly.

Consider a set of finite timed paths Hn of P of length n of the form

{(x0, w0, y0)}×(s1, t1]×{(x1, w1, y1)}×. . .×(sn, tn]×{(xn, wn, yn)},

for the states x0, y0, . . . , xn, yn, the sequences w0, . . . , wn ∈ LV , and the time-points
s1, t1, . . . , sn, tn ∈ R≥0. Obviously, this set of paths is in FS,A. It will turn out to be
important to consider which finite timed paths of P‖P̄ project onto a path in Hn. By
studying Definition 80 it is clear that for each jump of P , there may occur any number

166

6.5. PARALLEL COMPOSITION

of jumps of P̃ (as long as these do not affect the state of P or involve actions in the
alphabet of P). We then find

{σ̃ ⊂ FinPaths S̃,Ã | σ̃ ↓P ∈ Hn}

=

∞⋃

i0=0

· · ·
∞⋃

in=0

{(x0, w0, y0)}

× (R≥0 × {y0‖ȳ | ȳ ∈ S̄⊥} × {w̃ ∈ L̃V | w̃↓P = ǫ} × {y0‖ȳ | ȳ ∈ S̄⊥})
i0

× (s1, t1]× {(x1, w1, y1)}

× (R≥0 × {y1‖ȳ | ȳ ∈ S̄⊥} × {w̃ ∈ L̃V | w̃↓P = ǫ} × {y1‖ȳ | ȳ ∈ S̄⊥})
i1

...

× (sn, tn]× {(xn, wn, yn)}

× (R≥0 × {yn‖ȳ | ȳ ∈ S̄⊥} × {w̃ ∈ L̃V | w̃↓P = ǫ} × {yn‖ȳ | ȳ ∈ S̄⊥})
in .

The natural numbers i0, . . . , in describe the number of jumps of P̃ , which do not affect
P , that occur after each jump of P . The rectangle

(R≥0 × {y0‖ȳ | ȳ ∈ S̄⊥} × {w̃ ∈ L̃V | w̃↓P = ǫ} × {y0‖ȳ | ȳ ∈ S̄⊥})
i0

for instance describes i0 jumps that do not affect P , since neither the state of P changes,
nor do the sequence of actions contain any actions in the alphabet of P .

We now turn to the schedulers of X, X̄ , and X̃ . We will assume that X̃ has an
interactive jump scheduler γ̃ and an external jump scheduler η̃. Since the behaviours X
and X̄ are defined on the sigma-algebra FS̃,Ã we first consider their schedulers in terms

of paths of P̃ .

Theorem 40. If X̃ has interactive jump scheduler γ̃, then we find for the interactive
jump probabilities of behaviour X, that

Pr(X
(J̃i+1)
post = y,W (J̃i+1) = w | X

(J̃i+1)
pre = x, J̃i+1 = t, Z̃(J̃i) = σ̃)

=
∑

w̃∈L̃V

w̃↓P=w

∑

ȳ∈S̄⊥

γ̃
(t)
σ̃,x‖x̄(w̃, y‖ȳ),

✞

✝

☎

✆6.37

for a jump-index i ∈ N0, a path σ̃ ∈ FinPaths S̃,Ã, states x, y ∈ S⊥, x̄ ∈ S̄⊥, a sequence

w∈LV , and a time-point t∈R≥0. Moreover, for the function f :
(

{ǫ} ∪ FinPaths S̃,Ã

)

×

R≥0 × S̃⊥ × LV × S⊥ → [0, 1] defined as

f(σ̃, t, x, w, y) ≡ Pr(X
(J̃i+1)
post = y,W (J̃i+1) = w | X̃

(J̃i+1)
pre = x‖x̄, J̃i+1 = t, Z̃(J̃i) = σ̃)

we find that

167

CHAPTER 6. I/O-IMC BEHAVIOURS

1. f(·, ·, ·, w, y) is a Borel-measurable function for fixed w ∈ LV and y ∈ S⊥,

2. f(σ̃, t, x̃, ·, ·) is a probability function on LV ×S⊥ for fixed σ̃ ∈ {ǫ} ∪FinPaths S̃,Ã,

t ∈ R≥0, and x̃ ∈ S̃⊥, and

3. For any σ̃ ∈ {ǫ} ∪ FinPaths S̃,Ã, t ∈ R≥0, x ∈ S̃⊥, y ∈ S⊥, and w ∈ LV we have
f(σ, t, x̃, w, y) > 0 implies (w, y) ∈ FairRT (x̃↓P).

We find a similar result for the interactive jump probabilities of X̄.

The proof of Theorem 40 can be found in Appendix A.1.11. We find a similar result
for the external jump scheduler of X̃.

Theorem 41. If X̃ has external jump scheduler η̃, then we find for the external jump
probabilities of X that

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = x | Z̃(t) = σ̃) =

∑

ȳ∈S̄⊥
ȳ 6=x̄

q̄x̄,ȳ + η̃
(t)
σ̃

h+ o(h)

✞

✝

☎

✆6.38

for states x ∈ S⊥, x̄ ∈ S̄⊥, a path σ̃ ∈ FinPaths S̃,Ã with last(σ̃) = x‖x̄ and a time-point
t ∈ R≥0. Moreover, we have that the function f : FinPaths S̃,Ã × R≥0 → R≥0 defined by

f(σ̃, t) =

∑

ȳ∈S̄⊥
ȳ 6=x̄

q̄x̄,ȳ + η̃
(t)
σ̃ , if last(σ̃) = x‖x̄

0, if last(σ̃) = ⊥.

is Borel-measurable. We find a similar result for the external jump scheduler η̄ of X̄.

The proof of Theorem 41 can be found in Appendix A.1.12.

We can see that there is a discrepancy between the schedulers which we defined for
the I/O-IMC P in Section 6.4 and the schedulers we found in Theorems 40 and 41 by
projection. The former schedulers fix interactive jump probabilities and external jump
probabilities for paths in FinPathsS,A, but the schedulers we have just derived in the
aforementioned theorems fix these probabilities for paths in FinPaths S̃,Ã. In principal,
this is not a problem, since we could define the probability space of the behaviour of
P to act on the paths induced by the composite I/O-IMC P̃ . However, this somehow
takes away from our modularity results as we then cannot consider an I/O-IMC P in
isolation; we would always need to know with what other I/O-IMCs it will be composed
in order to study its schedulers (for instance, to calculate lower and upper bounds for
P to reach a certain state).

To overcome this problem, we will now try to derive schedulers for P which act on
the paths induced by P (rather than the paths induced by P‖P̄) from the schedulers for
P‖P̄ . We will do this by determining the jump probabilities for paths in FinPathsS,A
instead of FinPaths S̃,Ã.

168

6.5. PARALLEL COMPOSITION

Lemma 18. Let X, X̄, and X̃ be behaviours of P , P̄ , and P̃ = P‖P̄ respectively and
let γ̃ and η̃ be the interactive jump respectively external jump scheduler of X̃. Given a
path σ ∈ FinPathsS,A, a time-point t ∈ R≥0, states x, y ∈ S⊥, a sequence of actions
w ∈ LV , and a jump-index i ∈ N0 we find for the interactive jump probabilities of X
that

Pr(X
(Ji+1)
post = y,W (Ji+1) = w | X

(Ji+1)
pre = x, Ji+1 = t, Z(Ji) = σ)

=

∞∑

k=i

∑

x̃∈S̃⊥
x̃↓P=x

∫

σ̃∈Hk

∑

ỹ∈S̃⊥
ỹ↓P=y

∑

w̃∈L̃V

w̃↓P=w

γ̃
(t)
σ̃,x̃(w̃, ỹ)

· Pr(J̃k+1=Ji+1, X̃
(J̃k+1)
pre = x̃, Z̃(J̃k) ∈ dσ̃ | X

(Ji+1)
pre =x, Ji+1= t, Z

(Ji)=σ).
✞

✝

☎

✆6.39

Furthermore, given a path σ ∈ FinPathsS,A, a time-point t ∈ R≥0, and a state
x ∈ S⊥, we find for the external jump probabilities of X that

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = x | Z(t) = σ)

=

∑

x̄∈S̄

∫

σ̃∈H
last(σ̃)=x‖x̄

∑

ȳ∈S̄
ȳ 6=x̄

q̄x̄,ȳ + η̃
(t)
σ̃

Pr(Z̃(t) ∈ dσ̃ | Z(t)=σ)

h+ o(h).

✞

✝

☎

✆6.40

The proof of Lemma 18 can be found in Appendix A.1.13. This result seems promis-
ing. We can simply choose as our schedulers for P , the schedulers γ and η which assign
interactive and external jump probabilities according to Equations

✞

✝

☎

✆6.39 and
✞

✝

☎

✆6.40

respectively, i.e.,

γ(t)σ,x(w, y) =

∞∑

k=i

∑

x̃∈S̃⊥
x̃↓P=x

∫

σ̃∈Hk

∑

ỹ∈S̃⊥
ỹ↓P=y

∑

w̃∈L̃V

w̃↓P=w

γ̃
(t)
σ̃,x̃(w̃, ỹ)

· Pr(J̃k+1=Ji+1, X̃
(J̃k+1)
pre = x̃, Z̃(J̃k) ∈ dσ̃ | X

(Ji+1)
pre =x, Ji+1= t, Z

(Ji)=σ)

and

η(t)σ =
∑

x̄∈S̄

∫

σ̃∈H
last(σ̃)=x‖x̄

∑

ȳ∈S̄
ȳ 6=x̄

q̄x̄,ȳ + η̃
(t)
σ̃

Pr(Z̃(t) ∈ dσ̃ | Z(t) = σ).

The question remains whether γ and η satisfy the other requirements of Definitions 75

and 77. From Theorem 40 it easily follows that γ
(t)
σ,x is indeed a probability function

for fixed σ, x, and t and that it assigns positive probability only to fair reach-traces

of x. But, it is not clear that γ
(·)
·,· (w, y) for fixed w, y and η

(·)
· are Borel-measurable

functions. However, we conjecture that we can always find schedulers γ′ and η′ for P
such that the finite-jump probabilities induced by these schedulers lie arbitrarily close
to the finite-jump probabilities of X (which we can compute using schedulers γ̃ and η̃
and the projection of paths of P̃ onto P).

169

CHAPTER 6. I/O-IMC BEHAVIOURS

P
1

x1

x2 x3

x4 x5

h t

µ µ

th! tt!

s! s!

P̄
1

y1

y2

h t

s?

gh! gt!

P‖P̄ 1

x1‖y1

x2‖y1

x4‖y1

h‖y2

h‖h h‖t

x3‖y1

...

µ µ

th!

s!

gh! gt!

Figure 6.4: Two I/O-IMCs showing a coin-toss experiments and (part of) their parallel
composition. States and actions in the parallel composition have been abbreviated.

Example 26. Let us see the projection of schedulers in action with an example that
describes a coin-tossing experiment. Figure 6.4 shows two I/O-IMCs P and P̄ and their
parallel composition P̃ = P‖P̄ . The I/O-IMC P represents a person tossing a fair
coin and the I/O-IMC P̄ represents another person guessing (afterwards!) whether the
outcome is heads or tails. Now, let us try to find the scheduler which maximizes the
probability that we’ve guessed correctly, i.e., the scheduler that maximizes the probability
of reaching states h‖h or t‖t. The easiest way of doing this is to simply base our guess
on the last state of the path of P̃ : if we are in state h‖y4 pick the transition labelled gh!
to state h and if we are in state t‖y4 pick the transition labelled gt! to state t:

γ̃
(t)
σ̃,h‖y4

(w̃, ỹ) =

{
1, if w̃ = 〈gh!〉, ỹ = h‖h,
0, otherwise.

γ̃
(t)
σ̃,t‖y4

(w̃, ỹ) =

{
1, if w̃ = 〈gt!〉, ỹ = t‖t,
0, otherwise.

All other values of γ̃ are chosen arbitrarily.

Now we can project this scheduler onto P̄ using
✞

✝

☎

✆6.39 . In essence, we find that the
probability of P̃ reaching state h‖y4 is exactly 1/2. The same goes for state h‖y4. This

170

6.6. HIDING

means that, the projection of γ̃ will pick action gh! with probability one half:

γ̄(t)σ,y4(w, y) =

1/2, if w = 〈gh!〉, y = h,
1/2, if w = 〈gt!〉, y = t,
0, otherwise.

So we have seen that we can derive scheduler γ̄ for P̄ from scheduler γ̃ for P‖P̄ ,
preserving the stochastic behaviour of P̄ , that is, the probability to reach h in P̄ using
scheduler γ̄ is the same as the probability to reach the set of states S×{h} in P‖P̄ using
scheduler γ̃. However, the reverse is not true. Selecting scheduler γ̄ for P̄ does not infer
that we must select γ̃ for P‖P̄ , in fact this would be very unintuitive, since it would mean
that randomly guessing the outcome of a coin (scheduler γ̄) would be the same as always
guessing the outcome of the fair coin correctly (scheduler γ̃). It is interesting to note that
the reverse does hold: if we only observe the “guesser” and cannot see the outcome of
the coin-toss we cannot tell the difference between a person who always guesses correctly
(scheduler γ̃) and a person guessing randomly (scheduler γ̄).

Example 26 shows us a very important point: although we conjecture that we can
always project the schedulers of a composite I/O-IMC onto its components to yield
“local” schedulers (i.e., defined on the paths of the component I/O-IMC) which preserve
the stochastic behaviour of the component I/O-IMC, we cannot do the reverse. Given
two local schedulers for the component I/O-IMCs we cannot compose these to find a
scheduler of the composite I/O-IMC. This is directly related to the fact that for IOA,
we cannot compose traces of component IOA to find a trace of a composite IOA (see
Section 4.5). It is important to remember that if we define the probability space of the
behaviours of the component I/O-IMCs to be the same as the probability space of the
composite I/O-IMC, then we can compose behaviours of the component I/O-IMCs to
find a behaviour of the composite I/O-IMC. We conjecture that we can do the same for
the schedulers of these behaviours.

Figure 6.5 gives an overview of the modularity results for I/O-IMC behaviours. We
will revisit the discussion of which probability space to use for I/O-IMCs in a parallel
composition in Section 6.7.3. Among other things, we will discuss the connection to the
work of Giro and D’Argenio on distributed schedulers [20].

6.6 Hiding

We also extend the hiding operator to interactive jump processes.

Definition 81. Given an I/O-IMC P = 〈S,A,RI , RM , α〉, a set of output actions

B ⊆ AO, as well as a stable interactive jump process X(t) = (X
(t)
pre,W (t),X

(t)
post) with

t ∈ R≥0 for P , hiding the actions B in X, denoted – by abuse of notation – X\B, results

in the stable interactive jump process X(t)\B = (X
(t)
pre,W

(t)\B,X
(t)
post) with t ∈ R≥0, where

W (t)\B is the projection of W (t) onto the visible actions of P \B, i.e.,

W (t)\B =W (t) ↓(AV \B).

171

CHAPTER 6. I/O-IMC BEHAVIOURS

Local
probability

space
P‖P̄

P P̄

compose if
compatible

X̃

X X̄

project project

γ̃, η̃

γ, η γ̄, η̄

project project

Global
probability

space
P‖P̄

P P̄

compose if
compatible

X̃

X X̄

compose if
compatible

project project

γ̃, η̃

γ, η γ̄, η̄

compose if
compatible

project project

Figure 6.5: Modularity results for I/O-IMC behaviours. At the top we see results for the
case that the probability spaces of component behaviours are based on the paths of the
component I/O-IMCs. Below we see the results for the case that the probability spaces
of component behaviours are based on the paths of the composite I/O-IMC. Dotted
arrows represent conjectures.

Clearly, X\B is a stable interactive jump process of P \B. We will now show that
the jumps of X\B coincide with the jumps of X with probability one. In the following
we assume an I/O-IMC P as above and a subset of its output actions B.

Proposition 23. Given a behaviour X of P , let X̄ = X\B. For any time-point t ∈ R≥0,
we then have

Pr(J̄
(t)
1 6= J

(t)
1) = 0.

The proof of Proposition 23 can be found in Appendix A.1.14.

Proposition 24. Given an interactive jump process X for the I/O-IMC P defined on
a probability space that satisfies Proposition 18, we find that the following probabilities
for the abstracted interactive jump process X̄ = X\B are measurable.

1. For any jump-index i, states xi, yi ∈ S⊥, and sequence w̄i ∈ L̄V , the set of tra-
jectories where the i-th interactive jump starts in xi, ends in yi and has sequence
wi,

{ω | X̄(J̄i)(ω) = (xi, w̄i, yi)},

is measurable.

172

6.6. HIDING

2. For any time-points t, h ∈ R≥0 we have, that the set of trajectories where the first
jump after time t occurs before time t+ h,

{ω | J̄
(t)
1 (ω) ≤ t+ h},

is measurable.

3. For any time-point t ∈ R≥0 and any state x ∈ S⊥ we have, that the set of trajec-
tories where the stochastic process X̄post occupies state x at time t,

{ω | X̄
(t)
post(ω) = x},

is measurable.

Proof. Since, with probability one, the jumps of X̄ correspond to the jumps of X we
find for the first probability, that

{ω | X̄(J̄i)(ω) = (xi, w̄i, yi)) = ∪wi∈L
V :

wi\B=w̄i

{ω | X(Ji)(ω) = (xi, wi, yi)}.

The second and third sets of trajectories are trivially measurable in the probability space
of X.

We now show that hiding actions in a behaviour X of I/O-IMC P is “safe”, i.e., the
resulting interactive jump process is a behaviour of P \B.

Theorem 42. Given an I/O-IMC P , a subset of its output actions B, and a behaviour
X of P , we have that X\B is a behaviour of P \B.

The proof of Theorem 42 can be found in Appendix A.1.15.

Theorem 43. Given an I/O-IMC P , a subset of its output actions B, and a behaviour
X̄ of P \B, we have that there exists a behaviour X of P such that X̄ = X\B.

The proof of Theorem 43 can be found in Appendix A.1.16.

We can now connect the behaviours of an I/O-IMC with the behaviours of its ab-
straction. Other than for parallel composition, we can see that abstracting actions in
an I/O-IMC removes information. Given a behaviour of an abstracted I/O-IMC P \B
we only know that there exists a representative behaviour of P .

Corollary 12. Given, an I/O-IMC P and a subset of its output actions B, a stable
interactive jump process X̄ is a behaviour of P\B if and only if there exists a behaviour
X of P such that X\B = X̄.

173

CHAPTER 6. I/O-IMC BEHAVIOURS

6.7 Discussion

In this chapter we have provided a modular semantics for I/O-IMCs by combining
the semantics of IOA and CTMCs in an orthogonal way. Markovian transitions are
treated as completely independent of each other and interactive transition sequences are
synchronized on their shared alphabets. The two aspects (Markovian and interactive
transitions) are combined by defining every jump to have two parts: a Markovian part
and an interactive part. The interactive jumps are assumed to occur instantaneously
(this assumption is also known as the maximal progress assumption [39]), which means
that they do not interfere with the Markovian jumps, since the probability of an instan-
taneous Markovian jump is zero (for stable Markov chains).

6.7.1 Relationship to CTMCs

In Chapter 3, we have seen that a regular infinitesimal generator matrix induces a
CTMC. In particular, the entries in the infinitesimal generator matrix describe the
probability to jump from one state to another in a small time-period. Similarly, the
Markovian transitions in I/O-IMCs also describe the infinitesimal jump probabilities
of the underlying interactive jump process. However, an I/O-IMC does not induce
a single interactive jump process, but a family of them. This is caused by the fact
that there is uncertainty in when interactive transitions (initiated by other I/O-IMCs
running in parallel) occur, or which interactive transitions are taken when multiple
locally controlled actions are enabled.

It is important to note that this uncertainty does not affect what we know about
Markovian transitions in stable states. Consider the I/O-IMC in Figure 6.6. We can see
that in the initial state x, there is a choice between a Markovian transition to state y
with rate λ and an interactive transition to state z labelled with input action a. Under
the assumption that the action a is controlled by another I/O-IMC, the probability to
jump from state x to state y is still given by the rate on the Markovian transition:

Pr(X
(t+h)
post = y | X

(t)
post = x) = λh+ o(h).

This follows from
✞

✝

☎

✆6.5 and the fact that in this case we cannot reach any other stable
states from state y. This means that, despite the presence of interactive transitions,
the Markovian transitions of I/O-IMCs still behave the same as the transitions in a
CTMC and the above statement holds for every interactive jump process induced from
the I/O-IMC in Figure 6.6.

6.7.2 Relationship to IOA

Consider a parallel composition of three I/O-IMCs P1‖P2‖P3. Recall that the jumps
of an interactive jump process induced from this composite I/O-IMC consist of two
parts: the Markovian jump and the interactive jump (see Figure 6.7). Let us look at
just the interactive part of one of these jumps where these three I/O-IMCs start in
three states x, y, and z respectively. Now, the possible interactions that occur between

174

6.7. DISCUSSION

1

x

y z

λ
a?

a?a?

Figure 6.6: Example of an I/O-IMC.

these three I/O-IMCs are exactly the possible interactions between the IOA rooted at
states x, y, and z (recall from Definition 48 that this is just the IOA constructed by
picking, e.g., x as starting state and then adding all reachable states and interactive
transitions). This means that the outcome of the interactive phase of a jump in an
I/O-IMC is completely independent of the Markovian transitions of that I/O-IMC and
inherits all the properties of IOA (or more precisely, the variant of IOA we introduced
in Chapter 4), most importantly the modularity of its trace semantics. To find out
what the possible interactions are for our composite I/O-IMC we can simply compose
in parallel the three IOA rooted at x, y, and z respectively.

Example 27. Figure 6.7 gives an example of how we can determine the possible inter-
active jumps for a composite I/O-IMC P1‖P2‖P3 where P1 just made a Markovian jump
from x̃ to x. We first consider the IOA rooted at x, y, and z respectively and then take
their parallel composition. As we can see, there is a non-deterministic choice whether
to go to state x̃‖ỹ‖z with action sequence ab or state x̃‖y‖z̃ with action sequence ac.

6.7.3 Global and local schedulers

There is one important caveat to be made regarding the way we resolve non-determinism
using schedulers in this Chapter which we have touched upon in Example 26. Consider
a composed I/O-IMC P̃ = P‖P̄ . We have shown that any behaviour of P̃ can be
projected onto P and P̄ and conversely compatible behaviours of P and P̄ can be
combined to construct a behaviour of P̃ . However, these operations are only possible
if all three behaviours are defined on the same sigma-algebra, namely that of P̃ . This
causes a problem when we try to compose and decompose schedulers. The schedulers of
a behaviour of P need to assigns probabilities for all paths of P̃ . This is counter-intuitive
as it means the non-determinism in P can be resolved by looking at the state and history
of P̄ . Depending on what we are modelling, we might expect that the decisions made by
P should depend only on the history of P itself. Furthermore, we would like to study the
behaviour of P in isolation, without having to take into consideration which I/O-IMCs
it is composed in parallel with.

One possible way to overcome this problem is to use distributed schedulers [20]. Dis-
tributed schedulers are a restricted class of schedulers that ensure that local decisions
are based on local information, even in a non-local setting. This means that the sched-
ulers of P̃ must resolve non-deterministic decisions that are local to P using only the

175

CHAPTER 6. I/O-IMC BEHAVIOURS

P1 x

x̄ x̃

λ
a!

b?

c?

P2 y

ȳ ỹ

µ
a?

c?

b!

P3 z

z̄ z̃

κ
a?

b?

c!

IOA(x)
x

x̄ x̃

a!
b?

c?

IOA(y)
y

ȳ ỹ

a?

c?

b!

IOA(z)
z

z̄ z̃

a?

b?

c!

IOA(y)‖IOA(y)‖IOA(z)
x‖y‖z

x̄‖ȳ‖z̄

x̃‖ỹ‖z

x̃‖y‖z̃

a!
b!

c!

Figure 6.7: Example of an I/O-IMC and a close look at the possible interactive jumps
starting in state x‖y‖z.

path-information of P . It can be expected that such schedulers can be projected directly
onto the sigma-algebra for P . Unfortunately, even distributed schedulers use global in-
formation, namely to resolve non-determinism between components (i.e., whenever both
P and P̄ have actions enabled).

176

7
Closed behaviours

In the previous chapter we have given a natural, modular semantics to I/O-IMCs by
combining the natural semantics of Markov chains and IOA. In this chapter we will turn
our attention to the subset of closed I/O-IMCs, i.e., I/O-IMCs that cannot interact.
We will show that closed I/O-IMCs correspond to continuous-time Markov decision
processes (CTMDP) [28], which means that the modular semantics of Chapter 6 matches
the monolithic translational semantics adapted from Johr [30]. The correspondence
between closed I/O-IMCs and CTMDPs allow us to reuse existing analysis techniques
for CTMDPs to analyse closed I/O-IMCs.

Recall that the goal of I/O-IMCs has been to give a compositional way to construct
CTMCs. The reason we arrive at CTMDPs instead of CTMCs is the inherent non-
determinism of IOA, which is inherited by I/O-IMCs. For I/O-IMCs that do not exhibit
non-determinism we would then expect that they correspond to CTMCs. In Section 7.6
we will show that this is indeed the case: a deterministic I/O-IMC induces a single
interactive jump process which is a Markov chain (to be more exact, the stochastic
process Xpost of the interactive jump process is a Markov chain).

Contribution This chapter revolves around the notion of closed behaviours (be-
haviours that exhibit no external jumps), which give a semantic underpinning of closed
I/O-IMCs. It establishes several important claims from earlier chapters: that weak
bisimulation preserves the transient distributions associated with I/O-IMCs and that a
state of an I/O-IMC is stochastically reachable if and only if the state can be reached
with non-zero probability for some resolution of the non-determinism. We further show
the correspondence between closed I/O-IMCs and CTMDPs. Finally, we demonstrate
that the unique behaviour of a closed deterministic I/O-IMC is indeed a CTMC. This
may not come as a surprise, but in our setting this result is not obvious and not straight-
forward to demonstrate. This is caused by our deliberate decision to avoid a monolithic

177

CHAPTER 7. CLOSED BEHAVIOURS

semantic interpretation.

7.1 Basic definition

In this section we will give the basic definition of a closed behaviour of an I/O-IMC and
we will show several simple properties of such behaviours.

A closed behaviour of an I/O-IMC is a behaviour that exhibits no external jumps. In
essence, this means that the behaviour is not influenced by its environment. Through-
out this chapter we will assume that such behaviours belong to closed I/O-IMCs. In
principle, it is possible that a behaviour of an open I/O-IMC exhibits no external jumps
(e.g., if it is composed in parallel with a complementary I/O-IMC that never interacts
with it), but we do not discuss this possibility here. We consider a closed I/O-IMC
P = 〈S,A,RI , RM , α〉.

Definition 82. A behaviour X of the closed I/O-IMC P is called closed if it exhibits an
external jump with probability zero. That is, for any jump-index i ∈ N0 and any state

x ∈ S⊥, such that Pr(X
(Ji)
post = x) > 0 we have

Pr(X
(Ji+1)
pre = x | X

(Ji)
post = x) = 0.

Our first observation is that any non-divergent behaviour of a closed I/O-IMC P is
a closed behaviour. This means, that the only way an external jump may happen for
a behaviour of a closed I/O-IMC is through time-divergence, i.e., external jumps only
occur if a behaviour running in parallel jumps to the distinguished state ⊥.

Proposition 25. Given a behaviour X of closed I/O-IMC P we have that if X is
non-divergent then X is closed.

The proof of Proposition 25 can be found in Appendix A.2.1. We now consider a
closed behaviour X of the closed I/O-IMC P defined on the probability space described
in Section 6.2. Since the probability of an external jump for X is zero, we have that its
external jump scheduler is constantly zero. This means that the recursive derivation of
the finite-jump probabilities can be simplified.

Theorem 44. Given a closed behaviour X (with history process Z) of I/O-IMC P with
interactive jump scheduler γ, we find for states x, y ∈ S⊥ and a sequence of actions
w ∈ LV , that

Pr(Z(J0) ∈ {(x,w, y)}) = αxγ
(0)
ǫ,x(w, y)

✞

✝

☎

✆7.1

and for a measurable set of timed paths of length n ∈ N, Hn ∈ Paths
(n)
S,A, states y, z ∈ S⊥,

and a sequence of actions w ∈ LV , we find that

Pr(Z(Jn+1) ∈ Hn × (t1, t2]× {y} × {w} × {z})

=

∫ t2

t1

∫

σ∈Hn
σt(n)<t

σz(n)=x 6=y

Pr(Z(Jn) ∈ dσ)e−qx(t−tn)qx,yγ
(t)
σ,y(w, z)dt.

✞

✝

☎

✆7.2

178

7.2. WEAK BISIMULATION

Proof. Theorem 44 follows directly from substituting η
(t)
σ = 0 into

✞

✝

☎

✆6.17 .

Similarly we find, for a measurable set of timed paths of length n ∈ N,Hn ∈ Paths
(n)
S,A,

states y, z ∈ S⊥, and a sequence of actions w ∈ LV , that

Pr(Z(t) ∈ Hn−1 × (t1, t2]× {y} × {w} × {z})

=

∫ t2

t1

∫

σ∈Hn−1

σz(n)=x 6=y

Pr(Z(s) ∈ dσ)qx,yγ
(s)
σ,y(w, z)e

−qz(t−s)ds.
✞

✝

☎

✆7.3

This follows from substituting η
(t)
σ = 0 into

✞

✝

☎

✆6.19 .
Closed behaviours represent a non-deterministic Markovian process without compo-

sitionality. It is then no surprise that such behaviours are closely related to closed in-
teractive Markov chains and continuous-time Markov decision processes, which are both
non-deterministic and non-compositional Markovian models. In subsection 7.4 we will
illustrate this connection by proposing translations from closed I/O-IMCs to CTMDPs,
but first we will show some key results for closed I/O-IMCs and weak bisimulation.

7.2 Weak bisimulation

In this section we will prove the claim that weak bisimulation preserves the transient
state-distributions induced by I/O-IMCs. We first consider a closed I/O-IMC P =
(S,A,RI , RM , α) and a weak bisimulation relation E on S. As so often, we will consider
the finite jump probabilities of a behaviour X of P defined by the interactive jump
scheduler γ. However, this time we consider jumps between equivalence classes of E ,
rather than between states. This approach is similar to our approach to bisimulation for
Markov chains (recall Section 3.2). Let Ki, i ∈ N be the times when X jumps between
equivalence classes of E . That is,

K0 = 0

and for all i > 0,

Ki = inf{t > Ki−1 | X
(t)
pre 6 EX

(Ji−1)
post ∨W (t) 6= ǫ ∨X

(t)
post 6 EX

(t)
pre}.

✞

✝

☎

✆7.4

We will assume that the number of state-jumps in between two equivalence-class-jumps is
always finite with probability one. This in essence means that we assume the interactive
jump process X to be “regular”. This assumption can for instance be realized by
restricting to finite I/O-IMCs. We have seen in our discussion of bisimulation for CTMCs
(see Section 3.2), that bisimulation does not preserve transient distributions for irregular
Markov chains (unless the equivalence classes are chosen appropriately) and we assume
that the same holds for interactive jump processes derived from I/O-IMCs, hence our
assumption that we are only dealing with “regular” interactive jump processes.

As we did for CTMCs in Chapter 3 we define the “infinitesimal generator matrix”
Q̄ over the equivalence classes of E . For two equivalence classes D,D′ ∈ S/E we have

q̄D,D′ =

{ ∑

y∈D′ qx,y, if D 6= D′, for arbitrary x ∈ D,

−
∑

y/∈D qx,y, if D = D′, for arbitrary x ∈ D.

179

CHAPTER 7. CLOSED BEHAVIOURS

For convenience we write q̄D = −q̄D,D.
We begin by considering the distribution of the residence time of a behaviour X

of P with respect to the equivalence classes of E . That is, we are interested in the
distribution of Ki+1, i.e., we want to know for a stable equivalence class D and some
time-point t ∈ R≥0

Pr(Ki+1 ≤ t | X
(Ki)
post ∈ D).

Note that for an unstable equivalence class D′ the probability Pr(X
(Ki)
post ∈ D) is zero.

Also, since stability is preserved by weak bisimulation, all states in D are stable.

Theorem 45. Given a closed I/O-IMC P = (S,A,RI , RM , α) and a weak bisimulation
relation E on S, we find for any equivalence class D ∈ S/E, any time-point t ∈ R≥0,
and any jump-index i ∈ N, that

Pr(Ki+1 ≤ t | X
(Ki)
post ∈ D) = 1− e−q̄Dt.

The proof of Theorem 45 can be found in Appendix A.2.2. We can now consider
the finite jump probabilities of our I/O-IMC with respect to jumps between equivalence
classes. The following theorem follows the same structure as Theorem 44, but considers

paths over equivalence classes, i.e., set of paths from Paths
(n)
S/E,A.

Theorem 46. Given a closed behaviour X (with history process Z) of I/O-IMC P with
interactive jump scheduler γ, we find for equivalence classes D,D′ ∈ S/E and a sequence
of actions w ∈ LV , that

Pr(Z(0) ∈ D × {w} ×D′) =
∑

x∈D

∑

y∈D′

αxγ
(0)
ǫ,x (w, y)

✞

✝

☎

✆7.5

and for a measurable set of timed paths (across equivalence classes) of length n ∈ N,

Hn ∈ Paths
(n)
S/E,A, equivalence classes D′,D′′ ∈ S/E, and a sequence of actions w ∈ LV ,

we find that

Pr(Z(t) ∈ Hn × (t1, t2]× {D} × {w} × {D′})

=

∫ t2

t1

∫

σ∈Hn
σt(n)<t

σz(n)=x/∈D

Pr(Z(s) ∈ dσ)
∑

y∈D

qx,y
∑

z∈D′

γ(s)σ,y(w, z)e
−q̄D′ (t−s)ds.

✞

✝

☎

✆7.6

The proof of Theorem 46 follows from applying
✞

✝

☎

✆7.1 and
✞

✝

☎

✆7.3 to sets of paths over
equivalence classes. It is crucial to realize that any jump between equivalence classes (as
defined in Equation

✞

✝

☎

✆7.4) always starts with a Markovian jump to a distinct equivalence
class (see also the proof of Theorem 45).

We now turn our attention to weakly bisimilar I/O-IMCs. We consider two com-
plete, weakly bisimilar I/O-IMCs P = (S,A,RI , RM , α) and P̄ = (S̄, Ā, R̄I , R̄M , ᾱ) with
disjoint state spaces. Let E be a weak bisimulation relation for the disjoint union of P
and P̄ that relates their initial distributions. That is,

∑

x∈D∩S

αx =
∑

x̄∈D∩S̄

ᾱx̄,

180

7.3. STOCHASTIC REACHABILITY

for every equivalence class D in S∪ S̄/E . The interactive jump scheduler γ for P induces
a closed behaviour X for P .

We will now show that the weakly bisimilar I/O-IMCs P and P̄ have behaviours
which are equivalent up to the equivalence classes of E . For the sake of simplicity we
write qD,D′ for

∑

y∈D′∩S qx,y for arbitrary x ∈ D ∩ S and q̄D,D′ for
∑

y∈D′∩S̄ q̄x,y for

arbitrary x ∈ D ∩ S̄.

Theorem 47. For every interactive jump scheduler γ of P there exists an interactive
jump scheduler γ̄ for P̄ such that, for the induced behaviours X respectively X̄ we have,
for any time-point t, that

Pr(X
(t)
post ∈ D ∩ S) = Pr(X̄

(t)
post ∈ D ∩ S̄).

The proof of Theorem 47 can be found in Appendix A.2.3, with the caveat that due
to a problem regarding measurability of the scheduler we choose for P̄ , we can only prove
that the transient probabilities of X̄post are arbitrarily close to those of Xpost rather than
equal.

7.3 Stochastic reachability

In this section we prove the claim we made in Section 5.6, that a stochastically reachable
state can indeed be reached with probability greater than zero and vice versa. We
will consider a closed I/O-IMC P with state space S. Recall that a state y of P is
stochastically reachable if there exists a path from an initial state x to y which consists
of either interactive transitions or Markovian transitions from stable states. We call
such a path a plausible path. It will be useful to decompose such a plausible path into
Markovian transitions and fair reach-traces.

Theorem 48. The finite path σ starting in state x ∈ S and ending in a stable state
y ∈ S, is a plausible path if and only if there exists a length n ∈ N, a sequence of states
x1, . . . , xn ∈ S, and a sequence of stable states y1, . . . , yn ∈ S such that

1. x = x1 and y = yn,

2. the states yi are the stable states along σ, i.e.,

σ↓Ss = 〈y1, . . . , yn〉,

3. yi is fairly reachable in IOA(xi) for all 1 ≤ i ≤ n, and

4. there is a Markovian transition from each yi to xi+1, i.e., yi −֒→ xi+1 for all 1 ≤
i < n.

Note that we may have that xi equals yi for certain indices i.

Proof. Given that every finite path ending in a stable state is fair, Theorem 48 is easy
to prove.

181

CHAPTER 7. CLOSED BEHAVIOURS

Now we will show that there is a close correspondence between stochastic reachability
and the finite-probabilities induced by the closed behaviours of P .

Theorem 49. A stable state x in S is stochastically reachable if and only if there exists
an interactive jump scheduler γ, which induces closed behaviour X, such that for all
time-points t ∈ R≥0, with t > 0, the probability that Xpost occupies x at time t using
finitely many jumps is greater than zero. That is,

SR(x) ⇔ ∃γ · ∀t > 0 · Pr(X
(t)
post = x, J∞ > t) > 0.

✞

✝

☎

✆7.7

The proof of Theorem 49 can be found in Appendix A.2.4.

7.4 Continuous-time Markov decision processes

Continuous-time Markov decision processes (CTMDPs) are state-based models which
are both non-deterministic and stochastic (see e.g., [52]).

Definition 83. A CTMDP is described by a four-tuple (S,A,R, x0) where S is a finite
set of states, A is a finite set of actions, R ⊂ S ×A× R≥0 × S is a transition relation,
and x0 ∈ S is the initial state. For every pair x ∈ S and a ∈ A we have that either a is
enabled in x and then we have

∀y ∈ S · |{λ | (x, a, λ, y)}| = 1

or a is not enabled in x and then we have

∀y ∈ S · |{λ | (x, a, λ, y)}| = 0.

We denote the set of actions enabled in a state x as Ax. For states x, y ∈ S and an
action a ∈ A enabled in x, we write

R(x, a, y) = λ

for λ ∈ R≥0 such that (x, a, λ, y) ∈ R. Similarly we write

R(x, a) =
∑

y∈S

R(x, a, y).

Intuitively, R(x, a, y) is the transition-rate from x to y under decision a and R(x, a) is
the exit-rate of x under decision a.

Definition 84. We say a CTMDP is locally uniform if for each state x there exists a
rate λ ∈ R≥0 such that

∀a ∈ Ax ·R(x, a) = λ.

We write R(x) for the exit-rate of a state x of a locally uniform CTMDP.

182

7.4. CONTINUOUS-TIME MARKOV DECISION PROCESSES

We consider a CTMDP M with state space S, actions A, initial state x0 and tran-
sition relation R. We are interested in the timed paths a CTMDP traverses. A timed
path is a tuple which strings together transitions from one state, choosing a particular
action and at a particular time, to another state.

Definition 85. The set of all finite timed paths CPaths of M is given by

CPathsM =

∞⋃

n=0

S × (A× R≥0 × S)n .

We will leave out the subscript when it is clear from context which CTMDP is meant.

The length of a path is equal to the number of transitions in the path. That is, the
path 〈x〉 with x ∈ S has length zero and the path 〈x, a, t, y〉, with a ∈ A, t ∈ R≥0, and
y ∈ S has length one, etc. Although we do not consider them here, the results presented
in this subsection also extend to infinitely long paths [52]. As an example, the path
〈x0, a1, t1, x1, a2, t2, x2〉 represents the following sequence of events. Starting in state x0,
the action a1 is selected. The CTMDP then jumps from state x0 to state x1 at time t1.
Subsequently, the action a2 is selected and the CTMDP jumps to state x2 at t2. Note
that the times t1 and t2 represent jump-times (similar to our treatment of timed paths
for I/O-IMCs) and not residence times as in the work of Wolovick and Johr [52]. We
do this purely for the sake of simplicity; the two approaches are equivalent.

We use the following notations. For a path of length n ∈ N,

σ = 〈x0, a1, t1, x1, . . . , an, tn, xn〉

we write σa(i) = ai, σt(i) = ti, and σx(i) = xi for the i-th action, jump-time, and state
respectively.

We want to find a probability measure over the set of all timed paths. That is, we
want to be able to make statements about the probability that the CTMDP traverses a
certain path. Now, the first problem is that the set of timed paths is uncountable and
we must find an appropriate σ-algebra. Given a path length n, we use the product σ-
algebra for all paths of length n by combining standard power-set σ-algebras (for states
and actions, which are countable) with standard Borel σ-algebras (for the uncountable
time-points). This construction is explained in detail by Wolovick and Johr [52] and
follows along the same lines as our σ-algebra construction for the paths of an I/O-IMC
(see Section 6.2). We say that a set of paths of length n is measurable if it is a member
of the product σ-algebra for paths of length n. We find the σ-algebra for all finite timed
paths by taking the countable union of the σ-algebras of the paths of a particular length.
In general, measurable sets of paths can be constructed by combining states, actions,
and time-intervals.

The second problem when assigning probabilities to paths is that CTMDPs are non-
deterministic. A scheduler resolves this non-determinism by selecting, according to a
probability distribution, the action which the CTMDP should take. A full-history sched-
uler bases its decision on the history of the CTMDP, that is the timed path traversed
so far.

183

CHAPTER 7. CLOSED BEHAVIOURS

7.4.1 Early schedulers.

In our treatment of CTMDPs we will consider early schedulers which base their decision
on the full-history of the CTMDP up to the last state visited, but not on the amount
of time the CTMDP has remained in this last state. In other words, an early scheduler
decides which action to take immediately upon entering a state and cannot change this
decision until the state is left.

Definition 86 ([52]). A measurable full-history early scheduler for M is a function
D : CPaths×A→ [0, 1] from paths to distributions over the actions A such that for any
path σ ending in a state x, we have

1. D(σ, ·) is a probability function for fixed σ ∈ CPaths and t ∈ R≥0,

2. D(σ, a) > 0 implies that a is enabled in x, and

3. D is Borel-measurable, i.e., for any probability p ∈ [0, 1], the set

{(σ, a) | D(σ, a) = p}

is in the standard Borel σ-algebra over pairs of paths and actions.

Each measurable scheduler yields a probability measure over the timed paths.

Definition 87 ([52]). Given a measurable full-history early scheduler D, we find for

each n ∈ N0 a probability measure P
(n)
D on the standard σ-algebra for paths of M of

length n. These probabilities measures are defined inductively. For a path of length 0,
〈x〉, with x ∈ S, we find

P
(0)
D (〈x〉) =

{
1, if x = x0,
0, otherwise.

Given a measurable set of paths Hn of length n ∈ N0, let Hn+1 be a one-step extension
of Hn. That is, for an action a ∈ A, time-points s < u ∈ R≥0 and a state y ∈ S we have

Hn+1 = Hn × {a} × (s, u]× {y}.

Then we find

P
(n+1)
D (Hn+1) =
∫ u

s

∫

σ∈Hn
σt(n)>t

P
(n)
D (dσ)D(σ, a)R(σx(n), a, y)e

−R(σx(n),a)(t−σt(n))dt.

Note that any measurable set of paths of length n must be a countable union of such
one-step extensions of paths of length one.

As for I/O-IMCs we assume the time-integral to be a Riemann-integral and the path-
integral to be a Lebesgue-integral. That is, dσ denotes a set of paths {σ′ | D(σ′, a) = c}
for some constant c ∈ [0, 1] and σ is an arbitrary path in dσ.

184

7.5. CLOSED I/O-IMCS AND CTMDPS

1 x0

x1

x2

y

x3

x4

λ1

λ2

µ1

µ2

λ2

λ1

a;

b;

µ2

µ1

Figure 7.1: Example of a complete I/O-IMC P .

7.4.2 Late schedulers

It should be noted that apart from early schedulers there also exist the class of late
schedulers for CTMDPs. Late schedulers can base their decision on the time at which
the last state is left [37], in contrast to early schedulers which must make this decision at
the point in time the last state is entered. This means that late schedulers have strictly
more information than early schedulers. We will focus our attention on early schedulers
in the remainder of the thesis.

7.5 Closed I/O-IMCs and CTMDPs

We now discuss a translation between I/O-IMCs and CTMDPs. We will show that
there is a one-to-one correspondence between complete I/O-IMCs and CTMDPs when
we consider early schedulers for CTMDPs. This translation is directly derived from the
translation of closed IMCs to CTMDPs described by Johr [30].

Example 28. As a running example we consider the complete I/O-IMC depicted in
Figure 7.1 which represents the behaviour of a fault-tolerant system with two-components
that may fail (after delays that are exponentially distributed with rates λ1 respectively
λ2) and can be repaired (after delays that are exponentially distributed with rates µ1
respectively µ2). Only one component may be repaired at the same time. When both
components are down (represented by state y), the component to be repaired first is
selected non-deterministically. Examples of timed paths of the I/O-IMC P of length 0,
1 and 2 are

〈x0, ǫ, x0〉, 〈x0, ǫ, x0, 3.4, x1, ǫ, x1〉, and 〈x0, ǫ, x0, 3.4, x1, ǫ, x1, 2.1, y, ǫ, x4〉.

The last path represents the failure of the first component after 3.4 time-units, followed
by the failure of the second component after another 2.1 time-units. It is then decided
that the first component will be repaired first by moving to state x4.

7.5.1 Translation of I/O-IMCs and CTMDPs

We now discuss a translation from I/O-IMCs to CTMDPs that is based on the trans-
lation of IMCs to CTMDPs defined by Johr [30]. We consider a closed I/O-IMC

185

CHAPTER 7. CLOSED BEHAVIOURS

P = (S,A,RI , RM , α).

Careful inspection shows some obvious similarities between Definition 87, which de-
scribes finite-jump probabilities for a CTMDP with an “early” scheduler and Theorem 44
which describes the finite jump probabilities for a closed I/O-IMC with an interactive
jump scheduler (under the assumption that no external jumps occur, i.e., that the in-
duced behaviour is closed). The main problem is the discrepancy between the way we
defined timed paths for I/O-IMCs and the definition of timed paths for CTMDPs. How-
ever, we will see that this discrepancy is only superficial. Consider the set of all timed
paths of length n of I/O-IMC P . We can rearrange this set to find

Paths
(n)
S,A = S⊥ ×LV × S⊥ × (R≥0 × S⊥ ×LV × S⊥)

n

= S⊥ × (LV × S⊥ ×R≥0 × S⊥)
n × LV × S⊥.

Now, consider a set of states S̄ = S⊥ and a set of actions Ā = LV ×S⊥ and we find that
the above equals

S̄ × (Ā×R≥0 × S̄)n × Ā,

which is the set of timed paths for a CTMDP with states S̄ and actions Ā, extended by
a single action from Ā.

For the sake of simplicity and to match [30], we consider closed I/O-IMCs

1. whose initial distribution is Dirac,

2. that do not have any absorbing states (i.e., states with no outgoing transitions),

3. that do not contain any interactive cycles containing output transitions, and

4. that do not have any time-divergent states.

The main idea of the following translation is that, when our CTMDP occupies a
state x, we may choose non-deterministically one of the fair-reach traces of x. When
a fair-reach trace (w, y) is selected, the CTMDP takes on the Markovian behaviour of
state y

Recall that Ss denotes the set of stable states and Su denotes the set of unstable
states of an I/O-IMC.

Definition 88 (Adapted from [30]). Given the closed I/O-IMC P = (S,A,RM , RI , α)
with

1. finitely many states and actions,

2. no time-divergent or absorbing states,

3. no interactive cycles containing output transitions, and

4. where α is a Dirac distribution attributing probability one to a state x0 ∈ S,

186

7.5. CLOSED I/O-IMCS AND CTMDPS

1

x0(ǫ, x0)

x1

(ǫ, x1)

x2

(ǫ, x0)

y

(ǫ, x3)

(ǫ, x4)

λ1

λ2

µ1

µ2

λ2

λ1

µ2

µ1

Figure 7.2: Early-CTMDP translation of I/O-IMC P in Figure 7.1. States are denoted
as circles, actions as boxes.

we construct the CTMDP EC(P) = (S, Ā,R, x0), with actions

Ā = ∪x∈SFairRT (x)

and rate matrix

R = {(x, (w, y), qy,z , z) | x ∈ S, (w, y) ∈ FairRT (x), z ∈ S \ {y}}.

The above is adapted from Johr [30] with a few changes, namely

1. The actions of the CTMDP are named after reach-traces in the associated I/O-
IMC instead of traces, and

2. For pairs x, y of stable states such that there is a Markovian transition from x
to y, we use the state y as a state in the CTMDP ((ǫ, y) is also the only action
enabled in the state y) instead of introducing a new state (x, y) as Johr does [30].

3. We do not consider the reachability of states.

It is important to make sure that Definition 88 always yields a CTMDP. The set
of states S is obviously finite. So is the set of actions Ā, since the finiteness of A
and the lack of interactive cycles with visible transitions means FairRT (x) is finite for
each state x ∈ S. For every pair of state x and action (w, y) we have that either
(w, y) ∈ FairRT (x) and then (w, y) is enabled in x and we find for every state z ∈ S
that |{R(x, (w, y), z)}| = 1 or (w, y) /∈ FairRT (x) and then (w, y) is not enabled in x
and |{R(x, (w, y), z)}| = 0.

It is interesting to note that we find the following connection between the rates in
EC(P) and the rates in P , for x, z ∈ S, y ∈ Ss, and w ∈ LV ,

R(x, 〈w, y〉, z) = qy,z and R(x, 〈w, y〉) = qy.
✞

✝

☎

✆7.8

Example 29. Figure 7.2 shows the translation, according to Definition 88, of the I/O-
IMC P from Example 28.

Recall that we made several restrictions on the I/O-IMCs we considered in Defini-
tion 88. We will now briefly discuss how we might alleviate these restrictions.

187

CHAPTER 7. CLOSED BEHAVIOURS

1. We can allow I/O-IMCs with output actions by changing the set of actions for
the induced CTMDP to LV × Ss. However, this would lead to an infinite set of
actions for the CTMDP, although for each state only a finite set of actions may be
enabled, and the set of actions might be restricted to only those that are enabled
in some state. Note that the set of enabled actions of a state is then simply the
set of fair reach-traces.

2. The restriction of the initial distribution to be Dirac may be lifted by changing
the definition of CTMDPs to allow initial distributions instead of an initial states.
It seems this would not cause any theoretical problems.

3. I/O-IMCs with time-divergent states may be accommodated by adding a distin-
guished state ⊥ to the state space of the CTMDP which represents any time-
divergent state. However, in combination with allowing visible actions, a state
in the I/O-IMC may have infinitely many fair reach-traces (e.g., reach-traces
(〈a〉,⊥), (〈aa〉,⊥), (〈aaa〉,⊥), . . .).

We can also translate CTMDPs back to I/O-IMCs. As the state space of such an
I/O-IMC we take the union of the states S of the CTMDP and all combinations of states
and actions (A) of the CTMDP. The I/O-IMC states of the form x ∈ S represent the
non-deterministic choices made by the CTMDP, while states of the form (x, a) ∈ S ×A
represent the Markovian transitions that are taken after the action a was chosen in state
x.

Definition 89. Given a CTMDP M = (S,A,R, x0), we find the I/O-IMC IO(M) =
(S ∪ S ×A, {τ}, RM , RI , α) where

• the Markovian transition relation is given by

RM = {((x, a), λ, y) | x, y ∈ S, a ∈ Ax, R(x, a, y) = λ},

• the interactive transition relation is given by

RI = {(y, τ, (y, a)) | y ∈ S, a ∈ Ay},

• and the initial distribution α is a Dirac distribution which assigns probability one
to state x0.

7.5.2 Translation of schedulers

Consider a closed I/O-IMC P = (S,A,RM , RI , α) as in Definition 88 and the corre-
sponding CTMDPM = EC(P). We now show that there is a one-to-one correspondence
between the interactive jump schedulers of P and the full-history schedulers of M . It
is important to note that there is a close correspondence between the timed paths of P
and the timed paths of M . Given a timed path of length n ∈ N0,

(x0, w0, y0, t1, x1, w1, y1, . . . , tn, xn, wn, yn),

188

7.5. CLOSED I/O-IMCS AND CTMDPS

of P we have that for some t ∈ R≥0 and z ∈ S the sequence

(x0, 〈w0, y0〉, t1, . . . , xn)

is a timed path of length n of M . Similarly, given a timed path of length n ∈ N0,

(x0, 〈w1, y1〉, t1, x1, . . . , 〈wn, yn〉, tn, xn)

of M we have that for some w ∈ LV and y ∈ S the sequence

(x0, w1, y1, t1, x1, w2, y2, . . . , tn, xn, w, y),

is a timed path of length n of P . We now introduce some notation to facilitate this
connection between the timed paths of P and M .

Definition 90. Given a finite timed path of length n for I/O-IMC P ,

σ = (x0, w0, y0, t1, x1, w1, y1, . . . , tn, xn, wn, yn),

a time-point t ∈ R≥0, and a state y ∈ R≥0, we write – by abuse of notation – EC(σ) for
the timed path

(x0, 〈w0, y0〉, t1, . . . , xn)

of length n of M . We lift this translation to sets of paths. We write

EC(H) = {EC(σ) | σ ∈ H},

for a subset of finite timed paths H of P . Given a finite timed path σ of M of length n,
a sequence of actions w ∈ LV , and a state y ∈ S, we will write IO(σ,w, y) for the finite
timed path σ′ of P such that EC(σ′) = σ, σ′w(n) = w, and σ′y(n) = y. Again, we lift this
notation to sets of paths.

Let us consider the set of all finite timed paths of P which are in a sense “reasonable”,
i.e., all those paths σ where only fair reach-traces are chosen.

Definition 91. Given an I/O-IMC P and a size n ∈ N0, the set of all finite fair timed

paths of length n, denoted FFPaths
(n)
P , is the set of all timed paths of P , where only

fair-reach traces are chosen. That is,

FFPaths
(n)
P = {σ ∈ Paths

(n)
S,A | ∀0 ≤ i ≤ n · (σw(i), σy(i)) ∈ FairRT (σx(i))}.

The set of all finite fair timed paths is denoted FFPathsP . In other words, we have

FFPathsP =
⋃∞

n=0 FFPaths
(n)
P .

We now have that for each σ ∈ CPathsM , w ∈ LV , and y ∈ S, such that (w, y) ∈
FairRT (last(σ)), there exists exactly one path σ′ ∈ FFPathsP such that EC(σ′) =
σ and w, y are the last two entries of σ′. In a sense, the function EC is a bijection
from FFPathsP to CPaths × LV × S, if we only consider the finite fair timed paths.
Based on this correspondence between the timed paths of I/O-IMCs and their CTMDP
counterparts, we now define a translation from interactive jump schedulers of the I/O-
IMC P to full-history measurable schedulers of the associated CTMDP M .

189

CHAPTER 7. CLOSED BEHAVIOURS

Definition 92. Given an interactive jump scheduler γ for P we find the measurable
full-history early scheduler D = fE(γ) for M . We first consider timed paths of length
zero. Given states x, y ∈ S and a sequence of actions w ∈ LV we find for the probability
of choosing action (w, y) after path (x), that

D(〈x〉, 〈w, y〉) = γ(0)ǫ,x (w, y).
✞

✝

☎

✆7.9

Now, consider a timed path σ of M of length n > 0. We find for the probability of
choosing action (w, y) after the path σ, that

D(σ, 〈w, z〉) = γ
(t)
σ′,x(w, y),

✞

✝

☎

✆7.10

where σ′ is the unique path of length n− 1 of P such that EC(σ′ ◦ 〈t, x, w, y〉) = σ. Con-
versely, given a measurable full-history early scheduler D for Q, we find the interactive
jump scheduler γ = fI(D) for P , which is also given by

✞

✝

☎

✆7.9 and
✞

✝

☎

✆7.10 , where now the
left-hand side is given and the right-hand side defines γ.

Proposition 26. For any interactive jump scheduler γ of P , fE(γ) is indeed a full-
history measurable scheduler of M , and fI(fE(γ)) = γ. Similarly, for any full-history
measurable scheduler D ofM , we have that fI(D) is indeed an interactive jump scheduler
of P , and fE(fI(D)) = D.

The proof of Proposition 26 can be found in Appendix A.2.5. We now show that
the translations between I/O-IMC schedulers and early CTMDP schedulers preserve the
induced finite-jump probabilities.

Theorem 50. For any interactive jump scheduler γ for P , which induces a closed
behaviour X with history process Z, and its counterpart D = fE(γ) for M , we have that

1. for a state x ∈ S

Pr(Z(J0) ∈ {x} × FairRT (x)) = P
(0)
D ({x}), and

✞

✝

☎

✆7.11

2. given a measurable set of finite fair timed paths of length n ∈ N0

Hn = {(x0, w0, y0)} × (s1, u1]× {(x1, w1, y1)} × . . .× (sn, un]× {(xn, wn, yn},

with states x0, y0, . . . , xn, yn ∈ S, sequences of actions w0, . . . , wn ∈ LV , time-
points s1, u1, . . . , sn, un ∈ R≥0, such that (wi, yi) ∈ FairRT (xi) for all 0 ≤ i < n,
and yi 6= xi+1 for all 0 ≤ i ≤ n, we have for time-points s, u ∈ R≥0, a state
x ∈ S \ {yn}, that

Pr(Z(Jn+1) ∈ Hn × (s, u]× {x} × FairRT (x)) =

P
(n+1)
D (EC(Hn × (s, u]× {x} × FairRT (x))).

✞

✝

☎

✆7.12

The proof of Theorem 50 can be found in Appendix A.2.6.
We have shown in this section that there is a one-to-one correspondence between

closed I/O-IMCs and CTMDPs. This is not surprising given the work of Johr which
shows a similar correspondence between closed IMCs and CTMDPs [30]. In the case
of I/O-IMCs, however, the correspondence is not presented as a monolithic translation,
but arises naturally from the semantics given to open I/O-IMCs in Chapter 6 and the
rules for composing these interactive jump processes in parallel.

190

7.6. CLOSED BEHAVIOURS OF DETERMINISTIC I/O-IMCS

7.6 Closed behaviours of deterministic I/O-IMCs

We now show several results for deterministic and confluent I/O-IMCs. In particular,
we will show that if an I/O-IMC is weakly deterministic, it indeed has only a single
scheduler. Recall that a closed I/O-IMC P is weakly deterministic if, for any stochasti-
cally reachable state x of P we have that the IOA rooted at x is weakly deterministic,
i.e., its outgoing internal transitions go to weakly bisimilar states and it has no choices
between different visible actions (cf. Definition 45). One of the important results we
showed is that the weak bisimulation quotient of a weakly deterministic I/O-IMC al-
ways has no internal transitions (except for self-loops) and each state has at most one
outgoing interactive transition. As a consequence each state of this quotient has only
one non-divergent fair reach-trace.

Theorem 51. Consider a closed I/O-IMC P = (S,A,RI , RM , α) with no internal tran-
sitions and where for each state x ∈ S we have

x a−→y, x b−→z implies a = b, y = z.

For any closed behaviour X of P that is non-explosive, i.e.,

Pr(J∞ = ∞) = 1,

we have that Xpost is a Markov chain.

The proof of Theorem 51 can be found in Appendix A.2.7. We can now show that
weakly deterministic I/O-IMCs are Markovian, at least if we only observe which weak
bisimulation equivalence class they occupy.

Theorem 52. Given a complete, weakly deterministic I/O-IMC P , for any closed be-
haviour X of P that is non-explosive, i.e.,

Pr(J∞ = ∞) = 1,

we have that the stochastic process

Y (t) =
[

X
(t)
post

]

≈
,

which records which weak bisimulation equivalence class is occupied by Xpost, is a Markov
chain.

Proof. The I/O-IMC P is weakly bisimilar to its weak bisimulation quotient, which
satisfies the conditions of Theorem 51 due to Proposition 15. Now, Theorem 51 gives
us that all closed, non-explosive behaviours of the weak bisimulation quotient of P yield
the same Markov chain for Xpost. In essence, [P]≈ has only a single possible closed
behaviour. Now, Theorem 47 tells us that each closed behaviour of P can be simulated
by a closed behaviour of [P]≈ (with respect to the weak bisimulation equivalence classes).
It immediately follows that Ypost is indeed a Markov chain, namely the same Markov
chain we find for [P]≈.

191

CHAPTER 7. CLOSED BEHAVIOURS

Note that the jump process Xpost of a closed behaviour of a weakly deterministic
I/O-IMC need not be a Markov chain as the probability to be in a particular state of an
equivalence class may depend on the past, even though the probability to occupy any
state in the equivalence class has the Markov property (and Ypost is a Markov chain).

7.7 Discussion

In this chapter we have shown that – in general – an I/O-IMC that does not interact
with its environment corresponds to a CTMDP, and – specifically – a deterministic I/O-
IMC that does not interact has as its semantics a CTMC. These results closely match
the results of Johr for IMCs [30] and indeed our translation from I/O-IMCs to CTMDPs
is heavily inspired by Johr’s. This is not surprising as, for closed models, the distinction
between I/O-IMCs and IMCs disappears since this distinction only pertains to the way
I/O-IMCs and IMCs interact.

However, there is a crucial difference between the result in this chapter and Johr’s
result. Whereas in Johr’s case, the translation from (closed) IMC to CTMDP gives
a monolithic semantics to IMCs, in our case this translation arises from the non-
monolithic, modular semantics introduced in Chapter 6. This also proves that the
translational semantics derived from Johr coincides with the modular semantics from
Chapter 6.

7.7.1 Markovian schedulers

In general, the closed behaviours that we can derive from non-deterministic closed I/O-
IMCs are not Markov chains, i.e., they do not satisfy the Markov property. This is
caused by the fact that the decision, which fair-reach trace to choose, may depend on
the history of the behaviour. However, certain behaviours of non-deterministic closed
I/O-IMCs do correspond to Markov chains. Without proof we note that these behaviours
are exactly the behaviours induced by so-called Markovian schedulers, i.e., schedulers
where the decision, which fair reach-trace to take, depends only on the current state of
the behaviour, not on the past. Such schedulers satisfy

γ(t)σ,x(w, y) = γ
(t′)
σ′,x(w, y)

for any pair of times t, t′ ∈ R≥0 and pair of paths σ, σ′. This is not surprising as the
same is the case for CTMDPs.

7.7.2 Analysis

Because CTMDPs are non-deterministic, it is not possible to compute the probability
for a CTMDP to occupy a particular state at a particular time. However, it is possible
to compute infima and suprema for such transient probabilities considering all different
schedulers for the CTMDP. We will consider the problem of computing the infimum and
supremum probability of occupying a particular set of states at time t for a CTMDP
with m transitions and a maximal exit-rate of λ. For general CTMDPs, Neuhäusser

192

7.7. DISCUSSION

and Zhang gave an algorithm that computes these infima and suprema to within a
predetermined error-bound ǫ, which has time-complexity O(m(λt)2ǫ−1) [38]. Note that
λt is an upper-bound for the expected number of jumps to occur within time t.

A very popular way of computing the transient distribution for CTMCs is to use
uniformisation [29]. Given a CTMC with m transitions (i.e., m non-zero entries in
its infinitesimal generator matrix), we can use uniformisation to compute the transient
probability of the CTMC at time t with a time-complexity of O(mλt) where λ is the
maximal exit-rate appearing in the CTMC.

There are many other ways of analysing CTMCs. We would like to mention two
of these in particular, as – in contrast to uniformisation – these solution techniques do
not require the construction of the entire state space of the CTMC. Simulation [19]
can be used to estimate the transient distribution of a CTMC by generating “runs”
of the CTMCs and using statistical methods. Fast adaptive uniformisation [15], is
a variant of uniformisation, where – at different iterations of the algorithm – only a
subset of significant states is maintained instead of considering the entire infinitesimal
generator matrix. Crucially, the complexity of such on-the-fly analysis methods does
not depend on the size of the state space of the CTMC, but rather on the shape of
its transient distributions. In Chapter 9 we will consider the possibility of applying
on-the-fly analysis methods directly on a composition of I/O-IMCs without building its
state space. However, in order to do this we must first know whether such a composite
I/O-IMC is deterministic or not. The question of how to determine whether or not a
composite I/O-IMC is deterministic – without building its state space – is one of the
topics of the next chapter.

193

8
Determinism

In Chapter 7 we have seen that whether or not an I/O-IMC is deterministic, makes a
huge difference in its interpretation. Deterministic I/O-IMCs have as their semantics
a single interactive jump process, which in turn describes a CTMC. To analyse a de-
terministic I/O-IMC we can then analyse this underlying CTMC. On the other hand,
non-deterministic I/O-IMCs do not correspond to CTMCs, but rather to CTMDPs.
This means that the analysis of non-deterministic I/O-IMCs is significantly more com-
plex than the analysis of deterministic I/O-IMCs and can only yield bounds for the
quantitative properties of an I/O-IMC instead of exact quantities as is the case for
deterministic I/O-IMCs. It is then interesting to know whether an I/O-IMC is deter-
ministic or not. This is the question we study in this chapter. We further study the
question whether an I/O-IMC is divergent or not.

For a composite I/O-IMC C = (P1‖ . . . ‖Pn)\A
H it is generally necessary to construct

and examine the state space and transitions of C explicitly to determine whether it
is deterministic and/or time-divergent. The size of the state space of course grows
exponentially in the number of components, which means that constructing this state
space may be infeasible or at least impractical. In Chapter 9 we will see that we can
analyse a composite I/O-IMC without constructing its entire state space, if we know
that it is deterministic and non-divergent. For this reason it would be extremely useful
to be able to efficiently show that certain I/O-IMCs are indeed deterministic and non-
divergent.

Contribution. In this chapter we will develop sufficient conditions that ensure that
a complete composite I/O-IMC is deterministic. These conditions can be checked in
polynomial time and space with respect to the size of the component models of the
composite I/O-IMC. We will also develop similar sufficient conditions that ensure that
a complete composite I/O-IMC is non-divergent. In our examples and explanations we

195

CHAPTER 8. DETERMINISM

will first focus on the issue of determinism, and later show how we can also apply the
proposed methods to divergence.

8.1 Confluence and reachability

In Chapter 5 we have discussed the notion of weak confluence for I/O-IMCs that is
preserved by the architectural operations on I/O-IMCs. This means that a composite
I/O-IMC is weakly confluent if its components are weakly confluent. This immediately
gives us an efficient overapproximation of the weak confluence of a composite I/O-IMC
by simply checking the weak confluence of its components. However, this method may
lead to many spurious counter-examples, i.e., there are many confluent composite I/O-
IMCs which are composed of non-confluent I/O-IMCs. One of the reasons for this is
that stochastic reachability is not preserved by parallel composition. In this chapter we
will develop means to eliminate spurious counterexamples when checking if a composite
I/O-IMC is weakly confluent. In particular, we concentrate on what causes actions to
become enabled in an I/O-IMC.

Example 30. Consider a closed composite I/O-IMC C = (P1‖P2‖P3)\{a, b}, whose
components are shown in Figure 8.1. We have output actions AO

1 = {a}, AO
2 = {b}, and

AO
3 = {c}, input actions AI

1 = AI
2 = ∅ and AI

3 = {a, b}, and no internal actions. We can

P1

x1
1

x2 x3
λ a!

P2

x4
1

x5 x6
µ b!

P3

x7
1

x8

x9

x10

a?

b?

b?

c!

Figure 8.1: The components of closed composite I/O-IMC C. Self-loops labelled with
input actions have been left out for the sake of simplicity.

see that, although P1 and P2 are weakly confluent, P3 is not. Condition
✞

✝

☎

✆4.11 is violated
in state x7 of I/O-IMC P3 because the sequence ab leads to a different state (x9) than
the sequence ba (which leads to x10). The I/O-IMC C is depicted in Figure 8.2. The
equivalence classes of ≈C , omitting equivalence classes which consist of a single state, are
drawn as dashed boxes. We can easily see that all states except state x2‖x5‖x7 satisfy the
conditions of weak determinism. State x2‖x5‖x7 on the other hand obviously has outgo-
ing internal transitions to states that are not weakly bisimilar. However, the state is in
fact not stochastically reachable. For the two paths x1‖x4‖x7

λ−֒→ x2‖x4‖x7
µ−֒→ x2‖x5‖x7

and x1‖x4‖x7
µ−֒→ x1‖x5‖x7

λ−֒→ x2‖x5‖x7 that lead to state x2‖x5‖x7 we find that they
are not plausible as both states x2‖x4‖x7 and x1‖x5‖x7 are unstable.

196

8.2. SPONTANEOUSLY ENABLED ACTIONS

x1‖s4‖s7
1

x2‖x4‖x7 x3‖x4‖x8

x1‖x5‖x7 x2‖x5‖x7 x3‖x5‖x8

x1‖x6‖x10 x2‖x6‖x10 x3‖x6‖x9x3‖x6‖x10

λ

µ

a;

µ
µ

λ

b;

a;

b; b;

λ a;

c!

Figure 8.2: The states, transitions, and weak bisimulation equivalence classes of closed
composite I/O-IMC C.

In the above example we have that the violation of condition
✞

✝

☎

✆4.11 by the third
component of composite I/O-IMC C is spurious, because the one state of C where the
actions a and b are both enabled is not stochastically reachable. In this chapter we will
develop an efficient way to prove that certain actions cannot be enabled at the same
time, or more precisely: that the probability that these actions are enabled at the same
time is zero. We will also show that, if two actions a and b cannot be enabled at the
same time, condition

✞

✝

☎

✆4.11 can be safely ignored for this pair of actions.

In general, determining the (stochastic) reachability of a state in a transition system
involves building the state space of the transition system. Of course, it is undesirable
to generate the state space of a composite I/O-IMC as this state space grows exponen-
tially in the number of components. We therefore develop a way to safely approximate
which actions can be enabled at the same time by considering which events directly
cause actions to become enabled. We will see that for composite I/O-IMCs this causal
relationship can be closely approximated by considering only the component I/O-IMCs.

8.2 Spontaneously enabled actions

We say a set of actions is spontaneously enabled if they may become enable through a
random event. In the context of an I/O-IMC a set of actions is spontaneous if there is
a state in the I/O-IMC, where all the actions are enabled and that state can be reached
via a plausible Markovian transition.

Definition 93 (Spontaneous actions). Given an I/O-IMC P with state space S and
actions AP , we say a set of locally-controlled actions B ⊂ AO

P ∪ AH
P is spontaneous if

there are stochastically reachable states x and x′ in S such that

• x is stable,

• there is a Markovian transition from x to x′, i.e., x λ−֒→ x′ for some λ ∈ R≥0, and

197

CHAPTER 8. DETERMINISM

• all actions in B are enabled in x′, i.e., ∀b ∈ B · (∃x′′ ∈ S · x′ b−→x′′).

Given an I/O-IMC P , we say that a set of actions B is maximally spontaneous if B is
spontaneous in P and there exists no strict superset B′ of B that is also spontaneous in
P . For convenience, we will say an action b is (maximally) spontaneous if the singleton
set {b} is (maximally) spontaneous.

In Example 30 we have that actions a and b are both spontaneous in P1 and P2,
respectively. However, action c is not spontaneous, as the only state in which c is
enabled, state s9, is not reachable with a Markovian transition. For the composite I/O-
IMC C from the same example we see that the actions a and b are also spontaneous.
It is unfortunately not the case that spontaneity is preserved by parallel composition,
however we find that non-spontaneity is indeed preserved by parallel composition and
hiding.

Lemma 19. Given compatible I/O-IMCs P1 and P2, we have that if a set of actions B
is spontaneous in P1‖P2, then B is spontaneous in either P1 or P2.

Proof. We prove Lemma 19 by contradiction. Let A1 and A2 be the actions for I/O-
IMCs P1 and P2 respectively. Assume then that there exists a set of actions B ⊂
AO

1 ∪AO
2 ∪AH

1 ∪AH
2 such that B is spontaneous in P1‖P2, but B is not spontaneous in

P1 nor in P2. We will show that this assumption leads to a contradiction.
Since B is spontaneous in P1‖P2 we find stochastically reachable states x1‖x2 and

x′1‖x
′
2 in P1‖P2 such that x1‖x2 is stable, x1‖x2

λ−֒→ x′1‖x
′
2, and for each action b in B

we find a state x′′1‖x
′′
2 such that x′1‖x

′
2

b−→x′′1‖x
′′
2 . The following then follow from our

modularity results for parallel composition:

1. x1 and x2 are stable in P1 respectively P2,

2. there is either a transition x1
λ−֒→ x′1 in P1 with x2 = x′2 or a transition x2

λ−֒→ x′2
in P2 with x1 = x′1,

3. for each action b ∈ B ∩ (AO
1 ∪AH

1) controlled by P1 we find a state x′′1 for P1 and
a transition x′1

b−→x′′1, and

4. for each action b ∈ B ∩ (AO
2 ∪AH

2) controlled by P2 we find a state x′′2 for P2 and
a transition x′2

b−→x′′2.

From Theorem 33, we furthermore have that x1 and x′1 are stochastically reachable in
P1 and x2 and x′2 are stochastically reachable in P2. We now consider whether P1 or P2

control the actions in B.
First consider the case that the actions in B are all controlled by P1, i.e., B ⊂

(AO
1 ∪AH

1). We then immediately have that B is spontaneous in P1 which constitutes a
contradiction. We find a similar result for the case that the actions in B are controlled
by P2.

Let B1 = B ∩ (AO
1 ∪AH

1) and B2 = B ∩ (AO
2 ∪AH

2) be sets of actions of B controlled
by P1 respectively P2. Now consider the case that B1 and B2 are both non-empty. We

198

8.3. INITIALLY ENABLED ACTIONS

then have that both x′1 and x′2 are unstable, because of items 3 and 4 above. However,
we also have that either x1 is equal to x′1 or x2 is equal to x′2, because of item 2. It then
follows that either x1 or x2 is unstable. This is a contradiction with item 1.

Lemma 20. Given an I/O-IMC P with actions A and a set of actions B ⊂ AO, a set
of actions B′ ⊂ AO ∪AH is spontaneous in P if and only if B′ is spontaneous in P \B.

Proof. The proof of Lemma 20 is straightforward, as hiding does not affect stability or
stochastic reachability.

Theorem 53. Given a composite I/O-IMC C = (P1‖ . . . ‖Pn)\A
H
C , if a set of actions

B ⊂ AO
C ∪AH

C is spontaneous in C then it is spontaneous in one of its components.

Proof. Theorem 53 follows directly from Lemmas 19 and 20.

Theorem 53 allows us to overapproximate the sets of spontaneously enabled actions
in a composite I/O-IMC C = (P1‖ . . . ‖Pn)\A

H
C by considering the sets of spontaneously

enabled actions in its components. In particular we have:

{B | B spontaneous in C} ⊆
n⋃

i=1

{B | B spontaneous in Pi}.
✞

✝

☎

✆8.1

We find the same result for the maximally spontaneous sets of actions. This result is
promising, but we will see that random events are not the only way in which actions
may become enabled.

8.3 Initially enabled actions

We consider a variation of Example 30 to illustrate that sets of actions may become
enabled without being spontaneous.

Example 31. Consider a closed composite I/O-IMC C ′ = (P ′
1‖P

′
2‖P3)\{a, b} where P ′

1

and P ′
2 are shown in Figure 8.3 and P3 is shown in Figure 8.1. The action signatures

of the components of C ′ are identical to those of the composite I/O-IMC C from Exam-
ple 30. We see that again P ′

1 and P ′
2 are confluent, while P3 is not. However, in this

P′
1

x′1
1

x′2
a!

P′
2

x′3
1

x′4
b!

Figure 8.3: Two components of closed composite I/O-IMC C ′.

example we have that none of the actions are spontaneous. Figure 8.4 now shows the
states, transitions, and weak bisimilarity equivalence classes of C ′ itself. We see that
C ′ is not weakly deterministic as the state x′1‖x

′
3‖x7 is stochastically reachable and has

outgoing internal transitions to states that are not weakly bisimilar.

199

CHAPTER 8. DETERMINISM

x′1‖x
′
3‖x7

1
x′2‖x

′
3‖x8

x′1‖x
′
4‖x10 x′2‖x

′
4‖x10 x′2‖x

′
4‖x9

a;

b; b;

a;

c!

Figure 8.4: The states, transitions, and weak bisimulation equivalence classes of closed
composite I/O-IMC C ′.

In the above example we have that the actions a and b are initially enabled. That
is, they are enabled at time-point zero, before any events have occurred.

Definition 94 (Initial actions). Given an I/O-IMC P with states S, actions AP , and
initial distribution αP , a set of actions B ⊂ AO

P ∪AH
P controlled by P is initial if there

is a state x in SP such that:

• x is initial, i.e., αP (x) > 0 and

• each action b in B is enabled in x, i.e., for all actions b in B there exists a state
x′ ∈ SP such that there is a transition x b−→x′.

Given an I/O-IMC P , we say that a set of states B is maximally initial if B is initial in
P and there exists no strict superset B′ of B that is also initial in P . For convenience,
we will say an action b is (maximally) initial if the singleton set {b} is (maximally)
initial.

In Example 31 both actions a and b are initial. Note that, although action c may
occur at time-point zero for I/O-IMC C ′, it is not initial, because a c-event must be
preceded by both an a and a b-event. For the composite I/O-IMC C ′ we see that the
set {a, b} is initial. In fact, initiality is additive with respect to parallel composition.

Theorem 54. Given a composite I/O-IMC C = (P1‖ . . . ‖Pn)\A
H
C , we have that a set

of actions B is initial for C if and only if we find initial sets B1, . . . , Bn in the respective
components P1, . . . , Pn of C such that B =

⋃n
i=1Bi.

Proof. Theorem 54 follows directly from the definitions of parallel composition and
initially enabled actions.

Theorem 54 allows us to identify the sets of initially enabled actions in a composite
I/O-IMC C = (P1‖ . . . ‖Pn)\A

H
C by considering the sets of initially enabled actions in

its components. In particular we have:

{B | B initial in C} =

{
n⋃

i=1

Bi | ∀1 ≤ i ≤ n · Bi initial in Pi

}

.
✞

✝

☎

✆8.2

We find the same result for the maximally initial sets of actions. We now move on to
the third and final way in which actions may become enabled in a composite I/O-IMC.

200

8.4. THE TRIGGERING RELATION

8.4 The triggering relation

We again modify our running example slightly.

Example 32. Consider a closed composite I/O-IMC C ′′ = (P ′′
1 ‖P

′′
2 ‖P3)\{a, b, d}, where

P ′′
1 and P ′′

2 are shown in Figure 8.5 and P3 is shown in Figure 8.1. The first component
of C now has input action AI

1′′ = {d} and the second component now has output actions
AO

2′′ = {b, d}. We once again have that P ′′
1 and P ′′

2 are confluent, and P3 is not. The

P′′
1

x′′1
1

x′′2 x′′3

λ

d?

a!

P′′
2

x′′4
1

x′′5 x′′6
d! b!

Figure 8.5: Two components of closed composite I/O-IMC C ′′.

I/O-IMC C ′′ is depicted in Figure 8.2. The equivalence classes of ≈C′′ are drawn as
dashed boxes. It is obvious that C ′′ is not weakly deterministic.

x′′1‖x
′′
4‖x7

1
x′′2‖x

′′
4‖x7 x′′3‖x

′′
4‖x8

x′′2‖x
′′
5‖x7 x′′3‖x

′′
5‖x8

x′′2‖x
′′
6‖x10 x′′3‖x

′′
6‖x9x′′3‖x

′′
6‖x10

λ

d;

a;

d; d;

a;

b;
b;

a;

c!

Figure 8.6: The states, transitions, and weak bisimulation equivalence classes of closed
composite I/O-IMC C ′′.

In the above example, the actions a and b are enabled at the same time in state
x′′2‖x

′′
5‖x7 and this state is indeed stochastically reachable. However, only action d is

initially enabled and no actions are would be spontaneously enabled (note that state
x′′2‖x

′′
4‖x7 is not stochastically reachable). If we look at the transitions of C ′′ we can see

that first a d-event occurs and then both a and b become enabled. If we look at the
components that control the actions a and b (P ′′

1 and P ′′
2 respectively) we see that there

are transitions labelled d which enable a and b, respectively. For P ′′
1 we see that the

transition x′′1
d?−→x′′2 goes from a state where a is not enabled to a state where action a

201

CHAPTER 8. DETERMINISM

is enabled. We say that d triggers a. Similarly we find for I/O-IMC P ′′
2 that d triggers

b.

Definition 95 (Triggering relation). Given an I/O-IMC P with states S and actions
A, for distinct actions a ∈ A and b ∈ AO ∪ AH , we say that a triggers b in P if there
exist stochastically reachable states x1, x2, and x3 in S such that we have:

x1
a−→x2, x2

b−→x3, and ∄x4 ∈ S · x1
b−→x4.

✞

✝

☎

✆8.3

For an action b ∈ AO ∪ AH we have that b triggers b if we find stochastically reachable
states x1, x2, and x3 in S such that we have:

x1
b−→x2 and x2

b−→x3.
✞

✝

☎

✆8.4

The triggering relation describes which interactive events may cause interactive
events labelled with a particular action to happen. We saw that d triggers a and b
in the I/O-IMCs P ′′

1 and P ′′
2 respectively, but d also triggers a and b in their paral-

lel composition C ′′. In fact, the triggering relations of the components of a composite
I/O-IMC overapproximate the triggering relation of the composite I/O-IMC itself.

Theorem 55. Given a composite I/O-IMC C = (P1‖ . . . ‖Pn)\A
H
C and two actions

a ∈ AC and b ∈ AO
C ∪AH

C , let Pi be the component of C that controls b. We have that if
a triggers b in C then a triggers b in Pi.

Proof. Theorem 55 easily follows from the definitions of parallel composition and the
triggering relation.

It follows that we can indeed overapproximate the triggering relation of a composite
I/O-IMC C = (P1‖ . . . ‖Pn)\A

H
C by combining the triggering relations of its components:

{(a, b) | a triggers b in C} ⊆
n⋃

i=1

{(a, b) | a triggers b in Pi}
✞

✝

☎

✆8.5

For this reason we will call the union of component triggering relations for C, the
approximate triggering relation of C.

Definition 96. Given a composite I/O-IMC C = (P1‖ . . . ‖Pn)\A
H
C the approximate

triggering relation of C is the union of the triggering relations of the components of C.

We have shown three different causes of interactive events in I/O-IMCs. We have also
shown that for composite I/O-IMCs we can overapproximate these causal relationships
by studying only the components of the composite I/O-IMC. In the next section we show
that these are indeed the only three causes of interactive events in I/O-IMCs and that
we can use the causal relationships to overapproximate which actions may be enabled
at the same time in a composite I/O-IMC.

202

8.5. ENABLED SETS

8.5 Enabled sets

To determine whether a composite I/O-IMC is deterministic, it is useful to know which
sets of actions may be enabled simultaneously. We call such a set of actions an enabled
set.

Definition 97 (Enabled sets). Given an I/O-IMC P with states S and actions A, a
set of actions B ⊂ AO ∪ AH controlled by P is an enabled set of P if there exists a
stochastically reachable state x in S, where all actions in B are enabled:

∃x ∈ S · SR(x),∀b ∈ B · (∃x′ ∈ S · x b−→x′).

We denote the set of all enabled sets of an I/O-IMC P as ESP .

We first consider single actions that are enabled in an I/O-IMC. The following the-
orem states that such enabled actions must always be either spontaneous, initial, or
triggered by some action.

Theorem 56. Given an I/O-IMC P , if an action a is enabled in a stochastically reach-
able state of P , then a is spontaneous, initial, or triggered by an action b.

Proof. Let x be a stochastically reachable state in P such that action a is enabled in x.
This means there exists a state x′ in P such that there is a transition x a−→x′. Because
x is stochastically reachable there must exist a plausible path σ from an initial state in
P to x. We now prove Theorem 56 by induction on the length of σ. As our induction
assumption we assume that for all plausible paths σ′ that are shorter than σ, start in
an initial state, and that lead to a state x′′ where an action b is enabled, we have that
b is spontaneous, initial, or triggered by some action c.

We consider the nature of the plausible path σ.

• In the case that σ has length zero it follows that x must be an initial state of P
and then a is initial.

• In the case that σ has length greater than zero and the last transition of σ is
Markovian we have that a is spontaneous.

• Consider now the case that σ has length greater than zero and the last transition
of σ is an interactive transition labelled with action b. We find a state x′′ in P
and a plausible path σ′ such that σ = σ′ ◦ x′′ b−→x. For the state x′′ there are two
possibilities. First, a may not be enabled in x′′ and then b triggers a. Secondly,
a may be enabled in x′′. Then we find a state x′′′ such that x′′ a−→x′′′. Since
there is a plausible path to state x′′ which has one fewer transition than σ, we can
apply the induction assumption and find that a is either spontaneous, initial, or
triggered by some action.

This completes the proof of Theorem 56.

203

CHAPTER 8. DETERMINISM

It of course follows that, for an enabled set of actions B in an I/O-IMC we have that
each of the actions in B must be either spontaneous, initial or triggered. We will now try
to approximate the enabled sets of an I/O-IMC by considering only which actions are
spontaneous and initial and which actions trigger other actions. We make the following
intuitive observations:

• All spontaneous sets of an I/O-IMC are enabled sets,

• All initial sets of an I/O-IMC are enabled sets, and

• Whenever a set of actions B is enabled and a transition labelled b ∈ B occurs, we
have that b is no longer enabled, but all the actions triggered by b may become
enabled.

Note that, for the last item it may be the case that the action b indeed stays enabled
because it triggers itself. The first two items above are exact, but the last item is an
overapproximation. It does not consider the fact that, the b-transition may disable some
of the actions in B, nor does it consider the fact that perhaps not all actions triggered
by b are enabled by that particular b-transition. Still, we can use the above observations
to overapproximate the enabled sets of a closed I/O-IMC.

Definition 98. Given a closed I/O-IMC P , the enabled graph of P , written EGP ,
approximates the sets of actions controlled by P that may be enabled at the same time.
It has vertices V =

⋃∞
i=0 Vi ⊂ 2A

O
P ∪AH

P , labels A, and edges E =
⋃∞

i=0Ei, which are
defined recursively for all i ∈ N:

V0 ={B | B is maximally spontaneous}∪

{B | B is maximally initial}

Ei ={(v, a, (v \ {a}) ∪ {b | a triggers b}) | v ∈ Vi, a ∈ v}

Vi+1 ={v′ | v ∈ Vi, a ∈ A, (v, a, v′) ∈ Ei, v
′ /∈

i⋃

j=0

Vj}

We denote the subset-closure of the vertices of the enabled graph (V,E) of P as ĒSP :

ĒSP = {v′ | v′ ⊆ v, v ∈ V }

The vertices of the enabled graph of a closed I/O-IMC overapproximate the enabled
sets.

Theorem 57. Given a closed I/O-IMC P , for any enabled set B of P we find that there
is a superset of B that is a vertex in the enabled graph of P :

ESP ⊆ ĒSP .

Proof. Let B be an enabled set of P , we will prove that there is a superset v of B that
is a vertex in the enabled graph of P . From the definition of enabled sets, we have that

204

8.5. ENABLED SETS

there is a stochastically reachable state x of P where all the actions in B are enabled.
Since x is stochastically reachable we have that there is a plausible path σ from an initial
state of P to x. We prove Theorem 57 by induction on the length of σ. As our induction
assumption, we assume that for any plausible path σ′ that starts in an initial state in
P , ends in a state x′ where the set of actions B′ is enabled, and that is shorter than σ,
we have that there exists a superset v′ of B′ that is a vertex in the enabled graph of P .

We consider the nature of the path σ.

• Consider the case that σ has length zero. Then we have that the state x is an
initial state. It immediately follows that there is a maximally initial set of actions
v that is a superset of B. This set v must be in V0 and is thus a vertex of the
enabled graph of P .

• Consider the case that σ has length greater than zero and the last transition of σ is
a Markovian transition. It then immediately follows that there exists a maximally
spontaneous set of actions v that is a superset of B. This set v must again be in
V0 and is thus a vertex of the enabled graph of P .

• Finally we consider the case that σ has length greater than zero and its last
transition is an interactive transition labelled a. This means we find a path σ′ and
a state x′ such that σ = σ′ ◦ x′ a−→x. It is obvious that σ′ is plausible, starts in
an initial state and is shorter than σ. For each action b in B we either have that
b is also enabled in x′ or not. If b is not enabled in x′ then, by

✞

✝

☎

✆8.3 , a triggers b.

Let B′ be the set containing a and all actions in B that are enabled in s′.

B′ = {a} ∪ {b | b ∈ B, b enabled in x′}.

Note that a is also enabled in x′. By the induction assumption we find that there is
a vertex v′ in the enabled graph of P that is a superset of B′. From the definition
of the enabled graph we now find a transition (v′, v) in the enabled graph where

v = v′ \ {a} ∪ {c | a triggers c}.

If a is in B, then a is enabled in x and then, by
✞

✝

☎

✆8.4 , we have that a triggers a.
It follows that a is also in v. For an action b ∈ B, with b 6= a, we have that, if b is
not enabled in x′ then a triggers b and b must be in v. For an action b ∈ B, with
b 6= a, that is enabled in x′ we have that b is in v′ and then also in v. This shows
that each of the actions in B is also in v and then v is a superset of B.

This completes the proof of Theorem 57.

Determining the spontaneous sets and the triggering relation for a composite I/O-
IMC involves generating its state space, which grows exponentially in the number of its
components and which may be prohibitively large. However, we have seen throughout
this chapter that these causal relations can be approximated by considering the compo-
nents of the composite I/O-IMC. This naturally leads to an approximate version of the
enabled graph.

205

CHAPTER 8. DETERMINISM

Definition 99. Given a closed composite I/O-IMC C = (P1‖ . . . ‖Pn)\A
H
C , the approx-

imate enabled graph of C, written ĒGC , approximates the sets of actions controlled by
C that may be enabled at the same time. It has vertices V =

⋃∞
i=0 Vi ⊂ 2A

O
C∪AH

C , labels
A, and edges E =

⋃∞
i=0Ei, which are defined recursively for all i ∈ N:

V0 =
n⋃

j=1

{B | B is maximally spontaneous in Pj} ∪

{
⋃n

j=1Bj | ∀1 ≤ j ≤ n ·Bj is maximally initial in Pj}

Ei ={(v, a, (v \ {a}) ∪

{b | ∃j · b ∈ AO
j ∪AH

j , a triggers b in Pj}) | v ∈ Vi, a ∈ v}

Vi+1 ={v′ | v ∈ Vi, a ∈ A, (v, a, v′) ∈ Ei, v
′ /∈

i⋃

j=0

Vj}

We denote the subset-closure of the vertices of the approximate enabled graph (V,E) of
C as ẼSC :

ẼSC = {v′ | v′ ⊂ v, v ∈ V }

The vertices of the approximate enabled graph are a superset of the vertices of the
enabled graph of a distribute I/O-IMC.

Theorem 58. Given a closed composite I/O-IMC C, if a set of actions controlled by
C is a vertex in the enabled graph of C then a superset of that set is a vertex in the
approximate enabled graph of C:

ĒSC ⊆ ẼSC .

Proof. It is enough to show that the set of vertices of EGC is a subset of the set of vertices
of ĒGC , i.e., any vertex v of EGC is also a vertex of ĒGC . For a vertex v of EGC we
find that there is path from a vertex v0 in V0 of EGC to v. We can prove Theorem 58
by induction on the length of this path using the results

✞

✝

☎

✆8.1 ,
✞

✝

☎

✆8.2 , and
✞

✝

☎

✆8.5 .

As an obvious corollary we find that the vertices of the approximate enabled graph
of a closed composite I/O-IMC overapproximate the enabled sets of that I/O-IMC:

ESC ⊂ ĒSC ⊂ ẼSC .

To illustrate the use of approximate enabled graphs we consider again the examples
discussed throughout this chapter.

Example 33. Consider the three composite I/O-IMCs C, C ′, and C ′′ from the Exam-
ples 30, 31, and 32. We can approximate the spontaneous actions, initial actions, and
the triggering relation by studying the components of these composite I/O-IMCs.

C C ′ C ′′

Spontaneous sets: {{a}, {b}} {∅} {{a}}
Initial sets: ∅ {{a}, {b}} {{d}}
Trigger relation: {(b, c)} {(b, c)} {(d, a), (d, b), (b, c)}

206

8.5. ENABLED SETS

Using this information we can construct the approximate enabled graphs of the three
composite I/O-IMC. They are shown in Figure 8.7. We can see that the set of actions

EG(C)

{a} {b}

∅ {c}

EG(C ′)

{a, b}

{b} {a, c}

{c} {a}

∅

EG(C ′′)

{a} {d}

{a, b}

{b}

{a, c}

∅ {c}

Figure 8.7: The approximate enabled graphs of composite I/O-IMCs C, C ′, and C ′′.

{a, b} is not in the approximate enabled graph of C which conforms to the fact that {a, b}
is not an enabled set of C. On the other hand the approximate enabled graphs of C ′ and
C ′′ do contain a vertex {a, b} and indeed, {a, b} is an enabled set of both C ′ and C ′′.
However, the approximate enabled graphs of C ′ and C ′′ also contain vertices {a, c}, but
{a, c} is not an enabled set for either C ′ or C ′′.

We will now use the enabled graph to show that actions that are enabled simultane-
ously must have a common cause. To do this we will use the reflexive transitive closure
of the triggering relation, which we call the indirect triggering relation.

Definition 100 (Indirect triggering relation). Given an I/O-IMC P with actions A,
the indirect triggering relation of P is the reflexive transitive closure of the triggering
relation of P . That is, an action a ∈ A indirectly triggers an action b ∈ A if there exists
a sequence of actions a1, . . . , an such that a = a1, b = an and for each 1 ≤ i < n we
have that ai triggers ai+1.

We want to show that, if a set of actions is enabled at the same time, then these
actions are indirectly triggered by a set of initial actions, or by a spontaneous set of
actions. The following Lemma will help us accomplish this.

Lemma 21. Given an I/O-IMC P with actions A and enabled graph EGP . For an
action a which is an element of a vertex v in EGP , we have that if there is a path from
a vertex v′ to v in EGP then there is an action b in v′ such that b indirectly triggers a.

207

CHAPTER 8. DETERMINISM

Proof. We prove Lemma 21 by an induction on the length of the path from v′ to v. If
this path has length zero, then we have v′ = v and a indirectly triggers itself since the
indirect triggering relation is the reflexive transitive closure of the triggering relation.

We then consider a path σ of length n > 0 and use as our induction assumption that
Lemma 21 holds for paths of length smaller than n. Given that σ has length greater
than zero we find a vertex v′′ of EGP , a path σ′ of length n − 1 from v′ to v′′, and an
edge from v′′ to v labelled with an action c ∈ A, such that σ = σ′ ◦ (v′′, c, v). From
Definition 98 it follows that either a is in v′′ or a is triggered by c. In either case we
have that the vertex v′′ contains an action d which indirectly triggers a, i.e., either d = a
or d = c. From our induction assumption we have that the action d must be indirectly
triggered by an action b in v′. Finally, since b indirectly triggers d and d indirectly
triggers a we have that b indirectly triggers a, since the indirect triggering relation is
transitive.

Now we are ready to prove that simultaneously enabled actions always have a com-
mon cause.

Theorem 59. Given an I/O-IMC P with actions A, if actions a1, . . . , an are in an
enabled set of P , then there exists actions b1, . . . , bn that indirectly trigger a1 through an
respectively, such that either

• each of the actions b1, . . . , bn is initial, or

• P has a spontaneous set that contains all of the actions b1, . . . , bn.

Note that the actions b1, . . . , bn do not have to be distinct.

Proof. We prove Theorem 59 by considering the enabled graph of P (see Definition 98).
We will assume that the actions a1, . . . , an are in an enabled set of P and show that it
follows that the actions b1, . . . , bn as above exist.

From Theorem 57 it follows that there is a vertex v of the enabled graph of P such
that v is a superset of {a1, . . . , an}. Because the enabled graph of P is constructed
inductively by adding edges and vertices we have that there must also exist a vertex v′

in V0 (see Definition 98) such that there is a path from v′ to v in EGP .
From Lemma 21 we know that for each action ai, 1 ≤ i ≤ n, we have that there is

an action bi in v′ that indirectly triggers ai. Finally, we see from the definition of V0
that the vertex v′ either contains only initial actions or is a spontaneous set of P .

For composite I/O-IMCs we can approximate the indirect triggering relation in the
same way as we approximated the triggering relation (see Definition 96).

Definition 101. Given a composite I/O-IMC C = (P1‖ . . . ‖Pn)\A
H
C , the approximate

indirect triggering relation is the reflexive transitive closure of the approximate triggering
relation of C.

As expected, we can now extend Theorem 59 to composite I/O-IMCs, using their
indirect triggering relations.

208

8.6. SUFFICIENT CONDITIONS FOR DETERMINISM

Corollary 13. Given a composite I/O-IMC C = (P1‖ . . . ‖Pn)\A
H
C , if actions a1, . . . , an

are in an enabled set of C, then there exists actions b1, . . . , bn that approximately indi-
rectly trigger a1 through an respectively, such that either

• each of the actions b1, . . . , bn is initial in one of the components of C, or

• one of the components of C has a spontaneous set that contains all of the actions
b1, . . . , bn.

Note that the actions b1, . . . , bn do not have to be distinct.

8.6 Sufficient conditions for determinism

We will now use the results we have obtained concerning the causality of interactions in
I/O-IMCs to give sufficient conditions for an I/O-IMC to be weakly deterministic (see
Definition 65). To be more exact, we give necessary conditions for a composite I/O-IMC
to be non-deterministic.

Theorem 60. Given a complete composite I/O-IMC C = (P1‖ . . . ‖Pn)\A
H with actions

A, we have that if C is not weakly deterministic then there exists a pair of actions a, b ∈ A
such that

1. one of the component I/O-IMCs is not weakly confluent with respect to a, b,

2. there exist actions c, d that approximately indirectly trigger a and b, respectively,
and

3. one of the following hold:

(a) c and d are both initial actions, or

(b) there exists a spontaneous set of one of the component I/O-IMCs that contains
both c and d.

Once again we note that c may be equal to d.

Proof. Theorem 60 is a refinement of Proposition 17, which states that if the composed
I/O-IMC is not weakly deterministic then one of its component must be non-confluent
(condition 1). However, we now take into account the fact that the non-confluence of a
pair of actions is only relevant if we can actually reach a state where both actions are
enabled (see Definition 65). Conditions 2 and 3 stem from Corollary 13, which gives
conditions for two actions to be enabled simultaneously.

It follows from Theorem 60 that if we cannot find a pair of actions a, b as in the
theorem, then this is a sufficient condition for the composite I/O-IMC to be weakly
deterministic, i.e., weakly bisimilar to an I/O-IMC with no interactive transitions. In
other words, the conditions of Theorem 60 are necessary conditions for non-determinism.
Figure 8.8 shows an example of how a non-deterministic composite I/O-IMC may fulfil

209

CHAPTER 8. DETERMINISM

these conditions. The set {a} is spontaneous in I/O-IMC P1. The action a then (in-
directly) triggers both actions b and c in I/O-IMCs P2 and P3, respectively. Finally,
I/O-IMC P4 is not weakly confluent with respect to the pair of actions b and c. In the
lower right of Figure 8.8 we see that when minimised with respect to weak bisimilarity
the composite I/O-IMC still contains interactive transitions.

Spontaneous or initial actions (indirectly) trigger non-confluent actions.

P1
λ a!

P2
a? b!

P3
a? c!

P4 b?
c?

c?
b?

(P1‖P2‖P3‖P4)\{a, b, c}

λ a;
b;

c;

c;

b;

≈ λ

τ ;

τ ;

Figure 8.8: Example of a non-deterministic composite I/O-IMC (P1‖P2‖P3‖P4)\{a, b, c}
that satisfies the conditions of Theorem 60. All initial distributions are Dirac distribu-
tions. The colours of the states identify the state equivalence relation =s.

Note that the conditions in Theorem 60 are not sufficient to show that an I/O-IMC
is non-deterministic. Since we do not fully take into account the question of reachability
we may find complete composite I/O-IMCs that fulfil the conditions of Theorem 60, but
are still weakly deterministic. Figure 8.9 shows an example of such a false positive. The
composite I/O-IMC in this figure satisfies the conditions in Theorem 60 in the same way
as the composite I/O-IMC in Figure 8.8, but it is in fact weakly deterministic.

8.6.1 Algorithm

We will now describe an algorithm (see Algorithm 1) that verifies, for a given complete
composite I/O-IMC C = (P1‖ . . . ‖P2)\AC , whether or not it satisfies the conditions
in Theorem 60. Our goal is to check these conditions in polynomial time and space.
Note that Theorem 60 refers to the set of all spontaneous sets of actions, which has
size O(2|A|)) and would require exponential space to store. However, we are only in-
terested in knowing whether two actions c and d are in the same spontaneous set. To

210

8.6. SUFFICIENT CONDITIONS FOR DETERMINISM

Spontaneous or initial actions (indirectly) trigger non-confluent actions.

P1
λ a!

P5
µ d!

P2
a? b!

d?

P3
a?c!

d?

P4 b?
c?

c?
b?

(P1‖P2‖P3‖P4‖P5)\{a, b, c, d}

λ
a; b; µ d;

µ
d; λ a; c;

≈

Figure 8.9: Example of a false positive for Theorem 60. All initial distributions are
Dirac distributions. The colours of the states identify the state equivalence relation =s.

prevent the exponential cost of computing all spontaneous sets, we therefore compute
the spontaneous relation

R(sp) = {(a, b) | a, b are in the same spontaneous set}.

It is clear that R(sp) has size O(|A|2), i.e., polynomial size. We will write R
(sp)
i for the

spontaneous relation of I/O-IMC Pi. As for the initial actions, we only need to know

whether an action is initial or not, so we simply compute the set of initial actions A
(init)
i

for each I/O-IMC Pi, which contains all the initial actions of that I/O-IMC and has size
O(|A|). Finally, we compute for each component I/O-IMC the set of all pairs of actions
that are non-confluent. This set also has size O(|A|2).

Complexity Computing the spontaneous relation, initial actions, triggering relation,
and non-confluent pairs of actions can be done by applying depth-first searches to the
component I/O-IMCs. This requires O(

∑n
i=1 |Si|

2) time. The approximate triggering
relation for C is simply the union of the triggering relations of its components and also
has size O(|A|2). Computing the reflexive, transitive closure of this relation then has
time complexity O(|A|3) [12]. Now we have all the ingredients prepared to start looking
for a pair of actions a, b that satisfies the conditions of Theorem 60. We do this by
considering all non-confluent pairs of actions (there are O(|A|2) such pairs) and then
looking for either a pair of initial actions or a pair of spontaneous actions (again there

211

CHAPTER 8. DETERMINISM

noend 1 Verifies whether a composite I/O-IMC C = (P1‖ . . . ‖Pn)\AC . satisfies the con-
ditions of Theorem 60. If the algorithm returns “True” then C may be non-deterministic,
otherwise C is weakly deterministic.

1: for all 1 ≤ i ≤ n do
2: Compute R

(sp)
i , A

(init)
i , and the triggering relation for Pi.

3: Compute all pairs of non-confluent actions for Pi.
4: Compute approximate triggering relation for C.
5: Compute reflexive, transitive closure of approximate triggering relation.
6: for all non-confluent pairs of actions a, b do
7: for all initial actions c that approximately indirectly trigger a do
8: for all initial actions d do
9: if d indirectly triggers b then

10: return True
11: for all spontaneous actions c that appr. indirectly trigger a do
12: for all actions d in the same spontaneous set as c do
13: if d indirectly triggers b then
14: return True
15: return False

are O(|A|2) such pairs). This gives us a time-complexity of O(|A|4) for actually checking
the conditions of Theorem 60 (loop 6-14). We then have an overall time complexity of

O(

n∑

i=1

|Si|
2 + |A|4)

and an overall space complexity of

O(
n∑

i=1

|Si|
2 + |A|2)

since we need to store the component I/O-IMCs and the various relations on the actions.

8.7 Time-divergence

Time-divergence in an I/O-IMC model may complicate its analysis and may also indicate
a modelling issue. It is therefore useful to efficiently establish whether or not an I/O-
IMC is time-divergent. Fortunately, we can use the (approximate) triggering relation of
a composite I/O-IMC to show that an I/O-IMC is non-divergent.

Theorem 61. Given a closed I/O-IMC C = (P1‖ . . . ‖Pn)\B, if there exists no action a
of C such that (a, a) is in the transitive closure of the (approximate) triggering relation
of C, then there is no stochastically reachable interactive cycle in C.

212

8.7. TIME-DIVERGENCE

Proof. We will prove Theorem 61 by contradiction. Assume then that the I/O-IMC C
has an interactive cycle of length n ∈ N, but there is no action a of C such that (a, a) is
in the transitive closure of the triggering relation of C.

Let x1, . . . , xn and a1, . . . , an be the states respectively actions on the interactive
cycle. That is, the cycle is of the form

x1
a1−→x2 . . . xn−1

an−1−→xn
an−→x1.

Each action ai is enabled in state xi. For every action ai we have that either ai is
enabled in every state on the cycle, or there exists some index ji such that ai is not
enabled in xji but is enabled in all states between xji and xi on the cycle. For the
first case (ai is enabled in every state) we have that ai triggers itself, since there is a
transition xi

ai−→xi+1%n and ai is enabled in xi+1%n. This obviously means that (a, a)
is in the transitive closure of the triggering relation of C which is a contradiction.

Assume then that for each action ai we find an index 1 ≤ ji ≤ n as above. We have
that the each action aji triggers the action ai since there is a transition xji

aji−→xji+1%n

and ai is enabled in xji+1%n. It directly follows that there must be a sequence of actions
from a1, . . . , an that forms a triggering cycle, which is a contradiction.

Since the approximate triggering relation is a superset of the triggering relation,
the fact that (a, a) is in the transitive closure of the triggering relation means that it
is also in the transitive closure of the approximate triggering relation. It follows that
Theorem 61 also holds for the approximate triggering relation.

Of course, the reverse of Theorem 61 does not hold and we may find “false negatives”.
That is, there exist I/O-IMCs with cyclic (approximate) triggering relations, which are
not time-divergent.

We can also derive a necessary condition for time-divergence from the enabled graph
of C.

Corollary 14. Given a closed I/O-IMC C = (P1‖ . . . ‖Pn)\B, if there are no cycles in
EGC (or ĒGC) then there is no stochastically reachable interactive cycle in C.

Proof. We will show that whenever C contains a stochastically reachable interactive
cycle, and (due to Theorem 61) the (approximate) triggering relation of C contains a
“cycle”, then EGC respectively ĒGC contains a cycle.

Let a1, . . . , an be the actions that constitute a cycle in the triggering relation of C.
Since the cycle is stochastically reachable we find a vertex {a1} ∪B in EGC , where B is
a subset of the actions of C. We then find a transition in EGC to a vertex {a2}∪B ∪B1

since a1 triggers a2. The set of actions B1 consists of the other actions (possibly none)
triggered by a1. We again find a transition to a vertex {a3} ∪ B ∪ B1 ∪ B2 and so on
until we reach vertex {an} ∪ B ∪ B1 ∪ . . . ∪ Bn−1. Since an triggers a1 we now find a
transition to vertex {a1}∪B ∪ This means that for any vertex of the form {a1}∪B
we can find a path in EGC to a vertex {a1} ∪ B′ where B′ ⊃ B. Since C has a finite
number of actions it follows that we must find a cycle in EGC .

By the same reasoning, it follows that a cycle in the approximate triggering relation
leads to a cycle in ĒGC .

213

CHAPTER 8. DETERMINISM

Algorithm. To check whether a composite I/O-IMC satisfies the condition of Theo-
rem 61 we can use an algorithm that is very similar to Algorithm 1. As in Algorithm 1
we compute the approximate triggering relation of C from the triggering relations of
its components. We can then compute the transitive closure of this triggering relation
and check whether there exists an action a such that (a, a) is in this transitive closure.
This algorithm has the same space complexity as Algorithm 1 and time complexity
O(
∑n

i=1 |Si|
2 + |A|3).

8.8 Discussion

In this chapter we have developed efficient means to overapproximate the determinism
and non-divergence of a composite I/O-IMC.

In Chapter 9 we will see that the theory developed in this chapter can be put to
good use in practice. However, it will be very interesting to study just how “over” our
over-approximations are. For instance, how often can we expect to see false positives
for Theorem 60 and what aspects of a composite I/O-IMC influence the likelihood of
seeing such a false positive? Our intuition is that composite I/O-IMCs with complex
interactions between the component I/O-IMCs are more prone to such false positives
than composite I/O-IMCs whose complexity lies mostly in their Markovian transitions.

8.8.1 Other methods to show determinism

In the literature there are several other approaches to proving that (stochastic) inter-
acting models are deterministic. Here we briefly discuss two such approaches. Milner
proposes constructing confluent LTSs by allowing only “confluent” choices between ac-
tions [35]. This approach is also possible for I/O-IMCs but is very restrictive and does
not make use of the fact that, due to maximal progress, the use of non-confluent choices
may not be problematic for I/O-IMCs. Bohnenkamp has shown that determinism can be
ensured in stochastic process algebras by disallowing choices between interactive transi-
tions and ensuring processes are never blocked [2]. This approach is also more restrictive
than ours.

8.8.2 Determinism for networks of IMCs.

We now consider how the theory developed in this chapter applies to networks of IMCs.
We first note that for composite I/O-IMCs we do not consider renaming of actions.
We therefore consider also networks of IMCs without renaming. We conjecture that
for networks of IMCs without renaming and which are deterministic with respect to
synchronisation the results in this chapter also hold. For a network of IMCs with
renaming, we may first determine (or overestimate) the enabled sets of the same network
without renaming, before applying renaming to these enabled sets. This should lead to
an overestimation of the enabled sets of the network of IMCs.

214

8.8. DISCUSSION

8.8.3 Practical repercussions

In this chapter we have developed an efficient way to determine whether or not a com-
posite I/O-IMC is deterministic and non-divergent, although we may find false nega-
tives, i.e., I/O-IMCs that are deterministic but do not satisfy the sufficient conditions
presented in this chapter. However, we have been able to determine for a composite
I/O-IMC consisting of many component I/O-IMCs in parallel, that it is in fact deter-
ministic and non-divergent, using the algorithms discussed in this chapter. How does
this help us in practice? One way in which this is useful is that we can in fact construct
the CTMC semantics of the composed I/O-IMC on the fly. That is, we can compute
individual transitions from the CTMC by simply applying the rules of parallel com-
position and resolving any “non-deterministic” choices that occur arbitrarily (since we
know they will lead to bisimilar states). This allows us to apply the on-the-fly CTMC
analysis techniques that we briefly discussed in Subsection 7.7.2, which may allow us to
more efficiently analyse large I/O-IMCs by avoiding the generation of their state space.
We will go into a bit more detail of this discussion in Chapter 9, where we consider
a high-level dependability language that gives rise to complex compositions of many
I/O-IMCs.

215

9
Arcade

In this chapter we discuss how the foundations laid in the previous chapters can be
connected to an expressive modelling language. The architectural dependability evalua-
tion framework, Arcade [3], aims at providing a modular and easy-to-use architectural
description language focussing on system dependability. It is designed to allow the rep-
resentation of dependability features of complex systems. As such, Arcade models
describe how the components of the system may fail, how they are repaired, what the
dependencies between the components are, and under what circumstances the system is
considered to be operational or not. Ultimately, we are interested in computing different
dependability metrics for the system, based on its behaviour.

Arcade is equipped with a compositional semantics that maps on I/O-IMCs in
such a way that each component of the dependable system is represented by one or
more I/O-IMCs. The semantics of the entire system is then simply defined as the
parallel composition of the I/O-IMCs representing the system components. Several of
the properties established for I/O-IMCs in the preceding chapters will make it possible
to establish insights about the determinism and analysability of Arcade models.

Contribution. The design of Arcade is rooted in joint work [13, 14, 3]. We give
– for the first time – a formal syntax of Arcade models and formalize the semantic
embedding of Arcade models into I/O-IMCs. It is known from previous work [3] that
the I/O-IMC semantics of a group of Arcade components is defined by the parallel
composition of the I/O-IMC semantics of these components. However, the results from
Chapter 6 allow us to extend this result: the stochastic behaviour of an Arcade com-
ponent (that is, its jump probabilities and interactive behaviour) is given by a family
of interactive jump processes which can be derived from its I/O-IMC semantics and the
stochastic behaviour of a group of Arcade components is then given by the parallel
composition of these jump processes. Finally, we apply the results of Chapter 8 to give

217

CHAPTER 9. ARCADE

simple structural sufficient conditions for an Arcade model to be deterministic. We
will give a polynomial-time algorithm to check whether an Arcademodel satisfies these
conditions.

9.1 Syntax of Arcade

The Arcade modelling language can be used to describe complex dependable systems.
In this section we will define a formal grammar for the Arcade modelling language and
we will use it to model two examples of dependable systems.

9.1.1 Formal grammar

An Arcade model consists of a number of interacting components. There are five dif-
ferent types of components (basic components, OR-gates, AND-gates, repair units, and
spare management units) and each type of component has a different set of properties,
which are expressed by the following grammar.

Definition 102. The Arcade modelling language has the following grammar:

A ::= C | C,A

C ::= BC | Or | And | Rep | Sp

BC ::= “BC”(name, 〈Omodes〉, 〈Frates〉, {Fmodes}, rate)

Omodes ::= Omode ,Omodes | ǫ

Omode ::= (name,name, signal , signal)

Frates ::= Frate | Frate ,Frates

Frate ::= rate | “destructive”

Fmodes ::= Fmode | Fmode ,Fmodes

Fmode ::= (name,prob)

signals ::= signal | signal , signals

signal ::= Failure(name) | Recovery(name) | Failure(name,name)

Or ::= “OR”(name, {signals}) | “OR”(name, {signals},name)

And ::= “AND”(name, {signals}) | “AND”(name, {signals},name)

Rep ::= “REP”(strategy , 〈names〉)

strategy ::= “dedicated” | “FCFS” | “PP” | “PNP”

Sp ::= “SMU”(name,name, 〈names〉)

names ::= name | name,names

where name is an identifier (such as a string), rate is a positive real, and prob is a
real number between 0 and 1 (inclusive).

We call the syntactical elements C components of the Arcade model. The five
different types of components are basic components (syntactical element BC), AND-gates

218

9.1. SYNTAX OF ARCADE

(syntactical element And), OR-gates (syntactical element Or), repair units (syntactical
element Rep), and spare management units (syntactical element Sp). Note that the
signal Failure(B) represents the failure of component B, whereas the signal Recovery(B)
represents the recovery of component B. Finally, signal Failure(B,M) represents the
failure of component B in failure mode M . We will sometimes use the shorthand f(B),
u(B), and f(B,M), to denote Failure(B), Recovery(B), and Failure(B,M) respectively.
We will now explain the syntax of the five different types of components.

9.1.2 Basic component

A basic component models, as the name suggest, a basic component of the dependable
system. A basic component is formally represented by a 5-tuple consisting of its name,
operational modes, failure rates, failure modes, and repair rates.

Example 34. As an example consider the basic component

BC(Valve 1, ∅, 〈8.4 · 10−8〉, {(stuck open, 0.5), (stuck closed, 0.5)}, 0.1).

This basic component,

• has name “Valve 1”,

• has no operational modes,

• has a single failure rate 8.4 · 10−8,

• has two failure modes named “stuck open” and “stuck closed” both of which occur
with probability 0.5, and

• has repair rate 0.1.

The name of the basic component is used to identify it. In this example, the basic
component represents a valve. The failure rate of the component, describes the time
until the basic component fails (in this case the basic component fails after an exponential
delay with rate 8.4 · 10−8). The failure modes describe the different ways in which the
valve may fail and the relative likelihoods of these failures. In our example, the valve
may either become stuck open or stuck closed. Whenever the valve fails, it becomes stuck
open with probability 0.5 and suck closed with probability 0.5. Finally, the repair rate
tells us how fast the valve can be repaired. In this case the valve will be repaired after
an exponential delay with rate 0.1.

The rate at which a basic component fails may depend on its environment. For
instance, in a pumping system where two pumps run in parallel, the failure of one pump
will put additional strain on the remaining pump as it must pump additional water.
Such outside influences are modelled using operational modes.

219

CHAPTER 9. ARCADE

Example 35. Consider the basic component

BC(Pump 2, 〈(normal, degraded, u(Pump 1), f(Pump 1))〉,

〈5.44 · 10−6, 10.88 · 10−6〉, {failure, 1}, 0.1).

This basic component has one operational mode

(normal, degraded, u(Pump 1), f(Pump 1)).

We can see that this basic component represent a pump which can either operate normally
or in a degraded manner. The two signals of the operational mode (u(Pump 1) and
f(Pump 1)) tells us under what circumstances the pump will switch from normal mode
to degraded mode. In particular, when pump 1 fails, then pump 2 moves to degraded
mode. Similarly, if pump 1 recovers then pump 2 moves back to normal mode. The two
failure rates correspond to the two operational states (normal or degraded) of the pump.
If the pump is in the “normal” state then it fails with rate 5.44 · 10−6, if the pump is in
the “degraded” state then if fails with rate 10.88 · 10−6.

If a basic component has multiple operational modes (such as normal/degraded
as well as active/inactive), then we treat these orthogonally. That is, such a basic
component would have four different combinations of operational modes: normal active,
normal inactive, degraded active, and degraded inactive. We refer to these combinations
of operational modes as operational states and we must specify a failure rate for each
operational state (see Subsection 9.1.7).

If we look closely at the grammar of Arcade we will see that there is one special
failure rate, denoted by the word “destructive”. Any operational state that has the
“destructive” failure rate is called a destructive operational state, which means that
whenever the basic component enters this operational state it will fail immediately.
This is used to model destructive dependencies between components. For instance, it
may be the case that if the power supply of a computer work station fails, this will
immediately cause the work station to break down.

Note that the syntax above allows only exponential failure and repair distributions.
This is done only for the sake of simplicity. In principal, Arcade can support any
distribution that is represented by a Markov chain. For more details, see previous work
on dynamic fault trees [7].

9.1.3 Logical gates

Logical gates allow us to group basic components together. Each logical gate has a
name and a list of input failures. The idea is that an OR-gate represents a complex
part of the system which fails when one of its input failures occurs. Similarly, an AND-
gate represents a complex part of the system which fails when all of its input failures
occur. If the failure condition of a logical gate is no longer satisfied, it will recover, i.e.,
the corresponding subsystem is operational again. A logical gate can be embellished
with an additional label (the optional third part of the tuple). In this case, the logical

220

9.1. SYNTAX OF ARCADE

gate represents an aspect of the system which we want to study. Commonly, there is
one logical gate that represents complete system failure, but we could also have logical
gates that represent, for instance, the failure of a subsystem. This allows us to study
complex properties of the dependable system, such as the probability of system failure
conditioned on the failure of a particular subsystem. In Section 9.2 we will see how these
aspects are represented in the semantics of Arcade.

9.1.4 Repair units

In Arcade, basic components are repaired by repair units, which represent the real-
world repair processes typically used for dependable systems(i.e., a repair unit may
model a repair team tasked with replacing a faulty component). Each repair unit is
responsible for the repair of a number of basic components and each repair unit has a
strategy to decide which basic component to repair when multiple basic components have
failed. For instance, the repair unit REP(FCFS, 〈A,B,C〉) is responsible for repairing
basic components A, B, and C and will use a first-come-first-serve strategy to determine
which basic component to repair first. That is, it will repair basic components in the
order in which they failed. A different repair strategy is used by prioritised preemptive
(PP) repair units. The basic components in the care of PP repair units have different
priorities (given by the order in which the components are listed) and the PP repair
unit will always repair the highest priority component first, preempting the repair of a
lower priority component if necessary. Prioritised non-preemptive (PNP) repair units are
similar to PP repair units, except that ongoing repairs are not preempted by the failure
of a higher-priority component. We will not describe the semantics of PNP repair units
in detail in this thesis as they are very similar to PP repair units. The dedicated repair
strategy is used when the repair unit is responsible for exactly one basic component.

9.1.5 Spare management units

Arcade also provides a mechanism to model the use of spare components using spare
management units. A spare management unit allows several basic components to func-
tion as spares for a primary basic component. When the primary component fails, the
first available spare is activated to take over the function of the primary. For instance,
the SMU SMU(X,P, 〈A,B〉) represents an SMU named X with primary component P
and spares A and B. Note that several spare management units can share the same
spare (e.g., the four “primary” tires of a car all share the spare tire). For the sake of
simplicity, we will not discuss spare management units in detail in this chapter. For
more information we refer to Boudali et al [3] and Maaß [34].

9.1.6 Other Arcade elements

Besides the Arcade syntactical elements discussed so far, there are several other Ar-

cade elements as described by Boudali et al and Maaß [3, 34]. We will give a short
overview of them here.

221

CHAPTER 9. ARCADE

Repair units with different repair strategies. Boudali et al and Maaß discuss
several more repair strategies. Prioritised non-preemptive repair units (PNP RUs) do
not preempt the repair of a low priority component when a higher priority component
fails. Maaß further discusses PP and PNP repair units where the priorities of the
components need not form a total order [34]. When multiple components with the same
priority have failed, a FCFS strategy is used to determine which of these components is
repaired first.

Basic components with phase-type distributions So far, we have assumed that
the failure distributions are all exponential distributions. However, Arcade also sup-
ports the use of phase-type (PH) distributions [51, 42] to describe failure and repair
distributions. A phase-type distribution consists in essence of a CTMC with a single
absorbing state, where the associated distribution is the time until this absorbing state
is reached. The non-absorbing states of the Markov chain are called the phases of the
PH-distribution. An exponential distribution is a phase-type distribution with a single
non-absorbing state. For a more detailed explanation of the combination of PH distri-
butions and operational modes we refer to related work on dynamic fault trees, where
a similar issue occurs [7].

Future extensions to Arcade. Since Arcade is an extensible framework, new syn-
tactic elements may be added to it. Such new syntactic elements must be provided with
a semantics in terms of I/O-IMCs, for instance by providing a translation to Modest

descriptions [34].

9.1.7 Well-formed Arcade models

An Arcade model is well-formed if it follows certain rules.

Definition 103. An Arcade model is well-formed if the following hold:

1. The model contains a finite number of syntactical elements. In particular, the
number of basic components, logical gates, spare management units, and repair
units is finite; each basic component has a finite number of operational modes; and
each basic component has a finite number of failure modes.

2. The names of basic components, logical gates, and spare management units are
unique.

3. For each basic component in the Arcade model we have that

(a) the number of failure rates equals two to the power of the number of opera-
tional modes, and

(b) the failure probabilities sum up to exactly one.

4. For every signal Failure(NAME) and Recovery(NAME) appearing in the descrip-
tion of one the components, there exists a basic component, logical gate, or spare

222

9.1. SYNTAX OF ARCADE

management unit with name NAME. For every signal Failure(NAME ,MODE)
there exists a basic component with name NAME and a failure mode MODE.

5. For any basic component we have that its name appears at most once in the second
component (the list of names) of exactly one repair unit and every name appearing
in such a list corresponds to a basic component.

6. The second component of a spare management unit is the name of a basic compo-
nent. The third component of a spare management unit forms a list of names of
basic components.

In the remainder of this chapter we consider only well-formed Arcade models.

9.1.8 Examples of Arcade models

To show how theArcademodelling language works in practice, we will use it to describe
two dependable systems: a pump system from a nuclear power facility and a simple
replicated web service.

Pump system The pump system is responsible for pumping hot water from a nuclear
reactor to a heat exchanger and pumping cool water from the heat exchanger back
into the reactor. Figure 9.1 shows an overview of the pump system. For the sake of
redundancy, it consists of two separate pump lines, each being capable of providing
enough pumping capacity by itself. Each pump line consists of an input valve, a filter,
a pump valve, a pump, and an output valve. This example is a simplified version of the
pump system case study described by Boudali et al [3].

When the filter or the pump of a pump line breaks down, that pump line stops
functioning. When a valve breaks down, it may either be stuck in an open position or
a closed position. In the latter case, the flow of water is obstructed and the pump line
stops functioning. The former case is considered to be (relatively) harmless and will not
affect the functioning of the pump line. The rate at which the pumps fail depend on
how much water they must pump. This means that if one of the pumps stops working,
the other pump must pump more water and is more likely to fail.

Each filter or valve has a dedicated repair man that is responsible for repairing the
component once it fails. There is also a single repair team for the pumps. This team can
only repair one pump at the same time. This repair team uses a first-come-first-serve
strategy to determine which pump to repair.

The formal Arcade model for this example is as follows (we have left out the

223

CHAPTER 9. ARCADE

Input
valve

Filter

Pump
valve

Pump

Output
valve

Input
valve

Filter

Pump
valve

Pump

Output
valve

Figure 9.1: Schematic of a pump system.

remaining dedicated repair units for the sake of brevity).

BC(P1, 〈(normal, degraded,Recovery(P2),Failure(P2))〉,

〈5.44 · 10−6, 10.88 · 10−6〉, {(normal, 1)}, 0.1),

BC(P2, 〈(normal, degraded,Recovery(P1),Failure(P1))〉,

〈5.44 · 10−6, 10.88 · 10−6〉, {(normal, 1)}, 0.1),

BC(IV1 , ∅, 〈8.4 · 10−8〉, {(stuck open, 0.5), (stuck closed, 0.5)}, 0.1),

...

BC(PV2 , ∅, 〈8.4 · 10−8〉, {(stuck open, 0.5), (stuck closed, 0.5)}, 0.1),

BC(F1 , ∅, 〈1.14 · 10−6〉, {(normal, 1)}, 0.1),

BC(F2 , ∅, 〈1.14 · 10−6〉, {(normal, 1)}, 0.1),

OR(PL1 , {Failure(P1),Failure(IV1 , stuck closed),Failure(OV1 , stuck closed),

Failure(PV1 , stuck closed),Failure(F1)}),

OR(PL2 , {Failure(P2),Failure(IV2 , stuck closed),Failure(OV2 , stuck closed),

Failure(PV2 , stuck closed),Failure(F2)}),

AND(System , {Failure(PL1),Failure(PL2)}, no cooling),

REP(FCFS, 〈P1, P2〉),

REP(dedicated, 〈IV1 〉)

...

Note, that in the original presentation of this example, the pump components had
Erlang-distributed failure and repair times instead of exponentially distributed ones [3].

224

9.1. SYNTAX OF ARCADE

For the sake of simplicity we have taken exponential distributions here. As mentioned
in Subsection 9.1.6, the syntax of Arcade can easily be extended to allow more general
distributions.

Replicated web service Our second example is a replicated web service which con-
sists of two types of components: HTTP servers, which handle incoming request from
users accessing a website and database (DB) servers that store data for the service.
The HTTP servers may access the database servers to store or retrieve information.
There are two power supplies, one for the web servers and one for the database servers.
Figure 9.2 shows a schematic of the replicated web service.

HTTP
server

HTTP
server

HTTP
server

DB
server

DB
server

DB
server

Power

Power

Figure 9.2: Schematic of a replicated web service. Arrows denote data-flow and dashed
boxes denote the two power supply groups.

Our distributed web service comprises eight basic events. Three HTTP servers, three
database servers, and two power supplies. HTTP servers and database servers can be
either powered or unpowered depending on whether their power supply is operational
or not. The powered/unpowered switch is modelled as an operational mode. The un-
powered operational state is a destructive operational state, which means that when
a server (abruptly) loses power it will immediately become inoperable and will require
maintenance (i.e., it must be repaired) to become operational again.

Each of the power supplies has a dedicated repair unit. Further, there is a single
repair unit for all of the HTTP servers and a single repair unit for all of the database
servers. Both of these repair units use a first-come-first-serve strategy to determine
which server is repaired first.

The HTTP servers and database servers make up three pairs of servers, each capable
of providing the web servers. Each such pair is grouped together by an OR-gate, since if
either the HTTP server or the database server breaks down, this pair will be unable to
provide the web service. The web service itself is considered to be down if neither of the

225

CHAPTER 9. ARCADE

three pairs of HTTP server and database server is operational. The web service is then
modelled as an AND-gate, with the three OR-gates representing the pairs of servers as
inputs.

The Arcade model for this example if given below.

BC(P1 , ∅, 〈0.001〉, {normal, 1}, 2),

BC(P2 , ∅, 〈0.001〉, {normal, 1}, 2),

BC(H1 , 〈(powered, unpowered,Recovery(P1),Failure(P1))〉,

〈0.03, destructive〉, {(normal, 1)}, 5),

BC(H2 , 〈(powered, unpowered,Recovery(P1),Failure(P1))〉,

〈0.03, destructive〉, {(normal, 1)}, 5),

BC(H3 , 〈(powered, unpowered,Recovery(P1),Failure(P1))〉,

〈0.03, destructive〉, {(normal, 1)}, 5),

BC(D1 , 〈(powered, unpowered,Recovery(P2),Failure(P2))〉,

〈0.03, destructive〉, {(normal, 1)}, 5),

BC(D2 , 〈(powered, unpowered,Recovery(P2),Failure(P2))〉,

〈0.03, destructive〉, {(normal, 1)}, 5),

BC(D3 , 〈(powered, unpowered,Recovery(P2),Failure(P2))〉,

〈0.03, destructive〉, {(normal, 1)}, 5),

OR(S1 , {Failure(H1),Failure(D1)}),

OR(S2 , {Failure(H2),Failure(D2)}),

OR(S3 , {Failure(H3),Failure(D3)}),

AND(System , {Failure(S1),Failure(S2),Failure(S3)}, service unavailable),

REP(FCFS, 〈H1 ,H2 ,H3 〉),

REP(FCFS, 〈D1 ,D2 ,D3 〉),

REP(dedicated, 〈P1 〉),

REP(dedicated, 〈P2 〉)

9.2 Operational behaviour of Arcade

This section describes the semantics of Arcade. When designing the language, we
identified four main building blocks with which we can, in a modular fashion, construct
a system dependability model: (1) a Basic Component (BC), (2) a Repair Unit (RU), (3)
a Logical Gate (LG), and (4) a Spare Management Unit (SMU). These building blocks
interact with each other by sending and receiving input/output events. The semantics
of these building blocks and their interactions is based on the I/O-IMC framework. For
each syntactical Arcade elements, we will find one (or more) I/O-IMCs that describe
the semantics of the syntactical element. In this section we will describe the semantics of
basic components, repair units, and logical gates. We will denote the I/O-IMC semantics

226

9.2. OPERATIONAL BEHAVIOUR OF ARCADE

of an Arcade syntactical element X as

[[X]].

As mentioned, we will not cover the semantics of spare management units and we cover
the semantics of repair units only for FCFS, PP, and dedicated repair strategies. For a
full description of the Arcade semantics in terms of I/O-IMCs we refer to Boudali et
al and Maaß [3, 34].

9.2.1 Basic component

The basic component building block represents a physical/logical system component
that has a distinct operational and failure behaviour. Before introducing the semantics
of basic components in formal terms, we first discuss some essential concepts. A basic
component has two, almost orthogonal aspects: (1) its failure model, i.e., the different
ways in which the component may fail, and (2) its operational modes, i.e., the behaviour
of the component when it is operational. Throughout this subsection we will consider a
basic component with n ∈ N operational modes and m > 0 ∈ N failure modes, given by

BC(B, 〈o1, . . . , on〉, 〈λ1, . . . , λ2n〉, {(F1, p1), . . . , (Fm, pm)}, µ).
✞

✝

☎

✆9.1

When constructing the state space of the I/O-IMC semantics of a basic component,
we will consider the failure model of the BC and the operational model of the BC
separately. The states of the failure model describe whether the basic component is
operational or not. However, we also need states to indicate that the basic component is
about to become (in)operational. Finally, we have to distinguish between the different
failure modes of the basic component.

Definition 104. Given a BC as in
✞

✝

☎

✆9.1 , its failure states are the states in the set

FS = {UP,FAILING,DOWN,REC} ∪ {FAILING(Fi) | 0 < i ≤ m}.

The state FAILING(Fi) indicates that the BC is failing in the failure mode Fi.
We use the state FAILING to indicate a failure due to a destructive dependency. The
state REC indicates that the BC is recovering from a failure.

Almost orthogonal to the failure model of a BC is its operational model, which
describes the changes to the operational modes of the BC. The set of operational states
is the enumeration of all different combinations of operational modes.

Definition 105. Given a BC as in
✞

✝

☎

✆9.1 , its operational states are the states in the set

OS = {0, 1}n.

We use a simply binary encoding to construct the operational states. For a BC with
3 operational modes active/inactive, powered/unpowered, and normal/degraded, the
operational state (0, 1, 0) corresponds to the BC being active, unpowered, and normal.
The operational state of a BC is controlled by the signals associated with the operational
modes. Each such signal corresponds to an I/O-IMC action.

227

CHAPTER 9. ARCADE

Definition 106. Given a signal S as defined in Definition 102, we find a corresponding
action a(S) as follows:

a(S) =

fB, S = Failure(B),
uB, S = Recovery(B),

f
(M)
B , S = Failure(B,M).

We can then define the mode-switching actions as follows.

Definition 107. Given a BC as in
✞

✝

☎

✆9.1 with operational modes o1 = (M1,M
′
1, S1, S

′
1),

o2 = (M2,M
′
2, S2, S

′
2), . . . , its mode switching actions are the actions a(S1), a(S2), . . .

and a(S′
1), a(S

′
2), For convenience we will denote the mode-switching actions using

the following scheme: a1 = a(S1), a2 = a(S2), . . . and b1 = a(S′
1), b2 = a(S′

2),

We distinguish between two different types of operational state: normal operational
states represent an operational state of the basic component in which it will fail sponta-
neously after some stochastic delay. On the other hand, destructive operational modes
represent operational states in which the basic component fails immediately.

Definition 108. Given a BC as in
✞

✝

☎

✆9.1 , we order its operational states OS lexicograph-
ically: s0 = 〈0, . . . , 0, 0〉, s1 = 〈0, . . . , 0, 1〉, s2 = 〈0, . . . , 1, 0〉, etc. We then find for each
operational state si its failure rate λi. The set of destructive operational states OSd is
defined as:

OSd = {si | λi = “destructive”, 0 ≤ i < 2n}.

If an operational state is not destructive it is normal and we then find the set of normal
operational states:

OSm = OS \ OSd.

We are now ready to define the semantics of a basic component in terms of its
underlying I/O-IMC.

Definition 109. Given a basic component with n ∈ N operational modes and m > 0 ∈ N
failure modes, given by

BC(B, 〈o1, . . . , on〉, 〈λ1, . . . , λ2n〉, {(M1, p1), . . . , (Mm, pm)}, µ),

with oi = (mi,m
′
i, Si, S

′
i) for all 0 ≤ i < n, its I/O-IMC semantics is the I/O-IMC

P = [[BC(B, 〈o1, . . . , on〉, 〈λ1, . . . , λ2n〉, {(M1, p1), . . . , (Mm, pm)}, µ)]]

= 〈S,A,RI , RM , α〉,

with

• state space

S = FS ×OS

= {REC,UP,DOWN} ∪ {(FAILINGj) | 1 ≤ j ≤ m} × {0, 1}n,

228

9.2. OPERATIONAL BEHAVIOUR OF ARCADE

• actions

AI = {ai, bi | 1 ≤ i ≤ n} ∪ {rB}

AO = {f
(Mj)
B | 1 ≤ j ≤ m} ∪ {fB , uB}

AH = {τB},

where ai = a(Si) and bi = a(S′
i) for all 1 ≤ i ≤ n,

• Markovian transitions

{((UP,m), piλm, (FAILING(Mi),m)) | m ∈ OSm, i ∈ [1,m]}
✞

✝

☎

✆9.2

• Interactive transitions

{(UP,m), τB , (FAILING,m) | m ∈ OSd}
✞

✝

☎

✆9.3

∪{((FAILING(Mi),m), f
(Mi)
B , (DOWN,m)) | m ∈ OS, i ∈ [1,m]}

✞

✝

☎

✆9.4

∪{((FAILING,m), fB , (DOWN,m)) | m ∈ OS}
✞

✝

☎

✆9.5

∪{((DOWN,m), rB , (REC,m)) | m ∈ OS}
✞

✝

☎

✆9.6

∪{((REC,m), uB , (UP,m)) | m ∈ OS}
✞

✝

☎

✆9.7

∪{((x,m), rB , (x,m) | m ∈ OS, x ∈ FS \ {DOWN}}
✞

✝

☎

✆9.8

∪{((x, (e1, ..., ej , ..., en)), aj , (x, (e1, ..., 0, ..., en))) | x ∈ FS, j ∈ [1, n]}
✞

✝

☎

✆9.9

∪{((x, (e1, ..., ej , ..., en)), bj , (x, (e1, ..., 1, ..., en))) | x ∈ FS, j ∈ [1, n]}
✞

✝

☎

✆9.10

• and an initial distribution which assigns probability one to the state (UP, (0, . . . , 0))
and probability zero to all other states.

Example 36. Figure 9.3 shows the I/O-IMC

[[BC(B, 〈(m,m′,Recovery(B′),Failure(B′)〉, 〈λ, destructive〉, {(p,X), (1 − p, Y)}, µ)]].

The I/O-IMC in Figure 9.3 has the following states:

x0 = (UP, 〈0〉) x6 = (UP, 〈1〉)

x1 = (FAILING(X), 〈0〉) x7 = (FAILING(X), 〈1〉)

x2 = (FAILING(Y), 〈0〉) x8 = (FAILING(Y), 〈1〉)

x3 = (FAILING, 〈0〉) x9 = (FAILING, 〈1〉)

x4 = (DOWN, 〈0〉) x10 = (DOWN, 〈1〉)

x5 = (REC, 〈0〉) x11 = (REC, 〈1〉).

For clarity we have left out the following mode-switching transitions:

(x1, fB′ , x7),(x7, uB′ , x1),

(x2, fB′ , x8),(x8, uB′ , x2),

(x3, fB′ , x9),(x9, uB′ , x3),

(x5, fB′ , x11),(x11, uB′ , x5).

229

CHAPTER 9. ARCADE

Note that the recovery transitions (x4, rB?, x5) and (x10, rB?, x11) are interactive and
not Markovian. Although the repair of a basic component will always take place after
some delay, this delay is not represented in the semantics of the basic component itself.
Instead, this repair-delay is represented in the I/O-IMC semantics of the various repair
units (e.g., see. Section 9.2.3).

x0

x1 x2 x3

x4

x5

pλ
(1− p)λ

f
(X)
B ! f

(Y)
B !

fB !rB?

uB !

x6

x7 x8 x9

x10

x11

τB ;

f
(X)
B ! f

(Y)
B !

fB!rB?

uB!

fB′?

uB′?

fB′?

uB′?

Operational state

Failure
state

Figure 9.3: Basic component with two failure modes and two operational states. Several
mode-switching transitions have been left out for the sake of readability.

9.2.2 Logical gates.

In this subsection we will consider the I/O-IMC semantics of logical gates. Recall that
a logical gate allows us to group certain basic components together as subsystems. A
logical gate describes the relationship between failure (and recovery) of the subsystem
and failure (and recovery) of its components. Here we will only discuss AND- and OR-
gates, but these gates can be used to construct more complex logical operators such as
the voting gate [34].

The AND-gate represents a subsystem that fails only when all of its components
have broken down. The OR-gate on the other hand represents a subsystem that fails
when just one of its components has broken down. The components that make up a
subsystem represented by a logical gate are called the inputs of that logical gate.

Logical gates can also be used to describe fundamental properties of the dependable
system. Most commonly, one of the logical gates will describe whether the complete
system has failed or not. For instance, we can use an AND-gate to express the fact that
(in the pump system example from Section 9.1) the system fails when the first pump
train and the second pump train are down. We will model such system properties by
using the state equivalence relation =s. In this way, two I/O-IMC states that represent
system states that differ in one of the system properties (e.g., one state where the

230

9.2. OPERATIONAL BEHAVIOUR OF ARCADE

complete system has failed and one state where the complete system is still operational)
will not be equivalent according to =s and thus will never be weakly bisimilar.

We will first consider an AND-gate X with n inputs which models a property φ:

AND(X, {Failure(B1),Failure(B2), . . . ,Failure(Bn)}, φ).
✞

✝

☎

✆9.11

We say that B1, . . . , Bn are the inputs of the AND-gate. The I/O-IMC that describes
the operational behaviour of an AND-gate keeps track of the state of all its inputs and
then fires failure and recovery actions when necessary.

Definition 110. The I/O-IMC semantics of the AND gate X given in
✞

✝

☎

✆9.11 is the
I/O-IMC

P = [[AND(X, {Failure(B1),Failure(B2), . . . ,Failure(Bn)}, φ)]]

= 〈S,A,RI , RM , α〉,

with

• state space,

S = {UP,DOWN}n × {UP,DOWN}

• actions,

AI = {fB1 , . . . , fBn} ∪ {uB1 , . . . , uBn},
AO = {fX , uX},
AH = ∅,

• interactive transitions,

{((x, y), fBi , (x
′, y)) | x′i = DOWN,x′j = xj for all j 6= i}

✞

✝

☎

✆9.12

∪{((x, y), uBi , (x
′, y)) | x′i = UP, x′j = xj for all j 6= i}

✞

✝

☎

✆9.13

∪{((x, UP), fX , (x,DOWN)) | x = DOWNn}
✞

✝

☎

✆9.14

∪{((x,DOWN), uX , (x, UP)) | x 6= DOWNn}
✞

✝

☎

✆9.15

where 1 ≤ i, j ≤ n and y ∈ {UP,DOWN},

• no Markovian transitions, and

• an initial distribution which assigns probability one to state (UPn, UP) and zero
to all other states.

Finally, the following states will be labelled φ:

{(v,DOWN) | v ∈ {UP,DOWN}n}.

231

CHAPTER 9. ARCADE

Each state of the I/O-IMC describing an AND-gate with n inputs consists of two
components: a vector of length n describing the operational status (UP or DOWN)
of its n inputs. The second component describes the operational status (again, UP or
DOWN) of the AND-gate itself. Whenever one of the input-actions (fBi or uBi) occur,
the operational status of the i-th input is changed accordingly (

✞

✝

☎

✆9.12 and
✞

✝

☎

✆9.13). The

output action fX (
✞

✝

☎

✆9.14) is fired whenever the AND-gate is up but all of its inputs are

down. Similarly, the output action uX (
✞

✝

☎

✆9.15)) is fired whenever the AND-gate is down
but at least one of its inputs is up.

The I/O-IMC describing an OR-gate with n inputs is very similar to the I/O-IMC
in Definition 110 except that the condition that must always hold is: the OR-gate is
down if and only if one or more of its inputs are down. We then find the same I/O-IMC
semantics as in Definition 110 except that the sets of transitions

✞

✝

☎

✆9.14 and
✞

✝

☎

✆9.15 are
replaced by

{((x, UP), fX , (x,DOWN)) | x 6= UPn}
✞

✝

☎

✆9.16

∪{((x,DOWN), uX , (x, UP)) | x = UPn}
✞

✝

☎

✆9.17

Example 37. Figure 9.4 shows the I/O-IMC

[[AND(X, {Failure(B1),Failure(B2)}, φ)]].

Note that several of its states are labelled with φ.

9.2.3 Dedicated repair units

In a dependable system it is usually the case that components can be repaired to ensure
that the system can recover from small-scale failures. In Arcade, repair units model
the various ways in which components of a system can be repaired. Each repair unit is
responsible for repairing one or more basic components and each basic component has
at most one repair unit associated with it.

A repair unit that is responsible for repairing only one basic component is called a
dedicated repair unit. We consider a dedicated repair unit that is responsible for the
basic component B. Let F1, . . . , Fm be the m ∈ N failure modes of B and let µ be the
repair rate of B.

Definition 111. The operational behaviour of a dedicated repair unit

REP(“dedicated”, {B})

is the I/O-IMC

P = [[REP(“dedicated”, {B})]]

= 〈S,A,RI , RM , α〉,

with

232

9.2. OPERATIONAL BEHAVIOUR OF ARCADE

((UP,UP), UP)

((UP,DOWN), UP)

((DOWN,UP), UP)

((DOWN,DOWN), UP)
((UP,UP), DOWN)

φ

((UP,DOWN),DOWN)
φ

((DOWN,UP), DOWN)
φ

((DOWN,DOWN),DOWN)
φ

fB2
? fB1

?

fB1
? fB2

?

fB2
? fB1

?

fB1
? fB2

?

uB2
?
uB1

?

uB1
?
uB2

?

uB2
? uB1

?

uB1
? uB2

?

uX !

uX !

uX !

fX !

Figure 9.4: Example of an AND-gate with inputs B1 and B2, which models the system
property φ. That is, φ holds when both B1 and B2 are “down” or to be more precise,
φ holds when the AND-gate is in its “down” state.

• state space,
S = {UP,DOWN,DONE}

• actions,

AI = {fB} ∪ {f
(Fi)
B | 1 ≤ i ≤ m},

AO = {rB},
AH = ∅,

• interactive transitions,

{(x, fB ,DOWN) | x ∈ S}

∪{(x, f
(Fi)
B ,DOWN) | x ∈ S, 1 ≤ i ≤ m}

∪{(DONE , rB , UP)}

• Markovian transitions,
{(DOWN,µB ,DONE)},

where µB is the repair-rate for basic component B, and

• an initial distribution which assigns probability one to state UP and zero to all
other states.

233

CHAPTER 9. ARCADE

Initially, the repair unit is idle. A failure of the basic component associated with this

repair unit is signalled by input-actions fB and f
(Fi)
B . When the repair unit receives such

a signal it will start repairing. The repair is finished after an exponentially distributed
delay. This delay is characterised by the repair rate µB . The greater this repair rate
is the faster the repair unit will repair the basic component. Finally, the completion of
the repair is signalled by the output action rB !.

The transitions of the I/O-IMC

[[REP(“dedicated”, 〈B〉)]],

where B has one failure mode F can be seen in Figure 9.5. The states UP and DOWN
describe the state of the basic component that the repair unit is responsible for. The
state DONE signifies that the RU has just finished repairing the BC.

UP

DOWNDONE

fB?

f
(F)
B

?

µ

rB !

Figure 9.5: Example of the I/O-IMC semantics of a dedicated repair unit for a BC B1

with one failure mode F and repair rate µ.

9.2.4 Preemptive prioritised repair unit.

When a repair unit is responsible for more than one basic component things get more
interesting. Whenever more than one of these basic component is down, the repair unit
will have to decide which one to repair first as we assume the repair unit can undertake
only one repair at the same time. There are many different strategies to decide which
component to repair first. We will discuss two of them here.

Definition 112. The operational behaviour of a preemptive prioritised repair unit re-
sponsible for n basic components,

RU(“PP”, 〈B1, . . . , Bn〉),

where for each 1 ≤ i ≤ n the basic component Bi has mi ∈ N failure modes F1, . . . , Fmi

and repair rate µBi, is the I/O-IMC P = 〈S,A,RI , RM , α〉, with

• state space,

S = {UP,DOWN}n × ({DONE i | 1 ≤ i ≤ n} ∪ {BUSY }).

234

9.2. OPERATIONAL BEHAVIOUR OF ARCADE

• actions,

AI = {fBi | 1 ≤ i ≤ n} ∪ {f
(Fj)
Bi

| 1 ≤ i ≤ n, 1 ≤ j ≤ mi}

AO = {rBi | 1 ≤ i ≤ n}

AH = ∅

• interactive transitions,

{((x, y), fBi , (x
′, y)) | x′i = DOWN,x′j = xj , j 6= i}

∪{((x, y), f
(Fk)
Bi

, (x′, y)) | x′i = DOWN,x′j = xj , j 6= i, 1 ≤ k ≤ mi}

∪{((x,DONE i), rBi , (x
′,BUSY)) | x′i = UP}

where 1 ≤ i ≤ n and y ∈ {DONE i | 1 ≤ i ≤ n} ∪ {BUSY },

• Markovian transitions,

{((x,BUSY), µBi , (x,DONE i)) | xi = DOWN, j < i implies xj = UP},

where 1 < i ≤ n, and

• an initial distribution which assigns probability one to state (UPn,BUSY) and
zero to all other states.

The basic components that are associated with a prioritised repair unit are ordered
based on their priority. Components with a higher priority will be repaired before
components with a lower priority. The order is determined by the list of components
of the repair unit. The component that is listed first has the highest priority while
the component that is listed last has the lowest priority. It remains to decide what
happens when a high-priority component fails while the repair unit is repairing a low-
priority component. Preemptive prioritised (PP) repair units will preempt the repair
of the low-priority component and switch to repairing the high-priority components.
Non-preemptive prioritised repair units are discussed by Maaß [34].

Example 38. Figure 9.6 shows an example of the I/O-IMC semantics of a PP repair
unit which is responsible for two basic components B1 and B2 with respective repair rates
µ1 and µ2. For the sake of simplicity we show only one failure action per basic component
(f1 respectively f2). We can see that the repair unit “keeps track” of which of its BCs
are operational (UP) or not (DOWN). The repair unit always repairs the BC with the
highest priority first. We can clearly see this in the state ((DOWN,DOWN),BUSY),
which has an outgoing µ1 transition, meaning that the RU is repairing basic component
B1.

235

CHAPTER 9. ARCADE

((UP,UP),BUSY)

((UP,DOWN),BUSY)

((DOWN,UP),BUSY)

((DOWN,DOWN),BUSY)

((UP,DOWN),DONE2)

((DOWN,UP),DONE1)

((DOWN,DOWN),DONE1)

fB2
?

fB1
?

fB1
?

fB2
?

µ2

rB2
!

µ1

rB1
!

µ1

rB1
!

Figure 9.6: Example of the I/O-IMC semantics of a PP repair unit for two BCs b1 and
b2 with repair rates µ1 respectively µ2. The BC b1 has a higher priority than the BC
b2. For the sake of simplicity we have left out several unreachable states, the failure
transitions emanating from DONE states, and failure transitions for the failure modes
of the basic components.

9.2.5 First-come-first-serve repair units

When a repair unit gives equal priority to all the basic components that it is responsible
for, then an obvious repair strategy is first-come-first-serve (FCFS). Using this strategy,
the components are repaired in the order in which they fail. For a FCFS repair unit,
the order in which the components are listed in is syntax has no special meaning.

To define the operational behaviour of a FCFS repair unit, we will use the following
notation; LIST (〈B1, . . . , Bn〉) denotes the set of all lists containing only elements from
〈B1, . . . , Bn〉, none of which may appear more than once in the list. Given a list l and a
component Bi, 1 ≤ i ≤ n, not present in l, we use the following notation; l : Bi denotes
the list obtained by appending Bi to l. For a non-empty list l, head(l) denotes the first
element of l, and tail(l) denotes the list obtained by removing the first element of l.

Definition 113. The operational behaviour of a first-come-first-serve repair unit re-
sponsible for n basic components,

RU(“FCFS”, 〈B1, . . . , Bn〉)

where for each 1 ≤ i ≤ n the basic component Bi has mi ∈ N failure modes F1, . . . , Fmi

and repair rate µBi is the I/O-IMC P = 〈S,A,RI , RM , α〉, with

• state space,

S = LIST ([1, n]) × ({DONE i | 1 ≤ i ≤ n} ∪ {BUSY }),

236

9.2. OPERATIONAL BEHAVIOUR OF ARCADE

• actions,

AI = {fBi | 1 ≤ i ≤ n} ∪ {f
(Fj)
Bi

| 1 ≤ i ≤ n, 1 ≤ j ≤ mi}

AO = {rBi | 1 ≤ i ≤ n}

AH = ∅

• interactive transitions,

{((l, y), fBi , (l : Bi, y)) | Bi /∈ l}

∪{((l, y), f
(Fj)
Bi

, (l : Bi, y)) | Bi /∈ l, 1 ≤ j ≤ mi}

∪{((l, y), fBi , (l, y)) | Bi ∈ l}

∪{((l, y), f
(Fj)
Bi

, (l, y)) | Bi ∈ l, 1 ≤ j ≤ mi}

∪{((l,DONE i), rBi , (tail (l),BUSY)) | l 6= ǫ, head(l) = Bi},

where 1 ≤ i ≤ n and y ∈ {DONE i | 1 ≤ i ≤ n} ∪ {BUSY }

• Markovian transitions,

{((l,BUSY), µBi , (l,DONE i)) | l 6= ǫ, head(l) = i, 1 ≤ i ≤ n},

and

• an initial distribution which assigns probability one to state (ǫ,BUSY), where ǫ is
the empty list and zero to all other states.

The state space for FCFS repair units is very similar to the state space of PP repair
units with the difference that the FCFS repair unit records in which order the basic
components fail. The state of the basic components is then given by a list of failed
components. Any basic component not in the list is operational. The order of the
components in the list describes the order in which they have failed. The first basic
component in the list has failed earliest.

Example 39. Figure 9.7 shows an example of the I/O-IMC semantics of a FCFS repair
unit responsible for two BCs:

RU(“FCFS”, 〈B1, B2〉).

The BCs have repair rates µB1 respectively µB2 and to simplify the figure we show only
a single failure action (fB1 respectively fB2) for both of the basic components. It is
somewhat similar to the I/O-IMC semantics of a PP repair unit (see Figure 9.6), except
that the FCFS repair unit keeps track not only of the state of its BCs but also of the
order in which they fail.

237

CHAPTER 9. ARCADE

(ǫ,BUSY)

(〈B2〉,BUSY)(〈B1〉,BUSY)

(〈B2〉,DONE2)(〈B1〉,DONE1)

(〈B2, B1〉,BUSY)(〈B1, B2〉,BUSY)

(〈B2, B1〉,DONE2)

(〈B1, B2〉,DONE1)

fB2
?fB1

?

fB1
?fB2

?

µB2

rB2
!

µB1

rB1
!

µB1

rB1
!

µB2

rB2
!

Figure 9.7: Example of the I/O-IMC semantics of a FCFS repair unit for two BCs
B1 and B2 with repair rates µ1 respectively µ2. For the sake of simplicity we have
left out the failure transitions emanating from DONE states and the failure transitions
corresponding to the different failure modes of the basic components.

9.2.6 Operational semantics of an Arcade model

The semantics of a complete Arcade model is simply the parallel composition of the
semantics (I/O-IMCs) of its components. That is, for an Arcade model consisting of
components X1,X2, . . . ,Xn for some n ∈ N we have

[[X1,X2, . . . ,Xn]] = [[X1]]‖[[X2]]‖ . . . ‖[[Xn]].

Recall from Section 5.3 that parallel composition is only defined for compatible I/O-
IMCs, that is, I/O-IMCs whose output actions are not shared and whose internal actions
are unique. Fortunately, the I/O-IMC semantics of the components of a well-formed
Arcade model are indeed pair-wise compatible.

Theorem 62. Given a well-formed Arcade model without spare management units,
the I/O-IMC semantics of its components are pair-wise compatible.

Proof. Given Definitions 107, 110, 111, 112, and 113, the actions of I/O-IMCs which
represent the behaviour of Arcade components are:

• Actions of the form fX , where X is the name of a basic component or logical gate;
an action fX is never an internal action and is an output for the basic component
or logical gate with name X. The fact that names are unique for well-formed
Arcade models means these outputs are never shared.

238

9.2. OPERATIONAL BEHAVIOUR OF ARCADE

• Actions of the form f
(M)
X , where X is the name of a basic component and M is a

failure mode of X; as for actions of the form fX , we have that an action f
(M)
X is

never an internal action and is an output for the basic component with name X.
The uniqueness of names again guarantees that these outputs are never shared.

• Actions of the form uX , where X is the name of a basic component or logical gate;
as for actions of the form fX we have that these actions never appear as internal
and are output actions only for the unique component whose name is X.

• Actions of the form rX , where X is the name of a basic component. Such actions
never appear as internal actions and are output actions for any repair unit, which
is responsible for repairing the basic component X. Since the name X may appear
in the list of basic components of at most one repair unit, we have that the output
rX cannot be shared by more than one repair unit.

• Actions of the form τX , where X is the name of a basic component. These actions
appear only as internal action of the I/O-IMC representing the basic component
named X. Again we have that the uniqueness of names guarantees that the action
τX is unique.

We are now ready to define the operational semantics of an Arcade model.

Definition 114. Given an Arcade model X1,X2, | . . . ,Xn for some n ∈ N, its op-
erational behaviour is the I/O-IMC obtained by composing in parallel the I/O-IMCs
representing the operational semantics of its components:

[[X1,X2, . . . ,Xn]] = ([[X1]]‖[[X2]]‖ . . . ‖[[Xn]])\A
O,

where AO is the set of all output actions of the I/O-IMC [[X1]]‖[[X2]]‖ . . . ‖[[Xn]]. Recall
that the states of the I/O-IMCs representing logical gates may be labelled to indicate
system properties. The state-labels of a state of the I/O-IMC representing the entire
Arcade model are obtained by taking the set of all labels of its constituent states.

In Chapter 7 we have seen that closed I/O-IMCs (I/O-IMCs without input actions)
correspond to either Markov chains or Markov decision processes and can be analysed
using standard solution techniques. It is then interesting to know which Arcademodels
correspond to closed I/O-IMCs. We will call such Arcade models closed Arcade

models.

Definition 115. An Arcade model is closed if the name of each basic component in
the model appears exactly once in the list of names of a repair unit of the Arcade

model.

Note that we can allow closed Arcade models where certain basic components
are never repaired by adding a type of repair unit with a “do-not-repair” strategy to

239

CHAPTER 9. ARCADE

Arcade. The I/O-IMC semantics of such a repair unit would simply be an I/O-IMC
which has the expected repair actions as output actions, but has no transition, i.e., it
does nothing. As is to be expected, the operational behaviour of a closed Arcademodel
is a closed I/O-IMC.

Theorem 63. The I/O-IMC semantics of a well-formed closed Arcade model without
spare management units is a closed I/O-IMC.

Proof. From Section 5.3 we know that a composite I/O-IMC is closed if every input
action of one of its constituent I/O-IMCs also appears as an output action for one of
its other constituent I/O-IMCs. We will consider each input action appearing in the
Definitions 107, 110, 111, 112, and 113 to find the I/O-IMCs that use these actions as
outputs.

• A basic component named X has input action rX . Any repair unit that has X in
its list of repaired components has rX as an output action. Our assumption that
X must appear in exactly one such lists ensures that rX is an output of exactly one
I/O-IMC in the parallel composition. The basic component X may also have input

actions of the form fY , f
(M)
Y , uY corresponding to its mode-switching signals, but

the fact that each mode-switching signal must correspond to a basic component
or logical gate in the Arcade model, means that for these actions we also find
I/O-IMCs in the parallel composition which use the action as output.

• A logical gate has input actions fY1 , . . . , fYn and uY1 , . . . , uYn where Y1, . . . , Yn
are its inputs. The fact that the inputs of the logical gate correspond to basic
components and other logical gates of the Arcade model means these actions
also appear as output actions in the parallel composition.

• A repair units has input actions fY1 , . . . , fYn , and f
M1
Yi
, . . . , f

Mmi
Yi

where Y1, . . . , Yn
are the basic components the repair unit is responsible for and M1, . . . ,Mmi are
the failure modes of the i-th basic component. The fact that these basic compo-
nents must be part of the Arcade model means that the corresponding failure
actions must appear as output actions of the I/O-IMCs representing these basic
components.

We conjecture that Theorems 62 and 63 also hold in the presence of spare man-
agement units. Note that, since all the output actions of the I/O-IMC representing an
Arcade model are hidden; this I/O-IMC is in fact complete, that is, it has only internal
actions.

Example 40. Figure 9.8 shows a schematic of the Arcade model

BC(B1, ∅, 〈λ1〉, {(M, 1)}, µ1),

BC(B2, ∅, 〈λ2〉, {(M, 1)}, µ2),

AG(L, {B1, B2}, “system failure”),

RU(“dedicated”, 〈B1〉),RU(“dedicated”, 〈B2〉)

240

9.3. TRIPLE COMPOSITIONALITY

with two BCs (BC 1 and BC 2), which are repaired by dedicated repair units RU 1
respectively RU 2. The system is considered to be down when both BCs are down. This
is modelled by an AND gate which has BCs 1 and 2 as inputs. The BCs each have a
single failure mode with failure rates λ1 respectively λ2 and repair rates µ1 respectively
µ2.

BC 1 BC 2

AND

RU 1 RU 2

Figure 9.8: Schematic representation of an Arcade model with two basic components,
an AND-gate which describes system failure and two dedicated repair units.

The I/O-IMC semantics of the components of this Arcade model can be found in
Figures 9.9 (top, basic components), 9.4 (AND gate), and 9.5 (dedicated repair units).
The I/O-IMC semantics of the Arcade model itself is then simply the parallel compo-
sition of these component I/O-IMCs where all actions are hidden. Recall that certain
states of the AND-gate I/O-IMC will be labelled to indicate that the system itself is down.
Figure 9.9 shows this parallel composition on the left-hand side. On the right-hand side
we can see that, when minimised with respect to weak bisimulation, the semantics of our
example is a simple four-state CTMC.

9.3 Triple compositionality

We have seen in the previous section that the compositional syntax of Arcade has a
compositional semantics in terms of I/O-IMCs. However, we know from Chapter 6 that
I/O-IMCs themselves also have a compositional semantics in terms of interactive jump
processes. We call this property triple compositionality : Arcade has a compositional
syntax, a compositional semantics in terms of I/O-IMCs (which we will refer to as
its operational semantics) and a compositional semantics in terms of interactive jump
processes (which we will refer to as its stochastic semantics). We will show by an example
that this has some nice consequences for understanding and analysing Arcade models.

Example 41. Consider a well-formed Arcade model with a basic component B that

241

CHAPTER 9. ARCADE

λ1
f
(M)
B1

;

µ1

r1;

u1;

λ2

f
(M)
B2

;

µ2

rB2
;

uB2
;

λ1 f
(M)
B1

;

µ1rB1
;uB1

;

λ2

f
(M)
B2

;

µ2

rB2
;

uB2
;

fL;

uL;

uL;

λ1

λ2

λ1

λ2

µ1

µ2

µ1

µ2

λ1
f
(M)
B1

!

rB1
?uB1

!

Figure 9.9: I/O-IMC semantics of a basic component (top), the Arcade model (left),
and the minimised I/O-IMC semantics of the Arcademodel (right). States labelled
“system failure” are coloured grey. Stochastically unreachable states have been omitted.

has a dedicated repair unit

BC(B, ∅, 〈λ〉, {(M, 1)}, µ),

RU(“dedicated”, 〈B〉),

...

We have purposely omitted the rest of the Arcade model, because it turns out we can
still make statements about the stochastic properties of the basic component and its repair
unit regardless of how the remainder of the Arcade model is chosen.

Figure 9.10 shows the I/O-IMC semantics of the basic component B and its dedicated
repair unit as well as the parallel composition of these two I/O-IMCs, which of course
corresponds to the semantics of both syntactical elements put together.

The interesting thing about the combined semantics of basic component B and its
repair unit is that is is a closed, deterministic I/O-IMC. This means that its stochastic
behaviour is a single interactive jump process, which will emit a failure signal after an
exponential delay with rate λ followed by a recovery signal after another exponential
delay with rate µ, and so on. This holds no matter how the rest of the Arcade model
is chosen.

In fact, we can analyse the transient distribution of the interactive jump process
for the I/O-IMC using standard CTMC analysis techniques and, because our modular
semantics of I/O-IMCs is sound with respect to composition, these results will also apply
to the complete Arcade model. As a very simple example we find that the probability
that our basic component fails at least once within t time-units is 1 − e−λt. Now recall

242

9.4. CAUSALITY

1

U

F

D

R

λ

f
(M)
B

!rB?

uB!

1

U

DN

f
(M)
B

?

µ

rB !

1

U‖U

F‖U

D‖DD‖N

R‖U

λ

f
(M)
B

!

µ

rB ;

uB!

Figure 9.10: I/O-IMC semantics of a basic component, its repair unit, and their parallel
composition. The names of the states have been abbreviated.

that Proposition 22 told us that transient probability bounds for a composite I/O-IMC
are always tighter than the same bounds for its components. In our example, we know
that the probability of at least one failure of B is exactly 1− e−λt, which means that the
same must hold for any I/O-IMC obtained by composing the I/O-IMC in Figure 9.10
with any other I/O-IMC. Additionally the same will hold for any Arcade model which
contains the basic component and its dedicated repair unit.

The observation in Example 41, that a basic component without failure modes and
its dedicated repair unit are independent of the rest of the Arcade model they are part
of and behave like a simple CTMC, is of course not surprising and should intuitively
be the case assuming that the semantics of basic component and repair unit are defined
sensibly. However, the work done in Chapters 6 and 7 for the first time gives us the
tools to indeed prove that this intuition is correct. Furthermore, we can apply similar
reasoning to other, more complicated sub-sets of Arcade models which are (mostly)
independent of the rest of the system.

9.4 Causality

In the previous section, we have seen that the operational behaviour of a well-formed,
closed Arcade model corresponds to a complete I/O-IMC. We have seen in Chapter 7
that such an I/O-IMC corresponds to either a CTMDP or, if the I/O-IMC is determin-

243

CHAPTER 9. ARCADE

istic, a CTMC.

In Section 9.5, we will give sufficient conditions on an Arcade model that ensure
that its operational behaviour is a deterministic I/O-IMC. To prepare for this, we will
in this section study the causal relationships between the different actions of I/O-IMCs
representing Arcade components. Our investigation will be based on the results from
Chapter 8. Recall that Theorem 65 states that there are three necessary ingredients for
any case of non-determinism in a composite I/O-IMC. We must have a spontaneous set
of actions (or a combination of initial sets), these spontaneous actions must indirectly
trigger two (possibly different) actions, and these two triggered actions must be non-
confluent. In order to determine whether the I/O-IMC semantics of an Arcade model
satisfies these conditions, we must then study the spontaneous sets, initial sets, triggering
relation, and confluence properties of the semantics of its components.

9.4.1 Basic components

We will now investigate the causal relationships between the actions of an I/O-IMC
representing a basic component:

[[BC(B, {o1, . . . , on}, 〈λ1, . . . , λ2n〉, {(F1, p1), . . . , (Fm, pm)}, µ)]]

with mode-switching actions a1, . . . , an respectively b1, . . . , bn as given by Definition 107.

Spontaneous actions. All the failure actions f
(Fi)
B , where 1 ≤ i ≤ n, are spontaneous

(as singleton sets), since the transitions
✞

✝

☎

✆9.2 enable these actions. Otherwise, no actions

or sets of actions are spontaneous, since the transitions
✞

✝

☎

✆9.2 enable no other actions and
are the only Markovian transitions.

Initial actions. Recall that initially, with probability one, the basic component is in
state (UP,m), where m is the initial operational state. In case the operational state
m is a regular operational state we have that no actions are enabled in the initial state
and there are no initial actions. If, on the other hand, the initial operational state is
destructive, then the action τB will be enabled initially and {τB} will be the only initial
set of actions.

Triggering relation. It is easy to see that the internal action τB triggers the action
fB (through transitions

✞

✝

☎

✆9.3) and that the repair action rB triggers the recovery action

uB (through transitions
✞

✝

☎

✆9.6). It remains to determine which actions, if any, trigger
the internal action τB. We know that τB is enabled in the states (UP,m), whenever
the operational state m is destructive. The transitions to these states are transitions
of types

✞

✝

☎

✆9.9 and
✞

✝

☎

✆9.10 which change the operational state to m or the transition
✞

✝

☎

✆9.7

when the component is already in operational state m. Of course, an action only triggers
the action τB if there exists a transition labelled with that action from a state where
τB is not enabled to a state where it is. This means that the actions ai, bj which may

244

9.4. CAUSALITY

change the operational state from non-destructive to destructive all trigger τB . We then
find the following triggering relation.

{(τB , fB), (rB , uB)} ∪ {(ai, τB) | i ∈ D} ∪ {(bi, τB) | i ∈ U}.

where the set D and U are the sets of operational modes that might cause a destructive
failure when they are switched by mode-switching action a respectively b, i.e.,

D = {i | ∃m ∈ {0, 1}n−1 · 〈m1, . . . ,mi−1, 0,mi, . . . mn−1〉 /∈ OSd,

〈m1, . . . ,mi−1, 1,mi, . . . ,mn−1〉 ∈ OSd}

U = {i | ∃m ∈ {0, 1}n−1 · 〈m1, . . . ,mi−1, 1,mi, . . . mn−1〉 /∈ OSd,

〈m1, . . . ,mi−1, 0,mi, . . . ,mn−1〉 ∈ OSd}.

Note that it is possible that both ai and bi trigger τB for some 1 ≤ i ≤ n. Similarly,
it is possible that neither triggers τB .

Confluence. We now consider whether the various pairs of actions of a basic com-
ponent are weakly confluent or not. First, note that there are no states where two
immediate actions are enabled at the same time. The immediate consequence is that
the I/O-IMC is weakly confluent with respect to all pairs of immediate (output or in-
ternal) actions.

For the operational switching actions ai, bi, 1 ≤ i ≤ n, it is easy to see that the I/O-
IMC semantics of a basic component is weakly confluent with respect to any pair of such
actions, since the transitions

✞

✝

☎

✆9.9 and
✞

✝

☎

✆9.10 commute in all cases. We further note that

at most one failure transition (that is a transition from
✞

✝

☎

✆9.2 ,
✞

✝

☎

✆9.3 ,
✞

✝

☎

✆9.4 ,
✞

✝

☎

✆9.5 ,
✞

✝

☎

✆9.6 ,
✞

✝

☎

✆9.7 ,

or
✞

✝

☎

✆9.8) can be enabled at the same time.
It then remains to check whether or not the failure transitions commute with the

operational switching transitions. This does not matter for transitions
✞

✝

☎

✆9.2 , since they

are Markovian. For transitions
✞

✝

☎

✆9.4 ,
✞

✝

☎

✆9.5 ,
✞

✝

☎

✆9.6 , and
✞

✝

☎

✆9.7 we have that these commute

with the operational switching transitions
✞

✝

☎

✆9.9 and
✞

✝

☎

✆9.10 , since they are not influenced
by (and do not influence) the operational state of the basic component. That is, these
two sets of transitions are completely orthogonal.

However, this is not the case for the transitions
✞

✝

☎

✆9.3 . The enabledness of these
transitions depends on whether he basic component is in a destructive operational state
or not. Since transitions

✞

✝

☎

✆9.9 and
✞

✝

☎

✆9.10 may change the operational state of the basic

component they may not commute with transitions
✞

✝

☎

✆9.3 . This means that the I/O-IMC
semantics of a basic component might not be weakly confluent with respect to a pair
of actions ai and τB or a pair of actions bi and τB, for some 1 ≤ i ≤ n. Note that
this non-confluence only occurs for such actions ai and bi that may turn a destructive
operational state into a non-destructive operational state.

Figure 9.11 illustrates these cases of non-confluence. The mode-switching action a
leads from a destructive operational state to a normal one, while the action b leads from
a normal operational state to a destructive one (note that it could also be the case that
the a transition leads to a destructive operational state while the b transition leads to

245

CHAPTER 9. ARCADE

a normal one). In state x we can observe the non-confluence between actions a and
τB. After following the transition labelled a, the action τB is no longer enabled, which
means these two actions are non-confluent.

x

τB

fB
rB?

uB !
λ

f
(F1)
B

rB?

uB!

a?

b?

a?

b?

a?

b?

a?

b?

Figure 9.11: Illustration of non-confluence between the action τB and the mode-
switching action a when switching between destructive and non-destructive operational
states. Not all transitions are shown.

Table 9.1 summarises the causality and confluence properties of the I/O-IMC se-
mantics of a BC.

Spontaneous Initial Triggering Non-confluence

{f
(Fk)
B } [{τB}] aj triggers τB ai & τB , bj & τB

bi triggers τB
rB triggers uB
τB triggers fB

Table 9.1: Causality and confluence results for a basic component with m failure modes
and n operational modes. We have 1 ≤ k ≤ m and 1 ≤ i, j ≤ n. The set of initial sets
is empty if the initial operational state is non-destructive. Index i is such that mode-
switching action ai leads from a destructive operational state to a normal operational
and index j is such that action aj does the reverse.

9.4.2 Logical gates

We now study the causal relationships between the actions of the I/O-IMC representing
the semantics of an AND-gate with n inputs

[[AG(L, {Failure(B1,M1), . . . ,Failure(Bn,Mn)})]].

246

9.4. CAUSALITY

It is easy to see that the I/O-IMCs representing AND- and OR-gates have no initial
or spontaneous actions. As for triggering, we see (for both I/O-IMCs) that each action
fMi
Bi

triggers the action fL and each action uBi triggers the action uL. A similar result
holds for logical gates with inputs of the form Failure(Bi).

With respect to confluence, it is clear that the failure and recovery actions of the
subcomponents of the logical gates are pair-wise confluent. The situation is different for
the failure and recovery actions of the logical gates themselves. For instance, consider
the I/O-IMC semantics of an AND-gate L when all basic components are down, but
the logical gate is still up (i.e., state (DOWNn, UP)). In this state we see that there
is non-confluence between fL and the actions uBi for 1 ≤ i ≤ n. This is caused by the
fact that once an action uBi occurs, the action fL will no longer be enabled. Similarly

we find non-confluence between the actions uL and f
(Mi)
Bi

for all 1 ≤ i ≤ n. However,
we will see in Section 9.5 that these non-confluent actions can never be enabled at the
same time. Table 9.2 describes the causality and confluence properties of the I/O-IMC
semantics of a logical gate. Whether or not the logical gate represents a system property
(and as a consequence has some of its states labelled) does not change its confluence
properties. The causality and confluence properties of an OR-gate are the same as those
of an AND-gate.

Spontaneous Initial Triggering Non-confluence

∅ ∅ f
(Mi)
Bi

triggers fL fL & uBi

fBi triggers fL uL & fBi

uBi triggers uL uL & f
(Mi)
Bi

Table 9.2: Causality and confluence results for a logical gate with n basic events
B1, . . . , Bn as inputs. We have 1 ≤ i ≤ n.

9.4.3 Dedicated repair units

For the I/O-IMC

[[RU(“dedicated”, 〈B〉)]],

which represents the operational behaviour of a dedicated repair unit we find that the
output action rB is spontaneous and is not triggered by any other action. The I/O-IMC

is not confluent with respect to pairs of actions fB and rB as well as f
(Mj)
B and rB for

failure modes Mj of B, since such pairs of actions do not commute in state DONE .

9.4.4 Preemptive prioritised repair units

For the I/O-IMC representing the operational behaviour of a PP repair unit

[[RU(“PP”, 〈B1, . . . , Bn〉)]],

247

CHAPTER 9. ARCADE

where for each 1 ≤ i ≤ n we have that the basic component has mi ∈ N failure modes
M1, . . . ,Mmi , we have that its causal relationships are very simple. First of all, we find
the spontaneous sets

{{rBi} | 1 ≤ i ≤ n}

and an empty triggering relation.

Concerning confluence, we easily see that each pair of failure actions fBi , fBj or

f
(Mk)
Bi

, fBj and so forth is confluent. On the other hand, each repair action rBi is not

confluent with its failure counterparts fBi , f
(M1)
Bi

, etc. This is due to the fact that
a failure action is “ignored” when the corresponding component is already down, but
recorded when it is up and, when a repair action happens the state of the component
changes from down (do not record failure) to up (do record failure). Finally, each repair

action rBi is confluent with all other failure actions fBj , f
(M1)
Bj

, . . . where i 6= j. We have
summarised the causality and confluence properties of PP repair units in Table 9.3.

Spontaneous Initial Triggering Non-confluence

{rBi} ∅ ∅ rBi & fBi

Table 9.3: Causality and confluence results for a PP repair units with n basic components
B1, . . . , Bn. We have 1 ≤ i ≤ n. For simplicity we specify only one failure action per
basic component, but all other failure actions of the same basic component have identical
causality and confluence properties.

9.4.5 First-come-first-serve repair units

As for PP repair units, there are no initial actions, the sets {rBi} are maximally spon-
taneous, and the triggering relation is empty.

However, the situation with regard to confluence is now somewhat different. Par-

ticularly, pairs of failure actions fBi , fBj or f
(Fk)
Bi

, fBj and so forth are not confluent for
the I/O-IMC semantics of a FCFS repair units. This is due to the fact that adding
index i to a list l and then adding index j to the same list yields a different result
than first adding j and then i. This was not the case for the PP repair unit where
the non-operational basic components were represented by a set rather than a list. The
other observations with respect to confluence remain the same as for the PP repair unit.
Table 9.4 summarises the causality and confluence properties of I/O-IMCs representing
FCFS repair units.

9.5 Deterministic Arcade models

We will now discuss sufficient conditions under which Arcade models have a determin-
istic semantics. That is, if we construct the I/O-IMC semantics of such a deterministic
Arcade model consisting of basic components, logical gates, and dedicated-, PP-, and

248

9.5. DETERMINISTIC ARCADE MODELS

Spontaneous Initial Triggering Non-confluence

{rBi} ∅ ∅ rBi & fBi

fBi & fBj

Table 9.4: Causality and confluence results for a FCFS repair unit with n basis com-
ponents b1, . . . , bn. We have 1 ≤ i, j ≤ n and i 6= j. For simplicity we specify only
one failure action per basic component, but all other failure actions of the same basic
component have identical causality and confluence properties.

FCFS-repair units, every interactive scheduler will yield the same transient distributions
over the system properties. The conditions will be based on the one hand on the suf-
ficient conditions for determinism of distributed I/O-IMCs described in Subsection 8.6
and on the other hand on an assumption we are willing to make about the nature of the
Arcade models.

9.5.1 Destruction by failure assumption

We make the following assumption: every mode-switching action that can cause a basic
component to switch from a normal operational mode to a destructive operational mode
is a failure action of a basic event or logical gate and every mode switching action that
can cause a switch from a destructive operational mode to a normal operational mode
is a recovery action.

This assumption ensures that the immediate destruction of a basic component can
only be caused by the failure of another basic component or a subsystem (logical gate).
We will refer to this assumption as the destruction by failure assumption. Whenever we
have two basic components Bi, Bj, such that the failure of Bj (signalled, for instance,

by action f
(M)
Bj

) can cause an immediate failure in Bi we say that Bi has a destructive
dependency on Bj . A basic component can also destructively depend on a logical gate.

Example 42. Consider an Arcade model with 3 BCs: pump P , control valve V ,
and power supply S. The pump has two operational modes normal/stressed and pow-
ered/unpowered. The first operational mode is controlled by the control valve. If the
control valve is operational the pump is in normal mode, otherwise it is stressed. The
powered/unpowered operational mode is controlled by the power supply. If the power
supply is operational, the pump is powered otherwise it is unpowered. Each basic com-
ponent has a single failure mode M . Figure 9.12 shows the operational state changes of
the pump in two cases.

Consider the case that the pump immediately fails when it is both stressed and unpow-
ered and all other operational states are normal (left-hand side of Figure 9.12). We can

then see that the actions f
(M)
V and f

(M)
S can cause a switch from a normal operational

mode to a destructive operational mode. This Arcade model satisfies the destruction
by failure assumption. The pump has a destructive dependency on both the valve and
the power source.

249

CHAPTER 9. ARCADE

Consider also the case that the pump fails immediately when it is operating normally
and becomes unpowered (right-hand side of Figure 9.12), but not in any other case (i.e.,

the other operational modes are normal). Now we see that the actions uV and f
(M)
S can

switch the pump from a normal operational mode to a destructive operational mode. In
this case, the Arcade model does not satisfy the destruction by failure assumption.

Normal
Powered

Normal
Unpowered

Stressed
Powered

Stressed
Unpowered

f
(M)
S

f
(M)
V

f
(M)
S

f
(M)
V

uS

uV

uS

uV

Normal
Powered

Normal
Unpowered

Stressed
Powered

Stressed
Unpowered

f
(M)
S

f
(M)
V

f
(M)
S

f
(M)
V

uS

uV

uS

uV

Figure 9.12: Overview of the operational states of two basic components. Destructive
operational states are coloured grey. The left case satisfies the failure by destruction
assumption while the right case does not.

We will leave it to the reader to show that, under the destruction by failure as-
sumption, any basic component with an initial destructive operational state, has only
destructive operational states. Recall that initially all basic component and logical gates
are operational.

9.5.2 Spontaneous and initial actions

To accomplish our goal of establishing conditions that guarantee that an Arcademodel
is deterministic, we first investigate which actions are spontaneous and initial (see Def-
initions 93 and 94) for an Arcade model. Throughout this section we will use the
causality and confluence properties for the individual Arcade elements as summarised
in Tables 9.1, 9.2, 9.3, and 9.4. We will consider a well-formed Arcade model with
basic events B1, . . . , Bn; logical gates L1, . . . , Lm; and any number of dedicated, PP, or
FCFS repair units, which satisfies the destruction by failure assumption. Each basic
event Bi will have mi failure modes M1, . . . ,Mmi .

Proposition 27. Given the I/O-IMC semantics of an Arcade model as above with
basic events B1, . . . , Bn, we find that the spontaneous sets are a subset of

{{f
(Mj)
Bi

} | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} ∪ {{rBi} | 1 ≤ i ≤ n}.

Proof. This is a direct consequence of the fact that failure and repair actions are the
only spontaneous actions in the I/O-IMCs describing the Arcade elements and the
spontaneous sets of a parallel composition of I/O-IMCs is a subset of the union of the
sets of spontaneous sets of its components (see Theorem 53).

250

9.5. DETERMINISTIC ARCADE MODELS

Proposition 28. Given the I/O-IMC semantics of an Arcade model as above with
basic events B1, . . . , Bn, we find that there is only one initial set which is

{τBi | 1 ≤ i ≤ n,Bi has an initial destructive operational state.}.

Proof. This is a direct consequence of the fact that the destruction actions are the only
possible initial actions in the I/O-IMC semantics of the Arcade elements and the initial
sets of the parallel composition of I/O-IMCs equals the set of all possible combinations
of the initial sets of its component I/O-IMCs (see Theorem 54).

Recall that in Chapter 8 we have shown that any set of actions that is enabled simul-
taneously, must have a common cause, i.e., a set of actions that is either spontaneous
or initial, and that indirectly triggers these actions (see Corollary 13). Our results con-
cerning the spontaneous and initial sets now tell us that any case of non-determinism
in an Arcade model must be caused by either a single spontaneous failure, a single
repair action, or a set of immediate destructions that were initially enabled. We will
now study the triggering relation for the I/O-IMC semantics of Arcade models to find
out which actions can be indirectly triggered in this way.

9.5.3 Triggering relation

Taking into account the destruction by failure assumption (see Subsection 9.5.1), we
find that the following actions trigger each other.

Proposition 29. Given the I/O-IMC semantics of an Arcade model as above with
basic events B1, . . . , Bn, and logical gates L1, . . . , Lm, we find that the triggering relation
is a subset of,

τBi triggers fBi, if BC Bi has a destructive operational mode,
✞

✝

☎

✆9.18

fBi triggers τBj , if BC Bj has a destructive dependency on Failure(Bi),
✞

✝

☎

✆9.19

f
(Mx)
Bi

triggers τBj , if BC Bj has a destructive dependency on Failure(Bi,Mx),
✞

✝

☎

✆9.20

fLk
triggers τBj , if BC Bj has a destructive dependency on LG Lk,

✞

✝

☎

✆9.21

fBi triggers fLk
, if Failure(Bi) is an input to LG Lk,

✞

✝

☎

✆9.22

f
(Mx)
Bi

triggers fLk
, if Failure(Bi,Mx) is an input to LG Lk,

✞

✝

☎

✆9.23

fLl
triggers fLk

, if Failure(Ll) is an input to LG Lk,
✞

✝

☎

✆9.24

rBi triggers uBi , for every BC Bi,
✞

✝

☎

✆9.25

uBi triggers uLk
, if Failure(Bi) or Failure(Bi,Mx) is an input to LG Lk, and

✞

✝

☎

✆9.26

uLl
triggers uLk

, if Failure(Ll) is an input to LG Lk,
✞

✝

☎

✆9.27

where 1 ≤ i, j ≤ n and 1 ≤ k, l ≤ m and x is such that Mx is a failure mode of Bi.

251

CHAPTER 9. ARCADE

Proof. This follows directly from the triggering relations of the I/O-IMC semantics of
the individual Arcade elements, and the fact that the triggering relation of a paral-
lel composition of I/O-IMCs is a subset of the union of the triggering relations of its
constituent I/O-IMCs (see Equation

✞

✝

☎

✆8.5).

First of all, the destructive action τBi of any BC with a destructive operational state
triggers its failure (see

✞

✝

☎

✆9.18). Then, failure of a BC or a LG may trigger the destructive

action of a BC, but only if there exists an appropriate destructive dependency (see
✞

✝

☎

✆9.19

and
✞

✝

☎

✆9.21). From our discussion of BCs we know that mode-switching actions may
trigger the destructive action τBi and the destruction-by-failure assumption ensures that
such mode-switching actions are always failure actions. Finally, we have that the failures
of the inputs of an LG trigger the failure of the LG itself (see

✞

✝

☎

✆9.22 ,
✞

✝

☎

✆9.23 , and
✞

✝

☎

✆9.24).
In other words, the failure of a subsystem may be caused by the failure of one of its
components. The repair of any BC triggers its recovery (see

✞

✝

☎

✆9.25). Finally, recovery
actions of inputs will trigger the recovery actions of the logical gates they belong to
(see

✞

✝

☎

✆9.26 and
✞

✝

☎

✆9.27).
We can now discuss the indirect triggering relation. To do this, we will first introduce

the indirect dependency relation on BCs and LGs of an Arcade model.

Definition 116. Given an Arcade model with BCs B1, . . . , Bn and LGs L1, . . . , Lm,
we say that a BC or LG x indirectly depends on a BC or LG y if we can find a sequence
of z1, . . . , zk of BCs and LGs such that x = z1, y = zk, and for each 1 < i ≤ k we have
that

1. zi is a BC that destructively depends on BC or LG zi−1, or

2. zi is a LG that has BC or LG zi−1 as an input.

Note that any BC or LG indirectly depends on itself (we find a sequence of length one).

We can see that the two conditions of Definition 116 are closely related to the trig-
gering relation for Arcade models. We will now use Definition 116 to describe the
indirect triggering relation of an Arcade model.

Theorem 64. Given the I/O-IMC semantics of an Arcade model as above (i.e., it
satisfies the destruction by failure assumption), we find the that the indirect triggering
relation is a subset of the union of the identity relation on all actions and

{(τBi , τBj), (τBi , fBj), (fBi , τBj), (fBi , fBj),

(f
(Mx)
Bi

, τBj), (f
(Mx)
Bi

, fBj) | Bj indirectly depends on Bi}

∪ {(τBi , fLk
), (fBi , fLk

), (f
(Mx)
Bi

, fLk
) | Lk indirectly depends on Bi}

∪ {(fLl
, fLk

) | Lk indirectly depends on Ll}

∪ {(rBi , rBj), (rBi , uBj), (uBi , rBj), (uBi , uBj) | Bj indirectly depends on Bi}

∪ {(rBi , uLk
), (uBi , uLk

) | Lk indirectly depends on Bi}

∪ {(uLl
, uLk

) | Lk indirectly depends on Ll},

where 1 ≤ i, j ≤ n and 1 ≤ k, l ≤ m, and Mx is a failure mode of Bi.

252

9.5. DETERMINISTIC ARCADE MODELS

Proof. Theorem 64 follows from Proposition 29 by building the transitive, reflexive of
the triggering relation for Arcade models.

To summarise, we see that failure and destruction actions of one BC or LG trigger
failure and destruction actions of another BC or LG as long as the latter indirectly
depends on the former. The same holds for recovery and repair actions. Note that The-
orem 64 could be made preciser by making use of the fact that destructive dependencies
do not influence repair and recovery actions, but it turns out this is unnecessary for our
purposes. One important consequence of the above theorem is that failure and recovery
are, in a sense, independent.

Lemma 22. No recovery or repair action indirectly triggers a failure or destruction
action. Neither does any failure or destruction action indirectly trigger a recovery or
repair action.

Proof. Lemma 22 follows directly from Theorem 64.

9.5.4 Non-confluent pairs of actions

We now list the pairs of actions that can be non-confluent in the semantics of an Arcade

syntactical element.

Proposition 30. The following pairs of actions can be non-confluent for the I/O-IMC
semantics of a

1. basic component:

(a) uBi&τBj , where Bj destructively depends on Bi,

(b) uLi&τBj , where Bj destructively depends on Li,

2. logical gate:

(a) fLi&uBj and uLi&fBj , when Failure(Bj) is an input of Li,

(b) fLi&uBj and uLi&f
(Fx)
Bj

, when Failure(Bj , Fx) is an input of Li,

(c) fLi&uLj and uLi&fLj , when Lj is an input of Li,

3. repair unit:

(a) fBi&rBi and f
(Fx)
Bi

&rBi , for all BCs that have a repair unit,

(b) fBi&fBj , f
(Fx)
Bi

&fBj , fBi&f
(Fy)
Bj

, and f
(Fx)
Bi

&f
(Fy)
Bj

, if distinct BCs Bi and Bj

have the same FCFS repair unit.

Proof. Proposition 30 is simply a restatement of the non-confluent pairs of actions we
have found in Section 9.2.

253

CHAPTER 9. ARCADE

9.5.5 Sufficient conditions for determinism

We are now ready to find conditions that will ensure that the semantics of an Arcade

model are deterministic. These conditions will be based on the sufficient conditions
for determinism of an I/O-IMC as described in Theorem 60. As for I/O-IMCs we will
look for necessary conditions for non-determinism first, under the destruction by failure
assumption.

Recall from Theorem 60 that we need three ingredients to have non-determinism in
a distributed I/O-IMC. A pair of actions a and b that are either both initial or both
in the same spontaneous set. These actions must then indirectly trigger two actions
c and d respectively. Finally, actions c and d must be non-confluent for the I/O-IMC
semantics of one of the syntactic elements of the Arcade model. We have already seen
with Lemma 22 that failure and recovery actions cannot (indirectly) trigger each other.
We now extend this lemma to actions that satisfy Theorem 60.

Lemma 23. Given the I/O-IMC semantics of an Arcade model as above and four
actions a, b, c, and d that satisfy Theorem 60 as above, we have that either

1. actions c and d are both destruction actions or failure actions (i.e., of the form

τx, fx, of f
(F)
x), or

2. actions c and d are both repair actions or recovery actions (i.e., of the form rx or
ux).

Proof. We prove Lemma 23 by contradiction. Assume then, without loss of generality,
that action c is either a destruction or failure action, and action d is a repair or recovery
action. Since the four actions a, b, c, and d satisfy Theorem 60 we have that a indirectly
triggers c and b indirectly triggers d. Lemma 22 then gives us that a must also be a
destructive or failure action and b in turn must be a repair or recovery action. To satisfy
the first condition of Theorem 60 actions a and b must either both be initial or both
part of the same spontaneous set. However, Proposition 27 tells us that there are no
spontaneous sets which contain both a destruction/failure action and a repair/recovery
action. Similarly, Proposition 28 gives us that there are no initial recovery or repair
actions. This constitutes a contradiction and it follows that Lemma 23 holds.

Lemma 23 greatly helps us in excluding many cases of non-confluence in Arcade

models as possible causes for non-determinism. Of all the pairs of non-confluent actions
listed in Proposition 30 only one case satisfies Lemma 23. This is the case of the failure
actions of two distinct BCs Bi and Bj which are both repaired by the same FCFS repair
unit.

The third condition of Theorem 60 must then be satisfied by a pair of failure ac-
tions of BCs that are repaired by the same FCFS repair unit. The first condition, on
the other hand, must be satisfied by either a single (spontaneous) failure action (see
Proposition 27) or by two initially enabled destruction actions (see Proposition 28). To
also satisfy the second condition of Theorem 60 we must find that the latter action or
actions indirectly trigger the former. From Theorem 64 we know that we must then find

254

9.5. DETERMINISTIC ARCADE MODELS

that the BCs that are repaired by the FCFS repair unit indirectly depend on the BC(s)
that correspond to the initial/spontaneous actions. This finally gives us the following
necessary conditions for non-determinism in an Arcade model.

Theorem 65. Given a well-formed Arcade model that satisfies the destruction by fail-
ure assumption and which consists only of basic components, logical gates, and dedicated,
PP, or FCFS repair units, we have that the I/O-IMC semantics of this Arcade model
is non-deterministic, only if the following conditions hold.

1. Either

(a) there is a BC Bi, or

(b) there are two BCs Bj and B
′
j that both have an initial destructive operational

mode.

2. Furthermore, there are two BCs Bk and B′
k that either

(a) both indirectly depend on Bi, or

(b) indirectly depend on Bj and B′
j, respectively, and

3. the Arcade model contains a FCFS repair unit which repairs both basic compo-
nents Bk and B′

k.

Proof. The three conditions of Theorem 65 follow the three conditions of Theorem 60.
From Propositions 27 and 28 it follows that the only way the first condition of Theo-
rem 60 can be satisfied is through the first condition of Theorem 65. From Theorem 64
it follows that the only way for the action(s) from condition 1 to indirectly trigger the
failure actions of two BCs Bk and B′

k (i.e., to satisfy the second condition of Theorem 60
is by satisfying the satisfying the second condition of Theorem 65. Finally, we have from
Proposition 23 that the only way that the I/O-IMC semantics of an Arcade model can
satisfy the third condition of Theorem 60 (i.e., non-confluent actions) is to satisfy the
third condition of Theorem 65.

With Theorem 65 we have partly accomplished our goal of finding sufficient condi-
tions to prove that an Arcade model is deterministic. The sufficient conditions are of
course that the Arcade model conforms to the assumptions we have made and that it
does not satisfy the three conditions of Theorem 65. That is, it only consists of basic
components, logical gates, and the three types of repair units we have covered, it con-
forms to the destruction by failure assumption, and the BCs repaired by an FCFS repair
unit are not indirectly dependent on the same BC (or different BCs that both have an
initial destructive operational state).

9.5.6 Sufficient conditions for non-divergence

Since the presence of time-divergence in an I/O-IMC complicates its analysis and may
be an indication of a modelling error, it will be useful to be able to show that the
I/O-IMC semantics of an Arcade model is non-divergent. In Chapter 8 we have found

255

CHAPTER 9. ARCADE

Theorem 61 which tells us that the absence of “cycles” in the triggering relation of an
I/O-IMC shows that the I/O-IMC is non-divergent. Again, we first give a necessary
condition for the I/O-IMC semantics of an Arcade model to be divergent.

Theorem 66. Given an Arcade model that satisfies the destruction by failure assump-
tion and which consists only of basic components, logical gates, and dedicated, PP, or
FCFS repair units, we have that the I/O-IMC semantics of this Arcade model is diver-
gent, only if the following condition holds. There exists a sequence z1, . . . , zn of length
at least two, such that z1 = zn and for each 1 < i ≤ n we have

1. zi is a BC that destructively depends on BC or LG zi−1, or

2. zi is a LG that has BC or LG zi−1 as an input.

Proof. From our discussion of the triggering relation of an Arcade model, we can
see that the only way to have a cyclic triggering relation is to have a sequence of basic
components and logical gates that cyclically depend on each other. Our condition is then
simply a restatement of the definition of indirect dependence with the added condition
that the sequence of BCs and LGs has length at least 2 and is a cycle.

We then find a sufficient condition for the I/O-IMC semantics of an Arcade model
to be non-divergent, namely that the condition in Theorem 66 does not hold, i.e., there
exists no cycle of destructively dependent BCs and LGs.

9.5.7 Spare management units

For the sake of brevity and simplicity, we have not discussed the I/O-IMC semantics
of spare management units [3] in this chapter and they are not considered in Theo-
rem 65. It should be noted that spare management units are indeed a likely cause of
non-determinism [6]. We conjecture that for Arcade models with spare management
units another condition for non-determinism occurs when two spare management units
share a spare C and each of these spare management units has another spare (A re-
spectively B), such that spares A and B have a common cause (i.e., the two spares A
and B play the same role as the two BCs repaired by the same FCFS repair unit in
Theorem 65). In this scenario, the spares A and B may fail at the same time since
they have a common cause) and then either spare management unit may “claim” the
spare C. The decision which spare management unit actually claims spare C is then
non-deterministic.

However, to fully understand the ways in which the use of spare management units
may lead to non-determinism it is necessary to study the causality and confluence prop-
erties of the I/O-IMC semantics of spare management units as we have done for other
Arcade elements.

9.5.8 Algorithm and Complexity

We will now discuss how we can algorithmically ascertain whether an Arcade model
satisfies the conditions of Theorem 65. Below is a sketch of such an algorithm. We

256

9.5. DETERMINISTIC ARCADE MODELS

assume that a concise description of the Arcade model is given from which we can
determine the principal relationships between the Arcade elements, i.e., which basic
components are repaired by which repair unit, on what basic components or logical
gates does a certain basic component have a destructive dependency, etc., in constant
time (for each component). Algorithm 2 checks whether an Arcade model satisfies the
conditions of Theorem 65.

noend 2 Checks whether an Arcade model satisfies the conditions of Theorem 65. If
the algorithm returns “True” then the Arcade model may be non-deterministic. If it
returns “False” then the Arcade model is guaranteed to be deterministic.

1: Compute the set X of all pairs of BCs that are repaired by the same FCFS repair
unit.

2: Compute the set Y of all BCs that have an initial destructive operational state.
3: Compute the relationship R on the set of all BCs and LGs that contains all pairs

(x, y) such that x is an input of y or y destructively depends on x.
4: Compute the transitive reflexive closure R′ of R; this relation describes the indirect

dependencies between BCs and LGs.
5: for all (x, y) in X do
6: for all BC z do
7: if (z, x) and (z, y) are in R′ then
8: return True
9: for all (x, y) in X do

10: b = False
11: for all BC z in Y do
12: if (z, x) is in R′ then
13: b = True
14: if not b then
15: return False
16: for all BC z′ in Y do
17: if (z′, y) is in R′ then
18: return True
19: return False

If a pair (x, y) is found in the loop 5-8 or the loop 9-18, then the Arcade model
may be non-deterministic. If not, it is guaranteed that the conditions of Theorem 65 do
not hold and the I/O-IMC semantics of the Arcade model must then be deterministic.

Theorem 67. Given a well-formed Arcade model consisting of basic components,
logical gates, and dedicated, FCFS, and PP repair units which satisfies the destruction-
by-failure assumption, if Algorithm 2 returns “False” then the Arcade model is deter-
ministic

Proof. We prove Theorem 67 by contradiction. Assume then that we have an Arcade

model as in Theorem 67 which is non-deterministic and for which Algorithm 2 returns
“False”.

257

CHAPTER 9. ARCADE

Since our Arcademodel is non-deterministic, we have that it satisfies the conditions
in Theorem 65. We first consider the case that the Arcade model has a BC Bi and
two BCs Bk and B′

k which are both indirectly triggered by Bi and are both repaired by
the same FCFS repair unit. It is immediately clear that the pair (Bk, B

′
k) is in the set

X computed in step 1 of the algorithm. Furthermore we have that, since Bi indirectly
triggers both Bk and B′

k that the pairs (Bi, Bk) and (Bi, B
′
k) are in the relationship R′

computed in step 4 of the algorithm. We then have that in the loop 5-8 of the algorithm
we will find the case (x, y) = (Bk, B

′
k) and z = Bi and in this case the condition of

step 7 will be satisfied, which will mean the algorithm returns “True” and this is a
contradiction.

We now consider the remaining possibility, that there are two BCs Bj, B
′
j which both

have a destructive initial operational mode and two BCs Bk and B′
k as above which are

indirectly triggered by Bj respectively B′
j. Again we have that the pair (Bk, B

′
k) is in

the set X and both Bj and B′
j are in the set Y computed in step 2 of the algorithm.

Finally we have that the pairs (Bj , Bk) and (B′
j , B

′
k) are in the relationship R′. Now, for

the loop 9-18, consider the case that (x, y) = (Bk, B
′
k) and for the loop 11-13 consider

the case that Bj = z. We then have that the condition of step 12 holds and b will be
“True” when we reach step 14 in this particular iteration of the loop. For the loop 16-18
then consider the case where B′

j = z′. We then have that the condition in step 17 holds
and the algorithm will again return “True” leading to a contradiction.

In both time and space complexity step 4 of this algorithm dominates the other
steps. This step has cubic complexity (finding the transitive closure of a relation) in the
number of BCs and LGs of the Arcade model being studied. This is significantly less
than the space and time complexity of constructing the minimised I/O-IMC semantics
of the Arcade model which is exponential in the number of syntactical elements in the
Arcade model [13].

We can check for the possibility of time-divergence in a similar way. However, in step
four of the algorithm we should compute the transitive closure instead of the transitive
reflexive closure. It then suffices to check if this transitive closure contains (X,X) for
any BC or LG X. If so, the I/O-IMC semantics may be divergent. If not, we can be
sure that the I/O-IMC semantics of the Arcade model is non-divergent. Again we find
cubic time and space complexity in the number of basic components and logic gates of
the Arcade model.

The algorithms presented in this section greatly improve the complexity of verifying
whether an Arcade model is deterministic and non-divergent. Instead of having to
construct and inspect the exponentially large state space of the I/O-IMC semantics
of the Arcade model, we can now verify for many Arcade models that they are
deterministic and non-divergent by using our algorithms which are cubic in the number
of syntactical elements of the Arcade model and do not require constructing its I/O-
IMC semantics. It is important to note that the algorithms may give rise to false
negatives. That is, there may be Arcade models which are deterministic, but which
still satisfy the conditions in Theorem 65 and thus are not recognized by Algorithm 2 as
being non-deterministic. However, to counteract these false negatives it may be possible

258

9.6. DISCUSSION

to partially construct the I/O-IMC semantics of the Arcade model to show that the
combination of basic components that satisfy the conditions of Theorem 65 is spurious.

9.6 Discussion

In this chapter, we have studied the I/O-IMC semantics of dependable systems modelled
using Arcade. We have first presented a translation of Arcade syntactical elements to
I/O-IMCs based on the work of Maaß [34]. The semantics of Arcade is compositional
in a very deep sense: It directly arises from the parallel composition of the semantics of
its syntactical components, which by virtue of Theorems 38 and 39 is modular.

We have further given sufficient conditions for the I/O-IMC semantics of an Arcade

model to be deterministic. This has only been possible because of the results of Chap-
ter 8. In order for an Arcade model to be non-deterministic a very specific condition
must hold, namely that there is a FCFS repair unit with two BCs that, directly or indi-
rectly, destructively depend on the same BC or LG. This condition can be checked very
efficiently using Algorithm 2 and in Subsection 9.6.1 we will discuss how this algorithm
can be used to make the analysis of Arcade models more effective. In this chapter we
did not consider Arcade models with spare management units. For the full Arcade

formalism, including spare management units, sufficient conditions for determinism can
be established in a similar way, but it will be more challenging as SMUs have a complex
semantics and may be a cause of non-determinism in Arcade models.

9.6.1 Analysis of Arcade models

We now consider how we might analyse important properties of an Arcade model.
Recall that system properties are modelled by using logical gates. This means that a
property correspond to a certain subset of Arcade components being operational or in a
particular failure mode. For instance, in our “pump system” example from Section 9.1.8
we modelled that the “no cooling” property holds when both pump lines are blocked.
In our “replicated web server” example, the “service unavailable” property holds when
all three servers are inoperational.

In this subsection we will discuss how we can compute interesting measures for these
properties, such as:

• What is the probability that the pump system is not cooling after 2 months?

• What fraction of time can the replicated web server be expected to be available in
the long run?

• What is the probability that the pump system stops cooling at least once in the
first year of operation?

We will first look at different classes of Arcade models before discussing more
advanced solution algorithms to improve the efficiency of analysis.

259

CHAPTER 9. ARCADE

Analysis of closed Arcade models

Theorem 63 tells us that the I/O-IMC semantics of a closed Arcademodel is a complete
I/O-IMC, i.e., an I/O-IMC with no output or input actions. In Chapter 7 we have shown
that any closed I/O-IMC can be interpreted as a CTMDP. We can thus use standard
CTMDP analysis techniques to compute interesting measures for the Arcade model,
such as the algorithm by Neuhäusser and Zhang [38] as discussed in Subsection 7.7.2.

Analysis of deterministic closed Arcade models

The operational behaviour of a deterministic closed Arcade model is a deterministic
complete I/O-IMC. Theorem 52 establishes that such I/O-IMCs can be interpreted as
CTMCs. We can use standard CTMC solution techniques, such as simulation [19], uni-
formisation [46], and fast adaptive uniformisation [15] to compute interesting measures
such as the probability of being in a “no cooling” state at a particular point in time or
the long-run average probability of being in a “system unavailability” state.

Compositional minimisation

Before we can analyse an Arcademodel we must in general first construct the I/O-IMC
that represents its operational behaviour. We have seen in Section 9.2.6 that this I/O-
IMC is the parallel composition of the I/O-IMCs that represent the syntactic elements of
the Arcade model. However, the size of this parallel composition grows exponentially
in the size of the Arcade model. We will now see that we can mitigate this problem
by applying the technique of compositional minimisation.

The I/O-IMC that represents the entire Arcade model is simply the parallel com-
position of the I/O-IMCs that represent the Arcade elements that make up the model.
However, the size of this I/O-IMC grows exponentially in the number of syntactic el-
ements, so even for moderately large Arcade models it is infeasible to construct this
I/O-IMC directly. Instead, compositional minimisation (see, e.g., [25]) is used to con-
struct a smaller I/O-IMC that is weakly bisimilar to the parallel composition of the
component I/O-IMCs. Given a set M of component I/O-IMCs, compositional minimi-
sation proceeds as follows

1. select a subset of I/O-IMCs M ′ ⊂M ,

2. construct the parallel composition P of the I/O-IMCs in M ′ and hide all actions
that are internal to this subset of I/O-IMCs,

3. compute the weak bisimulation minimisation P ′ of P , and

4. continue from step 1 with the set (M \M ′)∪ {P ′} of I/O-IMCs, replacing the set
M ′ by its minimised parallel composition P ′, until only one I/O-IMC is left.

Compositional minimisation avoids the construction of the parallel composition of all
I/O-IMCs by applying weak bisimulation minimisation early and often. The efficacy of

260

9.6. DISCUSSION

this approach depends on the order in which the I/O-IMCs are composed and minimised.
In other words, it depends on the selection of I/O-IMCs in step 1 above.

In [13] and [14] we have developed a heuristical algorithm that selects a good com-
position ordering, i.e., a composition ordering that allows us to construct the semantics
of the Arcade model both quickly and, more importantly, using little space to store
the intermediate I/O-IMC models. The algorithm is based on trying to select, each time
we reach step 1 of compositional minimisation, a set of I/O-IMCs in such a way that
their parallel composition can be reduced a lot by weak bisimulation minimisation. The
algorithm is further based on two assumptions

1. the number of transitions that can be eliminated due to weak bisimulation min-
imisation is proportional to the relative number of reachable internal transitions
in an I/O-IMC, and

2. the number of reachable internal transitions in an I/O-IMC is proportional to the
total number of internal transitions including those that are unreachable.

The total number of, reachable and unreachable, internal transitions can be computed
efficiently from the transition relations of the components I/O-IMCs [14].

The heuristic used by the algorithm to select the subset of I/O-IMCs to compose
is based on this estimated proportion of internal transitions, on an estimation of the
amount of interleaving in the parallel composition (see [14]), and on the number of
I/O-IMCs in the parallel composition. The algorithm then aims to select that subset of
I/O-IMCs that has the highest value for this heuristic.

The result of the compositional minimisation algorithm is a complete I/O-IMC that
is weakly bisimilar to the parallel composition of the set of I/O-IMCs we started with.
To be exact, this I/O-IMC is the smallest such I/O-IMC(with respect to the number of
states).

Given an explicit representation of the minimised I/O-IMC semantics of the Arcade

model it is easy to determine whether the I/O-IMC is deterministic or not. If the
I/O-IMC has any interactive transition (which must necessarily be internal), then the
I/O-IMC is non-deterministic, otherwise it is deterministic. Depending on whether
the I/O-IMC is non-deterministic or not, we can then transform it into an equivalent
CTMDP or CTMC, respectively and analyse it using standard solution techniques.

In general, the size of the minimised I/O-IMC computed using compositional min-
imisation still grows exponentially in the number of component I/O-IMCs. In the next
subsection we will try to avoid generating this possibly prohibitively large I/O-IMC
altogether.

On-the-fly techniques

We can use the results of this chapter to efficiently analyse Arcade models by avoiding
the construction of the entire state space of the I/O-IMC representing an Arcade

model. We can achieve this by applying on-the-fly solution techniques.

261

CHAPTER 9. ARCADE

On-the-fly solution techniques compute interesting measures for a model without
constructing its entire state space. Instead, transitions of the model are generated on-
the-fly, as required by the solution technique. Examples of on-the-fly solution techniques
for CTMCs are simulation [19] and fast adaptive uniformisation [15]. The advantage of
on-the-fly techniques is that we do not need to generate or store the entire state space of
the I/O-IMC that represents the Arcade model. Instead, we work with the I/O-IMC
representations of the syntactical elements of the Arcade model.

The down-side of such on-the-fly techniques is that they can only be applied to
CTMCs, which means that they can only be applied to deterministic I/O-IMCs. Tradi-
tionally, the only way of knowing that an I/O-IMC is deterministic is to build its state
space [3]. However, this defeats the purpose of on-the-fly solution techniques, which is
to avoid building the entire state space explicitly. Fortunately, Algorithm 2 allows us to
show that an Arcade model is deterministic efficiently and without constructing the
entire state space of the underlying I/O-IMC.

Given a deterministic Arcade model, we know that its I/O-IMC semantics is de-
terministic, and Theorem 52 then gives us that any behaviour of this I/O-IMC results
in the same CTMC. In order to use on-the-fly solution techniques we must be able to
generate this CTMC on-the-fly. That is, given a particular state we must be able to
compute the set of outgoing transitions for this state. We can easily compute outgoing
transitions for the I/O-IMC by applying the definition of parallel composition for I/O-
IMCs. To construct transitions of the underlying CTMC we can then simply pick an
arbitrary scheduler to resolve the “non-deterministic” choices, since we know that these
choices will always lead to weakly bisimilar states.

Maaß has shown that simulation can be used to study deterministic Arcade mod-
els [34], although simulation is not very effective for stiff models, i.e., models with both
very large and very small stochastic rates (i.e., repair and failure rates). Unfortunately,
most Arcade models are indeed stiff as repair rates are usually much larger than failure
rates. An interesting alternative is fast adaptive uniformisation, which is more effective
for stiff CTMCs [15]. However, fast adaptive uniformisation can, for the moment, only
be used to compute transient measures for a CTMC, i.e., we can only use it to answer
questions such as “what is the probability of being in a service unavailable state at time
x?”

Combining compositional minimisation with on-the-fly techniques

Finally, we propose that a combined approach may be used to analyse deterministic
Arcademodels that cannot be analysed using compositional minimisation and standard
solution techniques. By first performing as many compositional minimisation steps
as possible, we can exploit as many symmetries as we can to reduce the size of the
underlying CTMC. When further compositions become infeasible due to time and space
restrictions, we can attempt to apply fast adaptive uniformisation to the smaller set of
I/O-IMCs generated by the compositional minimisation steps.

262

9.6. DISCUSSION

9.6.2 Other measures

So far we have focused on computing instantaneous unavailability properties of an Ar-

cade model, i.e., the probability that a certain system property holds at a certain time.
Of course, there are many other interesting metrics that can be computed for a depend-
able system. Here, we review a number of them and discuss how these metrics fit into
the Arcade framework. Note that, the question of which measure to compute is in
general orthogonal to the problem of how to compute or induce the state space of the
I/O-IMC semantics of an Arcade model as we discussed in the previous subsection.
We will discuss several different kinds of measures that are particularly interesting in
the context of Arcade. For a general overview of verification algorithms for CTMDPs
we refer to Buchholz et al as a starting point [9].

Reliability.

The reliability of a system is the probability that the system will not fail before a given
time instance T . Different from availability, reliability is not concerned with the state
of the system at time T but the number of failures before time T . In other words,
reliability is the probability that zero failures occurred before time T . We can measure
the reliability of an Arcade model using state labels. To do this, we add an I/O-IMC
to the semantics of the Arcade model which “counts” the number of failures of the
Arcade model. This I/O-IMC has as input action the actions fs which describes the
failure of the complete system (this action usually corresponds to the failure action of a
logical gate that describes the failure condition for the complete system). The I/O-IMC
has no other actions, but one of its states is labelled “at least one failure”. Figure 9.13
shows this I/O-IMC.

fs?

Figure 9.13: Reliability I/O-IMC (left) that counts the number of failures of a depend-
able system. The state that is labelled “at least one failure” is grey.

As in the case for availability we have that the state-labels of a composed state are
found by the union of the state-labels of its component states. It is clear then that,
every state of the complete I/O-IMC semantics of the Arcade model that is labelled
“at least one failure” corresponds to a state where the system has indeed failed at least
once. We can compute the reliability of the system as the probability that the I/O-IMC
semantics of the Arcade model does not occupy a state labelled with “at least one
failure” at time T . Obviously, this technique can also be applied to compute properties
such as “at least two failures at time T , and so forth, by altering the counting I/O-IMC
in Figure 9.13.

263

CHAPTER 9. ARCADE

Cost-based measures

Both availability and reliability tell us something about the probability that certain
events happen for the dependable system being studied. A different type of metrics is
based on costs or rewards. For instance, we may want to compute how much money
we can expect to need to repair our dependable system. In Arcade we can model
costs simply by associating costs to the states of the I/O-IMC semantics of the relevant
Arcade syntactical models.

For instance, to model the cost of repairs, we can associate an appropriate cost (per
time unit) to those states of the repair units where the RU is actively repairing a basic
component. Of course, we can use different costs for different RUs. We may also want
to model the revenue of a system when it is operational. Assume we have a logical gate
that models the failure condition of the system. We can then associate a reward with
the states of this logical gate that are operational to model the revenue of the system.
Of course, if we model both costs and rewards we must make sure that the costs are
negative and rewards are positive.

As we have seen in Section 2.1 we can use costs/rewards to induce the state equiv-
alence relation =s. That way we ensure that any two states that are equivalent with
respect to =s (and then also any two states that are equivalence with respect to weak
bisimulation) have the same cost/reward. The cost of a composed state is the sum of
the costs of its constituent states.

The semantics of the complete Arcade model is then an I/O-IMC decorated with
rewards. Similar to I/O-IMCs with state labels, such I/O-IMCs can be interpreted
as CTMDPs with state-rewards or, when the I/O-IMC is weakly deterministic, CTMCs
with state-rewards (also known as Markov reward models (MRMs)). There exist various
solution techniques to compute interesting cost/reward metrics for such models. We
list a number of these techniques here. Buchholz and Schulz have shown that we can
compute both the maximal/minimal cumulative reward over a finite time horizon for
CTMDPs [10]. Finally, we have that the Markov reward model checker (MRMC), CADP,
and the PRISM tool support various cost and reward based metrics for CTMCs and
CTMDPs [31, 32, 18].

Long-run properties of Arcade models

It is also interesting to consider long-run properties of Arcade models, that tell us
something about the entire life-time of the dependable system. For instance, the long-
run average unavailability of a dependable system is the fraction of time the system is
inoperable over an infinitely long time-span. In other words, it is the fraction of time
the system is down over the time-interval [0, T) where T goes to infinity.

For CTMCs, we can compute the long-run unavailability by computing the proba-
bility that the system is down at time T where T goes to infinity [46]. The probability
distribution at time T , where T goes to infinity is called the limiting distribution. Most
stochastic model-checking tools can be used to compute this distribution. For CTMDPs
the infimum/supremum long-run average unavailability can be computed using the long-
run average expected reward algorithm by Wimmer et al. [50]. This is accomplished by

264

9.6. DISCUSSION

assigning a reward of one to those states of the Arcade semantics where the system is
down and then computing the long-run average reward.

265

10
Conclusion

In this thesis, we have studied I/O-IMCs as a combination of the non-deterministic and
compositional formalism of input/output automata (see Chapter 4) and the stochastic
model of continuous-time Markov chains (see Chapter 3). To conclude this thesis we
will highlight several key results and propose avenues for future research.

10.1 Modular semantics

We have seen in Chapter 3 that a simple matrix (the infinitesimal generator matrix) can
be seen as a syntactical representation of a CTMC. If we assume different CTMCs are
independent, then this semantics is modular: two generator matrices can be composed
through interleaving and their CTMC semantics arises as the independent combination
of the two CTMCs corresponding to the generators. In Chapter 4 we saw that our
variant of IOA also has a modular semantics: the fair reach-traces of a composite IOA
can be dissected to find the fair reach-traces of its component IOA.

We have then defined the semantics of I/O-IMC as an orthogonal combination of
the semantics of CTMCs and IOA. We use interactive jump processes (introduced in
Chapter 6) as the semantic underpinning of I/O-IMCs. Crucially, the jumps of inter-
active jump processes consist of two parts: a Markovian jump, which is governed by
the rules of CTMCs and whose jump probabilities are determined by the Markovians
transitions of the I/O-IMC, and an interactive jump, which is governed by the rules of
IOA and whose interactions are determined by the interactive transitions of the I/O-
IMC. The Markovian and interactive jumps do not interfere with each other because we
assume the interactive jumps to be instantaneous (via the well-known maximal progress
assumption [39]). As for CTMCs and IOA, we have that the semantics of I/O-IMCs is
modular: an interactive jump process describing the stochastic behaviour of a composite
I/O-IMC can be decomposed to find the stochastic behaviour of its components.

267

CHAPTER 10. CONCLUSION

In Chapter 9 we used I/O-IMCs to provide a compositional operational semantics
for Arcade models which can be used to describe dependable systems. This is an
example of triple compositionality. Figure 10.1 illustrates the point. Arcade itself is
compositional as we can combine different syntactical elements to create an Arcade

model. In Chapter 9 we have then given an operational I/O-IMC semantics to each of
the syntactical elements of the Arcade model. The I/O-IMC semantics of the complete
Arcademodel then arises naturally from the composition of the I/O-IMCs representing
its constituent parts. However, we can go even deeper than that. In Chapter 6 we have
given a stochastic semantics to I/O-IMCs themselves in terms of sets of interactive jump
processes. This gives us a modular stochastic semantics for Arcade models in terms
of interactive jump processes. In Section 9.3 we have seen that this allows us to reason
about the stochastic properties of partial Arcade models.

Arcade

components
I/O-IMCs

Interactive
jump

processes

BC RU P P̄ X X̄

BC RU P̃ = P‖P̄ X̃ ≈ X‖X̄

[[]] [[]] [[]] [[]]

[[]] [[]]

compose compose

comp.

project

Figure 10.1: Illustration of triple compositionality. Arrows labelled [[]] point from a
model to its semantics.

10.2 Dealing with non-determinism and divergence

IOA are inherently non-deterministic, since a single IOA may has as its semantics a set of
traces and the choice between these traces is non-deterministic. This non-determinism is
inherited by I/O-IMCs in the sense that the outcome of an interactive jump made by an
I/O-IMC may be non-deterministic (since interactive jumps behave like IOA). In Chap-
ter 6 we have used schedulers to characterize the resolution of these non-deterministic
choices.

There are different ways of dealing with this non-determinism. We may put re-
strictions on our models to ensure non-determinism does not arise. This is for instance
achieved for Wu-PIOA [53] by strictly interleaving Markovian and interactive transitions.
Note that if we consider the subset of I/O-IMCs with strictly interleaved Markovian and
interactive transitions it is clear to see that this indeed also avoids non-determinism. An-
other way of avoiding non-determinism is to add additional information to the model

268

10.3. AVENUES FOR FUTURE RESEARCH

which can be used to resolve non-deterministic choices. This approach is used by Cheung
and others to avoid some forms of non-determinism in their work on switched proba-
bilistic IOA [11].

In this thesis we have decided not to avoid non-determinism as it can represent
interesting aspects of a system, such as the fact that there is missing information or the
presence of unpredictable external influences which cannot be accurately modelled [44].
Instead of avoiding non-determinism, we try to understand why non-determinism arises.
We also mitigate the effects of non-determinism by on the one hand offering easy to check
sufficient conditions for a composite I/O-IMC to be deterministic in Chapter 8 and on
the other hand showing that non-deterministic I/O-IMCs can be analysed using standard
CTMDP solution techniques. When applied to the Arcade formalism introduced in
Chapter 9 we see that these sufficient conditions translate to an algorithm with cubic
complexity in the size of the syntax of an Arcade model. This algorithm can be
used to efficiently verify that an Arcade model is deterministic. We have discussed in
Section 9.6 that the ability to efficiently ascertain that certain composite I/O-IMCs are
deterministic could make it possible to analyse much larger composite I/O-IMCs than
can be analysed with traditional analysis techniques that rely on constructing the entire
state space of the composite I/O-IMC.

10.3 Avenues for future research

We now discuss several possible avenues of future research that build on the results
presented in this thesis.

10.3.1 Modular schedulers

We have seen that there is an important caveat to be made with respect to the modularity
results in Chapter 6. In Section 6.4 we have used schedulers to characterize the different
behaviours of an I/O-IMC. We saw that these schedulers resolve non-determinism based
on the history of the process in question. In Section 6.5.2 we were able to combine the
schedulers of two component I/O-IMCs to find schedulers for their composition, but only
when the component schedulers were able to reason about the history of the composite
I/O-IMC and not just the component I/O-IMCs. In essence, the non-deterministic
choices in a component I/O-IMC would be resolved by considering the history of all
components in the composition.

As Giro and D’Argenio have pointed out, such schedulers are in many cases unre-
alistic [20]. A component of a system may be expected to resolve its non-deterministic
choices based only on its own observations (i.e., its own history) not on the observations
of the entire system. It will be interesting to see if we can find, in the context of I/O-
IMCs, a class of schedulers similar to the distributed schedulers of Giro and D’Argenio,
which overcomes this issue (albeit yielding undecidability results). Unfortunately, there
are two major concerns when it comes to distributed schedulers. First, they negate the
modularity of our semantics in a new way, because an I/O-IMC that arises through

269

CHAPTER 10. CONCLUSION

a parallel composition will have a different set of schedulers (and thus a different se-
mantics) than the same I/O-IMC regarded as an “atomic” I/O-IMC. This is caused by
the fact that the schedulers of composed I/O-IMCs are restricted, but the schedulers of
atomic (i.e., not composed) I/O-IMCs are not. The second issue with distributed sched-
ulers is that we still need an appropriate way to resolve the non-determinism between
different components (as opposed to non-deterministic choices within a component).

To deal with the first problem (a composite I/O-IMC P̃ = P‖P̄ allowing fewer
schedulers than a monolithic I/O-IMC P ′ with the same states, actions, and transitions),
we will have to add information to the composite I/O-IMC that conveys how non-
deterministic choices may be resolved. For instance, when composing two I/O-IMCs
P and P̄ where P has output actions a and b and input action c, the composition of
these I/O-IMCs must record the fact that non-deterministic choices between a and b
may only be resolved by looking at when a-, b-, and c-events occurred, not by looking at
the occurrence of any other actions. This information can be recorded by maintaining a
set of sets of actions. For each set of actions in the set we have that a non-deterministic
choice between two actions in the set may only be resolved by considering the time the
actions in that set occurred. Each set of actions then corresponds to the actions that
can be observed by one of the components of the composite I/O-IMC.

The second problem, how to resolve non-determinism between different I/O-IMCs
(i.e., a composite I/O-IMC reaches a state where two actions controlled by different
component I/O-IMCs are enabled), could be solved (in a somewhat unsatisfactory way)
by adding a scheduler to each I/O-IMC which assigns a positive real number to an
enabled action given that the I/O-IMC has followed a particular path. When composing
such I/O-IMCs together the non-determinism between their actions can be resolved by
assigning probabilities proportional to the value selected by our new scheduler. This
approach has some down-sides, however. In particular, there is no natural scale for the
values assigned by the new scheduler, since determining whether such a value is large
or small only makes sense when considering other I/O-IMCs. Additionally, there seems
to be no good intuitive meaning for these values.

10.3.2 Analysis of infinite-state I/O-IMCs

We have seen in Chapter 7 that I/O-IMCs can be analysed using standard CTMDP
analysis techniques and, in the case of deterministic I/O-IMCs, CTMC analysis tech-
niques. We have so far restricted our attention to the analysis of finite I/O-IMCs.
However, there exist several techniques to analyse the transient properties of infinite-
state CTMCs, which means that we can consider analysing infinite-state deterministic
I/O-IMCs. In the literature we find several different approaches to the transient analysis
of infinite-state CTMCs.

• We may simulate the stochastic behaviour of the CTMC up to a certain time-
point (see e.g., Gillespie [19]), by generating trajectories and applying statistical
techniques to approximate its stochastic properties,

• We may use the fact that, for any time-point t and threshold ǫ > 0 we may

270

10.3. AVENUES FOR FUTURE RESEARCH

find a jump-index k such that the number of jumps exhibited by the CTMC in t
time-units is less than k with probability greater than 1− ǫ. In other words,

Pr(Jk > t) > 1− ǫ.

This allows us to restrict our attention to the set of states that can be reached
from an initial state with at most k jumps. Assuming the set of initial states is
finite and the CTMC is finitely branching, this set of states will also be finite.
The jump times of the CTMC are usually over-approximated using a Poisson
process [36, 45, 21] or a birth process [15].

• Finally, we may restrict our attention to infinite-state CTMCs with a particular
structure which allows us to efficiently analyse it (see e.g., Remke [43]).

Let us consider the analysis of a composite I/O-IMC C = (P1‖ . . . ‖Pn)\B, where n is
finite, but one or more of the component I/O-IMCs has countably infinite states. We will
briefly discuss the following problems when trying to analyse infinite-state I/O-IMCs:
how to find a finite representation for infinite-state I/O-IMCs, how to ascertain that
a composite infinite-state I/O-IMC is deterministic and non-divergent, how to derive
a CTMC from a closed infinite-state I/O-IMC, and how to ascertain that a composite
infinite-state I/O-IMC is regular (or more accurately, corresponds to a regular CTMC).

Finite representation. First of all, we will need a finite way of representing our
infinite-state I/O-IMCs. The most common way to do this is to use a symbolic repre-
sentation of each state. For instance, a state may describe the number of people in an
unbounded queue or the number of molecules of a certain chemical in a cell. Each state
then has a finite number of transitions which may depend on the state itself (e.g., a
certain transition may only be present when more than x people are in the queue or the
value of a transition rate may depend on the number of molecules). This allows us to
compute the outgoing transitions for any concrete state. In a similar way we can com-
pute the outgoing transitions of the parallel composition of I/O-IMCs with a symbolic
state space. Now we can explore the reachable states and transitions of the composite
I/O-IMC by “unrolling” transitions as necessary.

Determinism. All the analysis techniques we described above operate on CTMCs,
so they can only be applied to deterministic I/O-IMCs. This means we will need to
determine whether our composite infinite-state I/O-IMC is deterministic. If the set of
actions in our composite I/O-IMC is finite, then Algorithm 1 can be applied without
any problem. If the number of actions is infinite (e.g., the actions have a symbolic
representation as well) then we might still be able to show that the sufficient conditions
for determinism (see Theorem 60) hold by using theorem proving (see e.g., Paulson [41]).
The same considerations apply to the problem of figuring out if the infinite-state I/O-
IMC is non-divergent.

271

CHAPTER 10. CONCLUSION

From I/O-IMC to CTMC. We have seen in Chapter 7 that we can derive a CTMC
from a deterministic I/O-IMC by choosing an arbitrary scheduler. We can find the
outgoing CTMC-transitions of a stable state x of our I/O-IMC by considering all outgo-
ing Markovian transitions of x and then unrolling interactive transitions until we reach
another stable state. However, we must be careful to consider only fair traces (i.e., we
may not “ignore” any set of transitions indefinitely). This can be achieved by deciding
probabilistically which enabled interactive transition to take. It can be shown that the
probability of selecting an unfair trace in this way is zero.

Regularity. We now have a symbolic representation of a CTMC (i.e., we can com-
pute the outgoing transitions for any concrete state of the CTMC). However, all the
approaches we consider can be used only for regular CTMCs (since non-regular CTMCs
may make infinitely many jumps in a finite amount of time). It is then important to
be able to show that our composite deterministic I/O-IMC C, corresponds to a regular
CTMC. Recall from Subsection 3.1.5 that we can show regularity for an infinite-state
CTMC in several ways. First of all, if the exit-rates of the CTMC are bounded from
above then the CTMC is regular. It is clear that if the transition rates in the component
I/O-IMCs are bounded then the transition rates of C and its underlying CTMC are also
bounded. let If we cannot find a bound on the exit rates, we can try to find a Lyapunov
function whose expected rate of change is linear (see Lemma 2 for details). We then
have to find an appropriate Lyapunov function over the states of C which shows the
regularity of the corresponding CTMC. Ideally, we would define this Lyapunov function
compositionally. We would specify Lyapunov functions for all the components of C
and provide a way to derive the Lyapunov function of a parallel composition from the
Lyapunov function of its components. We must then make sure that the component Lya-
punov functions satisfy certain properties which are preserved by parallel composition
and hiding and which ensure regularity for the CTMC corresponding to C.

In the end, if we can show that our composite infinite-state I/O-IMC C is:

• deterministic,

• non-divergent, and

• regular,

then we can apply any of the infinite-state analysis techniques (with the exception of the
structure-based approaches) to its underlying CTMC to compute transient properties
for this I/O-IMC.

10.3.3 Analysis of open I/O-IMCs

Up until now, our analysis of I/O-IMCs has been restricted to closed I/O-IMCs, which
do not interact with their environment. By giving a modular semantics to I/O-IMCs in
Chapter 6 we have the possibility of analysing open I/O-IMCs. Such an open I/O-IMC
represents a system that may still interact with its environment. We have shown in
Section 9.3 that we could study a subset of the components of a composite I/O-IMC

272

10.3. AVENUES FOR FUTURE RESEARCH

which happens to be closed. But can we also study I/O-IMCs that are open (i.e., that
may still be influenced by their environment)?

As an example, let us look at our pump system from subsection 9.1.8, but now
consider the case that we simply do not know the dynamics of one of its valves (which
we will call valve A). We could then attempt to analyse the I/O-IMC semantics of the
pump system without this valve. Obviously, this I/O-IMC would be an open I/O-IMC

with input actions f
(M)
A and uA, where M is the unique failure mode of the valve.

Theorem 35 gives us a formula to recursively compute the probability of reaching
a particular state in an I/O-IMC after a certain number of jumps, where the non-
determinism in the I/O-IMC is resolved through a pair of schedulers (the interactive
jump scheduler γ which controls the interactive jumps of the I/O-IMC and the external
jump scheduler η which controls the likelihood of an external jump). It will be very
interesting to see if we can use this theorem to develop a way to compute bounds for
the transient probabilities of an open I/O-IMC, in the same way as we compute bounds
for the transient probabilities of a CTMDP (or closed I/O-IMC), where we only have to
deal with the interactive jump scheduler.

One of the main challenges will lie in the fact that the external jump scheduler η is
used to select a jump-rate, rather than a jump-probability (as for the interactive jump
scheduler γ), which means that the values that η takes on are in principal unbounded.

For our example, η
(t)
σ represents the rate at which either of the input actions f

(M)
A or

uA occurs at time t and after observing the path σ. In many cases, it may be optimal
(to reach some state x) for these actions to occur as fast as possible, which means the
valve either fails immediately or recovers from failure immediately. This means that we

must choose η
(t)
σ to be as large as possible, but this is problematic since η is unbounded

and jump-rates in a CTMC are assumed to be finite.

273

A
Proofs

A.1 Proofs of Chapter 6

A.1.1 Proof of Proposition 18

Given a stable interactive jump process X with state space S, actions A, and a prob-
ability space (PathsS,A,FS,A,P) on the timed-paths of X, where P is an arbitrary
probability function on FS,A, the following events are measurable.

1. For any jump-index i, states xi, yi ∈ S⊥, and sequence wi ∈ LV , the set of tra-
jectories where the i-th interactive jump starts in xi, ends in yi and has sequence
wi,

{ω | X(Ji)(ω) = (xi, wi, yi)},

is measurable.

2. For any time-points t, s ∈ R≥0 we have, that the set of trajectories where the first
jump after time t occurs before time t+ s,

{ω | J
(t)
1 (ω) ≤ t+ s},

is measurable.

3. For any time-point t ∈ R≥0 and any state x ∈ S⊥ we have, that the set of trajec-
tories where the stochastic process Xpost occupies state x at time t,

{X
(t)
post = x},

is measurable.

275

APPENDIX A. PROOFS

Proof. First, we consider the event that the i-th interactive jump of the interactive jump
process was a jump from a state xi to a state yi with action-sequence wi. We find

{ω | X(Ji)(ω) = (xi, wi, yi)} = C ′
H ,

where

H = {(x0, w0, y0, t1, . . . , ti, xi, wi, yi) |

x0, y0, . . . , xi−1, yi−1 ∈ S⊥, w0, . . . , wi−1 ∈ LV , t1, . . . , ti ∈ R≥0}.

For the second event we find

{ω | J
(t)
1 (ω) ≤ t+ s} =

∞⋃

i=1

C ′
Hi
,

where

Hi = {(x0, . . . , ti−1, xi−1, wi−1, yi−1, ti, xi, wi, yi) |

x0, . . . ∈ S⊥, w0, . . . ∈ LV , ti−1 ≤ t < ti ≤ t+ s}.

We can combine the above two events to find the set of trajectories where Xpost

occupies a state x ∈ S⊥ after the n-th jump, which is the last jump before time t ∈ R≥0.
I.e., we have that the event

{ω | X
(Jn)
post (ω) = x, Jn(ω) ≤ t < Jn+1(ω)}

is measurable. Since no jumps occur between time Jn and time t and since Xpost is a
jump process, we have that the above set is equal to

{ω | X
(t)
post(ω) = x, Jn(ω) ≤ t < Jn+1(ω)}.

We also find

{ω | X
(t)
post(ω) = x, Jn(ω) > t) = ∪n−1

i=0 {ω | X
(t)
post(ω) = x, Ji(ω) ≤ t < Ji+1(ω)}

and then

{ω | X
(t)
post(ω) = x, J∞(ω) > t} = lim

n→∞
{ω | X

(t)
post(ω) = x, Jn(ω) > t}

is also measurable. We then find

{ω | J∞(ω) > t} = ∪x∈S⊥
{ω | X

(t)
post(ω) = x, J∞(ω) > t}.

Recall that we assumed that after J∞ no jumps occur and any trajectory occupies the
state ⊥ indefinitely. We then have

{ω | X
(t)
post(ω) = x} =

{

{ω | X
(t)
post(ω) = x, J∞(ω) > t}, if x 6= ⊥,

{ω | X
(t)
post(ω) = x, J∞(ω) > t} ∪ {ω | J∞(ω) ≤ t}, if x = ⊥.

276

A.1. PROOFS OF CHAPTER 6

A.1.2 Proof of Proposition 19

For any time-point t ∈ R≥0 we have

Pr(X
(t)
post ∈ Ss ∪ {⊥} | J∞ > t) = 1.

Proof. We will show that for any t ∈ R≥0

Pr(X
(t)
post ∈ Ss ∪ {⊥} ∧ J∞ > t) = Pr(J∞ > t).

We have

Pr(X
(t)
post ∈ Ss ∪ {⊥} ∧ J∞ > t)

=

∞∑

i=0

Pr(X
(t)
post ∈ Ss ∪ {⊥} ∧ Ji ≤ t < Ji+1)

=
∞∑

i=0

Pr(X
(Ji)
post ∈ Ss ∪ {⊥} ∧ Ji ≤ t < Ji+1),

since Xpost is necessarily constant in between jumps. Now, from
✞

✝

☎

✆6.4 , we know that,

the probability that X
(Ji)
post occupies a state x is non-zero only if there is any reach-trace

〈w, x〉 to state x from any other state in P . However, the maximal progress assumption
(see Definition 29) gives us that such reach-traces only exist for stable states (including
⊥). We then have

∞∑

i=0

Pr(X
(Ji)
post ∈ Ss ∪ {⊥} ∧ Ji ≤ t < Ji+1)

=

∞∑

i=0

Pr(X
(Ji)
post ∈ S⊥ ∧ Ji ≤ t < Ji+1)

=

∞∑

i=0

Pr(Ji ≤ t < Ji+1)

= Pr(J∞ > t).

Now we have

Pr(X
(t)
post ∈ Ss ∪ {⊥} | J∞ > t) =

Pr(X
(t)
post ∈ Ss ∪ {⊥} ∧ J∞ > t)

Pr(J∞ > t)
= 1.

277

APPENDIX A. PROOFS

A.1.3 Proof of Lemma 16

Given a jump-index n ∈ N0, a state x ∈ S⊥, a finite timed path σ ∈ Paths
(n)
S,A, such that

last(σ) = x, and any time-point t ∈ R≥0, we have

Pr(Jn+1 > t | Z(Jn) = σ) =

{

e
−
∫ t
σt(n)(qx+η

(s)
σ)ds

, if σt(n) < t
1, otherwise.

Recall that σt(n) is the n-th jump-time of σ.

Proof. We first consider time-points t > σt(n). Consider a time-length h > 0. We can
then derive a forward equation following Subsection 3.1.3.

Pr(Jn+1 > t+ h | Z(Jn) = σ)

= Pr(Jn+1 > t+ h, Jn+1 > t | Z(Jn) = σ)

= Pr(J
(t)
1 > t+ h | Z(t) = σ) Pr(Jn+1 > t | Z(Jn) = σ).

Now, for the first probability we find that the probability that no jump occurs is equal
to the probability that no Markovian jump occurs minus the probability that a non-
Markovian (i.e., external) jump occurs. We then find that the above equals

(Pr(J
(t)
1 >t+h ∨X

(J
(t)
1)

pre =x | Z(t)=σ)

− Pr(J
(t)
1 ≤ t+h,X

(J
(t)
1)

pre =x | Z(t)=σ)) Pr(Jn+1 > t | Z(Jn) = σ)

= (Pr(J
(t)
1 >t+h ∨X

(J
(t)
1)

pre =x | X
(t)
post=x)

− Pr(J
(t)
1 ≤ t+h,X

(J
(t)
1)

pre =x | Z(t)=σ)) Pr(Jn+1 > t | Z(Jn) = σ)

= (1− qxh− η(t)σ h) Pr(Jn+1 > t | Z(Jn) = σ) + o(h).

It follows that

d

dt
Pr(Jn+1 > t | Z(Jn) = σ) = −(qx + η(t)σ) Pr(Jn+1 > t | Z(Jn) = σ).

Given the fact that Pr(Jn+1 > tn | Z(Jn) = σ) = 1 we have that

Pr(Jn+1 > t | Z(Jn) = σ) = e
−

∫ t
σt(n)

(qx+η
(s)
σ)ds

is the unique solution to the above differential equation.

For time-points t ≤ σt(n) we have that Jn+1 must be greater than σt(n) and then
Jn+1 must also be greater than t with probability one.

278

A.1. PROOFS OF CHAPTER 6

A.1.4 Proof of Theorem 35

Given a behaviour X (with history process Z) of I/O-IMC P with interactive jump
scheduler γ and external jump scheduler η, we find for states x, y ∈ S⊥ and a sequence
of actions w ∈ LV , that

Pr(Z(J0) ∈ {(x,w, y)}) = αxγ
(0)
ǫ,x (w, y)

✞

✝

☎

✆A.1

and for a measurable set of timed paths of length n ∈ N, Hn ∈ Paths
(n)
S,A, states y, z ∈ S⊥,

and a sequence of actions w ∈ LV , we find that

Pr(Z(Jn+1) ∈ Hn × (t1, t2]× {y} × {w} × {z})

=

∫ t2

t1

∫

σ∈Hn
σt(n)<t

σz(n)=x 6=y

Pr(Z(Jn) ∈ dσ)e−
∫ t
tn

(qx+η
(s)
σ)dsqx,yγ

(t)
σ,y(w, z)

+

∫

σ∈Hn
σt(n)<t
σz(n)=y

Pr(Z(Jn) ∈ dσ)e−
∫ t
tn

(qy+η
(s)
σ)dsη(t)σ γ(t)σ,y(w, z)

 dt.

✞

✝

☎

✆A.2

Recall that σz(n) is the last state of σ, since it has length n.

Proof. For states x, y ∈ S⊥ and a sequence of actions w ∈ LV we have

Pr(Z(J0) ∈ {(x,w, y)})

= Pr(X
(J0)
post = y,W (J0) = w | X

(J0)
pre = x) Pr(X

(J0)
pre = x).

We then substitute
✞

✝

☎

✆6.3 and
✞

✝

☎

✆6.12 to find
✞

✝

☎

✆A.1 .

For a measurable set of timed paths of length n ∈ N, Hn ∈ Paths
(n)
S,A, states y, z ∈ S⊥,

and a sequence of actions w ∈ LV , we find that

Pr(Z(Jn+1) ∈ Hn × (t1, t2]× {y} × {w} × {z})

= Pr(X(Jn+1) = (y,w, z), t1 < Jn+1 ≤ t2, Z
(Jn) ∈ Hn)

=

∫ t2

t1

Pr(X(Jn+1) = (y,w, z), t < Jn+1 ≤ t+ dt, Z(Jn) ∈ Hn),

where we take the Riemann integral. Now we have that the above equals

∫ t2

t1

∫

σ∈Hn
σt(n)<t

Pr(X(Jn+1)=(y,w, z), t<Jn+1≤ t+dt | Z
(Jn)=σ) Pr(Z(Jn) ∈ dσ),

✞

✝

☎

✆A.3

where this time we consider the Lebesgue integral. That is, for a constant value c ∈ [0, 1]
we find the set of paths dσ such that for all σ ∈ dσ we have

Pr(X(Jn+1)=(y,w, z), t<Jn+1≤ t+dt | Z
(Jn)=σ) = c.

279

APPENDIX A. PROOFS

We restrict the integral to paths whose last jump-time lies before time t, since otherwise
the above probability must be zero. We can further split the first factor in

✞

✝

☎

✆A.3 to find
that it equals

∫ t2

t1

∫

σ∈Hn
σt(n)<t

Pr(X(J
(t)
1) = (y,w, z), J

(t)
1 ≤ t+ dt | Z(t) = σ)

Pr(Jn+1 > t | Z(Jn) = σ) Pr(Z(Jn) ∈ dσ),

and again we split the first probability to consider the Markovian and interactive part
of the jump separately to find

∫ t2

t1

∫

σ∈Hn
σt(n)<t

σz(n)=x 6=y

Pr(X
(Jn+1)
post =z,W (Jn+1)=w | X

(Jn+1)
pre =y, Jn+1= t, Z

(Jn)=σ)

· Pr(X
(J

(t)
1)

pre = y, J
(t)
1 ≤ t+ dt | X

(t)
post = x)

· Pr(Jn+1 > t | Z(Jn) = σ) Pr(Z(Jn) ∈ dσ)

+

∫

σ∈Hn
σt(n)<t
σz(n)=y

Pr(X
(Jn+1)
post =z,W (Jn+1)=w | X

(Jn+1)
pre =y, Jn+1= t, Z

(Jn)=σ)

· Pr(X
(J

(t)
1)

pre = y, J
(t)
1 ≤ t+ dt | Z(t) = σ)

·Pr(Jn+1 > t | Z(Jn) = σ) Pr(Z(Jn) ∈ dσ)
)

,

where we applied
✞

✝

☎

✆6.7 to the second probability (i.e., the Markovian jump probability
from x to y). Note that we must distinguish between the case that the last state of σ is
different from y, which means the n + 1-th jump is Markovian (or combined), and the
case that the last state of σ is the same as y, which means that the n + 1-th jump is
an external interactive jump. Now, we substitute

✞

✝

☎

✆6.12 ,
✞

✝

☎

✆6.14 ,
✞

✝

☎

✆6.5 , and
✞

✝

☎

✆6.15 into the
above to find

∫ t2

t1

∫

σ∈Hn
σt(n)<t

σz(n)=x 6=y

γ(t)σ,y,w,zqx,ydte
−

∫ t
σt(n)(qx+η

(s)
σ)ds

Pr(Z(Jn) ∈ dσ)

+

∫

σ∈Hn
σt(n)<t
σz(n)=y

γ(t)σ,y,w,zη
(t)
σ dte

−
∫ t
σt(n)(qy+η

(s)
σ)ds

Pr(Z(Jn) ∈ dσ)

 .

Note that we use the fact that, since we take the Riemann integral to range over time,
the interval dt converges to zero, which means the term o(dt) vanishes in

✞

✝

☎

✆6.5 and
✞

✝

☎

✆6.14 .

We can now rearrange the above to find
✞

✝

☎

✆A.2 .

280

A.1. PROOFS OF CHAPTER 6

A.1.5 Proof of Theorem 36

Given a measurable set Hn−1 of paths of length n − 1, let t1 < t2 be two time-points,
let y, z ∈ S⊥ be two states, and let w ∈ LV be a sequence of visible actions. For the
measurable set of paths

Hn = Hn−1 × (t1, t2]× {y} × {w} × {z}.

we find

Pr(Z(t) ∈ Hn) =

∫

σ∈Hn
σt(n)<t
x=σz(n)

Pr(Z(Jn) ∈ dσ)e
−

∫ t
σt(n)(qx+η

(s)
σ)ds

.
✞

✝

☎

✆A.4

Proof. First of all, we will compute the probability that X follows a path in Hn up to
the n-th jump and then remains in state z perpetually, i.e., Jn+1 = ∞. We have

Pr(Z(Jn) ∈ Hn, Jn+1 = ∞)

= Pr(Z(Jn) ∈ Hn)− Pr(Z(Jn+1) ∈ Hn, Jn+1 ∈ R≥0)

= Pr(Z(Jn) ∈ Hn)− Pr(Z(Jn+1) ∈ Hn × R≥0 × S⊥ × LV × S⊥),

by the law of total probability. We now substitute
✞

✝

☎

✆6.17 to find that

Pr(Z(Jn+1) ∈ Hn × R≥0 × S⊥ × LV × S⊥)

=
∑

y′∈S⊥,y′ 6=z

∑

w′∈LV

∑

z∈S⊥
∫ ∞

0

∫

σ∈Hn
σt(n)<t

Pr(Z(Jn) ∈ dσ)e−
∫ t
tn

(qz+η
(s)
σ)dsqz,y′γ

(t)
σ,y′(w

′, z′)dt

+
∑

w′∈LV

∑

z∈S⊥
∫ ∞

0

∫

σ∈Hn
σt(n)<t

Pr(Z(Jn) ∈ dσ)e−
∫ t
tn

(qz+η
(s)
σ)dsη(t)σ γ(t)σ,z(w

′, z′)dt,

where we used the fact that all paths in Hn end with the state z. Since γ
(t)
σ,y′ is

a probability function we have that
∑

w′∈LV

∑

z′∈S⊥
γ
(t)
σ,y′ = 1. Moreover, we have

∑

y′∈S⊥,y′ 6=z qz,y′ = qz and then it follows that the above equals
∫ ∞

0

∫

σ∈Hn
σt(n)<t

Pr(Z(Jn) ∈ dσ)e
−

∫ t
σt(n)(qz+η

(s)
σ)ds

qzdt

+

∫ ∞

0

∫

σ∈Hn
σt(n)<t

Pr(Z(Jn) ∈ dσ)e
−

∫ t
σt(n)(qz+η

(s)
σ)ds

η(t)σ dt

=

∫ ∞

0

∫

σ∈Hn
σt(n)<t

Pr(Z(Jn) ∈ dσ)e
−

∫ t
σt(n)

(qz+η
(s)
σ)ds

(qz + η(t)σ)dt

=

∫

σ∈Hn

Pr(Z(Jn) ∈ dσ)

∫ ∞

σt(n)
e
−

∫ t
σt(n)(qz+η

(s)
σ)ds

(qz + η(t)σ)dt,

281

APPENDIX A. PROOFS

by Fubini’s theorem. Now we can solve the inner integral to find
∫

σ∈Hn

Pr(Z(Jn) ∈ dσ)

[

−e
−
∫ t
σt(n)

(qz+η
(s)
σ)ds

]t=∞

t=σt(n)

=

∫

σ∈Hn

Pr(Z(Jn) ∈ dσ)(1 − e
−

∫∞
σt(n)

(qz+η
(s)
σ)ds

).

For the exponential distribution we find

e
−

∫∞
σt(n)(qz+η

(s)
σ)ds

=

{

1, if qz > 0,

e
−

∫∞
σt(n) η

(s)
σ ds

. if qz = 0,

and then we find

Pr(Z(Jn) ∈ Hn, Jn+1 = ∞)

=

{
0, if qz > 0,
∫

σ∈Hn
Pr(Z(Jn) ∈ dσ)e

−
∫∞
σt(n)

η
(s)
σ ds

, if qz = 0.

✞

✝

☎

✆A.5

Now we consider the probability that X follows a path in Hn and then does not
jump before time t ∈ R≥0, i.e., the history process Z is in Hn at time t. We have,

Pr(Z(t) ∈ Hn) =

∫

σ∈Hn
σt(n)<t

Pr(Z(Jn) ∈ dσ, Jn+1 > t)

=

∫

σ∈Hn
σt(n)<t

Pr(Z(Jn) ∈ dσ) Pr(Jn+1 > t | Z(Jn) = σ).

Now, we apply
✞

✝

☎

✆6.15 to find
✞

✝

☎

✆A.4 .

A.1.6 Proof of Lemma 17

Given distinct states x, y ∈ S⊥, a path-length n ∈ N0, time-points t < t+ h ∈ R≥0, and
a measurable set of times paths Hn of length n, such that for each path σ in Hn we have
σt(n) < t and σz(n) = x and Pr(Z(t) ∈ Hn) > 0, we have

Pr(X
(Jn+1)
pre = y, Jn+1 ≤ t+ h | Z(t) ∈ Hn) = qx,yh+ o(h).

✞

✝

☎

✆A.6

Proof. We have

Pr(X
(Jn+1)
pre = y, Jn+1 ≤ t+ h | Z(t) ∈ Hn)

=

∫

σ∈Hn

Pr(Z(t)∈dσ | Z(t)∈Hn)
Pr(X

(Jn+1)
pre = y, Jn+1 ≤ t+ h,Z(t) ∈ dσ)

Pr(Z(t) ∈ dσ)

=

∫

σ∈Hn

Pr(Z(t) ∈ dσ | Z(t) ∈ Hn)

·
Pr(Z(Jn+1) ∈ dσ × (t, t+ h]× {y} × LV × S⊥)

Pr(Z(Jn) ∈ dσ)e
−

∫ t
σt(n)

(qx+η
(s)
σ)ds

,
✞

✝

☎

✆A.7

282

A.1. PROOFS OF CHAPTER 6

where we applied
✞

✝

☎

✆6.18 . We now apply
✞

✝

☎

✆A.2 to the numerator, keeping in mind that
for each path in Hn we have that its last state is x which is unequal to y.

Pr(Z(Jn+1) ∈ dσ × (t, t+ h]× {y} × LV × S⊥)

=
∑

w∈LV

∑

z∈S⊥

∫ t+h

t
Pr(Z(Jn) ∈ dσ)qx,yγ

(u)
σ,y (w, z)e

−
∫ u
σt(n)

(qx+η
(s)
σ)ds

du

= Pr(Z(Jn) ∈ dσ)

∫ t+h

t
qx,ye

−
∫ u
σt(n)(qx+η

(s)
σ)ds

∑

w∈LV

∑

z∈S⊥

γ(u)σ,y (w, z)du

= Pr(Z(Jn) ∈ dσ)

∫ t+h

t
qx,ye

−
∫ u
σt(n)(qx+η

(s)
σ)ds

du,

since γ
(u)
σ,y is a probability function and must sum up to one. We now apply the Taylor

expansion around h = 0 to find that the above equals

Pr(Z(Jn) ∈ dσ)qx,ye
−

∫ t
σt(n)(qx+η

(s)
σ)ds

h+ o(h).
✞

✝

☎

✆A.8

Now we can substitute
✞

✝

☎

✆A.8 into
✞

✝

☎

✆A.7 to find

∫

σ∈Hn

Pr(Z(Jn) ∈ dσ)qx,ye
−

∫ t
σt(n)

(qx+η
(s)
σ)ds

h+ o(h)

Pr(Z(Jn) ∈ dσ)e
−

∫ t
σt(n)(qx+η

(s)
σ)ds

Pr(Z(t) ∈ dσ | Z(t) ∈ Hn)

=

∫

σ∈Hn

qx,yhPr(Z
(t) ∈ dσ | Z(t) ∈ Hn) + o(h)

= qx,yh

∫

σ∈Hn

Pr(Z(t) ∈ dσ | Z(t) ∈ Hn) + o(h),

and since
∫

σ∈Hn
Pr(Z(t) ∈ dσ | Z(t) ∈ Hn) equals one we have that

✞

✝

☎

✆A.6 holds.

A.1.7 Proof of Theorem 37

Given an I/O-IMC P , an interactive jump scheduler γ for P , and an external jump
scheduler η for P , we have that the interactive jump process X with probability space
(PathsS,A,FS,A,P), where P is constructed as per

✞

✝

☎

✆6.22 and
✞

✝

☎

✆6.23 , is a behaviour of
P .

Proof. We show that the four requirements for being a behaviour of P hold for X.
Requirement

✞

✝

☎

✆6.3 . For the sake of simplicity, we will use the function f defined

in
✞

✝

☎

✆6.20 instead of the function P. For any state x ∈ S⊥ we have

Pr(X
(0)
pre = x) = Pr(Z(0) ∈ {x} × LV × S⊥)

=
∑

w∈LV

∑

y∈S⊥

f0({(x,w, y)})

= αx

∑

w∈LV

∑

y∈S⊥

γ(0)ǫ,x (w, y).

283

APPENDIX A. PROOFS

Since γ
(0)
ǫ,x is a probability function and must sum up to one, we have

Pr(X
(0)
pre = x) = αx,

i.e.,
✞

✝

☎

✆6.3 holds.

Requirement
✞

✝

☎

✆6.4 It follows directly from the definition of the interactive jump
scheduler that interactive jumps are only assigned positive probability if there is an
appropriate fair reach-trace.

Requirement
✞

✝

☎

✆6.5 Consider distinct states x, y ∈ S⊥ and time-points t < t+ h ∈

R≥0 such that Pr(X
(t)
post = x) > 0. We first look at the case x 6= ⊥. We then have, by

construction, that X
(t)
post = x implies that t is smaller than the explosion time J∞, since

we have assumed that each path occupies the state ⊥ for any time-point greater than or
equal to J∞. We can then apply the law of total probability to fix the number of jumps
before time t to find

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x)

=
∞∑

n=0

Pr(Jn+1 ≤ t+ h,X
(Jn+1)
pre = y, Jn ≤ t < Jn+1 | X

(t)
post = x)

=

∞∑

n=0

Pr(Jn+1 ≤ t+ h,X
(Jn+1)
pre = y | Jn ≤ t < Jn+1,X

(t)
post = x)

Pr(Jn ≤ t < Jn+1 | X
(t)
post = x).

In terms of the history process we find for the first probability that, given some n ∈ N0,

Pr(Jn+1 ≤ t+ h,X
(Jn+1)
pre = y | Jn ≤ t < Jn+1,X

(t)
post = x)

= Pr(Jn+1≤ t+h,X
(Jn+1)
pre =y | Z(t)∈(S⊥×LV ×S⊥×R≥0)

n×S⊥×LV ×{x})

= qx,yh+ o(h),

due to
✞

✝

☎

✆6.24 . It then follows that

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x) = qx,yh+ o(h),

i.e.,
✞

✝

☎

✆6.4 holds for the case x 6= ⊥.

For the case x = ⊥, we have that no jumps will occur (again by construction). This
means that the Markovian jump probability is zero, which is o(h), i.e.,

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = ⊥) = o(h).

This matches the fact that q⊥,y = 0 for all y.

Requirement
✞

✝

☎

✆6.6 Since the probability of a Markovian jump and the probability
of an external jump in a time-interval (t, t + h] are proportionate to h, it follows that

284

A.1. PROOFS OF CHAPTER 6

the probability of two jumps in such a time-interval is proportionate to h2 and then this
probability is o(h).

Requirement
✞

✝

☎

✆6.7 Adding extra history conditions to the Markovian jump prob-

abilities does not affect the applicability of
✞

✝

☎

✆6.24 since it holds for all histories. It
immediately follows that the Markovian jump probabilities are indeed memoryless up
to o(h).

A.1.8 Proof of Proposition 21

Given an interactive jump process X̃ for the I/O-IMC P̃ = P‖P̄ defined on a probabil-
ity space that satisfies Proposition 18, we find that the following probabilities for the
projected interactive jump process X = X̃ ↓P are measurable.

1. For any jump-index i, states xi, yi ∈ S⊥, and sequence wi ∈ LV , the set of tra-
jectories where the i-th interactive jump starts in xi, ends in yi and has sequence
wi,

{ω | X(Ji)(ω) = (xi, wi, yi)},

is measurable.

2. For any time-points t, h ∈ R≥0 we have, that the set of trajectories where the first
jump after time t occurs before time t+ h,

{ω | J
(t)
1 (ω) ≤ t+ h},

is measurable.

3. For any time-point t ∈ R≥0 and any state x ∈ S⊥ we have, that the set of trajec-
tories where the stochastic process Xpost occupies state x at time t,

{ω | X
(t)
post(ω) = x},

is measurable.

Proof. We will prove Proposition 21 by assume the events for X are indeed measurable
and then expressing them in terms of measurable events for X̃ .

We have seen in Proposition 20 that every jump of X corresponds to a jump of X̃ .
We then have, for any jump-index i, states xi, yi ∈ S⊥, and sequence wi ∈ LV , that,

{ω | X(Ji)(ω) = (xi, wi, yi)}

= ∪x̄,ȳ∈S̄⊥
∪ w̃∈L̃V :
w̃↓P=wi

∪∞
j=0{ω | X̃(J̃j)(ω) = (xi‖x̄, w̃, yi‖ȳ), J̃j(ω) = Ji(ω)}.

It then remains to show that the event {J̃j(ω) = Ji(ω)} is measurable. For i = 0 we
have J̃0 = J0 by definition. We now show that the event is measurable for i = 1. First
of all, we note that J1 > J̃0. We consider an index j ∈ N. In order for J̃j to be equal to

285

APPENDIX A. PROOFS

J1 we have that each jump before J̃j−1 does not register as a jump of X and jump J̃j
does. We then have, for j ∈ N0,

{ω | J̃j(ω) = J1(ω)}

= {ω | X
(J̃j)
post (ω) 6= X

(J̃j)
pre (ω) ∨ W̃ (J̃j)(ω)↓P 6= ǫ ∨X

(J̃j)
pre (ω) 6= X

(J̃j−1)
post (ω),

∀1 ≤ k < j · ¬(X
(J̃k)
post (ω) 6= X

(J̃k)
pre (ω) ∨ W̃ (J̃k)(ω)↓P 6= ǫ ∨X

(J̃k)
pre (ω) 6= X

(J̃k−1)
post (ω)},

where we simply applied the definition of a jump-time for X. Note that the above events
are all measurable by enumerating all possible states and action-sequences for X̃.

We now consider the event

{ω | J
(t)
1 (ω) ≤ t+ h},

for some time-points t, t + h ∈ R≥0. Again, we must consider which jump of X̃ corre-
sponds to the first jump of X after time t. We then find that the above equals

∪∞
j=1{ω | J̃

(t)
j (ω) ≤ t+ h, J̃

(t)
j (ω) = J

(t)
1 (ω)}.

Now the question remains whether the events {ω | J̃
(t)
j (ω) ≤ t+ h} are measurable for

j > 1. To do this we must fix the time-points of the preceding jumps. For instance, for
j = 2 we find

{ω | J̃
(t)
2 (ω) ≤ t+ h)} = {ω | J̃

(t1+dt1)
1 (ω) ≤ t+ h, t1 ≤ J̃

(t)
1 (ω) ≤ t1 + dt1}

and similarly we find that this event is also measurable for all j > 2.
Finally, we turn to the event where Xpost occupies a state x ∈ S⊥ at time t ∈ R≥0.

But we simply find

{ω | X
(t)
post = x(ω)} = ∪x̄∈S̄⊥

{ω | X̃
(t)
post(ω) = x‖x̄}.

A.1.9 Proof of Theorem 38

Given a behaviour X̃(t), t ∈ R≥0 of P̃ , its projections onto P and P̄ are compatible
behaviours of P and P̄ respectively.

Proof. Let X and X̄ be the projected behaviours X̃ ↓ P and X̃ ↓ P̄ respectively. We
will first show that X is indeed a behaviour of P by showing that it satisfies all the
requirements of Definition 73.

Requirement
✞

✝

☎

✆6.3 : initial distribution. For the initial distribution of X we find
by the law of total probability that for any state x ∈ S we have,

Pr(X
(0)
pre = x) =

∑

x̄∈S̄

Pr(X̃
(0)
pre = x‖x̄)

=
∑

x̄∈S̄

α̃(x‖x̄).

286

A.1. PROOFS OF CHAPTER 6

From Definition of 52 we know that the initial probabilities of X̃ are derived from the
initial distributions α and ᾱ, such that the above equals

∑

x̄∈S̄

α(x)ᾱ(x̄)

= α(x)
∑

x̄∈S̄

ᾱ(x̄)

= α(x).

Recall that the probability to start in the state ⊥ is always zero.
Requirement

✞

✝

☎

✆6.4 : interactive jumps. We must now show that any interactive
jump in X occurs with probability greater than zero only when there is an appropriate
reach-trace in P . Consider now an interactive jump from state y ∈ S⊥ to state z ∈ S⊥
with sequence w ∈ LV and let this be the i-th jump of X. We then find, by the law of
total probability that,

Pr(X
(Ji)
post = z,W (Ji) = w | X

(Ji)
pre = y)

=
∑

ȳ∈S̄⊥

∑

z̄∈S̄⊥

∑

w̃∈Ã∗:
w̃↓P=w

Pr(X̃
(t)
post = z‖z̄, W̃ (t) = w̃ | X̃

(t)
pre = y‖ȳ)

· Pr(X̃
(t)
pre = y‖ȳ | X

(t)
pre = y)

Recall that, sinceW is the projection of W̃ onto A the probability Pr(W̃ (Ji) = w̃,W (Ji) =
w) is zero unless w̃↓P = w.

We now have that if

Pr(X
(t)
post = z,W (t) = w | X

(t)
pre = y) > 0

then there is some combination ȳ, z̄, w̃ such that

Pr(X̃
(t)
post = z‖z̄, W̃ (t) = w̃ | X̃

(t)
pre = y‖ȳ) > 0.

Because X̃ is a behaviour of P̃ this means (w̃, z‖z̄) ∈ FairRT (IOA(y‖ȳ)). By Proposi-
tion 13, we have that

IOA(y‖ȳ) = IOA(y)‖IOA(ȳ)

and then Corollary 7 gives us that (w, z), the projection of reach-trace (w̃, z‖z̄) onto P
is indeed a fair reach-trace of IOA(y).

Requirement
✞

✝

☎

✆6.5 : Markovian jump. We now show that the probability of a
Markovian jump from a state x ∈ S⊥ to a distinct state y ∈ S⊥ equals qx,yh+ o(h). By
the law of total probability we have

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x)

=
∑

x̄∈S̄⊥

Pr(J
(t)
1 ≤ t+h,X

(J
(t)
1)

pre =y | X̃
(t)
post=x‖x̄) Pr(X̃

(t)
post=x‖x̄ | X

(t)
post=x).

287

APPENDIX A. PROOFS

Since any jump of X implies a jump of X̃ we have that the jump-time J̃
(t)
1 is either

equal to J
(t)
1 or less than J

(t)
1 . However, the case that J̃

(t)
1 < J

(t)
1 ≤ t + h implies that

two distinct jumps occur within the time-interval [t, t+ h], but
✞

✝

☎

✆6.6 tells us this occurs
with probability o(h). We then find that the Markovian jump probability of X equals

∑

x̄∈S̄⊥

∑

ȳ∈S̄⊥

Pr(J̃
(t)
1 ≤ t+h, X̃

(J̃
(t)
1)

pre =y‖ȳ | X̃
(t)
post=x‖x̄)

· Pr(X̃
(t)
post=x‖x̄ | X

(t)
post=x) + o(h).

Since x 6= y we can apply
✞

✝

☎

✆5.3 to find that the first factor equals o(h) if x̄ 6= ȳ. The
above then equals

∑

x̄∈S̄⊥

Pr(J̃
(t)
1 ≤ t+h, X̃

(J̃
(t)
1)

pre =y‖x̄ | X̃
(t)
post=x‖x̄)

· Pr(X̃
(t)
post=x‖x̄ | X

(t)
post=x) + o(h)

= (qx,yh+ o(h))
∑

x̄∈S̄⊥

Pr(X̃
(t)
post=x‖x̄ | X

(t)
post=x) + o(h)

= qx,yh+ o(h).

Requirement
✞

✝

☎

✆6.6 : Two jumps. Whenever X makes two jumps in a time-interval
[t, t + h], with t ∈ R≥0, h > 0, we have that X̃ also makes at least two jumps in this
time-interval. It immediately follows that the probability that X makes two jumps in
[t, t+ h] is o(h).

Requirement
✞

✝

☎

✆6.7 : Local Markov property. For the sake of simplicity, we will
prove the “Markov property up to o(h)” for a single extra condition in the past. The
general property follows in a similar way. For two distinct states x, y ∈ S⊥, a time-point
t ∈ R≥0, a time-length h > 0, as well as a state x1 ∈ S⊥ and a time-point t1 < t we find

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x,X

(t1)
post = x1)

=
∑

x̄∈S̄⊥

∑

x̄1∈S̄⊥

Pr(J̃
(t)
1 ≤ t+ h, X̃

(J̃
(t)
1)

pre = y‖x̄ | X̃
(t)
post = x‖x̄, X̃

(t1)
post = x1‖x̄1)

· Pr(X̄
(t)
post = x̄, X̄

(t1)
post = x̄1 | X

(t)
post = x,X

(t1)
post = x1) + o(h)

= (qx,yh+ o(h))

·
∑

x̄∈S̄⊥

∑

x̄1∈S̄⊥

Pr(X̄
(t)
post = x̄, X̄

(t1)
post = x̄1 | X

(t)
post = x,X

(t1)
post = x1) + o(h)

= qx,yh+ o(h).

The last step is due to the Markov property up to o(h) for X̃ and
✞

✝

☎

✆6.5 . Since we have

already show that
✞

✝

☎

✆6.5 holds for X, i.e.,

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x) = qx,yh+ o(h),

288

A.1. PROOFS OF CHAPTER 6

it follows that

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x,X

(t1)
post = x1)

= Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x) + o(h).

Note that we have not proven equality since, although both probabilities equal qx,yh+
o(h), the two o(h) functions may in fact be different.

We have now shown that X is indeed a behaviour of P . Similarly, we can show
that X̄ is a behaviour of P̄ . It now remains to show that these two behaviours are
compatible.

Requirement
✞

✝

☎

✆6.25 : independence of initial distributions. For a pair of states
x ∈ S⊥, x̄ ∈ S̄⊥ we find, by the definition of parallel composition and the fact that X̃
satisfies

✞

✝

☎

✆6.3 , that

Pr(X
(0)
pre = x, X̄

(0)
pre = x̄)

= Pr(X̃
(0)
pre = x‖x̄)

= αxᾱx̄

= Pr(X
(0)
pre = x) Pr(X̄

(0)
pre = x̄).

The last equality follows from the fact that both X and X̄ satisfy
✞

✝

☎

✆6.3 .

Requirement
✞

✝

☎

✆6.26 : synchronization of traces. This follows directly from the
fact that W and W̄ are projections of W̃ .

Requirement
✞

✝

☎

✆6.27 : synchronization of time-divergence. This follows di-
rectly from the fact that Xpre and X̄pre are projections of X̃pre and the fact that Xpost

and X̄post are projections of X̃post.

Requirement
✞

✝

☎

✆6.28 : Two jumps. This follows directly from the fact that for X̃ ,
it holds that two jumps occur in a time-interval [t, t+h], t ∈ R≥0, h > 0, with probability
o(h).

For the requirements
✞

✝

☎

✆6.29 ,
✞

✝

☎

✆6.30 , and
✞

✝

☎

✆6.31 , that the Markovian jumps of X and
X̄ are independent up to o(h), we will first show that these conditions hold without any
additional history conditions. The general conditions then immediately follow from the
fact that X, X̄, and X̃ are all behaviours of I/O-IMCs and satisfy the “Markov property
up to o(h)” for Markovian jumps,

✞

✝

☎

✆6.7 .

Requirement
✞

✝

☎

✆6.29 : Independence up to o(h) Consider distinct states x, y ∈
S⊥, a state x̄ ∈ S̄⊥, a time-point t ∈ R≥0, and a time-length h > 0. For the Markovian
jump probability of X given that X̄ occupies state x̄ at time t we find

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x, X̄

(t)
post = x̄)

=
∑

ȳ∈S̄⊥

Pr(J̃
(t)
1 ≤ t+ h, X̃

(J̃
(t)
1)

pre = y‖ȳ | X̃
(t)
post = x‖x̄) + o(h)

=
∑

ȳ∈S̄⊥

q̃x‖x̄,y‖ȳh+ o(h).

289

APPENDIX A. PROOFS

Note that the event, that X̃ experiences a jump after time t but before J
(t)
1 , occurs with

probability o(h) because of
✞

✝

☎

✆6.6 . From
✞

✝

☎

✆5.3 we know that

q̃x‖x̄,y‖ȳ =

{
qx,y, if x̄ = ȳ,
0, if x̄ 6= ȳ.

We then find that the above equals

qx,yh+ o(h).

Now, for the Markovian jump probability of X with no condition on the location of X̄
at time t we find (where x̄ is now a free variable)

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x)

=
∑

x̄∈S̄⊥

Pr(J̃
(t)
1 ≤ t+ h, X̃

(J̃
(t)
1)

pre = y‖x̄ | X̃
(t)
post = x‖x̄)

· Pr(X̄
(t)
post = x̄ | X

(t)
post = x) + o(h),

= qx,yh
∑

x̄∈S̄⊥

Pr(X̄
(t)
post = x̄ | X

(t)
post = x) + o(h)

= qx,yh+ o(h).

It then follows that

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x, X̄

(t)
post = x̄)

= Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x) + o(h).

The general case, with additional history conditions follows by applying the Markov
property up to o(h) for X̃ and X.

Requirement
✞

✝

☎

✆6.30 : Independence up to o(h) Symmetric to the proof of
✞

✝

☎

✆6.29 .

Requirement
✞

✝

☎

✆6.31 : Independence up to o(h). Consider distinct states x, y ∈
S⊥, distinct states x̄, ȳ ∈ S̄⊥, time-point t ∈ R≥0, and time-length h > 0. We first look
at the left-hand side of

✞

✝

☎

✆6.31 , i.e.,

Pr(J
(t)
1 ≤ t+h,X

(J
(t)
1)

pre =y, J̄
(t)
1 ≤ t+h, X̄

(J̄
(t)
1)

pre = ȳ | X
(t)
post=x, X̄

(t)
post= x̄).

For the case that J
(t)
1 6= J̄

(t)
1 we have that X̃ experiences two jumps in time-interval

[t, t + h] which occurs with probability o(h). For the case J
(t)
1 = J̄

(t)
1 we have that X̃

makes a Markovian jump to state y‖ȳ. We then have that the above equals

Pr(J̃
(t)
1 ≤ t+ h, X̃

(J̃
(t)
1)

pre = y‖ȳ | X̃
(t)
post = x‖x̄)

= q̃x‖x̄,y‖ȳh+ o(h) = o(h).

290

A.1. PROOFS OF CHAPTER 6

The last equality follows from
✞

✝

☎

✆5.3 . For the right-hand side of
✞

✝

☎

✆6.31 we use the fact

that X and X̄ are behaviours of P respectively P̄ , which means they satisfy
✞

✝

☎

✆6.5 . We
then find

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
post = x)

· Pr(J̄
(t)
1 ≤ t+ h, X̄

(J̄
(t)
1)

pre = ȳ | X̄
(t)
post = x̄) + o(h)

= (qx,yh+ o(h))(q̄x̄,ȳh+ o(h)) + o(h) = o(h).

We find the same for the right-hand side of
✞

✝

☎

✆6.31 and then this shows
✞

✝

☎

✆6.31 holds.

A.1.10 Proof of Theorem 39

Given a stable interactive jump process X̃ for P‖P̄ , if the projections of X̃ onto P and
P̄ are compatible behaviours of P respectively P̄ , then X̃ is a behaviour of P‖P̄ .

Proof. Let X = X̃ ↓P and X̄ = X̃ ↓ P̄ be the projections of X̃ onto P respectively P̄ .
We then have for any time-point t that

X̃
(t)
pre = X

(t)
pre‖X̄

(t)
post,

W̃ (t) ↓AV =W (t),

W̃ (t) ↓ĀV = W̄ (t), and

X̃
(t)
post = X

(t)
post‖X̄

(t)
post.

We will use the above and the fact that X and X̄ are compatible behaviours of P
respectively P̄ to show that X̃ is a behaviour of P‖P̄ .

Requirement
✞

✝

☎

✆6.3 : initial distribution. For states x ∈ S⊥, x̄ ∈ S̄⊥ we have

Pr(X̃
(0)
pre = x‖x̄) = Pr(X

(0)
pre = x, X̄

(0)
pre = x̄)

= Pr(X
(0)
pre = x) Pr(X̄

(0)
pre = x̄),

because of
✞

✝

☎

✆6.25 . The above equals αxᾱx̄ which matches the initial distribution of X̃

as required by
✞

✝

☎

✆6.3 .

Requirement
✞

✝

☎

✆6.4 : interactive jumps. Consider states y, z ∈ S⊥, ȳ, z̄ ∈ S̄⊥, and
a word w̃ ∈ L̃V such that

Pr(X̃
(J̃i)
post = z‖z̄, W̃ (J̃i) = w̃ | X̃

(J̃i)
pre = y‖ȳ) > 0.

We must show that it follows that 〈w̃, z‖z̄〉 is a fair reach-trace of y‖ȳ. Let w = w̃↓AV

and w̄ = w̃↓ĀV . Since the event W̃ (J̃i) = w̃ implies W (J̃i) = w ∧ W̄ (J̃i) = w̄, we have

0 < Pr(X̃
(J̃i)
post = z‖z̄, W̃ (J̃i) = w̃ | X̃

(J̃i)
pre = y‖ȳ)

< Pr(X
(J̃i)
post = z, X̄

(J̃i)
post = z̄,W (J̃i) = w, W̄ (J̃i) = w̄ | X

(J̃i)
pre = y, X̄

(J̃i)
pre = ȳ)

< Pr(X
(J̃i)
post = z,W (J̃i) = w | X

(J̃i)
pre = y, X̄

(J̃i)
pre = ȳ).

291

APPENDIX A. PROOFS

We then also have

0 < Pr(X
(J̃i)
post = z,W (J̃i) = w,X

(J̃i)
pre = y, X̄

(J̃i)
pre = ȳ)

< Pr(X
(J̃i)
post = z,W (J̃i) = w,X

(J̃i)
pre = y),

which implies that

Pr(X
(J̃i)
post = z,W (J̃i) = w | X

(J̃i)
pre = y) > 0.

Similarly we find

Pr(X̄
(J̃i)
post = z̄, W̄ (J̃i) = w̄ | X̄

(J̃i)
pre = ȳ) > 0.

Now, we know that J̃i must be either a jump time of X or of X̄ or both. If J̃i is a jump-
time of X then it follows from

✞

✝

☎

✆6.4 that (w, z) is a fair reach-trace of y. If there is no

jump for X at time J̃i then we have W (Ji) = ǫ and X
(J̃i)
pre = X

(J̃i)
post. From Proposition 19

we have that y is a stable state, since

0 < Pr(X̃
(J̃i)
pre = y‖ȳ) < Pr(X

(J̃i)
pre = y) = Pr(X

(J̃i)
post = y).

It then immediately follows that (w, z) = (ǫ, y) is a fair reach-trace of y. We then have
that for both cases (w, z) is a fair reach-trace of y. Similarly we find that (w̄, z̄) is a
fair-reach trace of ȳ and then from Corollary 9 it follows that (w̃, z‖z̄) is a fair-reach
trace of y‖ȳ.

Requirement
✞

✝

☎

✆6.5 : Markovian jump. We will use the independence of Marko-

vian jumps (and non-jumps) for X and X̄ to show that
✞

✝

☎

✆6.5 holds for X̃ . Consider
states x, y ∈ S⊥, states x̄, ȳ ∈ S̄⊥, a time-point t ∈ R≥0, and a time-length h > 0 such
that x‖x̄ 6= y‖ȳ. There are then three possibilities for the projections of these states
onto P and P̄ . Either, x 6= y, x̄ 6= ȳ, or x 6= y, x̄ = ȳ, or x = y, x̄ 6= ȳ.

For the first case (x 6= y and x̄ 6= ȳ) we have

Pr(J̃
(t)
1 ≤ t+ h, X̃

(J̃
(t)
1)

pre = y‖ȳ | X̃
(t)
pre = x‖x̄)

= Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y, J̄
(t)
1 ≤ t+ h, X̄

(J̄
(t)
1)

pre = ȳ | X
(t)
pre = x, X̄

(t)
pre = x̄).

Since X and X̄ are compatible, their Markovian jump probabilities are “independent
up to o(h)” due to

✞

✝

☎

✆6.31 . The above then equals

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
pre = x)

· Pr(J̄
(t)
1 ≤ t+ h, X̄

(J̄
(t)
1)

pre = ȳ | X̄
(t)
pre = x̄) + o(h)

= (qx,yh+ o(h))(q̄x̄,ȳh+ o(h)) + o(h) = o(h),

which is what
✞

✝

☎

✆6.5 prescribes as q̃x‖x̄,y‖ȳ = 0 whenever x 6= y and x̄ 6= ȳ.
For the case x 6= y, x̄ = ȳ we have a few possibilities for the time of the first jump of

X̄ after time t, i.e., J̄
(t)
1 . It may be that J̄

(t)
1 is greater than J̃

(t)
1 , but still occurs before

292

A.1. PROOFS OF CHAPTER 6

t+ h. But this means that two jumps of X̃ occur within the time-interval [t, t+ h] and

this occurs with probability o(h) due to
✞

✝

☎

✆6.28 . Secondly, it may be that J̄
(t)
1 is greater

than J̃
(t)
1 and also greater than t+ h. Finally, it may be that the jump at J̃

(t)
1 is also a

jump of X̄ (i.e., J̄
(t)
1 = J̃

(t)
1) and then we have X̄

(J̄
(t)
1)

pre = x̄. Then, “up to o(h)” we have

that either J̄
(t)
1 > t+ h or X̄

(J̄
(t)
1)

pre = x̄. We then apply
✞

✝

☎

✆6.32 to find

Pr(J̃
(t)
1 ≤ t+ h, X̃

(J̃
(t)
1)

pre = y‖ȳ | X̃
(t)
pre = x‖x̄)

= Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y, (J̄
(t)
1 > t+ h ∨ X̄

(J̄
(t)
1)

pre = x̄)

| X
(t)
pre = x, X̄

(t)
pre = x̄) + o(h)

= Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = y | X
(t)
pre = x)

Pr(J̄
(t)
1 > t+ h ∨ X̄

(J̄
(t)
1)

pre = x̄ | X̄
(t)
pre = x̄) + o(h)

= (qx,yh+ o(h))(1 − q̄x̄h+ o(h)) + o(h)

= qx,yh+ o(h),

which conforms to the fact that q̃x‖x̄,y‖ȳ = qx,y whenever x 6= y and x̄ = ȳ. The case
x = y, x̄ 6= ȳ proceeds in a symmetric fashion.

Requirement
✞

✝

☎

✆6.6 : Two jumps. This trivially follows from the fact that X and

X̄ are compatible and thus satisfy
✞

✝

☎

✆6.28 .

Requirement
✞

✝

☎

✆6.7 : local Markov property. This follows from the independence

up to o(h) of X and X̄ and the fact that X and X̄ themselves satisfy
✞

✝

☎

✆6.7 .

A.1.11 Proof of Theorem 40

If X̃ has interactive jump scheduler γ̃, then we find for the interactive jump probabilities
of behaviour X, that

Pr(X
(J̃i+1)
post = y,W (J̃i+1) | X

(J̃i+1)
pre = x, J̃i+1 = t, Z̃(J̃i) = σ̃)

=
∑

w̃∈L̃V

w̃↓P=w

∑

ȳ∈S̄⊥

γ̃
(t)
σ̃,x‖x̄(w̃, y‖ȳ),

✞

✝

☎

✆A.9

for a jump-index i ∈ N0, a path σ̃ ∈ FinPaths S̃,Ã, states x, y ∈ S⊥, x̄ ∈ S̄⊥, a sequence

w ∈ LV , and a time-point t ∈ R≥0. Moreover, for the function f :
(

{ǫ} ∪ FinPaths S̃,Ã

)

×

R≥0 × S̃⊥ × LV × S⊥ → [0, 1] defined as

f(σ̃, t, x, w, y) ≡ Pr(X
(J̃i+1)
post = y,W (J̃i+1) | X̃

(J̃i+1)
pre = x‖x̄, J̃i+1 = t, Z̃(J̃i) = σ̃)

we find that

1. f(·, ·, ·, w, y) is a Borel-measurable function for fixed w ∈ LV and y ∈ S⊥,

293

APPENDIX A. PROOFS

2. f(σ̃, t, x̃, ·, ·) is a probability function on LV ×S⊥ for fixed σ̃ ∈ {ǫ} ∪FinPaths S̃,Ã,

t ∈ R≥0, and x̃ ∈ S̃⊥, and

3. For any σ̃ ∈ {ǫ} ∪ FinPaths S̃,Ã, t ∈ R≥0, x ∈ S̃⊥, y ∈ S⊥, and w ∈ LV we have
f(σ, t, x̃, w, y) > 0 implies (w, y) ∈ FairRT (x̃↓P).

We find a similar result for the interactive jump probabilities of X̄ .

Proof. Given a path σ̃ ∈ FinPaths S̃,Ã, states x̃ ∈ S̃⊥, a time-point t ∈ R≥0, a state

y ∈ S⊥, and a sequence w ∈ LV , we find

Pr(X
(J̃i+1)
post = y,W (J̃i+1) = w | X̃

(J̃i+1)
pre = x̃, J̃i+1 = t, Z̃(J̃i) = σ̃)

=
∑

w̃∈L̃V

w̃↓P=w

∑

ȳ∈S̄⊥

Pr(X̃
(J̃i+1)
post =y‖ȳ, W̃ (J̃i+1)= w̃ | X̃

(J̃i+1)
pre = x̃, J̃i+1= t, Z̃

(J̃i)= σ̃).

Now
✞

✝

☎

✆A.9 follows from the definition of the interactive jump scheduler of X̃. It remains
to show that the function f induced by the interactive jump probabilities of X satisfies
the three conditions from Theorem 40. For the first condition we find that the function
f(·, ·, ·, w, y) is indeed Borel-measurable for fixed w ∈ LV and y ∈ S⊥, because γ̃ is Borel-
measurable in the same way. To check whether f(σ̃, t, x̃, ·, ·) is a probability function for
fixed σ̃ ∈ FinPaths S̃,Ã, x̃ ∈ S̃, and t ∈ R≥0 we must simply check whether this function
sums up to one. We have

∑

y∈S⊥

∑

w∈LV

f(σ̃, t, x̃, w, y)

=
∑

y∈S⊥

∑

w∈LV

∑

w̃∈L̃V

w̃↓P=w

∑

ȳ∈S̄⊥

γ̃
(t)
σ̃,x̃(w̃, y‖ȳ)

=
∑

y‖ȳ∈S̃⊥

∑

w̃∈L̃V

γ̃
(t)
σ̃,x̃(w̃, y‖ȳ),

since for every sequence of actions w̃ ∈ L̃V we have that w̃ ↓ P ∈ LV . Now, from the

fact that γ̃
(t)
σ̃,x‖x̄ is a probability function it follows that the above sum indeed equals one.

Finally, we must make sure that f assigns positive probability only to fair reach-traces.
That is, we must show that whenever

f(σ̃, t, x̃, w, y) > 0

we have (w, y) ∈ FairRT (x̃ ↓ P). Now, considering the case y 6= ⊥, the above implies
that

∑

w̃∈L̃V

w̃↓P=w

∑

ȳ∈S̄⊥

γ̃
(t)
σ̃,x̃(w̃, y‖ȳ) > 0

294

A.1. PROOFS OF CHAPTER 6

and then there exists some w̃ ∈ L̃V such that w̃↓P = w and some ȳ ∈ S̄⊥ such that

γ̃
(t)
σ̃,x̃(w̃, y‖ȳ) > 0.

Since γ̃ is an interactive jump scheduler for P̃ we have that (w̃, y‖ȳ) is a fair reach-trace
of IOA(x̃). It then follows from the modularity of fair reach-traces (see Chapter 4) that
the projection of (w̃, y‖ȳ) onto P , (w, y), is a fair reach-trace of IOA(x̃ ↓ P). We find
the same for the case y = ⊥.

A.1.12 Proof of Theorem 41

If X̃ has external jump scheduler η̃, then we find for the external jump probabilities of
X that

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = x | Z̃(t) = σ̃) =

∑

ȳ∈S̄⊥
ȳ 6=x̄

q̄x̄,ȳ + η̃
(t)
σ̃

h+ o(h)

✞

✝

☎

✆A.10

for states x ∈ S⊥, x̄ ∈ S̄⊥, a path σ̃ ∈ FinPaths S̃,Ã with last(σ̃) = x‖x̄ and a time-point
t ∈ R≥0. Moreover, we have that the function f : FinPaths S̃,Ã ×R≥0 → R≥0 defined by

f(σ̃, t) =

∑

ȳ∈S̄⊥
ȳ 6=x̄

q̄x̄,ȳ + η̃
(t)
σ̃ , if last(σ̃) = x‖x̄

0, if last(σ̃) = ⊥.

is Borel-measurable. We find a similar result for the external jump scheduler η̄ of X̄.

Proof. For a timed-path σ̃ ∈ FinPaths S̃,Ã, a state x ∈ S⊥, and time-points t < t+ h ∈
R≥0 we have for the external jump probability of X that

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = x | Z̃(t) = σ̃)

=
∑

ȳ∈S̄⊥

Pr(J̃
(t)
1 ≤ t+ h, X̃

(J̃
(t)
1)

pre = x‖ȳ | Z̃(t) = σ̃) + o(h)

since a jump of X implies a jump of X̃ and the probability that J
(t)
1 is not the first jump

of X̃ after t is o(h) because of
✞

✝

☎

✆6.6 . The jump at time J̃
(t)
1 may be either Markovian

or external depending on whether ȳ is equal to x̄ or not. We then have that the above

295

APPENDIX A. PROOFS

equals

∑

ȳ∈S̄⊥
ȳ 6=x̄

Pr(J̃
(t)
1 ≤ t+ h, X̃

(J̃
(t)
1)

pre = x‖ȳ | Z̃(t) = σ̃)

+ Pr(J̃
(t)
1 ≤ t+ h, X̃

(J̃
(t)
1)

pre = x‖x̄ | Z̃(t) = σ̃) + o(h)

=
∑

ȳ∈S̄⊥
ȳ 6=x̄

Pr(J̃
(t)
1 ≤ t+ h, X̃

(J̃
(t)
1)

pre = x‖ȳ | X̃
(t)
post = x‖x̄)

+ Pr(J̃
(t)
1 ≤ t+ h, X̃

(J̃
(t)
1)

pre = x‖ȳ | Z̃(t) = σ̃) + o(h),

where we applied
✞

✝

☎

✆6.7 . Now we can apply
✞

✝

☎

✆6.5 and the definition of the external jump
scheduler to find that the above equals

∑

ȳ∈S̄⊥
ȳ 6=x̄

q̃x‖x̄,x‖ȳh+ η̃
(t)
σ̃ h+ o(h) =

∑

ȳ∈S̄⊥
ȳ 6=x̄

q̄x̄,ȳ + η̃
(t)
σ̃

h+ o(h),

where we applied
✞

✝

☎

✆5.3 . It remains to show that the function f is Borel-measurable, but
this follows directly from the Borel-measurability of η̃.

A.1.13 Proof of Proposition 18

Let X, X̄ , and X̃ be behaviours of P , P̄ , and P̃ = P‖P̄ respectively and let γ̃ and
η̃ be the interactive jump respectively external jump scheduler of X̃. Given a path
σ ∈ FinPathsS,A, a time-point t ∈ R≥0, states x, y ∈ S⊥, a sequence of actions w ∈ LV ,
and a jump-index i ∈ N0 we find for the interactive jump probabilities of X that

Pr(X
(Ji+1)
post = y,W (Ji+1) = w | X

(Ji+1)
pre = x, Ji+1 = t, Z(Ji) = σ)

=

∞∑

k=i

∑

x̃∈S̃⊥
x̃↓P=x

∫

σ̃∈Hk

∑

ỹ∈S̃⊥
ỹ↓P=y

∑

w̃∈L̃V

w̃↓P=w

γ̃
(t)
σ̃,x̃(w̃, ỹ)

· Pr(J̃k+1=Ji+1, X̃
(J̃k+1)
pre = x̃, Z̃(J̃k) ∈ dσ̃ | X

(Ji+1)
pre =x, Ji+1= t, Z

(Ji)=σ).
✞

✝

☎

✆A.11

Furthermore, given a path σ ∈ FinPathsS,A, a time-point t ∈ R≥0, and a state
x ∈ S⊥, we find for the external jump probabilities of X that

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = x | Z(t) = σ)

=

∑

x̄∈S̄

∫

σ̃∈H
last(σ̃)=x‖x̄

∑

ȳ∈S̄
ȳ 6=x̄

q̄x̄,ȳ + η̃
(t)
σ̃

Pr(Z̃(t) ∈ dσ̃ | Z(t)=σ)

h+ o(h).

✞

✝

☎

✆A.12

296

A.1. PROOFS OF CHAPTER 6

Proof. We start by expressing the jump probability of P from Equation
✞

✝

☎

✆A.11 in terms
of the jumps of P̃ . This leads to

Pr(X
(Ji+1)
post = y,W (Ji+1) = w | X

(Ji+1)
pre = x, Ji+1 = t, Z(Ji) = σ)

=

∞∑

k=i

∑

x̃∈S̃⊥
x̃↓P=x

∫

σ̃∈Hk

Pr(X
(Ji+1)
post = y,W (Ji+1) = w, J̃k+1 = Ji+1, X̃

(J̃k+1)
pre = x̃, Z̃(J̃k) ∈ dσ̃

| X
(Ji+1)
pre = x, Ji+1 = t, Z(Ji) = σ),

where Hk ⊂ Paths
(k)

S̃,Ã
is the set of all timed paths P̃ of length k whose projection onto

P is in the set of paths dσ. Now that we have fixed the history of X̃ we can express
the interactive jump probability of X in terms of the “scheduler” from Theorem 40. We
have that the above equals

∞∑

k=i

∑

x̃∈S̃⊥
x̃↓P=x

∫

σ̃∈Hk

Pr(X
(Ji+1)
post =y,W (Ji+1)=w | X̃

(J̃k+1)
pre = x̃, J̃k+1= t, Z̃

(J̃k)= σ̃)

· Pr(J̃k+1=Ji+1, X̃
(J̃k+1)
pre = x̃, Z̃(J̃k) ∈ dσ̃ | X

(Ji+1)
pre =x, Ji+1= t, Z

(Ji)=σ)

=
∞∑

k=i

∑

x̃∈S̃⊥
x̃↓P=x

∫

σ̃∈Hk

∑

ỹ∈S̃⊥
ỹ↓P=y

∑

w̃∈L̃V

w̃↓P=w

γ̃
(t)
σ̃,x̃(w̃, ỹ)

· Pr(J̃k+1=Ji+1, X̃
(J̃k+1)
pre = x̃, Z̃(J̃k) ∈ dσ̃ | X

(Ji+1)
pre =x, Ji+1= t, Z

(Ji)=σ).

Similarly, we find for the external jump probabilities of X that, given a path σ ∈
FinPathsS,A, a time-point t ∈ R≥0, a time length h > 0, and a state x ∈ S⊥, we have

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre = x | Z(t) = σ)

=
∑

x̃∈S̃⊥
x̃↓P=x

∫

σ̃∈H
last(σ̃)=x̃

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre =x, X̃
(t)
post= x̃, Z̃

(t) ∈ dσ̃ | Z(t)=σ),

where H ⊂ FinPaths S̃,Ã is the set of all timed paths of P̃ whose projection onto P is
in dσ. For the case x̃ = ⊥ we have that the probability of any further jump is zero by
definition. We then have that x̃ must be the parallel composition of x with some state

297

APPENDIX A. PROOFS

x̄ and we find that the above equals

∑

x̄∈S̄

∫

σ̃∈H
last(σ̃)=x‖x̄

Pr(J
(t)
1 ≤ t+ h,X

(J
(t)
1)

pre =x, | Z̃(t)= σ̃) Pr(Z̃(t) ∈ dσ̃ | Z(t)=σ)

=

∑

x̄∈S̄

∫

σ̃∈H
last(σ̃)=x‖x̄

∑

ȳ∈S̄
ȳ 6=x̄

q̄x̄,ȳ + η̃
(t)
σ̃

Pr(Z̃(t) ∈ dσ̃ | Z(t)=σ)

h+ o(h).

A.1.14 Proof of Proposition 23

Given a behaviour X of P , let X̄ = X\B. For any time-point t ∈ R≥0, we then have

Pr(J̄
(t)
1 6= J

(t)
1) = 0.

Proof. First, we note that X̄pre = Xpre, X̄post = Xpost, and W̄ =W ↓(AV \B). It follows
that whenever there is a jump of X̄ , there is also a jump for X. And whenever there is

a jump for X there is a jump for X̄ , except if X
(J

(t)
1)

pre = X
(t)
post, X

(J
(t)
1)

post = X
(J

(t)
1)

pre , and the
sequence of actions for this jump contains only actions from B, since then W ↓(AV \B)
will equal ǫ while W itself does not. Assume then that

Pr(J̄
(t)
1 6= J

(t)
1) > 0.

It follows that there exists a state x and a sequence of actions w ∈ B∗ such that

Pr(J̄
(t)
1 6= J

(t)
1 ,X(J

(t)
1) = (x,w, x),X

(t)
post = x) > 0.

Because of requirement
✞

✝

☎

✆6.4 we have that (w, x) must be a fair reach-trace of x. Since
w contains no input actions, this means that the state x is unstable. But then we find,
due to Proposition 19 that

Pr(X
(t)
post = x) = 0.

This is a contradiction.

A.1.15 Proof of Theorem 42

Given an I/O-IMC P , a subset of its output actions B, and a behaviour X of P , we
have that X\B is a behaviour of P \B.

Proof. Let X̄ be the interactive jump process X\B. We have X̄pre = Xpre and X̄post =

Xpost and thus it trivially follows that requirements
✞

✝

☎

✆6.3 ,
✞

✝

☎

✆6.5 ,
✞

✝

☎

✆6.6 ,
✞

✝

☎

✆6.7 hold for X̄
as they do not involve the stochastic process W̄ which differs from W . It then remains

298

A.1. PROOFS OF CHAPTER 6

to show that X̄ satisfies
✞

✝

☎

✆6.4 . Consider a jump-index i ∈ N0, states y, z ∈ S⊥, and a

sequence of actions w̄ ∈ L̄V such that Pr(X̄
(J̄i)
pre = y) > 0. Now assume that

Pr(X̄
(J̄i)
post = z, W̄ (J̄i) = w̄ | X̄

(J̄i)
pre = y) > 0.

Since the jumps of X̄ correspond to the jumps of X with probability one we have

∑

w∈LV :
w\B=w̄

Pr(X
(Ji)
post = z,W (Ji) = w | X

(Ji)
pre = y) > 0

and then there exists a sequence w ∈ LV with w\B = w̄ such that

Pr(X
(Ji)
post = z,W (Ji) = w | X

(Ji)
pre = y) > 0.

It follows that (w, z) is a fair reach-trace of y in the I/O-IMC P . From Proposition 7 it
then follows that (w̄, z) if a fair reach-trace of y in the I/O-IMC P \B.

A.1.16 Proof of Theorem 43

Given an I/O-IMC P , a subset of its output actions B, and a behaviour X̄ of P \B, we
have that there exists a behaviour X of P such that X̄ = X\B.

Proof. Given that the behaviour X̄ has probability space (PathsS,Ā,FS,Ā, P̄), we must
construct a probability space (PathsS,A,FS,A,P) such that the associated interactive
jump process is a behaviour of P . We choose the sets of timed-paths PathsS,Ā respec-
tively PathsS,A and the σ-algebras FS,Ā respectively FS,Ā as in Subsection 6.2. It then
remains to construct the probability function P. We will do this by providing a function
f from FS,A to FS,Ā which will allow us to derive the probability function P from P̄ .

First, we associate the interactive jumps of X̄ with interactive jumps in P . Let
g : S⊥×L̄V ×S⊥ → LV be any partial function which satisfies the following requirements.
For all states x, y ∈ S⊥ and sequence w̄ ∈ L̄V we have that if (w̄, y) is a fair reach-trace
of x in P \B then for the sequence w = g(x, w̄, y) we have w̄ = w\B and (w, y) is a
fair-reach trace of x in P . On the other hand if (w̄, y) is not a fair reach-trace of x in
P\B, then g(x, w̄, y) is undefined. Proposition 7 ensures that we can always find such a
function g, since for every fair reach-trace in P\B there exists a corresponding fair-reach
trace for P .

Now, we will define our function f from FS,A to FS,Ā as follows. Fixing two equal-
length, possibly infinite, sequences of states in S⊥, x0, x1, . . . and y0, y1, . . . and a se-
quence of action-sequences w0, w1, . . . in LV also of the same length, let H equal the set
of timed-paths

{(x0, w0, y0, t1, x1, w1, y1, . . .) | t1 ∈ [s1, s
′
1], t2 ∈ [s2, s

′
2]},

for some sequence of time-bounds s1, s
′
1, s2, s

′
2 ∈ R≥0. We then define

f(H) = H ′,

299

APPENDIX A. PROOFS

where

H ′ =

{(x0, w0\B, y0, t1, x1, w1\B, y1, . . .) | t1 ∈ [s1, s
′
1], t2 ∈ [s2, s

′
2]},

if g(x0, w0\B, y0) = w0, g(x1, w1\B, y1) = w1, . . .
∅, otherwise.

Furthermore we have that f is commutative with respect to countable union. That is,
for measurable sets H1,H2, . . . ∈ FS,A we have

f(H1 ∪H2 ∪ . . .) = f(H1) ∪ f(H2) ∪

It can be verified that this completely defines the function f .
Now we are ready to define P. We have

P(H) = P̄(f(H)).

Since f is commutative with respect to countable union and since P̄ is a probability
function we find that P is also a probability function.

It is clear that the stochastic process X with probability space (PathsS,A,FS,A,P)
as defined above is a stable interactive jump process of P . It then remains to show that
it is also a behaviour of P . Since we have Xpre = X̄pre and Xpost = X̄post and the jumps

of X and X̄ coincide with probability one, it follows that requirements
✞

✝

☎

✆6.3 ,
✞

✝

☎

✆6.5 ,
✞

✝

☎

✆6.6 ,

and
✞

✝

☎

✆6.7 hold for X. It remains to show that
✞

✝

☎

✆6.4 holds.

Pr(X
(Ji)
post = y,W (Ji) = w | X

(Ji)
pre = x) > 0

implies (w, y) ∈ FairRT (x).

A.2 Proofs of Chapter 7

A.2.1 Proof of Proposition 25

Given a behaviour X of closed I/O-IMC P we have that if X is non-divergent then X
is closed.

Proof. We prove Proposition 25 by contradiction. We then assume that X is non-
divergent, but not closed. This means there exists some jump-index i ∈ N0 and state

x ∈ S⊥ such that Pr(X
(Ji)
post = x) > 0 and Pr(X

(Ji+1)
pre = x | X

(Ji)
post = x) > 0. Now, due

to Proposition 19 we know that the state x must be stable. This means that x has no
outgoing output or internal transitions. Since P is closed and has no input action, x
obviously also has no outgoing input transitions. We then have that x has no outgoing
interactive transitions at all and FairRT (x) = {(ǫ, x), (ǫ,⊥)}. Moreover, since x has no
outgoing interactive transitions we have that x cannot interactively reach any divergent
states.

Let’s consider the jump at time Ji+1. We have Pr(X
(Ji+1)
pre = x) > 0 and then we

must find some w ∈ LV and y ∈ S⊥ such that

Pr(X
(Ji+1)
post = y,W (Ji+1) = w | X

(Ji+1)
pre = x) > 0.

300

A.2. PROOFS OF CHAPTER 7

Since, X is non-divergent and we cannot reach a divergent state from x we have y 6= ⊥.
However, because of

✞

✝

☎

✆6.4 (w, y) must be a fair-reach trace of x. The only possibility is
then that w = ǫ and y = x, but this means that, with probability greater than zero, no
jump occurred at Ji+1, which is a contradiction with the definition of jump-times.

A.2.2 Proof of Theorem 45

Given a closed I/O-IMC P = (S,A,RI , RM , α) and a weak bisimulation relation E on S,
we find for any equivalence class D ∈ S/E , any time-point t ∈ R≥0, and any jump-index
i ∈ N, that

Pr(Ki+1 ≤ t | X
(Ki)
post ∈ D) = 1− e−q̄Dt.

Proof. As usual, we will find this cumulative probability by first determining its deriva-
tive

d

dt
Pr(Ki+1 ≤ t | X

(Ki)
post ∈ D) = lim

h↓0
Pr(t < Ki+1 ≤ t+ h | X

(Ki)
post ∈ D)/h.

We find

Pr(t < Ki+1 ≤ t+ h | X
(Ki)
post ∈ D)

=
∑

x∈D

Pr(t < Ki+1 ≤ t+ h,X
(t)
post = x | X

(Ki)
post ∈ D),

since the absence of an ǫ-jump between Ki and t must mean that Xpost still occupies
a state in D at time t. It’s clear that there must occur at least one jump between
equivalence classes between time-points t and t+ h. The first of these jumps occurs at
time Ki+1 (by definition) and will start in state x. Recall from our definition of the

equivalence-jump-times K, that for this jump we have either X
(Ki+1)
pre /∈ D (a Markovian

jump to a state outside D), or W (Ki+1) 6= ǫ (an interactive jump which includes visible

actions), or X
(Ki+1)
post /∈ D (an interactive jump that ends up in a different equivalence.

Now we know that x is stable since the equivalence class D is stable. This means that
an interactive jump (cases 2 and 3) can only occur if we first see a Markovian jump to
an unstable state y. But this state y cannot lie in equivalence class D (which is stable).

In the end this means that we will always have X
(Ki+1)
pre /∈ D, for the i+ 1-th jump. We

301

APPENDIX A. PROOFS

can then rewrite the above as
∑

x∈D

Pr(Ki+1 ≤ t+ h | X
(t)
post = x)

Pr(X
(Ki)
post = x | Ki+1 > t,X

(Ki)
post ∈ D) Pr(Ki+1 > t | X

(Ki)
post ∈ D)

=
∑

x∈D

∑

y/∈D

Pr(X
(Ki+1)
pre = y,Ki+1 ≤ t+ h | X

(t)
post = x)

Pr(X
(Ki)
post = x | Ki+1 > t,X

(Ki)
post ∈ D) Pr(Ki+1 > t | X

(Ki)
post ∈ D)

=
∑

x∈D

∑

y/∈D

(qxyh+ o(h))

Pr(X
(Ki)
post = x | Ki+1 > t,X

(Ki)
post ∈ D) Pr(Ki+1 > t | X

(Ki)
post ∈ D)

since a jump between equivalence classes implies a jump between states and the proba-
bility of more than one jump between states is o(h). Now we consider the fact that all
states in D have the same outgoing Markovian transitions (up to E) and find:

∑

D′ 6=D

(q̄D,D′h+ o(h))

∑

x∈D

Pr(X
(Ki)
post = x | Ki+1 > t,X

(Ki)
post ∈ D) Pr(Ki+1 > t | X

(Ki)
post ∈ D)

=(q̄Dh+ o(h)) Pr(Ki+1 > t | X
(Ki)
post ∈ D)

=(q̄Dh+ o(h))(1 − Pr(Ki+1 ≤ t | X
(Ki)
post ∈ D)).

For the derivative of the distribution of Ki+1 we then have

d

dt
Pr(Ki+1 ≤ t | X

(Ki)
post ∈ D) = q̄D − q̄D Pr(Ki+1 ≤ t | X

(Ki)
post ∈ D).

We can solve this differential equation to find

Pr(Ki+1 ≤ t | X
(Ki)
post ∈ D) = 1− e−q̄Dt,

where we use the fact that this probability must be zero when t equals zero.
Note that our proof is considerably simpler than the same proof for CTMCs presented

in Section 3.2, because we do not consider the possibility of infinitely many jumps
occurring in finite time. This is justified by the fact that we only consider finite I/O-
IMCs.

A.2.3 Proof of Theorem 47

For every interactive jump scheduler γ of P there exists an interactive jump scheduler γ̄
for P̄ such that, for the induced behavioursX respectively X̄ we have, for any time-point
t, that

Pr(X
(t)
post ∈ D ∩ S) = Pr(X̄

(t)
post ∈ D ∩ S̄).

302

A.2. PROOFS OF CHAPTER 7

Proof. We will consider the history processes Z and Z̄ of X and X̄ respectively. We will
prove Theorem 47 by proving that, for an index n ∈ N, a set of equivalence class paths
of length n of the form

Hn = D1 × {w1} ×D′
1 × (0,∞)×D2 × {w2} ×D′

2 × (0,∞), . . .
✞

✝

☎

✆A.13

(i.e., a set of paths that jumps from one equivalence class to another and which does
not restrict on the jump times), equivalence classes D and D′ of E , and a word w ∈ LV ,
we have

Pr(Z(t) ∈ Hn×(0,∞)×D×{w}×D′) = Pr(Z̄(t) ∈ Hn×(0,∞)×D×{w}×D′).
✞

✝

☎

✆A.14

We will prove this by induction over the number of jumps n.

We will need one more piece of notation for this proof. For a given finite path σ (of
either P or P̄) we will denote the expansion of σ with respect to the equivalence relation
E as [σ]E , i.e. for a path

σ = x1, w1, y1, t1, x2, w2, y2, t2, . . .

we have

[σ]E = D1 × {w1} ×D′
1 × (0,∞)×D2 × {w2} ×D′

2 × (0,∞), . . . ,

where x1 ∈ D1, y1 ∈ D′
1 and so forth.

Before we begin with the induction, we must first choose how to define the interactive
jump scheduler γ̄ for P̄ . To make matters a bit easier, we order all states in S̄ in an
arbitrary way and we will often refer to the first state in a subset of S̄ according to this
order. Now, given a path σ̄, with n ∈ N jumps between equivalence classes, that ends in
equivalence class D1, a state ȳ ∈ D2 ∩ S̄, a word w ∈ LV , and the first state z̄ ∈ D3 ∩ S̄
such that there is an interactive path from ȳ to z̄ with word w, we define the interactive
scheduler γ̄ as follows

γ̄
(t)
σ̄,ȳ(w, z̄)=

∑

x∈D1∩S

∑

y∈D2∩S

∑

z∈D3∩S

∫

σ∈[σ̄]E
last(σ)=x

Pr(Z(t)∈dσ |Z(t)∈ [σ̄]E)
qx,y
qx,D2

γ(t)σ,y(w, z).

✞

✝

☎

✆A.15

The above equation represents the probability that P makes an interactive jump with
word w to a state inD3 under the condition that we first follow a path which is equivalent
to σ̄ up to the equivalence classes of E . For all other states z̄′ in D3 ∩ S̄ we choose

γ̄
(t)
σ̄,ȳ(w, z̄

′) = 0.

For the special case of t = 0 we choose

γ̄
(0)
ǫ,ȳ (w, z̄) =

∑

y∈D∩S

∑

z∈D3∩S

α(y)

α(D ∩ S)
γ(0)ǫ,y (w, z)

303

APPENDIX A. PROOFS

for the first z̄ in D3 ∩ S such that there is an interactive path from ȳ to z̄ with word w
and zero for other states in D3 ∩ S.

It’s important that we show that γ̄ is in fact an interactive jump scheduler of P ,
i.e., it must satisfy the conditions in Definition 75. For fixed w and z̄ we must show

that γ̄
(·)
·,· is a Borel-measurable function. We will leave the question whether this is the

case for our definition of γ̄ open, but it is clear that we can choose (in the usual way)

a γ̄ which is Borel-measurable and arbitrarily close to
✞

✝

☎

✆A.15 . The second condition of

Definition 75 states that γ̄
(t)
σ̄,ȳ must be a probability function (i.e., must sum up to one).

For fixed t, σ̄ ending in D1 ∩ S̄, and ȳ ∈ D2 ∩ S̄, we have

∑

w∈LV

∑

z̄∈S̄

γ̄
(t)
σ̄,ȳ(w, z̄)

=
∑

w∈LV

∑

D3∈S∪S̄/E

∑

z̄∈D3∩S̄

γ̄
(t)
σ̄,ȳ(w, z̄).

For the equivalence class D3 we must distinguish two cases, either there is an interactive
path from ȳ to a state in D3 with word w or not. For the former case we will find a
state z̄ ∈ D3 ∩ S̄ such that it is the first state with such a path, for the latter case we

of course won’t find such a state and then
∑

z̄∈D3∩S̄
γ̄
(t)
σ̄,ȳ(w, z̄) = 0. Let mathcalDȳ,w

denote the set of equivalence classes such that there is an interactive path from ȳ to the
equivalence class with word w. We now have that the above equals

∑

w∈LV

∑

D3∈Dȳ,w

∑

x∈D1∩S

∑

y∈D2∩S

∑

z∈D3∩S

∫

σ∈[σ̄]E
last(σ)=x

Pr(Z(t)∈dσ |Z(t)∈ [σ̄]E)
qx,y
qx,D2

γ(t)σ,y(w, z)

=
∑

x∈D1∩S

∑

y∈D2∩S

∫

σ∈[σ̄]E
last(σ)=x

Pr(Z(t)∈dσ |Z(t)∈ [σ̄]E)
qx,y
qx,D2

∑

w∈LV

∑

D3∈Dȳ,w

∑

z∈D3∩S

γ(t)σ,y(w, z),

For a state z ∈ D′ /∈ Dȳ,w we have that there is no interactive path from ȳ toD′ with word
w. Now, since y and ȳ are equivalent according to E (they are both in D2) we have that y
also does not have an interactive path to equivalence classD′ with word w. It follows that

γ
(t)
σ,y(w, z′) = 0 and

∑

w∈LV

∑

D3∈Dȳ,w

∑

z∈D3∩S
γ
(t)
σ,y(w, z) =

∑

w∈LV

∑

z∈S γ
(t)
σ,y(w, z). We

then find that the above equals

∑

x∈D1∩S

∑

y∈D2∩S

∫

σ∈[σ̄]E
last(σ)=x

Pr(Z(t)∈dσ |Z(t)∈ [σ̄]E)
qx,y
qx,D2

,

since γ
(t)
σ,y must be a probability function itself. We can further simplify to

∑

x∈D1∩S

∫

σ∈[σ̄]E
last(σ)=x

Pr(Z(t)∈dσ |Z(t)∈ [σ̄]E) = 1.

304

A.2. PROOFS OF CHAPTER 7

For the special case t = 0 we have, given a fixed state ȳ ∈ D,

∑

w∈LV

∑

z̄∈S̄

γ̄
(0)
ǫ,ȳ (w, z̄) =

∑

w∈LV

∑

D3∈S∪S̄/E

∑

y∈D∩S

∑

z∈D3∩S

α(y)

α(D ∩ S)
γ(0)ǫ,y (w, z)

=
∑

y∈D∩S

α(y)

α(D ∩ S)
= 1.

The final condition of Definition 75 states that the scheduler probabilities γ̄
t)
σ,ȳ(w, z̄) may

be non-zero only if there is a path from ȳ to z̄ with word w, but this follows directly
from our definition of γ̄.

We can now proceed to show by induction on n that
✞

✝

☎

✆A.14 holds. We first consider
the case n = 0, i.e.,

Pr(Z(t) ∈ D ∩ S × {w} ×D′ ∩ S) = Pr(Z̄(t) ∈ D ∩ S̄ × {w} ×D′ ∩ S̄).

For t = 0 we have

Pr(Z̄(t) ∈ D ∩ S̄ × {w} ×D′ ∩ S̄) =
∑

ȳ∈D∩S̄

∑

z̄∈D′∩S̄

ᾱ(ȳ)γ̄
(0)
ǫ,ȳ (w, z̄)

=
∑

ȳ∈D∩S̄

ᾱ(ȳ)γ̄
(0)
ǫ,ȳ (w, z̄),

where z̄ again is the first appropriate state in D′ ∩ S̄ (since we find an interactive jump
probability of zero for all other states in D′). We now apply our definition of γ̄ to find

∑

ȳ∈D∩S̄

ᾱ(ȳ)
∑

y∈D∩S

∑

z∈D3∩S

α(y)

α(D ∩ S)
γ̄(0)ǫ,y (w, z)

= ᾱ(D ∩ S̄)
∑

y∈D∩S

∑

z∈D′∩S

α(y)

α(D ∩ S)
γ̄(0)ǫ,y (w, z)

=
∑

y∈D∩S

∑

z∈D′∩S

α(y)γ̄(0)ǫ,y (w, z),

because E relates the initial distributions of P and P̄ . The above obviously equals
Pr(Z(0) ∈ D ∩ S × {w} ×D′ ∩ S), which shows that

Pr(Z(0) ∈ D ∩ S × {w} ×D′ ∩ S) = Pr(Z̄(0) ∈ D ∩ S̄ × {w} ×D′ ∩ S̄).

We now consider the case n = 0 and t > 0. We have

Pr(Z(t) ∈ D ∩ S × {w} ×D′ ∩ S)

= Pr(Z(0) ∈ D ∩ S × {w} ×D′ ∩ S ∧K1 > t)

= Pr(K1 > t | Z(0) ∈ D ∩ S × {w} ×D′ ∩ S) Pr(Z(0) ∈ D ∩ S × {w} ×D′ ∩ S).
✞

✝

☎

✆A.16

305

APPENDIX A. PROOFS

For the first factor we find, by applying Theorem 45 that

Pr(K1 > t | Z(0) ∈ D ∩ S × {w} ×D′ ∩ S)

= 1− e−qD′ t = Pr(K̄1 > t | Z̄(0) ∈ D ∩ S̄ × {w} ×D′ ∩ S̄).

The second factor of
✞

✝

☎

✆A.16 is the case n = 0, t = 0, for which we already know that we
find the same probability for P as for P̄ .

Now we consider the case n > 0 and use as our induction hypothesis that for the set
of any set of paths over equivalence classes with n − 1 equivalence-class jumps of the
form

✞

✝

☎

✆A.13 (denoted Hn−1), equivalence classes D and D′ of E , and a word w ∈ LV , we
have

Pr(Z(t) ∈ Hn−1 × (0,∞)×D ∩ S × w ×D′ ∩ S)

= Pr(Z̄(t) ∈ Hn−1 × (0,∞)×D ∩ S̄ × w ×D′ ∩ S̄).

In the following, the states x, y, z will be states in S, whereas the states x̄, ȳ, z̄ will
be states in S̄. For the n-th jump probability of P̄ we now find

Pr(Z̄(t) ∈ Hn × (0,∞) ×D ∩ S̄ × w ×D′ ∩ S̄)

=

∫ ∞

0

∫

σ̄∈Hn
σ̄t(n)<t

σ̄z(n)=x̄ /∈D

Pr(Z̄(s) ∈ dσ̄)
∑

ȳ∈D

q̄x̄,ȳ
∑

z̄∈D′

γ̄
(s)
σ̄,ȳ(w, z̄)e

−q̄D(t−s)ds

=

∫ ∞

0

∫

σ̄∈Hn
σ̄t(n)<t

σ̄z(n)=x̄ /∈D

Pr(Z̄(s) ∈ dσ̄)
∑

ȳ∈D

q̄x̄,ȳ γ̄
(s)
σ̄,ȳ(w, z̄)e

−q̄D(t−s)ds,

where z̄ is again our first state in D′ such that there is an interactive path from ȳ to z̄
with word w according to our arbitrary ordering of the states in S̄. Since Hn is of the
form

✞

✝

☎

✆A.13 we have that [σ̄]E = Hn. We now fill in our definition of γ̄ to find
∫ ∞

0

∑

D′′ 6=D

∫

σ̄∈[σ̄]E
σ̄t(n)<t

σ̄z(n)=x̄∈D′′

Pr(Z̄(s) ∈ dσ̄)
∑

ȳ∈D

q̄x̄,ȳ

∑

x∈D′′

∑

y∈D

∑

z∈D′

∫

σ∈[σ̄]E
last(σ)=x

Pr(Z(s)∈dσ |Z(s)∈ [σ̄]E)
qx,y
qx,D

γ(s)σ,y(w, z)e
−q̄D(t−s)ds

=

∫ ∞

0

∑

D′′ 6=D

Pr(Z̄(s) ∈ [σ̄]E)

∑

x∈D′′

∑

y∈D

∑

z∈D′

∫

σ∈[σ̄]E
last(σ)=x

Pr(Z(s)∈dσ |Z(s)∈ [σ̄]E)qx,yγ
(s)
σ,y(w, z)e

−q̄D(t−s)ds

Now we use the fact that P and P̄ are bisimilar and thus q̄D = qD as well as our induction
hypothesis to find Pr(Z̄(s) ∈ [σ̄]E) = Pr(Z̄(s) ∈ Hn) = Pr(Z(s) ∈ Hn) = Pr(Z(s) ∈ [σ̄]E),
which yields

∑

y∈D

∑

z∈D′

∫ ∞

0

∫

σ∈Hn
last(σ)=x/∈D

Pr(Z(s)∈dσ)qx,yγ
(s)
σ,y(w, z)e

−qD (t−s)ds

306

A.2. PROOFS OF CHAPTER 7

which equals
Pr(Z(t) ∈ Hn × (0,∞)×D ∩ S × w ×D′ ∩ S),

which completes the proof that

Pr(Z(t) ∈ Hn × (0,∞) ×D × {w} ×D′) = Pr(Z̄(t) ∈ Hn × (0,∞)×D × {w} ×D′).

for all n ∈ N.
For the transient state probabilities of Xpost we have

Pr(X
(t)
post ∈ D ∩ S)

=
∑

n∈N

Pr(Kn+1 > t,X
(t)
post ∈ D ∩ S)

=
∑

Hn∈upaths
(n)
S/E,A

∑

D′∈S∪S̄/E

∑

w∈LV

Pr(Z(t) ∈ Hn × (0,∞) ×D′ × {w} ×D),

where upaths
(n)
S/E,A is the set of all paths of length n of the form

✞

✝

☎

✆A.13 . Note that the
first step only holds because we know Xpost is regular, i.e., the probability of making

infinitely many jumps before time t is zero. Now we can apply
✞

✝

☎

✆A.14 to find that the
above equals

∑

Hn∈upaths
(n)
S/E,A

∑

D′∈S∪S̄/E

∑

w∈LV

Pr(Z̄(t) ∈ Hn × (0,∞)×D′ × {w} ×D)

=
∑

n∈N

Pr(Kn+1 > t, X̄
(t)
post ∈ D ∩ S̄)

= Pr(X̄
(t)
post ∈ D ∩ S̄),

which completes the proof.

A.2.4 Proof of Theorem 49

A stable state x in S is stochastically reachable if and only if there exists an interactive
jump scheduler γ, which induces closed behaviour X, such that for all time-points t ∈
R≥0, with t > 0, the probability that Xpost occupies x at time t using finitely many
jumps is greater than zero. That is,

SR(x) ⇔ ∃γ · ∀t > 0 · Pr(X
(t)
post = x, J∞ > t) > 0.

✞

✝

☎

✆A.17

Proof. We first prove the left-to-right implication. Since x is stochastically reachable,
there exists a finite path σ from an initial state x ∈ S of P to the stable state x. By
Theorem 48 we then find, for some n ∈ N, states x1, . . . , xn ∈ S and stable states
y1, . . . , yn ∈ Ss such that the conditions of Theorem 48 hold. For every 1 ≤ i ≤ n

307

APPENDIX A. PROOFS

we know that there is a finite interactive path from xi to yi. Let wi be the sequence
of visible actions along this path. We then have that (wi, yi) ∈ FairRT (xi). We now
choose the interactive jump scheduler γ to fulfil

γ
(t)
σ′,xi

(wi, yi) = 1, 1 ≤ i ≤ n, t ∈ R≥0,

for all σ′ that follow the state transitions of σ up to xi. For t = 0 we pick

γ(0)ǫ,x1
(w1, y1) = 1.

All other decisions of γ are chosen arbitrarily. Since (wi, yi) is a fair reach-trace of xi
for all indices i, we have that this γ is indeed an interactive jump scheduler for P .

For each 1 ≤ i ≤ n we will consider a set of timed paths in FinPathsS,A. For i = 1
we consider the singleton set

H1 = {x1} × {w1} × {y1},

and for all 1 < i ≤ n we consider the set of paths

Hi = Hi−1 × [0,∞) × {xi} × {wi} × {yi}.

We will now show, by induction on i that for the behaviour X of P induced by scheduler
γ (defined above) and with history process Z we have

Pr(Z(t) ∈ Hi) > 0,

for all t > 0.
For the case i = 1 we have

Pr(Z(t) ∈ H1) = Pr(Z(t) ∈ {x1} × {w1} × {y1})

= αx1γ
(0)
ǫ,x1

(w1, y1)e
−qy1t

= αx1e
−qy1t > 0,

since x1 is an initial state and qy1 is finite.
For the case i > 1 we use as our induction assumption that

Pr(Z(t) ∈ Hi−1) > 0,

for all t > 0. We now find

Pr(Z(t) ∈ Hi−1 × [0,∞){xi} × {wi} × {yi})

=

∫ ∞

0

∫

σ′∈Hi−1

Pr(Z(s) ∈ dσ′)qyi−1,xiγ
(s)
σ′,xi

(wi, yi)e
−qyi(t−s)ds,

since the last state of any path in Hi−1 is yi−1. Now we have that the factors qyi−1,xi

and γ
(s)
σ,xi(wi, yi) and e

−qyi(t−s) are all greater than zero for the time-interval 0 < s < t
and the integral ∫

σ′∈Hi−1

Pr(Z(s) ∈ dσ′) = Pr(Z(t) ∈ Hi−1)

308

A.2. PROOFS OF CHAPTER 7

is also greater than zero by the induction assumption. It follows that Pr(Z(t) ∈ Hi) is
also greater than zero for all t > 0.

For the probability to be in state yn at any time-point t > 0 we then have

Pr(X
(t)
post = yi, J∞ > t) > Pr(Z(t) ∈ Hn) > 0.

This completes the proof of the forward implication

We now prove te reverse implication. Given that Pr(X
(t)
post = x, J∞ > t) > 0 there

must be a number of jumps n ≥ 1 such that Pr(X
(t)
post = x, Jn−1 > t) > 0. We then have

that there must be a set of paths

Hn = {x1} × {w1} × {y1} × [0,∞) × . . .× {xn} × {wn} × {yn}

such that yn = x and Pr(Z(t) ∈ Hn) > 0, where Z is the history process of X.

We first consider the case n > 1. Let Hn−1 be the set of paths consisting of the
n− 1-jump prefixes of Hn. We have

Pr(Z(t) ∈ Hn) = Pr(Z(t) ∈ Hn−1 × [0,∞){xn} × {wn} × {yn})

=

∫ ∞

0

∫

σ′∈Hn−1

Pr(Z(s) ∈ dσ′)qyn−1,xnγ
(s)
σ′,xn

(wn, yn)e
−qyn(t−s)ds.

It follows that qyn−1,xn must be greater than zero, which means yn−1 is stable and there

is a Markovian transition from yn−1 to xn. Furthermore γ
(s)
σ′,xn

(wn, yn) must be non-zero
for some values of σ′ and s; the consequence is that (wn, yn) must be a fair-reach trace
of xn. Finally, the integral

∫

σ′∈Hn−1
Pr(Z(s) ∈ dσ′) must be greater than zero as well,

which means that Pr(Z(t′) ∈ Hn−1 is greater than zero for some values t′ > 0. We have
found that there is a plausible path from yn−1 to yn = x. Using the same reasoning we
will find a plausible path from a state yn−2 to state yn − 1 and so forth. In the end we
will have a plausible path from a state y1 to state yn = x and Pr(Z(t′) ∈ H1) > 0 for
some t′ > 0. We then have

Pr(Z(t′) ∈ H1) = Pr(Z(t′) ∈ {x1} × {w1} × {y1})

= αx1γ
(0)
ǫ,x1

(w1, y1)e
−qy1 t

′
> 0.

It follows that γ
(0)
ǫ,x1(w1, y1) > 0, indicating that there is (w1, y1) is a fair reach-trace of

x1 and αx1 > 0, which means x1 is an initial state. We have then shown that there is a
plausible path from x1 to yn and x1 is an initial state.

A.2.5 Proof of Proposition 26

For any interactive jump scheduler γ of P , fE(γ) is indeed a full-history measurable
scheduler of M , and fI(fE(γ)) = γ. Similarly, for any full-history measurable sched-
uler D of M , we have that fI(D) is indeed an interactive jump scheduler of P , and
fE(fI(D)) = D.

309

APPENDIX A. PROOFS

Proof. Consider an interactive jump scheduler γ of P and its counterpart D = fE(γ).
We will now verify that it is indeed a full-history measurable scheduler of M as per
Definition 86. We now fix a path σ ∈ CPaths and consider the function D(σ, ·). For a

path of length zero 〈x〉 with x ∈ S we have D(〈x〉, ·) = γ
(0)
ǫ,x(·). It then follows that this

function is a probability function which assigns positive probability only to fair reach-
traces of x, which are exactly the enabled actions of x. For a path σ of length n > 0

we have that we can find a path σ′ ∈ FFPaths
(n−1)
P , a time-point t ∈ R≥0 and a state

x ∈ S such that σ = EC(σ′, t, x). We then have D(σ, ·) = γ
(t)
σ′,x(·). It then again follows

that this function is a probability function which assigns positive probability only to fair
reach-traces of x, which are exactly the enabled actions of x, which is the last state of
σ. The measurability of D follows directly from the measurability of γ. We then have
that D is indeed a full-history measurable scheduler of M .

Now consider the function γ̄ = fI(D). We must show that γ̄ = γ, i.e., that for any
finite timed path σ ∈ FinPathsS,A, states x, y ∈ S, time-point t ∈ R≥0, and sequence

w ∈ LV we have γ̄
(t)
σ,x(w, y) = γ

(t)
σ,x(w, y). This follows immediately from the fact that fE

and fI are defined symmetrically.
In the same way we can show for a full-history measurable scheduler D of M as per

Definition 86, that its counterpart γ = fI(D) is indeed an interactive jump scheduler
for P and that fE(γ) = D.

A.2.6 Proof of Theorem 50

For any interactive jump scheduler γ for P , which induces a closed behaviour X with
history process Z, and its counterpart D = fE(γ) for M , we have that

1. for a state x ∈ S we have

Pr(Z(J0) ∈ {x} × FairRT (x)) = P
(0)
D ({x}), and

✞

✝

☎

✆A.18

2. given a measurable set of finite fair timed paths of length n ∈ N0

Hn = {(x0, w0, y0)} × (s1, u1]× {(x1, w1, y1)} × . . .× (sn, un]× {(xn, wn, yn},

with states x0, y0, . . . , xn, yn ∈ S, action-sequences w0, . . . , wn ∈ LV , time-points
s1, u1, . . . , sn, un ∈ R≥0, such that (wi, yi) ∈ FairRT (xi) for all 0 ≤ i < n, and
yi 6= xi+1 for all 0 ≤ i ≤ n, we have for time-points s, u ∈ R≥0, a state x ∈ S\{yn},
that

Pr(Z(Jn+1) ∈ Hn × (s, u]× {x} × FairRT (x)) =

P
(n+1)
D (EC(Hn × (s, u]× {x} × FairRT (x))).

✞

✝

☎

✆A.19

Proof. We first prove the first part of Theorem 50. For the left-hand side of
✞

✝

☎

✆A.18 we
find,

Pr(Z(J0) ∈ {x} × FairRT (x)) = α(x)
∑

〈w,y〉∈FairRT (x)

γ(0)ǫ,x (w, y) = α(x),

310

A.2. PROOFS OF CHAPTER 7

since γ
(0)
ǫ,x is a probability function which assigns positive probability only to reach-traces

in FairRT (x). Since α is a Dirac distribution we have that the above equals
{

1, if x = x̂,
0, otherwise.

For the right-hand side of
✞

✝

☎

✆A.19 we also find

P
(1)
D ({(x)}) =

{
1, if x = x̂,
0, otherwise.

This means
✞

✝

☎

✆A.18 holds for all x ∈ S.
We prove the second part of Theorem 50 by induction on the path length n. As our

induction assumption we assume that,

Pr(Z(Jn) ∈ H ′
n−1 × (s′, u′]× {x′} × FairRT (x′)) =

P
(n)
D (EC(H ′

n−1 × (s′, u′]× {x′} × FairRT (x′))),

for a measurable set of finite fair timed paths H ′
n−1 of length n− 1 of P constructed in

the same way as the set Hn in Theorem 50.

Pr(Z(Jn+1) ∈ Hn × (s, u]× {x} × FairRT (x))

=
∑

〈w,y〉∈FairRT (x)

∫ u

s

∫

σ∈Hn
σt(n)>t

Pr(Z(Jn) ∈ dσ)e−qyn (t−σt(n))qyn,xγ
(t)
σ,x(w, y)dt

=

∫ u

s

∫

σ∈Hn
σt(n)>t

Pr(Z(Jn) ∈ dσ)e−qyn(t−σt(n))qyn,xdt,

since γ
(t)
σ,x(·) is a probability function which assigns strictly positive probability only to

fair reach-traces of x. Let σ′ be the first part of σ, i.e., σ = σ′ ◦ (σt(n), xn, wn, yn.
Furthermore, let the measurable set dσ′′ be defined as

lim
h→0

dσ′ × (σt(n) + h]× {xn} × FairRT (xn),

i.e., dσ′′ is the same set of paths as dσ, except that all fair-reach traces of xn are
considered instead of just (wn, yn). We then have that the above equals

∫ u

s

∫

σ∈Hn
σt(n)>t

Pr(Z(Jn) ∈ dσ′′)e−qyn(t−σt(n))qyn,xγ
(σt(n))
σ′,xn

(wn, yn)dt

=

∫ u

s

∫

σ∈Hn
σt(n)>t

P
(n)
D (EC(dσ′′))e−R(xn,〈wn,yn〉)(t−σt(n))

·R(xn, 〈wn, yn〉, x)D(EC(σ), 〈wn, yn〉)dt

= P
(n+1)
D (EC(Hn × (s, u]× {x} × FairRT (x)),

where we applied the induction assumption,
✞

✝

☎

✆7.8 , Definition 92, and Definition 87.

311

APPENDIX A. PROOFS

A.2.7 Proof of Theorem 51

Consider a closed I/O-IMC P = (S,A,RI , RM , α) with no internal transitions and where
for each state x ∈ S we have

x a−→y, x b−→z implies a = b, y = z.

For any closed behaviour X of P that is non-explosive, i.e.,

Pr(J∞ = ∞) = 1,

we have that Xpost is a Markov chain.

Proof. We will show that Xpost satisfies the Markov condition “up to o(h)” (cf.
✞

✝

☎

✆3.37).
For distinct stable states x, y ∈ S, time-points t < t+ h ∈ R≥0, and a finite timed path
σ ending in state x we have

Pr(X
(t+h)
post = y | X

(t)
post = x,Z(t) = σ)

=
∑

w∈LV

∑

z∈S

Pr(X
(J

(t)
1)

post =y,W (J
(t)
1)=w,X

(J
(t)
1)

pre =z, J
(t)
1 ≤ t+ h

| X
(t)
post=x,Z

(t)=σ) + o(h),

since the probability of two jumps occurring is o(h). We split the above probability to
find that it equals

∑

w∈LV

∑

z∈S

Pr(X
(J

(t)
1)

post =y,W (J
(t)
1)=w | X

(J
(t)
1)

pre =z, J
(t)
1 ≤ t+ h,X

(t)
post=x,Z

(t)=σ)

· Pr(X
(J

(t)
1)

pre = z, J
(t)
1 ≤ t+ h | X

(t)
post = x,Z(t) = σ) + o(h)

=
∑

w∈LV

∑

z∈S

γ(t)σ,z(w, y)qx,zh+ o(h).

Recall that each state z has only a single non-divergent fair reach-trace. Since γ
(t)
σ,z is

a probability function it must assign one to this reach-trace and zero to all others. We
then find that the above equals

∑

w∈LV

∑

z∈S
(w,y)∈FairRT (z)

qx,zh+ o(h).

This shows that
✞

✝

☎

✆3.37 holds and we can then apply Theorem 2 to show that Xpost is
indeed a Markov chain.

312

Bibliography

[1] W. J. Anderson. Continuous Time Markov Chains: An Applications-Oriented Ap-
proach. Springer-Verlag, 1991.

[2] H. C. Bohnenkamp and B. R. Haverkort. Semi-numerical solution of stochastic
process algebra models. In Proceedings of the 5th International AMAST Workshop,
pages 228–243, 1999.

[3] H. Boudali, P. Crouzen, B. R. Haverkort, M. Kuntz, and M. Stoelinga. Architec-
tural dependability evaluation with Arcade. In Proceedings of the 38th IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 512–
521, 2008.

[4] H. Boudali, P. Crouzen, and M. Stoelinga. A compositional semantics for dynamic
fault trees in terms of interactive Markov chains. In Proceedings of the 5th Interna-
tional Symposium on Automated Technology for Verification and Analysis (ATVA),
pages 441–456, 2007.

[5] H. Boudali, P. Crouzen, and M. Stoelinga. Coral – a tool for compositional relia-
bility and availability analysis. In ARTIST workshop: Tool Platforms for embedded
systems modelling, analysis and validation, 2007.

[6] H. Boudali, P. Crouzen, and M. Stoelinga. Dynamic fault tree analysis using in-
put/output interactive Markov chains. In Proceedings of the 37th IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks, pages 708–717, June
2007.

[7] H. Boudali, P. Crouzen, and M. Stoelinga. A rigorous, compositional, and extensible
framework for dynamic fault tree analysis. IEEE Transactions on Dependable and
Secure Computing, 7(2):128–143, 2010.

[8] P. Buchholz. Exact and ordinary lumpability in finite Markov chains. Journal of
Applied Probability, 31(1):59–75, March 1994.

[9] P. Buchholz, E. M. Hahn, H. Hermanns, and L. Zhang. Model checking algorithms
for CTMDPs. In CAV, pages 225–242, 2011.

[10] P. Buchholz and I. Schulz. Numerical analysis of continuous time Markov decision
processes over finite horizons. Computers & OR, 38(3):651–659, 2011.

313

BIBLIOGRAPHY

[11] L. Cheung, N. A. Lynch, R. Segala, and F. W. Vaandrager. Switched PIOA: Parallel
composition via distributed scheduling. Theoretical Computer Science, 365(1-2):83–
108, 2006.

[12] T. H. Cormen. Introduction to algorithms. MIT Press, 2001.

[13] P. Crouzen and H. Hermanns. Aggregation ordering for massively compositional
models. In Proceedings of the 11th International Conference on Application of
Concurrency to System Design (ACSD), pages 171–180, 2010.

[14] P. Crouzen and F. Lang. Smart reduction. In Proceedings of the 14th International
Conference on Fundamental Approaches to Software Engineering (FASE), pages
111–126, 2011.

[15] F. Didier, T. A. Henzinger, M. Mateescu, and V. Wolf. Approximation of event
probabilities in noisy cellular processes. In Proceedings of the 7th International
Conference on Computational Methods in Systems Biology (CMSB), pages 173–
188, 2009.

[16] J. L. Doob. Stochastic Processes. Wiley, 1990.

[17] D. Freedman. Markov chains. Springer-Verlag, 1971.

[18] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A toolbox for the
construction and analysis of distributed processes. In Proceedings of the 17th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), 2011.

[19] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[20] S. Giro and P. R. D’Argenio. On the expressive power of schedulers in dis-
tributed probabilistic systems. Electronic Notes on Theoretical Computer Science,
253(3):45–71, 2009.

[21] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. Infamy: An infinite-state
Markov model checker. In Proceedings of the 21st International Conference on
Computer Aided Verification (CAV), pages 641–647, 2009.

[22] B. R. Haverkort. Markovian models for performance and dependability evalua-
tion. In European Educational Forum: School on Formal Methods and Performance
Analysis, pages 38–83, 2000.

[23] H. Hermanns. Interactive Markov Chains. Springer, 1994.

[24] H. Hermanns. Interactive Markov Chains, volume 2428 of Lecture Notes in Com-
puter Science. Heidelberg: Springer Berlin, 2002.

314

BIBLIOGRAPHY

[25] H. Hermanns and J.-P. Katoen. Automated compositional Markov chain generation
for a plain-old telephone system. Science of Computer Programming, 36(1):97–127,
2000.

[26] H. Hermanns and L. Zhang. From concurrency models to numbers - performance
and dependability. In Software and Systems Safety - Specification and Verification,
pages 182–210. 2011.

[27] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[28] R. A. Howard. Dynamic Probabilistic Systems. John Wiley and Sons, 1971.

[29] A. Jensen. Markov chains as an aid in the study of Markov processes. Skand.
Aktuarietidskrift, 3:87–91, 1953.

[30] S. Johr. Model Checking Compositional Markov Systems. PhD thesis, Saarland
University, Germany, 2007.

[31] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The
ins and outs of the probabilistic model checker MRMC. In Proceedings of the 6th
International Conference on the Quantitative Evaluation of Systems (QEST), pages
167–176, 2009.

[32] M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-
abilistic real-time systems. In Proceedings of the 23rd International Conference on
Computer Aided Verification (CAV), pages 585–591, 2011.

[33] N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2:219–246, 1989.

[34] S. Maaß. Translating Arcade models into Modest code. Bachelor’s thesis, Saarland
University, 2010.

[35] R. Milner. Communication and Concurrency. Prentice Hall, 1984.

[36] B. Munsky and M. Khammash. The finite state projection algorithm for the solution
of the chemical master equation. The Journal of chemical physics, 124:44–104, 2006.

[37] M. R. Neuhäußer, M. Stoelinga, and J.-P. Katoen. Delayed nondeterminism in
continuous-time Markov decision processes. In Proceedings of the 7th international
conference on formal modeling and analysis of timed systems (FOSSACS), pages
364–379, 2009.

[38] M. R. Neuhäußer and L. Zhang. Time-bounded reachability probabilities in
continuous-time Markov decision processes. In Proceedings of the 7th international
conference on the quantitative evaluation of systems (QEST), 2010.

[39] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In
REX Workshop, pages 526–548, 1991.

315

BIBLIOGRAPHY

[40] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, November
1999. Previous number = SIDL-WP-1999-0120.

[41] L. C. Paulson. Logic and computation: interactive proof with Cambridge LCF,
volume 2. Cambridge University Press, 1990.

[42] R. Pulungan. Reduction of Acyclic Phase-Type Representations. PhD thesis, Saar-
land University, 2009.

[43] A. Remke and B. R. Haverkort. CSL model checking algorithms for infinite-state
structured Markov chains. In Formal Modeling and Analysis of Timed Systems,
pages 336–351. Springer, 2007.

[44] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, Massachusetts Institute of Technology, 1995.

[45] R. B. Sidje, K. Burrage, and S. MacNamara. Inexact uniformization method for
computing transient distributions of Markov chains. SIAM Journal on Scientific
Computing, 29(6):2562–2580, 2007.

[46] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

[47] T. A. Sudkamp. Languages and machines: an introduction to the theory of computer
science. Addison-Wesley, 1997.

[48] J. Tretmans. Test generation with inputs, outputs, and quiescence. In Proceedings
of the Second International Workshop on Tools and Algorithms for Construction
and Analysis of Systems (TACAS), pages 127–146, 1996.

[49] F. W. Vaandrager. On the relationship between process algebra and input/output
automata. In Proceedings of the 6th Annual Symposium on Logic in Computer
Science (LICS), pages 387–398, 1991.

[50] R. Wimmer, B. Braitling, B. Becker, E. M. Hahn, P. Crouzen, H. Hermanns,
A. Dhama, and O. E. Theel. Symblicit calculation of long-run averages for concur-
rent probabilistic systems. In Proceedings of the 7th International Conference on
the Quantitative Evaluation of Systems (QEST), pages 27–36, 2010.

[51] V. Wolf. Equivalences on phasetype processes. PhD thesis, University of Mannheim,
2008.

[52] N. Wolovick and S. Johr. A characterization of meaningful schedulers for
continuous-time Markov decision processes. In Proceedings of the 4th international
conference on formal modeling and analysis of timed systems (FORMATS), volume
2402 of LNCS, pages 352–367, 2006.

316

BIBLIOGRAPHY

[53] S.-H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of proba-
bilistic I/O automata. Theoretical Computer Science, 176(1-2):1–38, 1997.

317

