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Abstract

The present thesis studies some important random walk-based algorithms, which are
randomized rumor spreading and balanced allocation protocols on networks. In the
�rst part of the thesis, we study the Push and the Push-Pull protocols introduced
by [DGG+87], which are basic randomized protocols for information dissemination on
networks. In Chapter 2, we propose a new model where the number of calls of each node
in every round is chosen independently according to a probability distribution R with
bounded mean determined at the beginning of the process. In addition to the model
being a natural extension of the standard protocols, it also serves as a more realistic
model for rumor spreading in a network whose entities are not completely uniform and
may have di�erent levels of power. We provide both lower and upper bounds on the
rumor spreading time depending on statistical properties of R such as the mean or the
variance. While it is well-known that the standard protocols need Θ(log n) rounds to
spread a rumor on a complete network with n nodes, we show that, if R follows a power
law distribution with exponent β ∈ (2, 3), then the Push-Pull protocol spreads a rumor

in Θ(log log n) rounds. Moreover, when β = 3, we show a runtime of Θ
(

logn
log logn

)
.

In Chapter 3, we analyze the behavior of the standard Push-Pull protocol on a class
of random graphs, called random k-trees for every integer k > 2, that are suitable
to model poorly connected, small-world and scale free networks. Here, we show that
the Push-Pull protocol propagates a rumor from a randomly chosen informed node to
almost all nodes of a random k-tree with n nodes in O((log n)1+ck) rounds with high
probability, where 0 < ck 6 1 is a decreasing function in k. We also derive a lower
bound of nΩ(1) for the runtime of the protocol to inform all nodes of the graph. Our
technique for proving the upper bound is successfully carried over to a closely related
class of random graphs called random k-Apollonian networks.

We devote the rest of the thesis to the study of random walks on graphs, covering
both practical and theoretical aspects. In Chapter 4, we show the existence of a cuto�
phenomenon for simple random walks on Kneser graphs. A cuto� phenomenon for a
given sequence of ergodic Markov chains describes a sharp transition in the convergence
of the chains to its stationary distribution over a negligible period of time, known as the
cuto� window. In order to establish the cuto� phenomenon, we combine the spectral
information of the transition matrix and a probabilistic technique, known as Wilson's
method [Wil04]. And �nally in Chapter 5, by using non-backtracking random walks
introduced by Alon et al. [ABLS07], we propose a new algorithm for sequentially
allocating n balls into n bins that are organized as a d-regular graph with n nodes,
say G, where d > 3 can be any integer. Let l be a given positive integer. In each
round t, 1 6 t 6 n, ball t picks a node of G uniformly at random and performs a non-
backtracking random walk of length l from the chosen node. Then it deterministically
selects a subset of the visited nodes as the potential choices and allocates itself on one
of the choices with minimum load (ties are broken uniformly at random). Provided G
has a su�ciently large girth, we establish an upper bound for the maximum number
of balls at any bin after allocating n balls by the algorithm. We also show that the
upper bound is tight up to a O(log log n) factor. In particular, we show that if we set

l = b(log n)
1+ε
2 c, for any constant ε ∈ (0, 1], and G has girth at least ω(l), then the

maximum load is bounded by O(1/ε) with high probability.





Zusammenfassung

Die vorliegende Arbeit untersucht einige wichtige Zufallspfad-basierte Algorithmen,
insbesondere Protokolle zur randomisierte Verbreitung von Gerüchten und Zufalls-
pfade in Netzwerken. Im ersten Teil der Arbeit betrachten wir die von [DGG+87]
eingeführten Push und Push-Pull Protokolle, die grundlegende randomisierte Proto-
kolle zur Informationsverbreitung in Netzwerken darstellen. In Kapitel 2 beschreiben
wir ein neues Modell, in dem die Anzahl an Aufrufen jedes Knotens in jeder Run-
de unabhängig von einer Zufallsverteilung R mit beschränktem Erwartungswert ge-
zogen wird, die zu Beginn des Prozesses festgelegt wird. Das Modell ist nicht nur
eine natürliche Erweiterung der Standardprotokolle, sondern dient auch als realisti-
scheres Modell der Verbreitung von Gerüchten in Netzwerken deren Entitäten nicht
uniform sind und unterschiedlich groÿen Ein�uss haben können. Wir geben untere
und obere Schranken für die benötigte Zeit zur Verbreitung der Gerüchte an, in Ab-
hängigkeit von statistischen Eigenschaften von R wie Erwartungswert und Varianz.
Während bekannt ist, dass die Standardprotokolle Θ(log n) Runden benötigen, um ein
Gerücht in einem vollständigen Netzwerk mit n Knoten zu verbreiten, zeigen wir, dass
das Push-Pull-Protokoll ein Gerücht in Θ(log log n) Runden verbreitet, wenn R einer
Potenzgesetz-Verteilung mit Exponent β ∈ (2, 3) folgt. Darüberhinaus zeigen wir, im

Falle β = 3, eine Laufzeit von Θ
(

logn
log logn

)
. In Kapitel 3 analysieren wir das Verhalten

des Standard-Push-Pull-Protokolls auf einer Klasse von Zufallsgraphen, den sogenann-
ten Zufalls-k-Bäumen für jede natürliche Zahl k > 2, die sich dafür eignen, schwach
zusammenhängende Netzwerke, Small-World-Netzwerke und skalenfreie Netzwerke zu
modellieren. Hierbei zeigen wir, dass das Push-Pull-Protokoll ein Gerücht von einem
zufällig gewählten informierten Knoten zu fast allen Knoten eines Zufalls-k-Baums mit

n Knoten in O
(

(log n)1+ck
)
Runden mit hoher Wahrscheinlichkeit verbreiten kann,

wobei 0 < ck 6 1 eine fallende Funktion in k ist. Wir leiten auch eine untere Schranke
von nΩ(1) für die Laufzeit des Protokolls ab, um alle Knoten des Graphen zu infor-
mieren. Unsere Technik zum Beweis der oberen Schranke wird erfolgreich auf eine
eng verwandte Klasse von Zufallsgraphen, der sogenannten k-Apollonischen Graphen,
übertragen.

Den Rest der Dissertation widmen wir der Untersuchung sowohl praktischer als
auch theoretischer Aspekte von Zufallspfaden in Graphen. In Kapitel 3 zeigen wir
die Existenz eines Cuto�-Phänomens für einfache Zufallspfade in Kneser-Graphen.
Ein Cuto�-Phänomen für eine gegebene Sequenz von ergodischen Markovketten be-
schreibt einen abrupten Übergang bei der Konvergenz der Ketten gegen ihre statio-
näre Verteilung über einen vernachlässigbaren Zeitraum, bekannt als Cuto�-Fenster.
Um das Cuto�-Phänomen nachzuweisen kombinieren wir die spektrale Information
der Transitionsmatrix und eine probabilistische Technik, bekannt als Wilson's Me-
thode [Wil04]. Und schlieÿlich präsentieren wir in Kapitel 5 unter Einbeziehung von
nicht-zurücksetzenden Zufallspfaden, eingeführt von Alon et al. [ABLS07], einen neuen
Algorithmus um sequenziell n Bälle n Körben zuzuweisen, die als d-regulärer Graph
G mit n Knoten organisiert sind, wobei d > 3 eine beliebige ganze Zahl sein kann.
Sei l eine gegebene positive ganze Zahl. In jeder Runde t, 1 6 t 6 n, wählt Ball
t einen Knoten von G zufällig mit gleicher Wahrscheinlichkeit und folgt einem nicht-



zurücksetzenden Zufallspfad der Länge l ab diesem gewählten Knoten. Dann wählt der
Ball deterministisch eine Teilmenge der besuchten Knoten als potenzielle Kandidaten
aus, und weist sich selbst demjenigen Kandidaten mit minimaler Last zu (Gleichstän-
de werden beliebig gelöst). Wenn G hinreichend groÿe Taillenweite hat, können wir
eine obere Schranke für die maximale Anzahl an Bällen in jedem Bin nach der Zuwei-
sung von n Bällen durch den Algorithmus angeben. Wir zeigen auch, dass diese obere
Schranke bis auf einen O (log log n)-Faktor scharf ist. Insbesondere zeigen wir, dass
die maximale Last mit hoher Wahrscheinlichkeit durch O(1/ε) beschänkt ist, wenn

wir l =
⌊
(log n)

1+ε
2

⌋
setzen, für eine beliebige Konstante ε ∈ (0, 1], und G Taillenweite

mindestens ω(l) hat. Diese Arbeit ist in englischer Sprache verfasst.



Acknowledgments

I would like to thank my supervisor Thomas Sauerwald for his invaluable guidance
and encouragement. I appreciate his patience in correcting several of my drafts and
making them into publishable material. I would like to sincerely thank Kurt Mehlhorn
for his constant support and reviewing the thesis. I am grateful to thank my co-authors
Thomas Sauerwald, Konstantinos Panagiotou and Abbas Mehrabian.

I thank my fellows Megha Khosla, Aruni Choudhary, Sebastian Ott, Pavel Kolev,
Michael Dirnberger, Cosmina Croitoru and Bojana Kodric for happy time in MPI.

I would like to deeply thank my father whose memories never fade, my mother and
my siblings.

I would like to thank my loving wife Fahimeh and my little son, Mohammad Mahdi,
who are source of inspiration and motivation.





9

Contents

1. Introduction 11

1.1. Rumor Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2. Random Walks on Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3. Probabilistic Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I Randomized Rumor Spreading 19

2. Faster Rumor Spreading with Multiple Calls 21

2.1. De�nitions, Notations and Preliminaries . . . . . . . . . . . . . . . . . 23
2.2. Some Useful Facts of Power Law Distributions . . . . . . . . . . . . . . 24
2.3. Push Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4. Push Protocol with a Bounded Mean . . . . . . . . . . . . . . . . . . . 27
2.5. Push-Pull Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6. Push-Pull Protocol with Power Law Distribution 2 < β < 3 . . . . . . 39
2.7. Push-Pull Protocol with Power Law Distribution β = 3 . . . . . . . . . 45
2.8. Generating a New Ctu in Each Round . . . . . . . . . . . . . . . . . . . 49

3. Randomized Rumor Spreading in Poorly Connected Networks 51

3.1. De�nitions, Notations and Preliminaries . . . . . . . . . . . . . . . . . 54
3.2. Some Results from the Urn Theory . . . . . . . . . . . . . . . . . . . . 56
3.3. Expansion of the Networks . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4. Push-Pull Protocol on Random k-Trees . . . . . . . . . . . . . . . . . 61
3.5. A Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6. Push-Pull Protocol on Random k-Apollonian Networks . . . . . . . . . 68
3.7. Real-World Properties of the Networks . . . . . . . . . . . . . . . . . . 71

II Random Walks on Graphs 75

4. Cuto� Phenomenon for Random Walks on Kneser Graphs 77

4.1. De�nitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2. Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3. Upper Bound on the Variation Distance . . . . . . . . . . . . . . . . . 81
4.4. Lower Bound on the Variation Distance . . . . . . . . . . . . . . . . . 83



5. Balanced Allocation on Graphs: A Random Walk Approach 87

5.1. Notations, De�nitions and Preliminaries . . . . . . . . . . . . . . . . . 90
5.2. Witness Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3. Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4. A Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.5. Proof of the Key Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 107



11

1
Introduction

Randomized algorithms and probabilistic models are playing an increasingly important
role in computer science. They are applied in a wide range of problems such as deadlock
avoidance, message routing, di�usion networks, distributed consensus, hashing, load
balancing, polynomial identity testing, randomized rounding, and primality testing.
Although randomized algorithms may not guarantee a correct (and/or optimal) output
for an adversarial chosen input, their elegance and e�ciency on average input cause
them to be essentially in computer science. Furthermore, they often represent the �rst
step towards the design of e�cient deterministic algorithms.

Information dissemination on networks is a fundamental and overarching problem
in many settings such as broadcasting, load balancing, gossip, sorting, leader election
protocols etc. (e.g., see [HKP+05]). In the �rst part of this thesis we study some
random walk-based protocols for information dissemination, known as randomized
rumor spreading, introduced by Demers et. al [DGG+87]. These form an important
class of protocols that are particularly attractive because of their simplicity, e�ciency
and robustness in information dissemination on networks [FPRU90]. Not only they
exhibit high performance in terms of runtime and communication overhead, they also
serve as mathematical models for many phenomena such as spreading computer viruses
or di�usion of ideas in real-world and technological networks.

In the second part of the thesis we study another fundamental class of stochastic
processes that are random walks on networks, which have been widely applied in the
design and analysis of randomized algorithms. One of the �rst applications of random
walks on networks has been to e�ciently sample from a stationary distribution, which
is the main ingredient of many algorithms such as computing volume of convex bod-
ies approximately [LS93], solving linear programming [KN12], minimizing discrepancy
[Ban10] and property testing algorithms [CMOS11]. Furthermore, random walks are
applied as a building block in a wide variety of problems ranging from token man-
agement [IJ90], small-world routing [Kle00], information propagation and gathering
[KKD04], testing expansion [GT12], load balancing and averaging [FGS12].
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1.1. Rumor Spreading

The �rst part of this thesis concerns randomized rumor spreading protocols. One
of the most basic randomized rumor spreading protocols is the Push protocol. In
this protocol, initially, a node of the network knows of some rumor and then the
protocol proceeds in rounds. In each round, every informed node sends (pushes)
the rumor to a random neighbor. Similarly, in each round of the Pull protocol, an
uninformed node asks (pulls) a random neighbor in order to get the rumor if the
neighbor knows it. The Push-Pull protocol is the combination of these two protocols
where each node contacts a random neighbor. The Push-Pull protocol is also known as
the random phone call model introduced by Demers et al. [DGG+87], which is a well-
studied model for information dissemination on networks. One of the most important
quantities associated with rumor spreading protocols is the runtime of the protocol
which is de�ned as the number of rounds the protocol needs to inform all nodes of a
network with probability tending to 1 as n goes to in�nity. We refer to this as 'with
high probability'.

1.1.1. Multiple-Call Rumor Spreading

Frieze and Grimmett [FG85] showed that the standard Push protocol on a complete
graph takes log2 n + log n ± o(log n) rounds to inform all n nodes with high proba-
bility. This result was later strengthened by Pittel [Pit87]. For the standard Push-

Pull protocol on a complete graph, Karp et al. [KSSV00] proved a runtime bound
of log3 n + O(log log n). In Chapter 2, we study a multiple-call version of the Push

and the Push-Pull protocols on complete graphs, where nodes are enabled to make
multiple calls in each round. In addition to the model being a natural extension of
the standard protocols, it also serves as a more realistic model for rumor spreading
in networks, where entities are not completely uniform and may have di�erent levels
of power. Speci�cally, we assume that the power of each node u, denoted by Cu, is
determined by a probability distribution R on the positive integers. Note that Cu is
the same number for each round. In order to keep the overall communication cost
small, we focus on distributions R satisfying

∑
u∈V Cu = O(n) with high probability

� in particular, R has bounded mean.

In this work, our aim is to understand the impact of the distribution R on the
runtime of the Push and the Push-Pull protocols. In particular, we seek conditions
on the distribution R which are necessary (and/or su�cient) for a sub-logarithmic
runtime. We provide both lower and upper bounds on the runtime of the protocols,
depending on statistical properties of R such as the mean or the variance. For instance,
if R follows a power law distribution with exponent β ∈ (2, 3), we show that the Push-

Pull protocol spreads a rumor in Θ(log log n) rounds. Moreover, if β = 3, the Push-Pull

protocol spreads a rumor in Θ
(

logn
log logn

)
rounds. To prove our results, we carefully

derive an almost tight growth rate for the size of informed nodes and then establish
tight upper (and lower) bounds for the runtime of protocols.
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1.1.2. Rumor Spreading on Real-World Networks

Recently, many studies considered the rumor spreading protocols on random graph
models that exhibit some fundamental properties of real-world networks such as power-
law degree sequence, small diameter and large clustering coe�cient. For instance, Do-
err, Fouz, and Friedrich [DFF11] studied the Push-Pull protocol on preferential attach-
ment graphs, which is a popular model for real-world networks. They proved an upper
bound of O(log n) for the runtime of the protocol. Also, Fountoulakis, Panagiotou,
and Sauerwald [FPS12] proved the same upper bound O(log n) for the runtime of the
Push-Pull protocol on the giant component of random graphs with given expected de-
grees (also known as the Chung-Lu model) with power law degree distribution. They
also showed that if degree distribution follows a power law distribution with exponent
β ∈ (2, 3), then the Push-Pull protocol takes O(log log n) rounds to inform a constant
fraction of nodes with constant probability.

In Chapter 3, we analyze the behavior of the Push-Pull protocol on random k-trees,
a class of power law graphs which are scale-free, small-world (i.e., logarithmic diameter
in terms of the number of nodes) and have large clustering coe�cients. The random
k-trees are a class of evolving random graphs built as follows: Initially we have a
k-clique. In every step a new node is created, a random k-clique of the current graph
is chosen, and the new node is joined to all nodes of the k-clique. For a given random
k-tree on n nodes with �xed k > 2, we show that if a random node is initially aware

of the rumor, then with probability 1− o(1) after O
(

(log n)1+ 2
k · (log log n)2

)
rounds

the rumor is propagated to n − o(n) nodes. Since these graphs have polynomially
small conductance, vertex expansion O(1/n), and constant treewidth, these results
demonstrate that Push-Pull can be e�cient even on poorly connected networks. On the
negative side, we prove that with probability 1− o(1) the protocol needs at least nΩ(1)

rounds to inform all nodes. This exponential dichotomy between the time required for
informing almost all and all nodes is striking. Our main contribution is to present,
for the �rst time, a natural class of random graphs in which such a phenomenon can
be observed. Our technique for proving the upper bound successfully carries over
to a closely related class of graphs, the so-called random k-Apollonian networks, for
which we prove an upper bound of O

(
(log n)1+ak · (log log n)2

)
rounds for informing

n− o(n) nodes with probability 1− o(1), when k > 2 is a constant and 0 < ak < 1 is
a decreasing function in k.

To prove the upper bounds, a well-known technique is to show the existence of low
degree nodes, called e�cient connectors, which connect di�erent high-degree nodes
and speed up the transmission of the rumor among them. By showing the existence
of e�cient connectors for almost all high degree nodes in random k-trees, we derive
our upper bound to inform almost all nodes of a random k-tree.

Source of indication. The results of Chapters 2 and 3 have been published in
the Electronic Journal of Combinatorics [PPS15] and in the proceedings of DISC'14
[MP14], respectively. A preliminary version of results of Chapter 2 has been published
in the proceedings of ISAAC'13 [PPS13].
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1.2. Random Walks on Graphs

The second part of this thesis studies random walks and their applications. Random
walks on graphs are key components in many �elds of sciences from di�usion processes
in statistical physics to enumeration of combinatorial objects through sampling in
computer science. Here, we consider two variants of random walks on graphs: simple
random walks and non-backtracking random walks. A simple random walk on a given
graph is a stochastic process that proceeds in rounds. Initially, the walker is located
on a node of the graph, and then in each round, the walker chooses one of its neighbors
uniformly at random and moves to that neighbor. The non-backtracking random walk
is similar to a simple random walk with only one di�erence: the walker never traverses
the same edge in two consecutive rounds, that is, the walker never 'backtracks'.

1.2.1. Cuto� Phenomenon for Random walks

A cuto� phenomenon for a given sequence of ergodic Markov chains describes a sharp
transition in the convergence of the chains to its stationary distribution over a negligi-
ble period of time, known as the cuto� window. Due to the elusive behavior of many
Markov chains, showing the existence of cuto� phenomenon for a sequence of chains
is a challenging question and there is still no necessary and su�cient condition known
[Dia96]. In one of the �rst results in this area, Aldous and Diaconis [AD86] studied
a card-shu�ing process called top in at random shu�e where in each step, a card is
picked from the top and inserted in a random position. They proved that for a deck
of cards of size n, the chain shows a cuto� at time n log n + O(n) over a cuto� win-
dow of size O(n). Recently, Lubetzky and Sly [LS10] considered simple random walks
and non-backtracking walks on n-vertex random d-regular graphs, G(n, d), for d > 3
and established a cuto� for these chains. More precisely, they showed that simple
random walks on G(n, d) exhibit a cuto� at time d

d−2 logd−1 n with a window of size
O(
√

logd−1 n) with high probability. They also derived a cuto� for non-backtracking
walks at time logd−1 n with a window of size constant. To prove their result, they
elegantly exploited tree-like structures of random regular graphs and estimated the
walk distribution.

In Chapter 4, we focus on simple random walks on Kneser graphs and show that
they exhibit a cuto�. Given two integers n and k, the Kneser graph K(2n + k, n) is
de�ned as the graph with the vertex set being all subsets of {1, . . . , 2n + k} of size
n and two vertices A and B being connected by an edge if A ∩ B = ∅. It is also
well-known that the transition matrix of a simple random walk on a Kneser graph
K(2n+ k, n) has spectral gap k

n+k , and its second largest eigenvalue has multiplicity
2n+ k. So by varying k = O(n), we obtain various families of chains with di�erent
spectral gaps. For instance, by setting k = Θ(n) we obtain a family of transitive
expander graphs. In our work, we show that for any k = O(n), the simple random
walk onK(2n+k, n) exhibit a cuto� at 1

2 log1+k/n (2n+ k) with a window of size O(nk ).
In the case k = ω(n), every node in K(2n+ k, n) is adjacent to almost all nodes, and
the simple random walk on K(2n + k, n) converges to its stationary distribution in
only one step. For the case k = O(n), it is necessary to have detailed knowledge of
the total variation distance of the walk distribution from its equilibrium at any time
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step t denoted by d(t). Here, we combine the spectral information of the transition
matrix and a probabilistic technique, known as Wilson's method [Wil04] to obtain a
precise estimate of d(t).

1.2.2. Balanced Allocation on Graphs

The standard balls-into-bins model is a process that randomly allocates m balls into n
bins; each ball picks d bins independently and uniformly at random and the ball is then
allocated in a least loaded bin in the set of d choices. In many applications, selecting
any random set of choices is costly. For instance, assume the bins are processors
that are interconnected as a graph and balls are tasks arriving one by one; the goal
is to assign tasks to the processor by minimizing the maximum load in a distributed
fashion. Here, having two far away choices is not desirable. Considering this constraint,
Kenthapadi and Panigrahy [KP06] proposed a model in which bins are interconnected
as a ∆-regular graph where each ball picks a random edge of the graph. It is then
placed at one of its endpoints with smaller load. This allocation algorithm results in a

maximum load of log logn+O
(

logn
log(∆/ log4 n)

)
+O(1). Following the study of balls-into-

bins with correlated choices, Godfrey [God08] generalized the aforementioned result
such that each ball picks a random edge of a hypergraph that has Ω(log n) bins and
satis�es some mild conditions. Recently, Bogdan et al. [BSSS13] studied a model
where bins are nodes of a graph and each ball picks a random node and performs a
local search from the node to �nd a node with local minimum load and �nally be
placed on it. They showed that when the graph is a constant degree expander, the
local search guarantees a maximum load of Θ(log log n) with high probability.

In Chapter 5, we propose a new algorithm that uses non-backtracking random
walks as a tool for sequentially allocating n balls into n bins that are organized as a
d-regular n-vertex graph G, where d > 3 can be any integer. The algorithm takes a
positive integer l, G and a sequence of balls as the inputs and proceeds in rounds. In
each round t, 1 6 t 6 n, ball t picks a node of G uniformly at random and performs a
non-backtracking random walks (NBRW) of length l from the chosen node. Then, it
deterministically selects a subset of visited nodes as the potential choices and allocates
itself on one of the choices with minimum load (here, ties are broken uniformly at
random). Suppose that G has girth at least ω(l log logn). Then we establish an upper
bound for the maximum number of balls at any bin after allocating n balls by the
algorithm, called maximum load, in terms of l with high probability. We also show
that the upper bound is at most an O(log log n) factor above the lower bound that is

proved for the algorithm. In particular we show that if we set l = b(log n)
1+ε
2 c, for any

constant ε ∈ (0, 1] and G has girth at least ω(l), then the maximum load is bounded
by O(1/ε) with high probability.

To show our result, we apply the witness tree technique, which is a well-known
method in the balls-into-bins process.

Source of indication. The results of Chapter 4 have been published in the Jour-
nal of Discrete Applied Mathematics [PS14] and the results of Chapter 5 are under
submission [Pou14].
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1.3. Probabilistic Inequalities

In this section, we review some essential tools for the analysis of randomized algo-
rithms, namely deviation bounds. Let us �rst state some elementary probabilistic
inequalities that can be found in [GS01].

Lemma 1.3.1 (Union Bound). Let Ei, 1 6 i 6 n be a sequence of events. Then,

Pr [∨ni=1Ei] 6
n∑
i=1

Pr [Ei] .

Lemma 1.3.2 (Markov's Inequality). Let X be a non-negative random variable and
δ be any positive real number. Then, we have

Pr [X > δ] 6 E [X] /δ.

Theorem 1.3.3 (Chebychev's Inequality). Let X be a random variable and δ be any
positive real number. Then, we have

Pr [|X −E [X] | > δ] 6 Var [X] /δ2.

Now we state two concentration inequalities that we use in the proof of our results.
The �rst one is a Cherno�-type bound. For the proof, see, e.g., [DP09].

Theorem 1.3.4 (Cherno� bounds). Suppose that X1, X2 . . . , Xn ∈ {0, 1} are indepen-
dent random variables, and let X :=

∑n
i=1Xi. Then, for any δ ∈ (0, 1), the following

inequalities hold:

Pr [X 6 (1− δ)E [X]] 6 e−δ
2 E[X]/2,

Pr [X 6 (1 + δ)E [X]] 6 e−δ
2 E[X]/3.

In particular,

Pr
[∣∣∣X −E [X]

∣∣∣ > δE [X]
]
6 2 · e−δ2 E[X]/3.

Panconesi and Srinivasan [PS97] generalized the classic Cherno� bounds for ran-
dom variables that are negatively correlated. A negative correlation among a set of
random variables is de�ned as follows:

De�nition 1.3.5. The random variables X1, . . . , Xn, taking values in Ω, are called
negatively correlated if for all I ⊆ [n] and every ωi ∈ Ω, i ∈ I, we have

Pr [∧i∈IXi = ωi] 6
∏
i∈I

Pr [Xi = ωi] .

Theorem 1.3.6 (Cherno� bounds for negatively correlated random variables). Sup-
pose that X1, X2 . . . , Xn ∈ {0, 1} are negatively random variables and let X :=∑n

i=1Xi. Then, for any δ ∈ (0, 1), the following inequalities hold:

Pr [X 6 (1− δ)E [X]] 6 e−δ
2 E[X]/2,

Pr [X > (1 + δ)E [X]] 6 e−δ
2 E[X]/3.
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In order to deal with moderate independency we have the following lemma whose
proof can be found in [AD11, Lemma 1.18].

Lemma 1.3.7 (Deviation bounds for moderate independency). Let X1, · · · , Xn be
arbitrary binary random variables. Let X∗1 , X

∗
2 , · · · , X∗n be binary random variables that

are mutually independent and such that for all i, Xi, is independent of X1, · · · , Xi−1.
Assume that for all i and all x1, ..., xi−1 ∈ {0, 1},

Pr [Xi = 1|X1 = x1, · · · , Xi−1 = xi−1] > Pr [X∗i = 1] .

Then for all k > 0, we have

Pr

[
n∑
i=1

Xi 6 k

]
6 Pr

[
n∑
i=1

X∗i 6 k

]

and the latter term can be bounded by any deviation bound for independent random
variables.

The next inequality is known as the Bounded Di�erence inequality. For the proof
see, e.g., [McD98].

Theorem 1.3.8 (Bounded Di�erence Inequlaity). Suppose that X1, X2 . . . , Xn are
arbitrary independent random variables, and every Xi, 1 6 i 6 n takes a value from
Ai. Let f :

∏
16i6nAi → R be a real-valued function so that there exist c1, c2, . . . , cn

with

sup
x1,x2,...,xn,x′i

|f(x1, x2, . . . , xi, . . . , xn)−f(x1, x2, . . . , x
′
i, . . . , xn)| 6 ci, for every 1 6 i 6 n.

Then, for every λ > 0,

Pr [|f(X1, X2, . . . , Xn)−E [f(X1, X2, . . . , Xn)] | > λ] 6 2 · e
− λ2

2
∑n
i=1 c

2
i .

Remark. Throughout this thesis, with high probability refers to an event An which
holds with probability 1 − o(1) as n → ∞. For simplicity, we sometimes abbreviate
'with high probability' to 'whp'. Moreover, log n denotes the natural logarithm of n.
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Part I

Randomized Rumor Spreading
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2
Faster Rumor Spreading with Multiple

Calls

Randomized rumor spreading is an important primitive for spreading information in
networks. The goal is to spread a piece of information, the so-called rumor, from
an arbitrary node to all the other nodes. Randomized rumor spreading protocols are
based on the simple idea that every node picks a random neighbor and these two
nodes are able to exchange information in that round. This paradigm ensures that the
protocol is local, scalable and robust against network failures (cf. [FPRU90]). There-
fore these protocols have been successfully applied in other contexts such as replicated
databases [DGG+87], failure detection [vRMH98], resource discovery [HBLL99], load
balancing [BGPS06], data aggregation [KDG03], and analysis of the spread of com-
puter viruses [BBCS05].

The most basic variant of randomized rumor spreading is the Push protocol. At the
beginning, there is a single node who knows of some rumor. Then in each of the fol-
lowing rounds every informed node calls a random neighbor chosen independently and
uniformly at random and informs it of the rumor. The Pull protocol is symmetric, here
every uninformed node calls a random neighbor chosen independently and uniformly
at random, and if that neighbor happens to be informed the node becomes informed.
The Push-Pull protocol is simply the combination of both protocols. Most studies in
randomized rumor spreading concern the communication overhead produced by these
protocols and their runtimes which is the number of rounds required until a rumor
initiated by a single node reaches all other nodes of the network (see e.g. [KSSV00]).

In one of the �rst papers in this area, Frieze and Grimmett [FG85] proved that if the
underlying graph is a complete graph with n nodes, then the runtime of the Push proto-
col is log2 n+log n±o(log n) with high probability. This result was later strengthened
by Pittel [Pit87]. For the standard Push-Pull protocol, Karp et al. [KSSV00] proved
a runtime bound of log3 n + O(log log n). In order to overcome the large number of
Θ(n log n) calls, Karp et al. also presented an extension of the Push-Pull protocol to-
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gether with a termination mechanism that spreads a rumor in O(log n) rounds using
only O(n log logn) messages. More recently Doerr and Fouz [DF11] proposed a new
protocol using only Push calls that achieves a runtime of (1 + o(1)) log2 n using only
O(n · f(n)) calls (and messages), where f(n) is an arbitrarily slow growing function.

Our Results. We study a multiple-calls version of the Push protocol and the Push-

Pull protocol on complete networks, where nodes are enabled to make multiple calls
in each round. While it is well-known that the classic Push and Push-Pull protocols
need Θ(log n) rounds to spread a rumor on a complete network with n nodes, we
are interested by how much we can speed up the spread of the rumor by enabling
nodes to make more than one call in each round. Besides the fact that the model
is a natural extension of the standard protocols, it also serves as a more realistic
model for rumor spreading in a network whose entities are not completely uniform
and may have di�erent levels of power. Speci�cally, we assume that the power of each
node u, denoted by Cu is determined by a probability distribution R on the positive
integers which is independent of u and Cu is the same number for each round. In order
to keep the overall communication cost small, we focus on distribution R satisfying∑

u∈V Cu = O(n) with high probability � in particular, R has bounded mean. Our aim
is to understand the impact of the distribution R on the runtime of Push and Push-

Pull protocols. In particular, we seek for conditions on the distribution R which are
necessary (and/or su�cient) for a sub-logarithmic runtime. We estimate the runtime of
such multiple-calls protocols on a n-node complete network with a general assumption
about mean and variance of R and summarize it as follows: If R has bounded mean and
bounded variance, then whp the Push protocol needs log1+E[R] n+ logeE[R] n±o(log n)
rounds to inform all nodes (cf. Theorem 2.4.2 ). Moreover whp the Push-Pull protocol
requires Θ(log n) rounds to inform all nodes (Theorem 2.5.2). If R has bounded mean
and arbitrary variance, then whp after Θ(log n) rounds of the Push protocol, every
node gets informed (cf. Theorem 2.4.1).

Note that by putting R ≡ 1, we retain the classic result by Frieze and Grim-
mett for the standard Push protocol. As can be seen, when we assume that R has
an unbounded variance, the Push protocol still needs Θ(log n) rounds to inform all
nodes. Although this result is less precise than Theorem 2.4.2, it demonstrates that
it is necessary to consider the Push-Pull protocol with an unbounded variance. An
important distribution with bounded mean but unbounded variance is the power law
distribution with exponent β 6 3, i.e., there are constants 0 < c1 6 c2 such that
c1z

1−β 6 Pr [Cu > z] 6 c2z
1−β for any z > 1, and Pr [Cu > 1] = 1. We are espe-

cially interested in power law distributions, because they are scale invariant and have
been observed in a variety of settings in real life. Our main result shows that this
natural distribution achieves a sublogarithmic runtime. Notice that if R is a power
law distribution with β > 3, then Theorem 2.5.2 applies because the variance of R is
bounded. Hence our results reveal an interesting dichotomy in terms of the exponent
β: if 2 < β < 3, then the Push-Pull protocol �nishes in O(log log n) rounds, whereas
for β > 3 the Push-Pull protocol �nishes in Θ(log n) rounds 1. Moreover if β = 3 we

1We do not consider the case β 6 2, since then there exists at least one node with degree Ω(n)
and the rumor is spread in constant time. Additionally, E [R] is no longer bounded.
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show that whp the Push-Pull protocol informs all nodes in Θ
(

logn
log logn

)
rounds.

Finally, we also show that it is necessary that the Cu's are independent of the round
t. Instead, suppose we generate a new variable Ctu according to the distribution R for
each round t again, which is the number of calls made by node u in round t. Then
we prove that in this model, with high probability, Push-Pull needs Ω(logn) rounds to
inform all nodes.

Techniques. To estimate the runtime of the protocols, we carefully analyze the
growth rate of size of informed nodes in several phases depending on the number of in-
formed nodes. For instance, to derive a Θ(log n) runtime for a protocol, it is su�cient
to show an constant growth rate for the protocol. The technique gets more involved
when R is a power low distribution with 2 < β 6 3 and we establish a dichotomy in
terms of β. While a very similar dichotomy was shown in [FPS12] for random graphs
with a power law degree distribution, our result here concerns the spread of the rumor
from one to all nodes (and not only to a constant fraction as in [FPS12]). In addition,
the distribution of the edges used throughout the execution of the Push-Pull protocol
is di�erent from the distribution of the edges in a power law random graph, as the
latter is proportional to the product of the weights of the two nodes. Therefore it
seems di�cult to apply the previous techniques for power law random graphs used for
the analysis of the average distance [CL03] and rumor spreading [FPS12].

Outline. In Section 2.1 we formally de�ne the multiple-calls protocols and notations
needed to show our results. In Section 2.2 we give some useful facts about power law
distributions. In Sections 2.3 and 2.4 we analyze the runtime of the Push protocol
on a complete network. In Section 2.5 we continue studying the Push-Pull protocol
with a bounded mean and variance distribution R. In Sections 2.6 and 2.7 we analyze
the multiple call Push-Pull protocol with power law distribution R where 2 < β 6 3.
In the last section we consider a di�erent model where in every round t each node u
generates a new Ctu according to a distribution R.

2.1. De�nitions, Notations and Preliminaries

In this section we provide additional de�nitions and notations. Let us �rst generalize
the classic Push, Pull and Push-Pull to the following statistical model on a complete
graph with n nodes. Before the protocol starts, every node u generates a random
integer Cu > 1 independent of each other according to a distribution R. Then, a piece
of information (rumor, message, . . . ) is placed on an arbitrary node of the graph. Our
generalized Push, Pull and Push-Pull protocol proceed like the classic ones except that
every (un)informed node u calls Cu node(s) chosen independently and uniformly at
random and sends (request) the rumor.

Let It be the set of all informed nodes in round t (which means after the execution
of round t) and Ut be the complement of It, i.e., the set of uninformed nodes. The
size of It and Ut is denoted by It and Ut. We indicate the set of newly informed nodes
in round t+ 1 by Nt and its size is denoted by Nt. Let St be the number of Push calls
in round t+ 1, so St =

∑
u∈It Cu > It. Let us de�ne NPull

t and NPush
t to be the set of
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newly informed nodes by Pull and Push calls in round t+ 1, respectively. The size of
NPull
t and NPush

t are denoted by NPull
t and NPush

t . The size of every set divided by n
will be denoted by the corresponding small letter, so it, nt and st are used to denote
It/n, Nt/n, and St/n, respectively. Further, we de�ne the set

L(z) := {u ∈ V : Cu > z}.

The size of L(z) is denoted by L(z). We de�ne ∆ to be maxu∈V Cu.

2.2. Some Useful Facts of Power Law Distributions

Let R be a power law probability distribution with exponent β, i.e., there are constants
c1 > 0 and c2 > 0 so that for every integer z > 1,

c1 · z1−β 6 Pr [Cu > z] 6 c2 · z1−β,

and Pr [Cu > 1] = 1.

Fact 2.2.1. If R is a power law distribution with β > 3, then Var [R] = O(1).

Proof. Clearly,

Var [R] 6 E
[
R2
]

=
∞∑
z=1

Pr
[
R2 > z

]
6 1 +

∞∑
z=2

√
c2 · z1−β <∞,

since β > 3.

Fact 2.2.2. Let {Cu : u ∈ V} be a set of n random variables and assume that each
Cu is generated according to a power law distribution with exponent β > 2. Then with
probability 1− o( 1

logn),

∆ := max
u∈V

Cu 6 n
1

β−1 · log n.

Proof. By de�nition,

Pr
[
Cu > n

1
β−1 log n

]
6
c2 · log1−β(n)

n
.

Applying the union bound over the Cu's, u ∈ V, yields that with probability at least
1− c2

logβ−1 n
= 1− o( 1

logn),

∆ 6 n
1

β−1 log n.

Recall that L(z) := {u ∈ V, Cu > z} and L(z) := |L(z)|.

Proposition 2.2.3. Let {Cu : u ∈ V} be a set of n independent random variables and
assume that each Cu is generated according to a power law distribution with exponent

β > 2. Then for every z = O(n
1

β−1 / log n), it holds with probability 1− o( 1
n)

n · c1 · z1−β

2
6 L(z) 6

3 · n · c2 · z1−β

2
.
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Proof. Let us de�ne an indicator random variable Iu for every u ∈ V so that

Iu :=

{
1 if Cu > z,
0 otherwise.

Since the Cu's are independent and identically distributed, so are the Iu's . Further,

c1 · z1−β 6 Pr [Iu = 1] 6 c2 · z1−β.

We know that E [L(z)] = E
[∑

u∈V Iu
]
. Hence,

n · c1 · z1−β 6 E [L(z)] 6 n · c2 · z1−β.

Applying Theorem 1.3.4 to the random variable X :=
∑

u∈V Iu yields that

Pr

[∣∣∣L(z)−E [L(z)]
∣∣∣ > E [L(z)]

2

]
< 2 · e−

E[L(z)]
10 6 2 · e−

n·c1·z
1−β

10

Since z = O(n
1

β−1 / log n), with probability 1− o( 1
n)

E [L(z)]

2
6 L(z) 6

3 ·E [L(z)]

2
,

and the claim follows.

2.3. Push Protocol

In this section we will show two general lemmas for the Push protocol with any dis-
tribution R. They will be used when analyzing the Push protocol and the Push-Pull

protocol.

Lemma 2.3.1. Consider the Push protocol and suppose that St 6 logc n, where c > 0

is an arbitrary constant. Then with probability at least 1−O( log2c n
n ) we have

It+1 = It + St.

Proof. Recall that St is the number of Push calls in round t + 1. By applying the
union bound, the probability that an informed node receives a call in round t + 1 is
bounded by StIt

n . So with probability 1− StIt
n , none of the calls are sent to a node in

It. Conditioning on this event, consider all calls one by one in an arbitrary order, the
probability that the i−th call informs a di�erent node from the previous i− 1 calls is
1 − i−1

Ut
. Therefore the conditional probability that St calls inform St di�erent nodes

is at least
St−1∏
i=1

(
1− i

Ut

)
>

(
1− St − 1

Ut

)St
> 1− S2

t

Ut
.

So the probability that St calls inform St di�erent uninformed nodes is at least(
1− StIt

n

)
·
(

1− S2
t

Ut

)
= 1−O

(
S2
t

n

)
,
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where the above equality holds because It 6 St 6 logc n and Ut = n(1 − o(1)). So

with probability at least 1−O
(

log2c n
n

)
we have It+1 = It + St and the claim follows.

Lemma 2.3.2. Consider the Push protocol.Then with probability at least 1 − o( 1
logn)

we have that

st − 2s2
t − 2

√
st log logn

n
6 nt 6 st.

Proof. Since Nt is always bounded by St, nt 6 st. We will prove the lower bound. Let
us de�ne Zv for every v ∈ Ut as the indicator random variable with

Zv :=

{
1 if v ∈ It+1,
0 otherwise.

Then we have Nt =
∑

v∈Ut Zv. Since the Zv's are identically distributed random vari-
ables,

E [Nt] = Ut ·Pr [Zv = 1] .

Let Xi ∈ V, 1 6 i 6 N = St, denote the target of the i-th call. De�ne
f(X1, X2, ....., XN ) := Nt to be the function counting the number of newly informed
nodes in round t + 1. Then E [f(X1, X2, ....., XN )] = E [Nt]. For each change in just
one coordinate of f , the following statement holds:

sup
x1,x2,...,xi,x′i∈V

|f(x1, x2, . . . , xi, . . . , xN )− f(x1, x2, . . . , x
′
i, . . . , xN )| 6 1.

Therefore by applying Theorem 1.3.8, we obtain

Pr
[∣∣∣Nt −E [Nt]

∣∣∣ >√4 · St · log logn
]
6 2 · e

−4St log logn
2St = o

(
1

log n

)
.

So with probability 1− o( 1
logn) we have

Nt > E [Nt]− 2
√
St log log n = Ut ·Pr [Zv = 1]− 2

√
St log log n. (2.1)

Now we estimate Pr [Zv = 1]. We know that

Pr [Zv = 1] = 1−
∏
u∈It

(
1− 1

n

)Cu
.

Hence using the approximation 1− x 6 e−x 6 1− x+ x2 for any x > 0 results into

Pr [Zv = 1] > 1− e−
∑
u∈It

Cu/n = 1− e−st > st − s2
t .

We now plug the value obtained by the above formula into (2.1) and normalize it. So
we obtain

nt > (1− it) ·
(
st − s2

t

)
− 2

√
st log log n

n

= st − s2
t − it ·

(
st − s2

t

)
− 2

√
st log logn

n

> st − 2s2
t − 2

√
st log logn

n
,
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where the last inequality comes from the fact that it 6 st.

Corollary 2.3.3. Consider the Push protocol. Then with probability at least 1−o( 1
logn)

for any round t in which St 6 n
8 we have

It+1 > It +
St
2
.

Proof. If we have 1 6 St 6 log n, then applying Lemma 2.3.1 yields that with probabil-

ity 1−o( 1
logn), Nt = St. If we have log n 6 St 6 n

8 , then 2s2
t 6

st
4 and 2

√
st log logn

n 6 st
4

which implies that
st
2

6 st − 2s2
t − 2

√
st log log n

n
.

On the other hand applying Lemma 2.3.2 shows that with probability at least 1 −
o( 1

logn),

st
2

6 st − 2s2
t − 2

√
st log logn

n
6 nt.

Corollary 2.3.4. Consider the Push protocol. For any round t and positive integer
k = O(log n) in which St+k = o(n) with probability 1− o( k

logn) we have

It+k > It ·
(

3

2

)k
.

Proof. By assumption we have that for every integer 1 6 i 6 k, St+i = o(n). Applying
Corollary 2.3.3 shows that with probability 1− o( 1

logn)

It+i > It+i−1 +
St+i−1

2
> It+i−1 ·

3

2
.

Using an inductive argument and the union bound for all k rounds imply that with
probability at least 1− o( k

logn) = 1− o(1) we have

It+k > It ·
(

3

2

)k
.

2.4. Push Protocol with a Bounded Mean

In this section we �rst study the Push protocol for the case where R has bounded
mean and arbitrary variance. Afterwards we consider the Push protocol where R has
bounded mean and variance. As this is the most basic setting, our runtime bound
is even tight up to low-order terms. To this end, let Ttotal = min{t | Pr [It = n] >
1− o(1)} be the �rst round in which all nodes are informed whp.
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Theorem 2.4.1. Assume that R is any distribution with E [R] = O(1). Then whp,
the Push protocol needs Θ(log n) rounds to inform all nodes.

Proof. We point out that the results in [FG85, Pit87] for the standard Push protocol
imply an upper bound of O(log n) rounds. So in what follows we only show that with
high probability the protocol needs at least Ω(log n) rounds to inform all nodes.In
the Push protocol, in round t+ 1, at most St randomly chosen uninformed nodes are
informed. This implies that E [St+1 |St] increases by at most E [R] · St. Since the
origin of the rumor is chosen without knowing Cu, E [S0] = E [R]. Using the law of
total expectation yields that

E [St] = E [. . .E [E [St|St−1] |St−2] . . . |S0] 6 (1 + E [R])t ·E [R] .

By applying Markov's inequality, we conclude that

Pr [It > n] 6 Pr [St > n] 6
(1 + E [R])t ·E [R]

n
.

Hence Ω(log n) rounds are necessary to inform all nodes whp.

Theorem 2.4.2. Consider the Push protocol and assume that R is a distribution with
E [R] = O(1) and Var [R] = O(1). Then |Ttotal− (log1+E[R] n+logeE[R] n)| = o(log n).

Suppose that each random number Cu is generated according to some distribution
R with bounded mean and variance. To prove this result, we study the protocol in
three consecutive phases. In the following we give a brief overview of the proof.

• The Preliminary Phase. This phase starts with just one informed node and
ends when It > log5 n and St 6 logO(1) n. Similar to the Birthday Paradox we
show that in each round every Push call informs a di�erent uninformed node and
thus the number of informed nodes increases by St > It. Hence after O(log log n)
rounds there are at least log5 n informed nodes. Further, since E [R] = O(1),
after O(log log n) rounds we also have St 6 logO(1) n.

• The Middle Phase. This phase starts when log5 n 6 It 6 St 6 logO(1) n and
ends when It > n

log logn . First we show that the number of Push calls St increases
by a factor of approximately 1 + E [R] as long as the number of informed nodes
is o(n). Then we prove that the number of newly informed nodes in round t+ 1
is roughly the same as St. Therefore an inductive argument shows that it takes
log1+E[R] n± o(log n) rounds to reach n

log logn informed nodes.

• The Final Phase. This phase starts when It > n
log logn and ends when all

nodes are informed with high probability. In this phase, we �rst prove that after
o(log n) rounds the number of uninformed nodes decreases to n

log5 n
. Then we

show that the probability that an arbitrary uninformed node remains uninformed

is e−E[R]±o( 1
logn

), so Ut decreases by this probability. Finally, an inductive ar-
gument establishes that it takes logeE[R] n ± o(log n) rounds until every node is
informed.
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In the following we present the detailed proofs of these phases. Before that we
show the following proposition.

Proposition 2.4.3. Let R be a probability distribution with E [R] = O(1) and
Var [R] = O(1). Let t be a round so that there exists a (possibly non-constant) δ > 0
such that Ut = n1−δ. Then with probability 1− o( 1

logn),∑
u∈Ut

Cu = O(n1−δ/2 · log1+ε n),

where ε > 0 is a constant independent of δ.

Proof. Let us de�ne a random variable

Wk :=
∑
u∈V

Cu · 1(Cu > k),

where 1(Cu > k) is an indicator random variable which takes one if Cu > k and zero
otherwise. By linearity of expectation and the fact that all Cu's are independent and
identically distributed random variables we have that

E [Wk] =
∑
u∈V

E [Cu1(Cu > k)] = n ·E [Cu1(Cu > k)]

= n ·
∑
l>k

l ·Pr [Cu = l] 6
n

k
·
∑
l>k

l2 ·Pr [Cu = l] .

Since Cu is a random variable with bounded variance,∑
l>k

l2 ·Pr [Cu = l] = O(1).

Thus, E [Wk] = O(nk ). Using Markov's inequality implies that with probability 1 −
O( 1

log1+ε n
) = 1− o( 1

logn), Wk = O(n·log1+ε n
k ). If we set k = nδ/2, then

∑
u∈Ut

Cu =
∑

{u∈Ut : Cu>k}

Cu +
∑

{u∈Ut : Cu<k}

Cu 6Wk +O(n1−δ ·k) = O(n1−δ/2 · log1+ε).

2.4.1. The Preliminary Phase

This phase starts with one informed node and ends when It > log5 n and St 6
logO(1) n. Let T0 be the �rst round in which the number of informed nodes exceeds
log5 n.

Lemma 2.4.4. For any round t = O(log log n), with probability at least 1− 1
log3 n

we

have St = logO(1) n.
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Proof. We will bound the expected number of calls in each round t as follows:

E [St |St−1] = St−1 +E

 ∑
u∈Nt−1

Cu

∣∣∣ St−1

 = St−1 +Nt−1 ·E [R] 6 St−1 · (1 +E [R]),

where the last inequality comes from the fact that Nt−1 6 St−1. Since the origin of
the rumor is chosen arbitrarily without knowing Cu, E [S0] = E [R]. Applying the law
of total expectation yields

E [St] = E [. . .E [E [St |St−1] |St−2] . . . |S0] 6 (1 +E [R])tE [S0] = (1 +E [R])tE [R] .

By using Markov's inequality we have that

Pr
[
St > (1 + E [R])t ·E [R] · log3 n

]
6

1

log3 n
.

So with probability 1− 1
log3 n

, for any t = O(log log n),

St 6 (1 + E [R])t ·E [R] · log3 n = logO(1) n.

Corollary 2.4.5. whp we have T0 = O(log log n).

Proof. Using Lemma 2.4.4 gives that with probability at least 1 − O( 1
log3 n

), St =

logO(1) n for any round t = O(log log n). Conditioning on this event, we can apply

Lemma 2.3.1 and conclude that with probability 1 −
(

logO(1) n
n

)
, for any round t =

O(log log n),
It+1 = It + St > 2It,

where the inequality comes from the fact that St > It. Solving the above recursive
inequality for any t = O(log log n) shows that It > 2t · I0 = 2t. So with probability(

1− 1

log3 n

)(
1−O(log log n) · logO(1) n

n

)
= 1− o(1),

there exists a round T0 = O(log log n) such that IT0 > log5 n and ST0 6 logO(1) n.

2.4.2. The Middle Phase

The phase starts when log5 n 6 It 6 St 6 logO(1) n and ends when It > n
log logn . Let

T1 be the �rst round so that IT1 > n
log logn . The main result of this subsection is that

|T1 − log1+E[R] n| = o(log n).

Lemma 2.4.6. Suppose that for a round t we have st = Ω
(

log5 n
n

)
and ,st = o(1).

Then for any k = O(log n) with (1 + E [R])kst = o(1), with probability 1− o
(

k
logn

)
,

for all 1 6 i 6 k, (1 + E [R])i · st · (1− o(1)) 6 st+i 6 (1 + E [R])i · st · (1 + o(1)).
(2.2)
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Proof. Consider the random variable
∑

u∈Nt Cu. By linearity of expectation,
E
[∑

u∈Nt Cu
]

= Nt ·E [R]. Since the Cu's are independent and identically distributed
random variables, we have that

Var

[∑
u∈Nt

Cu

]
= Nt ·Var [R] .

Chebychev's inequality implies that

Pr

[∣∣∣ ∑
u∈Nt

Cu −NtE [R]
∣∣∣ >√Nt log2 n

]
6
NtVar [R]

Nt log2 n
= o

(
1

log n

)
.

Since St+1 = St +
∑

u∈Nt Cu, it follows that with probability 1− o( 1
logn),

St +Nt ·E [R]−
√
Nt log2 n 6 St+1 6 St +Nt ·E [R] +

√
Nt log2 n. (2.3)

Using the above formula and the fact that Nt 6 St we have

St+1 6 St + St ·E [R] +

√
St log2 n 6 St ·

1 + E [R] +

√
log2 n

St

 .

Since St is a non-decreasing function in t and log5 n 6 It 6 St, with probability
1− o( 1

logn)

st+1 6 st · (1 + E [R])

(
1 +

√
log2 n

(1 + E [R])2 log5 n

)
< st · (1 + E [R])

(
1 +

1

log
3
2 n

)
.

An inductive argument and the union bound for all k events that violate the above
inequality shows that for any k = O(log n) with probability 1− o( k

logn),

for all 1 6 i 6 k, st+i 6 st · (1 + E [R])i (1 + o(1)) . (2.4)

In order to prove the left hand side of (2.2), we use Lemma 2.3.2 which states with
probability 1− o( 1

logn),

nt > st − 2s2
t − 2

√
st log log n

n
.

Using the lower bound in the inequality (2.3) and the above formula implies that with
probability 1− o( 1

logn),

st+1 > st + nt ·E [R]−

√
nt log2 n

n

> st + st ·E [R]− 2s2
t ·E [R]− 2

√
st log logn

n
·E [R]−

√
st · log2 n

n

> (1 + E [R])st − 2E [R] s2
t − 2

√
st log2 n

n

> (1 + E [R])st − F (st),
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where F (st) = 2E [R] s2
t + 2

√
st log2 n

n . An inductive argument and the union bound
for all k events that violate the above inequality show that for any integer k for which
(1 + E [R])k · st = o(1) with probability 1− o( k

logn),

for all 1 6 i 6 k, st+i > (1 + E [R])ist −
i−1∑
j=0

(1 + E [R])jF (st+i−j). (2.5)

Inequality (2.4) yields that with probability 1− o( k
logn),

for all 1 6 i 6 k = O(log n), st+i 6 a · st · (1 + E [R])i,

where a := 1 + o(1). F (st) is a non-decreasing function in st and hence for any
k = O(log n) and 1 6 j 6 k,

F (st+i−j) 6 F (a · (1 + E [R])i−jst)

6 2E [R] (1 + E [R])2(i−j)(a · st)2 + 2(1 + E [R])
i−j
2

√
a · st log2 n

n
.

Hence by combining the above inequality and (2.5), we conclude that for any integer
k, where (1 + E [R])kst = o(1) and k = O(log n) with probability 1 − o( k

logn), for all
1 6 i 6 k

st+i > (1 + E [R])ist − 2E [R]

i−1∑
j=0

(1 + E [R])2i−j(c · st)2 − 2

i−1∑
j=0

(1 + E [R])
i+j
2

√
c · st log2 n

n

> (1 + E [R])ist − d1 · (1 + E [R])2is2
t − d2 · (1 + E [R])i ·

√
st log2 n

n

= (1 + E [R])ist ·

1− d1 · (1 + E [R])ist − d2 ·

√
log2 n

stn

 ,

where d1 and d2 are constants which do not depend on i. Since (1 + E [R])kst = o(1)

and st = Ω( log5 n
n ), for any 1 6 i 6 k,

st+i > (1 + E [R])i · st · (1− o(1)).

Lemma 2.4.7. Suppose that log5 n
n 6 it 6 st 6

logO(1) n
n . Then for any k = O(log n)

with (1 + E [R])kst = o(1), whp,

it + f2 · (1 + E [R])k · st · (1− o(1)) 6 it+k 6 it + f1 · (1 + E [R])k · st · (1 + o(1)),

where f1 > 0 and f2 > 0 are constants.
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Proof. It is easy to see that

it+k = it +
k−1∑
i=0

nt+i 6 it +
k−1∑
i=0

st+i.

Applying Lemma 2.4.6 implies that for any integer k for which (1 +E [R])k · st = o(1),
with probability 1− o( k

logn) the following upper bound holds:

it+k 6 it +
k−1∑
i=0

st+i 6 it + st · (1 + o(1)) ·
k−1∑
i=0

(1 + E [R])i = it + f1 · (1 + E [R])k · st · (1 + o(1)),

(2.6)

where f1 > 0 is a constant. On the other hand, Lemma 2.3.2 yields that with proba-
bility 1− o( 1

logn),

nt > st − 2s2
t − 2

√
st log log n

n
.

Another application of Lemma 2.4.6 shows that with probability 1 − o( k
logn), for all

integers 1 6 i 6 k in which (1 + E [R])kst = o(1) and st >
log5 n
n ,

(1 + E [R])i · st · (1− o(1)) 6 st+i 6 (1 + E [R])i · st · (1 + o(1)).

Using these two inequalities, as long as (1+E [R])kst = o(1), we have with probability
1− o( k

logn),

it+k = it +
k−1∑
i=0

nt+i

> it +
k−1∑
i=0

st+i −
k−1∑
i=0

{
2s2
t+i + 2

√
st+i log log n

n

}

> it + (1− o(1))

k−1∑
i=0

(1 + E [R])ist − (2 + o(1))

k−1∑
i=0

{
(1 + E [R])2is2

t + (1 + E [R])i/2
√
st log logn

n

}

> it + f2 · (1 + E [R])k · st − d ·

(
(1 + E [R])2ks2

t + (1 + E [R])k/2
√
st log logn

n

)

> it + f2 · (1 + E [R])k · st ·

(
1− f · (1 + E [R])k · st − d · (1 + E [R])−k/2

√
log logn

stn

)
,

(2.7)

where f2 > 0 and d > 0 are constants. Since log5 n
n 6 it 6 st, we obtain that

it+k > it + f2 · (1 + E [R])k · st · (1− o(1)). (2.8)

By combining equations (2.8) and (2.7) we infer that with probability 1− o( k
logn),

it + f2 · (1 + E [R])k · st · (1− o(1)) 6 it+k 6 it + f1 · (1 + E [R])k · st · (1 + o(1)).
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Corollary 2.4.8. whp we have |T1 − log1+E[R] n| = o(log n).

Proof. Applying Corollary 2.4.5 shows that whp, T0 = O(log log n), where T0 is the

�rst round in which log5 n
n 6 iT0 6 sT0 6 logO(1) n

n . Now we can apply Lemma 2.4.7
and set k = log1+E[R] n− o(log n) such that with probability at least 1− o(1) we have

1
log logn 6 iT0+k 6 A

log logn , where A > 1 is a constant. Then we conclude that with
probability 1− o(1), |T1 − log1+E[R] n| = o(log n).

2.4.3. The Final Phase

This phase starts with at least n
log logn informed nodes and ends when all nodes get

informed. Let T1 be the �rst round in which IT1 > n
log logn and let T2 be the �rst round

in which all nodes are informed whp. We will show that whp, |(T2−T1)− logeE[R] n| =
o(log n).

Lemma 2.4.9. whp,
|(T2 − T1)− logeE[R] n| = o(log n).

Proof. We de�ne the indicator random variable Zv for every v ∈ Ut and any round
t > T1:

Zv =

{
1 if v does not get informed in round t+1,
0 otherwise.

Thus,

E [Ut+1 |Ut] = E

[∑
v∈Ut

Zv

]
= Ut ·Pr [Zv = 1] ,

where for simplicity we omit the conditioning of Ut+1 on Ut when dealing with the Zv's.

Using the fact that 1− 1
n = e−

1
n
−O( 1

n2
), we can approximate the value Pr [Zv = 1] as

follows,

Pr [Zv = 1] =
∏
u∈It

(
1− 1

n

)Cu
=
∏
u∈It

e−
Cu
n
−O(Cu

n2
)

= e−
∑
u∈It

(Cu
n

+O(Cu
n2

)) = e−st−O(
st
n

).

Since st
n = O( 1

n) for any round and e−O( 1
n

) = 1−O( 1
n),

E [Ut+1 |Ut] = Ute
−st · e−O( 1

n
) = Ute

−st −O
(
Ut
n

)
. (2.9)

Since for every u, v ∈ Ut,

Pr [Zu = 1 ∩ Zv = 1] = Pr [Zu = 1 | Zv = 1] ·Pr [Zv = 1] 6 Pr [Zv = 1] ·Pr [Zu = 1] ,

we have that
E [Zu · Zv] 6 E [Zu] ·E [Zv] .
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Therefore,

Var

[∑
v∈Ut

Zv

]
=
∑
v∈Ut

E
[
Z2
v

]
+
∑
u6=v

(E [Zu · Zv]−E [Zu] ·E [Zv])

6
∑
v∈Ut

E
[
Z2
v

]
= Ut ·Pr [Zv = 1] = E [Ut+1 | Ut] 6 Ut.

Applying Chebychev's inequality implies that with probability 1− o( 1
logn),

∣∣∣Ut+1 −E [Ut+1 |Ut]
∣∣∣ 6√Ut log2 n. (2.10)

Combining inequalities (2.9) and (2.10) yields that with probability 1− o( 1
logn),

∣∣Ut+1 − Ute−st
∣∣ 6√Ut log2 n+O

(
Ut
n

)
6 2

√
Ut log2 n. (2.11)

According to the value of Ut, we consider two cases.

• Suppose that Ut > n
log5 n

. Note that st > it > 1
log logn by the assumption of the

lemma. Since st is a non-decreasing value in t and Ut < n the recursive formula
(2.11) implies that with probability 1− o( 1

logn),

Ut+1 6 Ut · e
−1

log logn + 2

√
n log2 n.

Using an inductive argument shows that with probability 1− o( k
logn),

Ut+k 6 Ut · e
−k

log logn +

k−1∑
i=0

e
−i

log logn ·
(

2

√
n log2 n

)
.

Hence after at most k0 = 6 log log2 n rounds whp the number of uninformed
nodes decreases to n

log6 n
+O(

√
n log2 n), where c > 0 is a constant.

• Suppose that Ut 6 n
log5 n

. If we set nδ = log5 n, then applying Proposition 2.4.3

implies that for any t for which Ut = O( n
log5 n

) with probability 1− o( 1
logn),

∑
u∈Ut

Cu = o

(
n

log n

)
. (2.12)

On the other hand, using Chebychev's inequality yields that with probability
1− o( 1

logn), ∣∣∣∣∣∑
u∈V

Cu − n ·E [R]

∣∣∣∣∣ 6
√
n · log2 n.
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Combining the above equality and equality (2.12) results into an approximation
for st which is not best possible but it su�ces for our purpose. We know that

st =
∑
u∈V

Cu −
∑
u∈Ut

Cu.

So,

E [R]−

√
log2 n

n
− o

(
1

log n

)
6 st 6 E [R] +

√
log2 n

n
.

Therefore, st can be replaced by E [R] ± o( 1
logn) with probability 1 − o( 1

logn).
Inequality (2.11) implies that

α · Ut − 2

√
Ut log2 n 6 Ut+1 6 α · Ut + 2

√
Ut log2 n, (2.13)

where α = e−E[R]±o(1/ logn). So as long as Ut > log5 n with probability 1 −
o( 1

logn),

Ut+1 6 α · Ut + 2

√
Ut log2 n = α · Ut

1 + 2

√
log2 n

α2Ut


6 α · Ut

1 + 2

√
log2 n

α2 log5 n

 6 α · Ut

(
1 +

2

α log
3
2 n

)
.

Now for any k for which Ute−kE[R] > log5 n, with probability 1− o( k
logn),

Ut+k 6 αk · Ut ·

(
1 +

2

α log
3
2 n

)k
= αk · Ut · (1 + o(1)). (2.14)

In order to lower bound Ut+k we apply the lower bound (2.13) inductively. So
we have that with probability 1− o( k

logn),

Ut+k > αk · Ut −
k−1∑
i=0

2 · αi ·
√
Ut+k−i−1 log2 n.

Applying inequality (2.14) yields that with probability 1− o( k
logn),√

Ut+k−i log2 n 6 α
k−i
2 ·

√
Ut(1 + o(1)) log2 n.

Thus,

Ut+k > αk · Ut − (1 + o(1))

k−1∑
i=0

α
k−i−1

2 ·
√
Ut log2 n

> αk · Ut − c · α
k
2 ·
√
Ut log2 n, (2.15)
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where c > 0 is a constant and the last inequality holds because
∑k−1

i=0 α
k−i−1

2 =

O(α
k
2 ). Combining the inequalities (2.14) and (2.15) yields that for any k satis-

fying Ute−kE[R] > log5 n with probability 1− o( k
logn),

αk · Ut(1− o(1)) 6 Ut+k 6 αk · Ut(1 + o(1)).

Hence by taking k = logeE[R] n− o(log n), whp, the number of uninformed nodes
after T1 +k0 +k rounds decreases to log5 n, so we have at most log5 n uninformed
nodes. Using the fact that for every x > 0, 1 − x 6 e−x, the probability that a
node does not get informed after k1 additional rounds is bounded from above by

∏
u∈It

(
1− 1

n

)Cu·k1
6 e−k1

∑
u∈It

Cu .

We already know that st = E [R]± o( 1
logn) and st is an non-decreasing value in

t so ∑
u∈It

Cu = st >
E [R]

2
.

Thus the union bound implies that the probability that every node in Ut does
not get informed is bounded by log5 n · e

−k1·E[R]
2 . By choosing k1 = Θ(log log n)

we conclude that with probability 1 − o(1) all nodes get informed. So we have
with probability at least 1− o(1) that T2 6 T1 + k0 + k + k1, and k0 + k + k1 =
logeE[R] n+ o(log n).

2.5. Push-Pull Protocol

In this section we study the Push-Pull protocol where R has bounded mean and vari-
ance. Before we present our results about the PUSH-PULL protocol we show the
following general lemma.

Lemma 2.5.1. Consider the Push-Pull protocol and let {Cu : u ∈ V} be a sequence

of positive integers. Then whp, the Push-Pull protocol needs at least Ω

(
logn−logS0

log
∑
u
C2
u
n

)
rounds to inform all nodes.

Proof. We know that the probability that an uninformed node u gets informed by Pull

in round t+ 1 is bounded by It·Cu
n . Therefore,∑

u∈Ut

E [Cu1(u gets informed by Pull) | St] =
∑
u∈Ut

Cu ·Pr [u gets informed by Pull in round t+ 1]

6
∑
u∈Ut

Cu ·
It · Cu
n

6 It ·
∑
u∈V

C2
u

n
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On the other hand the probability that a node u ∈ Ut gets informed by Push in round
t+ 1 is at most St

n . So we get that∑
u∈Ut

E [Cu1(u gets informed by Push) | St]

=
∑
u∈Ut

Cu ·Pr [u gets informed by Push in round t+ 1]

6
∑
u∈Ut

Cu ·
St
n

6 St ·
∑
u∈V

C2
u

n
,

where the last inequality follows by Cu 6 C2
u. Combining the above inequalities implies

that

E [St+1 |St] 6 St + (St + It) ·

(∑
u∈V

C2
u

n

)
· 6

(
1 + 2 ·

∑
u∈V

C2
u

n

)
· St,

Applying the law of total expectation yields that

E [St] = E [. . .E [E [St|St−1] |St−2] . . . |S0] 6

(
1 + 2 ·

∑
u∈V

C2
u

n

)t
· S0.

Using Markov's inequality implies that

Pr [It = n] 6 Pr [St > n/2] 6
E [St]

n/2
6

(
1 + 2 ·

∑
u∈V

C2
u
n

)t
· S0

n/2
.

Therefore whp, the Push-Pull protocol needs at least Ω

(
logn−logS0

log
∑
u∈V

C2
u
n

)
rounds to inform

all nodes.

Theorem 2.5.2. Assume that R is any distribution with E [R] = O(1) and Var [R] =
O(1). Then for any constant ε > 0, with probability 1− ε the Push-Pull protocol needs
at least Θ(log n) rounds to inform all nodes.

Proof. The Push-Pull protocol with R ≡ 1 was studied in [KSSV00] where the authors
showed that with high probability the standard Push-Pull informs all nodes in Θ(log n)
rounds. This result implies that for any distribution R, with high probability, O(log n)
rounds are su�cient to inform all nodes. Let {Cu : u ∈ V} be a sequence of positive
integers each of which is generated independently according to some distribution R
with E [R] = O(1) and Var [R] = O(1). We call {Cu : u ∈ V} a good sequence if∑

u∈V C
2
u = O(n) and S0 = O(1). Since the origin of the rumor is chosen arbitrarily

without knowing Cu, E [S0] = E [R]. Applying Markov's inequality implies that for any
constant ε > 0 with probability at least 1 − ε/2, S0 = O(1). Since R is a probability
distribution with bounded variance,

∑
u∈V E

[
C2
u

]
= O(n). Another application of

Markov's inequality implies that with probability 1−ε/2,
∑

u∈V C
2
u = O(n). Therefore

using the union bound for failure probability of two mentioned events implies that
for �xed ε > 0 with probability at least 1 − ε, {Cu : u ∈ V} is a good sequence.
Conditioning on the event that {Cu : u ∈ V} is a good sequence, using Lemma 2.5.1
implies that with probability at least 1 − o(1) the Push-Pull protocol needs Ω(log n)
rounds to inform n nodes and the result follows.
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2.6. Push-Pull Protocol with Power Law Distribution 2 <
β < 3

In this section we analyze the Push-Pull protocol where R is a power law distribution
with 2 < β < 3 and show the following theorem.

Theorem 2.6.1. Assume that R is a power law distribution with 2 < β < 3. Then the
Push-Pull protocol informs all nodes in Θ(log log n) rounds with probability 1− o(1).

To prove the upper bound of O(log log n), we study the protocol in three consec-
utive phases and show that each phase takes only O(log log n) rounds. After that we
show the lower bound Ω(log log n).

2.6.1. Proof of the Upper Bound

The Preliminary Phase. This phase starts with just one informed node and ends

when It > n
1

β−1 /(2 · log n). Let T1 be the �rst round where IT1 > n
1

β−1 /(2 log n).
We will show that T1 = O(log log n). First we claim that O(log log n) rounds are
su�cient to have logO(1) n informed nodes. Then we will show that in round t + 1
with probability 1− e−Ω(logn) there exists a node u with Cu > I1+γ

t , γ := 3−β
2(β−2) > 0,

which pulls the rumor and consequently St+1 > I1+γ
t . Then considering only Push

calls it follows that with probability 1− o( 1
logn),

It+2 = It+1 +Nt+1 > It+1 + St+1(1− o(1)) >
1

2
I1+γ
t .

So in every two rounds, It is increased by a factor of 1
2I

γ
t and hence after O(log log n)

rounds the phase ends. For a complete proof see the following lemma.

Lemma 2.6.2. whp, T1 = O(log log n).

Proof. At �rst we only consider Push calls and apply Lemma 2.3.1 which states that

as long as St 6 log
2

3−β n, with probability 1−O( log
4

3−β n
n ),

It+1 = It + St > 2It.

Thus as long as St 6 log
2

3−β n, in each round the number of informed nodes is at
least doubled. So we conclude that whp, O(log log n) rounds are su�cient to inform

log
2

3−β n nodes. Let T0 be the �rst round when IT0 > log
2

3−β n. Let us de�ne the
constant γ := 3−β

2(β−2) > 0. Let T be the �rst round such that

I
(1+γ)
T−1 6 n

1
β−1 / log n < I

(1+γ)
T .

Now for any T0 6 t 6 T , we can apply Proposition 2.2.3 and conclude that with
probability 1− o( 1

n),

∑
u∈L(I1+γt )

Cu > L(I1+γ
t ) · I1+γ

t >
n · c1 · I(1+γ)(2−β)

t

2
. (2.16)
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So,

It
n

∑
u∈L(I1+γt )

Cu >
c1 · I1+(1+γ)(2−β)

t

2
=
c1 · I3−β+γ(2−β)

t

2
.

We will bound the probability that none of u ∈ L(I1+γ
t ) gets informed by Pull calls in

round t+ 1 as follows,

∏
u∈L(I1+γt )

(
1− It

n

)Cu
=

(
1− It

n

)∑
u∈L(I1+γt )

Cu

6 e−c1·I
3−β+γ(2−β)
t = e−c1·I

3−β
2

t .

Since for any t > T0, It > log
2

3−β n, we have that with probability at least 1−n−c1 , at
least one node in L(I1+γ

t ) gets informed by Pull in round t+ 1. Hence we have that

St+1 > I1+γ
t .

Let us now consider the Push calls in round t+ 2. By applying Lemma 2.3.1 we know
that as long as St+1 = o(n) with probability 1− o( 1

logn),

St+1(1− o(1)) 6 Nt+1.

Thus,

It+2 > It+1 + St+1(1− o(1)) >
I1+γ
t

2
.

An inductive argument shows that for any integer k > 1 as long as I1+γ
T0+2k−2 6

n
1

β−1 / log n, with probability 1− o( k
logn)

IT0+2k >

(
1

2

)∑k−1
i=0 (1+γ)i

I
(1+γ)k

T0
=

(
IT0
2γ

)(1+γ)k

· 21/γ >

(
log

2
3−β n

C ′

)(1+γ)k

,

where C ′ = 2γ = O(1). So we conclude that after T0 + 2k rounds, where k =

o(log1+γ log n), there are two cases: either IT0+2k > n
1

β−1 /(2 log n) which means T1 6
T0 + 2k = O(log log n) and we are done, or

IT0+2k < n
1

β−1 /(2 log n) < n
1

β−1 / log n < I1+γ
T0+2k.

In the latter case, we change the value γ to γ′ which satis�es I1+γ′

T0+2k = n
1

β−1 / log n and
a similar argument shows that

IT0+2k+2 > n
1

β−1 /(2 log n).
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The Middle Phase. This phase starts with at least n
1

β−1 /(2 log n) informed nodes
and ends when It > n

logn . Let T2 be the �rst round in which n
logn nodes are informed.

We will show that T2−T1 = O(log log n). In contrast to the Preliminary Phase where
we focus only on an informed node with maximal Cu, we now consider the number
of informed nodes u with a Cu above a certain threshold Zt+1 which is inversely
proportional to It.

Lemma 2.6.3. Suppose that It > n
1

β−1 /(2 log n) for some round t. Then with proba-
bility 1− o( 1

n),

|L(Zt+1) ∩ It+1| >
1

4
L(Zt+1),

where Zt+1 := n log logn
It

.

Proof. We consider two cases. If at least 1
4 of the nodes in L(Zt+1) are already informed

(before round t + 1), then the statement of the lemma is true. Otherwise |L(Zt+1) ∩
Ut+1| > 3

4L(Zt+1). In the latter case, we de�ne

L′(Zt+1) := L(Zt+1) ∩ Ut+1.

Let Xu be an indicator random variable for every u ∈ L′(Zt+1) so that

Xu :=

{
1 if u gets informed by Pull in round t+ 1,
0 otherwise.

Then we de�ne a random variable X to be X :=
∑

u∈L′(Zt+1)Xu. Since for every

u ∈ L′(Zt+1), Cu > Zt+1 = n log logn
It

, it follows that

Pr [Xu = 1] = 1−
(

1− It
n

)Cu
> 1−

(
1− It

n

)Zt+1

= 1− e−Ω(log logn) = 1− o(1).

Thus Pr [Xu = 1] > 3
4 and E [X] =

∑
u∈L′(Zt+1) Pr [Xu = 1] > 3

4 |L
′(Zt+1)|. Since

|L′(Zt+1)| = |L(Zt+1) ∩ Ut+1| > 3
4L(Zt+1),

E [X] >
9

16
L(Zt+1).

We know that It > n
1

β−1 /(2 log n) and also It is a non-decreasing function in t, so

Zt+1 =
n log log n

It
6 2 · n

β−2
β−1 log n log logn < n

1
β−1 /log n,

where the last inequality holds because β < 3. Now we can apply Proposition 2.2.3
(see appendix) to infer that with probability 1− o( 1

n),

L(Zt+1) >
n · c1 · Z1−β

t+1

2
>
c1 · logβ−1 n

2
.

Therefore,

E [X] >
9 · c1 · logβ−1 n

32
.
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Then applying Theorem 1.3.4 results into

Pr

[
X <

E [X]

2

]
6 Pr

[
|X −E [X] | > E [X]

2

]
< 2e−

E[X]
10 6 2e−Ω(logβ−1 n). (2.17)

So with probability 1− o( 1
n), we have that

|L(Zt+1) ∩ It+1| > X >
E [X]

2
>

3|L′(Zt+1)|
8

>
1

4
L(Zt+1),

where the last inequality holds because |L′(Zt+1)| > 3
4L(Zt+1).

Lemma 2.6.4. With probability 1− o(1), T2 − T1 = O(log log n).

Proof. Since It > n
1

β−1 /(2 log n), Zt+1 = n log logn
It

< n
1

β−1 / log n, using Proposition

2.6.3 results into a lower bound for |L(Zt+1) ∩ It+1|. So with probability 1− o( 1
n),

St+1 =
∑
u∈It+1

Cu > |L(Zt+1 ∩ It+1)| · Zt+1 >
1

4
L(Zt+1) · Zt+1.

By applying Proposition 2.2.3, we conclude that with probability 1− o( 1
n), L(Zt+1) >

n·c1·Z1−β
t+1

2 . Therefore, with probability 1− o( 1
n),

St+1 >
n · c1 · Z2−β

t+1

8
.

As long as St+1 = o(n), we can apply Lemma 2.3.2 for the Push protocol to round
t+ 2 implying that with probability 1− o( 1

logn),

It+2 = It+1 +Nt > It+1 + St+1(1− o(1)).

Thus,

It+2 >
St+1

2
>
c1

16
n · Z2−β

t+1 =
c1

16
· n3−β · log log2−β n · Iβ−2

t .

By an inductive argument, we obtain that for any integer k > 1 with St+k = o(n), it
holds with probability 1− o( k

logn),

It+2k >
( c

16
n3−β · log log2−β n

)∑k−1
i=0 (β−2)i

I
(β−2)k

t =
( c

16
n3−β · log log2−β n

) 1−(β−2)k

3−β
I

(β−2)k

t .

Therefore there exists k = O(log 1
β−2

log n) such that

It+2k >
( c

16
n3−β · log log2−β n

) 1−O(1/ logn)
3−β

I
1/ logn
t

= Ω

(
n1−O(1/ logn)

( c
16
· log log2−β n

) 1−O(1/ logn)
3−β

)
= Ω

(
n

log logδ n

)
,

where δ = β−2
3−β (1−O(1/ log n)) > 0. Hence T2 6 T1 +2k = T1 +O(log log n) whp.
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The Final Phase. This phase starts with at least n
logn informed nodes. Since the

runtime of our Push-Pull protocol is stochastically smaller than the runtime of the
standard Push-Pull protocol (i.e. Cu = 1 for every u ∈ V ), we simply use the result
by Karp et. al in [KSSV00, Theorem 2.1] for the standard Push-Pull protocol which
states that once It > n

logn , additional O(log log n) rounds are whp su�cient to inform
all n nodes.

2.6.2. Proof of the Lower Bound

Since increasing the number of informed nodes can only decrease the runtime of the
protocol, we may assume that at the beginning there are logb n random informed
nodes, where b := max{4, 2 + 3(3−β)

β−2 }. Applying Markov's inequality to the random

variable S0 implies that with probability 1 − o( 1
logn), logb n 6 S0 6 log2+b n. In the

following we lower bound the number of rounds to reach n
1

log logn informed nodes. We
do this by keeping track of the largest value of Cu among all informed nodes and show

that this value does not exceed I
1

β−2

t log
3

β−2 n with high probability.

By Fact 2.2.2, with probability 1 − o( 1
logn) we have maxu∈V Cu 6 n

1
β−1 log n.

Let i∗ be the smallest positive integer so that 2i
∗
> n

1
β−1 / log n. Then i∗ < log n.

Let us de�ne the set Mi := {u ∈ V : 2i−1 6 Cu < 2i} for 1 6 i 6 i∗ − 1 and

Mi∗ := {u ∈ V : 2i
∗−1 6 Cu 6 n

1
β−1 log n}. We denote the size of Mi with Mi. By

de�nition, for any 1 6 i 6 i∗, Mi 6 L(2i−1). Applying Proposition 2.2.3 implies that
with probability 1 − o( 1

n) for any 1 6 i 6 i∗ we have Mi 6 3
2 · c2 · n · 2(i−1)(1−β). Let

us de�ne the indicator random variable Ziu for every u ∈ Ut ∩Mi as follows:

Ziu :=

{
1 if u gets informed by Pull in round t+1,
0 otherwise.

Hence, Pr
[
Ziu = 1

]
6 Cu · Itn 6 It·2i

n . Let Pi be the probability that at least one node
in Ut ∩Mi gets informed by Pull in round t+ 1. Then, for any 1 6 i 6 i∗ − 1,

Pi 6
∑

u∈Ut∩Mi

Pr
[
Ziu = 1

]
6Mi ·

It
n
· 2i 6 3 · c2 · It · 2(i−1)(2−β).

Since 2i
∗
> n

1
β−1 /log n and Cu 6 n

1
β−1 log n with probability 1− o( 1

logn),

Pi∗ 6
∑

u∈Ut∩Mi∗

Pr
[
Ziu = 1

]
6

3

2
· c2 · n · 2(i∗−1)(1−β) · It

n
· n

1
β−1 log n

6 6 · c2 · It · n
2−β
β−1 logβ−1 ·n.

So as long as It 6 n
1

log logn , Pi∗ = o( 1
log3 n

). We de�ne ∆t := S
1

β−2

t log
3

β−2 n. Let

1 6 it 6 i∗ be the smallest integer so that 2it > ∆t. Then for any it 6 i 6 i∗ we have,

Pi 6 3 · c2 · 2β−2 · It · 2i(2−β) 6 6 · c2 · It ·∆2−β
t 6 6 · c2 · log−3 n.
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Let Et be the event that no node with Cu > ∆t gets informed by Pull in round t+ 1.
Then we have

Pr [Et] > 1−
i∗∑
i=it

Pi > 1− o
(

1

log n

)
. (2.18)

Let us de�ne S(1)
t+1 :=

∑
u∈NPull

t
Cu. Conditioning on the event Et we obtain that

E
[
S

(1)
t+1 | St

]
6

it∑
i=1

∑
u∈Ut∩Mi

Cu ·
Pr
[
Ziu = 1

]
Pr [Et]

6 (1 + o(1)) ·
it∑
i=1

2i ·Mi ·
It
n
· 2i 6 (1 + o(1)) · St

n
·
it∑
i=1

2i ·Mi · 2i.

By de�nition of it, we have 2it 6 2 · ∆t and Mi 6 L(2i−1) 6 3
2 · c2 · 2(i−1)(1−β) · n.

Hence the last sum is bounded by

(1 + o(1)) ·
it∑
i=1

22i · It · 2(i−1)(1−β) 6 24 · c2 · It · 2it(3−β) 6 24 · c2 · It · (2 ·∆t)
3−β

6 24 · c2 · S
1+ 3−β

β−2

t log
3(3−β)
β−2 n.

Conditioning on the event Et and applying Markov's inequality imply that with prob-
ability 1− o( 1

logn),

S
(1)
t+1 6 log2 n ·E

[
S

(1)
t+1 | St

]
6 24 · c2 · S

1+ 3−β
β−2

t log
2+

3(3−β)
β−2 n. (2.19)

Let us de�ne the indicator random variable Yu for every u ∈ Ut as follows:

Yu :=

{
1 if u gets informed by Push in round t+1,
0 otherwise.

Then we have Pr [Yu = 1] 6 St
n . Let A denote the event that

∑
u∈V Cu 6 n · log2 n.

Since E [R] = O(1), applying Markov's inequality implies that Pr [A] > 1 − o( 1
logn).

Let us de�ne S(2)
t+1 :=

∑
u∈NPush

t
Cu. Conditioning on the event A we have

E
[
S

(2)
t+1 | St

]
=
∑
u∈Ut

Cu ·
Pr [Yu = 1]

Pr [A]
6 (1 + o(1)) ·

∑
u∈V

Cu ·
St
n

6 (1 + o(1)) · St · log2 n.

Conditioning on the event A and applying Markov's inequality implies that with
probability 1− o( 1

logn),

S
(2)
t+1 6 log2 n ·E

[
S

(2)
t+1 | St

]
6 St · log4 n (2.20)
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Combining inequalities (2.19) and (2.20) implies that with probability 1− o( 1
logn) for

every 0 6 t 6 log logn

St+1 6 St + S
(1)
t+1 + S

(2)
t+1 6 St + 24 · c2 · S

1+ 3−β
β−2

t log
2+

3(3−β)
β−2 n+ St · log4 n

6 St + 24 · c2 · Sb+1
t + S2

t 6 Sb+2
t ,

where the last inequality holds because b = max{4, 2 + 3(3−β)
β−2 } and logb n 6 It 6 St.

We know that with probability 1 − o( 1
logn) we have S0 6 logb+2 n. An inductive

argument shows that for every 1 6 t 6 log log n whp, St 6 S
(b+2)t

0 6 log(b+2)t+1
. If

we set T := 1
2 · logb+2 log n, then whp we have ST < n

1
log logn . Thus T = Ω(log log n)

rounds are necessary to inform all nodes whp. This �nishes the proof of the lower
bound of Ω(log log n).

2.7. Push-Pull Protocol with Power Law Distribution β = 3

In this section we analyze the Push-Pull protocol where R is a power law distribution
with β = 3 and show the following theorem.

Theorem 2.7.1. Assume that R is a power law distribution with β = 3. Then the

Push-Pull protocol informs all nodes in Θ
(

logn
log logn

)
rounds with probability 1− o(1).

In order to prove this result we �rst show a lower bound of Ω
(

logn
log logn

)
and then

show an upper bound which is tight up to a constant factor. Throughout this section
we assume that the power law distribution with β = 3 has an additional property that
for every positive integer z

Pr [R = z] >
c

z3
, (2.21)

where c is a universal constant. Let us de�ne L∗(z) = {u : Cu = z} and L∗(z) =
|L0(z)|. Furthermore, we de�ne It(z) = It ∩ L∗(z) and Nt(z) = Nt ∩ L∗(z), whose
sizes are denoted by It(z) and Nt(z), respectively. NPush

t (z) and NPull
t (z) are denoting

the size of the newly informed nodes with Cu = z by Push and Pull transmissions,
respectively. In the following we show a useful fact about L∗(z).

Fact 2.7.2. Let R be a power law distribution with β = 3. Then for every z = O(n1/4),
with probability 1− o( 1

n) we have that

n ·Pr [R = z]

2
6 L∗(z) 6

3 · n ·Pr [R = z]

2
.

Proof. We know that E [L∗(z)] = n · Pr [R = z]. By using the inequality (2.21)
we have that for any z = O(n1/4), Pr [R = z] = Ω(n−3/4). Then we have that
E [L0(z)] = Ω(n2/5) and using a Cherno� bound (see e.g., Theorem 1.3.4) yields that
with probability 1− o( 1

n) the inequality in the statement holds.
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2.7.1. Proof of Lower Bound

Theorem 2.7.3. whp, the Push-Pull needs at least Ω
(

logn
log logn

)
rounds to inform all n

nodes.

Proof. Let {Cu : u ∈ V} be a sequence of positive integers where every Cu is generated
independently according to a power law distribution with β = 3. We call a sequence
{Cu : u ∈ V} is good if it ful�lls three conditions:

1. For every u ∈ V, Cu < n.

2. S0 = O(log n).

3.
∑

u∈V
C2
u
n = O(log2 n).

In the following we show that with probability 1− o(1) every sequence {Cu, u ∈ V} is
good. By de�nition of the power law distribution for β = 3 we have that

Pr [Cu 6 n] > 1− c1

n2
= 1− o(1).

We know that E [R] = O(1), so Markov's inequality implies that with probability
1−O( 1

logn), S0 = O(log n). Conditioning on the event that for every u ∈ V, Cu < n
we get

E
[
C2
u|Cu 6 n

]
6

∑n
z=1 Pr

[
R2 > z

]
Pr [Cu 6 n]

6 (1 + o(1)) · c1

n∑
z=1

1

z
= (1 + o(1)) · c1 · log n.

So applying Markov's inequality yields that with probability 1−O( 1
logn),

∑
u∈V

C2
u

n
= O

(
log2 n

)
.

Therefore we have that whp, the sequence {Cu : u ∈ V} is good. Conditioning on this
event and then applying Lemma 2.5.1 shows that whp the Push-Pull needs at least

Ω

(
log n− logS0

log
∑

u∈V C
2
u/n

)
= Ω

(
log n

log log n

)
rounds to inform n nodes.

2.7.2. Proof of Upper Bound

Before we present a proof for the upper bound we show the following two lemmas.

Lemma 2.7.4. Suppose that St 6 n
log6 n

and z 6 min{ n
It·log6 n

,O(n
1
4 )}. Then with

probability 1− o( 1
logn), for any round t = O(log n) we have that

|Ut(z) ∩ L∗(z)| >
L∗(z)

2
>
n ·Pr [R = z]

4
.
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Proof. By considering the Push call we have that the size of newly informed nodes is
bounded by St. Since they are chosen randomly, we have that

E
[
NPush
t (z)|St

]
6 St ·Pr [R = z] . (2.22)

On the other hand we have that

E
[
NPull
t (z)|It

]
6

∑
u∈Ut∩L∗(z)

Pr [u gets informed by Pull in round t+ 1]

6 L∗(z) ·Pr [u gets informed by Pull in round t+ 1]

= L∗(z) ·
(

1−
(

1− It
n

)z)
6 L∗(z) · 2 · It · z

n

where the second inequality holds because |Ut ∩L∗(z)| 6 L∗(z) and the last one holds
as we assume that It

n 6 St
n < 1

2 and for any 0 6 a 6 log 2
2 , e−2a 6 1 − a 6 e−a.

Applying Fact 2.7.2 shows that for any z = O(n
1
4 ) with probability 1− o( 1

n) we have

n ·Pr [R = z]

2
6 L∗(z) 6

3 · n ·Pr [R = z]

2
. (2.23)

Thus,

E
[
NPull
t (z)|St

]
6 3 · It · z ·Pr [R = z]. (2.24)

Combining (2.22) and (2.24) implies that

E [Nt(z)|St, It] 6 St ·Pr [R = z] + 3 · It · z ·Pr [R = z]

We know that It+1(z) = I0(z) +
∑t

i=1Ni(z). Using the linearity of expectation we
have that

E [It+1(z)|Si, Ii, 0 6 i 6 t] = I0(z) +
t∑
i=0

E [Ni(z)|Si, Ii]

6 I0(z) + Pr [R = z] ·
t∑
i=0

(Si + 3 · Ii · z)

6 1 + Pr [R = z] · (t+ 1) · (St + z · 3 · It),

where the last inequality comes from the fact that Si and Ii are non-decreasing func-
tions in t. By the assumption z 6 min{ n

It·log6 n
,O(n

1
4 )} and St 6 n

log6 n
, for any round

t = O(log n) we have that

E [It+1(z)|Si, Ii, 1 6 i 6 t] 6 2 · (t+ 1) · (St + 3 · It · z) ·Pr [R = z] 6
n ·Pr [R = z]

log4 n
.

Applying Markov's inequality shows that with probability 1 − o( 1
logn) for any round

t = O(log n),

It+1(z) 6 log2 n ·E [It+1(z)|Si, Ii, 0 6 i 6 t] 6
n ·Pr [R = z]

log2 n
6
L∗(z)

2
,

where the last inequality follows from inequality (2.23). Therefore we infer that with
probability 1− o( 1

logn), |Ut(z) ∩ L∗(z)| > L∗(z)
2 .
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Lemma 2.7.5. Suppose that It = e
Ω
(

logn
log logn

)
and St 6 n

log6 n
. Then whp, the Push-Pull

protocol needs O
(

logn
log logn

)
rounds to inform at least e

logn− logn
log logn nodes.

Proof. Let Xu be an indicator random variable for every u ∈ Ut(z) ∩ L∗(z) so that

Xu :=

{
1 if u gets informed by Pull in round t+ 1,
0 otherwise.

Then we de�ne the random variable Xt(z) :=
∑

u∈Ut(z)∩L∗(z)Xu. Let us de�ne zt =

min{I1/4
t , n

It·log6 n
}. Using the approximation e−2·a 6 1 − a 6 e−a, 0 6 a 6 1/2, we

know that for any z 6 zt we have

Pr [Xu = 1] = 1−
(

1− It
n

)z
> 1− e−

It·z
n >

It · z
2 · n

,

Applying Lemma 2.7.4 shows that with probability 1− o( 1
logn) for any z 6 zt and any

round t = O(log n),

E [Xt(z)] =
∑

u∈Ut(z)∩L∗(z)

Pr [Xu = 1] >
L∗(z) · It · z

4 · n
>
It · z ·Pr [R = z]

8
>
c · It
I

3
4
t

,

(2.25)

where the last inequality holds because Pr [R = z] > c
z3
. Since It = e

Ω
(

logn
log logn

)
and

Xu's are independent, applying a Cherno� bound (see e.g. Theorem 1.3.4) implies
that with probability 1− o( 1

n),

Xt(z) >
E [Xt(z)]

2
.

Using the above inequality and inequality (2.25) shows that with probability 1−o( 1
logn)

there exists a constant C so that

St+1 >
zt∑
z=1

Xt(z) · z >
It
16

zt∑
z=1

z2 ·Pr [R = z] >
c · It
16

zt∑
z=1

1

z
= It · C · log zt.

For any positive integer k such that It+k ∈ [e
Ω
(

logn
log logn

)
, e

logn− logn
log logn ], we have that

e
Ω
(

logn
log logn

)
6 zt. Hence from the above inequality we conclude that here exists a

constant C1 so that

St+1 > C1 · It ·
log n

log log n
> C1 · It ·

√
log n.

Considering only Push transmission for St = o(n) and applying Lemma 2.3.2 implies
that with probability 1− o( 1

logn)

It+2 >
St+1

2
>
C1 · It ·

√
log n

2
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An inductive argument shows that for any integer k

It+2k > It ·
(
C1 ·
√

log n

2

)k
.

as long as St+2k = n
log6 n

whp. Thus there is a k = O
(

logn
log logn

)
so that after t + 2k

rounds there are at least e
logn− logn

log logn informed nodes.

Corollary 2.7.6. Let R be a power law distribution with β = 3. Then whp, the

Push-Pull protocol informs all n nodes in O
(

logn
log logn

)
rounds.

Proof. Applying Corollary 2.3.4 shows that as long as St = o(n) with probability
1− o(1), for any round t = O(log n),

It >

(
3

2

)t
· I0.

So after O
(

logn
log logn

)
rounds there are at least e

Ω
(

logn
log logn

)
informed nodes. Now we

apply Lemma 2.7.5 and conclude that after O
(

logn
log logn

)
rounds we have at least

e
logn− logn

log logn informed nodes. Another application of Corollary 2.3.4 implies that after
O( logn

log logn) rounds we have at least n
log logn informed nodes. Since we have enough

informed nodes, the result by Karp et. al in [KSSV00, Theorem 2.1] for the stan-
dard Push-Pull protocol can be applied to show that once It > n

logn , whp additional
O(log log n) rounds are su�cient to inform all n nodes.

2.8. Generating a New Ct
u in Each Round

In this section we analyze the Push-Pull protocol for a new model. In this model
according to some distribution R, at the beginning of each round t, every node u
generates a random natural number Ctu > 1 independent of all other nodes. Then in
round t, the Push-Pull protocol disseminates the information according to {Ctu : u ∈ V},
i.e., node u calls Ctu random nodes. We prove the following theorem regarding to this
model.

Theorem 2.8.1. Assume that R is any distribution with E [R] = O(1). Then whp,
the Push-Pull protocol needs Ω(log n) rounds to inform all nodes.
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Proof. The probability that a node u ∈ Ut gets informed by Pull is as follows:

Pr [u gets informed by Pull in round t+ 1]

=
∞∑
x=1

Pr
[
u gets informed by Pull in round t+ 1 | Rt+1

u = x
]
·Pr

[
Rt+1
u = x

]

=

b n
2It
c∑

x=1

(
1−

(
1− It

n

)x)
·Pr

[
Rt+1
u = x

]
+

∞∑
x=b n

2It
c+1

(
1−

(
1− It

n

)x)
·Pr

[
Rt+1
u = x

]

6
It
n

b n
2It
c∑

x=1

x ·Pr
[
Rt+1
u = x

]
+

∞∑
x=b n

2It
c+1

Pr
[
Rt+1
u = x

] (
since 1−

(
1− It

n

)x
6
It · x
n

)

6
It
n
·E [R] + Pr

[
Rt+1
u >

⌊
n

2It

⌋]
6
It
n
·E [R] +

2It
n
·E [R] ,

where the last inequality follows from Markov's inequality. Recall that NPull
t and

NPush
t are the number of newly informed nodes by Pull and Push calls in round t + 1

respectively. Hence,

E
[
NPull
t | It

]
=
∑
u∈Ut

Pr [u gets informed by Pull in round t+ 1]

6
Ut · It · 3 ·E [R]

n
< 3 · It ·E [R] .

Recall that St is the number of Push calls by informed nodes in round t+1. Therefore,
NPush
t 6 St and

E
[
NPush
t | It

]
6 E [St | It] =

∑
u∈It

E
[
Ct+1
u

]
= It ·E [R] .

Hence,

E [It+1 | It] 6 It + E
[
NPull
t | It

]
+ E

[
NPush
t | It

]
6 (1 + 4 ·E [R]) · It.

By using the law of total expectation, we conclude that E [It] < (1 + 4 ·E [R])t. If we
set T = c · log n, where c > 0 is a small constant, then

Pr
[
IT >

√
n
]
6

E [IT ]√
n

6
(1 + 4 ·E [R])T√

n
= o(1).

So with probability 1− o(1), we need at least c · log n rounds to inform all nodes.
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3
Randomized Rumor Spreading in Poorly

Connected Networks

Randomized rumor spreading is an important primitive for information dissemination
in networks and has numerous applications in network science, ranging from spreading
information in the WWW and Twitter to spreading viruses and di�usion of ideas
in human communities (see [CLP09, DFF11, DFF12a, DFF12b, FPS12]). A well
studied rumor spreading protocol is the Push-Pull protocol, introduced by Demers et
al. [DGG+87]. Suppose that one node in a network is aware of a piece of information,
the `rumor.' The protocol proceeds in rounds. In each round, every informed node
contacts a random neighbor and sends the rumor to it (`pushes' the rumor), and every
uninformed nodes contacts a random neighbor and gets the rumor if the neighbor
possibly knows it (`pulls' the rumor). Note that this is a synchronous protocol, e.g. a
node that receives a rumor in a certain round can only forward it in the next round.

A point to point communication network can be modeled as an undirected graph:
the nodes represent the processors and the links represent communication channels
between the nodes. Studying rumor spreading has several applications to distributed
computing in such networks, of which we mention just two. The �rst is in broad-
casting algorithms: a single processor wants to broadcast a piece of information to all
other processors in the network (see [HHL88] for a survey). There are at least three
advantages to the Push-Pull protocol: it is simple (each node makes a simple local
decision in each round; no knowledge of the global topology is needed; no state is
maintained), scalable (the protocol is independent of the size of network: it does not
grow more complex as the network grows) and robust (the protocol tolerates random
node/link failures without the use of error recovery mechanisms, see [FPRU90]). A
second application comes from the maintenance of databases replicated at many sites,
e.g., yellow pages, name servers, or server directories. After introducing updates to a
few nodes, these should be propagate to all nodes in the network. In each round, a
processor communicates with a random neighbor and they share any new updates, so
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that eventually all copies of the database store to the same contents (see [DGG+87] for
details). Other than the aforementioned applications, rumor spreading protocols have
successfully been applied in various contexts such as resource discovery [HBLL99],
load balancing [BGPS06], data aggregation [KDG03], and the spread of computer
viruses [BBCS05].

We only consider simple, undirected and connected graphs. For a graph G, let
∆(G) and diam(G) denote the maximum degree and the diameter of G, respectively,
and let deg(v) denote the degree of a vertex v. Most studies in randomized rumor
spreading focus on the runtime of this protocol, de�ned as the number of rounds
taken until a rumor initiated by one vertex reaches all other vertices. It is clear that
diam(G) is a lower bound for the runtime of the protocol. Feige et al. [FPRU90]
showed that for an n-vertex G, the rumor reaches all vertices in O(∆(G) · (diam(G) +
log n)) rounds whp. This protocol has been studied on many graph classes such as
complete graphs [KSSV00], Erdös-Réyni random graphs [Els06, FPRU90, FHP10],
random regular graphs [BEF08, FP10], and hypercubes [FPRU90]. For most of these
classes it turns out that whp the runtime is O(diam(G)+log n), which does not depend
on the maximum degree.

Randomized rumor spreading has recently been studied on real-world network
models. Doerr, Fouz, and Friedrich [DFF11] proved an upper bound of O(log n) whp
for the runtime on preferential attachment graphs, and Fountoulakis, Panagiotou, and
Sauerwald [FPS12] proved the same upper bound (up to constant factors) for the
runtime on the giant component of random graphs with given expected degrees (also
known as the Chung-Lu model) with power law degree distribution.

The runtime is closely related to the expansion pro�le of the graph. Let Φ(G)
and α(G) denote the conductance and the vertex expansion of a graph G, re-
spectively. After a series of results by various authors, Giakkoupis [Gia14, Gia11]
showed that for any n-vertex graph G, the runtime of the Push-Pull protocol is
O
(
min{Φ(G)−1 · log n, α(G)−1 · log2 n}

)
. It is known that whp preferential attach-

ment graphs and random graphs with given expected degrees have conductance
Ω(1) (see [CLV03, MPS03]) whp. So it is not surprising that rumors spread fast
on these graphs. Censor-Hillel, Haeupler, Kelner, and Maymounkov [CHHKM12]
presented a more elaborate rumor spreading protocol that distributes the rumor in
O(diam(G) + polylog(n)) rounds on any connected n-vertex graph whp. Since this
bound does not involve any conductance, it is particularly suitable for poorly connected
graphs.

Our Results. We analyze the behavior of the Push-Pull protocol on random k-trees
and random k-Apollonian networks, which are small-world networks with power law
degrees and have large clustering coe�cients. Random k-trees are a class of evolving
random networks. Initially our graph is a single k-clique. In every step a new node is
born, a random k-clique of the current graph is chosen, and the new node is joined to all
nodes of the k-clique. The construction of k-Apollonian networks is slightly di�erent
in the sense that whenever a k-clique is chosen it is never chosen again. The de�nition
of random k-trees enjoys a `the rich get richer' e�ect, as in the preferential attachment
scheme (i.e. the probability that the new vertex attaches to v is proportional to
the degree of v). On the other hand, random k-trees have much larger clustering
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coe�cients than preferential attachment graphs, as all neighbors of each new vertex
are joined to each other. It is well-known that real-world networks tend to have large
clustering coe�cients (see, e.g., [WS98, Table 1]).

When k > 2 is �xed, we show that if initially a random node is aware of the

rumor, then whp after O
(

(log n)1+ 2
k · log logn · f(n)

)
rounds the rumor propagates

to n − o(n) nodes, where n is the number of nodes and f(n) is any slowly growing
function. Since these graphs have polynomially small conductance, vertex expansion
O(1/n) and constant treewidth (will be de�ned in next section), these results demon-
strate that Push-Pull can be e�cient even on poorly connected networks. On the
negative side, we prove that with probability 1 − o(1) the protocol needs at least

Ω
(
n(k−1)/(k2+k−1)/f2(n)

)
rounds to inform all nodes. This exponential dichotomy

between the times required for informing almost all and all nodes is striking. Our
main contribution is to present, for the �rst time, a natural class of random graphs in
which such a phenomenon can be observed. The former implies that if one wishes to
inform almost all the vertices, then one only has to wait for a polylogarithmic number
of rounds. The latter implies that, however, if one wishes to inform each and every
vertex, then one has to wait for polynomially many rounds. The main contribution of
this chapter is to present, for the �rst time, a natural class of random graphs in which
this dichotomy can be observed. Using similar techniques we show an upper bound of

O
(

(log n)(k2−3)/(k−1)2 · log log n · f(n)
)
rounds for �xed k > 3, for informing n− o(n)

nodes of a random k-Apollonian whp. In fact, in many applications, such as epidemics,
viral marketing and voting, it is more appealing to inform 99 percent of the vertices
very quickly instead of waiting a long time until everyone gets informed. It is worth
mentioning that bounds for the number of rounds to inform almost all vertices have
already appeared in the literature, see for instance [DFF12a, FPS12]. In particular,
for power-law Chung-Lu graphs with exponent ∈ (2, 3), it is shown in [FPS12] that
whp after O(log log n) rounds the rumor spreads in n − o(n) vertices, but to inform
all vertices of the giant component Θ(log n) rounds are necessary and su�cient. This
result also shows a great di�erence between the two cases, however in both cases the
required time is logarithmically small.

Techniques. To derive an upper bound on the runtime of the protocol on random
k-trees, we show that there exist low degree vertices, called e�cient connectors, facil-
itating the communication between the high degree vertices. The concept of e�cient
connectors appeared previously in several papers such as [DFF11] and [FPS12]. To
show the existence of e�cient connectors, we divide the building process of a random
k-tree into two phases, the vertices born before and after round m where m = o(n) is a
suitably chosen parameter. We �rst expose a random k-tree G up to round m and call
it G(m). Then we consider the connected components of G−G(m). Most vertices born
later than round m have relatively small degree, so most of these components have
a small maximum degree (and logarithmic diameter) thus the rumor spreads quickly
within each of them. A vertex v ∈ V (G(m)) typically has a large degree, and this
means that there is a high chance that v has a neighbor x with small degree, which
quickly receives the rumor from v and spreads it (or vice versa). We build an almost-
spanning tree T of G(m) with logarithmic height, such that for every edge {u, v} of T ,
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one of u and v have a small degree, or u and v have a common neighbor with a small
degree. Either of these conditions implies the rumor is exchanged quickly between u
and v. This tree T then works as a `highway system' to spread the rumor among the
vertices of G(m) and from them to the components of G − G(m). Our technique for
proving the upper bound successfully carries over to a closely related class of graphs,
the random k-Apollonian networks.

To prove a polynomial lower bound for the runtime, we de�ne the notion of barrier
in a graph which is a subset D of edges of size O(1), whose deletion disconnects the
graph and both endpoints of every edge of a barrier D have very large degrees. It
is clear that if a graph contains a barrier, then the protocol needs a very large time
to pass the rumor through D. Hence it only remains to show a random k-tree has a
barrie whp which is done in Section 3.5.

Outline. In Section 3.1 we formally de�ne our random graph models which will be
based on generalized urn models. We then apply some useful facts from urn theory
and prove some results about the degree sequence of these random graphs. In Sections
3.2 and 3.3 we study basic properties of the networks such as degree sequence and
expansion pro�le of the networks. In Sections 3.4 and 3.5 we show an upper bound on
the number of rounds that is required to inform almost all nodes and a lower bound
on the number of rounds to inform all nodes by the Push-Pull protocol on random k-
trees respectively. In Section 3.6 we present similar results for the Push-Pull protocol
on random k-Apollonian networks. Finally, in Section 3.7 we show that the consid-
ered networks exhibit several fundamental properties of real-world networks including
small-world property, large clustering coe�cient and power law degree sequence.

3.1. De�nitions, Notations and Preliminaries

In this section we formally de�ne random k-trees, random k-Apollonian networks and
the notion of treewidth.

De�nition 3.1.1 (Random k-tree process [Gao09]). Let k be a positive integer. Build
a sequence Gk(0), Gk(1), . . . of random graphs as follows. The graph Gk(0) is just a
clique on k vertices. For each 1 6 t 6 n, Gk(t) is obtained from Gk(t− 1) as follows:
a k-clique of Gk(t − 1) is chosen uniformly at random, a new vertex is born and is
joined to all vertices of the chosen k-clique. The graph Gk(n) is called a random k-tree
on n+ k vertices. If k is clear from the text, it is denoted by G(n).

We remark that this process is di�erent from the random k-tree process de�ned by
Cooper and Uehara [CU10], where in each round a (k + 1)-clique is chosen uniformly
at random and then the new node is connected to k nodes of the chosen clique. This
process was further studied in [CF13].

Sometimes it is convenient to view this as a `random graph evolving in time.' In
this interpretation, in every round 1, 2, . . . , a new vertex is born and is added to the
evolving graph, and G(t) denotes the graph at the end of round t. Observe that G(t)
has k + t many vertices and kt+ 1 many k-cliques.

Gao [Gao09] showed that whp the degree sequence of G(n) asymptotically follows
a power law distribution with exponent 2 + 1

k−1 . In Subsection 3.7.1 we show that
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whp the diameter of G(n) is O(log n), and its clustering coe�cient is at least 1/2, as
opposed to preferential attachment graphs and random graphs with given expected
degrees, whose clustering coe�cients are o(1) whp. As per these properties, random
k-trees serve as more realistic models for real-world networks.

Sometimes it is convenient to view this as a `random graph evolving in time.' In
this interpretation, in every round 1, 2, . . . , a new vertex is born and is added to the
evolving graph, and Gk(t) denotes the graph at the end of round t. Observe that Gk(t)
has k + t many vertices and kt+ 1 many k-cliques.

A closely related class of graphs is the class of random k-Apollonian networks,
introduced by Zhang, Comellas, Fertin, and Rong [ZCFR06]. Their construction is
very similar to the construction of random k-trees, with just one di�erence: if a k-
clique is chosen in a certain round, it will never be chosen again. Let us de�ne it
formally as follows:

De�nition 3.1.2 (Random k-Apollonian process [ZCFR06]). Let k be a positive inte-
ger. Build a sequence Ak(0), Ak(1), . . . of random graphs as follows. The graph Ak(0)
is just a clique on k vertices. For each 1 6 t 6 n, Ak(t) is obtained from Ak(t − 1)
as follows: a k-clique of Ak(t − 1) which has not yet picked, called active, is chosen
uniformly at random, a new vertex is born and is joined to all vertices of the chosen
k-clique. The graph Ak(n) is called a random k-Apollonian on n+ k vertices.

It is known that whp random k-Apollonian networks exhibit a power law degree
distribution and large clustering coe�cient [ZYW05, Mun11] and have logarithmic
diameter [CF13].

Observe that similar to Gk(n), in every round k di�erent k-cliques are added to
the network but since in each round one k-clique is chosen and becomes inactive, the
number of active k-cliques increases by k−1. The embedding of random k-Apollonian
networks in (k − 1)-dimensional space is a distinguishing feature of these family of
graphs. In order to have a geometric view of the network, let us think of Ak(n) as a
(k−1)-dimensional simplex with an additional vertex in its interior which is connected
to all other vertices and hence there are k (k − 1)-dimensional simplices that we call
them active, so in the following round we pick one of the active simplices and place the
new vertex in its interior and connect the vertex to all vertices of the simplex. Clearly
this construction gives a (k−1)-dimensional embedding of the network. For k = 3, the
network is a known as RANs and the above construction gives a triangulated planar
graphs (for instance see Figure 3.1).

De�nition 3.1.3 (Chapter 2, [Klo94]). A tree decomposition of a graph G = (V,E)
is a tree let say T whose nodes X1, X2, . . . , Xl are subsets of V (G) satisfying following
conditions:

1. ∪liXi = V (G).

2. Suppose that u ∈ Xi ∩Xj, then every Xk which belongs to the path from Xi to
Xj in T contains u as well.

3. For every {u, v} ∈ E(G), there exists at least one Xi ∈ V (T ) so that {u, v} ⊂ Xi
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RAN(1) RAN(2) RAN(4)

Figure 3.1. RAN process for n = 1, 2, and 4 .

The width of a tree decomposition is the size of the largest Xi minus one. The treewidth
of a graph is the minimum width among all its tree decompositions.

Fact 3.1.4. Random k-trees and k-Apollonian networks have treewidth k.

Proof. We describe a tree decomposition of random k-trees and k-Apollonian networks.
We de�ne the set of all (k + 1)-cliques contained in the network as the vertex set of
the tree decomposition and two nodes are connected if and only if they have exactly
k common elements. By de�nition we see that random k-trees and k-Apollonian
networks have treewidth at most k. On the other hand the treewidth of every clique is
the same as its size minus one. Therefore both networks have treewidth exactly k.

3.2. Some Results from the Urn Theory

In this subsection we introduce the Polya and generalized Polya urn models and present
some known results from urn theory. For more information about urn models and their
applications we refer the interested reader to [JK77].

De�nition 3.2.1 (Pólya-Eggenberger urn). Start with W0 white and B0 black balls
in an urn. In every step a ball is drawn from the urn uniformly at random, the
ball is returned to the urn, and s balls of the same color are added to the urn. Let
Polya(W0, B0, s, n) denote the distribution of the number of white balls right after n
draws.

Proposition 3.2.2. Let X = Polya(a, b, k, n), w = a+ b and let c > (a+ b)/k. Then

Pr [X = 0] 6
(

c
c+n

)a/k
and

E
[
X2
]

=
(
a+

a

w
kn
)2

+
abk2n(kn+ w)

w2(w + k)
.

Proof. The expected value and the variance of X are well known (see [Mah03, Corol-
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lary 5.1.1] for instance):

E [X] = a+
a

w
kn ,

Var [X] =
abk2n(kn+ w)

w2(w + k)
.

For the last inequality, we have

Pr [X = 0] =
b

a+ b
· b+ k

a+ b+ k
· · · · b+ (n− 1)k

a+ b+ (n− 1)k

=
n−1∏
i=0

(
1− a

a+ b+ ik

)
6

n−1∏
i=0

(
1− a

ck + ik

)

6 exp

(
−
n−1∑
i=0

a

ck + ik

)
= exp

(
n−1∑
i=0

1

c+ i

)−a/k

6 exp

(∫ c+n

x=c

dx

x

)−a/k
= exp (log((c+ n)/c))−a/k =

(
c

c+ n

)a/k
.

De�nition 3.2.3 (Generalized Pólya-Eggenberger urn). Let α, β, γ, δ be nonnegative
integers. We start with W0 white and B0 black balls in an urn. In every step a ball is
drawn from the urn uniformly at random and returned to the urn. Additionally, if the
ball is white, then δ white balls and γ black balls are returned to the urn; otherwise,
i.e. if the ball is black, then β white balls and α black balls are returned to the urn. Let

Polya

(
W0, B0,

[
α β
γ δ

]
, n

)
denote the distribution of the number of white balls right

after n draws.

Note that Pólya-Eggenberger urns correspond to the matrix

[
s 0
0 s

]
. The following

proposition follows from known results.

Proposition 3.2.4. Let X = Polya

(
W0, B0,

[
α 0
γ δ

]
, n

)
and let r be a positive inte-

ger. If γ, δ > 0, α = γ + δ, and rδ > α, then we have

E [Xr] 6

(
αn

W0 +B0

)rδ/α r−1∏
i=0

(W0 + iδ) +O
(
n(r−1)δ/α

)
.

Proof. It is known that

E [Xr] = nrδ/αδr
Γ(W0/δ + r)Γ((W0 +B0)/α)

Γ(W0/δ)Γ((W0 +B0 + rδ)/α)
+O

(
n(r−1)δ/α

)
,

see [FDP06, Proposition 15] for instance. Note that

Γ(W0/δ + r)

Γ(W0/δ)
=

r−1∏
i=0

(i+W0/δ) .
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Finally, the inequality

Γ((W0 +B0 + rδ)/α)

Γ((W0 +B0)/α)
> ((W0 +B0)/α)rδ/α

follows from rδ > α and the following inequality (see, e.g., [Laf84, equation (2.2)])

x1−s 6
Γ(x+ 1)

Γ(x+ s)
∀x > 0, s ∈ [0, 1] .

3.2.1. Degree Sequence of the Networks

In this subsection we �rst make a connection between the degrees sequence of the
networks and generalized Polya urn models. Then by applying some results from
the previous subsection we show a useful lemma and corollary to �nd a probabilistic
bound for the degree of an arbitrary vertex which is born in a certain round. In this
subsection we assume that H(j) be from one of the two networks (i.e. random k-trees
or random k-Apollonian networks) which is built up to round j + 1.

Proposition 3.2.5. Suppose that x be a vertex of H(j) and x has N > 0 neighbors,
and is contained in B many (active) k-cliques. Conditional on this, if H(j) is a
random k-tree process, then the degree of x in H(n+ j) is distributed as

N +

(
Polya

(
B, kj + 1−B,

[
k 0
1 k − 1

]
, n

)
−B

)/
(k − 1) .

If H(j) is an k-Apollonian process, then the degree of x in H(n+ j) is distributed as

N +

(
Polya

(
B, (k − 1)j + 1−B,

[
k − 1 0

1 k − 2

]
, n

)
−B

)/
(k − 1) .

Proof. We claim that Polya

(
B, kj + 1−B,

[
k 0
1 k − 1

]
, n

)
is the total number of k-

cliques containing x in Gk(n+ j). At the end of round j, there are B many k-cliques
containing x, and kj + 1 − B many k-cliques not containing x. In each subsequent
round j + 1, . . . , j + n, a random k-clique is chosen and k new k-cliques are created.
If the chosen k-clique contains x, then k − 1 new k-cliques containing x are created,
and 1 new k-clique not containing x is created. Otherwise, i.e. if the chosen k-clique
does not contain x, then no new k-cliques containing x is created, and k new k-

cliques not containing x are created. Hence Polya

(
B, kj + 1−B,

[
k 0
1 k − 1

]
, n

)
is exactly the total number of k-cliques containing x in H(n + j). Hence the
number of k-cliques that are created in rounds j + 1, . . . , j + n and contain x is

Polya

(
B, kj + 1−B,

[
k 0
1 k − 1

]
, n

)
− B, and the proof follows by noting that ev-

ery new neighbor of x creates k − 1 new k-cliques containing x. When H(j) is a
k-Apollonian process, then in each subsequent round j + 1, . . . , j + n the number of
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active k-cliques and those containing x increases by k − 1 and k − 2 respectively and
hence the number of active k-cliques that are created in rounds j + 1, . . . , j + n and

contain x is Polya

(
B, (k − 1)j + 1−B,

[
k − 1 0

1 k − 2

]
, n

)
−B and the rest follows

similar to the case H(j) is a random k-tree.

Lemma 3.2.6. Let 1 6 j 6 n and let q be a positive integer. Let x denote the vertex
born in round j. Conditional on any H(j), if H(j) is a random k-tree process then the
probability that x has degree greater than k+q(n/j)(k−1)/k in H(n) is O

(
q
√
q exp(−q)

)
.

If H(j) is a k-Apollonian process, then the probability that x has degree greater than
k + q(n/j)(k−2)/(k−1) is O

(
q
√
q exp(−q)

)
.

Proof. Let X = Polya

(
k, kj − k + 1,

[
k 0
1 k − 1

]
, n− j

)
. By Proposition 3.2.5,

deg(x) is distributed as k + (X − k) /(k − 1). By Proposition 3.2.4,

E [Xq] 6 (1 + o(1))

(
k(n− j)
kj + 1

) q(k−1)
k

q−1∏
i=0

(k + i(k − 1)) 6

(
n

j

) q(k−1)
k

(k− 1)q(q+ 1)! .

Thus,

Pr
[
deg(x) > k + q(n/j)(k−1)/k

]
= Pr

[
X − k > q(k − 1)(n/j)(k−1)/k

]
6

E [Xq](
q(k − 1)(n/j)(k−1)/k

)q
6 (q + 1)!q−q = O (q

√
q exp(−q)) .

For the second part, let Y = Polya

(
k, (k − 1)j − k + 1,

[
k 0
1 k − 1

]
, n− j

)
. From

Proposition 3.2.5, deg(x) is distributed as k+ (Y − k) /(k−1) and similar to previous
case applying Proposition 3.2.4 implies that

Pr
[
deg(x) > k + q(n/j)(k−2)/(k−1)

]
= O (q

√
q exp(−q)) .

Corollary 3.2.7. With high probability, the maximum degree of Gk(n) and Ak(n) is
bounded by O(log n · n(k−1)/(k)) and O(log n · n(k−2)/(k−1)) respectively.

Proof. Let q = b2 log nc and let x be a vertex born in one of the rounds 1, 2, . . . , n of
a random k-tree process. Then applying Lemma 3.2.6 yields that

Pr
[
deg(x) > k + qn1−1/k

]
= O(q

√
q exp(−q)) = o(1/n) .

A union bound over all vertices shows that whp we have ∆(Gk(n)) 6 k +
(2 log n)n(k−1)/k, as required. Applying similar argument for k-Apollonian process,
we conclude that ∆(Ak(n)) 6 k + (2 log n)n(k−2)/(k−1).
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3.3. Expansion of the Networks

In this section we prove that random k-trees and k-Apollonian do not expand well
con�rming our claim in the introduction that the networks are poorly connected graphs
and thus existing techniques do not apply.

De�nition 3.3.1. The vertex expansion of a graph G (also known as the vertex
isoperimetric number of G), written α(G), is de�ned as

α(G) = min

{
|∂S|
|S|

: S ⊆ V (G), 0 < |S| 6 |V (G)|/2
}
,

where ∂S denotes the set of vertices in V (G) \ S that have a neighbor in S.

De�nition 3.3.2. The conductance of a graph G (also known as the Cheeger constant
of G), written Φ(G), is de�ned as

Φ(G) = min

{
e(S, V (G) \ S)

vol(S)
: S ⊆ V (G), 0 < vol(S) 6 vol(V (G))/2

}
,

where e(S, V (G) \ S) denotes the number of edges between S and V (G) \ S, and
vol(S) =

∑
u∈S deg(u) for every S ⊆ V (G).

Proposition 3.3.3. Whp G(n) has vertex expansion O (k/n), and its conductance is
O
(
log n · n−1/k

)
.

Proof. Let G = G(n). Since G has treewidth k, by [Klo94, Lemma 5.3.1] there exists
a partition (A,B,C) of V (G) such that

1. |C| = k + 1,

2. (n− 1)/3 6 |A|, |B| 6 2(n− 1)/3, and

3. there is no edge between A and B.

At least one of A and B, say A, has size less than (n+ k)/2. Then

α(G) 6
|∂A|
|A|

6
k + 1

(n− 1)/3
= O(k/n) .

At least one of A and B, say B, has volume less than vol(G)/2. Then since all
vertices in G have degrees at least k,

Φ(G) 6
e(B,A ∪ C)

vol(B)
6
e(B,C)

k|B|
6

(k + 1)∆(G)

k(n− 1)/3
= O(∆(G)/n) .

Hence to prove Φ(G) = O
(
log n · n−1/k

)
it is enough to show that whp we have

∆(G) 6 k + (2 log n)n1−1/k .

Let q = b2 log nc and let x be a vertex born in one of the rounds 1 to n. By
Lemma 3.2.6,

Pr
[
deg(x) > k + qn1−1/k

]
= O(q

√
q exp(−q)) = o(1/n) .

An argument similar to the proof of Lemma 3.2.6 shows that the probability that a
vertex in G(0) has degree greater than k + qn1−1/k is o(1/n) as well. A union bound
over all vertices shows that whpwe have ∆(G) 6 k + (2 log n)n1−1/k, as required.
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3.4. Push-Pull Protocol on Random k-Trees

In this section we analyze the Push-Pull protocol on random k-trees G(n). The main
result of this section is the following theorem:

Theorem 3.4.1. Let k > 2 be constant and let f(n) = o(log log n) be an arbitrary
function going to in�nity with n. If initially a random vertex of an (n + k)-vertex

random k-tree knows a rumor, then whp after O
(

(log n)1+ 2
k · log log n · f(n)

)
rounds

of the Push-Pull protocol, n− o(n) vertices will know the rumor.

Once we have the following lemma, the proof of the theorem reduces to proving a
structural result for random k-trees.

Lemma 3.4.2. Let G be an n-vertex graph and let Σ ⊆ V (G) with |Σ| = n− o(n) be
such that for every pair of vertices u, v ∈ Σ there exists a (u, v)-path uu1u2 . . . ul−1v
such that l 6 χ and for every 0 6 i 6 l − 1 we have min{deg(ui), deg(ui+1)} 6 τ
(where we de�ne u0 = u and ul = v). If a random vertex in G knows a rumor, then
whp after 6τ(χ+ log n) rounds of the Push-Pull protocol, at least n− o(n) vertices will
know the rumor.

Proof. We show that given any u, v ∈ Σ, if u knows the rumor then with probability
at least 1 − o

(
n−2

)
after 6τ(χ + log n) rounds v will know the rumor. The lemma

follows by using the union bound and noting that a random vertex lies in Σ with
high probability. Consider the (u, v)-path uu1u2 . . . ul−1v promised by the hypothesis.
Using a similar argument as [FPRU90], we bound from below the probability that the
rumor is passed through this path. For every 0 6 i 6 l − 1, the number of rounds
needed for the rumor to pass from ui to ui+1 is a geometric random variable with
success probability at least 1/τ (if deg(ui) 6 τ , this is the number of rounds needed
for ui to push the rumor along the edge, and if deg(ui+1) 6 τ , this is the number
of rounds needed for ui+1 to pull the rumor along the edge). The random variables
corresponding to distinct edges are mutually independent. Hence the probability that
the rumor is not passed in 6τ(χ + log n) rounds is at most the probability that the
number of heads in a sequence of 6τ(χ + log n) independent biased coin �ips, each
having probability 1/τ of being heads, is less than l. Let X denote the number of
heads in such a sequence. Then using the Cherno� bound (see, e.g., Theorem 1.3.4)
and noting that E [X] = 6(χ+ log n) we get

Pr [X < l] 6 Pr [X 6 E [X] /6] 6 exp(−(5/6)2 E [X] /2) 6 exp(−(5/6)2(6 log n)/2) ,

which is o
(
n−2

)
, as required.

So what remains is to show the following structural result for random k-trees.

Lemma 3.4.3. Let G be an (n + k)-vertex random k-tree. Then whp there exists
Σ ⊆ V (G) with |Σ| = n− o(n) such that for every pair of vertices u, v ∈ Σ there exists
a (u, v)-path uu1u2 . . . ul−1v where l = O(log n+ diam(G)) and for every 0 6 i 6 l− 1
we have min{deg(ui),deg(ui+1)} 6 τ .
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Let

m =

⌈
n

f(n)
3

k−1 (log n)
2

k−1

⌉
.

Also let q = d4 log log ne and let

τ = 2k + q(n/m)1−1/k . (3.1)

For the rest of this section, G is an (n + k)-vertex random k-tree. Recall from Def-
inition 3.1.1 that G = G(n), where G(0), G(1), . . . , is the random k-tree process.
Consider the graph G1 = G(m), which has k+m vertices and mk+ 1 many k-cliques.
For an edge e of G1, let N(e) denote the number of k-cliques of G(m) containing e.
We de�ne a spanning forest F of G(m) as follows: initially F is the vertex set of G(0),
then for every 1 6 t 6 m, if the vertex x born in round t is joined to the k-clique C,
then in F , x is joined to a vertex u ∈ V (C) such that

N(xu) = max
v∈V (C)

N(xv) .

Note that F has k trees and the k vertices of G(0) lie in distinct trees. Think of these
trees as rooted at these vertices. The tree obtained from F by merging these k vertices
is the `highway system' described in the introduction.

Informally speaking, the proof is divided into three parts: �rst, we show that this
tree has a small height (Lemma 3.4.4), second, we show that each edge in this tree
quickly exchanges the rumor with a reasonably large probability (Lemma 3.4.6), and
�nally we show that almost all vertices in G−G(m) have quick access to and from F
(Lemma 3.4.7). Let LOG denote the event `each tree in F has height O(log n).

Lemma 3.4.4. Whp LOG happens.

Proof. We inductively de�ne the notion of draft for vertices and k-cliques of G(m).
The draft of the vertices of G(0) as well as the k-clique they form equals 0. The draft
of every k-clique equals the maximum draft of its vertices. Whenever a new vertex is
born and is joined to a k-clique, the draft of the vertex equals the draft of the k-clique
plus one. It is easy to see that if {x, y} ∈ E(G(m)) and x is born later than y, then
draft(x) > draft(y) + 1. In particular, if x is a vertex of F with distance h to the root,
then draft(x) > h. Hence we just need to show that whp the draft of each k-clique is
O(log n). We de�ne an auxiliary tree whose vertices are the k-cliques of G(m). Start
with a single vertex corresponding to G(0). Whenever a new vertex x is born and is
joined to a k-clique C, k new k-cliques are created. In the auxiliary tree, add these
to the set of children of C. The depth of each k-clique in this auxiliary tree equals its
draft as de�ned above. The height of this auxiliary tree is stochastically less than or
equal to the height of a random k-ary recursive tree (see [Drm09, Section 1.3.3] for the
de�nition), whose height is O(log n) whp, as proved in [Drm09, Theorem 6.47].

The following deterministic lemma shows an lower bound for N(x, y), where
{x, y} ∈ E(F ) which is useful for the next lemma.

Lemma 3.4.5. Assume that k > 2 and {x, y} ∈ E(F ) and suppose that x is born later
than y. If the degree of x in G1 is greater than 2k − 2, then N(x, y) > (k2 − k)/2.
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Proof. Assume that x is joined to u1, . . . , uk when it is born. Also assume that
v1, v2, . . . , vk−1, . . . are the neighbors of x that are born later than x, in the order
of birth. Let Ψ denote the number of pairs (uj , C), where uj ∈ V (G1) and C is a k-
clique in G1 such that {x, uj} ⊆ V (C). Consider the round in which vertex x is born
and is joined to u1, . . . , uk. For every j ∈ {1, . . . , k}, the vertex uj is contained in k−1
new k-cliques, so in this round Ψ increases by k(k − 1). For each i ∈ {1, . . . , k − 1},
consider the round in which vertex vi is born. This vertex is joined to x and k − 1
neighbors of x. At this round x has neighbor set {u1, . . . , uk, v1, . . . , vi−1}. Thus at
least k − i of the uj 's are joined to vi in this round. Each vertex uj that is joined to
vi in this round is contained in k− 2 new k-cliques, so in this round Ψ increases by at
least (k − i)(k − 1). Consequently, we have

Ψ > k(k − 1) +
k−1∑
i=1

(k − i)(k − 2) = k2(k − 1)k/2. (3.2)

By the pigeonhole principle, there exists some ` ∈ {1, . . . , k} such that the edge xu`
is contained in at least (k2 − 1)/2 many k-cliques, and this completes the proof.

A vertex of G is called young if it is born later than the end of round m, and is
called old otherwise. In other words, vertices of G1 are old and vertices of G − G1

are young. We say edge uv ∈ E(G) is fast if at least one of the following is true:
deg(u) 6 τ , or deg(v) 6 τ , or u and v have a common neighbor w with deg(w) 6 τ .
For an edge uv ∈ E(F ), let pS(uv) denote the probability that uv is not fast, and let
pS denote the maximum of pS over all edges of F .

Lemma 3.4.6. We have pS = o(1/(f(n) log n)).

Proof. Let {x, y} ∈ E(F ) be arbitrary. Without loss of generality we may assume that
x is born later than y. First, suppose that k > 2. By Lemma 3.4.5, at least one of the
following is true: vertex x has less than 2k−1 neighbors in G1, or N(x, y) > (k2−k)/2.
So we may consider two cases.

• Case 1: vertex x has less than 2k − 1 neighbors in G1. In this case vertex x lies
in at most k2 − 2k+ 2 many k-cliques of G1. Assume that x has A neighbors in
G1 and lies in B many k-cliques in G1. Let

X = Polya

(
B, km+ 1−B,

[
k 0
1 k − 1

]
, n−m

)
.

Then by Proposition 3.2.5 the degree of x is distributed as A+(X −B) /(k−1).
By Proposition 3.2.4,

E [Xq] 6 (1 + o(1))

(
k(n−m)

km+ 1

) q(k−1)
k

q−1∏
i=0

(B + i(k − 1))

6 (1 + o(1))
( n
m

) q(k−1)
k

(k − 1)q
q−1∏
i=0

(k + i) 6 (k − 1)q(k + q)!
( n
m

) q(k−1)
k

,
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where we have used B 6 k(k − 1) for the second inequality. Therefore,

Pr
[
deg(x) > 2k + q(n/m)

k−1
k

]
6 Pr

[
X > (k − 1)q(n/m)

k−1
k

]

6
E [Xq]

(k − 1)qqq(n/m)
q(k−1)
k

= O

(
(k + q)k+q√q
qq exp(k + q)

)
= o

(
1

f(n) log n

)
.

• Case 2: N(x, y) > (k2 − k)/2. In this case we bound from below the proba-
bility that there exists a young vertex w that is adjacent to x and y and has
degree at most τ . We �rst bound from above the probability that x and y have
no young common neighbors. For this to happen, none of the k-cliques con-
taining x and y must be chosen in rounds m+ 1, . . . , n. This probability equals
Pr [Polya(N(x, y),mk + 1−N(x, y), k, n−m) = 0]. SinceN(x, y) > (k2−1)/2,
by Proposition 3.2.2 we have

Pr [Polya(N(x, y),mk + 1−N(x, y), k, n−m) = 0] 6

(
m+ 1

n+ 1

) k−1
2

= o

(
1

f(n) log n

)
.

Now, assume that x and y have a young common neighbor w. If there are
multiple such vertices, choose the one that is born �rst. Since w appears later
than round m, by Lemma 3.2.6,

Pr
[
deg(w) > k + q(n/m)(k−1)/k

]
= O (q

√
q exp(−q)) = o

(
1

f(n) log n

)
.

The proof for k = 2 is very similar to the argument for Case 2 above: note that in
this case we have N(x, y) > 1 for all edges {x, y} ∈ E(F ), and we have

Pr [Polya(1, 2m, 2, n−m) = 0] 6

√
m+ 1

n+ 1
= O

(√
m

n

)
= o

(
1

f(n) log n

)
.

A old vertex is called nice if it is connected to some vertex in G(0) via a path of
fast edges. Since F has height O(log n) and each edge of F is fast with probability at
least 1 − pS , the probability that a given old vertex is not nice is O(pS log n) by the
union bound. A piece Hj is called nice if all its young vertices have degrees at most
τ , and the vertex rj is nice. A young vertex is called nice if it lies in a nice piece. A
vertex/piece is called bad if it is not nice.

Lemma 3.4.7. The expected number of bad vertices is o(n).

Proof. The total number of old vertices is k + m = o(n) so we may just ignore them
in the calculations below. Let η = nf(n)/m = o(log3 n). Say piece Hj is sparse
if |V (Hj)| 6 η + k. We �rst bound the expected number of young vertices in non-
sparse pieces. Observe that the number of young vertices in each piece is distributed as
X = (Polya(1, km, k, n−m)−1)/k. Using Proposition 3.2.2 we getE

[
X2
]
6 2kn2/m2.

By the second moment method, for every t > 0 we have

Pr [X > t] 6
E
[
X2
]

t2
6

2kn2

m2t2
.
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The expected number of young vertices in non-sparse pieces is thus at most

∞∑
i=0

(2i+1η)(km+ 1)Pr
[
2iη < X 6 2i+1η

]
6
∞∑
i=0

(2i+1η)(km+ 1)
2kn2

m2η222i

6 O
(
n2

mη

) ∞∑
i=0

2−i = O
(
n2

mη

)
= o(n) .

We now bound the expected number of young vertices in sparse bad pieces. For
bounding this value from above we �nd an upper bound for the expected number of
sparse bad pieces, and multiply it by η. A piece Hj can be bad in either two ways:

(1) the representative vertex rj is bad: the probability of this is O (pS log n). The
expected number of pieces that are bad due to this reason is thus O (mkpS log n),
which is o(n/η) by Lemma 3.4.6.

(2) there exists a young vertex in Hj with degree greater than τ : the proba-
bility that a given young vertex has degree greater than τ is O

(
q
√
q exp(−q)

)
by

Lemma 3.2.6. So the average number of young vertices with degree greater than τ is
O
(
nq
√
q exp(−q)

)
. Since every young vertex lies in a unique piece, the expected num-

ber of pieces that are bad because of this reason is O
(
nq
√
q exp(−q)

)
= o(n/ log3 n).

So the expected number of bad pieces is o(n/η+n/ log3 n). The expected number
of young vertices in sparse bad pieces is thus o(n+ ηn/ log3 n) = o(n).

Enumerate the k-cliques of G1 as C1, . . . , Cmk+1. Choose r1 ∈ C1, . . . , rmk+1 ∈
Cmk+1 arbitrarily, and call them the representative vertices. Starting from G1, when
young vertices are born in rounds m + 1, . . . , n until G is formed, every clique Ci
`grows' to a random k-tree with a random number of vertices, which is a subgraph
of G. Enumerate these subgraphs as H1, . . . ,Hmk+1, and call them the pieces. More
formally, H1, . . . ,Hmk+1 are induced subgraphs of G such that a vertex v is in V (Hj)
if and only if every path connecting v to a old vertex intersects V (Cj). In particular,
V (Cj) ⊆ V (Hj) for all j ∈ {1, . . . ,mk+ 1}. Note that the Hj 's may intersect as a old
vertex may lie in more than one Cj , however every young vertex lies in a unique piece.

We now have all the ingredients to prove Lemma 3.4.3, which concludes the proof
of Theorem 3.4.1.

Proof of Lemma 3.4.3. Let Σ denote the set of nice young vertices. By Lemma 3.4.7
and using Markov's inequality, we have |Σ| = n − o(n) whp. Let {a1, . . . , ak} denote
the vertex set of G(0). Using an argument similar to the proof of Lemma 3.4.6, it
can be proved that given 1 6 i < j 6 k, the probability that edge aiaj is not fast is
o(1). Since the total number of such edges is a constant, whp all such edges are fast.
Let u and v be nice young vertices, and let ru and rv be the representative vertices
of the pieces containing them, respectively. Since the piece containing u is nice, there
exists a (u, ru)-path whose vertices except possibly ru all have degrees at most τ . The
length of this path is at most diam(G). Since ru is nice, for some 1 6 i 6 n there
exists an (ru, ai)-path in F consisting of fast edges. By appending these paths we
�nd a (u, ai)-path with length at most diam(G) + O(log n) such that for every pair
of consecutive vertices in this path, one of them has degree at most τ . Similarly, for
some 1 6 j 6 n there exists a (v, aj)-path of length O(log n + diam(G)), such that
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one of every pair of consecutive vertices in this path has degree at most τ . Since the
edge aiaj is fast, we can build a (u, v)-path of length O(log n+ diam(G)) of the type
required by the statement of the lemma.

3.5. A Lower Bound

In this section we show that whpthe Push-Pull protocol needs at least nΩ(1) many
rounds to inform all nodes of a random k-tree G(n). Before we start showing the
result of this section let us de�ne the notion of s-barrier.

De�nition 3.5.1 (s-barrier). A pair {C1, C2} of disjoint k-cliques in a connected
graph is an s-barrier if (i) the set of edges between C1 and C2 is a cut-set, i.e. deleting
them disconnects the graph, and (ii) the degree of each vertex in V (C1) ∪ V (C2) is at
least s.

Observe that if G has an s-barrier, then for any starting vertex, whp the Push-Pull

protocol needs at least Ω(s) rounds to inform all vertices.

Lemma 3.5.2. The graph G(n) has an Ω(n1−1/k)-barrier with probability Ω(n1/k−k).

Proof. Let u1, . . . , uk be the vertices of G(0), and let v1, . . . , vk be the vertices of
G(k) − G(0) in the order of appearance. We de�ne two events: Event A is that for
every 1 6 i 6 k, when vi appears, it attaches to v1, v2, . . . , vi−1, ui, ui+1, . . . , uk; and
for each 1 6 i, j 6 k, ui and vj have no common neighbor in G(n) − G(k). Event
B is that all vertices of G(k) have degree Ω(n(k−1)/k) in G(n). Note that if A and B
both happen, then the pair {u1u2 . . . uk, v1v2 . . . vk} is an Ω(n(k−1)/k)-barrier in G(n).
Hence to prove the lemma it su�ces to show Pr [A] = Ω(n1/k−k) and Pr [B|A] = Ω(1).

For A to happen, �rst, the vertices v1, . . . , vk must choose the speci�c k-cliques,
which happens with constant probability. Moreover, the vertices appearing after round
k must not choose any of the k2 − 1 many k-cliques that contain both ui's and vj 's.
Since 1− y > e−y−y

2
for every y ∈ [0, 1/4],

Pr [A] = Pr
[
Polya(k2 − 1, 2, k, n− k) = 0

]
= Ω

(
n−k−1∏
i=0

(
2 + ik

k2 + 1 + ik

))

> Ω

(
4k−1∏
i=0

(
2 + ik

k2 + 1 + ik

) n−k−1∏
i=4k

(
1− k2 − 1

ik

))

> Ω

(
exp

(
−
n−k−1∑
i=4k

{
k2 − 1

ik
+

(
k2 − 1

ik

)2
}))

which is Ω(n1/k−k) since
∑n−k−1

i=4k
k2−1
ik 6 (k−1/k) log n+O(1) and

∑n−k−1
i=4k

(
k2−1
ik

)2
=

O(1).
Conditional on A and using an argument similar to that in the proof of Proposi-

tion 3.2.5, the degree of each of the vertices u1, . . . , uk, v1, . . . , vk in G(n) is at least
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k + (Polya(1, 1,

[
k 0
1 k − 1

]
, n − k) − 1)/(k − 1). By [FDP06, Proposition 16], there

exists δ > 0 such that

Pr

[
Polya(1, 1,

[
k 0
1 k − 1

]
, n− k) < δn(k−1)/k

]
< 1/(2k + 1) .

By the union bound, the probability that all vertices u1, . . . , uk, v1, . . . , vk have degrees
at least δn(k−1)/k/(k−1) is at least 1/(2k+1), hence Pr [B|A] > 1/(2k+1) = Ω(1).

Let f(n) = o(log log n) be a function going to in�nity with n, and let m =⌈
f(n)n1−k/(k2+k−1)

⌉
. (Note that the value of m is di�erent from that in Section 3.4,

although its role is somewhat similar.) Consider the random k-tree process up to round
m. Enumerate the k-cliques of G(m) as C1, . . . , Cmk+1. Starting from G(m), when
new vertices are born in rounds m + 1, . . . , n until G = G(n) is formed, every clique
Ci `grows' to a random k-tree with a random number of vertices, which is a subgraph
of G. Enumerate these subgraphs as H1, . . . ,Hmk+1, and call them the pieces. We
say a piece is moderate if its number of vertices is between n/(mf(n)) and nf(n)/m.
Note that the number of vertices in a piece has expected value Θ(n/m). The following
lemma is proved by showing that this random variable does not deviate too much from
its expected value.

Lemma 3.5.3. With high probability, there are o(m) non-moderate pieces.

Proof. We prove that the �rst piece, H1, is moderate whp. By symmetry, this would
imply that the average number of non-moderate pieces is o(m). By Markov's inequal-
ity, this gives that whp there are o(m) non-moderate pieces. Let X denote the number
of vertices of H1. Note that X is distributed as k + Polya(1, km, k, n−m); so its ex-
pected value is k+ n−m

1+km = Θ(n/m). So by Markov's inequality, Pr [X > nf(n)/m] =
o(1). For bounding Pr [X < n/(mf(n))], we use an alternative way to de�ne the ran-
dom variable Polya(1, km, k, n−m) (see [JK77, page 181]): assume Z is a beta random
variable with parameters 1/k and m. Then X − k, which has the same distribution as
Polya(1, km, k, n−m), is distributed as a binomial random variable with parameters
n−m and Z. Note that

Pr [Z < 3/(mf(n))] =
Γ(m+ 1/k)

Γ(m)Γ(1/k)

∫ 3/(mf(n))

0
x1/k−1(1− x)m−1dx

<
m1/k

Γ(1/k)

∫ 3/(mf(n))

0
x1/k−1dx = 31/kk/(Γ(1/k)f(n)1/k) = o(1) ,

where we have used the fact Γ(m+ 1/k) < Γ(m)m1/k which follows from [Laf84,
equation (2.2)]. On the other hand, the Cherno� bound (see, e.g., [MR95, Theorem
4.2]) gives

Pr [X < n/(mf(n))|Z > 3/(mf(n))] 6 Pr [Bin(n−m, 3/(mf(n))) < n/(mf(n))]

< exp(−3(n−m)/(8mf(n))) = o(1) ,

thus Pr [X < n/(mf(n))] = o(1).



68 Randomized Rumor Spreading in Poorly Connected Networks

Theorem 3.5.4. Let f(n) = o(log log n) be an arbitrary function going to in�nity with
n. Suppose that initially one vertex in the random k-tree, G(n), knows a rumor. With
high probability, the Push-Pull protocol needs at least n(k−1)/(k2+k−1)f(n)−2 rounds to
inform all vertices of G(n).

Proof. Consider an alternative way to generate G(n) from G(m): �rst, we determine
how many vertices each piece has, and then we expose the structure of the pieces. Let
Y denote the number of moderate pieces. By Lemma 3.5.3 we have Y = Ω(m) whp.
We prove the theorem conditional on Y = y, where y = Ω(m) is otherwise arbitrary.
Note that after the sizes of the pieces are exposed, what happens inside each piece in
rounds m+ 1, . . . , n is mutually independent from other pieces. Let H be a moderate
piece with n1 vertices. By Lemma 3.5.2, the probability that H has an Ω(n

1−1/k
1 )-

barrier is Ω(n
1/k−k
1 ). Since n/(mf(n)) 6 n1 6 nf(n)/m, the probability that H has a

Ω((n/(mf(n))1−1/k)-barrier is Ω((nf(n)/m)1/k−k). Since there are y = Ω(m) moder-
ate pieces in total, the probability that no moderate piece has a Ω

(
(n/(mf(n)))1−1/k

)
-

barrier is at most (1 − Ω((nf(n)/m)1/k−k))y 6 exp(−Ω(f(n))) = o(1), which means

whp there exists an Ω
(
n(k−1)/(k2+k−1)f(n)−2

)
-barrier in G(n), as required.

3.6. Push-Pull Protocol on Random k-Apollonian Networks

In this section we analyze the Push-Pull protocol on a random k-Apollonian network
Ak(n). Since these networks are a sub-family of random k-trees, we reuse the proof
techniques in Section 3.4 and �nd an upper bound for for the number of rounds needed
to inform almost all vertices of Ak(n). The main result of this section is the following
theorem:

Theorem 3.6.1. Let k > 3 be constant and let f(n) = o(log log n) be an arbitrary
function going to in�nity with n. If initially a random vertex of a random k-Apollonian

knows a rumor, then whp after O
(

(log n)
k2−3

(k−1)2 · log log n · f(n)

)
rounds of the Push-

Pull protocol, n− o(n) vertices will know the rumor.

Before proving the above theorem let us de�ne some parameters and show several
lemmas. Fix k > 2 and let f(n) = o(log log n) be an arbitrary function going to
in�nity with n, and let

m =

⌈
n

f(n)(2k−2)/(k2−2k)(log n)2/k−1

⌉
Finally, let q = d4 log log ne and let

τ = 2k + q(n/m)(k−2)/(k−1) . (3.3)

The proof of Theorem 3.6.1 follows from the following structural result, which we
prove in the rest of this section.

Lemma 3.6.2. Let A be an (n + k)-vertex k-RAN. Whp there exists Σ ⊆
V (A) satisfying the conditions of Lemma 3.4.3 with τ de�ned in (3.3) and
χ = O(log n+ diam(A)).
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The proof of Lemma 3.6.2 is along the lines of that of Lemma 3.4.3. For the rest
of this section, A = A(n) is an (n+k)-vertex k-RAN. Consider the graph A(m), which
has k + m vertices and m(k − 1) + 1 active k-cliques. For any edge e of A(m), let
N∗(e) denote the number of active k-cliques of A(m) containing e. Note that, since
k > 2, for each edge e, the number of active k-cliques containing e does not decrease
as the k-RAN evolves. We de�ne a spanning forest F of A(m) as follows: at round
0, F has k isolated vertices, i.e. the vertices of A(0); then for every 1 6 t 6 m, if the
vertex x born in round t is joined to the k-clique C, then in F , x is joined to a vertex
u ∈ V (C) such that

N∗(xu) = max
v∈V (C)

N∗(xv) .

Note that F has k trees and the k vertices of A(0) lie in distinct trees. Let LOG denote
the event `each tree in F has height O(log n).'

Lemma 3.6.3. Whp LOG happens.

Proof. The proof is very similar to that of Proposition 3.7.1, the only di�erence being
that the built auxiliary tree is indeed a random k-ary recursive tree, whose height is
bounded by O(log n) whp.

We prove Lemma 3.6.2 conditional on the event LOG. In fact, we prove it for
any A(m) that satis�es LOG. Let A1 be an arbitrary instance of A(m) that satis�es
LOG. All randomness in the following refers to rounds m + 1, . . . , n. The following
deterministic lemma will be used in the proof of Lemma 3.6.5.

Lemma 3.6.4. Assume that xy ∈ E(F ) and x is born later than y. If the degree of x
in A1 is at least 2k − 1, then N∗(x, y) > (k − 1)(k − 3)/2.

Proof. Assume that x is joined to u1, . . . , uk when it is born, and that
v1, v2, . . . , vk−1, . . . are the neighbors of x that are born later than x, in the order
of birth. Let Ψ denote the number of pairs (uj , C), where C is an active k-clique in
G1 such that {x, uj} ⊆ V (C). Consider the round in which vertex x is born and is
joined to u1, . . . , uk. For every j ∈ {1, . . . , k}, the vertex uj is contained in k − 2
new active k-cliques, and one k-clique containing uj becomes deactivated. so in this
round Ψ increases by k(k − 3). For each i ∈ {1, . . . , k − 1}, consider the round in
which vertex vi is born. At least k − i of the uj 's are joined to vi in this round. Each
vertex uj that is joined to vi in this round is contained in k − 2 new k-cliques, and
one k-clique containing uj becomes deactivated. Hence in this round Ψ increases by
at least (k − i)(k − 3). Consequently, right after vk−1 is born, we have

Ψ > k(k − 1) +
k−1∑
i=1

(k − i)(k − 3) = (k − 1)2k/2 .

By the pigeonhole principle, there exists some ` ∈ {1, . . . , k} such that the edge xu` is
contained in at least (k − 1)2/2 active k-cliques, and this completes the proof, as the
number of active k-cliques containing {x, u`} will not decrease later.
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A vertex of A is called young if it is born later than the end of round m, and is
called old otherwise. In other words, vertices of A1 are old and vertices of A − A1

are young. We say edge {u, v} ∈ E(A) is fast if at least one of the following is true:
deg(u) 6 τ , or deg(v) 6 τ , or u and v have a common neighbor w with deg(w) 6 τ .
For an edge {u, v} ∈ E(F ), let pS({u, v}) denote the probability that {u, v} is not
fast, and let pS denote the maximum of pS over all edges of F .

Lemma 3.6.5. We have pS = o(1/(f(n) log n)).

Proof. The proof is similar to that of Lemma 3.4.6. Let {x, y} ∈ E(F ) be arbitrary.
By symmetry we may assume that x is born later than y. First, assume that k > 3.
By Lemma 3.6.4, at least one of the following is true: vertex x has less than 2k − 1
neighbors in A1, or N∗(x, y) > (k − 1)2/2. So we may consider two cases.

• Case 1: vertex x has less than 2k − 1 neighbors in A1. In this case vertex x
lies in at most k + (k − 2)2 many active k-cliques of A1. Suppose that x has D
neighbors in A1 and lies in B many active k-cliques in A1. Let

X = Polya

(
B, (k − 1)m+ 1−B,

[
k − 1 0

1 k − 2

]
, n−m

)
.

Then by an argument similar to the proof of Proposition 3.2.5, the degree of x
is distributed as D + (X −B) /(k − 2). By Proposition 3.2.4,

E [Xq] 6 (1 + o(1))

(
(k − 1)(n−m)

(k − 1)m+ 1

) q(k−2)
k−1

q−1∏
i=0

(B + i(k − 2))

6 O

(( n
m

) q(k−2)
k−1

(k − 2)q(k + q)!

)
,

where we have used B 6 k(k − 2). Therefore,

Pr
[
deg(x) > 2k + q(n/m)

k−2
k−1

]
6 Pr

[
X > (k − 2)q(n/m)

k−2
k−1

]
6

E [Xq]

(k − 2)qqq(n/m)
q(k−2)
k−1

= O
(

(k + q)!

qq

)
= o

(
1

f(n) log n

)
.

• Case 2: N∗(x, y) > (k−1)2/2. In this case we bound from below the probability
that there exists a young vertex w that is adjacent to x and y and has degree at
most τ . We �rst bound from above the probability that x and y have no young
common neighbors. For this to happen, none of the k-cliques containing x and
y must be chosen in rounds m+ 1, . . . , n. This probability equals

p := Pr [Polya(N∗(x, y),m(k − 1) + 1−N∗(x, y), k − 1, n−m) = N∗(x, y)] .

Since N∗(x, y) > (k − 1)2/2, by Proposition 3.2.2 we have

p 6

(
m+ 1

n

) k−1
2

= o

(
1

f(n) log n

)
.
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Now, assume that x and y have a young common neighbor w. If there are
multiple such vertices, choose the one that is born �rst. Since w appears later
than round m, by Lemma 3.2.6,

Pr
[
deg(w) > k + q(n/m)(k−2)/(k−1)

]
= O (q

√
q exp(−q)) = o

(
1

f(n) log n

)
.

The proof for k = 3 is very similar to the argument for Case 2 above: note that in
this case we have N∗(x, y) > 2 for all edges {x, y} ∈ E(F ), and we have

Pr [Polya(2, 2m− 1, 2, n−m) = 2] 6
m+ 1

n
= o

(
1

f(n) log n

)
.

Enumerate the k-cliques of A1 as C1, C2, . . . , and Cm(k−1)+1. Then choose r1 ∈
C1, . . . , rm(k−1)+1 ∈ Cm(k−1)+1 arbitrarily, and call them the representative vertices.
Starting from A1, when young vertices are born in rounds m + 1, . . . , n until A is
formed, every clique Ci `grows' to a k-RAN with a random number of vertices, which
is a subgraph of A. Enumerate these subgraphs as H1, . . . ,Hm(k−1)+1, and call them
the pieces. More formally, H1, . . . ,Hm(k−1)+1 are induced subgraphs of A such that a
vertex v is in V (Hj) if and only if every path connecting v to a old vertex intersects
V (Cj).

A old vertex is called nice if it is connected to some vertex in A(0) via a path of
fast edges. Since F has height O(log n) and each edge of F is fast with probability at
least 1 − pS , the probability that a given old vertex is not nice is O(pS log n) by the
union bound. A piece Hj is called nice if all its young vertices have degrees at most
τ , and the vertex rj is nice. A young vertex is called nice if it lies in a nice piece. A
vertex/piece is called bad if it is not nice.

Lemma 3.6.6. The expected number of bad vertices is o(n).

Proof. The proof is very similar to that of Lemma 3.4.7, except we use Lemmas 3.2.6
and 3.6.5 instead of Lemmas 3.2.6 and 3.4.6, respectively.

The proof of Lemma 3.6.2 is exactly the same as that of Lemma 3.4.3, except we
use Lemmas 3.6.5 and 3.6.6 instead of Lemmas 3.4.6 and 3.4.7, respectively. This
concludes the proof of Theorem 3.6.1.

3.7. Real-World Properties of the Networks

The study of real-world networks has exhibited three fundamental properties.

Small-world. This property, popularly known as six degree of separation, says that
any two nodes of a real-world network are connected via small number of intermediate
nodes or equivalently the network has small diameter, i.e. logarithmic in number of
nodes.
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Cluster Coe�cient. Besides the small-world property, Watts and Strogatz [WS98]
discovered that there is another fundamental feature of real-world networks called
clustering coe�cient, which is the probability of two random nodes with a common
neighbor are connected to each other. They found out that in many networks this
probability is a relatively large constant. (see, e.g., [WS98, Table 1]).

Scale Freeness. Albert and Barabasi [BA99] observed that the degree distribution of
many real-world networks follows a power law distribution with exponent 2 < β 6 3.
The authors in [BA99] introduced a model called preferential attachment (or brie�y
PA), to generate a evolving random graph model which is de�ned as follows. For
any given �xed integer k, the model starts with a graph on a �xed number of nodes
then in each round a new node is born and attached to k already present nodes with
probability proportional to their degrees.

In what follows we show that our models ful�ll all of the three properties above.

3.7.1. Diameter of the Networks

Proposition 3.7.1. whp the diameter of Gk(n) and Ak(n) are O(log n).

Proof. There is a one-to-one correspondence between random k-trees process and a
rooted random tree process Rk(t) where in each round a node of the tree is chosen
uniformly at random and k leaves append to the node. So if the root represents the
initial clique in the random k-tree process, it is easy to see this one-to-one correspon-
dence. Suppose that in round 1 6 t 6 n in the random k-tree process, a k-clique is
chosen, simultaneously corresponding node in Rk(t − 1) is chosen and gives birth to
k children. Note that since in the Apollonian process every clique is chosen at most
once, the corresponding random tree, say R′k(t− 1) is a random k-ary tree. Therefore
it is not hard to see that the depth of any node in Rk(n) is equal to the distance
of the corresponding clique in the network from the initial k-clique. Hence we have
that diam(Gk(n)) and diam(Ak(n)) are bounded by double of the height of Rk(n) and
R′k(n), respectively. It remains to show that whp the height of our auxiliary random
tree is bounded by O(log n). Although the height of the auxiliary random tree process
is an well-studied problem (see [Drm09, Section 1.3.3], for the sake of completeness
we give a self-contained proof. Let us label the nodes of the tree according to the
round they are born in. Note that nodes are born in the same round have the same
label. Suppose that hk be the height of Rk(n), so there is a sequence of labeled nodes
say t0, t1, . . . thk where ti+1 is connected to ti in some round ti < t 6 ti+1. Since in
every round the number of nodes (k-cliques) increases by k, the probability that ti+1

is connected to ti is at most
∑ti+1

t=ti+1
1

k·t+1 . Thus the probability that a given sequence
t0 = 0, t1, . . . , thk be a path of Rk(n) from the root to some leaf is at most

hk−1∏
i=0

ti+1∑
t=ti+1

1

k · t+ 1
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Using the union bound over all possible sequence of length hk + 1, we get

∑
t0<t1<...<thk

hk−1∏
i=0

ti+1∑
t=ti+1

1

k · t+ 1
6

1

hk!

(
n∑
t=1

1

k · t+ 1

)hk
=

(
e · log n

hk

)hk
.

By setting hk = O(log n) we conclude that whp there is no sequence of length at
least 10 log n from the root to some leaf. As a consequence the height is bounded
by O(log n). Note that same argument works for random k-ary tree with only one
di�erence which is the number of nodes giving birth increases by k − 1 and we have

∑
t0<t1<...<th′

k

h′k−1∏
i=0

ti+1∑
t=ti+1

1

(k − 1) · t+ 1
6

1

h′k!

(
n∑
t=1

1

(k − 1) · t+ 1

)h′k
=

(
e · log n

h′k

)h′k
,

where h′k is the height of a random k-ary tree.

3.7.2. Clustering Coe�cient of the Networks

Let us �rst give a formal de�nition of the clustering coe�cient and then show that the
clustering coe�cient of the considered network models are positive constants. This
is in stark cotrast to preferential attachment graphs and random graphs with given
expected degrees, whose clustering coe�cients are o(1) whp (e.g. see [BR03]).

De�nition 3.7.2. The clustering coe�cient of a graph G, written cc(G), is de�ned
as

cc(G) =
1

|V (G)|
∑

u∈V (G)

|〈N(u)〉|(
deg(u)

2

) ,

where |〈N(u)〉| denotes the number of edges {x, y} such that both x and y are neighbors
of u. Alternatively we can de�ne the clustering coe�cient of G as the ratio of the triple
number of triangles to the number of pairs of adjacent edges of G.

The authors in [KKV13, Corollary 2. 8], show that the clustering coe�cients of
random k-Apollonians are strictly positive. In what follows we extend this result to
random k-trees.

Proposition 3.7.3. For every positive integer n, the clustering coe�cient of Gk(n)
is at least 1/2.

Proof. Let u be a vertex of G(n). It is not hard to check that
|〈N(u)〉| = (k − 1)(deg(u)− k/2), and since deg(u) > k we get

|〈N(u)〉|(
deg(u)

2

) >
k

deg(u)
.

Using the Cauchy-Schwarz inequality we get

cc(G) >
1

|V (G)|
∑

u∈V (G)

k

deg(u)
>

k

n+ k
· (n+ k)2

2|E(G)|
=

1

2
.
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3.7.3. Degree Distribution of the Networks

The de�nition of random k-trees and Apollonian networks enjoys a `the rich get richer'
e�ect, as in the preferential attachment scheme. Think of the number of k-cliques
containing any vertex v as the `wealth' of v (note that this quantity is linearly related
to deg(v)). Then, the probability that the new vertex attaches to v is proportional
to the wealth of v, and if this happens, the wealth of v increases by k − 1. Roughly
speaking this phenomenon happens in many power law degree graphs. Gao [Gao09]
showed that whp the degree sequence of G(n) asymptotically follows a power law
distribution with exponent 2+ 1

k−1 . Kollosvary et. al [KKV13] showed that the degree
distribution of random k-Apollonian follows a power law distribution with exponent
2 + 1

k−2 as well.
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Part II

Random Walks on Graphs
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4
Cuto� Phenomenon for Random Walks

on Kneser Graphs

A simple random walk on a �nite, non-bipartite graph is a discrete-time ergodic
Markov chain, where in each time step the walker, located at some vertex, chooses
one of its neighbors uniformly at random and moves to that neighbor. The cuto�
phenomenon for a sequence of chains describes a sharp transition in the convergence
of the chain distribution to its stationary distribution, over a negligible period of time,
known as the cuto� window. (For a formal de�nition of cuto� phenomena, see Section
4.1). From a theoretical perspective, establishing a cuto� is often surprisingly chal-
lenging, even for simple chains, as it requires very tight bounds on the distribution
near the mixing time. For applications such as MCMC, a cuto� is desirable, since
running the chain any longer than the mixing time becomes essentially redundant.

Although it is widely believed that many natural families of Markov chains ex-
hibit a cuto�, there are relatively few examples where the cuto� has been shown. In
fact, it is quite challenging to prove or disprove the existence of a cuto� even for sim-
ple family of chains. The �rst results exhibiting a cuto� appeared in the studies of
card-shu�ing processes by Aldous and Diaconis [AD86], and Diaconis and Shahsha-
hani [DS81]. Later, the cuto� phenomenon was also shown for random walks on
hypercubes [DGM90], for random walks on distance regular graphs such as Johnson
and Hamming graphs [Bel98, DS87], and for randomized ri�e shu�es [CSC08b]. For
a more general view of Markov chains with and without cuto�s, we refer the reader to
[Dia96] or [LPW09, Chapter 18]. A necessary condition, known as product condition,
for a family of chains to exhibit a cuto� is that tnmix(1/4) · gapn tends to in�nity as
n goes to in�nity, where gapn is the spectral gap of the transition matrix of the n-th
chain (see [LPW09, Proposition 18.3].) However, there are some chains where the
product condition holds and no cuto� is shown (e.g., see [LPW09, Section 18]), Peres
[Per04] conjectured that many natural families of chains satisfying the product con-
dition exhibit cuto�s. For instance, he conjectured that random walks on any family
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of n-vertex (transitive) expander graphs with gapn = Θ(1) and mixing time O(log n)
exhibit cuto�s. Chen and Salo�-Coste [CSC08a] veri�ed the conjecture for other dis-
tances like the `p-norm for p > 1. Recently, Lubetzky and Sly [LS10] exhibited cuto�
phenomena for random walks on random regular graphs. They also showed that there
exist families of explicit expanders with and without cuto�s [LS11]. Diaconis [Dia96]
pointed out that if the second largest eigenvalues of the transition matrix of a chain
has high multiplicity, then this chain is more likely to show a cuto�.

Our Results. In this chapter, we show the cuto� phenomenon for simple random
walks on Kneser graphs. Given two integers n and k, the Kneser graph K(2n+ k, n)
is de�ned as the graph with the vertex set being all subsets of {1, . . . , 2n + k} of
size n and two vertices A and B being connected by an edge if A ∩ B = ∅. We
show that for any k = O(n), then the random walks on K(2n+ k, n) exhibit a cuto�
at 1

2 log1+k/n (2n+ k) with a window of size O(nk ). In the case that k = ω(n), the

number of vertices and degree of each vertex are
(

2n+k
n

)
and

(
n+k
n

)
, respectively which

they have the same magnitude and hence the simple random walks on K(2n+ k, n) is
mixed in just one step. It is also well-known that the transition matrix of the simple
random walk on Kneser graph K(2n+k, n) has spectral gap k

n+k and its second largest
eigenvalue has multiplicity 2n+ k (cf. Corollary 4.3.3). So by varying k = O(n), we
obtain various family of chains with di�erent spectral gaps. For instance by setting
k = Θ(n) we obtain a family of transitive expander graphs. It is worth mentioning
that Godsil [God80] shows that for most values of n and k, the graph K(2n+ k, n) is
not a Cayley graph.

Techniques. For the special case k = 1, we obtain the so-called odd graph K(2n +
1, n) with large odd cycles of size 2n + 1, which is a subgraph of K(2n + k, n). This
proves that K(2n + k, n) is not bipartite for every k > 1. The permutation group
on [2n + k] is a subgroup of the automorphism group of K(2n + k, n), and thus the
Kneser graph is always transitive. Combining these two observations, we conclude
that the simple random walk on K(2n + k, n) is an ergodic and transitive Markov
chain. Kneser graphs have been studied frequently in (algebraic) graph theory, in
particular due to their connections to chromatic numbers and graph homomorphisms.
(See [GR01] for more details and references.) In order to show a cuto� for a simple
random walk on Kneser graphs, it is necessary to have a su�ciently tight estimate of
its mixing time. Let P be the transition matrix of the simple random walk on Kneser
graph K(2n + k, n) with spectrum λi, 0 6 i 6

(
2n+k
n

)
− 1 and λ0 = 1. Then, it is

shown that [LPW09, Lemma 12.16]

d(t) = max
x∈Ω
‖P t(x, .)− π‖TV 6

1

2

√√√√|Ω|−1∑
i=1

λ2t
i , (4.1)

where Ω is the vertex set of the graph. It may be surprising that the upper bound
obtained by the spectral properties of the transition matrix is su�ciently tight and
matches the lower bound, which enables us to show the existence of a cuto�. Besides
Kneser graphs, the bound in (4.1) has also been successfully applied in the computing
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of the mixing time of random walks on Cayley graphs (see [Dia88, DH96]). This may
suggest the following question:

Question For which families of transitive ergodic chains is the upper bound in (4.1)
tight up to low order terms?

Outline. In Section 4.1 we formally de�ne the cuto� phenomenon for a family of
chains. In Section 4.2 we state our main result and give a proof. The proof is based
on two propositions shown separately in Sections 4.3 and 4.4.

4.1. De�nitions and Notations

In this section, we formally de�ne the cuto� phenomenon for a given sequence of
ergodic Markov chains. Let us �rst recall some basic de�nitions from the Markov
chain theory that can be found in [LPW09].

A �nite Markov chain is a stochastic process which moves from one element of a
�nite state space Ω to another element of Ω, where the movements are governed by a
�xed probability distribution or simply by a |Ω| × |Ω| matrix P , which is called the
transition matrix. This means that for every x, y ∈ Ω, at any time the probability of
moving from x to y is speci�ed by entry P (x, y) of the matrix. A simple induction
argument shows that each entry of the t-th power of P , denoted by P t(x, y), indicates
the probability that a chain started from state x lands on state y. A �nite Markov
chain is ergodic if for every x, y ∈ Ω, there exists a positive number tx,y so that for
every t > tx,y P

t(x, y) > 0. Let P t(x, .) be the probability distribution of the chain at
time t ∈ N over Ω with starting state x ∈ Ω. It is well known that P t(x, .) converges
to a stationary distribution π as t goes to in�nity (provided the chain is �nite and
ergodic). The total variation distance between two probability distributions µ and ν
on a probability space Ω is de�ned by

‖µ− ν‖TV = max
A⊂Ω
|µ(A)− ν(A)| ∈ [0, 1].

Therefore, we can de�ne the worst-case total variation distance to stationarity at time
t as

d(t) = max
x∈Ω
‖P t(x, .)− π‖TV .

For convenience, we de�ne d(t) for non-integer t as d(t) := d(btc). (If the reference is
clear from the context, we will also just say total variation distance at time t). The
mixing time is de�ned by

tmix(ε) = min{t ∈ N : d(t) < ε}.

Suppose now that we have a sequence of ergodic �nite Markov chains indexed by
n = 1, 2, . . .. Let dn(t) be the total variation distance of the n-th chain at time t and

t
(n)
mix(ε) be its mixing time. Formally, we say that the sequence of chains exhibits a
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cuto� (in total variation distance), as de�ned in [LPW09, Section 18.1], if for any �xed
0 < ε < 1,

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1.

Equivalently, a sequence of Markov chains has a cuto� at time tn with a window of
size wn = o(tn(1/4)) if

lim
c→∞

lim inf
n→∞

dn(tn − cwn) = 1,

lim
c→∞

lim sup
n→∞

dn(tn + cwn) = 0. (4.2)

A transition matrix is said to be reversible if it satis�es the following equality

π(x)P (x, y) = π(y)P (y, x).

It is claer that simple random walks on a connected non-bipartite graph is �nite and
ergodic. Moreover, if the graph is regular, then the stationary distribution is the
uniform distribution over the vertex set of the graph. Note that if A is an adjacency
matrix of a d-regular graph, then (1/d)A is the transition matrix of the simple random
walk on the graph. Also, if A is a symmetric matrix, then (1/d)A is a reversible
transition matrix. Let P be a reversible transition matrix and λ2 the second largest
eigenvalue of P . Then, 1− λ2 is de�ned as the spectral gap of P .

4.2. Main Theorem

In the following we state the main result of the paper.

Theorem 4.2.1. The simple random walk on K(2n + k, n) exhibits a cuto� at
1
2 log1+k/n(2n+ k) with a cuto� window of size O(nk ) for k = O(n).

We now give the proof of Theorem 4.2.1 using Proposition 4.3.4 and 4.4.3, whose
statements and proofs are deferred to later sections.

Proof. For the proof of the upper bound on the mixing time, we use the spectrum of
the transition matrix. Applying Proposition 4.3.4 implies that

lim
c→∞

lim inf
n→∞

dn

(1

2
log1+k/n(2n+ k) + c

n

k

)
= 0.

We establish the lower bound by considering the vertices visited by a random walk
starting from {n + 1, . . . , 2n} and their intersection with [n] = {1, . . . , n}. For any
step, we compute the expected size of the intersection and derive an upper bound on
its variance (to stationarity). Then applying Proposition 4.4.3 results into

lim
c→∞

lim inf
n→∞

dn

(
1

2
log1+k/n(2n+ k)− cn

k

)
= 1.

Combining these �ndings establishes a cuto� at 1
2 log1+k/n(2n+k) with a cuto� window

of size O(nk ) for k = O(n).
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4.3. Upper Bound on the Variation Distance

To prove our results, we need two lemmas, the lemma below can be found in [LPW09,
Lemma 12.16].

Lemma 4.3.1 ([LPW09, Lemma 12.16]). Let P be a reversible transition matrix with
eigenvalues

1 = λ0 > λ1 > . . . > λ|Ω|−1.

If the Markov chain is transitive, then for every x ∈ Ω

4‖P t(x, .)− π‖2TV 6
|Ω|−1∑
i=1

λ2t
i .

To employ Lemma 4.3.1, we need to know all eigenvalues and their multiplicities.
The spectrum of the adjacency matrix of Kneser graphs was computed in [GR01,
Section 9.4] and [Rei00].

Theorem 4.3.2 ([GR01, Section 9.4] and [Rei00]). The adjacency matrix of Kneser
graphs K(2n+ k, n) has the following spectrum

(−1)i
(
n+ k − i
n− i

)
with multiplicity of

(
2n+ k

i

)
−
(

2n+ k

i− 1

)
, i = 0, . . . , n,

where
(

2n+k
−1

)
= 0.

As K(2n + k, n) is a
(
n+k
n

)
-regular graph, we immediately obtain the following

corollary.

Corollary 4.3.3. The transition matrix of the simple random walk on K(2n + k, n)
has the following spectrum:

(−1)i
(
n+k−i
n−i

)(
n+k
n

) with multiplicity of

(
2n+ k

i

)
−
(

2n+ k

i− 1

)
, i = 0, . . . , n.

Proposition 4.3.4. We have the following upper bounds on the total variation distance
of the simple random walk on K(2n+ k, n).

• If k = o(n), then for every constant c > 1/2,

d

(
1

2
log1+k/n(2n+ k) + c

n

k

)
6 e−c.

• If k = Ω(n), then for every constant c with (1 + k
n)−c 6 1

2 ,

d

(
1

2
log1+k/n(2n+ k) + c

)
6 (1 + k/n)−c.
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Proof. By Corollary 4.3.3 we have

|λi| =
∣∣∣∣(−1)i

n(n− 1)(n− 2) · . . . · (n− i+ 1)

(n+ k)(n+ k − 1)(n+ k − 2) · . . . · (n+ k − i+ 1)

∣∣∣∣ 6 ( n

n+ k

)i
=

(
1− k

n+ k

)i
.

Now de�ne

g(t) =

(
1− k

n+ k

)2t

(2n+ k) =

(
1 +

k

n

)−2t

(2n+ k).

Applying Lemma 4.3.1 yields,

4‖P t(x, .)− π‖2TV 6
n∑
i=1

(
1− k

n+ k

)i2t
·
{(

2n+ k

i

)
−
(

2n+ k

i− 1

)}

6
n∑
i=1

(
(1− k

n+k )2t(2n+ k)
)i

i!

6eg(t) − 1.

Using the fact that for every x, 0 6 x 6 1/2, ex − 1 6 2x, we conclude that for any
0 6 g(t) 6 1/2,

‖P t(x, .)− π‖TV 6
√
g(t)/2 (4.3)

We consider two cases:
Case 1. k = o(n). We choose t = 1

2 log1+k/n(2n+ k) + cnk , where c > 1/2. Hence,

g(t) =

(
1 +

k

n

)−2t

(2n+ k) =

(
1 +

k

n

)−2 cn
k

6 e−2c < 1/2,

and by inequality (4.3),

d

(
1

2
log1+k/n(2n+ k) + c

n

k

)
6 e−c

Case 2. k = Ω(n). Now we choose t = 1
2 log1+k/n(2n+ k) + c. Then,

g(t) =

(
1 +

k

n

)−2t

(2n+ k) =

(
1 +

k

n

)−2c

6 1/2,

where the last inequality holds due to assumption on c. Hence, inequality (4.3) yields

d

(
1

2
log1+k/n(2n+ k) + c

)
6

(
1 +

k

n

)−c
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4.4. Lower Bound on the Variation Distance

In order to �nd a lower bound for variation distance we use the following lemma which
was applied in [Wil04]. For further discussion on this method we refer the reader to
[SC04]. Let f be a real-valued function on Ω. We use Eµ [f ] and Varµ [f ] to denote
the expectation and variance of f under distribution of µ.

Lemma 4.4.1 ([LPW09, Proposition 7.8]). Let µ and ν be two probability distributions
on Ω and f : Ω→ R be an arbitrary function. Suppose that max{Varµ [f ] ,Varν [f ]} 6
σ2
∗. Then if

|Eµ [f ]−Eν [f ]| > rσ∗,

then

‖µ− ν‖TV > 1− 8

r2
.

Before proceeding, we recall that a random variable Y ∼ H(N,m, n) has a
hypergeometric distribution if for every max{0, n + m − N} 6 i 6 min{n,m},

Pr [Y = i] =
(mi )(

N−m
n−i )

(Nn)
. The expected value and variance of Y are E [Y ] = nm

N and

Var [Y ] = nm(N−m)(N−n)
N2(N−1)

respectively.

Lemma 4.4.2. Let Xt be the vertex visited at step t by a simple random walk on
K(2n + k, n) which starts at vertex X0 = {n + 1, n + 2, . . . , 2n}. Let ft = f(Xt) =
|Xt ∩ [n]|, so f0 = 0. Moreover, de�ne a random variable f = |X ∩ [n]| with X being
a vertex chosen uniformly at random from K(2n+ k, n). Then for any t ∈ N,

Var [ft] 6 C(n, k)Var [f ] ,

where C(n, k) = (1 + o(1))(1 + k/n) for k = O(n).

Proof. The random variable f under π has a hypergeometric distribution H(2n +
k, n, n). Hence,

E [f ] =
n2

2n+ k
, (4.4)

and

Var [f ] =
n2(n+ k)2

(2n+ k)2(2n+ k − 1)
. (4.5)

In step t+1 of the walk, an n-element subset of the complement of Xt is chosen. If
ft = s, |Xt ∩ [n]| = s, then Xc

t has n− s common elements with [n] and s+ k common
elements with [n]c. Therefore ft+1 = n− Y where Y has hypergeometric distribution
H(n+ k, s+ k, n). Hence,

E [ft+1 | ft = s] = E [n− Y ] = n− (s+ k)n

n+ k
= (n− s) ·

(
1− k

n+ k

)
= n

(
1− k

n+ k

)
−E [ft]

(
1− k

n+ k

)
.
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Solving this recursion allows us to compute the expectation of ft:

E [ft] = n
t∑
i=1

[
(−1)i+1

(
1− k

n+ k

)i]
+ (−1)tE [f0] (1− k

n+ k
)t︸ ︷︷ ︸

=0

= −n
( k
n+k − 1)t+1 − ( k

n+k − 1)
k

n+k − 2
=

n2

2n+ k
+ (−1)t+1

n(n+ k)(1− k
n+k )t+1

2n+ k
.

(4.6)

We have already shown thatE [ft+1 | ft] = n(1− k
n+k )−ft(1− k

n+k ), which immediately
implies that

Var [E [ft+1 | ft]] =

(
1− k

n+ k

)2

Var [ft] .

As observed earlier, the random variable ft+1 conditioned on ft has distribution n−Y
where Y ∼ H(n+ k, ft + k, n) which yields

Var [ft+1 | ft] = Var [n− Y ] = Var [Y ] =
(ft + k)(n− ft)

(n+ k)2
× nk

(n+ k − 1)
.

Assume now that A is an upper bound for (ft+k)(n−ft)
(n+k)2

for every ft; A will be speci�ed
later. In the following, we use the total law of variance to �nd a recursive formula for
Var [ft],

Var [ft+1] = Var [E [ft+1 | ft]] + E [Var [ft+1 | ft]]

6

(
1− k

n+ k

)2

Var [ft] +A
nk

(n+ k − 1)
.

Using this recursion, we obtain the following upper bound on Var [ft]:

Var [ft] 6 A
nk

n+ k − 1

t−1∑
i=0

[(
1− k

n+ k

)2i
]

+ (1− k

n+ k
)2tV (f0)︸ ︷︷ ︸

=0

= A
nk

n+ k − 1
×

1− (1− k
n+k )2t

1− (1− k
n+k )2

6 A
n(n+ k)2

(2n+ k)(n+ k − 1)
.

Since always 0 6 ft 6 n, (ft+k)(n−ft)
(n+k)2

6 1/4 = A.

Var [ft] 6
1

4
· n(n+ k)2

(2n+ k)(n+ k − 1)
=

1

4
· n3(1 + k/n)2

n2(2 + k/n)(1 + k/n− o(1))
= n

(1 + k/n)(1 + o(1))

4(2 + k/n)
.

Moreover,

Var [f ] >
n4(1 + k/n)2

n3(2 + k/n)3
.

Using the fact that 1/2 6 1+x
2+x for every x > 0,

Var [f ] · (1 + k/n) · (1 + o(1)) >
n(1 + k/n)(1 + o(1))

4(2 + k/n)
.

By comparing Var [f ] and Var [ft], the claim follows.
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We are now ready to apply Lemma 4.4.1 to derive a lower bound on the total
variation distance.

Proposition 4.4.3. For every constant c > 0, we have the following lower bounds on
the total variation distance for a simple random walk on K(2n+ k, n).

• If k = o(n),

d

(
1

2
log1+k/n(2n+ k)− cn

k

)
> 1− 8(1 + o(1))(e− o(1))−2c.

• If k = Θ(n), then

d

(
1

2
log1+k/n(2n+ k)− c

)
> 1− 8(1 + o(1))(1 + k/n)−2c+4.

Proof. By using Lemma 4.4.2 and (4.5)√
max{Var [f ] ,Var [ft]} 6

√
C(n, k)Var [f ] 6 C(n, k)

n(n+ k)

(2n+ k)
√

2n+ k − 1
= σ∗.

Combining (4.6) and (4.4),

|E [ft]−E [f ] | = n(n+ k)

2n+ k

(
1− k

n+ k

)t+1

=
1

C(n, k)
σ∗
√

2n+ k − 1

(
1 +

k

n

)−t−1

.

De�ne

g̃(t) =

√
2n+ k − 1

C(n, k)

(
1 +

k

n

)−t−1

.

• Case 1. k = o(n). By Lemma 4.4.2 we know that C(n, k) = (1+k/n)(1+o(1)) =
(1 + o(1)). We choose t = 1

2 log1+k/n(2n+ k)− cnk so that

g̃(t) =

√
1− o(1)

1 + o(1)

(
1 +

k

n

)cn
k

= (1− o(1))ecn,

where (en)n is an increasing sequence tending to e as n → ∞. Applying
Lemma 4.4.1 yields,

d

(
1

2
log1+k/n(2n+ k)− cn

k

)
= ‖P t(X0, .)− π‖TV > 1− 8(1 + o(1))e−2c

n ,

where X0 = {n+ 1, . . . , 2n} and the equality comes from the fact that the chain
is transitive.

• Case 2. k = Θ(n). By Lemma 4.4.2, C(n, k) = (1 + k/n)(1 + o(1)). Take
t = 1

2 log1+k/n(2n+ k)− c. Hence,

g̃(t) =

√
1− o(1)

1 + o(1)
(1 + k/n)c−2.

Again, using Lemma 4.4.1 gives

d

(
1

2
log1+k/n(2n+ k)− c

)
= ‖P t(X0, .)−π‖TV > 1−8(1+o(1)(1+k/n)−2c+4.
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5
Balanced Allocation on Graphs: A

Random Walk Approach

The standard balls-into-bins model is a process which randomly allocates m balls into
n bins where each ball picks d bins independently and uniformly at random and the
ball is then allocated in a least loaded bin in the set of d choices. When m = n and
d = 1, it is well known that at the end of process the maximum number of balls at any
bin, the maximum load, is (1 + o(1)) logn

log logn whp. Azer et al. [ABKU99] showed that
for the d-choice process, d > 2, provided ties are broken randomly, the maximum load
is log logn

log d +O(1). The result implies that the maximum load is constant if and only if

d = logΩ(1) n. For a complete survey on the standard balls-into-bins process we refer
the reader to [MRS01]. Many subsequent works consider the settings where the choice
of bins are not necessarily independent and uniform. For instance, Vöcking [Vöc03]
proposed an algorithm called always-go-left that uses exponentially smaller number of
choices (i.e., d = Ω(log log n)) to achieve a constant maximum load. In this algorithm
the bins are partitioned into d groups of size n/d and each ball picks one random bin
from each group. The ball is then allocated in a least loaded bin among the chosen
bins and ties are broken asymmetrically. The algorithm results in a maximum load of
log logn
dφd

+O(1) whp, where 1 6 φd 6 2 is constant.
In many applications selecting any random set of choices is costly. For exam-

ple, in peer-to-peer or cloud-based systems balls (jobs, items,...) and bins (servers,
processors,...) are randomly placed in a metric space (e.g., R2) and the balls have
to be allocated on bins that are close to them as it minimizes the access latencies.
With regard to such applications, Byer et al. [BCM04] studied a model, where n bins
(servers) are uniformly at random placed on a geometric space. Then each ball in turn
picks d locations in the space and allocates itself on a nearest neighboring bin with
minimum load among other d bins. In this scenario, the probability that a location
close to a server is chosen depends on the distribution of other servers in the space
and hence there is no a uniform distribution over the potential choices. Here, the
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authors showed the maximum load is log logn
log d +O(1) whp. Later on, Kenthapadi and

Panigrahy [KP06] proposed a model in which bins are interconnected as a ∆-regular
graph and each ball picks a random edge of the graph. It is then placed at one of its
endpoints with smaller load. This allocation algorithm results in a maximum load of

log logn+O
(

logn
log(∆/ log4 n)

)
+O(1). Following the study of balls-into-bins with corre-

lated choices, Godfrey [God08] generalized the aforementioned result such that each
ball picks an random edge of a hypergraph that has Ω(log n) bins and satis�es some
mild conditions. Then he showed that the maximum load is a constant whp. Recently,
Bogdan et al. [BSSS13] studied a model where each ball picks a random node and
performs a local search from the node to �nd a node with local minimum load, where it
is �nally placed on. They showed that when the graph is a constant degree expander,
the local search guarantees a maximum load of Θ(log log n) whp.

Our Results. In this chapter we propose an algorithm for allocating n sequential
balls into n bins that are organized as a d-regular n-vertex graph G, where d > 3 can
be any integer. Let l be a given positive integer. A non-backtracking random walk
(NBRW) W of length l started from a node is a random walk in l steps so that in each
step the walker picks a neighbor uniformly at random and moves to that neighbor with
an additional property that the walker never traverses an edge twice in a row. Fur-
ther information about NBRWs can be found in [ABLS07] and [AL09]. Our allocation
algorithm, denoted by A(G, l), is based on a random sampling of bins from the neigh-
borhood of a given node in G by a NBRW from the node. The algorithm proceeds as
follows: In each round t, 1 6 t 6 n, ball t picks a node of G uniformly at random and
performs a NBRW W = (u0, u1 . . . , ul). After that a set of potential choices called b-
choice, β(W ) := {uj·rG | 0 6 j 6 bl/rGc} (b = bl/rGc+ 1 and rG = d2 · logd−1 log ne),
is selected and �nally the ball is allocated in a least loaded bin of β(W ) (ties are broken
randomly). It is worth to mention if d > log2 n, then rG = 1 and β(W ) is the set of all
nodes contained in W . Our result concerns bounding the maximum load attained by
A(G, l), denoted by m∗, in terms of l. Throughout this chapter, we assume that G is a
d-regular n-vertex graph with girth at least ω(l log log n), l > 20rG and l = o(logd n).
However, we will see in the proof of the result, it is su�cient that G has girth at least
ω(l) for some values of l. In order to present the upper bound, we consider two cases:

I. If l > 4γG, where γG =
√
rG · logd n, then we show that whp,

m∗ = O
(

log log n

log(l/γG)

)
.

It is readily checked that for every G, γG 6
√

2 log2 log n · log3 n. Therefore, for

a given regular graph satisfying the girth condition, if we set l = b(log n)
1+ε
2 c,

for any constant ε ∈ (0, 1) we have l > 4γG and then by applying the upper
bound we have m∗ = O(1/ε) whp.

II. If 32 · rG 6 l 6 4 · γG, then we show that whp,

m∗ = O
(
rG · logd n · log logn

l2

)
.
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In addition to the upper bound for m∗, we prove that m∗ = Ω(rG · logd n/l
2) whp (for

a proof see Section 5.4). So it is easy to see that the upper bound for m∗ is at most
O(log log n) factor above the lower bound.

The setting of our work is closely related to [BSSS13]. In this paper in each step a
ball picks a node of a graph uniformly at random and performs a local search to �nd
a node with local minimum load and �nally allocates itself on it. They showed that
with high probability the local search on expander graphs obtains a maximum load of
Θ(log log n). In comparison to the mentioned result, our new protocol achieves a fur-
ther reduction in the maximum load, while still allocating a ball close to its origin. Our
result suggests a tradeo� between allocation time and maximum load. In fact we show
a constant upper bound for su�cient long walks (i.e., l = (log n)

1+ε
2 , for any constant

ε ∈ (0, 1)). Our work can also be related to the one by Kenthapadi and Panigrahy
where balls pick a random edge in d-regular graphs with d = nΩ(1/ log logn) resulting
into a maximum load of Θ(log log n). Godfrey [God08] also studied an allocation al-
gorithm where every ball chooses a random edge e of a hypergraph satisfying some
conditions, that is, �rst the size of each edge is d = Ω(log n) and Pr [u ∈ e] = Θ( dn)
for any bin u. The latter one is called balanced condition. It is not hard to see that
if we have a graph with girth g = Ω(log n) and set l = g/2, then visited nodes by
a ball generates a hyperedge satisfying aforementioned conditions. Berenbrink et al.
[BBFN12] simpli�ed Godfrey's proof and slightly weakened the balanced condition but
since both analysis apply a Cherno� bound, it seems unlikely that one can extend the
analysis for l = o(log n).

In a di�erent context, Alon and Lubetzky [AL09] showed that if a particle starts
a NBRW of length n on n-vertex graph with high-girth then the number of visits to
nodes has a poisson distribution. In particular they showed that the maximum visit
to a node is at most (1 + o(1)) · logn

log logn . Our result can be also seen as an application
of the mathematical concept of NBRWs to task allocation in distributed networks.

Techniques. To derive a lower bound for the maximum load we �rst show that whp
there is a path of length l which is traversed by at least Ω (logd n/l) balls. Also,
each path contains l/rG potential choices and hence, by pigeonhole principle there is
a node with load at least Ω

(
rG logd n/l

2
)
, which is a lower bound for m∗. In order to

establish the upper bound, we apply the witness graph techniques and a key property
of the algorithm, which is called (α, n1)-uniformity. We say an allocation algorithm is
(α, n1)-uniform if the probability that ball 1 6 t 6 n1 is placed on an arbitrary node
is bounded by α/n, where n1 = Θ(n) and α = O(1). Note that the intuition behind
selecting a subset of visited nodes as a potential choices instead of all of them follows
from our technique for showing the (α, n0)-uniformity of the algorithm. Using this
property we conclude that for a given set of nodes of size Ω(log n), after allocating
n1 balls, the average load of nodes in the set is some constant whp. Using witness
graph method we show that if there is a node with load larger than some threshold
then there is a collection of nodes of size Ω(log n) where each of them has load larger
than some speci�ed constant. Putting these together implies that maximum load is
bounded as required whp.
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Outline. In Section 5.1, we present notations and some preliminary results that are
required for the analysis of the algorithm. In Section 5.2 we show how to construct
a witness graph and then in Section 5.3 by applying the results we prove the main
theorem. In Section 5.4 we derive a lower bound for the algorithm and �nally the last
section we show the key property of the algorithm which is then applied to prove the
main theorem.

5.1. Notations, De�nitions and Preliminaries

In this section we provide notations, de�nitions and some preliminary results that
are needed in this chapter. Throughout this chapter we assume that G is a d-
regular n-vertex graph with girth ω(l log logn) and l > 20rG is an integer, where
rG = d2 logd−1 log ne. The visited nodes by a non-backtracking walk of length l is
called an l-walk whose nodes are ordered in terms of their visit. Since G has girth
ω(l log logn), any l-walk in G contains l + 1 nodes and it is a path of length l. For
every l-walk W = (u0, u1, . . . , ul) contained in G, we de�ne a b-choice as follows:

β(W ) := {uj·rG | 0 6 j 6 bl/rGc},

where b = bl/rGc + 1 denotes the size of β(W ) and rG = d2 logd−1 log ne. Also, we
de�ne f(W ) to be the number of balls in a least-loaded node of β(W ). The height of
a ball allocated on a node is the number balls that are placed on the node before the
ball.

De�nition 5.1.1 (Interference Graph). For every given pair (G, l), the interference
graph I(G, l) is de�ned as follows: The vertex set of I(G, l) is the set of all b-choices
that corresponds to the set of all l-walks in G and two vertices β and β′ of I(G, l)
are connected if and only if β ∩ β′ 6= ∅. Note that if the pair (G, l) is clear from the
context, then the interference graph is denoted by I.

Lemma 5.1.2. Suppose that V (I) and ∆(I) denote the vertex set and the maximum
degree of I(G, l), respectively. Then we have

(i) |V (I)| = nd(d− 1)l0−1/2,

(ii) ∆(I) 6 b2d(d− 1)l0−1,

where l0 = bl/rGc · rG and b = bl/rGc+ 1. Furthermore, the number of rooted λ-vertex
trees contained in I is bounded by 4λ · |V (I)| ·∆(I)λ−1.

Proof. By de�nition of b-choice, it is easily seen that the b-choice corresponding to a
given l-walk W = (u0, u1, . . . , ul) is exactly the same as the b-choice corresponding
to a truncated walk of W , which is (u0, u1, . . . , ul0). So we have I(G, l) = I(G, l0).
Moreover, for every β ∈ V (I), there are nodes u and u′ contained in β so that
d(u, u′) = (b−1)rG = l0 and since G has girth at least ω(l) = ω(l0), the path of length
l0 connecting u to u′ is unique. This implies that there is a one-to-one correspondence
between the vertex set of I and the set of all paths of length l0 in G. On the other



5.1. Notations, De�nitions and Preliminaries 91

hand, by the girth condition on G we have that the total number of paths of length l0
in G is nd(d− 1)l0−1/2. Therefore we have,

|V (I)| = nd(d− 1)l0−1/2.

Suppose that W = (u0, u1 . . . , ul0) be an l0-walk in G corresponding to some
β ∈ V (I). By de�nition of β, v is an element of β if and only if v = u(j−1)rG for some
1 6 j 6 b. Since the graph locally looks like a d-ary tree, the total number of l0-walks
including v as (j − 1)rG-th node (i.e. u(j−1)rG = v) is at most

d(d− 1)(j−1)rG−1(d− 1)l0−(j−1)rG = d(d− 1)l0−1.

Index j varies from 1 to b, so v can be an element of at most bd(d− 1)l0−1 b-choices.
Also, every b-choice contains b elements and hence every b-choice intersects at most
b2d(d− 1)l0−1 other b-choices. Thus we get

∆(I) 6 b2 · d(d− 1)l0−1.

Let us now bound the total number of rooted λ-vertex trees contained in I. It was
shown that the total number of di�erent shape rooted trees on λ vertices is 4λ (For
example see [Knu97]); we say two rooted trees have di�erent shapes if they are not
isomorphic. For any given shape, there are |V (I)| ways to choose the root. As soon
as the root is �xed, each vertex in the �rst level can be chosen in at most ∆(I) many
ways. By selecting the vertices of the tree level by level we have that each vertex
except the root can be chosen in at most ∆(I) ways. So the total number of rooted
λ-vertex trees in I is bounded by

4λ · |V (I)| ·∆(I)λ−1.

By de�nition of I(G, l), the vertex set of I(G, l) is the set of all potential b-choices
that can be made by A(G, l). Now, let us interpret allocation algorithm A(G, l) as
follows:

For every ball 1 6 t 6 n, the algorithm picks a vertex of I(G, l), say βt, uniformly
at random and then allocates ball t on a least-loaded node of βt (ties are broken
randomly).

Let 1 6 n1 6 n be a given integer and assume that A(G, l) has allocated balls
until the n1-th ball. We then de�ne Hn1(G, l) to be the induced subgraph of I(G, l)
by {βt : 1 6 t 6 n1} ⊂ V (I).

De�nition 5.1.3. Let λ and µ be given positive integers. We say rooted tree T ⊂
I(G, l) is a (λ, µ)-tree if T satis�es:

1) |V (T )| = λ,

2) | ∪β∈V (T ) β| > µ.

Note that the latter condition is well-de�ned because every vertex of T is a b-element
subset of V (G). A (λ, µ)-tree T is called c-loaded, if T is contained in Hn1(G, l), for
some 1 6 n1 6 n, and every node in ∪β∈V (T )β has load at least c.
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Corollary 5.1.4. The size of family of (λ, µ)-trees is bounded by 4λ|V (I)|∆(I)λ−1.

Proof. We know that every (λ, µ)-tree T is a rooted λ-vertex subtree of I with the
additional property that | ∪β∈V (T ) β| > µ. This implies that the size of family of
rooted λ-vertex subtrees of I is an upper bound for the size of family of (λ, µ)-trees
and hence by applying Lemma 5.1.2, we reach the upper bound 4λ|V (I)|∆(I)λ−1.

For every node u, v ∈ V (G) let d(u, v) denote the length of shortest path between
u and v in G. Since G has girth at least ω(l), every path of length at most l is speci�ed
by its endpoints, say u and v and we denote it by interval [u, v]. Note that for any
graph H, V (H) is the vertex set of H.

5.1.1. Appearance Probability of a c-Loaded (λ, µ)-Tree

In this subsection we formally de�ne the notion of (α, n1)-uniformity for allocation
algorithms, and then present our key lemma concerning the uniformity of A(G, l).
By using this lemma we establish an upper bound for the probability that a c-loaded
(λ, µ)-tree contained in Hn1 exists.

De�nition 5.1.5. Suppose that B be an algorithm that allocates n sequential balls
into n bins. Then we say B is (α, n1)-uniform, if after allocating t balls, for every
1 6 t 6 n1, then for all u ∈ V (G),

Pr [ball t+ 1 is allocated on u ] 6
α

n
,

where α is some constant and n1 = θ(n).

Lemma 5.1.6 (Key Lemma). A(G, l) is an (α, n1)-uniform allocation algorithm,
where n1 = bn/(6eα)c.

Proof Sketch. Let DrG(u) denote the set of all nodes at distance rG from node
u ∈ V (G). We �rst show that if at the end of round t 6 n1, for every u ∈ V (G),
a constant fraction of nodes in DrG(u) are empty, then b-choice βt+1 contains θ(b)
empty nodes with probability 1 − O(1/b). It is not hard to see that the probability
that an arbitrary node, say u, belongs to βt+1 is b/n. On the other hand, ties are
broken randomly so if u ∈ βt+1, then ball t+1 is placed on u with probability O(1/b).
It may happen that with probability O(1/b), βt+1 does not contain θ(b) empty nodes,
which is called a bad b-choice. In this case we also show that both events (i.e., u ∈ βt+1

and βt+1 is a bad b-choice) happen with probability O(1/n). Putting these together
implies that ball t+ 1 is being placed on u with probability O(1/n). Now, it remains
to prove that during the allocations of balls up to round n1, for every u ∈ V (G), a
constant fraction of nodes in DrG(u) are empty whp. In order to show this, we de�ne
potential function Φ(t) =

∑
u∈V (G) exp(at(u)), where at(u) is the number of nonempty

in DrG(u) after allocation t balls. Then, using a inductive argument we prove that
for each 1 6 t 6 n1, at(u) is always bounded from above by a constant fraction of
|DrG(u)| whp as required. For a complete proof see Section 5.5.

In the next lemma, we derive an upper bound for the appearance probability a
c-loaded (λ, µ)-tree, whose proof is inspired by [KP06, Lemma 2.1].
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Lemma 5.1.7. Let λ, µ and c be positive integers.Then the probability that there exists
a c-loaded (λ, µ)-tree contained in Hn1(G, l) is at most

n · exp(4λ log b− cµ),

where b = bl/rGc+ 1.

Proof. Let us �x an arbitrary (λ, µ)-tree T ⊆ I(G, l) and p1 be the probability that
using λ balls T is built and contained in Hn1 . There are at most n1 6 n ways to
choose one ball per vertex of T and hence at most nλ ways to choose λ balls that are
going to pick the vertices of T . On the other hand, every ball picks a given vertex of
T (or a b-choice) with probability 1/|V (I)|. Thus we get,

p1 6 nλ · (1/V (I))λ.

Now, we have to add c additional balls for very node in ∪β∈V (T )β and let p2 denote
the probability that such a event happens. Since A(G, l) is (α, n1)-uniform with n1 =
bn/(6eα)c and | ∪β∈V (T ) β| = µ+ q, for some integer q > 0, we get

p2 6
∞∑
q=0

(
n1

c · (µ+ q)

)(
α · (µ+ q)

n

)c·(µ+q)

6
∞∑
q=0

(
e · n1

c · (µ+ q)

)c·(µ+q)

·
(
α · (µ+ q)

n

)c·(µ+q)

6
∞∑
q=0

(n1 · α · e
n · c

)c·(µ+q)
6 2 ·

(n1 · α · e
n · c

)c·µ
,

where we use the fact that for integers 1 6 a 6 b,
(
b
a

)
6 ( eb

a )a and the last inequality
follows from

(
n1·α·e
n·c

)
< 1/2. Since balls are mutually independent, p1 · p2 is an upper

bound for the probability that c-loaded (λ, µ)-tree T appears in Hn1 . By Corollary
5.1.4 we have an upper bound for the size of family of all (λ, µ)-trees. Hence, taking
the union bound over all (λ, µ)-trees gives an upper bound for appearance probability
of a c-loaded (λ, µ)-tree in Hn1 . Thus we get,

4λ|V (I)| ·∆λ−1 · p1 · p2 6 2 · 4λ|V (I)| ·∆λ−1

(
n

V (I)

)λ
·
(n1 · α · e

n · c

)c·µ
.

By Lemma 5.1.2 we have V (I) = nd(d − 1)l0/2, ∆(I) 6 b2d(d − 1)l0 , where l0 =
bl/rGcrG. Also we have b = bl/rGc+ 1 > 20 and n1 6 n/6αe. So the above bound is
simpli�ed as follows,

2n
(
8b2
)λ (n1 · α · e

n · c

)c·µ
6 nb4λ(1/6)cµ 6 n exp(4λ log b− cµ).
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u0 u1 u2 u3 u4

W

WP2

P1 P3 P4P2

Figure 5.1. The Partition step on W for k = 4 and the Branch step for P2 that gives

WP2
, shown by dashed line.

5.2. Witness Graph

In this section, we show that if there is a node whose load is larger than a threshold,
then we can construct a c-loaded (λ, µ)-tree contained in Hn1(G, l). Our construction
is based on an iterative application of a 2-step procedure, called Partition-Branch, which
we describe as follows:

Partition-Branch. Let k > 1 and ρ > 1 be given integers and W be an l-walk
corresponding to a ball at height ρ with f(W ) > ρ+1. The Partition-Branch procedure
with parameters ρ and k, denoted by PB(ρ, k), is a 2-step procedure that proceeds as
follows:

Partition: First, it partitions W into k edge-disjoint subpaths as follows:

Pk(W ) = {[ui, ui+1] ⊂W, 0 6 i 6 k − 1},

where d(ui, ui+1) ∈ {bl/kc, dl/ke}.

Branch: Second, for a given Pi = [ui, ui+1] ∈ P(W ), it �nds (if exists) another
l-walkWPi corresponding to a ball allocated on β(W ) that satis�es the following
conditions:

(C1) V (WPi) ∩ V (W ) ⊆ V (Pi) \ {ui, ui+1},
(C2) f(WPi) > f(W )− ρ.

We say procedure PB(ρ, k) on a given l-walk W is valid, if for every P ∈ Pk(W ),
WP exists. For a graphical view of the Partition-Branch procedure see Figure 5.1.

5.2.1. Construction of Witness Graph

In this subsection conditioning on event Fδ which is de�ned later, we show how to
construct a c-loaded (λ, µ)-tree contained in Hn1 . Let us de�ne a set of parameters
depending on d, n, and l as follows:

k := max{4, bl/
√
rG · logd nc},

δ := bbl/kc/4c,
ρ := d8rG logd n/δ

2e.
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By de�nition we have rG = d2 logd−1 log ne, and hence rG = o(
√
rG · logd n). Also

we assume that l > 32rG. So either k = 4 or k = bl/
√
rG · logd nc, we have,

δ = bbl/kc/4c > 2rG. (5.1)

Now, we de�ne a useful event that if it holds, then the Partition-Branch procedure is
valid on an l-walk W with f(W ) > ρ+ 1.

De�nition 5.2.1. We say that event Fδ holds, if after allocating at most n balls by
A(G, l), every path of length δ is contained in less than 6 logd−1 n/δ l-walks that are
randomly chosen by A(G, l).

Lemma 5.2.2. Suppose that event Fδ holds and W be an l-walk with f(W ) > ρ+ 1.
Then the procedure PB(ρ, k) on W is valid.

Proof. Let us �x an arbitrary subpath Pi = [ui, ui+1] ∈ P(W ). By de�nition,
δ = bbl/kc/4c and we have d(ui, ui+1) > 4δ. De�ne P ′ = [u, v] ⊂ Pi such that

d(ui, u) = d(v, ui+1) = δ.

And we have
d(u, v) > 2δ.

Note that P ′ is a subpath of [ui, ui+1] containing neither ui nor ui+1. By 5.1, P ′ ⊂W
has length at least 4rG. So if we de�ne S = β(W ) ∩ V (P ′), then |S| > 3. Let B(S) be
the set of all balls allocated on nodes of S with height at least f(W )− ρ > 1. Then
B(S) 6= ∅. Clearly, each ball t ∈ B(S) represents an l-walk Wt that satis�es (C2),
which means f(Wt) > f(W )−ρ and β(Wt)∩β(W ) 6= ∅. So it is su�cient to show there
is an l-walk in {Wt, t ∈ B(S)}, that satis�es (C1). Recall that ρ = d8rG logd−1 n/δ

2e
and by de�nition of b-choice β(W ), we have

|S| > 2δ/rG − 1.

It is easy to see that

|B(S)| > |S|ρ > (2δ/rG − 1)ρ > (2δ/rG − 1)(8rG logd−1 n/δ
2)

= 16 logd−1 n/δ − 8rG logd−1 n/δ
2

> 12 logd−1 n/δ,

where the last inequality follows from δ > 2rG. This means:

|{Wt, t ∈ B(S)}| > 12 logd−1 n/δ.

Let xt, t ∈ B(S), be an arbitrary node of V (P ′) ∩ V (Wt). Since G has girth ω(l),
we have that if for some t ∈ B(S), V (Wt) contains ui (or ui+1), then it also has to
contain [ui, xt] ⊇ [ui, u] (or [xt, ui+1] ⊇ [v, ui+1]). Conditioning on Fδ, [ui, u] and
[v, ui+1] are contained in less than 12 logd−1 n/δ l-walks. So there is ball t0 ∈ B(S)
whose corresponding l-walk Wt0 , denoted by WPi , contains neither ui nor ui+1 and
thus it satis�es (C1). Therefore, we conclude that for all Pi ∈ Pk(W ), WPi exists and
hence PB(ρ, k) on W is valid.
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WP1

R

WP4
free subpaths

WP2
WP3

Figure 5.2. The �rst level L1 = {WP1 ,WP2 ,WP3 ,WP4} and the Branch step for free

subpaths of WP1 .

Let Un1,l,h be the event that after allocating at most n1 6 n balls by A(G, l)
there is a node with load at least hρ + c, where c = O(1) and h = O(log log n) are
positive integers that will be �xed later. Suppose that event Un1,l,h conditioning on
Fδ happens. Then there is an l-walk R corresponding to the ball at height hρ+ c− 1
with f(R) > hρ+ c. Applying Lemma 5.2.2 shows that PB(ρ, k) on R is valid. So let
us de�ne

L1 := {WP , P ∈ Pk(R)},

which is called the �rst level and R is the father of all l-walks in L1. Condition (C2)
in the Partition-Branch procedure ensures that for every W ∈ L1,

f(W ) > (h− 1)ρ+ c.

Once we have the �rst level we recursively build the i-th level from the (i− 1)-th
level, for 2 6 i 6 h. Let W be any l-walk in Li−1. We then apply the Partition step
on W and get Pk(W ). We say P ∈ Pk(W ) is a free subpath if it does not share any
node with W 's father. Let W ′ be W 's father. We know that each W except R is
created by the Branch step. Thus, by (C1) we have that ∅ 6= W ∩W ′ = [u, v] ⊂ P , for
some P ∈ Pk(W ′), and hence d(u, v) 6 dl/ke. Note that since G has girth ω(l), the
intersection of two paths W and W ′ is a subpath. This implies that Pk(W ) contains
at most 2 subpaths that are not free. Let us now choose a set of free subpaths of size
k− 2 denoted by P0(W ) ⊂ P(W ). Since for each W ∈ Li−1, f(W ) > (h− i+ 1)ρ+ c,
by Lemma 5.2.2 PB(ρ, k) on W is valid. Hence, for each W ∈ Li−1 we can de�ne set
Li,W := {WP , P ∈ P0(W )}, where W is called the father of elements in the set. We
now de�ne the i-th level as follows

Li =
⋃

W∈Li−1

Li,W .

For a graphical view see Figure 5.2. We now present some useful lemmas about the
properties of the recursive construction and show how to turn our construction into a
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subgraph of Hn1 . Suppose that Hj ⊂ G, 0 6 j 6 h− 1, be the union of all l-walks up
to level j + 1. Then we have the following lemma.

Lemma 5.2.3. For every 0 6 j 6 h− 1, Hj is a tree.

Proof. When j = 0, clearly H0 = R, where R is the root. So the diameter of H0 is l.
Assume that for some j0, 0 6 j0 < h− 1 the diameter of Hj0 is at most (2j0 + 1)l. We
know that every l-walk in the (j0 + 1)-th level intersects a path in Hj0 so the distance
between any two nodes of Hj0+1 increases by at most 2l and thus the diameter of
Hj0+1 is at most

(2j0 + 1)l + 2l = (2(j0 + 1) + 1)l.

So we inductively conclude that Hj , for every 0 6 j 6 h − 1, has diameter at most
(2j+1)l. If for some j, 0 6 j 6 h−1, Hj contains a cycle, then the length of the cycle
is at most 2 · diam(Hi) 6 2(2j+ 1)l 6 4hl which contradicts the fact that Hj ⊂ G and
G has girth at least ω(l log log n).

Lemma 5.2.4. For every 1 6 j 6 h, the j-th level contains k(k − 2)j−1 disjoint l-
walks. Moreover every l-walk in the j-the level only intersects one l-walk in the previous
levels which is its father.

Proof. Let us begin with j = 1. For the sake of a contradiction assume that
WPi ,WPi′ ∈ L1 intersect each other, where Pi = [ui1 , ui+1], Pi′ = [ui′ , ui′+1] ∈ Pk(R).
l-walks WPi and WPi′ are resulted by the Branch step and hence we can choose two
arbitrary nodes z ∈ V (Pi) ∩ V (WPi) and z′ ∈ V (Pi′) ∩ V (WPi′ ). Also, let {ui, ui+1}
and {ui′ , ui′+1} be the boundary of Pi and Pi′ , respectively. Since H0 is a tree, there
is a unique path, say Qz,z′ , in H0 = R connecting z to z′. Nodes z and z′ have degree
2 in H0, so Qz,z′ contains nodes from boundaries of Pi and Pi′ . By (C1), WPi and
WPi′ excludes the boundaries. Thus we get a path from z to z′ in WPi ∪WPi′ ⊂ H1

that excludes the boundaries. This contradicts the fact that there is a unique path in
H1 ⊃ H0, because H1 is a tree by Lemma 5.2.3. So we infer that there are k disjoint
l-walks in L1 and they only intersect their father (i.e., R). Also we observe that the
nodes contained the free subpaths of each W ∈ L1 have degree at most 2 in H1, which
we call the D1 property. In other word, D1 property says that any path in H1 between
nodes of two free subpaths in the �rst level includes nodes from boundaries of the
subpaths (see Figure 5.2). Suppose that for some j0, 1 6 j0 6 h, the statement of the
lemma and Dj0 hold. Then we show them for the next level as well.

Similar to case j = 1, toward a contradiction assume that two l-walks WP ,WP ′ ∈
Lj0+1 intersect each other. Then, by (C2) we get a path in WP ∪ WP ′ ⊂ Hj0+1

excluding the boundaries of P and P ′ that connects one node from P to another node
in P ′. By Dj0 property, the path in Hj0 uses nodes from the boundaries, while we get
a path in Hj0+1 that exclude boundaries. This is a contradiction because Hj0+1 ⊃ Hj0

is a tree by Lemma 5.2.3. So the l-walls in Lj0+1 are disjoint and by the construction
we have |Lj0+1| = (k− 2)|Lj0 |. It only remains to prove every l-walk only intersect its
father in previous levels. Toward a contradiction assume that WP ∈ Lj0+1 intersects
a path, say W , in previous levels except its father W ′. Let z′ ∈ V (WP ) ∩ V (W )
and z ∈ V (WP ) ∩ V (P ) ⊂ P where P = [u, v] ∈ Pk(W ′). Note that by (C2) z is
neither u nor v. We now get a new path from z to z′ in Hj0+1 excluding u and v that
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contradicts the fact that there is only one path from z to z′ in Hj0 including a node
from the boundary of P .

Lemma 5.2.5. Suppose that G has girth at least 10hl and Un1,l,h conditioning on Fδ
happens.Then there exists a c-loaded (λ, µ)-tree T ⊂ Hn1, where λ = 1+k

∑h−1
j=0 (k−2)j

and µ = b · k(k − 2)h−1.

Proof. Since the construction is based on the Partition-Branch procedure, we have that
if l-walk W ′ is the father of W , then β(W )∩β(W ′) 6= ∅. Let us consider the set of all
b-choices that corresponds to l-walks in

⋃h
j=0 Lj , where L0 = {R}. We connect two

b-choices β(W ) and β(W ′) if W ′ is the father of W or vice versa. Let T ⊂ Hn1 denote
the resulting graph. By Lemma 5.2.4 for every 1 6 j 6 h, the j-th, level contains
k(k−2)j−1 disjoint l-walks and they intersect either their fathers or their k−2 children
and consequently we get

|V (T )| = λ = 1 + k
h−1∑
j=0

(k − 2)j .

If we only consider the h-th level, then we get∣∣∪β∈V (T )β
∣∣ > µ = b · k(k − 2)h−1.

By (C2) in the Partition-Branch procedure we have that f(W ) > (h− j)ρ+ c, for every
W ∈ Lj , 1 6 j 6 h. Hence every node in ∪β∈V (T )β has load at least c.

5.3. Main Result

In this section we state our main theorem and its proof. Before that let use recall a
set of parameters for given G and l as follows,

k := max{4, bl/
√
rG · logd nc},

δ := bbl/kc/4c,
ρ := d8rG logd n/δ

2e,

and Un1,l,h be the event that at the end of round n1, there is a nodes with load at

least hρ+ c, where c is a constant and h =
⌈

log logn
log(k−2)

⌉
. Note that when l = (log n)

1+ε
2

for every constant ε ∈ (0, 1), then k is at least (log n)ε/3 and hence h is a constant.
Therefore, in order to apply Lemma 5.2.5 for this case, it is su�cient that G has girth
at least 10hl or ω(l). Now we show the following useful lemma.

Lemma 5.3.1. With probability 1− o(1/n), Fδ holds.

Proof. Let us �x an arbitrary path [u, v] of length δ = bbl/kc/4c. Clearly, if W be
an l-walk and [u, v] ⊆ W = [u0, ul], then d(u0, u) + d(v, ul) = l − δ. Moreover, G is
a d-regular graph with girth at least ω(l), so the total number of di�erent paths of
length l containing [u, v] is∑

a+b=l−δ
(d− 1)a(d− 1)b = (l − δ + 1) · (d− 1)l−δ.
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On the other hand the total number of di�erent paths of length l is n · d · (d− 1)l−1/2.
So the probability that in some round t, 1 6 t 6 n, we get [u, v] ⊆Wt is at most

2(l − δ + 1)(d− 1)l−δ

n · d · (d− 1)l−1
=

2(l − δ + 1)(d− 1)

n · d · (d− 1)δ
6

2l

n(d− 1)δ
.

Let uδ = d6 logd−1 n/δe and {t1, t2, . . . , tuδ} ⊂ [n] be a sequence of distinct rounds
of size uδ. We de�ne indicator random variable Xt1,t2,...,tuδ

([u, v]), which takes one if
[u, v] ⊆Wti , for every 1 6 i 6 uδ, and zero otherwise. Thus we get

Pr
[
Xt1,t2...,tuδ

([u, v]) = 1
]
6
(

2l/n(d− 1)δ
)uδ

= n−uδ (d− 1)(logd−1(2l)−δ)uδ

6 n−uδ(d− 1)−uδ·δ/2 = n−uδn−3,

where the last inequality follows from l = o(logd n) and hence logd−1(2l) 6 rG/2 6 δ/2.
There are at most nuδ sequences of rounds of size uδ and at most n(d − 1)δ−1 paths
of length δ. Thus, by using the previous upper bound and the union bound over all
sequences of rounds and paths of length δ we have

∑
δ-path

∑
t1,t2,...,tuδ

Pr
[
Xt1,t2...,tuδ

([u, v]) = 1
]

6 nd(d− 1)δ−1nuδ Pr
[
Xt1,t2...,tuδ

([u, v]) = 1
]

6 o(n2)nuδ Pr
[
Xt1,t2...,tuδ

([u, v]) = 1
]

= o(1/n),

where the last inequality follows from δ 6 l = o(logd n). This implies that with
probability 1− o(1/n) there is no path of length δ contained in at least uδ l-walks or
equivalently Fδ holds.

Theorem 5.3.2. With high probability, the maximum load attained by A(G, l) denoted
by m∗ is bounded from above as follows:

I. If 20rG 6 l 6 4γG, then we have

m∗ 6 C1 ·
rG logd n · log log n

l2
,

where C1 is a constants.

II. If 4γG 6 l 6 log n, then we have

m∗ 6 C2 ·
log log n

log(l/γG)
,

where C2 is a constant.
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Proof. By Lemma 5.5.2 we have that A(G, l) is an (α, n1)-uniform, where n1 =
bn/(6eα)c. Let us divide the allocation process into s phases, where s is the smallest
integer satisfying sn1 > n. Let us now focus on the maximum load attained by A
after allocating n1 balls in the �rst phase, which is denoted by m∗1. Let us assume
that Un1,l,h happens. Now, in order to apply Lemma 5.2.5, we only need that G
has girth at least 10hl. By Lemma 5.2.5, if Un1,l,h conditioning on Fδ happens, then
there is a c-loaded (λ, µ)-tree T contained in Hn1 , where λ = 1 + k

∑h−1
j=0 (k − 2)j and

µ = b · k(k − 2)h−1. Thus, we get

Pr [Un1,l,h | Fδ]Pr [Fδ] 6 Pr [T exists | Fδ]Pr [Fδ]
= Pr [T exists and Fδ]
6 Pr [T exists] .

Therefore using the above inequality we have

Pr [Un1,l,h] = Pr [Un1,l,h | Fδ]Pr [Fδ] + Pr [Un1,l,h | ¬Fδ]Pr [¬Fδ]
6 Pr [T exists] + Pr [¬Fδ]
= Pr [T exists] + o(1/n). (5.2)

where the last inequality follows from Pr [¬Fδ] = o(1/n) by Lemma 5.3.1. By de�ni-
tion of h, we get

λ = 1 + k(1 + (k − 2)h) 6 2k log n

and
µ = bk(k − 2)h−1 > b(k − 2)h > b log n.

It only remains to bound Pr [T exists]. By applying Lemma 5.1.7 and substituting µ
and λ, we conclude that

Pr [T exists] 6 n exp(4λ log b− cµ) 6 n exp{−g log n},

where g = cb− 8k log b. Depending on k we consider two cases. First, k = 4. Then it
is easy to see there exists a constant c such that g > 2. Second, k = bl/γGc. Then we
have

g > cl/rG − 8l log l2/γG = l(c/rG − 16 log l/γG),

where it follows from b = l/rG and b 6 l. Note that we have 1/rG = 2 log d/log logn
and l < log n. Hence,

log l

γG
=

log l√
rG logd n

6
log logn√

2 log log n log n/ log d
=

log d
√

log logn√
2 log n

= o(1/rG).

This implies that for some integer c > 0, g = cl/rG − o(1/rG) > 2 and hence
in both cases we get Pr [T exists] = o(1/n). Now, by inequality (5.2) we infer that
m∗1 6 hρ+ c with probability 1− o(1/n). In what follows we show the sub-additivity
of the algorithm and concludes that in the second phase the maximum load increases
by at most m∗1 whp. Assume that we have a copy of G, say G′, whose nodes have
load exactly m∗1. Let us consider the allocation process of a pair of balls (n1 + t, t),
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for every 0 6 t 6 n1, by A(G, l) and A(G′, l). Let Xn1+t
u and Y t

u , t > 0 denote the
load of u ∈ V (G) = V (G′) after allocating balls n1 + t and t by A(G, l) and A(G′, l),
respectively. Now we show that for every integer 0 6 t 6 n1 and u ∈ V (G) we have
that

Xn1+t
u 6 Y t

u . (5.3)

When t = 0, clearly the inequality holds because Y 0
u = m∗1. We couple the both

allocation processes A(G, l) and A(G′, l) for a given pair of balls (n1 + t, t), t > 0, as
follows. We �rst choose a one-to-one function σt from V (G) to {1, 2, . . . , n} uniformly
at random and let σt(u), u ∈ V (G), be the index of u. Note that σt is also de�ned for
G′ as V (G) = V (G′).

Since G′ is a copy of G, the coupled process applies A(G, l) and selects b-choice
βn1+t and its copy, say β′t, in G

′. Then, balls n1 + t and t are allocated on least loaded
nodes of βn1+t and β′t, respectively, and ties are broken in favor of nodes with minimum
index. It is easily checked that the de�ned process is a coupling. Let us assume that
Inequality (5.3) holds for every t0 6 t, then we show it for t+ 1. Let v ∈ βn1+t+1 and
v′ ∈ β′t+1 denote the nodes that are the destinations of pair (n1 + t + 1, t + 1). Now
we consider two cases

1. Xn1+t
v < Y t

v . Then allocating ball n1 + t+ 1 on v implies that

Xn1+t
v + 1 = Xn1+t+1

v 6 Y t
v 6 Y t+1

v .

So, Inequality (5.3) holds for t+ 1 and every u ∈ V (G).

2. Xn1+t
v = Y t

v . Since βn1+t+1 = β′t+1, we have that v ∈ β′t+1 and v′ ∈ βn1+t+1.
Also we know that v and v′ are nodes with minimum load contained in βn+t+1

and βt+1, So we have,
Xn1+t
v 6 Xn1+t

v′ 6 Y t
v′

and also Y t
v′ 6 Y t

v = Xn1+t
v . Thus,

Y t
v′ = Y t

v = Xn1+t
v .

If v 6= v′ and σt+1(v′) < σt+1(v), then it contradicts the fact that ball n1 + t+ 1
is allocated on v. Similarly, if σt+1(v′) > σt+1(v), it contradicts that ball t is
allocated on v′. So, we have v = v′ and

Xn1+t
v + 1 = Xn+t+1

v = Y t
v + 1 = Y t+1

v .

So in both cases, Inequality (5.3) holds for every t > 0. If we set t = n1, then the
maximum load attained by A(G′, l) is at most 2m∗1 whp. Therefore, by Inequality (5.3),
2m∗1 is an upper bound for the maximum load attained by A(G, l) in the second phase
as well. Similarly, we apply the union bound and conclude that after allocating the
balls in s phases, the maximum load m∗ is at most sm∗1 with probability 1− o(s/n) =
1− o(1/n).
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5.4. A Lower Bound

In this subsection we derive a lower bound for the maximum load attained by the
algorithm based on a second method analysis.

Theorem 5.4.1 (Lower Bound). Suppose that G be a d-regular n-vertex graph with
girth at least ω(l), where 20rG 6 l 6 O(γG) is an integer, where γG =

√
rG logd n.

Then with probability 1 − n−Ω(1) the maximum load attained by A(G, l) is at least
Ω
(
rG logd n/l

2
)
.

Proof. We know in each round the algorithm picks a vertex of V (I(G, l)) uniformly
at random. Let us de�ne indicator random variable Xβ for every β ∈ V (I) as follows,

Xβ :=

{
1 if β is chosen at least τ times by A,
0 otherwise,

where τ will be speci�ed later. By Lemma 5.1.2 we have that

|V (I)| = nd(d− 1)l0−1/2 6 ndl/2,

where l0 = bl/rGcrG. Let β be an arbitrary vertex of V (I) and s = |V (I)|. Thus we
get

Pr [Xβ = 1] =
n∑
i=τ

(
n

i

)(
1

s

)i(
1− 1

s

)n−i
>
( n

s · τ

)τ (
1− 1

s

)n
>

(
2

dl · τ

)τ (
1− 1

s

)s
> d−(l+logd τ)τ/e, (5.4)

where the second inequality follows from n 6 s 6 n · dl/2. By setting τ = logd n/6l
and using the fact that logd τ < logd logd n 6 rG 6 l we get

(l + logd τ)τ 6 logd n/6 + logd n/6 = logd n/3.

By substituting the above upper bound in (5.4), we get

Pr [Xβ = 1] = Ω(n−1/3).

Let us de�ne the random variable Y =
∑

β∈V(I)Xβ. By linearity of expectation we
have

E [Y ] = s ·Pr [Xβ = 1] = (n · d · (d− 1)l0−1/2)Ω(n−1/3) = Ω(n2/3). (5.5)

It is easily seen that the random variables Xβ and Xβ′ are negatively correlated, which
means for every β,β′ ∈ V (I),

E
[
Xβ ·Xβ′

]
6 E [Xβ] ·E

[
Xβ′

]
.
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This implies that

Var [Y ] =
∑

β∈V (I)

(E
[
X2

β

]
− (E [Xβ])2) +

∑
β 6=β′∈V (I)

(E
[
XβXβ′

]
−E [Xβ]E

[
Xβ′

]
)

︸ ︷︷ ︸
60

6
∑

β∈V (I)

E
[
X2

β

]
= E [Y ] .

Applying Chebychev's inequality and above inequality yields that

Pr [Y = 0] 6 Pr [|Y −E [Y ] | > E [Y ]] =
Var [Y ]

(E [Y ])2
6

1

E [Y ]
.

By equality (5.5) we have that E [Y ] = Ω(n2/3). Therefore with probability at
least 1−O(n−2/3) we have Y > 1, which means there exists a vertex β that is chosen
at least τ times. Since every β ∈ V (I) contains b = bl/rGc + 1 elements, by the
pigeonhole principle there is a node with load at least

Ω

(
τ

l/rG

)
= Ω

(
rG logd n

l2

)
.

5.5. Proof of the Key Lemma

In this section we prove our key lemma, which states the algorithm is (α, n1)-uniform.
Before that let us de�ne some notations. For every S ⊆ V (G), Emptyt(S) denotes the
number of empty nodes contained in set S after allocating t balls. If it is clear from
the context, then we do not mention index t in Emptyt(S). Let Dr(v) denotes the set
of all nodes at distance r from node v ∈ V (G) in graph G. To avoid a lengthy case
analysis we do not optimize the constants.

Lemma 5.5.1. Suppose that with probability 1 − o(n−2), for every u ∈ V (G),
Emptyt(DrG(u)) > |DrG(u)|/2. Then for every v ∈ V (G),

Pr [ball t+ 1 is allocated on v ] 6
α

n
,

where α is a constant.

Proof. Let Et+1,v be the event that ball t+ 1 is placed on a given node v ∈ V (G) and
Ft+1 be the event that at least (b− 1)/10 of nodes in βt+1 are empty. So for every
v ∈ V (G) we have

Pr [Et+1,v] = Pr
[
Et+1,v|v /∈ βt+1

]
·Pr

[
v /∈ βt+1

]︸ ︷︷ ︸
=0

+ Pr
[
Et+1,v|v ∈ βt+1 and Ft+1

]
·Pr

[
v ∈ βt+1 and Ft+1

]︸ ︷︷ ︸
6(10/b−1)Pr[v∈βt+1]

+ Pr
[
Et+1,u|v ∈ βt+1 and ¬Ft+1

]
·Pr

[
v ∈ βt+1 and ¬Ft+1

]
6

10

b− 1
·Pr

[
v ∈ βt+1

]
+ Pr

[
¬Ft+1 | v ∈ βt+1

]
Pr
[
v ∈ βt+1

]
, (5.6)
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where the �rst summand follows since if v /∈ βt+1, then ball t + 1 cannot be placed
on v, the second one follows because ties are broken uniformly at random. Let Ci,
1 6 i 6 b, be the event that v ∈ βt+1 and v = u(i−1)rG , where Wt+1 = (u0, u1, . . . , ul).
Conditioning on Ci, without loss of generality, Wt+1 can be viewed as the union of
two edge-disjoint paths W 1

v and W 2
v that start with v and their lengths are (i− 1) · rG

and l− (i− 1) · rG, respectively. Since G has girth at least ω(l), it locally looks like a
d-ary tree and hence the total number of paths of length l with u(i−1)rG = v is

d(d− 1)(i−1)rG−1 × (d− 1)l−(i−1)rG = d(d− 1)l−1.

On the other hand in each round, A(G, l) picks an l-walk randomly from nd(d− 1)l−1

possible l-walks. Thus we get Pr [Ci] = d(d−1)l−1

nd(d−1)l−1 = 1
n , and hence

Pr
[
v ∈ βt+1

]
=

b∑
i=1

Pr [Ci] =
b∑
i=1

1

n
=
b

n
. (5.7)

Now let us compute an upper bound for Pr
[
¬Ft+1|v ∈ βt+1

]
that is the second term

in (5.6). Conditioning on event v ∈ βt+1, we can split Wt+1 in two subpaths W 1
v

and W 2
v , where both subpaths start with v and Wt+1 = W 1

v ∪W 2
v . So let us de�ne

β1
t+1 = V (W 1

v )∩βt+1 and β2
t+1 = V (W 2

v )∩βt+1, where we have βt+1 = β1
t+1 ∪β2

t+1.
Note that by de�nition of βt+1, for every u, u

′ ∈ βt+1, d(u, u′) = i · rG, where i is an
integer. Without loss of generality assume that s = |β1

t+1| > 2 and

β1
t+1 = {v = u1, u2, . . . , us},

where d(v, ui) < d(v, uj) for every 1 < i < j 6 s. Then it is clear that every uj ∈ β1
t+1,

2 6 j 6 s, is randomly chosen from a subset of DrG(uj−1), say Sj (because we run a
NBRW of length rG from uj−1 to reach uj). If it happens that the NBRW has already
traversed edge {z, uj−1}, for some z, then the walk cannot take this edge again and
hence |Sj | = (d− 1)rG . Therefore we have

|Sj | ∈ {d(d− 1)rG−1, (d− 1)rG}.

Let Ej be the event that Emptyt(DrG(uj−1)) > d(d− 1)rG−1/2. If Ej happens, then the
number of nonempty nodes of DrG(uj−1) is at most d(d− 1)rG−1/2. We also de�ne
an indicator random variable Xu for every u ∈ βt+1 \ {v}, which takes one whenever
u is empty and zero otherwise. Thus we have

Pr
[
Xuj = 1 | Ej

]
=

Emptyt(Sj)

|Sj |
>

{
(d−1)rG−d(d−1)rG−1/2

(d−1)rG > 1/4 if |Sj | = (d− 1)rG ,

1/2 if |Sj | = |DrG(uj−1)|,

where inequality in the �rst row follows from 1− d
2(d−1) > 1

4 when d > 3. By assumption

we have Pr [Ej ] = 1− o(n−2) so for every 2 6 j 6 s we get

Pr
[
Xuj = 1

]
= Pr

[
Xuj = 1 | Ej

]
Pr [Ej ] + Pr

[
Xuj = 1 | ¬Ej

]
Pr [¬Ej ]

> 1/4(1− o(n−2)) + o(n−2) > 1/4− o(n−2),
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Since the above lower bound is independent of any Xui , 2 6 i 6 j, we have that for
every 2 6 j 6 s,

Pr
[
Xuj = 1 | Xu1 = x1, · · · , Xuj−1 = xj−1

]
> 1/5.

A similar argument also works for β2
t+1 and we getPr [Xu = 1] > 1/5, for every u ∈

βt+1 \ {v}. Note that the lower bound for Pr [Xu = 1], u ∈ βt+1 \ {v} is independent
of other Xz's, z ∈ βt+1 \ {u, v}. Let Y =

∑
u∈βt+1\{v}Xu be number of empty nodes

in βt+1 \ {v} then we have that E [Y ] > (b − 1)/5. Let Y ∗ be the summation of
b − 1 independent Bernoulli random variables with success probability 1/5. Then by
applying Lemma 1.3.7 we get,

Pr
[
¬Ft+1|u ∈ βt+1

]
6 Pr [Y < (b− 1)/10]

6 Pr [Y ∗ < E [Y ∗] /2] 6 Pr [|Y ∗ −E [Y ∗] | > E [Y ∗] /2] .

Now depending on value b we can apply either Chebychev's or a Cherno� inequality
to derive an upper bound for the above inequality. We have Var [Y ∗] 6 E [Y ∗], so
applying Chebychev's bound results into

Pr [|Y ∗ −E [Y ∗] | > E [Y ∗] /2] 6
Var [Y ∗]

E [Y ∗] /4
6

4

E [Y ∗]
.

Thus we get the following upper bound

Pr
[
¬Ft+1|u ∈ βt+1

]
6 4/E [Y ∗] 6 20/(b− 1), (5.8)

Plugging bounds (5.7) and (5.8) in (5.6) yields that for every v ∈ V (G),

Pr [Et+1,v] 6
30b

n(b− 1)

where 30b/(b− 1) is indeed a constant.

The proof of the following lemma is similar to [BSSS13, Theorem 1.4].

Lemma 5.5.2 (Key Lemma). A(G, l) is an (α, n/(6eα))-uniform allocation algorithm
on G, where 1 6 α 6 30b/(b− 1) is a constant.

Proof. Let us de�ne potential function Φ(t) =
∑

u∈V (G) exp(atu), where atu denotes
the number of nonempty nodes of DrG(u) after allocating t balls. It is clear that
Φ(0) = n. Let us assume that after allocating t balls we have Φ(t) 6 n · e∆/4, where
∆ = d(d− 1)rG−1. Then for every u ∈ V (G),

ea
t
u 6 Φ(t) 6 elogn+∆/4.

Recall that rG = d2 logd−1 log ne. So we get atu 6 log n+∆/4 < ∆/2 and consequently
Emptyt(DrG(u)) > ∆

2 , for every u ∈ V (G). Let us de�ne indicator random variable
It+1(u) for every u ∈ V (G) as follows:

It+1(u) :=

{
1 if ball t+ 1 is placed on an empty node in DrG(u),
0 otherwise.
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Applying Lemma 5.5.1 shows that if Emptyt(DrG(u)) > ∆
2 , then for every u ∈ V (G)

Pr [It+1(u) = 1] 6
α · Emptyt(DrG(u))

n
6
α ·∆
n

,

where α is a constant. So we get

E
[
Φ(t+ 1) | Φ(t) 6 n · e∆/4

]
6

∑
u∈V (G)

{
Pr [It+1(u) = 1] · eatu+1 + Pr [It+1(u) = 0] · eatu

}
6

∑
u∈V (G)

(
1 +

α · e ·∆
n

)
· eatu =

(
1 +

α · e ·∆
n

)
Φ(t).

Let us de�ne Ψ(t) := min{Φ(t), n · e∆/4}. By using above recursive inequality we have
that

E [Ψ(t+ 1)] 6

(
1 +

α · e ·∆
n

)
Ψ(t).

Thus, inductively we have that E [Ψ(t)] 6
(
1 + α·e·∆

n

)t
Ψ(0). Let us de�ne

n1 = n/(6eα). Then applying Markov's inequality implies that

Pr
[
Ψ(n1) > n · e∆/4

]
6

(
1 + α·e·∆

n

)n1

e∆/4
6 e−∆/12

So with probability 1 − n−ω(1), we have Φ(n1) = Ψ(n1) < n · e∆/4. Since Φ(t) is an
increasing function in t, we have that Φt 6 n · e∆/4, for every 0 6 t 6 n1, and hence
Emptyt(DrG(u)) > ∆

2 for every u ∈ V (G). So applying Lemma 5.5.1 shows that for
every 0 6 t 6 n1 and u ∈ V (G),

Pr [ball t+ 1 is placed on u by A(G, l)] 6
α

n
.
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