
Saarland University
Faculty of Natural Sciences and Technology I
Department of Computer Science

A flexible framework for solving constrained
ratio problems in machine learning

Thomas Bühler, M.Sc.

Dissertation

zur Erlangung des Grades
des Doktors der Naturwissenschaften (Dr. rer. nat.)
der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

Saarbrücken, Dezember 2014

Tag des Kolloquiums:
17.06.2015

Dekan:
Prof. Dr. Markus Bläser

Vorsitzender des Prüfungsausschusses:
Prof. Dr. Joachim Weickert
Universität des Saarlandes

1. Gutachter:
Prof. Dr. Matthias Hein
Universität des Saarlandes

2. Gutachter:
Prof. Dr. Ulrike von Luxburg
Universität Hamburg

Akademischer Mitarbeiter:
Dr. Moritz Gerlach
Universität des Saarlandes

Abstract

The (constrained) optimization of a ratio of non-negative set functions is
a problem appearing frequently in machine learning. As these problems
are typically NP hard, the usual approach is to approximate them through
convex or spectral relaxations. While these relaxations can be solved glob-
ally optimal, they are often too loose and thus produce suboptimal results.
In this thesis we present a flexible framework for solving such constrained
fractional set programs (CFSP). The main idea is to transform the combi-
natorial problem into an equivalent unconstrained continuous problem. We
show that such a tight relaxation exists for every CFSP. It turns out that the
tight relaxations can be related to a certain type of nonlinear eigenproblem.
We present a method to solve nonlinear eigenproblems and thus optimize
the corresponding ratios of in general non-differentiable differences of con-
vex functions. While the global optimality cannot be guaranteed, we can
prove the convergence to a solution of the associated nonlinear eigenproblem.
Moreover, in practice the loose spectral relaxations are outperformed by a
large margin. Going over to constrained fractional set programs and the cor-
responding nonlinear eigenproblems leads to a greater modelling flexibility,
as we demonstrate for several applications in data analysis, namely the op-
timization of balanced graph cuts, constrained local clustering, community
detection via densest subgraphs and sparse principal component analysis.

iii

Zusammenfassung

Die (beschränkte) Optimierung von nichtnegativen Bruchfunktionen über
Mengen ist ein häufig auftretendes Problem im maschinellen Lernen. Da
diese Probleme typischerweise NP-schwer sind, besteht der übliche Ansatz
darin, sie durch konvexe oder spektrale Relaxierungen zu approximieren.
Diese können global optimal gelöst werden, sind jedoch häufig zu schwach
und führen deshalb zu suboptimalen Ergebnissen. In dieser Arbeit stellen
wir ein flexibles Verfahren zur Lösung solcher beschränkten fraktionellen
Mengenprogramme (BFMP) vor. Die Grundidee ist, das kombinatorische
in ein equivalentes unbeschränktes kontinuerliches Problem umzuwandeln.
Wir zeigen dass dies für jedes BFMP möglich ist. Die strenge Relaxierung
kann dann mit einem nichtlinearen Eigenproblem in Bezug gebracht wer-
den. Wir präsentieren ein Verfahren zur Lösung der nichtlinearen Eigen-
probleme und damit der Optimierung der im Allgemeinen nichtdifferen-
zierbaren und nichtkonvexen Bruchfunktionen. Globale Optimalität kann
nicht garantiert werden, jedoch die Lösung des nichtlinearen Eigenproblems.
Darüberhinaus werden in der Praxis die schwachen spektralen Relaxierun-
gen mit einem großen Vorsprung übertroffen. Der Übergang zu BFMPs und
nichtlinearen Eigenproblemen führt zu einer verbesserten Flexibilität in der
Modellbildung, die wir anhand von Anwendungen in Graphpartitionierung,
beschränkter lokaler Clusteranalyse, dem Finden von dichten Teilgraphen,
sowie dünnbesetzter Hauptkomponentenanalyse demonstrieren.

iv

Acknowledgements

First of all, I would like to express my gratitude towards my supervisor
Matthias Hein. During the development of this thesis, we had many inspiring
discussions and I thank him for raising my interest in this exciting field and
for his support and helpful advice. I learned a lot during my work on this
thesis, for which I am very grateful.

I would also like to thank my officemate and co-author Shyam Ranga-
puram for many constructive discussions and his invaluable contribution to
our joint projects, and last but not least for all the pleasant time we spent
together in the office. I also thank Simon Setzer for inspiring conversations
and our very constructive collaboration.

Special thanks go to Martin Slawski who accompanied me on this path
towards the PhD from the very beginning, and who was always an inspira-
tion in terms of discipline and perseverance. Many thanks also to Antoine
Gautier for proofreading parts of this thesis. In addition, I would like to
thank my former officemate Kwang In Kim for helpful discussions.

Moreover, many thanks to Alex Fauss for his invaluable work in keeping
our infrastructure alive and his availability to fix urgent problems at late
hours and weekends. Special thanks also go to Irmtraud Stein and Dagmar
Glaser for their help in administrative tasks.

Furthermore, I would like to express my gratitude to all other current
and former members of the Machine Learning Group who contributed im-
plicitly to this thesis through inspiring discussions which influenced the way
I think about Machine Learning, and by providing a great atmosphere and
a pleasant place to work.

Finally I would like to thank my family for always believing in me and
their constant support and encouragement during the work on this thesis.

v

vi

Contents

1 Introduction 1

1.1 Constrained fractional (set) programs 3

1.1.1 Balanced graph cuts 3

1.1.2 Constrained balanced graph cuts for local clustering . 4

1.1.3 Constrained local community detection 5

1.1.4 Sparse principal component analysis (PCA) 6

1.2 Loose convex vs. tight non-convex relaxations 6

1.3 Overview of this thesis . 7

1.3.1 Main contributions . 8

I Theoretical foundations of constrained fractional
set programs and nonlinear eigenproblems 9

2 Set functions and Lovasz extensions 11

2.1 Basics from analysis . 11

2.2 Set functions and their extensions 13

2.2.1 Properties of the Lovász extension 15

2.3 Submodular set functions . 15

2.3.1 Examples of submodular set functions 17

3 Nonlinear eigenproblems 19

3.1 Standard (linear) eigenproblems 19

3.2 Nonlinear eigenproblems . 21

4 Tight relaxations of CFSPs 25

4.1 Tight relaxation - The unconstrained case 26

4.2 Tight relaxation - The constrained case 31

II Algorithms for fractional programs 35

5 Ratios of non-negative functions 37

5.1 Standard inverse power method 38

vii

viii CONTENTS

5.2 Dinkelbach’s method . 39

5.3 Nonlinear inverse power method 41

5.3.1 Monotonicity . 43

5.3.2 Relation to nonlinear eigenproblem 44

5.4 RatioDCA . 45

5.4.1 Monotonicity . 46

5.4.2 Relation to nonlinear eigenproblem 48

5.4.3 The RatioDCA-Prox 50

5.4.4 Quality guarantee for RatioDCA 50

6 First order methods for inner problem 53

6.1 General results for first order methods 54

6.2 Basic first order methods for convex problems 58

6.2.1 Gradient method . 58

6.2.2 Subgradient method 60

6.2.3 Projected gradient and subgradient method 60

6.2.4 Accelerated gradient projection method 61

6.3 Proximal splitting methods 62

6.3.1 Proximal gradient method 62

6.3.2 Accelerated proximal gradient method 63

6.3.3 Douglas-Rachford splitting 64

6.3.4 Primal-dual proximal splitting methods 65

6.3.5 Accelerated primal-dual splitting 66

6.4 Bundle methods . 67

6.4.1 Cutting plane method 68

6.4.2 Bundle methods . 68

6.4.3 Bundle-level methods 69

6.5 General-purpose method for inner problem 70

6.5.1 Computation of subgradient of inner objective 71

6.5.2 Solution of the linear program 72

6.5.3 Solution of quadratic program 73

III Applications in network analysis and
dimensionality reduction 79

7 Balanced graph partitioning 81

7.1 Clustering via graph cuts . 82

7.1.1 Unbalanced graph cuts 82

7.1.2 Balanced graph cuts 84

7.2 Spectral clustering . 88

7.2.1 Spectral relaxation of balanced graph cuts. 89

7.2.2 Connection to eigenvectors of the graph Laplacian . . 91

7.2.3 Isoperimetric inequality for spectral relaxation 94

CONTENTS ix

7.3 p-Spectral clustering . 95

7.3.1 p-Spectral relaxation of balanced graph cuts 96

7.3.2 Connection to eigenvectors of the graph p-Laplacian . 101

7.3.3 Isoperimetric inequality for p-spectral relaxation . . . 104

7.4 1-Spectral clustering . 105

7.4.1 Tight 1-spectral relaxation of balanced graph cuts . . 106

7.4.2 Connection to eigenvectors of the graph 1-Laplacian . 110

7.4.3 Solution via nonlinear inverse power method 116

7.4.4 Solution of the inner problem 119

7.5 Symmetric vertex expansion 121

7.5.1 Tight relaxation of symmetric vertex expansion 124

7.5.2 Solution via nonlinear inverse power method 124

7.6 Multi-partitioning . 126

7.7 Experimental results . 128

7.7.1 High-dimensional noisy two moons 129

7.7.2 Graph partitioning benchmark 133

7.7.3 Symmetric vertex expansion 135

7.7.4 USPS and MNIST . 136

8 Constrained local clustering 139

8.1 The constrained local clustering problem 139

8.2 Tight relaxation . 141

8.2.1 Elimination of volume constraints 141

8.2.2 Direct integration of seed constraint 142

8.2.3 Seed constraint via penalty function 146

8.3 Solution via RatioDCA . 148

8.3.1 Solution of the inner problem 150

8.4 Experimental results . 154

8.4.1 Social networks . 154

8.4.2 Weak or noisy constraints 158

9 Community detection 163

9.1 The constrained densest subgraph problem 163

9.2 Tight relaxation . 166

9.2.1 Elimination of volume constraints 166

9.2.2 Direct integration of seed subset 167

9.2.3 Seed constraint via penalty function 170

9.3 Solution via RatioDCA . 171

9.3.1 Unconstrained version 172

9.4 Experimental results . 174

9.4.1 Community detection on DBLP data 174

9.4.2 Community detection on composer network 176

x CONTENTS

10 Sparse PCA 179
10.1 Principal component analysis 179

10.1.1 Variance interpretation 180
10.1.2 Connection to singular value decomposition 183

10.2 Sparse principal component analysis 184
10.2.1 Extensions to multiple principle components 185

10.3 Sparse PCA via nonlinear eigenproblems 187
10.3.1 Solution via nonlinear inverse power method 188
10.3.2 Deflation scheme . 190
10.3.3 Variational renormalization 192

10.4 Experimental results . 192
10.4.1 Gene expression data 192
10.4.2 Pitprops data . 193

11 Conclusions 197

Chapter 1

Introduction

How does one develop a machine learning method for a particular real world
application? Typically, the derivation involves two steps. First, one formu-
lates a mathematical model describing the real world scenario as accurately
as possibly. Second, one designs an algorithm to solve the underlying math-
ematical problem efficiently. Being able to do both of those steps is crucial
to the development of a useful technique for the given task.

On the one hand, it is of no use to have a model which is a perfectly
accurate representation of the real world task, if there is no way to solve
the underlying mathematical problem. It may be that there is no known
algorithm to compute a solution efficiently, or that one can construct a
numerical scheme to solve the problem approximately, but the result is far
away from the true solution. Or it may be that one can prove that there is
no way to obtain an optimal solution in reasonable time while at the same
time being able to guarantee that it is in fact optimal.

On the other hand, it is also not helpful if there exists a mathematical
description of the problem which can be solved efficiently to global optimal-
ity, but is only a coarse approximation of the real world task. This is what
is commonly meant by the phrase “this does not work in practice” - making
too simplifying modeling assumptions will lead to a result far away from the
true solution of the practical problem.

If we have a simple model and a complex model describing a real world
scenario equally well, of course the principle of Occam’s razor tells us to
favor the simpler solution. However, often the reason one uses a simpler for-
mulation is not because it is sufficient to describe the practical application,
but because there is no available technique for the more complex problem.
For this reason, it is of crucial importance to study the underlying math-
ematical concepts, and in particular to advance our knowledge on how to
solve certain classes of mathematical optimization problems.

The class of problems dealt with in this thesis is the optimization of
ratios of two functions. There is a wide range of applications of this type of

1

2 CHAPTER 1. INTRODUCTION

problems. Ratios of two functions appear in situations where the goal is to
optimize a trade-off between two quantities, or equivalently, minimize one
quantity while maximizing another quantity simultaneously. For instance,
in finance, one often encounters problems where one is interested in maxi-
mizing return while minimizing investment. Similarly, in resource allocation
problems, one aims at minimizing a ratio between cost and return. Another
example is given by scheduling problems where a certain ratio of cost per
time is optimized. See Schaible [1981] and references therein for a number
of other applications. Another example is if one is interested in finding com-
munities in a network, for instance a social network. Here, a community can
be defined as having large connectivity while having small size, hence again
leading to a ratio problem [Fortunato, 2010].

Certain special classes of ratio problems have been widely studied in the
literature and can be solved efficiently. These special cases are when the
involved functions are linear, quadratic, or a ratio of a convex and a concave
function [Dinkelbach, 1967, Schaible, 1981]. In the case of a certain class of
quadratic functions, the ratio problem can be related to the solution of a
linear eigenproblem. The most popular examples of this type of problems
in machine learning are spectral clustering as well as principal component
analysis [von Luxburg, 2007, Jolliffe, 2002].

However, the limitation to these types of functions imposes a severe
modeling restriction. This forms the motivation to consider a more general
class of ratio problems, where the involved non-negative functions are in
general non-convex and non-differentiable. It turns out that in these cases,
the problems can be related to the solution of a nonlinear eigenproblem,
which will be discussed in this thesis.

Another issue arises in the presence of additional side constraints, or
prior information about the optimal solution. Ideally, one would like to in-
corporate these constraints into the model, thus allowing for a more accurate
description of the real world problem. For instance, in financial applications,
one may have additional budget constraints, or in the community detection
task one may have additional restrictions regarding the size of the found com-
munities. There has been some previous work on incorporating constraints
into some of the applications discussed above (see e.g. Mahoney et al. [2012],
Khuller and Saha [2009], Saha et al. [2010]), however often these methods
fail to guarantee that the constraints are fulfilled by the returned solution.

For this reason, in this thesis we will consider a certain type of math-
ematical optimization problems called constrained fractional programs, in
particular the special case where the input argument is a set of elements,
referred to as constrained fractional set programs. Going over to the more
general class of problems will lead to an improved modeling flexibility. More-
over, we will also provide a numerical scheme to solve the resulting problem
efficiently. In the following, we will discuss some applications in machine
learning.

1.1. CONSTRAINED FRACTIONAL (SET) PROGRAMS 3

1.1 Constrained fractional (set) programs

In this section we discuss some examples of ratio problems in machine learn-
ing. We start by describing several problems in a graph-based setting. In the
following, G = (V,E,W) denotes an undirected, weighted graph, where V
is the set of vertices and E the set of edges. Moreover, each edge is assigned
a non-negative weight, where the weights are encoded in a non-negative,
symmetric weight matrix W ∈ Rn×n, where n = |V |.

Graphs arise in a wide range of applications in machine learning. Often
the graphs are constructed from the given data in such a way that the
vertices correspond to data points and the edge weights represent pairwise
similarities, see e.g. von Luxburg [2007]. In other cases, the data is already
given in the form of a graph, for example in social networks, communication
networks or web graphs, see e.g. Leskovec et al. [2009], Fortunato [2010].

By assigning a non-negative weight gi to each vertex i, we can define the
general volume of a subset A ⊂ V as volg(A) =

∑
i∈A gi. As special cases,

we obtain for gi = 1 the cardinality |A| and for gi equal to the degree di =∑
j∈V wij the classical volume vol(A) = vold(A). Furthermore, A = V \A

denotes the complement of A.

1.1.1 Balanced graph cuts

Balanced graph cuts are a well-known class of problems in computer sci-
ence. The aim is to achieve a bi-partition of the graph which has only small
connection between the two parts, while at the same time the partition is
balanced with respect to some notion of size. This problem has applications
ranging from parallel computing to image segmentation [Pothen et al., 1990,
Shi and Malik, 2000]. There exist several different criteria for the balanced
graph cut problem. A very popular objective is the normalized cut

NCut(C,C) =
cut(C,C)

vold(C) vold(C)
, for C ⊂ V,

where cut(C,C) :=
∑

i∈C,j∈C wij . The spectral relaxation of the normalized
cut leads to the popular spectral clustering method [von Luxburg, 2007]. A
related criterion with a slightly different balancing behavior is the normal-
ized Cheeger cut,

NCC(C,C) =
cut(C,C)

min{vold(C), vold(C)}
, for C ⊂ V.

We will discuss more balanced graph cuts in Chapter 7, and show how
they can be optimized using the framework introduced in this thesis. More
general balanced graph cuts were studied by Hein and Setzer [2011]. Fig. 1.1
gives an example of a balanced graph partitioning problem.

4 CHAPTER 1. INTRODUCTION

v1

v2

v3

v4

v5

v6

v7

v8 v1

v2

v3

v4

v5

v6

v7

v8

Figure 1.1: Illustration of some of the considered graph-based problems.
Left: Balanced graph cut. Right: Local clustering with subset constraint.

1.1.2 Constrained balanced graph cuts for local clustering

In practice, there is often additional information available about the given
task. This knowledge can be incorporated into the optimization problem in
the form of constraints. In the case of graph partitioning and clustering,
this leads to the problem of constrained local clustering which recently has
gained some attention in the machine learning community.

Starting with the work of Spielman and Teng [2004], initially, the goal
was to develop an algorithm that finds a subset near a given seed vertex
with small normalized cut or normalized Cheeger cut value with running
time linear in the size of the obtained cluster. The proposed algorithm and
subsequent work [Andersen et al., 2006, Andersen and Peres, 2009, Oveis
Gharan and Trevisan, 2012, Zhu et al., 2013] start with a given seed vertex
and then use random walks to explore the graph locally, without considering
the whole graph. Algorithms of this type have been applied for community
detection in networks [Andersen and Lang, 2006].

In contrast, Mahoney et al. [2012] give up the runtime requirement and
formulate the task as an explicit optimization problem, where the goal is to
find the optimal normalized cut subject to a seed constraint and an upper
bound on the volume of the returned set. They then derive a spectral-
type relaxation of the normalized cut problem which is biased towards so-
lutions fulfilling the seed constraint. Their method has been applied in
semi-supervised image segmentation [Maji et al., 2011] and for community
detection around a given query set [Mahoney et al., 2012]. However, while
they provide an approximation guarantee for their relaxation, they cannot
guarantee that the returned solution satisfies seed and volume constraints.

In Chapter 8 we consider an extended version of the problem of Mahoney
et al. [2012]. Let J denote the set of seed vertices, and Ŝ a symmetric
balancing function (e.g. Ŝ(C) = vold(C) vold(C) for the normalized cut).
The general local clustering problem can then be formulated as

min
C⊂V

cut(C,C)

Ŝ(C)
(1.1)

subject to : volh(C) ≤ k, and J ⊂ C,

1.1. CONSTRAINED FRACTIONAL (SET) PROGRAMS 5

where h ∈ Rn+ are vertex weights. An example can be found in Fig. 1.1,
where we specified a seed vertex as well as an upper bound constraint of
the form |C| ≤ 3. The choice of the balancing function Ŝ allows the user to
influence the trade-off between getting a partition with small cut and one
with good balance.

1.1.3 Constrained local community detection

A related problem is constrained local community detection. In commu-
nity detection it makes more sense to find a highly connected set instead of
emphasizing the separation to the remaining part of the graph. Thus, we
are searching for a set C which has high association, defined as assoc(C) =∑

i,j∈C wij . Dividing the association of C by its size yields the density of
C. The subgraph of maximum density can be computed in polynomial time
[Goldberg, 1984]. However, the obtained communities in the unconstrained
problem are often too large or too small, thus one is required to incorpo-
rate additional size constraints. Unfortunately, the introduction of such
constraints makes the problem NP-hard [Khuller and Saha, 2009].

In Chapter 9 we will consider a general class of (local) community de-
tection problems, which can be formulated as

max
C⊂V

assoc(C)

volg(C)
(1.2)

subject to : k1 ≤ volh(C) ≤ k2, and J ⊂ C,

where g, h ∈ Rn+ are vertex weights. This formulation generalizes the above-
mentioned density-based approaches by replacing the denominator by a gen-
eral volume function volg. The use of vertex weights allows us to bias the
obtained community towards one with desired properties (assigning small
weights to vertices which one prefers to be contained in the solution, larger
weights to ones which are less preferred).

The special case of (1.2) where one has only lower bound constraints
has been considered in team selection [Gajewar and Das Sarma, 2012] and
bioinformatics [Saha et al., 2010], where constant factor approximation algo-
rithms have been derived. However, in the case of equality and upper bound
constraints, the problem is very hard. It has been shown that even when
using only cardinality constraints (i.e. hi = 1), there exists no polynomial
time approximation scheme [Khot, 2006, Khuller and Saha, 2009].

Our method can handle such hard upper bound and equality constraints,
as we will show in Chapter 9. While no approximation guarantees can be
given, excellent qualitative results are achieved in practice, which will be
demonstrated in the experiments for a community detection problem with a
specified query set J and an upper bound on the size for a co-author network
as well as a composer network.

6 CHAPTER 1. INTRODUCTION

1.1.4 Sparse principal component analysis (PCA)

We now leave the graph-based setting and consider an example of a ratio
problem where the optimization is done over Rn. Principal component anal-
ysis (PCA) is a standard technique for dimensionality reduction and data
analysis [Jolliffe, 2002]. PCA finds the p-dimensional subspace of maximal
variance in the data. For p = 1, this can be formulated as

max
f∈Rn

〈f,Σf〉
‖f‖22

,

where Σ ∈ Rn×n is the sample covariance matrix of the given data. As
usually all entries of the optimum of the above problem are nonzero, an
interpretation of the principal components is often difficult. This plays a
role for instance in the case of gene expression data where one would like
the loading vectors of the principal components to consist only of a few
significant genes, making it easy to interpret by a human.

For this reason, in sparse PCA one enforces sparsity of the solution with
the aim of getting a small number of features while at the same time still
capturing most of the variance. In other words, one is interested in the
optimal trade-off between explained variance and sparsity. In Section 10 we
show how the sparse PCA problem can be modeled as constrained fractional
program and solved using the techniques introduced in this thesis.

1.2 Loose convex vs. tight non-convex relaxations

Note that the combinatorial problems considered in this thesis are in gen-
eral NP-hard [Š́ıma and Schaeffer, 2006, Shi and Malik, 2000, Feige et al.,
2001, Khuller and Saha, 2009, Moghaddam et al., 2006]. Thus the stan-
dard approach is to replace them by convex or spectral relaxations which
can be solved globally optimally. The spectral relaxation is very popular in
machine learning, e.g. spectral clustering [Hagen and Kahng, 1991, Shi and
Malik, 2000]. However, it is often quite loose and thus leads to a solution
far away from the optimal one of the original problem. Moreover, spectral-
type relaxations [Mahoney et al., 2012] fail to guarantee that the constraints
which encode the prior knowledge are satisfied.

A different approach is to consider tight non-convex relaxations instead.
Here, tight relaxation means that the continuous and the combinatorial
optimization problem are equivalent in the sense that the optimal values
agree and the optimal solution of the combinatorial problem can be obtained
from the continuous solution (and vice versa). In a recent line of work [Hein
and Bühler, 2010, Szlam and Bresson, 2010, Hein and Setzer, 2011, Bresson
et al., 2012a], it has been shown that tight continuous relaxations exist for
all balanced graph cut problems and the normalized cut subject to must-link
and cannot-link constraints [Rangapuram and Hein, 2012].

1.3. OVERVIEW OF THIS THESIS 7

The obvious disadvantage of these types of approaches is that they pro-
vide no guarantee to yield the globally optimal solution. However, in practice
the standard loose relaxations are outperformed by a large margin. More-
over, in contrast to the loose relaxations, tight relaxations guarantee that all
constraints are satisfied. In this thesis we show that tight relaxations exist
for all constrained fractional set programs. In particular this allows us to
derive efficient methods for the ratio problems discussed in the last section.

1.3 Overview of this thesis

The thesis is structured into three parts: Part I deals with the theoreti-
cal foundations of constrained fractional set programs and their relation to
nonlinear eigenproblems. We start in Chapter 2 by reviewing basic concepts
such as set functions, submodularity and Lovász extensions. Chapter 3 de-
fines nonlinear eigenproblems and shows their connection to critical points
of ratios of non-negative functions. Chapter 4 shows that any fractional set
program (constrained or unconstrained) can be transformed into an equiv-
alent optimization problem involving a ratio of non-negative functions.

Part II deals with the optimization of such ratios of non-negative func-
tions. In Chapter 5 we discuss several different cases, depending on the class
of functions R and S. Note that the ratio is in general non-convex and non-
differentiable. The most general case considered is the case where R and S
are non-negative differences of convex functions, thus covering a wide range
of different problems. The main idea of all methods discussed in this chapter
is to decompose the non-convex problem into a sequence of convex problems
which can be solved globally optimally. In Chapter 6 we discuss how to
solve this convex inner problem efficiently. We give an overview about var-
ious methods for convex optimization and then propose a general-purpose
method to solve the inner problem based on bundle methods.

Finally, in Part III we use the theoretical results to develop several ap-
plications in data analysis. Chapter 7 deals with balanced graph cuts in
particular the optimization of the Cheeger cut objective, which is used in
clustering. We discuss the methods p-spectral clustering and 1-spectral clus-
tering and show their superiority to state of the art methods. Chapter 8
presents a method for the problem of constrained local clustering. We apply
the method on several large social network datasets. Chapter 9 considers the
related problem of community detection based on the constrained maximum
density subgraph problem. We develop a method based on tight relaxations
of constrained fractional set programs and demonstrate its ability to detect
meaningful communities in a network of computer science researchers as
well as a network of classical composers. Chapter 10 develops a method for
sparse PCA, which matches state of the art result on gene expression data
sets as well as a well-known sparse PCA benchmark dataset.

8 CHAPTER 1. INTRODUCTION

1.3.1 Main contributions

In Chapter 4 we show that all constrained non-negative fractional set pro-
grams have an equivalent tight continuous relaxation. Note that the results
in [Hein and Setzer, 2011, Rangapuram and Hein, 2012] are not applicable to
all considered problems because of two limitations: First, tight relaxations
were shown only for a ratio of symmetric non-negative set functions, where
the numerator is restricted to be submodular. Second, only equality con-
straints for non-negative submodular or supermodular set functions could
be handled. We extend the results to arbitrary ratios of non-negative set
functions with inequality constraints, without any further restrictions.

In Chapter 5 we present a nonlinear inverse power method to compute
the solutions of nonlinear eigenproblems, which is a necessary condition for
critical points of the associated nonlinear Rayleigh quotient. The nonlinear
IPM allows us to handle several ratio problems discussed in this thesis. After
the initial publication of this result [Hein and Bühler, 2010], the method
was further generalized to arbitrary ratios of non-negative 1-homogeneous
differences of convex functions by Hein and Setzer [2011]. The more general
method allows us to tackle all remaining problems in this thesis.

In Chapter 6 we give a general-purpose method for the convex inner
problem which does not require a closed form of the involved Lovász exten-
sions and uses only evaluations of the original set function in each step.

In Chapter 7 we propose 1-spectral clustering, a method based on non-
linear eigenproblems for the problem of finding an optimal Cheeger cut on
a graph. Moreover, we consider a variation based on the symmetric vertex
expansion of the graph. We show that our methods converge to an eigen-
vector of the associated nonlinear eigenproblem and consistently outperform
competing methods [von Luxburg, 2007, Szlam and Bresson, 2010] in terms
of the obtained objective value and quality of the obtained clustering.

In Chapter 8 we present an efficient method for the problem of local clus-
tering with volume and seed constraints. Our algorithm consistently outper-
forms competing methods [Andersen and Lang, 2006, Mahoney et al., 2012].
Moreover, we are not aware of any other methods for this problem which
can guarantee that the solution always satisfies volume and seed constraints.

In Chapter 9 we present a method for the problem of community de-
tection in a network by finding a maximum density subgraph in the graph
subject to size constraints. We demonstrate the usefulness of the method
by its ability to detect meaningful communities in a network of computer
science researchers as well as a network of classical composers.

In Chapter 10 we present a method for sparse principal component anal-
ysis, which matches the performance of state of the art methods [Zou et al.,
2006, Sigg and Buhmann, 2008, Journée et al., 2010] as demonstrated on
several gene expression data sets as well as a well-known sparse PCA bench-
mark dataset.

Part I

Theoretical foundations of
constrained fractional set
programs and nonlinear

eigenproblems

9

Chapter 2

(Submodular) set functions
and Lovasz extensions

In this chapter we establish the mathematical groundwork for the results in
the remainder of the thesis. We start by reviewing some basic concepts from
analysis such as convex functions, the subdifferential of a convex function as
well as p-homogeneity. Next we consider set functions and their continuous
extensions, in particular the so-called Lovász extension which will play a
major role in this thesis. Finally, we cover a special class of set functions
called submodular functions, which are important due to their connection to
convex functions. The concepts introduced in this chapter will later be used
to show that every constrained fractional set program has a tight relaxation
into a continuous fractional program.

2.1 Basics from analysis

We begin by reviewing some basic definitions from convex analysis, see for
example Rockafellar [1970]. Two essential mathematical concepts are convex
sets and convex functions.

Definition 2.1 (Convex set). A set C ⊂ Rn is a convex set if for all
f, g ∈ C and all α ∈ [0, 1] it holds that αf + (1− α)g ∈ C.

Definition 2.2 (Convex function). A function R : Rn → R is a convex
function if for all f, g ∈ Rn and all α ∈ [0, 1] it holds that

R(αf + (1− α)g) ≤ αR(f) + (1− α)R(g). (2.1)

Convex functions have the useful property that every local minimum is a
global minimum. Thus there exists a wide range of methods for the globally
optimal solution of convex minimization problems (i.e. the minimization of a
convex function over a convex set), see e.g. Boyd and Vandenberghe [2004].
In the following we give two special cases of convexity.

11

12 CHAPTER 2. SET FUNCTIONS AND LOVASZ EXTENSIONS

Definition 2.3 (Strict and strong convexity). A function R : Rn → R
is strictly convex if the inequality in (2.1) is strict for all f, g ∈ Rn with
f 6= g and all α ∈ (0, 1). R is strongly convex if there exists a parameter
µ > 0 such that for all f, g ∈ Rn and all α ∈ [0, 1] it holds that

R(αf + (1− α)g) ≤ αR(f) + (1− α)R(g)− µ

2
α(1− α) ‖f − g‖22 .

Clearly, every strongly convex function is also strictly convex. Moreover, one
easily checks that the above definition of strong convexity is equivalent to
saying that the function R(f)− µ

2 ‖f‖
2
2 is convex. The functions considered

in this thesis will in general be non-differentiable. An important tool to deal
with such functions is the subdifferential of a convex function, which is a
generalization of the gradient to the non-differentiable case.

Definition 2.4 (Subdifferential). Let R : Rn → R be a convex function.
Then the subdifferential at a point f is defined as

∂R(f) = {r ∈ Rn : R(g) ≥ R(f) + 〈r, g − f〉 , ∀g ∈ Rn}.

An element r ∈ ∂R(f) is called subgradient.

Geometrically, this means that every subgradient r at a point f defines a
hyperplane with normal vector (r,−1) which supports the epigraph of R at
the point (f,R(f)). A related concept is the convex conjugate of R.

Definition 2.5 (Convex conjugate). For a function R : Rn → R, the
convex conjugate R∗ : Rn → R is defined as

R∗(y) = sup{〈y, x〉 −R(x) | x ∈ Rn}.

If R is differentiable, then ∂R(f) has one unique element, the gradient
∇R(f). At the globally optimal point of a convex differentiable function
R one has ∇R(f) = 0. Similarly, for a general non-differentiable convex
function R, at the globally optimal point f it holds that 0 ∈ ∂R(f). The
following is a generalization of convex functions.

Definition 2.6 (Quasi-convex function). A function R : Rn → R is
quasi-convex if its sublevel sets Sα = {f ∈ Rn | R(f) ≤ α} are convex.

In contrast to convex functions, quasi-convex functions may have local min-
ima which are not globally optimal. However, minimization problems in-
volving quasi-convex functions can still be solved globally optimally using
the convexity of their sublevel sets, which allows us to transform them into
a sequence of convex feasibility problems [Boyd and Vandenberghe, 2004].

Another class of functions which will frequently be encountered in this
thesis are positively p-homogeneous functions, which are functions with mul-
tiplicative scaling behavior.

2.2. SET FUNCTIONS AND THEIR EXTENSIONS 13

Definition 2.7 (p-homogeneity). A function R : Rn → R is positively
p-homogeneous for p > 0 if R(αf) = αpR(f), ∀α ∈ R with α ≥ 0.

The relation between p-homogeneous functions and their subdifferential is
described in the generalized Euler identity, see Yang and Wei [2008].

Lemma 2.8. Let R : Rn → R be a convex continuous and positively p-
homogeneous function. Then, for each f ∈ Rn and r ∈ ∂R(f) and each
p > 0 it holds that 〈f, r〉 = pR(f).

In the case of 1-homogeneous convex functions, one can give the following
characterization which will be useful later.

Lemma 2.9. Let R : Rn → R be a convex continuous and positively 1-
homogeneous function. Then one has ∀f ∈ Rn, R(f) = supu∈U 〈u, f〉 , where
the convex set U is given as U := ∂R(0) = {u ∈ Rn |R(g) ≥ 〈u, g〉 ∀g ∈ Rn} .
Moreover, ∀f ∈ Rn, ∂R(f) ⊂ ∂R(0).

Proof. Note that due to the 1-homogeneity of R, we must have R(0) = 0,
and thus one obtains using Def. 2.4,

∂R(0) = {u ∈ Rn | ∀g ∈ Rn : R(g) ≥ R(0) + 〈u, g − 0〉 = 〈u, g〉} .

The convexity of U can be obtained using Def. 2.1. Moreover, ∀f ∈ Rn,

u ∈ ∂R(f)⇒ ∀g ∈ Rn : R(g) ≥ R(f) + 〈u, g − f〉 = 〈u, g〉 ,

where we have used Lemma 2.8. Thus, u ∈ ∂R(0), and therefore ∂R(f) ⊂
∂R(0). Finally, due to Lemma 2.8 one has R(f) = 〈r, f〉 for all r ∈ ∂R(f) ⊂
U , which implies that R(f) = supu∈U 〈u, f〉. �

2.2 Set functions and their extensions

In the following, let V denote an arbitrary finite ground set of elements, for
instance a set of features, a set of vertices of a graph, or a set of pixels of
an image.

Definition 2.10 (Set function). Given a finite ground set of elements V ,
a set function is a function defined on the power set of V , i.e. R̂ : 2V → R.

Set functions arise naturally in a wide range of applications. Depending on
the type of ground set V , a set function could be for example an optimality
criterion for a feature selection problem, a function measuring the density of
a set of vertices in a graph, or a function assigning a score to a set of pixels
of an image, for instance in an object detection task.

14 CHAPTER 2. SET FUNCTIONS AND LOVASZ EXTENSIONS

Assume that the elements of the ground set are enumerated in a certain
way, i.e. V = {v1, . . . vn}, where |V | = n. Then every set C ⊂ V can be
represented by a vector 1C ∈ {0, 1}n which is 1 at entry j if vj ∈ C and
0 otherwise. We refer to the vector 1C as the indicator vector of the set
C. By identifying a set with its indicator vector, a set function can be seen
as a function defined on the corners of the hypercube, i.e. {0, 1}n, which
motivates the term pseudo-boolean function often found in the literature,
see e.g. Boros and Hammer [2002]. One can now extend the function to the
continuous space Rn by finding a function which agrees with the original set
function on the indicator vectors.

Definition 2.11 (Extension of a set function). Let R̂ : 2V → R be a
set function. A function R : Rn → R is called an extension of R̂ if ∀A ∈ 2V

it holds that R(1A) = R̂(A).

A key tool for the derivation of the results of this thesis is the Lovász ex-
tension, a certain way of extending a set function to the continuous space
which has some useful properties, as we will discuss below. The connection
between sets and elements of the continuous space is achieved via threshold-
ing. Let f ∈ Rn, and we assume wlog that f is ordered in ascending order
f1 ≤ f2 ≤ · · · ≤ fn. One defines the sets

Ci := {j ∈ V |fj ≥ fi} , i = 1, . . . , n. (2.2)

Using the above sets, the Lovász extension can be defined as follows, see
e.g. Lovász [1983],Bach [2013].

Definition 2.12 (Lovász extension). Let R̂ : 2V → R be a set function
with R̂(∅) = 0, and f ∈ Rn be ordered in ascending order, f1 ≤ f2 ≤ · · · ≤
fn. The Lovász extension R : Rn → R of R̂ is defined as

R(f) =
n−1∑
i=1

R̂(Ci+1) (fi+1 − fi) + R̂(V)f1

=
n−1∑
i=1

(
R̂(Ci)− R̂(Ci+1)

)
fi + R̂(Cn)fn.

Note that R(1C) = R̂(C) for all C ⊂ V , i.e. R is indeed an extension of R̂
from 2V to Rn. The equivalence between the two definitions can be shown
by a reordering of terms. Throughout this thesis, we always use the hat-
symbol (̂) to denote set functions and omit it for an extension to the
continuous space. Moreover, in some cases the given context will require
us to distinguish between Lovász extensions and other extensions. In this
situation we will use the superscript L to mark the Lovász extension, e.g. use
RL for the Lovász extension of R̂ and R for a different non-Lovász extension.
However, we will omit the superscript L if no confusion is possible.

2.3. SUBMODULAR SET FUNCTIONS 15

2.2.1 Properties of the Lovász extension

We now give some properties of Lovász extensions which will be used in the
remainder of this thesis, see for example Fujishige [2005], Bach [2013]. The
next proposition follows directly from the definition of the Lovász extension.

Proposition 2.13. Let R : Rn → R be the Lovász extension of R̂ : 2V → R.
Then R is positively 1-homogeneous.

The following proposition will be used in Chapter 4 to guarantee non-
negativity of the Lovász extension. Again the proof follows in a straightfor-
ward way from the definition.

Proposition 2.14. Let R : Rn → R be the Lovász extension of R̂ : 2V → R.
Then it holds that

R(f) ≥ 0,∀f ∈ Rn+ iff R̂(A) ≥ 0, ∀A ⊂ V,

R(f) ≥ 0,∀f ∈ Rn and R(1) = 0 iff R̂(A) ≥ 0, ∀A ⊂ V and R̂(V) = 0.

The following proposition gives a way to compute Lovász extensions of set
functions which can be decomposed into more elementary set functions.

Proposition 2.15. Let R,S : Rn → R be the Lovász extensions of R̂, Ŝ :
2V → R. Then, λ1R + λ2 S is the Lovász extension of λ1 R̂ + λ2 Ŝ, for all
λ1, λ2 ∈ R.

The importance of the Lovász extension arises due to its connection to sub-
modular functions, which will be discussed in the next section.

2.3 Submodular set functions

Recently there has been a strong interest in methods based on submodular
set functions in machine learning and related areas, with applications for ex-
ample in dictionary selection [Krause and Cevher, 2010], sensor placement
[Krause et al., 2008], learning graphical models [Narasimhan and Bilmes,
2004] and computer vision [Boykov et al., 2001]. The popularity of submod-
ular functions is mainly due to their connection to convex functions, which
enables them to be minimized exactly, as we will see below. Let us first
discuss several equivalent definitions of submodularity, see Bach [2013].

Definition 2.16 (Submodularity). A set function R̂ : 2V → R is sub-
modular if for all A,B ⊂ V ,

R̂(A ∪B) + R̂(A ∩B) ≤ R̂(A) + R̂(B). (2.3)

If the converse inequality holds, the function R̂ is called supermodular. It is
called modular if we have equality in (2.3).

16 CHAPTER 2. SET FUNCTIONS AND LOVASZ EXTENSIONS

The definition also implies that R̂ is submodular if and only if −R̂ is super-
modular. We give an alternative definition of submodularity (supermodu-
larity analogously). A proof of the equivalence can be found in Bach [2013].

Proposition 2.17 (Def. with first order differences). The set func-
tion R̂ is submodular if and only if for all A,B ⊂ V and k ∈ V , such
that A ⊂ B and k /∈ B, we have R̂(A ∪ {k})− R̂(A) ≤ R̂(B ∪ {k})− R̂(B).

The above property states that submodular functions have the ”diminishing
returns” property, which means that the change when adding an element to
a set decreases from a set A to B if A ⊂ B. In this respect, submodular
functions behave like concave functions [Bach, 2013]. A third way to define
submodular functions is given as follows.

Proposition 2.18 (Def. with second order differences). The set func-
tion R̂ is submodular if and only if for all A ⊂ V and j, k ∈ V \A, we have
R̂(A ∪ {k})− R̂(A) ≤ R̂(A ∪ {j, k})− R̂(A ∪ {j}).

In practice one either shows submodularity of a given set function by using
any of these definitions, or one uses the connection to convex functions which
is given below (see for example Bach, 2013).

Proposition 2.19. Let R : Rn → R be the Lovász extension of R̂ : 2V → R.
Then, R̂ is submodular if and only if R is convex. Furthermore, if R̂ is
submodular, then minA⊂V R̂(A) = minf∈[0,1]n R(f).

The above proposition implies that a submodular minimization problem can
be transformed into an equivalent convex minimization problem, and thus
be solved exactly. A similar equivalence between continuous and combi-
natorial optimization problems is shown in Chapter 4 for general ratios of
non-negative set functions.

In the derivations later in this thesis, we will frequently encounter the
following situation: Given a submodular set function R̂ and its Lovász ex-
tension R, one needs to compute an element of the subdifferential of R.
However, often the Lovász extension is not available in a closed form, which
makes the computation of its subdifferential difficult. A remedy for this
problem is given by the following lemma, which allows us to express the
subdifferential of R directly in terms of the original set function R̂. More-
over, one can also express R directly in terms of its subdifferential.

Lemma 2.20. Let R : Rn → R be the Lovász extension of the submodular
set function R̂ : 2V → R. Then, an element r(f) ∈ ∂R(f) of the subdiffer-
ential of R is given as

r(f)i = R(Ci)−R(Ci+1), ∀i = 1, . . . , n, (2.4)

where the sets Ci are given in (2.2). Moreover, one has R(f) = 〈f, r(f)〉.

2.3. SUBMODULAR SET FUNCTIONS 17

Proof. By Prop. 3.2 in [Bach, 2013], for all f ∈ Rn the Lovász extension
R can be written as R(f) = max

s∈B(R̂)
〈s, f〉, where B(R̂) is the associated

base polyhedron B(R̂), defined as

B(R̂) = {s ∈ Rn | ∀A ⊂ V :
〈
s,1A

〉
≤ R̂(A) and

〈
s,1
〉

= R̂(V)},

and a maximizer is given by r(f) as in (2.4). Therefore, for a given f ∈ Rn
it holds for all f ′ ∈ Rn,

R(f) +
〈
r(f), f ′

〉
−
〈
r(f), f

〉
=
〈
r(f), f ′

〉
≤ max

s∈B(R̂)

〈
s, f ′

〉
= R(f ′),

and thus r(f) ∈ ∂R(f). �

The following result has been shown in Hein and Setzer [2011].

Proposition 2.21. Every set function Ŝ with Ŝ(∅) = 0 can be written as
Ŝ = Ŝ1 − Ŝ2, where S1 and S2 are submodular and Ŝ1(∅) = Ŝ2(∅) = 0. The
Lovász extension S can be written as difference of convex functions.

Note that while the condition Ŝ1(∅) = Ŝ2(∅) = 0, which is necessary for
the Lovász extensions of Ŝ1 and Ŝ2 to be defined, is not explicitly stated in
Hein and Setzer [2011], their proof ensures that it can always be fulfilled.
Moreover, note that the proof is constructive, thus the decomposition into
a difference of two submodular functions can always be computed. The last
statement then follows using Prop. 2.15 and Prop. 2.19.

2.3.1 Examples of submodular set functions

We conclude this section by discussing some examples of submodular set
function and their Lovász extensions which will be featured prominently in
this thesis. There is a large number of other examples, for example flows,
set covers and entropies, see for example Bach [2013] for an overview.

Generalized volume functions. The first example are functions of the
form volg(A) =

∑
i∈A gi, where gi ∈ R+. Generalized volume functions will

play a major role in the graph-based setting considered later in this thesis.
Here, the functions correspond to functions assigning a non-negative weight
to each vertex. Examples include the cardinality, |A| =

∑
i∈A 1, and the

classical volume, vol(A) =
∑

i∈A di, where di denotes the degree of each
vertex, i.e. di =

∑
j∈V wij for the given graph.

Proposition 2.22. The generalized volume function volg(A) is modular.
Moreover, its Lovász extension is given by 〈g, f〉.

Proof. Using the second formulation of the Lovász extension in Def. 2.12,
one obtains the Lovász extension R(f) =

∑n−1
i=1 (volg(Ci)− volg(Ci+1)) fi +

18 CHAPTER 2. SET FUNCTIONS AND LOVASZ EXTENSIONS

volg(Cn)fn =
∑n−1

i=1 gi fi + gnfn = 〈g, f〉 . The modularity of volg follows
with Prop. 2.19 from the fact that 〈g, f〉 is linear. �

Cut function. Again in a graph-based setting, the cut function measures
the sum of edge weights between two sets of vertices and is given as

cut(C,C) =
∑

i∈C,j∈C

wij .

Proposition 2.23. The cut function is submodular. Moreover, its Lovász
extension is given as 1

2

∑
ij∈V wij |fi − fj |.

Proof. The first formulation of the Lovász extension in Def. 2.12 yields

R(f) =

n−1∑
i=1

R̂(Ci+1) (fi+1 − fi) + R̂(C1)f1

=
n−1∑
i=1

(n∑
k,l=1

wk,l δk≥i+1 δl≤i

)
(fi+1 − fi) +

(n∑
k,l=1

wk,l δk≥1 δl≤0

)
f1,

where we used the notation δA = 1 if A holds, and 0 else. By exchanging
sums in the first term and using the fact that the last term is zero, one can
rewrite this as

R(f) =

n∑
k,l=1

wk,l

n−1∑
i=1

δk≥i+1 δl≤i (fi+1 − fi) =

n∑
k,l=1

wk,l δk>l

k−1∑
i=l

(fi+1 − fi)

=
n∑

k,l=1

wk,l δk>l (fk − fl) = 1
2

n∑
k,l=1

wk,l |fk − fl| ,

where in the last step we have used the symmetry of W . The submodularity
of cut(C,C) follows with Prop. (2.19) from the fact that 1

2

∑
ij∈V wij |fi − fj |

is convex. �

The above Lovász extension is often referred to as total variation in the lit-
erature. As it favors piecewise constant solutions, it is a popular regularizer
in signal processing [Rudin et al., 1992, Chambolle, 2004].

Chapter 3

Nonlinear eigenproblems

Standard eigenproblems are a well studied class of problems in linear algebra,
see e.g. Horn and Johnson [1990]. While the solutions of standard eigenprob-
lems can be related to the critical points of certain ratios of quadratic func-
tions, it turns out that the critical points of general ratios of non-negative
functions can be related to the solution of so-called nonlinear eigenproblems.
In this chapter we will introduce nonlinear eigenproblems and discuss their
relation to critical points of ratios of non-negative functions. We start by
reviewing some well-known results about standard eigenproblems.

3.1 Standard (linear) eigenproblems

Given a linear mapping between two vector spaces, an eigenvector is a non-
zero vector which does not change its direction under the mapping but
instead yields a rescaled solution of the original vector. The scaling factor
is called eigenvalue. Formally, one can give the following definition.

Definition 3.1 (Linear eigenproblem). Given a symmetric matrix A ∈
Rn×n, then the standard eigenproblem is the problem of finding a non-zero
vector u ∈ Rn and a scalar λ ∈ R satisfying the equation

Au = λu. (3.1)

The vector u is called eigenvector of A with corresponding eigenvalue λ.

It is a well-known result from linear algebra that the eigenvectors of a sym-
metric matrix A can be characterized as critical points of the functional

F (f) =
〈f,Af〉
‖f‖22

, (3.2)

the so-called Rayleigh quotient. The following theorem formalizes this con-
nection, see e.g. Horn and Johnson [1990].

19

20 CHAPTER 3. NONLINEAR EIGENPROBLEMS

Theorem 3.2 (Rayleigh-Ritz). Let A ∈ Rn×n be a symmetric matrix,
then the smallest and largest eigenvalues λmin and λmax of A are given as

λmin = λ1 = min
u∈Rn,u6=0

〈u,Au〉
‖u‖2

= min
u∈Rn,‖u‖2=1

〈u,Au〉 ,

λmax = λn = max
u∈Rn,u6=0

〈u,Au〉
‖u‖2

= max
u∈Rn,‖u‖2=1

〈u,Au〉 ,

and the minimizing/maximizing arguments umin and umax are the corre-
sponding eigenvectors. Moreover, given eigenvalues λ1 ≤ · · · ≤ λk−1 and
corresponding eigenvectors u1, . . . , uk−1, the k-th eigenvalue is given as

λk = min
u∈Rn,u6=0
u⊥u1,...uk−1

〈u,Au〉
‖u‖2

= min
u∈Rn,‖u‖2=1
u⊥u1,...uk−1

〈u,Au〉 .

The above theorem can be used for an explicit construction of a sequence
of eigenvectors. In the following, denote by Uk the set of all k-dimensional
subspaces of Rn. A different characterization of the k-th eigenvalue is the
following, see e.g. Horn and Johnson [1990].

Theorem 3.3 (Courant-Fischer). Let A ∈ Rn×n be a symmetric matrix
with eigenvalues λ1 ≤ · · · ≤ λn, and k ∈ {1, . . . , n}. Then the k-th eigen-
value of the matrix A is given as

λk = max
Uk−1∈Uk−1

min
u∈Rn,u6=0
u⊥Uk−1

〈u,Au〉
‖u‖2

.

The difference between the two formulations is that in Theorem 3.3, the
characterization of the k-th eigenvalue λk does not require an explicit knowl-
edge of the eigenvectors corresponding to the other eigenvalues. However,
from an algorithmic point of view, the formulation is not useful, since it is
intractable to optimize over all possible subspaces. We will come back to
this issue in the next section when discussing the generalization to nonlin-
ear eigenproblems. Another characterization of the k-th eigenvalue is the
following, see Drábek and Milota [2007].

Theorem 3.4 (Courant-Weinstein). Let A ∈ Rn×n be a symmetric ma-
trix with eigenvalues λ1 ≤ · · · ≤ λn, and k ∈ {1, . . . , n}. Then the k-th
eigenvalue of the matrix A is given as

λk = min
Uk∈Uk

max
u∈Uk

〈u,Au〉
‖u‖2

.

While the ratio of quadratic functions is useful in several applications, it is
a severe modeling restriction. Thus in the following section we will go over
to a more general class of ratios.

3.2. NONLINEAR EIGENPROBLEMS 21

3.2 Nonlinear eigenproblems

In the following we consider ratios of the form

Q(f) =
R(f)

S(f)
=

R1(f)−R2(f)

S1(f)− S2(f)
, (3.3)

where R = R1−R2 and S = S2−S2 are assumed to be non-negative differ-
ences of convex functions which are Lipschitz continuous, even (i.e. R(f) =
R(−f) for all f ∈ Rn) and positively p-homogeneous for p > 0. Moreover,
we assume that S(f) = 0 if and only if f = 0. We will later refer to func-
tionals of the above type as nonlinear Rayleigh quotients. It is easy to see
that the standard Rayleigh quotient in (3.2) corresponding to the standard
eigenvalue problem is a special case of the general functional in (3.3), if one
restricts the matrix A to be positive semi-definite.

The differentiable case. To gain some intuition, let us first consider the
case where R and S are differentiable. Then for every critical point f of Q,

∇Q(f) = 0 ⇐⇒ ∇R(f)− R(f)

S(f)
· ∇S(f) = 0 .

Let r, s : Rn → Rn be the operators defined as r(f) = ∇R(f), s(f) = ∇S(f)

and λ = R(f)
S(f) , we see that every critical point f of Q is the solution to a

problem of the form
r(f)− λ s(f) = 0. (3.4)

We will later define this as nonlinear eigenproblem. Note that this is in
general a system of nonlinear equations, as r and s are nonlinear operators.
If R and S are both quadratic, r and s are linear operators, and hence (3.4)
boils down to the standard eigenproblem (3.1).

The general non-differentiable case. Before we proceed to the gen-
eral non-differentiable case, we have to introduce some important concepts
from non-smooth analysis. Note that Q is in general non-convex and non-
differentiable. For this reason we need to clarify what exactly one un-
derstands by the term critical point in the case of a non-convex, non-
differentiable function. In the following we denote by ∂CQ(f) the generalized
gradient of Q at f according to Clarke [1983],

∂CQ(f) = {ξ ∈ Rn
∣∣ Q0(f, v) ≥ 〈ξ, v〉 , for all v ∈ Rn},

where Q0(f, v) = limg→f, t→0 sup Q(g+tv)−Q(g)
t . The generalized gradient

(also often referred to as Clarke subdifferential) generalizes the well-known
subdifferential as in the case where Q is convex, ∂CQ is the subdifferential
of Q and Q0(f, v) the directional derivative for each v ∈ Rn. Moreover,
one obtains the gradient if Q is differentiable. A characterization of critical
points of non-smooth non-convex functionals is as follows, see Chang [1981].

22 CHAPTER 3. NONLINEAR EIGENPROBLEMS

Definition 3.5 (Critical point). A point f ∈ Rn is called a critical point
of Q if 0 ∈ ∂CQ(f).

This definition generalizes the well-known fact that the gradient of a dif-
ferentiable function vanishes at a critical point. One can now show that a
problem of the form (3.4) is a necessary condition for a critical point and
in some cases even sufficient. The following theorem has been reported in
Hein and Bühler [2010] for the special case where R and S are convex,
i.e. R2(f) = 0 and S2(f) = 0, ∀f ∈ Rn.

Theorem 3.6 (Critical points of nonlinear Rayleigh quotient). Let
the functions R = R1 − R2 and S = S1 − S2 fulfill the stated conditions.
Then a necessary condition for f ∈ Rn being a critical point of Q is

0 ∈ ∂R1(f)− ∂R2(f)− λ (∂S1(f)− S2(f)) , (3.5)

where λ = Q(f). If S, R2 and S2 are continuously differentiable at f , then
this is also sufficient. Moreover, if (3.5) is fulfilled for some λ ∈ R and
f ∈ Rn, then λ = Q(f).

Proof. Let f fulfill the general nonlinear eigenproblem in (3.5), where
r1 ∈ ∂R1(f), r2 ∈ ∂R2(f), s1 ∈ ∂S1(f) and s2 ∈ ∂S2(f), such that r1 − r2 −
λ (s1 − s2) = 0. Then by Lemma 2.8,

0 = 〈f, r1〉 − 〈f, r2〉 − λ (〈f, s1〉 − 〈f, s2〉)
= p (R1(f)−R2(f))− p λ (S1(f)− S2(f)) ,

and thus λ = R(f)/S(f). As R,S are Lipschitz continuous, one has, see
Prop. 2.3.14 and 2.3.3 in Clarke [1983],

∂C

(R
S

)
(f) ⊆ S(f) ∂CR(f)−R(f) ∂CS(f)

S(f)2
(3.6)

⊆ S(f) (∂R1(f)− ∂R2(f))−R(f) (∂S1(f)− ∂S2(f))

S(f)2
(3.7)

=
1

S(f)

(
∂R1(f)− ∂R2(f)− R(f)

S(f)
(∂S1(f)− ∂S2(f))

)
.

Thus if f is a critical point, i.e. 0 ∈ ∂CQ(f), then 0 ∈ ∂R1(f) − ∂R2(f) −
R(f)
S(f) (∂S1(f)− ∂S2(f)) given that f 6= 0. Moreover, by Prop. 2.3.14 and

2.3.3 in Clarke [1983] one has equality in (3.6) if S is continuously differen-
tiable at f , and equality in (3.7) if R2 and S2 are continuously differentiable
at f (see also Prop. 2.3.6). In this case, the fact that (3.5) is fulfilled implies
that f is a critical point of Q. �

The results from the above theorem motivates the definition of nonlinear
eigenproblems as follows:

3.2. NONLINEAR EIGENPROBLEMS 23

Definition 3.7 (Nonlinear eigenproblem). Let the functions R = R1−
R2 and S = S1 − S2 fulfill the stated conditions. Then the problem

0 ∈ ∂R1(f)− ∂R2(f)− λ (∂S1(f)− ∂S2(f)) (3.8)

is called nonlinear eigenproblem. The solution f and λ are called nonlinear
eigenvector and eigenvalue.

One easily checks that the above definition yields the standard linear eigen-
problem as special case. Moreover, to see that the definition makes sense,
let us state the following elementary property of nonlinear eigenproblems.

Proposition 3.8. Let f be an eigenvector with eigenvalue λ according to
the eigenproblem (3.8). Then for any α ∈ R, the vector αf is an eigenvector
with the same eigenvalue λ and it holds that λ = Q(αf).

In the following, we use the notation φ : R→ R, φp(x) = |x|p−2 x.

Lemma 3.9. Let R : Rn → R be convex p-homogeneous for p > 0 and even.
Moreover, let r ∈ ∂R(f). Then for any α ∈ R we have φp(α) r ∈ ∂R(αf).

Proof. Let r ∈ ∂R(f). Then ∀g ∈ Rn one has R(g) ≥ R(f) + 〈r, g − f〉.
Multiplying this by |α|p, one obtains |α|pR(g) ≥ |α|pR(f) +

〈
|α|p−2α r, αg−

αf
〉
. Using the p-homogeneity of R as well as the fact that it is even, one

obtains ∀g ∈ Rn, R(αg) ≥ R(αf) +
〈
φp(α) r, αg − αf

〉
. Substituting h :=

αg ∈ Rn shows that φp(α) r ∈ R(αf). �

The proof of Prop. 3.8 is now straightforward.

Proof of Prop. 3.8. Let f be an eigenvector with eigenvalue λ according
to the eigenproblem (3.8). Then there exist r1 ∈ ∂R1(f), r2 ∈ ∂R2(f),
s1 ∈ ∂S1(f) and s2 ∈ ∂S2(f) such that 0 = r1 − r2 − λ(s1 − s2).

Multiplying this by φp(α) we obtain 0 = φp(α)r1−φp(α)r2−λ(φp(α)s1−
φp(α)s2). Thus by Lemma 3.9 there exist r′1 := φp(α)r1 ∈ ∂R1(αf), r′2 :=
φp(α)r2 ∈ ∂R2(αf), s′1 := φp(α)s1 ∈ ∂S1(αf) and s′2 := φp(α)s2 ∈ ∂S2(αf)
such that 0 = r′1 − r′2 − λ(s′1 − s′2), which implies that αf is an eigenvector
with same eigenvalue λ. The last statement follows from Theorem 3.6. �

The generalization to non-quadratic functions enables us to consider a wider
class of problems, and thus leads to a stronger modeling power. For exam-
ple, Amghibech [2003, 2006] considered the nonlinear eigenproblem ∆p(u)−
λφp(u) = 0, where ∆p is the discrete graph p-Laplacian, a nonlinear opera-
tor which will be defined in Chapter 7. We will demonstrate the usefulness
of this operator (especially in the limiting case p = 1) for the balanced
graph cut problem. In Chapter 5 we present an efficient scheme to compute
solutions of nonlinear eigenproblems.

Note that in the literature one finds a different class of problems also
referred to as nonlinear eigenproblems. The eigenproblems defined in (3.8)

24 CHAPTER 3. NONLINEAR EIGENPROBLEMS

consist of systems which, seen as a function of the vector f ∈ Rn, are in
general nonlinear. However, seen as a function of λ, the right hand side
of (3.8) is linear. A different type of nonlinear eigenproblem is given by a
system where it is the other way round: here we have linearity in u but
nonlinearity in λ, i.e. problems of the form A(λ)f = 0, where A : R→ Rn×n
is a family of matrices depending on the variable of λ. These types of
nonlinear eigenproblem have been intensely studied, see e.g. Mehrmann and
Voss [2005]. In this work we restrict ourselves to problems of the form (3.8).

The question remains how to give a characterization of a sequence of
eigenvalues λ1 ≤ λ2 ≤ Note that the number of eigenvalues is in general
larger than n and may even be infinite [Fuč́ık et al., 1973]. We restrict
ourselves now to the case where R and S are differentiable. Ljusternik and
Schnirelmann derived a generalization of the Courant-Weinstein principle
to nonlinear eigenproblems, see Fuč́ık et al. [1973]. In order to transfer
Theorem 3.4 to the nonlinear case, one needs to find a suitable generalization
of the classes Uk (the set of k-dimensional subspaces). One possibility is by
using the notion of the Krasnoselskii genus of a set, defined for a set A ⊂ Rn
as [Drábek, 2012]

γ(A) := inf{m ∈ N : ∃h : A→ Rm\{0}, h is odd, i.e. h(−x) = −h(x)},

and γ(A) :=∞, if no such m exists. Intuitively, this means that the function
h defines a mapping to an m-dimensional space where the elements of the set
A are separated into positive and negative elements. The smallest value of m
where this is possible can therefore be seen as a measure of the “dimension”
of the set. Thus it makes sense to define the class Kk as the set of all closed
symmetric subsets A of Rn with γ(A) ≥ k. The following is the resulting
characterization of a sequence of non-decreasing eigenvalues, see e.g. Fuč́ık
et al. [1973], Drábek [2012].

Theorem 3.10 (Ljusternik-Schnirelmann). Let the functions R, S :
Rn → R be p-homogeneous, even and differentiable. Moreover, let λ1 ≤
λ2 ≤ . . . be a sequence of non-decreasing eigenvalues. Then one has,

λk = min
Kk∈Kk

max
u∈Kk
S(u)>0

R(u)

S(u)
.

Note that in general the above result does not cover all eigenvalues. Thus
there exist alternative methods to construct sequences of eigenvalues, by
using different choices of the classes Kk, see Drábek [2012]. However, while
these results are useful for the theoretical analysis of the spectrum of the
nonlinear operators, up to our knowledge they all suffer from the same draw-
back that they do not yield a tractable technique for an explicit construction
of higher order solutions of the nonlinear eigenproblems. For this reason, in
the sequel we restrict ourselves to the computation of the smallest eigenval-
ues. An extension to higher eigenvalues will be the topic of future work.

Chapter 4

Tight relaxations of
constrained fractional
set programs

This chapter deals with a general class of constrained optimization problems
involving ratios of set functions of the form

min
C⊂V

R̂(C)

Ŝ(C)
=: Q̂(C) (4.1)

subject to : M̂i(C) ≤ ki, i = 1, . . . ,K

where R̂, Ŝ, M̂i : 2V → R are set functions on a set V = {1, . . . , n}. The
above type of problems are referred to as constrained fractional set programs
(CFSP). Problems of this form arise in many application such as balanced
graph cuts or community detection, see the examples given in Section 1.1.
We assume here that R̂, Ŝ are non-negative and that R̂(∅) = Ŝ(∅) = 0. No

assumptions are made on the set functions M̂i, in particular they are not
required to be non-negative. Thus also lower bound constraints can be writ-
ten in the above form. Moreover, the formulation in (4.1) also encompasses
the subset constraint J ⊂ C (see (1.1) and (1.2)) as it can be written as
equality constraint |J | − |J ∩ C| = 0. Alternatively, in some cases a direct
integration of the subset constraints into the objective is possible, as we will
discuss in Chapters 8 and 9.

The goal of this chapter is to derive tight relaxations of the above opti-
mization problems, i.e. show that for each problem of the form (4.1), there
exist functions R,S, T : Rn → R such that the unconstrained problem

min
f∈Rn+

R(f) + T (f)

S(f)
, (4.2)

is equivalent to the problem (4.1) in the sense that the optimal values agree
and the solution of the former problem can be transformed into a solution

25

26 CHAPTER 4. TIGHT RELAXATIONS OF CFSPS

of the latter, and vice versa. Going over to the Euclidean space will allow
us derive an efficient scheme to compute solutions of (4.2) and hence also
the original problem (4.1), which will be described in Chapter 5. Moreover,
the form of the non-convex ratios in (4.2) allows us to relate the solution of
the problem to the solution of a nonlinear eigenproblem (see Chapter 3).

4.1 Tight relaxation - The unconstrained case

Before considering tight relaxations of general constrained fractional set pro-
grams of the form given in (4.1), we first restrict ourselves to the case where
we do not have any constraints, i.e. optimization problems of the form

min
C⊂V

R̂(C)

Ŝ(C)
=: Q̂(C), (4.3)

where R̂, Ŝ : 2V → R are set functions on a set V = {1, . . . , n}. Moreover,
we will also assume that R̂(∅) = Ŝ(∅) = 0 throughout this chapter. Given
any continuous extensions R and S of R̂ and Ŝ, using the property that
R(1C) = R̂(C) for all C ⊂ V (see Chapter 2), one can directly observe that
the following continuous fractional program is a relaxation of problem (4.3):

inf
f∈Rn+

R(f)

S(f)
.

In the following, we will show that if one chooses R,S to be the Lovász
extensions RL, SL of R̂, Ŝ, respectively, the relaxation is in fact tight in the
sense that the optimal values agree and the solution of the combinatorial
problem can be computed from the solution of the problem on Rn+.

Given a vector f ∈ Rn, one can construct a set C ′ by optimal thresholding
of f : Defining the sets Ci as Ci := {j ∈ V |fj ≥ fi} for all i = 1, . . . , n, one
computes

C ′ = arg min
Ci,i=1,...,n

R̂(Ci)

Ŝ(Ci)
.

The following lemma shows that optimal thresholding of a vector f always
leads to non-increasing values of the objective.

Lemma 4.1. Let R̂, Ŝ : 2V → R be non-negative set functions and RL, SL :
Rn → R their Lovász extensions. Then for all f ∈ Rn+,

RL(f)

SL(f)
≥ min

i=1,...,n

R̂(Ci)

Ŝ(Ci)
.

Let furthermore R̂(V) = Ŝ(V) = 0, then the result holds for all f ∈ Rn.

4.1. TIGHT RELAXATION - THE UNCONSTRAINED CASE 27

Proof. We assume wlog that the components of f are in increasing order
f1 ≤ f2 ≤ · · · ≤ fn. Using the definition of the Lovász extension, we obtain

RL(f) =
n−1∑
i=1

R̂(Ci+1) (fi+1 − fi) + f1R̂(V)

=

n−1∑
i=1

R̂(Ci+1)

Ŝ(Ci+1)
Ŝ(Ci+1) (fi+1 − fi) +

R̂(V)

Ŝ(V)
Ŝ(V)f1

≥ min
j=1,...,n

R̂(Cj)

Ŝ(Cj)

(
n−1∑
i=1

Ŝ(Ci+1) (fi+1 − fi) + f1Ŝ(V)

)

≥ min
j=1,...,n

R̂(Cj)

Ŝ(Cj)
SL(f),

where we used the non-negativity of R̂ and Ŝ as well as the fact that f ∈ Rn+.

By assumption, Ŝ is non-negative, which implies by Prop. 2.14 that also SL

is non-negative, and thus division by SL(f) gives the result. The second
statement follows by noting that the terms f1R̂(V) and f1Ŝ(V) on the right
side vanish for all f ∈ R if R̂(V) = Ŝ(V) = 0. �

The above lemma constitutes the main part in the proof of the following
theorem, which shows that replacing the set functions R̂ and Ŝ by their
Lovász extensions RL and SL, respectively, leads to a tight relaxation in the
sense that we obtain two equivalent problems.

Theorem 4.2 (Tight relaxation using Lovász extension). Let R̂, Ŝ :
2V → R be non-negative set functions and RL, SL : Rn → R their Lovász
extensions, respectively. Then, it holds that

min
C⊂V

R̂(C)

Ŝ(C)
= min

f∈Rn+

RL(f)

SL(f)
.

Moreover, it holds for all f ∈ Rn+,

RL(f)

SL(f)
≥ min

i=1,...,n

R̂(Ci)

Ŝ(Ci)
.

Thus a minimizer of the ratio of set functions can be found by optimal thresh-
olding. Let furthermore R̂(V) = Ŝ(V) = 0, then all the above statements
hold if one replaces Rn+ with Rn.

In most cases, the above theorem is sufficient to derive a tight relaxation
of a fractional set program. However, it is sometimes difficult to obtain
closed forms of the Lovász extensions in practice, or handle them efficiently
in the resulting optimization problem, see Chapter 5. For this reason, we

28 CHAPTER 4. TIGHT RELAXATIONS OF CFSPS

will derive a generalization of Theorem 4.2 which gives additional flexibility
in obtaining the tight relaxation of the fractional set program. The proof of
Theorem 4.2 will follow as a special case of the more general theorem.

The main fact used in generalizing Theorem 4.2 is the following: Given
any 1-homogeneous convex extension R of a set function R̂, it can be up-
per bounded by the Lovász extension of R̂, i.e. the Lovász extension RL is
maximal over the set of all convex one-homogeneous extensions of R̂.

Lemma 4.3. Let R̂ : 2V → R be a set function with R̂(∅) = 0. Let RL be
the Lovász extension of R̂, and R be any positively 1-homogeneous convex
extension of R̂. Then, it holds ∀f ∈ Rn+ that

R(f) ≤ RL(f).

If R(1) = R(−1) = 0, then the above inequality holds ∀ f ∈ Rn. Moreover,
if for some f ∈ Rn it holds that R(f) = RL(f), then ∂R(f) ⊂ ∂RL(f).

Proof. Assume wlog that f is ordered in increasing order f1 ≤ f2 ≤ · · · ≤
fn. By Lemma 2.9, it holds for every convex, positively 1-homogeneous
function R : Rn → R that R(f) ≥ 〈u, f〉, for all f ∈ Rn and u ∈ U = ∂R(0).
In particular, using the fact that R is an extension of R̂, one has

R̂(Ci) = R(1Ci) ≥ 〈u,1Ci〉 , ∀i = 1, . . . , n,

∀u ∈ U . From this it follows that for all f ∈ Rn+,

RL(f) =
n−1∑
i=1

R̂(Ci+1) (fi+1 − fi) + f1R̂(V)

≥
n−1∑
i=1

〈
u,1Ci+1

〉
(fi+1 − fi) + f1 〈u,1〉 =

n∑
i=1

fiui, (4.4)

where we used that the terms fi+1 − fi are non-negative. As this holds for
all u ∈ U one obtains again with Lemma 2.9 for all f ∈ Rn+,

RL(f) ≥ sup
u∈U
〈f, u〉 = R(f) .

For the second statement, let now R(1) = R(−1) = 0. On the one hand
one has 0 = R(1) ≥ 〈u,1〉 for all u ∈ U . On the other hand, one has
0 = R(−1) ≥ 〈u,−1〉 for all u ∈ U . Thus it must hold that 〈u,1〉 = 0 for
all u ∈ U , which implies that the lower bound in (4.4) holds for all f ∈ Rn.
For the last statement, let r ∈ ∂R(f). Then ∀g ∈ Rn,

RL(f) + 〈r, g − f〉 = R(f) + 〈r, g − f〉 ≤ R(g) ≤ RL(g),

which implies that r ∈ ∂RL(f) and therefore ∂R(f) ⊂ ∂RL(f). �

4.1. TIGHT RELAXATION - THE UNCONSTRAINED CASE 29

The property in Lemma 4.3 can now be used to show that given a decompo-
sition of R̂ and Ŝ into a difference of (submodular) set functions, one needs
the Lovász extension only for the first term of R̂ and the second term of Ŝ.
The remaining terms can be replaced by any convex 1-homogeneous exten-
sions of the corresponding set functions. Note that by Proposition 2.21 such
a decomposition always exists. The following theorem states that this leads
to a tight relaxation of the fractional set program.

Theorem 4.4 (Tight relaxation - General version). Let R̂, Ŝ : 2V →
R be non-negative set functions and R̂ := R̂1 − R̂2 and Ŝ := Ŝ1 − Ŝ2 be
decompositions into differences of set functions. Let the Lovász extensions
of R̂1, Ŝ2 be given by RL1 , S

L
2 and let R2, S1 be positively 1-homogeneous

convex extensions of R̂2, Ŝ1 such that S1 − SL2 is non-negative. Then,

min
C⊂V

R̂(C)

Ŝ(C)
= min

f∈Rn+

RL1 (f)−R2(f)

S1(f)− SL2 (f)
.

Moreover, it holds for all f ∈ Rn+,

RL1 (f)−R2(f)

S1(f)− SL2 (f)
≥ min

i=1,...,n

R̂(Ci)

Ŝ(Ci)
.

Thus a minimizer of the ratio of set functions can be found by optimal thresh-
olding. Let furthermore R̂(V) = Ŝ(V) = 0 and R2(α1) = S1(α1) = 0 for all
α ∈ {−1, 1}, then all the above statements hold if one replaces Rn+ with Rn.

Proof. Let R := RL1 − R2 and S := S1 − SL2 . Moreover, let RL2 and SL1
be the Lovász extensions of R̂2 and Ŝ1. With Lemma 4.3, we get ∀f ∈ Rn+,
R(f) = RL1 (f) − R2(f) ≥ RL1 (f) − RL2 (f) = RL(f), and S(f) = S1(f) −
SL2 (f) ≤ SL1 (f)− SL2 (f) = SL(f). Thus, for all f ∈ Rn+,

R(f)

S(f)
≥ RL(f)

SL(f)
.

Moreover, if R2(α1) = S1(α1) = 0 for all α ∈ {−1, 1}, the previous state-
ments hold for all f ∈ Rn. Applying Lemma 4.1 then yields

RL(f)

SL(f)
≥ min

i=1,...,n

R̂(Ci)

Ŝ(Ci)

for all f ∈ Rn+, or for all f ∈ Rn if R̂(V) = Ŝ(V) = 0. Thus we obtain

inf
f∈Rn+

R(f)

S(f)
≥ inf

f∈Rn+
min

Ci def. by f
i=1,...,n

R̂(Ci)

Ŝ(Ci)
≥ min

A⊂V

R̂(A)

Ŝ(A)
, (4.5)

30 CHAPTER 4. TIGHT RELAXATIONS OF CFSPS

and the analogous result for f ∈ Rn if R̂(V) = Ŝ(V) = 0 and R2(α1) =
S1(α1) = 0. On the other hand, using that R and S are extensions of R̂
and Ŝ, respectively, one has

min
A⊂V

R̂(A)

Ŝ(A)
= min

A⊂V

R(1A)

S(1A)
≥ inf

f∈Rn+

R(f)

S(f)
≥ inf

f∈Rn
R(f)

S(f)
.

Combining this with (4.5), and using the fact that the infimum is achieved
for some 1A ∈ Rn+, one obtains the result. �

Note that no assumptions except non-negativity are made on R̂ and Ŝ - every
non-negative fractional set program has a tight relaxation into a continuous
fractional program. The above theorem yields Theorem 4.2 as special case if
one chooses R2 and S1 to be the Lovász extensions of R̂2 and Ŝ1, respectively.
Note that if the condition R̂(V) = 0 holds, we can wlog assume that R̂1(V) =
R̂2(V) = 0, and thus RL2 (α1) = αR̂2(V) = 0, and similarly for Ŝ.

Compared to the first version of this theorem in [Bühler et al., 2013], the
set functions R̂1, R̂2 and Ŝ1, Ŝ2 in the decompositions of R̂ and Ŝ do not need
to be submodular, as long as the extensions R1, R2, S1, S2 fulfill the stated
conditions. However, in practice one would choose such a decomposition as
the resulting tight relaxation will be a ratio of differences of convex functions
which can be optimized using RatioDCA, see Chapter 5.

A special case of Theorem 4.4 was considered in Hein and Setzer [2011].
They treated the case where Ŝ is symmetric, i.e. Ŝ(C) = Ŝ(C), and R̂ is a
cut function, which is submodular and symmetric. Then it was shown that

min
f∈Rn

RL(f)

S(f)
= min

C⊂V

R̂(C)

Ŝ(C)
,

under two different conditions on the function S:

• S is the Lovász extension of the set function Ŝ.

• S is a convex, 1-homogeneous extension of Ŝ which is even (i.e. S(f) =
S(−f),∀f ∈ Rn) and satisfies S(f + α1) = S(f), ∀f ∈ Rn, α ∈ R.

The first case is recovered from Theorem 4.4 by choosing S1 as the Lovász
extension of Ŝ1. The second case is recovered by setting Ŝ2(C) = 0 for all
C ⊂ V . To see why in both cases Rn+ can be replaced by Rn, note that due to

the symmetry of Ŝ, we have Ŝ(V) = 0. Thus, in the first case, wlog one can
assume that Ŝ1(V) = Ŝ2(V) = 0, which implies that SL1 (α1) = αŜ1(V) = 0,
for α ∈ {−1, 1}. In the second case, the condition S1(f) = S1(f+α1) implies
that S1(α1) = Ŝ1(V) = Ŝ1(∅) = 0 for α ∈ {−1, 1}. The condition that S
is even is not necessary to derive a tight relaxation. Moreover, due to the
symmetry of R̂, we must have R̂(V) = 0, which implies that RL(α1) = 0.

As observed by Jost et al. [2013], the results of Lemma 4.3 have impor-
tant practical consequences for the development of an algorithm on Rn to

4.2. TIGHT RELAXATION - THE CONSTRAINED CASE 31

solve the constrained fractional set program. As we will discuss in Section
5.4.4, the RatioDCA introduced in the next chapter will achieve better re-
sults when applied to a tight relaxation based on Lovász extensions. There-
fore, if the Lovász extension can be handled easily in the optimization, it is
in fact the best choice. It turns out that the RatioDCA can be implemented
without a closed form of the Lovász extension as only its subgradient is
necessary which can always be computed. As we will see in Section 6.5, this
approach is useful if the original set functions can be computed efficiently.

4.2 Tight relaxation - The constrained case

To solve the constrained fractional set program (4.1) we make use of the
concept of exact penalization [Di Pillo, 1994], where the main idea is to
transform a given constrained optimization problem into an equivalent un-
constrained one by adding a suitable penalty term. The penalty term has to
be chosen in such a way that the optimal solution of the unconstrained prob-
lem is also an optimal (and in particular feasible) solution for the constrained
problem. We use this idea for our constrained fractional set programs and
define for each constraint M̂i(C) ≤ ki a penalty set function as

T̂i(C) =

{
max

{
0, M̂i(C)− ki

}
, C 6= ∅,

0, C = ∅.
(4.6)

The function T̂i(C) is chosen in such a way that it is zero if C satisfies the
i-th constraint. Otherwise it attains a positive value which increases with
“increasing infeasibility”, i.e. when C has an increasing distance from the
boundary of the constraint set. The special treatment of the empty set in
the definition of T̂i is a technicality required for the derivation of the Lovász
extension. In the following, the constant θi quantifies a “minimum value”
of T̂i on the infeasible sets:

θi = min
i=1,...,K

[
min

M̂i(C)>ki

M̂i(C)− ki
]
. (4.7)

By construction, we have θi > 0 (assuming that there exists at least one

set C 6= 0 which is infeasible). For example, if M̂i(C) = |C| and ki is

some natural number, then θi is equal to 1. If M̂i(C) = volg(C) and all
vertex weights g ∈ Rn+ are rational numbers which are multiples of a fraction
1
ρ , ρ ∈ N, then θi ≥ 1

ρ . The total penalty term is then given as

T̂γ(C) :=

K∑
i=1

γi T̂i(C), (4.8)

32 CHAPTER 4. TIGHT RELAXATIONS OF CFSPS

where γ ∈ RK+ is a vector of non-negative parameters. Adding the above
penalty term to the numerator of the objective yields the modified problem

min
C⊂V

R̂(C) + T̂γ(C)

Ŝ(C)
=: Q̂γ(C). (4.9)

We will show that using a feasible set of (4.1) one can compute a vector
γ such that (4.9) is equivalent to the original constrained problem. Once
we have established the equivalence, we can then apply Theorem 4.2 (note
that T̂γ is a non-negative set function). This leads to the main result of this
chapter, which states that there exists a tight relaxation of all problems of
the form (4.1) where R̂, Ŝ are non-negative set functions.

We first show the equivalence between the constrained problem (4.1) and
the unconstrained problem (4.9) for the given choice of γ.

Lemma 4.5. Let R̂, Ŝ : 2V → R be non-negative set functions. Let T̂γ by
defined as in (4.8). Then,

min
M̂i(C)≤ki,
i=1,...,K

R̂(C)

Ŝ(C)
= min

C⊂V

R̂(C) + T̂γ(C)

Ŝ(C)
,

for any γ ∈ RK+ such that ∀i, γi > R̂(C0)

θi Ŝ(C0)
maxC⊂V Ŝ(C), where C0 ⊂ V is

a feasible set with Ŝ(C0) > 0.

Proof. Note that for any feasible subset, i.e. a set C satisfying M̂i(C) ≤ ki,
i = 1, . . . ,K, the objective Q̂γ of problem (4.9) is equal to the objective Q̂ of
problem (4.1). Thus, if we show that all minimizers of the second problem
satisfy the constraints, the equivalence follows.

Suppose that C∗ 6= ∅ is a minimizer of the second problem and that C∗

is infeasible. Without loss of generality, assume that the first K1 constraints
are violated, where 1 ≤ K1 ≤ K. Then by definition we have T̂i(C

∗) ≥ θi
for all i ≤ K1, and T̂i(C

∗) = 0 for i > K1. This yields

Q̂γ(C∗) =
R̂(C∗) +

∑K
i=1 γi T̂i(C

∗)

Ŝ(C∗)
(4.10)

≥
R̂(C∗) +

∑K1
i=1 γi θi

Ŝ(C∗)
≥
∑K1

i=1 γi θi

Ŝ(C∗)
≥

∑K1
i=1 γi θi

maxC⊂V Ŝ(C)
,

where we used the non-negativity of R̂ and Ŝ. Hence by the condition on γ,

Q̂γ(C∗) > K1
R̂(C0)

Ŝ(C0)
≥ R̂(C0)

Ŝ(C0)
= Q̂(C0) = Q̂γ(C0), (4.11)

which contradicts the fact that C∗ is optimal. �

4.2. TIGHT RELAXATION - THE CONSTRAINED CASE 33

Note that in practice, the value of the constants θi as well as the bounds
on the parameters γi are never explicitly computed. Instead we start with
the unconstrained case γ = 0, and then increase γ sequentially until all
constraints are fulfilled (see experimental section). Moreover, when having
multiple penalty terms, in practice it also makes sense to rescale the penalty
terms such that they achieve values in the same range, see Section 8.4.2.
We can now use the above lemma to derive the following result which shows
that tight relaxations exists for all constrained fractional set programs.

Theorem 4.6 (Tight relaxation using Lovász extension). Let R̂, Ŝ :
2V → R be non-negative set functions and RL, SL their Lovász extensions.
Denote by TLγ the Lovász extension of the function T̂γ defined in (4.8). Then,

min
M̂i(C)≤ki,
i=1,...,K

R̂L(C)

ŜL(C)
= min

f∈Rn+

RL(f) + TLγ (f)

SL(f)
:= Qγ(f)

for any γ ∈ RK+ such that ∀i, γi > R̂(C0)

θi Ŝ(C0)
maxC⊂V Ŝ(C), where C0 ⊂ V is a

feasible set with Ŝ(C0) > 0. Moreover, for any f ∈ Rn+ with Qγ(f) < Q̂γ(C0)
for the given γ, we have

Qγ(f) ≥ min
i=1,...,n

Q̂γ(Ci),

and the minimizing set on the right hand side is feasible. Let furthermore
R̂(V) = Ŝ(V) = T̂γ(V) = 0, then all the above statements hold if one
replaces Rn+ with Rn.

Similarly to the unconstrained case, one can derive a generalized version of
Theorem 4.6, where for decompositions of the numerator and denominator
into differences of set functions, only the first part of the numerator and
second part of the denominator are replaced by their Lovász extensions,
while for the other parts any convex non-negative 1-homogeneous extension
can be used. Analogously to before, the proof of Theorem 4.6 will then
follow as special case of the more general theorem.

Theorem 4.7 (Tight relaxation - General version). Let R̂, Ŝ : 2V →
R be non-negative set functions and T̂γ be defined as in (4.8). Moreover,

let R̂ = R̂1 − R̂2 , Ŝ = Ŝ1 − Ŝ2 and T̂γ = T̂1 − T̂2 be decompositions

into differences of set functions. Let the Lovász extensions of R̂1, Ŝ2, T̂1 be
given by RL1 , S

L
2 , T

L
1 and let R2, S1, T2 be positively 1-homogeneous convex

extensions of R̂2, Ŝ1, T̂2 such that S1 − SL2 is non-negative. Then,

min
M̂i(C)≤ki,
i=1,...,K

R̂(C)

Ŝ(C)
= min

f∈Rn+

RL1 (f)−R2(f) + TL1 (f)− T2(f)

S1(f)− SL2 (f)
:= Qγ(f)

34 CHAPTER 4. TIGHT RELAXATIONS OF CFSPS

for any γ ∈ RK+ such that ∀i, γi > R̂(C0)

θi Ŝ(C0)
maxC⊂V Ŝ(C), where C0 ⊂ V is a

feasible set with Ŝ(C0) > 0. Moreover, for any f ∈ Rn+ with Qγ(f) < Q̂γ(C0)
for the given γ, we have

Qγ(f) ≥ min
i=1,...,n

Q̂γ(Ci),

and the minimizing set on the right hand side is feasible. Let furthermore
R̂(V) = Ŝ(V) = T̂γ(V) = 0 and R2(α1) = S1(α1) = T2(α1) = 0 for all
α ∈ {−1, 1}, then all the above statements hold if one replaces Rn+ with Rn.

Proof. By Lemma 4.5, one has for the given choice of γ,

min
M̂i(C)≤ki,
i=1,...,K

R̂(C)

Ŝ(C)
= min

C⊂V

R̂(C) + T̂γ(C)

Ŝ(C)
.

Noting that T̂γ is a non-negative set function with T̂γ(∅) = 0 and γi > 0,
we have a ratio of non-negative set functions which attain the value zero on
the empty set. Writing the terms R̂, Ŝ and T̂γ as differences of submodular
functions (by Proposition 2.21 such a decomposition always exists) and then
applying Theorem 4.4 yields the equivalent continuous problem. Moreover,
if R̂(V) = Ŝ(V) = T̂γ(V) = 0 and R2(α1) = S1(α1) = T2(α1) = 0, we

also have (R̂ + T̂γ)(V) = 0 and (R2 + T2)(α1) = 0, thus the conditions in
Theorem 4.4 are fulfilled and we can replace Rn+ by Rn.

The second statement can be seen as follows. Suppose Qγ(f) < Q̂γ(C0).
By Lemma 4.1 and Lemma 4.3 we obtain

Qγ(f) ≥ min
i=1,...,n

Q̂γ(Ci).

Now suppose that the minimizer C∗ of the right hand side is not feasible,
then again by the derivation in (4.10) and (4.11) and the choice of γ,

Q̂γ(C∗) > Q̂γ(C0),

which leads to a contradiction. Thus C∗ is feasible. �

Note that Theorem 4.7 implies that the set found by optimal threshold-
ing of the solution of the continuous program is guaranteed to satisfy all
constraints. In Chapter 8 and 9 we will derive tight relaxations for the
constrained local clustering problem and the constrained densest subgraph
problem introduced in (1.1) and (1.2), where we can guarantee that all con-
straints are fulfilled. We are not aware of any other method which can give
the same guarantee for these problems. In the next part of the thesis, we
discuss algorithms for the resulting optimization problems.

Part II

Algorithms for fractional
programs

35

Chapter 5

Optimization of ratios of
non-negative functions

This chapter is concerned with the algorithmic solution of a class of opti-
mization problems of the form

min
f∈Rn

R(f)

S(f)
:= Q(f), (5.1)

for some non-negative functions R,S : Rn → R+. Moreover, we also consider
the case where the optimization is done over the positive orthant Rn+. Op-
timization problems of this type arise as the result of the tight relaxation of
fractional set programs, see Chapter 4. Furthermore, many other problems
can be directly modeled in this form, which makes the considered algorithms
widely applicable. Moreover, in Chapter 3 we have shown the connection of
the critical points of above functionals to solutions of the associated nonlin-
ear eigenproblems. The algorithms presented in this chapter will be used in
Chapters 7 to 10 to develop techniques for several applications in network
analysis and dimensionality reduction.

We start our discussion by considering an important special case: in
the first section, we cover the case when R is the quadratic form 〈f,Af〉
induced by a (symmetric) positive semi-definite matrix A ∈ Rn×n, and S is
the squared Euclidean norm. In this case, the problem can be understood
as computing the smallest eigenvalue of the matrix A, which can be solved
using the well-known inverse power method (see e.g. Golub and Van Loan
[1996]). In Section 5.2 we assume that R is convex and S is concave. Un-
der some further assumptions on R and S, a variant of the above problem
can then be solved globally optimally by Dinkelbach’s method [Dinkelbach,
1967]. Section 5.3 covers the case where R and S are non-negative convex
p-homogeneous functions for p ≥ 1. We derive a nonlinear inverse power
method which generalizes the standard inverse power method, and can be
shown to converge to a solution of the associated nonlinear eigenproblem
(see Chapter 3).

37

38 CHAPTER 5. RATIOS OF NON-NEGATIVE FUNCTIONS

The case p = 1 has been further generalized by Hein and Setzer [2011],
Jost et al. [2013] to arbitrary ratios of non-negative differences of convex 1-
homogeneous functions, which is discussed in Section 5.4. We then present
a variant of the RatioDCA of Hein and Setzer [2011] extended to arbi-
trary ratios of non-negative differences of convex functions. If R and S are
p-homogeneous (p ≥ 1), it converges to the solution of a nonlinear eigen-
problem, see Chapter 3.

5.1 Quadratic function over quadratic function:
Standard inverse power method

In this section, we briefly discuss the special case of problem (5.1) where
R(f) = 〈f,Af〉 for a positive semi-definite matrix A ∈ Rn×n, and S(f) =
‖f‖22. The problem (5.1) then has the form

min
f∈Rn

〈f,Af〉
‖f‖22

=: min
f∈Rn

Q(f). (5.2)

By the Rayleigh-Ritz principle (see Chapter 3), the minimum of the above
problem is equal to the smallest eigenvalue of the matrix A, and the mini-
mizer is the corresponding eigenvector.

The power method is a standard technique to compute the dominant
eigenvalue (the one with largest absolute value) of a symmetric matrix A
(see e.g. Golub and Van Loan [1996]). Its main building block is the fact
that the iterative scheme

fk+1 = Afk (5.3)

converges to the dominant eigenvalue of A, which can be easily seen by
expressing the initial vector f0 in terms of the orthonormal basis of eigen-
vectors u1, . . . , un, and then analyzing the dominant terms in the sum as the
iterative scheme progresses. Since we assume the matrix A to be positive
semi-definite, all eigenvalues are non-negative, and therefore one obtains the
largest eigenvalue of A.

Now consider the matrix A′ = (A − µI)−1 (assuming A is invertible).
One easily shows that for each eigenpair (λ, u) of A, the pair ((λ−µ)−1, u) is
an eigenpair of A′. Hence, given the eigenvalues λ1, . . . , λn of A, the largest
eigenvalue of A′ corresponds to the smallest value of λi−µ, which is achieved
by the eigenvalue of A closest to µ. This implies that applying the iterative
scheme (5.3) to A′ yields the eigenvalue of A closest to µ. This idea is used
in the inverse power method summarized in Alg. 1.

Applying the inverse power method for µ = 0 then converges to the
eigenvector of A corresponding to the smallest eigenvalue, which equals the
minimum of the functional in (5.2). Note that since A is positive semi-
definite, it holds that (5.2) is a ratio of two convex functions. In Section

5.2. DINKELBACH’S METHOD 39

Algorithm 1 Standard inverse power method

1: Input: eigenvalue estimate µ ∈ R
2: Initialization: f0 = random with

∥∥f0
∥∥

2
= 1, λ0 = Q(f0)

3: repeat
4: Solve (A− µI)gk+1 = fk for gk+1

5: fk+1 = gk+1/
∥∥gk+1

∥∥
2

6: λk+1 = Q(fk+1)

7: until
|λk+1−λk|

λk
< ε

8: Output: eigenvalue λk+1 closest to µ with eigenvector fk+1.

5.3 we will generalize the inverse power method to nonlinear eigenproblems
of the form 0 ∈ ∂R(u)− λ∂S(u), where R and S are non-negative, convex,
p-homogeneous functions (p ≥ 1).

5.2 Convex function over concave function:
Dinkelbach’s method

We now consider the case where the functional R is convex and S is con-
cave. There has been a large body of work on convex-concave fractional
programs and also the special class of linear fractional programs. Examples
of this type of problems include resource allocation problems, where certain
ratios between cost and return are optimized, the portfolio selection prob-
lem, where we want to minimize risk while maximizing return, or problems
where the cost per time needs to be minimized (see Schaible [1981]).

Since it does not make sense to restrict ourselves only to concave func-
tions which are non-negative on Rn, we consider a slightly modified problem
to before. The considered optimization problem is given by

min
f∈C

R(f)

S(f)
, (5.4)

where C ⊂ Rn is a compact convex subset of Rn, and R,S : Rn → R are
assumed to be non-negative inside the set C. Moreover, we assume R to be
convex and S to be concave.

Proposition 5.1. Let R : Rn → R be convex and S : Rn → R be concave,
and let R(f) ≥ 0 and S(f) ≥ 0 for all f ∈ C. Then the function Q : C →
R+, Q(f) := R(f)

S(f) is a quasi-convex function.

Proof. For any α ∈ R, the sublevel set Cα is given as

Cα = {f ∈ C | RS (f) ≤ α} = {f ∈ C | R(f)− αS(f) ≤ 0}.

40 CHAPTER 5. RATIOS OF NON-NEGATIVE FUNCTIONS

If α < 0, we have Cα = ∅ due to the non-negativity of R and S. Otherwise,
the function R(f) − αS(f) is a convex function, and hence Cα is a convex
set ∀α ∈ R, which implies that R

S is a quasi-convex function. �

The above result implies that the ratio problem can be solved globally opti-
mally, see Boyd and Vandenberghe [2004]. In particular, the form of the sub-
level sets Cα suggests the following iterative procedure to compute the global
minimum of the functional Q. Assume we know an upper bound α on the
optimal value of Q, i.e. minu∈C Q(u) ≤ α. Then, a vector f ∈ Rn satisfying
R(f)−αS(f) ≤ 0 implies that f ∈ Cα and hence minu∈C Q(u) ≤ Q(f) ≤ α.
If Q(f) is strictly smaller than α, we have obtained a better upper bound on
the optimal value of Q. This suggests to solve the problem via a sequence
of improving upper bounds on the objective, which directly leads to the
method of Dinkelbach [1967] shown in Alg. 2.

Algorithm 2 Dinkelbach’s method for convex over concave

1: Initialization: f0 ∈ C, λ0 = Q(f0)
2: repeat

3: fk+1 = arg min
u∈C

{
R(u)− λkS(u)

}
4: λk+1 = R(fk+1)/S(fk+1)

5: until
|λk+1−λk|

λk
< ε

6: Output: global minimum λk+1 with minimizer fk+1.

Note that in the original paper [Dinkelbach, 1967], the problem is formulated
as a maximization problem. Moreover, a slightly different stopping criterion
is used. In the following, we adapt the convergence results in [Dinkelbach,
1967] for the variant given in Alg. (2). Let Φfk(u) := R(u)− λkS(u) denote
the objective of the convex inner problem in Alg. (2) at step k.

Lemma 5.2. The sequence fk generated by Alg. 2 satisfies Q(fk) > Q(fk+1)
for all k ≥ 0 or terminates.

Proof. By assumption it holds that λk = Q(fk) ≥ 0. Thus, since R is
convex and S is concave, it must hold that Φfk is convex. Moreover, note

that we have Φfk(fk) = R(fk) − λkS(fk) = 0, thus the optimizer fk+1 of

the inner problem satisfies R(fk+1)−λkS(fk+1) ≤ 0. If equality holds, then
fk is a possible minimizer and the sequence terminates. Otherwise, we have
R(fk+1) − λkS(fk+1) < 0. Assume now that S(fk+1) = 0. This implies
that R(fk+1) < 0, contradicting the fact that R is non-negative. Thus,
S(fk+1) > 0 and one obtains

R(fk+1)

S(fk+1)
< λk =

R(fk)

S(fk)
,

which concludes the proof. �

5.3. NONLINEAR INVERSE POWER METHOD 41

Lemma 5.3. The sequence fk produced by Alg. 2 satisfies limk→∞Q(fk) =
λ∗, where λ∗ is the global minimum of the functional Q.

Proof. By Lemma 5.2 the sequence Q(fk) is monotonically decreasing.
By assumption R and S are non-negative in C. Thus Q is bounded below
by zero, which implies convergence towards a limit

λ∗ = lim
k→∞

Q(fk) .

The fact that the sequences fk are contained in the compact set C implies
the existence of a subsequence fkj converging to some element f∗ ∈ C. As
the sequence Q(fkj) is a subsequence of a convergent sequence, it has to
converge towards the same limit λ∗. Let Q(f ′) denote the global optimal
solution of problem (5.4). Assume that λ∗ = Q(f∗) > Q(f ′). This implies
(note that S(f ′) > 0)

R(f ′)− R(f∗)

S(f∗)
S(f ′) < 0 = R(f∗)− R(f∗)

S(f∗)
S(f∗).

Thus, Φf∗(f
′) < Φf∗(f

∗), which contradicts the fact that f∗ is the optimal
solution of the inner problem (note that f ′, f∗ ∈ C). Thus our assumption
is wrong and we must have Q(f∗) = Q(f ′). �

Note that Dinkelbach’s method cannot be applied to the case where R and S
are both convex, as in this case the problem R(u)−λkS(u) is not guaranteed
to be convex. For this reason, in the next section, we present our nonlinear
inverse power method which is designed for the case where Q is a convex-
convex ratio.

5.3 Convex function over convex function:
Nonlinear inverse power method

We now consider the case where the functionals R and S in (5.1) are convex
and p-homogeneous, for p ≥ 1. Moreover, for the case p > 1, we need the
additional assumption that S is continuous. Note that the ratio R

S is in
general non-convex and non-smooth. The nonlinear inverse power method
(nonlinear IPM) was introduced in Hein and Bühler [2010] as a method to
compute solutions of the associated nonlinear eigenproblem

0 ∈ ∂R(u)− λ∂S(u) (5.5)

(see Chapter 3). The method is a generalization of the standard inverse
power method (see e.g. Golub and Van Loan [1996]), used to compute the
smallest eigenvalue of a positive semi-definite matrix A ∈ Rn×n.

42 CHAPTER 5. RATIOS OF NON-NEGATIVE FUNCTIONS

The main motivation for the nonlinear inverse power method is the obser-
vation that the linear system Afk+1 = fk solved in each step of the standard
inverse power method can be rewritten as the optimization problem

fk+1 = arg min
u

{
1
2

〈
u,Au

〉
−
〈
u, fk

〉}
.

The direct generalization of the above optimization problem is given by

fk+1 = arg min
u

{
R(u)−

〈
u, s(fk)

〉}
, (5.6)

or equivalently, 0 ∈ r(fk+1)− s(fk), where r(f) ∈ ∂R(f) and s(f) ∈ ∂S(f).
In the case of p > 1, one can use the direct generalization (5.6), as reported
in Hein and Bühler [2010]. In Alg. 3 we give a slightly modified version
of the algorithm originally reported in Hein and Bühler [2010]. The only
difference is the additional factor λk in the inner problem. The equivalence
of the two formulations follows from the following proposition.

Proposition 5.4. Let Φ(f) := R(f)−λ 〈f, s〉 and Ψ(f) := R(f)−〈f, s〉 for
a positively p-homogeneous function R for p > 1, s ∈ Rn and λ > 0. Then

f̂ ∈ arg min Ψ(f) if and only if αf̂ ∈ arg min Φ(f), where α = λ
1
p−1 .

Proof. Let f̂ ∈ arg min Ψ(f), which implies that Ψ(f̂) ≤ Ψ(f), ∀f ∈ Rn.

Note that for α = λ
1
p−1 it holds ∀f ∈ Rn that αpΨ(f) = λ

p
p−1 Ψ(f) =

λ
p
p−1R(f)− λ1+ 1

p−1 〈f, s〉 = αpR(f)− λα 〈f, s〉 = Φ(αf), where we used the
p-homogeneity of R. As αp > 0, this implies that Φ(αf̂) ≤ Φ(αf),∀f ∈ Rn,
which again implies that αf̂ ∈ arg min Φ(f). Analogously one shows the
reverse direction. �

Thus the factor λk just leads to a rescaled solution of the inner problem.
This change has been introduced in Alg. 3 as it will enable us to have a
simpler convergence proof of the method.

Algorithm 3 Computing a nonlinear eigenvector for convex positively p-
homogeneous functions R and S with p > 1

1: Initialization: f0 = random, λ0 = Q(f0)
2: repeat

3: gk+1 = arg min
u

{
R(u)− λk

〈
u, s(fk)

〉}
where s(fk) ∈ ∂S(fk)

4: fk+1 = gk+1/S(gk+1)1/p

5: λk+1 = Q(fk+1)

6: until
|λk+1−λk|

λk
< ε

7: Output: eigenvalue λk+1 and eigenvector fk+1.

As the direct generalization fails for p = 1, we present a modified method
for this case in Alg. 4. The additional ball constraint ‖u‖2 ≤ 1 needs to

5.3. NONLINEAR INVERSE POWER METHOD 43

be introduced as the objective of the inner problem would otherwise be
unbounded from below. Note that the 2-norm is only chosen for algorithmic
convenience, in principle, any norm can be chosen. Moreover, adding a ball
constraint in Alg. 3 may potentially be harmful if it does not contain the
optimal solution of the inner problem. However, as we will see in Lemma 5.5,
it is possible if the ball contains a point satisfying the condition in Lemma
5.5. Furthermore, note that while the introduction of λk in Alg. 3 leads
only to a rescaled solution of the inner problem, it is necessary in Alg. 4 to
guarantee descent. Finally, note that the additional normalization in line 4
in Alg. 3 is not necessary to guarantee descent in the functional in each step.
However it will be required later to show the convergence of the sequence
fk to the solution of a nonlinear eigenproblem, see Theorems 5.7 and 5.10.

Algorithm 4 Computing a nonlinear eigenvector for convex positively p-
homogeneous functions R and S with p = 1

1: Initialization: f0 = random with
∥∥f0

∥∥ = 1, λ0 = Q(f0)
2: repeat

3: fk+1 = arg min
‖u‖2≤1

{
R(u)− λk

〈
u, s(fk)

〉}
where s(fk) ∈ ∂S(fk)

4: λk+1 = Q(fk+1)

5: until
|λk+1−λk|

λk
< ε

6: Output: eigenvalue λk+1 and eigenvector fk+1.

5.3.1 Monotonicity

Note that, in contrast to Dinkelbach’s method, the inner problem does not
use the function S but instead a linear lower bound. This makes the method
applicable to the case where S is convex and enables us to prove convergence
of the method. In the following, let Φfk(u) := R(u) − λk

〈
u, s(fk)

〉
denote

the objective of the convex inner problem in Alg. 3 and 4.

Lemma 5.5. Let g ∈ Rn such that Φfk(g) < R(fk) (1 − p) for Alg. 3 or

Φfk(g) < 0 for Alg. 4. Then Q(fk) > Q(g).

Proof. Note that for a positively p-homogeneous convex function one has

S(g) ≥ S(fk) +
〈
s(fk), g − fk

〉
=
〈
s(fk), g

〉
+ (1− p) S(fk),

where we have used the convexity of S as well as the fact that
〈
s(fk), fk

〉
=

pS(fk) due to the p-homogeneity of S. Therefore we obtain

Φfk(g) = R(g)− λk
〈
s(fk), g

〉
≥ R(g)− λkS(g) +R(fk) (1− p).

It follows that in both cases the condition in Lemma 5.5 implies that R(g)−
λkS(g) < 0. Finally, we obtain Q(g) = R(g)

S(g) < λk = Q(fk). �

44 CHAPTER 5. RATIOS OF NON-NEGATIVE FUNCTIONS

The following is an immediate corollary which shows that Alg. 3 and 4 create
monotonically decreasing sequences.

Lemma 5.6. The sequences fk produced by Alg. 3 and 4 satisfy Q(fk) >
Q(fk+1) for all k ≥ 0 or the sequences terminate.

Proof. It holds for p ≥ 1 that

Φfk(fk) = R(fk)− λk
〈
s(fk), fk

〉
= R(fk)− λk pS(fk) = R(fk) (1− p),

where we have used that
〈
s(fk), fk

〉
= pS(fk). Hence for both algorithms,

the optimal value f̂ of the inner problem satisfies Φfk(f̂) ≤ R(fk) (1−p). If

equality holds, then fk is a possible minimizer and the sequence terminates.
Otherwise, in the case p = 1 (Alg. 4), the optimal point f̂ = fk+1 satis-

fies the condition from Lemma 5.5, which implies that Q(fk+1) < Q(fk). In
the case p > 1 (Alg. 3), one has Q(gk+1) < Q(fk). The result then follows
from Q(fk+1) = Q(gk+1) due to the p-homogeneity of R and S. �

Note that Lemmas 5.5 and 5.6 can be extended to arbitrary ratios of non-
negative convex functions (not requiring p-homogeneity). However, since
our definition of nonlinear eigenproblems requires the functions to be p-
homogeneous, we restrict ourselves to the p-homogeneous case.

The importance of Lemma 5.5 arises from a practical consideration:
Lemma 5.5 shows that descent inQ is not only guaranteed for the optimal so-
lution of the inner problem, but for any vector u with Φfk(u) < R(fk) (1−p)
in the case of Alg. 3 and Φfk(u) < 0 = Φfk(fk) for Alg. 4. This has two
important practical implications. First, for the convergence of the IPM, it
is sufficient to use a vector u satisfying the above conditions instead of the
optimal solution of the inner problem. In particular, in an early stage where
one is far away from the limit, it makes no sense to invest much effort to
solve the inner problem accurately. Second, if the inner problem is solved by
a descent method, a good initialization for the inner problem at step k + 1
is given by fk, as descent in Q is guaranteed after one step.

5.3.2 Relation to nonlinear eigenproblem

Finally, the following theorem shows the convergence of Algorithms 3 and 4
to a solution of a nonlinear eigenproblem as defined in (5.5).

Theorem 5.7 (Convergence of nonlinear IPM). The sequences fk of
Alg. 3 and 4 have convergent subsequences that converge to an eigenvector
f∗ with eigenvalue λ∗ = limk→∞Q(fk) ∈

[
0, Q(f0)

]
in the sense that it

solves the nonlinear eigenproblem (5.5). If S is continuously differentiable
at f∗, then Q has a critical point at f∗.

5.4. RATIODCA 45

The nonlinear inverse power method was used in Hein and Bühler [2010]
to derive methods for the Cheeger Cut problem as well as sparse PCA,
see Chapters 7 and 10. In Section 5.4, we will present the RatioDCA, a
generalization of the nonlinear IPM for ratios of non-negative d.c. function,
which will allows us to solve an even larger class of problems. As in the case
of the nonlinear IPM, one can guarantee the monotonicity of the sequence
generated by the algorithm. Moreover, one can show the convergence of
RatioDCA to a solution of the general form of nonlinear eigenproblems de-
fined in Section 3. For this reason we will postpone the proof of Theorem
5.7 to Section 5.4 where we will state the more general statement for the
RatioDCA, which will include the statement in Theorem 5.7 as special case.

5.4 The general case: RatioDCA

We now treat the general case of non-negative functions R and S. A problem
of this type arises e.g. as the result of a tight relaxation of a constrained frac-
tional set program, see Chapter 4. In this case, the fact that the functions R
and S are the Lovász extensions of set functions R̂, Ŝ implies that they are
1-homogeneous, see Prop. 2.13. Moreover, Prop. 2.21 implies that (5.1) can
be written as ratio of differences of convex functions (d.c.), i.e. R = R1−R2

with R1, R2 convex, and similarly for S. As the proof of Prop. 2.21 is con-
structive, the explicit form of this decomposition can be calculated. The
considered problem can be written as

min
f∈Rn

R(f)

S(f)
= min

f∈Rn
R1(f)−R2(f)

S1(f)− S2(f)
. (5.7)

The method RatioDCA has recently been proposed for minimizing a non-
negative ratio of 1-homogeneous d.c. functions [Hein and Setzer, 2011]. We
will show the connection to nonlinear eigenproblems of the form

0 ∈ ∂R1(f)− ∂R2(f)− λ(∂S1(f)− ∂S2(f)). (5.8)

Since the problems in Theorem 4.2 and 4.6 require optimization over the
positive orthant, we also consider a variant of problem (5.7) where the op-
timization is done over the positive orthant. In this case we need to use
a slight modification of the algorithm reported in Hein and Setzer [2011].
Both versions are given in Alg. 5. The difference lies in the inner problem
in line 3, where we either have the constraint u ∈ Rn+ or u ∈ Rn, depending
on the constraint in our original optimization problem. One can easily see
that if R and S are convex, the algorithm boils down to the nonlinear IPM
from Section 5.3 for p = 1.

In Alg. 6 we present a modification of the RatioDCA for a ratio of a
difference of convex p-homogeneous functions R = R1−R2 and S = S1−S2

for p > 1. Moreover, here we additionally assume S to be continuous. In

46 CHAPTER 5. RATIOS OF NON-NEGATIVE FUNCTIONS

Algorithm 5 RatioDCA - Minimization of a non-negative ratio of 1-
homogeneous d.c functions over Rn+ or Rn

1: Initialization: f0 ∈ Rn+, λ0 = Q(f0)
2: repeat

3: fk+1 = arg min
u∈Rn+ / u∈Rn,
‖u‖2≤1

{
R1(u)−

〈
u, r2(fk)

〉
− λk

(〈
u, s1(fk)

〉
−S2(u)

)}
where r2(fk) ∈ ∂R2(fk), s1(fk) ∈ ∂S1(fk)

4: λk+1 = Q(fk+1)

5: until
|λk+1−λk|

λk
< ε

the case where R and S are convex, Alg. 6 reduces to the nonlinear inverse
power method in Alg. 3.

Algorithm 6 RatioDCA - Minimization of a non-negative ratio of p-
homogeneous d.c functions over Rn+ or Rn

1: Initialization: f0 ∈ Rn+, λ0 = Q(f0)
2: repeat

3: gk+1 = arg min
u∈Rn+ / u∈Rn

{
R1(u)−

〈
r2(fk), u

〉
− λk

(〈
s1(fk), u

〉
− S2(u)

)}
where r2(fk) ∈ ∂R2(fk), s1(fk) ∈ ∂S1(fk)

4: fk+1 = gk+1/S(gk+1)1/p.
5: λk+1 = Q(fk+1)

6: until
|λk+1−λk|

λk
< ε

As for the case of the nonlinear IPM from Section 5.3, the difference be-
tween Alg. 5 and Alg. 6 lies in the norm constraint of the inner problem
in Alg. 5 which is necessary as otherwise the problem would be unbounded
from below. However, the choice of the norm plays no role in the proof and
any norm can be chosen.

5.4.1 Monotonicity

We now prove the monotonicity of Alg. 5 and Alg. 6, generalizing the corre-
sponding statements for Alg. 3 and Alg. 4. In the following, let

Φfk(u) := R1(u)−
〈
u, r2(fk)

〉
− λk

(〈
u, s1(fk)

〉
− S2(u)

)
denote the objective of the inner problem.

Lemma 5.8. Let g ∈ Rn such that Φfk(g) < 0 for Alg. 5 or Φfk(g) <

Φfk(fk) for Alg. 6. Then Q(fk) > Q(g).

5.4. RATIODCA 47

Proof. Note that for all non-negative d.c. functions R1 −R2 and S1 − S2,

Φfk(fk) = R1(fk)−
〈
r2(fk), fk

〉
− λk

(〈
s1(fk), fk

〉
− S2(fk)

)
= R1(fk)−R2(fk)− λk

(
S1(fk)− S2(fk)

)
+R2(fk)−

〈
r2(fk), fk

〉
+ λk

(
S1(fk)−

〈
s1(fk), fk

〉)
= R2(fk)−

〈
r2(fk), fk

〉
+ λk

(
S1(fk)−

〈
s1(fk), fk

〉)
.

Note that in the special case where R1, R2, S1, S2 are 1-homogeneous, one
obtains Φfk(fk) = 0 and thus the condition in Lemma 5.8 can be rewritten

as Φfk(g) < Φfk(fk) in both cases (Alg. 5 and Alg. 6). Moreover, ∀g ∈ Rn,

Φfk(g) = R1(g)−
〈
r2(fk), g

〉
− λk

(〈
s1(fk), g

〉
− S2(g)

)
≥ R1(g)−R2(g) +R2(fk)−

〈
r2(fk), fk

〉
− λk

(
S1(g)− S1(fk) +

〈
s1(fk), fk

〉
− S2(g)

)
where we used that for a convex function one has for all f, g ∈ Rn+,

S(g) ≥ S(f) +
〈
s(f), g − f

〉
⇔ −

〈
s(f), g

〉
≥ −S(g) + S(f)− 〈s(f), f〉 .

Rearranging of the teams leads to

Φfk(g) ≥ R1(g)−R2(g)− λk
(
S1(g)− S2(g)

)
+R2(fk)−

〈
r2(fk), fk

〉
+ λk

(
S1(fk)−

〈
s1(fk), fk

〉)
= R1(g)−R2(g)− λk

(
S1(g)− S2(g)

)
+ Φfk(fk) .

This implies that in both cases, the condition Φfk(g) < Φfk(fk) implies that

R1(g)−R2(g)− λk (S1(g)− S2(g)) < 0 . Finally, one obtains

Q(g) = R1(g)−R2(g)
S1(g)−S2(g) < λk = Q(fk),

which completes the proof. �

One can now show that the sequences fk are monotonically decreasing.

Proposition 5.9. The sequences fk generated by Alg. 5 and Alg. 6 satisfy
Q(fk) > Q(fk+1) for all k ≥ 0 or the sequences terminate.

Proof. Clearly, the optimal point fk+1 of the inner optimization problem
in Alg. 5 satisfies Φfk(fk+1) ≤ Φfk(fk) = 0. If equality holds, then fk is
a possible minimizer and the sequence terminates. Otherwise the optimal
point satisfies the conditions of Lemma 5.8 which implies Q(fk+1) < Q(fk).

48 CHAPTER 5. RATIOS OF NON-NEGATIVE FUNCTIONS

Analogously, in Alg. 6 one gets Φfk(gk+1) ≤ Φfk(fk). Again, the se-

quence either terminates or we have with Lemma 5.8, Q(gk+1) < Q(fk) .
The result then follows from Q(fk+1) = Q(gk+1) due to the p-homogeneity
of the functions R1, R2, S1, S2.

Note that the above argument is independent of the choice of the first
constraint (u ∈ Rn or u ∈ Rn+) in line 3 of Alg. 5 and 6. �

Lemma 5.8 implies that as in the case of the nonlinear IPM, one does not
need to solve the inner problem to full accuracy to guarantee descent in the
functional Q, see the discussion after Lemma 5.6.

Note that the proof of Lemma 5.8 does not use the p-homogeneity, which
implies that the statement of the Lemma is also valid for any non-negative
differences of convex functions R1−R2 and S1−S2. Moreover, in the proof
of Prop. 5.9, the p-homogeneity is only used to infer from the fact that
Q(hk+1) ≤ Q(fk) that also Q(fk+1) ≤ Q(fk). For this reason, omitting the
normalization step fk+1 = gk+1/S(gk+1)1/p in Alg. 6 (and the additional
variable gk+1) would lead to a variant of RatioDCA where one can guarantee
descent for any ratio of non-negative d.c. functions. However, note that
we will use the normalization step as well as the fact that numerator and
denominator of Q are p-homogeneous in the proof of Theorem 5.10 when we
show the convergence to a solution of a nonlinear eigenproblem.

5.4.2 Relation to nonlinear eigenproblem

The following theorem shows the connection to nonlinear eigenproblems as
defined in (5.8). It has previously been proven in Hein and Setzer [2011] for
the case p = 1 as well as Hein and Bühler [2010] for the case where R and
S are convex p-homogeneous. Moreover, it generalizes Theorem 5.7.

Theorem 5.10 (Convergence of RatioDCA). The sequences fk gener-
ated by Alg. 5 and 6 have convergent subsequences that converge to an eigen-
vector f∗ with eigenvalue λ∗ = limk→∞Q(fk) ∈

[
0, Q(f0)

]
in the sense that

it solves the nonlinear eigenproblem (5.8). If S, R2 and S2 are continuously
differentiable at f∗, then Q has a critical point at f∗.

We first give the following Lemma which will be used in the proof.

Lemma 5.11. The sequences fk generated by Algorithms 5 and 6 are con-
tained in a compact set.

Proof. In the case of Alg. 5, we have
∥∥fk∥∥

2
≤ 1 for every k, which

immediately gives the result. In the case of Alg. 6, we have for all k,

1 = S(fk) = S

(
fk

‖fk‖2

∥∥fk∥∥
2

)
=
∥∥fk∥∥p

2
S

(
fk

‖fk‖2

)
≥
∥∥fk∥∥p

2
inf
‖f‖2=1

S(f),

5.4. RATIODCA 49

where we used the p-homogeneity of S. As S is continuous, the minimum
m := inf‖f‖2=1 S(f) is attained for some f on the unit sphere. Moreover, by
assumption we have S(f) = 0 if and only if f = 0. Hence, it must hold that
m > 0 and one obtains ∥∥fk∥∥

2
≤
(

1
m

) 1
p
,

which implies the result for Alg. 6. �

Proof of Theorem 5.10. By Prop. 5.9 in both cases the sequence Q(fk) is
monotonically decreasing. By assumption R and S are non-negative. Thus
Q is bounded below by zero, which implies convergence towards a limit

λ∗ = lim
k→∞

Q(fk) .

For both algorithms, the sequences fk are contained in a compact set (see
Lemma 5.11), which implies the existence of a subsequence fkj converging to
some element f∗. As the sequence Q(fkj) is a subsequence of a convergent
sequence, it has to converge towards the same limit λ∗.

To prove the convergence towards a solution of the nonlinear eigenprob-
lem, we first show that the limit f∗ is a global minimizer of the functional
Φf∗ in the inner problem. To do this, we need to make a case distinction
between Alg. 5 and Alg. 6. In the case of Alg. 5, the objective of the inner
optimization problem is non-positive at the optimal point, as we have shown
before. Assume now that min‖f‖22≤1 Φf∗(f) < 0. Then the vector

f∗∗ = arg min
‖f‖22≤1

Φf∗(f)

satisfies Φf∗(f
∗∗) < Φf∗(f

∗) = 0, and thus by Lemma 5.8 one has Q(f∗∗) <
Q(f∗), which is a contradiction to the fact that the sequence Q(fk) has con-
verged to λ∗ = Q(f∗). Thus it must hold that min‖f‖22≤1 Φf∗(f) = 0, i.e. the

function Φf∗ is non-negative in the unit ball. Using the 1-homogeneity of
Φf∗ , one can even conclude that the function Φf∗ is non-negative every-
where, and thus minf Φf∗(f) = 0 = Φf∗(f

∗).

In the case of Alg. 6, one has minf Φf∗(f) ≤ Φf∗(f
∗). Analogously to

before, assume now that Φf∗(f
∗∗) < Φf∗(f

∗) at the optimal point f∗∗. Then
Lemma 5.8 implies that Q(f∗∗) < Q(f∗), which again yields a contradiction
to the fact that the sequence Q(fk) has converged to λ∗.

Thus for both algorithms we have established the fact that the limit f∗

of the sequence fkj is a global minimizer of Φf∗ . This implies

0 ∈ ∂Φf∗(f
∗) = ∂R1(f∗)− r2(f∗)− λ∗(s1(f∗)− ∂S2(f∗))

⊂ ∂R1(f∗)− ∂R2(f∗)− λ∗(∂S1(f∗)− ∂S2(f∗) ,

50 CHAPTER 5. RATIOS OF NON-NEGATIVE FUNCTIONS

which shows that f∗ is an eigenvector with eigenvalue λ∗. Since this argu-
ment was independent of the choice of the subsequence, every convergent
subsequence yields an eigenvector with the same eigenvalue λ∗. Clearly it
holds that λ∗ ≤ Q(f0). The last statement follows from Theorem 3.6. �

5.4.3 The RatioDCA-Prox

In Jost et al. [2013], a variation of the RatioDCA called RatioDCA-Prox
was proposed. It replaces the norm constraint in Alg. 5 by any compact set
containing a neighborhood of 0, i.e. a constraint of the form G(f) ≤ 1, where
G is non-negative, convex and p-homogeneous. Then an additional proximal
term −ck

〈
u, g(fk)

〉
is added to the objective of the inner problem, where

ck ∈ R+ is a non-negative sequence of parameters, and g(fk) ∈ ∂G(fk).

It is easy to see that for G(fk) = ‖f‖22 and ck = 0 one recovers the
RatioDCA in Alg. 5. Moreover, it was shown in Jost et al. [2013] that
also recent algorithms for NCut and Cheeger cut clustering [Bresson et al.,
2012a,b] are recovered as special cases.

Note that the proof of Theorem 5.10 only establishes the existence of a
convergent subsequence of fk. In addition to convergence of the function
values λk, one can give the following convergence result for the RatioDCA-
Prox.

Proposition 5.12 (Jost et al. [2013]). If G is strictly convex and for all
k, ck ≥ γ for some γ > 0, then any sequence fk produced by RatioDCA-Prox
fulfills

∥∥fk+1 − fk
∥∥

2
→ 0.

This shows that either the sequence of iterates converges to an element f∗

or the set of accumulation points is a connected subset of {f ∈ Rn | G(f) ≤
1}. Note that the above result does not apply for the case where ck =
0, i.e. RatioDCA. However, in practice no clear difference in performance
between the case ck = 0 and the general case is observed [Jost et al., 2013].

5.4.4 Quality guarantee for RatioDCA

Note that in general, convergence of the RatioDCA to the global optimum
cannot be guaranteed. However, we can provide a quality guarantee for the
case when the RatioDCA is applied to a tight relaxation of a constrained
fractional set program (CFSP). Recall from Chapter 4 that in this case the
ratio is given as

Qγ(f) =
RL1 (f)−R2(f) + γ

(
TL1 (f)− T2(f)

)
S1(f)− SL2 (f)

,

5.4. RATIODCA 51

corresponding to a set function of the form

Q̂γ(C) =
R̂(C) + γT̂ (C)

Ŝ(C)
=
R̂1(C)− R̂2(C) + γ

(
T̂1(C)− T̂2(C)

)
Ŝ1(C)− Ŝ2(C)

,

where the original objective of the CFSP was given as

Q̂(C) =
R̂(C)

Ŝ(C)
=
R̂1(C)− R̂2(C)

Ŝ1(C)− Ŝ2(C)
.

The functions R2, T2 and S1 are extensions and RL1 , T
L
1 and S2 are the Lovász

extensions of the corresponding terms in Q̂γ , see Theorem 4.7. The following
theorem shows that in this case, RatioDCA either improves a given feasible
set or stops after one iteration. Earlier versions of the following result for
specific problems have been reported in Hein and Bühler [2010], Hein and
Setzer [2011] and Rangapuram and Hein [2012].

Theorem 5.13 (Quality guarantee for RatioDCA). Let A be a feasi-
ble set and γ ∈ RK+ such that ∀i, γi θi > Q̂(A) maxC⊂V Ŝ(C). Let f∗ denote
the result of RatioDCA initialized with 1A, and let Cf∗ denote the set found
by optimal thresholding of f∗. Either RatioDCA terminates after one itera-
tion, or it holds that Q̂(Cf∗) < Q̂(A), and the set Cf∗ is feasible.

Proof. Proposition 5.9 implies that the RatioDCA either directly termi-
nates or produces a strictly monotonically decreasing sequence. In the latter
case, using the strict monotonicity and the fact that optimal thresholding
does not increase the objective (Lemma 4.1 + 4.3), one obtains

Q̂(A) = Q̂γ(A) = Qγ(1A) > Qγ(f∗) ≥ Qγ(1Cf∗) = Q̂γ(Cf∗).

Assume now that Cf∗ is infeasible. Then, one can derive analogously to
(4.10) and (4.11) in the proof of Lemma 4.5 that

Q̂γ(Cf∗) > Q̂(A) = Q̂γ(A),

which contradicts the fact that Q̂γ(A) > Q̂γ(Cf∗). Thus, Cf∗ has to be

feasible, and it holds that Q̂(A) > Q̂(Cf∗). �

The above theorem implies that all constraints of the original constrained
fractional set program are fulfilled by the set Cf∗ returned by RatioDCA.

One might criticize about the above statement that it does not guarantee
an improvement in every case. However, it is clear that this cannot be
achieved since the set A may already correspond to a critical point 1A of the
objective Qγ . In practice however, we often observe a strong improvement
when our method is initialized with the solutions given by competing other
methods, as we will see in the experiments.

52 CHAPTER 5. RATIOS OF NON-NEGATIVE FUNCTIONS

As discussed in Chapter 4, there exists several possibilities to construct
a tight relaxation, depending on the choice of the functions R2, T2 and S1

(see Theorem 4.4). For example, in Section 7.4 we will present two different
tight relaxations of the normalized cut criterion. Now the question arises
how the choice of the extensions affects the performance of the RatioDCA.

In Lemma 4.3 it was shown that the Lovász extension is maximal in the
class of 1-homogeneous extensions. This implies that the subdifferential is
maximal for the Lovász extension. As observed by Jost et al. [2013], this
suggests that the Lovász extension should lead to better performance. This
was experimentally confirmed in Jost et al. [2013], where it was shown on
several graphs that the Lovász extension consistently leads to better results
in terms of the obtained objective value.

A crucial part of the algorithms is the efficient solution of the inner
problem, which will be discussed in the next chapter. In Part III we will
then use the algorithms discussed in this chapter to derive methods for a
wide range of applications in network analysis and dimensionality reduction.

Chapter 6

Fast first order methods
for the convex inner problem
in RatioDCA

In the previous chapter we derived a scheme to compute solutions of a class
of non-convex problems involving a ratio of functions R,S : Rn → R. The
main idea was a decomposition into a sequence of convex problems. In this
chapter, we show how this inner problem can be efficiently solved globally
optimal. Assume that we apply the RatioDCA to a problem of the form

min
f∈Rn+

R1(f)−R2(f)

S1(f)− S2(f)
:= Q(f), (6.1)

where R1−R2 and S1−S2 are non-negative differences of convex functions.
The inner problem solved at each step of the RatioDCA is then given as

arg min
u∈Rn+, ‖u‖2≤1

{
R1(u)−

〈
u, r2(fk)

〉
+ λk

(
S2(u)−

〈
u, s1(fk)

〉)}
, (6.2)

where r2(fk) ∈ ∂R2(fk) and s1(fk) ∈ ∂S1(fk). Since R1 and S2 are convex
and the constraints define a convex set, the above problem is a convex
optimization problem and can be solved globally optimal [Bertsekas, 1999].

Of course what is the most efficient way to solve the inner problem
depends on the nature of the terms in the given problem instance. In many
cases there exists an elegant way to compute solutions of the inner problem
efficiently. For instance, in the case of the local clustering problem and the
maximum density subgraph problem in Chapters 8 and 9, the inner problem
has an equivalent smooth dual problem which can be solved very efficiently
using Nesterov’s method [Nesterov, 1983, Beck and Teboulle, 2009], which
we will briefly review in this section. In the case of the sparse PCA problem
in Chapter 10, it even has a closed form solution.

53

54 CHAPTER 6. FIRST ORDER METHODS FOR INNER PROBLEM

However, it is clear that in general, the above problem may be difficult
to solve. For this reason, we now give a brief overview about some first or-
der methods for convex (non-smooth) problems. In contrast to second-order
methods such as Newton’s method, the advantage of first-order methods is
that they do not require the computation of the Hessian, which makes them
suitable for large scale problems. Moreover, our objective is in general non-
smooth. Note that we give only a brief introduction into the various meth-
ods, for a more detailed discussion, see e.g. Bertsekas [1999], Nesterov [2004],
Bertsekas [2010], Combettes and Pesquet [2011] and references therein.

We start by discussing some general results about first order meth-
ods. Then we review the basic gradient and subgradient method for un-
constrained minimization. Afterwards, we go one step further and present
some methods for the optimization over a convex set, including the fast
projected gradient method by Nesterov [1983]. Next we consider proximal
splitting methods, as well as their primal-dual variants, which can be used if
a certain decomposable structure of the problem can be exploited. Finally
we discuss a class of methods called bundle and bundle-level methods.

A particular difficult situation may arise if the RatioDCA is applied to
a tight relaxation of a constrained fractional set program (see Chapter 4).
In this case, R1 and S2 are the Lovász extensions of the corresponding set
functions R̂1 and Ŝ2. The problem may arise that R1 and S2 are not known
in a closed form which can be handled in an optimization algorithm easily.
However, in this situation one can exploit the connection between the Lovász
extensions and the corresponding set functions, as we will explain in Section
6.5. This enables us to solve the above optimization problem if the Lovász
extensions and their subdifferentials are not known in closed form, but the
original set functions can be computed efficiently.

6.1 General results for first order methods

Let us start with some general considerations. The convex inner problem
we will consider in the following can be stated in a very general form as

min
x∈C

F (x), (6.3)

where F is a convex lower semi-continuous function and C is some closed
convex set. In the following we will focus our studies on first order iterative
methods for convex problems. Given an initial starting value x0 ∈ C, an
iterative method computes a sequence x1, x2, . . . approximating the optimal
solution of the problem, in each step using an oracle to gain more informa-
tion about the problem. The term order refers to the type of oracle used in
each step of the iterative algorithm. A zero order method uses only function
evaluations in each step, while a first order method also uses the gradient,

6.1. GENERAL RESULTS FOR FIRST ORDER METHODS 55

or subgradients. In contrast, a second or higher order method also utilizes
the values of the higher derivatives [Nemirovsky and Yudin, 1983].

As our considered problems are in general non-differentiable, second or-
der methods such as the Newton method are not applicable. Moreover, while
it is known that these methods typically need fewer steps to converge, they
require the computation of the Hessian and the solution of a linear system
in each step and thus typically have a much higher iteration cost [Bertsekas,
1999], which makes them not suitable for large-scale problems. Note that
there exist recent developments of Newton-type methods which compute ap-
proximations of the true Hessian and thus reduce the per iteration cost and
memory requirement significantly, see e.g. Schmidt et al. [2011]. However, a
discussion of these results would be beyond the scope of this thesis, thus we
restrict ourselves to first order methods in the following.

To evaluate the performance of an algorithm one considers the conver-
gence rate of the algorithm, see Bertsekas [1999]. The rate of convergence
can be evaluated either in terms of the distance to the optimal solution x∗,
or in terms of the difference to the optimal value F (x∗). We say that the
method converges to the optimal value in O(f(t)), if in each step t ≥ 0 of
the iterative algorithm, the current iterate xt satisfies∣∣F (xt)− F (x∗)

∣∣ ≤ C f(t),

for some function f : R→ R+ with limt→∞ f(t) = 0 and a constant C > 0.
In other words, we compare the decay of the distance to the optimal value
to the decay of the function f(t). Similarly, convergence in O(f(t)) to the
optimal solution means that for all t ≥ 0,∥∥xt − x∗∥∥ ≤ C f(t).

One particular important case is if f(t) = ωt for some ω ∈ (0, 1). Then we
say that the method has linear convergence. Note that in this case we have

lim
k→∞

f(t+ 1)

f(t)
= ω, (6.4)

i.e. the bound f(t) drops by a factor of ω in each iteration. Clearly, smaller
values of ω imply faster convergence. If the limit in (6.4) is zero, we speak
of superlinear convergence. On the other hand, if the limit in (6.4) is 1, we
say that the method has sublinear convergence. This is for example given
for the function f(t) = 1

tα , for some α > 0.
A slightly different way to analyze the convergence is by studying how

many iterations are necessary to compute a solution within an ε radius
around the optimal solution. For instance, if the function values converge
to the optimal solution in O(1

t2
), then a solution with error at most ε can

be computed in O(1√
ε
) iterations. Note that the converse only holds if the

statement is made for every ε > 0 and not only a fixed ε.

56 CHAPTER 6. FIRST ORDER METHODS FOR INNER PROBLEM

The performance of a particular algorithm of course depends on several
factors: the dimension of the problem, the form of the set C as well as the
smoothness properties of the function F . Regarding the latter, we will later
consider the following three different classes of functions:

• F is in general non-differentiable. We further assume that F is L-
Lipschitz continuous, i.e. ∃L > 0 such that for all x, y ∈ Rn one has
‖F (x)− F (y)‖2 ≤ L ‖x− y‖2, and the minimizer x∗ exists and satis-
fies ‖xi − x∗‖ ≤ R for some R > 0. We denote this class by F0

L,R(Rn).

• F is continuously differentiable with L-Lipschitz continuous gradient,
i.e. ∃L > 0 such that for all x, y ∈ Rn one has ‖∇F (x)−∇F (y)‖2 ≤
L ‖x− y‖2. We denote this class by F1,1

L (Rn).

• F is continuously differentiable with L-Lipschitz continuous gradi-
ent, and strongly convex with parameter µ. We denote this class by
S1,1
µ,L(Rn).

Assume that one develops a method to optimize a function of one of the
above classes, which uses only first order information, as well as general
knowledge about the given function class (i.e. the values of L and µ). The
question one may ask is now: is there a limit on the convergence rate one
can guarantee? In other words, assume we have a method with known
convergence rate, is there a way to judge whether this is already the best
one can achieve or it is possible to improve it further? It turns out that
this question has been answered for several classes of problems [Nemirovsky
and Yudin, 1983, Nesterov, 2004]. We now summarize the results for the
above function classes. These general results will later enable us to put the
performance of an individual method into context and allow for a systematic
evaluation of the methods discussed later.

First we consider the class of problems F1,1
L (Rn). We assume that the

iterative process creates a sequence of points which can be written as

xt ∈ x0 + Span{∇F (x0), . . . ,∇F (xt−1)}, t ≥ 1. (6.5)

If one wants to give a guarantee of the convergence rate of a particular
method for the given function class, all members of the class need to be
considered, in other words, the convergence rate of the method is equal to
the worst convergence rate among all members of the given class. This
implies that a lower bound on the worst-case complexity can be obtained by
showing that for every value of t there exist a function which is a member
of the given class and after t steps has an error higher than a given lower
bound. This is the main idea of the following result [Nesterov, 2004].

Theorem 6.1 (Nesterov [2004]). For any t, 1 ≤ t ≤ 1
2(n − 1), and any

x0 in Rn there exists a function F ∈ F1,1
L (Rn) such that for any first order

6.1. GENERAL RESULTS FOR FIRST ORDER METHODS 57

method satisfying the assumption in (6.5) we have

F (xt)− F (x∗) ≥
3L
∥∥x0 − x∗

∥∥2

32(t+ 1)2
,∥∥xt − x∗∥∥2 ≥ 1

8

∥∥x0 − x∗
∥∥2
,

where x∗ is the minimum of F .

The above result implies that, assuming that the maximum number of it-
erations is not too large compared to the dimension n, the best worst-case
guarantee on the convergence rate of a first order method one can give is
O(1

t2
) for the optimization of a function of F1,1

L (Rn). Moreover, as stated
by Nesterov [2004], the assumption in (6.5) can also be avoided by a more
complicated argument.

Let us point out that the above result does not imply that one can never
achieve a better convergence rate for a particular function F ∈ F1,1

L (Rn), or

even a complete subclass of F1,1
L (Rn). It only says that the best rate one can

guarantee uniformly over all members of the function class is O(1
t2

), since
there exists at least one member of the class where a better rate can not be
achieved. For all practical purposes, the possibility exists that the explicit
function used in the proof of the above statement is not “representable” of
the whole class, and for all functions appearing in practice, one can achieve
a better convergence rate. On the other hand, it might be that the bound is
too loose, i.e. there exist even “worse” functions and thus the actual worst-
case convergence rate is much higher. However, assuming that both are not
the case, the above theorem yields a useful estimate of the convergence rate
one should aim for when designing an algorithm for the above function class
(in fact we will see later that the bound of O(1

t2
) is tight).

We now consider the case of strong convexity, i.e. F ∈ S1,1
µ,L(Rn). As

before, one can derive a lower bound by considering a family of “bad” func-
tions which for every t and every first order method achieves an error after
t steps which is higher than a given lower bound. The following theorem
gives such a bound for the case where the considered vector space is infinite
dimensional.

Theorem 6.2 (Nesterov [2004]). For any x0 ∈ R∞ and any constants
L > µ > 0 there exists a function F ∈ S∞,1µ,L (R∞) such that for any first
order method satisfying the assumption in (6.5) we have∥∥xt − x∗∥∥2 ≥ ω2t

∥∥x0 − x∗
∥∥2
,

F (xt)− F (x∗) ≥ µ

2
ω2t ‖x0 − x∗‖2 ,

where x∗ is the minimum of F and ω =
√
QF−1√
QF+1

, where QF = L
µ is the

condition number of F .

58 CHAPTER 6. FIRST ORDER METHODS FOR INNER PROBLEM

Since ω ∈ (0, 1), the above result implies that the best worst-case conver-
gence rate one can hope for in the case of strongly convex functions is linear
convergence. Moreover, note that, as mentioned by Nesterov [2004], a simi-
lar statement can be made for the finite-dimensional case.

Let us now consider the non-smooth case, i.e. F ∈ F0
L,R(Rn). In this

case, we assume that the sequence created by the iterative scheme can be
written as

xt ∈ x0 + Span{g(x0), . . . , g(xt−1)}, t ≥ 1, (6.6)

where for i ≥ 0, g(xi) ∈ ∂F (xi). One can now give the following lower
bound.

Theorem 6.3 (Nesterov [2004]). For any 0 ≤ t ≤ n − 1 there exists a
function F ∈ F0

L,R(Rn) such that for any first order method satisfying (6.6)
we have

F (xt)− F (x∗) ≥ LR

2(1 +
√
t+ 1)

,

where x∗ is the minimum of F .

Again the above theorem implies that the best guarantee on the conver-
gence rate one can give for a particular first order method and a class of
optimization problems of the above form is O(1√

t
). We are now ready to

study various types of first order methods for problems of the above type.

6.2 Basic first order methods for convex problems

We begin by reviewing some basic methods for convex minimization prob-
lems. Let us first consider the unconstrained case, i.e. we have C = Rn in
(6.3). We start by discussing the basic gradient descent method for the case
where the function F is differentiable. Then we present the subgradient
method for non-differentiable functions F . Next, we show how the methods
can be extended to the general constrained case. Finally, we present the
fast projected gradient method by Nesterov [1983], which achieves a faster
convergence rate. Most of the results from this section can be found in
Bertsekas [1999, 2010].

6.2.1 Gradient method

The gradient method or steepest descent method is an iterative scheme where
in each iteration a step is performed in direction of the negative gradient at
the given point. At step t+ 1, the current iterate xt is updated as

xt+1 = xt − αt ∇F (xt),

6.2. BASIC FIRST ORDER METHODS FOR CONVEX PROBLEMS 59

where at > 0 is some step size. The motivation for this iterative scheme is
as follows: For any direction d ∈ Rn, a first order Taylor expansion at the
point x+ αd is given as

F (x+ αd) ≈ F (x) + α 〈d,∇F (x)〉 .

Thus, for sufficiently small α > 0, we have F (x+αd) < F (x) if 〈d,∇F (x)〉 <
0. Among all vectors d ∈ Rn with ‖d‖22 = 1, the inner product 〈d,∇F (x)〉
is minimized for d = − ∇F (x)

‖∇F (x)‖2
. Thus, the negative gradient gives the

direction of steepest descent locally at the given point x.
There exist several possibilities to compute the step size in each step.

Ideally, one would use an exact line search to compute the step size αt which
minimizes the objective F along the direction d. Since this is not practical,
one approach is to perform a limited line search, i.e. at step t, given current
iterate xt and direction dt, one computes for a fixed scalar s > 0,

αt = arg min
γ∈[0,s]

F (xt + γdt), (6.7)

for instance using bisection. To avoid many expensive evaluations of the
objective, another approach is to use a backtracking line search, i.e. start
with some step size and then successively reduce it until a significant descent
is guaranteed. An example is the so-called Armijo rule. First one chooses
fixed scalars s > 0 and β, σ with 0 < β, σ < 1. Then, at step t, given current
iterate xt and direction dt, one sets the step size as αt = βms, where m is
the first non-negative integer m for which

F (xt + βmsdt)− F (xt) ≤ σβms
〈
∇F (xt), dt

〉
. (6.8)

Other possibilities exist, see Bertsekas [1999]. Using the negative gradient as
descent direction and choosing the step size according to (6.7) or (6.8), one
obtains a non-increasing sequence of function values F (xt), which, assuming
the gradient is Lipschitz continuous, converges in O(1

t) to the global optimal
value F (x∗) of F . Moreover, if we additionally assume that F is strongly
convex, then the distance to the optimal value decays in O(ω2t), where
ω = L−µ

L+µ , i.e. we obtain linear convergence [Nesterov, 2004].
In view of the theoretical results from the last section, one observes that

for the case F ∈ F1,1
L (Rn), the convergence rate is much higher than the

corresponding lower bound (i.e. worse). Assuming that the lower bound
is not too loose, this implies that the method is far from optimal for the
given problem class. For the strongly convex case, the result in Theorem
6.1 implies that one cannot achieve superlinear convergence. In that sense,
the convergence rate of O(ωt) for the strongly convex case is unimprovable.
However, taking into account the explicit value of ω, we observe that there
is still room for improvement. This can be seen by noting that the term in
Theorem 6.1 can be rewritten as L−µ

L+µ+
√
L
√
µ
, which for large values of L is

significantly smaller than the value of ω.

60 CHAPTER 6. FIRST ORDER METHODS FOR INNER PROBLEM

6.2.2 Subgradient method

We now consider the case where the functional F is non-differentiable. The
basic idea of the subgradient method is to perform the iterative scheme

xt+1 = xt − αts(xt),

where s(xt) ∈ ∂F (f t) is an element of the subdifferential of F at xt, and
αt is a sequence of step sizes. Note that while the above iterative scheme
has the same form as the gradient descent method where the gradient is
replaced by an element of the subdifferential, an important difference to
the differentiable case is that a step in direction of the subgradient is not
guaranteed to be a descent direction. However, one can show [Bertsekas,
2010] that for sufficiently small step sizes αt, each step reduces the distance
of the current iterate to the set of optimal solutions of F , i.e. for any t ≥ 0,∥∥xt+1 − x∗

∥∥
2
<
∥∥xt − x∗∥∥

2
.

The choice of the step sizes is crucial for the convergence of the algorithm. In
contrast to the gradient method, usually no step size selection is performed
and the step sizes are fixed initially. Several different choices exist, see
e.g. Bertsekas [2010]. For instance, for a constant step size α > 0,

min
0≤i≤t

F (xi)− F (x∗) ≤ αc2

2
+

∥∥x0 − x∗
∥∥2

2

2tα
,

where c is an upper bound on the norm of the subgradients. From this one
concludes that ∀ε > 0, using the constant step size α = ε

c2
, one obtains

an ε-optimal solution in O(1
ε2

) steps, or equivalently, the distance to an
ε-optimal solution decays with rate O(1√

t
). Note that this does not imply

convergence to the optimum, since the value of ε depends on the choice of α.
For a diminishing step size such that αt → 0 and

∑∞
t=0 α

t =∞ (for example
αt = 1

t), the algorithm converges to the optimal value, i.e.

lim
t→∞

F (xi)− F (x∗) = 0.

The subgradient method is known to converge slowly and therefore typically
is not applied in practice. See Bertsekas [2010] for further details. In the
next section, we present algorithms for the constrained optimization of F .

6.2.3 Projected gradient and subgradient method

Let us now discuss how the above methods can be extended to constrained
problems, i.e. now C is some closed convex set C ⊂ Rn. In the following
denote by PC(x) the projection on the set C. First we assume that F ∈
F1,1
L (Rn). The projected gradient method performs the iterative scheme

xt+1 = PC
(
xt − αt ∇F (xt)

)
. (6.9)

6.2. BASIC FIRST ORDER METHODS FOR CONVEX PROBLEMS 61

Similarly to the unconstrained case, several possibilities for step size selec-
tion exist, for instance exact line search or backtracking line search, see
Bertsekas [1999]. In both cases the projected gradient method achieves the
same convergence rate of O(1

t) as the gradient method in the case of func-

tions in F1,1
L (Rn), see e.g. Bertsekas [2010], Beck and Teboulle [2009].

We now consider the optimization of a (in general) non-differentiable
convex function F ∈ F0

L,R(Rn) over a general convex set C. Similarly to
the differentiable case one defines a constrained version of the subgradient
method. The projected subgradient method performs the iterative scheme

xl+1 = PC
(
xl − αls(xl)

)
,

where s(xt) ∈ ∂F (f t). The convergence analysis is similar to the uncon-
strained case, and one can show that the best guaranteed convergence rate
is O(1√

t
) [Bertsekas, 2010]. Since both the projected subgradient method

as well as projected gradient method have slow convergence, they are not
very useful in practice. In the next section we consider a modification of the
projected gradient method achieving a better convergence rate.

6.2.4 Accelerated gradient projection method

Nesterov [1983] introduced a first order method for the optimization of a
smooth function over a convex set which leads to a significant improvement
of the convergence rate compared to the projected gradient method discussed
above. The fast projected gradient method first performs a projected gradient
step and then computes the next iterate as a weighted average with the
previous iterate. The algorithmic scheme can be found in Alg. 7. Note that
in the original paper, Nesterov [1983] used backtracking line search to obtain
the step size.

Algorithm 7 Nesterov’s fast projected gradient [Nesterov, 1983]

1: Input: Lipschitz-constant L of ∇F , step size 0 < α ≤ 1
L

2: Initialization: θ0 = 1, x0, y0 ∈ Rn
3: for all t=0, 1, 2, . . . do
4: xt+1 = PC

(
yt − α∇f(yt)

)
5: θt+1 =

1+
√

1+4(θt)2

2 ,

6: yt+1 = xt+1 + θt−1
θt+1

(
xt+1 − xt

)
.

7: end for

By the specific choice of update step, a convergence rate of the functional
values of O

(
1
t2

)
is achieved [Nesterov, 1983], which is optimal with respect

to the lower bound from Theorem 6.1. While this is still sublinear, it is a
significant improvement compared to the convergence rate of O

(
1
t

)
of the

62 CHAPTER 6. FIRST ORDER METHODS FOR INNER PROBLEM

projected gradient method. The method was extended to a special non-
smooth case by Beck and Teboulle [2009], see next section.

We will later use Nesterov’s method to solve the inner problems ap-
pearing in the balanced graph cut problem (Chapter 7) as well as the local
clustering and community detection application (Chapters 8 and 9).

6.3 Proximal splitting methods

In this section we consider optimization problems of the form

min
f∈Rn

F (x) = f(x) + g(x), (6.10)

where the functions f, g, Rn → R are convex lower semi-continuous func-
tions. Moreover, for the moment we assume that f ∈ F1,1

L (Rn). Problems
of the above form have many applications in machine learning or signal
processing. Usually the term f(x) represents a smooth data term, and the
functional g(x) represents a regularization functional. Examples include the
LASSO [Tibshirani, 1994] or total variation based denoising and deblurring
problems [Beck and Teboulle, 2009]. Moreover, the inner problem (6.2) can
be written in the above form if either R1 or S2 are in F1,1

L (Rn). To see this,
note that every constrained optimization problem over a convex set C can
be written as

min
f∈C

F (x) = min
f∈Rn

F (x) + IC(x), (6.11)

where for any set C, the function IC(x) is defined by IC(x) = 0, if x ∈ C,
and IC(x) =∞, else. This implies that (6.11) is a special case of (6.10).

Recently there has been a strong interest in proximal splitting methods
for (6.10), which we will discuss in this section. See e.g. Beck and Teboulle
[2009], Combettes and Pesquet [2011] for further details.

6.3.1 Proximal gradient method

Note that the problem in (6.10) is in general non-differentiable. Thus The-
orem 6.3 tells us that the best we can hope for by applying a first order
method without exploiting the structure of the problem is a convergence
rate of O(1√

t
). However, one can use the following trick to achieve faster

convergence. Note that the projection on a convex set can be written as

PC(y) = arg min
x∈Rn

{
IC(x) + 1

2 ‖x− y‖
2
2

}
.

This forms the motivation to define the proximity operator as a generaliza-
tion of the projection on a convex set as follows [Moreau, 1962]:

proxg(y) = arg min
x∈Rn

{
g(x) + 1

2 ‖x− y‖
2
}
.

6.3. PROXIMAL SPLITTING METHODS 63

The above operator has a unique solution [Combettes and Pesquet, 2011].
Moreover, one easily sees that at the optimal point x∗ of (6.10) one has for
any γ > 0 [Combettes and Wajs, 2005],

x∗ = proxγf (x∗ − γ∇g(x∗)).

This motivates a generalization of the projected gradient method from Sec-
tion 6.2.3, by replacing in the iterative scheme in (6.9) the projection oper-
ator by the proximity operator. The result is the proximal gradient method,
which performs the following iterative scheme, see Beck and Teboulle [2009],
Combettes and Pesquet [2011],

xt+1 = proxαt g
(
xt − αt∇f(xt)

)
= arg min

x∈Rn

{
αtg(x) + 1

2

∥∥x− (xt − αt∇f(yt))
∥∥2

2

}
.

Methods using the above scheme are often called forward-backward splitting
algorithms. If f = 0, the scheme reduces to the proximal point algorithm

xt+1 = proxαt g (xn),

used to minimize a non-differentiable function [Martinet, 1970]. For the
special case of f(x) = ‖Ax− b‖22 and g(x) = ‖x‖1, one obtains the iterative
shrinkage-thresholding algorithm (ISTA), see e.g. Daubechies et al. [2004],
Combettes and Wajs [2005].

Of course the proximal gradient method is only useful if the proximity
operator can be computed efficiently. It turns out that in many cases ap-
pearing in practice, the proximity operator has a closed form solution, see
Combettes and Pesquet [2011]. For instance, in the case of the L1 norm
g(x) = ‖x‖1, it is given by

(
proxg(y)

)
i

= sign(yi) max{0, |yi| − 1}, for all
i = 1 . . . n.

Similarly to the basic gradient method, there exist several possibilities
to select the step size in each step, for instance choosing a constant step
size 0 < α ≤ 1

L or using a backtracking line search. It turns out that in
both cases, the proximal gradient method achieves the same convergence
rate of O(1

t) as the projected gradient method from the last section [Beck
and Teboulle, 2009]. In view of the general convergence results from Section
6.1, the question arises whether the method can be further improved to the
optimal rate of O(1

t2
), which will be answered in the next section.

6.3.2 Accelerated proximal gradient method

Beck and Teboulle [2009] introduced a method called FISTA which leads to
a significant improvement of the convergence rate compared to the proximal
gradient method discussed before. The fast iterative shrinkage-thresholding
algorithm extends Nesterov’s method to the non-smooth setting from (6.10),

64 CHAPTER 6. FIRST ORDER METHODS FOR INNER PROBLEM

by replacing the projection operator by a proximity operator. FISTA first
performs a forward step with step size 1

L and then a backward step using the
proximity operator. The next iterate is then computed as weighted average
with the previous iterate, using the scheme introduced by Nesterov [1983].

Algorithm 8 FISTA [Beck and Teboulle, 2009]

1: Input: Lipschitz-constant L of ∇F , step size 0 < α ≤ 1
L

2: Initialization: θ0 = 1, x0, y0 ∈ Rn
3: for all t=0, 1, 2, . . . do
4: xt+1 = proxαg

(
yt − α∇f(yt)

)
5: θt+1 =

1+
√

1+4(θt)2

2 ,

6: yt+1 = xt+1 + θt−1
θt+1

(
xt+1 − xt

)
.

7: end for

The general scheme for FISTA is given in Alg. 8 for a constant step size.
In Beck and Teboulle [2009], the authors use α = 1

L . Moreover, they also
give a variant where the step size is determined via backtracking line search,
as well as a monotone version which guarantees that the function values are
non-increasing. In all cases, FISTA achieves the same rate of convergence of
O
(

1
t2

)
as Nesterov’s method, which is a substantial improvement compared

to the convergence rate of O
(

1
t

)
of the standard proximal gradient method.

Note that Nesterov independently developed a method for the case of
composite functions (6.10) in a technical report [Nesterov, 2007], which
achieves the same optimal convergence rate of O(1

t2
). However, note that

[Nesterov, 2007] uses a more complicated scheme where by accumulating
information from the previous iterates it computes a sequence of estimate
functions that approximate the function F , whereas Alg. 8 is conceptually
simpler as it only performs one proximal gradient step and uses the last two
iterates in each step.

6.3.3 Douglas-Rachford splitting

Note that above we assumed that the function f is continuously differen-
tiable. We now drop this restriction, i.e. both f and g in (6.10) are allowed
to be non-smooth. In this case the problem can be solved via Douglas-
Rachford splitting. This technique, which can be traced back to the work of
Douglas and Rachford [1956], Lions and Mercier [1979] and later Eckstein
and Bertsekas [1992], requires the solution of two proximal gradient steps in
each iteration. As shown by Combettes and Pesquet [2007], the optimality
condition of the optimal point x∗ ∈ Rn of (6.10) can ∀γ > 0 be written as

x∗ = proxγg(y
∗), where y∗ ∈ Rn such that

y∗ = rproxγf
(

rproxγg(y
∗)
)
,

6.3. PROXIMAL SPLITTING METHODS 65

and rprox is defined as rproxf (x) := 2 proxf (x)− x. This forms the motiva-
tion for the general form of the Douglas-Rachford splitting algorithm given
in Alg. 9 [Combettes and Pesquet, 2011].

Algorithm 9 Douglas-Rachford splitting

1: Initialization: ε ∈ (0, 1), γ > 0, y0 ∈ Rn
2: for all t=0, 1, 2, . . . do
3: xt = proxγg(y

t)
4: λt ∈ [ε, 2− ε]
5: yt+1 = yt + λt

(
proxγf (2xt − yt)− xt

)
.

6: end for

The scheme in Alg. 9 can be shown to converge to a solution of (6.10)
[Combettes and Pesquet, 2011]. Douglas-Rachford splitting was used for
several applications in image processing, see e.g. Combettes and Pesquet
[2007]. Moreover, several other algorithms are recovered as special cases,
for instance the alternating direction method of multipliers [Gabay, 1983],
as shown by Eckstein and Bertsekas [1992], and the alternating Split Breg-
man algorithm [Goldstein and Osher, 2009], as shown by Setzer [2011]. See
e.g. Combettes and Pesquet [2007], Combettes and Pesquet [2011] for further
details on Douglas-Rachford splitting.

6.3.4 Primal-dual proximal splitting methods

Recently there as been a strong interest in primal-dual splitting methods for
convex problems [Zhu and Chan, 2008, Esser et al., 2010, Chambolle and
Pock, 2011]. The idea of primal-dual algorithms is to alternate between
steps which minimize the primal objective and maximize the dual objective.

The advantage of these types of approaches is that they give a natural
stopping criterion of the algorithm if the duality gap is below some non-
negative value. The disadvantage is that one might spend too much time
optimizing the dual objective with high accuracy, while the primal variable
is already sufficiently good. We now consider a class of problems of the form

min
x∈Rn

f(Ax) + g(x), (6.12)

where f : Rm → R and g : Rn → R are convex, lower semi-continuous
functions and A ∈ Rm×n. We can express the term f(Ax) with respect to
its convex conjugate as f(Ax) = maxy∈Rm 〈Ax, y〉 − f∗(y). Thus we obtain
the following saddle point formulation of the original primal problem,

min
x∈Rn

max
y∈Rm

〈Ax, y〉 − f∗(y) + g(x). (6.13)

Similarly, one obtains the dual problem

max
y∈Rm

−g∗(−AT y)− f∗(y). (6.14)

66 CHAPTER 6. FIRST ORDER METHODS FOR INNER PROBLEM

The goal is to compute a solution (x∗, y∗) of (6.13) satisfying

Ax∗ ∈ ∂f∗(y∗)
−AT y∗ ∈ ∂g(x∗).

The basic idea of primal-dual splitting methods is to alternate in the opti-
mization between steps which minimize (6.13) with respect to x and maxi-
mize (6.13) with respect to y. Applying forward-backward splitting to the
optimization problems with respect to x and y then leads to the proximal
steps

yt+1 = proxσf∗
(
yt + σAxt

)
(6.15)

xt+1 = proxτg
(
xt − τAT yt+1

)
,

where σ, τ are some step sizes. To compute the proximal operator of f∗, one
can make use of Moreau’s identity, which states that [Rockafellar, 1970]

proxτf (x) + τ prox 1
τ
f∗

(x
τ

)
= x.

The scheme in (6.15) is the classical Arrow-Hurwicz method [Arrow et al.,
1964], which can be shown to converge to a saddle point (x∗, y∗) with worst-
case convergence rate O(1√

t
) [Chambolle and Pock, 2011].

6.3.5 Accelerated primal-dual splitting

The primal-dual algorithm of Chambolle and Pock [2011] was recently pro-
posed as a method for various variational problems in image analysis such as
deconvolution, motion estimation and segmentation. The authors consider
for the problem in (6.13) the partial primal-dual gap

GB1×B2(x, y) = max
y′∈B2

〈
Ax, y′

〉
− f∗(y′) + g(x)

− min
x′∈B1

〈
Ax′, y

〉
− f∗(y) + g(x′),

where B1 ⊂ Rn and B2 ⊂ Rm. They then study a variant of the Arrow-
Hurwicz type scheme in (6.15) and show that the partial primal-dual gap
decays in rate O(1

t) for general functions f and g.
Then further conditions are imposed on f and g. First they consider

the case where either f or g∗ have Lipschitz continuous gradient. Note that
this is equivalent to f∗ or g being strongly convex (see e.g. Theorems 4.2.1
and 4.2.2 in Chapter 10 of Hiriart-Urruty and Lemaréchal [1996]). Since the
forward steps are done with respect to f and g∗, the results from Section
6.1 suggest that the optimal convergence rate is O(1

t2
). Indeed, Chambolle

and Pock [2011] propose a modification of their algorithm where through a
clever choice of sequences σt, τt and weighting scheme they can prove that

6.4. BUNDLE METHODS 67

Algorithm 10 Primal-dual algorithm of Chambolle and Pock [2011]

1: Initialization: τ0, σ0 > 0 with τ0σ0L
2 ≤ 1, x0 = x0 ∈ Rn, y0 ∈ Rm

2: for all t=0, 1, 2, . . . do
3: yt+1 = proxσtf∗

(
yt + σtAx

t
)

4: xt+1 = proxτtg
(
xt − τtAT yt+1

)
5: θt = 1√

1+2γτt
, τt+1 = θtτt, σt+1 = σt

θt
.

6: xt+1 = xt+1 + θt
(
xt+1 − xt

)
.

7: end for

the iterates xt of the derived method under the stated conditions converge
with convergence rate O(1

t2
) to a solution x∗. The resulting algorithm is

shown in Alg. 10.

Next, they consider the case when f and g∗ have Lipschitz continuous
gradient, or equivalently, f∗ and g are strongly convex. Note that this
implies that, seen as a function of x, the objective in (6.13) is a strongly
convex function, and seen as a function of y, it is strongly concave. They
then give a variant of their method which converges in O(ω2t) to the optimal

solution, where ω = 1+θ
2+µ , for µ ≤ 2

√
µδ

M and 1
1+µ ≤ θ ≤ 1, where δ, γ are the

strong convexity parameters of f∗ and g and M is the norm of A. Setting

θ = 1
1+µ and µ = 2

√
µδ

M , one obtains ω = 1
1+µ = M

M+2
√
µδ
. Thus, for a matrix

A with small norm and functions with large parameter of strong convexity,
the method becomes very fast.

The primal-dual algorithm in Alg. 10 was used by Hein and Setzer [2011],
Hein et al. [2013] to solve the inner problem appearing in the RatioDCA for
various balanced graph cut and hypergraph cut problems.

6.4 Bundle methods

We now consider the optimization of a in general non-differentiable objec-
tive F and give a brief overview of a class of algorithms referred to as bun-
dle methods, and their more recent variants, which are called bundle-level
methods. We will later use these methods in Section 6.5 to derive a general
purpose method to solve the inner problem in RatioDCA. The main idea of
these methods is to maintain a ”bundle” of information in each step, typi-
cally consisting of subgradients computed in previous iterations, which are
then used in each step to compute an improving approximation on the func-
tional to be minimized. We now give a brief overview, for a more detailed
discussion of the results from this section, see e.g. Nesterov [2004], Belloni
[2005], Bertsekas [2010], Lan [2013].

68 CHAPTER 6. FIRST ORDER METHODS FOR INNER PROBLEM

6.4.1 Cutting plane method

The basic cutting plane method [Cheney and Goldstein, 1959, Kelley, 1960]
uses the fact that due to the subgradient inequality (see Section 2), one has

F (y) ≥ F (x) +
〈
s(x), y − x

〉
,

for all x, y ∈ Rn and s(x) ∈ ∂F (x). Hence, given a set of points (xi)
l
i=1 and

the corresponding subgradients (s(xi))
l
i=1, one can construct a piecewise-

linear approximation cpt(y) of R (called the cutting plane model) as follows:

cpt(y) := max
i=1,...,t

{
F (xi) +

〈
s(xi), y − xi

〉}
.

The cutting plane method now uses this idea by maintaining a sequence
of points and corresponding subgradients (called the bundle) to compute
a sequence of approximations (cpt)t=1,..., each time choosing gt+1 as the
optimum of the model (cpt) over a compact set. Hence the method needs to
solve a linear program in each iteration. Note that by construction, we have
cpt(x) ≤ cpt+1(x) ≤ · · · ≤ F (x) for all x ∈ Rn. The cutting plane method
converges to an optimal solution, yet slowly [Bertsekas, 2010].

6.4.2 Bundle methods

A significant improvement was achieved through the introduction of bundle
methods (Lemaréchal [1977], Kiwiel [1983, 1990]), which can be seen as sta-
bilized version of the cutting plane method. These methods also maintain
a piecewise-linear approximation cpt(f) to the original function F . How-
ever, the next iterate xt+1 is computed differently. Usually a sequence of
center points x̂t is maintained, and in each iteration the next vector xt+1 is
computed as [Bertsekas, 2010],

xt+1 = arg min
y∈Rn

{
cpt(y) + µt

2

∥∥y − x̂t∥∥2

2

}
= prox 1

µ cpt
(x̂t).

This leads to a stabilization of the method as it will avoid drastic changes
and make the next iterate closer to the current prox-center x̂t. The trade-off
between minimizing the cutting-plane approximation cp and staying close
to the current center point x̂t is controlled by the parameter µt.

Since it is not guaranteed that the next iterate leads to a decrease in
the functional, an important feature of bundle-methods is the distinction
between serious steps and null steps: after the computation of xt+1, a check
is made whether a significant decrease in the objective is achieved. If that
is the case, the new prox-center x̂t+1 is set to xt+1, if not, it remains un-
changed, i.e. x̂t+1 = x̂t. Thus by construction the sequence of functional
values evaluated at the prox-centers F (x̂t) is monotonically decreasing.

6.4. BUNDLE METHODS 69

In Alg. 11 we give a basic version of the bundle method, see Belloni
[2005]. Several variants of this algorithm have been proposed in the lit-
erature. For instance, Helmberg and Rendl [1997] proposed a version of
the bundle method adapted for solving semidefinite programs, and Oliveira
et al. [2011] developed a bundle method for the case of an inexact oracle,
i.e. dealing with noisy estimates of function values and subgradient.

Algorithm 11 Basic bundle method

1: Initialization: δ > 0, m ∈ (0, 1), x0 = x̂0.
2: for all t=0, 1, 2, . . . do

3: xt+1 = arg min
y∈Rn

{
cpt(y) + µt

2

∥∥y − x̂t∥∥2

2

}
4: δt := F (x̂t)−

(
cpt(x

t+1) + µt
2

∥∥xk+1 − x̂t
∥∥2

2

)
5: if δt < δ: STOP
6: if F (x̂t)− F (xt+1) ≥ mδk : x̂t+1 = xt+1 (Serious step)
7: else: x̂t+1 = x̂t (Null step)

8: cpt+1(y) := max
{

cpt(y), F (xt+1) +
〈
s(xt+1), y − xt+1

〉}
.

9: end for

6.4.3 Bundle-level methods

The bundle-level method was first proposed by Lemaréchal et al. [1995]. The
main difference to previous work is that it introduced the idea of level sets
into bundle methods. As in the cutting plane method, in each step t first the
piecewise linear approximation cpt is optimized, yielding a lower bound F t

on the global minimum of F . On the other hand, an upper bound F
t

is given
by the best objective found so far. The bundle-level method now computes
a new level lt as a convex combination of F t and F

t
, i.e. lt = λF

t
+(1−λ)F t

for some λ ∈ (0, 1). The next iterate is then computed as

xt+1 = arg min
y∈Rn

{∥∥y − xt∥∥2

2
| cpt(y) ≤ lt

}
.

Alg. 12 shows the basic bundle-level method, see e.g. Nesterov [2004]. Set-
ting λ = 0 yields the cutting plane method. On the other hand, for λ = 1
typically xt+1 will be set to xt and no progress is made.

The bundle-level method computes an ε-optimal solution in O
(

1
ε2

)
for

general non-smooth problems, where the constants depend on the choice of λ
[Lemaréchal et al., 1995, Nesterov, 2004]. In fact, one can derive the optimal
value of the parameter λ achieving the best iteration complexity, which is
given as λ = 1

2+
√

2
[Nesterov, 2004]. In contrast to previous approaches, two

problems need to be solved in each step: a linear program to compute the
minimum of the cutting plane model, and a quadratic program to compute

70 CHAPTER 6. FIRST ORDER METHODS FOR INNER PROBLEM

Algorithm 12 Basic bundle-level method

1: Initialization: x0, F
0

= F (x0) , cp0(y) = F (x0) +
〈
s(x0), y − x0

〉
2: for all t=0, 1, 2, . . . do

3: F t = minx∈B

{
cpt(x)

}
4: lt = (1− λ)F t + λF

t
for some λ ∈ (0, 1)

5: xt+1 = arg min
x∈Rn

{∥∥x− xt∥∥2

2
| cpt(x) ≤ lt

}
6: cpt+1(y) := max

{
cpt(y), F (xt+1) +

〈
s(xt+1), y − xt+1

〉}
.

7: F
t+1

= min
{
F
t
, F (xt+1)

}
8: end for

the projection on the level set. Several authors proposed variants of the
bundle method tailored towards very large-scale optimization problems, see
e.g. Ben-Tal and Nemirovski [2005]. A variant of the bundle-level method
replacing the solution of the two subproblems by approximate computations
was considered by Richtárik [2012], who showed that the convergence rate
only increases by a small factor depending on the level of approximation.

Recently, there has been a strong interest in universally optimal black
box methods which automatically adjust to the smoothness properties of the
problem. Lan [2013] considered the class of functions with Hölder continuous
gradient, i.e. there exist ρ ∈ (0, 1) and L > 0 such that ‖∇F (x)−∇F (y)‖ ≤
L ‖x− y‖ρ , ∀x, y ∈ Rn. For ρ = 1 one obtains smooth problems with Lip-
schitz continuous gradient, ρ = 0 corresponds to the non-smooth case, and
for ρ ∈ (0, 1) one obtains an ”intermediate” level of smoothness referred to
as weakly smooth [Lan, 2013, Nesterov, 2004]. Lan [2013] presented a black
box bundle-level type algorithm which achieves the optimal iteration com-
plexity for this class of functions, which is given as O(1

εα), where α = 2
1+3ρ

[Nesterov, 2014]. Thus, it is optimal for smooth, non-smooth and weakly
smooth problems. Later, Nesterov [2014] proposed a number of gradient
based techniques performing a similar automated adjustment to the Hölder
parameters, without requiring an input of the user.

For the general non-smooth case, bundle methods are particularly ap-
pealing, since they do not require any explicit knowledge about the objective
in the implementation. In the next section, we use the general bundle-level
method of (6.16) to derive a general-purpose method to solve the inner
problem appearing in RatioDCA.

6.5 General-purpose method for inner problem

In the previous sections we have discussed a number of different methods for
the solution of the inner problem. The idea was to give the reader a toolbox

6.5. GENERAL-PURPOSE METHOD FOR INNER PROBLEM 71

of different algorithms which can be applied to solve the particular instance
of the inner problem, depending on its structure and smoothness properties.
For smooth problems, fast projected gradient methods such as the method
by Nesterov [1983] are usually applicable and provide fast convergence in
a few steps. Moreover, if the inner problem can be written as a sum of a
smooth term and a non-smooth term with an efficiently computable proximal
operator, proximal splitting methods, in particular the method of Chambolle
and Pock [2011], work well in practice.

However, it is clear that such explicit knowledge of the structure of the
inner problem may not be available. Moreover, a problem appearing in
practice is if the problem (6.1) has been derived from a tight relaxation
(see Chapter 4), in which case R1 and S2 are the Lovász extensions of set
functions R̂1 and Ŝ2. In practice, often the Lovász extensions are difficult
to compute or not known in closed form. Also the smoothness parameters
are in general unknown. Thus, in this case it is often difficult to develop a
good algorithm to solve the particular instance of the inner problem.

For this reason, in the following we will show how the bundle-level
method from Alg. 12 can be used to solve the inner problem in the gen-
eral non-smooth case. The method requires in each step the computation
of a subgradient of the inner objective. We will now demonstrate that the
subgradients can be obtained without having any explicit closed form of the
inner objective, and instead using only function evaluations of the original
set objective. Thus, the resulting algorithm is a black-box method which
does not require any explicit knowledge of the structure of the inner problem.

6.5.1 Computation of subgradient of inner objective

In the following, let Φ(x) = R1(x) −
〈
x, r2(fk)

〉
+ λk

(
S2(x)−

〈
x, s1(fk)

〉)
denote the objective of the inner problem. We now describe how to compute
a subgradient of Φ at a given x ∈ Rn. The main idea is the following: Using
Lemma 2.20, an element r1 of the subdifferential of R1 can be computed
explicitly as

(r1(x))i = R̂1(Ci)− R̂(Ci+1), ∀i = 1, . . . , n ,

and similarly for r2, s1, s2. Thus, the explicit form of R1 is not required to
compute a subgradient of R1 at x. A subgradient φ(x) ∈ ∂Φ(x) is then
given as

φ(x) = r1(x)− r2(fk) + λk
(
s2(x)− s1(fk)

)
=
(
r1(x) + λks2(x)

)
−
(
r2(fk) + λks1(fk)

)
.

The above computation requires sorting of the vector f in each iteration,
which can be done in O(n log(n)) [Cormen et al., 2001]. Note that here, at

72 CHAPTER 6. FIRST ORDER METHODS FOR INNER PROBLEM

each (outer) step k of the algorithm (RatioDCA or nonlinear IPM), the right
part r2(fk)+λks1(fk) of the above subgradient is fixed, whereas the left part
r1(x) + λks2(x) changes in each (inner) iteration of the algorithm used to
solve the inner problem. Moreover, using the 1-homogeneity of Φ, by Lemma
2.8 the inner objective can be efficiently computed as Φ(x) = 〈x, φ(x)〉.
Thus the subgradients as well as the objective can be evaluated without
explicitly knowing the Lovász extension at any time, and only using function
evaluations of the original set objective.

To solve the inner problem, we use the bundle-level method given in
Alg. 12. As we will see below, it turns out that it is advantageous to replace
the 2-norm constraint in the inner problem by an ∞-norm constraint (see
Section 5), since this will lead to subproblems in the bundle method which
are easier to handle and empirically lead to faster convergence. The inner
problem at step k is then given as

min
‖x‖∞≤1

〈φ(x), x〉 . (6.16)

Alg. 12 requires the solution of two subproblems in each iteration: a linear
program which updates the current cutting plane model (line 3), as well as
a quadratic program to compute a projection on a level set (line 5). We will
discuss the solution of both subproblems in the following.

6.5.2 Solution of the linear program

At each step of the algorithm, we have to compute the optimum of the
current cutting plane model. Let K denote the current size of the bundle.
Then, the problem can be explicitly written as

min
x

max
i=1...K

{
Φ(xi) +

〈
φ(xi), x− xi

〉}
(6.17)

subject to :
∥∥x∥∥∞ ≤ 1.

Due to the 1-homogeneity of the inner objective, the cutting plane model
simplifies to maxi=1...K

〈
φ(xi), x

〉
. Introducing the matrix A ∈ RK×n con-

taining in each row an element of the bundle (a previous subgradient φ(xi)),
the above problem can be reformulated as

min
x,t

t (6.18)

subject to : Ax− t1 ≤ 0

x− 1 ≤ 0

− x− 1 ≤ 0.

Thus we obtain a linear program which can be solved using standard LP
solvers. In our implementation we used MOSEK, which applies an interior
point method [Andersen and Andersen, 2000].

6.5. GENERAL-PURPOSE METHOD FOR INNER PROBLEM 73

6.5.3 Solution of quadratic program

The second subproblem in the bundle-level method is a projection on the
level set of the cutting plane model. Explicitly it is given as

min
x

1
2

∥∥x− z∥∥2

2

subject to : cpt(x) ≤ l∥∥x∥∥∞ ≤ 1,

where l is the current level, and z is the current prox-center. As in the case
of the LP, we use the matrix A ∈ RK×n of current bundle information to
rewrite this as

min
x

1
2

∥∥x− z∥∥2

2
(6.19)

subject to : Ax− l1 ≤ 0

− x− 1 ≤ 0

x− 1 ≤ 0.

The problem (6.19) is an optimization problem with n variables and 2n+K
constraints. The problem dimension can be significantly reduced by going
over to a dual problem. To derive the dual, we proceed in two steps.

Lemma 6.4. The problem in (6.19) is equivalent to the dual problem

min
α,β,γ

1
2

∥∥z −ATα+ β − γ
∥∥2

2
− 1

2

∥∥z∥∥2

2
+ lαT1 + βT1 + γT1

subject to : α, β, γ ≥ 0. (6.20)

Proof. The Lagrangian L : Rn × RK+ × Rn+ × Rn+ → R is given as

L(x, α, β, γ) = 1
2

∥∥x− z∥∥2

2
+ αT (Ax− l1) + βT (−x− 1) + γT (x− 1).

74 CHAPTER 6. FIRST ORDER METHODS FOR INNER PROBLEM

One obtains the optimality condition for x: x− z+ATα−β+ γ = 0⇔ x =
z −ATα+ β − γ. Plugging the expression for x into the Lagrangian yields

1
2

∥∥z −ATα+ β − γ − z
∥∥2

2
+ αT

(
A
(
z −ATα+ β − γ

)
− l1

)
− βT

(
z −ATα+ β − γ + 1

)
+ γT

(
z −ATα+ β − γ − 1

)
=1

2

∥∥ATα∥∥2

2
+ 1

2

∥∥β∥∥2

2
+ 1

2

∥∥γ∥∥2

2
− βTATα+ γTATα− γTβ

+ zTATα−
∥∥ATα∥∥2

2
+ βTATα− γTATα− lαT1

− zTβ + βTATα−
∥∥β∥∥2

2
+ γTβ − βT1

+ zTγ − γTATα+ γTβ −
∥∥γ∥∥2

2
− γT 1

=− 1
2

∥∥−ATα∥∥2

2
− 1

2

∥∥β∥∥2

2
− 1

2

∥∥− γ∥∥2

2
+ βTATα− γTATα+ γTβ

+ zTATα− zTβ + zTγ − lαT1− βT1− γT1

=− 1
2

∥∥−ATα+ β − γ
∥∥2

2
+ zTATα− zTβ + zTγ − lαT1− βT1− γT1

=− 1
2

∥∥z −ATα+ β − γ
∥∥2

2
+ 1

2

∥∥z∥∥2

2
− lαT1− βT1− γT1.

Thus we obtain the dual problem in (6.20). �

We now have a problem with 2n+K variables and 2n+K inequality con-
straints. It turns out that we can simplify the above problem as follows.

Lemma 6.5. The problem in (6.20) is equivalent to the problem

min
α

1
2

∥∥v∥∥2

2
− 1

2

∥∥PRn+(−1− v)
∥∥2

2
− 1

2

∥∥PRn+(v − 1)
∥∥2

2
− 1

2

∥∥z∥∥2

2
+ lαT1

subject to : α ≥ 0 (6.21)

v = z −ATα.

Proof. We first perform a variable substitution δ = β − γ ⇔ γ = β − δ,
where δ ∈ Rn and δ ≤ β. Note that δ can now be negative. The problem
(6.20) then becomes

min
α,β,δ

1
2

∥∥z −ATα+ δ
∥∥2

2
− 1

2

∥∥z∥∥2

2
+ lαT1 + (2β − δ)T1 (6.22)

subject to : α, β ≥ 0, β ≥ δ.

We observe that the objective is linear in β and hence the optimum with
respect to β is achieved at the boundary, i.e. β = max{0, δ} =: PRn+(δ) and
hence 2β − δ = |δ|. We obtain the simplified problem

min
α,δ

1
2

∥∥z −ATα+ δ
∥∥2

2
− 1

2

∥∥z∥∥2

2
+ lαT1 + ‖δ‖1 (6.23)

subject to : α ≥ 0.

6.5. GENERAL-PURPOSE METHOD FOR INNER PROBLEM 75

Next we observe that the problem is separable in the δi, i = 1 . . . n. Let
v := z −ATα. We have to solve for each δi the problem

δ∗i := arg min
δi

1
2 (vi + δi)

2 + |δi| .

At the optimal value one has 0 ∈ ∂
(

1
2 (vi + δi)

2 + |δi|
)

and hence 0 ∈ vi +

δ∗i + sign(δ∗i). Performing a case distinction on v, one obtains

δ∗i =

−1− vi, if vi < −1
0, if − 1 ≤ vi ≤ 1
1− vi, if 1 < vi

= PRn+(−1− vi)− PRn+(vi − 1).

We can now eliminate the variable δ in (6.23) and obtain the problem

min
α

1
2

∥∥∥v + PRn+(−1− v)− PRn+(v − 1)
∥∥∥2

2
− 1

2

∥∥z∥∥2

2
+ lαT1 (6.24)

+
〈
PRn+(−1− v) + PRn+(v − 1),1

〉
subject to : α ≥ 0

v = z −ATα.

We can further rewrite the objective as follows

1
2

∥∥v∥∥2

2
+ 1

2

∥∥PRn+(−1− v)
∥∥2

2
+ 1

2

∥∥PRn+(v − 1)
∥∥2

2

+
〈
PRn+(−1− v), v

〉
−
〈
PRn+(v − 1), v

〉
−
〈
PRn+(−1− v), PRn+(v − 1)

〉
+
〈
PRn+(−1− v) + PRn+(v − 1),1

〉
− 1

2 ‖z‖
2
2 + lαT1

= 1
2

∥∥v∥∥2

2
+ 1

2

∥∥PRn+(−1− v)
∥∥2

2
+ 1

2

∥∥PRn+(v − 1)
∥∥2

2

+
〈
PRn+(−1− v), v + 1

〉
−
〈
PRn+(v − 1), v − 1

〉
− 1

2 ‖z‖
2
2 + lαT1

= 1
2

∥∥v∥∥2

2
− 1

2

∥∥PRn+(−1− v)
∥∥2

2
− 1

2

∥∥PRn+(v − 1)
∥∥2

2
− 1

2

∥∥z∥∥2

2
+ lαT1.

Thus we obtain the problem in (6.21). �

We now have obtained a problem with K variables and K inequality con-
straints. Note that typically the bundle size K is much smaller than the
dimension n. To solve the problem, we make use of the fact that the ob-
jective is differentiable, as we will show below. We can then solve it very
efficiently using Nesterov’s method, see Section 6.2.4. First we need the
following lemma.

Lemma 6.6. The function F (v) := 1
2

∥∥PRn+(v)
∥∥2

2
is differentiable for all v ∈

Rn and it holds that ∇F (v) = PRn+(v).

76 CHAPTER 6. FIRST ORDER METHODS FOR INNER PROBLEM

Proof. Note that in order to prove that F is differentiable, it is sufficient to
prove that all the partial derivatives exist and are continuous for all v ∈ Rn
(see e.g. Theorem 1.9.5 in Hubbard and Hubbard [1998]). Thus, the problem
reduces to the differentiability of 1

2 max{0, vk}2, for all k = 1, . . . , n. Clearly,
the objective is differentiable if vk < 0 and vk > 0 and the derivative is given
by 0 and vk, respectively. For the case vk = 0, we obtain

lim
h↘0

max{0, vk + h}2 −max{0, vk}2

h
= lim

h↘0

h2 − 02

h
= 0.

On the other hand,

lim
h↗0

max{0, vk + h}2 −max{0, vk}2

h
= lim

h↗0

02 − 02

h
= 0.

Thus both one-sided limits agree and the partial derivative exists at 0. In
total, the k-th partial derivative is given by max{0, vk}, which is a continu-
ous function. �

We can now use the above lemma to show the differentiability of the objec-
tive in (6.21). In the following, PB∞(1)(v) denotes the projection on the L∞
unit ball, given as B∞(1) = {x ∈ Rn | ‖x‖∞ ≤ 1}.
Lemma 6.7. The objective Ψ(α) in (6.21) is differentiable for all α ∈ RK+
and it holds that

∇αΨ(α) = −APB∞(1)(v) + l1

where v = z −ATα. Moreover, an upper bound on the Lipschitz constant of
the gradient is given by ‖A‖2F .

Proof. We first interpret the inner objective as a function of the variable
v and compute the gradient of Ψ with respect to v. Using Lemma 6.6 and
the chain rule, we obtain

∇Ψv(v) = v + PRn+(−1− v)− PRn+(v − 1) = PB∞(1)(v). (6.25)

We now compute the gradient of Ψ with respect to α. Again using the chain
rule as well as (6.25) and the fact that v = z −ATα , one obtains

∇Ψα(α) = −APB∞(1)(z −ATα) + l1.

Regarding the Lipschitz constant , one obtains for α1, α2 ∈ RK+ ,

‖∇Ψ(α1)−∇Ψ(α2)‖22
=
∥∥−APB∞(1)(z −ATα1) + l1 +APB∞(1)(z −ATα2)− l1

∥∥2

2

=
∥∥−A (PB∞(1)(z −ATα1)− PB∞(1)(z −ATα2)

)∥∥2

2

≤‖A‖2F
∥∥PB∞(1)(z −ATα1)− PB∞(1)(z −ATα2)

∥∥2

2

≤‖A‖2F
∥∥(z −ATα1)− (z −ATα2)

∥∥2

2

≤‖A‖2F
∥∥AT∥∥2

F
‖α1 − α2‖22 = ‖A‖4F ‖α1 − α2‖22 ,

6.5. GENERAL-PURPOSE METHOD FOR INNER PROBLEM 77

and thus an upper bound on the Lipschitz constant is given by ‖A‖2F . �

Using Lemma 6.7, the quadratic problem can now be solved efficiently using
Nesterov’s method, see Alg. 6.5.3.

Nesterov’s method for the QP appearing in the bundle-level method

Input: Lipschitz constant L of ∇Ψ,
Initialization: θ1 = 1, α1, β1 ∈ RK+ ,
repeat
vt = z −ATαt
∇ = −A

(
PB∞(1)(v

t)
)

+ l1

βt+1 = PRn+(αt − 1
L∇)

θt+1 =
1+
√

1+4θ2t
2 ,

αt+1 = βt+1 + θt−1
θt+1

(
βt+1 − βt

)
.

until duality gap < ε

Finally, note that since we are adding a new element to the matrix A in
each step of the bundle method, the computational time as well as memory
requirement to solve the two subproblems increases in each iteration, which
becomes a problem when working with large bundle sizes. However, in
practice it is not necessary to maintain the full cutting plane model in each
iteration. Instead one uses a slightly less accurate model which only uses
the last B subgradients, and keeps track of the best lower bound found so
far in each step. In our experiments, a value of B = 50 empirically lead to
a good trade-off between iteration cost and number of iterations.

Equipped with the results from Chapter 4 as well as the algorithms from
the last two chapters, we are now able to derive methods for a large class of
applications in network analysis and dimensionality reduction.

78 CHAPTER 6. FIRST ORDER METHODS FOR INNER PROBLEM

Part III

Applications in network
analysis and dimensionality

reduction

79

Chapter 7

Balanced graph partitioning
and 1-Spectral Clustering

The problem of balanced graph partitioning has a wide range of applications
from circuit design to image segmentation [Hagen and Kahng, 1991, Shi and
Malik, 2000]. Applied to a graph representing pairwise similarities between
data points, it quite naturally leads to a technique for data clustering. The
most popular method for graph-based data clustering in the machine learn-
ing community is spectral clustering [Shi and Malik, 2000, Meila and Shi,
2001, Ng et al., 2001, Ding et al., 2001, von Luxburg, 2007]. In spectral
clustering, the NP-hard graph partitioning problem is relaxed to a standard
linear eigenproblem involving the so-called graph Laplacian.

Recently, we proposed the method p-spectral clustering [Bühler, 2009,
Bühler and Hein, 2009a], where we showed that better bounds on the ob-
tained cut values can be obtained by a relaxation to a nonlinear eigenprob-
lem involving the graph p-Laplacian, and letting p → 1. The logical next
step was then to consider the case p = 1 directly and study the eigenprob-
lem associated to the graph 1-Laplacian, which then leads to the method
1-spectral clustering [Hein and Bühler, 2010, Hein and Setzer, 2011]. One
can show that in this case one obtains a tight relaxation of the correspond-
ing balanced cut criterion. The resulting algorithm outperforms standard
spectral clustering in terms of the obtained cut objective by a large margin.

In this chapter we give an overview about the above methods for balanced
graph cuts. We begin by discussing different graph cut criteria. Then in
Section 7.2 we review the standard spectral relaxation of the normalized cut
problem. Next we review the p-spectral relaxation and show that it leads to
better bounds on the obtained cut values, which is done in Section 7.3. Then,
in Section 7.4, we discuss 1-spectral clustering, which can now be derived
directly using the tight relaxation framework discussed in Chapter 4. Finally
we experimentally demonstrate the superiority of 1-spectral clustering to the
standard relaxation and other approaches.

81

82 CHAPTER 7. BALANCED GRAPH PARTITIONING

v1

v2

v3

v4

v5

v6

v7

v8 1

1

1

1

0

0

0

0

Figure 7.1: Left: Clustering as graph partitioning. Right: Equivalent graph
labeling to the partition on the left.

7.1 Clustering via graph cuts

Given a set of points in a feature space, in clustering one is interested in
finding groups of points in the data which are similar to each other (referred
to as clusters). The idea of graph-based clustering is to represent the data
as weighted, undirected graph G(V,E,W) with sets of vertices V and edges
E, where the vertices in V correspond to points in the feature space and
the entry wij of the weight matrix W ∈ Rn×n for n = |V | represents the
similarity between the points i and j. Moreover, we will denote the degrees of
the vertices in V by di =

∑
j∈V wij , for every i ∈ V . The matrix D ∈ Rn×n

is then the diagonal matrix having the degrees on the diagonal. Moreover,
we denote by vol(C) =

∑
i∈C the volume of a given set C ⊂ V .

The clustering problem can then be formulated as graph partitioning
problem: the task is to find a partition of the vertex set V into subsets
C1, . . . Ck such that a given criterion is optimized. Ideally one has for each
cluster a high within-cluster similarity and high dissimilarity between clus-
ters. Partitioning is done by removing edges, referred to as a cut. Equiva-
lently, this can also be seen as a graph labeling problem, see Figure 7.1. In
the following we discuss some common optimization criteria for the graph
partitioning problem. Note that throughout this chapter, we will assume
that the graph is connected.

7.1.1 Unbalanced graph cuts

In unbalanced graph partitioning, the goal is to find a partition such that
the connectivity between different clusters is small. This is achieved by
minimizing the cut between the two clusters, given as

cut(C,C) =
∑

i∈C,j∈C

wij .

This problem can be efficiently solved in polynomial time, see e.g. Cormen
et al. [2001]. The usual approach is to use its connection to the problem
of finding the maximum flow in a network. A flow network is a directed

7.1. CLUSTERING VIA GRAPH CUTS 83

graph with a designated source node s and sink node t and non-negative
capacities on each edge. The maximum flow problem now asks for the
maximum amount of ”material” which can be ”transported” from s to t
while taking into account the constraints imposed by the capacity of each
edge. The Max-Flow-Min-Cut Theorem [Ford and Fulkerson, 1956] states
that the value of the maximum flow on the s-t-graph is equal to the minimum
s-t-cut on the graph. Given our graph G, the minimum cut problem can now
be reduced to |V | − 1 s-t-cut problems by fixing a vertex s and considering
all possible choices for the vertex t.

The classical method by Ford and Fulkerson [1956] finds the maximum
flow by the following iterative procedure: It initially sets the flow on each
edge to 0 and then randomly selects a path from the source s to the sink t.
The maximum flow along this path is equal to the smallest capacity along
this path. This flow is then added to the total flow while at the same time
its value is subtracted from the capacities along this path. This procedure
is repeated until no path can be found any more. It has been shown that
by finding the path in each step as a shortest path from source to sink,
this strategy yields an algorithm of complexity O(|V | |E|2) [Dinic, 1970,
Edmonds and Karp, 1972].

A different approach is followed by so-called push-relabel algorithms
[Goldberg and Tarjan, 1988]. In contrast to the Ford-Fulkerson method
which looks at a complete path in the network in each step, push-relabel
algorithms work locally on one vertex at a time. Furthermore, while Ford-
Fulkerson type methods satisfy the flow conservation property in each step,
i.e. for each node, the total incoming flow is equal to the outgoing flow, this
is not the case for push-relabel algorithms. Here, the algorithm maintains a
preflow, i.e. the inflow of a vertex may exceed its outflow, which is referred to
as excess flow. The main idea of the method is to assign a height to each ver-
tex. In each step a vertex with excess flow is identified and flow is sent down
to a neighbor of lower height (”push”). If no such neighbor can be found, the
height of the vertex needs to be increased (”relabel”). This is repeated until
there is no excess flow anymore in the network. The algorithm by Goldberg
and Tarjan [1988] has complexity O(|V | |E| log(|V |2 / |E|)). Several other
algorithms have been proposed based on preflows, for instance the method
by King et al. [1994], which has complexity O(|V | |E| log|E|/(V log(V))(|V |)).
The pseudoflow algorithm by Hochbaum [2008] goes one step further, as
here also deficit flows are allowed during execution of the algorithm, i.e. the
outflow of the vertex may exceed the inflow. Their algorithm computes a
solution of the maximum flow problem in O(|V | |E| log(|E|)).

The cut objective has been applied e.g. in clustering [Wu and Leahy,
1993] and computer vision [Boykov et al., 2001]. However, there are some
drawbacks when using this clustering objective. As the value of the cut
grows with the number of edges, any algorithm will tend to remove small
loosely connected subsets at the boundaries of the data. This is illustrated

84 CHAPTER 7. BALANCED GRAPH PARTITIONING

v1

v2

v3

v4

v5

v6

v7

v8

Figure 7.2: Minimizing cut leads to highly unbalanced clusters.

in Figure 7.2. It is clear that in most practical situations this is not the
desired result as one would prefer the clusters to be balanced in the sense
that the sizes of the two clusters do not differ too much. This leads to the
balanced graph cut criteria which are discussed in the following.

7.1.2 Balanced graph cuts

In many applications one likes to avoid solutions where the size of the clus-
ters is very unbalanced. This is achieved by balanced graph cuts which are
discussed in this section. A balanced graph cut problem is of the form

min
C⊂V

cut(C,C)

Ŝ(C)
,

where Ŝ(C) is a symmetric balancing function. An example is the ratio cut
[Hagen and Kahng, 1991], which is given as

RCut(C,C) =
cut(C,C)

|C|
+

cut(C,C)∣∣C∣∣ =
cut(C,C) · |V |
|C| ·

∣∣C∣∣ . (7.1)

This objective implicitly penalizes clusterings with unbalanced cluster sizes,
since small clusters will lead to a small denominator. A slightly different
balancing behavior is induced by the ratio Cheeger cut [Buser, 1978]

RCC(C,C) =
cut(C,C)

min
{
|C| ,

∣∣C∣∣} . (7.2)

To see the difference in balancing behavior of the two criteria, note that we
can rewrite the objectives as

RCut(C,C) = cut(C,C)
(

1
|C| + 1

|C|

)
and

RCC(C,C) = cut(C,C) max
{

1
|C| ,

1
|C|

}
.

The term on the right side can be interpreted as L1 norm of the vector
consisting of the 1

|C| -terms for each subset in the case of RCut, and as L∞

7.1. CLUSTERING VIA GRAPH CUTS 85

norm in the case of RCC. Thus, RCC leads to a more stricter balancing
behavior than RCut. This is illustrated in Figure 7.3 where we compare
the balancing functions of RCut (rescaled with factor 2) and RCC. While
both achieve their maximum at 1

2 |C|, thus favoring balanced partitions over
unbalanced ones, the RCC enforces this balance more strictly than the RCut.

Figure 7.3: Illustration of different balancing set functions.

Another possibility is to favor clusterings where the sum of the degrees
in each cluster is roughly equal. This is given by the minimizer of the
normalized cut [Shi and Malik, 2000]:

NCut(C,C) =
cut(C,C)

vol(C)
+

cut(C,C)

vol(C)
=

cut(C,C) · vol(V)

vol(C) · vol(C)
. (7.3)

Analogously to the ratio cut one can define a variant with a different bal-
ancing behavior, the normalized Cheeger cut NCC, given as [Chung, 1997]

NCC(C,C) =
cut(C,C)

min
{

vol(C), vol(C)
} . (7.4)

The difference between RCut and NCut is illustrated in Fig. 7.4. Note that
both partitions separate two edges of weight 1, i.e. cut(B,R) = 2 in both
cases, where B denotes the blue cluster and R the red cluster. However,
while the partition on the left yields two clusters of equal size, i.e. |B| =
|R| = 4, they are unbalanced with respect to the volume, as vol(B) = 24
and vol(R) = 16. Here, we have RCut(B,R) = 1 and NCut(B,R) = 0.21.
In contrast to that, the partition on the right consists of two clusters of
equal volume (vol(B) = vol(R) = 20) and unbalanced cluster sizes (|B| = 3
and |R| = 5). Here, we have RCut(B,R) = 1.1 and NCut(B,R) = 0.20.
Thus RCut favors the left partition, while NCut favors the one on the right
(in fact they are the optimal partitions for the corresponding criterion).

86 CHAPTER 7. BALANCED GRAPH PARTITIONING

v1

v2

v3

v4

3

3

3

1

1

v5

v6

v7

v8

1

1

2

2

1

2

v1

v2

v3

v4

3

3

3

1

1

v5

v6

v7

v8

1

1

2

2

1

2

Figure 7.4: Left: Optimal RCut (green) Right: Optimal NCut (green).
While RCut favors balance in size, NCut favors balance in volume.

A useful property of NCut is the following [Shi and Malik, 2000]: One
can define a measure of association within clusters as

Nassoc(C,C) =
assoc(C)

vol(C)
+

assoc(C)

vol(C)
,

where assoc(C) =
∑

i,j∈C wij . This measure reflects how tightly nodes
within clusters are connected to each other. It is now easy to see that
NCut and Nassoc are connected via the simple relation Nassoc(C,C) =
2 − NCut(C,C), and thus it follows that minimizing NCut is equivalent to
maximizing Nassoc. This connection implies that minimizing NCut enforces
high intra-cluster similarity and low inter-cluster similarity simultaneously.
Analogously, one shows that minimizing NCC is equivalent to maximizing

NCassoc(C,C) = min

{
assoc(C)

vol(C)
,
assoc(C)

vol(C)

}
.

A different way of interpreting balanced graph cuts is by random walks on
a graph, which we will briefly sketch here. For a more detailed overview
we refer to von Luxburg [2007]. Consider a random walk on a graph with
transition probability P = D−1W . This random walk has the stationary
distribution π = d

vol(V) , as one can easily check that P Tπ = π. Starting at
this stationary distribution π, the probability of transitioning from a set A
to a set B is given as

P(A→ B|A) =
P(A→ B,A)

P(A)
=

∑
i∈A,j∈B πiPij∑

i∈A πi
=

∑
i∈A,j∈B wij

vol(A)
.

This implies that the normalized cut between two sets C and C can be
written as [Meila and Shi, 2001]

NCut(C,C) =
cut(C,C)

vol(C)
+

cut(C,C)

vol(C)
= P(C → C|C) + P(C → C|C),

and analogously for the normalized Cheeger cut, we obtain

NCC(C,C) = max
{

P(C → C|C),P(C → C|C)
}
.

7.1. CLUSTERING VIA GRAPH CUTS 87

This means that when minimizing NCut/NCC, we are searching for a par-
tition into C and C such that the random walk has a low probability of
transitioning from C to C and vice versa.

This is illustrated in Fig. 7.5 for the same weighted graph used in Fig. 7.4.
Here, the width as well as the grey value of the arrows is chosen propor-
tionally to the probability 1

di
wij of making a step from vertex i to j. One

observes that a random walk starting in one of the blue vertices is more
likely to stay in the blue cluster than going to one of the red vertices. For
vertex v4, switching to the blue cluster and staying in the red cluster have
the same probability. However, note that the probability of stepping to ver-
tex v4 is higher for one of the vertices v5 or v6 than one of the vertices v2 or
v3, which is why v4 appears in the red cluster and not the blue cluster.

v1

v2

v3

v4

3

3

3

1

1

v5

v6

v7

v8

1

1

2

2

1

2

v1

v2

v3

v4

v5

v6

v7

v8

Figure 7.5: Left: A weighted example graph and the optimal partition ac-
cording to NCut. Right: Random walk interpretation of NCut criterion for
the example on the left. Width and grey value of arrows represent proba-
bility of stepping from vertex i to j. The random walk is more likely to stay
in the blue cluster than transitioning to the red cluster.

Several other balanced graph cut criteria exist. For instance, Ding et al.
[2001] considered the min-max cut, given as

Mcut(C,C) =
cut(C,C)

assoc(C)
+

cut(C,C)

assoc(C)
. (7.5)

Other types of balancing functions where studied by Hein and Setzer [2011].

The minima of the RCC and NCC criteria in (7.2) and (7.4) are often
referred to as Cheeger constants or isoperimetric constants in the literature,
see e.g. Chung [1997]. The term isoperimetric arises from a geometrical
motivation. The classical isoperimetric problem is given as finding, among
all closed curves which have the same perimeter, the one which encloses the
maximum area. Clearly in a two-dimensional plane the solution is given by
the circle. Transferred to a graph-based setting, interpreting the graph as a
discretization of a manifold, one is now similarly interested in relating some
notion of size of the boundary of a given subset of the graph to some notion
of size of the subgraph.

88 CHAPTER 7. BALANCED GRAPH PARTITIONING

Interpreting the cut as size of the boundary of the set C then leads to
the RCC and NCC criteria discussed above. A different way of defining the
boundary of a graph subset C is as the number of vertices which are neigh-
bors of C but not contained in C. Replacing the numerator in RCC or NCC
by |N(C)|, where N(C) is the set of vertices which are adjacent to some ver-
tex in C but not contained in C, i.e. N(C) := {j ∈ V \C | ∃ i ∈ C,wij > 0},
leads to the vertex expansion of the subset. Analogously, the cut based ob-
jectives are often called edge expansion [Chung, 1997, Hoory et al., 2006].
Moreover, note that the RCC is often simply called expansion in the liter-
ature, while the NCC is referred to as conductance, see e.g. Kannan et al.
[2004]. Furthermore, the minimum of the RCut objective is often referred
to as sparsest cut, see e.g. Leighton and Rao [1999].

Graph partitioning based on the above discussed balanced graph cuts has
found applications in a diverse range of fields such as image segmentation
[Shi and Malik, 2000], word-document co-clustering [Dhillon, 2001], blind
source separation [Bach and Jordan, 2006], or geometry processing [Zhang
et al., 2010]. Moreover, in many applications it is desirable to construct
graphs with a high isoperimetric constant, since intuitively, this means that
the graph is highly connected (while at the same time being sparse). These
graphs, which are referred to as expander graphs, have applications in pseu-
dorandom number generators or the design of communication networks, see
Hoory et al. [2006] for an overview.

Note that finding the minimum of the balanced graph cuts (7.1) - (7.5)
is an NP hard problem, see e.g. Shi and Malik [2000], Ding et al. [2001],
Š́ıma and Schaeffer [2006]. Thus, typically the problem is relaxed to a
tractable problem, for instance a linear program [Leighton and Rao, 1999],
semi-definite program [Arora et al., 2004] or eigenproblem [von Luxburg,
2007]. In the next section we discuss the standard approach to relax the
combinatorial problem to an eigenproblem involving the graph Laplacian,
which will lead to the popular spectral clustering method.

7.2 Spectral clustering

In recent years, spectral clustering techniques have become one of the most
popular family of clustering methods. In spectral clustering, one computes
the eigenvector associated to the second eigenvalue of the graph Laplacian,
a linear operator defined on the vertices of the graph. As we will show in
the following, this can be motivated as a relaxation of the NP-hard problem
of finding the optimal NCut or RCut on a similarity graph.

The idea of using eigenvectors for graph partitioning can be traced back
to the work of Hall [1970], Donath and Hoffman [1973] and Fiedler [1973].
Later it has been rediscovered in different areas including the solution of
sparse linear systems [Pothen et al., 1990], load balancing [Simon, 1991,

7.2. SPECTRAL CLUSTERING 89

Hendrickson and Leland, 1995, Driessche and Roose, 1995] and circuit de-
sign [Hagen and Kahng, 1991, Chan et al., 1994]. In the machine learning
community, Shi and Malik [2000] proposed the relaxation of the NCut cri-
terion to the normalized graph Laplacian and applied it to the problem of
image segmentation. The interpretation of NCut in terms of a random walk
on a graph was given by Meila and Shi [2001]. A slightly different variant
of the normalized graph Laplacian was used by Ng et al. [2001], and the
min-max cut criterion was used by Ding et al. [2001].

Several authors performed theoretical analyses of the performance of
spectral clustering. Guattery and Miller [1998] constructed several exam-
ples of graphs where spectral clustering provably leads to partitions achiev-
ing the worst-case bounds giving by the isoperimetric inequality discussed
later in this section. However, Spielman and Teng [2007] proved that spec-
tral clustering produces good partitions on several classes of graphs which
often arise in practice. Worst-case guarantees for spectral clustering were
given by Kannan et al. [2004] with respect to a bi-criteria measure based on
the minimum NCC within each cluster and the total edge weight between
clusters, and it was shown that in the presence of a “good” partition, it is
found by the spectral method.

Bach and Jordan [2006] considered the problem of learning the similar-
ity matrix used in spectral clustering from given data. Dhillon et al. [2004]
showed that for a particular choice of weights, the normalized cut is equal to
the kernel k-means objective. Moreover, the connection to kernel principal
component analysis was demonstrated by Bengio et al. [2004]. Further-
more, the graph Laplacian has also been used in (nonlinear) dimensionality
reduction [Belkin and Niyogi, 2002, Nadler et al., 2006], transductive learn-
ing [Joachims, 2003] as well as semi-supervised learning [Zhu et al., 2003,
Belkin and Niyogi, 2004].

We refer to von Luxburg [2007] for an overview about various aspects of
spectral clustering. In the following we will discuss the standard spectral re-
laxation of the NCut and RCut objectives. Note that while the performance
of spectral clustering algorithms depends on the choice of the underlying
graph construction (see e.g. Zelnik-Manor and Perona [2004], von Luxburg
[2007], Daitch et al. [2009], Jebara et al. [2009], Maier et al. [2013]), we now
consider the graph as fixed and focus on the optimization of the balanced
graph cut criteria.

7.2.1 Spectral relaxation of balanced graph cuts.

In the following we review how spectral clustering can be derived as a con-
tinuous relaxation of RCut and NCut, respectively, see von Luxburg [2007].

90 CHAPTER 7. BALANCED GRAPH PARTITIONING

We recall the RCut and NCut problems, given as

min
C∈V

RCut(C,C) = min
C∈V

cut(C,C) |V |
|C|
∣∣C∣∣ and

min
C∈V

NCut(C,C) = min
C∈V

cut(C,C) vol(V)

vol(C) vol(C)
.

The first step is to rewrite RCut and NCut as an optimization problem over
{0, 1}n. Consider the functionals given by

Q
(u)
2 (f) =

R2(f)

S
(u)
2 (f)

=
1
2

∑
i,j∈V wij (fi − fj)2∥∥f −mean(f)1

∥∥2

2

and

Q
(n)
2 (f) =

R2(f)

S
(n)
2 (f)

=
1
2

∑
i,j∈V wij (fi − fj)2∥∥f −meand(f)1

∥∥2

2,d

where the weighted 2-norm ‖f‖2,d is given by ‖f‖22,d =
∑

i∈V di |fi|
2 and the

mean and its weighted variant meand(f) are given as

mean(f) =
〈1, f〉
|V |

and meand(f) =
〈d, f〉
vol(V)

.

We first show that Q
(u)
2 and Q

(n)
2 are extensions of the RCut and NCut

criteria (see Chapter 2).

Lemma 7.1. For any C ⊂ V , it holds that Q
(u)
2 (1C) = RCut(C,C) and

Q
(n)
2 (1C) = NCut(C,C).

Proof. One has for any set C ⊂ V ,

R2(1C) = 1
2

∑
i∈C,j∈C

wij + 1
2

∑
i∈C,j∈C

wij = cut(C,C),

where we used the symmetry of W . Using the fact that

S
(n)
2 (f) =

∥∥D 1
2 (f − 〈d,f〉

vol(V)1)
∥∥2

2
= 〈f,Df〉 − 〈d,f〉

2

vol(V) ,

one obtains

S
(n)
2 (1C) = vol(C)− vol(C)2

vol(V) = vol(C) vol(C)
vol(V) ,

and analogously for the unnormalized case. Thus one has Q
(u)
1 (1C) =

RCut(C,C) and Q
(n)
2 (1C) = NCut(C,C). �

Now one can give the standard spectral relaxation of the above balanced
graph cut criteria.

7.2. SPECTRAL CLUSTERING 91

Theorem 7.2 (Standard spectral relaxation). It holds that

min
C⊂V

RCut(C,C) ≥ min
f∈Rn

Q
(u)
2 (f) and

min
C⊂V

NCut(C,C) ≥ min
f∈Rn

Q
(n)
2 (f).

Proof. Lemma 7.1 implies that the original RCut and NCut problems are
equivalent to the problems

min
f∈{1C | C⊂V }

Q
(u)
2 (f) and min

f∈{1C | C⊂V }
Q

(n)
2 (f),

respectively. We now relax the problem by replacing the constraint f ∈
{1C | C ⊂ V } by f ∈ Rn. As the functionals Q

(u)
2 and Q

(n)
2 are now being

optimized over a superset of {1C | C ⊂ V }, one obtains a lower bound on
the optimal value of RCut and NCut. �

While the functionals R, S
(u)
2 , and S

(n)
2 are extensions of the corresponding

set functions, they are different from their Lovász extensions. Thus, as we
will see in Section 7.2.3, the relaxation is not tight. The reason for the term
spectral will become clear in the next section, where we show that the global
minimizers of the relaxed problems are given by the second eigenvectors of
the unnormalized and normalized graph Laplacian, respectively.

7.2.2 Connection to eigenvectors of the graph Laplacian

We now relate the solution of the spectral relaxation of the NCut and RCut
criteria to the eigenvectors of the unnormalized and normalized graph Lapla-
cians defined below, see e.g. Mohar [1991], Chung [1997], von Luxburg [2007].

Definition 7.3 (Graph Laplacian). The unnormalized graph Laplacian

∆
(u)
2 and normalized graph Laplacian ∆

(n)
2 are defined as

∆
(u)
2 = D −W

∆
(n)
2 = D−1(D −W).

The following Lemma shows that the unnormalized graph Laplacian is the
operator which induces the quadratic form appearing in the numerator of

Q
(u)
2 and Q

(n)
2 for a function f : V → R via the standard inner product.

Analogously, the normalized graph Laplacian is obtained for the weighted
inner product, 〈f, g〉d =

∑n
i=1 di fi gi.

Lemma 7.4. The following statements hold.

1
2

∑
i,j∈V

wij(fi − fj)2 =
〈
f,∆

(u)
2 f

〉
=
〈
f,∆

(n)
2 f

〉
d
,

∇f
(

1
2

∑
i,j∈V

wij(fi − fj)2
)

= 2 ∆
(u)
2 f = 2D∆

(n)
2 f.

92 CHAPTER 7. BALANCED GRAPH PARTITIONING

Proof. It holds that

〈f, (D −W)f〉 =
∑
i∈V

fi ((D −W)f)i =
∑
i∈V

dif
2
i −

∑
i∈V

fi(Wf)i

=
∑
i,j∈V

wijf
2
i −

∑
i,j∈V

wijfifj = 1
2

∑
i,j∈V

wij(fi − fj)2,

where we have used the fact that W is symmetric. Clearly, it holds that〈
f,∆

(n)
2 f

〉
d

=
〈
f,∆

(u)
2 f

〉
as d cancels out with D−1. The second statement

follows directly. �

We now give an explicit characterization of the smallest eigenvalues.

Lemma 7.5. The eigenvector of ∆
(u)
2 and ∆

(n)
2 corresponding to the small-

est eigenvalue is the constant vector, with eigenvalue 0.

Proof. One easily checks that ∆
(u)
2 1 = 0 and ∆

(n)
2 1 = 0 and thus 1 is

an eigenvector with eigenvalue 0. Moreover,
〈
f,∆

(u)
2 f

〉
= 1

2

∑n
i,j=1wij(fi −

fj)
2 ≥ 0, which implies that ∆

(u)
2 is positive semi-definite. Thus all eigen-

values are non-negative, and thus 0 is the smallest eigenvalue. To show

the positive semi-definiteness of ∆
(n)
2 , we introduce the auxiliary object

∆
(sym)
2 = D−

1
2 ∆

(u)
2 D−

1
2 , which is often referred to as the symmetric graph

Laplacian in the literature. Plugging the vector f = D−
1
2 g into the quadratic

form
〈
f,∆

(u)
2 f

〉
yields 0 ≤

〈
D−

1
2 g,∆

(u)
2 D−

1
2 g
〉

=
〈
g,∆

(sym)
2 g

〉
, which implies

that ∆
(sym)
2 is positive semi-definite as well. One can now easily show that

v is an eigenvector of ∆
(n)
2 with eigenvalue λ if and only if D

1
2 v is an eigen-

vector of ∆
(sym)
2 with the same eigenvalue. Thus ∆

(n)
2 has to be positive

semi-definite as well, which implies that 0 is the smallest eigenvalue. �

The following theorem shows that the solution of the spectral relaxation is
given by the second eigenvector of the unnormalized graph Laplacian (we
recall our assumption that the graph is connected).

Theorem 7.6 (Second eigenvalue of graph Laplacian). The global

minimum of the functional Q
(u)
2 is given by the second smallest eigenvalue

of the unnormalized graph Laplacian ∆
(u)
2 , and the minimizer is the corre-

sponding eigenvector. The corresponding statement holds for the normalized

graph Laplacian ∆
(n)
2 .

Proof. We simplify the denominator of Q
(u)
2 by applying the substitution

g := f − mean(f)1, which implies that mean(g) = 0. Rewriting this as

7.2. SPECTRAL CLUSTERING 93

〈g,1〉 = 0 and applying Lemma 7.4 then leads to the problem

min
g∈Rn

〈
g,∆

(u)
2 g

〉
‖g‖22

subject to
〈
g,1
〉

= 0.

By the Rayleigh-Ritz principle (see Chapter 3), any local minimum of the

above functional is given by an eigenvalue of the matrix ∆
(u)
2 . By Lemma 7.5,

the first eigenvector is the constant vector. Due to the constraint 〈g,1〉 = 0
it follows that the solution of the above problem is given by the second

eigenvector of the Laplacian matrix ∆
(u)
2 .

Similarly, for the normalized graph Laplacian, one applies the substitu-
tion g := f −meand(f)1, which implies that meand(g) = 0. Writing this as
〈g, d〉 = 0, one obtains the problem

min
g∈Rn

〈
g,∆

(u)
2 g

〉〈
g,Dg

〉
subject to 〈g,D1〉 = 0.

Again substituting g = D−
1
2h, one obtains

min
h∈Rn

〈
h,D−

1
2 ∆

(u)
2 D−

1
2 h
〉

‖h‖22
subject to

〈
h,D

1
2 1
〉

= 0.

One now uses the fact that v is an eigenvector of ∆
(n)
2 with eigenvalue λ if

and only if D
1
2 v is an eigenvector of ∆

(sym)
2 = D−

1
2 ∆

(u)
2 D−

1
2 with the same

eigenvalue. Thus Lemma 7.5 implies that D
1
2 1 is the smallest eigenvector of

∆
(sym)
2 . By the Rayleigh-Ritz principle we now obtain that the minimizer h∗

of the above problem is the second eigenvector of ∆
(sym)
2 , and the minimizer

g∗ = D−
1
2h∗ of the original problem is the second eigenvector of ∆

(n)
2 . �

The above result suggest that the optimal value of the spectral relaxation
can be obtained by computing the second eigenvector of the corresponding

graph Laplacian ∆
(u)
2 or ∆

(n)
2 . To achieve this, standard techniques for

eigenvector computation such as the inverse power method (see Chapter 5)
can be used. The real-valued solution of these eigenproblems can then be
transformed back into a partition of the graph via thresholding. The optimal
threshold is found by optimizing the original RCut or NCut criterion, i.e. for
RCut one solves

C ′ = arg min
Ci,i=1,...,n

RCut(Ci, Ci),

94 CHAPTER 7. BALANCED GRAPH PARTITIONING

where the sets Ci are defined as Ci := {j ∈ V |fj ≥ fi} for i = 1, . . . , n. One
can now derive upper and lower bounds on the second eigenvalue in terms
of the optimal cut, which we will discuss in the next section.

7.2.3 Isoperimetric inequality for spectral relaxation

The isoperimetric inequality [Cheeger, 1970, Dodziuk, 1984, Alon and Mil-
man, 1985] for the graph Laplacian provides additional theoretical backup
for the spectral relaxation. It provides upper and lower bounds on the RCC
and NCC in terms of the second eigenvalue of the graph Laplacian. Let
us now introduce the notation hRCC and hNCC for the optimal ratio and
normalized Cheeger cut values, given as

hRCC = inf
C⊂V

RCC(C,C) and hNCC = inf
C⊂V

NCC(C,C).

Cheeger’s inequality relates the second smallest eigenvalue of the Laplacian
to the isoperimetric constants defined above. Based on an analogous result
for Riemannian manifolds by Cheeger [1970], the statement for graphs can
be traced back to Dodziuk [1984] and Alon and Milman [1985]. The standard
Cheeger isoperimetric inequality (see also Chung [1997]) is given as follows.

Theorem 7.7 (Cheeger’s inequality). Denote by λ2 the second eigen-

value of the normalized graph Laplacian ∆
(n)
2 . Then,

h2
NCC

2
≤ λ2 ≤ 2hNCC,

Denote by λ2 the second eigenvalue of the unnormalized graph Laplacian

∆
(u)
2 . Then,

h2
RCC

2 maxi∈V di
≤ λ2 ≤ 2hRCC .

Generalizations to higher order eigenvalues were considered by Chung et al.
[2000], Daneshgar et al. [2010]. One can now establish a connection between
the optimal Cheeger cut and the cut which is obtained by performing optimal
thresholding of the second eigenvector of the graph Laplacian according to
the NCC or RCC criterion. For a proof see [Bühler and Hein, 2009b].

Theorem 7.8 (Bounds on obtained cuts). Let h∗RCC denote the RCC
value obtained by optimal thresholding of the second eigenvector of the un-

normalized graph Laplacian ∆
(u)
2 . Then

hRCC ≤ h∗RCC ≤ 2
(

max
i∈V

di
) 1

2
(
hRCC

) 1
2 .

7.3. P-SPECTRAL CLUSTERING 95

v1 vk vk+1 v2k

v2k+1 v3k v3k+1 v4k

Figure 7.6: The cockroach graph considered by Guattery and Miller [1998],
von Luxburg [2007]. Optimal cut (red) and cut found by spectral clustering
(blue).

Let h∗NCC denote the NCC value obtained by optimal thresholding of the

second eigenvector of the normalized graph Laplacian ∆
(n)
2 . Then,

hNCC ≤ h∗NCC ≤ 2
(
hNCC

) 1
2 .

An advantage of the spectral relaxation is that it leads to a standard problem
from linear algebra, which can be solved efficiently. However, while the above
result gives a certain worst-case guarantee on the quality of the relaxation,
the bound is still quite loose, and the relaxation can lead to a solution far
away from the optimum.

As an example consider the cockroach or ladder graph considered by
Guattery and Miller [1998] (see also the discussion in von Luxburg [2007]).
These graphs look like a cockroach, or a ladder with some missing rungs (see
Fig. 7.6). The optimal RCut (shown in red) cuts the graph vertically such
that C = (v1, . . . , vk, v2k+1, . . . v3k) and C = (vk+1, . . . , v2k, v3k+1, . . . , v4k).
Here we have cut(C,C) = 2 and |C| =

∣∣C∣∣ = 2k and hence RCut(C,C) = 2
k .

However, as shown in Guattery and Miller [1998], unnormalized spectral
clustering leads to a horizontal cut (shown in blue), which partitions the
graph into sets C = (v1, . . . , v2k) and C = (v2k+1, . . . , . . . , v4k). Here we
have cut(C,C) = k and |C| =

∣∣C∣∣ = 2k and hence RCut(C,C) = 1. Hence
in this example, spectral clustering leads to a cut which is a factor 2

k worse
than the optimal cut.

In the next section, we will show that better bounds can be obtained for
the eigenvalues of the so-called graph p-Laplacian.

7.3 p-Spectral clustering

p-Spectral clustering was introduced in Bühler [2009], Bühler and Hein
[2009a] as a generalization of standard spectral clustering. The main mo-
tivation for p-spectral clustering is that while standard spectral clustering

96 CHAPTER 7. BALANCED GRAPH PARTITIONING

corresponds to an optimization problem involving quadratic functionals, it
may pose an advantage to go over to a more general setting where the
quadratic functionals are replaced by functionals of a power p, for p < 2.
Similar ideas were used to develop methods for semi-supervised learning
[Zhou and Schölkopf, 2005] and image processing [Elmoataz et al., 2008].
Moreover, different generalizations of the notion of resistance between two
vertices in a graph were studied by Herbster and Lever [2009] as well as
Alamgir and von Luxburg [2011].

To derive p-spectral clustering, one can proceed similar to the standard
spectral relaxation of the NCut criterion. First one finds an extension of the
combinatorial objective to the continuous domain, by rewriting the com-
binatorial problem as an optimization problem over {0, 1}n. This problem
is then relaxed to an optimization problem over Rn. In contrast to the
standard relaxation, the resulting optimization problem does not lead to
a standard linear eigenproblem, but instead a nonlinear eigenproblem in-

volving the unnormalized and normalized graph p-Laplacian ∆
(u)
p and ∆

(n)
p ,

which will be defined in this section. By extending a result by Amghibech
[2003], we will later show that this leads to tighter bounds on the obtained
Cheeger cut values than the standard spectral relaxation.

7.3.1 p-Spectral relaxation of balanced graph cuts

We introduce the following two classes of balanced graph cuts.

RCCp(C,C) = cut(C,C)

(
|C|

1
p−1 + |C|

1
p−1
)p−1

|C||C|
and

NCCp(C,C) = cut(C,C)

(
vol(C)

1
p−1 + vol(C)

1
p−1
)p−1

vol(C) vol(C)
.

The following proposition shows that the above balanced graph cut criteria
are generalizations of the graph cut criteria discussed before.

Proposition 7.9. It holds that limp→1 NCCp(C,C) = NCC(C,C) as well
as NCC2(C,C) = NCut(C,C). Moreover, for any 1 < p < 2 it holds that
NCC(C,C) ≤ NCCp(C,C) ≤ NCut(C,C). The analogous results hold for
RCCp.

Proof. The statements for p = 2 can be directly seen by plugging in p = 2
and using that |C|+

∣∣C∣∣ = |V | as well as vol(C) + vol(C) = vol(V). For the

case p → 1, note that one has limα→∞(aα + bα)
1
α = max{a, b} for a, b ≥ 0.

Therefore one obtains

lim
p→1

(
vol(C)

1
p−1 + vol(C)

1
p−1
)p−1

= max{vol(C), vol(C)},

7.3. P-SPECTRAL CLUSTERING 97

which implies limp→1 NCCp(C,C) = NCC(C,C). Analogously one shows
the result for RCCp. To understand the result in the interval 1 < p < 2, let
us consider the following inequalities between lp-norms: For ∞ ≥ α ≥ 1 one
has ‖x‖∞ ≤ ‖x‖α ≤ ‖x‖1 . From this it follows that

max{vol(C), vol(C)} ≤
(
vol(C)α + vol(C)α

) 1
α ≤ vol(C) + vol(C),

where α = 1
p−1 . This implies NCC(C,C) ≤ NCCp(C,C) ≤ NCut(C,C).

Analogously one shows the result for RCCp. �

Thus, in the interval 1 < p < 2, the RCCp can be seen as an interpolation
between RCC and RCut, and analogously in the normalized case. Let us
now introduce the following functionals for the RCCp and NCCp criteria:

Q(u)
p (f) =

Rp(f)

S
(u)
p (f)

=
1
2

∑
i,j∈V wij |fi − fj |

p

‖f −meanp(f)1‖pp
and

Q(n)
p (f) =

Rp(f)

S
(n)
p (f)

=
1
2

∑
i,j∈V wij |fi − fj |

p

‖f −meanp,d(f)1‖pp,d

where the weighted p-norm ‖f‖p,d is given as ‖f‖pp,d :=
∑

i∈V di |fi|
p and the

p-mean and its weighted variant are defined as

meanp(f) = arg min
m∈R

‖f −m1‖p and meanp,d(f) = arg min
m∈R

‖f −m1‖p,d ,

generalizing mean(f) and meand(f) from the last section. Using the above
functionals, we will later derive a relaxation of the balanced graph cut crite-
ria RCCp and NCCp. Moreover, we introduce the notation φp(x) := |x|p−2 x.

We first consider the differentiability of the weighted p-norm ‖f‖pp,d. Note
that while it is a well-known fact that for any p > 1 the p-norm is differen-
tiable everywhere except at the origin, adding the additional power p makes
the functional differentiable everywhere, as stated in the following lemma.

Lemma 7.10. Let p > 1 and d ∈ Rn+. Then the function ‖f‖pp,d is differen-

tiable for all f ∈ Rn and it holds that ∂
∂fk

(
‖f‖pp,d

)
= p dk φp(f

k).

Proof. Note that in order to prove that ‖f‖pp,d is differentiable, it is
sufficient to prove that all the partial derivatives exist and are continuous
for all g ∈ Rn (see e.g. Theorem 1.9.5 in Hubbard and Hubbard [1998]). For
any k ∈ {1, . . . , n}, one easily checks that for any g ∈ Rn with gk 6= 0, the
k-th partial derivative of the functional ‖f‖pp,d evaluated at the point g is
given by

∂

∂fk

(
‖f‖pp,d

)
(g) = p dk |gk|p−1 sign(gk) = p dk φp(gk),

98 CHAPTER 7. BALANCED GRAPH PARTITIONING

which is continuous at any point g ∈ Rn with gk 6= 0. For the case when
gk = 0, we need to show that the limit

lim
h→0

‖(g1, . . . , gk + h, . . . , gn)‖pp,d − ‖(g1, . . . , gk, . . . , gn)‖pp,d
h

exists. We first compute the one-sided limit

lim
h↘0

(∑
i 6=k di |gi|

p + dk |h|p
)
−
(∑

i 6=k di |gi|
p
)

h

= lim
h↘0

dk
|h|p

h
= lim

h↘0
dk |h|p−1 sign(h) = 0,

and similarly limh↗0 dk |h|p−1 sign(h) = 0, which implies that the partial
derivative exists also if gk = 0 and is given by

∂

∂fk

(
‖f‖pp,d

)
(g) = 0 = p dk φp(g

k).

What is left to show is that the k-th partial derivative is continuous at every
point g ∈ Rn with gk = 0. Thus we need to show that

lim
(x1,...,xk,...,xn)→(g1,...,0,...gn)

∂

∂fk

(
‖f‖pp,d

)
(x) =

∂

∂fk

(
‖f‖pp,d

)
(g) .

To show this, one needs to take into account all paths (x1, . . . , xk, . . . , xn)→
(g1, . . . , 0, . . . , gn). However, note that the value of the k-th partial derivative
does not depend on the values of the components at index i 6= k. Thus we
only need to consider the k-th index and obtain

lim
(x1,...,xk,...,xn)→(g1,...,0,...,gn)

∂

∂fk

(
‖f‖pp,d

)
(x) = lim

xk→0
p dk φ(xk).

One easily checks that one obtains left and right one-sided limits 0. Since
this agrees with the value of the derivative at g, we obtain the continuity of
the k-th partial derivative, which implies that ‖f‖pp,d is differentiable. �

Let us now give an explicit characterization of the weighted and unweighted
p-mean evaluated at indicator functions.

Lemma 7.11. Let p > 1 and C ⊂ V . Then it holds that

meanp(1C) =
|C|

1
p−1

|C|
1
p−1 + |C|

1
p−1

and meanp,d(1C) =
vol(C)

1
p−1

vol(C)
1
p−1 + vol(C)

1
p−1

.

7.3. P-SPECTRAL CLUSTERING 99

Proof. We give the proof for the weighted p-mean. The result for the
p-mean follows analogously. Note that the functional ‖f −m1‖pp,d (with the
power p) is differentiable if p > 1, and it holds that

∂

∂m

(
‖f −m1‖pp,d

)
= −p

∑
i∈V

di φp
(
fi −m

)
.

Thus at the optimal value m̂ we must have
∑

i∈V di φp
(
fi−m̂

)
= 0. Setting

f = 1C , we obtain (note that 0 ≤ m̂ ≤ 1),

0 =
∑
i∈C

diφp
(
1− m̂

)
+
∑
i∈C

diφp
(
− m̂

)
= vol(C) φp

(
1− m̂

)
− vol(C)φp

(
m̂
)
.

For p > 1 one has m̂ = 0 if and only if vol(C) = 0, and m̂ = 1 if and only if
vol(C) = 0. Otherwise we have 0 < m̂ < 1 and obtain by rearranging,(

1− m̂
m̂

)p−1

=
vol(C)

vol(C)
. ⇔ 1

m̂
=

(
vol(C)

vol(C)

) 1
p−1

+ 1.

Finally, solving for m̂ yields the result. �

The following lemma shows that the functionals Q
(u)
p (f) and Q

(n)
p (f) can be

seen as extensions of the above class of balanced graph cuts. Note that this
is a generalization of Lemma 7.1 from Section 7.2.

Lemma 7.12. For every C ⊂ V and p > 1, it holds that Q
(u)
p (1C) =

RCCp(C,C) and Q
(n)
p (1C) = NCCp(C,C).

Proof. Again we show the result only for the normalized case, the result
for the unnormalized case follows analogously. It holds that

Rp(1C) = 1
2

∑
i∈C,j∈C

wij + 1
2

∑
i∈C,j∈C

wij =
∑

i∈C,j∈C

wij = cut(C,C),

where we used the symmetry of W . The denominator S
(n)
p (1C) is equal to

∑
i∈C

di

∣∣∣∣∣1− vol(C)
1
p−1

vol(C)
1
p−1 + vol(C)

1
p−1

∣∣∣∣∣
p

+
∑
i∈C

di

∣∣∣∣∣ vol(C)
1
p−1

vol(C)
1
p−1 + vol(C)

1
p−1

∣∣∣∣∣
p

,

where we have used Lemma 7.11. We can further reformulate this as

vol(C) vol(C)
p
p−1 + vol(C) vol(C)

p
p−1(

vol(C)
1
p−1 + vol(C)

1
p−1
)p =

vol(C) vol(C)(
vol(C)

1
p−1 + vol(C)

1
p−1
)p−1

,

which concludes the proof. �

We can now use the previous lemma to give the p-spectral relaxation of the
above balanced graph cuts.

100 CHAPTER 7. BALANCED GRAPH PARTITIONING

Theorem 7.13 (p-spectral relaxation). Let p > 1. Then it holds that

min
C⊂V

RCCp(C,C) ≥ min
f∈Rn

Q(u)
p (f) and

min
C⊂V

NCCp(C,C) ≥ min
f∈Rn

Q(n)
p (f).

Proof. Lemma 7.12 implies that the original RCCp and NCCp problems
are equivalent to the problems

min
f∈{1C | C⊂V }

Q(u)
p (f) and min

f∈{1C | C⊂V }
Q(n)
p (f),

respectively. Again, we now relax the problem by replacing the constraint
that f ∈ {1C | C ⊂ V } by f ∈ Rn, yielding a lower bound on the optimal
values RCCp and NCCp. �

Note that in Bühler [2009], a slightly different version of Theorem 7.13 was

given. There is was shown that for every C ⊂ V , there exist a function f
(u)
p,C

such that Q
(u)
p (f

(u)
p,C) = RCCp(C,C). Explicitly, f

(u)
p,C was given as

(f
(u)
p,C)i =

1

|C|
1
p−1

, i ∈ C,

− 1∣∣C∣∣ 1
p−1

, i ∈ C,

and analogously a vector f
(n)
p,C for Q

(n)
p . This implies that finding a set C

which minimizes the above balanced graph cut criteria is equivalent to op-

timizing the corresponding functional Q
(u)
p or Q

(n)
p over the sets {f (u)

p,C | C ⊂
V } or {f (n)

p,C | C ⊂ V }, respectively. Thus, similarly to Theorem 7.13 this

implies that Q
(u)
p is an extension of RCCp(C,C). The motivation of choos-

ing the function f
(u)
p,C in Bühler and Hein [2009a] was because it satisfies

meanp(f
(u)
p,C) = 0. The connection to the statement from Theorem 7.13 can

be seen by noting that the functional Q
(u)
p satisfies Q

(u)
p (αf +β1) = Q

(u)
p (f)

for all f ∈ Rn, α > 0 and β ∈ R, due to the p-homogeneity of numerator
and denominator as well as the fact that they are invariant under addition
of a constant. The equivalence between the statement in Theorem 7.13 and
the corresponding result in Bühler and Hein [2009a] follows by noting that

f
(u)
p,C = α1C −meanp(α1C)1, where α =

(
1
|C|

) 1
p−1

+
(

1
|C|

) 1
p−1

.

In the next section we will show that letting p → 1 will lead to improving
bounds in terms of the optimal RCC and NCC values. In the following
section we will show the connection to the eigenvectors of the unnormalized

and normalized graph p-Laplacian ∆
(u)
p and ∆

(n)
p , respectively.

7.3. P-SPECTRAL CLUSTERING 101

7.3.2 Connection to eigenvectors of the graph p-Laplacian

In this section we study the graph p-Laplacian and its associated eigen-
problems and show the connection to the optimal value of the p-spectral
relaxation of the balanced graph cut criteria from the last section. The un-
normalized and normalized graph p-Laplacians can be defined as follows, see
e.g. Holopainen and Soardi [1997], Amghibech [2003, 2006], Mugnolo [2013].

Definition 7.14 (Graph p-Laplacian). Let i ∈ V . Then for p > 1, the

unnormalized graph p-Laplacian ∆
(u)
p and normalized graph p-Laplacian ∆

(n)
p

are defined as

(∆(u)
p f)i =

∑
j∈V

wij φp (fi − fj),

(∆(n)
p f)i = 1

di

∑
j∈V

wij φp (fi − fj),

where φp : R→ R is defined for x ∈ R as φp(x) = |x|p−2 x.

The graph p-Laplacian induces the functional Rp(f) = 1
2

∑
i,j∈V |fi − fj |

p

via the standard inner product in the unnormalized case, and the weighted
inner product, 〈x, y〉d =

∑
i∈V dixiyi, in the normalized case, as we will show

in the sequel. Moreover, we give the relation to the gradient of Rp.

Lemma 7.15. The following statements hold.

1
2

∑
i,j∈V

|fi − fj |p =
〈
f,∆(u)

p f
〉

=
〈
f,∆(n)

p f
〉
d

∇f
(

1
2

∑
i,j∈V

|fi − fj |p
)

= p∆(u)
p (f) = pD∆(n)

p (f).

Proof. For the first statement, note that∑
i,j∈V

wijφp(fi − fj)fi = 1
2

∑
i,j∈V

wijφp(fi − fj)fi + 1
2

∑
i,j∈V

wijφp(fj − fi)fj

= 1
2

∑
i,j∈V

wijφp(fi − fj)(fi − fj) = 1
2

∑
i,j∈V

|fi − fj |p ,

where we have used the symmetry of W . Similarly one proceeds for the
normalized case. For the second statement, note that by Lemma 7.10, the
functional ‖f‖pp,d is differentiable for all f ∈ Rn, d ∈ Rn+ if p > 1. By the
chain rule, also Rp is differentiable and we obtain

∂
∂fk

(
Rp(f)

)
= 1

2

∑
i,j∈V

pwijφp (fi − fj)
(
δi=k − δj=k

)
= p∆(u)

p (f)k = p dk ∆(n)
p (f)k,

102 CHAPTER 7. BALANCED GRAPH PARTITIONING

which concludes the proof. �

For p = 2, one obtains the statements from Lemma 7.4 as special case. The
eigenvectors and eigenvalues of the p-Laplacian are defined as follows.

Definition 7.16 (Eigenvalues of graph p-Laplacian). The real number

λp is called an eigenvalue for the normalized p-Laplacian ∆
(n)
p if there exists

a vector f ∈ Rn such that

(∆(n)
p f)i = λp φp (fi) , ∀ i = 1, ..., n.

The vector f is called an eigenvector of ∆
(n)
p .

The definition of the eigenvalues of the unnormalized graph p-Laplacian ∆
(u)
p

works analogously. Again, one recovers the standard linear eigenproblems as
special cases for p = 2. To see the origin of this definition, now consider the

following functionals associated to the graph p-Laplacians ∆
(u)
p and ∆

(n)
p ,

Q
(u)
p (f) =

1
2

∑n
i,j=1wij |fi − fj |p

‖f‖pp
and Q

(n)
p (f) =

1
2

∑n
i,j=1wij |fi − fj |p

‖f‖pp,d
.

By Theorem 3.6 a necessary condition for a critical point of Q
(n)
p is given by

0 ∈ ∂
(

1
2

∑
i,j∈V

wij |fi − fj |p
)
− λ ∂

(
‖f‖pp,d

)
,

where λ = Q
(n)
p (f). Note that while in general, nonlinear eigenproblems

yield only a necessary condition for a critical point, in fact in this case it is
also sufficient, as we will see below. Evaluating the subdifferentials will then

lead to the nonlinear eigenproblem for ∆
(n)
p as defined in Def. 7.16. Analo-

gously, one proceeds for the unnormalized case. The following proposition

formalizes the connection between critical points of the functional Q
(n)
p and

eigenvectors of the normalized graph p-Laplacian, see Amghibech [2003].

Proposition 7.17. Let p > 1. The functional Q
(n)
p has a critical point

at f ∈ Rn if and only if f is an eigenvector of ∆
(n)
p . The corresponding

eigenvalue λp is given as λp = Q
(n)
p (f).

Proof. By Theorem 3.6 every critical point g of Q
(n)
p is a solution of the

nonlinear eigenproblem

0 ∈ ∂
(

1
2

∑
i,j∈V

wij |gi − gj |p
)
− λ ∂

(
‖g‖pp,d

)
,

for λ = Q
(n)
p (g). Moreover, in this case this is also a sufficient condition,

since for p > 1 the denominator is differentiable, see Lemma 7.10. The

7.3. P-SPECTRAL CLUSTERING 103

derivative is given as ∂
∂fk

(
‖f‖pp,d

)
= p dk φp

(
fk
)
. Thus with Lemma 7.15

one obtains
0 = p dk(∆

(n)
p f)k − λ p dk φp

(
fk
)
.

Dividing by p dk gives the result. Since by Theorem 3.6 every eigenvector f

with eigenvalue λ satisfies λ = Q
(n)
p (f), also the reverse direction holds. �

An analogous statement can be made in the case of the unnormalized graph
p-Laplacian. Similarly to the case p = 2, one can give an explicit character-
ization of the first eigenvector. Note that again we use the assumption that
the graph G is connected.

Lemma 7.18. Let p > 1. The eigenvector of ∆
(u)
p and ∆

(n)
p corresponding

to the smallest eigenvalue is the constant vector, with eigenvalue 0.

Proof. One can easily check that the nonlinear eigenproblem is fulfilled in
both cases by setting v = 1 and λ = 0. Moreover, by Prop. 7.17 and the

non-negativity of Q
(n)
p it follows that it has to be the smallest eigenvalue.

Analogously one proceeds for the unnormalized case. �

We now go back to the relaxation of the pNCC criterion, where we optimize

the function Q
(n)
p introduced in the last section over Rn. The following

theorem shows that the solution of the relaxed problem is obtained by the
nonlinear eigenvector corresponding to the second smallest eigenvalue of the
normalized graph p-Laplacian, see Amghibech [2003] (an analogous result
can be shown for the unnormalized graph p-Laplacian).

Theorem 7.19 (Second eigenvalue of graph p-Laplacian). Let p > 1.

The global minimum of the functional Q
(n)
p is equal to the second eigenvalue

λp of the graph p-Laplacian ∆
(n)
p . The corresponding eigenvector g of ∆

(n)
p

is then given as g = f −meanp,d(f)1 for any global minimizer f of Q
(n)
p .

Proof. Let f be a critical point of Q
(n)
p . Note that with 0

0 :=∞, f has to be
non-constant. Theorem 3.6 implies that f solves the nonlinear eigenproblem

0 ∈ ∂
(

1
2

∑
i,j∈V

wij |fi − fj |p
)
− λ ∂

(
‖f −meanp,d(f)1‖pp,d

)
,

for λ = Q
(n)
p (f). Moreover, in this case this is also a sufficient condition,

since for p > 1 the denominator is differentiable. The derivative is given as
[Amghibech, 2003, Bühler and Hein, 2009b],

∂
∂fk

(
‖f −meanp,d(f)1‖pp,d

)
= p dk φp

(
fk −meanp,d(f)

)
.

Thus with Lemma 7.15 one obtains

0 = p dk (∆(n)
p f)k − λ p dk φp

(
fk −meanp,d(f)

)
.

104 CHAPTER 7. BALANCED GRAPH PARTITIONING

Since by Theorem 3.6 every eigenvector f with eigenvalue λ satisfies λ =

Q
(n)
p (f), also the reverse direction holds. Using the fact that ∆

(n)
p is in-

variant under addition of a constant, one can conclude that the vector
g := f −meanp,d(f)1 is a non-constant eigenvector of the graph p-Laplacian
according to Def. 7.16. �

Thus one obtains the result that for p > 1 the second eigenvector of the
normalized and unnormalized graph p-Laplacian is a relaxation of the bal-
anced graph cut criteria RCCp and NCCp, respectively. For p = 2, we get
the well-known fact that the eigenproblem for the second eigenvector of the

unnormalized and normalized p-Laplacian ∆
(u)
2 and ∆

(n)
2 is a relaxation of

the ratio cut and the normalized cut.

In the following we relate the optimal values of the relaxed problem to
the minimum of the RCC and NCC criterion.

7.3.3 Isoperimetric inequality for p-spectral relaxation

The generalized isoperimetric inequality by Amghibech [2003] establishes a
relation between the minimum of the RCC and NCC criterion and the sec-
ond eigenvalue λp of the unnormalized and normalized graph p-Laplacian
and therefore generalizes the standard isoperimetric inequality (Cheeger in-
equality) given for the case p = 2. Moreover, one can also use the same proof
technique to derive bounds on the RCC and NCC obtained by the p-spectral
relaxation. As we will see, for p→ 1 these lower and upper bounds will be-
come tighter, which forms the main motivation to use the eigenvectors of
the graph p-Laplacian for clustering.

Theorem 7.20 (Generalized isoperimetric inequality). Denote by λp

the second eigenvalue of the normalized graph p-Laplacian ∆
(n)
p . Then for

any p > 1,

2p−1

(
hNCC

p

)p
≤ λp ≤ 2p−1 hNCC .

Denote by λp the second eigenvalue of the unnormalized graph p-Laplacian

∆
(u)
p . Then for p > 1,(

2

maxi∈V di

)p−1(hRCC

p

)p
≤ λp ≤ 2p−1hRCC .

Amghibech [2003] derived the generalized version of Cheeger’s inequality
for the normalized graph p-Laplacian. In Bühler [2009], Bühler and Hein
[2009a], the result was adapted to the unnormalized graph p-Laplacian.

One observes that the bounds on λp become tight in the limit p→ 1. Fur-
thermore, one can now establish a connection between the optimal Cheeger
cut and the cut which is obtained if one performs optimal thresholding of

7.4. 1-SPECTRAL CLUSTERING 105

the second eigenvector of the graph p-Laplacian according to the NCC or
RCC criterion. A proof can be found in [Bühler and Hein, 2009b].

Theorem 7.21 (Bounds on obtained cuts). Let h∗RCC denote the RCC
obtained by optimal thresholding of the second eigenvector of the unnormal-

ized graph p-Laplacian ∆
(u)
p . Then for p > 1,

hRCC ≤ h∗RCC ≤ p
(

max
i∈V

di
) p−1

p
(
hRCC

) 1
p .

Let h∗NCC denote the NCC obtained by optimal thresholding of the second

eigenvector of the normalized graph p-Laplacian ∆
(n)
p . Then for p > 1,

hNCC ≤ h∗NCC ≤ p
(
hNCC

) 1
p .

One observes that the inequalities become tight for p → 1, which implies
that the cut found by thresholding converges to the optimal Cheeger cut,
which provides the main motivation for p-spectral clustering.

The question remains how to compute the second eigenvector of the un-

normalized and normalized graph p-Laplacians ∆
(u)
p and ∆

(n)
p . In Bühler

and Hein [2009a], a scheme was proposed to compute local minima of Q
(u)
p

and Q
(n)
p based on Newton descent and continuation in p. As in the case of

standard spectral clustering, the obtained vector is then transformed back
into a partition of the graph via optimal thresholding. Note that it could
not be guaranteed that the resulting solutions are in fact globally optimal.
As a consequence, one cannot guarantee that the bounds in Theorem 7.21
are achieved by the computed solution. However, in practice a strong im-
provement in terms of obtained NCC and RCC values is observed compared
to the standard spectral relaxation, as we will show in Section 7.7.

In the next section, we will go one step further and consider the case p =
1 directly. We will then use our tight relaxation framework from Chapter 4
to show that the optimal Cheeger cut is in fact equal to the second nonlinear
eigenvalue of the graph 1-Laplacian, which will lead to an efficient method
for the Cheeger cut problem.

7.4 1-Spectral clustering

In the previous sections we have shown that, compared to the standard
spectral relaxation using the eigenvectors of the graph Laplacian (see Section
7.2), better guarantees in terms of the obtained Cheeger cut value can be
achieved by means of a relaxation based on the functional induced by the
graph p-Laplacian (see Section 7.3). The isoperimetric inequality from the
last section implies that the bounds on the optimal cut become tight as
p→ 1 and one converges towards the optimal Cheeger cut.

106 CHAPTER 7. BALANCED GRAPH PARTITIONING

This suggests to go one step further and consider the case p = 1 directly.
However, the results from the last section are not directly applicable to the
case p = 1. The main difficulty arises since in contrast to the case p > 1
the involved functionals are non-differentiable. Using the tight relaxation
framework introduced in Chapter 4, we can now directly treat the case p = 1
and show that the minimum Cheeger cut is equal to the second eigenvalue
of the nonlinear graph 1-Laplacian which will be defined in this section. We
will then derive an efficient algorithm based on the nonlinear inverse power
method discussed in Chapter 5.3.

7.4.1 Tight 1-spectral relaxation of balanced graph cuts

In this section we consider the problem of minimizing the ratio Cheeger cut
and normalized Cheeger cut of a graph,

RCC(C,C) =
cut(C,C)

min{|C| ,
∣∣C∣∣} and NCC(C,C) =

cut(C,C)

min{vol(C), vol(C)}
.

We will now derive a tight relaxation of the above balanced graph cut cri-
teria. Consider the functionals

Q
(u)
1 (f) =

R(f)

S
(u)
1 (f)

=
1
2

∑
i,j∈V wij |fi − fj |

‖f −median(f)1‖1
and (7.6)

Q
(n)
1 (f) =

R(f)

S
(n)
1 (f)

=
1
2

∑
i,j∈V wij |fi − fj |

‖f −mediand(f)1‖1,d
,

where ‖f‖1,d =
∑

i∈V di |fi| is the weighted 1-norm and the median and its
weighted variant are defined as

median(f) = arg min
m∈R

‖f −m1‖1 and

mediand(f) = arg min
m∈R

‖f −m1‖1,d . (7.7)

We will show that the functionals Q
(u)
1 and Q

(n)
1 are extensions of the RCC

and NCC criteria. However, in contrast to the extensions used in the spectral
and p-spectral relaxation discussed in the previous sections, the relaxation

obtained via the functionals Q
(u)
1 and Q

(n)
1 is tight, in the sense that the

relaxed problem and the original problem are equivalent. This means that
the optimal value of the relaxed problem is equal to the optimal value of
the original problem, and there exists a simple way to compute minimizer
of the original problem from the solution of the continuous problem.

Lemma 7.22. The set functions min{|C| ,
∣∣C∣∣} and min{vol(C), vol(C)}

are submodular. Moreover, their Lovász extensions are given by the func-
tions ‖f −median(f)1‖1 and ‖f −mediand(f)1‖1,d, respectively.

7.4. 1-SPECTRAL CLUSTERING 107

Proof. We give the proof for the normalized case. The unnormalized case
works analogously. Due to the second formulation in Def. 2.12, the Lovász
extension is given as

R(f) =

n−1∑
i=1

(
R̂(Ci)− R̂(Ci+1)

)
fi + R̂(Cn)fn.

Note that R̂(Cn) = min{dn, vol(V)− dn}, which is dn, if dn ≤ 1
2 vol(V), and

vol(V)− dn, else. Moreover, ∀i = 1, . . . , n− 1,

R̂(Ci)−R̂(Ci+1) =

di, if vol(Ci) ≤ 1

2 vol(V),
−di, if vol(Ci) ≥ 1

2 vol(V) + di,∑i−1
j=1 dj −

∑n
j=i+1 dj , if vol(Ci) >

1
2 vol(V)

and vol(Ci) <
1
2 vol(V) + di.

Assume now that dn ≤ 1
2 vol(V). Note that the sequence vol(Ci) is monoton-

ically decreasing for i = 1, . . . , n. Let now k ∈ {1, . . . , n− 1} be the first in-
dex such that vol(Ck) <

1
2 vol(V)+dk, i.e. for i = 1, . . . , k−1, the second case

in the above expression is applied. For i = k we are now either in the first or
third case. Note that one always has vol(Ck+1) = vol(Ck)− dk < 1

2 vol(V),
thus for i = k + 1, . . . , n − 1, we will be in the first case. We now consider
the two cases for i = k. Assume first that the third case applies. One can
now rewrite the Lovász extension as

R(f) =
k−1∑
i=1

(−di)fi +

(k−1∑
j=1

dj −
n∑

j=k+1

dj

)
fk +

n∑
i=k+1

difi. (7.8)

Note that since vol(Ck+1) < 1
2 vol(V) and vol(Ck) <

1
2 vol(V), it follows that

fk is a weighted median of f . Now assume that for fk we are in the first
case, i.e. vol(Ck) ≤ 1

2 vol(V). In this case we obtain

R(f) =
k−1∑
i=1

(−di)fi +
n∑
i=k

difi. (7.9)

However, due to the fact that vol(Ck−1) ≥ 1
2 vol(V) + dk−1, we must have

vol(Ck) ≥ 1
2 vol(V), which implies that vol(Ck) = 1

2 vol(V). Moreover, this
also implies that vol(Ck) = 1

2 vol(V), which implies that every element in
the interval (fk−1, fk) is a median. Denoting by m an element of the interval
(fk−1, fk), one can rewrite (7.9) as

R(f) =
∑
fi<m

(−di)fi +

(∑
fi<m

di −
∑
fi>m

di

)
m+

∑
fi>m

difi.

108 CHAPTER 7. BALANCED GRAPH PARTITIONING

Note that the expression in (7.8) can also be rewritten in this form, where
here the weighted median is m = fk. Moreover, one easily checks that if
dn >

1
2 vol(V) one obtains the same expression. Thus in all cases we obtain

R(f) =
∑
fi<m

(−di) (fi −m) +
∑
fi>m

di (fi −m) =
n∑
i=1

di |fi −m| ,

which concludes the proof of the second statement. The submodularity
follows with Prop. 2.19 from the convexity of the Lovász extensions. �

A direct application of Theorem 4.2 yields the following result, see also
Chung [1997], Szlam and Bresson [2010].

Theorem 7.23 (Tight relaxation of RCC and NCC). It holds that

min
C⊂V

RCC(C,C) = min
f∈Rn

Q
(u)
1 (f) and

min
C⊂V

NCC(C,C) = min
f∈Rn

Q
(n)
1 (f).

Proof. Using the Lovász extensions of numerator and denominator given
in Prop. 2.23 and Lemma 7.22, an application of Theorem 4.2 yields

min
C⊂V

cut(C,C)

min{|C| ,
∣∣C∣∣} = min

f∈Rn+

1
2

∑n
i,j=1wij |fi − fj |

‖f −median(f)‖1
The symmetry of the ratio on the right side then yields the final result. �

The tight relaxation of the ratio Cheeger cut was first shown by Szlam and
Bresson [2010]. They then proposed a method to minimize the continuous re-
laxation based on Dinkelbach’s method and Bregman iteration [Dinkelbach,
1967, Goldstein and Osher, 2009]. Note that while their method produces
comparable cuts to the one we will derive in this section, the convergence
can not be guaranteed. Later, Bresson et al. [2012a,b] proposed a modified
version of their method for the RCC as well as the tight relaxation of the
RCut [Hein and Setzer, 2011], see below. The addition of a proximal term
in their inner problem enabled them to prove monotonicity of the sequence
as well as convergence of the iterates fk. Jost et al. [2013] showed that
the resulting method is a special case of the RatioDCA-prox from Section
5. Furthermore, recently Bresson et al. [2013] proposed a generalization for
partitioning into multiple clusters which will be discussed in Section 7.6.

The above result for the Cheeger cut was extended to a general class of
balanced graph cut functions in Hein and Setzer [2011]. In this paper it was
shown that tight relaxations exists for the class of problems of the form

min
C⊂V

cut(C,C)

Ŝ(C)
,

7.4. 1-SPECTRAL CLUSTERING 109

where Ŝ is a symmetric balancing function. In the following we report two
different tight relaxations of the normalized cut objective which now follow
as special case of Theorem 4.4. Analogously one can proceed for other
balanced graph cuts.

Lemma 7.24. The set function Ŝ(C) = vol(C) vol(C)
vol(V) is submodular. An ex-

tension of Ŝ is given by S(f) = 1
2 ‖f −meand(f)‖1,d. Moreover, the Lovász

extension of Ŝ is given by 1
2

∑
i,j∈V

di dj
vol(V) |fi − fj |.

Proof. For the extension S(f) = 1
2 ‖f −meand(f)‖1,d we compute

S(1C) = 1
2

∑
i∈C

di

∣∣∣1− 〈d,1c〉vol(V)

∣∣∣+ 1
2

∑
i∈C

di

∣∣∣0− 〈d,1c〉vol(V)

∣∣∣
= 1

2 vol(C)
∣∣∣1− vol(C)

vol(V)

∣∣∣+ 1
2 vol(C)vol(C)

vol(V) = vol(C) vol(C)
vol(V) ,

which shows that S is an extension of Ŝ. For the statement about the Lovász
extension, note that we can write Ŝ as

Ŝ(C) =
(
∑

i∈C di) (
∑

j∈C dj)

vol(V)
=

∑
i∈C,j∈C

di dj
vol(V)

.

Thus, Ŝ can be interpreted as cut(C,C) on a graph with edge weights wij =
di dj

vol(V) , ∀i, j ∈ V . The result then follows from the Lovász extension of the
cut function in Prop. 2.23. The submodularity now follows with Prop. 2.19
from the fact that the Lovász extension is convex. �

Theorem 7.25 (Tight relaxation of NCut). It holds that

min
C⊂V

NCut(C,C) = min
f∈Rn

∑
i,j∈V wij |fi − fj |∑

i,j∈V
di dj

vol(V) |fi − fj |

= min
f∈Rn

∑
i,j∈V wij |fi − fj |
‖f −meand(f)‖1,d

.

Proof. Using the Lovász extensions of numerator and denominator given
in Prop. 2.23 and Lemma 7.24, we directly obtain the first result via The-
orem 4.2, using the fact that the above Lovász extensions are symmetric.
For the second statement, noting that the extension given in Lemma 7.24 is
convex, 1-homogeneous and non-negative, we can then apply Theorem 4.4,
which yields the result. �

110 CHAPTER 7. BALANCED GRAPH PARTITIONING

The above theorem gives two different tight relaxations of the NCut crite-
rion by choosing two different extensions of the balancing function Ŝ(C).
The function 1

2 ‖f −meand(f)‖1,d was used in Hein and Setzer [2011]. As
observed by Jost et al. [2013], the fact that the Lovász extension is maximal
in the class of 1-homogeneous extensions suggests that the Lovász extension
should lead to better performance. Indeed, it was experimentally confirmed
in Jost et al. [2013] on several graphs that the Lovász extension consistently
leads to better results in terms of the obtained objective value.

We will discuss the application of the nonlinear inverse power method
to the above functionals in the Section 7.4.3. In the following, we will show
the relation to a nonlinear eigenproblem involving the graph 1-Laplacian,
which will be introduced below.

7.4.2 Connection to eigenvectors of the graph 1-Laplacian

In this section we will show the relation of the functionals introduced in the
last section to a nonlinear eigenproblem of the form 0 ∈ ∂R(f) − λ∂S(f).
In contrast to the spectral and p-spectral case in the previous sections, the

numerator and denominator in the functionalsQ
(u)
1 andQ

(n)
1 in (7.6) are non-

differentiable, thus we will obtain set-valued operators in this section. We
first give the definitions of unnormalized and normalized graph 1-Laplacian.

Definition 7.26 (Graph 1-Laplacian). Let i ∈ V , then the unnormal-

ized graph 1-Laplacian ∆
(u)
1 and normalized graph 1-Laplacian ∆

(n)
1 are de-

fined as

(∆
(u)
1 f)i =

{ n∑
j=1

wijuij |uij = −uji, uij ∈ sign(fi − fj)
}

(∆
(n)
1 f)i =

{
1
di

n∑
j=1

wijuij |uij = −uji, uij ∈ sign(fi − fj)
}
,

where sign(x) =

{
−1, x < 0,
[−1, 1], x = 0,
1, x > 0.

The origin of the above definition will become clear in the next lemma, where
we relate the graph 1-Laplacian to the functional 1

2

∑n
i,j=1wij |fi − fj |.

Lemma 7.27. The following statements hold.

1
2

n∑
i,j=1

wij |fi − fj | =
〈
f,∆

(u)
1 f

〉
=
〈
f,∆

(n)
1 f

〉
d
,

∂
(

1
2

n∑
i,j=1

wij |fi − fj |
)

= ∆
(u)
1 f = D

(
∆

(n)
1 f

)
.

7.4. 1-SPECTRAL CLUSTERING 111

Proof. We have for each k = 1, . . . , n,

∂
(

1
2

n∑
i,j=1

wij |fi − fj |
)
k

= 1
2

n∑
i,j=1

wij ∂k (|fi − fj |) .

Note that for x ∈ R, the subdifferential of |x| is given as

sign(x) =

{
−1, x < 0,
[−1, 1], x = 0,
1, x > 0.

As each of the terms fi− fj can be obtained via an affine transformation of
f , we can apply the chain rule for subdifferentials (see e.g. Theorem 23.9 in
Rockafellar [1970]). The subdifferential is then given as{

1
2

n∑
i,j=1

wij vij (δi=k − δj=k) | vij ∈ sign(fi − fj), ∀i, j ∈ V
}
,

where we used the notation δA = 1 if A holds, and 0 else. Using the sym-
metry of W , one can rewrite this as{

1
2

n∑
j=1

wkj (vkj − vjk) | vij ∈ sign(fi − fj), ∀i, j ∈ V
}
.

Note that while vij = −vji if fi 6= fj , this is in general not the case if fi = fj ,
thus the anti-symmetry does not hold for the vij in general. We now apply
the substitution uij = 1

2 (vij − vji), which implies that uij ∈ sign(fi− fj) as
well as uij = −uji, ∀i, j ∈ V . Thus we can rewrite the subdifferential as{ n∑

j=1

wkjukj |uij = −uji, uij ∈ sign(fi − fj), ∀i, j ∈ V
}
,

which is just the unnormalized 1-Laplacian from Def. 7.26. The equality〈
f,∆

(u)
1 f

〉
= 1

2

∑n
i,j=1wij |fi − fj | now follows from Lemma 2.8 and the fact

that the function is 1-homogeneous. The statements for ∆
(n)
1 can be shown

by noting that ∆
(u)
1 f = D(∆

(n)
1 f) for all f ∈ Rn. �

Similarly to the case p > 1, the definition of eigenvectors of the graph 1-
Laplacian can be motivated via the critical points of a certain nonlinear
Rayleigh quotient. Consider now the following functionals associated to the

graph 1-Laplacians ∆
(u)
1 and ∆

(n)
1 ,

Q
(u)
1 (f) =

1
2

∑n
i,j=1wij |fi − fj |
‖f‖1

and Q
(n)
1 (f) =

1
2

∑n
i,j=1wij |fi − fj |
‖f‖1,d

.

The following proposition is an application of Theorem 3.6 in Chapter 3.

112 CHAPTER 7. BALANCED GRAPH PARTITIONING

Proposition 7.28. A necessary condition for f ∈ Rn being a critical point

of Q
(n)
1 is given as 0 ∈ ∆

(n)
1 f − λ sign(f), where λ = Q

(n)
1 (f). Moreover, if

the above condition is fulfilled for some λ ∈ R and f ∈ Rn, then λ = Q
(n)
1 (f).

The analogous result holds for the unnormalized 1-Laplacian.

Proof. Note that one has ∂ (‖f‖1)k = sign(fk), ∀k = 1, . . . , n, and anal-

ogously one obtains ∂
(
‖f‖1,d

)
k

= dk sign(fk), ∀k = 1, . . . , n. The result

then follows directly from Theorem 3.6 and Lemma 7.27. �

This result forms the motivation for the following definition of eigenvectors
and eigenvalues of the 1-Laplacian.

Definition 7.29 (Eigenvalues of graph 1-Laplacian). The real number

λ is called an eigenvalue for the normalized 1-Laplacian ∆
(n)
1 if there exists

a vector f ∈ Rn such that

0 ∈ (∆
(n)
1 f)i − λ sign(f)i ∀ i = 1, ..., n.

The vector f is called an eigenvector of ∆
(n)
1 .

Similarly, one defines the eigenvectors and eigenvalues of ∆
(u)
1 . One can now

give the following result for the smallest eigenvalue.

Lemma 7.30. The eigenvector of ∆
(u)
1 and ∆

(n)
1 corresponding to the small-

est eigenvalue is the constant vector, with eigenvalue 0.

Proof. One can easily check that the nonlinear eigenproblem is fulfilled
in both cases by setting f = 1 and λ = 0. Moreover, by Theorem 7.28

any eigenvalue λ and eigenvector f must satisfy λ = Q
(n)
1 (f). By the non-

negativity of Q
(n)
1 it follows that λ = 0 has to be the smallest eigenvalue.

Analogously one proceeds for the unnormalized case. �

The following is a characterization of the non-constant eigenvectors of the

unnormalized and normalized graph 1-Laplacians ∆
(u)
1 and ∆

(n)
1 .

Lemma 7.31. For any non-constant eigenvector f of ∆
(u)
1 it holds that

median(f) = 0, and for any non-constant eigenvector f of ∆
(n)
1 it holds that

mediand(f) = 0. The corresponding eigenvalues satisfy λ > 0.

Proof. By Theorem 7.28 any eigenvalue λ and eigenvector f must sat-

isfy λ = Q
(n)
1 (f). Using the assumption that the graph is connected, the

functional Q
(n)
1 can only be zero if f is constant. Thus any non-constant

eigenvector f must have λ > 0. Let f be an eigenvector of the normalized
graph 1-Laplacian with eigenvalue λ > 0. Then ∀i, j ∈ V there must exist

7.4. 1-SPECTRAL CLUSTERING 113

uij with uij = −uji and uij ∈ sign(fi − fj), as well as αi with αi ∈ sign(fi)
such that

0 = 1
di

n∑
j=1

wijuij − λαi.

Multiplying by di and then summing over i yields

λ
∑
i∈V

αidi =
∑
i,j∈V

wijuij =
∑
i>j

wijuij +
∑
i<j

wijuij +
∑
i=j

wijuij = 0,

where we used the anti-symmetry of uij as well as the fact that W is sym-
metric. As λ > 0 this implies

∑
i∈V αidi = 0. Thus one obtains

0 =
∑
i∈V

αidi =
∑
i∈C+

di −
∑
i∈C−

di +
∑
i∈C0

αidi,

where C+ = {i ∈ V | fi > 0}, and C− and C0 are defined analogously.
Thus we obtain − vol(C0) ≤ vol(C+) − vol(C−) ≤ vol(C0), which implies
with vol(C+) + vol(C−) + vol(C0) = vol(V) that vol(C+) ≤ 1

2 vol(V) and
vol(C−) ≤ 1

2 vol(V). Let now f∗+ be the smallest non-negative value of f ,
i.e. f∗+ = arg min{fi | fi ≥ 0}, and one similarly defines the largest non-
positive value f∗−. Then ∀f∗ ∈

[
f∗−, f

∗
+

]
it holds that vol({fi | fi > f∗}) ≤

vol(C+) ≤ 1
2 vol(V), and vol({fi | fi < f∗}) ≤ vol(C−) ≤ 1

2 vol(V). Thus
every element in the set

[
f∗−, f

∗
+

]
, which contains zero, is a weighted median.

If f contains the value fk = 0, then this is the unique weighted median. The
result for the unnormalized case works analogously. �

Due to the set-valued nature of the eigenproblem for the graph 1-Laplacian
as well as the fact that in contrast to the case p > 1 it constitutes only a
necessary condition for the critical points of the nonlinear Rayleigh quotients

Q
(u)
1 and Q

(n)
1 , the technique used in the case p > 1 is not sufficient to show

that the global minima of Q
(u)
1 and Q

(n)
1 are equal to the second eigenvalues

of the graph 1-Laplacians ∆
(u)
1 and ∆

(n)
1 . However, this fact can be proven

using the techniques applied in the convergence proof of the RatioDCA and
nonlinear IPM in Chapter 5. A variant of the following lemma was used in
Chapter 5 to show that the algorithms RatioDCA and nonlinear IPM create
a decreasing sequence of objective values and converge to the solution of a
nonlinear eigenproblem.

Lemma 7.32. Define for any g ∈ Rn, Φg(f) := 1
2

∑n
i,j=1wij |fi − fj | −

Q
(n)
1 (g) 〈f, s(g)〉, where s(g) ∈ ∂S

(n)
1 (g). Assume there exists an f ∈ Rn

with ‖f‖2 ≤ 1 such that Φg(f) < 0. Then Q
(n)
1 (f) < Q

(n)
1 (g).

Proof. The Lemma is an application of Lemma 5.5, choosing R(f) =
1
2

∑n
i,j=1wij |fi − fj | and S(f) = ‖f −mediand(f)1‖1,d. �

114 CHAPTER 7. BALANCED GRAPH PARTITIONING

An analogous statement can be made in the unnormalized case. In the
following we will give an explicit characterization of an element of the sub-

differential of S
(n)
1 and S

(u)
1 . We use the notation vol(g+) =

∑
gi>0 di and

|g+| = |{gi | gi > 0}|, and analogously define vol(g−), |g−|, vol(g0) and |g0|.

Lemma 7.33. An element s(f) ∈ ∂
(
‖f −mediand(f)1‖1,d

)
is given by

s(f)i =

{
di sign(gi), if gi 6= 0,

−di vol(g+)−vol(g−)
vol(g0) , if gi = 0,

where g = f − mediand(f). Moreover, one has s(f) ∈ ∂
(
‖g‖1,d

)
. An

element s(u)(f) ∈ ∂
(
‖f −median(f)1‖1

)
is given by

s(u)(f)i =

{
sign(gi), if gi 6= 0,

− |g+|−|g−||g0| , if gi = 0,

where g = f −median(f). Moreover, one has s(u)(f) ∈ ∂
(
‖f‖1

)
.

Proof. Note that since the vector g has weighted median 0, it holds that
|vol(g+)− vol(g−)| ≤ vol(g0), and therefore |s(f)i| ≤ di, ∀i ∈ V . Thus
s(f)i ∈ di sign(gi) = ∂

(
‖g‖1,d

)
i

which proves the second statement for the
normalized case. For the first statement, let h ∈ Rn. Then one has

〈s(f), h− f〉 =
∑
i∈V

s(f)i (hi −mediand(h))−
∑
i∈V

s(f)i (fi −mediand(f))

+
∑
i∈V

s(f)i (mediand(h)−mediand(f))

≤
∑
i∈V

di |hi −mediand(h)| −
∑
i∈V

di |fi −mediand(f)| ,

where we have used that
∑

i∈V s(f)i = 0. Thus S
(n)
1 (f) + 〈s(f), h− f〉 ≤

S
(n)
1 (h), which completes the proofs for the normalized case. The proofs for

the unnormalized case work analogously. �

Finally, the following theorem relates the solution of the tight relaxation of
the NCC and RCC to the second eigenvalue of the graph 1-Laplacian.

Theorem 7.34 (Second eigenvalue of graph 1-Laplacian). The global

minimum of the functional Q
(n)
1 is equal to the second eigenvalue λ of the

graph 1-Laplacian ∆
(n)
1 . The corresponding eigenvector g of ∆

(n)
1 is given as

g = f − mediand(f)1 for any global minimizer f of Q
(n)
1 . Moreover, let λ

be the second eigenvalue of ∆
(n)
1 , then if G is connected it holds λ = hNCC.

The analogous statement holds for the unnormalized graph 1-Laplacian.

7.4. 1-SPECTRAL CLUSTERING 115

Proof. Note that we have by Theorem 7.23,

min
f∈Rn

Q
(n)
1 (f) = min

C⊂V
NCC(C,C) = Q

(n)
1 (f∗),

where f∗ = 1C∗ and C∗ is the set achieving the optimal NCC. We first
prove that f∗ − mediand(f)1 is an eigenvector of the normalized graph 1-
Laplacian according to Def. 7.29. To show this, consider the functional Φf∗

introduced in Lemma 7.32,

Φf∗(f) := 1
2

n∑
i,j=1

wij |fi − fj | −Q(n)
1 (f∗) 〈f, s(f∗)〉 ,

where s(f∗) is given as in Lemma 7.33. Assume for the sake of contradiction
that there exists a vector f∗∗ ∈ Rn with ‖f∗∗‖2 ≤ 1 such that Φf∗(f

∗∗) < 0.

Then by Lemma 7.32, this implies that Q
(n)
1 (f∗∗) < Q

(n)
1 (f∗). By Lemma

4.1, optimal thresholding of the vector f∗∗ will lead to a set C ′ such that

Q
(n)
1 (f∗∗) ≥ Q

(n)
1 (1C′). Thus we must have NCC(C∗, C

∗
) > NCC(C ′, C

′
),

which is a contradiction to the fact that C∗ is optimal.

Thus our assumption must be wrong and the function Φf∗(f) is non-
negative in the unit ball. In fact, using the 1-homogeneity of Φf∗ , one can
conclude that the function Φf∗(f) is non-negative on Rn. Therefore, since
Φf∗(f

∗) = 0, the vector f∗ is a global minimizer of Φf∗ , which implies that

0 ∈ ∂Φf∗(f
∗) = ∆

(u)
1 (f∗)−Q(n)

1 (f∗)s(f∗). (7.10)

The first statement in Lemma 7.33 implies that f∗ is an eigenvector associ-
ated to the eigenproblem

0 ∈ ∂
(

1
2

n∑
i,j=1

wij |fi − fj |
)
− λ ∂

(
‖f −mediand(f)1‖1,d

)
, (7.11)

with eigenvalue λ∗ = Q
(n)
1 (f∗) = hNCC > 0 (assuming that the graph is con-

nected). Unfortunately this is not useful since it is the wrong eigenproblem.
However, we can use the second statement in Lemma 7.33 to conclude from
(7.10) that g∗ := f∗ − mediand(f

∗)1 is also an eigenvector with the same
eigenvalue λ∗ associated to the eigenproblem

0 ∈ ∂
(

1
2

n∑
i,j=1

wij |fi − fj |
)
− λ ∂

(
‖f‖1,d

)
, (7.12)

which is the eigenproblem from Def. 7.29. Note that while the statement
in (7.11) could have been derived directly using Theorem 3.6, the explicit
subgradient s(f∗) was needed to show that (7.12) holds.

116 CHAPTER 7. BALANCED GRAPH PARTITIONING

Thus we have proven that g∗ is an eigenvector of the graph 1-Laplacian
with eigenvalue λ∗. What is left to show is that λ∗ is equal to the smallest
eigenvalue λ2 of the normalized graph 1-Laplacian. To see this, first observe
that the eigenvector f2 corresponding to λ2 is non-constant, and therefore
has weighted median zero by Lemma 7.31. Since λ∗ > 0, we must have
λ∗ ≥ λ2. On the other hand, we have

λ2 = Q
(n)
1 (f2) ≥ min

f∈Rn
s.t. mediand(f)=0

Q
(n)
1 (f) = min

f∈Rn
Q

(n)
1 (f) = λ∗,

which shows that λ∗ = λ2. The unnormalized case works analogously. �

Thus the NCC and RCC problems can be solved globally optimal by com-
puting the second eigenvalue of the corresponding graph 1-Laplacian. In the

next section we will apply the RatioDCA/nonlinear IPM to the ratios Q
(n)
1

and Q
(u)
1 associated to normalized or unnormalized graph 1-Laplacian.

7.4.3 Solution via nonlinear inverse power method

In this section we apply the RatioDCA from Section 5.4 to the tight relax-
ation of the RCC and NCC criteria in Theorem 7.23, given as

min
f∈Rn

1
2

∑
i,j∈V wij |fi − fj |

‖f −median(f)1‖1
and min

f∈Rn

1
2

∑
i,j∈V wij |fi − fj |

‖f −mediand(f)1‖1,d
.

As numerator and denominator are convex, the algorithm boils down to the
nonlinear IPM from Section 5.3. Recall that at each step k of the algorithm,
we need to solve an inner problem of the form

fk+1 = arg min
‖u‖2≤1

{
R(u)− λk

〈
u, s(fk)

〉}
, where s(fk) ∈ ∂S(fk).

For the RCC criterion, we have R(f) = 1
2

∑
i,j∈V wij |fi − fj | and S(f) =

‖f −median(f)1‖1. An element of the subdifferential of S has been derived
in Lemma 7.33. Applying the nonlinear IPM then leads to the algorithmic
scheme in Alg. 14.

A slightly different derivation of the algorithm was given in Hein and
Bühler [2010]. Instead of directly applying the nonlinear IPM to the ratio

Q
(u)
1 , first the eigenproblem associated with the ratio Q

(u)
1 was considered,

given as 0 ∈ ∆1f − λ sign(f). Applying the nonlinear IPM to the ratio

Q
(u)
1 leads to an algorithm converging to the smallest eigenvector of the

graph 1-Laplacian, which is the constant vector. Thus a modification to the
algorithm was proposed to achieve convergence to a nonconstant eigenvector
associated to the above eigenproblem, which again leads to Alg. 14.

Furthermore, note that in Hein and Bühler [2010], the analysis of con-
vergence was done with respect to the sequence gk. Moreover, the update

7.4. 1-SPECTRAL CLUSTERING 117

14 Computing a nonconstant 1-eigenvector of the unnormalized graph 1-

Laplacian ∆
(u)
1

1: Input: weight matrix W
2: Initialization: nonconstant f0 with

∥∥f0
∥∥

2
≤ 1, accuracy ε

3: repeat
4: gk = fk −median

(
fk
)
1

5: ski =

{
sign(gki), if gki 6= 0,

− |g
k
+|−|gk−|
|gk0 |

, if gki = 0

6: fk+1 = arg min
‖f‖22≤1

{
1
2

∑n
i,j=1wij |fi − fj | − λk

〈
f, sk

〉}
7: λk+1 = Q

(u)
1 (fk+1)

8: until
|λk+1−λk|

λk
< ε

of the λk was computed as λk+1 = Q
(u)
1 (gk+1). The equivalence between the

two algorithms follows with the fact that Q
(u)
1 (gk+1) = Q

(u)
1 (fk+1).

The following properties are corollaries of Prop. 5.9, Theorem 5.10 and
Theorem 5.13 from Section 5.4.

Proposition 7.35. The sequences fk and gk produced by Alg. 14 satisfy

Q
(u)
1 (fk) > Q

(u)
1 (fk+1) and Q

(u)
1 (gk) > Q

(u)
1 (gk+1) for all k ≥ 0 or the

sequence terminates.

Proof. The statement regarding Q
(u)
1 and the sequences fk is a di-

rect corollary of Prop. 5.9. The second statement follows with Q
(u)
1 (gk) =

Q
(u)
1 (fk −median(fk)1) = Q

(u)
1 (fk). �

Theorem 7.36 (Convergence). The sequence gk produced by Alg. 14 has
a convergent subsequence that converges to an eigenvector f∗ of the un-
normalized graph 1-Laplacian. The corresponding eigenvalue is given as

λ∗ = limk→∞Q(fk) ∈
[
hRCC, Q

(u)
1 (f0)

]
.

Proof. By Theorem 5.10, the sequence fk converges to an eigenvector f∗

of the eigenproblem associated with the functional Q
(u)
1 , given as

0 ∈ ∂
(

1
2

∑
i,j∈V

wij |fi − fj |
)
− λ ∂

(
‖f −median(f)1‖1

)
,

with eigenvalue λ∗ = Q
(u)
1 (f∗). More precisely, by the proof of Theorem

5.10, we will have

0 ∈ ∆
(u)
1 (f∗)i − λ∗ s(f∗)i,

118 CHAPTER 7. BALANCED GRAPH PARTITIONING

where for f ∈ Rn, s(f) is the specific element of the subdifferential which
is used in the algorithm (see Lemma 7.33). By Lemma 7.33, it holds that
s(f∗) ∈ ∂ (‖f‖1) (f∗−median(f∗)1) = sign(f∗−median(f∗)1), which shows
that

0 ∈ ∆
(u)
1 (g∗)i − λ∗ sign(g∗i),

where g∗ = f∗ −median(f∗)1. Thus the sequence gk = fk −median(fk)1
converges to an eigenvector of the graph 1-Laplacian with eigenvalue λ∗.

Note that for any constant vector, the inner problem has objective value
zero. Thus the minimizer of the inner problem is either non-constant, or the
sequence fk terminates, in which case the previous non-constant fk is also
a minimizer. Thus we can conclude that the sequence fk is non-constant.
This implies that also the sequence gk is non-constant. Thus the eigenvector
g∗ is non-constant and by Lemma 7.31 we must have λ∗ ≥ λ2 > 0, where
λ2 is the second smallest eigenvalue of the graph 1-Laplacian. By Theorem
7.34 we have λ2 = hRCC, which concludes the proof. �

Note that the above theorem only gives a guarantee that one obtains a non-
constant eigenvector of the graph 1-Laplacian, not necessarily the second
one. However, it is clear that there cannot exist a polynomial time algo-
rithm which can guarantee to solve the problem exactly, since the original
(equivalent) combinatorial problem is NP hard. Thus in practice one runs
the algorithm several times with random initializations and takes the result
achieving the best objective value.

Moreover, given a partition of the graph, Theorem 5.13 implies that
performing one run initialized with the corresponding indicator function
either directly terminates or finds a better partition. Thus in particular it
makes sense to always perform one run initialized with the solution of the
standard spectral relaxation. As we will see in the experiments, this strategy
will lead to a performance of our method which is superior to standard
spectral clustering by a large margin.

Theorem 7.37 (Cut improvement). Let C be any set, f denote the re-
sult of Alg. 14 after initializing with the vector 1

|C|1C , and Cf be the set
obtained by optimal thresholding of f . Either Alg. 14 terminates after one
iteration, or it holds that RCC(C,C) > RCC(Cf , Cf).

Proof. This is a direct corollary of Theorem 5.13. �

For the normalized case, the derivation is analogous and leads to the method
in Alg. 15. The analogous statements to Prop. 7.35, Theorem 7.36 and The-
orem 7.37 can also be made for Alg. 15.

7.4. 1-SPECTRAL CLUSTERING 119

15 Computing a nonconstant 1-eigenvector of the normalized graph 1-

Laplacian ∆
(n)
1

1: Input: weight matrix W
2: Initialization: nonconstant f0 with

∥∥f0
∥∥

2
≤ 1, accuracy ε,

3: repeat
4: gk = fk −mediand

(
fk
)
1

5: ski =

{
di sign(gki), if gki 6= 0,

di
vol(gk−)−vol(gk+)

vol(gk0)
, if gki = 0

6: fk+1 = arg min
‖f‖22≤1

{
1
2

∑n
i,j=1wij |fi − fj | − λk

〈
f, sk

〉}
7: λk+1 = Q

(n)
1 (fk+1)

8: until
|λk+1−λk|

λk
< ε

7.4.4 Solution of the inner problem

The inner problem is convex, thus a solution can be computed by any stan-
dard method for solving convex nonsmooth programs, see the discussion in
Chapter 6. However, in this particular case we can exploit the structure of
the problem and use the equivalent dual formulation of the inner problem.

Lemma 7.38. The inner problem is equivalent to

min
α∈R|E|
‖α‖∞≤1

Ψ(α) :=
∥∥Aα− λksk∥∥2

2
,

where the operator A : R|E| → R is for α ∈ R|E| defined as (Aα)i :=
1
2

∑
j | (i,j)∈E wij (αij − αji). The gradient of Ψ is given as

(∇Ψ(α))rs = wrs (zr − zs) , where z = Aα− λksk.

Moreover, an upper bound on the Lipschitz constant of the gradient of Ψ is
given by 2 maxr

∑
s | (r,s)∈E w

2
rs.

Proof. First, we note that

1
2

n∑
i,j=1

wij |ui − uj | = max
α∈R|E|
‖α‖∞≤1

1
2

∑
(i,j)∈E

wij(ui − uj)αij

= max
α∈R|E|
‖α‖∞≤1

1
2

∑
(i,j)∈E

wij(αij − αji)ui = max
α∈R|E|
‖α‖∞≤1

〈u,Aα〉 .

Both u and α are constrained to lie in non-empty compact, convex sets,
and thus we can reformulate the inner objective by the standard min-max-

120 CHAPTER 7. BALANCED GRAPH PARTITIONING

theorem (see e.g. Corollary 37.3.2. in Rockafellar [1970]) as follows:

min
‖u‖2≤1

max
α∈R|E|
‖α‖∞≤1

〈
u,Aα

〉
− λk

〈
u, sk

〉
= max

α∈R|E|
‖α‖∞≤1

min
‖u‖2≤1

〈
u,Aα− λksk

〉
= max

α∈R|E|
‖α‖∞≤1

−
∥∥Aα− λksk∥∥

2
.

In the last step we have used that the solution of the minimization of the
linear function over the Euclidean unit ball is given by

u∗ = − Aα− λksk

‖Aα− λksk‖2

,

if
∥∥Aα− λksk∥∥ 6= 0 and otherwise u∗ is an arbitrary element of the Eu-

clidean unit ball. Transforming the maximization problem into a minimiza-
tion problem finishes the proof of the first statement. Regarding the gradi-
ent, a straightforward computation shows that

(∇Ψ(α))rs =
∑
i∈V

2
(

(Aα)i − λkski
)
·
(

1
2wisδi=r −

1
2wirδi=s

)
= wrs

((
(Aα)r − λkskr

)
−
(

(Aα)s − λksks
))

.

Thus, regarding the Lipschitz constant, we obtain for α, α′ ∈ R|E|,

∥∥∇Ψ(α)−∇Ψ(α′)
∥∥2

2
=

∑
(r,s)∈E

w2
rs

(
(Aα)r − (Aα′)r − (Aα)s + (Aα′)s

)2

≤ 2
∑

(r,s)∈E

w2
rs

(
(Aα)r − (Aα′)r

)2
+ 2

∑
(r,s)∈E

w2
rs

(
(Aα)s − (Aα′)s

)2
= 4

∑
(r,s)∈E

w2
rs

(
(Aα)r − (Aα′)r

)2
,

where we used the fact that for a, b ∈ R it holds that (a− b)2 ≤ 2a2 + 2b2,
as well as the symmetry of W . This can be further rewritten as

∑
(r,s)∈E

w2
rs

(∑
j | (r,j)∈E

wrj(αrj − α′rj)− (αjr − α′jr)
)2

≤ 2
∑

(r,s)∈E

w2
rs

(∑
j | (r,j)∈E

wrj(αrj − α′rj)
)2

+ 2
∑

(r,s)∈E

w2
rs

(∑
j | (r,j)∈E

wrj(αjr − α′jr)
)2

7.5. SYMMETRIC VERTEX EXPANSION 121

≤ 2
∑

(r,s)∈E

w2
rs

∑
j | (r,j)∈E

w2
rj

∑
i | (r,i)∈E

(αri − α′ri)2

+ 2
∑

(r,s)∈E

w2
rs

∑
j | (r,j)∈E

w2
rj

∑
i | (r,i)∈E

(αir − α′ir)2

≤ 2
(
max
r

∑
s | (r,s)∈E

w2
rs

)2 ∑
(r,i)∈E

(αri − α′ri)2

+ 2
(
max
r

∑
s | (r,s)∈E

w2
rs

)2 ∑
(r,i)∈E

(αir − α′jr)2,

where we used the Cauchy-Schwarz inequality in the second step. Finally,∥∥∇Ψ(α)−∇Ψ(α′)
∥∥2

2
≤ 4

(
max
r

∑
s | (r,s)∈E

w2
rs

)2 ∥∥α− α′∥∥2

2
,

thus the Lipschitz constant is upper bounded by 2 maxr
∑

s | (r,s)∈E w
2
rs. �

In contrast to the primal problem, the objective of the dual problem is
smooth. It can be efficiently solved using Nesterov’s fast projected gradient
method [Nesterov, 1983, Beck and Teboulle, 2009], see Section 6. The only
input is an upper bound on the Lipschitz constant of the gradient of the
objective, which is given in Lemma 7.38.

Note that in the algorithm can be implemented efficiently with a memory
requirement of α equal to the number of nonzero entries of W . Moreover,
it can be further optimized as follows: Note that we can write ∀i, j ∈ V ,
αij−αji = 1

2(αij−αji)− 1
2(αji−αij). Thus, at each step of the algorithm, we

can replace the variable α by the variable α̂ defined as α̂ij := 1
2(αij − αji),

as ‖α̂‖∞ ≤ 1 and α and α̂ achieve the same objective value of the inner
problem. However, in contrast to α, the vector α̂ is anti-symmetric, i.e. α̂ij =
−α̂ji. Thus in an efficient implementation we only need to consider the
upper triangular part of α̂, the remaining entries can be hard-coded in the
implementation, thus reducing the memory requirement by a factor 2.

Thus the most expensive part of each iteration of the algorithm is a
sparse matrix multiplication, which scales linearly in the number of edges.
Nesterov’s method provides a good solution in a few steps which guarantees

descent in functionals Q
(u)
1 or Q

(n)
1 and thus makes the nonlinear IPM very

fast. The resulting algorithm is shown in Alg. 16. Here, PB∞(1) denotes the
projection on the L∞ unit ball, given as B∞(1) := {x ∈ R | |x| ≤ 1}.

7.5 Symmetric vertex expansion

In this section we consider a variant of the above balanced partition problems
based on the vertex expansion of a set S. The minimum vertex expansion

122 CHAPTER 7. BALANCED GRAPH PARTITIONING

16 Solution of the dual inner problem with Nesterov’s method

1: Input: Lipschitz-constant L of ∇Ψ,
2: Initialization: θ0 = 1, α0 ∈ R|E|,
3: repeat
4: zt = Aαt − λksk
5: βt+1

rs = PB∞(1)

(
αtrs − 1

Lwrs
(
ztr − zts

))
6: θt+1 =

1+
√

1+4(θt)2

2 ,

7: αt+1
rs = βt+1

rs + θt−1
θt+1

(
βt+1
rs − βtrs

)
.

8: until duality gap < ε

of a set C is given as (see e.g. Hoory et al. [2006])

min
|C|≤V2

|N(C)|
|C|

,

where N(C) denotes the set of vertices in V \C which are adjacent to C.
Note that the above criterion is not symmetric, as in general we do not have
N(C) = N(C). Since we are interested in obtaining a partition of the graph,
we therefore consider a variant of the above problem called the symmetric
vertex expansion, given as (see e.g. Louis et al. [2013])

min
C⊂V

∣∣N(C) ∪N(C)
∣∣

min{|C| ,
∣∣C∣∣} =: VE(C,C). (7.13)

A normalized variant of the above problem is given as

min
C⊂V

∣∣N(C) ∪N(C)
∣∣

min{vol(C), vol(C)}
=: NVE(C). (7.14)

Thus, the difference to the ratio Cheeger cut RCC and normalized Cheeger
cut NCC considered in the previous sections (see Eq. 7.2 and Eq. 7.4) is that
while in the case of the Cheeger cut we consider the sum of the edge weights
between the two clusters, in the case of the symmetric vertex expansion we
consider the number of vertices involved in the cut.

While the criterion looks similar to the Cheeger cut criterion from the
last section, it often behaves very differently. In Figure 7.7 we give an exam-
ple where optimizing vertex expansion and Cheeger cut lead to completely
different clusters. In this example, we have four fully connected subgraphs
of k nodes each (k > 8), some of which have connections to the other con-
nected components (here we draw only the nodes which have connections to
the other parts of the graph).

We first consider the problem of finding the optimal ratio Cheeger cut of
the graph. Cutting the graph horizontally, i.e. separating the fully connected

7.5. SYMMETRIC VERTEX EXPANSION 123

k nodes (fully connected)

k nodes (fully connected)

k nodes (fully connected)

k nodes (fully connected)

Figure 7.7: Example where optimizing symmetric vertex expansion and
Cheeger cut produce completely different results. The optimal Cheeger cut
cuts horizontally, while the optimal vertex expansion cuts vertically.

graphs on the top from the ones on the bottom, cuts 6 vertices and leads
to a balanced partition of 2k vertices in each cluster. Thus the Cheeger cut
is 3

k . On the other hand, cutting the graph vertically leads to a Cheeger
cut of 8

2k = 4
k . Moreover, separating one of the connected components leads

to a Cheeger cut of 7
k . Finally, cutting inside any of the fully connected

components leads to a cut of at least k, while the denominator (balancing
term) is at most 2k, and thus the Cheeger cut is lower bounded by 1

2 , which
is strictly larger than 3

k , since k > 8. Thus the optimal Cheeger cut is given
by the horizontal cut.

On the other hand, when considering the number of involved vertices in
the cut, instead of the sum of the edge weights, the results are different. In
the case of the horizontal cut, 12 vertices are involved in the cut, leading
to a vertex expansion of 6

k , whereas only 8 are involved in the vertical cut,
leading to a vertex expansion of 4

k . Moreover, separating one of the fully
connected components leads to a vertex expansion of 10

k . Finally, cutting
inside one of the fully connected components involves at least k vertices and
thus with the same argument as before leads to a vertex expansion of at
least 1

2 . Thus, since k > 8, the optimal vertex expansion is achieved by the
vertical cut.

An important difference between Cheeger cut and symmetric vertex ex-
pansion is that the latter is invariant to changes in the weights between
vertices, as well as addition of edges between nodes which are already at

124 CHAPTER 7. BALANCED GRAPH PARTITIONING

the boundary between the two sets. Thus, optimizing symmetric vertex ex-
pansion is suitable for partitioning problems for instance in communication
networks where the cost is associated with the number of nodes involved in
the cut, rather than the total edge weight of the cut itself.

7.5.1 Tight relaxation of symmetric vertex expansion

In this section, we give the tight relaxation of the symmetric vertex expan-
sion problems in (7.13) and (7.14). In contrast to before, we do not specify
the Lovász extension of the numerator explicitly. The reason is that an ex-
plicit form of the Lovász extension will not be necessary to solve the inner
problem appearing in RatioDCA, as described in Chapter 6.

Instead, we will make use of Lemma 2.20 and express the Lovász exten-
sion implicitly in terms of its subgradient, which can be computed directly
using only function evaluations of the original set objective. In the next sec-
tion we will then solve the inner problem efficiently using the bundle-level
method discussed in Section 6.5, which requires only the evaluation of the
subgradient in each step.

We now state the tight relaxation for the symmetric vertex expansion
problems. We use again the median and weighted median, see Eq. (7.7), as
well as the sets Ci := {j ∈ V |fj ≥ fi} for all i = 1, . . . , n.

Theorem 7.39 (Tight relaxation of symmetric vertex expansion).
It holds that

min
C⊂V

∣∣N(C) ∪N(C)
∣∣

min{|C| ,
∣∣C∣∣} = min

f∈Rn
〈r(f), f〉

‖f −median(f)1‖1
and

min
C⊂V

∣∣N(C) ∪N(C)
∣∣

min{vol(C), vol(C)}
= min

f∈Rn
〈r(f), f〉

‖f −mediand(f)1‖1,d
,

where r(f)i = |N(Ci)|−|N(Ci+1)|+
∣∣N(Ci)

∣∣− ∣∣N(Ci+1)
∣∣, for all i = 1, . . . , n.

Proof. By Lemma 2.20, the Lovász extension of
∣∣N(C) ∪N(C)

∣∣ is given as
〈r(f), f〉, where r(f)i =

∣∣N(Ci) ∪N(Ci)
∣∣ − ∣∣N(Ci+1) ∪N(Ci+1)

∣∣. Using the
fact that N(C) and N(C) are disjunct, we obtain the above expression for
r(f). The Lovász extension of the denominator has been shown in Lemma
7.22. We can now apply Theorem 4.2. Finally, using the fact that the ratio
is symmetric, we can replace optimization over Rn+ by optimization of Rn,
which yields the result. �

7.5.2 Solution via nonlinear inverse power method

As before, we use the nonlinear IPM from Section 5.3 to optimize the ratio
derived in Theorem 7.39. However, in contrast to before, we replace the

7.5. SYMMETRIC VERTEX EXPANSION 125

2-norm constraint ‖f‖2 ≤ 1 in the inner problem by an ∞-norm constraint
‖f‖∞ ≤ 1 (see the discussion in Section 5.3). The inner problem solved in
each step k of the nonlinear IPM now has the form

min
‖f‖∞≤1

〈
r(f)− λksk, f

〉
,

where r(f) is an element of the subdifferential of the numerator (according to
Theorem 7.39), and sk is an element of the subdifferential of the denominator
at step k (which is constant for the inner problem at step k). Since the inner
problem has the general form in 6.16, we can solve it using the bundle-level
method discussed in Section 6.5.

Alg. (17) shows the resulting algorithm for the (unnormalized) symmet-
ric vertex expansion problem. Analogously one obtains the algorithm in
the normalized case. Similarly to before, the general convergence properties
of the nonlinear IPM imply the following results for Alg. 17, which are di-
rect corollaries of the results in Prop. 5.9, Theorem 5.10 and Theorem 5.13.
We omit the exact form of the nonlinear eigenproblem associated to the
problems in (7.13) and (7.14).

17 Optimizing the symmetric vertex expansion

1: Input: weight matrix W
2: Initialization: nonconstant f0 with

∥∥f0
∥∥
∞ ≤ 1, accuracy ε

3: repeat
4: gk = fk −median

(
fk
)
1

5: ski =

{
sign(gki), if gki 6= 0,

− |g
k
+|−|gk−|
|gk0 |

, if gki = 0

6: fk+1 = arg min
‖f‖∞≤1

〈
r(f)− λksk, f

〉
7: λk+1 = Q

(u)
1 (fk+1)

8: until
|λk+1−λk|

λk
< ε

Theorem 7.40 (Convergence). Let Q denote the functional in Theorem
7.39. The sequence fk produced by Alg. 17 satisfies Q(fk) > Q(fk+1) for
all k ≥ 0, or the sequence terminates. Moreover, fk has a subsequence
converging to a solution of the nonlinear eigenproblem associated to Q.

Theorem 7.41 (Vertex expansion improvement). Let C be any feasi-
ble set, f denote the result of Alg. 17 after initializing with 1

|C|1C , and Cf
be the set obtained by optimal thresholding of f . Either Alg. 17 terminates
after one iteration, or the set Cf is feasible and it holds that VE(C,C) >
VE(Cf , Cf).

126 CHAPTER 7. BALANCED GRAPH PARTITIONING

7.6 Multi-partitioning

Up to now we have only considered bi-partitions into two sets C and C.
Usually one is interested in computing a multi-partition of the graph into
sets (C1, . . . , Ck), where ∪i=1,...,k Ci = V . To avoid overlapping clusters,
typically one also requires ∩i=1,...,k Ci = ∅.

A generalization of the ratio cut criterion to the multi-partition case is
given as [von Luxburg, 2007],

RCut(C1, . . . , Ck) =
k∑
i=1

cut(Ci, Ci)

|Ci|
,

and analogously for the normalized cut. Note that there seems to be no gen-
erally accepted multi-partition version of the Cheeger cut objective. Inter-
preting the RCut as L1 norm and the RCC as L∞ norm, a straight-forward
way to define a multi-partition version of the ratio Cheeger cut is given as

RCC(C1, . . . , Ck) = max
i∈{1...k}

cut(Ci, Ci)

|Ci|
,

and similarly for the normalized Cheeger cut. Another generalization of the
Cheeger cut is given by the objective (see Luo et al. [2010])

RCC′(C1, . . . , Ck) = 1
k

k∑
i=1

cut(Ci, Ci)

mini∈{1...k} |Ci|
,

Yet another different generalization of the Cheeger cut is given as (see Bres-
son et al. [2013])

RCC′′(C1, . . . , Ck) = 1
k

k∑
i=1

cut(Ci, Ci)

min
{
|Ci|, |Ci|

} .
Similarly, one could define generalizations of the symmetric vertex expan-
sion in (7.13) and (7.14). Since it is unclear which of the above general-
izations is the best choice for a given application, we focus in this thesis
on the established multi-cut variants of the RCut and NCut criterion. To
compute a multi-partition into k clusters, we use a greedy recursive bi-
partitioning scheme, i.e. in each step, we partition each cluster tentatively
and then choose to keep the partition yielding a better objective in the multi-
cut criterion. Clusters are split consecutively until the desired number of
clusters is reached.

A different approach used in standard spectral clustering is to compute
the set of k eigenvectors of the unnormalized/normalized graph Laplacian,
which can be seen as a relaxation of the multi-cut version of the NCut crite-
rion [von Luxburg, 2007]. In the new k-dimensional representation defined

7.6. MULTI-PARTITIONING 127

by the first k eigenvectors, one then applies a standard clustering algorithm,
for instance k-means [MacQueen, 1967]. This approach usually yields better
cuts in terms of the multi-cut objective than the recursive splitting scheme.

After the initial publication of p-spectral clustering in [Bühler and Hein,
2009a], a generalization to multiple eigenvectors was proposed by Luo et al.
[2010]. Their main observation was that given two eigenvectors f and g of

the graph Laplacian ∆
(u)
p with eigenvectors λf and λg, one observes that

they satisfy approximately (up to the second order Taylor expansion),

〈φp(f), φp(g)〉 ≈ 0,

a property referred to as p-orthogonality which generalizes the fact that〈
φp(f),1

〉
= 0 as shown in Bühler and Hein [2009b]. Luo et al. [2010]

then showed that under the assumption that the above property is fulfilled
exactly, a set of k eigenvectors with different eigenvalues is given as the local
optimal solution of the problem

min
F

J(F) =
k∑
i=1

Qp
(
f (i)
)

subject to
〈
φp
(
f (i)
)
, φp
(
f (j)

)〉
= 0, ∀i 6= j,

where F = [f (1), . . . , f (k))] ∈ Rn×k. The set of feasible variables F can
be seen as a generalization of the Stiefel manifold [Absil et al., 2008] to p-
orthogonal functions. Since the above problem is intractable, the feasible set
was then replaced by the Stiefel manifold (i.e. the set of variables F ∈ Rn×k
such that F TF = I) and the problem was solved using standard manifold
optimization techniques [Absil et al., 2008]. Then it was argued that the
result gives a good approximate solution of the original problem. Given the
higher-dimensional embedding defined by the solution of their method, they
then use a standard clustering algorithm such as K-means, as in the usual
approach in standard spectral clustering.

While in their experiments their method was shown to perform well in
practice (in particular outperformed p-spectral clustering with p = 1.2 on
several datasets), it is unclear what is the exact connection to the eigenvec-
tors of the graph p-Laplacian. Moreover, it is also unclear how the relaxation
of Luo et al. [2010] relates to the optimum of the original multi-cut objective.

Recently, Bresson et al. [2013] proposed an algorithm for total variation
based multi-class clustering as follows. They considered the problem of
minimizing the following variant of the Cheeger multi-cut problem,

k∑
i=1

cut(Ci, Ci)

min
{
λ|Ci|, |Ci|

} ,
over all disjoint partitions (C1, . . . , Ck) of the vertex set. The parameter λ
is used to control the balance between set sizes. Setting λ = k − 1 ensures

128 CHAPTER 7. BALANCED GRAPH PARTITIONING

that the maximum of each denominator (viewed separately) is achieved if
|Ci| = n

k , thus in total it leads to a bias towards balanced partitions. The
problem was first transformed into the equivalent problem

min
f (i)∈{0,1}n, i=1...k

k∑
i=1

1
2

∑
r,s∈V wrs|f

(i)
r − f (i)

s |∥∥f (i) −medianλ(f (i))1
∥∥

1,λ

(7.15)

subject to
k∑
i=1

f (i) = 1,

where the λ-median is the k + 1-st largest value in f , for k = bn/(λ + 1)c,
and here ‖f‖1,λ denotes the asymmetric L1 norm,

‖f‖1,λ :=

n∑
i=1

|fi|λ , where |t|λ =

{
λt, if t ≥ 0

−t if t < 0
.

The problem was then relaxed by replacing the constraint f (i) ∈ {0, 1}n by
f (i) ∈ [0, 1]n. However, note that this is not a tight relaxation. Moreover,
note that while in (7.15) the simplex constraint together with the fact that
the vectors f (i) have only values 0 and 1 implies that the vectors f (i) are
mutually orthogonal, this is not the case for the relaxed version anymore.
The authors then developed a proximal splitting scheme to optimize the
resulting continuous objective. In the experiments we compare the obtained
results against the results by our method.

Since at the moment we are not able to compute higher eigenvectors of
the graph 1-Laplacian, we perform the recursive multi-partitioning discussed
above. However, we will show in the experiments that 1-spectral clustering
with the above recursive splitting scheme still outperforms spectral cluster-
ing when using the higher eigenvectors.

7.7 Experimental results

In all experiments, given some data x1, . . . , xn, we first construct a symmet-
ric K-NN graph G(V,E,W) representing the similarity between data points,
i.e. each vertex in V corresponds to a data point and two vertices i and j
are connected if point xi is among the K nearest neighbors of point xj or
vice versa. We choose K = 10 and determine the neighborhood of a point
according to the Euclidean distance.

The weights are usually chosen to reflect the similarity between the cor-
responding points. A common approach is to use Gaussian weights

wij = e−
1
σ2
‖xi−xj‖2 ,

where the parameter σ controls the width of the Gaussian, and thus should
be chosen in such a way that it reflects the scale of the given data. In order to

7.7. EXPERIMENTAL RESULTS 129

be able to cope with data with different local scales, we adopt an approach
similar to the one in Zelnik-Manor and Perona [2004], where instead of
choosing a single scaling parameter σ, we compute for each point xi a local
scaling parameter σi which we set to a factor α times the Euclidean distance
of xi to its K-nearest neighbor. In the experiments, we chose α = 1

2 . The
weights wij are then computed as

wij = max{si(j), sj(i)}, where si(j) = e
− 1

σ2
i

‖xi−xj‖2
.

Since we are applying the methods to datasets with known class structure,
we can use this information to evaluate the quality of the found clusterings
by checking the agreement with the true class structure. Thus, for a dataset
with known number of classes k the data is first clustered into k clusters.
Then, in order to evaluate the clustering, we treat our clustering problem as a
classification problem and use the obtained clustering to predict a ’label’ for
each point. The label of each cluster is determined via a majority vote. We
now define our error measure as the relative number of times the ’predicted’
label disagrees with the ’true’ label. This leads us to the following error
measure

error(C1, .., Ck) =
1

|V |

k∑
i=1

∑
j∈Ci

δYj 6=Y ′i , (7.16)

where for a given vertex j ∈ Ci, Yj denotes the true label of j and Y ′i is the
dominant label in cluster Ci. Thus the above error measure quantifies the
agreement of the found clusters C1, . . . , Ck with the class structure.

7.7.1 High-dimensional noisy two moons

As in Bühler and Hein [2009a], the two moons dataset is generated as two
half-circles in R2 embedded into a d-dimensional space where Gaussian noise
N (0, σ21d) is added. In Fig. 7.8, we show the edge structure of the resulting
graph for d = 100, n = 2000 and σ2 = 0.02. Note that this dataset is far
from being trivial since the high-dimensional noise has corrupted the graph.

We perform balanced graph partitioning according to the normalized
Cheeger cut criterion on the high-dimensional two moons dataset with the
goal of separating the two half-circles. We compare the performance of
normalized spectral clustering (p = 2), normalized p-spectral clustering for
different values of p with 1 < p < 2 as presented in Bühler and Hein [2009a],
as well as 1-spectral clustering, i.e. the inverse power method applied to the
tight relaxation of the normalized Cheeger cut criterion (p = 1) proposed
in this chapter. In the case of the inverse power method, we use the best
result of 10 runs with random initializations and one run initialized with the
second eigenvector of the normalized graph Laplacian.

In Fig. 7.8 we plot the values of NCC, the eigenvalue of the graph p-
Laplacian, NCut as well as the error. The explicit values are given in Table

130 CHAPTER 7. BALANCED GRAPH PARTITIONING

Figure 7.8: Left: Plot of the edge structure of the two moons data set, 2000
points in 100 dimensions, noise variance 0.02. Right: Values of NCC, the

eigenvalue λ
(2)
p , NCut and the error obtained for different values of p.

7.1. One observes that for decreasing values of p, the NCC values and
error values decrease. The best error is achieved for p = 1. Moreover, we
observe that (as predicted by Theorem 7.34) the second eigenvalue of the
1-Laplacian is equal to the obtained Cheeger cut. Note that also for p > 1
we always report the NCC and NCut criteria and not the corresponding
RCCp criterion. Thus the curve for the NCC criterion is slightly below the
corresponding functional value for p = 1.2 and p = 1.1. One easily checks
that the value for the second eigenvalue is still within the bounds given by
the generalized isoperimetric inequality (Theorem 7.20).

Note that we have optimized the NCC criterion for each method up to
now. Thus, while we see a significant decrease also in the NCut criterion,
the best NCC partition does not correspond to the best NCut partition in
this case. We repeat the experiment with the method based on the tight
relaxation of the NCut criterion. As expected, in this case we obtain an
even better NCut value. Moreover, analogously to the result for the NCC
criterion, the objective value at the optimal point (which corresponds to
the eigenvalue of the corresponding nonlinear eigenproblem) is equal to the
obtained NCut value. Note that we obtain a slightly higher error value, thus
optimizing NCC seems to be the better choice for this dataset.

In the left column of Fig. 7.9 we show the eigenvector of the graph p-
Laplacian for p = 2.0, 1.4, 1.2, 1.1, 1.0. In the middle column, the values of
the eigenvector have been sorted in increasing order. For p = 2, the values
are spread over the interval, whereas for decreasing values of p, they concen-
trate on two peaks. The third column in Fig. 7.9 shows the corresponding
clusters found by optimal thresholding according to the NCC criterion. For
p→ 1, the clustering is almost perfect despite the difficulty of this dataset.

We repeat the experiment for the ratio Cheeger cut (RCC), comparing
the performance of standard unnormalized spectral clustering (p = 2), un-

7.7. EXPERIMENTAL RESULTS 131

Table 7.1: Results of graph partitioning on the high dimensional noisy two
moons dataset according to NCC and NCut criteria.

Method NCC NCut Error Eigenvalue

Standard spectral 0.0737 0.1461 0.1595 0.0250
p-spectral (p = 1.9) 0.0723 0.1445 0.1535 0.0282
p-spectral (p = 1.8) 0.0714 0.1424 0.1480 0.0318
p-spectral (p = 1.7) 0.0705 0.1408 0.1375 0.0358
p-spectral (p = 1.6) 0.0681 0.1361 0.1210 0.0401
p-spectral (p = 1.5) 0.0621 0.1242 0.0960 0.0449
p-spectral (p = 1.4) 0.0579 0.1155 0.0765 0.0497
p-spectral (p = 1.3) 0.0540 0.1036 0.0480 0.0539
p-spectral (p = 1.2) 0.0534 0.1029 0.0420 0.0561
p-spectral (p = 1.1) 0.0533 0.1035 0.0370 0.0551

1-spectral (Tight NCC) 0.0533 0.1036 0.0365 0.0533
1-spectral (Tight NCut) 0.0538 0.1024 0.0405 0.1024

normalized p-spectral clustering (p = 1.1) as well as 1-spectral clustering
(tight relaxation of RCC). Moreover, we evaluate the TV-based method for
RCC minimization of Szlam and Bresson [2010]. In the case of the IPM,
we use the best result of 10 runs with random initializations and one run
initialized with the second eigenvector of the unnormalized graph Laplacian.
For the method of Szlam and Bresson [2010] we use the normalized graph
Laplacian as proposed by the authors and add 10 random runs.

Table 7.2 shows the average RCC and error for 100 draws of a two-moons
dataset with 2000 points using the same parameters as above. IPM and the
TV-based method yield similar results, slightly better than 1.1-spectral and
clearly outperforming standard spectral clustering. In terms of runtime,
inverse power method and Szlam and Bresson [2010] are in the same order
of magnitude (∼ 5 seconds per run).

Table 7.2: Results of graph partitioning on the high dimensional noisy two
moons dataset according to RCC criterion.

Method Avg. RCC Avg. error

Standard spectral 0.0247 (± 0.0016) 0.1685 (± 0.0200)
p-spectral (p = 1.1) 0.0196 (± 0.0016) 0.0578 (± 0.0285)

Szlam and Bresson [2010] 0.0195 (± 0.0015) 0.0491 (± 0.0181)
1-spectral (Tight RCC) 0.0195 (± 0.0015) 0.0462 (± 0.0161)

132 CHAPTER 7. BALANCED GRAPH PARTITIONING

Figure 7.9: Results for the two moons data set, 2000 points in 100 dimen-
sions, noise variance 0.02. First column, from top to bottom: Second eigen-
vector of the p-Laplacian for p = 2.0, 1.4, 1.2, 1.1, 1.0. Second column: Values
of the second eigenvector sorted in increasing order. Last row: Resulting
clustering after finding optimal threshold according to the NCC criterion.

7.7. EXPERIMENTAL RESULTS 133

7.7.2 Graph partitioning benchmark

In this experiment we evaluate our method on several graphs downloaded
from the graph partitioning archive [Soper et al., 2004, Walshaw]. This
archive consists of several unweighted sparse graphs of medium to large size.
We evaluate our method on a subset of the available datasets with different
sizes and levels of sparsity, including the two largest datasets available in the
benchmark. In Table 7.3 we summarize the properties of the used datasets.

Table 7.3: Benchmark datasets from the graph partitioning archive [Wal-
shaw] used in the experiment.

Dataset |V | |E| Avg. Degree

add20 2395 7462 6.2
data 2851 15093 10.6
3elt 4720 13722 5.8

whitaker3 9800 28989 5.9
cs4 22499 43858 3.9

t60k 60005 89440 3.0
finan512 74752 261120 7.0
fe ocean 143437 409593 5.7

m14b 214765 1679018 15.6
auto 448695 3314611 14.8

Our goal is to find the bi-partition of the graphs achieving the optimal
RCC value. We compare the result obtained by 1-spectral clustering (tight
relaxation of RCC criterion) to standard unnormalized spectral clustering,
as well as unnormalized p-spectral clustering for p = 1.1. Next we repeat
the experiment for the NCC criterion, using the normalized variants of the
above methods.

The results are summarized in Table 7.4 for both experiments, where
we report the obtained Cheeger cut values (RCC or NCC) as well as the
total runtime in seconds. In order to demonstrate our quality guarantee
(Theorem 7.37), in the case of 1-spectral clustering we first perform one run
initialized with the thresholded second eigenvector of the graph Laplacian.
The results are shown in the third column. In the fourth column, we add
100 random initializations.

1
34

C
H
A
P
T
E
R

7.
B
A
L
A
N
C
E
D

G
R
A
P
H

P
A
R
T
IT

IO
N
IN

G

Table 7.4: Obtained RCC and NCC values as well as total runtime in seconds on several datasets from the graph partitioning
archive. In the case of 1-Spectral clustering, the third column denotes the result of one run initialized with the solution of
the standard spectral relaxation. In the fourth column, we add 100 random initializations. 1-Spectral clustering consistently
outperforms the other methods in terms of obtained Cheeger cut values.

Standard Spectral p-Spectral (p = 1.1) 1-Spectral (init spectral) 1-Spectral (+100 runs)
RCC Time RCC Time RCC Time RCC Time

add20 0.1667 2 0.1579 142 0.1579 3 0.1579 53
data 0.02857 2 0.02857 112 0.02857 4 0.02857 76
3elt 0.04246 2 0.03856 407 0.0376 6 0.03747 84

whitaker3 0.02703 5 0.02654 550 0.02653 12 0.02576 166
cs4 0.04041 3 0.0336 1907 0.03331 13 0.03286 334

t60k 0.002723 451 0.002232 11604 0.002069 769 0.002069 1583
finan512 0.004334 339 0.004334 4735 0.004334 571 0.004334 2618
fe ocean 0.007701 253 0.004516 19262 0.004436 423 0.004436 3722

m14b 0.03727 287 0.03621 50682 0.03576 948 0.03572 29368
auto 0.04834 761 0.04657 96692 0.04618 2196 0.04431 42397

Standard Spectral p-Spectral (p = 1.1) 1-Spectral (init spectral) 1-Spectral (+100 runs)
NCC Time NCC Time NCC Time NCC Time

add20 0.07407 0 0.06667 218 0.06667 1 0.06667 45
data 0.002714 2 0.002714 343 0.002714 4 0.002714 75
3elt 0.007267 3 0.006692 556 0.006471 13 0.006418 85

whitaker3 0.004568 7 0.004487 513 0.004485 15 0.004355 169
cs4 0.01045 5 0.008688 3087 0.008614 16 0.008474 337

t60k 0.0009201 705 0.0007624 12989 0.0006939 1224 0.0006939 1933
finan512 0.0006613 116 0.0006613 5377 0.0006204 236 0.0006204 2400
fe ocean 0.001346 348 0.0008312 25452 0.0007822 563 0.0007822 3936

m14b 0.002385 214 0.002319 23750 0.002288 787 0.002285 29348
auto 0.003256 576 0.003139 93306 0.003105 1990 0.002986 46834

7.7. EXPERIMENTAL RESULTS 135

For both RCC and NCC criterion, we observe that standard spectral
clustering is significantly outperformed by the other methods in terms of
obtained Cheeger cut value. Moreover, we see that in most cases, performing
one run of 1-spectral clustering initialized with the thresholded eigenvector of
the graph Laplacian is already sufficient to achieve a significant improvement
in terms of Cheeger cut values. Note that we are significantly faster than
p-spectral clustering and in the same order of magnitude as the standard
spectral relaxation. Finally, further improvement in terms of Cheeger cut
values can be obtained by adding additional random initializations, however
at the cost of an increased runtime.

7.7.3 Symmetric vertex expansion

In this section we evaluate our method for the symmetric vertex expansion
problem. We again use a subset of the datasets obtained from the graph
partitioning archive already used in the previous section.

As before, we compare against standard spectral clustering, where we
threshold the second eigenvectors of the unnormalized and normalized graph
Laplacian according to the VE criterion and take the best result. Similarly,
we take the best result of thresholding the second eigenvector of the nor-
malized and unnormalized graph p-Laplacian according to the VE criterion.
We then repeat the experiment for the NVE criterion. For both criteria, in
the case of the nonlinear IPM, we use 10 runs with random initializations.

The results can be seen in Table 7.5. One observes that for both VE and
NVE criterion, our tight relaxation outperforms the other two methods in
terms of obtained vertex expansion, however at the cost of a larger runtime.
Moreover, currently it does not scale to large-scale graphs.

Note that here we used the general bundle method from Section 6.5 to
solve the inner problem appearing in the nonlinear IPM. The advantage of
this approach is that we are using a black-box algorithm, i.e. no knowledge
about the special structure of the inner problem is required. In particular,
the explicit form of the Lovász extension does not need to be known, as all
computations can be done by only evaluating the original set functions. Of
course, this means that we cannot expect to achieve optimal performance (in
terms of runtime) when applying the general-purpose method. In contrast
to that, for the Cheeger cut problem we explicitly exploited the structure
of the inner problem. As a result, the corresponding runtimes are several
orders of magnitude smaller for the Cheeger cut problem, see Fig. 7.4.

In conclusion, this experiment illustrates that the general purpose method
from Section 6.5 can be used to solve the inner problem and leads to excel-
lent results in terms of objective value. However, if additional knowledge of
the structure of the inner problem is available, this should be exploited to
achieve better performance in terms of runtime.

136 CHAPTER 7. BALANCED GRAPH PARTITIONING

Table 7.5: Obtained VE and NVE values as well as total runtime on several
datasets from the graph partitioning archive. In the case of the nonlinear
IPM we perform 10 random initializations. Our method consistently out-
performs the other methods in terms of obtained vertex expansion values,
at the cost of a significantly larger runtime.

Standard Spectral p-Spectral (p = 1.1) nonlinear IPM
VE Time VE Time VE Time

add20 0.1925 3 0.2083 360 0.1273 3130
data 0.04969 4 0.04969 455 0.04969 2344
3elt 0.04292 5 0.03898 964 0.03844 6110

whitaker3 0.02723 12 0.02674 1063 0.02673 15733
cs4 0.06277 8 0.06271 4994 0.05807 37131

Standard Spectral p-Spectral (p = 1.1) nonlinear IPM
NVE Time NVE Time NVE Time

add20 0.04 3 0.05018 360 0.01969 3223
data 0.004505 4 0.004505 455 0.004505 3237
3elt 0.007346 5 0.006733 964 0.006505 5502

whitaker3 0.004603 12 0.00452 1063 0.004476 15569
cs4 0.01624 8 0.01617 4994 0.01522 58605

7.7.4 USPS and MNIST

We perform clustering on the full USPS and MNIST datasets of handwritten
digits (n = 9298 and n = 70000), using the RCut as multi-cut criterion.
We compare the performance of recursive standard spectral clustering, p-
spectral clustering for p = 1.1, the TV-based method by Szlam and Bresson
[2010], as well as the tight relaxations of the RCC and RCut criteria proposed
in this chapter. For all methods, we use the recursive multi-partition scheme
discussed in Section 7.6. As in the previous experiment, we perform one
run initialized with the thresholded second eigenvector of the unnormalized
graph Laplacian in the case of our method, and with the second eigenvector
of the normalized graph Laplacian in the case of the method of Szlam and
Bresson [2010]. In both cases we add 100 runs with random initialization.

In addition to the above recursive methods, we compare to the sec-
ond variant of standard spectral clustering using k-means, as well as the
TV-based multi-cut clustering method by Bresson et al. [2013] discussed in
Section 7.6. Note that their code often returns a partition into less than 10
clusters. Thus we repeat their method 100 times (note that their default
parameter is 30) and report the 10-partition with lowest RCut objective.

Table 7.6 shows the obtained RCut values and errors for all investigated
methods. In the first two lines we compare the two versions of standard
spectral clustering. The second variant produces slightly better cuts, but

7.7. EXPERIMENTAL RESULTS 137

for both datasets we obtain a worse error. Both variants of standard spectral
clustering are outperformed by a large margin by the other methods, both
in terms of RCut and error. Best results are obtained by the tight 1-spectral
relaxation of the RCut criterion. Note that while the 1-spectral relaxations
derived in this chapter are tight for the bi-partition version of the RCut and
RCC criteria, this is not the case for the corresponding multi-cut criteria.
However, in practice we observe a strong performance by the nonlinear IPM
applied to the tight relaxation of the RCut objective. Slightly worse results
are obtained by the 1-spectral relaxation of the RCC as well as the method
by Szlam and Bresson [2010]. We also observe that all methods achieve a
lower error compared to the standard spectral relaxation.

Table 7.6: Results of clustering for USPS and MNIST with k = 10 using
the RCut multi-partition criterion (see Section 7.6).

USPS MNIST
Method RCut Error RCut Error

Standard spectral (recursive) 0.8180 0.1686 0.2252 0.1883
Standard spectral (k-means) 0.7383 0.2088 0.2137 0.2650

Bresson et al. [2013] 0.6876 0.1366 0.1543 0.1257
p-spectral (p = 1.1) 0.6676 0.1308 0.1529 0.1293

Szlam and Bresson [2010] 0.6663 0.1309 0.1545 0.1318
1-spectral (Tight RCC) 0.6661 0.1349 0.1507 0.1244
1-spectral (Tight RCut) 0.6629 0.1301 0.1499 0.1236

Note that the error has been computed by computing the disagreement of
the dominant class label in each cluster with the true label of each point. In
Table 7.7 we provide the confusion matrix for MNIST for the tight relaxation
of the RCC criterion. Here, each column corresponds to one cluster and we
count for each cluster the number of appearances of each digit (first column).
The first row gives the dominant class label (i.e. digit) of each cluster. We
observe that the true cluster corresponding to 1 has been split into two
clusters, and the clusters corresponding to 4 and 9 have been merged into
one cluster with dominant label 4. Thus there is no cluster with dominant
label 9. Apart from that, the class separation is quite good, as the remaining
digits have been grouped into separate clusters almost perfectly.

For comparison, we give the confusion matrix for the variant of standard
spectral clustering using higher eigenvectors. One observes that the cluster-
ing corresponds much less to the true class structure of the problem, as the
digits 1 have been split into three clusters, and 3,5 and 8 have been merged
into one cluster. Moreover, the majority of the points with label 9 appear
in the clusters corresponding to digits 4 and 7.

138 CHAPTER 7. BALANCED GRAPH PARTITIONING

Table 7.7: Confusion table for MNIST for the tight relaxation of RCC (top)
and standard spectral clustering (bottom). Here, each column corresponds
to a cluster while each row corresponds to a true label. The first row denotes
the dominant labels in each cluster. In the case of 1-Spectral clustering, one
class has been split and two classes have been merged. In contrast to that, in
standard spectral clustering, three classes have been split and seven classes
have been merged.

0 1 1 2 3 4 5 6 7 8

0 6846 4 4 7 0 5 7 25 4 1
1 1 4278 3525 23 0 25 0 7 16 2
2 49 31 22 6690 21 14 3 13 125 22
3 2 8 5 37 6880 40 79 1 56 33
4 3 16 28 1 1 6743 0 20 9 3
5 15 1 2 2 50 58 6104 60 7 14
6 20 5 9 0 1 8 30 6798 0 5
7 1 34 43 23 1 102 0 0 7089 0
8 15 45 34 14 90 120 120 24 23 6340
9 17 9 5 4 103 6706 12 4 84 14

0 1 1 1 2 3 4 5 6 7

0 6792 0 0 4 4 59 6 15 19 4
1 0 3171 2660 1946 29 28 24 0 1 18
2 46 34 14 12 6552 133 25 13 13 148
3 1 4 4 2 28 6957 31 58 1 55
4 3 21 16 27 1 4 6695 2 20 35
5 15 2 1 1 1 3112 44 3089 36 12
6 23 9 3 7 1 45 9 251 6528 0
7 2 37 18 32 16 4 119 2 0 7063
8 16 33 26 20 10 6150 92 397 12 69
9 15 3 6 5 5 158 4776 2 4 1984

Chapter 8

Constrained local clustering

Recently, there has been a strong interest in local methods for clustering.
The previous work can be divided into two categories. In the seminal ar-
ticle by Spielman and Teng [2004], an algorithm was developed that finds
a subset near a given seed vertex with small normalized cut or normalized
Cheeger cut value, with running time linear in the size of the obtained clus-
ter. The proposed algorithm and subsequent work [Andersen and Lang,
2006, Andersen et al., 2006, Andersen and Peres, 2009, Oveis Gharan and
Trevisan, 2012, Zhu et al., 2013] use random walks to explore the graph
locally, without considering the whole graph.

In the second line of work, the runtime requirement is dropped and the
task is formulated as explicit optimization problem [Mahoney et al., 2012,
Maji et al., 2011, Hansen and Mahoney, 2012]. The goal is to find the
optimal normalized cut subject to a seed constraint and an upper bound on
the volume of the set. We now use the results from Chapter 4 to derive a
method for the above problem aligned with the second type of approaches.
In contrast to previous work, our method will guarantee that all constraints
are fulfilled by the solution.

8.1 The constrained local clustering problem

In this section we introduce the local clustering problem. We are in the
same graph-based setting as in the last chapter, see Section 7.1. Let J
denote the set of seed vertices, S a symmetric balancing function (e.g.
S(C) = vold(C) vold(C) for the normalized cut) and let volh(C) be the
general volume of set C, where h ∈ Rn+ are vertex weights. The general
local clustering problem can then be formulated as

min
C⊂V

cut(C,C)

Ŝ(C)
(8.1)

subject to : volh(C) ≤ k, and J ⊂ C.

139

140 CHAPTER 8. CONSTRAINED LOCAL CLUSTERING

v1

v2

v3

v4

v5

v6

v7

v8 v1

v2

v3

v4

v5

v6

v7

v8

Figure 8.1: Left: Optimal RCut (green). Right: Optimal RCut with subset
(red) and constraint |C| ≤ 3.

Fig. 8.1 gives an example of local clustering. In the left example we op-
timize RCut without any additional constraints, leading to a cluster with
cut(C,C) = 2 and |C| =

∣∣C∣∣ = 4, and hence RCut(C,C) = 1. On the
right side we add the additional constraint |C| ≤ 3, as well as a subset
constraint. Since the clustering one the left does not satisfy the constraint
|C| ≤ 3, we obtain a different clustering with slightly higher objective value
(RCut(C,C) = 16

15) which satisfies subset and size constraint.

Several authors considered a variant of the above problem. Starting with
the work of Spielman and Teng [2004], initially, the goal was to develop an
algorithm to find a subset near a given seed vertex with small NCut or
NCC value in running time nearly linear in the size of the obtained cluster.
Their algorithm performs a lazy random walk with the transition matrix
M = 1

2

(
I +WD−1

)
, where D is the degree matrix of the graph and the

initial distribution is concentrated on the seed vertex. Given a cut with
NCC less than φ, they guarantee that after a specified number of steps,
optimal thresholding of the random walk vector will yield a set C having a
normalized Cheeger cut value in O(φ

1
3 logO(1) |V |).

Andersen et al. [2006] showed that an improved bound of O(
√
φ |E|) can

be achieved by using PageRank vectors. Further improvements were done
by Spielman and Teng [2013], Andersen and Peres [2009], Oveis Gharan
and Trevisan [2012]. Recently, Zhu et al. [2013] studied a variant of the
PageRank-based algorithm, where they also relate the performance of the
algorithm to the connectedness of the set, using a definition based on the
minimum NCC inside a cluster. They then obtain better bounds on the
obtained NCC under the condition that the cluster is well-connected.

The lazy random walk was applied for community detection in networks
by Andersen and Lang [2006]. Moreover, it was used to construct spectral
sparsifiers of graphs in nearly linear time [Spielman and Teng, 2011] and near
linear time algorithms to solve linear systems [Spielman and Teng, 2006].

Note that in the above type of approaches, the focus was on obtaining
an efficient algorithm to obtain a good partition around the given seed in
nearly linear time. Thus typically the volume and seed constraints were not
formulated as hard constraints required to be fulfilled by the solution. In

8.2. TIGHT RELAXATION 141

contrast to these greedy approaches, Mahoney et al. [2012] give up the run-
time requirement and formulate the task as an explicit optimization problem,
with the goal to find the optimal normalized cut subject to a seed constraint
and an upper bound on the volume of the set containing the seed set.

Motivated by the standard spectral relaxation of the normalized cut
problem, they derive a spectral-type relaxation which is biased towards so-
lutions fulfilling the seed constraint. The resulting problem is then trans-
formed into an equivalent SDP which can be solved globally optimal. Their
method has been applied in semi-supervised image segmentation [Maji et al.,
2011] and for community detection around a query set [Mahoney et al., 2012].

The continuous solution is transformed into a set via optimal threshold-
ing. Since this is not guaranteed to yield a feasible set, i.e. one that satisfies
both constraints, Mahoney et al. [2012] suggest to perform constrained opti-
mal thresholding, i.e. consider only thresholds that yield feasible sets. How-
ever, this comes at the cost of losing the derived approximation guarantees.
In a recent generalization of their work, Hansen and Mahoney [2012] com-
pute a sequence of locally-biased eigenvectors, the first of which corresponds
to the solution of the spectral-type relaxation of Mahoney et al. [2012].

The problem (8.1) is an extended version of the problem considered by
Mahoney et al. [2012]. The choice of the balancing function S allows the
user to influence the trade-off between getting a partition with small cut and
a balanced partition. One could also add more complex constraints such as
an upper bound on the diameter of C, or must- and cannot-link constraints
as done by Rangapuram and Hein [2012].

8.2 Tight relaxation of constrained NCut problem

In the following, we will derive a tight relaxation of the local clustering
problem. In order to compare to the method of Mahoney et al. [2012] in the
experiments, we restrict ourselves to the normalized cut with volume con-
straints, i.e. Ŝ(C) = vold(C) vold(C), however the derivation can be done
similarly for other balancing terms. The NCut problem with subset con-
straints and general volume constraints is then for a subset J given as

min
C⊂V

cut(C,C)

vol(C) vol(C)
(8.2)

subject to : volh(C) ≤ k, and J ⊂ C.

8.2.1 Elimination of volume constraints

First, we integrate the volume constraint via a penalty term. Adding the
constraint volh(C) ≤ k for some nonnegative function h : V → R+ leads to
the penalty term T̂ (C) = max {volh(C)− k, 0} .

142 CHAPTER 8. CONSTRAINED LOCAL CLUSTERING

Proposition 8.1. The penalty term T̂ (C) is equal to T̂ (C) = volh(C) −
min{k, vol(C)}, which is a difference of submodular functions. Its Lovász
extension is a difference of convex functions.

Proof. By Prop. 2.22, the function volh(C) is modular. Moreover, it can
be easily derived from the definition of submodularity that the pointwise
minimum of a constant and an increasing submodular function is submodu-
lar, which implies the submodularity of min{k, vol(C)}. By Prop. 2.15, the
Lovász extension of T̂ is the difference of the Lovász extensions of volh(C)
and min{k, vol(C)}, which are both convex by Prop. 2.19. �

We now can use the penalty term T̂ (C) to transform the constrained frac-
tional set program into an equivalent unconstrained set program.

Lemma 8.2. The problem (8.2) is equivalent to the problem

min
C⊂V

cut(C,C) + γT̂ (C)

vol(C) vol(C)
(8.3)

subject to : J ⊂ C.

where γ > cut(C0,C0) vol(V)2

4 θ vol(C0) vol(C0)
for some feasible set C0 ⊂ V .

Proof. This follows directly from Lemma 4.5. For the bound on γ one uses
the fact that vol(C) vol(C) is maximal if vol(C) = vol(C) = 1

2 vol(V). �

8.2.2 Direct integration of seed constraint

One way to handle the seed constraint J ⊂ C is to rewrite it as inequality
constraint |J ∩ C| − |J | ≥ 0 and add a similar penalty function to the
numerator of (8.3), see Section 8.2.3. However, using the structure of the
problem, a more direct way is possible. The idea is to use that C = A ∪ J
for some set A ⊂ V with A ∩ J = ∅, thus the objective can be reformulated
in terms of the set A. This reduces the problem to an optimization problem
on the graph with vertices V ′ = V \J , as we will show below.

Lemma 8.3. The problem (8.3) is equivalent to the problem

min
A⊂V ′

cut(A, V ′\A) + cut(J, V ′)− cut(J,A) + γT̂k′(A)

vold(A) vold(V ′\A) + vold(J) vold(V ′)− vold(J) vold(A)
, (8.4)

where k′ = k − volh(J) and

γ >
cut(A0, V

′\A0) + cut(J, V ′)− cut(J,A0)) vold(V)2

4 θ(vold(A0) vold(V ′\A0) + vold(J) vold(V ′\A0)))

for some feasible set A0 ⊂ V ′. Solutions C∗ of (8.3) and A∗ of (8.4) are
related via C∗ = A∗ ∪ J .

8.2. TIGHT RELAXATION 143

Proof. Writing C = A ∪ J , where A ⊂ V with A ∩ J = ∅, the individual
terms in (8.3) can be decomposed as follows:

cut(C,C) =
∑

i∈C,j∈V \C

wij =
∑

i∈A,j∈V \(A∪J)

wij +
∑

i∈J,j∈V \(A∪J)

wij

=
∑

i∈A,j∈V ′\A

wij +
∑

i∈J,j∈V ′
wij −

∑
i∈J,j∈A

wij

= cut(A, V ′\A) + cut(J, V ′)− cut(J,A),

vold(C) vold(C) =
∑
i∈C

di
∑

j∈V \C

dj =
∑
i∈A

di
∑

j∈V \(A∪J)

dj +
∑
i∈J

di
∑

j∈V \(A∪J)

dj

=
∑
i∈A

di
∑

j∈V ′\A

dj +
∑
i∈J

di
∑

j∈V ′\A

dj

= vold(A) vold(V
′\A) + vold(J) vold(V

′\A), and

T̂k(C) = max {volh(C)− k, 0} = max {volh(A)− (k − volh(J)), 0}

= T̂k′(A), where k′ = k − volh(J).

Replacing the terms in (8.3) gives the result. Thus a solution C∗ of (8.3) is
found by computing a solution A∗ of (8.4) and setting C∗ = A∗ ∪ J . �

The relation between subsets A, J and C is illustrated in Fig. 8.2. Note that
one is now working on the reduced graph with vertices V ′ = V \J . Thus, the
set V ′\A is just the complement of A on the reduced graph V ′. However, we
will use the explicit notation V ′\A in this section to avoid confusion with
the complement on the original graph, V \A. Moreover, note that the terms
vold(A) appearing in the above lemma still use the degree d of the original
graph, i.e. vold(A) =

∑
i∈V di, where di =

∑
j∈V wij denotes the degree of

vertex i on the original graph with vertex set V .

In order to derive the tight relaxation via Theorem 4.2, we will use the
Lovász extensions of the set functions in (8.4). While the above ratio has a
slightly more complicated structure that the original one in (8.3), we will see
that the additional terms cut(J,A) and vold(J) vold(A) are both modular
and thus have a linear Lovász extension. Thus, the corresponding terms in
the inner problem of RatioDCA can be easily handled in the optimization.
Moreover, cut(J, V ′) and vold(J) vold(V

′) are constants.

Note that the Lovász extension of a set function Ŝ in Def. 2.12 requires
the function to satisfy Ŝ(∅) = 0. Since this requirement is not fulfilled for
constant functions, we replace the constant set functions vold(J) vold(V \J)
and cut(J, V \J) by vold(J) vold(V \J)P̂ (A) and cut(J, V \J)P̂ (A), respec-
tively, where P̂ is defined as P̂ (A) = 1 for A 6= ∅ and P̂ (∅) = 0. This leads

144 CHAPTER 8. CONSTRAINED LOCAL CLUSTERING

v1

v2

v3

v4

v5

v6

v7

v8

C

J

A
V \C

Figure 8.2: Relation between subsets A, J and C used in Lemma 8.3. After
integrating the seed subset, we work on the graph consisting of the blue
vertices instead of the whole graph.

to the problem

min
A⊂V ′

cut(A, V ′\A) + cut(J, V ′)P̂ (A)− cut(J,A) + γT̂k′(A)

vold(A) vold(V ′\A) + vold(J) vold(V ′)P̂ (A)− vold(J) vold(A)
. (8.5)

The only difference to (8.4) lies in the treatment of the empty set. Note that
with 0

0 :=∞ the empty set can not be optimal for problem (8.5). Given an
optimal solution A∗ of (8.5), one then considers either A∗∪J or J , depending
on whichever has lower objective, which then implies equivalence to (8.5).

The resulting tight relaxation will be a minimization problem over Rm
with m = |V ′| = |V \J | and we assume wlog that the first m vertices of V
are the ones in V ′. Moreover, we use the notation fmax = maxi=1,...,m fi for

f ∈ Rm, and d
(A)
i =

∑
j∈Awij . In the following we will derive some Lovász

extensions of the involved set functions.

Lemma 8.4. The set function cP̂ (A) is submodular for every c ∈ R+. Its
Lovász extension is given by cfmax.

Proof. The Lovász extension follows directly from the second definition of
the Lovász extension in Def. 2.12, noting that all the terms in the first sum
are zero. Since the Lovász extension is a convex function for all c ≥ 0, the
function cP̂ (A) is submodular by Prop. 2.19. �

Lemma 8.5. The set function cut(J,A) for a fixed J is modular. Its Lovász
extension is given by

〈
d(J), f

〉
.

Proof. We can rewrite the set function as

cut(J,A) =
∑

i∈A,j∈J
wij =

∑
i∈A

d
(J)
i ,

8.2. TIGHT RELAXATION 145

were d
(J)
i =

∑
j∈J wij as defined above. Thus we can interpret the set func-

tion as generalized volume function, i.e. cut(J,A) = vold(J)(A). The results
then follow directly from Prop. 2.22. �

As shown in Lemma 8.1, the penalty term T̂k′(A) can be written as T̂k′(A) =
volh(A) − min{k′, volh(A)}. For the sake of brevity, we do not specify the

Lovász extension of the set function T̂
(2)
k′ (A) = min{k′, volh(A)} in a closed

form. Recall from Section 5 that in the implementation in RatioDCA we
will need only an element of the subdifferential of the Lovász extension of

T̂
(2)
k′ (A) which we will present in the next lemma.

Lemma 8.6. An element t
(2)
k′ of the subdifferential of the Lovász extension

T
(2)
k′ (f) of T̂

(2)
k′ (A) = min{k′, volh(A)} is given by

(
t
(2)
k′ (f)

)
ji

=

0 volh(Ai+1) > k′

k′ − volh(Ai+1) volh(Ai) ≥ k′,
volh(Ai+1) ≤ k′

hji volh(Ai) < k′

,

where ji denotes the index of the i-th smallest component of the vector f .

Moreover, we have T
(2)
k′ (f) =

〈
f, t

(2)
k′ (f)

〉
for all f ∈ Rn.

Proof. This directly follows from Lemma 2.20, using the fact the sequence
volh(Ai) is monotonically decreasing in i. �

The above Lovász extensions lead to the following tight relaxation of (8.5):

Theorem 8.7 (Tight relaxation of constrained normalized cut).
The problem in (8.5) is equivalent to the problem

min
f∈Rm+

R1(f)−R2(f)

S1(f)− S2(f)
, (8.6)

where the convex functions R1, R2, S1, S2 are given as

R1(f) = 1
2

∑
i,j∈V ′ wij

∣∣fi − fj∣∣+ cut(J, V ′) fmax + γ
〈
(hi)

m
i=1, f

〉
,

R2(f) =
〈
γ t

(2)
k′ (f) + (d

(J)
i)mi=1, f

〉
,

S1(f) = 1
2 vold(V

′)
∑

i∈V ′ di
∣∣fi −meand(f)

∣∣+ vold(J) vold(V
′) fmax,

S2(f) = vold(J)
〈
(di)

m
i=1, f

〉
.

Proof. The objective in (8.5) can be written as a ratio of two differences
of submodular set functions as follows

min
A⊂V ′

R̂1(A)− R̂2(A)

Ŝ1(A)− Ŝ2(A)
,

146 CHAPTER 8. CONSTRAINED LOCAL CLUSTERING

where the submodular functions R̂1, R̂2, Ŝ1, Ŝ2 are given as

R̂1(A) = cut(A, V ′\A) + cut(J, V ′)P̂ (A) + γ volh(A),

R̂2(A) = γmin{k′, volh(A)}+ cut(J,A),

Ŝ1(A) = vold(A) vold(V
′\A) + vold(J) vold(V

′)P̂ (A), and

Ŝ2(A) = vold(J) vold(A).

We have used Prop. 8.1 for the decomposition of T̂ (A) into a difference of
submodular functions, and Lemmas 8.4 and 8.5 for the submodularity of
P̂ and cut(J,A). The submodularity of vold(A), cut(A, V ′\A) as well as
vold(A) vold(V

′\A) is shown in Prop. 2.22, Prop. 2.23 and Lemma 7.24.

One now replaces the set functions by their Lovász extensions, derived
in Prop. 2.22 and Prop. 2.23 for volh(A) and cut(A, V ′\A), Lemma 8.4 and
Lemma 8.5 for P̂ (A) and cut(J,A) as well as Lemma 8.6 for min{k′, volh(A)}.
For the set function vold(A) vold(V

′\A) we use the continuous extension from
Lemma 7.24. The result then follows by Theorem 4.4. �

8.2.3 Seed constraint via penalty function

Here we discuss the alternative approach where the subset constraint is
incorporated directly into the objective. We are now working again on the
original graph with vertex set V , and the resulting tight relaxation will be
an optimization problem over Rn+.

Lemma 8.8. The problem (8.2) is equivalent to the problem

min
C⊂V

cut(C,C) + γ1 T̂1(C) + γ2 T̂2(C)

vol(C) vol(C)
(8.7)

where T̂1(C) = |J | − |C ∩ J | and T̂2(C) = volh(C) − min{k, vol(C)} and

γ1, γ2 >
cut(C0,C0) vol(V)2

4 θ vol(C0) vol(C0)
for some feasible set C0 ⊂ V .

Proof. The subset constraint can be rewritten as |C ∩ J | = |J |. Writing
the equality as two inequalities, one can apply Lemma 4.5, which yields an
equivalent problem using the penalty terms

max{|C ∩ J | − |J | , 0} and max{|J | − |C ∩ J | , 0} (8.8)

for the subset constraint, and volh(C)−min{k, vol(C)} for the volume con-
straint, see Section 8.2.1. Using the fact that |J | ≥ |C ∩ J |, one can conclude
that the first term in (8.8) is always zero, while the second one is equal to
|J | − |C ∩ J |. Thus one obtains the problem in (8.7). �

8.2. TIGHT RELAXATION 147

As before we replace the constant |J | by the function |J | P̂ (C), see the
discussion after Lemma 8.3. This leads to the problem

min
C⊂V

cut(C,C) + γ1

(
|J | P̂ (C)− |C ∩ J |

)
+ γ2 T̂2(C)

vol(C) vol(C)
. (8.9)

The following lemma states the Lovász extension of the function |C ∩ J |.

Lemma 8.9. The set function |C ∩ J | is a modular function. Its Lovász
extension is given by 〈1J , f〉, where 1J is the indicator vector of the set J .

Proof. We can rewrite the set function as |C ∩ J | =
∑

i∈C,j∈J 1 =∑
i∈C (1J)i = vol1J (C). The results then follow directly from Prop. 2.22. �

We now present a tight relaxation of the problem in (8.9).

Theorem 8.10 (Tight relaxation with subset as penalty).
The problem in (8.9) is equivalent to the problem

min
f∈Rn+

R1(f)−R2(f)

S(f)
, (8.10)

where the convex functions R1, R2 and S are given as

R1(f) = 1
2

∑
i,j∈V wij

∣∣fi − fj∣∣+ γ1 |J | fmax + γ2

〈
h, f

〉
,

R2(f) = γ1

〈
1J , f

〉
+ γ2

〈
t
(2)
k (f), f

〉
and

S(f) = 1
2 vol(V)

∑
i∈V di |fi −meand(f)| .

Proof. The objective in (8.9) can be written as a ratio of a difference of
submodular set functions and a submodular set function as follows

min
C⊂V

R̂1(C)− R̂2(C)

Ŝ(C)
,

where the submodular functions R̂1, R̂2 and Ŝ are given as

R̂1(C) = cut(C,C) + γ1 |J | P̂ (C) + γ2 volh(C),

R̂2(C) = γ1 |J ∩ C|+ γ2 min{k, volh(C)} and

Ŝ(C) = vol(C) vol(C),

We have used Prop. 8.1 for the submodular decomposition of T̂ (A), Lemmas
8.4 and 8.9 for the submodularity of P̂ (C) and |C ∩ J |, as well as Prop. 2.23
and Lemma 7.24 for the submodularity of cut(C,C) and vol(C) vol(C).

148 CHAPTER 8. CONSTRAINED LOCAL CLUSTERING

The functions R1, R2 and S are then obtained by replacing the set
functions by their Lovász extensions derived in Prop. 2.22 and 2.23, Lemma
8.4, 8.6 and Lemma 8.9 as well as the continuous extension derived in Lemma
7.24. The result then follows by Theorem 4.4. �

While the main focus of this work was to find solutions that satisfy both seed
and volume constraints (which is guaranteed if γ satisfies the bound given
above), the penalty approach can also be useful in a slightly different setting:
Assume that we have noisy seed constraints, or we are in a setting where we
are willing to trade some violated constraints for a much better objective
value. Incorporating these noisy or weak constraints into the problem via a
penalty approach, we can use the choice of γ to control the trade-off between
satisfying all constraints and achieving an optimal objective value. We will
discuss an example in the experiments in Section 8.4.2.

8.3 Solution via RatioDCA

As both numerator and denominator of the tight relaxations (8.6) and (8.10)
are 1-homogeneous d.c. functions, we can apply the RatioDCA of Section 5.
Recall the general form of the inner problem,

min
u∈Rn+,
‖u‖2≤1

{
R1(u)−

〈
u, r2(fk)

〉
+ λk

(
S2(u)−

〈
u, s1(fk)

〉)}
,

where r2(fk) ∈ ∂R2(fk) and s1(fk) ∈ ∂S1(fk). We now derive subgradients
for the specific problems in (8.6) and (8.10).

In the case of a linear function 〈g, f〉, the subgradient is given by g.
Moreover, one easily checks that an element of the subgradient of fmax is
given as 1

|Cmax f |1Cmax f
, where Cmax f = {i ∈ V | fi = fmax} is the set of in-

dices where f has its largest value. The following lemma gives a subgradient
of the term

∑
i∈V di |fi −meand(f)| appearing in S1 for both problems.

Lemma 8.11. The subdifferential of
∑

i∈V di |fi −meand(f)| is given as

(
D − ddT

vold(V)

)
sign

(
f − 〈d, f〉

vold(V)
1
)
, where sign(x)i =

{ −1, x < 0,
[−1, 1] , x = 0,
1, x > 0.

Proof. We can write∑
i∈V

∣∣∣di(fi − 〈d, f〉
vold(V)

)∣∣∣ =
∥∥∥D(f − 〈d, f〉

vold(V)
1
)∥∥∥

1
=
∥∥∥(D − ddT

vold(V)

)
f
∥∥∥

1
.

Noting that ∂ (‖x‖1)k = sign(xk), we apply the chain rule for subdifferentials

8.3. SOLUTION VIA RATIODCA 149

(see e.g. Theorem 23.9 in Rockafellar [1970]) and obtain

∂
(∑
i∈V

di |fi −meand(f)|
)

=
(
D − ddT

vold(V)

)T
sign

((
D − ddT

vold(V)

)
f
)

=
(
D − ddT

vold(V)

)
sign

(
f − 〈d, f〉

vold(V)
1
)
,

where we have used the symmetry of D and ddT as well as the fact that
di > 0, ∀i ∈ V . �

It turns out that the remaining terms R1(f) +λkS2(f) have the same struc-
ture for (8.6) and (8.10). In both cases the inner problem has the form

min
f∈Rm+
‖f‖2≤1

{
1
2

m∑
i,j

wij
∣∣fi − fj∣∣+ c1fmax +

〈
f, ck2

〉}
, (8.11)

where c1 ∈ R is a constant and ck2 is a vector depending on the current
iterate fk. The explicit values are given for the problem in (8.6) as

c1 =cut(J, V ′),

ck2 =γ (hi)
m
i=1 − (d

(J)
i)mi=1 + λk vold(J)(di)

m
i=1 (8.12)

− γt
(2)
k′ (fk) − λk 1

2 vol(V ′)v(fk) − λk vold(J) vold(V
′)1C

max fk
,

where v(fk) ∈ ∂
(∑

i∈V di |fi −meand(f)|
)
, and for the problem in (8.10) as

c1 = γ1 |J | , (8.13)

ck2 = γ2h− λk 1
2 vol(V)v(fk)− γ11J − γ2t

(2)
k (f).

Alg. 18 summarizes the algorithmic scheme for both cases.

18 Algorithm for constrained normalized cut problem

1: Input: weight matrix W
2: Initialization: nonconstant f0 with

∥∥f0
∥∥

2
= 1, accuracy ε

3: repeat
4: Compute c1 and ck according to (8.12) for (8.6) or (8.13) for (8.10).

5: fk+1 = arg min
f∈Rm+ / f∈Rn+
‖f‖2≤1

{
1
2

∑m
i,j wij |fi − fj |+ c1fmax +

〈
f, ck2

〉}
,

6: λk+1 = R1(fk)−R2(fk)
S1(fk)−S2(fk)

7: until
|λk+1−λk|

λk
< ε

150 CHAPTER 8. CONSTRAINED LOCAL CLUSTERING

Theorem 8.12 (Convergence). Let Q be the functional in (8.6) or (8.10),
depending on the choice of c1 and ck. The sequence fk produced by Alg. 18
satisfies Q(fk) > Q(fk+1) for all k ≥ 0 or terminates. Moreover, fk has a
subsequence converging to a solution of the eigenproblem associated to Q.

Proof. This is a direct corollary of Prop. 5.9 and Theorem 5.13. �

We omit the exact form of the eigenproblem associated to the problems in
(8.6) or (8.10). Similar to the unconstrained case from Chapter 7, one can
give the following cut improvement guarantee.

Theorem 8.13 (Cut improvement). Let C be any feasible set, f denote
the result of Alg. 18 after initializing with 1

|C|1C , and Cf be the set obtained
by optimal thresholding of f . Either Alg. 18 terminates after one iteration,
or the set Cf is feasible and it holds that NCut(C,C) > NCut(Cf , Cf).

Proof. This is a direct corollary of Theorem 5.13. �

8.3.1 Solution of the inner problem

The crucial step in the algorithm is solving the inner problem (line 5). We
solve this problem via an equivalent smooth dual problem. The first step is
to eliminate the norm constraint in the objective.

Lemma 8.14. Let Φ be a 1-homogeneous function and ‖·‖ any norm, and

f∗ ∈ arg min
x≥0

Φ(x) + ρ ‖x‖2 ,

for any ρ > 1. If f∗ 6= 0, then set f ′ := f∗

‖f∗‖ , otherwise set f ′ := 0. Then,

f ′ ∈ arg min
‖x‖≤1,x≥0

Φ(x). (8.14)

Proof. We first assume f∗ 6= 0. Then one has

Φ
(

f∗

‖f∗‖

)
= 1
‖f∗‖

(
Φ (f∗) + ρ ‖f∗‖2

)
− ρ ‖f∗‖

= 1
‖f∗‖

(
min
x≥0

Φ(x) + ρ ‖x‖2
)
− ρ ‖f∗‖

≤ 1
‖f∗‖

(
min

x≥0, ‖x‖=‖f∗‖
Φ(x) + ρ ‖x‖2

)
− ρ ‖f∗‖

= min
x≥0, ‖x‖=‖f∗‖

Φ
(

x
‖x‖

)
+ ρ ‖f∗‖ − ρ ‖f∗‖

= min
y≥0, ‖y‖=1

Φ
(
y
)
,

8.3. SOLUTION VIA RATIODCA 151

which with the 1-homogeneity of Φ implies that

f∗

‖f∗‖ ∈ arg min
‖y‖=1, y≥0

Φ(y) = arg min
‖y‖≤1, y≥0

Φ(y).

Now let f∗ = 0 and assume for the sake of contradiction that Φ(f ′) < 0.
Due to the one-homogeneity this implies that ‖f ′‖ = 1. Let x′ = αf ′, for
some α ∈ (0,−1

ρΦ(f ′)). Then, using the homogeneity of Φ and ‖‖, one has

Φ(x′) + ρ
∥∥x′∥∥2

= αΦ(f ′) + α2ρ
∥∥f ′∥∥2

= α
(
Φ(f ′) + αρ

)
< 0,

which is a contradiction to f∗ = 0 being optimal. Thus Φ(f ′) = 0 and hence
f ′ = 0 is a minimizer of the problem in (8.14). �

Lemma 8.14 implies that the inner problem (8.11) can be replaced by

min
f∈Rm+

1
2

m∑
i,j=1

wij
∣∣fi − fj∣∣+ c1 max

i
fi +

〈
f, ck2

〉
+ 1

2 ‖f‖
2
2 . (8.15)

Then, given a solution f∗ of (8.15), a solution f ′ of (8.11) is obtained via
f ′ = f∗/ ‖f∗‖2, if f∗ 6= 0, otherwise we set f ′ = 0.

In the following, for m ∈ N, PRm+ denotes the projection on the positive
orthant and Sm is the simplex Sm = {v ∈ Rm | vi ≥ 0,

∑m
i=1 vi = 1}. One

can now derive the dual problem as follows.

Lemma 8.15. The inner problem (8.15) is equivalent to

− min
α∈R|E|
‖α‖∞≤1

min
v∈Sm

Ψ(α) :=
∥∥PRm+

(
− c1v − ck2 −Aα

)∥∥2

2

where the operator A : R|E| → R is for α ∈ R|E| defined as (Aα)i :=
1
2

∑
j | (i,j)∈E wij(αij − αji). The gradient of Ψ is given as

(∇Ψ(α))rs = −wrs (zr − zs) , where z = PRm+
(
− c1v − ck2 −Aα

)
.

Moreover, an upper bound on the Lipschitz constant of the gradient of Ψ is
given by 2 maxr

∑
s | (r,s)∈E w

2
rs.

Proof. We derive the dual problem as follows:

min
f∈Rm+

1
2

m∑
i,j=1

wij
∣∣fi − fj∣∣+ c1 max

i
fi +

〈
f, ck2

〉
+ 1

2 ‖f‖
2
2

= min
f∈Rm+

{
max
α∈R|E|
‖α‖∞≤1

1
2

∑
(i,j)∈E

wij (fi − fj)αij

+ max
v∈Sm

c1

〈
f, v
〉

+
〈
f, ck2

〉
+ 1

2 ‖f‖
2
2

}
= max

α∈R|E|
‖α‖∞≤1

max
v∈Sm

min
f∈Rm+

1
2 ‖f‖

2
2 +

〈
f, c1v + ck2 +Aα

〉
,

152 CHAPTER 8. CONSTRAINED LOCAL CLUSTERING

where (Aα)i := 1
2

∑
j | (i,j)∈E wij(αij −αji). The optimization over f has the

solution f = PRm+
(
−c1v − ck2 −Aα

)
. Plugging f into the objective and using

that
〈
PRm+ (x), x

〉
=
∥∥PRm+ (x)

∥∥2

2
, we obtain the first statement. Regarding

the gradient, note that for x ∈ Rn, ∇1
2

∥∥PRm+ (x)
∥∥2

2
= PRm+ (x), as shown in

Lemma 6.6. Thus we obtain

(∇Ψ(α))rs =
∑
i∈V

2
(
PRm+

(
− c1v − ck2 −Aα

))
·
(
− 1

2wisδi=r + 1
2wirδi=s

)
= −wrs

(
PRm+

(
− c1v − ck2 −Aα

)
r
− PRm+

(
− c1v − ck2 −Aα

)
s

)
.

We now derive an upper bound on the Lipschitz constant of the gradient.
Introducing the notation z(α) := −c1v−ck2−Aα, we obtain for α, α′ ∈ R|E|,∥∥∇Ψ(α)−∇Ψ(α′)

∥∥2

2

=
∑

(r,s)∈E

w2
rs

(
PRm+

(
z(α)

)
r
− PRm+

(
z(α′)

)
r
− PRm+

(
z(α)

)
s

+ PRm+
(
z(α′)

)
s

)2

≤ 4
∑

(r,s)∈E

w2
rs

(
PRm+

(
z(α)

)
r
− PRm+

(
z(α′)

)
r

)2
,

where we used the fact that for a, b ∈ R it holds that (a− b)2 ≤ 2a2 + 2b2,
as well as the symmetry of W . Using the fact that it holds for x, y ∈ R that
(max{x, 0} −max{y, 0})2 ≤ (x− y)2, we obtain

. . . ≤ 4
∑

(r,s)∈E

w2
rs

(
z(α)r − z(α′)r

)2
= 4

∑
(r,s)∈E

w2
rs

(
(Aα)r − (Aα′)r

)2
.

One can now proceed as in the proof of Lemma 7.38 to show that∥∥∇Ψ(α)−∇Ψ(α′)
∥∥2

2
≤ 4

(
max
r

∑
s | (r,s)∈E

w2
rs

)2 ∥∥α− α′∥∥2

2
,

which implies that an upper bound on the Lipschitz constant is given by
2 maxr

∑
s | (r,s)∈E w

2
rs . �

This dual problem can be solved efficiently using Nesterov’s method [Nes-
terov, 1983, Beck and Teboulle, 2009], see Section 6. The explicit steps are
given in Alg. 19 (we again use the notation B∞(1) := {x ∈ R | |x| ≤ 1}).

Note that as in the case of 1-spectral clustering, the memory requirement
can be further reduced by only considering the upper triangular part of α
and enforcing anti-symmetry in each step, see the discussion after Alg. 16.
To solve the first subproblem, one can make use of the following fact.

Lemma 8.16. Let x ∈ Rm and y := PRm+ (x), then

arg min
v∈Sm

∥∥y − v∥∥2

2
∈ arg min

v∈Sm

∥∥PRm+ (x− v)
∥∥2

2
.

8.3. SOLUTION VIA RATIODCA 153

19 Solution of the dual inner problem with Nesterov’s method

Input: Lipschitz constant L of ∇Ψ,
Initialization: θ0 = 1, α0 ∈ R|E|,
repeat
vt = arg min

u∈Sm

∥∥PRm+
(
− c1u− ck2 −Aαt

)∥∥2

2

zt = PRm+
(
−c1v

t − ck2 −Aαt
)

βt+1
rs = PB∞(1)

(
αtrs + 1

Lwrs
(
ztr − zts

))
θt+1 =

1+
√

1+4(θt)2

2 ,

αt+1
rs = βt+1

rs + θt−1
θt+1

(
βt+1
rs − βtrs

)
.

until duality gap < ε

Proof. First observe that ∀v ∈ Sm,

∥∥PRm+ (y − v)
∥∥2

2
=

m∑
i=1

max {max{xi, 0} − vi, 0}2

=
∑

max{xi,0}>vi

(max{xi, 0} − vi)2 =
∑
xi>vi

(max{xi, 0} − vi)2

=
∑
xi>vi

(xi − vi)2 =
∥∥PRm+ (x− v)

∥∥2

2
,

where in the third and fourth step we have used the fact that vi ≥ 0, ∀i =
1 . . .m. Hence one has to show that

arg min
v∈Sm

1
2

∥∥y − v∥∥2

2
∈ arg min

v∈Sm

1
2

∥∥PRm+ (y − v)
∥∥2

2
.

The Lagrangian of the left side is given as

L(v, γ, µ) = 1
2

∥∥y − v∥∥2

2
−

m∑
i=1

γivi + µ
(m∑
i=1

vi − 1
)
.

We now derive the KKT conditions. One obtains the stationarity condition

vi − yi − γi + µ = 0, ∀i = 1 . . .m, (8.16)

as well as −vi ≤ 0, ∀i = 1 . . .m and
∑m

i=1 vi = 1 for primal feasibility,
and γi ≥ 0, ∀i = 1 . . .m for dual feasibility. Moreover, the complementary
slackness condition is given as γivi = 0, ∀i = 1 . . .m. On the other hand,
the Lagrangian of the right side is given as

L(v, γ, µ) = 1
2

∥∥PRm+ (y − v)
∥∥2

2
−

m∑
i=1

γivi + µ
(m∑
i=1

vi − 1
)
.

154 CHAPTER 8. CONSTRAINED LOCAL CLUSTERING

Here one obtains the same KKT conditions as for the left side, except for
the first condition in (8.16), which becomes

− (max {yi − vi, 0})− γi + µ = 0, ∀i = 1 . . .m.

This can be rewritten as

vi − yi − γi + µ = 0, ∀i = 1 . . .m, yi ≥ vi,
− γi + µ = 0, ∀i = 1 . . .m, yi < vi.

Let (v, γ, µ) satisfy the KKT conditions of the left side. We first treat the
case when µ ≥ 0. Note that vi ≥ 0,∀i = 1 . . .m. If vi = 0, we have
yi = max{xi, 0} ≥ vi. On the other hand, if vi > 0, the complementary
slackness condition viγi = 0 implies γi = 0, and therefore the KKT condition
(8.16) implies that yi − vi = µ ≥ 0. Hence in both cases we have yi ≥ vi,
which implies that (v, γ, µ) satisfies the KKT conditions of the right side.

For the case µ < 0, assume that ∃k ∈ {1 . . .m} with vk = 0. Then on the
one hand it holds due to (8.16) that yk + γk = µ < 0, on the other hand one
has yk +γk ≥ 0, as γi ≥ 0 and yi ≥ 0, ∀i = 1 . . .m, which is a contradiction.
Thus vi > 0,∀i = 1 . . .m. The complementary slackness condition again
implies that γi = 0, and therefore the KKT condition (8.16) yields yi < vi.
One now checks easily that (v, γ, 0) satisfies the KKT conditions of the right
side. �

Lemma 8.16 implies that the minimization problem in the first line of Alg. 19
can be solved via a standard projection onto the simplex, which can be
computed in linear time [Kiwiel, 2007]. Thus the most expensive part of
each iteration of Alg. 19 is the sparse matrix multiplication Aα, which scales
linearly in the number of edges.

8.4 Experimental results

In our first experiment, we evaluate our tight relaxation of the constrained
NCut with volume and seed constraint on a number of large social networks.
We use the version of our method where the seed constraint is directly incor-
porated into the objective, see Section 8.2.2. In the second experiment, we
consider the variant of our algorithm where both seed constraint and volume
constraint are treated as penalties according to Section 8.2.3, and investigate
its usefulness to deal with soft or noisy subset and volume constraints.

8.4.1 Social networks

We first evaluate our approach on several large networks of the Stanford
Large Network Dataset Collection [Leskovec]. We use two collaboration net-
works (CA-GrQc and CA-HepTh), two citation networks (Cit-HepTh and

8.4. EXPERIMENTAL RESULTS 155

Cit-HepPh) as well as two product co-purchasing networks (amazon0302 and
amazon0505). The directed graphs were transformed into undirected graphs
by adding a back-edge for every outgoing edge. Moreover, we extracted the
largest connected component for each graph.

As optimization criterion we use the local normalized cut with a subset
constraint and a volume constraint of the form vol(C) ≤ k. We compare
our method (denoted as CFSP) against the Local Spectral (LS) method by
Mahoney et al. [2012] and the Lazy Random Walk (LRW) by Andersen and
Lang [2006]. The code of Hansen and Mahoney [2012] is used to compute
the solution of LS in our experiments. In the case of the LRW, for a fair
comparison, we compute the full sequence of random walk vectors until
the stationary distribution is reached, and in each step perform constrained
optimal thresholding according to the normalized cut objective. In the case
of the RatioDCA we perform 10 runs with different random initializations
and report the result with smallest objective value. Regarding the parameter
γ from Theorem 4.6, it turns out that best results are obtained by first
solving the unconstrained case (γ = 0) and then increasing γ sequentially,
until all constraints are fulfilled.

For each dataset we generate 10 random seeds. In order to ensure that
meaningful intervals for the volume constraint are explored, we first solve
the local clustering problem only with the seed constraint. Treating this
as the “unconstrained” solution C0, we then repeat the experiment with
upper bounds of the form vol(C) ≤ α vol(C0), where α ∈ {0.2, 0.4, 0.6, 0.8}.
In this way we ensure that for each dataset, meaningful intervals for the
volume constraint are explored.

Table 8.1 shows mean and standard deviation of the NCut values aver-
aged over the 10 different random trials (seeds) and average runtime over the
different seeds and volume constraints. Our method CFSP consistently out-
performs the competing methods by large margins and always finds solutions
that satisfy all constraints. The method LRW is very fast, but the obtained
normalized cuts are not competitive. Note that CFSP still performs better
if one thresholds the obtained solutions according to the normalized Cheeger
cut for which LRW has been designed. This is shown in Table 8.2 where
we compare the normalized Cheeger cut of our solutions (note that we op-
timized the normalized cut) to the solution obtained by the Lazy Random
Walk method where we threshold in each step according to the normalized
Cheeger cut objective.

1
56

C
H
A
P
T
E
R

8.
C
O
N
S
T
R
A
IN

E
D

L
O
C
A
L
C
L
U
S
T
E
R
IN

G

Table 8.1: Results for the constrained local normalized cut on large social networks. Our solutions (CFSP) always satisfy all
constraints and have smaller cuts than the two competing methods LS and LRW.

Dataset Method ≤ 20% ≤ 40% ≤ 60% ≤ 80% ≤ 100% Avg. time
CA-GrQc LRW 0.1311 (0.0686) 0.1005 (0.0542) 0.0984 (0.0543) 0.0920 (0.0439) 0.0773 (0.0341) 2
|V | = 4158 LS 0.2014 (0.0958) 0.1182 (0.0958) 0.0685 (0.1089) 0.0314 (0.0423) 0.0217 (0.0259) 6
|E| = 13422 CFSP 0.0315 (0.0292) 0.0157 (0.0131) 0.0138 (0.0115) 0.0083 (0.0055) 0.0069 (0.0044) 31
CA-HepTh LRW 0.2607 (0.0914) 0.2157 (0.0533) 0.2015 (0.0498) 0.1954 (0.0491) 0.1888 (0.0483) 9
|V | = 8638 LS 0.4125 (0.1079) 0.3439 (0.0631) 0.3089 (0.0839) 0.2926 (0.0913) 0.2778 (0.0923) 13
|E| = 24806 CFSP 0.0518 (0.0226) 0.0327 (0.0104) 0.0318 (0.0094) 0.0263 (0.0082) 0.0104 (0.0038) 58
Cit-HepTh LRW 0.5052 (0.2208) 0.4697 (0.2010) 0.4373 (0.1962) 0.4067 (0.1998) 0.3807 (0.2224) 15
|V | = 27400 LS 0.5430 (0.2617) 0.5099 (0.2524) 0.4737 (0.2586) 0.4290 (0.2773) 0.3997 (0.2834) 175
|E| = 352021 CFSP 0.4693 (0.2676) 0.3732 (0.2166) 0.2683 (0.1494) 0.1748 (0.0683) 0.0752 (0.0233) 3704
Cit-HepPh LRW 0.1784 (0.0541) 0.1466 (0.0503) 0.1234 (0.0256) 0.1079 (0.0120) 0.1048 (0.0062) 19
|V | = 34401 LS 0.1720 (0.0055) 0.1292 (0.0224) 0.1155 (0.0147) 0.1107 (0.0062) 0.1078 (0.0007) 103
|E| = 420784 CFSP 0.1181 (0.0143) 0.1127 (0.0101) 0.1109 (0.0089) 0.0928 (0.0039) 0.0913 (0.0015) 2666
amazon0302 LRW 0.1768 (0.0833) 0.1465 (0.0749) 0.1336 (0.0601) 0.1221 (0.0504) 0.1120 (0.0429) 336
|V | = 262111 LS 0.2662 (0.1204) 0.2496 (0.1155) 0.2247 (0.1021) 0.2066 (0.0892) 0.1946 (0.0840) 5765
|E| = 899792 CFSP 0.0194 (0.0063) 0.0095 (0.0043) 0.0072 (0.0031) 0.0056 (0.0024) 0.0050 (0.0022) 3007
amazon0505 LRW 0.2472 (0.1112) 0.2369 (0.1124) 0.2249 (0.1132) 0.2200 (0.1152) 0.2163 (0.1183) 210
|V | = 410236 LS 0.4124 (0.1751) 0.3704 (0.1864) 0.3653 (0.1878) 0.3576 (0.1919) 0.3529 (0.1956) 20558
|E| = 2439437 CFSP 0.0227 (0.0076) 0.0116 (0.0089) 0.0058 (0.0020) 0.0048 (0.0011) 0.0047 (0.0008) 13171

8
.4
.

E
X
P
E
R
IM

E
N
T
A
L
R
E
S
U
L
T
S

157
Table 8.2: Constrained local normalized Cheeger cuts of the solutions obtained by our method on large social networks (note
that we optimized the normalized cut) as well as the solutions of Lazy Random Walk (LRW) where we threshold in each step
according to the normalized Cheeger cut objective.

Dataset Method ≤ 20% ≤ 40% ≤ 60% ≤ 80% ≤ 100% Avg. time
CA-GrQc LRW 0.1298 (0.0677) 0.0992 (0.0536) 0.0967 (0.0537) 0.0894 (0.0418) 0.0753 (0.0340) 1

CFSP 0.0312 (0.0289) 0.0153 (0.0128) 0.0133 (0.0110) 0.0079 (0.0051) 0.0064 (0.0040) 31
CA-HepTh LRW 0.2601 (0.0911) 0.2150 (0.0530) 0.2005 (0.0495) 0.1941 (0.0488) 0.1873 (0.0481) 1

CFSP 0.0517 (0.0225) 0.0326 (0.0104) 0.0317 (0.0093) 0.0261 (0.0082) 0.0103 (0.0037) 58
Cit-HepTh LRW 0.4967 (0.2300) 0.4565 (0.2150) 0.4179 (0.2174) 0.3890 (0.2174) 0.3705 (0.2307) 10

CFSP 0.4673 (0.2690) 0.3712 (0.2176) 0.2661 (0.1496) 0.1681 (0.0706) 0.0705 (0.0150) 3704
Cit-HepPh LRW 0.1574 (0.0497) 0.1104 (0.0364) 0.0769 (0.0151) 0.0573 (0.0064) 0.0566 (0.0062) 14

CFSP 0.1168 (0.0156) 0.1067 (0.0138) 0.0986 (0.0202) 0.0500 (0.0098) 0.0584 (0.0049) 2666
amazon0302 LRW 0.1768 (0.0833) 0.1464 (0.0749) 0.1335 (0.0600) 0.1220 (0.0503) 0.1118 (0.0428) 241

CFSP 0.0193 (0.0063) 0.0095 (0.0043) 0.0072 (0.0031) 0.0056 (0.0024) 0.0050 (0.0022) 3007
amazon0505 LRW 0.2472 (0.1111) 0.2369 (0.1124) 0.2248 (0.1132) 0.2200 (0.1152) 0.2162 (0.1183) 289

CFSP 0.0227 (0.0076) 0.0116 (0.0089) 0.0058 (0.0020) 0.0048 (0.0011) 0.0047 (0.0008) 13171

158 CHAPTER 8. CONSTRAINED LOCAL CLUSTERING

8.4.2 Weak or noisy constraints

By Theorem 4.7, the solution of the tight relaxation is guaranteed to satisfy
all constraints. This is a desirable property assuming that the constraints
represent available hard knowledge about the problem. However, there are
also situations where this is not the case. For instance, the seed constraints
could be generated by a human or automatically derived from some measure-
ments, and thus in both cases be susceptible to errors or random fluctuations.
Moreover, the upper bound on the volume could be only an approximate
estimate instead of a hard constraint. Thus in both cases one is willing to
sacrifice some of the constraints if it leads to a better NCut objective. In
the case of the noisy constraints, it is even desired to omit some of the con-
straints. For this reason, in this experiment we consider the variant of our
algorithm where the subset and volume constraint are handled via penalty
terms and show that by adjusting the penalty parameters γ1 and γ2 one
obtains a useful technique to deal with noisy and weak constraints.

We construct an instance of the noisy two moons dataset (see Section 7)
as two half moons of n points in 2 dimensions embedded in a d-dimensional
space, where in this case d = 20 and n = 1000. In contrast to Section 7,
the number of points in the two moons is heavily imbalanced (777 points
in upper and 223 points in lower moon). Moreover, also the noise variance
differs, it is given as 0.04 for the upper moon and 0.02 for the lower moon.

Due to the fact that there are many edges between the parts of the graph
corresponding to the right part of the upper moon and the left part of the
lower moon, the partition obtaining the best NCut (without any constraints)
cuts through the upper cluster, see Fig. 8.3.

Figure 8.3: Optimal (unconstrained) NCut on unbalanced two moons
dataset (Upper moon: 777 points, noise variance 0.04. Lower moon: 223
points, noise variance 0.02).

Thus in this case optimizing NCut without any constraints is not suitable
to separate the two half moons. We now consider the scenario where we are
given some additional information in the form of constraints which allow us

8.4. EXPERIMENTAL RESULTS 159

to obtain a better clustering. We first consider the case where the constraints
are noise-free and specify some seed vertices (around 4% of the total number
of vertices) in the lower half moon, see the top left plot in Fig. 8.4. We run
our algorithm for the local normalized cut with the given seed set and a
volume constraint vol(C) ≤ 0.25 vol(V). The resulting clustering is shown
in the top right plot in Fig. 8.4. As one can see, now the two half moons are
separated almost perfectly.

Next we consider the case where the constraints are noisy. Thus we take
the seed set from the previous run and randomly add some vertices to the
seed set (with 5% probability). The resulting seed set, which is shown in
the bottom left of Fig. 8.4, now contains 35 vertices in the upper moon and
53 vertices in the lower moon. Moreover, we consider a volume constraint
vol(C) ≤ 0.15 vol(V). Note that this constraint is too strict since the volume
of the lower moon is about one fourth of the total volume. As one can see
in the bottom right of Fig. 8.4, enforcing the constraints does not lead to a
meaningful result in this case.

Figure 8.4: Constrained local clustering (with hard subset and volume con-
straint) on the unbalanced two moons data set. Top row: Results for noise-
free seed set and volume constraint vol(C) ≤ 0.25 vol(V). Left : Seed set.
Right : Obtained partition. Bottom row: Results for noisy seed set and
(too strict) volume constraint vol(C) ≤ 0.15 vol(V). Left: Seed set. Right:
Suboptimal partition obtained when strictly enforcing constraints.

We now apply our penalty-based algorithm to the same problem. One
obtains two penalty terms T̂1(C) and T̂2(C) with parameters γ1 and γ2 for

160 CHAPTER 8. CONSTRAINED LOCAL CLUSTERING

the subset constraint and the volume constraint, respectively. Since there
is a big difference in the range of values of the penalty terms T̂1(C) and
T̂2(C), we add an additional scaling term to the penalty term for the seed
constraint, which then appears in the objective as γ1 α T̂1(C), where

α =
maxA T̂2(A)

maxA T̂1(A)
=

1
2 vol(V)− k2

|J |
.

We then run our algorithm for different values of γ1, γ2 between 0 (uncon-
strained solution) and 1.

In the left plot of Figure 8.5 we give the relative number of seed vertices
contained in the resulting cluster for different values of γ1, γ2 ∈ [0, 1]. For
γ1 = 0 less than 20% of the seed vertices are contained in the solution. This
number becomes larger for increasing values of γ1. For γ1 ≥ 0.4, all seed
vertices are contained in the solution. The middle plot shows the volumes of
the set C relative to the upper bound. Note that here the axis corresponding
to γ2 has been reversed. One observes that while for γ2 = 0, the volume
constraint is violated by almost a factor 3, increasing the value of γ2 leads to
a decrease in volume. For γ2 ≥ 0.8, the volume constraint is satisfied for all
values of γ1. Moreover, one also observes a small increase in the γ1 direction,
as for higher values of γ1 (more seeds contained in the cluster), it becomes
harder to enforce the volume constraint. For γ1 = 0, the volume constraint
is fulfilled for all values γ2 > 0. However, enforcing the constraints comes
at the cost of higher objective values. This is shown in the right plot where
we display the achieved NCut values. One observes a significant increase in
NCut for increasing values of γ1 and γ2. Clearly, the smallest NCut value is
obtained for γ1 = γ2 = 0 (unconstrained solution).

Figure 8.5: The effect of choosing different values of γ1 and γ2. Left: Relative
number of seed vertices in the resulting cluster. Middle: Volumes of set C
relative to upper bound. Right: NCut values.

In Figure 8.6 we show the clustering obtained for the noisy seed set
(shown in the bottom left) in the four extreme cases: For γ1 = γ2 = 0 (top
left), one obtains the unconstrained solution. For γ1 = 0 and γ2 = 1 (top
right), the seed constraint is ignored but the volume constraint is enforced,

8.4. EXPERIMENTAL RESULTS 161

thus the resulting cluster is a small part of the lower moon. The two plots
in the second row of Figure 8.6 show the case when the seed constraint is
enforced (γ1 = 1). In the left plot, the volume constraint is ignored (γ2 = 0),
thus the resulting cluster consists of the lower right part of the dataset plus
the additional seed vertices. In the right plot, the volume constraint is
enforced. Since the volume of the seed set is already about 10% of the total
volume, the resulting cluster is not meaningful. Thus, in order to separate
the two half moons, one needs to choose values of γ1 and γ2 between these
extreme cases. The best results are obtained with γ1 = 0.1 and γ2 = 0.2,
see the bottom right plot in Figure 8.6.

Figure 8.6: Constrained local clustering (with subset and volume constraints
via penalties) for noisy seeds and volume constraint vol(C) ≤ 0.15 vol(V) .
First row, left: γ1 = 0, γ2 = 0. Right: γ1 = 0, γ2 = 1. Second row, left:
γ1 = 1, γ2 = 0. Right: γ1 = 1, γ2 = 1. Third row, left : Noisy seed set.
Right : Best result is obtained for γ1 = 0.1 and γ2 = 0.2.

162 CHAPTER 8. CONSTRAINED LOCAL CLUSTERING

Chapter 9

Community detection via the
densest subgraph problem

The maximum density subgraph problem is an important problem in com-
puter science, which has a wide range of applications in graph analysis, for
instance in finding substructures in web graphs or social networks [Douris-
boure et al., 2007], spam detection [Gibson et al., 2005] or bioinformatics
[Saha et al., 2010]. In this chapter we will use the results from Chapter 4
to derive a reformulation of the (generalized) maximum density subgraph
problem, which can then be solved using the RatioDCA introduced in Chap-
ter 5. We will demonstrate the usefulness of the approach for community
detection on two social networks.

9.1 The constrained densest subgraph problem

In contrast to the local clustering problem discussed in the last chapter, in
community detection it makes more sense to find a highly connected set
instead of minimizing the separation to the remaining part of the graph. In
the following, we are again in the same graph-based setting as for the pre-
vious applications, see Section 7.1. The classical densest subgraph problem
(with seed subset) can then be formulated as

max
C⊂V

assoc(C)

|C|
subject to : J ⊂ C,

where assoc(C) =
∑

i,j∈C wij . In Figure 9.1 we show an example of a dense
subgraph on a graph. Here we have assoc(C) = 18 (note that each edge
is counted twice) and |C| = 3 and thus the density of the set C is 6. One
can easily see that adding any vertex to the set would decrease the density,
thus the subgraph is optimal for the given graph. For comparison, we have
assoc(V) = 40 and |V | = 8 and thus the density of the whole graph is 5.

163

164 CHAPTER 9. COMMUNITY DETECTION

v1

v2

v3

v4

3

3

3

1

1

v5

v6

v7

v8

1

1

2

2

1

2

Figure 9.1: Densest subgraph (red) with subset constraint

The classical (unconstrained) densest subgraph problem can be solved op-
timally in polynomial time [Goldberg, 1984]. Moreover, one can compute
a 2-approximation in linear time [Charikar, 2000]. However, a significantly
more difficult problem is the densest-k-subgraph problem, given as

max
C⊂V

assoc(C)

|C|
subject to : |C| = k, and J ⊂ C.

Here one requires the solution to contain exactly k vertices. Adding the
size constraint makes the problem NP hard [Feige et al., 2001], and it has
been shown not to admit a polynomial time approximation scheme [Khot,
2006], i.e. there is no polynomial time algorithm which produces a solution
within a factor of 1− ε of the optimal solution for arbitrary small constant
ε > 0. Moreover, the best known approximation algorithm for general k has
an approximation ratio of O(|V |δ), for some δ < 1

3 [Feige et al., 2001].

Replacing the equality constraint with a lower bound constraint (shown
below) leads to a problem which is still NP hard [Khuller and Saha, 2009],
but has a 2-approximation algorithm [Andersen, 2007, Khuller and Saha,
2009]. Problems of this form have been considered in team selection [Gaje-
war and Das Sarma, 2012] and bioinformatics [Saha et al., 2010].

max
C⊂V

assoc(C)

|C|
subject to : k ≤ |C| , and J ⊂ C.

However, if one has an upper bound constraint on the size, the problem is
as hard as the densest-k-subgraph problem [Andersen and Chellapilla, 2009,
Khuller and Saha, 2009]. In particular, it has been shown by Khuller and
Saha [2009] that the existence of an approximation algorithm with approxi-
mation ratio α for the densest-at most k-subgraph problem implies that there
is an approximation algorithm for the densest-k-subgraph problem with ap-
proximation ratio 4α. In the following, we will consider a generalized version

9.1. THE CONSTRAINED DENSEST SUBGRAPH PROBLEM 165

of the densest subgraph problem,

max
C⊂V

assoc(C)

volg(C)
:= Densityg(C) (9.1)

subject to : k1 ≤ volh1(C),

volh2(C) ≤ k2, and J ⊂ C,

where g, h1, h2 ∈ Rn+ are general non-negative vertex weights. This for-
mulation incorporates all previously discussed problems as special cases.
Moreover, it is a further generalization as it replaces the cardinalities in the
constraints as well as the denominator by general volume functions volg and
volh1 , volh2 . Given a seed set J ⊂ C consisting of one or more seed vertices,
the above formulation allows us to find dense communities containing the
seed set and thus can be used to analyze the given community structure
in a graph, for instance a social network. Furthermore, the use of vertex
weights in the denominator allows us to bias the obtained community to-
wards one with desired properties (assigning small weights to vertices which
one prefers to be contained in the solution, larger weights to ones which are
less preferred). In the experiments we will consider an example where we
detect communities in a network of computer science authors.

Another application is to form teams in a social network, as shown in
[Rangapuram et al., 2013]. Here one considers a graph which models the mu-
tual compatibility between a set of experts (for instance constructed based
on previous collaboration between the experts) and the goal is to identify a
team of experts (a subset of the graph) which is highly collaborative as well
as competent to perform a given task. The (generalized) density then yields
a useful criterion for the collaborative compatibility of the team. While
there exist other possibilities to measure the collaborative compatibility, for
instance using the diameter of the subgraph, the cost of the minimum span-
ning tree Lappas et al. [2009], or the shortest path distances between the
experts Kargar and An [2011], the density has several useful properties, for
example strict monotonicity and robustness [Gajewar and Das Sarma, 2012].

The constraints allow us to incorporate additional requirements on the
obtained community into the optimization problem. For instance, in the
team formation application, each team member, or the team as a whole,
may need to satisfy a certain skill requirement, and usually there are budget
constraints or a bound on the team size. Moreover, typically the team leader
is fixed in advance, which quite naturally leads to a subset constraint. It was
shown in [Rangapuram et al., 2013] that the additional flexibility obtained by
using upper bound constraints leads to more meaningful teams. Moreover,
in the cases where the previous density-based method by Gajewar and Das
Sarma [2012] was applicable, the CFSP-based method produced teams of
higher density and smaller size. We refer to Rangapuram et al. [2013] for a
detailed discussion of the results for the team formation problem.

166 CHAPTER 9. COMMUNITY DETECTION

In the following we will focus on the community detection problem with
seed and volume constraint and no additional constraints. In the next sec-
tion, we will derive a tight relaxation of the problem (9.1).

9.2 Tight relaxation of local community detection
problem

In this section we will derive a tight relaxation of the local community
detection problem (9.1) for general non-negative vertex weights g, h1, h2 ∈
Rn+. The derivation for this problem is similar to the one for the local
clustering problem in Chapter 8.

9.2.1 Elimination of volume constraints

First, we integrate the volume constraint via a penalty term which yields
the following equivalent problem. We use again the set function P̂ given by
P̂ (∅) = 0, and P̂ (C) = 1, if C 6= ∅.

Lemma 9.1. The problem (9.1) is equivalent to the problem

min
C⊂V

volg(C) + γT̂k1,k2(C)

assoc(C)
, (9.2)

subject to : J ⊂ C

where

T̂k1,k2(C) = k1P̂ (C) + volh2(C)−min {k1, volh1(C)} −min {k2, volh2(C)}

and γ >
volg(C0) vol(V)
θ assoc(C0) for some feasible set C0 ⊂ V , and θ > 0 is a constant.

Proof. First one rewrites the maximization problem in (9.1) as a minimiza-
tion problem by exchanging numerator and denominator. We now derive
penalty terms for the constraints k1 ≤ volh1(C) and volh2(C) ≤ k2 accord-
ing to Eq. (4.6). The lower bound constraint is first rewritten as an upper
bound constraint − volh1(C) ≤ −k1, which yields the penalty term

T̂
(1)
k1

(C) =

{
max {0,− volh1(C)− (−k1)} , C 6= ∅,

0, C = ∅.

= k1P̂ (C)−min {k1, volh1(C)} .

For the upper bound constraint we obtain

T̂
(2)
k2

(C) =

{
max {0, volh2(C)− k2)} , C 6= ∅,

0, C = ∅.
= volh2(C)−min {k2, volh2(C)} .

9.2. TIGHT RELAXATION 167

Writing T̂k1,k2(C) = T̂
(1)
k1

(C) + T̂
(2)
k2

(C), the result then follows by Lemma
4.5 for any γ satisfying

γ >
volg(C0)

θ assoc(C0)
max
C⊂V

assoc(C),

for some feasible set C0 ⊂ V , and the constant θ defined in Eq. (4.7). Ex-
plicitly, in this case θ is given as

θ = min

{
min

volh1 (C)>k1
{volh1(C)− k1} , min

volh2 (C)<k2
{k2 − volh2(C)}

}
.

Noting that maxC⊂V assoc(C) = vol(V), we obtain the result. �

Similarly to the constrained normalized cut problem from Chapter 8, we
discuss two different ways to handle the subset constraint. The first ap-
proach reformulates the problem as an optimization problem on the graph
obtained after excluding the seed subset, the second one handles the subset
constraint via a penalty term.

9.2.2 Direct integration of seed subset

In this section we show how the subset constraint J ⊂ C can be incorporated
directly into the objective. By writing the set C as C = A ∪ J for some set
A ⊂ V with A ∩ J = ∅ one observes that the problem boils down to finding
the optimal setA and we can rewrite the problem as an optimization problem
on the graph with vertices V ′ = V \J . An illustration is given in Fig. 8.2.

Lemma 9.2. The problem (9.2) is equivalent to the problem

min
A⊂V \J

volg(A) + volg(J) + γ(T̂k′1,k′2(A) + k′1(1− P̂ (A)))

vold(A) + assoc(J) + cut(J,A)− cut(A, V ′\A)
, (9.3)

where k′1 = k1 − volh1(J) and k′2 = k2 − volh2(J) and

γ >
(volg(A0) + volg(J)) vold(V)

θ (vold(A0) + assoc(J) + cut(J,A0)− cut(A0, V ′\A0))

for some feasible set A0 ⊂ V ′. Solutions C∗ of (9.2) and A∗ of (9.3) are
related via C∗ = A∗ ∪ J .

Proof. Writing C = A∪ J , where A ⊂ V with A∩ J = ∅, and introducing
the notation V ′ = V \J , we decompose the terms in (9.2) as follows:

volg(C) =
∑
i∈C

gi =
∑
i∈A

gi +
∑
i∈J

gi = volg(A) + volg(J),

168 CHAPTER 9. COMMUNITY DETECTION

assoc(C) =
∑
i,j∈C

wij =
∑
i,j∈A

wij +
∑
i,j∈J

wij + 2
∑

i∈A,j∈J
wij ,

where we used the symmetry of W . Using that V = (V \(A∪ J))∪A∪ J =
(V ′\A) ∪A ∪ J , this can be rewritten as∑

i∈A,j∈V
wij −

∑
i∈A,j∈V ′\A

wij −
∑

i∈A,j∈J
wij +

∑
i,j∈J

wij + 2
∑

i∈A,j∈J
wij

= vold(A) + assoc(J) + cut(J,A)− cut(A, V ′\A).

Similarly one obtains for the first two terms in the penalty term, k1P̂ (C) +
volh2(C) = k1 +volh2(A)+volh2(J), where we used the fact that P̂ (A∪J) =
P̂ (J) = 1 as we assume that J is non-empty. Moreover,

min {k1, volh1(C)} = min {k1 − volh1(J), volh1(A)}+ volh1(J),

and analogously for the fourth term in T̂k1,k2 . Thus in total we get

T̂k1,k2(C) =k1 − volh1(J) + volh2(A)−min {k1 − volh1(J), volh1(A)}
−min {k2 − volh2(J), volh2(A)} .

Introducing k′1 = k1 − volh1(J) and k′2 = k2 − volh2(J), we can write this as

T̂k1,k2(C) = T̂k′1,k′2(A) + k′1(1− P̂ (A)) =

{
T̂k′1,k′2(A), if A 6= ∅
k′1, if A = ∅

.

Replacing the terms in (9.2) gives the result. Thus a solution C∗ of (9.2) is
obtained by computing a solution A∗ of (9.3) and setting C∗ = A∗ ∪ J . �

Similar to the derivation for the constrained NCut problem in Chapter 8, we
need to do a small modification. As the Lovász extension of a set function Ŝ
in Def. 2.12 requires the function to satisfy Ŝ(∅) = 0, we replace the constant
set functions volg(J), assoc(J) and k′1 by volg(J)P̂ (A), assoc(J)P̂ (A) and

k′1P̂ (A), respectively. This leads to the problem

min
A⊂V \J

volg(A) + volg(J)P̂ (A) + γT̂k′1,k′2(A)

vold(A) + assoc(J)P̂ (A) + cut(J,A)− cut(A, V ′\A)
. (9.4)

The only difference to (9.2) lies in the treatment of the empty set. Note that
with 0

0 :=∞ the empty set can never be optimal for (9.4). Given an optimal
solution A∗ of (9.4), one then considers either A∗ ∪ J or J , depending on
whichever has lower objective, which then implies equivalence to (9.2).

The resulting tight relaxation will be a minimization problem over Rm
with m = |V \J | and we assume wlog that the first m vertices of V are
the ones in V \J . Moreover, we use the notation fmax = maxi=1,...,m fi for

9.2. TIGHT RELAXATION 169

f ∈ Rm, and d
(A)
i =

∑
j∈Awij . In order to derive the tight relaxation, we

need the Lovász extensions of the set functions in (9.4). In Table 9.1, we
recollect some Lovász extensions already encountered earlier which will be
used in the derivation of the tight relaxation presented in Theorem 9.3, as
well as later in Theorem 9.5. The proofs can be found in Prop. 2.22 and
Prop. 2.23 as well as Lemmas 8.4, 8.5, 8.6 and 8.9.

Table 9.1: Lovász extensions used in tight relaxation of general maximum
density subgraph problem.

Set function Lovász extension Shown in

volg(A)
〈
f, (gi)

m
i=1

〉
Prop. 2.22

cut(A, V ′\A) 1
2

∑
i,j∈V ′ wij

∣∣fi − fj∣∣ Prop. 2.23

P̂ (A) fmax Lemma 8.4

cut(J,A)
〈
d(J), f

〉
Lemma 8.5

min{k, volg(A)}
〈
f, t

(2)
k′ (f)

〉
Lemma 8.6

|C ∩ J |
〈
1J , f

〉
Lemma 8.9

Theorem 9.3 (Tight relaxation of maximum density problem).
The problem in (9.4) is equivalent to the problem

min
f∈Rm+

R1(f)−R2(f)

S1(f)− S2(f)
, (9.5)

where the convex functions R1, R2, S1, S2 are given as

R1(f) =
〈
f, (gi)

m
i=1 + γ((h2)i)

m
i=1

〉
+
(
volg(J) + γk′1

)
fmax,

R2(f) = γ
〈
f, t

(2)
k′1

(f) + t
(2)
k′2

(f)
〉
,

S1(f) =
〈
f, (di)

m
i=1 + (d

(J)
i)mi=1

〉
+ assoc(J)fmax, and

S2(f) = 1
2

∑
i,j∈V ′ wij

∣∣fi − fj∣∣.
Proof. The objective in (9.4) can be written as a ratio of two differences
of submodular set functions as follows

min
A⊂V ′

R̂1(A)− R̂2(A)

Ŝ1(A)− Ŝ2(A)
,

where the submodular functions R̂1, R̂2, Ŝ1, Ŝ2 are given as

R̂1(A) = volg(A) + γ volh2(A) + volg(J)P̂ (A) + γk′1P̂ (A),

R̂2(A) = γmin{k′1, volh1(A)}+ γmin{k′2, volh2(A)},

Ŝ1(A) = vold(A) + cut(J,A) + assoc(J)P̂ (A), and

Ŝ2(A) = cut(A, V ′\A).

170 CHAPTER 9. COMMUNITY DETECTION

One now replaces the set functions by their Lovász extensions, see Table
9.1. This directly leads to the terms R1, R2, S1 and S2, which by Theorem
4.4 yield a tight relaxation of the original problem. �

9.2.3 Seed constraint via penalty function

Here we briefly state the results for the alternative approach where the
subset constraint is incorporated into the problem via a penalty function.

Lemma 9.4. The problem (9.1) is equivalent to the problem

min
C⊂V

volg(C) + γ (|J | − |C ∩ J |)
vol(C)− cut(C,C)

(9.6)

subject to : k1 ≤ volh1(C),

volh2(C) ≤ k2,

where γ >
volg(C0) vol(V)
θ assoc(C0) for some feasible set C0 ⊂ V .

Proof. We first turn the maximization problem into a minimization prob-
lem by exchanging numerator and denominator. Moreover, note that

assoc(C) =
∑
i,j∈C

wij =
∑

i∈C,j∈V
wij −

∑
i∈C,j∈C

wij = vol(C)− cut(C,C).

The proof then works analogously to the proof of Lemma 8.8. �

In the following, the volume constraints are omitted for clarity of presen-
tation. Moreover, we can replace the constant function |J | by the function
|J | P̂ (C), see the discussion after Lemma 9.2. This leads to the problem

min
C⊂V

volg(C) + γ
(
|J | P̂ (C)− |C ∩ J |

)
vol(C)− cut(C,C)

. (9.7)

Theorem 9.5 (Tight relaxation with subset as penalty).
The problem in (9.7) is equivalent to the problem

min
f∈Rm+

R1(f)−R2(f)

S1(f)− S2(f)
, (9.8)

where the convex functions R1, R2, S1, S2 are given as

R1(f) =
〈
f, g
〉

+ γ |J | fmax,

R2(f) = γ
〈
f,1J

〉
,

S1(f) =
〈
f, d
〉

and

S2(f) = 1
2

∑
i,j∈V

∣∣fi − fj∣∣.

9.3. SOLUTION VIA RATIODCA 171

Proof. The objective in (9.7) can be written as a ratio of two differences
of submodular set functions as follows

min
C⊂V

R̂1(C)− R̂2(C)

Ŝ1(C)− Ŝ2(C)
,

where the submodular functions R̂1, R̂2, Ŝ1, Ŝ2 are given as

R̂1(C) = volg(C) + γ |J | P̂ (C),

R̂2(C) = γ |J ∩ C| ,

Ŝ1(C) = vol(C), and

Ŝ2(C) = cut(C,C).

Replacing the set functions by their Lovász extensions, see Table 9.1, then
yields the result via Theorem 4.4. �

9.3 Solution via RatioDCA

Observe that both numerator and denominator of the tight relaxation (9.5)
and (9.8) are 1-homogeneous d.c. functions and thus we can apply the Ra-
tioDCA of Section 5. The crucial step in the algorithm is solving the inner
problem. It turns out that in both cases it has the form

min
f∈Rm+
‖f‖2≤1

{
λk

2

m∑
i,j

wij
∣∣fi − fj∣∣+ c1fmax +

〈
f, ck2

〉}
,

where c1 ∈ R is a constant and ck2 is a vector depending on the current
iterate fk. Thus, up to the factor λk it has the same structure as the inner
problem for the constrained local clustering problems in Chapter 8. The
explicit values of c1 and ck2 are given for the problem in (9.5) as

c1 = volg(J) + γk′1 − λkassoc(J), (9.9)

ck2 = (gi)
m
i=1 + γ((h2)i)

m
i=1 − γ

(
t
(2)
k′1

(f) + t
(2)
k′2

(f)
)
− λk

(
(di)

m
i=1 + (d

(J)
i)mi=1

)
,

and for the problem in (9.8) as

c1 = γ |J | , (9.10)

ck2 = g − γ1J − λkd.

Dividing by λk > 0 yields an inner problem of the same structure as for the
local clustering problem, thus we can solve this problem analogously via its
dual problem, see Section 8.3. The algorithm is summarized in Alg. 20.

172 CHAPTER 9. COMMUNITY DETECTION

20 Algorithm for local community detection

1: Input: weight matrix W
2: Initialization: nonconstant f0 with

∥∥f0
∥∥

2
= 1, accuracy ε

3: repeat
4: Compute c1 and ck according to (9.9) for (9.5) or (9.10) for (9.8).

5: fk+1 = arg min
f∈Rm+ / f∈Rn+
‖f‖2≤1

{
λk

2

∑m
i,j wij |fi − fj |+ c1fmax +

〈
f, ck2

〉}
,

6: λk+1 = R1(fk)−R2(fk)
S1(fk)−S2(fk)

7: until
|λk+1−λk|

λk
< ε

Theorem 9.6 (Convergence). Let Q be the functional in (9.5) or (9.8),
depending on the choice of c1 and ck. The sequence fk produced by Alg. 20
satisfies Q(fk) > Q(fk+1) for all k ≥ 0 or terminates. Moreover, fk has a
subsequence converging to a solution of the eigenproblem associated to Q.

Proof. This is a direct corollary of Prop. 5.9 and Theorem 5.13. �

We omit the exact form of the eigenproblem associated to the problems in
(9.5) or (9.8). Similar to the previous applications from Chapter 7 and 8,
one can give the following improvement guarantee.

Theorem 9.7 (Density improvement). Let C be any feasible set, f de-
note the result of Alg. 20 after initializing with 1

|C|1C , and Cf be the set ob-
tained by optimal thresholding of f . Either Alg. 20 terminates after one iter-
ation, or the set Cf is feasible and it holds that Densityg(Cf) > Densityg(C).

Proof. This is a direct corollary of Theorem 5.13. �

Next we consider the solution of the inner problem in the special case of the
unconstrained maximum density subgraph problem.

9.3.1 Unconstrained version

In the unconstrained case of the maximum density problem, the tight relax-
ation (9.8) reduces to a convex-concave ratio, given as

min
f∈Rn+

〈
f, g
〉〈

f, d
〉
− 1

2

∑
i,j∈V

∣∣fi − fj∣∣ . (9.11)

Due to the 1-homogeneity of the objective, we can replace the constraint
f ∈ Rn+ by the constraint f ∈ H, where H :=

{
f ∈ Rn+ | ‖f‖∞ ≤ 1

}
.

By Prop. 2.14, the numerator and denominator of (9.11) are non-negative
for all f ∈ Rn+, since they are the Lovász extensions of the non-negative set
functions volg(C) and assoc(C), respectively. Thus, the problem can be

9.3. SOLUTION VIA RATIODCA 173

solved globally optimally with the method of Dinkelbach [1967] presented
in Alg. 2. In every iteration, we have to solve

min
f∈H

{
λk

2

n∑
i,j=1

wij
∣∣fi − fj∣∣+

〈
f, g − λkd

〉}
. (9.12)

The following proposition shows that (9.12) can be rewritten as a s-t-min-
cut-problem.

Proposition 9.8. Problem (9.12) is equivalent to the problem

min
fV ∈H, fs=1, ft=0

1
2

∑
i,j∈V ′

w′ij
∣∣fi − fj∣∣,

with V ′ = V ∪ {s, t}, H :=
{
u ∈ Rn+, ‖u‖∞ ≤ 1

}
and some non-negative

weights w′ij, i, j ∈ V ′.

Proof. Note that adding constant terms to the objective does not change
the minimizer. We rewrite the objective as

λk

2

n∑
i,j=1

wij |fi − fj |+
n∑
i=1

gi(fi − 0) + λk
n∑
i=1

di − λk
n∑
i=1

difi

= λk

2

n∑
i,j=1

wij |fi − fj |+
n∑
i=1

gi |fi − 0|+ λk
n∑
i=1

di |1− fi| ,

where we have used that every minimizer f ∈ Rn+ has ‖f‖∞ ≤ 1, i.e. fi ∈
[0, 1] , ∀i = 1, . . . , n. We define the graph as V ′ = V ∪ {s, t} and the weight
matrix W ′ with

w′ij =

λwij if i, j ∈ V ,
2λk dj if i = s and j ∈ V ,
2 gi if i ∈ V and j = t,

and rewrite the problem as

min
fV ∈H, fs=1, ft=0

1
2

∑
i,j∈V ′

w′ij
∣∣fi − fj∣∣.

By Prop. 2.19 as well as Prop. 2.23 and Lemma 8.5, this is equivalent to

min
C⊂V

cut(C,C) + cut({s}, C) + cut({t}, C),

which is a s-t-mincut. �

As discussed in Section 7, the s-t-mincut problem can be efficiently solved,
e.g. using the pseudo-flow algorithm of Hochbaum [2008].

174 CHAPTER 9. COMMUNITY DETECTION

9.4 Experimental results

In all experiments we start the RatioDCA with 10 different random initial-
izations and report the result with smallest objective value. As in the case of
the local clustering method from Chapter 8, the parameter γ from Theorem
4.6, is obtained by first solving the unconstrained case (γ = 0) and then
increasing γ sequentially, until all constraints are fulfilled.

9.4.1 Community detection on DBLP data

We evaluate our approach for local community detection on a co-author
network constructed from the DBLP publication database. Each node in the
network represents a researcher and an edge between two nodes indicates
a common publication. The task is to extract communities of researchers
around a given seed set.

The weights of the graph are defined as wij =
∑

l∈Pi∩Pj
1
|Al| , where Pi, Pj

denotes the set of publications of authors i and j and Al denote the sets of
authors for publication l, i.e. the weights represent the total contribution to
shared papers. This normalization avoids the problem of giving high weight
to a researcher who has publications that have a large number of authors,
which usually does not reflect close collaboration with all co-authors. To
avoid finding a trivial densely connected group of researchers with only few
connections to the rest of the authors, we restrict the graph by considering
only authors with at least two publications and maximum distance two from
the seed set. As volume function volg in (9.1), we use the volume of the
original graph in order to further enforce densely connected components.

We perform local community detection with the size constraint |C| ≤ 20
and three different seed sets

J1 = {P. Bartlett, P. Long, G. Lugosi} ,
J2 = {E. Candes, J. Tropp} and

J3 = {O. Bousquet} .

The results are shown in Fig. 9.2. The seed set J1 consists of well-known
researchers in learning theory, and all members of the detected community
work in this area. To validate this, we counted the number of publications
in the two main theory conferences COLT and ALT. At the time of the first
publication of this result, each author on average had 18.2 publications in
these two conferences (see Table 9.2 for more details). The seeds J2 yield
a community of key scientists in the field of sparsity such as T. Tao, R.
Baraniuk, J. Romberg, M. Wakin and R. Vershynin. The third community
contains researchers who are or were members of the group of B. Schölkopf
or have closely collaborated with his group.

9.4. EXPERIMENTAL RESULTS 175

Sandra
Zilles

Peter L.
Bartlett

Carl H.
Smith

Philip
M. Long

John Case

Sanjay Jain

Steffen
Lange

Rolf
Wiehagen

Thomas
Zeugmann

Rusins
Freivalds

Efim B.
Kinber

Frank
Stephan

Martin
Kummer

Arun
Sharma

Samuel E.
Moelius

Gabor
Lugosi

Matthias
Ott

Jochen
Nessel

Susanne
Kaufmann

Ganesh
Baliga

Michael
B. Wakin

Terence
Tao

Richard G.
Baraniuk

Emmanuel
J. Candes

Justin K.
Romberg

Deanna
Needell

Roman
Vershynin

Joel A.
Tropp

Dror BaronMarco F.
Duarte

Mark A.
Davenport

Shriram
Sarvotham

Hyeokho
Choi

Ramesh
Neelamani

Chinmay
Hegde

Jason N.
Laska

Muhammad
Salman Asif

Yaniv Plan

William
Mantzel

Wai Lam
Chan

Xiaohai
Sun

Bernhard
Schoelkopf

Robert C.
Williamson

Dominik
Janzing

Sebastian
Mika

Alex J.
Smola

Le Song

Jonas
PetersArthur

Gretton

Karsten M.
Borgwardt

Olivier
Bousquet

Kenji
Fukumizu

Thore
Graepel

Ralf
Herbrich

David
H. Stern

Joris M.
Mooij

Bharath
K. Sripe-
rumbudur

Malte J.
Rasch

Bastian
Steudel

Figure 9.2: Results for community detection on DBLP co-author network.
Top: Learning theory Middle: Sparsity Bottom: Kernels

176 CHAPTER 9. COMMUNITY DETECTION

Table 9.2: The number of publications in ALT and COLT of each author in
the “learning theory” community.

Author COLT ALT
Sandra Zilles 3 13

Peter L. Bartlett 24 2
Carl H. Smith 13 4
Philip M. Long 21 3

John Case 12 18
Sanjay Jain 21 40

Steffen Lange 14 5
Rolf Wiehagen 6 7

Thomas Zeugmann 6 20
Rusins Freivalds 6 5
Efim B. Kinber 11 9
Frank Stephan 13 28

Martin Kummer 5 0
Arun Sharma 10 13

Samuel E. Moelius 1 5
Gabor Lugosi 16 1
Matthias Ott 2 1
Jochen Nessel 1 2

Susanne Kaufmann 1 1
Ganesh Baliga 1 0

9.4.2 Community detection on composer network

In this experiment we evaluate our approach to community detection on a
network of classical composers. A subset of the Amazon product catalog
was downloaded from [Leskovec] containing metadata for Amazon products
available in 2006. For each item, the data contains a list of similar items,
based on co-purchase with the given item.

Given a network of composers where the edges represent some notion of
similarity, detecting communities is a useful technique which can be used
in the context of a recommendation engine. The idea is that a user who
likes music by one composer will likely be interested in compositions by a
similar artist. Thus we apply our community detection algorithm on the
composer-composer network, with the aim to find meaningful communities
of similar composers in the network (note that here we use a wider definition
of the term ”community”). Moreover, note that while in this experiment we
restrict ourselves to the subset of classical music records, the same technique
could be applied for records of other genres, or other types of networks such
as a network between book authors or movie directors.

First we use the available data to construct a network of classical com-
posers as follows: two composers are connected to each other if one or more

9.4. EXPERIMENTAL RESULTS 177

recordings of their works were co-purchased together. Given the matrix
W ∈ {0, 1}m×m of record similarity based on co-purchases, i.e. Wij = 1 if
record j is among the similar items of record i (note that this graph is not
symmetric), a matrix A ∈ {0, 1}n×m containing the mapping from records
to composers as well as a diagonal matrix D ∈ Nn×n containing the num-
ber of records for each composer, i.e. Dii =

∑m
j=1Aij , the weight matrix

Wcomp ∈ Rn×n for the composer-composer graph is constructed as

Wcomp = D−1AW ATD−1, where W = 0.5 ·
(
W +W T

)
.

We then eliminate self-edges and consider the largest connected compo-
nent of the resulting graph. Furthermore, note that we restrict ourselves to
records having only one composer in order to filter out compilation albums.

The use of the matrix D limits the impact of very popular composers
where a very large number of records exist. This is a desirable property
for a recommendation system, since usually the popularity of items can be
described by a power law distribution, where most of the items are contained
in the heavy tail of the distribution, i.e. there are only relatively few items
which are very popular, while most of the items are sold very infrequently.
Thus, a recommendation system should make the user aware of these items
which are unknown but may be similar to the user’s taste [Anderson, 2006].

We perform local community detection with the size constraint |C| ≤ 10
and the four different seeds

J1 = {Byrd, William} ,
J2 = {Bach, Johann Sebastian} ,
J3 = {Schoenberg, Arnold} and

J4 = {Cage, John} .

Table 9.3 shows the communities found by our algorithm. We are able to
retrieve different communities of composers from different musical eras. To
illustrate this, we give the times of birth and death as well as the corre-
sponding musical period for each composer [Sadie and Grove, 2001]. Note
that in some cases the exact dates are not known and estimates are given.

The community found with query J1 consists of composers mainly from
the renaissance and early baroque period as well as composers/lyricists from
the medieval era. This community can be roughly identified with the mu-
sical era ”early music”. The seed set J2 mainly yields composers of the
baroque era. The example obtained with query J3 is a very dense com-
munity containing the core members of what is commonly referred to as
the ”Second Viennese School”, a group of influential composers consisting
mainly of Arnold Schoenberg and his pupils Alban Berg and Anton von We-
bern [Sadie and Grove, 2001]. Finally, the community obtained with query
J4 contains well-known 20th century composers.

178 CHAPTER 9. COMMUNITY DETECTION

Table 9.3: Results of community detection on network of classical composers
(seed in bold). The found communities can be roughly identified with mu-
sical eras ’Early music’, ’Baroque’, ’Modern’ and ’20th century’.

Composer Birth Death Period

Byrd, William 1540 1623 Renaissance
Dufay, Guillaume 1397 1474 Renaissance
Gombert, Nicolas 1495 1560 Renaissance
Kapsberger, Giovanni 1580 1651 Baroque
Lassus, Orlande de 1532 1594 Renaissance
Lobo, Alonso 1555 1617 Renaissance
Machaut, Guillaume de 1300 1377 Medieval
Obrecht, Jacob 1457 1505 Renaissance
Praetorius, Michael 1571 1621 Renaissance
Walther v. der Vogelweide 1170 1230 Medieval

Bach, Johann Sebastian 1685 1750 Baroque
Biber, Heinrich Ignaz 1644 1704 Baroque
Couperin, Louis 1626 1661 Baroque
Dittersdorf, Karl Ditters 1739 1799 Classical
Pandolfi-Mealli, G.A. 1630 1670 Baroque
Rameau, Jean Philippe 1683 1764 Baroque
Schmelzer, Johann H. 1623 1680 Baroque
Stamitz, Johann Wenzel 1717 1757 Classical
Tartini, Giuseppe 1692 1770 Baroque
Telemann, Georg Philipp 1681 1767 Baroque

Berg, Alban 1885 1935 Modern
Schoenberg, Arnold 1874 1951 Modern
Webern, Anton von 1883 1945 Modern

Boulez, Pierre 1925 – 20th century
Cage, John 1912 1992 20th century
Dutilleux, Henri 1916 2013 20th century
Ligeti, György 1923 2006 20th century
Lutoslawski, Witold 1913 1994 20th century
Nancarrow, Conlon 1912 1997 20th century
Penderecki, Krzysztof 1933 – 20th century
Rzewski, Frederic 1938 – 20th century
Scelsi, Giacinto 1905 1988 20th century
Stockhausen, Karlheinz 1928 2007 20th century

Chapter 10

Sparse PCA

Principal component analysis (PCA) is a standard technique for dimen-
sionality reduction and data analysis [Jolliffe, 2002]. It was independently
developed by Pearson [1901] and later Hotelling [1933]. Given a set of obser-
vations of a number of (possibly correlated) variables, in PCA a dimensional-
ity reduction is performed via a transformation to a new set of uncorrelated
variables such that the first k of these variables explain as much of the vari-
ance of the data as possible. Thus, PCA finds the k-dimensional subspace
of maximal variance in the data. Solving PCA reduces to a standard linear
eigenproblem involving a positive semidefinite symmetric matrix.

As usually all entries of the loading vectors (i.e. the vectors describing the
transformation into the new vector space) are nonzero, an interpretation of
the principal components is often difficult. This constitutes a disadvantage
for instance in the case of gene expression data where one would like the
principal components to consist only of a few significant genes, making it
easy to be interpreted by a human.

For this reason, in sparse PCA (see e.g. Cadima and Jolliffe [1995], Jolliffe
et al. [2003], Zou et al. [2006], Moghaddam et al. [2006], Sriperumbudur
et al. [2007], d’Aspremont et al. [2007], d’Aspremont et al. [2008], Sigg and
Buhmann [2008], Shen and Huang [2008], Journée et al. [2010]) one enforces
sparsity of the loading vectors with the aim of getting a small number of
features while at the same time still capturing most of the variance. In other
words, one is interested in the optimal trade-off between explained variance
and sparsity. In this chapter, we show how sparse PCA can be efficiently
solved using our inverse power method from Section 5.3.

10.1 Principal component analysis

Consider a data matrix X ∈ Rm×n where each of the m rows represents a
point in a n-dimensional space. For instance the points could correspond to
m different repetitions of the same experiment and the columns correspond

179

180 CHAPTER 10. SPARSE PCA

to n different features which have been measured.
In principal component analysis one is now interested in finding the k-

dimensional subspace which explains most of the variance in the data. This
has several different applications for instance in data compression, obtaining
a good visualization of the data, or finding the underlying structure in the
data [Jolliffe, 2002]. Alternatively to the variance interpretation, PCA can
be seen as computing the p-dimensional subspace which best approximates
the given data in terms of the Euclidean distance, see for example Hastie
et al. [2001]. In the following we give a derivation of principal component
analysis based on the variance interpretation.

10.1.1 Variance interpretation

Let us first consider the case p = 1. Given a Rn-valued multivariate random
variable Y , we consider for some direction f ∈ Rn with ‖f‖2 = 1 the length
of the projection of a point y ∈ Rn onto the line with direction f , which
is given as 〈f, y〉. For a given f , the variance of the new random variable
Y = 〈f, Y 〉 is then given as

E
[(
Y − E

[
Y
])2

]
= E

[(〈
f, Y

〉
− E

[〈
f, Y

〉])2
]

= E
[〈
f, Y − E [Y]

〉2
]
.

Now we assume that the data is a set of observations x1, . . . , xm drawn from
the above random distribution. We can write this in compact form as a
data matrix X ∈ Rm×n containing the samples as row vectors. The sample
variance for the direction f is then given as (scaled with factor m)

varf (X) =
m∑
i=1

〈
f, xi − 1

m

m∑
j=1

xj
〉2
. (10.1)

Introducing the (scaled) sample covariance matrix Σ ∈ Rn×n, given as

Σ =

m∑
i=1

(
xi − 1

m

m∑
j=1

xj

)(
xi − 1

m

m∑
j=1

xj

)T
=
(
X − 1

mX1
)T (

X − 1
mX1

)
,

we can rewrite (10.1) in compact form as

varf (X) = fTΣf. (10.2)

Recall that in PCA one is interested in the direction f∗ achieving maximal
variance. Thus one needs to compute the unit vector with direction f∗ which
maximizes (10.2). The problem can now be stated as

f∗ = arg max
f∈Rn, ‖f‖2=1

〈
f,Σf

〉
= arg max

f∈Rn

〈
f,Σf

〉
‖f‖22

. (10.3)

10.1. PRINCIPAL COMPONENT ANALYSIS 181

Note that the matrix Σ is symmetric positive semi-definite. Thus by the
Rayleigh-Ritz principle (see Chapter 3) the solution of the above problem
is given by the eigenvector corresponding to the largest eigenvalue of the
covariance matrix Σ ∈ Rn×n.

Let us now consider the general case of p ≥ 1. Denote by F ∈ Rn×p
a matrix having as columns p orthonormal vectors. Instead of considering
the projection of a point onto the line with direction f , we now consider the
projection of the point onto the space spanned by F . Thus the matrix F
performs a coordinate transform into a new coordinate system where each
column of the matrix F corresponds to a coordinate axis. Given a point
x ∈ Rn, the coordinates of the new point after the coordinate transform are
given as F Tx ∈ Rp. As before, we are now interested in finding coordinate
axes F such that there is a high variance in the new coordinates F Tx. Intu-
itively, this means that the new coordinate axes F represent the structure
of the data well and could for example be used to obtain a good visual-
ization of the data. As before, we first consider an n-dimensional random
variable Y (corresponding to the original data points) and then compute
the expected variance of the new k-dimensional random variable Y = F TY
(corresponding to the projected points). We obtain

E
[(
Y − E

[
Y
])T (

Y − E
[
Y
])]

= E
[∥∥F T (Y − E [Y])

∥∥2

2

]
.

The generalization of (10.1) then becomes (note that again we omitted the
constant factor)

varF (X) =
m∑
i=1

∥∥∥F T (xi −
1

m

m∑
j=1

xj)
∥∥∥2

2
. (10.4)

The expression in (10.4) can be rewritten as follows.

Lemma 10.1. It holds that varF (X) = tr(F TΣF).

Proof. We introduce the notation x̃i = xi − 1
m

∑m
i=1 xj , as well as X̃ :=

X − 1
mX1. Then we can rewrite varF (X) as follows:

varF (X) =
m∑
i=1

x̃Ti FF
T x̃i =

m∑
i=1

(X̃FF T X̃T)ii =
m∑
i=1

n∑
j=1

(X̃F)ij(F
T X̃T)ji

=
n∑
j=1

m∑
i=1

(F T X̃T)ji(X̃F)ij =
n∑
j=1

(F T X̃T X̃F)jj = tr(F TΣF).

�

Thus, the PCA problem for p ≥ 1 can be stated as

max tr(F TΣF) (10.5)

subject to F TF = I.

182 CHAPTER 10. SPARSE PCA

The maximum is achieved by the matrix V ∈ Rn×p having as columns the
eigenvectors corresponding to the p largest eigenvalues λn ≥ · · · ≥ λn−p+1,
see for example Lütkepohl [1997]. The total variance in this p-dimensional
subspace is then given by

varV (X) = tr(V TΣV) =
n∑

i=n−p+1

vTi Σvi =
n∑

i=n−p+1

λi.

Note that in the literature both the column vectors of V as well as the
columns of the new variables Z = XV are sometimes referred to as principal
components of Σ. To avoid confusion, we follow the nomenclature in Jolliffe
[2002] and refer to the columns of Z as the principal components, while the
columns of V are the corresponding loading vectors. Formally, one can give
the following definition.

Definition 10.2 (Principal components). Let X ∈ Rm×n be a data ma-
trix and the sample covariance matrix be given by Σ = X̃T X̃, where X̃ :=
X − 1

mX1. Let the matrix V ∈ Rn×p contain as columns the eigenvectors
corresponding to the p largest eigenvalues of Σ. Let the matrix Z ∈ Rm×p
be obtained by the linear transformation Z = X̃V . Then for k ∈ {1, . . . , p},
the k-th column of Z is called the kth principal component (PC) of Σ, and
the corresponding column of V is called loading vector for the kth PC.

In Fig. 10.1 we perform principal component analysis on some random data
sampled from a Gaussian distribution in R2. In the left plot, we give the
original data, and the red lines correspond to the eigenvectors of the co-
variance matrix Σ. On the right, we show the same data with respect to
the new coordinate axes Z. In the new coordinate system, the data has a
simpler structure and thus becomes easier to analyze.

Figure 10.1: Left: The loading vectors for the first two principal components
for some data drawn from a multivariate Gaussian distribution in R2. Right:
After variable transformation to the new coordinate axes.

10.1. PRINCIPAL COMPONENT ANALYSIS 183

Note that the term X̃ := X− 1
mX1 appearing in Σ denotes the centering of

the points x1, . . . , xm, where the mean has been subtracted for each point.
Thus, without loss of generality, we can from now on assume that the data
is centered, i.e. each column in X has mean 0. Hence the sample covariance
matrix can be written compactly as Σ = XTX.

In the following, we will show the connection to singular value decom-
position (SVD).

10.1.2 Connection to singular value decomposition

To compute the k largest eigenvectors of the covariance matrix, and hence
the k-dimensional subspace explaining most of the variance in the data, one
makes use of the connection of PCA to singular decomposition of the data
matrix (SVD). Singular value decomposition is a standard factorization of
a matrix in linear algebra, see e.g. Golub and Van Loan [1996]. Let us first
give the following definition.

Definition 10.3 (Singular values). Let M ∈ Rm×n. The non-negative
number σ is called a singular value of M if there exist unit-length vectors
u ∈ Rm and v ∈ Rn such that Mv = σu and MTu = σv. The vectors u and
v are called left- and right-singular vectors, respectively.

Given a matrix M ∈ Rm×n, then there always exists [Lütkepohl, 1997] a
decomposition of M into three matrices M = UΓV T , where U ∈ Rm×m
and V ∈ Rn×n are orthonormal matrices, i.e. UTU = 1 and V TV = 1, and
Γ ∈ Rm×n is a diagonal matrix, where the non-negative entries σi are the
singular values of M . Moreover, the column vectors of U are the left-singular
vectors and the column vectors of V the right-singular vectors of M .

The connection between singular value decomposition and eigendecom-
position is now as follows.

Lemma 10.4. Let M = UΓV T be the singular value decomposition of M .
Then the left-singular vectors U are the eigenvectors of MMT , and the right-
singular vectors V are the eigenvectors of MTM . The corresponding eigen-
values are given by the squares of the corresponding singular values of M .

Proof. Multiplying the SVD of M from the left with MT , one obtains
MTM = MTUΓV T = V ΓTUTUΓV T = V ΓTΓV , where we used that
UTU = I. Thus we have obtained an eigendecomposition of MTM with
eigenvalues σ2

i and eigenvector matrix V . Analogously one proceeds for the
second statement by multiplying the matrix from the right with MT . �

Singular value decomposition has several applications in practice. For in-
stance, in information retrieval, the columns in the matrix M ∈ Rm×n may
correspond to documents and the rows correspond to terms in the docu-
ments, and the entries of the matrix give the relative frequency of the term

184 CHAPTER 10. SPARSE PCA

in the document. Then, each singular value may correspond to a latent topic
in the data, and the matrix U represents a mapping from terms to topics,
whereas the matrix V T represents a mapping from topics to documents
[Deerwester et al., 1990]. Another example is given in recommender sys-
tems. For example, given a matrix M of ratings of users for a set of movies,
the matrix U may define a mapping from users to genres of movies, and
the matrix V T gives a mapping from genres to movies [Sarwar et al., 2000].
In both applications, typically one now would consider only the columns of
U and V corresponding to the largest singular values, since these columns
correspond to the most significant latent topics/genres in the dataset.

The connection between singular value decomposition and eigendecom-
position implies that one can compute the eigenvectors of the covariance
matrix Σ = XTX by computing the right singular vectors of the data ma-
trix X. The eigenvalues of Σ are then given by the squares of the non-zero
entries of Γ. Moreover, note that the principal components Z of Σ can be
written as Z = XV = UΓV TV = UΓ.

10.2 Sparse principal component analysis

In order to make sense of some given data, apart from analyzing the fac-
toring of the data obtained by means of the lower-dimensional embedding
given by PCA, it is also often useful to interpret the loading vectors of the
principal components themselves, as they correspond to the ”most mean-
ingful” directions in the given data. Jolliffe [2002] discusses some examples
where an interpretation can be found for the principal components obtained
by standard PCA: for instance they may correspond to sources of varia-
tion for anatomical measurements in different species, different groups in
demographic studies, or different types of companies in the analysis of stock
market data. However, the datasets considered have only a small number
of variables (typically n � 100). In many applications such as the analy-
sis of gene expression data, the data is very high-dimensional (n > 10000).
Since in standard PCA usually all entries of the set of eigenvectors of the
covariance matrix are nonzero, an interpretation of the principal compo-
nents becomes difficult in these cases. In order to make an interpretation by
a human possible, ideally the loading vectors should consist only of a few
significant genes.

For this reason, in sparse PCA one enforces sparsity of the loading vectors
with the aim of getting a small number of features while at the same time
still capturing most of the variance. In other words, one is interested in the
optimal trade-off between explained variance and sparsity. In the simplest
case for p = 1, the problem can be formulated as

f∗ = arg max
f∈Rn, ‖f‖0≤c

〈
f,XTXf

〉
‖f‖22

, (10.6)

10.2. SPARSE PRINCIPAL COMPONENT ANALYSIS 185

where ‖f‖0 denotes the number of nonzero components of f , and c > 0.
It turns out that adding a constraint on the cardinality, i.e. the number of
nonzero coefficients, makes the problem NP-hard [Moghaddam et al., 2006].

The first approaches to the problem in (10.6) performed simple thresh-
olding of the principal components, which however was shown to be mislead-
ing [Cadima and Jolliffe, 1995]. In the SCoTLASS method [Jolliffe et al.,
2003], the cardinality constraint in (10.6) is replaced by a L1-based con-
straint, leading to an optimization problem similar to the LASSO [Tibshi-
rani, 1994]. Zou et al. [2006] first reformulate the standard PCA problem
as a ridge regression problem. Then they enforce sparsity by adding a L1

penalty, leading to a elastic net-type problem [Zou and Hastie, 2005]. Sripe-
rumbudur et al. [2007] approximate the cardinality of the loading vectors
by a log term and then frame this approximate problem as a d.c. (difference
of convex functions) program. Recently, Journée et al. [2010] proposed two
single unit (computation of one component only) and two block (simultane-
ous computation of multiple components) methods based on L0-penalization
and L1-penalization, which we will discuss in Section 10.3.

A method for the sparse PCA problem called DSPCA is proposed by
d’Aspremont et al. [2007] which is based on a relaxation to a semi-definite
program. Shen and Huang [2008] use the connection of standard PCA to
singular value decomposition (SVD) of the covariance matrix and then com-
pute the sparse principal components using a low-rank matrix approxima-
tion problem. Sigg and Buhmann [2008] present an algorithm based on
expectation-maximization (EM) for probabilistic PCA [Roweis, 1998, Tip-
ping and Bishop, 1999]. A greedy algorithm is proposed by d’Aspremont
et al. [2008] to compute a full set of good candidate solutions up to a spec-
ified target sparsity, and sufficient conditions for a vector to be globally
optimal are derived. Note that while the problem is NP-hard, Moghaddam
et al. [2006] used branch and bound to compute optimal solutions for small
problem instances.

10.2.1 Extensions to multiple principle components

So far we have not discussed the question what is a suitable criterion for
an extension of sparse PCA to multiple components. As shown in the last
section, given a matrix F = [f1, . . . , fp] ∈ Rn×p consisting of p orthonormal
loading vectors, in standard PCA usually the total variance is calculated
as varV (F) = tr(F TXTXF). The optimal value is achieved by the matrix
V ∈ Rn×p consisting of p eigenvectors of the covariance matrix Σ = XTX.
This criterion makes sense in standard PCA, as the principal components
are uncorrelated and the loading vectors are orthogonal.

Several authors proposed extensions of sparse PCA to multiple eigen-
vectors where the sparse loading vectors are enforced to be orthonormal
(as in the case of standard PCA), see e.g. Jolliffe et al. [2003]. The direct

186 CHAPTER 10. SPARSE PCA

generalization of Eq. (10.5) to the sparse case is given as

max tr(F TΣF) (10.7)

subject to F TF = I.

‖fi‖0 ≤ c,∀i = 1, . . . , p,

where c is a constant. Thus one enforces sparsity of the loading vectors fi,
while requiring them to be orthonormal.

However, enforcing orthonormality of the sparse loading vectors is some-
what questionable in sparse PCA. Note that in the case of standard PCA,
the fact that the loading vectors (vi)i=1...p are orthonormal as well as a set
of eigenvectors of Σ with eigenvalues (λi)i=1...p implies that vTi Σvj = λi δi=j ,
i.e. the components are uncorrelated. Thus, by enforcing orthonormality we
have achieved that the data has been transformed in such a way that it is
uncorrelated in the new basis. However note that the equivalence between
fTi fj = 0 and fTi Σfj = 0 does not hold in general. For this reason, most
recent algorithms for sparse PCA (see e.g. Zou et al. [2006], [d’Aspremont
et al., 2007], Shen and Huang [2008], Journée et al. [2010]) do not explicitly
enforce orthonormal loading vectors.

Moreover, since in sparse PCA the principal components may be cor-
related, the criterion varF (X) = tr(F TΣF) is not a suitable measure to
represent the total variance in sparse PCA. This is because for a given l
the variance in direction zl already contains contributions from the previous
components (zi)i=1,...,l−1. For this reason, Zou et al. [2006] proposed the ad-
justed total variance as a criterion to evaluate the quality in the presence of
correlated components. Given a matrix of principal components Z, the idea
is to iteratively adjust the components by only considering the contribution
orthogonal to the previous components (note that this is a greedy scheme
which depends on the ordering of the principal components). The adjusted
variance is then defined as the variance of the adjusted components.

Specifically, given the first principal component z1 = Xf1, one adjusts
the second component z2 by performing a projection orthogonal to z1, i.e.

ẑ2 = z2 − ẑ1
‖ẑ1‖2

(ẑ1
‖ẑ1‖2

)T z2.

One now repeats this process iteratively: Given the l-th principal compo-
nent zl = Xfl, the influence of the previous l − 1 principal components is
eliminated by computing

ẑl = zl − Pl−1(zl), where Pl−1(zl) :=

l−1∑
i=1

eie
T
i zl, and ei := ẑi

‖ẑi‖2
. (10.8)

Here Pl−1 denotes the projection on the space spanned by the previous l−1
components. The additional variance explained by principal component zl
is then given by ‖ẑl‖22 = ‖Xfl − Pl−1(Xfl)‖22.

10.3. SPARSE PCA VIA NONLINEAR EIGENPROBLEMS 187

Note that the above scheme is exactly the classical Gram-Schmidt proce-
dure to compute a QR decomposition of a matrix Z [Golub and Van Loan,
1996]. To see this, note that we rewrite the equation (10.8) at step l as

zl = ẑl +
l−1∑
i=1

eie
T
i zl =

l∑
i=1

eie
T
i zl,

where we used that el = ẑl
‖ẑl‖2

. Formulating this in matrix notation, we

observe that we have obtained a QR decomposition Z = QR, where Q is the
orthonormal matrix having the ei as columns, and R is an upper triangular
matrix with Rij = eTi zj , for i ≤ j. Moreover, one then has ‖ẑi‖22 = R2

ii. This
motivates the definition of the adjusted variance as [Zou et al., 2006]

adjvarF (X) :=

k∑
i=1

‖ẑi‖22 =

k∑
i=1

R2
ii. (10.9)

Note that when the principal components zi are uncorrelated, the adjusted
variance agrees with varF (X) = tr(F TΣF). We will later derive a deflation
scheme to obtain multiple sparse principal components tailored towards the
adjusted variance criterion defined above. In the next section, we show how
the sparse PCA problem can be modeled as a nonlinear eigenproblem and
solved using the inverse power method introduced in this thesis.

10.3 Sparse PCA via nonlinear eigenproblems

In this section we derive a method for sparse PCA based on the nonlinear
inverse power method (IPM) introduced in Section 5.3. We first consider
the case p = 1, where we only compute one sparse loading vector. Problem
(10.3) is equivalent to

f∗ = arg min
f∈Rn

‖f‖22
〈f,Σf〉

= arg min
f∈Rn

‖f‖2
‖Xf‖2

.

In order to enforce sparsity, we replace the L2-norm by a convex combination
of an L1 norm and L2 norm in the numerator, which yields the functional

F (f) =
(1− α) ‖f‖2 + α ‖f‖1

‖Xf‖2
, (10.10)

with sparsity controlling parameter α ∈ [0, 1]. Standard PCA is recovered
for α = 0, whereas α = 1 yields the sparsest non-trivial solution: the com-
ponent with the maximal variance. One easily sees that the formulation
(10.10) fits in our general framework, as both numerator and denominator
are 1-homogeneous convex functions. Thus the ratio problem in (10.10) can
be solved efficiently using the nonlinear IPM.

188 CHAPTER 10. SPARSE PCA

10.3.1 Solution via nonlinear inverse power method

The ratio in (10.10) is a ratio of two convex functions and thus the opti-
mization problem can be solved via the IPM. The convex inner problem of
the IPM becomes

gk+1 = arg min
‖f‖2≤1

(1−α) ‖f‖2 +α ‖f‖1−λ
k
〈
f, µk

〉
, where µk =

Σfk√
〈fk,Σfk〉

.

(10.11)
We will show below that this problem has a closed form solution. In the
following we use the notation x+ = max{0, x}.

Lemma 10.5. The convex problem (10.11) has the analytical solution

gk+1
i = 1

s sign(µki)
(
λk
∣∣µki ∣∣− α)+, where s =

√∑n

i=1

(
λk|µki | − α

)2
+
.

Proof. We note that the objective is positively 1-homogeneous and that
the optimum is either zero (achieved by plugging in the previous iterate) or
negative, in which case the optimum is attained at the boundary. Thus wlog
we can assume that at the optimum ‖f‖2 = 1. Thus the problem reduces to

min
‖f‖2≤1

α ‖f‖1 − λ
k
〈
f, µk

〉
.

First, we derive an equivalent “dual” problem, noting that

α ‖f‖1 − λ
k
〈
µk, f

〉
= max
‖v‖∞≤1

〈
f, αv − λkµk

〉
.

Using the fact that the objective is convex in f and concave in v and the
feasible set is compact, we obtain by the min-max equality:

min
‖f‖2≤1

max
‖v‖∞≤1

〈
f, αv − λkµk

〉
= max
‖v‖∞≤1

min
‖f‖2≤1

〈
f, αv − λkµk

〉
(10.12)

= max
‖v‖∞≤1

−
∥∥αv − λkµk∥∥

2
.

We observe that the objective of the dual problem is separable in v, as
well as the constraints ‖v‖∞ ≤ 1. Thus each component can be optimized
separately, which gives

v∗i = sign(µki) min

{
1,
λk|µki |
α

}
.

From Eq. (10.12) we see that

f∗ =
λkµk − αv∗

‖λkµk − αv∗‖2
.

10.3. SPARSE PCA VIA NONLINEAR EIGENPROBLEMS 189

21 Sparse PCA

1: Input: data matrix X ∈ Rm×n, sparsity parameter α, accuracy ε

2: Initialization: f0 ∈ Rn with S(f0) = 1, λ0 = F (f0), µ0 = Σf0

‖Xf0‖2
3: repeat
4: gk+1

i = sign(µki)
(
λk
∣∣µki ∣∣− α)+

5: fk+1 = gk+1

‖Xgk+1‖
2

6: λk+1 = (1− α)
∥∥fk+1

∥∥
2

+ α
∥∥fk+1

∥∥
1

7: µk+1 = Σfk+1

‖Xfk+1‖
2

8: until
|λk+1−λk|

λk
< ε

Using that λkµki − αv∗i = sign(µki)
(
λk|µki | − α

)
+

, we obtain the result. �

Note that s is just a scaling factor. Thus we can omit it and obtain the simple
and efficient scheme to compute sparse loading vectors shown in Alg. 21.

While the derivation is quite different, Journée et al. [2010] propose an
algorithm for sparse PCA which turns out to be similar to Alg. 21. In
contrast to our method, the algorithm by Journée et al. [2010] works on Rm
instead of Rn. At each step k, variables zk, yk ∈ Rm are updated as follows:

zk+1
i =

n∑
j=1

Xij sign(XT yk)j
(∣∣XT yk

∣∣
j
− α

)
+

yk+1 = zk+1

‖zk+1‖
2

.

On the other hand, the update step for the variables gk, fk ∈ Rn in Alg. 21
can be rewritten as (eliminating the variable µk),

gk+1
i = sign(XTXfk)i

(λk

‖Xfk‖2

∣∣XTXfk
∣∣
i
− α

)
+

fk+1 = gk+1

‖Xgk+1‖
2

.

Thus, while the two algorithms are quite similar, in our formulation the
thresholding parameter of the inner problem depends on the current eigen-
value estimate λk whereas it is fixed in Journée et al. [2010]. Empirically,
this leads to the fact that we need slightly less iterations to converge.

Up to now we have only considered the case p = 1, i.e. we have computed
one principal component. In the following we will derive a deflation scheme
to obtain multiple principal components. As we will see, in each step we
will obtain a ratio problem of the same form as in (10.10).

190 CHAPTER 10. SPARSE PCA

10.3.2 Deflation scheme

In standard PCA the loading vectors are given by the eigenvectors of the
covariance matrix, thus they can be obtained using a singular value de-
composition. However, this is not the case in sparse PCA. Here, the usual
approach is to iterate between two subproblems: first, one finds the largest
eigenvector of the given sample covariance matrix. Then, the influence of
that eigenvector is eliminated by deflation, see e.g. Mackey [2008].

We now develop a deflation scheme for sparse PCA tailored to the ad-
justed variance criterion (10.9) discussed in Section 10.2.1. We will derive
a greedy scheme where the goal is to directly optimize the contribution
to the adjusted variance in each step. Given l − 1 principal components
(zi)i=1,...,l−1, where zi = Xfi, the contribution of the l-th component zl to
the adjusted variance is given by ‖zl − Pl−1(zl)‖22, where the Pl−1(zl) is the
projection on the space spanned by the previous l−1 components, as stated
in (10.8). Thus, to compute the lth principal component of the algorithm,
we maximize the quantity ‖zl − Pl−1(zl)‖22. The goal is to find the loading
vector f ∈ Rn optimizing

max
f∈Rn

‖Xf − Pl−1(Xf)‖22 (10.13)

subject to ‖f‖2 = 1.

We now show that the problem can be reformulated in such a way that we
obtain a problem of the same form as in (10.10).

Lemma 10.6. For l = 1, . . . , k, the problem (10.13) can be rewritten as

min
f∈Rn

‖f‖2
‖Xl f‖2

,

where Xl =

{
X, l = 1,(
I − ẑl−1ẑ

T
l−1

‖ẑl−1‖22

)
Xl−1, l = 2 . . . k,

and ẑl = Xl fl, ∀l = 1 . . . k.

Proof. The projection ẑl = zl − Pl−1(zl) can be written explicitly as

ẑl =

(
I −

l−1∑
i=1

ẑiẑ
T
i

‖ẑi‖22

)
zl,

where we used the fact that
(

ẑi
‖ẑi‖

)l−1

i=1
forms an orthonormal basis of the

space spanned by the first l−1 components. Using again the orthonormality,
this can be rewritten as

ẑl =
l−1∏
i=1

(
I − ẑiẑ

T
i

‖ẑi‖22

)
zl =

l−1∏
i=1

(
I − ẑiẑ

T
i

‖ẑi‖22

)
Xfl.

10.3. SPARSE PCA VIA NONLINEAR EIGENPROBLEMS 191

Note that here we can change the order of the terms in the product and
thus we can now rewrite this as ẑl = Xlfl, where

Xl =

{
X, l = 1,(
I − ẑl−1ẑ

T
l−1

‖ẑl−1‖22

)
Xl−1, l = 2 . . . k.

Reformulating the constrained problem as a ratio problem and then turning
the maximization problem into a minimization problem yields the result. �

Similarly to the case l = 1, in order to enforce sparsity, we replace the L2-
norm by a convex combination of an L1 norm and L2 norm in the numerator,
with sparsity controlling parameter αl ∈ [0, 1]. One obtains the functional

F (f) =
(1− αl) ‖f‖2 + αl ‖f‖1

‖Xlf‖2
, (10.14)

and thus one has a problem of the same form as the one in (10.10), which
can again be solved using Alg. 21. This suggests the following scheme to
compute multiple sparse principal components.

22 Sparse PCA - Deflation Scheme

1: Input: data matrix X
2: Initialization: X1 = X
3: for all l = 1 : k do
4: fl = arg min

f∈Rn
(1−αl)‖f‖2+αl‖f‖1

‖Xlf‖2

5: ẑl = Xlfl

6: Xl+1 =
(
I − ẑlẑ

T
l

‖ẑl‖22

)
Xl

7: end for
8: return sparse principal components f1, . . . fl

In each step, we use bisection in the interval [0, 1] to determine the optimal
value of the parameter αl such that the sparsity constraints ‖fl‖0 ≤ c, for
c > 0, are satisfied.

The above scheme is similar to the generalized deflation method dis-
cussed in Mackey [2008], which also reformulates the optimization problem
in sparse PCA to explicitly reflect the contribution to the maximized objec-
tive in each round. The main difference is that in the scheme proposed by
Mackey [2008], at each step the projection is performed orthogonal to the
space spanned by the previous loading vectors (f1)i=1,...,l−1, thus achieving
that fTi fj = 0, for all i 6= j. In order to reflect the adjusted variance crite-
rion discussed above, in the scheme in Alg. 22 the projection is done with
respect to the principal components zi = Xfi, thus explicitly enforcing that
Xfi ⊥ Xfj , and therefore fTi Σfj = 0, for all i 6= j.

192 CHAPTER 10. SPARSE PCA

10.3.3 Variational renormalization

Moghaddam et al. [2006] introduced the following post-processing technique
to improve upon given candidate solutions. Given a vector f with the desired
sparsity (i.e. ‖f‖0 ≤ c for some c > 0) at step l of the algorithm, first one

computes the largest eigenvector f ′ of the matrix Σ̂l obtained by restricting
Σl = XT

l Xl to the nonzero pattern of f (i.e. the set C = {i ∈ {1 . . . n} | fi 6=
0}). Then a sparse loading vector f∗ ∈ Rn is obtained as

f∗i =

{
f ′i , i ∈ C,
0, else,

where we wlog assumed that ‖f‖2 = ‖f ′‖2 = 1. In the following lemma we
show that the vector f∗ satisfies the cardinality constraint while achieving
at least the same contribution to the adjusted variance as f .

Lemma 10.7. The vector f∗ satisfies ‖f∗‖0 ≤ c and ‖Xf − Pl−1(Xf)‖22 ≤
‖Xf∗ − Pl−1(Xf∗)‖22.

Proof. Assume wlog that the set of nonzero components of f is given by
{f1, . . . , fc}. Denote by f̂ ∈ Rc and Σ̂l ∈ Rc×c the restriction of f and Σl

to the indices 1, . . . , c, i.e. f̂i = fi, ∀i = 1, . . . , c and (Σ̂l)i,j = (Σl)i,j ,∀i, j =
1, . . . , c. Then one has

‖Xf − Pl−1(Xf)‖22 = ‖Xlf‖22 = fTΣLf = f̂T Σ̂Lf̂

≤ max
‖g‖2=1

gT Σ̂lg = (f ′)T Σ̂Lf
′ = (f∗)TΣlf

∗

= ‖Xlf
∗‖22 = ‖Xf∗ − Pl−1(Xf∗)‖22 .

Moreover, clearly we have by construction ‖f∗‖0 = ‖f‖0 ≤ c. �

Thus we apply the above variational renormalization scheme after each step
in Alg. 22 to improve a given candidate solution fl.

10.4 Experimental results

We perform two experiments. In the first experiment, we evaluate the per-
formance of our method for p = 1 on a number of gene expression data
sets. The second experiment deals with the case p > 1. We compare the
performance of our method for multiple components to various methods on
the well-known pitprops benchmark dataset.

10.4.1 Gene expression data

In our first experiment, we evaluate our IPM for sparse PCA on several gene
expression datasets. To see the relevance of sparse PCA for this type of data,

10.4. EXPERIMENTAL RESULTS 193

let us make a brief excursion into genetics, see e.g. Parmigiani et al. [2003].
The main function of genes is to control the production of proteins in an
organism, which is performed in two steps. The genes are coded in strands
of deoxyribonucleic acid (DNA). First, in a process called transcription, a
strand of messenger ribonucleic acid (mRNA) is copied from a particular
segment of DNA. Then, during translation, mRNA is used to assemble the
protein as a chain of amino acids. One is now interested in measuring the
amount of transcribed mRNA. This is usually done using so-called DNA mi-
croarrays, where the expression levels of thousands of genes can be measured
simultaneously. Thus the output of these experiments are large-dimensional
datasets, consisting of m observations of the expression levels of n genes,
where typically m� n. In order to analyze the data, one is now interested
in performing sparse PCA on the large-dimensional datasets. The goal is
to find the major directions in the data, while at the same time the loading
vectors should consist of only a few significant genes, making them easy to
be interpreted by a human.

We now want to compare the performance of our method on several
gene expression datasets with two recent algorithms: the L1 based single-
unit power algorithm of Journée et al. [2010] as well as the EM-based al-
gorithm of Sigg and Buhmann [2008], using code published by the authors.
In the following we summarize the properties of the datasets used in our
experiments.

Dataset #genes #observations

GCM 16063 280
Lung2 18117 39

Prostate1 12600 102

We compute the first sparse loading vector for different number of non-zero
components p. For all considered datasets, the three methods achieve very
similar performance in terms of the trade-off between explained variance
and sparsity of the solution. This is illustrated in Fig. 10.2 where we plot
the relative variance (relative to maximal possible variance explained with
one single component) versus the number of non-zero components for the
three datasets. In fact the results are so similar that for each dataset, the
plots of all three methods coincide in one line. In Journée et al. [2010] it
also has been observed that the best state-of-the-art algorithms produce the
same trade-off curve if one uses the same initialization strategy, and applies
the variational renormalization step described in the previous section.

10.4.2 Pitprops data

The pitprops data has become a standard benchmark for methods for sparse
PCA [Jolliffe et al., 2003, Zou et al., 2006, Moghaddam et al., 2006, Shen
and Huang, 2008, Mackey, 2008, Journée et al., 2010]. Originally introduced

194 CHAPTER 10. SPARSE PCA

Figure 10.2: Variance (relative to maximal possible variance) versus number
of non-zero components for the datasets Lung2, GCM and Prostate1. The
same results were obtained for all three investigated methods.

by Jeffers [1967], the dataset contains 180 observations of 13 variables rep-
resenting some physical properties of mining equipment. Note that for this
dataset, only the covariance matrix Σ ∈ Rn×n is available. Following pre-
vious authors (see e.g. Shen and Huang [2008], Journée et al. [2010]), we
decompose the covariance matrix into Σ = XTX where X ∈ Rn×n is the
square root of the matrix Σ. We then apply our method on the ”new” data
matrix X where the number m of observations has been reduced to 13.

As before we compare our method to the L1 based single-unit power al-
gorithm (GPower) of Journée et al. [2010] as well as the EM-based algorithm
of Sigg and Buhmann [2008], embedded into the same deflation scheme as
our method, see Alg. 22. Moreover, we compare to the SPCA method by
Zou et al. [2006], as well as thresholding of the loading vectors obtained by
standard PCA. In the case of Journée et al. [2010], the optimal parameters
where obtained using bisection. For the other methods, we used the default
strategies given in the authors’ implementations.

In Table 10.1, we show the results for different values of p (number of
principal components) as well as different values of c (number of non-zero
entries in the loading vectors). We report the cumulative adjusted variance
according to (10.9) divided by the total variance (the sum of the eigenvalues
of Σ). We observe that our method, GPower and emPCA have very similar
performance and achieve the best results in most cases (for small values of
c, we see some variation), while PCA and the simple thresholding scheme
lead to inferior results in terms of adjusted variance.

10.4. EXPERIMENTAL RESULTS 195

Table 10.1: Results on pitprops dataset for different values of p (number of
principal components) and c (number of non-zero loadings). We report the
cumulative adjusted variance relative to the total variance. Our method,
GPower and emPCA have similar performance, while SPCA and threshold-
ing of the standard PCs lead to inferior results in most cases.

p = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8

Our method 0.150 0.190 0.226 0.262 0.290 0.307 0.313
GPower 0.150 0.170 0.226 0.246 0.290 0.307 0.313
emPCA 0.150 0.190 0.226 0.262 0.290 0.307 0.313
SPCA 0.118 0.188 0.188 0.188 0.186 0.273 0.278

Thresholding 0.150 0.177 0.221 0.261 0.289 0.307 0.313

p = 2 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8

Our method 0.279 0.329 0.383 0.421 0.454 0.476 0.484
GPower 0.279 0.323 0.383 0.407 0.454 0.476 0.484
emPCA 0.256 0.333 0.379 0.421 0.454 0.476 0.484
SPCA 0.248 0.319 0.320 0.321 0.319 0.415 0.420

Thresholding 0.278 0.318 0.368 0.415 0.450 0.473 0.482

p = 3 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8

Our method 0.393 0.471 0.535 0.565 0.602 0.622 0.630
GPower 0.393 0.430 0.535 0.524 0.602 0.622 0.630
emPCA 0.384 0.471 0.535 0.565 0.602 0.622 0.630
SPCA 0.337 0.455 0.460 0.482 0.490 0.568 0.573

Thresholding 0.379 0.409 0.485 0.553 0.589 0.607 0.618

p = 4 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8

Our method 0.479 0.555 0.618 0.650 0.687 0.708 0.717
GPower 0.482 0.517 0.618 0.611 0.687 0.708 0.717
emPCA 0.466 0.559 0.618 0.650 0.687 0.708 0.717
SPCA 0.426 0.541 0.545 0.567 0.574 0.652 0.657

Thresholding 0.455 0.486 0.564 0.634 0.671 0.692 0.704

p = 5 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8

Our method 0.567 0.640 0.689 0.721 0.754 0.777 0.786
GPower 0.567 0.596 0.689 0.688 0.754 0.775 0.786
emPCA 0.551 0.641 0.688 0.721 0.753 0.778 0.786
SPCA 0.513 0.629 0.632 0.655 0.667 0.737 0.742

Thresholding 0.509 0.539 0.621 0.696 0.732 0.757 0.770

p = 6 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8

Our method 0.628 0.706 0.751 0.783 0.814 0.840 0.849
GPower 0.628 0.661 0.751 0.749 0.814 0.838 0.849
emPCA 0.624 0.707 0.751 0.783 0.815 0.841 0.849
SPCA 0.567 0.689 0.701 0.727 0.740 0.806 0.812

Thresholding 0.555 0.579 0.677 0.753 0.793 0.819 0.832

196 CHAPTER 10. SPARSE PCA

Chapter 11

Conclusions

In this thesis we presented a flexible framework for solving a class of op-
timization problems known as constrained fractional set programs (CFSP),
i.e. the optimization of a ratio of set functions subject to constraints. Opti-
mization problems of this type appear frequently in many areas of machine
learning. In this thesis we were mainly interested in applications in cluster-
ing and network analysis. The proposed technique involves three steps.

First, the constrained fractional set program is transformed into an
equivalent unconstrained fractional set program by incorporating the con-
straints into the objective via an exact penalty. Second, the unconstrained
fractional set program is transformed into an equivalent unconstrained con-
tinuous optimization problem involving a ratio of non-negative functions.
Third, a solution of the associated nonlinear eigenproblem is computed us-
ing the algorithms introduced in this thesis.

We showed that such a tight relaxation of the original constrained frac-
tional set program into an unconstrained continuous optimization problem
exists for every constrained minimization of a ratio of non-negative set func-
tions, without any further restrictions on the set functions.

To compute solutions to the corresponding nonlinear eigenproblem and
thus optimize the resulting ratios of non-negative functions, we presented a
nonlinear inverse power method to deal with ratios of p-homogeneous convex
functions, as well its generalization RatioDCA [Hein and Setzer, 2011], which
we further extended to general ratios of differences of p-homogeneous convex
functions. While the global optimality of the obtained solution cannot be
guaranteed, we proved the convergence to a solution of the associated non-
linear eigenproblem. Moreover, we showed that the loose convex or spectral
relaxations are outperformed by a large margin in practice.

Going over to the constrained fractional set programs and the corre-
sponding nonlinear eigenproblems leads to a greater modeling flexibility, as
we demonstrated for several applications in data analysis. In particular we
developed graph based methods for clustering, local clustering and commu-

197

198 CHAPTER 11. CONCLUSIONS

nity detection. Our methods based on tight relaxations of the corresponding
CFSPs outperform previous methods [Shi and Malik, 2000, Andersen and
Lang, 2006, Mahoney et al., 2012] by a large margin. Moreover, the perfor-
mance of our method was also demonstrated for the sparse PCA problem
which was directly modeled in the continuous space. The resulting method
was shown to match or outperform state of the art methods [Zou et al.,
2006, Sigg and Buhmann, 2008, Journée et al., 2010].

There are still many interesting open questions and directions for further
research. While we proved the convergence of our algorithms to a solution
of the associated nonlinear eigenproblems, and also observed a strong prac-
tical performance in terms of achieved objective values, the convergence to
the global optimum could not be guaranteed. It is clear that this cannot
be done in general, since in most of the considered examples, the problems
are NP hard, and in many cases, for instance the maximum density sub-
graph problem with upper bound constraint, do not admit a polynomial
time approximation scheme [Khot, 2006, Khuller and Saha, 2009]. However,
at least for some special problems it should in principle be possible to derive
approximation guarantees for our method or modify our method in such a
way that approximation guarantees can be given.

There are also still some open questions from a numerical viewpoint.
While we showed that the convex inner problem in the nonlinear IPM and
RatioDCA does not need to be solved to full accuracy in each step, as long
as a point with negative inner objective is found to guarantee descent in
the outer objective, it is still unclear what exactly is the optimal strategy
for choosing the accuracy to solve the inner problem. Is it better to solve
a large sequence of inner problems with low accuracy or a few times with
high accuracy? In our empirical observations we observed that typically the
best strategy is to use fewer iterations in earlier steps and more iterations
in later steps, however a thorough theoretical analysis and thus - if possible
- an optimized choice of the parameters is still missing.

One limitation of our methods is that currently we are restricted to the
computation of the eigenvectors corresponding to the smallest eigenvalue of
the nonlinear eigenproblems (or, by changing the roles of numerator and
denominator, the highest eigenvalues). Thus one promising direction with
a possibly wide range of applications is to derive methods to compute the
higher order eigenvectors of the nonlinear eigenproblems. A particularly
interesting case would be the higher nonlinear eigenvectors of the graph p-
Laplacian for p ≥ 1, with possible applications for instance in clustering
and dimensionality reduction. For the case p > 1, a technique to compute a
higher dimensional embedding was proposed by Luo et al. [2010], however
the exact connection of the obtained solution to the eigenvectors of the graph
p-Laplacian remains unclear.

The question that needs to be answered is what is a suitable min-
max principle for nonlinear eigenproblems. Note that while the Ljusternik-

199

Schnirelmann principle (see e.g. Fuč́ık et al. [1973]) gives a rather abstract
way to characterize the higher eigenvalues of nonlinear eigenproblems simi-
lar to the Courant-Weinstein min-max principle in the standard linear case,
it is currently unclear how this can be used for an explicit construction of
the higher eigenvalues and the corresponding eigenvectors. Being able to
compute a sequence of higher eigenvectors would no doubt be useful for
many applications.

The next question is then how in general the higher order critical points
of the nonlinear Rayleigh quotients can be related to the critical points
of the original set functions. A first step into this direction was done by
Bresson et al. [2012a] for the special case of the Cheeger cut problem. There
the authors gave a characterization of the local minima of the functional
associated to the Cheeger cut criterion with respect to the local minima of
the combinatorial objective. A related question especially relevant for the
balanced graph cut applications is whether one can derive tight relaxations
of the multi-cut objectives.

Furthermore, there are also many other interesting questions regard-
ing the study of these nonlinear operators. For instance, as pointed out
by Alamgir and von Luxburg [2011], while the standard graph Laplacian
is related to the commute distance / resistance distance on a graph (see
von Luxburg [2007], von Luxburg et al. [2010]), it would be interesting to
study the connections between the eigenvectors of the graph p-Laplacian to
the more general p-resistances considered by Herbster and Lever [2009] and
Alamgir and von Luxburg [2011].

Despite the above open questions, we believe that the generality of our
framework already at this point allows for many other applications espe-
cially in a graph-based setting. Some work has already been done in that
direction. For instance, in addition to the already discussed applications in
graph partitioning, local clustering, community detection and team forma-
tion, our framework was also used for clustering with pairwise constraints
[Rangapuram and Hein, 2012], and learning on hypergraphs [Hein et al.,
2013]. Moreover, while the main focus in this thesis was on graph-based
applications, set functions appear in many other areas such as feature se-
lection or sensor placement, see e.g. Narasimhan and Bilmes [2004], Krause
et al. [2008], Krause and Cevher [2010], Bach [2013]. Thus, there is possibly
a much larger class of applications involving ratios of set functions.

Furthermore, in addition to being one step in a technique to solve con-
strained fractional set programs, the algorithms presented in Chapter 5 for
the solution of nonlinear eigenproblems are also useful in their own right, for
problems directly modeled in the continuous space. There is a wide range
of problems in machine learning which lead to standard linear eigenprob-
lems. Apart from the ones considered in this thesis, examples are given by
canonical correlation analysis [Hotelling, 1936], linear discriminant analysis
[Fisher, 1936] or modularity optimization [Newman, 2006]. See De Bie et al.

200 CHAPTER 11. CONCLUSIONS

[2005] and references therein for a number of other examples. While the
standard variants of these problems, which correspond to linear eigenprob-
lems, can be solved efficiently, the restriction to standard eigenproblems and
hence a ratio of quadratic functions is very limiting. In many cases, already
a simple modification to the problem formulation with the purpose of adapt-
ing it for a given task, such as adjusting the involved functions or adding
a regularization term, breaks the structure of the problem, and standard
eigensolvers are not applicable anymore.

However, going over to nonlinear eigenproblems, such a fine-tuning to
the problem is possible, as shown in this thesis for the sparse PCA problem
which was directly modeled in the continuous space. Here, the method was
derived as a simple modification of standard PCA where an additional L1

regularizing term was added to promote sparsity of the solution. Due to
the availability of our solvers for nonlinear eigenproblems, this modification
was possible and the resulting problem could be solved efficiently. Since a
large class of functions can be expressed as a difference of convex functions
and thus the RatioDCA is broadly applicable we believe that there is a wide
range of other future applications that can be approached by our methods.

Bibliography

P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on
Matrix Manifolds. Princeton University Press, 2008.

M. Alamgir and U. von Luxburg. Phase transition in the family of p-
resistances. In Adv. Neur. Inf. Proc. Syst. (NIPS), pages 379–387, 2011.

N. Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs, and
superconcentrators. J. Comb. Theor., Ser. B, 38(1):73–88, 1985.

S. Amghibech. Eigenvalues of the discrete p-Laplacian for graphs. Ars
Combin., 67:283–302, 2003.

S. Amghibech. Bounds for the largest p-Laplacian eigenvalue for graphs.
Disc. Math., 306(21):2762–2771, 2006.

E. D. Andersen and K. D. Andersen. The Mosek interior point optimizer for
linear programming: An implementation of the homogeneous algorithm.
In H. Frenk, K. Roos, T. Terlaky, and S. Zhang, editors, High Performance
Optimization, pages 197–232. Springer, 2000.

R. Andersen. Finding large and small dense subgraphs. CoRR,
abs/cs/0702032, 2007.

R. Andersen and K. Chellapilla. Finding dense subgraphs with size bounds.
In Proc. Int. Work. Alg. Models Web Graph (WAW), pages 25–37, 2009.

R. Andersen and K. Lang. Communities from seed sets. In Proc. Int. Conf.
World Wide Web (WWW), pages 223–232, 2006.

R. Andersen and Y. Peres. Finding sparse cuts locally using evolving sets. In
Proc. Ann. ACM Symp. Theor. Comput. (STOC), pages 235–244, 2009.

R. Andersen, F. R. K. Chung, and K. Lang. Local graph partitioning using
pagerank vectors. In Ann. IEEE Symp. Found. Comp. Sci. (FOCS), pages
475–486, 2006.

C. Anderson. The Long Tail: Why the Future of Business Is Selling Less of
More. Hyperion, 2006.

201

202 BIBLIOGRAPHY

S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embed-
dings and graph partitioning. In Proc. Ann. ACM Symp. Theor. Comput.
(STOC), pages 222–231, 2004.

K. J. Arrow, L. Hurwicz, and H. Uzawa. Studies in linear and non-linear
programming. Stanford University Press, 1964.

F. Bach. Learning with submodular functions: A convex optimization per-
spective. Found. Trends Mach. Learn., 6(2-3):145–373, 2013.

F. Bach and M. I. Jordan. Learning spectral clustering, with application to
speech separation. J. Mach. Learn. Res. (JMLR), 7:1963–2001, 2006.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM J. Img. Sci., 2(1):183–202, 2009.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction
and data representation. Neur. Comput., 15:1373–1396, 2002.

M. Belkin and P. Niyogi. Semi-supervised learning on Riemannian mani-
folds. Mach. Learn., 56(1-3):209–239, 2004.

A. Belloni. Lecture notes for IAP 2005 course ”Introduction to Bundle
Methods”, 2005.

A. Ben-Tal and A. Nemirovski. Non-Euclidean restricted memory level
method for large-scale convex optimization. Math. Program., 102(3):407–
456, 2005.

Y. Bengio, O. Delalleau, N. Le Roux, J.-F. Paiement, P. Vincent, and
M. Ouimet. Learning eigenfunctions links spectral embedding and ker-
nel PCA. Neur. Comput., 16(10):2197–2219, 2004.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

D. P. Bertsekas. Supplementary chapter 6 on convex optimization algo-
rithms. In Convex Optimization Theory. Athena Scientific, 2010. URL
http://www.athenasc.com/convexdualitychapter.pdf.

E. Boros and P. L. Hammer. Pseudo-boolean optimization. Disc. Appl.
Math., 123(1-3):155–225, 2002.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization
via graph cuts. IEEE Trans. Patt. Anal. Mach. Intell., 23(11):1222–1239,
2001.

http://www.athenasc.com/convexdualitychapter.pdf

BIBLIOGRAPHY 203

X. Bresson, T. Laurent, D. Uminsky, and J. H. von Brecht. Convergence
and energy landscape for Cheeger cut clustering. In Adv. Neur. Inf. Proc.
Syst. (NIPS), pages 1394–1402, 2012a.

X. Bresson, T. Laurent, D. Uminsky, and J. H. von Brecht. Convergence of a
steepest descent algorithm for ratio cut clustering. CoRR, abs/1204.6545,
2012b.

X. Bresson, T. Laurent, D. Uminsky, and J. H. von Brecht. Multiclass
total variation clustering. In Adv. Neur. Inf. Proc. Syst. (NIPS), pages
1421–1429, 2013.

T. Bühler. p-Laplacian based spectral clustering. Master’s thesis, Saarland
University, Germany, 2009.

T. Bühler and M. Hein. Spectral clustering based on the graph p-Laplacian.
In Proc. Int. Conf. Mach. Learn. (ICML), pages 81–88, 2009a.

T. Bühler and M. Hein. Supplementary material to ”Spectral clustering
based on the graph p-Laplacian”. http://www.ml.uni-saarland.de/

Publications/BueHei09tech.pdf, 2009b.

T. Bühler, S. S. Rangapuram, S. Setzer, and M. Hein. Constrained fractional
set programs and their application in local clustering and community de-
tection. In Proc. Int. Conf. Mach. Learn. (ICML), pages 624–632, 2013.

P. Buser. Cubic graphs and the first eigenvalue of a Riemann surface. Math.
Zeit., 162(1):87–99, 1978.

J. Cadima and I. T. Jolliffe. Loading and correlations in the interpretation
of principal components. J. Appl. Stat., 22:203–214, 1995.

A. Chambolle. An algorithm for total variation minimization and applica-
tions. J. Math. Imag. Vis., 20(1-2):89–97, 2004.

A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. J. Math. Imag. Vis., 40(1):120–
145, 2011.

P. K. Chan, M. D. F. Schlag, and J. Y. Zien. Spectral k-way ratio-cut
partitioning and clustering. IEEE Trans. CAD Integr. Circ. Syst., 13(9):
1088–1096, 1994.

K.-C. Chang. Variational methods for non-differentiable functionals and
their applications to partial differential equations. J. Math. Anal. Appl.,
80:102–129, 1981.

http://www.ml.uni-saarland.de/Publications/BueHei09tech.pdf
http://www.ml.uni-saarland.de/Publications/BueHei09tech.pdf

204 BIBLIOGRAPHY

M. Charikar. Greedy approximation algorithms for finding dense compo-
nents in a graph. In Proc. Int. Work. Approx. Alg. Combin. Optim. (AP-
PROX), pages 84–95, 2000.

J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In
R. C. Gunning., editor, Problems in Analysis - A symposium in honor of
Salomon Bochner, pages 195–199. Princeton Univ. Press, 1970.

E. W. Cheney and A. A. Goldstein. Newton’s method for convex program-
ming and Tchebycheff approximation. Numer. Math., 1(1):253–268, 1959.

F. R. K. Chung. Spectral Graph Theory. AMS, 1997.

F. R. K. Chung, A. Grigor’yan, and S.-T. Yau. Higher eigenvalues and
isoperimetric inequalities on Riemannian manifolds and graphs. Comm.
Anal. Geom., 8:969–1026, 2000.

F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley, 1983.

P. L. Combettes and J.-C. Pesquet. A Douglas–Rachford splitting approach
to nonsmooth convex variational signal recovery. IEEE J. Sel. Top. Sign.
Proc., 1(4):564–574, 2007.

P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal
processing. In H. H. Bauschke, R. S. Burachik, P. L. Combettes, V.
Elser, D. R. Luke, and H. Wolkowicz, editors, Fixed-Point Algorithms for
Inverse Problems in Science and Engineering, pages 185–212. Springer,
2011.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-
backward splitting. Multiscale Model. Simul., 4(4):1168–1200, 2005.

T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

S. I. Daitch, J. A. Kelner, and D. A. Spielman. Fitting a graph to vector
data. In Proc. Int. Conf. Mach. Learn. (ICML), pages 201–208, 2009.

A. Daneshgar, H. Hajiabolhassan, and R. Javadi. On the isoperimetric
spectrum of graphs and its approximations. J. Combin. Theor., Ser. B,
100(4):390 – 412, 2010.

A. d’Aspremont, L. El Ghaoui, M. Jordan, and G. Lanckriet. A direct for-
mulation of sparse PCA using semidefinite programming. SIAM Review,
49(3), 2007.

A. d’Aspremont, F. Bach, and L. El Ghaoui. Optimal solutions for sparse
principal component analysis. J. Mach. Learn. Res. (JMLR), 9:1269–1294,
2008.

BIBLIOGRAPHY 205

I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algo-
rithm for linear inverse problems with a sparsity constraint. Comm. Pure
Appl. Math., 57(11):1413–1457, 2004.

T. De Bie, N. Cristianini, and R. Rosipal. Eigenproblems in pattern recog-
nition. In Handbook of Geometric Computing, pages 129–167. Springer,
2005.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harsh-
man. Indexing by latent semantic analysis. J. Amer. Soc. Inform. Sci.,
41(6):391–407, 1990.

I. S. Dhillon. Co-clustering documents and words using bipartite spectral
graph partitioning. In Proc. ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining (KDD), pages 269–274, 2001.

I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: Spectral clustering
and normalized cuts. In Proc. ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining (KDD), pages 551–556, 2004.

G. Di Pillo. Exact penalty methods. In E. Spedicato, editor, Algorithms for
Continuous Optimization, pages 209–253. Kluwer, 1994.

C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut
algorithm for graph partitioning and data clustering. In Proc. IEEE Int.
Conf. Data Mining (ICDM), pages 107–114, 2001.

E. A. Dinic. Algorithm for solution of a problem of maximum flow in a net-
work with power estimation. Soviet Math. Doklady, 11:1277–1280, 1970.

W. Dinkelbach. On nonlinear fractional programming. Manag. Sci., 13(7):
492–498, 1967.

J. Dodziuk. Difference equations, isoperimetric inequality and transience
of certain random walks. Trans. Amer. Math. Soc., 284(2):pp. 787–794,
1984.

W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of
graphs. IBM J. Res. Dev., 17(5):420–425, 1973.

J. Douglas and H. H. Rachford. On the numerical solution of heat conduction
problems in two and three space variables. Trans. Amer. Math. Soc., 82:
421–489, 1956.

Y. Dourisboure, F. Geraci, and M. Pellegrini. Extraction and classification
of dense communities in the web. In Proc. Int. Conf. World Wide Web
(WWW), pages 461–470, 2007.

206 BIBLIOGRAPHY

P. Drábek. On the variational eigenvalues which are not of Ljusternik-
Schnirelmann type. Abstr. Appl. Anal., 2012.

P. Drábek and J. Milota. Methods of Nonlinear Analysis: Applications to
Differential Equations. Birkhäuser, 2007.

R. Van Driessche and D. Roose. An improved spectral bisection algorithm
and its application to dynamic load balancing. Parall. Comput., 21(1):
29–48, 1995.

J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method
and the proximal point algorithm for maximal monotone operators. Math.
Program., 55(3):293–318, 1992.

J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. J. ACM, 19(2):248–264, 1972.

A. Elmoataz, O. Lezoray, and S. Bougleux. Nonlocal discrete regularization
on weighted graphs: A framework for image and manifold processing.
IEEE Trans. Imag. Proc., 17(7):1047–1060, 2008.

E. Esser, X. Zhang, and T. F. Chan. A general framework for a class of first
order primal-dual algorithms for convex optimization in imaging science.
SIAM J. Imag. Sci., 3(4):1015–1046, 2010.

U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algo-
rithmica, 29(3):410–421, 2001.

M. Fiedler. Algebraic connectivity of graphs. Czech. Math. J., 23(98):298–
305, 1973.

R. A. Fisher. The use of multiple measurements in taxonomic problems.
Ann. Eugenics, 7(7):179–188, 1936.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canad.
J. Math., 8:399–404, 1956.

S. Fortunato. Community detection in graphs. Phys. Rep., 486(3-5):75 –
174, 2010.

S. Fujishige. Submodular Functions and Optimization. Elsevier, 2005.

S. Fuč́ık, J. Nečas, J. Souček, and V. Souček. Spectral analysis of nonlinear
operators. Springer, 1973.

D. Gabay. Applications of the method of multipliers to variational inequali-
ties. In M. Fortin and R. Glowinski, editors, Augmented Lagrangian meth-
ods: Applications to the Solution of Boundary-Value Problems. North-
Holland, 1983.

BIBLIOGRAPHY 207

A. Gajewar and A. Das Sarma. Multi-skill collaborative teams based on
densest subgraphs. In SIAM Int. Conf. Data Mining (SDM), pages 165–
176, 2012.

D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs
in massive graphs. In Proc. Int. Conf. Very Large Data Bases (VLDB),
pages 721–732, 2005.

A. V. Goldberg. Finding a maximum density subgraph. Technical Report
UCB/CSD-84-171, EECS Department, UC Berkeley, 1984.

A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow
problem. J. ACM, 35(4):921–940, 1988.

T. Goldstein and S. Osher. The split Bregman method for L1-regularized
problems. SIAM J. Img. Sci., 2(2):323–343, apr 2009.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, 3rd edition, 1996.

S. Guattery and G. L. Miller. On the quality of spectral separators. SIAM
J. Matrix Anal. Appl., 19:701–719, 1998.

L. Hagen and A. B. Kahng. Fast spectral methods for ratio cut partitioning
and clustering. In Int. Conf. Comput. Aided Design (ICCAD), pages 10–
13, 1991.

K. M. Hall. An r-dimensional quadratic placement algorithm. Manag. Sci.,
17(3):219–229, 1970.

T. Hansen and M. Mahoney. Semi-supervised eigenvectors for locally-biased
learning. In Adv. Neur. Inf. Proc. Syst. (NIPS), pages 2537–2545, 2012.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer, 2001.

M. Hein and T. Bühler. An inverse power method for nonlinear eigenprob-
lems with applications in 1-spectral clustering and sparse PCA. In Adv.
Neur. Inf. Proc. Syst. (NIPS), pages 847–855, 2010.

M. Hein and S. Setzer. Beyond spectral clustering - tight relaxations of
balanced graph cuts. In Adv. Neur. Inf. Proc. Syst. (NIPS), pages 2366–
2374, 2011.

M. Hein, S. Setzer, L. Jost, and S. S. Rangapuram. The total variation on
hypergraphs - Learning on hypergraphs revisited. In Adv. Neur. Inf. Proc.
Syst. (NIPS), pages 2427–2435, 2013.

208 BIBLIOGRAPHY

C. Helmberg and F. Rendl. A spectral bundle method for semidefinite pro-
gramming. SIAM J. Optim., 10:673–696, 1997.

B. Hendrickson and R. Leland. An improved spectral graph partitioning
algorithm for mapping parallel computations. SIAM J. Sci. Comput., 16
(2):452–469, 1995.

M. Herbster and G. Lever. Predicting the labelling of a graph via minimum
p-seminorm interpolation. In Proc. Conf. Learn. Theor. (COLT), 2009.

J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization
algorithms II: Advanced theory and bundle methods. Springer, 1996.

D. S. Hochbaum. The pseudoflow algorithm: A new algorithm for the
maximum-flow problem. Oper. Res., 56(4):992–1009, 2008.

I. Holopainen and P. M. Soardi. A strong Liouville theorem for p-harmonic
functions on graphs. Ann. Acad. Sci. Fen., 22:205–226, 1997.

S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applica-
tions. Bull. Amer. Math. Soc., 43:439–561, 2006.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University
Press, 1990.

H. Hotelling. Analysis of a complex of statistical variables into principal
components. J. Educ. Psych., 24, 1933.

H. Hotelling. Relations between two sets of variates. Biometrika, 28:321–377,
1936.

J. H. Hubbard and B. B. Hubbard. Vector Calculus, Linear Algebra, and
Differential Forms: A Unified Approach. Prentice Hall, 1998.

T. Jebara, J. Wang, and S.-F. Chang. Graph construction and B-matching
for semi-supervised learning. In Proc. Int. Conf. Mach. Learn. (ICML),
pages 441–448, 2009.

J. Jeffers. Two case studies in the application of principal component anal-
ysis. Appl. Stat., 16:225–236, 1967.

T. Joachims. Transductive learning via spectral graph partitioning. In Proc.
Int. Conf. Mach. Learn. (ICML), pages 290–297, 2003.

I. T. Jolliffe. Principal Component Analysis. Springer, 2nd edition, 2002.

I. T. Jolliffe, N. Trendafilov, and M. Uddin. A modified principal component
technique based on the LASSO. J. Comput. Graph. Stat., 12:531–547,
2003.

BIBLIOGRAPHY 209

L. Jost, S. Setzer, and M. Hein. Nonlinear eigenproblems in data analysis -
Balanced graph cuts and the RatioDCA-Prox. CoRR, abs/1312.5192v1,
2013.

M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre. Generalized power
method for sparse principal component analysis. J. Mach. Learn. Res.
(JMLR), 11:517–553, 2010.

R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and
spectral. J. ACM, 51(3):497–515, 2004.

M. Kargar and A. An. Discovering top-k teams of experts with/without
a leader in social networks. In Proc. ACM Int. Conf. Informat. Knowl.
Manag. (CIKM), pages 985–994, 2011.

J. E. Kelley. The cutting-plane method for solving convex programs. J. Soc.
Indust. Appl. Math., 8(4):pp. 703–712, 1960.

S. Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph, and
bipartite clique. SIAM J. Comput., 36(4), 2006.

S. Khuller and B. Saha. On finding dense subgraphs. In Int. Colloq. Autom.,
Lang. Programm. (ICALP), pages 597–608, 2009.

V. King, S. Rao, and R. Tarjan. A faster deterministic maximum flow
algorithm. J. Alg., 17(3):447–474, 1994.

K. C. Kiwiel. An aggregate subgradient method for nonsmooth convex
minimization. Math. Program., 27(3):320–341, 1983.

K. C. Kiwiel. Proximity control in bundle methods for convex nondifferen-
tiable minimization. Math. Program., 46(1-3):105–122, 1990.

K. C. Kiwiel. On linear-time algorithms for the continuous quadratic knap-
sack problem. J. Opt. Theor. Appl., 134(3):549–554, 2007.

A. Krause and V. Cevher. Submodular dictionary selection for sparse rep-
resentation. In Proc. Int. Conf. Mach. Learn. (ICML), pages 567–574,
2010.

A. Krause, B. McMahan, C. Guestrin, and A. Gupta. Robust submodular
observation selection. J. Mach. Learn. Res. (JMLR), 9:2761–2801, 2008.

G. Lan. Bundle-level type methods uniformly optimal for smooth and non-
smooth convex optimization. Math. Program., pages 1–45, 2013.

T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social networks.
In Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining (KDD),
pages 467–476, 2009.

210 BIBLIOGRAPHY

T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. J. ACM, 46(6):787–832,
1999.

C. Lemaréchal. Nonsmooth optimization and descent methods. Research
Report RR-78-4. International Institute of Applied Systems Analysis, Lax-
enburg, Austria, 1977.

C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle
methods. Math. Program., 69(1-3):111–147, 1995.

J. Leskovec. Stanford large network dataset collection. URL http://snap.

stanford.edu/data/index.html.

J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters. Internet Math., 6(1):29–123, 2009.

P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear
operators. SIAM J. Numer. Anal., 16(6):964–979, 1979.

A. Louis, P. Raghavendra, and S. Vempala. The complexity of approximat-
ing vertex expansion. In Ann. IEEE Symp. Found. Comp. Sci. (FOCS),
pages 360–369, 2013.

L. Lovász. Submodular functions and convexity. Math. Program.: The State
of the Art, pages 235–257, 1983.

D. Luo, H. Huang, C. H. Q. Ding, and F. Nie. On the eigenvectors of
p-Laplacian. Mach. Learn., 81(1):37–51, 2010.

H. Lütkepohl. Handbook of Matrices. Wiley, 1997.

L. Mackey. Deflation methods for sparse PCA. In Adv. Neur. Inf. Proc.
Syst. (NIPS), pages 1–8, 2008.

J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proc. 5th Berkeley Symp. Math. Stat. Prob., volume 1,
pages 281–297, 1967.

M. W. Mahoney, L. Orecchia, and N. K. Vishnoi. A local spectral method
for graphs: With applications to improving graph partitions and exploring
data graphs locally. J. Mach. Learn. Res. (JMLR), 13:2339–2365, 2012.

M. Maier, U. von Luxburg, and M. Hein. How the result of graph clustering
methods depends on the construction of the graph. ESAIM: Prob. Stat.,
17:370–418, 2013.

http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html

BIBLIOGRAPHY 211

S. Maji, N. K. Vishnoi, and J. Malik. Biased normalized cuts. In 24th IEEE
Conf. Comput. Vis. Patt. Recogn. (CVPR), pages 2057–2064, 2011.

B. Martinet. Régularisation d’inéquations variationnelles par approxima-
tions successives. Rev. Franç. Informat. Rech. Opér., 4(3):154–158, 1970.

V. Mehrmann and H. Voss. Nonlinear eigenvalue problems: A challenge
for modern eigenvalue methods. Technical report, DFG Research Center
Matheon, 2005.

M. Meila and J. Shi. A random walks view of spectral segmentation. In
Proc. Int. Work. Art. Intell. Stat. (AISTATS), 2001.

B. Moghaddam, Y. Weiss, and S. Avidan. Spectral bounds for sparse PCA:
Exact and greedy algorithms. In Adv. Neur. Inf. Proc. Syst. (NIPS),
pages 915–922, 2006.

B. Mohar. The Laplacian spectrum of graphs. Graph Theor. Combin. Appl.,
2:871–898, 1991.

J. J. Moreau. Fonctions convexes duales et points proximaux dans un espace
hilbertien. Compt. Rend. Acad. Sci. Paris, Sér. A, 255:2897–2899, 1962.

D. Mugnolo. Parabolic theory of the discrete p-Laplace operator. Nonlin.
Anal. Theor. Meth. Appl., 87(0):33 – 60, 2013.

B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis. Diffusion maps,
spectral clustering and reaction coordinates of dynamical systems. Appl.
Comput. Harm. Anal., 21(1):113–127, 2006.

M. Narasimhan and J. Bilmes. PAC-learning bounded tree-width graphical
models. In Proc. Conf. Uncert. Art. Intell. (UAI), pages 410–417, 2004.

A. S. Nemirovsky and D. B. Yudin. Problem complexity and method effi-
ciency in optimization. Wiley, 1983.

Y. Nesterov. A method of solving a convex programming problem with
convergence rate O(1/k2). Soviet Math. Doklady, 27:372–376, 1983.

Y. Nesterov. Introductory lectures on convex optimization : a basic course.
Applied optimization. Kluwer Academic Publ., 2004.

Y. Nesterov. Gradient methods for minimizing composite objective function.
CORE report, Catholic University of Louvain, 2007.

Y. Nesterov. Universal gradient methods for convex optimization problems.
Math. Program., pages 1–24, 2014.

M. E. J. Newman. Modularity and community structure in networks. Proc.
Nat. Acad. Sci., 103(23):8577–8582, 2006.

212 BIBLIOGRAPHY

A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and
an algorithm. In Adv. Neur. Inf. Proc. Syst. (NIPS), pages 849–856, 2001.

W. Oliveira, C. Sagastizábal, and S. Scheimberg. Inexact bundle methods
for two-stage stochastic programming. SIAM J. Optim., 21(2):517–544,
2011.

S. Oveis Gharan and L. Trevisan. Approximating the expansion profile and
almost optimal local graph clustering. In Ann. IEEE Symp. Found. Comp.
Sci. (FOCS), pages 187–196, 2012.

G. Parmigiani, E. S. Garrett, R. A. Irizarry, and S. L. Zeger, editors. The
Analysis of Gene Expression Data: Methods and Software. Statistics for
Biology and Health. Springer, 2003.

K. Pearson. On lines and planes of closest fit to systems of points in space.
Philosoph. Mag., 2(6):559–572, 1901.

A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM J. Matrix Anal. Appl., 11(3):430–452, 1990.

S. S. Rangapuram and M. Hein. Constrained 1-spectral clustering. In Proc.
Int. Conf. Art. Intell. Stat. (AISTATS), pages 1143–1151, 2012.

S. S. Rangapuram, T. Bühler, and M. Hein. Towards realistic team forma-
tion in social networks based on densest subgraphs. In Proc. Int. Conf.
World Wide Web (WWW), pages 1077–1088, 2013.

P. Richtárik. Approximate level method for nonsmooth convex minimiza-
tion. J. Optim. Theor. Appl., 152(2):334–350, 2012.

R. T. Rockafellar. Convex analysis. Princeton University Press, 1970.

S. Roweis. EM algorithms for PCA and SPCA. In Adv. Neur. Inf. Proc.
Syst. (NIPS), pages 626–632, 1998.

L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Phys. D, 60(1-4):259–268, 1992.

S. Sadie and G. Grove. The new Grove dictionary of music and musicians.
Macmillan, 2nd edition, 2001.

B. Saha, A. Hoch, S. Khuller, L. Raschid, and X.-N. Zhang. Dense subgraphs
with restrictions and applications to gene annotation graphs. In Ann. Int.
Conf. Res. Comput. Molec. Biol. (RECOMB), pages 456–472, 2010.

B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. Application of
dimensionality reduction in recommender system – a case study. In ACM
WebKDD Work., 2000.

BIBLIOGRAPHY 213

S. Schaible. Fractional programming: Applications and algorithms. Europ.
J. Operat. Res., 7(2):111–120, 1981.

M. Schmidt, D. Kim, and S. Sra. Projected Newton-type methods in ma-
chine learning. In S. Sra, S. Nowozin, and S. Wright, editors, Optimization
for Machine Learning. MIT Press, 2011.

S. Setzer. Operator splittings, Bregman methods and frame shrinkage in
image processing. Int. J. Comput. Vision, 92(3):265–280, 2011.

H. Shen and J. Huang. Sparse principal component analysis via regular-
ized low rank matrix approximation. J. Multivar. Anal., 99(6):1015–1034,
2008.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans.
Patt. Anal. Mach. Intell., 22(8):888–905, 2000.

C. D. Sigg and J. M. Buhmann. Expectation-maximization for sparse and
non-negative PCA. In Proc. Int. Conf. Mach. Learn. (ICML), pages 960–
967, 2008.

H. D. Simon. Partitioning of unstructured problems for parallel processing.
Comput. Syst. Engin., 2(2-3):135–148, 1991.

A. J. Soper, C. Walshaw, and M. Cross. A combined evolutionary search
and multilevel approach to graph partitioning. J. Global Optim., 29(2):
225–241, 2004.

D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In Proc.
Ann. ACM Symp. Theor. Comput. (STOC), pages 81–90, 2004.

D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for pre-
conditioning and solving symmetric, diagonally dominant linear systems.
CoRR, abs/cs/0607105, 2006.

D. A. Spielman and S.-H. Teng. Spectral partitioning works: Planar graphs
and finite element meshes. Lin. Alg. Appl., 421(2-3):284–305, 2007.

D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. SIAM J.
Comput., 40(4):981–1025, 2011.

D. A. Spielman and S.-H. Teng. A local clustering algorithm for massive
graphs and its application to nearly linear time graph partitioning. SIAM
J. Comput., 42(1):1–26, 2013.

B. K. Sriperumbudur, D. A. Torres, and G. R. G. Lanckriet. Sparse eigen
methods by D.C. programming. In Proc. Int. Conf. Mach. Learn. (ICML),
pages 831–838, 2007.

214 BIBLIOGRAPHY

A. Szlam and X. Bresson. Total variation and Cheeger cuts. In Proc. Int.
Conf. Mach. Learn. (ICML), pages 1039–1046, 2010.

R. Tibshirani. Regression shrinkage and selection via the Lasso. J. Royal
Stat. Soc., Ser. B, 58:267–288, 1994.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis.
J. Royal Stat. Soc., Ser. B, 61:611–622, 1999.

U. von Luxburg. A tutorial on spectral clustering. Stat. Comput., 17:395–
416, 2007.

U. von Luxburg, A. Radl, and M. Hein. Getting lost in space: Large sample
analysis of the resistance distance. In Adv. Neur. Inf. Proc. Syst. (NIPS),
pages 2622–2630, 2010.

J. Š́ıma and S. E. Schaeffer. On the NP-completeness of some graph clus-
ter measures. In Proc. Conf. Current Trends Theor. Pract. Comp. Sci.
(SOFSEM), pages 530–537, 2006.

C. Walshaw. The graph partitioning archive. URL http://staffweb.cms.

gre.ac.uk/~wc06/partition/.

Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering:
Theory and its application to image segmentation. IEEE Trans. Patt.
Anal. Mach. Intell., 15(11):1101–1113, 1993.

F. Yang and Z. Wei. Generalized Euler identity for subdifferentials of homo-
geneous functions and applications. J. Math. Anal. Appl., 337:516–523,
2008.

L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In Adv.
Neur. Inf. Proc. Syst. (NIPS), pages 1601–1608, 2004.

H. Zhang, O. Van Kaick, and R. Dyer. Spectral mesh processing. Comput.
Graph. Forum, 29(6):1865–1894, 2010.

D. Zhou and B. Schölkopf. Regularization on discrete spaces. In DAGM-
Symp., pages 361–368, 2005.

M. Zhu and T. Chan. An efficient primal-dual hybrid gradient algorithm
for total variation image restoration. UCLA CAM Report, pages 08–34,
2008.

X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using
Gaussian fields and harmonic functions. In Proc. Int. Conf. Mach. Learn.
(ICML), pages 912–919, 2003.

http://staffweb.cms.gre.ac.uk/~wc06/partition/
http://staffweb.cms.gre.ac.uk/~wc06/partition/

BIBLIOGRAPHY 215

Z. A. Zhu, S. Lattanzi, and V. S. Mirrokni. A local algorithm for finding
well-connected clusters. In Proc. Int. Conf. Mach. Learn. (ICML), pages
396–404, 2013.

H. Zou and T. Hastie. Regularization and variable selection via the elastic
net. J. Royal Stat. Soc., Ser. B, 67:301–320, 2005.

H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis.
J. Comput. Graph. Stat., 15:265–286, 2006.

	Introduction
	Constrained fractional (set) programs
	Balanced graph cuts
	Constrained balanced graph cuts for local clustering
	Constrained local community detection
	Sparse principal component analysis (PCA)

	Loose convex vs.tight non-convex relaxations
	Overview of this thesis
	Main contributions

	I Theoretical foundations of constrained fractional set programs and nonlinear eigenproblems
	Set functions and Lovasz extensions
	Basics from analysis
	Set functions and their extensions
	Properties of the Lovász extension

	Submodular set functions
	Examples of submodular set functions

	Nonlinear eigenproblems
	Standard (linear) eigenproblems
	Nonlinear eigenproblems

	Tight relaxations of CFSPs
	Tight relaxation - The unconstrained case
	Tight relaxation - The constrained case

	II Algorithms for fractional programs
	Ratios of non-negative functions
	Standard inverse power method
	Dinkelbach's method
	Nonlinear inverse power method
	Monotonicity
	Relation to nonlinear eigenproblem

	RatioDCA
	Monotonicity
	Relation to nonlinear eigenproblem
	The RatioDCA-Prox
	Quality guarantee for RatioDCA

	First order methods for inner problem
	General results for first order methods
	Basic first order methods for convex problems
	Gradient method
	Subgradient method
	Projected gradient and subgradient method
	Accelerated gradient projection method

	Proximal splitting methods
	Proximal gradient method
	Accelerated proximal gradient method
	Douglas-Rachford splitting
	Primal-dual proximal splitting methods
	Accelerated primal-dual splitting

	Bundle methods
	Cutting plane method
	Bundle methods
	Bundle-level methods

	General-purpose method for inner problem
	Computation of subgradient of inner objective
	Solution of the linear program
	Solution of quadratic program

	III Applications in network analysis and dimensionality reduction
	Balanced graph partitioning
	Clustering via graph cuts
	Unbalanced graph cuts
	Balanced graph cuts

	Spectral clustering
	Spectral relaxation of balanced graph cuts.
	Connection to eigenvectors of the graph Laplacian
	Isoperimetric inequality for spectral relaxation

	p-Spectral clustering
	p-Spectral relaxation of balanced graph cuts
	Connection to eigenvectors of the graph p-Laplacian
	Isoperimetric inequality for p-spectral relaxation

	1-Spectral clustering
	Tight 1-spectral relaxation of balanced graph cuts
	Connection to eigenvectors of the graph 1-Laplacian
	Solution via nonlinear inverse power method
	Solution of the inner problem

	Symmetric vertex expansion
	Tight relaxation of symmetric vertex expansion
	Solution via nonlinear inverse power method

	Multi-partitioning
	Experimental results
	High-dimensional noisy two moons
	Graph partitioning benchmark
	Symmetric vertex expansion
	USPS and MNIST

	Constrained local clustering
	The constrained local clustering problem
	Tight relaxation
	Elimination of volume constraints
	Direct integration of seed constraint
	Seed constraint via penalty function

	Solution via RatioDCA
	Solution of the inner problem

	Experimental results
	Social networks
	Weak or noisy constraints

	Community detection
	The constrained densest subgraph problem
	Tight relaxation
	Elimination of volume constraints
	Direct integration of seed subset
	Seed constraint via penalty function

	Solution via RatioDCA
	Unconstrained version

	Experimental results
	Community detection on DBLP data
	Community detection on composer network

	Sparse PCA
	Principal component analysis
	Variance interpretation
	Connection to singular value decomposition

	Sparse principal component analysis
	Extensions to multiple principle components

	Sparse PCA via nonlinear eigenproblems
	Solution via nonlinear inverse power method
	Deflation scheme
	Variational renormalization

	Experimental results
	Gene expression data
	Pitprops data

	Conclusions

