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Abstract

Due to their nature, hard real-time embedded systems (e.g. flight control sys-

tems) must be guaranteed to satisfy their time constraints under all operating

conditions. The provision of such guarantee relies on safe and precise esti-

mates of the worst-case execution time (WCET) of tasks. As the execution time

depends on both the program and the architecture running it, the growing

sophistication of architectures complicates the task of timing analyses. This

work studies the impact of the design of the microprocessor’s pipeline on the

precision and efficiency of WCET analysis.

We study the influence of the design of the load-store unit (LSU) in a mod-

ern microprocessor, the PowerPC 7448, on WCET analysis. To this end, we

introduce a simplified variant of the existing design of the LSU by reducing

its queue sizes. The study contributes empirical evidence supporting the ar-

gument that micro-architectural innovations do not improve, and sometimes

harm, a processor’s worst-case timing behavior.

Building on this evidence, we introduce a compiler optimization to reduce

analysis time and memory consumption during the two most-computationally-

demanding steps of WCET analysis. With our prototype implementation of

the optimization, we observe an analysis speedup of around 635% at the cost

of an increase in the WCET bound of 6%. Moreover, under a less precise yet

significantly faster variant of the analysis, the WCET bound is decreased by 5%

while the analysis is sped up by 350%.
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Zusammenfassung

Eingebettete harte Echtzeitsysteme (wie z.B. Flugkontrollsysteme) müssen ihre

vorgegebenen Laufzeitgarantien erfüllen. Diese Laufzeitgarantien basieren auf

sicheren und präzisen Schranken für die maximale Ausführungszeit (WCET)

der Programme. Die Ausführungszeit von Programmen hängt sowohl von dem

Programm selbst ab als auch von der Hardware-Plattform, auf der das Pro-

gramm ausgeführt wird. Die wachsende Komplexität der Hardware-Architekt-

uren erschwert die Berechnung sicherer und präzier Laufzeitschranken (WCET-

Analyse). Diese Arbeit untersucht den Einfluss der Pipeline eines Mikroprozes-

sors auf die Präzision und Effizienz einer WCET-Analyse.

Wir untersuchen den Einfluss der Load-Store-Unit (LSU) eines modern Mikro-

prozessors, des PowerPC 7448, auf eine WCET-Analyse. Wir entwickeln eine

vereinfachte Variante der LSU, in der die Warteschlangen verkleinert wurden.

Unser Experiment stützt die These, dass mikroarchitektonische Innovationen

keinen generellen Fortschritt darstellen, sondern manchmal auch schaden

können, wie hier im Beispiel der Bestimmung des Worst-Case-Zeiterhaltens

eines Prozessors.

Weiterhin schlagen wir eine Compiler-Optimierung zur Reduzierung der Anal-

ysezeit und des Speicherverbrauchs der WCET Analyse vor. Mit unserer Proto-

typ-Implementierung dieser Optimierung ist eine Reduzierung der Analy-

sezeit von ca. 635% auf Kosten einer 6%-Erhöhung in der WCET-Schranken

zu beobachten. Unter einer schnellere Variante der Analyse wird die WCET-

Schranke um 5% verringert während die Analyse um 350% beschleunigt werden

kann.
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CHAPTER

1
Introduction

I know there’s a proverb which

says “To err is human,” but a

human error is nothing to what a

computer can do if it tries.

Agatha Christie, Hallowe’en Party

Computers are used in almost every aspect of our lives today. Beside personal

computing devices (e.g. laptops, cell phones), we typically deal with computers

several times everyday: when listening to music from an MP3-player, using

the ATM, washing clothes or warming a meal; there is a computing system

which controls the process. Validating the operation of computing systems is

therefore crucial to ensure their usability.

The consequences of improper operation of a computing system defines its

criticality. A laptop is not considered a critical computing system because if it

responds incorrectly or stops responding altogether (i.e. hangs up), no serious

repercussions are entailed. On the other hand, a flight control system, an

electronic control unit (ECU) in a motor vehicle, and a cardiac pacemaker are

critical computing systems since any hazard in their operations could result in

severe (and possibly fatal) consequences.

1
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Excluding the possibility of physical damage to the hardware, computers ex-

hibit improper operation because of flaws in their software. These flaws are

attributed to either defects in the software functionality (i.e. the system en-

ters an erroneous state), or inadequacy of the system performance (i.e. the

system does not respond fast enough with respect to the surrounding physical

environment). In this work we focus on the latter class of flaws.

Computer systems which are subject to a time constraint are called real-time

systems (RTS). When the constraint is strict (i.e. the system has to meet all

deadlines), the system is referred to as a hard real-time system. This is opposed

to soft real-time systems where it is allowed to miss deadlines every once

in a while. The analyses constructed to verify the timing operation of real-

time systems (also known as timing analyses) can be broadly divided into two

categories: static analyses and dynamic analyses. Static timing analyses verify

a program by analyzing its source and the hardware architecture on which it

runs at compile time. Dynamic timing analyses, on the other hand, are based

on metrics collected by running the program, possibly for multiple times under

various conditions (i.e. inputs). Due to the intractability of running a realistic

program under all possible inputs, dynamic timing analysis is not suitable for

verifying hard real-time systems.

Making certain that a computing system responds with adequate speed re-

quires performing a so-called schedulability analysis, which ensures all tasks

(i.e. programs) will meet their set deadlines. Schedulability analysis uses safe

and precise estimates of the worst-case execution times (WCET) of tasks. The

WCET analysis, which computes these estimates, depends not only on the

program being analyzed, but also on the organization of the computer (i.e. the

micro-architecture) on which the program runs.

Modern micro-architectures feature numerous mechanisms to increase per-

formance in the common case. One of the main goals these mechanisms

attempt to achieve is to circumvent the disparity in speed between two archi-

tectural components: processor and memory. Although their performance has

been improving over the past three decades, the rate of speed improvement

for memory is humble compared to that for processors. This speed disparity

motivated building new innovations in the processor to work around stalling

when interacting with the memory. Examples include multiple levels of caches

and pipelines with dynamic branch predictors and out-of-order execution

facilitated by load-store units with multiple registers buffering pending loads
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lwz r4, 0x100(r5)

⋮ 

⋮ 

inst. in icache? (r5)+0x100 in dcache?

Figure 1.1: Example of two splits encountered during WCET analysis.

and stores. While they proved to be useful for improving system performance

in the common case, these innovations complicate the task of analyzing the

timing behavior of the system.

For soundness and precision, WCET analysis tools need to determine the

possible states of these features throughout the execution of the program being

analyzed. However, often, the contents of registers or the cache cannot be

precisely determined as they depend on the program’s inputs or the particular

loop iteration. Whenever the processor’s next state depends upon such missing

information, the analysis performs a so-called split, accounting for all possible

successor states. For complex micro-architectures state-of-the-art analyses

often track billions of possible micro-architectural states, resulting in long

analysis times and high memory consumption.

Figure 1.1 demonstrates splits which can be encountered while performing

a WCET analysis. The first split takes place when it is not possible to decide

whether the instruction to be fetched is available in the instruction cache. After

fetching the instruction, which is a load from a memory address specified by

a constant offset from an address stored in a register, another information is

possibly missing: is the memory content at this address present in the data

cache? In the presence of these two splits, the analysis keeps track of four

analysis states for each state at instruction entry. It might be compelling to only
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keep track of the analysis state which entails longer execution time, since we

aim to compute the maximal execution time. However, following this approach

potentially results in computing unsafe WCET bounds due to the presence

of the so-called timing anomalies where a locally faster execution leads to a

longer execution time of the whole program [LS99; Rei+06].

This work studies the impact of the design of a microprocessor component

called the pipeline on the precision and efficiency of WCET analysis. First we

simplify a sophisticated component of a modern microprocessor, the PowerPC

7448, and study how this affects the WCET estimates and the analysis efficiency.

The simple modification we apply results in a significant speedup of the WCET

analysis and surprisingly little or no increase in the WCET bounds. We build on

these observations then and introduce a compiler optimization which achieves

similar speedups for programs running on an unmodified hardware architec-

ture. This comes at the expense of a slight increase in the WCET estimates.

The impact on WCET precision is evaluated based on the more precise (and

computationally demanding) variant of the WCET analysis available. There is

also a less precise (and much more efficient) variant of the analysis. For the

latter variant, our two approaches improve both the analysis performance and

precision.

Thesis Organization

Chapter 2 presents an overview of the techniques used in modern processor

pipelines and its effect on WCET analysis. Then we introduce two approaches

(published earlier in [MR12] and [MR14]) aiming to improve the analysis effi-

ciency mainly: one based on modifying the processor’s pipeline in Chapter 3

and another based on modifying the program under analysis in Chapter 4.

Finally, Chapter 5 summarizes the contributions and insights of this thesis.



CHAPTER

2
Processor Pipelines in WCET

Analysis

Time is like a fast-flowing stream:

unless you cut it (from source) it

will shatter you!

Arab proverb

The sophistication of processors has been growing exponentially since the

eighties. This growth has been geared towards increasing the processor perfor-

mance, quantified by measuring their dynamic behavior on executing a set of

benchmarks (e.g. SPEC2000 [Hen00]). Given this goal, the outcome has been

satisfactory: the processor performance had been growing by approximately

50% from the mid eighties up to 2002 where the growth levels around 20%

[HP06].

The growth in processor performance is attributable to new architectural ideas

mainly aiming to mitigate the effect of long memory latency. As Figure 2.1

shows, there has been a performance gap between processor and memory. To

the end of bridging this gap, architects introduced innovations such as multiple

levels of caches and deep pipeline queues such that while expecting a response

from the memory for one or more instructions, the processor can potentially

work on other instructions.

5
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Figure 2.1: The advances in the performance of processor and memory (relative

to the first milestone) [HP06].

There is a caveat though: the increased sophistication complicates the task of

analyzing the timing behavior of the system. The innovations used to increase

the processor performance cause timing analysis tools to explore larger state

spaces in order to predict the worst-case performance in a sound manner.

This chapter provides an overview on processor pipelines and their role in the

context of WCET analysis.

The first section introduces processor pipelines generally. The following section

describes a generic WCET analysis framework. Section 2.3 specifies a modern

processor with sophisticated mechanisms to increase its performance. The

next section presents an empirical study of the effects of various types of

uncertainty encountered during analysis.

The terminology used throughout this chapter follows that given in [HP06].



2.1. PROCESSOR PIPELINES 7

2.1 Processor Pipelines

A microprocessor’s pipeline refers to the internal processor where arithmetic,

logic, branching and data-transfer operations are implemented. The term re-

flects the fact that the internal processor achieves instruction-level parallelism

by means of overlapping the execution of instructions, i.e. by pipelining the

execution.

In order to achieve greater parallelism (and consequently higher throughput),

several techniques are implemented in modern microprocessors:

• Dynamic scheduling allows the pipeline to execute instructions as soon

as their data dependencies are available, regardless of whether the pre-

ceding instructions executed or not (the technique is also called out-of-

order execution).

• Branch prediction enables the pipeline to predict the behavior of

branches once they are fetched.

• Branch prediction provides the possibility to execute instructions on

the predicted path before the outcome of the branch is computed (i.e.

speculatively).

• One more technique to increase parallelism is to issue more than one

instruction per cycle. The number of issued instructions can be statically

fixed as is the case with Very Long Instruction Word (or VLIW) processors,

or dynamically varying depending on resource availability as is the case

with superscalar processors.

These techniques have one goal in common: to minimize the stalling in the

pipeline for most program executions. To this end, modern microprocessors

try to accommodate as many instructions as possible in the pipeline to max-

imize the likelihood of detecting and exploiting parallelism between them.

Accommodating more instructions requires implementing large buffers at vari-

ous locations in the pipeline. The significant amount of information held by

such buffers gives rise to several complications when performing static timing

analysis. The next section presents an overview on the worst-case execution

time analysis. The complications concerning a particular microprocessor are

presented in Section 2.3.
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2.2 Worst-Case Execution Time Analysis

The worst-case execution time analysis is a timing analysis which computes

an answer to the question: what is the maximal execution time of a program

running on a give hardware platform? It is assumed that the program actually

terminates to avoid the undecidable halting problem [Tur36]. The assumption

is plausible in the context of real-time systems where programs are written in

a restricted style. Even with this assumption, computing the exact maximal

execution time is intractable for realistic programs and hardware platforms be-

cause the analysis has to compute the timing behavior under all possible inputs.

Therefore, the WCET analysis computes an over-approximation of the maximal

execution time instead. The term WCET has been used in literature to refer

to both the maximal execution time and the computed over-approximation

thereof. In this work we shall refer to the computed over-approximation as the

WCET bound.

The following section presents the different phases of WCET analysis.

WCET Analysis Flow

Over roughly the last decade, a more or less standard architecture for timing-

analysis tools has emerged. Figure 2.2 gives a general view of this architecture.

The following list presents the individual phases and describes their objectives.

1. Control-flow reconstruction [The02a] takes a binary executable to be

analyzed, reconstructs the program’s control flow and transforms the

program into a suitable intermediate representation. Problems encoun-

tered in this phase are dynamically computed control-flow successors,

e.g. those stemming from switch statements, function pointers, etc.

2. Value analysis [CC77] computes an over-approximation of the set of

possible values in registers and memory locations by an interval analysis

and/or congruence analysis. The computed information is used for a

precise data-cache analysis and in the subsequent control-flow analysis.

Value analysis is the only one to use an abstraction of the processor’s

arithmetic. A subsequent pipeline analysis can therefore work with a

simplified pipeline where the arithmetic units are removed. There, one

is not interested in what is computed, but only in how long it will take.
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Figure 2.2: Main components of a timing-analysis framework and their interac-

tion.

3. Loop bound analysis [EG97; Hea+00] identifies loops in the program

and tries to determine bounds on the number of loop iterations; infor-

mation indispensable to bound the execution time. Problems are the

analysis of arithmetic on loop counters and loop exit conditions, as well

as dependencies in nested loops.

4. Control-flow analysis [EG97; SM07] narrows down the set of possible

paths through the program by eliminating infeasible paths or by de-

termining correlations between the number of executions of different

blocks using the results of value analysis. These constraints will tighten

the obtained timing bounds.

5. Micro-architectural analysis [Eng02; The04; FW99; Cul13] determines

bounds on the execution time of basic blocks by performing an abstract

interpretation of the program, combining analyses of the processor’s
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pipeline, caches, and speculation. Static cache analyses determine safe

approximations to the contents of caches at each program point. Pipeline

analysis analyzes how instructions pass through the pipeline accounting

for occupancy of shared resources like queues, functional units, etc.

6. Path Analysis [LM95; The02b] finally determines bounds on the execu-

tion times for the whole program by implicit path enumeration using

an integer linear program (ILP). Bounds of the execution times of basic

blocks are combined to compute longest paths through the program. The

control flow is modeled by Kirchhoff’s law. Loop bounds and infeasible

paths are modeled by additional constraints. The target function weights

each basic block with its time bound. A solution of the ILP maximizes

the sum of those weights and corresponds to an upper bound on the

execution times. In the following, we refer to the kind of path analysis

described above as traditional ILP-based analysis.

AbsInt’s aiT Timing Analyzer

The commercially available tool ❛✐❚ by AbsInt, cf. ❤tt♣✿✴✴✇✇✇✳❛❜s✐♥t✳❞❡✴

✇❝❡t✳❤t♠, implements this architecture. It is used in the aeronautics and

automotive industries and has been successfully used to determine precise

bounds on execution times of real-time programs [FW99; Fer+01; The+03;

Hec+03].

The ILP-based path analysis in ❛✐❚ comes in two variants depending on how

micro-architectural state graphs are constructed [A3m]:

1. Traditional ILP-based analysis, where an ILP is solved to find the worst-

case path through the program, given worst-case timings of all basic

blocks (possibly in various contexts). In this approach the size of the

ILP formulation is independent of the size of the micro-architectural

state space. The downside is that the computed WCET bound may be

imprecise, because the worst-case timings of consecutive basic blocks

may not occur simultaneously on a single architectural path through the

program.

2. Prediction-file-based ILP analysis (PF-ILP), where a global state graph

consisting of micro-architectural states is constructed, and an ILP is

solved to find the worst-case path through this state graph. This results

http://www.absint.de/wcet.htm
http://www.absint.de/wcet.htm
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b1: max 50

truefalse
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Figure 2.3: An example illustrating the differences between traditional ILP-

based path analysis and prediction-file-based ILP path analysis.

in a more precise WCET bound since architecturally-infeasible paths are

excluded. However, it comes at the cost of a much larger ILP to be solved,

whose size depends on the micro-architectural state space.

To illustrate the difference between the two path-analysis methods, consider

the example analysis shown in Figure 2.3. An ILP-based path analysis computes

a global WCET bound solely based on the maximum number of execution

cycles for each basic block. The WCET is therefore 140 cycles in this case, and

the worst-case execution path is ❜✶→❜✸→❜✹. However, this result implies an

architecturally-infeasible execution trace: s✶→s✸9s✷→s✹→s✺, where trace

discontinuity is marked by 9.

On the other hand, the global state graph constructed in a prediction-file-based

ILP path analysis excludes such paths and produces a WCET bound of 110

cycles, with the corresponding worst-case execution path: ❜✶→❜✷→❜✹, and

trace: s✶→s✸→s✹→s✺.
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lwz r4, 0x100(r5) 

⋮ 

⋮ 

inst. in icache? (r5)+0x100 in dcache?

inst. addr. is in MAY

⇒ {yes, no}

(r5)+0x100 ∈ {0x100, 0x1ff}
is in MAY ⇒ {yes, no}

no yes

concrete

abstract

ld {0x100, 0x1ff}

lwz r3, 0x1f0(r5) 
inst. in icache? (r5)+0x100 in 

dcache?

inst. addr. 

∈ MUST ⇒ yes

(r5)+0x100 ∈ {0x1f0, 0x27e}

∉ MUST & ∉ MAY ⇒ no

abstract

ld {0x100, 0x1ff}

(r5)+0x100 is 

being loaded?

{0x100, 0x1ff} ∩ {0x1f0, 0x27e} ≠ ϕ

         ⇒ {yes, no}

yes no

concrete
no

Figure 2.4: An excerpt of micro-architectural simulation: concrete vs. abstract.

Coping with Uncertainty in the Micro-Architectural Analysis

During static analysis, crucial information on program execution such as reg-

ister and cache contents cannot be determined exactly. When the analysis

flow depends on such information, the analysis has to proceed along all pos-

sible ways to ensure a sound WCET bound in the presence of timing anoma-

lies [Rei+06]. When the analysis is to proceed in more than one path, the

micro-architectural analysis state has to be split, increasing the size of the state

space and hence reducing analysis efficiency.

Splits induced by unknown cache contents and conditional branch outcomes

occur independently of the complexity of the pipeline. Other split types, how-

ever, are induced by the missing or partial information about the state of the

pipeline.

Figure 2.4 shows an excerpt of micro-architectural simulation in both the con-

crete case where the state is known precisely and the abstract case where some

parts of the state are partially or completely unknown. The microprocessor is

assumed to be accommodated with instruction and data caches, and a buffer

to store pending memory accesses. The first instruction loads data from a
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memory address specified by a fixed offset from the content of a register. To

execute the instruction, it has to be fetched from the memory first. The time

it takes to fetch an instruction varies depending on whether it is present in

the instruction cache or not. In the concrete case, the state of the instruction

cache is known and hence there is exactly one possible successor (the one

assuming a cache miss in this example). On the other hand, the state of the

instruction cache is not known precisely in the abstract case. The cache state

is rather available in terms of must and may information [Rei08]. The instruc-

tion address in this example is present only in the may set, which requires

proceeding along two ways to consider the cache-hit and cache-miss cases. A

similar scenario occurs when the load operation is to be executed and we need

to check whether the it hits the data cache. The memory address in decidedly

present in the data cache in the concrete case whereas it is again in the may set

in the abstract case. After simulating the first instruction, we end up with four

successor analysis states in the abstract case. Note that, in the abstract case,

the memory address is represented as an enclosing interval. This reflects the

fact that the content of the register r✺ is unknown precisely. This uncertainty

and having a buffer of pending accesses causes a different type of splits. On

simulating the second instruction starting from an analysis state where the

memory access from the first instruction is pending, the analysis has to decide

whether the new load request is already being served by the prior request (i.e.

if the new request is in the same cache line as the pending one.) The imprecise

memory addresses cause one more split in this example.

The split types presented in the example are inherent, i.e. they reflect real cases

which do occur on certain executions of the program. There are split types

which arise due to the abstraction used. Using the same example, suppose that

there is a memory-mapped peripheral accessible at the address ✵①✶✼❢. The

peripheral has an access latency different than that of the memory. Consider-

ing the first instruction in the example, the interval includes the peripheral’s

address and hence a further split occurs in the cache-miss cases due to multi-

ple access latencies. Such a split is possibly abstraction induced and might be

avoided if a different abstraction is used to represent addresses (e.g. by using

sets rather than intervals.)
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Figure 2.5: PowerPC 7448 Block Diagram.

2.3 The Freescale PowerPC 7448

The PowerPC 7448 is a reduced instruction set computer (RISC) superscalar

processor that implements the 32-bit portion of the PowerPC architecture

and the SIMD instruction set AltiVec architectural extension. It features a

two-level memory hierarchy with separate L1 data and instruction caches

(Harvard architecture), a unified L2 cache, four independent integer and four

independent vector units for superscalar execution. It also features static

and dynamic branch prediction, and a sophisticated load-store unit with long

buffers.

“The PowerPC 7448 provides virtual memory support for up to 4 PB (252) of

virtual memory and real memory support for up to 64 GB (236) of physical mem-

ory. It can dispatch and complete three instructions simultaneously” [Mpc]. It

consists of the following execution units, depicted in Figure 2.5:

• Instruction Unit (IU): the IU provides centralized control of instruction

flow to the execution units. It contains an instruction queue (IQ), a

dispatch unit (DU), and a branch processing unit (BPU). The IQ has

12 entries and loads up to 4 instructions from the instruction cache in

one cycle. The DU checks register dependencies and the availability

of a position in the completion queue (described below), and issues

or inhibits subsequent instruction dispatching accordingly. The BPU

receives branch instructions from the IQ and executes them early in the
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pipeline. If a branch has a dependency that has not yet been resolved, the

branch path is predicted using either architecture-defined static branch

prediction or PowerPC 7448-specific dynamic branch prediction.

• Completion Unit (CU): The CU retires an instruction from the 16-entry

completion queue (CQ) when all instructions ahead of it have been com-

pleted. The CU coordinates with the IU to ensure that the instructions

are retired in program order.

• Integer, Vector, and Floating-Point Units: the PowerPC 7448 provides

nine execution units to support the execution of integer, fixed point, and

AltiVec instructions.

• Cache/Memory Subsystem: The PowerPC 7448 microprocessor contains

two separate 32 KB, eight-way set-associative level 1 (L1) instruction and

data caches (Harvard architecture). The caches implement a pseudo

least-recently-used (PLRU) replacement policy. In addition, the PowerPC

7448 features a unified 1 MB level 2 (L2) cache.

• Load-Store Unit (LSU): The LSU executes all load and store instruc-

tions and provides the data transfer interface between registers and

the cache/memory subsystem. The LSU also calculates effective address

and aligns data. This unit is described in detail in the following section.

Load-Store Unit The LSU provides all the logic required to calculate effective

addresses, handles data alignment to and from the data cache, and provides

sequencing for load-store string and load-store multiple operations [Mpc].

The LSU contains a 5-entry load miss queue (LMQ) which maintains the load

instructions that missed the L1 cache until they can be serviced. This allows

the LSU to process subsequent loads. Unlike loads, stores cannot be executed

speculatively: a store instruction is held in the 3-entry finished store queue

(FSQ) until the completion unit signals that the store is committed; only then

it moves to the 5-entry committed store queue (CSQ). In order to reduce the

latency of loads dependent on stores, the LSU implements data forwarding

from any entry in the CSQ before the data is actually written to the cache. When

a load misses the cache, its address is compared to all entries in the CSQ. On a

hit, the data is forwarded from the newest matching entry. If the address is also

found in the FSQ, however, the LSU stalls since the newest data at this address

could be updated should the store instruction in the FSQ be committed.
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Figure 2.6: Split types and their proportions (logarithmic scale) for selected

benchmarks.

Analysis Model of the PowerPC 7448 The various queues in the PowerPC

7448 pipeline necessitate keeping track of a significant amount of information,

proportional to the number of instructions the processor can execute concur-

rently. Due to analysis uncertainty about memory addresses, this translates to

a significant amount of splits during micro-architectural analysis.

In the load-store unit, the addresses of different memory accesses are repre-

sented by enclosing intervals, rather than exact numbers. As described in the

previous section, serving a load that misses the cache involves a number of

comparisons to the entries in the store queues. Performing these comparisons

on imprecise addresses results in splits whenever it cannot be decided whether

two addresses alias or not. The number of comparisons is proportional to

the queue occupancies at the time instants when loads that missed the cache

arrive.

Another source of splits is branch prediction. Since conditional branches

(whose outcome is potentially unknown) are predicted and the instructions are
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executed speculatively on the predicted path, a split takes place when deciding

whether or not the prediction was correct.

A third source of splits is the execution units featuring variant execution time

depending on the operands. For example, a computationally expensive opera-

tion such as division takes less number of cycles if the operands have enough

leading zeroes.

Figure 2.6 shows the splits encountered on analyzing selected benchmarks and

their proportion. Beside cache-induced splits, the load-store unit and branch

prediction unit induce a significant proportion of the total number of splits.

The effect of the former unit is more pronounced for benchmarks with intensive

access to the data memory (i.e. the ones manipulating arrays like ❜s, ❜s♦rt✶✵✵

and ❝♥t). In the following chapters we shall see that such benchmarks are the

most computationally demanding ones in terms of analysis time and memory

consumption.

2.4 A Quantitative Analysis of the Effects of

Various Split Types

In the previous section, we have seen that the analysis of the PowerPC 7448

suffers from various types of splits. It is not obvious, though, which of these

splits accounts for how much of the state space explored. This section attempts

to answer this question empirically. We present a quantitative analysis of the

effect of every split type on the size of the state space.

Experimental Setup

In the experiment we analyze benchmarks using a version of AbsInt’s WCET

analyzer ❛✐❚ for the PowerPC 7448 and construct a micro-architectural state

graph for each benchmark. The state graph of a program p and a hardware

architecture a encodes all possible micro-architectural state traces resulting

from executing p on a. The graph nodes correspond to micro-architectural

analysis states. An edge u
t
−→ v in the state graph denotes a transition from state

u to state v which takes t cycles. Splits encountered on analyzing a program

are manifested in the nodes with more than one outgoing edge. Every edge is

annotated by the choices assumed for the corresponding transition, if any.
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ratiom(b) :=
mmod.(b)

m¬mod.(b)
,

ratio−1
m (b) :=

m¬mod.(b)
mmod.(b)

,

aggregate-ratiom := geometric-mean
∀b∈B

{ratiom(b)} ,

aggregate-ratio−1
m := geometric-mean

∀b∈B

{

ratio−1
m (b)

}

,

m-increase := aggregate-ratiom −1,

m-reduction := 1−aggregate-ratiom .

where

b ∈B := the set of all benchmarks,

m ∈M := the set of all metrics,

mmod.(b) := is the metric value for the optimized benchmark b,and

m¬mod.(b) := is the respective value for the non-optimized benchmark b.

Figure 2.7: Metrics to quantify the effect of a given optimization over a set of

benchmarks.

As a metric signifying the complexity of the WCET analysis, we use the number

of micro-architectural states explored during analysis (signified as #s). To

quantify the effect of each split type on the performance of the WCET analysis,

we remove the edges labeled by a certain split type and examine the change

in this metric. We combine all split types due to imprecise addresses in the

load-store unit under the broad type LSU clashes.

We often need to study the effect of a certain modification (e.g. removing edges

from the state graph) over a set of benchmarks. We use the definitions listed in

Figure 2.7 and benchmarks from the The Mälardalen suite [Gus+10] listed in

Table 2.1 throughout this work.

The effect of removing split types are inter-dependent because removing one
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Table 2.1: The Mälardalen benchmarks used in experimental evaluations.

Benchmark Description # instructions # bb’s # loops

bsort100 Bubble sort for an 100-integers array. 132 14 2

bs Binary search for an 15-integers array. 83 11 1

cnt Counts non-negative numbers in a matrix. 226 17 2

crc Cyclic redundancy check computation on 40 bytes. 314 29 3

expint Computes an exponential integral function. 187 25 3

fac Calculates the factorial function. 61 10 1

fdct Fast Discrete Cosine Transform. 657 9 2

fibcall Iterative Fibonacci calculation, calculates fib(30). 54 7 1

janne Nested loop program. 72 14 2

lcdnum Read ten values, output half to LCD. 116 27 1

loop3* Several loop patterns. 160 361 120

ludcmp Read ten values, output half to LCD. 471 50 11

minmax* Simple program with infeasible paths. 158 26 0

prime Calculates whether numbers are prime. 146 23 1

qurt Root computation of quadratic equations. 234 28 1

sqrt Square root function implemented by Taylor series. 115 16 1

ud Calculation of matrixes. 415 39 11

* the benchmark was not found in the official documentation although included in the test-

suite distribution.

split type could encompass the effect of removing other split types. To expose

this relation, we compute the independence factor for each pair of split types

(s, t ) defined as:

independence-factor(s, t ) :=
#s-ratio−1

s,t

#s-ratio−1
s ×#s-ratio−1

t

A high value of this factor implies a weak correlation between the two split

types.

Constructing micro-architectural state graphs is technically tedious since the

analysis tool-chain does not support the generation of such graphs. We have

to reconstruct the graphs out of the graphs of basic blocks. Moreover, such

graphs are too large for fairly complex benchmarks to fit in memory. For these

reasons, only one Mälardalen benchmark (❢❞❝t) is used in this experiment

beside several small benchmarks written in assembly. The assembly bench-

marks attempt to simulate the effect of loading from and storing to imprecise
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Figure 2.8: State space size ratio (logarithmic scale) for each split type.

addresses, a situation often encountered when analyzing programs with loops

that are not completely unrolled.

Results

Figure 2.8 presents the combined state-space reduction computed on removing

each split type. Excluding the instruction/data cache miss cases causes the

most noticeable reduction. Excluding the load-store-unit clashes also renders

a substantial decrease. The effect of removing other split types is negligible.

This might be due to the limited selection of benchmarks (e.g. benchmarks

which suffer a large number of splits due to branch prediction have too large

graphs for this experiment).

The significant effect of removing the cache miss cases could be explained as

follows:

• Excluding the data cache miss cases subsumes excluding the LSU clashes.

• Excluding the instruction cache miss cases implies that we examine only

the path where the memory subsystem is dedicated to serving the data

accesses. Effectively, this shortens the time the load and store instruc-
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Figure 2.9: The (inverse-) correlation between pairs of split types.

tions reside in the LSU which leads to shorter store queues and ultimately

excludes most of the LSU clashes.

This explanation is supported by the correlation analysis shown in Figure 2.9.

The graph uses the graphic conventions used in drawing corrgrams as de-

scribed in [Fri02]. The diagram cells represent the independence factor. In

the lower part, the shading color and direction indicates the value of the in-

dependence factor. In the upper part, the value is represented as a pie chart.

The independence factor for the pairs (icache, icache) and (dcache, dcache)
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cannot be computed because removing both of their components does not

allow for a complete simulation of the program. The two pairs are marked with

red shading.

Excluding data cache miss cases has a noticeable correlation with excluding

the LSU clashes. Excluding instruction cache miss cases is also correlated with

excluding the LSU clashes, although not as strongly. The strong correlation

between excluding instruction and data cache miss cases is a further evidence

they exclude common classes of events.

2.5 Concluding Remarks

Modern hardware architectures cause a great deal of difficulty to the task of

timing analysis. It is compelling to utilize the opportunity lying in the middle

of this difficulty. It is wished to reduce the state space to be explored during the

WCET analysis and still benefit from the performance improvements featured

by modern processors. The following chapters present two approaches at-

tempting to mitigate the analysis efficiency problem without degrading the sys-

tem performance severely. In Chapter 3 we simplify the hardware architecture

to make it more analyzable. In Chapter 4 we present a compiler optimization

which improves the efficiency of the WCET analysis of programs running on

unmodified architecture.



CHAPTER

3
Taming the Hardware

The gentle overcomes the rigid.

The slow overcomes the fast. The

weak overcomes the strong. (. . .)

Everyone knows that the yielding

overcomes the stiff, and the soft

overcomes the hard. Yet no one

applies this knowledge.

Lao Tzu, Tao Te Ching

The increasing complexity of today’s micro-architectures makes the construc-

tion of sound and precise timing models an increasingly time-consuming and

error-prone task. Furthermore, the resulting, complex timing models lead

to a state-explosion problem in the micro-architectural analysis, drastically

increasing overall WCET analysis times.

Most micro-architectural innovations, causing this increase in complexity, like

speculation and out-of-order execution, are undertaken to improve average-

case performance. In the WCET community it is often argued that many of

these innovations do not improve, or even harm, a processor’s worst-case

timing behavior. There is, however, little hard evidence supporting such claims.

This chapter intends to contribute some hard evidence by performing an

23
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empirical evaluation using ABSINT’s ❛✐❚ WCET analysis tool-chain for the

PowerPC 7448 processor.

To the end of investigating the influence of the lengths of the Load-Store Unit

(LSU) queues on both WCET bounds and WCET analysis times, we introduce a

simplified variant of the existing LSU, reducing its queue sizes to a minimum.

The following section describes the modification applied to the LSU. The next

section then compares the simplified design with the original design on various

benchmarks from the Mälardalen benchmark suite.

3.1 The Hardware Modification

To the end of reducing the number of splits, and thus improving analysis time,

we modified the PowerPC 7448 by cutting the queue sizes in the load-store unit.

The LMQ, CSQ, and FSQ sizes were reduced to 2, 3, and 2, respectively1.

We have chosen this modification after several experiments with various other

modifications. We tried altering the function units such that their execution

times do not depend on the operands. We also tried limiting the speculation

level to one rather than three. Out of all modifications we examined, reducing

the queue sizes in the load-store unit is the one that produced noteworthy

changes both in the precision and efficiency of the WCET analysis.

3.2 Experimental Evaluation

Experimental Setup

The benchmarks were selected from the Mälardalen benchmark suite (cf. Ta-

ble 2.1). The selected benchmarks are the ones for which the WCET analysis

terminated successfully for both architectures.

The ❛✐❚ analyzer was configured to use traditional ILP-based path analysis

(with the CLP solver [Clp]) on all benchmarks and prediction-file based ILP

path analysis only on some of them. Although the latter produces more precise

WCET bounds, it is more computationally demanding as will be seen in the

1This is the strongest simplification we could apply without having to make significant

changes to the micro-architectural analysis.
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following section, and we were not able to finish the analysis of all of the

benchmarks.

We collected the following metrics to quantify the gain in the analysis efficiency

and the loss in the predicted WCET bound:

• the time taken by the micro-architectural analysis and the path analysis

combined,

• the maximum of the memory consumptions by the micro-architectural

analysis and the path analysis.

• the WCET bound,

• the overestimation induced by using the traditional ILP-based path anal-

ysis,

• the local WCET bound (lWCET) (computing by pursuing only the micro-

architectural states whose execution is locally slower) and the amount

by which it underestimates the sound WCET bound.

We aggregate the first three metrics obtained for individual benchmarks using

the equations in Figure 2.7.

The experiment was performed on a 64-bit AMD Opteron machine with 16

processor cores at 2500 MHz and 64 GB of RAM. As the WCET analysis is

not parallelized, we ran multiple analyses concurrently on this machine. As

performance metrics, we use the micro-architectural-analysis time and the

path-analysis time. On the analyzed benchmarks, these two metrics constitute

on the aggregate about 80% and 75% of the whole analysis time for the standard

and reduced architectures, respectively.

Results

The analysis results of selected benchmarks using prediction-file-based ILP

path analysis are shown in Table 3.1. The unmodified architecture is referred

as ¬Mod and the modified one as Mod.

Looking first at the analysis performance metrics, we see that the state space

in the reduced architecture is significantly smaller than that of the standard
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Table 3.1: WCET bounds and performance metrics using prediction-file-based

ILP path analysis.

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Ratio ¬Mod. Mod. Ratio

fac 3,321 3,343 1.007 0.682 0.671 0.984 66.00 66.00 1.000

fibcall 3,346 3,325 0.994 0.526 0.526 1.000 0.00 0.00 1.000

janne 20,005 19,846 0.992 3466.776 2.001 0.001 957.00 101.00 0.106

lcdnum 1,969 1,996 1.014 4.641 1.97 0.424 117.00 91.00 0.778

loop3 39,329 41,199 1.048 5.15 4.183 0.812 135.00 87.00 0.644

minmax 1,629 1,500 0.921 2.762 0.906 0.328 97.00 66.00 0.680

qurt 17,817 17,953 1.008 117.205 24.812 0.212 635.00 224.00 0.353

sqrt 5,096 4,976 0.976 28.528 5.784 0.203 241.00 114.00 0.473

geometric mean 0.994 0.216 0.528

architecture. This is manifested in the consistently lower analysis time and

memory consumption, cf. the ❥❛♥♥❡ benchmark. For simpler benchmarks,

such as ❢❛❝ and ❢✐❜❝❛❧❧, we do not see significant improvement in the analy-

sis performance. Aggregately, the analysis is sped up by around 460%. Analysis

speedup is proportional to how many splits were encountered during analysis.

This is demonstrated in Figure 3.1.

Comparing the WCET bounds in both architectures yields a surprise: in half of

the cases, the reduced architecture achieves a WCET bound that is lower than

that of the standard architecture. The aggregate decrease in WCET bound is

0.6%. This decrease could be attributed to the change in the memory access

pattern. Alternating the execution of code and data accesses induces less

overhead than executing the accesses of each type in chunks. This effect is

visible in the benchmarks which do not benefit from the longer queues in the

unmodified architecture in terms of performance. To expose this correlation,

we consider the local WCET bounds (lWCET) of benchmarks. The lWCET

of a given benchmark is less than the sound one if any timing anomaly is

encountered. In other words, the more anomalies encountered, the more the

lWCET underestimates the sound one. We take the underestimation the lWCET

induces as an inverted indicator of how much a benchmark benefits from the

sophistication of the unmodified architecture.
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Table 3.2: WCET bounds and performance metrics using traditional ILP-based

path analysis.

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Ratio ¬Mod. Mod. Ratio

bs 11,082 9,807 0.885 201.564 15.863 0.079 163.00 74.00 0.454

cnt 44,285 38,399 0.867 16842.557 489.412 0.029 2772.00 235.00 0.085

expint 13,610 13,536 0.995 2.512 2.007 0.799 67.00 67.00 1.000

fac 4,173 4,015 0.962 0.601 0.591 0.983 66.00 66.00 1.000

fibcall 3,685 3,530 0.958 0.49 0.514 1.049 0.00 0.00 1.000

janne 28,172 21,034 0.747 19.864 1.072 0.054 314.00 74.00 0.236

lcdnum 2,538 2,506 0.987 3.035 1.365 0.450 82.00 66.00 0.805

loop3 53,986 53,879 0.998 4.334 3.68 0.849 103.00 87.00 0.845

minmax 1,987 1,898 0.955 1.675 0.821 0.490 66.00 66.00 1.000

qurt 26,363 21,742 0.825 60.58 13.598 0.224 218.00 106.00 0.486

sqrt 7,120 5,576 0.783 14.653 3.267 0.223 114.00 74.00 0.649

geometric mean 0.901 0.284 0.567

Figure 3.2 shows the relation between the WCET bound ratio of the modified

and unmodified architectures and the lWCET underestimation on the unmodi-

fied architecture. With the exception of one outlier, ❧♦♦♣✸, benchmarks with

larger underestimation on the unmodified architecture run consistently faster

on the modified one.

Using the less precise, yet significantly more efficient traditional ILP-based

path analysis, more benchmarks were analyzed. The analysis results and

performance metrics are shown in Table 3.2.

We observe a lower aggregate analysis speedup of around 350%. This is because

this variant of path analysis does not benefit from the reduced state space, since

it operates at the level of basic blocks.

The WCET bound improvement is more pronounced using this path-analysis

variant. This is not surprising since a larger number of paths with different tim-

ings through basic blocks, as is the case for the standard architecture, makes it

more likely for the path analysis to compute an architecturally infeasible worst-

case execution path. Using the example in Figure 2.3, if the first basic block

had a single terminal state rather than two, the ILP analysis would compute a

bound as precise as the the one computed using the PF-ILP.
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Table 3.3: WCET bounds and overestimation induced by the traditional ILP-

based path analysis for the full and simplified architectures.

¬Opt Opt

Benchmark PF-ILP ILP Ratio PF-ILP ILP Ratio

fac 3,321 4,173 1.257 3,343 4,015 1.201

fibcall 3,346 3,685 1.101 3,325 3,530 1.062

janne 20,005 28,172 1.408 19,846 21,034 1.060

lcdnum 1,969 2,538 1.289 1,996 2,506 1.256

loop3 39,329 53,986 1.373 41,199 53,879 1.308

minmax 1,629 1,987 1.220 1,500 1,898 1.265

qurt 17,817 26,363 1.480 17,953 21,742 1.211

sqrt 5,096 7,120 1.397 4,976 5,576 1.121

overestimation 31.04% 18.20%

We compute the WCET-bound overestimation induced by the ILP path anal-

ysis for both architectures in Table 3.3. The overestimation on the simplified

architecture is around half of that on the full one. A further investigation of the

benchmarks reveals that the ones with a higher number of basic blocks and

whose analysis on the unmodified architecture encounters more splits feature

better improvement in the overestimation. This is shown in Figure 3.3.
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Figure 3.3: Overestimation ratio vs. the number of splits per basic block (loga-

rithmic scale).
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3.3 Related Work

While there is an abundance of work proposing more predictable or analyz-

able micro-architectures, there is not a lot of work that empirically studies

the impact of simplifications of micro-architectures on WCET analysis time.

Exceptions include the work of Grund et al. [GRG11] and Burguière and

Rochange [BR07].

Grund et al. [GRG11] investigate several modifications of the branch target

instruction cache of the PowerPC 56x. They observe that using LRU in place of

FIFO replacement reduces analysis time drastically, as more memory accesses

can be classified as hits or misses, thereby reducing the number of splits.

Burguière and Rochange [BR07] investigate the modeling complexity of var-

ious dynamic branch prediction schemes. Here, the modeling complexity is

measured by the number of constraints, the number of variables, and the sizes

of constraints in an ILP formulation of the behavior of the respective branch

prediction schemes. This analysis is based on the assumption that the mod-

eling complexity is strongly-correlated with the resulting analysis complexity.

However, the actual analysis times are not analyzed.

Heckmann et al. [Hec+03] focus on the difficulty in modeling various archi-

tectural components, including caches and pipelines, and their influence on

the precision of the resulting analyses. From their experience in modeling

various processors they derive several recommendations regarding the design

of processors for real-time systems. Later, Wilhelm et al. [Wil+09] describe

properties of memory hierarchies, pipelines, and buses, which make timing

analysis more complex and/or reduce its precision. Neither Heckmann et al.

nor Wilhelm et al. provide an empirical evaluation of their recommendations.

Approaches aiming at improving predictability or analyzability include the

EU projects Predator, Merasa [Ung+10], the PRET project [EL07], and the Java-

Optimized Processor JOP [Sch08]. These projects present entirely new pro-

cessor designs. This makes it difficult to evaluate the impact of individual

design choices on WCET analysis times. In the context of the JOP project, Hu-

ber et al. [HPS12] analyze the influence of different object cache configurations

on worst-case execution time estimates, varying several cache parameters and

the background memory. They do not, however, analyze the impact of the

design choices on analysis times.
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3.4 Concluding Remarks

In this chapter, we have investigated the influence of the design of the load-

store unit on WCET analysis, in terms of analysis times and WCET bounds.

Reducing the complexity of the LSU results in significantly shorter analysis

times, and, surprisingly, sometimes even in slightly lower WCET bounds.

The results indicate that, for the analyzed benchmarks, the sophistication of

the load-store unit does not result in a significant increase in the system perfor-

mance in the worst case. At least not significant enough to justify the hardship

it causes when analyzing programs running on this hardware architecture.

Simpler and more analyzable architectures can be constructed which render a

worst-case performance close to that of the more sophisticated processors.





CHAPTER

4
A Compiler-Based Approach for

Increasing the Efficiency of

WCET Analysis

If you want to be a good saddler,

saddle the worst horse; for if you

can tame one, you can tame all.

Socrates

The hardware optimization introduced in the previous chapter is not one of

a kind. The increasing complexity of micro-architectures and its effect on

WCET analysis has been observed earlier [TW04] and has lead to a body of

work on the design of micro-architectures that aim to reconcile performance

with predictability [RS05; Wil+09; Liu+12]. So far, this research has had limited

impact on commercially-available micro-architectures.

In this chapter, we explore an alternative approach to new hardware solutions:

we propose a compiler optimization that reduces the cost of WCET analysis for

complex commercial micro-architectures. This is accomplished by inserting a

synchronization instruction at selected program points. This instruction stalls

the execution until all pending instructions execute to completion, effectively

flushing queues in the load-store unit and emptying the pipeline.

This reduces the number of analysis states in two ways. The immediate effect is

that many analysis states become similar after executing the synchronization

33
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instruction, and hence can be merged. In addition, eliminating uncertainty

about pending memory accesses in the load-store unit reduces the number of

splits on subsequent load-store instructions. The reduced number of analysis

states comes at the cost of an increase in execution time due to the stalling

induced by the synchronization instruction on the one hand, and the increased

program size, which may increase the number of cache misses, on the other

hand.

To identify valuable locations to insert synchronization instructions, our op-

timization estimates, for each program point, the loss in terms of execution

time and the gain in analysis efficiency. While the former estimate is based on

the loop-nesting level, the latter is computed using annotations obtained by

performing a simple static analysis of the program. These annotations provide

rough estimates of how long each instruction takes and how many splits it

induces.

We have developed a prototype implementation of the optimization for the

PowerPC instruction set architecture. We employ a version of AbsInt’s WCET

analyzer ❛✐❚ for the PowerPC 7448, a high-performance microprocessor used

in safety-critical real-time systems, on a set of Mälardalen benchmarks, to

evaluate our prototype. Under an expensive prediction-file based path analysis,

we observe an analysis speedup of around 635% at the cost of an increase in

the WCET bound of 6%. Moreover, under a traditional ILP-based path analysis,

the WCET bound is decreased by 5% while the analysis is sped-up by 350%.

The following section describe the optimization pass, before we describe the

experimental evaluation in Section 4.2. After discussing related work in Sec-

tion 4.3, we conclude the chapter in Section 4.4.

4.1 The Optimization Pass

High-Level Optimization Approach

The mechanism at our disposal are synchronization instructions, described

in more detail below, which reduce analysis cost at and after the program

point at which they are inserted. As inserting such instructions does not come

for free—it increases program size and execution times—blindly inserting

synchronization instructions everywhere in the program is not a viable option.
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Figure 4.1: The general operation of the optimization pass.

Instead, we follow a simple incremental approach that alternates between the

following two steps, until a user-defined threshold is reached:

1. A cheap heuristic is used to estimate both the gain in terms of reduced

analysis effort and the loss in terms of increased execution time for each

program point.

2. A synchronization instruction is inserted at the program point that maxi-

mizes the gain/loss ratio.

Step 1 needs to be repeated in each iteration, because each insertion changes

the gains and losses of other program points. Figure 4.1 illustrates this process,

whose steps are described in more detail in the following.
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Merge! Merge!

Figure 4.2: The effect of executing s②♥❝ on merging micro-architectural states.

Mechanism: Synchronization Instructions

To eliminate splits due to clashes in the load-store unit, we need to make

sure its queues are cleared by the time a new load arrives. The semantics of

the data-synchronization instruction (s②♥❝) is the closest fit for this purpose.

Executing s②♥❝ instruction ensures that all preceding instructions execute

to completion before any subsequent instruction is initiated [Fre05]. This

implies that inserting a s②♥❝ instruction ensures the emptiness of the LSU

queues and consequently excludes the possibility of comparing imprecise

addresses. Another benefit is that executing the s②♥❝ instruction makes micro-

architectural analysis states similar. This fosters merging states and hence

reduces the number of subsequent states to be explored. Figure 4.2 shows a

conceptual demonstration of this effect.

The downside is that inserting s②♥❝s increases the program size. A longer

program will most likely feature a longer execution time and a higher number of

splits induced by querying the instruction cache. Moreover, executing the s②♥❝

instruction causes a stalling in the pipeline until all pending operations are

completed. This prohibits executing the instructions that follow concurrently

and hence prolongs the execution time.

We use the term normalization point to refer to a program point before which

inserting a s②♥❝ could enhance the analysis efficiency. Normalization points
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int main( int argc , char ** argv )

{

int i , sum = 0 ;

for ( i =0; i <10; i ++)

{

sum += 1 ;

}

return 0 ;

}

R=1 C=13482

R=2 C=6641

R=20 C=6640

R=80 C=1656R=640 C=26576

R=2560 C=6640

R=640 C=68

R=2560 C=16

R=10240 C=0

t=4#s=2t=4#s=2

t=1#s=2

t=122#s=3

t=100#s=1

t=71#s=0

t=4#s=2

#s=1 t=1

t=1
#s=3

l f = 10 → R = 2×10C ′ = 0

C ′ = 16

Figure 4.3: An example program and its control-flow graph annotated with

R(x) and C (x) computation results.

are the points where one or more splits occur. With this choice, every normal-

ization point corresponds to one or more split types. The normalization point

is said to be realized if a s②♥❝ is actually inserted before it.

Evaluating Normalization Points

Realizing a normalization point induces gain in terms of the analysis states

spared and loss in terms of the increase in the execution time and hence

the WCET bound. The additional execution time induced by adding one in-

struction to a basic block is proportional to how frequently the basic block is

executed. This can be approximated as follows:

l oss = B n

where n is its loop-nesting level and B is a constant signifying the average num-

ber of loop iterations. A better approximation of the loss could be computed

given information on the loop bounds.

We estimate the number of analysis states spared by realizing a normalization

point x as follows:

g ai n(x) = (R(x)−1)×C (x)
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where:

R(x) := the number of analysis states reaching x,

C (x) := the cumulative number of states explored per

initial state from x to the end of the program.

To compute R(x) and C (x) for each normalization point, we construct a control-

flow graph. Every edge in the graph is annotated by estimates of the time (in

cycles) taken to execute the source node (t ) and the number of splits encoun-

tered during the execution (#s). These estimates are computed by performing

a coarse simulation of the program. The simulation keeps track of an approxi-

mation of microprocessor state. The state and its evolution are modeled based

on the instruction timings listed in the processor manual. To simplify and

speed up the simulation, every type of non-determinism in the architecture is

avoided by choosing the locally-worst option: memory accesses are assumed

to always miss and stores are executed at the lowest speed. Features like

branch prediction and speculative execution are not modeled. The only type

of non-determinism considered is the one introduced by conditional branches.

For such branches, the pass proceeds over all possible paths in a depth-first

manner. To handle loops, every basic block is processed exactly once per call

location.

Furthermore, we make the control-flow graph acyclic to allow for quick estima-

tion of the two metrics. This is accomplished by finding the feedback edges

and removing them from the graph. Finally, program points where no splits

take place are discarded unless their removal would affect program structure

(e.g. return points).

Computing R(x) proceeds from the program entry point (where R = 1) in for-

ward breadth-first manner. Every single split doubles the number of reaching

state. To account for loops, we multiply the number of states reaching the loop

head by an arbitrary constant (we assume that every iteration introduces an

additional state). A loop head is the program point to which a feedback edge

returns. To formalize, R(x) is computed as follows:

R(x) = l f (x)×
∑

{

R(p)×2#s(p,x) : p ∈ pr edecessor s(x)
}

where the loop factor l f is defined as:

l f (x) = B |{e:e∈feedback-edges∧t ar g et (e)=x}|.
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Similarly, C (x) is computed from the program end point (where C = 0) in a

backward breadth-first manner according to the following equation:

C (x) =
∑

{

2#s(x,s)
×

(

t (x, s)+C (s)
)

: s ∈ successor s(x)
}

.

Removing feedback-edges leaves the last program point in a loop with no

successors, we call such points loop tails. We initially set C (x) at loop tails to

zero and proceed with the computation according to the equation above. As

a post-processing step, we propagate the value of C (x) along feedback edges,

then we update C (x) from the loop tail backwards to the program point after

the loop condition.

An Example Gain/Loss Computation Figure 4.3 shows an example demon-

strating the computation of R(x) and C (x) on a simple program with B = 10.

The graph contains one feedback edge (dashed), the source point is the loop

tail and the target point is the loop head.

R(x) assumes the value 1 at the program entry point. At the third program

point (which is the target of the feedback edge), R(x) is computed as 20 rather

than 2 since the loop factor of this point is 10 (i.e. l f (x) = B 1).

C (x) assumes the value of 0 at the program end point and initially at the loop

tail. For demonstration purposes, the initial values of C (x) at the loop points

are shown as C ′(x) in italic type. After computing C (x) for all program points,

its value is propagated along the feedback edge (i.e. C (x) is updated to the value

of 6640 at the loop tail), and C (x) is re-computed for the loop nodes. In this

example, only the loop tail and its predecessors have their C (x) re-computed.

Putting It All Together

To let the user control the trade-off between execution time and analysis effi-

ciency, we introduce the aggressiveness parameter. This parameter determines

the proportion of the normalization points that should be realized.

Given a certain aggressiveness value, the optimization pass operates in the

following phases:

1. A coarse simulation is performed to compute timing and split informa-

tion for each program point.
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Table 4.1: The Mälardalen benchmarks and their optimization statistics at 40%

aggressiveness.

Benchmark Size increase Time (s)

bsort100 3.03% 0.078

cnt 3.10% 0.078

crc 2.23% 0.396

expint 2.14% 0.184

fac 4.92% 0.044

fdct 1.98% 1.393

fibcall 1.85% 0.022

janne 4.17% 0.065

ludcmp 2.55% 0.936

prime 2.05% 0.086

qurt 1.71% 0.164

ud 2.17% 0.519

2. An annotated control-flow graph is constructed in the way described in

Section 4.1.

3. The gain and loss are computed for each unrealized normalization point.

The normalization points are then sorted by the ratio of their gain to

their loss and the point with the maximum ratio is realized and has its #s

updated accordingly.

This phase is repeated until the number of covered points is equal to or

exceeds

ag g r essi veness ×
∣

∣nor mali zati on_poi nt s
∣

∣ .

In our implementation of the prototype, we use the GCC compiler [Gcc] (ver-

sion 4.3.2) as a front-end to compile the C sources to PowerPC assembly. The

assembly is then parsed to obtain a control-flow graph. Based on this CFG, the

optimization pass described above is implemented to produce an optimized

assembly file. The assembly parser, simulator and the optimization pass are

implemented in Python [DR11]. Finally we use the GCC compiler to assemble

the binary executable from the optimized assembly source.
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4.2 Experimental Evaluation

Experimental Setup

We used the compiler optimization pass on benchmarks from the Mälardalen

suite (cf. Table 2.1) and performed WCET analysis on them using a version of

the ❛✐❚ analyzer for the PowerPC 7448. We collected the following metrics to

quantify the increase in program size, the gain in the analysis efficiency and

the loss in the predicted WCET bound:

• the program size,

• the WCET bound,

• the time taken by the optimization pass, the micro-architectural analysis,

and the path analysis combined,

• the maximum of the memory consumptions by the micro-architectural

analysis and the path analysis.

We aggregate the metrics obtained for individual benchmarks using the equa-

tions in Figure 2.7.

For the first set of results, we configured the ❛✐❚ analyzer to use the more

precise, yet more expensive prediction-file based ILP path analysis (with the

CLP solver [Clp]). For the second set of results, we performed the same analyses

using the computationally-cheaper traditional ILP path analysis. To account

for the relatively small benchmarks, the instruction cache size was reduced to

1 KB.

In order to investigate the fitness of our method, we derived two additional

optimization passes and used them on the first set of results. The two passes

are contingent on the one presented in the previous section, which we call opt.

They differ only in the method used to select the normalization point to be

realized in the following way:

• the rand pass selects a normalization point randomly, and

• the opt pass selects the normalization point which minimizes the gain to

loss ratio.
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The experiment was performed on a virtual machine with 14 64-bit cores,

54 GB RAM with QEMU/KVM on an AMD Opteron 8360 SE with 16 64-bit cores

and 64 GB RAM. As the WCET analysis is not parallelized, we ran multiple anal-

yses concurrently on this machine. To prevent paging, the concurrency level

was adjusted such that the combined memory consumption by the running

analyses never exceeded the physical memory size.

Experimental Results

Optimization Results Table 4.1 describes the benchmarks used in the ex-

periment along with the percentage increase in program size and time taken

by the optimization pass with the aggressiveness parameter set to 40%. The

time taken by the optimization is negligible in comparison to the time taken

by the value analysis or the micro-architectural analysis as we shall see in the

following section. The aggregate increase in program size for different values

of aggressiveness is plotted in Figure 4.4. As expected, the aggregate increase is

proportional to the aggressiveness value.
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Figure 4.4: Aggregate program size increase for different values of aggressive-

ness.
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Table 4.2: WCET bounds and performance metrics for benchmarks using PF-

ILP path analysis (aggressiveness=40%).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 567899 592295 1.0430 13404.45 69.36 193.2367 8186 701 0.0856

cnt 21897 25927 1.1840 88487.60 24.41 3623.1884 21594 95 0.0044

crc 353724 357144 1.0097 24.12 18.54 1.3012 207 179 0.8647

expint 12716 12824 1.0085 2.41 2.67 0.9043 59 66 1.1186

fac 3404 4021 1.1813 0.93 0.46 2.0022 58 0 0.0000

fdct 33637 35158 1.0452 146.50 17.11 8.5626 849 75 0.0883

fibcall 3387 3356 0.9908 0.48 0.39 1.2220 0 0 1.0000

janne 1793 2083 1.1617 0.86 1.1306 0.8845 58 57 0.9828

ludcmp 17750 18986 1.0696 16.99 2.88 5.9061 101 67 0.6634

prime 6801 6911 1.0162 6.25 1.92 3.2551 75 58 0.7733

qurt 18900 18496 0.9786 271.20 69.18 3.9202 822 294 0.3577

ud 14867 15835 1.0651 11.73 3.94 2.9787 83 67 0.8072

geometric mean 1.0605 6.3600 0.1440

geometric mean excl. ❝♥t 1.0500 3.5723 0.1978

WCET Analysis Results For each benchmark, the value of the metric is shown

for the non-optimized and the optimized versions, along with the ratio between

the two values.

First, we consider the metrics collected using the more precise path analysis

PF-ILP. The metrics obtained at 40% aggressiveness are presented in Table 4.2.

The WCET bound is slightly higher in most of the optimized versions, with

an aggregate increase of 6.05%. An increase in the execution time is expected

due to the additional s②♥❝ statements that need to be fetched and the stalling

in the pipeline it causes. On the other hand, the analysis has a substantial

aggregate speedup of approximately 636% and its memory consumption was

reduced by about 85%.
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Figure 4.5: WCET bound increase vs. speedup for several aggressiveness values

using PF-ILP path analysis.
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Table 4.3: WCET bounds and performance metrics for benchmarks using ILP

path analysis (aggressiveness=40%).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 683942 767803 1.1226 832.81 40.87 20.3782 6873 702 0.1021

cnt 40422 28654 0.7089 9596.36 17.70 542.2993 3340 90 0.0269

crc 361219 358287 0.9919 15.65 10.34 1.5135 211 178 0.8436

expint 13543 13343 0.9852 1.99 1.51 1.3164 58 58 1.0000

fac 4357 4277 0.9816 0.72 0.42 1.7102 58 0 0.0000

fdct 36459 37420 1.0264 21.86 11.50 1.9010 98 74 0.7551

fibcall 3793 3648 0.9618 0.42 0.35 1.1780 0 0 1.0000

janne 2313 2339 1.0112 0.60 0.57 1.0615 57 57 1.0000

ludcmp 21945 20798 0.9477 6.16 1.84 3.3476 98 66 0.6735

prime 8354 7435 0.8900 3.58 1.30 2.7629 74 58 0.7838

qurt 27935 23604 0.8450 45.72 14.02 3.2614 266 130 0.4887

ud 18660 18162 0.9733 4.97 2.92 1.6986 82 58 0.7073

geometric mean 0.9483 3.5902 0.2048

geometric mean excl. ❝♥t 0.9737 2.2752 0.2462

Surprisingly, some benchmarks, i.e. , ❢✐❜❝❛❧❧ and q✉rt show a decrease in

the WCET bound. This decrease could be attributed to the change in the

memory access pattern. Alternating the execution of code and data accesses

induces less overhead than executing the accesses of each type in chunks.

The benchmark ❢❛❝ and ❥❛♥♥❡ were harmed most by the optimization, with

a significant increase in the WCET bound without achieving a proportional

speedup. This implies that the gain/loss ratio of one or more normalization

points was over-estimated.

The benchmark ❝♥t suffers a large increase in the WCET bound too, yet it

displays the highest analysis speedup and memory-consumption reduction.

Examining the detailed analysis statistics, we found that analyzing the non-

optimized version of this benchmark encountered over 16 million splits due to

clashes in the load-store unit. The optimization pass with 40% aggressiveness

reduced this number to a 40 thousand. This explains the huge gains achieved

for this benchmark. Excluding ❝♥t from the aggregate values reduces the

analysis speedup and memory-consumption reduction while it improves the

increase in the WCET bound.
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Figure 4.6: WCET bound increase vs. speedup for several aggressiveness values

using ILP path analysis.



4.2. EXPERIMENTAL EVALUATION 47

The second-best speedup and memory-consumption reduction is seen in the

benchmark ❜s♦rt✶✵✵. We can see a pattern here: the benchmarks involv-

ing significant number of iterations over large arrays benefit most from the

optimization.

To examine the effect of the aggressiveness value, we computed the aggregate

WCET bound increase versus the analysis speedup and memory-consumption

reduction for several values of the parameter, the results are shown in Fig-

ure 4.5. The WCET bound increases proportionally with the aggressiveness

peaking around 17%. The speedup also increases proportionally with the

aggressiveness up to the value of 90%, peaking close to 900%.

The memory-consumption reduction increases proportionally with the ag-

gressiveness up to 40%, spikes at 70% aggressiveness to around 95% and then

declines to around 88% for greater aggressiveness values. A possible explana-

tion of this observation is that there are two factors which affect the memory-

consumption reduction: the number of analysis states spared by inserting

s②♥❝ instructions and the number of splits induced by the additional queries

to the the instruction cache.

Next, we consider the metrics collected using the traditional ILP-based path

analysis. The results are shown in Table 4.3 and Figure 4.6. While the speedup

and memory-consumption reduction are not as significant as they are in the

PF-ILP case (approximately 450% and 90% at maximum, respectively), the

aggregate WCET bound increase is consistently negative for all aggressiveness

values below 70%. The reduced speedup is attributed to the fact that the ILP

path analysis does not depend on the complexity of the micro-architectural

analysis. The path analysis therefore does not benefit from the reduced size

of the state-space in terms of performance. It does benefit though in terms of

precision. Realizing a normalization point in a basic block forces the processor

to execute all pending operations within the same basic block. Localizing

such operations within basic blocks reduces the infeasible combinations of

events that the traditional ILP-based path analysis considers to compute the

global bound. The noticeable reduction in the WCET bound can therefore be

explained by this precision enhancement.
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Points are comparable iff they correspond to the same aggressiveness value.

Figure 4.7: WCET bound increase vs. speedup for several aggressiveness values

using PF-ILP path analysis for three optimizations: opt, opt and rand.

The Fitness of the Optimization We consider the fitness of our method by

comparing the performance of our pass with that of the two contingent passes

opt and rand. Figure 4.7 shows the speedup versus the WCET bound increase

for the three passes.

The metrics for the rand pass were aggregated over seven independent runs.

At the two extreme values of aggressiveness where the selection method is

irrelevant, the three passes render identical bound increase and very similar

speedup. The slight speedup discrepancy at the full aggressiveness range can

be attributed to hazards on the machine caused by other programs running

beside the experiment.

The speedup achieved by our pass is greater than that achieved by opt every-

where, and by a big margin for lower aggressiveness values. The speedup is

also greater than that achieved by the rand pass except at 10% aggressiveness.

These observations indicate that our heuristic function is able to predict the

gain correctly to a great extent.
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Points are comparable iff they correspond to the same aggressiveness value.

Figure 4.8: WCET bound increase vs. speedup for several aggressiveness values

using PF-ILP path analysis for three instruction memory configurations.

The heuristic is not as good at predicting the loss, though. This can be seen

by observing that, compared to the rand, the WCET bound increase is always

greater (i.e. worse) for our optimization pass. This is not very surprising since

the heuristic for computing the loss is rather elementary, and its computation

relies upon imprecise estimates of the number of loop iterations. Furthermore,

the heuristic does not account for the delay induced by the stalling induced

by executing synchronization instructions. This stalling turns out to be a

significant component of the increase in the WCET bound as we shall see in

the following section.

The Effect of Instruction-Memory Speed One cause of the increase in the

WCET bound is the additional synchronization instructions which have to be

fetched. The speed of the instruction memory therefore impacts the perfor-

mance of our optimization. To evaluate this effect, we computed the WCET

ratio and analysis speedup with two additional instruction memory config-

urations: slow which assumes a miss penalty of sixteen cycles (this is four
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times slower than the normal configuration) and fast which assumes a uniform

instruction memory access penalty of one cycle (i.e. the program is locked in

the instruction cache). The outcome is depicted in Figure 4.8.

Executing programs with a slower instruction memory does not seem to affect

the analysis speedup. The WCET bound increase is affected though: for all

aggressiveness values, the increase is consistently lower (peaking around 15%

as opposed to 17% with the normal configuration). Although using a slower

instruction memory quadrupled the cost of prefetching additional instructions,

it introduced a more dominant benefit: the stalling caused by the semantics of

the s②♥❝ instruction does not cause as much performance degradation. The

performance degradation induced by executing s②♥❝ instructions is propor-

tional to the amount of instruction-level parallelism lost due to stalling. When

the processor waits for longer times for instructions to come from memory,

the attainable parallelism (and hence the performance loss) is significantly

limited.

Executing programs with a faster instruction memory causes lower analysis

speedup. This is attributed to the fact that locking programs in instruction

cache excludes one major source of splits: the uncertainty about the state of

the instruction cache. This reduces the state-space size and hence reduces

the attainable gain in analysis efficiency. The WCET bound increase is slightly

lower up to 40% aggressiveness, a value after which the bound increase is

consistently higher (except at 60% aggressiveness). A possible explanation

is that for lower aggressiveness values, the lowered penalty of fetching s②♥❝

instructions resulted in overall lower WCET bounds. As more synchronization

instructions are added, the loss in parallelism induced by executing s②♥❝

instructions outweighs the benefit of fetching them faster.

4.3 Related Work

Recently, significant efforts have been undertaken to develop timing-

predictable micro-architectures. The goal of such efforts is to develop

micro-architectures that have good worst-case performance and permit sound,

precise, and efficient timing analysis.

Wilhelm et al. [Wil+09] recommend using compositional pipelines and sepa-

rate level-1 caches for code and data with the least-recently-used replacement

policy. The recommendation of using the less-sophisticated compositional
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pipelines is motivated by the fact that the execution time is often dominated

by memory-access times. The optimization we present here is inspired by

this observation: we alter the program at specific points to render the stall-

on-accident behavior characteristic to compositional architectures. The Java-

Optimized Processor [Sch03] by Schoeberl was designed to be WCET friendly.

Beside featuring constant instruction execution times, the processor design

prevents interleaving instruction fetches with data accesses by loading whole

methods on invocation and return into the instruction cache. Rochange et al.

[RS05] propose an execution mode of a superscalar microprocessor which

excludes interferences between consecutive basic blocks. While this method

achieves significant reduction in the analysis complexity, it causes a large slow-

down of the system. This approach would roughly correspond to inserting

synchronization instructions at the beginning of each basic block. Liu et al.

[Liu+12] present the PTARM, a PRET (precision-timed) architecture implement-

ing a subset of the ARM instruction set architecture. The architecture features a

thread-interleaved pipeline which exploits thread-level parallelism to combine

high throughput with the compositional way instructions are executed within

each thread.

Our previous work [MR12] suggests that shortening queues in the load-store-

unit of the PowerPC 7448 causes little or no increase in execution times while

speeding up WCET analysis significantly. We observe a similar speedup in

WCET analysis in the present compiler-based approach as was observed for

the hardware modifications suggested in [MR12]. However, in contrast to the

present work, the hardware approach did not incur an increase in the WCET

bound. The main reason for the difference is that synchronization instructions

stall the pipeline.

The compiler optimizations in the WCET domain we are aware of aim at im-

proving the WCET bound rather than WCET analysis efficiency. Falk et al.

[FL10] propose a variety of techniques in this direction. Some of the mecha-

nisms used to achieve the reduction are reducing the number of calling con-

texts for each procedure (and hence improving the precision of the value

analysis), implementing a better loop-bound analysis, and reducing the fre-

quency of jumps (and consequently their performance penalty). The first two

mechanisms likely reduce analysis time as well. However, these particular

optimizations are targeting software rather than hardware aspects of WCET

analysis, and are thus orthogonal to the optimization we present in this work.
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4.4 Concluding Remarks

We have presented a parameterized compiler optimization pass to increase

WCET analysis efficiency. Experimental results confirm that the pass achieves

significant analysis speedup at the cost of a small increase in the WCET bound.

The optimization also enables the use of traditional ILP-based path analysis

with greater precision. Having a parameter to control the aggressiveness of

the optimization enables the user to control the trade-off between system

performance and analyzability. In contrast to approaches that rely on custom

predictable hardware, our compiler-based approach is readily applicable to

existing commercial micro-architectures. The optimization pass could use the

following improvements:

• by augmenting the optimization with a heuristic model of the stalling

induced by executing the synchronization instructions, and

• by using the results of a loop-bound analysis to estimate the increase in

execution time due to fetching the synchronization instructions.

Moreover, the results presented in this chapter demonstrate the feasibility of

incorporating a normalization flag in the instruction set architecture, should a

custom predictable hardware be constructed. This should remove the cost of

fetching additional instructions.



CHAPTER

5
Summary

The more life teaches me,

the more it shows me my

intellectual shortage,

and as I gain more knowledge

I become more knowledgeable of

my ignorance.

Abu ’Abdillah al-Shafi’i (767 - 820)

It is paradoxical, yet true, to say,

that the more we know, the more

ignorant we become in the

absolute sense, for it is only

through enlightenment that we

become conscious of our

limitations.

Nikola Tesla

In this thesis we have investigated the challenges imposed by the sophistica-

tion of modern processor pipelines on WCET analysis. The main challenge is

the increase in the state space proportional to the processor complexity which

ultimately results in a degradation in the performance of the WCET analysis.

We have introduced two optimizations to mitigate this problem. The method-

ology we used to construct and evaluate the optimizations is empirical, mainly

because of the intractability of global analyses addressing a relevant problem

such as [RS09]. We therefore make no claim of universality for the results

and conclusions obtained in our experiments. They contribute nevertheless

insights on the root causes of the problem and how to go about alleviating it.

53
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5.1 Summary of Contributions

First we examined the influence of the load-store unit of the PowerPC 7448

on the analysis efficiency and precision by simplifying the hardware model.

Our experiments contribute empirical evidence that the deep queues in the

load-store unit decrease the efficiency of the WCET analysis by a large factor,

while not increasing the system’s WCET performance proportionally. Moreover,

using a less precise yet much more efficient global-bound analysis (ILP), the

computed WCET bounds actually decrease (i.e. the WCET analysis predicts

faster program executions on the simplified platform.)

Building on these observations, we have constructed a compiler optimization

which makes programs more analyzable (i.e. improves their analysis efficiency)

while running on a commercial hardware architecture. The improvement

comes at the cost of a slight increase in the computed WCET bounds when

using a precise global-bound analysis variant. Using traditional ILP based

global-bound analysis on the other hand yields lower WCET bounds for opti-

mized programs (i.e. the compiler optimization improves the precision of the

WCET analysis.)

5.2 Conclusions

From the results obtained in this thesis, we conclude the following directions

to the designers of future hardware architectures for real-time systems:

• Accommodating too many memory accesses harms the system analyz-

ability while it rarely increases the system performance in the worst case

on single-threaded processors.

• It is potentially feasible to incorporate a normalization mechanism in

the instruction set architecture, such that the analysis can be normalized

at arbitrary program points without the overhead of explicitly adding

special instructions.

Future Work

The compiler optimization presented in Chapter 4 is a promising direction

because of its applicability to existing hardware architectures and its potential
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to achieve significant analysis improvement. The optimization as it is now

lacks a good prediction of its effect on the WCET bound. Deriving a precise

heuristic to make such prediction would bring us closer to get the best of the

two worlds: the analyzability of compositional processors and the performance

of modern ones.
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APPENDIX

A
Compiler Optimization Results

This appendix lists the detailed results obtained using the compiler optimiza-

tion presented in Chapter 4 with various aggressiveness values and using both

path analysis variants.
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64 APPENDIX A. COMPILER OPTIMIZATION RESULTS

A.1 Using the Prediction-File-Based ILP Path

Analysis

WCET bounds and performance metrics for aggressiveness=10% (PF-ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 567899 567847 0.9999 13404.45 34343.63 2.5621 8186 6747 0.8242

cnt 21897 25157 1.1489 88487.60 27.05 0.0003 21594 102 0.0047

crc 353724 355267 1.0044 24.12 15.20 0.6302 207 185 0.8937

expint 12716 12911 1.0153 2.41 2.94 1.2195 59 58 0.9831

fac 3404 3875 1.1384 0.93 1.07 1.1499 58 58 1.0000

fdct 33637 34222 1.0174 146.50 188.62 1.2876 849 1118 1.3168

fibcall 3387 3387 1.0000 0.48 0.48 1.0042 0 0 1.0000

janne 1793 1751 0.9766 0.86 0.78 0.9043 58 57 0.9828

ludcmp 17750 17787 1.0021 16.99 16.22 0.9548 101 104 1.0297

prime 6801 6802 1.0001 6.25 2.37 0.3795 75 66 0.8800

qurt 18900 18709 0.9899 271.20 147.97 0.5456 822 494 0.6010

ud 14867 14944 1.0052 11.73 9.69 0.8260 83 75 0.9036

WCET bounds and performance metrics for aggressiveness=20% (PF-ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 567899 568151 1.0004 13404.45 2746.58 0.2049 8186 3113 0.3803

cnt 21897 25438 1.1617 88487.60 24.23 0.0003 21594 92 0.0043

crc 353724 354465 1.0021 24.12 18.07 0.7491 207 175 0.8454

expint 12716 12890 1.0137 2.41 2.93 1.2174 59 58 0.9831

fac 3404 3998 1.1745 0.93 0.70 0.7551 58 57 0.9828

fdct 33637 35513 1.0558 146.50 106.43 0.7265 849 467 0.5501

fibcall 3387 3387 1.0000 0.48 0.48 1.0084 0 0 1.0000

janne 1793 1751 0.9766 0.86 0.77 0.8950 58 57 0.9828

ludcmp 17750 18856 1.0623 16.99 10.04 0.5908 101 83 0.8218

prime 6801 6876 1.0110 6.25 2.35 0.3752 75 66 0.8800

qurt 18900 18513 0.9795 271.20 167.76 0.6186 822 562 0.6837

ud 14867 15366 1.0336 11.73 5.05 0.4305 83 66 0.7952
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WCET bounds and performance metrics for aggressiveness=30% (PF-ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 567899 592601 1.0435 13404.45 64.89 0.0048 8186 643 0.0785

cnt 21897 25610 1.1696 88487.60 24.17 0.0003 21594 91 0.0042

crc 353724 354858 1.0032 24.12 13.75 0.5700 207 176 0.8502

expint 12716 12800 1.0066 2.41 2.98 1.2378 59 58 0.9831

fac 3404 3998 1.1745 0.93 0.70 0.7508 58 57 0.9828

fdct 33637 34589 1.0283 146.50 14.93 0.1019 849 76 0.0895

fibcall 3387 3356 0.9908 0.48 0.41 0.8476 0 0 1.0000

janne 1793 1743 0.9721 0.86 0.87 1.0117 58 58 1.0000

ludcmp 17750 19227 1.0832 16.99 6.50 0.3824 101 75 0.7426

prime 6801 6876 1.0110 6.25 2.34 0.3744 75 66 0.8800

qurt 18900 18656 0.9871 271.20 153.17 0.5648 822 467 0.5681

ud 14867 15612 1.0501 11.73 4.34 0.3699 83 66 0.7952

WCET bounds and performance metrics for aggressiveness=40% (PF-ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 567899 592295 1.0430 13404.45 69.36 0.0052 8186 701 0.0856

cnt 21897 25927 1.1840 88487.60 24.41 0.0003 21594 95 0.0044

crc 353724 357144 1.0097 24.12 18.54 0.7685 207 179 0.8647

expint 12716 12824 1.0085 2.41 2.67 1.1058 59 66 1.1186

fac 3404 4021 1.1813 0.93 0.46 0.4995 58 0 0.0000

fdct 33637 35158 1.0452 146.50 17.11 0.1168 849 75 0.0883

fibcall 3387 3356 0.9908 0.48 0.39 0.8184 0 0 1.0000

janne 1793 2083 1.1617 0.86 0.76 0.8845 58 57 0.9828

ludcmp 17750 18986 1.0696 16.99 2.88 0.1693 101 67 0.6634

prime 6801 6911 1.0162 6.25 1.92 0.3072 75 58 0.7733

qurt 18900 18496 0.9786 271.20 69.18 0.2551 822 294 0.3577

ud 14867 15835 1.0651 11.73 3.94 0.3357 83 67 0.8072
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WCET bounds and performance metrics for aggressiveness=50% (PF-ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 567899 592673 1.0436 13404.45 74.97 0.0056 8186 771 0.0942

cnt 21897 26262 1.1993 88487.60 25.26 0.0003 21594 97 0.0045

crc 353724 357298 1.0101 24.12 18.20 0.7546 207 177 0.8551

expint 12716 12755 1.0031 2.41 1.22 0.5066 59 69 1.1695

fac 3404 4063 1.1936 0.93 0.46 0.4930 58 0 0.0000

fdct 33637 36084 1.0727 146.50 13.03 0.0890 849 77 0.0907

fibcall 3387 3356 0.9908 0.48 0.39 0.8100 0 0 1.0000

janne 1793 2177 1.2142 0.86 0.86 1.0047 58 58 1.0000

ludcmp 17750 19132 1.0779 16.99 2.75 0.1618 101 67 0.6634

prime 6801 6911 1.0162 6.25 1.84 0.2936 75 58 0.7733

qurt 18900 18775 0.9934 271.20 61.66 0.2274 822 258 0.3139

ud 14867 15868 1.0673 11.73 2.04 0.1744 83 66 0.7952

WCET bounds and performance metrics for aggressiveness=60% (PF-ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 567899 683014 1.2027 13404.45 64.91 0.0048 8186 717 0.0876

cnt 21897 26285 1.2004 88487.60 24.73 0.0003 21594 101 0.0047

crc 353724 385375 1.0895 24.12 12.77 0.5294 207 175 0.8454

expint 12716 12729 1.0010 2.41 1.23 0.5104 59 69 1.1695

fac 3404 4063 1.1936 0.93 0.46 0.4919 58 0 0.0000

fdct 33637 36594 1.0879 146.50 19.01 0.1298 849 77 0.0907

fibcall 3387 3356 0.9908 0.48 0.39 0.8142 0 0 1.0000

janne 1793 2177 1.2142 0.86 0.86 1.0070 58 58 1.0000

ludcmp 17750 19149 1.0788 16.99 3.14 0.1848 101 66 0.6535

prime 6801 6909 1.0159 6.25 1.82 0.2907 75 58 0.7733

qurt 18900 19724 1.0436 271.20 32.37 0.1194 822 164 0.1995

ud 14867 16127 1.0848 11.73 1.81 0.1542 83 58 0.6988
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WCET bounds and performance metrics for aggressiveness=70% (PF-ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 567899 683120 1.2029 13404.45 68.18 0.0051 8186 693 0.0847

cnt 21897 22627 1.0333 88487.60 21.03 0.0002 21594 93 0.0043

crc 353724 393927 1.1137 24.12 13.32 0.5524 207 179 0.8647

expint 12716 12707 0.9993 2.41 1.15 0.4788 59 58 0.9831

fac 3404 4230 1.2427 0.93 0.46 0.4908 58 0 0.0000

fdct 33637 36965 1.0989 146.50 18.61 0.1271 849 83 0.0978

fibcall 3387 3356 0.9908 0.48 0.39 0.8121 0 0 1.0000

janne 1793 2244 1.2515 0.86 0.57 0.6628 58 0 0.0000

ludcmp 17750 19371 1.0913 16.99 3.24 0.1906 101 66 0.6535

prime 6801 7018 1.0319 6.25 1.91 0.3051 75 58 0.7733

qurt 18900 20351 1.0768 271.20 26.80 0.0988 822 150 0.1825

ud 14867 16560 1.1139 11.73 1.71 0.1458 83 58 0.6988

WCET bounds and performance metrics for aggressiveness=80% (PF-ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 567899 686466 1.2088 13404.45 80.05 0.0060 8186 821 0.1003

cnt 21897 26703 1.2195 88487.60 19.02 0.0002 21594 83 0.0038

crc 353724 400465 1.1321 24.12 13.12 0.5441 207 177 0.8551

expint 12716 14077 1.1070 2.41 0.94 0.3909 59 58 0.9831

fac 3404 4230 1.2427 0.93 0.46 0.4941 58 0 0.0000

fdct 33637 36882 1.0965 146.50 14.98 0.1023 849 75 0.0883

fibcall 3387 3373 0.9959 0.48 0.40 0.8351 0 0 1.0000

janne 1793 2287 1.2755 0.86 0.71 0.8261 58 57 0.9828

ludcmp 17750 19480 1.0975 16.99 2.52 0.1484 101 66 0.6535

prime 6801 7018 1.0319 6.25 1.91 0.3058 75 58 0.7733

qurt 18900 21036 1.1130 271.20 27.07 0.0998 822 128 0.1557

ud 14867 16888 1.1359 11.73 1.65 0.1409 83 58 0.6988
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WCET bounds and performance metrics for aggressiveness=90% (PF-ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 567899 686466 1.2088 13404.45 79.97 0.0060 8186 821 0.1003

cnt 21897 26703 1.2195 88487.60 18.42 0.0002 21594 90 0.0042

crc 353724 400419 1.1320 24.12 13.04 0.5407 207 176 0.8502

expint 12716 14134 1.1115 2.41 0.94 0.3909 59 58 0.9831

fac 3404 4450 1.3073 0.93 0.45 0.4811 58 0 0.0000

fdct 33637 37712 1.1211 146.50 18.04 0.1232 849 75 0.0883

fibcall 3387 3373 0.9959 0.48 0.40 0.8309 0 0 1.0000

janne 1793 2287 1.2755 0.86 0.71 0.8273 58 57 0.9828

ludcmp 17750 19638 1.1064 16.99 2.04 0.1202 101 59 0.5842

prime 6801 7122 1.0472 6.25 1.55 0.2482 75 58 0.7733

qurt 18900 20968 1.1094 271.20 19.43 0.0716 822 105 0.1277

ud 14867 17042 1.1463 11.73 1.72 0.1468 83 58 0.6988

WCET bounds and performance metrics for aggressiveness=100% (PF-ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 567899 686466 1.2088 13404.45 79.82 0.0060 8186 821 0.1003

cnt 21897 28961 1.3226 88487.60 23.31 0.0003 21594 84 0.0039

crc 353724 405135 1.1453 24.12 13.48 0.5586 207 177 0.8551

expint 12716 14143 1.1122 2.41 0.96 0.4004 59 58 0.9831

fac 3404 4433 1.3023 0.93 0.44 0.4746 58 0 0.0000

fdct 33637 38106 1.1329 146.50 15.76 0.1075 849 76 0.0895

fibcall 3387 3373 0.9959 0.48 0.40 0.8246 0 0 1.0000

janne 1793 2305 1.2856 0.86 0.70 0.8191 58 58 1.0000

ludcmp 17750 20222 1.1393 16.99 2.04 0.1200 101 58 0.5743

prime 6801 7702 1.1325 6.25 1.51 0.2412 75 58 0.7733

qurt 18900 21081 1.1154 271.20 16.63 0.0613 822 102 0.1241

ud 14867 17055 1.1472 11.73 1.71 0.1456 83 58 0.6988
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A.2 Using the Traditional ILP Path Analysis

WCET bounds and performance metrics for aggressiveness=10% (ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 683942 682543 0.9980 832.81 395.53 0.4749 6873 5182 0.7540

cnt 40422 27909 0.6904 9596.36 18.80 0.0020 3340 90 0.0269

crc 361219 357123 0.9887 15.65 11.69 0.7469 211 188 0.8910

expint 13543 13772 1.0169 1.99 2.21 1.1094 58 58 1.0000

fac 4357 4260 0.9777 0.72 1.06 1.4792 58 59 1.0172

fdct 36459 37145 1.0188 21.86 18.83 0.8613 98 98 1.0000

fibcall 3793 3793 1.0000 0.42 0.43 1.0240 0 0 1.0000

janne 2313 2225 0.9620 0.60 0.62 1.0331 57 58 1.0175

ludcmp 21945 21242 0.9680 6.16 5.34 0.8660 98 91 0.9286

prime 8354 7520 0.9002 3.58 1.49 0.4164 74 58 0.7838

qurt 27935 25004 0.8951 45.72 21.57 0.4718 266 171 0.6429

ud 18660 18343 0.9830 4.96 4.20 0.8459 82 74 0.9024

WCET bounds and performance metrics for aggressiveness=20% (ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 683942 763564 1.1164 832.81 163.94 0.1968 6873 2728 0.3969

cnt 40422 27671 0.6846 9596.36 17.76 0.0019 3340 90 0.0269

crc 361219 356600 0.9872 15.65 11.13 0.7111 211 179 0.8483

expint 13543 13630 1.0064 1.99 2.17 1.0888 58 58 1.0000

fac 4357 4236 0.9722 0.72 0.90 1.2514 58 58 1.0000

fdct 36459 37717 1.0345 21.86 11.16 0.5107 98 82 0.8367

fibcall 3793 3793 1.0000 0.42 0.42 1.0024 0 0 1.0000

janne 2313 2225 0.9620 0.60 0.62 1.0331 57 58 1.0175

ludcmp 21945 22074 1.0059 6.16 4.19 0.6794 98 82 0.8367

prime 8354 7563 0.9053 3.58 1.52 0.4259 74 58 0.7838

qurt 27935 24216 0.8669 45.72 22.80 0.4987 266 170 0.6391

ud 18660 18111 0.9706 4.96 3.36 0.6767 82 66 0.8049
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WCET bounds and performance metrics for aggressiveness=30% (ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 683942 787518 1.1514 832.81 37.96 0.0456 6873 646 0.0940

cnt 40422 28358 0.7015 9596.36 17.44 0.0018 3340 90 0.0269

crc 361219 356105 0.9858 15.65 10.95 0.6995 211 180 0.8531

expint 13543 13518 0.9982 1.99 2.23 1.1209 58 58 1.0000

fac 4357 4236 0.9722 0.72 0.90 1.2500 58 58 1.0000

fdct 36459 36975 1.0142 21.86 10.75 0.4916 98 74 0.7551

fibcall 3793 3648 0.9618 0.42 0.35 0.8345 0 0 1.0000

janne 2313 2254 0.9745 0.60 0.63 1.0381 57 58 1.0175

ludcmp 21945 21976 1.0014 6.16 2.83 0.4595 98 74 0.7551

prime 8354 7563 0.9053 3.58 1.53 0.4287 74 66 0.8919

qurt 27935 24393 0.8732 45.72 21.76 0.4760 266 154 0.5789

ud 18660 18005 0.9649 4.96 3.09 0.6220 82 67 0.8171

WCET bounds and performance metrics for aggressiveness=40% (ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 683942 767803 1.1226 832.81 40.87 0.0491 6873 702 0.1021

cnt 40422 28654 0.7089 9596.36 17.70 0.0018 3340 90 0.0269

crc 361219 358287 0.9919 15.65 10.34 0.6607 211 178 0.8436

expint 13543 13343 0.9852 1.99 1.51 0.7597 58 58 1.0000

fac 4357 4277 0.9816 0.72 0.42 0.5847 58 0 0.0000

fdct 36459 37420 1.0264 21.86 11.50 0.5260 98 74 0.7551

fibcall 3793 3648 0.9618 0.42 0.35 0.8489 0 0 1.0000

janne 2313 2339 1.0112 0.60 0.57 0.9421 57 57 1.0000

ludcmp 21945 20798 0.9477 6.16 1.84 0.2987 98 66 0.6735

prime 8354 7435 0.8900 3.58 1.29 0.3619 74 58 0.7838

qurt 27935 23604 0.8450 45.72 14.02 0.3066 266 130 0.4887

ud 18660 18162 0.9733 4.96 2.92 0.5887 82 58 0.7073
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WCET bounds and performance metrics for aggressiveness=50% (ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 683942 777831 1.1373 832.81 40.49 0.0486 6873 774 0.1126

cnt 40422 29130 0.7206 9596.36 18.13 0.0019 3340 90 0.0269

crc 361219 358246 0.9918 15.65 9.85 0.6295 211 180 0.8531

expint 13543 13242 0.9778 1.99 1.02 0.5133 58 58 1.0000

fac 4357 4319 0.9913 0.72 0.41 0.5667 58 0 0.0000

fdct 36459 38839 1.0653 21.86 9.33 0.4269 98 74 0.7551

fibcall 3793 3648 0.9618 0.42 0.35 0.8393 0 0 1.0000

janne 2313 2586 1.1180 0.60 0.64 1.0613 57 57 1.0000

ludcmp 21945 20815 0.9485 6.16 1.70 0.2760 98 67 0.6837

prime 8354 7445 0.8912 3.58 1.34 0.3737 74 58 0.7838

qurt 27935 23382 0.8370 45.72 14.33 0.3134 266 130 0.4887

ud 18660 17251 0.9245 4.96 1.59 0.3212 82 66 0.8049

WCET bounds and performance metrics for aggressiveness=60% (ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 683942 887372 1.2974 832.81 34.14 0.0410 6873 718 0.1045

cnt 40422 29097 0.7198 9596.36 17.79 0.0019 3340 90 0.0269

crc 361219 386128 1.0690 15.65 9.71 0.6207 211 179 0.8483

expint 13543 13211 0.9755 1.99 1.03 0.5168 58 58 1.0000

fac 4357 4319 0.9913 0.72 0.42 0.5861 58 0 0.0000

fdct 36459 38765 1.0632 21.86 11.78 0.5388 98 74 0.7551

fibcall 3793 3648 0.9618 0.42 0.37 0.8801 0 0 1.0000

janne 2313 2586 1.1180 0.60 0.65 1.0695 57 57 1.0000

ludcmp 21945 20908 0.9527 6.16 1.79 0.2904 98 67 0.6837

prime 8354 7420 0.8882 3.58 1.30 0.3633 74 58 0.7838

qurt 27935 23101 0.8270 45.72 8.54 0.1868 266 90 0.3383

ud 18660 17170 0.9202 4.96 1.39 0.2796 82 58 0.7073
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WCET bounds and performance metrics for aggressiveness=70% (ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 683942 892309 1.3047 832.81 33.86 0.0407 6873 693 0.1008

cnt 40422 24870 0.6153 9596.36 14.35 0.0015 3340 90 0.0269

crc 361219 394918 1.0933 15.65 10.17 0.6499 211 179 0.8483

expint 13543 13081 0.9659 1.99 0.94 0.4696 58 58 1.0000

fac 4357 4471 1.0262 0.72 0.41 0.5667 58 0 0.0000

fdct 36459 39264 1.0769 21.86 11.84 0.5416 98 82 0.8367

fibcall 3793 3648 0.9618 0.42 0.52 1.2350 0 0 1.0000

janne 2313 2616 1.1310 0.60 0.49 0.8046 57 0 0.0000

ludcmp 21945 21105 0.9617 6.16 1.85 0.3003 98 67 0.6837

prime 8354 7514 0.8994 3.58 1.29 0.3594 74 58 0.7838

qurt 27935 23716 0.8490 45.72 9.78 0.2139 266 90 0.3383

ud 18660 17466 0.9360 4.96 1.36 0.2733 82 58 0.7073

WCET bounds and performance metrics for aggressiveness=80% (ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 683942 1104873 1.6154 832.81 45.20 0.0543 6873 822 0.1196

cnt 40422 29170 0.7216 9596.36 13.56 0.0014 3340 93 0.0278

crc 361219 401339 1.1111 15.65 10.19 0.6509 211 180 0.8531

expint 13543 14379 1.0617 1.99 0.81 0.4064 58 58 1.0000

fac 4357 4471 1.0262 0.72 0.42 0.5875 58 0 0.0000

fdct 36459 39452 1.0821 21.86 10.43 0.4770 98 74 0.7551

fibcall 3793 3660 0.9649 0.42 0.40 0.9688 0 0 1.0000

janne 2313 2540 1.0981 0.60 0.56 0.9305 57 57 1.0000

ludcmp 21945 20799 0.9478 6.16 1.52 0.2468 98 58 0.5918

prime 8354 7514 0.8994 3.58 1.29 0.3619 74 58 0.7838

qurt 27935 23947 0.8572 45.72 7.33 0.1603 266 82 0.3083

ud 18660 17868 0.9576 4.96 1.32 0.2661 82 58 0.7073
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WCET bounds and performance metrics for aggressiveness=90% (ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 683942 1104873 1.6154 832.81 44.31 0.0532 6873 821 0.1195

cnt 40422 29170 0.7216 9596.36 13.77 0.0014 3340 82 0.0246

crc 361219 401348 1.1111 15.65 10.45 0.6676 211 178 0.8436

expint 13543 14407 1.0638 1.99 0.82 0.4104 58 58 1.0000

fac 4357 4695 1.0776 0.72 0.50 0.6931 58 0 0.0000

fdct 36459 40220 1.1032 21.86 11.34 0.5188 98 74 0.7551

fibcall 3793 3660 0.9649 0.42 0.37 0.8873 0 0 1.0000

janne 2313 2540 1.0981 0.60 0.56 0.9321 57 57 1.0000

ludcmp 21945 21045 0.9590 6.16 1.42 0.2299 98 59 0.6020

prime 8354 7690 0.9205 3.58 1.12 0.3133 74 58 0.7838

qurt 27935 23812 0.8524 45.72 5.60 0.1225 266 82 0.3083

ud 18660 17929 0.9608 4.96 1.39 0.2804 82 58 0.7073

WCET bounds and performance metrics for aggressiveness=100% (ILP).

WCET Analysis time Memory consumption

in cycles in seconds in MBytes

Benchmark ¬Mod. Mod. Ratio ¬Mod. Mod. Speedup ¬Mod. Mod. Ratio

bsort100 683942 1104873 1.6154 832.81 44.65 0.0536 6873 822 0.1196

cnt 40422 31469 0.7785 9596.36 13.66 0.0014 3340 90 0.0269

crc 361219 405855 1.1236 15.65 10.02 0.6403 211 177 0.8389

expint 13543 14415 1.0644 1.99 0.81 0.4089 58 58 1.0000

fac 4357 4678 1.0737 0.72 0.56 0.7764 58 58 1.0000

fdct 36459 40758 1.1179 21.86 11.16 0.5108 98 74 0.7551

fibcall 3793 3660 0.9649 0.42 0.37 0.8825 0 0 1.0000

janne 2313 2557 1.1055 0.60 0.56 0.9288 57 57 1.0000

ludcmp 21945 21527 0.9810 6.16 1.43 0.2324 98 59 0.6020

prime 8354 8204 0.9820 3.58 1.19 0.3331 74 58 0.7838

qurt 27935 24005 0.8593 45.72 5.64 0.1233 266 82 0.3083

ud 18660 17956 0.9623 4.96 1.35 0.2721 82 58 0.7073
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