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Jorge Álvarez Nava
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Zusammenfassung

Gegenstand dieser Arbeit ist die freie Wahrscheinlichkeitstheorie. Ihr Hauptziel ist es,
die asymptotische Eigenwertverteilung einer großen Klasse von Zufallsmatrizen zu ver-
stehen. Für die in [SV12] diskutierten Modelle erhalten wir einen sehr allgemeinen
Algorithmus zur graphischen Darstellung ihrer Verteilungen. Wir wenden auch Metho-
den aus [BSTV14] an, um einen allgemeinen numerischen Algorithmus zur Berechnung
der asymptotischen Verteilungen anderer Typen von Matrizenmodellen formulieren zu
können, wie etwa für die Block-linear modifizierten Verteilungen, die in [Aub12, BN12a,
BN12b] betrachtet wurden.

Klassische, freie und nicht-kommutative Wahrscheinlichkeitstheorie können einheitlich
über die Kombinatorik multiplikativer Funktionen bezüglich verschiedener Verbände
von Partitionen von Mengen verstanden werden. Das zweite Ziel dieser Arbeit ist es,
eine Übersicht über einige der grundlegenden kombinatorischen Strukturen in der freien
Wahrscheinlichkeitstheorie zu geben. Unsere wesentliche Referenz hierfür ist [NS06].
Wir stellen neue Resultate vor, die die Berechnung der Kumulanten von Produkten freier
und Boolesch unabhängiger Variablen mittels Posets k-teilbarer Partitionen ermöglichen
[AV12]. Darüber hinaus geben wir Formeln an, die verschiedene Typen von Kumulanten
zueinander in Verbindung setzen [AHLV14].

In Verbindung mit der Zufallsmatrizentheorie nutzen wir speziell den kombinatorischen
Zugang zur operatorwertigen freien Wahrscheinlichkeitstheorie ([NSS02]), um die Cauchy-
Stieltjes-Transformierten der asymptotischen Eigenwertverteilungen der in [SV12] einge-
führten Matrizenensembles zu berechnen. Wir tun dies, um zu zeigen, dass unsere Defini-
tion eines freien deterministischen Äquivalents als konkreter Operator, wie er in [SV12]
eingeführt wurde, mit dem weitverbreiteten Begriff des deterministischen Äquivalents
übereinstimmt, wie er beispielsweise zur Beschreibung neuerer Matrizenmodelle in der
drahtlosen Kommunikation verwendet wird [CD11].

Voiculescu begründete die freie Wahrscheinlichkeitstheorie im Jahr 1985 im Kontext
von Operatoralgebren. 1991 fand er Realisierungen seiner freien Kreis-, Halbkreis- und
Haar-unitären Operatoren als Grenzwerte von Eigenwertverteilungen bemerkenswerter
unabhängigen Zufallsmatrizenmodelle, wie etwa (selbst-adjungierte und nicht selbst-
adjungierte) Wigner Matrizen und Haar-unitäre Zufallsmatrizen. So ermöglichte Voicu-
lescu das Verständnis des Wignerschen Halbkreisgesetzes als den einvariabligen Son-
derfall eines wesentlich allgemeineren Phänomens bei gemeinsamen nicht-kommutativen
Verteilungen großer Zufallsmatrizen.

1995 führte er die operatorwertige freie Wahrscheinlichkeitstheorie ein. Damit wurden
verschiedene Zufallsmatrixmodelle auch durch Mittel der freien Wahrscheinlichkeitsthe-
orie beschreibbar. Dasselbe gilt für Produkte von Block-Halbkreis Matrizen [BSTV14]
und Block-modifizierte Zufallsmatrizen [ANV], welche in dieser Arbeit kurz betrachtet
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werden. Viele hermiteschen Zufallsmatrixmodelle P ergeben sich durch Auswertung
eines selbst-adjungierten Polynoms

P (x1, . . . , xn)

nicht-kommutierender Variablen x1, . . . , xn, x
∗
1, . . . , x

∗
n in zufälligen und deterministis-

chen Matrizen. In dieser Arbeit beschäftigen wir uns mit derartigen Zufallsmatrizen-
modellen, welche wir als ”polynomiale Modelle” bezeichnen wollen.

Falls die Auswertung in unabhängigen (selbst-adjungierten oder nicht selbst-adjungier-
ten) Wigner Matrizen, Wishart Matrizen, zufälligen Haar Unitären und deterministis-
chen Matrizen erfolgt, kann man eine deterministische, operator-algebraische Verein-
fachung P� von P im Rahmen der freien Wahrscheinlichkeitstheorie betrachten, um
damit eine Approximation der Eigenwertverteilung von P zu erhalten. Die Dimensio-
nen der Matrizen x1, . . . , xn dürfen dabei unterschiedlich sein. Das freie deterministis-
che Äquivalent P� von P wurde in [SV12] eingeführt, basierend auf der in [BG09a,
BG09b] beschriebenen Verallgemeinerung von [Voi91] auf rechteckige Räume und unter
hauptsächlicher Verwendung der kombinatorischen Werkzeuge aus [NSS02].

Die Methode deterministischer Äquivalente (DE) wurde von Girko auf der Ebene
der Cauchy-Stieltjes-Transformierten der betrachteten Matrizenmodelle eingeführt. Im
Gegensatz zu seinen deterministischen Äquivalenten kann unsere Vereinfachung P → P�

sehr leicht beschrieben werden und setzt darüber hinaus auch keine spezielle Gestalt
des betrachteten Polynoms voraus. Es wird sich zeigen, dass unsere Definition aus
[SV12] sehr effektiv mit allen Elementen der in [BMS13] beschriebenen Methode zur
Berechnung der Verteilung selbst-adjungierter Polynome in quadratischen, asymptotisch
freien Zufallsmatrizen kombiniert werden kann.

Im Verlauf dieser Arbeit werden wir anmerken, wie verschiedene Annahmen über die
Verteilungen, die wir in die Zufallsmatrizenmodelle einsetzen, die Qualität und die Art
der Konvergenz des Modells zu seinem freien deterministischen Äquivalent beeinflussen.
Dies diskutieren wir insbesondere auf kombinatorischer Ebene: Die verschiedenen An-
nahmen über das Modell bestimmen die Klasse der Verteilungen (oder Kumulanten),
die sich in den Matrizensummen zeigen, und damit die Momente und die Natur der
Fixpunktgleichungen, die wir für die freien deterministischen Äquivalente erhalten.

Um auch numerisch effizient zu sein, muss man verstehen, wie sich Freeness ein-
schränkt und fortsetzt zwischen verschiedenen operator-wertigen Ebenen. Zu diesem
Zweck sind die Methoden von [NSS02] besonders wichtig.
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Summary

The topic of this thesis work is free probability theory. The main goal is to understand
asymptotic eigenvalue distributions of large classes of random matrices. For the models
discussed in [SV12], we obtain a quite general algorithm to plot their distributions. We
also apply the tools from [BSTV14] to give a general numerical algorithm to compute the
asymptotic distribution of some other types of matrix models, such as the block-linearly
modified models which have been considered in [Aub12, BN12a, BN12b].

Classical, free and non-commutative probability can be jointly understood through the
combinatorics of multiplicative functions with respect to different lattices of set parti-
tions. The second goal of this thesis is to survey on the basic topics on the combinatorics
of free probability. Our basic reference is [NS06]. We present new results which allow
to compute cumulants of products of free and Boolean independent random variables in
terms of the posets of k-divisible set partitions [AV12]. We also find formulas relating
the different types of cumulants in non-commutative probability [AHLV14].

In connection to random matrix theory, we make particular use of the combinato-
rial approach to operator-valued free probability ([NSS02]) to compute Cauchy-Stieljes
transforms of the asymptotic eigenvalue distributions of the matrix ensembles introduced
in [SV12]. We do this to show that our definition of a free deterministic equivalent as
a concrete operator, introduced in [SV12], agrees with the more widespread notion of
deterministic equivalents which are being used, for example, to describe recent matrix
models for wireless communications [CD11].

Voiculescu introduced free probability in 1985 in the context of operator algebras. In
1991, he found realizations of his free circular, semi-circular and Haar-unitary operators
through limits of eigenvalue distributions of quite remarkable random matrix models,
such as independent (self-adjoint and non-self-adjoint) Wigner and Haar-unitary random
matrices. This allowed to understand Wigner’s semicircle law as a special, single-variable
case of a very general phenomenon on joint non-commutative distributions of large ran-
dom matrices.

In 1995 he introduced operator-valued free probability, where the limiting behaviors
of much more general random matrix models can be realized. A rich class of random
matrix models arises from considering a polynomial

P (x1, . . . , xn)

in non-commutative indeterminates x1, . . . , xn, x
∗
1, . . . , x

∗
n and evaluating it on random

and deterministic matrices. In this work we are specially concerned about these kind of
models. We refer to them as “polynomial models”.

If the inputs are (self-adjoint or non-self-adjoint) Wigner matrices, Wishart matrices,
and deterministic matrices, we may consider a deterministic operator P� by evaluating
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P on certain operators (y1, . . . , yn) in the context of Voiculescu’s free probability theory.
Provided that the size of the matrices is large (but not necessarily too large), the spectral
measure of the simplified model P� becomes a good approximation of the averaged
eigenvalue distribution of P . The dimensions of the matrices can also be different. The
free deterministic equivalent P� of P was defined in [SV12], based on the generalizations
of [Voi91] to rectangular spaces [BG09a, BG09b], and using mostly combinatorial tools
from [NSS02].

The method of deterministic equivalents (DE) was introduced by Girko at the level
of Cauchy-Stieltjes transforms of the considered matrix models. In contrast to DE, the
simplification P → P� can be explained very easily and does not require the polynomial
to have a specific form. It will turn out that our definitions from [SV12] can be very
effectively combined with all the elements of method described in [BMS13] for the dis-
tributions of polynomials on self-adjoint, square, asymptotically free random matrices.

Throughout this work, we comment on how the different assumptions on the distri-
butions that we input to the random matrix models affect the quality and the type of
convergence of the model to its FDE. In particular, we discuss this at the combinatorial
level: The different assumptions on the model determine the classes of partitions (or
cumulants) that show up on the matrix sums, and hence the moments and the nature
of the fixed point equations that we will get for its FDE.

To be numerically efficient one needs to understand how freeness restricts and extends
to different operator-valued levels. For this, the combinatorial methods from [NSS02]
are quite important.
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1 Introduction

The main topic of this thesis work is free probability and is divided in two parts: The
combinatorics of free probability and its applications to random matrices.

More specifically, our main goal is to provide a direct and up-to-date access to many of
the tools from free probability which can be used to understand eigenvalue distributions
of large Hermitian random matrices. Our general algorithm allows to treat a large class
of matrix models. We obtain it by stretching the applicability of the algorithm [BMS13]
to more generalized operator-valued situations that arise in the context of rectangular
spaces [BG09a, BG09b] and deterministic equivalents [SV12]. We test our algorithm
against matrix models which have recently appeared in the literature [CD11].

We also address situations, such as the product of block-Wigner matrices [BSTV14]
and block-linearly modified random matrices [ANV], where the distribution of the model
is also given by means of free probability, but our general algorithm does not apply.

The author’s intuition on random matrix theory is strongly influenced by the com-
binatorics of non-crossing partitions, which govern free probability. The relevance of
cumulants and non-crossing partitions in random matrix theory can be observed already
in the moment proofs for Wigner’s semicircle law.

For this reason, we include a chapter on the combinatorics of free and non-commutative
probability, where we survey on the basic combinatorial tools, developed by Speicher (see
[NS06] for a comprehensive study), but we also present new formulas [AV12, AHLV14]
which link non-commutative probability with a variety of combinatorial structures.

Our work will be motivated by random matrices from the very beginning, we will not
follow Voiculescu’s original, operator-algebraic approach to free probability.

Combinatorics of non-commutative probability

The second and shortest part of this work is based on Speicher’s [Spe94] combinatorial
approach to free probability, which relies on the notion of free cumulants and the Möbius
inversion on the lattice of non-crossing partitions. The free cumulants, (and cumulants
in general), are very important since they linearize convolutions of free non-commutative
random variables.

One of our main contributions to the theory is the extension of the formulas which
relate the different types of cumulants and certain classes of set partitions. Several
interesting combinatorial objects were used in [AHLV14] to obtain these formulas.

In addition, we obtain a formula which allows us to compute the product of k-tuples of
free (or Boolean independent) random variables in terms of free (or Boolean) cumulants
and k-divisible non-crossing partitions. In [AV12] we used this results, together with
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1 Introduction

enumerative formulas for k-divisible partitions, to bound free multiplicative convolutions
and re-derive certain limit theorems.

The first and main part of this thesis elaborates on the application of free probability
theory to obtain eigenvalue distributions of several classes of Hermitian Random Matrix
models.

Applications of free probability to Hermitian random matrix models

The starting point of our investigations is the article [SV12], where we defined the
free-probabilistic equivalents (FDE) of polynomial random matrix models. The FDE
is a concrete free-probabilistic operator P�, whose distribution is shown to match the
one given by the usual, deterministic equivalent (DE). Deterministic equivalents are
simplifications of distributions of large random matrix models. These simplifications are
usually defined at the level of Cauchy-Stieltjes transforms and are now widely used in
the community of random matrices and wireless communications.

As one of the main results in this work, we obtain a general algorithm, (based on the
one in [BMS13]) to compute approximations of the eigenvalue distribution for most of
the models which were introduced in [SV12]. Our algorithm covers in particular several
recent examples from the literature (see [CD11], Chapter 6), but also many more. With
respect to previous methods, one of our most notable gains is on the simplicity of the
fixed point equations that we obtain to draw the distributions.

Another important question is to minimize the computational complexity of the algo-
rithm to draw these densities. For general situations, the additive algorithm described
in [BMS13] seems to be quite powerful. We address the case of block-modified random
matrices [ANV], an example which can be solved numerically by a different type of fixed
point equation, which is given in terms of operator-valued free multiplicative convolu-
tions, which was developed in [BSTV14], where we also covered the case of products of
operator-valued semi-circulars.

Although there are some examples in [CD11] which do not fit into our general definition
of FDE’s, the equations obtained by other methods still correspond to quite remarkable
operators in free probability theory, as it was noticed already in [Shl96]. We expect that
a more detailed analysis of the combinatorial structures which appear while computing
operator-valued distributions will eventually explain all these non-polynomial cases more
naturally (without going into the ad-hoc solutions that we sketch later in this work).

Free deterministic equivalents of Hermitian random matrix models

Many Hermitian random matrix models in the literature come from considering a (self-
adjoint) polynomial

P (x1, . . . , xn, x
∗
1, . . . , x

∗
n)

in non-commutative indeterminates x1, . . . , xn (and their adjoints x∗1, . . . , x
∗
n), and then

evaluating it on some random and deterministic matrices.
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Fig. 1.1: Averaged eigenvalue distributions (AED) of normalized GUE (solid) vs
Wigner’s Law (dashed) for N = 4, 8, 15.

One of the most important objects related to a Hermitian random matrix is its aver-
aged eigenvalue distribution (AED). The task of explicitly computing eigenvalue distri-
butions of random matrices is quite hard in general.

A prominent example where such computation is possible is that of the standard
Gaussian unitary ensemble (GUE). Such matrices XN = (xij)i,j≤N , consisting of inde-
pendent (modulo the self-adjointness condition XN = X∗N ) complex Gaussian entries,
enjoy beautiful symmetries which ultimately lead to an expression for the AED µXN in
terms of the Hermite polynomials (defined recursively by H0(t) := 1, H1(t) := t,Hk(t) :=
tHk−1(t)− (k − 1)Hk−2(t)). One obtains:

dµXN (t) =
N−1∑
k=0

(Hk(t))
2e−t

2/2

N
√

2πk!
.

If we re-normalize the entries (E(xijxji) = 1/N), so that variance of the distributions
µXN remains fixed, it was noticed by Wigner [Wig58], that the probability measures
µXN converge as N →∞ to the semicircle law (see Fig 1.1).

GUE matrices belong to the larger class of Wigner random matrices, whose entries
are i.i.d. but not necessarily Gaussian. For general Wigner matrices, there is no explicit
expression for µXN . As the size of the matrix grows large, however, the distributions µXN
converge towards the semicircle law. In fact, not only the AED, but also the empirical
eigenvalue distributions (EED) converge to the semicircle law.

Of course, N needs to be quite large to see some structure on the EED’s, whereas the
convergence of the AED can be observed already for relatively small N . The speed of
convergence does depend on the choice of the distribution (see Figs. 1.2 and 1.3).

Another important class of random matrices are Haar-distributed unitary matrices.
One may construct more general Hermitian random matrices by adding and/or multi-
plying independent Wigner matrices, Haar-unitary random matrices and deterministic
matrices.

Following a recent example (see [CHD11]), let us consider a model P = QURU∗Q∗ +
SV TV ∗S∗, where Q,S,R, T are deterministic matrices of sizes 5 × 8, 5 × 4, 8 × 8 and
4× 4, respectively, and U ∈ U(8), V ∈ U(4) are unitary matrices chosen independently
with uniform distribution on the compact unitary groups U(8) and U(4). Suppose that
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1 Introduction

Fig. 1.2: Empirical eigenvalue distribution (EED) of one realization of a Wigner matrix
with independent Bernoulli entries of size N = 10, 100, 1000.

Fig. 1.3: 4000 Eigenvalues of Wigner matrices with independent Bernoulli entries of size
N = 5, 10, 20.

R = R∗ and T = T ∗, so that P is self-adjoint. An approximation of its distribution was
computed in [CHD11] using the method of deterministic equivalents.

In the Wigner case, we decided to approximate the AED of our finite random matrix
by the semicircular distribution, which is also the asymptotic distribution of the Wigner
model. Hence, if our original Wigner matrix was large, the semicircular distribution is
a good estimate for the AED. We would like to mimic this procedure.

However, we face now deterministic and Haar-distributed unitary matrices in our
model and hence it is not even clear how to produce a growing sequence of random
matrices whose asymptotic distribution converges to some distribution (which should
additionally serve as an approximation of the distribution of the original model).

We can try blowing-up the model by considering PN = QNUNRNU
∗
NQ
∗
N+SNVNTNV

∗
NS
∗
N ,

where AN := A ⊗ IN for A ∈ {Q,R, S, T} and letting UN ∈ U(8N) VN ∈ U(4N) be
independent, with uniform distribution.

One observes that, indeed, the measures µPN converge towards a deterministic shape.
If we start with larger matrices, then the original model P1 will be close to this asymp-
totic deterministic shape (see Fig. 1.4). In our example, the sizes for P1 were maybe still
too small, but we observe that the histograms of P10 and P40 are already very similar.
The asymptotic distribution of the (quite artificially constructed) blown-up model PN
gives exactly the same distribution obtained in [CHD11] by the method of deterministic
equivalents.
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Fig. 1.4: 20000 Eigenvalues of PN = QNUNRNU
∗
NQ
∗
N + SNVNTNV

∗
NS
∗
N for N = 1 (up-

left), 3 (up-right), 10 (down-left), 40 (down-right).

The advantage of our approach is that the blowing-up procedure can be done for any
polynomial evaluated on deterministic matrices and Wigner and Haar-unitary random
matrices. In addition, we can describe the asymptotic (non-commutative) joint distribu-
tion of the blown-up matrices {QN , RN , SN , TN , UN , VN} in the language of (operator-
valued) free probability. By looking at Voiculescu’s results [Voi91, Voi98] (and their
generalization to rectangular spaces [BG09a, BG09b]), it becomes clear that the blowing-
up procedure described above will always converge in AED distribution. In particular,
we can construct operators q, r, s, t, u, v in a (rectangular) non-commutative probability
space, which satisfy certain freeness relations and such that the limiting shape of Fig. 1.4
is the spectral distribution of the free deterministic equivalent P� := quru∗q∗+ svtv∗s∗.
After this simplification, we rely on the most advanced tools in operator-valued free
probability to compute numerically the distribution µP� (see Fig 1.5).

After the pioneering result of Wigner, a long list of particular cases of this phenomenon
where studied in the following years. These works usually fixed a specific polynomial P
(and typically also the specific nature of the input matrices X1, . . . , Xn):

Marchenko and Pastur [MP67] considered the case P (x) = xx∗ where x is replaced by
a non-self-adjoint Wigner Matrix. More complicated models were considered by Girko
[Gir01], Bai and Silverstein [BS06] Tulino and Verdu [TV04], Müller [Mue02], Moustakas
and Simon [MS05], Hechem, Loubaton and Najim [HLN07] Coulliet and Debbah [CD11].
Some cases were treated using operator-valued free probability [SV12], [BSTV14].

The general case for the polynomials p(x, y) = x + y and p(x, y) = xy2x was studied
by Voiculescu in [Voi86] and [Voi87], respectively. The general solution to the case of
the free commutator, p(x, y) = i(xy − yx), was given by Nica and Speicher in [NS98].
The general solution to the anti-commutator p(x, y) = xy+ yx was found by Vasilchuck
[Vas03].

A notable step towards a general solution of this random matrix problem was found
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1 Introduction

Fig. 1.5: 20000 eigenvalues from 100 realizations of P40 (histogram) vs distribution of the
free deterministic equivalent (FDE) P�, computed with our algorithm (solid).

recently by Belisnchi, Mai, and Speicher. In [BMS13], they provided an algorithm to
compute the limiting distribution of any polynomial evaluated on self-adjoint random
matrices of the same size which are asymptotically free.

The main goal of this thesis work is to extend this result in several directions:

• We allow the matrices to be non-self-adjoint. We only require the polynomial
P (x1, . . . , xn, x

∗
1, . . . x

∗
n) to be self-adjoint.

• The deterministic matrices on which we evaluate the polynomial are allowed to
preserve correlations. In particular, they need not to be all asymptotically free.

• The input matrices may have different sizes and deterministic matrices can be
rectangular. We only ask that (after evaluating on X1, . . . , X

∗
n) the monomials of

P should be square and have the same size.

Our algorithm relies heavily on the recent trends on free probability. In particular, on
the possibility of computing operator-valued free additive convolutions [BMS13].

In [Voi85], Voiculescu launched the theory of free probability in order to tackle prob-
lems on von Neumann algebras. He observed that, in the context of quantum probability
spaces, some operators appearing in group von Neumann algebras satisfy a particular
relation (which he called “freeness”) that should be thought as a new, non-commutative
notion of stochastic independence. In particular, replacing independence by freeness
yields a free version of the Central limit theorem, where the role of the Gaussian distri-
bution is now played by the semicircle law.

Some years later, in his seminal work [Voi91], he found out that some notable limiting
distributions of random matrices are just the spectral distributions of certain combina-
tions of free non-commutative random variables. For some cases, it was possible to use
analytical tools [Voi86, Voi87] to obtain explicitly those spectral distributions.

During its earlier stages, free probability provided a fresh, new way to look at large
random matrices, but failed to address successfully the latest, more sophisticated ma-
trix models which were considered, for instance, for modeling wireless communications.
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These recent models were usually treated using the method of deterministic equivalents.
A free probabilistic interpretation of such deterministic equivalents was missing. In ad-
dition, no satisfactory limiting operator could be assigned to matrix models involving
rectangular matrices.

The introduction of the operator-valued version of free probability [Voi95] (see also
[Spe98]), and the corresponding, broader definition of free independence, allowed to
extend this conceptual view to more general situations, such as band and block matrices
[Shl96],[FOBS08], and rectangular matrices with different sizes [BG09a, BG09b].

In [SV12], we used Bennaych-Georges rectangular spaces to give a free probabilistic
interpretation of deterministic equivalents. The usual method to obtain a deterministic
equivalent involves some intuitive guess and hence it is not clear how to define it in a
general situation. In contrast, our free deterministic equivalent is always defined as a
concrete operator P�. We showed that the spectral distribution of P� is, for all the
considered models, exactly the distribution obtained by the method of deterministic
equivalents. However, although we made clear how to compute the moments of µP� , we
still had to obtain the distribution in an ad-hoc way, depending on the specific matrix
model.

Recent important developments [Bia98, Voi00, Voi02, Dyk06, HFS07, BSTV14] on
the analytical tools of operator-valued free probability allowed to compute distributions
of quite general operators. In combination with the linearizion trick [HT05, And11],
these led to the general solution for the asymptotic eigenvalue distribution of arbitrary
polynomials on asymptotically free square random matrices of the same size [BMS13].

For practical purposes, this asymptotic freeness condition is quite strong: it means that
all the involved matrices should be in “generic position“ with respect to each other. The
latest models considered by the wireless communication community tend to break this
assumption: One assumes that some collections of antennas (either from the transmitter
or the receiver) remain always close and hence the noise is not strong enough to break the
correlations between the corresponding channels. However, the channels corresponding
to different (distant) collections are more affected by the noise and hence can be thought
as being in general position (free) with respect to each other.

The condition of having all matrices of the same size is also challenged by the latest
models, as the transmitters and receivers do not generally have the same number of
antennas. Our generalization fixes both problems.

We show that the algorithm described in [BMS13] can be extended to compute the
distribution of the free deterministic equivalent P�, associated with most matrix models
formed by Wigner matrices, Haar-unitary random matrices and rectangular deterministic
matrices of different sizes.

Main Result 1. Let P = P (x1, x
∗
1, . . . , xn, x

∗
n) = P (x1, . . . , xn) be a self-adjoint polyno-

mial in non-commutative indeterminates x1, . . . , xn (and their adjoints x∗1, . . . x
∗
n). For

each m ≥ 1, let Y
(m)

1 , . . . , Y
(m)
n be independent (random and deterministic) matrices

such that Y
(m)
i is either an mNi × mNi Wigner or Haar-unitary random matrix or

Y
(m)
i = Y

(1)
i ⊗ Im is a mNi ×mMi deterministic matrix. Let Pm = P (Y

(m)
1 , . . . , Y

(m)
n ).

Assume that P and Y
(m)

1 , . . . , Y
(m)
n are such that all the summands in Pm have the same
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1 Introduction

size and the sizes of consecutive matrices on each monomial fit. Let µm be the AED of
the self-adjoint random matrix Pm. Then:

• There exists a probability measure µ such that µm → µ weakly.

• There exist operators y1, . . . , yn, such that µ is the spectral distribution of the free
deterministic equivalent P� = P (y1, . . . , yn) of P .

• µ can be numerically computed.

In practice, one is usually interested in computing the distribution of P = P1 and not
the asymptotic distribution of Pm. However, if one tries to obtain systems of equations
defining (the Cauchy-Stieltjes transform of) µP1 , these are usually not closed and hence
it is not possible to solve them with fixed point algorithms. The usual procedure up to
now was to simplify these equations, inspired on the asymptotic behavior of the model,
in order to obtain a closed system, called ”deterministic equivalent”, which could be
then solved by fixed point algorithms.

We show that these deterministic equivalents and our free deterministic equivalents
determine the same distributions. Furthermore, we completely understand the difference
between the original model P1 and its FDE P� in terms of the (non-commutative,

rectangular) joint distributions of Y (N) := (Y
(N)

1 , . . . , Y
(N)
n ) and Y � := (y1, . . . , yn):

• If Y
(1)
i is Wigner (resp. Haar-unitary), yi is a semicircular (resp. Haar-unitary)

element when properly compressed in a rectangular probability space.

• If (Y
(1)
i )i∈I are the deterministic matrices of the model, then (yi)i∈I are just prop-

erly embedded copies of (Y
(1)
i )i∈I .

• The algebras 〈yi : i ∈ I〉 and 〈yi : i /∈ I〉 are free (with amalgamation over a
suitable algebra of projections). So are also yi1 , . . . , yik for i1, . . . , ik /∈ I.

Hence, each collection Y (N) = (Y
(N)

1 , . . . , Y
(N)
n ) in the sequence (Y (N))N≥1 is an

improved version of (Y (1)), where its deviations from freeness (e.g. contributions of
crossing partitions) are penalized increasingly with N until freeness is achieved in the
limit Y � = (y1, . . . , yn). If the norm of the deterministic matrices is fixed and the sizes
of all the matrices are large, then the behavior of (Y (1)) will already be close to that of
Y �, and hence P� will be a good approximation of P1.

In order to reduce the number of variables which form P� (and hence the number of
iterations required to obtain µP�), it will be convenient to recognize families of randomly
rotated matrices which become asymptotically free due to these random rotations. We
will illustrate our algorithm with several examples.

Organization of the work

To motivate our investigations, we give in Chapter 2 a proof of Wigner’s semicircle law
for the Gaussian case. This will allow us to single out important components of the
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proof that we should have present when we discuss several generalizations along further
chapters.

In Chapter 3 we introduce the basic concepts of free probability motivated by the
natural occurrence of freeness among important matrix models. The main purpose of
this chapter is to provide some intuition that will allow a better understanding for both
the operator-valued analogues in Chapter 5, and our main definitions in Chapter 6.

In Chapter 4 we present the combinatorial approach to scalar-valued free probability.
We include our results on cumulant-to-cumulant formulas and our description of the
cumulants of products in terms of k-divisible partitions.

Chapter 5 covers the basics on Operator-valued free probability and recalls the nu-
merical algorithm to compute operator-valued free additive convolutions. We specialize
on rectangular and matrix-valued non-commutative spaces. We also compute the prod-
uct of operator-valued semi-circulars [BSTV14] and the case of block-modified matrices
[ANV].

In Chapter 6 we recall and extend the definition of the free deterministic equivalents
from [SV12].

Chapter 7 explains our algorithm to obtain spectral distributions of FDE’s. We show
how it applies to the polynomial matrix models from [CD11].
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2 Motivation: classical cumulants, Wick
calculus and Wigner’s semicircle law

In this Chapter we give the proof of the simplest version of Wigner’s Semicircle Law,
namely, the Gaussian case. This will serve us for future reference when dealing with
several generalizations of this fundamental result.

2.1 Moments vs cumulants

Let X : Ω→ R be a random variable in a probability space (Ω,F ,P). The moments of
X are the values

E(Xn) =

∫
Ω

(X(ω))ndP(ω).

For a large class of random variables, which includes Gaussian random variables and
random variables with compact support, the moments of X determine its distribution.
For several random variables X1, . . . , Xk : Ω→ R, we may consider the mixed moments

E(Xn1
1 · · ·X

nk
k ) =

∫
Ω

(X1(ω))n1 · · · (Xk(ω))nkdP(ω).

If X1, . . . , Xk are determined by their moments, then the stochastic independence of
X1, . . . , Xk is equivalent to the fact that, for all n1, . . . , nk ≥ 0, the mixed moments
factorize

E(Xn1
1 · · ·X

nk
k ) = E(Xn1

1 ) · · ·E(Xnk
k ). (2.1)

For a collection of random variables X1, . . . , Xk, we define the (multivariate) classical
cumulants Kn(Xi1 , . . . Xin), n ≤ 1, i1, . . . , in ≤ k, recursively as the collection of multi-
linear functionals (Kn)≥1 which satisfy the moment-cumulant formula:

E(Xi1 · · ·Xin) =
∑

π∈P(n)

Kπ(Xi1 , · · · , Xin),

where P(n) := P([n]) are the set partitions; P(n) is the power set of [n] := {1, 2, . . . , n}
and each element π = {V1, . . . , V|π|} ∈ P([n]) decomposes the set [n] = V1∪V2∪· · ·∪V|π|
into non-empty, pairwise disjoint subsets (“blocks“) V1, . . . , V|π| (see Chapter 4 for more
definitions), and we write

Kπ(X1, . . . , Xn) :=
∏
V ∈π

K|V |(XV ),
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2 Motivation: classical cumulants, Wick calculus and Wigner’s semicircle law

where we use the notation

K|V |(XV ) := Km(Xv1 , . . . , Xvm)

for each block V = {v1, . . . , vm} ∈ π, v1 < · · · < vm. We highlight the case when we
deal with a single random variable X with the notation:

κn(X) := Kn(X,X, . . . ,X)

For example, K1(Xi) = E(Xi) is simply the mean and K2(Xi, Xj) = E(XiXj) −
E(Xi)E(Xj) is the covariance.

For an ordered tuple X = (X1, . . . , Xk) of random variables, we call

ΦX
m := Φm = {(i1, . . . , im) 7→ E(Xi1 . . . Xim) : i1, . . . , im ≤ k}

the m-th order mixed moments of (X1, . . . , Xk). Analogously we define

ΨX
m := {(i1, . . . , im) 7→ Km(Xi1 , . . . , Xim) : i1, . . . , im ≤ k}

the m-th order cumulant. The collection of moment maps (ΦX
m)m≤n contains exactly the

same information as the collection of mixed cumulants (ΨX
m)m≤n. However, cumulants

seem to encode statistical information in a nicer way.
A real random variable X is the constant random variable c ∈ R iff all cumulants of

degree n ≥ 2 vanish and κ1(X) = c. In fact, it is not hard to see that, if we input a
constant in any of the arguments of a cumulant of order k ≥ 2, then the cumulant must
vanish, independently from the position of the constant argument and the rest of the
arguments.

In terms of cumulants, the simplest (non-constant) random variables are the Gaussian
random variables: X has the Normal distribution N (µ, σ2) iff all cumulants of degree
n ≥ 3 vanish, κ2(X,X) = σ2 and κ1(X) = µ.

Two random variables X,Y are independent if and only if all the mixed cumulants
(i.e. K2(X,Y ),K2(Y,X),K3(X,X, Y ),K3(X,Y,X),K3(X,Y, Y ), . . . etc.) vanish. This
implies in particular that the cumulants of X + Y are simply

Kn(X + Y,X + Y, . . . ,X + Y ) = Kn(X, . . . ,X) +Kn(Y, . . . , Y ).

Hence, cumulants can be used to compute additive convolutions (in fact, the cumulants
are related to the coefficients of Fourier transforms, see Chapter 4).

If X,Y are independent standard Gaussian (N (0, 1)) random variables, then Z :=
X+ iY has the standard complex Gaussian distribution, which can also be characterized
in terms of the mixed cumulants of Z and Z∗ := Z̄. The only non-vanishing cumulants
are

K2(Z,Z∗) = K2(Z∗, Z) = 1.

Wick’s formula for independent complex Gaussians Z1, . . . , Zk, states that, for any
ε = (ε1, . . . , εn) ∈ {1, ∗}n, we have

E(Zε1i1 . . . Z
εn
in

) =
∑

π∈P2(n)

κπ(Zε1i1 , . . . , Z
εn
in

), (2.2)
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2.2 Gaussian matrices and Wigner’s semicircle law

where P2(n) ⊂ P(n) denotes the subset of matchings (i.e. partitions π ∈ P(n) such that
every V ∈ π has exactly 2 elements). Therefore, we observe that the Wick formula for
this case can be easily derived from the moment-cumulant formula. The restriction to
pairings P2(n) ⊂ P(n) follows from the fact that only the second order cumulants of
standard complex Gaussians may not vanish.

However, going over cumulants to compute E(Zε1i1 . . . Z
εn
in

) seems more like a detour
in this case. We could simply compute E(Zε1i1 . . . Z

εn
in

) by a direct application of the
factorization in eq. (2.1). Our Wick formula (2.2) will be very useful when we go over
to random matrices.

2.2 Gaussian matrices and Wigner’s semicircle law

One of the simplest ways of constructing a random matrix is to let each entry be an
independent copy of a given random variable X. The distribution of X induces a prob-
ability measure P on a set Ω ⊆ MN (C) of matrices. In particular, we may consider an
N × N matrix Z = ZN := ( 1√

N
zij)i,j≤N with independent standard complex Gaussian

entries. Such random matrices are called non-self-adjoint Gaussian matrices (the choice
of the normalization 1√

N
will be clear later).

In [Wig58] Wigner described the asymptotic (N →∞) eigenvalue distribution of the
(necessarily real) eigenvalues of XN = (ZN +Z∗N )/

√
2 (where A∗ denotes the Hermitian

transpose of A).
Since X(ω) = (X(ω))∗ for any realization of X, we can diagonalize

X(ω) = U(ω)D(ω)(U(ω))∗,

where D = diag(λ1(ω), . . . , λN (ω)) and hence for all k ≥ 0, we have

1

N
Tr(Xk(ω)) =

1

N
Tr((U(ω)D(ω)(U(ω))∗)k) =

1

N
Tr(U(ω)D(ω)k(U(ω))∗) (2.3)

=
1

N
Tr(D(ω)k) (2.4)

=
1

N

∑
i≤N

(λi(ω))k. (2.5)

The expression 1
N

∑
i≤N (λi(ω))k can be identified as the k-th moment of the real random

variable Λ(X(ω)), with discrete probability measure µX(ω) which assigns a mass of 1/N
to each eigenvalue of X(ω). The averaged eigenvalue distribution µX is the distribution
of the random variable Λ(X) obtained by averaging all such Λ(X(ω)), ω ∈ Ω against P.
More specifically, it is the probability measure µXN with k-th moment 1

NE(
∑

i≤N λ
k
i ).

We want to describe µXN when the size N →∞. Let us denote τN := 1
NTr.

Instead of computing the (rather complicated) joint distributions of (λ1, λ2, . . . , λN ),
we compute the moments

E ◦ τN (Xk(ω)) =
1

N
E(
∑
i≤N

λki ),
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2 Motivation: classical cumulants, Wick calculus and Wigner’s semicircle law

which depend on the entries of our matrices in a polynomial way, hoping that we will be
able to identify them as moments of a probability measure. Indeed, this will be the case,
and for this, it will be convenient to work first directly with Z and Z∗ and symmetrizing
only at the very end.

In general, we would like to compute, for all k ≥ 1 and every ε = (ε1, . . . , εn) ∈ {1, ∗}k

E ◦ τN (Zε1 , . . . , Zεk).

For k = 1 we get

E ◦ τN (Z) =
1

N3/2

∑
i≤N

E(zii) = 0 = E ◦ τN (Z∗).

If ε = (1, ∗), we have

E ◦ Tr(ZZ∗) =
1

N2

∑
i1,i2≤N

E(zi1i2 z̄i1i2) = 1. (2.6)

If ε = (1, 1), we have

E ◦ τN (ZZ) =
1

N2

∑
i1,i2≤N

E(zi1i2zi2i1) = 0, (2.7)

since E(zi1i2zi2i1) = κ2(zi1i2 , zi2i1) = 0 by the characterization of the mixed cumulants
of independent standard complex Gaussians.

Similarly one can see that E ◦ τN (Z∗Z) = 1 and E ◦ τN (Z∗Z∗) = 0. Hence, the mean
of µXN is 1√

2
E ◦ τN (Z + Z∗) = 0. The variance of µXN is then just the second moment

1

2
E ◦ τN ((Z + Z∗)(Z + Z∗)) =

1

2
E ◦ τN (ZZ∗ + Z∗Z) = 1,

for all N . This explains the choice of normalization Z = ( 1√
N
zij)i,j≤N .

Let us now consider the fourth order mixed moment ε = (1, ∗, ∗, 1), we have

E ◦ τN (ZZ∗Z∗Z) =
1

N3

∑
i1,...,i4≤N

E(zi1i2 z̄i3i2 z̄i4i3zi4i1) (2.8)

By Wick’s Formula,

E(zi1i2 z̄i3i2 z̄i4i3zi3i1) =
∑

π∈P2(4)

κπ(zi1i2 , z̄i3i2 , z̄i4i3 , zi4i1).

There are 3 pairings of {1, 2, 3, 4}, namely π1 = {{1, 2}{3, 4}}, π2 = {{1, 3}{2, 4}},
π3 = {{1, 4}{2, 3}}. Since the zij ’s are complex Gaussian random variables, π3 will
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2.2 Gaussian matrices and Wigner’s semicircle law

vanish (independently of the choice of i1, . . . , i4) since it will never match a zij with z̄ij ,
which is a necessary condition for the cumulant not to vanish. Hence

E ◦ τN (ZZ∗Z∗Z) =
1

N3

∑
i1,...,i4≤N

κπ1(zi1i2 , z̄i3i2 , z̄i4i3 , zi4i1) (2.9)

+
1

N3

∑
i1,...,i4≤N

κπ2(zi1i2 , z̄i3i2 , z̄i4i3 , zi4i1) (2.10)

Since the entries are independent standard complex Gaussians, each partition imposes
restrictions on the indices for the cumulants not to vanish, namely

κπ1(zi1i2 , z̄i3i2 , z̄i4i3 , zi4i1) = κ2(zi1i2 , z̄i3i2)κ2(z̄i4i3 , zi4i1) = δi1i3δi3i1 ,

κπ2(zi1i2 , z̄i3i2 , z̄i4i3 , zi4i1) = κ2(zi1i2 , z̄i4i3)κ2(z̄i3i2 , zi4i1) = δi1i4δi3i2δi3i4δi2i1 ,

Hence we need only to count the number of free indices in order to obtain the contribution
of each partition. For this case we obtain

E ◦ τN (ZZ∗Z∗Z) = 1 + 1/N2.

As N → ∞ only the contribution of π1 will survive. For a general moment of order
k, an easy inductive argument shows that a pairing π ∈ P2(k) can only contribute in
the limit if π ∈ NC2(k) ⊂ P2(k) is a non-crossing pairing (i.e. there is no quadruple
1 ≤ a < b < c < d ≤ k such that a, c ∈ Vi, b, d ∈ Vj where Vi 6= Vj are blocks of π). In
addition, we must have that, for each matching {a, b} ∈ π, εa 6= εb (in contrast to π3

above). Hence, for computing the asymptotics of a general moment we need to find

E ◦ τN (Zε1 , . . . , Zεk) =
1

N1+k/2

∑
i1,...,ik≤N
π∈NC2(k)

κπ(zε1i1i2 , z
ε2
i2i3

, . . . , zεkiki1)) = |NCε(k)|, (2.11)

where π ∈ NCε(k) ⊆ NC2(k) iff εa 6= εb for all {a, b} ∈ π.
Now since X = (Z + Z∗)/

√
2, we have that

E ◦ τN (Xk) =
1

N1+k/22k/2

∑
i1,...,ik≤N

ε=(ε1,...,εk)∈{1,∗}k
π∈NC2(k)

κπ(zε1i1i2 , z
ε2
i2i3

, . . . , zεkiki1)). (2.12)

If we fix a non-crossing pairing π ∈ NC2(k), there are 2k/2 non-vanishing choices for ε
(for each block of (a, b) ∈ π, we can have (εa, εb) equal to (1, ∗) or (∗, 1)). Hence, after
summing over all free indices and all ε ∈ {1, ∗}k, each non-crossing pairing contributes
with 1 to the moment in the limit.

A nice way to count non-crossing pairings NC2(2k) ⊂ P2(2k) is through the recursion

|NC2(2k)| =
k∑
i=1

|NC2(2i− 2)||NC2(2(k − i))|,

27



2 Motivation: classical cumulants, Wick calculus and Wigner’s semicircle law

which is obtained by fixing the pairing (1, 2i). The non-crossing condition prevents
the elements {2, 3 . . . , 2i − 1} to be matched with elements in {2i + 1, 2i + 2, . . . , 2k}
and hence the recursion follows. It is well-known that such recursion characterizes the
Catalan numbers, hence |NC(2n)| = Cn := 1

n+1

(
n
2n

)
.

Since the Catalan numbers are the moments of the semicircular distribution supported
on [−2, 2] with density

dµ(t) =
1

2π

√
4− t2,

the assertion follows.
In the next chapter we introduce Voiculescu’s free probability theory for non-commutative

random variables, which allows to treat random matrices as random variables. The idea
is to think of τN = 1

NE ◦ Tr as a generalization of E in classical probability.
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3 Free probability theory and asymptotics
of random matrices

In this chapter we introduce Voiculescu’s notion of non-commutative probability spaces
and free independence, starting with the most basic, algebraic approach. We realize that
these abstract spaces model the asymptotic collective behavior of very concrete objects,
such as random matrices.

3.1 Non-commutative probability spaces, Wigner and
Haar-unitary random matrices

Definition 3.1.1. A non-commutative probability space is a pair (A, τ), where A is a
complex algebra with unit and τ : A → C is a unital linear functional. If A is endowed
with an anti-linear involution ∗ : A → A and τ(aa∗) ≥ 0, for all a ∈ A, we call (A, τ) a
∗-probability space.

All the ∗-probability spaces considered in this work will be tracial (i.e. τ(ab) = τ(ba)
for all a, b ∈ A).

An element a ∈ A is called a (non-commutative) random variable and (τ(ak))k≥1 are
known as the moments of a.

Example 3.1.2. The algebra A :=MN (C) of complex N×N matrices with the normal-
ized trace τ = τN = 1

NTr is a ∗-probability space (with involution given by the Hermitian
transpose). As we saw in the previous chapter, if X ∈ MN (C) is Hermitian, we may
diagonalize X = UDU∗ and realize that

τ(Xk) = τ(UDkU∗) = τ(Dk) =
1

N

N∑
i=1

λi(X)k =

∫
R
xkµX(dt),

where λ1(X) ≤ · · · ≤ λN (X) are the eigenvalues of X and

µX =
1

N

∑
i=1

δλi(X).

Hence (τ(ak))k≥1 are the moments (in the usual, probabilistic sense) of the probability
measure µX .
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3 Free probability theory and asymptotics of random matrices

3.1.1 Wigner and Haar-unitary random matrices

A Wigner matrix XN is an N × N self-adjoint random matrix XN = (N−1/2xij)i,j≤N ,
where xji = x∗ij , and such that the random variables

(xii)i≤N ∪ (
√

2<(xij))i<j≤N ∪ (
√

2=(xij))i<j≤N ,

are independent and share the distribution of a given random variable x, with all mo-
ments. Note that the normalizations are such that V ar(xij) = E(xijxji) = 1.

Remark 3.1.3. An N×N random matrix can be thought as an N2-dimensional complex
random variable X on a probability space (MN (C),Q,P), where Q is the Borel σ-field
of MN (C) and P is a probability distribution. A random matrix X is self-adjoint iff
P(X = X∗) = 1.

In view of Example 3.1.2, for each possible value ω ∈MN (C) of X, we may consider
the distribution µω, and average these with the probability distribution P.

The numbers ( 1
NE ◦ Tr(Xk

N ))k≥0 (if they exist) are thus the moments of the averaged
eigenvalue distribution µX which satisfies, for any Borel set A ∈ R, that

µX(A) =

∫
ω∈Ω

µX(ω)(A)dP(ω).

The averaged eigenvalue distribution (AED) µX is one of the most important objects of
study in the field of random matrix theory.

For the Gaussian ensemble (XN )N≥1, we observed in Chapter 2 that the AED con-
verges to the semicircle law.

More general versions of Wigner’s Theorem state that the averaged eigenvalue distri-
bution of a Wigner ensemble (XN )N≥1 converges weakly to the semicircle distribution,
independently of the (identical) distribution of the entries (as long as x has moments of
order 2 + ε).

Another important example of random matrix are random unitary matrices.
The unitary group U(N) : {U ∈ MN (C) : UU∗ = 1 = U∗U} is a compact Lie group,

and hence there exists a unique (up to a scaling constant), Haar measure µ on the Borel
sets of U(N), which is analogue to the Lebesgue measure in the sense that it is translation
invariant and positive on any open subset. We may normalize so that µ(UN ) = 1 is a
probability measure. A matrix U ∈ U(N) drawn uniformly according to µ will be called
a Haar-distributed random matrix.

The uniform distribution of UN = (uij)i,j≤N in UN yields a (quite non-trivial) joint
distribution of its entries. However, from the unitary invariance of µ we may deduce
important properties of joint distribution of the uij . In particular, one can show that the
mixed moments (see next section for a general definition) of {UN , U∗N} are characterized
by the fact that U∗NUN = IN = UNU

∗
N and

E ◦ τN (UkN ) = δ0k, k ∈ Z.

These two fundamental examples inspire the definition of some special non-commutative
random variables.
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3.2 Asymptotic free independence of random matrices

Definition 3.1.4. Let (A, τ) be a ∗-probability space.
An element s = s∗ ∈ A is called semicircular, if τ(s2k+1) = 0 and τ(s2k) = Ck for all

k ≥ 1.
An element u ∈ A is called a Haar-unitary, if uu∗ = u∗u = 1 and τ(uk) = 0 for all

0 6= k ∈ Z

So far we have only considered examples consisting of a single random matrix. We
would like now to build more general random matrices by evaluating non-commutative
polynomials on random and deterministic matrices. Voiculescu observed in his seminal
paper [Voi91] that there is a rule, which he called ”freeness”, to compute the asymptotic
mixed moments of several independent random matrices. Freeness is often refereed to
as free independence, as it shares some similarities with the usual probabilistic notion
of stochastic independence.

3.2 Asymptotic free independence of random matrices

One nice feature of Haar-distributed unitary random matrices is that they allow us
to randomly rotate deterministic matrices. If AN , BN are a self-adjoint deterministic
matrices, then µA and µUNANU∗N coincide. This means that the eigenvalues of AN remain
unchanged. However, the random rotation UNANU

∗
N puts the eigenspaces of AN in a

“generic” position with respect to the eigenspaces of BN .
Consider, for example, the case when AN , BN are diagonal deterministic matrices,

with µAN → µ1 and µBN → µ2 as N → ∞. The choice of AN , BN being diagonal puts
the eigenspaces of AN , BN in very specific positions (namely, they coincide) and hence
the eigenvalues of AN+BN will be λ1(AN )+λ1(BN ), . . . , λN (AN )+λN (BN ). This means
that the limiting distribution (if it exists) of the self-adjoint matrix AN + BN depends
not only on µ1, µ2, but also on the specific order in which the eigenvalues appear in each
matrix.

3.2.1 Free independence and (non-commutative) joint distributions

Voiculescu found out that, surprisingly, the distribution µUNANU∗N+BN converges towards
a deterministic probability measure µ1 � µ2, which depends only on µ1 and µ2. The
rule for computing the moments of µ1 � µ2 is based on the fact that UNANU

∗
N and BN

behave asymptotically like free operators.

Definitions 3.2.1. (1). Let (A, τ) be a ∗-probability space and let ā := a− τ(a)1A for
any a ∈ A. The unital ∗-subalgebras A1, . . . , Ak ⊂ A are free iff, for all m ≥ 1, and all
tuples a1, . . . , am ∈ A

τ(ā1ā2 · · · ām) = 0, (3.1)

whenever ai ∈ Aj(i), with j(1) 6= j(2) 6= · · · 6= j(m) (note that it is allowed, for example,
that j(1) = j(3)).

(2). Subsets S1, . . . , Sk ⊂ A are free if so are their generated unital ∗-subalgebras
〈S1〉, . . . , 〈Sk〉.
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3 Free probability theory and asymptotics of random matrices

We first observe that the freeness condition (3.1) can be applied recursively and turns
into a rule for decomposing mixed moments into individual moments: If a, b are free, we
have, for example:

0 = τ(āb̄) = τ((a− τ(a))(b− τ(b))) (3.2)

= τ(ab)− 2τ(a)τ(b) + τ(a)τ(b) (3.3)

⇔ (3.4)

τ(ab) = τ(a)τ(b), (3.5)

and similarly (after some cancellations):

τ(abba) = τ(a2)τ(b2), (3.6)

τ(abab) = τ(a2)(τ(b))2 + τ(b2)(τ(a))2 − (τ(a))2(τ(b))2. (3.7)

We note the non-commutative nature of freeness from the equations (3.6) and (3.7).
One should be convinced that it is possible (by inductively solving for τ(a1 · · · am) in
Eq. (3.1)) to express any mixed moment τ(an1bm1 · · · ankbmk) in terms of individual
moments.

Mixed moments of free random variables factorize following very precise combinatorial
rules, developed by Speicher. In [Spe94] the freeness condition (3.1) was translated into
a combinatorial relation which relies on the notions of free cumulants and non-crossing
partitions (see Chapter 4, or [NS06] for a comprehensive exposition).

We recall that the classical, stochastic independence of random variables X1, . . . , Xk

with compact support (or, more generally, of random variables determined by their
moments) is equivalent to the factorization of mixed moments:

E(Xn1
1 Xn2

2 · · ·X
nk
k ) = E(Xn1

1 )E(Xn2
2 ) · · ·E(Xnk

k ).

In this sense, free probability is a realm, parallel to classical probability, where the
factorization of expectations given by classical independence is replaced by freeness.
Many fundamental theorems from classical probability, such as the convergence to the
Central Limit or the Law of small numbers can be translated to the free setting.

In particular, by just replacing independence by free independence and working alge-
braically, the free Central Limit (i.e. the limiting distribution of SN = 1√

N
(ā1 + · · ·+ āN )

for free self-adjoint, identically distributed elements (ai)i≥1) turns out to be Wigner’s
semicircle law, whereas the free analog of the law of small numbers is the Marchenko-
Pastur distribution (also known as free Poisson), which is the (also universal) limit of
singular-value distributions of Wishart matrices.

Voiculescu observed in [Voi91] that large random matrices provide approximations to
quite intuitive realizations of free random variables. In order to consider several matrix
ensembles, we need to organize the mixed moments.

Definition 3.2.2. For an ordered tuple a = (a1, . . . , ak) of random variables in a ∗-
probability space (A, τ), we call

Φa
m := Φm = {(i1, . . . , im) 7→ τ(ai1 . . . aim) : i1, . . . , im ≤ k}
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3.2 Asymptotic free independence of random matrices

the m-th order mixed moments of (a1, . . . , ak). We call Φ(a) =
⋃
m≥0 Φa

m the joint dis-
tribution of a = (a1, . . . , ak). To avoid cumbersome notation, for a = (b1, b

∗
1, . . . , bk, b

∗
k)

we usually omit the adjoints and simply talk about the ∗-distribution Φ(b)∗ := Φ(a) of
b = (b1, . . . , bk).

If k ≥ 2, one can very rarely associate a probability measure which encodes all the
information from Φ(a). For this reason, whenever we talk about the distribution of a =
(a1, . . . , ak), we mean the collection of mixed moments Φ(a). Two k-tuples (a1, . . . , ak) ∈
Ak1 and (b1, . . . , bk) ∈ Ak2 in (possibly different) *-probability spaces (A1, τ1), (A2, τ2)
have the same distribution iff

τ1(ai1 · · · aim) = τ2(bi1 · · · bim),

for all m ≥ 1, 1 ≤ i1, . . . , im ≤ k. We denote this situation by writing (a1, . . . , ak) ∼
(b1, . . . , bk). If (a1, a

∗
1 . . . , ak, a

∗
k) ∼ (b1, b

∗
1, . . . , bk, b

∗
k) we simply write (a1, . . . , ak) ∼∗

(b1, . . . , bk)

Definition 3.2.3. Let (AN , τN ), N ≥ 1, and (A, τ) be ∗-probability spaces and let

(a
(N)
1 , . . . , a

(N)
k ) ∈ AkN , (a1, . . . , ak) ∈ Ak be such that

lim
N→∞

τN ((a
(N)
i1

) · · · (a(N)
im

)) = τ(ai1 · · · aim),

for all m ≥ 1, 1 ≤ i1, . . . , im ≤ k Then we say that (a
(N)
1 , . . . , a

(N)
k ) converges in distri-

bution to (a1, . . . , ak) and we write (a
(N)
1 , . . . , a

(N)
k )→ (a1, . . . , ak). We denote the situa-

tion (a
(N)
1 , (a

(N)
1 )∗, . . . , a

(N)
k , (a

(N)
k )∗)→ (a1, a

∗
1 . . . , ak, a

∗
k) simply by (a

(N)
1 , . . . , a

(N)
k )→∗

(a1, . . . , ak)

3.2.2 Asymptotic freeness

We give now a convenient reformulation of Voiculescu’s striking generalization of Wigner’s
Semicircle law [Voi91] (and its stronger versions [Dyk93, Voi98, AGZ10, MS12]) which
establishes the asymptotic freeness of large matrix ensembles.

Theorem 3.2.4. For each N ≥ 1, let X
(N)
1 , . . . , X

(N)
p and U

(N)
1 , . . . , U

(N)
q be indepen-

dent Wigner and Haar-distributed unitary matrices. Let D
(N)
1 , . . . , D

(N)
r be determin-

istic matrices, such that, for any k ≥ 1 and 1 ≤ j1, . . . , jk ≤ r there exist a constant
c(j1, . . . , jk) ∈ C such that

lim
N→∞

1

N
Tr((D

(N)
j1

)(D
(N)
j2

) · · · (D(N)
jk

)) = c(j1, . . . , jk). (3.8)

Then, as N →∞,

(X
(N)
1 , . . . , X(N)

p , U
(N)
1 , . . . , U (N)

q , D
(N)
1 , . . . , D(N)

r )→ (s1, . . . , sp, u1, . . . uq, d1, . . . dr)

where s1, . . . , sp, u1, . . . uq, d1, . . . dr are elements in some ∗-probability space (A, τ) whose
joint-distribution is determined by the following conditions:
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3 Free probability theory and asymptotics of random matrices

• si is a semicircular for all i ≤ p.

• ui is a Haar-unitary for all i ≤ q.

• τ(di1di2 · · · dik) = c(i1, . . . , ik), for any k ≥ 1, 1 ≤ i1, . . . , ik ≤ r.

• The algebras 〈s1〉, . . . , 〈sp〉, 〈u1, u
∗
1〉, . . . , 〈uq, u∗q〉, 〈d1, . . . , dr〉 are free.

3.2.3 Ideas of the proofs

Theorem 3.2.4 generalizes Wigner’s semicircle law in several directions. It allows us to
compute the asymptotic mixed moments of

(X
(N)
1 , . . . , X(N)

p , U
(N)
1 , . . . , U (N)

q , D
(N)
1 , . . . , D(N)

r )

by means of the rule of free independence (3.1), in terms of the individual asymptotic

moments of X
(N)
1 , . . . , X

(N)
p , U

(N)
1 , . . . , U

(N)
q and the (given) asymptotic mixed moments

of (D
(N)
1 , . . . , D

(N)
r ). A nice way to understand how these mixed moments are calculated

is in terms of free cumulants (see Chapter 4).

Our combinatorial proof of the Gaussian case in Chapter 2 will be our main reference
to indicate how the different generalizations work.

• Relaxing Gaussian condition.

As we did in Chapter 2 for the Gaussian case, we may consider first non-self-adjoint
Wigner matrices Zi such that

√
2Xi = Zi + Z∗i .

For a single matrix Z := Zi we need to study again

1

N
E ◦ Tr(Zε1 , . . . , Zεk) =

1

N1+k/2

∑
i1,...,ik≤N
π∈P(k)

κπ(zε1i1i2 , z
ε2
i2i3

, . . . , zεkiki1). (3.9)

For the Gaussian case all cumulants of order different than 2 vanished and hence our
sum ran over P2(k). Then we noticed that only π ∈ NC2(k) actually matter in the limit.

If Z is no longer Gaussian, we need to consider partitions π ∈ P(k) such that all
blocks of π are of size greater or equal to 2, but π ∈ P(k) needs not in principle to be
in P2(k). Blocks of size 1 are still not allowed because the entries of Z are all centered.
The important observation is that the number of different cumulants to be considered
depends only on the size k of the moment in question (and does not grow with N , which
only affects the number of choices for each free index).

If we allow π to have bigger blocks, it is intuitive that the contribution of π will vanish
in the limit since it will imply that more indices need to be identified. This can be shown
by induction.

• Several Wigner Matrices.
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3.2 Asymptotic free independence of random matrices

Going from one Wigner matrix to several is not hard. We now need to consider the more
general expression, for j1, . . . , jk ≤ p

1

N
E ◦ Tr(Zε1j1 , . . . , Z

εk
jk

) =
1

N1+k/2

∑
i1,...,ik≤N
π∈P(k)

κπ(zε1;j1
i1i2

, zε2;j2
i2i3

, . . . , zεk;jk
iki1

)).

Where now the blocks of π ∈ P(n) should also respect the labels indicated by j =
(j1, . . . , jk). Such restriction can be then carried out to the very end. In the limit,
the sum will again run over non-crossing pairings π ∈ NCε(n) ⊂ NC2(n) with the
additional condition that for all (a, b) ∈ π, ja = jb. We will see later in Chapter 4 that
this characterizes a free family of semicircular operators.

• Wigner matrices and deterministic matrices.

If we now allow deterministic matrices to operate between our Wigner matrices we
need to compute expressions of the form

1

N
E ◦ Tr(Dj0Z

ε1
j1
Dj2 , . . . , Z

εk
j2k−1

Dj2k).

More generally, we are interested in estimating

1

N1+k/2

∑
i0,...,i2k+1≤N
π∈P(2k+1)

κπ(d
(j0)
i0i1

, zε1i1i2 , d
(j2)
i2i3

, zε2i3i4 , . . . , z
εk
i2k−1i2k

, d
(j2k)
i2ki2k+1

).

Since the dij ’s are constants, {{1}, {3}, . . . , {2k + 1}} ⊂ π, otherwise the cumulant
vanishes. Therefore, we need only to consider partitions of P(2, 4, . . . , 2k) ∼= P(k).

As an example, let us assume that we only have a single Gaussian matrix and consider
the pairing {{1, 3}{2, 7}{4, 5}{6, 8}} and ε = (1, ∗, ∗, 1, ∗, 1, 1, ∗). Again, each block
corresponds to a cumulant which imposses identifications of some indices:
h0 := i0, h1 := i1 = i6, h2 := i2 = i5, h3 := i4 = i13, h4 := i3 = i14,
h5 := i7 = i10, h6 := i8 = i9, h7 := i11 = i16, h8 := i12 = i15, h9 := i17

The contribution of π will be κπ(z, z̄, z̄, z, z̄, z, z, z̄) (which is one in this case, and does
not depend on N in general), times Tr(Dπ,ε), where

Dπ,ε =
∑

h0,...,h9≤N
d

(j0)
i0i1

d
(j2)
i2i3

. . . d
(j2k)
i2ki2k+1

.

For our example the sum Dπ,ε is given by:

Dπ,ε =
∑

h0,...,h9≤N
d

(j0)
i0i1

d
(j2)
i2i3

d
(j4)
i4i5

d
(j6)
i6i7

d
(j8)
i8i9

d
(j10)
i10i11

d
(j12)
i12i13

d
(j14)
i14i15

d
(j16)
i16i17

(3.10)

=
∑

h0,...,h9≤N
d

(j0)
h0h1

d
(j2)
h2h4

d
(j4)
h3h2

d
(j6)
h1h5

d
(j8)
h6h6

d
(j10)
h5h7

d
(j12)
h8h3

d
(j14)
h4h8

d
(j16)
h7h9

(3.11)

=
∑

h0,...,h9≤N
(d

(j0)
h0h1

d
(j6)
h1h5

d
(j10)
h5h7

d
(j16)
h7h9

)(d
(j4)
h3h2

d
(j2)
h2h4

d
(j14)
h4h8

d
(j12)
h8h3

)(d
(j8)
h6h6

) (3.12)

= Dj0Dj6Dj10Dj16Tr(Dj4Dj2Dj14Dj12)Tr(Dj8), (3.13)
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3 Free probability theory and asymptotics of random matrices

Hence

1

N1+k/2
Tr(Dπ,ε) =

1

N5
Tr(Dj0Dj6Dj10Dj16)Tr(Dj4Dj2Dj14Dj12)Tr(Dj8)

=
1

N2
[τN (Dj0Dj6Dj10Dj16)τN (Dj4Dj2Dj14Dj12)τN (Dj8)]

→ 1

N2
c(j0, j6, j10, j16)c(j4, j2, j14, j12)c(j8)

→ 0.

The Gaussian case here is notably easier than the general Wigner case. Pair partitions
are quite convenient because they identify pairs of indices, which allows us to order the
dij in cycles as we did above. Then one can show inductively that only non-crossing
pairings matter in the limit. For a non-crossing pairing, the map τN (Dπ,ε) turns out to
be equal to the multiplicative extension of 1

NTrKr(π)(Dj0 , Dj2 , . . . , Dj2k), where Kr(π) is
the Kreweras complement of π (which also separates the deterministic matrices according
to parity, see Section 4).

For the general, non-Gaussian case, where cumulants of order greater than 2 are
allowed, more than two indices may be identified and such cyclic reordering of the dij
is not possible in general. One must show again that only non-crossing pair partitions
yield a non-vanishing contribution.

One may associate a graph Gπ = (V,E) to each partition π ∈ P(k), where we put one
vertex for each equivalence class of indices and an edge joining the classes corresponding
to the vertices i2m, i2m+1. Equivalently, Gπ = (V,E) can be seen as a quotient graph:
we start with the vertices i0, i1, . . . , i2k+1 and the edges {(i0, i1), (i2, i3), . . . , (i2k, i2k+1)}
and then we perform the identifications of the vertices indicated by the cumulant

κπ(zε1i1i2 , . . . , z
εk
i2k−1i2k

).

Mingo and Speicher [MS12] bounded the order such products of matrix entries in terms
of the operator norms of the matrices and the forest of two-edge connected components
of the graph Gπ. These sharp estimates allowed not only to prove that non-crossing pair
partitions are the only non-vanishing contribution, but also stronger forms convergence
which depend on more delicate conditions of the matrices.

Alternatively, one may use concentration of measure [AGZ10].

• Haar Matrices

We will briefly address the combinatorics behind the asymptotic freeness of Haar-
unitary random matrices and deterministic matrices.

The joint distribution of the entries of a Haar-distributed unitary matrix UN =
(uij)i,j≤N is quite complicated. The entries uij are known to fulfill the Wick formula

E(ui1j1 . . . uiqjq ūi′1j′1 . . . ūi′qj′q) =
∑
ρ,σ∈Sq

δi1i′ρ(1)
. . . δiqi′ρ(q)

δj1j′σ(1)
. . . δjqj′σ(q)

Wg(N, ρσ−1),
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3.2 Asymptotic free independence of random matrices

where, for each N , the Weingarten function WgN : Sq → C is some complicated class
function whose values depend on characters of representations of symmetric groups.

The leading term of the Weingarten function can be obtained from the asymptotic
expansion

Wg(N, σ) = N−n−|σ|
∏
i

(−1)l(αi)−1C(l(αi)−1) +O(N−n−|σ|−2),

where the permutation σ = α1 . . . αk ∈ Sn is a product of cycles α1, . . . , αk of lengths
l(αi), Ck is the k-th Catalan number and |σ| is the minimum number of transpositions
required to express σ.

One may perform an asymptotic analysis, similar to the ones that we did for the
Wigner case, to conclude hat the asymptotic mixed moments of the matrices are com-
puted according to the rules described in Theorem 3.2.4 (see [Col03], [CS06]).

Remarks 3.2.5. (1). In [Voi91, Voi98] Voiculescu proved first the asymptotic freeness
of Gaussian matrices and deterministic matrices. By observing that independent Haar-
distributed unitary matrices can be obtained by considering the unitary part of the polar
decompositions of independent non-self-adjoint Gaussian random matrices, Voiculescu
transferred the asymptotic freeness of independent non-self-adjoint Gaussian matrices
and deterministic matrices to the analogous result with independent Haar-unitary matri-
ces and deterministic matrices. In [Dyk93],[AGZ10] and [MS12] the Gaussian condition
was relaxed.

Alternatively, more direct, combinatorial proofs for both the Gaussian (or Wigner)
case and the Haar-unitary case can be done using the Wick type formulas (see [NS06]
and [Xu97]). It is clear that one can also combine these proofs to consider Wigner and
Haar unitary random matrices simultaneously.

(2). A Non-self-adjoint Wigner matrix Y can be seen as the sum X1 + iX2 of two
independent self-adjoint Wigner matrices. The limiting random variable c = s1 + is2

is called a circular element (observe that c∗ = s1 − is2 is not self-adjoint). Clearly,
they will also be asymptotically free from deterministic Matrices, and other independent
Haar-unitary, Wigner and non-self-adjoint Wigner matrices. Our algorithms to com-
pute distributions will be formulated for polynomial expressions on self-adjoint Wigner
matrices / semicircular elements, which clearly include non-self-adjoint Wigner matrices
/ circular elements.

We will do the same with Wishart matrices: If p, c are free, c is a circular element
and p is a projection, a Wishart matrix of parameter λ > 0 can essentially be viewed
asymptotically as a scalar multiple of cpc∗ or pcc∗p (depending on whether λ ≤ 1 or not).

(3). There exist a stronger version of freeness, called second-order freeness, which
allows to control fluctuations of random matrices. Second order freeness is achieved (see
[AGZ10] or [MS12]) if we slightly strengthen the assumptions on our matrices, by either
asking all Wigner random matrices to be Gaussian matrices, or by asking all determinis-
tic matrices to be diagonal. Under such conditions, the empirical eigenvalue distribution

of any polynomial P (X
(N)
1 , . . . , X

(N)
p , U

(N)
1 , . . . , U

(N)
q , D

(N)
1 , . . . , D

(N)
r ) converges almost

surely to the spectral distribution of P (s1, . . . , sp, u1, . . . uq, d1, . . . dr).
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3 Free probability theory and asymptotics of random matrices

(4). In Chapter 6 we will typically be given a single collection of deterministic matrices
D1, . . . , Dr with some fixed (usually large) size s, along with some independent Haar-
unitary and Wigner matrices. In order to meet the condition of Eq. (3.8) we need
(sub-)sequences of matrices whose sizes grow arbitrarily large. We may obtain such

sequences by considering deterministic matrices D
(N)
i := Di⊗IN and simply considering

larger Haar Unitaries and Wigner matrices (of size sN). The normalized traces of

(D
(N)
1 , . . . , D

(N)
r ) do not vary with N and hence

c(i1, . . . , ik) =
1

s
Tr(Di1Di2 · · ·Dik).

If we are given a self-adjoint random matrix model P , produced by evaluating a polyno-
mial on Wigner, Haar-unitary matrices and deterministic matrices of size s, we can use
the previous trick to blow-up each of the matrices and consider the corresponding model
PN . In the limit N → ∞, we obtain a deterministic model with some spectral distribu-
tion µP∞. If, for instance, the norm of the original deterministic matrices is kept fixed
and s is large, the distribution µP∞ will be a good approximation of the original matrix
model of size s.

One of the main purposes of this thesis is to successfully compute the distribution
of µP∞ (and then provide a similar treatment for polynomials evaluated on matrices of
different sizes).

Voiculescu’s theorem allows us in principle to compute each moment of µP∞ in terms
of moments of free semi-circulars, Haar-unitaries and deterministic matrices.

Going from the moments to the actual distribution µP∞ is usually not that easy and
hence we need to gain some intuition on the nature of such mixed moments.

In particular, for many Hermitian matrix models, one can very often suppress the
Haar-unitaries in the limit, provided that some “freeness“ is imposed on some sub-
collections of deterministic matrices. A first instance of this phenomenon comes from
the study of the asymptotic joint distribution of UNANU

∗
N and BN , which will also serve

as motivation for Voiculescu’s free convolution.

3.3 Rotated families of deterministic matrices

If sub-algebras 〈A,B〉 ⊂ A are ∗-free from a Haar unitary u, and (a1, . . . , ap) ∈ Ap,
(b1, . . . , bq) ∈ Bq, then the joint distribution of (ã1, . . . , ãp, b1, . . . bq), where ãi = uaiu

∗ is
completely determined: {ã1, . . . , ãp} and {b1, . . . bq} are free and (ã1, . . . , ãp) ∼ (a1, . . . , ap).
Roughly speaking, conjugating a family of variables by a free Haar-unitary does not alter
the distribution of the family and makes it free from a second family of variables.

The fact that (ã1, . . . , ãp) ∼ (a1, . . . , ap) is trivial by the tracial property of τ . Hence
we only need to show that 〈ua1u

∗, . . . , uapu
∗〉 and 〈b1, . . . , bq〉 are free.

Let a(1), . . . , a(k) ∈ 〈a1, . . . , ap〉 and b(1), . . . , b(k) ∈ 〈b1, . . . , bq〉. We note that a(j) ∈
〈a1, . . . , ap〉 iff ua(j)u∗ ∈ 〈ua1u

∗, . . . , uapu
∗〉. Since τ(ua(j)u∗) = τ(a(j)) and τ(u) = 0 =

τ(u∗), we have that uau∗ = ua(j)u∗.
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3.3 Rotated families of deterministic matrices

Hence

τ((ua(1)u∗)b(1) · · · (ua(k)u∗)b(k)) = τ(ua(1)u∗b(1) · · ·ua(k)u∗b(k)), (3.14)

τ(b(1)(ua(1)u∗) · · · b(k)(ua(k)u∗)) = τ(b(1)ua(1)u∗ · · ·ua(k−1)u∗b(k)), (3.15)

τ((ua(1)u∗)b(1) · · · b(k−1)(ua(k)u∗)) = τ(ua(1)u∗b(1) · · · b(k−1)ua(k)u∗), (3.16)

τ(b(1)(ua(1)u∗) · · · (ua(k−1)u∗)b(k)) = τ(b(1)ua(1)u∗ · · ·ua(k−1)u∗b(k)). (3.17)

By freeness of 〈a1, . . . , ap, b1, . . . , bq〉 and {u, u∗} all the RHS expressions vanish and the
freeness of 〈ua1u

∗, . . . , uapu
∗〉 and 〈b1, . . . , bq〉 is established.

The same statement (with the same proof) holds for several randomly rotated collec-
tions:

Proposition 3.3.1. Let A0, . . . , Ak ⊆ A be ∗-subalgebras of a ∗-probability space (A, τ)
and let u1, . . . , uk ∈ A be Haar-unitary elements, such that 〈A0, . . . , Ak〉, {u1}, . . . , {uk}
are ∗-free. For 0 ≤ j ≤ k, let (a

(j)
1 , a

(j)
2 , . . . , a

(j)
p(j)) ∈ A

p(j)
j . Then

(a
(0)
1 , . . . , a

(0)
p(0), u1a

(1)
1 u∗1, . . . , u1a

(1)
p(1)u

∗
1, . . . , uka

(k)
p(k)u

∗
k) (3.18)

∼ (a
(0)
1 , . . . , a

(0)
p(0), ã

(1)
1 , . . . , ã

(1)
p(1), . . . , ã

(k)
p(k)), (3.19)

where 〈a(0)
1 , . . . , a

(0)
p(0)〉, 〈ã

(1)
1 , . . . , ã

(1)
p(1)〉, . . . , 〈ã

(k)
1 , . . . ã

(k)
p(k)〉 are free and (ã

(j)
1 , . . . ã

(j)
p(j)) ∼

(a
(j)
1 , . . . a

(j)
p(j)), for j ≤ k.

Theorem 3.2.4 states that, in particular, if (AN , BN )→ (a, b), then (AN , BN , UN )→
(a, b, u), where {a, b},{u} are free. By the previous proposition (UNANU

∗
N , BN )→ (ã, b),

where ã, b are free and ã ∼ a.

If a, b are self-adjoint, so is ã+b. By freeness, the distribution µã+b of ã+b depends only
on the distribution µã(= µa) of ã and the distribution µb of b. We write µa�µb := µã+b,
the free additive convolution.

Analogously, the distribution of the self-adjoint element bãb, or, equivalently, the
asymptotic distribution of BNUNANU

∗
NBN , depends again only on the distribution µa

and µb. In fact, by the tracial property of τ , one can easily see that only the even
moments of b appear in the computation. We write µa � µb2 := µbãb to denote the free
multiplicative convolution.

The operation (a1, . . . , ak) → (ua1u
∗, a2 . . . , ak) of conjugating a variable by a free

Haar unitary simplifies the distribution of (a1, a2, . . . , ak) by removing the correlations
between a1 and (a2, . . . , ak).

We will observe in Section 7.2 that the reason why the deterministic matrices Ri’s and
Ti of our models are not mixed in the fixed point equations is exactly because of this
separation phenomenon.

The same separation happens if we consider the conjugation ca1c
∗ with a free circular

or semicircular random variable (but this time the conjugation ca1c
∗ does change the

distribution by its compound Poisson).
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3 Free probability theory and asymptotics of random matrices

3.4 The Cauchy-Stieltjes transform

The basic analytical tool in non-commutative probability is the Cauchy-Stieltjes trans-
form. For any Borel probability measure µ on R, the Cauchy-Stieltjes transform is an
analytic function

Gµ(z) =

∫
R

dµ(t)

z − t
which maps the upper complex half-plane C+ to the lower half-plane C−. The probability
measure can be recovered from its Cauchy-transform via the Stieltjes’ inversion formula:

µ((t0, t1]) = − 1

π
lim
ε→0+

lim
δ→0

∫ t1+δ

t0+δ
=(Gµ(t+ iε))dt.

3.4.1 The R and S transforms and the analytic subordination phenomena

Voiculescu [Voi86, Voi87] introduced some analytical tools to compute such free convo-
lutions.

The reciprocal Fµ(z) = (Gµ(z))−1 of the Cauchy-transform is an analytic self-map on
C+. It was show in [BV93] that on certain Stolz domains

Γα,β := {z = x+ iy : y > 0, x < αy, |z| > β}

the map Fµ is injective and hence there exist a right inverse Fµ(F−1
µ (z)) = z. We

consider the analytic function φµ(z) := F−1
µ (z)− z.

Theorem 3.4.1. [Voi86, BV93] Let µ, ν be probability measures on R. For some α, β
there exist a unique probability measure µ� ν on R such that

φµ�ν(z) = φµ(z) + φν(z), z ∈ Γα,β.

If both µ, ν are determined by their moments, the moments of µ � ν are exactly the
moments of a+ b, where a, b are free and µa = µ, µb = ν.

Similarly, the analytic function Mµ(z) = z−1Gµ(z−1)− 1 is invertible in some domain
of the form {z : |z| < ε} ∩ C+. Let Sµ(z) := 1+z

z M−1
µ (z).

Theorem 3.4.2. [Voi87, BV93] Let µ, ν be probability measures on R+. For some ε > 0
small enough, there exist a unique probability measure µ� ν on R+ such that

Sµ�ν(z) = Sµ(z)Sν(z), z ∈ C+, |z| < ε.

Once more, if both µ, ν are determined by their moments, the moments of µ � ν are
exactly the moments of ab, where a, b are free and µa = µ, µb = ν. The element ab is
not self-adjoint. If A is a C∗-algebra, any positive element a > 0 has a unique positive
square root

√
a and the element ab has the same moments as the self-adjoint element√

ab
√
a.

Explicit computations of additive and multiplicative convolutions are not possible in
general, as both processes imply inverting analytic functions and this can only be done

40



3.5 Limitations of scalar-valued free probability

explicitly for a small class of distributions. In the last years, an alternative approach
by analytic subordination (which was developed in different contexts by Voiculescu and
Biane [Bia98, Voi00, Voi02]).

Belinschi and Bercovici [BB07] introduced an approach that allows one to find the
subordination functions with fixed point equations.

Theorem 3.4.3. [BB07] Let µ, ν be probability measures on R. There exist an analytic
map ω : C+ → C+ such that Gµ(ω(z)) = Gµ�ν(z). Furthermore, for any z ∈ C+ the
subordination function ω(z) satisfies

ω(z) = lim
n→∞

f◦nz (λ),

where, for any z, λ ∈ C+, fz(λ) = hν(hµ(λ) + z) + z and h is the auxiliary analytic
self-map hµ(z) = Gµ(z)−1 − z on C+.

One of our main tools for the computation of asymptotic distributions is the gener-
alization [BMS13] of the previous theorem to the operator-valued level. Before going
operator-valued, we want to point out some typical problems that we run into while
dealing with asymptotic distributions of random matrices.

3.5 Limitations of scalar-valued free probability

The combination of the previous tools would let us compute the asymptotic distribution
of some polynomials. For example, if a, b, c, d are free and self-adjoint, the distribution
µ of the self-adjoint element aba+ cdc will be given by µ = (µb � µa2) � (µd � µc2).

In this thesis we want to deal with arbitrary polynomials evaluated on Wigner, Haar-
distributed unitary matrices and deterministic matrices, possibly with different sizes.
Several problems arise when we consider such general polynomials:

1. Already for quite simple polynomials, such as p = a1b1a1 + a2b2a2, with {a1, a2},
{b1, b2} free, we have that, in general, a1b1a1 and a2b2a2 are not free. We would
be able to compute µa1b1a1 and µa2b2a2 as free multiplicative convolutions, but the
distribution of p would still depend on the joint distribution of (a1, a2) and the
joint distribution of (b1, b2) in a non-trivial way.

2. One can think of Wigner matrices of different sizes by simply considering large
Wigner matrices of the same size and compressing them with projections. Unfor-
tunately, the compressions of Haar-unitary Matrices are not Haar-unitary matrices
of smaller size. If one considers independent Haar-unitary matrices of different sizes

U
(N)
1 ∈ U(N1(N)), . . . , U

(N)
k ∈ U(Nk(N)), N1(N) ≤ N2(N) ≤ · · · ≤ Nk(N) (all

embedded in the upper-left corner of MNj(N)(C)), such that Nk(N)/Nk → ρj ∈
(0, 1], then (U

(N)
1 , . . . , U

(N)
k ) are not asymptotically free, unless ρ2 = ρj . Of course

this also means that randomly rotated matrices of different sizes are not free in
general.
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3 Free probability theory and asymptotics of random matrices

We will need to consider more general notions of freeness in order to overcome these
problems. We will address the operator-valued situation in Chapter 5.

In the next chapter we present the basic topics on the combinatorics of free probability,
which is based on the theory of Möbius inversion on the lattice of non-crossing partitions.

Although our main results and algorithms for eigenvalue distributions of random ma-
trices can be understood independently from the combinatorics, a lot of intuition on
the computation of first order moments can be obtained from understanding these non-
crossing partitions.

We also present some recent results on k-divisible partitions and cumulant-to-cumulant
formulas.
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4 Combinatorics of free and
non-commutative probability

An intriguing aspect of non-commutative probability is the existence of several notions of
independence [Voi85, SW97, Mur01] with corresponding cumulants introduced in [Voi85,
SW97, HS11b, Leh04] sharing many common features. In a certain sense (which can
be made precise, see [Spe97, BGS02, Mur02]) these are the only “natural” notions of
independence and the combinatorics of cumulants in particular show very close analogies
between the different theories.

Cumulants provide a combinatorial description of independence of random variables.
While Fourier analysis is the tool of choice for most problems in classical probability,
cumulants are an indispensable ingredient for many investigations in non-commutative
probability.

Let (mn)n≥1 be a (moment) sequence with m0 = 1 and F (z) =
∑∞

n=0
mn
n! z

n its expo-
nential generating function and M(z) =

∑∞
n=0mn z

n the ordinary generating function.

1. The exponential generating function of the classical cumulants (κn)n≥1 satisfies
the identity

∞∑
n=1

κn
n!
zn = logF (z).

2. The ordinary generating function of the free cumulants (rn)n≥1

R(z) =
∞∑
n=1

rnz
n−1

is called R-transform and satisfies the equivalent identities

1 +R(zM(z)) = M(z), (4.1)

M(z/(1 +R(z))) = 1 +R(z). (4.2)

3. The ordinary generating function of the Boolean cumulants (bn)n≥1

B(z) =

∞∑
n=1

bnz
n

satisfies the identity

M(z) =
1

1−B(z)
. (4.3)
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4 Combinatorics of free and non-commutative probability

The work by Bercovici and Pata [BP99] was the first instance where explicit bijections
between large classes of random variables were found. One way of understanding such
bijections is through cumulants.

The classical cumulants are the (scaled) coefficients of the logarithm of the Fourier
transform of a probability measure. The n-th-cumulant of a measure is a polynomial in
the first n moments. As we saw in Chapter 2, the precise relation between moments and
cumulants can be understood via the lattices of set partitions P.

The lattice P is in some sense too general. In practice, going over to the cumulants
very often even seems as a detour to compute the moments of independent random
variables, as these can be directly computed by simply factoring the expectation E.

The free situation is very different. Speicher [Spe94] observed that the coefficients
of Voiculescu’s R-transform are obtained from the moments by performing a Möbius
inversion on the sub-lattice NC ⊂ P of non-crossing partitions (see section 4.1 for all
definitions concerning partitions and cumulants). These partitions have much nicer
combinatorial properties which yield unexpected coincidences between the free analogs
of classical distributions.

Two of the most important distributions in classical probability are the Gaussian and
the Poisson distributions, which are also known as the central limit and the law of small
numbers. Just as the normal distribution, the Poisson random variable X also has nice
cumulants, namely κn(X) = 1 for all n ≥ 1.

The free counterparts of these classical distributions are respectively, Wigner’s semi-
circle law and the Marchenko-Pastur distribution. Both distributions are universal in
random matrix theory and satisfy that their free cumulants coincide with the classical
cumulants of their classical counterparts. Since the number of non-crossing partitions
of n elements |NC(n)| equals the number of non-crossing parings |NC2(2n)| of 2n ele-
ments, the free Poisson happens also to be the square of a semicircular random variable.
The square of the Gaussian distribution is the chi-squared distribution and hence the
classical analog of this result does not hold.

Higher order moments of the i.i.d. distributions which we use to converge to the
central limit are quite important when considering more quantitative estimates about
their convergence. For example, the third and fourth moments appear in the estimates
of Berry-Essen ([Ess56]) type theorems.

Convergence of the fourth moment of normalized distributions coming from a fixed
chaos with respect to both Wiener integrals [NP05] and “Wigner” integrals [KNPS12]
is enough to guarantee the convergence in distribution to the corresponding Gaussian
distribution.

Examples of non-commutative random variables which have a particularly nice com-
binatorial behavior are the k-divisible elements, which have been studied by Arizmendi
[Ari12]. The combinatorics of these elements are now governed by the posets of k-
divisible and k-equal partitions (which are generalizations of NC and NC2), introduced
by Edelman [Ede80]. Canonical examples of these variables are even elements (such as
all standard self-adjoint and non-self-adjoint Gaussian distributions) and unitaries (such
as uniform distributions at k-th roots of 1).

In [AV12] we observed that, surprisingly, the moments and cumulants of a product of
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4.1 Main definitions

k free (and Boolean independent) random variables can be very nicely expressed in terms
of Kreweras complements of k-divisible partitions. Our result is based on an equivalent,
less symmetric formula for the case k = 2 [NS06].

Since the works of Belinschi and Nica [BN08b] several connections between the Boolean,
free (and monotone) worlds have been found (see, for example [AH13]). Although the
Boolean independence has still not found important realizations by itself (as with free
random variables through large random matrices), its relation with other probabilities
may be useful to transfer results from the Boolean world (where they may be simpler)
to the other scenarios.

Examples of this are Arizmendi’s fourth moment theorem for infinitely divisible mea-
sures [Ari13, AJ14] (á la Nualart-Pecatti) where the Boolean case essentially reduces to
convergence to a constant random-variable. In [AV14] we obtain a uniform proof for
the convergence in norm to the Boolean, monotone and free central limits (the free case
was first proved by Bercovici and Voiculescu [BV95]). Since the classical central limit is
unbounded, no classical analogue of this result exists. In [AV12] better bounds for the
norm of free multiplicative convolutions are obtained using the Boolean cumulants.

In the spirit of these results and ideas, it seems important to be able to read how the
different cumulants encode the information of a probability measure. The first formulas
relating different types of cumulants were found by Lehner [Leh02] (see also [BN08a]
and [JV13]).

In [AHLV14] we obtained the remaining cumulant-to-cumulant formulas, which will
be presented in section 4.2. The proofs rely not only on partitions but also on a variety
of combinatorial structures (colored partitions, nesting trees, crossing graphs, heaps,
pyramids, Tutte polynomials) which are not immediately related to the Wick calculus
on random matrices. For this reason, we omit these proofs.

We rather present full proofs of our results from [AV12] which we present in Section 4.3.
The combinatorial objects that we use there (free cumulants, Kreweras complements,
and in particular, Krawczyk and Speicher’s [KS00] formula for cumulants of products)
are quite useful in large random matrix theory.

4.1 Main definitions

Concepts on partitions and ordered partitions are summarized below, first let us recall
some well known facts from the theory of posets (partially ordered sets). For details on
the latter the standard reference is [Sta12].

Proposition 4.1.1 (Principle of Möbius inversion). On any poset (P,≤) there is a
unique Möbius function µ : P × P → Z such that for any pair of functions f, g : P → C
(in fact any abelian group in place of C) the identity

f(x) =
∑
y≤x

g(y) (4.4)
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4 Combinatorics of free and non-commutative probability

holds for every x ∈ P if and only if

g(x) =
∑
y≤x

f(y)µ(y, x) (4.5)

holds for every x ∈ P . In particular, if, given f , two functions g1 and g2 satisfy (4.4),
then g1 and g2 coincide.

Definition 4.1.2. 1. A partition of a set is a decomposition into disjoint subsets,
called blocks. The set of partitions of the set [n] := {1, . . . , n} is denoted by P(n).
It is a lattice under refinement order with maximal element {[n]} denoted by 1̂n
and minimal element {{1}, . . . , {n}} denoted by 0̂n.

We write P =
⋃
n≥1 P(n) (and similar notations will be used, such as NC).

2. Any partition defines an equivalence relation on [n] and vice versa. Given π ∈
P(n), i ∼π j holds if and only if there is a block V ∈ π such that i, j ∈ V .

3. A partition π ∈ P(n) is non-crossing if there is no quadruple of elements 1 ≤ i <
j < k < l ≤ n such that i ∼π k, j ∼π l and i 6∼π j. The non-crossing partitions of
order n form a sub-poset which we denote by NC(n).

4. For two blocks V,W of a partition, we say V is an inner block of W or equivalently
W is an outer block of V or V nests inside W if there are i, j ∈ W such that
i < k < j for each k ∈ V .

5. A block V of a partition is called an interval block if V is of the form V =
{k, k + 1, . . . , k + l} for k ≥ 1 and 0 ≤ l ≤ n− k.

6. An interval partition is a partition π for which every block is an interval. The
set of interval partitions of [n] is denoted by I(n) and is a sub-lattice of P(n).
Sometimes these are called linear partitions and in fact they are in obvious bijection
with compositions of a number n, i.e., sequences of integers (k1, k2, . . . , kr) such
that ki > 0 and k1 + k2 + · · ·+ kr = n.

7. The non-crossing closure π̄ of a partition π is the smallest non-crossing partition
which dominates π.

8. A partition π is connected if its non-crossing closure is equal to the maximal
partition 1̂n, or, equivalently, the diagram of π is a connected graph. The set of
connected partitions is denoted by Pconn(n).

9. The connected components of a partition π are the connected sub-partitions of π,
i.e., the partitions induced on the blocks of the non-crossing closure π̄.

10. The interval closure π̂ of a partition π is the smallest interval partition which
dominates π.
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11. A partition π ∈ P(n) is irreducible if its interval closure is equal to the maximal
partition 1̂n. For a non-crossing partition of [n] this is equivalent to the property
that 1 ∼π n. Every partition π can be “factored” into irreducible factors which we
denote by π = π1∪· · ·∪πr. The factors πj are sub-partitions induced on the blocks
of the interval closure π̂.

The sets of irreducible partitions and irreducible non-crossing partitions are respec-
tively denoted by Pirr(n) and NCirr(n).

Different types of partitions are shown in the following figure.

connected irreducible noncrossing

Fig. 4.1: Typical partitions

Definition 4.1.3. 1. An ordered partition is a pair (π, λ) of a set partition π and a
linear order λ on its blocks. An ordered partition can be regarded as a sequence of
blocks: (π, λ) = (V1, . . . , Vk) by understanding that Vi <λ Vj iff i < j.

2. A monotone partition is an ordered partition (π, λ) with π ∈ NC(n) such that, for
V,W ∈ π, V >λ W whenever V is an inner block of W .

3. An ordered partition (π, λ) is irreducible if π is irreducible. Let Mirr(n) denote
the set of irreducible monotone partitions.

Our treatment is purely algebraic. Let (A, ϕ) be a pair of a unital algebra over C
and a unital linear functional on A, i.e. ϕ(1A) = 1. We denote by Kn, Hn, Bn, Rn
the multivariate classical, monotone, Boolean and free cumulants respectively. The
univariate cumulants κn, hn, bn, rn are obtained by evaluating the multivariate cumulants
at n copies of a single variable.

Let An (resp., an) be one of the cumulant functionals Kn, Bn, Hn, Rn (resp., κn bn, hn,
rn). Given a partition π ∈ P(n) and X,Xi ∈ A, we define the associated multivariate
and univariate partitioned cumulant functionals

Aπ(X1, . . . , Xn) :=
∏
V ∈π

A|V |(XV ), aπ(X) := Aπ(X, . . . ,X) =
∏
V ∈π

a|V |(X),

where we use the notation

A|V |(XV ) := Am(Xv1 , . . . , Xvm)

for a block V = {v1, . . . , vm}, v1 < · · · < vm. The linear functional ϕ gives rise to the
multi-linear functional

(X1, . . . , Xn) 7→ ϕ(X1 · · ·Xn)

on An for each n and ϕπ is defined analogously.
The following formulas implicitly define the classical, free, Boolean and monotone

cumulants.
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4 Combinatorics of free and non-commutative probability

Theorem 4.1.4.

ϕπ(X1, · · · , Xn) =
∑

σ∈P(n)
σ≤π

Kσ(X1, . . . , Xn), [Sch47, Rot64] (4.6)

ϕπ(X1, · · · , Xn) =
∑

σ∈NC(n)
σ≤π

Rσ(X1, . . . , Xn), [Spe94] (4.7)

ϕπ(X1, · · · , Xn) =
∑

σ∈I(n)
σ≤π

Bσ(X1, . . . , Xn), [SW97] (4.8)

ϕ(X1 · · ·Xn) =
∑

(σ,λ)∈M(n)
1
|σ|!Hσ(X1, . . . , Xn). [HS11a] (4.9)

The multiplicative extension of the monotone case (4.9) is not very useful because the
summand would depend on both σ, π (but if π is an interval partition, the summand
does not depend on σ; and this is used to prove Theorem 4.2.1).

Let µP , µNC , µI be the Möbius functions on the posets P,NC, I respectively. The
values are

µP(0̂n, 1̂n) = (−1)n−1(n− 1)!, [Sch47, Rot64] (4.10)

µNC(0̂n, 1̂n) = (−1)n−1Cn−1, [Kre72] (4.11)

µI(0̂n, 1̂n) = (−1)n−1, (4.12)

where Cn = 1
n+1

(
2n
n

)
is the Catalan number. The values µ(π, σ) for general intervals [π, σ]

are products of these due to the fact that in all lattices considered here any such interval
is isomorphic to a direct product of full lattices of different orders, see [DRS72, Spe94].

An interesting observation is that the lattice of interval partitions of order n is anti-
isomorphic to the lattice of subsets of a set with n − 1 elements and formula (4.12) is
equivalent to the inclusion-exclusion principle.

From the Möbius principle we may express the classical, free and Boolean cumulants
as

Kπ(X1, · · · , Xn) =
∑

σ∈P(n)
σ≤π

ϕσ(X1, . . . , Xn)µP(σ, π), (4.13)

Rπ(X1, · · · , Xn) =
∑

σ∈NC(n)
σ≤π

ϕσ(X1, . . . , Xn)µNC(σ, π), (4.14)

Bπ(X1, · · · , Xn) =
∑

σ∈I(n)
σ≤π

ϕσ(X1, . . . , Xn)µI(σ, π). (4.15)

Alternatively, univariate cumulants can be defined via generating functions as we did
in the introduction to this chapter.

Definition 4.1.5. The nesting forest F(π) of a non-crossing partition π with k blocks
is the forest of planar rooted trees on k vertices built recursively as follows.

1. If π is an irreducible partition, then F(π) is the planar rooted tree, whose vertices
are the blocks of π, the root being the unique outer block, and branches F(πi) where
πi are the irreducible components of π without the outer block.

2. If π has irreducible components π1, π2, . . . , πk, then F(π) is the forest consisting of
the rooted trees F(π1),F(π2), . . . ,F(πk).
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4.1 Main definitions

Fig. 4.2: A noncrossing partition and its nesting forest

Definition 4.1.6. The tree factorial t! of a finite rooted tree t is recursively defined as
follows. Let t be a rooted tree with n > 0 vertices. If t consists of a single vertex, set
t! = 1. Otherwise t can be decomposed into its root vertex and branches t1, t2, . . . , tr
and we define recursively the number

t! = n · t1! t2! · · · tr!.

The tree factorial of a forest is the product of the factorials of the constituting trees.

For an arbitrary finite set S we denote by P(S) its set of partitions. Any bijection
between S and {1, . . . |S|} induces a poset isomorphism P(S) to P(|S|). If S is totally
ordered we consider the bijection which preserves this order and define NC(S), I(S) via
this isomorphism.

Definition 4.1.7. Let π ∈ P(n).

1. We define the crossing graph G(π) := (V,E) of π, where the set of vertices V =
{V1, . . . , V|π|} is indexed by the blocks1 of π and an edge joins the vertices Vi, Vj if
and only if they cross, i.e., W = (Vi, Vj) ∈ (P(Vi ∪ Vj) \ NC(Vi ∪ Vj)).

2. Similarly, the vertices of the anti-interval graph G̃(π) := (V,E) of π are just the
blocks of π. An edge joining (Vi, Vj) is drawn if and only if W = (Vi, Vj) ∈
(P(Vi∪Vj)\I(Vi∪Vj)). (For a non-crossing partition this is the nesting forest from
Definition 4.1.5, augmented by the edges from all vertices to all their descendants).

3. For a finite graph G = (V,E) and e ∈ E, we let G \ e = (V,E \ e), and G/e =
(V/e,E \ e) be the graph obtained from removing e and identifying the endpoints
of e. The Tutte polynomial TG(x, y) of G can be defined recursively by setting
TG(x, y) = 1 if E = ∅ and:

TG(x, y) =


xTG/e(x, y) if e is a bridge,

yTG\e(x, y) if e is a loop,

TG/e(x, y) + TG\e(x, y) otherwise.

(where a bridge is and edge e ∈ G whose removal increases the number of connected
components of G).

1It should not cause confusion that we regard Vi simultaneously as a vertex of G(π) and as a block of
π
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4 Combinatorics of free and non-commutative probability

4.2 Cumulant-to-cumulant formulas

In [AHLV14] we extended the known relations between the different types of cumulants of
a probability measure. The starting point are the following relations between cumulants,
shown in [Leh02]:

bn =
∑

π∈NCirr(n) rπ, (4.16)

rn =
∑

π∈Pconn(n) κπ, (4.17)

bn =
∑

π∈Pirr(n) κπ.. (4.18)

Relation (4.17) was used in [BBLS11] to attack the problem of free infinite divisibility
of the normal law.

Relation (4.16) was extended by Belinschi and Nica in [BN08b] to the case of multi-
variate cumulants Bn, Rn. In addition, they obtained the inverse formula:

Rn =
∑

π∈NCirr(n)

(−1)|π|−1Bπ. (4.19)

The extensions of (4.17) and (4.18) to the multivariate case can be shown by using
the same proofs as in [Leh02] for the univariate case. An interesting inverse formula for
(4.18) was proved recently by M. Josuat-Vergès [JV13], expressing classical cumulants
in terms of free cumulants:

κn =
∑

π∈Pconn(n)

(−1)1+|π|TG(π)(1, 0)rπ, (4.20)

where G(π) is the crossing graph of π and TG(π) its Tutte polynomial. The proof of
(4.20) in [JV13] is also valid for the multivariate case.

In [AHLV14] we completed the picture for the relations between classical, Boolean,
free and monotone cumulants, extending some identities to the multivariate case. More
precisely, we were able to prove the following cumulant identities.

Theorem 4.2.1. The following identities hold for multivariate cumulants:

Bn =
∑

π∈Mirr(n)
1
|π|!Hπ =

∑
π∈NCirr(n)

1
F(π)!Hπ, (4.21)

Rn =
∑

π∈Mirr(n)
(−1)|π|−1

|π|! Hπ =
∑

π∈NCirr(n)
(−1)|π|−1

F(π)! Hπ. (4.22)

By using Lenczewski’s matricially free random variables and colored partitions [Len10,
Len12] we obtained expressions for the univariate monotone cumulants.

Theorem 4.2.2. The following identities hold for univariate cumulants:

hn =
∑

π∈NCirr(n) απrπ, (4.23)

hn =
∑

π∈NCirr(n)(−1)|π|−1απbπ, (4.24)

hn =
∑

π∈Pirr(n) απ̄κπ, (4.25)

where σ̄ ∈ NC(n) denotes the non-crossing closure of σ ∈ P(n) and απ is the linear part
of the number of non-increasing labellings of the nesting forest of π (which in the case
of irreducible partitions consists of precisely one tree).
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4.3 k-divisible partitions and products of random-variables

Remark 4.2.3. Calculations indicate that a multivariate analogue of Theorem 4.2.2
also holds, but at present we do not know how to prove it.

The proof of the Boolean-to-classical cumulant formula follows the techniques of the
proof (4.20) which were used in [JV13] to prove more general formulas for cumulants of
q-Gaussians.

Theorem 4.2.4.
Kn =

∑
π∈Pirr(n)

(−1)1+|π|TG̃(π)(1, 0)Bπ, (4.26)

where G̃(π) is the anti-interval graph of π and TG̃(π) is its Tutte polynomial.

In [AHLV14] we also found another interpretation of classical cumulants in terms of
Boolean cumulants via permutation statistics. Also, the values of the Tutte polynomials
in (4.20) and (4.26) were interpreted as certain pyramids in the sense of Cartier-Foata
[CF69]. In addition, we gave some partial results on the coefficients of the remaining,
monotone-to-classical cumulant formula

Kn =
∑

π∈P(n)

β(π)Hπ,

which seems to require a more detailed treatment. In particular, we were able to show
that β is supported on Pirr.

This concludes our section on cumulant formulas. Now we move to more specialized
results for free case.

4.3 k-divisible partitions and products of random-variables

In this section we exploit the fact that the subposets of k-divisible and k-equal non-
crossing partitions are linked, by the Kreweras complement, to partitions which are
involved in the calculation of moments and free cumulants of the product of k free
random variables.

It is helpful to picture partitions via their circular representation: We think of [n] as
the clockwise labeling of the vertices of a regular n-gon. If we identify each block of
π ∈ NC(n) with the convex hull of its corresponding vertices, then we see that π is
non-crossing precisely when its blocks are pairwise disjoint (that is, they don’t cross).

Out of two non-crossing partitions π1, π2 ∈ NC(n) we can build the partition π1 ∪ π2

by thinking π1 ∈ NC({1, 3, . . . , 2n − 1}), π2 ∈ NC({2, 4, . . . , 2n}), and drawing them
together. In general, the resulting partition may have crossings. Then, for a given
π ∈ NC(n) ∼= NC({1, 3, . . . , 2n− 1}) we define its Kreweras complement

Kr(π) := max{σ ∈ NC(n) ∼= NC({2, 4, . . . , 2n}) : π ∪ σ ∈ NC(2n)}.

The Kreweras complement [Kre72] satisfies many nice properties. The map Kr :
NC(n) → NC(n) is an order reversing isomorphism. Furthermore, for all π ∈ NC(n)
we have that |π|+ |Kr(π)| = n+ 1.
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4 Combinatorics of free and non-commutative probability

Fig. 4.3: The non-crossing partition {{1, 2, 5, 9}, {3, 4}, {6}, {7, 8}, {10, 11, 12}}, and the
crossing partition {{1, 4, 7}, {2, 9}, {3, 11, 12}, {5, 6, 8, 10}} of the set [12] in
their circular representations.

Definition 4.3.1. We say that a non-crossing partition π is k-divisible if the sizes of
all the blocks of are multiples of k. If, furthermore, all the blocks are exactly of size
k, we say that π is k-equal. A partition π ∈ NC(nk) is called k-preserving if all its
blocks contain numbers with the same congruence modulo k. A k-preserving partition
π ∈ NC(nk) is called k-completing if it connects all blocks of the interval partition
ρnk := {{1, 2, . . . , k}, {k + 1, . . . , 2k}, . . . , {k(n− 1) + 1, . . . , kn}} (i.e. π ∨ ρnk = 1̂nk).

We will see that these concepts are closely related. We denote the set of k-divisible
non-crossing partitions of [kn] by NCk(n) and the set of k-equal non-crossing partitions
of [kn] by NCk(n).

The main tool used to derive our formulas is the following, proved by Krawczyk and
Speicher [KS00].

Proposition 4.3.2 (Formula for products as arguments). Let (A, τ) be a non-commutative
probability space and let (Rn)n≥1 be the corresponding free cumulants. Let m,n ≥ 1,
1 ≤ i(1) < i(2) · · · < i(m) = n be given and consider the partition

σ = {{1, . . . , i(1)}, . . . , {i(m− 1) + 1, . . . , i(m)}} ∈ NC(n).

Consider random variables a1, . . . , an ∈ A. Then the following equation holds:

Rm(a1 · · · ai(1), . . . , ai(m−1)+1 · · · ai(m)) =
∑

π∈NC(n)

π∨σ=1̂n

Rπ(a1, . . . , an). (4.27)

For certain special cases, the formula above runs over partitions with more structure
which lead to nice interpretations. For example, if a, b ∈ A are free random variables,
with free cumulants Rn(a) and Rn(b), respectively, one can calculate the free cumulants
of ab by

Rn(ab) =
∑

π∈NC(n)

Rπ(a)RKr(π)(b), (4.28)
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4.3 k-divisible partitions and products of random-variables

where Kr(π) is the Kreweras complement of the non-crossing partition π. In particular,
we are able to compute the free cumulants of the free multiplicative convolution of two
probability measures with compact support µ, ν, such that Supp(µ) ⊆ [0,∞) by

Rn(µ� ν) =
∑

π∈NC(n)

Rπ(µ)RKr(π)(ν). (4.29)

In principle, this formula could be inductively used to provide the free cumulants and
moments of the convolutions of k (not necessarily equal) positive probability measures.
This approach, however, prevents us from noticing a deeper combinatorial structure
behind such products of free random variables.

Our fundamental observation is that, when π and Kr(π) are drawn together, the parti-
tion π∪Kr(π) ∈ NC(2n) is exactly the Kreweras complement of a 2-equal partition (i.e.
a non-crossing pairing). Furthermore, one can show using the previous correspondence
that Equation (4.28) may be rewritten as

Rn(ab) =
∑

π∈NC2(n)

RKr(π)(a, b, . . . , a, b), (4.30)

where NC2(n) denotes the 2-equal partitions of [2n].

Since 2-equal partitions explain the free convolution of two variables, it is natural to
try to describe the product of k free variables in terms of k-equal partitions.

The main result of this section is the following:

Theorem 4.3.3. Let a1, . . . , ak ∈ (A, τ) be free random variables. Then the free cumu-
lants and the moments of a := a1 . . . ak are given by

Rn(a) =
∑

π∈NCk(n)

RKr(π)(a1, . . . , ak), (4.31)

τ(an) =
∑

π∈NCk(n)

RKr(π)(a1, . . . , ak), (4.32)

where NCk(n) and NCk(n) denote, respectively, the k-equal and k-divisible partitions of
[kn].

Proof. See Section 4.3.1

The main argument is the following observation.

Proposition 4.3.4. i) π ∈ NC(kn) is k-preserving if and only if π = Kr(σ) for some
k-divisible partition σ ∈ NCk(n).

ii) π ∈ NC(kn) is k-completing if and only if π = Kr(σ) for some k-equal partition
σ ∈ NCk(n).

Proof. See Section 4.3.1
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4 Combinatorics of free and non-commutative probability

Fig. 4.4: The 3-equal partition π = {{1, 8, 12}, {2, 6, 7}, {3, 4, 5}, {9, 10, 11}} and its
Kreweras complement Kr(π) = π1 ∪ π2 ∪ π3, with π1 = {{1, 7}, {4}, {10}},
π2 = {{2, 5}, {8, 11}} and π3 = {{3}, {6}, {9}, {12}}.

Remark 4.3.5. In view of the previous characterization, for a k-divisible partition π,
the Kreweras complement Kr(π) may be divided into k partitions π1, π2, . . . , πk, with πj
involving only numbers congruent to j mod k. In this case we will write π1 ∪ · · · ∪ πk =
Kr(π) for such decomposition.

In [AV12], we used such formulas, together with enumerative results on k-divisible
partitions to give a new proof of the fact (first proved by Kargin [Kar07]) that for
positive measures centered at 1, the support of the free multiplicative convolution µ�k

grows at most linearly. Moreover, our approach enabled us to generalize to the case
µ1 � · · ·� µk, as follows.

Theorem 4.3.6. There exists a universal constant C > 0 such that for all k and any
µ1, . . . , µk probability measures supported on [0, L], satisfying E(µi) = 1 and V ar(µi) ≥
σ2, for i = 1, . . . , k, the supremum Lk of the support of the measure µ1� · · ·�µk satisfies

σ2k ≤ Lk < CLk.

In other words, for (not necessarily identically distributed) positive free random vari-
ables (Xi)i≥1 such that E(Xi) = 1, V ar(Xi) ≥ σ2 and ||Xi|| ≤ L, i ≥ 1, we have
that

lim sup
n→∞

n−1||X1/2
1 · · ·X1/2

n−1XnX
1/2
n−1 · · ·X

1/2
1 || < CL

and

lim inf
n→∞

n−1||X1/2
1 · · ·X1/2

n−1XnX
1/2
n−1 · · ·X

1/2
1 || ≥ σ

2.
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4.3 k-divisible partitions and products of random-variables

Let us point out that for the case µ1 = · · · = µk, the previous theorem can be proved
as using the methods of [KS07]. However, the norm estimates given there are meant
to address more general situations (where certain linear combinations of products are
allowed) and hence, the constants obtained using these methods for our specific problem
are far from optimal.

Our theorem also allowed us to provide a new proofs to the limit theorems of Sakuma
and Yoshida [SY13].

4.3.1 Proofs of Theorem 4.3.3 and Proposition 4.3.4

Remark 4.3.7. A useful characterization of non-crossing partitions is that, for any
π ∈ NC(n), one can always find an interval block V = {r + 1, . . . , r + s} such that if
one removes this block from π, the partition π \ V ∈ NC(n− s) remains non-crossing.

For a partition π ∈ NC(n) will often write r ∼π s, meaning that r, s belong to the
same block of π.

Let us introduce two operations on non-crossing partitions. For n, k ≥ 1 and r ≤ n,
we define Ikr : NC(n)→ NC(n+ k), where Ikr (π) is obtained from π by duplicating the
element in the position r, identifying the copies and inserting k − 1 singletons between
the two copies. More precisely, for π ∈ NC(n), Irk(π) ∈ NC(n+k) is the partition given
by the relations:

1. For 1 ≤ m1,m2 ≤ r,
m1 ∼Ikr (π) m2 ⇔ m1 ∼π m2.

2. For r + k ≤ m1,m2 ≤ n+ k,

m1 ∼Ikr (π) m2 ⇔ m1 − k ∼π m2 − k.

3. For 1 ≤ m1 ≤ r and r + k + 1 ≤ m2 ≤ n+ k,

m1 ∼Ikr (π) m2 ⇔ m1 ∼π m2 − k.

4. r ∼Ikr (π) r + k.

The operation Ĩkr : NC(n)→ NC(n+ k) consists of inserting an interval block of size
k between the positions r − 1 and r in π. We will skip the explicit definition.

The importance of these operations is that they are linked by the relation

Kr(Ikr (π)) = Ĩkr (Kr(π)). (4.33)

Our operations preserve properties of partitions, as shown in the following lemma.

Lemma 4.3.8. Let π ∈ NC(nk), r ≤ nk, s ≥ 1. Then
i) π is k-preserving if and only if Iskr (π) is k-preserving.
ii) π is k-completing if and only if Ikr (π) is k-completing.
iii) π is k-divisible if and only if Ĩskr (π) is k-divisible.
iv) π is k-equal if and only if Ĩkr (π) is k-equal.
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4 Combinatorics of free and non-commutative probability

Proof. i) By definition of Ikr (π), the relations indicated by Ikr (π) are obtained by relations
indicated by π, with possible shifts by ks (which do not modify congruences modulo k).
Hence the equivalence follows.

ii) One should think of the block intervals of ρkn as vertices of a graph. For π ∈ NC(nk),
an edge will join two vertices V,W , if there are elements r ∈ V , s ∈W such that r ∼π s.
Then π ∨ ρkn = 1nk if and only if the graph is connected.

It is easy to see that the effect of Ikr on the graph of π is just splitting the vertex
corresponding to the block V containing r into 2 vertices V1, V2. The edges between all
other vertices are preserved, while the edges which were originally joined to V will now
be joined either to V1 or V2. Finally, the last additional relation r ∼Ikr (π) r + k means
an edge joining V1 to V2. Therefore, it is clear that the connectedness of the two graphs
are equivalent.

iii) and iv) are trivial.

Now we want to show that we can produce all partitions of our interest by applying
our operations to elementary partitions.

Lemma 4.3.9. i) Let π ∈ NC(kn) be k-preserving. Then there exist m ≥ 0 and numbers
q0, q1, . . . , qm, r1, . . . , rm such that

π = Ikqmrm ◦ · · · ◦ Ikq1r1 (0q0). (4.34)

ii) Let π ∈ NC(kn) be k-completing. Then there exist m ≥ 0 and numbers r1, . . . , rm
such that

π = Ikrm ◦ · · · ◦ I
k
r1(0k). (4.35)

iii) Let π ∈ NC(kn) be k-divisible. Then there exist m ≥ 0 and numbers q0, q1, . . . , qm,
r1, . . . , rm such that

π = Ĩkqmrm ◦ · · · ◦ Ĩkq1r1 (1q0). (4.36)

iv) Let π ∈ NC(kn) be k-equal. Then there exist m ≥ 0 and numbers r1, . . . , rm such
that

π = Ĩkrm ◦ · · · ◦ Ĩ
k
r1(1k). (4.37)

Proof. i) We use induction on n. For n = 1 the only k-preserving partition is 0k, so the
statement holds. So assume that i) holds for n ≤ m. For π ∈ NCk(m) suppose that
there exist 1 ≤ r < r + sk ≤ km such that r ∼π r + sk and r + 1, . . . r + sk − 1 are
singletons of π (if no such pair (r, s) exist, necessarily π = 0mk and we are done). Then
its easy to see that π = Iskr (π′) for some π′ ∈ NC((n − s)k). By Lemma 4.3.8 i) π′ is
k-preserving. By induction hypothesis π′ has a representation as in Equation (4.34) and
hence, so does π = Iskr (π′).

The proof of ii) is similar. The proofs of iii) and iv) are trivial using Remark 4.3.7.

Proof of Proposition 4.3.4. We only show the first implication of i). The converse and
ii) are similar.

Let π ∈ NC(kn) be k-preserving. Then by Lemma 4.3.9 i) we can express it as

π = Ikqmrm ◦ · · · ◦ Ikq1r1 (1q0).
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4.3 k-divisible partitions and products of random-variables

But then we can apply Equation (4.33) at every step, obtaining

Kr(π) = Kr(Ikqmrm ◦ · · · ◦ Ikq1r1 (0q0)) (4.38)

= Ĩkqmrm ◦Kr(Ikqm−1
rm−1

· · · ◦ Ikq2r2 ◦ I
kq1
r1 (1q0)) (4.39)

= Ĩkqmrm ◦ Ĩkqm−1
rm−1

◦Kr(Ikqm−2
rm−2

◦ · · · ◦ Ikq2r2 ◦ I
kq1
r1 (1q0)) (4.40)

... (4.41)

= Ĩkqmrm ◦ · · · ◦ Ĩkq2r2 ◦ Ĩ
kq1
r1 (Kr(1q0)) (4.42)

= Ĩkqmrm ◦ · · · ◦ Ĩkq2r2 ◦ Ĩ
kq1
r1 (0q0), (4.43)

which, by Lemma 4.3.8 iii) is k-divisible.

Now we can prove the main result of this section.

Proof of Theorem 4.3.3. By the formula for products as arguments, we have that

Rn(a) =
∏

π∈NC(kn)

π∨ρkn=1̂nk

Rπ(a1, . . . , an).

Since the random variables are free, the sum runs actually over k-preserving partitions
(otherwise there would be a mixed, hence vanishing cumulant). But then by Proposition
4.3.4 ii), the partitions involved in the sum are exactly the Kreweras complements of
k-equal partitions, and the formula follows.

For the proof of (4.32), we use the moment-cumulant formula

τ(an) =
∑

π∈NC(kn)

Rπ(a1, . . . , an).

Again, the elements involved are free, so only k-preserving partitions matter, and these
are the Kreweras complements of k-divisible partitions by Proposition 4.3.4 i). Hence
the result follows.

Surprisingly, the Boolean cumulants of products of free random variables also satisfy
the same formula.

Remark 4.3.10. As pointed out in [BN08a], Equation (4.28) is also satisfied when we
replace the free cumulants by the Boolean cumulants. Therefore, Formula (4.31) holds as
well for Boolean cumulants (bn)n≥1, namely, if a := a1 · · · ak is a product of free random
variables, we have

bn(a) =
∑

π∈NCk(n)

bKr(π)(a1, . . . , ak). (4.44)

57





5 Operator-valued free probability

The idea of operator-valued free probability [Voi95] is to generalize free probability, by
replacing τ : A → C by a conditional expectation F : A → B onto a larger sub-algebra
C ⊆ B ⊆ A. This leads to a broader definition of freeness, which occurs in more general
situations of random matrix theory, as observed first by Shlyakthenko [Shl96]. Many
aspects of the theory of (scalar-valued) free probability can be lifted to the operator-
valued level. The combinatorics of operator-valued free probability (see [Spe98]) remains
the same provided that the nesting structure of non-crossing partitions is respected while
operating. This makes cumulants particularly useful.

The free cumulants also allow to find good candidates for the smallest sub-algebra
B ⊂ A over which two given random variables are free. In [NSS02] more general results
were found in this direction.

We include some examples of distributions of dN × dN matrix models which have
been modified block-wise by a self-adjoint linear map ϕ : Md(C)→Md(C). Such models
are relevant in quantum information theory (see [Aub12, BN12a, ANV]). A general
numerical solution to the problem of the asymptotic block-modified distribution can be
obtained using the algorithm to compute free matrix-valued multiplicative convolutions
from [BSTV14].

The question of finding explicit formulas for operator-valued distributions is closely
related to the possibility of finding realizations of the distribution in terms of operators
which are free over a commutative algebra. In [ANV], we use the criteria in [NSS02] to
give sufficient conditions (in terms of the Choi matrix of the map ϕ) for such a realization
to exist.

For the case of non-commutative algebras, the analytical side of free probability has
the drawback of being extremely complicated if one tries to obtain exact distributions.
On the other hand, numerical algorithms which rely on subordination, such as the ones
in [BB07] for the computation of the additive and multiplicative free convolutions admit
very effective generalizations (see [BSTV14, BMS13]).

Our main goal in this chapter is to understand freeness on rectangular spaces and
matrix-valued probability spaces. Our FDE’s for polynomial random matrix models will
be defined there.

5.1 Rectangular and matrix-valued probability Spaces

Definitions 5.1.1. (1). Let A be a unital ∗-algebra and let C ⊆ B ⊆ A be a ∗-sub-
algebra. A B-probability space is a pair (A,F), where F : A → B is a conditional

59



5 Operator-valued free probability

expectation, that is, a linear map satisfying:

F
(
bab′

)
= bF(a)b′, ∀b, b′ ∈ B, a ∈ A

F (1) = 1.

(2). Let (A,F) be a B-probability space and let ā := a − F(a)1A for any a ∈ A. The
∗-subalgebras B ⊆ A1, . . . , Ak ⊆ A are B-free (or free over B, or free with amalgamation
over B) (with respect to F) iff

F(ā1ā2 · · · ām) = 0, (5.1)

for all m ≥ 1 and all tuples a1, . . . , am ∈ A such that ai ∈ Aj(i) with j(1) 6= j(2) 6= · · · 6=
j(m).

(3). Subsets S1, . . . , Sk ⊂ A are B-free if so are the ∗-subalgebras 〈S1,B〉, . . . , 〈Sk,B〉.

We extend Definition 3.2.2 to the operator-valued case.

Definition 5.1.2. For a tuple a = (a1, . . . , ak) of random variables in a B-probability
space (A,F), the m-th order B-valued moments of a are the collection of maps ΦB;a

m :=

(Φ
(i1,...,im)
m )i1,...,im≤k, where

Φ(i1,...,im)
m : Bm−1 → B (5.2)

(b1, . . . , bm−1) 7→ F(ai1b1 . . . bm−1aim) (5.3)

We call Φ(a) =
⋃
m≥0 Φa

m the joint distribution of a = (a1, . . . , ak).

We always work with tuples of the form a = (a1, a
∗
1, . . . , ak, a

∗
k) but we will omit the

adjoints.

5.1.1 Rectangular probability spaces

Let (A, τ) be a tracial ∗-probability space endowed with pairwise orthogonal, non-trivial
projections p1, . . . , pk ∈ A adding up to one. Let D := 〈p1, . . . , pk〉 denote the ∗-algebra
generated by {p1, . . . , pk}. Then there exists a unique conditional expectation F : A → D
such that τ ◦ F = τ , which is given by the sum of compressions

F (a) =
k∑
i=1

piτ (pi)
−1 τ (pia) . (5.4)

With this, (A,F) becomes a D-valued probability space.
These kind of projection-valued spaces were introduced by Benaych-Georges in [BG09a]

(see also [BG09b]) and are called rectangular probability spaces. We will denote by A(i,j)

the set of elements a ∈ A such that a = piapj . Elements in
⋃

1≤i,j≤kA(i,j) are called

simple and we write A(i) := A(i,i). Very often we will be interested in the compressed
spaces (A(i), τ (i)), where τ (i) (a) = τ(pi)

−1τ (a) , for a ∈ A(i).
We will make use of the caligraphic letter D, to emphasize the situation when D =
B ⊂ A will always mean freeness with amalgamation over the algebra of projections
which defines the given rectangular probability space.
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5.1 Rectangular and matrix-valued probability Spaces

Definition 5.1.3. Let (A, τ) be a B-rectangular space and let (An, τn)n≥1 be a sequence

of (p
(n)
1 , . . . , p

(n)
k )-rectangular spaces. Let a1, . . . , am ∈ A and a

(n)
1 , . . . , a

(n)
m ∈ An be

collections of simple elements. We say that (a
(n)
1 , . . . , a

(n)
m ) converges in D-distribution

to (a1, . . . , am) if (a
(n)
1 , . . . , a

(n)
m , p

(n)
1 , . . . , p

(n)
k ) ∈ (Am+k

N , τN ) converges in distribution to
(a1, . . . , am, p1, . . . , pk) ∈ (Am+k, τ), and we write(

a
(n)
1 , . . . , a(n)

m

)
D→ (a1, . . . , am) as n→∞.

If a1, . . . , am are D-free, we say that a
(n)
1 , . . . , a

(n)
m are asymptotically D-free.

We reformulate some results by Benaych-Georges in [BG09b] generalizing, in the
framework of rectangular spaces, Voiculescu’s results on asymptotic freeness of square
matrices.

Theorem 5.1.4 (Asymptotic freeness of rectangular matrix ensembles [BG09b]). Let

k ≥ 1 be fixed. For each N ≥ 1, let P
(N)
1 , . . . , P

(N)
k be pairwise orthogonal projections,

such that IN = P
(N)
1 + · · ·+ P

(N)
k and N−1Tr(P

(N)
i )→ ρi ∈ (0, 1) for each i ≤ k.

Let X
(N)
1 , . . . , X

(N)
p and U

(N)
1 , . . . , U

(N)
q be independent random matrices, such that

• for each i ≤ p, X
(N)
i = P

(N)
j(i) X

(N)
i P

(N)
j(i) is a Wigner Matrix when restricted to

(Aj(i)N , τ
j(i)
N ) for some 1 ≤ j(i) ≤ k.

• for each i ≤ q, U
(N)
i = P

(N)
h(i)U

(N)
i P

(N)
h(i) is a Haar-unitary random matrix when

restricted to (Ah(i)
N , τ

h(i)
N ), for some 1 ≤ h(i) ≤ k.

Let D
(N)
1 , . . . , D

(N)
r be deterministic matrices, with D

(N)
i = P

(N)
h1(i)D

(N)
i P

(N)
h2(i) for some 1 ≤

h1(i), h2(i) ≤ k, such that for any m ≥ 1, 1 ≤ i1, . . . , im ≤ r, there exist c(i1, . . . , im) ∈ C
such that

lim
N→∞

1

N
Tr(D

(N)
i1

D
(N)
i2
· · ·D(N)

im
) = c(i1, . . . , im). (5.5)

Then, as N →∞,

(X
(N)
1 , . . . , X(N)

p , U
(N)
1 , . . . , U (N)

q , D
(N)
1 , . . . , D(N)

r )
D→ (s1, . . . , sp, u1, . . . uq, d1, . . . dr)

where s1, . . . , sp, u1, . . . uq, d1, . . . dr are elements in some rectangular probability space
(A, τ) (with orthogonal projections p1, . . . pk) whose joint D-distribution is determined
by the following conditions:

• τ(pi) = ρi.

• For all i ≤ p, si = pj(i)sipj(i) is a semicircular in the compressed space (Aj(i), τ j(i)).

• For all i ≤ q, ui = pj(i)uipj(i) is a Haar-unitary in the compressed space (Ah(i), τ j(i)).
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5 Operator-valued free probability

• For all i ≤ r, di = ph1(i)diph2(i). In addition, τ(di1di2 · · · dik) = c(i1, . . . , ik), for
any k ≥ 1, 1 ≤ i1, . . . , ik ≤ r.

• The algebras 〈s1〉, . . . , 〈sp〉, 〈u1, u
∗
1〉, . . . , 〈uq, u∗q〉, 〈d1, d

∗
1 . . . , dr, d

∗
r〉 are free with amal-

gamation over 〈p1, . . . pk〉.

Benaych-Georges stated the Gaussian and Haar-unitary cases separately and the proof
followed the same direction as Voiculescu’s proof of the scalar case.

From the combinatorial point of view, the case of Wigner and deterministic matri-
ces can be essentially treated as explained in Section 3.2.3. Again, we will need to
compute the asymptotics of sums of products of deterministic matrices indexed by par-
titions Dπ,ε. The main difference now is that each summand of Dπ,ε gets multiplied
by Kπ(zε1i1i2 , z

ε2
i3i4

, . . . , zεki2k−1i2k
), which is no longer fixed as we vary i1, . . . i2k because the

variance of zijij+1 is scaled according the different sizes of the Wigner matrices. However,
since the ratios of the different sizes of the matrices converge, we can use an uniform
bound for all such

Kπ(zε1i1i2 , z
ε2
i3i4

, . . . , zεki2k−1i2k
),

and proceed as before.

The combinatorial arguments which show that only non-crossing pairings yield non-
vanishing contributions remain valid for this case. So we are again left with non-crossing
pairings. From there, it is an easy exercise to check that, from eq. (5.4) and Def. 5.1
one indeed obtains the same mixed moments for (s1, . . . , sp, d1, . . . dr).

The adaptation of the combinatorial proofs for Haar-unitary matrices and determin-
istic matrices is explained in [SV12] and it is clear that both methods can be combined
to consider mixed moments. One can lift all the arguments in Remark 3.2.5 (1)-(4) to
the rectangular setting.

Example 5.1.5. Consider the model

Φ =

K∑
i=1

RiUiTiU
∗
i R
∗
i

of [CHD11] (see Section 7.3.1 for the precise assumptions on the matrices). If we let
M = N0+· · ·+NK , we may consider orthogonal projections P0, . . . , PK with Tr(Pi) = Ni

and think that each matrix A of the model is embedded as a simple element Ã in the
(P0, . . . , PK)-probability space MM (C), in such a way that P0R̃iPi = R̃i, PiŨiPi = Ũi
and PiT̃iPi = T̃i as illustrated in Fig. 5.1.

Observe that the embedded matrices fit together, and we have that

K∑
i=1

R̃iŨiT̃iŨ
∗
i R̃
∗
i = P0(

K∑
i=1

RiUiTiU
∗
i R
∗
i )P0 = P0ΦP0.

Hence, all the information about the distribution of Φ is contained in the joint 〈P0, . . . , PK〉-
distribution of (R̃1, Ũ1, T̃1, . . . , RK , ŨK , T̃K).

62



5.1 Rectangular and matrix-valued probability Spaces

P0

T̃1, P1

Ũ1, Ũ
∗
1

R̃1 R̃k

R̃∗1

R̃∗k

. . .
...

. . .

T̃k, Pk

Ũk, Ũ
∗
k

Fig. 5.1: Embedding of the Matrices of Φ on a Rectangular Space

In order to simplify notation for the rest of this example and all future rectangular
matrix models, we will omit the tilde and the embedding discussions. In the context of
a rectangular space, we will think directly that the matrices of the model are already
embedded as above.

Now, for each m ≥ 1, let us consider the blown-up model

Φ(N,m) =
K∑
i=1

R
(m)
i U

(m)
i T

(m)
i (U

(m)
i )∗(R

(m)
i )∗ =

K∑
i=1

(Ri⊗Im)U
(m)
i (Ti⊗Im)(U

(m)
i )∗(Ri⊗Im)∗,

where the matrices are now considered in the blown-up rectangular space generated by the

orthogonal projections (P0 ⊗ Im), . . . , (PK ⊗ Im) ∈MMm(C), where (Pi ⊗ Im)U
(m)
i (Pi ⊗

Im) = U
(m)
i are independent and Haar-distributed in the compressed spaces U(mNi) ⊂

(Pi ⊗ Im)MMm(C)(Pi ⊗ Im).
By Theorem 5.1.4,

(R
(m)
1 , U

(m)
1 , T

(m)
1 , . . . , R

(m)
K , U

(m)
K , T

(m)
K )

D→ (r1, u1, t1, . . . , rK , uK , tK) (5.6)

in some 〈p0, . . . , pK〉-rectangular probability space (A, τ) with τ(pi) = Ni/M , where
u1, . . . uk, 〈r1, t1, . . . , rK , tK〉 are D-free, ui|A(i) is a Haar unitary and

τ(rε1i1 t
δ1
j1
· · · rεsis t

δs
js

) =
1

M
Tr(Rε1i1 T

δ1
j1
· · ·Rεsis T

δs
js

),

for all s ≥ 1, i1, j1, . . . , is, js ≤ K, and ε1, δ1, . . . , εs, δs ∈ {0, 1, ∗}.
Hence Φ(N) → p0Φ�p0 = Φ� :=

∑K
i=1 riuitiu

∗
i r
∗
i ∈ A(0). The nature of the joint D-

distribution of (r1, u1, t1, . . . , rK , uK , tK) falls into a general setting where our algorithm
works (see Chapter 7), allowing us to compute the spectral distribution of Φ�.

5.1.2 Matrix-valued probability spaces

Example 5.1.6 (Matrix-valued probability spaces). Let (A, τ) be a ∗-probability space
and consider the algebra Mn(A) ∼= Mn(C)⊗A of n×n matrices with entries in A. The

63



5 Operator-valued free probability

maps
F3 : (aij)ij 7→ (τ(aij))ij ∈Mn(C),

F2 : (aij)ij 7→ (δijτ(aij))ij ∈ Dn(C),

and

F1 : (aij)ij 7→
n∑
i=1

1

n
τ(aii)In ∈ C · In

are respectively, conditional expectations onto the algebras Mn(C) ⊃ Dn(C) ⊃ C · In of
constant matrices, diagonal matrices and multiples of the identity.

Observe that (Mn(A),F1) is again a scalar-valued *-probability space. If A1, . . . , Ak
are free in (A, τ), then the algebras Mn(A1), . . . ,Mn(Ak) of matrices with entries in
A1, . . . , Ak respectively are in general not free over C (w.r.t. F1). They are, however
Mn(C)-free (w.r.t. F3). Below is a slightly more general assertion of this simple but
fundamental result.

Proposition 5.1.7. Let (A,F) be a B-probability space, and consider the Mn(B)-valued
probability space (Mn(C) ⊗ A, id ⊗ F). If A1, . . . , Ak ⊆ A are B-free, then (Mn(C) ⊗
A1), . . . , (Mn(C)⊗Ak) ⊆ (Mn(C)⊗A) are (Mn(B))-free.

Proof. Let a(1), . . . , a(m) ∈ Mn(C) ⊗ A be such that a(i) ∈ Mn(C) ⊗ Aj(i) with j(1) 6=
j(2) 6= · · · 6= j(m). Observe that

a(i) = a(i) − (id⊗ F)(a(i)) = ((a(i)
rs )− F(a(i)

rs ))rs≤n = (a
(i)
rs )rs≤n.

Hence

(id⊗ F)((a(1)) · · · (a(m))) =
n∑

i0,...,im=1

(F((a
(1)
i0i1

)(a
(2)
i1i2

) · · · (a(m)
im−1im

)))i0im = 0. (5.7)

5.2 Combinatorics of operator-valued free probability

For n ∈ N, a C-multi-linear map f : An → B is called B-balanced if it satisfies the
B-bilinearity conditions, that for all b, b′ ∈ B, a1, . . . , an ∈ A, and for all r = 1, . . . , n− 1

f
(
ba1, . . . , anb

′) = bf (a1, . . . , an) b′

f (a1, . . . , arb, ar+1, . . . , an) = f (a1, . . . , ar, bar+1 . . . , an)

A collection of B-balanced maps (fπ)π∈NC is said to be multiplicative w.r.t. the lattice
of non-crossing partitions if, for every π ∈ NC, fπ is computed using the block structure
of π in the following way:

• If π = 1̂n ∈ NC (n), we just write fn := fπ.
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5.2 Combinatorics of operator-valued free probability

• If 1̂n 6= π = {V1, . . . , Vk} ∈ NC (n) , then by a known characterization of NC,
there exists a block Vr = {s+ 1, . . . , s+ l} containing consecutive elements. For
any such a block we must have

fπ (a1, . . . , an) = fπ\Vr (a1, . . . , asfl (as+1, . . . , as+l) , as+l+1, . . . , an) ,

where π\Vr ∈ NC (n− l) is the partition obtained from removing the block Vr.

We observe that a multiplicative family (fπ)π∈NC is entirely determined by (fn)n∈N.
On the other hand, every collection (fn)n∈N of B-balanced maps can be extended uniquely
to a multiplicative family (fπ)π∈NC .

The operator-valued free cumulants
(
RBπ
)
π∈NC are indirectly and inductively defined

as the unique multiplicative family of B-balanced maps satisfying the (operator-valued)
moment-cumulant formulas

F (a1 . . . an) =
∑

π∈NC(n)

RBπ (a1, . . . , an)

By the cumulants of a tuple a1, . . . , ak ∈ A, we mean the collection of all cumulant
maps

RB;a1,...,ak
i1,...,in

: Bn−1 → B,
(b1, . . . , bn−1) 7→ RBn

(
ai1 , b1ai2 , . . . , bin−1ain

)
for n ∈ N, 1 ≤ i1, . . . , in ≤ k.

A cumulant map RB;a1,...,ak
i1,...,in

is mixed if there exists r < n such that ir 6= ir+1. The
main feature of the operator-valued cumulants is that they characterize freeness with
amalgamation [Spe98]: The random variables a1, . . . , an are B-free iff all their mixed
cumulants vanish.

We recall two useful results from [NSS02]. The first proposition gives conditions for
(operator-valued) cumulants to be restrictions of cumulants with respect to a larger
algebra.

Proposition 5.2.1. Let 1 ∈ D ⊂ B ⊂ A be algebras such that (A,E) and (B,F) are
respectively B-valued and D-valued probability spaces (and therefore (A,F ◦E) is a D-
valued probability space) and let a1, . . . , ak ∈ A.

Assume that the B-cumulants of a1, . . . , ak ∈ A satisfy

RB;a1,...,ak
i1,...,in

(d1, . . . , dn−1) ∈ D,

for all n ∈ N, 1 ≤ i1, . . . , in ≤ k, d1, . . . , dn−1 ∈ D.

Then the D-cumulants of a1, . . . , ak are just the restrictions of the B-cumulants of
a1, . . . , ak, namely

RB;a1,...,ak
i1,...,in

(d1, . . . , dn−1) = RD;a1,...,ak
i1,...,in

(d1, . . . , dn−1) ,

for all n ∈ N, 1 ≤ i1, . . . , in ≤ k, d1, . . . , dn−1 ∈ D.
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The second proposition gives a characterization of operator-valued freeness by the
agreement of operator-valued cumulants in different levels.

Proposition 5.2.2. Let 1 ∈ D ⊂ B,N ⊂ A be algebras such that (A,E) and (B,F)
are respectively B-valued and D-valued probability spaces. Then the first of the following
statements implies the second.

i) The subalgebras B,N are free with amalgamation over D.

ii) For every k ∈ N, n1, . . . , nk ∈ N , b1, . . . , bk−1 ∈ B, we have

RBn (n1b1, . . . , nk−1bk−1, nk) = RDn (n1F (b1) , . . . , nk−1F (bk−1) , nk) .

Moreover, the two statements become equivalent if we add the faithfulness condition on
F : B → D, that if F (b1b2) = 0 for all b2 ∈ B, then b1 = 0.

5.3 Operator-valued convolutions via analytic subordination

Like in the scalar case, there are analytical tools to compute operator-valued free con-
volutions, which are based on the B-valued Cauchy-transform

GBx (b) = F((b− x)−1),

which maps the operatorial upper half-plane

H+(B) := {b ∈ B : ∃ε > 0 such that − i(b− b∗) ≥ ε · 1}

into the lower half-plane H−(B) = −H+(B). In the usual settings coming from ran-
dom matrix models (as we have seen above), our probability space A may have several
operator-valued structures Fi : A → Bi simultaneously, with C = B1 ⊂ B2 ⊂ · · · ⊂ Bk,
and Fi ◦ Fi+1 = Fi. We are usually interested ultimately in the scalar-valued distribu-
tion, which can be obtained (via Stieltjes inversion) from the Cauchy-transform. The
later in turn can be obtained from any ”upper” Bi-valued Cauchy transform, as we have
that, for all b ∈ Bi

Fi(G
Bi+1
x (b)) = Fi ◦ Fi+1((b− x)−1) = Fi((b− x)−1) = GBix (b).

A drawback of the operator-valued setting is that, unless we ask B to be commutative,
one can hardly compute explicit distributions: although B-valued generalizations of
the R and S-transforms exist ([Voi95], [Dyk06]), the task of explicitly inverting these
operator-valued analytic maps is nearly impossible for any non-trivial situation (even
for finite dimensional, relatively simple sub-algebras, like B = M2(C)).

In terms of moments, the operator-valued Cauchy transform is given by

GBx (b) = F((b− x)−1) =
∑
n≥0

F(b−1(xb−1)n)
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The operator-valued R-transform is defined by

RBx (b) =
∑
n≥1

RBn (x, bx, . . . , bx) .

The vanishing of mixed cumulants for free variables implies the additivity of the cumu-
lants, and thus also the additivity of the R-transforms [Voi95]: If a1 and a2 are B-free
then we have for b ∈ B that Ra1+a2(b) = Ra1(b) +Ra2(b).

As in the scalar case, these transforms satisfy the functional equation

GBa (b) =
(
RBa

(
GBa (b)

)
− b
)−1

(5.8)

Rather than directly computing B-valued R-transforms, a very powerful method to
obtain B-valued free convolutions is based on the analytic subordination phenomena
observed by Biane ([Bia98], see also [Voi02]). In particular, the approach of [BB07] to
obtain the subordination functions by iterating analytic maps can be very efficiently
performed in the B-valued context.

Theorem 5.3.1. [BMS13] Let (A,F) be a B-valued C∗-probability space and let x, y ∈ A
be self-adjoint, B-free. There exist an analytic map ω : H+(B) → H+(B) such that
Gx(ω(b)) = Gx+y(b). Furthermore, for any b ∈ H+(B) the subordination function ω(b)
satisfies

ω(b) = lim
n→∞

f◦nb (w),

where, for any b, w ∈ H+(B), fb(w) = hy(hx(w) + b) + b and h is the auxiliary analytic
self-map hx(b) = (E((b− x)−1))−1 − b on H+(B).

Numerically speaking, going from hx to Gx and vice-versa is a simple operation. This
means that one only needs the individual B-valued Cauchy transforms of x, y (or good
approximations of these) to obtain the B-valued Cauchy transform of x+ y, and hence,
its probability distribution. The operator-valued multiplicative convolution can also be
numerically approximated (see Section 5.5.2).

We will be interested in the particular setting where (A,F) is a rectangular probability
space and hence our main space (Mn(C) ⊗ A, id ⊗ F) consists of n × n matrices with
entries in A, endowed with the entry-wise evaluation of F.

In Chapter 7 we will follow Anderson’s self-adjoint linearization trick to obtain the dis-
tribution of a polynomial (such as Φ� from example 5.1.5) from the Mn(D)-distribution
of an operator which depends linearly on the inputs of the polynomial. In the next section
we show how to obtain the Mn(D)-valued Cauchy-transforms of such linear elements.

5.4 Linear elements

In a scalar-valued non-commutative probability space (A, τ), we have the integral rep-
resentation of the Cauchy-transform:

Gx(z) = τ((z − x)−1) =

∫
R

(z − t)−1dµx(t).
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Analogously, for linear, self-adjoint elements c⊗ x in a Mn(C)-valued probability space
(Mn(C)⊗ (A), idm ⊗ τ), we have:

Gc⊗x(b) = (idm ⊗ τ)((b− c⊗ x)−1) =

∫
R

(b− c⊗ t)−1dµx(t).

The previous integrals can be approximated, for example, by using matrix-valued Rie-
mann sums. In particular, we are able to approximate the Mn(C)-valued Cauchy trans-
form of any self-adjoint matrix which depends linearly on a semicircular element s. The
same can be done if we start with a rectangular probability space.

Let (A,F) be a 〈p1, . . . pk〉-rectangular probability space and consider the B-valued
probability space (Mm(C)⊗A,F2), where F2 = idm⊗F and B = (Mm(C)⊗〈p1, . . . pk〉)

Consider x ∈ A of the form x = α1p1s1p1 + · · · + αkpkskpk, where si = pisipi is a
semicircular element when restricted to A(i). Let c ∈Mm(C), and let b = (dij)i,j≤m ∈ B,

with dij = βij1 p1 + · · ·+ βijk pk. Then we have

GBc⊗x(b) = F2((b− c⊗ x)−1)

= (idm ⊗ F)((b− c⊗ x)−1)

=
1

2π

∫ 2

−2
[((βij1 − cijα1t)p1 + · · ·+ (βijk − cijαkt)pk)ij ]

−1
√

4− t2dt.

The case of deterministic matrices is simpler. If we assume that Mn(C) ⊂ A and
consider x = x∗ ∈ Mm(C)⊗Mn(C). Then GBx (b) = GBx (b⊗ In) is just the partial trace
(idm ⊗ F2)((b⊗ In − x)−1).

One should be able to provide a similar trick to approximate Cauchy transforms for
elements of the form c⊗u+c∗⊗u∗. For the moment, we find a way around this problem
by removing Haar unitaries, as discussed in Section 3.3.

5.5 Operator valued free multiplicative convolution

In [BSTV14] we generalized to the operator-valued level the fixed point algorithm from
[BB07] to compute free multiplicative convolutions. Let us first recall the eta transform
(or Boolean cumulant transform)

ηx(b) = 1− b(F((b−1 − x)−1))−1.

Theorem 5.5.1. Let x > 0, y = y∗ ∈ A be two random variables with invertible expec-
tations, free over B. There exists a Fréchet holomorphic map ω2 : {b ∈ B : =(bx) > 0} →
H+(B), such that

1. ηy(ω2(b)) = ηxy(b), =(bx) > 0;

2. ω2(b) and b−1ω2(b) are analytic around zero;
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5.5 Operator valued free multiplicative convolution

3. For any b ∈ B so that =(bx) > 0, the map gb : H+(B) → H+(B), gb(w) =
bhx(hy(w)b), where

hx(b) = b−1 − F
[
(b−1 − x)−1

]−1
; (5.9)

is well-defined, analytic and for any fixed w ∈ H+(B),

ω2(b) = lim
n→∞

g◦nb (w),

in the weak operator topology.

Moreover, if one defines ω1(b) := hy(ω2(b))b, then

ηxy(b) = ω2(b)ηx(ω1(b))ω2(b)−1, =(bx) > 0.

The invertibility condition of F(Y ) can be dropped if we restrict to finite dimensional
algebras.

Proposition 5.5.2. Let B be finite-dimensional and x > 0, y = y∗ free over B. There
exists a function g : {b ∈ B : =(bx) > 0} ×H+(B)→ H+(B) so that

1. ω2(b) := limn→∞ g
◦n
b (w) exists, does not depend on w ∈ H+(B), and is analytic on

{b ∈ B : =(bx) > 0};

2.
ηy(ω2(b)) = ηxy(b), b ∈ {b ∈ B : =(bx) > 0}.

Theorem 5.5.1 and Prop. 5.5.2 reduce the task of computing the distribution of the
product of B-free random variables x, y to the computation of the individual B-valued
Cauchy transforms of x and y, from which the h transforms can be easily derived. In
[BSTV14] we used these theorems to compute the asymptotic distribution of certain
matrix ensembles.

In particular, we treated the case of the product of shifted operator-valued semi-
circulars. In [BSTV14] we also solved some instance of the situation described in Sec-
tion 3.5 of matrix ensembles of the form a1b1a

∗
1 + · · ·+ anbna

∗
n, where {a1, . . . , an} and

{b1, . . . , bn} are free.
This later case will not be included here since it can be also treated by the general

method described in Chapter 7, which is based on [BMS13]. A drawback of our method
to compute the multiplicative convolution is that one is in general not allowed to iterate
it. While computing the free multiplicative convolution

√
xy
√
x of x, y, we actually

compute the transforms for the operator xy, which has the same scalar-valued moments
as
√
xy
√
x. Since it is no longer true that

√
x
√
yz
√
y
√
x and

√
xyz
√
x have the same

moments, we cannot proceed in this direction.
Another example which can be solved by both the multiplicative and additive convo-

lutions is the case of block-linear transformations of a matrix ensemble which are used
in quantum information theory to detect entanglement. Such ensembles were first con-
sidered by [Aub12], and further developed in [BN12a], [BN12b] and [ANV]. For this
case, the multiplicative convolution seems not only to be the simplest way to get the
distribution, but it also gives some hints on the conditions on the linear transformations
which allow us to obtain explicit (non-numerical) descriptions of the distributions.
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5 Operator-valued free probability

5.5.1 The product of two free operator-valued semi-circulars

Let s1, s2, s3, and s4 be free, semi-circular random variables, in some scalar-valued
non-commutative probability space (A, τ). Consider the matrices S1 and S2 defined by:

S1 =

(
s1 s1

s1 s2

)
, S2 =

(
s3 + s4 2s4

2s4 s3 − 3s4

)
(5.10)

Since s1, . . . , s4 are limits of independent Wigner matrices, the matrices S1, S2 ∈
(M2(C)⊗A, id2 ⊗ τ) := (M,F) can be thought as limits of block Gaussian matrices.

We want to compute the spectral distribution of (S2 + cI2)S1 in the scalar-valued
probability space (M, 1

2Tr⊗ τ), where c is some constant chosen large enough to make
S2 + cI2 positive. By Prop. 5.1.7, the elements (S2 + cI2), S1 are M2(C)-free and hence
we need only to compute the h-transforms hS1 and hS2 . We take care of the shift by
observing that Gx+b1(b) = F((b− (x+ b1))−1) = Gx(b− b1).

We can compute these h transforms numerically using the method described in [HFS07].
In brief, this involves expressing the Cauchy transform of the operator-valued semicir-
cular in terms of the fixed point of a contraction mapping. Specifically, if we define

W (b) = lim
n→∞

F◦nb (W0) (5.11)

where Fb(W ) = (−ib+ F[SbS])−1, then GS(b) = −iW (b).

Fig. 5.2: Spectral distribution of S1 random matrix simulations (histogram) compared
with numerically calculated density, using fixed point method of [HFS07]

Note that we require the initial state W0 to satisfy =(W0) > 0; convergence of the
above iteration scheme is ensured by arguments from [HFS07]. In our case, with b =
(bij)

2
i,j=1, we have

F[S1bS1] =

(
b11 + b12 + b21 + b22 b11 + b21

b11 + b12 b11 + b22

)
and

F[S2bS2] =

(
2b11 + 2b21 + 2b12 + 4b22 2b11 +−2b12 + 4b21 − 6b22

2b11 + 4b12 − 2b21 − 6b22 4b11 − 6b12 − 6b21 + 10b22

)
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5.5 Operator valued free multiplicative convolution

Fig. 5.3: Spectral distribution of S2 random matrix simulations (histogram) compared
with numerically calculated density, using fixed point method of [HFS07]

We compare the spectral distribution of S1 and S2 computed using this method and
the Cauchy-Stieltjes inversion formula to random matrix simulations in Figures 5.2 and
5.3.

Fig. 5.4: Spectral distribution (S2 + 8.5I2)S1 using our method.

Finally, using the numerically computed h transforms of S1 and S2 + cI2 we used
the iterative method discussed here to compute the h transform of their product. In
Figure 5.4, we compare the distribution computed using our method to random matrix
simulations of the ground truth spectral distribution of (S2 + cI2)S1.

For the sake of variety, we consider another operator-valued semi-circular example.
Let now {si}6i=1 be free semi-circular elements, and let:

S′1 =

−10s1 2s2 30s3

2s2 −4s3 5s1

30s3 5s1 16s1

 and S′2 =

−2s4 + 3s6 3s5 + 30s6 s6

3s5 + 30s6 s4 + s5 + s6 s4

s6 s4 40s4

 (5.12)
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5 Operator-valued free probability

Fig. 5.5: Spectral distribution of S′1 random matrix simulations (histogram) compared
with numerically calculated density using fixed point method of [HFS07].

Fig. 5.6: Spectral distribution of S′2 - random matrix simulations (histogram) compared
with numerically calculated density using fixed point method of [HFS07].

We follow the same pattern as previously: applying the numerical method proposed in
[HFS07] to compute the individual h transforms of S′1 and S′2 (see Figure 5.6), and then
using our iterative method to compute the spectral distributions of (S′2+85I3)(S′1+40I3)
and (S′2 + 85I3)(S′1 + 75I3) (see Figure 5.8).

5.5.2 Block-linear transformations of random matrices

Now we show that the free multiplicative convolution can be used to compute the distri-
bution of random matrices which have been deformed block-wise by a fixed self-adjoint
linear transformation. Aubrun [Aub12] studied the case of the partial transposition,
which is an example of a positive map which is not completely positive. These maps are
relevant in quantum information theory to detect entanglement. In [BN12a, BN12b],
Banica and Nechita computed the distributions of more general block-modified random
matrices .

In [ANV] we continued these works. The new approach relies on operator-valued free
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5.5 Operator valued free multiplicative convolution

Fig. 5.7: Spectral distribution of (S′2 + 85I2)(S′1 + 40I3) - random matrix simulations
(histogram) compared with numerically calculated density using our method.

Fig. 5.8: Spectral distribution of (S′2 + 85I2)(S′1 + 75I3) - random matrix simulations
(histogram) compared with numerically calculated density using our method.

probability. In particular, we employed Theorem 5.5.1 to approximate the operator-
valued free multiplicative convolution by iterating analytic maps, providing a general,
numerical solution, which is explained in this section. In [ANV] we also found new
classes of matrices for which we are able to write explicit limiting distributions.

Let W be a self-adjoint random matrix in a C∗-probability space (Adn, τdn) of dn×dn
random matrices, where τdn is the normalized expected trace, and let ϕ : Mn(C) →
Mn(C) be a linear map. We consider the block-modified random matrix

Wϕ := (idd ⊗ ϕ)(W ).

We want to understand the asymptotic eigenvalue distribution of Wϕ

Let ϕ :Mn(C)→Mn(C) be a self-adjoint linear map

ϕ(A) =
n∑

i,j,k,l=1

αijklEijAEkl,
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5 Operator-valued free probability

with αijkl = αlkji ∈ C.
The observation is that we may write

Wϕ =

n∑
i,j,k,l=1

αijkl(Id ⊗ Eij)W (Id ⊗ Ekl),

where Eij ∈Mn(C) are the matrix units.
Note that the collection (Id ⊗ Eij)ni,j=1 has (w.r.t. τdn) the same joint distribution as

(Eij)
n
i,j=1 (w.r.t. τn) and then in the limit d → ∞, (Id ⊗ Eij)ni,j=1 has a distribution.

Thus, as d → ∞, we can use Voiculescu’s asymptotic freeness results between Wishart
(or Wigner, or randomly rotated) matrices and deterministic matrices.

We will replace our deterministic matrices (Id ⊗ Ejl)
n
i,j=1 by an abstract collection

(eij)i,j≤n of matrix units in a non-commutative probability space (A, τ). The joint
distribution of these matrix units is completely determined by the rules

eijekl = δjkeil, τ(eij) = n−1δij ,
n∑
i=1

eii = 1, e∗ij = eji.

On the other hand, the random matrix W will be replaced by an element w ∈ A
which is free from (eij)i,j≤n and whose individual distribution is given by the asymptotic
distribution of W as d → ∞. Then the limiting distribution of Wϕ is the same as the
distribution of

wϕ :=
n∑

i,j,k,l=1

αijkleijwekl

Thus, the problem is reduced to study the distribution of such elements. In general,
it is not true that the summands eijwekl are free among themselves.

In order to construct an auxiliary self-adjoint matrix, let us consider the lexicographic
order of two-letter words in an n-letter alphabet, and write, for (i, j) < (l, k),

reiθeijwekl + re−iθelkweji = r1/2(eiθ/2eij + e−iθ/2elk)wr
1/2(e−iθ/2eji + eiθ/2ekl)

−reijweji − relkwekl
= (f ijkl )w(f ijkl )

∗ − reijweji − relkwekl

so that we get

wϕ =
∑

1≤i,j,k,l≤n
(i,j)<(l,k)

(f ijkl )w(f ijkl )
∗ +

∑
1≤i,j≤n

βijeijweji

=
∑

1≤i,j,k,l≤n
(i,j)<(l,k)

(f ijkl )w(f ijkl )
∗ +

∑
1≤i,j≤n

fij(−1)ε(i,j)wf∗ij

=
∑

1≤i,j,k,l≤n
(i,j)≤(l,k)

(f ijkl )ε
ij
klw(f ijkl )

∗,
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5.5 Operator valued free multiplicative convolution

where εijji = (−1)ε(i,j) and εijkl = 1 for (i, j) 6= (l, k).

From the elements f ijkl , (i, j) ≤ (l, k) we build a vector f = (f11
11 , f

11
12 , . . . , f

nn
nn ) of size

m := n2(n2 +1)/2. We consider also the diagonal matrix Σ = diag(ε11
11, ε

11
12, . . . , ε

nn
nn) and

we let w̃ := Σ⊗ w.
We see that fw̃f∗ = wϕ, so the desired distribution is the same (modulo a Dirac

mass at zero of weight 1− 1/m) as the distribution of f∗fw̃ in the C∗-probability space
(Mm(C) ⊗ A, trm ⊗ τ). Moreover, since w and each of the eijkl are free, by Proposition
5.1.7, the matrices f∗f and w̃ are free with amalgamation over Mm(C) (with respect to
the conditional expectation E := idm ⊗ τ).

By Prop. 5.5.2, we can obtain the Mm(C)-valued Cauchy transform of fw̃f∗ numer-
ically, provided that we can compute the Mm(C)-valued Cauchy transforms (or good
approximations) of f∗f and w̃. The elements f∗f and w̃ fall in the cases which we can
compute from Section 5.4.

Fig. 5.9: Block-modified Wigner matrix

We compare the distributions obtained with our method and the empirical eigenvalue
distributions of 20 realizations of 1000× 1000 block-modified for the cases where w has
a Wigner, Wishart and arcsine limiting distribution and the block transformation

ϕ((aij)i,j≤2) =

(
11a11 + 15a22 − 25a12 − 25a21 36a21

36a12 11a11 − 4a22

)
In [ANV] we also obtained conditions on ϕ which allow to express the asymptotic

distribution of Wϕ as the product of operators which are free with amalgamation over
a commutative algebra. For such cases we are able to provide explicit distributions.
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5 Operator-valued free probability

Fig. 5.10: Block-modified Wishart matrix

Fig. 5.11: Block-modification of a rotated arcsine matrix
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6 (Free) deterministic equivalents

In the engineering literature the notion of a deterministic equivalent (apparently going
back to Girko [Gir01], see also [HLN07]) has recently gained quite some interest. A
deterministic equivalent is a simplification of the Cauchy transform GP of the considered
random matrix model (for which no analytic solution exists) by a function ĜP which is
defined as the solution of a specified system of equations, such that ĜP and GP are close
if the matrices of the model are large. The specific form of those equations is determined
in an ad-hoc way, depending on the considered problem, by making approximations for
the equations of GP , such that one gets a closed system of equations.

Most examples of deterministic equivalents are used to obtain approximations of Her-
mitian random matrix models involving Wigner, Wishart, Haar-unitary and determin-
istic matrices. For these cases, we showed in [SV12] that the Cauchy transform of our
free deterministic equivalent P� is the solution to the equations of the deterministic
equivalents, i.e., that ĜP = GP� (see Section 6.2 for the definition of P�).

We want to point out that a first instance of these phenomena was essentially also
observed in [NS95] in the context of the so-called CPA approximation (a kind of mean-
field approximation) for the Anderson model from statistical physics. In our present
language their result can be rephrased as saying that the free deterministic equivalent
of the Anderson model is given by the CPA approximation.

We think that our definition of a deterministic equivalent gives a more conceptual
approach (which can be easily extended to arbitrary polynomials) but more importantly,
it gives an algebraic framework in which the individual and collective behavior of large
random and deterministic matrices can be better organized.

From the free probabilistic nature of P� we can easily associate an operator (PN )N≥1

which approaches P� in AED distribution w.r.t. (idd⊗ τN ) and (τd⊗ τN ), reproducing,
in some sense, the role that the partial sums SN = 1√

N
(X1 + · · ·+XN ) of i.i.d. random

variables play w.r.t. τ in the different central limit theorems (the corresponding Gaussian
distribution being P�).

In addition, we will be able to set a fixed point equation whose unique solution is
GP� , for any polynomial matrix model.

In [CD11] the authors present also three examples of deterministic equivalents for
non-polynomial models. Although the treatment that these examples require is slightly
different, we will see that the solution to the deterministic equivalent for these models is
again the Cauchy transform of an object which appears quite naturally in free probability.
We introduce some of these examples here. A more detailed analysis is given in the last
chapter.

In some sense this indicates that the only meaningful way to get closed systems of
equations when dealing with certain self-adjoint random linear models (such as the ones
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6 (Free) deterministic equivalents

built up by deterministic matrices, zero mean i.i.d. random matrices or independent
Haar unitary matrices) is to replace the model by the limit of some related model,
whose distribution can be realized by a free-probabilistic operator.

6.1 Deterministic equivalents for Cauchy-transforms

A Wishart matrix is a random matrix WN = XNX
∗
N , where X is a N×n random matrix

with centered (complex) i.i.d. entries with variance 1/n. If N/n → λ, the AED of WN

converges to the Marchenko-Pastur law ν which is given by

ν =

{
(1− λ)δ0 + ν̃, if 0 ≤ λ ≤ 1,
ν̃, if 1 < λ.

where ν̃ is the measure supported on the interval [(1−
√
λ)2, (1 +

√
λ)2], with density

dν̃(t) =
1

2πt

√
4λ− (t− 1− λ)2dt.

The Marchenko-Pastur law ν is the free law of small numbers and therefore it is often
referred to as free Poisson.

Let us assume that λ ≥ 1 (the other case is similar). We can think of W as N
n YNPnY

∗
N ,

where YN is a non-self-adjoint Wigner matrix and Pn is a projection of trace n. By
Voiculescu’s asymptotic results, we know that (WN ) → (λcPλc

∗), where c is a circular
operator which is free from a projection Pλ with τ(Pλ) = λ−1.

If we use the formula for cumulants with products as arguments (Theorem 4.3.2), it
is quite simple to see that Rn(cPλc

∗, . . . , cPλc
∗) = τ(Pλ) = λ−1 and hence

RλcPλc∗(z) =
∑
n≥1

λn−1zn−1 =
1

1− λz
. (6.1)

Therefore, we get the functional equation

Gν(z) = GλcPλc∗(z) = (z −RλcPλc∗(GλcPλc∗(z)))
−1 (6.2)

= (z − 1

1− λGλcPλc∗(z)
)−1. (6.3)

Let us now consider some generalizations of the previous model:

First let Φ1,N := XNTnX
∗
N , whereXN is as above and Tn is a deterministic matrix such

that (µTn)→ µt. Therefore, (Φ1,N )→ λctc, where c and t are free. We may proceed as
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6.1 Deterministic equivalents for Cauchy-transforms

in the previous case and note that κn(ctc∗, . . . , ctc∗) = τ(tn) = λ−1
∫
R x

ndµt(x). Hence

Rλctc∗(z) =
∑
n≥1

λn−1zn−1

∫
R
xndµt(x) = (zλ)−2Gt((zλ)−1)− (zλ)−1 (6.4)

= (zλ)−1(

∫
R

(zλ)−1dµt(x)

x− (zλ)−1
− 1) (6.5)

= (zλ)−1(−
∫
R

dµt(x)

1− xzλ
− 1) (6.6)

= (zλ)−1(

∫
R

xzλdµt(x)

1− xzλ
) (6.7)

=

∫
R

xdµt(x)

1− xzλ
. (6.8)

Therefore, the Cauchy transform of the limiting distribution µλctc satisfies the equation

Gλctc∗(z) = (z −Rλctc∗(Gλctc∗(z)))−1 (6.9)

= (z −
∫
R

xdµt(x)

1− xλGλcPλc∗(z)
)−1. (6.10)

For finite N we may consider the equation

GN (z) = (z −
∫
R

xdµTn(x)

1− xNn−1GN (z)
)−1. (6.11)

From here it is quite intuitive that, as N → ∞, the probability distribution µN with
Cauchy transform GN will approach that of GΦN (since both coincide in the limit).
In fact, we actually do not require Tn to have a limit in distribution (as long as some
boundedness condition is imposed). The cumulative distribution functions of µN and
µΦ1,N

will satisfy that FµN − FµΦ1,N → 0 even if the limit of FµTn , and hence those of
FµN and F

µΦ1,N do not exist.

This possibility of considering non-converging sequences of deterministic matrices has
given the impression that we are dealing with objects which will not satisfy asymptotic
freeness and hence fall outside the realm of free probability.

We should note, however, that from the model P = XNTnX
∗
N , we may define the

ensemble Pm = X
(m)
N (Tn ⊗ Im)(X

(m)∗
N ), where X

(m)
N is now an Nm × nm matrix with

complex i.i.d. centered variables with variance (nm)−1. We observe that the determin-
istic equivalent yields exactly the limiting distribution of the ensemble.

The model P =
∑k

i=1RiXiTiX
∗
i R
∗
i (see Section 7.2) gives a further generalization of

the previous one. In [CDS11], it was shown that a deterministic equivalent for the model
is given as the solution of the equation

mN (z) =
1

N
tr(zIN −

k∑
j=1

∫
R

xjdµTj (xj)

1− xjNn−1
j ej(z)

RjR
∗
j )
−1,
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6 (Free) deterministic equivalents

where

ei =
1

N
trRiR

∗
i (zIN −

k∑
j=1

∫
R

xjdµTj (xj)

1− xjNn−1
j ej(z)

RjR
∗
j )
−1.

The equations are now more involved, but it remains true that the deterministic
equivalent GN yields again the same distribution as the limit of the ensemble Pm =∑k

i=1(Ri ⊗ Im)Xi,m(Ti ⊗ Im)X∗i,m(R∗i ⊗ Im).

This seems to be a general phenomenon: the deterministic equivalents for the 4 poly-
nomial matrix models presented in [CD11] are actually limiting distributions of very
concrete matrix ensembles which can be seen in the limit as polynomials on free opera-
tors.

Now let WN = XNX
∗
N where the XN = (xij)i≤Nj≤n has complex, centered, indepen-

dent entries with different variances σij/n. Then

mN (z) =
1

z

1

N

N∑
k=1

(z − 1

n

n∑
i=1

σ2
ki

1− eN,i(z)
)−1, (6.12)

where

eN,j(z) =
1

n

N∑
k=1

σ2
kj(z −

1

n

n∑
i=1

σ2
ki

1− eN,i(z)
)−1 (6.13)

One can show that the deterministic equivalent for the first case corresponds to the
Cauchy transform of operator-valued circulars element with variance profile, in the sense
of Shlyakthenko [Shl96]. This means essentially replacing the complex i.i.d. entries by
free circular entries.

However, since we cannot express the linear map which scales the variances L(XN ) =∑
σijPiXPj as a finite polynomial on XN and deterministic matrices, we are not allowed

in principle to use our asymptotic freeness toolbox. Hence, although the deterministic
equivalent is a very free probabilistic object, the convergence does not follow directly
from the results that we have been using.

However, by adjusting carefully the combinatorial arguments of the matrix-valued
moment computations (as we already did when we moved from the scalar to the rectan-
gular setting), one can usually justify (in some still quite ad-hoc way) the convergence
results for this non-polynomial model (and, for example, the models described in Thm.
6.12 and 6.14 in [CD11]). We will no longer discuss the non-polynomial situation in this
work.

6.2 Free deterministic equivalents

Definition 6.2.1. Let

P (x1, . . . , xn1 , u1, . . . , un2 , d1, . . . , dn3)
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6.3 Simplified FDE’s and correspondence to DE’s

be a self-adjoint polynomial in non-commutative indeterminates x1, . . . , xn1 ,u1, . . . un2,
d1, . . . , dn3 and their adjoints.

For some N ≥ 1, let P0, . . . , Pk ∈MN (C) be pairwise orthogonal projections, such that
P0 + · · ·+ Pk = IN . Let X1, . . . , Xn1 and U1, . . . , Un2 be independent random matrices,
such that

• for each i ≤ n1, Xi = Pj(i)XiPj(i) is a Wigner Matrix for some j(i) ≤ k (in the
compressed space).

• for each i ≤ n2, Ui = Ph(i)UiPh(i) is a Haar-unitary random matrix for some
h(i) ≤ k (in the compressed space).

• D1, . . . , Dn3 are deterministic matrices, with Di = Ph1(i)DiPh2(i) for some h1(i), h2(i) ≤
n3

• P (X1, . . . , Xn1 , U1, . . . , Un2 , D1, . . . , Dn3) =: P = P0PP0

The free deterministic equivalent P� of P is defined as

P� = P (s1, . . . , sn1 , u1, . . . , un2 , D1 . . . Dn3),

where s1, . . . , sn1 , u1, . . . , un2 are elements in some rectangular probability space (A, τ)
(with the same orthogonal projections P0, . . . , Pk ∈MN (C) ⊂ A) whose joint D-distribution
is determined by the following conditions:

• For all i ≤ n1, si = Pj(i)siPj(i) is a semicircular in the compressed space (Aj(i), τ j(i)).

• For all i ≤ q, ui = Pj(i)uiPj(i) is a Haar-unitary in the compressed space (Ah(i), τ j(i)).

• s1, . . . , sn1 , u1, . . . , un2 , 〈D1, . . . , Dn3〉 are free with amalgamation over 〈P0, . . . , Pk〉.

Observe that the joint distribution of (s1, . . . , sn1 , u1, . . . , un2 , D1 . . . Dn3) is exactly the

asymptotic joint distribution of (X
(m)
1 , . . . , X

(m)
n1 , U

(m)
1 , . . . , U

(m)
n2 , D1⊗Im, . . . Dn3⊗Im),

where, for m ≥ 1, X
(m)
1 , . . . , X

(m)
n1 , U

(m)
1 , . . . , U

(m)
n2 are the corresponding independent

blown-up Wigner matrices and Haar-distributed random unitary matrices. In particular,

if Pm = P (X
(m)
1 , . . . , X

(m)
n1 , U

(m)
1 , . . . , U

(m)
n2 , D1 ⊗ Im . . . Dn3 ⊗ Im), then Pm → P� as

m→∞.

6.3 Simplified FDE’s and correspondence to DE’s

In Section 3.3 we saw that the distribution of a + ubu∗ where {a, b}, {u, u∗} are free is
the same as the distribution of ã+ b̃, where a ∼ ã and b ∼ b̃ and ã, b̃ are free.

Hence we may, for example, reduce the problem of investigating the distribution of
a+ubu∗ to that of ã+ b̃. In Chapter 7 we will be able to obtain the Cauchy transform of
P� from the matrix-valued transform of its linearizion, LP� which depends linearly on
the variables of P�. The size of the linearizion and the number of free convolutions that
we have to compute will depend on the complexity of the polynomial (in particular, on
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6 (Free) deterministic equivalents

the number of variables). It will be convenient then, to find a way to represent P� so
that we reduce the computational complexity of our algorithm to get its distribution.

We will present here an example of such simplifications. We show that the equations
which determine the DE can be very easily derived as equations which determine the
Cauchy transform of the corresponding FDE. These equations are derived, however, in
an ad-hoc way. In Chapter 7 we present a general algorithm.

Consider again the model in Example 5.1.5. In this case we have that

P� =
k∑
i=1

RiuiTiu
∗
iR
∗
i ,

where 〈R1, . . . , Rk, T1, . . . , Tk〉, u1, . . . , uk are D-free. Assume that the matrices are al-
ready embedded as in Example 5.1.5 and let R =

∑k
i=1Ri, U =

∑k
i=1 ui and T =∑k

i=1 Ti, then we have that P� = RUTU∗R∗. Moreover, theD-distribution of (R,UTU∗)

is the same as the D-distribution of (R, T̃ ), where R, T̃ are D-free and (T̃ )
D∼ T .

Proposition 6.3.1. Let (A,F) be a 〈p1, . . . , pk〉rectangular probability space. Let A1, A2 ⊂
A and U = u1 + u2 + · · ·+ uk ∈ A be such that 〈D1, D2〉, U are D-free and uj = pjujpj
is a Haar unitary in the compressed space pjApj. Then D1, UD2U

∗ are D-free.

Proof. Just replace τ by F in Prop. 3.3.1.

Let F2 : A → 〈R,D〉 := B be the unique conditional expectation such that τ ◦F2 = τ .
From the equations defining G, R, (5.8) and in view of Prop. 5.2.2, we have that

G
〈R,D〉
RT̃R∗

(b) = (b−R〈R,D〉
RT̃R∗

(G
〈R,D〉
RT̃R∗

(b)))−1 (6.14)

= (b−RR〈R,D〉
T̃

(R∗G
〈R,D〉
RT̃R∗

(b)R)R∗)−1 (6.15)

= (b−RRD
T̃

(F(R∗G
〈R,D〉
RT̃R∗

(b)R))R∗)−1 (6.16)

= (b−RRD
T̃

(
k∑
i=1

Piτ(Pi)
−1τ(PiR

∗G
〈R,D〉
RT̃R∗

(b)R))R∗)−1 (6.17)

= (b−RRD
T̃

(

k∑
i=1

Pi
M

Ni

1

M
Tr(RiR

∗
iG
〈R,D〉
RT̃R∗

(b)))R∗)−1, (6.18)

where we use at last that τ = 1
MTr when restricted to 〈R,D〉. Since t̃i = Piuitiu

∗
i are

orthogonal, we have that RD
T̃

(b) =
∑k

i=1 PiRDt̃i (b) =
∑k

i=1 PiR
〈Pi〉
ti

(bi). This can be seen
by functional calculus or, alternatively, by freeness over D, which can be seen easily with
cumulants, as the arguments are orthogonal. Hence
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6.3 Simplified FDE’s and correspondence to DE’s

P0G
〈R,D〉
RT̃R∗

(b)P0 = P0(b−R(
k∑
i=1

PiR〈Pi〉ti
(

1

Ni
Tr(RiR

∗
iG
〈R,D〉
RT̃R∗

(b))))R∗)−1P0 (6.19)

= P0(b−
k∑
j=1

RjR
∗
jR
〈Pi〉
tj

(
1

Nj
Tr(RjR

∗
jG
〈R,D〉
RT̃R∗

(b))))−1P0 (6.20)

= (b0 −
k∑
j=1

RjR
∗
jR
〈Pi〉
tj

(
1

Nj
Tr(RjR

∗
jG
〈R,D〉
RT̃R∗

(b0))))−1 (6.21)

Note that τ (0) = 1
N0

Tr when restricted to the compressed space 〈R1R
∗
1, . . . , RkR

∗
k〉 =

P0〈R,D〉P0 ⊂ P0AP0. Hence we get

G
P0〈R,D〉P0

RT̃R∗
(zIN0) = (zIN0 −

k∑
j=1

RjR
∗
jR
〈Pj〉
tj

(
1

Nj
Tr(RjR

∗
jG
〈R,D〉
RT̃R∗

(zIN0))))−1,(6.22)

If we define fj(z) := 1
Ni

Tr(RjR
∗
jG
〈R,D〉
RT̃R∗

(zIN0)), then our desired Cauchy-transform

GP�(z) =
1

N0
Tr(G

P0〈R,D〉P0

RT̃R∗
(zIN0))

satisfies the equation

GP�(z) =
1

N0
Tr

zIN0 −
k∑
j=1

RjR
∗
jR
〈Pj〉
tj

(fj(z))

−1 (6.23)

where

fi(z) =
1

Nj
Tr

RiR∗i
zIN0 −

k∑
j=1

RjR
∗
jR
〈Pj〉
tj

(fj(z))

−1 (6.24)

These equations are equivalent to the ones showing up in [CHD11] (since there they
do not use the R-transform of the matrices Ti, this information has to be encoded in
another set of equations in their approach).

One should of course also consider the question whether those equations determine the
fj(z) uniquely, within a suitably chosen class of functions. This questions is answered
affirmatively for the present example in [CHD11]. In a general case, it is usually possible
to find several solutions to the equations and the main problem is to single out the correct
one. Sometimes this has been solved by putting constrains on the input matrices so that
the convergence to right fixed point can be controlled (e.g. by asking some positivity
condition). The ideal situation would be to avoid further constraining and simply find
fixed point equations that leave some subset invariant and such that the unique solution
on this subset is the right one.

In Chapter 7 we solve this general situation by extending the algorithm in [BMS13]
to obtain equations which always determine µP� uniquely.
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7 Linearization trick for FDE’s

One of the main ingredients of our algorithm was already suggested by Voiculescu in his
earlier papers on operator-valued free probability: the possibility to transfer questions
about the distribution of a polynomial in non-commutative random variables to a ques-
tion about the matrix-valued distribution of a related polynomial with matrix-valued
coefficients but such that it is linear on the non-commutative variables.

The idea was formalized and put into practice by Haagerup and Thorbjornsen [HT05].
Some years later, Anderson [And11] found linearizations which preserve self-adjointness
properties. In the next section we generalize Anderson’s self-adjoint linearizion trick to
be able to deal with operator-valued situations.

Our machinery to deal with matrix and rectangular distributions is very well behaved
with respect to the different elements of the numerical algorithm, developed in [BMS13],
to compute distributions of self-adjoint polynomials on free self-adjoint random variables.
For this reason, we mainly point out those few steps where our situation differs.

In the last section, we give FDE’s and suggest some numerically efficient linearizations
for the models in [CHD11]. Before the examples, we first try to give a general overview
on how the specific composition of the models influence the limiting models and the
orders/types of convergence.

7.1 Linearization trick

Proposition 7.1.1. Let (A,B) be a B-probability space and let x1, . . . , xn ∈ A. Let
P = P (x1, . . . , xn) ∈ B〈x1, . . . xn, x

∗
1, . . . x

∗
n〉 be a self-adjoint B-valued polynomial in

x1, . . . , xn and their adjoints. There exist m ≥ 1 and an element LP ∈Mm(C)⊗A such
that:

1. LP = c1⊗x1 +c∗1⊗x∗1 + . . . cn⊗xn+c∗n⊗x∗n+c ∈Mm(C)⊗A, with c ∈Mm(C)⊗B
and, for i ≥ 1 ci ∈Mm(C).

2. If Λε(b)) = diag(b, iε, iε, . . . , iε) ∈Mm(C)⊗ B, then

GBP (b) = lim
ε↓0

(G
Mm(C)⊗B)
LP

(Λε(b)))11.

Proof. The main idea is to think of the polynomial P ∈ B〈x1, . . . , xn, x
∗
1, . . . , x

∗
n〉 as a

polynomial P ∈ B〈x1, . . . , xn, xn+1, . . . , x2n, b1, . . . , bs〉, where xn+j = x∗j and the bi’s
are the elements of B which appear as coefficients in P . With this, we are able to use
[[BMS13], Prop. 3.2, Cor. 3.3 and Prop. 3.4].
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7 Linearization trick for FDE’s

Note that, by proceeding as in [[BMS13], Cor. 3.5], we will also get a self-adjoint
linearizion

LP = c1 ⊗ x1 + · · ·+ cn ⊗ xn + d1 ⊗ x∗1 + · · ·+ dn ⊗ x∗n + e1 ⊗ b1 + · · ·+ es ⊗ bs + f.

The fact that LP = L∗P will mean of course that di = c∗i and c∗ = c := e1 ⊗ b1 + · · ·+
es ⊗ bs + f . So our linearizion has the desired form.

In view of [[BMS13], Cor. 3.3], one has again that (b − P )−1 = [(Λ0(b) − LP )−1]11

whenever (b−P ) (or, equivalently Λ0(b)−LP ) is invertible. Hence, the linearizion works
actually at the level of resolvents and the translation to Cauchy-transforms is obtained
by applying idm⊗F to the resolvent of the right side (we must, however, consider Λε(b) as
in [[BMS13], Cor. 3.6] so that the argument belongs to the operatorial upper-halfplane,
which is the right domain of the Cauchy-transform for a later application of Theorem.
5.3.1).

We include below the adaptations of [[BMS13], Prop 3.4 and Cor. 3.5] to our situation,
which provide such linearizations.

Remark 7.1.2. We recall one procedure to obtain a self-adjoint linearizion. A general
monomial p = b0xi1b1 · · ·xikbk has a (possibly non-self-adjoint) linearizion

LP =



b0
xi1 −1

b1 −1
. . . . . .

xik −1
bk −1


If p = p1 + · · ·+ pk and each pj has a linearizion

Lpj =

[
0 uj
vj Qj

]
,

then a linearizion of p is given by

Lp =


0 u1 · · · uk
v1
...

. . .

vk Qk

 .
Finally, if P is self-adjoint, we may view it as P = q + q∗ for q = p/2. If

Lq =

[
0 u
v Q

]
is a linearizion of q then

LP =

 0 u v∗

u∗ 0 Q∗

v Q 0


is a self-adjoint linearization of P .
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Remark 7.1.3. Since we are able to compute operator-valued Cauchy transforms of
arbitrary deterministic matrices (as these are just partial traces), the products of deter-
ministic matrices do not really bother us. We should use the linearization trick only to
transform the polynomial into a polynomial with matrix coefficients which is linear in
the variables which correspond to random matrices but needs not necessarily to be linear
on the variables corresponding to deterministic matrices.

7.2 Examples: random Matrix Models for wireless
communication

In this Section we consider some matrix models and their deterministic equivalents from
[CD11]. Understanding the nature of such matrix models was one of the main motiva-
tions of our work.

Before proceeding to the examples, we give a general idea of the weak and strong
points of our method with respect to the original works.

In order to contrast both situations, we present later the models and results as they
appear in [CD11] and then we study the models by our means.

7.2.1 General comparison to previous methods and results

Our free probabilistic machinery allowed us to define and understand deterministic equiv-
alents for quite general polynomial matrix models. The models presented in this chapter
will not seem very diverse in terms of the polynomial which presents the ensemble.

We must point out, however, that some of our results concerning these particular
models may be slightly weaker in two possible senses: we may obtain weaker forms/rates
of convergence, or we may have to assume more restrictive conditions on the matrices of
the model.

At first glance, one of the most notorious weak points of our methods is that the
matrices Ri’s and Ti’s that we assume to be deterministic may actually be random
(although independent from the Wigner/Haar unitary matrices and asked to satisfy
certain conditions, such as tightness or uniform boundedness) in the original works.

Randomness of the matrices Ri, Ti

We have seen that the FDE is an object which is well defined even if the deterministic
matrices Ri, Ti (and hence the model itself) have no limit in distribution. In order to
show that the model approaches its FDE one proceeds in the same way as when showing
asymptotic freeness by computing mixed moments of Gaussian, Wigner, Haar matrices
random matrices and deterministic matrices: The important thing to show is that the
contributions to the moments which are indexed (in some way) by crossing partitions
vanishes as N grows. The precise nature of the partitions that we will use depends on
the type of matrices that build our models. In particular, the order of deviation from
the average as N →∞ depends quite a lot on the specific shape of the polynomial.
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7 Linearization trick for FDE’s

For example, the quite recurrent shape RXTX∗R∗ of our polynomials forces only
alternating moments to appear. This, and other similar considerations, such as inputing
a specific i.i.d. distribution in the Wigner matrices, requiring R-diagonality conditions,
Gaussianity, etc, accelerates the order of convergence of the considered models and hence
has an influence on the properties of the analytical transforms that we may associate to
the model (or to its limit).

There are generalizations of the asymptotic freeness results where one may replace the
deterministic matrices by non-deterministic matrices with relatively small fluctuations
on their distributions. In order to do so, we need some bound on the moments (or the
norms) of the deterministic matrices. These bounds are obtained if, for example, we ask
tightness on the spectral distributions of Ri, Ti, or even better, uniform boundedness.
These conditions allow us to mimic the case where the deterministic matrices do converge
in distribution.

If Ri, Ti are allowed to be random, the FDE yields a distribution modulo the inputs
Ri’s and Ti’s. To obtain AED we simply have to replace the choices of Ri, Ti in some
standard fixed point equation. Hence, the resulting distribution will depend on the
specific realization of the Ri’s and Ti’s. The main idea is that, under these tightness
or boundedness assumptions, one is able to give such a general formula, based on the
deterministic case.

More technically speaking, instead of simply amalgamating over MN (C) (which would
already contain Ri, Ti in the deterministic case) we will need to amalgamate over the alge-
bra generated byMN (C) and the random matrices (R1, T1 . . . Rk, Tk). If (R1, T1 . . . Rk, Tk)
and the Wigner/Haar (X1, . . . , Xk) matrices are independent, the conditional expecta-
tion onto the algebra generated by (R1, T1 . . . Rk, Tk) is obtained by integrating out the
terms corresponding to the (x1, . . . , xk).

From the deterministic situations we know how to approximate a model

PN (R1, T1, X1 . . . Rk, Tk, Xk),

where X1, . . . , Xk are Haar-unitary or Wigner random matrices, by a deterministic, free
probabilistic operator, P�

N (R1, T1, x1 . . . Rk, Tk, xk). If we allow R1, T1 . . . Rk, Tk to be
random we simply approximate the model

PN (R1(ω), T1(ω), X1 . . . Rk(ω), Tk(ω), Xk),

whose randomness is only on X1, . . . , Xk by the deterministic operator

P�
N (R1(ω), T1(ω), x1 . . . Rk(ω), Tk(ω), xk).

Since the case where the matrices (R1, T1, . . . Rk, Tk) are deterministic is sufficiently
rich and illustrative, we will restrict our analysis to this case in the rest of the chapter.

Fixed point algorithm

Moving to another aspect, once that we have identified the DE as the Cauchy-Stieltjes
transform of a free probabilistic operator, our general algorithm to compute the distribu-
tion seems to be much more direct and cleaner than the fixed point equations obtained
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in the original works. In particular, the h transform that we use in Theorem 5.3.1 pre-
serves half-planes and hence we no longer have to deal with the usually cumbersome
procedure of selecting the right solution. At least in the earliest works, this problemat-
ics sometimes even led to assumptions (e.g. positivity, diagonality) on the deterministic
matrices which were not really necessary but helped while tracking the right solution.

Orders and rates of convergence

The rates and types of convergence obtained in the original works seem to be nicer than
the ones we achieve with our general methods. We want to investigate this situation
more carefully.

The fact that we consider matrices of different sizes does not affect rates or types of
convergence. We saw that the moments and cumulants of rectangular situations are just
scaled by weights which are quite stable with N (due to the assumption on the stability
of the ratios of the sizes of the matrices). Hence we may reduce our study to the case
where all the matrices are of size N ×N .

Our main free probabilistic tool is the asymptotic freeness of deterministic matrices,
Wigner matrices and Haar-unitary matrices. This result is quite general: It allows us to
compute any asymptotic mixed moment on such matrices.

For example, if we have certain N×N random and deterministic matrices X1, . . . , Xm,
we know how to compute any asymptotic moments

lim
N→∞

τN (Xε1
i1
Xε2
i2
· · ·Xεk

ik
) = τ(xε1i1 x

ε2
i2
· · ·xεkik ),

for all k ≥ 1, i = (i1, . . . , ik) ∈ [m]k and ε = (ε1, . . . , εk) ∈ {1, ∗}k, where (x1, . . . , xm)
are certain non-commutative random variables.

If the random matrices are Gaussian and/or Haar-unitary, we know that

τN (i, ε) := τN (Xε1
i1
Xε2
i2
· · ·Xεk

ik
)→ τ(xε1i1 x

ε2
i2
· · ·xεkik ) =: τ(i, ε)

almost surely (see [AGZ10] [MS12]).
The usual way to show almost sure convergence is by investigating, for each pair of

tuples i, ε, the rate of convergence to 0 of the variances

VarN (i, ε) := τN (ii∗, εε∗)− τN (i, ε)τN (i∗, ε∗),

where i∗ is just the tuple i with the inverse order, ε∗ switches the 1’s by ∗’s (and
vice-versa) and ii∗, εε∗ are just concatenations. In particular, for showing almost sure
convergence, it is enough to show that∑

N≥1

VarN (i, ε) <∞.

There is a general theory in free probability for studying such fluctuations of mixed
moments. We may, however, not be interested in computing all mixed moments, but
only some classes of mixed moments which exhibit a better behavior.

89



7 Linearization trick for FDE’s

In most of the examples below, the crucial randomness of the model comes from
random matrices with independent complex, zero-mean random variables. Such random
matrices are not self-adjoint, and hence we would need in principle to study all their
∗-moments. However, the shape of some of the models forces the random matrices to
appear in an alternating way.

For our examples:

QN =
∑
i≤k

RiXiTiT
∗
i X
∗
i R
∗
i , PN :=

∑
i≤k

RiXiTi
∑
j≤k

T ∗j X
∗
jR
∗
j

we are actually interested, respectively, in the asymptotic joint ∗-distribution of

(R1X1T1T
∗
1X
∗
1R
∗
1, . . . , RkXkTkT

∗
kX
∗
kR
∗
k), (R1X1T1, T

∗
1X
∗
1R
∗
1, . . . , RkXkTk, T

∗
kX
∗
kR
∗
k),

and not in the much more general joint distribution (X1, R1, T1, . . . , Xk, Rk, Tk).

Of course, our knowledge about the joint distribution of (X1, R1, T1, . . . , Xk, Rk, Tk)
is crucial and we use it to compute the joint distributions above, but we should restrict
our estimates of the orders of contribution only to those partitions which will actually
show up in our model.

For simplicity, let us first think about the case k = 1 (in this case, although PN , QN
are equal, the joint distributions afore mentioned are still not the same), where X1 = G
is a complex Gaussian random matrix and RN , TN are deterministic matrices. We drop
the N subindex from our notation.

We first look at the distributions of (RGT, T ∗G∗R∗) and its free deterministic equiv-
alent (RCT, T ∗C∗R∗) where C is circular, free from {R, T}.

Since NC(n) = P(n) for n ≤ 3, the first discrepancy between the MN (C)-joint dis-
tributions of (RGT, T ∗G∗R∗) and (RCT, T ∗C∗R∗) happens when computing mixed mo-
ments of fourth order. Indeed, one can show that the MN (C)-valued mixed moments

FN ((RGT )(T ∗G∗R∗)(T ∗G∗R∗)(RGT ))− FN ((RCT )(T ∗C∗R∗)(T ∗C∗R∗)(RCT ))

= N−2RR∗RR∗T ∗TT ∗T,

and similarly

FN ((T ∗G∗R∗)(RGT )(RGT )(T ∗G∗R∗))− FN ((T ∗C∗R∗)(RCT )(RCT )(T ∗C∗R∗))

= N−2T ∗TT ∗TRR∗RR∗.

At least for the Gaussian case (a condition which is also assumed in example 7.3.3 below),
one can perform similar estimates in general and hence, under the assumption of uniform
boundedness of ‖TN‖ and ‖RN‖, almost sure convergence can be achieved.

In fact the contribution of the partition {(1, 3)(2, 4)} above calculated only shows up
if we consider the model ∑

1≤i≤k
RiXiTi + T ∗i X

∗
i R
∗
i
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which depends on more general moments than the model

PN =
∑
i≤k

RiXiTi
∑
j≤k

T ∗j X
∗
jR
∗
j .

Now let us move to the better behaved model

QN = RGTT ∗G∗R∗, Q�
N = RCTT ∗C∗R∗.

The first non-vanishing fluctuation of QN w.r.t. Q�
N appears only when computing

the third order moment (which is of order six on G and C). Indeed, observe that the
partition {(1, 3), (2, 4)} no longer contributes in the second moment since G and G∗ are
forced to appear in an alternating order. The first crossing pairing which respects the
alternating pattern (1, ∗, 1, ∗, . . . , 1, ∗) is the pairing {(1, 4), (2, 5), (3, 6)}. We have that
EN (QN −Q�

N )k = 0 for all k ≤ 2 and

EN (QN −Q�
N )3 = N−3RR∗RTT ∗TT ∗TT ∗R∗RR∗.

This gives some hints on why almost sure convergence is achieved for the example
7.3.2, even while assuming weaker conditions on the matrices that build the model.

7.3 Examples from wireless communications

We now introduce the matrix models as they appear in [CD11]. After each model,
we suggest embeddings of the matrices in rectangular spaces. We then present the
FDE and we re-derive equations of the DE’s to show that they correspond to the same
distributions. Finally, we give the linearization which allows to plot the distribution.

We should point out that in free probability one usually works with the Cauchy-
transform Gx and not with the Stieltjes-transform −Gx, as one usually does in random
matrix theory.

7.3.1 Unitary precoded channels [CHD11]

Let k ≥ 1 be fixed. For each N and i ≤ k, consider a non-negative ni × ni Hermitian
deterministic matrix Ti with uniformly bounded spectral norm along ni. Let Ui be the
ni ≤ Ni columns of a Haar-distributed random matrix in U(Ni). Let Ri be an N ×Ni

random matrix with uniformly bounded spectral norm along N , almost surely. Define
ci = ni

Ni
, and c̄i = Ni

N and denote

PN =
k∑
i=1

RiUiTiU
∗
i R
∗
i ,

Then asN,N1, . . . Nk, n1, . . . , nk grow to infinity with ratios c̄i satisfying 0 < lim inf c̄i ≤
lim sup c̄i <∞ and 0 ≤ ci ≤ 1 for all i, the following limit holds true almost surely:

FPN − FN → 0,
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where FPN and FN are, respectively, the cumulative distribution functions of µPn and
the cumulative distribution function of the probability measure with Stieltjes transform
mN (z) defined by

mN (z) =
1

N
Tr

∑
i≤k

ēi(z)RiR
∗
i − zIN

−1

,

where (ē1, . . . ēk) is the unique solution to the system of equations

ēi(z) =
1

N
Tr(Ti(ei(z)Ti + [c̄i − ei(z)ēi(z)]Ini)−1),

where the

ei(z) =
1

N
TrRiR

∗
i

∑
j≤k

ēj(z)RjR
∗
j − zIN

−1

are constrained to be Stieltjes transforms of non-negative probability measures and, for
z real negative, 0 ≤ ei(z) < cic̄i/ēi(z) for all i. Moreover, for each real negative z,

ēi(z) = lim
t→∞

ē
(t)
i (z),

where ē
(t)
i (z) is the unique solution of

ē
(t)
i (z) =

1

N
Tr(Ti(e

(t)
i (z)Ti + [c̄i − e(t)

i (z)ē
(t)
i (z)]Ini)

−1),

within the interval [0, cic̄i/e
(t)
i (z)), e

(0)
i (z) can take any positive value and e

(t)
i is recur-

sively defined by

e
(t)
i (z) =

1

N
TrRiR

∗
i

∑
j≤k

ēj(z)
(t−1)RjR

∗
j − zIN

−1

.

FDE

Since we defined the FDE in principle only for cases with square Haar or Wigner Ma-
trices, we should simply think that the Ui’s are Ni ×Ni and that we complete Ti with
zeros to make an Ni ×Ni matrix.

We embed the matrices as in Fig. 7.1.
The embedding is explained in detail in Example 5.1.5. The correspondence between

the Cauchy transform of the FDE

P� =

k∑
i=1

RiuiTiu
∗
iR
∗
i

and the DE was shown in Section 6.3.
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P0

T̃1, P1

Ũ1, Ũ
∗
1

R̃1 R̃k

R̃∗1

R̃∗k

. . .
...

. . .

T̃k, Pk

Ũk, Ũ
∗
k

Fig. 7.1: Embedding of the matrices of P on a Rectangular Space

Linearization

For this case, the linearization is very simple. By Prop. 6.3.1, we may replace the stan-
dard FDE P� = RuTu∗R∗ by simply P� = RT̃R∗, where {R,R∗}, T are (P0, . . . , Pk) =:
D-free. Hence we get

LP� =

 0 0 R
0 T −1
R∗ −1 0

 ,
where each entry is really an M ×M block, with M = N0 + · · · + Nk. The individual
M3(D)-valued Cauchy transforms of the self-adjoint elements

L1 =

 0 0 R
0 0 −1
R∗ −1 0

 , L2 =

 0 0 0
0 T 0
0 0 0

 ,
can be computed by performing partial traces, as explained in Section 5.4.

In Fig. 7.2 we compute the distribution of P� for

PN = QNUNRNU
∗
NQ
∗
N + SNVNTNV

∗
NS
∗
N ,

whereQN , SN , RN , TN are the blown-ups of some arbitrary deterministic matricesQ1, S1, R1 =
R∗1, T1 = T ∗1 of sizes 5 × 8, 5 × 4, 8 × 8 and 4 × 4, respectively, and UN ∈ U(8N),
VN ∈ U(4N) are unitary matrices chosen independently with uniform distribution on
the compact unitary groups U(8N) and U(4N).

7.3.2 Correlated MIMO multiple access channels [CDS11]

Let k ≥ 1 be fixed and consider for each N a model

BN =
k∑
i=1

R
1/2
i XiTiX

∗
i R

1/2
i +A,

where

93



7 Linearization trick for FDE’s

Fig. 7.2: 20000 eigenvalues (from 100 realizations) of P40 vs µP� (red).

• Xi = ( 1√
ni
Xi,rs) is an N × ni random matrix with identically distributed entries

Xi,rs, independent for each fixed n and such that E|Xi,rs − EXi,rs|2 = 1.

• R1/2
i is the Hermitian square root of the N ×N matrix Ri,

• Ti is a non-negative nk × nk diagonal matrix

• The eigenvalue distributions of R1, . . . , Rk, T1, . . . , Tk are tight: For each ε > 0
there existM > 0 such that of µY [M,∞) < ε for allN and all Y ∈ {T1, . . . Tk, R1, . . . Rk}.

• A is N ×N Hermitian, non-negative definite.

• If ci = N/ni, all i ≤ k there exist 0 < a < b <∞ such that

a ≤ lim inf
N
ci ≤ lim sup

N
ci ≤ b

Then the Stieltjes transform mBN (z) satisfies

mBN (z)−mN (z)→ 0 (7.1)

almost surely, where

mN (z) =
1

N
Tr

(
A+

k∑
i=1

∫
tidµTi(ti)

1 + citieN,i(z)
Ri − zIN

)−1

,

and eN,1(z), . . . , eN,k(z) are the solution to the system of equations

eN,j(z) =
1

N
TrRj

(
A+

k∑
i=1

∫
tidµTi(ti)

1 + citieN,i(z)
Ri − zIN

)−1

.

94



7.3 Examples from wireless communications

Moreover, for any ε > 0, the convergence of equation (7.1) is uniform over any region
of C bounded by a contour interior to

C \ ({z : |z| ≤ ε} ∪ {z = x+ iv : x > 0, |v| ≤ ε}).

For all N , the function mN is the Stieltjes transform of a distribution function FN ,
and

FBN − FN → 0

almost surely as N →∞.

FDE

In view of our discussion in the first section, we only consider here the FDE of the
case where the Xi are centered non-self-adjoint Wigner matrices and the A,Ri, Ti are
deterministic. We also complete the deterministic matrices with zeros in such a way
that all the Xi can be thought as square matrices and we re-normalize (for example, by
scaling the R′is), so that all random matrices Xi have entries with the same variance.

From the free probabilistic point of view this model can be treated exactly as the
previous model. We assume that N ≥ ni (all other cases are similar). With the notation
of the previous example, we make the embeddings in such a way that P0R̃iPi = R̃i,
PiX̃iPi = X̃i, Pĩ̃TiPi = T̃i, where Xi and Ti are also thought as N ×N matrices, where
Xi is a full matrix and only the upper ni × ni corner of Ti is nonzero. Hence, we are
using the same rectangular space as in the previous case, but this time the projections
P0, . . . , Pk have the same size.

By the discussion in Section 6.1 the random matrix PiX̃iT̃iX̃
∗
i Pi has, in the compressed

space A(i), the distribution of a free compound Poisson. Hence our FDE will be just

P� =

k∑
i=1

RiλiciTic
∗
iR
∗
i .

The crucial fact, briefly discussed in Section 3.3, is that, similar to the case of conju-
gation by a free Haar-unitary, the conjugation of the Ti’s by circular elements separates
them from the Ri’s. The only difference here is that, unlike uiTiu

∗
i , the conjugation

ciTic
∗
i no longer preserves the distribution of Ti, but we still know how to compute it.

This means that all the arguments about operator-valued freeness that we used from

(T̃1, . . . T̃k, R1, . . . , Rk),

to bring G
〈R,D〉
RT̃R∗

(b) to its final form (described by Equations (7.2) and (7.3)) hold also
for

(λic1T1c
∗
1, . . . λickTkc

∗
k, R1, . . . , Rk).

Hence we have that
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GP�(z) =
1

N0
Tr

zIN0 −
k∑
j=1

RjR
∗
jR
〈Pj〉
λjcjTjc∗j

(fj(z))

−1 (7.2)

where

fi(z) =
1

Nj
Tr

RiR∗i
zIN0 −

k∑
j=1

RjR
∗
jR
〈Pj〉
λjcjTjcj

(fj(z))

−1 . (7.3)

As we observed already in Section 6.1 the R-transform of the free compound Poisson
has an explicit integral representation

R〈Pj〉λjcjTjcj
(z) =

∫
R

xdµTi(x)

1− xzλ
,

which explains the shape of the equation.

Linearization

We know now that the Cauchy-transform of the FDE P� = RcTc∗R∗, where {R,R∗, T}, c
are free coincides with the solution of the equations of the DE. The linearization yields

LP� =


0 0 0 0 R
0 0 0 c −1
0 0 T −1 0
0 c∗ −1 0 0
R∗ −1 0 0 0

 ,
where each entry is really M×M , with M = N0+· · ·+Nk. The individual M5(D)-valued
Cauchy-transforms of the self-adjoint elements

L1 =


0 0 0 0 R
0 0 0 0 −1
0 0 T −1 0
0 0 −1 0 0
R∗ −1 0 0 0

 , L2 =


0 0 0 0 0
0 0 0 c 0
0 0 0 0 0
0 c∗ 0 0 0
0 0 0 0 0

 ,
can be computed by, respectively, performing a partial trace and approximating by
matrix-valued Riemann sums (or by using the method in [HFS07]), as explained in
Section 5.4.

7.3.3 Frequency selective MIMO systems [DL07]

Let k ≥ 1 be fixed and consider the model

PN =

k∑
i=1

(RiXiTi)

k∑
j=1

(T ∗j X
∗
jR
∗
j ),
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7.3 Examples from wireless communications

where the notations are the same as in the previous model, with the additional assump-
tions that n = n1 = · · · = nk. The random matrix Xk has independent Gaussian entries
and the spectral norms ‖Ti‖ and ‖Ri‖ are uniformly bounded with N . The assumption
of Ti being diagonal can be removed.

Then we have
N(τ(mBN (z))−mN (z)) = O(1/N),

with mN defined, for z ∈ C \ R+, as

mN (z) =
1

N
Tr

−z
IN +

∑
i≤k

ēN,i(z)RiR
∗
i

−1

, (7.4)

where (ēN,1, . . . ēN,k) is the unique solution of

eN,i(z) =
1

N
RiR

∗
iTr

−z
IN +

∑
j≤k

ēN,j(z)RjR
∗
j

−1

, (7.5)

ēN,i(z) =
1

N
TiT

∗
i Tr

−z
IN +

∑
j≤k

eN,j(z)TjT
∗
j

−1

, (7.6)

all with positive imaginary part if z ∈ C+, negative imaginary part if z ∈ C− and
positive if z ∈ R−

FDE

We make again n = N by completing either the Ri’s or the Ti’s with zeros, so that we
may consider square Gaussian matrices Xi. We embed again Ri, Xi in such a way that
PiR̃iP0 = R̃i and PiX̃iPi = X̃i but this time we put P0T̃iPi = T̃i.

If we put again R =
∑
R̃i, T =

∑
T̃i, c =

∑
ci, our FDE can be compactly written

as
P�
N = RcTT ∗c∗R∗.

By proceeding as in the previous examples, it is not hard to bring the operator-valued
Cauchy-transform of P�

N into implicit equations such as Eq. (7.4).

Linearization

The linearization will be very similar to the one in the previous case, the main difference
is the way in which we have embedded the matrices Ti. We get

LP� =


0 0 0 0 R
0 0 0 c −1
0 0 TT ∗ −1 0
0 c∗ −1 0 0
R∗ −1 0 0 0

 ,
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7 Linearization trick for FDE’s

where each entry is M×M , with M = (k+1) max{N,n}. The individual M5(D)-valued
Cauchy-transforms of the self-adjoint elements

L1 =


0 0 0 0 R
0 0 0 0 −1
0 0 TT ∗ −1 0
0 0 −1 0 0
R∗ −1 0 0 0

 , L2 =


0 0 0 0 0
0 0 0 c 0
0 0 0 0 0
0 c∗ 0 0 0
0 0 0 0 0

 ,
can be computed as explained in Section 5.4.
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[BBLS11] Serban Belinschi, Marek Bożejko, Franz Lehner, and Roland Speicher, The
normal distribution is �-infinitely divisible, Adv. Math. 226 (2011), no. 4,
3677–3698.

99



Bibliography

[BG09a] Florent Benaych-Georges, Rectangular random matrices, related convolution,
Prob. Theory Rel. Field 144 (2009), 471–515.

[BG09b] , Rectangular random matrices, related free entropy and free Fisher’s
information, J. Operator Th. 62 (2009), no. 2, 371–419.

[BGS02] Anis Ben-Ghorbal and Michael Schurmann, Non-commutative notions of
stochastic independence, Math. Proc. Camb. Phil. Soc. 133 (2002), 531–561.

[Bia98] Philippe Biane, Processes with free increments, Math. Z. 227 (1998), 143–
174.

[BMS13] Serban Belinschi, Tobias Mai, and Roland Speicher, Analytic subordination
theory of operator-valued free additive convolution and the solution of a gen-
eral random matrix problem (pre-print), arXiv:1303.3196 (2013).

[BN08a] Serban Belinschi and Alexandru Nica, Eta-series and a Boolean Bercovici-
Pata bijection for bounded k-tuples, Adv. in Math. 217 (2008), 1–41.

[BN08b] , On a remarkable semigroup of homomorphisms with respect to free
multiplicative convolution, Indiana Univ. Math. Journal 57 (2008), no. 4,
1679–1713.

[BN12a] Teodor Banica and Ion Nechita, Asymptotic eigenvalue distributions of block-
transposed wishart matrices, J. of Theoretical Probability 26 (2012), 855–869.

[BN12b] , Block-modified Wishart matrices and free Poisson laws, Houston J.
Math. (2012).

[BP99] Hari Bercovici and Victorino Pata, Stable laws and domains of attraction in
free probability theory, with an appendix by Philippe Biane, Ann. of Math.
149 (1999), no. 3, 1023–1060.

[BS06] Zhidong Bai and Jack Silverstein, Spectral Analysis of Large Dimensional
Random Matrices, Science Press (2006).

[BSTV14] Serban Belinschi, Roland Speicher, John Treilhard, and Carlos Vargas,
Operator-valued free multiplicative convolution: analytic subordination the-
ory and applications to random matrix theory, Internat. Math. Res. Notices
(2014).

[BV93] Hari Bercovici and Dan Voiculescu, Free convolution of measures with un-
bounded supports, Indiana Univ. Math. J. 42 (1993), 733–773.

[BV95] , Superconvergence to the central limit and failure of the Cramer theo-
rem for free random variables, Prob. Theory Rel. Field 102 (1995), 215–222.

[CD11] Romain Coulliet and Merouane Debbah, Random Matrix Methods for Wire-
less Communications, Cambridge University Press, Cambridge, 2011.

100



Bibliography

[CDS11] Romain Couillet, Merouane Debbah, and Jack Silverstein, A deterministic
equivalent for the analysis of correlated MIMO multiple access channels, IEEE
Trans. Inf. Theory 57 (2011), 3493–3514.

[CF69] Pierre Cartier and Dominique. Foata, Problèmes combinatoires de commu-
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systèmes d’événements compatibles et dépendants et leur application au calcul
des cumulants de la répétition, C. R. Acad. Sci. Paris 225 (1947), 277–278.

[Shl96] Dimitri Shlyakhtenko, Random Gaussian band matrices and freeness with
amalgamation, Internat. Math. Res. Notices 20 (1996), 1013–1025.

103



Bibliography

[Spe94] Roland Speicher, Multiplicative functions on the lattice of noncrossing parti-
tions and free convolution, Math. Ann. 298 (1994), no. 4, 611–628.

[Spe97] Roland Speicher, On universal products, Free probability theory (Waterloo,
ON, 1995), Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI,
1997, pp. 257–266.

[Spe98] Roland Speicher, Combinatorial theory of the free product with amalgamation
and operator-valued free probability theory, Memoirs of the American Math.
Society, vol. 132, 1998.

[Sta12] Richard P. Stanley, Enumerative combinatorics. Volume 1, second ed., Cam-
bridge Studies in Advanced Mathematics, vol. 49, Cambridge University
Press, Cambridge, 2012.

[SV12] Roland Speicher and Carlos Vargas, Free deterministic equivalents, rectangu-
lar random matrix models, and operator-valued free probability theory, with
appendix by Tobias Mai, Random Matrices: Theory Appl. 1 (2012), no. 2,
26.

[SW97] Roland Speicher and Reza Woroudi, Boolean convolution, Free probability
theory (Waterloo, ON, 1995), Fields Inst. Commun., vol. 12, Amer. Math.
Soc., Providence, RI, 1997, pp. 267–279.

[SY13] Noriyoshi Sakuma and Hiroaki Yoshida, New limit theorems related to free
multiplicative convolution, Studia Math. 214 (2013), 251–264.

[TV04] Antonia Tulino and Sergio Verdu, Random Matrix Theory and Wireless Com-
munications, Now Publishers, Amsterdam, The Netherlands, 2004.

[Vas03] Vladimir Vasilchuk, On the asymptotic distribution of the commutator and
anticommutator of random matrices, J. Math. Phys. 44 (2003), no. 4.

[Voi85] Dan Voiculescu, Symmetries of some reduced free product C∗-algebras, Opera-
tor algebras and their connections with topology and ergodic theory (Buşteni,
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