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Kurzzusammenfassung

Diese Arbeit untersucht mehrere Ansätze zur Bestimmung optimaler dünn
besetzter Datensätze für Bildrekonstruktionen mittels linearer homogener Dif-
fusion. Es werden zwei Optimierungsverfahren zur Bestimmung der Position
der Datenpunkte präsentiert. Das Erste besticht durch seine Einfachheit und
basiert auf Resultaten aus der Spline Interpolationstheorie. Dieses Verfahren
kann jedoch nur auf eindimensionale streng konvexe und stetig differenzier-
bare Signale angewendet werden. Wegen dieser Einschränkungen wird ein
alternativer Ansatz hergeleitet der auf Erkenntnissen aus der Theorie der
optimalen Steuerung beruht. Dieser neue Algorithmus kann auf beliebige
Signale angewendet werden. Beide Methoden werden auf ihre Konvergenzei-
genschaften untersucht.
Des Weiteren untersuchen wird das Problem zur Bestimmung guter Da-

tenwerte für feste Positionen, welches im Rahmen der Methode der kleinsten
Quadrate untersucht werden kann. Ein wesentlicher Zusammenhang zwischen
optimalen Datenpositionen und Datenwerten wird hergeleitet und wir stellen
effiziente numerische Verfahren zur Bestimmung dieser Datenwerte dar.

Abschließend präsentieren wir ein Bildkompressionsverfahren das auf den
Resultaten aus dieser Arbeit basiert. Experimente beweisen, dass es möglich
ist gängige Kompressionsalgorithmen zu schlagen.
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Short abstract

This work analyses several approaches for determining optimal sparse data
sets for image reconstructions by means of linear homogeneous diffusion.
Two optimisation strategies for finding optimal data locations are presented.
The first one impresses through its simplicity and is based on results from
spline interpolation theory. However, this approach can only be applied
to one dimensional strictly convex and differentiable functions. Due to
these restrictions we derive an alternative approach which uses findings from
optimal control theory. This new algorithm can be applied on arbitrary
signals. Both approaches are analysed for their convergence behaviour.
Further, we discuss the problem of selecting good data values for fixed

data positions. This problem can be analysed as a least squares problem.
An important relationship between the optimal data locations and the data
values is derived and we present efficient numerical schemes to obtain these
values.

Finally, we present a image compression approach based on the findings
from this work. Experiments show that is possible to outperform popular
compression algorithms.
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Abstract

Finding optimal inpainting data is a key problem for image compression
with homogeneous diffusion. Not only the location of important pixels but
also their values should be optimal to maximise the quality gain. Both tasks
are analysed in this work. Two approaches to find optimal data locations
are discussed. The first one is based on findings from spline interpolation
theory. It is very simple and only applicable in presence of one dimensional,
strictly convex and continuously differentiable signals. Nevertheless it offers
important insight into the difficulties of the underlying optimisation task.
Our second approach is very generic and applicable to arbitrary data signals.
It uses a powerful optimal control based model where we augment the partial
differential equation used for the inpainting process with a cost functional
containing a data similarity as well as a sparsity inducing term. Both
frameworks are analysed with respect to their convergence behaviour. We
also establish conditions that assert optimality of the obtained solutions.
For the latter model we also provide additional results on how to handle
the occurring non-convex optimisation problem from a numerical point of
view. Two approaches are discussed. Both methods proceed by an iterative
linearisation of the constraint equations. The second method considers an
additional reformulation in terms of convex duality. Experimental results on
grey value as well as colour images confirm our theoretical insights.
Besides the results on optimal data positions we discuss the task of

finding optimal data values for fixed spatial data locations. Our underlying
inpainting scheme allows us to formulate this task as a least squares problem.
An important relationship between the optimal data positions and the
corresponding values is derived. This finding is a fundamental pillar in the
design of an competitive image compression codec. Further, we provide
efficient numerical schemes to find the best data values. Two algorithms
are discussed. One of them excels for CPU based implementations and
is based on a well known solver from the literature. The second method
exploits findings from primal dual strategies for convex optimisation problems.
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It is especially interesting for environments that provide massive parallel
processing facilities.
Our work is completed by the presentation of a competitive lossy im-

age compression codec. Experiments show that we outperform popular
alternatives such as JPEG and JPEG 2000.
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Chapter 1
Introduction

The beginning is the most
important part of the work.

(Plato)

A major challenge in data analysis is the reconstruction of a function, for
example a 1D signal or an image, from a few data points. Already the ancient
Greeks observed celestial movements and built lists, so called ephemerides,
to know when to plant their crops. Due to atmospheric conditions hampering
the observations these lists were incomplete and the missing positions had to
be computed by hand [1]. In today’s time, experimental settings in physical
sciences usually allow only a limited number of discrete measurements in
time or space. Often one wishes to know how the underlying process behaved
in between these measurements. A popular example is the weather forecast
where information about the current weather is collected at a small number
of different locations in order to predict the amount of rainfall over the next
few days for a whole region. Another modern use case is given by signals
transmitted between electronic devices, potentially separated by any distance
ranging from a few metres to several kilometres. The transmitted data could
become corrupted by noise or suffer otherwise from loss of information. A
phenomenon frequently encountered while listening to the radio or when
using a cell phone. Finally, digital cameras with defect CCD sensors can
yield photographs where parts of the image are completely missing.

From a mathematical point of view, the restoration of the lost data in
all these examples can be regarded as an interpolation or approximation
problem. In the context of digital photography the term image inpainting
has been used predominantly during the last years. It has initially been
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Chapter 1 Introduction

introduced by Masnou and Morel [2] and later again by Bertalmío et al. [3]
to the image processing community. However the term had already been in
use for decades among art restorers before.
Interpolation in 2D and higher dimensions, as it is required for image

and video processing tasks, suffers from the curse of dimensionality. The
amount of necessary data to achieve good results can be huge. Further if
the data is not well structured (e.g. not laid out on a regular grid) then
the reconstruction itself can become difficult to handle. Many approaches
require specific layouts for the interpolation data. Unfortunately, setups
like the introductory example specified above rarely provide us with such
optimal settings.

Due to the special nature of digital photographs, several kinds of different
inpainting approaches exist for their treatment. They differ by the appli-
cation under consideration, for instance inpainting of textured images or
movies, and by the mathematical tools used to model the problem (splines,
wavelets, partial differential equations (PDEs), ...). Spline-based methods
are attractive when speed is an issue. Variational and PDE-based methods
stand out through their extraordinary flexibility in the modelling. Especially
diffusion equations are appealing since they describe a very natural process
to propagate information. One of the earliest variational approaches to
inpainting was the pioneering work of Nitzberg et al. [4], even though the
authors were not directly interested in the recovery of missing image parts.
Their goal was to exploit findings from Gestalt psychology to segment and
sort elements of an image scene according to their depth. In order to seg-
ment occluded objects the authors relied on the fact that our visual system
smoothly extends occluded boundaries. They assumed that these extensions
should be as short as possible and smooth and therefore proposed an energy
based on Euler’s elastica model. A curve C is said to be Euler’s elastica if it
minimises ∫

C

(
α+ βκ (s)2

)
ds

among all curves that join a given starting point with its corresponding
endpoint. In this context α and β are two positive parameters, κ the
curvature of the curve and ds its arc length. A thorough historical overview
of the evolution of the elastica model is given by Levin [5].
Inspired by the results of Nitzberg et al., Masnou and Morel [2] propose

an approach to reconstruct missing image parts. They suggest to interpolate

2



(a) Original image (b) Image with occlusions (c) Reconstruction

Figure 1.1: Example for the method of Masnou and Morel [2]: The missing parts are
reconstructed by extrapolating the isophotes into the white region. The extension to
colour images is obtained by applying the method to the luminance, hue and saturation
channels separately. Source: [6]

a grey value image by completing the isophotes that arrive at a region with
missing data through geodesic curves and refer to this process as disocclusion.
The model of Masnou and Morel is a variational model based on the elastica
and an example of its visual quality is given in Figure 1.1. Ballester and
colleagues [7–9] also propose methods in similar spirit as [2, 4]. They suggest
a variational approach based on the elastica model which performs a joint
interpolation of certain vector fields and grey levels. Finally, total variation
based approaches are proposed in [10–12]. In their simplest form, these
methods solve

arg min
u

{∫
Ω\ΩK

|∇u (x)| dx
∣∣∣∣∣ u(x) = u0(x) ∀x ∈ ΩK

}

where Ω is the complete image domain and ΩK ⊆ Ω the known pixel
data. An interesting feature of this approach is that additional denoising
capabilities can be added by replacing the constraint u = u0 with a suitable
alternative.

The first PDE-based model that does not stem from a variational formula-
tion is due to Bertalmío et al. [3]. By using a third order transport equation,
information is transmitted from the known to the unknown image parts.
The authors chose to propagate edge information along the isophotes. This

3



Chapter 1 Introduction

(a) Original image with un-
desired scratches

(b) Regions to be inpainted
marked in red

(c) Reconstruction

Figure 1.2: Example for the method of Bertalmío et al. [3], Author: Bertalmío [13]

yields the following PDE

∂

∂t
u (x, t) = 〈∇ (∆u(x, t)) ,∇u (x, t)⊥〉,

u (x, t) = u0 (x) ,
u (x, 0) = uext

0 (x) ,

x ∈ Ω \ΩK
x ∈ ∂ΩK , t > 0
x ∈ Ω \ΩK

where Ω is again the image domain, ΩK ⊆ Ω the known image details and
uext

0 a continuous extension of u0 (only known on ΩK) onto the whole domain
Ω. In order to ensure correct evolution of the direction field, an additional
diffusion process has to be interleaved with the previous inpainting process.
Basically any sharpness preserving formulation can be used. Bertalmío et al.
suggest to use

∂

∂t
u (x, t) = gε (x)κ (x, t) |∇u(x, t)|, x ∈ (Ω \ΩK)ε

where κ represents the curvature, (Ω \ΩK)ε a dilated version of Ω \ΩK and
gε a smooth function fulfilling gε(x) ≡ 1 for all x ∈ Ω \ ΩK and gε(x) ≡ 0
for all x ∈ ∂ (Ω \ΩK)ε. An example reconstruction done with this approach
is depicted in Figure 1.2. We refer to [14] for a more complete presentation
on PDE-based inpainting strategies and to [6] for a general overview.
So far, all the presented inpainting tasks had a fixed set of given and

unknown data. Thus, the only way to improve the reconstruction quality
was by using better suited models. Besides repairing corrupted datasets, the
presented setups can also purposefully remove certain objects from an image
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or a photograph. A closely related task is the seamless integration of new
features into a given picture.
In some interesting applications however, one has the total freedom to

choose and to modify the data used for the recovery. For instance, in data
compression one starts with a full dataset and tries to reduce its size as
much as possible. This reduction can be lossless or lossy. In the former case,
the recovery is always perfect. The reconstruction yields the initial input
signal whereas the latter framework only returns a close approximation to
the original data. The advantage of lossy schemes is a significantly higher
compression rate. They have been applied with much success in audio codecs
such as MP3 [15] and image formats like JPEG [16]. These approaches
remove features from a signal that can hardly be perceived by humans. The
loss of accuracy goes almost completely unnoticed for most people.

The JPEG [16] compression algorithm is almost image agnostic in the sense
that it does hardly analyse the image to find specific features (homogeneous
regions, edges, textures, ...) that could be exploited to improve the com-
pression rate. As a consequence it works well on almost any image without
excelling for any particular image type. In recent approaches to PDE-based
image compression different methods to choose suitable interpolation data
were considered. Galić et al. [17] and Schmaltz et al. [18] use subdivision
schemes based on the local error of the reconstruction. Mainberger et al. [19]
extract edge information from the image to get good seed points for the colour
propagation and in [20] searching strategies are employed in a similar manner
as in [17, 18]. A related approach can also be found in the works of Demaret
and Iske [21] and Demaret et al. [22]. These works show that it is possible
to outperform current state-of-the-art compression schemes by optimising
the data set used for the reconstruction. Data compression with PDEs is
not restricted to images. As shown by Köstler et al. [23] and Schmaltz [24],
one can also compress videos. An example for the extraordinary capabilities
of PDE-based strategies is shown in Figure 1.3.

Usually it is quite difficult to predict the quality of the reconstruction for
a known set of data, especially if the underlying reconstruction mechanism
is sophisticated. Galić et al. [17] and Schmaltz et al. [18] use complicated
non-linear PDEs for the reconstruction process. The best results are obtained
with edge enhancing diffusion (EED)

∂

∂t
u = div

(
g
(
∇uσ∇u>σ

)
∇u
)

5



Chapter 1 Introduction

(a) Original image (b) JPEG (c) JPEG 2000 (d) PDE-based ap-
proach from [19]

Figure 1.3: Comparison of lossy image compression methods: All images had a compression
rate of 0.16 bits per pixel. Both JPEG and its successor JPEG 2000 contain visual
artefacts whereas the the PDE-based reconstruction is almost flawless. Source: [19]

where uσ is Gaussian smoothed version of u with standard deviation σ. The
function g operates on the eigenvalues of diffusion tensor ∇uσ∇u>σ . It should
be chosen to favour diffusion along edges over diffusion across edges. Edge
enhancing diffusion goes back to Weickert [25] where it is introduced for
diffusion filtering. The results of Galić et al. and Schmaltz et al. are of
remarkable quality. However, it is difficult to state the influence of a single
data point on the whole reconstruction in their models. Generally, deter-
mining the best interpolation data yields a highly non-trivial optimisation
task. Mainberger et al. [20] consider a simple model based on homogeneous
diffusion:

−∆u = 0,
u = f,

∂nu = 0,

on Ω \ΩK
on ∂ΩK
on ∂Ω \ ∂ΩK

(1.1)

where Ω is the image domain, ΩK the known data and ∂n represents the
derivative in outer normal direction along the boundary. They analyse
searching strategies for finding optimal positions ΩK and suggest a least-
squares model to obtain good corresponding data values f . Their findings
show the tremendous benefits of a thorough optimisation. Unfortunately,
their methods come not without restrictions. Although their searching
strategies are applicable to any PDE-based inpainting method, they suffer
from excessive performance issues, even in the simplest cases. Furthermore,
their least-squares model is restricted to linear PDEs. A theoretical discussion
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Figure 1.4: Interpolation of the popular titanium heat data (grey circles) [30] at the twelve
locations marked by solid grey discs: The blue and red curve correspond to two cubic
B-splines with different knot choices. Both splines interpolate the data at the same
positions. The blue spline is considerably closer to the original data than the red spline.

on optimal distributions of data points can also be found in the work of
Belhachmi et al. [26].

Finding good interpolation data is known in the mathematics literature as
free knot (FK) problem. Often it is considered in combination with splines.
The term free knot stems from the spline interpolation theory where knots
are a characteristic of B-splines. The FK problem can be traced back to
at least 1961 [27]. Due to the difficulties in deriving analytic expressions
of good data distributions the FK problem has not been as popular as
one would expect. Only very few satisfactory results exist, even though
these clearly demonstrate the potential benefits of such an optimisation [28,
29]. Figure 1.4 depicts the example for a cubic B-spline interpolation with
different knot choices. As one can see from this example, the impact of a
badly chosen knot set can be tremendous. Finally, let us also remark that
the theory of topology or shape optimisation could also be consulted to
find optimal reconstruction data. Unfortunately, these setups often have
prohibitive requirements for our purposes. A common assumption is that
the considered set is connected or even simply connected. We refer to the
the works of Bendsøe and Sigmund [31] and Allaire [32] for a more thorough

7



Chapter 1 Introduction

presentation and to [33, 34] for more introductory references.
In this work we deliberately restrict us to one of the simplest PDE-

based inpainting methods, namely linear homogeneous diffusion, as stated in
Eq. (1.1), and present a complete and thorough analysis on how to optimise
the data used for the inpainting. Thus, we provide a solid mathematical
foundation on which future work can be built upon. Our choice allows us
to perceive the importance of individual data points. Equipped with this
knowledge we formulate optimisation models yielding those data sets that
offer the best accuracy for a given density. Several models are discussed. Our
most powerful model being an optimal control (OC) formulation. Optimal
control models generalise PDE-based and variational strategies and go back
to Bellman [35] and Pontryagin et al. [36]. Their general form is

inf
x,λ
{E (x, λ)}

such that L (x, λ) = 0

where E is an energy functional to be minimised and L (x, λ) = 0 a differential
equation in x which additionally depends on a parameter λ. It is reasonable
to require that for every feasible value of λ there exists exactly one solution x
of the differential equation. The minimisation of the energy E helps finding
those parameters which yield solutions most favourable to the task at hand.
Surprisingly, OC models have received comparably little attention from
the image processing community. One of the earliest works using OC for
image processing tasks deals with the optical flow problem [37]. The OC
model presented in this thesis combines a variational formulation penalising
undesired datasets with Eq. (1.1) as a hard constraint. We consider those
sets of data locations as undesirable which are either too large or which yield
inaccurate reconstructions. Besides this optimisation on the data locations,
we also consider strategies to find better data values for the reconstruction.
There is no guarantee that the data values provided by the initial image
are optimal for the considered location, thus it makes sense to optimise
these as well. We follow the ideas already presented in [20] and provide a
deep insight on the properties of optimal data values. Combining our OC
approach with the findings on perfect grey values provides us a framework,
which despite its simplicity, offers high quality reconstructions at compression
rates competitive to many well established image compression methods. An
example is given in Figure 1.5.

8



(a) Original image (b) Optimal data locations (c) Reconstruction

Figure 1.5: By optimally choosing 5% of the pixels from (a) we obtain the result in (c) by
solving Eq. (1.1). The selected pixels are marked in white in (b). A Method to find the
pixels in (b) is analysed in the forthcoming chapters. Source of the input image: [38]

Structure of the work

In Chapter 2 we present in detail the reconstruction method to be used
throughout this work. We use linear homogeneous diffusion inpainting [20,
26], as presented in Eq. (1.1) and which is sometimes also called Laplace-
or membrane interpolation. Homogeneous diffusion inpainting is a fast and
very flexible way to reconstruct large scattered datasets, especially in higher
dimensions. We also discuss a formulation with more relaxed boundary
conditions. Discrete analogues of our PDEs are presented and existence
and uniqueness of solutions for these discrete versions are discussed. Since
the discrete framework can be reduced to a linear system of equations, the
spectral properties of the involved matrix are also considered.
Chapter 3 is concerned with the optimisation of the function values for

fixed data sites. This task is also referred to as grey value optimisation (GVO)
and has already been analysed by Mainberger et al. [20]. Our reconstruction
method allows us to formulate this task as a linear least squares problem for
which highly efficient strategies are presented. We provide several theoretical
findings concerning the optimality of the data values and show how these
results can be used to massively reduce the storage size of the data required
for the reconstruction. They mark an important milestone in the design of a
competitive image compression codec.
Our first model for finding optimal data locations is presented in Chap-

ter 4. The considered setting is very restrictive. We analyse strictly convex
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Chapter 1 Introduction

functions in a one dimensional environment. Within this framework we are
able to exploit an important relationship between the input data and the
reconstruction. As a consequence we gain some insight in the complexity of
the underlying task and are able to derive a simple algorithm which works
extraordinarily well. In 1D, our inpainting method coincides with piecewise
linear spline interpolation. This fact allows us to bridge the gap between
finding good data sites for image inpainting and the FK problem. Important
findings from the literature are presented and discussed within our context.
Further, we study how our first approach fares against similar strategies.
Chapter 5 presents a completely novel and generic approach based on

an OC formulation. We present a highly flexible strategy that works in
any dimension without assumptions on the underlying data. We perform
a detailed analysis where optimality conditions and existence of solutions
are discussed. Next, we propose efficient numeric algorithms to solve the
occurring non-convex optimisation problem. An equivalent dual formulation
is also given and a thorough convergence analysis of our iterative scheme is
exhibited.
Finally, Chapter 6 discusses a complete setup for an image compression

codec based on the findings from this thesis. This setup has originally been
proposed by Peter [39]. A proper encoding of our optimised data allows us
to beat modern image compression standards such as JPEG [16] and JPEG
2000 [40].
A graphical layout of the dependence of the forthcoming chapters is

presented on the next page. Note how fundamental the choice of the recon-
struction method is. Choosing a different inpainting scheme affects all the
other chapters. However, optimisation in the codomain can be completely
independent from the optimisation in the domain.

10
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Chapter 2
Inpainting with homogeneous
diffusion

Beauty is the first test: there
is no permanent place in the
world for ugly mathematics.

(Godfrey Harold Hardy)

In this chapter we present the reconstruction method that we use throughout
this whole work. In order to guarantee a certain freedom and flexibility
in the forthcoming optimisation steps we want an interpolation framework
that works in any dimension and which can handle arbitrarily scattered
data sets. Further, the computation of the interpolated values should be
relatively fast and efficient. Partial differential equation-based interpolation
methods seem to fit well to our requirements. They can cope very well
with highly scattered data and can easily be adapted to any dimensional
setting. The interpolation data is usually represented by Dirichlet boundary
conditions. Further, an adequate choice of the differential operator allows
us to work in arbitrary dimensions and permits us to incorporate other
wishful properties directly into the reconstruction process. Thus, one can
for example design methods that preserve or even enhance edges or which
exhibit a certain degree of smoothness in the results. Unfortunately, many
PDEs, especially the non-linear ones, are computationally expensive to solve.
This fact essentially restrains us to linear equations. The Laplace equation is
among the most prominent and popular PDEs. A numerical reconstruction
with the Laplace equation can be reduced to solving a large and sparse linear
system. This simplicity of the Laplacian also renders it attractive for our
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Chapter 2 Inpainting with homogeneous diffusion

objectives. The influence of provided data onto the reconstruction can be
studied very well and allows us to design efficient optimisation schemes.
Interpolation with the Laplacian is modelled as follows: Let f : Ω → R

be a smooth function on some bounded domain Ω ⊂ Rn with a sufficiently
regular boundary ∂Ω. Throughout this work we restrict ourselves to the
cases n ∈ {1, 2, 3}. This choice covers three of the most common types of
signals: Simple 1D signals, grey value images, and videos. Most results
presented in this chapter can however be extended to settings with arbitrary
n > 1 in a straightforward manner. Moreover, let us assume that there
exists a closed set of known data ΩK $ Ω that we interpolate by the
underlying diffusion process to recover the missing information on Ω \ΩK .
Also, for technical reasons, the set ΩK should be a set with positive measure.
Homogeneous diffusion inpainting considers the following PDE with mixed
boundary conditions:

−∆u = 0,
u = f,

∂nu = 0,

on Ω \ΩK
on ∂ΩK
on ∂Ω \ ∂ΩK

(2.1)

where ∆ represents the Laplacian operator and ∂nu denotes the derivative of
u in outer normal direction. We assume that both boundary sets ∂ΩK and
∂Ω\∂ΩK are non-empty. The setting from Eq. (2.1) is sketched in Figure 2.1.
Equations of this type are commonly referred to as mixed boundary value
problems and in rare cases also as Zaremba’s problem, named after Stanisław
Zaremba who studied such equations already in 1910 [41]. The existence
and uniqueness of solutions has been extensively studied during the last
century. Showing that Eq. (2.1) is indeed solvable is by no means a trivial
feat. Generally, one can either show the existence of solutions in very weak
settings or one has to impose strong regularity conditions on the domain. A
general existence theory for solutions is given by Fichera [42]. Miranda [43]
shows that a Hölder continuous solution exists if the data is regular enough
and in [44] the author discusses solvability in a general way. More results
concerning the existence of solutions have been provided a few years later
by Azzam and Kreyszig [45]. Finally, Brown [46] discusses the regularity of
solutions on Lipschitz domains. A particularly easy case is the 1D setting
where Ω ⊆ R and f : Ω → R. Here, the solution can obviously be expressed
by using piecewise linear splines that interpolate the data given on ΩK .
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Ω \ΩK

ΩK

∂ΩK
∂ΩK

ΩK

∂Ω

Figure 2.1: Example setup for a mixed boundary problem for PDE-based interpolation with
the Laplacian. The set ΩK , marked in grey, denotes known data and is used to recover
the missing information on Ω \ ΩK by solving Eq. (2.1). Along the boundary ∂ΩK
we assume Dirichlet boundary conditions whereas ∂Ω \ ∂ΩK has Neumann conditions.
Note that the set ΩK must have positive measure but it is not necessarily connected.

Following Mainberger et al. [20], we introduce the confidence function c
which states whether a point is known or not and which is defined by

c (x) :=
{

1, x ∈ ΩK ,
0, x ∈ Ω \ΩK .

(2.2)

Note that the confidence function is, at least at this point, nothing else than
the indicator function of the set ΩK . In the forthcoming paragraphs we will
relax its definition to allow arbitrary values in R and not just in the set
{0, 1}. This seemingly insignificant extension greatly simplifies the upcoming
optimisation tasks. The confidence function lets us rewrite Eq. (2.1) in a
more compact functional form given by

c (x) (u (x)− f (x)) + (1− c (x)) (−∆)u (x) = 0, on Ω
∂nu (x) = 0, on ∂Ω \ ∂ΩK .

(2.3)

For most parts of this text we will prefer the formulation from Eq. (2.3) as
it is more comfortable to work with. Further, this formulation makes also
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Chapter 2 Inpainting with homogeneous diffusion

sense when c is not binary valued but takes arbitrary values. In the binary
setting we can either use the diffusion or the data at a given point. If c is
allowed to take arbitrary values in the range [0, 1] we obtain combinations
between u−f and −∆u. Thus, we blend the information from the data term
u− f with the diffused data given by −∆u. These combinations are similar
to convex combinations but differ in the fact that c(x) may take different
values in each x.

Let us now derive a discrete framework and fix certain notational conven-
tions. The notations introduced in this paragraph are, unless mentioned
differently, used throughout the whole thesis. We sample our image func-
tion f on a regular grid with nr rows and nc columns. Thus, we have a
total of nrnc pixels at our disposal. The distance between any two neigh-
bouring samples on the same row or same column is constant and given
by h > 0. Further, let {1, . . . , nrnc} be the set of indices enumerating the
discrete sample positions in a linear way (either row-wise or column-wise),
and K ⊆ {1, . . . , nrnc} the subset of indices of known samples. With a
slight abuse of notation we can express the discrete version of f as a vector
f = (f1, . . . , fnrnc)

> and the corresponding solution of the PDE as a vector
u of the same size. Since we work almost exclusively in a discrete setting
in the forthcoming chapters of this thesis it is impossible to confuse the
function f with its discrete version f . The binary mask c, where ci = 1 if
i ∈ K and ci = 0 otherwise, indicates the positions of the Dirichlet boundary
data. At last, the Laplacian ∆ is discretised by standard means of finite
differences. Hence a straightforward discretisation of Eq. (2.3) on a regular
grid yields

diag (c) (u− f) + (I − diag (c)) (−L)u = 0 (2.4)
where I is the identity matrix, diag (c) is a diagonal matrix with the compo-
nents of the vector c as its entries, and L is the symmetric nrnc×nrnc matrix
describing the discrete Laplace operator ∆ with homogeneous Neumann
boundary conditions along ∂Ω \ ∂ΩK . We also refer to the glossary at the
end of this thesis for a complete presentation of all the used symbols.
By a simple reordering of the terms, Eq. (2.4) can be rewritten as the

following linear system
(diag (c) + (I − diag (c)) (−L))u = diag (c) f . (2.5)

We will refer to this equation as the discrete inpainting equation or simply
inpainting equation in the following. Mainberger et al. [19, Theorem 1] show
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that this linear system of equations has a unique solution u if all ci are either
0 or 1 and at least one ci equals 1. They also show that Eq. (2.5) can be
solved efficiently by using bidirectional multigrid methods.
To alleviate the forthcoming discussion we introduce two definitions re-

lated to the linear system from Eq. (2.5). The first definition introduces a
convenient notation for the system matrix and the second one is useful to
express the dependencies of solutions of our discretised PDE on the mask c
and the data f .
Definition 2.1 (Inpainting matrix)
We call inpainting matrix the following nrnc × nrnc matrix:

A (c) := diag (c) + (I − diag (c)) (−L) .

Note that the inpainting matrix lets us rewrite the linear system from
Eq. (2.5) as A (c)u = diag (c) f .
The next definition assumes that we have a mask c to our avail for

which the inpainting matrix from the previous definition is invertible. The
exact circumstances under which A (c) is invertible will be analysed in the
forthcoming section. We remark that invertibility of A (c) is a desirable
property since it asserts that solutions of Eq. (2.5) are unique.
Definition 2.2 (Reconstruction matrix)
We call reconstruction matrix the following nrnc × nrnc matrix:

M (c) := A (c)−1 diag (c) .

With the help of the reconstruction matrix it is possible to express the
solution of Eq. (2.5) in dependence of c and f . Clearly, we have u = M (c) f .

As already mentioned, we will make strong use of the fact that c may take
arbitrary values. In this context it is important to know for which values of
c the reconstruction matrix from the previous definition actually exists. The
case of binary masks has already been discussed by Mainberger et al. [19]. In
the next section we provide more accurate bounds on the mask values that
assert invertibility. Further, we analyse the spectrum of the inpainting matrix
and adherence to max-min principles for the reconstruction. These results
extend the framework from [19] to the more general setting of non-binary
masks.
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Chapter 2 Inpainting with homogeneous diffusion

2.1 Spectral analysis of the inpainting matrix
The eigenvalues of a matrix offer us a complete description of its behaviour.
In the following we state upper and lower bounds that guarantee the spectrum
of the inpainting matrix A(c) to be real valued and we provide requirements
that make sure that the matrix is also invertible.
Proposition 2.3
The inpainting matrix A (c) has a real valued spectrum if ci 6 1 for all i.

Proof. We assume that ci 6 1 holds for all i. In order to show that the
spectrum of A (c) is real valued we first apply the following change of variables:
X = (xi,j)i,j := I − diag (c). This change eases the computations and has
no other impact on the results. Thus, we get A (c) = I −X +X (−L) and
we define further the diagonal matrix S = (si,j)i,j with entries

si,i :=
{

1, xi,i = 0
xi,i, xi,i > 0

, ∀i .

All other entries of the matrix S are 0. Note that X is a diagonal matrix
and, because of our assumption that all mask values are bounded above by
1, it cannot have any negative entries. Therefore, its square root

√
X exists.

Clearly, the matrix S is diagonal, positive definite and invertible, too. It
follows that the matrices

√
S,
√
S
−1 and S−1 also exist. We consider now

the following similarity transform
√
S
−1
A (c)

√
S =

√
S
−1 (I −X +X (−L))

√
S

= I −
√
S
−1
X
√
S +
√
S
−1
X (−L)

√
S .

It is easy to see that the identities
√
S
−1
X =

√
X and

√
S
−1
X
√
S = X hold.

By combining these two results we obtain the relation
√
S
−1
A (c)

√
S = I −X +

√
X(−L)

√
S .

If we further assume that xi,i > 0 (e.g. ci < 1) for all i, then
√
X =

√
S

and
√
S
−1
A (c)

√
S becomes I − X +

√
X (−L)

√
X. The latter matrix is

symmetric and thus all eigenvalues of
√
S
−1
A (c)

√
S are real valued. We

emphasise that at this point it is mandatory to chose a discretisation of the
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2.1 Spectral analysis of the inpainting matrix

0 0 0
α α α

0 0 0

Figure 2.2: Inpainting mask of a 3 × 3 image. For α > 1, the corresponding inpainting
matrix A (c) has complex eigenvalues.

Laplacian such that L is symmetric. We cannot make any claims otherwise.
We conclude that the spectrum of A (c) is already real valued if ci < 1 holds
for all i. This result follows from the fact that the spectrum of a matrix is
invariant under similarity transforms.

Let us now assume that ci 6 1 is fulfilled for all i and that ci = 1 holds for
certain i. Let again X be given by I − diag (c). Further, let us assume that
A (c) has at least one complex eigenvalue. Then there exists an eigenvalue
λ = α + ıβ with α ∈ R and β < 0 or β > 0. Finally, let ε > 0 be a
fixed but arbitrary real positive number and define Xε := X + εI. Our
previous result states that the matrix A(c)ε := I −Xε +Xε (−L) has a real
spectrum for any ε > 0. Further, A(c)ε converges component wise towards
A(c) for ε going to 0. Since the eigenvalues depend continuously on the
matrix entries [47, Appendix D], it follows that A (c) cannot have a complex
eigenvalue. Otherwise there would have to exist a ε > 0 such that A (c)ε
already has a complex eigenvalue with imaginary part β

2 . This would be a
contradiction.

Note that the upper bound of 1 for the mask entries is actually strict. Let
us consider an arbitrary 3× 3 image and the mask given in Figure 2.2. For
such a small example all eigenvalues of the 9× 9 inpainting matrix A(c) can
be stated explicitly. They are given by

1, 1, 2, 4,−2 (α− 2) ,
1
2
(
−
√
α2 − 10α+ 9− α+ 3

)
,
1
2
(√

α2 − 10α+ 9− α+ 3
)
,

1
2
(
−
√

16α2 − 16α+ 9− 4α+ 9
)
,
1
2
(√

16α2 − 16α+ 9− 4α+ 9
)

for which the values become complex valued as soon as α > 1 since α2−10α+9
is negative then. In this example, we have discretised the Laplacian by using
the stencil depicted in Figure 2.3 (a) and setting h = 1. The pixels have
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Chapter 2 Inpainting with homogeneous diffusion

0 1
h2 0

1
h2 − 4

h2
1
h2

0 1
h2 0

(a) Stencil of the discrete Laplacian

0 −1+ci
h2 0

−1+ci
h2 ci + 4(1−ci)

h2
−1+ci
h2

0 −1+ci
h2 0

(b) Stencil of the inpainting matrix

Figure 2.3: Convolution stencils of the discrete Laplacian and of the inpainting matrix A(c)
for inner pixels. The stencil of the inpainting matrix depends on the position where it
is evaluated. At boundary pixels both stencils must be adapted to reflect the imposed
Neumann boundary conditions.

been labelled column-wise. Finally, it is interesting to note that we have not
encountered any lower bounds for ensuring a real valued spectrum. Basically,
the mask values can even be negative.

2.2 Invertibility of the inpainting matrix

In the forthcoming paragraphs we turn our attention towards the invertibility
of the inpainting matrix. Our goal is to exclude 0 from the eigenvalue
spectrum. For technical reasons we restrict ourselves to the 2D case (e.g.
Ω ⊆ R2). Other environments can be handled analogously and require little
to no changes on the proofs. Certain results from the 1D setting (e.g. Ω ⊆ R)
are also required in the upcoming chapters. We mention them explicitly
whenever they differ from the two dimensional environment.

As already mentioned, we assume that our image data is given on a regular
grid with nr rows, nc columns, and a grid size of h > 0 in each direction.
The simplest possible discretisation for the Laplacian can be expressed by a
convolution with the stencil presented in Figure 2.3 (a). This choice will be
analysed in the forthcoming paragraphs. Results for other discretisations
can be done analogously. We remind that there exists an intimate one-to-one
relationship between stencils for convolutions and matrices. The i-th row of
a matrix contains the entries for the convolution stencil to be applied on the
i-th data point of the signal. Thus, it is straightforward to derive the stencil
corresponding to the inpainting matrix by computing the entries of A (c)
and vice versa. The resulting stencil for the inpainting matrix is depicted in
Figure 2.3 (b). Note that the stencils from Figure 2.3 are only valid for inner
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2.2 Invertibility of the inpainting matrix

pixels. Along the image bounds the stencil has to be adapted to adhere to
the imposed boundary conditions. It is easy to verify that in general the
inpainting matrix A (c) has the entry ci + |N(i)| (1− ci)h−2 on its i-th entry
of the main diagonal. Here N (i) is the set of existing direct neighbours to
pixel i and |N (i)| is its cardinality. The |N (i)| non-zero off-diagonal entries
in the same row are all given by (ci − 1)h−2.
Our next goal is to obtain an estimate on the allowed range for the

mask values ci such that we can assert invertibility of the inpainting matrix.
Clearly, the i-th row of the matrix A(c) depends only on ci, whereas the i-th
column may depend on all pixels from N(i). Thus, we can derive pointwise
estimates by applying Geršgorin’s circle theorem [48, Theorem 1.1] onto the
rows of A (c). For the sake of completeness, we recall this important result
of Geršgorin but refer to [48] for its proof.
Theorem 2.4 (Geršgorin’s circle theorem)
For any matrix A ∈ Cn,n with entries ai,j and any eigenvalue λ ∈ C of A,
there is a positive integer k ∈ {1, . . . , n} such that

|λ− ak,k| 6
n∑
j=1
j 6=k

|ak,j | .

The previous theorem allows a beautiful geometric interpretation. The
sets

Dk :=

z ∈ C

∣∣∣∣∣∣ |z − ak,k| 6
∑
j 6=k
|ak,j |


with k ∈ {1, . . . , n} represent discs in the complex plane. The theorem states
that for every eigenvalue there exists such a disc which encloses it. Thus,
by analysing the extent of all the discs it is possible to get estimates for
eigenvalue candidates. We exploit this finding to obtain approximate bounds
for the mask values that assert invertibility of the inpainting matrix.
Proposition 2.5
Let A(c) be the inpainting matrix with mask c corresponding to the stencil in
Figure 2.3 (b) and assume that the grid size is h > 0. Then, all eigenvalues
of A(c) are non-negative and 0 cannot lie in any of the row-wise computed
Geršgorin discs of A(c) if Eq. (2.6) holds for every mask value ci. It follows
that 0 cannot be an eigenvalue. Conversely, if any ci takes the value 0 or
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Chapter 2 Inpainting with homogeneous diffusion

2|N(i)|(2|N(i)| − h2)−1 then 0 lies on the boundary of the corresponding
Geršgorin disc.

Proof. In order to exclude 0 as an eigenvalue we have to assert that it is
enclosed in none of the discs defined by the previous theorem. All the
entries of the inpainting matrix are explicitly known and a straightforward
computation reveals

ci + |N(i)| (1− ci)h−2︸ ︷︷ ︸
=A(c)i,i

−|N(i)| |(1− ci)|h−2︸ ︷︷ ︸
=A(c)i,j , ∀j∈N(i)

> 0, ∀i

as a requirement to exclude 0 as candidate for an eigenvalue. This inequality
can be reduced to0 < ci, |N(i)| 6 h2

2
0 < ci <

2|N(i)|
2|N(i)|−h2 , |N(i)| > h2

2
∀i . (2.6)

Clearly if any mask value attains the value 0 or 2|N(i)|(2|N(i)|−h2)−1, then
the boundary of the corresponding Geršgorin disc will pass through 0.

Note that |N(i)| > h2

2 can also be rewritten as h <
√

2
√
|N(i)|. In our

setting |N(i)| can take at most the value 4. This implies that a grid size
h > 2

√
2 leaves us with the sole requirement that all ci must be positive to

prevent 0 from being a candidate for an eigenvalue. One of the most frequent
choices for the grid size is h = 1. This yields the upper bounds 8

7 for inner
pixels, 6

5 for boundary pixels and 4
3 for corner pixels. A visualisation of the

Geršgorin discs of the inpainting matrix for different mask values is given
in Figure 2.4. We also note that an almost identical computation for the
1D setting yields the upper bound of 4

3 for the mask values. Finally let us
remark that different discretisations of the Laplacian lead to different upper
bounds. Nevertheless, the computations are identical in every case.
Unfortunately, enforcing all ci to be positive to assert invertibility of the

matrix A(c) is too prohibitive for our goals. We would like to completely
turn off the influence of the data at specific locations. Further, our results
should generalise the findings of Mainberger et al. [19] where it was possible
for the mask to take the value 0. Thus, we need to investigate on further
results to weaken the requirements from Proposition 2.5.
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2.2 Invertibility of the inpainting matrix

c = 0

c = 8
7

c = 1
2

Figure 2.4: Visualisation of the Geršgorin discs for c = 0, c = 1
2 and c = 8

7 with grid size
h = 1 for some inner pixel (|N(i)| = 4). The vertical tick is positioned at x = 1 and
marks the position of the Geršgorin disc for c = 1 with radius 0. Note that the centre
of the circles move from x = 4 to x = 1 when c changes from 0 to 1. At the same time
the radius of the circles get smaller. For c varying from 1 to 8

7 the centres move from
x = 1 to x = 4

7 and the radius increases from 0 to 4
7 .

Our next step is to show that the inpainting matrix is invertible as soon as
one mask entry fulfils the requirements from Eq. (2.6). Our strategy employs
ideas from [19]. However, due to the more general setting, a certain number
of additional steps need to be taken. We proceed as follows: First, we show
that our inpainting matrix is a so called block irreducible matrix. Then, by
using a theorem from [49], we provide less restrictive conditions that exclude
0 as a candidate for an eigenvalue. To this end we show that 0 can only be
an eigenvalue if it lies on the boundary of all Geršgorin discs. This setup is
impossible as soon as as a single mask value fulfils the requirements from
Proposition 2.5.

Several classic results from matrix analysis and graph theory are required.
We provide them in the following paragraphs and begin our presentation
on preliminary results with two common definitions concerning structured
matrices. They stem from [48, Chapter 1.2].

Definition 2.6 (Permutation matrix.)
A matrix P ∈ Rn,n is said to be a permutation matrix if there exists a
permutation φ, i.e. a bijective mapping from the set {1, 2, . . . , n} onto itself,
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Chapter 2 Inpainting with homogeneous diffusion

such that P =
(
δi,φ(j)

)
i,j
, where δk,l is the Kronecker delta function

δk,l :=
{

1, k = l

0, k 6= l .

Definition 2.7 (Reducible matrix)
A matrix A ∈ Cn,n with n > 2 is reducible if there exists a permutation
matrix P ∈ Rn,n and a positive integer r, with 1 6 r < n for which

PAP> =
(
A1,1 A1,2

0 A2,2

)
.

Here, A1,1 ∈ Cr,r, A1,2 ∈ Cr,n−r and A2,2 ∈ Cn−r,n−r are arbitrary subma-
trices. If no such permutation matrix exists, A is said to be irreducible. For
scalars we say that they are irreducible if they are non-zero and reducible
else.

The term reducible matrix stems from the following fact: Let us assume
A is a reducible matrix and that we want to solve the linear system Ax = b.
By applying the definition of reducibility, we can change the initial problem
into two linear systems of smaller size:

A1,1y +A1,2z = c ,

A2,2z = d .

By solving the second system A2,2z = d, we can rewrite the first system
as A1,1y = c − A1,2z. Often, these two reduced systems can be solved
significantly faster than the original problem.
There exists a strong relationship between matrix analysis and graph

theory. The idea is that one can associate matrices to graphs in such a way
that properties of graphs reflect certain characteristics of matrices. This
relationship is also quite useful to obtain a non-algebraic interpretation of
the concept of an irreducible matrix.
Let us shortly introduce some very basic notions from graph theory.

Consider any matrix A ∈ Rn,n with non-negative entries as well as n pairwise
distinct elements vj from an arbitrary set of the same size. The elements vj
are commonly called vertices. For each non-zero entry ai,j of A we connect
the vertex vi with the vertex vj using a directed arc going from vi to vj
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2.2 Invertibility of the inpainting matrix

(denoted by #     »vivj). The entry ai,j in the matrix A can be interpreted as a cost
for going from vi to vj . The set of all such directed arcs is called directed
graph and denoted by G (A). Further, a directed path in G (A) is a collection
of abutting directed arcs #          »vk1vk2 , #          »vk2vk3 , . . ., #               »vkr−1vkr connecting the initial
vertex vk1 with the terminal vertex vkr . In this context, the matrix A is also
referred to as the (weighted) adjacency matrix of G (A) and the number of
abutting arcs is called length of the path. The following definition can be
found in [48, Definition 1.8] and denotes an important property of graphs.
Definition 2.8 (Strongly connected graph)
The directed graph G (A) of a matrix A is strongly connected if, for each
ordered pair vi and vj of vertices, there is a directed path in G (A) with initial
vertex vi and terminal vertex vj.

Strongly connected graphs are those graphs where any vertex can be
reached from any other vertex in an arbitrary number of steps. Figure 2.5 (a)
depicts an example of a strongly connected graph and Figure 2.5 (b) presents
a graph that is not strongly connected. The corresponding adjacency matrices
A1 for Figure 2.5 (a) and A2 for Figure 2.5 (b) are given by

A1 =

 0 a1,2 0
0 0 a2,3
a3,1 0 0

 , A2 =

 0 a1,2 a1,3
0 a2,2 0
a3,1 0 0

 . (2.7)

We remark that the non-zero entries in an adjacency matrix A tell us which
nodes can be reached by traversing a path of length 1. Similarly, the non-zero
entries in A2 tell us which vertices are linked to each other by a path of
length 2. In general, Ak indicates the vertices that are connected by a path
of length k.
The next proposition exhibits the announced important relationship be-

tween graph theory and matrix analysis. It stems from [48, Theorem 1.9].
We refer to the source for a detailed proof of the statement.
Proposition 2.9
Any matrix A ∈ Rn,n with non-negative entries is irreducible if and only if
its directed graph G (A) is strongly connected.

This finding yields a very comfortable way to verify that a matrix is
irreducible and will be essential in our demonstration that the inpainting
matrix is invertible.
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v1 v2

v3

a1,2

a2,3a3,1

(a) A graph which is strongly connected.
The corresponding adjacency matrix is
given as A1 in Eq. (2.7)

v1 v2

v3

a1,2

a1,3

a3,1

a2,2

(b) A graph which is not strongly connected.
It is not possible to reach v3 from v2. The
corresponding adjacency matrix is given
as A2 in Eq. (2.7)

Figure 2.5: Examples of a strongly connected and not strongly connected graphs. The first
graph is not strongly connected, since there is no path going from v2 to v3.

The concept of irreducible matrices has a useful generalisation. Often,
matrices suggest a block structure in the sense that its entries can be grouped
into rectangular blocks and that these blocks follow a certain pattern. In
this context it may be interesting to analyse the irreducibility with respect
to these blocks. This idea is introduced in the following definition. It stems
from [49, Definition 2].
Definition 2.10 (Block irreducible matrix)
Let A be a n× n matrix with complex entries, partitioned as follows:

A =


A1,1 A1,2 . . . A1,m
A2,1 A2,2 . . . A2,m
...

... . . . ...
Am,1 Am,2 . . . Am,m

 .

The submatrices Ai,i are assumed to be square of order ni < n for all i. We
call the matrix A block irreducible if the m×m matrix

‖A1,1‖ ‖A1,2‖ . . . ‖A1,m‖
‖A2,1‖ ‖A2,2‖ . . . ‖A2,m‖

...
... . . . ...

‖Am,1‖ ‖Am,2‖ . . . ‖Am,m‖


is irreducible. Here, ‖·‖ is an arbitrary matrix norm.
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2.2 Invertibility of the inpainting matrix

Our goal in this section is to provide conditions for which the inpainting
matrix A (c) is block irreducible. Later we show how this property helps
us to exclude 0 from the eigenvalue spectrum. Another common matrix
structure is a band matrix which has non-zero entries only along certain
diagonal bands. We now state a rigorous definition.
Definition 2.11 (Band matrix)
Let p, q ∈ N be positive numbers. We say that a matrix A ∈ Cn,n with entries
ai,j and with n > max {p, q} is a band matrix with bandwidth p+ q+ 1 if the
entry ai,j = 0 for all i, j such that j + p < i or i+ q < j. If p = q = m, we
call the 2m+ 1 diagonals of A that can be non-zero the main diagonals of A.

Band matrices often stem from the discretisation of differential equations.
The discrete version L of the Laplacian as well as the inpainting matrix
defined in this chapter are band matrices. Further, these matrices also have
a block structure. An observation that we exploit in the following. A special
case of band matrices is given by tridiagonal matrices. They correspond to
setting p = q = 1 in the previous definition.
The next lemma shows how the bandwidth is changing if band matrices

are applied onto each other.
Lemma 2.12
If A ∈ Rn,n is a band matrix where all entries on the 2m+ 1 main diagonals
are positive and B ∈ Rn,n is a tridiagonal matrix where all entries on the
main diagonals are positive, too, then the product AB ∈ Rn,n is a band
matrix where all entries on the 2m+ 3 main diagonals are positive.

Proof. Clearly the entry ai,r is positive if and only if |i− r| 6 m and similarly
the entry br,j is positive if and only if |r − j| 6 1. Since the (i, j)-th entry of
AB is given by

n∑
r=1

ai,rbr,j ,

it remains to show that this sum differs from 0 if and only if |i− j| 6 m+ 1.
Note that all entries in A and B are non-negative. Thus it cannot happen
that multiple terms of the sum cancel out. Obviously the term

∑n
r=1 ai,rbr,j

is non-zero if and only [i−m, i+m]∩ [j − 1, j + 1]∩Z is not the empty set.
But this assertion is equivalent to

i+m > j − 1 or i−m 6 j + 1 .
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Chapter 2 Inpainting with homogeneous diffusion

Finally, the latter two inequalities can be merged into a single expression
given by |i− j| 6 m+ 1. This concludes the proof.

Corollary 2.12.1
If A ∈ Rn,n is a tridiagonal matrix where all entries on the three main
diagonals are positive, then there exists an integer k > 1 such that Ak is a
full matrix where all entries are positive.

Proof. Applying Lemma 2.12 iteratively on the matrices Ak and A for k > 1
shows that the bandwidth is increasing by one with each power. Thus, the
matrix will be full for k = n− 1.

Corollary 2.12.2
A tridiagonal matrix A ∈ Rn,n where all the entries on the 3 main diagonals
are positive is irreducible.

Proof. Corollary 2.12.1 asserts that there exists a k such that Ak is a full
matrix. This implies that any vertex in G (A) can be reached from any other
vertex by a path of length k. Thus, A is irreducible.

Let us assume for a moment that the pixels in the image are labelled
column-wise. Then our inpainting matrix A(c) has block tridiagonal structure.
This means that we can partition it as follows:

A1,1 A1,2 0 0 . . . 0 0
A2,1 A2,2 A2,3 0 . . . 0 0

0 A3,2 A3,3 A3,4 . . . 0 0
...

...
...

... . . . ...
...

0 0 0 0 . . . Anc,nc−1 Anc,nc

 .

Obviously, the tridiagonal submatrices Ak,k ∈ Rnr,nr on the main diagonal
can be never be 0 in each entry. This follows immediately from the stencil
structure stated in Figure 2.3 (b). However, in the case that a whole column
k of our rectangular image domain Ω contains only mask values equal to 1,
the 2 diagonal submatrices Ak,k−1 and Ak,k+1 along the off-diagonals are zero
matrices. By adapting the size of the submatrices Ak−1,k−1 and Ak+1,k+1
it is possible to create a tridiagonal block structure such that none of the
blocks contains 0 as only entry. The same strategy can also be applied to
the block corresponding to the first or last column. The drawback is that
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2.2 Invertibility of the inpainting matrix

not all blocks have the same size anymore. However, this fact is completely
irrelevant for our purposes. An example of such a restructuring is visualised
in Figure 2.6. Let us remark, that the previous reasoning can also be done if
the pixels are labelled row-wise. In that case, the inpainting matrix can be
partitioned into nr × nr blocks, each of size nc × nc.
Using Corollary 2.12.2 and Definition 2.10 it easily follows that A(c) is

block irreducible. Let us also remark that any labelling of the pixels in the
image domain can be reduced to the previous case by applying a permutation
of the labels. The underlying graph structure does not change and the block
irreducibility is always preserved.
We now use the following result from [49, Theorem 3] and refer to the

source for a proof of this important claim.
Proposition 2.13
Let A ∈ Rn,n be a block irreducible matrix and λ ∈ C an eigenvalue of A. If
λ is a boundary point of the union of all the Geršgorin discs, then it is a
boundary point of each Geršgorin disc.
Theorem 2.14 (Invertibility of the inpainting matrix)
Let |N (i)| > h2

2 hold for all pixel indices i and define `max as follows

`max := min
i

{ 2|N(i)|
2|N(i)| − h2

}
.

The inpainting matrix A (c) is invertible if all mask entries are in the interval
[0, `max] and at least one mask entry is in the open interval (0, `max).

Proof. It follows from Proposition 2.5 that all mask entries must lie in the
open interval (0, `max) to discard 0 as a potential eigenvalue. Further, if all
ci are in the interval [0, `max], then 0 can only be a boundary point of the
union of all Geršgorin discs. Using Proposition 2.13, it follows that 0 must
be a boundary point of each Geršgorin disc if it is an eigenvalue. However,
because of Proposition 2.5, this becomes impossible as soon as 0 < ci < `max
holds for at least one ci. Thus, it is enough that a single mask value lies
in the interval (0, `max) and all the others in the interval [0, `max] to assert
invertibility of the inpainting matrix.

Note that the previous theorem indeed generalises the findings of Main-
berger et al. [19]. They showed that the inpainting matrix with a binary
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c1

c2

c3

c4

c5

c6

c7

c8

c9

c10
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c12

(a) A 3× 4 image with the a column-wise ordering of
the pixels. In this example, we assume that c4, c5,
and c6 are 0.

( )
1
2
3
4
5
6
7
8
9

10
11
12

(b) The corresponding 12× 12 inpainting matrix. Black discs
indicate non-zero entries. Black circles indicate entries that
are 0 due to the choice of the mask values. All other entries
are 0. The labels of the image have been placed next to the
matrix rows for better orientation.

Figure 2.6: Example for a block irreducible partitioning. We consider the mask given in (a)
with c4, c5, and c6 being 0 and obtain the matrix structure in (b). The black rectangles
in (b) indicate the canonical tridiagonal block structure of the matrix obtained by
column-wise labelling. The matrix is not block irreducible with respect to this ordering.
The dark and clear blue blocks yield a tridiagonal block structure with respect to which
the inpainting matrix is block irreducible.
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2.3 Extremum principles

mask is invertible if at least a single mask point is equal to 1. Our findings
yield two significant extensions. First of all, we are not restricted to the
binary setting anymore. Our mask points are free to take any value in the
interval [0, `max]. Secondly, we have found a slightly better upper limit for
the mask values. Indeed, it is easy to see that `max > 1 for any valid choice
of h > 0 and |N (i)|.

2.3 Extremum principles

Desirable properties in the context of diffusion processes are the preservation
of the mean value and the adherence to the max-min principle. Preservation
of the mean value means that the average value of output signal should
be identical to the average value of the input signal. Such a property is
important for image processing purposes as it guarantees that images do
not get darker or brighter. The max-min principle serves a similar purpose.
It asserts that all signal values remain in the convex hull of the input data
and it can be seen as a stability criteria for certain algorithms. While it
is clear that an inpainting process will, in general, not preserve the mean
value, we are still in the position to state constraints that guarantee that
the extrema of the reconstruction do not exceed the extrema of the input
data. The strategy is straightforward and rather simple. We show that our
inpainting matrix is a so-called M-matrix. In combination with the fact
that the inpainting matrix is invertible we can deduce that all the entries
of A (c)−1 are positive. Finally, we derive the max-min principle from the
latter result. The same strategy was already presented for binary masks
by Mainberger et al. [19]. A certain number of concepts are essential in
the presentation of the just mentioned strategy. They are presented in the
following and stem from [47, Section 8.1] and [50, Definitions 2.1.1, 2.1.2,
2.5.1, and 2.5.2].
Definition 2.15 (Non-negative matrix)
We say that a matrix A ∈ Rn,n is non-negative if ai,j > 0 for all i and j.
Definition 2.16 (Inertia of a matrix)
Let A ∈ Cn,n, we define i+ (A) as the number of eigenvalues of A with
positive real part, i− (A) as the number of eigenvalues of A with negative real
part, and i0 (A) as the the number of eigenvalues of A with zero real part.
In each case multiplicities of the eigenvalues are taken into consideration. It
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Chapter 2 Inpainting with homogeneous diffusion

follows that i−(A) + i0(A) + i+(A) = n. Finally, the row vector

i (A) :=
(
i+(A) i−(A) i0(A)

)
is called the inertia of the matrix A.
Definition 2.17 (Positive stable matrix)
A matrix A ∈ Cn,n is said to be positive stable if i+(A) = n.

The next definition is required as an intermediate step for the definition
of a so called M-matrix.
Definition 2.18
The set Zn ⊆ Rn,n is defined by

Zn := {A ∈ Rn,n | ai,j 6 0 ∀i 6= j} .

It contains all real valued matrices that have non-positive elements at each
position not on the main-diagonal. The entries on the main-diagonal can be
arbitrary.
Definition 2.19 (M-matrix)
A matrix A ∈ Rn,n is called an M-matrix if A ∈ Zn and if A is positive
stable.

Thus, a M-matrix is a matrix which has only eigenvalues with positive
real part and where all the entries not on the main diagonal are non-positive.
M-matrices appear in many fields such as probability theory, economics
and matrix analysis. They also appear in the context of discretisations of
PDEs and in the analysis of finite Markov chains as well as in the study of
population dynamics. Clearly, the inpainting matrix A(c) is positive stable
and a M-matrix if all mask entries are in the interval [0, 1] and at least one
mask entry is non-zero. This result follows immediately from the spectral
analysis that we performed at the beginning of this section and the fact that
the off-diagonals are given by (−1 + ci)h−2 which stays non-positive as long
as ci 6 1 holds. Berman and Plemmons [51, Chapter 6, Theorem 2.3] list
fifty conditions on a matrix A ∈ Zn which are equivalent for a matrix A to
being a non-singular M-matrix. Especially their condition N38 is interesting
for us. It states that A is inverse positive; that is, the inverse A−1 exists and
all its entries are non-negative. This result allows us to show that signals
obtained by applying the reconstruction matrix M (c) do not exceed the
range of the initial data. In [19] this result was shown for the case where the
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inpainting mask is binary valued. The statement remains valid if all mask
values stay in the range [0, 1] and the actual proof is very similar. We state
this result in the following proposition.
Proposition 2.20 (Max-min principle for homogeneous inpainting)
Let f be our signal to be reconstructed and c a given inpainting mask with
ci ∈ [0, 1] for all mask positions i and at least one mask value in the interval
(0, 1]. Further let fmin := mini {fi | ci > 0} and fmax := maxi {fi | ci > 0} be
the minimal and maximal known data value of our signal f . If u = M(c)f
is our reconstruction, then ui ∈ [fmin, fmax] for all i.

Proof. Note that the sum of all entries in the i-th row of the inpainting
matrix A (c) is ci. From this it follows that

A (c)

1
...
1

 =

 c1
...

cnrnc

 .

Due to our assumptions, the inpainting matrix A(c) is invertible. Thus we
can deduce ∑

j

(
A (c)−1

)
i,j
cj = 1 ∀i .

We know that A (c) is inverse positive. In combination with the previous
equation we conclude that (A (c)−1)i,jcj ∈ [0, 1] for all i and j. Let us now
consider the reconstruction u = M (c) f . By applying the definition of the
reconstruction matrix, we obtain

ui =
∑
j

(
A (c)−1

)
i,j
cjfj 6

∑
j

(
A (c)−1

)
i,j
cj︸ ︷︷ ︸

=1

fmax 6 fmax .

The estimate with respect to fmin is done in the very same way.

2.4 Conclusion
The findings in this chapter show how to generalise the initial Laplace
interpolation to a more general approach by blending the data values with
their diffused counterparts. Our findings show that a reasonable range for
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Chapter 2 Inpainting with homogeneous diffusion

the mask values is the interval [0, 1]. It guarantees that the spectrum of
the inpainting matrix stays real and that the reconstruction matrix exists,
regardless of the grid size h. Furthermore, mask values within the unit
interval assert adherence to the max-min principle for the reconstruction.
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Chapter 3
Optimisation in the codomain

Success consists of going
from failure to failure
without loss of enthusiasm.

(Winston Churchill)

Mainberger et al. [20] describe an additional optimisation step to decrease the
reconstruction error with homogeneous diffusion inpainting. They optimise
the data values for a given, fixed, and non-empty binary mask. Experimental
setups demonstrate that such an additional tuning of the interpolation data
has a significant impact on the accuracy. Their so called grey value optimisa-
tion (GVO) method is analysed in the following paragraphs and several new
findings concerning the optimality of grey values and the corresponding mask
values are presented. We emphasise that all the results from this chapter
assume that the mask locations have already been fixed beforehand. We only
consider the corresponding mask values for these predefined positions. We
further remark that the results from this chapter have also been presented
in [52].
Mainberger et al. [20] discuss the GVO exclusively in combination with

binary masks. In the previous chapter we have laid the foundation for
inpainting strategies that can handle arbitrary mask values. Since the GVO
by Mainberger et al. [20] is merely a post processing step, it can likewise be
applied to non-binary masks, too. Thus, the important question is whether
we can achieve even more accurate reconstructions with this additional step
if the mask values have already been optimised. Another interesting topic
is the numerical handling of the problem. Grey value optimisation can be
expressed as a least squares problem. The question arises how efficiently this
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problem can be solved.
The GVO task seeks for a given and fixed mask the data that yields the

most accurate reconstruction in the least squares sense. This task can be
expressed as

g = arg min
x∈Rn

{1
2‖M (c)x− f‖22

}
. (3.1)

For convenience we define the reconstruction error as the value of the cost
function from Eq. (3.1) for a given mask c and corresponding data x. The
reconstruction error coincides with the popular mean squared error (MSE)
up to a scaling factor. For our purposes the reconstruction error is the more
natural choice, however.
Definition 3.1 (Reconstruction error)
We call reconstruction error, the following quantity:

E (c, x) := 1
2‖M (c)x− f‖22 . (3.2)

During this whole chapter we assume that the reconstruction matrix M (c)
always exists. The necessary requirements have already been discussed in
the previous chapter.

3.1 Optimal mask values and optimal data values

We follow the notational conventions from the previous chapters and assume
that we have a total of n := nrnc linearly indexed pixels in our image and
that we are given a fixed and non-empty set K ⊆ {1, . . . , n} of locations.
They indicate the positions of our inpainting data x as well as the entries in
our mask c which are non-zero. We will also refer to the set K as the sparsity
pattern of our mask. For i ∈ K we are left with three possibilities to improve
the reconstruction. Either we fix the mask value ci at some arbitrary value
for all i ∈ K and manipulate the corresponding pixel value xi to reduce the
error E (c, x), or we fix xi and optimise the value of ci. Lastly, we could also
try to optimise both xi and ci for all i ∈ K simultaneously. In this chapter
we are interested in the following two settings.

1. We fix ci = 0 for all i 6∈ K, ci = 1 for all i ∈ K and solve Eq. (3.1) to
obtain the optimal data g with respect to this binary mask.
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3.1 Optimal mask values and optimal data values

2. We fix ci = 0 for all i 6∈ K and assume that all values ci with i ∈ K
have been chosen such that E (c, f) is minimal. Here, f represents the
original input data.

The former setting corresponds to the GVO framework of Mainberger et al.
[20] while the latter case optimises the mask values and leaves data at its
original values. The question arises whether there is any benefit in the latter
approach over the former one. After all, we are optimising data at the exact
same positions in each case. In this chapter we show that it does not matter
which strategy is employed. Both methods yield the same error.

The two just mentioned optimisation tasks are unconstrained. It follows
that the necessary conditions for a minimum of E with respect to the data
x (respectively the mask c) are given by

∂

∂xi
E (c, x) = 0, ∀i ∈ {1, . . . , n} ,

resp. ∂

∂ci
E (c, x) = 0, ∀i ∈ K .

(3.3)

For the upcoming discussion it is mandatory to have the analytic expressions
of these derivatives to our avail. The partial derivatives with respect to the
xi are easy to derive and well known. Due to the complex dependency of E
on c, the partial derivatives with respect to the mask entries are much more
complicated to obtain.
The following proposition is an adapted version of a similar result found

by Ochs et al. [53, Lemma 9]. There, the authors state it for the case x = f .
Its reformulation to the more general setting is straightforward. We refer to
the original work [53] for a detailed proof.
Proposition 3.2 (Gradients of the reconstruction error)
We consider the reconstruction error E from Eq. (3.2). The gradients of E
with respect to the data x (denoted by ∇x) and the mask c (denoted by ∇c)
are given by

∇xE (c, x) = M (c)> (M (c)x− f) , (3.4)

∇cE (c, x) = diag
(
x− (I + L)M (c)x

)
A (c)−> (M (c)x− f) . (3.5)

A close look onto the previous expressions reveals an intriguing similarity
between the gradients.
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Corollary 3.2.1
The gradients of E with respect to x and c have a certain similarity. If we
denote:

T (c, x) := A (c)−>
(
A (c)−1 diag (c)x− f

)
=
(
∇z
(1

2

∥∥∥A (c)−1 z − f
∥∥∥2

2

))∣∣∣∣
z=diag(c)x

.

Then we have

∇xE(c, x) = diag (c)T (c, x) ,

∇cE(c, x) = diag
(
x− (I + L)A (c)−1 diag (c)x

)
T (c, x) .

Thus, both gradients coincide if

c = x− (I + L)A (c)−1 diag (c)x .

The next theorem is an important first step in showing the equivalence
between mask value optimisation and GVO when the sparsity pattern is
fixed. It shows that, regardless of what we optimise, all necessary optimality
conditions for minimising the reconstruction error are fulfilled.
Theorem 3.3 (Fulfilment of optimality conditions)
Optimising the mask values and keeping the grey values fixed at the original
data yields a pair of variables that fulfils all necessary optimality conditions
from Eq. (3.3) with respect to the data values x and the mask values c.
Similarly, fixing a binary sparsity pattern for the inpainting mask and opti-
mising the grey values also returns a pair of variables that fulfils all necessary
optimality conditions for minimising the reconstruction error.

Proof. Assume first that for a fixed non-empty sparsity pattern K we have
found the optimal mask values c̃ for the reconstruction with respect to the
original data f . This means that the entries c̃i with i ∈ K have been obtained
by seeking the minimiser of E(c, f) with respect to all ci with i ∈ K and
that c̃i = 0 for all i 6∈ K. Further, it holds that(

∇cE (c, f)
∣∣∣∣
c=c̃

)
i∈K

= 0 . (3.6)
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3.1 Optimal mask values and optimal data values

Replacing the gradient in Eq. (3.6) with the expression from Eq. (3.5) yields(
diag

(
f − (I + L)M (c̃) f

)
A (c̃)−> (M (c̃) f − f)

)
i∈K

= 0 .

The previous equation is a product between the diagonal matrix

diag (f − (I + L)M (c̃) f)

and the vector
A (c̃)−> (M (c̃) f − f) .

This product comes down to a component wise multiplication between the
diagonal entries of the matrix and the vector entries. Therefore, at least one
of the two following equations must hold for each i ∈ K:

(f − (I + L)M (c̃) f)i∈K = 0 , (3.7)(
A (c̃)−> (M (c̃) f − f)

)
i∈K

= 0 . (3.8)

Our goal is to show that Eq. (3.8) actually holds for all i ∈ K. If for a
certain entry i ∈ K, Eq. (3.7) differs from 0, then Eq. (3.8) must be 0. Thus
we only need to show, that Eq. (3.7) can never hold. To this end note that
u := M (c̃) f solves by definition the equation

diag(c̃) (u− f) + (I − diag (c̃)) (−L)u = 0 (3.9)

and that Eq. (3.7) is equivalent to

diag (c̃) (f − (I + L)M (c̃) f︸ ︷︷ ︸
=u

) = 0 . (3.10)

From Eq. (3.9) it follows that

diag (c̃) (u− f + Lu) = Lu . (3.11)

Plugging Eq. (3.11) into Eq. (3.10) yields the requirement −Lu = 0. Thus,
if Eq. (3.7) holds, then the reconstruction u = M (c̃) f also needs to solve
−Lu = 0. This contradicts our assumption that c̃ has at least one non-zero
entry and that the set K is non-empty. Therefore, Eq. (3.7) can never hold
and Eq. (3.8) is valid for all i ∈ K.
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Next we observe that Eq. (3.8) can be extended to all indices i by multi-
plying it from the left with diag (c̃). This gives us

diag (c̃)A (c̃)−> (M (c̃) f − f) = 0

which implies that

∇xE (c̃, x)
∣∣∣∣
x=f

= 0 .

Thus, the necessary optimality conditions with respect to x are also fulfilled.
On the other hand, let us define a binary mask c with ci = 1 if i ∈ K

and ci = 0 else. Using this mask and optimising the grey values for the
reconstruction yields the following requirement on the data x:

(∇xE (c, x))i = 0 ∀i ∈ {1, . . . , n}

⇔
(
diag (c)A (c)−>

(
A (c)−1 diag (c)x− f

))
i

= 0 ∀i ∈ {1, . . . , n}

⇔
(
A (c)−>

(
A (c)−1 diag (c)x− f

))
i∈K

= 0 . (3.12)

Let g be the optimal data that fulfils Eq. (3.12). Using Corollary 3.2.1, we
see that T (c, g)i = 0 holds true for all i ∈ K. From this equality we can
further conclude that (

∇cE(c, g)
∣∣∣∣
c=c

)
i∈K

= 0 .

Thus, our pair (c, g) also fulfils the necessary optimality conditions with
respect to the mask.

We are now in the position to show the main result of this chapter. It proves
that the optimisation of the mask values is equivalent to the optimisation of
the grey values if the sparsity pattern of the mask is fixed.
Theorem 3.4 (Equivalence between mask and grey value optimisation)
Let, for a fixed and non-empty sparsity pattern K, the mask c̃ be given
and assume that this mask minimises the reconstruction error when used in
conjunction with the original data f . Then there exists inpainting data g, a
binary mask c with the same sparsity pattern K as c̃ and we have

g = arg min
x∈Rn

{E (c, x)} , (3.13)

E (c̃, f) = E (c, g) . (3.14)
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Proof. We have a pair (c̃, f) to our avail which fulfils

c̃i =
(

arg min
cj , j∈K

{E (c, f)}
)
i

∀i ∈ K and c̃i = 0 ∀i 6∈ K .

One possible way to satisfy the claims of the theorem is to assume the
availability of a vector g such thatM (c) g−f = M (c̃) f−f holds. Expanding
the right-hand side of this equality and exploiting the fact that c is binary
valued, yields

g = diag (c)A (c)M (c̃) f . (3.15)

We conclude that the existence of g is verified and that Eq. (3.14) holds. It
only remains to show that our variable g from Eq. (3.15) is also a solution
of the normal equations

M (c)> (M (c) g − f) = 0 (3.16)

to assert optimality. Since c and c̃ have the same sparsity pattern it follows
that ker diag (c) = ker diag (c̃) and consequently kerM(c) = kerM(c̃), too.
Further, we remark that for any linear operator J from Rn to Rn we have
ker(J>) = ran (J)⊥. Combining these identities with the first isomorphism
theorem [54, Theorem 6.23] yields

kerM (c)> = (ranM (c))⊥ ' (Rn/ ker (M (c)))⊥

= (Rn/ ker (M (c̃)))⊥ ' (ranM (c̃))⊥ = kerM (c̃)> .
(3.17)

The importance of this identity will become clear in a moment. By assump-
tion, c̃ is optimal. This implies that(

∇cE (c, f)
∣∣∣∣
c=c̃

)
i∈K

= 0 .

Because of Theorem 3.3 it follows that

∇xE (c̃, x)
∣∣∣∣
x=f

= 0 .

Expanding the latter expression and using the identity M (c) g = M (c̃) f
yields M (c̃)> (M (c) g − f) = 0. At this point two possibilities exist. Either
M (c) g − f = 0, in which case Eq. (3.16) holds trivially. In the other case it
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follows that 0 6= (M (c) g − f) ∈ kerM (c̃)>. Equation (3.17) implies that
M (c)> (M (c) g− f) = 0 holds as well. We conclude that Eq. (3.16) is again
verified and that g always fulfils the GVO optimality conditions.

Corollary 3.4.1
Assume that the optimal mask values c̃ for a fixed non-empty sparsity pattern
K are known. Then the tonal optimisation can be obtained from Eq. (3.15).
Our findings show that for a fixed sparsity pattern of the mask it is

irrelevant whether we optimise mask values or data values. From a practical
point of view there is however a significant difference. The optimisation of
the grey values is a linear least squares problem and much easier to solve
than finding the best mask values. Therefore, Eq. (3.15) is usually of very
little use.

In the forthcoming paragraphs we discuss two methods that help us solve
the tonal optimisation problem in an highly efficient manner. We remind
that the GVO seeks a solution of

arg min
x∈Rn

{1
2‖M (c)x− f‖22

}
(3.18)

where the mask c is fixed and where M (c) is the reconstruction matrix
from Definition 2.2. Note that M (c) is usually not invertible. One could
find the optimal grey values by solving the normal equations. However,
this approach is often unfeasible due to the high condition number of the
reconstruction matrix and its prohibitive memory requirements for storing
all the entries. One possible approach to handle this task has been proposed
by Mainberger et al. [20]. They suggest to apply a Gauß-Seidel solver on the
normal equation M(c)>(M (c)x− f) = 0. Unfortunately, their strategy is
rather slow. Possible alternatives are presented in the following sections.

3.2 Fast algorithms for tonal optimisation

In this section we derive two algorithms for a fast and efficient handling of
the GVO problem from Eq. (3.18). The algorithms provide state-of-the-art
performance for implementations on the central processing unit (CPU) as
well as for the graphics processing unit (GPU).
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3.2 Fast algorithms for tonal optimisation

An approach based on the LSQR method

The least squares algorithm (LSQR) of Paige and Saunders [55, 56] is a
highly efficient method to solve general least squares problems of the form

arg min
x∈Rn

{‖Kx− b‖2}

with a large and possibly sparse and unsymmetric matrix K ∈ Rn,n and
an arbitrary vector b ∈ Rn. The underlying iterative strategy applies the
bidiagonalisation process of Golub and Kahan [57] and decreases the norm
of the residual in each step. Although the algorithm generates a sequence
of iterates that has the same properties as those from standard conjugate
gradient methods it tends to behave much better in numerically ill posed
situations. Further, it is easy to implement and only requires the matrix K
for computing matrix-vector products of the form Ku and K>v for various
vectors u and v. In presence of routines capable of computing these products
efficiently it is not even necessary to know the matrix explicitly. This fact
makes the algorithm attractive for solving Eq. (3.18). The adaptation is
straightforward. It suffices to find a fast way to compute the products
M (c)x andM (c)> x. To this end we use the definition of the reconstruction
matrix and rewrite the task as a linear system of equations:

y = M (c)x⇔ A (c) y = diag (c)x ,

y = M (c)> x⇔ A (c)> z = x, y = diag (c) z .
(3.19)

The linear systems A (c) y = diag (c)x and A (c)> z = x can for example
be solved in a highly efficacious manner with the multifrontal sparse LU
decomposition from [58–60]. Since the mask c is fixed, the decomposition
of the matrix A (c) need only be done once during the first iteration of the
LSQR algorithm. Forthcoming iterations can then be computed at almost no
additional cost. Alternatively one can also use the multigrid solver from [19]
or any other method to obtain a solution for the linear system. In our tests
the sparse LU solver of Davis and Duff [58–60] performs best. The complete
algorithm for solving the GVO problem is depicted in Algorithm 3.1

A primal dual formulation

An alternative strategy to the LSQR algorithm goes as follows: We start with
Eq. (3.18) and rewrite the optimisation problem by introducing a dummy
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Chapter 3 Optimisation in the codomain

Algorithm 3.1: Tonal optimisation with the LSQR algorithm: The
computations of M (c) v(k) and M (c)> u(k) can be performed by solving
the equations from Eq. (3.19) with the sparse LU decomposition.
Input: Reconstruction matrix M (c), data f , number of iterations N
Output: Solution of the least squares problem Eq. (3.18): x(N+1)

Initialise:
ū(1) = f, β(1) =

∥∥∥ū(1)
∥∥∥, u(1) = ū(1)

β(1)

v̄(1) = M (c)> u(1), α(1) =
∥∥∥v̄(1)

∥∥∥, v(1) = v̄(1)

α(1)

w(1) = v(1), x(0) = 0, φ̄(1) = β(1), ρ̄(1) = α(1)

for k from 1 to N do

ū(k+1) = M (c) v(k) − α(k)u(k)

β(k+1) =
∥∥∥ū(k+1)

∥∥∥, u(k+1) = ū(k+1)

β(k+1)

v̄(k+1) = M (c)> u(k+1) − β(k+1)v(k)

α(k+1) =
∥∥∥v̄(k+1)

∥∥∥, v(k+1) = v̄(k+1)

α(k+1)

ρ(k) =
√∣∣ρ̄(k)

∣∣2 + |β(k+1)|2

c(k) = ρ̄(k)

ρ(k) , s
(k) = β(k+1)

ρ(k) , θ(k+1) = s(k)α(k+1)

ρ̄(k+1) = −c(k)α(k+1)

φ(k) = c(k)φ̄(k), φ̄(k+1) = s(k)φ̄(k)

x(k+1) = x(k) + φ(k)

ρ(k)w
(k)

w(k+1) = v(k+1) − θ(k+1)

ρ(k) w(k)

end
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3.2 Fast algorithms for tonal optimisation

variable d ∈ Rn and enforce that it coincides with the reconstruction M (c)x.

arg min
x∈Rn

{1
2‖M (c)x− f‖22

}
= arg min

x,d∈Rn

{1
2‖d− f‖

2
2 + ι{0} (d−M (c)x)

}
Here, ιS is the characteristic function of the set S. It is defined as

ιS (x) :=
{

0, x ∈ S
+∞, x 6∈ S

.

Note that d is equal to M (c)x if and only if A (c) d = diag (c)x holds. Thus,
Eq. (3.18) is equivalent to

arg min
x,d∈Rn

{1
2‖d− f‖

2
2 + ι{0} (A (c) d− diag (c)x)

}
. (3.20)

Equation (3.20) can be handled efficiently with the algorithm presented by
Chambolle and Pock [61]. The advantage of this approach is that we have
eliminated the inverse of the inpainting matrix A (c) from our formulation.
Applying the primal dual method from [61] only requires the evaluation
of A (c)u and A (c)> u for a vector u. The matrix A (c) is structured and
extremely sparse. It follows that these products can be handled in an time-
saving manner and lead to a high performing tonal optimisation strategy.
A straightforward application of Algorithm 1 from [61] gives us the simple
iterative strategy shown in Algorithm 3.2. This algorithm is better suited for
parallel processing environments than Algorithm 3.1. Almost all operations
are pointwise and do not depend on each other. Let us also remark that
additional optimisations like preconditioning strategies, as presented by Pock
and Chambolle [62], can further improve the performance of Algorithm 3.2.

Performance comparison

We analyse the performance of the stochastic tonal optimisation method
from [20] (as presented in Algorithm 3.3), Algorithm 3.1 and Algorithm 3.2
in terms of speed. The results are depicted in Table 3.1. We use different
sizes of the Trui test image (see Figure 5.3) for our benchmark. For each
image size we compute a single inpainting mask by using the optimal control
framework from Chapter 5. This mask is then binarised by thresholding its
entries at 0.01 and used as inpainting mask for all the tonal optimisation
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Chapter 3 Optimisation in the codomain

Algorithm 3.2: Tonal optimisation based on the primal dual method
from [61]. Good estimates for the parameters τ and σ may be obtained
by applying power iterations onto

(
A (c) −diag (c)

)
.

Input: N the number of iterations.
Output: Vectors x(N+1) and d(N+1) solving Eq. (3.20)
Initialise:
θ ∈ [0, 1] arbitrary and τ , σ > 0 such that∥∥∥(A (c) −diag (c)

)∥∥∥2

2
<

1
στ

x(0), c(0) and y(0) arbitrary
x(0) = x(0) and d(0) = d(0)

for k from 1 to N do

y(k+1) = y(k) + σ
(
A (c) d(k) − diag (c)x(k)

)
d(k+1) =

d(k) − τ
(
A (c)> y(k+1) − f

)
1 + τ

x(k+1) = x(k) + τ diag (c) y(k+1)

d
(k+1) = d(k+1) + θ

(
d(k+1) − d(k)

)
x(k+1) = x(k+1) + θ

(
x(k+1) − x(k)

)
end
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3.2 Fast algorithms for tonal optimisation

Table 3.1: Speed comparison between the different algorithms for tonal optimisation on
the CPU and GPU: All times are given in seconds and represent the average of three
runs. Algorithm 3.3 by Mainberger et al. [20] performs worst on every image size and
its run time increases much faster for larger images than for the other two algorithms.
For small images, the transfer of the data to the GPU and back requires a significant
amount of time. Therefore, there is little difference in the run times for the very small
images on the GPU. We refer to Figure 5.3 for a visualisation of the reconstruction
quality. (GPU results courtesy of Sebastian Hoffmann)

Image size
nr × nc

Run time CPU Run time GPU

Alg. 3.3 Alg. 3.1 Alg. 3.2 Alg. 3.2

48× 48 32.57 1.23 2.90 1.36
64× 64 156.33 2.69 5.82 1.28

80× 80 360.42 4.63 8.50 1.47
96× 96 783.87 7.72 14.89 2.30

112× 112 1633.82 12.02 35.86 2.60

128× 128 3116.70 18.73 52.57 3.33
256× 256 95 832.64 113.07 260.26 9.01

methods. All masks have a density within the range of 5.0± 0.1%. We use
the algorithm from [20] as a reference method and compare how well our
algorithms compete in terms of speed. For each approach, the parameters
are tuned such that all algorithms converge towards the same solution. The
method from [20] uses a powerful multigrid solver to compute the inpaintings
M(c)ei in Algorithm 3.3. It stops when the error between two iterates drops
below 10−3. Algorithm 3.1 stops when the increment in the solution drops
in norm below 10−10 whereas Algorithm 3.2 halts its execution when the
update in any variable is smaller than 10−15 in norm. These tolerances assert
that all algorithms reach the same reconstruction error within a tolerance
of 10−6. The algorithms have been implemented in Fortran 2003 and ANSI C.
All tests are done on a standard desktop PC with an Intel Xeon processor
clocked at 3.2GHz and 24GB of memory. We also use a Nvidia GeForce
GTX 460 for the GPU experiments. The represented timings in Table 3.1
are the averages of three runs for each test case.
The exceptional performance of the LSQR based algorithm stems from
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Chapter 3 Optimisation in the codomain

the fact that it reaches a convergent state within 10 to 30 iterations. As a
consequence it requires less than 100 inpaintings. On the other hand, the
method of Mainberger et al. [20] has to compute an inpainting for every mask
pixel during each iteration. The method can be sped up by precomputing
the inpainting results of all the individual image impulses ei in Algorithm 3.3.
However, this strategy requires excessive amounts of memory. For an image
of size 256 × 256 with a mask density of 5% it is necessary to store more
than 3250 reconstructions. This corresponds roughly to 1.6GB of data if
the necessary results are stored with double precision. We conclude that
Algorithm 3.1 is best suited for CPU implementations. For GPUs, the
method of choice is Algorithm 3.2. There, most computations can be done
in parallel and no linear systems must be solved. Neither the method of
Mainberger et al. [20] nor the LSQR-based approach from Algorithm 3.1 are
capable of exploiting the massive parallelism of a GPU efficiently enough to
be competitive to the primal dual strategy.

Algorithm 3.3: Tonal optimisation of Mainberger et al. [20]. The image
ei has a pixel value of 1 in pixel i and 0 in any other pixel.
Input: Image f , Stopping threshold ε > 0
Output: Optimised tonal values g
Initialise: u = M(c)f and g = f
repeat

Set uold = u
for all pixel positions i ∈ {1, . . . , n} do

g = g + 〈M(c)ei, f − u〉
‖M(c)ei‖22

ei

u = u+ 〈M(c)ei, f − u〉
‖M(c)ei‖22

M(c)ei

end
until |‖u− f‖ − ‖uold − f‖| 6 ε
return g
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3.3 Conclusion
In this chapter we have analysed the benefits of a tonal optimisation. Our
findings show that it does not matter whether we optimise the mask values
or the grey values if the sparsity pattern is fixed. This result is important
within two contexts. The forthcoming chapters show that it is easier to find
a good sparsity pattern with a rough approximation to the optimal mask
values when those are allowed to take arbitrary values. Once the sparsity
pattern is found we can binarise the mask and perform the tonal optimisation.
The outcome is identical to performing a tedious mask value optimisation.
Furthermore, we have highly efficient algorithms for the GVO problem to our
avail that are hard to outperform. Secondly, our findings allow a tremendous
reduction of the storage size in the context of image compression. Instead of
storing data positions, data values, and optimal mask values, we only need
to store the data positions and the respective optimised data values. The
binarisation of the mask comes at no loss. This insight marks a cornerstone
in the design of a competitive image compression codec.
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Chapter 4
Optimisation in the domain

Simplicity is the ultimate
sophistication.

(Leonardo da Vinci)

So far we have discussed the reconstruction process for given data and a
fixed mask. Further, we have shown how to optimise the interpolation data
for a fixed sparsity pattern of the mask. However, we have not discussed any
approaches that yield good data locations yet. The next two chapters catch
up on this topic. In this chapter we first present a very simple method that
works only in the 1D setting for strictly convex functions. This restrictive
framework is rewarded with a very simple algorithm and some interesting
insight into the difficulties of localising good mask positions. A more generic
approach is discussed in Chapter 5. We remind that our inpainting method
with known binary valued masks corresponds to piecewise linear spline
interpolation in the 1D setting. Thus, we do have an analytic expression for
the solutions of the PDE to our avail. Further, only considering the recovery
of convex functions allows us to state the reconstruction error in a convenient
form which lends itself to an effective optimisation scheme. Unfortunately,
this simple setting already reveals the difficulties related to mask optimisation.
Finding optimal binary masks is a non-convex problem. This fact prevents
us from exploiting many efficient and well studied strategies.
Interpolation is also closely linked to approximation. The main differ-

ence is that we do not require exact reconstructions at the mask positions
in the approximation framework. From our point of view one could in-
terpret a combined optimisation of the mask positions and the respective
mask/function values as an approximation problem. This observation moti-
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Chapter 4 Optimisation in the domain

vates further investigations in this direction and parallels to GVO and mask
value optimisation are drawn as well.

The results from this chapter are inspired by the findings on free knot
optimisation from spline interpolation theory. We refer to the works [27–
30] for a general overview on this topic. Results closely related to our
presentation can also be found in the works of Hamideh [63] and Kioustelidis
and Spyropoulos [64].

4.1 Optimal masks for linear spline interpolation
Let us now formalise the setting which we consider in the forthcoming
paragraphs. It is closely related to the notational conventions we have used
before. We suppose that our domain Ω ⊆ R is a closed and bounded interval
of the form [a, b] with −∞ < a < b < ∞ and that f : R → R is a strictly
convex function on Ω. Further, we consider a mask set ΩK ⊆ Ω with
|ΩK | = N + 1 distinct positions ki distributed over the whole domain Ω:

ΩK := {ki | k0 = a, kN = b, ki−1 < ki < ki+1, i = 1, . . . , N − 1} . (4.1)

These mask positions ki denote the locations where the function f is inter-
polated. Our goal consists in finding a set ΩK such that the interpolation
error between f and a piecewise linear spline u becomes minimal in the L1
norm. In concrete terms, we seek a piecewise linear and continuous function
u defined on Ω which has the form

u (x) :=


f(ki+1)−f(ki)

ki+1−ki (x− ki) + f (ki) , x ∈ (ki, ki+1) ,

f (ki) , x = ki .

This linear spline u should have minimal distance to f in the L1 sense. Note
that u is completely determined by specifying the interpolation locations
ΩK . Thus, we can consider the error E in function of the mask

E (ΩK) := ‖u− f‖L1(Ω) =
∫
Ω
|u (x)− f (x)| dx . (4.2)

We remind, that ΩK represents the location of the Dirichlet boundary data
in Eq. (2.1), whereas the piecewise linear spline u represents the solution of
the corresponding PDE. Finding the best ΩK inside this context is known
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4.1 Optimal masks for linear spline interpolation

in the literature as free knot (FK) problem and the mask positions are often
referred to as knots. In order to remain consistent with the nomenclature
from the previous chapters we continue to call them mask points. The FK
problem has been studied for more than fifty years already but only few
satisfactory solutions exist. We refer to Hamideh [63] and Kioustelidis and
Spyropoulos [64] for similar considerations as in our work and to Jupp [29],
Boor [65], DeVore and Popov [66], and Dikoussar and Török [67] and the
references therein for more general approaches. Further ways to optimise
linear spline interpolation can also be found in the works of Blu et al. [68].
The mask points k0 and kN are fixed in Eq. (4.1) at the boundary of the

considered interval for technical reasons which we elucidate in a moment.
Also, the choice of the L1 norm is especially attractive in this case: Due to
the strict convexity of f the difference u− f is non-negative for all x in Ω
and thus we can simply omit the absolute value in Eq. (4.2). If we had not
fixed k0 and kN at the interval boundaries, then the previous estimate would
not necessarily hold. The fact that we can omit the absolute value is the
foundation upon which the forthcoming optimisation strategy is built on. The
non-negativity of our integrand u− f allows us to specify simple necessary
optimality conditions for the mask. Plugging the analytic expression of the
linear spline into our energy and evaluating it yields

E (ΩK) =
∫
Ω
u (x)− f (x) dx

= 1
2

N−1∑
i=0

(ki+1 − ki) (f (ki+1) + f (ki))−
∫
Ω
f (x) dx .

(4.3)

We remark that the expression obtained in Eq. (4.3) also corresponds to the
error of the composite trapezoidal rule for the numerical integration of f
with the non-equidistant integration intervals [ki, ki+1]. In that sense our
problem is equivalent to finding the best data set for numerical quadrature.
We refer to [69] for more information on numerical integration. An example
visualisation of the FK problem is given in Figure 4.1.

The next result shows the difficulty of the FK optimisation task.
Proposition 4.1
If the function f : R → R is strictly convex on Ω and twice continuously
differentiable in the interior of Ω, then the energy functional given in Eq. (4.2)
is convex in ΩK for three mask points and in general not convex for any
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1

2

3

0 1 2

Figure 4.1: Visualisation of the free knot problem: We seek those positions of the the black
dots along the blue curve such that the surface between the red and the blue curve
becomes minimal (surface marked in pale red). Here, the blue curve represents the
function x2 − x+ 1 and the red curve is the linear spline interpolating the function at
the positions marked by the black dots.

other number of mask points larger than three.

Proof. In the case of three mask points we only have one free variable, namely
k1, and it follows from Eq. (4.3) that the error is given by

1
2

(
(k1 − a)

(
f (k1) + f (a)

)
+ (b− k1)

(
f (b) + f (k1)

))
−
∫ b

a
f (x) dx .

Further, the second derivative of E with respect to k1 is given by

∂2

∂k2
1
E (ΩK) = b− a

2
∂2

∂k2
1
f (k1)

and obviously positive for all valid k1 ∈ Ω. Thus E is a convex function in
k1. In order to demonstrate that the error function can be non-convex for a
higher number of interpolation points it suffices to provide a counterexample.
Let us consider the function f(x) = exp (x) on the interval Ω = [−15, 15] as
well as the two masks

Ω1
K := {−15, 10.65, 14.65, 15} ,

Ω2
K := {−15,−1.2, 12.5, 15} .

If E were convex, then it must also be convex along the line in R4 that
connects Ω1

K and Ω2
K (interpreting both sets as vectors in R4). However, the

plot of E((1− λ)Ω1
K + λΩ2

K) with λ ∈ [0, 1] depicted in Figure 4.2 clearly
displays a non-convex behaviour.
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Figure 4.2: Evolution of the interpolation error with a linear spline for the function exp(x)
with mask points along the segment with endpoints Ω1

K = {−15, 10.65, 14.65, 15} and
Ω2
K = {−15,−1.2, 12.5, 15}. It clearly depicts a non-convex behaviour. Note that the

function values have been rescaled by a factor 10−6 for better readability.

We remark that the previous proposition does not claim that the energy
can never be convex for more than three mask points. Indeed for affine
functions of the form αx + β with real coefficients α and β the energy is
identically zero for any number of data locations and thus also convex. This
shows that even under weaker conditions as in the proposition, the energy
may be convex.
Let us now derive a new algorithm for finding optimal mask points. A

necessary condition for a minimiser Ω∗K of Eq. (4.3) is ∇E (Ω∗K) = 0. Here
∇E (Ω∗K) denotes the gradient of the error E with respect to the individual
mask points ki with i ∈ {1, . . . , N − 1} and evaluated at the knot sites in
Ω∗K . The points k0 and kN are not considered since they are fixed anyway.
Note that it follows from Proposition 4.1 that this condition is not sufficient.
There may very well exist several global and/or local minima. A simple
computation of ∇E (Ω∗K) = 0 leads us immediately to the following system of
N−1 nonlinear equations in the N−1 unknowns ki, with i ∈ {1, . . . , N − 1}.

f ′ (ki) = f (ki+1)− f (ki−1)
ki+1 − ki−1

, i = 1, . . . , N − 1 . (4.4)

The next observations follow immediately from Eq. (4.4). Each optimal mask
point only depends on its direct neighbours. Therefore, even indexed points
only depend on odd indexed ones and vice versa. Since f is strictly convex
on Ω, it follows that its derivative f ′ is strictly monotonically increasing
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on Ω. Thus, its inverse (f ′)−1 exists and is unique at every point of the
considered domain. This motivates us to alternatingly update all the even
indices and then all the odd indices by solving Eq. (4.4) for ki with an even
and an odd index i respectively. By iterating this two-step update strategy
we hope to reach a fixed-point. A detailed description of the algorithm is
given in Algorithm 4.1. Note that the initialisation can be arbitrary. In
practice a uniform distribution has proven to work quite well.

Algorithm 4.1: Mask optimisation in the 1D domain Ω = [a, b] for
strictly convex functions f : Ω → R with N + 1 mask points
Input: The desired number of mask points: N + 1.
Output: Optimal mask Ω∗K .
Initialise: Choose arbitrary initial distribution Ω(0)

K with k(0)
0 = a,

k
(0)
N = b and k(0)

i−1 < k
(0)
i < k

(0)
i+1 for all i ∈ {1, . . . , N − 1}

repeat
for all even indices i in {1, . . . , N − 1} do

k
(j+1)
i :=

(
f ′
)−1

f
(
k

(j)
i+1

)
− f

(
k

(j)
i−1

)
k

(j)
i+1 − k

(j)
i−1

 (4.5)

end
for all odd indices i in {1, . . . , N − 1} do

k
(j+1)
i :=

(
f ′
)−1

f
(
k

(j+1)
i+1

)
− f

(
k

(j+1)
i−1

)
k

(j+1)
i+1 − k(j+1)

i−1

 (4.6)

end
until fixed-point is reached
return Mask Ω∗K .

Observe that the strategy in Algorithm 4.1 is similar to a Red-Black
Gauß-Seidel scheme for solving linear systems (see for example the book
of Saad [70] for a more detailed presentation). We update the variables
iteratively and use newly gained information as soon as it becomes available
without interfering with the direct neighbours of the data point.

An important issue is that the mask points ki are not allowed to fall
together in our approach. General spline theory allows such a situation.
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Boor [30, Chapter IX] shows that the multiplicity of a mask point is linked
to the smoothness of the corresponding spline at that position. In our
case two overlapping mask points would imply that our interpolating spline
function would exhibit discontinuities. A characteristic that we wish to
avoid. Furthermore, our goal is to obtain the smallest possible error for a
given amount of mask points. Intuitively it seems to be clear that the best
solutions must necessarily be attained with the largest possible quantity
of data. The number of available mask points corresponds to the quota
of information that we want to exploit. The more knowledge we have
to our avail, the better we can reconstruct the function. Thus, there is
little motivation in allowing the number of mask points to be smaller than
specified. Kioustelidis and Spyropoulos [64, Theorem 3] also show that these
requirements must necessarily be fulfilled in an approximation framework.
The following proposition shows that mask points preserve the order in which
they are initialised by Algorithm 4.1. Thus, they can never fall together.
Proposition 4.2
The iterative scheme proposed Algorithm 4.1 preserves the ordering of the
mask point positions. This means we have

k
(j)
i−1 < k

(j)
i < k

(j)
i+1 ⇒ k

(j+1)
i−1 < k

(j+1)
i < k

(j+1)
i+1

for all i ∈ {1, . . . , N − 1} and all j > 0.

Proof. Since f is differentiable on Ω the mean value theorem guarantees the
existence of a ki in (ki−1, ki+1) such that

f ′ (ki) = f (ki+1)− f (ki−1)
ki+1 − ki−1

.

Thus, our iterative scheme must necessarily preserve the order of the mask
points.

Up to this point we have presented a simple iterative strategy to find
good mask points and we have shown that the algorithm yields the expected
number of data points. We do not know yet if our approach converges. Also,
even if it were to converge, we cannot claim yet that the obtained solution is
optimal. These issues are considered in the following statements.

The next theorem shows that the iterates from our algorithm monotonically
decrease the considered energy.

57



Chapter 4 Optimisation in the domain

Theorem 4.3
If the function f : R → R is strictly convex on Ω and twice continuously
differentiable in the interior of Ω, then the sequence of iterates (Ω(k)

K )k
obtained in Algorithm 4.1 decreases the L1 error from Eq. (4.2) in each step.
This means we have E(Ω(k+1)

K ) 6 E(Ω(k)
K ) for all k.

Proof. The decrease in the error is essentially due to two facts. By alternating
between the update of the odd and even indexed sites the problem decouples.
The new value k(j+1)

i will only depend on k
(j)
i−1 and k

(j)
i+1, which are fixed.

Therefore, the problem is localised and we can update all the even/odd
indexed mask points independently of each other. It follows that one iteration
step is equivalent to finding the optimal k(j+1)

i such that the interpolation
error becomes minimal on [k(j)

i−1, k
(j)
i+1] for all even/odd i. The global error

can now be written as the sum of all the errors over the intervals [k(j)
i−1, k

(j)
i+1]

and will necessarily decrease when each term of this sum decreases. Further,
Proposition 4.1 shows that the considered energy is convex for three mask
points. Thus, (

∂

∂k
E
({
k

(j)
i−1, k, k

(j)
i+1

}))∣∣∣∣
k=k(j+1)

i

= 0

is not only a necessary, but also a sufficient condition on k(j+1)
i for minimising

the error on the interval [k(j)
i−1, k

(j)
i+1]. This means that Eq. (4.5) will not

increase the error when updating even indexed mask points and subsequently,
Eq. (4.6) will not increase the error while updating the odd numbered sites.
Therefore, it follows that the overall error cannot increase in an iteration
step.

From the previous theorem we can conclude, that the errors of all our
iterates lie in the interval [0, E(Ω(0)

K )]. Thus, the sequence of errors is bounded
and monotonically decreasing. It follows that (E(Ω(k)

K ))k is converging for k
running to infinity. Note that we cannot claim convergence of the sequence
of mask points (Ω(k)

K )k itself. Since the problem is non-convex, the global
minimum of the considered energy is not assured to be unique. Our algorithm
might alternate between several of the minimisers. These minimisers are,
from a qualitative point of view, all identical since they yield the same
(minimal) error which must not necessarily be the global minimum. However,
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4.2 Optimal masks for linear spline approximation

note that the theorem of Bolzano-Weierstrass asserts that (Ω(k)
K )k contains

at least one convergent subsequence since all mask points are always required
to lie in the compact domain Ω.

4.2 Optimal masks for linear spline approximation
So far we have only discussed the case of linear spline interpolation. This
framework offers us already an optimisation strategy for the mask posi-
tions. Of course, Algorithm 4.1 can also be combined with the findings
from Chapter 3 as a subsequent post processing step to obtain a correspond-
ing optimisation of the data values. The question arises, if a sequential
optimisation of the mask positions followed by a tonal optimisation can
be competitive to a combined optimisation of mask positions and mask
values (respectively, mask positions and data values). As already mentioned
in the beginning of this chapter, a combined optimisation can be treated
like a spline approximation model. The fact that we are operating in a
rather restrictive framework of reconstructing real valued strictly convex
functions allows us to gain essential insight into these optimisation problems.
Compared to the interpolation approach, the optimal approximation with
linear splines has received significantly more attention in the literature and
many results are well known. Let us briefly describe the approximation
setting. As in the previous section we assume that some bounded and closed
interval Ω ⊂ R is given. The corresponding mask ΩK of cardinality N + 1
is identically defined as in the previous section. Further, we have a strictly
convex function f : R→ R to our avail and consider a piecewise linear spline
uapp : Ω → R of the form

uapp (x) :=
{
αi (x− ki−1) + βi, x ∈ [ki−1, ki) , i ∈ {1, . . . , N − 1}
αN (x− kN−1) + βN , x ∈ [kN−1, kN ] .

Similarly as before we fix the first mask point k0 at the beginning of the
domain and the last one, kN , at the end of the domain. However, we do not
require anymore that uapp (ki) = f (ki) for any mask point ki. Nevertheless,
the mask points ki ∈ ΩK with i ∈ {1, . . . , N − 1} still represent the locations
where the individual linear parts of the spline uapp blend into each other.
The task consists now in finding those parameters αi, βi and ΩK such that
‖uapp − f‖L1(Ω) becomes minimal.
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Chapter 4 Optimisation in the domain

As already mentioned, the topic of optimal approximations seems to have
received more attention in the past than optimal interpolation. Stone [27]
analyses the best approximation of strictly convex functions in the least
squares sense while Davis [71] cites general conditions for determining best
approximations of strictly convex functions in the L∞ sense. Theoretical
results can also be found in the work of Jupp [29]. Nürnberger and Braess
[72] show that an optimal approximation of convex functions with splines
does not necessarily have a unique solution, a problem which we already
mentioned in the stricter case of convex spline interpolation. Finally, Cox [73]
and Phillips [74] supply algorithms for determining optimal approximations.
A textbook covering in detail the topic of function approximations has also
been written by Rice [75].
In this section we focus on two works that yield similar results as our

findings from Section 4.1. Kioustelidis and Spyropoulos [64] do a thorough
theoretical analysis concerning optimality of linear spline approximations.
Hamideh [63] presents an algorithmic approach to find optimal masks. Essen-
tial for the results discovered by Kioustelidis and Spyropoulos and Hamideh
is the following observation which can be found in the book written by Rice
[75]. The proof of this finding can be verified by direct computation but a
more elegant way can also be found in [75, Chapter 4-4].
Proposition 4.4 (Optimal line approximation for convex functions.)
For any function f : R→ R which is strictly convex on its bounded domain
Ω = [a, b], the optimal straight line approximation to f in the L1 sense on
Ω interpolates f at the points

ξ1 = 3a+ b

4 and ξ2 = a+ 3b
4 .

The previous proposition shows that finding the optimal line, that means
when ΩK = {a, b} and Ω = [a, b], is trivial. It remains however a daunting
challenge to optimise the mask set if we are asked to place more than two
data points and require the corresponding spline to be continuous. Clearly,
the difficulty lies in enforcing the continuity while preserving the optimality.
An immediate idea based the previous proposition would be to build an
optimal spline by constructing locally optimal lines on each interval [ki, ki+1]
and considering the corresponding linear spline function uapp. Note that
in general such a resulting linear spline will not be continuous. Figure 4.3
depicts an example of an approximation where the mask positions have been
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4.2 Optimal masks for linear spline approximation

k0 ξ0,1 ξ0,2 k1 ξ1,1 ξ1,2 k2

k0 ξ0,1 ξ0,2 k1 ξ1,1 ξ1,2 k2Figure 4.3: Approximation of f (x) =
(
x− 3

2

)2 + 1
2 (in blue) on the interval

[
4

10 ,
13
5

]
with

a piecewise linear spline (in red). On each interval [ki, ki+1] the line has been computed
with Proposition 4.4. The corresponding optimal interpolation points given by this
proposition are indicated as ξi,1 and ξi,2. Note that the corresponding spline function
has a discontinuity in the knot k1. Also, the function values of the spline do not coincide
with the function values of f at the positions ki.

fixed randomly and the lines on each subinterval [ki, ki+1] have been set
according to Proposition 4.4. As we can see, the obtained piecewise linear
spline has a discontinuity in k1.
Kioustelidis and Spyropoulos [64] consider the approximation of strictly

convex functions and provide a link between the best mask ΩK and the
continuity of the corresponding linear spline built with locally optimal lines
[64, Theorem 2]. They show that an optimal ΩK can be obtained by solving
the tridiagonal system of nonlinear equations

0 = 1
2

(
f

(3ki−1 + ki
4

)
− 3f

(
ki−1 + 3ki

4

)
+

3f
(3ki + ki+1

4

)
− f

(
ki + 3ki+1

4

))
(4.7)

for all i = 1, . . . , N − 1. Further, the obtained piecewise linear function
consisting of the corresponding locally optimal lines will be continuous. Due
to this relationship, Eq. (4.7) is also referred to as continuity condition.
Hamideh [63] bases his research upon the results from Kioustelidis and

Spyropoulos and presents a simple algorithm to determine the position and
value of the optimal mask for strictly convex functions. His method opti-
mises both quantities simultaneously and the resulting reconstruction is an
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f

`0

`1

k0 k1 k2ξ1,1 ξ1,2 ξ2,1 ξ2,2k∗1

Figure 4.4: Visualisation of Hamideh’s algorithm for updating the location of k1. The
function f (marked in blue) represents our data function. The points k0, k1 and k2
denote the locations of the mask points from the previous iteration. On each interval
[ki−1, ki] we compute the optimal interpolation points ξi,1 and ξi,2 using Proposition 4.4.
These points yield two lines `0 and `1 (marked in red). The intersection point of these
two lines (marked in orange) represents the next location of the mask point k∗

1 . This
strategy is repeated until a fixed-point is reached.

approximating spline to the given input function. The underlying strategy
is similar to ours from Algorithm 4.1. By exploiting the result from Propo-
sition 4.4 for a given mask, Hamideh’s method constructs locally optimal
lines. The intersection points of these lines yield a new mask. This step is
simply repeated until a fixed-point is reached. The approach is visualised
in Figure 4.4 and a detailed presentation is given in Algorithm 4.2. The
benefits of Hamideh’s algorithm over a straightforward solving strategy for
the continuity condition lie in the simplicity of the method and the existence
of a convergence theory. Furthermore, Hamideh’s method is constructive
and allows a simple geometric interpretation. We also note that Chieppa [76]
showed that Hamideh’s algorithm can be interpreted as a Jacobi method for
solving the continuity condition from Eq. (4.7) for each mask point.

4.3 Numerical experiments
Our main interest lies in the reconstruction quality of a sequential application
of the mask tuning followed by a tonal optimisation compared against the
combined mask position and value optimisation done by the algorithm of
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4.3 Numerical experiments

Algorithm 4.2: Mask optimisation of Hamideh [63] for strictly convex
functions f : Ω → R with Ω = [a, b] and N + 1 mask points
Input: N + 1 the number of desired mask points.
Output: Optimal mask Ω∗K
Initialise: Choose any initial distribution Ω(0)

K with k(0)
0 = a and

k
(0)
N = b and k(0)

i−1 < k
(0)
i < k

(0)
i+1 for all i ∈ {1, . . . , N − 1}

repeat
for all subintervals

[
k

(j)
i−1, k

(j)
i

]
do

Define locally optimal points ξ(j)
i,1 and ξ(j)

i,2

ξ
(j)
i,1 :=

3k(j)
i−1 + k

(j)
i

4 , ξ
(j)
i,2 :=

k
(j)
i−1 + 3k(j)

i

4

Define the line `(j)i−1 passing through ξ(j)
i,1 and ξ(j)

i,2

`
(j)
i−1 (x) :=

f
(
ξ

(j)
i,2

)
− f

(
ξ

(j)
i,2

)
ξ

(j)
i,2 − ξ

(j)
i,1

(
x− ξ(j)

i,1

)
+ f

(
ξ

(j)
i,1

)
for all indices i do

Determine the new mask point position k(j+1)
i by intersecting

the lines `(j)i−1 and `(j)i , i.e. solve

`
(j)
i−1

(
k

(j+1)
i

)
= `

(j)
i

(
k

(j+1)
i

)
for k(j+1)

i .
end

end
until fix point is reached
return Optimal mask Ω∗K
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Hamideh. We expect that the approach of Hamideh yields the best results
but also believe that our sequential strategy can get relatively close in terms
of accuracy. To this end we also analyse the potential impact of a tonal
optimisation onto the obtained masks. Since we operate in a L1 setting in
this chapter we will perform the tonal optimisation with respect to this norm,
too. We note that Chapter 3 discusses the squared euclidean norm and thus
differs from the approach employed in this chapter. Due to the difficulties
of minimising the L1 norm in the continuous setting, we approximate this
optimisation task through a full discretisation. We sample our domain at
M � N uniformly distributed positions xi and denote the values taken
by our spline u and those of the data function f at these locations by ui,
respectively fi. Next, we exploit the fact that any piecewise linear function
can be expressed as a linear combination of B-splines B1,j of degree one:

u =
N∑
j=0

γjB1,j .

The functions B1,j with corresponding knot set ΩK are easily obtained by
the Cox-de Boor recursion formula [30, Chapter IX, B-Spline Property (i)].
We shortly remark that the first and last mask point in ΩK must be used
with knot multiplicity 2 to obtain the correct number of basis functions for
a complete representation.
The previous identity implies that ui =

∑N
j=0 γjB1,j (xi) for all i. By

packing all the values B1,j (xi) into a matrix B ∈ RM,N+1 and all γj and fi
into vectors γ ∈ RN+1 (resp. f ∈ RM ), we obtain the following expression
for the tonal optimisation

arg min
γ∈RN+1

{‖Bγ − f‖1} .

By introducing an additional variable z ∈ RM we can rewrite the previous
problem as a linear program

min
γ,z
{z}

such that


Bγ − f 4 z

−Bγ + f 4 z

z < 0

64



4.3 Numerical experiments

Table 4.1: Error measures for our interpolation algorithm and the approximation algorithm
of Hamideh for different numbers of mask points applied to the function x 7→ exp(2x−
3) + x on the interval [−4, 4]. The corresponding masks of size 7 are visualised in
Figure 4.5. For our method we list the error without additional tonal optimisation and
with additional tonal optimisation. For Hamideh’s method we list the errors of the
resulting mask from his algorithm and with the extra tonal optimisation. As expected,
Hamideh’s method performs best in each case but there are no visible improvements for
the tonal optimisation in his algorithm. However, applying a tonal optimisation boosts
the results from the interpolation framework and yields competitive error measures.

|ΩK |
Our method Hamideh

without optim. with optim. Initial with optim.

5 12.501 4.229 3.982 3.982
7 5.134 1.810 1.748 1.748
9 2.785 0.999 0.977 0.977

where 4 and < denote element wise inequalities. Linear programs belong
to the best studied optimisation tasks and many highly efficient solvers
exist. Their study can be traced back to 1939 and has been initiated by
Kantorovich [77]. We refer to the work of Luenberger and Ye [78] for more
information on how to solve these problems. Due to its ease of use and
efficiency we opt for the popular simplex algorithm [78, Chapter 3] and fix
M = 216 for all our experiments. Even for such a large number of samples
the simplex algorithm converged in each case within a few seconds.
Let us now apply all our presented strategies onto the convex function

f (x) = exp (2x− 3) + x on the interval [−4, 4]. The obtained errors are
specified in Table 4.1. The experiments are done with a randomised initial
distribution of the mask and 5000 iterations. For each setup the iterates
converge already after very few iterations and the upper limit of 5000
iterations is more than sufficient. The distance between the two last iterates is
always below the machine precision of 10−16. The final distribution for a mask
of size 7 is visualised for both algorithms in Figure 4.5. In accordance with
the theory from the previous section we note that the error is monotonically
decreasing, both with respect to the number of mask points and with the
number of iterations. Another interesting observation is the influence of an
additionally introduced point onto the whole mask. Adding further mask
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Chapter 4 Optimisation in the domain

Figure 4.5: Distribution of 7 mask points along the interval [−4, 4] for our interpolation
approach (red circles) and the method of Hamideh (yellow squares) for the function
x 7→ exp(2x − 3) + x (marked in blue). Note that there are almost no points in flat
regions, whereas there is a high density in regions with large curvature. The mask points
of Hamideh do not necessarily lie on the function curve. Their positions corresponds to
the coordinates yielded by Hamideh’s algorithm (well visible for the last mask point at
the right).

points has a global influence. Each element from ΩK converges towards
a different location after the insertion of an additional mask point. Also,
we encounter a higher density in regions with large curvature than in flat
regions. A behaviour which seems reasonable and could have been predicted.
Although the mask distribution for the algorithm of Hamideh is similar to
the one found with the interpolation framework, the error is significantly
lower. The additional tuning of the data values allows a higher accuracy in
the reconstruction. Hamideh’s algorithm outperforms our method in each
case if we do not apply a tonal optimisation as post processing. Finally, we
also examine the benefits of the tonal optimisation. The accuracy gain is
tremendous for our method but it does not yield any visible improvements
for the method of Hamideh. With the additional tonal optimisation our
interpolation masks are competitive with the results of Hamideh even though
we still cannot beat them. Experiments with other strictly convex functions
yield identical results.

4.4 Conclusion

Finding the optimal mask positions is a complicated task. It can be formu-
lated as a non-convex optimisation problem. Two algorithmic approaches
have been analysed that perform well in a very restrictive setting. The
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4.4 Conclusion

algorithm of Hamideh [63] can be interpreted as a combined tuning of tonal
and spatial values. It outperforms our pure positional optimisation, even
when the tonal optimisation is applied as a post processing. However, the
differences become marginal. These results inspire us to pursue the opti-
misation of the reconstruction data and to combine our results with the
findings from Chapter 3. Finally, the excellent quality of all the masks and
their reconstructions motivates further investigations in their optimisation
and the extension to arbitrary image data sets such that we can recover
these from as little data as possible. Unfortunately, the methods presented
in this chapter are neither extendable to non-convex functions nor to two
dimensional environments in a straightforward way. The convexity of the
underlying data is an essential requirement for the derivation of the formulas
presented in this chapter. Next, for higher dimensions we do not have any
explicit representations for the reconstruction or the corresponding error to
our avail. Thus, we cannot simply compute gradients and set them to zero
to get a system of equations whose solutions are our sought optimal mask
points. Heuristics, such as applying our algorithms along each dimension
iteratively, also prohibit any convergence claims. It follows that we need to
investigate on alternative models to obtain good interpolation data.
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Chapter 5
Optimisation in the domain and
codomain

The difficulty lies not so
much in developing new
ideas as in escaping from old
ones.

(John Maynard Keynes)

Chapter 4 contains a novel method for finding optimal mask positions
for strictly convex functions. The comparison against Hamideh’s method
also demonstrates the benefits of an additional tuning in the codomain.
We have already discussed some surrogates to perform such a tuning as
a post processing step in Chapter 3. In order to develop a competitive
image compression codec we need to overcome the previously discovered
shortcomings and find an alternative approach to those from Chapter 4.
In the forthcoming paragraphs we develop a novel formulation that does
not suffer anymore from the severe restrictions imposed on our data in the
foregoing chapters. The resulting method is applicable to any function in
arbitrary dimensions. Further, our algorithm yields solutions which are
optimised both in the domain and codomain. It follows that the findings
from this chapter pave the way for a new perspective on partial differential
equation based image compression.

The underlying model that we present is inspired by optimal control theory
and has initially been presented in [79]. We use the inpainting PDE from
Eq. (2.3) as a starting point and relax the restrictions placed upon the
confidence function c. In this chapter it is free to take any value in R and
it is considered to be a parameter that allows us to steer the inpainting.

69



Chapter 5 Optimisation in the domain and codomain

Further, Eq. (2.3) is combined with a strictly convex energy to penalise poor
reconstructions and non-sparse sets of interpolation data. Our complete
framework consists of a large-scale optimisation task with a strictly convex
but non-differentiable objective and non-convex constraints. We proceed as
follows for its detailed presentation: The concrete formulation of the model
is derived in Section 5.1. In Section 5.2 we discuss a strategy to handle the
occurring difficulties in this optimisation problem. Several hurdles need to be
overcome. We have to take care of the non-differentiability of the energy and
the non-convexity of the constraints. The underlying idea of our solver is to
replace the original problem by a series of simpler convex optimisation tasks
that can be solved efficiently. Section 5.3 provides an alternative strategy
by exploiting results on convex conjugacy. These also offer an additional
understanding of the properties of the underlying task and allow us to state
simple optimality conditions. Next, Section 5.4 offers some further insight
into our framework by expressing supplementary optimality conditions and
requirements for a monotonic convergence towards a solution. Finally, in
Section 5.5 we describe experiments that show the general usefulness of our
model, both in the 1D and 2D setting. Extensions to colour images and
video sequences are also briefly demonstrated.

5.1 A novel optimal control model for good
interpolation data

We shortly remind a few facts from Chapter 2. If the confidence function c
from Eq. (2.2) maps to {0, 1} for all points within the image domain Ω, then
our inpainting PDEs from Eq. (2.1) and Eq. (2.3) represent equivalent formu-
lations of the same mixed boundary value problem. As already mentioned,
the latter equation makes also sense if c is allowed to take a continuous range
of values such as R. One may regard continuously valued functions c as a
relaxation of the initial formulation. We are no longer in the presence of a
combinatorial optimisation task once the PDE has been discretised. Our
goal is to optimise such R-valued masks with respect to the accuracy of the
reconstruction and to the sparsity of the interpolation data. Note that these
two objectives cannot be perfectly fulfilled at the same time. If c (x) ≡ 1,
then the reconstruction obtained by solving Eq. (2.3) is perfect. On the other
hand, the sparsest possible choice would be c (x) ≡ 0 which does not allow
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5.1 A novel optimal control model for good interpolation data

any reconstruction at all. Therefore, we suggest to complement Eq. (2.3)
by an energy that reflects exactly this trade-off between the quality of the
reconstruction and the amount of interpolation data. This leads us to the
following constrained optimisation problem:

arg min
u,c

{∫
Ω

1
2 (u (x)− f (x))2 + λ|c (x)|+ ε

2c (x)2 dx
}

c (x) (u (x)− f (x))− (1− c (x))∆u (x) = 0, on Ω
∂nu = 0, on ∂Ω \ ∂ΩK

(5.1)

with positive parameters λ and ε. The first term in the energy penalises
deviations of the reconstruction from the original data f . As in many other
imaging applications, such as image segmentation [80], we encourage a sparse
mask by also penalising the L1 norm of c. The choice of λ lets us steer
the sparsity of the mask. For λ = 0, the optimal solution is c(x) ≡ 1. If λ
increases, the mask will become sparser. On the other hand, letting λ run
towards infinity will require c(x) to be 0 almost everywhere. Finally, we add
an additional quadratic penalisation on c with a positive weight ε to the
energy for technical reasons. As we will see in the forthcoming section, our
numerical solver will require us to solve intermediate problems with a linear
instead of non-convex constraint. These problems are related to optimal
control problems of the form

arg min
u,c

{∫
Ω

1
2 (u (x)− h1 (x))2 + λ |c (x)|+ ε

2c (x)2 dx
}

Du = h2 + c

(5.2)

with a second-order elliptic and linear differential operator D, a state u,
a control variable c, and given data h1 and h2. Existence and regularity
of such formulations is analysed by Clason and Kunisch [81], Stadler [82],
and Wachsmuth and Wachsmuth [83]. The problem in Eq. (5.2) may not
necessarily have a solution c if ε = 0. Clason and Kunisch [81] show that one
may be forced to resort to measures to assert solvability in such a setting.
In order to avoid these ill-posed formulations it is however sufficient to fix ε
at a small positive value. A convergence analysis when ε decreases towards
0 is presented by Wachsmuth and Wachsmuth [83]. Although an analytic
discussion of the variational model in Eq. (5.1) is out of the scope of this
work, we remark that we include the penaliser on the squared L2 norm of
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c for the same regularity reasons. Furthermore, we will see in one of the
upcoming sections that a positive value for ε has another advantage. It helps
us in the derivation of a so called dual formulation.

5.2 A solution strategy
Our optimal control model proposed in Eq. (5.1) is challenging for two reasons.
First of all, the energy contains a non-differentiable term and secondly, the
occurring mixed products c(x)u(x) and c(x)∆u(x) in the constraint render
the set of tuples (u, c) that fulfil the PDE non-convex. In order to devise a
solution strategy we opt for a discretise-first-then-optimise approach. The
PDE is discretised as described in Chapter 2. In addition to the notation
introduced in that chapter we further denote the total number of samples
by n. This allows us to formulate our optimisation problems in the same
way for any dimension of the underlying data set. Concerning the energy,
we simply transform the Lp norms in their discrete analogues. Thus, the
discrete version of Eq. (5.1) is given by

arg min
u,c∈Rn

{1
2‖u− f‖

2
2 + λ‖c‖1 + ε

2‖c‖
2
2

}
diag (c) (u− f) + (I − diag (c)) (−L)u = 0 .

(5.3)

In order to tackle Eq. (5.3) numerically, we will replace it by a series of
simpler convex optimisation problems. This idea is related to several well-
known methods from the literature. One of the simplest strategies is known
as sequential linear programming (SLP) and has been discovered by Griffith
and Stewart [84]. Sequential linear programming methods replace a single
non-linear optimisation problem by a sequence of linear programs. These
linear programs are obtained through a first-order Taylor approximation of
the objective and the constraints. This method sounds appealing because
it significantly reduces the complexity of the problem. However, it has
a major drawback. In order to achieve an accurate result, the solution
must necessarily lie at a vertex of the linearised constraint space. This
requirement is usually not fulfilled. As an alternative, one may consider
linearly constrained Lagrangian methods (LCL). They have originally been
presented by Friedlander and Saunders [85] and Murthagh and Saunders
[86] and differ from SLP formulations by the fact that they do not linearise
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the objective function. They only consider a linear approximation of the
constraints and try to minimise the (augmented) Lagrangian of the original
problem. LCL methods are popular and quite effective. Robinson [87] shows
that under suitable conditions one can achieve quadratic convergence rates
with them.

The main difference between these methods and ours will be the treatment
of the objective function. We keep the original energy and merely augment
it by an additional penalty term. This way we can circumvent the need
to differentiate the objective and provide an alternative approach to LCL
methods that often require the involved data to be differentiable. A similar
strategy to ours is also briefly mentioned by Tröltzsch [88, Section 2.16] as a
possibility to derive optimality conditions for non-linear optimal control prob-
lems. Our approach also presents certain similarities to majorise/minimise
methods (MM). These methods perform step wise approximations to the
original objective with convex majorisations or minorisations. MM strategies
go back to Orthega and Rheinboldt [89] and have since then reappeared
regularly under various names. Finally we remark that matrix factorisation
and completion problems have a similar non-convex structure as the problem
discussed in this section. Hence, alternative methods as ours have recently
been proposed by Lin [90], Xu and Yin [91], and Xu et al. [92].
As already mentioned, our goal is to replace the problem in Eq. (5.3)

by a series of convex problems that are easier to solve. Therefore, we will
replace the constraints by linear counterparts that approximate the original
conditions. We define a mapping T which evaluates the constraints for given
vectors u and c.

T : Rn × Rn → Rn

(u, c) 7→ diag (c) (u− f) + (I − diag (c)) (−L)u .
(5.4)

Its first-order approximation around some point (ū, c̄) can be written as

T (u, c) ≈ T (ū, c̄) +DuT (ū, c̄) (u− ū) +DcT (ū, c̄) (c− c̄)

where DuT (ū, c̄) and DcT (ū, c̄) describe the Jacobi matrices for the dif-
ferentiation with respect to u and c at position (ū, c̄). It is easy to check
that

DuT (ū, c̄) = diag (c̄) + (I − diag (c̄)) (−L) != A (c̄) , (5.5)
DcT (ū, c̄) = diag (ū− f + Lū) .
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Chapter 5 Optimisation in the domain and codomain

Note thatDuT (ū, c̄) is actually the inpainting matrix A(c̄) from Definition 2.1
for the mask c̄. It follows that our initial problem is approximated by

arg min
u,c∈Rn

{1
2‖u− f‖

2
2 + λ‖c‖1 + ε

2‖c‖
2
2

}
DuT (ū, c̄) (u− ū) +DcT (ū, c̄) (c− c̄) = −T (ū, c̄) .

However, the previous formulation is only reliable for pairs (u, c) in a neigh-
bourhood of (ū, c̄). Therefore, we additionally penalise large differences from
(ū, c̄) by adding a proximal term with positive weight µ to oppose strong
deviations from the linearisation point:

arg min
u,c∈Rn

1
2‖u− f‖

2
2 + λ‖c‖1 + ε

2‖c‖
2
2 + µ

2

∥∥∥∥∥
(
u

c

)
−
(
ū

c̄

)∥∥∥∥∥
2

2


DuT (ū, c̄) (u− ū) +DcT (ū, c̄) (c− c̄) = −T (ū, c̄) .

(5.6)

Our goal is to iterate Eq. (5.6). We solve the previous problem for some
given u(k) and c(k) to obtain a pair (u(k+1), c(k+1)) which we use as new
linearisation point. This iteration step is repeated until convergence. Thus,
we compute

(
u(k+1), c(k+1)

)
= arg min

u,c∈Rn

1
2‖u− f‖

2
2 + λ‖c‖1 +

ε

2‖c‖
2
2 + µ

2

∥∥∥∥∥
(
u

c

)
−
(
u(k)

c(k)

)∥∥∥∥∥
2

2


(5.7)

DuT
(
u(k), c(k)

) (
u− u(k)

)
+DcT

(
u(k), c(k)

) (
c− c(k)

)
=−T

(
u(k), c(k)

)
.

for all k until a fixed-point is reached. For the sake of brevity, we now
introduce the following aliases:

A := DuT
(
u(k), c(k)

)
, B := DcT

(
u(k), c(k)

)
,

g := Au(k) +Bc(k) − T
(
u(k), c(k)

)
,

ζ1 := 1 + µ , ζ2 := ε+ µ ,

z1 := µu(k) + f

1 + µ
, z2 := µc(k)

ε+ µ
.

(5.8)
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5.2 A solution strategy

They help us in rewriting our optimisation task from the previous equation
in a more compact form. A straightforward computation also reveals that
g = diag (c(k))(I + L)u(k). It suffices to insert the expressions for the
Jacobians DuT and DcT and for T . All in all, we are led to the final form
of our discrete approximation of Eq. (5.1):

arg min
u,c∈Rn

{
ζ1
2 ‖u− z1‖22 + λ‖c‖1 + ζ2

2 ‖c− z2‖22
}

Au+Bc = g

(5.9)

where all the quadratic terms from Eq. (5.7) have been regrouped into a single
term in u and c respectively. This reformulation is achieved by applying
quadratic completion and adding or removing constant terms that do not
alter the minimiser but only shift the minimum. Before we discuss the overall
behaviour of the iterates, we first have to analyse the linearised problem
from Eq. (5.9) outside of our iterative strategy from Eq. (5.7). Existence
and uniqueness of solutions are important topics that need to be considered.
There is no point in investigating the existence of fixed-points of Eq. (5.7)
if these linearised tasks from Eq. (5.9) cannot be solved properly. Once we
have ensured that our iterates are well posed, we can analyse the convergence
properties of our strategy as a whole.
Note that the set of feasible points in Eq. (5.9) may be empty. Even

though we have twice as many variables as equations in our constraints it
may happen that the equations are contradicting each other. Clearly we can
also rewrite our problem in an unconstrained form

arg min
u,c∈Rn

{
ζ1
2 ‖u− z1‖22 + λ‖c‖1 + ζ2

2 ‖c− z2‖22 + ι{g} (Au+Bc)
}

. (5.10)

Here ι{g} is the characteristic function of the set {g}. This latter form will
be useful in the derivation of a numerical scheme for finding optimal vectors
u and c.

Let us also shortly discuss the existence of minimisers of Eq. (5.10) if there
exist solutions of the linear systems Au+Bc = g. If we assume that the linear
system is solvable, then Eq. (5.10) represents a minimisation problem with
a proper, lower semi-continuous, strictly convex and coercive cost function.
These properties assert the existence of a unique solution ([93, Theorem
2.6] and [94, Satz 2.13]). We remind that a function ψ is coercive if ψ (x)
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Chapter 5 Optimisation in the domain and codomain

diverges towards +∞ whenever |x| runs towards +∞. A function ψ is lower
semi-continuous in x0 if

ψ(x0) 6 lim inf
x→x0

ψ (x) .

Finally, a convex function is said to be proper if it is finite in at least one
point and if it does not take the value −∞.
In the case where the matrix A is even invertible, we can express u as

A−1 (g −Bc). Clearly, it follows that the linear system has infinitely many
solutions, namely one for each choice of c, if B is not the zero matrix and a
single unique solution, namely A−1g, else. In each of these cases the solution
of Eq. (5.9) will be unique as we have to solve

arg min
c∈Rn

{
ζ1
2

∥∥∥A−1Bc−
(
A−1g − z1

)∥∥∥2

2
+ λ‖c‖1 + ζ2

2 ‖c− z2‖22
}

.

The latter task is clearly an optimisation problem with a strictly convex,
continuous, and coercive cost function. This is enough to guarantee unique-
ness. We point to the findings from Section 2.2 for conditions that assert
the existence of A−1.
We emphasise further that the invertibility of the inpainting matrix A

is a useful feature but not absolutely necessary for our approach. None
of our forthcoming numerical strategies requires the explicit existence of
A−1. By not limiting the mask values in any way we can exploit the full
potential of a complete mask optimisation and achieve the best possible
results. Nevertheless, we will implicitly assume for any of the forthcoming
discussions that the linear system Au+Bc = g has at least one solution. This
slight restriction asserts that our iterates always exist. Let us also remark
that the existence of A−1 may still be required to guarantee convergence.
A fact that we cannot discard yet. All we know at this point is that the
existence of the inverse of A is not necessary to carry out the iterations.

In view of the forthcoming results we also mention the related problem of
finding the minimal value of the previous energy and embed this task via a
perturbation w into a family of optimisation problems. This gives us

(Pw)
min
u,c∈Rn

{
ζ1
2 ‖u− z1‖22 + λ‖c‖1 + ζ2

2 ‖c− z2‖22
}

Au+Bc+ w = g .
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5.2 A solution strategy

The introduction of this perturbation w ∈ Rn is inspired by the results
presented in the book of Bonnans and Shapiro [93, Section 2.5] and allows
an elegant analysis of the behaviour of convex optimisation problems. Note
that for w = 0 we get our original problem back. We call (Pw) the primal
problem.

Let us now return to the linearised approximation of our original optimal
control model. Equation (5.9) is a constrained optimisation problem with a
continuous, strictly convex, and coercive cost and linear constraints. Such
problems are well studied and many highly efficient algorithms exist from
which we can freely chose. For our purpose it does not matter how Eq. (5.9) is
solved. We use a primal-dual algorithm for convex problems from Chambolle
and Pock [61] and Esser et al. [95] where it is referred to as Algorithm 1
and modified primal dual hybrid gradient (PDHGMu), respectively. This
algorithm represents an excellent trade-off between simplicity and efficiency.
For convex functions F : R` → R, G : Rk → R, and a linear and continuous
operator K : Rk → R` this algorithm solves

min
x∈Rk

{F (Kx) +G (x)} . (5.11)

It is a well known fact from convex analysis (see [93, Section 2.5.2]) that this
formulation is equivalent to the saddle point problem

min
x∈Rk

max
y∈R`
{〈Kx, y〉+G (x)− F ∗(y)} (5.12)

where F ∗ is the convex conjugate of F . It is defined as follows:
Definition 5.1 (Convex conjugate)
Let f : Rk → R be a convex function. We call convex conjugate the function
f∗ given by

f∗ (y) := sup
x∈Rk

{〈x, y〉 − f (x)} .

Here, R represents the extended real line which augments the set R with
its two endpoints −∞ and +∞. Working with R instead of R is a rather
common strategy in convex analysis. By allowing functions to take the
value ±∞ one can simply assume that functions are defined on the whole
Rk. Sometimes such approaches avoid cumbersome discussions that involve
the domain of definition of a function. We refer to [96, Section 4] for more
information on this topic. The convex conjugate is a very popular tool.
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Chapter 5 Optimisation in the domain and codomain

Besides optimisation theory it also finds applications in convex analysis,
Lagrangian and Hamiltonian mechanics as well as thermodynamics. We
point to the excellent books by Rockafellar [96] and Bonnans and Shapiro
[93] for more details on this transform.
The just mentioned primal dual strategy computes iteratively

y(k+1) = arg min
y∈R`

{1
2

∥∥∥y − (y(k) + σKx̂(k)
)∥∥∥2

2
+ σF ∗ (y)

}
,

x(k+1) = arg min
x∈Rk

{1
2

∥∥∥x− (x(k) − τK>y(k+1)
)∥∥∥2

2
+ τG (x)

}
,

x̂(k+1) = x(k+1) + θ
(
x(k+1) − x(k)

)
.

(5.13)

Chambolle and Pock [61] show that if τσ‖K‖22 < 1, θ ∈ [0, 1] and a few
other regularity conditions concerning Eq. (5.11) are met, then the se-
quences (x(k))k, (y(k))k generated by Eq. (5.13) converge towards a solution
of Eq. (5.12). The strategy can be further improved by employing precondi-
tioning ideas as presented in the work of Pock and Chambolle [62]. We also
note that the updates in y and x are in fact proximal mappings.
Definition 5.2 (Proximal Mapping)
Let f : Rk → R be a proper, lower semi-continuous convex function and let
γ > 0 be a positive real valued parameter. We call proximal mapping the
function proxγf given by

proxγf (x) := arg min
z∈Rk

{
γf (z) + 1

2‖x− z‖
2
2

}
= arg min

z∈Rk

{
f (z) + 1

2γ ‖x− z‖
2
2

}
.

The Moreau envelope is a closely related operator. Instead of yielding the
minimisers, it returns the minimal value.
Definition 5.3 (Moreau-Yosida Regularisation, Moreau envelope)
Let f : Rk → R be a proper, lower semi-continuous convex function and
let γ > 0 be a positive real valued parameter. We call Moreau-Yosida
regularisation or Moreau envelope the mapping γf given by

γf (x) := inf
z∈Rk

{
f (z) + 1

2γ ‖z − x‖
2
2

}
.
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5.2 A solution strategy

These two operators go back to 1965 and were introduced by Moreau [97].
Due to their particularly advantageous properties they have been studied
extensively in the literature during the last decades and form the building
blocks of many modern optimisation strategies. A detailed analysis of the
the Moreau envelope and the proximal mapping can for example be found
in the book of Geiger and Kanzow [94, Chapter 6.4]. We will also come back
to them later.

A detailed listing of the primal dual algorithm corresponding to Eq. (5.13)
is given in Algorithm 5.1. We remark that this formulation does not include
the preconditioning mentioned before. Suitable values for τ and σ can easily
be computed with power iterations if the operator norm of K is not known
exactly.

Algorithm 5.1: Primal dual algorithm from [61] for solving Eq. (5.12).
Input: τ , σ > 0, such that

‖K‖22 <
1
τσ

θ ∈ [0, 1], (x(0), y(0)) ∈ Rk × R` arbitrary
Output: Optimal values x∗ and y∗
Initialise: x̂(0) = x(0)

repeat
y(n+1) = proxσF ∗

(
y(n) + σKx̂(n)

)
x(n+1) = proxτG

(
x(n) − τK>y(n+1)

)
x̂(n+1) = x(n+1) + θ

(
x(n+1) − x(n)

)
until convergence of the x(n) and y(n)

return optimal x∗ and y∗

In order to apply the just described primal dual algorithm to our framework
we only have to map parts of the energy in Eq. (5.10) to the functions F
and G from Eq. (5.11). We opt for the following choice:

G (u, c) := ζ1
2 ‖u− z1‖22 + λ‖c‖1 + ζ2

2 ‖c− z2‖22 ,

F (Au+Bc) := ι{g} (Au+Bc) .
(5.14)

Our choice is motivated by the fact that we obtain a particularly simple
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expression for F ∗. Indeed, a simple computation reveals that F ∗(x) = 〈x, g〉.
All in all this yields an algorithm that consists essentially of the following
optimisation steps:

y(k+1) = arg min
z∈Rn

{1
2

∥∥∥z−(y(k)+σ
(
Au(k)+Bc(k)

))∥∥∥2

2
+σ〈z, g〉

}
,

u(k+1) = arg min
z∈Rn

{1
2

∥∥∥z−(u(k)−τA>y(k+1)
)∥∥∥2

2
+τ ζ1

2 ‖z − z1‖22
}

,

c(k+1) = arg min
z∈Rn

{1
2

∥∥∥z−(c(k)−τB>y(k+1)
)∥∥∥2

2
+τ

(
ζ2
2 ‖z − z2‖22+λ‖z‖1

)}
.

The first two optimisations are straightforward. We immediately obtain

y(k+1) = y(k) + σ
(
Au(k) +Bc(k) − g

)
,

u(k+1) = u(k) − τA>y(k+1) + τζ1z1
1 + τζ1

.

The update in c requires a few additional preliminary results. First of all we
remark that the proximal mapping of the absolute value can be expressed in
closed form as a soft shrinkage [98]:

proxγ|·| (x) = shrink
γ

(x) :=


x− γ, x > γ

0, |x| 6 γ

x+ γ, x < −γ
.

This identity can also be applied in higher dimensions to ‖·‖1 since the
minimisation decouples into independent optimisation steps. In that case the
soft shrinkage operates component wise on the entries of the input vector.
The following two findings are straightforward but useful to simplify certain
optimisation problems with many summands.
Lemma 5.4
Let γ, λ and x be arbitrary real numbers with γ > 0 and λ > 0. Then we
have the following relationship

shrink
λ
γ

(
x

γ

)
= 1
γ

shrink
λ

(x) .
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Proof. This identity follows immediately from the definition of the soft
shrinkage operator.

shrink
λ
γ

(
x

γ

)
=


x
γ −

λ
γ ,

x
γ >

λ
γ

0,
∣∣∣xγ ∣∣∣ 6 λ

γ
x
γ + λ

γ ,
x
γ < −

λ
γ

= 1
γ

shrink
λ

(x)

Proposition 5.5
Let (f (i))i be a family of m arbitrary vectors in Rk. We consider the convex
optimisation problem

arg min
x∈Rk

{
λ‖x‖1 +

m∑
i=1

αi
2

∥∥∥x− f (i)
∥∥∥2

2

}
with positive real valued weights αi and λ. This problem has the same unique
solution as

arg min
x∈Rk

 λ∑m
j=1 αj

‖x‖1 + 1
2

∥∥∥∥∥x−
∑m
i=1 αif

(i)∑m
j=1 αj

∥∥∥∥∥
2

2


and the minimiser is given by

1∑m
j=1 αj

shrink
λ

(
m∑
i=1

αif
(i)
)

,

where the soft shrinkage is applied component wise onto its argument.

Proof. We perform a simple quadratic completion and remove all constant
terms. This change has no influence on the minimiser. It merely shifts the
minimal value. It follows that we can regroup all the quadratic terms into a
single one:

arg min
x∈Rk

{
λ‖x‖1 +

m∑
i=1

αi
2

∥∥∥x− f (i)
∥∥∥2

2

}

= arg min
x∈Rk

 λ∑m
j=1 αj

‖x‖1 + 1
2

∥∥∥∥∥x−
∑m
i=1 αif

(i)∑m
j=1 αj

∥∥∥∥∥
2

2

 .
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The latter problem has a closed form solution in terms of the soft shrinkage
operator. In conjunction with Lemma 5.4 this gives us

arg min
x∈Rk

{
λ‖x‖1 +

m∑
i=1

αi
2

∥∥∥x− f (i)
∥∥∥2

2

}
= 1∑m

j=1 αj
shrink

λ

(
m∑
i=1

αif
(i)
)

.

Using Lemma 5.4 and Proposition 5.5 it follows that the update in the
mask c can be expressed as

c(k+1) = shrink
τλ

1+τζ2

(
c(k) − τB>y(k+1) + τζ2z2

1 + τζ2

)
.

All in all, after exchanging the aliases ζ1, z1, ζ2 and z2 with their respective
values we obtain the iterative strategy depicted in Algorithm 5.2. Note
that all the involved operations are favourable to parallelisation and can be
performed relatively fast.
It is important to remember that the optimal pair (u∗, c∗) obtained from

Algorithm 5.2 is in general not a feasible point for the problem stated in
Eq. (5.3). It only represents a solution of Eq. (5.9). As a remedy, we use this
pair to compute a new first-order approximation of the previously defined
function T and repeat all the steps until a fixed-point is reached. The
complete algorithm to solve Eq. (5.3) is given in Algorithm 5.3.

The back projection step at Line 1 in Algorithm 5.3 forces each iterate to
be feasible. At first glance, such a behaviour sounds appealing for practical
purposes. We can abort the algorithm at any moment and be sure that we
have a mask with a corresponding solution of the inpainting equation to our
avail, even if we have not yet reached a fixed-point. However, this additional
step renders the convergence analysis significantly more difficult. As we will
see in Section 5.4, we cannot assert an unconditional monotonic decrease in
the energy if this optional inpainting step is performed.
At this point we still ignore if the iterative scheme from Algorithm 5.3

yields meaningful results. We postpone the thorough discussion of this topic
to Section 5.4. The next section deals with an alternative approach to solve
Eq. (5.10). We remind that this expression is similar to the primal problem
(Pw) mentioned at the beginning of this chapter. As we will see now, there
exists a closely linked optimisation task which is known in the literature as
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5.2 A solution strategy

Algorithm 5.2: Minimisation strategy for solving Eq. (5.9)
Input: N the number of iterations.
Output: Vectors u∗ and c∗ solving Eq. (5.9)
Initialise: τ , σ > 0 such that∥∥∥(A B

)∥∥∥2

2
<

1
στ

,

θ ∈ [0, 1], u(0), c(0), y(0) arbitrary,
û(0) = u(0) and ĉ(0) = c(0)

repeat
Compute proximal update steps:

y(k+1) = y(k) + σ
(
Aû(k) +Bĉ(k) − g

)
u(k+1) =

u(k) − τ
(
A>y(k+1) − f − µū

)
1 + τ + µτ

c(k+1) = shrink
τλ

1+τε+τµ

(
c(k) − τBy(k+1) + τµc̄

1 + τε+ τµ

)

Perform extrapolation of the iterates:

û(k+1) = u(k+1) + θ
(
u(k+1) − u(k)

)
ĉ(k+1) = c(k+1) + θ

(
c(k+1) − c(k)

)
until convergence of u(k) and c(k)

return Optimal u∗ and c∗
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Algorithm 5.3: Minimisation strategy for solving Eq. (5.3)
Input: Image f , parameters λ, ε, µ.
Output: Vectors u∗ and c∗ solving Eq. (5.3)
Initialise: u(0) = f , c(0)

i = 1 ∀i
for k > 0 do

Compute first-order approximation of T (u, c) around
(
u(k), c(k)

)
.

Obtain u(k+1) and c(k+1) by solving Eq. (5.9) with Algorithm 5.2.
1 Optionally compute feasible u(k+1) from c(k+1) by solving the

inpainting equation T (u, c(k+1)) = 0 for u.
if u(k+1) = u(k) and c(k+1) = c(k) then

Set c∗ = c(k+1)

Compute feasible u∗ from c∗ by solving the inpainting equation
T (u, c∗) = 0 for u.
Exit for loop.

end
end
return Optimal u∗ and c∗
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dual problem. Primal and dual problems are related via the convex conjugate
transform and it is possible to derive the solution of one of these problems if
the solution of the other one is known. Our next goal is to find this dual
formulation. As we will see, it is well suited for numerical optimisations and
can be solved efficiently with simple tools like a gradient descent.

5.3 Dual formulation of the linearised optimal
control model

We have introduced an optimal control model with a strictly convex but
non-differentiable objective function and a non-linear PDE as a constraint in
the previous section. In order to find a solution we have suggested to linearise
the corresponding constraint and to solve the resulting sequence of convex
optimisation problems iteratively. As announced before, we now derive an
alternative formulation of our linearised problem by means of conjugate
duality. To this end we will use the associated primal minimisation problem
(Pw) and base our presentation on the theory from the book of Bonnans and
Shapiro [93, Chapter 2.5]. An in-depth study of the implications of duality
approaches on convex programming can also be found in the work of Boţ
[99]. We recall that (Pw) is given by

(Pw)
min
u,c∈Rn

{
ζ1
2 ‖u− z1‖22 + λ‖c‖1 + ζ2

2 ‖c− z2‖22
}

Au+Bc+ w = g .

Conjugate duality offers fruitful insights into many optimisation problems.
The excellent reputation of duality in optimisation theory comes from its
major role in formulating necessary and sufficient optimality conditions and,
consequently, in its usefulness in the quest for new algorithmic approaches
for solving mathematical programming tasks. The results from this section
are mainly driven by our curiosity in investigating the benefits of duality
within our framework.

By applying the convex conjugate twice onto an optimisation problem
we obtain a completely new but equivalent description of our initial task.
This new formulation is called dual problem. Further, the usage of the
convex conjugate induces a symmetry between the primal and dual problem.
This symmetry yields a one-to-one mapping between the properties of both
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models. As a consequence, the solutions of the two tasks are also related in a
very concise manner. In view of these claims it becomes clear that conjugate
duality is as important for convex analysis as the Fourier transform is for
linear system theory.
Our goal is to inspect these acclaimed benefits. We want to analyse the

optimality conditions of the dual model as well as suitable numerical solving
strategies. Our hope is that we gain faster numerics and a more profound
insight into the nature of the underlying task.

Before stating the dual model we briefly sketch the steps to be taken and
introduce certain essential concepts and results. We recall that the convex
conjugate of a function f : Rk → R is defined as

f∗ (y) := sup
x∈Rk

{〈x, y〉 − f (x)} .

If f is proper, lower semi-continuous and convex, then its conjugate is
also proper and convex. We refer to [93, Proposition 2.112] for a proof of
this result. In similar spirit we define the biconjugate function f∗∗ as the
conjugate of the conjugate, i.e. (f∗)∗. Under certain mild assumptions, which
we will specify in a few moments, one has f = f∗∗. This observation is
crucial for the forthcoming presentation. Finally, we briefly note that the
conjugate is a generalisation of the Legendre Fenchel transform and refer to
[96] for more details.

In order to explain the derivation of the dual problem in detail we consider
the following exemplary optimisation task:

inf
x∈Rk

{f (x)} .

Here, f can be any function which maps from Rk to R. The fundamental
idea behind conjugate duality is to embed the previous optimisation into a
family of parametric problems of the form:

val (w) := inf
x∈Rk

{ϕ (x,w)}

where ϕ : Rk ×R` → R is an arbitrary function such that ϕ (·, 0) = f (·). We
emphasise that in general neither f nor ϕ are required to be convex. The
unknown w ∈ R` is often referred to as a perturbation parameter. It slightly
alters the optimisation task with its fluctuations. The function val : R` → R
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is also called value function. Following the presentation of Bonnans and
Shapiro [93, Section 2.5] we define the dual problem to be the biconjugate
val∗∗. A simple computation [93, Eq. 2.265] reveals that it can be written as

val∗∗ (w) = sup
d∈R`
{〈d,w〉 − ϕ∗ (0, d)} .

The conjugate of ϕ is considered with respect to all of its arguments. Thus,
we have

ϕ∗(y, d) := sup
x∈Rk
w∈R`

{〈x, y〉+ 〈w, d〉 − ϕ (x,w)} .

Now we take the just mentioned steps and apply them to our linearised
convex optimisation problem (Pw). Using the definitions from Eq. (5.14),
we can rewrite it in a compact form as

(Pw) val (w) = inf
u,c∈Rn

{G (u, c) + F (Au+Bc+ w)} .

Note that we have introduced the perturbation parameter w into the lin-
ear constraints. This rather common choice leads to a particularly useful
structure. The dual problem can now be stated as

(Dw) val∗∗ (w) = − inf
p∈Rn

{
F ∗(p) +G∗

(
−A>p,−B>p

)
− 〈p, w〉

}
.

We refer to the the book of Bonnans and Shapiro [93, Sections 2.5.3 and 2.5.4]
for detailed derivations of this result. It is a well known fact from convex
analysis that the biconjugate is a lower bound for a considered function.
This means we always have f∗∗(p) 6 f(p) for any function f [93, Section
2.4.2]. The difference f(p) − f∗∗(p) is called duality gap. In view of our
original problem (P0) we have in particular val(0) − val∗∗(0) > 0. If this
duality gap is 0, then it is possible to obtain solutions for (P0) by solving the
corresponding dual problem (D0). A result from Bonnans and Shapiro [93,
Remark 2.172] asserts that the duality gap is indeed 0 if the linear system
Au + Bc = g has at least one solution. An assertion that we implicitly
assume to hold true. Thus, we have val(0) = val∗∗(0) and can use all our
findings from the dual model to improve our understanding of the primal
formulation.

In a next step we want to state an explicit expression for the cost function
of the dual problem val∗∗ (w). To this end we only need to derive the
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Chapter 5 Optimisation in the domain and codomain

expressions for the convex conjugates of F and G. The convex conjugate
of F is well known and given by F ∗ (p) = 〈g, p〉. A short computation also
reveals that G∗ is given by

G∗ (r, s) = sup
x,y∈Rn

{〈r, x〉+ 〈s, y〉 −G (x, y)}

= 1
2ζ1
‖r‖22 + 〈r, z1〉 −

ζ2
2 ‖z2‖22 + 1

2ζ2
‖s+ ζ2z2‖22−

λ inf
y∈Rn

{
‖y‖1 + ζ2

2λ

∥∥∥∥y − s+ ζ2z2
ζ2

∥∥∥∥2

2

}
.

(5.15)

The remaining infimum corresponds to the Moreau envelope of ‖·‖1 in
Rn. Clearly, the computation of this infimum decouples into the sum of
n evaluations of the Moreau envelope of the absolute value function. An
analytic expression of the latter can be given in terms of the Huber penalty-
or Huber loss function Hγ with positive parameter γ:

Hγ (x) :=
{1

2x
2, |x| 6 γ

γ
(
|x| − γ

2
)
, |x| > γ

.

It originally stems from the work of Huber [100] and currently represents
one of the most popular robust penalisers in regression analysis. We already
know that the proximal mapping of the absolute value is given by a soft
shrinkage. Plugging the definition of the soft shrinkage operator into the
cost function of the Moreau envelope of the absolute value reveals that
γ |·| (x) = γ−1Hγ (x). As a consequence the Moreau envelope of ‖·‖1 in Rk
becomes

γ‖·‖1 (x) = 1
γ

k∑
i=1

Hγ (xi) . (5.16)

The next identity will also be useful in the forthcoming discussion.
Lemma 5.6
Let λ and γ be two positive real valued scalar parameters and x ∈ R arbitrary.
Then we have the following identity for the Huber penalty function:

Hλγ−1

(
γ−1x

)
= γ−2Hλ (x) .
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5.3 Dual formulation of the linearised optimal control model

Proof. The proof consists of a straightforward computation. By definition
of the Huber penalty function we have

Hλγ−1

(
γ−1x

)
=


1
2γ
−2x2,

∣∣γ−1x
∣∣ 6 λγ−1

λγ−1
(∣∣γ−1x

∣∣− λγ−1

2

)
,
∣∣γ−1x

∣∣ > λγ−1

= γ−2Hλ (x) .

Now we exploit our newly gained knowledge to simplify the expression of
G∗. Applying Eq. (5.16) and Lemma 5.6 on Eq. (5.15) yields

G∗ (r, s) = 1
2ζ1
‖r‖22 + 〈r, z1〉 −

ζ2
2 ‖z2‖22 + 1

2ζ2
‖s+ ζ2z2‖22−

1
ζ2

n∑
i=1

Hλ

(
(s+ ζ2z2)i

)
.

As a final step we exchange the aliases with their original definitions. This
gives us the following relationship:

G∗ (r, s) = 1
2(1 + µ)‖r‖

2
2 +

〈
r,
µū+ f

1 + µ

〉
− 1

2(ε+ µ)‖µc̄‖
2
2+

1
2(ε+ µ)‖s+ µc̄‖22 −

1
ε+ µ

n∑
i=1

Hλ (si + µc̄i) .

It remains to evaluate G∗(r, s) at r = −A>p and s = −B>p to obtain the
explicit form of the dual problem (Dw):

(Dw) val∗∗ (w) = − inf
p

{〈
p, g − w − µAū+Af

1 + µ

〉
+ 1

2 (1 + µ)

∥∥∥A>p∥∥∥2

2
−

1
2(ε+ µ)‖µc̄‖

2
2 + 1

2(ε+ µ)‖−Bp+ µc̄‖22−

1
µ+ ε

n∑
i=1

Hλ (−Bi,ipi + µc̄i)
}
.

We remark that a positive value of ε in (Dw) avoids divisions by 0 if we
would let µ run towards 0. For convenience we will refer to the cost function
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in (Dw) as hD(p) in the forthcoming paragraphs. Clearly hD is a convex
function since it is a sum of convex and affine functions. Obviously it is also
continuous. However, it is not necessarily a strictly convex function. It is
coercive if ker(A>)∩ ker(B) = {0}. Finally we note that the cost function of
our dual formulation is continuously differentiable. This follows immediately
from the observation that the Huber loss function is a rescaled Moreau
envelope and that the Theorem of Danskin (Theorem 6.37 in [94]) asserts
the differentiability of the Moreau envelope.
The fact that the dual problem is an unconstrained optimisation task

with a continuously differentiable cost function renders it significantly more
attractive than the primal approach. We claim that the dual problem is
much easier to tackle from a numerical point of view than the primal problem
(Pw). We benefit from the fact that the energy has such a structure where
all terms are either linear or quadratic and therefore easy to manipulate. A
simple but efficient way to approach the dual problem numerically consists in
applying a gradient descent scheme as depicted in Algorithm 5.4. Determining
the optimal step size can efficiently be performed by a line search (i.e. an
inexpensive 1D optimisation). We refer to the textbook of Nocedal and
Wright [101] for an extensive discussion on line search methods.

Algorithm 5.4: Gradient descent scheme for solving the dual problem
Output: Optimal dual solution p∗
Initialise: Choose arbitrary initial p(0)

repeat

α(k+1) = arg min
α>0

{
hD

(
p(k) − α∇hD

(
p(k)

))}
p(k+1) = p(k) − α(k+1)∇hD

(
p(k)

)
until fixed-point p∗ is reached
return Optimal p∗

Solving the dual problem yields an optimal value for the unknown p.
However, our desired image and mask information are still encoded in the
variables u and c when w = 0. Since we are mostly interested in solutions of
our original problem we present the forthcoming results for the case w = 0
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5.3 Dual formulation of the linearised optimal control model

only. In order to obtain an optimal mask and the corresponding image data
we have to use the Karush Kuhn Tucker (KKT) conditions. They state the
relationship between the primal and dual solution. To this end we also need
the standard Lagrangian (in the following simply referred to as Lagrangian)
of Eq. (5.9). It is given by

L (u, c, p) := G (u, c) + 〈Au+Bc, p〉 . (5.17)

We refer to [93, Section 2.5.3] for a more exhaustive presentation of the
Lagrangian and its related concepts. In [93, Eq. (2.301), Theorem 2.158 and
Proposition 3.3] the KKT conditions for optimal u∗, c∗ and p∗ are discussed
in detail and stated as

(u∗, c∗) = arg min
u,c∈Rn

{L (u, c, p∗)} ,

p∗ ∈ ∂ (F ) (Au∗ +Bc∗) ,
(5.18)

where ∂ (F ) (x) denotes the subdifferential of F at position x. We refer to
[93, Section 2.4.3] and [96, Section 23] for a thorough presentation on the
concepts of subdifferentiability and subgradients and simply mention that
the subdifferential of a convex function ψ : R` → R is given by

∂ (ψ) (x) :=
{
y ∈ R`

∣∣∣ ψ (z)− ψ (x) > 〈y, z − x〉 ∀z ∈ R`
}

and that the individual elements of this set are called subgradients. They
provide a comfortable framework with similar properties as classical gradients
in presence of non-differentiable convex functions. A particularly important
property of the subdifferential is the following fact: An unknown x is a
minimiser of a convex function ψ if and only if 0 ∈ ∂ (ψ) (x).
Note that the Lagrangian from Eq. (5.17) is strictly convex and coercive

for fixed p. Therefore, the first KKT condition is equivalent to
(1 + µ)

(
u∗ − µū+ f

1 + µ

)
+A>p∗ = 0 ,

λ∂ (‖·‖1) (c∗) + (ε+ µ)
(
c∗ − µc̄

ε+ µ

)
+B>p∗ 3 0 .

(5.19)

This result follows immediately by computing the (sub-) gradient of L (u, c, p∗)
with respect to u and c and setting it to 0. Here and in the subsequent
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equations, the tuple (ū, c̄) represents the point around with the linearisation
of T (u, c) was performed. In [96, Corollary 23.5.1] it is further shown that

x∗ ∈ ∂ (ψ) (x) ⇔ x ∈ ∂ (ψ∗) (x∗)

if ψ is a closed, proper, and convex function and where ψ∗ represents its
convex conjugate. In view of this fact, the second KKT condition in Eq. (5.18)
can be rewritten as

Au∗ +Bc∗ ∈ ∂ (F ∗) (p∗) = g . (5.20)

Thus, the previous condition simply requires that optimal solutions must
fulfil the linear system Au+ Bc = g. Let us now assume that we have an
optimal p∗ which solves the dual problem to our avail. Then we get u∗ from
Eq. (5.19) via

u∗ = µū+ f −A>p∗

1 + µ

and Eq. (5.20) gives us c∗ by solving Bc∗ = g − Au∗. Note that B is a
diagonal matrix. Unfortunately we are unable to make any statements about
the entries on the main diagonal and some of them could very well be zero.
Therefore, this linear system does not necessarily have a unique solution.
Using the Moore-Penrose pseudoinverse B† of the matrix B gives us the
best approximation in the least squares sense and a result with maximal
sparsity. Another disadvantage of this strategy for recovering c∗ is given by
the numerical difficulties related to the Moore-Penrose pseudoinverse. In the
presence of very small entries in B and g −Au∗ we might suffer from severe
rounding and cancellation errors during the computation of B†(g − Au∗).
Therefore, we should consider an alternative approach to recover the optimal
value for c∗ from p∗ and u∗. To this end note that the second equation in
Eq. (5.19) corresponds to µc̄−Bp∗ ∈ ((ε+ µ) I + λ∂ (‖·‖1)) (c∗). The latter
expression is exactly the optimality condition for c∗ being a solution of

arg min
x∈Rn

{
‖x‖1 + ε+ µ

2λ

∥∥∥∥x− µc̄−Bp∗

ε+ µ

∥∥∥∥2

2

}
.

To acknowledge this claim it suffices to compute the subdifferential of the
previous cost function and require that 0 is a subgradient. As mentioned
already several times, we can solve the above optimisation task by using

92



5.4 Convergence analysis

the soft shrinkage operator. Thus, we can retrieve the optimal mask by
computing

c∗ = shrink
λ
ε+µ

(
µc̄−Bp∗

ε+ µ

)
= 1
ε+ µ

shrink
λ

(µc̄−Bp∗) .

This latter method is significantly more reliable and stable compared to
inverting the non-zero diagonal entries of the matrix B.
At this point, we have two distinct strategies to our avail to solve our

linearised optimal control model. These approaches are equivalent in the
sense that they yield exactly the same solutions. However, their performance
might differ. We refer to Section 5.5 for a detailed analysis of this topic. Our
next goal is the analysis of the convergence behaviour of our strategy with
respect to the iterative linearisation detailed in Eq. (5.7).

5.4 Convergence analysis

Let us remind that our initial problem formulation from Eq. (5.3) has a
non-linear constraint. Our suggestion to avoid the explicit handling of these
non-linearities is to use an iterative linearisation. The convergence behaviour
of our scheme has not been analysed until now. The forthcoming paragraphs
deal with this outstanding question. We discuss the optimality of fixed-points
of our iterative strategy from Eq. (5.7) and the overall properties of the
iterates. We provide clear statements for two different setups, namely with
the back projection step onto the feasible set at Line 1 in Algorithm 5.3 and
without this back projection.

The following proposition gives us necessary optimality conditions for
Eq. (5.3). It is based on a result from Tröltzsch [88, Equation (2.109)] and
is valid with and without additionally solving T (u, c) = 0 for u. In [88] the
author suggests necessary optimality conditions for an optimal control model
with non-linear constraints. We provide a version of these statements that is
adapted to our task at hand.
Proposition 5.7
Let us assume that there exists a solution (u∗, c∗) ∈ Rn×Rn of Eq. (5.3) and
let T be the operator from Eq. (5.4). Let DuT (u∗, c∗) be invertible. Then,
for any optimal pair (u∗, c∗) ∈ Rn×Rn of Eq. (5.3) there must exist a vector
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p∗ ∈ Rn such that the following relations are fulfilled.

u∗ − f +DuT (u∗, c∗)> p∗ = 0 ,

λ∂ (‖·‖1) (c∗) + εc∗ +DcT (u∗, c∗)> p∗ 3 0 ,

T (u∗, c∗) = 0 .

(5.21)

Proof. The implicit function theorem asserts that there exist open neigh-
bourhoods O (u∗) and O(c∗) around u∗ and c∗ as well as a continuously
differentiable mapping S : O(c∗)→ O(u∗) with S (c∗) = u∗ such that

T (S (c) , c) = 0 ∀c ∈ O (c∗) .

Further, the Jacobian DS (c) of S is given by

DS(c) = −DuT (S(c), c)−1DcT (S(c), c) .

Here, DuT (u, c) denotes the Jacobian of T with respect to the first variable
and likewise DcT (u, c) denotes the Jacobian of T with respect to the second
variable. For the sake of simplicity, let us now denote our discrete energy
functional from Eq. (5.3) by J(u, c). Plugging S(c) and c into J and requiring
that 0 is a subgradient leads us to the following system of equations

DS(c)>∇uJ (S (c) , c) + ∂c(J)(S(c), c) 3 0 ,

where ∇uJ represents the gradient of J with respect to its first variable and
∂c(J) the subgradient with respect to the second variable. This system con-
tains the necessary optimality conditions that must be fulfilled. Expanding
the expression for the Jacobian of S in c gives us

−DcT (S(c), c)>DuT (S(c), c)−>∇uJ (S (c) , c) + ∂c(J)(S(c), c) 3 0

as a requirement for an optimum. Following the splitting proposed in [88], we
introduce an additional variable p to avoid the explicit usage of the matrix
inverse:

DuT (S(c), c)> p+∇uJ (S (c) , c) = 0 ,

DcT (S(c), c)>p+ ∂c(J)(S(c), c) 3 0 .
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By considering the previous system of equations at position c∗ and u∗ = S (c∗)
and inserting the respective expressions for the (sub-) gradients of J we
obtain the final form of our optimality conditions:

u∗ − f +DuT (u∗, c∗)> p∗ = 0 ,

λ∂ (‖·‖1) (c∗) + εc∗ +DcT (u∗, c∗)>p∗ 3 0 .

The last requirement T (u∗, c∗) = 0 is obvious and does not need any proof.

Note that the previous proposition requires the invertibility of the inpaint-
ing matrix at the optimum. As already mentioned, our iterative scheme
itself does not impose any such restrictions. We also remind that Section 2.2
provides simple criteria that allow us to verify if the inpainting matrix is
indeed invertible.
Our next result shows that feasible fixed-points of Algorithm 5.3 fulfil

the necessary optimality conditions from Eq. (5.18) and Eq. (5.21). As a
consequence, they represent good candidates for a solution. We emphasise
that this result does not explicitly rely on the back projection. It merely
requires that fixed-points are feasible. Nevertheless, we do not know yet if
our iterates converge towards such a feasible solution if the back projection
is omitted.
Proposition 5.8
If Algorithm 5.2 has reached a feasible fixed-point (i.e. one that fulfils
T (u, c) = 0) with respect to the linearisation point (that means the min-
imiser of Eq. (5.9) is equal to the point around which PDE was linearised),
then this fixed-point (u∗, c∗) must fulfil the conditions in Eq. (5.18) and it
also fulfils the necessary optimality conditions derived in Proposition 5.7.

Proof. By requirement u∗ and c∗ are feasible and thus T (u∗, c∗) = 0 holds.
Further, u∗ and c∗ are solutions of the linearised problem and hence they fulfil
the KKT optimality conditions stated in Eq. (5.18), respectively Eq. (5.19),
by construction. Since we are in the presence of a fixed-point it follows
that our solution (u∗, c∗) coincides with the location (u, c) around which the
linearisation took place. Thus, u∗ = u and c∗ = c hold. We conclude further
that A = DuT (u∗, c∗) and B = DcT (u∗, c∗). These four relations imply
that the equations from Eq. (5.19) coincide with the first two identities in
Eq. (5.21).
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The previous proposition has required that fixed-points are feasible. The
following proposition shows that such an assumption is not necessary. If we
reach a fixed-point with our iterative scheme, then this point will automati-
cally be feasible.
Proposition 5.9
If Algorithm 5.2 has reached a fixed-point with respect to the linearisation
point (that means the minimiser of Eq. (5.9) is equal to the point around
which PDE was linearised), then this fixed-point (u∗, c∗) is always feasible.
This means it fulfils T (u∗, c∗) = 0.

Proof. We have the following matrices and vectors occurring in the Taylor
approximation when a fixed-point is reached:

A (u∗, c∗) = DuT (u∗, c∗) ,

B (u∗, c∗) = DcT (u∗, c∗) ,

g (u∗, c∗) = DuT (u∗, c∗)u∗ +DcT (u∗, c∗) c∗ − T (u∗, c∗) .

Fixed-points solve the linearised problem. Thus,

A (u∗, c∗)u∗ +B (u∗, c∗) c∗ − g (u∗, c∗) = 0

holds. Inserting the corresponding definitions immediately shows that this
implies T (u∗, c∗) = 0.

Proposition 5.8 and Proposition 5.9 show that if our iterates converge
towards a fixed-point, then this fixed-point also fulfils all the necessary
optimality conditions of the initial problem. Whether the back projection
onto the feasible set of solutions is performed or not is completely irrelevant.
The final result always fulfils T (u, c) = 0.

Since our initial problem was not convex, the conditions from Proposi-
tion 5.7 are only necessary conditions and not sufficient ones for a minimum.
Even if our fixed-points fulfil them, we cannot say anything about the nature
of the solution. It could just as well be a local maximum or a saddle point.
The following proposition gives some insight into the behaviour of our iterates
and states conditions under which the energy will necessarily decrease. This
result is specially tailored to take the additional back projection into account.
It shows that the decrease of the energy is not unconditional.
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Proposition 5.10
Let the solution obtained from Algorithm 5.2 be given by (u(k+1), c(k+1)) and
the point around which the linearisation has been performed by (u(k), c(k)).
Further assume that (u(k), c(k)) fulfils T (u(k), c(k)) = 0 and let ũ(k+1) fulfil
T (ũ(k+1), c(k+1)) = 0, too. Thus, (ũ(k+1), c(k+1)) is the back projection of
(u(k+1), c(k+1)) onto the set of feasible locations. Then (ũ(k+1), c(k+1)) will be
a feasible pair of iterates that decreases the energy if the following condition
is valid.

1
2

(∥∥∥ũ(k+1) − f
∥∥∥2

2
− ‖u(k) − f‖22

)
6

λ‖c(k)‖1 + ε

2‖c
(k)‖22 −

(
λ
∥∥∥c(k+1)

∥∥∥
1

+ ε

2

∥∥∥c(k+1)
∥∥∥2

2

) (5.22)

Proof. By exploiting the minimality of (u(k+1), c(k+1)) and the properties of
(u(k), c(k)) we have

1
2

∥∥∥u(k+1) − f
∥∥∥2

2
+ λ

∥∥∥c(k+1)
∥∥∥

1
+ ε

2

∥∥∥c(k+1)
∥∥∥2

2

6
1
2

∥∥∥u(k+1) − f
∥∥∥2

2
+ λ

∥∥∥c(k+1)
∥∥∥

1
+ ε

2

∥∥∥c(k+1)
∥∥∥2

2
+

µ

2

∥∥∥∥∥
(
u(k+1)

c(k+1)

)
−
(
u(k)

c(k)

)∥∥∥∥∥
2

2

6
1
2‖u

(k) − f‖22 + λ‖c(k)‖1 + ε

2‖c
(k)‖22 . (5.23)

Note that the last estimate is only valid if (u(k), c(k)) represents a feasible
pair of variables. If (u(k), c(k)) solve T (u, c) = 0, then they also solve the
linearised constraints

DuT (u(k), c(k))(u− u(k)) +DcT (u(k), c(k))(u− c(k)) = −T (u(k), c(k))︸ ︷︷ ︸
=0

.

However, the tuple (u(k+1), c(k+1)) minimises our energy over the set of
solutions of these linearised constraints. Therefore, the estimate in Eq. (5.23)
follows. Finally, replacing u(k+1) by ũ(k+1) and reordering the terms yields
the sought expression.
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Equation (5.22) yields two interesting results. Let us assume that Eq. (5.22)
holds for all iterations k. Since the energy is obviously bounded, it follows
from the theorem of Bolzano-Weierstrass that there must exist a convergent
subsequence of energy values. Unfortunately, we cannot assert the conver-
gence of the sequence of iterates ((u(k), c(k)))k themselves. It is also clear
that the back projection will in general yield a pair of feasible iterates that
may increase the value of the cost function again. As a consequence, we
lose the existence of a converging subsequence if we enforce all iterates to be
feasible and if the requirement from Eq. (5.22) is violated.
Our previous requirement also allows an interesting interpretation. The

left-hand side of Eq. (5.22) can be seen as the loss in accuracy for one iteration
step whereas the right-hand side can be considered as the simultaneous gain
in sparseness. It follows that the energy must necessarily decrease as long as
the gain in sparseness outweighs the loss in precision.
The complicated nature of the task at hand prevents a more rigorous

convergence proof without imposing additional restrictions. We remark that
an alternative but closely related numerical scheme, for which convergence
can be shown, has recently been presented by Ochs et al. [53]. This approach
has also been discussed and evaluated by Chen et al. [102].

5.5 Numerical experiments

This section contains an extensive performance benchmark of our optimal
control approach. Several things are tested. We discuss the quality of our
optimal control model on 1D signals and evaluate the results against the
methods discussed in Chapter 4. We also compare the efficiency of the
primal and dual solvers for the linearised problem on 2D data sets. The
efficiency is measured in terms of run time required to reach an accurate
solution. Qualitative comparisons to other methods from the literature are
also carried out. Furthermore, straightforward extensions to colour images
and image sequences are presented. Finally, we shortly mention a simple
heuristic strategy to speed up the computations. While the gain in speed can
be significant, it does not come without a certain loss in accuracy. However,
for practical purposes this loss is likely to be negligible.
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Figure 5.1: Mask distribution obtained by our frameworks for the function exp(2x− 3) + x
along [−4, 4]. Each rectangle represents the position of a mask point. The free knot
method and the approach of Hamideh [63] fix the first and last knot at the endpoints of
the considered interval. For the optimal control method all knots are free to move. For
this experiment the additional back projection in the optimal control algorithm is not
performed.

Optimal masks for signals in 1D

In a first example we compare our optimal control model to the methods from
Chapter 4. To this end we choose the convex function x 7→ exp(2x−3)+x on
the interval [−4, 4]. This function has already been used for the experimental
setups in Table 4.1 and Figure 4.5. We consider the reconstruction error for
a mask of size 10 with our optimal control method, our optimal interpolation
algorithm from Chapter 4 and the method of Hamideh [63]. The methods
from Chapter 4 do not have any parameters except for the maximal number
of iterations, which we fix at 10 000. This choice is sufficiently large enough
to assert convergence. In order to apply our optimal control solver we sample
the data function at 128 equidistant positions along the considered interval
to obtain a discrete version of the signal. Additionally we use the following
parameter choices: λ = 36, µ = 50, ε = 10−4, and apply 500 outer iterations.
The linearised problem is solved with the primal approach with a maximum
of 25 000 iterations. These choices are enough to ensure that the final
difference between two iterates is smaller than 10−15 in norm. The resulting
distributions are visualised in Figure 5.1. All methods behave similarly in
the sense that the knot density is larger in regions with higher curvature.
However, the free knot algorithm and the method of Hamideh [63] from
Chapter 4 fix a mask point at each end of the interval. The additional knot
at the left end allows much more accurate reconstructions of the long and
flat tail. This observation is also reflected in the errors. Algorithm 4.1 yields
an L1 error of 2.17 without tonal optimisation and 0.8 with an additional
grey value optimisation. Algorithm 4.2 yields the best reconstructions with
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Chapter 5 Optimisation in the domain and codomain

an error of 0.77 (with and without tonal optimisation). A fair comparison
with the optimal control model is difficult to achieve since the latter operates
exclusively in the discrete setting while the former methods use continuous
formulations. We proceed as follows: The non-zero entries of the discrete
mask are binarised and used for the construction of a linear spline which
interpolates tonal optimised data. The tonal optimisation is carried out
with respect to the `1 norm and done in the same way as in Section 4.3.
The final error is 9.62. The fact that the optimal control approach does
not return any information on the function within the vicinity of the left
interval boundary causes a significant increase in the error. Furthermore, the
strategies from Chapter 4 know that the underlying function is strictly convex
and differentiable and actively exploit this fact. The optimal control method
is more generic and flexible but unable to use any additional knowledge to
improve the error.

In a second step we investigate the performance of our optimal control
algorithm for arbitrary signals. To demonstrate the benefits of our approach
for such settings we choose the piecewise polynomial and non-continuous
signal Piece-Polynomial from the WAVELAB 850 toolbox [103] and normalise
it to the interval [0, 1] to ease the simultaneous visualisation of signal,
reconstruction and mask. The result is shown in Figure 5.2. We remark
that the obtained mask is sparse and that the non-zero entries are placed at
positions where one would naturally expect them, e.g. two mask points are
used to encode a step in the signal. Also note the excellent quality of the
reconstruction. The mask is computed with the following parameter choices.
We initialise our method with u being the original signal and a full mask, i.e.
ci = 1 for all i, and set ε = 10−9, µ = 1.0, λ = 0.02. For Algorithm 5.2 we
set θ = 1 and τ = 0.25. In order to fulfil the step length constraint τσL2 < 1
where L = ‖

(
A B

)
‖ we approximate L through power iterations and set

σ = ((L2 + 0.1)τ)−1. The method aborts when the distance between two
consecutive iterates drops below 3 · 10−16. In order to reach this precision
we require about 225 000 iterations of Algorithm 5.2. After 630 iterations
of Algorithm 5.3 the distance between two successive versions of c drops
below 10−15 at which point the iterative scheme stops. The whole approach
is implemented in Matlab with Algorithm 5.2 as a mex function written
in C. All the tests are done on a standard desktop PC with an Intel Xeon
processor clocked at 3.2GHz and 24GB of memory. The total run time is
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Figure 5.2: The original signal (red line), the reconstruction (blue line) as well as the used
mask (grey dots). As expected, the mask is sparse (17 non-zero entries out of 128) and
not binary-valued. Some knots even exceed the value 1. The mask point in the middle
of the signal with the smallest value allows to better adapt to the curvature of the
input signal by blending the diffusion result with the data. Also note that the mask
entries neatly align with the discontinuities of the signal. This result is obtained with
the parameter settings: ε = 10−9, µ = 1.0, λ = 0.02. For this experiment the additional
back projection is always performed.

roughly ten minutes. The squared Euclidean distance between the input
signal and the reconstruction is 0.0377.

Optimal masks for grey scale images

To show that our approach performs as well on 2D data sets as it does on 1D
signals we apply our algorithm to three different test images and compare
our method to the state-of-the-art approach from [20]. In [20] the authors
propose a greedy method, called stochastic sparsification, that iteratively
selects a set of candidate points and discards those pixels that yield the
smallest increase in the error when removed from the mask. This step is
repeated until a desired density is reached. In a second step, called non-local
pixel exchange, random mask and non-mask pixels are swapped. If the
reconstruction error increases, the swap is undone, otherwise it is kept. This
latter step is repeated until the desired error or the maximal number of
swaps is reached. The method of Mainberger et al. [20] is capable of reaching
a global minimum if a sufficiently large number of iterations is carried out.
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Chapter 5 Optimisation in the domain and codomain

Unfortunately, this approach is also very time consuming.
The results of our method are depicted in Figure 5.3 and a summary with

a comparison to the approach from [20] is given in Table 5.1. As an error
measure we use the MSE which is computed by

MSE (f, u) := 1
n

n∑
i=1

(fi − ui)2

for an image with n linearly indexed pixels. For the computation of the MSE
we assume that the image values lie in the interval [0, 255].

Our optimal control solver is remarkably stable with respect to parameter
choices. Only the parameter λ, which is responsible for the sparsity of the
mask, needs specific tuning for each image. All other parameters can be set
to sane default values for almost all test suites. We opted for the following
parameter settings: All experiments use as initialisation a full mask and
the complete image data. We set µ = 0.1 and ε = 10−7. The linearised
problem is always solved with a gradient descent scheme applied to the
dual model. The step size for each descent step is optimised via a simple
line search method and a maximum of 10 000 iterations. If the increment
drops below 10−9 in norm before reaching the maximal number of iterations,
the method aborts. Finally, we always used at most 300 linearisations.
The reconstructions and error measures presented in Figure 5.3 have been
obtained by binarising the mask and applying the LSQR based GVO method
from Algorithm 3.1. The comparisons in Table 5.1 to the methods from
Mainberger et al. [20], Ochs et al. [53], and Chen et al. [102] demonstrate the
state-of-the-art performance of our approach. If combined with a grey value
optimisation, our binarised mask outperforms all other approaches in terms
of reconstruction quality. The errors obtained from the continuous masks
yielded by our optimal control solver are often slightly higher than those
obtained by a binarisation with a subsequent GVO and indicated in Table 5.1.
However, this difference is usually in the range of 0.1 never larger than 0.2.
It probably stems from the fact that there exists a more rigorous convergence
guarantee for the GVO method than for our OC strategy. Further, the LSQR
algorithm used for the tonal optimisation in all our experiments is known to
perform extremely well in ill-posed situations and likely capable of returning
superior results when compared to our algorithms. Also note that the mask
density in [20] is exactly 5% for each image. For our experiments we have
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(a) Trui (256× 256) pixel,
Source: [104]

(b) Mask with 4.999% of
non-zero entries.

(c) Result (MSE: 16.84)

(d) Peppers (256 × 256)
pixel, Source: [38]

(e) Mask with 5.002% of
non-zero entries.

(f) Result (MSE: 18.46)

(g) Walter (256 × 256)
pixel, Source: [38]

(h) Mask with 5.002% of
non-zero entries

(i) Result (MSE: 7.70)

Figure 5.3: Results for three test images and a target density of 5%. All masks are sparse
and yield a remarkable reconstruction quality. Note that the bright spots visible in the
reconstruction are an artefact stemming from the fact that the Laplace operator is used.
We set λ to 3.7× 10−3 for Trui, 3.26× 10−3 for Peppers, and 1.75× 10−3 for Walter.
For these experiments the additional back projection is not performed.
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Table 5.1: MSE for our experimental results. The best results for each image are marked
in boldface. Unavailable results are marked with a —. The column cB denotes the error
for the binarised mask and cB (GVO) the result for the binarised mask with additional
tonal optimisation. According to the results from Chapter 3, these errors coincide with
those obtained by optimal mask values. The errors obtained from the continuous mask
yielded by our optimal control solver are slightly higher that those indicated in the
table below. This difference is never larger than 0.2 and stems probably from the fact
that the GVO is numerically more stable than our OC solver. Also note that the mask
densities are not completely identical in the comparisons to the other methods but only
very close to each other.

Image Algorithm cB cB (GVO)

Trui
Our method 46.96 16.84
Method of [20] 23.21 17.17
Method of [53, 102] — 16.89

Peppers
Our method 30.64 18.46
Method of [20] — 19.38
Method of [53, 102] — 18.99

Walter
Our method 21.20 7.70
Method of [20] — 8.14
Method of [53, 102] — 8.03

a density of 4.999% for Trui, 5.002% for Peppers, and 5.002% for Walter.
The results from [102] have a density of 4.98% for Trui, 4.84% for Peppers,
and 4.82% for Walter.

Performance comparison between the primal approach and
the dual approach

In this section we demonstrate the strengths and weaknesses of the primal
and the dual solver for the linearised formulation. As we have seen in the
previous sections, the dual approach yields a much simpler optimisation
problem which can easily be handled through a gradient descent scheme. In
order to evaluate the performance of both strategies we consider the Trui
test image. We set λ = 0.001, µ = 0.1, ε = 10−9. Our goal is to examine
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5.5 Numerical experiments

Table 5.2: Performance comparison between the primal and dual method with same
stopping criteria on the iterates for the Trui test image. For each method, the first
result represents the absolute residual of the constraint and the second depicts the
relative residual. The dual method yields consistently the higher accuracy and converges
in the initial phase much faster. The primal method exhibits surprisingly constant run
times.

It. Primal formulation Dual formulation

Residuals (abs./rel.) Time Residuals (abs./rel.) Time

10 2.0 · 10−7 1.5 · 10−9 5.41 1.5 · 10−9 1.2 · 10−11 0.51
15 2.6 · 10−7 2.1 · 10−9 5.03 1.4 · 10−9 1.2 · 10−11 0.61
20 3.4 · 10−7 2.9 · 10−9 5.04 2.9 · 10−9 2.5 · 10−11 0.87

25 4.4 · 10−7 4.0 · 10−9 5.16 4.5 · 10−9 4.2 · 10−11 1.24
35 7.4 · 10−7 7.9 · 10−9 5.07 1.1 · 10−8 1.2 · 10−11 2.77
45 1.3 · 10−6 1.6 · 10−8 5.17 2.0 · 10−8 2.5 · 10−10 5.40

55 3.6 · 10−6 4.8 · 10−8 5.81 3.8 · 10−8 5.7 · 10−10 11.15
65 7.9 · 10−6 1.4 · 10−7 13.03 6.9 · 10−8 1.2 · 10−9 29.52
75 1.4 · 10−5 3.0 · 10−7 37.13 1.2 · 10−7 2.5 · 10−9 103.32

the speed and accuracy of both methods for each linearised problem during
a single run of our optimal control solver. The primal method stops when
either the increment in u or c drops in norm below 10−9. For the gradient
descent scheme we apply the same stopping criteria on our iterates, too.
Further, its step length is optimised for each linearised problem but kept
constant over all iterations. This optimisation is done by testing in advance
a range of potential step sizes for their convergence behaviour. In our tests
a complete optimisation of the step length in each iteration for the gradient
descent has proven to be too expensive in terms of run time. Table 5.2
exhibits the run times and residuals for some of the iterates. We measure
both the absolute residual ‖Au+Bc− g‖2 as well as the relative residual
‖Au+Bc− g‖2‖g‖

−1
2 . The energies of both approaches are identical for

each presented case. It follows that the difference in performance is only
due to the accuracy in solving the constraint. As we can see from Table 5.2,
the dual method yields more accurate solutions and is significantly faster in
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Chapter 5 Optimisation in the domain and codomain

the beginning. Towards the end, the step length must be reduced to ensure
convergence. This causes a considerable slow down of the approach. While
it is possible to set the step length to 0.4 in the beginning, it drops below
0.1 for the final tests. At the same time the required number of iterations
increases by more than a factor 10. The run time of the primal method
is almost identical for every iterate but it cannot offer the accuracy of the
gradient descent scheme. Nevertheless, the primal solver has significantly
lower run times for later iterations.
The results from Table 5.2 suggest that it is beneficial to use the dual

solver for early iterations and switch to the primal approach for minimising
later linearised problems if speed is an issue. Unfortunately, there is no
concise way to predict the moment for switching from one model to the
other. Finally, let us mention that the ultimate masks obtained from both
approaches were identical.

Extension to colour images and videos

Several approaches can be used to handle colour valued images. A straight-
forward method would be to apply the algorithm channel wise in the RGB
colour space. This yields a different interpolation mask for each channel.
Alternatively, one could convert the image first to the YCbCr space and
determine the optimal reconstruction points for the Y channel only. The Cb
and Cr channels could then be subsampled with the same interpolation mask.
The latter strategy has several benefits. First of all, it is significantly faster
since we only need to compute a single mask instead of three. Secondly, in
view of applications for image compression, we benefit from the fact that we
only have to save the positions for a single mask. The Cb and Cr channels
do not require highly accurate reconstructions. A fact which is also exploited
in many other image compression techniques. Therefore, using the mask
from the Y channel for all reconstructions is a viable choice in this approach.
Finally, a channel wise computation in the RGB space can lead to visually
unpleasant artefacts when the mask information from the individual channels
is inconsistent.

Figure 5.4 depicts an example of an optimisation within the YCbCr space.
We use the parameter settings λ = 5 · 10−3, ε = 10−6, µ = 0.1, 50 000
iterations for solving the linearised primal problem and 500 linearisations.
The mask has a density of 3.865% and yields an extraordinary high quality
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(a) Input image, Source: [38] (b) Binary Mask (c) Reconstruction

Figure 5.4: Test image Peppers in colour (511× 511): The reconstruction is done with an
additional GVO on the binarised mask and presents a remarkable quality.

reconstruction. The MSE in the Y channel is 24.343.
Our framework can be applied in a straightforward manner to image

sequences as well. Instead of working in R2, we have to switch over to R3.
No significant changes need to be done. It suffices to replace the 2D Laplacian
with its 3D variant. Many video compression approaches work frame by
frame or over groups of frames. Our approach considers the sequence in its
entirety when localising the best interpolation data. Thus, the algorithm is
capable of handling almost static sequences as well as sudden scene changes
by adapting the mask density in the spatio-temporal domain of the video
data. The unfortunate downside of such an approach is the prohibitive
amount of data that has to be optimised simultaneously. The complete
sequence is optimised as a whole. Such a strategy requires large amounts
of memory and computing capacity. Computing a mask for a sequence of 5
frames with size 640×480 pixels requires up to 90 hours on standard desktop
PC with an Intel Xeon processor clocked at 3.2GHz and 24GB of memory.

A greedy speed-up strategy

The run times for the previous experiments are often in the range of several
hours. The methods of Mainberger et al. [20] take similar amounts of time,
whereas the approaches of Ochs et al. [53] and Chen et al. [102] are faster. Our
experiments show that the time consuming back projection can be omitted.
The final results are always very similar. For practical purposes one can
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also significantly reduce the number of iterations in Algorithm 5.2 without
encountering a notable loss in quality. Moreover, the results from Chapter 3
suggest an interesting heuristic to further speed up the computation of the
mask. Our algorithm usually starts with a full mask which is made gradually
sparser. Since the smallest errors can be obtained with a binarised mask
combined with a GVO it is not really necessary to know the exact optimal
value of the mask at every position. All we need to know is the sparsity
pattern of the mask. Therefore, one can threshold the mask during the
iterations and check whether this thresholded version differs significantly
from the thresholded mask of the previous iterate. If not, one aborts the
iteration. Using this heuristic for the Peppers image with λ = 3.25× 10−3,
µ = 0.01, ε = 10−9, 1250 iterations of Algorithm 5.2 and 50 outer iterations
we obtain a binary mask with a density of 5.01%. In combination with GVO,
the MSE is 19.38, which is identical to the result from [20]. The total run
time is 272 seconds. Even though the obtained mask yields a slightly larger
error when compared to the results from Table 5.1, the run time is reduced
from 15 hours down to less than 5 minutes. This corresponds to a speed-up
factor of almost 200.

5.6 Conclusion
We have analysed an optimal control based approach to find good masks for
inpainting with the Laplacian. The method is flexible, easy to implement, and
can be applied to arbitrary signals. We have derived a solution strategy and
discussed optimality conditions and convergence behaviour of our iterative
scheme. The convergence analysis yields a similar situation as in Chapter 4.
We can assert a rather well-behaved evolution of the iterates but are unable
to show convergence towards a global minimum. Duality concepts have also
been discussed in this context. They offer valuable insight into the underlying
task. The experimental findings confirm our expectations. The algorithm
excels for arbitrary non-convex signals and outperforms other state-of-the-
art methods. However, it cannot compete with specialised methods that
exploit additional information such as the convexity of the underlying signal.
Nevertheless, we believe that our method can serve as a solid base in the
design of a novel image compression codec.
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Chapter 6
Applications to image compression

Happiness lies in the joy of
achievement and the thrill of
creative effort.

(Franklin D. Roosevelt)

In this chapter we briefly present a lossy image compression codec based
on the results from this work. The codec has been completely suggested
by Peter [39] and is capable of compressing single grey scale images. It
outperforms both JPEG and sometimes even its successor JPEG 2000 in
terms of reconstruction quality. Unfortunately, our strategy is comparatively
slow. It serves as a viable alternative to highly popular methods if speed is
not an issue. Let us also remark that there exists already a certain number
of PDE based codecs such as those of Galić et al. [17], Schmaltz et al. [18],
and Mainberger et al. [19]. The main difference to these approaches lies in
the fact that we use homogeneous diffusion inpainting for the reconstruction
and that our mask is determined by a powerful optimisation scheme.

6.1 The strategy
We proceed as follows: For a given image we first determine a mask by
applying the optimal control framework from Chapter 5. In view of the
findings from Chapter 3 it suffices to store a binary mask. The positions of
the non-zero entries are efficiently saved by using a block encoding scheme.
Next we complement this mask by a set of tonal values. In order to increase
the compression rate we extend the GVO strategies from Chapter 3 with a
few additional steps. Storing the optimal colour values in full precision is
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prohibitively expensive. Instead, we quantise them and perform a second
discrete optimisation on these quantised values. This strategy yields sub-
optimal data but the gain in the compression ratio outweighs the loss of
accuracy. Finally, the whole data is stored in a container file and compressed
with a state-of-the-art lossless compression algorithm. Let us also remark
that our strategy has two steps where unrecoverable loss of information
occurs. Partial differential equation based inpainting is never a perfect
reconstruction method. Thus, the optimal control algorithm for determining
the mask is the first lossy step. Secondly, the quantisation of the tonal values
is also non-reversible. The full details to the individual steps are now given
below.

Mask and data encoding

Our experiments suggest that most specialised entropy encoders such as those
presented in [105–107] are not capable of improving significantly enough on
simpler approaches to justify their use. Therefore, we propose to use a simple,
fixed-size block coding algorithm and combine it with the high performing
lossless compression algorithm PAQ developed by Mahoney [108, 109]. We
divide each side of the image into b parts. This results in a decomposition
of the image into b2 blocks, all having the same aspect ratio as the original
image. For every block that contains only zeroes, just a 0 is stored. For the
remaining blocks we store a 1 followed by the row-wise linearised content of
the block. The corresponding grey values are stored in byte precision on a
regular grid.

Tonal optimisation

The GVO algorithms described in Chapter 3 yield optimal results for grey
values in a continuous range. However, in order to achieve competitive file
sizes the number of admissible grey values must be reduced. This so called
quantisation step is done by sampling the complete grey value range at q
equidistant points. A naive application of this sampling step after a GVO
leads to a large degradation in quality. We counter this loss by using the
quantisation aware brightness optimisation technique of Schmaltz et al. [18].
This iterative approach traverses all pixels in random order. For each grey
value the effect of a change to the next lower or higher quantised colour on
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the error is considered. Sequentially, each pixel is assigned the best grey
value. This procedure is repeated until convergence. In our experiments
we choose a grey value range of [0, 255] and specify a MSE change of 0.001
between the results of two subsequent iterations as a convergence criterion.
Let us also emphasise that this strategy is very time consuming. We have to
perform an inpainting for every single change in a pixel value.

The quantisation parameter q is independent of the number of mask points
but it still influences the overall file size. The entropy coding of the grey
values becomes more efficient for smaller numbers of distinct colours. Thus,
the file size is directly proportional to q. Simultaneously, the error increases
with decreasing q. The fewer colours we allow the more misrepresentations
occur. It follows that a suitable parameter q must be found that offers the
best trade-off between file size and reconstruction quality. To this end we
define the quantity

s (vmax)− s (q)
s (vmax) − e (q)− e (vmax)

e (vmax) . (6.1)

Here, s : {1, 2, . . . , vmax} → N is the file size in bytes for a given quantisation
level and e : {1, 2, . . . , vmax} → R the corresponding MSE. The integer
vmax is the highest possible number of distinct grey values. Equation (6.1)
represents the difference between the relative file size decrease and the
relative error increase. The larger this number, the better the trade-off.
Maximising Eq. (6.1) returns the best quantisation level for a given mask.
The parameter q should also be optimised with the subsequent brightness
optimisation in mind. To this end one should in fact perform the quantisation
aware brightness optimisation technique of Schmaltz et al. [18] for every
valid q and finally use Eq. (6.1) as criteria to select the best number of
distinct colours. However, this approach requires a massive computational
workload. As a heuristic to cut down the run time we suggest to compute
a suitable approximation to the brightness optimised result by changing
the MSE threshold as a stopping criterion. In our experiments, 0.1 yields a
good compromise between speed and accuracy and allows us to perform the
necessary computations within a few hours.
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The complete codec

Combining all steps leads to a compression algorithm that consists of the
following five steps.

1. Computation of good inpainting data with the approaches from Chap-
ter 5

2. Block coding of the binary mask from the previous point

3. Quantisation optimisation to determine the best q by maximising
Eq. (6.1)

4. Tonal optimisation with the GVO algorithms from Chapter 3 and the
brightness optimisation technique of Schmaltz et al. [18]

5. Container compression with the lossless compression scheme PAQ

The final compressed file is obtained by storing first the dimension of the
image with a variable size of up to two byte per dimension, a 1 bit flag that
indicates if the dimensions are encoded using one or two bytes and a 1 bit flag
for quadratic images, where the dimension is only stored once. Additionally,
we store the number of blocks b and the quantisation parameter q as one
byte each. This header is followed by the block-encoded mask information
and finally, the quantised grey values are appended. The whole binary file
is then stored in a PAQ container. Decompression is straightforward and
simply done in reverse order. The final image is obtained by solving the
inpainting equation with the extracted mask and grey values.
Let us also remark that if our mask is full, then it suffices to store the

complete original image data since no inpainting and GVO needs to be done.
The reconstruction is always perfect. In this setting the only compression
stems from the PAQ encoding and our codec becomes a lossless method.

Finally note that our choice of storing q with a single byte also restricts us
to a byte wise coding of the pixel values. The value of vmax cannot exceed
256.

6.2 Numerical experiments
We test our codec on the grey scale version of the Peppers image from
Figure 5.3. We save it with different compression ratios and consider the
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MSE between the original and the compressed result. The performance of
the open source JPEG and JPEG 2000 encoders from the Image Magick
suite [110] in version 6.8.3-6 serve as a reference benchmark. The outcome is
depicted in Figure 6.1. The corresponding images for a compression ratio of
13.6 to 1 are also visualised in Figure 6.2. Other data sets yield similar results.
As we can see in Figure 6.1, we outperform JPEG for every compression
ratio by a significant margin. For certain very low compression ratios we
even outperform the state-of-the-art JPEG 2000 standard. Nevertheless,
this quality gain does not come without a price. Encoding an image with
JPEG takes a few hundred milliseconds to complete. Our mask optimisation
scheme alone has an average run time in the range of several hours. Another
disadvantage of our method is the tuning of the parameters. Both JPEG
and JPEG 2000 allow the specification of a target quality, respectively
compression ratio. Even though the mask density correlates in our codec
with the final file size, it is still difficult to predict good parameter values to
achieve a desired compression ratio. Furthermore, different combinations of
mask density and quantisation may lead to the same compression ratio but
with different reconstruction errors. It is not possible in advance to state
which choice might yield the better outcome. Finally, our approach fails when
the image contains large textured regions. In order to reconstruct highly
oscillating patterns the strong smoothing effect of the Laplacian during the
inpainting has to be countered with a significant amount of mask points.
This causes an overall increase in the file size. The JPEG codec is much
better suited to handle such ill posed situations by acting on the coefficients
of the discrete cosine transform. The JPEG 2000 method uses wavelet
decompositions and has similar advantages in the presence of structured
patterns. Potential remedies to improve the handling of textures with our
codec could be based on the incorporation of patch-based strategies. These
approaches usually store small patches of a given image and use them for the
reconstruction process. The recent work of Facciolo et al. [111] demonstrates
that high quality reconstructions are possible with very sparse data patches.
We refer to [112, 113] and the references therein for more information on
exemplar based inpainting schemes.
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Figure 6.1: Comparison between our image compression codec, JPEG and JPEG 2000
for the grey scale version of the Peppers image. We consistently outperform the JPEG
standard. For certain compression ratios between 5 : 1 and 15 : 1 we even outperform
the JPEG 2000 codec. Also note that the JPEG format is always lossy. Even with
parameters set to maximise the quality, loss of information occurs. Therefore, the JPEG
curve cannot be extended to the left as far as for the other two codecs. The lowest
compression ratio for our codec is achieved with a full mask. In that case the error is
indeed 0 as we can simply store the original data and exploit the performance of the
lossless PAQ compression.
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(a) Original image (b) Our codec, MSE: 15.98

(c) JPEG, MSE: 20.71 (d) JPEG 2000, MSE: 16.14

Figure 6.2: Example images for the compression ratio 13.6 to 1. Visual differences are
barely visible. The JPEG image depicts some ringing artefacts whereas in our codec the
mask points are still apparent. Also the JPEG 2000 image contains a certain number of
very small singularities.
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6.3 Conclusion
Image compression schemes based on simple partial differential equations can
outperform well established and sophisticated codecs that are widely used
today. We achieve qualitative better results at the expense of a significantly
larger computational burden. Another deficiency of our codec lies in the
predictability of the parameter influences. Currently, trial and error strategies
are the only way to achieve accurate target quality settings. If run time is not
an issue and if the data does not contain too many textures, then our codec
presents a viable alternative to prevailing methods. Future improvements
and extensions of the codec should include an improved handling of textures
and the ability to compress colour images and video sequences.
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Chapter 7
Summary and outlook

The whole point of getting
things done is knowing what
to leave undone.

(Oswald Chambers)

In this work we have presented several new findings concerning Laplace
interpolation for image reconstructions with extremely sparse data. We have
generalised the inpainting PDE with homogeneous diffusion from an original
setting with binary masks to arbitrarily valued masks. We have shown that
a well suited choice for the range of the mask values is the interval [0, 1]. It
asserts that the inpainting matrix is invertible, that all its eigenvalues are
real, and that adherence to a max-min principle is guaranteed. Our findings
extend previously well known results from [19] to a more generic setting.

The formulation with continuously valued masks allows us to state a new
control model for the determination of optimal interpolation data. Our opti-
mal control based model from Chapter 5 is able to process arbitrary signals
and, in combination with the tonal optimisation findings from Chapter 3, it
is possible to achieve extraordinary image reconstructions with as little as
5% of the pixels. Currently, these results outperform all other competing
strategies in terms of quality. An alternative approach for one dimensional
and strictly convex signals is also considered in Chapter 4. Unfortunately,
this latter framework is not flexible enough to be used for our purposes.
Nevertheless it offers some valuable insight into the difficulties behind the
underlying problem. Besides these improvements in the modelling we have
also found new numerical schemes that allow an even more efficient handling
of the optimisation tasks at hand. Our algorithms outperform previous
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attempts in terms of accuracy and speed. Our grey value optimisation
algorithms from Chapter 3 also cover the most frequently used computing
environments. We have provided methods that work well on CPUs and
that exploit the massive parallelism offered by modern GPUs. Finally, the
results from Chapter 6 prove the practical applicability of the findings from
this thesis to image compression tasks. In certain cases we can outperform
popular codecs such as JPEG and JPEG 2000.
From a theoretical point of view almost all important questions are an-

swered. We are able to state criteria that assert that the inpainting PDE is
solvable and we have analysed the optimality conditions for the optimisation
in the codomain. Our methods for finding good interpolation sites from
Chapter 4 and Chapter 5 have been investigated in detail as well. Equivalent
formulations in terms of conjugate duality are presented. We also provide
conditions that assert that our iterates decrease the cost functions in the
optimisation models. Unfortunately we have been unable to prove conver-
gence of our iterates towards a global minimum for the non-convex tasks
at hand. Therefore, it remains an open question how good the obtained
solutions really are. Experimental setups suggest however that our solutions
perform surprisingly well.
While this work concentrates exclusively on the Laplace equation, it

is clearly possible to formulate inpainting models with other PDEs, too.
Incorporating them into our models requires an approach in similar style
as in Chapter 2 and Section 5.2. An extension to other linear operators is
straightforward and investigating the properties of the biharmonic operator
should be done as a next step. In view of the findings from [102] we expect
the biharmonic operator to yield more accurate reconstructions and to be
more difficult to handle numerically. On the other hand, the analysis of non-
linear PDEs is likely to remain challenging. Many results from this work rely
on the linearity of the differential operator. Nevertheless, our work can still
serve as a foundation for future research in this domain. Handling non-linear
operators could for example be done by lagged linearity approaches.

Even though our numerical schemes are already quite efficient, they are not
fast enough for a day-to-day usage. The computation of mask points for video
sequences and the compression codec for grey scale images require significant
speedups to become feasible alternatives. Currently the best performing
codecs require fractions of a second to compress large images. Our methods
require at least several hours for the same task. High performing algorithms
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would also facilitate the tuning of the parameters to achieve desired mask
densities and compression ratios. Another topic for future research in this
domain would be the handling of colour images and the integration of a
more efficient texture processing. Colour images contain a certain amount
of redundant information in their individual channels. A fact that must be
taken into consideration. A first tentative attempt has been suggested in
Section 5.5. The difficulty in handling textured data stems from the usage
of the Laplacian. There exist two ways to overcome the deficiencies. Either
we replace the Laplacian with another differential operator that is better
suited to handle texture or we combine our findings from this work with
patch based strategies as suggested in Chapter 6. The latter ones are known
to work very well with regular and non-smooth patterns. Finally, another
important and outstanding topic is the global convergence and optimality of
our approaches. Experiments show that our solutions yield state-of-the-art
results but so far we cannot claim convergence towards a global minimum
in any of our methods. The non-convexity of our models prevents us from
overcoming this obstacle.
All in all we conclude that this thesis has contributed a number of fun-

damental results to the research on image inpainting and the accurate
determination of good reconstruction data sets. These findings will certainly
allow us in the future to perform significant advances in the domain of
PDE-based image and video compression.
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List of symbols

The following nomenclature is used throughout the whole document. Func-
tions, scalar- and vector-valued unknowns are denoted by lowercase roman
letters. The individual entries of a vector are marked with a single subscript
index. If f is a vector, then its entries are given by fi. Matrices and other
operators use capital roman letters. Matrix entries are also denoted by a
lowercase roman letter and a double subscript index. Thus a matrix A has
the entries ai,j . Alternatively we may also address a matrix A by writing
(ai,j)i,j . Submatrices use a capital roman letter with a double subscript
index. It follows that a submatrix of the matrix A can be referenced by Ai,j .
Sequences are enclosed in parentheses and have a running subscript index
appended. This index is also added as a superscript with parentheses to
the individual elements. A sequence of scalars x(i) is therefore written as
(x(i))i. Parameters are stated in lowercase Greek letters whereas sets use
uppercase Greek letters. Further notations and all exceptions deviating from
this convention are designated below.

Notation Description

≡ Identical equality: f(x) ≡ α⇔ f(x) = α ∀x
< Component wise larger than or equal
4 Component wise less than or equal
� Significantly larger than

A (c) Inpainting matrix with mask c

B† Moore Penrose pseudoinverse of the matrix B

C Set of complex numbers
Cn,n Set of n× n matrices with complex entries

∂Ω Boundary of the set Ω
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List of symbols

Notation Description

diag (c) Diagonal matrix with the vector c on its main diagonal
DcT (ū, c̄) Jacobi matrix of T (u, c) with respect to c evaluated at (ū, c̄)
DuT (ū, c̄) Jacobi matrix of T (u, c) with respect to u evaluated at (ū, c̄)
δk,l Kronecker delta function
∆ Laplace operator
∂n Derivative in outer normal direction
∂ (F ) (x) Subgradient of F at position x

f∗ Conjugate of the function f
f∗∗ Biconjugate of the function f

f (x)
∣∣∣∣
x=z

f(x) evaluated at x = z

G (A) Directed graph corresponding to the matrix A

Hγ Huber loss function with parameter γ

ı Complex unit
I Identity matrix
i (A) Inertia of the matrix A
i− (A) Number of eigenvalues A with negative real part
i0 (A) Number of eigenvalues A with zero real part
i+ (A) Number of eigenvalues A with positive real part
ιS Characteristic function of the set S

J> Transpose of the linear operator J .

L discrete Laplace operator
L1 Space of integrable functions
L2 Space of square integrable functions
Lp Space of p-integrable functions

M (c) Reconstruction matrix with mask c

∇ Gradient operator
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List of symbols

Notation Description

∇cE (c, x) Gradient of E (c, x) with respect to c.
∇xE (c, x) Gradient of E (c, x) with respect to x.
N Set of natural numbers
|N (i)| Number of direct neighbours of pixel i
N (i) Set of direct neighbourhood pixels of pixel i

Ω Image domain
ΩK Set of known data locations
O (u∗) Open neighbourhood around u∗

ran (J) Range of the operator J
ran (J)⊥ Orthogonal complement of ran (J)
R Set of real numbers
R Extended real line: R ∪ {−∞,∞}
Rn,n Set of n× n matrices with real entries

Zn Set of all real valued n×n matrices with non-positive elements
at each position not on the main-diagonal
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List of abbreviations

Notation Description

CCD charge coupled device
CPU central processing unit

EED edge enhancing diffusion

FK free knot

GPU graphics processing unit
GVO grey value optimisation

JPEG Joint Photographic Experts Group

KKT Karush Kuhn Tucker

LCL linearly constrained Lagrangian methods
LSQR least squares algorithm

MM majorise/minimise methods
MP3 MPEG Audio Layer III
MSE mean squared error

OC optimal control

PDE partial differential equation
PDHGMu modified primal dual hybrid gradient

SLP sequential linear programming
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Index

A
adjacency matrix, 25

B
band matrix, 27
biconjugate function, 86
binary mask, 16
block irreducible matrix, 26

C
coercive function, 75
condition

continuity ∼, 61
confidence function, 15
continuity condition, 61
convex
∼ conjugate, 77

convex conjugate, 77

D
diffusion

homogeneous ∼, 9
directed
∼ arc, 24
∼ graph, 25
∼ path, 25

discrete inpainting equation, 16
dual problem, 85

E
equation

discrete inpainting ∼, 16
inpainting ∼, 16

error
reconstruction ∼, 36

Euler’s elastica, 2

F
free knot, 7
∼ problem, 53

function
biconjugate, 86
coercive ∼, 75
confidence ∼, 15
convex conjugate ∼, 77
Huber loss ∼, 88
Huber penalty ∼, 88
Kronecker delta ∼, 24
proper ∼, 76
value ∼, 87

G
graph

directed ∼, 25
strongly connected ∼, 25

H
homogeneous diffusion, 9
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Index

∼ inpainting, 9
Huber loss function, 88
Huber penalty function, 88

I
image inpainting, 1
inertia of a matrix, 32
inpainting

discrete ∼ equation, 16
∼ equation, 16
homogeneous diffusion ∼, 9
image ∼, 1
∼ matrix, 17

inpainting mask, 19
interpolation

Laplace ∼, 9
membrane ∼, 9

irreducible matrix, 24

K
knot, 53
Kronecker delta function, 24

L
Lagrangian

standard ∼, 91
Laplace interpolation, 9

M
M-matrix, 32
mask, 16

binary ∼, 16
inpainting ∼, 19
∼ point, 31
∼ points, 53
∼ positions, 53

matrix
adjacency ∼, 25

band ∼, 27
block irreducible ∼, 26
inertia of a ∼, 32
inpainting ∼, 17
irreducible ∼, 24
M-∼, 32
non-negative ∼, 31
permutation ∼, 23
positive stable ∼, 32
reconstruction ∼, 17
reducible ∼, 24
tridiagonal ∼, 27

max-min principle, 31
membrane interpolation, 9
Moreau envelope, 78
Moreau-Yosida regularisation, 78

N
non-negative matrix, 31

P
parameter

perturbation ∼, 86
permutation matrix, 23
perturbation parameter, 86
positive stable matrix, 32
primal problem, 77
problem

dual ∼, 85
primal ∼, 77

proper function, 76
proximal mapping, 78

R
reconstruction error, 36
reconstruction matrix, 17
reducible matrix, 24
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Index

S
soft shrinkage, 80
sparsity pattern, 36
standard Lagrangian, 91
strongly connected graph, 25

V
value function, 87
vertex, 24
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