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Abstract

Interactive Typed Tactic Programming in the Coq Proof Assistant

Beta Ziliani

2015

In order to allow for the verification of realistic problems, Coq provides a language

for tactic programming, therefore enabling general-purpose scripting of automation rou-

tines. However, this language is untyped, and as a result, tactics are known to be difficult

to compose, debug, and maintain. In this thesis, I develop two different approaches to

typed tactic programming in the context of Coq: Lemma Overloading and Mtac. The

first one utilizes the existing mechanism of overloading, already incorporated into Coq,

to build typed tactics in a style that resembles that of dependently typed logic pro-

gramming. The second one, Mtac, is a lightweight yet powerful extension to Coq that

supports dependently typed functional tactic programming, with additional imperative

features.

I motivate the different characteristics of Lemma Overloading and Mtac through a wide

range of examples, mainly coming from program verification. I also show how to combine

these approaches in order to obtain the best of both worlds, resulting in extensible, typed

tactics that can be programmed interactively.

Both approaches rely heavily on the unification algorithm of Coq, which currently suffers

from two main drawbacks: it incorporates heuristics not appropriate for tactic program-

ming, and it is undocumented. In this dissertation, in addition to the aforementioned

approaches to tactic programming, I build and describe a new unification algorithm

better suited for tactic programming in Coq.





Kurzdarstellung

Interactive Typed Tactic Programming in the Coq Proof Assistant

Beta Ziliani

2015

Um realistische Programme zu verifizieren, bietet Coq eine Sprache zum Program-

mieren von Taktiken. Sie ermöglicht das Schreiben universeller Automatisierungsrou-

tinen. Diese Sprache ist allerdings ungetypt. Die resultierenden Taktiken sind da-

her bekannt dafür, schwer zusammensetzbar, testbar und wartbar zu sein. Ich en-

twickle in dieser Doktorarbeit zwei Ansätze für getypte Taktiken im Kontext von Coq:

Das Überladen von Lemmata und Mtac. Ersteres benutzt den in Coq vorhandenen

Überladungsmechanismus um Taktiken im Stil von Dependently Typed Logic Program-

ming zu erstellen. Letzeres, Mtac, ist eine leichtgewichtige, aber mächtige Erweiterung

zu Coq, die das Erstellen von funktionalen, Dependently Typed Taktiken mit impera-

tiven Features erlaubt.

Ich motiviere die verschiedenen Charakteristika der beiden Ansätze durch eine große

Auswahl an Beispielen, die hauptsächlich aus der Programm-Verifizierung kommen. Ich

demonstriere außerdem, wie man die Ansätze kombinieren kann, um das Beste aus bei-

den Welten zu bekommen: erweiterbare, getypte Taktiken die interaktiv programmiert

werden können.

Beide Ansätze sind stark abhängig vom Unifizierungs-Algorithmus in Coq. Dieser leidet

momentan unter zwei Nachteilen. Einerseits sind die Heuristiken nicht auf das Program-

mieren von Taktiken abgestimmt. Andererseits ist der Algorithmus undokumentiert.

Zusätzlich zu den oben genannten Ansätzen zur Programmierung von Taktiken, en-

twickle und beschreibe ich in dieser Dissertation einen neuen Unifizierungs-Algorithmus,

der besser für die Programmierung von Taktiken geeignet ist.
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Introduction

According to Wikipedia,1

“A proof is sufficient evidence or an argument for the truth of a proposition.”

This informal statement should raise the eyebrow of any hard-scientist: how do we

declare that we have sufficient evidence, or a valid argument? Even in the rigorous

world of mathematics, people tend to disagree on these concepts. Take for instance

the Four Color Problem. For over more than a century many famous mathematicians

provided proofs that turn out to be incorrect (Saaty and Kainen, 1977), until in 1976 the

first “correct” proof was developed by Appel and Haken (1976). The proof breaks the

problem into a monstrous number of cases, analyzing each with the help of a computer.

The proof presented by Appel and Haken, novel in the use of a computer program,

raised reasonable complaints. After all, on which grounds should we trust a computer

program? Computer programs are usually plagued with bugs, hard to verify, and hard

to relate to the mathematics they are intended to model. In this particular case, to

make things worse, the program was written in IBM 370 assembly! On top of that, the

proof included an initial manual case analysis with 10, 000 cases where several minor

mistakes were found.

Twenty years later, Robertson et al. (1997) made a cleaner presentation of the same

proof, this time in C, and with an accompanying monograph describing the proof. Still,

the proof relies on a large computer program, which computer scientists had to manually

verify. This gap between the math and the program was finally closed for good in

2008, when Georges Gonthier presented a formal proof written entirely in the Coq proof

assistant (Gonthier, 2008).

Proof assistants like Coq (Bertot and Castéran, 2004, The Coq Development Team,

2012), HOL (Gordon and Melham, 1993), Isabelle (Paulson, 1994), Lego (Luo and Pol-

lack, 1992), LF (Harper et al., 1993), and NuPRL (Constable et al., 1986), to name just

1And to “common sense”.

1



Introduction 2

a few, are tools designed specifically to bring confidence in our results, removing the

natural doubts that come from large, complicated proofs. Essentially, a proof assistant

is a computer software developed to verify proofs encoded in a certain logic. Then, the

assistant has the mindless job of verifying that the proof is a valid sequence of steps in

that logic.

Of course, there is still a fair amount of trust involved in the usage of a proof assistant:

one has to trust that the logic is a trustworthy encoding of mathematical reasoning, and

that the proof assistant is a trustworthy encoding of that logic (and, in addition, that

the compiler and the hardware did not introduce significant errors). Nevertheless, the

assistant is a generic tool, and not an ad-hoc program built to prove a specific problem.

In the case of an established proof assistant, like the aforementioned ones, they are

continuously being developed and tested by many proof developments. Therefore, their

reliability is not at stake, even when bugs are to be found every now and then. It is

commonly agreed that a mature proof assistant is significantly more trustworthy than a

human reviewer.2

To put it concisely, informal arguments are at one extreme of the “trust spectrum”,

while proof assistants are located at the opposite extreme. Needless to say, not every

proof require such rigor; however, in modern mathematics (and accordingly, in computer

science), proofs tend to grow large and complex, making proof assistants an increasingly

adopted tool in the mathematician’s toolbox. In this regard, Vladimir Voevodsky, a

2002 Fields Medal recipient, posits: 3

“Soon enough, [mathematicians] are going to find themselves doing mathematics

at the computer, with the aid of computer proof assistants. Soon, they won’t

consider a theorem proven until a computer has verified it.”

In the particular case of Coq, its popularity has grown quickly in the past years thanks

to a large number of successful formalization efforts. For example, in the area of algebra,

in addition to the already mentioned Four Color Theorem, the Feit-Thompson Theo-

rem (Gonthier et al., 2013a) was recently formalized. The original proof of this theorem

was published in two volumes, totaling an astounding 250 pages. Gonthier and his team

were able to formalize it, together with all the necessary background material, in Coq. In

the area of computer software verification, perhaps the most impressive example is the

CompCert C compiler (Leroy, 2009). This compiler comprises several compilation and

optimization phases for a realistic fragment of C, and the formalization in Coq ensures

that each phase preserves the intended semantics of the original program.

2Although a human reviewer is still needed to check that the definitions and statements in the proof
development are what the authors of the proof claim!

3http://blogs.scientificamerican.com/guest-blog/2013/10/01/voevodskys-mathematical-revolution/

http://blogs.scientificamerican.com/guest-blog/2013/10/01/voevodskys-mathematical-revolution/
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The key for the success of such proof developments is due, at least in part, according

to Gonthier et al. (2013a), to the use of the rich logic employed by Coq. Indeed, the

Calculus of Inductive Constructions (CIC), as it is called, allows for very rich specifi-

cations and abstractions. However, despite its expressiveness, Gonthier et al. (2013a)

also acknowledge that real verification efforts require automation beyond that allowed

by the logic. We illustrate this point with a simple example from software verification,

more precisely about pointer no-aliasing. Consider the following goal where we have to

prove that pointers x1, x2, x3 are pairwise distinct, i.e., they do not alias:

x1 != x2 && x2 != x3 && x1 != x3

in a context where the following hypothesis holds, stating that the pointers points to

disjoint sections of a heap:

D : def (x1 7→ v1 • x2 7→ v2 • x3 7→ v3)

A heap is a finite map between locations and values; x 7→ v is the singleton heap

containing x pointing at v; h1 • h2 is the function that merges heaps h1 and h2 if they

do not overlap on their domain, or returns a special value Undef if they do; def h is a

function that returns true iif the heap h is defined.

In order to solve the goal we can use the following lemma stating that if two pointers

point to disjoint locations at the front of a heap, and the heap is defined, then they do

not alias:

noalias : ∀h:heap. ∀x1x2:ptr. ∀v1:A1. ∀v2:A2.

def (x1 7→ v1 • x2 7→ v2 • h)→ x1 != x2

In order to apply this lemma to the three inequalities, we have to rearrange the heap

in the hypothesis D in order to bring the singleton pointers to the front of the heap, as

required by the lemma. This rearrangement is possible, as the disjoint union operator is

associative and commutative, but tedious and, more importantly, not robust to changes

in the original heap.

Ideally, one would like to have a tactic, that is, a meta-program, to solve the goal

automatically, either by rearranging the heap to move the pointers to the front of the

heap and then apply the lemma above, or by searching for the two pointers in the heap,

constructing a proof of their inequality along the way. Note that, in either case, we need

to go beyond of the logic of the proof assistant, since the tactic requires inspecting the

syntax of the heap: both (· 7→ ·) and (·•·) are functions, not constructors of an inductive

type. Modern proof assistants enable this type of meta-reasoning by incorporating a

tactic language.
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Current tactic languages, however, have serious limitations. To illustrate this point,

we will present and motivate different properties desirable for a tactic language, and

evaluate the existing languages with respect to these properties.

1. Maintainability: Tactics should be easy to maintain. During the development of

a proof, it is usually the case that we need to introduce changes to our definitions

and lemmas. As a consequence, some of the tactics developed may break. We

would like to have immediate feedback, like a typechecker, indicating the specific

places where the tactic needs to be updated.

2. Composability: It should be easy to compose tactics and lemmas. This point is

better explained with an example. Consider the following part of the goal above,

now showing the implicit coercion from a boolean to a proposition:

x1 != x2 = true

( != is a boolean inequality operator, and any boolean b is automatically coerced to

an equality b = true when a proposition is required.) In this goal one must provide

a positive proof of a pointer inequality. An equivalent goal requires a negative

proof of their equality :

x1 == x2 = false

In a tactic language without composability, this trivial change of the goal can be

quite problematic, since the original tactic, let’s call it auto noalias, was originally

conceived to solve pointer inequalities, and not equalities. The problem gets ex-

acerbated if we suppose that the pointer (in-)equalities we want to resolve are

embedded in a larger context, e.g.,

G : if (x2 == x3) && (x1 != x2) then E1 else E2

In this situation, we cannot apply the tactic, directly to reduce (x2 == x3) and

(x1 != x2) to false and true, respectively, since those (in-)equalities are not the

top-level goal. Coq’s rewrite primitive is designed precisely for this situation—it

enables one to reduce all (in-)equalities within G that match the conclusion of a

particular lemma—but it is not applicable to tactics (like auto noalias).

Thus, with the auto noalias tactic, we are left with essentially two options: (i) use

it to prove a bespoke lemma about one specific inequality (say, x1 != x2), perform

a rewrite using that lemma, and repeat for other (in-)equalities of interest, or (ii)

implement another custom tactic that crawls over the goal G searching for any

and all (in-)equalities that auto noalias might resolve. The former option sacrifices
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the benefits of automation, while the latter option redundantly duplicates the

functionality of rewrite.

Instead, we would like the language for proof automation to give tactics a similar

status as standard lemmas, therefore enabling the composition of the rewrite tactic

and the auto noalias tactic, additionally allowing tactics to be composed with stan-

dard lemmas. For instance, in order to rewrite pointer equalities, we would like

to be able to compose the tactic auto noalias with the following standard lemma,

which allows us to transform a problem of the form x1 != x2 into one of the form

x1 == x2 = false:

negbTE : ∀b:bool. !b→ b = false

3. Interactivity: In order to ease the development of tactics, the tactic developer

should be able to construct proof terms appearing in the tactic interactively. A

proof term is, basically, a term in CIC witnessing a proof. Proof assistants like

Coq provide tools to build proof terms in an step-wise manner, where the proof

developer interacts with the proof assistant to help construct the proof, either back-

wardly changing the goal to match some hypothesis, and/or forwardly changing

the hypothesis to match the goal. These tools should be available for constructing

tactics as well.

4. Simplicity: The tactic language should have a clear and simple semantics. It

should be easy to guess what the output of a tactic should be based on a quick

scrutiny of the code.

5. Formality: The semantics of the tactic language should be formally described,

and it should be proven sound.

6. Efficiency: Since speed is a critical factor in an interactive proof assistant, the

tactic language should provide the means to build efficient tactics.

7. Extensibility: The functionality of a tactic should be easily extensible. In the

example above the heap from the hypothesis was constructed using functions 7→
and •. If we want to consider a new function for heap subtraction, then it should

be easy to extended the tactic to consider the new case.

Current tactic languages support only a subset of these properties. Coq incorporates two

tactic languages: OCaml, the language on which Coq is built, and Ltac (Delahaye, 2000).

The former, in the specific case of tactic programming, is a very low-level language, as

the developer is forced to use the internal representation of terms—for the interested

reader, Coq is built using a locally nameless approach (Gordon, 1994). OCaml tactics
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are efficient and extensible, but they are hard to maintain, compose and reason about.

And, of course, they cannot be built interactively.

On the other hand, Ltac is a purely functional high-level language, which allows for

meta-programming without exposing the internal representation of terms. However, it

also fails to satisfy almost all of the properties mentioned above, with the sole exception

of extensibility. The primary drawback of Ltac, partially shared with OCaml, is that

tactics lack the precise typing of the theorem prover’s base logic (they are essentially

untyped). To begin with, the lack of precise typing can make tactics much more difficult

to maintain than, say, lemmas, as changes in basic definitions do not necessarily raise

type errors in the code of the tactics affected by the changes. Rather, type checking is

performed on the goals obtained during tactic execution, resulting in potentially obscure

error messages and unpredictable proof states in the case of failure. Moreover, the

behavior of a tactic cannot be specified, nor can it be verified against a specification.

Also, due to their lack of precise typing, tactics suffer a second-class status, in the sense

that they may not be used as flexibly as lemmas. Another important restriction of Ltac

is that tactics cannot be built interactively. And this is not just a technical restriction,

but a fundamental one, as without a type the proof assistant is unable to figure out the

missing goal required to be solved interactively.

Concerning performance, Ltac tactics are restricted to a pure functional model of com-

putation, making it impossible to use hash tables or other fast imperative data structures

to build efficient tactics.

As pointed out in Malecha et al. (2014), Ltac semantics are extremely complicated,

making tactics hard to understand and debug. The recent efforts in pin-pointing Ltac’s

semantics (Jedynak, 2013, Jedynak et al., 2013) fall short for two reasons: firstly, they

miss the ability of Ltac to handle proof terms (constr: for the knowledgeable), and

secondly, and more importantly, they do not describe the unification algorithm that

Ltac uses. Unification is a critical component of meta-programming and, as a matter of

fact, Ltac uses an unsound unification algorithm. Since Ltac cannot trust the answer

of this algorithm, it checks the result, and backtracks if a problem is found, making the

behavior of tactics unpredictable.

As we mentioned above, Ltac does allow for extensible tactics. More precisely, some

OCaml tactics (e.g., auto and autorewrite) are extensible, and they can be accessed in

Ltac. These tactics have access to hint databases, where a selection of previously proved

lemmas are stored. Then, these tactics employ the hints in a given database to (try

to) solve the goal at hand. At any future point in time, the proof developer is entitled

to extend the database, increasing the solving power of the tactic. However, as Uncle
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Ben4 said: “With great power comes great responsibility”, in this case meaning that the

increased solving power may not be responsibly handled by the tactic engine. Since the

length of proof search paths is potentially augmented with each new hint, previously

solvable goals may become unsolvable in the time allocated by the tactic engine.

Despite all these problems, however, Ltac is still a powerful automation tool. Chlipala

(2011b) shows how, once the beast is tamed, it can reduce significantly the number of

lines of code required to verify low-level procedures. In Chlipala (2013), the same author

teaches the art of beast-taming. That said, the issues mentioned here are well known

by the Coq community, and partially documented in Malecha et al. (2014). In fact, in a

recent survey5 the Coq community voted the creation of a better tactic language as the

fourth most important request for a future version of Coq.

Many of the problems with Ltac mentioned above are a direct consequence of it lack-

ing a proper type system. Several researchers in the past few years have worked on

the problem of creating typed tactic languages, giving birth to proof assistants like

Delphin (Poswolsky and Schürmann, 2009), Beluga (Pientka, 2008), and more recently

VeriML (Stampoulis, 2012). The tactic languages baked into these assistants employ

rich, formally described type systems to ensure tactics comply with a given specifica-

tion. Therefore, by having a specification, tactics are easy to maintain and compose.

However, to the best of our knowledge, none of these typed tactic languages allow for

interactive tactic programming nor extensible tactics. With respect to performance, Ver-

iML is the only one that supports effectful computation and imperative data-structures,

in a style resembling that of ML. But more importantly, the main downside of these

languages is that they are not easy to incorporate into well-established proof assistants

like Coq, mainly due to the advanced type-theoretic machinery on which they rely—e.g.,

Contextual Modal Type Theory (Nanevski et al., 2008c) for Beluga and VeriML.

Thesis Statement

In this thesis, I study a novel approach to typed tactic languages in the context of proof

assistants based on the Calculus of Inductive Constructions (CIC), in particular—but

not restricted to—Coq. In this approach, unlike all previous tactic languages, the line

dividing proof terms and tactics is blurred in order to encourage reuse of the mecha-

nisms readily available in proof assistants. As a result, I obtain all the aforementioned

properties in a tactic language for Coq. More succinctly:

4Character from Spider-Man.
5http://www.irisa.fr/celtique/pichardie/cuw2014/braibant.pdf

http://www.irisa.fr/celtique/pichardie/cuw2014/braibant.pdf
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My thesis is that interactive typechecked tactic program-

ming in Coq is possible in two different programming styles:

(1) logic programming (by exploiting the existing overloading

mechanism) and (2) functional programming extended with

imperative features (by creating a new language). Both styles

can be formally described, and their combination leads to a

novel way of creating extensible tactics.

Structure of the Thesis: In the remainder of this thesis I start by introducing

the basic concepts of Coq and its underlying logic (Chapter 1). Then, in Chapter 2, I

introduce Lemma Overloading, a technique developed in collaboration with G. Gonthier,

A. Nanevski and D. Dreyer (Gonthier et al., 2013b). The key idea in this chapter is to

leverage the overloading mechanism à la Haskell’s type classes, readily available in Coq,

in order to perform typed tactic programming. The programming style afforded by

overloading resembles that of (dependently) typed logic programming.

In contrast, in Chapter 3, I present a novel functional tactic language, Mtac, which

was developed in collaboration with D. Dreyer, N. Krishnaswami, A. Nanevski and

V. Vafeiadis (Ziliani et al.). Mtac, in combination with Lemma Overloading, validates

the claims made in my thesis statement.

As it will become evident in the following chapters, both programming idioms rely

heavily on the unification algorithm. This complex algorithm is in charge of finding

a solution to a problem of the form t ≈ u, where t and u are open terms, that is,

terms with meta-variables (holes) in them. The algorithm should find, if possible, a

substitution Σ substituting meta-variables for (open) terms, such that the application

of this substitution to t and u yields two convertible terms t′ and u′.

Unfortunately, the current unification algorithm of Coq incorporates some heuristics not

appropriate for proof automation, and that makes the algorithm unpredictable. Indeed,

seemingly equivalent unification problems may have completely different outcomes. Fur-

thermore, there is no good source of information to understand how it works. For these

reasons, in Chapter 4 I introduce a new unification algorithm, built in collaboration with

M. Sozeau, with simpler, clearer, and well-documented semantics.

The work related to this dissertation is discussed in Chapter 5. Chapter 6 presents the

conclusions and directions for future work.



Chapter 1

Basics

This chapter presents the Coq proof assistant from both an informal and a formal point of

view. First, in §1.1, we provide a short, and necessarily incomplete, Coq tutorial. Then,

in §1.2, we provide the core technical aspects of the logic: the Calculus of Inductive

Constructions (CIC). To conclude, in §1.3, we provide the basics of canonical structures,

Coq’s overloading mechanism, which we used extensively in Chapter 2.

The knowledgeable reader may skim over this chapter, but is encouraged to pay spe-

cial attention to the notation introduced, as well as the advanced features described

in §1.2.1.1 and §1.3.

1.1 Coq, an Interactive Proof Assistant

This section provides a quick introduction to the main concepts behind the interactive

proof assistant called Coq. It is not intended to serve as a full tutorial—Coq’s web page

is full of better introductory materials than this chapter1—but it gives the casual reader

a big picture of the system, hopefully enough to comprehend the main concepts behind

this thesis.

We start by giving an analogy, borrowed from Xavier Leroy. He described Coq as a

game: The proof developer (proof dev for short) starts by providing a theorem she

wants to solve. Then, Coq asks her for a proof. She responds by providing a tactic

to somehow simplify the goal. This tactic can be to introduce a hypothesis, to use

induction on a given variable, to rewrite a part of the goal with some given equality,

to apply a previously proven lemma, etc. Coq, after performing the requested change

in the goal, responds with the new goal. The game continues, perhaps branching into

1http://coq.inria.fr

9
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01 Lemma addn0 : ∀ n : nat. n + 0 = n.
02 Proof.
03 (* ============================ *)

04 (* forall n : nat, n + 0 = n *)

05 elim ⇒ [ | n’ IH ].
06 (* 2 subgoals, subgoal 1 *)

07 (* ============================ *)

08 (* 0 + 0 = 0 *)

09 (* subgoal 2 is: *)

10 (* S n’ + 0 = S n’ *)

11 - by [].
12 (* n’ : nat *)

13 (* IH : n’ + 0 = n’ *)

14 (* ============================ *)

15 (* S n’ + 0 = S n’ *)

16 - simpl.
17 (* n’ : nat *)

18 (* IH : n’ + 0 = n’ *)

19 (* ============================ *)

20 (* S (n’ + 0) = S n’ *)

21 rewrite IH.
22 (* n’ : nat *)

23 (* IH : n’ + 0 = n’ *)

24 (* ============================ *)

25 (* S n’ = S n’ *)

26 by [].
27 (* No more subgoals. *)

28 Qed.
29 (* addn0 is defined *)

Figure 1.1: Example of interaction with the Coq proof assistant.

different subgoals (subcases in a pen and paper proof, like when using induction), until

every subgoal is solved. Coq then communicates its defeat and the proof dev gives the

last estocade by typing Qed. If at any moment the step provided by the proof dev is

invalid, Coq immediately complains. This back-and-forth interaction between Coq and

the proof dev is what is meant by the term interactive in an interactive proof assistant, in

sharp contrast with proof assistants like Twelf (Pfenning and Schürmann, 1999), which

compiles a proof in a batch fashion very much like a programming language compiler.

Figure 1.1 shows a very simple example of this “game”. In it, we prove a lemma stating

that n+ 0 is equal to n, for every natural number n. Note that the proof is very short

in itself—only four lines long—but we have interleaved comments, enclosed with (* *),

showing the proof state (i.e., Coq’s response) after a command or a tactic is executed.

Commands in Coq are written in capitalized case, as in Proof or Qed, while tactics are
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written in lower case, as in elim. Commands modify and query the global environment,

while tactics modify a current proof state.

Notational Convention 1. Throughout this thesis, for Coq programs we will mostly

use the original Coq syntax. However, in a few exceptional cases, we will take the liberty

of making the syntax more “math friendly”. For instance, we will write functions and

products as λx. t and ∀x. u, respectively, instead of fun x⇒ t and forall x, u.

Coming back to Figure 1.1, after stating the lemma in the first line, Coq responds with

the proof obligation displayed in comments in lines 3 and 4. This proof obligation can

be read as “under no assumptions, you need to prove that for all n, . . . ” If there were

any assumptions, as we are going to see next, they will be displayed above the double

line. The command Proof in line 2 is just a no-op, but it is a Coq convention that every

proof should start with it.

In line 5 the first tactic is provided. It is the elim tactic from Ssreflect, which performs

induction on the first variable appearing in the goal (in this case, n). Throughout this

thesis we will use the idiom for tactics afforded by the library Ssreflect (Gonthier et al.,

2008), which is better crafted than Coq’s own tactics. The elim tactic takes an intro

pattern (what comes after the ⇒), which is a list of lists of names. The outermost list

should have one element per subgoal, separated by |. Each element of this list is a list of

names separated by a space. In this case, the induction on natural numbers generates

two subgoals, representing the base case, when n = 0, and the inductive case, when

n = n′ + 1 for some n′. The definition of natural numbers, together with the addition

function and its notation, is standard2 and can be found in Figure 1.2.

For the base case, no new hypotheses are added to the context, so no new names are

given in the first list of the intro pattern. For the inductive case, two hypotheses are

added: the number n′ and the inductive hypothesis stating that n′ + 0 = n′. Coq’s

answer is displayed in lines 6–10. In line 6, it communicates that we have to prove two

subgoals, which are identified with numbers 1 and 2, respectively, and tell us that we

are currently proving goal #1. Then, in lines 7–10, it shows the two subgoals. It does

not show the context of subgoal #2.

The first subgoal is trivial, we need to prove that 0 + 0 = 0 under no assumptions, and

this holds by computation. We instruct Coq to dismiss this goal as trivial with Ssreflect’s

tactical by in line 11. (A tactical si simply a tactic that tas another tactic as argument.)

The by tactical uses the tactic given as argument to prove the goal and to check that

2It is interesting to note that the Coq language is minimal: it does not even include natural numbers
natively; they are instead defined in the standard library. Ssreflect provides a slightly different notation
for numbers, but we stick to the standard one for presentation purposes.
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Inductive nat : Set := O : nat | S : nat → nat

Definition addn :=
fix plus (n m : nat) {struct n} : nat :=

match n with
| 0 ⇒ m
| S p ⇒ S (plus p m)
end.

Notation ”a + b” := (addn a b).

Figure 1.2: Natural numbers in Coq.

the goal was indeed solved by it. In this case we do not need any tactic, since the goal

is trivial, so we provide [] as argument.

After the first subgoal is solved, Coq outputs the remaining subgoal (show in comments

in lines 12–15). We note that the hypotheses for the second subgoal appear now in the

context, with the names provided in the intro pattern from line 5. This subgoal requires

us to prove that S n′ + 0 = S n′. By performing some steps of computation on the left

hand side, we can change the goal to S (n′ + 0) = S n′. This is done with the simpl

tactic in line 16 (Ssreflect also allows a more general way to perform the same, writing

rewrite /=). The output of the simpl tactic is in the comments on lines 17–20.

At this point we can use the inductive hypothesis to rewrite the goal into its final form.

This is done in line 21. The new goal is now trivial, as can be seen in lines 22–25,

so we finish the proof again using the by tactical. Note that the last three steps can

be accomplished in just one line, thanks to the Ssreflect’s powerful rewrite tactic. The

one-liner equivalent is

by rewrite /= IH

The proof is completed and Coq communicates that there are no subgoals left. Quod

Erat Demostrandum (Qed), it is then demonstrated. Lastly, Coq announces that the

lemma is now part of the global environment, i.e., the global knowledge we can make

use of in any other proof.

1.1.1 Proof Terms

Coq does not store the proof script in its environment (the database of knowledge

available to the user). Instead, it stores the proof term that the script helped generate.
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A proof term is a λ-term that, following the Curry-Howard isomorphism (e.g., Sørensen

and Urzyczyn, 2006), represents a valid proof of the theorem stated in its type. For

instance, this is the proof term, followed by its type, generated for the lemma above:

λ n : nat.

nat ind (λ n0 : nat. n0 + 0 = n0) eq refl

(λ (n0 : nat) (IH : n0 + 0 = n0).

eq ind r (λ n1 : nat. S n1 = S n0) eq refl IH) n

: ∀ n : nat. n + 0 = n

It is possible in Coq to write proof terms directly, without using tactics. Similarly, in the

context of proof automation, it is possible to automate the generation of proof scripts

or proof terms. In this dissertation we focus on the latter problem. For this reason, it

is important to know Coq’s λ-calculus, the Calculus of Inductive Constructions, which

will be covered in the next section.

1.2 The Calculus of Inductive Constructions

One of the aspects that make Coq so special is its complex type system. It is so complex,

in fact, that there is actually no distinction between the syntactical classes of terms

and types! We have seen this already: the lemma addn0 from last section has type

∀n : nat. n + 0 = 0, that is, a type including a call to the addition function. As a

consequence, a term in this language may represent either a proof, a function, a theorem,

or a function type. It is the type system that is in charge of determining a term’s true

nature, making sure that, for instance, a function λx : T. t has a type but is not in itself

a type.

More precisely, the base language of Coq, the Calculus of Inductive Constructions (CIC)

(The Coq Development Team, 2012, chap. 4), is a dependently typed λ-calculus extended

with inductive types. It also includes co-inductive types, but their formulation is not

important for this thesis, so it will be omitted.

In order to understand the technical contributions of this thesis, it is important to

grasp an intuition on how terms in CIC are constructed, evaluated, and typechecked.

Therefore, in the following sections we define the syntax, semantics, and statics of CIC.

The reader well versed in Coq will still find this section useful, as we introduce the

notation used throughout the thesis.
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1.2.1 Syntax

The terms (and types) of the language are defined as

t, u, T, U, ρ =̂ x | c | i x ∈ V, c ∈ C, i ∈ I

| k | s | ?x[σ] k ∈ K, s ∈ S, ?u ∈M

| ∀x : T. U | λx : T. t | t u | let x := t : T in u

| matchρ t with k1 x1 ⇒ t1 | . . . | kn xn ⇒ tn end

| fixj {x1/n1 : T1 := t1; . . . ;xm/nm : Tm := tm}

σ =̂ t

where V is a disjoint sets of variables, M of meta-variables (also called unification

variables), C of constants, I of inductive types, K of inductive constructors, and S is an

infinite set of sorts defined as {Prop,Type(i) | i ∈ N}.

Notational Convention 2. Throughout this work we will use the following conven-

tions:

• x, y, z denote variables.

• f, g denote variables with function type.

• t, u denote terms.

• A,B,C denote type variables.

• T,U, τ denote types.

• s denotes a sort variable.

• ρ denotes a type predicate, that is, a function from any type to Prop or Type.

• c, i, and k denote unknown constants, inductive type constructors and construc-

tors, respectively. i and k will also be used as indexes, in which case their meaning

will be clear from the context.

• Constants, inductive type constructors and constructors are noted in sans-serif

font, as in addn0, nat, and S.

• A list of elements is denoted with a bar above a representative element. For

instance, x is a list of variables, t is a list of terms, and so on. Sometimes we

require the list to have exactly n elements, in which case we annotate the list
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with the subscript n, as in xn. To refer to the j-th element in the list we use the

subscript notation without the bar: xj is the j-th element of the list x.

Coming back to the syntax, terms include variables x, constants c, inductive type con-

structors i, inductive value constructors k, and sorts s. Terms may contain a hole, repre-

senting a missing piece of the term (or proof). Holes are represented with meta-variables,

a variable prepended with a question mark, as in ?x or ?f (the latter representing an

unknown function). For reasons that will become apparent soon, meta-variables are

applied to a suspended substitution [σ], which is nothing more than a list of terms.

In order to destruct an element of an inductive type, CIC provides regular pattern

matching and mutually recursive fixpoints. Their notation is slightly different from, but

easily related to, the actual notation from Coq. match is annotated with the return

predicate ρ, meaning that the type of the whole match expression may depend on

the element being pattern matched (as . . . in . . . in standard Coq notation). In the fix

expression, x/n : T := t means that T is a type starting with at least n product types,

and the n-th variable is the decreasing one in t (struct in Coq notation). The subscript j

of fix selects the j-th function as the main entry point of the mutually recursive fixpoints.

In order to typecheck and reduce terms, Coq uses several contexts, each handling differ-

ent types of knowledge:

1. The local context Γ, including bound variables and let-bound expressions;

2. the meta-context Σ, containing meta-variable declarations and definitions; and

3. the global environment E, containing the global knowledge; that is, axioms, theo-

rems, and inductive definitions.

Formally, they are defined as follows:

Γ,Ψ =̂ · | x : T,Γ | x := t : T,Γ

Σ =̂ · | ?x : T [Ψ],Σ | ?x := t : T [Ψ],Σ

E =̂ · | c : T,E | c := t : T,E | I, E

I =̂ ∀Γ. { i : ∀y : Th. s := {k1 : U1; . . . ; kn : Un} }

The local context is standard, and requires no further explanation. Meta-variables have

contextual types, meaning that the type T of a meta-variable must have all of its free

variables bound within the local context Ψ. In this work we borrow the notation T [Ψ]
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from Contextual Modal Type Theory (Nanevski et al., 2008c). Note that this differs

from Pientka and Pfenning (2003), which denotes the same contextual type as Ψ ` T .

A meta-variable can be instantiated with a term t, noted ?x := t : T [Ψ]. In this case, t

should also contain only free variables occurring in Ψ.

The global environment associates a constant c with a type and, optionally, a definition.

In the first case, c is an axiom, while in the second c is a theorem proved by term t.

Additionally, this environment may also contain (mutually recursive) inductive types.

A set of mutually recursive inductive types I is prepended with a list of parameters Γ.

Every inductive type i defined in the set has sort type, with parameters y : Th. It has a

possibly empty list of constructors k1, . . . , kn. For every j, each type Uj of constructor

kj has shape ∀z : U ′. i t1 . . . th.

Inductive definitions are restricted to avoid circularity, meaning that every type con-

structor i can only appear in a strictly positive position in the type of every constructor.

For the purpose of this work, understanding this restriction is not crucial, and we refer

the interested reader to The Coq Development Team (2012, chap. 4).

1.2.1.1 Meta-Variables and Contextual Types

Meta-variables play a central role in the different processes involving the interactive

construction of terms. Understanding the details is crucial for understanding the most

advanced parts of this work.

At a high-level, meta-variables are holes in a term, which are expected to be filled out

at a later point in time. For instance, when a lemma is applied to solve some goal,

Coq internally creates fresh meta-variables for all the formal parameters of the lemma,

and proceeds to unify the goal with the conclusion of the lemma. During unification,

the meta-variables are instantiated so that both terms (the goal and the conclusion of

the lemma) become convertible (equal modulo reduction rules, as we will see in Sec-

tion 1.2.2).

As a simple example, consider the application of the lemma addn0, from the previous

chapter, in the goal

x : nat

x+ 0 = x

where, as customary, above the line is the context—in this case containing only variable

x—and below is the actual goal we want to prove.
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The lemma addn0 has one parameter, n. Coq creates a fresh meta-variable, say ?y,

which has type nat. (For the moment, let’s ignore the contextual type and suspended

substitution.) Then it proceeds to unify the type of addn0 ?y with the goal, that is,

?y + 0 = ?y ≈ x+ 0 = x

The unification process instantiates ?y with x, therefore obtaining the proof term addn0 x,

which has the exact type of the goal.

In this simple example, contextual types played no role but, as we are going to see in

the next example, they prevent illegal instantiations of meta-variables. For instance,

such illegal instantiations could potentially happen if the same meta-variable occurs at

different locations in a term, with different variables in the scope of each occurrence.

Suppose, for example, that we define a function f as follows:

f := λw : nat. ( : nat)

where the implicit value is an indication to Coq’s elaboration mechanism to “fill in this

hole with a meta-variable”. The accessory typing annotation provides the expected type

for the meta-variable. When this function is elaborated, it will become λw : nat. ?v[w]

for some fresh meta-variable ?v : nat[w : nat]. The contextual type of ?v specifies that ?v

may only be instantiated by a term with at most a single free variable w of type nat, and

the suspended substitution [w] specifies how to transform such a term into one that is

well-typed under the current context. (The substitution is the identity at first, because

the current context and the context under which ?v was created are both w : nat.)

Now suppose that we define

g := λx y : nat. f x h := λz : nat. f z

and then at some point we attempt to solve the following unification problem:

g ≈ λx y : nat. x (1.1)

Should this unification succeed, and if so, what should ?v be instantiated with? First, to

solve the unification goal, Coq will attempt to unify f x ≈ x, and then, after β-reducing

f x, to unify ?v[x] ≈ x. This is where the contextual type of ?v comes into play. If we

did not have the contextual type (and suspended substitution) for ?v, it would seem that

the only solution for ?v is x, but that solution would not make any sense at the point

where ?v appears in h, since x is not in scope there. Given the contextual information,
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(λx : T. t) u  β t{u/x}

let x := u : T in t  ζ t{u/x}

x  δΓ t if (x := t : T ) ∈ Γ

?x[σ] δΣ t{σ/Ψ̂} if ?x := t : T [Ψ] ∈ Σ

c  δE t if (c := t : T ) ∈ E

matchT kj t with k x⇒ u end ι uj{t/xj}

fixj {F} a  ι tj{fixm {F}/xm} a F = x/n : T := t

t  η λy : T. (t y) E;Σ; Γ ` t : ∀x : T. U

Figure 1.3: Reduction rules in CIC.

however, Coq will correctly realize that ?v should be instantiated with w, not x. Under

that instantiation, g will normalize to λx y : nat. x, and h will normalize to λz : nat. z.

The suspended substitution and the contextual type are the tools that the unification

algorithm uses to know how to instantiate the meta-variable. Explaining the complex

process of unification in a language like Coq will be the main topic of Chapter 4, but we

can for the moment provide an intuitive hint: when Coq faces a problem of the form

?u[y1, . . . , yn] ≈ e

where the y1, . . . , yn are all distinct variables, then the most general solution to the

problem is to invert the substitution and apply it on the right-hand side of the equa-

tion (Miller, 1991b), in other words instantiating ?u with e{x1/y1, . . . , xn/yn}, where

x1, . . . , xn are the variables in the local context of ?u (and assuming the free variables

of e are in {y1, . . . , yn}).

In the example above, at the point where Coq tries to unify ?u[x] ≈ x, the solution

(through inversion) is to instantiate ?u with x{w/x}, that is, w.

1.2.2 Semantics

Reduction of CIC terms is performed through a set of rules listed in Figure 1.3. Be-

sides the standard β rule, CIC provides six more rules to destruct the different term

constructions: the ζ rule, which expands let-definitions, three δ rules, which expand

definitions from each of the contexts, and two ι rules, which evaluate pattern matchings

and fixpoints.
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Most of the rules are self explanatory, with the sole exception of the δΣ rule. It takes a

meta-variable ?x, applied to suspended substitution σ, and replaces it by its definition

t, replacing each variable from its local context Ψ by the corresponding term from

substitution σ. For this we use the multi-substitution of terms, mapping the variables

coming from the domain of Ψ with terms in σ. To obtain the domain of Ψ, we use the

type-eraser function ·̂, defined as:

̂x1 : T1, . . . , xn : Tn =̂ x1, . . . , xn

The unfolding rules (δΓ, δΣ, δE), of course, depend on the contexts. As customary, we

will always consider the environment E implicit. We will also omit Γ and Σ when there

is no room for ambiguity.

Another important rule is η-expansion, which takes a term t with functional type ∀x :

T. U and expands it into λy : T. (t y) (for y a fresh variable). Note that this rule, unlike

the rest of the rules in Figure 1.3, requires knowledge of the type of t.

The set of rules described so far allows us to define a concept widely used in this thesis:

Definition 1.1 (Convertibility). Two terms t1 and t2 are convertible, noted Σ; Γ `
t1 ≡ t2, if they reduce to the same normal form using the β, δ, η, ι, ζ-rules. As with the

reduction rules, we will often omit the contexts, and write t1 ≡ t2 instead. In some cases

we will be explicit about the rules employed in the normalization of the terms, noting

for instance t1 ≡βδ t2 for the β, δ-conversion of t1 and t2.

1.2.3 Statics

We provide the typing rules for reference, although a deep understanding of the rules will

not be necessary. The typing rules are similar to those found in The Coq Development

Team (2012), with the addition of rules for meta-variables similar to those found in

Pientka and Pfenning (2003).

Figure 1.4 shows the rules for checking well-formedness of the contexts. The environment

cannot depend on local variables or on meta-variables, so the judgment is simply

` E

In turn, the meta-variables in the meta-context may refer only to constants and inductive

definitions from the environment:

E ` Σ
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` ·
E-Empty

E;∅; ∅ ` t : T c 6∈ E
` E, c := t : T

E-Def

E;∅; ∅ ` T : s s ∈ S c 6∈ E
` E, c : T

E-Ass

∀j, k E;∅; Γ0 ` Tj : s

U jk = ∀Γj . ij t E;∅; Γ0, i : T ,Γj ` ij t : s i satisfy the positivity condition

` E, ∀Γ0. { i : T := {k1 : U1; . . . ; km : Um} }
E-Ind

` E
E ` ·

M-Empty
E;Σ; Ψ ` T : s s ∈ S ?x 6∈ Σ

E ` Σ, ?x : T [Ψ]
M-Unk

E;Σ; Ψ ` t : T ?x 6∈ Σ

E ` Σ, ?x := t : T [Ψ]
M-Def

E ` Σ

E;Σ ` ·
C-Empty

E;Σ; Γ ` T : s s ∈ S x 6∈ Γ

E;Σ ` Γ, x : T
C-Abs

E;Σ; Γ ` t : T x 6∈ Γ

E;Σ ` Γ, x := t : T
C-Let

Figure 1.4: Well-formed judgment for contexts.

Finally, the local context may depend on both the environment and the meta-context:

E;Σ ` Γ

Figure 1.5 shows the rules for the typing judgment for terms, which has the standard

form:

E;Σ; Γ ` t : T

1.3 Canonical Structures

Canonical structures is a powerful overloading mechanism, heavily used in large formal-

ization efforts like the Feit-Thompson Theorem (Gonthier et al., 2013a), in order to make

notations and proofs tractable. We will see in Chapter 2 that canonical structures can

be cleverly used also for proof automation. This section is an introduction to canonical

structures, starting with a canonical—in the sense of common—example and concluding

with an overview of its semantics. In Chapter 4 we will provide a detailed description

of its semantics.

We have to note that, in the literature and everyday use of Coq, the word “structure” is

used interchangeably (and confusingly) to mean both dependent records and the types
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E;Σ ` Γ

E;Σ; Γ ` Prop : Type(1)
Ax1

E;Σ ` Γ i < j

E;Σ; Γ ` Type(i) : Type(j)
Ax2

` E ∀Γ0. {. . . ; i : T := . . . ; . . .} ∈ E
E;Σ; Γ ` i : ∀Γ0. T

Ax3

` E ∀Γ0. {. . . ; i : T := {. . . ; k : U ; . . .}; . . .} ∈ E
E;Σ; Γ ` k : ∀Γ0. U

Ax4

E;Σ ` Γ (x : T ) ∈ Γ or (x := t : T ) ∈ Γ

E;Σ; Γ ` x : T
Var

E;Σ ` Γ (c : T ) ∈ E or (c := t : T ) ∈ E
E;Σ; Γ ` c : T

Const

E;Σ; Γ ` T : s s ∈ S E;Σ; Γ, x : T ` U : Prop

E;Σ; Γ ` ∀x : T. U : Prop
Prod1

E;Σ; Γ ` T : Type(i) i ≤ k E;Σ; Γ, x : T ` U : Type(j) j ≤ k
E;Σ; Γ ` ∀x : T. U : Type(k)

Prod2

E;Σ; Γ, x : T ` t : U E;Σ; Γ ` ∀x : T. U : s

E;Σ; Γ ` λx : T. t : ∀x : T. U
Lam

E;Σ; Γ ` u : U E;Σ; Γ ` t : ∀x : U. T

E;Σ; Γ ` t u : T{u/x}
App

E;Σ; Γ ` u : U E;Σ; Γ, x := u : U ` t : T

E;Σ; Γ ` let x := u : U in t : T{u/x}
Let

E;Σ ` Γ
(?x : T [Ψ]) ∈ Σ ∨ (?x := t : T [Ψ]) ∈ Σ E;Σ; Γ ` σ : Ψ

E;Σ; Γ ` ?x[σ] : T{σ/Ψ̂}
Metavar

E;Σ; Γ ` t : i t′ ∀Γ0. {. . . ; i : T := {k : ∀Γ′. U}; . . .} ∈ E
∀j E;Σ; Γ,Γ0,Γ

′
j ` uj : ρ t′ (kj Γ̂′j)

E;Σ; Γ ` matchρ t with k x⇒ u end : ρ t′ t
Case

∀l E;Σ; Γ ` Tl : sl E;Σ; Γ, f : T ` tl : Al
tl satisfy the guarded condition

E;Σ; Γ ` fixj {f/n : T := t} : Tj
Fix

E;Σ; Γ ` t : T T ≡ U
E;Σ; Γ ` t : U

Check-Conv

Figure 1.5: Typing judgment for CIC with meta-variables.
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E;Σ; Γ ` · : ·
Id

E;Σ; Γ ` σ : Ψ E;Σ; Γ ` t : T{σ/Ψ̂}
E;Σ; Γ ` (σ, t) : (Ψ, x : T )

Assumption

E;Σ; Γ ` σ : Ψ E;Σ; Γ ` t : T{σ/Ψ̂} t =βζδ u{σ/Ψ̂}
E;Σ; Γ ` (σ, t) : (Ψ, x := u : T )

Definition

Figure 1.6: Typing judgment for substitutions.

they inhabit. To disambiguate, in this thesis we use structure for the type, instance for

the value, and canonical instance for a canonical value of a certain type. We will use

the term canonical structures only when referring generally to the use of all of these

mechanisms in tandem.

The following definition is a simplified example of a structure (i.e., type) taken from the

standard Ssreflect library (Gonthier and Mahboubi, 2010):

Structure eqType := EqType { sort : Type;

equal : sort→ sort→ bool;

: ∀x y : sort. equalx y ↔ x = y }

The definition makes eqType a record type, with EqType as its constructor, taking three

arguments: a type sort, a boolean binary operation equal on sort, and a proof that equal

decides the equality on sort. For example, one possible eqType instance for the type

bool, may be

eqType bool := EqType bool eq bool pf bool

where eq bool x y := (x && y) || (!x && !y), and pf bool is a proof, omitted here,

that ∀x y : bool. eq bool x y ↔ x = y. (Note that, in Coq, although it may seem as

though EqType is declared as taking a single record argument with three components,

applications of EqType pass the three arguments in curried style.)

The labels for the record fields serve as projections out of the record, so the definition

of eqType also introduces the constants:

sort : eqType→ Type

equal : ∀A:eqType. sort A→ sort A→ bool

We do not care to project out the proof component of the record, so we declare it

anonymous by naming it with an underscore.

Notational Convention 3. We will usually omit the argument A of equal, and write

equal t u instead of equal T t u, as T can be inferred from the types of t and u. We
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use the same convention for other functions as well, and make implicit such arguments

that can be inferred from the types of other arguments. This is a standard notational

convention in Coq.

It is also very useful to define generic instances. For example, consider the eqType

instance for the pair type A×B, where A and B are themselves instances of eqType:

eqType pair (A B : eqType) :=

EqType (sort A× sort B) (eq pair A B) (pf pair A B)

where

eq pair (A B : eqType) (u v : sort A× sort B) :=

equal (π1 u) (π1 v) && equal (π2 u) (π2 v)

and pf pair is a proof, omitted just like pf bool above, that ∀A B : eqType. ∀x y :

(sort A× sort B). eq pair x y ↔ x = y.

Declaring both eqType bool and eqType pair now as canonical instances—using Coq’s

Canonical keyword—will have the following effect: whenever the type checker is asked

to type a term like equal (b1, b2) (c1, c2), where b1, b2, c1 and c2 are of type bool, it

will generate a unification problem matching the expected and inferred type of the first

non-implicit argument of equal, that is,

sort ?e ≈ bool× bool

for some meta-variable ?e, generated implicitly at the application of equal.

Notational Convention 4. In some sections or chapter we will not bother with contex-

tual types for meta-variables, as they play no role in the examples therein. In these cases

we will overload the notation ?x to refer to both the meta-variable and the application

of the meta-variable to an implicit suspended substitution.

In the equation above, Coq will try to solve this problem using the canonical instance

eqType pair, resulting in two new unification subproblems, for fresh meta-variables ?A

and ?B:

sort ?A ≈ bool sort ?B ≈ bool

Next, it will choose ?A := eqType bool and ?B := eqType bool, with the final result that

equal (b1, b2) (c1, c2) reduces implicitly to eq bool b1 c1 && eq bool b2 c2, as one would

expect.
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In this manner, canonical instances can be used for overloading, similar to the way type

classes are used in Haskell (Hall et al., 1996, Wadler and Blott, 1989).3 We can declare a

number of canonical eqType instances, for various primitive types, as well as generic in-

stances for type constructors (like the pair example above). Then we can uniformly write

equal t u, and the typechecker will compute the canonical implementation of equality at

the types of t and u by solving for equal’s implicit argument A.

1.3.1 Formalities

In Coq, a structure is not a primitive element of the language; it is encoded as a particular

inductive type: it has only one constructor, and it generates one projector for each

argument of the constructor. The general syntax is

Structure i Γ0 : s := k {p1 : U1; . . . ; pn : Un}

where Γ0 is a list of arguments of the type. Each pj is a projector name. This language

construct generates an inductive type

{ i : ∀Γ0. s := { k : ∀Γ0. ∀p : U. i Γ̂0 } }

and for each projector name pj it generates a projector function:

λΓ0. λz : i Γ̂0. match s with k x1 . . . xj . . . xn ⇒ xj end : ∀Γ0. ∀z : i Γ̂0. Uj

An instance ι of the structure is created with the constructor k:

ι := ∀Γ1. k t1 . . . tm+n

where m is the number of arguments of the structure. Terms t1 to tm correspond to the

arguments of the structure, and tm+1 to tm+n to each of the pj .

As we saw in the previous section, the important aspect of structures is that their

instances can be deemed “canonical”. A canonical instance instructs the unification

algorithm to instantiate a structure meta-variable with the instance, if certain conditions

hold. More precisely, a canonical instance populates the canonical instance database

∆db with triples (pj , hj , ι), where hj is the head constant appearing in value tm+j . (As a

matter of fact, hj can also be an implication (→), a sort, or a variable.) Then, whenever

3It is worth noting that Coq also provides a built-in type class mechanism, but this feature is inde-
pendent of canonical structures. We discuss Coq type classes more in Section 5.
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the unification algorithm has to solve a problem of the form

pj ?s ≈ hj u (1.2)

it instantiates ?s with ι.

For instance, in the unification equation generated by the equal application above, the

projector pj is sort, the head constant hj is (· × ·), and the head constant arguments u

are bool and bool.

If the head symbol of the field pj in instance ι is a variable, then ι is chosen for unification

with ?s, irrespectively of h in equation (1.2). In this case, we refer to ι as a default

canonical instance for pj .

We emphasize that: (1) to control the number of (pj , hj)-pairs that the typechecker has

to remember, we will frequently anonymize the projections if they are not important for

the application, as in the case of the proof component in eqType above; (2) there can only

be one specified canonical instance for any given pj and hj . In particular, overlapping

canonical instances for the same pj and hj are not permitted. This limitation, however,

can be easily circumvented, as we will see shortly in §2.1.





Chapter 2

Lemma Overloading

In this chapter we explore the first of the two tactic programming approaches that we

explore in this thesis. We show how to use canonical structures to enable a sort of

dependently typed logic meta-programming in Coq that we call “Lemma Overloading”.

As we will see in Section 2.1, this style of programming requires overlapping instances,

which are not allowed in Coq. Despite this limitation, we are able to encode overlapping

instance using a very simple design pattern that we introduce in Section 2.2. With this

pattern we are able to encode the first overloaded lemma in Section 2.3. We devote Sec-

tion 2.4 to provide an interesting example involving heap cancellation that uses heavily

this design pattern. Since canonical structures lies at the heart of unification, we are

able to exploit unification and write a rather powerful pattern involving higher-order

unification, which allows us to greatly improve the automation of the hoare-style rules

used in HTT (Section 2.5). However, composing procedures can be sometimes challeng-

ing with Lemma Overloading. We present in Section 2.6 a problematic example, and a

design pattern to solve this type of examples. We close the chapter with an analysis of

Lemma Overloading (Section 2.7).

2.1 “Logic” Programming

Although the eqType example from Section 1.3 is typical of how canonical structures

are used in much existing Coq code, it is not actually representative of the style of

canonical structure programming that we explore in this thesis. Our idiomatic style is

closer in flavor to logic programming and relies on the fact that, unlike in Haskell, the

construction of canonical instances in Coq can be guided not only by the structure of

types (such as the sort projection of eqType) but by the structure of terms as well.

27
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To make matters concrete, let’s consider a simple automation task, one which we will

employ gainfully in Section 2.3 when we present our first “overloaded lemma”. We will

first present a näıve approach to solving the task, which almost works; the manner in

which it fails will motivate our first “design pattern” (Section 2.2).

The task is as follows: search for a pointer x in the domain of a heap h. If the search is

successful, that is, if h is of the form

· · · • (· · · • x 7→ v • · · · ) • · · · ,

then return a proof that x ∈ dom h. To solve this task using canonical structures, we

will first define a structure find:

Structure find x := Find { heap of : heap;

: spec x heap of }

where spec is defined as

spec x h := def h→ x ∈ dom h

The first thing to note here is that the structure find is parameterized by the pointer

x (causing the constructor Find to be implicitly parameterized by x as well). This is

a common idiom in canonical structure programming—and we will see that structure

parameters can be used for various different purposes—but here x may be viewed simply

as an “input” to the automation task. The second thing to note here is that the structure

has no type component, only a heap of projection, together with a proof that x ∈
dom heap of (under the assumption that heap of is well-defined).

The search task will commence when some input heap h gets unified with heap of ?f for

an unknown ?f : find x, at which point Coq’s unification algorithm will recursively decon-

struct h in order to search for a canonical implementation of ?f such that heap of ?f = h.

If that search is successful, the last field of ?f will be a proof of spec x h, which we can

apply to a proof of def h to obtain a proof of x ∈ dom h, as desired. (By way of analogy,

this is similar to what we previously did for eqType pair. The construction of a canonical

equality operator at a given type T will commence when T is unified with sort ?e for

an unknown ?e : eqType, and the unification algorithm will proceed to solve for ?e by

recursively deconstructing T and composing the relevant canonical instances.)

The structure find provides a formal specification of what a successful completion of the

search task will produce, but now we need to actually implement the search. We do that

by defining several canonical instances of find corresponding to the different cases of the
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recursive search, and relying on Coq’s unification algorithm to perform the recursion:

Canonical found struct A x (v : A) :=

Find x (x 7→ v) (found pf A x v)

Canonical left struct x h (f : find x) :=

Find x ((heap of f) • h) (left pf x h f)

Canonical right struct x h (f : find x) :=

Find x (h • (heap of f)) (right pf x h f)

Note that the first argument to the constructor Find in these instances is the parameter

x of the find structure.

The first instance, found struct, corresponds to the case where the heap of projection is

a singleton heap whose domain contains precisely the x we’re searching for. (If the heap

is y 7→ v for y 6= x, then unification fails.) The second and third instances, left struct

and right struct, handle the cases where the heap of projection is of the form h1 • h2,

and x is in the domain of h1 or h2, respectively. Note that the recursive nature of the

search is implicit in the fact that the latter two instances are parameterized by instances

f : find x whose heap of projections are unified with the subheaps h1 or h2 of the original

heap of projection.

Notational Convention 5. In the declarations above, found pf, left pf and right pf are

proofs, witnessing that spec relates x and the appropriate heap expression. We omit the

proofs here, but they are available in our source files (Ziliani, 2014). From now on, we

omit writing such explicit proofs in instances, and simply replace them with “. . . ”, as

in: Find x ((heap of f) • h) . . .

Unfortunately, this set of canonical instances does not quite work. The trouble is that

left struct and right struct are overlapping instances since both match against the same

head symbol (namely, •), and overlapping instances are not permitted in Coq. More-

over, even if overlapping instances were permitted, we would still need some way to

tell Coq that it should try one instance first and then, if that fails, to backtrack and

try another. Consequently, we need some way to deterministically specify the order in

which overlapping instances are to be considered. For this, we introduce our first design

pattern.
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2.2 Tagging: A Technique for Ordering Canonical Instances

Our approach to ordering canonical instances is, in programming terms, remarkably

simple. However, understanding why it actually works is quite tricky because its success

relies critically on an aspect of Coq’s unification algorithm that (a) is not well known,

and (b) diverges significantly from how unification works in, say, Haskell. We will thus

first illustrate the pattern concretely in terms of our find example, and then explain

afterwards how it solves the problem.

The Pattern: First, we define a “tagged” version of the type of thing we’re recursively

analyzing—in this case, the heap type:

Structure tagged heap := Tag {untag : heap}

This structure declaration also introduces two functions witnessing the isomorphism

between heap and tagged heap:

Tag : heap→ tagged heap

untag : tagged heap→ heap

Then, we modify the find structure to carry a tagged heap instead of a plain heap, i.e.,

we declare

spec x (h : tagged heap) :=

def (untag h)→ x ∈ dom (untag h)

Structure find x := Find {heap of : tagged heap;

: spec x heap of}

Next, we define a sequence of synonyms for Tag, one for each canonical instance of find.

Importantly, we define the tag synonyms in the reverse order in which we want the

canonical instances to be considered during unification, and we make the last tag syn-

onym in the sequence be the canonical instance of the tagged heap structure itself. (The

order does not matter much in this particular example, but it does in other examples in

the paper.)

right tag h := Tag h

left tag h := right tag h

Canonical found tag h := left tag h

Notice that found tag is a default instance for the untag projector matching any heap h.
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Finally, we modify each canonical instance so that its heap of projection is wrapped

with the corresponding tag synonym.

Canonical found struct A x (v : A) :=

Find x (found tag (x 7→ v)) . . .

Canonical left struct x h (f : find x) :=

Find x (left tag ((untag (heap of f)) • h)) . . .

Canonical right struct x h (f : find x) :=

Find x (right tag (h • (untag (heap of f)))) . . .

The Explanation: The key to the tagging pattern is that, by employing different

tags for each of the canonical instance declarations, we are able to syntactically differen-

tiate the head constants of the heap of projections, thereby circumventing the need for

overlapping instances. But the reader is probably wondering: (1) how can semantically

equivalent tag synonyms differentiate anything? and (2) what’s the deal with defining

them in the reverse order?

The answer to (1) is that Coq does not unfold all definitions automatically during the

unification process—it only unfolds the definition of a term like found tag h automati-

cally if that term is unified with something else and the unification fails (see the next

paragraph). This stands in contrast to Haskell type inference, which implicitly expands

all (type) synonyms right away. Thus, even though found tag, left tag, and right tag

are all semantically equivalent to Tag, the unification algorithm can distinguish between

them, rendering the three canonical instances of find non-overlapping.

The answer to (2) is as follows. By making the last tag synonym found tag the sole

canonical instance of tagged heap, we guarantee that unification always pattern-matches

against the found struct case of the search algorithm first before any other. To see this,

observe that the execution of the search for x in h will get triggered when a unification

problem arises of the form

untag (heap of ?f) ≈ h,

for some unknown ?f : find x. Since found tag is a default canonical instance, the

problem will be reduced to unifying

heap of ?f ≈ found tag h

As found struct is the only canonical instance of find whose heap of projection has

found tag as its head constant, Coq will first attempt to unify ?f with some instan-

tiation of found struct. If h is a singleton heap containing x, then the unification will
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succeed. Otherwise, Coq will backtrack and try unfolding the definition of found tag h

instead, resulting in the new unification problem

heap of ?f ≈ left tag h,

which will in turn cause Coq to try unifying ?f with some instantiation of left struct. If

that fails again, left tag h will be unfolded to right tag h and Coq will try right struct.

If in the end that fails as well, then it means that the search has failed to find x in h,

and Coq will correctly flag the original unification problem as unsolvable.

2.3 A Simple Overloaded Lemma

Let us now attempt our first example of lemma overloading, which makes immediate

use of the find structure that we developed in the previous section. First, here is the

non-overloaded version:

indom : ∀A:Type. ∀x:ptr.∀v:A.∀h:heap.

def (x 7→ v • h)→ x ∈ dom (x 7→ v • h)

The indom lemma is somewhat simpler than noalias from the introduction, but the

problems in applying them are the same—neither lemma is applicable unless its heap

expressions are of a special syntactic form, with the relevant pointer(s) at the top of the

heap.

To lift this restriction, we will rephrase the lemma into the following form:

indomR : ∀x:ptr. ∀f :find x.

def (untag (heap of f))→
x ∈ dom (untag (heap of f))

The lemma is now parameterized over an instance f of structure find x, which we know—

just from the definition of find alone—contains within it a heap h = untag (heap of f),

together with a proof of def h→ x ∈ dom h. Based on this, it should come as no surprise

that the proof of indomR is trivial (it’s a half-line long in Ssreflect). In fact, the lemma is

really just the projection function corresponding to the unnamed spec component from

the find structure, much as the overloaded equal function from Section 1.3 is a projection

function from the eqType structure.
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2.3.1 Applying the Lemma: The High-Level Picture

To demonstrate the automated nature of indomR on a concrete example, we will explain

how Coq type inference proceeds when indomR is applied to prove the goal

z ∈ dom h

in a context where x y z : ptr, u v w : A for some type A, h : heap :=x 7→ u•y 7→ v•z 7→ w,

and D : def h. For the moment, we will omit certain details for the sake of clarity; in

the next subsection, we give a much more detailed explanation.

To begin with, let us first explain the steps involved in the application of a lemma to

some goal, and how this produces the equation needed to solve the instance f of the

structure.

When a lemma (e.g., indomR) is applied to a goal, the following process takes place:

1. The lemma’s formal parameters are turned into meta-variables ?x and ?f : find ?x,

which will be subsequently constrained by the unification process.

2. The lemma’s conclusion ?x ∈ dom (untag (heap of ?f)) is unified with the goal.

Given this last step, the system tries to unify

?x ∈ dom (untag (heap of ?f)) ≈ z ∈ dom h

solving subproblems from left to right, that is, first getting ?x = z, and then

untag (heap of ?f) ≈ h

By canonicity of found tag, it then tries to solve

heap of ?f ≈ found tag h

Expanding the heap variable, and since • is left-associative, this is equivalent to

heap of ?f ≈ found tag ((x 7→ u • y 7→ v) • z 7→ w)

At this point, guided by the instances we defined in the previous section, the search for a

canonical instantiation of ?f begins. Coq will first try to instantiate ?f with found struct,

but this attempt will fail when it tries to unify the entire heap with a singleton heap.

Then, Coq will try instantiating ?f instead with left struct, which leads it to create a
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fresh variable ?f2 : find z and recursively solve the equation untag (heap of ?f2) ≈ x 7→
u•y 7→ v. This attempt will ultimately fail again, because z is not in x 7→ u•y 7→ v, the

left subheap of the original h. Finally, Coq will backtrack and try to instantiate ?f with

right struct, which will lead it to create a fresh variable ?f3 : find z and recursively solve

the equation untag (heap of ?f3) ≈ z 7→ w. This final attempt will indeed succeed by

instantiating ?f3 with found struct, since the right subheap of h is precisely the singleton

heap we are looking for.

Putting the pieces together, the unification algorithm instantiates ?f with

?f = right struct z (x 7→ u • y 7→ v) (found struct z w)

Effectively, the heap of component of ?f contains the (tagged) heap h that was input to

the search, and the proof component contains the output proof that z is in the domain

of h.

2.3.2 The Gory Details

To understand better how it works, we will now spell out the “trace” of how Coq’s

unification algorithm implements proof search in the example above, with a particular

emphasis on how it treats resolution of canonical instances. This knowledge is not critical

for understanding most of the examples in the chapter—indeed, the whole point of our

“design patterns” is to avoid the need for one to think about unification at this level of

gory detail. But it will nonetheless be useful in understanding why the design patterns

work, as well as how to control Coq’s unification algorithm in more complex examples

where the design patterns do not immediately apply.

Let us look again at the initial equation that started the search:

untag (heap of ?f) ≈ h

As mentioned before, the canonicity of found tag reduces this to solving

heap of ?f ≈ found tag h

Unification tries to instantiate ?f with found struct, but for that it must unify the entire

heap h with z 7→ ?v, which fails. Before giving up, the system realizes it can unfold the

definitions of h and of found tag, yielding

heap of ?f ≈ left tag ((x 7→ u • y 7→ v) • z 7→ w) (2.1)
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With this unfolding, ?f has become eligible for instantiation by left struct, since left struct

is the canonical instance of the find structure with head constant left tag. To figure out

if/whether this instantiation is possible, Coq will engage in the following procedure,

which we will describe here quite carefully—and in as general a manner as possible—

since it is important for understanding subsequent, more complex examples.

To instantiate ?f with left struct, Coq first “opens” the right-hand side of the defini-

tion of left struct by generating fresh unification variables for each of left struct’s formal

parameters: ?y : ptr, ?h : heap, and ?f2 : find ?y. It will eventually unify ?f with

left struct ?y ?h ?f2, but before doing that, it must figure out how to marry together

two sources of (hopefully compatible) information about ?f : the unification goal (i.e.,

Equation (2.1)) and the definition of left struct. Each of these provides information

about:

1. The type of the structure we are solving for (in this case, ?f). From the initial

unification steps described in Section 2.3.1, we already know that ?f must have

type find z, while the type of left struct ?y ?h ?f2 is find ?y. This leads to the

unification

?y ≈ z

2. The (full) value of the projection in question (in this case, heap of ?f). From Equa-

tion (2.1), we know that heap of ?f must equal left tag ((x 7→ u • y 7→ v) • z 7→ w),

while from the definition of left struct, we know that heap of (left struct ?y ?h ?f2)

equals left tag ((untag (heap of ?f2)) • ?h). This leads to the unification

left tag ((untag (heap of ?f2)) • ?h) ≈ left tag ((x 7→ u • y 7→ v) • z 7→ w),

which in turn induces the following unification equations:

untag (heap of ?f2) ≈ x 7→ u • y 7→ v

?h ≈ z 7→ w
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Putting it all together, the attempt to instantiate ?f with left struct generates the fol-

lowing unification problems, which Coq processes in order:

?y ≈ z

untag (heap of ?f2) ≈ x 7→ u • y 7→ v

?h ≈ z 7→ w

?f ≈ left struct ?y ?h ?f2

Note here that the order matters! For instance, the first equation will be resolved

immediately, thus concretizing the type of ?f2 to find z. It is important that this happens

before solving the second equation, so that when we attempt to solve the second equation

we know what pointer (z) we are searching for in the heap x 7→ u • y 7→ v. (Otherwise,

we would be searching for the unification variable ?y, which would produce senseless

results.)

Attempting to solve the second equation, Coq again applies found tag and found struct

and fails. Then, it unfolds found tag to get left tag and the following equation:

heap of ?f2 ≈ left tag (x 7→ u • y 7→ v) (2.2)

It attempts to instantiate ?f2 with left struct, by the same procedure as described above,

obtaining the following equations:

?y′ ≈ z

untag (heap of ?f3) ≈ x 7→ u where ?f3 : find ?y′

After solving the first one, the attempt to solve the second one will fail. Specifically, Coq

will first try to use found struct as before; however, this will not work because, although

the heap in question (x 7→ u) is a singleton heap, the pointer in its domain is not z.

Unfolding to left struct and right struct will not help because those solutions only apply

to heaps with • as the top-level constructor.

Rolling back to Equation (2.2), Coq unfolds left tag to right tag and tries to instantiate

?f2 with right struct. As before, it fails because z is not y.

Rolling back further to Equation (2.1), Coq unfolds left tag to right tag, resulting in

heap of ?f ≈ right tag ((x 7→ u • y 7→ v) • z 7→ w).
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It then chooses right struct and applies the same procedure as before to obtain the

following equations.

?x′ ≈ z

?h′ ≈ x 7→ u • y 7→ v

untag (heap of ?f ′2) ≈ z 7→ w where ?f ′2 : find ?x′

?f ≈ right struct ?x′ ?h′ ?f ′2

The first two equations unify immediately, after which the third one is solved by applying

found tag and choosing found struct for ?f ′2. After that, the third equation also unifies

right away, producing the final result

?f = right struct z (x 7→ u • y 7→ v) (found struct z w)

It is a fair question to ask why, in case of failure of an equation like 2.1, Coq unfolds the

right definition (the tag) instead of the heap of projector. After all, both are defined

constants, the latter being the definition of a pattern matching on the instance of the

structure. As a quick answer, the unification algorithm performs a heuristic that makes

projectors on unknown instances to not be unfolded. The full details can be found in

Chapter 4.

2.4 Reflection: Turning Semantics into Syntax

As canonical structures are closely coupled with the type checker, it is possible to fruit-

fully combine the logic-programming idiom afforded by canonical structures together

with ordinary functional programming in Coq. In this section, we illustrate the com-

bination by developing a thoroughly worked example of an overloaded lemma for per-

forming cancellation on heap equations using a technique known as proof by reflection

(e.g., Grégoire and Mahboubi (2005)), which exploits computation at the level of types

to drastically reduce the size of proof terms, and therefore the time spent typechecking

them.

Mathematically, cancellation merely involves removing common terms from disjoint

unions on the two sides of a heap equation. For example, if we are given an equation

x 7→ v1 • (h3 • h4) = h4 • x 7→ v2
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and we know that the subheaps are disjoint (i.e., the unions are defined), then we can

extract the implied equations

v1 = v2 ∧ h3 = empty

We will implement the lemma in two stages, as commonly done in proof by reflection.

The first stage is an extra-logical program (in our case, a canonical structure program),

which reflects the equation, that is, turns the equation on heap expressions into an

abstract syntax tree (or abstract syntax list, as it will turn out). Then the second stage

is a functional program, which cancels common terms from the syntax tree. Notice that

the functional program from the second stage cannot work directly on the heap equation

for two reasons: (1) it needs to compare heap and pointer variable names, and (2) it

needs to pattern match on function names, since in HTT heaps are really partial maps

from locations to values, and 7→ and • are merely convenient functions for constructing

them. As neither of these is possible within Coq’s base logic, the equation has to be

reflected into syntax in the first stage. The main challenge then is in implementing

reflection, so that the various occurrences of one and the same heap variable or pointer

variable in the equation are ascribed the same syntactic representation.

2.4.1 Cancellation

Since the second stage is simpler, we explain it first. For the purposes of presentation,

we begin by restricting our pointers to only store values of some predetermined type T

(although in Section 2.4.3 we will generalize it to any type, as in our actual implemen-

tation). The data type that we use for syntactic representation of heap expressions is

the following:

elem := Var of nat | Pts of nat & T

term := seq elem

An element of type elem identifies a heap component as being either a heap variable

or a points-to clause x 7→ v. In the first case, the component is represented as Var n,

where n is an index identifying the heap variable in some environment (to be explained

below). In the second case, the component is represented as Pts m v, where m is an index

identifying the pointer variable in an environment. We do not perform any reflection

on v, as it is not necessary for the cancellation algorithm. A heap expression is then

represented via term as a list (seq) of elements. We could have represented the original

heap expression more faithfully as a tree, but since • is commutative and associative,

lists suffice for our purposes.
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We will require two kinds of environments, which we package into the type of contexts:

ctx := seq heap× seq ptr

The first component of a context is a list of heaps. In a term reflecting a heap expression,

the element Var n stands for the n-th element of this list (starting from 0-th). Similarly,

the second component is a list of pointers, and in the element Pts m v, the number m

stands for the m-th pointer in the list.

Because we will need to verify that our syntactic manipulation preserves the semantics

of heap operations, we need a function that interprets syntax back into semantics. As-

suming lookup functions hlook and plook which search for an index in a context of a

heap or pointer, respectively, the interpretation function crawls over the syntactic term,

replacing each number index with its value from the context (and returning an undefined

heap, if the index is out of bounds). The function is implemented as follows:

interp (i : ctx) (t : term) : heap :=

match t with

Var n :: t′ ⇒ if hlook i n is Some h then h • interp i t′

else Undef

| Pts m v :: t′ ⇒
if plook i m is Some x then x 7→ v • interp i t′

else Undef

| nil⇒ empty

end

For example, if the context i is ([h3, h4], [x]), then

interp i [Pts 0 v1,Var 0,Var 1] = x 7→ v1 • (h3 • (h4 • empty))

interp i [Var 1,Pts 0 v2] = h4 • (x 7→ v2 • empty)

Given this definition of term, we can now encode the cancellation algorithm as a predi-

cate (i.e., a function into Prop) in Coq (Figure 2.1). The predicate essentially constructs

a conjunction of the residual equations obtained as a consequence of cancellation. Re-

ferring to Figure 2.1, the algorithm works as follows. It looks at the head element of the

left term t1, and tries to find it in the right term t2 (keying on the index of the element).

If the element is found, it is removed from both sides, before recursing over the rest of

t1. When removing a Pts element keyed on a pointer x, the values v and v′ stored into

x in t1 and t2 must be equal. Thus, the proposition computed by cancel should contain

an equation between these values as a conjunct. If the element is not found in t2, it
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cancel (i : ctx) (t1 t2 r : term) : Prop :=
match t1 with

[]⇒ interp i r = interp i t2
| Pts m v :: t′1 ⇒

if premove m t2 is Some (v′, t′2) then
cancel i t′1 t

′
2 r ∧ v = v′

else cancel i t′1 t2 (Pts m v :: r)
| Var n :: t′1 ⇒

if hremove n t2 is Some t′2 then cancel i t′1 t
′
2 r

else cancel i t′1 t2 (Var n :: r)
end

Figure 2.1: Heap cancellation algorithm.

is shuffled to the accumulator r, before recursing. When the term t1 is exhausted, i.e.,

it becomes the empty list, then the accumulator stores the elements from t1 that were

not cancelled by anything in t2. The equation between the interpretations of r and t2 is

a semantic consequence of the original equation, so cancel immediately returns it (our

actual implementation performs some additional optimization before returning). The

helper function premove m t2 searches for the occurrences of the pointer index m in the

term t2, and if found, returns the value stored into the pointer, as well as the term t′2

obtained after removing m from t2. Similarly, hremove n t2 searches for Var n in t2 and

if found, returns t′2 obtained from t2 after removal of n.

Soundness of cancel is established by the following lemma which shows that the facts

computed by cancel do indeed follow from the input equation between heaps, when cancel

is started with the empty accumulator.

cancel sound : ∀i : ctx. ∀t1 t2 : term.

def (interp i t1)→ interp i t1 = interp i t2 →
cancel i t1 t2 []

The proof of cancel sound is rather involved and interesting in its own right, but we omit

it here not to distract the attention of the reader from our main topic. (The interested

reader can find it in our source files (Ziliani, 2014).) We could have proved the converse

direction as well, to obtain a completeness result, but this was not necessary for our

purposes.

The related work on proofs by reflection usually implements the cancellation phase in

a manner similar to that above (see for example the work of Grégoire and Mahboubi

(2005)). Where we differ from the related work is in the implementation of the reflection

phase. This phase is usually implemented by a tactic, but here we show that it can be

implemented with canonical structures instead.
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2.4.2 Reflection via Canonical Structures

Intuitively, the reflection algorithm traverses a heap expression, and produces the cor-

responding syntactic term. In our overloaded lemma, presented further below, we will

invoke this algorithm twice, to reflect both sides of the equation. To facilitate cancella-

tion, we need to ensure that identical variables on the two sides of the equation, call them

E1 and E2, are represented by identical syntactic elements. Therefore, reflection of E1

has to produce a context of newly encountered elements and their syntactic equivalents,

which is then fed as an input to the reflection of E2. If reflection of E2 encounters an

expression which is already in the context, the expression is reflected with the syntactic

element provided by the context.

Notational Convention 6. Hereafter, projections out of an instance are considered

implicit coercions, and we will typically omit them from our syntax. For example, in

Figure 2.2 (described below), the canonical instance union struct says union tag (f1 • f2)

instead of union tag ((untag (heap of f1)) • (untag (heap of f2))), which is significantly

more verbose. This is a standard technique in Coq.

The reflection algorithm is encoded using the structure ast from Figure 2.2. The inputs

to each traversal are the initial context i of ast, and the initial heap in the heap of

projection. The output is the (potentially extended) context j and the syntactic term t

that reflects the initial heap. One invariant of the structure is precisely that the term t,

when interpreted under the output heap j, reflects the input heap:

interp j t = heap of

There are two additional invariants needed to carry out the proofs:

subctx i j and valid j t

The first one states that the output context j is an extension of the input context i,

while the second one ensures that the syntactic term t has no indices out of the bounds

of the output context j. (We omit the definition of subctx and valid, but they can be

found in the source files (Ziliani, 2014).)

There are several cases to consider during a traversal, as shown by the canonical instances

in Figure 2.2. We first check if the input heap is a union, as can be seen from the ordering

of tag synonyms (which is reversed, as demanded by the tagging pattern). In this case,

the canonical instance is union struct. The instance specifies that we recurse over both

subheaps, by unifying the left subheap with f1 and the right subheap with f2.
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var tag h := Tag h
pts tag h := var tag h
empty tag h := pts tag h
Canonical union tag h := empty tag h

Structure ast (i j : ctx) (t : term) :=
Ast { heap of : tagged heap;

: interp j t = heap of ∧ subctx i j ∧ valid j t }

Canonical union struct (i j k : ctx) (t1 t2 : term)
(f1 : ast i j t1)(f2 : ast j k t2) :=

Ast i k (append t1 t2) (union tag (f1 • f2)) . . .

Canonical empty struct (i : ctx) :=
Ast i i [] (empty tag empty) . . .

Canonical pts struct (hs : seq heap) (xs1 xs2 : seq ptr)
(m : nat) (v : A) (f : xfind xs1 xs2 m) :=

Ast (hs, xs1) (hs, xs2) [Pts m v] (pts tag (f 7→ v)) . . .

Canonical var struct (hs1 hs2 : seq heap) (xs : seq ptr)
(n : nat) (f : xfind hs1 hs2 n) :=

Ast (hs1, xs) (hs2, xs) [Var n] (var tag f) . . .

Figure 2.2: Structure ast for reflecting a heap.

The types of f1 and f2 show that the two recursive calls work as follows. First the call to

f1 starts with the input context i and computes the output context j and term t1. Then

the call to f2 proceeds with input context j, and computes outputs k and t2. The output

context of the whole union is k, and the output reflected term is the list-concatenation

of t1 and t2.

When reflecting the empty heap, the instance is empty struct. In this case, the input

context i is simply returned as output, and the reflected term is the empty list.

When reflecting a singleton heap x 7→ v, the corresponding instance is ptr struct. In this

case, we first have to check if x is a pointer that already appears in the pointer part xs1

of the input context. If so, we should obtain the index m at which x appears in xs1. This

is the number representing x, and the returned reflected elem is Pts m v. On the other

hand, if x does not appear in xs1, we need to add it. We compute a new context xs2

which appends x at the end of xs1, and this is the output pointer context for ptr struct.

The number m representing x in xs2 now equals the size of xs1, and returned reflected

elem is again Pts m v. Similar considerations apply in the case where we are reflecting

a heap variable h. The instance is then var struct and we search in the heap portion of

the context hs1, producing a new heap portion hs2.
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Structure xtagged A := XTag {xuntag : A}

extend tag A (x : A) := XTag x
recurse tag A (x : A) := extend tag x
Canonical found tag A (x : A) := recurse tag x

Structure xfind A (s r : seq A) (i : nat) :=
XFind { elem of : xtagged A;

: index r i = elem of ∧ prefix s r }

Canonical found struct A (x : A) (s : seq A) :=
XFind (x :: s) (x :: s) 0 (found tag x) . . .

Canonical recurse struct (i : nat) (y : A) (s r : seq A)
(f : xfind s r i) :=

XFind (y :: s) (y :: r) (i+ 1) (recurse tag f) . . .

Canonical extend struct A (x : A) :=
XFind [] [x] 0 (extend tag x) . . .

Figure 2.3: Structure xfind for searching for an element in a list,
and appending the element at the end of the list if not found.

In both cases, the task of searching (and possibly extending) the context is performed

by the polymorphic structure xfind (Figure 2.3), which recurses over the context lists

in search of an element, relying on unification to make syntactic comparisons between

expressions. The inputs to the structure are the parameter s, which is the sequence to

search in, and the field elem of, which is the (tagged) element to search for. The output

sequence r equals s if elem of is in s, or extends s with elem of otherwise. The output

parameter i is the position at which the elem of is found in r.

If the searched element x appears at the head of the list, the selected instance is

found struct and the index i = 0. Otherwise, we recurse using recurse struct. Ultimately,

if s is empty, the returned r is the singleton [x], via the instance extend struct.

It may be interesting to notice here that while xfind is in principle similar to find from

Section 2.2, it is keyed on the element being searched for, rather than on the list (or

in the case of find, the heap) in which the search is being performed. This exemplifies

that there are many ways in which canonical structures of similar functionality can be

organized. In particular, which term one keys on (i.e., which term one unifies with the

projection from the structure) may in general depend on when a certain computation

needs to be triggered. If we reorganized xfind to match find in this respect, then the

structure ast would have to be reorganized too. Specifically, ast would have to recursively

invoke xfind by unifying it against the contexts xs1 and hs1 in the instances pts struct
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and var struct, respectively. As we will argue in Section 3.3.1, such unification can lead

to incorrect results, if done directly, but we will be able to perform it indirectly, using a

new design pattern.

We are now ready to present the overloaded lemma cancelR.

cancelR : ∀j k : ctx. ∀t1 t2 : term.

∀f1 : ast nil j t1. ∀f2 : ast j k t2.

def (untag (heap of f1))→
untag (heap of f1) = untag (heap of f2)→
cancel k t1 t2 []

At first sight it may look strange that we are not using the notation convention 6

presented in this very same section. It is true that we can omit the projections and

write def f1 as the first hypothesis, but for the second one we have to be verbose. The

reason is simple: if we write instead f1 = f2, Coq will consider this an equality on asts

and not expand the implicit coercions, as needed.

Assuming we have a hypothesis

H :

h1︷ ︸︸ ︷
x 7→ v1 • (h3 • h4) =

h2︷ ︸︸ ︷
h4 • x 7→ v2

and a hypothesis D : def h1, we can forwardly apply cancelR to H using D, i.e.,

move: (cancelR D H)

The move tactic of Ssreflect allows us to move a hypothesis from the goal to the context,

or vice versa. In this case, we are taking the term cancelR D H—whose type, we expect,

is the result of canceling the heaps—and get this type as a premise in the goal. In order

to obtain the type of the term, Coq will fire the following unification problems:

1. def (untag (heap of ?f1)) ≈ def h1

2. untag (heap of ?f1)) ≈ h1

3. untag (heap of ?f2)) ≈ h2

Because ?f1 and ?f2 are variable instances of the structure ast, Coq will construct canon-

ical values for them, thus reflecting the heaps into terms t1 and t2, respectively. The

reflection of h1 will start with the empty context, while the reflection of h2 will start

with the output context of f1, which in this case is ([h3, h4], [x]).
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Finally, the lemma will perform cancel on t1 and t2 to produce v1 = v2 ∧ h3 = empty ∧
empty = empty. The trailing empty = empty can ultimately be removed with a few

simple optimizations of cancel, which we have omitted to simplify the presentation.

To Reflect or Not to Reflect: We used the power of canonical structures to in-

spect the structure of terms, in this case heaps, and then create abstract syntax trees

representing those terms. Thus, a natural question arises: cannot we implement the

cancellation algorithm entirely with canonical structures, just as it was implemented

originally in one big tactic? The answer is yes, and the interested reader can find the

code in the source files (Ziliani, 2014). There, we have encoded a similar algorithm to

the one shown in Figure 2.1 with a structure parameterized over its inputs: the heaps on

the left and on the right of the equation, the heap with “the rest”—i.e., what could not

be cancelled—and two invariants stating that (a) the right heap is defined and (b) the

union of the left and rest heaps is equal to the right heap. As output, it returns a propo-

sition and a proof of this proposition. Each instance of this structure will correspond

to one step of the algorithm. As an immediate consequence, this direct encoding of the

cancellation algorithm avoids the long proof of soundness, since each step (or instance)

includes the local proof for that step only, and without having to go through the fuss of

the interpretation of abstract syntax.

However, this approach has at least one big disadvantage: by comparison to the auto-

mated proof by reflection, it is slow. Indeed, this should come as no surprise, as it is

well known that the method of proof by reflection is fast (e.g., Grégoire and Mahboubi

(2005)), and this is why we pursued it in the first place.

2.4.3 Dealing with Heterogeneous Heaps

So far we have represented singleton heaps as x 7→ v, assuming that all values in the

heaps are of the same type. However, as promised above, we would like to relax this

assumption. Allowing for variation in the type T of v, a more faithful representation

would be x 7→T v. One easy way of supporting this without modifying our cancellation

algorithm at all is to view the values in the heap as being elements of type dynamic,

i.e., as dependent pairs (or structures) packaging together a type and an element of the

type:

Structure dynamic := dyn { typ : Type; val : typ }

In other words, we can simply model x 7→T v as x 7→ dyn T v. As a result, when we

apply the cancelR lemma to the singleton equality x 7→T1 v1 = x 7→T2 v2, we would
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Structure tagged prop := Tag prop { puntag : Prop }
default tag p := Tag prop p
dyneq tag p := dyneq tag p
Canonical and tag p := dyneq tag p

Structure simplifier (p : Prop) :=
Simpl { prop of : tagged prop;

: p↔ prop of }

Canonical and struct (p1 p2 : Prop)
(f1 : simplifier p1) (f2 : simplifier p2) :=

Simpl (p1 ∧ p2) (and tag (f1 ∧ f2)) . . .

Canonical dyneq struct (A : Type) (v1 v2 : A) :=
Simpl (v1 = v2) (dyneq tag (dyn A v1 = dyn A v2)) . . .

Canonical default struct (p : Prop) :=
Simpl p (default tag p) . . .

Figure 2.4: Algorithm for post-processing the output of cancelR.

obtain:

dyn T1 v1 = dyn T2 v2 (2.3)

But if the types T1 and T2 are equal, we would like to also automatically obtain the

equality on the underlying values:

v1 = v2 (2.4)

(Note that this cannot be done within the pure logic of Coq since equality on types is

not decidable.) A key benefit of obtaining the direct equality on v1 and v2, rather than

on dyn T1 v1 and dyn T2 v2, is that such an equality can then be fed into the standard

rewrite tactic in order to rewrite occurrences of v1 in a goal to v2.

This effect could perhaps be achieved by a major rewriting of cancelR, but that would

require a major effort, just to come up with a solution that is not at all modular. Instead,

we will show now how we can use a simple overloaded lemma to post-process the output

of the cancellation algorithm, reducing equalities between dynamic packages to equalities

on their underlying value components wherever possible.

Figure 2.4 presents the algorithm to simplify propositions using canonical instances.

Basically, it inspects a proposition, traversing through a series of ∧s until it finds an

equality of the form dyn A v1 = dyn A v2—i.e., where the values on both sides have

the same type A—in which case it returns v1 = v2. For any other case, it just returns

the same proposition. We only consider the connective ∧ since the output of cancelR
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contains only this connective. If necessary, we could easily extend the algorithm to

consider other connectives.

The algorithm is encoded in a structure called simplifier with three canonical instances,

one for each of the aforementioned cases. The proof component of this structure lets us

prove the following overloaded lemma. (Following notational convention 6, we omit the

projectors, so g below should be read as “the proposition in g”.)

simplify : ∀p : Prop.∀g : simplifier p.

g → p

By making p and g implicit arguments, we can write simplify P to obtain the simplified

version of P . For example, say we have to prove some goal with hypotheses

D : def (x 7→T v1 • h1)

H : x 7→T v1 • h1 = h2 • x 7→T v2

We can forwardly apply the composition of simplify and cancelR D to H

move : (simplify (cancelR D H))

to get the hypothesis exactly as we wanted:

v1 = v2 ∧ h1 = h2

2.5 Solving for Functional Instances

Previous sections described examples that search for a pointer in a heap expression or

for an element in a list. The pattern we show in this section requires a more complicated

functionality, which we describe in the context of our higher-order implementation of

separation logic (Reynolds, 2002) in Coq. Interestingly, this search-and-replace pattern

can also be described as higher-order, as it crucially relies on the typechecker’s ability

to manipulate first-class functions and solve unification problems involving functions.

To set the stage, the formalization of separation logic that we use centers on the predicate

verify : ∀A. prog A→ heap→ (A→ heap→ Prop)→ Prop.

The exact definition of verify is not important for our purposes here, but suffice it to

say that it encodes a form of Hoare-style triples. Given a program e : prog A returning
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values of type A, an input heap i : heap, and a postcondition q : A→ heap→ Prop over

A-values and heaps, the predicate

verify e i q

holds if executing e in heap i is memory-safe, and either diverges or terminates with a

value w and heap m, such that q w m holds.

Programs can perform the basic heap operations: reading and writing a heap location,

allocation, and deallocation. In this section, we focus on the writing primitive; given

x : ptr and v : A, the program write x v : prog unit stores v into x and terminates. We

also require the operation for sequential composition, which takes the form of monadic

bind:

bind : ∀A B. prog A→ (A→ prog B)→ prog B

We next consider the following provable lemma, which serves as a Floyd-style rule for

symbolic evaluation of write.

bnd write : ∀A B C.∀x : ptr.∀v : A.∀w : C.∀e : unit→ prog B.

∀h : heap. ∀q : B → heap→ Prop.

verify (e ()) (x 7→ v • h) q →
verify (bind (write x v) e) (x 7→ w • h) q

To verify write x v in a heap x 7→ w • h, it suffices to change the contents of x to v, and

proceed to verify the continuation e.

In practice, bnd write suffers from the same problem as indom and noalias, as each

application requires the pointer x to be brought to the top of the heap. We would like to

devise an automated version bnd writeR, but, unlike indomR, application of bnd writeR

will not merely check if a pointer x is in the heap. It will remember the heap h from

the goal and reproduce it in the premise, only with the contents of x in h changed from

w to v.

For example, applying bnd writeR to the goal

G1 : verify (bind (write x2 4) e)

(i1 • (x1 7→ 1 • x2 7→ 2) • (i2 • x3 7→ 3))

q

should return a subgoal which changes x2 in place, as in:

G2 : verify (e ()) (i1 • (x1 7→ 1 • x2 7→ 4) • (i2 • x3 7→ 3)) q
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Structure tagged heap := Tag {untag : heap}

right tag (h : heap) := Tag h
left tag h := right tag h
Canonical found tag h := left tag h

Structure partition (k r : heap) :=
Partition { heap of : tagged heap;

: heap of = k • r }

Canonical found struct k :=
Partition k empty (found tag k) . . .

Canonical left struct h r (f : ∀k. partition k r) k :=
Partition k (r • h) (left tag (f k • h)) . . .

Canonical right struct h r (f : ∀k. partition k r) k :=
Partition k (h • r) (right tag (h • f k)) . . .

Figure 2.5: Structure partition for partitioning a heap into the part matching k and
“the rest” (r).

2.5.1 The “Search-and-Replace” Pattern

Here is where functions come in. The bnd writeR lemma should attempt to infer a

function f which represents a heap with a “hole”, so that filling the hole with x 7→w

(i.e., computing f (x 7→w)) results in the heap from the goal. Then replacing w with v

is computed as f (x 7→ v).

For example, in G1 we want to “fill the hole” with x2 7→ 2, while in G2, we want to fill

it with x2 7→ 4. Hence, in this case, the inferred function f should be:

λk. i1 • (x1 7→ 1 • k) • (i2 • x3 7→ 3)

To infer f using canonical structures, we generalize it from a function mapping heaps to

heaps to a function mapping a heap k to a structure, partition k r (defined in Figure 2.5),

with a heap projection heap of that is equal to k • r. This heap of projection will be

used to trigger the search for the subheap that should be replaced with a hole. (The

role of the additional heap parameter r will be explained later, but intuitively one can

think of r as representing the rest of the heap, i.e., the “frame” surrounding the hole.)
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Because the range of f depends on the input k, f must have a dependent function type,

and the bnd writeR lemma looks as follows.

bnd writeR : ∀A B C.∀x : ptr. ∀v : A.∀w : C.∀e : unit→ prog B.

∀q : B → heap→ Prop.

∀r : heap.∀f : (∀k : heap. partition k r).

verify (e ()) (f (x 7→ v)) q →
verify (bind (write x v) e) (f (x 7→ w)) q

As before, following notational convention 6, we have omitted the projections and written

f (x 7→ w) instead of untag (heap of (f (x 7→ w))), and similarly in the case of x 7→ v.

When the bnd writeR lemma is applied to a goal of the form

verify (bind (write x v) e) h q

the type checker creates unification variables for each of the parameters of bind writeR,

and proceeds to unify the conclusion of the lemma with the goal, getting the equation

untag (heap of (?f (x 7→ ?w))) ≈ h

where ?f has type ∀k : heap. partition k ?r. (Note that, because Coq’s unification follows

a strict left-to-right order, x is not a unification variable but the actual location being

written to in the goal.)

This unification goal will prompt the search (using the instances in Figure 2.5) for

a canonical solution for ?f with the property that the heap component of ?f (x 7→
?w) syntactically equals h, matching exactly the order and the parenthesization of the

summands in h. We have three instance selectors: one for the case where we found the

heap we are looking for, and two to recurse over each side of the •.

The reader may wonder why all the instances of partition take the k parameter last, thus

forcing the f parameter in the latter two instances to be itself abstracted over k as well.

The reason is best illustrated by following a partial trace of Coq’s unification.

Suppose h = h0 • x 7→ z. After trying and failing to unify ?f (x 7→ ?w) with h using the

instances found struct and left struct, it will proceed to try to use the instance right struct.

More precisely, as described previously in Section 2.3.2, when solving the equation

heap of (?f (x 7→ ?w)) ≈ right tag (h0 • x 7→ z) (2.5)

Coq will:
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1. Build an instance

right struct ?h′ ?r′ ?f ′ ?k′ (2.6)

with ?h′, ?r′, ?f ′, ?k′ fresh unification variables, ?f ′ with type ∀k. partition k ?r′ and

the rest with type heap.

2. Unify the type of the instance from (2.6) with the type of the expected instance

(i.e., the argument of heap of) in (2.5). We know that ?f has type ∀k : heap. partition k ?r,

and therefore that ?f (x 7→ ?w) has type partition (x 7→ ?w) ?r. The type of (2.6)

is partition ?k′ (?h′ • ?r′). Putting it all together, we get the equation

partition ?k′ (?h′ • ?r′) ≈ partition (x 7→ ?w) ?r

3. Unify the heap of projection of (2.6) with the right-hand side of (2.5), that is,

right tag (?h′ • ?f ′ ?k′) ≈ right tag (h0 • x 7→ z)

4. Finally, unify the instances:

?f (x 7→ ?w) ≈ right struct ?h′ ?r′ ?f ′ ?k′

Altogether, we get the following equations that Coq processes in order:

1. ?k′ ≈ x 7→ ?w

2. ?h′ • ?r′ ≈ ?r

3. ?h′ ≈ h0

4. ?f ′ ?k′ ≈ x 7→ z

5. ?f (x 7→ ?w) ≈ right struct ?h′ ?r′ ?f ′ ?k′

The first three equations are solved immediately. The fourth one, if we expand the

implicit projection and instantiate the variables, is

untag (heap of (?f ′ (x 7→ ?w))) ≈ x 7→ z (2.7)

Solving this recursively (we give the details of this part of the trace at the end of the

section), Coq instantiates the following variables:

1. ?r′ = empty
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2. ?w = z

3. ?f ′ = found struct

Note how the type of the instance found struct actually matches the type of ?f ′, that is,

∀k. partition k empty.

Coq now can proceed to solve the last equation, which after instantiating the variables

is

?f (x 7→ z) ≈ right struct h0 empty found struct (x 7→ z)

which means that it has to find a function for ?f such that, when given the singleton

x 7→ z, produces the instance on the right-hand side. As it is well known (Goldfarb,

1981), higher-order unification problems are in general undecidable, as they might have

an infinite number of solutions, without any one being the most general one. For this

example1, Coq takes a commonly-used pragmatic solution of falling back to a kind of

first-order unification: it tries to unify the functions and then the arguments on both

side of the equation, which in this case immediately succeeds:

1. ?f ≈ right struct h0 empty found struct

2. (x 7→ z) ≈ (x 7→ z)

This is the key to understanding why the instances of partition all take the k parameter

last: we want the k parameter to ultimately be unified with the argument of ?f . If the

k parameter did not come last, then Coq would try here to unify x 7→ z with whatever

parameter did come last, which would clearly lead to failure.

Thus far, we have described how to construct the canonical solution of ?f , but the

mere construction is not sufficient to carry out the proof of bnd writeR. For the proof,

we further require an explicit invariant that ?f (x 7→ v) produces a heap in which

the contents of x is changed to v, but everything else is unchanged when compared to

?f (x 7→ w).

This is the role of the parameter r, which is constrained by the invariant in the definition

of partition to equal the “rest of the heap”, that is

h = k • r
1There exists a decidable fragment of higher-order unification called the “pattern fragment” (Miller,

1991a). If the problem at hand falls into this fragment, Coq will find the most general unifier. However,
our example does not fall into this fragment.
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With this invariant in place, we can vary the parameter k from x 7→ w in the conclusion

of bnd writeR to x 7→ v in the premise. However, r remains fixed by the type of ?f ,

providing the guarantee that the only change to the heap was in the contents of x.

It may be interesting to note that, while our code computes an ?f that syntactically

matches the parentheses and the order of summands in h (as this is important for

using the lemma in practice), the above invariant on h, k and r is in fact a semantic,

not a syntactic, equality. In particular, it does not guarantee that h and k • r are

constructed from the same exact applications of 7→ and •, since in HTT those are

defined functions, not primitive constructors. Rather, it captures only equality up to

commutativity, associativity and other semantic properties of heaps as partial maps.

This suffices to prove bnd writeR, but more to the point: the syntactic property, while

true, cannot even be expressed in Coq’s logic, precisely because it concerns the syntax

and not the semantics of heap expressions.

To conclude the section, we note that the premise and conclusion of bnd writeR both

contain projections out of ?f . As a result, the lemma may be used both in forward

reasoning (out of hypotheses) and in backward reasoning (for discharging a given goal).

For example, we can prove the goal

verify (bind (write x2 4) e) (i1 • (x1 7→ 1 • x2 7→ 2)) q

under hypothesis

H : verify (e ()) (i1 • (x1 7→ 1 • x2 7→ 4)) q

in two ways:

• Backward : By applying bnd writeR to the goal. The goal will therefore be changed

to exactly match H.

• Forward : By applying bnd writeR (x := x2) (w := 2) to the hypothesis H, thus

obtaining the goal. Note how in this case we need to explicitly provide the in-

stantiations of the parameters x and w because they cannot be inferred just from

looking at H.

This kind of versatility is yet another advantage that lemmas based on canonical in-

stances exhibit when compared to tactics. The latter, it seems, must be specialized to

either forward or backward mode, and we have not managed to encode a tactic equiva-

lent of bnd writeR that is usable in both directions. It likewise appears difficult, if not

impossible, to encode this bidirectional functionality using the style of proof by reflection

we explored in Section 2.4.
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Fleshing out the Trace: In the partial unification trace given above, we stream-

lined the presentation by omitting the part concerning the resolution of the unification

equation (2.7). Since found tag is the canonical instance of the tagged heap structure,

instance resolution will reduce this problem to:

heap of (?f ′ (x 7→ ?w)) ≈ found tag (x 7→ z) (2.8)

For this equation, Coq follows the same steps as in the processing of equation (2.5). It

will:

1. Create a unification variable ?k′′ for the argument of found struct.

2. Unify the type of found struct ?k′′ with the type of ?f ′ (x 7→ ?w), that is,

partition ?k′′ empty ≈ partition (x 7→ ?w) ?r′

getting ?k′′ = x 7→ ?w and ?r′ = empty.

3. Unify the heap of projection of found struct ?k′′ with the right-hand side of (2.8):

found tag ?k′′ ≈ found tag (x 7→ z)

Unfolding the already known definition of ?k′′ as x 7→ ?w, we get ?w = z.

4. Unify the argument of heap of with the instance. After applying the solutions

found so far, this produces

?f ′ (x 7→ z) ≈ found struct (x 7→ z)

As before, Coq solves this higher-order problem by unifying

(a) ?f ′ ≈ found struct

(b) x 7→ z ≈ x 7→ z

2.5.2 Automatic Lemma Selection

In the previous section we saw how to automate the symbolic evaluation of the command

write. In our implementation of separation logic in Coq, there are in fact several such

commands (allocation, deallocation, read, write, etc.), each of which may appear in one

of two contexts (either by itself or as part of a bind expression sequencing it together

with other commands). We have created one automated lemma for each combination of

command and context, but picking the right one to apply at each step of a proof can be
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tedious, so we would like to automate this process by creating a procedure for selecting

the right lemma in each case. We will now show how to build such an automated

procedure.

For the running example we will use just two lemmas:

bnd writeR : ∀A B C.∀x : ptr. ∀v : A.∀w : C.∀e : unit→ prog B.

∀q : B → heap→ Prop.

∀r : heap.∀f : (∀k : heap. partition k r).

verify (e ()) (f (x 7→ v)) q →
verify (bind (write x v) e) (f (x 7→ w)) q

val readR : ∀A. ∀x : ptr. ∀v : A.∀q : A→ heap→ Prop.

∀r : heap.∀f : (partition (x 7→ v) r).

(def f → q v f)→
verify (read x) f q

The first one is the automated lemma from the previous section. The second one executes

the command read alone (not as part of a bind expression). The lemma val readR states

that, in order to show that read x satisfies postcondition q, we need to prove that q holds

of the value v that x points to.

Consider a simple example, in which we have the following goal:

verify (bind (write x 4) (λ . read x)) (x 7→ 0) (λr. λ . r = 4)

This goal states that after writing the value 4 in location x, we read x and get a result

r that is equal to 4. Using the above lemmas directly, we would prove this as follows 2:

apply: bnd writeR

by apply: val readR

The first application changes the goal to

verify (read x) (x 7→ 4) (λr. λ . r = 4)

while the second application performs the read and produces the trivial goal 4 = 4.

2Note that we are using Ssreflect apply (i.e., with colon) instead of Coq’s native tactic. This is
required since Coq’s apply tactic might use two different and inconsistent unification algorithms.
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Structure val form (h : heap) (q : A→ heap→ Prop) (p : Prop) :=
ValForm { val pivot : prog A;

: p→ verify val pivot h q }

Structure bnd form (h : heap) (e : A→ prog B) (q : B → heap→ Prop) (p : Prop) :=
BndForm { bnd pivot : prog A;

: p→ verify (bind bnd pivot e) h q }

Canonical val bind struct h e q p (f : bnd form h e q p) :=
ValForm (bind (bnd pivot f) e) . . .

step : ∀h.∀q.∀p.∀f : val form h q p. p→ verify f h q

Figure 2.6: Definition of the overloaded step lemma.

Using the overloaded lemma step we will present below, we will instead be able to prove

this as follows:

by do 2 apply: step

where do n tactic is the nth repeated application of tactic. When verifying a large

program, an overloaded lemma like step becomes increasingly convenient to use, for all

the usual reasons that overloading is useful in ordinary programming. This convenience

is borne out in our source files (Ziliani, 2014), where the interested reader can find the

verification of a linked list data type using step.

Intuitively, step works by inspecting the program expression being verified and selecting

an appropriate lemma to apply. In our example, the first application of step will apply

bnd writeR, and the second one val readR, exactly as in our manual proof.

Notational Convention 7. We use val ∗ to name every lemma concerning the symbolic

execution of a program expression consisting of a single command, like val readR. We

use bnd ∗ to name every lemma concerning the symbolic execution of a command inside

a bind expression, like bnd writeR.

Figure 2.6 shows the main structure, val form, for the overloaded lemma step. It has two

fields: (1) a program expression, which we call val pivot, and (2) a proof that, assuming

precondition p, the postcondition q will hold after executing the pivot program in the

initial heap h. Our overloaded lemma step is trivially proved by the projection of this

second field.

When step is applied to a goal verify e h q, the system tries to construct an instance

f : val form h q p, whose val pivot matches e. Figure 2.7 declares one such val ∗ instance,
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Canonical val read struct x v q r f :=
ValForm (read x) (val readR x v q r f)

Canonical bnd write struct x v w e q r f :=
BndForm (write x v) (bnd writeR x v w e q r f)

Figure 2.7: Registering individual lemmas with step.

val read struct, which is selected when e is a read x command, for some x. The second

field of the instance declares the lemma that should be applied to the verify goal; in this

case the val readR lemma.

Thus, declaring instances of val form corresponds to registering with step the lemmas

that we want applied for specific forms of e. For example, we can register lemmas that

apply when e is a primitive command such as alloc or dealloc. The only requirement is

that the form of the registered lemma matches the second field of val form; namely, the

lemma has a conclusion verify e h q and one premise p, for some e, h, q, and p.

When the command e is not a standalone command, but a bind composite, we redi-

rect step to search for an approriate lemma among bnd ∗ instances. That is achieved by

declaring a new structure bnd form and a canonical instance val bnd struct for val form in

Figure 2.6. When step is applied to a goal verify e h q, in which e is a bind, val bnd struct

is selected as a canonical instance. But since val bnd struct is parameterized by a hy-

pothesis f : bnd form h e q p, this redirects the unification algorithm into solving for

f .

Much as in the val form case, we need to register the bnd ∗ lemmas that the algorithm

should apply depending on the first command of e. Figure 2.7 shows an example instance

bnd write struct which registers lemma bnd writeR to be applied by step whenever e starts

with a write command.

In a similar way, we can register val ∗ and bnd ∗ lemmas for user-defined commands as

well, thereby extending step at will as we implement new commands. In this sense, step

is an open-ended automation procedure. Such open-endedness is yet another aspect of

lemma overloading that does not seem to have a direct correspondent in tactic-based

automation.
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2.6 Flexible Composition and Application of Overloaded

Lemmas

In this section we construct an overloaded version of the noalias lemma from the in-

troduction. This example presents two main challenges: (1) composing two overloaded

lemmas where the output of one is the input to the other one, and (2) making the

resulting lemma applicable in both forward and backward reasoning.

Concerning the first problem, there are several ways to solve it. We present different

alternative approaches to composing overloaded lemmas, equipping the interested reader

with a handy set of techniques with varying complexity/flexibility tradeoffs.

Concerning the second problem, the key challenge is to ensure that the unification

constraints generated during canonical structure inference are resolved in the intended

order. This is important because the postponing of a certain constraint may underspecify

certain variables, leading the system to choose a wrong intermediate value that will

eventually fail to satisfy the postponed constraint. In the case of noalias, the problem

is that a naive implementation will result in the triggering of a search for a pointer

in a heap before we know what pointer we’re searching for. Fortunately, it is possible

to handle this problem very easily using a simple design pattern we call parameterized

tagging.

In the following sections, we build several, progressively more sophisticated, versions of

the noalias lemma, ultimately arriving at a lemma noaliasR that will be applicable both

backwards and forwards. In the backwards direction, we will be able to use to it solve

a goal such as

(x1 != x2) && (x2 != x3) && (x3 != x1)

by rewriting repeatedly (notice the modifier “!”):

by rewrite !(noaliasR D)

Here, D is assumed to be a hypothesis describing the well-definedness of a heap con-

taining three singleton pointers, one for each pointer appearing in the goal. Notice how,

in order to rewrite repeatedly using the same lemma (noaliasR D), it is crucial that we

do not need to explicitly specify the pointers involved in each application of the lemma,

since each application involves a different pair of pointers. In our first versions of the

lemma, this advanced functionality will not be available, and the pointers will need to

be given explicitly, but eventually we will show how to support it.
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Structure tagged heap := Tag {untag : heap}
default tag (h : heap) := Tag h
ptr tag h := default tag h
Canonical union tag h := ptr tag h

Structure scan (s : seq ptr) :=
Scan { heap of : tagged heap;

: def heap of →
uniq s ∧ ∀x. x ∈ s→ x ∈ dom heap of }

Canonical union struct s1 s2 (f1 : scan s1) (f2 : scan s2) :=
Scan (append s1 s2) (union tag (f1 • f2)) . . .

Canonical ptr struct A x (v : A) :=
Scan (x :: nil) (ptr tag (x 7→ v)) . . .

Canonical default struct h := Scan nil (default tag h) . . .

Figure 2.8: Structure scan for computing a list of pointers syntactically appearing in
a heap.

Before exploring the different versions of the lemma, we begin by presenting the infras-

tructure common to all of them.

2.6.1 Basic Infrastructure for the Overloaded Lemma

Given a heap h, and two pointers x and y, the algorithm for noalias proceeds in three

steps: (1) scan h to compute the list of pointers s appearing in it, which must by well-

definedness of h be a list of distinct pointers; (2) search through s until we find either

x or y; (3) once we find one of the pointers, continue searching through the remainder

of s for the other one. Figures 2.8–2.10 show the automation procedures for performing

these three steps.

Step (1) is implemented by the scan structure in Figure 2.8. Like the ast structure from

Section 2.4, scan returns its output using its parameter (here, s). It also outputs a proof

that the pointers in s are all distinct (i.e., uniq s) and that they are all in the domain

of the input heap, assuming it was well-defined.

Step (2) is implemented by the search2 structure (named so because it searches for two

pointers, both taken as parameters to the structure). It produces a proof that x and y

are both distinct members of the input list s, which will be passed in through unification

with the seq2 of projection. The search proceeds until either x or y is found, at which

point the search1 structure (next paragraph) is invoked with the other pointer.
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Structure tagged seq2 := Tag2 {untag2 : seq ptr}
foundz (s : seq ptr) := Tag2 s
foundy s := foundz s
Canonical foundx s := foundy s

Structure search2 (x y : ptr) :=
Search2 { seq2 of : tagged seq2;

: x ∈ seq2 of ∧ y ∈ seq2 of
∧(uniq seq2 of → x != y) }

Canonical x struct x y (s1 : search1 y) :=
Search2 x y (foundx (x :: s1)) . . .

Canonical y struct x y (s1 : search1 x) :=
Search2 x y (foundy (y :: s1)) . . .

Canonical z struct x y z (s2 : search2 x y) :=
Search2 x y (foundz (z :: s2)) . . .

Figure 2.9: Structure search2 for finding two pointers in a list.

Structure tagged seq1 := Tag1 {untag1 : seq ptr}
recurse tag (s : seq ptr) := Tag1 s
Canonical found tag s := recurse tag s

Structure search1 (x : ptr) := Search1 { seq1 of : tagged seq1;
: x ∈ seq1 of }

Canonical found struct (x : ptr) (s : seq ptr) :=
Search1 x (found tag (x :: s)) . . .

Canonical recurse struct (x y : ptr) (f : search1 x) :=
Seach1 x (recurse tag (y :: f)) . . .

Figure 2.10: Structure search1 for finding a pointer in a list.

Step (3) is implemented by the search1 structure, which searches for a single pointer x

in the remaining piece of s, returning a proof of x’s membership in s if it succeeds. Its

implementation is quite similar to that of the find structure from Section 2.2.

2.6.2 Naive Composition

The noalias lemma we wish to build is, at heart, a composition of two subroutines:

one implemented by the structure scan and the other by the structure search2. Indeed,

looking at the structures scan and search2, we notice that the output of the first one

coincides with the input of the second one: scan computes the list of distinct pointers in
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a heap, while search2 proves that, if the list output by scan contains distinct pointers,

then the two pointers given as parameters are distinct.

Our first, naive attempt at building noalias is to (1) define overloaded lemmas corre-

sponding to scan and search2, and (2) compose them using ordinary (function) compo-

sition, in the same that way that we composed the two lemmas simplify and cancelR in

Section 2.4.3. As we will see, this direct approach does not quite work—i.e., we will not

get out a general lemma in the end—but it is instructive to see why.

First, we create the two overloaded lemmas, scan it and search them, whose proofs are

merely the proof projections from the scan and search2 structures. As usual, we leave

the structure projections (here of f and g) implicit:

scan it : ∀s : seq ptr.∀f : scan s.

def f → uniq s

search them : ∀x y : ptr. ∀g : search2 x y.

uniq g → x != y

We can apply their composition in the same way as in Section 2.4.3. For example:

Hyp. D : def (i1 • (x1 7→ v1 • x2 7→ v2) • (i2 • x3 7→ v3))

Goal : x1 != x3

Proof : by apply: (search them x1 x3 (scan it D))

During the typechecking of the lemma to be applied (i.e., search them x1 x3 (scan it D)),

Coq will first unify D’s type with that of scan it’s premise (i.e., def (untag (heap of ?f))),

which forces the unification of the heap in the type of D with the implicit projection

untag (heap of ?f). This in turn triggers an inference problem in which the system solves

for the canonical implementation of ?f by executing the scan algorithm, thus computing

the pointer list s (in this case, [x1, x2, x3]). After obtaining uniq s as the output of

scan it, the search for the pointers x1 and x3 is initiated by unifying uniq s with the

premise of search them (i.e., uniq (seq2 of (untag2 ?g))), which causes s to be unified

with seq2 of (untag2 ?g), thus triggering the resolution of ?g by the search2 algorithm.

We may be tempted, then, to define the lemma noalias as a direct composition of the two

lemmas. Unfortunately this will not work, because although we can compose the lem-

mas dynamically (i.e., when applied to a particular goal), we cannot straightforwardly

compose them statically (i.e., in the proof of the general noalias lemma with unknown
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parameters). To see why, let us try to build the lemma using the structures:

noaliasR fwd wrong : ∀x y : ptr. ∀s : seq ptr. ∀f : scan s. ∀g : search2 x y.

def f → x != y

The reason we cannot prove this lemma is that there is no connection between the output

of the scan—that is, s—and the input sequence of search2. To put it another way, what

we have is a proof that the list of pointers s appearing in the heap component of f is

unique, but what we need is a way to prove that the list component of g is unique. We

do not have any information telling us that these two lists should be equal, and in fact

there is no reason for that to be true.

2.6.3 Connecting the Lemmas with an Equality Hypothesis

To prove the general noalias lemma, we clearly need a way to connect the output of scan

with the input of search2. A simple way to achieve this is by adding an extra hypothesis

representing the missing connection (boxed below), using which the proof of the lemma

is straightforward. For clarity, we make the projection in this hypothesis explicit.

noaliasR fwd : ∀x y : ptr.∀s : seq ptr. ∀f : scan s. ∀g : search2 x y.

def f → s = (untag2 (seq2 of g)) → x != y

We show how it works by applying it to the same example as before. We assume s, f, g

implicit.

Hyp. D : def (i1 • (x1 7→ v1 • x2 7→ v2) • (i2 • x3 7→ v3))

Goal : x1 != x3

Proof : by apply: (noaliasR fwd x1 x3 D (erefl ))

Here, erefl x is the proof that x = x. The trace of the typechecker is roughly as follows.

It:

1. Generates fresh unification variables for each of the arguments: ?x, ?y, ?s, ?f, ?g.

2. Unifies ?x and ?y with the pointers given as parameters, x1 and x3, respectively.

3. Unifies the hypothesis D with the hypothesis of the lemma. More precisely, with

?f : scan ?s, it will unify

def ?f ≈ def (i1 • (x1 7→ v1 • x2 7→ v2) • (i2 • x3 7→ v3))

starting the scan’ing of the heap. When scan is finished, we get ?s = [x1, x2, x3].
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4. Unifies the equality with the type of erefl , where is an implicit argument. More

precisely, Coq will create a unification variable ?t for this implicit argument, and

unify

(?t = ?t) ≈ ([x1, x2, x3] = untag2 (seq2 of ?g))

where ?g : search2 x1 x3. Next, it decomposes the equality, obtaining equations

?t ≈ [x1, x2, x3]

?t ≈ untag2 (seq2 of ?g)

which effectively results in the equation we need for triggering the search for the

two pointers in s:

[x1, x2, x3] ≈ untag2 (seq2 of ?g)

The astute reader may have noticed that, in the definition of noaliasR fwd, we purposely

arranged for the hypothesis def f to appear before the equality of s and g. If instead

we had put it afterward, the last two steps would have been swapped, resulting in a

doomed search for the pointers in s before the identity of s as [x1, x2, x3] was known.

In fact, note that we can actually arrange for def f to be hoisted out even further, outside

the scope of the pointers x and y. The benefit of doing so is that we can scan a heap

just once, and then use the resulting lemma to prove non-aliasing properties between

different pairs of pointers without rescanning the heap each time. In particular, let our

lemma be

noaliasR fwd : ∀s : seq ptr.∀f : scan s. ∀d : def f. ∀x y : ptr. ∀g : search2 x y.

s = untag2 (seq2 of g)→ x != y

and hypothesis D be as before. We can then make a local lemma abbreviation with the

partially applied lemma

have F := noaliasR fwd D

Typechecking this local definition implicitly solves for s and f by scanning the heap

defined by D, leaving only x, y, and g to be resolved by subsequent instantiation. We

can then solve the following goal by rewriting several times using the partially-applied

F :

Goal : x1 != x3 && x2 != x3

Proof : by rewrite (F x1 x3 (erefl )) (F x2 x3 (erefl ))
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2.6.4 Looking Backward, Not Forward

Note that, when applying the noaliasR fwd lemma from the previous section, we need to

instantiate the pointer parameters x and y explicitly, or else the search will fail. More

precisely, the search will proceed without knowing which pointers to search for, and Coq

will end up unifying x and y with (as it happens) the first two pointers in the list s (in

the above example, x1 and x2). If they are not the pointers from the goal (as indeed in

the example they are not), the application of the lemma will simply fail.

For many examples, like the cancelR example in Section 2.4 this is not a problem since

the lemma is intended to be used only in forward mode. However, if we want noalias

to be applicable also in backward mode—in particular, if we want to rewrite repeatedly

with noalias D as shown at the beginning of this section—then we need to find a way of

helping Coq infer the pointer arguments. The approach we present in this section will

demonstrate yet another way of composing lemmas, which improves on the approach of

the previous section in that it enables one (but not both) of the pointer arguments of

noalias to be inferred. It thus serves as a useful bridge step to the final version of noalias

in Section 2.6.5, which will be applicable both forwards and backwards.

The idea is to replace the equality hypothesis in the previous formulation of the lemma

with a bespoke structure, check, which serves to unify the output of scan and the input

of search2. To understand where we put the “trigger” for this structure, consider the

noaliasR fwd lemma from the previous section. There, the trigger was placed strategically

after the hypothesis deff to fire the search after the list of pointers is computed. If we

want to remove the equality hypothesis, then we do not have any other choice but to

turn one of the pointers into the trigger.

We show first the reformulated lemma noaliasR fwd to explain the intuition behind this

change. As in our last version of the lemma, we move the hypothesis def f before the

pointer arguments x and y to avoid redundant recomputation of the scan algorithm.

noaliasR fwd : ∀s : seq ptr. ∀f : scan s. ∀d : deff. ∀x y : ptr. ∀g : check x y s.

x != y of g

As before, when the lemma is applied to a hypothesis D of type def h, the heap h

will be unified with the (implicit) projection untag (heap of f). This will execute the

scan algorithm, producing as output the pointer list s. However, when this lemma is

subsequently applied in order to solve a goal of the form x′ != y′, the unification of that

goal with the conclusion of the lemma will trigger the unification of y′ with y of ?g (the

projection from check, which we have made explicit here for clarity), and that will in
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turn initiate the automated search for the pointers in the list s. Note that we could use

the unification with either x′ or y′ to trigger the search, but here we have chosen the

latter.

We define the structure check and its canonical instance start as follows:

Structure check (x y : ptr) (s : seq ptr) :=

Check { y of : ptr;

: y = y of;

: uniq s→ x != y of }
Canonical start x y (s2 : search2 x y) :=

Check x y (untag2 (seq2 of s2)) y (erefl ) . . .

The sole purpose of the canonical instance start for the check structure is to take the

pointers x′ and y′ and the list s, passed in as parameters, and repackage them appro-

priately in the form that the search2 structure expects. In particular, while check is

keyed on the right pointer (here, y′), search2 is keyed on the list of pointers s, so a

kind of coercion between the two structures is necessary. Notice that this coercion is

only possible if the structure’s pointer parameter y is constrained to be equal to its y of

projection. Without this constraint, appearing as the second field (first proof field) of

check, we obviously cannot conclude x != y of from x != y.

Knowing that Coq unifies subterms in a left-to-right order, it should be clear that we can

avoid mentioning the pointer x′, since Coq will unify ?x with x′ before unifying y of g

with y′ and triggering the search. Consequently, if we have the goal

x1 != x3 && x2 != x3

and D has the same type as before, we can solve the goal by repeated rewriting as

follows:

rewrite !(noaliasR fwd D x3)

It is thus sensible to ask if we can avoid passing in the instantiation for the y parameter

(here, x3) explicitly. Unfortunately, we cannot, and the reason will become apparent by

following a trace of application.

Assume D as before. We solve the goal

x1 != x3

by

apply: (noaliasR fwd D x3)
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For the application to succeed, it must unify the goal with the inferred type for the

lemma being applied. Let us write ?s, ?f , ?d, ?x, ?y and ?g for the unification variables

that Coq creates for the arguments of noaliasR fwd. As usual in type inference, the type

of D must match the type of ?d, i.e., def ?f . As mentioned above, this produces the

unification problem that triggers the scanning:

untag (heap of ?f) ≈ i1 • (x1 7→ v1 • x2 7→ v2) • (i2 • x3 7→ v3)

In solving this problem, Coq instantiates variables ?f and ?s with If and [x1, x2, x3]

respectively, where If stands for an instance that we omit here.

Now Coq continues the inference, instantiating ?y with x3, and getting the following

type for the conclusion of the lemma:

?x != y of ?g

where ?g : check ?x x3 [x1, x2, x3]. Coq proceeds to unify this type with the goal:

?x != y of ?g ≈ x1 != x3

This generates two subproblems:

1. ?x ≈ x1

2. y of ?g ≈ x3

The first one is solved immediately, and the second one triggers the search for an instance.

The only available instance is start. After creating unification variables ?x′, ?y′ and ?s′2,

one for each argument of the instance, Coq unifies the type of the instance with the

expected type, i.e.,

check ?x′ ?y′ (untag2 (seq2 of ?s′2)) ≈ check x1 x3 [x1, x2, x3]

therefore creating the following unification problems:

1. ?x′ ≈ x1

2. ?y′ ≈ x3

3. untag2 (seq2 of ?s′2) ≈ [x1, x2, x3]

After solving the first two problems right away, the third problem triggers the search for

the pointers in the list. It is only now, after successfully solving these equations, that
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Coq unifies the y of projection of the instance with the expected one from the original

equation, getting the trivial equation x3 ≈ x3. Finally, it can assign the instance to ?g,

i.e.,

?g ≈ start x1 x3 ?s′2

thus successfully proving the goal.

It should now hopefully be clear why we needed to pass x3 as an explicit argument. If

we had left it implicit, the unification problem #3 above would have triggered a search

on an unknown ?y′, even though the information about the identity of ?y′ was made

available in the subsequent step.

2.6.5 Reordering Unification Subproblems via Parameterized Tagging

Fortunately, there is a simple fix to our check structure to make our lemma infer both

pointers from the goal without any intervention from the user.

The Pattern: In order to fix our check structure, we need a way to reorder the

unification subproblems so that ?y gets unified with x3 before the search algorithm gets

triggered on the pointer list s. The trick for doing this is to embed the parameter y

in the type of the projector y of, thus ensuring higher priority in the unification order.

Specifically, we will give y of the type equals ptr y, which (as the name suggests) will

serve to constrain y of to be equal to y and to ensure that this constraint is registered

before the search algorithm is triggered. (Technically, equals ptr y is not a singleton

type, but canonical instance resolution will cause it to effectively behave like one.) We

call this pattern parameterized tagging.

To illustrate, we present the structure equals ptr, its canonical instance equate, and the

requisite changes to the check structure (and its instance) according to the pattern:

Structure equals ptr (z : ptr) := Pack {unpack : ptr}

Canonical equate (z : ptr) := Pack z z

Structure check (x y : ptr) (s : seq ptr) :=

Check { y of : equals ptr y;

: uniq s→ x != unpack y of }

Canonical start x y (s2 : search2 x y) :=

Check x y (untag2 (seq2 of s2)) (equate y) . . .
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Here, the instance equate guarantees that the canonical value of type equals ptr z is a

package containing the pointer z itself.

We can now revise our statement of the overloaded noaliasR fwd lemma ever so slightly

to mention the new projector unpack (which could be made implicit). We also rename

it, since this is the final presentation of the lemma:

noaliasR : ∀s : seq ptr.∀f : scan s. ∀d : deff.∀x y : ptr. ∀g : check x y s.

x != unpack (y of g)

As before, suppose that noaliasR has already been applied to a hypothesisD of type def h,

so that the lemma’s parameter s has already been solved for. Then, when noaliasR is

applied to a goal x1 != x3, the unification engine will unify x1 with the argument ?x of

noaliasR, and proceed to unify

unpack (y of ?g) ≈ x3

in a context where ?g : check x1 ?y s. In order to fully understand what is going on, we

detail the steps involved in the instance search. The only instance applicable is equate.

After opening the instance by creating the unification variable ?z, Coq unifies the type

of the instance with the type of y of ?g:

equals ptr ?z ≈ equals ptr ?y

and obtains the solution ?z = ?y. Then, the unpack projection from equate ?z (which is

simply ?z) is unified with the value it is supposed to match, namely x3. This step is the

key to understanding how we pick up x3 from the goal. Replacing ?z with its solution

?y, we thus get the equation

?y ≈ x3

Finally, Coq unifies the expected instance with the one computed:

y of ?g ≈ equate x3

which triggers the search for the pointers in s as before.

Applying The Lemma: The overloaded noaliasR lemma supports a number of modes

of use: it can be applied, used as a rewrite rule, or composed with other lemmas. For

example, assume that we have a hypothesis specifying a disjointness of a number of
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heaps in a union:

D : def (i1 • (x1 7→ v1 • x2 7→ v2) • (i2 • x3 7→ v3))

Assume further that the arguments x, y, s, f and g of noaliasR are implicit, so that we

can write simply (noaliasR D) when we want to partially instantiate the lemma with

the hypothesis D. Then the following are some example goals, and proofs to discharge

them, illustrating the flexibility of use. As can be seen, no tedious reordering of heap

expressions by commutativity and associativity is needed.

1. The lemma can be used in backward reasoning. The type checker picks up x1 and

x2 from the goal, and confirms they appear in D.

Goal : x1 != x2

Proof : by apply: (noaliasR D)

2. The lemma can be used in iterated rewriting. The lemma is partially instantiated

with D. It performs the initial scan of D once, but is then used three times to

reduce each conjunct to true. There is no need in the proof to specify the input

pointers to be checked for aliasing. The type checker can pick them up from the

goal, in the order in which they appear in the conjunction.

Goal : (x1 != x2) && (x2 != x3) && (x3 != x1)

Proof : by rewrite !(noaliasR D)

3. The lemma can be composed with other lemmas, to form new rewrite rules. Again,

there is no need to provide the input pointers in the proofs. For example, given

the standard library lemma negbTE : ∀b:bool. !b = true→ b = false, we have:

Goal : if (x2 == x3) && (x1 != x2) then false else true

Proof : by rewrite (negbTE (noaliasR D))

4. That said, we can provide the input pointers in several ways, if we wanted to, which

would correspond to forward reasoning. We can use the term selection feature of

rewrite to reduce only the specified conjunct in the goal.

Goal : ((x1 != x2) && (x2 != x3)) = (x1 != x2)

Proof : by rewrite [x2 != x3](noaliasR D) andbT

Here a rewrite by andbT : ∀b. b && true = b is used to remove the true left in the

goal after rewriting by noaliasR.
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5. Or, we can supply one (or both) of the pointer arguments directly to noaliasR.

Goal : ((x1 != x2) && (x2 != x3)) = (x1 != x2)

Proof : by rewrite (noaliasR (x :=x2) D) andbT

Goal : ((x1 != x2) && (x2 != x3)) = (x1 != x2)

Proof : by rewrite (noaliasR (y := x3) D) andbT

2.7 Characteristics of Lemma Overloading

We conclude this chapter by discussing the properties of Lemma Overloading, as they

were laid out in the introduction of the dissertation.

Maintainability. Since overloaded lemmas are typed, changes in definitions are imme-

diately spot by the typechecker. Moreover, overloaded lemmas, such as regular lemmas,

can be easily packed in modules to help reusability.

Composability. As we have shown in the previous section, composing two overloaded

lemmas can be a trivial or a highly convoluted task, depending on the problem at hand.

For instance, in Figure 2.9 the search2 overloaded lemma calls the search overloaded

lemma without needing any particular technical device; however, this was not the case

when trying to compose scan with search2. But where the technique of Lemma Over-

loading really shines is when tactics are extended by simple composition with regular

lemmas, as shown at the end of the previous section.

Interactive Tactic Programming. A very distinctive characteristic of Lemma Over-

loading (and, as it will turn out, Mtac), with respect to other tactic languages, is its in-

tegration with the Coq proof environment. This comes from the fact that each instance

is a plain Coq term, only with a particular treatment during unification. Therefore,

building an instance interactively is as easy as building any other term interactively.

The code shown below is an example of interactive tactic programming applied to the

search algorithm from Figure 2.10. In this case we consider two new instances to handle

list concatenation. The first instance searches for the element in the list on the left of the

concatenation symbol, while the second one searches for it in the list on the right. We

omit the definition of the new tags, app right tag and app left tag, but they are standard.
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Program Canonical app right form x s (f : search x) :=

Search x (app right tag (s ++ f)) .

Next Obligation.

case: f⇒/= r H.

rewrite /axiom in H ×.

by rewrite mem cat H orbT.

Qed.

Program Canonical app left form x s (f : search x) :=

Search x (app left tag (f ++ s)) .

Next Obligation.

case: f⇒/= r H.

rewrite /axiom in H ×.

by rewrite mem cat H.

Qed.

In this code the instances are created very much as the previous instances in Figure 2.10,

except for two things: (1) we prepended the keyword Program to the declaration of the

instances, and (2) we provided underscores ( ) as the values for the proof component of

the search structure.

The Program keyword (Sozeau, 2007) works as follows: after elaborating a term, Coq

will ask us to construct interactively every missing part of the term (i.e., uninstantiated

meta-variables). In the Coq terminology, every such meta-variable is an obligation we

must instantiate by iterating the list of obligations (via the Next Obligation keyword).

The original term is completed when all the obligations are done with.

In the code above, the Program keyword is used to enable interactive tactic program-

ming. The two underscores (one for each proof component of an instance) are trans-

formed into meta-variables by Coq at elaboration. Since these meta-variables are left

uninstantiated (Coq cannot guess the proofs), Coq asks us for the proofs as obligations.

We then provide the proofs interactively, with the proof scripts listed.

Simplicity and Formality. Clearly the main drawback of Lemma Overloading is the

difficulty to build and compose complex tactics, as we saw in Section 2.6. The semantics

of Lemma Overloading relies heavily on the order in which subproblems are considered

by both the elaboration and the unification algorithm. About the former, the closest
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formal description we are aware of, is the elaboration algorithm for the CIC based proof

assistant HELM Sacerdoti Coen (2004, chp. 10). Although it is not precisely what Coq

does, it helps grasping and intuitive idea of what it does. For the elaboration algorithm,

this intuitive idea is, according to our experience, enough for building overloaded lemmas.

However, intuition is not enough when it comes to unification. Although the patterns

presented in this chapter help building most of the idioms required in a real development,

the proof developer still has to carefully consider the order of unification subproblems.

This order is difficult to grasp by mere intuition, and to the best of our knowledge,

there is no up-to-date documentation explaining unification in Coq. It is possible to

get a rough approximation by combining the unification algorithm of HELM, described

also in Sacerdoti Coen (2004, chp. 10), with the description of canonical structures in

Säıbi (1997). However, taking these sources to understand the underlying mechanism

of Lemma Overloading can result in a backshot, as the difference between these works

and the actual algorithm in Coq is quite big.

In Chapter 4 we provide a full-fleshed description of a new unification algorithm for Coq,

considering CIC with Canonical Structures. Although it is not intended to be a precise

description of the current algorithm in Coq, but rather of an improved algorithm, it still

covers the main aspects of the current algorithm. And the proof of soundness of the

unification algorithm is, for the moment, a conjecture.

Performance. The method presented in this chapter has some performance issues,

mainly due to the following reasons:

1. There are no tools available to control the size of proof terms, and therefore proof

terms generated using this method tend to grow. In particular, the excessive use

of structure arguments generates several copies of objects. This problem can be

witnessed in the proof term shown at the end of Section 2.2, where the input

pointer z is copied twice, once for each instance of the structure.

2. The programming model is a restricted form of dependently typed logic program-

ming, without a cut operator to reduce the size of the search tree.

3. The programming model does not allow for effective imperative data structures.

To a certain extent, a highly experienced proof developer may encode the algorithms in

certain ways to overcome the first two issues. For (1), sometimes (but not always!) it is

possible to encode the algorithm in a way that it requires fewer arguments in the type

of the structure. And for (2), it is possible to force the unification algorithm to fail early
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and, therefore, to backtrack early. Still, for the most of the cases, there is no way of

eliminating all of the data duplication and backtracking.

Extensibility. Canonical structures, like any other overloading mechanism, exists pre-

cisely to extend dynamically the cases of a generic function. We already saw a simple

example of an extensible algorithm in Section 2.5.2, where adding a new case to the step

overloaded lemma is just a matter of adding a new canonical instance.

Now, in the presence of overlapping instances, where the tagging pattern is used, this is

not the case. That is, we cannot add an instance just like that, as the list of instances

is hardcoded in the list of tags. There is, however, a simple fix to the problem: use

the tagging pattern locally, to solve the disambiguation of the overlapping instances.

This is, in fact, the spirit of the step overloaded lemma: all the bind ∗ instances, which

overlap on the bind constructor, are treated separately in their own structure. The main

structure then uses this auxiliary structure to disambiguate the overlapping instances.

In the case of the step overloaded lemma, each of the instances of the auxiliary structure

is uniquely determined by the constructor (read, write, etc.). Sometimes, however, the

structure of the problem at hand requires us to use the tagging pattern in the auxiliary

structure. In that case, the problem requires a bit more of thinking when combining the

main structure with the auxiliary structure.

To illustrate, we consider a fully extensible version of the indom overloaded lemma from

Section 2.3 . The original version uses a fixed list of tags, and therefore does not allow

for new instances to be added. If we look at the constants we need to disambiguate, we

find that only the disjoint union of heaps is the problematic one. Therefore, we can push

the disambiguation of instances to that constructor only, and use an auxiliary structure

to help disambiguate the two possible cases (when the pointer is in the heap on the left

or on the right).

However, as it turns out, adding the tagging pattern to the auxiliary structure is not

a trivial task. The reader is invited to try a naive approach; here we present the final

solution, which uses the parametrized tagging pattern to trigger the search in both sides

of the disjoint union operator.

In Figure 2.11 we present the revised version of the indom overloaded lemma. In the

first lines (01–06) we create the main structure find as before, except that now the

heap is not tagged. Between lines 08–20 we create a new structure, findU, that uses

the tagging pattern to disambiguate the two instances for the union operator. Note

that this structure is keyed on the pointer being searched for instead of the heap (as in
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find). The reason is rather technical, and will become evident after seeing the use of the

parametrized tagging pattern.

The parametrized tagging pattern is used between lines 22–32, with the structure checkH

as the “glue code” to trigger the algorithm encoded in the findU structure. The following

lines show the two instances of the main algorithm: the one for points-to, and the one

for disjoint union. The former is standard, but the latter requires a bit of explanation.

It uses the auxiliary checkH structure to trigger the search of the pointer of both heaps.

The search for an instance c of this structure is done when the heap on the right of the

operator is unified with the heap ofH (implicit) projector of c. Since the heap is also an

input of the algorithm, the heap ofH field of checkH must use the parametrized tagging

pattern.

When the unique instance of checkH, startH, is invoked, it calls further the findU algo-

rithm to perform the actual search. The call is done, as mentioned above, by matching

the pointer with the ptr ofU (implicit) projector of findU. This is to make sure that both

heaps are known before the search, since in startH the pointer is unified last, after the

heaps h1 and h2.

The astute reader may wonder why we are not using the parametrized tagging pattern

again, since we need the pointer as input of the algorithm in findU. The answer is: we

can, but we do not need to in this particular case, for rather technical reasons that will

become obvious when we look in details the unification algorithm in Chapter 4.

With the new definition of indom we can create a new heap operator and add a new

instance for it. For instance, the code below defines the function array, that given an

initial pointer x, a length n, and an initial value v, creates n adjoined pointers, starting

from x, pointing to n copies of value v. The notation x.+m creates a pointer m places

higher in memory than x. Then, we add a new instance stating that the last pointer of

the array is in the domain. (This instance is just for illustration purposes only; a real

application will search for inclusion of any pointer between x and x.+n. In Section 3.3.3

we discuss a solution for a similar problem.)

Definition array A (x : ptr) (n : nat) (v : A) :=

iteri n (λ m h. x .+ m 7→ v • h) empty.

Canonical array last A m y (v : A) :=

@Form (y .+ m) (array y m.+1 v) ...
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01 Definition invariant x (h : heap) :=
02 def h → x ∈ dom h.
03
04 Structure find (x : ptr) :=
05 Form { heap of :> heap;
06 : invariant x heap of }.
07
08 Structure tagged ptrU := TagU { untagU :> ptr }.
09 Definition right tagU := TagU.
10 Canonical left tagU x := right tagU x.
11
12 Structure findU (h : heap) :=
13 FormU { ptr ofU :> tagged ptrU;
14 : invariant ptr ofU h }.
15
16 Canonical search leftU x (h : heap) (f : find x) :=
17 FormU (f • h) (left tagU x) ...
18
19 Canonical search rightU x (h : heap) (f : find x) :=
20 FormU (h • f) (right tagU x) ...
21
22 Structure equals heap (h : heap) :=
23 PackH { unpackH :> heap;
24 : unpackH = h }.
25 Canonical equateH h := PackH (erefl h).
26
27 Structure checkH (h1 h2 : heap) x :=
28 CheckH { heap ofH :> equals heap h2;
29 : invariant x (h1 • h2) }.
30
31 Canonical startH h1 h2 (f : findU (h1 • h2)) :=
32 CheckH h1 h2 f (equateH h2) ...
33
34 Canonical ptr found A x (v : A) := Form x (x 7→ v) ...
35
36 Canonical findU bridge x (h1 h2 : heap) (c : checkH h1 h2 x) :=
37 Form x (h1 • c) ...
38
39 indom (x : ptr) (f : find x) : def f → x ∈ dom f

Figure 2.11: Tagging pattern and parametrized tagging pattern combined to locally
disambiguate instances.
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Mtac

We saw in the previous chapter how to encapsulate automation routines as overloaded

lemmas. Like an ordinary lemma, an overloaded lemma has a precise formal specification

in the form of a (dependent) Coq type. The key difference is that an overloaded lemma—

much like an overloaded function in Haskell—is not proven (i.e., implemented) once and

for all up front; instead, every time the lemma is applied to a particular goal, the system

will run a user-specified automation routine in order to construct a proof on the fly for

that particular instance of the lemma. To program the automation routine, one uses

canonical structure to declare a set of proof-building rules—implemented as Coq terms—

that will be fired in a predictable order by the Coq unification algorithm (but may or

may not succeed). In effect, one encodes one’s automation routine as a dependently typed

logic program to be executed by Coq’s type inference engine.

The major benefit of this approach is its integration into Coq: it enables users to program

tactics in Coq directly, rather than in a separate language, while at the same time offering

significant additional expressive power beyond what is available in the base logic of Coq.

The downside, however, is that the logic-programming style of canonical structures is in

most cases not as natural a fit for tactics as a functional-programming style would be.1

Moreover, canonical structures provide a relatively low-level language for writing tactics.

The control flow of sophisticated canonical structure programs depends closely on how

Coq type inference is implemented, and thus writing even simple tactics requires one to

think at the level of the Coq unification algorithm, sometimes embracing its limitations

and sometimes working around them. The series of “design patterns” presented in

the previous chapter were designed precisely for programming effectively with canonical

structures. While these design patterns are clearly useful, the desire for them nonetheless

suggests that there is a high-level language waiting to be born.

1In terms of expressivity, there are tradeoffs between the two styles—for further discussion, see
Section 3.7.

77
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3.1 Mtac: A Monad for Typed Tactic Programming in

Coq

In this chapter, we present a new language—Mtac—for typed tactic programming in

Coq. Like Beluga and VeriML, Mtac supports general-purpose tactic programming in a

direct functional style. Unlike those languages, however, Mtac is not a separate language,

but rather a simple extension to Coq. As a result, Mtac tactics (or as we call them,

Mtactics) have access to all the features of ordinary Coq programming in addition to

a new set of tactical primitives. Furthermore, like overloaded lemmas, their (partial)

correctness is specified statically within the Coq type system itself, and they are fully

integrated into Coq, so they can be programmed and used interactively. Mtac is thus,

to our knowledge, the first language to support interactive, dependently typed tactic

programming.

The key idea behind Mtac is dead simple. We encapsulate tactics in a monad, thus

avoiding the need to change the base logic and trusted kernel typechecker of Coq at all.

Then, we modify the Coq infrastructure so that it executes these monadic tactics, when

requested to do so, during type inference (i.e., during interactive proof development or

when executing a proof script).

More concretely, Mtac extends Coq with:

1. An inductive type family #τ (read as “maybe τ”) classifying Mtactics that—if they

terminate successfully—will produce Coq terms of type τ . The constructors of this

type family essentially give the syntax for a monadically-typed tactic language:

they include the usual monadic return and bind, as well as a suite of combinators

for tactic programming with fixed points, exception handling, pattern matching,

and more. (Note: the definition of the type family #τ does not per se require any

extension to Coq—it is just an ordinary inductive type family.)

2. A primitive tactic execution construct, run t, which has type τ assuming its ar-

gument t is a tactic of type #τ . When (our instrumentation of) the Coq type

inference engine encounters run t, it executes the tactic t. If that execution ter-

minates, it will either produce a term u of type τ (in which case Coq will rewrite

run t to u) or else an uncaught exception (which Coq will report to the user). If

a proof passes entirely through type inference without incurring any uncaught ex-

ceptions, that means that all instances of run in the proof must have been replaced

with standard Coq terms. Hence, there is no need to extend the trusted kernel

typechecker of Coq to handle run.
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01 Definition search (x : A) :=
02 mfix f (s : seq A) :=
03 mmatch s as s’ return #(x ∈ s’) with
04 | [l r] l ++ r ⇒
05 mtry
06 il ← f l;
07 ret (in or app l r x (or introl il))
08 with ⇒
09 ir ← f r;
10 ret (in or app l r x (or intror ir))
11 end
12 | [s’] (x :: s’) ⇒ ret (in eq )
13 | [y s’] (y :: s’) ⇒
14 r ← f s’;
15 ret (in cons y r)
16 | ⇒ raise NotFound
17 end.

Figure 3.1: Mtactic for searching in a list.

Example: Searching in a List. To get a quick sense of what Mtac programming

is like, consider the example in Figure 3.1. Here, search is a tactical term of type

∀x : A. ∀s : seq A. #(x ∈ s). When executed, search x s will search for an element x (of

type A) in a list s (of type seq A), and if it finds x in s, it will return a proof that x ∈ s.
Note, however, that search x s itself is just a Coq term of monadic type #(x ∈ s), and

that the execution of the tactic will only occur when this term is run.

The implementation of search relies on four new features of Mtac that go beyond what is

possible in ordinary Coq programming: it iterates using a potentially unbounded fixed

point mfix (line 2), it case-analyzes the input list s using a new mmatch constructor

(line 3), it raise-s an exception NotFound if the element x was not found (line 16), and

this exception is caught and handled (for backtracking purposes) using mtry (line 5).

These new features, which we will present in detail in Section 3.2, are all constructors

of the inductive type family #τ . Regarding mmatch, the reason it is different from

ordinary Coq match is that it supports pattern-matching not only against primitive

datatype constructors (e.g., [] and ::) but also against arbitrary terms (e.g., applications

of the ++ function for concatenating two lists). For example, search starts out (line 4) by

checking whether s is an application of ++ to two subterms l and r. If so, it searches for

x first in l and then in r. In this way, mmatch supports case analysis of the intensional

syntactic structure of open terms, in the manner of VeriML’s holcase (Stampoulis and

Shao, 2010) and Beluga’s case (Pientka, 2008).
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By run-ning search, we can now, for example, very easily prove the following lemma

establishing that z is in the list [x; y; z]:

Lemma z in xyz (x y z : A) : z ∈ [x; y; z] := run (search )

Note here that we did not even need to supply the inputs to search explicitly: they were

picked up from context, namely the goal of the lemma (z ∈ [x; y; z]), which Coq type

inference proceeds to unify with the output type of the Mtactic search.

3.1.1 Chapter Overview

In the remainder of this chapter, we will:

• Describe the design of Mtac in detail (§3.2).

• Give a number of examples to concretely illustrate the benefits of Mtac program-

ming (§3.3).

• Present the formalization of Mtac, along with meta-theoretic results such as type

safety (§3.4).

• Explore some technical issues regarding the integration of Mtac into Coq (§3.5).

• Extend the language to support stateful Mtactics (§3.6).

The Coq patch and the examples can be downloaded from:

http://plv.mpi-sws.org/mtac

3.2 Mtac: A Language for Proof Automation

In this section, we describe the syntax and typing of Mtac, our language for typed proof

automation.

Syntax of Mtac. Mtac extends CIC, the Calculus of (co-)Inductive Constructions

(see e.g., Bertot and Castéran (2004)), with a monadic type constructor #τ , representing

tactic computations returning results of type τ , along with suitable introduction and

elimination forms for such computations. We define # : Type → Prop as a normal

CIC inductive predicate with constructors reflecting our syntax for tactic programming,

which are shown in Fig. 3.2. (We prefer to define # inductively instead of axiomatizing

http://plv.mpi-sws.org/mtac


Chapter 3. Mtac 81

# : Type→ Prop
ret : ∀A. A→ #A
bind : ∀A B. #A→ (A→ #B)→ #B
raise : ∀A. Exception→ #A
mtry : ∀A. #A→ (Exception→ #A)→ #A
mfix : ∀A P. ((∀x : A. #(P x))→ (∀x : A. #(P x)))

→ ∀x : A. #(P x)
mmatch : ∀A P (t : A). seq (Patt A P )→ #(P t)
print : ∀s : string. #unit
nu : ∀A B. (A→ #B)→ #B
abs : ∀A P x. P x→ #(∀y : A. P y)
is var : ∀A. A→ #bool
evar : ∀A. #A
is evar : ∀A. A→ #bool

Patt : ∀A (P : A→ Type). Type
Pbase : ∀A P (p : A) (b : #(P p)). Patt A P
Ptele : ∀A P C. (∀x : C. Patt A P )→ Patt A P

Figure 3.2: The # and Patt inductive types.

it in order to cheaply ensure that we do not affect the logical consistency of CIC.)

The # constructors include standard monadic return and bind (ret, bind), primitives

for throwing and handling exceptions (raise, mtry), a fixed point combinator (mfix),

a pattern matching construct (mmatch), and a printing primitive useful for debugging

Mtactics (print). Mtac also provides more specialized operations for handling parameters

and unification variables (nu, abs, is var, evar, is evar), but we defer explanation of those

features until §3.3.2.

First, let us clear up a somewhat technical point. The reason we define # as an inductive

predicate (i.e., whose return sort is Prop rather than Type) has to do with the handling

of mfix. Specifically, in order to satisfy Coq’s syntactic positivity condition on inductive

definitions, we cannot declare mfix directly with the type given in Figure 3.2, since that

type mentions the monadic type constructor # in a negative position. To work around

this, in the inductive definition of #τ , we replace the mfix constructor with a variant,

mfix′, in “Mendler style” (Hur et al., 2013, Mendler, 1991), i.e., in which references to

# are substituted with references to a parameter �:

mfix′ : ∀A P �. (∀x : A. �(P x)→ #(P x))→
((∀x:A. �(P x))→ (∀x:A. �(P x)))→ ∀x:A. #(P x)

The mfix from Figure 3.2 is then recovered simply by instantiating the � parameter

of mfix′ with #, and instantiating its first value parameter with the identity function.

However, due to the inherent “circularity” of this trick, it only works if the type #τ
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belongs to an impredicative sort like Prop. (In particular, if #τ were defined in Type,

then while mfix′ would be well-formed, applying mfix′ to the identity function in order

to get an mfix would cause a universe inconsistency.) Fortunately, defining #τ in Prop

has no practical impact on Mtac programming. Note that, in CIC, Prop : Type; so it is

possible to construct nested types such as #(#τ).

Now, on to the features of Mtac. The typing of monadic ret and bind is self-explanatory.

The exception constructs raise and mtry are also straightforward: their types assume

the existence of an exception type Exception. It is easy to define such a type, as well as

a way of declaring new exceptions of that type, in existing Coq (see §3.5.4 for details).

The print statement print takes the string to print onto the standard output and returns

the trivial element.

Pattern matching, mmatch, expects a term of type A and a sequence of pattern match-

ing clauses of type Patt A P , which match objects x of type A and return results

of type P x. Binding in the pattern matching clauses is represented as a telescope:

Pbase p b describes a ground clause that matches the constant p and has body b, and

Ptele(λx. pc) adds the binder x to the pattern matching clause pc. So, for example,

Ptele(λx. Ptele(λy. Pbase (x+ y) b) represents the clause that matches an addition ex-

pression, binds the left subexpression to x and the right one to y, and then returns

some expression b which can mention both x and y. Another example is the clause,

Ptele(λx. Pbase x b) which matches any term and returns b.

Note that it is also fine for a pattern to mention free variables bound in the ambient

environment (i.e., not bound by the telescope pattern). Such patterns enable one to

check that (some component of) the term being pattern-matched is unifiable with a

specific term of interest. We will see examples of this in the search2 and lookup Mtactics

in §3.3.

Just as we did in the previous chapter, we often omit inferrable type annotations. Also,

in our examples and in our Coq development we use the following notation to improve
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readability of Mtactics:

x← t; t′ denotes bind t (λx. t′)

mfix f (x : τ) : #τ ′ := t denotes mfix (λx : τ. τ ′) (λf. λx. t)

νx : A. t denotes nu (λx : A. t)

mmatch t denotes mmatch (λx. τ) t

as x return #τ with [

| [x1] p1 ⇒ b1 Ptele x1 (Pbase p1 b1),

. . . . . .

| [xm] pm ⇒ bm Ptele xm (Pbase pm bm)

end ]

mtry t denotes mtry t (λx.

with ps end mmatch x with ps end)

where Ptele x1 · · ·xn p means Ptele(λx1. · · · . Ptele(λxn. p)· · ·). Both type annotations

in the mfix and in the mmatch notation (in the latter, denoted as x return #τ) are

optional and can be omitted, in which case the returning type is left to the type inference

algorithm to infer. The mfix construct accepts up to 5 arguments.

Running Mtactics. Defining # as an inductive predicate means that terms of type

#τ can be destructed by case analysis and induction. Unlike other inductive types, #

supports an additional destructor: tactic execution. Formally, we extend Coq with a

new construct, run t, that takes an Mtactic t of type #τ (for some τ), and runs it at

type-inference time to return a term u of type τ .

Γ ` t : #τ Γ ` t ∗ ret u

Γ ` run t : τ

We postpone the definition of the tactic evaluation relation,  , as well as a precise

formulation of the rule, to §3.4, but note that since tactic evaluation is type-preserving,

u has type τ , and thus τ is inhabited.

3.3 Mtac by Example

In this section, we offer a gentle introduction to the various features of Mtac by working

through a sequence of proof automation examples.
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3.3.1 noalias in Mtac

Our first example is a new version of the example that motivated Section 2.6, the lemma

noalias about non-aliasing of disjointly allocated pointers. The goal is to prove that two

pointers are distinct, given the assumption that they appear in the domains of disjoint

subheaps of a well-defined memory.

In Section 2.6, the noalias example was used to illustrate a rather subtle and sophisticated

design pattern for composition of overloaded lemmas. Here, it will help illustrate the

main characteristics of Mtac, while at the same time emphasizing the relative simplicity

and readability of Mtactics compared to previous approaches.

Motivating Example. Let us state a goal we would like to solve automatically:

D : def (h1 • (x1 7→ v1 • x2 7→ v2) • (h2 • x3 7→ v3))

x1 != x2 ∧ x2 != x3

Above the line is a hypothesis concerning the well-definedness of a heap mentioning x1,

x2, and x3, and below the line is the goal, which is to show that x1 is distinct from x2,

and x2 from x3.

Intuitively, the truth of the goal follows obviously from the fact that x1, x2, and x3

appear in disjoint subheaps of a well-defined heap. This intuition is made formal with

the following lemma (in plain Coq):

noalias manual : ∀(h:heap) (y1 y2:ptr) (w1:A1) (w2:A2).

def (y1 7→ w1 • y2 7→ w2 • h)→ y1 != y2

Unfortunately, we cannot apply this lemma using hypothesis D as it stands, since the

heap that D proves to be well-defined is not of the form required by the premise of

the lemma—that is, with the pointers in question (x1 and x2, or x2 and x3) at the

very front of the heap expression. It is of course possible to solve the goal by: (a)

repeatedly applying rules of associativity and commutativity for heap expressions in

order to rearrange the heap in the type of D so that the relevant pointers are at the

front of the heap expression; (b) applying the noalias manual lemma to solve the first

inequality; and then repeating (a) and (b) to solve the second inequality.

But we would like to do better. What we really want is an Mtactic that will solve these

kinds of goals automatically, no matter where the pointers we care about are located

inside the heap. One option is to write an Mtactic to perform all the rearrangements

necessary to put the two pointers at the front, and then apply the lemma above. This
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01 Record form h := Form {
02 seq of :> seq ptr;
03 axiom of : def h → uniq seq of
04 ∧ ∀ x. x ∈ seq of → x ∈ dom h }.
05
06 Definition scan :=
07 mfix f (h : heap) : #(form h) :=
08 mmatch h with
09 | [x A (v:A)] x 7→ v ⇒ ret (Form [x] ...)
10 | [l r] l • r ⇒
11 rl ← f l;
12 rr ← f r;
13 ret (Form (seq of rl ++ seq of rr) ...)
14 | [h’] h’ ⇒ ret (scan h [] ...)
15 end.

Figure 3.3: Mtactic for scanning a heap to obtain a list of pointers.

approach has two drawbacks: it is computationally expensive, and it generates big proof

terms. Both problems comes from the observation that the algorithm has to rearrange

the heap twice for each inequality, moving each pointer in the inequality to the front of

the heap by multiple applications of the commutativity and associativity lemmas.

Instead, we pursue a solution analogous to the one in Section 2.6, breaking the problem

into two smaller Mtactics scan and search2, combined in a third Mtactic, noalias.

The Mtactic scan. Figure 3.3 presents the Mtactic scan, the functional analogous to

the overloaded lemma with the same name. It scans its input heap h to produce a list

of the pointers x appearing in singleton heaps x 7→ v in h. More specifically, it returns a

dependent record2 containing a list of pointers (seq of, of type seq ptr), together with a

proof that, if h is well-defined, then (1) the list seq of is “unique” (denoted uniq seq of),

meaning that all elements in it are distinct from one another, and (2) its elements all

belong to the domain of the heap.

To do this, scan inspects the heap and considers three different cases. If the heap is a

singleton heap x 7→ v, then it returns a singleton list containing x. If the heap is the

disjoint union of heaps l and r, it proceeds recursively on each subheap and returns

the concatenation of the lists obtained in the recursive calls. Finally, if the heap does

not match any of the previous cases, then it returns an empty list. Note that this case

analysis is not possible using Coq’s standard match mechanism, because match only

pattern-matches against primitive datatype constructors. In the case of heaps, which

2The keyword Record is a synonym of Structure, but we use the former to avoid confusion with the
structures that we use for overloading.
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01 Definition search2 x y :=
02 mfix f (s : seq ptr) : #(uniq s → x != y) :=
03 mmatch s with
04 | [s’] x :: s’ ⇒ r ← search y s’; ret (foundx pf x r)
05 | [s’] y :: s’ ⇒ r ← search x s’; ret (foundy pf y r)
06 | [z s’] z :: s’ ⇒ r ← f s’; ret (foundz pf z r)
07 | ⇒ raise NotFound
08 end.

Figure 3.4: Mtactic for searching for two pointers in a list.

are really finite maps from pointers to values, x 7→ v and l • r are applications not of

primitive datatype constructors but of defined functions (7→ and •). Thus, in order to

perform our desired case analysis, we require the ability of Mtac’s mmatch mechanism

to pattern-match against the syntax of heap expressions.

In each case, scan also returns a proof that the output list obeys the aforementioned

properties (1) and (2). For presentation purposes, we follow the notation convention 5

and omit these proofs (denoted with . . . in the figures), but they are proven as standard

Coq lemmas. (We will continue to omit proofs in this way throughout the chapter

when they present no interesting challenges. The reader can find them in the source

files (Ziliani, 2014).)

The Mtactic search2. Figure 3.4 presents the Mtactic search2. It takes two elements

x and y and a list s as input, and searches for x and y in s. If successful, search2 returns

a proof that, if s is unique, then x is distinct from y. Similarly to scan, this involves a

syntactic inspection and case analysis of the input list s.

When s contains x at the head (i.e., s is of the form x :: s′), search2 searches for y in the

tail s′, using the Mtactic search from Section 3.1. If this search is successful, producing

a proof r : y ∈ s′, then search2 concludes by composing this proof together with the

assumption that s is unique, using the easy lemma foundx pf:

foundx pf : ∀x y : ptr. ∀s : seq ptr.

y ∈ s→ uniq (x :: s) → x != y

(In the code, the reader will notice that foundx pf is not passed the arguments y and

s explicitly. That is because we treat y and s as implicit arguments because they are

inferrable from the type of r.)



Chapter 3. Mtac 87

Definition noalias h (D : def h) : #(∀ x y. #(x != y)) :=
sc ← scan h;
ret (λ x y.
s2 ← search2 x y (seq of sc);
ret (combine s2 D)).

Figure 3.5: Mtactic for proving that two pointers do not alias.

If s contains y at the head, search2 proceeds analogously. If the head element is different

from both x and y, then it calls itself recursively with the tail. In any other case, it

throws an exception.

Note that, in order to test whether the head of s is x or y, we rely crucially on the ability

of patterns to mention free variables from the context. In particular, the difference

between the first two cases of search2’s mmatch and the last one is that the first two do

not bind x and y in their telescope patterns (thus requiring the head of the list in those

cases to be syntactically unifiable with x or y, respectively), while the third does bind z

in its telescope pattern (thus enabling z to match anything).

The Mtactic noalias. The Mtactics shown above are a direct translation from the

ones in Section 2.6. But the Mtactic noalias presented in Figure 3.5, which stitches scan

and search2 together, shows how easy is the composition of other Mtactics is. Compare

the code from this figure with the code required for the same problem in Section 2.6.5!

The type of noalias is as follows:

∀h : heap. def h→ #(∀x y. #(x != y))

As the two occurrences of # indicate, this Mtactic is staged : it takes as input a proof

that h is defined and first runs the scan Mtactic on h, producing a list of pointers sc, but

then it immediately returns another Mtactic. This latter Mtactic in turn takes as input

x and y and searches for them in sc. The reason for this staging is that we may wish to

prove non-aliasing facts about different pairs of pointers in the same heap. Thanks to

staging, we can apply noalias to some D just once and then reuse the Mtactic it returns

on many different pairs of pointers, thus avoiding the need to rescan h redundantly.

At the end, the proofs returned by the calls to scan and search2 are composed using a

combine lemma with the following type:

Lemma combine h x y (sc : form h) :

(uniq (seq of sc)→ x != y)→ def h→ x != y.
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This lemma is trivial to prove by an application of the cut rule.

Applying the Mtactic noalias. The following script shows how noalias can be

invoked in order to solve the motivating example from the beginning of this section:

pose F := run (noalias D)

by split; apply: run (F )

When Coq performs type inference on the run in the first line, that forces the execution

of (the first scan-ning phase of) the Mtactic noalias on the input hypothesis D, and the

standard pose mechanism then binds the result to F . This F has the type

∀x y : ptr. #(x != y)

In the case of our motivating example, F will be an Mtactic that, when passed inputs x

and y, will search for those pointers in the list [x1;x2;x3] output by the scan phase.

The script continues with Coq’s standard split tactic, which generates two subgoals,

one for each proposition in the conjunction. For our motivating example, it generates

subgoals x1 != x2 and x2 != x3. We then solve both goals by executing the Mtactic

F . When F is run to solve the first subgoal, it will search for x1 and x2 in [x1;x2;x3]

and succeed; when F is run to solve the second subgoal, it will search for x2 and x3 in

[x1;x2;x3] and succeed. QED. Note that we provide the arguments to F implicitly (as

). As in the proof of the z in xyz lemma from §3.1, these arguments are inferred from

the respective goals being solved. (We will explain how this inference works in more

detail in §3.5.)

3.3.1.1 Developing Mtactics Interactively

As with Lemma Overloading, Mtac shares the key advantage that it works very well

with the rest of Coq, allowing us among other things to develop Mtactics interactively.

For instance, consider the code shown in Figure 3.6. This is an interactive development of

the search2 Mtactic, where the developer knows the overall search structure in advance,

but not the exact proof terms to be returned, as this can be difficult in general. Here, we

have prefixed the definition with the keyword Program (Sozeau, 2007), which allows us

to omit certain parts of the definition by writing underscores. Program instructs the type

inference mechanism to treat these underscores as unification variables, which—unless

instantiated during type inference—are exposed as proof obligations. In our case, none

of these underscores is resolved, and so we are left with three proof obligations. Each
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01 Program Definition interactive search2 x y :=
02 mfix f (s : seq ptr) : #(uniq s → x != y) :=
03 mmatch s with
04 | [s’] x :: s’ ⇒ r ← search y s’; ret
05 | [s’] y :: s’ ⇒ r ← search x s’; ret
06 | [z s’] z :: s’ ⇒ r ← f s’; ret
07 | ⇒ raise NotFound
08 end.
09 Next Obligation. ... Qed.
10 Next Obligation. ... Qed.
11 Next Obligation. ... Qed.

Figure 3.6: Interactive construction of search2 using Program.

of these obligations can then be solved interactively within a Next Obligation . . .Qed

block.

Finally, it is worth pointing out that within such blocks, as well as within the actual

definitions of Mtactics, we could be running other more primitive Mtactics.

3.3.2 tauto: A Simple First-Order Tautology Prover

With this next example, we show how Mtac provides a simple but useful way to write

tactics that manipulate contexts and binders. Specifically, we will write an Mtactic

implementing a rudimentary tautology prover, modeled after those found in the work on

VeriML (Stampoulis and Shao, 2010) and Chlipala’s CPDT textbook (Chlipala, 2011a).

Compared to VeriML, our approach has the benefit that it does not require any special

type-theoretic treatment of contexts: for us, a context is nothing more than a Coq

list. Compared to Chlipala’s Ltac version, our version is typed, offering a clear static

specification of what the tautology prover produces, if it succeeds.

To ease the presentation, we break the problem in two. First, we show a simple propo-

sitional prover that uses the language constructs we have presented so far. Second, we

extend this prover to handle first-order logic, and we use this extension to motivate some

additional features of Mtac.

Warming up the Engine: A Simple Propositional Prover. Figure 3.7 displays

the Mtactic for a simple propositional prover, taking as input a proposition p and, if

successful, returning a proof of p:

prop-tauto : ∀p : Prop. #p
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01 Definition prop-tauto :=
02 mfix f (p : Prop) : #p :=
03 mmatch p as p’ return #p’ with
04 | True ⇒ ret I
05 | [p1 p2] p1 ∧ p2 ⇒
06 r1 ← f p1;
07 r2 ← f p2;
08 ret (conj r1 r2)
09 | [p1 p2] p1 ∨ p2 ⇒
10 mtry
11 r1 ← f p1; ret (or introl r1)
12 with ⇒
13 r2 ← f p2; ret (or intror r2)
14 end
15 | ⇒ raise NotFound
16 end.

Figure 3.7: Mtactic for a simple propositional tautology prover.

The Mtactic only considers three cases:

• p is True. In this case, it returns the trivial proof I.

• p is a conjunction of p1 and p2. In this case, it proves both propositions and returns

the introduction form of the conjunction (conj r1 r2).

• p is a disjunction of p1 and p2. In this case, it tries to prove the proposition p1,

and if that fails, it tries instead to prove the proposition p2. The corresponding

introduction form of the disjunction is returned (or introl r1 or or intror r2).

• Otherwise, it raises an exception, since no proof could be found.

Extending to First-Order Logic. We now extend the previous prover to support

first-order logic. This extension requires the tactic to keep track of a context for hypothe-

ses, which we model as a list of (dependent) pairs pairing hypotheses with their proofs.

More concretely, each element in the hypothesis context has the type dyn = Σp : Prop. p.

(In Coq, this is encoded as an inductive type with constructor Dyn p x, for any x : p.)

Figure 3.8 shows the first-order logic tautology prover tauto. The fixed point takes the

proposition p and is additionally parameterized over a context (c : seq dyn). The first

three cases of the mmatch are similar to the ones in Figure 3.7, with the addition that

the context is passed around in recursive calls.

Before explaining the cases for →, ∀ and ∃, let us start with the last one (line 29), since

it is the easiest. In this last case, we attempt to prove the proposition in question by
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01 Definition tauto’ :=
02 mfix f (c : seq dyn) (p : Prop) : #p :=
03 mmatch p as p’ return #p’ with
04 | True ⇒ ret I
05 | [p1 p2] p1 ∧ p2 ⇒
06 r1 ← f c p1 ;
07 r2 ← f c p2 ;
08 ret (conj r1 r2)
09 | [p1 p2] p1 ∨ p2 ⇒
10 mtry
11 r1 ← f c p1 ; ret (or introl r1)
12 with ⇒
13 r2 ← f c p2 ; ret (or intror r2)
14 end
15 | [p1 p2 : Prop] p1 → p2 ⇒
16 ν (y:p1).
17 r ← f (Dyn p1 y :: c) p2;
18 abs y r
19 | [A (q:A → Prop)] (∀ x:A. q x) ⇒
20 ν (y:A).
21 r ← f c (q y);
22 abs y r
23 | [A (q:A → Prop)] (∃ x:A. q x) ⇒
24 X ← evar A;
25 r ← f c (q X);
26 b ← is evar X;
27 if b then raise ProofNotFound
28 else ret (ex intro q X r)
29 | [p’:Prop] p’ ⇒ lookup p’ c
30 end.

Figure 3.8: Mtactic for a simple first-order tautology prover.

simply searching for it in the hypothesis context. The search for the hypothesis p′ in

the context c is achieved using the Mtactic lookup shown in Figure 3.9. lookup takes a

proposition p and a context and traverses the context linearly in the hope of finding a

dependent pair with p as the first component. If it finds such a pair, it returns the second

component. Like the Mtactic search2 from §3.3.1, this simple lookup routine depends

crucially on the ability to match the propositions in the context syntactically against

the p for which we are searching.

Returning to the tautology prover, lines 15–18 concern the case where p = p1 → p2.

Intuitively, in order to prove p1 → p2, one would (1) introduce a parameter y witnessing

the proof of p1 into the context, (2) proceed to prove p2 having y : p1 as an assumption,

and (3) abstract any usage of y in the resulting proof. The rationale behind this last

step is that if we succeed proving p2, then the result is parametric over the proof of p1,
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Definition lookup (p : Prop) :=
mfix f (s : seq dyn) : #p :=

mmatch s return #p with
| [x s’] (Dyn p x) :: s’ ⇒ ret x
| [d s’] d :: s’ ⇒ f s’
| ⇒ raise ProofNotFound
end.

Figure 3.9: Mtactic to look up a proof of a proposition in a context.

in the sense that any proof of p1 will suffice to prove p2. Steps (1) and (3) are performed

by two of the operators we have not yet described: nu and abs (the former is denoted

by the νx binder). In more detail, the three steps are:

Line 16: It creates a parameter y : p1 using the constructor nu. This constructor has

type

nu : ∀(A B : Type). (A→ #B)→ #B

(where A and B are left implicit). It is similar to the operator with the same name

in Nanevski (2002) and Schürmann et al. (2005). Operationally, νx : τ. f (which

is notation for nu (λx : τ. f)) creates a parameter y with type A, pushes it into

the local context, and executes f{y/x} (where ·{·/·} is the standard substitution)

in the hope of getting a value of type B. If the value returned by f refers to y,

then it causes the tactic execution to fail: such a result would lead to an ill-formed

term because y is not bound in the ambient context. This line constitutes the first

step of our intuitive reasoning: we introduce the parameter y witnessing the proof

of p1 into the context.

Line 17: It calls tauto′ recursively, with context c extended with the parameter y, and

with the goal of proving p2. The result is bound to r. This line constitutes the

second step.

Line 18: The result r created in the previous step has type p2. In order to return an

element of the type p1 → p2, we abstract y from r, using the constructor

abs : ∀(A : Type) (P : A→ Type) (y : A).

P y → #(∀x : A. P x)

(with A,P implicit). Operationally, abs y r checks that the first parameter y is

indeed a variable, and returns the function

λx : A. r{x/y}
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In this case, the resulting element has type ∀x : p1. p2, which, since p2 does not

refer to x, is equivalent to p1 → p2. This constitutes the last step: by abstracting

over y in the result, we ensure that the resulting proof term no longer mentions

the ν-bound variable (as required by the use of nu in line 16).

Lines 19–22 consider the case that the proposition is an abstraction ∀x : A. q x. Here,

q is the body of the abstraction, represented as a function from A to Prop. We rely

on Coq’s use of higher-order pattern unification (Miller, 1991b) to instantiate q with a

faithful representation of the body. The following lines mirror the body of the previous

case, except for the recursive call. In this case we do not extend the context with the

parameter y, since it is not a proposition. Instead, we try to recursively prove the body

q replacing x with y (that is, applying q to y).

If the proposition is an existential ∃x : A. q x (line 23), then the prover performs the

following steps:

Line 24: It uses Mtac’s evar constructor to create a fresh unification variable called X.

Line 25: It calls tauto′ recursively, replacing x for X in the body of the existential.

Lines 26–28: It uses Mtac’s is evar mechanism to check whether X is still an uninstan-

tiated unification variable. If it is, then it raises an exception, since no proof could

be found. If it is not—that is, if X was successfully instantiated in the recursive

call—then it returns the introduction form of the existential, with X as its witness.

Note that the instantiation of X may occur during the lookup of a hypothesis to

solve the goal. That is, if the goal refers to X, and there is a hypothesis similar to

the goal, but with some term t instead of X, then the pattern matching performed

during the lookup will instantiate X with t.

Now we are ready to prove an example, where P : nat→ Prop:

Definition exmpl : ∀P x. P x→ ∃y. P y := run (tauto [] ).

The proof term generated by run is

exmpl = λP x (H : P x). ex intro P x H

3.3.3 Inlined Proof Automation

Due to the tight integration between Mtac and Coq, Mtactics can be usefully employed

in definitions, notations and other Coq terms, in addition to interactive proving. In
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this respect, Mtac differs from the related systems such as VeriML (Stampoulis and

Shao, 2010) and Beluga (Pientka, 2008), where, to the best of our knowledge, such

expressiveness is not currently available due to the strict separation between the object

logic and the automation language.

In this section, we illustrate how Mtactics can be invoked from Coq proper. To set

the stage, consider the scenario of developing a library for n-dimensional integer vector

spaces, with the main type vector n defined as a record containing a list of nats and a

proof that the list has size n:

Record vector (n : nat) := Vector {
seq of : seq nat;

: size seq of = n}.

One of the important methods of the library is the accessor function ith, which returns

the i-th element of the vector, for i < n. One implementation possibility is for ith to

check at run time if i < n, and return an option value to signal when i is out of bounds.

The downside of this approach is that the clients of ith have to explicitly discriminate

against the option value. An alternative is for ith to explicitly request a proof that i < n

as one of its arguments, as in the following type ascription:

ith : ∀n:nat.vector n→ ∀i:nat.i < n→ nat

Then the clients have to construct a proof of i < n before invoking ith, but we show

that in some common situations, the proof can be constructed automatically by Mtac

and then passed to ith.

Specifically, we describe an Mtactic compare, which automatically searches for a proof

that two natural numbers n1 and n2 satisfy n1 ≤ n2. compare is incomplete, and if it

fails to find a proof, because the inequality does not hold, or because the proof is too

complex, it raises an exception.

Once compare is implemented, it can be composed with ith as follows. Given a vector v

whose size we denote as vsize v, and an integer i, we introduce the following notation,

which invokes compare to automatically construct a proof that i+1 ≤ vsize v (equivalent

to i < vsize v).

Notation ”[ ’ith’ v i ]” :=

(@ith v i (run (compare (i+1) (vsize v))))
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Program Definition compare (n1 n2 : nat) : #(n1 ≤ n2) :=
r1 ← to ast [] n1;
r2 ← to ast (ctx of r1) n2;
match cancel (ctx of r2) (term of r1) (term of r2)

return #(n1 ≤ n2) with
| true ⇒ ret (@sound n1 n2 r1 r2 )
| ⇒ raise NotLeqException
end.

Next Obligation. ... Qed.

Figure 3.10: Mtactic for proving inequalities between nat’s.

The notation can be used in definitions. For example, given vectors v1, v2 of fixed size

2, we could define the inner product of v1 and v2 as follows, letting Coq figure out

automatically that the indices 0, 1 are within bounds.

Definition inner prod (v1 v2 : vector 2) :=

[ith v1 0] × [ith v2 0] + [ith v1 1] × [ith v2 1].

If we tried to add the summand [ith v1 2]× [ith v2 2], where the index 2 is out of bounds,

then compare raises an exception, making the whole definition ill-typed. Similarly, if

instead of vector 2, we used the type vector n, where n is a variable, the definition will

be ill-typed, because there is no guarantee that n is larger than 1. On the other hand,

the following is a well-typed definition, as the indices k and n are clearly within the

bound n+ k + 1.

Definition indexing n k (v : vector (n+ k + 1)) :=

[ith v k] + [ith v n].

We proceed to describe the implementation of compare, presented in Figure 3.10. compare

is implemented similarly to the heap cancellation overloaded lemma from Section 2.4,

using two main helper functions. The first is the Mtactic to ast which reflects3 the num-

bers n1 and n2. More concretely, to ast takes an integer expression and considers it as

a syntactic summation of a number of components. It parses this syntactic summation

into an explicit list of summands, each of which can be either a constant or a free variable

(subexpressions containing operations other than + are treated as free variables).

The second helper is a CIC function cancel which cancels the common terms from the

syntax lists obtained by reflecting n1 and n2. If all the summands in the syntax list of

3In the literature this step is also known as reification.



Chapter 3. Mtac 96

n1 are found in the syntax list of n2, then it must be that n1 ≤ n2 and cancel returns the

boolean true. Otherwise, cancel does not search for other ways of proving n1 ≤ n2 and

simply returns false to signal the failure to find a proof. This failure ultimately results

in compare raising an exception. Notice that cancel cannot directly work on n1 and

n2, but has to receive their syntactic representation from to ast (in the code of compare

these are named term of r1 and term of r2, respectively). The reason is that cancel has

to compare names of variables appearing in n1 and n2, and has to match against the

occurrences of the (non-constructor) function +, and such comparisons and matchings

are not possible in CIC.

Alternatively, we could use mmatch to implement cancel in Mtac, but there are good

reasons to prefer a purely functional Coq implementation when one is possible, as is the

case here. With a pure cancel, compare can return a very short proof term as a result

(e.g., (sound n1 n2 r1 r2 ) in the code of compare). An Mtac implementation would have

to expose the reasoning behind the soundness of the Mtactic at a much finer granularity,

resulting in a larger proof.

We next describe the implementations of the two helpers.

Data Structures for Reflection. There are two main data structures used for re-

flecting integer expressions. As each expression is built out of variables, constants and +,

we syntactically represent the sum as term containing a list of syntactic representations

of variables appearing in the expression, followed by a nat constant that sums up all the

constants from the expression. We also need a type of variable contexts ctx, in order

to determine the syntactic representation of variables. In our case, a variable context is

simply a list of nat expression, each element standing for a different variable, and the

position of the variable in the context serves as the variable’s syntactic representative.

Definition ctx := seq nat

Record var := Var of nat

Definition term := (seq var)× nat

Example 3.1. The expression n = (1 + x) + (y + 3) may be reflected using a variable

context c = [x, y], and a term ([Var 0,Var 1], 4). Var 0 and Var 1 correspond to the two

variables in c (x and y, respectively). 4 is the sum of the constants appearing in n.

Example 3.2. The syntactic representations of 0, successor constructor S, addition

and an individual variable may be given as following term constructors. We use .1 and

.2 to denote projections out of a pair, following the standard Ssreflect notation.
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Definition syn zero : term := ([], 0).

Definition syn succ (t : term) := (t.1, t.2 + 1).

Definition syn add (t1 t2 : term) :=

(t1.1 ++ t2.1, t1.2 + t2.2).

Definition syn var (i : nat) := ([Var i], 0).

In prose, 0 is reflected by an empty list of variable indexes, and 0 as a constant term; if

t is a term reflecting n, then the successor S n is reflected by incrementing the constant

component of t, etc.

We further need a function interp that takes a variable context c and a term t, and

interprets t into a nat, as follows.

interp vars (c : ctx) (t : list var) :=

if t is (Var j) :: t’ then

if (vlook c j, interp c t’) is (Some v, Some e)

then Some (v + e) else None

else Some 0.

interp (c : ctx) (t : term) :=

if interp vars c t.1 is Some e

then Some (e + t.2) else None.

First, interp vars traverses the list of variable indices of t, turning each index into a

natural number by looking it up in the context c, and summing the results. The lookup

function vlook c j is omitted here, but it either returns Some j-th element of the context

c, or None if c has less than j elements. Then, interp simply adds the result of interp vars

to the constant part of the term. For example, if the context c = [x, y] and term

t = ([Var 0,Var 1], 4), then interp c t equals Some (x+ y + 4).

Reflection by to ast. The to ast Mtactic is applied twice in compare: once to reflect

n1, and again to reflect n2. Each time, to ast is passed as input a variable context, and

extends this context with new variables encountered during reflection. To reflect n1 in

compare, to ast starts with the empty context [], and to reflect n2, it starts with the

context obtained after the reflection of n1. This ensures that if the reflections of n1 and

n2 encounter the same variables, they will use the same syntactic representations for

them.
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Record ast (c : ctx) (n : nat) :=
Ast {term of : term;

ctx of : ctx;
: interp ctx of term of = Some n ∧ prefix c ctx of}

Definition to ast : ∀ c n. #(ast c n) :=
mfix f c n :=

mmatch n with
| 0 ⇒ ret (Ast c 0 syn zero c ...)
| [n’] S n’ ⇒
r ← f c n’;
ret (Ast c (S n’) (syn succ (term of r))

(ctx of r) ...)
| [n1 n2] n1 + n2 ⇒
r1 ← f c n1; r2 ← f (ctx of r1) n2;
ret (Ast c (n1 + n2)

(syn add (term of r1) (term of r2)) (ctx of r2) ...)
| ⇒

ctx index ← find n c;
ret (Ast c n (syn var ctx index.2) ctx index.1 ...)

end.

Figure 3.11: Mtactic for reflecting nat expressions.

The invariants associated with to ast are encoded in the data structure ast (Figure 3.11).

ast is indexed by the input context c and the number n to be reflected. Upon successful

termination of to ast, the term of field contains the term reflecting n, and the ctx of

field contains the new variable context, potentially extending c. The third field of ast is

a proof formalizing the described properties of term of and ctx of.

Referring to Figure 3.11, the Mtactic to ast takes the input variable context c and the

number n to be reflected, and traverses n trying to syntactically match the head con-

struct of n with 0, S or +, respectively. In each case it returns an ast structure containing

the syntactic representation of n, e.g.: syn zero, syn succ or syn add, respectively. In the

n1+n2 case, to ast recurses into n2 by using the variable context returned from reflection

of n1 as an input, similar as in compare. In each case, the Ast constructor is supplied

a proof that we omit but can be found in the sources. In the default case, when no

constructor matches, n is treated as a variable. The Mtactic find n c (omitted here),

searches for n in c, and returns a ctx × nat pair. If n is found, the pair consists of the

old context c, and the position of n in c. If n is not found, the pair consists of a new

context in which n is cons-ed to c, and the index k, where k is the index of n in the new

context. to ast then repackages the context and the index into an ast structure.
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Fixpoint cancel vars (s1 s2 : list var) : bool :=
if s1 is v :: s1’ then v ∈ s2 &&

cancel vars s1’ (remove var v s2)
else true.

Definition cancel (t1 t2 : term) : bool :=
cancel vars t1.1 t2.1 && t1.2 ≤ t2.2.

Figure 3.12: Algorithm for canceling common variables from terms.

Canceling Common Variables. The cancel function is presented in Figure 3.12.

It takes terms t1 and t2 and tries to determine if t1 and t2 syntactically represent two

≤-related expressions by cancelling common terms, as we described previously. First, the

helper cancel vars iterates over the list of variable representations of t1, trying to match

each one with a variable representation in t2 (in the process, removing the matched vari-

ables by using yet another helper function remove vars, omitted here). If the matching

is successful and all variables of t1 are included in t2, then cancel merely needs to check

if the constant of t1 is smaller than the constant of t2.

We conclude the example with the statement of the correctness lemma of cancel, which

is the key component of the soundness proof for compare. We omit the proof here, but

it can be found in our Coq files (Ziliani, 2014).

Lemma sound n1 n2 (a1 : ast [] n1) (a2 : ast (ctx of a1) n2) :

cancel (term of a1) (term of a2)→
n1 ≤ n2.

In prose, let a1 and a2 be reflections of n1 and n2 respectively, where the reflection of

a1 starts in the empty context, and the reflection of a2 starts in the variable context

returned by a1. Then running cancel in the final context of a2 over the reflected terms

of a1 and a2 returns true only when it is correct to do so; that is, only when n1 ≤ n2.

3.4 Operational Semantics and Type Soundness

In this section we present the operational semantics and type soundness of Mtac. After

presenting the rules of the semantics (§3.4.1), we provide more motivation for the use

of contextual types (§3.4.2), before giving details of the type soundness proof (§3.4.3).

Along the way, we motivate by example a number of our design decisions.
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3.4.1 Rules of the Semantics

First, some preliminaries. Following the conventions used throughout this thesis, we

writeA,B,C for CIC type variables, τ for CIC types, ρ for CIC type predicates (functions

returning types), f for CIC functions. We depart ever so slightly from the conventions

when it comes to terms: since we need to distinguish any CIC term from Mtactics, i.e.,

CIC terms of type #τ for some type τ . For the former we use e while for the latter we

use t from tactic. The operational semantics of Mtac defines the judgment form

Γ ` (Σ; t) (Σ′; t′)

where, as before, Γ is the typing context containing parameters and (let-bound) local

definitions, and Σ and Σ′ are contexts for meta-variables ?x. We remind the reader

that both kinds of contexts contain both variable declarations (standing for parameters

and uninstantiated meta-variables, respectively) and definitions (let-bound variables and

instantiated meta-variables, respectively). These contexts are needed for weak head

reduction of CIC terms (Σ; Γ ` e whd
 e′), but also for some of Mtac’s constructs. The

types of meta-variables are annotated with a “local context”, as in τ [Γ], in which Γ

should bind a superset of the free variables of τ . As we mentioned in Section 1.2,

such local contexts prevents ill-typed instantiations of meta-variables. Below (§3.4.2)

we discuss Mtac specific examples of how these local contexts prevent Mtac from being

unsound.

As is usual in Coq, we omit function arguments that can be inferred by the type inference

engine (typically, the type arguments). In some cases, however, it is required, or clearer,

to explicitly flesh out all of the arguments, in which case we adopt another convention

from Coq: prepending the @ symbol to the function being applied.

We assume that the terms are well-typed in their given contexts, and we ensure that

this invariant is maintained throughout execution. Tactic computation may either (a)

terminate successfully returning a term, ret e, (b) terminate by throwing an exception,

raise e, (c) diverge, or (d) get blocked. (We explain the possible reasons for getting

blocked below.) Hence we have the following tactic values:

Definition 1 (Values). v ∈ Values ::= ret e | raise e .

Figure 3.13 shows our operational semantics. The first rule (EReduc) performs a CIC

weak head reduction step. As mentioned, weak head reduction requires both contexts

because, among other things, it will unfold definitions of variables and meta-variables

in head position. For a precise description of Coq’s standard reduction rules, revisit

§1.2. It is important to note that the decision to evaluate lazily instead of strictly is
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not arbitrary. Weak head reduction preserves the structure of terms, which is crucial to

avoid unnecessary reductions, and to produce small proof terms. Take for instance the

search example in §3.1. The proof showing that x is in the list [z; y;w]++[x] consists of

one application of the lemma in or app to the lemma in eq, while the proof showing the

same element is in the list [x; y;w;x], resulting from forcing the execution of the append

function, consists of three applications of the lemma in cons to the lemma in eq. That

is, a call-by-value reduction forces the reduction of the append and results in a larger

proof term.

The next seven rules, concerning the semantics of Mtac fixed points, bind, and mtry,

are all quite standard.

The most complex rule is the subsequent one concerning pattern matching (EMmatch).

It matches the term e with some pattern described in the list ps. Each element psi of

ps is a pair containing a pattern p and a body b, abstracted over a list of (dependent)

variables x : τ . Since patterns are first-class citizens in CIC, psi is first reduced to

weak head normal form in order to expose the pattern and the body. The normalization

relation is written
whd
 ∗ and, as with the weak head reduction relation, it requires the two

contexts. Then, we replace each variable x with a corresponding meta-variable ?y in p,

and proceed to unify the result with term e. For this, the context Σ is extended with the

freshly created meta-variables ?y. For each ?yk, the type τk is created within the context

Γ′k, which is the original context Γ extended with the variables appearing to the left of

variable xk in the list x : τ . After unification is performed, a new meta-variable context is

returned that might not only instantiate the freshly generated meta-variables ?y, but may

also instantiate previously defined meta-variables. (Instantiating such meta-variables is

important, for instance, to instantiate the existentials in the tautology prover example

of §3.3.2). The meta-variables appearing in the body of the pattern are substituted with

their definitions, denoted as Σ′(b′), where b′ is the body after substituting the pattern

variables with the meta-variables, i.e., b′ = b{?y1[idΓ′
1
]/x1} · · · {?yn[idΓ′

n
]/xn}. Here,

[idΓ′
k
] refers to the identity substitution for variables in Γ′k; its use will be explained in

detail in the discussion of Example 3.4 (§3.4.2 below). Finally, we require that patterns

are tried in sequence, i.e., that the scrutinee, e, should not be unifiable with any previous

pattern psj . In case no patterns match the scrutinee, the mmatch is blocked.

The semantics for pattern matching is parametric with respect to the unification judg-

ment and thus does not rely on any particular unification algorithm. (Our implemen-

tation allows choosing between two algorithms: Coq’s standard unification algorithm

and our unification algorithm from Chapter 4.) We observe that our examples, however,

implicitly depend on higher-order pattern unification (Miller, 1991b). Higher-order uni-

fication is in general undecidable, but Miller identified a decidable subset of problems,
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Σ; Γ ` t whd
 t′

Γ ` (Σ; t) (Σ; t′)
EReduc

Γ ` (Σ; mfix f t) (Σ; f (mfix f) t)
EFix

Γ ` (Σ; t) (Σ′; t′)

Γ ` (Σ; bind t f) (Σ′; bind t′ f)
EBindS

Γ ` (Σ; t) (Σ′; t′)

Γ ` (Σ; mtry t f) (Σ′; mtry t′ f)
ETryS

Γ ` (Σ; bind (ret e) f) (Σ; f e)
EBindR

Γ ` (Σ; @bind τ τ ′ (@raiseτ e) f) (Σ; @raiseτ ′ e)
EBindE

Γ ` (Σ; mtry (ret e) f) (Σ; ret e)
ETryR

Γ ` (Σ; mtry (raise e) f) (Σ; f e)
ETryE

Σ; Γ ` psi
whd
 ∗ Ptele (x : τ) (Pbase p b) ∀k. Γ′k = Γ, x1 : τ1, . . . , xk−1 : τk−1

Σ, ?y : τ [Γ′]; Γ ` p{?y[idΓ′ ]/x} ≈ e . Σ′ ∀j < i. psj does not unify with e

Γ ` (Σ; mmatch e ps) (Σ′; Σ′(b{?y[idΓ′ ]/x}))
EMmatch

?x /∈ dom(Σ)

Γ ` (Σ; evarτ ) (Σ, ?x : τ [Γ]; ret ?x[idΓ])
EEvar

Σ; Γ ` e whd
 ∗ ?x[σ] (?x := ) /∈ Σ

Γ ` (Σ; is evar e) (Σ; ret true)
EIsVarT

Σ; Γ ` e whd
 ∗ e′ e′ not unif. variable

Γ ` (Σ; is evar e) (Σ; ret false)
EIsVarF

Γ, x : τ ` (Σ; t) (Σ′; t′)

Γ ` (Σ; νx : τ. t) (Σ′; νx : τ. t′)
ENuS

x /∈ FV(v)

Γ ` (Σ; (νx. v)) (Σ; v)
ENuV

Σ; Γ ` e whd
 ∗ x Γ = Γ1, x : τ ′,Γ2 x 6∈ FV(Γ2, ρ)

Γ ` (Σ; @abs τ ρ e e′) (Σ; ret (λy. e′{y/x}))
EAbs

(* print s to stdout *)

Γ ` (Σ; print s) (Σ; ret 〈〉)
EPrint

Figure 3.13: Operational small-step semantics.
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the so-called pattern fragment, where unification variables appear only in equations of

the form ?f x1 . . . xn ≈ e, with x1, . . . , xn distinct variables. The ∀ and ∃ cases of

the tautology prover (§3.3.2) fall into this pattern fragment, and their proper handling

depends on higher-order pattern unification.

Another notable aspect of Coq’s unification algorithm is that it equates terms up to

definitional equality. In particular, if a pattern match at first does not succeed, Coq

will take a step of reduction on the scrutinee, try again, and repeat. Thus, the ordering

of two patterns in a mmatch matters, even if it seems the patterns are syntactically

non-overlapping. Take for instance the search example in §3.1. If the pattern for con-

catenation of lists were moved after the patterns for consing, then the consing patterns

would actually match against (many) concatenations as well, since the concatenation of

two lists is often reducible to a term of the form h :: t.

Related to this, the last aspect of Coq’s unification algorithm that we depend on is

its first-order approximation. That is, in the presence of an equation of the form

c e1 . . . en ≈ c e′1 . . . e′n, where c is a constant, the unification algorithm tries to

equate each ei ≈ e′i. While this may cause Coq to miss out on some solutions, it has the

benefit of being simple and predictable. For instance, consider the equation

?l++?r ≈ []++(h :: t)

that might result from matching the list []++(h :: t) with the pattern for concatenation

of lists in the search example from §3.1, with ?l and ?r fresh meta-variables. Here,

although there exist many solutions, the algorithm assigns ?l := [] and ?r := (h :: t), an

assignment that is intuitively easy to explain. 4

Coming back to the rules, next is the rule for evarτ , which simply extends Σ with a fresh

uninstantiated meta-variable of the appropriate type. Note that it is always possible to

solve a goal by returning a fresh meta-variable. But a proof is only complete if it is

closed and, therefore, before QED time, every meta-variable has to be instantiated. The

two following rules govern is evar e and check whether an expression (after reduction to

weak head normal form) is an uninstantiated meta-variable.

The next two rules define the semantics of the νx binder: the parameter x is pushed into

the context, and the execution proceeds until a value is reached. The computed value

is simply returned if it does not contain the parameter, x; otherwise, νx. v is blocked.

The latter rule is for abstracting over parameters. If the first non-implicit argument

4For the Ltac connoisseur, there are several differences between our mmatch and Ltac’s match. In
particular, the latter (1) does not reduce terms during unification, (2) uses an unsound unification
algorithm, unlike Mtac (§3.4.3), and (3) backtracks upon (any kind of) failure, making it hard to
understand the flow of the program.
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of abs weak-head reduces to a parameter, then we abstract it from the second (also

non-implicit) argument of abs, thereby returning a function. In order to keep a sound

system, we need to check that the return type and the local context do not depend on

the variable being abstracted, as discussed below in Example 3.5.

The astute reader may wonder why we decided to have νx and abs instead of one single

constructor combining the semantics of both. Such a combined constructor would always

abstract the parameter x from the result, therefore avoiding the final check that the

parameter is not free in the result. The reason we decided to keep nu and abs separate

is simple: it is not always desirable to abstract the parameters in the same order in

which they were introduced. This is the case, for instance, in the Mtactic skolemize for

skolemizing a formula (provided in the Mtac distribution). Moreover, sometimes the

parameter is not abstracted at all, for instance in the Mtactic fv for computing the list

of free variables of a term (also provided in the Mtac distribution).

Finally, the last rule (EPrint) replaces a printing command with the trivial value 〈〉.
Informally, we also print out the string s to the standard output, although standard I/O

is not formally modeled here.

Example 3.3. We show the trace of a simple example to get a grasp of the operational

semantics. In this example, Γ = {h : nat}.

let s := (h :: [])++[] in search h s

We want to show that the final term produced by running this Mtactic expresses the

fact that h was found at the head of the list on the left of the concatenation, that is,

in or app (h :: []) [] (or introl (in eq h []))

First, the let is expanded, obtaining

search h ((h :: [])++[])

Then, after expanding the definition of search and β-reducing the term, we are left with

the fixpoint being applied to the list:

(mfix f (s : seq A) := . . .) ((h :: [])++[])

At this point the rule for mfix triggers, exposing the mmatch:

mmatch ((h :: [])++[]) with . . . end
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Thanks to first-order approximation, the case for append is unified, and its body is

executed:

mtry il ← f (h :: []); ret . . . with ⇒ . . . end (3.1)

where f stands for the fixpoint. The rule ETryS executes the code for searching for the

element in the sublist (h :: []):

il ← f (h :: []); ret (in or app (h :: []) [] h (or introl il)) (3.2)

The rule EBindS triggers, after which the fixpoint is expanded and a new mmatch

exposed:

mmatch (h :: []) with . . . end

This time, the rule for append fails to unify, but the second case succeeds, returning

the result in eq h []. Coming back to (3.2), il is replaced with this result, getting the

expected final result that is in turn returned by the mtry of (3.1).

As a last remark, notice how at each step the selected rule is the only applicable one:

the semantics of Mtac is deterministic.

3.4.2 Meta-variables in Mtac

So far we mentioned that is indispensable for Mtac’s type soundness that meta-variables

have contextual types, but did not explain why.

In the rules in Figure 3.13, there are two places where contextual types and suspended

substitutions are relevant: the rule for creation of meta-variables (EEvar) and the rule

for pattern matching (EMmatch). In EEvar, the new meta-variable ?x is created with

contextual type τ [Γ], where Γ is a copy of the local context coming from the evaluation

judgment. The returned value is ?x applied to the identity suspended substitution idΓ.

In EMmatch, every pattern variable ?yk is created with the contextual type τk[Γ
′
k]. Γ′k

is the context Γ extended with the prior variables in the telescope x1, . . . , xk−1. In order

to marry the context in the contextual type with the local context Γ, each meta-variable

?yk is applied, as before, with the identity suspended substitution.

There is another, more subtle use of contextual types in EMmatch: the unification

condition. In Mtac, the unification algorithm is in charge of instantiating meta-variables.

As we saw in the example from Section 1.2.1.1, it cannot instantiate meta-variables

arbitrarily, as it may end up with an ill-typed meta-substitution.

But not only contextual types are useful to ensure soundness of unification. In particular,

the following examples show two different potential sources of unsoundness related to the
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abs constructor. Fortunately, thanks to contextual types, plus the restrictions enforced

by the rule EAbs, neither example presents any risk to the soundness of Mtac.

Example 3.4. Example showing how contextual types preclude the assignment of dif-

ferent types to the same term.

01 Definition abs evar (A : Type) :=

02 X ← evar A;

03 f ← @abs Type (λ B. B) A X : #(∀ B : Type. B);

04 ret (f nat, f bool).

In short, this example takes a type A and creates a meta-variable X of type A. Then,

it abstracts its type, creating the function f , which is then applied to the types nat

and bool. For readability, we annotated the type of f : ∀B : Type. B, and therefore the

returned terms f nat and f bool have type nat and bool, respectively. However, they

both compute to X, the meta-variable, so at first sight it looks like the same expression

can be typed with different and incompatible types!

No need to panic here, contextual types solve the conundrum! Let’s see what really

happens when we execute the Mtactic. First, note that, in order for the abstraction in

line 3 to succeed, the Mtactic should instantiate the argument A with a type variable.

Otherwise, the computation will get blocked, as we are only allowed to abstract variables.

So let’s assume abs evar is executed in a local context with only variable A′ : Type, which

is then passed in as the argument. When executing line 2, the meta-variable ?u is created

with contextual type A′[A′ : Type]. Then, the variable X is bound to ?u[A′].

Next, f is bound to the value resulting from abstracting the type A′ from the meta-

variable, that is,

f = λB : Type. ?u[A′]{B/A′},

which after applying the substitution is equal to

f = λB : Type. ?u[B].

Therefore, the value resulting from applying f to the different types is

(?u[nat], ?u[bool]).

Since the type of the meta-variable depends on A′, the return type is nat×bool. But the

substitution distinguishes both terms in the pair, so even when they refer to the same
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meta-variable, they’re actually referring to different interpretations of the value carried

by ?u. It might be instructive at this point to go back to the typing rule for meta-

variables in Figure 1.5 to fully understand how ?u gets two different types according to

the substitution applied.

Thus, contextual types prevents us from providing a value to the meta-variable that will

only comply to one of the interpretations. That is, whatever value ?u holds, it must

have the abstract type A′, such that each substitution to which ?u is applied provides a

proper interpretation for the type of the value (in the example, nat or bool).

To conclude with this example, observe that ?u can only be instantiated with a falsity.

In fact, the contextual type A′[A′ : Type] is equivalent to the standard type for falsity

∀A′ : Type. A′.

Example 3.5. In this example we show why it is necessary to severely restrict occur-

rences of the variable being abstracted.

In the previous example the variable being abstracted occurred only in the term (more

precisely, in the substitution). If it instead occurred in the return type or in the local

context (Γ), then this could lead to another potential source of unsoundness. To see

what can go wrong, let us consider the following example:

Definition abs dep (A : Type) (x : A) :=

X ← evar nat;

@abs Type (λ . nat) A X : #(Type → nat).

After running the first line of the function, X is bound to the term ?u[A, x], where

?u is a fresh meta-variable with (contextual) type nat[A : Type, x : A]. If we allow the

abstraction of A in X, then we arrive at the ill-typed term

λ B. ?u[B, x]

Note that x should have as type the first component of the substitution, which is B,

but it has type A instead. For this reason we impose the restriction that the abstracted

variable (A in this case) must not occur anywhere in the context aside from the point

where it is bound. It is not hard to see what goes wrong when the abstracted variable

appears in the return type, so we prohibit this case as well. The technical reasons for

these restrictions, as we will see in the following section, can be understood as follow:

after the abstraction of the variable, we should be able to strength the local context by

removing the variable.
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3.4.3 Proof of Soundness

As mentioned earlier, Mtactic execution can block. Here, we define exactly the cases

when execution of a term is blocked.

Definition 2 (Blocked terms). A term t is blocked if and only if the subterm in reduction

position satisfies one of the following cases:

• It is not an application of one of the # constructors and it is not reducible using

the standard CIC reduction rules (
whd
 ).

• It is νx. v and x ∈ FV(v).

• It is abs e e′ and e
whd
 ∗ e′′ and (e′′ : ) /∈ Γ.

• It is @abs τ ρ e e′ and e
whd
 ∗ x and Γ = Γ1, x : τ,Γ2 and x ∈ FV(Γ2, ρ).

• It is mmatch e ps and no pattern in ps unifies with e.

With this definition, we can then establish a standard type soundness theorem for Mtac.

Theorem 3.1 (Type soundness). If Σ; Γ ` t : #τ , then either t is a value, or t is

blocked, or there exist t′ and Σ′ such that Γ ` (Σ; t) (Σ′; t′) and Σ′; Γ ` t′ : #τ .

In order to prove it, we take the typing judgment for Coq terms from Chapter 1:

Σ; Γ ` e : τ

and also assume the following standard properties:

Postulate 1 (Convertibility). If Σ; Γ ` e : τ and Σ; Γ ` τ ≡ τ ′ (τ and τ ′ are convertible

up to CIC reduction) then

Σ; Γ ` e : τ ′

Postulate 2 (Type preservation of reduction). If Σ; Γ ` e : τ and Σ; Γ ` e whd
 ∗ e′ then

Σ; Γ ` e′ : τ

Postulate 3 (Meta-substitution). If Σ; Γ ` e : τ then Σ; Γ ` Σ(e) : τ .

Postulate 4 (Substitution). If Σ; Γ1, x : τ ′,Γ2 ` e : τ and Σ; Γ1 ` e′ : τ ′ then

Σ; Γ1,Γ2{e′/x} ` e{e′/x} : τ{e′/x}
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Postulate 5 (Weakening of meta-context). If Σ; Γ1,Γ2 ` e : τ and Σ; Γ1 ` τ ′ : Type

and ?x 6∈ dom(Σ) then

Σ, ?x : τ ′[Γ1]; Γ1,Γ2 ` e : τ

Postulate 6 (Strengthening). If Σ; Γ1, x : τ,Γ2 ` e : τ ′ and x 6∈ FV(Γ2, e, τ
′) then

Σ; Γ1,Γ2 ` e : τ ′

Postulate 7 (Weakening). If Σ; Γ1,Γ2 ` e : τ ′ and Σ; Γ1 ` τ : Type and x 6∈ dom(Γ1,Γ2)

then

Σ; Γ1, x : τ,Γ2 ` e : τ ′

We also need the following relation between meta-contexts:

Definition 3 (Meta-context extension). We say that Σ′ extends Σ, written Σ′ ≥ Σ,

when every meta-variable in Σ occurs in Σ′, with the same type, and in case it has been

instantiated, instantiated with the same term. Formally,

Σ′ ≥ Σ =̂ ∀?x : τ [Γ] ∈ Σ. ?x : τ [Γ] ∈ Σ′ ∨ ?x : τ [Γ] := e ∈ Σ′

∧ ∀?x : τ [Γ] := e ∈ Σ. ?x : τ [Γ] := e ∈ Σ′

We postulate that meta-context extension does not alter typechecking:

Postulate 8 (Preservation under meta-context extension). If Σ; Γ ` e : τ and Σ′ ≥ Σ,

then

Σ′; Γ ` e : τ

We require from unification the following:

Postulate 9 (Soundness of unification). If Σ; Γ ` e : τ and Σ; Γ ` e′ : τ ′ and Σ; Γ ` e ≈
e′ . Σ′ then

Σ′ ≡ ee′ and Σ′ ≡ ττ ′ and Σ′ ≥ Σ

We start by proving type preservation:

Theorem 3.2 (Type preservation). If Γ ` (Σ; t)  (Σ′; t′) and Σ; Γ ` t : #τ , then

Σ′ ≥ Σ and Σ′; Γ ` t′ : #τ .

Proof. By induction on the reduction relation. We will expand (some of) the implicit

parameters for clarity.

Case EReduc: It follows by preservation of reduction (Postulate 2).
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Case EFix: We have t = @mfix τ ′ ρ f t′′. Remember the type of the fixpoint:

mfix : ∀A P. ((∀x : A. #(P x))→ (∀x : A. #(P x)))→ ∀x : A. #(P x)

By hypothesis we know t is well-typed, and as a consequence, t′′ has type τ ′. We

have to show that

Σ; Γ ` f (@mfix τ ′ ρ f) t′′ : #(ρ t′′)

It follows immediately from the types of the subterms:

f : (∀x : τ ′. #(ρ x))→ (∀x : τ ′. #(ρ x))

and

mfix f : ∀x : τ ′. #(ρ x)

and t′′ : τ ′.

Case EBindS: We have t = @bind τ ′ τ ′′ t′′ f . By the premise of the rule, there exists

t′′′ such that

Γ ` (Σ; t′′) (Σ′; t′′′)

Remember the type of bind:

bind : ∀A B. #A→ (A→ #B)→ #B

We have that t has type #τ ′′. We have to show that

Σ′; Γ ` @bind τ ′ τ ′′ t′′′ f : #τ ′′

By the inductive hypothesis, we know that Σ′ ≥ Σ and

Σ′; Γ ` t′′′ : #τ ′

We conclude by noting that, by Postulate 8 (Preservation under meta-context),

the type of f is not changed in the new meta-context Σ′.

Case EBindR: We have t = @bind τ ′ τ ′′ (ret e) f . We have to show that

Σ; Γ ` f e : #τ ′′

Immediate by type of f and e.
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Case EBindE: We have t = @bind τ ′ τ ′′ (@raiseτ ′ e) f . We have to show that

Σ; Γ ` @raiseτ ′′ e : #τ ′′

Immediate by type of @raiseτ ′′ e.

Cases ETryS, ETryR, ETryE: Analogous to the previous cases.

Case EMmatch: We have t = @mmatch τ ′ ρ e ps. The type of mmatch is

mmatch : ∀A P (t : A). seq (Patt A P )→ #(P t)

By the premises of the rule:

Σ; Γ ` psi
whd
 ∗ Ptele (x : τ ′′) (Pbase p b) (3.3)

Σ, ?y : τ ′′[Γ′]; Γ ` p{?y[idΓ′ ]/x} ≈ e . Σ′ (3.4)

∀j < i. psj does not unify with e (3.5)

That is, reducing ps leads to a list whose i-th element is a telescope (see §3.2) ab-

stracting variables x : τ ′′ from a pattern p and body b. This pattern, after replacing

its abstraction with unification variables, is unifiable with term e, producing a new

meta-context Σ′. Every unification variable ?yk is created with type τk in a con-

text resulting form extending the context Γ with the variables to the left of the

telescope, that is

Γ′k = Γ, x1 : τ1, . . . , xk−1 : τk−1

We have to show that

Σ′; Γ ` Σ′(b{?y[idΓ′ ]/x}) : #(ρ e)

Given the hypothesis that t is well-typed, we know that

Σ; Γ ` e : τ ′ (3.6)

Σ; Γ, x : τ ′′ ` p : τ ′ (3.7)

Σ; Γ, x : τ ′′ ` b : #(ρ p) (3.8)

Taking Equation 3.7 and by multiple weakenings of the meta-context we obtain

Σ, ?y : τ ′′[Γ′]; Γ, x : τ ′′ ` p : τ ′ (3.9)
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By Postulate 4 (Substitution), noting that the variables x cannot appear free in

τ ′ or in Γ,

Σ, ?y : τ ′′[Γ′]; Γ ` p{?y[idΓ′ ]/x} : τ ′ (3.10)

Therefore, by Postulate 9 (soundness of unification) and equations 3.4, 3.6, and

3.10, we obtain that both sides of the unification are convertible under the new

context Σ′.

Similarly as before, by Equation 3.8, weakening of meta-context, and Substitution

postulate, we obtain

Σ′; Γ ` b{?y[idΓ′ ]/x} : #(ρ p{?y[idΓ′ ]/x})

(noting that ρ actually does not have any xk in its set of free variables).

By convertibility, this is equal to

Σ′; Γ ` b{?y[idΓ′ ]/x} : #(ρ e)

We conclude by Postulate 3 (Meta-substitution).

Case EEvar: We have t = evarτ . It is trivial,

Σ, ?x : τ [Γ]; Γ ` ret ?x[idΓ] : #τ

Cases EIsEvarT and EIsEvarF: Trivial, both return a boolean value.

Case ENuS: Desugaring and making parameters explicit, we have t = @nu τ ′ τ (λx : τ ′. t′′).

The type of nu is

nu : ∀A B. (A→ #B)→ #B

Therefore,

Σ; Γ, x : τ ′ ` t′′ : #τ (3.11)

By the premise of the rule, Γ, x : τ ′ ` (Σ; t′′) (Σ′; t′′′). By the inductive hypoth-

esis with Equation 3.11,

Σ′; Γ, x : τ ′ ` t′′′ : #τ

and Σ′ ≥ Σ. Therefore

Σ′; Γ ` λx : τ ′. t′′′ : τ ′ → #τ

which allows us to conclude that

Σ′; Γ ` νx : τ ′. t′′′ : #τ
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Case ENuV: As in the previous case, we have t = @nu τ ′ τ (λx : τ ′. v). We have to

show that

Σ; Γ ` v : #τ

Since t is well-typed, we know that

Σ; Γ, x : τ ′ ` v : #τ

By the premise of the rule, x 6∈ FV(v), and it cannot appear free in τ , so by

strengthening (Postulate 6),

Σ; Γ ` v : #τ

Case EAbs: We have t = @abs τ ′ ρ e e′. Remember the type of abs:

abs : ∀A P x. P x→ #(∀y : A. P y)

We need to show that

Σ; Γ ` ret (λy : τ ′. e′{y/x}) : #(∀y : τ ′. ρ y)

where, by the premises of the rule, e reduces to x. By preservation of reduction

(Postulate 2), we know that x has type τ ′, and therefore Γ is equivalent (i.e.,

convertible) to Γ1, x : τ ′,Γ2, for some context Γ1 and Γ2. Also, by the premises of

the rule, x 6∈ FV(Γ2, ρ).

By t being well-typed, we know

Σ; Γ ` e′ : ρ e

which by convertibility is equivalent to (expanding Γ)

Σ; Γ1, x : τ ′,Γ2 ` e′ : ρ x

By weakening (Postulate 7),

Σ; Γ1, x : τ ′,Γ2, y : τ ′ ` e′ : ρ x

and by Postulate 4 (Substitution), noting that by the premise of the rule x does

not appear free in ρ nor in Γ2,

Σ; Γ1,Γ2, y : τ ′ ` e′{y/x} : ρ y
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By weakening,

Σ; Γ, y : τ ′ ` e′{y/x} : ρ y

We can conclude that

Σ; Γ ` λy : τ ′. e′{y/x} : (∀y : τ ′. ρ y)

which is precisely what we have to show.

Case EPrint: Immediate.

As a corollary, we have the main theorem of this section:

Theorem 3.1 (Type soundness). If Σ; Γ ` t : #τ , then either t is a value, or t is

blocked, or there exist t′ and Σ′ such that Γ ` (Σ; t) (Σ′; t′) and Σ′; Γ ` t′ : #τ .

Proof. Since t is well-typed with type #τ , then the following two cases have to occur:

either the head constructor of t is one of the constructors of #—and it is fully applied—or

it is another CIC construct (another constant, a let-binding, etc.).

In the first case we have further three sub-cases:

1. It is a value (of the form ret e or raise e).

2. It is blocked, that is, is of any of the following forms:

• It is νx. v and x ∈ FV(v).

• It is abs e e′ and Σ; Γ ` e whd
 ∗ e′′ and (e′′ : ) /∈ Γ.

• It is @abs τ ′ ρ e e′ and e
whd
 ∗ x and Γ = Γ1, x : τ ′,Γ2 and x ∈ FV(Γ2, ρ).

• It is mmatch e ps and no pattern in ps unifies with e.

3. There exist a t′ and Σ′ such that Γ ` (Σ; t) (Σ′; t′).

In the first two cases there is nothing left to prove. In the last case we conclude by

applying Theorem 3.2.

If t’s head constant is another CIC construct, then it either reduces using the standard

CIC reduction rules, in which case the proof follows by preservation of CIC reduction

rules, or it does not reduce and hence it is blocked.
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3.5 Implementation

This section presents a high-level overview of the architecture of our Mtac extension to

Coq, explaining our approach for guaranteeing soundness even in the possible presence

of bugs in our Mtac implementation.

The main idea we leverage in integrating Mtac into Coq is that Coq distinguishes between

fully and partially type-annotated proof terms: Coq’s type inference (or elaboration)

algorithm transforms partially annotated terms into fully annotated ones, which are then

fed to Coq’s kernel type checker. In this respect Coq follows the typical architecture of

interactive theorem provers, ensuring that all proofs are ultimately certified by a small

trusted kernel. Assuming that the kernel is correct, no code outside this kernel may

generate incorrect proofs. Thus, our Mtac implementation modifies only the elaborator

lying outside of Coq’s kernel, and leaves the kernel type checker untouched.

3.5.1 Extending Elaboration

The typing judgment used by Coq’s elaboration algorithm (Sacerdoti Coen, 2004, Säıbi,

1997) takes a partially type-annotated term e, a local context Γ, a unification variable

context Σ, and an optional expected type τ ′, and returns its type τ , and produces a

fully annotated term e′, and updated unification variable context Σ′.

Σ; Γ `τ ′ e ↪→ e′ : τ . Σ′

If an expected type τ ′, is provided, then the returned type τ will be convertible to

it, possibly instantiating any unification variables appearing in both τ and τ ′. The

elaboration judgment serves three main purposes that the kernel typing judgment does

not support:

1. To resolve implicit arguments. We have already seen several cases where this is

useful (e.g., in §3.1), allowing us to write underscores and let Coq’s unification

mechanism replace them with the appropriate terms.

2. To insert appropriate coercions. For example, Ssreflect (Gonthier et al., 2008)

defines the coercion is true : bool → Prop := (λb. b = true). So whenever a term

of type Prop is expected and a term b of type bool is encountered, elaboration will

insert the coercion, thereby returning the term is true b having type Prop.

3. To perform canonical structure resolution. We have seen ample examples of canon-

ical structures in Chapter 2. As we mentioned in that chapter, the instances are

resolved during unification, which is a subprocess of elaboration.
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We simply extend the elaboration mechanism to perform a fourth task, namely to run

Mtactics. We achieve this by adding the following rule for handling run t terms:

Σ; Γ `#τ ′ t ↪→ t′ : #τ . Σ′ Γ ` (Σ′; t′) ∗ (Σ′′; ret e)

Σ; Γ `τ ′ run t ↪→ e : τ . Σ′′

This rule first recursively elaborates the tactic body, while also unifying the return type τ

of the tactic with the expected goal τ ′ (if present). This results in the refinement of t to a

new term t′, which is then executed. If execution terminates successfully returning a term

e (which from Theorem 3.1 will have type τ), then that value is returned. Therefore, as

a result of elaboration, all run t terms are replaced by the terms produced when running

them, and thus the kernel type checker does not need to be modified in any way.

3.5.2 Elaboration and the apply Tactic

We have just seen how the elaborator coerces the return type τ of an Mtactic to be

equivalent to the goal τ ′, but we did not stipulate in what situations the knowledge of

τ ′ is available. Our examples so far assumed τ ′ was given, and this was indeed the case

thanks to the specific ways we invoked Mtac. For instance, at the end of §3.1 we proved

a lemma by direct definition—i.e., providing the proof term directly—and in §3.3.1 we

proved the goal by calling the Ssreflect tactic apply: (note the colon!). In both these

situations, we were conveniently relying on the fact that Coq passed the knowledge of

the goal being proven into the elaboration of run.

Unfortunately, not every tactic does this. In particular, the standard Coq tactic apply

(without colon) does not provide the elaborator with the goal as expected type, so if we

had written apply (run (F )), the Mtactic F would have been executed on unknown

parameters, resulting in a different behavior from what we expect. (Specifically, it would

have unified the implicits with the first two pointers appearing in the heap, succeeding

only if, luckily, these are the pointers in the goal.)

To ensure that information about the goal is available when running Mtactics, we rec-

ommend installing Ssreflect (Gonthier et al., 2008). However, we note that using the

standard Coq tactic refine instead of apply also works.

One last point about tactics: Mtac is intended as a typed alternative to Ltac for develop-

ing custom automation routines, and it is neither intended to replace the built-in tactics

(like apply) nor to subsume all uses of existing Coq tactics. For example, the OCaml

tactic vm compute enables dramatic efficiency gains for reflection-based proofs (Grégoire
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01 Class runner A (t : #A) := { eval : A }.
02
03 Hint Extern 20 (runner ?t) ⇒
04 (exact (Build runner t (run t)))
05 : typeclass instances.

Figure 3.14: Type class for delayed execution of Mtactics.

and Leroy, 2002), but its performance depends critically on being compiled. Mtac is in-

terpreted, and it is not clear how it could be compiled, given the interaction between

Mtac and Coq unification.

3.5.3 Delaying Execution of Mtactics for Rewriting

Consider the goal from §3.3.1, after doing pose F := run (noalias D), unfolding the

implicit is true coercions for clarity:

D : def (h1 • (x1 7→ v1 • x2 7→ v2) • (h2 • x3 7→ v3))

F : ∀x y. #((x != y) = true)

(x1 != x2) = true ∧ (x2 != x3) = true

Previously we solved this goal by applying the Mtactic F twice to the two subgoals x1 !=

x2 and x2 != x3. An alternative way in which a Coq programmer would hope to solve this

goal is by using Coq’s built-in rewrite tactic. rewrite enables one to apply a lemma one or

more times to reduce various subterms of the current goal. In particular, we intuitively

ought to be able to solve the goal in this case by invoking rewrite !(run (F )), where the

! means that the Mtactic F should be applied repeatedly to solve any and all pointer

inequalities in the goal. Unfortunately, however, this does not work, because—like

Coq’s apply tactic—rewrite typechecks its argument without knowledge of the expected

type from the goal, and only later unifies the result with the subterms in the goal.

Consequently, just as with apply, F gets run prematurely.

Fortunately, we can circumvent this problem, using a cute trick based on Coq’s type

class resolution mechanism.

Type classes are an advanced Coq feature similar to canonical structures, with the

crucial difference that their resolution is triggered by proof search at specific points in

the tactics and commands of Coq (Sozeau and Oury, 2008). We exploit this functionality

in Figure 3.14, by defining the class runner, which is parameterized over an Mtactic t

with return type τ and provides a value, eval, of the same type. We then declare a Hint
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instructing the type class resolution mechanism how to build an instance of the runner

class, which is precisely by running t.

The details of this implementation are a bit of black magic and, although we will provide

some details below for the interested reader, it is beyond the scope of this thesis to explain

fully. Intuitively, all that is going on is that eval is delaying the execution of its Mtactic

argument until type class resolution time, at which point information about the goal to

be proven is available.

Returning to our example, we can now use the following script:

rewrite !(eval (F )) .

This will convert the goal to is true true ∧ is true true, which is trivially solvable.

In fact, with eval we can even employ the standard apply tactic, with the caveat that

eval creates slightly bigger proof terms, as the final proof term will also contain the

unevaluated Mtactic inside it.

Turning Black Magic into Grey Magic. As promised, we provide the interested

reader with some of the key ingredients to understand how the trick works. In par-

ticular, we are interested in two things: (1) the time at which type class resolution is

triggered, and (2) the dynamic construction of a type class instance. About the for-

mer, we mentioned already that type class resolution happens at specific points in the

tactics and commands of Coq. More precisely, Coq sources include an Ocaml primitive

called solve typeclasses, which takes all the meta-variables with class type from the meta-

context, and proceeds to find an instance for each of them. This primitive, for instance,

is called by the apply tactic after the tactic has unified the goal with the conclusion of

the lemma. Similarly, and key to understanding why eval works in the example above,

the rewrite tactic calls the primitive after each unification of the left/right hand side of

the equation with the subterms of the goal. At this point, the Mtactic knows which is

the pointer inequality of interest, and is able to provide a proof for it.

About the dynamic construction of instances, the idea is to execute an Mtactic at the

moment of instance resolution. Therefore, when presented with the problem of finding

an instance for some meta-variable ?X with type runner t, we construct it by runing

the Mtactic t. Obviously, we can achieve this by extending the type class resolution

algorithm with the capability to execute Mtactics, but fortunately this is not needed.

Instead, we use the existing command Hint Extern, which allows for the dynamic con-

struction of an instance by executing a given tactic. In our case, the tactic is the simple

variant of apply, exact, providing the term Build runner t (run t), where Build runner is



Chapter 3. Mtac 119

01 Definition MyException (s : string) : Exception.
02 exact exception.
03 Qed.
04
05 Definition AnotherException : Exception.
06 exact exception.
07 Qed.
08
09 Definition test ex e :=
10 mtry (raise e) with
11 | AnotherException ⇒ ret ””
12 | MyException ”hello” ⇒ ret ”world”
13 | [s] MyException s ⇒ ret s
14 end.

Figure 3.15: Exceptions in Mtac.

the constructor of the class. This effectively results in the execution of the Mtactic t at

instance resolution time.

3.5.4 A Word about Exceptions

In ML, exceptions have type exn and their constructors are created via the keyword

exception, as in

exception MyException of string

Porting this model into Coq is difficult as it is not possible to define a type without

simultaneously defining its constructors. Instead, we opted for a simple yet flexible

approach. We define the type Exception as isomorphic to the unit type, and to distinguish

each exception we create them as opaque, that is, irreducible. Figure 3.15 shows how to

create two exceptions, the first one parameterized over a string. What is crucial is the

sealing of the definition with Qed, signaling to Coq that this definition is opaque. The

example test ex illustrates the catching of different exceptions.

3.5.5 Controlling the Size of Terms

Some tactics tend to generate unnecessarily big terms. Take for instance the to ast

Mtactic from Figure 3.11. In the case of an addition, this Mtactic constructs an instance

of the ast structure using the values projected out from calling the Mtactic recursively.

That means that the final proof term will contain several copies of a structure, one for
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each projector called on that structure. As a matter of fact, for a type that admits a

term of size n we can end up constructing a term with size as big as n2!

For this reason, Mtac is equipped with three different unit operators: ret, retS, retW.

The first one we have already seen in the rest of the work; the other two are new and

are actually used extensively in the source files (Ziliani, 2014). They both reduce the

term prior to returning it: retS using the simplification strategy from the simpl tactic,

and retW using the weak head reduction strategy.

For instance, run-ning the following terms produces different outputs:

ret (1 + 1) 1 + 1

retS (1 + 1) 2

retW (1 + 1) S (0 + 1)

As mentioned above, retS is critical to reduce the size of terms containing nested pro-

jections of structures. For instance, given a context G (in the sense of Section 3.3.3,

that is, an element of type ctx) the term

@term of G 0 (@Ast G 0 syn zero G (zero pf G)),

which may result as intermediate step of the to ast Mtactic, can be drastically reduced

to

syn zero

by using simplification. Note the 4 copies of G in the original term!

For details on the reduction strategies see Section 1.2.2 or The Coq Development Team

(2012).

3.6 Stateful Mtactics

So far, we have seen how Mtactics support programming with a variety of effects, in-

cluding general recursion, syntactic pattern matching, exceptions, and unification, that

are not available in the base logic of Coq. If, however, we compare these to the kinds of

effects available in mainstream programming languages, we will immediately spot a huge

omission: mutable state! This omission is costly: the lack of imperative data structures

can in some cases preclude us from writing efficient Mtactics.

One example is the tautology prover from Section 3.3.2, whose running time can be

asymptotically improved by using a hashtable. To see this, consider the complexity of
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# : Type→ Prop
. . .
hash : ∀A. A→ N→ #N
array make : ∀A. N→ A→ #(array A)
array get : ∀A. array A→ N→ #A
array set : ∀A. array A→ N→ A→ #unit
array length : ∀A. array A→ N

Figure 3.16: The new array primitives of the # inductive type.

proving the following class of tautologies:

p1 → . . .→ pn → p1 ∧ . . . ∧ pn

in a context where p1 . . . pn : Prop. First, the tautology prover will perform n steps to

add hypotheses h1 : p1, . . . , hn : pn to the context. Then, it will proceed to decompose

the conjunctions and prove each pi by searching for it in the context. Since the lookup

Mtactic performs a linear search on the context, the overall execution will take O(n2)

steps in total. Had we used a more clever functional data structure for implementing the

context, such as a balanced tree, we could reduce the lookup time to logarithmic and the

total running time to O(n log n). By using a hashtable to represent the context, however,

we can do much better: we can achieve a constant-time lookup, thereby reducing the

total proof search time to O(n).

Rather than directly adding hashtables to Mtac, in this section, we show how to extend

Mtac with two more primitive constructs: arrays and a hashing operator (§3.6.1). With

these primitives, we implement a hashtable in Mtac (§3.6.2) and use it to implement a

more efficient version of the tautology prover (§3.6.3), obtaining the expected significant

speedup (§3.6.6).

The model of mutable state that we decided to incorporate to Mtac is very flexible and

allows us to write complex imperative structures, but that comes at a price. First of all,

combining mutable state with parameters (i.e., the nu and abs operators) and syntax

inspection (i.e., the mmatch operator) is tricky and requires special care in the design

of the operational semantics (§3.6.4). Second, the interactive nature of a proof assistant

like Coq enforces certain constraints (§3.6.5). Despite these difficulties, the language

enhanced with mutable state remains sound (§3.6.7).
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3.6.1 New Language Constructs

Figure 3.16 shows the new language constructs, where N stands for binary encoded

natural numbers and array τ is an abstract type representing arrays of type τ (this type

will be discussed later). The new constructs are explained next:

• hash e n takes term e and natural number n and returns the hash of e as a natural

number between 0 and n− 1, ensuring a fair distribution.

• array make n e creates an array with n elements initialized to e.

• array get a i returns the element stored in position i in the array a. If the position

is out of bounds, it raises an exception.

• array set a i e stores element e in position i in the array a. If the position is out

of bounds, it raises an exception.

• array length a returns the size of array a. Note that it’s not part of the # inductive

type.

For each of these constructs, the type parameter A is treated as an implicit argument.

In the rest of the section we will use references, which are arrays of length 1. We will

use a notation resembling that of ML: ref e creates a reference of type Ref τ , where e : τ ,

!r returns the current contents of reference r, and r ::= e updates r to e.

3.6.2 A Dependently Typed Hashtable in Mtac

The aforementioned primitives are enough to build stateful algorithms and data struc-

tures, in particular a dependently typed hashtable. We present the hashtable below,

introducing first a required module:

The Array module. Figure 3.17 presents the wrapper module Array, emulating the

one in OCaml. The motivation for this module is merely to pack together all array

operations into one module, and to provide the developer with a familiar interface.

Besides the four primitive operations on arrays (make, length, get, set, mere synonyms

of the primitives shown in Figure 3.16), the module also provides an iterator iter, an

array constructor with an initialization function init (which throws an exception if asked

to create a 0-length array), a conversion function from array to seq, and a copy function

that copies the elements from the first array into the second one, if there’s enough space,

or fails otherwise. We omit the code for these, but they are standard and can be found

in the source files (Ziliani, 2014).
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Definition t A := array A.

Definition make {A} n (c : A) := array make n c.
Definition length {A} (a : t A) := array length a.
Definition get {A} (a : t A) i := array get a i.
Definition set {A} (a : t A) i (c : A) := array set a i c.

Definition iter {A} (a : t A) (f : N → A → #unit) : #unit := ...
Definition init {A} n (f : N → #A) : #(t A) := ...
Definition to list {A} (a : t A) : #(seq A) ⇒ := ...
Definition copy {A} (a b : t A) : #unit := ...

Figure 3.17: The Array module.

The HashTbl module. Figure 3.18 presents the module HashTbl, which implements a

(rudimentary) dependently typed hashtable. At a high level, given types τ and ρ : τ →
Type, a hashtable maps each key x of type τ to a term of type ρ x. More concretely, it

consists of a pair of references, one containing the load of the hash (how many elements

were added), and the other containing an array of “buckets”. Each bucket, following the

standard open hashing strategy for conflict resolution, is a list of Σ-types packing a key

with its element. In open hashing, each bucket holds all the values in the table whose

keys have the same hash, which is the index of that bucket in the array.

The hashtable is created with an initial size (initial size) of 16 buckets, and every time

it gets expanded it increases by a factor (inc factor) of 2. The threshold to expand the

hashtable is when its load reaches 70% of the buckets.

The function quick add adds key x, mapped to element y, to the table. It does so by

hashing x, obtaining a position i for a bucket l, and adding the existential package

containing both x and y to the head of the list. Note that this function does not check

whether the threshold has been reached and is thus not intended to be called from the

outside—it is just used within the HashTbl module as an auxiliary function.

The function expand first creates a new array of buckets doubling the size of the original

one, and then it iterates through the elements of the original array, adding them to the

new array. We omit the code of the iterator function iter for brevity.

The function add first checks if the load exceeds the threshold and, if this is the case,

proceeds to expand the table. It then adds the given key-element pair to the table.

Finally, the count of the load is increased by one. Since the load is a binary natural, and

for binary naturals the successor (succ) operation is a function, we force the evaluation

of succ load by simplifying it with retS.
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Definition t A (P : A → Type) :=
(Ref N × Ref (Array.t (seq {x : A & P x}))).

Definition initial size := 16.
Definition inc factor := 2.
Definition threshold := 7.

Definition create A P : #(t A P ) :=
n ← ref 0; a ← Array.make initial size []; ra ← ref a;
ret (n, ra).

Definition quick add {A P} a (x : A) (y : P x) : #unit :=
let n := Array.length a in i ← hash x n; l ← Array.get a i;
Array.set a i (existT x y :: l).

Definition iter {A P} (h : t A P ) (f : ∀ x : A. P x → #unit) : #unit := ...

Definition expand {A P} (h : t A P ) : #unit :=
let ( , ra) := h in a ← !ra; let size := Array.length a in
let new size := size × inc factor in new a ← Array.make new size [];
iter h (λ x y. quick add new a x y);; ra ::= new a.

Definition add {A P} (h : t A P ) (x : A) (y : P x) :=
let (rl, ra) := h in load ← !rl; a ← !ra; let size := Array.length a in
(if threshold × size ≤ 10 × load then expand h else ret tt);;
a ← !ra; quick add a x y;;
new load ← retS (N.succ load); rl ::= new load.

Definition find {A P} (h : t A P ) (x : A) : #(P x) :=
let ( , ra) := h in a ← !ra;
let size := Array.length a in
i ← hash x size; l ← Array.get a i;
list find x l.

Definition remove {A P} (h : t A P ) (x : A) : #unit :=
let (rl, ra) := h in a ← !ra;
let size := Array.length a in
i ← hash x size; l ← Array.get a i;
l’ ← list remove x l;
Array.set a i l’;;
load ← !rl; new load ← retS (N.pred load);
rl ::= new load.

Figure 3.18: The HashTbl module.
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The function list find first obtains the bucket l corresponding to the hashed index i of

the key x, and then performs a linear search using the function

list find (A : Type) (P : A→ Type) (x : A) (l : seq {z : A & P z}) : #(P x)

We omit the code of this function since it is similar to the lookup function from §3.3.2.

Similarly, the function list remove removes an element from the hashtable by obtaining

the bucket l of the key x and removing the element using the auxiliary function

list remove (A : Type) (P : A→ Type) (x : A) (l : seq {z : A & P z})

: #(seq {z : A & P z})

This function throws the exception NotFound if the element is not in the list, and only

removes one copy if the key x appears more than once.

3.6.3 The Tautology Prover Revisited

The code for the new tautology prover with hashing of hypotheses is listed in Figure 3.19.

The type used to represent contexts is defined in the first line: it is a dependently

typed hashtable whose keys are propositions and whose elements are proofs of those

propositions. The prover itself begins on line 3. The cases for the trivial proposition,

conjunction and disjunction (lines 5–17), as well as for ∀ (lines 23–26), are similar to the

original ones, except that the context is not threaded through recursive calls but rather

updated imperatively.

The implication, existential, and base cases require more drastic changes. The implica-

tion case is modified to extend the hashtable (line 20) with the mapping of parameter x

with hypothesis p1. In order to avoid leaving garbage in the hashtable, the added ele-

ment is removed after the recursive call. Since the recursive call may raise an exception,

the removal is performed before re-throwing the exception.

The base case (line 36) is modified to perform the lookup in the hashtable.

Finally, the existential case (line 27), requires a bit of explanation. It starts, as in the

previous prover, by creating a unification variable for the witness X (line 28). Then it

differs substantially. The reason why we need to change its behavior is simple: in the

previous prover we were expecting it to find the solution for the witness by unification

during the lookup in the base case. Since now we have a hash table for the lookup,

there is no unification process going on, and therefore no instantiation for the witness

can occur.
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Here instead we do the following: we still try to find a solution recursively (line 30) for

when the solution is trivial or does not depend on the witness—for instance, consider

the case ∃p : Prop. p with trivial solution

ex intro (λp : Prop. p) True I

If no solution is found (i.e., an exception ProofNotFound is raised), then we create

another unification variable for the proof r and return the proof term ex intro q X r

(line 34). That is, we return a proof with a hole, expecting the proof developer to fill

the hole later on. For instance, if we run the tautology prover on the example

∀x : nat. ∃y : nat. y ≤ x

then Coq will ask, as a subgoal, for a proof of ?X ≤ x. The proof developer can proceed

to provide the standard proof of 0 ≤ x, thereby instantiating ?X with 0.

More to the point, this example focuses primarily on the use of a hashtable for quick

lookups for hypotheses. It is possible to create a more involved prover combining both a

hashtable- and a list-based context to regain the previous functionality for existentials,

paying the price of linear lookup only when needed.

3.6.4 Operational Semantics

As we mentioned in the introduction of this section, we need to take special care when

combining mutable state with parameters and syntax inspection.

Mutable State and Parameters: The combination of these two features requires

us to adjust the operational semantics for the nu (ν) operator in order to preserve

soundness. More precisely, we need to ensure that if we store a parameter x in an array

or reference, then we should not be able to read from that location outside the scope of

x. Take for instance the following example:

Definition wrong := r ← ref 0; (ν x:nat. r ::= x);; !r.

In this code, first a reference r is created, then a new parameter x is created and assigned

to r. Later, outside of the scope of x, r is dereferenced and returned. Without checking

the context of the element being returned, the result of this computation would be

undefined.
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01 Definition ctx := HashTbl.t Prop (λ x. x).
02
03 Definition tautoh’ (c : ctx) := mfix f (p : Prop) : #p :=
04 mmatch p as p’ return #p’ with
05 | True ⇒ ret I
06 | [p1 p2] p1 ∧ p2 ⇒
07 r1 ← f p1 ;
08 r2 ← f p2 ;
09 ret (conj r1 r2)
10 | [p1 p2] p1 ∨ p2 ⇒
11 mtry
12 r1 ← f p1 ;
13 ret (or introl r1)
14 with ⇒
15 r2 ← f p2 ;
16 ret (or intror r2)
17 end
18 | [p1 p2 : Prop] p1 → p2 ⇒
19 ν (x:p1).
20 HashTbl.add c p1 x;;
21 mtry r ← f p2; HashTbl.remove c p1;; abs x r
22 with [e] e ⇒ HashTbl.remove c p1;; raise e end
23 | [A (q:A → Prop)] (∀ x:A, q x) ⇒
24 ν (x:A).
25 r ← f (q x);
26 abs x r
27 | [A (q:A → Prop)] (∃ x : A. q x) ⇒
28 X ← evar A;
29 mtry
30 r ← f (q X);
31 ret (ex intro q X r)
32 with ProofNotFound ⇒
33 r ← evar (q X);
34 ret (ex intro q X r)
35 end
36 | [x] x ⇒ HashTbl.find c x
37 end.
38
39 Definition tautoh P :=
40 c ← HashTbl.create Prop (λ x. x);
41 tautoh’ c P .

Figure 3.19: Tautology prover with hashing of hypotheses.
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With unification variables we also have this problem—we can encode a similar example

using evar instead of ref and mmatch instead of the assignment. But with unification

variables, the contextual type of the unification variable would prevent us from per-

forming the instantiation, therefore effectively ensuring that “nothing goes wrong”. For

mutable state, on the other hand, it would be too restrictive to restrict assignments to

only include variables coming from the context where the array was created. Take for

instance the tautology prover: there, in the implication case, the parameter x is added

to a hashtable that was created outside the scope of x.

Thus, for mutable state we take a different, more “dynamic” approach: before returning

from a νx binder we invalidate all the cells in the state that refer (in the term or in

the type) to x. If later on a read is performed on any such cell, the system simply gets

blocked.

Mutable State and Syntax Inspection: The problem with combining mutable

state and the mmatch constructor concerns (lack of) abstraction. In short, we would

like to be able to prevent the user from breaking abstraction and injecting a spurious

reference (a location that is not in the domain of the store or with a different type from

the one in the store) in the execution of a Mtactic, as that would result in a violation

of type soundness. However, we have been unable to find any simple and elegant way

of preventing the user from doing that, and so instead we choose to incur the cost of

dynamic safety checks when performing stateful operations.

In order to understand the problem, let us explain first how it is handled in Haskell,

and why we cannot simply port the same approach to Mtac. In Haskell, the runST

command (Launchbury and Peyton Jones, 1994) enables one to escape the stateful ST

monad by executing the stateful computation inside, much as with Mtac’s run and #

monad.

Since runST uses an effectful computation to produce a term of a pure Haskell type,

it is essential to the soundness of runST that its computation runs inside a fresh store.

Moreover, it is important to prevent the user from attempting to access an old reference

within a new call to runST, as in the following code (here in Mtac syntax).

let r := run (ref 0) in run !r

After creating the reference r in the first run, the reference is read in the second. In

Haskell, this situation is prevented by giving runST the following more restrictive type:

∀A. (∀S. ST S A)→ A
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where S is a phantom type parameter representing the state and A is the return type

of the monad, which may not mention S. By making the monad parametric in the

state type, the typechecker effectively ensures that the computation being executed can

neither leak any references to nor depend on any references from its environment. For

example, in the code above, the command ref 0 has type ST S (Ref S nat) for some

S, but this cannot be generalized to runST’s argument type (∀S. ST S A) because

A = Ref S nat mentions S.

Crucially, Haskell’s built-in abstraction mechanisms also hide the constructor for the

Ref type. That is, in Haskell the user is not entitled to pattern match an element of the

Ref type simply because its constructor is hidden from the user.

Unfortunately, the same techniques will not help us in Mtac. The problem arises from

the following observation: for any constant c with type τ , if Mtac can create it, Mtac

can inspect it. That is, we can always pattern match a term of type τ and get a hold

of its head constant (e.g., c). The same happens with references. Say that we create a

new type Ref A with constructor

cref : ∀A. Loc→ Ref A

Say further that we hide the constructor from the user (by using the module system of

Coq), so that the proof developer is not entitled to write the following code:

mmatch x with [l : Loc] cref l ⇒ . . . end

There is still a way of achieving the same behavior with the following code:

mmatch x with [(c : Loc→ Ref A) (l : Loc)] c l ⇒ . . . end

since, if Mtac is (somehow) allowed to construct a cref, then nothing can prevent it from

matching a meta-variable with a cref.

And this can be disastrous from the perspective of soundness. Imagine, for instance,

that the location of a reference with type A is accessed at type B:

mmatch (x, y) with

| [(c1 : Loc → Ref A) (c2 : Loc → Ref B) l1 l2] (c1 l1, c2 l2) ⇒ !(c2 l1)

end
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One option for solving this problem might be to forbid mmatch from pattern matching

an element containing a reference. However, this solution is too strict, as it would

disallow legitimate matches on terms of data types containing references.

Instead, the solution that we have adopted in Mtac is not to hide cref at all, but rather

to bite the bullet and perform the necessary dynamic checks to ensure that the code

above gets blocked. More precisely, under Mtac semantics, the read of c2 l1 will get

blocked as it is reading from the location l1 at a different type (B) from the expected

one (A). Similarly, in the previous example, the attempt to read the reference r in run !r

will get blocked since run !r executes in a fresh store and r is not in the domain of that

store.

With these considerations in mind, we can now move on to explain the actual rules. We

extend the judgment from Section 3.4 to include input and output stores. A store σ is

a map from locations l to arrays annotated with the type τ of their elements. An array

element d is either null or a Coq term:

σ ::= · | l 7→ [d; . . . ; d]τ , σ

d ::= null | e

The new judgment is

Σ; Γ;σ ` t (Σ′;σ′; t′)

On the Coq side, we have an inductive type of locations Loc and an inductive array type,

where the number in carray represents the length of the array:

array : Type→ Type

carray : ∀A. Loc→ N→ array A

Since we need to transform numbers and locations from Coq to ML and vice versa, we

write e for the interpretation of Coq numbers/locations e into ML, implicitly reducing

e to normal form, and e for the interpretation of ML numbers/locations e into Coq.

Figure 3.20 shows the new rules concerning effectful computations. The first rule presents

the aforementioned modifications to the original rule for the νx binder. The changes

(highlighted) show that, upon return of the νx binder, we invalidate all the arrays whose

type contains x, and all the array positions referring to x. The invalidate judgment is

given in Figure 3.21.5

5For performance reasons, in the implementation we don’t traverse the entire state. Instead, we keep
a map relating each parameter x introduced by a νx binder with a list of array positions. When the
parameter x is going out of scope, all the array positions associated with it are invalidated. The map is



Chapter 3. Mtac 131

x /∈ FV(v) invalidate σ x = σ′

Σ; Γ; σ ` (νx. v) (Σ; σ′ ; v)
ENuV

h = hash(e) mod s

Σ; Γ;σ ` hash e s (Σ;σ; ret h)
EHash

l fresh

Σ; Γ;σ ` array make τ n e (Σ; l 7→ [e; n−2. . . ; e]τ , σ; ret (@carray τ l n))
EAMake

Σ; Γ ` a whd
 ∗ @carray τ ′ l i < n ei+1 6= null Σ; Γ ` τ ≈ τ ′ . Σ′

Σ; Γ;σ, l 7→ [e1, . . . , en]τ ` array get a i (Σ′;σ; ret ei+1)
EAGetR

Σ; Γ ` a whd
 ∗ carray l i ≥ n

Σ; Γ;σ, l 7→ [e1, . . . , en]τ ` array get a i (Σ;σ; raise OutOfBounds)
EAGetE

Σ; Γ ` a whd
 ∗ @carray τ ′ l i < n Σ; Γ ` τ ≈ τ ′ . Σ′

Σ; Γ;σ, l 7→ [e1, . . . , en]τ ` array set a i e (Σ′;σ, l 7→ [e1, i−1. . ., e, . . . , en]τ ; ret 〈〉)
EASetR

Σ; Γ ` a whd
 ∗ carray l i ≥ n

Σ; Γ;σ, l 7→ [e1, . . . , en]τ ` array set a i e (Σ;σ; raise OutOfBounds)
EASetE

Figure 3.20: Operational small-step semantics of references.

The second rule performs the hash-ing of a term e, limited by s. The element is hashed

using an ML function hash, which we omit here.

The next rule creates an n-element array initialized with element e. A fresh location

pointing to the new array is appended to the state, and this location, together with n,

are returned as part of the carray constructor.

The next two rules describe the behavior of the getter. In both rules the array is first

weak head-reduced in order to obtain the carray constructor applied to location l. Then

the rules differ according to the case: if the index i is within the bounds of the array, and

the element at index i is defined (i.e., not null), then the type of the array τ is unified

with the type coming from the carray constructor (τ ′), potentially instantiating new

meta-variables. If the index is outside the bounds of the array, an error OutOfBounds is

raised.

The two rules for the setter are similar: we first check that the index is within the

bounds and that the type of the array unifies with the one from the constructor, and if

so, the position i of the array is updated. Otherwise, an exception is raised.

populated in each operation array set, where we take the set of free parameters and add the position to
their lists of positions.
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invalarr [e1, . . . , en]τ x = [e′1, . . . , e
′
n]τ ∀i ∈ [1, n]. e′i =

{
null if x ∈ FV(e)

ei otherwise

invalidate [] x = []

invalidate (l 7→ aτ , σ) x = invalidate σ x x ∈ FV(τ)

invalidate (l 7→ aτ , σ) x = (l 7→ invalarr aτ x, invalidate σ x) x 6∈ FV(τ)

Figure 3.21: Invalidation of array positions whose contents are out of scope.

3.6.5 Use Once and Destroy

Allowing state to persist across multiple Mtactic runs is possible but technically chal-

lenging. For the present work, we have favored a simple implementation, and therefore

restricted Mtactics to only use mutable state internally, as in Launchbury and Pey-

ton Jones (1994).

If we were to consider generalizing to handle persistent state, we would encounter at least

two key challenges. First, since Coq is interactive, the user is entitled to undo and redo

operations. Allowing state to persist across multiple runs would thus require the ability

to rollback the state accordingly. While this is doable using persistent arrays (Baker,

1991) with reasonable amortized space and time complexity, there is still a technical

challenge: how to know to which state to rollback.

A second challenge arises from the module system of Coq. In particular, a developer

may create references and modify them in different modules. Then, importing a module

from another file should replay the effects in that file in order to ensure a consistent

view of the storage among different modules.

As mentioned above, we decided to leave this problem for future work and throw away

the state after the execution of a Mtactic. While this decision may sound restrictive,

it is flexible enough for us to be able to encode interesting examples, such as the one

presented in this section.

The rule for elaborating the run operator is modified to start the evaluation of the

Mtactic with an empty state:

Σ; Γ `#τ ′ t ↪→ t′ : #τ . Σ′

Σ′; Γ; [] ` t′  ∗ (Σ′′;σ; ret e)

Σ; Γ `τ ′ run t ↪→ e : τ . Σ′′
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Figure 3.22: Performance of three different implementations of tautology provers:
using a list, a finite map over a balanced tree, and a hashtable.

3.6.6 A Word on Performance

Despite the various dynamic checks performed by our stateful extensions to Mtactics,

we can obtain a significant speedup by using mutable state. To support our claim,

we implemented three different versions of the tautology prover, using different data

structures (both functional and imperative). Figure 3.22 shows the time it takes for each

prover to solve a certain class of tautologies, of the form p1 → . . .→ pn → p1 ∧ . . .∧ pn,

on an increasing number n of hypotheses. The slowest one is the functional prover from

Section 3.3.2, which takes constant time for extending the context and linear time (in

the size of the context) for lookup.

The second prover uses a functional map implemented with a balanced tree. As keys for

the map we use the natural numbers coming from hashing the hypotheses, similarly to

what the prover from Figure 3.19 does. Both extending and querying the context take

logarithmic time to compute.

Finally, the third prover is the one presented in this section, which performs both ex-

tension and lookup of the context in amortized constant time. As expected, it greatly

outperforms the other two.

Before moving on to prove soundness of the system, we want to stress that the safety

check done in the getter and setter rules (i.e., the unification of the type of the array with

the one coming from the carray constructor) does not result in a significant performance

cost. In particular, it is possible to cache the results, effectively avoiding the overhead

in the most common cases (which cover almost all of the accesses). Even in our rather

naive implementation, our experimental results shows that the invalidation of cells and

the unification of types in the getter and setter operations cause no significant slowdowns

(less than 5%).
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3.6.7 Soundness in the Presence of State

The soundness theorem must now be extended to consider the store. We start by

extending the definition of blocked terms to consider the new cases:

Definition 4 (Blocked terms). A term t is blocked if and only if the subterm in reduction

position satisfies one of the cases of Definition 2, or:

• It is an array operation (get or set), and the array or the index do not normalize

to the array constructor or a natural number, respectively.

• It is an array operation (get or set), the array and the index normalize to @carray τ l

and i respectively, for some τ , l and i, but either

1. l is not in the state σ, or

2. there exists l 7→ aτ ′ ∈ σ, but τ does not unify with τ ′ or ai = null.

To state the preservation theorem, we need to say what it means for a store to be valid.

A store σ is valid in contexts Γ and Σ if for every array a with element type τ in σ,

every element of a is either null or has type τ . Formally,

Σ; Γ ` · valid

∀j ∈ [1..n]. ej = null ∨ Σ; Γ ` ej : τ Σ; Γ ` σ valid

Σ; Γ ` (l 7→ [e1, . . . , en]τ , σ) valid

We now extend the proof of type preservation, where we need to also ensure preservation

of the validity of the store.

Theorem 3.3 (Type preservation with references). If Σ; Γ ` t : #τ and Σ; Γ ` σ valid

and Σ; Γ;σ ` t (Σ′;σ′; t′), then Σ′; Γ ` t′ : #τ and Σ′; Γ ` σ′ valid.

Proof. The proof poses little challenge. We only consider the new or modified cases.

Case ENuV: We have t = νx. v. Since x goes out of scope in the returning term, in

order to have a valid state we need to remove all the arrays with types referring to

x, and invalidate all array positions with contents referring to x. This is precisely

what the invalidate judgment does.

Case EHash: Trivial, as it is returning a number.

Case EAMake: We have t = array make τ ′ n e. Let l be a fresh location. By hypothesis

we know that e has type τ ′, so the new store σ′ = l 7→ [e; n−2. . . ; e]τ ′ , σ contains an

array of elements of type τ ′. Therefore, the new state is valid, and the returned

value @carray τ ′ l n has type array τ ′.
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Case EAGetR: We have t = array get τ ′ a i. By the premise of the rule, a normalizes

to @carray τ ′ l and i to i′ such that l 7→ [e1, . . . , en]τ ∈ σ for some e1, . . . , en.

Also by hypothesis, i′ < n, τ unifies with τ ′, and ei′+1 6= null. Therefore, ei′+1 has

type (convertible with) τ ′. Note that, by soundness of unification (Postulate 9),

Σ′ ≥ Σ.

Case EAGetE: Trivial.

Case EASetR: We have t = array set τ ′ a i e. As in the EAGetR case, we also have

that a
whd
 ∗ @carray τ ′ l and there exist e1, . . . , en such that l 7→ [e1, . . . , en]τ ∈ σ.

We need to show that Σ; Γ ` σ′ valid, where σ′ = l 7→ [e1, i−1. . ., e, . . . , en]τ , σ. By

hypothesis and the premises of the rule, we know that e has type τ ′, unifiable with

τ . Therefore, updating the i-th position cannot invalidate the store. Note that, as

in the previous case, by soundness of unification (Postulate 9), Σ′ ≥ Σ.

Case EASetE: Trivial.

As before, our main theorem follows as an immediate corollary:

Theorem 3.4 (Type soundness with references). If Σ; Γ ` t : #τ and Σ; Γ ` σ valid,

then either t is a value, or t is blocked, or there exist t′, Σ′ and σ′ such that Σ; Γ;σ `
t (Σ′;σ′; t′) and Σ′; Γ ` t′ : #τ and Σ′; Γ ` σ′ valid.

As a second corollary, we have that the new rule for run t (in §3.6.5) is also sound: since

the initial empty store under which t is run is trivially valid, Theorem 3.4 tells us that

the type τ of t is preserved, and hence that the returned term e has type τ .

3.7 Characteristics of Mtac and Conclusions

Maintainability. Mtac shares with Lemma Overloading the benefits of typed tactic

programming. There is a difference though: the dynamic nature of the νx binder makes,

in a sense, Mtactics be “less typed” than overloaded lemmas—i.e., they may fail (block)

in ways overloaded lemmas are not allowed.

Composability. The noalias Mtactic from Section 3.3.1 was presented to show how

trivial is to compose Mtactics, in particular in comparison with Lemma Overloading.

We have not mentioned how, or if, we can compose easily Mtactics with standard Coq



Chapter 3. Mtac 136

lemmas. The answer is: yes, we can! For instance, the Mtactic noalias can be used in

exactly the same way as the overloaded lemma from Section 2.6. We show here one

of the examples shown at the end of that section, and the others are equally solvable.

Assume F as before, with type ∀x y : ptr. #(x != y). We can compose the execution of

F with the negbTE lemma and solve the following goal:

Goal : if (x2 == x3) && (x1 != x2) then false else true

Proof : by rewrite (negbTE (eval (F )))

Interactive Tactic Programming. As mentioned in Section 3.3.1.1, Mtactics can

be built interactively.

Simplicity. The semantics of Mtac is quite simple, as shown by the multiple examples

throughout this chapter, most notably the noalias Mtactic from Section 3.3.1. With

Lemma Overloading, this example required several advanced features to work properly

(Section 2.6). And for those corner cases where intuition is not enough, and we require

a more precise description of the semantics, we can turn our attention to figures 3.13

and 3.20.

Formality. As mentioned in the previous paragraph, figures 3.13 and 3.20 provides

the semantics of the language. Moreover, in sections 3.4.3 and 3.6.7 we provide the proof

of soundness of the system. The only weakness in the semantics of Mtac, as with Lemma

Overloading, is the dependency on the unification algorithm. As such, the formalization

of such algorithm is crucial if we want to understand fully how Mtactics are run, and

this is why we took the endeavor of building and describing a new unification algorithm

in Chapter 4.

Performance. Being an interpreted language, Mtac has a competitive performance

with, for instance, Ltac (another interpreted language). Furthermore, the addition of

stateful tactics allows for a significant reduction of the complexity of Mtactics, as shown

in Figure 3.22.

But we think we can do better. In the future we envision two orthogonal improvements to

Mtac, which combined should greatly improve the overall performance of the language.

The first one is to extract Ocaml code from Mtactics and compile it, borrowing ideas

from Claret et al. (2013). The main challenge is how to amortize the cost of dynamic

compilation and linking. The second improvement is related to the unification algorithm,

which currently is one of the major bottlenecks of Mtac. This thesis makes the first step
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of explaining the process of unification (Chapter 4); the next step is to introduce the

necessary mechanisms to improve its performance.

Extensibility. Mtac alone does not provide the tools to write extensible tactics. How-

ever, it is possible to combine Mtac with overloading and build extensible tactics. The

idea is dead simple, although it requires some thinking to make it work. Recall from

Section 3.2 the definition of the pattern matching construct, mmatch, which takes a

Coq list of patterns. If we manage to construct this list dynamically, then we can easily

obtain an extensible tactic.

And how do we construct the list of patterns dynamically? Using overloading! As argued

in Section 2.7, overloading is perfect to add cases in an algorithm, so we can as well use

it to add elements in a list—in this case the list of patterns of an Mtactic!

Figure 3.23 shows an extensible version of the search tactic from Section 3.1. It uses

overloading for building the cases of the algorithm. For presentation purposes, we de-

cided to use type classes (Sozeau and Oury, 2008), instead of canonical structures, since

the former, in this particular case, leads to shorter code, allowing us to concentrate

on the relevant aspect of the algorithm we intend to highlight. Further down, and in

Section 5.1.2, we discuss the key differences between the two overloading mechanism in

Coq. For the moment, the important point to take is that this code is just a proof of

concept for extensible Mtactics.

The code starts defining the type of a case, CaseT, which takes the element we are

looking for, x, the function f to make recursive calls, and the list s, and returns an

element of type Patt, the type for an mmatch pattern. Next, in line 5, the class Case is

defined, parametrized over a natural number and with only one field, the case, with an

element of CaseT. The natural number will be used as the key to find instances, as will

be discussed below in detail.

In line 7 we find the build cases Mtactic that, as its name suggests, is in charge of building

the list of cases. It does so by increasing a number n (starting from 0), at each step

constructing an unknown instance (meta-variable) X with type Case n. For each X it

triggers the type class resolution mechanism in order to obtain an instantiation for X.

If such instance exists, then it appends the case in X to the list of already found cases

l and recurses with the next number. If not, it returns the list l constructed so far.

Before explaining why this works, we should explain how canonical structures and type

classes difere in two relevant aspects of overloading: (1) the triggering of instance res-

olution, and (2) the selection of a particular instance. In canonical structures, as we

saw in Chapter 2, the resolution process starts at unification, when a projector of an
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01 Definition CaseT :=
02 ∀ (x : A) (f : ∀ s’ : seq A, #((λ s : seq A. x ∈ s) s’)) (s : seq A),
03 Patt (seq A) (λ s’ : seq A. x ∈ s’) s.
04
05 Class Case (n : nat) := { the case : CaseT }.
06
07 Definition build cases : #(seq CaseT) :=
08 let cases :=
09 mfix f (n : nat) (l : seq CaseT) : #(seq CaseT) :=
10 X ← evar (Case n); solve typeclasses;;
11 b ← is evar X;
12 if b then ret l
13 else f (S n) (@the case X :: l)
14 in cases 0 nil.
15
16 Definition next no : #nat := l ← build cases; retS (length l).
17
18 Instance default inst : Case 0 :=
19 {| the case := λ x f s. L [l] l ⇒ raise NotFound M |}.
20
21 Instance iterate inst : Case (run next no) :=
22 {| the case := λ x f s.
23 L [y s’] (y :: s’) ⇒ r ← f s’; ret (in cons y r) M |}.
24
25 Instance found inst : Case (run next no) :=
26 {| the case := λ x f s. L [s’] (x :: s’) ⇒ ret (in eq ) M |}.
27
28 Definition search ext (x : A) s :=
29 cs ← build cases;
30 (mfix f (s : seq A) : #(x ∈ s) :=
31 cs ← retS (map (λ c. c x f s) cs);
32 mmatch (λ s’. x ∈ s’) s cs) s.

Figure 3.23: Extensible search Mtactic.

unknown instance is unified with some particular value. In that case, the instance is se-

lected based on the head constructor of the value. In type classes, instead, the resolution

process is triggered for every unknown instance, at specific points in the Ocaml code of

Coq. For instance, the refiner triggers it after refining a term, some tactics trigger it at

certain points when the instances might be needed, etc. The selection of an instance is

performed by unifying the type of the unknown instance with the type of the instances

in the database.

In our code, we trigger the resolution process of type classes explicitly, by calling the

new Mtac constructor solve typeclasses. The call is done right after the creation of the
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meta-variable X with type Case n, in the hope that the resolution process will find an

instance for it. The instances of the class are created with different, increasing numbers,

starting from 0. The result is that, after adding m instances, the Mtactic build cases

will build a list containing cases m− 1, . . . , 0, in that specific order.

To make things easier with the numbering, we defined the next no Mtactic in line 16,

which simply creates the list of cases and returns its length. This is just to help providing

unique numbers to instances, although, of course, it does not solve the known “diamond

dependency problem”, intrinsic to type classes.

In the code, only three instances are added, in lines 18–26. First, the default instance,

added to fail gracefully when the element is not found, then the case for when the

element is not in the head of the list, and finally the case for when the element is in the

head of the list. Compared to the code in Figure 3.1, these instances corresponds to the

last three instances of the search Mtactic, but in reverse order. In the code we use the

notation LpM to create pattern p using the notation for patterns provided in Section 3.2.

Note the use of run next no in order to dynamically obtain the number for the instance.

Finally, in lines 28–32 we have the extensible Mtactic search ext. This Mtactic builds the

set of cases and creates the mfixpoint iterating and pattern matching the list, similarly

to the one in Figure 3.1. But unlike in the non-extensible version, here the mmatch is

constructed with the list of cases built in line 29. Since the type of the cases depends

on the element x, the fixpoint function f , and list s, we need to first apply each case to

these values, which we do using the standard map function in line 31.

With this function we can prove, so far, that some element is in a list resulting from

cons-ing elements. For instance, the first of the two examples below searches for x2

in a list resulting form concatenating list [x1, x2] with an unknown list s. Since the

concatenation function iterates the list on the left, the unification process taking place

in the pattern matching of the search ext Mtactic reduces the list to (x1 :: x2 :: s),

allowing the Mtactic to make progress and eventually succeed to prove the statement.

Example ex app l (x1 x2 : nat) s : x2 ∈ ([x1; x2] ++ s) :=

run (search ext ).

Fail Example ex app r (x1 x2 : nat) s : x1 ∈ (s ++ [x1; x2]) :=

run (search ext ).

The second example is similar, although the unknown list s is now at the left of the

concatenation function. Since we have not added a case for concatenation, and the list
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cannot be reduced, the Mtactic fails, as noted with the Fail command. In order to make

it succeed, we just need to add the case for concatenation:

Instance app inst : Case (run next no) :=

{| the case := λ A x f s. L

[ l r ] l ++ r ⇒
mtry

il ← f l;

ret (in or app l r x (or introl il))

with NotFound ⇒
ir ← f r;

ret (in or app l r x (or intror ir))

end

M |}

Note that there is nothing special about the search Mtactic; we can as well use the same

pattern to build any other extensible Mtactic.

We have answered the question on how to build extensible Mtactics, but we have not

motivated the need for extensible Mtactics. After all, Lemma Overloading is already a

method that facilitates the construction of extensible tactics. Why do we need extensible

tactics in Mtac? The answer is simple: To build easy-to-use, easy-to-compose extensible

functional tactics.

We conclude this chapter noting that we have succeeded in building a language for proof

automation with all the characteristics enumerated in the introduction of this thesis.



Chapter 4

An Improved Unification

Algorithm for Coq

The unification algorithm is at the heart of a proof assistant like Coq. In particular, it

is a key component of the refiner (the algorithm that has to infer implicit terms and

missing type annotations), of certain tactics, and, as we saw in previous chapters, of

proof automation.

Despite playing a central role in the proof development process, there is no good source of

documentation to understand Coq’s unification algorithm. We mentioned earlier (§2.7)

two different works on this topic: Sacerdoti Coen (2004, chp. 10) and Säıbi (1997).

The first one describes a unification algorithm for CIC, and the second one introduces

(briefly) canonical structures. However, neither suffices to really understand the current

state of affairs, in particular certain design decisions that shaped the current algorithm

in Coq.

Unification is an inherently undecidable problem for CIC, as it must deal with higher-

order problems up to conversion. For instance, how should the meta-variable ?f be

instantiated to satisfy the equation ?f 1 ≈ 41 + 1? This problem has infinitely many

solutions, as ?f can be instantiated with any function that returns number 42 when

the input is 1. Many works in the literature (e.g., Abel and Pientka, 2011, Miller,

1991b, Reed, 2009) are devoted to the creation of unification algorithms returning a

Most General Unifier (MGU), that is, a unique solution that serves as a representative

for all convertible solutions. In the example above, no such MGU exists, as the problem

has (infinitely many) non-convertible solutions: e.g., ?f := λx. 41 + x and ?f := λx. 42.

However, in Coq, restricting the algorithm to return only MGUs is impractical. Consider

for instance the search Mtactic from Figure 3.1. Let’s assume we are searching for an

141
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element in the list [2]++[1]. We expect the Mtactic to match the concatenation case,

searching for the element first in the list on the left and then on the right. For that, the

semantics of mmatch must unify the term ?l++?r, for fresh meta-variables ?l and ?r,

with the list [2]++[1]. This unification should result in assigning ?l := [2] and ?r := [1].

However, there exist other solutions, like assigning the whole list to ?l, and the empty

list to ?r. If the unification algorithm is restricted to only return MGUs, it will fail in

this case, rendering the search Mtactic unusable!

MGUs are not only impractical in Mtac, but also in almost any other process involving

unification in Coq. For this reason, Coq’s unification algorithm includes heuristics to

provide what we call a “natural” unifier, that is, a solution as close as possible to what

the proof developer expects (this is not a formal definition, but rather a consequence of

years of development).

However, while certain heuristics are essential, there are others that introduce a certain

brittleness to the algorithm. An example of this will be discussed in Section 4.3, but for

the moment the important point to take away is the tension existing in the design of an

unification algorithm: more heuristics means more unification problems are solved, but

less predictably.

For this reason, we decided to build a new algorithm from scratch, instead of just

performing reverse engineering on the existing algorithm. The process helped us identify

the algorithm’s relevant design decisions we have to take into account, which we diligently

enumerate in this chapter. To the best of our knowledge, this is the first document

describing such design decisions.

In the remainder of the chapter we go straight to the rules of the new algorithm (§4.1),

explaining each of the design decisions we made. We expect this algorithm to be sound,

for a specific definition of soundness (§4.2). As mentioned above, our algorithm does

not incorporate all of the heuristics that exist in the current algorithm. Probably the

most controversial omission is constraint postponement (Reed, 2009), which helps dis-

ambiguating solutions when multiple ones exist, but at the cost of making the algorithm

harder to reason about (§4.3). However, our results compiling the Mathematical Com-

ponents library (Gonthier et al., 2008) using our algorithm show that this heuristic is

not essential after all (§4.4). Still, there are many problems our algorithm cannot solve,

but that are easily solvable by incorporating a much simpler heuristic than constraint

postponement (§4.5).
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4.1 The Algorithm

We proceed to describe our proposal in the following pages, emphasizing every non-

standard design decision. The unification judgment is of the form

Σ; Γ ` t1 ≈ t2 . Σ′

It unifies terms t1 and t2, given a well-formed meta-variable context Σ and a well-formed

local context Γ. There is an implicit well-formed global environment E.

We assume that the two terms are well-typed, according to the rules in §1.2.3. That is,

there must exist T1 and T2 such that

Σ; Γ ` ti : Ti for i ∈ [1, 2]

As a result, the algorithm returns a new meta-variable context Σ′ with instantiations

for the meta-variables appearing in the terms or in the contexts. The algorithm ensures

that, upon success, terms t1 and t2 are weakly well-typed and convertible under the new

meta-context. Weak typing is similar to typing, but without checks like the guardedness

condition. We discuss the reason for such weakening in §4.2.

Our algorithm closely relates to the original algorithm of Coq. In particular, it shares

the following practical heuristics:

First-order approximation: As mentioned in the introduction of this chapter, when

faced with a problem of the form

c t1 . . . tn ≈ c u1 . . . un

it decomposes the problem into n subproblems ti ≈ ui, for 0 < i ≤ n. For instance,

in order to solve the equation ?l++?r ≈ [2]++[1], for fresh meta-variables ?l and

?r, it obtains two unification problems, ?l ≈ [2] and ?r ≈ [1].

Backtracking: When first-order approximation fails, in an effort to find a solution

to the equation, it reduces the terms. For instance, in the equation ?x :: ?s ≈
[2]++[1], for ?x an unknown element and ?s an unknown list, it reduces the right-

hand side, obtaining the (solvable) equation ?x :: ?s ≈ 2 :: (1 :: []).

Reduction of the goal first: The unification algorithm is used, for instance, for the

application of lemmas. When applying a lemma with conclusion t to a goal u,

it results in the equation t ≈ u, that is, with the goal on the right-hand side.
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Typically, we need to reduce the goal to adapt to the lemma being applied than

the other way around, and for this reason the algorithm gives priority to reduction

on the right-hand side.

Delay unfolding of definitions: The previous heuristic, reduction on the right-hand

side first, has an exception. When the right-hand side is a constant or variable

definition, before expanding it, the algorithm tries to make progress on the left-

hand side, in the hope of encountering the same constant/variable also on the

left-hand side. As we are going to see in Section 4.1.2, this heuristic has also

desirable consequences in canonical structures resolution.

Canonical structures resolution: As mentioned several times throughout this manuscript

(e.g., Section 1.3 and Chapter 2), the unification algorithm is in charge of instanti-

ating unknown instances of structures with canonical values. More precisely, when

it encounters a problem of the form proj ?s ≈ c t, with proj being a projector of

a structure, ?s and unknown instance of that structure, and c some constant, it

instantiates ?s with the canonical value stored in the database for the pair (proj, c).

As for the differences with the current algorithm in Coq, we can mention the following:

Uniform treatment of applications: When faced with an equation of the form

t t1 . . . tn ≈ u u1 . . . un

the original algorithm performs a case analysis on terms t and u, ultimately unify-

ing also each subterm ti and ui according to the first-order approximation heuristic.

In our algorithm, instead, we first compare t and u using a restricted set of rules,

and then proceed uniformly to unify the subterms. Ultimately, both algorithms

behave similarly, but ours allows for a cleaner presentation (in paper and in code).

No constraint postponement: As mentioned in the introduction of this chapter, we

purposely did not incorporate constraint postponement (Reed, 2009). This heuris-

tic allows the postponement of unification problems with multiple solutions, in the

hope that, at a later stage, more information may come to help disambiguate the

solutions. The reason to not include this heuristic will be discussed in Section 4.3.

Meta-variable instantiation: As we are going to see, solving a problem of the form

?f t1 . . . tn ≈ u can be quite challenging. In the original algorithm of Coq, the

heuristic implemented to solve these sort of equations is quite convoluted, so we

have implemented our own, following closely the work by Abel and Pientka (2011).
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Σ; Γ `0 Prop ≈ Prop . Σ
Prop-Same

i = j

Σ; Γ `0 Type(i) ≈ Type(j) . Σ
Type-Same

Σ0; Γ ` T ≈ U . Σ1 Σ1; Γ, x : T ` t ≈ u . Σ2

Σ; Γ `0 λx : T. t ≈ λx : U. u . Σ2
Lam-Same

Σ0; Γ ` T1 ≈ U1 . Σ1 Σ1; Γ, x : T1 ` T2 ≈ U2 . Σ2

Σ0; Γ `0 ∀x : T1. T2 ≈ ∀x : U1. U2 . Σ2
Prod-Same

Σ0; Γ ` T ≈ U . Σ1 Σ1; Γ ` t2 ≈ u2 . Σ2

Σ2; Γ, x := t2 ` t1 ≈ u1 . Σ3

Σ0; Γ `0 let x := t2 : T in t1 ≈ let x := u2 : U in u1 . Σ3
Let-Same

Σ; Γ ` t1{t2/x} ≈ u1{u2/x} . Σ′

Σ; Γ `0 let x := t2 : T in t1 ≈ let x := u2 : U in u1 . Σ′
Let-Parζ

h ∈ V ∪ C ∪ I ∪ K
Σ; Γ `0 h ≈ h . Σ

Rigid-Same

Σ0; Γ ` T ≈ U . Σ1 Σ1; Γ ` t ≈ u . Σ2 Σ2; Γ ` b ≈ b′ . Σ3

Σ0; Γ `0 matchT t with b end ≈ matchU u with b′ end . Σ3

Case-Same

Σ0; Γ ` T ≈ U . Σ1 Σ1; Γ ` t ≈ u . Σ2

Σ0; Γ `0 fixj {x/n : T := t} ≈ fixj {x/n : U := u} . Σ2

Fix-Same

Figure 4.1: Unifying terms sharing the same head constructor.

The unification algorithm is quite involved, so to help readability we split the rules

across four different subsections. Roughly, in §4.1.1 we consider the case when the two

terms being unified have no arguments, and share the same head constructor; in §4.1.2

we consider terms having arguments; in §4.1.3 we consider meta-variable unification;

and in §4.1.4 we consider canonical structures resolution. For each set of rules presented

in each subsection, the algorithm tries them in the order presented. However, this

implicit ordering is not enough to understand completely the algorithm’s strategy, which

backtracks in some particular cases. We devote the last subsection (§4.1.5) to explain

in detail the algorithm’s strategy.

4.1.1 Same Constructor

Figure 4.1 shows the rules that apply when both terms share the same constructor. We

need to distinguish this set of rules from the others rules in the algorithm, so we annotate



Chapter 4. An Improved Unification Algorithm for Coq 146

them with a 0 as subscript of the turnstile (`0). The reasons will become evident when

we look at the rules in the next subsection.

The rules Prop-Same and Type-Same unify two sorts, either Prop or Type(i) for some

universe level i. The current implementation supports optionally sort subtyping, that is,

allowing the universe level in the sort on the left to be less than or equal to the one on

the right (i.e., Type(i) ≈ Type(j) if i ≤ j). In this work we will ignore sort subtyping

and only consider sort equality.

For abstractions (Lam-Same) and products (Prod-Same), we first unify the types of the

arguments, and then the body of the binder, with the local context extended with the

bound variable. When unifying two lets, the rule Let-Same compares first the type of

the definitions, then the definitions themselves, and finally the body. In the last case, it

augments the local context with the definition on the left (taking the one on the left is

somehow arbitrary, but after unification both definitions are convertible, so it does not

really matter which one is used). If the definitions fail to unify, then Let-Parζ unfolds

both definitions in the respective terms.

Rigid-Same equates the same variable, constant, inductive type, or constructor. The

following two rules (Case-Same and Fix-Same) unify matches and fixpoints, respectively.

In both cases we just unify pointwise every component of the term constructors.

4.1.2 Reduction

The previous subsection considered only the cases when both terms have no arguments

and share the same constructor. If that is not the case, as we mentioned several times,

the algorithm first tries first-order approximation (rule App-FO in Figure 4.2). This rule,

when considering two applications with the same number of arguments (n), compares the

head element (t and t′, using only the rules in Figure 4.1), and then proceeds to unify each

of the arguments. As customary, we denote multiple applications as a spine (Cervesato

and Pfenning, 2003), using the form t un to represent the term (. . . (t u1) . . . un). We

call t the head of the term.

If the rules in Figure 4.1 plus App-FO fail to apply, then the algorithm tries different

reduction strategies. Except in some particular cases, the algorithm first tries reducing

the right-hand side (rules ending with R) and then the left-hand side (rules ending with

L). Except where noted, every L rule is just the mirror of the corresponding R rule,

swapping the positions of the terms being unified. We will often omit the last letter (R

or L), and simply write e.g., Meta-δ when referring to both rules.
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Σ0; Γ `0 t ≈ u . Σ1 n ≥ 0 Σ1; Γ ` tn ≈ un . Σ2

Σ0; Γ ` t tn ≈ u un . Σ2
App-FO

Σ; Γ ` u w
 δΣ u′

Σ; Γ ` t ≈ u′ . Σ′

Σ; Γ ` t ≈ u . Σ′
Meta-δR

Σ; Γ ` t w
 δΣ t′

Σ; Γ ` t′ ≈ u . Σ′

Σ; Γ ` t ≈ u . Σ′
Meta-δL

Σ; Γ ` u w
 β u′

Σ; Γ ` t ≈ u′ . Σ′

Σ; Γ ` t ≈ u . Σ′
Lam-βR

t’s head not a let-in

Σ; Γ ` u w
 ζ u

′

Σ; Γ ` t ≈ u′ . Σ′

Σ; Γ ` t ≈ u . Σ′
Let-ζR

t is fix or match Σ; Γ ` t ↓wβιθ t′
t 6= t′ Σ; Γ ` u ≈ t′ . Σ′

Σ; Γ ` u ≈ t . Σ′
Case-ιR

Σ; Γ ` t w
 β t′

Σ; Γ ` t′ ≈ u . Σ′

Σ; Γ ` t ≈ u . Σ′
Lam-βL

u’s head not a let-in

Σ; Γ ` t w
 ζ t

′

Σ; Γ ` t′ ≈ u . Σ′

Σ; Γ ` t ≈ u . Σ′
Let-ζL

t is fix or match Σ; Γ ` t ↓wβιθ t′
t 6= t′ Σ; Γ ` t′ ≈ u . Σ′

Σ; Γ ` t ≈ u . Σ′
Case-ιL

(c := t : A) ∈ Γ ∪ E
not Σ; Γ ` is stuck (c tn) Σ; Γ ` u ≈ t tn . Σ′

Σ; Γ ` u ≈ c tn . Σ′
Cons-δNotStuckR

(c := t : A) ∈ Γ ∪ E Σ; Γ ` is stuck u Σ; Γ ` t tn ≈ u . Σ′

Σ; Γ ` c tn ≈ u . Σ′
Cons-δStuckL

(c := t : A) ∈ Γ ∪ E
Σ; Γ ` u ≈ t tn . Σ′

Σ; Γ ` u ≈ c tn . Σ′
Cons-δR

(c := t : A) ∈ Γ ∪ E
Σ; Γ ` t tn ≈ u . Σ′

Σ; Γ ` c tn ≈ u . Σ′
Cons-δL

u’s head is not an abstraction

Σ0; Γ ` u : U Σ0, ?v : Type(i)[Γ, y : T ]; Γ ` U ≈ ∀y : T. ?v[idΓ,y] . Σ1

Σ1; Γ, x : T ` u x ≈ t . Σ2

Σ0; Γ ` u ≈ λx : T. t . Σ2
Lam-ηR

u’s head is not an abstraction

Σ0; Γ ` u : U Σ0, ?v : Type(i)[Γ, y : T ]; Γ ` U ≈ ∀y : T. ?v[idΓ,y] . Σ1

Σ1; Γ, x : T ` t ≈ u x . Σ2

Σ0; Γ ` λx : T. t ≈ u . Σ2
Lam-ηL

Figure 4.2: Reduction steps attempted during unification.
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The first reduction the algorithm tries is reduction of meta-variables, δΣ, as described

in the rules Meta-δR and Meta-δL. Actually, as we are going to see in Section 4.1.5,

this is what the algorithm tries prior to any other rule, including App-FO and the rules

in Figure 4.1.

Next, the algorithm tries β, ζ, and ι reduction, respectively (Lam-β, Let-ζ, and Case-ι).

In the first two cases, it performs one-step (weak) head reduction. In the case of let-ins,

we make sure to avoid overlapping with the Let-Parζ rule.

More interesting are the cases for δΓ, δE and ι reductions. The high level idea is that

we need to unfold constants carefully, because they may be used for the resolution of

canonical instances. In the case of a match or a fix (rule Case-ιR), we want to be able

to reduce the scrutinee using all reduction rules, including δE-reduction, and then (if

applicable), continue reducing the corresponding branch of the match or the body of

the fix, but avoiding the δE-reduction rule.

We illustrate this desired behavior with a simple example. Consider the environment

E = {d := 0, c := d}, where there is also a structure with projector proj. Suppose further

that there is a canonical instance i registered for proj and d. Then, the algorithm should

succeed finding a solution for the following equation:

match c with 0⇒ d | ⇒ 1 end ≈ proj ?f (4.1)

where ?f is an unknown instance of the structure. More precisely, we expect the left-

hand side to be reduced as

d ≈ proj ?f

therefore enabling the use of the canonical instance i to solve for ?f .

This is done in the rule Case-ιL by weak-head normalizing the left-hand side using the

standard βι rules plus a new reduction rule, θ, that weak-head normalizes scrutinees:

matchT t with k x⇒ t′ end θ matchT kj a with k x⇒ t′ end t ↓wβζδι kj a

fixj {F} a1 . . . anj  θ fixj {F} a1 . . . anj−1 (k b) anj ↓wβζδι k b

Note that we really need this new reduction rule: we cannot consider weak-head reducing

the term using δE rule, as it will destroy the constant d in the example above, nor restrict

reduction of the scrutinee to not include δE, as it will be too restrictive (disallowing δE

in the reduction on the left-hand side makes Equation 4.1 not unifiable).

In Equation 4.1 we have a match on the left-hand side, and a constant on the right-

hand side (the projector). By giving priority to the ι reduction strategy over the δE one
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we can be sure that the projector will not get unfolded beforehand, and therefore the

canonical instance resolution mechanism will work as expected. Different is the situation

when we have constants on both sides of the equation.

For instance, consider the following equation:

c ≈ proj ?f (4.2)

in the same context as before. Since there is no instance defined for c, we expect the

algorithm to unfold it, uncovering the constant d. Then, it should solve the equation,

as before, by instantiating ?f with i.

If the projector is unfolded first instead, then the algorithm will not find the solution.

The reason is that the projector unfolds to a case on the unknown ?f :

c ≈ match ?f with Constr a1 . . . an ⇒ aj end

(Assuming the projector proj corresponds to the j-th field in the structure, and Constr

is the constructor of the structure.) Now the canonical instance resolution will fail to

see that the right-hand side is (was) a projector, so after unfolding c and d on the left,

the algorithm will give up and fail.

In this case we cannot just simply rely on the ordering of rules, since that will make the

algorithm sensitive to the position of the terms. In order to solve Equation 4.2 above,

for instance, we need to prioritize reduction on the left-hand side over the right-hand

side, but this prioritization will have a negative impact on similar equations with the

projector occurring in the term on the left instead of in the term on the right. The

solution is to unfold a constant on the right-hand side only if the term does not “get

stuck”, that is, does not evaluate to certain values, like an irreducible match. More

precisely, we define the concept of “being stuck” as

is stuck t=̂∃t′ t′′. t 0..1
δE t′∧t′ ↓wβιζθ t′′ and t′′ head is a variable, case, fix, or abstraction

that is, after performing an (optional) δE step and βιζθ-weak head reducing the def-

inition, the head element of the result is tested to be a match, fix, variable, or a λ-

abstraction. Note that the reduction will effectively stop at the first head constant,

without unfolding it further. This is important, for instance, when having a definition

that reduces to a projector of a structure. If the projector is not exposed, and is instead

reduced, then some canonical solution may be lost.

The rule Cons-δNotStuckR unfolds the right-hand side constant only if it will not get

stuck. If it is stuck, then the rule Cons-δStuckL triggers and unfolds the left-hand side,
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which is precisely what happened in the example above. The rules Cons-δ are triggered

as a last resort.

When none of the rules above applies, the algorithm tries η-expansion (Lam-η rules).

Note that we have the premise that u’s head is not an abstraction to avoid overlapping

with the Lam-Same rules, otherwise it is possible to build an infinite loop together with

the rules Lam-β. The hypotheses inside the grey boxes ensure that u has product type

with T as domain. It is interesting to point out that the current unification algorithm

of Coq lacks these hypotheses, which makes the algorithm unsound (c.f., §4.2.2).

4.1.3 Meta-Variable Instantiation

The rules for meta-variable instantiation are considered in Figure 4.3, most of which

are closely inspired by Abel and Pientka (2011). There are, however, several differences

between their work and ours, since we have a different base logic (CIC instead of LF), and

a different assumption on the types of the terms: they require the terms being unified

to have the same (known) type, while we do not (types play no role in our unification

judgment).

For presentation purposes, we only present the rules having a meta-variable on the

right-hand side of the equation, but the algorithm also includes the rules with the terms

swapped.

Same Meta-Variable: If both terms are the same meta-variable ?x, we have two dis-

tinct cases: if their substitution is exactly the same, the rule Meta-Same-Same applies,

in which the arguments of the meta-variable are compared point-wise. Note that we

require the elements in the substitution to be the same, and not just convertible. If,

instead, their substitution is different, then the rule Meta-Same is attempted. To better

understand this rule, let’s look at an example. Say ?z has type T [x1 : nat, x2 : nat] and

we have to solve the equation

?z[y1, y2] ≈ ?z[y1, y3]

where y1, y2 and y3 are defined in the local context. From this equation we cannot know

yet what value ?z will hold, but at least we know it cannot refer to the second parameter,

x2, since that will render the equation above false. This reasoning is reflected in the rule

Meta-Same in the hypothesis

Ψ1 ` σ ∩ σ′ .Ψ2
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Σ; Γ ` t ≈ u . Σ′

Σ; Γ ` ?x[σ] t ≈ ?x[σ] u . Σ′
Meta-Same-Same

?x : T [Ψ1] ∈ Σ Ψ1 ` σ ∩ σ′ .Ψ2 Σ ` Ψ2 FV(T ) ⊆ Ψ2

Σ ∪ {?y : T [Ψ2], ?x := ?y[idΨ2 ]}; Γ ` t ≈ u . Σ′

Σ; Γ ` ?x[σ] t ≈ ?x[σ′] u . Σ′
Meta-Same

?x : T [Ψ] ∈ Σ0 t′, ξ1 = remove tail(t; ξ′) t′ ↓wβ t′′
Σ0 ` prune(ξ, ξ1; t′′) . Σ1

Σ1; Γ ` ξ1 : U t′′′ = λy : U{ξ, ξ1/Ψ̂, y}−1. Σ1(t′′){ξ, ξ1/Ψ̂, y}−1

Σ1; Ψ ` t′′′ : T ′ Σ1; Ψ ` T ′ ≈ T . Σ2 ?x 6∈ FMV(t′′′)

Σ0; Γ ` t ≈ ?x[ξ] ξ′ . Σ2 ∪ {?x := t′′′}
Meta-InstR

?x : T [Ψ] ∈ Σ0 0 < n Σ0; Γ ` u ≈ ?x[σ] . Σ1

Σ1; Γ ` un ≈ tn . Σ2

Σ0; Γ ` u un ≈ ?x[σ] tn . Σ2
Meta-FOR

?u : T [Ψ] ∈ Σ0 t
w
 

0..1

δ t′ t′ ↓wβιθ t′′ Σ0; Γ ` t′′ ≈ ?u[σ] tn . Σ1

Σ0; Γ ` t ≈ ?u[σ] tn . Σ1
Meta-ReduceR

Figure 4.3: Meta-variable instantiation.

· ` · ∩ · . ·
Ψ ` σ ∩ σ′ .Ψ′

Ψ, x : A ` σ, t ∩ σ′, t .Ψ′, x : A

Ψ ` σ ∩ σ′ .Ψ′

Ψ, x := u : U ` σ, t ∩ σ′, t .Ψ′, x := u : U

Ψ ` σ ∩ σ′ .Ψ′ y 6= z

Ψ, x : T ` σ, y ∩ σ′, z .Ψ′

Ψ ` σ ∩ σ′ .Ψ′ y 6= z

Ψ, x := u : U ` σ, y ∩ σ′, z .Ψ′

Figure 4.4: Intersection of substitutions.

This judgment performs an intersection of both substitutions, filtering out those posi-

tions from the context of the meta-variable Ψ1 where the substitutions disagree, resulting

in Ψ2.

The intersection judgment is defined in Figure 4.4. The definition is conservative: it

only filters different variables. The judgment is undefined if the two substitutions have

different terms (not variables) in some position. Of course, a more aggressive approach

is possible, checking for convertibility of the terms instead of just syntactic equality, but

it is not clear whether the few more cases covered compensates for the potential loss in
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performance.

Coming back to the rule Meta-Same, by filtering out the disagreeing positions of the

substitution, we obtain a new context Ψ2, which is a subset of Ψ1. Then, we restrict

?x to only refer to the variables in Ψ2. We do this by creating a new meta-variable ?y

with the type of ?x, but in the context Ψ2. We further instantiate ?x with ?y. Both the

creation of ?y and the instantiation of ?x in the context Σ is expressed in the fragment

Σ ∪ {?y : T [Ψ2], ?x := ?y[idΨ2 ]} of the last hypothesis. We use this new context to

compare point-wise the arguments of the meta-variable.

There are two other hypotheses that ensure that nothing goes wrong. Again, we explain

them by means of example. The hypothesis

FV(T ) ⊆ Ψ2

ensures that the type T of ?x (and therefore, of ?y), is well formed in the new (shorter)

context Ψ2. This condition is enclosed in a grey box because it’s optional: if the terms

on both sides of the equation are assumed to have the same type, it can be omitted.

In Abel and Pientka (2011), for instance, the condition is not present, because in their

setting this assumption holds. But if the terms are allowed to have different types, then

it’s possible for the intersection judgment to return an ill-formed context. To illustrate,

consider the equation

?f [y] ≈ ?f [z]

under contexts

Σ = {?f : x[x : Type]} Γ = {y : Type, z : Type}

The intersection of both substitutions will return an empty context. But we cannot

create a new meta-variable ?f ′ with type x in the empty context! The problem comes

from the fact that the terms have different types (y and z respectively). By ensuring

that every free variable in the type of the meta-variable is in the context Ψ2 we prevent

this problem.

More subtle is the premise ensuring the well-formedness of Ψ2:

Σ ` Ψ2

The intersection judgment may return an invalid context; a context where some type

refers to a variable that was wiped out from the context. This can only happen if the

two substitutions agree on a term whose type depends on a variable where the two

substitutions disagree. This sounds odd, but convertibility makes it possible.
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For example, consider contexts

Σ = {?v : Prop[x : Type, p : fst(Prop, x)]} Γ = {y : Type, z : Type, w : Prop}

and the equation

?v[y, w] ≈ ?v[z, w]

Both substitutions agree on the value for p, w, which has type Prop. But the type

of p, convertible to Prop, depends also on x, a type variable where both substitutions

disagree (with values y and z respectively). After performing the intersection, we get

the ill-formed context [p : fst(Prop, x)].

A more sophisticated intersection judgment may detect a situation like this and reduce

the type to avoid the dependency.

Meta-Variable Instantiation: The Meta-Inst rules instantiate a meta-variable ap-

plying a variation of higher-order pattern unification (HOPU) (Miller, 1991b). They

unify a meta-variable ?x with some term t. As required by HOPU, the meta-variable

is applied to a suspended substitution mapping variables to variables, ξ, and a spine of

arguments ξ′, of only variables. Assuming ?x has (contextual) type T [Ψ], this rule must

find a term t′′′ to instantiate ?x such that, after performing the suspended substitution

ξ and applying arguments ξ′ (formally, t′′′{ξ/Ψ̂} ξ′), results in a term convertible to t.

However, we do not want any solution; we want the most natural one, often meaning

also the most general one. We show with examples what we mean.

Example 4.1 (Equation without a most general solution). This example shows a case

where no most general unifier exists. In this case, we expect the rule to fail to instantiate

the meta-variable.

Consider the equation

?f [x] x ≈ addn x 0 (4.3)

where ?f is an uninstantiated meta-variable with type nat→ nat[y : nat], and addn is the

addition operator for natural numbers. This equation has the following incomparable

solutions:

1. ?f := λz. addn z 0

2. ?f := λ . addn y 0
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(Note that the solution should have all its free variables included in the local context of

the type of ?f , {y}. Unfolding each solution of ?f in Equation 4.3, after applying the

suspended substitution [x], we obtain terms convertible to addn x 0.)

The problem with the previous example is that x occurs twice, once in the substitution

and once in the arguments of the unification variable. However this is not always a

problem, as the following example illustrates.

Example 4.2 (Equation with the same variable occurring twice, but having a most

general solution). Consider ?f now with type nat→ nat[y1 : nat, y2 : nat] in the following

equation:

?f [x, z] x ≈ addn z 0 (4.4)

This equation has the following most general solution:

?f := λ . addn y2 0

Since x does not occur in the term, it does not matter that it occurs twice in the arguments

of the meta-variable.

In theory, a solution and its η-expansion are comparable. However, from a practical per-

spective, an η-expanded term is less natural, and it potentially hides the head constant

from the canonical structures resolution algorithm. Consider the following example:

Example 4.3 (Equation whose solutions are η-convertible). Consider the equation

?f [] x y ≈ addn x y (4.5)

This equation has the following solutions convertible up to η-expansion:

1. ?f := addn

2. ?f := λz. addn z

3. ?f := λz. λw. addn z w

However, the last two solutions in this example have two problems. First, they are not

intuitive. The proof developer will find awkward that ?f was not assigned the more

compact and simple term. Second, and more importantly, a solution may be lost if ?f

is used in another equation later on. For instance, consider the following equation:

proj ?s ≈ ?f
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where ?s is an unknown instance of a structure with projector proj, and ?f has been

instantiated with the second or third solution from Equation 4.5. Then, if there is a

canonical instance with key (proj, addn), it will not be taken into account, since the

λ-abstractions are “hiding” the constant addn.

In the previous example there was a direct correspondance between the arguments of the

meta-variable and the addition function. This will not always be the case, but we still

make an effort to obtain the shortest possible term. The following example illustrates

this point.

Example 4.4 (Equation with most general solution, with only one out of two arguments

in common). Consider equation:

?f [z] x y ≈ addn z y

This equation has the following η-convertible solutions:

1. ?f := λx. addn z

2. ?f := λx y. addn z y

Our algorithm will favor the first solution.

With these examples in mind, we come back to the Meta-Inst rules, more specifically,

the Meta-InstR rule. This rule should find a solution for the equation

t ≈ ?x[ξ] ξ′

under contexts Σ0 and Γ. t is crafted into a new term t′′′ following these steps:

1. To avoid η-expanded solutions, the term t and arguments ξ′ are decomposed using

the function remove tail(·; ·):

remove tail(t x; ξ, x) =̂ remove tail(t; ξ) if x 6∈ FV(t)

remove tail(t; ξ) =̂ (t, ξ) in any other case

This function, applied to t and ξ′, returns a new term t′ and a list of variables ξ1,

where there exists ξ2 such that t = t′ ξ2 and ξ′ = ξ1, ξ2, and ξ2 is the longest such

list. For instance, in Example 4.3, ξ1 will be empty, and ξ2 will be x, y, while in

Example 4.4, ξ1 will be x and ξ2 will be y.
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The check that x 6∈ FV(t) in the first case above ensures that no solutions are

erroneously discarded. Consider the following equation:

?f [] x ≈ addn0 x x

If we remove the argument of the meta-variable, we will end up with the unsolvable

equation:

?f [] ≈ addn0 x

2. The term obtained in the previous step is weak head β normalized, noted t′ ↓wβ t′′.
This is performed in order to remove false dependencies, like variable x in (λ . 0) x.

3. The meta-variables in t′′ are pruned. This process is quite involved, so we defer

the explanation for next subsection (§4.1.3.1). At high level, the pruning judgment

ensures that the term t′′ has no “offending variables”, that is, free variables outside

of those occurring in the substitution ξ, ξ1. It does so by restricting meta-variables

occurring in t′′ whose suspended substitutions have such offending variables. The

output of this judgment is a new meta-context Σ1.

4. The final term t′′′ is constructed as

λy : U{ξ, ξ1/Ψ̂, y}−1. Σ1(t′′){ξ, ξ1/Ψ̂, y}−1

First, note from Example 4.4 that t′′′ has to be a function taking n arguments y,

where n = |ξ1|. For the moment, let’s forget about the types of each yj .

The body of this function is the term obtained from the second step, t′′, after

performing a few changes. First, all of its defined meta-variables are normalized

with respect to the meta-context obtained in the previous step, Σ1, in order to

replace the meta-variables with the pruned ones. This step effectively removes

false dependencies on variables not occurring in ξ, ξ1.

Then, the inversion of substitution ξ, ξ1/Ψ̂, y is performed. This inversion ensures

that all free variables in Σ1(t′′) are replaced by variables in Ψ and y. More pre-

cisely, it replaces every variable in Σ1(t′′) appearing only once in the image of the

substitution (ξ, ξ1) by the corresponding variable in the domain of the substitution

(Ψ̂, y). If a variable appears multiple times in the image and occur in term t′′, then

inversion fails.

The type of each argument yj of the function is the type Uj , obtained from the

j-th element in ξ1, after performing the inversion substitution (with the caveat

that the substitution includes only the j − 1 elements in y).
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5. The type of t′′′, which now only depends on the context Ψ, is computed as T ′.

This introduces a penalty in the performance of the algorithm, but since t′′′ is well

typed (since t is assumed to be, and every step above preserves its type), then we

can perform a fast re-typing. Re-typing assumes terms are well-typed, therefore

omitting to typecheck arguments of functions: for example, to compute the type of

the term t1 t2, it suffices to compute the type of t1, say ∀x : A. B, and substitute

t2 for x in B. There is no need to compute the type of t2.

6. The type obtained in the previous step, T ′, is unified with the type of ?x, obtaining

a new meta-context Σ2. These last two steps are shown inside a grey box in the

rules, in order to indicate that they can be omitted if the types of the terms are

unified prior to the term themselves.

7. Finally, an occurs check is performed to prevent illegal solutions, making sure ?x

does not occur in t′′′.

The algorithm outputs the new context Σ2, instantiating ?x with t′′′.

First-Order Approximation: The meta-variable in the rules Meta-Inst is restricted

to have only variables in the spine of arguments. This can be quite restrictive, in

particular when meta-programming. Consider for instance the following equation that

tries to unify an unknown function, applied to an unknown argument, with the term 1

(expanded to S 0):

S 0 ≈ ?f [] ?y[]

As usual, such equation have multiple solutions, but one that is “more natural”: assign

S to ?f and 0 to ?y. However, since the argument to the meta-variable is not a variable,

it does not fall into the higher-order pattern fragment, and therefore is not considered

by the Meta-Inst rules. In an scenario like this, the Meta-FO rules perform a first order

approximation, unifying the meta-variable (?f in the equation above) with the term on

the left-hand side without the last n arguments (S), which are in turn unified pointwise

with the n arguments in the spine of the meta-variable (0 and ?y, respectively). Note

that the rule App-FO does not subsume this rule, as it requires both terms being equated

to have the same number of arguments.

Eliminating Dependencies: If none of the rules above apply, then the algorithm

makes a last attempt reducing the term, as this may remove dependencies (Meta-

Reduce). For instance, the following example has a solution, even when the term refers



Chapter 4. An Improved Unification Algorithm for Coq 158

h ∈ S ∪ C
Σ ` prune(ξ;h) . Σ

Prune-Constant
x ∈ ξ

Σ ` prune(ξ;x) . Σ
Prune-Var

Σ ` prune(ξ, x; t) . Σ′

Σ ` prune(ξ;λx. t) . Σ′
Prune-Lam

Σ ` prune(ξ, x; t) . Σ′

Σ ` prune(ξ;∀x. t) . Σ′
Prune-Prod

Σ0 ` prune(ξ; t) . Σ1 Σi ` prune(ξ; ti) . Σi+1 i ∈ [1, n]

Σ0 ` prune(ξ; t tn) . Σi+1
Prune-App

Σ1 ` prune(ξ; t2) . Σ2 Σ2 ` prune(ξ, x; t1) . Σ3

Σ1 ` prune(ξ; let x := t2 in t1) . Σ3
Prune-Let

?x : T [Ψ] ∈ Σ Ψ ` prune ctx(ξ;σ) .Ψ

Σ ` prune(ξ; ?x[σ]) . Σ
Prune-Meta-NoPrune

?x : T [Ψ] ∈ Σ Ψ ` prune ctx(ξ;σ) .Ψ′ Σ ` Ψ′

Σ ` prune(idΨ′ ;T ) . Σ′

Σ ` prune(ξ; ?x[σ]) . Σ′, ?y : Σ′(T )[Ψ′] ∪ {?x := ?y[idΨ′ ]}
Prune-Meta

Figure 4.5: Pruning of meta-variables.

· ` prune ctx(ξ; ·) . ·
PruneCtx-Nil

FV(t) ∈ ξ Ψ ` prune ctx(ξ;σ) .Ψ′

Ψ, x : A ` prune ctx(ξ;σ, t) .Ψ′, x : A
PruneCtx-NoPrune

y 6∈ ξ Ψ ` prune ctx(ξ;σ) .Ψ′

Ψ, x : A ` prune ctx(ξ;σ, y tn) .Ψ′
PruneCtx-Prune

Figure 4.6: Pruning of contexts.

to a variable that is not in the context of the meta-variable:

fst (0, x) ≈ ?g[]

4.1.3.1 Pruning

The idea behind pruning can be understood with an example. Say we want to unify

terms

?w[x, y] ≈ c ?u[z, ?v[y]] (4.6)
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A solution exists, although z is a free variable in the right-hand side not appearing in

the image of the substitution of the left-hand side. The solution has to restrict ?u to

ensure that it does not depend on the first element of the substitution. This can be done

by meta-substituting ?u with a new ?u′ having a smaller context, as we did with the

intersection of substitutions in the rule Meta-Same. That is, if ?u : U [z1 : T1, z2 : T2],

then a fresh meta-variable ?u′ is created with type U [z2 : T2], and ?u := ?u′[z2]. The

result of this process in Equation 4.6 is

?w[x, y] ≈ c ?u′[?v[y]]

which can now be easily solved.

But not every offending variable occurring inside a substitution can be pruned. Consider

a similar example as Equation 4.6, where the offending variable z now occurs inside the

substitution of ?v:

?w[x, y] ≈ c ?u[x, ?v[z]]

z cannot be pruned, since a solution may exists by pruning z from ?v, or by pruning the

second argument (?v[z]) from ?u.

There is an extra consideration to take into account. The offending variable can only

occur at the head of the term in the suspended substitution, otherwise the pruning

may lose solutions, and fail in unexpected places. The following example illustrates this

point.

Example 4.5 (Bad pruning).

let p := (x, y) in (?u[x], ?v[p]) ≈ let p := (x, y) in (c ?v[(x, y)], fst p)

After unifying the definition of the let, it introduces the definition p := (x, y) in the

local context and proceeds to pairwise unify the components of the pair, obtaining the

following equations:

?u[x] ≈ c ?v[(x, y)]

?v[p] ≈ fst p

When considering the first equation, it can be tempting to prune the argument of ?v, as

it has the offending variable y, thus instantiating ?v with ?v′[], where ?v′ is a fresh meta-

variable having an empty context. However, such pruning renders the second equation

unsolvable. After unfolding the definition of ?v, we obtain the equation

?v′[] ≈ fst p
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which has no solution. In this example it is easy to see where things went wrong, but in

general it is a bad idea to fail at the wrong place, as it forces the developer to trace the

algorithm to find out where the problem was originated. The original algorithm of Coq

performs such ill-prunings, and in this example incorrectly flags the problem as coming

from the second equation.

We can now get into the formal description of the pruning process (Figure 4.5). The

pruning judgment is noted

Σ ` prune(ξ; t) . Σ′

It takes a meta-context Σ, a list of variables ξ, the term to be pruned t, and returns

a new meta-context Σ′, which is an extension of Σ where all the meta-variables with

offending variables in their suspended substitution are instantiated with pruned ones.

For brevity, we only show rules for the Calculus of Constructions fragment of CIC,

i.e., without considering pattern matching and fixpoints. The missing rules are easy

to extrapolate from the given ones. The only interesting case is when the term t is a

meta-variable ?x applied to the suspended substitution σ. We have two possibilities:

either every variable from every term in σ is included in ξ, in which case we do not need

to prune (Prune-Meta-NoPrune), or there exists some terms which have to be removed

(pruned) from σ (Prune-Meta).

These two rules use an auxiliary judgment to prune the local context of the meta-variable

Ψ. This judgment has the form

Ψ ` prune ctx(ξ;σ) .Ψ′

and its rules are described in Figure 4.6. Basically, it filters out every variable in Ψ

where σ has an offending term, that is, a term whose head variable is not in ξ. Ψ′ is the

result of this process.

Coming back to the rules in Figure 4.5, in Prune-Meta-NoPrune we have the condition

that the pruning of context Ψ resulted in the same context (no need for a change). More

interestingly, when the pruning of Ψ results in a new context Ψ′, Prune-Meta does the

actual pruning of ?x. At high level, it creates a new meta-variable ?y with type T , the

type of ?x, but with local context Ψ′, and then it instantiates ?x with ?y applied to the

identity substitution of Ψ′. Similar to Meta-Same, we have to make sure that the new

context is well-typed (condition Σ ` Ψ′), since the pruning of the local context may

return an ill-typed context.

There is a little burden required to ensure that the type T respects the new context

Ψ′. This is reflected in the pruning of T with respect to the variables of Ψ′. Note that
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(pj , c, ι) ∈ ∆db ι := λx : T . k a′ v vj = c u′

Σ1 = Σ0, ?y : T Σ1; Γ ` a ≈ a′{?y/x} . Σ2

Σ2; Γ ` u ≈ u′{?y/x} . Σ3 Σ3; Γ ` i ≈ ι ?y . Σ4 Σ4; Γ ` t ≈ t′ . Σ5

Σ0; Γ ` c u t′ ≈ pj a i t . Σ5

CS-ConstR

(pj ,→, ι) ∈ ∆db ι := λx : T . k a′ v vj = u→ u′

Σ1 = Σ0, ?y : T Σ1; Γ ` a ≈ a′{?y/x} . Σ2 Σ2; Γ ` t ≈ u{?y/x} . Σ3

Σ3; Γ ` t′ ≈ u′{?y/x} . Σ4 Σ4; Γ ` i ≈ ι ?y . Σ5

Σ0; Γ ` t→ t′ ≈ pj a i . Σ5
CS-ProdR

(pj , s, ι) ∈ ∆db ι := λx : T . k a′ v Σ1 = Σ0, ?y : T

Σ1; Γ ` a ≈ a′{?y/x} . Σ2 Σ2; Γ ` i ≈ ι ?y . Σ3

Σ0; Γ ` s ≈ pj a i . Σ3
CS-SortR

(pj , , ι) ∈ ∆db ι := λx : T . k a′ v vj = xl

Σ1 = Σ0, ?y : T Σ1; Γ ` a ≈ a′{?y/x} . Σ2

Σ2; Γ ` xl{?y/x} ≈ t . Σ3 Σ3; Γ ` i ≈ ι ?y . Σ4

Σ0; Γ ` t ≈ pj a i . Σ3
CS-DefaultR

Figure 4.7: Canonical structures resolution.

pruning not only prunes meta-variables, but also ensures that the term does not contain

offending variables (see rule Prune-Var). The pruning of T results in the new meta-

context Σ′. The result of the whole process is Σ′ extended with the fresh meta-variable

?y, and with ?x instantiated with this new meta-variable.

4.1.4 Canonical Structures Resolution

Canonical structures resolution is listed in Figure 4.7. The rules are rather involved, but

they follow the informal description already given in §2.3.2. Assume an equation of the

form

t′′ ≈ pj a i t

where pj is a projector of a structure, a are the arguments of the structure, i is the

instance (usually a meta-variable), and t are the arguments of the projected value, in

the case when it has product type. In order to solve this equation the algorithm proceeds

as follows:

1. First, the instance ι is selected from the Canonical Instances Database (∆db),

keying on the projector pj and the head element h of t′′. According to the class of

h, the algorithm considers different rules:
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(a) CS-Const if h is a constant c.

(b) CS-Prod if h is a non-dependent product t→ t′.

(c) CS-Sort if h is a sort s.

If these do not apply, then it tries CS-Default.

The instance ι stored in the database is a function taking arguments x : T and

returning the term k a′ v, with k the constructor of the structure, a′ the arguments

of the structure, and v the values for each of the fields of the structure.

2. Then, the arguments of the expected structure a are unified with the arguments

in the instance a′, after replacing every argument x with a corresponding fresh

unification variable ?y.

3. Next, for CS-Const and CS-Prod only, the subterms in t′′ are unified with those

in the value of the instance for the j-th field. If t′′ is a constant c applied to

arguments u, and the value vj of the j-th field of ι is c applied to u′, then u and

u′ are unified. If t′′ is a product with premise t and conclusion t′, they are unified

with the corresponding terms (u and u′) in vj .

4. The instance of the structure i is unified with the instance found in the database,

ι, applied to the meta-variables y. Typically, i is a meta-variable, and this step

results in instantiating the meta-variable with the constructed instance.

5. Finally, for CS-Const only, if the j-th field of the structure has product type, and

is applied to t′ arguments, then these arguments are unified with the arguments t

of the projector.

As with the rules for meta-variable instantiation, we only show the rules in one direction,

with the projector on the right-hand side, but the algorithm also includes the rules in

the opposite direction.

4.1.5 Rule Priorities and Backtracking

The figures shown above does not precisely nail the priority of the rules, nor when the

algorithm backtracks. Below we show the precise order of application of the rules, where

the rules in the same line are tried in the given order without backtracking (the first

matching conclusion is used). Rules in different lines (when overlapping) are tried with

backtracking (if one fails to apply, the next is tried).

1. If a term has a defined meta-variable in its head position:
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(a) Meta-δR, Meta-δL

2. If both terms has the same undefined meta-variable in its head position:

(a) Meta-Same-Same, Meta-Same

3. If one term has an undefined meta-variable, and the other term does not have the

same meta-variable in its head position:

(a) Meta-InstR

(b) Meta-FOR

(c) Meta-ReduceR

(d) Lam-ηR

(e) Meta-InstL

(f) Meta-FOL

(g) Meta-ReduceL

(h) Lam-ηL

4. Else:

(a) If the two terms have different head constants:

i. CS-ConstR, CS-ProdR, CS-SortR

ii. CS-DefaultR

iii. CS-ConstL, CS-ProdL, CS-SortL

iv. CS-DefaultL

(b) App-FO, the head being compared using the rules in Figure 4.1 in the order

shown, backtracking only in the rules Let-Same and Let-ζ.

(c) Rules in Figure 4.2, in the order specified without backtracking.

4.2 Formalities

Ideally, we expect the unification algorithm to satisfy the following:

Conjecture 1 (Incorrect Conjecture of Soundness of Unification). If

Σ; Γ ` ti : Ti for i ∈ [1, 2]

and

Σ; Γ ` t1 ≈ t2 . Σ′
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then

Σ′; Γ ` ti : Ti for i ∈ [1, 2]

and

Σ′; Γ ` t1 ≡ t2

That is, if two well-typed terms t1 and t2 unify under meta-context Σ, resulting in a

new meta-context Σ′, both terms should also be well typed under Σ′. More over, both

terms should be convertible under Σ′.

However, as the name suggests, this conjecture is false—for both the current algorithm

implemented in Coq, and the one described in this chapter. We present the reason why

this conjecture is false, and provide a weaker conjecture we expect our algorithm to

support. As it turns out, the current algorithm in Coq does not support the weaker

conjecture. At the end of this section we present an example showing how to build an

ill-typed term with the current unification algorithm of Coq.

4.2.1 Proving False

The following code exploits unification to almost prove False: except for the Qed com-

mand in the last line, every other line is happily accepted by Coq. It is important to

remark that it is possible to encode the same example as one big unification problem.

We decided to present it with a proof script to help readability.

01 Theorem False proof : False.

02 Proof.

03 evar (h : (nat → False) → nat → False).

04 pose (T := fix f (x:nat) : False := h f x).

05 assert (H : h = @id (nat → False)).

06 unfold h.

07 reflexivity.

08 apply (T 0).

09 Qed.

The example works as follows: First, it creates a meta-variable ?h with type (nat →
False) → nat → False. Then, it defines T as a fixpoint f , with type nat → False, whose

body is the meta-variable ?h applied to f and the argument x. The assertion and its
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proof in lines 5–7 has the effect of instantiating ?h with the identity function. Finally,

at line 8, it applies the fixpoint T to 0, getting a complete proof term (i.e., without

meta-variables) with type False. Coq announces that the proof is complete, although,

as mentioned before, in the last line the Qed command disagrees, saying that we have

constructed an unbounded fixpoint.

The culprit is in the unification problem in line 7, which at first sight looks harmless:

?h[] ≈ id (nat→ False)

The unification algorithm has no reason to distrust this equation, so it innocently pro-

ceeds to instantiate ?h with the identity function. However, it failed to notice that ?h is

included in the body of the fixpoint,

fix f (x : nat) : False := ?h f x

After reducing ?h and the id function, we obtain the infamous infinite loop that allows

us to prove False!

fix f (x : nat) : False := f x

We leave for future work the study of a solution to avoid this problem. A possible solution

could be to taint every meta-variable occurring in the body of a fixpoint, performing

the guardedness condition check prior to instantiation on those tainted meta-variables.

This example shows that we have to weaken the conjecture. In Sacerdoti Coen (2004)

they use a notion of weak typing, which are the rules for typing given in Section 1.2.3

without the guardedness check on incomplete terms. That is, the body of a fixpoint is

not checked for termination if it contains uninstantiated meta-variables. We borrow this

notion here and note

Σ; Γ `ω t : T

for term t having type T with the weak-typing relation. We also need the definition of

a valid extension:

Definition 5 (Valid Extension). For two meta-contexts Σ′ and Σ such that Σ′ ≥ Σ (c.f.,

Definition 3), Σ′ is a valid extension of Σ for term t and context Γ, noted Σ′ ≥Γ`t Σ, iff

for every body u of a fixpoint in t, with uninstantiated meta-variables in Σ, either u still

have uninstantiated meta-variables in Σ′, or Σ′(u) satisfy the guardedness condition.

Now we are ready to present the conjecture we expect the algorithm to satisfy:
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Conjecture 2 (Soundness of Unification). If

Σ; Γ `ω ti : Ti for i ∈ [1, 2]

and

Σ; Γ ` t1 ≈ t2 . Σ′

then Σ′ ≥ Σ and, if

Σ′ ≥Γ`ti Σ for i ∈ [1, 2]

then

Σ′; Γ `ω ti : Ti for i ∈ [1, 2]

and

Σ′; Γ ` t1 ≡ t2

We leave the proof of this conjecture for future work.

4.2.2 A Bug in the Original Algorithm

In the process of writing this thesis we found a bug in the current algorithm of Coq

(version 8.4). The bug exploits two rules, Lam-η and Let-Same, which in Coq are

weaker than in Figure 4.2. In Coq, Let-Same does not unify the types of the definitions

prior to unifying the definitions, and Lam-η does not verify that the term is a product.

In the following example the unification algorithm instantiates a meta-variable with an

ill-typed term. Luckily, the kernel realizes the mistakes and does not allow the definition

to enter the pristine environment of Coq!

Definition it fails (c : bool → nat) :

(let z1 := λ x:nat ⇒ ( : nat) in 0) =

(let z2 := c in 0)

:= eq refl.

Without getting into the details, the main unification problem in this example is as

follows:

let z1 := λx : nat. ?e[c, x] in 0 ≈ let z2 := c in 0

with Σ = {?e : nat[c : bool→ nat, x : nat]} and Γ = {c : bool→ nat}. Note that applying

the rule Let-Parζ both sides reduce to 0 and the problem is solved (but leaving ?e
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uninstantiated). This is what our algorithm does. Instead, Coq 8.4 applies the weak

version of the rule Let-Same, which equates the definitions without checking their types:

λx : nat. ?e[c, x] ≈ c

In our algorithm, since c does not have type nat→ nat, Let-Same fails, backtracking to

Let-Parζ. Instead, the algorithm of Coq applies the rule Let-ηL, getting the following

equation:

?e[c, x] ≈ c x

(in the new context Γ, x : nat). Note that c x is ill-typed! Since the meta-variable

?e expects something of type nat, and c x is (incorrectly) re-typed with type nat, it

instantiates ?e := c x. As mentioned above, the kernel finds the problem and complains:

Error: Illegal application (Type Error):

The term "c" of type "bool -> nat" cannot be applied

to the term "x" : "nat"

4.3 A Missing Heuristic: Constraint Postponement

So far we have described what our algorithm does, but not what it does not (with respect

to the original algorithm of Coq). The most important piece we have purposely left out

is constraint postponement (Reed, 2009). This heuristic, widely used in many proof

assistants, has negative consequences in the context of Coq. In this section we present

the motivation for why it exists in Coq today, followed by a discussion of its drawbacks.

In the next section we will see that, actually, it is not as important as one might think

of.

Sometimes the unification algorithm is faced with an equation that has multiple solu-

tions, in a context where there should only be one possible candidate. For instance,

consider the following term witnessing an existential quantification:

exist 0 (le n 0) : ∃x. x ≤ x

where exist is the constructor of the type ∃x. P x, with P a predicate over the (implicit)

type of x. More precisely, exist takes a predicate P , an element x, and a proof that P

holds for x, that is, P x. In the example above we are providing an underscore in place

of P , since we want Coq to find out the predicate, and we annotate the term with a

typing constraint (after the colon) to specify that we want the whole term to be a proof
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that there exists a number that is lesser or equal to itself. In this case, we provide 0 as

such number, and the proof le n 0 which has type 0 ≤ 0.

During typechecking, Coq first typechecks the term on the left of the colon, and only

then it verifies that its type is compatible (i.e., convertible) with the typing constraint.

More precisely, Coq will create a fresh meta-variable for the predicate P , let’s call it ?P ,

and unify ?P 0 with 0 ≤ 0. Without any further information, Coq has four different

(incomparable) solutions for P : λx. 0 ≤ 0, λx. x ≤ 0, λx. 0 ≤ x, λx. x ≤ x.

When faced with such an ambiguity, Coq delays the equation in the hope that further

information will help disambiguate the problem. In this case, the necessary information

is given later on through the typing constraint, which narrows the set of solution to a

unique solution.

The inclusion of such heuristic has its consequences, though: On one hand, the algorithm

can solve more unification problems and hence fewer typing annotations are required (in

this case, we do not need to specify P ). On the other hand, since constraints are delayed,

the algorithm becomes hard to debug and, at times, slow.

The code below exemplifies both these problems at once.

Definition postponing :

let f : nat → nat := in

let x : f 0 = 0 := eq refl in

1000 + (f 0) = 1000 := eq refl.

This code creates a meta-variable ?f and tries to solve two different equations:

?f 0 ≈ 0 (4.7)

1000 + (?f 0) ≈ 1000 (4.8)

Note that the second equation amounts to solve the same problem as in the first one,

since evaluating the addition we obtain a thousand successors applied to ?f 0, and on

the right we have a thousand successors applied to 0.

Since this problem has multiple solutions, and since it does not fall into the decidable

higher-order pattern fragment, the current algorithm of Coq postpones both equations.

The consequences of this decision are two: first, it shows the error in the second equation,

although the problem appears in the first equation. Second, in order to obtain the

unsolvable equation in the second equation, it has to spend time reducing it.
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For these reasons we decided to remove constraint postponement from the algorithm,

making the example above fail immediately, correctly pointing out the error in the first

equation. And, as we show in the next section, this does not shrink much the set of

solvable problems.

4.4 Evaluation of the Algorithm

We tested our algorithm compiling the Mathematical Components library (Gonthier

et al., 2008), version 1.4. We chose this library as test-bench for three reasons: (1) It

is a huge development, with a total of 62 files. (2) It uses canonical structures heavily,

providing us with several examples of canonical structures idioms that our algorithm

should support. (3) It uses its own set of better behaved tactics. This last point is

extremely important, although a bit technical. Truth be told, Coq has actually two

different unification algorithms. One of these algorithms is mainly used by the type

inference mechanism, and it outputs a sound substitution (up to bugs, like the one

shown in §4.2.2). This is the one mentioned in this thesis as “the original unification

algorithm of Coq”. The other algorithm is used by most of Coq’s original tactics (like

apply or rewrite), and it is unsound, with convoluted semantics. Ssreflect’s tactics use

the former, better-behaved algorithm, which for this evaluation we have replaced with

our own.

Since, as we saw in the previous section, our algorithm does not incorporate certain

heuristics, it is reasonable to expect that it will not solve all the unification problems

posed by the theories in the library. Surprisingly, only a very small set of problems were

not solved by our algorithm. In total, only about 300 lines out of about 67,000 required

changes. To give a sense of the magnitude of the task, our algorithm is called about 32

million times, of which only a very small fraction of times did it fail to find a solution

when the original algorithm did (0.005%).

In the following paragraphs we group the different issues we found, ordered by number

of affected lines. After presenting the issues, we discuss different solutions to solve them.

Non-dependent if−then−elses: Most notably, two thirds of the problematic lines

can be easily solved with a minor change in the way Ssreflect handles if−then−elses.

Indeed, 200 out of those 300 lines are if−then−else constructions in which the return

type does not depend on the conditional. While in standard Coq this is not a problem,

in Ssreflect the type of the branches is assumed to be dependent on the conditional. The
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following example illustrates this point:

if b then 0 else 1

It features a simple if−then−else with conditional b : bool, and branches with type nat.

In standard Coq (modified to use our algorithm) this example typechecks, but it does

not if the Ssreflect library is imported. With Ssreflect, the typechecker generates a fresh

meta-variable ?T for the type of the branches, and proceeds to unify this meta-variable

with the actual type of each branch. More precisely, ?T is created with contextual type

Type[b : true], and when unifying it with the actual type of each branch, b is substituted

by the corresponding boolean constructor. This results in the following equations:

?T [true] ≈ nat

?T [false] ≈ nat

Since they are not of the form required by higher-order pattern unification, our algorithm

fails. If ?T were created without depending on b, these equations can be easily solved.

False dependency in the in modifier: Another issue affecting 35 lines comes from

the in modifier in Ssreflect’s rewrite tactic. This modifier allows the selection of a portion

of the goal to perform the rewrite. For instance, if the goal is

1 + x = x+ 1

and we want to apply commutativity of addition on the term on the right, we can

perform the following rewrite:

rewrite [in X in = X]addnC

The standard unification algorithm of Coq instantiates X with the right hand side of

the equation, and rewrite applies commutativity only to that portion of the goal. With

our algorithm, however, rewrite fails. Again, the culprit is in the way meta-variables are

created, with false dependencies forbidding the algorithm to apply higher-order pattern

unification. In this case, the implicit ( ) is replaced by a meta-variable ?y, which is

assumed to depend on X. But X is also replaced by a meta-variable, ?z, therefore the

unification problem becomes

?y[x, ?z[x]] = ?z[x] ≈ 1 + x = x+ 1

that, in turn, poses the equation ?y[x, ?z[x]] ≈ 1 + x, which does not have an MGU.



Chapter 4. An Improved Unification Algorithm for Coq 171

Non-dependent products: 30 lines required a simple typing annotation to remove

dependencies in products. Consider the following Coq term:

∀P x. (P (S x) = True)

When Coq refines this term, it first assigns P and x two unknown types, ?T and ?U

respectively, the latter depending on P . Then, it refines the term on the left of the equal

sign, obtaining further information about the type ?T of P : it has to be a (possibly

dependent) function ∀y : nat. ?T ′[y]. The type of the term on the left is the type of P

applied to S x, that is, ?T ′[S x]. After refining the term on the right and finding out it

is a Prop, it unifies the types of the two terms, obtaining the equation

?U ′[S x] ≈ Prop

Since, again, this equation does not fall into the HOPU fragment, our algorithm fails.

Explicit duplicated dependencies: In 11 lines, the proof developer wrote explicitly

a dependency that duplicates an existing one. Consider for instance the following rewrite

statement:

rewrite [ ∗ w]mulrC

Here, the proof developer tries to rewrite using the commutativity of rings (mulrC), on

a fragment of the goal matching the pattern ∗ w. Let’s assume that in the goal there

are several occurrences of the ∗ operator, but only one has w occurring in the right-hand

side. For illustration purposes, let’s assume this occurrence has the form t ∗ (w+ u), for

some terms t and u. The proof dev intends to select this particular expression, however,

the pattern fails to match the expression.

The problem comes from the way implicit arguments are refined: An implicit is refined

as a meta-variable depending on the entire local context. In this case, the local context

will include w, so the pattern will be refined as ?y[w] ∗ ?z[w] w (assuming no other

variables appear in the local context). When unifying the pattern with the desired

occurrence of the ∗ operator we obtain the problem:

?z[w] w ≈ w + u

As we saw in Example 4.1, this equation does not have a most general unifier.

Other issues: The remaining 14 lines have other issues, and in most cases they require

attention from an Ssreflect expert to identify the origin of the problem.
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There are two possible solutions to solve these problems: (1) to modify the Ssreflect

library to avoid these dependencies (to solve the first two cases), and the refiner to avoid

creating spurious dependencies (to solve the third and fourth cases), or (2) to extend the

class of problems handled by the unification algorithm. The former solution is out of the

scope of this work, although we plan to explore it in the near future. We are convinced

that it is not the role of the unification algorithm to decide which dependencies should

be ignored. Nevertheless, in the following section (§4.5) we explore the second solution,

obtaining very good results.

4.4.1 Performance

We have not yet looked into improving the performance of the algorithm. Our prelimi-

nary findings show that compiling the whole Ssreflect library takes about 35% more time

with our algorithm than with the original algorithm of Coq. Note that our algorithm

performs more checks than the original algorithm (e.g., the hypotheses inside the grey

box in Lam-η). We are certain that, with a careful profiling of the algorithm, we will

detect major issues, and bring the compilation time closer to the current algorithm.

In the long term, we aim to find ways to drastically improve the performance of the

algorithm.

4.5 A Heuristic to Remove Potentially Spurious Depen-

dencies

The algorithm presented so far is a bit conservative: when instantiating a meta-variable,

in order to cope with problems outside the higher-order pattern fragment, it only at-

tempts the first-order approximation heuristic. For this reason, as we saw in the previous

section, many equations with “false dependencies” are rejected right away, without any

further attempt to find, if not the most general solution, at least some solution. In

the context of the Ssreflect library, we demonstrated that this conservative approach is

acceptable, since only a few lines required changes to work with our algorithm. And,

moreover, in those cases, it is arguable who’s to blame, if our algorithm for not finding a

solution, or the tactics and the refiner for posing equations with such false dependencies.

However, we should not jump to conclusions: the Ssreflect library was conceived for a

specific problem (verification of mathematical components), and with specific program-

ming patterns, coherently shared among the whole set of files. Other libraries may have

different programming patterns, therefore expecting different results from the unifica-

tion algorithm. For this reason, we decided to compile the files from the book Certified
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Programming with Dependent Types (CPDT) (Chlipala, 2011a) , which provides several

examples of functional programming with dependent types, in a radically different style

from that of Ssreflect.

The result is rather discouraging: from the total of 6.200 lines, more than 60 lines (about

0.01%) require modifications. The problem is exacerbated if we consider that this library

uses standard Coq tactics instead of Ssreflect’s ones. As mentioned in the introduction of

the previous section, most of Coq’s original tactics use a different unification algorithm

than the one we are replacing, so our algorithm is being called to solve fewer cases than

when compiling Ssreflect.

We are left with two options: either we change the refiner and tactics to make sure that

fewer equations get false dependencies, or we introduce a new rule to the algorithm to

brutally chop off those dependencies, therefore cherry-picking one specific solution from

the set of possible solutions. Since the first option is out of the scope of this work,

we pursue the second one. In particular, we extend the algorithm with the rule shown

below, which simply removes all elements in the suspended substitution σ of a meta-

variable ?x that are not variables, or that occurs more than once in the substitution.

Given a list of indices l, we note σl as the substitution obtained after filtering out those

elements in σ whose indices are not in l. Similarly, we denote Ψl as the filtering of local

context Ψ with respect to l.

?x : T [Ψ] ∈ Σ l = [i|σi is variable and @j > i. σi = (σ, u)j ]

Ψ′ = Ψl Σ ` Ψ′ FV(T ) ⊆ Ψ′

Σ ∪ {?y : T [Ψ′], ?x := ?y[idΨ′ ]}; Γ ` t ≈ ?y[σl] u . Σ′

Σ; Γ ` t ≈ ?x[σ] u . Σ′
Meta-PruneR

What this rule does, then, is to take each position i in σ such that σi is a variable with

no duplicated occurrence in σ, u. The list containing those positions l is used to filter out

the local context of the meta-variable, obtaining the new context Ψ′. After making sure

this context is valid, a fresh meta-variable ?y is created in this restricted local context,

and ?x is instantiated with this meta-variable. The new meta-context obtained after this

instantiation is used to recursively call the unification algorithm to solve the problem

?y[σl] u ≈ t.
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We illustrate the effect of this rule with the examples from Section 4.4. The first issue

was with non-dependent if−then−elses, which produced equations of the form

?T [true] ≈ nat

?T [false] ≈ nat

In this case, the rule Meta-PruneR will remove the dependency to the conditional,

obtaining the following solvable equations, for a fresh meta-variable ?T ′:

?T ′[] ≈ nat

?T ′[] ≈ nat

The second issue was with meta-variable dependency due to incorrect dependency in-

jection by the in modifier in Ssreflect’s rewrite tactic. In the example, we ended up with

the following equation:

?y[x, ?z[x]] ≈ 1 + x

The rule Meta-PruneR will remove the second dependency, obtaining the solvable equa-

tion

?y′[x] ≈ 1 + x

The third issue was with non-dependen products. In the example, the equation that fall

outside the higher-order pattern fragment was:

?U ′[S x] ≈ Prop

Again, Meta-PruneR will remove the dependency and obtain the equation:

?U ′′[] ≈ Prop

The fourth issue was with explicit duplicated dependencies. The problematic equation

there was:

?z[w] w ≈ t ∗ (w + u)

where the second w in the left-hand side corresponds to an explicit written dependency

(as in w). Our algorithm, extended with the rule Meta-PruneR, will chop off the first

occurrence, obtaining the equation:

?z′[] w ≈ t ∗ (w + u)
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As expected, with the addition of this rule the Ssreflect library compiles almost out of the

box, with only 23 lines requiring modifications. We also obtain a significant reduction

in the number of lines requiring modifications in the CPDT book: only 14 lines had

to be revised. In most of the cases, the problem comes from our algorithm picking a

different solution to the one expected. This is unsurprising, since we are deciding early

on a solution, instead of postponing the equation until more information is obtained.

And even when the selected solution works most of the times, it simply cannot work

always. We are certain that, with a smarter refiner and tactics, the number of unsolved

problems can be drastically reduced. The question that we leave open for future work

is if such modifications to the refiner and tactics are enough, or if this heuristic is, after

all, essential.





Chapter 5

Related Work

5.1 Overloading

5.1.1 Canonical Structures

To the best of our knowledge, the first application of term classes, that is, canonical

structures keying on terms rather than just types, appeared in Bertot et al. (2008).

Term classes are used for encoding iterated versions of classes of algebraic operators.

Gonthier (2011) describes a library for matrix algebra in Coq, which introduces a variant

of the tagging and lemma selection patterns (§2.2 and §2.5.2, respectively), but briefly,

and as a relatively small part of a larger mathematical development. In contrast, in

Chapter 2, we give a more abstract and detailed presentation of the general tagging

pattern and explain its operation with a careful trace. We also present several other

novel design patterns for canonical structures, and explore their use in reasoning about

heap-manipulating programs.

Asperti et al. (2009) present unification hints, which generalize Coq’s canonical struc-

tures by allowing a canonical solution to be declared for any class of unification equa-

tions, not only for equations involving a projection out of a structure. Hints are shown

to support applications similar to our reflection pattern from Section 2.4. However,

they come with limitations; for example, the authors comment that hints cannot sup-

port backtracking. Thus, we believe that the design patterns that we have developed in

Chapter 2 are not obviated by the additional generality of hints, and would be useful in

that framework as well.

177



Chapter 5. Related Work 178

5.1.2 Type Classes

Sozeau and Oury (2008) present type classes for Coq, which are similar to canonical

structures, but differ in a few important respects. The most salient difference is that

inference for type class instances is not performed by unification, but by general proof

search. This proof search is triggered after unification, and it is possible to give a weight

to each instance to prioritize the search. This leads to somewhat simpler code, since

no tagging is needed, but, on the other hand, it seems less expressive. For instance, we

were not able to implement the search-and-replace pattern of Section 2.5 using Coq type

classes, due to the lack of connection between proof search and unification. We were

able to derive a different solution for bnd writeR using type classes, but the solution was

more involved (requiring two specialized classes to differentiate the operations such as

write which perform updates to specific heaps, from the operations which merely inspect

pointers without performing updates). More importantly, we were not able to scale this

solution to more advanced lemmas from our implementation of higher-order separation

logic. In contrast, canonical structures did scale, and we provide the overloaded code

for these lemmas in our source files (Ziliani, 2014).

In the end, we managed to implement all the examples in this paper using Coq type

classes, demonstrating that lemma overloading is a useful high-level concept and is

not tied specifically to canonical structures. (The implementations using type classes

are included in our source files as well (Ziliani, 2014).) Nevertheless, we have not yet

arrived at a full understanding of how Coq type classes perform instance resolution. In

particular, its semantics are hard to grasp, since type classes uses a completely unsound

unification algorithm. In contrast, the semantics of canonical structures were thoroughly

described in chapters 2 and 4.

Besides this, ultimately, it may turn out that the two formalisms (canonical structures

and type classes) are interchangeable in practice, but we need more experience with type

classes to confirm this. In the future, we hope the unification algorithm presented in

this thesis will be also used by the type class mechanism. This will add predictability to

type classes, and allow us to frame the semantics of type classes in the same semantical

framework.

Using Coq type classes, Spitters and van der Weegen (2011) present a reflection algorithm

based on the example of Asperti et al. discussed above. In addition, they consider the

use of type classes for overloading and inheritance when defining abstract mathematical

structures such as rings and fields. They do not, however, consider lemma overloading

more generally as a means of proof automation, as we have presented in Chapter 2.
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Finally, in the context of Haskell, Morris and Jones (2010) propose an alternative design

for a type class system, called ilab, which is based on the concept of instance chains.

Essentially, instance chains avoid the need for overlapping instances by allowing the

programmer to control the order in which instances are considered during constraint

resolution and to place conditions on when they may be considered. Our tagging pat-

tern (Section 2.2) can be seen as a way of coding up a restricted form of instance chains

directly in existing Coq, instead of as a language extension, by relying on knowledge of

how the Coq unification algorithm works. ilab also supports failure clauses, which en-

able one to write instances that can only be applied if some constraint fails to hold. Our

approach does not support anything directly analogous, although (as Morris and Jones

mention) failure clauses can be encoded to some extent in terms of more heavyweight

type class machinery.

5.2 Languages for Typechecked Tactics

In the last five years there has been increasing interest in languages that support safe

tactics to manipulate proof terms of dependently typed logics. Delphin (Poswolsky

and Schürmann, 2009), Beluga (Cave and Pientka, 2012, Pientka, 2008, Pientka and

Dunfield, 2008), and VeriML (Stampoulis and Shao, 2010, 2012) are languages that, like

Lemma Overloading (LO) and Mtac, fall into this category. By “safe” we mean that, if

the execution of a tactic terminates, then the resulting proof term has the type specified

by the tactic.

But, unlike LO and Mtac, these prior systems employ a strict separation of languages:

the computational language (the language used to write tactics) is completely different

from the logical language (the language of proofs), making the meta-theory heavier than

in our work. Indeed, our proof of type soundness is completely straightforward, as it

inherits from CIC all the relevant properties such as type preservation under substitu-

tion. Having a simple meta-theory is particularly important to avoid precluding future

language extensions—indeed, extensions of the previous systems have often required a

reworking of their meta-theory (Cave and Pientka, 2012, Stampoulis and Shao, 2012). In

comparison, the extension of the Mtac language to support state (§3.6) did not require

much rewriting of the original proof of soundness.

Another difference between these languages and ours is the logical language they support.

For Delphin and Beluga it is LF (Harper et al., 1993), for VeriML it is λHOL (Barendregt

and Geuvers, 2001), and for LO and Mtac it is CIC (Bertot and Castéran, 2004). CIC

is the only one among these that provides support for computation at the term and

type level, thereby enabling proofs by reflection (e.g., see §3.3.3). Instead, in previous
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systems term reduction must be witnessed explicitly in proofs. To work around this,

VeriML’s computational language includes a construct letstatic that allows one to stage

the execution of tactics, so as to enable equational reasoning at typechecking time.

Then, proofs of (in-)equalities obtained from tactics can be directly injected in proof

terms generated by tactics. This is similar to our use of run in the example from §3.3.3,

with the caveat that letstatic cannot be used within definitions, as we did in the inner prod

example, but rather only inside tactics.

In Beluga and VeriML the representation of objects of the logic in the computational

language is based on Contextual Modal Type Theory (Nanevski et al., 2008c).1 There-

fore, every object is annotated with the context in which it is immersed. For instance,

a term t depending only on the variable x is written in Beluga as [x. t], and the type-

checker enforces that t has only x free. In Mtac, it is only possible to perform this

check dynamically, writing an Mtactic to inspect a term and rule out free variables not

appearing in the set of allowed variables. (The interested reader may find an example

of this Mtactic in the distributed files.) On the other hand, the syntax of the language

and the meta-theory required to account for contextual objects are significantly heavier

than those of Mtac.

Delphin shares with Mtac the νx : A binder from Nanevski (2002), Schürmann et al.

(2005). In Delphin, the variable x introduced by this binder is distinguished with the

type A#, in order to statically rule out offending terms like νx : A. ret x. In Mtac,

instead, this check gets performed dynamically. Yet again, we see a tension between

the simplicity of the meta-theory and the static guarantees provided by the system. In

Mtac we favor the former.

Of all these systems, VeriML is the only one that provides ML-style references at the

computational level. Our addition of mutable state to Mtac is clearly inspired by the

work of Stampoulis and Shao (2010), although, as we do not work with Contextual

Modal Type Theory, we are able to keep the meta-theory of references quite simple.

Beluga’s typechecker is constantly growing in complexity in order to statically verify the

completeness and correctness of tactics (through coverage and termination checking). If

a tactic is proved to cover all possible shapes of the inspected object, and to be termi-

nating, then there is no reason to execute it: it is itself a meta-theorem one can trust.

This concept, also discussed below, represents an interesting area of future research for

Mtac.

1The contextual types of CMTT are not to be confused with the lightweight “contextual types” that
LO and Mtac assigns to unification variables (e.g., §3.4.2). In our setting, we only use contextual types
to ensure soundness of unification, inheriting the mechanism from Coq. Coq’s contextual types are
essentially hidden from the user, whereas in VeriML and Beluga they are explicit in the computational
language.
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Finally, a key difference between our work and all the aforementioned systems is the

ability to program tactics interactively, as shown in §2.7 and §3.3.1. None of the prior

systems support this.

5.3 Dependent Types Modulo Theories

Several recent works have considered enriching the term equality of a dependently typed

system to natively admit inference modulo theories. One example is Strub et al.’s

CoqMT (Barras et al., 2011, Strub, 2010), which extends Coq’s typechecker with first-

order equational theories. Another is Jia et al.’s language λ
∼= (pronounced “lambda-

eek”) (Jia et al., 2010), which can be instantiated with various abstract term-equivalence

relations, with the goal of studying how the theoretical properties (e.g., the theory of

contextual equivalence) vary with instantiations. Also related are Braibant et al.’s AAC

tactics for rewriting modulo associativity and commutativity in Coq (Braibant and Pous,

2010).

In the two systems for proof automation presented in this thesis, we do not change

the term equality of Coq. Instead, we allow user-supplied algorithms to be executed

when desired, rather than by default whenever two terms have to be checked for equal-

ity. Moreover, these algorithms do not have to be only decision procedures, but can

implement general-purpose computations.

5.4 Typechecked Tactics Through Reflection

There is a large, mostly theoretical, body of work on using the theory of a proof assistant

to reason about tactics written for the same proof assistant. The high-level idea is to

reflect (a fraction of) the object language of the proof assistant into a Term datatype

inside the same proof assistant. Tactics are then constructed using this datatype, and

can be verified just like any other procedure built inside the proof assistant. If the tactic

is proven to be correct, then it can be safely used as an axiom, without having to spend

time executing it, or checking its result.

While this idea is appealing, the circularity that comes from reasoning about the logic

of a proof assistant within itself endangers the soundness of the logic, and therefore

special care must be taken. In theory, one can avoid this circularity by restricting

the objects of the language that can be reflected, and by establishing a hierarchy of

assistants: an assistant at level k can reason about tactics for the assistant at level
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k − 1 or below.2 This concept is discussed in depth, from a theoretical point of view,

in Allen et al. (1990), Artëmov (1999), Constable (1992), Harrison (1995), Howe (1993),

Pollack (1995). More recently, Devriese and Piessens (2013) provide, to the best of our

knowledge, the first attempt at implementing it, but without arriving yet at a practical

and sound implementation.

More pragmatically, the programming language Agda suports a lightweight implemen-

tation of reflection.3 It does so with two primitives, quoteGoal and unquoteGoal. The

first one reflects the current goal into a Term datatype, and the second one solves the cur-

rent goal by the proof term that results from interpreting a term of the same datatype.

This mechanism avoids the circularity problem mentioned above in two ways: first, as

mentioned above, by restricting the object language supported and, second, by dynam-

ically typechecking the proof term before solving a goal with it. That is, like in LO and

Mtac, a tactic is never trusted, and therefore cannot be used as an axiom. An example of

proof automation using Agda’s reflection mechanism, and its limitations, can be found

in van der Walt and Swierstra (2013).

All of the aforementioned works require tactics to be written using a de Bruijn encoding

of objects, in contrast to the direct style promoted in LO and Mtac. In Agda this can be

annoying, but is not fatal. However, if tactics have to be proven correct, as in Devriese

and Piessens (2013), then the overhead of verifying a tactic quickly negates the benefit

of using it. Another disadvantage is that tactics are restricted to the pure language of

the assistant, and therefore cannot use effects like non-termination and mutable state.

Recent work by Malecha et al. (2014) restricts the use of reflection to reflective hints.

Hints, in their setting, are lemmas reflected into an inductive datatype, similar to what

the reflection mechanism of Agda does, packed together with a proof of soundness. These

hints are then used by a specialized auto tactic that reflects the goal and tries to prove it

automatically using the reflective hints. This work shares with the reflection mechanism

of Agda the de Bruijn encoding of terms, but, unlike in Devriese and Piessens (2013),

the soundness proof is local to the hint: the auto tactic will be in charge of performing

the recursion, so the effort required to verify a hint is significantly smaller. Unlike Mtac,

this work does not aim at a full language for meta-programming.

5.5 Simulable Monads

Claret et al. (2013) present Cybele, a framework for building more flexible proofs by

reflection in Coq. Like Mtac, it provides a monad to build effectful computations,

2This is reminiscent of the universe level hierarchy in Type Theory.
3http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.Reflection

http://wiki.portal.chalmers.se/agda/pmwiki.php?n=ReferenceManual.Reflection
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although these effects are compiled and executed in OCaml. Upon success, the OCaml

code creates a prophecy that is injected back into Coq to simulate the effects in pure

CIC. On the one hand, since the effects Cybele supports must be replayable inside CIC,

it does not provide meta-programming features like Mtac’s mmatch, nu, abs, and evar,

which we use heavily in our examples. On the other hand, for the kinds of effectful

computations Cybele supports, the proof terms it generates ought to be smaller than

those Mtac generates, since Cybele enforces the use of proof by reflection. The two

systems thus offer complementary benefits, and can in principle be used in tandem.

5.6 Effectful Computations in Coq

There is a large body of work incorporating or modeling effectful computations in Coq.

Concerning the former, in Armand et al. (2010) the kernel of Coq is extended to handle

machine integers and persistent arrays (Baker, 1991). As discussed in Section 3.6, in

Mtac we favored the more generic reference model à la ML, and we did not need to

modify the kernel.

Concerning the latter, there are two different approaches when it comes to modeling state

in Coq. The more traditional one, exemplified by Miculan and Paviotti (2012), Nanevski

et al. (2008a,b, 2010), is to encapsulate the effectful computations in a monad, and

provide two different views of it. Inside the prover, this monad performs the computation

in an inefficient functional (state-passing) way: easy to verify, but slow to execute. Then,

the verified code is extracted into a programming language with imperative features

(typically Haskell or OCaml) using the efficient model of imperative computation that

these languages provide.

Vafeiadis (2013) argues that the monadic style of programming imposed by the previous

approach is inconvenient, as it drags all functions that use stateful operations into the

monadic tarpit, from which they cannot escape even if they are observably pure. He

proposes an alternative called adjustable references, to enable the convenient use of

references within code that is not observably stateful. An adjustable reference is like

an ML reference cell with the addition of an invariant ensuring that updates to the cell

are not observable. As with the previous approach, the code written in the prover is

extracted into efficient OCaml code.

In contrast to the above approaches, stateful Mtactics do not offer any formal model

for reasoning about code that uses references. State is restricted to the language of

Mtactics, whose operational behavior cannot be reasoned about within Coq itself.
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5.7 The Expression Problem

The examples at the end of Section 2.7 and Section 3.7 for extensible overloaded lem-

mas and Mtactics, respectively, can be seen as representatives for a subset of problems

encompassed in The Expression Problem.4 As originally formulated by P. Wadler, The

Expression Problem focuses on dynamically extending a datatype with new constructors

and, accordingly, in extending the functions acting on that datatype to handle the new

constructors. In Haskell, the expression problem was solved using type classes in “Data

types à la Carte” (Swierstra, 2008). In Coq, it is possible to port this idea, extending

it further to support proofs, as shown in “Meta-theory à la Carte” (Delaware et al.,

2013a). In this work, improved in Delaware et al. (2013b), the extensibility of datatypes

and functions is used to modularly prove meta-theorems of languages with a different

set of features.

In our setting, however, the problem is significantly simpler: an extensible tactic solely

extends a meta-function acting on program expressions of a given type. That is, the type

of programs itself does not change. For this reason, the solution offered in Section 2.7

and Section 3.7 are significantly simpler than that of Delaware et al. (2013a), Swierstra

(2008). It might be fruitful to combine our work with that of Delaware et al. (2013a)

to obtain “Tactics à la Carte”: given a set of features for a programming language, in

addition to the set of modular meta-theorems, one can obtain a set of tactics to help

proving that programs in that language met a specification.

5.8 Unification

The first formal introduction of the problem of unification is due to Robinson (1965), 50

years ago, making the task of listing related work on the area a rather dull and daunting

task. Instead, we focus our attention on a set of works that inspired our work, in the

narrower area of higher-order unification, and refer the reader to different books and

surveys (Baader and Nipkow, 1998, Baader and Siekmann, 1994, Huet, 2002, Knight,

1989).

Metaphorically speaking, Chapter 4, the chapter on unification, is a “coqtail” with the

following recipe:

Ingredients:

4http://en.wikipedia.org/wiki/Expression_problem

http://en.wikipedia.org/wiki/Expression_problem
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1 part Sacerdoti Coen (2004, chap. 10).

1 part Abel and Pientka (2011).

1 part Säıbi (1999, chap. 4).

1 part Homegrown rules.

1 Cherry.

Preparation:

1. Pour into the glass the description of first-order unification for CIC from Sacerdoti

Coen (2004, chap. 10). Use a strainer to filter out meta-variable instantiation, since

it does not perform higher-order pattern unification.

2. Slowly add the treatment for meta-variable instantiation from Abel and Pientka

(2011), including the pruning and substitution intersection judgments. At the same

time, pay special attention to avoid dropping into the mix constraint postponement

(an ingredient coming from Reed (2009)), and unnecessary η-expansions.

3. Prior to mixing in the treatment of canonical structures from Säıbi (1999, chap. 4),

fix the order of unification of the subproblems to match the current algorithm in

Coq. Note that, although it is shipped all the way from France, this ingredient

has a richer description of canonical structures than Säıbi (1997).

4. Finish the mix by adding the following homegrown rules: (i) missing cases for

canonical structures (CS-Prod, CS-Sort, and CS-Default), and (ii) heuristics for

meta-variable instantiation (Meta-FO, Meta-Reduce).

5. Garnish with cherry: a novel precise description of how reduction and backtracking

is handled (§4.1.2 and §4.1.5).

The cherry provides a sort of sweet-sour flavor, which, depending on the meal, might

lend to a bit of reflux. Consider pairing the mix with the following food:

fst′ M N ≈ fst′ P Q

where fst′ is a constant defined as λx y. x, and M and P are non-unifiable terms, heavy

on fats. Because of reduction, the food will reflux as

M ≈ P

which is processed again to ultimately fail to digest. In fact, it is not hard to come up

with a meal with exponential reflux. In Pfenning and Schürmann (1998) they propose
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a strict diet to avoid reflux; statically analyzing definitions to see if they expose their

arguments, therefore ensuring that a failure to unify arguments implies a failure to unify

the definition. In the example above, for instance, fst′ exposes the first argument, so

a failure to unify that argument implies that no further reduction is necessary: the

problem is unsolvable.

A simpler option to solve similar issues is to implement a cache of failures. In the future,

we are considering experimenting with different ingredients of this sort, in the interest

of obtaining a gentler drink.



Chapter 6

Conclusions and Future Work

The work presented in this dissertation shines a new light on typed languages for tactic

development, based on the following key observation:

The dependently typed logic of Coq (CIC) provides the necessary ingredients to

provide (dependent-)types—within the same logic—to tactics.

From this observation, I have explored two different idioms for (dependently) typed

tactic languages:

Lemma Overloading: With overloading—in the form of type classes or, actually, term

classes—one obtains a logic programming language.

Mtac: With an inductive type resembling a monad, and a simple interpreter baked into

the refiner, one obtains a functional programming language, which may include

imperative features.

Both idioms, in the context of the Coq interactive proof assistant, allow the construction

of tactics interactively. I have studied several examples to show the trade-off between

the two idioms, proving that, actually, it is fruitful to combine the two (§3.7). This com-

bination gives raise to extensible functional tactics. Putting it all together, one arrives

at the first formulation of a language for extensible interactive typechecked functional

tactic programming with imperative features.

The semantics of both programming idioms rely on Coq’s unification algorithm. For this

reason, I devoted part of this dissertation to describing and building a novel unification

algorithm for CIC, more predictable than the current algorithm of Coq. To the best of

my knowledge, this is the first work introducing a unification algorithm for CIC including

187
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canonical structures and first order approximation with backtracking and reduction. In

this algorithm I purposely left out a heuristic known as constraint postponement (Reed,

2009), which makes the algorithm unpredictable and, in some cases, slow. Despite this

omission, I managed to compile the Mathematical Components library (Gonthier et al.,

2008) using our algorithm, having to change only a small number of lines. This result

shows that predictability is not at odds with practicality.

To conclude, I enumerate different interesting directions for future work, some of which

were already mentioned in the corpus of this dissertation.

Persistent State in Mtac: In §3.6.5 I mentioned the challenges maintaining persis-

tent state across multiple executions of Mtactics. I believe that overcoming these

challenges is a very promising direction for future work, since persistent state will

allow Mtac to maintain tables of information similar to those used for overloading.

Compilation of Mtactics: In §6 I mentioned already the possibility to compile Mtac-

tics into Ocaml to build more efficient tactics.

Coverage and Termination Checker for Mtactics: In §5.2 I mentioned that Bel-

uga performs static checks to promote tactics into meta-theorems, avoiding the

need to execute them (such tactics will always return a proof of the appropriate

type). It is interesting to study how to incorporate those checks into Mtac.

Extensions to the Mtac Language: Mtac suffers from several limitations: it cannot

(directly) manipulate goals, it cannot inspect inductive types, etc. These exten-

sions would help Mtac cover the functionality provided by Ltac, and more.

Formalization of Unification: This thesis makes the first steps in the direction of

a new, sound unification algorithm. A natural next step is to fully formalize in

Coq the algorithm, thereby proving Conjecture 2. The main challenge lies in the

encoding of Coq within Coq. Some steps in this direction were already given by

Bruno Barras in his contribution CoqInCoq1.

Formalization of the Refiner: The refiner is another key component of an interac-

tive proof assistant. Once the unification algorithm is formalized, formalizing the

refiner should not be a challenging task, and it would provide stronger guarantees

for the tools outside Coq’s kernel.

Strengthening Unification: Somewhat related to the previous two points, the con-

jecture made in §4.2 is not as strong as one would hope, as it does not take into

account the guardedness condition for meta-variables occurring inside fixpoints.

1http://coq.inria.fr/pylons/pylons/contribs/view/CoqInCoq/v8.4

http://coq.inria.fr/pylons/pylons/contribs/view/CoqInCoq/v8.4
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One option could be for the refiner to taint those meta-variables, so unification

can perform the check upon instantiation.

Improvements in the Performance of Unification: At the end of §5.8 I mentioned

that unification backtracks too much, trying hard to unify non-unifiable terms.

It is critical to find methods to avoid unnecessary backtracking, without losing

predictability, and without missing solutions. Somewhat related to this, in cases

where a term is unified with multiple terms, as in a mmatch, it would be interesting

to figure out how to reuse some of the steps performed by previous unification

problems.
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Pfenning, F. and Schürmann, C. (1999). System description: Twelf - a meta-logical

framework for deductive systems. In Proceedings of the 16th International Conference

on Automated Deduction: Automated Deduction, CADE-16, pages 202–206, London,

UK, UK. Springer-Verlag.

Pientka, B. (2008). A type-theoretic foundation for programming with higher-order

abstract syntax and first-class substitutions. In POPL.

Pientka, B. and Dunfield, J. (2008). Programming with proofs and explicit contexts. In

PPDP.

Pientka, B. and Pfenning, F. (2003). Optimizing higher-order pattern unification. In

Automated Deduction–CADE-19, pages 473–487. Springer Berlin Heidelberg.

Pollack, R. (1995). On extensibility of proof checkers. In TYPES.
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