
Exact and heuristic algorithms for network

alignment using graph edit distance models

Thesis for obtaining the title of
Doctor of Natural Science

of the Faculty of Natural Science and Technology I of
Saarland University

by
Rashid Ibragimov, M.Sc.

Saarbrücken
August, 2014

Day of Colloquium Feb. 5, 2015

Dean of the Faculty Prof. Dr. Markus Bläser

Chair of the Committee Prof. Dr. Volkhard Helms

First reviewer Prof. Dr. Jan Baumbach

Second reviewer Prof. Dr. Jiong Guo

Third reviewer Prof. Dr. Raimund Seidel

Academic Assistant Dr. Marc Hellmuth

Zusammenfassung

In dieser Arbeit werden theoretische und praktische Aspekte der Anwendung
des GED(Graph Edit Distance)-Modells auf PPI (Protein-Protein-Interaktions)-
Netzwerke untersucht. Hierbei werden werden ausschließlich topologische Infor-
mationen von Graphen verwendet. In zweiten Teil werden einige theoretische
Eigenschaften des Modells untersucht, formuliert als drei verschiedene Problem-
stellungen. Im dritten Teil werden drei Heuristiken zur approximativen Lösung
des PPI-Netzwerk-Alignmentproblems präsentiert, basierend auf einem GED-
Modell, dass die Anzahl gelöschter und neu eingefügter Kanten auswertet.
Es folgen Zusammenfassungen der wichtigsten Kapitel dieser Arbeit.

Baumüberdeckung mit Sterngraphen (CTS). In Kapitel 3 werden die
Komplexitätsgrenzen einer der einfachsten Formulierungen der GED – Baum-
Editierdistanz mit Einfügen und Löschen von Kanten (Tree Edit Distance with
edge Insertions and Deletions, TED-ID) untersucht. Dabei wird ein spezieller
Fall betrachtet und als CTS umformuliert. CTS untersucht ob es möglich ist,
gegeben ein Baum und eine Menge Sterngraphen, so Kanten zu den Sterngra-
phen hinzuzufügen, dass der resultierende Graph isomorph zum Baum ist. Das
wichtigste Ergebnis von Kapitel 3 ist der Beweis der NP-Schwere von CTS.
Aus diesem Beweis folgt, dass auch TED-ID NP-Schwer ist, selbst wenn der
Durchmesser der Eingabebäume auf maximal zehn begrenzt ist. Wir beweisen
außerdem, dass CTS in polynomieller Zeit lösbar ist, wenn der größte Stern nicht
größer als eine Konstante k ist.

Nachbarschaftserhaltende Zuordnung (NPM) auf Bäumen. In Kapitel 4
wird NPM, eine neue Generalisierung des Graphisomorphismusproblems einge-
führt. Die Eingabe von NPM umfasst zwei Graphen und drei Ganzzahlen, l, d
und k. Das Problem besteht darin, den ersten Graphen ohne höchstens k Kan-
ten (diese werden Isolationskanten genannt) auf den zweiten abzubilden. Mittels
der Parameter l und d wird für jeden betrachteten Knoten v des ersten Graphen
spezifiziert welche Nachbarn von v (innerhalb einer Umgebung der Größe l) auch
im zweiten Graphen nah genug beim Bild von v liegen müssen (innerhalb einer

4

Umgebung der Größe d). Für NPM wird angenommen, dass Graphen mit einer
kleineren Isolationsmenge sich ähnlicher sind, da weniger Editierungsoperatio-
nen benötigt werden um diese ineinander umzuwandeln. Das Hauptergebnis der
Untersuchung von NPM auf Bäumen betrifft dessen Komplexität. Während be-
stimmte Werte für l, d und k eine Berechnung in polynomieller Zeit erlauben,
führen andere zu einem NP-schwerem Problem. Interessanterweise ist NPM auf
Bäumen sogar dann NP-schwer, wenn die Abbildung den ersten Baum in den
zweiten “quetscht”, das heißt für die Fälle dass d > l und l ≥ 3. Obwohl alle
Beweise der NP-Schwere in dieser Arbeit auf Reduktionen des selben Problems
(3-Partition) basieren, ist der Schlüssel jedes Beweises das Verständnis der
Struktur der zu konstruierenden Bäume in Abhängigkeit der Eingabeparameter.

Kompaktheitserhaltende Zuordnung (CPM) auf Bäumen. In Kapitel 5
wird CPM, eine weitere Generalisierung des Graphisomorphismusproblems, be-
trachtet. Die Eingabe von CPM besteht aus zwei Graphen und zwei Ganzzahlen
l und d, wobei l die gleiche Bedeutung hat wie in NPM. Der Parameter d ent-
spricht dem “Gesamtfehler” der erlaubt ist wenn Nachbarn eines Knotens v im
ersten Graphen auf den zweiten abgebildet werden: Gegeben die Summe Lv der
Distanzen zwischen v und dessen nächsten Nachbarn, sowie die Summe L′v der
Distanzen zwischen den Bildern von v und den Bildern der nächsten Nachbarn,
untersucht CPM ob es eine eins-zu-eins-Abbildung zwischen beiden Graphen
gibt, sodass für jeden Knoten v gilt: L′v − Lv ≤ d. Einerseits beschränkt CPM
die Formulierung von NPM mit k = 0 und lockert sie andererseits: Im Gegen-
satz zu NPM ist es möglich, dass einige Kanten weiter entfernt als d abgebildet
werden, aber die meisten Kanten sind näher beisammen. Es wird erwartet, dass
zwei Graphen ähnlicher zueinander sind je kleiner der Wert d für eine Lösung
von CPM gewählt werden kann. In Kapitel 5 wird CPM auf Bäumen untersucht
und eine Gegensätzlichkeit der Komplexität von CPM bezüglich verschiedener
Werte von l und d päsentiert.

Netzwerkalignment mittels BCO. Für praktische Anwendung sind effizien-
te Heuristiken vonnöten, die eine optimale Lösung aproximieren können, ins-
besondere da die Berechnung der Graph-Editierdistanz (GED) NP-schwer ist.
In Kapitel 8 wird die erste Heuristik dieser Arbeit, NABEECO, beschrieben.
NABEECO approximiert die GED mit Hilfe einer nachgeahmten Bienenkolo-
nie, die den Suchraum durchwandert und die Lösung dadurch verfeinert. Wir
demonstrieren die Leistungsfähigkeit von NABEECO anhand echter Protein-
Protein-Interaktionsdaten. Trotz guter Ergebnisse ist die aktuelle Implementie-
rung nicht effizient genug in der Vermeidung lokaler Minima. Sie schafft zum
Beispiel den Selbstalignment-Test nicht, sondern erreicht für die meisten Einga-
begraphen nur etwa 85% der Optimallösung.

5

Netzwerkalignment durch evolutionären Algorithmus (EA). In Kapi-
tel 9 wird GEDEVO beschrieben, ein neuer Algorithmus zur Lösung des Ali-
gnmentproblems für Paare von Netzwerken. GEDEVO nutzt einen evolutionären
Algorithmus um die GED zu optimieren. Die wichtigsten Vorteile dieses Ansat-
zes sind seine Einfachheit und Flexibilität. Wir führen elementare evolutionäre
Operationen auf einer Abbildung aus. Dank des GED-Modells können diese von
allen möglichen relevanten Daten zusätzlich unterstützt werden. Zu den Nach-
teilen von GEDEVO gehören lange Laufzeiten und hoher Speicherbedarf. Auf
echten Daten wird demonstriert, dass dieser Ansatz vergleichbar ist mit anderen
aktuellen Methoden zum Netzwerkalignment und diese sogar oft übertrifft, ob-
wohl nur topologische Informationen verwendet werden. Außerdem wird gezeigt,
dass unser Ansatz ein perfektes Selbstalignment findet, ganz im Gegensatz zu
anderen Methoden. Diesen Test zu bestehen sollte eine Mindestvoraussetzung
für jeden Netzwerkalignmentalgorithmus sein.

Mehrfach-Metzwerkalignment durch evolutionären Algorithmus. In Ka-
pitel 10 wird GEDEVO-M, eine Heuristik zum Alignment mehrerer Netzwerke
beschrieben. Dafür wird die gesamte GED über mehrere Netzwerke als Opti-
mierungskriterium definiert und der evolutionäre Algorithmus aus Kapitel 9 an-
gewendet. Entsprechend werden die evolutionären Operatoren von GEDEVO
erweitert und die Methode sowohl mit eukaryotischen als auch mit bakteriellen
PPI-Netzwerken getestet, ebenfalls unter alleiniger Verwendung von topologi-
schen Informationen. Wir zeigen außerdem, dass GEDEVO-M den Selbstalign-
ment-Test besteht, indem es mehrere identische Kopien eines Netzwerks perfekt
aligniert. Die Laufzeit hängt jedoch von der Anzahl der Eingabenetzwerke ab:
Mit wachsender Anzahl von Netzwerken wächst der Suchraum exponentiell und
somit auch die von GEDEVO-M benötigte Zeit, mehrere identische Kopien eines
Netzwerks zu alignieren. Um die Methode besser auf größere Netzwerke anwen-
den zu können, sollte die zur Laufzeit benötigte Zeit verbessert werden, zum
Beispiel durch die Begrenzung des Suchraums mit Hilfe zusätzlicher relevanter
biologischer Daten.

Abstract

In the thesis we aim to study theoretical and practical questions of applying
the graph edit distance (GED) model to the protein-protein interaction network
alignment problem using topological information of graphs only. In Part II we
explore some theoretical aspects of the model formulated as three different prob-
lems; Part III presents three heuristics for the PPI network alignment problem
based on a GED model that counts the number of deleted and inserted edges.
In the following we summarize the major contribution of the work.

Covering Tree with Stars (CTS). In Chapter 3 we study the complexity
border of one of the simplest formulations of the Graph Edit Distance problem
– Tree Edit Distance with edge Insertions and Deletions (TED-ID). Here, we
consider a special case of the problem and reformulate it as CTS. CTS asks if,
given a tree and a set of stars, we can connect the input stars by adding edges
between them such that the resulting tree is isomorphic to the input tree. The
main result of Chapter 3 is the proof that CTS is NP-hard. From the proof it
also follows that TED-ID is also NP-hard, even if the diameter of the input trees
is bounded by 10. We also show that for CTS with the size of the largest star
being bounded by a constant k the problem becomes polynomial-time solvable.

Neighborhood-Preserving Mapping (NPM) on trees. In Chapter 4 we
introduce a new generalization of the graph isomorphism problem, called NPM.
The input of NPM consists of two graphs and three integers l, d and k. The
problem asks if the first graph without at most k vertices, called isolation ver-
tices, can be mapped to the second graph. Using parameters l and d, for each
mapped vertex v in the first graph we specify which neighbors of v (vertices
within distance l from v) have to be mapped close enough (within distance d)
to the image of v in the second graph. In NPM, the graphs with smaller size
of the isolation set are thought to be more similar as less edit operations are
required. We study NPM on trees and as the major result of the chapter we
present a dichotomy of classical complexity of NPM on trees with respect to
different values of l, d and k. Interestingly, NPM on trees is NP-hard even if

8

the mapping forces the first tree to “squeeze” into the second, i.e. for d > l and
l ≥ 3. Despite the fact that all NP-hardness proofs in this thesis are based on
reductions from the same problem (3-Partition), the key of every proof is the
understanding of the structure of the trees to construct depending on the input
parameters.

Compactness-Preserving Mapping (CPM) on trees. In Chapter 5 we
consider another generalization of the graph isomorphism problem, called CPM.
The input of CPM consists of two graphs and two integers l and d. The meaning
of the parameter l is the same as in NPM. The parameter d corresponds to the
total “error” that is allowed when close neighbors of a vertex v in the first graph
are mapped to the second graph: Given the sum Lv of distances between v and
its close neighbors, and the sum L′v of distances between the image of v and the
images of the close neighbors of v, CPM asks if there is a one-to-one mapping
between the graphs such that for every v, L′v − Lv ≤ d. From one side CPM
constrains NPM formulation with k = 0 and relaxes it from another side: In
contrast to NPM it is possible that some vertices are mapped at distance greater
than d, but most of the vertices have to be closer to each other. Two graphs
are thought to be more similar if there is a mapping as solution for CPM with a
smaller value of d. In Chapter 5 we study CPM on trees and present a dichotomy
of classical complexity of CPM with respect to different values of l and d.

Network Alignment with Bee Colony Optimization. From a practical
side, despite the fact that computing GED is NP-hard, efficient heuristics are
required that are able to approximate an optimal solution. In Chapter 8 we
describe the first heuristic presented in the thesis, called NABEECO. Approxi-
mating GED, NABEECO adopts an artificial bee colony strategy to traverse
the search space and refine its solutions. We demonstrate the performance
of NABEECO on a set of real protein-protein interaction data. Despite the
relatively good performance of the strategy, its current implementation is not
efficient enough in escaping local minima. For example it failed to pass the self-
alignment test, resulting in about 85% of the optimal solution on most input
graphs.

Network Alignment with Evolutionary Algorithm. In Chapter 9 we
present a novel algorithm, called GEDEVO, for the pairwise network alignment
problem. GEDEVO aims to optimize GED by exploiting an evolutionary strat-
egy. The main advantages of the approach are its simplicity and flexibility: We
perform elementary evolutionary operations on a mapping, which are guided by
any relevant data that can be incorporated thanks to the GED model. Among
its disadvantages are high running times and memory consumption. On a set
of real data sets we demonstrate that our approach is comparable to and often

9

outperforms the current tools for Network Alignment using topological informa-
tion only. We show that, in contrast to other tools, our approach is also able to
find a perfect alignment on a self-alignment test, which should be a requirement
for any network alignment tool.

Multiple-Network Alignment with Evolutionary Algorithm. In Chap-
ter 10 we present a heuristic, called GEDEVO-M, for the multiple network
alignment problem. Here, we define the total graph edit distance on multiple
networks as an optimization criterion and apply the evolutionary strategy pre-
sented in Chapter 9. Correspondingly, we extend the evolutionary operators of
GEDEVO and evaluate the approach in two settings by aligning two sets of eu-
karyotic and bacterial PPI networks using topological information only. We also
show that GEDEVO-M is able to pass a self-alignment test where it perfectly
aligns several copies of a network. However, the running time here depends on
the number of input networks. Since with a growing number of input networks
the search space grows exponentially, the time required by GEDEVO-M to align
multiple copies of the same network also raises exponentially. For the further
exploitation of the method on bigger networks, the execution time should be
improved by, for example, constraining search space using relevant biological
data.

Preface

This thesis summarizes the work that I have done since April 2011 on approach-
ing the network alignment problem using the graph edit distance (GED) models.
The work was done within the scope of a collaboration effort between two re-
search groups “Efficient Algorithms for Hard Problems” and “Computational
Systems Biology” lead by Jiong Guo and Jan Baumbach, respectively. The the-
sis consists of three parts: a common introduction, and two parts that present
our findings on theoretical aspects of different models of Network Alignment and
practical results on applying the GED model to Network Alignment using graph
topology information only.

The initial idea of applying the graph edit distance model to biological net-
work analysis was proposed by my scientific advisors. At the beginning of
my studies I came across the protein-protein interaction (PPI) network align-
ment problem where the graph edit distance model has an intuitive interpre-
tation. Here, due to evolutionary conservation, PPI networks of more closely
related species should have more aligned interactions (matched edges between
the graphs).

On practical side, the network alignment problem required a practical soft-
ware tool that is able to work with real-world data. Since the problem is known
to be NP-hard, one of the priorities was to find an efficient heuristic that would
have made it practically tractable. I started experimenting with heuristics that
combine multiple approaches such as graph edit distance models, greedy strate-
gies, and A∗ based search. However, despite all my efforts, all the methods I tried
had one inherent problem – they did not provide reasonable scalability and hence
were practically unusable for larger networks. At some point I came up with
the idea of randomizing the search process by applying evolutionary and other
nature inspired strategies to the problem. Even though similar approaches had
been tried before in the pattern recognition area, previous works lacked efficient
traversal of the search space on more general graphs (including PPI networks).
With my input and constant supervision together with Maximilian Malek and
Jan Martens we developed two tools, called GEDEVO and NABEECO, that ex-
ploit evolutionary and bee colony optimization strategies to approximate GED
in the context of the PPI network alignment. NABEECO and GEDEVO with

12

their comparison results to current network alignment tools were presented at the
Genetic and Evolutionary Computation Conference (GECCO’13) and German
Conference on Bioinformatics (GCB’13), respectively. Next, I substantially ex-
tended GEDEVO’s code, including redeveloping evolutionary operators, to make
it work on multiple networks. The resulting paper on multiple network align-
ment was presented at the Genetic and Evolutionary Computation Conference
(GECCO’14).

Besides the practical aspects, it was also interesting to know if an efficient
exact algorithm can be derived and where the border of the NP-hardness is. It
was clear that as consequence of the the subforest isomorphism problem, the
general Tree Edit Distance problem with edge Insertions and edge Deletions
(TED-ID) is NP-hard. Jiong suggested to consider Covering Tree with
Stars (CTS) that was derived from TED-ID. In close collaboration with Jiong,
we first derived a polynomial-time algorithm for CTS with fixed size of the largest
star. Though, it took me longer time to prove that CTS is NP-hard, even if the
diameter of the input tree is bounded by 10. I presented our finding on CTS at
the International Computing and Combinatorics Conference (COCOON’13).

In parallel to CTS I worked on another theoretical problem. I formulated
Neighborhood-Preserving Mapping (NPM) that on one side can be seen
as a graph edit distance model (isolation set) and on the other side relaxes edge-
to-edge correspondence, generally required in problems on graphs. Together
with Jiong we considered NPM between trees. Here, I came up with all proofs
and algorithms, except the NP-hardness proofs of NPM for the cases k > 0 and
l > d ≥ 1, whose NP-hardness were proven by Jiong. I presented our findings
at the Algorithms and Data Structures Symposium 2013 (WADS’13).

Having finished with NPM, I proposed another problem that was called
Compactness-Preserving Mapping (CPM). Similarly to NPM on trees, it
is easy to show the equivalence of CPM on trees and the tree isomorphism prob-
lem for their unrelaxed cases. However, it was interesting to know where the
relaxation switches the problem to NP-hard cases. Relatively fast I came up
with general ideas for tree structures in the NP-hardness proofs for CPM on
trees, except the case l = 2 and d = 2. I first was able to derive NP-hardness
proofs for l = 2 and d = 6, and then l = 2 and d = 4. However, most of the
proofs and algorithms turned out to be technically more involving than in NPM,
and it took me several months to write them up. In the algorithm for the case
l = 1 and d = 1 of CPM, we did not know if it is NP-hard to resolve the con-
figuration in the second phase of the algorithm. Interestingly, I recognized that
this step can be considered as a case of the Constrained Weighted P2-Packing on
Bipartite Graphs problem, that was casually mentioned at a talk of Qilong Feng
at COCOON’13. The final results on CPM were presented at the 25th Annual
Symposium on Combinatorial Pattern Matching (CPM’14).

Acknowledgments

My studies were funded and supported by the International Max Planck Re-
search School for Computer Science (IMPRS), the Cluster of Excellence “Multi-
modal Computing and Interaction” (MMCI), the Saarbrücken Graduate School
of Computer Science, and the Center for Bioinformatics. I would like to express
my appreciation and thanks to my supervisors Jan Baumbach and Jiong Guo for
giving me a chance to pursue PhD studies and for advising me and keeping an
eye on my progress and development in the field of algorithm theory and bioin-
formatics. I would like to take the opportunity to thank Prof. Volkhard Helms
for being the chair of my defence and Dr. Marc Hellmuth for taking the role of
the scientific assistant. I am very thankful to Prof. Raimund Seidel, who kindly
agreed to be the third reviewer of my thesis. I am also very grateful to all the
people from administrative staff that maintain such a wonderful environment
for scientific studies, in particular, Jennifer Gerling, Sabine Nermerich, Mona
Linn, Stephanie Jörg, Polina Quaranta, Dr. Michelle Carnell, and the members
of the IT help desk. I thank all the colleagues from our group, including Peng,
Richy, Josch, Anne-Christin, Nic, Chris, Max, Maha, and Jan, for their helpful
discussions, sharing input, and feedback. My special thanks are to Maximilian
Malek and Sanjar Karaev for proofreading my thesis, and Gulnaz Mullayanova
and my parents for supporting me throughout the studies.

Contents

Page

Part I Introduction 19

1. Introduction 21
1.1 Motivation . 21
1.2 Graph Edit Distance . 22
1.3 Structure of Thesis . 23
1.4 Publications . 24

Part II Topological Models of Network Alignment 25

2. Background and Related Work 27
2.1 Tree Modification Problems . 27
2.2 Related Work . 29
2.3 Preliminaries . 32

3. Covering Tree with Stars 35
3.1 NP-Completeness Results . 36
3.2 CTS with Bounded Distinct Stars 41

4. Neighborhood-Preserving Mapping on Trees 47
4.1 NPM on Trees with k = 0 . 48

4.1.1 NP-Hardness Results . 48
Case l < d, d > 1, k = 0 48
Case l ≥ d, d ≥ 3, k = 0 49

4.1.2 Polynomial-Time Solvable Cases 51
Case l = 2, d = 2, k = 0 52

4.2 NPM on Trees with k > 0 . 56
4.2.1 Two Input Trees . 57
4.2.2 l = d = 1, k > 0, and a Tree and a Path as Input 59

4.3 Integer Linear Program Formulation for NPM 64

16 Contents

5. Compactness-Preserving Mapping on Trees 67
5.1 NP-Hardness Results . 68

5.1.1 Case l = 1, d ≥ 2 . 68
5.1.2 Case l = 2, d ≥ 2 . 74
5.1.3 Case l ≥ 3, d ≥ 0 . 79

5.2 Polynomial-Time Solvable Cases 86
5.2.1 Case l = 1, d = 0 . 86
5.2.2 Case l = 2, d = 0 . 86
5.2.3 Case l = 1, d = 1 . 88
5.2.4 Case l = 2, d = 1 . 93

5.3 ILP Formulation of CPM with Isolation Set 95

6. Discussions and Outlook 97

Part III Heuristics for Network Alignment Using Graph
Edit Distance Models 101

7. Background and Related Work 103
7.1 Introduction . 103
7.2 Pairwise Network Alignment . 104
7.3 Multiple Network Alignment . 107

8. Network Alignment with Bee Colony Optimization Strategy 109
8.1 Problem definition . 109
8.2 Data . 113
8.3 Methods . 113

8.3.1 Initialization Step . 114
8.3.2 Solution Gathering Step 114
8.3.3 Termination Step . 115

8.4 Evaluation . 116

9. Evolutionary Algorithm for Network Alignment 119
9.1 Methods . 119

9.1.1 Initial Population Generation and Evaluation of an Indi-
vidual . 120

9.1.2 Offspring generation . 120
9.1.3 Termination and Running Time 121

9.2 Evaluation . 122

10.Evolutionary Algorithm for Multiple Network Alignment 127
10.1 Problem definition . 127
10.2 Methods . 129

Contents 17

10.3 Data . 132
10.4 Evaluation . 132

11.Discussions and Outlook 135

Bibliography 139

Part I

Introduction

1 Introduction

1.1 Motivation
With the invention of the high throughput methods for detection of interactions
between proteins a great amount of data has become available to the scientific
community. At the web site of the National Center for Biotechnology Informa-
tion we find registered sequencing projects for >1500 eukaryotes, >8500 prokary-
otes, and >3000 viruses with >8 000 000 gene sequences in total [1]. However,
the genes’ function is often unclear and most-widely deduced from similarities to
the sequences of genes with known functions. Consequently, there is still a lack
of fundamental knowledge about crucial genetic programs, the interplay of genes
and their products (the proteins), their biochemical regulations and their evolu-
tionary appearance. Very little is known about such processes as cell regulation,
reproduction, differentiation, and motility in response to changing internal and
external conditions. Many problems in understanding these issues have to do
with networks that model the interplay of all kinds of biological entities [2]. Most
widely known are transcriptional gene regulatory networks and protein-protein
interaction (PPI) networks. More than 150 million binary interaction evidences
from protein-protein interactions that are stored on more than 28 globally dis-
tributed servers and can be accessed through PSICQUIC [3] may serve as an
example for the ongoing “data explosion”.

Comparing biological networks, particularly protein-protein interaction net-
works from different organisms, has proven very useful for inferring biological
function, besides relying on DNA sequence similarity alone [4, 5]. Several prob-
lems have been formulated to analyze and compare PPI networks: network
motif discovery, protein clustering, network query, and network alignment [6, 7].
In particular, Network Alignment aims to find a node-to-node correspondence
between two (or more) biological networks to identify evolutionarily and func-
tionally conserved parts between the input networks. A quality criterion of a
mapping usually reflects topological aspects and biological aspects, such as the

22 Introduction

number of matched interactions induced by a mapping of the nodes from two
networks, or a similarity of the biological sequences underlying the nodes.

We can distinguish the following main features of the currently available
biological networks:

• The biological networks can be modeled as various types of graphs: vertex/
edge-weighted or unweighted, directed or undirected, labeled or unlabeled.
For example, PPI networks that are usually modeled as unweighted graphs,
can also be represented as edge-weighted graphs by adding confidence val-
ues for interactions.

• The reconstructed networks are incomplete and noisy. It is estimated in
yeast, which is one of the best studied organisms, only 50% of all interac-
tions are known; for human this number corresponds to only 10% [8]. On
the other hand some interactions that were detected are invalid.

• Besides the topological information that can be derived from the net-
works themselves, additional biological data from various sources requires
a proper integration. For example, many network alignment tools integrate
all-to-all pairwise BLAST scores or BLAST E-values from protein sequence
comparisons [9]. Such values are helpful in building a proper protein-to-
protein correspondence, but relying on them alone is not sufficient and can
even be misleading (see for example [10]).

Taking these properties of biological networks into account, the graph edit
distance model appears to be a promising approach that addresses these issues,
given there exists an efficient and reliable algorithm approximating it.

1.2 Graph Edit Distance
Given two graphs, the graph edit distance (GED) is defined as the sequence
of edit operations that transforms one graph to another and that has minimal
editing cost. Introduced in [11], GED can be seen as a natural generalization
of the string edit distance and tree edit distance to general graphs. GED re-
quires defining a set of edit operations and the corresponding cost function. The
edit operation may include deletion/insertion/substitution of edges and vertices.
Substituting one vertex from the first graph with a vertex from the other graph
should reflect how dissimilar these two vertices are. Thus, for proper costs of edit
operations, it can be shown that GED satisfies the properties to be a metric. In
contrast to the exact “isomorphism” definitions when comparing graphs, GED
is flexible, error-tolerant and allows modeling networks of any nature. Unfortu-
nately, computing an optimal editing cost for even simplest definitions of GED
is NP-hard and can be done with exact methods for relatively small graphs only.

Structure of Thesis 23

Till now, GED has been mainly exploited for classification and clustering of
graphs in the context of the field of pattern recognition. The editing cost of GED
there serves as a metric between graphs. Many heuristics have been proposed
to approximate the cost of GED. The methods vary from relaxations of integer
linear programs and spectral decomposition to artificial neural networks and
simulated annealing. In contrast to relatively small (with normally up to 100
nodes end edges) networks in the pattern recognition field, biological networks
often have thousands of nodes and edges. Therefore, applying GED still remains
challenging and development of efficient heuristics is required.

1.3 Structure of Thesis
The thesis is divided into three parts. The current “introductory” part provides
a motivation for applying the graph edit distance model to network data in
bioinformatics. The other two parts present the studies that are of two sides.
First, since the general formulation of GED is NP-hard, we aim to identify the
complexity border for some of its simplest versions. Second, since GED comes
as a general approach to compare graphs, including relatively large biological
networks of various types, the development of efficient heuristics is required.
Correspondingly, the second “theoretical” part introduces three problems related
to GED and studies them when the input graphs restricted to trees, and in
the third “practical” part we present heuristics for protein-protein interaction
network alignment.

Part II starts with an overview of the results related to GED to highlight
the difficulty of the problem and introduces necessary notations (Chapter 2).
Chapter 3 studies one of the simplest formulations of GED with edge insertions
and deletions on trees (TED-ID) and a related to it the Covering Tree with Stars
problem (CTS).

In Chapters 4 and 5 we introduce two new problems, NPM and CPM, that
extend the notion of edge preservation, that is common for many classical prob-
lems on graphs, such as the graph isomorphism problem. We study how the
problem complexity changes depending on the degree of relaxation of the edge
preservation. The last chapter of Part III discusses the results and indicates fur-
ther interesting problems. The findings of Chapters 3, 4, and 5 were presented
in [12] (and the journal version [13]), [14], and [15], respectively.

Part III starts with an overview of the methods and tools for Network Align-
ment. Then, in Chapters 8 and 9, we present two nature inspired heuristics for
the pairwise global network alignment problem using topological information
only. We develop two fairly general tools for Network Alignment (NABEECO
and GEDEVO) that exploit a bee colony optimization strategy and evolutionary
computation to align networks. Using a graph edit distance model that counts

24 Introduction

the number of deleted and inserted edges, we compare our methods to other tools
for Network Alignment. In Chapter 10 we extend the definition of the pairwise
global network alignment problem to multiple networks. Here, using GEDEVO’s
strategy, we aim to minimize the sum of pairwise graph edit distances. The last
chapter of Part III indicates the possible extensions of the proposed approaches
and gives some further directions for studies in the filed of network alignment.
The results described in Chapters 8, 9, and 10 were presented in [16], [17], and
[18], respectively.

1.4 Publications
Ibragimov, R., Malek, M., Baumbach, J., Guo, J.: Multiple graph edit dis-
tance – simultaneous topological alignment of multiple protein-protein interac-
tion networks with an evolutionary algorithm. In: Genetic and Evolutionary
Computation Conference, GECCO 2014, ACM (2014) 277–283

Baumbach, J., Guo, J., Ibragimov, R.: Compactness-preserving mapping on
trees. In: Combinatorial Pattern Matching - 25th Annual Symposium, CPM
2014. Volume 8486 of LNCS., Springer (2014) 162–171

Baumbach, J., Guo, J., Ibragimov, R.: Covering tree with stars. In: Comput-
ing and Combinatorics, 19th International Conference, COCOON 2013. Volume
7936 of LNCS., Springer (2013) 373–384 (journal version: Journal of Combina-
torial Optimization 29(1), (2015) 141–152)

Ibragimov, R., Malek, M., Guo, J., Baumbach, J.: GEDEVO: an evolutionary
graph edit distance algorithm for biological network alignment. In: German
Conference on Bioinformatics 2013, GCB 2013. Volume 34 of OASICS., Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2013) 68–79

Ibragimov, R., Martens, J., Guo, J., Baumbach, J.: NABEECO: biological net-
work alignment with bee colony optimization algorithm. In: Genetic and Evo-
lutionary Computation Conference, GECCO 2013, ACM (2013) 43–44

Baumbach, J., Guo, J., Ibragimov, R.: Neighborhood-preserving mapping be-
tween trees. In: Algorithms and Data Structures - 13th International Sympo-
sium, WADS 2013. Volume 8037 of LNCS., Springer (2013) 427–438

Part II

Topological Models of
Network Alignment

2 Background and Related
Work

2.1 Tree Modification Problems
Graphs are one of the most common representations of objects and relations
between them in many fields: computational biology, computational chemistry,
computer vision, pattern recognition, etc. The natural need to analyze and
compare such objects has stimulated the development of various indicators that
reflect differences of vertices and edges and also differences in their topologies.
In many applications, two graphs G1 and G2 are thought to be equal only if their
topologies are identical. In this context, the cost in the Graph Edit Distance
problem (GED) is one of the most common measures for the graphs, which
has been extensively used in graph matching in particular [19]. The general
definition of GED is as follows. Given two graphs, GED asks to compute a
sequence of the edit operations that transforms one graph into another and that
has the minimal editing cost over all possible such sequences. Depending on the
application, the set of edit operations may include relabeling, deletion, insertion,
contraction of edges and relabeling, deletion, insertion, or splitting of vertices.
The cost function that maps edit operations and their arguments to nonnegative
numbers is also application-specific and may, for example, depend on whether
the graphs are labeled, weighted, directed, etc. The cost of an edit operation
corresponds to the amount of distortion induced by the operation. Irrespective
of the exact problem-specific definition of GED, the main concept behind it is
that the more similar two graphs are, the closer they will be in the problem
space, and the lower is the cost of the optimal edit sequence.

In one of the simplest formulations of GED, the set of edit operations contains
only deletion and insertion of edges with the input graphs having the same
number of vertices. Here, the evidence for the cost of the edit distance can
be computed from the corresponding one-to-one mapping between the vertices
of the input graphs. However, even with this simplest set of edit operations,

28 Background and Related Work

application of GED is limited by its complexity since computing the edit distance
between two graphs is not easier than the subgraph isomorphism problem, which
is known to be NP-complete [20].

In this part of the thesis we explore some theoretical borders of complexity
for three different problems related to Graph Edit Distance. We will require both
input graphs to be trees since in this case many graph problems become easier.
First, we consider a variation of GED with edge insertions and edge deletions
as edit operations on trees (Chapter 3). Further, we relax the notion of “edge
preservation” that is commonly used in graph problems: An edge is preserved
if the images of two adjacent vertices in the first graph are also adjacent in
the second graph. We define two new generalizations of the graph isomorphism
problem where we require that for any pair of neighboring vertices their images
also remain to some extent close to each other in the second graph (Chapters 4-
5).

In Chapter 3 we aim to explore the complexity border of Graph Edit Dis-
tance and study the Tree Edit Distance problem with edge Insertions and edge
Deletions (TED-ID). We formulate a special case of this problem as Cover-
ing Tree with Stars (CTS) that is defined as follows. Given a tree T and
a set S of stars, CTS asks if it is possible to connect the stars in S by adding
edges between them such that the resulting tree is isomorphic to T . We prove
that in the general setting, CST is NP-complete, which implies that TED-ID is
also NP-hard, even when both input trees have diameters bounded by 10. We
also show that, when the number of distinct stars is bounded by a constant k,
CTS can be solved in polynomial time, by presenting a dynamic programming
algorithm running in O(|V (T)|2 · k · |V (S)|2k) time.

The study presented in Chapter 4 is motivated by the following idea. In
Network Alignment, if subnetworks in two networks are conserved, then the
neighborhoods of the corresponding nodes are also conserved. We formalize this
idea by introducing a variation of the graph isomorphism problem, where, given
two graphs G1 = (V1, E1) and G2 = (V2, E2) and three integers l, d, and k, we
seek for an isolation set D ⊆ V1 and a one-to-one mapping f : V1 → V2, such
that |D| ≤ k and for every vertex v ∈ V1 \D and every vertex u ∈ N l

G1
(v) \D

we have f(u) ∈ Nd
G2

(f(v)). Here, for a graph G and a vertex v, we use N i
G(v)

to denote the set of vertices that have distance at most i to v in G. We call this
problem Neighborhood-Preserving Mapping (NPM). The main result of
Chapter 4 is a complete dichotomy of the classical complexity of NPM on trees
with respect to different values of l, d, and k. Additionally, we present an integer
linear program formulation of NPM and two dynamic programming algorithms
for the cases of NPM when one of the input trees is a path.

In Chapter 5 we partially constrain the formulation of NPM and consider
another variation of the graph isomorphism problem. Given two graphs G1 =

Related Work 29

(V1, E1) and G2 = (V2, E2) and two integers l and d, we seek for a one-to-one
mapping f : V1 → V2, such that for every v ∈ V1, it holds that L′v − Lv ≤ d,
where Lv :=

∑
u∈N l

G1
(v) distG1(v, u), L′v :=

∑
u∈N l

G1
(v) distG2(f(v), f(u)) , and

N i
G(v) denotes the set of vertices which have distance at most i to v in a graph

G. We call this problem Compactness-Preserving Mapping (CPM). We
study CPM with input graphs being trees and present a dichotomy of classical
complexity with respect to different values of l and d. CPM on trees can be
solved in polynomial time only if l ≤ 2 and d ≤ 1. Additionally, we present
an integer linear program formulation for an optimization version of CPM that,
for the given parameters l and d, minimizes the size k of the isolation set; the
isolation set here is defined in the same way as in NPM.

Next we provide a brief overview of the related work and introduce the nec-
essary notation and definition that will be used throughout Part II.

2.2 Related Work
Graph Edit Distance is closely related to several graph problems and their vari-
ations, namely Subgraph Isomorphism, Maximum Common Subgraph, graph
modification problems, and Graph Packing.

Graph Edit Distance. First, to give an intuition about the difficulty of GED
consider one of its simplest, yet realistic cases: The input graphs are unlabeled
and undirected, and the set of edit operations includes deletion and insertion
of edges and vertices with unit cost per operation. Here, if the cost of GED is
0 (i.e. no vertex or edge insertions or deletions are required), then the input
graphs are isomorphic. However, there is no known polynomial time algorithm
for Graph Isomorphism (it is not known to be in P or NP-complete yet). The
best known algorithm for Graph Isomorphism requires O(2

√
n·logn) time [21].

If G1 is a subgraph of G2, then the corresponding cost of GED has the lowest
value over all possible input graphs with the same number of vertices and edges;
the cost here equals to (|V2|−|V1|)+(|E2|−|E1|), which corresponds to inserting
|V2| − |V1| vertices and |E2| − |E1| edges. However, Subgraph Isomorphism is
NP-hard [20].

Exact algorithms for GED, such as based on A* [22] or its integer linear
program formulations [23, 24] currently cannot be applied to graphs with larger
number of veritces (> 100). However, even guaranteed approximate solutions
can be helpful in many problems, e.g. clustering of graphs. A lower bound for
the cost of GED can be obtained in polynomial time by relaxation of its integer
linear program formulation. In [25], another method to obtain a lower bound
for the cost was proposed: The approximation is computed by resolving a bi-
partite graph matching (in O(n3) time) that is built using pairwise distances

30 Background and Related Work

between vertices of the input graphs. These distances are computed from the
differences between corresponding vertices and the lowest possible differences
between the incident edges (stars). As a starting point for studying approxima-
bility of GED may serve a so-called Graph Transformation (GT) problem, that
given two graphs and an integer k, asks if the first graph can be made isomorphic
to the second graph by relocating (inserting and deleting) of k edges. In [26] it
was proved that the optimization version of GT with respect to k is APX-hard,
meaning that for GT there exists a polynomial-time approximation algorithm
with a performance guarantee bounded by a constant factor of the optimum,
and no polynomial-time approximation scheme exists (unless P=NP). Due to
the hardness of GED, many heuristics based on a wide range of techniques were
proposed for practical applications (see for example [19] and [27]). We review
some of the methods with applications to Network Alignment in Chapter 7.

Subgraph Isomorphism. Subgraph Isomorphism, which can be considered as
a special case of GED, remains NP-hard even if the first graph is a tree and
the other graph has treewidth of two [28]. Even parameterization of the prob-
lem by different values (such as maximum degree, number of vertices, number
of connected components, treewidth, pathwidth, genus, etc.) leaves little hope
for real-world data [29] due to high running times. A number of optimization
versions of Graph Isomorphism were considered in [30] (see also [31]). In partic-
ular, it was shown that for the problem that maximizes the number of matched
vertex pairs and for any constant α < 1, there is an α-approximation algorithm
running in time nO(logn/(1−α)4). Another closely related to GED problem is the
Maximum Common Subgraph problem (MCS) which, given two graphs, asks
to find subsets E′1 ⊆ E1 and E′2 ⊆ E2, such that two graphs G′1 = (V1, E

′
1)

and G′2 = (V2, E
′
2) are isomorphic and |E′1| is maximal. Indeed, the equivalence

between MCS and GED with a specific cost function was shown in [32].
Clearly, on top of these results it can be seen that GED is even more com-

plicated than Subgraph Isomorphism.

Subtree Isomorphism. In contrast to general graphs, isomorphism problems
on trees are known to be polynomial-time solvable. Given (unrooted) trees T1
and T2, Subtree Isomorphism asks to find a subtree of T2 which is isomorphic to
T1 or decide that there is no such subtree. One of the first algorithms solving the
problem requires O(n5/2) time [33] (see also [34]), where n is the size of input
trees. The running time was improved to O(n5/2/ logn) in [35]. In the case of
Tree Isomorphism the problem can be solved in linear time [36]. In contrast to
Subtree Isomorphism, the related Subforest Isomorphism problem that, given a
forest F and a tree T , asks whether F is isomorphic to T , was shown to be NP-
hard [20]. Moreover, in Chapter 3 we show that the problem remains NP-hard

Related Work 31

even if the forest is a collection of stars and the height of the tree is bounded
by 10.

Tree Edit Distance. Similar to Graph Edit Distance, the Tree Edit Distance
problem between trees T1 and T2 is defined a sequence of edit operations that
transforms T1 into T2 and has the lowest editing cost. A number of studies
were focused on rooted labeled ordered and unordered trees with a set of edit
operations that includes relabeling, deleting and inserting of edges and vertices.
A rooted tree is ordered if there is a linear order among siblings of every vertex.
Here, the operations of deletion and insertion do not decompose the tree into
a forest, but preserve the hierarchy. That is, if a vertex v is deleted, then the
children of v become the children of the parent of v instead of v. Oppositely, a
vertex v is inserted as a child of a vertex u with (consecutive) subset of children
of u; these children become the children of v. The ordered version was first
shown to be solvable in O(n5) time [37], where n is the number of vertices in
the input trees. The running time was consecutively improved to O(n4) in [38],
then to O(n3 logn) in [39], and finally to O(n3) in [40]. The latter running
time was also shown to be worst-case optimal for the decomposition strategy
algorithms. A more refined algorithm was presented and evaluated in [41]. For
unordered trees the problem becomes NP-hard [42] and MAX SNP-hard [43],
which means that no polynomial-time approximation scheme exists for the prob-
lem (unless P=NP). Further results on the tree edit distance problem, includ-
ing parameterization and approximation algorithms, can be found for example
in [44, 45, 46, 47, 48, 49, 50].

Graph Modification Problems. Another set of problems related to GED in-
cludes graph modification problems. Here “modifications” may include such op-
erations as edge/vertex deletion or insertion, and the aim is to convert the input
graph into a graph that satisfies a certain property with the minimum number
of modifications. The property of the resulting graph can be transitivity, com-
pleteness, acyclicity, planarity, etc. Unfortunately, for many such properties the
corresponding problems are NP-hard: A general result for edge/vertex deletion
problems was presented in [51, 52]. A summary of results for edge modification
problems can be found in [53] and [54].

Graph Packing and Graph Covering. Another class of problems closely
related to GED consists of so-called packing problems. Given a graph G and
a graph H, the H-packing problem asks to find a subset G′ of edge-disjoint
subgraphs of G, such that each element of G′ is isomorphic to H and G′ has
maximum cardinality. Another related problem is called H-covering, which,
given a graph G and a set of graphs H, covers the vertices of G by a minimum
number of copies of graphs from H, such that every vertex of G is covered

32 Background and Related Work

exactly once. In [55] it was proven that the H-packing packing (as well as the
H-covering problem) is NP-complete even if H is a graph with three connected
vertices. Note, the classical matching problem, i.e., when H is a path of length
one, the problem is solvable in polynomial time [56, 57]. Different versions of
the covering problem where all graphs are rooted trees were studied in [58].

2.3 Preliminaries
In the following we provide notations and definitions used throughout Part II.

Graphs. We consider only simple undirected graphs without self-loop. Given
a graph G, we use V (G) and E(G) to denote the vertex and edge sets of G,
respectively. The number of vertices in a graph G is denoted by |G| or |V (G)|.

We call a graph P = (V (P), E(P)) a path if there is a permutation of the
vertices i1, . . . , i|V (P)|, such that (vik−1 , vik) ∈ E(P), for k = 2, . . . , |V (P)|, and
|E(P)| = |V (P)| − 1 (the length of the path). The vertices of degree 1 in the
path are called the end-vertices. A path in graph G is a subgraph of G which is
a path. By pathG(v, u) we denote a shortest path connecting vertices v and u
in a graph G.

The (direct) neighborhood of a vertex v in a graphG, denoted byNG(v), is the
set of vertices which are adjacent to v. The degree of v is |NG(v)|. We use NG[v]
to denoteNG(v)∪{v}. The distance distG(u, v) between two vertices u, v ∈ V (G)
is the length of the shortest path between u and v in G. The diameter of a
graph G is defined as the maximal distance between two vertices in G. For
any integer i > 1, we call the set of vertices that have distance at most i to v
the i-neighborhood of v, denoted by N i

G(v). The exact i-neighborhood N̂ i
G(v) of

vertex v ∈ G is a set of vertices that have the distance of exactly i to v in G.
A forest is a graph without cycles, while a tree is a connected forest. The

degree-one vertices of a tree are called the leaves, and the others are the internal
vertices. A subtree is a connected subgraph of a tree. A rooted tree T is a tree
with one vertex designated to be the root of T . Given a rooted tree T , T (v)
denotes the subtree consisting of a vertex v ∈ V (T) and all its descendants in
T . For vertices u and v of an unrooted tree T , the subtree T (u) with T rooted
at v is denoted by T (u, v). A star is a tree with at most one internal vertex.
This internal vertex is then called the center of this star. The size of a star S is
the number of edges in S. A singleton is an isolated vertex.

The graph P2 is a path of length two. A P2-packing of size q in a graph G is
a collection of q vertex-disjoint P2’s in G.

Given two graphs G and G′ and an injective mapping f : V (G′) → V (G),
called a subisomorphism, such that for all (v1, v2) ∈ E(G′), (f(v1), f(v2)) ∈
E(G), G′ is a subgraph of graph G (written as G′ ⊆ G); then vertex v ∈ V (G) is

Preliminaries 33

covered if f−1(v) 6= ∅. The graph G is covered with the graph G′ if the mapping
f is bijective. An induced subgraph of a graph G is a graph G′ = (V ′, E′), with
V (G′) ⊆ V (G) and E(G′) = {(v, u) : v, u ∈ V (G′)} ∩ E(G). Graphs G and G′
are isomorphic if there exists a one-to-one mapping f : V (G) → V (G′), such
that (u, v) ∈ E(G) iff (f(u), f(v)) ∈ E(G′).

Complexity. We use the standard “big-Oh” notation to denote the asymptotic
upper bound for the running time of algorithms.

If g(n) is the worst running time of an algorithm with an input of size n and
f(n) is a function such that there exist constants c > 0 and n0 > 0 satisfying
g(n) ≤ c · f(n) for all n ≥ n0, then we write g(n) = O(f(n)).

The NP-hardness of problems considered in the thesis is proven by reductions
from the following problem:

3-Partition
Input: A multiset A of 3n integers a1, . . . , a3n and an integer B.
Question: Can A be partitioned into n subsets such that each subset
contains exactly three integers and the sum of the integers in each
subset is B?

In [20] it was shown that 3-Partition remains NP-hard even when every integer
in A is bounded by a polynomial in n.

3 Covering Tree with Stars

Restricting general graph in Graph Edit Distance to trees branched in investi-
gating variations of the tree edit distance problem. In this chapter we aim at
exploring the complexity of computing the edit distance between trees with the
edit operations affecting only the edges, namely, deleting and inserting edges:

Tree Edit Distance with Edge Insertion and Deletion (TED-ID)
Input: Trees T1 and T2, a non-negative integer d.
Question: Can we modify T1 by adding or deleting at most d edges
in it such that the resulting tree is isomorphic to T2?

TED-ID is partially motivated by alignment of backbone trees extracted from
protein-protein interaction networks of different species. Here, large continuous
regions of aligned subtrees can serve as strong indication for biologically mean-
ingful node-to-node correspondence, easing at the same time matching of the
other, not matched, nodes of the networks.

Given a solution for TED-ID, we can perform the edit operations in the order
of first deleting edges from the first tree, resulting in a forest, and then inserting
other edges to connect the forest. Thus, the problem of transforming a given
forest to a given tree by deleting zero edges and adding a number of edges can
be considered as a separate phase of the tree edit distance problem. We observe
that, the NP-completeness of the subforest isomorphism problem [20] implies
that this edge addition problem is NP-complete. By a simple reduction from
3-Partition [20], we can even prove the NP-hardness for the forest being a
collection of paths.

Motivated by these NP-hardness results, we consider another restriction on
the components of the forest, that is, all components being stars, and intend to
find a boundary of the complexity for the tree edit distance problem:

Covering Tree with Stars (CTS)
Input: A collection of stars S and a tree T .
Question: Can we connect the stars in S by adding edges between
them such that the resulting tree is isomorphic to T?

36 Covering Tree with Stars

One can consider CTS as using the stars to cover the vertices of the tree. We
use |S| to denote the number of stars in S and k the number of distinct stars
in S. Moreover, let V (S) and V (T) be the set of the vertices in the stars of S
and T , respectively. Clearly, we can assume |V (S)| = |V (T)|. Moreover, the
number of edges added to the stars is exactly |S|−1. CTS can also be formulated
as a matching problem between S and T . Here, one is seeking for a one-to-one
mapping f from V (S) to V (T) such that f “preserves” the edges in S, that is,
if u, v ∈ V (S) are adjacent, then f(u) and f(v) must be adjacent. We obtain a
classification of the complexity of CTS with respect to the number k of distinct
stars in S: CTS can be solved in polynomial time, if k is bounded by a constant;
otherwise, this problem is NP-complete. The latter is shown by a reduction
from 3-Partition. As a corollary of this NP-complete result, we show that
TED-ID remains NP-hard, even when both trees have bounded diameters. CTS
resembles the subgraph packing problem, which, given graphs G and H, asks
to find the maximum number of vertex-disjoint subgraphs in G each of which
is isomorphic to H. However, the problem is NP-hard for any H with more
than two vertices [55]. My contribution here is the NP-hardness proof for CTS
and the polynomial time algorithm for CTS when the size of the largest star is
bounded by a constant.

3.1 NP-Completeness Results
We first show that the edge addition problem to transform a forest to a tree
is NP-hard even for a forest being a collection of paths. Then we show the
NP-hardness of the general setting of Covering Tree with Stars (CTS),
that is, there are unbounded many distinct stars in S. As a corollary of this
hardness, we prove that TED-ID is NP-hard, even when both trees have bounded
diameters.

Theorem 1. Given a collection of paths F and a tree T , transforming F to T
by edge additions is NP-hard.

Proof. To prove the NP-hardness, we reduce from the 3-Partition problem.
Given an instance (A,B), the corresponding collection F consists of 3n paths

of length ai−1 for i = 1, . . . , 3n. Every path corresponds to one distinct element
of A. There is also one additional path p of length 2B. The corresponding tree
T is composed of n+ 2 paths of length B− 1 connected with n+ 2 edges to one
additional vertex r; for each of these paths, there is an edge between r and one
of its end-vertices.

To connect all 3n + 1 paths from F by 3n edge additions, we are forced to
map the middle vertex of path p to vertex r in the tree. The other vertices of p
have to be mapped to two paths of length B − 1 in T . It is not hard to see that

NP-Completeness Results 37

the remaining 3n paths from F can be mapped to unmapped vertices in T , if
and only if there is a 3-partition of set A.

Theorem 2. CTS is NP-complete.

Proof. Clearly, CTS is in NP, since we can guess |S|− 1 edges between the stars
in S in polynomial time and the isomorphism testing between two trees can be
done in polynomial time [59]. We reduce again from 3-Partition.

Given an instance (A,B), we can safely assume that 0 ≤ ai < B for
each i = 1, . . . , 3n. We construct an instance (S, T) of CTS in the following way.
First, S consists of five subcollections of stars. The first one has only one “large”
star, denoted as SL, which has n4 ·B+n leaves. The second subcollection S2 con-
tains 3n stars, one-to-one corresponding to the integers in A. For each integer ai
with i = 1, . . . , 3n, we add a star with n3 ·B + ai many leaves to S2. The third
subcollection S3 contains 2B · n stars. More precisely, for each i = 1, . . . , n, we
create a collection Si3, which contains 2B stars, each havingMi := n2 ·B+imany
leaves. We set S3 =

⋃n
i=1 Si3. Moreover, we create for each i = 1, . . . , n a collec-

tion Si4 with B ·Mi stars, each havingNi := n·B+i leaves, and set S4 :=
⋃n
i=1 Si4.

Finally, the last subcollection S5 consists of
∑n
i=1(n · 2B ·Mi · Ni) many “sin-

gletons”.
Next, we construct the tree T . To ease the description, we describe T as a tree

rooted at a vertex r, which has n4 ·B many leaves as children (see also Fig. 3.1
for the depiction of tree T). In addition, r has n children r1, . . . , rn, which are
the roots of n subtrees, denoted as T1, . . . , Tn. Let R1 be the set of r’s children.
For each i = 1, . . . , n, the vertex ri has three children rli with l = 1, 2, 3. Let R2
be set containing all 3n children of the non-leaf vertices in R1. Each vertex rli ∈
R2 has n3 · B leaves as children. In addition, rli has other B children rli[j]
with j = 1, . . . , B, at which the subtrees T li [j] are rooted. Let Ri3 be the set of
the non-leaf children rli[j] of rli for all l = 1, 2, 3. Clearly, |Ri3| = 3B. We set
R3 :=

⋃n
i=1 R

i
3. Finally, in each T li [j], rli[j] has Mi = n2 · B + i many children,

each of which has again Ni = n · B + i many leaves as children. The set Ri4
contains all children of the vertices in Ri3, that is, |Ri4| = 3B · Mi. We set
R4 :=

⋃n
i=1 R

i
4. This completes the construction of T .

Since every integer and thus B are bounded by a polynomial of n, the con-
struction of (S, T) clearly needs polynomial time. Next, we prove that (A,B) is
a yes-instance iff (S, T) is a yes-instance.
“=⇒”: Let A1, . . . , An be a partition of A with |Ai| = 3 and

∑
a∈Ai a = B

for each i = 1, . . . , n. A mapping f between V (S) and V (T) can be derived as
follows. First, map the center of the large star SL to the root r of T and SL’s
leaves to the children of r. Then, for each i = 1, . . . , n, let Ai = {a1

i , a
2
i , a

3
i }.

For each l = 1, 2, 3, we map the center of the star S in S2, which corresponds
to ali, to the child rli of ri. Note that ri is a child of r and the root of the

38 Covering Tree with Stars

.
n4 ·B leaves

of root r

n non-leaves
of root r

.

.n3 ·B leaves
of vertex rl

i

B non-leaves
of vertex rl

i

(subset of Ri
3)

. . . Mi children of vertex
r2

i [j] (subset of Ri
4)

. . . Ni leaves of a
child of r2

i [j]

r

ri

r1
i

r2
i r3

i

r2
i [j]

Fig. 3.1: The tree T of CTS corresponding to an instance of 3-Partition in the proof
of Thm. 2

subtree Ti. Moreover, n3 · B many leaves of S are mapped to the n3 · B leaf
children of rli. The remaining ali leaves of S are then mapped to the non-leaf
children of rli. Note that rli has now B − ali unmapped children and r1

i , r
2
i , r

3
i

have together 2B unmapped children. Let E be the set of unmapped children
of r1

i , r
2
i , r

3
i and D := Ri3 \ E. Clearly, E ⊆ Ri3. Now, we map the centers

of the stars in Si3 to the vertices in E. Since each of the vertices in E has
exactly Mi = n2 · B + i many children, the leaves of the stars in Si3 can be
mapped to the children of the vertices in E. By this way, all stars in S3 can
be mapped to the tree. Note that each of the children of the vertices in E

has Ni = n · B + i leaves as children, which are still unmapped. Now consider
the stars in S4. Recall that |Si4| = B ·Mi and each star in Si4 has Ni leaves. Note
that the vertices in D are mapped to the leaves of the stars in Si2 and each vertex
in D has Mi many children, each of which has again n ·B+ i leaves as children.
By |D| = B, we can conclude that the stars in Si4 can be mapped to the subtrees
rooted at the children of the vertices in D. Finally, recall that, in the above
analysis, each of the children of the vertices in E has Ni := n ·B + i unmapped
leaves as children. Thus, in each subtree Ti there are exactly 2B ·Mi ·Ni many
unmapped leaves. Summing up over all Ti’s, the singletons in S5 can then be
mapped. Since we always map the leaves of a star together with its center, the
mapping clearly satisfies the edge-preserving condition.

NP-Completeness Results 39

“⇐=”: Let f be a mapping from V (S) to V (T). In order to prove this direction,
we need the following claims. The first three claims follow directly from the
degrees of the root and the vertices in R2 and R3.
Claim 2.1: The center of the large star SL has to be mapped to the root r
of T , and the leaves of SL one-to-one to the vertices in R1.
Claim 2.2: The centers of the stars in S2 have to be mapped one-to-one to
the vertices in R2.
Claim 2.3: The centers of the stars in S3 have to be mapped to the vertices
in R3.

By Claim 2.2, the stars in S2 and thus the integers in A are partitioned by
the mapping f into n subsets, denoted by A1, . . . , An, such that |Ai| = 3 for
all i = 1, . . . , n. It remains to prove that

∑
a∈Ai a = B for all i = 1, . . . , n. To

this end, we need the following claim, which is true, since a star in S2 has more
leaves than the number of leaf children of a vertex in R2 and mapping a leaf
in T to a singleton is never better than mapping it to a leaf of a star in S.
Claim 2.4: If (S, T) is a yes-instance, then there is a mapping such that the
leaf children of the vertices in R2 are all mapped to the leaves of the stars in S2.

According to Claims 2.3 and 2.4, 2nB vertices in R3 have to be mapped to
the centers of the stars in S3 and the remaining vertices have to be mapped to
the leaves of the stars in S2. Since we can w.l.o.g. assume

∑
a∈A a = nB, the

following claim holds.
Claim 2.5: The centers of the stars in S4 have to be mapped to the vertices
in R4.

In order to prove
∑
a∈Ai a = B for all i = 1, . . . , n, we apply a backward

induction from i = n to i = 1. For i = n, let An = {a1
n, a

2
n, a

3
n} and let S1

n, S
2
n, S

3
n

denote the three stars in S2, which correspond to the integers in An and whose
roots are mapped to r1

n, r
2
n, r

3
n, respectively. By Claim 2.4, totally

∑3
j=1 a

j
n

leaves of the stars S1
n, S

2
n, S

3
n have to be mapped to the vertices in Rn3 . Moreover,

Claim 2.3 and the fact that the stars in Sn3 have more leaves than all other stars
in Sj3 with j < n imply that the centers of the stars in Sn3 have to be mapped
to the vertices in Rn3 . With |Sn3 | = 2B and |Rn3 | = 3B, we know

∑3
j=1 a

j
n ≤ B.

Let D be the set of vertices in Rn3 which are mapped to the leaves of S1
n, S

2
n, S

3
n,

E1 be the set of vertices in Rn3 that are mapped to the centers of the stars in Sn3 ,
and E2 := Rn3 \ (D ∪ E1) (see Fig. 3.2). Clearly, |D| =

∑3
j=1 a

j
n and |E2| =

B − |D|. If E2 6= ∅, then the vertices from E2 can be mapped to the centers
of other stars. However, by Claims 2.3 and 2.4, all E2-vertices have to be
mapped to the centers of some stars from

⋃n−1
j=1 S

j
3 , since

∑
a∈A a = nB implies

that
∑3
j=1 a

j
i > B for some i < n. Now, consider the stars in Sn4 . Since all

vertices in S1
n ∪ S2

n ∪ S3
n are mapped and the stars in Sn4 have more leaves than

the degrees of the vertices in Rj4 with j < n, the centers of these stars can
only be mapped to the vertices in Rn4 . However, by mapping the centers of the

40 Covering Tree with Stars

set D mapped to the
leaves of S1

n, S2
n, S3

n

set E2 mapped to
the centers of the

stars in S̃i
3

set E1 mapped to
the centers of the

stars in Sn
3

|D| · Mn vertices |E2| · (Mn − Mi) +
|E2| · Mi vertices

|E1| · Mn vertices

Fig. 3.2: The vertices of sets D, E1 and E2 in Rn
3 and their children in the induction

step of the proof of Thm. 2

stars in Sn3 to the vertices in E1 and the centers of some stars S̃i3 from Si3 for
some i < n to the vertices in E2, some of the vertices in Rn4 are already mapped
by the leaves of these stars. For the vertices in E1, all their children are mapped.
Moreover, since |D|+|E2| = B and at leastMi children of each of the E2-vertices
are mapped to the leaves of S̃i3, we have at most |D| ·Mn + |E2| · (Mn −Mi) =
B ·Mn − |E2| ·Mi < B ·Mn vertices in Rn4 not mapped to the stars in Sn3 .
Recall that every vertex in Rn3 has Mn = n2 · B + n many children. However,
by |Sn4 | = B ·Mn, the centers of some stars in Sn4 cannot be mapped to the
vertices in Rn4 , a contradiction. Thus, we have B = |D| and∑3

j=1 a
j
n = B. This

means that E2 = ∅ and all vertices in Rn3 ∪Rn4 are mapped to stars in Sn3 ∪ Sn4 .
Thus, the induction step from i + 1 to i can be conducted in a similar way as
for the case i = n. The reason for this is that the centers of all stars in Si3 can
only be mapped to the vertices in Ri3. This holds also for the stars in Si4 and
the vertices in Ri4. In summary, we can derive a partition from the mapping f
such that every subset Ai has exactly three integers, and

∑
a∈Ai a = B for

each i = 1, . . . , n.

Corollary 3. TED-ID is NP-hard even when the diameters of both trees are
bounded by 10.

Proof. We construct an equivalent instance of TED-ID from the CTS-instance
constructed in the proof of Thm. 2.

Let x be the number of the stars in the CTS-instance (S, T) in the proof
of Thm. 2. We construct tree T1 as follows. First, create x “big stars”, each
with n8 · B3 leaves. Then, connect the stars in S one-to-one to the big stars:
For each star in S, add an edge between its center and one of the leaves of the
corresponding big star. Finally, create a star with n4 leaves, and add an edge
between the center of this star and each of the centers of the big stars. Clearly,
the resulting tree T1 has a diameter equal to 8.

CTS with Bounded Distinct Stars 41

The second tree T2 is firstly set equal to the tree T of the CTS-instance from
the proof of Thm. 2. Then, add x “big” stars, each having n8 ·B3 leaves. Finally,
add an edge between the root r of T and each of the centers of the big stars.
The diameter of the resulting tree T2 is clearly equal to 10.

We set d := 2·(x−1). From the construction of (S, T), we have d = O(n5·B3).
To prove the equivalence between the constructed instance (T1, T2, d) and (S, T),
observe that the big stars in T1 can only be mapped one-to-one to the big stars
in T2. The reason for this is that the size of these stars is much greater than the
allowed number d of editions. Then, we have to “separate” the stars in S from
the big stars in T1, and map them into the n subtrees of T2, which correspond
to the n partitions of the 3-Partition-instance.

3.2 CTS with Bounded Distinct Stars
The NP-hardness of CTS motivates the study of the special case in which the
number of distinct stars in S is bounded by a constant k. Let S1, . . . , Sk be
the distinct stars in S. Then, S can be denoted by a set of pairs, that is,
S = {(S1, n1), · · · , (Sk, nk)}, where ni for i = 1, . . . , k is the number of copies
of Si in S. Moreover, we use |Si| to denote the number of edges in Si and assume
that |S1| < |S2| < · · · |Sk|. Clearly, |V (T)| = ∑k

i=1(ni · (|Si|+ 1)).
We present in the following a dynamic programming based algorithm solv-

ing CTS in polynomial time, if the number of distinct stars is bounded by a
constant. The algorithm follows a bottom-up approach to process the vertices
in T . Assume T is rooted at an arbitrary vertex r. For each vertex v ∈ V (T),
T (v) denotes the subtree of T rooted at v. During the bottom-up process, we
collect some information at every vertex v. Hereby, we firstly distinguish two
cases: v is “covered” or “free”. We say v is covered, if v should be mapped to the
center of a star or to a leaf of a star whose center is mapped to a child of v. A
vertex v is free, if v should be mapped to a leaf of a star whose center is mapped
to v’s parent. Note that a singleton in S, that is, an isolated vertex, has only
one center but no leaf. Concerning a star S with only one edge, we say v is free
if the other vertex of S should be mapped to v’s parent; otherwise, v is covered.
If v is covered with v being mapped to the center of a star S, then we further
distinguish some cases by the size of S. Hereby, notice that the star S does not
have to be from S but has at most |Sk| leaves. The reason for this is that the
parent of v could be mapped to a leaf of S. Note that Sk is the star in S with
the largest number of leaves.

We use Cf to denote the case of v being free and Cl to denote the case that v
is mapped to a leaf of a star whose center is mapped to a child of v. Moreover,
Cic with i = 0, . . . , |Sk| denotes the case that v is mapped to the center of a
star with i leaves, which are mapped to the children of v. The three cases of

42 Covering Tree with Stars

Cf

.
f−1(v)

Cl

.

f−1(v)

Ci
c

.

f−1(v)

f−1(ua1) f−1(uai)

Fig. 3.3: The three cases of mapping a vertex v ∈ V (T) to a star Sj ∈ S in CTS with
bounded distinct stars

mapping vertex v and its children u1, . . . , ui to a star Sj are shown in Fig. 3.3.
Altogether, there are |Sk|+ 3 many cases to consider.

For each of these cases, we store all possible “realizable configurations” for v.
A configuration is defined as a vector K = (c1, . . . , ck) with ci ≤ ni for all
1 ≤ i ≤ k. Each vector K uniquely represents a subcollection S ′ of S, that is,
S ′ = {(S1, c1), . . . , (Sk, ck)}. The number of all possible configurations is clearly
bounded by O(|S|k). We say a configuration K is “realizable” at vertex v with
case Cf (or Cl), if there exists a one-to-one mapping f from V (S ′) to V (T (v)) \
{v} (or V (T (v))) such that, if u, v ∈ V (S ′) are adjacent, then f(u) and f(v)
are adjacent. In the case Cic, configuration K is realizable, if there exist a
size-(i+ 1) set V ′ consisting of v and i children of v and a mapping f from V (S ′)
to V (T (v)) \ V ′ with the edges in S ′ being preserved. Thus, the given instance
is a yes-instance, if and only if at the root r, the configuration (n1, . . . , nk) is
realizable with state Cl or (n1, . . . , ni − 1, . . . , nk) is realizable with state C |Si|c

for some i = 1, . . . , k.

The algorithm. In order to compute the realizable configurations for every ver-
tex v and every case α, we define the following configuration sets. The set K(v, α)
should contain all realizable configurations at vertex v if the case α applies to v.
Moreover, we define K(v) to be the set of the following configurations:

• all configurations in K(v, Cl),

• for each configuration K = (c1, . . . , ck) in K(v, Cic) with i = |Sα| for a
star Sα ∈ S, the configuration (c1, . . . , cα + 1, . . . , ck).

CTS with Bounded Distinct Stars 43

In other words, K(v) contains all configurations, each of which corresponds to a
subcollection S ′ such that there exists a mapping f from V (S ′) to V (T (v)) such
that the edges in the stars in S ′ are preserved. We define an addition operation
on two configurations K1 = (c1

1, . . . , c
1
k) and K2 = (c2

1, . . . , c
2
k): K1 + K2 =

(c1
1 + c2

1, . . . , c
1
k + c2

k), if c1
i + c2

i ≤ ni for all i = 1, . . . , k; otherwise, K1 + K2 is
set to an all-0 vector. At the begin, K(v, α) and K(v) for all vertices v and all
cases α are set to empty.

At a leaf vertex v, the cases Cl and Cic with i > 0 cannot apply and the
corresponding configuration sets remain empty. The case C0

c can apply, only
if S contains the singleton. If so, then S1 is the singleton and both K(v, C0

c)
and K(v) contain only one configuration (c1, . . . , ck) with c1 = 1 and ci = 0
for i > 1; otherwise, the two sets are empty. According to the definition of
realizable configurations, K(v, Cf) contains only the all-0 vector.

Suppose we arrive at an internal vertex v with j children u1, u2, . . . , uj . We
distinguish the cases Cf , Cl, and Cic.
The free case Cf . By the definition of Cf , each realizable configuration K

at v has to correspond to a subcollection S ′ such that each star in S ′ has to be
completely mapped to a subtree rooted at one of v’s children. Moreover, every v’s
child ui has to be mapped to either the center or a leaf of a star in S ′ and all
other vertices of this star have to be mapped to the vertices in T (ui). Thus, every
realizable configuration K can be “partitioned” into j configurations K1, . . . ,Kj

such that Ki ∈ K(ui) for every i = 1, . . . , j and K = K1 + . . .+Kj .
Based on this observation, we compute K(v, Cf) as follows: First, for each i =

1, . . . , j, we construct K(ui). To this end, we consider K(ui, C|Sα|c) for each α =
1, . . . , k; for each configuration K = (c1, . . . , ck) of this set, we add a configura-
tion (c1, . . . , cα + 1, . . . , ck) to K(ui). Finally, all configurations in K(ui, Cl) are
added to K(ui). Then, we initiate K(v, Cf) as a set containing only the all-0
vector and iterate from i = 1 to i = j. For each i, we perform K +K ′ for every
pair of K and K ′ with K being from the old K(v, Cf) and K ′ ∈ K(ui) and add
the result to the new K(v, Cf).

Since the number of configurations is bounded by O(|S|k), the computation
of K(v, Cf) is doable in O(j · |S|2k) time.

The covered by leaf case Cl. In this case, every configuration in K(v, Cl) has
to correspond to a subcollection S ′, which contains one star S with one of S’s
leaves mapping to v and S’s center mapping to a child of v. Note that S has
at least two leaves. The remaining stars of S ′ have to be completely mapped to
the subtrees rooted at the children of v. Therefore, one of v’s children has to be

44 Covering Tree with Stars

of case C |S|−1
c and others have to be of cases Cl and Cic. Then, K(v, Cl) can be

computed as follows:

K(v, Cl) :=
⋃

S∈S,|S|>1

 ⋃
i=1,...,j

KS,i(v, Cl)

 ,

where KS,i(v, Cl) contains all realizable configurations with v being mapped to
a star S whose central is mapped to ui. The set KS,i(v, Cl) can be computed
in a similar way as K(v, Cf): First, we compute K(ui′) for all i′ 6= i, as in
the Cf -case. We initialize KS,i(v, Cl) as a set containing only the all-0 vec-
tor and iterate over all i = 1, . . . , j as in the Cf -case. The only exception is
that the set K(ui) is replaced by K(ui, C|S|−1

c). Finally, we increase the entry
of KS,i(v, Cl) corresponding to S by one, since one copy of S is now completely
mapped in T (v).

Note that we only need to compute KS,i(v, Cl) for distinct stars S ∈ S. Since
the computation of KS,i(v, Cl) is basically the same as the one of K(v, Cf), the
overall time for computing K(v, Cl) is bounded by O(k · j2 · |S|2k).

The covered by center case Cic. Now, v has to be mapped to the center of
a star S with 0 ≤ i = |S| ≤ |Sk| and S’s leaves have to be mapped to some
of u1, . . . , uj . Note that S does not necessarily appear in S and |S| ≤ j. Similarly
to the Cf - and Cl-cases, all realizable configurations in K(v, C|S|c) correspond
to subcollections S ′ whose stars can be partitioned to j subsets, each being
completely mapped to a subtree rooted at v’s children. The only difference here
is that, in order to map v to the center of S, there must be |S| children of v which
are “free”, that is, of case Cf . Thus, it remains to compute all possible realizable
configurations for every distinct star S ∈ S with |S| ≤ j. We apply here again
a dynamic programming approach. Assume that K(ui) for all i = 1, . . . , j have
already been computed, which can be done as described in the Cf -case.

We define a table T of size at most j(j+1)/2. The entry T [α, β] with 1 ≤ α ≤ j
and 0 ≤ β ≤ |S| ≤ j stores all possible realizable configurations, that we can
have in the subtrees T (u1), . . . , T (uα), if exactly β many roots of these trees are
set to the free case. Clearly, we consider only T [α, β] with β ≤ α.

The computation of the first row of T is trivial. By definitions, T [1, 0]
is clearly set to K(u1), while T [1, 1] means the same as K(u1, Cf). The en-
tries T [α, β] with α > 1 can be computed as follows:

T [α, 0] := T [α− 1, 0] +K(uα) ,

T [α, β] := (T [α− 1, β] +K(uα)) ∪ (T [α− 1, β − 1] +K(uα, Cf)) .

CTS with Bounded Distinct Stars 45

By the definition, the entry T [j, |S|] then contains all possible realizable
configurations under the condition that v and |S| many its children are mapped
to S. Thus, we set K(v, C |S|c) := T [j, |S|].

With the same argument as in the Cf -case, the operations between config-
uration sets can be done in O(|S|2k) time. Thus, the time for computing T is
bounded by O(j2 · |S|2k).

Theorem 4. If the number of distinct stars in S is bounded by a constant, then
CTS can be solved in polynomial time.

Proof. The correctness of the dynamic programming algorithm follows from the
correctness of the computation for leaves and the three cases of internal ver-
tices. From the time analysis of the cases, we can easily derive an overall
O(|V (T)|2 · k · |V (S)|2k)-time bound for the dynamic programming algorithm,
which is polynomial in |V (T)|, if k is bounded by a constant.

4 Neighborhood-Preserving
Mapping on Trees

In this chapter, we introduce a new generalized isomorphism problem. Here,
we ask if there is a mapping between two graphs, such that the neighborhoods
of the vertices of the first graph, except for few vertices, are preserved in the
second graph. More precisely, the problem is defined as follows:

Neighborhood-Preserving Mapping (NPM)
Input: Graphs G1 = (V1, E1) and G2 = (V2, E2) and three inte-
gers l, d, k.
Question: Is there a set D ⊆ V1 and a one-to-one mapping f :
V1 → V2 such that |D| ≤ k and for every vertex v ∈ V1 \D and every
vertex u ∈ N l

G1
(v) \D it holds f(u) ∈ Nd

G2
(f(v))?

We call a solution mapping f of NPM neighborhood-preserving. Hereby, N i
G(v)

denotes the set of vertices which have distance at most i to v in the graph G.
The set D is called the isolation set.

A similar problem, called the network alignment problem, can be formu-
lated for mappings between protein-protein interaction networks. Building a
neighborhood-preserving mapping, in contrast to the classic graph isomorphism
problem, provides more freedom by setting closeness constraints on the sought
mapping. This freedom may help to deal with data incompleteness (missing
edges or nodes) as well as noise (erroneous edges or nodes), respecting at the
same time topological distance. Then, a mapping with the larger number of
more important mapped nodes is thought to be more biologically meaningful.

In the chapter we focus on the classical complexity of NPM on trees, that is,
both input graphs are trees. We first study NPM on trees with k = 0 and provide
proofs for NP-hard and polynomial-time solvable cases. Table 4.1 summarizes
our findings. Next we investigate the problem when k > 0 and prove that NPM
with k > 0 is NP-hard for all values of l and d. Then, we present algorithms for
two restricted versions of NPM on trees when one of the input trees is restricted

48 Neighborhood-Preserving Mapping on Trees

Tab. 4.1: Summary of the cases for NPM on trees with k = 0 (P stands for polyno-
mial, NPC for NP-complete)

d = 1 d = 2 d ≥ 3
l = 1 P (Thm. 8) NPC (Thm. 5) NPC (Thm. 5)
l = 2 P (Thm. 9) P (Thm. 16) NPC (Thm. 5)
l = 3 P (Thm. 9) P (Thm. 17) NPC (Thm. 6)
l ≥ 4 P (Thm. 9) P (Thm. 17) NPC (Thm. 7)

to be a path. We complete this chapter by providing an integer linear program
formulation for the optimization version of NPM that aims to minimize the size
of the isolation set D.

4.1 NPM on Trees with k = 0
In this section, we provide a dichotomy of the classical complexity of NPM on
trees with k = 0; see Table 4.1 for an overview.

4.1.1 NP-Hardness Results
Case l < d, d > 1, k = 0
First, we show that if k = 0 and 1 ≤ l < d, then NPM on trees is NP-hard.

Theorem 5. NPM on trees is NP-complete with k = 0, d ≥ 2, and l < d.

Proof. Clearly, NPM is in NP. To show the hardness of this case, we reduce from
3-Partition.

We first describe the reduction for NPM on trees with k = 0, d = 2, and l = 1
and then indicate how to extend the reduction for other cases with 1 ≤ l < d.

Given an instance (A,B) of 3-Partition, we construct an instance of NPM
on trees, as depicted in Fig. 4.1: The first tree T1 consists of 3n paths and a
star of 2(n+ 1)B + n+ 2 vertices (with the center c). Each path Pi one-to-one
corresponds to an element ai of A and contains ai vertices. One end-vertex of
each path is made adjacent to a leaf of the star, denoted by r, by adding an
edge. In order to construct the second tree T2, we first create a big star with
2(n+ 1)B + 1 vertices, n small stars, each having B + 1 vertices, and a special
vertex r′. Then, we add edges to connect the centers of all small stars to r′.
Finally, we add an edge between r′ and an arbitrary leaf, denoted by c′, of the
big star.

To prove the equivalence between the instances, observe that the vertex c

in T1 has to be mapped to c′ in T2, since this is the only possible way to preserve

NPM on Trees with k = 0 49

. . .

. . .

.

...
...

3n paths, i-th
path has ai vertices

T1

. . .
2(n + 1)B + n leaves

c
r

. . .
.
n stars each with B leaves

T2

. . .
2(n + 1)B − 1 leaves

c′

r′

Fig. 4.1: The trees T1 and T2 constructed in the proof of Thm. 5

the 2(n+1)B+n+1 neighbors of c in T2. Thus, all vertices of the big star in T2,
except for c′, are mapped to the neighbors of c. The remaining n+ 1 neighbors
of c, including r, have to be mapped to r′ and the centers of n small stars in T2.
Moreover, the vertex r has to be mapped to r′, since r is adjacent to the end-
vertices of all 3n paths in T1. This implies that the vertices of the 3n paths have
to be mapped to the leaves of the small stars in T2. Finally, to preserve the
neighborhoods of the vertices on these paths, we have to group the paths of T1
into n groups, each of which contains 3 paths with exactly B vertices in total,
corresponding to a 3-partition of the integers.

By subdividing the edges of T1 and T2, we can extend the reduction for other
cases of d and l with l < d.

Case l ≥ d, d ≥ 3, k = 0
For the case of k = 0 and l ≥ d ≥ 3 we prove the following two theorems:

Theorem 6. NPM on trees is NP-complete with k = 0 and l = d ≥ 3.

Proof. We prove only the case with l = d = 3. The same edge subdivision idea
as in the proof of Theorem 5 can be applied for l = d > 3. Again, we reduce from
3-Partition. Given an instance (A,B), we construct two trees as depicted in
Fig. 4.2: T1 is composed of one star (s1) with 2nB + 2 vertices, one star (s2)
with n + 2 vertices, one star (s3) with 2n + 2 vertices, one specific vertex r,
and 3n encoding stars. Each encoding star corresponds to an integer in A, that
is, the i-th encoding star has ai + 1 vertices, for i = 1, . . . , 3n. We add an edge

50 Neighborhood-Preserving Mapping on Trees

. . .
. . .

.

3n stars, i-th star has ai + 1 vertices

T1

. . .
2nB leaves of star s1

c1
c2

c3
r

...
2n leaves
of star s3

...
n leaves

of star s2

. . .
.

n stars, each star has B + 1 vertices

T2

. . .
2nB leaves of star s′

1

c′
1

c′
2

c′
3

r′
...

2n leaves
...

2n leaves
of star s′

3

...
n leaves

of star s′
2

Fig. 4.2: The trees T1 and T2 constructed in the proof of Thm. 6

to connect a leaf c1 of star s1 to a leaf c2 of star s2. Then, two edges are added
to connect a leaf c3 of star s3 to both c2 and r. Finally, r is connected to each
of the 3n encoding stars by adding an edge between r and an arbitrary leaf of
the star.

The corresponding tree T2 is composed of one star (s′1) with 2nB+2 vertices,
one star (s′2) with n+ 2 vertices, one star (s′3) with 2n+ 2 vertices, a vertex r′,
and n partition stars. Each partition star has B + 1 vertices. We add an edge
between a leaf c′1 of star s′1 and a leaf c′2 of star s′2. Two edges are then added
between a leaf c′3 of star s′3 and c′2 and between c′3 and r′. In addition, r′ is
connected to the center of every partition star. Finally, we add 2n leaves to T2,
which are adjacent to r′.

To prove the equivalence of the instances, observe that the vertex c2 has to
be mapped to c′2, since |N3

T1
(c2)| = 2nB+6n+3 and only c′2 has so many vertices

in its 3-neighborhood. By a similar argument, c1 has to be mapped to c′1, and c3
to c′3. Therefore, the leaves of the n partition stars of T2 can only be mapped
to the 3n encoding stars of T1 (except for one leaf in every encoding star). This
implies the correspondence between the instances.

Theorem 7. NPM on trees is NP-complete with k = 0 and l > d ≥ 3.

Proof. We reduce again from 3-Partition. Let (A,B) be a 3-Partition in-
stance. First, observe that, given a path P with l · B · n2 − 1 vertices, there is
a neighborhood-preserving mapping between P and a “squeezed” path depicted
in Fig. 4.3.

NPM on Trees with k = 0 51

. . .
d − 1 vertices

. . .

l − d vertices

s . . .
d − 2 vertices

. . .

l − d vertices

. . .
d − 2 vertices

. . .

l − d + 1
vertices

. . .
d − 2 vertices

. . .

l − d + 1
vertices

. . .

. . .
r′

Fig. 4.3: The “squeezed” path in the proof of Thm 7

The NPM-instance is constructed as follows. The first tree T1 is composed of
one path P with l ·B ·n2−1 vertices, and a set P of 3n paths. Each path pi in P
corresponds to an element ai ∈ A and contains 2 · l − d+ 1 + ai vertices. Each
path in P is connected to P by adding an edge between one of its end-vertices
to the end-vertex r of P . The second tree T2 consists of one “squeezed” path P ′
with l ·B · n2 − 1 vertices. To one end-vertex r′ of P ′, we add 3 · n · (l − d+ 2)
new vertices as neighbors, called level-1 vertices. Every (3 · (l−d+ 2))-th level-1
vertex v has additional 3 · (l− 1)− (d− 2) new leaves as neighbors and further,
v is adjacent to one end-vertex of a path Pv that contains d − 2 vertices. The
other end-vertex of Pv has additional B new leaves as neighbors. We refer to
the leaf neighbors of v and the vertices in Pv as level-2 vertices.

Assume that there is a neighborhood-preserving mapping f from T1 to T2.
Then, the vertices of P have to be mapped to the vertices of P ′ with f(r) = r′.
Further, for each path p in P, its first l − d + 2 vertices, ordered according
to their distances to r, have to be mapped to the level-1 vertices. Then, the
(l − d + 3)-th to the (2 · l − d + 1)-th vertices of p have to be mapped to the
level-2 vertices. Thus, a neighborhood-preserving mapping exists, if and only if
there is a 3-partition of A.

4.1.2 Polynomial-Time Solvable Cases
In this subsection we present polynomial-time solvable cases of NPM on trees
with k = 0. With k = 0 and l = d = 1, NPM on trees can be shown equivalent
to the classical tree isomorphism problem and it is known that the isomorphism
problem of trees can be solved in polynomial time [59].

Theorem 8. NPM on trees can be solved in polynomial time for the case k = 0
and l = d = 1.

Proof. We show the equivalence of the case of NPM to the tree isomorphism
problem. Let T1 and T2 be trees. If T1 is isomorphic to T2, then there exists a
mapping such that every edge (v1, v2) ∈ E(T1) iff (f(v1), f(v2)) ∈ E(T2). Thus,
for every vertex v1 and every its neighbor v2 ∈ N(v), distT2(f(v1), f(v2)) = 1,
which satisfies the condition of NPM with l = 1, d = 1, k = 0.

52 Neighborhood-Preserving Mapping on Trees

Now assume that there is a one-to-one mapping f : V (T1) → V (T2), such
that ∀ v ∈ V (T1), ∀u ∈ N(v), f(u) ∈ N(f(v)), but the trees are not isomorphic.
Then there exists (u1, u2) ∈ E(T2), such that (f−1(u1), f−1(u2)) /∈ E(T1). This
means that there exist v1, v2 ∈ V (T1), such that f(v1) = f(v2), since |E(T1)| =
|E(T2)| = |V (T1)| − 1. This contradicts the definition of mapping f .

Theorem 9. NPM on trees can be solved in polynomial time for the case k = 0
and l > d = 1.

Proof. We prove that a neighborhood-preserving mapping exists, if and only if
|V1| ≤ 2. The “if”-direction is trivial. Suppose |V1| ≥ 3. Consider u, v ∈ V1
with (u, v) ∈ E1 and x ∈ N `

T1
(u), where 2 ≤ ` ≤ l − 1. If there exists a

neighborhood-preserving mapping f , then (f(u), f(v)) ∈ E2, (f(u), f(x)) ∈ E2,
and (f(v), f(x)) ∈ E2, contradicting to the tree structure of T2.

Case l = 2, d = 2, k = 0
Next we present an algorithm for the case of NPM on trees when l = 2, d = 2, k =
0. We first present some conditions for vertices, under which a neighborhood-
preserving mapping can exist. Assume that |V1| = |V2| ≥ 3. We let leaves(T)
denote the set of leaves of the tree T .

In the following we consider only the case where the diameter of T2 is at
least 4. If T2 has a diameter of 2, then T2 is a star and thus, an arbitrary mapping
from T1 to T2 is a solution. For the case that T2 has a diameter 3, there is a
path in T2 with 4 vertices a, b, c, d. Clearly, all other vertices are leaves adjacent
to b or c. Observe that the diameter of T1 should be at least 3, since otherwise,
the given instance has no solution. Moreover, we cannot map two non-adjacent
vertices u and v to b and c, since, otherwise, the neighborhoods of the vertices
on the path between u and v cannot be preserved. Further, we cannot map a
leaf u of T1 to b or c, since otherwise, say mapping u to b, the whole T1 has to be
mapped to the star centered at b. Thus, if there exists a neighborhood-preserving
mapping f , then we have two adjacent, non-leaf vertices v, u with f(v) = b

and f(u) = c. Clearly, there cannot be two neighbors of v such that one is
mapped to a leaf adjacent to b and one to a leaf adjacent to c. So they are either
all mapped to the leaves adjacent to b or all mapped to the leaves adjacent
to c. Then, we can simply compare the numbers of leaves adjacent to b and to c
with |T1(u)| and |T1(v)| to decide whether a neighborhood-preserving mapping
exists. Here, T1(u) and T1(v) denote the subtrees, that result by deleting (u, v)
from T1 and contain u and v, respectively. This is clearly doable in polynomial
time.

Some observations. In the following we present some observations which are
crucial for the correctness of the algorithm.

NPM on Trees with k = 0 53

Lemma 10. Let u, v ∈ V1 with (u, v) ∈ E1. Suppose that there is a neighborhood-
preserving mapping f with (f(u), f(v)) 6∈ E2. Let a be the vertex in T2 with
(f(u), a) ∈ E2 and (f(v), a) ∈ E2. Then, it holds that for every vertex z ∈
NT1(u) ∪NT1(v), f(z) ∈ NT2 [a].

Proof. Clearly, for every vertex z ∈ NT1(u)∪NT1(v), we have z ∈ N2
T1

(u) and z ∈
N2
T1

(v). Thus, it must hold that f(z) ∈ N2
T2

(f(u)) and f(z) ∈ N2
T2

(f(v)). The
claim follows from N2

T2
(f(u)) ∩N2

T2
(f(v)) = NT2 [a].

Lemma 11. Let u, v ∈ V1 with (u, v) ∈ E1. Suppose that the diameter of T2 is
at least 4. Then, a neighborhood-preserving mapping f with (f(u), f(v)) 6∈ E2
exists, if and only if both f(u) and f(v) are in leaves(T2).

Proof. Clearly, if f(u), f(v) ∈ leaves(T2), then (f(u), f(v)) /∈ E2. Assume that
the “only if”-direction is not true. Then, there is a neighborhood-preserving
mapping f such that (f(u), f(v)) 6∈ E2 and one of f(u) and f(v) is not in
leaves(T2), say f(u) 6∈ leaves(T2). Let a be the vertex in T2 with (f(u), a) ∈ E2
and (f(v), a) ∈ E2. By Lemma 10, all vertices in NT1(u) ∪NT1(v) are mapped
to the vertices in NT2 [a]. Root T2 at a and denote the subtrees rooted at f(u)
and f(v) by T2(f(u)) and T2(f(v)), respectively. Moreover, set T2(a) := T2 \
(T2(f(u)) ∪ T2(f(v))). By the assumption, V (T2(f(u))) \ {f(u)} 6= ∅. However,
since all vertices in (NT1(u)∪NT1(v))\{u, v} are mapped to the vertices in T2(a),
there must be a vertex b ∈ V (T2(f(u))) \ {f(u)} such that b is mapped to a
vertex x with (x, y) ∈ E1 for a vertex y ∈ V1, which is mapped to a vertex
in T2(a). Obviously, f(y) = a and y is in NT1(u) \ {v}. Thus, V (T2(f(v))) =
{f(v)}.

Root T1 at u and let T1(y) be the subtree rooted at y. Then, all ver-
tices (NT1(u)∪NT1(v))\{y} are mapped to NT2(a). This implies, by Lemma 10,
that for every vertex z ∈ (NT1(u)∪NT1(v)) \ {u, v, y}, all vertices in NT1(z) are
mapped to NT2(a). With the same argument, all vertices in T1 \ T1(y) are
mapped to NT2(a). Finally, consider T1(y). Again, by Lemma 10, all vertices
in NT1(x)∪NT1(y) are mapped to NT2(f(u)). The same holds also for other ver-
tices in T1(y). Therefore, T2 contains only two non-leaves, that is, vertices f(u)
and a, and has diameter 3, contradicting the assumption of the lemma.

Lemma 12. Let v be a leaf of T1 with u being its only neighbor. Suppose that
the diameter of T2 is at least 4. If there is a neighborhood-preserving mapping f
with f(u) /∈ leaves(T2), then f(v) ∈ leaves(T2).

Proof. Assume that the claim is not true. Let f be a mapping with f(v), f(u) 6∈
leaves(T2). Then, according to Lemma 11, (f(u), f(v)) ∈ E2.

Let T2(f(u)) and T2(f(v)) be the subtrees which result by deleting (f(u),
f(v)) from T2 and contain f(u) and f(v), respectively. Let f−1(V (T2(f(u))))
and f−1(V (T2(f(v)))) be the sets of vertices in T1 which are mapped to T2(f(u))

54 Neighborhood-Preserving Mapping on Trees

and T2(f(v)), respectively. Clearly, f−1(V (T2(f(v)))) \ {v} 6= ∅. Therefore,
there must be a vertex x ∈ f−1(V (T2(f(v)))) \ {v} which is adjacent to some
vertex y ∈ f−1(V (T2(f(u)))). Obviously, y = u. This implies that (u, x) ∈ E1
but (f(u), f(x)) /∈ E2. By Lemma 11, we have then f(u), f(x) ∈ leaves(T2), a
contradiction.

Lemma 13. Suppose that the diameter of T2 is at least 4. If a neighborhood-
preserving mapping f exists with f(u) 6∈ leaves(T2) for u ∈ V1, then for every x ∈
NT1(u), we have f(x) ∈ NT2(f(u)).

Proof. Consider an arbitrary vertex x in NT1(u). Then, since f(u) is not
in leaves(T2), according to Lemma 11, (f(u), f(x)) ∈ E2 and thus, f(x) has
to be in NT2(f(u)).

Lemma 14. For u, v ∈ V1 with (u, v) ∈ E1, let T1(v) denote the subtree which
results by deleting (u, v) from T1 and contains v. Suppose that the diameter
of T2 is at least 4. If a neighborhood-preserving matching f exists with f(u) 6∈
leaves(T2) and f(v) ∈ leaves(T2), then for every vertex x ∈ V (T1(v)), we
have f(x) ∈ leaves(T2) and (f(u), f(x)) ∈ E2.

Proof. The claim is clearly true for v. By Lemma 11, (f(u), f(v)) ∈ E2. Consider
an arbitrary vertex x ∈ (NT1(v) \ {u}). Since f(v) ∈ leaves(T2), f(x) has to be
adjacent to f(u). Moreover, since (x, v) ∈ E1 and (f(x), f(v)) /∈ E2, f(x) has
to be a leaf of T2. The same argument implies that all neighbors of x have to
be leaves of T2 adjacent to f(u).

If there is a mapping f which fulfills the condition of Lemma 14, that is,
f(u) /∈ leaves(T2) and f(v) ∈ leaves(T2) for two vertices u, v ∈ V1 with (u, v) ∈
E1, then we say that the subtree T1(v) is absorbed at f(u). Clearly, subtree
T1(v) cannot be absorbed, if the number of leaves adjacent to f(u) is smaller
than the number of vertices in T1(v). The following lemma summarizes the
above observations.

Lemma 15. Suppose T2 has a diameter at least 4. Let u, v ∈ T1 with (u, v)
∈ E1. Let T1(u) and T1(v) be the subtrees resulting by deleting (u, v) from T1
and containing u and v, respectively. Suppose that there exists a neighborhood-
preserving mapping f with (f(u), f(v)) ∈ E2. Let T2(f(u)) and T2(f(v)) be the
subtrees resulting by deleting (f(u), f(v)) from T2 and containing f(u) and f(v),
respectively. Then, it holds that

1. either one of f(u) and f(v) (say f(u)) is a leaf of T2 and for every ver-
tices x ∈ V (T1(u)), we have f(x) being a leaf adjacent to f(v),

2. or |V (T1(u))| = |V (T2(f(u)))|, |V (T1(v))| = |V (T2(f(v)))|, |leaves(T1(u))|
≤ |leaves(T2(f(u)))|, and |leaves(T1(v))| ≤ |leaves(T2(f(v)))|.

NPM on Trees with k = 0 55

Proof. Clearly, f(u) and f(v) cannot be both leaves. For the case that f(u) is a
leaf, the correctness follows directly from Lemma 14. For the case that both are
not leaves, Lemma 13 implies that for all vertices x ∈ NT1(u) (or x ∈ NT1(v)),
we have f(x) ∈ NT2(f(u)) (or f(x) ∈ NT2(f(v))). Further, by Lemma 12, if x is
a leaf, then f(x) is a leaf too. For a non-leaf x, by Lemma 13 f(y) ∈ NT2(f(x))
for all vertices y ∈ NT1(x). Thus, we can conclude that in this case, |V (T1(u))| =
|V (T2(f(u)))|, |V (T1(v))| = |V (T2(f(v)))|, |leaves(T1(u))| ≤ |leaves(T2(f(u)))|,
and |leaves(T1(v))| ≤ |leaves(T2(f(v)))|.

The algorithm. To ease the presentation, we assume that both trees T1 and T2
are rooted at root(T1) and root(T2), respectively, and the mapping f sought for
satisfies f(root(T1)) = root(T2). Further we assume that root(T2) is not a leaf.
For a vertex v of a rooted tree T , we use T (v) to denote the subtree rooted at v.
The labels of a vertex v ∈ V2, denoted by labels(v), is a set of vertices from V1
that can potentially be mapped to v. Clearly, labels(root(T2)) = {root(T1)}.
For U ′ ⊆ V1, we define labels(v, U ′) := labels(v) ∩ U ′. Discarding a label u ∈
labels(v) is denoted by labels(v) := labels(v) \ {u}. By labels(V ′) with V ′ ⊆ V2
we denote the set

⋃
v∈V ′ labels(v). The algorithm consists of two phases, the

first phase top-down preparing the labels of all vertices of T2 and the second
phase constructing the mapping from the labels in a bottom-up manner.

Phase 1. Starting at root(T2) with labels(root(T2)) = {root(T1)}, the algorithm
iterates over all non-leaf vertices in T2 according to the breadth-first order,
and builds label sets for the children of a vertex v ∈ V2 from the label set
of v. Let ch(u) denote the set of children of a vertex u in a rooted tree. For a
vertex v ∈ V2 and one of its labels u ∈ labels(v), we process the children of u
and v depending on their degrees as follows.
Leaf children of u. We first consider the leaf children of u. By Lemma 12,
if v can be mapped to u, then all leaf children of u have to be mapped to the
leaf children of v. Let lu and lv be the numbers of the leaf children of u and v,
respectively. Thus, if lu > lv, then we discard u from labels(v); otherwise, we
select lu many v’s leaf children and store u’s leaf children one-to-one in the label
sets of the corresponding v’s leaf children. We denote these lu leaf children of v
byMv,u.
Non-leaf children of v. For each non-leaf child v′ of v, we iterate over all non-
leaf children of u. If there is one non-leaf child u′ of u satisfying |V (T1(u′))| =
|V (T2(v′))| and |leaves(T1(u′))| ≤ |leaves(T2(v′))|, then we add u′ to labels(v′);
otherwise, we discard u from labels(v). This is correct due to Lemma 15.

Now, labels(v′) 6= ∅ for all non-leaf children v′ ∈ ch(v) and all leaf children
of u are in the label sets of the leaf children inMv,u. The algorithm moves to
the next vertex according the breath-first order.

56 Neighborhood-Preserving Mapping on Trees

Phase 2. In this phase, the algorithm processes the non-leaf vertices of T2, in a
reversed order of the first phase. For a vertex v ∈ V2 and a label u from labels(v),
it computes a maximum matching of the bipartite graph consisting of the non-
leaf children of v and the non-leaf children of u. There is an edge between a
non-leaf child v′ of v and a non-leaf child u′ of u, if and only if u′ ∈ labels(v′).
If the matching is not perfect for the non-leaf children of v, then discard u

from labels(v); otherwise, consider the non-leaf children of u which are not in
the matching. By Lemma 14, all subtrees rooted at these non-leaf children of u
have to be absorbed, that is, mapped to the leaf children of v, excluding the leaf
children in Mv,u. Then, the algorithm compares the total size of the subtrees
rooted at these non-leaf children of u and the number of the leaf children of v
that are not in Mv,u. If they are not equal, then discard u from labels(v). If
afterwards labels(v) = ∅, then return “no”; otherwise move to the next vertex.

Finally, at the root of T2, if we have labels(root(T2)) = {root(T1)}, then we
can answer “yes”.

Theorem 16. NPM on trees can be solved in O(n4+ω) time for the case k = 0
and l = d = 2, where n = |V1| = |V2| and ω = 2.38.

Proof. The correctness of the algorithm follows from its description. Concerning
its running time, we fix a non-leaf vertex of T2 as its root. By Lemma 15, we
can try all possible non-leaf vertices of T1 to be the root. In both phases, we
iterate over all vertices in T2 and each vertex in T2 can have at most |V1| labels.
When moving bottom-up we need to compute maximum matchings in bipartite
graphs, which can be done in O((|V1| + |V2|)ω) time (where ω = 2.38 arises
from the exponent of the matrix multiplication algorithm) [57]. Therefore, we
have a total running time of O(|V1| · |V2| · (|V1| + |V2|)2+ω), that is, O(n4+ω)
with n = |V1| = |V2|.

By combining the ideas for proving Theorems 9 and 16, we can show that a
neighborhood-preserving mapping between trees exists for k = 0 and l > d = 2,
if and only if |V1| ≤ 3 or T2 is a star.

Theorem 17. NPM on trees can be solved in polynomial time for the case k = 0
and l > d = 2.

4.2 NPM on Trees with k > 0
We show next that NPM on trees with k > 0 is NP-complete for all values of l
and d. Then, we give two polynomial-time algorithms solving the special case
of NPM that k > 0, l = d = 1, and one input tree is a path.

NPM on Trees with k > 0 57

4.2.1 Two Input Trees
The NP-hardness results for NPM on trees with k = 0 can be easily generalized
for the case k > 0. In the following we focus on the cases where NPM on trees
with k = 0 can be solved in polynomial time.

Theorem 18. NPM on trees is NP-complete, even if k = 1 and l = d = 1.

Proof. We reduce again from 3-Partition. Given an instance (A,B) of 3-
Partition, in order to construct the first tree T1, we first create one long path
and 3n “element” paths. The long path consists of 4B + 1 vertices, while every
element path corresponds to one particular element ai, that is, the i-th element
path contains ai vertices. Moreover, we connect all element paths to the long
path by adding an edge between one end-vertex of each element path and an
end-vertex r of the long path. The second tree T2 has only one vertex q with
degree more than 2, which is connected to n+ 2 paths. Among these paths, two
consist of 2B vertices and each of the other n paths contains B vertices.

Since T1 has a vertex of degree 3n+1 and the maximal degree of T2 is n+2, at
least one vertex of T1 has to be added to the isolation set D. With |D| ≤ k = 1,
we have to add vertex r in T1 to D. Moreover, the long path of T1 has to be
mapped to the two length-(2B − 1) paths and vertex q. Thus, the 3n element
paths have to be mapped to the n length-(B−1) paths, which implies that there
is a 3-partition.

Theorem 19. NPM on trees is NP-hard for the case k > 0 and l > d = 1.

Proof. We reduce again from 3-Partition. Suppose that the given instance (A,
B) of 3-Partition satisfies that all elements of A are even.

The tree T1 contains only one vertex c with degree greater than 2; the degree
of c is equal to 3n+ 2. Each neighbor of c is an end-vertex of a path with bl/2c
vertices. In one special path, to the other end-vertex t, if l is even, we add two
leaves as neighbors; if l is odd, we add one leaf as a neighbor to the only neighbor
of t. We call the so far resulting tree a “spider”.

To the end-vertices of the remaining paths, we attach the following 3n + 1
paths. One path is a long path consisting of 4B + 2B(l − 1) + 1 vertices. The
others correspond to the elements in A, i.e., the i-th path consisting of ai + (l−
1) · (ai/2− 1) vertices.

The tree T2 has only one vertex c′ with degree greater than 2; the degree of c′
is equal to (3n+2)·bl/2c+2B(l−1)+

∑
ai∈A(l−1)·(ai/2−1)+p+1, where p = 1 if l

is even, and p = 0, otherwise. Among these neighbors of c′, n of them are the end-
vertices of n paths, each of length B−1; one neighbor is an end-vertex of a path
of length 1; two of the neighbors are the end-vertices of two paths, each with 2B
vertices. Finally, we set k := (3n+2)·bl/2c+2B(l−1)+

∑
ai∈A(l−1)·(ai/2−1)+p

with p = 1 if l even, and p = 0, otherwise.

58 Neighborhood-Preserving Mapping on Trees

For the equivalence, observe that, from a set of vertices in T1, that have
pairwise distance at most l, at most two vertices can be in V (T1)\D; otherwise,
we would need cycles in T2. Thus, at most two vertices of the spider can be
“kept”, i.e., not in the isolation set. Further, for a path with x + (l − 1) · x/2
vertices with x being even, we need to delete at least (l− 1) · x/2 vertices to get
a set of vertices such that no three vertices in this set have pairwise distance at
most l. Then, we can conclude that, with k isolations allowed, if a mapping f
exists, then, after deleting the isolation vertices, the remaining vertices must
“induce with their l-neighborhoods” a set P of paths. Given a tree T and a
set V ′ of vertices in T , the graph induced by V ′ with their l-neighborhoods
has V ′ as its vertex set. There is an edge between u, v ∈ V ′, if and only if the
distance between u and v in T is at most l. In P, there is a path with 4B + 1
vertices (remaining vertices of the long path), a length-1 path (two vertices kept
in the spider), and 3n element paths, where the i-th path contains ai vertices.
Clearly, the length-4B path has to be mapped to the two length-2B paths.
The two vertices kept in the spider are mapped the length-1 path attached to
a neighbor of c′. The element paths can be mapped to the n paths of length
B − 1, if and only if the given 3-Partition instance is a yes-instance.

Theorem 20. NPM on trees is NP-complete, if k > 0 and l ≥ d = 2.

Proof. We provide a reduction from 3-Partition to NPM with l = d = 2. The
same edge subdivision idea from the proof of Theorem 5 can be applied to prove
the other cases.

The tree T1 consists of a big star centered at a vertex c with 3n leaves, and 3n
element stars. The i-th element star corresponds to ai from A and has ai leaves.
Then, for each element star, an edge is added between its center and a distinct
leaf of the big star. The tree T2 consists of a path with 6n+ 1 vertices. Suppose
the vertices on this path are indexed u1, u2, . . . from the left to the right. We
define C := {u2+3i : 0 ≤ i ≤ n − 1}. We add B leaves as neighbors to each of
the vertices in C. Finally, we set k := 3n+ 1.

Clearly, if there is a 3-partition for (A,B), then we can isolate c and all its 3n
neighbors and map the element stars according to the 3-partition to the stars
centered at the vertices in C. For the other direction, observe that |N2

T1
(c)| =

6n + 1 and |N2
T1

(v)| > 3n for each neighbor v of c and there is no vertex u

in T2 with |N2
T2

(u)| ≥ B + 5. Thus, one have to isolate c and all its neighbors.
With k = 3n+1, the remaining 3n element stars have to be mapped to the stars
centered at the vertices in C, corresponding to a 3-partition of A.

NPM on Trees with k > 0 59

4.2.2 l = d = 1, k > 0, and a Tree and a Path as
Input

In contrast to the NP-hardness result of NPM on trees with l = d = 1 (Theo-
rem 18), we show that if one of the input trees is a path, then NPM is polynomial-
time solvable with l = d = 1.

The second tree is a path. To simplify the presentation, we reformulate
NPM on trees with l = d = 1 and the second tree being a path as the following
problem:

Cutting Tree into Paths (CTP)
Input: A tree T , an integer k.
Question: Can we transform T to a set P of paths by deleting at
most k vertices?

Lemma 21. Given the second tree being a path, NPM on trees with l = d = 1
is equivalent to CTP.

Proof. From a solution of CTP, we can simply set the isolation set D equal to
the set of deleted vertices. Mapping the deleted vertices to the first |D| vertices
of P and then each path p ∈ P to the next |V (p)| unmapped vertices on P

clearly satisfies the neighborhood-preserving condition.
Let (T, P, k) be an instance of NPM and (D, f) be a solution of this instance

with D being the isolation set and f the corresponding neighborhood-preserving
mapping f from T to P . Since f is a neighborhood-preserving mapping and P
has a maximal degree of 2, deleting the vertices in D from T clearly results in a
set of paths.

Next, we give a dynamic programming based algorithm solving CTP. Assume
that T is rooted at an arbitrary vertex r, and let T (v) denote the subtree rooted
at a vertex v. Hereby, we distinguish at every vertex v ∈ V (T) the following
four cases:

1. v is deleted,

2. v is an end-vertex of a path in P and all children of v are deleted,

3. v is on a path in P and exactly one end-vertex of this path is in V (T (v)) \
{v},

4. v is on a path in P and both end-vertices of this path are in V (T (v))\{v}.

60 Neighborhood-Preserving Mapping on Trees

1

. . .
{1, 2, 3, 4}

2

. . .
{1}

3

. . .
{1} {2, 3}

4

. . .
{1} {2, 3}

Fig. 4.4: The four cases for CTP when computing function dv; doted circles denote
that the vertex can be in Case 1

We define further a function dv(c) for v with c ∈ {1, 2, 3, 4}, denoting one
of the previously defined cases. This function dv(c) stores the minimal number
of deletions needed in T (v) to derive a set of paths, where v follows Case c.
We recursively compute dv(c) for all vertices v ∈ V (T) and all four cases in a
bottom-up way. Clearly, at the root r, if minc=1...4 dr(c) ≤ k, then we return
“yes”; otherwise, return “no”.

At a leaf vertex v, Cases 3 and 4 clearly cannot be applied. We can easily
set dv(1) := 1, dv(2) := 0, and dv(3) = d4(v) := ∞. The computation of dv(c)
for a non-leaf vertex v distinguishes again four cases (see Fig. 4.4 for a depiction
of the cases):

1. dv(1) :=
∑
u∈ch(v) minc=1...4 du(c) + 1,

2. dv(2) :=
∑
u∈ch(v) du(1),

3. dv(3) := minu∈ch(v)(
∑
u′∈(ch(v)\{u}) du′(1) + minc=2,3 du(c)),

4. dv(4) := minu1,u2∈ch(v)(
∑
u∈(ch(v)\{u1,u2}) du(1) + minc=2,3 du1(c)

+ minc=2,3 du2(c)).

Theorem 22. CTP can be solved in O(|V (T)|3) time.

Proof. The correctness of the algorithm follows from the definitions of the cases
and dv(c) and the recursive computation of dv(c). Clearly, the most time-
consuming computation at a vertex v is for dv(4). Here, one needs to consider
every pair of the children of v. This results in a running time of O(|V (T)|3).

Corollary 23. NPM on trees with the second tree being a path can be solve
in O(|V (P)|3) time for l = d = 1.

The first tree is a path. Again, NPM on trees with l = d = 1 and the first
tree being a path can be reformulated as the following problem:

Fitting Path to Tree by Deletions (FPTD)
Input: A path P and a tree T with |V (P)| = |V (T)|, an integer k.
Question: Can we delete at most k vertices from P such that there
exists a subgraph T ′ of T isomorphic to the resulting set P of paths?

NPM on Trees with k > 0 61

With l = d = 1, the following lemma is easy to prove.

Lemma 24. If the first tree is a path, then NPM on trees with l = d = 1 is
equivalent to FPTD.

In the following, we give a polynomial-time algorithm solving FPTD. Again
we assume that T is rooted at an arbitrary vertex r and denote by T (v) the
subtree rooted at a vertex v. Let D denote the set of the vertices whose dele-
tion from P results in a set P of paths. We extend the isomorphic mapping f
from V (P) to V (T ′) to a mapping from V (P) to V (T), by assigning an arbi-
trary one-to-one correspondence between D and V (T) \ V (T ′). This is doable
since |V (P)| = |V (T)|. The algorithm processes the vertices in T in a bottom-up
manner. At each vertex v, it distinguishes the following 6 cases concerning the
way how v is mapped by the mapping f :

1. v is mapped to a vertex in D;

2. v is mapped to a path p ∈ P with |V (p)| = 1;

3. v is mapped to an end-vertex of a path in P, whose other end-vertex is
mapped to a vertex not in V (T (v));

4. v is mapped to an end-vertex of a path in P, whose other end-vertex is
mapped to a vertex in V (T (v)) \ {v};

5. v is mapped to a non-end vertex of a path in P, which has one end-vertex
mapped to a vertex in V (T (v)) \ {v} and another one mapped to a vertex
not in V (T (v));

6. v is mapped to a non-end vertex of a path in P, whose both end-vertices
are mapped to vertices in V (T (v)) \ {v}.

For each of the cases, the algorithm checks whether it is possible to delete
some vertices to create a set of paths, which can be mapped to T (v), given the
mapping of v following this case. If so, it stores the minimum possible number
of deletions. Notice that Case 1 causes additional caution in this check. On
the one hand, the subtree T (v) could be mapped to some set of paths, which
however need to delete a lot of vertices from P . These deleted vertices might
be mapped to vertices of Case 1, which are outside of T (v). On the other
hand, we might have a lot of vertices in T (v) with Case 1. However, the paths
mapped to T (v) do not cause so many vertex deletions. Thus, we introduce an
additional parameter s to record this information with −k ≤ s ≤ k. If we say
that there are s “mappable” vertices in T (v), we mean the following: If s < 0,
there are |s| vertices which are deleted to create the paths mapped to T (v)
but are not mapped to the vertices with Case 1 in T (v); otherwise, there are s

62 Neighborhood-Preserving Mapping on Trees

vertices with Case 1 in T (v), which can be mapped to vertices deleted to create
paths mapped to vertices outside of T (v). Thereupon, we define the dynamic
programming table Fv at vertex v with two parameters, one representing the 6
cases and the other being s. The entry Fv(c, s) contains the minimal number of
vertex deletions needed to create a set of paths in P , which are mapped to T (v),
under the conditions that v follows Case c and there are s mappable vertices
in T (v).

To ease the presentation, we say to “open” a path at v, if v is in Cases 2 and 3.
Notice that, once we open a path, we increase the number of vertex deletions by
one. However, since by deleting i vertices from P we can create i+ 1 paths, we
check whether Fr(c,−1) ≤ k + 1 for some Case c at the root r. If so, we return
“yes”; otherwise, we return “no”.

It remains to describe the computation of Fv(c, s). At a leaf v, it is clear that
only Cases 1, 2, and 3 can be applied. Thus, all entries of Fv are set to∞, except
for three entries, where we set Fv(1, 1) := 0, Fv(2,−1) := 1, and Fv(3,−1) := 1.
The correctness here is obvious.

At a non-leaf vertex v, let ch(v) = {u1, . . . , ud}, where d is the number of
children of v. We define three additional tables:

• For −k ≤ s ≤ k and 1 ≤ i ≤ d, Av(s, i) stores the minimal number of
deletions needed to create a set of paths in P , which are mapped to the
subtrees rooted at u1, . . . , ui, under the conditions that u1, . . . , ui are of
Case 1, 2, 4 or 6, and there are s mappable vertices in these subtrees;

• For −k ≤ s ≤ k, 1 ≤ i ≤ d, and 1 ≤ j ≤ i, Bv(s, i, j) stores the minimal
number of deletions needed to create a set of paths in P , which are mapped
to the subtrees rooted at the vertices in {u1, . . . , ui} \ {uj}, under the
conditions that all vertices in {u1, . . . , ui} \ {uj} are of Case 1, 2, 4 or 6,
and there are s mappable vertices in these subtrees;

• For −k ≤ s ≤ k, 1 ≤ i ≤ d, and 1 ≤ j1, < j2 ≤ i, Cv(s, i, j1, j2) stores the
minimal number of deletions needed to create a set of paths in P , which
are mapped to the subtrees rooted at {u1, . . . , ui} \ {uj1 , uj2}, under the
conditions that all vertices in {u1, . . . , ui} \ {uj1 , uj2} are of Case 1, 2, 4
or 6, and there are s mappable vertices in these subtrees;

• For −k ≤ s ≤ k, 1 ≤ i ≤ d, and i < j ≤ d, Dv(s, i, j) stores the minimal
number of deletions needed to create a set of paths in P , which are mapped
to the subtrees rooted at ui and uj , under the conditions that ui and uj
are of Case 3 or 5, and there are s mappable vertices in these subtrees.

NPM on Trees with k > 0 63

1

. . .
{1, 2, 4, 6}

2

. . .
{1, 2, 4, 6}

3

. . .
{1, 2, 4, 6}

4

. . .
{1, 2, 4, 6} {3, 5}

5

. . .
{1, 2, 4, 6} {3, 5}

6

. . .
{1, 2, 4, 6} {3, 5}

Fig. 4.5: The six cases for FPTD when computing table Fv; doted circles denote that
the vertex can be in Case 1

To compute the three tables, we apply the following recursions: Initial-
ize Av(s, 0) := 0 for −k ≤ s ≤ k. For each i = 1, . . . , d and each s = −k, . . . , k,
set

Av(s, i) := min
−k≤q≤k

(Av(s− q, i− 1) + min
c∈{1,2,4,6}

Fui(c, q)) .

In order to fill in Bv(s, i, j), initialize Bv(s, i, i) := Av(s, i − 1) for every −k ≤
s ≤ k and 2 ≤ i ≤ d. For 1 ≤ j < i, the recursion for Bv is as follows:

Bv(s, i, j) := min
−k≤q≤k

(Bv(s− q, i− 1, j) + min
c∈{1,2,4,6}

Fui(c, q)) .

Then, initialize Cv(s, i, j, i) := Bv(s, i, j) for every −k ≤ s ≤ k, 2 ≤ i ≤ d,
and 1 ≤ j < i. For 1 ≤ j1 < j2 < i, the recursion for Cv is as follows:

Cv(s, i, j1, j2) := min
−k≤q≤k

(Cv(s− q, i− 1, j1, j2) + min
c∈{1,2,4,6}

Fui(c, q)) .

Finally, for each 1 ≤ i < j ≤ d and −k ≤ s ≤ k, we compute Dv as follows:

Dv(s, i, j) := min
−k≤q≤k

(min
c∈{3,5}

Fui(c, q) + min
c∈{3,5}

Fuj (c, s− q)) .

The correctness of the computation of the tables follows from the recursions.
We compute Fv for each of the 6 cases as follows (see Fig. 4.5 for a depiction of
the cases):
Case 1. The vertex v should be mapped to a deleted vertex. Then, the children
of v should be of Cases 1, 2, 4, and 6. We need only to sum up the deletions
needed to create the paths mapped to the subtrees rooted at the children. No-
tice that we have one additional vertex v of Case 1 which is not mapped. We
set Fv(1, s) := Av(s− 1, d).
Case 2. We have to open a new path p with |V (p)| = 1 mapped to v. This
implies that we need one more vertex deleted in T (v) than in the forest consisting

64 Neighborhood-Preserving Mapping on Trees

of the subtrees rooted at the children of v. The cases for the children are the
same as in Case 1. Thus, we set Fv(2, s) := Av(s+ 1, d) + 1.
Case 3. As in Case 2, we open a new path p at v. Therefore, Fv(3, s) := Fv(2, s).
Case 4. One path should end at v and has its other end-vertex in V (T (v))\{v}.
Thus, at least one of v’s children has to be of Case 3 or 5, while the other are of
Cases 1, 2, 4, and 6. We set

Fv(4, s) := min
ui∈ch(v),−k≤q≤k

(Bv(s− q, d, i) + min
c∈{3,5}

Fui(c, q)) .

Case 5. The vertex v is mapped to a non-end vertex of a path with one end-
vertex mapped inside of T (v) and the other outside of T (v). Therefore, one child
of v must be of Case 3 or 5, while the others are of Cases 1, 2, 4, and 6. We
have the same situation as Case 4: Fv(5, s) := Fv(4, s).
Case 6. With both end-vertices mapped inside of T (v), two children of v must
be of Cases 3 and 5. Note that with two paths “merging” at v, we have in T (v)
one path less than in the forest consisting of the subtrees rooted at the children
of v. With Cv and Dv, we compute Fv(6, s) as follows:

Fv(6, s) := min
ui,uj∈ch(v),−k≤q≤k

(Cv(s+ 1− q, d, i, j) +Dv(q, i, j))− 1 .

At the root r, if minc∈{1,2,4,6} Fr(c,−1) ≤ k + 1, then we return “yes”;
otherwise, “no”.

Theorem 25. FPTD can be solved in O(|V (T)|4 · k2) time.

Proof. The correctness of the algorithm follows from the definition of the re-
cursions. Concerning the running time, it is not difficult to see that the most
time-consuming computation at a vertex v is for the table Cv(s, i, j1, j2). Since
the table has size of O(k · |V (T)|3) and each entry of Cv causes an iteration
over q, the computation of Cv needs O(k2 · |V (T)|3) time. Thus, the overall
running time is O(|V (T)|4 · k2).

Corollary 26. NPM on trees with the first tree being a path can be solved
in O(|V (T)|4 · k2) time.

4.3 Integer Linear Program Formulation
for NPM

The optimization version of NPM asks for the minimal number of isolated ver-
tices (k). In the presented ILP formulation of the problem we seek for a mapping
between vertices of trees. In the mapping isolated vertices are not mapped to

Integer Linear Program Formulation for NPM 65

any other vertices (remember that an isolated vertex can cover any vertex in a
graph). Instead of minimizing the number of isolated vertices, we maximize the
number of mapped vertices. Then, NPM can be presented as follows:

maximize
∑

t∈V (T1),
w∈V (T2)

xtw , (4.1)

subject to xtw = {0, 1} , ∀ t ∈ V (T1), ∀w ∈ V (T2)∑
w∈V (T2)

xtw ≤ 1 , ∀ t ∈ V (T1) (4.2)

∑
t∈V (T1)

xtw ≤ 1 , ∀w ∈ V (T2) (4.3)

∑
w∈V (T2)

xtw +
∑

w∈V (T2)

xuw + xtv −
∑

w∈Nd(v)

xuw

+
(∑
u′∈V (pathT1 (t,u)),

w∈V (T2)

xu′w − |pathT1(t, u)|
)
< 3 ,

∀ t ∈ V (T1),∀u ∈ Nl(t),∀ v ∈ V (T2)

(4.4)

Theorem 27. The above ILP formulation of the optimization version of NPM
is correct.

Proof. We set xtw to 1 whenever vertex t ∈ V (T1) is matched to vertex w ∈
V (T2); otherwise xtw is 0. Conditions (4.2) and (4.3) ensure that every vertex
in T1 is mapped to at most one vertex in T2 and vice versa. In condition (4.4)
the first sum is equal to 1 if vertex t, was mapped (and not deleted); the second
sum is 1 if u, an l-neighbor of t was mapped (and not deleted). The third term,
xtv, is 1 if vertex t was mapped to vertex v, and 0 otherwise. The third sum
(the forth term) equals to 1 if u was mapped within d-neighborhood of v, and 0

Tab. 4.2: All cases for the first four terms in the left part of condition (4.4) in ILP
formulation of NPM

Case: 1 2-8 9 10 11 12 13 14 15 16∑
w∈V (T2) xtw 0 0 {0, 1} 0 0 1 1 1 1 1 1∑
w∈V (T2) xuw 0 {0, 1} 0 1 1 0 0 1 1 1 1

xtv 0 1 {0, 1} 0 0 0 1 0 0 1 1
−∑w∈Nd(v) xuw 0 {0,−1} −1 0 −1 0 0 0 −1 0 −1

Value: 0 - 1 0 1 2 2 1 3 2

66 Neighborhood-Preserving Mapping on Trees

otherwise. The expression in braces is 0 if no vertex on the path between t and
u is isolated, it is negative otherwise.

To ease the proof, in Table 4.2 we present all possible combinations of values
for the first four terms in the left part of condition (4.4).

As it can be seen from the table, in Case 15 vertex t and its l-neighbor u are
mapped, but beyond the distance d, which is acceptable if there is an isolated
vertex on the path between t and u (then the left part of condition (4.4) is less
than 3). If no vertex is isolated on the path, then the value of the term in braces
in condition (4.4) equals to 0, and the left part of the condition is equal to 3.
This means that, under given conditions, Case 15 is the only one that does not
satisfy condition (4.4).

The weighted version of the problem should maximize the similarity between
matched pairs of vertices, as well as the “importance” of matched vertices.

5 Compactness-Preserving
Mapping on Trees

In this chapter we introduce and study a new generalization of the graph iso-
morphism problem. We call this problem Compactness-Preserving Map-
ping (CPM). Given two graphs G1 = (V1, E1) and G2 = (V2, E2), CPM asks
if there is a one-to-one mapping f : V1 → V2, such that for every vertex v

from G1 the vertices that are “close” to v in G1 are mapped to the vertices
in G2 that are close in total to f(v). Formally, the problem is defined as follows.
Here N i

G(v) denotes the i-neighborhood of v, i.e., the set of vertices that have
distance at most i to v in the graph G. Lv and L′v are defined as follows. Given
a graph G and an integer l, the proper distance Lv of vertex v ∈ V (G) is defined
as Lv :=

∑
u∈N l

G
(v) distG(v, u). Given an integer l, two graphs G1 and G2 and

a mapping f : V (G1) → V (G2), the image distance L′v of vertex v ∈ V (G1) is
defined as L′v :=

∑
u∈N l

G1
(v) distG2(f(v), f(u)). The formal definition of CPM is

as follows:

Compactness-Preserving Mapping (CPM)
Input: Graphs G1 = (V1, E1) and G2 = (V2, E2) with |V1| = |V2|,
non-negative integers l and d.
Question: Is there a one-to-one mapping f : V1 → V2 such that ∀v ∈
V1, L′v − Lv ≤ d?

We call a solution mapping f of CPM compactness-preserving.
The study of CPM is mainly motivated by the protein-protein interaction

(PPI) network alignment problem. The input of the problem consists of two
graphs, i.e., PPI networks of two species, where vertices represent proteins and
edges correspond to interactions between pairs of vertices. The output is a
mapping between input graphs, which ideally maps proteins (i.e. vertices) of
the same biological function and/or of the same evolutionary origin. We pro-
pose CPM to model the network alignment problem for the following reasons.
Since throughout the evolution many interactions (i.e. edges of the graphs)

68 Compactness-Preserving Mapping on Trees

Tab. 5.1: Summary of the cases for CPM on trees (P stands for polynomial, NPC for
NP-complete)

d = 0 d = 1 d ≥ 2
l = 1 P (Thm. 32) P (Thm. 44) NPC (Thm. 29)
l = 2 P (Thm. 38) P (Thm. 54) NPC (Thm. 30)
l ≥ 3 NPC (Thm. 31) NPC (Thm. 31) NPC (Thm. 31)

remain conserved, that, as consequence, results in mostly conserved neighbor-
hoods of the vertices, a biologically meaningful mapping between two PPI net-
works should also map larger part of the corresponding interactions. However,
the requirement that all edges have to be mapped exactly is too strict, since
not all interactions are conserved and the data is noisy and incomplete. The
parameter l of CPM determines the radius of the conserved neighborhoods of
the vertices, while the parameter d can be used to reflect the degree of noise
and incompleteness of data. Thus, given two PPI networks as input a mapping
of CPM with large value of l and small value of d could represent a biologically
meaningful alignment. The similar can be applied to the backbone subtrees
extracted from PPI networks.

Note that CPM can easily be generalized to take into account an isolation
set in the similar way as in Neighborhood-Preserving Mapping (NPM). As
for NPM, the approximate version of CPM on trees can be shown to be NP-
complete for all values of l and d by a reduction from the subforest isomorphism
problem [20].

In this chapter we study the classical complexity of CPM with input graphs
being trees with respect to different values of parameters l and d. The findings
are summarized in Table 5.1: CPM on trees is polynomial-time solvable only
if l ≤ 2 and d ≤ 1; all other cases turn out to be NP-complete. First, we
provide proofs for the NP-hard cases. Next, we investigate polynomial-time
solvable cases. At the end of the chapter we provide an integer linear program
formulation of an optimization version of CPM with isolation set.

5.1 NP-Hardness Results
We first present the proofs of the NP-hard cases. Note that, given a graph G,
for v ∈ V (G) we have Lv :=

∑
u∈N l

G1
(v) distG(v, u) =

∑l
i=1 i · |N̂ i

G(v)|.

5.1.1 Case l = 1, d ≥ 2
The correctness of the following lemma is not difficult to prove:

NP-Hardness Results 69

. . .
. . .

b leaves

. . .

b leaves

. . .

b leaves

a times

... c + 1 vertices

.
. . .

b leaves

. . .

b leaves

. . .

b − 1 leaves

. . .

b − 1 leaves

a − c times c times

Fig. 5.1: A donor tree DT1(a, b) and a recipient tree RT1(a, b, c) defined in the proof
of Thm. 29

Lemma 28. If there is a compactness-preserving mapping f from T1 to T2 with
l = 1, then for any v ∈ V1 it holds |NT2(f(v))|+ d ≥ |NT1(v)|.

Proof. Let N1 := |NT1(v)| and N2 := |NT2(f(v))|. Suppose the lemma is not
true, i.e. N2 + d < N1. Then, there are at least (N1 − N2) neighbors of v
that are mapped at distance at least two from f(v) in T2. Then, L′v − Lv ≥
(N2 + 2 · (N1 − N2)) − N1 = N1 − N2 > (N2 + d) − N2 > d, which is a
contradiction.

Theorem 29. CPM on trees with l = 1 and d ≥ 2 is NP-complete.

Proof. Clearly, given a mapping from T1 to T2, it can be tested in polynomial
time whether it is compactness-preserving.

In order to show the NP-hardness we provide a reduction from 3-Partition.
In the following, given an instance (A,B) of 3-Partition with all elements

of A being even, we construct the corresponding instance (T1, T2, l = 1, d ≥ 2)
of CPM on trees.

We first introduce two graph gadgets. A donor tree ρ := DT1(a, b) consists
of one vertex, called the center vertex of ρ, and a stars, each having b leaves
(see Fig. 5.1). The centers of the stars are made adjacent to the center vertex
of ρ. A recipient tree ρ̃ := RT1(a, b, c) consists of a path with c+1 vertices, a−c
stars, each having b leaves, and c stars, each having b − 1 leaves (see Fig. 5.1).

70 Compactness-Preserving Mapping on Trees

The centers of all stars are connected to an end-vertex v of the path. We call v
the center vertex of ρ̃, and the other end-vertex of the path the tail of ρ̃. Also
note that the number of vertices in a recipient tree RT1(a, b, c) is independent
of c and equal to |DT1(a, b)| = a · (b+ 1) + 1.

The tree T1 consists of the following components:
• one star S0 with the center c and 3n leaves,
• one “big” donor tree Db := DT1(N2, N1),
• a set Dm of 3n “middle” donor trees DT1(N4, N3),
• a set Ds of nB “small” donor trees DT1(N6, N5), and
• a set P of 3n paths; the i-th path for i = 1, . . . , 3n corresponds to one

particular element ai of A and has ai vertices.
Here Ni := Bdn8−i, for i = 1, . . . , 6.

The components are connected to T1 as follows. Every vertex of a path
from P is connected to the center vertex of one particular donor tree from Ds,
as depicted in Fig. 5.2. Then, for every leaf v of S0, we connect to v a middle
donor tree ρ ∈ Dm by adding an edge between v and the center of ρ. We also
add en edge between v and one end-vertex of a path in P. Finally, the big donor
tree is connected to S0 by adding an edge between its center vertex and c.

The tree T2 consists of the following components:
• one star S̃0 with the center c̃ and 3n leaves,
• one “big” recipient tree R̃b := RT1(N2, N1, d+ 1),
• a set R̃m1 of n “middle” recipient trees RT1(N4, N3, d+ 1),
• a set R̃m2 of 2n “middle” recipient trees RT1(N4, N3, d− 1),
• a set R̃s of nB “small” recipient trees RT1(N6, N5, d− 1), and
• a set P̃ :=

⋃n
j=1 P̃j , where P̃j is a set of length-1 paths with |P̃j | = B/2.

The components are combined to T2 as shown in Fig. 5.2. Every vertex
v ∈ V (P̃) is connected to one particular recipient tree ρ̃ from R̃s by adding an
edge between v and the tail of ρ̃. Note that the distance between v and the center
vertex of ρ̃ is equal to d−1. The vertex c̃ is made adjacent to the tail of R̃b; every
leaf of S̃0 is made adjacent to the tail of one particular tree from R̃m1 ∪ R̃m2 .
By Lm1 and Lm2 we denote the sets of the leaves of S̃0 that are adjacent to the
recipient trees of R̃m1 and R̃m2 , respectively. Note that the distance between
the center vertex of a recipient tree ρ̃ ∈ R̃m1 and the corresponding leaf in Lm1

is d + 1, which is equal to the distance between the tail of ρ̃ and the centers of
the stars of ρ̃. Similarly, the distance between the center vertex of a recipient
tree ρ̃ ∈ R̃m2 and the corresponding leaf in Lm2 is equal to d − 1. Finally, we
add an edge between the j-th vertex in Lm1 and one end-vertex of every path
from P̃j , j = 1, . . . , n.

Obviously, the time needed to construct T1 and T2 is polynomial in n, B,
and d.

NP-Hardness Results 71

Db

. . .

. . .

. . .
...

. . .

. . .

. . .
...

3n children of c, 3n elements from Dm,
3n paths from P and nB elements from Ds

c
T1

· · ·
d + 1

. . .
d + 1

R̃b. . .

. . .

. . .
d − 1

. . .
d − 1

. . .

. . .

B/2 paths of length 1

. . .

. . .

. . .

n children of c̃, elements of R̃m1 ,
and paths from P̃ with elements of R̃s

. . .
d − 1

. . .

2n children of c̃
and 2n elements of R̃m2

c̃
T2

Fig. 5.2: The trees T1 and T2 of CPM on trees corresponding to an instance of
3-Partition as defined in the proof of Thm. 29

“=⇒”: Let A1, . . . , An be a 3-partition for an instance (A,B) of 3-Partition.
The mapping f is constructed as follows. The vertices in S0 are mapped to S̃0
with c̃ = f(c), the vertices in Db to R̃b, the donor trees in Dm to the recipient
trees in R̃m1 and R̃m2 , the donor trees in Ds to the recipient trees in R̃s. Con-
cerning the mapping from a donor tree ρ to the corresponding recipient tree ρ̃,
the centers of the stars in ρ are mapped to the centers of the stars in ρ̃ and
the center vertex of ρ is mapped to the center vertex of ρ̃. For ρ̃ ∈ R̃m1 (or
ρ̃ ∈ R̃m2 ∪ R̃s), d leaves from d stars (or d − 2 leaves of d − 2 stars) in ρ are
mapped to the remaining d (or d − 2) vertices of the path in ρ̃; the remaining
leaves of the stars in ρ are mapped to the leaves of the corresponding stars in ρ̃.

72 Compactness-Preserving Mapping on Trees

Finally, for j = 1, . . . , n, the paths πj1 , πj2 , πj3 ∈ P, where 1 ≤ j1, j2, j3 ≤ 3n,
that correspond to the elements of Aj = {aj1 , aj2 , aj3}, are mapped to the B/2
length-1 paths from P̃j : The vertices with odd indices of path πi, i = {j1, j2, j3}
are mapped to the vertices of P̃j that are adjacent to the leaves Lm1 of S̃0.

Next, we show that for the vertices of the paths in P the mapping f is
compactness-preserving. Let p∗ ∈ V (P), z be the center vertex of the donor tree
adjacent to p∗, and p′ and p′′ ∈ V (P) be the other two neighbors of p∗ (the similar
will hold if p∗ has only two neighbors). For the image and proper distances of p∗
we have L′p∗ = distT2(f(p∗), f(z)) + distT2(f(p∗), f(p′)) + distT2(f(p∗), f(p′′))
and Lp∗ = 3. Consider first p′ is a leaf of S0. If f(p′) ∈ Lm1 , then L′p∗ − Lp∗ =
((d − 1) + 1 + 1) − 3 = d − 2 < d; otherwise, that is, f(p′) ∈ Lm2 , we have
L′p∗ − Lp∗ = ((d − 1) + 3 + 1) − 3 = d. Consider now p′ ∈ V (P). If f(p∗) is
adjacent to a vertex in Lm1 , then L′p∗−Lp∗ = ((d−1)+3+1)−3 = d; otherwise,
L′p∗ − Lp∗ = ((d− 1) + 1 + 3)− 3 = d.

“⇐=”: Let f be a compactness-preserving mapping from T1 to T2. The next
claims follow directly from the image distance constraints and the degrees of
vertices (see Lemma 28) of the donor trees in Db, Dm, Ds.
Claim 29.1: The vertices of Db have to be mapped to the vertices of R̃b.

Proof. According to Lemma 28, the centers of the stars of Db in T1 have to be
mapped to the centers of the stars in R̃b in T2 and the center vertex of Db to
the center vertex of R̃b. Then, there are d leaves in d stars from Db that can
only be mapped to the remaining vertices of the path in R̃b, since otherwise
L′v − Lv > d, where v is the center of a star in Db.

Since the distance between the center vertex of R̃b and c̃ is d+1, the following
is true:
Claim 29.2: The vertices of S0 have to be mapped to the vertices of S̃0 with
c̃ = f(c).

Similarly, by Lemma 28 and Claims 29.1-29.2, we derive the following two
claims:
Claim 29.3: The vertices of trees from Dm have to be mapped to the vertices
in R̃m1 and R̃m2 .
Claim 29.4: The centers of the stars of a tree from Ds have to be mapped to
the centers of the stars of a tree from R̃s.
Claim 29.5: Let p1 ∈ V (P) be adjacent to a leaf p0 of S0. If a compactness-
preserving mapping f from T1 to T2 exists, then f(p1) ∈ V (P̃) and f(p1) is
adjacent to vertices from Lm1 .

Proof. Consider the three neighbors of p0: the center c of S0, z ∈ V (Dm) and
p1 ∈ V (P) (see Fig. 5.2). The image distance L′p0

is equal to distT2(f(p0), f(c))+
distT2(f(p0), f(z)) + distT2(f(p0), f(p1)). If f(p0) ∈ Lm1 , then L′p0

≥ 1 + (d +

NP-Hardness Results 73

1) + distT2(f(p0), f(p1)) and L′p0
−Lp0 ≥ 1 + (d+ 1) + distT2(f(p0), f(p1))− 3 =

distT2(f(p0), f(p1)) + d− 1, which implies distT2(f(p0), f(p1)) ≤ 1. Thus, f(p1)
has to be adjacent to f(p0). Further, if f(p0) ∈ Lm2 , then L′p0

= 1 + (d −
1) + distT2(f(p0), f(p1)) and L′p0

−Lp0 ≥ 1 + (d− 1) + distT2(f(p0), f(p1))− 3 =
distT2(f(p0), f(p1))+d−3, which implies distT2(f(p0), f(p1)) ≤ 3. However, the
vertices within distance three to f(p0) are either from S̃0, R̃b and the trees R̃m1∪
R̃m2 or the vertices in P̃, which are adjacent to vertices from Lm1 . The claim
follows then from Claims 29.1-29.3.

Claim 29.6: Let p1 ∈ P be adjacent to a leaf p0 of S0. If a compactness-
preserving mapping f from T1 to T2 exists, then for every v ∈ V1, it holds
f(v) ∈ V2, where V1 := V (T1(p0, c)) \ {p0} and V2 := V (T2(p̃0, c̃)) \ {p̃0} with p̃0
being a leaf of S̃0 adjacent to f(p1).

Proof. We first show that the claim holds for every p∗ ∈ V (P) ∩ V1. Let z ∈
V (Ds), p′, p′′ be the three neighbors of p∗ (the similar will hold if p∗ has only
two neighbors). Suppose the claim is not true. Then, the image of at least one
neighbor of p∗ is not in V2.

First consider f(z) 6∈ V2. Since z is the center of the donor tree, which can
only be mapped to the center of a recipient tree in R̃s, the distance between f(p∗)
and f(z) is at least d+ 2. Assuming that f(p′) and f(p′′) are adjacent to f(p∗),
we have L′p∗ = distT2(f(p∗), f(z)) + distT2(f(p∗), f(p′)) + distT2(f(p∗), f(p′′)) ≥
(d+ 2) + 1 + 1, and L′p∗ − Lp∗ ≥ (d+ 4)− 3 > d, which is a contradiction.

Consider now that one of f(p′) and f(p′′) is not in V2, say f(p′) 6∈ V2. Since z
is the center of the donor tree, we have distT2(f(p∗), f(z))+distT2(f(p∗), f(p′)) ≥
distT2(f(z), f(p′)), with the equality holding when f(p∗) lies on the path be-
tween f(z) and f(p′), and distT2(f(z), f(p′)) ≥ d + 3. Then L′p∗ − Lp∗ ≥
(d + 3) + 1 − 3 > d, which is a contradiction. Thus, the claim is true for
every vertex p∗ and the center z of the donor tree.

Let x be the center of a star adjacent to z. Suppose f(x) 6∈ V2. Since x can
only be mapped to the center of a star in a recipient tree from R̃s, the distance
between f(z) and f(x) is at least 2d + 3. Assuming that the images of the
remaining neighbors of x are adjacent to f(x) in T2, we have L′x−Lx ≥ 2d+1 > d,
which is a contradiction.

Let y be a leaf adjacent to x. Suppose now f(y) 6∈ V2. Then, the distance
between f(y) and f(x) takes the smallest value, when y is mapped to the vertex
adjacent to Lm1 \ {p̃0}, that is, distT2(f(y), f(x)) ≥ d + 3. Consequently, we
have L′y −Ly ≥ d+ 2 > d, which is a contradiction. Thus, the claim is true.

Note that |V2| = 2·B/2·(1+|RT1(Bdn2, Bdn3, d−1)|) = B ·(1+|DT1(Bdn2,

Bdn3)|). That is, B · |RT1(Bdn2, Bdn3, d−1)| vertices in V2 have to be mapped
to B donor trees in Ds, each having |DT1(Bdn2, Bdn3)| vertices. Consequently,
there will remain B vertices in V2 that can only be mapped to the B vertices of

74 Compactness-Preserving Mapping on Trees

r′
1r′

2r′
3

x′
1

x′
2

x′
3

x′
4

x′
5

x′
6

x′
7x′

8

r′′
1 r′′

2 r′′
3

x′′
1

x′′
2x′′

3
x′′

4

x′′
5

x′′
6

x′′
7

x′′
8

r̃′
1r̃′

2r̃′
3

x̃′
1x̃′

2
x̃′

3

x̃′
4

x̃′
5

x̃′
6

x̃′
7

x̃′
8

Fig. 5.3: A donor tree DT2 and a recipient tree RT2 defined in the proof of Thm. 30

three paths πj1 , πj2 , πj3 ∈ P, where 1 ≤ j1, j2, j3 ≤ 3n, with |V (πj1)|+|V (πj2)|+
|V (πj3)| = B. Thus, given the mapping f , we can derive the corresponding 3-
partition for (A,B).

5.1.2 Case l = 2, d ≥ 2
Theorem 30. CPM on trees with l = 2 and d ≥ 2 is NP-hard.

Proof. We consider only the case d = 2. The same can be shown for d > 2 by
subdividing edges of the trees constructed in the following reduction.

We reduce again from 3-Partition. We first introduce two gadgets used in
the proof. A donor tree T := DT2 is a tree as depicted in Fig. 5.3. The subtrees
ρ′ := T (r′1, r′′1) and ρ′′ := T (r′′1 , r′1) are called the first and the second component
subtrees, respectively. We call the vertex r′1 the root of ρ′; the vertices r′′1 and x′′4
are called the root and the tail of ρ′′, respectively. A recipient tree T̃ := RT2 is
a tree as depicted in Fig. 5.3. The vertex r̃′1 is called the root of T̃ .

The tree T1 is composed of the following components:
• a star S0 with N0 leaves and center c,
• a set S containing n stars, each having N1 + 2B leaves,
• a set D containing 3n donor trees DT2,
• a set P ′ with 3n paths; the i-th path corresponds to one particular element
ai of A and has ai vertices, i = 1, . . . , 3n,

• a set P ′′ :=
⋃n
j=1 P ′′j , where P ′′j is a set of 2B vertices,

where N0 := Bn3, N1 := Bn.
The components are connected to T1 as follows (see Fig. 5.4). The root of

the first component subtree of every donor tree ρ ∈ D is made adjacent to c;

NP-Hardness Results 75

N0
c

N2

...
...

. . .

n stars from set S

2B leaves
from P ′′

j

. . .

. . .

ai vertices

3n donor trees from D connected to c

N0
c̃

N2

... 2B leaves
. . .

3n recipient trees from
R̃′ connected to c̃ ...

B
leaves

from P̃j

3 recipient trees from R̃′′
j connected

to the center of a star s̃j from S̃

n stars connected to c̃

.

. . .

Fig. 5.4: The trees T1 and T2 of CPM on trees corresponding to an instance of
3-Partition as defined in the proof of Thm. 30

the second component subtree of ρ is connected to one distinct path from P ′ by
adding an edge between the tail and an end-vertex of the path. For every star
sj ∈ S, j = 1, . . . , n, the center of sj is made adjacent to c; every vertex from P ′′j
is made adjacent to one distinct leaf in sj .

The tree T2 is composed of the following components:
• a star S̃0 with N0 leaves and center c̃,
• a set S̃ containing n stars, each having N1 + 2B leaves,
• a set R̃′ containing 3n recipient trees RT2,
• a set R̃′′ :=

⋃n
j=1 R̃′′j , where R̃′′j contains 3 recipient trees RT2, and

76 Compactness-Preserving Mapping on Trees

Tab. 5.2: Detailed computations for a mapping from a component subtree of a donor
tree DT2 to a recipient tree RT2 in the proof of Thm. 30

v |N2
T1

(v)| Lv L′v detailed computation of L′v

r′1 7 +N 3+2·(4+
|N |) =

11 +
2|N | 13 + 2N x′1 x

′
3 r′2 r′3 c |N | r′′1 r′′2

1 + 1 + 1 + 2 + 1 + 2|N |+ 3 + 4
r′2 10 4+2 ·6 = 16 18 r′1 r′3 x′1 x′3 x′2 x

′
4 x′5 x′7 c r′′1

1 + 1 + 2 + 2 + 2 + 2 + 1 + 1 + 2 + 4
r′3 8 3+2 ·5 = 13 15 r′2 r′1 x′5 x′7 x′6 x′8 x′1 x′3

1 + 2 + 2 + 2 + 1 + 1 + 3 + 3
x′1(x′3) 5 2+2 ·3 = 8 10 x′2 r′2 r′1 r′3 x′3

2 + 2 + 1 + 3 + 2
x′2(x′4) 2 1+2 ·1 = 3 4 x′1 r′2

2 + 2
x′5(x′7) 4 2+2 ·2 = 6 8 r′3 x′6 r′2 x′7

2 + 3 + 1 + 2
x′6(x′8) 2 1+2 ·1 = 3 4 x′5 r′3

3 + 1

• a set P̃ :=
⋃n
j=1 P̃j , where P̃j is a set of 3B vertices.

The components are combined to T2 as follows (see Fig. 5.4). The roots of
the recipient trees from R̃′ are made adjacent to c̃. The center of each star
s̃j ∈ S̃ for i = 1, . . . , n, is made adjacent to c̃ and the roots of three recipient
trees from R̃′′j . For every recipient tree in R̃′′j , we add B edges between its root
and B distinct vertices from P̃j .

“=⇒”: Let A1, . . . , An be a 3-partition for an instance (A,B) of 3-Partition.
The mapping f is constructed as follows. The vertices of S0 are mapped to the
vertices of S̃0 with c̃ = f(c); the stars in S are mapped to the stars in S̃ with
leaves being mapped to leaves. The vertices in the first component subtrees
of the donor trees are mapped to the vertices of the recipient trees in R̃′ with
r̃′j = f(r′j), j = 1, . . . , 3 and x̃′i = f(x′i), i = 1, . . . , 8 (see Fig. 5.3). Similarly,
the vertices in the second component subtrees of the donor trees are mapped to
the vertices in recipient trees in R̃′′.

For j = 1, . . . , n and a set Aj = {aj1 , aj2 , aj3} of the 3-partition, where
1 ≤ j1, j2, j3 ≤ 3n, the vertices of the corresponding paths πj1 , πj2 , πj2 ∈ P ′ are
mapped to the vertices from P̃j . Note that the vertices in P̃j are adjacent to
the roots of the three recipient trees in R̃′′j . The 2B vertices in P ′j are mapped
to the remaining vertices in P̃j .

Given the mapping f , the differences between the proper and image dis-
tances of the vertices in the first component subtrees of the donor trees in D
are as follows: L′v − Lv = 2, for v ∈ {r′1, r′2, r′3, x′1, x′3, x′5, x′7}, and L′u − Lu = 1,
for u ∈ {x′2, x′4, x′6, x′8}. The same holds for the vertices of the second compo-
nent subtrees and the vertices of the paths from P ′, which are connected to

NP-Hardness Results 77

the second component subtrees. For the root r′1 we have NT1(r′1) = {c, r′2, r′′1}.
The exact 2-neighborhood of r′1 consists of x′1, x′3, r′3, r′′2 and the set N of N0 +
4n vertices adjacent to c. The differences between distances in T2 and T1
from r′1 to its 2-neighbors are as follows (see Table 5.2 for the detailed compu-
tations): distT2(f(r′1), f(c)) − distT1(r′1, c) = 1 − 1 = 0, distT2(f(r′1), f(r′2)) −
distT1(r′1, r′2) = 1 − 1 = 0, distT2(f(r′1), f(r′′1)) − distT1(r′1, r′′1) = 3 − 1 =
2, distT2(f(r′1), f(x′1)) − distT1(r′1, x′1) = 1 − 2 = −1, distT2(f(r′1), f(x′2)) −
distT1(r′1, x′2) = 1 − 2 = −1, distT2(f(r′1), f(r′3)) − distT1(r′1, r′3) = 2 − 2 =
0, distT2(f(r′1), f(r′′2)) − distT1(r′1, r′′2) = 4 − 2 = 2, and, for every v ∈ N ,
distT2(f(r′1), f(v)) − distT1(r′1, v) = 2 − 2 = 0. Thus, we have L′r′1 − Lr′1 =
0 + 0 + 2 − 1 − 1 + 0 + 2 + |N | · 0 = 2 = d. Consider now a path π =
{p1, . . . , p|V (π)|} ∈ P and the tail x′′4 of the donor tree connected to π. All
2-neighbors {x′′3 , p1, r

′′
2 , p2} of x′′4 are mapped to vertices with distance two from

f(x′′4). Thus, L′x′′4 − Lx′′4 = 2 · |N2
T1

(x′′4)| − (|NT1(x′′4)| + 2 · |N̂2
T1

(x′′4)|) = 2 = d.
A similar argument applies to all vertices of π.

“⇐=”: Let f be a compactness-preserving mapping from T1 to T2. The next
claims follow from the sizes of 2-neighborhoods of the vertices.
Claim 30.1: The vertices of S0 have to be mapped to S̃0 with c̃ = f(c).
Claim 30.2: The vertices of a star in S have to be mapped to the vertices of
a star in S̃ with centers being mapped to centers.
Claim 30.3: The root of the first component subtree of a donor tree in D has
to be mapped to the root of the recipient tree in R̃′.

Now we prove the following:
Claim 30.4: The first component subtree ρ′ of a donor tree ρ ∈ D has to be
mapped to a recipient tree ρ̃′ ∈ R̃′.

Proof. In the proof we first show that, if a leaf vertex v in ρ′ is mapped to
ρ̃′, then v’s 2-neighborhood has to be mapped to ρ̃′ (see Fig. 5.3 and Fig. 5.4).
Then, we prove that the vertices r′2 and r′3 also have to be mapped to ρ′. Finally,
we show that the images of the vertex r′1 also cannot be far from the images of
its 2-neighbors and have to be mapped to ρ̃′.

Let r′j , r′′j , j = 1, . . . , 3, and x′i, x′′i , i = 1, . . . , 8 be the vertices in ρ′ and the
second component subtree ρ′′ of ρ as depicted in Fig. 5.3.
Subclaim 30.5: If f(x′2) ∈ V (ρ̃′), then f(x′1) ∈ V (ρ̃′) and f(r′2) ∈ V (ρ̃′).

Proof. Suppose the subclaim is not true, say f(x′1) 6∈ V (ρ̃′). Then according
to Claims 30.1-30.3, distT2(f(x′2), f(x′1)) ≥ 4. Thus, L′x′2 − Lx′2 ≤ 2 implies
that f(r′2) has to be adjacent to f(x′2). Then, assuming that the images of
the remaining 2-neighbors of x′1 are adjacent to f(x′1) in T2, we have L′x′1 ≥
distT2(f(x′1), f(x′2))+distT2(f(x′1), f(r′2))+(|N2

T1
(x′1)|−2) ≥ 4+5+(5−2) = 12.

Consequently, L′x′1 − Lx′1 ≥ 4 > 2 = d, which is a contradiction.

78 Compactness-Preserving Mapping on Trees

Assume now f(r′2) 6∈ V (ρ̃′). Then, distT2(f(x′2), f(r′2)) ≥ 4. Thus, L′x′2 −
Lx′2 ≤ 2 implies that f(x′1) has to be adjacent to f(x′2). Then L′x′1 = distT2(f(x′1),
f(x′2)) + distT2(f(x′1), f(r′2)) + distT2(f(x′1), f(r′1)) + distT2(f(x′1), f(r′3))
+distT2(f(x′1), f(x′3)) ≥ 1+5+2+1+1 = 10. Consequently, L′x′1−Lx′1 ≥ 2 = d

implies that the vertices f(r′3), f(x′3) have to be adjacent to f(x′1) and f(r′1) ∈
V (ρ̃′). Then, assuming that the images of the remaining 2-neighbors of r′2 are ad-
jacent to f(r′2) in T2, we have L′r′2 ≥ distT2(f(r′2), f(r′1)) + distT2(f(r′2), f(x′1)) +
distT2(f(r′2), f(x′2)) + distT2(f(r′2), f(x′3)) + distT2(f(r′2), f(r′3)) + distT2(f(r′2),
f(c))+(|N2

T1
(r′2)|−6) = 3+5+4+6+6+2+(10−6) = 30 and L′r′2 −Lr′2 ≥ 15,

a contradiction. Thus, the subclaim is true.

Obviously, similar claims hold for x′4, x′6 and x′8.
Subclaim 30.6: If f(r′3) ∈ V (ρ̃′), then f(r′2) ∈ V (ρ̃′).

Proof. Suppose the subclaim is not true. Then, assuming that the images of
the remaining 2-neighbors of r′3 are adjacent to f(r′3) in T2, we have L′r′3 ≥
distT2(f(r′3), f(r′2))+distT2(f(r′3), f(x′1))+distT2(f(r′3), f(x′3))+(|N2

T1
(r′3)|−3) ≥

4 + 4 + 4 + (8−3) = 17 and L′r′3 −Lr′3 ≥ 4 > 2 = d, which is a contradiction.

Subclaim 30.7: If f(r′2) ∈ V (ρ̃′), then f(r′1) ∈ V (ρ̃′).

Proof. Suppose the subclaim is not true, i.e. f(r′1) 6∈ V (ρ̃′). Then, assuming that
the images of 2-neighbors of r′1 in N2

T1
(r′1) \NT1(c) are adjacent to f(r′1) in T2,

we have L′r′1 ≥ distT2(f(r′1), f(r′2)) + distT2(f(r′1), f(r′3)) + distT2(f(r′1), f(x′1)) +
distT2(f(r′1), f(x′3)) + 2 · |NT1(c)|+ (N2

T1
(r′1) \NT1(c)− 4) ≥ 3 + 3 + 3 + 3 + 2 ·

(N0 + 4n) + (7− 4) = 15 + 2 · (N0 + 4n) and L′r′1 − Lr′1 ≥ 4 > 2 = d, which is a
contradiction.

Summarizing the above three subclaims, we can conclude that ρ′ has to be
mapped to ρ̃′.

Now observe that, by Claim 30.4 and |DT2| = 2 · |RT2|, no vertices of the
second component subtrees of the donor trees can be mapped to the recipient
trees in R̃′.

The above subclaims can be applied to the second component subtrees of the
donor trees in D and the recipient trees in R̃′′. That is, the following two claims
are true.
Claim 30.8: The second component subtree of a donor tree from D has to be
mapped to a recipient tree in R̃′′.
Claim 30.9: Let ρ′′ be the second component subtree of a donor tree from D
with ρ′′ being mapped to ρ̃′′ ∈ R̃′′. The path from P ′ connected to ρ′′ has to be
mapped to the vertices from P̃ that are adjacent to the root of ρ̃′′.

It remains to consider the vertices in P ′′.

NP-Hardness Results 79

Claim 30.10: Let sj ∈ S, j = 1, . . . , n, and cj be the center of sj with
c̃j = f(cj), where c̃j is the center of s̃j ∈ S̃. The 2B leaves in P ′′j have to be
mapped to P̃j .

Let the paths πj1 , πj2 , πj3 ∈ P ′ that correspond to the elements aj1 , aj2 , aj3 ∈
A, where 1 ≤ j1, j2, j3 ≤ 3n, be mapped to the vertices from P̃j , 1 ≤ j ≤ n.

Suppose aj1 + aj2 + aj3 > B. Then, there exists at least one leaf in P ′′j that
cannot be mapped to P̃j , a contradiction to Claim 30.10.

Suppose now aj1 + aj2 + aj3 < B. Then, there exist aj4 , aj5 , aj6 ∈ A, where
1 ≤ j4, j5, j6 ≤ 3n, with aj4 + aj5 + aj6 > B that are mapped to P̃j′ , 1 ≤ j′ ≤ n,
which is a contradiction to Claim 30.10.

Thus, the mapping f exists only if for every πj1 , πj2 , πj3 ∈ P ′ that are mapped
to P̃j and correspond to aj1 , aj2 , aj3 ∈ A, we have aj1 + aj2 + aj3 = B. Conse-
quently, given the mapping f , we can derive the corresponding 3-partition for
the instance (A,B).

5.1.3 Case l ≥ 3, d ≥ 0
Theorem 31. CPM on trees with l = 3 and d ≥ 0 is NP-hard.

Proof. We reduce again from 3-Partition. We first introduce three graph
gadgets, and indicate their relation to CPM on trees. The key for the reduction
is the observation that the diameter of a star is at most 2. For a vertex v ∈ T1
with a large exact 3-neighborhood N̂3

T1
(v), we can map v together with some

vertices in N̂3
T1

(v) to a star. By doing this, we will have L′v much smaller than
Lv with respect to v and these vertices from N̂3

T1
(v), allowing us to map other

vertices from the 3-neighborhood of v to vertices in T2 far from v’s image.
Consider integers k1, . . . , k5 and ∆, where k1 := 1, k2 = 2, k4 := 2, k5 := 5,

∆ is much greater than max{k1, k2, k4, k5}, and k3 := ∆− 2. We further define
K(∆) := 1 + k1 · (1 + k2 · (1 + k3 · (1 + k4 · (1 + k5)))).

A component subtree T ′ consists of K(∆) vertices (see Fig. 5.5). The root
of T ′ has k1 = 1 child also called “level-2” vertex. Every “level-i” vertex has
as children ki-many “level-(i + 1)” vertices, i = 2, . . . , 5. We denote the set of
level-i vertices in T ′ by Li(T ′). A donor tree DT3(∆) consists of two copies of the
component subtree: The two component subtrees are connected by adding an
edge between their roots. A recipient star RS3(∆) is a star with K(∆) vertices
including the center. A donor path P := DP3(a, b) consists of a star with a

leaves and a path of length b. One end-vertex of the path is made adjacent to
the center of the star. There are two additional “special” vertices in P that are
connected to two arbitrary leaves of the star. A recipient path RP3(a, b) consists
of a star with a + 2 leaves and a path of length b. One end-vertex of the path
is made adjacent to the center of the star. In a donor path or a recipient path,
the tail is the end-vertex of the path that is not adjacent to the star.

80 Compactness-Preserving Mapping on Trees

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

r1

r2

r3

r4

r5

r6

k1 := 1
children of r1

k2 := 2
children of r2

k3 := ∆ − 2
children of r3

k4 := 2
children of r4

k5 := 5
children of r5

Fig. 5.5: A component subtree of a donor tree DT3(∆) defined in the proof of Thm. 31

Now we construct trees T1 and T2 corresponding to an instance (A,B) of
3-Partition.

The tree T1 consists of the following components (see Fig. 5.6):
• one “big” star S0 with N0 leaves and center c,
• a set P1 of 3n donor paths DP3(N1,∆1),
• a set P2 of 3Bn donor paths DP3(N2,∆2),
• for each j = 1, . . . , n, a set P ′2,j of 2B donor paths DP3(N ′2,j , λ+ 1),
• for each j = 1, . . . , n, a set P ′′2,j of B donor paths DP3(N ′2,j , λ),
• a set P3 of 3n donor paths DP3(N3,∆3),
• a set P ′3 of 3n donor paths DP3(N ′3,∆′3),
• a set D2 of 3Bn donor trees DT3(∆1 + ∆2 + ∆′3 + λ+ 21),
• a set D3 of 3n donor trees DT3(∆1 + ∆3 + 10), and
• a set S∗ of 3n stars; the i-th star for i = 1, . . . , 3n corresponds to the

element ai of A and has ai leaves.
Here N0 := Bn10, N1 := Bn9, N2 := Bn8, N ′2,j := jBn6, for j := 1, . . . , n,
N3 := Bn5, N ′3 := Bn4, ∆1 := Bn3, ∆2 := Bn2, ∆3 := Bn, ∆′3 := 2Bn, and
λ := 3Bn.

The components are combined to T1 as follows (see Fig. 5.6). The tails of
donor paths in P1 ∪ P2 ∪ P3 are made adjacent to c. Then, we build three one-
to-one matchings: G1 between P2, D2 and

⋃n
j=1(P ′2,j ∪P ′′2,j), G2 between P3 and

D3, G3 between P ′3 and S∗. For G1, we connect a donor tree ρ ∈ D2 to a donor
path π ∈ P2 and a donor path π′ ∈ ⋃nj=1(P ′2,j ∪P ′′2,j). We add an edge between
one arbitrary level-6 vertex of the first component subtree of ρ and a leaf vertex
of the star of π. Then, one arbitrary level-6 vertex of the second component
subtree of ρ is made adjacent to a leaf vertex of the star of π′. For G2, a donor
tree ρ ∈ D3 is connected to a donor path π ∈ P3 by adding an edge between one
arbitrary level-6 vertex of ρ’s first component subtree and a leaf vertex of the
star of π. For G3, we connect a donor path π′ ∈ P ′3 to a star s∗ ∈ S∗ by adding

NP-Hardness Results 81

N0

N1 N2

DT3(∆1 + ∆2
+∆′

3 + λ + 21)

N ′
2,j

N2

DT3(∆1 + ∆2
+∆′

3 + λ + 21)

N ′
2,j

N3

DT3(∆1+
∆3 + 10)

N ′
3

. . .

ai leaves

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

∆1 ∆2 ∆2 ∆3

λ + 1 λ

∆′
3

c

3n elements
of P1

3Bn subtrees, each consisting
of 3 distinct elements

from P2, D2, P ′
2,j ∪ P ′′

2,j

3n subtrees, each
consisting of 4

distinct elements from
P3, D3, P ′

3, and S∗

Fig. 5.6: A schematic representation of T1 of CPM on trees with l = 3 and d = 0 cor-
responding to an instance of 3-Partition. Circles and triangles correspond
to the stars and component subtrees, respectively. Thick lines correspond
to the edges that connect T1’s components.

an edge between the tail of π′ and the center of s∗. We finalize the construction
of T1 by adding an edge between one level-6 vertex of the second component
subtree of ρ ∈ G2 and a leaf vertex of the star of one particular donor path
from G3. The two level-6 vertices of a donor tree ρ ∈ D2 ∪ D3, connecting two
components in T1, are called tails of ρ.

The tree T2 consists of the following components (see Fig. 5.7):
• one “big” star S̃0 with N0 leaves and center c̃,
• a set P̃1 of 3n recipient paths RP3(N1,∆1),
• a set P̃2 of 3Bn recipient paths RP3(N2,∆2),
• for each j = 1, . . . , n, a set P̃ ′′′2,j of 3B recipient path RP3(N ′2,j , λ),
• a set P̃3 of 3n recipient paths RP3(N3,∆3),
• a set P̃ ′3 of 3n recipient paths RP3(N ′3,∆′3),
• a set R̃′2 of 3Bn recipient stars RS3(∆1 + ∆2 + ∆′3 + λ+ 21),
• a set R̃′′2 of 3Bn recipient stars RS3(∆1 + ∆2 + ∆′3 + λ+ 21),

82 Compactness-Preserving Mapping on Trees

• a set R̃′3 of 3n recipient stars RS3(∆1 + ∆3 + 10),
• a set R̃′′3 of 3n recipient stars RS3(∆1 + ∆3 + 10), and
• a set S̃∗ =

⋃n
j=1 S̃∗j , where S̃∗j is a set of three stars, each having B leaves.

The components are combined to T2 as follows (see Fig. 5.7). The tails of
the donor paths in P̃1 ∪ P̃2 ∪ P̃3 are made adjacent to c̃. We connect every
recipient path π̃ ∈ P̃2 to one distinct recipient star ρ̃ ∈ R̃′2 by adding an edge
between a leaf vertex of the star in π̃ and a leaf of ρ̃. The similar connections
are made between

⋃n
j=1 P̃ ′′′2,j and R̃′′2 , P̃3 and R̃′3, P̃1 and R̃′′3 . Every recipient

path π̃ ∈ P̃ ′3 is connected to a recipient star ρ̃ ∈ R̃′3 and a star s̃∗ ∈ S̃∗. We add
one edge between a leaf vertex of π̃’s star and a leaf of ρ̃ and one edge between
π̃’s tail and the center of s̃∗. Finally, for j = 1, . . . , n, the leaves of the three
stars in S̃∗j are made adjacent to the tails of the recipient paths in the set P̃ ′′′2,j .
In the following, for a recipient star ρ̃ ∈ R̃′2 ∪ R̃′′2 ∪ R̃′3 ∪ R̃′′3 , we refer to the
leaves of ρ̃ that are made adjacent to the other components of T2 as the tails
of ρ̃. Note that for a star from R̃′2 and a star from R̃′′2 the distance between
their centers is ∆1 + ∆2 + ∆′3 +λ+ 21, while for a star from R̃′3 and a star from
R̃′′3 the distance between their centers is ∆1 + ∆3 + 10.

The time needed to construct T1 and T2 is clearly polynomial in n and B.
Next we show that an instance of 3-Partition is a yes-instance iff the corre-
sponding instance of CPM with T1 and T2 is a yes-instance.

“=⇒”: Let A1, . . . , An be a 3-partition for an instance (A,B) of 3-Partition.
The mapping f is constructed as follows. The star S0 is mapped to S̃0 with
c̃ = f(c). Then a donor path π ∈ P1 is mapped to a recipient path π̃ ∈ P̃1.
For the path P of π, the i-th vertex, starting from π’s tail, is mapped to the
i-th vertex of the path in π̃, for i = 1, . . . , |V (P)|. The center of the star s in
π is mapped to the center of the star s̃ in π̃; the leaves of s are mapped to the
leaves of s̃. Note that two leaves of s̃ remain without mapped vertices: These
two leaves are mapped to two special vertices in π. The similar mapping is
constructed for donor paths in P2; they are mapped to recipient path P̃2; P3 to
P̃3; P ′3 to P̃ ′3.

The donor trees in D2 are mapped to the recipient stars in R̃′2 and R̃′′2 , while
the donor trees in D3 are mapped to the recipient stars in R̃′3 and R̃′′3 . Here, for
a donor tree ρ in D2 (or D3), the first component subtree of ρ is mapped to the
corresponding recipient star in R̃′2 (or R̃′3); the second component subtree of ρ
is mapped to a star in R̃′′2 (or R̃′′3); ρ’s tails are mapped to the tails of the two
corresponding recipient stars, the roots of ρ’s component subtrees are mapped
to centers of the stars.

Now consider, for j = 1, . . . , n, subset Aj = {aj1 , aj2 , aj3} of the 3-partition,
where 1 ≤ j1, j2, j3 ≤ 3n. The centers of the corresponding stars sj1 , sj2 , sj3 ∈ S∗
are mapped to the centers of the stars s̃j1 , s̃j2 , s̃j3 ∈ S̃∗j . The leaves of sji are
mapped to the leaves of s̃ji , i = 1, . . . , 3. We denote these leaves by Λ̃′j and the

NP-Hardness Results 83

N0 c̃

N1

K(∆1+
∆3 + 10)

N ′
3

. . .

N ′
2,j

K(∆1 + ∆2
+∆′

3 + λ + 21)

N2

K(∆1 + ∆2
+∆′

3 + λ + 21)

N3

K(∆1+
∆3 + 10)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

∆1 ∆2 ∆3

∆′
3

λ

B distinct elements
from P̃ ′′′

2,j and R̃′′
2

connected a star from S̃∗

3n subtrees, each consisting
of 4 distinct elements

from P̃1, R̃′′
3, P̃ ′

3 and S̃∗

3Bn subtrees, each
consisting of 2 distinct

elements from P̃2 and R̃′
2

3n subtrees, each consisting
of 2 distinct elements

from P̃3 and R̃′
3

Fig. 5.7: The schematic representation of T2 of CPM on trees with l = 3 and d = 0
corresponding to an instance of 3-Partition. Circles correspond to the
stars. Thick lines correspond to the edges that connect components of T2.

84 Compactness-Preserving Mapping on Trees

remaining leaves by Λ̃′′j . For i = 1, . . . , 3, aji many donor paths from P ′′2,j are
mapped to the recipient paths from P̃ ′′′2,j , whose tail vertices are adjacent to Λ̃′j ;
the tail vertices of B−aji donor paths from P ′2,j are mapped to the leaves in Λ̃′′j ,
and the remaining vertices of the donor paths are mapped to the recipient paths
from P̃ ′′′2,j , that are adjacent to Λ̃′′j .

In the following we will show that such a mapping is a compactness-preserving
mapping. Let ∆ := ∆1 + ∆2 + ∆′3 + λ + 21, ρ ∈ D2, ρ′ be ρ’s first component
subtree. Let r1 and r6 be the root and the tail of ρ′, respectively, r5 ∈ V (ρ) be the
vertex adjacent to r6, x be the leaf of the star s of the donor path that is adjacent
to r6 in T1, and y be the center of s. Without providing detailed computation
steps we have: L′r1

−Lr1 = 0, L′r5
−Lr5 = 4−∆, L′r6

−Lr6 = 0, L′x −Lx = −1,
L′y − Ly = −1. For the remaining vertices uj ∈ Lj(ρ′), j = 2, . . . , 6, we outline
that: L′u2

− Lu2 = 8 − 2 · ∆, L′u3
− Lu3 = 18 − 9 · ∆, L′u4

− Lu4 = 6 − 2 · ∆,
L′u5
− Lu5 = 3−∆, L′u6

− Lu6 = −1. That is, for every considered vertex v, we
have L′v − Lv ≤ 0 = d. Since the two component subtrees of a donor tree have
the same structure, a similar result can be shown for the vertices of ρ’s second
component subtree.

Given ∆ := ∆1 +∆3 +10 and ρ ∈ D3 the mapping from ρ to the two recipient
stars from R̃′3 and R̃′′3 is also a compactness-preserving mapping.

“⇐=”: Let f be a compactness-preserving mapping from T1 to T2. The next
claims follow directly from the sizes of 3-neighborhoods and the image distance
constraints of the mapping.
Claim 31.1: The vertices of S0 have to be mapped to the vertices of S̃0 with
c̃ = f(c).
Claim 31.2: The star and the path of a donor path in P1∪P2∪P3 have to be
mapped to the star and the path of a recipient path in P̃1∪P̃2∪P̃3, respectively.
Claim 31.3: The center of the star of a donor path in P ′2,j ∪ P ′′2,j has to be
mapped to the center of the star of a recipient path in P̃ ′′′2,j , j = 1, . . . , n.
Claim 31.4: The donor paths in P ′3 have to be mapped to the corresponding
recipient paths in P̃ ′3.

Let ρ′ be the first component subtree of a donor tree ρ ∈ D3, π be the donor
path in P3 that is connected to ρ′, and ρ̃′ be the recipient star in R̃′3 that is
adjacent to the path in π̃ ∈ P̃3 with π mapped to π̃. Next, we show that the
vertices in ρ′ cannot be too far away from each other in T2.
Claim 31.5: The vertices of ρ′ have to be mapped to the vertices of ρ̃′.

Proof. The correctness of the claim is proved by a sequence of subclaims.

NP-Hardness Results 85

Let ∆ := ∆1+∆3+10 and r1 and r6 be the root and the tail of ρ′, respectively;
let ri, i = 2, . . . , 5 be the remaining vertices lying on the path from r1 to r6 and r̃
be the tail of ρ̃′.
Subclaim 31.6: The tail r6 has to be mapped to ρ̃′ with r̃ = f(r6).
Subclaim 31.7: Every vertex from N3

T1
(r6)∩V (ρ′) has to be mapped to some

vertex of ρ̃′.
Subclaim 31.8: Let v ∈ N3

T1
(r6)∩V (ρ′). Every vertex from N3

T1
(v)∩(L4(ρ′)∪

L5(ρ′) ∪ L6(ρ′)) has to be mapped to some vertex of ρ̃′.
Subclaim 31.9: The vertex r2 has to be mapped to some vertex of ρ̃′.
Subclaim 31.10: The root r1 of ρ′ has to be mapped to some vertex of ρ̃′.

Thus, the claim is true.

Claim 31.11: The vertices of ρ’s second component subtree have to be mapped
to a recipient star in R̃′′3 .

By Claims 31.5 and 31.11, we have:
Claim 31.12: Let ρ ∈ D2. The vertices of ρ’s first component subtree have
to be mapped to the vertices of the corresponding recipient star in R̃′3, and the
vertices of ρ’s second component subtree have to be mapped to a star in R̃′′3 .

It remains to consider S̃∗.
Claim 31.13: The stars in S∗ have to be mapped to the corresponding stars
in S̃∗.

Now, by applying an induction from j = n to j = 1, we prove that the
number of leaves in the stars of S∗ that are mapped to S̃∗j ∈ S̃∗ is B for every
j. For j = n, let s̃1, s̃2, s̃3 denote the stars in S̃∗j that are connected to P̃ ′′′2,j ;
let sj1 , sj2 , sj3 , where 1 ≤ j1, j2, j3 ≤ 3n, be the stars in S∗ that correspond to
aj1 , aj2 , aj3 ∈ A and are mapped to s̃1, s̃2, s̃3, respectively.

Consider first aj1 + aj2 + aj3 > B. Then there exists at least one donor path
π ∈ P ′2,n that is not mapped to P̃ ′′′2,n. Consequently, there is a vertex in T2
with degree at least N ′2,n that is an image of the center of the star in π. This
is a contradiction, since all vertices with degree greater than N ′2,n are images of
star S0 or the stars of the donor paths from P1 ∪ P2.

Now consider aj1 + aj2 + aj3 < B. Since
∑
a∈A a = nB, there exist s̃j4 , s̃j5 ,

s̃j6 ∈ S̃∗ that are connected to P̃ ′′′2,j′ , 1 ≤ j′ ≤ n−1, and there exist sj4 , sj5 , sj6 ∈
S∗ that correspond to aj4 , aj5 , aj6 ∈ S, where 1 ≤ j4, j5, j6 ≤ 3n, and are
mapped to s̃j4 , s̃j5 , s̃j6 ∈ S̃∗, such that aj4 + aj5 + aj6 > B. Hence, there is at
least one donor path in P ′2,j′ that has to be mapped to a recipient path in P̃ ′′′2,j′′ ,
j′ < j′′ ≤ n − 1. Recursively, we come to a contradiction to the fact that the
center of the star of a donor path in P ′2,`, ` ≤ n− 1, can only be mapped to the
center of the star of a recipient path in P̃ ′′′2,n, which is in turn already mapped to
the center of the star of a donor path from P ′2,n. Thus, if the mapping f exists,
then aj1 + aj2 + aj3 = B. In a similar way, the same can be shown for j = n− 1

86 Compactness-Preserving Mapping on Trees

to j = 1 and the remaining sets P̃ ′′′2,j . The reason is that for any j = 1, . . . , n
we have exactly 3B donor paths in P ′2,j ∪ P ′′2,j which can only be mapped to
the 3B recipient paths of P̃ ′′′2,j . Moreover, each of the B donor paths in P ′′2,j
has exactly one vertex less than a donor path from P ′2,j . Further, this implies
that every three stars from S∗, that are mapped to the three stars in S̃∗j , must
have exactly B leaves in total. Thus, given the mapping f , we can derive the
corresponding 3-partition for the instance (A,B).

Applying edge subdivisions to the gadgets in the proof of Theorem 31 leads
to reductions proving NP-hardness of CPM on trees with l ≥ 3 and d ≥ 0.

5.2 Polynomial-Time Solvable Cases

5.2.1 Case l = 1, d = 0
In the case of CPM on trees with l = 1 and d = 0 the problem is equivalent to
the tree isomorphism problem, which can be solved in polynomial time [59].

Theorem 32. CPM on trees with l = 1, d = 0 can be solved in polynomial time.

Proof. Assume that there exists a compactness-preserving mapping f from T1
to T2 with l = 1 and d = 0. Let v ∈ V1, and f(v) ∈ V2.

We first show that for every u ∈ NT1(v), f(u) ∈ NT2(f(v)). Assume that
this is not true. Then there exists x ∈ NT1(v) with f(x) 6∈ NT2(f(v)). Let
∆ := distT2(f(v), f(x)). Then, ∆ ≥ 2, L′v ≥ (|NT1(v)| − 1) + ∆ and L′v − Lv ≥
(|NT1(v)| − 1) + ∆− |NT1(v)| = ∆− 1. Then, L′v −Lv ≤ 0 only if ∆ ≤ 1, which
is a contradiction to ∆ ≥ 2. Thus, for all u ∈ NT1(v), it holds f(u) ∈ NT2(f(v)),
which implies |NT1(v)| ≤ |NT2(f(v))|.

Assume |NT1(v)| < |NT2(f(v))|. Then there exists t ∈ V1 with |NT2(f(t))|
< |NT1(t)|. This implies that there exists x ∈ NT1(t) with (f(t), f(x)) 6∈ E2,
contradicting the fact proven above.

Thus, a mapping f from T1 to T2 exists if and only if (v, u) ∈ E1 and
(f(v), f(u)) ∈ E2, which is equivalent to the tree isomorphism problem.

5.2.2 Case l = 2, d = 0
Lemma 33. If there is a compactness-preserving mapping f with l = 2 and
d = 0 from T1 to T2, then for every v ∈ V1, |NT1(v)| = |NT2(f(v))|.

Proof. Assume that there is a vertex v ∈ V1 with |NT1(v)| > |NT2(f(v))|.
Then, with Lv = |NT1(v)| + 2|N̂2

T1
(v)| and L′v ≥ |NT2(f(v))| + 2(|N2

T1
(v)| −

|NT2(f(v))|) = 2|N2
T1

(v)|−|NT2(f(v))|, we have L′v−Lv ≥ 2|N2
T1

(v)|−2|N̂2
T1

(v)|−

Polynomial-Time Solvable Cases 87

|NT1(v)|−|NT2(f(v))| = |NT1(v)|−|NT2(f(v))| > 0 = d, which is a contradiction
to the compactness-preserving property of f(v). Thus, |NT1(v)| ≤ |NT2(f(v))|.

Now assume |NT1(v)| < |NT2(f(v))|. Since∑y∈V1
|NT1(y)| = ∑y′∈V2

|NT2(y′)|
= 2|E1|, there exists x ∈ V1 with |NT1(x)| > |NT2(f(x))|, which contradicts to
the previous conclusion. Thus, for each v ∈ V1, |NT1(v)| = |NT2(f(v))|.

Lemma 34. If there is a compactness-preserving mapping f with l = 2 and
d = 0 from T1 to T2, then for every v ∈ V1 and u ∈ N2

T1
(v), f(u) ∈ N2

T2
(f(v)).

Proof. Assume that there exists u ∈ N2
T1

(v) for a vertex v ∈ V1, such that
f(u) 6∈ N2

T2
(f(v)). Thus, ∆ = distT2(f(v), f(u)) ≥ 3. For the vertex v, we

have Lv = |NT1(v)| + 2|N̂2
T1

(v)| and, assuming that |NT1(v)| many vertices in
N2
T1

(v) are mapped to NT2(f(v)) and the remaining vertices, except the vertex u,
are mapped to N̂2

T2
(f(v)), L′v ≥ |NT2(f(v))| + 2(|N̂2

T1
(v)| − 1) + ∆. Then, it

holds L′v − Lv ≥ |NT2(f(v))| + 2(|N̂2
T1

(v)| − 1) + ∆ − (|NT1(v)| + 2|N̂2
T1

(v)|) =
|NT2(f(v))| − |NT1(v)|+ ∆− 2 = ∆− 2 > 0 = d, which is a contradiction to the
compactness-preserving property of f(v), since ∆ ≥ 3.

The following two lemmas follow directly from Lemmas 33-34.

Lemma 35. If there is a compactness-preserving mapping f with l = 2 and
d = 0 from T1 to T2, then for every v ∈ V1, |N̂2

T1
(v)| = |N̂2

T2
(f(v))|.

Lemma 36. If there is a compactness-preserving mapping f with l = 2 and
d = 0 from T1 to T2, then for every v ∈ V1, u ∈ NT1(v), distT2(f(v), f(u)) ≤ 2.

Lemma 37. Let T1 be a tree with diameter greater than 3. If there is a com-
pactness-preserving mapping f with l = 2 and d = 0 from T1 to T2, then for
every (v, u) ∈ E1, (f(v), f(u)) ∈ E2.

Proof. Assume the claim is not true. Let f be the compactness-preserving map-
ping. According to Lemma 33, the leaves from T1 can only be mapped to the
leaves in T2. Let x ∈ leaves(T1), x′ ∈ leaves(T2) with x′ = f(x). Suppose T1
and T2 are rooted such that x′ has the maximal depth in T2. Let u and u′ be
the parent vertices of x and x′, respectively; v and v′ be the parent vertices of
u and u′, respectively.

According to the above lemmas, the leaves from N̂2
T1

(x) have to be mapped
to the leaves within distance two from x′. The only non-leaf vertices in N2

T2
(x′)

are u′ and v′. If u is mapped to v′, then |NT1(u)| = |NT2(v′)| and v can only
be mapped to u′. Then, all vertices in N2

T1
(v) \ NT1(u) have to be mapped

either to the leaf children of u′ or to the vertices in NT2(v′). Since the diameter
of T1 is greater than 3, the former one is not possible. For the latter one, since
all leaf children of u′ can only be mapped to the children of u and |NT1(v)| =
|NT2(u′)|, the children of u must be all mapped to the children of u′. This
means |NT1(u)| = |NT2(u′)| and |NT1(v)| = |NT2(v′)|, which excludes the second

88 Compactness-Preserving Mapping on Trees

possibility. Therefore, f(u) = u′. Thus, the vertex u can only be mapped to u′,
i.e. u′ = f(u). If the vertex v is not mapped to v′, then distT2(x′, f(v)) > 2,
contradicting to Lemma 36. Hence, it holds v′ = f(v).

Thus, the resulting so far mapping f keeps u and its neighbors adjacent in T2,
i.e. for every t ∈ NT1(u), it holds (f(t), f(u)) ∈ E2. Further, every q ∈ N̂2

T1
(u)

has to be mapped to NT2(v′) \ {u′}; also note that |N̂2
T1

(u)| = |NT2(v′) \ {u′}|.
Thus, for (q, v) ∈ E1, we have (f(q), f(v)) ∈ E2. The similar has to be satisfied
for N̂2

T1
(v), which is mapped to N̂2

T1
(v′), and, continuing, for the remaining

vertices in T1 and T2. In the conclusion, for every edge (t1, t2) ∈ E1, we have
(f(t1), f(t2)) ∈ E2.

Theorem 38. CPM on trees with l = 2, d = 0 can be solved in polynomial time.

Proof. By Lemma 37, if the diameter of T1 is greater than 3, then the problem
is equivalent to the tree isomorphism problem. We consider now the cases of
diameter being 2 and 3. If T1 is a star, then, by Lemma 33, T2 must also be
a star. If the diameter of T1 is equal to 3, then there is a path in T1 with 4
vertices x, u, v, t and all other vertices in T1 are leaves and adjacent to u or v.
Assume that the leaf x is mapped to a leaf x′ ∈ T2. Then, there are two non-leaf
vertices u′, v′ ∈ N2

T2
(x′) with (x′, u′) ∈ E2. Obviously, the leaves adjacent to

u have to be mapped to the leaves adjacent to u′. Consider first, u is mapped
to u′; then v has to be mapped to v′ and the leaves adjacent to v must be
mapped to the leaves adjacent to v′. Thus, the diameter of T2 is also equal to
3 and |NT1(u)| = |NT2(u′)|, |NT1(v)| = |NT2(v′)|. Consider now, u is mapped
to v′, then v has to be mapped to u′. By Lemma 33, |NT2(v′)| = |NT1(u)|
and |NT2(u′)| = |NT1(v)|. By Lemma 35, we have |N̂2

T2
(x′)| = |N̂2

T1
(x)|, which

implies that |NT2(u′)| = |NT1(u)| and that the leaves adjacent to v can only be
mapped to the leaves adjacent to v′. Thus, in this case the diameter of T2 is
also equal to 3 and non-leaf vertices of both trees have the same degrees. This
is clearly checkable in polynomial time.

5.2.3 Case l = 1, d = 1
We need the following observations.

Lemma 39. Let v, u ∈ V1 with (v, u) ∈ E1. If there is a compactness-preserving
mapping f from T1 to T2, then distT2(f(v), f(u)) ≤ 2.

Proof. Assume that there exist v ∈ V1 and u ∈ NT1(v) such that ∆ := distT2(f(v),
f(u)) ≥ 3. We have L′v ≥ (|NT1(v)| − 1) + ∆, and L′v − Lv ≥ (|NT1(v)| − 1) +
∆− |NT1(v)| = ∆− 1 > 1.

Lemma 40. Let v ∈ V1 and p := |{u ∈ NT1(v) : distT2(f(v), f(u)) = 2}|. If
there is a compactness-preserving mapping f from T1 to T2, then p ≤ 1.

Polynomial-Time Solvable Cases 89

Proof. Assume p ≥ 2. We have L′v ≥ (|NT1(v)| − p) + 2p, and L′v − Lv ≥
(|NT1(v)| − p) + 2p− |NT1(v)| = p > 1.

Lemma 41. Let v, u, x ∈ V1 with (v, u) ∈ E1, (u, x) ∈ E1, and (f(v), f(u)) ∈
E2. If there is a compactness-preserving mapping f from T1 to T2, then either for
every y ∈ V (T1(x, u)), f(y) ∈ V (T2(f(u), f(v))) or for every y ∈ V (T1(x, u)),
f(y) ∈ V (T2(f(v), f(u))).

Lemma 42. If there is a compactness-preserving mapping f from T1 to T2, then
for every v ∈ V1, |NT2(f(v))|+ 1 ≥ |NT1(v)|.

In the following we assume that T2 is rooted at an arbitrary vertex r′ and
tree T1 remains unrooted.

Our algorithm firstly works from the leaves of T2 to its root. At each vertex
v′ ∈ V2, we iterate over all vertices v ∈ V1 and decide whether v can be mapped
to v′. To make this decision, we distinguish several cases, based on whether there
is a neighbor u of v, such that one vertex z ∈ T (u, v) could be mapped to the
parent t′ of v′ as depicted in Fig. 5.8. Let u2 ∈ NT1(v) \ {u}, u′1, u′2, u′3 be three
children of v′, and s′ ∈ NT2(t′) \ {v′}. We know by Lemmas 40-42 z ∈ N3

T1
(v).

In the first case, we assume that there is a u ∈ NT1(v) mapped to t′. Then, at
most one neighbor x of u can be mapped to a child u′1 of v′. If vertex x does
not exist, we say that x and u′1 are null elements, denoted by ∅. In the second
case, we assume that there is a vertex z ∈ T (u, v) mapped to t′ and z ∈ N̂2

T1
(v),

i.e. z ∈ NT1(u)\{v}. Then u has to be mapped to either s′ or u′1. If u is mapped
to s′, then there is at most one neighbor y of x that can be mapped to a child u′1
of v′ (Fig. 5.8, (d)). In the third case, we assume z ∈ T (u, v) and z ∈ N̂3

T1
(v),

i.e. z is a neighbor of x ∈ NT1(u) ∩ V (T (u, v)) Then, either u is mapped to a
child x′1 of u′1 and x is mapped to u′1 or u is mapped to s′ and x is mapped
to t′′ ∈ NT2(s′). For the first and second cases, where z ∈ N2

T1
(v) and u mapped

to NT2(v′), there exists at most one neighbor u2 of v that can be mapped to s′
or to a child x′2 of u′2. If there is a neighbor u2 of v mapped to x′2, then, there
exist at most one neighbor x2 of u2 and at most one neighbor y2 of x2 that can
be mapped to two children u′2 and u′3 of v′ (Fig. 5.8, (a) and (c)), respectively.
Note if v′ is the root r′ of T2, then z is a null element.

Given v and v′, for every possible z, we guess all possible combinations of
the vertices u, x, y, u2, x2, y2 and u′1, u′2, u′3, x′1, s′, t′′ corresponding to the above
cases to decide whether there can exist a compactness-preserving mapping f

with v′ = f(v).
In the algorithm we encode the above combinations with configurations.

A configuration C = (c1, c2, c3, c4, c5, c6) means c1, c3, c5 ∈ V1 can be mapped
to c2, c4, c6 ∈ V2, respectively, where c3 ∈ N3

T1
(c1), c5 ∈ NT1(c1), c2 is a child

of c4 and distT2(c2, c6) = 2. Given a configuration C, the algorithm computes
two sets N̄1 and N̄2 that contain neighbors of v and v′, respectively, that can

90 Compactness-Preserving Mapping on Trees

(a) Case 1
v

u
x u2

x2
y2

v′
t′

u′
1 u′

2 u′
3

x′
2 x′

2

(b) Case 1 v
u

x u2

v′
t′

s′

s′

u′
1

(c) Case 2
v

u
z u2

x2
y2

v′
t′

u′
1 u′

2 u′
3

x′
2 x′

2

(d) Case 2 v
u

z
y

u2

v′
t′

s′

s′

u′
1

(e) Case 3
v

u
x

z

v′
t′

u′
1

x′

(f) Case 3 v
u

x
z

v′
t′

s′

s′

t′′

t′′

Fig. 5.8: The three cases of mapping v ∈ V1 to v′ ∈ V2

Polynomial-Time Solvable Cases 91

be mapped to the configuration C. That is, by the definition of the cases, we
have N̄1 := {u, u2} and N̄2 := {t′, u′1, u′2, u′3}. Notice that depending on the
configuration under consideration some of the vertices in N̄1, N̄2 can be null
elements.

For v, v′ and configuration C, let N1 := NT1(v) \ N̄1 and N2 := NT2(v′) \ N̄2
We say that there exists a matching F (C) for a configuration C, if there are a
set B ⊆ N1 ∪NT1(N1) \ {v} and a bijection g between B and N2, such that the
subtree T1(x) for each x ∈ B can be mapped to the subtree T2(g(x)). For a vertex
x ∈ B, if NT1(x) ∩ B = ∅, then T1(x) := T1(x, v). Otherwise, let y be the only
element in NT1(x)∩B; in the case of x ∈ NT1(v), T1(x) := T1(x, v) \T1(y, x); in
the case of y ∈ NT1(v), T1(x) := T1(x, y). A configuration C is realizable if there
exists such a matching F (C). A confirming configuration of a configuration C,
denoted by Ĉ, is a configuration (ĉ1, ĉ2, ĉ3, ĉ4, ĉ5, ĉ6) with ĉ3 = c3, ĉ4 = c4,
ĉ1 = c5, ĉ2 = c6, ĉ5 = c1, ĉ6 = c2.

The algorithm. The algorithm works in two phases. In the first phase we
process bottom-up and, for every vertex v′ ∈ V2, we compute the set of all
realizable configurations by combining the sets of realizable configurations of
the children of v′. We check for a configuration C∗ whether there exists a
matching F ∗. If yes, then it saves C∗ together with F ∗ for vertex v′; otherwise,
it discards C∗.

In the second phase, given that there is at least one realizable configuration
at the root of T2, we construct the actual compactness-preserving mapping f in
a top-down manner. Let C be the set of realizable configurations of all vertices.
Note that, if the set of realizable configurations at a vertex v′ ∈ V2 is empty,
then no compactness-preserving mapping exists and the algorithm returns “no”.

Phase 1. We first compute realizable configurations for the leaves of T2. Let v′
be a leaf of T2. According to Lemma 42, v′ can only be mapped to a vertex v ∈ V1
with degree at most 2. Consider first v is a leaf. Given the only neighbor u of v,
we only need to test configurations (v, v′, u, t′, ∅, ∅) and (v, v′, x, t′, u, s′), where
x ∈ NT1(u) \ {v} and s′ ∈ NT2(t′) \ {v′}. Now let v ∈ V1 be of degree two and
u1, u2 are the only neighbors of v. We test configurations (v, v′, ui, t′, u3−i, s

′),
where i = {1, 2} and s′ ∈ NT2(t′) \ {v′}.

Consider now a non-leaf vertex v′ ∈ V2 and a vertex v ∈ V1. Let Cv,v′ :=
{C ∈ C : c4 = v′, v = c3}. Given v is mapped to v′, we combine sets of
realizable configurations of the children of v′ to compute realizable configurations
for v′. For v and v′ we generate every possible configuration C∗ according to
the described cases and test if C∗ is realizable.

Next, we describe how to check whether a configuration C∗ is realizable.
First, we compute N̄1, N̄2 and a set M , which contains all configurations for the
vertices in N2

T1
(v) \ N̄1 specifying how they should be mapped to N2 given that

92 Compactness-Preserving Mapping on Trees

C∗ is realizable. The set M is defined as M := {C ∈ Cv,v′ : c1 ∈ N1, c6 6∈ N̄2,

and if c6 ∈ NT2(v′), then there exists a confirming configuration Ĉ for C ∈
Cv,v′}. Note that a configuration C ∈ Cv,v′ satisfying c6 ∈ NT2(v′) is generated
by assuming that there is a vertex c5 ∈ NT1(c1) such that the subtree T1(c5, c1)
is completely mapped to the subtree T2(c6), where c6 is a child of c4 = v′. Now,
while moving from c2 to its parent v′, we have to verify whether this assumption
is sound to create realizable configurations for v′. This can be done by checking
the existence of the confirming configurations for C.

The assumptions of all cases require that the vertices from N1 have to be
mapped to the vertices in N2. Moreover, depending on the configurations in M ,
for every u ∈ N1, there could be at most one vertex in NT1(u) \ {v}, which is
mapped to N2 as well.

With the help of M , we can compute a matching for C∗. Let u1, . . . , um
be the neighbors of v for which there is a configuration C ∈ M with c1 = ui
for 1 ≤ i ≤ m and let Mi := {C ∈ M : c1 = ui} for i = 1, . . . ,m. Given the
definitions of configuration C∗ and the corresponding set M , C∗ is realizable if
there is a “matching” set M∗ of configurations C1, . . . , Cm with Ci ∈ Mi such
that (1) m = |N1|, (2) {c2, c6 : Ci ∈ M∗} ∩ {c2, c6 : Cj ∈ M∗} = ∅ for i 6= j,
and (3) {c2, c6 : C ∈M∗} = N2.

In the following we construct a weighted bipartite graph B = B1 ∪B2 based
on the sets M1, . . . ,Mm. For every configuration C ∈ Mi, we add a corre-
sponding vertex q̂ji , j = 1, . . . , |Mi| to B1. For every vertex u′i ∈ N2 we add to
B2 the corresponding vertex qi. Additionally we add 2 · (|Mi| − 1) vertices pji ,
j = 1, . . . , 2 · (|Mi| − 1) to B2. Let w0 := 1 and wi := 1 + 2n ·∑i−1

`=0 w`. Further,
we add an edge with weight wi between every q̂j1

i and every pj2
i , j1 = 1, . . . , |Mi|,

j2 = 1, . . . , 2 · (|Mi|−1). For every q̂ji that corresponds to configuration C ∈Mi,
we add an edge with weight 1 between q̂ji and the vertex p′ ∈ B2 that corre-
sponds to c2 of C. Further, if c6 = ∅, then we add an additional “dummy”
vertex and connect it to q̂ji by adding an edge with weight 1; otherwise we add
an edge with weight 1 between q̂ji and the vertex p′′ ∈ B2 that corresponds to
c6. The construction of B is completed with applying the above procedure to
every i = 1, . . . ,m.

Now, we compute the matching set M∗ by solving the so-called Constrained
Weighted P2-Packing on Bipartite Graphs (CWPB) problem on B, where given
a weighted bipartite graph B = (B1 ∪B2, E12) in which each edge is associated
with a positive weight, and an integer q, we seek for a P2-packing P of size q
with end-vertices in B2 such that the weight of P is maximum over all such P2-
packings. CWPB can be solved in O(q · (|E12|+ |V (B)| · log|V (B)|)) time [60].
The correctness of the following lemma follows from the construction of the
graph B and the weights of its edges.

Polynomial-Time Solvable Cases 93

Lemma 43. The configuration C∗ is realizable if and only if there is a P2-
packing for the instance (B, |M |) of CWPB.

Given an output P for (B, |M |), we derive the corresponding matching
set M∗ with the dummy vertices in B representing empty sets. Consequently,
we save the matching F (C∗) corresponding to M∗ together with C∗.

Phase 2. Given a realizable configuration C at root r′ of T2, we first construct a
compactness-preserving mapping f for r′ and its children. We assign r′ = f(c1),
c5 = f(c6) and use assignments from the matching F (C). Then, we proceed
top-down and construct f for children of every assigned vertex v′. Consider a
realizable configuration b = (f−1(v′), v′, f−1(t′), t′, b3, b

′
3). If b′3 ∈ T2 \ (T2(v′) ∪

{t′}), then we use F (b) to construct f for the children of v′; otherwise, we build f
for the children of v′ with b3 = f(b′3). If a child u′ of v′ is already assigned with
u = f−1(u′), then for the children of v′ we retrieve a matching F (b) with an
additional requirement that u is matched to u′.

Theorem 44. CPM on trees with l = 1, d = 1 can be solved in polynomial time.

Proof. In both phases we iterate over vertices v′ ∈ V2. The vertex v′ can have
at most |V1| vertices that can possibly be mapped to v′. Then, for every pair v′
and v, we generate all possible configurations that requires at most O(n6) com-
binations. In order to check if a configuration is realizable, we construct graph
B for CWPB, whose size is clearly polynomial in n. Thus, the overall running
time is polynomial.

5.2.4 Case l = 2, d = 1
For the case of CPM with l = 2 and d = 1, we can observe similar properties as
Lemmas 39-42. In the following we only provide lemmas omitting their proofs.

Lemma 45. Let u ∈ V1. If there is a compactness-preserving mapping f with
l = 2 and d = 1, then |NT2(f(u))| ≥ |NT1(u)| − 1.

Lemma 46. Let u ∈ V1. If there is a compactness-preserving mapping f with
l = 2 and d = 1, and |NT2(f(u))| = |NT1(u)| − 1, then for every z ∈ N2

T1
(u) it

holds f(z) ∈ N2
T2

(f(v)).

Lemma 47. Let u ∈ V1. If there is a compactness-preserving mapping f with
l = 2 and d = 1, and |NT2(f(u))| = |NT1(u)| − 1, then either (see Fig. 5.9):

1. NT1(u) = {v, x1, x2} and x1, x2 ∈ leaves(T1), NT2(f(u)) = {f(x2), f(v)}
and f(x1) ∈ NT2(f(v)), or

2. NT1(u) = {v, x1} and x1 ∈ leaves(T1), NT2(f(u)) = {f(v)} and f(x1) ∈
NT2(f(v)), or

94 Compactness-Preserving Mapping on Trees

Case 1

u

v
x1 x2

f(u)

f(v)

f(x1)

f(x2)

Case 2

u

v
x1

f(u)
f(v)

f(x1)

Case 3

u

v
x1

y1

f(u)
f(v)

f(x1) f(y1)

Case 4

u

v

t

x1

f(u)

f(t)

f(v) f(x1)

Fig. 5.9: The four cases of mapping u ∈ V1 to V2 in Lemma 47

3. NT1(u) = {v, x1}, NT1(x1) = {u, y1}, and y1 ∈ leaves(T1), f(u), f(x1),
f(y1) ∈ NT2(f(v)), or

4. NT1(u) = {v, x1}, NT1(v) = {t, u}, and x1 ∈ leaves(T1), f(u), f(x1),
f(v) ∈ NT2(f(t)).

For the cases 1-3 in Lemma 47, the image of only one vertex from NT1(u)
can be adjacent to f(v) (the similar is for vertex t in Case 4). Thus, with∑
z∈V1
|NT1(z)| = ∑z′∈V2

|NT2(z′)| for any trees T1 and T2, it holds the following:

Lemma 48. Let u ∈ V1. If there is a compactness-preserving mapping f with
l = 2 and d = 1, and |NT1(u)| < |NT2(f(u))|, then there exist N ⊂ NT1(u),
such that for every z ∈ N and Ñ := |V (T1(z, u))| it holds Ñ ≤ 3 and for every
z̃ ∈ Ñ , f(z̃) ∈ NT2(f(u)).

Lemma 49. Let u ∈ V1 and v ∈ NT1(u). If there is a compactness-preserving
mapping f with l = 2 and d = 1, then distT2(f(u), f(v)) ≤ 2.

ILP Formulation of CPM with Isolation Set 95

Lemma 50. Let u ∈ V1 and z ∈ N̂2
T1

(u). If there is a compactness-preserving
mapping f with l = 2 and d = 1, then distT2(f(u), f(z)) ≤ 3.

Lemma 51. Let u ∈ V1. If there is a compactness-preserving mapping f with
l = 2 and d = 1, then for every z ∈ NT2(f(u)), it holds f−1(z) ∈ N3

T1
(u).

Lemma 52. Let u ∈ V1 and v ∈ NT1(u). If there is a compactness-preserving
mapping f with l = 2 and d = 1 such that distT2(f(u), f(v)) = 2 and there is
z ∈ N̂2

T1
(u) \NT1(v) with f(u), f(v) ∈ NT2(f(z)), then v ∈ leaves(T1), NT1(u) =

{x, v}, NT1(x) = {z, u} and f(x) ∈ NT1(z) (compare to Case 3 in Fig. 5.9).

Lemma 53. Let u ∈ V1 and v ∈ NT1(u). If there is a compactness-preserving
mapping f with l = 2 and d = 1 such that distT2(f(u), f(v)) = 2, and there
exists x ∈ NT1(u) \ {v} with f(u), f(v) ∈ NT2(f(x)), then there is at most one
vertex ỹ ∈ NT1(x) \ {u} and at most one vertex x̃ ∈ NT1(u) \ {x, v} such that,
given N1 := NT1(u) \ {x, v, x̃} and N2 := NT1(x) \ {u, ỹ}, for every z1 ∈ N1 and
every z2 ∈ N2 it holds f(z1) ∈ NT2(f(x)), f(z2) ∈ NT2(f(u)), f(x̃) ∈ NT2(f(u)),
f(ỹ) ∈ NT2(f(x)) and |N1| − |N2| ≤ 2.

In the above lemma the vertices u and x are “swapped”: Almost all neighbors
of x are mapped to the neighborhood of f(u), and almost all neighbors of u
become adjacent to f(x).

Given the above lemmas, the basic ideas of the algorithm for CPM on trees
with l = 1, d = 1 could also apply to derive an algorithm for CPM trees with
l = 2, d = 1.

Theorem 54. CPM on trees with l = 2, d = 1 can be solved in polynomial time.

5.3 ILP Formulation of CPM with
Isolation Set

Similarly to NPM, the optimization version of CPM asks to minimize the size k of
the isolation set. In the presented ILP formulation of the problem we are looking
for a mapping between vertices of graphs. In the mapping isolated vertices are
not mapped to any other vertices (remember that an isolated vertex can cover
any vertex in a graph). Instead of minimizing the number isolated vertices,
we maximize the number of mapped vertices. Then, CPM can be presented as
follows:

maximize
∑

t∈V (G1),
w∈V (G2)

xtw , (5.1)

96 Compactness-Preserving Mapping on Trees

subject to xtw = {0, 1} , ∀ t ∈ V (G1), ∀w ∈ V (G2)

∑
w∈V (G2)

xtw ≤ 1 , ∀ t ∈ V (G1) (5.2)

∑
t∈V (G1)

xtw ≤ 1 , ∀w ∈ V (G2) (5.3)

(xtv − 1) · |V (G2)|2

+
∑

u∈N l
G1

(t)

 ∑
w∈V (G2)

distG2(v, w) · xuw


−

∑
u∈N l

G1
(t)

distG1(t, u) ·
∑

w∈V (G2)

xuw

 ≤ d ,

∀ t ∈ V (G1), v ∈ V (G2)

(5.4)

Theorem 55. The above ILP formulation of the optimization version of CPM
is correct.

Proof. We set xtw to 1 whenever vertex t ∈ V (T1) is matched to vertex w ∈
V (T2); otherwise xtw is 0. Conditions (5.2) and (5.3) ensure that every vertex
in T1 is mapped to at most one vertex in T2 and vice versa. In condition (5.4)
the first term is equal to |V (G2)|2 (or other very large number) if vertex t

was mapped to v; if t is isolated, then condition (5.4) is always satisfied. The
expression in the braces of the second term is equal to 0 if vertex u is isolated;
otherwise, it is equal to the distance from the image v of t to an image w of
an l-neighbor u of t. Similarly, the expression in the braces of the third term
is equal to 0 if vertex u is isolated; otherwise, it is equal to the distance from t

to u. The external sum of these terms adds up the distances to all l-neighbors
and its images. Thus, if t is mapped to v, the second and the third terms of
condition (5.4) correspond to the image distance L′t and the proper distance Lt,
respectively. Hence, the condition (5.4) is satisfied if and only if the difference
between L′t and Lt is not greater than d.

6 Discussions and Outlook

The notion of the topological preservation of an alignment is generally defined
as follows: Given two high confidence networks, a good alignment should map
neighboring vertices of the first graph so that their images are also close in the
second graph. Introducing the problems studied in Chapters 3-5, we aimed to
formalized this concept in multiple ways. Then, to shed some light on what
makes these problems difficult, we studied the complexity of the problems with
input graphs restricted to trees.

The Graph Edit Distance with edge Insertion and edge Deletions problem
(GED-ID), whose restricted to trees version (TED-ID) we considered in Chap-
ter 3, supports the notion of the topology preservation implicitly only partially.
For similar graphs we expect the optimal solution to have a lower number of re-
quired edge insertions and deletions, and thus many matched edges. At the same
time, some parts of the first graph may be mapped very far from each other since
deleting edges decomposes the first graph into separate components. Especially
for trees, to decompose graphs can be done by deleting just one edge. Note the
same situation can be observed in Maximum Common Subgraph (MCS) that is
related to GED-ID. In GED-ID, the optimal mapping for the first graph being
mapped to the second is inverse to the optimal mapping of the second graph
being mapped to the first graph and these two mapping will have the same sum
of edge insertion and edge deletions. The same holds for the number of edges in
the solution graph of MCS. In order to hinder decomposition of the first graph
into separate subgraphs , we make use (Chapter 4) of an extended neighborhood
denoted by parameter l in Neighborhood-Preserving Mapping (NPM). For
larger values of l decomposing the first graph into separate components by iso-
lating some vertices becomes more expensive. Further, parameter d in NPM
relaxes the notion of edge preservation, which forces edges to be mapped to
each other. By varying parameters d and l we can specify the degree of topol-
ogy preservation. In NPM, even for relatively small values of d it is possible
to map arbitrarily many vertices from the first within distance d in the second
graph. In Chapter 5 we partially restrict NPM by introducing Compactness-
Preserving Mapping (CPM). CPM is orthogonal to NPM (with k = 0) since

98 Discussions and Outlook

in order to map arbitrarily many close neighbors of a vertex far from its image
in the second graph, the value of d in CPM has to be much bigger than in NPM.
At the same time, in CPM by mapping some l-neighbors of a vertex closer to
its image, it is possible to map the other l-neighbors of the vertex arbitrarily
far from its image even if the parameter d is relatively small; for NPM, in this
case the value of d would have to be very large. For larger values of l in NPM,
non-isolated vertices adjacent to isolated ones still have to be close to each other
in the second graph.

Obviously, given two graphs of the same size, the problems GED-ID with
zero allowed edge insertion and deletion, MCS with the size of the input graphs,
NPM with l = 1 and d = 1, and CPM with l = 1 and d = 0 are all equivalent
to the graph isomorphism problem. On general input graphs however, they
demonstrate different behavior.

Note that unlike GED-ID and MCS , which by their definitions are based on
the global properties of the solution mapping, NPM and CPM are defined with
the help of properties of every vertex and its image. Additionally, in contrast
to GED-ID (as well as MCS), the definitions of NPM and CPM do not ask
how different the input graph are, but rather how different the first graph is
from the second. For given parameters l and d, the size k of the isolation set
in NPM corresponds to the amount of intrusion that have to be made to map
the first graph to the other. In CPM parameter d plays the similar role. Both,
the solution mappings in NPM and CPM can substantially be influenced by the
topology in the input graphs, and not the direct difference in number of edges.
Regardless of the connections in the first graph, the constraints (the parameters
d and k) in these problems should be easier to satisfy if the second graph is more
connected clarify.

Consider now the first graph with one false edge only. GED-ID does not
distinguish if this edge connects close or distant vertices: The cost of deleting
the edge remains the same. In NPM and CPM, if the false edge is “local”, i.e., it
connects close vertices whose images should also be close in the second graphs,
the solution mappings should not be affected too much; if the false edge connects
vertices whose images should actually be distant in the second graph, parameter
d of NPM and CPM has to be very large for a mapping to exist. Thus, given an
incomplete network to be mapped to a less incomplete network, applying NPM
and CPM is reasonable to address local errors with smaller values of l and d.

Next, we define a set of further problems that represent both theoretical
and practical interests. First, consider a variation of NPM without isolation set
(k = 0). Given two graphs G1 = (V1, E1) and G2 = (V1, E1) with |V1| = |V2|,
two integer l and d, and a one-to-one mapping f : V1 → V2, for v ∈ V1 let d′v :=
maxu∈N l

G1
(v){distG2(f(v), f(u))} and k′v := |{u ∈ N l

G1
(v) : distG2(f(v), f(u)) >

99

d}|. Using definitions of d′v and k′v, we introduce the following four optimization
problems that ask to find a one-to-one mapping f that minimizes:

• ∑v∈V1
d′v (NPM-Sum-Distance, NPM-SD),

• maxv∈V1 d
′
v (NPM-Max-Distance, NPM-MD),

• ∑v∈V1
k′v (NPM-Sum-Isolations,NPM-SI),

• maxv∈V1 k
′
v (NPM-Max-Isolations NPM-MI).

Further, we propose the following variations of CPM that ask to find a one-
to-one mapping f that minimizes:

• ∑v∈V1
(L′v − Lv) (CPM-Sum-Difference, CPM-SD),

• maxv∈V1{L′v − Lv} (CPM-Max-Difference, CPM-MD),

• ∑v∈V1
max{L′v − Lv, 0} (CPM-Sum-Difference-Null, CPM-SDN),

• maxv∈V1 max{L′v − Lv, 0} (CPM-Max-Difference-Null, CPM-SDN).

Note that in CPM the difference between the image and the proper distances
accumulates the total error between a vertex v ∈ V1 and its l-neighbors (for
l ≥ 2). However, this allows to map some of the neighbors closer to an im-
age of v, while others can be at a distance greater than l, with the total
error being smaller. It is interesting to study the change in the complex-
ity between CPM and problems that restricts such compensation of the er-
ror or measures the absolute error between the proper and image distance:
More formally, a variation of CPM (CPM without compensation) may ask if
there is a one-to-one mapping f : V1 → V2 such that for every v ∈ V1,∑
u∈N l

G1
max{distG2(f(v), f(u)) − distG1(v, u), 0} ≤ d; the other variation of

CPM (CPM with absolute error) may ask if there is a one-to-one mapping f
such that for every vertex v ∈ V1, |L′v − Lv| ≤ d.

As for practical applications, the definitions of TED-ID and CTS represent
mainly theoretical interest. Despite the complexity of GED-ID, NPM, and CPM,
they and their combinations still can be useful in modeling Network Align-
ment.Thus, they require development of efficient heuristics to compute approx-
imate solutions. Moreover, the definitions of CPM and NPM allow to derive a
large variety of absolute and relative measures to estimate topological quality of
alignments.

!

Part III

Heuristics for Network
Alignment Using Graph
Edit Distance Models

7 Background and Related
Work

7.1 Introduction
Given two protein-protein interaction (PPI) networks, Network Alignment aims
to find a biologically meaningful correspondence between nodes of the input
networks. A procedure of constructing an alignment usually uses topology of
the input networks and additional biological information. Correspondingly, the
quality Q of an alignment combines both topological and biological aspects.
A definition of Q balances the importance of the topology over biology and is
expressed as, for example, Q := α · T + (1 − α) · B, where T , B, and α ∈ [0, 1]
correspond to the topological quality, biological quality, and balance between
them, respectively. Naturally, if the topologies of two networks are identical
then every interaction in the first network can be mapped to an interaction of
the other network and vice versa. Commonly, the topological aspect T counts
the number of aligned edges and is to maximize. While the topological aspect
is straightforward to interpret, the biological aspect B, in contrast, depends on
the data that are used aligning the networks and their interpretation. Since one
can model contribution of various biological data differently, we will focus on
Network Alignment using topological information only.

In this part of the thesis we describe several heuristics that address Network
Alignment of Protein-Protein Interaction Networks. Aligning networks, we look
for a node-to-node mapping (an alignment). Our models aim to minimize the
graph edit distance GED′ induced by the mapping. By minimizing GED′ we
indirectly maximize the number of aligned edges.

The rest of this chapter provides an overview of the related work. Then, in
Chapter 8, we introduce necessary definitions and describe NABEECO, which
is a novel and robust heuristic based on Bee Colony Optimization. On a set
of protein-protein interaction networks we compare NABEECO to the cur-

104 Background and Related Work

rent state-of-the-art tool for the pairwise global network alignment problem,
MI-GRAAL.

Further, in Chapter 9 we describe another heuristic, called GEDEVO that
outperforms NABEECO. GEDEVO is a novel evolutionary algorithm for Net-
work Alignment aiming to minimize the GED. We compare our implementa-
tion of GEDEVO against a set of tools: SPINAL, GHOST, C-GRAAL, and
MI-GRAAL. On a set of protein-protein interaction networks from different
organisms we demonstrate that GEDEVO outperforms these methods. It thus
refines the previously suggested alignments based on topological information
only.

In Chapter 10, we provide a formalization of the global network alignment
problem for multiple networks. Given a set of PPI networks for different species
we might ask how much the network topology is conserved throughout evolution.
We model this problem as Topological Multiple one-to-one Network Alignment
(TMNA), where we aim to minimize the total graph edit distance induced by
pairs of mappings between the input networks. We extend our approach used
in GEDEVO and developed a software tool, GEDEVO-M, that is able to align
multiple PPI networks using topological information only. We demonstrate the
power of our approach by computing a common subnetwork for a set of bacterial
and eukaryotic PPI networks.

Due to the underlying GED model, the proposed heuristics, in contrast to
many other tools, can be applied to all kinds of networks and allows incorporat-
ing prior knowledge about node/edge similarities. The three tools, NABEECO,
GEDEVO and GEDEVO-M as well as the used data sets are publicly avail-
able at http://nabeeco.mpi-inf.mpg.de, http://gedevo.mpi-inf.mpg.de,
and http://gedevo.mpi-inf.mpg.de/multiple-network-alignment/.

7.2 Pairwise Network Alignment
The network alignment problem has been defined in two general ways: local
and global. Both definitions have been addressed by a set of tools that exploit
different approaches.

Given two networks, the local network alignment problem aims to identify
parts of the input networks that expose topological or biological similarity.
PathBLAST [61] was one of the first tools dealing with the problem. Path-
BLAST aligns two input networks by combining topology and protein sequence
similarities in order to identify conserved interaction pathways and complexes.
By integrating interactions and sequence information another tool called Net-
workBLAST [62, 63] can output a set of putative complexes that are evolutionary
conserved across the two networks. Mawish [64] is based on evolutionary models
and extends concepts of match, mismatch, and duplication from sequence align-

http://nabeeco.mpi-inf.mpg.de
http://gedevo.mpi-inf.mpg.de
http://gedevo.mpi-inf.mpg.de/multiple-network-alignment/

Pairwise Network Alignment 105

ment to Network Alignment; it processes an edge-weighted graph to evaluate
similarity between graph structures through a scoring function that accounts
for these evolutionary events. Graemlin [65] is based on equivalence classes and
combines progressive alignment and seed-and-extend methods adapted from se-
quence alignment.

In contrast to Local Network Alignment, Global Network Alignment aims to
find a correspondence between all nodes of the input networks. A set of methods
that follows this definition of Network Alignment has been proposed. To align
two networks, IsoRank [67] uses similarities of neighborhoods and sequences of
nodes and represents the problem as an eigenvalue problem. In [72] Network
Alignment is reformulated as a graph matching problem and approximated on
relaxations over the set of doubly stochastic matrices (methods PATH and GA).
GRAAL [68] is one of first approaches that follow the “seed-and-extend” strat-
egy applied to Global Network Alignment. H-GRAAL [69] uses the Hungarian
algorithm to find the best mapping from a constructed bipartite graph. Note a
heuristic that utilizes bipartite graph representation of the input networks and
the Hungarian algorithm to resolve it was also proposed to approximate the cost
in the related GED problem [73]. PISwap [74, 75] is based on a local optimiza-
tion heuristic: It first identifies an optimal alignment based on protein sequence
similarity and refines it by propagating topology information. NATALIE 2.0 [76]
(see also [77]) models the alignment as a generalization of the quadratic assign-
ment problem and represents it as an integer linear program that is approached
with the help of Lagrangian relaxation. MI-GRAAL [66] uses seed-and-extend
strategy together with the Hungarian algorithm to construct weighted bipartite
graphs. An alignment is built as a result of solving the maximum-weight match-
ing on these graphs. C-GRAAL [5] also exploits seed-and-extend strategy and
alliteratively aligns common neighbors of already aligned nodes. Along with
introducing the spectral signatures to measure topological similarity between
subgraphs, GHOST [71] combines a seed-and-extend global alignment phase,
where neighborhoods are matched by computing an approximate solution to the
quadratic assignment problem, with a local search procedure. An even more
sophisticated method, SPINAL [70], first builds a coarse-grained alignment and
then improves it using seed-and-extend with local refinements. A very fast and
efficient method called NETAL [78] uses a greedy approach to build an align-
ment from scoring matrices iteratively updating them. Table 7.1 provides short
summary of the methods.

All approaches struggle to provide high-quality results on the huge, yet con-
stantly growing, biological networks that we are confronted with nowadays. On
real PPI networks, SPINAL as well as the GRAAL collection, proved to perform
best and to offer biologically meaningful alignments. A brief comparison pre-
viously used in [66] is given in Table 7.2. Instead of replicating the conclusion

106 Background and Related Work

Tab. 7.1: An overview of the methods for the pairwise global network alignment prob-
lem. Here n := max{|V (G1)|, |V (G2)|}, m := max{|E(G1)|, |E(G2)|}, d is
the largest degree of vertices in G1 and G2

Tool Keywords Running time

NABEECO
Bee Colony Optimiza-
tion, Graph Edit Dis-
tance

O(I · P · n · d), here I is the number of
iterations and P is the population size,
O(n5) to compute graphlet degree sig-
natures

GEDEVO evolutionary algorithm,
Graph Edit Distance

O(I · P · n · (logn + d)), here I is the
number of iterations and P is the pop-
ulation size, O(n5) to compute graphlet
degree signatures

IsoRank
eigenvalue problem on
pairwise node similarity
matrix

GRAAL seed-and-extend,
greedy

O(n2 logn + n · m), O(n5) to compute
graphlet degree signatures

H-GRAAL

maximum-weight
matching in bipar-
tite graph, Hungarian
algorithm

O(n3), O(n5) to compute graphlet de-
gree signatures

MI-GRAAL

seed-and-extend,
maximum-weight
matching in a bipar-
tite graph, Hungarian
algorithm

O(n · (m+n · logn)), O(n5) to compute
graphlet degree signatures

C-GRAAL seed-and-extend,
greedy

O(n2 + m), O(n5) to compute graphlet
degree signatures

PISwap
maximum-weight
matching in a bipartite
graph, local search

O(max{c4, d2} · B · |M∗|3), B is the
largest similarity value for two se-
quences,M∗ is a maximum weighted bi-
partite mapping (|M∗| ≤ n), c is the
number of most highly weighted neigh-
bors of a vertex c ≤ d.

GHOST seed-and-extend, local
search

O(d4) spectral signatures, pseudo-
polynomial

SPINAL greedy matching in a bi-
partite graph O(n2 · (d2 + logn)

NATALIE 2.0
integer linear program-
ming formulation, La-
grangian relaxation

PATH
concave and convex re-
laxations over doubly
stochastic matrices

O(n7)

GA

a gradient ascent
method on relaxation
over doubly stochastic
matrices

O(I · n3), where I is the number of iter-
ations

NETAL greedy O(n2 · logn+m2 +n ·m · logn), or O(n2 ·
log2 n) for PPI networks

Multiple Network Alignment 107

Tab. 7.2: The highest edge correctness (EC) achieved by different tools aligning two
pairs of networks, adopted from [66] and extended by the results of SPINAL
and GHOST. Note that GHOST did not terminate for yeast2 vs. human1.
Note that GEDEVO obtained better results (refer to Table 9.1 in Chapter 9;
Table 8.2 summarizes all data sets). The definition of EC and description
of the networks can be found in the next chapter on page 110 and page 112,
respectively.

IsoRank
[67]

GRAAL
[68]

H-GRAAL
[69]

MI-GRAAL
[66]

C-GRAAL
[5]

SPINAL
[70]

GHOST
[71]

yeast2 vs.
human1 3.89 11.72 10.92 23.26 22.55 19.33 -

Meso vs.
Syne 5.33 11.25 4.59 41.79 26.02 25.86 41.98

from the above cited papers that Network Alignment offers biological insights,
we focus on the methodological problem that the existing tools possess. As we
will demonstrate in Chapter 9, many of the existing software tools cannot cope
well with such big networks. This becomes most evident when we see them fail
on aligning a network to itself, which should result in 100% of aligned edges.
Regarding the generalization to the other types of networks, many of the pro-
posed approaches cannot be directly applied to graphs other than undirected
and unweighted.

7.3 Multiple Network Alignment
A natural generalization of the pairwise network alignment problem to multiple
networks aims to find conserved subnetworks in several input networks. A set
of techniques have recently been proposed for the multiple network alignment
problem.

MULE [79] is one of the first heuristics for detecting frequently occurring in-
teraction patterns and modules in biological networks. It is based on contraction
orthologs that allows to substantially reduce sizes of input graphs simplifying
them. NetworkBLAST-M [80] represents sets of orthologous proteins as single
nodes in the network alignment graph and uses a seed-and-extend approach to
build an alignment. A general framework implemented in C3Part-M [81] (see
also [82]) avoids explicit construction of the multigraph that is built from the
input networks. C3Part-M is an exact method based on extracting connected
components from the multigraph. IsoRankN [83] is an extension of IsoRank [67]
and is based on spectral clustering on the induced graph of pairwise alignment
scores. Graemlin 2.0 [84] is a three-stage heuristic that requires information
about phylogenetic relationship to learn parameters for its scoring function.
SMETANA [85] aligns networks in two stages. It first computes node correspon-

108 Background and Related Work

dence scores using a semi-Markov random walk model. Then, using these scores
that serve as a probabilistic similarity measure between nodes, SMETANA finds
the maximum expected accuracy alignments in a greedy manner. A method
proposed in [86] first clusters proteins into groups based on their similarity and
then aligns them in a seed-and-extend manner. Defining seeds as sets of proteins
with high similarity scores, the method expands the seeds to conserve edges. An-
other similar heuristic, called BEAMS, was described in [87]. A nature inspired
heuristic called NetCoffee [88] optimizes its target function using simulated an-
nealing. The search space there is built with the help of triplets of weighted
bipartite graphs.

All approaches, in contrast to the one that we will introduce in Chapter 10,
define the multiple network alignment problem as a set of many-to-many map-
pings between the proteins in the different graphs, i.e. several proteins from
one graph are allowed to be mapped to several proteins from other graphs. The
intention behind this is to account for gene duplication events and to maximize
biological significance scores, which are usually measured by Gene Ontology
agreement of the grouped nodes (see for example [89]). A recent review of ex-
isting tools in the field of network alignment may be found in [90] and [91].

Note a problem of finding a so-called prototype graph from the pattern recog-
nition field is similar to the multiple network alignment problem (see for exam-
ple [92]). There, a prototype graph is usually defined as a graph that minimizes
the distance to all elements it represents and is used in clustering or classifica-
tion problems. However, many of the methods developed for this problem were
tested on quite small graphs often with up to 10 vertices only.

8 Network Alignment with
Bee Colony Optimization
Strategy

In this chapter we first formally define Network Alignment and then present
NABEECO, a novel method for PPI network alignment, which is the first algo-
rithm that is based on bee colony strategy minimizing the graph edit distance
as optimization criterion. In the Section 8.2 we describe the data that is used to
evaluate our tools and that consists of real PPI networks from different species,
amongst them the same that were used in [66] to demonstrate MI-GRAAL’s
performance. Then, we describe the strategy behind NABEECO and evaluate
it against MI-GRAAL. Our implementation of NABEECO as well as all used
data sets are publicly available at http://nabeeco.mpi-inf.mpg.de.

8.1 Problem definition
We consider PPI networks as undirected unweighted graphs. An graph G is a
pair (V (G), E(G)) with E(G) ⊆ V ×V ; the elements of V (G) are called vertices
of the graph G, the elements of E(G) are edges. The size of a graph G is the
number of edges in E(G), denoted by |E(G)|. The neighborhood of a vertex v
in a graph G, denoted by NG(v), is the set of all vertices adjacent to v. The
degree of v is |NG(v)|.

Consider two graphs G1 = (V1, E1) and G2 = (V2, E2) and a one-to-one
mapping f : V1 → V2. By GED′ we denote the graph edit distance between G1
and G2 induced by mapping f that is computed as follows:

GED′f (G1, G2) := |{(u, v) ∈ E1 : (f(u), f(v)) 6∈ E2}∪
{(u′, v′) ∈ E2 : (f−1(u′), f−1(v′)) 6∈ E1}| .

http://nabeeco.mpi-inf.mpg.de

110 Network Alignment with Bee Colony Optimization Strategy

By definition, GED′f (G1, G2) counts inserted or deleted edges induced by the
mapping f to make G1 isomorphic to G2, and it can easily be extended to
reflect vertex/edge dissimilarities or any other related information (e.g. protein
sequence similarity) of the underlying networks.

In Network Alignment, we aim to find a mapping f that minimizes the
GED′f (G1, G2).

In previous work, the quality of the mapping f of most biological network
aligners is assessed by using the number of aligned (shared) interactions, defined
as:

|{(u, v) ∈ E1 : (f(u), f(v)) ∈ E2}|

or the number of conserved interactions, defined as:

|{(u, v) ∈ E1 : dist(v, f(v)) < ∆,dist(u, f(u)) < ∆, (f(u), f(v)) ∈ E2}| ,

where dist(x, y) is a dissimilarity between x ∈ V1 and y ∈ V2 (such as BLAST
E-value), and ∆ is the node dissimilarity threshold. This corresponds to the
intuition that the closer two species in the evolutionary tree are, the higher the
number of conserved interaction partners they share. Also note, while very high
protein sequence similarities, may often serve as a strong indication for the cor-
respondence of the proteins, the relation between proteins with lower sequence
similarities is difficult to recover [10]. Though comparison of 3D structures of
the proteins is a much better way to discover such relations, only for relatively
few proteins their 3D structures were determined. At the same time, incor-
porating reliable external biological information can relax the Network Align-
ment problem by substantially reducing the search space by, for example, pre-
defining preferable sets of nodes to be mapped. Although NABEECO as well
as GEDEVO can include such external information, a “good” method should
be able to determine an optimal mapping, by maximizing the number of shared
interactions and thus utilizing the graph structure alone. For this reason and to
assure comparability between the existing biological Network Alignment tools
we focus on topological criteria only.

Aligning using topological information, the performance of many methods is
assessed with the so-called Edge Correctness (EC), which is particularly useful
when comparing many pairs of networks with different sizes. Edge Correctness
ECf (G1, G2) corresponds to the proportion of aligned edges and is defined as
follows:

ECf (G1, G2) := |{(v, u) ∈ E1 : (f(v), f(u)) ∈ E2}|
min(|E1|, |E2|)

· 100[%] ,

The highest value of EC is 100% and occurs if one input graph is a subgraph of
the other graph. Other indicators of topological quality on an alignment, such

Problem definition 111

nodes of H1 A B C D E Ø F

0.0 0.4 0.7 0.5 1.0 1.0 0.2

nodes of H2 Z Y X W Ø V T

Fig. 8.1: A mapping between graphs H1 (vertices A, B, C, D, E, and F) and H2
(vertices T, V, W, X, Y, and Z) with arbitrary pair scores (for illustration
only). In this mapping, A fits perfectly to Z, C corresponds quite poorly
to X, E is deleted and V is inserted and both have worst pair scores. One
major principle behind the generation of new individuals in NABEECO and
GEDEVO is to swap pairs of vertices with bad pair scores.

as size of the largest connected component of a graph build on aligned edges or
induced conserved structure score were also considered.

Note that the methods we describe in this thesis (NABEECO, GEDEVO,
and GEDEVO-M) internally utilizes the graph edit distance as optimization
criterion, not the Edge Correctness. This makes them more applicable to general
graph comparison problems outside computational biology. However, if we set
the costs for vertex deletions/insertions/substitutions and edge substitution to
zero but only the cost for edge deletions/insertions to one, the EC is be related
to GED as:

ECf (G1, G2) =
|E1|+ |E2| −GED′f (G1, G2)

2 ·min(|E1|, |E2|)
· 100[%] .

This allows us to compare GEDEVO to existing approaches on protein-protein
interaction Network Alignment based on the EC criterion, as in previous works,
which is particularly useful for graphs where differences between sizes are com-
mon (as in PPI networks from different organisms).

Based on a set of alignments (one-to-one mappings), the core idea of our
methods is to generate a set of new alignments so that the chance of obtaining
better mappings is greater than by random choice. To guide the search process
of our methods we use pair scores (see Fig. 8.1). For a vertex v ∈ V (G1), the
pair score is defined as:

pf (v) :=

|{u ∈ NG1(v) : f(u) 6∈ NG2(f(v))}∪
{u′ ∈ NG2(f(v)) : f−1(u′) 6∈ NG1(v)}|

|NG1(v)|+ |NG2(f(v))| + d(v, f(v)) ,

where d(v, v′) measures the difference between v ∈ G1 and v′ ∈ G2. By the
definition, the pair score pf (v) is the sum of an external distance between the
two vertices and the relative number of edge deletions/insertions induced by the
mapping f . Intuitively, this “pair score” reflects the contribution of the vertices

112 Network Alignment with Bee Colony Optimization Strategy

Tab. 8.1: Summary of PPI networks used for evaluations.

Short
name Species Citation Proteins Interactions

cjejuni Campylobacter jejuni [96] 1095 2988
Meso Mesorhizobium loti [97] 1803 3094
Syne Synechocystis sp.(PCC6803) [98] 1908 3102
ecoli_fi Escherichia coli [99] 1941 3989
yeast2 Saccharomyces cerevisiae [100] 2390 16 127
SC Saccharomyces cerevisiae [101] 5152 24 847
HS Homo Sapiens [101] 5878 14 015
DM Drosophila Melanogaster [101] 7533 22 477
ulitsky Homo Sapiens [102] 7384 23 462
human1 Homo Sapiens [103] 9141 41 456
hprd Homo Sapiens [104] 9672 37 047

to the GED′ of the mapping and thus its quality: The lower the pair score, the
better vertex v fits vertex f(v).

The first term of a pair score penalizes the unmatched edges in both net-
works. As a measure between vertices (the second term of the pair score) of the
input graphs we use graphlet degree signature distance (GSD) (see [93] and [94]).
It restricts our search method to the graph topology and is thus independent
from any external knowledge (protein similarities) other than the two input
graphs. GSD can be considered as the magnitude of difference in local topology
of two nodes from different graphs. Computing all graphlet degree vectors of a
graph, needed for GSD, requires O(n5) time, where n is number of vertices in
the graph. Despite the high theoretical running time, the vectors for the special
case of PPI networks (which are relatively sparse) can be obtained in reasonable
time, especially if compared to the run time for approximating solution of the
Graph Edit Distance problem. This, however, does not necessary hold for more
dense graphs. Our tools combine the precomputed GSDs (local: the difference
between two vertices) with the GED′ (global: the number of vertex/edge dele-
tion/insertions induced by a mapping). To compute graphlet degree vectors and
the corresponding distances we used our own software implemented in C/C++.

Note other measures and their combination can also be used to compute
pair scores, for example, spectral signatures [71], BLAST E-values [9], protein
secondary/3D structure similarities, topological similarities [95].

Data 113

8.2 Data
For the evaluation of NABEECO as well as GEDEVO in Chapter 9 with existing
tools we used several PPI networks (see Table 8.1). The following six networks
were previously used for evaluating C-GRAAL and MI-GRAAL. The two bac-
terial networks cjejuni and ecoli_fi are well-studied high-confidence networks:
The first network resulted from high-throughput yeast two-hybrid screens; the
second network was constructed using experimental and computational data
(see [99]). The Syne network was obtained through a modified high-throughput
yeast two-hybrid assay and covers around half (52%) of the total protein cod-
ing genes; similarly for network Meso that involves 24% of the protein coding
genes. The high-confidence network human1 was created by combining data
from multiple sources including HPRD [104]. The network from [100] is based
on (post-processed) data from high throughput experiments.

In addition, we obtained the networks DM, SC, and HS from the DIP
database, which contains experimentally determined and manually curated pro-
tein interactions. The hprd network is a PPI network obtained from the Human
Protein Reference Database (HPRD), which is a repository storing high-quality
manually curated human interaction data. The human interactome network ulit-
sky is a compilation of protein-protein interactions, based mostly on small-scale
experiments, from several interaction databases, including the HPRD database.
Refer to Table 8.1 for a summary and citations.

8.3 Methods
Bee Colony Optimization (BCO) is a population based nature-inspired heuristic
for solving hard optimization problems [105, 106]. BCO mimics behavior of
a real honey bee colony in a hive; the general procedure of BCO is given in
Algorithm 1.

In abstraction from a real honey bee colony, the artificial concept allows for
‘only’ two types of bees: scouts and worker bees. Every bee corresponds to
a point (food source) in the solution space (set of fields with food sources) of
the problem. Scouts are to explore a new horizon, keeping updated the pool
of food sources known to the bees in the hive. The behavior of worker bees,
which are gathering the food, corresponds to local exploration of the available
known fields. A food source points to a solution, which is, in the context of
Network Alignment, a mapping between two graphs. In the hive all bees share
the information about the properties of the sources they know about. This
information influences the choice of worker bees when they decide which field to
fly to in the next round: The higher the quality of the food source, the higher

114 Network Alignment with Bee Colony Optimization Strategy

generate initial population
repeat

send scout and workers
share information
gather new solutions
memorize the best solution achieved

until termination
Algorithm 1: General Scheme of a Bee Colony Optimization Algorithm

its chances to be picked up as a target. Having chosen a target, a worker bee
does not fly to the very point of the solution but to a location close to it. The
procedure is repeated multiple times.

The quality of a food source is composed of two factors: the quality of the
solution, associated with the food source, and the amount of food at the specific
location, which decreases over time when it is picked as a target. The former is
the actual criterion we aim to optimize, the graph edit distance.

8.3.1 Initialization Step
The better the initialization the higher the chance for having a ’good’ starting
point for the later steps in the optimization process. Along with uniform random
mappings, NABEECO uses GSD to greedily create a set of mappings in which
vertex pairs have similar local topologies. Use of more elaborated heuristic may
provide even better initial population (in cost of running time) and may be
included in the future.

8.3.2 Solution Gathering Step
The ’gathering’ step performed by worker bees is the most crucial step in BCO,
and has to guarantee a certain degree of diversity regarding the traversed so-
lutions but, at the same time, being restrictive enough. In contrast to scouts,
which generate mappings randomly and keep updating the solution pool, in
NABEECO workers rely on multiple techniques to explore the local neighbor-
hood of the solutions they have chosen as targets:

• Greedy swaps randomly pick k1 of m vertices with the worst pair scores
and exchanges them pairwise in greedy manner to improve the total GED
of the mapping. Here, we set k1 := 6 and m := 20.

• Local permutation of k2 vertices performs all k2! permutations and accepts
the mapping with the best GED. We set k2 := 6 here. Two thirds of these
k2 vertices are chosen from the m vertices with the worst pair scores, while
the rest vertices are picked up randomly.

Methods 115

50 100 500 1000 5000 10000

1
10

10
0

10
00

10
00

0

Network size

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Fig. 8.2: Running time of NABEECO on artificially generated pairs of graphs. The
x-axis denotes the number of vertices in the bigger graph.

• Random swaps randomly exchange k3 := 5 pairs of vertices irrespective of
the resulting GED.

• Random greedy swaps are executed similarly to greedy swaps, but applied
among all vertices of a given mapping.

Each round one of the methods is chosen with a 33% chance, except for the
relatively expensive local permutation, which is executed with a probability of
1%. These local exploration operations are implemented to avoid local optima
but speed-up convergence.

8.3.3 Termination Step
For NABEECO, similar to many other bio-inspired heuristics, the exact running
time for finding exact solutions is difficult to estimate. Convergence mainly de-
pends on the input as well as the population size. The program can be executed
for a predefined number of iterations or a preset run time. Another option is
to set a no-change-in-quality threshold: If the GED does not improve for a cer-
tain number of iterations (convergence time), the program is considered to be
converged and stopped.

The running time of NABEECO depends on the time needed to perform
operators on the input graphs as well as the number of iterations and the pop-
ulation size. Computing values for pairs scores of a mapping requires O(n · d),
where n is the number of vertices in the input graphs and d is the highest de-
gree. In greedy swaps and random greedy swaps, to find m vertices with the
worst values of pair scores in the mapping requires O(m · n) time. In local per-
mutations and random swaps there are k2! and k3 evaluations of the mappings,

116 Network Alignment with Bee Colony Optimization Strategy

1 100 10000
0

10
20

30
40

50

Time (seconds)

E
C

 (
%

)

cjejuni vs ecoli_fi
Meso vs Syne
yeast2 vs human1
HS vs SC
SC vs DM
DM vs human1
ulitsky vs hprd
human1 vs hprd

NABEECO
MI−GRAAL

Fig. 8.3: Quality (Edge Correctness) vs. run time for aligning protein-protein inter-
action networks. Results achieved by MI-GRAAL are shown with crosses.
Each line/cross represents one run.

respectively. In every iteration of NABEECO at least one evaluation of a so-
lution can be required. Thus, given that NABEECO is set to run I iterations
with the population of size P and the parameters k1, k2, m are bounded by a
constant, the total running time of NABEECO is O(I · P · n · d).

To evaluate convergence time for varying input sizes we generated a set of
random ‘PPI-like’ graphs of different sizes by using the preferential attachment
mechanism [107]. In addition, we modified the graphs by inserting and deleting
a predefined number of edges randomly. The run times for pairs of graphs with
different number of vertices size are depicted in Fig. 8.2. Termination criterion
(convergence time) was set to stop after 1000 iteration with no improvements of
the best GED′ and the population size was set to 500 bees.

8.4 Evaluation
In Fig. 8.3 we summarize the results for MI-GRAAL and NABEECO on com-
paring pairs of the PPI networks from Table 8.1. The highest EC value for all
pairs of graphs are further summarized in Table 8.2.

Since both NABEECO and MI-GRAAL have elements of randomness they
were run 10 times for each input pair of graphs. All runs were executed on a 64
bit Linux 2.6.32 kernel, running on an Intel Xeon CPU W3550 @ 3.07GHz and
12 GB RAM. Time needed to compute graphlet signature vectors is not taken
into account both for NABEECO and MI-GRAAL. The population size in
NABEECO was set to 500 bees, with 10% of them as scouts. Since MI-GRAAL
does not provide intermediate results, the final EC for each run is depicted as
one cross. For one NABEECO run, we can plot the quality of intermediate

Evaluation 117

Tab. 8.2: The highest quality (Edge Correctness) values from pairwise alignments
of different protein-protein interaction networks with NABEECO and
MI-GRAAL.

EC (%)
Network 1 Network 2 NABEECO MI-GRAAL
ecoli_fi cjejuni 28.24 24.60
Meso Syne 32.25 39.88
yeast2 human1 36.78 21.38
HS SC 28.26 26.15
SC DM 14.14 17.73
DM human1 19.09 -
ulitsky hprd 23.51 -
human1 hprd 43.57 -

results (as edge correctness of the best found solution so far). Observe that an
EC is constantly improving over time.

Quality-wise both, MI-GRAAL as well as NABEECO, perform almost equally
well. For comparing the smaller PPI networks from cjejuni, Meso, Syne, ecoli_fi,
MI-GRAAL gives better results in shorter time than NABEECO. For comparing
larger networks, however, NABEECO is faster and converges to results of better
quality (higher EC). Note that MI-GRAAL failed aligning the human (bigger)
graph pairs.

Despite competitive results, the main problem of NABEECO is that its op-
erators modify relatively small portions of a solution mapping. This leads to
too slow local improvements of the known solutions and getting into local min-
ima. In the next chapter we describe another nature inspired heuristic, called
GEDEVO, that allowed us to diversify the pool of solutions and obtain even
better alignments on these networks. We also compare GEDEVO with other
recent tools for network alignment.

9 Evolutionary Algorithm
for Network Alignment

In this chapter we describe GEDEVO, a novel method for PPI Network Align-
ment. GEDEVO is an evolutionary algorithm that uses the Graph Edit Dis-
tance problem as optimization model for finding the best alignments. For eval-
uation, we use a set of high quality PPI networks (see Section 8.2 in Chap-
ter 8), including the same networks previously used for C-GRAAL [5] and
MI-GRAAL [66] for comparison with existing tools. We will demonstrate that
GEDEVO performs comparable or better than recent tools exploiting topolog-
ical information only, being at the same time fast and flexible. An implemen-
tation of GEDEVO as well as all used data sets are publicly available under
http://gedevo.mpi-inf.mpg.de.

9.1 Methods
Evolutionary Algorithms (EAs) are nature inspired heuristics, which are widely
used to tackle many NP-hard problems (see for example [108, 109]). The key
idea behind EAs is mimicking the rule “survival-of-the-fittest” on a population
of different individuals. Note multiple EAs were suggested for a number of
formulations of the Graph Matching problem (see for example [110, 111, 112]).
However, the major hindrance for efficient EA-based combinatorial optimization
remained unsolved: the generation of new individuals. In the following we briefly
introduce a general scheme of an EA and describe how we modified it with partial
adoptions from [110] to Network Alignment.

In an EA an individual represents a solution for the problem, i.e. a mapping
between vertices of two graphs (see Figure 8.1 in Chapter 8). The state of an
individual determines how well the individual fits to the requirements of the en-
vironment it populates. New individuals result from inheriting parts of solutions
from its parents; the better an individual fits the requirements, the higher are its

http://gedevo.mpi-inf.mpg.de

120 Evolutionary Algorithm for Network Alignment

generate initial population
repeat

for multiple times do
generate a new individual using an evolutionary operator

end
evaluate all individuals
apply selection criterion

until termination
Algorithm 2: General scheme of an Evolutionary Algorithm

chances to survive and to pass its solution to future generations. Mutations of
the solutions exposed to a new individual are another way of mimicking nature
in EAs. The requirements of the environment are related to the fitness func-
tion, for which we utilize GED′ defined in Section 8.1. Starting with generating
a (quasi) random initial population, an EA repeats the following three steps,
until a termination criterion is met: offspring generation, individual evaluation,
survival function application.

9.1.1 Initial Population Generation and
Evaluation of an Individual

An individual represents a mapping f . Individuals in the initial population are
created with random permutations. However, initialization in a more sophisti-
cated manner, which, as a consequence, will require more time, may reduce the
convergence time of the algorithm. Here, we may use protein sequence similari-
ties, acquired by BLAST [9], for instance.

The score of an individual together with its health, a non-increasing function
of the number of iterations and GED′ of the individual, defines its fitness. The
introduction of health allows keeping individuals with a “bad” GED′ for a num-
ber of iterations instead of simply discarding them immediately. This introduces
some divergence and contributes to avoiding local optima.

9.1.2 Offspring generation
To generate new individuals we combine a set of different operations to balance
between a reasonably high population diversity to avoid local optima and a high
and fast convergence towards optimal solutions. The operations are as follows:

• Random generation creates an individual by relating it to a mapping based
on a random permutation; it requires O(n) time.

Methods 121

• In PMX-like mutation we adopt the idea of partially-mapped crossover
(PMX), initially introduced in [113]. We partition a mapping into two
sets of pairs, low scores and high scores, by using the average over all pair
scores in the mapping as a threshold. Afterwards, the high scoring pairs
are swapped randomly. To avoid local minima, however, we also swap
low scoring pairs with a low probability (of 1% for GEDEVO and PPI
networks). PMX-like mutation evaluates each pair by using the pairScore,
which requires at most O(n · d) time.

• A so-called crossover results in an individual that in the first place pre-
serves pairs with low pair scores from two or more parents. Ties are re-
solved randomly. Crossover is similar to the previous operation with a
term responsible for sorting n pairs from a constant number of parents
p ≤ 8, which results in O(p · (n · d) + p · n · log(p · n)) = O(n · (logn+ d))
time.

• With directed mutations we swap of a number r ≤ 20 randomly chosen
“bad” pairs in the mapping of an individual. At the end, the one swap
that induces the best score is kept. One swap requires recomputing two
pair scores. Thus, the running time of the operation is bound by O(r · 2 ·
n · (d+ s)) = O(n · d).

These operations are GEDEVO’s strategies to find and keep “good” pairs
while a “bad” pair is swapped more often with another “bad” pair, in this way
improving the final score of the mapping. Over a number of iterations, many
individuals are exposed to these operations by GEDEVO to traverses the search
space and optimizes the final score.

9.1.3 Termination and Running Time
No practical exact algorithm for computing optimal value of the graph edit
distance problem on large graphs exists. Consequently, it is hard to theoreti-
cally estimate the number of necessary iterations until a “good” solution can be
achieved. Convergence time mainly depends on the population size as well as on
the input graphs’ topological properties. Our implementation of GEDEVO can
be set to execute (1) a specified number of iterations, (2) a pre-specified running
time, or (3) a fixed number of iterations of no significant changes in the mapping
scores of the best individuals (such that convergence was probably reached).

The total theoretical running time of GEDEVO is based on the run times
of the individual steps. The evaluation step is performed in O(P · n · d), with
P is the population size. The offspring generation step requires O(P · (n + n ·
d + n · (logn + d) + n · d)) = O(P · n · (logn + d)) time. The selection step
sorts the individuals from the older and new generations in O(2 · P · log(2 · P))

122 Evolutionary Algorithm for Network Alignment

0 20000 40000 60000 80000

0
10

20
30

40

Time (seconds)

E
C

 (
%

)

GEDEVO
50 indiv.
100 indiv.
1000 indiv.
5000 indiv.

SPINAL
C−GRAAL
MI−GRAAL

Fig. 9.1: The influence of the population size to the performance of GEDEVO aligning
yeast2 vs. human1 in comparison to SPINAL, C-GRAAL and MI-GRAAL.
Each line/symbol represents one run.

time. Given that GEDEVO runs I iterations, its total running time sums up to
O(I · P · n · (logn+ d)).

9.2 Evaluation
Here, we evaluate GEDEVO against the four tools GHOST, SPINAL, C-GRAAL
and MI-GRAAL, which form the current state of the art and have been shown
to outperform other existing tools [70, 66, 5].

All tools were executed on a 64 bit Linux 2.6.32 kernel, running on an Intel
Xeon CPU W3550 @ 3.07GHz and 12 GB RAM. SPINAL is deterministic and
was thus executed only one time for each pair of the input networks, while
MI-GRAAL, GHOST, C-GRAAL and GEDEVO, as randomized algorithms, we
executed 10 times for each pair. The execution of all tools was interrupted after
24 hours of runtime without termination. MI-GRAAL and C-GRAAL, similarly
to GHOST, require graphlet degree signatures as preliminary node similarity
measures, which were precomputed and used as input (precomputation time not
taken into account for evaluation). The termination criterion for GEDEVO was
set to stop after 3000 iterations of no significant improvement of GED′ amongst
the best solutions (individuals).

In Fig. 9.1 we depict the influence of the population size to the progression
of the EC (convergence). Runs with 50 individuals (black line) converged earlier
to the final solution, still providing quite high values of EC. With larger pop-
ulation sizes the runs obtained slightly better alignments with higher EC and

Evaluation 123

1 10 100 1000 10000

0
20

40
60

80

Time (seconds)

E
C

 (
%

)

cjejuni vs ecoli_fi
Meso vs Syne
yeast2 vs human1
HS vs SC
SC vs DM
DM vs human1
ulitsky vs hprd
human1 vs hprd

GEDEVO
SPINAL
C−GRAAL
MI−GRAAL

Fig. 9.2: Convergence and Edge Correctness vs. run time for aligning different PPI
networks, 10 runs for each tool. Each line/symbol represents one run.

reached them slightly faster. This indicates that GEDEVO is quite robust to
different population sizes, given that they are reasonably large. In the remaining
evaluations (that are described below) we used 500 individuals per run.

We executed GEDEVO and the four competing tools on multiple pairs of
networks from Table 8.2 in Chapter 8. The resulting edge correctnesses and
the according run times for all tools are depicted in Fig. 9.2. Since SPINAL,
C-GRAAL and MI-GRAAL do not provide intermediate results, the final values
are shown point-wise (diamonds, triangles, and circles); for GEDEVO the pro-
gression of EC is depicted with lines. The plot illustrates that GEDEVO can
provide a “good” solution comparably fast. A summary of the maximal EC val-
ues from the plot is given in Table 9.1. Unsuccessful runs (no termination after
24 hours) of SPINAL and MI-GRAAL are marked with an “x”). Note: Since
GHOST only terminated for the alignment of the two small networks Meso and
Syne (with best EC: 41.98, runtime: 140 sec) we did not add it to Table 8.2 and
Fig. 9.2.

The networks human1, hprd and ulitsky are all human PPI networks, there-
fore the EC scores for GEDEVO are comparably high. The results for aligning
ulitsky with human1 or hprd are rather “poor” since ulitsky is a compilation of
data from different databases. The known overlap of ulitsky with hprd is only
649 nodes and 15 305 interactions, from which GEDEVO aligned 11 800.

124 Evolutionary Algorithm for Network Alignment

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time (seconds)

E
C

 (
%

)

hprd (9520, 37047)
human1 (9141, 41456)
DM (7533, 22477)
ulitsky (7384, 23462)
ecoli_fi (1941, 3989)
Meso (1803, 3094)

GEDEVO
SPINAL
C−GRAAL
MI−GRAAL

Fig. 9.3: Aligning a network against itself should result in an Edge Correctness of
100%, which is achieved with GEDEVO and C-GRAAL in most cases (see
text). Each line/symbol represents one run. Unfilled symbols (at the right
side of the plot) mean that it took more than 10 minutes to achieve the
corresponding EC values.

To further investigate the robustness of the four methods on graphs where
we definitely know the correct solution, we aligned some PPI networks against
themselves. Naturally, this should result in an EC of 100%. In Fig. 9.2, we
plot the EC vs. run time for the following data sets: Meso, ecoli_fi, ulitsky,
DM, and human1. Note that GHOST only terminated for the self-alignment
of the two smallest networks Meso (with best EC: 100%, runtime: 197 sec)
and ecoli_fi (with best EC: 100%, runtime: 173 sec). We also downloaded and
tested Natalie 2.0 [76] on our servers. It terminated with memory faults for all
network pairs but the two smallest ones: For cjejuni vs. ecoli_fi (runtime: 7
hours) and self-alignment of Meso (runtime: 11 hours) the tool resulted with
edge correctnesses of 97.64% and 20.38% respectively. Hence, we did not include
GHOST and NATALIE 2.0 with Figure 4. Further note that a set of methods
exists that restrict alignment candidates to a set of pre-mapped nodes (limited
search space), see for example [77] and [114]. GEDEVO can be restricted to
such pre-mappings (e.g. with BLAST as preprocessing) but it does not rely on
it.

In conclusion, GEDEVO, in contrast to the other approaches, was able to
achieve the expected 100% EC in all cases, often even faster than the existing

Evaluation 125

Tab. 9.1: The highest achieved Edge Correctness (EC) quality scores for alignments
of different PPI networks from Fig. 9.2.

EC (%)
Network 1 Network 2 GEDEVO MI-GRAAL C-GRAAL SPINAL
cjejuni ecoli_fi 33.70 24.60 22.56 22.09
Meso Syne 43.60 39.88 33.19 25.86
yeast2 human1 38.14 21.38 22.20 19.33
HS SC 30.40 26.15 24.15 25.59
SC DM 20.79 17.73 20.59 21.07
DM human1 21.88 x 27.36 27.04
ulitsky hprd 32.00 x 27.56 24.68
human1 hprd 89.37 x 47.07 x

tools. C-GRAAL reached around 97-98% of EC in most cases, but required up
to 11 hours for the biggest networks (hprd, human), for which GEDEVO needed
only approx. 10 minutes.

To sum up, in almost all cases, GEDEVO outperformed SPINAL, GHOST,
C-GRAAL and MI-GRAAL in terms of quality and run time. Moreover, in
contrast to the other methods GEDEVO was able to recognize the high similarity
(human1 vs. hprd) and composition (ulitsky vs. hprd) between the human PPI
networks using topological information only. In addition, we wish to emphasize
that GEDEVO provides intermediate results that allow for a manual termination
of the software at earlier iterations when a high EC score (or a corresponding
low GED′ value) has been found and convergence seems to be reached.

10 Evolutionary Algorithm
for Multiple Network
Alignment

In this chapter we describe GEDEVO-M a novel approach to the global multiple
network alignment problem. In contrast to existing approaches, we do not want
to allow for many-to-many mappings but require each node from each graph to be
mapped to at most one node from each other graph. Our intention is to identify
a solid ‘core interactome’, which we define as a set of nodes and interactions that
we find topologically conserved in a set of multiple PPI networks. We extend the
definition of the pairwise global network alignment defined in Chapter 8 and, in
contrast to existing approaches, we seek to ensure that a network, if aligned to
multiple instances of itself, will give a result where all nodes from all instances
are aligned to its corresponding copies, i.e. in pairwise self-alignment. We will
extend the graph edit distance model to multiple graph instances and introduce
GEDEVO-M, an evolutionary algorithm that minimizes the corresponding opti-
mization function. GEDEVO-M and all used data sets are publicly available at
http://gedevo.mpi-inf.mpg.de/multiple-network-alignment/.

The rest of the chapter is organized as follows. We first give necessary nota-
tions and formally define the topological multiple network alignment problem.
We also introduce several indicators that are useful for evaluating the result-
ing alignment. We further describe an evolutionary algorithm and its operators
to approach the problem. Next, we present experimental results from aligning
multiple real PPI networks with GEDEVO-M.

10.1 Problem definition
We adopt the notation introduced in Section 8.1 of Chapter 8. Let G = {G1, . . . ,

GN} be a set of N graphs. A multiple mapping (m-mapping) from G1 to G′ ⊆

http://gedevo.mpi-inf.mpg.de/multiple-network-alignment/

128 Evolutionary Algorithm for Multiple Network Alignment

E1

A3

A4

B3

A1
B1 C1 D1

A2
B2 C2 D2 E2

C3 D3 E3

B4 C4 D4 E4

G1

G2

G3

G4

GED′f1,2
(G1, G2) = 1, GED′f1,3

(G1, G3) = 4,
GED′f1,4

(G1, G4) = 4, GED′f2,3
(G2, G3) = 3,

GED′f2,4
(G2, G4) = 3, GED′f3,4

(G3, G4) = 2

mGED′F =
∑
fi,j∈F GED′fi,j (Gi, Gj) = 17

4-AE = 1, 4-AR = 1
2 ,

3-AE = 2, 3-AR = 3
4 ,

2-AE = 2, 2-AR = 5
4

Fig. 10.1: An m-mapping F (dashed lines) on graphs G1, G2, G3 and G4. There is
only one set of four edges that are mapped to each other in all graphs: the
edges (C1, D1), (C2, D2), (C3, D3), (C4, D4), such that the frequency of edges
aligning in all four graphs 4-AE equals to 1. The smallest number of edges
in one of the input graphs is two, such that we have 4-AR=4-AE/2=1/2;
similarly for the remaining values of k-AE and k-AR, for k = {2, 3}.

G \G1 is a set F ′ = {fi,j : Gi, Gj ∈ G′ ∪G1} of one-to-one mappings such that
f1,j : V (G1) → V (Gj) and fi,j(v) = f1,j(f−1

1,i (v)), for every Gi, Gj ∈ G′ and
v ∈ Gi. Given an m-mapping F ′, we define the multiple graph edit distance
(mGED′) induced by F ′ as:

mGED′F ′ :=
∑

fi,j∈F ′
GED′fi,j (Gi, Gj) ,

and multiple edge correctness (mEC) is defined as:

mECF ′ :=
∑
fi,j∈F ′ ECfi,j (Gi, Gj)

|F ′| .

We use the mGED′ to evaluate the quality of an m-mapping. However, mEC is
more convenient to interpret, in particular on graphs of different sizes, especially
given that the optimal mGED′ value (minimum) is unknown a priori while the
mEC scales between 0 and 1. Given an m-mapping F on G, a pair v, u ∈ V (G1),
is k-aligned if |{(f1,j(v), f1,j(u)) ∈ E(Gj) : Gj ∈ G}| = k. If k > 1, we also refer
to k-aligned pair as k-aligned edge. We denote the number of k-aligned pairs by
k-AE. The k-aligned edges ratio is defined as:

k-AR :=
N∑
i=k

i-AE
maxi{|E(G1)|, . . . , |E(GN)|} ,

Methods 129

where maxiA is the i-th largest (or the (N − i+ 1)-th smallest) element in the
set A. Given a k-common graph G that is built on the vertices that are incident
to `-aligned edges, for ` = k, . . . , N , the value of k-AR indicates the size of G
opposed to the ideal case when (k − 1)-many smallest graphs G′′ ⊂ G are all
subgraphs of a graph G ∈ G \G′′. Given an m-mapping F ′ to G′ and v ∈ V (G1),
a tuple is a set {f(v), where f : v → V (G), G ∈ G′}. A tuple score is defined as:

PF ′(v) :=
∑
f∈F ′

pf (v) ,

and full score S is defined as:

S :=
∑

v∈V (G1)

PF (v) .

Given a set of graphs G, we define the Topological Multiple Network Align-
ment problem (TMNA) as the problem of finding an m-mapping F on G such
that mGED′F is minimal over all possible m-mappings on G. Clearly, TNMA is
NP-hard even for two graphs. The intuition behind the formulation of TNMA is
as follows. Ideally, a biologically meaningful alignment of multiple PPI networks
should map functionally related proteins. At the same time, for closely related
species, the overall difference in the corresponding PPI networks should be small
due to evolutionarily conservation of many interactions (edges in the graphs).
This is thought to be achievable if many pairs of vertices induce smaller numbers
of edge insertions and deletions. Similarly to the graph isomorphism problem,
in TNMA, when aligning N copies of a graph G, an optimal m-mapping should
result in |E(G)|-many N -aligned edges and have mGED’= 0. However, with the
current PPI data being noisy and incomplete, the requirement of strict corre-
spondence of all edges is unrealistic. We therefore chose to model the multiple
PPI network alignment as TNMA. Clearly, the definition of TMNA can be gener-
alized to integrate external data such as edge weights and external node-to-node
similarities (derived, for instance, from pairwise protein sequence alignments).

10.2 Methods
To approximate Topological Multiple Network Alignments we propose a heuris-
tic based on an evolutionary algorithm that extends our approach described
in Chapter 9 developed for the alignment of two networks. Note that testing
all possible mappings is already unfeasible for the pairwise network alignment
problem. In TMNA, we also observe exponential growth of the search space
with respect to the number of input graphs N . The number of all possible

130 Evolutionary Algorithm for Multiple Network Alignment

m-mappings here corresponds to O((n!)N), where n is the number of vertices in
the input graphs.

Next we describe evolutionary operators that are specific for GEDEVO-M
and essential for its performance. In GEDEVO-M, generating a new population
we chose randomly a set G′ ⊆ G \G1 and apply the following operators on G′:

• In a PMX-like mutation a new individual is created by copying the m-map-
ping of a randomly selected individual from the previous generation. We
randomly swap (“bad”) tuples on G′ that have tuple scores higher than a
certain threshold. The threshold is defined as the average over all tuple
scores on G′.

• In a random mutation the tuples on G′ with lower than the threshold values
of their tuple scores are also given a certain chance to be swapped.

• A crossover operator constructs a new m-mapping from two or more “par-
ent” individuals of the previous generation. We first compute tuple scores
for every possible subset of G and sort them. Then, starting with larger
subsets of G, we repeatedly iterate over the corresponding tuple scores and
assign some of these tuples to the new m-mapping until every subset is
considered. Subsets having identical sizes are processed in random order.
To maintain consistency (one-to-one requirement) in the new m-mapping,
we set the tuple only if none of its element was already assigned in the
previous steps. Finally, the unassigned images of the m-mapping are dis-
tributed randomly. We exploit three versions of the crossover operator.
The first combines two individuals that have better values of fitness func-
tion achieved so far. The other two versions generate m-mapping from two
and 3-8 parents: the parents here are selected randomly.

• A directed mutation selects a tuple t corresponding to G′ and greedily looks
for another tuple t′ such that when t and t′ are swapped the resulting
m-mapping has the best improvement of the fitness function.

• A greedy mutation randomly chooses a set of tuples on G′ of size at most
10 and changes the m-mapping by testing every possible permutation of
the chosen subset. The permutation that results in the best improvement
of the fitness function is assigned to the m-mapping at the end.

• A random m-mapping results in random permutations of the tuples of G′.

We use the score S as an indicator of the quality of an m-mapping. To
increase population diversity, we also exploit the notion of the health of an
individual, which is maximal when an individual is born and drops over time
(number of iterations). If the health reaches or falls below zero, the individual

Methods 131

Tab. 10.1: Protein-protein interaction data sets used for evaluating GEDEVO-M.

Short name Species Proteins Interactions Citation
Dmela Drosophila melanogaster 7569 23 017 [101]
Scere Saccharomyces cerevisiae 5011 22 503 [101]
Celeg Caenorhabditis elegans 2686 4079 [101]
Hsapi Homo sapiens 2332 3305 [101]
cjejuni_hc Campylobacter jejuni 1095 2988 [96]
Meso Mesorhizobium loti 1803 3094 [97]
Syne Synechocystis sp.(PCC6803) 1908 3102 [98]
ecoli_fi Escherichia coli 1941 3989 [99]
hprd Homo sapiens 9671 39 214 [104]

is discarded. The health of the best 10% (according to S) of individuals remains
unmodified; the health of the remaining 90% of individuals are subject to the
following linear reduction: The best individual there remains unchanged and the
worst one loses 90% of maximal health. Consequently, individuals with higher
(worse) values of S and poor health have lower chances to survive and contribute
to the future generations.

Similarly to GEDEVO we utilize Graphlet-degree Signatures Distances (GDS).
In pair scores and thus in the full score S we combine the accumulated GSDs of
the m-mapping and its actual mGED′. The GSD serves as a topological indi-
cator for the differences of the local neighborhoods of the potentially matched
vertices. With the above defined set of operators and the score S describing the
quality of an m-mapping, our evolutionary algorithm GEDEVO-M improves the
resulting m-mappings by preferably keeping those elements of m-mappings un-
changed that lead to the lower values of the fitness function and modify elements
of the m-mappings that have higher ones.

The crossover operator is the most computationally expensive operation
(more expensive than evaluation of an individual, random mapping and other
operators). For an individual there are T := n · 2(N−1) distinct tuples ob-
tained from 2(N−1) subsets of G \ G1 and the number n of vertices in input
graphs. Computing a pair score requires O(d) time, where d is the highest de-
gree of vertices. Thus, computing tuple scores for π parents in the crossover
operator requires O(π · T · d) time. Sorting all the tuples can be performed in
O(π · T · log(π · T)) time. Assigning tuples to the new mapping requires at most
2(N−1) passes on π · T values of tuples scores. In the final step, filling unassigned
vertices is performed in O(n · 2(N−1)) time. Thus, the overall running time of
the crossover operator on π ≤ 8 parents is O(π ·T · (d+ log(π ·T))), which is not
larger than O(n · 2N · (d+N + logn)). Given, that the evolutionary algorithm
runs I iterations with population size P , its overall running time corresponds to
O(I · P · n · 2N · (d+N + logn)). As for memory consumption, each individual

132 Evolutionary Algorithm for Multiple Network Alignment

Tab. 10.2: The values of mGED′, mEC and aligned pairs aligning two sets of bacterial
and eukaryotic PPI networks. See text and Fig. 10.1 for an illustration of
mGED′, mEC, 4-AE, 3-AE, and 2-AE.

achieved random k-aligned edges
Set of networks mGED′ mEC mGED′ mEC 4-AE 3-AE 2-AE
Dmela, Scere,
Celeg, Hsapi 139 024 24.16% 155 796 0.18% 310 638 4657

cjejuni_hc, Meso,
Syno, ecoli_fi 30 287 25.27% 39 327 0.53% 328 503 1139

Tab. 10.3: Proportions of aligned edge aligning two sets of bacterial and eukaryotic
PPI networks. See text and Fig. 10.1 for an illustration of 4-AR, 3-AR,
and 2-AR.

Set of networks aligned
edges

proportion of
aligned edges 4-AR 3-AR 2-AR

Dmela, Scere,
Celeg, Hsapi 12 468 23.57% 9.38% 23.24% 24.91%

cjejuni_hc, Meso,
Syno, ecoli_fi 5099 38.71% 10.98% 26.86% 63.51%

requires O(n) space to represent every mapping from G1 to G′ ∈ G \G1. A sig-
nificant amount of memory is needed to store the values of the distance matrices
(used in the pair score) between every pair of input graphs. Thus, the overall
amount of required space results in O(P ·N · n+

(
N
2
)
· n2).

10.3 Data
To evaluate GEDEVO-M we used the same source of network data previously
described in Chapter 8 (see Table 10.1 for the summary). The PPI networks of
four eukaryotic species were extracted from the DIP database (release July 7th,
2013), which contains experimentally detected and manually curated protein-
protein interactions [101].

10.4 Evaluation
In this section we provide experimental evaluation of the proposed algorithm.
All executions of GEDEVO-M were performed on a 64-bit Linux 3.2.42 kernel
running on AMD Opteron 6276 with 150GB RAM and 50 threads. From our
testing experiments, despite the probabilistic nature, GEDEVO-M converged
to similar mGEDs in all cases. We therefore present only the results for one
GEDEVO-M run per input data set. The initial population size was set to 500

Evaluation 133

0 2000 4000 6000 8000 10000

0
20

40
60

80
10

0

Iterations

m
E

C
 (

%
)

hprd−2
hprd−3
hprd−4
hprd−5
hprd−6

1 100 10000

0
20

40
60

80
10

0

Time (seconds)

m
E

C
 (

%
)

hprd−2
hprd−3
hprd−4
hprd−5
hprd−6

Fig. 10.2: Development of the multiple Edge Correctness (mEC) over progressing
iterations (and elapsing time) while aligning multiple copies of the hprd
network. Note that a perfect alignment of a network to multiple copies
of itself should reach an edge correctness of 100%, which is reached by
GEDEVO-M.

individuals. As the termination criterion we set GEDEVO-M to stop after 100k
iterations or if no changes in the best value of mGED′ has been observed in in
last 3k iterations.

We aligned two sets of PPI networks: “eukaryotic” (Dmela, Scere, Celeg,
Hsapi) and “bacterial” (cjejuni_hc, Meso, Syno, ecoli_fi). The properties of the
resulting alignments are summarized in Table 10.2. Note, the values of mEC for
randomly generated m-mappings (which are also used for the initialization step)
are just 0.18% and 0.53% for eukaryotic and bacterial networks, respectively.
Thus, GEDEVO-M substantially improved these values to 25.16% and 25.27%,
respectively. In Table 10.3, we provide edge alignment ratios and the proportions
of aligned edges. Note that almost every fourth edge of the eukaryotic networks
has an aligned edge; for the bacterial networks more than one third of edges is
matched (38.71%).

The common graphs that are built on 4-, 3-, 2-aligned edges of the m-mapping
on eukaryotic networks consist of 490, 1290, 4923 nodes, respectively. For the
bacterial networks these values correspond to 511, 1057, 1565, respectively. The
edges and vertices of the common graphs may give hints to the “core interac-
tome”.

By the definition of TMNA, aligning multiple copies of a network the result-
ing mGED′ should be 0 with an mEC of 100%. Note that many tools for pairwise
network alignment were not able to cope with the self-alignment. To demon-
strate that GEDEVO-M is able to cope with this task on multiple networks,
we aligned several copies of the comparably big hprd network. In Fig. 10.2, we
show that GEDEVO-M successfully aligns multiple copies (i.e. 2-6x) of the hprd
input network. In all tests GEDEVO-M achieved optimal values for mGED′

134 Evolutionary Algorithm for Multiple Network Alignment

(0 edits) and mEC (100%). However, the time needed to reach this optimum
grows exponentially with the number of input networks. This can be explained
by the increasing number of the subsets of networks that can be generated when
applying an evolutionary operator.

11 Discussions and Outlook

We presented several heuristics for Network Alignment and evaluated topological
quality of the resulting alignments.

Our methods possess a set of advantages over the existing approaches:

• accuracy: NABEECO and GEDEVO perform similarly well but converges
towards better solutions in shorter time on larger graphs.

• simplicity: The intuition behind the GED model is that for more similar
networks there is a mapping that induces lower numbers of edge insertions
and deletions. Correspondingly, a “good” mapping is composed of pairs
of nodes that fit each other. To measure how good two nodes fit each
other given a mapping we use the definition of the pair score, which in
turn compounds the final criterion. The algorithms generate and improve
mappings by applying a set of simple operators. The operators exploit the
information about computed pair scores, and try to keep node pairs with
better pair scores matched and get rid of those node pairs that do not fit
each other well. As a whole, with the help of the defined operators on pairs
and mappings, the algorithms are guided by these definitions and explore
the search space correspondingly;

• scalability: For large-scale graphs our heuristics perform similarly well or
better than existing tools; all the methods can already run on multiple
cores and can naturally be parallelized to be able to run on multiple com-
putational nodes that will allow to scale them to even larger graphs;

• flexibility: In contrast to many other methods and tools, NABEECO,
GEDEVO and GEDEVO-M can work on topology only but they may also
naturally incorporate non-topological data and can further be executed on
any kind of graphs – labeled and directed, thereby generally allowing to
compare, for instance, gene regulatory networks as well;

• diversity: While the most algorithms and tools for the network alignment
problem result in a single solution mapping only, our approaches can pro-
duce multiple ranked candidates per a single execution run. This property

136 Discussions and Outlook

enables generation of more elaborated hypotheses about the true solution
by analysis and comparison of the candidates.

While the overall running time and memory consumption on powerful com-
puters are satisfactory, they can be one of the major hindrances for desktop
computer users, in particular for bigger graphs: The higher hardware require-
ments are predictable due to the randomness of the methods: their performance
depends on the population size and the number of iterations.

Next we outline further work required to improve applicability of our tools.
First, there should be a possibility to incorporate “pre-matching” that is the
knowledge of nodes that are known to correspond can be specified in the in-
put. This feature will restrict the search space, and, more importantly, keep the
global structure of the resulting alignment unchanged (compare to [115]). In our
work we demonstrated the performance of our tools using topological informa-
tion only. But it is also interesting to find proper transformations of the relevant
biological data that can be incorporated into our tools in order to generate bio-
logically more reliable alignments. The main difference between NABEECO and
GEDEVO is that the former mainly focuses on local space exploration around
found mappings, while the latter diversifies the know solutions to greater extent
without extensive exploration of neighboring mappings. Therefore, it is interest-
ing to see to what extent the performance of the current tools can be improved
by combining their strategies and operators (similar to [116]).

Currently, the fitness function focuses on the number of edge insertions and
deletions induced by the mapping and the operators designed to minimize this
value. Depending on the amount of noise and completeness of the network this
may result in a close to optimal mapping that does not preserve connected-
ness of the common subgraph. Therefore, a new criterion and operators should
be designed that keep balance between GED′ and the connectedness of the so-
lution mapping. Here, new operators should modify a mapping so that the
nodes and their neighbors remain close to each other when mapped to the other
graph. The closeness criteria can, for example, be derived from the defini-
tion of Neighborhood-Preserving Mapping (NPM) and Compactness-
Preserving Mapping (CPM).

Moreover, a generalization of one-to-one node mappings to constrained many-
to-many mappings is needed in order to address such evolutionary events as gene
duplication and gene fusion, and to deliver better alignments. A many-to-many
mapping here can, for example, be defined as a mapping that maps every node
of the first network to at most two (or three) nodes of the second network and
vice versa.

Despite the availability of developed methods and tools for the network align-
ment problem, there is a great amount of space for future studies. First, the
research community will benefit from a platform that will provide a system-

137

atic and reproducible evaluation of the existing and future tools (similar to
ClusEval [117]). The input data for the platform consists of standard real net-
works of various sizes modified by different models of noise. Aligning the input
networks, the platform should be able to evaluate the influence of parameters
on the topological and biological quality indicators of alignments. The topolog-
ical quality indicators should include not only simple and important ones, such
as Edge Correctness, but also more sophisticated indicators that, for example,
show if the alignment keeps the overall network structure undestroyed (see the
definitions of NPM and CPM in chapters 4- 5). For network pairs annotated
with Gene Ontology (GO) terms the platform should not only count the num-
bers of overlapping GO terms to evaluate biological quality of alignments, but
also use semantically more consistent measures, such as ones described in [89].

Secondly and more important, since it is rather impossible to reconstruct
the actual process of evolution, the manual curation of resulting mappings is
obligatory to create reliable and reusable alignments. Indeed, the ultimate aim
of the network alignment problem is not to generate an alignment that optimizes
a certain topological and biological criterion, but to find the actual correspon-
dence between subnetworks of two species. Such correspondence enables un-
derstanding the generalities and differences between species and allows to reuse
knowledge about one species for the other species in a reliable and accurate
way. As for many bioinformatic problems, it is very unlikely that a fully au-
tomated and trustful tool for revealing ground truth in the network alignment
problem will be developed in the nearest future. Therefore, the whole field and
research community will benefit from the availability of a user friendly, flexible
and customizable software tool that, rather than generate one single solution,
will automate the process of assigning the correspondences between nodes of
networks. Such a tool should not only visualize alignments, for example, as a
plugin for Cytoscape [118], but also provide a possibility to incorporate different
models and data to generate candidate mappings and to facilitate the process of
reliable alignments in incremental and interactive manner. Note this prospective
advantageously distinguishes our fairly general methods since at any moment of
executions they provide a pool of different solutions that can be evaluated by a
variety of models, helping to construct reliable alignments.

Bibliography

[1] Sayers, E.W., Barrett, T., Benson, D.A., Bolton, E., Bryant, S.H., Canese,
K., Chetvernin, V., Church, D.M., DiCuccio, M., Federhen, S., Feolo, M.,
Fingerman, I.M., Geer, L.Y., Helmberg, W., Kapustin, Y., Landsman, D.,
Lipman, D.J., Lu, Z., Madden, T.L., Madej, T., Maglott, D.R., Marchler-
Bauer, A., Miller, V., Mizrachi, I., Ostell, J., Panchenko, A., Phan, L.,
Pruitt, K.D., Schuler, G.D., Sequeira, E., Sherry, S.T., Shumway, M.,
Sirotkin, K., Slotta, D., Souvorov, A., Starchenko, G., Tatusova, T.A.,
Wagner, L., Wang, Y., Wilbur, W.J., Yaschenko, E., Ye, J.: Database
resources of the National Center for Biotechnology Information. Nucleic
Acids Res 39(Database issue) (2011) D38–51

[2] Baumbach, J.: On the power and limits of evolutionary conservation–
unraveling bacterial gene regulatory networks. Nucleic Acids Res 38(22)
(2010) 7877–84

[3] del Toro, N., Dumousseau, M., Orchard, S.E., Jimenez, R.C., Galeota, E.,
Launay, G., Goll, J., Breuer, K., Ono, K., Salwínski, L., Hermjakob, H.:
A new reference implementation of the psicquic web service. Nucleic Acids
Research 41(Webserver-Issue) (2013) 601–606

[4] Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz,
P., Sittler, T., Karp, R.M., Ideker, T.: Conserved patterns of protein
interaction in multiple species. PNAS 102(6) (2005) 1974–1979

[5] Memišević, V., Pržulj, N.: C-GRAAL: Common-neighbors-based global
GRAph ALignment of biological networks. Integrative Biology 4 (2012)
734–743

[6] Heath, A.P., Kavraki, L.E.: Computational challenges in systems biology.
Computer Science Review 3(1) (2009) 1–17

[7] Atias, N., Sharan, R.: Comparative analysis of protein networks: hard
problems, practical solutions. Commun. ACM 55(5) (2012) 88–97

140 Bibliography

[8] Hart, G.T., Ramani, A., Marcotte, E.: How complete are current yeast
and human protein-interaction networks? Genome Biology 7(11) (2006)
120

[9] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic
local alignment search tool. Journal of molecular biology 215(3) (1990)
403–410

[10] Krissinel, E.B.: On the relationship between sequence and structure sim-
ilarities in proteomics. Bioinformatics 23(6) (2007) 717–723

[11] Tsai, W.H., Fu, K.S.: Error-correcting isomorphisms of attributed rela-
tional graphs for pattern analysis. IEEE Transactions on Systems, Man,
and Cybernetics 9(12) (1979) 757–768

[12] Baumbach, J., Guo, J., Ibragimov, R.: Covering tree with stars. In
Du, D.Z., Zhang, G., eds.: COCOON. Volume 7936 of Lecture Notes in
Computer Science., Springer (2013) 373–384

[13] Baumbach, J., Guo, J., Ibragimov, R.: Covering tree with stars. Journal
of Combinatorial Optimization ((accepted))

[14] Baumbach, J., Guo, J., Ibragimov, R.: Neighborhood-preserving mapping
between trees. In Dehne, F., Solis-Oba, R., Sack, J.R., eds.: WADS.
Volume 8037 of Lecture Notes in Computer Science., Springer (2013) 427–
438

[15] Baumbach, J., Guo, J., Ibragimov, R.: Compactness-preserving mapping
between trees. In Kulikov, A., Kuznetsov, S., Pevzner, P., eds.: CPM.
Volume 8486 of Lecture Notes in Computer Science., Springer (2014) 162–
171

[16] Ibragimov, R., Martens, J., Guo, J., Baumbach, J.: Nabeeco: biological
network alignment with bee colony optimization algorithm. In Blum, C.,
Alba, E., eds.: GECCO (Companion), ACM (2013) 43–44

[17] Ibragimov, R., Malek, M., Guo, J., Baumbach, J.: Gedevo: An evolu-
tionary graph edit distance algorithm for biological network alignment.
In Beißbarth, T., Kollmar, M., Leha, A., Morgenstern, B., Schultz, A.K.,
Waack, S., Wingender, E., eds.: GCB. Volume 34 of OASICS., Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2013) 68–79

[18] Ibragimov, R., Malek, M., Baumbach, J., Guo, J.: Multiple graph edit
distance: simultaneous topological alignment of multiple protein-protein
interaction networks with an evolutionary algorithm. In: GECCO. (2014)
277–284

Bibliography 141

[19] Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty Years Of Graph
Matching In Pattern Recognition. IJPRAI 18(3) (2004) 265–298

[20] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman (1979)

[21] Babai, L., Luks, E.M.: Canonical labeling of graphs. In Johnson, D.S.,
Fagin, R., Fredman, M.L., Harel, D., Karp, R.M., Lynch, N.A., Papadim-
itriou, C.H., Rivest, R.L., Ruzzo, W.L., Seiferas, J.I., eds.: STOC, ACM
(1983) 171–183

[22] Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. Systems Science and
Cybernetics 4(2) (1968) 100–107

[23] Justice, D., Hero, A.O.: A binary linear programming formulation of the
graph edit distance. IEEE Trans. Pattern Anal. Mach. Intell. 28(8) (2006)
1200–1214

[24] Almohamad, H.A., Duffuaa, S.O.: A linear programming approach for
the weighted graph matching problem. IEEE Trans. Pattern Anal. Mach.
Intell. 15(5) (1993) 522–525

[25] Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars:
On approximating graph edit distance. PVLDB 2(1) (2009) 25–36

[26] Lin, C.L.: Hardness of approximating graph transformation problem. In
Du, D.Z., Zhang, X.S., eds.: ISAAC. Volume 834 of Lecture Notes in
Computer Science., Springer (1994) 74–82

[27] Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern
Anal. Appl. 13(1) (2010) 113–129

[28] Matoušek, J., Thomas, R.: On the complexity of finding iso- and other
morphisms for partial k-trees. Discrete Mathematics 108(1-3) (1992) 343–
364

[29] Marx, D., Pilipczuk, M.: Everything you always wanted to know about
the parameterized complexity of subgraph isomorphism (but were afraid
to ask). In Mayr, E.W., Portier, N., eds.: STACS. Volume 25 of LIPIcs.,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014) 542–553

[30] Arvind, V., Köbler, J., Kuhnert, S., Vasudev, Y.: Approximate graph
isomorphism. In Rovan, B., Sassone, V., Widmayer, P., eds.: MFCS.
Volume 7464 of Lecture Notes in Computer Science., Springer (2012) 100–
111

142 Bibliography

[31] Arora, S., Frieze, A.M., Kaplan, H.: A new rounding procedure for the as-
signment problem with applications to dense graph arrangement problems.
Math. Program. 92(1) (2002) 1–36

[32] Bunke, H.: On a relation between graph edit distance and maximum
common subgraph. Pattern Recognition Letters 18(8) (1997) 689–694

[33] Matula, D.W.: Subtree isomorphism in o(n5/2). Annals of Discrete Math-
ematics 2 (1978) 91–106

[34] Chung, M.J.: o(n(2.55)) time algorithms for the subgraph homeomor-
phism problem on trees. J. Algorithms 8(1) (1987) 106–112

[35] Shamir, R., Tsur, D.: Faster subtree isomorphism. J. Algorithms 33(2)
(1999) 267–280

[36] Hopcroft, J.E., Tarjan, R.E.: Isomorphism of planar graphs. In Miller,
R.E., Thatcher, J.W., eds.: Complexity of Computer Computations. The
IBM Research Symposia Series, Plenum Press, New York (1972) 131–152

[37] Tai, K.C.: The tree-to-tree correction problem. J. ACM 26(3) (1979)
422–433

[38] Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance
between trees and related problems. SIAM J. Comput. 18(6) (1989) 1245–
1262

[39] Klein, P.N.: Computing the edit-distance between unrooted ordered trees.
In Bilardi, G., Italiano, G.F., Pietracaprina, A., Pucci, G., eds.: ESA.
Volume 1461 of Lecture Notes in Computer Science., Springer (1998) 91–
102

[40] Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decom-
position algorithm for tree edit distance. ACM Transactions on Algorithms
6(1) (2009)

[41] Pawlik, M., Augsten, N.: Rted: A robust algorithm for the tree edit
distance. PVLDB 5(4) (2011) 334–345

[42] Zhang, K., Statman, R., Shasha, D.: On the editing distance between
unordered labeled trees. Inf. Process. Lett. 42(3) (1992) 133–139

[43] Zhang, K., Jiang, T.: Some max snp-hard results concerning unordered
labeled trees. Inf. Process. Lett. 49(5) (1994) 249–254

[44] Shasha, D., Wang, J.T.L., Zhang, K., Shih, F.Y.: Exact and approximate
algorithms for unordered tree matching. IEEE Transactions on Systems,
Man, and Cybernetics 24(4) (1994) 668–678

Bibliography 143

[45] Akutsu, T., Fukagawa, D., Takasu, A.: Approximating tree edit distance
through string edit distance. Algorithmica 57(2) (2010) 325–348

[46] Akutsu, T., Fukagawa, D., Takasu, A., Tamura, T.: Exact algorithms for
computing the tree edit distance between unordered trees. Theor. Comput.
Sci. 412(4-5) (2011) 352–364

[47] Akutsu, T., Tamura, T., Fukagawa, D., Takasu, A.: Efficient exponential
time algorithms for edit distance between unordered trees. In Kärkkäinen,
J., Stoye, J., eds.: CPM. Volume 7354 of Lecture Notes in Computer
Science., Springer (2012) 360–372

[48] Akutsu, T., Fukagawa, D., Halldórsson, M.M., Takasu, A., Tanaka, K.:
Approximation and parameterized algorithms for common subtrees and
edit distance between unordered trees. Theor. Comput. Sci. 470 (2013)
10–22

[49] Bille, P.: A survey on tree edit distance and related problems. Theor.
Comput. Sci. 337(1-3) (2005) 217–239

[50] Tahraoui, M.A., Pinel-Sauvagnat, K., Laitang, C., Boughanem, M., Khed-
douci, H., Ning, L.: A survey on tree matching and xml retrieval. Com-
puter Science Review 8 (2013) 1–23

[51] Yannakakis, M.: Node- and edge-deletion np-complete problems. [119]
253–264

[52] Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary
properties is np-complete. J. Comput. Syst. Sci. 20(2) (1980) 219–230

[53] Burzyn, P., Bonomo, F., Durán, G.: Np-completeness results for edge
modification problems. Discrete Applied Mathematics 154(13) (2006)
1824–1844

[54] Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some
edge modification problems. Discrete Applied Mathematics 113(1) (2001)
109–128

[55] Kirkpatrick, D.G., Hell, P.: On the completeness of a generalized matching
problem. [119] 240–245

[56] Edmonds, J.: Paths, trees, and flowers. Canadian Journal of mathematics
17(3) (1965) 449–467

[57] Mucha, M., Sankowski, P.: Maximum matchings via gaussian elimination.
In: FOCS, IEEE Computer Society (2004) 248–255

144 Bibliography

[58] Gavril, F., Itai, A.: Covering a tree by a forest. In Lipshteyn, M.,
Levit, V.E., McConnell, R.M., eds.: Graph Theory, Computational Intel-
ligence and Thought. Volume 5420 of Lecture Notes in Computer Science.,
Springer (2009) 66–76

[59] Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of
Computer Algorithms. Addison-Wesley (1974)

[60] Feng, Q., Wang, J., Chen, J.: Matching and p 2-packing: Weighted
versions. In Fu, B., Du, D.Z., eds.: COCOON. Volume 6842 of Lecture
Notes in Computer Science., Springer (2011) 343–353

[61] Kelley, B.P., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B.R., Ideker,
T.: PathBLAST: a tool for alignment of protein interaction networks.
Nucleic Acids Research 32(Web-Server-Issue) (2004) 83–88

[62] Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz,
P., Sittler, T., Karp, R.M., Ideker, T.: Conserved patterns of protein
interaction in multiple species. Proceedings of the National Academy of
Sciences of the United States of America 102(6) (2005) 1974–1979

[63] Kalaev, M., Smoot, M.E., Ideker, T., Sharan, R.: NetworkBLAST: com-
parative analysis of protein networks. Bioinformatics 24(4) (2008) 594–596

[64] Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W.,
Grama, A.: Pairwise Alignment of Protein Interaction Networks. Journal
of Computational Biology 13(2) (2006) 182–199

[65] Flannick, J., Novak, A., Srinivasan, B.S., McAdams, H.H., Batzoglou,
S.: Graemlin: General and robust alignment of multiple large interaction
networks. Genome Research 16(9) (2006) 1169–1181

[66] Kuchaiev, O., Pržulj, N.: Integrative network alignment reveals large
regions of global network similarity in yeast and human. Bioinformatics
27(10) (2011) 1390–1396

[67] Singh, R., Xu, J., Berger, B.: Pairwise Global Alignment of Protein In-
teraction Networks by Matching Neighborhood Topology. In Speed, T.P.,
Huang, H., eds.: RECOMB. Volume 4453 of Lecture Notes in Computer
Science., Springer (2007) 16–31

[68] Kuchaiev, O., Milenković, T., Memišević, V., Hayes, W., Pržulj, N.:
Topological network alignment uncovers biological function and phylogeny.
Journal of The Royal Society Interface 7 (2010) 1341–1354

[69] Milenković, T., Ng, W.L., Hayes, W., Pržulj, N.: Optimal network align-
ment with graphlet degree vectors. Cancer informatics 9 (2010) 121–137

Bibliography 145

[70] Aladag, A.E., Erten, C.: SPINAL: scalable protein interaction network
alignment. Bioinformatics 29(7) (2013) 917–924

[71] Patro, R., Kingsford, C.: Global network alignment using multiscale spec-
tral signatures. Bioinformatics 28(23) (2012) 3105–3114

[72] Zaslavskiy, M., Bach, F.R., Vert, J.P.: Global alignment of protein-protein
interaction networks by graph matching methods. Bioinformatics 25(12)
(2009)

[73] Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for com-
puting the edit distance of graphs. In Escolano, F., Vento, M., eds.:
GbRPR. Volume 4538 of Lecture Notes in Computer Science., Springer
(2007) 1–12

[74] Chindelevitch, L., Liao, C.S., Berger, B.: Local Optimization for Global
Alignment of Protein Interaction Networks. In Altman, R.B., Dunker,
A.K., Hunter, L., Murray, T., Klein, T.E., eds.: Pacific Symposium on
Biocomputing, World Scientific Publishing (2010) 123–132

[75] Chindelevitch, L., Ma, C.Y., Liao, C.S., Berger, B.: Optimizing a global
alignment of protein interaction networks. Bioinformatics 29(21) (2013)
2765–2773

[76] El-Kebir, M., Heringa, J., Klau, G.W.: Lagrangian Relaxation Applied to
Sparse Global Network Alignment. In Loog, M., Wessels, L.F.A., Reinders,
M.J.T., de Ridder, D., eds.: PRIB. Volume 7036 of Lecture Notes in
Computer Science., Springer (2011) 225–236

[77] Klau, G.W.: A new graph-based method for pairwise global network
alignment. BMC Bioinformatics 10(S-1) (2009)

[78] Neyshabur, B., Khadem, A., Hashemifar, S., Arab, S.S.: NETAL: a new
graph-based method for global alignment of protein-protein interaction
networks. Bioinformatics 29(13) (2013) 1654–1662

[79] Koyutürk, M., Kim, Y., Subramaniam, S., Szpankowski, W., Grama, A.:
Detecting Conserved Interaction Patterns in Biological Networks. Journal
of Computational Biology 13(7) (2006) 1299–1322

[80] Kalaev, M., Bafna, V., Sharan, R.: Fast and Accurate Alignment of Mul-
tiple Protein Networks. Journal of Computational Biology 16(8) (2009)
989–999

[81] Deniélou, Y.P., Boyer, F., Viari, A., Sagot, M.F.: Multiple Alignment of
Biological Networks: A Flexible Approach. In: CPM. (2009) 263–273

146 Bibliography

[82] Boyer, F., Morgat, A., Labarre, L., Pothier, J., Viari, A.: Syntons,
metabolons and interactons: an exact graph-theoretical approach for ex-
ploring neighbourhood between genomic and functional data. Bioinfor-
matics 21(23) (2005) 4209–4215

[83] Liao, C.S., Lu, K., Baym, M., Singh, R., Berger, B.: IsoRankN: spectral
methods for global alignment of multiple protein networks. Bioinformatics
25(12) (2009)

[84] Flannick, J., Novak, A.F., Do, C.B., Srinivasan, B.S., Batzoglou, S.: Auto-
matic Parameter Learning for Multiple Local Network Alignment. Journal
of Computational Biology 16(8) (2009) 1001–1022

[85] Sahraeian, S.M.E., Yoon, B.J.: SMETANA: Accurate and Scalable Al-
gorithm for Probabilistic Alignment of Large-Scale Biological Networks.
PLoS ONE 8(7) (07 2013) e67995

[86] Shih, Y.K., Parthasarathy, S.: Scalable global alignment for multiple
biological networks. BMC Bioinformatics 13(S-3) (2012) S11

[87] Alkan, F., Erten, C.: BEAMS: backbone extraction and merge strategy
for the global many-to-many alignment of multiple PPI networks. Bioin-
formatics 30(4) (2014) 531–539

[88] Hu, J., Kehr, B., Reinert, K.: NetCoffee: a fast and accurate global
alignment approach to identify functionally conserved proteins in multiple
networks. Bioinformatics 30(4) (2014) 540–548

[89] Schlicker, A., Domingues, F.S., Rahnenführer, J., Lengauer, T.: A new
measure for functional similarity of gene products based on Gene Ontology.
BMC Bioinformatics 7 (2006) 302

[90] Mueller, L.A., Dehmer, M., Emmert-Streib, F.: Comparing Biological
Networks: A Survey on Graph Classifying Techniques. In Prokop, A.,
Csukás, B., eds.: Systems Biology. Springer Netherlands (2013) 43–63

[91] Mohammadi, S., Grama, A.: Biological Network Alignment. In Koyutürk,
M., Subramaniam, S., Grama, A., eds.: Functional Coherence of Molecular
Networks in Bioinformatics. Springer New York (2012) 97–136

[92] Solé-Ribalta, A., Serratosa, F.: Graduated assignment algorithm for mul-
tiple graph matching based on a common labeling. IJPRAI 27(1) (2013)

[93] Pržulj, N.: Biological network comparison using graphlet degree distribu-
tion. Bioinformatics 23(2) (2007) 177–183

Bibliography 147

[94] Milenković, T., Pržlj, N.: Uncovering Biological Network Function via
Graphlet Degree Signatures. Cancer Informatics 6 (2008) 257–273

[95] Xie, J., Zhang, S.H., Wen, T., Ding, G., Yu, S., Gu, Z., Zhang, W.:
A Querying Method with Feedback Mechanism for Protein Interaction
Network. In: HISB, IEEE (2011) 351–358

[96] Parrish, J., Yu, J., Liu, G., Hines, J., Chan, J., Mangiola, B., Zhang, H.,
Pacifico, S., Fotouhi, F., DiRita, V., Ideker, T., Andrews, P., Finley, R.: A
proteome-wide protein interaction map for Campylobacter jejuni. Genome
Biology 8(7) (2007) R130

[97] Shimoda, Y., Shinpo, S., Kohara, M., Nakamura, Y., Tabata, S., Sato, S.:
A Large Scale Analysis of Protein-Protein Interactions in the Nitrogen-
fixing Bacterium Mesorhizobium loti. DNA Research 15(1) (2008) 13–23

[98] Sato, S., Shimoda, Y., Muraki, A., Kohara, M., Nakamura, Y., Tabata,
S.: A Large-scale Protein-protein Interaction Analysis in Synechocystis
sp. PCC6803 . DNA Research 14(5) (2007) 207–216

[99] Peregrin-Alvarez, J.M., Xiong, X., Su, C., Parkinson, J.: The Modular
Organization of Protein Interactions in Escherichia coli. PLoS Comput
Biol 5(10) (2009) e1000523

[100] Collins, S.R., Kemmeren, P., Zhao, X.C., Greenblatt, J.F., Spencer, F.,
Holstege, F.C.P., Weissman, J.S., Krogan, N.J.: Toward a Comprehensive
Atlas of the Physical Interactome of Saccharomyces cerevisiae. Molecular
and Cellular Proteomics 6(3) (2007) 439–450

[101] Xenarios, I., Salwínski, L., Joyce, X., Higney, P., Kim, S.M.M., Eisenberg,
D.: DIP, the Database of Interacting Proteins: a research tool for study-
ing cellular networks of protein interactions. Nucleic acids research 30(1)
(2002) 303–305

[102] Ulitsky, I., Karp, R.M., Shamir, R.: Detecting Disease-Specific Dysregu-
lated Pathways Via Analysis of Clinical Expression Profiles. In Vingron,
M., Wong, L., eds.: RECOMB. Volume 4955 of Lecture Notes in Computer
Science., Springer (2008) 347–359

[103] Radivojac, P., Peng, K., Clark, W.T., Peters, B.J., Mohan, A., Boyle,
S.M., Mooney, S.D.: An integrated approach to inferring gene-disease
associations in humans. Proteins: Structure, Function, and Bioinformatics
72(3) (2008) 1030–1037

[104] Prasad, K.T.S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S.,
Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A.,

148 Bibliography

Balakrishnan, L., Marimuthu, A., Banerjee, S., Somanathan, D.S., Se-
bastian, A., Rani, S., Ray, S., Kishore, H.C.J., Kanth, S., Ahmed, M.,
Kashyap, M.K., Mohmood, R., Ramachandra, Y.L., Krishna, V., Rahi-
man, A.B., Mohan, S., Ranganathan, P., Ramabadran, S., Chaerkady, R.,
Pandey, A.: Human Protein Reference Database–2009 update. Nucleic
acids research 37(Database issue) (2009) D767–D772

[105] Karaboga, D., Akay, B.: A comparative study of Artificial Bee Colony
algorithm. Applied Mathematics and Computation 214(1) (2009) 108–
132

[106] Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive
survey: artificial bee colony (ABC) algorithm and applications. Artificial
Intelligence Review (2012) 1–37

[107] Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks.
Science 286(5439) (1999) 509–512

[108] Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Natural
Computing Series. Springer (2010)

[109] Jong, K.A.D.: Evolutionary computation - a unified approach. MIT Press
(2006)

[110] Liu, C.W., Fan, K.C., Horng, J.T., Wang, Y.K.: Solving weighted graph
matching problem by modified microgenetic algorithm. In: Systems, Man
and Cybernetics, 1995. Intelligent Systems for the 21st Century., IEEE
International Conference on. Volume 1., IEEE (1995) 638–643

[111] Cross, A.D.J., Wilson, R.C., Hancock, E.R.: Inexact graph matching using
genetic search. Pattern Recognition 30(6) (1997) 953–970

[112] Bärecke, T., Detyniecki, M.: Memetic algorithms for inexact graph match-
ing. In: IEEE Congress on Evolutionary Computation, IEEE (2007) 4238–
4245

[113] Goldberg, D.E., Linge, R.J.: Alleles, loci, and the traveling salesman
problem. In Grefenstette, J.J., ed.: Proceedings of the First International
Conference on Genetic Algorithms and Their Applications, Lawrence Erl-
baum Associates, Publishers (1985)

[114] Bayati, M., Gleich, D.F., Saberi, A., Wang, Y.: Message-Passing Algo-
rithms for Sparse Network Alignment. TKDD 7(1) (2013) 3

[115] Wang, B., Gao, L.: Seed selection strategy in global network alignment
without destroying the entire structures of functional modules. Proteome
Science 10(1) (2012)

Bibliography 149

[116] Li, C., Yang, S.: An island based hybrid evolutionary algorithm for opti-
mization. In: SEAL. (2008) 180–189

[117] Wiwie, C., Baumbach, J., Röttger, R.: Standardization and Evaluation
of Popular Bioinformatics Clustering Tools - An Integrated Online Frame-
work. (in preparation) -(-) (2014) –

[118] Saito, R., Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Lotia, S.,
Pico, A.R., Bader, G.D., Ideker, T.: A travel guide to Cytoscape plugins.
Nature Methods 9(11) (2012) 1069–1076

[119] Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V.,
eds.: Proceedings of the 10th Annual ACM Symposium on Theory of
Computing, May 1-3, 1978, San Diego, California, USA. In Lipton, R.J.,
Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V., eds.: STOC,
ACM (1978)

	Part I Introduction
	Introduction
	Motivation
	Graph Edit Distance
	Structure of Thesis
	Publications

	Part II Topological Models of Network Alignment
	Background and Related Work
	Tree Modification Problems
	Related Work
	Preliminaries

	Covering Tree with Stars
	NP-Completeness Results
	CTS with Bounded Distinct Stars

	Neighborhood-Preserving Mapping on Trees
	NPM on Trees with k=0
	NP-Hardness Results
	Case l<d, d>1, k=0
	Case ld, d 3, k=0

	Polynomial-Time Solvable Cases
	Case l=2, d=2, k=0

	NPM on Trees with k>0
	Two Input Trees
	l=d=1, k>0, and a Tree and a Path as Input

	Integer Linear Program Formulation for NPM

	Compactness-Preserving Mapping on Trees
	NP-Hardness Results
	Case l=1, d 2
	Case l=2, d 2
	Case l 3, d 0

	Polynomial-Time Solvable Cases
	Case l=1, d=0
	Case l=2, d=0
	Case l=1, d=1
	Case l=2, d=1

	ILP Formulation of CPM with Isolation Set

	Discussions and Outlook

	Part III Heuristics for Network Alignment Using Graph Edit Distance Models
	Background and Related Work
	Introduction
	Pairwise Network Alignment
	Multiple Network Alignment

	Network Alignment with Bee Colony Optimization Strategy
	Problem definition
	Data
	Methods
	Initialization Step
	Solution Gathering Step
	Termination Step

	Evaluation

	Evolutionary Algorithm for Network Alignment
	Methods
	Initial Population Generation and Evaluation of an Individual
	Offspring generation
	Termination and Running Time

	Evaluation

	Evolutionary Algorithm for Multiple Network Alignment
	Problem definition
	Methods
	Data
	Evaluation

	Discussions and Outlook
	Bibliography

