
Mining Interesting Events
on Large and Dynamic

Data

Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultät I

der Universität des Saarlandes

Foteini Alvanaki

Universität des Saarlandes

Saarbrücken
2014

Dekan der Naturwissenschaftlich-Technischen

Fakultät I Prof. Dr. Markus Bläser

Vorsitzender der Prüfungskommission Prof. Dr. Jens Dittrich

Berichterstatter Prof. Dr.-Ing. Sebastian Michel

Berichterstatter Prof. Dr.-Ing. Gerhard Weikum

Berichterstatter Prof. Dr. Alexis Delis

Beisitzer Dr. Lili Jiang

Tag des Promotionskolloquiums 22.12.2014

Abstract

Nowadays, almost every human interaction produces some form of data. These
data are available either to every user, e.g. images uploaded on Flickr or to
users with specific privileges, e.g. transactions in a bank. The huge amount
of these produced data can easily overwhelm humans that try to make sense
out of it. The need for methods that will analyse the content of the produced
data, identify emerging topics in it and present the topics to the users has
emerged. In this work, we focus on emerging topics identification over large and
dynamic data. More specifically, we analyse two types of data: data published in
social networks like Twitter, Flickr etc. and structured data stored in relational
databases that are updated through continuous insertion queries.

In social networks, users post text, images or videos and annotate each of
them with a set of tags describing its content. We define sets of co-occurring tags
to represent topics and track the correlations of co-occurring tags over time. We
split the tags to multiple nodes and make each node responsible of computing
the correlations of its assigned tags. We implemented our approach in Storm,
a distributed processing engine, and conducted a user study to estimate the
quality of our results.

In structured data stored in relational databases, top-k group-by queries are
defined and an emerging topic is considered to be a change in the top-k results.
We maintain the top-k result sets in the presence of updates minimising the
interaction with the underlying database. We implemented and experimentally
tested our approach.

I

Zusammenfassung

Heutzutage entstehen durch fast jede menschliche Aktion und Interaktion
Daten. Fotos werden auf Flickr bereitgestellt, Neuigkeiten über Twitter ver-
breitet und Kontakte in Linkedin und Facebook verwaltet; neben traditionellen
Vorgängen wie Banktransaktionen oder Flugbuchungen, die Änderungen in
Datenbanken erzeugen. Solch eine riesige Menge an Daten kann leicht überwälti-
gend sein bei dem Versuch die Essenz dieser Daten zu extrahieren. Neue Meth-
oden werden benötigt, um Inhalt der Daten zu analysieren, neu entstandene
Themen zu identifizieren und die so gewonnenen Erkenntnisse dem Benutzer
in einer übersichtlichen Art und Weise zu präsentieren. In dieser Arbeit wer-
den Methoden zur Identifikation neuer Themen in großen und dynamischen
Datenmengen behandelt. Dabei werden einerseits die veröffentlichten Daten
aus sozialen Netzwerken wie Twitter und Flickr und andererseits strukturierte
Daten aus relationalen Datenbanken, welche kontinuierlich aktualisiert werden,
betrachtet.

In sozialen Netzwerken stellen die Benutzer Texte, Bilder oder Videos on-
line und beschreiben diese für andere Nutzer mit Schlagworten, sogenannten
Tags. Wir interpretieren Gruppen von zusammen auftretenden Tags als eine
Art Thema und verfolgen die Beziehung bzw. Korrelation dieser Tags über
einen gewissen Zeitraum. Abrupte Anstiege in der Korrelation werden als Hin-
weis auf Trends aufgefasst. Die eigentlich Aufgabe, das Zählen von zusammen
auftretenden Tags zur Berechnung von Korrelationsmaßen, wird dabei auf eine
Vielzahl von Computerknoten verteilt. Die entwickelten Algorithmen wurden
in Storm, einem neuartigen verteilten Datenstrommanagementsystem, imple-
mentiert und bzgl. Lastbalancierung und anfallender Netzwerklast sorgfältig
evaluiert. Durch eine Benutzerstudie wird darüber hinaus gezeigt, dass die
Qualität der gewonnenen Trends höher ist als die Qualität der Ergebnisse beste-
hender Systeme.

In strukturierten Daten von relationalen Datenbanksystemen werden Beste-
k Ergebnislisten durch Aggregationsanfragen in SQL definiert. Interessant dabei
sind eintretende Änderungen in diesen Listen, was als Ereignisse (Trends) aufge-
fasst wird. In dieser Arbeit werden Methoden präsentiert diese Ergebnislisten
möglichst effizient instand zu halten, um Interaktionen mit der eigentlichen
Datenbank zu minimieren.

III

Summary

In this work, we provide methods to identify emerging topics in big and dynamic
data. We focus on two types of data, stream data obtained from Web 2.0
sources and stream data obtained from queries executed in business intelligence
applications. The former are read only once, at the moment of their production,
while the latter are permanently stored in a relational database. These two types
of data are considered to split this work in two conceptual parts.

In the first part we identify emerging topics over Web 2.0 sources. Over the
years social networks like Twitter1, Youtube2, Flickr3, Tumblr4, etc. have gained
great popularity. The common characteristic of all these sites is that users create
profiles and post messages, videos or images, each one accompanied by a set of
tags. The use of these tags enables the representation with text even of non-
textual messages, e.g. videos or images. The tags are usually carefully selected
by the users to express the content or topic of each post. The sites facilitate
search mechanisms over these tags that allow users to find posts annotated with
specific tagsets that comply to their interests. Users can continuously query
these sites for new posts and try to identify the topics that are new, i.e. topics
that were not discussed in the past but are discussed now. However, we believe
that it would be more convenient for them to be automatically notified about
the newly discussed topics. Twitter, for example, provides users with a list of
the most popular tags at any time. These tags can be used by the users to get
an overview of what is currently hot in Twitter. We argue that a hot topic is
not necessarily new and propose methods that identify new topics as soon as
they start being discussed. The identified emerging topics could be obtainable
through a public website allowing users to have access to them without the need
to create a profile to yet another website.

We define topics in Web 2.0 as combinations of tags that co-exist in the
published posts and define a correlation measure that reflects how strongly
related the tags are. We define a topic to be emergent if the tags representing
it show an unexpectedly high correlation. To estimate that, we monitor the
occurrences of co-occurring tagsets over time. At each time point, we use the
observed data to compute the correlation value for each tagset. In addition,
we predict the correlation value of each tagset using the exponential smoothing
technique. The comparison of the predicted correlation value to the computed
correlation value provides us with an estimation of the degree of surprise involved
with each topic. We compare our approach with TwitterMonitor [MK10], an

1http://twitter.com/
2http://www.youtube.com/
3http://www.flickr.com/
4http://www.tumblr.com/

V

earlier approach similar to ours that considers topics to be represented by groups
of bursty tags. We conduct a user study to estimate the quality of the topics
identified by the two approaches.

The quality of the identified topics is an important aspect of the problem we
study in this thesis and the majority of works in this area focus on identifying
precise topics. This sometimes results in overlooking the efficiency aspects of
the problem. With a vast amount of produced data, methods that are able to
efficiently process them in real time are necessary. In this work, we describe a
detailed implementation of our approach that allows identifying the emerging
topics shortly after they appear in the social networks. The implementation we
propose is based on Storm5, a distributed stream processing engine that allows
to specify various operators and give directions on how they communicate with
each other. The user has to provide the functionality of the operators and
the general characteristics of the distributed setting, e.g. the number of the
machines. Storm assigns the operators to the machines and implements the
communication of them in the physical level. The general idea of our approach is
to partition the tags to the various machines based on their co-occurrences. New
posts are forwarded to the machines according to the created partitions. Each
machine computes the correlation of each of the co-occurring tagsets found in its
assigned partition. We propose various algorithms on the tags partitioning. The
algorithms attempt to minimise the communication overhead in the network and
balance the processing load in the machines. We present theoretic estimations
on the performance of the partitioning algorithms and evaluate our approach
conducting a thorough experimental study.

In the second part of this work, we focus on emerging topics over data stored
in relational databases. More specifically, we focus on a data warehouse envi-
ronment. In this setting, there are two types of databases: the operational
database which is accepting new data and is configured to provide online trans-
action processing (OLTP) with indexing, concurrency control and so on, and
the data warehouse database which stores summaries over the data and is con-
figured to provide online analytic processing (OLAP) where the queries access a
large portion of the stored data. In this thesis, we define a set of top-k group-by
queries over the data stored in the operational database. The queries associate
groups having specific characteristics to an aggregate score over a measure of
interest creating a set of top-k rankings. The rankings are created with respect
to the organisation of the data in the data warehouse. An emergent topic is
defined to be a change in a top-k ranking. A change can either be a new group
entering the ranking or an old group climbing up the positions in the ranking.
In order to spot these changes, the rankings need to be maintained against all
incoming updates.

We propose two algorithms that attempt to make the top-k rankings self-
maintainable. These algorithms minimise the interaction with the underlying
database materialising N more than the requested k groups and assigning an
estimated score to each group, not present in the top-(k+N) results. The esti-
mated scores guarantee that, at any time, the real score of each group can only
be worse than its estimated score, thus a group currently in the top-k results
is never missed. We exploit the star or data cube schemas found in data ware-
houses and share results among various top-k rankings using techniques similar

5http://storm-project.net/

to those used in multi-query optimisation. This allows us to further minimise
the need to query the stored data. We evaluate the benefits of our approach
through a thorough experimental study over the TPC-H6 dataset using updates
specifically created to highlight the benefits and drawbacks of our algorithms.

6http://www.tpc.org/tpch/

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contributions . 2
1.3 Publications . 3
1.4 Thesis Outline . 4

2 Background 5
2.1 Social Media . 5

2.1.1 Weblogs . 5
2.1.2 Twitter . 6

2.2 Data Stream Processing . 7
2.2.1 Sliding Window . 7
2.2.2 Data Streams Mining . 9
2.2.3 Distributed Data Stream Processing 9

2.3 Information Retrieval . 12
2.3.1 Inverted Index . 12
2.3.2 Results Quality Estimation Methods 13
2.3.3 Vector Space Model . 15
2.3.4 tf × idf measure . 15

2.4 Similarity Measures . 15
2.4.1 Jaccard Coefficient . 16
2.4.2 Inclusion–Exclusion Principle 17

2.5 Metrics of inequality . 17
2.6 Top-k Queries . 18

2.6.1 Taxonomy . 19
2.6.2 The Threshold Algorithm (TA) 20
2.6.3 Non-Random Access Algorithm (NRA) 22

2.7 Data Warehouses . 24
2.7.1 Data Organisation . 24
2.7.2 Extract, Transform and Load Data 26

3 Related Work 27
3.1 Data Stream Mining . 27
3.2 Topics Detection . 29

3.2.1 Emerging Topics Detection 31
3.3 Top-k Queries Over Data Streams 33
3.4 Materialised Views Maintenance 35

IX

4 enBlogue: Emergent Events Identification in Social Media 37
4.1 Problem Statement . 38
4.2 Computational Model . 39
4.3 Approach . 40

4.3.1 Identifying Seed Tags . 40
4.3.2 Measuring Tag Correlations 40
4.3.3 Shift Detection . 42
4.3.4 Scoring . 42
4.3.5 Score Smoothing . 43

4.4 Implementation . 46
4.4.1 Diversification . 48

4.5 Implementation of an Alternative Approach 50
4.6 Experimental Evaluation . 53

4.6.1 Datasets . 53
4.6.2 Algorithms . 54
4.6.3 Runtime . 54
4.6.4 Runtime and Relative Accuracy 58

4.7 User Study . 59
4.8 Summary . 61

5 Distributed Jaccard Computation 65
5.1 Problem Statement . 68
5.2 Approach . 69

5.2.1 Calculator Operator . 69
5.2.2 Partitioner Operator . 70
5.2.3 Disseminator Operator . 70

5.3 Partitioning Algorithms . 71
5.3.1 Disjoint Sets Algorithm 71
5.3.2 Set-Cover Based Algorithms 73

5.4 Theoretical Expectations . 76
5.4.1 Number of Disjoint Sets 76
5.4.2 Communication . 78

5.5 Operators and Topology . 79
5.5.1 Parser . 80
5.5.2 Partitioner . 80
5.5.3 Merger . 80
5.5.4 Disseminator . 81
5.5.5 Calculator . 81
5.5.6 Tracker . 82

5.6 Handling Dynamics . 82
5.6.1 Evolving Partitions . 83
5.6.2 Partition Quality Monitoring 84
5.6.3 Topology Scaling . 84

5.7 Experimental Evaluation . 85
5.7.1 Dataset . 85
5.7.2 Algorithms . 85
5.7.3 Parameters . 85
5.7.4 Experimental Results . 86
5.7.5 Discussion . 92

5.8 Distributed Emerging Topics Identification 94

5.9 Summary . 95

6 Events Identification in Relational Databases 97
6.1 Framework . 98

6.1.1 Updates . 100
6.2 Algorithms . 101

6.2.1 Naive Approach . 101
6.2.2 Estimates Algorithm (EA) 102
6.2.3 Groups Algorithm . 103

6.3 Experimental Evaluation . 106
6.3.1 Updates following the 80-20 rule 108
6.3.2 Random Updates . 109
6.3.3 Additional Instances . 110

6.4 Summary . 112

7 Conclusions and Future Work 113

List of Figures 116

List of Algorithms 117

List of Tables 118

References 119

Index 119

Chapter 1

Introduction

In 2013, Twitter alone contributed on average 190 million tweets every day and
3000 images were uploaded to Flickr every minute1. With all these available
data, it is difficult for the users to identify what is of interest to them. This
creates the necessity for methods that collect and analyse the data, providing
the user with an easily conceivable summary of it. Undoubtedly, users are more
interested in new information, on events that are suddenly and unexpectedly
arising. Over the past years, the research community has published a number
of works on identifying topics discussed on blogs, news portals and microblogs
(e.g. [SHM09, BNG09, PPP11]). The focus on many of these works is mainly
on identifying topics of high quality over data collected in the past, overlooking
any efficiency problems. We focus on identifying efficiently and in real time
emerging topics, or events, that are intelligible to the users.

User generated content in Web 2.0 is usually annotated with short descrip-
tive text that specify the topic of a tweet, the content of a video etc. These
annotations are, in general, called tags. In Twitter, specifically, they are called
hashtags due to the special character # used in front of each such tag. We do
not distinguish between tags and hashtags and use the terms interchangeably.
We define topics to be sets of tags and compute correlation statistics over each
such set. We consider an event to be a change in the correlation of the tags
representing it that was not expected based on the correlation values observed
during the recent past. A novel distributed implementation of general purpose
stream processing framework allows us to efficiently process the vast amount of
produced data and present an emerging topic to the users shortly after a few
messages about this topic have been published.

We extend the event identification process to more traditional settings,
i.e. business intelligence storing data in a relational database. In such a setting,
we provide users with summaries over the data in the form of top-k rankings.
Top-k rankings allow users to focus on the essence of the information. Events
in top-k rankings are defined to be either changes in the relative positions of
the elements already in the ranking or new elements, outside the ranking, re-
placing elements inside the ranking. To identify these events, the old data are
permanently stored and considered together with the new streaming data. The
bottleneck in such approaches is the continuous interaction with the underlying

1http://www.statisticbrain.com/social-networking-statistics

1

2 CHAPTER 1. INTRODUCTION

database. We focus on developing algorithms that identify events efficiently and
in real time minimising this interaction. Reducing the burden imposed to the
database from the event identification procedure allows it to use its resources
to execute other jobs, e.g. create indices.

1.1 Problem Statement

We consider a stream D of incoming data elements di and statistics computed
over them. Each data element di is seen in the data stream multiple times at
different time points and each occurrence of it is associated with some additional
information. The data elements can either be tagsets found in new published
messages in social media or sets of instances of database attributes that are
affected by updates. In the case of tagsets used in social media, the additional
information is the number of times the tagset is seen in the set of messages
published during the recent past. In the case of sets of instances of database
attributes, the additional information is the change imposed by the update
to some numeric attribute associated with the specified set of instances. The
additional information found in each data element occurrence is used to compute
statistics about it.

Our goal is, for each received data element to interpolate the statistics that
have been computed using previous occurrences. Additionally, we want to com-
pute new statistics about each received data element that take under consider-
ation the latest information about it. Comparing the interpolated to the com-
puted statistics we can identify unexpected behaviour in the data elements. We
want the above procedure to be performed efficiently and in an online manner,
allowing for the identification of unexpected behaviours (i.e. emerging topics)
within short time period after their occurrence.

Given the fast rates at which data elements are produced and the big number
of elements at each time point, this is a very challenging problem. For example,
on Twitter, there are 500 million tweets published on an average day 2. Thus,
approximately 6,000 tweets are produced every second with an extreme case of
more than 140,000 tweets published every second observed on the 3rd of August
2013 3.

1.2 Contributions

In this work, we make a number of contributions in the area of event detection
over large and dynamic data. These contributions are summarised below.

1. We define a topic to be a set of tags and introduce a novel correlation
measure that estimates how strongly related are the tags comprising a
topic. Our correlation measure captures, at the same time, the importance
of a tagset in the whole dataset and in the subset of the dataset that
concerns different aspects of the topic represented by the tagset.

2. We introduce a scoring function that considers the decay on the interest
of the users in emerging topics and incorporate this function in the final

2https://about.twitter.com/company
3http://www.internetlivestats.com/twitter-statistics/

1.3. PUBLICATIONS 3

scoring function used to estimate how interesting a topic, spotted in the
past, is in the present.

3. We propose four algorithms that partition the tags to multiple nodes and
make each node responsible to compute the correlations for the tags in
the subset of tags it has been assigned. The algorithms partition the tags
exploiting the characteristics of the dataset and optimising for different
criteria.

4. We discuss a theoretic view on the performance of the aforementioned
partitioning algorithms which helps ascertain existing limitations and
strengths.

5. We introduce a generic framework that identifies events in a relational
database which is subject to continuous changes caused by insertions in
the stored relations. Events in this setting are defined as changes in the
top-k results produced by group-by aggregate queries.

6. We present two algorithms that maintain the top-k results. The algorithms
limit the interaction with the underlying database combining ideas derived
from multi-query optimisation and view maintenance. Both algorithms
guarantee that the top-k results are always exact.

1.3 Publications

The work presented in this thesis has been published in various workshops and
conferences.

In [AMRW12], we have presented the initial enBlogue approach which is
described in Chapter 4. In this work, we introduced the correlation measure
and the scoring function used to estimate the emergency of a topic represented
by a set of tags. Initially, enBlogue was conceived to run in a single machine and
the efficiency aspects of the problem were attacked via an attempt to minimise
the number of tracked tagsets.

• Foteini Alvanaki, Sebastian Michel, Krithi Ramamritham, and Gerhard
Weikum. See what’s enblogue: Real-time emergent topic identification in
social media. International Conference on Extending Database Technol-
ogy (EDBT), 2012.

A demonstration of this work has been published in [ASRW11].

• Foteini Alvanaki, Michel Sebastian, Krithi Ramamritham, and Gerhard
Weikum. Enblogue: Emergent topic detection in web 2.0 streams. Inter-
national Conference on Management of Data (SIGMOD), 2011.

In [AM13a], we have introduced an approach for efficient computations of tag
correlations over dynamic data. This work came as a consequence of [AMRW12]
and the goal is to propose a method that will enable the identification of emer-
gent topics in real time. The basic idea is to partition the tags to multiple nodes
and let each node compute the tag correlations only for its assigned set of tags.

4 CHAPTER 1. INTRODUCTION

• Foteini Alvanaki and Sebastian Michel. Scalable, continuous tracking of
tag co-occurrences between short sets using (almost) disjoint tag partitions
(Best Student Paper). ACM SIGMOD Workshop on Databases and Social
Networks (DBSocial), 2013

This approach was extended with additional partitioning algorithms and
published in [AM14]. We present both the initial and the extended approach in
Chapter 5.

• Foteini Alvanaki and Sebastian Michel. Tracking set correlations at large
scale. International Conference on Management of Data (SIGMOD), 2014.

In [AM13b], we have presented our event detection approach on top-k rank-
ings created in a relational database system using group-by aggregate queries. In
this work, described in Chapter 6, we have presented two algorithms that min-
imise the interaction with the underlying database. The detailed experimental
evaluation has demonstrated the gains achieved by our approach.

• Foteini Alvanaki and Sebastian Michel. A thin monitoring layer for top-k
aggregation queries over a database. International Workshop on Ranking
in Databases (DBRank), 2013 (co-located with VLDB 2013).

1.4 Thesis Outline

This thesis is organised as follows: Chapter 2 presents an introduction to ba-
sic concepts, measures and structures used throughout our work. Chapter 3
presents related work. Chapter 4 presents an algorithm on identifying emerging
topics in Web 2.0 in general and social media in particular. It also introduces
a measure that can be used to estimate the interestingness of each emerging
topic. Chapter 5 presents algorithms enabling implementing our emerging topic
detection approach and any approach based on set correlations in a large clus-
ter allowing for efficient computation of correlations for multiple tagsets found
in documents created in fast pace. Chapter 6 presents our approach of event
detection in data warehouses. Finally, Chapter 7 presents our conclusions and
discusses on future work.

Chapter 2

Background

In this chapter, we present some ideas, methods, algorithms and structures that
are related to this thesis and are considered fundamental in the areas of Stream
Processing, Information Retrieval and Top-k Query Processing. Readers having
experience in these fields would be familiar with this material. The rest of the
readers would get an overview of some basic ideas and methods that will allow
them to better understand the work presented in the following chapters.

2.1 Social Media

In the Web 2.0 terminology, the social media are websites that do not simply
provide information but allow users to interact with each other. The means of
interaction can vary significantly with the most common of them being text.
Apart or in addition to text, images (e.g. Flickr1) or videos (e.g. Youtube2)
are also used. Users in social media are organised in communities sharing the
same interests. Social media today are very popular and a lot of research is
focusing on analysing the content published on them (e.g. [ACD+08, PP10])
and how the relations and interactions of users are created and evolve through
and across them (e.g. [GKL08, BHKL06]).

2.1.1 Weblogs

Weblogs, or simply blogs, are a category of social media. Each weblog consists of
multiple entries which are usually ordered in reverse chronological order. Every
entry in a blog is called post. Posts can be of an arbitrary long size and of any
content. In general, each post is annotated with a set of tags, assigned by the
author, that describe its content. In the early days of their existence, weblogs
were mostly restricted in narrations of events from the author’s every day life.
This justifies their initial name “personal diaries”.

In the majority of cases, a single user creates the blog and is the main author
of it. Multi-author blogs, however, have emerged recently. A multi-author blog
is owned by a single user but has multiple authors that contribute content to it.
Other users, in addition to the authors, can contribute to a blog by commenting

1http://www.flickr.com/
2http://www.youtube.com/

5

6 CHAPTER 2. BACKGROUND

on the posts. The posts, in most of the blogs, are textual with links to other
blogs and web pages. The linking behaviour between weblogs, i.e. blog A links
to another blog B and blog B links back to blog A, creates a social network.
The whole community of blogs is called Blogosphere.

Some blogs have been very influential through time and many politicians and
campaign leaders use them to impact the public opinion of the voters. As of
early 2013, more than 200 million blogs existed3. This vast number of weblogs
creates the need for search engines specifically designed to search information
on the content of the blogs. The most popular of these engines is Technorati4.
Technorati uses the tags the authors assign to their posts to categorise the search
results.

2.1.2 Twitter

Twitter5 is another form of weblog that appeared in 2006. The difference of it to
traditional blogs is that the posts in Twitter are limited to 140 characters. The
limited size of allowed posts places Twitter in a blogging subcategory, called
microblogging.

Posts in Twitter are called tweets and are public unless otherwise specified by
their author. Tweets, similarly to blog posts, are accompanied by a number of
tags that indicate their topic. These tags in Twitter are preceded by the special
character # and for that they are called hashtags. For example, ‘‘#Pique

#Puyol & #Valdes are almost all out for the season & we can’t sign new

players for 2yrs. Did we not pay #FIFA subscriptions? #Barca’’ is a
tweet having five hashtags (#Pique, #Puyol, #Valdes, #FIFA and #Barca).

In order to post a tweet one should register on the Twitter webpage. Regis-
tered users create communities/networks by subscribing to other users tweets.
The user subscribing to another user is said to follow this user and is called
follower. The user to whom another user subscribes is called the followee. A
user automatically sees in his, so called, timeline, all tweets posted by the users
it follows.

Users can interact with each other by replying to tweets. A tweet intended
to serve as a reply to some user contains the name of this user preceded by
the character @. The same formulation is used when a tweet just mentions
another user. For example, ‘‘@marilys #FIFA fine #Barca 305K + 14mth

ban player transfer’’ is a tweet replying to the user called marilys while
‘‘Dear @FIFAcom stop pleasing all those European clubs and remove

the transfer ban from @FCBarcelona. #Barca #FIFA’’ is a tweet men-
tioning the users FIFAcom and FCBarcelona. A reply can usually be differen-
tiated from a mention by the existence of the @user in the beginning of the
tweet. However, this is not obligatory and it is possible to have replying tweets
with the @user part in the middle of the text and tweets beginning with @user

that do not intend to serve as replies. Many users can engage in exchanging
replies creating conversations in Twitter.

Sending again a tweet posted by another user is an additional form of inter-
action called retweeting. Retweets are exactly the same to the original tweets
but they are additionally accompanied by the name of the user who made the

3http://snitchim.com/how-many-blogs-are-there/
4http://www.technorati.com/
5http://twitter.com/

2.2. DATA STREAM PROCESSING 7

retweet. Below is an example resembling a retweet:
‘‘Retweeted by marilys

#Barca banned from signing any player for the next 14 months’’

2.2 Data Stream Processing

Data stream processing is a data-centric processing model. Data arrives con-
tinuously, each arriving object is processed and, depending on the application,
an action is performed for each or some of the received objects. Network mon-
itoring (e.g. [CJSS03, IPF+07]), web applications (e.g. [APL98, GDH04]), and
sensor networks (e.g. [HKG+06, PPKG03, MFHH02]) are some of the multiple
data stream applications.

A data stream can be modelled as a sequence of objects

O = (o1, o2, o3, . . .)

An ordering of the objects is usually assumed. The ordering is imposed by a
timestamp [BBD+02] that is assigned to each object reflecting its creation time
(explicit timestamp) or the time of its arrival in the system (implicit timestamp).
The objects can be of various types, from simple real values to vectors or more
complex objects.

Data streams have two important characteristics: they are (i) continuous
and (ii) unbounded. These two characteristics pose a number of challenges on
the applications processing data streams:

• Since objects arrive continuously, the processing of each object should be
quick in order to finish before the arrival of the next object.

• The objects to be received next in a data stream are not known. Data can
only be processed in the order it is received forbidding random accesses.

• Since data streams are unbounded, collecting the whole data before pro-
cessing them is not possible. Instead, a subset of the data is selected and
processed at any time.

To reduce the memory needs of data stream processing applications, many data
reduction techniques have been proposed. Sketches (e.g. [FM83]), data sampling
(e.g. [CMN99]) and histograms (e.g. [IP99]) are among the most common of
them. Data sampling is also used to cope with the fast arrival rates of the
objects. An additional technique used for the same reason is data dropping
(e.g. [TcZ+03]) in which objects are discarded by the data stream.

2.2.1 Sliding Window

Using a sliding window [CSA05] over an unbounded data stream is a common
technique in data stream applications. A sliding window restricts the view on a
subset of the data, the most recent of them, and allows performing operations
only on this subset. Restricting the focus of the processing in the most recent
data is a very natural method since old data are usually not interesting for users
and real world applications.

Each sliding window has two characteristic values, its sizeW and the number
of units w it slides every time. There are two basic types of sliding windows:
tuple-based and time-based sliding windows.

8 CHAPTER 2. BACKGROUND

Tuple-based Sliding Window

The size and the slide units of a tuple-based sliding window are defined with
respect to the number of tuples (objects). A tuple-based sliding window of size
W and slide units w contains at any point the W most recently created tuples
and every time it slides it disregards the w oldest tuples and adds w new tuples.
Figure 2.1 shows an example of a tuple-based sliding window with W = 5 and
w = 3 before (2.1a) and after (2.1b) the window slides.

tuple1 tuple2 tuple3 tuple4 tuple5 tuple6 tuple7 tuple8 tuple9 tuple10

(a) Before

tuple1 tuple2 tuple3 tuple4 tuple5 tuple6 tuple7 tuple8 tuple9 tuple10

(b) After

Figure 2.1: Tuple-based Sliding Window

Time-based Sliding Window

A time-based sliding window is defined with respect to time. Each time-
based sliding window has an upper, timeup, and a lower, timelow, time limit. At
any point the window contains all objects having a timestamp within the time
frame defined by the aforementioned limits. A time-based sliding window of
size W and slide units w has an upper limit that differs from the lower limit by
W time units, i.e. timeup− timelow =W, and every time it slides the limits are
increased by w time units, i.e time’up = timeup+w and time’low = timelow +w.
Figure 2.2 shows an example time-based sliding window with W = 5 and w = 3
before (2.2a) and after (2.2b) the window slides.

Each number corresponds to the timestamp of the tuple/object.

1 2 2 3 4 5 5 5 5 6 6 6 7 8 8 8 9 9 10 10 10 11 11 12 13

(a) Before

1 2 2 3 4 5 5 5 5 6 6 6 7 8 8 8 9 9 10 10 10 11 11 12 13

(b) After

Figure 2.2: Time-based Sliding Window

As seen in Figure 2.2, the number of tuples inside a time-based sliding win-
dow can change after the slide of the window. Respectively, the time span of a

2.2. DATA STREAM PROCESSING 9

tuple-based sliding window might be different after a slide.

2.2.2 Data Streams Mining

In data stream mining [GZK10] the goal is to use the data seen so far in order
to extract information for the whole data stream and predict the characteristics
of the data that will be received in the future. Common applications of data
stream mining include clustering (e.g. [OMM+02, AHWY03]), frequent pattern
mining (e.g. [CH08, MM02]) and classification (e.g. [DH00, WFYH03]).

Data streams are ordered in time, thus the mapping from a data stream to
a time series is straightforward. For this reason it is not uncommon to apply in
data streams techniques that are used for the analysis of time series.

2.2.2.1 Time Series Analysis

Time series are analysed either on frequency domain or on time domain. With
respect to frequency, the most common method is wavelet analysis. With respect
to time, the most common method is correlation analysis.

Wavelet Analysis

Wavelet Transform [BN09] is a method for analysing the frequency com-
ponents of a stream. Wavelet transform provides information regarding the
frequencies comprising a stream and the time points when these frequencies
exist. More formally, wavelet transform rewrites the stream in terms of an or-
thonormal function basis providing time-frequency representation. The simplest
such basis in Harr wavelet [BN09].

Fourier [Bri88] and wavelet transform are related to each other. The main
difference is that wavelets provide information in time and frequency at the same
time whereas Fourier transform provides information only for the frequency but
not about the time a specific frequency occurred.

Correlation Analysis

Correlation analysis [Bri88] is used to determine the statistical dependency
between two time series. Two series are considered positively correlated when
they show similar trends in time, i.e. both increase of decrease. Similarly, two
time series are negatively correlated when they show opposite trends in time,
i.e. one increases when the other decreases and vice versa. The correlation of a
time series with itself at a different time point, called auto-correlation, can be
used to determine repeating patterns in the stream.

2.2.3 Distributed Data Stream Processing

In a distributed data stream processing setting multiple nodes receive portions
of the data stream. Each node processes the data it receives locally using only
its own resources, memory and CPU, and pushes the results to other nodes.

Limiting the communication needs in these applications is very important.
Common techniques include reducing the number of messages exchanged among
the nodes by omitting all but the absolutely necessary of them and/or reduce the

10 CHAPTER 2. BACKGROUND

size of data sent with these messages. Minimising the communication however,
can potentially affect the accuracy of the results in case the nodes do not manage
to obtain all the information they need, thus care should be taken so that the
quality of the produced results remains within acceptable limits.

2.2.3.1 Storm

Storm6 is a framework that provides a fault-tolerant, distributed stream process-
ing infrastructure. From an abstract perspective, it resembles Hadoop MapRe-
duce7 with the difference being that MapReduce is designed for batch processing
while Storm continuously processes incoming data.

Topology

What in MapReduce is called “job” is modelled in Storm as a topology.
The topology is essentially a graph with nodes representing operators that are
connected with each other depending on how they communicate. The commu-
nication in Storm is performed following a push-based model. Figure 2.3 shows
an example topology. Storm distinguishes two types of operators, Spouts and
Bolts. Spouts are sources of streams. Bolts consume any number of streams,
process them and, possibly, emit new streams.

Spout

Spout Bolt

Bolt

Bolt Bolt

Figure 2.3: An example topology

Data Flow Specification

The operators in Storm exchange tuples, i.e. simple lists of values. Bolts
consume data from Spouts or other Bolts by registering to their output streams.
One of the key properties of Storm is that it allows multiple instances (called
tasks in Storm) of Spouts and Bolts. If multiple instances of a Bolt exist, Storm
offers various rules that dictate how the tuples flow from producing Bolts or
Spouts to the consuming multi-instance Bolt:

shuffle grouping: Tuples are distributed randomly over the various instances
of the registered Bolt ensuring that each instance receives approximately
the same number of tuples.

all grouping: Tuples are broadcasted, thus each instance gets all tuples.

6http://storm-project.net/
7http://hadoop.apache.org/

2.2. DATA STREAM PROCESSING 11

fields grouping: Tuples are forwarded based on the values on one or multiple
of their fields. It enables directing tuples based on their semantics/content.

local grouping: Tuples are forwarded on instances that reside on the same
JVM.

direct grouping: Tuples are forwarded to a specific instance (or instances)
by using the instance’s unique identifier.

Parallelism

The application developer defining the topology provides at the same time
hints on how the topology should be parallelised. Storm provides three levels
of parallelism:

• worker: Each worker executes a subset of the topology in its own Java
Virtual Machine. The developer specifies the number of workers that
wants for his topology. Storm assigns to the topology the maximum pos-
sible number of workers asked. Each worker can potentially run on a
different machine but this is not necessary. The number of workers that
can run in each machine is part of the Storm configuration. Each worker
has an incoming and an outgoing queue where messages to or from the
subset of the topology that has been assigned to the specific worker are
stored.

• executor: Each executor is a separate thread. For each operator, there
is one executor defined by default. The developer can ask for multiple ex-
ecutors for each operator that will process data in parallel. Each executor
is assigned to one of the topology’s workers. Multiple executors can be
assigned to the same worker. Similar to the workers, each executor has
an incoming and an outgoing queue. Incoming messages are transferred
from/to the worker queue to/from the appropriate executor queue.

• task: The task performs the actual data processing. By default, each
executor is assigned one task. If more tasks than executors are defined
each executor runs multiple tasks sequentially.

Figure 2.4 depicts an example assignment of executors to workers and of
tasks to executors. For this example, we assume two operators, the red and
the green. The developer has defined two tasks of the green operator and three
tasks of the red operator. Additionally, the developer has defined two workers
and four executors. The code used to define this parallelism is the following:

1. topology.setBolt("green", new Green(), 1).setNumTasks(2)

2. topology.setBolt("red", new Red(), 3)

3. configuration.setNumWorkers(2);

The developer wants multiple (2) tasks of the green operator to be assigned
in one executor. For that it uses the setNumTasks option (cf. command 1). For
the red operator, the developer wants one task per executor which is the default
assignment performed in Storm if nothing else is provided (cf. command 2). The
developer has no control on which and how many executors will be assigned in

12 CHAPTER 2. BACKGROUND

each worker. She can only define the number of workers that she desires (cf.
command 3). Storm decides how many of the requested workers is possible to
be created and how the executors are assigned on them.

worker1

executor1

task1

task2

executor2

task3

worker2

executor3

task4

executor4

task5

Figure 2.4: Parallelism in Storm

In the used version of Storm (v0.8.2), the number of tasks defined in a
topology are static and cannot be changed while the topology is running. Ex-
ecutors and workers on the other hand can be reconfigured online, rebalancing
the topology. However, redefining the number of executors is possible only when
executors are less than the defined tasks. All tasks assigned to the same executor
run sequentially so, in real applications that intend to run multiple tasks in par-
allel creating more tasks than executors does not usually make sense. However,
this can be useful while testing a topology.

2.3 Information Retrieval

According to [MRS09], Information Retrieval is finding the material that satis-
fies an information need within large collections of information resources. The
data used in Information Retrieval are usually unstructured text files or doc-
uments of limited structure, having, for example, author, subject and so on.
These documents are not easily understood by a computer and as a conse-
quence Information Retrieval techniques often return estimated or inexact re-
sults. The most common applications using Information Retrieval techniques
are Web search engines. In these applications, the information need is described
with a query posted by the user and the material satisfying the information need
is, in its majority, a set of web pages.

2.3.1 Inverted Index

The inverted index [ZM06] is among the most basic structures used in Informa-
tion Retrieval systems. It maps a term (or word) to the list of documents that
contain it allowing immediate retrieval of all the documents that contain a spe-
cific term. The lists of documents associated with each term are called postings

2.3. INFORMATION RETRIEVAL 13

lists. The documents in these lists are usually represented by their document
identifiers. The inverted index is the most efficient structure for ad-hoc queries
over collections of documents [MRS09]. Depending on the selected retrieval
model a postings list may contain additional information such as the number
of times a term is found in each document and/or be sorted according to some
score, e.g. a weight reflecting the importance of the term in each document.

Figure 2.5 shows an example of a simple inverted index created using the
following documents:

• document1 = “the house on the beach”

• document2 = “a green big house”

• document3 = “the green garden of the house”

a

of

on

the

big

beach

green

house

garden

document2

document3

document1

document1 document3

document2

document1

document2 document3

document1 document2 document3

document3

Figure 2.5: Inverted index example

2.3.2 Results Quality Estimation Methods

Since the semantic relevance of a query to a document is not straightforward,
it is very important to be able to asses the quality of the results returned from
an Information Retrieval system. Precision and recall, are two measures used
for this purpose [MRS09].

Recall is a measure reflecting the fraction of the total relevant documents
retrieved by the system. In order to find the total relevant documents, great
manual effort is required: all documents should be examined and declared as
relevant or not to the information need. For this reason, it is not always possible
to know in advance the total number of relevant documents. This prohibits in
many cases the use of the recall measure.

Precision is a measure reflecting the fraction of retrieved documents that are
relevant to the information need. Relevant documents, as before, are judged by
humans, but, in this case, the set of documents to be examined is restricted to
the set of documents retrieved by the Information Retrieval system. Judging the
relevance of a small set of retrieved documents, instead of the whole collection,
is a relatively easy task and precision is the measure used in most cases to asses
the effectiveness of an Information Retrieval system.

14 CHAPTER 2. BACKGROUND

There are many measures to compute precision. The simplest of them is
derived by the definition of the measure and is computed using the following
formula:

precision =
#{relevantDocuments ∩ retrievedDocuments}

#retrievedDocuments

However, the results retrieved by the Information Retrieval systems are usu-
ally ranked according to how related they are estimated to be to the information
need. To asses the quality of the results in these cases more sophisticated pre-
cision measures are used. Below, we describe two such measures.

Precision@k

Precision@k focuses on the top-k results retrieved by an information retrieval
system and finds within these results the number of relevant ones. The measure
is computed as the fraction of relevant results in the top-k results, using the
following formula:

Precision@k =
#relevenatResultsInTopk

k

For example, Precision@10=0.3 means that in the top-10 retrieved results there
are 3 that are found to be relevant. Precision@k is considered a binary measure,
since it uses only the number of relevant results and the ranking positions of
these results are not taken under consideration.

NDCG

NDCG is the normalised version of DCG [JK02]. DCG (Discounted Cu-
mulative Gain) estimates the satisfaction of the user who submitted the query
obtained from the retrieved results. This satisfaction is called gain. DCG re-
quests high relevant results to be returned higher in the ranking based on the
following two principles:

• Users are less likely to examine results low in the ranking.

• Users get more satisfaction from highly relevant results.

Using any measure of relevance, each retrieved result is assigned a score
relevancei, where i depicts the position of the result in the ranking. The lower
in the ranking each result is placed, the more its score is discounted. The total
gain from a ranking of k results is computed as:

DCG@k = relevance1 +

k∑
i=2

relevancei
log(i)

To be able to compare various lists of ranked results, the normalised version
(NDCG) of DCG is used. NDCG is computed as the ratio of the DCG com-
puted over the obtained ranking to the DCG computed over the ideal ranking.
Ideal is the ranking having all results ordered according to the user perceived
satisfaction.

2.4. SIMILARITY MEASURES 15

2.3.3 Vector Space Model

The vector space model [MRS09] is a common model used to represent text
documents and queries as vectors. Assuming a collection D of documents, a
dictionary T is created that contains all terms ti that are found in these docu-
ments. Each document in the collection D is then represented as a vector of size
equal to the size of the dictionary T . Depending on the Information Retrieval
method, the vector representation of each document can be either binary or real.

Using a binary vector representation implies that all terms are of equal
importance and the interesting information is whether a term is present in a
document or not. Having 0 (zero) in a position of the binary vector indicates
the absence of the corresponding term from the document while having 1 (one)
indicates the presence of the corresponding term in the document.

Using a real vector representation allows handling each term differently.
Terms that are absent from the document are again represented with a 0 (zero)
value, but terms that are present in the document are represented with a real
value which reflects the importance of the corresponding term in the document.
The most common measure that is used to reflect the importance of a term in
a document is the tf × idf measure.

2.3.4 tf × idf measure

Assuming a collection of documents D, tf × idf measure [MRS09] is used to
assign a weigh wji to each term ti in each document dj in D. The weight wji
reflects the ability of ti to differentiate dj from the rest of the documents in the
collection. The idea behind the tf × idf measure is that a term ti can better
differentiate a document dj when:

• the frequency of ti within the document dj , tf(ti, dj), is high

• the frequency of ti in the whole collection D, df(ti,D), is low

When the above conditions are met the term ti in the document dj should be
assigned a high weight. The weight is computed using the following formula:

wji = tf(ti, dj)× idf(ti,D)

where idf(ti,D) is the inverse of df(ti,D).

2.4 Similarity Measures

Similarity measures are used to quantify the similarity between objects. De-
pending on whether the objects in question are represented using a binary or a
real vector, different similarity measures should be used ([LRB09]).

When the objects are represented as real vectors, numerical similarity mea-
sures are used. It is common to define a numerical similarity measure as the
inverse of a distance function. One of the most frequently used distance func-
tions is the Euclidean distance which computes the distance between two objects
X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) using the following formula:

d(X,Y) =

√√√√ n∑
i=1

(xi − yi)2

16 CHAPTER 2. BACKGROUND

The distance is usually normalised using the min-max normalisation com-
puted from the following formula:

d′ =
d− dmin

dmax − dmin

In the above formula d′ is the normalised distance, d is the computed distance,
dmin and dmax are the minimum and maximum computed distances in the whole
dataset.

When the objects are represented as binary vectors, the fundamental ques-
tion is whether the objects share elements or not. For that, the measures esti-
mating the similarity between any two binary objects X and Y are expressed
as functions of the following quantities:

• |X ∩Y| : the number of attributes present in both X and Y

• |X−Y| : the number of attributes present in X but not in Y

• |Y−X| : the number of attributes present in Y but not in X

• |X ∩Y| : the number of attributes absent from both X and Y

Binary based similarity measures are further divided based on whether they
consider the attributes absent from all objects or not. The similarity measures
that only care about the attributes that are present in some of the objects are
the similarity measures of type 1. The similarity measures that consider both
the attributes that are present and those that are absent are the similarity
measures of type 2.

Nominal data are usually represented using binary vectors.

2.4.1 Jaccard Coefficient

Jaccard coefficient [Jac12] is one the most frequently used similarity measures
designed for binary data. It increases as the number of attributes present in both
objects increases and decreases as the number of attributes present in either of
the objects but not in the other decreases. Jaccard coefficient does not consider
the number of elements absent from both objects, thus it is a binary similarity
measure of type 1.

Using the quantities described above, the Jaccard coefficient between two
objects X and Y is defined as:

J(X,Y) =
|X ∩Y|

|X ∩Y|+ |X−Y|+ |Y−X|

However, Jaccard coefficient is more commonly computed using the following
formula:

J(X,Y) =
|X ∩Y|
|X ∪Y|

Jaccard is a symmetric similarity measure, i.e. J(X,Y) = J(Y,X). It can be
computed for an arbitrary number of objects using the general formula:

J(X1,X2, . . . ,Xn) =
|
⋂n
i=1 Xi|

|
⋃n
i=1 Xi|

2.5. METRICS OF INEQUALITY 17

2.4.2 Inclusion–Exclusion Principle

The inclusion–exclusion principle [Dek86] allows computing the total number of
attributes present in any of two objects X, Y using the number of attributes
present in either of them and the number of attributes present in both of them.
The inclusion–exclusion formula for the objects X and Y is the following:

|X ∪Y| = |X|+ |Y| − |X ∩Y|

The inclusion–exclusion principle is generalised to multiple objects X1, X2,
. . . , Xn by the following formula:

∣∣∣∣ n⋃
i=1

Xi

∣∣∣∣ =

n∑
k=1

(−1)k+1

 ∑
1≤i1<···<ik≤n

|Xi1 ∩ · · · ∩Xik |


For example, for three objects X1, X2, X3 the formula is:

|X1 ∪X2 ∪X3| = |X1|+ |X2|+ |X3|
− |X1 ∩X2| − |X2 ∩X3| − |X2 ∩X3|
+ |X1 ∩X2 ∩X3|

2.5 Metrics of inequality

The metrics of inequality are usually used by social scientists to measure the
inequality of the wealth distribution in the population. These methods, however,
have general applicability and can be used to estimate the inequality in the
values of any distribution.

Lorenz Curve

Lorenz curve [BL08] is a graphical method to represent the inequality in a
distribution. Having a population of size n and a value xi for each individual in
this population, Lorenz curve is created by ordering the values xi in increasing
order so that x1 corresponds to the smallest value and xn to the biggest, and
plotting the points: (

j

n
,

∑j
i=1 xi∑n
i=1 xi

)
, j = 1, 2, . . . , n

The above corresponds to the cumulative distribution of the empirical proba-
bility distribution.

Considering a set of individuals with the income shown in Table 2.1, the
corresponding Lorenz curve is shown in Figure 2.6.

Gini Coeffcient

The Gini Coefficient [BL08], also known as Gini index, is another measure
used to estimate the inequality of the values in a distribution. It was initially
introduced as a measure of the income inequality in the population, but its usage

18 CHAPTER 2. BACKGROUND

Individual Income Individual Income

1 1342 6 9120

2 2654 7 11547

3 3945 8 14321

4 5126 9 17948

5 6947 10 22168

Table 2.1: Income example

10 20 30 40 50 60 70 80 90 100
0

20,000

40,000

60,000

80,000

Population (%)

In
co
m
e

Figure 2.6: Lorenz curve example

has become much wider. Mathematically, the Gini coeffcient is defined as the
ratio of the area between the line of equality (a line with angle 45 degrees) and
the Lorenz curve (grey area in Figure 2.7). A small value of the Gini coefficient
indicates a more balanced distribution with 0 (zero) reflecting perfect equality
and 1 (one) perfect inequality.

Given a population of size n and a value xi for each individual in this popula-
tion, ordered in increasing order so that x1 corresponds to the smallest value and
xn to the biggest one, the Gini coefficient can be computed using the formula:

G =
1

n
×
(
n+ 1− 2×

(∑n
i=1(n+ 1− i)× xi∑n

i=1 xi

))

2.6 Top-k Queries

Top-k queries have applications in various domains such as similarity search over
multimedia data (e.g. [CGM04, GBK00]), spatial data analysis (e.g. [RJVDN10,
RJN12]), relational databases (e.g. [CG99]) and data stream processing settings
(e.g. [MBP06]). The general idea is that each result satisfying the query is
assigned a score using some scoring function. The k results with the best scores
are selected and presented to the user. Selecting the top-k out of a possibly huge

2.6. TOP-K QUERIES 19

10 20 30 40 50 60 70 80 90 100
0

20,000

40,000

60,000

80,000

Line of Equality

Lorenz Curve

Population (%)

In
co
m
e

Figure 2.7: Gini coefficient example

amount of results is a very natural procedure since users are often interested
in the results that show an outstanding performance. Therefore, top-k query
processing has attracted a lot of research interest during the previous years.

2.6.1 Taxonomy

Top-k query processing techniques can be classified according to various criteria
[IBS08], creating a taxonomy.

Query Model

The query model specifies the data objects which are considered by the top-k
query processing technique to have a score. The top-k results are selected out of
these data objects. According to the query model, the techniques are classified
to:

• Top-k Selection Queries: In this model, the data objects that are
assigned a score are the base tuples. The scores from multiple attributes
of the same tuple might need to be combined in order to produce the final
score of the tuple.

• Top-k Join Queries: In this model, the data objects that are considered
to have a score are results of a join. Each base tuple has a score and the
score of a joined result is a combination of the scores of the base tuples
that produced the joined result. The top-k results are selected from the
produced tuples.

• Top-k Aggregate Queries: In this model, the data objects that are
assigned a score are groups of tuples. The base tuples are grouped together
and each group is assigned a score which is an aggregation of the scores of
the base tuples it contains. The group scores are then used to select the
top-k groups.

20 CHAPTER 2. BACKGROUND

Data Access Methods

The categorisation of the top-k processing techniques according to the Data
Access Method depends on the extend they allow random accesses on the data.
The three possible categories are (i) random accesses are allowed, (ii) controlled
random access are allowed, and (iii) random accesses are not allowed.

Implementation Level

A top-k processing algorithm can be either implemented in (i) the application
level or (ii) the query engine level. The techniques implemented in the applica-
tion level might use specialised indices or materialised views but the main top-k
processing is performed outside the query engine. The techniques implemented
inside the query engine may introduce new query operators (e.g. [IAE04]).

Data and Query Uncertainty

Various categories can be created combining the data and query uncertainty
levels:

• Exact methods over certain data: Both the method and the data are
deterministic

• Approximate methods over certain data: The data are deterministic
but the methods report approximate results in an attempt to minimise the
response time.

• Uncertain data: The data are probabilistic and the methods are based
on uncertainty models.

Ranking Function

Most of the top-k processing techniques use a monotone ranking func-
tion which has properties that allow efficient top-k retrieval. Few approaches
(e.g. [ZHC+06]) use a generic ranking function which they try to optimise in
the presence of constraints. Finally, the skyline queries rank objects according
to various attributes and select those objects that are not dominated by any
other object. These queries belong to the category of queries with no ranking
function.

2.6.2 The Threshold Algorithm (TA)

Among the most influential algorithms on top-k query processing is the Thresh-
old Algorithm (TA) proposed by Fagin [FLN01]. TA assumes the existence of m
sorted lists Li and determines the top-k objects that have the maximum overall
score in all lists executing the following steps:

1. It accesses the objects in the m lists in parallel, starting from the top
objects (sorted access).

2.6. TOP-K QUERIES 21

2. For any object x that is seen in one of the lists during the sorted ac-
cess, it performs a random access to the rest of the lists and retrieves the
corresponding scores for x.

3. It computes the final score for the object x. If this score is among the
top-k scores seen so far then it remembers x.

4. Assuming li to be the smallest score seen in list Li during sorted access,
it computes a threshold score aggregating the scores li of all lists Li. This
score is the maximum possible score any unseen object can have.

5. If at least k objects with scores greater or equal to the threshold have been
seen then the algorithm terminates.

As long as the aggregate function is monotone, the TA algorithm correctly
identifies the top-k objects.

(3,50)

L1

(2,40)

(5,30)

(4,20)

(1,10)

(4,50)

L2

(5,40)

(1,30)

(2,20)

(3,10)

(4,70)

Buffer

(3,60)

thr=100

(a) Step 1

(3,50)

L1

(2,40)

(5,30)

(4,20)

(1,10)

(4,50)

L2

(5,40)

(1,30)

(2,20)

(3,10)

(4,70)

Buffer

(5,70)

thr=80

(b) Step 2

(3,50)

L1

(2,40)

(5,30)

(4,20)

(1,10)

(4,50)

L2

(5,40)

(1,30)

(2,20)

(3,10)

(4,70)

Buffer

(5,70)

thr=60

(c) Step 3

Figure 2.8: TA algorithm example

Figure 2.8 shows an example of the TA algorithm where the top-2 objects are
retrieved. In the example, there are two lists, L1 and L2. Each list stores pairs
of the form (object id, score). The final score of each object x is computed as
the sum of its scores in the two lists. The blue continuous lines depict the sorted
accesses while the red dashed ones the random accesses. The Buffer contains
at any time the top-k objects seen so far. The algorithm terminates after three
steps:

Step 1 (Figure 2.8a): The sorted access on the lists retrieves the elements
(3, 50) and (4, 50). Summing these two scores gives the threshold value,

22 CHAPTER 2. BACKGROUND

equal to 100. A random access is performed for each object. For the object
with id 3, the score obtained through random access is 10, resulting in its
final score being 60. For the object with id 4, the additional retrieved
score is 20 and its final score is computed to be 70. Both objects have a
score that includes them in the top-2 results, thus they are stored in the
Buffer. The threshold is greater than the score of the two objects and the
algorithm proceeds.

Step 2 (Figure 2.8b): The sorted access in the second step retrieves the ele-
ments (2, 40) and (5, 40). The sum of these two scores produces the new
threshold value, equal to 80. The random accesses for the two objects
retrieve elements (5, 30) and (2, 20), resulting in the final score for the
object with id 5 being 70 and the final score for the object with id 2 being
60. The final score of the object with id 5 is greater than the score of
the object with id 3 that was put in the Buffer in the previous step, thus
the element (5,70) replaces the element (3,60) in the Buffer. Since the
threshold is still greater than the scores of the two objects currently in the
Buffer, the algorithm proceeds to the next step.

Step 3 (Figure 2.8c): The sorted access of the third step retrieves only one
element, that with id 1 and score 30. The other element, with id 5,
has been already retrieved through a random access in the previous step.
The random access for the object with id 1 retrieves a score of 10 for it,
resulting in a final score of 40. The threshold in this step is calculated to
be 60 and since both objects in the Buffer have a score greater than 60
the algorithm terminates. The top-2 objects found are the object with id
4 and score 70 and the object with id 5 and score 70 as well.

According to the taxonomy presented in Section 2.6.1, the query model
assumed in TA is the top-k selection query since the elements in the various
lists are considered to be attributes of a tuple. TA allows sorted and random
accesses and is an exact method performed over certain data. Is uses a monotone
ranking function and the implementation of it is in the application level.

2.6.3 Non-Random Access Algorithm (NRA)

A limitation of TA is that it assumes the ability to perform random accesses on
the lists. However, random accesses may not be available or be very expensive.
Non-Random Access (NRA) Algorithm modifies the TA algorithm to use only
sorted accesses. In NRA, each object x has two scores, a lower bound score
computed using the scores seen for this object in the lists Li and an upper
bound score computed using the scores seen for x in the lists Li plus the scores
li for all lists Li x has not been seen. The upper bound score is updated every
time a new object, retrieved from a list, causes li to drop. The top-k objects are
selected using the lower bound scores. Objects with an the upper bound score
that does not qualify for the top-k scores are discarded.

Figure 2.9 shows the same two lists show in example 2.8. NRA is now used,
instead of TA, to find the top-2 objects in these lists. As seen, NRA requires
one more step than TA before being able to terminate:

Step 1 (Figure 2.9a): In the first step, the element (3, 50) is retrieved from
list L1 and the element (4, 50) is retrieved from list L2. Summing the

2.6. TOP-K QUERIES 23

(3,50)

L1

(2,40)

(5,30)

(4,20)

(1,10)

(4,50)

L2

(5,40)

(1,30)

(2,20)

(3,10)

4:(50,100)

Buffer

3:(50,100)

thr=100

(a) Step 1

(3,50)

L1

(2,40)

(5,30)

(4,20)

(1,10)

(4,50)

L2

(5,40)

(1,30)

(2,20)

(3,10)

4:(50,90)

Buffer

3:(50,90)

5:(40,80)

2:(40,80)

thr=80

(b) Step 2

(3,50)

L1

(2,40)

(5,30)

(4,20)

(1,10)

(4,50)

L2

(5,40)

(1,30)

(2,20)

(3,10)

5:70

Buffer

4:(50,80)

3:(50,80)

2:(40,70)

1:(30,60)

thr=60

(c) Step 3

(3,50)

L1

(2,40)

(5,30)

(4,20)

(1,10)

(4,50)

L2

(5,40)

(1,30)

(2,20)

(3,10)

5:70

Buffer

4:70

2:60

3:(50,70)

1:(30,50)

thr=40

(d) Step 4

Figure 2.9: NRA algorithm example

scores of the two retrieved results in a threshold equal to 100. For the
object with id 3, the lower bound is its retrieved score, i.e. 50, and its
upper bound is its retrieved score increased by the minimum score in
the other list L2, i.e. 50+50=100. Similarly, the lower and upper bound
scores of the object with id 4 are 50 and 100 respectively. Both objects
are stored in the Buffer since their upper bound scores are not less than
the threshold.

Step 2 (Figure 2.9b): In the second step, the elements (2, 40) and (5, 40) are
retrieved. Retrieving these two new elements drops the minimum score
seen in each list to l1 = 40 and l2 = 40. Using the new minimum scores,
the threshold is computed to 80 and the upper bounds of the scores for
the objects with id 3 and 4, retrieved during the previous sorted access,
are updated to 90. The bounds for the new objects are computed using
the same methodology used in the previous step. The result is a lower
score equal to 40 and an upper score equal to 80 for both objects. All four
retrieved objects have scores not less than the threshold, thus they are all
stored in the Buffer.

Step 3 (Figure 2.9c): In this step, the elements (5, 30) and (1, 30) are re-
trieved. The object with id 5 is already in the Buffer since its score in list
L2 has been retrieved during a sorted access in a previous step. Retrieving
the score of the object from L1 results in computing the real score for it to

24 CHAPTER 2. BACKGROUND

70 (its minimum score plus the new score). All other objects in the Buffer
have their lower bounds updated. The bounds of the new object with id 1
are computed to be 30 and 60. The threshold is computed now to be 60.
Since neither of the old nor the new objects has an upper bound less than
the threshold, all objects are stored in the Buffer. Although there is an
object (the object with id 5) with known real score, it cannot be output
since there are other objects that have potentially a score greater than it
(the objects with id 3 or 4).

Step 4 (Figure 2.9d): In the final step, the elements (4, 20) and (2, 20) are
retrieved. Both of them are already in the Buffer and their real scores are
computed to be 70 for the object with id 4 and 60 for the object with id 2.
The upper bounds of the other objects in the Buffer are updated and the
threshold is computed to 40. Although there are still objects in the Buffer
with upper bounds not less than the threshold, two objects, 5 and 4, have
real scores that cannot be exceeded by any other object. The algorithm
outputs these two objects and terminates.

NRA differs from TA in the data access method. So, according to the taxon-
omy presented in Section 2.6.1, NRA uses the top-k selection queries model and
does not allow random accesses. It is an exact method performed over certain
data using a monotone ranking function and the implementation of it is in the
application level.

2.7 Data Warehouses

A data warehouse is a database system that stores recent and past data collected,
usually, from various sources. It forms a central repository storing precomputed
summaries of the data and it is used for Online Analytical Processing (OLAP)
that provides support for decision making.

2.7.1 Data Organisation

Data in a data warehouse is summarised over multiple attributes. Each such
attribute is called dimension. For example, a retails chain interested in the sales
for each product in each city every year will organise the data over the attributes
product, place and date. These attributes are the dimensions over which the
sales are summarised. Each combination of product, place and date instances
along with the corresponding sales value is called a fact.

Conceptually, the organisation of data into dimensions and facts resembles a
data cube (or hypercube in case of more than three dimensions). Each dimension
in the cube holds the instances for one of the attributes over which a measure of
interest is summarised, i.e. the attributes product, place and date of the previous
example. Each cell in a data cube stores the measure of interest, i.e. the sales
of the previous example. A data cube example can be seen in Figure 2.108

It is common to organise dimensions in hierarchies when generalisations and
specialisations of them exist. For instance, the place dimension of the above
example could be generalised into countries, countries into continents and so

8Image taken from http://docs.oracle.com/html/B13915_04/i_olap_chapter.htm

2.7. DATA WAREHOUSES 25

Figure 2.10: Data Cube

on. For each generalisation, a summary of the measure of interest (e.g. sales) is
also computed.

Dimensions and facts are usually physically stored in different tables. The
facts table references the dimension tables using a primary-foreign key relation.
This physical organisation of data aligned horizontally resembles a star schema.
Figure 2.119 shows a star schema example. When dimensions are organised in
hierarchies the schema resembles more that of a snowflake as can be seen in
Figure 2.1210.

Figure 2.11: Star schema

9Image taken from http://commons.wikimedia.org/wiki/File:Star-schema.png
10Image taken from http://en.wikipedia.org/wiki/File:Snowflake-schema.png

26 CHAPTER 2. BACKGROUND

Figure 2.12: Snowflake schema

2.7.2 Extract, Transform and Load Data

Data in data warehouses is relatively static. The, so called, operational
databases receive every new coming data and from time to time this data
is transferred to the data warehouse. This procedure consists of three phases:
Extraction, Transformation and Loading.
Extraction: During the Extraction phase, the data from the various source
systems are extracted. During this phase, data are checked to verify that they
meet an expected pattern. This may result in rejecting part or all of them.
Transformation: During the Transformation phase, the data are transformed
in a way that complies with the organisation schema and the data types used
in the data warehouse, e.g. dates are transformed from “yyyy/mm/dd” to “dd
MMMM yyyy” and so on. It is during this phase that the summaries of the
measures of interest are computed.
Loading: During the Loading phase, the data are actually loaded into the data
warehouse.

Extract, Transform and Load (ETL) procedure may be very challenging if the
data warehouse schema has not been carefully created.

Chapter 3

Related Work

The data we consider in this thesis is either sequences of messages published in
social media or sequences of insertion queries applied in a relational database.
In both cases, we deal with stream data and try to identify in them interesting
characteristics. From that perspective, this thesis is related to works on data
stream mining and we present a number of works that cover some approaches in
this area (Section 3.1). Mining data streams created from messages published
in social media is closely related to works on topics identification (Section 3.2).
More specifically, we focus on identifying emerging topics discussed in social
media as close to their appearance time as possible (Subsection 3.2.1). The ideas
presented in this thesis on identifying events in relational databases are based
on maintaining top-k rankings created using top-k aggregate queries. From that
perspective, the thesis is also related to works on top-k queries (Section 3.3).
The top-k queries we consider are continuous and their results are materialised
and maintained in the presence of updates that potentially affect them. This
idea is related to works on materialised views maintenance (Section 3.4). In the
following, we present a set of representative works on all the aforementioned
areas.

3.1 Data Stream Mining

A common goal in data stream mining is to find streams that change through
time following similar patterns. Along this line is the work of Davood Rafiei
[Raf99]. Rafiei suggests using linear Fourier Transformations to express similar-
ity functions over data streams, e.g. moving average, shift, etc. [Raf99] proposes
processing multiple such transformations at a time in order to find similarities
between the data streams. The idea, in brief, is to create an R-tree [Gut84]
index over the first n Fourier coefficients of each sequence and apply a group
of transformations in them. The transformed sequences are checked as whether
they follow the same pattern.

Similar to [Raf99], Yunyue Zhu et al. [ZS02] in their approach, named Stat-
Stream, use also the first n Fourier coefficients to approximate a data stream.
More specifically, they use a time window over the stream and transform the
data in the window in the frequency domain using the Discrete Fourier Trans-
form. Afterwards, they approximate the data keeping only the first n Fourier

27

28 CHAPTER 3. RELATED WORK

coefficients. It is known in general that the first Discrete Fourier Transform
coefficients of a time series contain most of the information [BN09]. So, ap-
proximating a stream with the first n Fourier coefficients is a common practise
(popular also in data compression) that is expected to capture the structure of
the data. Using this technique, Statstream is able to statistically monitor in
real time up to 10,000 streams, reducing the time and space needed to process
them.

Byoung-Kee Yi et al. [YSJ+00] monitor multiple sequences of data in paral-
lel. At any point in time, they can express a monitored sequences si as a linear
combination of the old values of this sequence si and the new and old values of
the other sequences. Using multi-variate linear regression [Was10], they can pre-
dict the current value of the sequence si. This allows filling values for sequences
that were not received during the current time point due to for, example, some
delay. They use the same technique to find unexpected values for sequences,
i.e. received values that are very different from the predicted ones, which might
indicate an interesting event related to the corresponding sequences. Finally,
the coefficients used in the linear regression formula are used to find dependen-
cies between sequences; a high coefficient indicates a high correlation between
the predicted sequence and the sequence having the coefficient.

Richard M. Karp et al. [KSP03] propose an algorithm for finding the el-
ements in a data stream with frequency higher than some threshold θ. The
algorithm they propose is a generalisation of the majority algorithm [BM91]
which finds an element that exists with frequency 50% in the data. To achieve
that, it stores a single element accompanied by a counter. The counter is in-
creased by 1 (one) every time the element is seen in the input and decreased by
1 (one) otherwise. When the counter is 0 (zero), the stored element is replaced
by the element seen in the input and the counter is set to 1 (one). To find the
elements with frequency higher than θ [KSP03], store k = b 1

θ c elements each
one paired with a counter. If the element currently in the input already exists
in the k stored elements, its counter is increased by 1 (one) otherwise, if there
are less that k stored elements, the new element is stored with its counter set
to 1 (one). If there are already k stored elements, all counters are decreased by
1 (one). Elements with counter equal to 0 (zero) are removed from the stored
elements.

Wei-Guang Teng et al. [TCY03] propose a method on finding itemsets in a
data stream that are temporarily frequent. The general idea is to use a time-
based sliding window of size W and compute the frequency of each itemset
every time the window slides. Each itemset is assigned a cumulative frequency
which equals its average frequency in all windows. The itemsets with cumulative
frequency higher that some threshold θ are considered to be frequent. To avoid
tracking all possible itemsets, Wei-Guang Teng et al. identify initially the single
frequent items and combine them to create frequent itemsets. Only the itemsets
that have been found to be frequent are tracked in the consequent windows and
only as long as their cumulative frequency remains above the threshold θ. For
space efficiency, each itemset is represented as a linear function of its cumulative
frequency which losslessly can generate the separate frequencies at each time
point. Itemsets that are frequent for the first time or are not frequent anymore
can be considered to indicate some event.

Jeffrey Xu Yu et al. [YCLZ04] are also inspecting rapid data streams for fre-
quent itemsets. They claim that most existing algorithms find frequent itemsets

3.2. TOPICS DETECTION 29

allowing false positives. This results in an explosion in the considered number
of itemsets and thus in memory consumption. The authors argue that algo-
rithms allowing false negatives instead are more appropriate. In this context,
they propose an algorithm that uses Chernoff bound [Che52] to prune itemsets
that are potentially infrequent.

3.2 Topics Detection

The work of Qiankun Zhan et al. [ZMC07] is among the first works on topic
detection in social networks. At this time the focus was mainly on Blogs and
web forums. Research using Twitter data started a bit later. The approach
they propose is based on multiple levels of graph partitioning. They initially
create a graph having a node for each document and an edge between two
nodes depending on the content relation of the corresponding documents. They
partition the graph creating groups of documents representing the same topic.
Using the temporal aspect of the documents, they partition them again into
groups of documents created at specific time windows. For the set of documents
of each topic in the same time window, they create the dual graph which they
partition based on the information flow pattern similarity between the social
actors (senders, receivers). Finally, each event is represented as a graph of
social actors connected through a set of documents, e.g. a blog post with its
author and the people commented on it along with their comments.

Hassan Sayyadi et al. [SHM09] extract keywords from the documents pub-
lished in social media and use them to create a graph. Each node in the graph
is a keyword and two nodes are connected if the keywords exist in the same doc-
ument and if finding one of the keywords in one document increases the prob-
ability of finding the other keyword in the same document as well. They split
the graph in communities, i.e sets of keywords that are densely connected with
each other, and consider each community to represent one topic. To separate
the communities from each other, the authors use the betweenness centrality
score. According to this, the score of an edge equals the number of shortest
paths between all pairs of nodes that pass through this edge. The intuition is
that edges with high scores are probably connecting nodes from one community
to nodes from another community. Such edges are duplicated to allow keywords
to belong to more than one communities.

Hila Becker et al. [BNG09] propose a clustering technique over documents
created in the social media. According to their approach, various features of the
documents and specific metrics for each of them, e.g. the cosine similarity over
the documents body, or the Haversine distance for geolocation information, are
used to create separate clusters. The clusters are created using a single pass
algorithm with centroid similarity and at the end they are combined to create a
single clustering solution where two documents belong to the same cluster in the
final solution if they belong together in the majority of the separately created
clusters.

Bharath Sriram et al. [SFD+10] use a predefined set of categories like News,
Events, Opinions etc. and they try to assign the tweets to these categories. For
the categorisation they use, primarily, information extracted from the profile
of the authors. Their basic motivation is the observation that authors tend to
write messages with topics from a limited number of categories. In addition

30 CHAPTER 3. RELATED WORK

to the authors information, they analyse the text itself. Each category has a
set of features associated with it. Extracting these features from the body of
a message helps assigning the message to specific categories. For example, if a
tweet contains a date and a place then it is assigned to the Events category.

Ana-Maria Popescu et al. [PPP11] use sets of tweets from various time peri-
ods (snapshots) and identify the entities mentioned in each of them. Afterwards,
using Machine Learning techniques, they decide whether each snapshot regards
specifically some entities or represents a generic discussion. As a final step,
each entity is associated to a set of actions – sequences of the form (entity, verb,
action) – and a set of opinions in each snapshot.

Kazufumi Watanabe et al. [WOOO11] identify events that are of small scale,
i.e. they are of interest to a local community. Unless the documents contain
geotagging information, they decide the place each document refers to by using
the entities mentioned in it. More precisely, they bind each entity referring to
a place to a real world location and they group documents according to the
mentioned locations. For example, a document mentioning Times Square is
placed in the group about Times Square in New York. Documents are further
grouped based on their creation time. Documents created in the same period at
the same place are likely to talk about the same local event. The co-occurring
terms in each group of documents are analysed to finally decide whether the
group refers to a specific event. If there is a set of terms co-occurring in many
of the documents in the group then this set is considered to represent an event
taking place at the specific location.

Andreas Weiler et al. [WMS12] inspect an incoming stream of tweets and
spot the terms that exhibit unusually high rate. These terms are considered to
represent events. They use the metadata found in the tweets to obtain additional
information about the identified events. For example, they use the geotags to
position the events at specific locations. Additionally, using DBPedia1 and
WordNet2, they classify the events to categories. Using tweets from the past
few hours, they enrich the events with terms that co-existed in the past with
terms found in the events. Finally, they rank the events according to the number
of retweets or total number of tweets.

Alan Ritter et al. [RMEC12] manually extract events from a subset of tweets.
These tweets are used to train sequence models that are used later to extract
events from unseen tweets. From each new tweet, they extract the entities men-
tioned in it and use the model they have trained to find the events described
in them. They also extract from each tweet temporal expressions that are used
later to decide whether the events described in the tweets are mandatory. The
events extracted from the tweets are grouped into types using unsupervised
classification techniques. Finally, the events are ranked according to their cor-
relation with a specific date. They consider events strongly connected with a
specific date to be more important while events evenly distributed in time are
usually mandatory, for example tweets regarding lunch (“Spaghetti for lunch
today”) are expected to be seen every day.

Milad Eftekhar et al. [EK13] extract the hashtags found in tweets and group
them into tagsets based on their co-occurrences. These tagsets are organised in
a lattice which is partitioned to create topics. The authors examine two types of

1http://dbpedia.org/
2http://wordnet.princeton.edu/

3.2. TOPICS DETECTION 31

lattice partitioning. According to the first type, the lattice is partitioned using
as a criterion the number and size of the partitions. According to the second
type, a notion of weight is introduced reflecting the importance of each edge in
the lattice. The partitions are created using the edge weights as a criterion. For
the first partitioning type, they examine two partitioning subproblems. In the
first one, the objective is to create the most possible partitions with each cre-
ated partition having at least c tweets. To achieve it, they consider nodes with
more than c tweets to be separate partitions and merge the remaining nodes
until all partitions have at least c tweets. The objective in the second subtype is
to create k partitions such that the number of tweets in each partition is max-
imised. The solution they propose is based on the min-max graph partitioning
problem. They also examine two subproblems in the lattice partitioning using
as a criterion the weight of each partition. The first subproblem is to create
the k partitions with the maximum possible total weight. The second subprob-
lem is to create k partitions in a way that the minimum weight is maximised.
For both subproblems, they remove from the lattice the edges with a negative
weight and get all remaining connected components. For the first problem, they
return the k components with the maximum weight. For the second problem,
the k components with the maximum weight are further partitioned in a way
that maximises their weights.

Al the above works aim at identifying qualitative topics. They focus on
data collected over previous days and analyse them in an offline manner. Such
approaches might be of great interest to market analysts but we believe that
are of limited interest to individuals or news agencies. They are particularly
of no use to organisations or countries interested to prevent or limit the effects
of, for example, natural phenomena or diseases. For such applications, online
approaches for topics detection and more specifically, emerging topics detection
in real time are needed.

3.2.1 Emerging Topics Detection

Many works exist on identifying emerging topics discussed in social media.
Within these works, one can find various definitions for a topic. In our work,
we define topics using the textual annotations and/or the entities found in the
documents. More precisely, each topic is represented by a set of correlated tags.
We track the correlation of the tagsets over time and identify emerging topics
to be those topics represented by a tagset having an unexpected increase in
its correlation. The idea of capitalising on the textual annotations to identify
emerging topics is not new. However, existing works track over time single tags.
The single tags that show an unexpected increase in their “interestingness” are
then used to create tagsets that are considered to represent emerging topics.
A sample of these works, along with works that identify emerging topics using
alternative definitions for the topics, is presented here.

Nilesh Bansal et al. [BK07] present BlogScope, a system that allows users
to find events discussed in the Blogosphere. More specifically, a set of bursty
keywords, i.e. keywords that exhibit sudden increase in their popularity, is com-
puted every day. A user initiates a query over blog posts by selecting any of
these keywords. BlogScope searches blog posts to find keywords correlated to
the selected keyword. It considers two keywords to be correlated if they fre-
quently appear in the same posts. The maximum set of correlated keywords

32 CHAPTER 3. RELATED WORK

that are bursty is considered to represent an event and is presented to the user.
BlogScope identifies the places where each event was interesting using the lo-
cation of the authors that published the posts. Additionally, the time period
during which the keywords were bursty is used to find the time when the event
was interesting. Users can subscribe to keywords that reflect their interests and
get notification about related emerging topics.

Toshimitsu Takahashi et al. [TTY11] propose a method for emerging topic
detection based on links dynamically created between the users of a social net-
work. The links are created through explicit mentions, retweets, replies or direct
messages, all called simple mentions. They consider a stream of incoming mes-
sages and a window over it. For each message in the window, they sample
messages of the same user created during the past T time intervals. They use
these messages to create a model of the users mention behaviour which they use
afterwards to detect a mentions anomaly in the new message. They aggregate
the anomaly scores of all messages in the window obtaining a general trend. Us-
ing a change point technique based on the Sequentially Discounting Normalised
Maximum Likelihood Coding [UYTI11], they detect changes in the statistical
dependence of mentions. They issue an alarm if the score of the change point
exceeds some threshold. The threshold is automatically selected using a method
of dynamic threshold optimisation.

Shiva Prasad Kasiviswanathan et al. [KMBS11] propose a method of emer-
gent topic identification in social media using dictionary learning. They define
an emergent topic to be a topic that appears from many different sources and is
different form topics that have been already seen in the past. In their approach,
each document is modelled as a vector using the tf×idf measure. Initially a set
of documents is used to learn a dictionary of k atoms. The atoms are selected in
a way that all the documents can be represented as a sparse liner representation
of them. Every new documents is checked against this dictionary. If it cannot
be represented as a linear representation of the k atoms with low error then the
document is considered to be novel. They use the novel documents to learn a
new dictionary of k1 atoms. Each atom represents a topic and each novel docu-
ment is assigned to the atom in which it has the most dominant representation
resulting in a clustering of documents to topics.

Ankan Saha et al. [SS12] propose a method to identify emerging topics using
non-negative matrix factorisation. Following the same technique to [KMBS11],
they model each document as a vector using the tf×idf measure. They use
the documents to create a document-term matrix. This matrix is factorised
resulting in two new matrices W and H. Each column in W and each row in
H correspond to one topic. Matrix H represents the distribution of terms to
topics while matrix W represents the distribution of topics to documents. Only
the last k lines of H correspond to emerging topics. The other lines correspond
to the topics found up to the previous time points. This existence of previous
topics allows them, apart from identifying new topics, to track, at the same
time, the evolution of old topics. To distinguish real topics from noise, they
use the assumption that real topics will have a rapid increase in the number of
documents associated with them.

Anish Das Sarma et al. [DSJY11] consider events to be represented by dy-
namic relationships among entities. They assume entities to be known in ad-
vance or obtained using an entity extraction tool. They use a time window over
the incoming documents and create a temporal profile for each entity. This pro-

3.3. TOP-K QUERIES OVER DATA STREAMS 33

file contains the time windows at which the entity was bursty. Entities that are
bursty at the same time window are considered to be related to each other. The
strength of the relation is measured using the point wise mutual information
score [Tur01]. To detect all the entities involved in an event, they create an
Entity Dynamic Relation (EDR) graph, i.e. a graph having one vertex for each
entity and one edge between two vertices when a dynamic relation between the
corresponding entities exists. They consider connected components in the EDR
graph to represent different events. Adding in the graph information about past
time windows allows them to track the evolution of events, in the sense of the
involvement of entities in them, by considering connected components over a
number of consecutive time windows.

Michael Mathioudakis and Nick Koudas [MK10] present TwitterMonitor, a
system that identifies emergent topics over the Twitter stream. The paper is
a demo description and many details regarding their approach are omitted. In
general, TwitterMonitor is based on the common idea that a topic is a set of
bursty keywords that occur frequently in the same tweets. The identification of
emergent topics is performed in three steps:
Identify Bursty Keywords: Based on queue theory, they have developed an
algorithm, QueueBurst, that identifies keywords that suddenly occur in high
frequency. The authors claim that QueueBurst is able to identify bursty key-
words in real time, performing only one pass over the data. Furthermore, the
algorithm is adjustable against faulty bursts and spam.
Identify Bursty Topics: Bursty keywords, identified in the previous step, are
grouped into disjoint sets forming topics. For this process, they use the tweets
received during the previous minutes and find on them bursty keywords that
appear together in relatively many tweets.
Analyse Bursty Topics: As a final step, for each group of bursty keywords,
they check the tweets related to it for additional, non-bursty, entities. Moreover,
when possible, they provide external links to news portals discussing the stories
identified by TwitterMonitor to be emergent.

3.3 Top-k Queries Over Data Streams

Many works exist on processing top-k queries in a traditional RDBMS environ-
ment. Most of these works are based on the family of threshold algorithms by
Ronald Fagin et al. [FLN01]. Despite all the available work on efficiently cre-
ating top-k rankings (see the survey of Ilyas et al. [IBS08] for an overview) the
top-k aggregate rankings having group-by conditions, which we consider, have
not attracted enough attention. To the best of our knowledge the only existing
approaches are [LCCCI06] and [YMH08].

Chengkai Li et al. [LCCCI06] assume that they know a-priori the number of
tuples in each group or an upper limit about it and propose a methodology very
close to NRA algorithm; the maximum potential score of each group is computed
using the real score of the seen tuples and the maximum possible score of the
unseen tuples. When retrieving a new tuple, they always get a tuple from the
group with the maximum possible score. If tuples within the groups are ordered,
the tuple with the maximum score is selected, dropping the maximum possible
score for all unseen tuples and resulting on faster identification of the top-k
groups.

34 CHAPTER 3. RELATED WORK

Man Lung Yiu et al. [YMH08] also propose an algorithm based on NRA.
They assume the tuples in a relation are stored in decreasing score order. Ad-
ditionally, similarly to [LCCCI06], they assume the number of tuples per group
is known a priori. For every retrieved tuple, they update the maximum possible
score of all groups. They prune groups that have a maximum possible score not
inside the top-k ones. They also propose an algorithm that does not assume
any ordering on the tuples. The basic idea is to randomly select a number of
tuples and use them to guess the top-k groups. For these groups, the exact
scores are computed while for all other groups a hash table is used. The algo-
rithm is focusing on memory usage rather than time efficiency since the relation
has to be scanned multiple times until the top-k groups are identified. Every
scan however, processes less tuples since buckets that have very low scores are
discarded.

Both the above works focus on algorithms processing data that are relatively
static. Additionally, they compute top-k queries on demand. In this thesis, we
continuously monitor top-k rankings and try to notify the users for changes in
them instead of waiting for the users to initiate the queries. We also consider
more dynamic environments, i.e. quick, continuous updates affect the data.

Kyriakos Mouratidis et al. [MBP06] compute and maintain the top-k ele-
ments in a data stream with valid tuples restricted by a sliding window. They
index the elements in the window in a grid based on the values they have in their
attributes and they select the boxes in the grid that can have elements qualify-
ing for the top-k results. Any monotonic function can be used to detect these
boxes. Only new elements added in boxes that contain elements which poten-
tially belong in top-k are inserted or deleted from the top-k list. If it is the case
that not enough elements exits in the selected boxes the query is re-evaluated,
i.e. new boxes are found. More than the top-k elements can be stored to avoid
such cases using a k-skyband instead. The algorithms are trivially extended to
elements with more than two attributes.

Parisa Haghani et al [HMA10] assume a stream of documents and a set of
queries expressed as profiles defined as sets of tags with a weight on each tag.
They propose a method to maintain a separate list with the top-k most relevant
documents for each profile. The method they propose is very similar to the
TA algorithm. They create for each tag a list of profiles sorted on the weight
of this tag on each profile. For each incoming document, they get the lists of
profiles for all the tags found in the document and compute the score of the
document for each profile. The threshold is computed on the m lists with the
highest minimum scores, where m is the maximum number of tags defined in
any profile. To accelerate the procedure, they alternatively propose to maintain
sorted lists of groups of profiles for each tag where the profiles in each group
will be unsorted.

Rui Zhang et al. [ZKOS05] compute group by aggregate queries over data
streams. Their main idea is based on Gigascope [CJSS03], a stream database.
According to Gigascope, the aggregate computation is split in a two levels hi-
erarchy. Received elements are hashed into buckets in the first level. If the
bucket contains elements belonging to the same group with the new element,
its aggregate is updated. Otherwise, the group is moved to the second level
and a new group, the one of the received element, is created in the bucket. At
specific time intervals, all groups are moved from the first level to the second.
[ZKOS05] assumes multiple queries that differ only on the group by condition

3.4. MATERIALISED VIEWS MAINTENANCE 35

and proposes processing them together creating other groups, called phantoms,
in order to have less groups to maintain. The answers to initial groups should
be derived by the phantom ones. They derive a cost model on the phantoms
creation and maintenance which allows to decide on one of multiple possible
phantom combinations.

Ahmed Metwally et al. [MAEA05] propose a method that identifies the top-k
most frequent elements in a data stream especially in cases when the distribu-
tion of frequencies is skewed. The idea is to monitor N elements at any time. If
a received element is monitored then the corresponding counter is updated oth-
erwise, the element with the minimum counter is removed and the new element
is put in its place. The counter of the new element is set equal to the counter of
the removed element increased by one. The intuition is that frequent elements
will never be in the last position of the monitored elements and thus they will
never be replaced.

3.4 Materialised Views Maintenance

Maintaining materialised views has been a topic of research. José A. Blakeley et
al. [BLT86], in this early work, propose criteria that allow identifying whether
an update (insertion or deletion) affects the content of a view, i.e. it is relevant
to the view. They consider views created using selections, projections, joins or
all of these together and propose for each of them a methodology that allows to
update them identifying the tuples that should be added or deleted. This way
of updating the views is called delta or differential update.

Yue Zhuge et al. [ZGMHW95] extend the methods proposed in [BLT86] to
handle multiple concurrent updates. In such a case using differential updates
might result in faulty materialised views. Assume for example multiple inser-
tions. After each of them, the tuples that should be added to the view are
computed. If the updates happen more frequent than the estimation of the new
tuples then the same tuples could be added multiple times. To avoid that, they
propose the use of compensate queries which identify and delete tuples added
multiple times.

Ashish Gupta et al. [GJM96] introduce the notion of self-maintainable views,
i.e. views that can be maintained using only the changes caused in the underlying
relations and the contents of the view itself. Similar to the previous works,
the views that they examine are created using selections, projections and/or
joins. They define a number of theorems which identify whether a view is self-
maintainable or not based on its characteristics.

Sunil Samtani et al. [SKM99] propose, instead of maintaining each materi-
alised view separately, to share computations and tuples when possible. They
propose creating intermediate views, called auxiliary views, and use them as
shared repositories between multiple materialised views. This way, each ma-
terialised view has to be derived/computed using the tuples in the auxiliary
views. This causes a delay in the update of the views but decreases the space
requirements since it avoids storing duplicate tuples.

Along the same lines is the work of Hoshi Mistry et al. [MRSR01]. They
assume a number of permanently materialised views and propose materialising
extra views in an attempt to share update computations between various mate-
rialised views. The additional views can be permanent or transient in case their

36 CHAPTER 3. RELATED WORK

continuous maintenance is very expensive.
Ke Yi et al. [YYY+03] focus on materialised top-k views and attempt to

make them self-maintainable. They propose, instead of materialising the top-k
results, to materialise the top-k’ results, where, of course, k′ > k. According
to their approach, k’ is initially set to kmax. For every update or insertion
that causes a tuple to enter the top-k’ results k’ is increased by one. For every
update or deletion that causes a tuple to be removed from the top-k’ results k’
is decreased by 1. When k′ < k, k’ is reset to kmax and the view is recomputed.
Depending on the skewness of the data and the updates, the proposed technique
can significantly delay re-computations while materialising only a small subset
of the data.

Our work on identifying events over top-k rankings created in a relational
database could use many of the techniques proposed in the area of materialised
view maintenance. However, in the case we study we cannot really benefit from
all these techniques since we materialise only a small portion of all possible
results when the majority of these approaches assumes fully materialised results.
We benefit, though, from the ideas presented in [YYY+03]

Chapter 4

enBlogue: Emergent Events
Identification in Social
Media

The user generated content published in the Web 2.0 contains information about
events happening around the world, in a specific country or in a specific neigh-
bourhood. This makes it a very valuable resource of news information. However,
the big amount and fast rate that this content is generated at can easily over-
whelm users. We propose a method which identifies emerging topics analysing
short messages such as tweets and blogs. We achieve this by capitalising on the
textual annotations that are usually found in these messages. A demonstration
paper of this work has been published at the ACM International Conference
on Management of Data (SIGMOD 2011) [ASRW11] and the full paper regard-
ing it has been published at the ACM International Conference on Extending
Database Technology (EDBT 2012)[AMRW12].

We focus our discussion on Twitter due to its very massive nature, but our
method is not limited to it. We define topics to be represented by combina-
tions of tags, i.e. tagsets. Consider for example the tweet ‘‘#Bieber getting

a #tatoo of Selena #Gomez was a little uncesisaary’’ (sic) comment-
ing on Justin Bieber’s new tattoo being inspired by his former lover Selena
Gomez. The tagset {Bieber, Gomez, tattoo} could be used to represent this
topic. Additionally, or alternatively, to the tags explicitly used by the users,
named entities extracted from the body of the messages can be used as topic
indicators. Using the named entities extracted from the above tweet, the tagset
representing the topic would be {Bieber, Selena, Gomez, tattoo}.

One should not confuse popular or hot topics with emergent topics. Hot
topics are the topics that gather a lot of interest, i.e. many documents are
commenting on them. Emergent are the topics that attract unusual interest
compared to the interest they have gathered in the past. Emergent topics are
very likely not to be popular at the time they are identified, but they might
become popular after short time as more users become aware of them and start
commenting on them. We try to identify these topics before they become pop-
ular.

Since Barack Obama was announced to be a candidate US president, the tag

37

38
CHAPTER 4. ENBLOGUE: EMERGENT EVENTS IDENTIFICATION IN

SOCIAL MEDIA

Obama on Twitter has been a very popular one, i.e. many messages are usually
annotated with the hashtag #Obama. The tag Mandela on the other hand,
became popular after the death of Nelson Mandela on the 5th of December
2013. Finding messages annotated with both tags was relatively uncommon
until the 10th of December 2013. At this day, Barack Obama attended the
memorial service held for Nelson Mandela. The popularity of this pair of tags
lasted for a few days and dropped again to (almost) zero.

The above example suggests that tracking the popularity of single tags is not
always enough to identify emerging topics. This is especially true for tags that
are in general popular. For not popular tags, it is likely, although not certain,
to spot a burst when a related event occurs. Figure 4.1 depicts an example on
how the number of documents related to two tags t1 and t2 , a popular one
and a less popular one, and the number of documents related to both of them
change over time. In this figure, one can potentially identify two events, one
related to the tag t2 and another related to the tagset {t1, t2}. The two events
are not aligned in time thus, tracking only single tags, i.e. t1 and t2 separately,
allows identifying events related to each of them but is not enough to detect
the event related to both of them, i.e. the tagset {t1, t2}. This principle can
be generalised in tagsets of bigger size, i.e. tracking the tagset {t1, t2} is not
enough to detect events related to the tagset {t1, t2, t3} and so on.

{t1}

{t2}

{t1, t2}
event

event

time

n
u
m
be
r
o
f
d
oc
u
m
en

ts

Figure 4.1: Tags over time

The bigger the size of a tagset representing a topic, the more specific the
topic becomes. This might be useful allowing users to better understand the real
event behind the tagset representation. For example, on the 11th of December
2013 an increase observed in the documents annotated with the tag #selfie.
Looking at this single tag is very unlikely to guess the specifics of the event.
Luckily the messages were also annotated with the tags Obama and Mandela
commenting on the selfie shot by Barack Obama during the memorial service
for Nelson Mandela. On the other hand, very specific events tend to be volatile,
i.e. disappear very quickly, and are more likely to be created by spammers.

4.1 Problem Statement

We consider a stream of documents D obtained through Twitter or other social
media. Each document di in this stream is annotated with a set of tags si =
{t1, t2, . . .} and accompanied by a timestamp tmi imposing an ordering on the
documents. We use a time-based sliding window of size W over the documents
to limit the focus to the most recent of them. The window slides every w time
units. We want, immediately after sliding the window, to identify and report

4.2. COMPUTATIONAL MODEL 39

W, w The size of the sliding window, The units the windows slides
every time

S, si A set of tagsets, A tagset/A topic

T G, ti A set of tags, A tag

min Minimum number of documents to qualify a tag for further
analysis

Ti A set of documents ids annotated with tag ti

di A document id

tmi The timestamp of document di

ρ Number of previous values for computed and predicted corre-
lation, and popularity stored for each tagset (topic)

CRsi , crsij Set of ρ previous computed correlations for the tagset si, Com-
puted correlation for the tagset si at timepoint j

CRsipr, crsiprj Set of ρ previous predicted correlations for the tagset si, Pre-
dicted correlation for the tagset si at timepoint j

POPsi , popsij Set of ρ previous popularity values for the tagset si, Popularity
values for the tagset si at timepoint j

Table 4.1: Notations used in the chapter

the set of the k most interesting emergent topics mentioned in the documents
currently in the window.

4.2 Computational Model

We represent each document di ∈ D using a triple of the form: (tmi, di, si). We
consider that the tags in si have been selected to reflect the topic of di. All sets
of tags sj , where sj ⊂ si, reflect some aspect of the topic of di. The bigger the
size of a tagset sj , i.e. the more the tags it contains, the more specific becomes
the description of the topic.

Consider, for example, the document ‘‘#Obama says U.S. engagement

with #China will not come at the expense of #Japan’’ obtained through
Twitter. In Twitter, each tweet represents a document. One tagset extracted
from this tweet is s1 = {#Obama}. This tagset indicates that the topic of the
tweet is related to the president of the US. Another tagsets is s2 = {#Obama,
#Japan} which reveals that the topic of the tweet is related to both Barack
Obama and the country of Japan. In total, seven different tagsets can be ex-
tracted from the above tweet (s1 = {#Obama}, s2 = {#Japan}, s3 = {#China},
s4 = {#Obama, #Japan}, s5 = {#Obama, #China}, s6 = {#Japan, #Chine}, s7

= {#Obama, #Japan, #China}). Each one of them will indicate a topic related
to the tweet.

The computational model we consider is the following: We extract all tags
from the documents within the bounds of the sliding window and combine them
to create all sets of co-occurring tags. For each set of co-occurring tags, we
compute a correlation measure. We track the tagsets’ correlations over time

40
CHAPTER 4. ENBLOGUE: EMERGENT EVENTS IDENTIFICATION IN

SOCIAL MEDIA

and identify unexpected bursts in them. We consider an unexpected burst in
the correlation to indicate an emergent topic represented by the tagset exhibiting
the burst.

4.3 Approach

We consider a stream D of triples (tmi, di, si), where si is a set containing tags
that describe the topic of the document di. We impose a time-based sliding
window over D that restricts the focus to the most recent triples. We propose an
approach to identify emerging topics using the triples currently in the window.
The approach consists of the following steps:

1. Seed tags selection: Seed tags are a subset of all the tags in the current
window. They can be used to limit the tagsets considered in the following
steps to those having at least one seed tag. Seed tags can be determined
based on different criteria, such as popularity or volatility.

2. Correlation Tracking: Using the triples currently in the window, we
compute for each considered set of tags a correlation measure.

3. Shift Detection: We inspect the temporal changes in the correlations
computed in the previous stage in order to identify temporal bursts in
them.

4.3.1 Identifying Seed Tags

In the presence of excessive amounts of tagsets, seed tags can be used to limit
the tagsets considered for further processing to those having at least one seed
tag. From all the tags found in the current window, we select the k most popular
of them to be used as seed tags. The rationale is that for an emergent topic to
be interesting at least one of the tags representing it should be “hot” by itself.

The algorithm used to select the seed tags is shown in Algorithm 1. The
input to this algorithm are the triples (tmi, di, si) present in the current window.
These triples are used to compute the popularity of all tags in the window
(Algorithm 1, line 8) of which the top-k most popular ones are used as seed tags
(Algorithm 1, lines 7 - 13). A min parameter is additionally provided. This
parameter defines the minimum number of documents a tagset should appear in,
in order to be considered for further processing. In Twitter, it is not uncommon
to have pairs of tags that exist only in a very few documents, i.e. 1 or 2. To
get rid of these pairs, we use the min parameter. In this context, we disregard
from seeds tags those that do not appear in at least min documents.

4.3.2 Measuring Tag Correlations

For any set of co-occurring tags si = {t1, t2, . . .}, we need to compute how
strongly connected the tags are. We need a measure that will allow us to
estimate whether the tags represent a topic or they are randomly put together
(probably by a spammer). Generally speaking, a good measure should reflect:

• Local Importance: How popular is the topic in the community of users
interested in any of its aspects

4.3. APPROACH 41

Algorithm 1: Identify Seed Tags

Input: Set of triples T P = {(tm1, d1, s1), (tm2, d2, s2), . . . , (tmn, dn, sn)},
Integer min, Integer k

Result: Set of k tags

/* Find all tags currently in the window */

1 T G = {} // total set of tags in the current window

2 foreach (tmi, di, si) ∈ T P do
3 T G = T G ∪ si
4 end foreach

/* Find the k most popular tags currently in the window */

5 T Gtopk = {} // top-k popular tags in the current window

6 Find Tp : tp the least popular tag in T Gtopk
7 foreach tj ∈ T G do
8 Tj = {di|tj ∈ si ∧ (tmi, di, si) ∈ T P}
9 if (|Tj | > |Tp| && |Tj | > min) then

10 replace tp with tj in T Gtopk
11 update Tp
12 end if

13 end foreach
14 return T Gtopk

• Global Importance: How popular is the topic in the whole community

Consider two tags t1 and t2. Each of these tags is accompanied by a set
Ti containing all document ids of the documents in the current window that
are associated with tag ti. A document dj is associated with a tag ti if the tag
has been explicitly used to indicate the topic of the document dj or if tag ti has
been extracted from the body of the document dj using an annotation extractor
mechanism. Out of all the documents associated with either tag t1 or tag t2 a
subset is associated with both t1 and t2. To estimate the local importance of
the topic represented by the tagset {t1, t2}, one should compute the similarity
of the sets T1 and T2. The more similar these sets are, the more important
the topic {t1, t2} is to the users interested in any aspect of it. One of the most
common measures for the similarity of two sets is the Jaccard coefficient.

The global importance of a topic is estimated by the general interest of all
users in it. The measure we use to compute it is the frequency of the documents
associated with the tagset in the whole collection. The product of the two
measures estimating the global and the local importance of a topic is used to
measure the correlation of the tags representing the topic.

For any set of tags si = {t1, t2, . . .}, the correlation is computed using the
Formula 4.1:

corr(t1, t2, . . .) :=

local importance︷ ︸︸ ︷
|
⋂
i Ti|

|
⋃
i Ti|

×

global importance︷ ︸︸ ︷
|
⋂
i Ti|
N

(4.1)

We know that 0 ≤ |
⋂
i Ti|

|
⋃
i Ti|
≤ 1.0 and 0 ≤ |

⋂
i Ti|
N ≤ 1.0 thus, 0 ≤ corr(t1, t2, . . .) ≤

1.0

42
CHAPTER 4. ENBLOGUE: EMERGENT EVENTS IDENTIFICATION IN

SOCIAL MEDIA

4.3.3 Shift Detection

A topic is considered to be emergent when its behaviour deviates from what is
expected, similar to [MP03]. The more the observed behaviour deviates from
the expected behaviour, the more emergent the topic is.

The behaviour of a topic is said to be expected if it can be predicted from
its previous behaviour. The prediction of the behaviour of a topic is attempted
with the use of exponential smoothing [Bro63]. Exponential smoothing is a
forecasting technique that uses a weighted moving average of past data as the
basis for the forecast. The process gives greater weights to most recent observa-
tions and smaller weights to observations in the more distant past. The reason
is that the future value is likely to be more dependent upon the recent past.
Equation 4.2 depicts the exponential smoothing formula:

v̂t = avt−1 + (1− a)v̂t−1 (4.2)

where vt−1 is the previously observed value and v̂t−1 is the previously predicted
value. a is a smoothing parameter defining the importance of the previously
observed value and the importance of the previously predicted value in the
prediction of the current value.

Definition 1. A topic represented by a set of tags si = {t1, t2, . . .} is emergent
if the computed correlation value of the tags t1, t2, . . ., represented as vsit , is
larger than its predicted correlation value, represented as v̂sit .

The difference between the computed and the predicted correlation values
of a topic represented by a tagset si is called prediction error. Using the pre-
diction error to estimate the emergence of a topic results in overestimating the
emergence of the tagsets found in the current window for the first time (the pre-
dicted correlation value is zero). At the same time, any tagset having a current
correlation value higher that its previous, non-zero, correlation value might be
overlooked. To avoid this we use instead the relative prediction error, defined
as

ersit =
vsit − v̂

si
t

vsit
(4.3)

4.3.4 Scoring

The relative prediction error detects the topics that are emergent, but it cannot
detect out of them the ones that are more interesting. A good measure for
the interestingness of a topic is its popularity measured as the frequency of
the tagset representing the topic. We measure the score of an emergent topic
represented by the tagset si using Equation 4.4.

scsit =
ersit

| ln(popsit)|
(4.4)

where popsit is the popularity of the topic at the t timepoint, 0 < popsit ≤ 1.0.
We choose to divide by the absolute value of the natural logarithm of the

popularity and not just to multiply with the popularity because the natural
logarithm has the property of dampening the effect popularity has on the final

4.3. APPROACH 43

score. This means that if a not so popular topic s1 and a popular topic s2 have
very different relative errors with ers1t being greater than ers2t then it is more
difficult for s2 to be considered more emergent than s1 just because it is more
popular.

Example: Consider four topics s1, s2, s3 and s4 and their scores sc1, sc2,
sc3 and sc4 respectively. Assume that the relative error of the topic s1 is related
to the relative error of the topic s2 by ers1t = 1.010×ers2t and the relative error of
the topic s3 is related to the relative error of the topic s4 by ers3t = 1.100×ers4t .
Considering the relative errors of the topics the relative rankings of them are
scs1t > scs2t and scs3t > scs4t . In order for the popularities of the topics to be able
to affect those rankings they should be related as shown by the formulas pops2t =
1.047× pops1t and pops4t = 1.520× pops3t . In the simple case, where the relative
error is just multiplied with the popularity, a relation between the popularities
given by the formulas pops2t = 1.011× pops1t and pops4t = 1.101× pops3t suffices
to change the relative ranking of the topics.

The previous example shows that by using the natural logarithm of the
popularity it is more difficult to affect the ranking of the topics. Moreover an
increase in the factor relating the relative errors of 8.9% (from 1.010 to 1.100)
needs an increase in the factor relating of popularities of 45.2% (from 1.047
to 1.520) for the ranking to be affected. In the simple case this increase in the
factor of popularities is just 8.9% (from 1.011 to 1.101), the same as the increase
in the ratio of relative errors.

Thus, using the natural logarithm of the popularity lessens the influence
of it in the final score. Since we are interested in emergent topics and not in
hot ones, this is a desired result. We avoid the situation that the overall score
depends too much on the popularity, but at the same time a big difference in the
popularity, compared to the difference in the relative errors, is able to change
the ranking of the topics.

4.3.5 Score Smoothing

Naturally, if a topic’s behaviour does not change much with time, the capability
of predicting the next value improves and the topic is not considered emergent
anymore. Intuitively though, we can say that a user does not loose interest in a
topic from one moment to another. For example, in case of a big scandal almost
every newspaper has an article about it in the first day. The following days the
scandal is not a surprise anymore, but the newspapers have articles about it
since it is still of some interest to the users. Hence, the interestingness of one
day, e.g. the first day the event occurred, should carry over to other days, with
a dampening factor, obviously.

This intuition is confirmed by the observation made in articles from the
New York Times archive. We used this source as an example because we believe
that the newspaper editors have a good understanding of how long an event
is interesting to the consumers. We discovered that very often the number of
articles referring to one specific event decreases through time by a factor of

penalty(∆t) := e−λ∆t

where ∆t is the distance in time from the moment when the most articles for the
topic were written. After testing a few dozens of topics, we obtained on average

44
CHAPTER 4. ENBLOGUE: EMERGENT EVENTS IDENTIFICATION IN

SOCIAL MEDIA

a value of λ = 0.38. This means that an interestingness score of yesterday gets
dampened by a factor of e−0.38 = 0.68, the score obtained two days ago by a
factor of 0.46, and so on.

Fang Wu and Bernardo A. Huberman in [WH07] conducted a similar study
on the decay of the novelty of a story published in a website. Similar to our
results, they found that the attention attracted by a story or the interestingness
of a story fades following an exponential law with decreasing rate e−0.4∗(τ−t)

every hour.
Dampening each previous score by the appropriate factor, we get a set of

scores for each topic. One score, dampened, for each point in the past and one
score for the current point which is obviously not dampened as ∆t = 0. The
biggest of these scores is finally assigned to the topic, giving a chance to old
“surprises” to influence a topic’s ranking position today.

scoresiτ := maxt≤τ

{
ersit

| ln(popsit)|
∗ e−λ∗(τ−t)

}
The dampening factor found from the study of the New York Times articles

seems to produce nice results when applied to blog posts but not when applied
to tweets. This is obviously due to the fact that topics discussed in Twitter
have a fast refresh rate, while topics discussed in blogs have a refresh rate that
resembles that of newspapers. The dampening factor e−0.38∆t has a half life of
1.8 evaluations. Since topics in Twitter change very often, we are obliged to
evaluate new emergent topics more frequent, e.g. every hour instead of one day
which is the case for newspapers. This means that with the use of the above
dampening factor a topic looses its half score after the second hour. This is
too fast and a smaller dampening factor is needed. By experimentally testing
various dampening factors, we concluded that the factor e−0.2∆t, which has half
life of 3.4 evaluations, is more appropriate for Twitter.

7/3 8/3 9/3 10/3 11/3 12/3 13/3 14/3 15/3 16/3
0

0.2

0.4

0.6

0.8

date

computed correlation
predicted correlation
score
relative error

Figure 4.2: Interesting shift in correlation of two tags.

Since the number of previous values that we can store for each topic is
limited, the final score may not be the largest of all the observed scores of this
topic but just the greatest of the scores that we store. In practice, this is not a
restriction as the dampening factor de-facto erases former scores after a couple
of time units in any case. Figure 4.2 shows an illustration of the score derivation.
The red dashed line depicts the change in the relative error. At each timepoint,
the relative error represents the surprise related to the topic. The green line
depicts the final score assigned to the topic at each time point. The green line
declines over time and the changes in it are much smoother than the changes in

4.3. APPROACH 45

the read line. This behaviour fits better the change in the interest of the users
to emergent topics.

Algorithm 2 shows the procedure followed when computing the score of a
topic represented by the tagset si. Three sets are given as input to this algo-
rithm. A set CRsi having ρ+ 1 values; the correlation values computed during
the previous ρ evaluations along with the correlation value computed during
the current evaluation. A set CRsipr having the correlation values predicted dur-
ing the previous ρ evaluations and a set POPsi having the popularity values
computed during the previous ρ and the current evaluation.

The first step of the algorithm is to predict a correlation value for the topic
(Algorithm 2, Line 2). It achieves it using the correlation values computed and
predicted during the previous evaluation in the exponential smoothing equation
(Equation 4.2). Afterwards, the algorithm iterates over the ρ previous and the
current correlation values and for each one computes a score for the topic. Each
score is dampened by an appropriate factor which for the current score is 1 since
∆tρ+1 = 0, i.e. the current score is not dampened. The final score returned by
the algorithm is the biggest of the smoothed scores (Algorithm 2, Lines 4 - 15).

Algorithm 2: Score a Tagset si

Input: Set of computed correlation values CRsi = {crsi1 , cr
si
2 , . . . , cr

si
ρ+1}

Set of predicted correlation values CRsipr = {crsipr1 , cr
si
pr2 , . . . , cr

si
prρ}

Set of popularity values POPsi = {popsi1 , pop
si
2 , . . . , pop

si
ρ+1}

Result: Double score

1 score = 0

2 Predict current correlation crsipr(ρ+1)

3 CRsipr = CRsipr ∪ crsipr(ρ+1)

4 foreach crsij ∈ CR
si do

/* number of evaluation since this value was computed */

5 ∆tj = (ρ+ 1− j)

6 erj =
cr
si
j −cr

si
prj

cr
si
j

7 if Twitter Dataset then
8 scorej =

erj
| log(pop

si
j)| × e

−0.2×∆tj

9 else
10 scorej =

erj
| log(pop

si
j)| × e

−0.38×∆tj

11 end if

12 if scorej > score then
13 score = scorej
14 end if

15 end foreach
16 return score

46
CHAPTER 4. ENBLOGUE: EMERGENT EVENTS IDENTIFICATION IN

SOCIAL MEDIA

4.4 Implementation

We have implemented a full-fledged prototype system, called enBlogue. The
implementation is done in Java 1.6 and follows the standard concepts of a
push-based architecture for stream processing. At the data source level, it
consists of several wrappers that either consume live streams or replay exist-
ing datasets for experiments. Data is represented in an array n-tuple format,
consumed by stream operators, and pushed along producer-consumer edges in
query-processing plans. The sliding window we use is time-based.

Figure 4.3 shows the workflow. Every block in the illustration represents
an operator. Each operator receives data from the previous operator, processes
them and pushes the results to the next operator.

	

Figure 4.3: Workflow Illustration

Entity Tagger

The first step in the workflow is to obtain the set of tags representing the
topic of each document. Some of these tags have been used by the creator of
the document for this reason and are extracted from the document’s metadata.
Additional tags, e.g. names of persons are found in the body of the document.
We have implemented a preprocessor operator, the Entity Tagger, that extracts
these tags. The Entity Tagger uses an automatic entity extractor tool imple-
mented in our group and finds in the document’s body entities like persons,
organisations and places. These entities are added in the set of tags that rep-
resent the topic of the document and are treated afterwards as common tags.
For each incoming document, the Entity Tagger outputs a triple of the form
(tmi, di, si).

Sliding Window Manager

The Sliding Window Manager is responsible to decide which triples (tmi, di,
si) belong in the sliding window at any time. The sliding window is represented
by its upper and its lower time bounds. The distance of these bounds equals
the size W of the window and depends on the application. For the Twitter,
for example, a reasonable valued of W could be 1 hour. The Sliding Window
Manager blocks the arriving triples that have a timestamp smaller than the

4.4. IMPLEMENTATION 47

upper limit of the window. Triples arriving out of the order, i.e. having a
timestamp smaller than the lower limit of the window, are discarded. When a
triple with timestamp greater than the upper limit of the window is received, the
Sliding Window Manager releases all the tuples to the rest of the operators. We
call this moment evaluation point and the period between two evaluation points
evaluation period. At the evaluation point, the Sliding Window Manager slides
the window by w time units updating its upper and lower bounds. Additionally,
it discards all triples with timestamp smaller than the current upper limit of
the window.

The Entity Tagger and the Sliding Window Manager are continues operators
in the sense that they process each incoming document as soon as it arrives in
the system. The other operators, that receive the triples the Sliding Window
Manager releases, operate only during each evaluation phase. Their execution
starts as soon as they receive input from an operator preceding them in the
workflow and ends at the moment they release their results to the operators
following in the workflow. It is during the evaluation phase that the main steps
of our approach, described in Section 4.1, are executed.

Statistics Operator

The Statistics operator comes in the workflow immediately after the Sliding
Window Manager. It gets the triples released by the Sliding Window Manager
and outputs the seed tags of the current evaluation. The seed tags are found
using the Algorithm 1 presented in Section 4.3.1.

Correlation Computation Operator

The Correlation Computation operator takes the triples release by the Slid-
ing Window Manager and the seed tags T Gs computed by the Statistics operator
and finds all tagsets that represent some topic. A tagset represents a topic if all
its tags co-exist in at least min documents and at least one of its tags is a seed
tag.

Algorithm 3 outlines this process. Due to efficiency problems, in the current
implementation only tagsets of size 2 (pairs) are considered. For each tag ti,
Algorithm 3 computes the set of documents Ti that are associated with it (Al-
gorithm 3, Line 6). Using these tags and the seed tags, the algorithm creates
all possible pairs that contain at least one seed tag. Only the pairs having at
least min documents associated with them are further considered. For each such
pair, the Correlation Computation operator computes and stores its popularity
and Jaccard coefficient (Algorithm 3, Lines 9 - 15).

Apart from the tagsets representing topics according to the documents seen
in the current evaluation, there are also tagsets representing topics identified in
previous evaluations. The Correlation Computation operator updates also their
current popularity and correlation values

The complete algorithm executed by the Correlation Computation operator
is shown in Algorithm 4. For each topic found in the current evaluation (Algo-
rithm 4, Line 2), the Correlation Computation operator computes its current
popularity and correlation value and adds the new values to the tuples stor-

48
CHAPTER 4. ENBLOGUE: EMERGENT EVENTS IDENTIFICATION IN

SOCIAL MEDIA

Algorithm 3: Find New Topics

Input: Set of triples T P = {(tm1, d1, s1), (tm2, d2, s2), . . . , (tmn, dn, sn)},
Set of tags T Gs = {t1, t2, . . . , tk}, Integer min

Result: Set of tuples NEW = {(s1, pop
s1 , jacs1), . . . , (sl, pop

sl , jacsl)}
/* Find all tags currently in the window */

1 T G = {} // total set of tags in the current window

2 foreach (tmi, di, si) ∈ T P do
3 T G = T G ∪ si
4 end foreach

/* Find the documents associated with each tag currently in

the window */

5 foreach tj ∈ T G do
6 Tj = {di|tj ∈ si ∧ (tmi, di, si) ∈ T P}
7 end foreach

/* Create all tag pairs that have at least one seed tag */

8 NEW = {} // tag pairs considered for further processing

9 foreach ti ∈ T Gs do
10 foreach tj ∈ T G do

/* Store only the tag pairs that co-exist in at least

min documents */

11 if |Ti ∩ Tj | ≥ min then

12 NEW = NEW ∪ ({ti, tj}, |Ti ∩ Tj |, |Ti∩Tj ||Ti∪Tj |)

13 end if

14 end foreach

15 end foreach
16 return NEW

ing the previous ρ values for them (Algorithm 4, Lines 2 - 12). The current
popularity and correlation values for the topics found in any of the previous
ρ evaluations but not in the current one are set to 0 (Algorithm 4, Lines 13 -
19). Topics that were not found in the current and any of the previous ρ − 1
evaluations are not considered further.

Shift Detection Operator

The Correlation Computation operator uses a number of threads to find
the topics. Each thread is assigned a subset of the seed tags and checks all
pairs that have one of the seed tags it has been assigned. After all threads
have finished, the results are forwarded to the Shift Detection operator. This
operator computes the score for each topic executing the Algorithm 2 described
in detail in Sections 4.3.3 and 4.3.5.

4.4.1 Diversification

Our main approach ends with the Shift Detection operator. However, in order
to increase the users satisfaction, we have added one additional operator, the

4.4. IMPLEMENTATION 49

Algorithm 4: Update topics information

Input: Set of triples T P = {(tm1, d1, s1), (tm2, d2, s2), . . . , (tmn, dn, sn)},
Set of tags T G = {t1, t2, . . . , tk},
Set of tuples
PRold = {(s1,POPs1 , CRs1 , CRs1pr), . . . , (sl,POP

sl , CRsl , CRslpr)},
Integer min

Result: Set of tuples PRnew =
{(s1,POPs1 , CRs1 , CRs1pr), . . . , (sl,POP

sl , CRsl , CRslpr)}

1 PRnew = {}
2 NEW = FindNewTopics(T P, T G,min)

/* Check each topic found in the current window */

3 foreach (si, pop, jac) ∈ NEW do

4 if @(sj ,POPsj , CRsj , CRsjpr) ∈ PRold : sj = si then
/* Set previous values to 0 */

5 (popsik , cr
si
k , cr

si
prk

) = (0, 0.0, 0.0), ∀k, 0 < k < ρ

6 else
/* Remove oldest values */

7 PRold = PRold \ (si,POPsi , CRsi , CRsipr)
8 (popsik , cr

si
k , cr

si
prk

) = (popsik+1, cr
si
k+1, cr

si
prk+1

), ∀k, 0 < k < ρ

9 end if

10 (popsiρ , cr
si
ρ , cr

si
prρ) = (pop, jac× pop

|T P| , 0.0) // Set current values

11 PRnew = PRnew ∪ (si,POPsi , CRsi , CRsipr)
12 end foreach

/* Check each old topic not found in the current window */

13 foreach (si,POPsi , CRsi , CRsipr) ∈ PRold do
14 if ∃j ∈ [2, ρ] : popsij > 0 then

15 (popsik , cr
si
k , cr

si
prk

) = (popsik+1, cr
si
k+1, cr

si
prk+1

), ∀k, 0 < k < ρ

16 (popsiρ , cr
si
ρ , cr

si
prρ) = (0, 0.0, 0.0)

17 PRnew = PRnew ∪ (si,POPsi , CRsi , CRsipr)
18 end if

19 end foreach
20 return PRnew

Diversification operator. The Diversification operator gets the emergent topics
identified by the Shift Detection operator and creates groups of them that refer
to the same event.

Definition 2. Two topics refer to the same event if their corresponding tagsets
co-exist in 80% of the documents.

Grouping the topics referring to the same event is necessary to avoid having
in the output very many similar results. The description of a topic after the
grouping is the union of the tags of all the topics placed in the group.

50
CHAPTER 4. ENBLOGUE: EMERGENT EVENTS IDENTIFICATION IN

SOCIAL MEDIA

Additional Operators

The data stream design principles followed in our approach makes the ad-
dition of new operators a straightforward procedure. For example, in addition
to the Diversification operator, a Personalisation operator could be also added.
The Personalisation operator can use standard IR techniques such as Language
Models or methods based on tf×idf scores [MRS09] to select from the set of
the results only those that satisfy the users preferences by computing scores for
topics based on the scores of the associated documents.

User Interface

The Web-based user interface of enBlogue provides real-time monitoring
and user notifications in a push-based manner (i.e. without the user having to
continuously poll the server for updates on emergent topic rankings). This has
been implemented using AJAX technology, more specifically, the push-based
variant offered by the open-source Ajax Push Engine (APE)1. APE includes a
Javascript framework for real-time data streaming to Web browsers, without
any installations on the client side.

4.5 Implementation of an Alternative Approach

We compare our approach against TwitterMonitor, a work of Mathioudakis and
Koudas [MK10] (see also Section 3.2). The general idea of it is summarised in
the following two steps:

1. Find bursty tags

2. Group bursty tags in disjoint sets

Grouping bursty keywords to topics is very similar to our approach. How-
ever, creating disjoint sets of tags is very restrictive. To our experience, multiple
events related with the same keyword may be concurrently emergent. Twitter-
Monitor does not consider this possibility. Additionally, Mathioudakis et al.
assume that traditional news portals have already reported on the events iden-
tified by TwitterMonitor and try to link on them. This may be true for really
big events but our perspective is that users, especially on Twitter, report on
events before they become popular enough to be addressed by traditional news
media.

[MK10] is a demonstration paper and provides limited information regarding
the proposed approach. We tried to use the main principles on which they based
their approach and in case we could not decide, based on the authors description,
we took decisions similar to those we took in our approach.

We find bursty tags using Algorithm 5. The process is very similar to the
one followed in our approach when detecting shifts (Algorithm 4), but instead
of using tagsets, Algorithm 5 uses tags and instead of the correlations between
tags it uses the popularities of tags. Similarly to our approach, for each tag ti
the algorithm stores its previous ρ popularity values POPt1 and its previous ρ
predicted popularity values POPt1pr.

1http://www.ape-project.org/

4.5. IMPLEMENTATION OF AN ALTERNATIVE APPROACH 51

Algorithm 5: Find Bursty Tags in TwitterMonitor

Input: Set of triples T P = {(tm1, d1, s1), (tm2, d2, s2), . . . , (tmn, dn, sn)},
Set of tuples PR = {(t1,POPt1 ,POPt1pr), . . . , (tl,POP

tl ,POPtlpr)},
Integer min

Result: Set of bursty tags
ST = {(t1, scoret1), (t2, score

t2), . . . , (tm, score
tm)}

1 PRnew = {}
2 ST = {}
/* Find all tags currently in the window */

3 T G = {} // set of all tags in the current window

4 foreach (tmi, di, si) ∈ T P do
5 T G = T G ∪ si
6 end foreach

/* Check all tags found in the current window */

7 foreach ti ∈ T G do
8 Ti = {dj |ti ∈ sj ∧ (tmj , dj , sj) ∈ T P}
9 if |Ti| ≥ min then

10 if @(tj ,POPtj ,POPtjpr) ∈ PR : tj = ti then
/* Set previous values to 0 */

11 (poptik , pop
ti
prk

) = (0.0, 0.0), ∀k, 0 < k < ρ

12 else
/* Remove oldest values */

13 PR = PR \ (ti,POPti ,POPtipr)
14 (poptik , pop

ti
prk

) = (poptik+1, pop
ti
prk+1

), ∀k, 0 < k < ρ

15 end if

16 poptiρ = |Ti|
|TP |

17 predict poptiprρ
18 PRnew = PRnew ∪ (ti,POPti ,POPtipr)

19 scoreti =
pop

ti
ρ −pop

ti
prρ

pop
ti
ρ

// Estimate the burst of the tag

20 ST = ST ∪ {(ti, scoreti)} // Store the tag and its score

21 end if

22 end foreach

/* Check all tags not found in the current window */

23 foreach (ti,POPti ,POPtipr) ∈ PR do

24 if ∃j ∈ [2, ρ] : poptij > 0 then

25 (poptik , pop
ti
prk

) = (poptik+1, pop
ti
prk+1

), ∀k, 0 < k < ρ

26 (poptiρ , pop
ti
prρ) = (0.0, 0.0)

27 PRnew = PRnew ∪ (ti,POPti ,POPtipr)
28 ST = ST ∪ {(ti, 0.0)} // Store the tag

29 end if

30 end foreach
31 set PR = PRnew
32 return ST

52
CHAPTER 4. ENBLOGUE: EMERGENT EVENTS IDENTIFICATION IN

SOCIAL MEDIA

For each tag associated during the current implementation with more than
min documents (Algorithm 5, Line 9), the algorithm checks whether the tag
has been found in any of the previous ρ evaluations. In case it has not, it sets
zeroes to all previous predicted and computed popularity values (Algorithm 5,
Line 11). The real and the predicted popularity values are computed for each
tag and a score is assigned to each of them (Algorithm 5, Lines 16 - 20). The
score equals the relative error of the predicted popularity compared to the real

Algorithm 6: Group Bursty Tags in TwitterMonitor

Input: Set of triples T P = {(tm1, d1, s1), (tm2, d2, s2), . . . , (tmn, dn, sn)},
Set of tags ST = {(t1, scoret1), (t2, score

t2), . . . , (tm, score
tm)},

Integer min
Result: Set of top-k topics SC = {(s1, score, s2, . . . , sk}
/* Find all tags currently in the window */

1 T G = {} // set of all tags in the current window

2 foreach (tmi, di, si) ∈ T P do
3 T G = T G ∪ si
4 end foreach

/* Find pairs of co-existing tags */

5 NEW = {}
6 foreach ti ∈ T G do
7 Ti = {dl|ti ∈ sl ∧ (tml, dl, sl) ∈ T P} foreach tj ∈ T G do
8 Ti = {dl|ti ∈ sl ∧ (tml, dl, sl) ∈ T P} if |Ti ∩ Tj | ≥ min && ti 6= tj

then
9 NEW = NEW ∪ {ti, tj}

10 end if

11 end foreach

12 end foreach

/* create undirected graph G */

13 foreach ti ∈ T G do
14 create node ni in G

15 end foreach
16 foreach {ti, tj} ∈ NEW do
17 create edge e(i,j) in G
18 end foreach

/* store each connected component */

19 SC = {}
20 foreach Connected Component cci ∈ G do
21 si = {tj ∈ cci}
22 popsi = |

⋃
j(Tj : tj ∈ si)|

23 set scoresi =
∑
j score

tj :tj∈si
|si| × 1

|ln(popsi)|
24 SC = SC ∪ (si, score

si)

25 end foreach

26 sort SC in descending score order
27 return top-k of SC

4.6. EXPERIMENTAL EVALUATION 53

popularity, scoreti =
popti−poptipr

popti
. The biggest the error, the more bursty the

tag is considered.

To all tags that have been found during any of the previous ρ−1 evaluations
but not in the current one, a popularity value of 0 is assigned as their current
real popularity value. The score of these tags is also set to zero. (Algorithm 5,
Lines 23 - 30).

In the second stage, the bursty tags are grouped into disjoint sets. The
disjoint sets are created using Algorithm 6. The input to this algorithm is the
set of triples T P currently in the window and the set ST containing the bursty
tags along with their scores as computed in the previous stage. The bursty tags
are organised in a graph G where each tag represents a node and there is an edge
between two tags if the tags coexist in at least min documents (Algorithm 6,
Lines 13 - 18). Each connected component in G is considered to represent a
topic. We assign a score to each topic adapting Formula 4.4 to

scsit =

∑
j score

tj
t : tj ∈ si
|si|

× 1

|ln(popsit)|
(4.5)

In our approach, in each evaluation the relative error between the predicted
and the computed correlation values of a tagset is considered an indicator of
how emergent the topic represented by the tagset is. In TwitterMonitor each
tag is considered separately and then tags are grouped into tagsets. Each tag
has its own score which indicates how bursty it is. We consider the average score
of all tags grouped together to indicate how emergent the topic represented by
them is. Similar to Formula 4.4, the final score assigned to each topic is the
average score divided by the popularity of the tagset in the current window.

4.6 Experimental Evaluation

We used our prototype implementation to conduct a series of experiments. All
measurements were performed on a server with two quad-core 2.4 GHz Intel
Xeon processors, 48 GB of RAM, and a 2 TB RAID-5 disk. For repeatability,
the datasets were replayed from files that contain the raw data.

4.6.1 Datasets

Blog dataset: We have obtained the ISWCM Spinn3r blog dataset [BJS09]
consisting of 44 million blog posts created in the time period from August 1st

to October 1st, 2008. Each blog post has a set of categories assigned to it.
We use these categories as tags. Examples of categories are Election 2008 and
Economics, or Entertainment and Sports. For the experiments, we used the
blog posts from September 2008.

Twitter dataset: We have access to the “fire hose” stream of Twitter, deliver-
ing 10% of all Tweets (in general, all status updates). Tweets contain hashtags,
such as #egypt and #revolution which we use as tags. For the experiments, we
use the tweets from 02.07.2011 to 15.07.2011.

54
CHAPTER 4. ENBLOGUE: EMERGENT EVENTS IDENTIFICATION IN

SOCIAL MEDIA

4.6.2 Algorithms

We compare the following algorithms:

enBlogue (eB): This is our approach for emergent topic detection, described
in this chapter. For the naming of the different configurations, we will refer to
our algorithms by mentioning the number of seed tags used every time. For
example our algorithm using all tags as seeds will be referred as eB-100%, our
algorithm using 20% of all tags as seeds will be referred as eB-20% and so on.
For efficiency reasons, besides using seed tags to restrict the total number of
considered tagsets, we have also restricted topics to be represented by pairs of
tags. Processing pairs of tags instead of tagsets of higher cardinality allows us
to process all input data in real time. As we discussed in the introduction of this
chapter, this would affect the emerging topics that we identify. However, the
user study we conducted (Section 4.7) shows that our approach is nevertheless
able to produce results of higher quality in comparison to results produced by
an alternative approach. At the end, users are presented with sets of tags as a
result of the Diversification operator.

TwitterMonitor (TM): The approach by Mathioudakis and Koudas [MK10],
described in Section 4.5, is our competitor.

The window size for the Twitter dataset is set to W = 1h and for the Blog
dataset to W = 6h. We did not see any influence on the runtimes when varying
the number of topics shown to the user and we set it to k = 20.

4.6.3 Runtime

We measure and report the runtime cost of the methods. The values reflect
the average time spent at each evaluation phase. They do not include the pre-
processing costs like named-entity tagging, but they include the post-processing
cost of diversification.

In general, the runtime depends on three factors:

1. initial pairs: In enBlogue, every seed tag is initially paired with each
other tag. This results in the creation of tag pairs which we call initial
pairs. Similarly, the initial pairs in TwitterMonitor are created by match-
ing each bursty tag with each other tag. Whether the tags in each pair
co-occur in any document is verified in a subsequent step. This means that
there might be initial pairs that do not represent topics (only co-occurring
tags can represent topics).

Even for the simple case, where only tag pairs are considered, creating
all possible pairs and subsequently eliminate those consisting of non co-
existing tags adds a big processing overhead. For this, in a later imple-
mentation, when we focus on improving the efficiency of our approach we
skip the creation of the initial pairs and we consider, from the beginning,
only the sets of co-occurring tags. (cf. Chapter 5).

2. new pairs: In enBlogue, new pairs are the pairs of tags that represent a
topic during the current evaluation. These pairs are identified by Corre-
lation Computation operator and are a subset of the initial pairs. All new

4.6. EXPERIMENTAL EVALUATION 55

pairs are checked during the shift detection procedure (Section 4.3.3) and
during the scoring procedure (Sections 4.3.4 and 4.3.5). The number of
new pairs depends on the number of initial pairs.

In TwitterMonitor, new pairs are the pairs of bursty tags connected with
an edge in the graph G created in the current evaluation.

3. old pairs: In enBlogue, old pairs are the pairs that represented a topic
during any of the previous ρ − 1 evaluations but are not representing
a topic in the current evaluation (i.e. the sets of new and old pairs are
disjoint). Although not found during the current evaluation, the old pairs
are still stored and processed during the scoring procedure (Sections 4.3.4
and 4.3.5). The number of old pairs depends on the number of the new
pairs on the previous ρ− 1 evaluations.

In TwitterMonitor, old pairs are the pairs of bursty tags connected with
an edge in the graph G created in any of the previous ρ − 1 evaluations
but not in the current one.

 0

 2000

 4000

 6000

 8000

 10000

 12000

20000-29999

30000-39999

40000-49999

50000-59999

n
e
w

 p
a
ir
s

tags

New Pairs per Number of Tags
 Twitter Dataset

eB-10%
eB-20%
eB-40%
eB-70%

eB-100%
TM

(a) Twitter Dataset

 0

 10000

 20000

 30000

 40000

 50000

 60000

0-999
1000-1999

2000-2999

3000-3999

n
e

w
 p

a
ir
s

tags

New Pairs per Number of Tags
 Blog Dataset

eB-10%
eB-20%
eB-40%
eB-70%

eB-100%
TM

(b) Blog Dataset

Figure 4.4: Number of new pairs for varying number of total tags

The plots in Figure 4.4 show the dependency of the number of new pairs
to the number of total tags. To compute the values, we have grouped the
evaluations according to the number of tags that were found in them. We
average the values of all evaluations put in the same group. Figure 4.4a shows
the results for the Twitter dataset and Figure 4.4b shows the results for the
Blog dataset. Comparing the two plots, an interesting observation regarding
the characteristics of the two datasets can be made. One can notice that in
the Twitter dataset many more tags, compared to the Blog dataset, are found.
However, the number of new pairs in the Twitter dataset is much lower than the
number of new pairs in the Blog dataset. This is due to the fact that blog posts
are longer in size and, thus each blog post contains more tags compared to the
number of tags contained in a single tweet. The entities are used as additional
tags which means that each blog post has bigger tagsets, i.e. it is associated
with more tag pairs. In Twitter tagsets are smaller so, not many pairs are
created from each tagset. Additionally, in Twitter many of the co-existing tags
are not found in at least min documents and thus do not qualify for further
consideration (i.e. to become new pairs). This observation reveals the dynamics

56
CHAPTER 4. ENBLOGUE: EMERGENT EVENTS IDENTIFICATION IN

SOCIAL MEDIA

of the two datasets with Twitter being much more noisy compared to the Blog
dataset.

The number of tags used as seeds in the enBlogue variations is a portion of
the total tags, and the number of initial pairs are quadratic on the number of
seeds. Since the new pairs are a subset of the initial pairs, we expect the number
of them to increase with the increase of the percentage of tags used as seeds.
Additionally, we expected the number of new pairs to increase with increasing
number of tags. For TwitterMonitor, there is no direct analogy between the
number of tags and the number of bursty tags. However, we would expect the
number of bursty tags to increase as the number of tags increases. The plots in
Figure 4.4 confirm our expectations.

 0

 2000

 4000

 6000

 8000

 10000

15000-29999

30000-44999

45000-59999

60000-74999

75000-89999

n
e
w

 p
a
ir
s

documents

New Pairs per Number of Documents
 Twitter Dataset

eB-10%
eB-20%
eB-40%
eB-70%

eB-100%
TM

(a) Twitter Dataset

 0

 10000

 20000

 30000

 40000

 50000

 60000

0-4999
5000-9999

10000-14999

15000-19999

n
e
w

 p
a
ir
s

documents

New Pairs per Number of Documents
 Blog Dataset

eB-10%
eB-20%
eB-40%
eB-70%

eB-100%
TM

(b) Blog Dataset

Figure 4.5: Number of new pairs for varying number of total documents

The plots in Figure 4.5 show the dependency of the number of new pairs
on the number of documents. An increase in the number of documents causes
an increase in the number of tags thus, the change in the number of new pairs
with increasing number of document shows the same trends to those seen for
increasing number of tags.

 0

 2

 4

 6

 8

 10

 12

2000-2999

3000-3999

4000-4999

5000-5999

ru
n

ti
m

e
 (

s
e

c
s
)

tags

Runtime per Number of Tags
 Twitter Dataset

eB-10%
eB-20%
eB-40%
eB-70%

eB-100%
TM

(a) Twitter Dataset

 0

 2

 4

 6

 8

 10

0-999
1000-1999

2000-2999

3000-3999

ru
n

ti
m

e
 (

s
e

c
s
)

tags

Runtime per Number of Tags
 Blog Dataset

eB-10%
eB-20%
eB-40%
eB-70%

eB-100%
TM

(b) Blog Dataset

Figure 4.6: Runtimes for varying number of total tags

The plots in Figure 4.6 show how the number of total tags affects the runtime
of the algorithms. As the number of tags increases, the number of initial and new
pairs increases as well, resulting in higher runtimes. An increase in the number
of documents affects the runtimes in the same way (Figure 4.7) since more

4.6. EXPERIMENTAL EVALUATION 57

documents contain more tags. An increase in the number of documents affects
the runtimes in one more way. It causes an increase in the size of document-sets
associated with each tag. This means that more time is needed to compare the
sets of document-ids associated with each tag. Such comparisons are needed
when the initial pairs are checked and when the correlations for the new pairs
are computed.

During the experiments, we measured that the initial pairs in TwitterMon-
itor were, on average, 60% of the maximum number of initial pairs. The max-
imum number of initial pairs is the number of pairs created when 100% of the
tags are used as seeds.

 0

 2

 4

 6

 8

 10

 12

 14

 16

15000-29999

30000-44999

45000-59999

60000-74999

75000-89999

ru
n
ti
m

e
 (

s
e
c
s
)

documents

Runtime per Number of Documents
 Twitter Dataset

eB-10%
eB-20%
eB-40%
eB-70%

eB-100%
TM

(a) Twitter Dataset

 0

 2

 4

 6

 8

 10

 12

 14

0-4999
5000-9999

10000-14999

15000-19999

ru
n
ti
m

e
 (

s
e
c
s
)

documents

Runtime per Number of Documents
 Blog Dataset

eB-10%
eB-20%
eB-40%
eB-70%

eB-100%
TM

(b) Blog Dataset

Figure 4.7: Runtimes for varying number of total documents

Considering only the number of initial pairs, one would expect TwitterMon-
itor to be slower than eB-10%, eB-20% and eB-40% in all cases. However, this
is not true as can be verified by the plots in Figure 4.6 and Figure 4.7. To
the contrary of our expectations, TwitterMonitor in many cases has to process
fewer new pairs in each evaluation even from eB-20% (cf. Figure 4.4). This
happens because many of the new pairs considered in the enBlogue variations
do not consist of tags that are both bursty. There pairs are never consider in
TwitterMonitor. TwitterMonitor is faster than enBlogue for one more reason;
it does not consider old pairs during the scoring procedure since the notion of
carrying topics from the past does not exist in it.

The plots in Figure 4.8 show the effect on the runtime of the number ρ of
the previous values used for the prediction of the correlation value, in case of
enBlogue, and the popularity value in case of TwitterMonitor. In enBlogue, an
increase in ρ causes an increase in the number of the old pairs. In TwitterMon-
itor, an increase in ρ causes an increase in the number of tags that are found
to be bursty. In all cases an increase in ρ causes an increase in the average
runtime.

Since the characteristics of the two datasets are different, the change in the
ρ affects the runtime in each of them in a different way. In the Twitter dataset
an increase in ρ affects more the number of tags found to be bursty while the
number of old pairs is affected less. This causes a rapid increase in the runtime
of TwitterMonitor. In the Blog dataset, an increase in ρ affects more the number
of old pairs while the number of bursty tags is affected less. This causes a greater
increase in the runtime of the five variations of the enBlogue compared to the
increase caused in the TwitterMonitor.

58
CHAPTER 4. ENBLOGUE: EMERGENT EVENTS IDENTIFICATION IN

SOCIAL MEDIA

 0

 1

 2

 3

 4

 5

 6

 7

2 4

a
v
e

ra
g

e
 t

im
e

 (
s
e

c
s
)

Past Values

Runtime per Past Values
 Twitter Dataset

eB-10%
eB-20%
eB-40%
eB-70%

eB-100%
TM

(a) Twitter Dataset

 0

 1

 2

 3

 4

 5

 6

 7

2 4

a
v
e

ra
g

e
 t

im
e

 (
s
e

c
s
)

Past Values

Runtime per Past Values
 Blog Dataset

eB-10%
eB-20%
eB-40%
eB-70%

eB-100%
TM

(b) Blog Dataset

Figure 4.8: Average Runtime per past values used for the prediction of the
correlation and popularity values

4.6.4 Runtime and Relative Accuracy

When we run enBlogue using a specific amount of seed tags the resulting emer-
gent topics are only approximated. We consider as baseline the results returned
by enBlogue when all tags are used as seeds. The relative accuracy for each
enBlogue variation is computed comparing the results returned by the specific
variation to the results returned by the baseline.

 0

 1

 2

 3

 4

 5

 6

 7

eB-10%
eB-20%

eB-40%
eB-70%

eB-100%

 0

 0.2

 0.4

 0.6

 0.8

 1

a
v
e

ra
g

e
 t

im
e

 (
s
e

c
s
)

a
c
c
u

ra
c
y

Runtime vs Accuracy
 Twitter Dataset

Runtime
Accuracy

(a) 2 Past values

 0

 1

 2

 3

 4

 5

 6

 7

eB-10%
eB-20%

eB-40%
eB-70%

eB-100%

 0

 0.2

 0.4

 0.6

 0.8

 1

a
v
e

ra
g

e
 t

im
e

 (
s
e

c
s
)

a
c
c
u

ra
c
y

Runtime vs Accuracy
 Blog Dataset

Runtime
Accuracy

(b) 4 Past values

Figure 4.9: Average Runtime and Relative Average Accuracy varying the per-
centage of seeds

In Figure 4.9, it is shown the effect of the percentage of tags used as seeds
on the runtime and the average relative accuracy. In this plot we see that the
decrease in runtime is not proportional to the decrease in the percentage of
seeds. For example, when using 40% of the tags as seeds the runtime is 4.68
secs (cf. Table 4.2). Decreasing the seeds by 50% (resulting in 20% of tags
used as seeds) causes a reduction in runtime of only 14% (to 4.02 secs). This is
because the percentage of seeds affects by the same percentage the number of
initial pairs but not the number of new and old related pairs.

In Figure 4.9, one can also see that a small decrease in the percentage of
seeds (e.g from 70% to 40%) causes a big decrease in the relative accuracy. This
is due to the fact that by using a smaller percentage of seed-tags there are some

4.7. USER STUDY 59

Twitter Blog

Runtime Accuracy Runtime Accuracy

eB-10% 3.34 0.14 2.65 0.13

eB-20% 4.02 0.23 3.50 0.18

eB-40% 4.68 0.37 4.94 0.29

eB-70% 6.02 0.60 6.22 0.53

eB-100% 6.57 1.00 6.67 1.00

Table 4.2: Average Runtime and Relative Average Accuracy varying the per-
centage of seeds

pairs that cannot be found in the results (the pairs that do not have at least
one of the selected seed-tags). This lack in pairs affects also the groups of tags,
created during the diversification procedure, and is responsible for the reduced
relative accuracy.

It is worth mentioning that it is not clear whether the results with 100%
seeds are more of user interest or not. Since we have chosen the seeds to be
the most popular tags, there is the possibility that the results using a lower
percentage of seeds are more interesting than the results with the 100% seeds.
However, the percentage of seeds might be of importance since with a small
number of seeds there is the danger of having low diversity in the results.

4.7 User Study

To evaluate the performance of our approach with respect to quality, we have
conducted a user study. We set up a website showing 40 emergent topics, 20
topics detected by enBlogue and 20 topics detected by TwitterMonitor. The
results were put in random order so that it would not be apparent which ap-
proach had detected each of them. Each topic was accompanied by an HTML
checkbox. Figure 4.10 shows an example of this page.

We asked colleagues to participate in the study which had the following task
description:

Every now and then, check the results published on our website
and select the checkbox on the topics that you find to be emergent

We employed the study using live Twitter data. We did not see a viable way
to perform such a study on offline (i.e. months or years old) data as it turned
out to be very difficult for the users to go mentally back in time and check if
a detected event was indeed noteworthy at that time. In particular for events
that are not in the same scale with big occasions like the Olympic games, huge
hurricanes, US elections, and so on, this is almost impossible.

Since tags alone are sometimes hard to map to a real world event, we pro-
vided for each topic a set of tweets containing the tags representing the topic
(cf. Figure 4.10). The users could see this sample by clicking on the tagset. For
example, on 16.09.2011 12:00 GMT the topic “dolphin Australia” was identi-

60
CHAPTER 4. ENBLOGUE: EMERGENT EVENTS IDENTIFICATION IN

SOCIAL MEDIA

Figure 4.10: User Study: Sample Tweets

fied. Looking solely on these tags it is hard to understand the specifics of the
topic. However, looking at the sample of tweets one could realise that the tagset
represented the event of discovering a new species in Australia.

The events we derive from Twitter depend on the events around the world
and the interests of the Twitter users. Most of the time, they are of small scale
but when big events are happening enBlogue detects and reports them. For
instance, on 16.09.2011 12:00 GMT enBlogue detected events such as “Assad
Syria” and “Lybia Niger Gadhafi”. Nevertheless, a lot of small events are in-
teresting and worth being shown. Interestingly, and as a support of the whole
approach, for a lot of the events we discovered there were no media information
immediately available, only some minutes/hours later.

The user study was conducted during the last two weeks of September 2011.
During this period, we recorded 80 non-redundant evaluations. To identify
redundant evaluations, we used the IP address of the user who did the evaluation
and the timestamp of the ranking she evaluated. Evaluations from the same
IP address regarding the same ranking (identified by its timestamp) were not
considered again.

We measure the precision of the results returned by enBlogue and Twitter-
Monitor (TM) using the precision@k. A precision value of x at k means that
a fraction of x events out of k have been considered to be noteworthy. Users
were asked to select noteworthy events out of 20 events presented for each algo-
rithm. We measured the precision at the events reported in the top-1 position
from each algorithm, at the events reported in the top-2 positions from each
algorithm and so on. The results are shown in Figure 4.11

We observe that enBlogue clearly outperforms TwitterMonitor. For the
time points for which the users had evaluated the events in our study, enBlogue
identified, on average, 2.5 out of 20 noteworthy events per hour. On the contrary,
TwitterMonitor identified on average 0.8 out of 20 events. Note that the 20
reported events were not filtered (except for a simple keyword filter aiming at
eliminating porn related Tweets).

4.8. SUMMARY 61

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p
re

c
is

io
n

k

eB
TM

Figure 4.11: Precision@k values

For completeness, we have also calculated the NDCG values, reported in
Table 4.3. The measure used to estimate the relevance of a retrieved result is
binary, i.e. the result is either relevant or not thus, the ideal ranking is the one
having all r relevant results, out of the top-k ones that were retrieved, in the
top-r positions.

For both precision@20 and NDCG@20 values we have computed the paired t-
test and Fisher’s randomised significance test. Fisher’s randomised significance
test, computed for 100,000 permutations, reported a p-value of 0 for both the
precision@20 and the NDCG@20. The paired t-test reported a p-value of 3.5×
10−13 for NDCG@20 and 6.5× 10−25 for precision@20.

Table 4.4 shows sample results of the events detected from enBlogue on
three consecutive days (28th, 29th, 30th) in September 2011. As we can see,
enBlogue discovered quite many interesting events at those days. Including
the alliance plans between Microsoft and Samsung, the killing of an Anwar
al-Awlaki, a member of Al-Qaeda, by US military forces, the case of Michael
Jackson’s personal physician Conrad Murray, the Hollywood actor Sean Penn
visiting the Tahrir place in Cairo, Egypt, and the scandal of Manchester City’s
Carlos Tevez, refusing the exchange during a game in the European Soccer
Champions League.

4.8 Summary

In this chapter, we presented enBlogue, our approach regarding event detection
in social media. We defined a topic to be represented by a set of tags and pro-
posed a measure to estimate the correlation between these tags based on the
local and global importance of them. An emergent topic (or event) has been de-
fined to be a topic demonstrating unexpected behaviour, i.e. having a correlation
value greater than the correlation value predicted using exponential smoothing.
We performed experiments testing our approach using our implemented proto-
type. We compared enBlogue against TwitterMonitor, an alternative approach
for event detection focusing specifically on Twitter. A user study was conducted

62
CHAPTER 4. ENBLOGUE: EMERGENT EVENTS IDENTIFICATION IN

SOCIAL MEDIA

Precision@k NDCG@k

k eB TM eB TM

1 0.112 0.012 0.112 0.012

2 0.094 0.025 0.094 0.025

3 0.083 0.025 0.089 0.026

4 0.106 0.025 0.115 0.028

5 0.108 0.032 0.123 0.033

6 0.115 0.029 0.137 0.033

7 0.111 0.036 0.151 0.041

8 0.108 0.031 0.160 0.041

9 0.115 0.031 0.177 0.044

10 0.116 0.029 0.191 0.045

11 0.112 0.034 0.198 0.053

12 0.121 0.034 0.220 0.056

13 0.118 0.034 0.229 0.059

14 0.119 0.038 0.239 0.068

15 0.117 0.04 0.246 0.073

16 0.118 0.041 0.258 0.077

17 0.120 0.040 0.270 0.078

18 0.122 0.040 0.285 0.081

19 0.126 0.039 0.300 0.083

20 0.122 0.042 0.304 0.090

Table 4.3: Precision@k results and NDCG@k results achieved in the user study
by the competing algorithms.

in order to assess the appeal of the events identified by enBlogue to the users.
The results of the study have been very promising and further optimisations,
like personalisation, are expected to increase the user perceived satisfaction even
more. For efficiency reasons, we restricted topics on tagsets of size 2. In the
next chapter, we will describe an implementation that will allow us to withdraw
this restriction.

4.8. SUMMARY 63

28.09.2011

{lfc, liverpool, ynwa} {arshavin, rosicky, sagna} {orioles, red sox}
{dana, danafacts} {microsoft, samsung} {europe, soteu}
{intel, samsung} {fifa, tevezexcuses} {detroit, tedx}
{bieberfacts, justin bieber} {bahrain, twitition, u.s. ambassador}
{messi, fcblive, mascherano, barca, puyol, abidal, xavi}
{anelka, cfc, ivanovic, kalou, drogba, romeu}
{nadarkhani, iran, irani, yousef}

29.09.2011

{redsox, shocked, stunned, seasonover} {ownacolour, unicef}
{nadarkhani, iran, yousef} {fact, healthcare reform}
{enoughisenough, occupysf, occupywallstreet}
{bahrain, egypt, usa} {carlos tevez, manchester city}
{bahrain, syria} {conrad murray, michael jackson}
{bologna, occupywallstreet, ows}
{real madrid, kaka, realmadrid}
{bologna, occupywallstreet} {celtic, udinese}
{nationalcoffeeday, peetscoffee}

30.09.2011

{in america, occupywallstreet} {bahrain, u.s.}
{libertysquare, armenia, opposition, rally, yerevan}
{redsox, terry francona} {arsenal, spurs} {motegi, motogp}
{derby, liverpool} {anonymous, antisec}
{rugby, samoa, southafrica} {egypt, noscaf} {sean penn, tahrir}
{israel, awlaki, alqaeda, yemen} {assad, syria}
{awlaki, obama} {manutd, mufc} {boston, terry francona}

Table 4.4: Sample of the events detected by enBlogue and marked as relevant
by at least one of the user study participants

64
CHAPTER 4. ENBLOGUE: EMERGENT EVENTS IDENTIFICATION IN

SOCIAL MEDIA

Chapter 5

Distributed Jaccard
Computation

In Chapter 4, we described our approach on identifying emergent topics over dy-
namic data streams as Twitter. We defined topics to be represented by tagsets,
but, for efficiency reasons, we restricted ourselves to tag pairs. Additionally, we
defined seed tags to be the top-k most popular tags and restricted considered
tagsets to those having at least one seed tag. In this chapter, we present an
approach that allows to withdraw all the above restrictions and to compute the
Jaccard coefficient for a large number of sets of co-occurring tags efficiently. The
general idea is to distribute the computations of the coefficients to multiple ma-
chines (nodes). Each node is assigned a subset of the total tags and computes,
in parallel with the other nodes, the Jaccard coefficients for its assigned set of
tagsets. The Jaccard coefficient, presented in detail in Section 2.4.1, is the main
ingredient of the measure we introduced in Chapter 4, used to asses the strength
of the correlation between the tags in a tagset. However, our approach is not
limited to the Jaccard coefficient. It can distributively compute any measure
that is estimated using set operations.

The initial idea of this chapter has been published at the ACM SIGMOD
Workshop on Databases and Social Networks (DBSocial 2013) [AM13a]. The
extended version of it has been published at the ACM International Conference
on Management of Data (SIGMOD 2014) [AM14].

Consider the following set of tagsets. Each tagset is accompanied by the
number of documents associated with it.

• s1={#beer, #pizza, #soccer}: 32

• s2={#munich, #bavaria, #soccer}: 17

• s3={#bavaria, #munich}: 28

• s4={#beer, #pizza}: 41

• s5={#beach, #sunny}: 19

• s6={#friday, #sunny}: 23

• s7={#friday, #sunny, #beach}: 5

65

66 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

We want to assign each tagset sj to one of the available machines. Each machine
(or node) will be responsible to compute the Jaccard coefficients for the tagset
it has been assigned. To do that, each node ni should compute two counters for
each tagset sj it has been assigned:

• one intersection counter carrying the number of documents annotated
with ALL tags in sj

• one union counter carrying the number of documents annotated with ANY
of the tags in sj

To reduce the total number of counters that should be computed we use the
Inclusion-Exclusion principle. According to the Inclusion-Exclusion principle,
presented in detail in Section 2.4.2, the counter for the union of a tagset can be
computed using the counters for the intersections of all subsets derived from the
tagset. For example, for the set s1={#beer, #pizza, #soccer} the counter for
the union can be computed as:

|T#beer ∪ T#pizza ∪ T#soccer| = |T#beer ∩ T#pizza ∩ T#soccer|
− |T#beer ∩ T#pizza|
− |T#beer ∩ T#soccer|
− |T#pizza ∩ T#soccer|
+ |T#beer|+ |T#soccer|+ |T#pizza|

#pizza

73

#beer

73

#soccer

49

#munich

45

#bavaria

45

#beach

24

#sunny

47

#friday

28

#beer

#pizza

73

#soccer

#pizza

32

#beer

#soccer

32

#soccer

#munich

17

#bavaria

#soccer

17

#munich

#bavaria

45

#beach

#sunny

24

#friday

#sunny

28

#beach

#friday

5

#beer, #pizza, #soccer

32

#munich, #bavaria, #soccer

17

#friday, #beach, #sunny

5

Figure 5.1: Example of a tagsets lattice

Assigning the tagsets to the nodes is not trivial. The lattice of Figure 5.1
shows the dependencies derived from the previously introduced set of tagsets.
Each vertex in the lattice corresponds to a set of co-occurring tags (or tagset).
The number in each vertex depicts the number of documents associated with the
corresponding tagset. There is a path from a vertex ni to a vertex nj when the
computation of the Jaccard coefficient of the vertex ni, lying in the lower level,
requires the counter of the vertex nj , lying in any of the above levels, i.e. there
is a dependency between the two vertices ni and nj and the corresponding
tagsets. Considering again the tagset s1={#beer, #pizza, #soccer}, in or-
der to compute its Jaccard coefficient using the Inclusion-Exclusion principle

67

the counters for the tagsets {#beer, #soccer}, {#beer, #pizza}, {#pizza,
#soccer}, {#beer}, {#pizza} and {#soccer} are required (see above).

One possible way to partition the tagsets to the nodes is according to the
dependencies they have with each other. Alternatively, the tagsets could be
partitioned according to the number of documents associated with each of them.

#pizza

73

#beer

73

#soccer

49

#munich

45

#bavaria

45

#beach

24

#sunny

47

#friday

28

#beer

#pizza

73

#soccer

#pizza

32

#beer

#soccer

32

#soccer

#munich

17

#bavaria

#soccer

17

#munich

#bavaria

45

#beach

#sunny

24

#friday

#sunny

28

#beach

#friday

5

#beer, #pizza, #soccer

32

#munich, #bavaria, #soccer

17

#friday, #beach, #sunny

5

Figure 5.2: Partitioning according to dependencies

Partitioning the tagsets according to the dependencies results in two inde-
pendent sets of tagsets as shown in Figure 5.2. Assuming the relative number
of documents associated with each tagset remains the same through time, the
partitioning shown in Figure 5.2 creates two unbalanced partitions with respect
to the number of documents each node should process. The node assigned the
left partition will have to process 118 documents and the node assigned the
right partition will have to process 47 documents, i.e. the load distribution is
72% and 28% respectively.

#pizza

73

#beer

73

#soccer

49

#munich

45

#bavaria

45

#beach

24

#sunny

47

#friday

28

#beer

#pizza

73

#soccer

#pizza

32

#beer

#soccer

32

#soccer

#munich

17

#bavaria

#soccer

17

#munich

#bavaria

45

#beach

#sunny

24

#friday

#sunny

28

#beach

#friday

5

#beer, #pizza, #soccer

32

#munich, #bavaria, #soccer

17

#friday, #beach, #sunny

5

Figure 5.3: Partitioning according to load

Partitioning the tagsets according to the number of documents related to
each tagset creates more balanced partitions with respect to the number of doc-
uments that need to be processed by each node. However, balancing the load

68 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

between the nodes may result in the same tagsets assigned to multiple nodes.
An example of such a partition is shown in Figure 5.3. The load in the two
partitions is relatively balanced with the node assigned the left partition pro-
cessing 90 documents and the node assigned the right partition processing 124
documents i.e. the load distribution is 42% and 58% respectively. At the same
time, the tagset {#soccer} is assigned to both partitions since both partitions
have tagsets that dependent on the tagset {#soccer}. This means that all doc-
uments associated with the tag #soccer should be forwarded to both nodes
causing a communication overhead in the system.

In this chapter, we propose a family of methods that:

• Assign each set of co-occurring tags to at least one node.

• Assign the tagsets to the nodes in a way that most tagsets are assigned
to at most one node.

• Assign the tagsets to the nodes in a way that balances the load seen by
each node.

T G , ti Global set of tags, A single tag

D, di A set of documents, A single document

Ti The set of documents annotated with tag ti

T A set of sets Ti

S, si A set of tagsets, A single tagset

PR, pri A set of tag partitions, A single tag partition

k Number of partitions

DS, dsi A set of disjoint sets, A disjoint set

li, ci Load of tagset si, Cost of tagset si

P Number of Partitioners

thr The threshold allowed before repartitions are requested

tps Incoming tweets per second

W, w The size of the sliding window, The units the windows slides
every time

Table 5.1: Notations used in the chapter

5.1 Problem Statement

We consider a stream of documents D obtained through Twitter or other social
media. Each document di in this stream is annotated with a set of tags si =
{t1, t2, . . .} from a global set of tags T G and it is represented by a triple of the
form:

(tmi, di, si)

The timestamp tmi reflects the creation time of the document, the di is a unique
identifier assigned to the document and the si is a set of tags representing the

5.2. APPROACH 69

topic of the document. The tags may have been assigned to the document ex-
plicitly by its creator or may have been extracted from the body of the document
using an annotation mechanism.

We have at our disposal k machines that are independent from each other.
We want to assign the tags in T G to the k machines (nodes) in such a way that
each machine can compute the Jaccard coefficient for a subset of the sets of
co-occurring tags seen in the input. The tagsets for which a Jaccard coefficient
is computed should equal the co-occurring tags found in the incoming stream
of documents. After the assignment, each machine receives all documents an-
notated with tags it has been assigned. At regular time intervals, the machines
compute and report the Jaccard coefficients for all sets of co-occurring tags
present in the set of tags they have been assigned.

Ideally, partitions are mutually disjoint and cause equal load to the nodes
that are responsible for handling them. In practise, such an ideal partitioning
does not necessarily exist due to the characteristics of the data. Algorithms
aim at low mutual overlap for low communication overhead and, as much as
possible, equally loaded nodes.

With evolving time, new tags and unseen tag combinations are introduced
by the users, and the relative popularity of the assigned tagsets changes. These
changes deteriorate the quality of the partitions in terms of balanced process-
ing load and low communication overhead. This should be detected and new
partitions should be created that fit the current data.

5.2 Approach

We propose a practical online solution that:

(i) computes partitions based on the recently observed tags and their co-
occurrences.

(ii) introduces updates to computed partitions to account for new tags and
new tag co-occurrences.

(iii) monitors the quality of the partitions to trigger their re-computation.

The framework we propose consists of three main operators:

Calculator: it counts occurrences of tagsets and computes the Jaccard coeffi-
cients for the co-occurring tags.

Partitioner: it computes tag partitions that indicate which Calculator receives
which documents.

Disseminator: it forwards the documents to the Calculators according to the
defined partitions and monitors the quality of the partitions.

The information flow among the tree operators is shown in Figure 5.4

5.2.1 Calculator Operator

Each Calculator Ci is assigned a subset of tags and creates one counter for each
set of co-occurring tags in this subset. Ci receives all documents with tags in

70 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

source

Partitioner

Disseminator
Calculator2
{d, g, l, k, x}

Calculator1
{w, t, v, b, d, s}

Calculator3
{f, q, k, d, t, n}

Figure 5.4: Information flow

its assigned subset and for each received document it updates the appropri-
ate counters. At any time, the counter for a tagset sj reflects the number of
documents associated with the tagset sj that Ci is aware of.

Calculators have to receive all documents annotated with any of the tags
they have been assigned. At first glance, this exact counting of occurrences of
all subsets sounds prohibitively expensive due to the combinatorial explosion
for large number of tags. However, since tags are used to indicate the topic of a
document and the documents we consider in this work are posts in the Blogo-
sphere, e.g. tweets, (i) less than 10 tags are used per document (cf. e.g. [EK13])
and (ii) not all possible tag combinations are used.

5.2.2 Partitioner Operator

The Partitioner operator receives the incoming documents and decides how to
partition the tags. The partitioning algorithm, used by the Partitioner to split
the tags to the Calculators, should take care to split them in such a way that for
any tagset seen in the input there is one Calculator assigned all tags comprising
it. For any tagset which is not completely assigned to a Calculator, the Jaccard
coefficient cannot be computed. Section 5.3 discusses in detail the algorithms
we use for the partitioning.

5.2.3 Disseminator Operator

The Disseminator operator has a global view of the tags assigned to each Cal-
culator. It receives the incoming documents and is responsible to forward then
to the appropriate Calculators, i.e. those that have been assigned tags used for
the annotation of the document. Finding efficiently the Calculators that should
be informed about each document is important. The work [HM03] on index-
ing set-valued attributes suggests that using an inverted index is more efficient
compared to other techniques. For each tag ti, a set {Cj |Cj is counting tag ti}
of Calculators is kept, and indexed by key ti, usually in a simple hash-based
index. For a received document, an index lookup for each tag of the document
is performed to obtain the Calculators that should receive this document.

5.3. PARTITIONING ALGORITHMS 71

5.3 Partitioning Algorithms

In this section we present a set of algorithms to partition the tags in the various
nodes. Any partitioning algorithm must ensure that for every set of co-occurring
tags there is one partition containing all its tags – the Jaccard coefficient of a not
completely captured tagset cannot be computed. Additionally, it should create
partitions of equal load and minimise the communication needs, i.e. minimise
the number of messages sent from the Disseminator to the Calculators.

This problem of partitioning the tags to the nodes can be modelled as a graph
partitioning problem. Graph G has one vertex vi for each set of co-occurring
tags si. There is an edge e(vi,vj) between two vertices vi, vj if the corresponding
tagsets si, sj have common tags. The weight of a vertex vi represents the
number of documents that will be forwarded to the Calculator assigned the
tagset si. The weight of an edge e(vi,vj) represents the reduction in the number
of documents that will be forwarded to the Calculator assigned both tagsets
si, sj . Considering the set of co-occurring tags introduced at the beginning of
the chapter, the graph derived from it is depicted in Figure 5.5.

#beer,#socccer,
#pizza

90

#munich,#bavaria,
#soccer

77

#beer,#pizza

73

#bavaria,#munich

45

73 49

45

#friday,#sunny,
#beach

47

#friday,#sunny

47

#beach,#sunny

47
47

47

Figure 5.5: Tagsets graph example

For the kind of data we consider in this work, i.e tagsets of low cardinality
occurring in social media messages like Twitter tweets, a graph constructed like
this contains a large amount of small connected components. In the following,
we present a partitioning algorithm that uses these connected components to
create disjoint sets of tags, grouped afterwards into k partitions (Section 5.3.1).
Additionally, we make use of algorithms based on the Set Cover [CLRS09] prob-
lem (Section 5.3.2).

5.3.1 Disjoint Sets Algorithm

In social media like Twitter, users annotate their messages with tags that reflect
the topics discussed on them. Tags describing the same topic are found in
the same documents, creating sets of tags that are disjoint from each other.
Organising the tags in a graph with each tag creating a vertex and an edge
between any two co-occurring tags, results in a graph with multiple connected
components. Algorithm 7 is based on this observation. Initially, all sets of
tags that form connected components, i.e. disjoint sets of tags, are identified
(Algorithm 7, Lines 3-7). The identified disjoint sets are subsequently merged

72 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

into k sets/partitions, where k is the number of available machines (Algorithm 7,
Lines 11-25).

Algorithm 7: Disjoint Sets Algorithm

Input: Set of sets of documents T = {T1, T2, . . .}
Set of tags T G = {t1, t2, . . .}
Integer k

Result: Set PR of k tag-partitions

1 DS = {}
2 PR = {}
/* Find Disjoint Sets of Tags */

3 while T G 6= ∅ do
4 Find dsj =

⋃
i ti disjoint set of tags

5 DS = DS ∪ {dsj}
6 T G = T G \ dsj
7 end while

8 foreach dsj ∈ DS do
9 lj = |

⋃
i Ti|, ti ∈ dsj

10 end foreach

/* Merge them into k partitions */

11 while k > 0 and DS 6= ∅ do
12 dsi = argmaxdsj lj
13 prk = dsi
14 lprk = li
15 PR = PR ∪ {prk}
16 DS = DS \ {dsi}
17 k = k − 1

18 end while

19 while DS 6= ∅ do
20 dsj = argmaxdsm lm
21 pri = argminprm lm
22 pri = pri ∪ dsj
23 li = li + lj
24 DS = DS \ {dsj}
25 end while

26 return PR

Each disjoint set dsj carries a load lj equal to the number of documents
annotated with any of the tags ti ∈ dsj (Algorithm 7, Line 9). As long as there
are more disjoint sets to be assigned, the one with the biggest load is selected
(Algorithm 7, Line 20) and assigned to the partition with the lowest current
load (Algorithm 7, Line 21), attempting to balance the load in the partitions.

Because of the initial phase where disjoint sets are identified and never split
after that, the algorithm guarantees that for any set of co-occurring tags there
is a single node that has been assigned all its tags and the Jaccard coefficient
for any set of co-occurring tags can be computed.

In case there are not enough disjoint sets to create k partitions or there is

5.3. PARTITIONING ALGORITHMS 73

a disjoint partition that is very big, the set cover based algorithms, presented
below, can be used in combination with the disjoint sets algorithm to split this
set (or these sets) to smaller ones. In this thesis, we investigate the performance
of the individual algorithms.

5.3.2 Set-Cover Based Algorithms

The algorithms presented in this section treat the creation of k partitions as a Set
Cover Problem over the input tagsets. The general Set Cover Problem assumes
that all elements of the given sets are independent to each other. Therefore,
a collection of sets S = {{1, 2, 3}, {2, 4}, {3, 4}, {4, 5}} can be represented with
less sets like {{1, 2, 3}, {4, 5}} without losing information. Considering {1, 2, 3}
and {4, 5} to create two partitions, there is one partition containing every single
element in S.

In our setting, assigning each single element in a partition is not enough.
Instead, every occurring tagset should be assigned as a whole to some partition
as the Jaccard coefficient for non-assigned tagsets cannot be computed locally
at the Calculator nodes. We use a greedy approach of the Budgeted Maximum
Coverage Problem [KMN99] to create k initial partitions and then assign to
them all non-assigned tagsets.

In the Budgeted Maximum Coverage Problem there is a collection of sets
S = {s1, s2, . . . , sn} defined over a collection of elements TG = {t1, t2, . . . , tn}.
Each set si ∈ S has a cost ci, each element ti ∈ TG has a weight wi and there
is a budget B. The goal is to find a collection of sets S′ with total cost that
does not exceed the budget B with maximised total weight of covered elements.
In our setting, the sets si are the sets of co-occurring tags and the elements ti
are the tags. The weight of each single tag is equal to the unit, i.e. there are no
tags more important than others.

In each iteration of the Budgeted Maximum Coverage Problem, there is a
subset C ⊂ S of n sets si that have been selected to be part of the final set
cover. The best set to be added in C is the one that covers the most elements
not already covered by the sets in C, while at the same time the total cost
does not exceed the budget B. We do not consider a hard limit on the budget.
Instead, we try to minimise the final cost of the cover.

Algorithm 8 outlines the procedure followed for the selection of the k initial
sets that will be later used as the basis for the k partitions. At each itera-
tion, the tagset si with the minimum cost that covers the most uncovered tags
(Algorithm 8, Line 3) is added to the set of selected tagsets.

The cost ci of each set si is defined differently depending on whether the
algorithm optimises for the communication overhead or the processing load.

• communication overhead: the cost ci of each set si in each iteration is
equal to the number of tags tj ∈ si that are already covered by the sets
in C.

• processing load: the cost ci of each set si in each iteration is equal to
the difference of the share this set has in the load to the optimal share.

Each tag ti has been found in a set of documents Ti. The cardinality of
the union of these sets of documents for all tags ti ∈ sj is considered to
be the load lj of the tagset sj . Assuming we are in the mth iteration of

74 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

Algorithm 8: Set-Cover Based Algorithm

Input: Set of sets of documents T = {T1, T2, . . .}
Set of co-occurring tag-sets S = {s1, s2, . . .}
Integer k

Result: Set PR of k tag-partitions

1 CV = {} // Set of already covered tags

2 while k > 0 and S 6= ∅ do
3 si = argminsjcj and argmaxsj |sj \ CV |
4 prk = si
5 PR = PR ∪ {prk}
6 S = S \ {si}
7 CV = CV ∪ si
8 k = k − 1

9 end while
10 Assign Remaining Tag-sets using Algorithm 9 or Algorithm 10

11 return PR

the algorithm, C contains m− 1 sets and we will select the mth set. The
optimal share of load in this iteration is plop = 1

m , i.e. the load is equally
distributed to all nodes. The real share of load of a candidate set sn is
pln = ln∑m−1

i li+ln
and the cost of sn is defined as |plop − pln|.

To the initial k partitions created using Algorithm 8 are added the remaining
tagsets until there is no unassigned tagset. The best partition to assign a tagset
depends, again, on the measure of interest. When optimising for the commu-
nication overhead (Algorithm 9), in each iteration, the set with the most not
covered tags, having the least total tags is selected (Algorithm 9, Line 3). The
selected tagset is added to the partition sharing with it the most tags having
the least load (Algorithm 9, Line 4).

Algorithm 9: Set-Cover Based Algorithm - Focusing on Network Com-
munication

Input: Set PR of k initial tag partitions pri,
Set S of tagsets si,
Set T of sets of documents Ti

Output: Set PR of k final tag partitions pri

1 CV =
⋃
i pri // Set of already covered tags

2 while S 6= ∅ do
3 si = argmaxsj |sj \ CV | and argminsj |sj |
4 pri = argmaxprj |si ∩ prj | and argminprj

∑
sk∈prj lk

5 pri = pri ∪ si
6 S = S \ {si}
7 CV = CV ∪ si
8 end while
9 return PR

5.3. PARTITIONING ALGORITHMS 75

When optimising for the load distribution (Algorithm 10), in each iteration,
the set with the most load, having the least already covered tags is selected
(Algorithm 10, Line 3). The selected tagset is added to the partition having the
least load sharing the most tags with the selected tagset (Algorithm 10, Line 4).

Algorithm 10: Set-Cover Based Algorithm - Focusing on Load

Input: Set PR of k initial tag partitions pri,
Set S of tagsets si,
Set T of sets of documents Ti

Output: Set PR of k final tag partitions pri

1 CV =
⋃
i pri // Set of already covered tags

2 while S 6= ∅ do
3 si = argmaxsj lj and argminsj |sj ∩ CV |
4 pri = argminprj

∑
sk∈prj lk and argmaxprj |si ∩ prj |

5 pri = pri ∪ si
6 S = S \ {si}
7 CV = CV ∪ si
8 end while
9 return PR

We introduced the idea of dividing Jaccard computations in multiple nodes
in [AM13a]. In that work, we treat the selection of the k first tagsets as a
Maximum Coverage Problem without budget. The assignment of the remaining
tagsets to the partitions is performed using as a criterion the number of tags
shared among the tagset and the partition (Algorithm 11). In each iteration, a
random set is selected (Algorithm 11, Line 2) and added to the partition with
which it shares the most tags (Algorithm 11, Line 3) We compare experimentally
this initial algorithm with the new ones. For the selection of the k first tagsets
used to initialise the k partitions, we use Algorithm 8 setting the cost of each
tagset to zero.

Algorithm 11: Set-Cover Based Algorithm - Initial

Input: Set PR of k initial tag partitions pri,
Set S of tagsets si,
Set T of sets of documents Ti

Output: Set PR of k final tag partitions pri

1 while S 6= ∅ do
2 si = S.random()
3 pri = argmaxprj (si ∪ prj)
4 pri = pri ∪ si
5 S = S \ {si}
6 end while
7 return PR

76 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

5.4 Theoretical Expectations

The performance of the described algorithms depends on how well they can
create similar-sized and non-overlapping partitions. We review these aspects
by investigating the expected size of the biggest disjoint set of tags – which is
crucial for the DS algorithm – and the expected degree of communication for
equally sized tag partitions.

5.4.1 Number of Disjoint Sets

Assume a tagger that randomly annotates tweets with tags following uniform
distribution. The derived graph G, having one vertex for each tag and one
edge for each pair of co-occurring tags, can be described by the Erdős–Rényi
graph model [ER60]. According to Erdős and Rényi’s theory, a graph G can
be described either by the number of vertices n and the number of edges M ,
G(n,M), or by the number of vertices n and the probability p than an edge
between two vertices exists, G(n, p). The number of edges M and the probability
p are related with each other with M =

(
n
2

)
p.

Erdős and Rényi [ER60] derive properties of G, depending on the ratio be-
tween the number of vertices n and the edge probability p. For np < 1, the
graph is expected to not have any connected component larger than O(log(n)),
while for np > 1, it is likely to have one large component, and no other compo-
nent contains more than O(log(n)) vertices (with a theoretical special case of
np = 1, left out in the discussion).

1 10
size

1

10

100

1000

10000

1e+05

1e+06

1e+07

1e+08

ab
so

lu
te

 f
re

qu
en

cy

1.7049*10^7 * x^-3.9474

Figure 5.6: Tagsets size distribution (log-log scale)

We investigated the frequency of tweets with respect to the number of tags
they contain using a sample of 15 million tweets received through Twitter’s

5.4. THEORETICAL EXPECTATIONS 77

streaming API on the randomly selected day of the 28th of January 2012. Figure
5.6 depicts the measured number of tweets for each size of tagset in log-log scale.
The results show that the number of tags used to annotated the tweets follows
Zipf’s law, i.e. no tags at all is the most popular case, one tag the second most
popular case, and so on, with skew parameter s = 4.

A tweet annotated with m tags adds
(
m
2

)
edges in the graph, one edge for

each pair of co-occurring tags, and according to Zipf’s law the frequency of
tweets annotated with m tags, considering that a tweet can be annotated with
mmax tags at most, is given by the formula

f(m,mmax, s) =
1
ms∑mmax

i=1
1
is

The expected number of edges in G(n,M) is computed as

E[M] := t×
mmax∑
m=2

[
f(m,mmax, s)×

(
m

2

)]
where t is the distinct number of tweets. Tweets that are annotated with the
same set of tags are viewed, in our setting, as duplicate tweets and are not
considered since they do not add any additional edges.

In the 15 million tweets received on the 28th of January 2012, we found
around 700,000 distinct ones containing about 600,000 distinct tags, i.e. each
distinct tweet had more than one distinct tags. The 700,000 distinct tweets cor-
respond to a 10% sample of tweets. Taking the full stream under consideration,
we assume a total of 7 million distinct tweets in one day or approximately, 4860
distinct tweets every minute. We do not consider the best case in which the
distinct tags increase 10 times in the full stream, since we believe this is not
realistic. On the contrary, we consider more restrictive cases. For example, in
a 5 minutes window, we assume that half of the tweets have 1 distinct tag and
the other half of the tweets share tags with the first half of the tweets. This
means that, in 24300 tweets there are 12150 distinct tags. Assuming mmax = 8
tags we get np = 0.61. Considering a 10 minutes window, an increase in the
total number of tags is expected, but at the same time we expect a decrease in
the distinct tags per tweet. For that, we assume that one third of the tweets
have one distinct tag. This means that, in 48600 tweets there are 16200 tags.
Assuming again mmax = 8 tags, we get in this case np = 0.92, which is still
smaller than 1.

The above model computes the number of edges (i.e. co-occurring tag pairs)
in the worst case in which tags are randomly and independently assigned to the
tweets. However, users do not randomly annotate their tweets. They rather
select tags from topic specific vocabularies that reflect the semantics of the
published content. In the sample of tweets we obtained on the 28th of January
2012, we measured about 560,000 distinct pairs of tags. Extrapolating it to the
whole stream we get about 5.6 million tag pairs in the whole day. Assuming
a uniform distribution of pairs during the day, we get about 39,000 tag pairs
in a time span of 10 minutes. This gives np = 0.13 for mmax = 8 instead of
np = 0.92 computed using the theoretic model. Of course, np = 0.13 is very
optimistic, since tagsets are not expected to increase proportionally in the whole
stream, but, in any case, the real value of np is expected to be much lower than
0.92.

78 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

Consequently, as long as users select tags from exclusively topic-specific dis-
joint vocabularies, graph G degenerates to a set of connected components as
many as the number of topics. This comes to rescue the DS algorithm to a
large extent. However, if tags from multiple topic-specific vocabularies are mixed
there is still the danger to have one large connected component, as described
by Erdős and Rényi’s model. The existence of a large connected component is
more likely when tweets from the more distant past are considered together with
tweets from the more recent past, since the content drift in tweets can cause
mixing tags from different topics. Additionally, if tags from a joint vocabulary
are used with probability 1 − α a large connected component can develop for
any α < 1, with faster development for smaller values of α.

5.4.2 Communication

We consider k partitions created over n tagsets. Each tagsets si has m tags
randomly selected from a vocabulary of size v. We further assume that each
partitions contains n

k randomly selected tagsets. We are interested in deriving
the expected number of partitions that contains any of the tags found in a
tagset si. This will give us the expected degree of communication between
the Disseminator and the Calculators. Obviously, the setting we assume is
suboptimal since tags are considered independent and their co-occurrences in
tagsets are not considered.

The probability that a partition prj has common tags with a tagset si is
equal to the probability that si overlaps with at least one of the n

k tagsets sj
assigned to prj .

P [prj ∩ si 6= ∅] = 1− (P [sj ∩ si = ∅])nk

The probability that, given a set si, we have another set sj that does not
overlap with it is computed as:

P [sj ∩ si = ∅] =

(
v−m
m

)(
v
m

)
The expected number of partitions sharing tags with a tagset si, which gives

as the expected communication, is then computed as:

E[communication] = k ×

1−

[(
v−m
m

)(
v
m

)]nk


Figure 5.7 depicts the change in communication as computed using the above
model. Considering the same number of documents, increasing the number
of tags in the vocabulary, for given number of tags per tagset, decreases the
probability of having two tagsets sharing tags (Figure 5.7a). Increasing the
number of tags per tagset, for given vocabulary size, increases the probability
of having two tagsets sharing tags (Figure 5.7b). In both cases, increasing
the number of considered documents, increases the probability of having two
tagsets sharing tags. This means that, for datasets with the same vocabulary
and set size, increasing the number of documents causes an increase in the
communication.

5.5. OPERATORS AND TOPOLOGY 79

Assuming the same number of tags in each tagset, increasing the number of
partitions, for given number of documents, increases the probability of splitting
two tagsets that have common tags. This results in an increase in communica-
tion (Figure 5.7c). Increasing the number of documents, for a given number of
partitions, increases the probability to find two tagset with common tags. This,
again, results in an increase in communication (Figure 5.7d). In both cases,
considering bigger sets of tags increases the communication even more since it
increases the probability of assigning the same tag to more than one tagsets.

(a) Varying the vocabulary size (b) Varying the number of tags per Tweet

(c) Varying the number of partitions (d) Varying the number of documents

Figure 5.7: Expected communication

5.5 Operators and Topology

For the implementation of our approach, we have used Storm1, a distributed
stream processor engine described in detail in Section 2.2.3.1. The topology
we create inside Storm is shown in Figure 5.8. The numbers inside the circles
indicate whether there is one (1) or multiple (n) instances/tasks created for each
operator. A different type of arrow is used to demonstrate each different kind
of information flow.

1http://storm-project.net/

80 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

n

Parser

1

Twitter

n

Disseminator

1

Merger

n

Partitioner

n

Calculator

�
1

Tracker

shuffle grouping
field grouping
direct grouping
all grouping

Figure 5.8: Topology

5.5.1 Parser

The Source (Spout) in our implementation produces a stream of tweets, using
either live data obtained through Twitter’s streaming API or, for repeatability
of experiments, data read from a file. Tweets are sent using shuffle grouping to
one of the multiple instances of the Parser Bolt. Parser Bolts are responsible
to extract for each tweet di a set of tags si containing the hashtags used by
its authors to annotate it. This tagset can be enriched with named entities,
location, or sentiment, extracted from the bodies of the messages and interpreted
as additional tags. For each incoming tweet di, the Parser emits a tuple of the
form (tmi, di, si), where tmi is the time of the arrival of di in the system.
Disseminator and Partitioner operators both register to Parser.

5.5.2 Partitioner

The Partitioner operator is responsible to create the tag partitions using one of
the algorithms presented in Section 6.2. To accelerate the procedure of parti-
tioning, multiple instances of this operator can be created. Each instance of the
Partitioner receives tuples from Parser using field grouping on the whole tagset
si. This way, the same tagsets are forwarded always to the same Partitioner
instances.

Partitioners maintain a sliding window (cf. e.g. [KS09]) of size W over the
incoming tagsets. Conceptually, this window can be time-based (e.g. capturing
5 minutes of tweets) or count-based (e.g. 10,000 tweets), as described in more
detail in Section 2.2.1. When the Partitioners are asked to create partitions they
use the tagsets currently within the window. The creation of new partitions is
triggered by the Disseminator when the quality of the current partitions has
deteriorated significantly.

Partitioners emit tuples of the form ({pr1, pr2, ..., prk}).

5.5.3 Merger

With multiple Partitioners present, the final number of created partitions
amounts to more than k, the requested number of partitions. This creates

5.5. OPERATORS AND TOPOLOGY 81

the need for an additional operator, the Merger, which takes the partitions
from the Partitioners and creates the final k partitions.

Merger can be viewed as another Partitioner. It receives tagsets and outputs
tag partitions. The tagsets it receives are the tag partitions created by the
Partitioners. Following this principle, the Merger creates the final partitions
using the same algorithm the Partitioners use. To preserve the general idea of
the Disjoint Sets algorithm when executing it in the Merger, we make a slight
change in the Disjoint Sets Algorithm executed in the Partitioners. Partitioners
execute only the first part of it, i.e. they create all possible disjoint sets but
do not merge them into k partitions. The Merger receiving these sets is thus
able to combine them into bigger disjoint sets and merge them afterwards into
k final partitions.

The Merger sends the final partitions to the Disseminator and waits for
messages from it regarding tagsets seen in the input but not found in any of
the partitions. For any such tagset, sent by the Disseminator, the Merger finds
the best fitting partition and informs back the Disseminator about its decision.
This procedure is described in detail in Section 5.6.

5.5.4 Disseminator

The Disseminator receives the partitions from the Merger and uses them to cre-
ate an index from tags to Calculators (Section 5.2). The Disseminator receives
also tuples (tmi, di, si) from the Parser using field grouping on the whole tagset
si and notifies the appropriate Calculators for their arrival. More specifically,
for each received tagset si the Disseminator searches its index (Section 5.2) for
the Calculators that have been assigned any of the tags in si. It sends a tuple of
the form (sji) to each of the involved Calculators. sji is a subset of si containing
all tags assigned to Calculator Cj . For example, suppose that si = {a, b, c}
and Calculator C1 is assigned the tags a, b, c and Calculator C2 is assigned the
tags a, c. The Disseminator will output the tuples ({a, b, c}) and ({a, c}), each
one delivered to the appropriate Calculator using direct grouping. These mes-
sages are called notifications. To accelerate the notification of Calculators for
the received tagsets, multiple instances of the Disseminator operator can be
created.

Disseminators have two more, very important, responsibilities:

1. They identify in the input the tagsets not reflected in the partitions and
inform the Merger about them.

2. They monitor the partitions and trigger repartitions when the quality of
them, with respect to communication overhead and processing load, is not
any more acceptable.

More details on these are provided in Section 5.6.

5.5.5 Calculator

Calculators are responsible to compute the Jaccard coefficients for a set of co-
occurring tags. They register to the Disseminators and receive from them tuples
of the form ({t1, t2, . . . , tn}) using direct grouping.

82 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

Calculators are oblivious to the tags they have been assigned. They infer the
information about the sets of co-occurring tags for which they should compute
a Jaccard coefficient from the messages they receive from the Disseminators. To
compute the Jaccard coefficients, the Calculators should know the cardinalities
of the intersections of the co-occurring tags and, thus this is the information
stored by them.

Consider, for example, that Calculator C1 receives the tuple ({a, b, c}). From
that, it infers that it should compute the Jaccard coefficient for the tagsets
{a, b, c}, {b, c}, {a, b}, {a, c} (i.e. all subsets of tags included in the received tu-
ple). For each of these tagsets, it creates a counter. If the counter already exists
it updates it increasing it by one.

Every y time units, the Calculators use the counters to compute the maxi-
mum possible number of Jaccard coefficients. The coefficients are emitted and
the counters are deleted.

5.5.6 Tracker

The Tracker operator receives the Jaccard coefficients emitted by the Calcula-
tors and uses them to perform further computations. Such a Tracker could be
our prototype enBlogue which uses the Jaccard coefficients to identify emergent
topics. When the same tags are assigned to multiple partitions it might happen
that multiple Calculators emit Jaccard coefficients for the same tagset simulta-
neously. In such a case, the Tracker should select one of them for further usage.
We opted for the coefficient computed over data tracked for a longer period.
For this reason, Calculators emit tuples of the form:

(si, J(si), CN(si))

where J(si) is the Jaccard coefficient for the tagset si and CN(si) is the value
of the counter for si used during the computation of J(si). When receiving
multiple tuples for the tagset si, the Tracker keeps the one with the maximum
CN(si). This heuristic guarantees that at least all tagsets assigned to the
partitions during the creation of them will have a correct Jaccard coefficient not
mixed with a Jaccard coefficient computed in a Calculator as a result of the
evolution of the partitions.

5.6 Handling Dynamics

Twitter is highly dynamic. Old topics evolve through time and new topics
appear very frequently introducing new tags and tag combinations. These dy-
namics are even more acute when focusing on a small subset of the data, i.e. data
obtained during the last 5 or 10 minutes. However, theory and real data show
that it is not feasible to create partitions over large windows as the existence
of a large number of tweets causes the DS algorithm to break due to a large
connected component (Section 5.4.1) while the set-cover based algorithms suffer
from large amounts of redundant communication (Section 5.4.2). In our setting,
we identify and handle the following two requirements:

Evolving Partitions: tags and tag co-occurrences not reflected in the par-
titions are continuously seen in the input. Triggering the recreation of

5.6. HANDLING DYNAMICS 83

partitions for each of them is clearly not feasible. Instead, they are incre-
mentally added to the existing partitions.

Partition Quality Monitoring: enriching partitions with additional tags af-
fects the quality of them in terms of communication overhead and load
balance. Identifying that the quality is not within acceptable limits any-
more and creating new partitions is necessary.

As Disseminators connect the two logical parts of our approach, the creation
of the partitions and the computation of the Jaccard coefficients, they have a
central role in addressing the above two points.

5.6.1 Evolving Partitions

Every time a Disseminator receives a tagset si, it checks whether each subset
sji is encapsulated in at least one notification. If this is not true there is no

Calculator assigned sji thus, the Jaccard coefficient for it cannot be computed.
To enable the computation of the Jaccard coefficient, the Disseminator asks
from the Merger to perform a Single Addition for sji , i.e. to add sji to the best
possible partition.

Disseminators can tune the frequency of the Single Additions by asking for
the additions of tagsets that are seen in the input at least sn times. Setting
sn too low makes the system sensitive in spam tweets which introduce tags or
create new co-occurrences that last for a short time. Setting it too high will
result in missing new topics in their creation since there will be no Calculator
computing the Jaccard coefficient for the new relations.

Note that the reception of a tagset si might cause a Single Addition, not
necessarily for si but for a subset of it. Assume for example that sn = 2 and that
Disseminator D1 receives two tagsets s1 = {a, b, c} and s2 = {a, b, d}. Assume
also that there is no Calculator assigned {a, b}. With the reception of s2 the
tagset {a, b} has been seen twice without being found in some Calculator. The
limit has been reached and D1 asks from the Merger to add it to some partition.
This is not the case for neither of the tagsets s1 = {a, b, c} and s2 = {a, b, d}.

When multiple Disseminators are used, the limit of sn cannot be strictly
enforced. Consider again the tagsets s1 = {a, b, c} and s2 = {a, b, d}. There
is no guarantee that both of them will be received by the same Dissemina-
tor. In the worst case, a tagset might be seen in the input sn′ = (sn − 1) ×
#Disseminators + 1 times before a Single Addition for it is asked. Receiving
messages from the Parser using field grouping on the whole tagset ensures that
when multiple documents use the same tagset si and not variations of it, then a
Single Addition for this tagset will be performed as soon as si is seen in sn doc-
uments. This case is the most frequent case in our setting. In any case, setting
sn = 1 can always guarantee that all new tagsets are considered independently
of the number of Disseminators.

When a Single Addition is performed, the Disseminators receive a message
from the Merger telling them the Calculator that was assigned the tagset. Dis-
seminators use this message to update their indices. All Disseminators receive
the message independently of whether they asked for the addition or not. Sub-
sequent receptions of the tagset are then forwarded to the Calculator selected
by the Merger.

84 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

5.6.2 Partition Quality Monitoring

Every time a new partition has been created, the Merger notifies the Dissemi-
nators about it sending to each of them a tuple of the form:

(partitions, avgCom,maxLoad)

partitions are used by the Disseminators to create their index. avgCom and
maxLoad contain the average communication and the maximum load of any of
the created partitions respectively as computed immediately after their creation.
Disseminators use avgCom and maxLoad as reference values to ensure that
the quality of the partitions through time remains within acceptable bounds.
When this is not true, the Disseminators ask from the Partitioners to create new
partitions. Partitioners recompute partitions as soon as they receive a request
from at least one Disseminator.

In order to estimate the quality of the partitions at any time, the Dissemina-
tors maintain some statistics representing the current average communication
avgCom′ and maximum load maxLoad′ of the partitions. For each received
tagset si, the Disseminators store, for each Calculator, whether a notification
was sent to it or not. Consider the example where si = {a, b, c}, Calculator C1

is assigned {a, b, c} and Calculator C2 is assigned {a, c}. Assume there is one
more Calculator C3 not assigned any of the tags in si. Two of the Calculators,
the Calculators C1 and C2, receive a notification and one Calculator, Calculator
C3 does not. Only tagsets for which there was at least one notification sent are
considered in the statistics.

When z tagsets have been considered, the Disseminators compute the av-
erage sent notifications avgCom′ as the sum of all sent notification divided
by z. maxLoad′ is computed as the fraction of the most notifications sent to
a single Calculator to the total sent notifications. As long as both avgCom′

and maxLoad′ do not exceed avgCom and maxLoad respectively more than
a threshold thr, the Disseminators reset the statistics and continue using the
existing partitions. Otherwise, the Disseminators ask from the Partitioners to
create new partitions. Increasing the threshold decreases the number of repar-
titions allowing for worse performance with respect to communication overhead
or processing load.

5.6.3 Topology Scaling

In the used version (v0.8.2) of Storm, a reconfiguration of a running topology is
not possible. Storm only allows to rebalance a topology creating more threads
(executors) or workers but does not allow changing the number of instances
(tasks) for each operator. In order to be able to adjust the number of Calcu-
lators to the observed load, the necessary logic should be implemented in the
operators. The maximum expected number of Calculators should be defined
before submitting the topology. The Partitioners can specify the actual number
of Calculators that are used at any time by adjusting the number of partitions
they create. Only Calculators that are assigned a partition are indexed by the
Disseminators, receive documents and compute Jaccard coefficients.

5.7. EXPERIMENTAL EVALUATION 85

5.7 Experimental Evaluation

We have implemented the proposed operators in Java 1.7. For the experiments
we used a cluster of 26 Linux (3.12.0) servers2, each running Storm 0.8.2 (with
Zookeeper 3.4.5). Each machine has an Intel quad-core i7-2600K CPU @ 3.4GHz
and 16GB RAM.

5.7.1 Dataset

We obtained access to Twitter’s streaming API at the “garden hose” level,
that is, 10% of Twitter’s public tweets and status updates. We have saved the
Tweets we observed on September 5, 2013 and replay 6 continuous hours of
them for our experiments.

5.7.2 Algorithms

In all experiments, we compare four algorithms:

DS: Disjoint Sets Algorithm creates partitions using disconnected communities
of tags

SCC: Set Cover Based Algorithm that creates partitions optimising primar-
ily the communication among the Disseminators and the Calculators and
secondary the processing load in the Calculators.

SCL: Set Cover Based Algorithm that creates partitions optimising primary
the processing load on the Calculators and secondary the communication
among the Disseminators and the Calculators.

SCI: The Initial Set Cover Based Algorithm that, similarly to SCC, optimises
primarily the communication among the Disseminators and the Calcula-
tors and secondary the processing load in the Calculators.

5.7.3 Parameters

Number of partitions k : We set the number of partitions (the number of
Calculators in the topology) to 5, 10 and 20. In general, keeping the com-
munication low while maintaining the processing load equally distributed are
contradicting goals. Keeping the load in each Calculator close to the aver-
age means that tagsets sharing tags have to be assigned to different partitions,
resulting in increased communication needs. Keeping the communication low
means that tagsets sharing tags should be assigned to the same partitions, re-
sulting in unbalanced partitions. The attempt to balance the two measures is
becoming harder as the number of partitions increases.

Number of Partitioners P : We set the number of Partitioners that in
parallel try to create the partitions to 3, 5 and 10.

Data arrival rate tps: In real world 1300 tweets are created every second.
For that, we set the arrival rate of tweets on the system to 1300 and 2600 tweets
per second.

2We would like to thank the Database Architectures group at CWI Amsterdam for pro-
viding access to their computing cluster

86 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

Repartition Threshold thr : Repartition threshold defines the maximum
percentage of change in the average communication or maximum load that is
considered acceptable by the Disseminators. When the processing load or the
communication have changed more than the provided threshold, the Dissemi-
nators ask for repartitioning. We set the repartition threshold to 0.5 and 0.2. A
threshold of 0.5 means that the average communication (or maximum processing
load) is 50% worse than the average communication (maximum processing load)
when the partitions were computed. Similarly, a threshold of 0.2 means that the
average communication (or maximum processing load) is 20% worse than the
average communication (maximum processing load) when the partitions were
computed.

5.7.4 Experimental Results

The results for the various parameters show the same trend. For this reason,
we decided to set the parameters to a specific value and show the corresponding
results. More specifically, unless otherwise mentioned to be varied, we set the
parameters to the following values P=10, k=10, thr=0.5, tps=1300.

All configurations use one Parser and one Disseminator. The Disseminator
asks for a Single Addition when a tagset is seen in the input without being
found in any Calculator 3 times. The statistics used to estimate the quality of
the partitions (average communication and maximum load) are computed for
every 1000 tweets for which there was a notification sent. Calculators report

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

thr=0.2 thr=0.5

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

P=10 - k=10 - tps=1300
DS SCI SCC SCL

(a) Varying threshold

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

P=3 P=5 P=10

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

k=10 - thr=0.5 - tps=1300
DS SCI SCC SCL

(b) Varying Partitioners

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

k=5 k=10 k=20

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

P=10 - thr=0.5 - tps=1300
DS SCI SCC SCL

(c) Varying partitions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

tps=1300 tps=2600

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

P=10 - k=10- thr=0.5
DS SCI SCC SCL

(d) Varying tweets rate

Figure 5.9: Communication

5.7. EXPERIMENTAL EVALUATION 87

the Jaccard coefficients every 5 minutes. The Partitioners create the partitions
using the set of tweets seen in the previous 5 minutes.

5.7.4.1 Communication

We define the Communication to be the average number of messages sent from
the Disseminator to Calculators for each received tagset. We do not consider
tagsets which are not found in any Calculator and, thus, do not cause any
message to be sent. The plots in Figure 5.9 show how the change in each
parameter affects the communication.

We see that the number of partitions plays the most important role in the
communication (Figure 5.9c). Having more partitions makes it difficult to assign
tags to them without making partitions overlap. This is not true for DS which
creates the partitions using only disjoint sets. For this reason, DS has in general
the best performance with respect to communication. On the other hand, SCL,
which focuses mainly on balancing the processing load, shows the worst perfor-
mance with respect to communication. Surprisingly, SCI performs significantly
worse than SCC although the algorithms are very similar in principle. This
justifies our choice to develop a new algorithm with the communication as its
primary optimisation criterion.

5.7.4.2 Processing Load

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

thr=0.2 thr=0.5

L
o
a
d
 (

G
in

i)

P=10 - k=10 - tps=1300
DS SCI SCC SCL

(a) Varying threshold

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

P=3 P=5 P=10

L
o
a
d
 (

G
in

i)

k=10 - thr=0.5 - tps=1300
DS SCI SCC SCL

(b) Varying Partitioners

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

k=5 k=10 k=20

L
o
a
d
 (

G
in

i)

P=10 - thr=0.5 - tps=1300
DS SCI SCC SCL

(c) Varying partitions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

tps=1300 tps=2600

L
o
a
d
 (

G
in

i)

P=10 - k=10- thr=0.5
DS SCI SCC SCL

(d) Varying tweets rate

Figure 5.10: Processing Load

We define the Processing Load of a single Calculator Ci to be the fraction

88 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

of notifications sent to Ci out of the total sent notifications. To measure the
inequality of Processing Load in the various Calculators, we use the Gini co-
efficient (see also Section 2.5). The plots in Figure 5.10 show how the various
parameters affect the load distribution.

SCL, with primary optimisation criterion the balanced processing load,
shows the best performance. The parameter that affects the load balance the
most is the number of partitions (Figure 5.10c). The reasoning is similar to that
used for the communication. Having more partitions makes it more difficult
to balance the load on them without increasing substantially the communica-
tion. Interestingly, SCC, in contrast to SCI, is affected also by the number of
Partitioners (Figure 5.10b). The difference between SCC and SCI is that SCI
randomly chooses the next tagset to be added to some partition while SCC
selects the more appropriate tagset to be added to some partition. The plot
in Figure 5.10b suggests that the careful selection of the next tagset, although
keeps communication low (cf. Figure 5.9b) cannot support load balance.

5.7.4.3 Jaccard Accuracy

The Calculators can compute the Jaccard coefficient only for the tagsets they
have been assigned. During the partitioning, we make sure that all tagsets
present in the data are assigned to some Calculator. However, as new documents
are received, new tag combinations arise. The Disseminator waits until it has
seen such a tagset sn = 3 times before asking for a Single Addition. After
the Single Addition is completed, the tagset might or might not be seen in the
input again. In case it is seen again, a Jaccard coefficient will be reported that
will deviate from the correct coefficient, since, until the addition is completed,
none of the Calculators tracks the counter needed for the tagset. In case it is
not seen again, a Jaccard coefficient will not be computed at all, resulting in
missing completely the information about this tagset.

To measure the error in accuracy and the total loss of coefficients, we imple-
mented an approach with a single Calculator which gets all tagsets and computes
the Jaccard coefficients having full knowledge of the data. We use the results
of this approach as our baseline. Since a tagset is added when seen at least 3
times, the baseline considers only tagsets appearing more than 3 times.

Our experiments showed that all algorithms manage to compute a Jaccard
coefficient for more than 97% of the tagsets seen more than 3 times in the input.
In Figure 5.11, we report on the average error of these Jaccard coefficients.

In general, DS is the algorithm computing the most accurate coefficients.
It is interesting that an increase in the number of Partitioners causes a signif-
icant reduction in the error of SCC (Figure 5.11b). Additionally, an increase
in the tweets input rate decreases the error in all algorithms but SCC (Fig-
ure 5.11d). Both these cases are related to the number of repartitions (see plots
in Figure 5.12). When a repartition happens, it might be the case that tagsets
assigned to some Calculator before the repartition are assigned to another Cal-
culator after it. This causes multiple coefficients for the same tagsets being
reported with none of them being accurate.

5.7. EXPERIMENTAL EVALUATION 89

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

thr=0.2 thr=0.5

E
rr

o
r

P=10 - k=10 - tps=1300
DS SCI SCC SCL

(a) Varying threshold

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

P=3 P=5 P=10

E
rr

o
r

k=10 - thr=0.5 - tps=1300
DS SCI SCC SCL

(b) Varying Partitioners

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

k=5 k=10 k=20

E
rr

o
r

P=10 - thr=0.5 - tps=1300
DS SCI SCC SCL

(c) Varying partitions

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

tps=1300 tps=2600

E
rr

o
r

P=10 - k=10- thr=0.5
DS SCI SCC SCL

(d) Varying tweets rate

Figure 5.11: Error for tagsets seen more than 3 times

5.7.4.4 Number of Repartitions

The number of repartitions depicts how Single Additions affect the quality of
the partitions. A repartition is triggered when either the communication or
the processing load exceed the threshold. In some cases, both measures had
been found to have exceeded the threshold. The plots in Figure 5.12 show the
effect of the various parameters on the number of repartitions. As expected, DS
has repartitions caused by load imbalance. SCC and SCI, although focusing on
communication, similarly to DS, have repartitions caused by big communication
overhead. What is interesting is that SCL and SCI do not manage to drop the
number of repartitions for bigger threshold (Figure 5.12a) . This contradicts our
expectations and suggest that the average communication for these algorithms
is easily affected by the Single Additions.

5.7.4.5 Evolution of Partitions

The plots in Figures 5.13 and 5.14 show the changes in communication and
processing load with evolving time. For the communication, the average com-
munication is used while for the processing load we show the detailed load in
each Calculator. The processing load has been sorted so that one line has al-
ways the load of the most loaded Calculator another line has the load of the
second most loaded Calculator and so on. One vertical line has been drawn
representing the points when a repartition was performed.

The plots regarding DS clearly show the effect of the Single Additions and

90 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

 0

 100

 200

 300

 400

 500

 600

D
S

SC
I

SC
C

SC
L

D
S

SC
I

SC
C

SC
L

#
R

e
p
a
rt

it
io

n
s

P=10 - k=10 - tps=1300

thr=0.5thr=0.2

Communication Both Load

(a) Varying threshold

 0

 100

 200

 300

 400

 500

 600

D
S

SC
I
SC

C
SC

L
D
S

SC
I
SC

C
SC

L
D
S

SC
I
SC

C
SC

L

#
R

e
p
a
rt

it
io

n
s

k=10 - thr=0.5 - tps=1300

P=10P=5P=3

Communication Both Load

(b) Varying Partitioners

 0

 100

 200

 300

 400

 500

 600

D
S

SC
I
SC

C
SC

L
D
S

SC
I
SC

C
SC

L
D
S

SC
I
SC

C
SC

L

#
R

e
p
a
rt

it
io

n
s

P=10 - thr=0.5 - tps=1300

k=20k=10k=5

Communication Both Load

(c) Varying partitions

 0

 100

 200

 300

 400

 500

 600

D
S

SC
I

SC
C

SC
L

D
S

SC
I

SC
C

SC
L

#
R

e
p
a
rt

it
io

n
s

P=10 - k=10- thr=0.5

tps=2600tps=1300

Communication Both Load

(d) Varying tweets rate

Figure 5.12: Number of Repartitions

the repartitions to the communication (Figure 5.13a) and the processing load
(Figure 5.14a). As long as there are repartitions happening, the communication
stays low while there is one Calculator having more load than the others. Be-
tween repartitions, the communication increases and processing load tends to
become more balanced, i.e. the load of the most loaded Calculator decreases, un-
til the next repartition when communication decreases again and load becomes
more unbalanced.

Similar results are seen for SCC in Figures 5.13b and 5.14b. For SCL and
SCI, the results are not that clear since there are very many repartitions (there
is approximately one repartition every 2750 processed documents). However, for
SCL, Figure 5.14c clearly shows that the processing load is balanced through
the whole experiment. The load for SCI (Figure 5.14d) is not balanced, but one
can see that it is better balanced than the load for SCC (Figure 5.14b).

5.7.4.6 Connectivity of Tagsets

In Figure 5.15, we report some statistics regarding the Twitter dataset as they
are fundamentally related to the problem we consider in this work and, in partic-
ular, relevant for the performance of the DS algorithm. For the measurements,
we used the same tweets we used for the experiments. Over them, we defined
non-overlapping sliding windows of 4 different sizes, 2, 5, 10 and 20 minutes.
Every time the window slides, we measure the maximum percentage of tags
contained in a single connected component of tags and the maximum number
of documents related with a single connected component.

5.7. EXPERIMENTAL EVALUATION 91

 1.1

 1.2

 1.3

 1.4

 1.5

 200
 400

 600
 800

 1000

 1200

 1400

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(a) DS Communication

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 200
 400

 600
 800

 1000

 1200

 1400

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(b) SCC Communication

 2.6
 2.8

 3
 3.2
 3.4
 3.6
 3.8

 4
 4.2

 200
 400

 600
 800

 1000

 1200

 1400

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(c) SCL Communication

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 200
 400

 600
 800

 1000

 1200

 1400

C
o
m

m
u
n
ic

a
ti
o
n
 (

a
v
g
)

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(d) SCI Communication

Figure 5.13: Communication over Time

 0.1

 0.2

 0.3

 0.4

 0.5

 200
 400

 600
 800

 1000

 1200

 1400

L
o
a
d

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(a) DS Load

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 200
 400

 600
 800

 1000

 1200

 1400

L
o
a
d

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(b) SCC Load

 0.08

 0.1

 0.12

 0.14

 0.16

 200
 400

 600
 800

 1000

 1200

 1400

L
o
a
d

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(c) SCL Load

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 200
 400

 600
 800

 1000

 1200

 1400

L
o
a
d

Processed Documents (in thousands)

 P=10 - k=10 - thr=0.5 - tps=1300
Communication Both Load

(d) SCI Load

Figure 5.14: Processing Load over Time

92 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

 0

 5

 10

 15

 20

 25

 30

2 5 10 20

#
T

a
g

s
 (

%
)

Window Size (minutes)

Expected Maximum #Tags

(a) Maximum size of connected tagset per
round

 0
 5

 10
 15
 20
 25
 30
 35
 40

2 5 10 20

#
D

o
c
u

m
e

n
ts

 (
%

)

Window Size (minutes)

Expected Maximum Load

(b) Maximum load of connected tagset per
round

 0

 5000

 10000

 15000

 20000

 25000

2 5 10 20

#
D

is
jo

in
t

S
e

ts

Window Size (minutes)

Expected #Disjoint Sets

(c) Number of connected tagsets per round

Figure 5.15: Tagsets connectivity and load

5.7.5 Discussion

DS has been shown experimentally to give the most accurate results. Since it
creates partitions using disjoint sets, there are fewer tagsets assigned to multiple
nodes, thus there are fewer Jaccard coefficients reported multiple times. It is this
characteristic of DS however, that can make the use of it impossible. When not
enough disjoint sets are found or a few disjoint sets dominate the dataset, SCC
can be used instead. For some configurations, SCC achieves accuracy results
close to those achieved by DS. Additionally, since SCC is a greedy algorithm,
it is simpler and of lower complexity to DS which needs to have a global view
of the data in order to find the disjoint sets. Both DS and SCC focus on
communication resulting in very unbalanced processing load. In case balancing
load is important, SCL should be used. With small changes, SCL can handle also
cases in which not all nodes are equal and each of them can handle different load.
For those cases, SCL should know the characteristics of each node. Finally, SCI
achieves communication worse than SCC but better that SCL and processing
load worse than SCL but better than SCC. This puts SCI in between SCC and
SCL and makes it appropriate for cases when one cannot afford to optimise
one measure regardless of what will happen to the other one and an average
performance on both of them is more desirable.

In general, the results suggest that the proposed approach would exhibit
better performance when the relations among tags are more static. In such
a case, new tagsets would be encountered less often, minimising the need for

5.7. EXPERIMENTAL EVALUATION 93

repartitions. A comparison between the plots in Figure 5.11 and Figure 5.12
suggests a correlation between the accuracy and the number of repartitions,
with less repartitions leading to lower error. An example dataset with these
characteristics could be Twitter data grouped over bigger time periods. For
example, one could consider tagsets that co-occur in a number of consecutive
small, e.g. 5 minutes, windows. These tagsets reflect more permanent relations,
for example, {#Bieber, #Gomez}. Other tag co-occurrences could be consid-
ered to represent sub-events with shorter life span, e.g. {#Bieber, #Gomez,

#tattoo}. In order to compute the Jaccard coefficients for tagsets correspond-
ing to sub-events, Disseminators could ignore non-assigned tags and forward the
tagsets to all Calculators having any subset of the tagsets’ tags. In the current
approach, a tagset is forwarded to a Calculator only if the Calculator has been
assigned all the tags in the tagset.

For datasets with rapidly changing tag relations, e.g. the Twitter dataset
when focusing on small subsets of previous data, a different topology, not as-
suming any kind of relations preserved in time, might be more appropriate. Such
a topology is shown in Figure 5.16. In this topology each operator performs a
simple processing on the data it receives and quickly forwards the message to
the next operator, trying to avoid having messages queued in its input.

Twitter

Parsers

1

2

Disseminators

2

1

3

Counters

3

2

1

4

5

Partitioner

1

Calculators

2

3

1

4

Tracker

1

shuffle grouping
field grouping
direct grouping

Figure 5.16: Topology

More specifically, the Parsers receive tweets using shuffle grouping. They
extract from each tweet the set of tags reflecting its topic and forward it to the
Disseminators using shuffle grouping. The Disseminators create all possible sub-
sets for each received tagset and forward each of them to one Counter using field
grouping. This way, the same tagset is always received by the same Counter.
The Counters, as their name implies, are responsible to maintain one counter
for each received tagset. From time to time, the Counters sent the tagsets along
with the computed counters to the Partitioner. The Partitioner decides how
to partition the tagsets to the Calculators and forwards the counters according
to this decision. For the partitioning, any of the algorithms presented in Sec-
tion 5.3 can be used. The Calculators, upon receiving the counters, combine
them to compute the Jaccard coefficients for as many tagsets as possible. The
Jaccard coefficients are forwarded to the Tracker which can use them for further

94 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

processing.
We implemented this topology and, since it does not pre-assign the tags

to the Calculators, it managed to compute a Jaccard coefficient for any seen
tagset. The accuracy of the computed coefficients reached 100%. As can be
seen in Figure 5.16, this topology has a single Partitioner which is a drawback,
since it can be a bottleneck. However, the Partitioner receives messages in
batches and should process them before the next batch is received in order to
avoid having messages queued. Considering small time windows minimises the
load of the Partitioner, since less tagsets are seen in the input.

5.8 Distributed Emerging Topics Identification

Computing distributed Jaccard was inspired by our enBlogue approach on find-
ing emerging topics. In enBlogue (see also Chapter 4) the idendification of
emerging topics can be broken down into three main steps:

• Step 1: The correlations of the tagsets in the current window are com-
puted.

• Step 2: For each correlated tagset, the expected correlation is computed.

• Step 3: The emergence of each topic is estimated comparing the real
and the expected correlations of the tagset representing it.

Our approach on computing in parallel the Jaccard coefficients of all possi-
ble sets of co-occurring tags can be used in Step 1 to compute the correlation
values of all tagsets in the current window. In this case, the computed corre-
lations are forwarded to the Tracker. The Tracker can then compute for each
received coefficient the expected correlation value and use them subsequently to
estimate the emergence of each topic (Steps 2 and 3). However, having a single
machine computing all expected correlations and estimating the emergence of
all topics could potentially shadow the benefits achieved from parallelising the
computation of the Jaccard coefficients.

A straightforward method to parallelise Steps 2 and 3 is to use the Tracker as
a Distributor that collects all computed coefficients and splits them to a number
of nodes. Each node would then be responsible to compute the expected corre-
lations and estimate the emergence for the topics it has received coefficients for.
However, since the tagsets are already split into various nodes, the Calculators,
it seems natural to have the same nodes computing also the expected correlation
and estimate the emergence of the topics. This is not trivial, thus, since it is
not known in advance which Calculator will compute which coefficients.

In order for a node to be able to compute the expected correlation of a
tagset, a number of previous correlation values are required. Since a tagsets is
not always assigned to the same Calculator, these previous correlations should
be requested from other Calculators. This implies the existence of some form of
communication between the Calculators which is not allowed in our approach
and could potentially result in the exchange of numerous messages between
the nodes until all of them have the information they need. Additionally, the
Calculators would have to store a number of previous coefficients in order to
be able to forward them to other Calculators. Currently, the Calculators are
stateless and only information about the current coefficients is stored on them.

5.9. SUMMARY 95

However, any attempt on increasing the accuracy of the computed coeffi-
cients in the current approach might require a form of communication between
Calculators, so that they can, for example, exchange counters after a repartition.
In such a case, the same communication channels could be used to exchange
previous coefficients that will allow the Calculators to compute the expected
coefficients and estimate the emergence of the topics. The necessary changes
to achieve this, are not straightforward and require further research to avoid
flooding the system with messages, while sending all necessary information to
each Calculator.

5.9 Summary

In this chapter, we presented in detail an approach that can be used to compute
in parallel the Jaccard coefficients for multiple tagsets. According to the pro-
posed approach, all tagsets used in the tweets sent during a short past period
are considered together, and a partitioning of the tags in them is decided as-
suming that the relations between the tags will remain the same in the future.
Each partition is assigned to a different node which receives documents based
on it and computes the Jaccard coefficients for all sets of co-occurring tags in it.
Four algorithms that can be used for the partitioning of the tags, focusing either
on communication or in processing load, have been proposed. New tagsets, not
covered in the partitions are incrementally added to them to avoid loosing the
corresponding Jaccard coefficients completely. Repartitions of tags are created
from time to time to avoid excessive communication or load imbalance.

We experimentally evaluated our approach considering all four partitioning
algorithms. The results proved the feasibility of it. However, the results are
greatly affected by the highly dynamic nature of tag relations in Twitter. This
lead us to consider a possible alternative approach that does not assume the
same relations for the future but forwards any received tagset based only on the
tags it contains, i.e. there are no pre-assigned tags to nodes. This alternative
approach demands, in general, the exchange of many more messages but, when
bandwidth is no problem, the alternative approach can be used to get Jaccard
coefficients with accuracy 100% for all tagsets seen in the input, regardless of
the total number of times they have been encountered. However, the presence
of a single Partitioner is a potential bottleneck that requires further research.

96 CHAPTER 5. DISTRIBUTED JACCARD COMPUTATION

Chapter 6

Events Identification in
Relational Databases

In the previous chapters, we focused on real time identification of events over
unstructured or semi-structured dynamic data. In this chapter, we focus on
structured data stored in relational databases. Relational databases can store
massive amounts of data, allowing ad-hoc and predefined queries over them.
A common approach to obtain further insights on this data is to transfer it in
a data warehouse. The data in a data warehouse is organised over multiple
attributes and a measure of interest is precomputed for each combination of
attributes binding, as described in more detail in Section 2.7.

The usually big volume of data in these settings does not allow the immediate
reflection of the updates performed in the database to the data warehouse, since
even a small update in the data can cause a chain of re-computations in the
data warehouse. This makes very difficult for analysts to identify and react
immediately in changes caused in the data.

While keeping everything up-to-date is almost impossible, maintaining only
the essence of it is feasible and of interest to the users. Arguably, the most
natural way to condense large amounts of information into a conceivable form
is the computation of rankings. Rankings allow users to focus on the portion
of data that shows an outstanding performance. Changes on the top positions
of the rankings are usually most important compared to changes in the middle
positions of the rankings. These are the changes that need to be identified in
real time.

For instance, consider a manufacturer that uses a number of raw materials
to create her final product. Monitoring in real time, for example, the top-20
materials with the least quantity in stock is of great importance to her. Tracking
this information in parallel with the quantities of each material that are used for
the creation of each final product allows her to decide as early as possible the
necessary supply orders. Failing to spot as early as possible the top materials
with the least available quantities could result in stopping the production due
to deficiencies in material resources. Stopping the production might, not only,
result in temporary revenue loss for the manufacturer but also in the complete
loss of the consumers confidence to the company.

In this chapter, we present two algorithms that allow identifying changes

97

98
CHAPTER 6. EVENTS IDENTIFICATION IN RELATIONAL

DATABASES

in the top-k positions of rankings created over the various dimensions defined
in a data warehouse. This work has been presented at the 7th International
Workshop on Ranking in Databases (DBRank) held in conjunction with the
International Conference on Very Large Data Bases (VLBD 2013) [AM13b].

6.1 Framework

We consider a database storing a set of relations. A user defines the rankings
of interest providing an SQL-like query using the following template:

SELECT primary attribute ,

function(numeric attributes)

GROUP BY secondary attributes

TOP k

ORDER direction

Through the above SQL-like query template, the user provides information
about:

primary attribute : The rankings are created over the instances of the pri-
mary attribute. The performance of these instances should be monitored.

secondary attributes : The secondary attributes are used to define groups.
Each possible combination of instances of these attributes defines a dif-
ferent group. The performance of the instances of the primary attribute
should be monitored in each of these groups. The secondary attributes
define the dimensions in a data warehouse.

numeric attributes : The numeric attributes are used to compute the mea-
sure of interest for each instance of the primary attribute.

function : The function that is used to compute the measure of interest.

k : The number of the primary attribute instances comprising the rankings.
This top portion of instances, in each ranking, should be maintained and
be always up to date.

direction : Whether the best (descending) or the worst (ascending) performing
instances are of interest.

Using the information provided by the user, we create one top-k query for each
possible combination of the secondary attributes instances according to the fol-
lowing template:

SELECT primary attribute ,

function(numeric attributes)

FROM relations

WHERE (secondary attribute)1 =

(secondary attribute)1.instancei
AND (secondary attribute)2 =

(secondary attribute)2.instancej

6.1. FRAMEWORK 99

AND ...

AND (secondary attribute)n =

(secondary attribute)n.instancel
GROUP BY primary attribute

ORDER BY function(numeric attributes) direction

LIMIT k

For example, if the user is interested in monitoring the top-20 product types
with the highest revenue of each brand in each country stored in the relations
products and sales, she should provide the following SQL-like query:

SELECT products.type ,

SUM(products.price*sales.quantity)

GROUP BY products.brand , sales.country

TOP 20

ORDER ascending

The queries derived from the above, called ranking queries in the rest of the
chapter, are of the following form:

SELECT P.type , SUM(P.price*S.quantity)

FROM products P, sales S

WHERE P.id = S.pid AND P.brand=‘X’ AND

S.country=‘Y’

GROUP BY P.type

ORDER BY SUM(P.price*S.quantity) ASC

LIMIT K

where ‘X’ and ‘Y’ are instances respectively of the attributes products.brand
and sales.country. One such query is created for each possible combination
of the attributes products.brand and sales.country.

For consistency, we introduce the keyword ANY which is used to indicate
that a secondary attribute is not bound to a specific instance. For example, the
following query is used to monitor the product types of ANY brand in a specific
country ‘Y’ that have the top-k highest revenues.

SELECT P.type , SUM(P.price*S.quantity)

FROM products P, sales S

WHERE P.id = S.pid AND P.brand=ANY AND

S.country=‘Y’

GROUP BY P.type

ORDER BY SUM(P.price*S.quantity) ASC

LIMIT K

Allowing any of the secondary attributes not to be bound to a specific instance
creates the generalisations used in a data warehouse.

100
CHAPTER 6. EVENTS IDENTIFICATION IN RELATIONAL

DATABASES

6.1.1 Updates

A continuous stream of updates, in the form of insertion queries, changes the
data stored in the database. The updates we consider are of the following form

(updated instance, properties, added value)

where the updated instance is the instance of the primary attribute that
is affected by the update, properties are the instances of the secondary at-
tributes that define the properties of the updated instance and added value is
the change in the score of the updated instance imposed by the update. An
example update is the following:

(products.type=‘Z’, {products.brand=‘X’,

sales.country=ANY , products.price =452},

sales.quantity =+3)

For simplicity, we assume that each update contains information about all
attributes involved in the rankings (primary, secondary and numeric). This
assumption can be easily withdrawn by creating a pre-processing step which
will take the update and will obtain the missing information from the database.
Querying the database might seem expensive but with the use of appropriate
indices the missing information can be retrieved in O(1). For example, in the
above update, the price of the product might be missing. Using an index on
the product type allows to quickly obtain this information. The instances over
which these indices should be created are not expected to change frequently,
e.g. new product types are not added every day, not even every month. Thus,
updating the indices will be an infrequent procedure, adding only a minimal
overhead in the whole maintenance framework.

After each insertion, all the above rankings should reflect the most recent
information. Re-evaluating them after each update is a straightforward solu-
tion. Unfortunately, traditional RDBMs do not benefit from the limit condition
([IBS08]) present in all our ranking queries to early terminate their evaluation.
They evaluate them as if the limit condition was not present and then they out-
put the top-k results. But even in the case of early termination being utilised
by the RDBMs, the aggregate nature of the above queries makes it very difficult
to find an aborting condition that will allow accessing fewer data.

In our approach, we focus on the maintenance of the ranking queries rather
than their re-evaluation and propose two algorithms to achieve this goal. Both
algorithms focus on updating the top-k results minimising the interaction with
the underlying database. Estimating the top-k results of a query requires knowl-
edge about a big portion of the data and in a setting with multiple such queries
having all necessary data in memory might not be possible. In such a case,
updates can cause a number of disk accesses leading in a significant degradation
in performance.

6.2. ALGORITHMS 101

6.2 Algorithms

A simple and obvious optimisation is to ignore updates that cannot affect the
ranking because of the structural differences between the update query and the
ranking query. This applies when either of the following is true:

• The update query affects a relation that is not used in the ranking query.

• The update query affects a relation used by the ranking query but not the
same attributes.

Consider for example the update:

(products.type=‘Z’, {products.brand=‘X’,

sales.country=ANY , products.price =452},

sales.quantity =+3)

This update is ignored by all rankings not using the relations products and/or
sales and the rankings using either of the two relations but none of the at-
tributes products.type, products.brand, sales.country, products.price

and sales.quantity.
All other updates can potentially affect the top-k results and, thus, need to

be handled by the algorithms we present.

6.2.1 Naive Approach

In a naive approach, each ranking stores in memory its top-k results and every
time it receives an update, it checks whether the updated instance exists in this
top-k portion. In case it does, it updates its score. Updating incrementally the
result of an aggregate function is straightforward when the function used is dis-
tributive, e.g. sum, count or average. Incrementally updating non-distributive
aggregate function is quite challenging and [PSCP02] studies this problem. In
the worst case, the set of values used to compute the aggregated score could be
stored and re-used every time the score needs to be updated.

In case the instance affected by an update is not found in the top-k portion, a
query is issued to the database to obtain the measure of interest for the missing
instance and decide whether it should enter the top-k results. We call such a
query Verification Query.

Definition 3. A Verification Query is the ranking query having the primary
attribute bound to a specific instance.

For our products–revenue example, the Verification Query executed to obtain
the aggregated value for the product type ‘Z’ of brand ‘X’ in country ‘Y’ is
the following

SELECT P.type , SUM(P.price*S.quantity)

FROM products P, sales S

WHERE P.id = S.pid AND P.brand=‘X’ AND

S.country=‘Y’ AND P.type=‘Z’

GROUP BY P.type

102
CHAPTER 6. EVENTS IDENTIFICATION IN RELATIONAL

DATABASES

Since the top-k results are assumed to contain a rather small portion of
all instances, most updates in the Naive approach will need the execution of a
Verification Query, resulting in a significant degradation of the system’s perfor-
mance.

6.2.2 Estimates Algorithm (EA)

An optimisation can be achieved exploiting the top-k nature of the rankings.
Each ranking needs to have exact scores only for its top-k instances. Hence,
the rest of them can have an estimated score. This is the idea in the Estimates
Algorithm (EA).

In EA, all rankings store in memory the exact scores of their top-k results.
In addition, each ranking has a Buffer where instances with non-exact, or es-
timated, scores are stored. The estimated score is always better (or the same)
to the real (exact) score of the instance. This assures that no instances that
qualify for the top-k portion are ever missed.

Definition 4. The basic score, for each ranking, is the worst score of any of
the instances for which an exact score is maintained.

Definition 5. The estimated score, for each ranking, is the basic score assigned
to an updated instance when its exact score is not known.

To allow bigger flexibility on the range of the estimated score, the exact
scores of N extra instances are maintained, resulting in a top-(k+N) ranking.
In this case, the basic score is selected to be the worst score of the (k+N)
instances.

Every time an update affects an instance which score is not known, the
algorithm assigns to it an estimated score equal to the basic score and stores it
in the Buffer. If an update affects an instance already in the Buffer, then its
estimated score is updated as if it was its exact score. This is done so that the
rankings can consider the cumulative changes in an instance’s estimated score
when it is updated multiple times. When the estimated score of an instance
qualifies for the top-k results, its real score does not necessarily qualify too. To
verify this, a Verification Query regarding this instance is executed.

If the Buffer becomes full, no more instances can be added to it and the
algorithm falls back to the Naive Approach. To avoid that, when the Buffer
is found to be full, a query is issued that verifies all instances currently in the
Buffer. We call this query Buffer Reset Query. After such a query, the Buffer
is reset to empty allowing again the addition of new instances.

Definition 6. A Buffer Reset Query is the ranking query having the primary
attribute bound to a set of instances.

For our products - revenue example, if the Buffer stores three instances of the
products.type, ‘A’,‘B’ and ‘C’ the Buffer Reset Query that will be executed
is the following

SELECT P.type , SUM(P.price*S.quantity)

FROM products P, sales S

6.2. ALGORITHMS 103

WHERE P.id = S.pid AND P.brand=‘X’ AND

S.country=‘Y’ AND P.type IN

(‘A’,‘B’,‘C’)

GROUP BY P.type

The in-memory structures necessary for the EA are shown in Figure 6.1.
The idea of EA is described in the pseudocode of Algorithm 12. Every time we
transfer an instance to the top-k or to the N extra instances, another instance
is removed to keep the sizes of these sets unchanged. The instances in the top-k
portion are always kept sorted according to the criteria defined by the user.
This does not apply for the N extra instances.

i, 932

j, 926

k, 922

top-k
l, 875

m, 832

n, 794

top-(k+N)

z, 812

x, 842

w, 806

y, 859

Buffer

Figure 6.1: In-Memory structures: the actual top-(k+N) ranking (left) and the
estimates for the previously unseen entities (right).

Two types of queries are executed in EA:

• the Verification Queries and

• the Buffer Reset Queries

A reduction in the number of Verification Queries is achieved through the se-
lection of the basic score. Increasing the difference (gap) of the basic score to
the worst score of any instance in the top-k results, increases the number of
updates an estimated score can absorb before qualifying for the top-k portion.
Of course, increasing the gap increases also the number of extra instances (N)
that should be stored in memory. A reduction in the number of Buffer Reset
Queries is achieved through the size of the Buffer. The bigger the Buffer, the
more instances it can store and the less time it needs to be reset.

6.2.3 Groups Algorithm

The queries we examine, apart from focusing on the top-k portion of the results,
have a special relation with each other: groups of them use the same primary,
secondary and numeric attributes, and the same aggregation function. These

104
CHAPTER 6. EVENTS IDENTIFICATION IN RELATIONAL

DATABASES

Algorithm 12: Estimates Algorithm (EA)

Input: Affected instance inst
Integer chginst // the change in the affected instance’s

score

Integer topKthr // worst score in the top-k instances

Integer extrathr // worst score in the N-Extra instances

1 if inst ∈ top− k then // check the top-k instances

2 update scoreinst
3 else if inst ∈ N − Extra then // check the N-Extra instances

4 update scoreinst
5 if scoreinst > topKthr then
6 transfer inst to top-k
7 end if

8 else if inst ∈ Buffer then // check the Buffer

9 update scoreinst
10 if scoreinst > topKthr then
11 Execute query
12 scoreinst = scorequery
13 if scoreinst > topKthr then
14 transfer inst to top-k
15 else if scoreinst > extrathr then
16 transfer inst to N-Extra
17 end if

18 end if

19 else // new

20 Compute estimation
21 Add inst to Buffer

22 end if

queries can be organised in a subgroups lattice according to the tuples qualifying
to their filtering condition. For the products-revenue example query, introduced
in Section 6.1, assuming that there are only two instances of countries, ‘Y’ and
‘W’, and a single instance of brand ‘X’ the lattice will be the one in Figure 6.2.

The basic characteristic of the queries organised in a lattice is that they
share the same tuples. Each query lying in a join in the lattice is satisfied
by all the tuples in the union of the sets of tuples satisfying the queries lying
below it. Each query lying in a meet point is satisfied by all the tuples in the
intersection of the sets of tuples satisfying the queries lying above it. This partial
order relation between the aggregate queries is an immediate consequence of the
filtering conditions of the queries and can help decreasing the interaction with
the underlying database.

Coming again to the products-revenue example, consider the example update

(products.type=‘Z’, {products.brand=‘X’,

sales.country=ANY , products.price =452},

sales.quantity =+3)

6.2. ALGORITHMS 105

country=ANY

AND

brand=ANY

country=‘W’

AND

brand=ANY

country=‘Y’

AND

brand=ANY

country=ANY

AND

brand=‘X’

country=‘Y’

AND

brand=‘X’

country=‘W’

AND

brand=‘X’

Figure 6.2: Subgroups lattice organising the top-k aggregate queries using the
same primary attribute, and the attributes country and brand in the filtering
condition

which causes an increase of 3 units in the quantity sold for product type ‘Z’. The
supremum ranking of the lattice (i.e. the ranking having the filtering condition
products.brand=ANY AND sales.country=ANY) is the first ranking to know
about this update. Assume that the product type ‘Z’ does not exist in the
top-(k+N) results of the supremum ranking and its estimated score qualifies for
the top-k results. In this case, the following Verification Query will be issued by
the supremum ranking in order to get the exact score of the product type ‘Z’.

SELECT P.type , P.brand , S.country ,

P.price*S.quantity

FROM products P, sales S

WHERE P.id = S.pid AND P.type=Z’

The Verification Query executed in this case is quite different from the Ver-
ification Query executed in the EA algorithm. The result of the Verification
Query is not the aggregated score for product type ‘Z’ but the set of tuples
that should be used to compute the aggregated score for product type ‘Z’. The
ranking uses the retrieved tuples to compute the aggregated score itself, outside
of the database. At the same time, the retrieved tuples are forwarded to the
rankings lying lower in the lattice.

In case the updated instance, ‘Z’ in our example, already exists in the top-
(k+N) results or its estimated score does not qualify for the top-(k+N) results,
a Verification Query will not be executed, no tuples will be available and the
update itself, instead of tuples, will be forwarded to the lower level rankings.

Receiving an update, a ranking in the lower level will check to find the up-
dated instance in its Buffer or top(k+N) results. In case the instance cannot be
found, a Verification Query will be executed. The ranking has already a filtering
condition so, it will use it to further limit the retrieved tuples, since tuples that
do not satisfy the filtering condition of the ranking will be of no use to this and
to all rankings below it in the lattice. Assuming for example, that the ranking

106
CHAPTER 6. EVENTS IDENTIFICATION IN RELATIONAL

DATABASES

has the filtering condition products.brand=ANY AND sales.country=‘W’ the
Verification Query will be the following:

SELECT P.type , P.brand , S.country ,

P.price*S.quantity

FROM products P, sales S

WHERE P.id = S.pid AND P.type=‘Z’ AND

p.country=‘W’

The difference of this Verification Query to the Verification Query executed
by the supremum ranking is that this query has in addition the condition
p.country=‘W’ in the WHERE clause.

When receiving tuples, a ranking filters out the ones that do not qualify
to its filtering condition and tries to use the remaining ones in order to avoid
execute new queries. In case the updated instance does not exist in the top-
(k+N) results, the ranking uses the received tuples to compute the exact score
of the instance and decide whether it should be added in the top-(k+N) results.
If the updated instance already exists in the Buffer, it is removed. Removing
instances from the Buffer, re-using tuples obtained through the execution of
Verification Queries by rankings lying higher in the lattice, allows emptying
spaces for new instances in the Buffer that finally results in reducing the Buffer
Reset Queries that should be executed.

If the aggregation function used by the rankings is distributive, e.g. SUM or
COUNT, the ranking can query the score of each individual group instead of the
single tuples, saving the cost of computing the score in each ranking separately.

We call this algorithm Groups Algorithm (GA). The idea of GA is described
by the pseudocode of Algorithm 13. In GA, rankings retrieve tuples, instead of
aggregated scores, also when they execute Buffer Reset Queries. These tuples
are, similarly, forwarded to the rankings lying in the lower levels of the lattice
which re-use them to compute exact scores for instances that possibly lie in
their Buffer. This results in further reduction of the Buffer Reset Queries that
need to be executed.

6.3 Experimental Evaluation

We implemented our methods in Java 1.6 using a multi-threaded approach and
conducted a series of experiments. All measurements were performed on a server
with two quad-core 2.4 GHz Intel Xeon processors and 47 GB of RAM. For the
experiments we used the TPC-H dataset1, a typical dataset for decision support
systems.

As primary attribute, we used the attribute p partkey from table part. We
used customer.c mktsegment, orders.o orderpriority and region.r name

as the secondary attributes. The selected aggregate function was sum and the nu-
meric attribute over which we computed the scores was lineitem.l quantity.
Using all possible combinations of the secondary attributes bindings resulted in
216 queries in total. Each of them involved five relations.

1http://www.tpc.org/tpch/

6.3. EXPERIMENTAL EVALUATION 107

Algorithm 13: Groups Algorithm (GA)

Input: Affected instance inst
Integer chginst // the change in the affected instance’s

score

Set of tuples TUP /* the tuples comprising the various

group for the affected or removed from estimates instances

as sent from an upper level node */

Integer topKthr // worst score in the top-k instances

Integer extrathr // worst score in the N-Extra instances

1 Use TUP to remove from estimates as many instances as possible

2 if inst ∈ top− k then // check the top-k instances

3 update scoreinst
4 else if inst ∈ N − Extra then // check the N-Extra instances

5 update scoreinst
6 if scoreinst > topKthr then
7 transfer inst to top-k
8 end if

9 else if TUP 6= ∅ then // compute score using received tuples

10 Compute scoreinst using TUP
11 if scoreinst > topKthr then
12 transfer inst to top-k
13 else if scoreinst > extrathr then
14 transfer inst to N-Extra
15 end if

16 else if inst ∈ Buffer then // check the Buffer

17 update scoreinst
18 if scoreinst > topKthr then
19 Execute query
20 scoreinst = scorequery
21 if scoreinst > topKthr then
22 transfer inst to top-k
23 else if scoreinst > extrathr then
24 transfer inst to N-Extra
25 end if

26 end if

27 else // new

28 Compute estimation
29 Add inst to Buffer

30 end if

For both Estimates Algorithm (EA) and Groups Algorithm (GA), we mea-
sure the average time needed to process each update. For completeness, we
have also implemented the Naive approach and compare the results against it.
Since the implementations are multi-threaded, multiple rankings are updated
in parallel in each update. To isolate the gains achieved by the usage of our
approaches from the gains due to the multi-threaded implementation, the run-
time in each update is the one that would have been needed if the rankings were

108
CHAPTER 6. EVENTS IDENTIFICATION IN RELATIONAL

DATABASES

updated sequentially. We also measure the number of queries executed in each
approach. We measure and report the number of Verification Queries and the
number Buffer Reset Queries separately.

In all experiments, we performed 30,000 updates. The value that is added
in each update varies between 1 and 50.

EA and GA were tested under different configurations varying the gap be-
tween the worst score of any instance in the top-k instances and the basic score,
and the number of elements stored in the Buffer, i.e. the size of the Buffer. For
the gap we tested the values 100% and 200%. A value of 100% means that the
gap is at least equal to the maximum value that can be added in any update,
i.e. 50. Similarly a value of 200% means that the gap is at least two times the
maximum value that can be added in any update, i.e. 100. The Buffer size in
each ranking was set to 100, 500, 1000, 5000 and 10000 elements.

We created two groups of updates. In the first group, each update affects
(i.e. increases the score) a random entity. In the second group, the updates
follow the 80-20 rule. According to this rule, 80% of the updates affect 20% of
the instances. The goal of using two different sets of updates is to get an initial
understanding of the kind of workloads our methods are more effective.

6.3.1 Updates following the 80-20 rule

In the plot of Figure 6.3, it is shown the change in the number of executed queries
as the size of the Buffer and the gap change. As expected, the number of the
Buffer Reset Queries (left plot) decreases with the increase of the Buffer size. GA
executes fewer Buffer Reset Queries compared to EA, proving that forwarding
the results to the rankings lying in lower levels in the lattice decreases indeed
the number of queries. The difference is more prominent for the smaller Buffer
size. For gap 200%, the number of Buffer Reset Queries increases for both EA
and GA. Having a bigger gap results in fewer estimated scores qualifying for
the top-k instances, thus more instances with estimated scores are added to the
Buffer and the Buffer becomes full more often. In the right plot of Figure 6.3,
the number of executed Verification Queries is shown. This plot verifies that
the estimated scores of the instances qualify for the top-k results more often
when the gap is smaller (one can hardly see the bars for gap 200%). As it is the
case for the Buffer Reset Queries, GA executes also fewer Verification Queries
compared to EA.

In the plot of Figure 6.4, it is shown the average time needed to process
each update. For gap 200%, the fact that our rankings have this special relation
does not seem to be important, since both EA and GA have the (almost) same
performance. For gap set to 100%, GA is faster for small Buffer size but gets
slower as the Buffer size increases. This happens because an increase on the
Buffer size results in a decrease in the number of Buffer Reset Queries which
means that GA cannot benefit much from re-using the results of these queries
to remove instances from the Buffers of other rankings. Additionally, the Veri-
fication Queries take so little time to execute that the effort made to exchange
the results between the rankings and compute the scores processing the received
tuples overtakes the benefit of avoiding the execution of Verification Queries.
However, in a setting where the execution of Verification Queries is very slow,
the GA algorithm is expected to achieve better performance.

For the Naive Approach, 239985 Verification Queries are executed and the

6.3. EXPERIMENTAL EVALUATION 109

 0

 500

 1000

 1500

 2000

 2500

100 500 1000 500010000

Q
u

e
ri
e

s

Buffer size

Buffer Reset Queries
TopK = 10 - Updates = 30000

EA - Gap=100%
GA - Gap=100%
EA - Gap=200%
GA - Gap=200%

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

100 500 1000 5000 10000

Buffer size

Verification Queries
TopK = 10 - Updates = 30000

EA - Gap=100%
GA - Gap=100%
EA - Gap=200%
GA - Gap=200%

Figure 6.3: Buffer Reset and Verification Queries Queries (80-20 Updates)

 0

 50

 100

 150

 200

 250

 300

100 500 1000 5000 10000

T
im

e
 (

m
s
e
c
s
)

Buffer size

Time
TopK = 10 - Updates = 30000

EA - 100%
GA - 100%
EA - 200%
GA - 200%

Figure 6.4: Runtime per update (80-20 Updates)

average time needed to process each update is more than 4 secs. These results
are not included in the plots because they shadow the differences between the
Estimates and Groups algorithms.

6.3.2 Random Updates

In the plots of Figure 6.5, it is shown the number of queries executed when the
updates are random. Compared to the number of Verification Queries observed
in the 80-20 updates, in this case there are less Verification Queries executed.
Random updates are less likely to affect the same instance multiple times before

110
CHAPTER 6. EVENTS IDENTIFICATION IN RELATIONAL

DATABASES

the Buffer is reset. Thus, it is less likely an estimated score to grow enough to
need the execution of a Verification Query.

 0

 500

 1000

 1500

 2000

 2500

100 500 1000 500010000

Q
u

e
ri
e

s

Buffer size

Buffer Reset Queries
TopK = 10 - Updates = 30000

EA - Gap=100%
GA - Gap=100%
EA - Gap=200%
GA - Gap=200%

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

100 500 1000 5000 10000

Buffer size

Verification Queries
TopK = 10 - Updates = 30000

EA - Gap=100%
GA - Gap=100%
EA - Gap=200%
GA - Gap=200%

Figure 6.5: Buffer Reset and Verification Queries (Random Updates)

 0

 50

 100

 150

 200

 250

 300

100 500 1000 5000 10000

T
im

e
 (

m
s
e
c
s
)

Buffer size

Time
TopK = 10 - Updates = 30000

EA - 100%
GA - 100%
EA - 200%
GA - 200%

Figure 6.6: Runtime per update (Random Updates)

In the plot of Figure 6.6, it is shown the average time needed to process each
update. What is interesting to observe is that the time needed to process each
update when the updates are random either decreases constantly as the Buffer
size increases or has a slight increase for very big Buffer sizes. On the contrary,
in the 80-20 case, for bigger sizes of Buffer there is an acute increase in the
runtime. As before, the reason is that random updates have lower probability
to affect the same instance twice before the Buffer is reset. Hence, keeping

6.3. EXPERIMENTAL EVALUATION 111

an instance in memory longer (bigger sizes of the Buffer) does not cause its
estimated score to become big enough to qualify for the top-k results and to
cause a Verification Query. So, as long as the number of instances in the Buffer
does not cause the Buffer Reset Query to become very slow, increasing its size
can only be beneficial, with respect to time. On the other hand, in the 80-
20 updates, keeping instances longer in memory results in many Verification
Queries which deteriorate the runtime.

For the Naive Approach, 239977 Verification Queries are executed and the
average time needed to process each update is more than 4 secs. Again, these
results are not included in the plots so that the differences between Estimates
and Groups algorithms can be shown clearer.

6.3.3 Additional Instances

The benefit achieved in runtime is not for free. Both EA and GA should store
additional instances in order to maintain the top-k results. The number of these
instances depends on the selection of the gap and the size of the Buffer. The plot
in Figure 6.7 shows the number of additional instances for the various sizes of
the Buffer when the gap is set to 100% and 200%. From the plot, it is obvious
that setting the gap to 200% has much more space overhead. Especially in
the very specific rankings (those binding all three secondary attributes to some
instance), doubling the gap may result in having even five times more instances.
This happens because as more instances are considered, the score differences
between the instances are becoming smaller. The line labeled ALL shows the
maximum number of instances (grouped using the filtering attributes) existing
in the database. We use it as a baseline to give a notion of the extra storage
cost.

 100000

 1e+06

 1e+07

100 500 1000 5000 10000

In
s
ta

n
c
e
s
 (

lo
g
)

Buffer size

Additional Instances
TopK = 10 - Updates = 30000

ALL
Gap=100%
Gap=200%

Figure 6.7: Extra instances stored (log scale)

112
CHAPTER 6. EVENTS IDENTIFICATION IN RELATIONAL

DATABASES

6.4 Summary

In this chapter, we addressed the problem of maintaining top-k rankings in
the presence of rapid updates arriving in an underlying database. Such a setup
calls for methods that provide accurate (exact) top-k rankings while limiting the
communication with the database itself. We presented two algorithms to solve
that maintenance problem. The algorithms are centred around computing score
estimates for previously unseen instances and leveraging containment relations
for results recycling. Our experimental evaluation proves the usefulness of our
approach showing a great reduction in the number of queries executed in the
context of the top-k results maintenance. Apart from the benefits in the runtime,
a reduction in the number of Verification Queries and Buffer Reset Queries
allows the system to use its resources for other purposes, e.g. the execution of
ad-hoc queries.

Chapter 7

Conclusions and Future
Work

In this thesis, we examined the problem of event identification in big and dy-
namic data. Our main focus was on data over Web 2.0 sources like Twitter. An
interesting characteristic of the data obtained in such scenarios is that each post
is usually accompanied by a set of tags that indicate the topic of it. We defined
a correlation measure over these tagsets that reflects how strongly correlated
the tags are. We proposed an approach that uses correlation values measured
during a small number of past time points to predict the correlation value of the
current time point. We defined a topic to be emergent if its measured correla-
tion value is greater than its predicted correlation value. To the emergent topics
identified during the current time point we considered in addition emerging top-
ics identified in the past. These topics were also presented to the users with an
interestingness score dampened by some factor depending on the distance of the
time point the topics were identified to the current time point. We conducted
a user study that proved the ability of our approach to identify interesting and
novel topics with quality three times higher to that of the topics provided by
a state of the art approach. In some cases, the topics were identified before
any traditional news portal had reported them. Additionally, we proposed an
efficient implementation over a distributed stream processor. We proposed a
number of algorithms, inspired by graph theory and the budgeted maximum
coverage problem, that allow partitioning the tags to a number of machines
based on their co-occurrences. The machines compute the correlations of tags
in parallel based on the sets of tags they have been assigned. We theoretically
examined several aspects of the data that can affect the performance of the
partitioning algorithms.

A possible extension to our approach would provide personalised results to
the users. For example, a user could create a profile and register to specific
tags or broad categories. Only events related to the user preferences would be
presented to him. Another possible extension could be to enrich the proposed
topology with more functionality that would eliminate the problem caused by
the repartitions when tagsets are assigned to different machines before and af-
ter the partitioning. Furthermore, a more close study of the alternative topol-
ogy could be performed in order to obtain conclusive evidence on whether this

113

114 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

topology is indeed suitable, and possibly better, for a dataset with the dynamic
characteristics of Twitter. Finally, datasets with different dynamics to those
found in Twitter could be used to test the usefulness of the proposed topology
to a broader set of applications.

In addition to Web 2.0 data, we studied data stored in database systems. We
considered data summarised using top-k rankings and defined an event to be any
change in the elements within the ranking. To identify such events, we kept the
top-k rankings up-to-date in the presence of continuous insertions that affected
the underlying database. We presented two algorithms that maintain the top-
k rankings combining techniques from the multi-query optimisation and view
maintenance areas. The main objective of them is to minimise the interaction
with the underlying database. The experimental results provided useful insights
on the impact of the various parameters in the effectiveness of the methods.
Trading the performance of the algorithms and the quality of the results could
be an extension of the methods we proposed. More precisely, one could model
the score distribution in the tail of rankings and use it to compute more realistic
estimations for the scores of the unseen results, at the risk of introducing errors
to the top-k rankings.

List of Figures

2.1 Tuple-based Sliding Window . 8

2.2 Time-based Sliding Window . 8

2.3 An example topology . 10

2.4 Parallelism in Storm . 12

2.5 Inverted index example . 13

2.6 Lorenz curve example . 18

2.7 Gini coefficient example . 19

2.8 TA algorithm example . 21

2.9 NRA algorithm example . 23

2.10 Data Cube . 25

2.11 Star schema . 25

2.12 Snowflake schema . 26

4.1 Tags over time . 38

4.2 Interesting shift in correlation of two tags. 44

4.3 Workflow Illustration . 46

4.4 Number of new pairs for varying number of total tags 55

4.5 Number of new pairs for varying number of total documents . . . 56

4.6 Runtimes for varying number of total tags 56

4.7 Runtimes for varying number of total documents 57

4.8 Average Runtime per past values used for the prediction of the
correlation and popularity values 58

4.9 Average Runtime and Relative Average Accuracy varying the
percentage of seeds . 58

4.10 User Study: Sample Tweets . 60

4.11 Precision@k values . 61

5.1 Example of a tagsets lattice . 66

5.2 Partitioning according to dependencies 67

5.3 Partitioning according to load . 67

5.4 Information flow . 70

5.5 Tagsets graph example . 71

115

116 LIST OF FIGURES

5.6 Tagsets size distribution (log-log scale) 76

5.7 Expected communication . 79

5.8 Topology . 80

5.9 Communication . 86

5.10 Processing Load . 87

5.11 Error for tagsets seen more than 3 times 89

5.12 Number of Repartitions . 90

5.13 Communication over Time . 91

5.14 Processing Load over Time . 91

5.15 Tagsets connectivity and load . 92

5.16 Topology . 93

6.1 In-Memory structures: the actual top-(k+N) ranking (left) and
the estimates for the previously unseen entities (right). 103

6.2 Subgroups lattice organising the top-k aggregate queries using the
same primary attribute, and the attributes country and brand in
the filtering condition . 105

6.3 Buffer Reset and Verification Queries Queries (80-20 Updates) . 109

6.4 Runtime per update (80-20 Updates) 109

6.5 Buffer Reset and Verification Queries (Random Updates) 110

6.6 Runtime per update (Random Updates) 111

6.7 Extra instances stored (log scale) 111

List of Algorithms

1 Identify Seed Tags . 41

2 Score a Tagset si . 45

3 Find New Topics . 48

4 Update topics information . 49

5 Find Bursty Tags in TwitterMonitor 51

6 Group Bursty Tags in TwitterMonitor 52

7 Disjoint Sets Algorithm . 72

8 Set-Cover Based Algorithm . 74

9 Set-Cover Based Algorithm - Focusing on Network Communication 74

10 Set-Cover Based Algorithm - Focusing on Load 75

11 Set-Cover Based Algorithm - Initial 75

12 Estimates Algorithm (EA) . 104

13 Groups Algorithm (GA) . 107

117

List of Tables

2.1 Income example . 18

4.1 Notations used in the chapter . 39

4.2 Average Runtime and Relative Average Accuracy varying the
percentage of seeds . 59

4.3 Precision@k results and NDCG@k results achieved in the user
study by the competing algorithms. 62

4.4 Sample of the events detected by enBlogue and marked as rele-
vant by at least one of the user study participants 63

5.1 Notations used in the chapter . 68

118

Bibliography

[ACD+08] Eugene Agichtein, Carlos Castillo, Debora Donato, Aristides Gio-
nis, and Gilad Mishne. Finding high-quality content in social me-
dia. In Proceedings of the 2008 International Conference on Web
Search and Data Mining, WSDM ’08, pages 183–194, Palo Alto,
California, USA, 2008. ACM.

[AHWY03] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S.
Yu. A framework for clustering evolving data streams. In Pro-
ceedings of the 29th International Conference on Very Large Data
Bases - Volume 29, VLDB ’03, pages 81–92, Berlin, Germany,
2003. VLDB Endowment.

[AM13a] Foteini Alvanaki and Sebastian Michel. Scalable, continuous
tracking of tag co-occurrences between short sets using (almost)
disjoint tag partitions. In Proceedings of the ACM SIGMOD
Workshop on Databases and Social Networks, DBSocial ’13, pages
49–54, New York, New York, USA, 2013. ACM.

[AM13b] Foteini Alvanaki and Sebastian Michel. A thin monitoring layer
for top-k aggregation queries over a database. In Proceedings
of the 7th International Workshop on Ranking in Databases,
DBRank ’13, pages 31–36, Riva del Garda, Italy, 2013. ACM.

[AM14] Foteini Alvanaki and Sebastian Michel. Tracking set correlations
at large scale. In Proceedings of the 40th ACM International Con-
ference on Management of Data, SIGMOD ’14, pages 1507–1518,
Snowbird, UT, USA, 2014. ACM.

[AMRW12] Foteini Alvanaki, Sebastian Michel, Krithi Ramamritham, and
Gerhard Weikum. See what’s enblogue: Real-time emergent topic
identification in social media. In Proceedings of the 15th Interna-
tional Conference on Extending Database Technology, EDBT ’12,
pages 336–347, Berlin, Germany, 2012. ACM.

[APL98] James Allan, Ron Papka, and Victor Lavrenko. On-line new event
detection and tracking. In Proceedings of the 21st Annual Inter-
national ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’98, pages 37–45, Melbourne,
Australia, 1998. ACM.

119

120 BIBLIOGRAPHY

[ASRW11] Foteini Alvanaki, Michel Sebastian, Krithi Ramamritham, and
Gerhard Weikum. Enblogue: Emergent topic detection in web
2.0 streams. In Proceedings of the 2011 ACM International Con-
ference on Management of Data, SIGMOD ’11, pages 1271–1274,
Athens, Greece, 2011. ACM.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Mot-
wani, and Jennifer Widom. Models and issues in data stream
systems. In Proceedings of the Twenty-first ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS ’02, pages 1–16, Madison, Wisconsin, 2002. ACM.

[BHKL06] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xi-
angyang Lan. Group formation in large social networks: Mem-
bership, growth, and evolution. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’06, pages 44–54, Philadelphia, PA, USA,
2006. ACM.

[BJS09] K. Burton, A. Java, and I. Soboroff. The ICWSM 2009 Spinn3r
dataset. In Proceedings of the Third Annual Conference on We-
blogs and Social Media, ICWSM ’09, San Jose, California, USA,
2009.

[BK07] Nilesh Bansal and Nick Koudas. Blogscope: A system for online
analysis of high volume text streams. In Proceedings of the 33rd
International Conference on Very Large Data Bases, VLDB ’07,
pages 1410–1413, Vienna, Austria, 2007. VLDB Endowment.

[BL08] G. Betti and A. Lemmi. Advances on Income Inequality and Con-
centration Measures. Routledge Frontiers of Political Economy.
Taylor & Francis, 2008.

[BLT86] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. Ef-
ficiently updating materialized views. In Proceedings of the
1986 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’86, pages 61–71, Washington, D.C., USA,
1986. ACM.

[BM91] Robert S. Boyer and J. Strother Moore. Mjrty: A fast majority
vote algorithm. In Automated Reasoning: Essays in Honor of
Woody Bledsoe, volume 1 of Automated Reasoning Series, pages
105–117. Springer Netherlands, 1991.

[BN09] A. Boggess and F.J. Narcowich. A First Course in Wavelets with
Fourier Analysis. Wiley, 2009.

[BNG09] Hila Becker, Mor Naaman, and Luis Gravano. Event identification
in social media. In 12th ACM SIGMOD Workshop on the Web
and Databases, WebDB 09, Providence, Rhode Island, USA, 2009.

[Bri88] E. Oran Brigham. The Fast Fourier Transform and Its Applica-
tions. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

BIBLIOGRAPHY 121

[Bro63] Robert Goodell Brown. Smoothing, forecasting and prediction of
discrete time series. Prentice-Hall quantitative methods series.
Prentice-Hall, Englewood Cliffs, NJ, USA, 1963.

[CG99] Surajit Chaudhuri and Luis Gravano. Evaluating top-k selection
queries. In Proceedings of the 25th International Conference on
Very Large Data Bases, VLDB ’99, pages 397–410, Edinburgh,
Scotland, UK, 1999. Morgan Kaufmann Publishers Inc.

[CGM04] Surajit Chaudhuri, Luis Gravano, and Amelie Marian. Optimizing
top-k selection queries over multimedia repositories. IEEE Trans-
actions on Knowledge and Data Engineering, 16(8):992–1009, Au-
gust 2004.

[CH08] Graham Cormode and Marios Hadjieleftheriou. Finding frequent
items in data streams. Proceedings of the Very Large Data Bases
Endowment, 1(2):1530–1541, August 2008.

[Che52] H. Chernoff. A measure of asymptotic efficiency for tests of a
hypothesis based on the sums of observations. Annals of Mathe-
matical Statistics, 23:409–507, 1952.

[CJSS03] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and
Vladislav Shkapenyuk. Gigascope: A stream database for net-
work applications. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’03,
pages 647–651, San Diego, California, 2003. ACM.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. The MIT Press, 3rd
edition, 2009.

[CMN99] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. On
random sampling over joins. In Proceedings of the 1999 ACM
SIGMOD International Conference on Management of Data, SIG-
MOD ’99, pages 263–274, Philadelphia, Pennsylvania, USA, 1999.
ACM.

[CSA05] Nauman A. Chaudhry, Kevin Shaw, and Mahdi Abdelguerfi,
editors. Stream Data Management, volume 30 of Advances in
Database Systems. Springer, 2005.

[Dek86] J. C. E. Dekker. The inclusion-exclusion principle for finitely
many isolated sets. The Journal of Symbolic Logic, 51:435–447,
June 1986.

[DH00] Pedro Domingos and Geoff Hulten. Mining high-speed data
streams. In Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’00,
pages 71–80, Boston, Massachusetts, USA, 2000. ACM.

[DSJY11] Anish Das Sarma, Alpa Jain, and Cong Yu. Dynamic relationship
and event discovery. In Proceedings of the Fourth ACM Interna-
tional Conference on Web Search and Data Mining, WSDM ’11,
pages 207–216, Hong Kong, China, 2011. ACM.

122 BIBLIOGRAPHY

[EK13] Milad Eftekhar and Nick Koudas. Partitioning and ranking
tagged data sources. Proceedings of the Very Large Data Bases
Endowment, 6(4):229–240, February 2013.

[ER60] Paul Erdős and Alfréd Rényi. On the evolution of random graphs.
In Publication of the Mathematical Institute of the Hungarian
Academy of Sciences, pages 17–61, 1960.

[FLN01] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggre-
gation algorithms for middleware. In Proceedings of the Twenti-
eth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’01, pages 102–113, Santa Barbara,
California, USA, 2001. ACM.

[FM83] Philippe Flajolet and G. Nigel Martin. Probabilistic counting.
In 24th Annual Symposium on Foundations of Computer Science,
FOCS ’83, pages 76–82, Tucson, Arizona, USA, 1983. IEEE Com-
puter Society.

[GBK00] Ulrich Güntzer, Wolf-Tilo Balke, and Werner Kießling. Opti-
mizing multi-feature queries for image databases. In Proceedings
of the 26th International Conference on Very Large Data Bases,
VLDB ’00, pages 419–428, Cairo, Egypt, 2000. Morgan Kaufmann
Publishers Inc.

[GDH04] Evgeniy Gabrilovich, Susan Dumais, and Eric Horvitz.
Newsjunkie: Providing personalized newsfeeds via analysis of in-
formation novelty. In Proceedings of the 13th International Con-
ference on World Wide Web, WWW ’04, pages 482–490, New
York, NY, USA, 2004. ACM.

[GJM96] Ashish Gupta, H. V. Jagadish, and Inderpal Singh Mumick. Data
integration using self-maintainable views. In Proceedings of the
5th International Conference on Extending Database Technology:
Advances in Database Technology, EDBT ’96, pages 140–144, Avi-
gnon, France, 1996. Springer-Verlag.

[GKL08] Vicenç Gómez, Andreas Kaltenbrunner, and Vicente López. Sta-
tistical analysis of the social network and discussion threads in
slashdot. In Proceedings of the 17th International Conference on
World Wide Web, WWW ’08, pages 645–654, Beijing, China,
2008. ACM.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial
searching. In Proceedings of the 9th ACM International Confer-
ence on Management of Data, SIGMOD ’84, pages 47–57, Boston,
Massachusetts, USA, 1984. ACM Press.

[GZK10] Mohamed Medhat Gaber, Arkady B. Zaslavsky, and Shonali Kr-
ishnaswamy. Data stream mining. In Oded Maimon and Lior
Rokach, editors, Data Mining and Knowledge Discovery Hand-
book, pages 759–787. Springer, 2010.

BIBLIOGRAPHY 123

[HKG+06] Maria Halkidi, Vana Kalogeraki, Dimitrios Gunopulos, Dimitris
Papadopoulos, Demetrios Zeinalipour-Yazti, and Michail Vla-
chos. Efficient online state tracking using sensor networks. 2013
IEEE 14th International Conference on Mobile Data Management
(MDM), 0:24, 2006.

[HM03] Sven Helmer and Guido Moerkotte. A performance study of
four index structures for set-valued attributes of low cardinality.
The International Journal on Very Large Data Bases (VLDB),
12(3):244–261, October 2003.

[HMA10] Parisa Haghani, Sebastian Michel, and Karl Aberer. The gist
of everything new: Personalized top-k processing over web 2.0
streams. In Proceedings of the 19th ACM International Con-
ference on Information and Knowledge Management, CIKM ’10,
pages 489–498, Toronto, ON, Canada, 2010. ACM.

[IAE04] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Sup-
porting top-k join queries in relational databases. The Interna-
tional Journal on Very Large Data Bases (VLDB), 13(3):207–221,
September 2004.

[IBS08] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A sur-
vey of top-k query processing techniques in relational database
systems. ACM Computing Surveys, 40(4):11:1–11:58, October
2008.

[IP99] Yannis E. Ioannidis and Viswanath Poosala. Histogram-based
approximation of set-valued query-answers. In Proceedings of the
25th International Conference on Very Large Data Bases, VLDB
’99, pages 174–185, Edinburgh, Scotland, 1999. Morgan Kauf-
mann Publishers Inc.

[IPF+07] Marios Iliofotou, Prashanth Pappu, Michalis Faloutsos, Michael
Mitzenmacher, Sumeet Singh, and George Varghese. Network
monitoring using traffic dispersion graphs (tdgs). In Proceedings
of the 7th ACM SIGCOMM Conference on Internet Measurement,
IMC ’07, pages 315–320, San Diego, California, USA, 2007. ACM.

[Jac12] Paul Jaccard. The distribution of the flora in the alpine zone.
New Phytologist, 11(2):37–50, February 1912.

[JK02] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Transactions on Information
Systems (TOIS), 20(4):422–446, October 2002.

[KMBS11] Shiva Prasad Kasiviswanathan, Prem Melville, Arindam Baner-
jee, and Vikas Sindhwani. Emerging topic detection using dic-
tionary learning. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management, CIKM
’11, pages 745–754, Glasgow, Scotland, UK, 2011. ACM.

124 BIBLIOGRAPHY

[KMN99] Samir Khuller, Anna Moss, and Joseph (Seffi) Naor. The bud-
geted maximum coverage problem. Information Processing Let-
ters, 70(1):39–45, April 1999.

[KS09] Jürgen Krämer and Bernhard Seeger. Semantics and implementa-
tion of continuous sliding window queries over data streams. ACM
Transactions on Database Systems (TODS), 34(1):4:1–4:49, April
2009.

[KSP03] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou.
A simple algorithm for finding frequent elements in streams and
bags. ACM Transactions on Database Systems (TODS), 28(1):51–
55, March 2003.

[LCCCI06] Chengkai Li, Kevin Chen-Chuan Chang, and Ihab F. Ilyas.
Supporting ad-hoc ranking aggregates. In Proceedings of the
2006 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’06, pages 61–72, Chicago, IL, USA, 2006.
ACM.

[LRB09] Marie-Jeanne Lesot, Maria Rifqi, and H. Benhadda. Similarity
measures for binary and numerical data: a survey. International
Journal of Knowledge Engineering and Soft Data Paradigms,
1(1):63–84, December 2009.

[MAEA05] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Effi-
cient computation of frequent and top-k elements in data streams.
In Proceedings of the 10th International Conference on Database
Theory, ICDT’05, pages 398–412, Edinburgh, UK, 2005. Springer-
Verlag.

[MBP06] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias.
Continuous monitoring of top-k queries over sliding windows. In
Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’06, pages 635–646, Chicago,
IL, USA, 2006. ACM.

[MFHH02] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and
Wei Hong. TAG: A tiny aggregation service for ad-hoc sensor
networks. ACM SIGOPS Operating Systems Review, 36(SI):131–
146, December 2002.

[MK10] Michael Mathioudakis and Nick Koudas. TwitterMonitor: Trend
detection over the twitter stream. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, SIG-
MOD ’10, pages 1155–1158, Indianapolis, Indiana, USA, 2010.
ACM.

[MM02] Gurmeet Singh Manku and Rajeev Motwani. Approximate fre-
quency counts over data streams. In Proceedings of the 28th Inter-
national Conference on Very Large Data Bases, VLDB ’02, pages
346–357, Hong Kong, China, 2002. VLDB Endowment.

BIBLIOGRAPHY 125

[MP03] Junshui Ma and Simon Perkins. Online novelty detection on tem-
poral sequences. In Proceedings of the Ninth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,
KDD ’03, pages 613–618, Washington, D.C., 2003. ACM.

[MRS09] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schtze. Introduction to Information Retrieval. Cambridge Uni-
versity Press, 2009.

[MRSR01] Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi Ramam-
ritham. Materialized view selection and maintenance using multi-
query optimization. In Proceedings of the 2001 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’01,
pages 307–318, Santa Barbara, California, USA, 2001. ACM.

[OMM+02] Liadan O’Callaghan, Adam Meyerson, Rajeev Motwani, Nina
Mishra, and Sudipto Guha. Streaming-data algorithms for high-
quality clustering. In Proceedings of the 18th International Con-
ference on Data Engineering, ICDE ’02, pages 685–694, San Jose,
California, USA, 2002. IEEE Computer Society.

[PP10] Ana-Maria Popescu and Marco Pennacchiotti. Detecting contro-
versial events from twitter. In Proceedings of the 19th ACM Inter-
national Conference on Information and Knowledge Management,
CIKM ’10, pages 1873–1876, Toronto, ON, Canada, 2010. ACM.

[PPKG03] Themistoklis Palpanas, Dimitris Papadopoulos, Vana Kalogeraki,
and Dimitrios Gunopulos. Distributed deviation detection in sen-
sor networks. SIGMOD Record, 32(4):77–82, December 2003.

[PPP11] Ana-Maria Popescu, Marco Pennacchiotti, and Deepa Paranjpe.
Extracting events and event descriptions from twitter. In Proceed-
ings of the 20th International Conference Companion on World
Wide Web, WWW ’11, pages 105–106, Hyderabad, India, 2011.
ACM.

[PSCP02] Themistoklis Palpanas, Richard Sidle, Roberta Cochrane, and
Hamid Pirahesh. Incremental maintenance for non-distributive
aggregate functions. In Proceedings of the 28th International Con-
ference on Very Large Data Bases, VLDB ’02, pages 802–813,
Hong Kong, China, 2002. VLDB Endowment.

[Raf99] Davood Rafiei. On similarity-based queries for time series data. In
Proceedings of the 18th International Conference on Data Engi-
neering, ICDE ’99, pages 410–417. IEEE Computer Society, 1999.

[RJN12] João B. Rocha-Junior and Kjetil Nørv̊ag. Top-k spatial keyword
queries on road networks. In Proceedings of the 15th International
Conference on Extending Database Technology, EDBT ’12, pages
168–179, Berlin, Germany, 2012. ACM.

[RJVDN10] João B. Rocha-Junior, Akrivi Vlachou, Christos Doulkeridis, and
Kjetil Nørv̊ag. Efficient processing of top-k spatial preference

126 BIBLIOGRAPHY

queries. Proceedings of the Very Large Data Bases Endowment,
4(2):93–104, November 2010.

[RMEC12] Alan Ritter, Mausam, Oren Etzioni, and Sam Clark. Open do-
main event extraction from twitter. In Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’12, pages 1104–1112, Beijing, China,
2012. ACM.

[SFD+10] Bharath Sriram, Dave Fuhry, Engin Demir, Hakan Ferhatosman-
oglu, and Murat Demirbas. Short text classification in twitter to
improve information filtering. In Proceedings of the 33rd Inter-
national ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’10, pages 841–842, Geneva,
Switzerland, 2010. ACM.

[SHM09] Hassan Sayyadi, Matthew Hurst, and Alexey Maykov. Event de-
tection and tracking in social streams. In Proceedings of the Inter-
national Conference on Weblogs and Social Media, ICWSM ’09,
2009.

[SKM99] Sunil Samtani, Vijay Kumar, and Mukesh K. Mohania. Self main-
tenance of multiple views in data warehousing. In Proceedings
of the 19th ACM International Conference on Information and
Knowledge Management, CIKM ’99, pages 292–299, Kansas City,
Missouri, USA, 1999. ACM.

[SS12] Ankan Saha and Vikas Sindhwani. Learning evolving and emerg-
ing topics in social media: A dynamic nmf approach with tempo-
ral regularization. In Proceedings of the Fifth ACM International
Conference on Web Search and Data Mining, WSDM ’12, pages
693–702, Seattle, Washington, USA, 2012. ACM.

[TCY03] Wei-Guang Teng, Ming-Syan Chen, and Philip S. Yu. A
regression-based temporal pattern mining scheme for data
streams. In Proceedings of the 29th International Conference on
Very Large Data Bases, volume 29 of VLDB ’03, pages 93–104,
Berlin, Germany, 2003. VLDB Endowment.

[TcZ+03] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack,
and Michael Stonebraker. Load shedding in a data stream man-
ager. In Proceedings of the 29th International Conference on Very
Large Data Bases, volume 29 of VLDB ’03, pages 309–320, Berlin,
Germany, 2003. VLDB Endowment.

[TTY11] Toshimitsu Takahashi, Ryota Tomioka, and Kenji Yamanishi. Dis-
covering emerging topics in social streams via link anomaly de-
tection. In Proceedings of the 2011 IEEE 11th International Con-
ference on Data Mining, ICDM ’11, pages 1230–1235, Vancouver,
British Columbia, Canada, 2011. IEEE Computer Society.

BIBLIOGRAPHY 127

[Tur01] Peter D. Turney. Mining the web for synonyms: PMI-IR versus
LSA on TOEFL. In Proceedings of the 12th European Confer-
ence on Machine Learning, EMCL ’01, pages 491–502, Freiburg,
Germany, 2001. Springer-Verlag.

[UYTI11] Yasuhiro Urabe, Kenji Yamanishi, Ryota Tomioka, and Hiroki
Iwai. Real-time change-point detection using sequentially dis-
counting normalized maximum likelihood coding. In Proceedings
of the 15th Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining - Volume Part II, PAKDD’11, pages
185–197, Shenzhen, China, 2011. Springer-Verlag.

[Was10] Larry Wasserman. All of Statistics: A Concise Course in Sta-
tistical Inference. Springer Publishing Company, Incorporated,
2010.

[WFYH03] Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining
concept-drifting data streams using ensemble classifiers. In Pro-
ceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’03, pages 226–235,
Washington, D.C., USA, 2003. ACM.

[WH07] F. Wu and B. A. Huberman. Novelty and collective atten-
tion. Proceedings of the National Academy of Sciences USA,
104(45):17599–17601, 2007.

[WMS12] Andreas Weiler, Svetlana Mansmann, and Marc H. Scholl. To-
wards an advanced system for real-time event detection in high-
volume data streams. In Proceedings of the 5th Ph.D. Workshop
on Information and Knowledge, PIKM ’12, pages 87–90, Maui,
Hawaii, USA, 2012. ACM.

[WOOO11] Kazufumi Watanabe, Masanao Ochi, Makoto Okabe, and Rikio
Onai. Jasmine: A real-time local-event detection system based on
geolocation information propagated to microblogs. In Proceedings
of the 20th ACM International Conference on Information and
Knowledge Management, CIKM ’11, pages 2541–2544, Glasgow,
Scotland, UK, 2011. ACM.

[YCLZ04] Jeffery Xu Yu, Zhihong Chong, Hongjun Lu, and Aoying Zhou.
False positive or false negative: Mining frequent itemsets from
high speed transactional data streams. In Proceedings of the Thir-
tieth International Conference on Very Large Data Bases - Vol-
ume 30, VLDB ’04, pages 204–215, Toronto, ON, Canada, 2004.
VLDB Endowment.

[YMH08] Man Lung Yiu, Nikos Mamoulis, and Vagelis Hristidis. Extracting
k most important groups from data efficiently. Data and Knowl-
edge Engineering, 66(2):289–310, August 2008.

[YSJ+00] Byoung-Kee Yi, Nikolaos Sidiropoulos, Theodore Johnson, H. V.
Jagadish, Christos Faloutsos, and Alexandros Biliris. Online data
mining for co-evolving time sequences. In Proceedings of the 16th

128 BIBLIOGRAPHY

International Conference on Data Engineering, ICDE ’00, pages
13–22, San Diego, California, USA, 2000. IEEE Computer Society.

[YYY+03] Ke Yi, Hai Yu, Jun Yang, Gangqiang Xia, and Yuguo Chen. Ef-
ficient maintenance of materialized top-k views. In Proceedings
of the 19th International Conference on Data Engineering, ICDE
’00, pages 189–200, Bangalore, India, 2003. IEEE Computer So-
ciety.

[ZGMHW95] Yue Zhuge, Héctor Garćıa-Molina, Joachim Hammer, and Jen-
nifer Widom. View maintenance in a warehousing environment. In
Proceedings of the 1995 ACM International Conference on Man-
agement of Data, SIGMOD ’95, pages 316–327, San Jose, Cali-
fornia, USA, 1995. ACM.

[ZHC+06] Zhen Zhang, Seung-won Hwang, Kevin Chen-Chuan Chang, Min
Wang, Christian A. Lang, and Yuan-chi Chang. Boolean + rank-
ing: Querying a database by k-constrained optimization. In Pro-
ceedings of the 32nd ACM International Conference on Manage-
ment of Data, SIGMOD ’06, pages 359–370, Chicago, IL, USA,
2006. ACM.

[ZKOS05] Rui Zhang, Nick Koudas, Beng Chin Ooi, and Divesh Srivastava.
Multiple aggregations over data streams. In Proceedings of the
2005 ACM International Conference on Management of Data,
SIGMOD ’05, pages 299–310, Baltimore, Maryland, USA, 2005.
ACM.

[ZM06] Justin Zobel and Alistair Moffat. Inverted files for text search
engines. ACM Computing Surveys, 38(2), July 2006.

[ZMC07] Qiankun Zhao, Prasenjit Mitra, and Bi Chen. Temporal and in-
formation flow based event detection from social text streams. In
Proceedings of the 22Nd National Conference on Artificial Intelli-
gence - Volume 2, AAAI ’07, pages 1501–1506, Vancouver, British
Columbia, Canada, 2007. AAAI Press.

[ZS02] Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitor-
ing of thousands of data streams in real time. In Proceedings of the
28th International Conference on Very Large Data Bases, VLDB
’02, pages 358–369, Hong Kong, China, 2002. VLDB Endowment.

