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Abstract

The growing demands of users and industry have led to an increase in both
size and complexity of deployed software in recent years. This tendency mainly
stems from a growing number of interconnected mobile devices and from the
huge amounts of data that is collected every day by a growing number of sensors
and interfaces.

Such increase in complexity imposes various challenges — not only in terms
of software correctness, but also with respect to security. This thesis addresses
three complementary approaches to cope with the challenges: (i) appropriate
high-level abstractions and verifiable translation methods to executable applica-
tions in order to guarantee flawless implementations, (ii) strong cryptographic
mechanisms in order to realize the desired security goals, and (iii) convenient
methods in order to incentivize the correct usage of existing techniques and tools.

In more detail, the thesis presents two frameworks for the declarative speci-
fication of functionality and security, together with advanced compilers for the
verifiable translation to executable applications. Moreover, the thesis presents
two cryptographic primitives for the enforcement of cloud-based security prop-
erties: homomorphic message authentication codes ensure the correctness of
evaluating functions over data outsourced to unreliable cloud servers; and ef-
ficiently verifiable non-interactive zero-knowledge proofs convince verifiers of
computation results without the verifiers having access to the computation input.
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Zusammenfassung

Die wachsenden Anforderungen von Seiten der Industrie und der Endbenutzer
verlangen nach immer komplexeren Softwaresystemen — größtenteils begründet
durch die stetig wachsende Zahl mobiler Geräte und die damit wachsende Zahl
an Sensoren und erfassten Daten.

Mit wachsender Software-Komplexität steigen auch die Herausforderungen
an Korrektheit und Sicherheit. Die vorliegende Arbeit widmet sich diesen Her-
ausforderungen in Form dreier komplementärer Ansätze: (i) geeignete Abstrak-
tionen und verifizierbare Übersetzungsmethoden zu ausführbaren Anwendun-
gen, die fehlerfreie Implementierungen garantieren, (ii) starke kryptographische
Mechanismen, um die spezifizierten Sicherheitsanforderungen effizient und kor-
rekt umzusetzen, und (iii) zweckmäßige Methoden, die eine korrekte Benutzung
existierender Werkzeuge und Techniken begünstigen.

Diese Arbeit stellt zwei neuartige Abläufe vor, die verifizierbare Übersetzungen
von deklarativen Spezifikationen funktionaler und sicherheitsrelevanter Ziele zu
ausführbaren Cloud-Anwendungen ermöglichen. Darüber hinaus präsentiert
diese Arbeit zwei kryptographische Primitive für sichere Berechnungen in unzu-
verlässigen Cloud-Umgebungen. Obwohl die Eingabedaten der Berechnungen
zuvor in die Cloud ausgelagert wurden und zur Verifikation der Berechnungen
nicht mehr zur Verfügung stehen, ist es möglich, die Korrektheit der Ergebnisse
in effizienter Weise zu überprüfen.
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dra, Susi with parents, and Uli.

Last, but still closest to me, there are my parents to whom I am very grateful
and filled with appreciation for their continuos support — be it moral, exemplary,
or ‘just’ parental.

ix



x



Contents

I Introduction 1

II G2C — A Declarative Framework for Automated Protocol Design 11
II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
II.2 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . 18
II.3 Compilation to Symbolic Protocols . . . . . . . . . . . . . . . . . . 22

II.3.1 Intermediate Representation as Data Flow Graphs . . . . . 22
II.3.2 From Data Flow Graphs to Protocol Skeletons . . . . . . . 28
II.3.3 Protocol Synthesis for the Applied π-Calculus . . . . . . . 33

II.4 Anonymity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
II.4.1 Anonymity as Symmetric Paths in the Graph . . . . . . . . 37
II.4.2 Advanced Cryptographic Primitives . . . . . . . . . . . . . 39
II.4.3 Validation of Anonymity . . . . . . . . . . . . . . . . . . . 43

II.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
II.6 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

III SAFE — A Declarative Framework for Extensibility in the Web 47
III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
III.2 SAFE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

III.2.1 Application Model . . . . . . . . . . . . . . . . . . . . . . . 55
III.2.2 Data Updates . . . . . . . . . . . . . . . . . . . . . . . . . . 57
III.2.3 Customization via Extensibility . . . . . . . . . . . . . . . . 61
III.2.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

III.3 Conceptual Details of the SAFE Implementation . . . . . . . . . . 69
III.3.1 Updates from the Client . . . . . . . . . . . . . . . . . . . . 71
III.3.2 Concurrent Updates . . . . . . . . . . . . . . . . . . . . . . 72

III.4 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
III.4.1 Background on Customization . . . . . . . . . . . . . . . . 74
III.4.2 Background on Access Control . . . . . . . . . . . . . . . . 77

xi



Contents

III.4.3 Formal App Ecosystem Model . . . . . . . . . . . . . . . . 79
III.4.4 Instantiation for App Ecosystems . . . . . . . . . . . . . . . 84
III.4.5 F-unit Wiring Model . . . . . . . . . . . . . . . . . . . . . . 91
III.4.6 Implementation of the Extensibility Model . . . . . . . . . 95
III.4.7 Examples and Evaluation . . . . . . . . . . . . . . . . . . . 108

III.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
III.5.1 SAFE Implementation . . . . . . . . . . . . . . . . . . . . . 113
III.5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
III.5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 117

III.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

IV Verifiable Delegation of Computation over Outsourced Data 121
IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

IV.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 127
IV.1.2 A High-Level Overview of our Techniques . . . . . . . . . 130

IV.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
IV.3 Homomorphic Message Authenticators with Efficient Verification 135

IV.3.1 Multi-Labeled Programs . . . . . . . . . . . . . . . . . . . . 136
IV.3.2 Homomorphic MACs for Multi-Labeled Programs . . . . 138
IV.3.3 Homomorphic MACs with Efficient Verification . . . . . . 142

IV.4 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
IV.4.1 Homomorphic Evaluation of Arithmetic Circuits . . . . . 145
IV.4.2 Amortized Closed-Form Efficiency . . . . . . . . . . . . . . 149
IV.4.3 Amortized Closed-Form Efficiency for GroupEval . . . . . 150

IV.5 Homomorphic Message Authenticators with Efficient Verification 156
IV.5.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 157
IV.5.2 Proof of Correctness . . . . . . . . . . . . . . . . . . . . . . 159
IV.5.3 Proof of Security . . . . . . . . . . . . . . . . . . . . . . . . 162
IV.5.4 Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . 172

V AD-SNARGs — Zero-Knowledge Proofs over Authenticated Data 175
V.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

V.1.1 Contributions of this Chapter . . . . . . . . . . . . . . . . . 179
V.1.2 Further Related Work . . . . . . . . . . . . . . . . . . . . . 181
V.1.3 An Intuitive Description of our Techniques . . . . . . . . . 183

V.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

xii



Contents

V.3 Zero-Knowledge SNARGs over Authenticated Data . . . . . . . . 185
V.3.1 SNARGs over Authenticated Data . . . . . . . . . . . . . . 186
V.3.2 A Generic Construction of AD-SNARGs . . . . . . . . . . . 191

V.4 Construction: Zero-Knowledge AD-SNARGs . . . . . . . . . . . . 193
V.4.1 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . 200
V.4.2 Proof of Security . . . . . . . . . . . . . . . . . . . . . . . . 204
V.4.3 Proof of the Zero-Knowledge Property . . . . . . . . . . . 214

V.5 Construction: Secretly-Verifiable Zero-Knowledge AD-SNARGs . 216
V.5.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
V.5.2 Proof of Security . . . . . . . . . . . . . . . . . . . . . . . . 221
V.5.3 Proof of the Zero-Knowledge Property . . . . . . . . . . . 228

VI Conclusions and Outlook 229

A G2C 233
A.1 Syntax of G2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
A.2 Selection of the Protocol Skeleton . . . . . . . . . . . . . . . . . . . 235
A.3 Non-Interactive Zero-Knowledge Proofs Against Compromised

Principals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

B SAFE 241
B.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
B.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
B.3 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

B.3.1 Declarative and Secure Specifications . . . . . . . . . . . . 252
B.3.2 Customization . . . . . . . . . . . . . . . . . . . . . . . . . 254

C AD-SNARGs 257
C.1 The Pinocchio VC Scheme . . . . . . . . . . . . . . . . . . . . . . . 257
C.2 The Pinocchio SNARG Scheme . . . . . . . . . . . . . . . . . . . . 259
C.3 Postponed Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Bibliography 267

Index 291

xiii



xiv



Chapter I

Introduction

The complexity of software in general, and for security-critical systems in par-
ticular, is constantly increasing: not only is the functionality offered by soft-
ware vendors increasing rapidly, but also the growing amount of available data
is steadily requesting faster processing and enhanced technologies [JGL+14].
Moreover, the growing number of sensors (GPS, motion sensors, microphones,
health sensors) and I/O interfaces (bluetooth, wireless LAN, cellular networks,
in-car communication), is further increasing the size and complexity of nowadays’
software. This tendency comes with a number of challenges since, clearly, the
more complex the software of a system, the higher the potential for vulnerable
locations in the system. More precisely, with increasing complexity it becomes
easier to palm malicious software off on the system owners and users.

In addition to the increase in size, also the structure of software has changed
over the years: Due to the ever growing customers’ needs in terms of usability
(be it efficiency or pure functionality), software is generally becoming more in-
tertwined and parallelized. Advanced technologies such as GPU computing or
reactive JavaScript with asynchronous background threads gain emerging popu-
larity, which makes it hard to ensure correctness of the software implementations,
or at least to exclude malicious behavior of the implementations.

One of the most notable consequences of increasing and structurally-changing
software projects is the growing amount of users jointly collaborating in software
development. In particular, the paradigm of open source software — initially
evolved as the idea of having many eyes jointly checking the source code’s
correctness — sometimes turns out to fail in practice: unexperienced users or
non security experts may contribute and thereby introduce bugs, be it intentional
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I Introduction

or not. A recent example of a tremendous problem with open source software
is the catastrophic Heartbleed bug [Net14, NYT14a, NYT14c, NYT14b] in the
widely deployed OpenSSL implementation. This bug is considered one of the
most severe failures since the invention of the Internet. Not only has the privacy
of billions of Internet users suffered from spying on a mass scale, but the bug has
also shed light on the status quo of (secure) software engineering, considering
that it took more than two years to detect this vulnerability! The situation
becomes even worse if one considers that thousands of large companies around
the globe have been using the OpenSSL software — essentially without paying
for it, but also without having sufficiently carefully inspected the code.

In other words, more and more sophisticated attack vectors arise which open
up fatal bugs that are sometimes only discovered after a long time, if at all. And
even if discovered and publicly announced, it sometimes takes months to fix
the known vulnerabilities. In the meantime, after the vulnerabilities have been
disclosed to the public (typically by companies, researchers, or intelligence agen-
cies), malicious hackers can (often within minutes) exploit the published flaws
and mount attacks against a huge number of unpatched systems worldwide.1

This thesis addresses three complementary approaches to remedy the prob-
lems arising with complex and security-critical software. We postulate the fol-
lowing three principles that should be considered when striving for secure sys-
tems: (1) deployment of strong cryptographic mechanisms, (2) development
of proper implementations and abstractions, and finally (3) education of users
towards correct usage of existing techniques and implementations.

Let us discuss these principles in more detail. We note that, since declarative
design plays a major role for this thesis, we put particular emphasis on the
second principle (pages 3–6). After discussing the principles, we describe how
this thesis contributes to all of them (page 6).

Principle 1: Strong Cryptography

Concerning the first principle, in the last decades the cryptographic research
community has proposed various schemes for encryption, digital signatures,

1 Not only researchers are looking for vulnerabilities: also software vendors, criminals, and
national intelligence agencies have an interest in detecting (and exploiting) software bugs. The
way in which detected bugs are announced, however, varies a lot: software vendors (silently)
fix the flaws, criminals silently exploit (or sell) the flaws, and intelligence agencies either also
exploit or sometimes report the flaws.

2



zero-knowledge proofs, anonymity, voting, and other more involved use cases.
These schemes have been proven secure under various assumptions. In other
words, reliable cryptographic schemes exist that are believed (or even proven)
to be secure. However, there is still need for more efficient, and more practical
schemes. In particular, solutions tailored to specific use cases are often missing
or not practical enough, e.g., encryption provides successful means to ensure
the confidentiality of data, however, cloud-based applications might require
homomorphic encryption in order to evaluate programs on encrypted data.

Principle 2: Appropriate Abstractions and Correct Implementations

The second principle requires the specification of systems or protocols to have
the correct balance between high-level abstractions on the one hand, and low-
level details on the other hand. Getting a specification tight is challenging if
inappropriate abstractions are chosen by unexperienced developers. The Heart-
bleed bug falls under this principle, not under the first, since the cryptography
involved in SSL is well understood, but the protocol implementation as a whole
was faulty. The specification was incorrectly implemented in that the specified
length of the exchanged messages could be abused in a way that an attacker was
able to receive confidential data from the web server, including secret keys.

Let us detail what we mean by appropriate abstractions. An abstraction of a
system specification should balance
• coarse-grained specifications that reflect conceptual design decisions (e.g.,

which messages are exchanged by which protocol parties, which goals are
achieved, which requirements do the individual parties have, etc.), and

• fine-grained specifications that describe technical implementation details of
involved sub functionality (e.g., the invocation of cryptographic schemes,
the distribution of random coins, the length of exchanged messages, etc.).

Declarative specifications smoothly combine the two ends of the granularity
axis by constituting the following model: given a declarative specification, and
a (verified) compiler, the goal is to produce reliable computer-generated source
code for security protocols that satisfy all specified goals with corresponding
granularities. An important challenge of declarative specifications is to success-
fully build systems in which the security is less reliant on the (potentially un-
experienced or hasting) programmer. Instead, eliminating security weaknesses
should automatically be achieved by the invoked framework. It is not reason-

3



I Introduction

able to expect developers to know and understand the most effective security
defenses to mitigate the various existing and emerging kinds of attacks.

The Power of Declarative Specifications. In more detail, declarative speci-
fications are successful due to the following aspects:

1. Most users are interested in specifying what they want to achieve, not
how to achieve it. In particular, if a user is not an expert with respect to
certain issues, the user does not want to struggle with the details of an im-
plementation fulfilling the user’s expectations. Consider for example Alice
and Bob who want to build a house in order to start a family. They are both
computer scientists and hence are not interested in any detail about how
the chimney is placed on the roof of their house. They only know at which
position and with which color the chimney shall be placed. Moreover, it
is not only the case that they are not interested, they also have no spare
time to read the literature for constructing roofs with colored chimneys.
Instead, they like to focus on the design of secure protocols for network
communication — something you would expect from a computer security
researcher. In other words, Alice and Bob trust the local constructors and
hand the task over to accepted companies. In the field of the design of
cryptographic protocols or systems, this notion of trust is reflected by a
verified (or at least trustworthy) compiler.

2. Implementation details are often spread over multiple stages. As we
will see later in the thesis, the anonymity specifications in Chapter II, or
the specifications of integrated code in Chapter III, are usually placed at
various code locations since they are required in different modules of a
system. More concretely, think of numeric constraints on database values:
the age of a person in a social network shall be represented as a non-
negative 7-bit integer value ranging from 0 up to 127. This specification
could be used in the database design to use 7 bits to represent the age. It
should be used in the JavaScript client code to derive checks for valid user
inputs. Moreover, it should be used in the PHP server code to ensure the
correct input format from a (potentially malicious) client. If all three such
positions would have to be specified individually, the system as a whole
might become inconsistent, hence faulty, and hard to maintain. A devel-
oper would have to memorize all positions and update them accordingly.

4



Furthermore, the developer would need knowledge of all deployed lan-
guages and of many different programming concepts. A single declarative
specification language, instead, would require knowledge of only one lan-
guage or programming concept, it would require only a single specification
of each program property, and it would thus simplify the programmer’s
life and thereby reduce the general vulnerability of the deployed program
code.

3. Transparency. Declarative specifications make the goals of a specification
explicit. A single declarative command to display 10 images on a web page
is easier to understand and to maintain than a loop with counter variables
and bookkeeping data structures that implement a similar semantics.

4. Efficiency. As declarative specifications are often broader than concrete
language-specific specifications, they allow for context-aware optimiza-
tions depending on the processing hardware, the network bandwidth, and
the availability of input data.

5. Extension of efficiency. The execution (or compilation) of declarative
specifications can be optimized independently of the specification. If, for
instance, more efficient algorithms are found for the processing of SQL
queries, one does not necessarily need to change the SQL language or the
specifications written in SQL.

6. Extension of functional goals. Adaptations of declarative specifications
are usually shorter than adaptations of complex algorithms. This does not
only hold for efficiency, but also for functionality, whenever new features
are added to a system.

7. Extension of enforced security properties. Similar to the above, adapta-
tions to a compiler are easier and less error-prone (and thus more secure)
than adaptations of complex algorithms. Moreover, updates to a compiler
can target specific emerging security vulnerabilities, which might not be
detectable in low-level implementations. In other words, a compiler can be
adapted to take the newest countermeasures into account and developers
can simply recompile their applications.

8. Verification. The verification of a system can be reduced to the verification
of the involved compiler. Then an arbitrary number of specifications can be

5



I Introduction

transformed using the compiler. All generated code will enjoy the verified
properties.

9. Adherence to global security policies. System-wide policies can only be
enforced when several pieces of code jointly collaborate in order to achieve
a specific goal. In particular, this is relevant if code from different devel-
opers coexists in a shared environment. Defenses must be deployed in a
comprehensive and consistent way across the entire application.

10. Security is often only a secondary goal. Finally, many developers focus
on pure functionality, not on security, be it because of incompetence or
reluctance. As regularly reported by the news, many developers do not
devote the necessary time to protect their applications.

Principle 3: Correct Usage of Existing Techniques

Finally, the third principle requires users who apply the various existing software
solutions correctly. This goal is usually out of the scope for (theoretical) security
researchers, unless one aims at providing usable systems that have intuitive and
usable security. If, for example, a service requires insanely “strong” passwords
with at least 30 characters, and no more than two subsequent consonants, then
clearly, users will tend to write down the passwords, possibly in insecure notes
on their smartphones or on removable notes sticked to their screens.

We claim that systems must be designed in a way that users are given only
a very small chance of behaving carelessly, improvidently, or just lazily. Here,
we are not addressing users with malicious intentions, but rather users with bad
and lazy habits.

Contributions

This thesis contributes to all of the three aforementioned complementary prin-
ciples: Chapter II and Chapter III deal with appropriate abstractions in terms
of declarative specifications for the design of complex protocols and applica-
tions. Tackling the second principle, their key idea is abstracting away imple-
mentation details whenever possible. The chapters show a number of different
areas in which declarative design has turned out to be highly beneficial. The
design, its translation, and the enforcement of various security properties are

6



presented and discussed. While Chapter II concentrates on the declarative de-
sign of general system protocols including several parties with different trust to
each other, Chapter III is more specific in that it focusses on the particular domain
of web applications, specifically on its functionality in conjunction with security.
Achieving usable solutions for unexperienced users, i.e. the third principle, is
particularly considered in Chapter III: as most software today is hosted and
consumed in close liaison with “the Web”, i.e., data visualized and software
executed in the browser, Chapter III presents a framework for fast and secure
development of web applications with a particular focus on one of its most chal-
lenging aspects: secure extensibility, i.e., answering the question on how to extend
existing mashup applications (in which multiple services with different policies
coexist) to fit unique – possibly dynamic – user requirements in reliable, usable,
and privacy-preserving manner. Chapter IV and Chapter V are rather placed
on the theoretical side and tackle the first principle by presenting novel crypto-
graphic solutions for achieving goals as required by the declarative approaches
of Chapter II and Chapter III.

How to Read this Thesis?

This introductory chapter provides only very high-level intuitions. All of the
following four chapters II, III, IV, and V are written in a self-contained manner,
i.e., each chapter contains a thorough introduction with motivation of the pre-
sented solutions and the techniques, individual related work and conclusions.
In other words, the thesis is structured in a way that every chapter requires as
little insights from other chapters as possible. References with page numbers are
given whenever definitions or surrounding contexts need to be considered. The
appendix (pages 233ff) contains examples, extensions, algorithms, postponed
proofs, as well as bibliography (pages 267ff) and index (pages 291ff). The latter
should be particularly helpful in quickly accessing definitions and keywords.

Overview of the Thesis

We give a brief overview of each individual chapter.

• Chapter II presents the declarative framework G2C [Rei10, BMPR11, Bal11]
for the semi-automated design of symbolic security protocols. G2C in-
cludes a goal-driven language for the specification of distribution and
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computation of knowledge, the “goals”. The key feature is that the spec-
ification abstracts away the details of how the intended functionality is
achieved, but instead lets the developer concentrate on which functionality
and security goals shall be provided by the compiled symbolic protocols.
The chapter additionally presents a compilation technique from the speci-
fied goals to symbolic cryptographic protocols.

• Chapter III presents a continuation of the research conducted on declarative
specifications. The success of G2C encouraged us to move on to larger
scenarios with more practical relevance and more widespread applications:
the presented declarative framework SAFE [RBG12, Sch12, RSG13, Rei14]
provides a hierarchical data-centric programming environment for web
applications with focus on secure third-party extensibility.

• Chapter IV presents a cryptographic scheme for the homomorphic eval-
uation of arithmetic circuits in untrusted environments [BFR13]. The
presented techniques constitute a homomorphic message authentication
code with efficient verification, EVH−MAC for short, that can be used to
strengthen G2C protocols as follows: a (potentially malicious, or at least un-
trusted) G2C computation node performs computations over outsourced
data and obtains succinct correctness proofs that can be verified in amor-
tized constant time by other G2C parties. At a very intuitive level, values
are encoded as authentication polynomials over a finite field. Anybody
can then homomorphically evaluate a function f over such authentication
polynomials in a way that yields a (higher-degree) authentication polyno-
mial that reliably encodes the result of applying f to the encoded values.
The authenticity of the resulting authentication polynomial can be checked
in amortized constant time, in particular, the verification is independent of
the input size of f . We stress that the results can be used in any cloud-based
environment. In particular, the usage of the EVH−MAC is independent of
G2C.

• Chapter V presents another cryptographic scheme: succinct non-interactive
zero-knowledge proofs that can be considered a second extension of G2C
to strengthen the correctness of computations performed by potentially
compromised principals. The class of computation functions comprises
proofs for arbitrary NP relations and again yield efficient verification for

8



proofs over authenticated data. The chapter achieves a very appealing
privacy-preserving property: the verifier does not need to know the sensi-
tive statements of theNP relation, but can still be convinced very efficiently
of the correctness of the generated proofs.

• Chapter VI concludes the thesis.
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Chapter II

The
G2C Framework for
Automated Protocol Design

This chapter presents G2C, a declarative framework for automated protocol de-
sign. G2C (“goals-to-crypto”) includes a goal-driven specification language for

11
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the distribution and the joint computation of knowledge. It offers support for the
declarative specification of (a) functionality goals (i.e., which information shall
be made available to, or be computed by, which parties) and (b) security prop-
erties (i.e., which information shall not be disclosed to some of the parties). The
specification of functionality goals comprises the involved parties (the protocol
principals), their initial knowledge (the protocol input), and the final knowledge
available to some of the parties (the protocol goal). The security properties com-
prise integrity of the communication, secrecy of knowledge, access control for
both principals and knowledge, and the anonymity of principals in possessing
or computing knowledge.

A key feature of the G2C language is its declarative design: G2C abstracts
away the (sometimes difficult and tedious) details of how the intended function-
ality is achieved, but instead lets the designer of a larger system concentrate on
which functional features and security properties should be achieved. The G2C
framework provides a compiler for transforming G2C specifications into sym-
bolic cryptographic protocols. The resulting protocols are shown to be optimal
in terms of communication complexity. Moreover, the G2C framework com-
prises a methodology to automatically verify the correctness and the security
of the generated protocols using ProVerif [Bla01], an automatic state-of-the-art
cryptographic protocol verifier.

Chapter Outline

Section II.1 provides an introduction to the design of security protocols. Sec-
tion II.2 (page 18) introduces the G2C language by means of an illustrative
example, Section II.3 (page 22) presents the compilation to symbolic security
protocols. Section II.4 (page 36) explains how anonymity is enforced and veri-
fied. Finally, Section II.6 (page 45) concludes the second chapter of this thesis.

12
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II.1 Introduction

Designing cryptographic protocols is inherently difficult and error-prone: pro-
tocol designers drudge to stay up to speed with the variety of possible security
vulnerabilities, which have affected not only the early authentication protocols
such as the Needham-Schroeder protocol [DS81, Low97], and carefully designed
de facto standards like SSL and PKCS [WS96, Ble98, Net14, NYT14a, NYT14c,
NYT14b], but also widely deployed products such as Microsoft Passport [Fis14]
and Kerberos [BCJ+06]. The task of designing cryptographic protocols is made
more and more challenging by the dimension and complexity of modern dis-
tributed architectures (e.g., collaborative platforms, content sharing applications,
social networks) and the number of security properties that have to be simul-
taneously fulfilled (e.g., user anonymity, authentication, integrity, access con-
trol, and secrecy). There are only few suitable guidelines [AN96] or automated
tools [XZQ07, CLM+07, FGR09, BCD+09, SB10] to assist system designers. The
development of cryptographic protocols is often carried out by relying on com-
mon practice and on the creativity and experience of designers, rather than on
rigorous and formal design techniques. However, common practice and even
official security guidelines have shown to be maliciously influenced by govern-
ment intelligence.1, 2, 3

Recent research has started to address these problems by providing techniques
to compile high-level protocol specifications into concrete cryptographic proto-
cols [BCD+09, FGR09, SB10] or to strengthen existing cryptographic protocols
and make them resistant to sophisticated threat models [BGHM09]. These ap-
proaches, however, take as input a detailed specification of the structural aspects

1 The New York Times, Sep 05, 2013 [NYT14d]: “Documents show that the N.S.A. has been
waging a war against encryption using a battery of methods that include working with indus-
try to weaken encryption standards, making design changes to cryptographic software, and
pushing international encryption standards it knows it can break.”

2 Reuters, Dec 20, 2013 [Reu14]: “As a key part of a campaign to embed encryption software that
it could crack into widely used computer products, the U.S. National Security Agency arranged
a secret $10 million contract with RSA, one of the most influential firms in the computer security
industry.”

3 Another example is tampering with national standards to promote weak or generally vulner-
able cryptography: e.g., the NIST random number generator Dual EC DRBG [SF07, BG07]
with “rather obvious backdoor”, quoting Bruce Schneier; and weak GSM encryption, (Jan
13, 2014) http://www.golem.de/news/mobilfunk-geheimdienst-sorgte-fuer-schwache-g
sm-verschluesselung-1401-103880.html.
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of the protocol: one has to describe in depth which messages are exchanged
between which participants and, in some cases, even which cryptographic prim-
itives are used. In general, these techniques require expert knowledge in current
security research and, arguably, they are hardly accessible to system designers.
Ideally, designers should be required to solely state in a simple, yet precise,
manner which functionality should be realized and which security proper-
ties should be guaranteed, without necessarily having to think how this can be
achieved.

Contributions of this Chapter

Inspired by the increasingly popular approach of declarative networking [LCH+05,
LCG+06, ZMLA09, NR09] — a high-level programming paradigm to conve-
niently describe and implement distributed systems — this chapter proposes
G2C, a concise, goal-driven specification language for distributed applications.
G2C allows the designer to specify the functionality of the protocol and the de-
sired security properties (secrecy, access control, and anonymity) without speci-
fying the actual communication patterns or the cryptographic infrastructure, in
the spirit of “say what you want, not how to do it”. Only the following information
has to be specified: the protocol input (e.g., given facts like information from
some customers), the desired protocol functionality (e.g., a survey institute shall
obtain a statistical analysis of some customers’ reviews) and the desired secu-
rity properties (e.g., the customers’ reviews shall not leak out and individual
customers shall stay anonymous).

Moreover, this chapter presents a compilation technique from G2C specifica-
tions into Dolev-Yao-style protocols expressed in the applied π-calculus [AF01]
(see Figure 1 for illustration). This compilation is achieved using a combina-
tion of standard public-key encryptions and signatures, and, if necessary to
achieve anonymity properties, advanced primitives such as broadcast encryp-
tion [FN94, BGW05, BW06] and ring signatures [RST01, Her07, CGS07]. All these
primitives are combined in a way that the specified functionality and security
goals, and additionally confidentiality and integrity properties, are satisfied in a
setting of semi-honest adversaries. Our compiler first computes several candi-
date protocols and then uses a SAT solver to select the protocol that minimizes
the communication complexity.

Finally, the chapter presents an automated validation technique to check the
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Figure 1: Simplified protocol generation in the G2C framework.

correctness and the security of the synthesized cryptographic protocols using
ProVerif [Bla01], a state-of-the-art theorem prover based on Horn-clause resolu-
tion that yields security proofs for an unbounded number of protocol sessions.
Our compiler embeds ProVerif annotations in the synthesized appliedπ-calculus
code. These annotations enable the validation of functional correctness, integrity,
secrecy, and access control. The compiler additionally generates ProVerif bi-
processes to validate also the specified anonymity properties. This translation
validation approach [PSS98, Nec00] comes with the advantage that even if dras-
tic optimizations are applied to the translation process, or if the translation is
completely reimplemented, there is no need to redo any proofs. While a direct
proof of correctness of the translation process would provide stronger guaran-
tees for any generated protocol implementation without relying on any validator,
this far-from-trivial proof would need to be redone every time the translation
process is changed, e.g., when optimizations are applied or when additional
security properties are considered. The added benefits of having such a direct
proof are greatly outweighed by the amount of work necessary in order to create
the proof and keep it up-to-date as the translation process evolves.
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this chapter

usual scenario: protocol design + implementation

"what" "how" implementation
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systems / cryptography
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in e.g. Java, C++

Figure 2: Positioning of G2C: while existing approaches concentrate on design-
ing and reasoning about symbolic protocols and corresponding imple-
mentations, G2C provides a more abstract layer for the specification of
functionality goals and security properties, together with a compilation
procedure to symbolic protocols.

The G2C compiler has been implemented in Java, and currently consists of
roughly 9,100 lines of code. It takes as input a G2C specification and outputs
a protocol process in the applied π-calculus. The compiler is available upon
request. Its overall workflow is illustrated in Figure 1.

Related Work

In declarative network systems, which our approach is inspired by, such as
P2/Overlog [LCH+05], NDlog [LCG+06], SeNDlog [ZMLA09], concrete actions
for each network node have to be specified. Similarly, in process calculi [Mil99,
AF01, AG97], it is required to specify both source and destination as well as the
content of the actual network messages. This holds true also for a number of
languages for the specification of multiparty sessions that have been proposed in
the last years [CDF+07, CD07, BCD+09, FGR09]. In all these approaches, protocol
designers have to specify concrete actions for each principal. As shown in
Figure 2, our approach provides a higher level of abstraction that lets the designer
focus on what goals should be achieved, without specifying the various ways
how these goals can be achieved. We hence take away the protocol designer’s
burden by automatically generating many tedious protocol details.

A data model [BDMN06] that resembles the model used in G2C has been
considered to specify the HIPAA privacy rule [Uni14], which regulates the trans-
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mission of protected health information by hospitals, doctors, and insurance
companies. These privacy provisions, stated in terms of logical formulae, can
be expressed in our language. Moreover, our framework is fine-grained enough
to support both roles and groups of principals. In the HIPAA data model, each
statement is dedicated to a single principal. In contrast, our framework allows
statements to represent information of several principals (e.g., the result of the
statistical analysis of customers’ reviews).

Jif [ML00] is a variant of Java that incorporates a type system for the en-
forcement of secure information flow; Jif/Split [CLM+07] is an extension of Jif
that automatically partitions programs to run securely on a distributed system.
Fabric [LGV+09] is an extension of Jif/Split that allows new nodes to join the sys-
tem and supports consistent, distributed computations over shared persistent
data. Jif/Split and Fabric deal with confidentiality and integrity, but they do not
address anonymity.

Variations of declarative languages have been used to reason about security
policies only — in contrast to the specification of security policies and protocol goals.
For the specification of authorization policies, DKAL [GN08] is a declarative
authorization language for distributed systems based on an existential fixed
point logic; SecPAL [BFG07] is a declarative decentralized authorization lan-
guage close to natural language; Alpaca [LLFS+07] is a language based on proof-
carrying authorization. For the specification of access control and privacy, there
are languages such as Binder [DeT02], S4P [BMB10], LoPSil [LRS09, FSIL12]. The
aforementioned languages have in common that they strive for individual secu-
rity policies, not for the general specification of both functionality and security
goals, and do not allow the designer to abstract away from the protocol details
in the high-level manner that we envision. AURA [JVM+08] is a typed language
for authorization and audit that includes mechanically verified proofs of decid-
ability. AuraConf [Vau11] is an extension of Aura that deals with confidentiality
properties. In contrast to our approach, neither Aura nor AuraConf focus on the
automated generation of cryptographic protocols and do not address anonymity
properties. An approach in the area of trust-negotiation protocols is close to our
approach of minimizing the cost of a directed acyclic graph, i.e., minimizing the
amount of necessary prerequisites in order to achieve a given goal [CCKT05].

Translation validation [PSS98, Nec00] is an accepted technique for detecting
compiler bugs and preventing incorrect code from being run. Since the validator
is usually developed independently from the compiler and uses very different
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algorithms, translation validation significantly increases the user confidence in
the compilation process. The validator can use a variety of techniques, ranging
from program analysis and symbolic execution [Nec00, TL08] to model checking
and theorem proving [PSS98]. We use ProVerif [Bla01] to validate the results of
our compilation.

II.2 Illustrative Example

The language G2C is best explained by means of an illustrative example of a
goal-driven G2C specification. A formal grammar of the G2C syntax is detailed
in Appendix A.1, starting on page 233. In the following example, information
about different topics is collected from a set of customers (collection phase). This
information is evaluated using some statistical analyses by a manager (evalua-
tion phase), and then sent to a survey institute that can publish a final document
(publication phase). Among functional goals and security constraints, the proto-
col shall ensure two anonymity goals, i.e., it shall preserve (1) the anonymity of
the customers who initially have some private or confidential information and
(2) the anonymity of the manager who evaluates the collected information. In
this example, the final document can only be signed by a member of a pool of
trustworthy managers, while – at the same time – the survey institute shall not
learn the identity of the responsible manager who actually signed the document.

Principals. The G2C specification for such a protocol defines a set of princi-
pals P occurring in the system. Each principal is assigned one or more tags
ti ∈ T . By default, each principal p ∈ P is implicitly tagged by a tag with his own
name p, i.e., the set of tags T is implicitly extended to comprise P if necessary.

For this example, there are some customers tagged customer , and some man-
agers tagged manager , and the survey institute tagged government :

P r i n c i p a l s :
cus t1 : customer
cust2 : customer
. . .

mng1 : manager
mng2 : manager
. . .
s u r v e y i n s t i t u t e : government
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Tags. Tags T are not only assigned to principals P, but also to statements S
(defined below) in order to relate principals and statements. Moreover, tags can
also be related to each other via a partial-order relation ≤ defining a tag lattice
with least element public. Tags thus provide a straight-forward access control
mechanism for statements: a principal p tagged tp may only access statements
tagged ts whenever ts ≤ tp. Intuitively, the higher the position of a tag ts ∈ T

in the lattice, the more confidential the statements tagged by ts are. The usage
of tags allows for building upon several role-based access control mechanisms
[Den76, VSI96, SM03]. The presented example does not use an explicitly specified
lattice, but only assumes the implicit relation ∀ t ∈ T . public ≤ t.

Statements. A G2C specification comprises a set S of statements that capture
the knowledge in a protocol. Statements can be considered as place-holders for
the actual values in a protocol execution. At specification time, these values
are irrelevant in the sense that they do not affect the protocol construction. For
this reason, we abstract concrete values as symbolic statements. The syntax of a
statement specification is of the form s : t, where a statement s ∈ S is related to
a tag t ∈ T .

Statements can carry parameters in parentheses. Such parameters can be
constants (lowercase strings and numbers), variables (strings beginning with an
uppercase letter) or wildcards (*). The tags on the right-hand side of the colon
can either be constants or variables that are bound in the argument list of the
specified statement.

Statements :
document ( 2 0 1 1 ) : manager or government
i n f o ( ∗ ) : customer or manager
manager pwd ( ) : manager

The statements in the above example are: document(2011), which represents
the final document that is created by the managers for the year 2011. It is acces-
sible for all principals that are tagged manager or government (here, two lines
of statement specifications are syntactically merged using the keyword or). The
statements called info(topic) contain the information that is collected in the
collection phase for a specific topic. These statements are accessible for customers
and managers. They can be parameterized to specify which particular informa-
tion topic the statement contains. The statement manager pwd() is a password
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that is necessary in order to compute and trustworthily sign the document. Its
content is only accessible for those principals who are tagged manager.

Inputs. Each principal p ∈ P has some initial knowledge, captured as one or
more input statements s ∈ S. These inputs are captured in the input section
using the syntax s @ p. Continuing our example from above, the customers
have information about certain topics, and all managers have a joint manager
password.

Input :
i n f o ( ∗ ) @ $PRINCIPALS TAGGED( customer )
manager pwd ( ) @ $PRINCIPALS TAGGED( manager )

The G2C language comes with some syntactic sugar: the input specification ex-
pression s @ $PRINCIPALS TAGGED(t) is evaluated to a list of input specifications
s @ p1, s @ p2, . . . , where pi ∈ P are the principals that are declared to have tag t.
As above, statements may be parameterized by constants and wildcards.

Functional Goals. A functional goal of our example protocol is to make the
document available to the customers. The goal section states such goals by
listing statements at principals. The goal section is syntactically similar to the
input section, but semantically represents the protocol’s final state instead of its
initial state.

Goals :
document ( 2 0 1 1 ) @ s u r v e y i n s t i t u t e

Rules. In order to enforce the stated functional goals, a set of computation rulesR
has to be specified by the protocol designer. In the section for rules, computations
are abstractly specified using arbitrary function symbols like create document.
The intuition behind rules is that anyone can compute the head of a rule (in this
case the statement document) whenever all computation arguments are available
(in this case the manager password and the information about the topics).

Rules :
document ( 2 0 1 1 ) :− create document [

manager pwd ( ) ,
i n f o ( t o p i c 1 ) , i n f o ( t o p i c 2 ) , . . .

]
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More formally, a computation rule r ∈ R is a variant of a Horn clause of the form

h :- f [ b1, . . . , bn ]

where the head h of a rule r is a statement possibly parameterized by constants
and by variables. The right-hand side of the rule operator :- contains the body
of r. The body comprises a function symbol f and a list of comma-separated
statements {bi}i∈N. These statements can also be parameterized by constants and
by variables. The variables must be bound as parameters of h. We stress that,
for the reason of abstraction, the specification does not take the semantics for
the specified function symbols into account. Any principal p can compute h
whenever p knows all statements bi.

Anonymity. Besides integrity, secrecy, and access control (as specified by the
statement tags), G2C supports the specification of anonymity. These security
goals are captured in the anonymity section of a G2C specification as tuples
of the form (s,A,F ). The first component s ∈ S is a statement. The second
componentA ⊆ P, the among-set, is a set of principals that shall be anonymous
among each other. The third component F ⊆P, the for-set, is a set of principals
that shall not be able to distinguish who in the among-set is involved in the
computation of s. This notion of anonymity is similar to the concept of k-
anonymity [Swe02, CdFS07], which states the impossibility of identifying a user
among k other users. Due to its simplicity, a G2C-specified protocol is even
amenable to the stronger notion of `-diversity [MGKV06].4 Moreover, a G2C
specification also comprises the intended distinguishers as specified in the for-
set. Additionally, the for-set implicitly includes external observers who are
eavesdropping on the entire communication.

Anonymity :
document ( 2 0 1 1 ) among { cust1 , cust2 , . . . } for { s u r v e y i n s t i t u t e }

document ( 2 0 1 1 ) among { mng1 , mng2 , . . . } for { cust1 , cust2 , . . . }
document ( 2 0 1 1 ) among { mng1 , mng2 , . . . } for { s u r v e y i n s t i t u t e }

Intuitively, the first of the above specifications means that in the final document,
all customers shall be anonymous among each other for the survey institute.
This implies that the survey institute shall not be able to distinguish whether

4 Intuitively, the sensitive data here will be the names of the principals who shall stay anonymous.
At the same time, these sensitive entries are highly diverse: there are k = ` different sensitive
values in a group. Note that background knowledge is not taken into account.
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cust1 or cust2 was involved in the final document. The second and third
specifications demand that the managers be anonymous for the customers and
the survey institute, respectively. In other words, neither a customer, nor the
survey institute shall learn who the actual manager is that has created and signed
the document.

II.3 Compilation to Symbolic Protocols

As seen in the example above, the G2C language allows the designer to specify
which functional goals and which security properties are to be achieved without
having to additionally specify how individual principals should act in order to
achieve the goals and properties. In other words, the protocol designer does not
have to specify a concrete cryptographic protocol. Such a detailed protocol is
generated by the G2C compiler as introduced in this section.

In the first step (Section II.3.1), an intermediate representation of the specifi-
cation – the so called data flow graph – is generated. This graph is constructed
based on the specified goals, the input patterns, and the corresponding com-
putation rules. The access control specifications for the declared statements are
also considered in order to prevent the graph from growing too fast. In the
second step (Section II.3.2), the data flow graph is condensed: optimal nodes
and edges are selected with respect to the overall communication complexity
the final protocol would have. In the third step (Section II.3.3), the paths of
the condensed graph are translated into a distributed protocol expressed in the
applied π-calculus.

II.3.1 Intermediate Representation as Data Flow Graphs

This section formally defines data flow graphs. Data flow graphs serve as an
intermediate representation of the protocol specification where nodes represent
knowledge of principals, and edges represent the flow of knowledge between
principals (i.e., the possible communication patterns of the later protocol). This
data structure provides all necessary information for generating a cryptographic
protocol in a symbolic calculus. Data flow graphs are constructed by an iterative
bottom-up procedure, which is best explained using the example of Section II.2
again.
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Figure 3: Data flow graph for the example of Section II.2. For the sake of readabil-
ity, the graph contains only two customers, two managers, and only
information about two topics; some statements are abbreviated; the
costs for edges and computations are omitted. An optimal selection of
edges is colored in gray (see Section II.3.2).

Example 1 The data flow graph for the example of Section II.2 is illustrated in a
simplified manner in Figure 3. Data flow graphs are constructed in a bottom-up
manner, starting with the specified goal nodes (doubly circled shape), which
are added to an exploration queue of nodes that have to be explored further.
For each node picked from the queue, the following three exploration steps are
performed:

(1) Possible flows from other knowledge nodes (round shape) are considered
in case the access control specifications permit these flows. In the example,
there are flows from the managers’ knowledge nodes, document(2011)@mng1

and document(2011)@mng2. These knowledge nodes, if not existent yet, are
created within this first step and then added to the exploration queue.

(2) If the statement of the currently explored node is an instantiation of the head
statement of a computation rule, a new computation node (rectangular
shape) is created and added to the queue. Moreover, the inputs for such a
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computation, the knowledge nodes, are created and added to the queue. In
the example above, the computation nodes are localComp(document(2011)@mng1)

and localComp(document(2011)@mng2). The inputs to those computation nodes are
knowledge nodes representing information about the specified topics and
the manager password.

(3) The statement of the currently explored node is matched against the input
patterns that are provided in the specification. If an instantiation of an
input pattern matches the node statement, a new input node (diamond
shape) is created. This input node is not added to the queue as it will not
be explored further. ∗

Due to this bottom-up construction, and to the immediate instantiations of
variables, nodes that have neither a preceding computation node nor an input
node might spuriously be added to the queue. Therefore, subgraphs that have
no input node as ancestors are eventually removed from the graph.

The edges of a data flow graph express possible communication structures
of the synthesized protocol. Edges labeled flow connect two knowledge nodes
that consist of the same statement, but at different principals. These edges
correspond to messages that are sent in the synthesized cryptographic protocol.
Edges labeled localComp, compArg, or input are virtual edges — they do not
represent actual network messages.

Data Flow Graphs, Formally

A data flow graph G consists of a set of nodesN and a set of edges E. The nodes
are split into three disjoint sets: input nodes Ni ⊆ {input(S@P)}S∈S,P∈P, knowl-
edge nodesNk ⊆ {S@P}S∈S,P∈P, and computation nodesNc ⊆ {localComp(S@P)}S∈S,P∈P.
A subset of the knowledge nodes Ngoal ⊆ Nk is called goal nodes. The set of
edges is split into the disjoint sets of input edges Ei, flow edges Ef , computation
argument edges Ea, and computation result edges Er.

Nodes. A data flow graph for a given specification is the smallest graph satisfy-
ing the following rules. The numbers in parentheses refer to the aforementioned
exploration steps.

input(S∗@P) ∈ SPEC S /
∼S∗

input(S@P) ∈ Ni

NInput(3)
input(S@P) ∈ Ni

(S@P) ∈ Nk

NKnowInput(3)
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rule(S∗ ← f (S∗1, . . . ,S
∗

n)) ∈ SPEC
∀i. (Si@P) ∈ Nk 〈S,S1, . . . ,Sn〉

/
∼R S∗ ← f (S∗1, . . . ,S

∗

n)

localComp(S@P) ∈ Nc

NComputation(2)

goal(S@P) ∈ SPEC

(S@P) ∈ Ngoal

NGoal(init)
localComp(S@P) ∈ Nc

(S@P) ∈ Nk

NKnowComp(2)

(S@P′) ∈ Nk may access(P,S)

(S@P) ∈ Nk

NKnowFlow(1)

NInput introduces input nodes for instantiated statements S@P that match an
input pattern S∗@P from the specification. S /

∼S∗ denotes that S is a statement
instantiation of S∗, i.e., wildcards * and variables in S∗ are consistently instanti-
ated, and /

∼R denotes a rule instantiation as defined in the following. We assume
that all wildcards ∗ are uniquely indexed (e.g., ∗1, ∗2, . . .) in order to properly
distinguish them.

Definition 1 (Instantiation /
∼ of wildcards and variables) Let σ be a substitution

such that Dom(σ) =V ∪ {∗i}i∈N and Range(σ) = C. We then say

s(c1, . . . , cm) /
∼ t(u1, . . . ,un)

if and only if all of the following hold:
• s = t
• m = n
• 〈c1, . . . , cm〉 = 〈σu1, . . . , σun〉

• s(c1, . . . , cm) is closed, i.e., it contains neither variables nor wildcards.

Definition 2 (Instantiation /
∼R of computation rules) Let σ be a substitution as

in Definition 1. We say

〈s(c1, . . . , cm), s1, . . . , s`〉 /
∼R t(u1, . . . ,un)← f [ t1(u1

1, . . . ,u
1
n1

), . . . , t`(u`1, . . . ,u
`
n` ) ]

if and only if all of the following hold:
• s(c1, . . . , cm) /

∼ t(u1, . . . ,un) (under σ)
• ∀i. si /

∼ ti (under σ)
• t(σu1, . . . , σun) is closed
• t1(σu1

1, . . . , σu1
n1

), . . . , t`(σu`1, . . . , σu`n` ) are closed.
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Instantiations of wildcards, variables, and computation rules cope with the
flexibility introduced by the parameterized (and hence often under-specified)
goal-driven specifications. We stress that the instantiation in NInput is min-
imal in the sense that only those statements are generated that are necessary
to reach the goals (this prevents the graph from growing more than required).
Hypotheses of the form X ∈ SPEC assume X to occur in the G2C specification.
NKnowInput creates knowledge nodes from input nodes. NComputation cre-
ates computation nodes for existing knowledge nodes Si@P and a computation
rule occurring in the specification. NGoal directly introduces goal nodes from
the specification. NKnowComp creates knowledge nodes from computation
nodes. NKnowFlow creates knowledge nodes from existing knowledge nodes if
the access control specification permits this step, i.e., the premise may access(P,S)
holds.

Edges. We define the edges E as the smallest set satisfying the following rules:

ni = input(S@P) ∈ Ni nk = (S@P) ∈ Nk

(ni,nk) ∈ Ei

EInput(3)

n1 = (S@P1) ∈ Nk n2 = (S@P2) ∈ Nk

(n1,n2) ∈ E f

EFlow(1)

nk = (S@P) ∈ Nk nc = localComp(S′@P) ∈ Nc

rule(S∗ ← f (S∗1, . . . ,S
∗

n)) ∈ SPEC S′ /∼S∗ ∃i : S/
∼S∗i

(nk,nc) ∈ Ea

ECompArg(2)

nc = localComp(S@P) ∈ Nc nk = (S@P) ∈ Nk

(nc,nk) ∈ Er

ECompRes(2)

Given an input node and a knowledge node, EInput creates an input edge (la-
beled input) between input and knowledge node. EFlow creates flow edges (la-
beled flow) between knowledge nodes. Computation argument edges (labeled
compArg) from knowledge node nk to computation node nc are introduced by
ECompArg in case the statement of nk is a valid instantiation of an argument
of the computation rule contained in nc. The knowledge node representing
the result of a computation is connected via a computation result edge (labeled
localComp) as introduced by ECompRes.
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We stress that data flow graphs are finite since there are only finitely many
statements, finitely many principals, and finitely many constants.

Proposition 1 (graph invariants) Data flow graphs satisfy the following invari-
ants. For any edge (n1,n2) ∈ E,

(1) (Flow edges) If {n1,n2} ⊆ Nk then

a) may access(prin(n2), stat(n2))
b) stat(n1) = stat(n2)

where stat(S@P) := S is the statement for knowledge node (S@P). The edge
(n1,n2) is labeled Flow according to the inference rule. All nodes in a Nk

subgraph contain the same statement (invariant 1b). Such a subgraph is
fully connected, it hence constitutes a clique.

(2) (Computation argument edges) If n2 ∈ Nc then

a) n1 ∈ Nk

b) prin(n1) = prin(n2)
c) |{n | (n,n2) ∈ E}| = b

where prin(S@P) := P is the principal for node (S@P) and b is the number
of arguments occurring in the body of the rule associated with the compu-
tation for node n2. The edge (n1,n2) is a virtual edge, labeled CompArg,
not existent in any real network, as the principal for the nodes n1 and n2

is the same (invariant 2b). The number of predecessors for node n2 equals
the number of statements in the body of the computed rule (invariant 2c).

(3) (Local computation edges) If n1 ∈ Nc then

a) n1 = (localComp(S@P)) for some S∈S,P∈P
b) n2 = (S@P) ∈ Nk

c) |{n | (n1,n) ∈ E}| = 1

The edge (n1,n2) is a virtual edge, labeled LocalComp, not existent in
any real network, as the principal for the nodes n1 and n2 is the same
(invariants 3a, 3b). The computed statement S is added to the knowledge of
principal P (invariant 3b). There is exactly one successor for a computation
node n1 (invariant 3c).
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II.3.2 Condensed Data Flow Graphs — or: Fastening the Protocol
Skeleton

The idea behind condensing a data flow graph is to find a minimal non-cyclic sub-
set E⊆E of edges such that all goal nodes are active in E. Informally, a knowledge
node nk is active if at least one direct predecessor of nk is active; a computation
node nc is active if all predecessors of nc are active; input nodes are always active.
In Figure 3 on page 23, both computation nodes localComp(document(2011)@mng1) and
localComp(document(2011)@mng2) are active since all necessary inputs are available and
hence, all predecessor knowledge nodes are active. For the same reason, the
goal node document(2011)@surveyinstitute is also active. The selected non-cyclic subset
of edges is depicted with a gray background. There are several other subsets
of edges that make the goal node active. For example, principal cust2 could also
give his inputs; or principal mng1 could provide the password.

Some of the edges in a fully connectedNk subgraph shall not be considered for
the selection of edges. A flow on such edges would only increase the total cost of
the synthesized protocol, but would not yield any benefit (apart from a potential
advantage in achieving the anonymity goals as discussed later). Even worse, a
cyclic subgraph of active edges would not stand our intention of providing the
necessary inputs to a protocol in order to activate all goal nodes. We call such
redundant or cyclic edges useless.

Definition 3 (Useless edges) An edge (n1,n2) ∈ E with {n1,n2} ⊆ Nk is useless
if one of the following holds.

1. n1 is no clique-entrance, i.e., pred(n1) ⊆ Nk.
2. n2 is no clique-exit, i.e., succ(n2) ⊆ Nk, and n2 < Ngoal.

Useless edges must never be part of any minimal non-cyclic set of active nodes:
Besides the condition that in the final synthesized protocol all goal nodes must
be active, we require that the final protocol itself be minimal, i.e., the message
complexity of the final protocol (formally defined below) must not exceed the
complexity of the synthesized protocol that has lowest complexity. This minimal
subset of edges is referred to as protocol skeleton or condensed data flow
graph. It constitutes the communication structure of the synthesized protocol.
An algorithm for the selection of the protocol skeleton is derived in Appendix A.2,
starting on page 235.
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Message Complexity

In order to optimize the communication and computation complexity of synthe-
sized protocols, we show a measure of the complexity for sent messages and for
computed statements. Computing the minimal number of messages sent around
the network requires to take reuse of computed information into account. The
problem can be formulated as the task of finding a spanning tree, a non-cyclic
subset of the edges from the data flow graph, such that all goal nodes can be
computed (or activated) with minimal cost. This problem is a classical planning
problem [GNT04], mostly investigated by the AI community.

The precise optimization problem MinMsgCplx(G) is defined as follows. Given
a directed acyclic flow graph G = (N ,E) in which the nodes are split into two
disjoint sets: N = Nk ·∪Nci withNgoal ⊆ Nk andNci = Nc ·∪Ni. Intuitively, a node
n ∈ Nk depends on only one of its predecessor nodes, whereas n ∈ Nci depends
on all predecessor nodes. Each edge e ∈ E ⊆ N ×N is assigned a cost c(e) ∈ N.
The goal is to compute a valid set E ⊆ E such that

∑
e∈E c(e) is minimal.

Definition 4 (Valid edges) A set E ⊆ E ⊆ N ×N is valid if E contains no cycle
and all n ∈ Ngoal are active in E.

Definition 5 (Active node) A node n is active in E ⊆ E ⊆ N ×N , if
1. n ∈ Ni is an input node, or
2. n ∈ Nk is a knowledge node, and ∃ (m,n) ∈ E such that m is active in E, or
3. n ∈ Nc is a computation node, and ∀m with (m,n) ∈ E we have that m is

active in E.

We define the decision problem MsgCplx(G, c∗) as the problem of asking
whether there is a valid subset of edges E ⊆ E satisfying

∑
e∈E c(e) ≤ c∗.

Theorem 1 MsgCplx isNP-complete.

Proof. MsgCplx ∈ NP since any E ⊆ E with
∑

e∈E c(e) ≤ c∗ serves as poly-length
witness, verifiable by a poly-time bounded Turing machine.
The remainder of the proof is a poly-time Karp reduction from 3-SAT. Let a 3-SAT
formula F in conjunctive normal form (CNF) with r variables and m clauses be
given:

F =
∧

i∈{1,...,m}

Ki where Ki = x
αi1
i1
∨ x

αi2
i2
∨ x

αi3
i3
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x1 x2x2x1 xr xr

v1 v2 vr

v

...

k1 k2 km

x11 x12
x13 x21 x22

x23
xm1 xm2

xm3

c

...

1 1 1 1 1 1

Figure 4: Graph GF constructed from 3-SAT instance.

The superscript αi j ∈ {+,−} denotes whether variable xi j occurs in positive or
negated form.

Construct the graph GF as follows (see Figure 4 for illustration). For each
variable xi ∈ {x1, . . . , xr} introduce two nodes xi, xi ∈ Nk and a node vi ∈ Nk with
edges (xi, vi), (xi, vi) ∈ E. Introduce another node v ∈ Nc that has an incoming
edge from every node vi. For each clause Ki introduce a node ki ∈ Nk with
corresponding nodes xi j ∈ Nk for the literals of Ki. Add the edges (xi j , ki) for
i ∈ {1, . . . ,m} and j ∈ {1, 2, 3}. Finally, create a node c ∈ Nc that has incoming
edges from v and all ki. According to F, whenever a variable xi appears in a
clause K j, draw an edge from either xi or xi to the corresponding literal of K j

(see the two dashed edges as examples). Note that there is exactly one incoming
edge for each literal.

All edges ending in variable nodes x1, x1, x2, . . . , xr have a cost of 1, all other
edges have cost 0.

In order to satisfy node v, for each variable xi either the positive or the negative
variant has to be selected. This gives a cost of exactly r. If the formula F is
satisfiable, then any satisfying assignment will have the same cost r, since any
variable xi has a fixed assignment to either true or false. On the other hand, if
F is not satisfiable, then there is at least one clause Ki for which a dotted edge
is missing. This missing edge (if added) would satisfy the clause, incrementing
the total cost to at least r + 1.

Finally, we have that F is satisfiable if and only if GF has cost r. �
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Number of Protocol Steps

In order to have a more constructive complexity measure for the approximate
run-time of the cryptographic protocol, we define the number of (possibly paral-
lel) steps the protocol implementation performs. These steps are called rounds
in the following. We say a node n is evaluated in round r if one of the following
holds.
• n ∈ Ni and r = 0.
• n ∈ Nk and there is a predecessor of n that is evaluated in round r − 1.
• n ∈ Nc, there is a predecessor of n that is evaluated in round r − 1, and all

other predecessors n j of n are evaluated in some round r j ≤ r − 1.

The recursive function rd(n) returns the round in which node n is evaluated.

rd(n) =


0 if n ∈ Ni

1 + min{ rd(n′) | n′ ∈ pred(n) } if n ∈ Nk

1 + max{ rd(n′) | n′ ∈ pred(n) } if n ∈ Nc

The effort for a node to be evaluated in a data flow graph is calculated as follows.

eff(n) =



1 if n ∈ Ni

min
(
{ eff(n′) | n′ ∈ pred(n) ∧ n′ ∈ Ni ∪Nc }

∪ { eff(n′) + e | n′ ∈ pred(n) ∧ n′ ∈ Nk }
)

if n ∈ Nk

cn +
∑

n′∈pred(n) eff(n′) if n ∈ Nc

where e is the effort of transferring a message between two principals, and cn is
the effort for a computation performed at node n.

Graph Constraints in SAT

In order to select nodes and edges to form a set of valid edges (according to
Definition 4), the data flow graph is translated into a satisfiability problem with
clauses in disjunctive normal form. Each edge e ∈ E is represented by a variable ve

of the SAT problem. Iff in a satisfying assignment of variables, variable ve is true,
then edge e is selected, i.e., e ∈ E. From all satisfying assignments Ei of variables,
the assignment that minimizes

∑
e∈Ei

c(e) is eventually chosen as communication
structure for the final protocol. Our framework uses a state-of-the-art constraint
solver, Gecode [SLT14], in order to obtain an optimal solution.
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The translation of the graph constraints corresponds closely to Definition 4 of
valid edge sets. For demonstration issues, we assume only two incoming edges
and two outgoing edges per node.

ngoal

i1
i2

o1
o2

(1) For goal nodes with incoming edges i1 and i2, we post
the constraint

i1 ∨ i2

since at least one of i1 and i2 must be active in order to
activate ngoal. The outgoing edges are not required in
order to activate goal nodes.

nk

i1
i2

o1
o2

(2) The incoming edges of a knowledge node nk shall only
be active if at least one of the outgoing edges is active. For
each outgoing edge o j, we post the constraint

o j → (i1 ∨ i2)

which represents the clause o j ∨ i1 ∨ i2.

nc

i1
i2

o1
o2

(3) The scenario for computation nodes is slightly more
complex. For a computation node nc to be active, all in-
coming edges, hence all direct predecessors of nc must be
active. For each outgoing edge o j, we post the constraint

o j → (i1 ∧ i2)

which is equivalent to the formula o j ∨ (i1 ∧ i2). This
formula is translated to two clauses o j ∨ i1 and o j ∨ i2.

Cycles

Consider goal nodes u and v that are connected via two flow edges (u, v) and
(v,u). The constraints for knowledge nodes are satisfied if both theses edges are
active. Such cycles, of course, do not solve the problem of activating goal nodes.
In order to prevent these cycles in the SAT instance, we post more constraints:
Given knowledge node nk with incoming flow edge i, for each outgoing flow
edge o, we add the constraint i→ o, which corresponds to the clause i∨ o. Recall
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that flow edges connect two knowledge nodes, and hence an incoming flow
edge together with an outgoing flow edge constitute a chain of at least three
knowledge nodes. The posted constraint thus prevents node nk from acting as
“knowledge forwarding” node between two other knowledge nodes. Neither
the edges from input nodes are considered, nor are the edges from computation
nodes considered.

II.3.3 Synthesizing Cryptographic Protocols for the Applied
π-Calculus

We now detail the translation from a condensed data flow graph into a cryp-
tographic protocol in the applied π-calculus [AF01]. We build an individual
process for every principal p involved in the protocol. The final protocol, a
single π process, consists of (a) generating all key pairs for signing and encrypt-
ing for all principals, (b) of publishing all public keys, and (c) of executing all
principal processes in parallel. All individual principal processes hence run
simultaneously as a single concurrent π process. We assume semi-honest prin-
cipals, i.e., the principals follow the protocol properly, but are curious in that
they attempt to learn additional information.

In the setup of the main π process, the following constructors and destructors
are declared:
• constructors for encryption and signatures:

fun enc/2.

fun sign/2.

• constructors for the generation of public encryption and verification keys:
fun ek/1.

fun vk/1.

• constructors for each computation rule h :- func[b1,. . .,b`] of arity `:
fun g2c func/`.

• destructors for decryption and signature verification:
reduc dec(enc(x,ek(k)), k) = x.

reduc check(sign(x,k), vk(k)) = x.

Additional constructors and destructors might be necessary for expressing and
validating the specification of anonymity goals (see Section II.4.2). Moreover,
public constants such as names for principals, names for constants, names for
parameters, and the names of the public communication channels are declared.
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Translation of Nodes: Events

For each principal p, the translation iterates over all nodes n with prin(n) = p and
produces the following output:

• An input with corresponding input node input(s@p) is expressed as a restric-
tion on a fresh name s in the process of principal p. A fresh name captures
the intuition that, initially, the statement s is only known to principal p.
Moreover, the event event s is raised, which states that the input has taken
place. Events will be used later in order to show that a computation can
only take place if all proper inputs are available.

• A computation at node localComp(s@p) with function symbol f and arguments
arg1,arg2,... is translated to a constructor application g2c f(arg1,arg2,...) in the pro-
cess of principal p. Every such application is followed by the event event s

in the process of p in order to validate the computation (see below).

• A goal with corresponding goal node (s@p) raises the event event s in the
process of principal p. This is necessary to verify the reachability property
of functional goals (see below).

Translation of Edges: Communication

Communication between principals is based on the edges in the condensed data
flow graph that transfer knowledge from one principal to another. Flow edges are
hence the only edges that are explicitly modeled in the symbolic protocol. These
flows represent actual communication over a public network. Loosely speaking,
the sender first signs the message to ensure its integrity and then encrypts the
resulting signature for the recipient to protect the statement’s confidentiality.

• An incoming flow edge from a node (statement@sender) is translated to

in ( c , s ta tement se ) ;
l e t s ta tement s = dec ( s ta tement se , dk p ) in
l e t (= s ta tement t , s tatement ) = check ( s ta tement s , vk sender ) in
. . .

where in(c,m) receives a message m over the (public) channel c, and dec(·,·)

and check(·,·) model decryption and signature verification. The equal sign =

expresses pattern matching, i.e., the first component of the tuple is checked
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for equality before the second component is assigned. In this case, the
value statement t is a unique identifier, a matching tag, for statement used to
ensure correct synchronization for the various messages that are sent over
the channel c. Since principals are honest (but curious), it is reasonable to
assume that correct matching tags are used.

• An outgoing flow edge to a node (statement@recipient) is translated to

l e t s ta tement s = sign ( ( s ta tement t , s tatement ) , sk p ) in
l e t s ta tement se = enc ( s ta tement s , e k r e c i p i e n t ) in
out ( c , s ta tement se ) ;

where out(c,m) sends a message m over the (public) channel c, and enc(·,·) and
sign(·,·) model encryption and signature creation.

If the G2C specification includes anonymity goals, then the implementation of
the flow edges relies on more sophisticated cryptographic primitives, as detailed
in Section II.4. Clearly, when using the verification key of a concrete sender (or
the encryption key of a concrete recipient), anonymity of the sender (or of the
recipient) cannot be achieved — by the very definition of anonymity!

Validation

For the validation of functional correctness, so-called correspondence queries are
inserted for each computation: every rule h :- func[b1,. . .,b`] in the G2C
specification is translated to a principal-independent ProVerif query of the form
query ev:h ==> ev:b1 & . . . & ev:b` in order to validate the functional goals of the syn-
thesized protocols. Since event h and the corresponding symbolic term must
be preceded by all the events b1 to b` along with the corresponding symbolic
terms, such queries ensure that all computations are executed only with the ex-
pected inputs. For each goal s@p, we insert principal-independent reachability
queries of the form query ev:s.5 If ProVerif successfully validates all queries, then
all computations are well-formed and all goal nodes are reachable.

For the validation of secrecy, we use ProVerif’s standard secrecy queries to
ensure that only legitimate principals (as specified by the G2C specification)
have access to the specified statements.

5 A technical note: it is important to ensure that the parameters of s(...) are translated as names, not
as existentially quantified variables. Otherwise, ProVerif’s assertions would be meaningless.
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II.4 Anonymity

Anonymity, in the context of this chapter, is a security property that reasons
about the knowledge that principals have or do not have. Not to be confused with
secrecy, a principal p is anonymous while performing some action α if no other
principal has knowledge about that action. If some principal p′ is aware that
action α has taken place, but if p′ is not able to determine which principal from a
setA of principals has actually performed that action, then for any p∈Awe say

p is anonymous in α among A for p′.
If any subset of principals F is unable to distinguish individual principals from
A in action α, then for any p∈Awe say p is anonymous in α amongA for F . In
the following, we call suchA the among-set and we call F the for-set.

For a more formal classification of anonymity, we should first sharpen our
notion of knowledge: Consider a scenario in which either Alice or Bob have to
acknowledge a money transfer. If Charlie knows that Alice never communicates
with the bank, it is clear, at least for Charlie, that Alice and Bob are not anonymous
among each other. More generally, any such background knowledge about
the communication habits of the principals in the final protocol could violate
some of the posted anonymity constraints. In order to still ensure anonymity,
the trivial solution is to let both Alice and Bob communicate with the bank.
Assuming that the bank does not publish whether Alice or Bob gave the necessary
acknowledgement, both Alice and Bob would stay anonymous among each other
for all other principals. This trivial solution, however, is inefficient. We therefore
assume that the structure of the entire final protocol is not part of the knowledge
of the involved principals. This is no security by obscurity. The anonymity checks
of our compiler (Section II.4.1) guarantee that there exists another protocol that
makes other principals from the among-set act actively. This other protocol could
have been generated with the same probability, where the probability space is
defined over the internal coin tosses of the compiler.

For the direct interaction of principals, however, we have to make sure that the
protocol structure does not violate anonymity: If, for example, two managers
shall be anonymous among each other for Charlie who has to give some input
to one of the managers, then – in a trivial solution – Charlie would have to
send his input to both managers. Otherwise, Charlie would trivially know
which manager was active in using his data. However, Charlie could still cheat
by sending different messages to the managers and thereby exploit a covert
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termination channel. In order to circumvent such attacks and in order to reduce
the protocol complexity, we rely on sophisticated cryptographic primitives such
as broadcast encryptions and ring signatures.

Before, however, looking at the details of our cryptographic realization, let us
first define the notion of anonymity in more detail (Section II.4.1). We then look
at the implementation of anonymity using advanced cryptographic primitives
(Section II.4.2), and finally describe the validation of the generated protocols
(Section II.4.3).

II.4.1 Anonymity as Symmetric Paths in the Graph

Intuitively, the anonymity specification (s,A,F ) is fulfilled if for each pair of
principals p, p′ ∈ A, there exist two valid subgraphs, both leading to goal s,
which are equal up to the identities of p and p′. More precisely, if p is active in
goal s, i.e., p contributes to the goal nodes with statement s, then for each other
principal p′ ∈ A, there must exist another subgraph, such that, after replacing
all principals neither in the among-set A, nor in the for-set F , by a special
symbol ], and after replacing the two compared principals p and p′ by a special
symbol •, the corresponding subgraphs are equal. The intuition here is to show
the existence of a valid protocol execution in which p′ instead of p has the same
knowledge and hence the same capabilities — meaning that p′ could do exactly
what p finally does.

Definition 6 (Anonymity) Let (s,A,F ) be an anonymity specification. Let
Ngoal(s) be the set of goal nodes in which statement s occurs. Let Gmin = (N,E) ⊆ G
be a minimal subgraph such that all goal nodesNgoal(s) of G are active in E (Defi-
nition 5, page 29). We say s is anonymous amongA for F if and only if for all
goal nodes n ∈ Ngoal(s), and for all p, p′ ∈ A with p , p′, one of the following is
satisfied:

1. p is inactive in n, i.e., for all edges ei = (ui, vi) ∈ Gmin that are (not neces-
sarily direct) ancestor edges of n, we have prin(ui) , p , prin(vi), where
prin(s@p) := p is the principal for node (s@p).

2. p is active in n and there exists a subgraph G′ ⊆ G in which p′ is active so
that for all qi ∈ P \ (A∪F ) the following subgraphs are equal:

Gmin{
]/q1} . . . {

]/q` }{
•/p} = G′{]/q1} . . . {

]/q` }{
•/p′}
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Figure 5: Anonymity examples.

The substitution G{a/b} replaces all occurrences of b in G by a. This affects all
statements and principals.

Example 2 Consider the full data flow graphs depicted in Figure 5 above. Each of
them offers at least two ways of achieving the goal Z. We discuss the anonymity
that can be achieved for all four graphs in the following.

(a) anonymity among {A,B} for {C,Z}

In the simplest case, we achieve anonymity among {A,B} for {C}, since
intuitively, C cannot tell whether A or B will be active. Both options are
possible from C’s perspective. Formally, there is the minimal subgraph
C − A − Z which is equivalent to the subgraph C − B − Z after replacing A
and B by •. For this reason, we have anonymity among {A,B} for {Z}.

The attentive reader might wonder why C would not see a difference
between sending a message to A or to B. Likewise, why should Z not notice
whether a network message has been received by A or by B? The short
answer is: the translation relies on advanced cryptographic primitives.
The detailed answer is given in Section II.4.2 (page 39).

(b) anonymity among {A,B} for {Z}

If A is active, i.e., the subgraph C − A − Z is selected, then also C must be
active. This is not the case, if B is active — in which case D would be active
instead of C. Hence there is no anonymity among {A,B} for {C} since C
always knows whether she is active or not. Formally, if C ∈ F , then the
two subgraphs C − A − Z and D − B − Z are not equal after applying the
substitution {]/D}{

•/A}{
•/B}.

However, we have anonymity among {A,B} for {Z}, since according to
Z’s (restricted) view, both options A and B are possible. Formally, the
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subgraphs C−A−Z and D−B−Z are equal after applying the substitution
{
]/C}{

]/D}{
•/A}{

•/B}. We stress that because of C < F , the substitution is
different from the previous substitution above.

(c) anonymity among {A,B} for {C,D,Z}

In contrast to case (b), the fact whether A or B is active is independent from
whether C or D is active. Formally, for the subgraph C − A − Z, there is an
equivalent subgraph C − B − Z (as in case (a)), and also for the subgraph
D − A − Z, there is an equivalent subgraph D − B − Z. In other words, the
fact that C is active does not mean that A (or B) is necessarily active. The
same holds for D.

(d) anonymity among {A,B} for {Z}

This case is somewhat different than the previous cases since for the nodes
in the top row, it is not true that B could act instead of A. However, at the
places where there is a choice between A and B, there will be no noticeable
difference for Z. Formally, the subgraph A−A−Z is equivalent to A−B−Z
after applying the substitution. ∗

II.4.2 Advanced Cryptographic Primitives and the Translation of
Anonymity

Digital signatures and encryption schemes preserve the integrity and the privacy
of data, respectively. In general however, these primitives do not suffice to
enforce anonymity specifications. For instance, a digital signature immediately
reveals the signer’s identity and a ciphertext may reveal the intended recipient.
We address these issues by deploying ring signatures [RST01, Her07, CGS07]
and broadcast encryptions [FN94, BGW05, BW06]. Interestingly, very efficient
cryptographic constructions exist for both primitives.

A ring signature preserves the integrity of the signed message but the signer
remains anonymous within a chosen group of people. More formally, the signer
first decides on the ring to be used. A ring is an arbitrary group of people
including the principal herself. She collects the (public) verification keys of all
ring members and her own signing key. The resulting ring signature reveals only
the fact that one person in the ring signed the message but does not reveal the
actual signer. Ring signatures are thus a salient tool to protect the anonymity of
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principals in the among-set when sending messages to principals in the for-set
(referred to as forward anonymity in the following).

More formally, given an anonymity specification (s,A,F ), whenever com-
munication takes place between a principal pA in A and a principal pF in
F , pA uses a ring signature where the ring consists of all principals from
A. We model ring signatures in the applied π-calculus with the constructor
rnsign(m,sk1,vk2,. . .,vkn) where (vki,ski) denotes the verification key/sign-
ing key pair of the i-th ring member. The ring signature verification destruc-
tor rncheck(s,vk1,vk2,. . .,vkn) succeeds and returns m if and only if it holds
that s= rnsign(m,sk1,vk2,. . .,vkn). Here, the first principal signs the message.
However, by extending the destructor reduction rules to handle permutations,
we allow the actual signer to occur on arbitrary positions. This is crucial in order
not to reveal the identity of the actual signer.

Dually, we use broadcast encryption schemes to protect the anonymity of prin-
cipals within the among-set when receiving messages from principals within the
for-set (backward anonymity). More precisely, given an anonymity specifica-
tion (s,A,F ), when a principal pF ∈ F communicates a message to a principal
pA ∈ A, then pF is required to use a broadcast encryption involving the public
encryption keys of all principals in A. This encryption ensures that the cipher-
text is addressed to the correct set of principals and that the same plaintext is
broadcast to all those principals. One might be tempted to simply require prin-
cipals in the for-set to issue one encryption for each member of the among-set.
A corrupted sender, however, could send only one encryption for a single prin-
cipal in the among-set thus exploiting a termination channel. Alternatively, the
sender could send different messages to different principals and then determine
the active principal’s identity by scrutinizing the output of a computation. In
principle, it is also possible to use zero-knowledge proofs [GMR89] to counter
the aforementioned attacks. However, broadcast encryptions entail a signifi-
cantly lower computational overhead while achieving the same goal: the sender
only creates one single ciphertext and the decryption will reveal if that cipher-
text was indeed addressed to the proper group of people. For instance, the
broadcast encryption scheme by Boneh, Gentry, and Waters [BGW05] requires
that the encryption keys of all among-set members be available: we model
broadcast encryptions with the constructor bnenc(m,ek1,ek2,. . .,ekn) where
(eki,dki) denotes the i-th principal’s encryption key/decryption key pair. The
decryption bndec(e,dk1,ek2,. . .,ekn) succeeds and returns m if and only if
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e= bnenc(m,ek1,ek2,. . .,ekn). As seen for ring signatures, the destructor is
applicable independently of the position of the party to actually decrypt the
ciphertext.

Additional Setup for Ensuring Anonymity

In order to provide a symbolic version of the advanced cryptographic primitives,
we need to enrich the set of constructors and destructors (see Section II.3.3,
page 33) as follows:
• constructors for broadcast encryption:

fun b2enc/3. fun b3enc/4. fun b4enc/5. (and so on...)

The arity is n + 1: we have n encryption keys and the payload.
• constructors for ring signatures:

fun r2sign/3. fun r3sign/4. fun r4sign/5. (and so on...)

The arity is n + 1: we have n signing keys and the payload.
• destructors for broadcast encryption (case for 3 parties only):

reduc b3dec( b3enc(x,ek(k1),ek(k2),ek(k3)), k1, ek(k2), ek(k3)) = x;

b3dec( b3enc(x,ek(k1),ek(k2),ek(k3)), ek(k1), k2, ek(k3)) = x;

b3dec( b3enc(x,ek(k1),ek(k2),ek(k3)), ek(k1), ek(k2), k3) = x.

It is important to notice that three rules are necessary to hide the position
of the principal who actually decrypts the payload.

• destructors for ring signatures (case for 3 parties only):
reduc r3check( r3sign(x,k1,vk(k2),vk(k3)), vk(k1), vk(k2), vk(k3)) = x;

r3check( r3sign(x,vk(k1),k2,vk(k3)), vk(k1), vk(k2), vk(k3)) = x;

r3check( r3sign(x,vk(k1),vk(k2),k3), vk(k1), vk(k2), vk(k3)) = x.

Again, it is important to notice that three rules are necessary to hide the
position of the principal who actually signs the payload.

Translation of the Example

Let us exemplify the notions of forward and backward anonymity and their trans-
lations to the applied π-calculus by considering the example from Section II.2
again:

Anonymity :
document ( 2 0 1 1 ) among { cust1 , cust2 } for { s u r v e y i n s t i t u t e }

document ( 2 0 1 1 ) among { mng1 , mng2 } for { cust1 , cust2 }

document ( 2 0 1 1 ) among { mng1 , mng2 } for { s u r v e y i n s t i t u t e }

41



II G2C — A Declarative Framework for Automated Protocol Design

For the first specification, as the customers never directly communicate with
the survey institute (see Figure 3, page 23), we do not take special precautions:
we assume that only principals listed in the for-set are corrupted and thus the
managers do not reveal the identity of the customers. Hence, the privacy of-
fered by standard encryption schemes is sufficient to conceal the identity of the
originator of a message.

The second specification requires the customers to use broadcast encryption
(backward anonymity): the manager will receive the input directly from the
customers who should not be able to distinguish one manager from another.
The simplified applied π-calculus code looks as follows:

Customer 1 :
. . .

new i n f o t o p i c 1 ; ( ∗ input ∗ )
out ( c , b2enc ( sign ( i n f o t o p i c 1 , s k c u s t 1 ) , ek mng1 , ek mng2 ) ) ;
. . .

Manager 2 :
. . .
in ( c , i n f o t o p i c 1 s e ) ; ( ∗ signed−then−encrypted ∗ )
l e t i n f o t o p i c 1 s = b2dec ( i n f o t o p i c 1 s e , ek mng1 , dk mng2 ) in
l e t i n f o t o p i c 1 = check ( i n f o t o p i c 1 s , vk cust1 ) in . . .

Since the customer is not required to remain anonymous for the managers, it is
sufficient for her to use a standard digital signature rather than a more involved
ring signature. Note that matching tags (see Section II.3.3) have been omitted
for the sake of readability.

The third specification demands that the survey institute does not learn which
manager collected the customer data (forward anonymity); the active manager
uses a ring signature such that the ring comprises all managers:

Manager 2 :
. . .
l e t document = c r e a t e d o c ( i n f o t o p i c 1 , i n f o t o p i c 2 , mng pwd) in
out ( c , enc ( r2sign ( document , vk mng1 , sk mng2 ) , e k s ur v e y i n s t ) ) ;
. . .

Survey I n s t i t u t e :
in ( c , document se ) ; ( ∗ signed−then−encrypted ∗ )
l e t document s = dec ( document se , dk surveyinst ) in
l e t document = r2check ( document s , vk mng1 , vk mng2 ) in . . .
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A combination of broadcast encryption and ring signatures is applied in the
straightforward way.

II.4.3 Validation of Anonymity in the Synthesized Protocol

To validate the correctness of a given anonymity specification, we use ProVerif’s
choice operator. Intuitively, this operator allows us to model two processes that are
structurally equal but differ only in certain terms. The resulting process is called
bi-process. We check that the attacker cannot distinguish the two executions in
such a bi-process. Therefore, we let all the principals in F be corrupted, i.e.,
we let them release all their secrets and let them take no further action. The
attacker can thus act arbitrarily on behalf of those principals. We then pick two
principals I, J fromA and construct a bi-process where one choice corresponds to
I’s code and the other corresponds to J’s code. The graph generation algorithm
ensures that the two processes are structurally equal (Section II.4.1) and that
they can hence be cast into a bi-process. As we verify an equivalence relation,
for each anonymity specification, we only consider a chain of relations and use
transitivity to obtain observational equivalence among all pairs of principals
inA.

Example 3 Let us consider the above case again: the two managers must remain
anonymous for the survey institute. Thus, we cast both managers into a bi-
process. The left process corresponds to manager 1 interacting in the protocol
and the right process corresponds to manager 2 giving input to the survey
institute. As the survey institute occurs in F , we assume it to behave arbitrarily,
and we hence let the attacker impersonate the survey institute. ∗

Manager 1+2:
. . .
l e t document = c r e a t e d o c ( i n f o t o p i c 1 , i n f o t o p i c 2 , mng pwd) in
out ( c , enc ( r2sign ( document , choice [ sk mng1 , vk mng1 ] ,

choice [ vk mng2 , sk mng2 ] ) , e k s ur v e y i n s t ) ) ;
. . .

Survey I n s t i t u t e :
. . .
out ( c , ( vk surveyinst , s k s u r v e y i n s t ) ) ;
out ( c , ( ek surveyinst , dk surveyinst ) ) ;
. . .
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The ProVerif code for the validation is automatically generated by the G2C
compiler for all principals and for all specified security goals.

II.5 Future Work

Drawing on ideas from the vast amount of existing work on authentication and
authorization [FGM07a, FGM07b, LGF03, ABLP93, LABW92], it seems conve-
nient to incorporate further features such as delegation and revocation mecha-
nisms, which are notoriously difficult to combine with privacy and anonymity
properties. This extension would naturally involve the usage of more so-
phisticated cryptographic primitives, such as zero-knowledge proofs (see Ap-
pendix A.3, page 237).

Declassification. A scenario generalizing the zero-knowledge proofs of Ap-
pendix A.3 can be captured by the following rule. Let f be some declassification
function computing a statement Spub from a given statement Spriv. Spub (in con-
trast to Spriv) is accessible by P′.

Spriv@P RP ` Spub ← f (Spriv)
¬may access(P′,Spriv) may access(P′,Spub) req(P′,Spub)

zk(Spriv,Spub,Spub ← f (Spriv))@P
Declass

The predicate zk(a, b, p) represents a zero-knowledge statement, where a is pri-
vate information, b is public information, p is a proof relating a and b. A symbolic
representation has been shown in [BGHM09], a sound instantiation in [BU08].

The access control policy could be extended by the following rule.

may access(P,Spub)

may access(P, zk(Spriv,Spub,Sproof ))
DeclassAC

Anonymity. One could extend the G2C specification language to comprise
anonymity specifications such as ‘avgsal(*) among { dave, eve } for all’
Intuitively, this means that no principal (except Dave and Eve) can see any
difference between two protocol executions in which either Dave or Eve are
involved — a notion that strongly corresponds to observational equivalence.
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Miscellaneous. Additionally, one could consider further security properties,
such as differential privacy: An extension of G2C towards the specification of a
formal semantics for the involved function symbols could be an interesting first
step. Moreover, supporting streams that trigger continuously repeated events
like ping events or keep-alive messages, as implemented in [LCH+05], constitute
an important challenge. Finally, it could be desirable to integrate well-established
specification and reasoning techniques such as temporal logic as it has been done
in [BDMN06]. Many security properties are already expressible in our language,
but we believe that the use of a well-established logic will further contribute to
the expressiveness and to the mathematical clarity of our language.

II.6 Closing Remarks

This chapter has presented the high-level goal-driven specification language
G2C, which offers support for the declarative specification of functionality goals
and security properties. G2C comes with an automated compilation technique
for transforming G2C specifications into corresponding cryptographic protocols,
using a combination of public-key encryption, digital signatures, broadcast en-
cryption, and ring signatures. The specified functionality goals as well as the
secrecy and anonymity properties are automatically validated using ProVerif.

In order to strengthen the synthesized cryptographic protocols, this thesis
contains two extensions that detect and prevent malicious behavior of cheating
protocol participants:

• Appendix A.3 (page 237) presents an extension of G2C that incorporates
non-interactive zero-knowledge proofs in order to strengthen the correct-
ness of computations performed by compromised principals. By requiring
a correctness proof for each computation, the recipient of a computed
statement can convince himself of the statement’s correctness — if desired
even for all previously computed statements. The class of computations
is restricted to a number of predefined functions, which can be extended
towards arbitrary functions inNP (see Chapter V).

• Chapter IV presents a homomorphic message authentication code for the
evaluation of arithmetic circuits in untrusted environments. This cryp-
tographic primitive allows for performing computations over outsourced
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data and thereby creates very efficient and succinct correctness proofs that
can be verified in amortized constant time. A G2C computation node run
by a potentially malicious principal hence produces a proof of correctness
and passes this proof (together with the computation result) on to the next
principal who uses the result and verifies the proof.
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Chapter III

The
SAFE Activation Framework
for Extensibility

This chapter presents a novel method for enabling fast development and easy
customization of interactive data-intensive web applications. The approach is
based on a high-level hierarchical data-centric programming model that results
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in a very clean semantics of the application, while, at the same time, it provides
well-defined interfaces for the customization of application components.

The model considers web applications with client-server architecture in which
client and server communicate using the Hypertext Transfer Protocol (HTTP), or
its encrypted variant (HTTPS). The security model assumes an attacker trying
to individually compromise clients (e.g., inject malicious values in order to alter
SQL queries, tamper with session cookies, etc.), servers (e.g., fake the identity
of some honest user and authenticate), or both at the same time. An attacker
might eavesdrop and tamper with the communication between client and server
(e.g., classical man-in-the-middle attacks trying to impersonate one of the two
parties).

This chapter presents SAFE, the “Safe Activation Framework for Extensibil-
ity”, a declarative framework for (a) securely composing data-driven web ap-
plications out of independent and mutually untrusted components, and (b) for
personalizing the resulting applications in unforeseen directions. SAFE comes
with a comprehensive implementation, an installation wizard, a useful tool suite,
and a detailed user manual. The latest release of SAFE with additional informa-
tion is available online at http://www.safe-activation.org.

Chapter Outline

Section III.1 introduces the realm of web applications, in particular regarding
cloud-based services with focus on extensibility. Section III.2 (page 54) describes
our novel hierarchical programming model and shows techniques for client-
server consistency, personalization, and security. Section III.3 (page 69) details
interesting implementation aspects of SAFE. Section III.4 (page 74) proposes a
formal extensibility model for general app ecosystems and provides an instan-
tiation to specific web applications in SAFE. Section III.5 (page 113) outlines
our initial experiences with SAFE and discusses related work and future ideas.
Section III.6 (page 120) concludes the chapter.
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III.1 Introduction

More and more software is delivered through the web, following today’s cloud
idea of delivering Software as a Service (SaaS). As opposed to pure desktop ap-
plications, where code is locally executed at the client, the code of such Rich
Internet Applications (RIAs) is split into client and server code, where the server
code is run at the service provider, and the client code is executed in the client’s
web browser [FCBC10]. The state of such data-driven web applications re-
sides in a distributed database system (or in a key-value store), where users
interact with this persistent state through their clients, thereby obtaining local
partial copies of the application state. This chapter proposes a comprehen-
sive framework for securely composing such data-driven web applications out
of independent and mutually untrusted components, and for personalizing
the resulting applications in unforeseen directions, i.e., users have the capa-
bility of customizing the functionality of a RIA to fit their unique application
needs [ADI12, HN12, TWC12, FL11, TGLP10, JHB10, KKPV09, MP08, JTD06].

As a first example for customizations, consider Facebook user Mark, who
no longer likes a single news feed for all of his contacts; Mark wants to split
the news feed into two columns, one for his friends and one for his business
contacts. Today, Mark would have to wait (and hope) for Facebook to create
this functionality as part of an upgrade of its interface. We envision a world in
which this extension shall not be delivered to each client as a browser plugin,
but instead shall be part of Facebook’s service so that Mark could take the
initiative himself; he could directly “program” this extension and integrate it for
himself into the running Facebook application. Mark could also provide this
extension as an “App” to other users who desire the same functionality. Note
that this is not a “Facebook Application” as enabled by the Facebook API, but
it is a customization of the core user-facing Facebook functionality through a
user-defined extension. Moreover, such a customization shall be deployable in
different contexts, e.g., in other social networks, on different news feed sites, or
on different picture collection sites. If Facebook was built using the presented
framework, such personalization could happen today.

As a second example, consider a conference management system such as
Microsoft’s Conference Management Tool (CMT). From time to time, the team
behind CMT introduces a new feature that has been long requested by the
community (see, for example, the features currently marked “(new!)” on the
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CMT website [Mic14]). None of these extensions are difficult to build, but today
any changes are only within the realm of the CMT developers. In addition,
due to limited resources, the team only incorporates extensions requested by the
majority of users and thus forgoes the opportunity to serve the long tail. For
example, consider Rick who wants to run his conference with shepherding of
borderline papers. Currently, Rick has to wait and hope that the CMT team
considers his functionality important enough to release it as part of its next
upgrade. However, we believe that innovation and integration of such new
functionality can be significantly increased if Rick could directly take initiative,
program the extension himself, and then share it with others in the research
community who desire similar functionality. Thus we want custom extensions
to be built by any member of the community instead of being left only to the
CMT team.

In both of these examples, personalization of an existing data-driven web ap-
plication by a third party who was not the developer of the original application
is the key to success. Note that personalization not only benefits the user who
programmed it; an extension could later on be shared with other users, making
the application automatically an “extension app store” where users can (1) run
the RIA directly as provided, (2) personalize it with any set of extensions de-
veloped and provided by the community, (3) personalize it themselves through
easy and well-defined user interfaces, and then (4) share or sell their extensions
to the community.

The tremendous benefits of personalization also come with huge challenges.
First, the often organic growth of today’s RIAs makes it hard to keep track of the
diversity of locations to which code has to be integrated, thereby obeying various
security and safety constraints regarding, for instance, namespaces and asser-
tions. This dispersion of code “all over the place”, which is exacerbated by the
integration of different programming models and languages for the client and
server, makes it hard to bundle functionality for replacement through personal-
ization. But since developers cannot anticipate all possible ways of extending
an application, how do we design a web application with respect to abstraction
and modularity such that future extensions are easy to integrate? Second, the
code of the extensions will have to be activated, it may have to pass data back
and forth with other application components, and it requires access to the state
of the application in the database. How do we address the security concerns of
integrating such untrusted code into a running web application?
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This chapter presents SAFE, a framework for the development of extensible
data-driven web applications which addresses, among others, the aforemen-
tioned visions and their challenges. We start with a brief overview of SAFE’s
features before introducing the details of SAFE in Section III.2.

Design for Personalization

SAFE structures data-driven web applications into a hierarchical programming
model inspired by Hilda [YSR+06, YGG+07]. Functionality is clustered into so-
called f-units that contain all the relevant code to implement the self-contained
and independent components of an application. The control flow of an applica-
tion has a clean hierarchical semantics: An f-unit is activated by its parent f-unit
and becomes its child resulting in a tree of activated f-units. This so-called acti-
vation tree naturally corresponds to the hierarchical DOM structure of an HTML
page. There are two well-defined points of legitimate information flow for an
f-unit: Its activation call, through which the f-unit was activated by its parent
f-unit, and queries to the database where the state of the application is stored. A
user who would thus like to personalize an application simply has to replace an
existing f-unit with a new f-unit of her choice or design. Such customizations are
dynamic in that f-units are registered and activated without stopping the running
system. Such dynamic software updates (DSU) avoid costly unavailabilities of
the running system [SHM09, GJB96].

SAFE has a security model that is tailored to the integration of untrusted
code by splitting the code of an f-unit automatically between client and server:
database queries specified by a programmer will never appear in the client
code, sanitization of user-provided query values is automatically executed on
the server to prevent SQL injection attacks, and event handlers for asynchronous
update requests always end up in the client. Additionally, SAFE contains a refer-
ence monitor which takes care of all low-level details such as secure registration
of f-units, the enforcement of access control, and the verification of user actions
and requests received from the client.

The f-units in SAFE can be thought of as classes, usually known from tra-
ditional object-oriented programming. Classes provide an elegant way of ab-
straction and modularity for many different functionalities. Achieving such
modularity in interactive web programming, however, is much harder: there
are several different languages (for example, HTML, PHP, Java, JavaScript, SQL,
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CSS) providing different data models for the different application layers (e.g.,
the relational model for databases, Java objects for the application logic, hyper-
links for website structure, and form variables for web pages). This huge variety
makes it hard to achieve modularity since fragments of different languages are in
different parts of the source tree of the composed application. Usually, a single
JavaScript command like include(’moduleA’) is not sufficient. Assume, for
example, moduleA is responsible for displaying some <div> elements which
are supposed to appear only two seconds after the main HTML page has been
loaded. In this case, a (possibly already existing) global event handler for onload
events of the entire document has to be modified (or created) accordingly. Typ-
ically, such an event handler is a named JavaScript function, referenced in the
<body> tag of the main HTML page: <body onload=’pageLoaded()’> . The
JavaScript function pageLoaded() is uniquely declared at some other location,
most likely in the <head> area of the HTML page. This declaration has to be
updated if moduleA needs some actions to be performed when the page has
been loaded; some lines of JavaScript code have to be added to the body of the
function. For different languages, for example for PHP or SQL, the integration
of new functionality is again different. Another difficulty in the integration of
new functionality is to ensure that namespaces of different pieces of code do not
interfere. Assume that we have two code fragments A and B which each have
an HTML element with id studentList and corresponding CSS specifications.
A namespace concept might automatically separate the CSS for A from the CSS
of B . Otherwise, we would have to take care manually in order to resolve the re-
sulting conflicts. As part of its hierarchical programming model, SAFE provides
solutions to address all of the aforementioned problems.

Client-Server Consistency

Modern interactive web applications give the user a feeling of locally executing a
fully-fledged software binary by letting the client asynchronously communicate
with the server in the background. The typical way of implementing such
asynchronous behavior is through event-driven programming at the client. One
challenge when writing the client-side code is that the state of the application
at the client can be different from the state at the server, since other clients
simultaneously connect to the same application and may modify the state of the
system at the server, for example when one user updates a data item that another
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user is currently displaying. To avoid inconsistent states and data updates, the
programmer would have to include all kinds of manual consistency checks,
which is error-prone and cumbersome. SAFE alleviates the developer from
this burden by making consistency checks a first-class citizen in the model,
providing an easy to use SQL-based declarative state monitoring interface
that automatically derives the necessary checks. SAFE automatically compiles
the developer code to safe state transitions which cleanly abstract concurrent
updates into standard serialization semantics known from the interaction with
databases.

Ease of Development

SAFE also includes many different mechanisms for minimizing the amount of
low-level code a developer has to write, check, and maintain.

(1) Programs in SAFE are written in SFW (“secure forward”), a novel high-
level programming language that abstracts away many low-level code frag-
ments through appropriate high-level statements. For example, it is often cum-
bersome to specify explicit loops and to iterate over the objects of a particular
data structure thereby struggling with implementation details like counters,
pointers or break conditions of the surrounding loops. SFW contains high-level
constructs for many of such commonly re-occurring patterns. Example of SFW
code snippets will be presented from time to time during this chapter (e.g., in
Figure 9 on page 60, in Figure 47 on page 253).

(2) One of the design principles of SAFE is exemplified in that SFW is not the
invention of a new language, but rather the creation of a framework to encom-
pass existing languages. SAFE thereby addresses one of the most challenging
technical difficulties in providing usable, secure, and extensible mechanisms for
web application development, namely that clients and servers internally com-
municate in different languages: clients need to receive code that can be rendered
in a browser (e.g., HTML, JavaScript, CSS, Flash), whereas servers take client re-
quest and use script interpreters for server script languages (e.g., PHP), database
query languages (e.g., SQL), and file system operations. SFW supports the full
expressiveness of these traditional web languages, but allows for shorter, yet
semantically precise shortcuts that significantly reduce the amount of code a
developer has to write. Developers shall immediately feel comfortable in using
the languages they have been using for decades, but in a more convenient and
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better coordinated and synchronized manner.

(3) Web application developers usually have to know about other elements
in the DOM tree in order to ensure that all elements have pairwise unique IDs,
and other elements are correctly addressed, e.g., whether an element has the
innerHTML property or the value property instead. SAFE’s modularization
enables a decentralized view on the entire application and fosters local under-
standing by ensuring that developers only need to care about the local elements
of the corresponding f-unit. For example, SAFE ensures that the variable scopes
of different f-units never interfere (data separation), but at the same time, con-
trolled information exchange across f-units is made possible (data sharing); all
HTML IDs in an application are automatically made unique, etc.

(4) Today, a lot of similar event-driven code for asynchronous server requests
has to be written. However, the code for the update of an exam grade in a
course management system is not much different from the code of updating the
matriculation number of a student. In the spirit of DRY (Don’t Repeat Yourself),
as in Ruby on Rails [Han14], SAFE requires the developer to specify information
and code at most once. For example, the code for the initial rendering of an f-unit
is also used later to provide partial updates of modified data. No complicated
event handlers have to be specified to rebuild certain elements in the browser’s
DOM tree.

(5) Another feature to reduce the amount of hand-written code is the paradigm
of convention over configuration: SAFE decreases the number of decisions a
developer has to make by establishing useful conventions on parameters and
names of variables.

III.2 SAFE

This section introduces the constituting building blocks of SAFE. We first in-
troduce our application model (Section III.2.1), then we show how to handle
updates to the application state (Section III.2.2), how to achieve extensibility
(Section III.2.3), and how to ensure security (Section III.2.4). Each of these sec-
tions concludes with a small example showing how the described functionality
is specified using SAFE. The latest release of SAFE with additional information
is available online at http://www.safe-activation.org.
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Figure 6: An f-unit integrated in its environment.

III.2.1 Application Model

SAFE provides a hierarchical programming model which naturally builds upon
the hierarchical DOM structure of web pages. The most constitutive components
in SAFE are its so-called f-units (see Figure 6 for an illustration). An f-unit
clusters all code fragments for a specific functionality within a web page, in-
cluding the business logic, the visual appearance, and the interaction with users
and other f-units. This clustering provides a clear level of abstraction through
well-defined interfaces for each f-unit. The modularity of an f-unit relieves the
programmer from struggling with the scopes of variables and their (possibly
undesired) interference.

As a result, this abstraction provides an elegant way of composing web pages
out of several different and independent f-units. A web page is modeled as a
so-called activation tree (inspired by Hilda [YSR+06, YGG+07]) in which f-units
are organized hierarchically. Figure 7 shows an example of an activation tree
with its corresponding HTML code. A node in the activation tree corresponds
to one or more nodes in the HTML DOM tree.

The integration of an f-unit F in the activation tree is referred to as activation
of F (step 2 in Figure 6). More precisely, an f-unit is activated by its parent f-unit
and thereby receives activation data through its interfaces. The f-unit can use the
activation data (or data obtained directly from the database through database
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Figure 7: Activation tree and its corresponding web page.

queries) to render parts of the web page. Finally, an f-unit can activate other
f-units, its child f-units (step 3 in Figure 6).

Activation comes in two kinds: (1) In the example in Figure 7, the root f-unit
performs static activations of the f-units A and D . These activations are not
data-driven, they are independent from the f-unit’s data. Assume, for instance,
that f-unit A represents a table. The developer might always wish to display the
headline of the table, hence independently from whether there are entries in the
table or not. (2) F-unit A , in contrast, performs dynamic activations of f-unit B .
The dynamic activation of child f-units is data-driven in that (a) the number of
activated instances corresponds to the number of items from the activation source,
e.g., from a database query, and (b) the activation parameters passed to the i-th
activated instance contain exactly the i-th data item from the activation source.
For example, if the result of a database activation query consists of n rows, then
n instances of B will be activated dynamically, one instance for each row ri. Child
f-unit i obtains row ri as activation parameters. The activation of C in f-unit
A is again static. This f-unit could, for instance, display a row summarizing
properties of the rows above.

Activations are expressed through activation calls in our high-level modeling
language SFW, which is a straight-forward extension of HTML: all HTML ele-
ments and also PHP and JavaScript can be used as in traditional web application
development. Activation calls are at the core of SFW and can as such be used in
any HTML context.
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Example 4 The static activation of f-unit A in f-unit Root as shown in Figure 7
is expressed by the static activation call

<a c t i v a t e :A( initParam 1 , ini tParam 2 , . . . ) />

where initParami are static activation parameters, i.e., values to flow from
Root to A . For this static call, one instance of A is activated independently from
the content of the activation parameters. The dynamic activation of f-unit B ,
however, results in activated f-unit instances only if the result of executing the
specified activation query is not empty:

<a c t i v a t e : B ( initParam 1 , ini tParam 2 , . . . ) query= ’SELECT . . . ’ />

More precisely, for each returned tuple (v1, v2, . . . , vk), one instance of f-unit B
is activated with the dynamic activation parameters (v1, v2, . . . , vk). Instead of
specifying a database query, it is also possible to provide an array of key/value
pairs. Each such pair results in one activation with the particular values. All
code for the preparation of an activation, e.g., setting up an activation array, is
enclosed in the activation tag:

<a c t i v a t e : B ’ ( initParam 1 , ini tParam 2 , . . . ) array=$tmp>
. . .
$tmp = add to array ( $tmp , . . . ) ;
. . .

</ a c t i v a t e >

∗

Whenever an instance of an f-unit is activated, the corresponding compiled
HTML/JS/CSS code is made available in the activation tree. Eventually, the acti-
vation tree is linearized to a single HTML document by transforming subtrees to
nested HTML elements (Figure 7). After the activation tree has been constructed,
the corresponding code for HTML/JS/CSS is sent to the client (step 4 in Figure 6).

III.2.2 Data Updates

Recall that web applications nowadays are not static pages: they contain a lot
of reactive code for event-driven modifications of the overall application state.
SAFE’s methodology to automatically handle such updates and to maintain state
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consistency, also for concurrent updates, is explained in the following.

Assume the client’s browser interacts with the delivered HTML page and
eventually sends some update request back to the web server (step 5 in Fig-
ure 6). The corresponding f-unit in the activation tree processes this request by
generating a database query q, for which SAFE automatically verifies various
safety and security properties. These include checks for state consistency, access
control, and prevention of code injection as well as cross site scripting. After
the query q has been executed, SAFE automatically triggers all f-unit instances
in the activation tree that have an outdated state due to the execution of q. The
outdated f-unit instances are then rebuilt, the rebuilt versions of the instances
are sent to the client, and finally the client’s DOM tree is updated accordingly.
Conceptual details on data updates from the clients are presented on page 71
in Section III.3.1; the technical details on the refresh process of outdated f-unit
instances is provided on page 93 as part of Section III.4.5, an SFW code example
of data update queries is shown on page 253 in Figure 47.

SAFE alleviates the developer of an f-unit F from taking care of the freshness
of its state: while F is updating the application state, the developer does not need
to check the consistency with other f-units or against the database. Moreover,
the developer does not have to provide code for partial updates of any f-units
in the tree. The developer only specifies the update query q that is supposed to
be executed for some event attached to an element in F . Let us explain how this
works through the following example.

Example 5 Figure 8 shows parts of a conference management tool. The upper-
most code box shows a code fragment of the specification of the f-unit Review
in our modeling language SFW. The f-unit contains – among other elements –
a form and an input element with an onclick event. This event is fully spec-
ified by a database query and a Boolean check function checkForm . Loosely
speaking, upon a click, SAFE executes the specified query against the current
database state if (1) the execution of checkForm(formID) evaluates to true, and
(2) SAFE has verified that the query is safe, i.e., the query is not based on an
outdated state. The formID is an automatically derived identifier for this form,
which is unique in the activation tree and hence also in the HTML DOM tree.
The developer can specify the check function arbitrarily, or just omit it and solely
specify the query. The technical parts in the transition of steps 5 to 8 are not
relevant for the semantical model, and hence explained in Section III.3. ∗
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Figure 8: Update of the application state.

SAFE executes the query (step 5 to step 8) and computes a difference ∆ to the
previous database state. Based on this difference, SAFE automatically triggers
the corresponding f-units in the current activation tree and tells them to update
their state if necessary (step 9). To this end, f-units can subscribe to database
differences: f-unit F can specify a so-called subscription function sub F (∆) in
order to receive a notification whenever sub F returns non-empty results for ∆.
All coarse-grained dependencies between f-units are automatically inferred. We
refer to page 71 in Section III.3.1 for implementation details on client updates,
to page 72 in Section III.3.2 for details on the difference, in particular for de-
tails on concurrent updates, and to 93 in Section III.4.5 for technical details on
dependencies and automated freshness of f-unit instances.
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    ...
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update screenshots (c) 

Figure 9: (a,b) SFW code for two f-units, (c) screenshot of the representation in a
web browser.

Example 5 (continued). Assume an f-unit dynamically activates a list of reviews,
each specified as f-unit Review (Figure 9a). Furthermore, let there be a static
activation of one instance of f-unit ReviewStatistics (Figure 9b). A screenshot
of the representation of one such review in a browser is shown below the SFW
code (Figure 9c). Most notably, this example shows the concise and elegant
way of a specification of web application code in the modeling language SFW:
Values obtained from activation calls <activate...> or from simple queries
<query...> are accessible with the prefix $@ (e.g., $@id , $@submissionId ),
and form values are accessible via the prefix $# (e.g., $#grade ).

The blue arrow highlights the data dependency between the update query in
review.sfw and the select query in reviewstatistics.sfw . According to such
dependencies, SAFE automatically triggers the f-unit to refresh whenever a data
update might lead to an inconsistent state. In this case, an update of a review
issued by Review would cause ReviewStatistics to be refreshed. (Even if
ReviewStatistics has not specified any subscription function, SAFE automati-
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cally triggers the f-unit based on the database columns that have been read upon
ReviewStatistics ’s most recent activation.) The simple subscription functions
com and acc for Review as shown in the last section of the interface in Figure 11
achieve more fine-grained control: The result of com contains any update that
affects the comments ( SELECT comments ) of the reviews ( FROM reviews ). The
result of acc contains any review information ( SELECT * ) for updated reviews
( FROM reviews ) with a negative grade prior to an update ( BEFORE grade<0 )
and a positive grade afterwards ( AFTER grade>0 ).

We stress that the example shows simplifying syntactic sugar for SQL queries
that are typically more complicated. SAFE translates the extended SQL syntax
to standard SQL code and creates the corresponding triggers. ∗

III.2.3 Customization via Extensibility

As briefly mentioned before, customization refers to the action of modifying
existing web applications by non-application-developers. If such modifications
are based on personal preferences and are different for each individual user, we
sometimes refer to customization as personalization. If the modifications exceed
the scope of previously foreseen directions, where the applications are extended
by new components to provide new functionality, we refer to the integration of
such extensions as extensibility.

Extensions of a running system towards functionality, style, and data might be
provided by untrusted third parties. Moreover, these parties may not know each
other, may not communicate with each other, and may hence not rely on each
other. We therefore require that there be no (temporal) dependencies between
extended functionality. For instance, two extensions (e.g., a search engine and a
messaging app) shall be integrated in an existing app ecosystem, independently
and after each other, but they should still team up (e.g., the search results shall
include sent messages) in a secure and reliable manner. The search engine
component shall neither have to know that the messaging component exists, nor
shall it rely on the existence of a messaging component. Dually, the messaging
component shall not assume the existence of a search engine component.

We assume a hierarchy of principals as depicted below. A single service
provider (e.g., the IT service of a university) offers a global software service (e.g.,
a university-wide course management system) to be used by a certain set of
people (e.g., the members of the university faculties). The service is complete in
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that all basic functionality is deployed (e.g., adding students, assigning students
to courses, updating grades, etc.). Moreover, we assume that security policies
are implemented correctly (e.g., only eligible staff is allowed to access grades,
students cannot learn other students’ grades, etc.).

Service Provider
Customizers

Clients
Users

Whenever the service shall be tailored to individ-
ual requirements, customized functionality is imple-
mented by the customizers (e.g., the department of
philosophy, or the law school). These customizers can
either add new functionality to the system or person-
alize existing functionality. We assume that such modifications are not in the
interest of all users of a system, but for a subset of them. The sports department
might integrate an e-commerce shop for their students to purchase corporate
sports clothing, which the law school might not need. But instead, the law
school is running a small library that shall be integrated in the system.

The clients are devices (e.g., desktop computers, tablet PCs, smartphones,
etc.) that can interact with the original service or with customizations thereof.
Customizations can be seen as “apps” that can be installed for a client. Following
the “software-as-a-service” paradigm, these apps are not installed on the client
machines, but are integrated to the main service on the servers of the service
provider.

Finally, users are authenticated clients. For instance, a student might use a
desktop computer of the law school to check his class schedule. He authenti-
cates with his student ID, and sees the customized user interface the law school
provides. Customization is hence related to clients rather than to users. This,
however, is not a restriction as customization can also be applied to users (in
terms of personalization) so that users can choose customizations themselves.

SAFE implements customization by first providing an abstraction mechanism
to cluster functionality into independent self-contained f-units, second, by provid-
ing an extensibility environment in which the f-units can be integrated, and third,
by replacing some of the initially specified f-units with similar, yet different,
f-units at runtime, i.e., by activating an f-unit G instead of an initially specified
f-unit F . In other words, in the activation tree, the node initially representing F
is replaced by a different node for G .

More formally, customization is a substitution σ : U|T → U mapping f-units
U|T in the activation tree T to other f-unitsU.
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Figure 10: Customization σ.

Example 6 Consider the customization σ = [ A 7→ A’ , D 7→ D’ ,u 7→ u] as shown
in Figure 10. The initial activation tree (left) is transformed to the customized
activation tree (right): F-unit A is replaced by f-unit A’ which activates only
two instances of B (e.g., because A’ uses a different activation query for B ).
Furthermore, f-unit D is replaced by D’ which additionally activates a single
instance of f-unit E . ∗

This example demonstrates how new functionality is integrated in a web
application. Moreover, it shows that customizations not only affect single f-
units, but instead they affect entire subtrees. As an f-unit consists of code for
business logic, visual appearance, and data, customization in SAFE is more than
simple changes in the visualization of a web application. Customization hence
goes far beyond modifications of background colors or font sizes. Therefore,
however, it is unavoidable that customization imposes security and stability
risks: there are new attack vectors for malicious users who might try to silently
introduce functionality that collects sensitive user data, or that paves the way for
the execution of arbitrary code on the host machine or in the client’s browsers.
Stability can suffer damage due to software bugs in the business logic of new
f-units, or due to the removal of necessary f-units from an application.

In an implementation in practice, users can individually specify customiza-
tions and provide them to other users within the community. System providers
may approve every such customization in order to assess the aforementioned se-
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curity and stability issues. SAFE manages customizations using cookies that are
stored in the client browsers. The cookies do not store the mappings themselves
but references to the mappings. The mappings are stored on the application
servers. By this means, SAFE provides a simple method to share customizations
between different clients and users. SAFE assists the system providers with
various mechanisms for automated analysis, enforcement, and verification of
customizations (see below).

The domain of a customization σ should only address the actually intended
f-units in the activation tree: a general customization σ1( B ) = B’ would affect
four f-units in the left activation tree in Figure 10. A more specific customization
σ2( Root.D.B ) = B’ would only affect one f-unit. The domain of a customization
for a specific f-unit u ∈ U|T might hence take into account a (partial) path from
the root f-unit down to u. The reference to u can be considered as an address
pattern that has to match a path in T . The leaf of the path Root.D.B is matched
by the address patterns B , D.B , and Root.D.B .

All customized f-units u′i in a customization σ3(ui) = u′i are called with the
same activation parameters as the initial ui. This is necessary at least for the
following two reasons.

(1) achieving modularity: the parent f-unit vi shall not have to know whether
it should activate ui or u′i . SAFE ensures that the intended f-units are
activated. In other words, vi shall not be affected by a customization of any
of its child f-units.

(2) tracking information flow: it is more accurate and more convenient to reason
about information flow if information is propagated only in a well-defined
top-down direction in the activation tree.

More details on the topic of customization, in particular on extensibility, are
presented in Section III.4, starting on page 74.
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Two different data models. This thesis discusses two conceptually different
approaches to extensibility: the global data model and the local data model. The realization
of extensibility differs in both models — in particular with respect to functionality and
security. We will point the reader’s attention to the corresponding differences whenever
applicable. The fundamental difference lies in the way how f-units are granted access
to the database.

In the global data model, there is a single and global database. Every f-unit has
access to this database as specified in the individual f-unit interface files. The access
specifications be verified by the system provider upon integration. The specified access
is dynamically checked at runtime by a reference monitor to enable only legitimate
data queries. To this end, f-units have to authenticate themselves against the reference
monitor. The approach is comparable to the permission system of the Android OS, in
which every app has its own manifest file containing a set of permissions [Goo14b].
Benefits (and drawbacks at the same time) of this data model are the easy ways of
exchanging information across f-units. However, adding new f-units that require new
tables, new data fields, and new data requires a careful procedure and possibly manual
intervention.

In the local data model, each f-unit carries its own data, completely isolated and
independent from the data of other f-units. Every f-unit defines its own tables and
also relations between the tables. In order to share information across f-units, SAFE
establishes a wiring between the tables of different f-units. Every f-unit can expose
data to other f-units (via output tables) and can expect data from other f-units (via input
tables). The disclosure of information is context-sensitive, i.e., access control policies
can depend on the user who is currently logged in. For instance, an f-unit might only
expose data to friends of the currently authenticated user. The property “friends” is
highly dynamic and might be specified by some other f-unit’s data.

The details of the two models with some of the interesting conceptual and technical
consequences are explained during the remainder of this chapter. Section III.4, in
particular, focusses on extensibility in the local data model.
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III.2.4 Security

Security in SAFE is interrelated with the facilities of f-units to communicate with
the environment. Communication mainly governs the leakage of confidential data
(outbound communication) and the intrusion of malicious code and backdoors
(inbound communication). There are five ways for f-units to send and receive
data processed by the f-units or used to activate other f-units:

1. An f-unit can receive data from its parent f-unit upon activation through
the activation parameters (step 2 of Figure 6 on page 55).

2. An f-unit can activate other f-units and thereby send information to the
activated f-units, again via activation parameters (step 3).

3. An f-unit can have direct access to the database for both reading and writing
data (steps 6 and 9).

4. An f-unit can interact with the client by receiving and answering requests
(steps 5 and 10).

5. And finally, an f-unit can interact with third party hosts and services, for
instance, when embedding Google Maps containers or Facebook iframes .

We will discuss all five ways in the following.

Information Flow and Data Handling

In order to reason about the aforementioned information flow in a web applica-
tion, each f-unit F needs to declare an interface int F . A sample interface for the
uppermost f-unit of Figure 9 to display a single paper submission in a conference
management system is shown in Figure 11: Upon activation, the f-unit expects
a reviewer ID as static activation parameter and also a number of dynamic activa-
tion parameters, such as the review ID, the submission id and title, comments,
and a grade (see Example 4 on activations and the parameters, page 57). The
f-unit activates two child f-units, FooBar and FooBaz , with two and zero static
activation parameters, respectively.

Communication with external servers – both sending and receiving data – is
listed for review by the system provider to decide whether to integrate the f-unit
or not. In contrast to the sections INPUT and ACTIVATION , the information in
EXTERNAL COMMUNICATION is not binding, i.e., SAFE performs no runtime checks
whether an f-unit obeys to what is specified in the section on external commu-
nication. Instead, this information is automatically derived by the compiler and
serves more as statistical information about the f-unit in question.
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1 INPUT :
2 s t a t i c = ( reviewerId )
3 dynamic = { id , submissionId , t i t l e , comments , grade }
4

5 ACTIVATION :
6 1 : FooBar ( 2 )
7 2 : FooBaz ( 0 )
8

9 EXTERNAL COMMUNICATION:
10 Tota l number of tags : 31
11 Tota l number of v a r i a b l e s sent ( out ) : 0
12 Tota l number of forms : 1
13 Tota l number of d i s t i n c t paths ( in and out ) : 0
14 Tota l number of URIs sending information ( out ) : 0
15 Externa l connect ions : 0
16 Externa l s e r v e r s : 0
17 Paths from l o c a l h o s t : 0
18

19 DATABASE:
20 read = { reviews . id }
21 write = { reviews . comments , reviews . grade }
22

23 SUBSCRIPTION :
24 com : SELECT comments FROM reviews
25 acc : SELECT ∗ FROM reviews WHERE
26 BEFORE grade<0 AND
27 AFTER grade>0

Figure 11: Sample f-unit interface for the f-unit shown in Figure 9 on page 60.
The sections INPUT and ACTIVATION correspond to the steps 2 and
3 in Figure 6. The sections DATABASE and SUBSCRIPTION are only
relevant in the global data model and correspond to steps 6 and 9,
respectively.

In the global data model, all database connections of an f-unit are specified in
the f-unit’s interface (lines 19 to 21 in Figure 11). This specification restricts the
access of an f-unit to the specified tables and its columns. For example, the f-unit
in Figure 11 may read the column id of table reviews , and it may update the
columns comments and grade . All mentioned tables are assumed to exist in a
global pool of tables.

In contrast, in the local data model, there are no a-priori tables. Instead, every
database table is created on behalf of an f-unit upon its integration. Every f-unit
declares its own database tables in an individual database file (see Appendix B.1
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on page 242). The database file does not contain restrictions to predefined
global tables (as done in the global data model), but instead it specifies the exact
definitions of the tables belonging to an f-unit. The specified tables will then
only exist in the scope of the specifying f-unit, other f-units do not see (and
hence cannot access) the specified tables.

Due to its very nature, exchange of information across f-units is straight-
forward in the global data model. Information flow between f-units occurs
without explicit specification: for f-units A and B to communicate, it is suffi-
cient that both f-units have access to at least one shared table. While it seems
convenient at first glance, this approach bears the risk of unintended information
flow (due to bugs or malicious behavior). Furthermore, if extensibility requires
new tables to be created, it is unclear how to come up with appropriate table
definitions, and also which developer should be responsible for setting up the
new tables.

In the local data model, the risks of the implicit sharing of database tables
between f-units is ruled out by design: every f-unit has access to its own ta-
bles only. Whenever sharing of data between f-units becomes necessary, SAFE
provides explicit mechanisms for collaboration, so-called wiring mechanisms, as
discussed in Section III.4.5.

To avoid stale and outdated states in the global data model, the fine-grained
subscription functions as introduced in Section III.2.3 can be specified through
the interface. The local data model does not require such subscriptions since
an automatic detection of dependencies is extracted from the explicit wiring
between f-units.

Access Control for F-units

SAFE inspects the interface int F and the database file (in case of a local data
model) at the initial registration of f-unit F in the web application. The service
provider, who is running the service, has to decide whether the specified interface
is appropriate. If so, cryptographic credentials are hand out to F (step 1 of
Figure 6) and int F is translated to corresponding access control constraints. From
this point on, F is allowed to read and write the specified database columns after
authenticating using the provided credentials. The access to any other table or
column is not permitted.
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We stress that any user data (e.g., login credentials, names, and related access
control policies) are dynamic objects of a web application. These first-class
citizens are part of the content of the web application and are therefore stored
in the database, managed by the f-units. SAFE only manages access control
for f-units. Access control for user-related content must be modeled by the
developers, as ever before. However, SAFE provides useful abstractions for the
authentication of users and ensures an extensible level of access control. For
instance, every data items stored in the database is “owned” by the user who
initially created the data item, and by the f-unit that is responsible for storing
the item. No other user (and no other f-unit) can modify the data item (unless
explicit data sharing is negotiated). See Section III.4.3 starting at page 79 for
more information on data separation and data sharing.

Access Control for Customized F-units

In order to ensure access control also for customized f-units, we define interface
int F to be at least as restrictive as interface int G for f-units F and G , denoted by
int F � int G , if the following conditions hold.

(INP F ∪ DBR F ) ⊆ (INP G ∪ DBR G )

DBW F ⊆ DBW G

ACT F ⊆ ACT G

The sets INP F , DBR F , DBW F , and ACT F represent the data items accessed through
activation input, database READ, database WRITE, and activation calls for f-unit
F . A customization σ is called safe if ∀u ∈ U : intσ(u) � intu. SAFE automatically
verifies whether all customizations are safe.

However, in order to add new functionality to a web application through
customization, σ( F ) might require more access than F does, hence intσ( F ) 6�

int F . Such a special case is called declassified customization. A declassified
customization requires special approval by the system provider.

III.3 Conceptual Details of the SAFE Implementation

This section details particular insights about the conceptual design decisions of
the SAFE implementation. These details are usually hidden from the developer,
but are explained here for the scientific community.
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Centralized Reference Monitor

A substantial component in the implementation of SAFE is its CRM, the Cen-
tralized Reference Monitor. The CRM controls the interaction of f-units with the
database. It achieves consistency for connected clients, in particular for concurrent
data updates. Moreover, the CRM maintains the registration and the activation
of f-units. Upon registration of an f-unit F , the CRM hands out cryptographic
credentials (step 1 in Figure 6 on page 55), which F will use for authentication
at the CRM later. In the global data model, the CRM derives access control
constraints for the database access of F . These constraints are maintained by the
CRM and are dynamically considered whenever a database query is received
from F . In the local data model, the database tables of F are created according
to the definitions in F ’s database file.

From this point on, F is registered for the web application: its functionality can
be integrated to a web page via an activation of F , or through a customization.

Asynchronous Client/Server Communication

Communication in SAFE between client and server is based on asynchronous
message transfer. It is not appropriate to reload the entire web page in case of
a (possibly small) update from the client: the browser would blank out while
waiting for a new page to be computed and delivered by the server. Any browser
state not been sent to the server, e.g., non-submitted forms, cursor positions,
scroll-bar positions, would be lost. SAFE therefore relies on partial updates.
The entire page is reloaded only if essentially all elements of a page need to be
updated.

Automated Code Partitioning

SAFE redeems the developer from caring about such partial updates and from
implementing the corresponding client-side JavaScript event handlers. The de-
veloper simply specifies the query that is supposed to be executed for a certain
event, e.g., for a click or a keystroke, and SAFE provides executable code via an
automated partitioning of functionality between client and server. For example,
the specification file review.sfw in Figure 8 on page 59 is compiled into the files
review.sfw.php and review.ajax.php . The first file represents client code,
while the second file resides on the server. Both files together implement the
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specified functionality, and, at the same time, prevent malicious or unintended
behavior from the client (e.g., sensitive database queries and other confidential
information never end up in the client code).

The partitioning is very fine-grained: only the utterly necessary values end up
in clear at the client or are received from the client. For example, all identifiers
for queries and data items are encrypted and unforgeably authenticated before
being transmitted to the client. Even if parts of a query do not need to be sent
to the client, then these parts are kept at server. The details are described in the
following.

III.3.1 Updates from the Client

This section describes the implementation details of client updates based on the
example shown in Figure 8 on page 59. Assume an event at the client triggers a
specified update query q ∈ Q for f-unit Review for execution against the current
state of the database. The subsequent steps are explained in more detail in the
following.

5. The client code calls the specified Boolean check function checkForm ,
which allows the developer to implement specific, f-unit-dependent checks
(e.g., has the credit card number provided by the user a legitimate format?).
If the check function returns true , the client automatically calls SAFE’s
function sendForm which takes as arguments: the corresponding formID ,
a URL where to send the query to, and a unique identifier queryID for
the query to be executed. Note that the actual query never appears in
the client code, but an unforgeable unique cryptographic identifier is in-
serted instead. The query itself occurs only in the server code, in this case
in the file review.ajax.php . The same holds true for the f-unit-specific
credentials.

6. After the server part of the f-unit ( review.ajax.php ) has received the
information through sendForm , and after the query has been resolved,
the credentials , the form values, and the actual query are sent to the
CRM. If the CRM is currently not executing any other request, i.e., the
CRM’s state is idle, the CRM sets its state to busy. Otherwise the request is
temporarily refused. Next, the CRM verifies the authenticity of the f-unit,
verifies the access control constraints for the specified query according
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to the constraints derived at registration time. Finally, the CRM checks
whether the query originates from a sufficiently up-to-date client (details
are explained in Section III.3.2). Furthermore, the CRM sanitizes all form
values, i.e., special characters such as quotes and semicolons are escaped.
Through instantiation of the sanitized values, the instantiated query q̃ is
obtained and ready to be executed.

7. The CRM sends the instantiated query q̃ to the database where q̃ is executed
at the current database state s. The execution of q̃ yields a difference

∆(s, q̃, s′) from the database, which transitions to a new state s′: s
q̃
−→ s′.

8. The CRM obtains the difference ∆ from the database.

9. All f-units that have a subscription to the difference ∆ are notified by
the CRM. More precisely, f-unit fi is notified when sub fi(∆) , ∅. The
notification message consists of the evaluated function sub fi(∆). If no
explicit subscription function is declared for an f-unit fi, the function
sub fi(∆) := affCols(s, q̃) ∩ readCols( fi) is used as a default. Here, affCols(s, q̃)
returns the affected columns of query q̃ for database state s, and readCols( fi)
returns the columns to which f-unit fi has access. Finally, the CRM’s state
is set to idle.

III.3.2 Concurrent Updates

To overcome the synchronization problem when the CRM is interacting with
several clients, each of which having possibly outdated views of the application
state, the CRM is extended by a logical clock to track causality. The server’s
clock value is updated whenever an f-unit issues a query to update the database.

Formally, a clock entry is a tuple 〈c, t,∆,F〉, where c ∈ C is a strictly monoton-
ically increasing integer representing the clock value, and t ∈ TS is a timestamp
capturing the time of update. Additionally, information about the database dif-
ference ∆ is stored, together with the f-unit F that has issued the update query.1

Assume f-unit F has received its last information at clock value c = 1 (see
Figure 12). Due to database updates by other users, the current clock value has

1 The details on the difference ∆ are strongly implementation-specific and not relevant here. It is
only necessary that it be feasible to extract from ∆ any information about the updated database
tuples.
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Figure 12: SAFE’s concurrency clock.

increased to some k > c. Now, assume F issues a query qk
c , i.e., a query based on

local clock value c, but at current CRM clock value k. The CRM checks whether
qk

c is clock-safe, which intuitively means that the query is only built on values
that have not been altered since the creation of the query. More formally, let
clockCols(i) be the set of affected columns by a database update at clock value i.
Then, cols(∆c′

c ) =
⋃

c<i≤c′ clockCols(i) is the set of modified database columns for
the clock interval (c, c′]. Let the domain of readCols be lifted to sets of f-units
in the straight-forward way. Let the set F ∗

T
contain all f-units in the activation

tree T that are on the path from the root node to F , i.e., F ∗
T

is the smallest
set satisfying { F } ∪ {pred

T
(u) | u ∈ F ∗

T
} ⊆ F ∗

T
, where pred

T
(u) is the direct

predecessor of the node corresponding to f-unit u in T . We say a query qk
c is

clock-safe if cols(∆k
c) ∩ readCols( F ∗

T
) = ∅.

If the query is checked to be clock-safe, the CRM creates a new clock entry
with value k + 1 containing the difference ∆ received from the database, i.e.,
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clockCols(k + 1) = ∆. The CRM returns to F not only the result of the query, but
also the new clock value c′ = k+1. If the query is not clock-safe, the query cannot
be executed at this point. The calling f-unit F is asked to retry with a refreshed
local state.

Authenticity of F-units

In order to ensure that all constraints on the access of database fields are met, we
require that an f-unit F authenticate before communicating to the database. The
authenticity of f-unit F is established via the credentials cred F (step 1 in Figure 6
on page 55). The credentials depend on some password p of the CRM and on
the name of the corresponding f-unit:

cred F = hash(p || F )

where hash(·) is an unkeyed hash function such as sha256 and || is string concate-
nation. For state-of-the-art hash functions, it is believed to be computationally
infeasible to find collisions or a pre-image x for given hash(x).

III.4 Extensibility

This section describes the details of the local data model and thereby provides
a novel extensibility mechanism which is used for implementing customization
of existing cloud applications towards (possibly untrusted) components in a
secure and privacy-friendly manner. The local data model provides a clean
component abstraction, thereby in particular ruling out undesired component
accesses and ensuring that no undesired information flow takes place between
application components — either trusted from the base application or untrusted
from various extensions. The model is inspired by traditional access control
models and specifically designed for the newly emerging needs of extensibility
in application ecosystems. The convenient usage of the presented techniques
is illustrated by showing how to securely extend an existing social network
application at the example of SAFE’s f-units.

III.4.1 Background on Customization

In times of massive and still increasing use of web resources, platform-inde-
pendent Rich Internet Applications (RIAs) and the paradigm Software as a Service
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(SaaS) are often database-driven and predominantly make high demands on
their underlying technology, in particular, if today’s Web 2.0 users wish to per-
sonalize their devices and the RIAs – from minorly invasive customizations (such
as changing the visual appearance) to functionality-extending changes that con-
stitute true forms of extensibility. Not only smartphones, tablets, and browsers
are in focus of personalization, but also existing RIAs should be customizable –
and even extensible – in previously unforeseen directions [ADI12, RBG12, FL11,
TGLP10, JHB10, KKPV09, MP08, JTD06].

Such user customizations inhabit extensible app ecosystems for web compo-
nents and influence the content, the style, and the functionality of interactive web
systems: the welcome page of Amazon.com shows different items for Alice as
compared to Bob (content), an aged user might wish to have a larger font size
for displaying text on his tablet or desktop computer (style), while a teenage
user might long for advanced features to publish media data from any smart-
phone application to Facebook without waiting for her OS provider to support
the desired features (functionality). Customization of content and style was tra-
ditionally referred to as personalization in the literature [HN12, TWC12, JTD06].
However, with the advent of Web 2.0, extensibility of functionality has become a
novel and the most challenging component in the area of personalization.

One of the central difficulties of realizing extensibility is to faithfully address
the various security and privacy aspects that naturally arise when functionality
is extended in a user-driven manner. While customization of content and style
usually imposes no security vulnerabilities, extensibility of functionality (i.e., the
incorporation of new program components into an existing environment) faces
– apart from the following functional issues – also a number of security-related
issues.

(1) Functional contracts between the existing and the new components have
to be met. Consider for example an address book component CA that exposes
phone numbers to communication components such as Skype. A specified
personalization could require the address book component CA to interact with a
particular communication component CC that might be introduced to the systems
by virtue of extensibility. Functional contracts ensure that the data exchange
format of both interfaces of CA and CC match. CC needs to determine which
global data exists in the environment of the address book. CC should have a way
to integrate its own data structures.
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(2) Security guarantees have to be ensured for the entire composed system:
(a) Information flow / privacy: users want to have credible guarantees that their
personal data is properly protected, they should not be divulged to potentially
untrusted applications or untrusted extensions of existing applications that were
previously considered trustworthy. The access control policies for the data of the
existing address book component CA should correctly and securely be specified
when accessed by the additionally integrated communication component CC.
Other components should securely access data that has been imported by CC

due to the extensibility. (b) Integrity: users wish to trust the integrity of infor-
mation they get provided, i.e., no malicious user should be able to interfere in
the communication in a way that alters the result in an unforeseen or potentially
harmful manner. (c) New attack vectors: the goal is to augment extensibility with
general security mechanisms that prevent situations in which the extensibility
opens new attack surfaces. Security is even harder to achieve when new com-
ponents are integrated from untrusted and thus potentially malicious sources.
Although software bugs might lead to security holes in a larger composed sys-
tem, the chances for an attacker to introduce malicious components are much
higher in open and extensible environments.

Existing customization frameworks, such as [HV10, JHB10, TGLP10, KOL09,
KKPV09, CDMF07, BWR+05, RSG01, DRSM01, CFB00], do not solve the afore-
mentioned issues: first, they do not target security sufficiently, but often solely
concentrate on providing proper functionality; second, they strive for customiza-
tion rather than for true extensibility. We need abstractions for app ecosystems in
which users can create, share, and install third-party apps through a cloud-based
“app store”, thereby creating new applications with enforced security properties.
This section provides a novel mechanism for secure extensibility in the wide field
of secure web application development. In more detail, the mechanism mainly
focusses on data separation and on its counterpart, i.e., on controlled data sharing:

• Data separation. In order to address the aforementioned security chal-
lenges, this section presents a novel abstraction for controlling the access to
principal data by virtue of an explicit data separation model for multiple
principal dimensions. This model is referred to as the local data model. A
principal in this scenario is any first-class citizen for which an access con-
trol policy might be applied. This could be a user interacting within an
application, an f-unit providing functionality for an application, a location,
a service, etc. The model is inspired by traditional access control mod-
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els, however, given the nature of Web 2.0 with extensibility demands, the
model additionally captures the features of multi-dimensional granularity
to support arbitrary context-aware customizations and functional exten-
sions. The section provides a two-dimensional instantiation of the general
multi-dimensional separation model to enforce data separation for users
and f-units of an extensible app ecosystem. This two-dimensional sandbox
provides automatic annotation of data items, enables flexible runtime del-
egation of privileges, and paves the way for accountability management.

• Data sharing. The counterpart to data separation is a controlled way of
data sharing across user/f-unit boundaries. The local data model comprises
an f-unit wiring methodology to establish explicit data flows between the
a priori separated f-units with explicit control over the actual data flow.
To this end, SAFE’s global data model is modified into a more sophisti-
cated explicit information flow model for app ecosystems. Although the
activation model nicely corresponds to the hierarchical structure of HTML
web pages, extensibility demands to move on to the local data model that
allows for data flows beyond the information propagation along the edges
in the activation tree.

After presenting the details of the local data model and its implementation, the
section illustrates the convenient usage of the local data model by concluding
with a demonstration of how to securely extend an existing social network
application by an incremental search functionality that seamlessly integrates
into the previously existing environment.

III.4.2 Background on Access Control

Traditional access control mechanisms, in particular discretionary access control
models, consider the user of a dataset in order to accept or reject an operation on
the particular dataset. By this means, a trusted entity keeps track of ownerships
that allow for enforcing appropriate boundaries. For example, a trusted entity
can be the filesystem on a multi-user desktop computer, which prevents unin-
tended cross-user file access. Figure 13a shows a scenario in which Alice cannot
access Bob’s home directory, and vice versa.

Likewise, approaches exist for enforcing boundaries across applications (or ap-
plication components): A sandbox prevents a particular application from access-
ing data in the scope of another application residing in the same environment.
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Figure 13: Data separation (a) on a multi-user system, (b) on a multi-application
system, and (c) in combination.

An example of a common multi-application scenario that is suited for deploying
such a sandbox is the encapsulation of application-specific data on contempo-
rary smartphones [Goo14a]: In Figure 13b, the camera software of a smartphone
(component C1) shall not access any data stored on behalf of the address book
(component C2).

Both concepts have to be combined for recent cloud application trends [WMB09],
in which multiple users interact with so-called mashup applications [HV10] com-
posed of multiple disjoint software components: It is insufficient to implement
per-user access control, as data access has to be additionally restricted to par-
ticular f-units. Since third-party f-units have to be considered untrusted, both
boundaries have to be enforced centrally and simultaneously — we cannot as-
sume any f-unit to properly and consistently implement user-based access con-
trol for itself. Figure 13c depicts the separation of data into two realms, namely
per user and per f-unit. Consequently, the central access control mechanism for
any data entity e has to consider at least the tuple (uid, cid), which can be regarded
as the fixation of two different access control dimensions.

Beyond access control on the basis of two distinct dimensions, we have to con-
sider extensibility, modularity, and customization, which are crucial properties
of modern RIAs. Usually, these properties imply the possibility of users who
may want to share their own data and particular f-units that may have to jointly
operate on the same datasets, e.g., Alice wants to share her music files with Bob.
Likewise, GPS data may be used in both the camera f-unit and the address book
f-unit. The resulting need for well-defined interaction amongst users and/or f-
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units suggests the possibility of weakening the data separation requirements in
either one dimension, thereby increasing the degrees of freedom beyond a fixed
user or f-unit.

Existing access control approaches are usually single-dimensional. By canon-
ically embedding multiple dimensions to a single dimension, e.g., by trivial
enumeration of all tuple permutations, one might lose efficiency and thereby
also granularity (see below). A proper reconciliation of more than one dimen-
sion provides thus a clean methodology for the design of future access control
policies for app ecosystems.

Moreover, existing approaches with advanced access control capabilities are
not well-suited for use in modern web application engineering: Due to the in-
creased expressivity, approaches such as JIF [Mye99] or strongly typed languages
[VSI96, FGM05, JVM+08] usually require explicit annotation, which turns out to
be cumbersome and thus barely used in heterogeneous environments formed by
independent developers. It is hence necessary to automatically enforce centrally
defined access control policies rather than relying on user-annotated code.

III.4.3 Formal App Ecosystem Model

This section details a new extensibility concept, presents a formal model thereof,
and provides an instantiation of the model tailored to the needs of extensible
app ecosystems.

Principals

A common term in the context of access control is the notion of principals. The
definition of principals is usually limited to the users within a system. Through-
out this thesis, however, by a principal we denote any first-class object for which
an access control policy may be specified or applied. A principal can hence be
an authenticated user, an installed software component on a smartphone, or a
specific physical location around a company’s headquarters. A principal may
possess and manage data. A principal class is a set of principals with struc-
turally similar properties (e.g., users, software components, devices, locations).
We sometimes refer to the various principal classes as principal dimensions.
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A Novel Security Extensibility Concept

The major challenge in defining a suitable principal model for extensible app
ecosystems is to develop an abstraction that satisfies at least the following re-
quirements.

1. The abstraction must take into account the simultaneous interplay of mul-
tiple dimensions (a user U runs a software component C on a device D at
some physical location L, etc.). Such an interplay was not important be-
fore the advent of app ecosystems, e.g., traditional browser security with
extensible plug-ins dealt with only a single user who operates with multi-
component web applications. The security mechanism of an extensible
web application, however, has to take into account various dimensions
such as multiple components for multiple users, multiple devices at mul-
tiple locations.

2. The abstraction must focus on efficient reasoning for all fields in the cross
product of multiple dimensions. App ecosystems naturally constitute
multi-dimensional principal grids in which every principal class exists
in combination with any other principal class. A ubiquitous access con-
trol policy must comprise each cell in such principal grid: for each item
of the cross product ranging over all dimensions, a meaningful and effi-
cient policy must exist. The policy should be concise and transparent since
an embedding of each dimension to single-dimensional traditional access
control policies would not only be cumbersome to maintain, but might also
introduce security flaws due to the increased complexity of the embedding.

3. Extensibility requires the integration of contextual information while per-
forming access control decisions. Dependencies between components and
users require context-aware reasoning methods in which the context is
expressed in terms of one or more dimensions, or by the presence of infor-
mation provided by a principal. For example, owning a certificate might
allow a user to access certain data of a component. Such certificates can be
introduced through extensibility mechanisms and thereby make the access
control mechanisms highly dynamic. Privileges should not be restricted to
(static) binary decisions (e.g., privilege to read data: yes/no), but instead
should take into account an extensible environment with information from
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multiple dimensions to allow for more fine-grained and conditioned poli-
cies.

Some of the aforementioned requirements resemble traditional access control
abstractions; others have to be tailored to the specific needs of extensible web
development. Traditional abstractions for access control (such as user-based,
role-based, etc.) were tailored to different purposes and are thus constraint to
single dimensions (users, roles, etc.). In the single dimension, only users are
considered first-class citizens; software components are no first-class objects.
Consider, for instance, a UNIX file system in which Alice’s home directory has
the permissions rwx (i.e., read, write, and execute) for the owner Alice (see Fig-
ure 13a). There is no way of specifying that a particular software component
— in this case some executable UNIX file — may access Alice’s home directory,
while another component may not. The reason is that components are running
on behalf of users and thus have the same user privileges. However, components
should be treated independently from users, so that individual access control can
be specified in order to deny access to possibly malicious components (malware,
worms, viruses, spyware, etc.). Moreover, in traditional role-based access con-
trol settings, every component would maintain a list of roles whose users are
allowed to access the component’s data. In the UNIX file system example from
above, every file or directory belongs to a group of users. Adding a user to a
system requires to carefully check the user’s memberships in the groups of users.
Adding a user to a non-transparent group might grant unintended privileges to
the user.

The aforementioned considerations culminate in a novel abstraction that is
particularly tailored to the emerging paradigm shift in modern web applica-
tions. The new abstraction allows for efficient reasoning and maintaining the
partially conflicting requirements. The strong forms of extensibility, and in
particular the inter-functionality operations with their mutual conditions and
environmental dependencies, require novel methods that can be efficiently de-
ployed and maintained. More precisely, in the new model, any data item may
have an individual access control policy for every principal in every dimension.
All principals are thus first-class citizens that inhabit the environment of an exten-
sible web application. In particular, any principal class can be extended at any
point in time by new principals, e.g., users can be created, software components
can be added, new hardware devices can be set up, and new physical locations
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can be considered. Context-awareness is modeled as part of the extensibility:
the integration of a new component into a system allows for data integration and
the establishment of links to existing components. This process is referred to as
wiring. A wiring does not only make data flows between components explicit,
but also introduces credentials to state properties about the actual environment.
A credential stated by component C1 might, for instance, certify that Alice and
Bob are friends, and hence Bob might read Alice contact list which is maintained
by a different component C2. Moreover, the presented model provides unique
ownerships in all dimensions which can efficiently be inferred by the currently
operating component using the unique position in the principal grid. As a side
product, this fine-grained resolution might help in establishing accountability
properties whenever necessary. Furthermore, the abstraction contains the con-
cept of sharing — based on wirings and ownerships. The goal of sharing is to
provide a reliable mechanism for enabling explicit information flow across the
boundaries of principals.

Multi-Dimensional Principal Model

We consider the n-dimensional universe Pn of principal classes

P
n := 〈P1, . . . ,Pn〉

that subsumes all instances of the particular class Pi, e.g., users, components,
locations, and the like. Furthermore, we define the data storage as the set of all
data itemsD, e.g., text messages, music files, authentication credentials, and the
like. Each such item d ∈ D is required to have a unique owner p ∈ Pn in each
dimension, which would be affected by an operation on the particular data item.
More precisely, for each data item d ∈ D, we define

aff : D→ Pn and affPi : D→ Pi

to represent the affected principal (in dimension i). The affected principals may
be determined with arbitrary semantics, according to the operation type, infor-
mation flow, inference prevention, etc. We thus stay as general as possible here in
order to permit a wide range of possible subsequent instantiations. For instance,
items in WHERE clauses of SQL queries or timing information in the analysis of
side-channels can be captured if desired. The term “affected principal” is cho-
sen in order to be more general than solely representing ownership relations of
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data items. For simplicity, however, one could think of the affected principals to
model the owners of a data item.

In order to access data items, a principal can issue a request r ∈ R. We define

scopeD : R → ℘(D)

to determine the scope of data items for a given request, i.e., the set of affected
data items per request.

As motivated in Section III.4.1, one requirement is to enable sharing between
principals of the same dimension, e.g., user Alice wants to share her favorite
music files with user Bob. We thus require a sharing function shPi for each
dimension Pi

shPi : Pi × Pi ×D → {0, 1}

to decide whether data sharing from one principal in dimension i to another
principal in the same dimension i is defined (and thus allowed) for a specific
data item.

Finally, the main access control policy

req valid : R × P1 × . . . × Pn → {0, 1}

decides whether a given request is valid for all principals associated with this
request. More specifically, a request r is considered permissive if for each affected
principal pi, we have that either pi is the issuer of r itself, or that pi has explicitly
shared the requested data with the actual issuer of r. Formally,

req valid(r, p1, . . . , pn) :⇔ ∀d ∈ scopeD(r) :
n∧

i=1

(
affPi(d) = pi ∨ shPi(affPi(d), pi, d)

)

Example 7 Consider a set of usersU and a set of f-units F (or any other set of
independent software components) in a web application as an instantiation of
two different principal classes, such that P2 = 〈U,F 〉. If f-unit f ∈ F issues a
request r ∈ R on behalf of user u ∈ U, then r is considered permissive if one of
the following conditions holds for all affected data items d ∈ scopeD(r):
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No sharing: affU(d) = u and affF (d) = f , i.e., the request only accesses data that
is in the scope of both u and f (or, data that is owned by both u and f ).

Cross-F sharing: affU(d) = u, affF (d) = f ′ for some f ′ , f , and f-unit f ′ has
shared the requested data with f-unit f , i.e., shF ( f ′, f , d).

Cross-U sharing: affU(d) = u′ for some u′ , u, affF (d) = f , and user u′ has
shared the requested data with user u, i.e., shU(u′,u, d).

Cross-U,F sharing: affU(d) = u′ for some u′ , u, affF (d) = f ′ for some f ′ , f ,
and user u′ as well as f-unit f ′ have both shared the requested data with f
running on behalf of u, i.e., shU(u′,u, d) and shF ( f ′, f , d). ∗

III.4.4 Instantiation for App Ecosystems

This section shows how to instantiate the generic model to a concrete extensibility
model in SAFE. The instantiation constitutes a general role model for extensible
app ecosystems. We concentrate on two dimensions and hence create two con-
crete principal classes: authenticated users and software components (f-units).
Furthermore, we show how to incorporate common relational database models
within our instantiated model. Furthermore, we show a wiring methodology
to implement sharing between components by establishing links between the
database tables owned by the particular components.

Let us reconsider the example of a multi-user web application with extensible
components, which instantiates

P
2 = 〈U,F 〉

as principal universe to constitute the set of users U and f-units F that are
present in the system.

Tables and Affected F-units

We assume the data storage D to be reflected by a standard relational database
model. By regarding all data items of D on the granularity of database rows,
data items can be grouped according to a set of database tables T . Database
tables hence establish a relation between requests R and concrete data itemsD:

scopeT : R → ℘(T ) data : T → ℘(D)
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The datasets of affected tables include the actually affected datasets. We therefore
lift scope to data items: we say d ∈ scopeD(r) if and only if ∃ t ∈ scopeT (r) s.t.,
d ∈ data(t).

The data storage model consists of local tables

lt : F → ℘(T )

that hold the actual data owned by an f-unit. All data an f-unit f possesses is
managed in one ore more local tables which are, at least a priori, only accessible
by f .

Moreover, the model additionally contains a notion of input tables and output
tables. Input tables subsume data items which are explicitly provided by other f-
units’ output tables. Such data sharing provides a controlled way of exchanging
data via database tables, namely by establishing a link between input tables
and output tables. Sharing via database tables is highly dynamic in that it
includes reasoning over all principal dimensions: The specified access control
policies might impose dynamic restrictions on the data sharing by constraining
the actual data of an input table according to the user who is accessing the
data (more details below) and by constraining the data exposed to other f-units
through output tables. To this end, input tables are instantiated for a particular
user

it : F ×U → ℘(T )

and output tables are restricted copies of local tables

ot : F → ℘(T )

The restriction is a projection in relational algebra (or a SELECT query) that
explicitly mentions which attributes (or table columns and values) shall be ex-
posed. For instance, an output table could provide all the first names of its
local users table, but at the same time, it would hide last names and credit card
numbers. Likewise, an output table could provide the average salary of a local
table salaries .

A discussion on security aspects with respect to data privacy is provided in
the section about data sharing below.
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We assume that there is no data item d that cannot be accessed by either a local
table (lt) or by an input table (it):

∀d ∈ D : (∃ f ∈ F , t ∈ lt( f ) : d ∈ data(t)) ∨

(∃ f ∈ F ,u ∈ U, t ∈ it( f ,u) : d ∈ data(t))

In other words, it is always possible to determine the provenance of every data
item, either locally or through an input table. The content of an input table
t ∈ it(·, ·) may, however, be provided by multiple other f-units. The f-unit that
actually provides a particular retrieved data item d ∈ data(t) is referred to as
source src : D → F . The source constitutes the affected f-unit for access on an
input table:

∀ t ∈ it(·, ·), d ∈ data(t) : aff
F

(d) := src(d)

(formally defined below). For access on local tables, the affected f-unit is the
associated f-unit f ∈ F itself:

∀t ∈ lt( f ), d ∈ data(t) : aff
F

(d) := c

Owners and Affected Users

After considering tables and affected f-units, we look at its counterpart: owners
and affected users. To this end, we require the presence of an owner mapping
for any access on any data item d ∈ D:

own : D→U

which is automatically stored with every data item. The retrieval of the owner
information could for example rely on a unique identifier mapping, or on a
particular owner column for each data item. By assuming a proper owner
information management for both local tables and input tables, we instantiate
the affected user accordingly:

∀d ∈ D : aff
U

(d) := own(d)

Sharing

The goal of sharing is to provide a reliable mechanism for enabling explicit
information flow across the boundaries of principals, thereby enforcing various
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dynamic confidentiality policies. In an extensible app ecosystem, we assume
that every persistently stored data item might be processed arbitrarily by an
f-unit before ultimately reaching the particular local table in which the item is
stored. As f-units “see” any dataset anyhow upon insertion, every information
represented in a local table might be reconstructible by the source f-unit. It is
thus irrelevant (at least with respect to confidentiality), whether we explicitly
allow f-units to directly access arbitrary data items of its associated local tables
or not. In other words, it is meaningless to restrict the access to associated local
tables depending on other principal dimensions. Nonetheless, access control
directly on top of local tables could be achieved by parameterized views that
exclusively provide user-dependent restricted access to the underlying tables.
This so-called Truman model [RMSR04] suffers from various drawbacks. For
instance, transparent views that hide particular data items may introduce subtle
logical inconsistencies for aggregate functions such as AVG or COUNT.

Due to the limited gain and the anticipated problems of a restriction directly
on local tables, we allow an f-unit f to have unrestricted access to its local tables
– regardless of the user (or any other principal dimension). Still, the f-unit can
(and possibly should) provide means of restricting the content eventually shown
to the client (by implementing suitable local access control policies). To provide
an example demonstrating the significance of this design decision, consider an f-
unit that maintains the results of an online game. Clearly, each player should only
see his own results, but the f-unit should still be capable of computing average
results and other interesting statistical values such as minimum, maximum, or
the list of the top 20 players.

We hence assume an implicit sharing among users U for all data items in a
local table t ∈ lt( f ):

∀d∈data(t),u∈U \own(d) : shU(own(d),u, d) (III.1)

Making local tables public in their f-unit’s scope does not introduce potential
information leakages or security vulnerabilities since f-units do not gain any
additional knowledge. In addition, the potential leakage or abuse of information
has to be considered anyhow by the user before providing sensitive data to a
particular f-unit. The same assumption holds for any other piece of software —
be it an app on your smartphone, an application on your desktop computer, or
a service on your cloud server.

However, regardless of the fact that an f-unit may access all its locally stored
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data, there is one point to be made about confidentiality for data that is for-
warded: wired data must be restricted; the sending f-unit whose access control
logic is assumed to be trusted by the user has absolutely no control on whether
a receiving f-unit performs appropriate access control as well.

In the scope of confidentiality, we thus propose a generic access control policy
for output tables – i.e., we introduce the possibility of hiding particular datasets
for output tables according to the user ID uid the receiving f-unit is currently
connected to.

The decision on whether and to which extent an output table’s information
has to be restricted requires semantic information on the data’s representation
and thus has to be under the responsibility of the source f-unit. By uid -based
filtering of output tables, we are able to maintain the property of f-units to receive
possibly sensitive data only if the data is used by the particular user.

Similarly, a user has to rely on the access control of the source f-unit in which
datasets might be included in an input table restricted to user u ∈ U. Thus, given
f-unit f ∈ F and user u, we assume for all input tables t ∈ it( f ,u),

∀d∈data(t),u∈U \own(d) : shU(own(d),u, d) (III.2)

By the definition of an input table t of f-unit f ∈ F , all data items d ∈ data(t)
are intentionally shared between the providing f-unit src(d) and the receiving
f-unit f . Hence, for all input tables of f running in the scope of user u ∈ U, we
assume an implicit sharing between f-units as follows:

∀t ∈ it( f ,u), d ∈ data(t) : shF (src(d), f , d)

With equations (III.1) and (III.2), we incapacitate the user by shifting the shar-
ing responsibility solely to the f-unit dimension – in contrast to the requirement
that all principal dimensions have to agree on a sharing of a particular data item.
However, an f-unit can only share datasets that it was explicitly provided with by
either the dataset’s owner or by another sharing f-unit. We can regard both cases
as the implicit affirmation of the user based on his personal trust assessment for
potential sharing in a manner the f-unit may specify on own behalf.

Principal Sandbox

Using the previously introduced predicates, we propose an instantiation of the
formal model that we call sandbox. The sandbox sb differentiates a particular
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request according to common operations in relational database systems:

op : R → {SEL, INS, UPD, DEL}

Here, op is defined to restrict a single request to a single operation. We stress that
this is not necessarily the case in practice, e.g., an update operation UPD might
incorporate a select operation SELwhen updating data that was previously read
or evaluated according to some condition. However, we assume op(r) to be
well-defined for all r ∈ R. If necessary, r has to be split up into sub-requests.

According to the intuition introduced in previous sections, the sandbox

sb : R ×U × F → {0, 1}

reflects the following semantics: sb(r,u, f ) 7→

if op(r)∈{INS, UPD, DEL} :

∀ t∈scope
T

(r) : t∈ lt( f )︸                      ︷︷                      ︸
(III.3A)

∧ ∀ d∈scope
D

(r) : own(d) = u︸                            ︷︷                            ︸
(III.3B)

else if op(r) ∈ {SEL} :

∀ t∈scope
T

(r) : t∈ lt( f ) ∨ t∈ it( f ,u)︸                                        ︷︷                                        ︸
(III.3C)

(III.3)

Intuitively, a modification request {INS,UPD,DEL} is considered permissive if it
operates only on own local tables (III.3A) and if all affected datasets are owned by
the authenticated user (III.3B). One can think of the two cases as ensuring own-
ership in dimensionsU and F . A select request {SEL} is considered permissive,
if it operates only on own local tables or on input tables (III.3C).

Soundness

In order to show that the presented sandbox semantics is a valid instantiation
of the previously introduced formal model, i.e., the sandbox indeed reflects that
for every dimension, either own or explicitly shared datasets are affected, we
have to prove the soundness of our instantiation with respect to the formal
model. More precisely, the crucial property here is reflected by the implication
sb(r,u, f )⇒ req valid(r,u, f ), i.e., the sandbox is at least as restrictive as the model
(as defined on page 83). The implications of the sandbox semantics immediately
entail this statement without further proof obligations.
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Delegation of Privileges

Separation in the user dimension comes with the benefit of providing basic con-
fidentiality and integrity with respect to the user data. However, user-based
separation has the disadvantage of sometimes being too restrictive — in particu-
lar, if users wish to collaborate and work on shared datasets, or if one employee
acts as (temporary) replacement for another employee due to holidays or illness.

In this case, users shall be able to delegate permissions among other users
[ABLP93]. For example, consider Alice who wants to give her permissions to
another user, say, Bob. Alice may delegate authority to Bob, and Bob can then
act on behalf of Alice using the identity “Bob speaks for Alice”. Delegations can
be cascaded, i.e., Clara can act on behalf of the previous entity as “Clara speaks
for (Bob speaks for Alice).”

More precisely, delegation refers to the ability of a user A to give to another
user B the authority to act on A ’s behalf. In general, whenever B requests a
service from a third party, e.g., accessing some data item owned by A , then B
might present credentials that are supposed to demonstrate that B is making the
request and that A has delegated her privileges to B . Then upon B ’s request, a
service will be granted to B if and only if it would have been granted to A , had
A requested the service directly.

It is often inconvenient to explicitly list all users that are trusted with respect to
delegation (e.g., all users that may alter goals in a student administration system)
both because the list would be long and because it may change very frequently.
Instead, organizing users into user groups provides a useful indirection mech-
anism: all users having some common attributes (e.g., students) are placed in a
group and the group is given a set of specific privileges. If G is a group, there
may be some privileges associated with it, so that a member of G can have all
the privileges of G . A user is allowed to have the privileges of G only if she is
a member of G . A member A of several groups F , G , H can choose to use the
privileges associated with any subset of her groups, say G and H . So, a proper
mechanism is required for joining groups, proving membership, delegation of
authority, certifying such delegations, and deciding whether a request should be
granted.

The delegation of privileges among users can be considered the dual to data
sharing among f-units. Formally, the delegation model introduces user groups
G ⊆ ℘(U) and their associated privileges. A user u ∈ U is said to be in group
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G ∈ G if u ∈ G. Users and groups can delegate their privileges to other users and
groups in any of the following ways, u speaks for u′, u speaks for G, G speaks for u,
and G speaks for G′:

u→ u′ User u speaks for u′, i.e., u can access, modify, and delete any data item
owned by u′.

u→ G User u speaks for a group G, i.e., u can speak for any member of G.
Formally, ∀u′ ∈ G, u→ u′.

G→ u Group G speaks for a user u, i.e., any member of G can speak for u.
Formally, ∀u′ ∈ G, u′ → u.

G→ G′ Group G speaks for a group G′, i.e., any member of G can speak for any
member of G′. Formally, ∀u ∈ G,∀u′ ∈ G′,u→ u′.

The implementation of the speaks for relations is presented on page 98.

III.4.5 F-unit Wiring Model

One of the major features and challenges of today’s data-driven and reactive web
applications — in particular for SAFE— is to ensure server-client consistency. If
an f-unit modifies the state of the database, the changes should be reflected by
its dependent f-units and their visual presentation and also by the instances of
the f-units at the client. Dependencies between f-units arise whenever an f-unit
activates other f-units:

act : F → ℘(F )

Recall that upon an activation initiated by an f-unit f , activation data is passed
from f through the particular activation interfaces of act( f ). The behavior of
the activated child f-unit instances might thus depend on the state of the parent
f-unit f . Consequently, the set act( f ) is possibly data-dependent of f .

Recall further that f-units generate HTML content that appears as nodes in the
DOM tree of an HTML page. F-units and their activations hence constitute a
hierarchical, cycle-free structure, the activation tree. Formally,

Gact = 〈Vact,Eact〉 := 〈F , {( f , f ′) ∈ F × F | f ′ ∈ act( f )}〉

Due to the activation data dependencies, each change in an f-unit’s data realm
possibly outdates some f-units in the corresponding subtrees of Gact.
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Wiring between F-units

In order to overcome the borders of data separating sandboxes, f-units may
expose data to possibly unknown, unrelated, and untrusted f-units. Likewise,
f-units may need to assume the existence of data provided by other unknown,
unrelated, and untrusted f-units. SAFE provides a mechanism to “wire” different
f-units to each other. A wiring hence introduces two independent f-units to each
other and connects them according to the specified interfaces. More concretely,
an output table of an f-unit A can be wired into an input table of an f-unit B .

A suitable analogy is the stock market, where mutually unknown shareholders
are brought together (i.e., “wired”) by a broker. The broker has to respect the
constraints of both parties, e.g., “I offer 200 shares for at least $21.40” and “I would
like to buy 300 shares for at most $21.42”. The partial execution of transactions at
the stock market corresponds to multiple wirings in SAFE: an input table might
receive data from more than one output table. Likewise, an output table might
be wired into more than one input table.

Technically speaking, a wiring implements a schema mapping for database table
specifications. After identifying suitable matchings between input and output
tables, partially automated data integration is executed. See the screenshot in
Figure 24 on page 111 for illustration of a wiring between two f-units. The wiring
between more than two involved f-units is depicted in Figure 26 on page 113.
More technical aspects of the wiring are presented in Section III.4.6.

The concept of wiring hence introduces a second possibility of exchanging
data between f-units. Apart from activation dependencies (due to the activation
data which is passed along the edges of the activation tree), two new types of
dependencies arise: data dependencies (due to declarations of output tables
based on local tables), and wiring dependencies (due to wirings established
between output tables of an f-unit and input tables of another f-unit). These new
dependencies make the propagation of changes to the database state no longer
necessarily fully reflected by the edges of the activation tree. Instead, the new
data dependencies imposed by our sharing mechanism require an extended data
structure to capture all data flows: all three dependency types are fully covered
by the so-called combined graph, a data structure serving as extension of the
activation tree which – in contrast to the activation tree – is not necessarily cycle-
free. An example of a combined graph is depicted in Figure 14. A detailed
illustration of a more fine-grained wiring example with all three dependency
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Figure 14: Combined graph consisting of activations (solid edges) and wirings
(dashed edges). Possible activation order: A, E, G, B, C, D, F, H.

types is depicted in Figure 15.

Formally, a combined graph Gcomb is a tuple

Gcomb = 〈Vact,Eact ∪ Esh〉

where the edges represent the presence of input and output tables linking one
f-unit to another:

Esh := {( f , f ′) | ∃u ∈ U, t ∈ it( f ′,u), d ∈ data(t) : f = src(d)}

We stress that the definitions of Eact and Esh can both be considered static
over-approximations: both edge sets do not respect the fine-grained and dy-
namic extent of the data that has actually been changed with an update. Their
combination, however, safely captures all possible dependencies.

Data Updates and Consistency

The main goal of the combined graph is to determine and update outdated f-unit
instances in a dependency-preserving order: if a local table of a particular f-unit
A changes due to a modifying query, the transitive closure starting at A contains
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Figure 15: Update dependencies: All items colored in gray need to be updated.

all potentially stale f-units that should be considered for updating. We therefore
determine a total topological ordering on f-units, which takes into account all
partial orderings as defined by the three dependency types.

Example 8 Figure 15 illustrates the dependencies that need to be considered
when an update is executed. More precisely, assume the data in local table A.L1
receives an update. Then clearly, the f-unit A needs to be refreshed since it is
likely that A uses its own local data. The output table A.o2 depends on the local
table A.L1 and hence might also be affected by the update of A.L1 . F-unit C is
wired to f-unit A via input table C.i1 . Clearly, the f-unit C needs to be refreshed.
While refreshing, C might change its local table C.L2 (for instance to increase
a counter). The data dependency to C.o1 causes f-unit D to be refreshed. As
f-unit C activates f-unit E , the activation arguments sent to E might be taken
from local table C.L2 or from input table C.i1 . Hence, f-unit E needs to be
refreshed as well.

The only exception occurs in the case of steady output tables. These tables do
not contain data that changes upon activation. However, these cases have to be
treated carefully: whenever a local table, which the steady output table is based
on, changes, the steady output table might also change. ∗
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The resulting global topological ordering, referred to as activation order, is
well-defined, since all wirings and activations that would result in a cycle are re-
jected in the first place. The activation order thereby ensures that the rebuilding
steps propagate on yet refreshed data only, since it contains all required activa-
tions and hence contains all dependencies for each f-unit. In other words, all
data dependencies are respected when the activation tree is constructed in the
activation order.

Building the activation tree in the activation order imposes additional technical
challenges: the activation of a child f-unit does not necessarily follow right after
the parent f-unit has been activated. Whenever a child is scheduled for activation,
the environment of each child instance is evaluated (variables, database state, etc)
and then cached in the database. Placeholders are inserted for each child instance
in the activation tree; these placeholders are later replaced by the rendered
instances. We stress that the top-down propagation of information along the
edges in the activation tree is crucial to achieve consistency. If child f-unit
instances could pass information back to their parents (and thereby influence
the parents), and additionally children are activated only after their parents
have fully been activated, the influence would clearly become impossible. More
activation iterations would not necessarily result in a fixed point. SAFE therefore
requires activation information to be propagated from parent to client.

Note that there is often more than one unique activation order (see Figure 14).
Note further that cycle-freeness is a necessary requirement in order to guarantee
a terminating fixed point during activation. After the outdated f-unit instances
have been built, the freshly generated content is merged into the subtrees of the
activation tree (and thus also into the DOM tree). Finally, the rebuilt content is
pushed to stale client browser instances.

III.4.6 Implementation of the Extensibility Model

This section presents a SAFE-specific implementation of the major parts of our
model instantiation. At this point, side channels introduced through technical
implementation details are not considered, e.g., circumventions of sandboxes
through JavaScript inconsistencies, timing attacks, or termination channels. The
semantics of the sandbox formalism (Equation III.3, page 89) relies on the fol-
lowing insights:
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(III.3A) Permissions for INS , UPD , and DEL operations are only granted on
local tables. In addition, the query sandbox (explained below) ensures that
an f-unit only accesses its own tables.

(III.3B) According to the owner invariant (explained below), before a modify-
ing operation ( INS , UPD , DEL ) is executed, a set of MySQL triggers first
verify the so-called owner column of the particular row according to the
authenticated user.

(III.3C) Permissions for SEL : as in the case of (III.3A), the query sandbox en-
sures that only own tables (whether local or input tables) are accessible via
SELECT queries.

In order to enable a high degree of automation and maintainability in the
database management, every f-unit must provide an SQL-style .db-file, which
declares its database tables (local, input, output). In the following, we present
chosen aspects of the parsing, validation, and interpretation of the .db-file dur-
ing the f-unit integration process. We assume the deployment of the widely
used open source database MySQL (version 5.1 or later). Furthermore, we omit
technical details whenever possible. The SAFE manual [Rei14] provides more
detailed information on the usage and on existing approaches. Examples are
shown in Sections III.4.7 (page 108) and B.3 (page 252).

Implementation: Owner Invariant

We consider a data modification attempt as authorized only if the operation either
adds a new dataset with valid user information or if it modifies (or deletes) a
dataset that was created on behalf of the same user before. By this means, we
satisfy both separation in the user dimension (as required by the formal model)
and the own(·) validation (as required by part (III.3B) in our instantiation). As
this approach requires keeping track of the creating user at the extent of each
dataset, we require each dataset — more technically, each row of a table — to
hold an owner value in a dedicated owner column.

In order to ensure accountability, owner-preserving integrity invariants are
defined as transition constraints for each modification operation on the basis of
owner column values: the owner column of the dataset to be inserted, updated,
or deleted must match the authenticated user the f-unit is currently connected
to. In addition, the owner column must not change during an update operation.
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CREATE TRIGGER t b l u p d t BEFORE UPDATE ON t b l
FOR EACH ROW CALL a s s e r t (

NEW. owner <=> OLD. owner AND
NEW. owner <=> @uid AND
v e r i f y u i d ( ’ fun i t ’ , ’ sk ’ )

) ;

Figure 16: MySQL trigger that will be executed before any UPDATE operation on
the particular table will be executed. Modifications of the owner col-
umn are prevented. The operator <=> is MySQL’s NULL -safe equality
operator. The assert function checks the validity of the specified
Boolean expression and raises an exception in case the expression
evaluates to false .

For implementing these requirements, the concept of MySQL triggers [Ora14a]
is a suitable choice. Before a particular operation is executed, a trigger inspects
a column’s pending new and old value (where appropriate) by the NEW and OLD
pseudo-table, respectively. In addition, direct access to column values avoids the
need for manually parsing the entire query string as a whole and thus reduces
the risk of (accidentally or maliciously) bypassing the check. Figure 16 shows
an UPDATE trigger that ensures both requirements of the stated invariant by
raising an error if the value of the owner column would either change or cannot
been validated against the connected user. The purpose and semantics of the
function verify uid() , its arguments, and the variable @uid are derived in the
following.

In order to let a trigger verify the stated owner invariant, the authenticated
user u known at SAFE’s centralized reference monitor (CRM) must be made
available to the trigger in a flexible though authentic way. When relying on the
fact that there is a single database connection per CRM and a single CRM per
f-unit processing lifetime, we assume a single database connection per f-unit
and user. This allows the usage of a connection-specific MySQL session variable
[Ora14e] to pass the current user u along to the trigger with each query. After
establishing the connection to the database, the CRM thus sets the following
session variables, using the f-unit name funit, a secret key sk, and a standard
compressing hash function H:

@uid := u @uid h := H(@uid | funit | sk)

97



III SAFE — A Declarative Framework for Extensibility in the Web

Before the query is executed, the verify uid() function in the trigger of Fig-
ure 16 is thus able to compare @uid h with the outcome of its own hash com-
putation using @uid . The included secret sk inside the hash of @uid h prevents
an f-unit from creating valid hashes for arbitrary users on its own, as the sk is
only available to the CRM and hard-coded in the trigger. Consequently, no f-unit
should be granted the TRIGGER or SUPER privileges [Ora14c]. The funit string
ensures that even in case the @uid h is leaked, the security impact is limited to
the scope of the particular f-unit and user.

Each table stated in a .db-file is hence forced to specify exactly one owner
column. This convention allows for the creation of appropriate triggers that
verify this particular column against the @uid variable that was set by the CRM
prior in the connection — and thereby enforce the invariants as specified above.

Implementation: Delegation of Privileges

In some scenarios, the owner invariant might be too restrictive, in particular if
several users wish to collaborate and to modify shared datasets. SAFE there-
fore provides a mechanism for the delegation of user privileges (as described
on page 90), which is implemented as follows. SAFE maintains various inter-
nal database tables to manage users, groups, and memberships: the database
table sfw users contains basic information about the users in the system (e.g.,
name, unique user id, password, etc., see Figure 17). Another database table
sfw users groups contains the membership information for groups (see Fig-
ure 18). The table constitutes the list of all the users (left column) that are in
a group (right column). A group is defined by its occurrence in the column
group id . In other words, whatever string appears on the right hand side of
Figure 18 is considered a group. Note that there is no proper distinction between
users and groups. A group is just a user “containing” other users. As such, all
groups are also listed in the table sfw users (see Figure 17). Since there is no
meaning of authenticating as a group (instead of as a user), the password hash
of a group is set to the invalid hash value 0 .

The table sfw users delegation (Figure 19) carries information about the
speaks for relation among groups and users. The semantics is derived on page 90.

The three aforementioned database tables can indirectly be modified by dedi-
cated f-units, which explicitly require permission for the management of users.
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id name passwd hash ...

alice Alice 040b7cf4a5501... ...
bob Bob e23e45493h374... ...
clara Clara faadc3eb45567... ...
dave Dave 040b7bdfb6bf2... ...

student CS Student 0 ...
staff Employee 0 ...
admin System Admin 0 ...
... ... ... ...

Figure 17: Internal database table sfw users .

user id group id

alice student
alice admin
bob student
clara staff

dave admin
dave staff

... ...

Figure 18: sfw users groups .

speaks for

alice staff

admin admin
admin staff

admin student

Figure 19: sfw users delegation .

The tables are then updated through dedicated methods provided by the CRM.
In other words, legitimate f-units can add, modify, and delete users, they can
add, modify, and delete groups, and they can manage the delegation of privileges
among users and groups.

The database tables presented in the following are not visible to developers.
Instead, they implement the supporting functionality for delegation and user
management.

The internal table sfw users delegation expd (Figure 20) is filled by the
algorithm group expansion() by recursively expanding the groups occurring
in table sfw users delegation into the respective sets of users.

The algorithm compute delegation closure(), as described below, fills the
internal table users delegation cl (Figure 21) by computing the delegation
information for all users, i.e., the table contains the user names of all users vi to
whom a user u has delegated her privileges.

For example, according to Figure 18, Alice is both student and admin with
special permissions. According to Figure 19, she can speak for all the staff members
(e.g., for Clara) and other admins (e.g., for Dave). But she is also controlled by
other admins (e.g., by Dave). The entire delegation is shown in Figure 21 above.
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speaks for

alice alice
alice bob
alice clara
alice dave

dave alice
dave bob
dave clara
dave dave

Figure 20: sfw users delegation expd .

speaks for

alice bob
alice clara
alice dave

dave alice
dave bob
dave clara

Figure 21: sfw users delegation cl .

Algorithms. The algorithms for evaluating delegations are shown in Appendix
B.2. The algorithm group expansion() (Figure 43 on page 248) is used to
expand the delegation relation of groups into their users. The algorithm is
implemented in the corresponding MySQL procedure. While fetching the rows
of the table sfw users delegation , if an entry of any column of a row is a group,
which is checked through the table sfw users groups , the group is expanded
into its users, i.e., the “speaks-for” delegation relation among groups and users
is converted into a relation among users. This expanded information is then
inserted into the table sfw users delegation expanded .

The algorithm compute delegation closure() (Figure 42 on page 247) com-
putes the closure of the delegation relation among users, i.e., it generates the list
of all users to which a user has delegated her privileges. Initially, the algorithm
copies all the entries of the table sfw users delegation expanded into the new
table sfw users delegation cl (lines 4-7), since these entries are directly re-
lated. Then, the speaks entry of the new table and the for entry of the old table are
inserted into the new table provided their other columns are identical, i.e., the

100



III.4. Extensibility

for column of the new table is same as the speaks column of the old table (lines
11-15). For example, if the old table contains a→ b and b→ c, then the new table
contains a → b, b → c, and a → c since b is present in the for column of the new
table as well as in the speaks column of the old table. The algorithm prevents the
re-insertion of the entries already present in the table and also the insertion of
the entries where speaks and for column are identical (line 19).

Algorithms for Nested Groups. The algorithm group expansion() (Fig-
ure 43) was used to expand a group into its users and to give the information
about the delegation relation among users. However, the algorithm fails in the
cases of nested groups with subgroups. For example, let student , staff , and
admin be some user groups under the root user, such as groot = {student ,
staff , admin} , where

gstudent = {Alice , Bob , Dave} ,
gstaff = {Clara} ,
gadmin = {master} .

If root → Alice , then the above algorithm inserts students → Alice , staff
→ Alice and admin → Alice into the table sfw users delegation expanded .
Thus, the algorithm fails in giving the information about the delegation relation
expanded to users, but instead again returns the relation among groups and
users. So, there is a need for an algorithm which can handle the cases of nested
groups.

The procedure compute delegation (Figure 44 on page 249) after fetching a
row (line 20) first calls the procedure expand group (line 26) to expand the speaks
column and the group-user relation is stored in the table sfw groups expanded .
Similarly, this is done for the for column (line 27). Then the users of the
speaks and the for column from this table are mapped accordingly into the ta-
ble sfw users delegation expanded (lines 29-35).

The algorithm expand group (Figures 45 and 46 on pages 250 and 251) it-
eratively expands a group into its subgroups and its users until a fixed point
is reached. It first checks whether the group has been expanded before (lines
13-16). In such a case, the procedure terminates (line 15). Otherwise it keeps
on expanding the group into its subgroups and users. If any of its subgroup
has already been expanded before, then it simply fetches its users from the table
(lines 45-65) instead of expanding it again. However, before storing the users,
the algorithm checks whether the pair already exists. This case implies the
presence of an invalid (non-terminating) specification (lines 57-60). The parent
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group of a group or a user is stored in the table sfw temp (line 40) to keep track
of the previous child which is deleted after the insertion of the user into the
table sfw users delegation expanded (line 81). The algorithm returns the ta-
ble sfw groups expanded containing the relation between a group and its users
irrespectively of the depth of a group. The table is used to generate the speaks-for
relation among users into the table sfw users delegation expanded .

Implementation: Query Sandbox

Apart from data separation in the user dimension, the formal model requires
a clear data separation between f-units. More technically, the formal model
requires an explicit assignment between tables and f-units, and the prevention
of any cross-references. We thus have to ensure that incoming queries only access
tables in the scope of their originating f-unit.

In order to prevent clashes in the table namespace, every declared table in an
f-unit’s .db-file is prefixed with the name of the defining f-unit. For the sake
of a convenient usage and a clear interface, the prefixing is not exposed to the
developer — instead, the CRM replaces each encountered table in a received
query on-the-fly by its prefixed counterpart. As each f-unit has to authenticate
itself at the CRM before placing queries, the f-unit can be determined reliably.
Table access is hence enforced to be permissive according to the connected f-
unit. The table prefixing hence prevents data access across f-unit boundaries
and thereby implements the query sandbox.

In fact, the prefixing can be considered as the transformation of a global shared
database towards a local per-f-unit database. The security of the prefixing solely
relies on the robustness of the replacing algorithm. The presented prefixing-
based sandbox satisfies the needs of our formal model with respect to cross-f-unit
data access prevention.

Implementation: Wiring

Due to the limitation of f-units to access only their associated tables using the
query sandbox, we considerably lose flexibility, as cross-f-unit collaboration via
the database is prevented by design, which clearly is in contradiction to the
extensibility paradigm of SAFE. We therefore provide an implementation of
data sharing using input tables and output tables (see Sections III.4.4 and III.4.5).
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We need well-defined interfaces for exchanging data across f-unit boundaries,
while preserving all integrity and confidentiality constraints.

In order to receive arbitrary data, f-units declare input tables with a corre-
sponding SQL schema. The schema serves as interface that specifies the format
(or type) of the expected datasets. On the other hand, output tables implement
SELECT statements for providing such datasets. The specification of output tables
allows f-units to decide on their own, which particular datasets to expose. The
left-hand side of Figure 22 shows an example of an f-unit providing user groups,
in which each public group name is exposed with its owner. The right-hand side
shows a statistics f-unit that can receive data items of various types. We refer
to page 241 for the comprehensive syntax of declarations of input and output
tables.

Recall that, in the local data model, all data is stored in local tables, each of
which is owned by exactly one f-unit. The representation of data in such lo-
cal tables, however, does not necessarily match the intended signature of other
f-units input tables. This means, there is no one-to-one correspondence in the
schema between stored data and shared data. Since the data sharing approach
shall offer greatest flexibility with respect to the power of output tables in col-
lecting information from local tables, SAFE allows arbitrary SQL queries in the
schema mapping process, i.e., in the declaration of output tables. In the example
of Figure 22, the output table all groups is defined via a SELECT query on top
of the local table groups . The local table groups might have much more fields
than actually required by the input table stats . Likewise, groups might not
contain sufficient fields, which means that a join with other local tables might be
required in order to match an input table’s schema.

As with all other f-unit queries, output table queries are automatically table-
prefixed and thus restricted to the boundaries of the source f-unit. Implemented
as a VIEW , an output table’s schema (column names and types) can be de-
termined reliably after creation using MySQL’s information schema.columns
table [Ora14d]. Together with the definitions of input tables, we can provide
full signatures of both input and output tables to a new step in the integration
process, the wiring.

A wiring matches an output table schema of one f-unit to an input table schema
of another f-unit. Such a table mapping links one or more f-units and is internally
expressed as a SELECT query. An input table view can thus be represented by a
UNION, which allows for the combination of multiple mapping statements — an
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OUTPUT TABLE a l l g r o u p s ( INPUT TABLE s t a t s (
SELECT gid AS key , key KEY

owner , name owner OWNER
FROM groups type TEXT

WHERE publ ic=1 )
)

Figure 22: Declaration of output and input tables in an f-unit’s .db-file.

approach in data integration terms usually referred to as global-as-view [Len02].
Each of those input-table-specific and wiring-specific output table queries

form a schema matching that follows syntax and semantics as defined by the input
table. There exist several schema matching techniques that could be used for
automatically deriving input/output table correspondences — these techniques
are still prone to mistakes, suggesting at least a human-aided approach [BMR11].
We leave further improvements of the wiring process between input and output
tables, such as an algorithm-aided schema matching, for future work. Currently,
upon integration of an f-unit, the human integrator is presented the list of all
input and output tables and may connect particular columns after reviewing
types and semantics (see Figure 24 on page 111).

Foreign Keys

The goal of input tables is not only to provide the functionality of collecting data
for presentation, but instead, also to extend existing data from the realm of other f-
units — by linking own data to received data. As an example, consider an f-unit
A that manages particular objects (images, groups, profiles, etc.). Additionally,
consider a wired child f-unit B that provides advanced functionality (comments,
votes, etc.) on top of the objects of A , e.g., an image (f-unit A ) can receive
comments (f-unit B ). This 1 : 1 or 1 : N dependency can be expressed as values
in a local table of B that are explicitly referencing a value in another local table
of B or even in an input table with data provided by A . Upon deletion of the
referenced value of A , all referencing entries of B that have become stale are
implicitly deleted in order to ensure consistency between both involved tables,
e.g., if an image has been deleted, all associated comments are deleted as well.

Unfortunately, MySQL’s built-in concept of foreign key constraints [Ora14b]
can only be used for involved tables that are “real” MySQL tables; views and
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UNIONs in particular are not supported. However, we aim at supporting for-
eign keys on input tables (which are implemented as UNION over the column-
mappings to arbitrarily crafted output tables from other f-units). We thus present
a generic custom approach in order to emulate foreign key semantics with in-
creased flexibility between input and output tables. Using MySQL triggers,
our approach keeps track of dependencies between local tables — even through
wired input and output tables — and ensures consistency by detecting and delet-
ing rows that have become invalid. Such child rows, however, are not necessarily
owned by the user who is deleting the parent object. In this case, the operation
might hence violate the owner invariant: imagine user Alice who posts a pic-
ture via f-unit A , and user Bob who comments on the image via f-unit B . If Alice
deletes the picture, then also Bob ’s comments need to be deleted — although
Alice has no permission to alter Bob ’s comments. We provide an explicit han-
dling for such well-defined dependent cases. The rather complex methodology
is detailed in a supervised Master’s Thesis [Sch12, §5.2]; a technically involved
implementation thereof is part of the current release of SAFE.

Wiring Invariants

The presence of a wired input table implies that its content was intentionally
shared by the providing source f-unit, as required by the formal model instan-
tiation. Although intentionally shared by the source f-unit, the wired content
should additionally be restrictable to a particular user.

Such restriction might be detrimental if statically implemented by the output
table’s SELECT statement: assume, for example, an f-unit F that provides the
functionality of friendships between users, essentially a binary relation {(ui, vi)} ⊆
U

2. If the exposed output table is statically restricted to a fixed user ũ by, for
instance, listing only the friends of ũ, then any f-unit operating on behalf of a
different user ũ′ would not be able to collect necessary data.

Due to the very nature of extensibility, the context in which the friendship
information will be used is generally not determined at specification time. The
access control in the user dimension should hence be more flexible. In particular,
the wiring should allow for various different scenarios.

The following introduces a deviant output table syntax to incorporate the
possibility of expressing additional invariants for each output table. As shown
in Figure 23, the invariant of the output table friends o uses the session variable
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OUTPUT TABLE f r i e n d s o (
SELECT CONCAT( uid1 , uid2 ) AS key ,

uid1 AS owner ,
uid2 AS f r i e n d

FROM f r i e n d s
INVARIANT i s ( @uid , owner ) OR i s ( @uid , f r i e n d )

)

Figure 23: Invariant examples for output tables, using the relation is() , column
references, and the variable @uid .

@uid representing the currently authenticated user, the built-in binary predicate
is(·,·) for equality checks, and the logical operator OR . The invariant holds true
if the @uid matches either the owner column or the friend column of the
exposed rows.

In order to illustrate how wiring invariants prevent unintended data leakage,
consider the output table friends o being wired to an input table of a malicious
f-unit F′. Due to the specified invariant of friends o , F′ would gain knowledge
of all friends of a particular user u only if u has used F′ at least once. In other
words, the malicious f-unit F′ has no access to the datasets of user u — unless u
has decided to activate F′ in its scope, which means that u trusts F′ and hence
uses F′ at its own risk.

Unless overridden by explicit invariant specifications, the default invariant
is(@uid,owner) is set for every output table and therewith provides a basic
protection for exposed data. This implementation reflects the trust model in
which a user who provides some information to an f-unit F has to trust F in
implementing appropriate access control, whether in the scope of business logic
or output tables.

Dynamic Predicates

Recall that, whenever an f-unit exposes data through its output tables, all the
information the f-unit might gather (and then expose) is available either by its
local tables or by its input tables. See Figure 15 on page 94 for an illustration of
the possible data sources and the resulting dependencies. To restrict the content
of the exposed output tables further, an f-unit may specify dynamic invariants
that depend on dynamic predicates from its accessible tables. For example, if

106



III.4. Extensibility

a particular f-unit considers friendship information to be valuable (and hence
accessible) for friends of one of the involved parties only, the invariant could be
stated as

i s ( @uid , owner ) OR f r i e n d s ( @uid , owner ) OR
i s ( @uid , f r i e n d ) OR f r i e n d s ( @uid , f r i e n d )

for friends being a table with binary arity. In a way, friends(·,·) models a
dynamic relation as opposed to is(·,·) , which is a built-in, hence static, predicate.

Likewise, the predicate ignores(·,·) implemented via an input table or a
local table, could be used to model an invariant consisting of its negation

! ignores ( owner , @uid ) AND ! ignores ( fr iend , @uid )

which hides datasets for users who are ignored by some of the affected users.

The evaluation and verification of invariants is implemented as part of the
wiring through an additional view that selects from the actual unrestricted output
table. The restricted view of the output table includes a WHERE condition that
is automatically derived from the overall invariant expression, e.g, from the
predicate tbl(x0, . . . , xi):

EXISTS (SELECT ∗ FROM t b l WHERE p0 = x0 AND . . . AND pi = xi )

The implementation of invariants containing negation or wildcards is analogous.

The semantics for existential quantifiers with conjunctive matching allows
for easy deployment in common environments in which access control bases
on group memberships, permissions, and user relationships. Since predicates
can even refer to input tables, the wiring process provides the flexibility and
modularity needed for incorporating extensions at runtime – knowing the input
table’s column semantics is sufficient for an f-unit to state meaningful invariants.

In this section, we have seen a simple and generic syntax for defining invariants
on data held by a particular table. With the combined use of either local tables
or even wired tables as predicates, complex expressions can be given which
allow for relating the values of a dataset to the properties of the developer’s
intention. The expressivity comprises logic primitives like AND, OR, negation,
and parenthesis to create cascaded expressions out of existing ones.
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By this means, we have introduced the possibility of hiding particular datasets
in specified output tables according to the user identifier which the receiving f-
unit is currently connected to. The decision on whether and to which extent an
output table’s information has to be restricted requires semantic information on
the data’s representation and thus has to be under the responsibility of the source
f-unit. By such uid -based filtering of output tables, we are able to maintain the
property of f-units being able to receive possibly sensitive data only if they are
going to be used by the particular user.

We stress that our approach does not explicitly consider information leakage
that comes as a result of inference, e.g., by indirect access, by statistical inference,
or by data correlation. Consider here again friends o of Figure 23 wired into
some f-unit F: F not only intentionally gains knowledge of @uid ’s friends, but
can also successively gather friendship information on the friends of @uid . In
the worst case, over time, F can learn all the friends of user u for sure, even if
u never used F — after all other users used F once2. Mitigation of such natural
inference is left to the responsibility of the source f-unit, which should thus model
the output table invariants according to the anticipated benefit-cost ratio.

III.4.7 Examples and Evaluation

This sections illustrates how to conveniently extend an existing application with
new functionality, based on the previously introduced techniques. More specif-
ically, we take a SAFE application of an interactive social network and add an
incremental search functionality composed of a set of independent f-units.

Initial Application

In addition to various other features, the initial social network application com-
prises the common functionality of group memberships which is implemented
by an f-unit Groups . Any authenticated user may create a group, which can
be joined by other users. Note that these groups are not the built-in user
groups managed by SAFE. The f-unit Groups provides the public output ta-
ble all groups with a declaration of data together with an invariant:

2 The relation “is a friend of” is assumed to be symmetric — in contrast to the relation “likes”.
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OUTPUT TABLE a l l g r o u p s (
SELECT name ,

gid AS key ,
owner

FROM groups
INVARIANT ALL

)

The output table exposes the group names to the wiring process: if wired, other
f-units can access the names of all groups. The invariant ALL makes the group
information public, i.e., readable for every user, and thus for every @uid .

Furthermore, an f-unit Messaging implements an instant messaging function-
ality and defines an output table private msgs as the set of all messages (stored
in the local table conversations ) that can be associated with the current user:

OUTPUT TABLE private msgs (
SELECT msg id AS key ,

msg ,
uid from AS owner ,
u id to AS to

FROM conversa t ions
INVARIANT i s ( owner , @uid ) OR i s ( to , @uid )

)

Recall that, per default, every user may access output table rows with a match-
ing owner column is(owner,@uid) , see Section III.4.6. However, the above in-
variant replaces this default behavior by allowing foreign f-units to access both
sent and received messages of the particular user that the f-units are currently
connected to.

Adding Functionality

Given the initial application, we now show how to add an application-wide
incremental search functionality. By this means, the f-unit LiveSearch monitors
a text input field for typing events, searches all its available datasets for the
specified input pattern, and displays rows that match the pattern. As introduced
in Section III.4.6, we have equipped LiveSearch with an input table data that
can be wired to output tables of other f-units. The input table has two main data
fields: text for arbitrary textual content (e.g., chat messages, group titles, poll
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descriptions), and type for an informal description of the search source type
(e.g., messages, groups, polls).

INPUT TABLE data (
t e x t TEXT
type VARCHAR( 2 0 )
key KEY
owner OWNER

)

By virtue of this input table, LiveSearch is able to search arbitrary datasets –
even for data sources that are provided by f-units that were not known before, or
by f-units that might come up in the future. At runtime, LiveSearch compares
these data sources with the search patterns entered in the search input field of
LiveSearch :

<input type=” t e x t ” name=”search” id=” s e a r c h F i e l d ”>

LiveSearch issues queries against its input table data for every keyup -event
of the search field and consequently activates the corresponding instances of the
f-unit LiveSearchResults :

<a c t i v a t e : L iveSearchResul ts
query=”SELECT t e x t AS r e s u l t , type AS i n f o

FROM data
WHERE ’$#search ’ <> ’ ’ AND

LOWER( t e x t ) LIKE LOWER(CONCAT(
’% ’ ,
REPLACE( ’ $#search ’ , ’ ’ , ’% ’ ) ,
’% ’

) ) ”
ref resh=” s e a r c h F i e l d . keyup” />

In the social network setting, the search engine shall include the groups of the
social network in the search results. In order to provide LiveSearch with the
actual group names, the wiring of Groups.all groups into LiveSearch.data
maps key 7→ key , name 7→ text , the constant ’Group’ 7→ type , and owner
7→ owner . Furthermore, upon integration of Messaging , the new feature of
searching in both sent and received messages can be stated by the wiring shown
in Figure 24: key 7→ key , msg 7→ text , the constant ’Message’ 7→ type , and
owner 7→ owner .
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Figure 24: Wiring screenshot: schema mapping from Messaging to LiveSearch .

Evaluation

Figure 25 on the next page shows the resulting application: a wired input table
allows f-unit LiveSearch to display search results generically for datasets of
both Groups and Messaging .

The implementation of LiveSearch benefits from various features and con-
cepts that are offered by the described extensions of SAFE. For instance, the
result set of LiveSearch can be arbitrarily augmented at run-time. The wiring
allows for easy integration of new functionality into existing app ecosystems,
without affecting already established apps. Collaboration across f-units thus
only relies on a sufficiently generic interface of all involved f-units, as imple-
mented in terms of input and output tables. Figure 26 on the next page depicts
the concrete wiring of Groups.all groups and Messaging.private msgs into
LiveSearch.data , which results in a safe setting that reflects the modularity and
extensibility paradigms, as described above.

Furthermore, LiveSearchResults — or any other involved f-unit — can be
replaced by means of extensibility with respect to both presentation and func-
tionality, allowing for augmenting the application in unforeseen directions. In
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Figure 25: Screenshot of the extended application: f-unit LiveSearch displays
results obtained from customizable sources.

addition, even though Messaging publishes privacy-sensitive data, Messaging
is able to bind datasets to appropriate invariants and thus has full control over
which data might possibly be presented to other users. Consequently, the impact
of an extended malicious f-unit (for instance LiveSearch ) on the overall system
is limited to the abuse of the malicious f-unit’s very own or received datasets.

Finally, SAFE’s activation tag <activate..> with the attributes query and
refresh allow for a straight-forward implementation without the need for cum-
bersome user-defined AJAX handling — the resulting gain is a high functionali-
ty/LoC ratio with many desirable correctness and security properties.

To summarize, this section has presented a mechanism designed for the imple-
mentation of extensibility for (existing) cloud-based web applications. Possibly
untrusted components can be integrated in an app ecosystem in a secure and
privacy-friendly manner. The multi-dimensional principal model provides a
clean component abstraction, thereby impeding undesired component access
and ensuring that no undesired information flow takes place between applica-
tion components. The instantiation in SAFE results in novel methodology that
is specifically designed for the emerging needs of extensibility in application
ecosystems.
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Figure 26: Data flow with wiring and activation: the input to LiveSearch is an
extensible union of two distinct and independent sources.

III.5 Discussion

We first discuss the current (partially prototypical) implementation of SAFE, and
then consider future work.

III.5.1 SAFE Implementation

A prototype of SAFE is implemented using the languages Perl, JavaScript, and
PHP. The current system consists of the SFW compiler, the security reference
monitor, and a comprehensive tool suite. The current size is 15K lines of code.

SAFE requires the open source Apache HTTP web server3 – the most often
used web application server – as middle tier between SAFE server code and
the clients. Furthermore, SAFE requires an SQL database server, for instance
the most popular open source relational database management system MySQL4.
At the client side, SAFE operates with any standard web browser. Plugins or

3 Apache HTTP Server, the Apache Software Foundation, http://httpd.apache.org.
4 MySQL, Oracle Corporation, http://www.mysql.com.

113

http://httpd.apache.org
http://www.mysql.com


III SAFE — A Declarative Framework for Extensibility in the Web

Figure 27: Screenshot of the SAFE setup wizard.

proprietary settings are not necessary.
The SAFE tool suite comprises an installation wizard (Figure 27) for the auto-

mated installation and configuration of SAFE on any suitable web server, and
the SAFE integrator for the installation and management of f-units (Figure 28).
Please consider the SAFE manual [Rei14] for further information on the setup
and on technical details.

The typical development workflow in SAFE looks as follows: The SFW com-
piler compiles each f-unit independently from other f-units and independently
from the main web application. This way, developers are given the ability to
update a web application incrementally. The goal of personalization in mind,
recall that the code of the main application may often not be available to a cus-
tomizer, i.e., the compiler must be able to translate f-units separately from other
f-units. The compilation of an f-unit creates a directory which is added to the
working directory of the web server. SAFE’s tool suite offers convenient ways to
integrate, inspect, and configure f-units. The screenshot in Figure 24 on page 111
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Figure 28: Screenshot of the SAFE integrator.

shows how two f-units are wired to each other.
To demonstrate the efficacy of SAFE, we built various small applications,

among those a prototypical conference management system. The application
comprises the full workflow of a scientific conference with paper submission, the
review cycle, and author notifications. The compiled code has over 10.1 times the
size of the code specified by a developer in SAFE. This shows the huge amount of
code that developers usually have to specify to get an application of comparable
quality (in terms of usability, responsiveness, and security). Furthermore, the
factor justifies the claim that much code in web applications is redundant or
could be derived automatically.

Moreover, we defined some customizations which the users in the conference
management system can apply. A reference to the selected customization is
stored as a cookie on the client. It is interesting to see how different browsers on
the same client obtain differently rendered pages from the server, even if both
browsers have the same user logged in. An example is shown in Figure 49 on
page 255.

III.5.2 Future Work

While SAFE was only a proof of concept in the beginning, it is exciting to see
the many interesting open directions that the approach has created until now. A
few of them are briefly described in the next paragraphs.

Efficiency throughDynamic Code Partitioning. Due to different operation
purposes, the code of an RIA’s business logic should be split into client and
server code in a more dynamic manner [YGG+07, CLM+09]. If, for instance, the
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client is a light-weight smartphone, then hard computation tasks might better
be performed on a powerful web server. However, sorting a small table shall
better be performed locally in order to avoid communication overhead. These
optimizations provide more autonomous and reactive user interfaces, but on the
other hand, they may increase the need for more careful inspection of information
flow and data privacy. So far, SAFE splits code automatically only with respect
to security aspects.

Efficiency and Security throughDynamicData Storage. As done for auto-
mated code partitioning in SAFE and in other approaches [YGG+07, CLM+09],
also data can be stored both at the client side and at the server side. A dynamic
selection of the storage location can speed up the performance of RIAs due to
reduced traffic between client and server.

Access Control. The current implementation of access control based on
database columns per f-unit in the global data model could become more fine-
grained in that columns can be conditioned on certain values.

Declassified Customization. Recall that in cases for which customization is
not safe, the system provider has to manually approve the customization map-
ping. It might hence be useful to have an automated methodology at hand that
approves such declassified customizations and gives recommendations about
whether to accept or to refine a given customization.

Combining Extensions. A user might want to incorporate more than one
extension from an “extension app store.” What does it mean for two extensions to
be “compatible,” and how can we automatically check for compatibility between
extensions?

Scalability of Concurrent Updates. It might be worth investigating how
SAFE’s reference monitor can operate in a distributed fashion serving thousands
of clients at the same time.

Automatic Offline Mode. Even in the absence of the web server, the client
part of an RIA shall be working up to a certain extend without crashes or major
inconveniences. Solutions for an automatic offline mode require advanced tech-
niques to enforce consistency, to guarantee the integrity (and possibly also the
privacy) of data cached by a client.
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III.5.3 Related Work

Model-Driven Engineering/Architecture (MDE/MDA)

The model-driven engineering approach [Obj14, ACL13] structures the specifica-
tion of an application by the abstract specification of individual domain models.
These formal models are well-suited for the design of distributed web applica-
tions: as in SAFE, both modularity and the compatibility of models with each
other achieve reusability of code.

The MDE approach separates business logic (using platform independent
models, PIM) from the technical aspects (using platform specific models, PSM).
Executable code is derived from a (sub)set of these specified models. The com-
patibility of different such models allows for an efficient adaptation to different
environments: A platform-independent model for displaying sorted interactive
student lists can be compiled to implementations for powerful server farms, but
also for lightweight smartphones. However, our notion of customization is not
covered by MDE since several models in MDE would have to change in order to
customize a single module.

On the one hand, it is important to find the right level of abstraction, which is
a key feature of the specified models. On the other hand, all models need to be
formal enough. For instance, a specification in the unified modeling language
(UML) is generally not fine-grained enough to automatically generate executable
code. SAFE relies on domain-specific languages (DSL) for the implementation
of individual f-units, but still provides abstraction in terms of f-unit interfaces.

Unified SQL-Based Approaches

In order to analyze the information flow in web applications in a precise manner,
application code has to be clustered to a certain number of units, each with a
well-defined interface. The activation framework of Hilda [YSR+06] uses a unified
SQL-like language to describe so-called application units. A tree of activated
application units allows for realtime inspection of information flow and conflict
detection. Upon activation of a child unit C by its parent unit P, information is
propagated from P to C, and also from a database D. Upon some user action in
C, the data associated with the action is returned to P, which processes this data
and passes it to its parent unit, and so on. The root unit uniformly maintains the
overall application state and updates the database.
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While Hilda has several attractive features, it also has some shortcomings.
First, while its unifying language is good for developing semi-static applica-
tions, today’s RIAs with JavaScript for interactivity are outside the scope of
Hilda. Second, while the recursive activation along the tree is good to under-
stand information flow, it requires that data for an application unit at the leaf of
the activation tree be passed through all of its ancestors. Thus a simple modifica-
tion of a leaf unit that for example displays an additional field from the database
requires modification of all of its parent units in order to modify the information
that is passed along. The activation framework of SAFE is inspired by Hilda, but
it addresses Hilda’s shortcomings in that SAFE supports traditional web devel-
opment languages (and syntactically useful simplifications thereof). Moreover,
SAFE simplifies information flow in the activation tree since f-units can directly
access the database and SAFE never propagates data from a child f-unit to its
parent f-unit.

FORWARD [FOPP11] is another web application framework, which – similar
to Hilda – avoids Java and JavaScript code fragments and replaces them with an
SQL-like language. Although powerful Turing-complete languages accomplish
often simple tasks that also SQL-like languages could accomplish, programmers
are used to develop web applications using a certain set of languages different
from pure SQL. It has been shown [LGV+09] that web developers do prefer
traditional imperative (scripting) languages such as PHP, JavaScript, and Java
to model web applications as compared to an all-declarative approach as in
FORWARD.

Specification Languages

Programming languages for web application development are often very low-
level, and thus programmers spend quite some effort on unimportant implemen-
tation details. A study [FOPP11] has shown that for one line of SQL code, there
is a modest of 1.5 lines of Java code for business logic and 61 lines of Java code for
binding SQL to Java and JavaScript. Most of this code can clearly be generated
automatically. In addition, having to manually write low-level code introduces
more bugs and security vulnerabilities. SAFE’s high-level specification language
SFW abstracts away most implementation details. Such a declarative language
lets the application developer focus on what functionality shall be achieved,
rather than how to achieve it. The carefully designed SFW compiler takes care of
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implementation details and provides much better code in terms of performance
and security. The SFW language is oriented on what programmers have been
using for decades. Yet another programming language would not be accepted
by most programmers.

Miscellaneous

There is a big number of frameworks addressing some of the problems men-
tioned in this chapter. However, none of them covers the topic of customization.
Jaxer [Jax11] and Phobos [Pho14] are web development frameworks that use the
same set of Java/JavaScript-based languages for both browser and server thereby
addressing the language heterogeneity problem. Greasemonkey [LBS14] and No-
Script [Mao14] are extensions that allow the Firefox browser to locally customize
the way a web page is rendered. These browser extensions are restricted (1) to
the Firefox browser, (2) to JavaScript operations, and (3) to web pages that are
already delivered to the client. Customizations are no first-class objects, they can
only be shared via an external third channel, not via the web application itself.

In contrast, server-side application development is achieved by App2You [App14],
a graphical framework that allows users to create form-oriented web applica-
tions by outlining the pages of the application. The framework does not require
programming experience or knowledge of web technologies. Our notion of
customization is different from App2You’s view of creating customized web ap-
plications: applications should not be derived from templates (App2You), but
instead should be customized after deployment (SAFE). SproutCore [Spr14] is
a framework for web applications having the business logic on the client side.
SproutCore aims at availability and efficiency of client code, in particular for mo-
bile devices that are not connected to an application server. As in SAFE, updates
to HTML and CSS code are performed automatically. Hanus and Koschnicke
have presented a framework [HK10] to support the development of web ap-
plications based on an entity-relationship model. As for SAFE, this approach
ensures application state consistency. Applications are specified in the declara-
tive modeling language Curry which, among other features, provides a strong
typing machinery. However, many programmers consider functional languages
(such as Curry) cumbersome to use for web application. It is considered more
convenient to use dynamic, more flexible, and DOM-oriented languages.
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III.6 Conclusions

This chapter has presented SAFE, a novel activation-based framework for the
development of web applications with support for safe extensibility and concur-
rency. SAFE not only eases the development of web applications tremendously,
but also ensures certain security properties by design. A prototypical imple-
mentation of SAFE with a detailed user manual is available for download on the
official SAFE project page5.

5 http://www.safe-activation.org.

120

http://www.safe-activation.org


Chapter IV

Verifiable Delegation
of Computation over Outsourced Data

This chapter addresses an emerging problem that comes with the advent of
outsourcing storage and computation to untrusted cloud servers. More precisely,
this chapter considers a model in which a company or a private individual (the
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“client”) stores large amounts of data with an untrusted server in such a way
that, at any moment, the client can ask the server to compute a function on some
portion of its outsourced data. This scenario comes with a number of additional
requirements: (a) the client must be able to efficiently verify the correctness of
the result despite no longer knowing the inputs of the delegated computation.
Moreover, (b) the client must be able to keep adding elements to its remote storage
– a continuous property independent of any computations issued. Furthermore,
(c) the client should not have to fix in advance (i.e., at data outsourcing time)
the functions that it will delegate. Even more ambitiously, (d) clients should be
able to verify computation results in time independent of the input-size – a very
appealing property for computations over huge amounts of data.

The chapter proposes novel cryptographic techniques that solve the above
problem with its requirements for the class of computations of quadratic poly-
nomials over a large number of variables. This class covers a wide range of
significant arithmetic computations – notably, many important statistics. To
confirm the efficiency of the solution, the chapter shows encouraging perfor-
mance results, e.g., correctness proofs have size below 1 kB and are verifiable by
clients in less than 10 milliseconds.

Chapter Outline

Section IV.1 introduces the realm of cloud computing with particular focus on
outsourcing data and computation, including related work and a high-level de-
scription of the contributions of this chapter. Section IV.2 (page 133) reviews
notation and basic definitions. Section IV.3 (page 135) introduces the notion of
multi-labeled programs and the definition of homomorphic message authentica-
tors with efficient verification for multi-labeled programs. Section IV.4 (page 144)
contains the description of two technical tools that will be important for the
design of the new construction of homomorphic MACs: algorithms for the ho-
momorphic evaluation of arithmetic circuits, and pseudorandom functions with
amortized closed-form efficiency. Section IV.5 (page 156) presents the construc-
tion of homomorphic MACs with efficient verification. Its efficiency is discussed
and its security is proven.
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IV.1 Introduction

Given the emergence of cloud computing (an infrastructure where clients or busi-
nesses lease computing and storage resources from powerful service providers),
it is of critical importance to provide integrity guarantees for outsourced data
management. Consider the following scenario as a first example. A client has a
collection of a large (potentially unbounded) amount of data D = D1,D2,D3, . . .,
for instance, environmental data such as air pollution levels at fixed time inter-
vals (e.g., every hour), and it may wish to compute statistics on such data. If
the client’s memory is not large enough to store the entire data, the client might
consider relying on a cloud service and storing the data on a remote server S.
Other significant examples of this scenario include arbitrary files at remote stor-
age systems, as well as endless data streams such as financial data (e.g., price
fixing data from the stock markets, financial figures and revenues of companies),
experimental data (e.g., genetic data, laboratory measurements), and further en-
vironmental data (e.g., surface weather observations). In this scenario, we hence
have a client who incrementally sends D to a server S, the server stores D, and
at certain points in time the client asks S to compute a function on (a portion of)
the currently outsourced data. We stress that the data D and its size cannot be
fixed in advance as the client may need to add additional data to the outsourced
storage. Analogously, the client might not know in advance what functions it
will apply on the outsourced data (e.g., it may wish to compute several statistics).

However, if the server is untrusted (i.e., it is malicious or becomes prey to
an external attack), how can the client verify that the results provided by the
server are correct? This question naturally leads to two important requirements:
(1) security, meaning that the server should be able to “prove” the correctness
of the delegated computation for some function f ; and (2) efficiency, meaning
that the client should be able to check the proof by requiring significantly fewer
resources than those that are needed to compute f (including both computation
and communication). Furthermore, if we consider computations over very large
sets of inputs (e.g., statistics on huge datasets), we want to be more ambitious
and envision the achievement of (3) input-independent efficiency, meaning
that verifying the correctness of a computation f (D1, . . . ,Dn) requires time in-
dependent of n. Moreover, two further requirements are crucial in this setting:
(4) unbounded storage, meaning that the size of the outsourced data should not
be fixed a-priori, i.e., clients should be able to outsource any (possibly growing)
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amount of data; and (5) function-independence, meaning that a client should
be able to outsource its data without having to know in advance the functions
that will be delegated later.

Relation with Verifiable Computation

The problem of securely and efficiently outsourcing the computation of a function
f to a remote server has been the subject of many works in the so-called field
of verifiable computation. Most of these works achieve the goals of security
(1) and efficiency (2), but they inevitably fail in achieving requirements (3) to
(5). Roughly speaking, the issue is that most existing work requires the client
to know (i.e., to store a local copy of) the input D for the verification of the
delegated function (e.g., in SNARG-based approaches [BCCT12, GGPR13] and
in signatures of correct computation [PST13]), or, otherwise, to send D to the
server all at once (rather than sending it over time) and to keep a small local
state which would not allow to append additional data at a later time (e.g., in
[PRV12, FG12]). Perhaps more critically, many of the existing solutions in this
area require the delegator to run in time proportional to the input size n of
the delegated function, e.g., in time poly(n). In the various existing protocols,
these limitations arise for different reasons (see Section IV.1.1 for a more detailed
discussion). However, even if verification in these works is more efficient than
running f , we think that, for computations over huge datasets, a poly(n) overhead
is still unacceptably high.

The only approach that comes close to achieving requirements (1)–(5) is the
work by Chung et al. on memory delegation [CKLR11]. The authors propose
a scheme based on techniques from [GKR08] which exploit the power of the
PCP theorem [Bab85, FGL+96, ALM+98, AS98]. With this scheme, a client can
delegate a broad class of computations over its outsourced memory fulfilling
the requirements from above (except for verification efficiency, which requires
time log n, instead of constant time). While providing a satisfying solution in
theory, this approach suffers from the usual impracticality issues of general-
purpose PCP techniques and hence does not lead to truly practical solutions to
the problem.

124



IV.1. Introduction

Contributions of this Chapter

In this chapter, we address the problem of verifiable delegation of computations
on (growing) outsourced data. Our main contribution is the first practical protocol
that achieves all five of the requirements stated on page 123. Namely, a client can
(continuously) store a large amount of data D = D1,D2,D3 . . . with the server,
and then, at certain points in time, it can request the computation of a function
f on (a portion of) the outsourced data, e.g., v = f (Di1 , . . . ,Din). Using our
protocol, the server sends to the client a short piece of information vouching for
the correctness of v. The protocol achieves input-independent efficiency in the
amortized model: after a single precomputation with cost | f |, the client can verify
every subsequent evaluation of f in constant time, i.e., regardless of the input size
n. Moreover, fulfilling properties (4)–(5), we have that data outsourcing and
function delegation are completely decoupled, i.e., the client can continuously add
elements to the remote storage, and the delegated functions do not have to be
fixed a priori. This means that the cost of outsourcing the data can be, in fact,
excluded from the delegation; think for instance of incrementally outsourcing
a large data stream during an entire year, and then computing statistics on the
data at the end of the year.

The presented solution works for computations over integers in the ring Zp

(where p is a large prime of roughly 2λ bits, for a security parameter λ), and
supports the evaluation of arithmetic circuits of degree up to 2. This restricted
class of computations is enough to capture a wide range of significant arithmetic
computations, such as meaningful statistics, including counting, summation,
(weighted) average, arithmetic mean, standard deviation, variance, covariance,
weighted variance with constant weights, quadratic mean (aka root-mean square
– RMS), mean squared error (MSE), the Pearson product-moment correlation
coefficient, the coefficient of determination (R2), and the least squares fit of a
dataset {(xi, vi)}ni=1 (in the case when the xi are universal constants, e.g., days of
the year)1.

The key technical contribution is the introduction of homomorphic MACs
with efficient verification. This cryptographic primitive extends homomorphic
message authenticators [GW13] by adding a crucial efficiency property for the
verification algorithm. We propose a first realization of homomorphic MACs
with efficient verification (see Section IV.1.2 for an overview of our techniques),

1 The least squares fit for this case can indeed be computed using a linear function [BF11a].
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and we prove its security under the Decision Linear assumption [BBS04]. Using
the above construction we build an efficient protocol that can be implemented
using bilinear pairings.

To demonstrate the practicality of our solution, we evaluate the concrete op-
erations that have to be performed by the client and the server, as well as the
bandwidth overhead introduced by the protocol for transferring the proofs. If
we consider 80 bits of security and an implementation of symmetric pairings
[Lyn14] on a standard desktop machine, we observe the following costs (see
Table 32 for the 128-bit case): For outsourcing a data item Di, the client needs to
perform a single modular exponentiation in 0.24ms. This operation yields a very
short authentication tag of size 0.08kB, which is sent to the server along with Di.
For the verification of a computation result v, the client receives a proof σv of size
0.21kB from the server, and can check this proof by computing one pairing and
one multi-exponentiation in 1.06ms.

As mentioned before, the solution achieves input-independent efficiency in
an amortized sense. The above verification costs are hence obtained after the
precomputation of some concise information ω f related to the delegated func-
tion f . Precomputing ω f takes the same time as computing f (with almost no
additional overhead!), it does not require knowledge of the input data, and ω f

can be re-used an unbounded number of times to verify several evaluations of
f on many different outsourced datasets. To generate the proof σv related to the
evaluation of a function f , the server has to run f with an additional, yet constant,
overhead – derived from replacing additions in f with a group operation, and
replacing multiplications with a pairing. Although our solution cannot capture
general-purpose computations, the above performance evaluation shows that
for our case of interest we achieve results that are encouraging for a practical
deployment of this protocol.

In summary, this chapter focusses on the important problem of delegating
computations over data which continuously grows and is outsourced to remote
servers. This specific problem has not received much attention so far: the only
existing solution [CKLR11], though very general, does not seem to lead to effi-
cient implementations. In contrast, we propose a protocol that achieves all the
desired requirements for a restricted, yet practical and useful, class of computa-
tions, and has the advantage of achieving performances that are promising for a
practically efficient solution.
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IV.1.1 Related Work

Memory Delegation. The work of Chung et al. [CKLR11] on memory dele-
gation and streaming delegation is the closest one to the model considered in
this chapter. In memory delegation, the client uploads its memory to the server
(in an offline phase), and it can later ask the server to update the outsourced
memory and to compute a function f on its entire memory (in an online phase).
The key idea of this model is that, after the offline phase, the client keeps a local
state whose size is much smaller than the memory, and such state is later used
to verify the delegated computation in time independent of the input size. In
streaming delegation, the memory can be updated only by appending elements.
The main advantages of the work of Chung et al. over our results are that: (i) the
client can change values in the outsourced memory, (ii) they provide solutions
for more expressive computations (i.e., a 4-round protocol for arbitrary poly-
time programs). However, their solutions also suffer some disadvantages. First,
the client is required to be stateful (in our solution the client keeps only a fixed
secret key). Second, in streaming delegation, the size N of the stream has to be
a-priori bounded. Such a bound also affects the client’s memory since it requires
a local storage size of approximately log N at the client, meaning that N cannot
be chosen arbitrarily long, and thus the stream cannot be endless. Also, in their
solutions, the client still runs in time polylog(n) in the online phase, where n is
the size of the entire memory. In contrast, our solution supports unbounded
data streams, and allows for clients that (after a preprocessing phase which is
input-independent) can verify computations in constant time.

Authenticated Data Structures. A line of research which addresses a prob-
lem closely related to the one considered in this chapter is the existing work
on authenticated data structures [NN98, Tam03]. This area considers a setting
in which clients want to securely delegate certain operations on data struc-
tures that are stored at untrusted remote servers. Existing work addresses
both static settings and dynamic settings (where data structures can be up-
dated), and it mostly focuses on specific data structure operations, such as range
search queries over databases [GTTC03, MND+04], authenticated dictionaries
[DBP07, PT07, GTH02], and set operations (e.g., intersection, union, set differ-
ence) over a dynamic collection of sets [PTT11]. However, none of the works in
this area considers the secure outsourcing of arbitrary or arithmetic computations
(e.g., statistics) over remotely stored data.
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Multi-Function Verifiable Computation. The notion of multi-function ver-
ifiable computation proposed by Parno, Raykova, and Vaikuntanathan [PRV12]
is close to our model, in that a client can delegate the computation of many
functions f1, f2, . . . on the same input D, while being able to efficiently verify
the results. Even though multi-function verifiable computation does not require
the client to fix the function f before outsourcing the data, this model still falls
short of our requirements. The main problem is that in multi-function verifiable
computation, the client has to store some information τD for every input D on
which it will ask to compute a function fi(D). Furthermore, there is no possibility
of updating τD without locally storing the previous data. This essentially means
that the data D has to be sent all at once, thus ruling out all applications in the
growing data scenario.

Homomorphic Signatures and MACs. The problem of realizing homomor-
phic message authentication schemes in both the symmetric setting (MACs) and
in the asymmetric setting (signatures) has been considered by many prior works.
Homomorphic signatures were first proposed by Johnson et al. [JMSW02]. How-
ever, since then, most works focus solely on linear functions, mainly because
of the important application to network coding [BFKW09]. Several efficient
schemes for linear functions have been proposed both in the random ora-
cle model [BFKW09, GKKR10, BF11b, CFGV13] and in the standard model
[AB09, AL11, CFW11, CFW12, Fre12, ALP12, ALP13]. Three more recent works
consider the case of larger classes of functions [BF11a, GW13, CF13]. Boneh and
Freeman [BF11a] proposed a realization of homomorphic signatures for bounded
constant degree polynomials. Gennaro and Wichs [GW13] introduced homomor-
phic MACs and gave a construction for arbitrary computations which is based
on fully homomorphic encryption and is proven secure in a weaker model where
the adversary cannot ask verification queries. Catalano and Fiore [CF13] pro-
posed realizations of homomorphic MACs that, despite capturing a restricted
class of computations (i.e., arithmetic circuits with polynomially-bounded de-
gree), support verification queries and are more efficient than previous works.

However, virtually all of the above works suffer the problem of having a veri-
fication algorithm which runs in time proportional to the function. Gennaro and
Wichs [GW13] discuss the possibility of verifying a MAC in time better than exe-
cuting the function, and propose some general solutions for their scheme which
are based on fully homomorphic encryption and SNARGs [Mic94]. However,
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neither the proposed solutions nor the suggested techniques yield schemes that
achieve input-independent efficiency, and they do not seem to lead to practically
efficient solutions, at least not as practical as required in this chapter.

Succinct Non-Interactive Arguments of Knowledge (SNARKs). A solu-
tion for realizing fully homomorphic signatures would be to use succinct non-
interactive arguments of knowledge (SNARKs) [BCCT12]. For a given NP
statement x, this primitive allows for producing a succinct argument for proving
knowledge of the corresponding witness w. The main advantage of SNARKs is
the succinctness of the argument (i.e., its size is independent of the size of both
the NP statement x and its witness w), which can thus be verified efficiently.
However, SNARKs are not as practically efficient as we might wish, and re-
quire either the random oracle model [Mic94] or non-standard, non-falsifiable,
assumptions [GW11].

Verifiable Computation. As we mentioned earlier, the problem considered
in this chapter and addressed via homomorphic authenticators is related to the
notion of verifiable computation for which there exits a vast amount of literature,
ranging from works for arbitrary computations [Kil92, Mic94, GKR08, GGP10,
CKV10, AIK10, PRV12, GGPR13, PGHR13] to works for specific classes of com-
putations [BGV11, FG12, PST13, CFGV13]. In verifiable computation, a client
wants to delegate a computationally heavy task to a remote server while being
able to verify the result in a very efficient way. As we mentioned before, most of
these works suffer several limitations that do not make them appropriate for the
model considered in this chapter. For example, many existing solutions require
the delegator to run in time proportional to the input size of the delegated func-
tion. This limitation arises for different reasons. For instance, in the definition
proposed by Gennaro, Gentry, and Parno [GGP10] (and later adopted in several
works, e.g., [CKV10, BGV11, PRV12, FG12]), to delegate the computation of f (D),
the client has to compute an encoding τD, f of D, which depends on the function f .
However, if we want to choose f after outsourcing D, the computation of τD, f is
no longer possible. Alternatively, one could keep the entire input D locally and
then compute τD, f from D and f , which would yield a running time proportional
to the input size. In other work (e.g., [Kil92, Mic94, GKR08]) the efficiency re-
quirement for a client is to run in time poly(n, log T), when delegating a function
f that runs in time T and takes inputs of size n.
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Furthermore, as observed by Gennaro and Wichs [GW13], even if it is pos-
sible to reinterpret some of the results on verifiable computation in the setting
of homomorphic message authenticators, the resulting solutions are still not ap-
propriate. In particular, they might require a client to send the data all at once
and would not allow for composition of several authenticated computations. We
refer the reader to [GW13] for a thorough discussion about this.

Another interesting line of work in this area recently proposed efficient systems
for verifiable computation [SVP+12, SMBW12, SBV+13, VSBW13]. The proposed
solutions also work in a model where the client needs to know the input of the
computation, and it also has to engage in an interactive protocol with the server
in order to verify the results. In contrast, this chapter considers a completely non-
interactive setting in which the proof is transferred from the server to the client
in a single round of communication. In the past, there have been proposals
of practical solutions, but of limited provable security: e.g., solutions based
on audit (e.g., [MWR99, BCE+08]) or secure co-processors (e.g., [SW99, Yee94])
which prove the computation as correct, under the assumption that the adversary
cannot tamper with the processor. Compared to these results, our work relies
only on standard cryptographic assumptions, and does not require any trusted
hardware.

IV.1.2 A High-Level Overview of our Techniques

This section gives a high-level overview of the presented construction and the
techniques used therein.

To obtain our solution we build on the notion of homomorphic message au-
thenticators proposed by Gennaro and Wichs [GW13], a primitive which can be
considered the secret-key equivalent of homomorphic signatures [BF11a]. The
basic idea of homomorphic MACs is that a user can use a secret key to generate a
set of tags σ1, . . . , σn authenticating values m1, . . . ,mn respectively. Then, anyone
can homomorphically execute a function f over (σ1, . . . , σn) to generate a short
tag σ that authenticates m as the output of f (m1, . . . ,mn).

At first glance, homomorphic MACs seem to perfectly fit the problem of ver-
ifiable computations on (growing) outsourced data. However, a closer look at
this primitive reveals that this idea lacks the very important property of effi-
cient verification. As discussed in Section IV.1.1, the issue is that in all existing
constructions the verification algorithm of homomorphic MACs runs in time
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Figure 29: Arithmetic function f applied on authentication polynomials {yi}i.
Observations: y(0) = f (y1(0), . . . , yn(0)) = f (m1, . . . ,mn)
and y(α) = f (y1(α), . . . , yn(α)) = f (FK(L1), . . . ,FK(Ln))

proportional to the description of the function. Our key contribution is there-
fore to solve this efficiency issue by proposing a definition and a first practical
realization of homomorphic MACs with efficient verification.

The starting point for the design of our construction is the homomorphic
MAC scheme of Catalano and Fiore [CF13]: to authenticate a value m ∈ Zp,
one “encodes” m into a degree-1 polynomial y ∈ Zp[x] such that y(0) = m and
y(α) = FK(L). See Figure 29 (left side) for illustration. Hereα ∈ Zp is a secret value
randomly chosen by the client, and FK(·) is a pseudorandom function that is used
to “randomize” a label L. One can think of a label as arbitrary information (e.g.,
a string) chosen by the client to describe the meaning of the authenticated value
m (e.g., “air pollution on 2014/08/14 at 9:06:30”). Given a set of n authentication
polynomials y1, . . . , yn, the server creates a new MAC y which authenticates (i.e.,
it proves) that m is the result of f (m1, . . . ,mn), e.g., f could be the variance of pollu-
tion levels at all time instants within a specific day/year etc. More specifically, the
basic idea is to compute y by homomorphically executing the function f on the
corresponding authentication polynomials, i.e., y = f (y1, . . . , yn). See Figure 29
(right side) for illustration. By the design of the yi, this computation satisfies
y(0) = f (m1, . . . ,mn) and also y(α) = f (FK(L1), . . . ,FK(Ln)). Hence, the client can
test whether a value m′ (proposed by the server) is indeed the result of a com-
putation f (m1, . . . ,mn) by checking whether the MAC y provided by the server
verifies the two conditions: (i) y(0) = m′ and (ii) y(α) = f (FK(L1), . . . ,FK(Ln)).

However, the Catalano-Fiore homomorphic MAC cannot be adopted in our
setting: verifying a MAC for a function f requires the client to compute W =

f (FK(L1), . . . ,FK(Ln)) to perform check (ii), but this clearly takes the same time
T as that for computing f — exactly what we want to avoid! One may then
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IV Verifiable Delegation of Computation over Outsourced Data

hope that once this value W is computed, it could be re-used, e.g., to verify
other computations involving f . Unfortunately, this would require the re-use of
labels, which is not possible at all: it is forbidden by the security definition used
in [CF13]. More critically, the security of the Catalano-Fiore MAC completely
breaks down in the presence of label re-use!

We solve the aforementioned critical issues with two main ideas. Very infor-
mally, we first elaborate a model that allows us to partially, but safely, re-use
labels. Then, we introduce the construction of a pseudorandom function which
allows us to precompute a piece of label-independent information ω f , such that
ω f can be re-used to compute W very efficiently (when the labels Li are known).

To allow for a meaningful re-use of labels, we split labels in two dimensions,
thus elaborating a model of multi-labels. A multi-label L consists of two compo-
nents (∆, τ) where ∆ is the dataset identifier and τ is the input identifier. A dataset
identifier could for instance be “air pollution on 2014/08/14”; and an input iden-
tifier could be used to identify a time, e.g., 9:06:30 am. For the example of the
stock market data, the values could be the stock market prices for a company C
at different times T: the dataset identifier could be the name of C, while the input
identifier could be the date and time T of the stock market price. The dataset
identifier is essentially a way of grouping together homogeneous data (e.g., data
of the same population over which one wants to compute significant statistics)
in such a way that one can compute within a dataset ∆.

While a multi-label L = (∆, τ) can still not be re-used to authenticate different
messages, this model does allow us to assign the same input identifiers τ to as
many messages as we need, as long as such messages lie in different datasets. In
any case, a re-use of a complete multi-label for authentication purposes would
not make much sense, as multi-labels are used by clients to “remember” and
categorize the outsourced data. This transition from labels to multi-labels is
natural: think again of the air pollution levels for a specific day. The input
identifiers capture the hours of a day. Hence, the input identifiers might be
re-used for other days, but the combination of date and time would never be
re-used. More information on multi-labels and how they are used inside multi-
labeled programs is presented in Section IV.3.1 on page 136.

The use of multi-labels, however, does not in itself solve the issue of the
inefficient verification algorithm: in this case one still has to compute W =

f (FK(∆, τ1), . . . ,FK(∆, τn)). Our key technical tool for achieving efficient verifica-
tion is the introduction of a pseudorandom function F with a new property that
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we call amortized closed-form efficiency: if one precomputes some information
ω f related to a program f with input identifiers τ1, . . . , τn, but independent of
the dataset ∆, then it is possible to use ω f to compute W for any dataset ∆ very
efficiently, e.g., in constant time. Amortized closed-form efficiency essentially
extends the closed-form efficiency of Benabbas et al. [BGV11] to the setting in
which the same function f is evaluated on many pseudorandom inputs.2

If we consider the example mentioned before, then one can precompute the
verification information ω f for the function “variance of the air pollution levels
at all time instants within a day” (without knowing the actual data), and then
use such ω f for verifying the computation of this statistic on any specific day
(i.e., the dataset) in constant time.

We propose an efficient instantiation of amortized closed-form efficient PRFs
whose security is based on standard PRFs and on the Decision Linear assumption
[BBS04], thereby achieving amortized closed-form efficiency in constant time, i.e.,
independent of the input size n. Our PRF maps pairs of binary strings (∆, τ) to
pseudorandom values in a group G of prime order p. For this technical reason,
we changed the Catalano-Fiore MAC (which works with a PRF mapping to Zp)
to encode the MACs y into elements of the group G, and we used pairings to
“simulate” the ring behavior over Zp for all those computations that require at
most one multiplication, i.e., arithmetic circuits of degree bounded by 2.

IV.2 Preliminaries

In this section, we review the notation and some basic definitions that we will
use in this and the next chapter.

Notation. We will denote with λ ∈ N a security parameter. We say that a
function ε : N → R+ is negligible if and only if for every positive polynomial
p(λ) there exists λ0 ∈ N such that for all λ > λ0: ε(λ) < 1/p(λ). If S is a set,
x ←R S denotes the process of selecting x uniformly at random in S. If A is a
probabilistic algorithm, x ←R A(·) denotes the process of running A on some
appropriate input and assigning its output to x.

2 We stress that the amortized extension was necessary in this case: while previous works
[BGV11, FG12] used the PRF to obtain a shorter description of the function f (e.g., by defining
the coefficients of a polynomial in a pseudorandom way), this is not possible in our case where
the description of f remains arbitrary.
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Algebraic Tools. Let G(1λ) be an algorithm that upon input of the security
parameter 1λ, outputs the description of bilinear groups bgpp = (p,G,GT, e, g)
where G and GT are groups of the same prime order p > 2λ, g ∈ G is a generator
and e : G × G → GT is an efficiently computable bilinear map. We call such an
algorithm G a bilinear group generator.

Polynomials: Degree and Size. We will need to determine the size, (i.e.,
the number of coefficients ` ) of a two-variate polynomial of degree d, such as

p(X,Y) =
∑̀

i

ci Xxi Yyi where xi + yi ≤ d

For ease of exposition, we rewrite the above to p(X,Y) =
∑

ci Xxi Yyi Zzi , with
Z = 1 and hence xi + yi + zi = d. The occupancy problem of distributing the
exponents over the three variables X,Y,Z can be illustrated as distributing d stars
‘? . . . ?’ over three boxes [Fel50]. The three boxes are delimited by two bars ‘ | ’.

Clearly, any ordering of the two bars and the d stars represents a valid distri-
bution of exponents to variables. For example, for d = 6, the following represent
possible assignments for (xi, yi, zi):

? ? | ? ? ? | ? (2, 3, 1) ? ? ? ? | | ? ? (4, 0, 2) | ? ? ? ? ? ? | (0, 6, 0)

The number of coefficients of p hence equals the number of possible positions of
2 bars among d + 2 positions:

|p| = ` =

(
d + 2

2

)
=

(
d + 2

d

)
=

(d + 2)!
d! · 2!

=
(d + 1) · (d + 2)

2
∈ O(d2).

The size |p| of a two-variate polynomial p is thus quadratic in its degree.

ArithmeticCircuits. We review some useful definitions and facts of arithmetic
circuits. We refer the interested reader to [SY10] for a useful survey on this
subject. An arithmetic circuit over a field F and a set of variables X = {τ1 . . . τn},
is a directed acyclic graph with the following properties. Each node in the graph
is called gate. Gates with in-degree 0 are called input gates (or input nodes) while
gates with out-degree 0 are called output gates. Each input gate is labeled by
either a variable or a constant. Variable input nodes are labeled with binary strings
τ1, . . . , τn, and can take arbitrary values in F. A constant input node instead is
labeled with some constant c and it can take only some fixed value c ∈ F.
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Gates with in-degree and out-degree greater than 0 are called internal gates.
Each internal gate is labeled with an arithmetic operation symbol. Gates labeled
with + are called sum gates, while gates labeled with × are called product gates.
In this chapter, we consider circuits with a single output node and where the
in-degree of each internal gate is 2. The size of the circuit is the number of its
gates. The depth of the circuit is the length of the longest path from input to
output.

Arithmetic circuits evaluate (authentication) polynomials in the following way.
Input gates compute the polynomial defined by their labels. Sum gates compute
the polynomial obtained by the sum of the (two) polynomials on their incoming
wires. Product gates compute the product of the two polynomials on their
incoming wires. The output of the circuit is the value contained on the outgoing
wire of the output gate. The degree of a gate is defined as the total degree of
the polynomial computed by that gate. The degree of a circuit is defined as the
maximal degree of all gates in the circuit.

We stress that arithmetic circuits should be seen as computing specific polyno-
mials inF[X] rather than functions fromF|X| toF. In other words, when studying
arithmetic circuits, one is interested in the formal computation of polynomials
rather than in the functions that these polynomials define. In this chapter, we
restrict our interest to families of polynomials { fλ} over F which have degree
bounded by 2.

IV.3 Homomorphic Message Authenticators with
Efficient Verification

Homomorphic message authenticators were first defined by Gennaro and Wichs
[GW13]. Their definition was tailored to the model of labeled programs defined
therein. Roughly speaking, a labeled program is a function f (e.g., a circuit)
which takes in n variable inputs such that each of these variables is assigned
a label τ (e.g., a binary string). See Figure 30 for illustration. One may think
of such labeling of variables as a way to give useful names to the variables
of a program. Using this model, homomorphic message authenticators were
defined in such a way that a message m is authenticated with respect to a label
τ. Binding m with τ essentially means that the value m can be assigned to those
input variables of a labeled program f whose label is τ (indicated by the dotted
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Figure 30: Labeled program represented as arithmetic circuit (left) and corre-
sponding authentication (right).

line in Figure 30). This, however, imposes a limitation: a label cannot be re-used
for multiple messages, i.e., one cannot authenticate two different messages m,m′

with respect to the same label τ. This limitation makes perfect sense if one
considers labeling of the data as a way to uniquely “categorize” the data, which
is useful, for instance, in cases where a user outsources her data to a remote
server and does not keep a local copy of the data. However, for the purpose of
labeling programs, the re-use limitation also requires changing the labeling of
the variable inputs of f whenever f is executed on a different set of inputs.

In other words, labels are useful to identify both concrete data items and
variable inputs of programs. The current definition of homomorphic MACs,
however, focuses more on a labeling mechanism for data items, instead of cap-
turing the notion of identifying the program inputs. In the next section, we
bridge this gap by introducing so-called multi-labels that aim to capture both use-
ful properties of labels: program variable labeling and data labeling. Thereafter,
we give a definition of homomorphic MACs for multi-labeled programs.

IV.3.1 Multi-Labeled Programs

We elaborate a variation of labeled programs that we call multi-labeled programs.
As briefly mentioned before, the basic idea behind our model is to introduce the
notion of a multi-label L, which consists of two parts: a dataset identifier ∆ and
an input identifier τ. Input identifiers, in isolation, are used to label the variable
inputs of a function f , whereas the combination of both, i.e., the full multi-label
L = (∆, τ), is used to uniquely identify a specific data item. Precisely, binding a
value m with multi-label (∆, τ) means that m can be assigned only to those input
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variables with input identifier τ. The pair (∆, τ) is necessary to uniquely identify
m. While one can still not re-use a pair (∆, τ) for authentication purposes, one
can re-use the input identifier τ, instead.

Example 9 For the sake of illustration, consider the multi-labeled approach as a
separation of data items into two independent dimensions. One might think of
a database table, e.g., storing air pollution levels, where some function f :Mn

→

M is evaluated over n columns (labeled τ1, . . . , τn). Each such column could
represent a point in time, e.g., 7:05, 07:10, etc. This computation is performed for
each row (labeled ∆i) of the table. Each such row could represent a different day,
e.g., 2014/08/14, 2014/08/15, etc. We hence evaluate f∆i(τ1, . . . , τn) for each row i,
hence for each day. ∗

Labeled Programs. We first review the notion of labeled programs introduced
by Gennaro and Wichs [GW13]. While this notion was given for the case of
Boolean circuits f : {0, 1}n → {0, 1}, here we generalize it to the case of any
function f defined over an appropriate set M. A labeled program P is defined
by a tuple ( f , τ1, . . . , τn) where f : Mn

→ M is a function on n variables, and
each τi ∈ {0, 1}∗ is the label of the i-th variable input of f . Labeled programs
allow for composition as follows. Given labeled programs P1, . . . ,Pt and given
a function g : Mt

→ M, the composed program P∗ corresponds to evaluating g
on the outputs of P1, . . . ,Pt. The composed program is compactly denoted as
P
∗ = g(P1, . . . ,Pt). The labeled inputs of P∗ are all distinct labeled inputs of
P1, . . . ,Pt, i.e., all inputs with the same label are grouped together in a single
input of the new program. If fid : M → M is the canonical identity function
and τ ∈ {0, 1}∗ is a label, then Iτ = ( fid, τ) denotes the identity program for
input label τ. Notice that any program P = ( f , τ1, . . . , τn) can be expressed as the
composition of n identity programs P = f (Iτ1 , . . . ,Iτn).

Multi-labeledPrograms. Intuitively, multi-labeled programs are an extension
of labeled programs in which a labeled program P is augmented with a dataset
identifier ∆. Formally, we define a multi-labeled program P∆ as a pair (P,∆)
where P = ( f , τ1, . . . , τn) is a labeled program (as defined above) and ∆ ∈ {0, 1}∗

is a binary string called the dataset identifier. Multi-labeled programs allow
for composition within the same dataset in the most natural way, i.e., given
multi-labeled programs (P1,∆), . . . , (Pt,∆) having the same dataset identifier ∆,
and given a function g : Mt

→ M, the composed multi-labeled program P∗
∆

is the
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pair (P∗,∆) whereP∗ is the composed program g(P1, . . . ,Pt), and ∆ is the dataset
identifier shared by all the Pi. If fid :M→M is the canonical identity function
and L = (∆, τ) ∈ ({0, 1}∗)2 is a multi-label, then IL = ( fid,L) denotes the identity
multi-labeled program for dataset ∆ and input label τ. As for labeled programs,
any multi-labeled program P∆ = (( f , τ1, . . . , τn),∆) can also be expressed as the
composition of n identity multi-labeled programs: P∆ = f (IL1 , . . . ,ILn) where
Li = (∆, τi).

It is worth noting that, in the notation of [GW13], a multi-labeled program
P∆ = (( f , τ1, . . . , τn),∆) is essentially a labeled program ( f ,L1, . . . ,Ln) where each
string Li is a multi-label (∆, τi). The main difference here is the (explicit) notion of
labeled datasets that we use in order to group together several inputs, similarly
to the definition used for homomorphic signatures [BF11a, Fre12]. This explicit
splitting will turn out to be crucial in order to achieve the desired property of
efficient verification.

IV.3.2 Homomorphic MACs for Multi-Labeled Programs

We review the notion of homomorphic message authenticators [GW13, CF13]
and adapt the definition to our model of multi-labeled programs as defined in
the previous section.

Definition 7 A homomorphic message authenticator scheme HomMAC-ML for multi-
labeled programs is a tuple of algorithms (KeyGen,Auth,Ver,Eval) satisfying four
properties: authentication correctness, evaluation correctness, succinctness,
and security. More precisely:

KeyGen(1λ): given the security parameter λ, the key generation algorithm out-
puts a secret key sk and a public evaluation key ek.

Auth(sk,L,m): given the secret key sk, a multi-label L = (∆, τ) and a message
m ∈ M, the authentication algorithm outputs an authentication tag σ.

Ver(sk,P∆,m, σ): on input the secret key sk, a multi-labeled program P∆ =

(( f , τ1, . . . , τn),∆), a message m ∈ M, and a tag σ, the verification algo-
rithm outputs 0 (reject) or 1 (accept).

Eval(ek, f ,σ): on input the evaluation key ek, a circuit f :Mn
→M, and a vector

of tags σ = (σ1, . . . , σn), the evaluation algorithm outputs a new tag σ.
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AuthenticationCorrectness. Informally speaking, a homomorphic MAC has
authentication correctness if any tag σ generated by the algorithm Auth(sk,L,m)
authenticates m with respect to the identity program IL. More formally, we
say that a scheme HomMAC-ML satisfies authentication correctness if for any
message m ∈ M, all keys (sk,ek) ←R KeyGen(1λ), any multi-label L = (∆, τ) ∈
({0, 1}∗)2, and any tag σ←R Auth(sk,L,m), we have that Ver(sk,IL,m, σ) = 1 holds
with probability 1.

EvaluationCorrectness. This property aims at capturing that if the evaluation
algorithm is run on a vector of tags σ = (σ1, . . . , σn) such that each σi authenticates
some message mi as the output of a multi-labeled program (Pi,∆), then the tag σ
produced by Eval must authenticate f (m1, . . . ,mn) as the output of the composed
program ( f (P1, . . . ,Pn),∆). More formally, let us fix a pair of keys (sk,ek) ←R
KeyGen(1λ), a function g :Mt

→M and any set of message/program/tag triples
{(mi,P∆,i, σi)}ti=1 such that all multi-labeled programs P∆,i = (Pi,∆) (i.e., share
the same dataset identifier ∆) and Ver(sk,P∆,i,mi, σi) = 1. If m∗ = g(m1, . . . ,mt),
P
∗ = g(P1, . . . ,Pt), and σ∗ = Eval(ek, g, (σ1, . . . , σt)), then Ver(sk,P∗

∆
,m∗, σ∗) = 1

holds with probability 1.

Succinctness. The size of a tag is bounded by some fixed polynomial in the
security parameter, which is independent of the number n of inputs taken by the
evaluated circuit.

Security. A homomorphic MAC has to satisfy the following notion of unforge-
ability. Let HomMAC-ML be a homomorphic MAC scheme as defined above and
let A be an adversary. HomMAC-ML is said to be unforgeable if for every PPT
adversary A, we have Pr[HomUF′CMAA,HomMAC-ML(λ) = 1] ≤ ε(λ) where ε(λ)
is a negligible function. The experiment HomUF′CMAA,HomMAC-ML(λ) is the one
defined below.

Setup The challenger generates (sk,ek)←R KeyGen(1λ) and gives ek toA.

Authentication queries The adversary can adaptively ask for tags on multi-
labels and messages of its choice. Given a query (L,m) where L = (∆, τ),
the challenger proceeds as follows: If (L,m) is the first query with dataset
identifier ∆, then the challenger initializes an empty list T∆ = ∅ for dataset
identifier ∆. If T∆ does not contain a tuple (τ, ·) (i.e., the multi-label (∆, τ)
was never queried), the challenger computes σ ←R Auth(sk,L,m), returns
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σ toA and updates the list T∆←T∆∪(τ,m). If (τ,m) ∈ T∆ (i.e., the query was
previously made), then the challenger replies with the same tag generated
before. If T∆ contains a tuple (τ,m′) for some message m′ , m, then the
challenger ignores the query.

Verification queries The adversary has access to a verification oracle as follows:
Given a query (P∆,m, σ) fromA, the challenger replies with the output of
Ver(sk,P∆,m, σ).

Forgery The adversary terminates the experiment by returning a forgery (P∗
∆∗
,m∗,

σ∗) for some P∗
∆∗

= (P∗,∆∗) and P∗ = ( f ∗, τ∗1, . . . , τ
∗
n). Notice that, equiva-

lently,A can implicitly return such a tuple as a verification query (P∗
∆∗
,m∗, σ∗)

during the experiment.

Before describing the outcome of this experiment, we review the notion of
well-defined programs with respect to a list T∆ [CF13].

Informally, there are two ways for a program P∗ = ( f ∗, τ∗1, . . . , τ
∗
n) to be well-

defined. Either all the τ∗i are in T∆ or, if there are labels τ∗i not in T∆, then the inputs
associated with such labels are somewhat “ignored” by f ∗ when computing the
output. In other words input corresponding to labels not in T∆ do not affect the
behavior of well-defined programs in any way.

Definition 8 A labeled programP∗ = ( f ∗, τ∗1, . . . , τ
∗
n) is well-defined with respect

to T∆∗ if either one of the following two cases holds:

• There exist messages m1, . . . ,mn such that the list T∆∗ contains all tuples
(τ∗1,m1), . . . , (τ∗n,mn). Intuitively, this means that the entire input space of f
for dataset ∆∗ has been authenticated.

• There exist indices i ∈ {1, . . . ,n} such that (τ∗i , ·) < T∆∗ (i.e., A never asked
authentication queries with multi-label (∆∗, τ∗i )), and the function

f ∗({m j}(τ j,m j)∈T∆∗
∪ {m̃ j}(τ j,·)<T∆∗

)

outputs the same value for all possible choices of m̃ j ∈ M. Intuitively,
this case means that the unauthenticated inputs never contribute to the
computation of f .

To define the output of the experiment HomUF′CMA, we say it outputs 1 if
and only if Ver(sk,P∗

∆∗
,m∗, σ∗) = 1 and one of the following conditions holds:
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• Type 1 Forgery: no list T∆∗ was created during the game, i.e., no message
m has been authenticated with respect to a dataset identifier ∆∗ during the
experiment.

• Type 2 Forgery: P∗ is well-defined w.r.t. T∆∗ and m∗ , f ∗({m j}(τ j,m j)∈T∆∗
), i.e.,

m∗ is not the correct output of the labeled program P∗ when executed on
previously authenticated messages (m1, . . . ,mn).

• Type 3 Forgery: P∗ is not well-defined w.r.t. T∆∗ .

Our definition is obtained by extending the one by Catalano and Fiore [CF13]
to our model of multi-labeled programs. The resulting definition is very close
to the one proposed by Freeman for homomorphic signatures [Fre12], with the
exception that we allow for arbitrary labels, and we do not impose any a-priori
fixed bound on the number of elements in a dataset.

In the most general case where f can be any function, it might not be possible to
efficiently (i.e., in polynomial time) check whether a program P is well-defined
w.r.t. a list T. However, for more specific classes of computations, this is not
an issue. For example, Freeman showed that this is not a problem for linear
functions [Fre12]. In the following proposition, we show a similar result for
the classes of computations considered in this chapter, i.e., arithmetic circuits
defined over the finite field Zp where p is a prime of roughly λ bits, and whose
degree d is bounded by a polynomial. In particular, we show that any adversary
who wins by producing a Type 3 forgery can be converted into one who outputs
a Type 2 forgery.

Proposition 2 Letλ ∈N be the security parameter, let p > 2λ be a prime number,
and let { fλ} be a family of arithmetic circuits overZp whose degree is bounded by
some polynomial d = poly(λ). If for any adversary B producing a Type 2 forgery
we have that Pr[HomUF′CMAB,HomMAC-ML(λ) = 1] ≤ ε, then for any adversary
A producing a Type 3 forgery it holds Pr[HomUF′CMAA,HomMAC-ML(λ) = 1] ≤
ε + d/p.

Proof. The proof is by contradiction. Assume there exists an adversary A such
that

Pr[HomUF′CMAA,HomMAC-ML(λ) = 1] > ε + d/p

andA produces a Type 3 forgery, then we show an adversary B such that

Pr[HomUF′CMAB,HomMAC-ML(λ) = 1] > ε
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by producing a Type 2 forgery. We construct B out ofA as follows.
B first runs the adversary A to obtain a Type 3 forgery (m∗,P∗

∆∗
, σ∗), i.e., B

simulates the HomUF′CMA game toAby forwarding all messages back and forth
from its challenger. Let P∗

∆∗
= (P∗,∆∗) where P∗ = ( f ∗, τ∗1, . . . , τ

∗
n), and assume

that B maintains the lists of queries made by A as done by the challenger. Let
T∆∗ be the list of queries for the dataset ∆∗. Since P∗ is not well-defined w.r.t. T∆∗

there exists an index j ∈ {1, . . . ,n} such that (τ∗j, ·) < T∆∗ . B proceeds as follows.
For all j ∈ {1, . . . ,n} such that (τ∗j, ·) < T∆∗ , B chooses random messages r j ←R Zp,
queries its challenger for tags on ((∆∗, τ∗j), r j), and finally outputs (m∗,P∗

∆∗
, σ∗) as

a forgery.
Finally, we show that in the experiment HomUF′CMAB,HomMAC-ML(λ) played

byB the tuple (m∗,P∗
∆∗
, σ∗) is a Type 2 forgery with probability 1−d/p. First, notice

that by definition, (m∗,P∗
∆∗
, σ∗) verifies correctly, and that in B’s experiment, the

program P∗ is well-defined. Second, we argue that Pr[m∗ = f ∗({m j}(τ j,m j)∈T∆∗
∪

{r j}(τ j,·)<T∆∗
)] ≤ d/p. This bound follows from the fact that the program P∗ in the

experiment simulated toA is not well-defined, i.e., the polynomial represented
by the circuit f ∗ for fixed values {m j}(τ j,m j)∈T∆∗

is not a constant function. Therefore,
if d is an upper bound on the degree of such polynomial it is not hard to see that
over the random choices of r j in Zp, the above equality will be satisfied with
probability at most d/p. So, the tuple is a forgery of Type 2 with probability at
least 1 − d/p. Hence, we can bound B’s probability of success by

Pr[HomUF′CMAB,HomMAC-ML(λ) = 1]

≥ Pr[HomUF′CMAA,HomMAC-ML(λ) = 1](1 − d/p)

≥ Pr[HomUF′CMAA,HomMAC-ML(λ) = 1] − d/p

> ε

which concludes the proof. �

IV.3.3 Homomorphic MACs with Efficient Verification for
Multi-Labeled Programs

This section introduces a new property for homomorphic MACs that we call effi-
cient verification. Informally, a homomorphic MAC satisfies efficient verification
if it is possible to verify a tag σ against a multi-labeled program P∆ = (P,∆) in
less time than that required to compute P. We define this efficiency property
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in an amortized sense, so that the verification is more efficient when the same
program P is executed on different datasets. The formal definition follows.

Definition 9 Let HomMAC-ML = (KeyGen,Auth,Ver,Eval) be a homomorphic
MAC scheme for multi-labeled programs as defined in the previous section.
HomMAC-ML satisfies efficient verification if there exist two additional algorithms
(VerPrep,EffVer) as follows:

VerPrep(sk,P): on input the secret key sk and a labeled programP = ( f , τ1, . . . , τn),
this algorithm generates a concise verification key VKP. We stress that this
verification key does not depend on any dataset identifier ∆.

EffVer(sk,VKP,∆,m, σ): given the secret key sk, a verification key VKP, a dataset
identifier ∆, a message m ∈ M and a tag σ, the efficient verification algo-
rithm outputs 0 (reject) or 1 (accept).

The above algorithms are required to satisfy the following two properties:

Correctness. Let (sk,ek) ←R KeyGen(1λ) be honestly generated keys, and let
(P∆,m, σ) be any program/message/tag tuple withP∆ = (P,∆) such that verifica-
tion accepts, i.e., Ver(sk,P∆,m, σ) = 1. Then, for every VKP ←R VerPrep(sk,P),
we have Pr[EffVer(sk,VKP,∆,m, σ) = 1] = 1.

Amortized Efficiency. Let P∆ = (P,∆) be a program, let (m1, . . . ,mn) ∈ Mn be
any vector of inputs, and let t(n) be the time required to computeP(m1, . . . ,mn). If
VKP←VerPrep(sk,P), then the time required for EffVer(sk,VKP,∆,m, σ) is O(1),
i.e., independent of n.

Notice that in our efficiency requirement, we do not include the time needed
to compute VKP. The reason is, since VKP is independent of ∆, the same VKP
can be re-used in many verifications involving the same labeled program P but
many different ∆. In this sense, the cost of computing VKP is amortized over
many verifications of the same function on different datasets.

Application to Verifiable Computation on Outsourced Data

A homomorphic MAC scheme with efficient verification can be easily used to
obtain a protocol for verifiable delegation of computations on outsourced data,
satisfying the requirements (1)–(5) mentioned in Section IV.1 on page 123. Below,
we sketch such a protocol between a client C and a server S:
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Setup C generates the keys (sk,ek) ←R KeyGen(1λ) for a homomorphic MAC,
sends ek to S and stores sk.

Data outsourcing To outsource a value m, C first authenticates m with respect
to some multi-label L, i.e., C computes σ ←R Auth(sk,L,m), and then
sends (m,L, σ) to the server. It is easy to see that this phase satisfies the
requirements of unbounded storage (4) and function independence (5).

Client’s preparation Assume thatCneeds to evaluate a labeled programP = ( f ,
τ1, . . . , τn) on some of its outsourced datasets. In this (offline) preparation
phase, the client computes and stores VKP ←R VerPrep(sk,P), indepen-
dently of any ∆.

Delegation Whenever C needs to obtain the result of a program P evaluated
on a dataset ∆, it simply sends the (online) delegation request (P,∆) to the
server.3

Computation To compute (P,∆), where P = ( f , τ1, . . . , τn), the server first looks
for the corresponding data (m1, . . . ,mn) and tags (σ1, . . . , σn) according to
the labeling previously sent by C. Next, S computes m = f (m1, . . . ,mn) and
σ←Eval(ek, f , σ1, . . . , σn), and sends (m, σ) to C.

Verification Given the result (m, σ) sent by S, the client checks that m is the cor-
rect output of the multi-labeled program (P,∆) by running the verification
EffVer(sk,VKP,∆,m, σ). Thanks to the amortized efficiency property of the
homomorphic MAC, C achieves amortized input-independent efficiency
(3) – and thus also efficiency (2) – in verifying the delegated computations.

Finally, from the unforgeability of the homomorphic MAC, it is straightforward
to see that the server cannot induce the client to accept incorrect results (1).

IV.4 Utilities

This section provides some technical tools that will be useful to obtain a construc-
tion of homomorphic MACs with efficient verification. Section IV.4.1 discusses

3 While in general the description of Pmay be large, here we assume the case in which P has a
succinct description, e.g., “daily variance of the air pollution levels at every 5 minutes”. Hence,
the cost of communicating P can, in fact, be ignored.
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the homomorphic evaluation of arithmetic circuits, and Sections IV.4.2 and IV.4.3
present the new notion of amortized closed-form efficiency with a respective pseu-
dorandom function.

IV.4.1 Homomorphic Evaluation of Arithmetic Circuits

We describe two algorithms that allow for the homomorphic evaluation of arith-
metic circuits f :Mn

→M over values defined in some appropriate setJ ,M.
More precisely, assume thatJ andM are two commutative rings4 such that the

mapping φ : J →M is a homomorphism, i.e., ∀y1, y2 ∈ J it holds: φ(y1 + y2) =

φ(y1) +φ(y2) and φ(y1 · y2) = φ(y1) ·φ(y2). By simple induction, we then observe
that for a given arithmetic circuit f : Mn

→ M, there exists another circuit f ′ :
J

n
→ J such that ∀y1, . . . , yn ∈ J it holds φ( f ′(y1, . . . , yn)) = f (φ(y1), . . . , φ(yn)).

The circuit f ′ is structurally the same as f . The only difference is that in every
gate the operation inM is replaced by the corresponding operation in J .

We show how to use the above homomorphic property by consideringM to be
the ringZp of integers modulo a prime number p, and by appropriately defining
isomorphic mathematical structures J .

Homomorphic Evaluation over Polynomials. As a first example, we con-
sider the case in which J is a ring of polynomials. More formally, let Jpoly =

Zp[x1, . . . , xm] be the ring of polynomials in variables x1, . . . , xm overZp. For every
fixed tuple a = (a1, . . . , am) ∈ Zm

p , let φa : Jpoly → Zp be the function defined by
φa(y) = y(a1, . . . , am) for any y ∈ Jpoly. By the substitution property of polynomi-
als, φa is a homomorphism fromJpoly = Zp[x1, . . . , xm] toZp, i.e., ∀y1, y2 ∈ Jpoly

it holds: φa(y1 + y2) = φa(y1) +φa(y2) and φa(y1 · y2) = φa(y1) ·φa(y2). By simple
induction, we then observe that for a given arithmetic circuit f : Zn

p → Zp,
there exists another circuit f̂ : Jn

poly → Jpoly such that ∀y1, . . . , yn ∈ Jpoly:

φa( f̂ (y1, . . . , yn)) = f (φa(y1), . . . , φa(yn)). The circuit f̂ is structurally the same
as f . The only difference is that in every gate the operation in Zp is replaced by
the corresponding operation over polynomials in Zp[x1, . . . , xm].

4 Recall that a ring is a set M with two binary operations (addition + and multiplication ·)
that constitute (1) an Abelian group (M,+) under addition, i.e., with associativity, additive
identity, additive inverse, and commutativity; and (2) a monoid (M, ·) under multiplication,
i.e., with associativity, multiplicative identity. Additionally, (3) the multiplication distributes
over addition. A simple example for a commutative ring is the setZ of integers together with
standard addition and multiplication.
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For every positive integer m ∈ N and a given arithmetic circuit f : Zn
p → Zp,

we formally define the computation of f̂ on (y1, . . . , yn) ∈ Jn
poly as an algorithm

PolyEval(m, f , y1, . . . , yn). Concretely, PolyEval is a simple algorithm that at every
gate fg, on input two polynomials y1, y2 ∈ Jpoly, proceeds as follows: if fg is an
addition gate, it outputs y = y1 + y2 (i.e., it adds all coefficients component-wise);
if fg is a multiplication gate, it outputs y = y1 · y2 (i.e., it uses the convolution
operator on the coefficients). We notice that every multiplication gate increases
the degree of y, and thus it also increases the number of its coefficients. In
particular, if y1, y2 have degrees d1, d2 respectively, then the degree of y = y1 · y2

is d1 + d2.
For any homomorphism φa defined by a tuple a = (a1, . . . , am) ∈ Zm

p , and for
any circuit f and any values y1, . . . , yn ∈ Jpoly the following property clearly
holds for PolyEval:

φa(PolyEval(m, f , y1, . . . , yn)) = f (φa(y1), . . . , φa(yn)). (IV.1)

For completeness, we gave a generic definition of PolyEval for any possible
m ∈N. However, we observe that in this chapter we will use PolyEval only with
m = 1 and m = 2.

Homomorphic Evaluation over Bilinear Groups. As a second example, we
consider the case in which J are prime order groups, i.e., we show how to
homomorphically evaluate arithmetic circuits, of degree at most 2, over prime
order groups with bilinear maps. Let bgpp = (p,G,GT, e, g) be the description of
bilinear groups where G has prime order p. If we fix a generator g ∈ G, then G
and the additive group (Zp,+) are isomorphic by considering the isomorphism
φg(x) = gx for every x ∈ Zp. Similarly, by the property of the pairing function e,
we also have that GT and the additive group (Zp,+) are isomorphic by consid-
ering φgT (x) = e(g, g)x. Since φg and φgT are isomorphisms there also exist the
corresponding inverses φ−1

g : G→ Zp and φ−1
gT

: GT → Zp, even though these are
not known to be efficiently computable.

For every arithmetic circuit f : Zn
p → Zp of degree at most 2, we define

GroupEval( f ,X1, . . . ,Xn) to be the algorithm which homomorphically evaluates f
with inputs inG and output inGT in such a way that, for every tuple (X1, . . . ,Xn) ∈
Gn, and every such circuit f , it holds

φ−1
gT

(GroupEval( f ,X1, . . . ,Xn)) = f (φ−1
g (X1), . . . , φ−1

g (Xn)) (IV.2)
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or, equivalently, for every (X1, . . . ,Xn) ∈ Gn, we have that

GroupEval( f ,X1, . . . ,Xn) = e(g, g) f (x1,...,xn) : ∀i = 1, . . . ,n : xi = φ−1
g (Xi). (IV.3)

Notice that the equivalence of equations (IV.2) and (IV.3) holds because of

GroupEval( f ,X1, . . . ,Xn) = φgT ( f (φ−1
g (X1), . . . , φ−1

g (Xn))).

Given a circuit f of degree at most 2, and given an n-tuple of values (X1, . . . ,Xn) ∈
Gn, GroupEval intuitively proceeds as follows. It computes additions by using
the group operation in G or in GT. To compute multiplications, it uses the pair-
ing function, e.g., R = e(R1,R2), thus “lifting” the result to the group GT. By our
assumption on the degree of f , one can see that multiplication is well-defined.

More precisely, given a circuit f and an n-tuple of values (X1, . . . ,Xn) ∈ Gn,
GroupEval proceeds gate-by-gate as follows. For an addition gate f+ there are
four cases depending on the type of its inputs. Namely, for inputs
• X1 ∈ G and X2 ∈ G, output X ∈ Gwith X = X1 · X2.
• X̂1 ∈ GT and X̂2 ∈ GT, output X̂ ∈ GT with X̂ = X̂1 · X̂2.
• X̂1 ∈ GT and X2 ∈ G, output X̂ ∈ GT with X̂ = X̂1 · e(X2, g).
• X1 ∈ G and X̂2 ∈ GT, output X̂ ∈ GT with X̂ = e(X1, g) · X̂2.

For a multiplication gate f× there is only a single case with two variable inputs
where both X1,X2 ∈ G. The reason is that multiplication “lifts” the evaluation
fromG toGT. Assuming that deg( f ) ≤ 2, we know that every multiplication must
take as input two terms of degree 1, hence two elements in G. Multiplication
gates thus output X̂ ∈ GT with X̂ = e(X1,X2). For the multiplication of X1 ∈ G∪GT

with a constant c ∈ Zp, output X = (X1)c.
The final output X∗ of GroupEval is the output of the last gate of the circuit. In
case no multiplication has occurred while evaluating the circuit, i.e., X∗ ∈ G,
output e(X∗, g) ∈ GT as final result.

The following theorem proves that GroupEval achieves the desired homomor-
phic property:

Theorem 2 (Correctness of GroupEval) Let bgpp = (p,G,GT, e, g) be the descrip-
tion of bilinear groups. Then, the algorithm GroupEval satisfies Equation (IV.3),
i.e., ∀(X1, . . . ,Xn) ∈ Gn: GroupEval( f ,X1, . . . ,Xn) = e(g, g) f (x1,...,xn) for the unique
values {xi}

n
i=1 ∈ Zp such that Xi = gxi .

Proof. The proof is by induction on the structure of f and proceeds gate-by-gate.
We show the case for the identity circuit fid first, and then we show the case for
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addition and multiplication gates by an inductive argument. For the identity
circuit:

GroupEval( fid,X) = e(X, g) = e(gx, g) = e(g, g)x = e(g, g) fid(x)

For the inductive case, we distinguish three cases depending on the number of
previous multiplications in the two input branches of the gates:

(1) No multiplication before.

• The evaluation of an addition gate f+ for X1,X2 ∈ G yields

X = X1 · X2
ind
= gx1 gx2 = gx1+x2 .

Eventually, X is ‘lifted’ toGT in the case of a subsequent multiplication
or by the final step of GroupEval, hence we eventually obtain X̂ =

e(X, g) = e(g, g)x1+x2 .
• The evaluation of a multiplication gate f× for variable inputs X1,X2 ∈

G yields

X̂ = e(X1,X2) ind
= e(gx1 , gx2) = e(g, g)x1x2 .

• The evaluation of a multiplication gate f× for input X1 ∈ G with a
constant c ∈ Zp yields

X = (X1)c ind
= (gx1)c = gx1c.

(2) Multiplication in one input branch.
Without loss of generality, we assume the multiplication to have occurred
in the left branch, hence X̂1 ∈ GT.

• The evaluation of an addition gate f+ with X2 ∈ G yields

X̂ = X̂1 · e(X2, g) ind
= e(g, g)x1 · e(g, g)x2 = e(g, g)x1+x2 .

• The evaluation of a multiplication gate f×with a constant c ∈ Zp yields

X̂ = (X1)c ind
= (e(g, g)x1)c = e(g, g)x1c.

• The evaluation of a multiplication gate f× for two variable inputs is
undefined for this case because of deg( f ) ≤ 2.

(3) Multiplications in both input branches.

• The evaluation of an addition gate f+ with inputs X̂1, X̂2 ∈ GT yields

X̂ = X̂1 · X̂2
ind
= e(g, g)x1 · e(g, g)x2 = e(g, g)x1+x2 .

• The evaluation of a multiplication gate f× for two variable inputs is
undefined for this case because of deg( f ) ≤ 2. �
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IV.4.2 PRFs with Amortized Closed-Form Efficiency

This section introduces one of the most important technical ingredients for our
construction — the notion of pseudorandom functions with amortized closed-form
efficiency. This cryptographic primitive is an extension of closed-form efficient
PRFs proposed by Benabbas, Gennaro, and Vahlis [BGV11], and later refined by
Fiore and Gennaro [FG12]. As we will see in Section IV.5, this new notion of PRFs
is crucial for achieving the property of efficient verification in our homomorphic
MAC realization.

In a nutshell, closed-form efficient PRFs [BGV11] are defined like standard
PRFs with the additional requirement of satisfying the following efficiency prop-
erty. Assume there exists a computation Comp(R1, . . . ,Rn, z) which takes ran-
dom inputs R1, . . . ,Rn and arbitrary inputs z, and runs in time t(n, |z|). Also,
think of the case in which each Ri is generated as the result of evaluating
a pseudorandom function FK(Li). Then the PRF F is said to satisfy closed-
form efficiency for (Comp,L) if, by knowing the seed K, one can compute
Comp(FK(L1), . . . ,FK(Ln), z) in time strictly less than t. Here, the key observa-
tion is that in the pseudorandom case all the Ri values have a shorter “closed-
form” representation (as function of K), and this might also allow for a shorter
closed-form representation of the computation.

Starting from the above considerations, we introduce a new property for PRFs
that we call amortized closed-form efficiency. Our basic idea is to address
computations Comp(R1, . . . ,Rn, z) of the above form, but then consider the case
in which all values Ri are generated as FK(∆, τi). Basically, we interpret the PRF
inputs Li as pairs of values (∆, τi), all sharing the same ∆ component. Then, we
informally say that F satisfies amortized closed-form efficiency if it is possible to
compute ` computations {Comp(FK(∆ j, τ1), . . . ,FK(∆ j, τn), z)}`j=1 in time strictly
less than ` · t. More detailed definitions follow.

A PRF consists of two algorithms (KG,F) such that (1) the key generation KG
takes as input the security parameter 1λ and outputs a secret key K and some
public parameters pp that specify domainX and range R of the function, and (2)
the function FK(x) takes input x ∈ X and uses the secret key K to compute a value
R ∈ R. As usual, a PRF must satisfy the pseudorandomness property. Namely,
we say that (KG,F) is secure if for every PPT adversaryAwe have that:

|Pr[AFK(·)(1λ,pp) = 1] − Pr[AΦ(·)(1λ,pp) = 1] | ≤ ε(λ)

where ε(λ) is negligible, (K,pp)←R KG(1λ), and Φ : X → R is a random function.
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For any PRF (KG,F) we define amortized closed-form efficiency as follows.

Definition 10 (Amortized Closed-Form Efficiency) Consider a computation
Comp that takes as input n random values R1, . . . ,Rn ∈ R and a vector of m arbi-
trary values z = (z1, . . . , zm), and assume that the computation of Comp(R1, . . . ,Rn,

z1, . . . , zm) requires time t(n,m).
Let L = (L1, . . . ,Ln) be arbitrary values in the domain X of F such that each

can be interpreted as Li = (∆, τi). We say that a PRF (KG,F) satisfies amortized
closed-form efficiency for (Comp,L) if there exist algorithms CFEvaloff

Comp,τ and
CFEvalon

Comp,∆ such that:

1. Given ω←CFEvaloff
Comp,τ(K, z), we have that

CFEvalon
Comp,∆(K, ω) = Comp(FK(∆, τ1), . . . ,FK(∆, τn), z1, . . . , zm)

2. the running time of CFEvalon
Comp,∆(K, ω) is o(t).

We remark two important facts on our definition. First, the computation of
ω←CFEvaloff

Comp,τ(K, z) does not depend on ∆, which means that the same value
ω can be re-used in CFEvalon

Comp,∆(K, ω) to compute Comp(FK(∆, τ1), . . . ,FK(∆,
τn), z) for many different ∆. Second, the efficiency property puts a restriction
only on the running time of CFEvalon. This is related to the previous remark,
and it captures the idea of achieving efficiency in an amortized sense when consid-
ering many evaluations of Comp(FK(∆, τ1), . . . ,FK(∆, τn), z), each with a different
dataset identifier ∆. More concretely, this means that one can precompute ω
once, and then use it to run CFEvalon as many times as needed, almost for free.

It is worth noting that the structure of Comp may enforce some constraints
on the range R of the PRF, and that due to the pseudorandomness property,
the output distribution of CFEvalon

Comp,∆(K,CFEvaloff
Comp,τ(K, z)) (over the random

choice of K) is computationally indistinguishable from the output distribution
of Comp(R1, . . . ,Rn, z) (over the random choices of the Ri ∈ R).

IV.4.3 A PRF with Amortized Closed-Form Efficiency for GroupEval

We propose an efficient construction of a pseudorandom function which satisfies
amortized closed-form efficiency for the algorithm GroupEval, given in Section
IV.4.1.
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Our PRF construction uses two generic pseudorandom functions which map
binary strings to integers inZp (where p is a sufficiently large prime number), to-
gether with a weak PRF whose security relies on the Decision Linear assumption,
as introduced by Boneh, Boyen, and Shacham [BBS04]:

Definition 11 (Decision Linear [BBS04]) Let G be a bilinear group generator,
and let bgpp = (p,G,GT, e, g)←R G(1λ). Let g0, g1, g2 ←R G, and r0, r1, r2 ←R Zp

be chosen uniformly at random. We define the advantage of an adversaryA in
solving the Decision Linear problem as

Advdlin
A

(λ) = |Pr[A(bgpp, g0, g1, g2, g
r1
1 , g

r2
2 , g

r1+r2
0 ) = 1]−

Pr[A(bgpp, g0, g1, g2, g
r1
1 , g

r2
2 , gr0

0 ) = 1] |

We say that the Decision Linear assumption holds forG if for every PPT algorithm
Awe have that Advdlin

A
(λ) is negligible in λ.

In the proof, we will additionally use the following useful Lemma (Lemma 7
in [LW09]) which basically shows that the Decision Linear problem is random
self-reducible5:

Lemma 1 ([LW09]) Given g0, g1, g2, g
r1
1 , g

r2
2 , g

r0
0 ∈ G, one can generate gr̃1

1 , g
r̃2
2 , g

r̃0
0

such that the two following hold:

1. r̃1, r̃2 are uniformly random in Zp

2. r̃0 = r̃1 + r̃2 if r0 = r1 + r2. Otherwise, r̃0 is uniformly random.

Construction of a Closed-Form Efficient Pseudorandom Function

We describe our PRF with amortized closed-form efficiency:

KG(1λ): Let bgpp = (p,G,GT, e, g) be the description of bilinear groups G and
GT having the same prime order p > 2λ with g ∈ G being a generator and
e : G ×G→ GT an efficiently computable bilinear map.

The key generation chooses two seeds K1,K2 for a family of PRFs F′K1,2
:

{0, 1}∗ → Z2
p. Finally, it outputs K = (bgpp,K1,K2) and pp = bgpp. The

parameters define a function F with domain X = {0, 1}∗ × {0, 1}∗ and range
G, as described below.

5 Lewko and Waters [LW09] state this Lemma for the k-Linear problem. We only recall the
version for k = 2.
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FK(x): Let x = (∆, τ) ∈ X be the input value. To compute the corresponding out-
put R ∈ G, the algorithm generates values (u, v)←F′K1

(τ) and (a, b)←F′K2
(∆),

and then outputs R = gua+vb.

We first show that the above function is pseudorandom, and then we will
show that it admits amortized closed-form efficiency for GroupEval.

Theorem 3 If F′ is a pseudorandom function and the Decision Linear assump-
tion holds for G, then the function (KG,F) described above is a pseudorandom
function.

Proof. The proof follows by a standard hybrid argument based on the following
games.

Game 0: This is the pseudorandomness game for the function F.

Game 1: This is Game 0 where the function F′K1
is replaced by a random function

Φ1 : {0, 1}∗ → Z2
p.

It is easy to see that Game 1 is computationally indistinguishable from
Game 0 by the security of the pseudorandom function F′.

Game 2: This is Game 1 where the function F′K2
is replaced by a random function

Φ2 : {0, 1}∗ → Z2
p.

Similarly to the previous case, one can easily argue that Game 2 is compu-
tationally indistinguishable from Game 1 by the security of the pseudoran-
dom function F′.

Game 3/ j: Informally, for j = 0, . . . ,Q∆, Game 3/ j is a modification of Game 2
in which every query (∆, τ), where ∆ is among the first j distinct values
∆1, . . . ,∆ j queried byA, is answered with randomly chosen outputs.

More formally, let Q∆ be the number of distinct ∆ values queried by the
adversaryAduring the experiment. If S = {∆1, . . . ,∆Q∆

} is the ordered set of
all such values queried byA, then, for 0 ≤ j ≤ Q∆, we define the following
partitioning sets of S: S≤ j = {∆i ∈ S : i ≤ j} and S> j = {∆i ∈ S : i > j}.

We hence define Game 3/ j as the game which is the same as Game 2, except
that every query (∆, τ) with ∆ ∈ S≤ j is answered with a value R ←R G
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chosen uniformly at random, whereas every query (∆, τ) with ∆ ∈ S> j is
answered with R = gua+vb, where (u, v)←Φ1(τ) and (a, b)←Φ2(∆).

Clearly, Game 3/0 is identical to Game 2, while Game 3/Q∆ is the game in
which all queries are answered with freshly random values in G, i.e., it is
like ifA is given oracle access to a truly random function from X to G.

In order to complete the proof, we claim that for every j ∈ {1, . . . ,Q∆},
Game 3/( j−1) is computationally indistinguishable from Game 3/ j under the
assumption that Decision Linear holds for G. This is obtained by proving the
following Lemma.

Lemma 2 For j ∈ {1, . . . ,Q∆}, let G3, j be the event that Game 3/ j, run with
adversaryA, outputs 1. If the Decision Linear assumption holds for G, then the
difference between two consecutive games |Pr[G3, j−1] − Pr[G3, j] | is negligible.

The key tool for the proof of Lemma 2 is the next Lemma which essentially
shows that the function fa,b(U,V) = (UaVb) is a weak pseudorandom function
under the Decision Linear assumption.

Lemma 3 If the Decision Linear assumption holds for G, then the function
fa,b(U,V) = (UaVb), where a, b ←R Zp are randomly chosen, is a weak pseudo-
random function.

Proof. First, notice that given a tuple (g0, g1, g2, g
r1
1 , g

r2
2 , g

r0
0 ) we can rename values

as U = gr1
1 ,V = gr2

2 ,Z = gr0
0 . Next, we observe that for a fixed g0, given two

random values g1, g2 ∈ G there exist two values a, b (uniformly distributed in
Zp) such that g0 = ga

1 and g0 = gb
2.

Given such renaming of variables, we can reduce the security of fa,b(·, ·) to
Decision Linear by observing that by Lemma 1 we can create polynomially-many
triples (Ui,Vi,Zi) such that Zi has the desired form that it is either fa,b(Ui,Vi) or
uniformly random. �

Proof (Lemma 2). Given the result of Lemma 3, we are now ready to prove
Lemma 2. We show a Karp reduction stating that any PPT adversaryAwho has
non-negligible probability in distinguishing between Game 3/( j−1) and Game 3/ j
can be used to build a PPT algorithm B that breaks the security of the weak PRF
fa,b(U,V) = UaVb, thus contradicting Lemma 3.
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IV Verifiable Delegation of Computation over Outsourced Data

Let B receive as input a bilinear group description bgpp = (p,G,GT, e, g) and
let B get access to an oracle O that upon each query outputs a triple (U,V,Z).
B’s challenge is to tell whether O = O f or O = OR. Recall that if O = O f , then
Z = UaVb where (a, b) is the secret seed of the weak PRF f . Otherwise, if O = OR,
then Z is randomly chosen in G. In both cases, U and V are randomly chosen at
every new query.

SinceB usesA for its attack against the PRF,B has to simulate an environment
toA, i.e., B has to answerA’s queries. To this end, assume that Qτ is an upper
bound on the number of distinct τ values queried by A. Then, B prepares
for answering A’s queries by asking its O oracle for Qτ triples {(Ui,Vi,Zi)}

Qτ

i=1.
Moreover, for k = j + 1, . . . ,Q∆, B chooses (ak, bk)←R Zp at random.6

Let (∆, τ) be a query from A, and assume that (∆, τ) = (∆k, τi), for 1 ≤ k ≤ Q∆

and 1 ≤ i ≤ Qτ. B answers (∆k, τi) as follows.

• If k ≤ j − 1, then B returns a uniformly random R←R G.

• If k > j, then B returns R = (Ui)ak · (Vi)bk .

• If k = j, then B returns R = Zi.

Finally, ifA outputs b (to indicate the case for Game 3/( j−1) or Game 3/ j), thenB
outputs the same value b (to indicate the case for the PRF or a random function).

It is not hard to see that B’s simulation is perfect. Precisely, in the case
when B is given access to the weak PRF, i.e., when Zi = fa,b(Ui,Vi), then B is
simulating Game 3/( j−1). In the particular, when k = j, thenB is implicitly setting
(a j, b j) = (a, b), where (a, b) is the secret seed of the PRF f . In the other case, when
B gets access to a random function, i.e., Zi is random and independent of Ui,Vi,
then B simulates the view of Game 3/ j.

We therefore obtain that Pr[BO f = 1] = Pr[G3, j−1] and Pr[BOR = 1] = Pr[G3, j]
and hence

|Pr[BO f = 1] − Pr[BOR = 1] | = |Pr[G3, j−1] − Pr[G3, j] |

which concludes the proof of Lemma 2. �

This also concludes the proof of Theorem 3 showing that (KG,F), as defined
on page 151, is indeed a pseudorandom function. �

6 Notice that all this preparation is made at the beginning of the simulation only for ease of
presentation. Both the queries to O and the generation of (ak, bk) could be done during the
experiment without explicitly knowing the bounds Q∆ and Qτ.
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Amortized Closed-Form Efficiency

We are left to show that the pseudorandom function (KG,F) satisfies amortized
closed-form efficiency for (GroupEval,L). Recall that GroupEval (cf. page 146)
is the algorithm that takes as input the description of an arithmetic circuit f :
Zn

p → Zp and n random values R1, . . . ,Rn ∈ G, and it returns a value W ∈ GT.
The vector L = (L1, . . . ,Ln) is such that Li = (∆, τi) ∈ X. We first describe the
algorithms CFEvaloff

GroupEval,τ and CFEvalon
GroupEval,∆:

CFEvaloff
GroupEval,τ(K, f ). Let K = (bgpp,K1,K2) be a secret key as generated by

KG(1λ). For i = 1 to n, compute (ui, vi)←F′K1
(τi), and set ρi = (0,ui, vi).

Essentially, ρi are the coefficients of a degree-1 polynomial ρi(z1, z2) in two
(unknown) variables z1, z2.

Next, run ρ←PolyEval(2, f , ρ1, . . . , ρn), as described on page 145, to com-
pute the coefficients ρ of a polynomial ρ(z1, z2) such that ∀z1, z2 ∈ Zp it
holds ρ(z1, z2) = f (ρ1(z1, z2), . . . , ρn(z1, z2)).

Finally, output ω f = ρ.

CFEvalon
GroupEval,∆(K, ω f ). Let K = (bgpp,K1,K2) be a secret key and let ω f = ρ

be as computed by the offline algorithm above. The online evaluation
algorithm first generates (a, b)←F′K2

(∆), and then it uses the coefficients ρ
to compute w = ρ(a, b), and it finally outputs W = e(g, g)w.

Theorem 4 Let L = (L1, . . . ,Ln) be such that Li = (∆, τi) ∈ X, let GroupEval
be the algorithm described in Section IV.4.1, and let t be the running time of
GroupEval. Then the pseudorandom function (KG,F), extended with the algo-
rithms CFEvaloff

GroupEval,τ and CFEvalon
GroupEval,∆ described above, satisfies amor-

tized closed-form efficiency for (GroupEval,L) according to Definition 10 with
CFEvaloff

GroupEval,τ running in time O(t), and CFEvalon
GroupEval,∆ running in time

O(1).

Proof. To prove the theorem we show that our algorithms satisfy both the cor-
rectness and efficiency properties of Definition 10, page 150. Let K be a secret
key as generated by KG(1λ), and let L be any vector of n values (L1, . . . ,Ln) such
that Li = (∆, τi) ∈ X for arbitrary binary strings ∆, τ1, . . . , τn ∈ {0, 1}∗. Let ω f = ρ
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be the output of CFEvaloff
GroupEval,τ(K, f ). Then, we have:

CFEvalon
GroupEval,∆(K, ω f ) = W

CFEvalon

= e(g, g)ρ(a,b)

PolyEval
= e(g, g) f (ρ1(a,b),...,ρn(a,b))

CFEvaloff

= e(g, g) f (u1a+v1b,...,una+vnb)

= GroupEval( f ,FK(∆, τ1), . . . ,FK(∆, τn))

where the last equality holds by the correctness of GroupEval (Theorem 2).

To see the efficiency property, we first observe that the running time of
CFEvaloff

GroupEval,τ(K, f ) is essentially dominated by the computation of ρ using
PolyEval(2, f , ρ1, . . . , ρn). Interestingly, due to the bound deg( f ) ≤ 2 and due to
having only m = 2 variables, the polynomial ρ can be computed at roughly the
same cost of running f , which is the cost of GroupEval, i.e., O(t). Regarding the
online algorithm CFEvalon

GroupEval,∆(K, ω f ), its complexity depends on the size ofρ,
hence on the number of coefficients of a two-variate polynomial whose degree is
the same as the degree of f . In general, for f of degree d, this would be |ρ| =

(d+2
2
)
,

see page 134. Considering our specific case of GroupEval, which evaluates arith-
metic circuits of degree at most 2, and by observing that the degree-0 coefficient
is always 0, we obtain a vector ρ which can be represented with 5 elements of
Zp, from which we have that CFEvalon

GroupEval,∆(K, ω f ) runs in time O(1). �

IV.5 Homomorphic Message Authenticators with
Efficient Verification

We describe our construction of homomorphic MACs with efficient verification
for multi-labeled programs as introduced in Section IV.3.3. In particular, the fol-
lowing theorem summarizes the main result of this chapter which is obtained by
combining the EVH−MAC construction (Section IV.5.1) and our concrete instan-
tiation of the PRF with amortized closed-form efficiency based on the Decision
Linear assumption (Section IV.4.3).

Theorem 5 If the Decision Linear assumption holds, then EVH−MAC is a se-
cure homomorphic message authenticator which supports evaluations of any
arithmetic circuit f of degree at most 2, and achieves efficient verification, i.e.,
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EVH−MAC has amortized efficiency in which the offline verification VerPrep
takes time O(| f |), and the online verification EffVer takes time O(1).

We proceed by detailing our construction (Section IV.5.1), showing its correct-
ness (Section IV.5.2), and then proving its security (Section IV.5.3), and finally
discussing its efficiency (Section IV.5.4).

IV.5.1 Construction

The construction works for circuits whose additive gates do not get inputs la-
beled by constants. As mentioned in [CF13], this can be done without loss of
generality, since one can use an equivalent circuit with a special variable/label
for the constant 1 and publish the MAC of 1. The scheme EVH−MAC is defined
as follows:

KeyGen(1λ): Run bgpp←R G(1λ) to generate the description of bilinear groups.
Let bgpp = (p,G,GT, e, g) as defined above. Let the message spaceM be
Zp. Choose a random value α←R Zp, and run (K,pp)←R KG(1λ) to obtain
the seed K of a pseudorandom function FK : {0, 1}∗ × {0, 1}∗ → G. Output
the secret key sk = (bgpp,pp,K, α), and the evaluation key ek = (bgpp,pp).

Auth(sk,L,m): To authenticate a message m ∈ Zp with multi-label L = (∆, τ)
where ∆ ∈ {0, 1}λ is the identifier of a dataset and τ ∈ {0, 1}λ is an input
identifier, proceed as follows.

First, compute R←FK(∆, τ) and then compute values (y0,Y1) ∈ Zp × G by
setting: y0 = m and Y1 = (R · g−m)1/α. Finally, output the tag σ = (y0,Y1).

If we let y1 ∈ Zp be the (unique) value such that Y1 = gy1 , then (y0, y1) are
basically the coefficients of a degree-1 polynomial y(x) that evaluates to m
on the point 0 (i.e., y(0) = m) and it evaluates to r = φ−1

g (R) on a hidden
random point α (i.e., y(α) = r).

Eval(ek, f ,σ): The homomorphic evaluation algorithm takes as input the evalu-
ation key ek = (bgpp,pp), an arithmetic circuit f : Zn

p → Zp, and a vector
σ of tags (σ1, . . . , σn).

Eval proceeds gate-by-gate as follows. At every gate fg, given two tags
σ1, σ2 (or a tag σ1 and a constant c ∈ Zp), it runs the gate evaluation
algorithm σ←GateEval(ek, fg, σ1, σ2) described below, which returns a new
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IV Verifiable Delegation of Computation over Outsourced Data

tag σ. The tag σ is then passed on as input to the next gate in the circuit.
When the computation reaches the last gate of the circuit f , Eval outputs
the tag vector σ obtained by running GateEval on such last gate.

To complete the description of Eval we thus describe the subroutine GateEval:

• GateEval(ek, fg, σ(1), σ(2)): Let σ(i) = (y(i)
0 ,Y

(i)
1 , Ŷ

(i)
2 ) ∈ Zp × G × GT for

i = 1, 2 (see below for the special case when one of the two inputs is
a constant c ∈ Zp). GateEval creates a tag σ = (y0,Y1, Ŷ2) according
to the type of gate fg (for ease of description, whenever Ŷ(i)

2 is not
defined, we assume Ŷ(i)

2 = 1 ∈ GT):

Addition If fg = f+, then compute σ = (y0,Y1, Ŷ2) as

y0 = y0
(1) + y0

(2), Y1 = Y(1)
1 · Y

(2)
1 , Ŷ2 = Ŷ(1)

2 · Ŷ
(2)
2 .

Multiplication If fg = f×, then compute σ = (y0,Y1, Ŷ2) as

y0 = y0
(1)
· y0

(2), Y1 = (Y(1)
1 )y(2)

0 · (Y(2)
1 )y(1)

0 , Ŷ2 = e(Y(1)
1 ,Y

(2)
1 ).

Because of the assumption that deg( f ) ≤ 2, we can assume that
σ(i) = (y(i)

0 ,Y
(i)
1 ) ∈ Zp ×G for both i = 1, 2.

Multiplication by Constant If fg = f× and one of the two inputs, say
σ2, is a constant c ∈ Zp, then compute σ = (y0,Y1, Ŷ2) as

y0 = c · y0
(1), Y1 = (Y(1)

1 )c, Ŷ2 = (Y(1)
2 )c.

GateEval finally returns the tag σ.

Ver(sk,P∆,m, σ): Let sk = (bgpp,pp,K, α) be a secret key. Let P∆ = (P,∆) be a
multi-labeled program for P = ( f , τ1, . . . , τn) and dataset ∆. Let m ∈ Zp be
the result to be verified, and let σ = (y0,Y1, Ŷ2) be a tag. The verification
proceeds as follows. For i = 1 to n, compute Ri←FK(∆, τi). Then run
W←GroupEval( f ,R1, . . . ,Rn) ∈ GT, as described in Section IV.4.1. Finally,
check the following equations:

m = y0 (IV.4)

W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2

(IV.5)

If both checks are satisfied, then output 1, and 0 otherwise.
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Finally, to complete the description of EVH−MAC we give the algorithms for
efficient verification:

VerPrep(sk,P): Let P = ( f , τ) be a labeled program where f ∈ Zn
p → Zp is an

arithmetic circuit and τ = (τ1, . . . , τn) is a vector of input identifiers for f .
The algorithm computes concise verification information VKP = ω where
ω is obtained by using the offline closed-form efficient algorithm of F for
GroupEval, i.e., ω←CFEvaloff

GroupEval,τ(K, f ).

EffVer(sk,VKP,∆,m, σ): Let sk = (bgpp,pp,K, α) be a secret key. Let VKP = ω be
the concise verification information for P. Let m ∈ Zp be the result to be
verified and let σ = (y0,Y1, Ŷ2) be a tag. The online verification proceeds
as follows. First, it runs the online closed-form efficient algorithm of F for
GroupEval, in order to compute W←CFEvalon

GroupEval,∆(K, ω). Finally, it runs
the same checks (IV.4) and (IV.5) as in standard verification. If both checks
are satisfied, then output 1. Otherwise output 0.

IV.5.2 Proof of Correctness

We prove that EVH−MAC satisfies authentication and evaluation correctness.

Theorem 6 EVH−MAC satisfies authentication correctness.

Proof. Let m ∈ Zp and L = (∆, τ) be given. Let a correctly generated secret key
sk = (bgpp,pp,K, α) and a correctly generated evaluation key ek = (bgpp,pp)
with bgpp = (p,G,GT, e, g) be given. Let further σ = (yo,Y1) be an authentication
tag obtained from running Auth(sk,L,m). We show that Ver(sk,IL,m, σ) = 1 with
probability 1 for some identity program IL computing the identity function fid
for L. To this end, we verify the equations (IV.4) and (IV.5). For the first equation,
it is obvious to see that indeed m = y0 because of Auth. For the second equation,

we know that Y1
Auth
= (R · g−m)1/α with R = FK(∆, τ), and Ŷ2 = 1. Hence,

e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2 Auth

= e(g, g)m
· e((R · g−m)1/α, g)α · 1

= e(g, g)m
· e(R · g−m, g)

= e(g, g)m
· e(R, g) · e(g−m, g)

= e(g, g)m
· e(R, g) · e(g, g)−m = e(R, g)

GroupEval
= GroupEval( fid,R) = W
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For the last equality, the verification is successful only if GroupEval( fid,R) =

e(R, g), which follows immediately from the correctness of GroupEval (Theo-
rem 2, page 147). �

Theorem 7 EVH−MAC satisfies evaluation correctness.

Proof. Let a valid pair of keys (sk,ek)←R KeyGen(1λ) be given. Let f ′ :Mn
→M

and a set of message/program/tag triples {(mi,P∆,i, σi)}ni=1 be given, such that all
P∆,i = (Pi,∆) share the same dataset identifier ∆ and Ver(sk,P∆,i,mi, σi) = 1.
Let m∗ = f ′(m1, . . . ,mn), let P∗ be the composed program f ′(P1, . . . ,Pn), and let
σ∗ = Eval(ek, f ′, (σ1, . . . , σn)). We show that Ver(sk,P∗

∆
,m∗, σ∗) = 1 holds with

probability 1.

For i = 1 to n, let Wi be the values obtained by computing GroupEval in the runs
of Ver(sk,P∆,i,mi, σi), and let σi = (y0

(i),Y(i)
1 , Ŷ

(i)
2 ). By our inductive hypothesis,

i.e., Ver(sk,P∆,i,mi, σi) = 1, we know that both the following equations

mi = y0
(i) (IV.6)

Wi = e(g, g)y0
(i)
· e(Y(i)

1 , g)α · (Ŷ(i)
2 )α

2
(IV.7)

are satisfied. For all i = 1, . . . ,n, consider the unique values y(i)
1 = φ−1

g (Y(i)
1 ),

y(i)
2 = φ−1

gT
(Ŷ(i)

2 ), and wi = φ−1
gT

(Wi), and let us compactly denote by y(i) the degree-2

polynomial with coefficients y(i)
0 , y

(i)
1 , y

(i)
2 ∈ Zp. Equations (IV.6) and (IV.7) imply

that y(i)(0) = mi and y(i)(α) = wi, for all i = 1, . . . ,n.

Similarly, for the tag σ∗ = (y0
∗,Y∗1, (Ŷ2)∗) we let y∗ be the degree-2 polynomial

with coefficients y∗0, y
∗

1, y
∗

2 ∈ Zp uniquely defined as above. Also, let W∗ be the
value obtained by running GroupEval in Ver(sk,P∗

∆
,m∗, σ∗) = 1.

To prove this theorem we will show that y∗(0) = m∗ and e(g, g)y∗(α) = W∗ are
satisfied. To this end, we first prove the following claim. Intuitively, the claim
shows that our algorithm GateEval is computing PolyEval “in the exponent”,
over the input polynomials {y(i)

}
n
i=1 encoded in the groups G,GT.

Claim 1 Let fg be a gate of an arithmetic circuit, let σ(1) = (y(1)
0 ,Y

(1)
1 , Ŷ

(1)
2 ) and

σ(2) = (y(2)
0 ,Y

(2)
1 , Ŷ

(2)
2 ) be any two tags inZp×G×GT, and let σ = (y0,Y1, Ŷ2) be the

output of GateEval(ek, fg, σ(1), σ(2)). If we define the three polynomials y(1), y(2),
y from the three tags σ(1), σ(2), σ, respectively, by using the homomorphisms φg

and φgT , then we obtain y = PolyEval(1, fg, y(1), y(2)).
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Proof. To prove the claim we consider the two cases in which fg is either an
addition or a multiplication gate.

For an addition gate f+, we have

(y0,Y1, Ŷ2) GateEval
= (y0

(1) + y0
(2),Y(1)

1 · Y
(2)
1 , Ŷ

(1)
2 · Ŷ

(2)
2 )

= (y0
(1) + y0

(2), gy(1)
1 +y(2)

1 , e(g, g)y(1)
2 +y(2)

2 )

Hence, we clearly have that y = PolyEval(1, f+, y(1), y(2)).
For a multiplication gate f×, we have

(y0,Y1, Ŷ2) GateEval
= (y0

(1)y0
(2), (Y(1)

1 )y0
(2)
· (Y(2)

1 )y0
(1)
, e(Y(1)

1 ,Y
(2)
1 ))

= (y0
(1)y0

(2), gy(1)
1 y0

(2)+y(2)
1 y0

(1)
, e(g, g)y(1)

1 y(2)
1 )

Hence, we also have that y = PolyEval(1, f×, y(1), y(2)). �

By inductively extending the result of Claim 1 over the entire circuit f ′, we
obtain that y∗ = PolyEval(1, f ′, y(1), . . . , y(n)). So, by relying on the homomorphic
property of PolyEval and on our inductive hypothesis we have that the first
equation of Ver is satisfied, i.e.:

y∗(0)
PolyEval

= f ′(y(1)(0), . . . , y(n)(0))
(IV.6)
= f ′(m1, . . . ,mn) = m∗.

To see that the second equation is satisfied as well, we observe that:

e(g, g)y0
∗

· e(Y∗1, g)α · (Ŷ∗2)α
2

= e(g, g)y∗(α)

PolyEval
= e(g, g) f ′(y(1)(α),...,y(n)(α))

(IV.7)
= e(g, g) f ′(w1,...,wn)

= W∗

where the last equality follows from the composition property of circuits applied
to GroupEval. �
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Theorem 8 If F has amortized closed-form efficiency for (GroupEval,L), then
EVH−MAC satisfies efficient verification.

Proof. According to Definition 9 on page 143, we have to show that both proper-
ties of (1) correctness and (2) efficiency hold.

Correctness simply follows from the fact that the function F satisfies closed-
form efficiency for (GroupEval,L) according to Theorem 4. This indeed means
that by computing W←CFEvalon

GroupEval,∆(K, ω) forω←CFEvaloff
GroupEval,τ(K, f ), one

obtains the same value W as obtained by computing GroupEval( f ,FK(∆, τ1), . . . ,
FK(∆, τn)). Hence, it is clear that the combination of the algorithms VerPrep and
EffVer computes the same code of Ver.

The amortized efficiency property is achieved by EffVer in executing once
CFEvalon

GroupEval,∆, and then performing a constant number of multiplications
and exponentiations. �

We notice that by the correctness of efficient verification, it also follows that
EVH−MAC satisfies authentication and evaluation correctness with respect to
the algorithm EffVer.

IV.5.3 Proof of Security

The security of EVH−MAC is established by the following theorem.

Theorem 9 Let λ be the security parameter, let F be a pseudorandom function
with security εF, and let G be a bilinear group generator. Then, any probabilistic
poly-time adversary A making Q verification queries has at most probability
Pr[HomUF′CMAA,HomMAC-ML = 1] ≤ 2 · εF +

8Q
p−2(Q−1) of breaking the security of

EVH−MAC.

Proof. We have to show property (4) “security” of Definition 7, page 138. In
other words, we have to show that for every PPT adversaryA the probability of
winning the experiment HomUF′CMAA,HomMAC-ML, page 139, is negligible. Using
a hybrid argument, we transform the experiment HomUF′CMAA,HomMAC-ML with
a number of games to an experiment with indistinguishable distribution. We
show that the adversary has a probability of 0 in winning the final experiment.

By Gi(A) we denote the event that an adversary A wins in the experiment
defined in Game i, hence that the challenger outputs 1. The differences between
two consecutive games i and i + 1 are highlighted in Game i + 1.
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IV.5. Homomorphic Message Authenticators with Efficient Verification

Game 0 is the experiment HomUF′CMAA,HomMAC-ML as described on page 139.

Game 0Set the outcome of the experiment out← 0.
Authentication queries. A sends an authentication query ((∆, τ),m),

1. if no query for ∆ has been issued before: initialize a fresh list T∆

2. if (τ,m) < T∆:
a) set T∆ := T∆ ∪ {(τ,m)}
b) set y0 := m
c) compute R← FK(∆, τ)
d) set Y1 := (R · g−m)1/α

e) set Σ[∆, τ] := (y0,Y1)
3. reply Σ[∆, τ] toA

Verification queries. A sends (P∆,m, σ) with P∆ = (( f , τ1, . . . , τn),∆) and σ = (y0,Y1, Ŷ2),
1. compute Ri ← FK(∆, τi), for all i = 1 to n
2. set W ← GroupEval( f ,R1, . . . ,Rn)
3. if m = y0 ∧ W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
, reply 1 toA

4. otherwise, reply 0 toA
Forgery check. Whenever a verification query has been answered with 1, check whether (P∆,m, σ)
constitutes a forgery. More precisely, set out← 1 if one of the following holds:

1. no list T∆ was created, i.e., no message m has been authenticated for ∆

2. P∆ is well-defined with respect to T∆ (see Definition 8, page 140) and m , f ({m j}(τ j ,m j)∈T∆
),

m is not the correct output of P∆ when executed on previously authenticated messages
(m1, . . . ,mn)

3. P∆ is not well-defined with respect to T∆

Game 1 is like Game 0, but using Proposition 2 on page 141, we omit forgeries
of Type 3. Notice that after such a change, the challenger can efficiently
distinguish between forgeries of Type 1 and Type 2.

Game 1Set the outcome of the experiment out← 0.
Authentication queries. A sends an authentication query ((∆, τ),m),

1. if no query for ∆ has been issued before: initialize a fresh list T∆

2. if (τ,m) < T∆:
a) set T∆ := T∆ ∪ {(τ,m)}
b) set y0 := m
c) compute R← FK(∆, τ)
d) set Y1 := (R · g−m)1/α

e) set Σ[∆, τ] := (y0,Y1)
3. reply Σ[∆, τ] toA

Verification queries. A sends (P∆,m, σ) with P∆ = (( f , τ1, . . . , τn),∆) and σ = (y0,Y1, Ŷ2),
1. compute Ri ← FK(∆, τi), for all i = 1 to n
2. set W ← GroupEval( f ,R1, . . . ,Rn)
3. if m = y0 ∧ W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
, reply 1 toA

4. otherwise, reply 0 toA
Forgery check. Whenever a verification query has been answered with 1, check whether (P∆,m, σ)
constitutes a forgery. More precisely, set out← 1 if one of the following holds:

1. no list T∆ was created, i.e., no message m has been authenticated for ∆

2. P∆ is well-defined with respect to T∆ and m , f ({m j}(τ j ,m j)∈T∆
), m is not the correct output of

P∆ when executed on previously authenticated messages (m1, . . . ,mn)
3. P∆ is not well-defined with respect to T∆
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IV Verifiable Delegation of Computation over Outsourced Data

Game 2 is like Game 1, but the PRF is replaced by a truly random function
R : {0, 1}∗ × {0, 1}∗ → G. Hence, each R ∈ G is a truly random value.

Game 2Set the outcome of the experiment out← 0.
Authentication queries. A sends an authentication query ((∆, τ),m),

1. if no query for ∆ has been issued before: initialize a fresh list T∆

2. if (τ,m) < T∆:
a) set T∆ := T∆ ∪ {(τ,m)}
b) set y0 := m
c) compute R←R(∆, τ)
d) set Y1 := (R · g−m)1/α

e) set Σ[∆, τ] := (y0,Y1)
3. reply Σ[∆, τ] toA

Verification queries. A sends (P∆,m, σ) with P∆ = (( f , τ1, . . . , τn),∆) and σ = (y0,Y1, Ŷ2),
1. compute Ri ←R(∆, τi), for all i = 1 to n
2. set W ← GroupEval( f ,R1, . . . ,Rn)
3. if m = y0 ∧ W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
, reply 1 toA

4. otherwise, reply 0 toA
Forgery check. Whenever a verification query has been answered with 1, check whether (P∆,m, σ)
constitutes a forgery. More precisely, set out← 1 if one of the following holds:

1. no list T∆ was created, i.e., no message m has been authenticated for ∆

2. P∆ is well-defined with respect to T∆ and m , f ({m j}(τ j ,m j)∈T∆
), m is not the correct output of

P∆ when executed on previously authenticated messages (m1, . . . ,mn)
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Game 3 is like Game 2, but the verification equation (step 3) is split into two
checks: (i) if m , y0, reply 0; (ii) if W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
, reply 1 to

A. The first check is performed as the very first step (step 1) after receiving
a verification query from A. The position of the second check (step 4)
is unchanged. Moreover, we split verification in two cases: (Type 1) for
queries in which no list T∆ has been created, and (Type 2) in which a list T∆

has been created. Both subroutines perform exactly the same operation,
i.e., computing W ← GroupEval( f ,R1, . . . ,Rn) and checking whether W =

e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2
.

Game 3Set the outcome of the experiment out← 0.
Authentication queries. A sends an authentication query ((∆, τ),m),

1. if no query for ∆ has been issued before: initialize a fresh list T∆

2. if (τ,m) < T∆:
a) set T∆ := T∆ ∪ {(τ,m)}
b) set y0 := m
c) compute R← R(∆, τ)
d) set Y1 := (R · g−m)1/α

e) set Σ[∆, τ] := (y0,Y1)
3. reply Σ[∆, τ] toA

Verification queries. A sends (P∆,m, σ) with P∆ = (( f , τ1, . . . , τn),∆) and σ = (y0,Y1, Ŷ2),
Type 1: No list T∆ has been created.

1. if m , y0, reply 0 toA
2. compute Ri ← R(∆, τi), for all i = 1 to n
3. set W ← GroupEval( f ,R1, . . . ,Rn)
4. if W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
, reply 1 toA

5. otherwise, reply 0 toA
Type 2: A list T∆ has been created.

1. if m , y0, reply 0 toA
2. compute Ri ← R(∆, τi), for all i = 1 to n
3. set W ← GroupEval( f ,R1, . . . ,Rn)
4. if W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
, reply 1 toA

5. otherwise, reply 0 toA
Forgery check. Whenever a verification query has been answered with 1, check whether (P∆,m, σ)
constitutes a forgery. More precisely, set out← 1 if one of the following holds:

1. no list T∆ was created, i.e., no message m has been authenticated for ∆

2. P∆ is well-defined with respect to T∆ and m , f ({m j}(τ j ,m j)∈T∆
), m is not the correct output of

P∆ when executed on previously authenticated messages (m1, . . . ,mn)
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Game 4 is like Game 3, but verification queries (P∆,m, σ) in which a list T∆ exists
are treated differently: for each τi such that (τi, ·) < T∆, compute a dummy
tag σ̃i (step 2). For each τ j such that (τ j, ·) ∈ T∆, fetch the previously stored
value σ̃ j ← Σ[∆, τ j] (step 3). Evaluate f on σ̃ = (σ̃1, . . . , σ̃n) computing
(y0
′,Y′1, Ŷ

′

2) ← Eval(ek, f , σ̃) (step 4). Next, check if σ = (y0,Y1, Ŷ2) =

(y0
′,Y′1, Ŷ

′

2) and accept (step 5). Otherwise, check if e(g, g)y0 · e(Y1, g)α ·
(Ŷ2)α

2
= e(g, g)y0

′

· e(Y′1, g)α · (Ŷ′2)α
2

and accept (step 6). Otherwise, reject (as
before).

Game 4Set the outcome of the experiment out← 0.
Authentication queries. A sends an authentication query ((∆, τ),m),

1. if no query for ∆ has been issued before: initialize a fresh list T∆

2. if (τ,m) < T∆:
a) set T∆ := T∆ ∪ {(τ,m)}
b) set y0 := m
c) compute R← R(∆, τ)
d) set Y1 := (R · g−m)1/α

e) set Σ[∆, τ] := (y0,Y1)
3. reply Σ[∆, τ] toA

Verification queries. A sends (P∆,m, σ) with P∆ = (( f , τ1, . . . , τn),∆) and σ = (y0,Y1, Ŷ2),
Type 1: No list T∆ has been created.

1. if m , y0, reply 0 toA
2. compute Ri ← R(∆, τi), for all i = 1 to n
3. set W ← GroupEval( f ,R1, . . . ,Rn)
4. if W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
, reply 1 toA

5. otherwise, reply 0 toA
Type 2: A list T∆ has been created.

1. if m , y0, reply 0 toA
2. for every index i such that (τi, ·) < T∆, choose a dummy tag σ̃i
3. for every index j such that (τ j, ·) ∈ T∆, fetch tag σ̃ j ← Σ[∆, τ j]
4. evaluate f on σ̃ = (σ̃1, . . . , σ̃n) such that (y0

′,Y′1, Ŷ
′

2) = σ′ ← Eval(ek, f , σ̃)
5. if σ = σ′, reply 1 toA

6. if e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2

= e(g, g)y0
′

· e(Y′1, g)α · (Ŷ′2)α
2
, reply 1 toA

7. otherwise, reply 0 toA
Forgery check. Whenever a verification query has been answered with 1, check whether (P∆,m, σ)
constitutes a forgery. More precisely, set out← 1 if one of the following holds:

1. no list T∆ was created, i.e., no message m has been authenticated for ∆

2. P∆ is well-defined with respect to T∆ and m , f ({m j}(τ j ,m j)∈T∆
), m is not the correct output of

P∆ when executed on previously authenticated messages (m1, . . . ,mn)
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Game 5 is like Game 4, but instead of replying 1 to the adversary, in two cases
we reply 0 and set an (initially false) flag bad to true. These two cases are:
(T1) for the empty list T∆ whenever W = e(g, g)y(α) holds, and (T2) when
the list T∆ is not empty whenever e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
= e(g, g)y0

′

·

e(Y′1, g)α · (Ŷ′2)α
2

holds.

Game 5Set the outcome of the experiment out← 0.
Set the flag bad← false.
Authentication queries. A sends an authentication query ((∆, τ),m),

1. if no query for ∆ has been issued before: initialize a fresh list T∆

2. if (τ,m) < T∆:
a) set T∆ := T∆ ∪ {(τ,m)}
b) set y0 := m
c) compute R← R(∆, τ)
d) set Y1 := (R · g−m)1/α

e) set Σ[∆, τ] := (y0,Y1)
3. reply Σ[∆, τ] toA

Verification queries. A sends (P∆,m, σ) with P∆ = (( f , τ1, . . . , τn),∆) and σ = (y0,Y1, Ŷ2),
Type 1: No list T∆ has been created.

1. if m , y0, reply 0 toA
2. compute Ri ← R(∆, τi), for all i = 1 to n
3. set W ← GroupEval( f ,R1, . . . ,Rn)
4. if W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
, set bad← true and reply 0 toA

5. otherwise, reply 0 toA
Type 2: A list T∆ has been created.

1. if m , y0, reply 0 toA
2. for every index i such that (τi, ·) < T∆, choose a dummy tag σi
3. for every index i such that (τi, ·) ∈ T∆, fetch tag σi ← Σ[∆, τi]
4. evaluate f on σ = (σ1, . . . , σn) such that (y0

′,Y′1, Ŷ
′

2) = σ′ ← Eval(ek, f ,σ)
5. if σ = σ′, reply 1 toA
6. if e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
= e(g, g)y0

′

· e(Y′1, g)α · (Ŷ′2)α
2
, set bad← true and reply 0 toA

7. otherwise, reply 0 toA
Forgery check. Whenever a verification query has been answered with 1, check whether (P∆,m, σ)
constitutes a forgery. More precisely, set out← 1 if one of the following holds:

1. no list T∆ was created, i.e., no message m has been authenticated for ∆

2. P∆ is well-defined with respect to T∆ and m , f ({m j}(τ j ,m j)∈T∆
), m is not the correct output of

P∆ when executed on previously authenticated messages (m1, . . . ,mn)
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Claim 2 The probability for adversaryA of winning in Game 5 is zero.

Proof. Winning the experiment means that the answer to the adversary for a
verification/forgery query is 1 (accept) and that one of the two cases in the
forgery check is satisfied.

The only case to return 1 to the adversary is in step 5 in the case of P being
well-defined with respect to ∆. The necessary condition here is that σ = σ′, which
means that the attacker provides a MAC σ that is equal to a honestly generated
MAC σ′. Since the two MACs are equal, they both authenticate a unique message
m′, which, by the correctness of Eval, must be the same as the attacker message
m. In particular, m′ = Eval(ek, f ,σ) = f ({m j}(τ j,m j)∈T∆

). Therefore, the forgery
check 2 with m , f ({m j}(τ j,m j)∈T∆

) is not true. And hence there is no forgery, and
the output of the experiment is never 1. �

Next, we show that for all i the difference between Game i and Game i + 1 is
negligible. This finally yields that Pr[G0(A)] is negligible, which concludes the
proof of security for EVH−MAC.

Game 0 and Game 1 differ only in the event that an adversaryAwins in Game 0
with a Type 3 forgery, namely |Pr[G0(A)]−Pr[G1(A)]| = Pr[G0(A)∧TA,3] where
TA,3 is the event thatAwins by returning a forgery of Type 3. In order to get an
upper bound on the probability of an adversary winning in Game 0 with a Type
3 forgery, we can use Proposition 2, page 141, which relates this probability with
the probability of winning with a Type 2 forgery.

Claim 3 If ε is an upper bound on the probability Pr[G1(B)] for any adversary
B, then for all adversariesA, we have |Pr[G0(A)] − Pr[G1(A)]| ≤ ε + 2/p.

Proof. We first observe that the difference between the two games only depends
on how forgeries of Type 3 are handled. More precisely, for all adversaries A,
we have |Pr[G0(A)] − Pr[G1(A)]| = Pr[G0(A) ∧ TA,3], where TA,3 is the event in
whichA uses a forgery of Type 3 to win. Proposition 2 yields that if for allB, we
have that Pr[G1(B)] is negligible, then also for allA, we have Pr[G0(A)∧ TB,3] is
negligible. More precisely, Pr[G0(A)∧TB,3] ≤ ε+d/p, where ε is an upper bound
on the probability Pr[G1(B)]. �

It remains hence to show that Pr[G1(A)] is indeed negligible for any adversary
A. To this end, we give negligible bounds for the distance of any two consecutive
games.
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Claim 4 If F is a pseudorandom function, then Pr[G1(A)] − Pr[G2(A)] ≤ εF,
where εF is the negligible advantage of an adversary in breaking the security
of F.

Proof. This proof can be easily obtained by reducing any adversary with non-
negligible probability of distinguishing Game 1 and Game 2 into one that breaks
the security of the pseudorandom function F. �

Claim 5 Pr[G2(A)] ≡ Pr[G3(A)].

Proof. It is easy to see that all changes from Game 2 to Game 3 are only syntactical.
Hence, all views and all probability distributions are the same in both games. �

Claim 6 Pr[G3(A)] ≡ Pr[G4(A)].

Proof. The changes from Game 3 to Game 4 only affect queries from the adversary
with well-defined programs. We hence assume that P is well-defined. In partic-
ular, all dummy tags σ̃i (if any) in Game 4 do not contribute in the evaluation of
f using Eval.

We show that the output to the adversary is 1 in Game 4 if and only if the output
is 1 in Game 3. To this end, assume the answer to A is 1 in Game 3. We hence
know that m = y0 and that W3 ← GroupEval( f ,R1, . . . ,Rn) with W3 = e(g, g)y(α).

In Game 4, the evaluation of σ′ ← Eval(ek, f , σ̃) is based on σ̃, which are all
taken from the list of previously generated tags. This is hence the same as the
generation of the values Ri in Game 3. By correctness of Eval, we know that
Ver(sk,P, y0

′, σ′) = 1. In particular, we have that W4 ← GroupEval( f ,R1, . . . ,Rn)
with W4 = e(g, g)y′(α). Since the values Ri for the corresponding evaluations of
GroupEval is the same in both games, we have that W3 = W4 for the correspond-
ing games. This yields e(g, g)y(α) = W3 = W4 = e(g, g)y′(α), which indeed gives
e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
= e(g, g)y0

′

· e(Y′1, g)α · (Ŷ′2)α
2
.

If (y0,Y1, Ŷ2) = (y0
′,Y′1, Ŷ

′

2), then verification returns the correct result 1 and
clearly, e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
= e(g, g)y0

′

· e(Y′1, g)α · (Ŷ′2)α
2

is also satisfied. �

Claim 7 |Pr[G4(A)] − Pr[G5(A)]| ≤ Pr[Bad], where Bad is the event that bad is
set to true in Game 5.

Proof. Game 4 and Game 5 are identical unless Bad in Game 5. More precisely,
Pr[G4(A)] = Pr[G5(A) ∧ ¬Bad], hence |Pr[G4(A)] − Pr[G5(A)]| ≤ Pr[Bad]. �
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To finalize the security proof, we are left with bounding the probability of the
event Bad, i.e., the event in which bad is set to true in Game 5 on page 167.

Claim 8 Pr[Bad] ≤ 4Q
p−2(Q−1) , where p is the prime used in the construction, and Q

is an upper bound on the number of verification queries made by an adversary.

Proof. Let B j be the event that bad was set from false to true in the j-th verification
query. Let Q be the number of verification queries performed by an attacker.
Then, by Boole’s inequality,

Pr[Bad] = Pr

 Q∨
j=1

B j

 ≤ Q∑
j=1

Pr[B j]

In the following, we estimate the probability Pr[B j] taken over the random
choices of α and all values Ri sampled by the challenger. We also take into
account all possible values chosen by the adversary. From the definition of
Game 5, there are only two cases in which B j can occur:

Event B1
j : W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
and C1

j ,

where C1
j is the event that no list T∆ has been created.

Event B2
j : e(g, g)y0 · e(Y1, g)α · (Ŷ2)α

2
= e(g, g)y0

′

· e(Y′1, g)α · (Ŷ′2)α
2

and C2
j ,

where C2
j is the event that P is well-defined on T∆, and at least for one

index i we have yi , y′i .

In the following we will often write y(α) = y′(α) to stand for e(g, g)y0 · e(Y1, g)α ·
(Ŷ2)α

2
= e(g, g)y0

′

· e(Y′1, g)α · (Ŷ′2)α
2
. From the definition of B j, we know that bad

was not set to true in the previous j − 1 verification queries. Hence, we have

Pr[B j] = Pr[B1
j ∨ B2

j | NotZero j]

where we denote by NotZero j the event that B1
1 ∧ B2

1 ∧ . . . ∧ B1
j−1 ∧ B2

j−1. Let us
further note that

Pr[B1
j ∨ B2

j | NotZero j] = Pr[B1
j | NotZero j] + Pr[B2

j | NotZero j]

= Pr[W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2
∧ C1

j | NotZero j]

+ Pr[y(α) = y′(α) ∧ C2
j | NotZero j]

≤ Pr[W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2
| C1

j ∧ NotZero j]

+ Pr[y(α) = y′(α) | C2
j ∧ NotZero j]
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Let us now fix the value of α in the beginning of Game 5. Let us then have
a look at what the adversary learns with each query against the challenger. We
consider the case first, in which the attacker has not issued any verification
query yet. Assume that the attacker has issued n authentication queries, and let
R1, . . . ,Rn be the random values generated in those queries. Then, for each of the
p possible values of α, there is only a single value Ri which is valid for α. Indeed,
we remind that in Game 5, a new fresh Ri is generated for each multi-label L, i.e.,
for every authentication query. There are hence p possible tuples (α,R1, . . . ,Rn)
that are consistent with the attackers view after seeing n authentication queries.
Next, we look at the verification queries. It is easy to see that queries with m , y0

do not reveal any additional information about α. Moreover, if σ = σ′, then the
attacker does not learn anything new about α since all information in this case is
computed using Eval with the tags that are already known to the attacker.

Hence, without loss of generality, we assume that all Q verification queries
are of case C1

j , where W is checked against e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2
, or of case

C2
j , where y(α) is compared to y′(α). Indeed, as noted before, all the remaining

queries can even be answered without using α, and thus they will not reveal

any information. After each query of case C1
j or C2

j , if B1
j and B2

j occur, then the
number of possible values for (α,R1, . . . ,Rn) in the attacker’s view is reduced by
at most d since the zeroes (i.e., the roots) of a non-zero polynomial of degree d are
at most d, and the information revealed by a rejection answer says that at most
d of such roots (i.e., d possible values of α) can be excluded. In general, after i
queries with B1

1 ∧ B2
1 ∧ . . . ∧ B1

i ∧ B2
i , the number of possible values becomes at

least p − i · d.

We hence obtain an upper bound on the second probability from above as

Pr[y(α) = y′(α) | C2
j ∧ NotZero j] ≤

d
p − ( j − 1) · d

.

This follows from the fact that the polynomial y(α)− y′(α) is non-zero (as σ , σ′),
its roots are at most d, and by our previous counting argument there are p−( j−1)·d
possible values for α.

To evaluate the first probability Pr[W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2
| C1

j ∧

NotZero j], we first note that W is “almost” random since by C1
j we know that all

Ri have never been used before for authentication, and by definition the function
f proposed by the adversary in its query is not a constant function. In particular,

171



IV Verifiable Delegation of Computation over Outsourced Data

the latter property means that at least one of the Ri values, say Rk, “contributes”
to the computation of W. Namely, if we fix all values {Ri}i,k, we can write
GroupEval( f ,R1, . . . ,Rn) as GroupEval( f ′,Rk) where f ′ is the univariate degree-d
polynomial obtained from f after fixing the values of all variables {Ri}i,k. Notice
that after every verification query j involving Rk and in which the event NotZero j

occurs, the adversary can exclude at most d possible values for Rk. Therefore,
at the j-th query, the adversary can not guess Rk with probability better than
1/(p − ( j − 1) · d). We hence end up with

Pr[W = e(g, g)y0 · e(Y1, g)α · (Ŷ2)α
2
| C1

j ∧ NotZero j] ≤
d

p − ( j − 1) · d

Using the facts from above, we can give an upper bound for the probability of
B j as

Pr[B j] ≤
2d

p − ( j − 1) d

and hence
Pr[Bad] ≤

2dQ
p − (Q − 1) d

which proves the claim for the restricted degree d = 2. �

To finalize the proof of Theorem 9, we have to put together the results of all
the above Claims. This yields that for any adversaryA, it holds

Pr[HomUF′CMAA,HomMAC-ML = 1] ≤ 2 · εF +
8Q

p − 2(Q − 1)
.

The proof is completed by observing that both quantities εF and 8Q
p−2(Q−1) are

negligible. For εF this fact follows from the assumption that F is secure, whereas
for the second quantity this follows from observing that Q is poly(λ) and that
p ≈ 2λ. In other words, a PPT adversaryA has at most a negligible advantage of
breaking the unforgeability of EVH−MAC. �

IV.5.4 Efficiency Analysis

The efficient verification of EVH−MAC immediately follows from the amortized
closed-form efficiency of the pseudorandom function F. Indeed, the verification
preparation VerPrep runs in the same time as CFEvaloff

GroupEval,τ, and the online
verification EffVer runs in the same time as CFEvalon

GroupEval,∆. By applying the
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Operation Time (ms)

80-bits 128-bits

Pairing 1.23 12
? Pairing 0.62 6.34

Exp. in G 1.83 9.55
? Exp. in G 0.24 1.34

Exp. in GT 0.22 1.15
? Exp. in GT 0.05 0.26

Multi-Exp(2). in G 2.53 13.34
Multi-Exp(3). in GT 0.44 2.45

? Costs obtained using precomputation.

Figure 31: Summary of costs per operation (in ms).

result of Theorem 4, we thus obtain that VerPrep and EffVer run in time O(| f |)
and O(1), respectively.

In the remainder of this section, we discuss the concrete efficiency of our
scheme when implemented with specific security parameters of 80 and 128 bits.
In particular, we consider the bandwidth costs for sending the MACs over the
network, and the computational timings of the various algorithms at both the
client and the server. The timings are obtained by evaluating the most significant
operations performed by our algorithms, namely modular exponentiations and
pairing computations. For our evaluation, we consider an implementation of
Type-A (symmetric) pairings using the PBC library [Lyn14], on an 2.5 GHz Intel
Core i5 workstation running Mac OS X 10.8.3. The timings of all basic operations
needed by our scheme are summarized in Figure 31. In addition, we note that
by using 80 (resp. 128) bits of security, an element ofZp can be represented with
160 (resp. 256) bits, an element of Gwith 512 (resp. 1536) bits, and an element of
GT with 1024 (resp. 3072) bits. Most clients’ costs are summarized in Figure 32.
Below we illustrate how they are obtained, and we give more details on the
remaining costs.

To obtain the bandwidth costs, we observe that the MAC σ created by the
client, i.e., as generated by Auth, consists of two elements (y0,Y1) ∈ Zp × G,
whereas the MAC returned by Eval may include the additional element Ŷ2 ∈ GT.

Next, let us consider the computational performances of the algorithms of
EVH−MAC. To authenticate a data item, the client runs Auth, whose cost basi-
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Operations at Time (ms) Size of tags (kB)

the client side 80 bits 128 bits 80 bits 128 bits

Data Outsourcing 0.24 1.34 0.08 0.22
Verif. w/o prep. 1.06 8.79 0.21 0.59

Figure 32: Clients’ costs to outsource and to verify.

cally boils down to that of computing Y1. The latter requires one PRF evaluation
to generate R (which amounts to one exponentiation in G), plus two other expo-
nentiations, one for m, and one for α−1. However, with a more careful look at our
PRF construction, we observe that this operation can be optimized by computing
directly Y1 = g(ua+vb−m)/α, a single exponentiation in G (with precomputation on
the fixed basis g). For verification, the client has to first prepare the re-usable
verification information VKP using VerPrep. The cost of this algorithm depends
on the computation of ω←CFEvaloff

GroupEval,τ(K, f ), which is essentially the same
as computing the function f (no exponentiations, pairings or group operations
are needed). Such value VKP is stored by the client (its size amounts to at most 5
elements ofZp), and it can be re-used over and over when runningP on different
data sets, thus amortizing the cost of its computation. To verify a MAC using
EffVer in the online phase, the client needs to compute only one pairing (with
precomputation on the fixed g), i.e., e(Y1, g), and one multi-exponentiation with
three bases7, for e(g, g)y0−we(Y1, g)α(Ŷ2)α

2
. To conclude our analysis, we consider

the cost required to the server for generating the correctness proofs, i.e., to run
Eval. As one can notice, Eval evaluates the circuit f with an additional, constant,
overhead which derives from replacing every addition of f with the group oper-
ation (in eitherG orGT), and every multiplication with one multi-exponentiation
in G plus one pairing.

7 Here we observe that the explicit computation of W = e(g, g)w in CFEvalon can be avoided by
directly considering e(g, g)y0−w.
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Chapter V

Nearly Practical and
Privacy-Preserving Proofs
over Authenticated Data

NP

In this chapter, we study the problem of privacy-preserving proofs on authenti-
cated data: similar to the previous chapter, a party receives authenticated data
(from some independent trusted source) and is requested to prove statements
over the data to third parties in a correct and, this is the main novelty here, in a
private way, i.e., the verifying third party learns no information on the data but
is still assured that the claimed proof is valid. This chapter particularly focuses
on the challenging requirement that the third party should be able to verify the
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validity with respect to the specific data authenticated by the source — even
without having access to that source. This problem is motivated by various
scenarios emerging from several application areas such as wearable computing,
smart metering, or general business-to-business interactions. Furthermore, these
applications also demand any meaningful solution to satisfy additional proper-
ties related to usability and scalability. First, third parties should be able to check
proofs very efficiently. Second , the trusted source should be independent of the
data processor: the source simply provides the data, possibly in a continuous
streaming-based manner, in particular without knowing which statements will
be proven.

This chapter formalizes the above three-party model, discusses concrete ap-
plication scenarios, and introduces a new cryptographic primitive for proving
NP relations where statements are authenticated by trusted sources. After dis-
cussing a generic approach to construct this primitive, we present a more direct
and efficient realization that supports general-purpose NP relations. The pre-
sented realization significantly improves over state-of-the-art solutions for this
model, such as those based on Pinocchio (Oakland’13), by at least three orders
of magnitude.

Chapter Outline

Section V.1 introduces a three-party scenario, where computations are delegated
between two parties and the results are then used and verified by third parties.
Section V.2 (page 183) provides background on our notation and on the tools
we use in this chapter. Section V.3 (page 185) defines our notion of SNARGs
over authenticated data and shows a generic (but inefficient) construction. Sec-
tion V.4 (page 193) shows a direct (and hence much more efficient) construction.
Section V.5 (page 216) shows a second direct construction, which is even more
efficient, but is only applicable in a designated verifier setting.
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V.1. Introduction

V.1 Introduction

With the emergence of modern IT services, a growing number of applications
relies on confidential data for various purposes such as billing, legal compliance,
etc. For instance, in the emerging area of wearable computing [Vit14, BBC14],
smart devices collect measurable human conditions, and subsequently aggregate
them for doctors or health insurances. Likewise, in the area of smart metering
[RD11], energy companies intend to collect energy consumption measurements
in order to compute the user bills. Or, in the realm of B2B, a company would like
to perform efficient computations on business-sensitive data. In these scenarios,
the result of the computation is typically used further in interaction with other
third parties, be it other humans or companies (doctors, health insurances, energy
companies, business collaborators).

This consideration of disseminating the results of a computation to third par-
ties imposes security requirements for both the data owner and the data recipient:
On the one hand, the computation inputs might contain sensitive data (such as
patient data, energy consumptions, business plans) that the data owner would
like to keep confidential. On the other hand, the data recipient would like to be
able to verify the correctness of the computation results — even though it is not
granted access to the computation input!

To illustrate the problem more formally, we consider a scenario in which a
prover P is requested to prove certain statements R(D) about data D to third
parties V, which we call the verifiers. Since the two parties P and V may not
trust each other, we are interested in the simultaneous achievement of two main
security properties: (1) integrity, in the sense thatV should be convinced about
the validity of R(D). In particular, in order to verify that this statement holds
for some specific D, the data is assumed to be generated and authenticated by
some trusted source S; and (2) privacy, in the sense that V should not learn any
information about D beyond what is trivially revealed by R(D).

In addition to the security requirements above, any meaningful solution has
to meet the following properties that have been identified as key for practical
scalability in previous work: (3) efficiency, meaning that V’s verification cost
should be much less than the cost of computing the proven statement R(D); and
(4) data independence, in the sense that the data source S should be independent
of P, i.e., S should be able to provide D without knowing in advance what
statements will be proven about D (e.g., the billing function may change over
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data processor
use and verify data, compute 
aggregation over x =(ci,...,cl, xun) and 
obtain witness w, compute
π = Prove(x,w,{σk}k=i..l)

trusted source
measure data {ck }k

and sign it:
σk = Auth(sk,Lk,ck)

{(ck, σk )}k π

verifier
verify proof π
Ver(vk,{Lk}k=i..l,xun,π)

1 Introduction

With the emergence of modern IT services, a growing number of applications relies on privacy-
sensitive personal data for various purposes such as billing, legal compliance, etc. For instance, in
the emerging area of wearable computing, smart devices collect measurable human conditions, and
aggregation of such measures can then be given to doctors or health insurances for various compli-
ance checks. Likewise, in the area of smart metering, energy companies rely on energy consumption
measurements in order to compute the user bills. Or, consider the workflow of general business-
to-business applications where a company receives authenticated data and computes aggregations
which can be verified and embedded into larger protocols. The results of such computations should
later reliably be used by several, mutually untrusted parties.

While these scenarios introduce new and exciting services, they also raise challenges related to
the handling of sensitive data and the correctness of its processing. If services are often interested in
accessing only the aggregations of private or business-sensitive data (not the data itself, e.g., rather
the compliance of medical conditions over a relatively long period, or the bill from the month’s
consumptions is relevant), one may think to shift the performance of this aggregation to users (or
companies) so that the individual privacy-sensitive data (or sensitive business plans) do not get
exposed. However, since users and companies may be selfish, how to be sure that the transmitted
aggregations are correct? Moreover, what is the guarantee that the service learns nothing beyond
the desired aggregation?

The simultaneous achievement of integrity of computations and privacy of sensitive data has
been the goal of several works, especially in the context of zero-knowledge proofs [?]. In this work,
we consider important additional properties for a variety of scenarios (partially sketched above),
and we refine zero-knowledge proofs to fit this setting.

More precisely, we consider the problem in which a trustworthy data source S continuously
provides authenticated data D to some (unreliable) party P. P stores D, and at certain points in
time, it is requested to prove certain statements R(D) about (a portion of) D to third parties V,
which we call the verifiers. We stress that the data D and its size shall not be fixed in advance.
Analogously, the data source shall be independent of P, in particular the source might not know in
advance which statements will be proven about D (e.g., the billing function may change over time).
Since the two parties P and V may not trust each other, we are interested in two main security
properties: (1) integrity, in the sense that V should be convinced about the validity of R(D) and
in particular about the fact that this statement holds for data D that has been generated by the
trusted source S; and (2) privacy, in the sense that V should neither learn nor should it need to
store any information about D beyond what is trivially revealed by R(D). Furthermore, we aim to
achieve the following additional properties: (3) e�ciency, meaning that V’s verification cost should
be much less than the cost of computing the proven statement R(D); (4) unbounded data, in the
sense that the size of the data provided by the source S should not be fixed in advance; (5) data-
independence, in the sense that the data source should be able to provide D to P without knowing
in advance what statements will be proven about D.

1.1 Our Contribution

Our contribution is twofold. First, we fully formalize a model for the above problem by defining
a new cryptographic primitive that we call Succinct Non-Interactive Arguments on Authenticated
Data (or AD0SNARG, for short). Roughly speaking, the notion of AD0SNARGs extends the one of
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Figure 33: Scenario of authenticating data D and proving properties R over D.

time). In particular, also D’s size should not be fixed in advance, i.e., S can
continuously provide data to P, even after some proofs have been generated.

The simultaneous achievement of integrity and privacy is a fundamental
goal that has a long research history starting with the seminal work on zero-
knowledge proofs [GMR89]. The main goal of this chapter is to study solu-
tions aiming to achieve all of the four properties above, with a particular fo-
cus on the setting in which the data is authenticated by some trusted source.
We believe that such a setting is relevant to many practical scenarios (such
as the ones sketched above) and observe that no much prior work addressed
the problem of proofs on authenticated data in a systematic and general way.
Most work focused on specific computations (e.g., credentials or electronic cash
[Cha85, Dam90, LRSW00, MEK+10]), but very little work addressed the case
of proving the integrity of arbitrary computations involving authenticated data.
An exception is the recent work ZQL [FKDL13], which provides an expression
language for (privacy-preserving) processing of data that can also be originated
by trusted data sources. Inspired by the goals of ZQL, our work is rather focused
on the study and realization of efficient cryptographic primitives that can yield
suitable solutions for this setting.
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V.1.1 Contributions of this Chapter

The contribution of this chapter is twofold. First, it fully formalizes a model for
the above problem by defining a new cryptographic primitive called Succinct
Non-Interactive Arguments on Authenticated Data (or AD-SNARG, for short).
SNARGs, first introduced by Micali under the name of “CS proofs” [Mic94],
are proof systems that provide succinct verification, i.e., the verifier is able to
check a long poly-time computation in much less time than that required to run
the computation, given the witness. Our new notion of AD-SNARGs extends
SNARGs so as to explicitly capture proofs of NP relations R(x,w) in which the
statement x (or part of it) is authenticated. More precisely, the main difference
between SNARGs and AD-SNARGs is that in the former, the verifier always
knows the statement, whereas in the latter, the authenticated statements are not
disclosed to the verifier, yet the verifier can be assured about the existence of
w such that R(x,w) holds for the specific x authenticated by the trusted source.
Moreover, to model privacy (and looking ahead to our applications) we define the
zero-knowledge property so as to hold not only for the witnesses of the relation,
but also for the authenticated statements. In particular, our zero-knowledge
definition holds also against adversaries who generate the authentication keys.

Turning our attention to concrete realizations, we show that AD-SNARGs
can be constructed in a generic fashion by embedding digital signatures into
SNARKs (i.e., SNARGs of Knowledge [BCCT12]). However, motivated by the
fact that this “generic construction” is not very efficient in practice, our second
contribution is a direct and more efficient realization of AD-SNARGs which,
from now on, we refer to as the “direct construction”. Interestingly, compared to
instantiating the generic construction with state-of-the-art SNARK schemes, our
direct construction performs roughly three orders of magnitude better on the
prover side. In what follows, we give more details on this efficiency aspect: we
first discuss the inefficiency of instantiating the generic construction, and then
we describe our efficient solution.

On the (in)efficiency of the generic construction. The idea of the generic
(not very practical) construction of AD-SNARGs for an NP relation R(x,w) is
to let the prover P prove an extended NP relation R′ which contains the set of
tuples (x′,w′) with x′ = (|x|,pk), w′ = (w, x, σ), and σ = (σ1, . . . , σ|x|), such that
there is a valid signature σi for every statement value xi at position i under public
key pk. The problem with this generic construction is that, in practice, a proof for
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such extended relation R′ is much more expensive than a proof for R. The issue
is that R′ needs to embed the verification algorithm of a signature scheme. If we
consider very efficient SNARKs, such as the recent Pinocchio system [PGHR13],
embedding the verification algorithm means encoding the verification algorithm
of the signature with an arithmetic circuit over a specific finite field Fp (where p
is a large prime), and then creating a Quadratic Arithmetic Program [GGPR13],
a QAP for short, out of this circuit. Without going into the details of QAPs (we
will review them later in Section V.2), we note that the efficiency of the prover in
Pinocchio depends on the size of the QAP, which in turn depends on the number
of multiplication gates in the relation satisfiability circuit.

Our main observation is that the circuit resulting from expressing the verifica-
tion algorithm of a digital signature scheme is very likely to be quite inefficient
(from a QAP perspective), especially for the prover. Such inefficiency stems from
the fact that the circuit would contain a huge number of multiplication gates. In
what follows, we discuss why this is the case for various examples of signatures
in both the random oracle and the standard model, and based on different alge-
braic problems. If one considers signature schemes in the random oracle model
(which include virtually all the schemes used in practice), any such scheme uses
a collision-resistant hash function (e.g., SHA-1) which is thus part of the verifica-
tion algorithm computation. Unfortunately, as shown also in [PGHR13], a QAP
(just) for a SHA-1 computation is terribly inefficient due to the high number of
multiplication gates (roughly 24 000, for inputs of 416 bits). On the other hand, if
we focus on standard model signature schemes, it does not get any better: These
schemes involve specific algebraic computations, and encoding these computa-
tions into an arithmetic circuit over a field Fp is costly. For instance, signatures
based on pairings [BB04, Wat05] require pairing computations that amount to,
roughly, 10 000 multiplications. RSA-based standard-model signatures (e.g.,
Cramer-Shoup [CS99]) require exponentiations over rings of large order (e.g.,
3 000 bits), and simulating such computations over Fp ends up with thousands
of multiplication gates as well. Lattice-based signatures (in the standard model),
e.g., [Boy10] can be cheaper in terms of the number of multiplications. However,
such multiplications typically work overZq for a q much smaller than our p. An
option would be to implement mod-q-reductions in Fp circuits, which is costly.
Another option would be to let these schemes work overZp, but then one has to
work with higher dimensional lattices or (polynomial rings) for security reasons,
again incurring a large number of multiplications.
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This state of affairs essentially suggests that a QAP encoding a signature ver-
ification circuit is likely to have at least one thousand multiplications for every
signature that must be checked. If, for instance, we consider smart metering, in
which the prover wants to certify about 1 000 (signed) meter readings (amount-
ing to approximately 3 weeks of electricity measurements – almost a monthly
bill), the costs can become prohibitive!

Our Solution. In contrast, we propose a new, direct, AD-SNARG construc-
tion that achieves the same efficiency as state-of-the-art SNARGs (e.g., Pinoc-
chio [PGHR13]), yet it additionally allows for proofs on authenticated state-
ments. Our scheme builds upon a corrected version of Pinocchio1, and our key
technical contribution is a technique (that we illustrate in Section V.1.3) for em-
bedding the authentication verification mechanism directly in the proof system,
without having to resort to extended relations that would incur the efficiency
loss discussed earlier. As a result, the performance of our scheme is almost the
same as that of running Pinocchio without any proof about authenticated values.

When comparing our direct construction with the instantiation of the generic
scheme in Pinocchio, it is interesting to note that the improvement of our solution
lies in the generation of setup keys (for the relation) and proofs, which is currently
the main bottleneck of Pinocchio (and other QAP-based schemes [BSCG+13]).
Namely, while these schemes perform excellently in terms of verification time
and proof size, the performances get much worse when it comes to generating
keys and proofs, especially for relations that have “unfriendly” arithmetic circuit
representations, such as signature verification algorithms, as discussed earlier.
This is why our technique for avoiding the encoding of signature verification in
QAPs allows us to use much smaller QAPs, thus saving at least one thousand
multiplication gates per signature involved in the proof.

V.1.2 Further Related Work

As we mentioned earlier, our work extends the notion of succinct non-interactive
arguments (SNARGs) [Mic94, BCCT12], which in turn build on (succinct) inter-
active proofs [GMR89] and interactive arguments [Kil92, Kil95]. In particular,
we focus on the so-called preprocessing model, where the verifier is required to run

1 The corrected version of Pinocchio – we emphasize – is available via ePrint and differs from
the initially published version [PGHR13].
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an expensive but re-usable key generation phase. In this preprocessing model,
several works [Gro10, Lip12, GGPR13, BCI+13] proposed efficient realizations
of SNARGs, and two notable recent works [PGHR13, BSCG+13] have shown
efficient, highly-optimized, implementations that support general-purpose com-
putations. These schemes can also support zero-knowledge proofs. It is worth
mentioning that all known SNARGs are either in the random oracle model or
rely on non-standard non-falsifiable assumptions [Nao03]. Assumptions from
this class have been shown [GW11] likely to be inherent for SNARGs forNP.

The notion of SNARGs is also related to verifiable computation [GGP10],
as described in Chapter IV. Recall: a (computationally weak) client delegates
the computation of a function to a powerful server and wants to verify the
result efficiently. As noted in previous work and also sketched below, by using
SNARGs for NP, it is possible to construct a verifiable computation scheme,
and several works [GGPR13, PGHR13, BSCG+13] indeed follow this approach.
However, alternative approaches to realizing verifiable computation have been
proposed, notably based on fully homomorphic encryption [GGP10, CKV10, AIK10]
or attribute-based encryption [PRV12].

Another line of work which is closely related is the one on homomorphic
authentication (comprising both homomorphic signatures, [JMSW02, BF11a]; and
homomorphic MACs, Chapter IV and [GW13, CF13]). Recall the main idea of this
primitive: given a set of messages (σ1, . . . , σn) authenticated using a secret key
sk, anyone can evaluate a program P on such authenticated messages in a way
that the result σ←P({σi}) is again authenticated with respect to the same key sk
(or some public key vk in the case of signatures). Compared to AD-SNARGs,
homomorphic signatures/MACs satisfy a similar notion of soundness, and they
have an additional nice property of composability, i.e., one can run a program
on results authenticated by other programs. On the other hand, they do not
provide efficient verification (with the only exception of the techniques presented
in Chapter IV) and do not satisfy the zero-knowledge notion of AD-SNARGs
that is important for the applications of our interest. It is worth noting that a
notion of privacy, called context-hiding, has been considered for homomorphic
signatures [BF11a]. However, this notion is weaker than our zero-knowledge as,
for instance, it does not allow to hide additional, non-authenticated, witnesses
of a computation.
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V.1.3 An Intuitive Description of our Techniques

The key idea for the construction of our AD-SNARG scheme is to build upon
Pinocchio (in particular, its SNARG version) [PGHR13] and to modify it by
embedding a linearly-homomorphic MAC that enforces the prover to run Pinoc-
chio’s Prove algorithm on correctly authenticated statements. At a more technical
level, in Pinocchio the verifier, given a statement x = (x1, . . . , xa), has to compute
the linear combination vin =

∑a
k=1xk · vk(x) (where the vk(x) are the QAP polyno-

mials)2. Since in AD-SNARGs the verifier does not know the statement, our idea
is to let the prover compute this linear combination vin on the verifier’s behalf.
Then, to enforce a cheating prover to provide the correct vin, we ask the prover
to additionally show that vin was obtained by using authenticated values xk. To
this end, we employ a linearly-homomorphic MAC.

However, a further complication to applying this technique arises from the
fact that vin may be randomized (by adding a random multiple of the QAP’s
target polynomial t(x)) in case the proof is zero-knowledge, while homomorphic
MACs typically authenticate only deterministic computations. We solve this
issue using the following ideas. First, we provide a way to publicly re-randomize
the homomorphic MACs: roughly speaking, by publicly revealing a MAC of t(x).
Second, we enforce the prover to use the same random coefficient for t(x) in both
vin and its MAC. Very intuitively, this is achieved by asking the prover to provide
this linear combination in two different subspaces.

V.2 Background

In this section, we review the notation and some basic definitions that we will
use in this chapter. For completeness, we recall the notational conventions from
the previous chapter.

Notation. As in Chapter IV, we will denote with λ ∈ N a security parameter.
We say that a function ε is negligible if it vanishes faster than the inverse of
any polynomial. If not explicitly specified otherwise, negligible functions are
negligible with respect to λ. If S is a set, x←R S denotes the process of selecting
x uniformly at random in S. IfA is a probabilistic algorithm, x←R A(·) denotes

2 Precisely, the verifier also computes win =
∑a

k=1xk ·wk(x) and yin =
∑a

k=1xk · yk(x). In this intuitive
description, we simplify and describe our technique only for vin.
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the process of runningA on some appropriate input and assigning its output to
x. Moreover, for a positive integer n, we denote by [n] the set {1, . . . ,n}.

Algebraic Tools. Let G(1λ) be an algorithm that upon input of the security
parameter 1λ, outputs the description of bilinear groups bgpp = (p,G,GT, e, g)
where G and GT are groups of the same prime order p > 2λ, g ∈ G is a generator
and e : G × G → GT is an efficiently computable bilinear map. We call such an
algorithm G a bilinear group generator. In this chapter, we make use of bilinear
groups and in particular we rely on the q-DHE [CKS09], q-BDHE [BBG05], and
q-PKE [Gro10] assumptions over these groups.

Arithmetic Circuits and Quadratic Arithmetic Programs. An arithmetic
circuit C over a finite field F consists of addition and multiplication gates and
of a set of wires between the gates. The wires carry values over F. A Quadratic
Arithmetic Program (QAP) [GGPR13] encodes the wires of an arithmetic circuit C
into three sets of polynomialsV,W,Y in such a way that for every multiplication
gate g× of C, any valid assignment of the circuit wires yields that the left input
wiresV of g× multiplied by the right input wiresW of g× equals the values of
the output wires Y of g×. More precisely, each polynomial set contains m + 1
polynomials of the form

V = {vk(x)}k=0...m W = {wk(x)}k=0...m Y = {yk(x)}k=0...m

such that vk(rg×) = 1 iff the k-th wire of C is a left input to multiplication gate
g×. Dually, the polynomials wk and yk represent right input and output, re-
spectively.3 Each multiplication gate g× is thereby represented as an arbitrary
number rg× ∈ F, its root. Figure 34 shows two multiplication gates with corre-
sponding polynomials. The arithmetic constraints for all multiplication gates
of C are enforced by virtue of a divisibility check with a specific target polyno-
mial t(x) =

∏
g×(x − rg×). More precisely, Q is said to compute C if, whenever

(c1, . . . , cN) ∈ FN is a valid assignment of C’s input and output wires, then there
exists coefficients (cN+1, . . . , cm) such that t(x) divides p(x) where

p(x) =
(
v0(x) +

m∑
k=1

ck vk(x)
)
·

(
w0(x) +

m∑
k=1

ck wk(x)
)
−

(
y0(x) +

m∑
k=1

ck yk(x)
)

3 The precise construction is slightly more complex, since it also handles addition and multipli-
cation by constants.
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c5

Figure 34: Two multiplication gates g5 and g6 with roots r5 and r6.

The divisibility hence implies that all wire assignments are consistent, in partic-
ular the output wires of C carry the correct evaluation result of C for the given
input wires.

V.3 Zero-Knowledge SNARGs over Authenticated Data

We define the notion of SNARGs [Mic94, BCCT12] on authenticated data (i.e.,
AD-SNARGs, for short). Let R = {(x,w)i} be a relation over Fa+b where F is a
finite field, x ∈ Fa is called the statement, and w ∈ Fb is the witness. Proof
systems typically consider the problem in which a prover P proves to a verifier
V the existence of a witness w such that (x,w) ∈ R. In this scenario, the statement
x is supposed to be public, i.e., it is known to both the prover and the verifier.
For example, V could be convinced by P that 3 colors are sufficient to color a
public graph x such that no two adjacent vertices are assigned the same color.
The coloring serves as witness w.

This chapter considers a variation of the above problem in which (1) the
statement x (or part of it) is provided to the prover by a trusted source S, and
(2) the portion of x provided by S is not known toV (see Figure 33 on page 178
for illustration). Yet,V wants to be convinced by P that (x,w) ∈ R holds for the
specific x provided by S, and not for some other x′ of P’s choice (which might
still satisfy R). For example, Smight have provided a graph x – not known toV
– for which P proves toV that x is 3-colorable. A proof for any other graph x′ is
meaningless.
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To formalize the idea that V checks that some values unknown to V have
been authenticated by S, we adopt the concept of labeling as used in Chap-
ter IV for homomorphic authentication. Namely, we assume that the source S
authenticates a set of values Xauth = {ci, . . . , c`} against a set of (public) labels
L = {Li, . . . ,L`} by using a secret authentication key (e.g., a signing key). S then
sends the authenticated Xauth to P. Later, P’s goal is to prove toV that (x,w) ∈ R
for a statement x in which some positions have been correctly authenticated by
S, i.e., xi ∈ Xauth for some i ∈ [a].

For such a proof system we define the usual properties: completeness and
soundness; and in addition, in order to model privacy, we define zero-knowledge.
Moreover, since we are interested in efficient and scalable protocols, we define
succinctness to model that the size of the proofs should be independent of the
witness w — in particular independent of its size |w|.

Finally, we consider AD-SNARGs that can have either public or secret verifia-
bility, the difference being in whether the adversary knows or not the verification
key for the authentication tags produced by the data source S.

V.3.1 SNARGs over Authenticated Data

We provide a formal definition for SNARGs over authenticated data.

Definition 12 (AD′SNARG) A scheme for Succinct Non-interactive Arguments
over Authenticated Data with respect to a family of relationsR consists of a tuple
of algorithms (Setup,AuthKeyGen,Auth,AuthVer,Gen,Prove,Ver) satisfying au-
thentication correctness, completeness, adaptive soundness, and succinctness
(as defined below):

Setup(1λ): On input the security parameter λ, output some common public
parameters pp.

AuthKeyGen(pp): given the public parameters pp, the key generation algorithm
outputs a secret authentication key sk, a verification key vk, and public
authentication parameters pap.

Auth(sk,L, c): the authentication algorithm takes as input the secret authentica-
tion key sk, a label L ∈ L, and a message c ∈ F. It outputs an authentication
tag σ.
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AuthVer(vk, σ,L, c): the authentication verification algorithm takes as input a
verification key vk, a tag σ, a label L ∈ L, and a message c ∈ F. It outputs
⊥ (reject) or > (accept).

Gen(pap,R): given the public authentication parameters pap and a relation R ⊆
Fa
×Fb

∈ R, the algorithm outputs an evaluation key EKR and a verification
key VKR for R. Gen can hence be seen as a relation encoding algorithm.

Prove(EKR, x,w, σ): on input a relation evaluation key EKR, a statement x =

(x1, . . . , xa), a witness w = (w1, . . . ,wb), and authentication tags for the state-
ment σ = (σ1, . . . , σa), the proof algorithm outputs a proof of membership
π for (x,w) ∈ R. We stress that σ does not need to contain authentication
tags for all positions: in case a value at position i is not authenticated, the
empty tag σi = ? is used instead.

Ver(vk,VKR,L, {xi}Li=?, π): given the verification key vk, a relation verification
key VKR, labels for the statement L = (L1, . . . ,La), unauthenticated state-
ment components xi, and a proof π, the verification algorithm outputs ⊥
(reject) or > (accept).

Before defining the four properties, we give an example on how to use
AD-SNARGs in practice.

Example 10 (Graph Coloring using AD′SNARG) To prove that x is a par-
ticular graph with valid 3-coloring, the prover P uses the Prove algorithm
of an AD′SNARG to produce a proof π←Prove(EKR, x,w, σ), where EKR ←R

Gen(pap,R), and σ = (σ1, . . . , σa) are the signatures to authenticate the particu-
lar graph x under the labels L. The verifier runs Ver(vk,VKR,L, (), π) to decide
whether the coloring is valid. The verifier only obtains the labels related to the
particular graph x, not the graph itself. ∗

Authentication Correctness. Intuitively, an AD′SNARG scheme has au-
thentication correctness if any tag σ generated by Auth(sk,L, c) authenticates c
with respect to L. More formally, we say that an AD′SNARG scheme satis-
fies authentication correctness if for any message c ∈ F, all keys (sk, vk,pap)←R
AuthKeyGen(1λ), any label L ∈ L, and any authentication tag σ←R Auth(sk,L, c),
we have that AuthVer(vk, σ,L, c) = > with probability 1. Moreover, we assume
Auth(sk, ?, c) = ? for the empty tag / label ?.
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Completeness. This property aims at capturing that if the Prove algorithm pro-
ducesπwhen run on (x,w, σ) for some (x,w) ∈ R, then verification Ver(vk,VKR,L,
{xi}Li=?, π) must output > with probability 1 whenever AuthVer(vk, σi,Li, xi) =

>. More formally, let us fix (sk, vk,pap) ←R AuthKeyGen(pp), and a relation
R : Fa

× Fb with keys (EKR,VKR) ←R Gen(pap,R). Let (x,w) ∈ R be given
with x = (x1, . . . , xa), w = (w1, . . . ,wb). Let L = (L1, . . . ,La) ∈ (L ∪ {?})a, be
a set of labels, and let σ = (σ1, . . . , σa) be tags for the statement such that
AuthVer(vk, σi,Li, xi) = >. Then if π ←R Prove(EKR, x,w, σ), we have that
Ver(vk,VKR,L, {xi}Li=?, π) = >with probability 1.

Adaptive Soundness. Intuitively, the soundness property captures that no ma-
licious party can produce proofs that verify correctly for tuples not contained
in the relation. More formally, we formalize our definition via an experiment,
called ExpAD′Soundness

A
, using the notation of code-based games. The game in

this case is defined by a number of procedures (see Figure 35) that can be run
by an adversary A as follows. As usual, the game starts with once executing
Initialize, and terminates with once executing Finalize. In between, A can
(concurrently) run the procedures Gen, Auth, and Ver. We define the output of
the game to be the output of the Finalize procedure. The three procedures Gen,
Auth, and Ver essentially give to the adversary oracle access to the algorithms
Gen, Auth, and Ver, respectively, with some additional bookkeeping informa-
tion. In particular, it is worth noting that Ver returns the output of Ver, and
additionally, checks whether a proof accepted by Ver (i.e., v = >) proves a false
statement according to R. In this case, Ver sets GameOutput←1.

We say that an adversary A wins the game if it manages to make the exper-
iment ExpAD′Soundness

A
output 1, i.e., if it ever asks a verification query that

sets GameOutput←1. More formally, let R be a class of relations. Then for
any λ ∈ N, we define the advantage of an adversary A in the experiment
ExpAD′Soundness

A
(R, λ) against AD′Soundness for R as

AdvAD′Soundness
A

(R, λ) = Pr[ExpAD′Soundness
A

(R, λ) = 1].

An AD′SNARG over authenticated data with respect to a class of relations R
is computationally sound if for any PPT A, it holds that AdvAD′Soundness

A
(R, λ) is

negligible in λ.

Our soundness definition is inspired by the security definition for homomor-
phic MACs, as described in Chapter IV from page 139 on. The catch here is
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procedure Initialize

()←R Setup(1λ)
(sk, vk,pap)←R AuthKeyGen(1λ)
GameOutput←0
S←∅
T←{(?,?)}
Return pap

procedure Gen(R)

(EKR,VKR)←R Gen(pap,R)
S←S ∪ {(R,VKR)}
Return (EKR,VKR)

procedure Auth(L,c)

σ←R Auth(sk,L, c)
T←T ∪ {(L, c)}
Return σ

procedure Ver(R,L, {xi}Li=?, π)

if (R, ·) < S then Return ⊥
fetch VKR with (R,VKR) ∈ S
v←Ver(vk,VKR,L, {xi}Li=?, π)
if v = > then

if ∃Li ∈ L : (Li, ·) < T then
GameOutput←1 // Type 1
else

fetch x = (x1, . . . , xn)
with {(L1, x1), . . . , (Ln, xn)} ⊆ T
for all Li , ?

if there exists no w such that (x,w) ∈ R
GameOutput←1 // Type 2

Return v

procedure Finalize

Return GameOutput

Figure 35: Game AD′Soundness.

that there are essentially two ways to create a “cheating proof”, and thus to
break the soundness of an AD′SNARG. The first way, Type 1, is to produce an
accepting proof without having ever queried an authentication tag for a label
Li. This basically captures that, in order to create a valid proof, one needs to
have all authenticated parts of the statement, each with a valid authentication
tag. The second way to break the security, Type 2, is the more “classical” one,
i.e., generating a proof that accepts for a tuple (x,w) which is not the correct one,
i.e., (x, ·) < R.

We note that the above game definition captures the setting in which the
verification key vk is kept secret. The definition for the publicly verifiable setting
is easily obtained by having Initialize return vk to the adversary.

Succinctness. Given a relation R : Fa
× Fb, the length of π is bound by |π| =

poly(λ)polylog(a, b).4

4 A polylogarithmic function f (x) is a polynomial in the logarithm of x, i.e., instead of f (x) =∑
k fk · xk, we have f (x) =

∑
k fk ·logk(x), where fk are the coefficients defining f .

189



V AD-SNARGs — Zero-Knowledge Proofs over Authenticated Data

ExpD,RReal(λ) :
pp←R Setup(1λ)
(sk, vk,pap)←R D(1λ,pp)
(EKR,VKR)←R Gen(pap,R)

(x, L, σ ) =

{(xi,Li, σi)}ai=1←RD(EKR,VKR)
w←R D(EKR,VKR)
π←R Prove(EKR, x,w, σ)
ifD(π) = 1
∧ {AuthVer(vk, σi,Li, xi)=>}ai=1
∧ (x,w) ∈ R

output 1

ExpD,RSim (λ) :
pp←R Setup(1λ)
(sk, vk,pap)←R D(1λ,pp)
(EKR,VKR,td)
←R Sim1(sk, vk,pp,pap,R)

(x, L, σ ) =

{(xi,Li, σi)}ai=1←RD(EKR,VKR)
w←R D(EKR,VKR)
π←R Sim2(td,L, {xi}Li=?)
ifD(π) = 1
∧ {AuthVer(vk, σi, Li, xi )=>}ai=1
∧ (x,w) ∈ R

output 1

Figure 36: Zero-knowledge experiments.

Zero-Knowledge. Loosely speaking, an AD′SNARG is zero-knowledge if the
Prove algorithm generates proofs π that reveal no information: neither about the
witness of the relation, nor about the authenticated statements. In other words,
the proofs do not reveal anything beyond what is known by the verifiers when
checking a proof. A formal definition follows:

Definition 13 (Zero-Knowledge AD′SNARG) A scheme AD′SNARG is a zero-
knowledge SNARG over authenticated data if the following additional property
Zero-Knowledge holds. Let R ∈ R be any relation. Then there exists a simu-
lator Sim = (Sim1,Sim2), such that for all PPT distinguishers D, the following
difference is negligible

|Pr[ExpD,RReal(λ) = 1] − Pr[ExpD,RSim (λ) = 1]|

where the experiments Real and Sim are defined in Figure 36 above. Note that
the distinguisherD has a shared state that is persistent over all invocations ofD
during an experiment.

We stress that the above zero-knowledge notion aims at capturing, in the
strongest possible sense, that the verifier cannot learn any useful information on
the inputs, even if it knows (or chooses) the secret authentication key. Indeed, as one
can see, our definition allows the distinguisher to choose the authentication key
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pair as well as the authentication tags.
Interestingly, the notion of AD-SNARGs immediately implies a corresponding

notion of verifiable computation on authenticated data (similar to the one of Chap-
ter IV). In [BCCT12], it is discussed how to construct a verifiable computation
scheme from SNARGs for NP with adaptive soundness. This is simply based
on the fact that the correctness of a computation can be described with an NP
statement. It is not hard to see that, in a very similar way, one can construct
verifiable computation on authenticated data from AD-SNARGs.

Example 11 (Verifiable Computation using AD′SNARG) Let F : Fr
→ Fs be

a function to be executed over authenticated data x ∈ Fr with authentication
tags σ and corresponding labels L. A worker computes y = f (x) and obtains w
as witness of the computation. The relation to be proven using AD′SNARG is
R : Fr+s

× Fb such that (x||y,w) ∈ R whenever y = f (x). The worker adaptively
extends the statement by appending the result y of the computation to the input x.

More precisely, in the case of delegated computations over authenticated data,
the worker first receives labels L = (L1, . . . ,Lr), and then fetches the correspond-
ing input x = (x1, . . . , xr) authenticated through σ = (σ1, . . . , σr). The worker
computes y = f (x), obtains witness w and uses Prove(EKR, x||y,w, σ) to obtain a
proof π. The authentication information in this case is σ = (σ1, . . . , σr, ?1, . . . , ?s)
since there is no authentication for y.

The verifier runs Ver(vk,VKR, (L1, . . . ,Lr, ?1, . . . , ?s), y, π) to convince himself
that y = f (x) and that x is indeed the right input, hence the one authenticated
via L. ∗

V.3.2 A Generic Construction of AD-SNARGs

We show how to construct an AD-SNARG scheme from SNARKs and digital sig-
natures. A similar construction was informally sketched in [BCCT12][Appendix
10.1.2 of the full version]. Here we make it more formal with the main purpose
of offering a comparison with our direct AD-SNARG constructions proposed in
the next sections.

Let Π′ = (Gen′,Prove′,Ver′) be a SNARK, and let Σ = (Σ.KG,Σ.Sign,Σ.Ver) be
a signature scheme. We will use the signature scheme to sign pairs consisting
of a label L and an actual message m. Although, labels and messages can be
arbitrary binary strings, for ease of description we assume that labels can take
a special value ?, the empty label. Also, we modify the signature scheme in
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such a way that Σ.Sign(sk, ?|m) = ? and Σ.Ver(vk, ?|m′, ?) = 1. Basically, we let
everyone (trivially) generate a valid signature on a message with label ?.

We define an AD′SNARG Π = (Setup,AuthKeyGen,Auth,AuthVer,Prove,Ver)
as follows.

Setup(1λ): Output pp = 1λ.

AuthKeyGen(pp): run (sk′, vk′) ←R Σ.KG(1λ) to generate the key pair of the
signature scheme and return sk = sk′ and vk = pap = vk′.

Auth(sk,L, c): compute a signature on the concatenation of the label L and the
value c, i.e., σ′ ←R Σ.Sign(sk′,L|c). Finally, output σ = (σ′,L).

AuthVer(vk, σ,L, c): let σ = (σ′,L′), output the result of Ver′(vk′,L|c, σ′).

Gen(pap,R): informally, we define R′ as the relation that contains all the (x,w) ∈
R such that x is correctly signed with respect to a set of labels and a public
key. More formally, define R′ as the relation that contains all the tuples
(x′,w′) with x′ = (y1,L1, . . . , ya,La, vk) and w′ = (w, z1, σ1, . . . , za, σa) such
that, by setting xi = yi if Li = ? and xi = zi otherwise, for all i ∈ [a], it holds:
(i) ((x1, . . . , xa),w) ∈ R, and (ii) Σ.Ver(vk,Li|xi, σi) = 1.

Then, run Gen′(1λ,R′) to generate (EK′R′ ,VK′R′) and output EKR = EK′R′ ,
VKR = VK′R′ .

Prove(EKR, x,w, σ): Let EKR the be evaluation key as defined above, (x,w) be a
statement-witness pair for R, and σ = (σ1, . . . , σa) be a tuple of authentica-
tion tags for x = (x1, . . . , xa).

If all the tags verify correctly, define x′ = (y1,L1, . . . , ya,La, vk), w′ = (w, z1, σ1,

. . . , za, σa) so that for all i ∈ [a]: zi = xi, yi = xi if σi = ? and yi = 0 otherwise.
Next, run π←R Prove(EK′R′ , x

′,w′) to generate a proof for (x′,w′) ∈ R′ and
return π.

Ver(vk,VKR,L, {xi}Li=?, π): given the verification key vk, a relation verification
key VKR, labels for the statement L = (L1, . . . ,La), unauthenticated state-
ment components xi, and a proof π, the verification algorithm defines
x′ = (y1,L1, . . . , ya,La, vk) with yi = xi if Li = ? and yi = 0 otherwise.
Finally, it returns the output of Ver′(VK′R′ , x

′, π).
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Theorem 10 If Π′ is a zero-knowledge SNARK and Σ is a secure digital signa-
ture, then the scheme described above is a zero-knowledge AD′SNARG.

Sketch. We provide a proof sketch to show that the above construction satisfies
all the properties. First, it is easy to see that if the SNARK is succinct, then the
AD′SNARG proofs are succinct as well. Moreover, authentication correctness
and completeness immediately follows from the correctness of the signature
scheme and the completeness of the SNARK respectively.

Second, to see adaptive soundness note that for every accepting proof pro-
duced by the adversary we can extract the corresponding witness (since Π′ is an
argument of knowledge). Such proof, by definition, will contain a set of valid
signatures. Then, if any of these signatures was not obtained from a query to
the Auth oracle, then it is easy that it can be used as a forgery to break the un-
forgeability of the signature scheme. In the case all the signatures are valid, then
one can extract the full statement (x1, . . . , xa) from the witness w′. Hence, any
adversary who outputs an invalid proof for the AD′SNARG can be immediately
turned into an adversary against the adaptive soundness of Π′.

Third, the zero-knowledge of the AD′SNARG follows from the one of the
SNARK in a straightforward way. �

V.4 Construction: Zero-Knowledge AD-SNARGs

In this section, we describe our construction of an AD-SNARG scheme for arbi-
traryNP relations. The presented scheme can be used with either secret or public
verifiability. The main difference between the two verification modes is that in
the secretly verifiable case, the size of the proof is a fixed constant, whereas in
the publicly verifiable case, the proof grows linearly with the number of au-
thenticated statement values. Although we loose constant-size proofs for public
verifiability, we stress that proofs become linear only in the number N of au-
thenticated values, and that the verification algorithm runs linearly in N in any
case (even in the generic construction). Furthermore, for verifiers that know the
secret authentication key (as for instance in smart metering where companies
install the keys in the meters) the proofs can be maintained of constant size, and,
importantly, revealing such secret key does not compromise privacy.

We prove the adaptive soundness of our scheme under two computational
assumptions in bilinear groups: the q-Diffie-Hellman Exponent assumption (q-DHE)
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[CKS09] and the q-Power Knowledge of Exponent assumption (q-PKE) [Gro10]. We
note that the latter one is a non-falsifiable assumption which, as discussed in the
introduction of this chapter (pages 177ff), is likely to be inherent for SNARGs for
NP. For privacy, we show that the scheme is statistically zero-knowledge and
we stress that this property holds even against adversaries who know (and even
generate) the authentication keys.

Here is a detailed description of our scheme:

Setup(1λ): Upon input of the security parameter 1λ, run pp = (p,G,GT, e, g)←R
G(1λ) to generate a bilinear group description, where G and GT are groups
of the same prime order p > 2λ, g ∈ G is a generator and e : G ×G→ GT is
an efficiently computable bilinear map.

AuthKeyGen(pp): Generate a key pair (sk′, vk′) ←R Σ.KG(1λ) for a regular sig-
nature scheme. Run (S,prfpp) ←R KG(1λ) to obtain the seed S and the
public parameters prfpp of a pseudorandom function FS : {0, 1}∗ → F.
Choose a random value z ←R F. Compute Z = gz

∈ G. Return the secret
key sk = (sk′,S, z), the public verification key vk = (vk′,Z) and the public
authentication parameters pap = (pp,prfpp,Z).

Auth(sk,L, c): To authenticate a value c ∈ F with label L, generate λ←FS(L)
using the PRF, compute µ = λ+ z · c and Λ = gλ. Then compute a signature
σ′ ←R Σ.Sign(sk′,Λ|L), and output the tag σ = (µ,Λ, σ′).

AuthVer(vk, σ,L, c): Let vk = (vk′,Z) be the verification key. To verify that σ =

(µ,Λ, σ′) is a valid authentication tag for a value c ∈ Fwith respect to label
L, output > if gµ = Λ · Zc and Σ.Ver(vk′,Λ|L, σ′) = 1. Output ⊥ otherwise.
In the secret key setting (i.e., if vk is replaced by sk), the tag can be verified
by checking whether µ = FS(L) + zc.

Gen(pap,R): Let R : Fa
× Fb be an NP relation with statements of length a and

witnesses of length b. Let CR be R’s characteristic circuit, i.e., CR(x,w) = 1
iff (x,w) ∈ R. Build a QAP QR = (t(x),V,W,Y) of size m and degree
d for CR. We denote by Ist, Imid, Iout the following partitions of {1, . . . ,m}:
Ist = {1, . . . , a}, Imid = {a + 1, . . . ,m − 1}, and Iout = {m}.5 In other words, we
partition all the circuit wires into: statement wires Ist, internal wires Imid

(including the witness wires), and the output wire Iout.
5 For a reader familiar with Pinocchio, we point out our change of notation: we will use vst

instead of vin to refer to the statement-related inputs.
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Next, pick rv, rw ←R F uniformly at random and set ry = rv rw. Then pick
s, αv, αw, αy, β, γ←R F uniformly at random and compute:

T = gryt(s)

∀k ∈ [m] ∪ {0} : Vk = grvvk(s), Wk = grwwk(s), Yk = gry yk(s),

∀k ∈ [m] : V′k = (Vk)αv , W′k = (Wk)αw , Y′k = (Yk)αy , Bk = (Vk Wk Yk)β.

Additionally, compute the following values:

ρv = Z rv t(s), ρw = Z rw t(s), ρy = Z ry t(s),

Vt = grv t(s), Wt = grw t(s), Yt = gry t(s),

V′t = (Vt)αv , W′t = (Wt)αw , Y′t = (Yt)αy ,

Bv = (Vt)β, Bw = (Wt)β, By = (Yt)β.

Output the evaluation key EKR and the verification key VKR defined as follows:

EKR =
(
{Vk,V′k,Wk,W′k,Yk,Y′k,Bk}k∈Ist∪ Imid , {g

si
}i∈[d],

Vt,V′t , Wt,W′t , Yt,Y′t , Bv,Bw,By, ρv, ρw, ρy, QR
)

VKR =
(

g, gαv , gαw , gαy , gγ, gβγ, T, {Vk,Wk,Yk}k∈Ist∪{0,m}

)

Prove(EKR, x,w, σ): Let EKR the be evaluation key as defined above, (x,w) ∈
Fa
× Fb be a statement-witness pair, and σ = (σ1, . . . , σa) be a tuple of

authentication tags for x = (x1, . . . , xa) such that for any i ∈ [a] either
σi = (µi,Λi, σ′i ) or σi = ?. We define Iat = {i ∈ Ist : σi , ?} ⊆ Ist as the
set of indices for which there is an authenticated statement value, and let
Iun = Ist \ Iat be its complement.

To produce a proof for (x,w) ∈ R proceed as follows. First, evaluate the
circuit CR(x,w) and learn the values of all internal wires: {ck}k∈Imid . For ease
of description, we assume ci = xi for i ∈ [a], and ca+i = wi for i ∈ [b]. The
first b indices of Imid hence represent the witness values w.

195



V AD-SNARGs — Zero-Knowledge Proofs over Authenticated Data

Next, proceed as follows to compute the proof:

Vat =
∏
k∈Iat

(Vk)ck , Wat =
∏
k∈Iat

(Wk)ck , Yat =
∏
k∈Iat

(Yk)ck ,

V′at =
∏
k∈Iat

(V′k)ck , W′at =
∏
k∈Iat

(W′k)ck , Y′at =
∏
k∈Iat

(Y′k)ck ,

Vmid =
∏

k∈Imid

(Vk)ck , Wmid =
∏

k∈Imid

(Wk)ck , Ymid =
∏

k∈Imid

(Yk)ck ,

V′mid =
∏

k∈Imid

(V′k)ck , W′mid =
∏

k∈Imid

(W′k)ck , Y′mid =
∏

k∈Imid

(Y′k)ck ,

Bmid =
∏

k∈Imid

(Bk)ck .

Authenticate the values Vat, Wat, and Yat by computing µ̂v =
∏

k∈Iat
(Vk)µk ,

µ̂w =
∏

k∈Iat
(Wk)µk , and µ̂y =

∏
k∈Iat

(Yk)µk , respectively.

To make the proof zero-knowledge, pick random values δ(v)
at , δ

(v)
mid, δ

(w)
at , δ

(w)
mid,

δ
(y)
at , δ

(y)
mid ←R F, and compute:

Ṽat = Vat · (Vt)δ
(v)
at , W̃at = Wat · (Wt)δ

(w)
at , Ỹat = Yat · (Yt)δ

(y)
at ,

Ṽ′at = V′at · (V′t )
δ(v)

at , W̃′at = W′at · (W′t )
δ(w)

at , Ỹ′at = Y′at · (Y′t)
δ

(y)
at ,

Ṽmid = Vmid · (Vt)δ
(v)
mid , W̃mid = Wmid · (Wt)δ

(w)
mid , Ỹmid = Ymid · (Yt)δ

(y)
mid ,

Ṽ′mid = V′mid · (V
′

t )
δ(v)

mid , W̃′mid = W′mid · (W
′

t )
δ(w)

mid , Ỹ′mid = Y′mid · (Y
′

t)
δ

(y)
mid ,

B̃mid = Bmid · (Bv)δ
(v)
mid · (Bw)δ

(w)
mid · (By)δ

(y)
mid

To authenticate the new values Ṽat, W̃at, and Ỹat, compute µ̃v = µ̂v · (ρv)δ
(v)
at ,

µ̃w = µ̂w · (ρw)δ
(w)
at , and µ̃y = µ̂y · (ρy)δ

(y)
at , respectively. Note that our technique

preserves the re-randomization property of Pinocchio.

Next, solve the QAP QR by finding a polynomial h̃(x) such that p̃(x) =

h̃(x) · t(x) where the polynomial p̃(x) includes the “perturbed versions” of
the polynomials v(x), w(x), and y(x) with δ(v) = δ(v)

at + δ(v)
mid, δ(w) = δ(w)

at + δ(w)
mid,

and δ(y) = δ
(y)
at + δ

(y)
mid, respectively:

p̃(x) =
(
v0(x) +

∑
k∈[m]

ckvk(x) + δ(v)t(x)
)
·

(
w0(x) +

∑
k∈[m]

ckwk(x) + δ(w)t(x)
)

−

(
y0(x) +

∑
k∈[m]

ckyk(x) + δ(y)t(x)
)
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Finally, compute H̃ = gh̃(s) using the values gsi
contained in the evaluation

key EKR. Output

π̃ = ( µ̃v, µ̃w, µ̃y, Ṽat, Ṽ′at, Ṽmid, Ṽ′mid, W̃at, W̃′at, W̃mid, W̃′mid,

Ỹat, Ỹ′at, Ỹmid, Ỹ′mid, B̃mid, H̃ ).

In order to make the proof publicly verifiable, add {Λk, σ
′

k}Lk,? to π̃.

Ver(vk,VKR,L, {xi}Li=?, π̃ ): Let VKR be the verification key for relation R, L =

(L1, . . . ,La) be a vector of labels, and let π̃ be a proof as defined above.6

In a similar way as in Prove, we define Iat = {i ∈ Ist : Li , ?} ⊆ Ist and
Iun = Ist \ Iat. The verification algorithm proceeds as follows:

(A.1secret) If verification is done using the secret key sk = (S, z), check the
authenticity of Ṽat , W̃at , and Ỹat against the labels L:

µ̃v =
[∏

k∈Iat

(Vk)FS(Lk)
]
· ( Ṽat )z

∧ µ̃w =
[∏

k∈Iat

(Wk)FS(Lk)
]
· ( W̃at )z

∧ µ̃y =
[∏

k∈Iat

(Yk)FS(Lk)
]
· ( Ỹat )z

(A.1pub) If the verification is performed using the public verification key
vk = (Z, vk′), first check the validity of all Λk by checking that
Σ.Ver(vk′, Λk |Lk, σ

′

k) = 1 for all k ∈ Iat. Then check the authenticity of

Ṽat , W̃at , and Ỹat :

e( µ̃v , g) =
[∏

k∈Iat

e(Vk,Λk)
]
· e( Ṽat , Z)

∧ e( µ̃w , g) =
[∏

k∈Iat

e(Wk,Λk)
]
· e( W̃at , Z)

∧ e( µ̃y , g) =
[∏

k∈Iat

e(Yk,Λk)
]
· e( Ỹat , Z)

6 We use a grey background to highlight input coming from the adversary.
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(A.2) Check that Ṽat , Ṽ′at , W̃at , W̃′at , and Ỹat , Ỹ′at were computed us-
ing the same linear combination:

e( Ṽ′at , g) = e( Ṽat , gαv)

∧ e( W̃′at , g) = e( W̃at , gαw)

∧ e( Ỹ′at , g) = e( Ỹat , gαy)

(P.1) Check the satisfiability of the QAP by setting Vout = (Vm) cm = Vm

(similarly Wout = Wm and Yout = Ym), where we assume that cm = 1 =

CR(x,w) since (x,w) ∈ R, then computing Vun =
∏

k∈Iun
(Vk) xk (and

similarly Wun,Yun), and finally checking:

e(V0 Ṽat Vun Ṽmid Vout, W0 W̃at Wun W̃mid Wout)

= e(T, H̃ ) · e(Y0 Ỹat Yun Ỹmid Yout, g)

(P.2) Check that all linear combinations are in the appropriate spans:

e( Ṽ′mid , g) = e( Ṽmid , gαv)

∧ e( W̃′mid , g) = e( W̃mid , gαw)

∧ e( Ỹ′mid , g) = e( Ỹmid , gαy)

(P.3) Check that all the QAP linear combinations use the same coefficients:

e( B̃mid , gγ) = e( Ṽmid W̃mid Ỹmid , gβγ)

If all the checks above are satisfied, then return >; otherwise return ⊥.

Performance and Comparison. Before proving correctness, soundness, and
zero-knowledge, we compare the performance of our construction to Pinocchio
[PGHR13] (more precisely, to its SNARG version, which for convenience is re-
called in Appendix C.2, page 259). The results are presented in Figure 37. First,
we note that the generation of the keys is essentially the same except for the
three exponentiations for creating ρv, ρw, ρy. Second, in Prove our scheme addi-
tionally computes the proof values Ṽat, Ṽ′at, and µ̃v (and the similar ones for W
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Construction Direct Generic via Pinocchio
QAP (size, degree) (m, d) (m′, d′) = (m + cN, d + cN)

Proof generation
QAP evaluation Q(m, d) Q(m′, d′)
Vmid,V′mid,Wmid,W′mid, etc. 7ME(m − a − 1) 7ME(m′ − a − 1)
Vat,V′at, µ̂v, etc. 9ME(N) terms —
h(x) Div(d) Div(d′)
H̃ 1ME(d) 1ME(d′)

Verification
(A.1) secret 3ME(N) —
(A.1) pub 1ME(N) + 3N · P —
(A.2) 6 P —
(P.1) 3P + 3ME(a −N) 3P + 3ME(a)
(P.2) 6P 6P
(P.3) 2P 2P

Figure 37: Cost of generating and verifying a proof. N is the number of authen-
ticated values. c is the number of multiplications for one signature
verification. P is the cost of a pairing, and ME(n) is the cost of a
multi-exponentiation with n terms. Div(d) is the cost of performing a
polynomial division for computing h(x) with polynomials of degree d.

and Y), whose generation cost amounts to 9 multi-exponentiations with N = |Iat|

terms. Third, in Ver, the difference lies in the realm of authenticated statements:
equation (P1) in Pinocchio computes

∏
k∈Ist

(Vk)ck ,
∏

k∈Ist
(Wk)ck and

∏
k∈Ist

(Yk)ck for
all the a = |Ist| statement values, whereas in our scheme we only compute those
multi-exponentiations over Iun (of size a−N) and – in the secretly verifiable case
– move the checks for the authenticated statements, three multi-exponentiations
(of size N), to equation (A.1)secret. Hence, the total cost of running (P.1) and
(A.1)secret in our scheme is essentially the same as (P.1) in Pinocchio. In the
publicly verifiable case of equation (A.1)public, the verifier in our scheme has to
perform one signature check for {σ′k} per authenticated statement, and the com-
putation of

∏
k∈Iat

e(Vk,Λk) (and similarly for Wk, Yk). If we assume to use, for
instance Schnorr’s signatures for σ′k, all the signatures can be verified in batch
with a work roughly the same as that of computing a single multi-exponentiation
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like
∏

k∈Iat
(Vk)ck . Also, by considering the micro-benchmarks in [PGHR13], the

cost of 3N pairings is about the cost of 30 multi-exponentiations with N terms.7

Finally, in our scheme we additionally compute six pairings for equation (A.2).
Given such cost evaluation for our scheme against Pinocchio, for a fair com-

parison, we compare our scheme against the best possible instantiation of the
generic construction of Section V.3.2, i.e., Pinocchio with the extended relation
R′. If we assume that each signature verification costs c multiplication gates in
the arithmetic circuits, and if we assume that this is the only additional cost for
the design of R′, then this means that: if R yields a QAP of size m and degree d,
then R′ yields a QAP of, at least, size m′ = m + cN and degree d′ = d + cN. When
running on R′, Pinocchio’s performance in verification remains the same as the
one discussed above, whereas Pinocchio’s performance in proof generation de-
pends on the larger m′ and d′. Precisely, it performs multi-exponentiations with
m′ and d′ terms, and a polynomial division operation whose cost is O(d′ log2 d′).
In other words, if we compare the two schemes we obtain:

For secret verification both schemes perform almost the same, the only differ-
ence being that we need to perform six more pairings; for public verification our
scheme has an additional (concrete) cost of about 30 multi-exponentiations with
N terms over Pinocchio. For proof generation Pinocchio (with R′) has to perform
additional operations that involve a factor at least linear in c ·N. We recall from
the discussion in the Introduction that such c is likely to be as large as 1 000.

Therefore, one can see that while our solution charges a little more to the
verifier (only in the public verification case), the costs of our scheme on the
prover side can be much cheaper, at least by a factor cN.

V.4.1 Completeness

Theorem 11 The above scheme satisfies authentication correctness and com-
pleteness.

Proof. It is straightforward to see that the scheme has authentication correctness
by the correctness of the regular signature scheme and by construction. To show
the completeness, we prove all verification equations in the order they appear in
the verification procedure.

7 Overall, if we take e.g., N = 100, the cost of such 30 multi-exponentiations is not that terrible:
about 0.5ms, considering costs in [PGHR13].
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(A.1secret) We only show the case for µ̃v. The cases for µ̃w and µ̃y are analogous.

µ̃v
Prove

= µ̂v · (ρv)δ
(v)
at

Prove
=

∏
k∈Iat

(Vk)µk ·

(
gz rv t(s)

)δ(v)
at

Auth
=

∏
k∈Iat

(Vk)FS(Lk)+z ck · grv t(s) z δ(v)
at

Gen
=

[∏
k∈Iat

(Vk)FS(Lk)
· (Vk)z ck

]
· (Vt)z δ(v)

at

=
[∏

k∈Iat

(Vk)FS(Lk)
]
·

∏
k∈Iat

(Vk)z ck · (Vt)z δ(v)
at

=
[∏

k∈Iat

(Vk)FS(Lk)
]
·

(∏
k∈Iat

(Vk)ck · (Vt)δ
(v)
at
)z

Prove
=

[∏
k∈Iat

(Vk)FS(Lk)
]
·

(
Vat · (Vt)δ

(v)
at
)z

Prove
=

[∏
k∈Iat

(Vk)FS(Lk)
]
·

(
Ṽat

)z

(A.1pub) We only show the case for µ̃v. The cases for µ̃w and µ̃y are analogous.

e(µ̃v, g) Prove
= e(µ̂v · (ρv)δ

(v)
at , g)

Prove
= e

(∏
k∈Iat

(Vk)µk ·

(
gz rv t(s)

)δ(v)
at , g

)
Auth
= e

(∏
k∈Iat

(Vk)FS(Lk) + z ck · grv t(s) z δ(v)
at , g

)
= e

(∏
k∈Iat

(Vk), gFS(Lk)
)
· e

(∏
k∈Iat

(Vk)ck , gz
)
· e

(
grv t(s) δ(v)

at , gz
)

Auth,Gen
= e

(∏
k∈Iat

Vk, Λk

)
· e

(∏
k∈Iat

(Vk)ck , Z
)
· e

(
(Vt)δ

(v)
at , Z

)
Prove

= e
(∏

k∈Iat

Vk, Λk

)
· e

(
Vat · (Vt)δ

(v)
at , Z

)
Prove

= e
(∏

k∈Iat

Vk, Λk

)
· e

(
Ṽat, Z

)
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(A.2) We only show the case for Ṽat. The cases for W̃at and Ỹat are analogous.

e(Ṽ′at, g)

= e(V′at · (V
′

t )
δ(v)

at , g)

= e
(∏

k∈Iat

(V′k)ck · (V′t )
δ(v)

at , g
)

= e
(∏

k∈Iat

(Vk)αvck · (Vt)αvδ
(v)
at , g

)
= e

(∏
k∈Iat

(Vk)ck · (Vt)δ
(v)
at , gαv

)
= e(Vat · (Vt)δ

(v)
at , gαv)

= e(Ṽat, gαv)

(P.1)

e
(
V0 ṼatVunṼmidVout,W0 W̃atWunW̃midWout

)
= e

(
grvv0(s) Vat (Vt)δ

(v)
at Vun Vmid (Vt)δ

(v)
mid Vm,

grww0(s) Wat(Wt)δ
(w)
at WunWmid(Wt)δ

(w)
mid Wm

)
= e

(
grvv0(s) VatVunVmidVm (Vt)δ

(v)
at +δ(v)

mid , grww0(s) WatWunWmidWm (Wt)δ
(w)
at +δ(w)

mid

)
c0←1
= e

([ ∏
i∈[0..m]

grv vi(s) ci
]

(Vt)δ
(v)
,
[ ∏

j∈[0..m]

grw w j(s) c j
]

(Wt)δ
(w))

= e
(
g
∑

i∈[0..m] rv vi(s) ci grv t(s) δ(v)
, g

∑
j∈[0..m] rw w j(s) c j grw t(s) δ(w))

= e
(
g

[∑
i∈[0..m] rv vi(s) ci

]
+ rv t(s) δ(v)

, g

[∑
j∈[0..m] rw w j(s) c j

]
+ rw t(s) δ(w))

= e
(
grv

([∑
i∈[0..m] vi(s) ci

]
+ t(s) δ(v)

)
, grw

([∑
j∈[0..m] w j(s) c j

]
+ t(s) δ(w)

))
= e

(
g

([∑
i∈[0..m] vi(s) ci

]
+ t(s) δ(v)

)
·

([∑
j∈[0..m] w j(s) c j

]
+ t(s) δ(w)

)
, g

)rv rw

Prove
= e

(
g

(
p̃(s)+

∑
k∈[0..m] yk(s) ck

]
+ t(s) δ(y)

)
, g

)ry
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= e
(
gp̃(s)

·

[ ∏
k∈[0..m]

gyk(s) ck
]
· gt(s) δ(y)

, g
)ry

= e
(
gry t(s) h̃(s)

·

[ ∏
k∈[0..m]

gry yk(s) ck
]
· gry t(s) δ(y)

, g
)

= e
(
gry t(s) h̃(s), g

)
· e

([ ∏
k∈[0..m]

gry yk(s) ck
]
· (Yt)δ

(y)
, g

)
c0=1
= e

(
gry t(s), gh̃(s)

)
· e

(
Y0 YatYunYmidYm · (Yt)δ

(y)
at (Yt)δ

(y)
mid , g

)
= e

(
T, H̃

)
· e

(
Y0 ỸatYunỸmidYout, g

)

(P.2) We refer to the proof of (A.2), which is very similar to the cases of Ṽmid,
W̃mid, and Ỹmid.

(P.3)

e(B̃mid, gγ)
Prove

= e(Bmid (Bv)δ
(v)
mid (Bw)δ

(w)
mid (By)δ

(y)
mid , gγ)

= e
([ ∏

k∈Imid

(Bk)ck
]
· (Vt)βδ

(v)
mid (Wt)βδ

(w)
mid (Yt)βδ

(y)
mid , gγ

)
= e

([ ∏
k∈Imid

(
(Vk Wk Yk)β

)ck
]
· (Vt)βδ

(v)
mid (Wt)βδ

(w)
mid (Yt)βδ

(y)
mid , gγ

)
= e

([ ∏
k∈Imid

(Vk Wk Yk)ck
]
· (Vt)δ

(v)
mid (Wt)δ

(w)
mid (Yt)δ

(y)
mid , gβγ

)
= e

( ∏
k∈Imid

(Vk)ck
∏

k∈Imid

(Wk)ck
∏

k∈Imid

(Yk)ck · (Vt)δ
(v)
mid (Wt)δ

(w)
mid (Yt)δ

(y)
mid , gβγ

)
= e

(
Vmid (Vt)δ

(v)
mid Wmid (Wt)δ

(w)
mid Ymid (Yt)δ

(y)
mid , gβγ

)
= e

(
Ṽmid W̃mid Ỹmid, gβγ

)
�
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V.4.2 Proof of Security

In the following theorem we prove the adaptive soundness of our first AD-SNARG
construction. Note that we can base (part of) its security directly on the sound-
ness of Pinocchio, which is also based on the q-PKE and the q-DHE assumptions.
We will consider the secretly-verifiable case first, and then look at the publicly
verifiable case.

Theorem 12 If Pinocchio is a sound SNARG, F is a pseudorandom function,
the q-PKE [Gro10] and the q-DHE [CKS09] assumptions hold, then the scheme
described above is a secretly-verifiable AD′SNARG with adaptive soundness.

Before giving the proof, we first recall the q-DHE and the q-PKE assumptions.

Definition 14 (q-Diffie-Hellman Exponent assumption [CKS09]) The q-DHE
problem in a group G of prime order p is defined as follows. Let G be a bi-
linear group generator, and let bgpp = (p,G,GT, e, g) ←R G(1λ). Let a ←R Zp

be chosen uniformly at random. We define the advantage of an adversaryA in
solving the q-DHE problem as

Advq−DHE
A

(λ) = Pr[A(bgpp, ga, . . . , gaq
, gaq+2

, . . . , ga2q
) = gaq+1

].

We say that the q-DHE assumption holds forG if for every PPT algorithmA and
any polynomially-bounded q = poly(λ) we have that Advq−DHE

A
(λ) is negligible

in λ.

Definition 15 (q-Power Knowledge of Exponent assumption [Gro10]) Let G be
a bilinear group generator, λ be a security parameter, and q = poly(λ). The q-PKE
assumption holds for G if for every non-uniform PPT adversaryA there exists a
non-uniform PPT extractor EA such that:

Pr[hα = ĥ ∧ h ,
∏q

i=0 gṽiai
:

(h, ĥ; ṽ0, . . . , ṽq)←(A|EA)(bgpp, ga, . . . , gaq
, gα, gαa, . . . , gαaq

, aux)] = negl(λ)

where bgpp = (p,G,GT, e, g) ←R G(1λ), a, α ←R Zp are chosen uniformly at
random, and aux is any auxiliary information that is generated independently
of α. The notation (h, ĥ; ṽi)←(A|EA)(inp) means thatA on input inp returns (h, ĥ)
and EA on the same input returns ṽi. In this case, EA has access toA’s random
tape.
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On the Knowledge of Exponents. The q-PKE assumptions can be considered a
generalization of the Knowledge of Exponent assumption (KEA) first introduced by
Damgård in 1991 [Dam92, HT98]. The KEA assumption states that, given g and gα,
it is infeasible to create h and ĥ such that hα = ĥ without knowing the exponent a that
relates g and h such that h = ga and ĥ = (gα)a.

One way to create the pair (h, ĥ) is to choose some ã, let h = gã, and let ĥ = (gα)ã.
Intuitively, KEA can be interpreted as stating that this is indeed the only way: any
machine that outputs a pair (h, ĥ) must know the exponent a such that h = ga.

The notion of knowing an exponent is formalized as the requirement that there be
an extractor EA that can return the exponent a when given access to the random
tape of A. This proof of knowledge is not based on classical black-box knowledge
extraction which assumes interaction between two machines. Instead of interaction
with a machine A, extraction means to look inside A. The idea here is to be able to
always output the same pair asAwith the additional exponent thatAmust have been
used. The only requirement is having access to the same input asA, and additionally
access to the random tapes ofA.

In order to prove Theorem 12, we describe a series of hybrid experiments G0−

G4, where experiment G0 is identical to the real adaptive soundness experiment
and the remaining experiments G1−G4 are progressively modified in such a way
that each consecutive pair is proven to be (computationally) indistinguishable.
Some of the games use the flag values badi that are initially set to false. If at
the end of a game any of these values is set to true, the Finalize procedure
always overwrites the outcome of the game to 0. For notation, we denote
with Gi the event that a run of game Gi with the adversary outputs 1, and we
denote with Badi the event that the flag badi is set to true during a run of game
Gi. Essentially, whenever an event Badi occurs, the corresponding game may
deviate its outcome.

Game G0: This is the adaptive soundness game described in Section V.3.1 and
Figure 35, page 189.

Game G1: This is the same as G0 except that the PRF FS(·) is replaced by a
truly random function R : {0, 1}∗ → F. By the security of the PRF, G1 is
computationally indistinguishable from G0, i.e.,

|Pr[G0] − Pr[G1]| ≤ AdvPRF
D,F(λ)

Game G2: This is the same as G1 except that the procedure Ver sets bad2←true
if the adversary makes verification queries that (a) verify correctly with
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respect to the equations (A.1)secret, page 197, and in which (b) there is a
label (L, ·) < T, i.e., A never asked to authenticate a value under label L.
Clearly, G1 and G2 are identical until Bad2, i.e.,

|Pr[G1] − Pr[G2]| ≤ Pr[Bad2]

We show that G2 is statistically close to G1 by proving in Lemma 4 that
Pr[Bad2] is (unconditionally) negligible. Intuitively, this follows from the
fact that, when L < T, then the first verification check is an equation with
an almost-freshly sampled element λL = R(L) ∈ F, i.e., the equation will be
satisfied only with negligible probability, which is at most 1/(p −Q).

Game G3: This is the same as G2 except for the following change when answer-
ing Type 2 verification queries, i.e., we assume every label L was previously
used to authenticate a value. Let µ̃v, Ṽat, µ̃w, W̃at, and µ̃y, Ỹat be the elements
in the proof π̃queried by the adversary. In G3 we compute V∗at =

∏
k∈Iat

(Vk)ck

(and W∗at, Y∗at in the similar way), as well as their corresponding authen-
tication tags µ∗v =

∏
k∈Iat

(Vk)µk (and also µ∗w, µ∗y), where each µk is the tag
previously generated for (Lk, ck) upon the respective authentication query.
Next, we replace the check of equations (A.1)secret, page 197, with checking
whether

e(µ̃v/µ
∗

v, g) = e(Ṽat/V∗at, g
z)

∧ e(µ̃w/µ
∗

w, g) = e(W̃at/W∗at, g
z) (V.1)

∧ e(µ̃y/µ
∗

y, g) = e(Ỹat/Y∗at, g
z)

is satisfied. We observe that, by correctness, checking the equations (V.1) is
equivalent to checking the verification equations in (A.1)secret. Additionally,
we observe that the equations (V.1) contain only public values.

Then, if the equations in (A.2), page 198, are satisfied, hence we have that
Ṽ′at = (Ṽat)αv , W̃′at = (W̃at)αw , and Ỹ′at = (Ỹat)αy , we can run an extractor
EA to obtain polynomials ṽat(x), w̃at(x), and ỹat(x) of degree at most d. If
Ṽat , (grv)ṽat(s) or W̃at , (grw)w̃at(s) or Ỹat , (gry)ỹat(s), then we set bad3←true.
Indeed, we observe that the input received by the adversaryA can be ex-
pressed as a pair (S, aux), where S = {gsi

, gαsi
}i∈[0,d] and aux is some auxiliary

information independent of α — exactly as in the definition of the d-PKE
assumption, page 204.
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Hence, G2 and G3 are identical up to Bad3, i.e.,

|Pr[G2] − Pr[G3]| ≤ Pr[Bad3]

It is easy to see that the d-PKE assumption immediately implies that the
probability of Bad3 (i.e., that the extractor outputs a polynomial which is
not a correct one) is negligible.

Game G4: This game proceeds as G3 except for the following change in proce-
dure Ver. Assume that the equations (V.1) of game G3 are satisfied and
that bad3←true is not set, i.e., Ṽat = (grv)ṽat(s) holds (and similar the corre-
sponding cases of W̃at and Ỹat).

Then, compute the polynomial δv(x)← ṽat(x) − v∗at(x), where ṽat(x) is the
polynomial obtained from the extractor, and v∗at(x) =

∑
k∈Iat

ckvk(x). Simi-
larly, compute δw(x) and δy(x) together with w∗at(x) and y∗at(x). If any among
δv(x), δw(x), and δy(x) is not divisible by t(x) then set bad4←true.

Clearly, G3 and G4 are identical up to Bad4, i.e.,

|Pr[G3] − Pr[G4]| ≤ Pr[Bad4]

To show that the two games are negligibly close, we prove in Lemma 5,
page 208, that Pr[Bad4] is negligible under the q-DHE assumption, for some
q = 2d + 1.

Finally, we observe that at this point, if Bad4 does not occur, we have
verified that Ṽat, W̃at, and Ỹat were computed by using the correct (i.e.,
authenticated) statement values. Namely, except for having randomized
elements Ṽat (resp. W̃at, Ỹat), we are almost in the same conditions as in
the proof of security of Pinocchio. In fact, in Lemma 6, page 211, we show
that if any adversary has advantage at most ε in breaking the security
of Pinocchio (in the zero-knowledge SNARG version of the scheme), then
Pr[G4] ≤ Q ·ε, where Q is the number of Gen queries made by the adversary.

Lemma 4 Pr[Bad2] ≤ 3Q
p−3Q .

Proof. Let Q be the number of verification queries made by the adversary in G2,
and let Bi be the event that bad2 was set from false to true in the i-th verification
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query. Clearly, we have:

Pr[Bad2] = Pr
[ Q∨

i=1

Bi

]
≤

Q∑
i=1

Pr[Bi]

To prove the lemma we will bound the probability Pr[Bi] for any 1 ≤ i ≤ Q,
where the probability is taken over the random choices of the function R(·).

By definition of Bi we have Pr[Bi] = Pr[Bi|B1 ∧ · · · ∧ Bi−1]. Also, observe that
bad2 is set to true if ∃k ∈ Iat such that (Lk, ·) < T and at least one of the equations

µ̃v =
[∏
k∈Iat

(Vk)R(Lk)
]
·(Ṽat)z, µ̃w =

[∏
k∈Iat

(Wk)R(Lk)
]
·(W̃at)z, µ̃y =

[∏
k∈Iat

(Yk)R(Lk)
]
·(Ỹat)z

is satisfied.
Let us fix one such index k̄ ∈ Iat such that (Lk̄, ·) < T. If λk̄ = R(Lk̄) is sampled

uniformly at random in the i-th query, then an equation as the ones above will be
satisfied with probability 1/p, which by union bound sums up to 3/p. However,
the adversary might have asked Lk̄ in some previous verification query, and
this might have leaked some information about λk̄ = R(Lk̄). Yet, since it holds
B1 ∧ · · · ∧ Bi−1, the only information leaked to the adversary is that a bunch of
equations involving λk̄ were not satisfied. For every such equation, one can
exclude at most three possible values of λk̄. In conclusion, we have that in the
i-th query, one of the equations above is satisfied with probability at most 3

p−3(i−1) .
Hence,

Pr[Bad2] ≤
Q∑

i=1

3
p − 3(i − 1)

≤
3Q

p − 3Q
.

�

Lemma 5 If the q-DHE assumption [CKS09] holds for G, then for any PPT
adversaryAwe have that Pr[Bad4] is negligible.

Proof. Assume that there is an adversary A such that Pr[Bad4] ≥ ε is non-
negligible. We show how to build an adversary B that breaks the q-DHE as-
sumption with probability ε/DQ − 1/|F| such that: (a) D = poly(λ) is an upper
bound on the number of multiplication gates (and thus on the degree of the
corresponding QAP) in the Q relations R1, . . . ,RQ queried by A to Gen, and (b)
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q = 2d∗ + 1 for some d∗ ≤ D, which is the degree of the QAP in the relation R∗ for
which Bad4 occurs.
B takes as input an instance of the q-DHE assumption

(bgpp, ga, ga2
, . . . , gaq

, gaq+2
, . . . , ga2q

)

and its goal is to compute the missing element gaq+1
. To do so, B simulates G4

toA as described in the following. Assume that Bad4 occurs for the relation R∗

which is the j-th relation queried to Gen.

(Lemma 5) B simulates Initialize()
• B runs Initialize as in G4 with the following modifications.
• It picks random j∗ ←R {1, . . . ,Q} and d∗ ←R {1, . . . ,D} to guess the query’s

index of R∗ and its QAP’s degree respectively.
• It picks a random ν ←R {0, 1} as a guess on whether Bad4 will occur for

either δv(x) or δy(x) (ν = 0), or for δw(x) or δy(x) (ν = 1).
• B sets q← 2d∗ + 1, and takes an instance (bgpp, ga, ga2

, . . . , gaq
, gaq+2

, . . . , ga2q
)

of the q-DHE assumption.
• It defines the degree-d∗ polynomial t∗(x) =

∏d∗
k=1(x− rk) where {rk} is a set of

canonical roots used to build the QAP.8

• B chooses z∗(x) as a random polynomial in F[x] of degree d∗+1 such that the
polynomial z∗(x) t∗(x) of degree 2d∗+1 has a zero coefficient in front of xd∗+1.

• B simulates the secret z with z∗(a) by computing Z = gz∗(a). Observe that
gz∗(a) can be computed efficiently using {gai

}
d∗+1
i=1 from the q-DHE instance

and the fact that d∗ + 1 ≤ q.
• B generates a key pair (sk′, vk′) ←R Σ.KG(1λ) for the regular signature

scheme and outputs pap = (pp,prfpp,Z) and vk = (vk′,Z).

(Lemma 5) B simulates Gen(R)
B proceeds as follows to simulate the i-th query.
• [Case i , j∗] B runs the real Gen(pap,R) algorithm and returns its output.
• [Case i = j∗] Let the queried relation be referred to as R∗. B simulates the

answer to this query as follows. First, it builds the QAP for R∗ and if its
degree d is not d∗, then B aborts the simulation. Otherwise, we have d = d∗

and hence t(x) = t∗(x) and B proceeds as follows.
For the value s, instead of randomly choosing it,B implicitly uses the value
a from the q-DHE assumption as follows.

8 The roots of Pinocchio’s QAP target polynomial can be chosen arbitrarily.
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If ν = 0, B implicitly sets rv = r′v ad+1 and ry = r′v rw ad+1, where rw, r′v ←R F,
by computing

Vk = gr′v ad+1 vk(a) Yk = gr′v rw ad+1 vk(a) Vt = gr′v ad+1 t(a) Yt = gr′v rw ad+1 t(a).

Notice that these values can be computed efficiently since all the polyno-
mials ad+1 vk(a) and ad+1 t(a) have degree at most 2d∗ + 1 = q. Similarly, all
the remaining values {Wk,Yk}k∈[m] can be simulated as the degree of the
polynomials encoded in the exponent is at most d∗ < q.
If ν = 1, B proceeds in the dual way by setting rw = r′w ad+1 and dually
ry = rv r′w ad+1 for randomly chosen rv, r′w ←R F.
From now on, we describe the simulation for the case ν = 0 only. The other
case can easily be reproduced.
Finally, ρv = (Vt)z is simulated by computing (gad+1 z∗(a) t(a))r′v . Notice that
gad+1 z∗(a)t(a) can be computed since ad+1 z∗(a) t(a) has degree 3d + 2 and has a
zero coefficient in front of a2d+2 = aq+1. The same holds for the computation
of ρy, whereas computing ρw = grw z∗(a) t(a) can be simulated since z∗(a) t(a)
has degree 2d + 1 = q.

(Lemma 5) B simulates Auth(L, c)
To simulate authentication queries, B samples a random µ ←R F, computes
Λ = gµZ−c, generates σ′ ←R Σ.Sign(sk′,Λ|L), updates T←T ∪ {(L, c)}, and returns
σ = (µ,Λ, σ′). Observe that such σ is identically distributed as an authentication
tag returned by Auth in G4. Also, althoughB is not explicitly generatingλ←R(L),
as one can notice, these values are no longer used to answer the verification
queries.

(Lemma 5) B simulates Ver(R,L, {xi}Li,?, π̃)
Finally, we describe how B handles verification queries. First, note that for
queries that fall in the Type 1 branch, B can directly answer ⊥ (reject), and it
does not have to use the values R(L). Clearly, due to the definition of game G4

and since Bad2 does not occur, answers to these queries are correctly distributed.
Second, for queries in the Type 2 branch, we distinguish two cases according to
whether the queried relation R is R∗ or not.
• If R , R∗, then B can answer as in game G4. In particular, note that

equation (A.1)secret has been replaced by equation (V.1), page 206, which
requires only public values to be checked.
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• If R = R∗, then B proceeds as in G4. Set

δv(x)← ṽat(x) − v∗at(x), δw(x)← w̃at(x) − w∗at(x), δy(x)← ỹat(x) − y∗at(x),

and branch according to the divisibility by t∗(x):

· If both δv(x) and δy(x) are divisible by t∗(x), i.e., δv(x) ∈ Span(t∗(x)) and
δy(x) ∈ Span(t∗(x)), i.e., Bad4 did not occur for them, but instead for
δw(x) and δy(x), thenB aborts (since here, we assume the case of ν = 0).

· Otherwise, assume that either δv(x) or δy(x) is not in Span(t∗(x)). With-
out loss of generality, assume this holds for δv(x) (the other case is
analogous). Hence, we assume δv(x) is not divisible by t∗(x). Then
B checks whether ω(x) = δv(x) z∗(x) is such that its coefficient ωd+1 is
zero. If so, B aborts the simulation.9 Otherwise, if ωd+1 , 0, B returns

Ω =

 µ̃v

µ∗v
∏2d+1

k=0,k,d+1(gak+d+1)r′vωk


1/(ωd+1 r′v)

Notice that B’s simulation to A is perfect except if B aborts. However, B
can abort only in four cases: (a) if its guess on j∗ is wrong, i.e., if j , j∗ (which
happens with probability 1 − 1/Q); (b) if its guess on d∗ is wrong, i.e., if d , d∗

(which happens with probability 1 − 1/D); (c) if its guess on ν is wrong (which
happens with probability 1/2); and (d) if ωd+1 = 0 (which holds unconditionally
with probability at most 1/|F|).

Lemma 9 (page 263) shows that if Bad4 occurs, thenB returns Ω = ga2d+2
= gaq+1

and breaks the q-DHE assumption, as desired.
Therefore, by putting together the probability that B does not abort, with

our assumption that Pr[Bad4] ≥ ε, then we obtain that B breaks the q-DHE
assumption with probability ≥ ε/2DQ − 1/|F|. �

Lemma 6 If Pinocchio is a sound SNARG scheme, and the q-PKE assumption
holds, then for any PPT adversaryAwe have that Pr[G4] is negligible.

Proof. We make our reduction by considering a slightly modified version of the
Pinocchio scheme in which the evaluation key additionally includes the values
V′k = {grvαvvk(s)

}k∈Ist (as well as the corresponding W′k, Y′k, and Bk). It is trivial to

9 By Lemma 10 [GGPR13], this happens with probability at most 1/|F|.
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check that the same proof of security in [PGHR13] carries through when these
additional values are included in the evaluation key.

Assume by contradiction that there exists an adversaryA such that Pr[G4] ≥ ε

is non-negligible. We show how to build an adversaryB that breaks the security
of Pinocchio with probability at least ε/Q1Q2, where Q1 is the number of relations
R1, . . . ,RQ1 queried byA to Gen during game G4, and Q2 is the number of verifi-
cation queries. Without loss of generality, assume thatB receives the parameters
bgpp of the bilinear groups before choosing the relation R∗ to attack.10

(Lemma 6) B simulates Initialize()
• B picks a random j∗ ←R {1, . . . ,Q1} to guess the query’s index of R∗, the

relation for whichAwill break the security of our AD′SNARG scheme.
• B generates a key pair (sk′, vk′) ←R Σ.KG(1λ) for the regular signature

scheme, then samples a random z ←R F, and sets Z = gz. It outputs
pap = (bgpp,prfpp,Z) and vk = (vk′,Z).

(Lemma 6) B simulates Gen(R)
B proceeds as follows to simulate the i-th generation query.
• [Case i , j∗] B runs the real Gen(pap,R) algorithm and returns its output.
• [Case i = j∗] Let the queried relation be referred to as R∗. B forwards R∗ to its

challenger and receives a pair of keys (VK∗P,EK∗P) of the Pinocchio scheme.
B then uses z to compute ρv = (Vt)z, ρw = (Wt)z, and ρy = (Yt)z, sets the
key pair of the AD′SNARG scheme to (VK∗,EK∗), where VK∗ = VK∗P and
EK∗ consists of EK∗P plus the additional values ρv, ρw, ρy, and the elements
{Vk,Wk,Yk}k∈Ist of VK∗P.

(Lemma 6) B simulates Auth(L, c)
B runs Auth as in game G4, i.e., B outputs σ = (µ,Λ, σ′), where µ = R(L) + z · c,
Λ = gR(L), and σ′ ←R Σ.Sign(sk′,Λ|L)).

(Lemma 6) B simulates Ver(R,L, {xi}Li,?, π̃)
Finally, we describe how B simulates verification queries to A. Notice that
all the equation checks require only public values. Also, observe that in G4 the
adversaryA can win only by returning a Type 2 forgery, and by returning a proof
π̃ containing values Ṽat and Ṽ′at of the “correct form”, i.e., Ṽat = (grv)v∗at(s)+δ(v)

at t(s)

10 We note that this reduction to the security of Pinocchio is done for ease of exposition. Indeed,
we could have included in our simulatorB the same code of the simulator in the security proof
of the Pinocchio scheme, where the parameters of the bilinear groups are received at the very
beginning.
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and Ṽ′at = (grvαv)v∗at(s)+δ(v)
at t(s) respectively, for some δ(v)

at ∈ F. Similarly, it holds the
correctness of W̃at, W̃′at, Ỹat, and Ỹ′at for some coefficients δ(w)

at , δ
(y)
at ∈ F. B can

hence run the extractor of G4 to obtain the polynomials ṽat(x), w̃at(x), and ỹat(x).
For every verification query that passes the verification checks and that in-

volves the relation R∗,B translates the given proof π̃ into a proof π̃/P as described
below.

Translation of π̃ to π̃/P. Let π̃ = (µ̃v, µ̃w, µ̃y, Ṽat, Ṽ′at, W̃at, W̃′at, Ỹat, Ỹ′at, Ṽmid,

Ṽ′mid, W̃mid, W̃′mid, Ỹmid, Ỹ′mid, B̃mid, H̃). First, B computes Ṽmid/P = Ṽmid · Ṽat/V∗at
and Ṽ′mid/P = Ṽ′mid · Ṽ′at/V

′∗

at, where V∗at =
∏

k∈Iat
(Vk)ck and V′∗at =

∏
k∈Iat

(V′k)ck .
Similarly, B computes W̃mid/P, W̃′mid/P, Ỹmid/P, and Ỹ′mid/P. Then, B computes

B̃mid/P = B̃mid · (Bv)δ
(v)
at (Bw)δ

(w)
at (By)δ

(y)
at , where δ(v)

at = (ṽat(x) − v∗at(x))/t(x). The values
δ(w)

at and δ(y)
at are computed accordingly. Next, B sets

π̃/P = (Ṽmid/P, Ṽ′mid/P, W̃mid/P, W̃′mid/P, Ỹmid/P, Ỹ′mid/P, B̃mid/P, H̃)

where H̃ comes from the accepting proof π̃ by A, and the other values are the
values computed above. B stores the tuple ({ck}k∈Ist , π̃/P) in a list Ω.

First, observe that the proof π̃/P is identical to a proof in the Pinocchio scheme,
and, in particular, it has the same distribution. Second, we claim that if π̃ is
accepted in G4 for relation R∗ and labels {Lk}k∈Iat (used to authenticate {ck}k∈Iat),
then π̃/P is accepted for statement {ck}k∈Ist in the given instance of the Pinocchio
scheme for relation R∗.

The first claim follows by inspection and by observing that since Bad4 does
not occur, the value (Ṽat/V∗at) contains a multiple of t(s) in the exponent, i.e., the
honest form of Ṽmid/P is preserved. In particular, the value δ(v)

at is a scalar value
since ṽat(x) − v∗at(x) is divisible by t(x) and deg(ṽat(x)) = deg(v∗at(x)).

The second claim follows from the fact that the value Ṽat · Vun · Ṽmid · Vout

computed to verify the proof in the AD′SNARG scheme (P.1), page 198, and the
value Ṽ = (

∏
k∈Ist

(Vk)ck) · Ṽmid/P · Vout computed to verify the proof in Pinocchio
(P.1), page 261, are identical (because of Ṽmid/P = Ṽmid · Ṽat/V∗at). Similar argu-
ments apply for the corresponding W and Y values. It can easily be seen, that
the Pinocchio equations in (P.2) hold. A proof for (P.3) can be found on page 264.
It is important to note that since Bad4 does not occur, the computed value δ(v)

at is
exactly the value used byA for the randomization of Ṽat.

After A stops running, B picks a random tuple ({ck}k∈Ist , π̃/P) from the list Ω

(which contains at most Q2 elements) and returns this tuple to its challenger.
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To complete the proof, we analyze B’s success probability. We claim that if
A breaks the security of the AD′SNARG scheme in game G4, then B breaks the
security of Pinocchio with probability at least 1/Q1Q2. It is not hard to see that
B’s simulation has a distribution which is statistically close to the distribution
of game G4. Also, if A breaks the scheme, it means that for at least one of its
verification queries that accepts, say the `-th query, we have that x < R∗. Assume
that R∗ was the j-th relation queried to Gen, and that B returns the `∗-th tuple in
the list Ω. Since the simulation does not leak any information on j∗ and `∗, we
have that Pr[ j∗ = j ∧ `∗ = `] ≥ 1/Q1Q2. Therefore, if A breaks the security of
the AD′SNARG scheme in game G4 with probability at least ε, thenB breaks the
security of Pinocchio with probability at least ε/Q1Q2. �

Security with Public Verifiability

It is easy to adapt the proof of Theorem 12 in order to show that our scheme is
sound also in the case where the proof is made publicly verifiable. Hence, it is
possible to prove the following theorem.

Theorem 13 If Pinocchio is a sound SNARG, F is a pseudorandom function, Σ

is a secure signature scheme, the d-PKE [Gro10] and the q-DHE [CKS09] assump-
tions hold, then the scheme described above is a publicly-verifiable AD′SNARG
with adaptive soundness.

In the publicly verifiable case, since the adversary can verify the proofs on its
own, we can assume that it makes a single verification query to Ver. To obtain
the proof of Theorem 13, we use the same games as those for Theorem 12. The
only difference is that the probability Pr[Bad2] is now shown to be negligible
under the assumption that the regular signature scheme is secure. Such is rather
straightforward: an adversary which returns a proof involving a statement value
with label Lk that had not been queried to the Auth oracle, has to show at least
one signature σ′k for some non-queried label L.

V.4.3 Proof of the Zero-Knowledge Property

Theorem 14 The AD′SNARG scheme described in Section V.4 is statistically
zero-knowledge in the sense of Definition 13, page 190.

Proof. To see that our scheme satisfies zero-knowledge, our first observation
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is that the group elements Ṽat, Ṽmid, W̃at, W̃mid, Ỹat, and Ỹmid are statistically
uniform over G. Indeed, as long as t(s) , 0, each of these elements is uniformly
randomized.

Second, we notice that once the elements Ṽat, Ṽmid, W̃at, W̃mid, Ỹat, and Ỹmid are
fixed, the values of all the remaining elements in π̃, i.e., µ̃v, Ṽ′at, Ṽ′mid, µ̃w, W̃′at,
W̃′mid, µ̃y, Ỹ′at, Ỹ′mid, B̃mid, and H̃ get determined according to the constraints of the
verification equations (A.1), (A.2), (P.1), (P.2), (P.3).

Finally, we show that there is a simulator (Sim1,Sim2), formally described
in Figure 38, that satisfies Definition 13. It is trivial to see that the simulated
keys generated by Sim1 are distributed as in the real experiment. Regarding
Sim2, it is not hard to see that the simulated values Ṽat, Ṽmid, W̃at, W̃mid, Ỹat, and
Ỹmid are statistically uniform. Given the trapdoor, Sim2 (without knowing the
inputs {ck}k∈Iat) can generate all the remaining elements of π̃ with the correct
distribution, i.e., such that the verification equations (A.1), (A.2), (P.1), (P.2), (P.3)
are satisfied. �

Sim1(pp,R, sk, vk,pap)
Run Gen(pap,R) to obtain (EKR,VKR)
and store sk, s, β, αv, αw, αy, rv, rw, ry in td
Return (EKR,VKR, td)

Sim2(td,L, {xi}Li=?)
let cm = 1, vout(x) = cmvm(x), vun(x) =

∑
k∈Iun ckvk(x)

wout(x) = cmwm(x),wun(x) =
∑

k∈Iun ckwk(x)
yout(x) = cm ym(x), yun(x) =

∑
k∈Iun ck yk(x)

{λk←FS(Lk)}k∈Iat

ṽat(x), ṽmid(x)←R F[x]
ṽ(x)←v0(x) + ṽat(x) + vun(x) + ṽmid(x) + vout(x)
Choose random w̃mid(x), w̃at(x), ỹmid(x), ỹat(x), such that t(x)|p̃(x)

where p̃(x)← ṽ(x) w̃(x) − ỹ(x) and
w̃(x)←w0(x) + w̃at(x) + wun(x) + w̃mid(x) + wout(x)
ỹ(x)←y0(x) + ỹat(x) + yun(x) + ỹmid(x) + yout(x)

h̃(x)← p̃(x) / t(x)
µ̃v←

∏
k∈Iat(Vk)λk · Zrv ṽat(s)

µ̃w←
∏

k∈Iat(Wk)λk · Zrww̃at(s), µ̃y←
∏

k∈Iat(Yk)λk · Zry ỹat(s)

Ṽat←grv ṽat(s), Ṽ′at←(Ṽat)αv , Ṽmid←grv ṽmid(s), Ṽ′mid←(Ṽmid)αv

W̃at←grww̃at(s), W̃′at←(W̃at)αw , W̃mid←grww̃mid(s), W̃′mid←(W̃mid)αw

Ỹat←gry ỹat(s), Ỹ′at ← (Ỹat)αy , Ỹmid←gry ỹmid(s), Ỹ′mid ← (Ỹmid)αy

B̃mid←(Ṽmid · W̃mid · Ỹmid)β

H̃←gh̃(s)

Return π̃ = (µ̃v, µ̃w, µ̃y, Ṽat, Ṽ′at, Ṽmid, Ṽ′mid, W̃at, W̃′at, W̃mid, W̃′mid,
Ỹat, Ỹ′at, Ỹmid, Ỹ′mid, B̃mid, H̃)a

Figure 38: Simulator Sim.
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V.5 Construction: Secretly-Verifiable Zero-Knowledge
AD-SNARGs

In this section, we show a variant of the scheme proposed in Section V.4 which
allows for a verification algorithm whose efficiency does not depend on the
number of authenticated values. In order to achieve this appealing property,
we trade efficiency for usability in making the previous scheme only secretly
verifiable.

Setup(1λ): Upon input of the security parameter 1λ, run pp = (p,G,GT, e, g)←R
G(1λ) to generate a bilinear group description, where G and GT are groups
of the same prime order p > 2λ, g ∈ G is a generator and e : G ×G→ GT is
an efficiently computable bilinear map.

AuthKeyGen(pp): Run (S,prfpp)←R KG(1λ) to obtain the seed S and the public
parameters prfpp of a pseudorandom function FS : {0, 1}∗ → G. Choose
a random value z ←R F. Compute Z = e(g, g)z

∈ GT. Return the secret
key sk = vk = (S, z), and the public authentication parameters pap =

(pp,prfpp,Z).

Auth(sk,L, c): Let sk = (S, z). To authenticate a value c ∈ F with label L, use the
PRF to compute R̂←FS(L), then compute σ = R̂ · (gz)c and output σ.

AuthVer(vk, σ,L, c): Let vk = (S, z) be the (secret) verification key. To verify that σ
is a valid authentication tag for a value c ∈ Fwith respect to label L, output
> if σ = FS(L) · (gz)c and ⊥ otherwise.

Gen(pap,R): Let R : Fa
× Fb be an NP relation with statements of length a and

witnesses of length b. Let CR be R’s characteristic circuit, i.e., CR(x,w) = 1
iff (x,w) ∈ R. Build a QAP QR = (t(x),V,W,Y) of size m and degree
d for CR. We denote by Ist, Imid, Iout the following partitions of {1, . . . ,m}:
Ist = {1, . . . , a}, Imid = {a + 1, . . . ,m − 1}, and Iout = {m}.11 In other words, we
partition all the circuit wires into: statement wires Ist, internal wires Imid

(including the witness wires), and the output wire Iout.

11 For a reader familiar with Pinocchio, we point out our change of notation: we will use vst

instead of vin to refer to the statement-related inputs.
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Next, pick rv, rw ←R F uniformly at random and set ry = rv rw. Then pick
s, αv, αw, αy, β, γ←R F uniformly at random and compute:

T = gryt(s)

∀k ∈ [m] ∪ {0} : Vk = grvvk(s), Wk = grwwk(s), Yk = gry yk(s),

∀k ∈ [m] : V′k = (Vk)αv , W′k = (Wk)αw , Y′k = (Yk)αy , Bk = (Vk Wk Yk)β.

Additionally, compute the following values:

ρv = Z rv t(s), ρw = Z rw t(s), ρy = Z ry t(s),

Vt = grv t(s), Wt = grw t(s), Yt = gry t(s),

V′t = (Vt)αv , W′t = (Wt)αw , Y′t = (Yt)αy ,

Bv = (Vt)β, Bw = (Wt)β, By = (Yt)β.

Output the evaluation key EKR and the verification key VKR defined as follows:

EKR =
(
{Vk,V′k,Wk,W′k,Yk,Y′k,Bk}k∈Ist∪ Imid , {g

si
}i∈[d],

Vt,V′t , Wt,W′t , Yt,Y′t , Bv,Bw,By, ρv, ρw, ρy, QR
)

VKR =
(

g, gαv , gαw , gαy , gγ, gβγ, T, {Vk,Wk,Yk}k∈Ist∪{0,m}

)

Prove(EKR, x,w, σ): Let EKR the be evaluation key as defined above, (x,w) ∈
Fa
× Fb be a statement-witness pair, and σ = (σ1, . . . , σa) be a tuple of

authentication tags for x = (x1, . . . , xa) such that for any i ∈ [a] either
σi = R̂i · (gz)xi or σi = ?. We define Iat = {i ∈ Ist : σi , ?} ⊆ Ist as the
set of indices for which there is an authenticated statement value, and let
Iun = Ist \ Iat be its complement.

To produce a proof for (x,w) ∈ R proceed as follows. First, evaluate the
circuit CR(x,w) and learn the values of all internal wires: {ck}k∈Imid . For ease
of description, we assume ci = xi for i ∈ [a], and ca+i = wi for i ∈ [b]. The
first b indices of Imid hence represent the witness values w.
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Next, proceed as follows to compute the proof:

Vat =
∏
k∈Iat

(Vk)ck , Wat =
∏
k∈Iat

(Wk)ck , Yat =
∏
k∈Iat

(Yk)ck ,

V′at =
∏
k∈Iat

(V′k)ck , W′at =
∏
k∈Iat

(W′k)ck , Y′at =
∏
k∈Iat

(Y′k)ck ,

Vmid =
∏

k∈Imid

(Vk)ck , Wmid =
∏

k∈Imid

(Wk)ck , Ymid =
∏

k∈Imid

(Yk)ck ,

V′mid =
∏

k∈Imid

(V′k)ck , W′mid =
∏

k∈Imid

(W′k)ck , Y′mid =
∏

k∈Imid

(Y′k)ck ,

Bmid =
∏

k∈Imid

(Bk)ck .

Authenticate the values Vat, Wat, and Yat by computing σ̂v =
∏

k∈Iat
e(Vk, σk),

σ̂w =
∏

k∈Iat
e(Wk, σk), and σ̂y =

∏
k∈Iat

e(Yk, σk), respectively.

To make the proof zero-knowledge, pick random values δ(v)
at , δ

(v)
mid, δ

(w)
at , δ

(w)
mid,

δ
(y)
at , δ

(y)
mid ←R F, and compute:

Ṽat = Vat · (Vt)δ
(v)
at , W̃at = Wat · (Wt)δ

(w)
at , Ỹat = Yat · (Yt)δ

(y)
at ,

Ṽ′at = V′at · (V′t )
δ(v)

at , W̃′at = W′at · (W′t )
δ(w)

at , Ỹ′at = Y′at · (Y′t)
δ

(y)
at ,

Ṽmid = Vmid · (Vt)δ
(v)
mid , W̃mid = Wmid · (Wt)δ

(w)
mid , Ỹmid = Ymid · (Yt)δ

(y)
mid ,

Ṽ′mid = V′mid · (V
′

t )
δ(v)

mid , W̃′mid = W′mid · (W
′

t )
δ(w)

mid , Ỹ′mid = Y′mid · (Y
′

t)
δ

(y)
mid ,

B̃mid = Bmid · (Bv)δ
(v)
mid · (Bw)δ

(w)
mid · (By)δ

(y)
mid

To authenticate the new values Ṽat, W̃at, and Ỹat, compute σ̃v = σ̂v · (ρv)δ
(v)
at ,

σ̃w = σ̂w · (ρw)δ
(w)
at , and σ̃y = σ̂y · (ρy)δ

(y)
at , respectively. Note that our technique

preserves the re-randomization property of Pinocchio.

Next, solve the QAP QR by finding a polynomial h̃(x) such that p̃(x) =

h̃(x) · t(x) where the polynomial p̃(x) includes the “perturbed versions” of
the polynomials v(x), w(x), and y(x) with δ(v) = δ(v)

at + δ(v)
mid, δ(w) = δ(w)

at + δ(w)
mid,

and δ(y) = δ
(y)
at + δ

(y)
mid, respectively:

p̃(x) =
(
v0(x) +

∑
k∈[m]

ckvk(x) + δ(v)t(x)
)
·

(
w0(x) +

∑
k∈[m]

ckwk(x) + δ(w)t(x)
)

−

(
y0(x) +

∑
k∈[m]

ckyk(x) + δ(y)t(x)
)
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Finally, compute H̃ = gh̃(s) using the values gsi
contained in the evaluation

key EKR. Output

π̃ = ( σ̃v, σ̃w, σ̃y, Ṽat, Ṽ′at, Ṽmid, Ṽ′mid, W̃at, W̃′at, W̃mid, W̃′mid,

Ỹat, Ỹ′at, Ỹmid, Ỹ′mid, B̃mid, H̃ ).

Ver(vk,VKR,L, {xi}Li=?, π̃ ): Let vk = (S, z) be the authentication verification key,
VKR be the verification key for relation R, L = (L1, . . . ,La) be a vector of
labels, and let π̃ be a proof as defined above.12 In a similar way as in
Prove, we define Iat = {i ∈ Ist : Li , ?} ⊆ Ist and Iun = Ist \ Iat. The
verification algorithm proceeds as follows:

(A.1) Check the authenticity of Ṽat , W̃at , and Ỹat against the labels L:

σ̃v =
[∏

k∈Iat

e(Vk,FS(Lk))
]
· e( Ṽat , gz)

∧ σ̃w =
[∏

k∈Iat

e(Wk,FS(Lk))
]
· e( W̃at , gz)

∧ σ̃y =
[∏

k∈Iat

e(Yk,FS(Lk))
]
· e( Ỹat , gz)

(A.2) Check that Ṽat , Ṽ′at , W̃at , W̃′at , and Ỹat , Ỹ′at were computed us-
ing the same linear combination:

e( Ṽ′at , g) = e( Ṽat , gαv)

∧ e( W̃′at , g) = e( W̃at , gαw)

∧ e( Ỹ′at , g) = e( Ỹat , gαy)

(P.1) Check the satisfiability of the QAP by setting Vout = (Vm) cm = Vm

(similarly Wout = Wm and Yout = Ym), where we assume that cm = 1 =

CR(x,w) since (x,w) ∈ R, then computing Vun =
∏

k∈Iun
(Vk) xk (and

similarly Wun,Yun), and finally checking:

e(V0 Ṽat Vun Ṽmid Vout, W0 W̃at Wun W̃mid Wout)

= e(T, H̃ ) · e(Y0 Ỹat Yun Ỹmid Yout, g)

12 We again use a grey background to highlight input coming from the adversary.
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(P.2) Check that all linear combinations are in the appropriate spans:

e( Ṽ′mid , g) = e( Ṽmid , gαv)

∧ e( W̃′mid , g) = e( W̃mid , gαw)

∧ e( Ỹ′mid , g) = e( Ỹmid , gαy)

(P.3) Check that all the QAP linear combinations use the same coefficients:

e( B̃mid , gγ) = e( Ṽmid W̃mid Ỹmid , gβγ)

If all the checks above are satisfied, then return >; otherwise return ⊥.

Efficient Verification. By assuming a proper labeling of the data and a suit-
able pseudorandom function F, the scheme described above is adapted to allow
for an improved verification algorithm whose running time does not depend
on the number |Iat| of authenticated values. Following the ideas of Chapter IV,
we assume that every input c is labeled by using a multi-label L = (∆, τ), where
∆ is a dataset identifier, and τ is an input identifier. As an example, the input
identifiers τ1, . . . τn can be specific canonical information like date and time (e.g.,
day 05, 11:12:42), and the dataset identifier ∆ can be more general information
describing the category (e.g., energy consumption for July 2014).

As for the pseudorandom function, we can instantiate FS by using the specific
amortized closed-form efficient PRF of page 150, FS : {0, 1}∗ × {0, 1}∗ → G, such
that FS(∆, τ) = ga∆λτ+b∆µτ , where the values (a∆, b∆) and (λτ, µτ) are derived by
applying two standard PRFs (mapping into F) to ∆ and τ, respectively. This
function is pseudorandom under the Decision Linear assumption, page 151. To
achieve efficient verification one proceeds as follows (we describe only the case
for V, i.e., ωv and Ωv, the computations for W and Y are similar):
• Offline phase: precompute and store the values ω(λ)

v = e(
∏

k∈Iat
(Vk)λk , g)

and ω(µ)
v = e(

∏
k∈Iat

(Vk)µk , g) where (λk, µk) are derived from τk for all k ∈ Iat.
• Online phase: given ∆, derive (a∆, b∆) from ∆, and compute Ωv = (ω(λ)

v )a∆ ·

(ω(µ)
v )b∆ . Finally, use Ωv to check the verification equation (A.1), i.e., check

that σ̃v = Ωv · e( Ṽat , gz).

Correctness of this efficient verification follows from Ωv =
[∏

k∈Iat
e(Vk,FS(∆, τk))

]
.
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V.5.1 Correctness

Theorem 15 The above scheme satisfies authentication correctness and com-
pleteness.

Proof. It is straightforward to see that the scheme has authentication correctness
by construction: σ = FS(L) · (gz)c. In order to show the completeness, we prove
the correctness of equation (A.1). The remaining equations are the same as those
of the scheme in Section V.4.

(A.1) We only prove the case for σv, the cases for σw and σy are similar.

σ̃v
Prove

= σ̂v · (ρv)δ
(v)
at

Prove
=

∏
k∈Iat

e(Vk, σk) · (Z rvt(s))δ
(v)
at

Auth
=

∏
k∈Iat

e(Vk, FS(Lk) gz ck) · (e(g, g)z rv t(s))δ
(v)
at

=
[∏

k∈Iat

e(Vk, FS(Lk)) · e(Vk, gz ck)
]
· e(g, g)z rv t(s) δ(v)

at

=
[∏

k∈Iat

e(Vk, FS(Lk))
]
·

[∏
k∈Iat

e(Vk, gz ck)
]
· e(grv t(s) δ(v)

at , gz)

Gen
=

[∏
k∈Iat

e(Vk, FS(Lk))
]
· e

(∏
k∈Iat

(Vk)ck , gz
)
· e((Vt)δ

(v)
at , gz)

Prove
=

[∏
k∈Iat

e(Vk, FS(Lk))
]
· e

(
Vat, gz

)
· e((Vt)δ

(v)
at , gz)

=
[∏

k∈Iat

e(Vk, FS(Lk))
]
· e(Vat (Vt)δ

(v)
at , gz)

Prove
=

[∏
k∈Iat

e(Vk, FS(Lk))
]
· e(Ṽat, gz)

�

V.5.2 Proof of Security

Theorem 16 If Pinocchio is a sound SNARG scheme, F is a pseudorandom
function, and the d-PKE [Gro10] and q-BDHE [BBG05] assumptions hold, then
the scheme described above is an AD′SNARG with adaptive soundness.
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Before giving the proof, we first recall the q-BDHE assumption, which is an
easy extension of the q-DHE assumption (Definition 14, page 204).

Definition 16 (q-Bilinear Diffie-Hellman assumption ([BBG05])) Let G be a bi-
linear group generator, and let bgpp = (p,G,GT, e, g) ←R G(1λ). Let η, a ←R Zp

be chosen uniformly at random. We define the advantage of an adversaryA in
solving the q-BDHE problem as

Advq−BDHE
A

(λ) = Pr[A(bgpp, gη, ga, . . . , gaq
, gaq+2

, . . . , ga2q
) = e(g, g)ηaq+1

]

We say that the q-BDHE assumption holds forG if for every PPT algorithmA and
any polynomially-bounded q = poly(λ) we have that Advq−BDHE

A
(λ) is negligible

in λ.

In order to prove Theorem 16, we describe a series of hybrid experiments
G0 −G4 defined as follows.

Game G0: This is the adaptive soundness game described in Section V.3.1 and
Figure 35, page 189.

Game G1: This is the same as G0 except that the PRF FS(·, ·) is replaced by a
truly random function R : {0, 1}∗ → G. By the security of the PRF, G1 is
computationally indistinguishable from G0, i.e.,

|Pr[G0] − Pr[G1]| ≤ AdvPRF
D,F(λ)

Game G2: This is the same as G1 except that the procedure Ver sets bad2←true
if the adversary makes verification queries that (a) verify correctly with
respect to the equations (A.1), page 219, and in which (b) there is a label
(L, ·) < T, i.e.,A never asked to authenticate a value under label L. Clearly,
G1 and G2 are identical until Bad2, i.e.,

|Pr[G1] − Pr[G2]| ≤ Pr[Bad2]

As in the proof of Theorem 12, it is possible to show that for every PPT
adversary the probability Pr[Bad2] is (unconditionally) negligible. In par-
ticular, we can use essentially the same argument of Lemma 4 to show that
Pr[Bad2] ≤ Q

p−Q .
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Game G3: This is the same as G2 except for the following change when answer-
ing Type 2 verification queries, i.e., we assume every label L was previously
used to authenticate a value. Let σ̃v, Ṽat, σ̃w, W̃at, and σ̃y, Ỹat be the elements
in the proof π̃queried by the adversary. In G3 we compute V∗at =

∏
k∈Iat

(Vk)ck

(and W∗at, Y∗at in the similar way), as well as their corresponding authenti-
cation tags σ∗v =

∏
k∈Iat

e(Vk, σk) (and also σ∗w, σ∗y), where each σk is the tag
previously generated for (Lk, ck) upon the respective authentication query.
Next, we replace the check of equations (A.1), page 219, with checking
whether

σ̃v/σ
∗

v = e(Ṽat/V∗at, g
z)

∧ σ̃w/σ
∗

w = e(W̃at/W∗at, g
z) (V.2)

∧ σ̃y/σ
∗

y = e(Ỹat/Y∗at, g
z)

is satisfied. We observe that, by correctness, checking the equations (V.2) is
equivalent to checking the verification equations in (A.1). Indeed, if we let
R∗v =

[∏
k∈Iat

e(Vk, R (Lk))
]
, then correctness implies that σ∗v = R∗v · e(V∗at, gz),

and thus we can rewrite the first part of equation (A.1), i.e., σ̃v = R∗v ·
e(Ṽat, gz), as

σ̃v =
σ∗v

e(V∗at, g
z)

e(Ṽat, gz)

(and similar for σ̃w and σ̃y), from which we obtain equation (V.2).

Then, if the equations in (A.2), page 219, are satisfied, hence we have that
Ṽ′at = (Ṽat)αv , W̃′at = (W̃at)αw , and Ỹ′at = (Ỹat)αy , we can run an extractor
EA to obtain polynomials ṽat(x), w̃at(x), and ỹat(x) of degree at most d. If
Ṽat , (grv)ṽat(s) or W̃at , (grw)w̃at(s) or Ỹat , (gry)ỹat(s), then we set bad3←true.
Indeed, we observe that the input received by the adversaryA can be ex-
pressed as a pair (S, aux), where S = {gsi

, gαsi
}i∈[0,d] and aux is some auxiliary

information independent of α — exactly as in the definition of the d-PKE
assumption, page 204.

Hence, G2 and G3 are identical up to Bad3, i.e.,

|Pr[G2] − Pr[G3]| ≤ Pr[Bad3]

It is easy to see that the d-PKE assumption immediately implies that the
probability of Bad3 (i.e., that the extractor outputs a polynomial which is
not a correct one) is negligible.
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Game G4: This game proceeds as G3 except for the following change in proce-
dure Ver. Assume that the equations (V.2) of game G3 are satisfied and
that bad3←true is not set, i.e., Ṽat = (grv)ṽat(s) holds (and similar the corre-
sponding cases of W̃at and Ỹat).

Then, compute the polynomial δv(x)← ṽat(x) − v∗at(x), where ṽat(x) is the
polynomial obtained from the extractor, and v∗at(x) =

∑
k∈Iat

ckvk(x). Simi-
larly, compute δw(x) and δy(x) together with w∗at(x) and y∗at(x). If any among
δv(x), δw(x), and δy(x) is not divisible by t(x) then set bad4←true.

Clearly, G3 and G4 are identical up to Bad4, i.e.,

|Pr[G3] − Pr[G4]| ≤ Pr[Bad4]

To show that the two games are negligibly close, we prove in Lemma 7 that
Pr[Bad4] is negligible under the q-BDHE assumption, for some q = 2d + 1.

Finally, we observe that at this point, if Bad4 does not occur, we have
verified that Ṽat, W̃at, and Ỹat were computed by using the correct (i.e.,
authenticated) statement values. Namely, except for having randomized
elements Ṽat (resp. W̃at, Ỹat), we are almost in the same conditions as in
the proof of security of Pinocchio. In fact, in Lemma 8, page 228, we show
that if any adversary has advantage at most ε in breaking the security
of Pinocchio (in the zero-knowledge SNARG version of the scheme), then
Pr[G4] ≤ Q ·ε, where Q is the number of Gen queries made by the adversary.

To conclude the proof, we prove our lemmas bounding, respectively, the proba-
bilities Pr[Bad4] and Pr[G4].

Lemma 7 If the q-BDHE assumption holds forG, then for any PPT adversaryA
we have that Pr[Bad4] is negligible.

Proof. Assume that there is an adversary A such that Pr[Bad4] ≥ ε is non-
negligible. We show how to build an adversary B that breaks the q-BDHE
assumption with probability ε/2DQ2

− 1/|F| such that: (a) D = poly(λ) is an
upper bound on the number of multiplication gates (and thus on the degree of
the corresponding QAP) in the Q relations R1, . . . ,RQ queried by A to Gen, and
(b) q = 2d∗ + 1 for some d∗ ≤ D, which is the degree of the QAP in the relation R∗

for which Bad4 occurs.
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B takes as input an instance of the q-BDHE assumption

(bgpp, gη, ga, ga2
, . . . , gaq

, gaq+2
, . . . , ga2q

)

and its goal is to compute e(gη, gaq+1
) for the missing element gaq+1

. To do so, B
simulates G4 to A as described in the following. Assume that Bad4 occurs for
the relation R∗ which is the j-th relation queried to Gen.

(Lemma 7) B simulates Initialize()
• B runs Initialize as in G4 with the following modifications.
• It picks random j∗ ←R {1, . . . ,Q} and d∗ ←R {1, . . . ,D} to guess the query’s

index of R∗ and its QAP’s degree respectively.
• It picks a random ν ←R {0, 1} as a guess on whether Bad4 will occur for

either δv(x) or δy(x) (ν = 0), or for δw(x) or δy(x) (ν = 1).
• B sets q← 2d∗+1, and takes an instance (bgpp, gη, ga, ga2

, . . . , gaq
, gaq+2

, . . . , ga2q
)

of the q-BDHE assumption.
• It defines the degree-d∗ polynomial t∗(x) =

∏d∗
k=1(x− rk) where {rk} is a set of

canonical roots used to build the QAP.13

• B chooses z∗(x) as a random polynomial in F[x] of degree d∗+1 such that the
polynomial z∗(x) t∗(x) of degree 2d∗+1 has a zero coefficient in front of xd∗+1.

• B simulates the secret z with η z∗(a) by computing Z = e(gη, gz∗(a)). Ob-
serve that gz∗(a) can be computed efficiently using {gai

}
d∗+1
i=1 from the q-BDHE

instance and the fact that d∗ + 1 ≤ q.

(Lemma 7) B simulates Gen(R)
B proceeds as follows to simulate the i-th query.
• [Case i , j∗] B runs the real Gen(pap,R) algorithm and returns its output.
• [Case i = j∗] Let the queried relation be referred to as R∗. B simulates the

answer to this query as follows. First, it builds the QAP for R∗ and if its
degree d is not d∗, then B aborts the simulation. Otherwise, we have d = d∗

and hence t(x) = t∗(x) and B proceeds as follows.
For the value s, instead of randomly choosing it, B implicitly uses the
value a from the q-DHE assumption as follows. If ν = 0, B implicitly sets
rv = r′v ad+1 and ry = r′v rw ad+1, where rw, r′v ←R F, by computing

Vk = gr′v ad+1 vk(a) Yk = gr′v rw ad+1 vk(a) Vt = gr′v ad+1 t(a) Yt = gr′v rw ad+1 t(a).

13 The roots of Pinocchio’s QAP target polynomial can be chosen arbitrarily.
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Notice that these values can be computed efficiently since all the polyno-
mials ad+1 vk(a) and ad+1 t(a) have degree at most 2d + 1 = q. Similarly, all
the remaining values {Wk,Yk}k∈[m] can be simulated as the degree of the
polynomials encoded in the exponent is at most d < q.
If ν = 1, B proceeds in the dual way by setting rw = r′w ad+1 and dually
ry = rv r′w ad+1 for randomly chosen rv, r′w ←R F.
From now on, we describe the simulation for the case ν = 0 only. The other
case can easily be reproduced.
Finally, ρv = Zrv t(s) is simulated by computing e(gη, gad+1 z∗(a) t(a))r′v . Notice
that gad+1 z∗(a)t(a) can be computed since ad+1 z∗(a) t(a) has degree 3d + 2 and
has a zero coefficient in front of a2d+2 = aq+1. The same holds for the com-
putation of ρy, whereas computing ρw = e(gη, gz∗(a) t(a))rw can be simulated
since z∗(a) t(a) has degree 2d + 1 = q.

(Lemma 7) B simulates Auth(L, c)
To simulate authentication queries, B samples a random R ←R G, updates
T←T ∪ {(L, c)}, and returns σ = R. Observe that such σ is identically distributed
as an authentication tag returned by Auth in G4. Also, althoughB is not explicitly
generating R←R(L), as one can notice, these values are no longer used to answer
the verification queries.

(Lemma 7) B simulates Ver(R,L, {xi}Li,?, π̃)
Finally, we describe how B handles verification queries. First, note that for
queries that fall in the Type 1 branch, B can directly answer ⊥ (reject), and it
does not have to use the values R(L). Clearly, due to the definition of game G4

and since Bad2 does not occur, answers to these queries are correctly distributed.
Second, for queries in the Type 2 branch, we distinguish two cases according to
whether the queried relation R is R∗ or not.
• If R , R∗, thenB answers as in game G4. Note that equation (A.1), page 219,

has been replaced by equation (V.2), page 223, i.e., σ̃v/σ∗v = e(Ṽat/V∗at, g
z),

and similar the cases for W and Y. Note further that B does not know
gz = gηz∗(a). In what follows, we show how B manages to simulate the
check of (V.2) without knowing gz.
First, let s, rv ∈ F be the values chosen in Gen and thus known to B. Then
B proceeds as in G4, except that it replaces equations (V.2) with

σ̃v = σ∗v e(gη, gz∗(a))rv(ṽat(s)−v∗at(s))
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(and similar the cases for W and Y). The polynomial ṽat(x) is obtained
by the extractor. It is not hard to see that such replacement generates an
equivalent check.

• If R = R∗, then B proceeds as in G4. Set

δv(x)← ṽat(x) − v∗at(x), δw(x)← w̃at(x) − w∗at(x), δy(x)← ỹat(x) − y∗at(x),

and branch according to the divisibility by t∗(x):

· If both δv(x) and δy(x) are divisible by t∗(x), i.e., δv(x) ∈ Span(t∗(x)) and
δy(x) ∈ Span(t∗(x)), then B replaces equation (V.2) on page 223 with

σ̃v = σ∗v e(gη, gad+1δv(a)z∗(a))r′v , σ̃y = σ∗y e(gη, gad+1δy(a)z∗(a))r′y ,

σ̃w = σ∗w e(gη, gδw(a)z∗(a))rw .

Recall that we assume ν = 0 and observe that gad+1δv(a)z∗(a) can indeed
be computed as it has a zero coefficient in front of a2d+2 = aq+1.

· Otherwise, assume that δv(x) is not divisible by t∗(x), hence δv(x) <
Span(t∗(x)). The case for δy(x) is analogous. Then, B checks whether
ω(x) = δv(x)z∗(x) is such that its coefficient ωd+1 is zero. If so, B aborts
the simulation.14 Otherwise, if ωd+1 , 0, B computes

Ω =

 σ̃

σ∗
∏2d+1

k=0,k,d+1 e(gη, gad+k+1)r′vωk


1/(ωd+1 r′v)

and inserts Ω in a list List and outputs ⊥ (reject).

At the end of the simulation, B picks a random value Ω in List and returns Ω

as its solution for the q-BDHE assumption. Notice that B’s simulation is perfect
except if B aborts. However, B can abort only in three cases: (a) if its guess on j∗

is wrong, i.e., if j , j∗ (which happens with probability 1−1/Q); (b) if its guess on
d∗ is wrong, i.e., if d , d∗ (which happens with probability 1−1/D); (c) ifωd+1 = 0
(which holds unconditionally with probability at most 1/|F|). Lemma 11 on page
265 shows that if Bad4 occurs and if the guess of ν is correct (which happens with
probability 1/2), thenB indeed inserts Ω∗ = e(gη, gaq+1

) in List. Since List contains
at most Q values, Bwill pick the correct Ω∗ with probability at least 1/Q.

14 By Lemma 10 [GGPR13], this happens with probability at most 1/|F|.
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Therefore, by putting together the probability that B does not abort, and that
the correct Ω∗ is picked, with our assumption that Pr[Bad4] ≥ ε, then we obtain
that B breaks the q-BDHE assumption with probability ≥ ε/2DQ2

− 1/|F|. �

Lemma 8 If Pinocchio is a secure verifiable computation scheme, then for any
PPT adversaryAwe have that Pr[G4] is negligible.

The proof is essentially the same as that of Lemma 6 on page 211.

V.5.3 Proof of the Zero-Knowledge Property

Theorem 17 The AD′SNARG scheme described in Section V.5 is statistically
zero-knowledge.

Proof. The proof of this theorem is essentially the same as that for the scheme of
Section V.4. The only difference is the pseudorandom function. �

228



Chapter VI

Conclusions and Outlook

This thesis has contributed to the three principles (as stated in the Introduction
in Chapter I), which are all necessary in order to build secure cloud applications
and systems.

The correctness and security proofs, in particular those for the cryptographic
schemes, yield guarantees on the efficacy of the schemes under the assump-
tion that implementations are done correctly. Since, however, it is generally
hard to verify the correctness of implementations, we have shown that suitable
abstractions and simplifications in the spirit of security-by-design make the pro-
grammer’s life much easier and will hence lead to more secure source code of
generally higher quality.

However, by far, this is not the end of the story. There is still a huge number
of pitfalls and things to take care of: Not only expert developers should be
trained in how to apply secure tools and primitives, also society should be
advised much more on what security really means. The awareness for the
importance of security should be raised before serious damage takes place (e.g.,
imagine programmable pacemakers are taken over by passing attackers through
unsecured wireless connections, or cars are accelerating and crashing into each
other due to unsecured interfaces or vulnerable implementations).

The influence of security research on society seems not sufficient yet: Although
applications become more and more convenient and easy to use, the majority of
the every day users still cares more about usability than about security. People
have started using more security basics (like encryptions and signatures) than
compared to ten years ago, but still there is a long way to go.

Cryptographers can provide means to foster the development of secure sys-
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tems. However, if cryptography is used incorrectly, be it on purpose or out of
ignorance, it will remain a tedious task to get security-critical systems sufficiently
secure.
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Appendix A

G2C

A.1 Syntax of G2C
A formal grammar for the syntax of G2C is shown in Figure 39. Optional
parts are enclosed in square brackets [·], literal character sequences are enclosed
in single quotes ‘·’, choice is denoted by · | · . We assume C to be constants
(strings consisting of {a, . . . , z, 0, . . . , 9}) andV to be variables (strings consisting
of {a, . . . , z}, beginning with a capital letter).

Definition 17 (Syntactically well-formed specification) We call a specification
syntactically well-formed if and only if all of the following hold.

1. The argument lists of rules do not contain wildcards.
2. Rules are safe: the argument lists of head statements of rules do not contain

unbound variables, i.e., all variables are bound in the body statements.
3. Rules do not introduce constants, i.e., all constants occurring in the head

statement must also occur in the body statements.
4. The argument lists of input statements contain only constants and wild-

cards.
5. The argument lists of goal statements contain only constants.
6. The arity n of a statement s(s1, . . . , sn) ∈ S is the same for all occurrences of

s.
7. All principals P∈P are declared in the section Principals.

Definition 18 (Consistent specification) We call a specification consistent if the
following holds for all P ∈ P, S,Si ∈ S :
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Terms
P ::= C Principal
T ::= C Tag
S ::= C ‘(’ arglist ‘)’ Statement
K ::= S ‘@’ P Knowledge

arg ::= C | V | ‘ ∗ ’ Argument
arglist ::= [ arglist ‘,’ ] arg Argument list

tagvarlist ::= [ tagvarlist ‘or’ ] arg Tags/variable list
plist ::= [ plist ‘,’ ] P Principal list

statlist ::= [ statlist ‘,’ ] S Statement list
knowlist ::= [ knowlist ‘or’ ]K Knowledge list

Expressions
princ ::= [ princ ] P ‘:’ T Principals
stats ::= [ conf ] S ‘:’ tagvarlist Statements
tags ::= [ tags ] T ‘< ’ T Tags

| [ tags ‘< ’ ] T ‘< ’ T
| [ tags ‘< ’ ] T ‘< ’ T ‘< ’ T

rules ::= [ rules ] S ‘:-’ C ‘[’ statlist ‘]’ Rules
input ::= [ input ]K Input
goals ::= [ goals ]K Goals

Specification
spec ::= ‘Principals:’ princ Specification

‘Input:’ input
‘Rules:’ rules
‘Goals:’ goals
‘Tags:’ tags
‘Statements:’ stats

Figure 39: Formal grammar for the specification language G2C.
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1. input(S@P)⇒ may access(P,S)
2. goal(S@P)⇒ may access(P,S)
3. (S← f [S1, . . . , Sn]) ∈ R ⇒ ∀i, j : Si , S j

4. ((S← f [S1, . . . , Sn]) ∈ R ∧ ∀i : may access(P,Si)) ⇒ may access(P,S)
The intuition behind the last requirement is that whenever there exists a rule
r ∈ R for which P knows all necessary arguments, then P can compute the
function value of r and hence the specification should permit the access to the
computed value.

A.2 Selection of the Protocol Skeleton

This section presents an algorithm for selecting a minimal valid subset of edges
E ⊆ E for a given data flow graph G = (N ,E). More precisely, the algorithms
in Figure 40 address the optimization problem of selecting edges with minimal
cost by a recursive computation starting at the input nodes. Each edge e ∈ E is
assumed to carry a cost cost(e).

The function minimal route(n) outputs a minimal route for a given node n.
A route (r, c) is a set of connected nodes r with a cost c such that the edges E
between the nodes of r are valid. In the non-trivial case, a route with minimal
cost is selected from all possible routes that terminate in node n (lines 38-43).

All such routes are computed by the function routes(n) as follows.
• Since there are no predecessors for an input node n, there is no choice of

different routes: The minimal route is the node n itself (line 12). The cost
in this case is 0.

• Given a knowledge node n, each route (r, c) terminating in a predecessor p
of n is computed (line 18), then extended by n itself (concatenation via ‘ · ’),
and the cost for the edge from p to n is added (line 19). The routes are only
extended: the number of routes terminating at n is the same as the number
of routes to all predecessors of n.

• For a computation node n, however, new routes are generated. Again, all
routes for the predecessors p1, . . . , pm are generated (line 28). These routes
are combined via the m-ary Cartesian product implemented in a binary
stepwise manner in the external function combine (line 28). The number of
routes hence increases exponentially in m. After generating those routes,
each route is extended by n (line 31). The cost for each route is increased
by the sum over all costs of edges from the predecessors pi to n (line 31).
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1 function remove redundancy ( nodes , c o s t )
2

3 d u p l i c a t e s = minimal dupl ( nodes )
4 f o r each path in d u p l i c a t e s
5 nodes = nodes \ path
6 c o s t = c o s t − c o s t f o r p a t h ( path )
7 re turn ( nodes , c o s t )
8

9 function routes ( node n )
10

11 i f n i s an input node
12 re turn { ( n , 0 ) }
13

14 i f n i s a knowledge node
15 a l l r o u t e s = ∅

16 f o r each predecessor p of n
17 cn = c o s t (<p , n>)
18 f o r each ( r , c ) in routes ( p )
19 add ( r ·n , c+cn ) to a l l r o u t e s
20 re turn a l l r o u t e s
21

22 i f n i s a computation node
23 l i s t = ∅

24 c o s t s = 0
25 a l l r o u t e s = ∅

26 f o r each predecessor p of n
27 c o s t s += c o s t (<p , n>)
28 l i s t = combine ( l i s t , routes ( p ) )
29 f o r each ( r , c ) in l i s t
30 ( r̃ , c̃ ) = remove redundancy ( r , c )
31 add ( r̃ ·n , c̃+c o s t s ) to a l l r o u t e s
32 re turn a l l r o u t e s
33

34 function minimal route ( node n )
35

36 i f n i s an input node
37 re turn ( n , 0 )
38 min = ∞

39 route = (∅ , min )
40 f o r each route ( r , c ) in routes ( n )
41 i f c < min
42 min = c
43 route = ( r , c )
44 re turn route

Figure 40: An algorithm selecting a minimal set of valid edges.
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A
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Figure 41: Simple example for duplicate routes.

The Cartesian product combines routes that may have common subroutes,
i.e., common prefixes of nodes. Hence, after applying the combine operation,
there might be routes containing certain nodes more than once. Moreover, the
calculation of the cost for such a route is not correct since some paths are counted
more than once.

This redundancy is removed by the corresponding functionremove redundancy
that, given a set of nodes nodes, eliminates all subsequences that are contained
more than once. Assume, for instance, nodes to be IABIACIADGwith cost 21 (see
Figure 41 for illustration). The redundant subsequences are IA and IA. Both have
cost 5. The redundancy eliminated route is IABCDG with cost 11 = 21 − 5 − 5.
This is exactly the cost for an (optimal) route to node G. The external function
minimal duplicates (line 3) computes such duplicates.

We stress that all computations are possible on simple data structures like
strings; the graph structure is not necessary. The values for the functioncost for path
(line 6) are obtained from a global list that is updated each time a route is com-
puted (not mentioned in the algorithm above).

A.3 Non-Interactive Zero-Knowledge Proofs Against
Compromised Principals

Every G2C computation node localComp(S@P) is translated to a symbolic code
fragment in which principal P is supposed to compute a fresh statement S by
taking existing statements Si into account (see page 24). Despite achieving the
specified anonymity properties (by letting P incorporate advanced cryptographic
primitives, cf. Section II.4.2, page 39), it is crucial for guaranteeing correctness
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of the protocol to enforce that P indeed computes the specified function: the
specified protocol goals would clearly not be satisfied if P, instead of comput-
ing the specified function, simply outputs a value of its choice. A simple proof
of correctness (which lets P demonstrate that the correct value has been com-
puted) might, however, leak sensitive data and could thus violate the specified
confidentiality goals of the protocol.

Let us illustrate the two conflicting properties correctness vs. confidentiality by
means of an example: Assume a statement age(alice) which is only known to
Alice and shall not be disclosed to other principals. Hence Alice is the only
principal able to apply the computation rule

adult(P)← age(P) ≥ 21.

Furthermore, assume a principal shop, able to compute the rules

ship(P,M) ← requested(P,M), paid for(P,M),

underage content(M)

ship(P,M) ← requested(P,M), paid for(P,M),

explicit content(M), adult(P)

where M represents an item sold by the shop, for instance a movie. The ques-
tion arises how to prevent Alice from cheating when computing the statement
adult(alice). As she is the only principal granted access to her age age(alice),
nobody else can check whether Alice is allowed to apply the rule and hence
compute the corresponding adult statement.

Our approach incorporates non-interactive zero-knowledge proofs [GMR89] in
order to ensure both the correctness of the computation and the confidentiality
of sensitive computation inputs. In the above example, zero-knowledge proofs
would convince the shop of Alice’s legal age without leaking Alice’s actual age.
In other words, zero-knowledge proofs prevent cheating, but at the same time,
they preserve the privacy of the G2C principals.

Zero-knowledge proofs consist of a formula F to be proven by a prover P
and to be verified by a verifier V. The formula usually contains two sets, secret
witnesses and public components. A zero-knowledge proof system has to satisfy
three properties. (i) Completeness: If the formula F is valid, V accepts the proof.
(ii) Soundness: P cannot trick V into accepting a proof containing a false for-
mula F′. (iii) zero-knowledge: V does not learn any information about the secret
witnesses contained in F.
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In 1986, Goldreich, Micali, and Widgerson showed that zero-knowledge proofs
exist for all languages in NP [GMW86, GMW91]. In 2008, Backes, Maffei, and
Unruh proposed a symbolic representation of zero-knowledge proofs in the ap-
plied π-calculus [BMU08]. We use the equational theory to construct symbolic
ZK proofs for G2C computations and thereby achieve security despite com-
promise [BGHM09]. The G2C protocol messages are extended by authenticity
proofs, for instance, by showing that a message was encrypted and signed us-
ing legitimate keys, or that the input to a computation is the legitimate one, or
that the result of a computation corresponds to the function’s semantics. The
zero-knowledge property ensures that involved secret keys and involved secret
inputs remain secret.

The details, algorithms, proofs, and examples of this G2C extension are pre-
sented in a supervised Bachelor’s thesis [Bal11]. We only give an overview of
the conceptual contributions here.

• G2C’s built-in functions are equipped with polymorphic type annotations
to enable the derivation of types for all G2C statements — a necessary step
in order to provide a meaningful semantics for the G2C computations and
thus also for the zero-knowledge proofs.

• A new class of goals is introduced: the so-called proof goals specify the
recipients of individual proofs, i.e., whenever a principal P wishes to be
convinced of the correctness of a received statement S, an entry of the
form proof (S@P) is added to the list of proof goals. The extended G2C
compiler ensures that such proof goals do not violate any of the anonymity
or confidentiality specifications.

• All extensions pay heed to G2C’s existing translation validation paradigm:
Every generated symbolic zero-knowledge proof comes with a dedicated
ProVerif process that allows for the validation of the proof’s correctness.
The ProVerif attacker in this case impersonates the compromised protocol
participants.
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Appendix B

SAFE

B.1 Syntax

The following list explains the syntax of individual SAFE file types. Recall that f-
units constitute both functionality and data of a web application. Hierarchically
organized in the activation tree, f-units bundle functionality of different tiers,
e.g., client code (HTML, JavaScript, CSS), server code (PHP, SQL), and reactive
code for asynchronous message transfers between client and server (AJAX). An
f-unit is integrated using the SAFE Integrator from the SAFE tool suite (see
screenshot in Figure 28 on page 115). In the integration process, the various files
an f-unit consists of are installed on the system. These files are introduced in the
following.

We explain the naming conventions of SAFE based on an f-unit named
FooBar . The first character of an f-unit name must be uppercase (please check
the official SAFE manual [Rei14] for more details on the syntax for file names).
All files of FooBar are organized in the bundle folder FUnitFooBar.bundle :
The HTML/SFW skeleton of FooBar together with the activation of child f-units
is specified in the file funitfoobar.sfw , the f-unit’s local data is stored in ta-
bles in the database whose definitions are specified in the file funitfoobar.db ,
style (CSS) and client side functionality (JavaScript) are specified in the files
funitfoobar.css and funitfoobar.js , respectively. We will discuss each of
these files in detail below.
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.sfw

The file FUnitFooBar.bundle/funitfoobar.sfw contains the HTML skeleton
of an f-unit. It includes the activation calls for other f-units, and specifies the
interface for activations.

The first line considered by the SFW compiler while parsing an f-unit SFW file
has the following syntax:

<funi t FooBar ( s t a t i c 1 , s t a t i c 2 , . . . ) # a2e92b94ca4f3e . . . >

The name of the f-unit is specified right after the funit keyword and must
match the name of the bundle folder and its contained filenames. In this case, the
filename would have to be FUnitFooBar.bundle/funitfoobar.sfw . The round
brackets contain the names of the static activation arguments. These activation
arguments can be named by arbitrary strings and can be accessed only within the
scope of the f-unit FooBar . After the hash symbol # , the authentication credentials
are specified. The credentials are hand out by the owner of an application in
order to authenticate third-party f-units against the application. The credentials
are obtained during the integration process.

Any code above the tag <funit ...> is ignored and can hence be used as a
location for documentation of the f-unit.

We refer to the SAFE manual for more information about the inner scope of
the funitfoobar.sfw file and the SFW tags in general.

.db

The file FUnitFooBar.bundle/funitfoobar.db contains various declarations
of tables and views for FooBar : local tables and local views, input and output
tables.

• Local tables are f-unit-associated data stores that can be accessed only
by the single f-unit that owns the tables. Local tables are created in the
application-wide database within the namespace of the owning f-unit, e.g.,
FooBar ’s local table tab is registered as foobar tab in the database. Local
tables can only be declared for the local data model (see the infobox on
page 65).

Each declared local table exists as a single instance in the database, inde-
pendent of the number of activated instances of FooBar . In other words,
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all instances of FooBar share the same database tables.

Below are two examples for declarations of local tables. The first declara-
tion of students consists of 5 fields. The first field uid refers to a user
in the system ( USER ) and serves as primary key ( PRIMARY ). The specifica-
tion of type USER automatically derives the type of the uid field from the
generic users table and automatically establishes a corresponding foreign
key constraint.

LOCAL TABLE s tudents (
uid USER PRIMARY
m a t r i c u l a t i o n VARCHAR( 2 0 )
enrol lment DATE
department VARCHAR( 1 0 0 )
p ro f e ss o r OWNER

)

The type OWNER is used to define a column that holds the owner of the data
item stored in the corresponding row. OWNER is a subtype of type USER .
Please note that every table needs to define exactly one owner column.

The second example defines a local table messages which has the special
property SINK , meaning that no entries can ever be removed from that
table. The field id specifies a unique message identifier and is modeled as
primary key ( PRIMARY ) with an automatically incremented value ( AUTO ).

LOCAL TABLE SINK messages (
id PRIMARY AUTO
from OWNER
to USER
msg TEXT
INVARIANT f r i e n d s ( from , to ) OR

c o l l e a g u e s ( from , to ) OR
admin ( from )

)

The special type OWNER in the field from imposes constraints to ensure
that a tuple in the table messages can only be inserted/updated under
the condition that the from field carries the user id of the user who is
authenticated at the time of modification.

Moreover, a couple of invariants is specified: the predicate friends must
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hold for the values from and to , i.e., sender and recipient of messages
must be friends. A predicate can either be an input table, a local table, a local
view, or an output table. In this case, also colleagues and the special user
admin can send messages to any other user in the system.

Local tables can hold initial data. These datasets are specified as regular
insertion queries.

INSERT INTO messages SET msg = ’Welcome ! ’ ,
from = ’# public ’

Along the design guidelines of SAFE, every dataset needs a dedicated
owner. As users are first-class citizens in SAFE, there is no user available
at the time of integration of an f-unit. Therefore, initial data must be
annotated with the static owner #public .

• Local views are standard SQL views that can be used in any acyclic context
inside FooBar . Unary local views can be thought of as groups, like the
group of admins. Binary local views can be thought of as tuples or binary
relations, like friendship relations.

LOCAL VIEW admin =

SELECT ’ root ’
LOCAL VIEW f r i e n d s =

SELECT a . uid , b . uid FROM sfw users a , s fw users b

• Input tables constitute database schemata which specify the format that
FooBar expects when FooBar is wired to other f-units. A wiring com-
bines fields of input tables with specified fields of another f-unit’s output
tables. The specified types of an input table have to match the types of the
corresponding output table. Types of input tables are specified as follows:

INPUT TABLE c o l l e a g u e s (
u1 USER
u2 USER

)

The example declares a binary relation colleagues . Both fields u1 and
u2 have the same type USER .

244



B.1. Syntax

• Output tables are defined in a similar way as local views. Output tables,
however, expose data to all other f-units and are hence publicly visible. The
declaration of output tables is derived from the standard SELECT syntax:

OUTPUT TABLE m s g t i t l e s (
SELECT . . .

)

The public names of output tables are automatically prefixed in order to
avoid name clashes: the output table msg titles of f-unit FooBar is
available in the database under the name foobar msg titles .

We stress that every output table needs two special fields named key
and owner . The owner field must hold the owner of a dataset, the key
column needs to have unique key values, so it is recommended to base
the key values on unique key values of existing tables. Every output table
automatically obtains a special column ukey , which constitutes a prefixed
key that is unique among all keys of all output tables. Such globally unique
values are necessary for the wiring of f-units. The ukey column does not
have to be declared by the developer.

Output tables can have the special attribute STEADY . Steady output tables
must not depend on local data that could potentially change upon activa-
tion. For example, assume FooBar to have a local table counter which
counts the number of activations of FooBar . Every time an instance of
FooBar is activated, a counter is increased, hence the table counter is
updated. If an output table exposes data that is contained in this local table
counter , the output table may not be declared STEADY .

OUTPUT TABLE m s g t i t l e s (
SELECT . . . FROM . . . WHERE . . .
STEADY

)

.int

The file FUnitFooBar.bundle/funitfoobar.int contains the public interface
for FooBar . Interfaces can be generated automatically using the compiler’s
interface generator. Alternatively, interfaces can always be specified manually.
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.css

The file FUnitFooBar.bundle/funitfoobar.css contains various CSS3 decla-
rations for FooBar . Here is an example with a class-based rule and an identifier-
based rule.

div . n e u t r a l {
background−color : #DA6F00 ;
f l o a t : l e f t ;

}

# logo {

color : #FFFFFF ;
font−s ize : 3 . 2 5em;
tex t −shadow : 0 1px 1px #3E3E3E ;

}

The SAFE manual provides more information about the usage of cascading
style sheets in SAFE, in particular also on how sandboxing of CSS is achieved.

.js

The file FUnitFooBar.bundle/funitfoobar.js contains the JavaScript code for
FooBar . A JavaScript function f must be defined using the syntax this.f =
function(args) {...} . Here is an example for a function show .

t h i s . show = function ( gid , . . . ) {

gid = t h i s . s torage . wrap ( ’ se lec tedPeer ’ , gid ) ;
i f ( gid !== null ) {

var e = document . getElementById ( ’ group ’ + gid ) ;
e . s t y l e . d isplay = ’ block ’ ;
i f ( t h i s . l a s t g i d === undefined ) { . . . }

}

t h i s . l a s t g i d = gid ;
}

The function is called in the context of FooBar using the following syntax:

<js>
f u n i t f o o b a r . show ( gid , . . . ) ;

</ js>

More information about JavaScript is contained in the SAFE manual.
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B.2 Algorithms

This section presents some of the algorithms used within SAFE’s delegation
mechanisms. The algorithms are explained on page 100.

1 CREATE PROCEDURE compute delegation closure()
2 BEGIN
3 TRUNCATE TABLE sfw users delegation cl;
4 SET dist = 1;
5 INSERT IGNORE INTO sfw users delegation cl (speaks, for, dist)
6 SELECT speaks, for, dist
7 FROM sfw users delegation expanded;
8

9 REPEAT
10 SET dist = dist + 1;
11 INSERT IGNORE INTO sfw users delegation cl (speaks, for, dist)
12 SELECT sfw users delegation cl.speaks, sfw users delegation expanded.for, dist
13 FROM sfw users delegation cl, sfw users delegation expanded
14 WHERE sfw users delegation cl.for = sfw users delegation expanded.speaks
15 AND sfw users delegation cl.dist = dist − 1;
16 UNTIL (ROW COUNT() = 0)
17 END REPEAT;
18

19 DELETE FROM sfw users delegation cl WHERE speaks = for;
20 END

Figure 42: Computing the delegation closure.
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1 CREATE PROCEDURE group expansion()
2 DECLARE cursor main CURSOR FOR SELECT speaks, for FROM sfw users delegation;
3 TRUNCATE TABLE sfw users delegation expanded;
4 OPEN cursor main;
5 read loop: LOOP
6 FETCH cursor main INTO cur sp, cur for;
7 IF done THEN
8 CLOSE cursor main
9 LEAVE read loop

10 END IF;
11 SET expand sp = 1;
12

13 BLOCK SP: BEGIN
14 DECLARE done sp INT DEFAULT FALSE;
15 DECLARE cursor sp CURSOR FOR SELECT uid FROM sfw users groups WHERE group=cur sp;
16 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done sp = TRUE;
17 OPEN cursor sp;
18 FETCH cursor sp INTO add sp;
19 IF done sp THEN
20 SET add sp = cur sp;
21 SET expand sp = 0;
22 END IF;
23

24 loop sp: LOOP
25 SET expand for = 1;
26 BLOCK FOR: BEGIN
27 DECLARE done for INT DEFAULT FALSE;
28 DECLARE cursor for CURSOR FOR SELECT uid FROM sfw users groups WHERE group=cur for;
29 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done for = TRUE;
30 OPEN cursor for;
31 FETCH cursor for INTO add for;
32 IF done for THEN
33 SET add for = cur for;
34 SET expand for = 0;
35 END IF;
36

37 loop for: LOOP
38 INSERT IGNORE INTO sfw users delegation expanded (speaks,for) VALUES (add sp,add for);
39 IF expand for = 1 THEN
40 FETCH cursor for INTO add for;
41 END IF;
42 IF done for THEN
43 CLOSE cursor for;
44 LEAVE loop for;
45 END IF;
46 END LOOP;
47 END BLOCK FOR;
48 IF expand sp = 1 THEN
49 FETCH cursor sp INTO add sp;
50 END IF;
51 IF done sp THEN
52 CLOSE cursor sp;
53 LEAVE loop sp;
54 END IF;
55 END LOOP;
56 END BLOCK SP;
57 END LOOP;
58 END

Figure 43: Expansion of user groups.
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1 CREATE PROCEDURE compute delegation()
2 BEGIN
3 DECLARE cur sp VARCHAR(32);
4 DECLARE cur for VARCHAR(32);
5 DECLARE user sp VARCHAR(32);
6 DECLARE user for VARCHAR(32);
7 DECLARE temp loop INT;
8

9 DECLARE done INT DEFAULT FALSE;
10 DECLARE cursor delegation CURSOR FOR SELECT speaks, for FROM sfw users delegation;
11 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;
12

13 TRUNCATE TABLE sfw users delegation expanded;
14 TRUNCATE TABLE sfw groups expanded;
15 TRUNCATE TABLE sfw temp;
16

17 OPEN cursor delegation;
18 read loop: LOOP
19

20 FETCH cursor delegation INTO cur sp, cur for;
21

22 IF done THEN
23 LEAVE read loop;
24 END IF;
25

26 CALL expand group(cur sp);
27 CALL expand group(cur for);
28

29 INSERT IGNORE INTO sfw users delegation expanded (speaks,for)
30 SELECT gs.uid AS uids,
31 gf.uid AS uidf
32 FROM sfw groups expanded AS gs,
33 sfw groups expanded AS gf
34 WHERE gs.group = cur sp AND
35 gf.group = cur for;
36

37 END LOOP;
38 CLOSE cursor delegation;
39 END

Figure 44: Computation of delegation for nested groups.
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1 CREATE PROCEDURE expand group(IN initial groupname CHAR(32))
2 expansion label: BEGIN
3 DECLARE groupmember VARCHAR(32);
4 DECLARE cur groupname VARCHAR(32);
5 DECLARE cur child VARCHAR(32);
6 DECLARE skip prev child VARCHAR(32);
7 DECLARE num duplicates INT;
8 DECLARE num children INT;
9

10 SET skip prev child = ’ ’;
11 SET cur groupname = initial groupname;
12

13 SELECT COUNT(∗) INTO num children FROM sfw groups expanded WHERE group =

initial groupname;
14 IF num children > 0 THEN
15 LEAVE expansion label;
16 END IF;
17

18 loop exp: LOOP
19 BLOCK call: BEGIN
20

21 DECLARE done groupexp INT DEFAULT FALSE;
22 DECLARE cursor groupexp CURSOR FOR SELECT uid FROM users groups WHERE group =

cur groupname;
23 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done groupexp = TRUE;
24 OPEN cursor groupexp;
25

26 IF skip prev child !=’ ’ THEN
27 loop repeat: LOOP
28 FETCH cursor groupexp INTO cur child;
29 IF cur child = skip prev child THEN
30 LEAVE loop repeat;
31 END IF;
32 END LOOP;
33 END IF;
34

35 FETCH cursor groupexp INTO groupmember;
36

37 IF NOT done groupexp THEN
38 SELECT COUNT(∗) INTO num children FROM sfw groups expanded WHERE group =

groupmember;
39 IF num children < 1 THEN
40 INSERT IGNORE INTO sfw temp (child, parent) VALUES (groupmember,cur groupname);
41 SET cur groupname = groupmember;
42 SET skip prev child = ’ ’;
43 // ... continued on next page.

Figure 45: Recursive expansion of nested groups (part 1).
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44 ELSE
45 BLOCK copy: BEGIN
46 DECLARE done copy INT DEFAULT FALSE;
47 DECLARE cursor copy CURSOR FOR SELECT uid FROM sfw groups expanded WHERE

group = groupmember;
48 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done copy = TRUE;
49 OPEN cursor copy;
50

51 loop copy: LOOP
52 FETCH cursor copy INTO cur child;
53 IF done copy THEN
54 LEAVE loop copy;
55 END IF;
56

57 SELECT COUNT(∗) INTO sfw num duplicates FROM sfw groups expanded WHERE
group = initial groupname AND uid = cur child;

58 IF num duplicates > 0 THEN
59 SELECT RAISE ERROR non terminating loop;
60 END IF;
61

62 INSERT IGNORE INTO sfw groups expanded (group, uid) VALUES (initial groupname,
cur child);

63 END LOOP;
64 CLOSE cursor copy;
65 END BLOCK copy;
66

67 SET skip prev child = groupmember;
68 END IF;
69

70 ELSE
71 IF skip prev child = ’ ’ THEN
72 INSERT IGNORE INTO sfw groups expanded (group, uid) VALUES (initial groupname,

cur groupname);
73 END IF;
74

75 IF cur groupname = initial groupname THEN
76 LEAVE loop exp;
77 END IF;
78

79 SET skip prev child = cur groupname;
80 SELECT parent INTO cur groupname FROM sfw temp WHERE child = skip prev child;
81 DELETE FROM sfw temp WHERE child = skip prev child;
82 END IF;
83 CLOSE cursor groupexp;
84 END BLOCK call;
85 END LOOP;
86 END

Figure 46: Recursive expansion of nested groups (part 2).
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B.3 Demonstration

This section presents examples of SAFE applications as the translation result
from concise specifications to full-fledged and secure web applications. We will
see fragments of a social network application demonstrating some convenient
features of SAFE, for instance the beauty and the expressiveness of the declar-
ative language SFW, as well as a secure extension of the existing application
including the dynamic integration of functionality and data.

B.3.1 Declarative and Secure Specifications

We first consider the simple specification of HTML buttons that are linked with
the secure execution of database queries. The code snippet in Figure 47 shows
the corresponding HTML-like specification in the SFW language. The code is
taken from an f-unit to administrate groups in a social network application. The
code shows a list of groups whose entries are extracted from the SELECT query
as specified in the <for> tag in line 4. The query selects four data fields each of
which is available in the subsequent scope via the SFW syntax $$field, e.g., $$gname

in line 5, or $$ismem in the <if> tag in line 7. The content inside the <for> block is
executed (or more precisely: displayed) in the HTML document once for every
result tuple of the query execution. The SFW placeholder $%me in the Boolean
comparison of the owner column inside the query specifies the authenticated
user of the application. Depending on the values of $$ismem and $$isown, the
buttons to join (line 11), to leave (line 8), and to remove a group (line 15) are
displayed. In the following, we will focus on the button to create a new group
(line 23).

Instead of specifying a JavaScript function for the onclick event of a button, the
developer simply specifies the actual database query to be executed. The query
for the button in line 23 inserts two values in the specified table. The first value
$#newgrouptitle is the user input as specified in the input text field of the same
form. SFW offers syntactic placeholders (such as $#newgrouptitle) to represent the
values entered in the HTML input elements (named newgrouptitle in this case).
The second value $userID is a dynamic value which is no direct user input, but a
standard PHP variable.

All such dynamic values occurring in the query need special attention: all
dynamic values must be contained in the corresponding form in the HTML
document (in order to ensure that the dynamically evaluated values end indeed
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1 <h1> Groups </h1>
2

3 The following groups exist:
4 <for query:”SELECT gid, gname, owner=’$%me’ AS isown, ismem FROM groups”>
5 $$gname
6 <form>
7 <if $$ismem>
8 <input type=”button” value=”Leave” onclick=

9 ”query:DELETE FROM groupmembers WHERE gid=’$$gid’ AND uid=’$%me’”>
10 <else>
11 <input type=”button” value=”Join” onclick=

12 ”query:INSERT INTO groupmembers SET gid=’$$gid’, uid=’$%me’”>
13 </if>
14 <if $$isown>
15 <input type=”button” value=”Remove” onclick=

16 ”query:DELETE FROM groups WHERE gid=’$$gid’”>
17 </if>
18 </form>
19 </for>
20

21 <form>
22 <input type=”text” name=”newgrouptitle”/>

23 <input type=”button” value=”Create Group” onclick=

24 ”query:INSERT INTO groups VALUES (’$#newgrouptitle’,$userID)”>
25 </form>

Figure 47: SFW source code specifying HTML buttons with concrete database
queries. All SFW variables with using occurrence (no defining occur-
rence) are colored in blue: variables prefixed with $$ are bound by
the previously specified query identifiers, variables prefixed with $%
are SAFE built-in variables, variables prefixed with $# refer to input
elements within the surrounding form.

up in the query). However, these dynamic values cannot simply appear in
the DOM tree in plaintext since a malicious client could easily modify these
values, for instance by replacing the user ID Alice by the user ID Eve. SAFE
automatically ensures the integrity and confidentiality of dynamic values by
suitable security mechanisms: encryptions and message authentication codes are
automatically placed and applied with corresponding keys, for which technical
implementation details make a manual implementation of the overall query

253



B SAFE

execution very complex and error-prone.
The treatment of dynamic values is just one point on the list of tasks a tradi-

tional web developer would have to take care of. It justifies the blow-up factor
of roughly 10 after compilation. The following (incomplete) list gives an in-
tuition for the workload in case of a traditional hand-written database update
procedure:

1. Create a regular HTML form for the current HTML document. The protocol (GET,
POST, etc.) and the receiving PHP file have to be suitably specified.

2. Create a PHP file to answer the submitted form and mention the URI of the file in
the form.

3. In the PHP file, authenticate yourself at the database and establish a secure con-
nection.

4. For each variable transmitted through the form, escape special characters to pre-
vent SQL injection attacks.

5. Insert escaped values in the query.
6. Verify that the authenticated user of the application has sufficient permission to

execute the query with the current values.
7. Verify that the query can be executed in terms of data consistency, i.e., has the

query been issued from a state which is sufficiently fresh?
8. Send the query to the database for execution.
9. Process the result, output a status message, and refresh parts of the Web appli-

cation. Here, it will be necessary to determine the parts of the web application
which must be updated. Hence, all relevant dependencies must be derived.

10. Specify event-driven AJAX code to send the form values to the PHP handler, and
to receive the data updates for all corresponding elements in the DOM tree.

11. Implement a comprehensive error handling which takes into account all possible
kinds of errors (database connection errors, query execution errors, invalid values,
etc.). This error handling has to be specified at all tiers; hence in PHP, JavaScript,
and also at the database.

The state update mechanisms of SAFE implement a superset of the above
steps and thereby significantly reduce the burden of the developer down to a
concise declarative specification as simple as the one shown in Figure 47. The
compiled code for the example in Figure 47 contains 248 LoC. Screenshots of the
running application are provided in Figure 48.

B.3.2 Customization

Figure 49 shows screenshots after adding two new functionalities to the existing
social network application. The first new functionality constitutes an incremen-
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Figure 48: Two screenshots: before and after clicking the update button as spec-
ified in Figure 47.

Figure 49: Functional extensions: (left) incremental search engine, and (right)
navigation via tabs.
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tal search engine (Figure 49 left), and as such, it is deeply integrated in the system.
The search engine provides the user with a comfortable experience, and hence
contains a lot of reactive JavaScript code. Moreover, the search engine needs
constraint access to the database with access control policies and a clear descrip-
tion of which data fields shall be searched. The search results are presented in a
structured and formatted way using PHP, HTML, and CSS.

The right hand side of Figure 49 shows a screenshot of the second exten-
sion: after changing the navigation inside the existing application, the scrolling
navigation is turned into a navigation using tabs.

In order to deploy the extensions, SAFE first integrates the relevant f-units to
be available for the activation inside an application. SAFE then wires the f-units
to establish all necessary data flows inside the application.
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AD-SNARGs

C.1 The Pinocchio VC Scheme

We review the corrected version of the Pinocchio VC scheme [PGHR13], as pub-
lished on the ePrint archive. Pinocchio basically consists of the algorithms
KeyGen, Compute, and Verify. Please note that this is a revised zero-knowledge
version.

• (EKF,VKF)←KeyGen(F, 1λ): Let F be a function with N input/output values
from some finite field F. After converting F into an arithmetic circuit C,
build the corresponding QAP QF = (t(x),V,W,Y) with size m and degree
d. Let Imid = {N + 1, . . . ,m} be the non-input/output-related indices. Let
e : G × G → GT be a non-trivial bilinear map and let g be a generator of
G. Choose rv, rw, s, αv, αw, αy, β, γ ←R F, set ry = rvrw, and compute the
following values:

T = gryt(s)

∀k ∈ [m]∪{0} : Vk = grvvk(s), Wk = grwwk(s), Yk = gry yk(s),

∀k ∈ Imid : V′k = (Vk)αv , W′k = (Wk)αw , Y′k = (Yk)αy , Bk = (Vk Wk Yk)β.

Additionally, compute the following values:

Vt = grvt(s), Wt = grwt(s), Yt = gryt(s),

V′t = (Vt)αv , W′t = (Wt)αw , Y′t = (Yt)αy ,

Bv = (Vt)β, Bw = (Wt)β, By = (Yt)β.
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Construct the public evaluation key and the public verification key

EKF =
(
{Vk,V′k,Wk,W′k,Yk,Y′k,Bk}k∈Imid , {g

si
}i∈[d],

Vt,V′t , Wt,W′t , Yt,Y′t , Bv,Bw,By, QF
)

VKF =
(
g, gαv , gαw , gαy , gγ, gβγ, T, {Vk, Wk, Yk}k∈[N]∪{0}

)
• (y, πy)←Compute(EKF,u): on input u, the worker evaluates the circuit for

F to obtain y←F(u). The worker also learns the internal circuit values
{ci}i ∈ [m] and computes the values

Vmid =
∏

k∈Imid

(Vk)ck , Wmid =
∏

k∈Imid

(Wk)ck , Ymid =
∏

k∈Imid

(Yk)ck ,

V′mid =
∏

k∈Imid

(V′k)ck , W′mid =
∏

k∈Imid

(W′k)ck , Y′mid =
∏

k∈Imid

(Y′k)ck , Bmid =
∏

k∈Imid

(Bk)ck

To make the proof zero-knowledge, pick random values δ(v)
mid, δ

(w)
mid, δ

(y)
mid ←R

F, and compute:

Ṽmid = Vmid · (Vt)δ
(v)
mid , W̃mid = Wmid · (Wt)δ

(w)
mid , Ỹmid = Ymid · (Yt)δ

(y)
mid ,

Ṽ′mid = V′mid · (V
′

t )
δ(v)

mid , W̃′mid = W′mid · (W
′

t )
δ(w)

mid , Ỹ′mid = Y′mid · (Y
′

t)
δ

(y)
mid ,

B̃mid = Bmid · (Bv)δ
(v)
mid · (Bw)δ

(w)
mid · (By)δ

(y)
mid

Next, the worker solves the QAP QF by finding a polynomial h̃(x) such
that p̃(x) = h̃(x) · t(x) where the polynomial p̃(x) includes the “perturbed
versions” of the polynomials v(x), w(x), and y(x):

p̃(x) =
(
v0(x) +

∑
k∈[m]

ckvk(x) + δ(v)
midt(x)

)
·

(
w0(x) +

∑
k∈[m]

ckwk(x) + δ(w)
midt(x)

)
−

(
y0(x) +

∑
k∈[m]

ckyk(x) + δ
(y)
midt(x)

)

Finally, the worker computes H̃ = gh̃(s) using the values gsi
contained in the

evaluation key EKR, and outputs

π̃y = (Ṽmid, Ṽ′mid, W̃mid, W̃′mid, Ỹmid, Ỹ′mid, B̃mid, H̃ ).
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• {0, 1}←Verify(VKF,u, y, π̃y ): in order to verify a proof π̃y as defined above,
with computation input u and result y, perform the following steps.

(P.1) Check the satisfiability of the QAP by first computing Ṽ = Ṽmid ·∏
k∈[N](Vk)ck , W̃ = W̃mid ·

∏
k∈[N](Wk)ck , Ỹ = Ỹmid ·

∏
k∈[N](Yk)ck , where

the ck with k ∈ [N] are the input/output wires as contained in u and y.
Second, perform the divisibility check:

e(V0 Ṽ , W0 W̃ ) = e(T, H̃ ) · e(Y0 Ỹ , g)

(P.2) Check that all linear combinations are in the appropriate spans:

e( Ṽ′mid , g) = e( Ṽmid , gαv)

∧ e( W̃′mid , g) = e( W̃mid , gαw)

∧ e( Ỹ′mid , g) = e( Ỹmid , gαy)

(P.3) Check that all the QAP linear combinations use the same coefficients:

e( B̃mid , gγ) = e( Ṽmid W̃mid Ỹmid , gβγ)

If all the checks above are satisfied, then return >; otherwise return ⊥.

C.2 The Pinocchio SNARG Scheme

We review the SNARG version of the corrected Pinocchio VC scheme [PGHR13],
as published on the ePrint archive. Pinocchio initially consists of the algorithms
KeyGen, Compute, and Verify, which are used in the context of verifiable com-
putation. This section describes a small variation, where arbitraryNP relations
R ∈ R are considered (instead of arithmetic functions), and where proofs are
generated for statements x and witnesses w with (x,w) ∈ R (instead of computa-
tion results for inputs u). The Compute algorithm is hence replaced by a Prove
algorithm.

• (EKR,VKR)←KeyGen(R, 1λ): Let R be an NP relation with statements x =

(x1, . . . , xa) ∈ Fa and witnesses w = (w1, . . . ,wb) ∈ Fb. Let N = a + b. Let C
be R’s characteristic circuit, i.e., C(x,w) = 1 whenever (x,w) ∈ R. Build the
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corresponding QAP QR = (t(x),V,W,Y) for C with size m and degree d.
Let Imid = {a+1, . . . , a+b}∪{N +1, . . . ,m} be the indices of the internal wires
including the indices of the witness values. Let Iout = {m} be the index of
the output wire. Let e : G×G→ GT be a non-trivial bilinear map and let g
be a generator of G. Choose rv, rw, s, αv, αw, αy, β, γ←R F, set ry = rvrw, and
compute the following values:

T = gryt(s)

∀k ∈ [m]∪{0} : Vk = grvvk(s), Wk = grwwk(s), Yk = gry yk(s),

∀k ∈ Imid : V′k = (Vk)αv , W′k = (Wk)αw , Y′k = (Yk)αy , Bk = (Vk Wk Yk)β.

Additionally, compute the following values:

Vt = grvt(s), Wt = grwt(s), Yt = gryt(s),

V′t = (Vt)αv , W′t = (Wt)αw , Y′t = (Yt)αy ,

Bv = (Vt)β, Bw = (Wt)β, By = (Yt)β.

Construct the public evaluation key and the public verification key

EKR =
(
{Vk,V′k,Wk,W′k,Yk,Y′k,Bk}k∈Imid , {g

si
}i∈[d],

Vt,V′t , Wt,W′t , Yt,Y′t , Bv,Bw,By, QR
)

VKR =
(
g, gαv , gαw , gαy , gγ, gβγ, T, {Vk, Wk, Yk}k∈[N]∪{0,m}

)
• (π)←Prove(EKR, x,w): on input statement x and witness w, the prover

evaluates the circuit C(x,w) to obtain the internal circuit values {ci}i ∈ Imid.
For ease of description, we assume ci = xi for i ∈ [a], and ca+i = wi for i ∈ [b].
The first b indices of Imid hence represent the witness values w. Next, the
prover computes the values

Vmid =
∏

k∈Imid

(Vk)ck , Wmid =
∏

k∈Imid

(Wk)ck , Ymid =
∏

k∈Imid

(Yk)ck ,

V′mid =
∏

k∈Imid

(V′k)ck , W′mid =
∏

k∈Imid

(W′k)ck , Y′mid =
∏

k∈Imid

(Y′k)ck , Bmid =
∏

k∈Imid

(Bk)ck
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To make the proof zero-knowledge, pick random values δ(v)
mid, δ

(w)
mid, δ

(y)
mid ←R

F, and compute:

Ṽmid = Vmid · (Vt)δ
(v)
mid , W̃mid = Wmid · (Wt)δ

(w)
mid , Ỹmid = Ymid · (Yt)δ

(y)
mid ,

Ṽ′mid = V′mid · (V
′

t )
δ(v)

mid , W̃′mid = W′mid · (W
′

t )
δ(w)

mid , Ỹ′mid = Y′mid · (Y
′

t)
δ

(y)
mid ,

B̃mid = Bmid · (Bv)δ
(v)
mid · (Bw)δ

(w)
mid · (By)δ

(y)
mid

Next, the prover solves the QAP QR by finding a polynomial h̃(x) such
that p̃(x) = h̃(x) · t(x) where the polynomial p̃(x) includes the “perturbed
versions” of the polynomials v(x), w(x), and y(x):

p̃(x) =
(
v0(x) +

∑
k∈[m]

ckvk(x) + δ(v)
midt(x)

)
·

(
w0(x) +

∑
k∈[m]

ckwk(x) + δ(w)
midt(x)

)
−

(
y0(x) +

∑
k∈[m]

ckyk(x) + δ
(y)
midt(x)

)
Finally, the prover computes H̃ = gh̃(s) using the values gsi

contained in the
evaluation key EKR, and outputs

π̃y = (Ṽmid, Ṽ′mid, W̃mid, W̃′mid, Ỹmid, Ỹ′mid, B̃mid, H̃).

• {0, 1}←Verify(VKR, x, π̃ ): in order to verify a proof π̃ as defined above for
statement x, perform the following steps.

(P.1) Check the satisfiability of the QAP by first computing the values
Ṽ = Ṽmid ·

∏
k∈[a](Vk)ck · Vm, W̃ = W̃mid ·

∏
k∈[a](Wk)ck · Wm, and

Ỹ = Ỹmid ·
∏

k∈[a](Yk)ck · Ym, where the ck with k ∈ [a] are the state-
ment wires of x. Second, perform the divisibility check:

e(V0 Ṽ , W0 W̃ ) = e(T, H̃ ) · e(Y0 Ỹ , g)

(P.2) Check that all linear combinations are in the appropriate spans:

e( Ṽ′mid , g) = e( Ṽmid , gαv)

∧ e( W̃′mid , g) = e( W̃mid , gαw)

∧ e( Ỹ′mid , g) = e( Ỹmid , gαy)
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(P.3) Check that all the QAP linear combinations use the same coefficients:

e( B̃mid , gγ) = e( Ṽmid W̃mid Ỹmid , gβγ)

If all the checks above are satisfied, then return >; otherwise return ⊥.
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C.3 Postponed Proofs

This section contains additional lemmas and the corresponding proofs for Chap-
ter V.

Lemma 9 B, as described on page 211, indeed outputs Ω = gaq+1
.

Proof.

Ω =

 µ̃v

µ∗v
∏2d+1

k=0,k,d+1(gak+d+1)r′vωk


1/(ωd+1 r′v)

(V.1)
=

 (Ṽat)z

(V∗at)
z ∏2d+1

k=0,k,d+1 gak ad+1 r′v ωk


1/(ωd+1 r′v)

=

 gr′v ad+1 ṽat(a) z

gr′v ad+1 v∗at(a) z gr′v ad+1 ∑2d+1
k=0,k,d+1 ak ωk


1/(ωd+1 r′v)

=

 g ad+1 z (ṽat(a) − v∗at(a))

gad+1 ∑2d+1
k=0,k,d+1 ak ωk


1/ωd+1

=

 g ad+1 z δv(a)

gad+1 (
∑2d+1

k=0 ak ωk − ad+1 ωd+1)


1/ωd+1

=

 g ad+1 z δv(a)

g ad+1 (ω(a) − ad+1 ωd+1)

1/ωd+1

=

 g ad+1 z δv(a) g a2d+2 ωd+1

g ad+1 ω(a)

1/ωd+1

=

 g ad+1 z δv(a) g a2d+2 ωd+1

g ad+1 δv(a) z∗(a)

1/ωd+1

=

 g ad+1 z δv(a) g a2d+2 ωd+1

g ad+1 δv(a) z

1/ωd+1

=
[
g a2d+2 ωd+1

]1/ωd+1

= ga2d+2
= gaq+1

�
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Lemma 10 The translated proof π̃P on page 213 satisfies Pinocchio’s verification
equation (P.3) on page 262.

Proof.

e(B̃mid/P, gγ)

= e(B̃mid · (Bv)δ
(v)
at (Bw)δ

(w)
at (By)δ

(y)
at , gγ)

= e(Bmid (Bv)δ
(v)
mid (Bw)δ

(w)
mid (By)δ

(y)
mid · (Bv)δ

(v)
at (Bw)δ

(w)
at (By)δ

(y)
at , gγ)

= e
([ ∏

k∈Imid

(Bk)ck
]
· (Vt)βδ

(v)
mid (Wt)βδ

(w)
mid (Yt)βδ

(y)
mid · gβrvδ

(v)
at t(s) gβrwδ

(w)
at t(s) gβryδ

(y)
at t(s), gγ

)
= e

([ ∏
k∈Imid

(
(Vk Wk Yk)β

)ck
]
· (Vt)βδ

(v)
mid (Wt)βδ

(w)
mid (Yt)βδ

(y)
mid · gβ t(s)

(
rvδ

(v)
at +rwδ

(w)
at +ryδ

(y)
at

)
, gγ

)
= e

([ ∏
k∈Imid

(Vk Wk Yk)ck
]
· (Vt)δ

(v)
mid (Wt)δ

(w)
mid (Yt)δ

(y)
mid · gt(s)

(
rvδ

(v)
at +rwδ

(w)
at +ryδ

(y)
at

)
, gβγ

)
= e

( ∏
k∈Imid

(Vk)ck
∏

k∈Imid

(Wk)ck
∏

k∈Imid

(Yk)ck · (Vt)δ
(v)
mid (Wt)δ

(w)
mid (Yt)δ

(y)
mid · gt(s)

(
rvδ

(v)
at +rwδ

(w)
at +ryδ

(y)
at

)
, gβγ

)
= e

(
Vmid (Vt)δ

(v)
mid grvδ

(v)
at t(s)

· Wmid (Wt)δ
(w)
mid grwδ

(w)
at t(s)

· Ymid (Yt)δ
(y)
mid gryδ

(y)
at t(s), gβγ

)
= e

(
Ṽmid Ṽat/V∗at · W̃mid W̃at/W∗at · Ỹmid Ỹat/Y∗at, gβγ

)
= e

(
Ṽmid/P · W̃mid/P · Ỹmid/P, gβγ

)
�
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Lemma 11 B, as described on page 227, indeed outputs Ω = e(gη, gaq+1
).

Proof.

Ω =

 σ̃v

σ∗v
∏2d+1

k=0,k,d+1 e(gη, gad+k+1)r′vωk


1/(ωd+1 r′v)

=

 e(Ṽat/V∗at, g
z)

e(gη,
∏2d+1

k=0,k,d+1 gad+k+1r′vωk)


1/(ωd+1 r′v)

=

e(gηz∗(a), gr′v ad+1 ṽat(a)/gr′v ad+1 v∗at(a))

e(gη, gr′v ad+1 ∑2d+1
k=0,k,d+1 akωk)


1/(ωd+1 r′v)

=

e(gηz∗(a), gr′v ad+1 (ṽat(a)−v∗at(a)))

e(gη, gr′v ad+1[ω(a)−ad+1ωd+1])

1/(ωd+1 r′v)

=

 e(gηz∗(a), gr′v ad+1 δv(a))

e(gη, gr′v ad+1 ω(a)) / e(gη, gr′va2d+2ωd+1)

1/(ωd+1 r′v)

=

e(gη, gr′v ad+1 δv(a) z∗(a)) e(gη, gr′va2d+2ωd+1)

e(gη, gr′v ad+1 δv(a) z∗(a))

1/(ωd+1 r′v)

=
[
e(gη, ga2d+2

)ωd+1 r′v
]1/(ωd+1 r′v)

= e(gη, ga2d+2
) = e(gη, gaq+1

) �
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[TGLP10] Ricardo Tesoriero, José A. Gallud, Marı́a Dolores Lozano, and Victor
M. Ruiz Penichet. Cauce: Model-driven development of context-
aware applications for ubiquitous computing environments. Journal
of Universal Computer Science, 16(15), 2010.

[TL08] Jean-Baptiste Tristan and Xavier Leroy. Formal verification of trans-
lation validators: A case study on instruction scheduling optimiza-
tions. In POPL ’08: Proceedings of the 35th Symposium on Principles of
Programming Languages, 2008.

[TWC12] Eran Toch, Yang Wang, and Lorrie Faith Cranor. Personalization and
privacy: a survey of privacy risks and remedies in personalization-
based systems. User Modeling and User-Adapted Interaction, 22(1-2),
2012.

[Uni14] United States Department of Health & Human Services. The health
insurance portability and accountability act of 1996 (HIPAA) privacy
rule. http://www.hhs.gov/ocr/privacy, 2014.

[Vau11] Jeffrey A. Vaughan. A confidentiality extension to the Aura pro-
gramming language. In TLDI ’11: Workshop on Types in Language
Design and Implementation, 2011.

[Vit14] Vitalconnect. Healthpatch. http://www.vitalconnect.com, 2014.

287

http://www.hhs.gov/ocr/privacy
http://www.vitalconnect.com


Bibliography

[VSBW13] Victor Vu, Srinath Setty, Andrew J. Blumberg, and Michael Walfish. A
hybrid architecture for interactive verifiable computation. In SP ’13:
Proceedings of the 34th IEEE Symposium on Security and Privacy, 2013.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type
system for secure flow analysis. Journal of Computer Security, 4(2-3),
1996.

[Wat05] Brent R. Waters. Efficient identity-based encryption without ran-
dom oracles. In EUROCRYPT ’05: Proceedings of the 24th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, 2005.

[WMB09] Helen J. Wang, Alexander Moshchuk, and Alan Bush. Convergence
of desktop and web applications on a multi-service OS. In Proceedings
of the 4th USENIX Conference on Hot Topics in Security, 2009.

[WS96] David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol.
In Proceedings of the 2nd USENIX Workshop on Electronic Commerce,
1996.

[XZQ07] Haifeng Xue, Huanguo Zhang, and Sihan Qing. A schema of auto-
mated design security protocols. In CISW ’07: International Conference
on Computational Intelligence and Security Workshops, 2007.

[Yee94] Bennet Yee. Using Secure Coprocessors. PhD thesis, Carnegie Mellon
University, 1994.

[YGG+07] Fan Yang, Nitin Gupta, Nicholas Gerner, Xin Qi, Alan J. Demers,
Johannes Gehrke, and Jayavel Shanmugasundaram. A unified plat-
form for data driven web applications with automatic client-server
partitioning. In WWW ’07: Proceedings of the 16th International World
Wide Web Conference, 2007.

[YSR+06] Fan Yang, Jayavel Shanmugasundaram, Mirek Riedewald, Johannes
Gehrke, and Alan Demers. Hilda: A high-level language for data-
driven web applications. In ICDE ’06: Proceedings of the 22nd Inter-
national Conference on Data Engineering, 2006.

288



Bibliography

[ZMLA09] Wenchao Zhou, Yun Mao, Boon Thau Loo, and Martı́n Abadi. Uni-
fied declarative platform for secure networked information systems.
In ICDE ’09: Proceedings of the 25th International Conference on Data
Engineering, 2009.

289



290



Index

Symbols
@uid, 97, 106
@uid h, 97
$#elem, 252
$%me, 252
3-SAT, 29, 30

A
Abelian group, 145
abstraction, 51
access control
· G2C, 19
· SAFE, 68
activation, 51, 55–57
· dynamic, 56–57
· static, 56–57
activation order, see SAFE
activation parameter, see SAFE
activation tree, see SAFE
AD-SNARG, 185, 175–228
· adaptive soundness, 188
· authentication correctness, 187
· comparison to SNARGs, 179
· completeness, 188, 200, 221
· construction
· completeness, 200, 221
· correctness, 221
· direct, 181, 193, 216

· generic, 179, 191
· publicly-verifiable, 193
· secretly-verifiable, 216
· security, 204, 221
· soundness, 204, 221
· zero-knowledge, 228
· correctness, 187, 221
· direct construction, 181, 193, 216
· completeness, 200
· security, 204
· soundness, 204
· efficiency, 177, 198
· efficient verification, 220
· generic construction, 179, 191
· graph coloring, 187
· integrity, 177
· performance, 198
· privacy, 177
· publicly-verifiable, 193
· secretly-verifiable, 216
· security, 204, 221
· security model, 177
· soundness, 188, 204, 221
· succinctness, 189
· verifiable computation, 191
· zero-knowledge, 190, 228
additive group, 146
AJAX, 52, 253
Alpaca, 17

291



Index

amortized closed-form eff., see closed-
form efficiency

anonymity, 21, 37
· backward anonymity, 40
· forward anonymity, 40
· implementation, 39
applied π-calculus, 14, 22, 42
arithmetic circuit, 134, 145, 180, 184
· degree, 135
· evaluation, 145
· gate, 184
· homomorphic evaluation, 145
·wire, 184
assumption
· Bilinear Diffie-Hellman, 222, 224, 225,

227
· Decision Linear, 151, 153, 220
· Diffie-Hellman Exponent, 194, 204,

207–209, 211, 214, 222
· DLin, 151, 153, 220
· KEA, 205
· Knowledge of Exponent, 205
· non-falsifiable, 129, 182, 194
· Power Knowledge of Exponent, 194,

204, 205, 206, 214, 221, 223
· q-BDHE, 222, 224, 225, 227
· q-DHE, 194, 204, 207–209, 211, 214,

222
· q-PKE, 194, 204, 205, 206, 214, 221, 223
asynchronous data update, 52, 253
attribute-based encryption, 182
audit, 130
AURA, 17
AuraConf, 17
authenticated data structures, 127
authentication, 186

· EVH−MAC, 157
· for f-units, 74
· homomorphic, 182
· polynomial, 131
· tag, 130, 138

B
backward anonymity, 40
bi-process, 43
Bilinear Diffie-Hellman assumption, 222,

224, 225, 227
bilinear group, 134, 146, 151, 157, 184,

194, 216
· generator, 194, 216
bilinear map, 134, 151, 194, 216
Binder, 17
Boolean circuit, 137
broadcast encryption, 14, 37, 39, 40

C
CFEvaloff, 150, 155–156, 159
CFEvalon, 150, 155–156, 159
challenger, 139
choice operator, 43
circuit
· arithmetic, 134, 145, 180, 184
· Boolean, 137
· degree, 135
· evaluation, 145
· finite field, 180
· gate, 184
· homomorphic evaluation, 145
· identity, 148
·wire, 184

292



Index

closed-form efficiency, 133, 150, 149–
156, 220

· amortized, 150, 155, 220
cloud computing, 49, 121–126, 175
· app store, 50, 76
· cloud storage, 121–126
· integrity, 123, 177
· software-as-a-service, 49
code partitioning, 70
collision-resistant hash function, 180
· SHA-1, 180
combined graph, see SAFE
compilation
· G2C protocols, 22
· SAFE, 114
computation node (G2C), 24
concurrency, 72
consistency
· SAFE, 52, 57, 93
convolution, 146
correspondence query, 35
Cramer-Shoup signature, 180
credentials, 74
CRM, see SAFE
CSS, 52, 246
.css file (SAFE), 246
customization, 61–65, 74–77
cycle
· combined activation graph, 94
· data flow graph, 32

D
data flow graph (G2C), 22, 24
· computation node, 24
· condensed graph, 28

· cycles, 32
· edges, 24, 26
· useless, 28
· valid, 29
· example, 23
· goal node, 24
· input node, 24
· instantiations, 25
· invariants, 27
· knowledge node, 24
· nodes, 24
· active, 28, 29
· SAT clauses, 31
· translation to π, 33
data updates
· SAFE, 57, 71, 93, 253
dataset identifier, 132, 136, 220
.db file (SAFE), 242
Decision Linear assumption, 151, 153,

220
declarative networking, 14, 16
degree
· circuit, 135
· gate, 135
· polynomial, 134
delegation
· of computation, 121
· of privileges, 90, 98
Diffie-Hellman Exp. assumption, 194,

204, 207–209, 211, 214, 222
discretionary access control, 77
DKAL, 17
DLin assumption, 151, 153, 220
Dolev-Yao protocol, 14
dynamic activation, see SAFE

293



Index

E
encryption
· attribute-based, 182
· broadcast, 14, 37, 39, 40
· homomorphic, 128, 182

evaluation
· circuit, 145
· gate, 158
· homomorphic, 145
· polynomial, 145
EVH−MAC, 156–174
· authentication, 159
· construction, 157–159
· correctness, 159
· efficiency, 172
· efficient verification, 159
· evaluation, 160
· GateEval, 158
· security proof, 162
· soundness, 162
· verification, 158

extensibility, 49, 61–65, 74–112
· app store, 50, 76

F
f-unit, see SAFE
Fabric, 17
finite field, 184, 185
foreign keys, 104
forgery, 140
forward anonymity, 40
fully homomorphic encryption, 128, 182

G
G2C, 11

· access control, 19
· among-set, 21
· anonymity, 21, 36, 37
· backward anonymity, 40
· forward anonymity, 40
· implementation, 39
· backward anonymity, 40
· broadcast encryption, 39
· compilation, 22
· computation node, 24
· computation rules, 20
· condensed data flow graph, 28
· constants, 19, 21
· cryptographic implementation, 39
· data flow graph, 22, 24
· condensed, 28
· edges
· useless, 28
· valid, 29
· for-set, 21
· formal grammar, 233
· forward anonymity, 40
· goal node, 24
· goals, 20
· graph invariants, 27
· implementation of anonymity, 39
· input node, 24
· instantiations, 25
· invariants, 27
· knowledge node, 24
· language, 18, 233
·message complexity, 29
· nodes
· active, 28, 29
· parameters, 19
· principals, 18

294



Index

· protocol goals, 20
· protocol input, 20
· protocol skeleton, 28, 235
· ring signature, 39
· rules, 20
· SAT clauses, 31
· specification, 18, 233
· statements, 19
· syntax, 233
· tags, 19
· translation to π, 33
· validation, 43
· variables, 19, 21
· verification, 43
gate, 134, 184
· degree, 135
· evaluation via GateEval, 158
generator, 146, 151
global data model, 65
goal node (G2C), 24
government intelligence, 13
graph coloring, 185, 187
group
· Abelian, 145
· additive, 146
· bilinear, 134, 146, 151, 157, 194, 216
· generator, 194, 216
· prime order, 146
GroupEval, 146–148, 155–156, 159

H
hash function, 180
· SHA-1, 180
Heartbleed SSL bug, 2, 13
hierarchical programming, 51

HIPAA privacy rule, 16
HomMAC-ML, 138
· amortized efficiency, 143
· authentication correctness, 139
· correctness, 139, 143
· definition, 138
· efficiency, 143
· evaluation correctness, 139, 143
· forgery, 140
· security, 139–142
· succinctness, 139
· unforgeability, 139–142
· verifiable computation, 143
homomorphic authentication, 128, 182
homomorphic encryption, 128, 182
homomorphic evaluation
· arithmetic circuit, 145
homomorphic MAC, 125, 128, 130, 138,

135–144, 156–174, 182
· amortized efficiency, 143
· authentication correctness, 139
· construction, 157–159
· correctness, 139, 143
· definition, 138
· efficiency, 143
· efficient verification, 142, 159
· evaluation correctness, 139, 143
· EVH−MAC, see EVH−MAC
· forgery, 140
·multi-labeled program, 142
· security, 139–142
· succinctness, 139
· unforgeability, 139–142
· verifiable computation, 143
· verification, 158
homomorphic signature, 128–130, 182

295



Index

· context-hiding, 182
HomUF′CMA, 139–142
Horn clause, 21
HTTP / HTTPS, 48
hybrid argument, 152, 205, 222

I
identity circuit, 148
identity program, 137–139
injection attack, 51, 58, 254
input gate, 134
input identifier, 132, 136, 220
input node (G2C), 24
input table, see SAFE
.int file (SAFE), 245
integrity
· AD-SNARG, 177
· cloud computing, 123

interactive argument, 181
interactive proof, 181
interface
· f-unit, 66, 67, 245

internal gate, 135

J
Java, 51
JavaScript, 51, 246
Jif, 17
Jif/Split, 17
.js file (SAFE), 246

K
k-anonymity, 21
Karp reduction, 29, 153

KEA assumption, 205
Kerberos, 13
key column, 245
knowledge node (G2C), 24
Knowledge of Exponent assumption,

205

L
`-diversity, 21
label, 131, 186
labeled program, 135–138
·well-defined, 140

lattice-based signature, 180
local data model, 65, 74
local table, 85

M
MAC, see homomorphic MAC
matching tag, 35
may access(·, ·), 26
memory delegation, 124, 127
message authentication code, see ho-

momorphic MAC
Microsoft Passport, 13
model checking, 18
modularity, 51
monoid, 145
multi-label, 132, 136–138, 220
multi-labeled program, 136–138

N
NDlog, 16
Needham-Schroeder protocol, 13
NIZK, see zero-knowledge proof

296



Index

non-falsifiable assumption, 129, 182, 194
NP relation, 179, 185, 193, 194, 216
· AD-SNARGs, 193
· authenticated statement, 179

O
open source software, 1
output gate, 134
output table, see SAFE
outsourcing computation, 121
owner column, 245
owner invariant, see SAFE

P
P2/Overlog, 16
pairing function, 146
PCP theorem, 124
personalization, 49–52, 61–65, 74–77
Pinocchio, 180, 183, 194, 198, 216, 257,

259
· SNARG, 259
· verifiable computation, 257
PKCS, 13
PolyEval, 146, 155–156
polylogarithmic function, 189
polynomial, 134
· degree, 134
· size, 134
· two-variate, 134
Power Knowledge of Exponent, 194,

204, 205, 206, 214, 221, 223
preprocessing model, 181
PRF, see pseudorandom function
prime order group, 146
privacy

· AD-SNARG, 177
probabilistically checkable proof, 124
process calculus, 16
program analysis, 18
proof system, 186
· succinct verification, 179
proof-carrying authorization, 17
protocol design, 13
ProVerif, 15
· bi-process, 43
· choice operator, 43
· correspondence query, 35
· reachability query, 35
· secrecy query, 35
pseudorandom function (PRF), 149, 157
· closed-form efficiency, 149–156, 220
· security, 149
pseudorandomness, 149

Q
q-BDHE assumption, 222, 224, 225, 227
q-DHE assumption, 194, 204, 207–209,

211, 214, 222
q-PKE assumption, 194, 204, 205, 206,

214, 221, 223
QAP, 180, 184, 185, 194, 216
· for SHA-1, 180
Quadratic Arithmetic Program, see QAP
query sandbox, see SAFE

R
random oracle model, 128, 129, 180, 182
random self-reducibility, 151
reduction (proof), 29, 153
rich internet application (RIA), 49

297



Index

ring, 145, 180
ring signature, 14, 37, 39
RSA
· signature, 180

S
SAFE, 47
· abstraction, 51
· access control, 68
· activation, 51, 55–57
· activation order, 93, 94
· activation parameter
· dynamic, 57, 66
· static, 57, 66, 242
· activation tree, 51, 55, 57, 91
· refresh, 71, 93
· asynchronous communication, 70
· authentication, 74
· authentication credentials, 242
· clock, 72
· code partitioning, 70
· combined graph, 93, 93
· compiler SFW, 114
· concurrency, 72
· consistency, 52, 93
· credentials, 74, 242
· CRM, 70, 98
· CSS, 52, 246
· .css file, 246
· customization, 61–65, 74–77
· data updates, see SAFE Iupdates
· database
· initial f-unit data, 244
· internal tables, 98
· specification file, 68, 242

· subscription function, 59
· table sfw users delegation cl ,

100
· table sfw users delegation expd ,

99
· table sfw users delegation , 98
· table sfw users groups , 98, 99
· table sfw users , 98, 99
· .db file, 242
· delegation of privileges, 90, 98
· dynamic activation, 56–57
· parameters, 57, 66
· extensibility, 61–65, 74–112
· f-unit, 51, 55
· activation, 51, 55–57
· activation order, 93, 94
· authentication, 74
· authentication credentials, 242
· credentials, 74, 242
· .css file, 246
· .db file, 242
· initial data, 244
· input table, 244
· .int file, 245
· interface, 66, 67, 245
· JavaScript, 246
· .js file, 246
· local view, 244
· namespace, 102
· sandbox, 102
· .sfw file, 242
· tables, 242
· views, 242
· foreign keys, 104
· global data model, 65
· groups, 90

298



Index

· hierarchical programming, 51
· implementation, 113
· information flow, 66
· initial f-unit data, 244
· input table, 85, 102–112, 244
· installation wizard, 114
· .int file, 245
· integrator, 114
· interface, 66, 67, 245
· invariant, see SAFE Iwiring
· JavaScript, 52, 246
· function declaration, 246
· .js file, 246
· local data model, 65, 74
· local table, 85, 242
·modularity, 51
· namespace, 102
· output table, 85, 102–112, 245
· steady, 245
· owner invariant, see SAFE Iwiring
· personalization, 49–52, 61–65, 74–77
· PHP variable, 252
· predicate, 244
· query sandbox, 102
· reference monitor, 70
· refresh, 71, 93
· sandbox, 102
· security model, 51
· security overview, 66
· SFW, 53, 60, 252–254
· compiler, 114
· JavaScript, 246
· source file, 242
· .sfw file, 242
· source files
· JavaScript, 246

· SFW, 242
· SQL, 52
· static activation, 56–57
· parameters, 57, 66, 242
· steady output table, 245
· steady table, 94
· subscription function, 59, 67
· syntax, 241
· tool suite, 114
· integrator, 114
·wiring, 111
·wizard, 114
· updates, 57, 71, 93, 253
· dependencies, 92–95
· query, 71, 93, 253
· user management, 98
· user groups, 90
· variable
· PHP, 252
·wiring, 77, 92, 102–113
· foreign keys, 104
· invariant, 105, 106, 109
· invariant: all , 109
· invariant: is , 106, 109
· invariant: owner, 96, 109
· owner invariant, 96
·wizard, 114
sandbox, 102
SAT, 29–31
· G2C clauses, 31
· solver, 14, 15
SecPAL, 17
secure co-processor, 130
security model
· AD-SNARG, 177
· SAFE, 51

299



Index

self-reducibility, 151

SeNDlog, 16

SFW, see SAFE
SHA-1, 180

signature scheme, 191, 194

· context-hiding, 182

· Cramer-Shoup, 180

· encoding inefficiency, 180

· homomorphic, 182

· lattice-based, 180

· random oracle model, 180

· ring signature, 14, 37, 39

· RSA, 180

· standard model, 180

· via pairings, 180

smart metering, 177, 181, 193

SNARG, 124, 179, 181, 182, 185

· comparison to AD-SNARGs, 179

·on authenticated data, see AD-SNARG

· Pinocchio, 259

SNARK, 129, 179, 180, 191

software-as-a-service (SaaS), 49

SQL, 5, 51, 254

· injection attack, 51, 58, 254

SSL, 3, 13, 48

· Heartbleed bug, 2, 13

standard model, 128, 180

static activation, see SAFE
steady table, see SAFE
streaming delegation, 127

subscription function, 59, 67

succinctness, 139

symbolic execution, 18

T
theorem proving, 18
translation validation, 15, 17
trusted hardware, 130
two-variate polynomial, 134

U
ukey column, 245
unforgeability, 139–142

V
validation, 15, 17
· correspondence query, 35
· reachability query, 35
· secrecy, 35

verifiable computation, 121–126, 129,
143, 182

· interactive, 130
·multi-function, 128
· protocol, 143
· via AD-SNARGs, 191
· via homomorphic MACs, 143

verifiable delegation, see verif. comput.
verification, 5

W
wearable computing, 177
wire, 184
wiring, see SAFE

Z
zero-knowledge proof, 40, 178, 182, 238
· AD-SNARG, 190

300


	Introduction
	G2C — A Declarative Framework for Automated Protocol Design
	Introduction
	Illustrative Example
	Compilation to Symbolic Protocols
	Intermediate Representation as Data Flow Graphs
	From Data Flow Graphs to Protocol Skeletons
	Protocol Synthesis for the Applied -Calculus

	Anonymity
	Anonymity as Symmetric Paths in the Graph
	Advanced Cryptographic Primitives
	Validation of Anonymity

	Future Work
	Closing Remarks

	SAFE — A Declarative Framework for Extensibility in the Web
	Introduction
	SAFE
	Application Model
	Data Updates
	Customization via Extensibility
	Security

	Conceptual Details of the SAFE Implementation
	Updates from the Client
	Concurrent Updates

	Extensibility
	Background on Customization
	Background on Access Control
	Formal App Ecosystem Model
	Instantiation for App Ecosystems
	F-unit Wiring Model
	Implementation of the Extensibility Model
	Examples and Evaluation

	Discussion
	SAFE Implementation
	Future Work
	Related Work

	Conclusions

	Verifiable Delegation of Computation over Outsourced Data
	Introduction
	Related Work
	A High-Level Overview of our Techniques

	Preliminaries
	Homomorphic Message Authenticators with Efficient Verification
	Multi-Labeled Programs
	Homomorphic MACs for Multi-Labeled Programs
	Homomorphic MACs with Efficient Verification

	Utilities
	Homomorphic Evaluation of Arithmetic Circuits
	Amortized Closed-Form Efficiency
	Amortized Closed-Form Efficiency for GroupEval

	Homomorphic Message Authenticators with Efficient Verification
	Construction
	Proof of Correctness
	Proof of Security
	Efficiency Analysis


	AD-SNARGs — Zero-Knowledge Proofs over Authenticated Data
	Introduction
	Contributions of this Chapter
	Further Related Work
	An Intuitive Description of our Techniques

	Background
	Zero-Knowledge SNARGs over Authenticated Data
	SNARGs over Authenticated Data
	A Generic Construction of AD-SNARGs

	Construction: Zero-Knowledge AD-SNARGs
	Completeness
	Proof of Security
	Proof of the Zero-Knowledge Property

	Construction: Secretly-Verifiable Zero-Knowledge AD-SNARGs
	Correctness
	Proof of Security
	Proof of the Zero-Knowledge Property


	Conclusions and Outlook
	G2C
	Syntax of G2C
	Selection of the Protocol Skeleton
	Non-Interactive Zero-Knowledge Proofs Against Compromised Principals

	SAFE
	Syntax
	Algorithms
	Demonstration
	Declarative and Secure Specifications
	Customization


	AD-SNARGs
	The Pinocchio VC Scheme
	The Pinocchio SNARG Scheme
	Postponed Proofs

	Bibliography
	Index

