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Abstract

One of the most versatile modeling formalism is the one given by Markov
chains as used for the performance analysis of queuing systems or for
cost benefit ratio optimizations in the financial sector

In systems biology, chemical reaction networks have originally been
studied using deterministic models. However, when it recently became
apparent that only stochastic effects can explain certain phenomenons,
Markov chains again turned out to be a suitable modeling formalism in
the form of Markov population models. Those Markov chains possess a
structured but potentially infinite state space where each state encodes
the current counts of a fixed number of population types.

Due to the infinite state space, classical steady state analysis methods
can not be used directly. Hence, this doctoral thesis presents a highly
efficient method to compute a finite state space truncation entailing
most of the steady state probability mass. Further, stochastic comple-
mentation is lifted to the infinite state space setting and is combined
with truncation based reachability analysis and aggregation to derive
state wise steady state bounds. This method achieves high performance
even for stiff systems. Particular attention is paid on a system’s ability
to maintain stable oscillations and thus optimized analysis methods are
developed alongside. In order to prove their applicability, all techniques
are evaluated on a large variety of biological models.





Zusammenfassung

Ursprünglich wurden chemische Reaktionsnetzwerke in der Systembi-
ologie mit Hilfe von deterministischen Modellen analysiert. Als jedoch
klar wurde, dass bestimmte Phänomene nur durch stochastische Effekte
erklärt werden können, erwiesen sich Markovsche Populationsmodelle
als geeigneter Formalismus. Diese Markovketten besitzen einen struk-
turierten Zustandsraum, wobei ein Zustand die aktuelle Anzahl einer
oder mehrerer Populationstypen kodiert.

Oft ist dieser Zustandsraums jedoch unendlich groß und klassische
Methoden für die Analyse des Equilibriums können nicht benutzt wer-
den. Diese Doktorarbeit präsentiert daher eine effiziente Methode, ein
endlich großes Fenster im Zustandsraum zu berechnen, welches den
Großteil der Equilibriumswahrscheinlichkeitsmasse umschließt. Zudem
wird das Verfahren der stochastischen Komplementierung für das vor-
liegende Szenario erweitert und mit Aggregationsmethoden und der
Erreichbarkeitsanalyse basierend auf dem Abschneiden von nicht sig-
nifikanten Zuständen kombiniert. Diese Methode erlaubt die Berech-
nung von Schranken für die Equilibriumswahrscheinlichkeit aller Zu-
stände innerhalb des Fensters und ist performant – sogar für steife Sys-
teme. Der Fähigkeit eines Systems, stabile Oszillationen aufrecht zu er-
halten, wird spezielle Aufmerksamkeit geschenkt und die entsprechende
Analyse optimiert. Um ihre Einsetzbarkeit zu zeigen werden alle Meth-
oden anhand einer Vielzahl biologischer Modelle evaluiert.
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CHAPTER 1

Introduction

The task of the highly inter-disciplinary field of systems biology is to
capture the important characteristics of biological systems in mathe-
matical models and to study those models in order to discover emer-
gent properties. The traditional approach [FTY11, Kri06, SMH02] is to
formalize chemical reaction networks using ordinary differential equa-
tions (ODEs) which have a deterministic semantics. This means, that
given an initial condition, the future behavior is fully determined. Re-
cent insights however suggest that a completely deterministic approach
might not be appropriate in all of the cases since noise resulting from
low population counts of certain chemical species plays an important
role. For example, circadian clocks, the basic mechanism behind the
24 hour day-night rhythm affecting the sleeping behavior of mammals,
rely on stochastic effects to maintain an oscillatory pattern and to es-
cape equilibrium states [BL00]. This and other results [ARM98, MA97]
clearly motivate the use of stochastic modeling. The common stochas-
tic framework justified [Gil92] for those systems are continuous-time
Markov chains (CTMCs) which are also widely used in the world of
formal methods [BHHK03]. Since in those cases, a state encodes the
number of molecules of each chemical species or population type, the
respective CTMC is called a Markov population model (MPM).
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Most quantities of MPMs that are of interest can be determined ei-
ther via transient, reachability, or steady state analysis or combina-
tions thereof developed for CTMCs [Ste94, BHHK03]. While efficient
numerical techniques for CTMCs with finite state space exist [Ste94],
biologically motivated models often posses a countably infinite state
space. The reason is that usually there are no bounds on the respec-
tive molecule counts given a priori. Consequently, those techniques –
based on vector matrix multiplications and solutions of linear equation
systems – can not be used without adaption.

This doctoral thesis specializes on the development of effective and
efficient techniques to study the long-term behavior of MPMs mainly as-
sociated with the steady state, applying those results mainly to models
from the area of systems biology. The focus lies on a broad applicability
of those methods and thus, occurring problems, like different time scales
in the behavior of certain sub-systems which would hinder or slow down
the analysis, are taken care of. Finally, this thesis studies oscillatory
MPMs, where the quantity of certain populations fluctuates regularly
over time while considering noise introduced by the stochastic nature
of the model class.

1.1 Contribution

The contribution of this doctoral thesis consists of:

(i) a semi-automatic method involving user-defined Lyapunov func-
tions to compute a finite truncation of the potentially infinite
state space of an MPM that contains a major part of the total
steady state probability mass,

(ii) provable lower and upper bounds for the steady state probabilities
of all states inside that truncation,

(iii) an efficient approach to model check the steady state operator of
CSL for MPM,

(iv) a fast approximation algorithm for the multimodal steady state
distribution of MPMs possessing two or more attracting regions,

2



1.1. Contribution

(v) a truncation-based approximation algorithm for the probability
measure of all MPM paths that are accepted by a (single-clock)
DTA, and

(vi) an efficient method to compute the oscillation characteristics of
an MPM with respect to a user-defined observation measure on
states, resembling the probability distribution functions of the
measure’s period length for a chosen minimal amplitude level.

Several of these topics have been developed in chronological succession
since they depend on previous results. These dependencies are reflected
in the order of the chapters of this thesis as explained in Section 1.2.
All these contributions have been published and thus have been peer-
reviewed. The corresponding list of publications is:

[DHSW11] T. Dayar, H. Hermanns, D. Spieler, and V. Wolf.
Bounding the equilibrium distribution of Markov
population models. Numerical Linear Algebra
with Applications, 18(6):931–946, 2011.

[SW13] D. Spieler and V. Wolf. Efficient steady state anal-
ysis of multimodal Markov chains. In Analytical
and Stochastic Modeling Techniques and Applica-
tions, volume 7984 of Lecture Notes in Computer
Science, pages 380–395. Springer, Berlin Heidel-
berg, 2013.

[MNSW13] L. Mikeev, M. R. Neuhäußer, D. Spieler, and
V. Wolf. On-the-fly verification and optimiza-
tion of DTA-properties for large Markov chains.
Formal Methods in System Design, 43(2):313–337,
2013.

[Spi13a] D. Spieler. Characterizing oscillatory and noisy
periodic behavior in Markov population models.
In Proceedings of QEST, pages 106–122, 2013.

3
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Chapter 2

Chapter 3

Chapter 5Chapter 4 Chapter 6

Chapter 7

Figure 1.1: Chapter dependencies.

[SHZ14] D. Spieler, E. M. Hahn, and L. Zhang. Model
checking CSL for Markov population models. In
Proceedings of QAPL, Electronic Proceedings in
Theoretical Computer Science, 2014.

[AKS14] A. Andreychenko, T. Kruüger, and D. Spieler.
Analyzing oscillatory behavior with formal meth-
ods. In Proceedings of the ROCKS autumn school
2013, Lecture Notes in Computer Science, 2014.

1.2 Structure

Before we sketch the contents of the respective chapters of this thesis,
we would like to point at the dependencies of the chapters on each other
in Figure 1.1.

4



1.2. Structure

Chapter 2: In the second chapter we clarify the notation and define
the basic mathematical concepts. Further, we recall those topics of
probability theory that are needed later in this thesis and formally in-
troduce Markov population models as well as a related symbolic descrip-
tion mechanisms called transition classes. Moreover, we review different
transient and long-run analysis methods in the literature and argue why
they fail in many situations when dealing with biologically motivated
models.

Chapter 3: This chapter is the core of this thesis and provides a
method to determine a finite subset of the state space of a model that
comprises most of the total steady state probability mass circumvent-
ing the above mentioned problems. In addition we show how to bound
the steady state probability mass per state by only taking into account
those states inside that finite subset.

Chapter 4: A first application of this method is given in Chapter 4,
where the model checking problem is tackled for the continuous stochas-
tic logic and Markov population models with particular attention being
paid on the steady state operator.

Chapter 5: When the model of consideration is multimodal, that is,
its equilibrium distribution has two or more peaks, computation of the
equilibrium is often complicated and time consuming. The reason usu-
ally is that the transitions work on different time scales, resulting in
a stiff system of differential equations for the individual state proba-
bilities. Consequently, Chapter 5 shows a way to combine techniques
like stochastic complementation and aggregation to provide an efficient
algorithm specially suited to those problematic models.

Chapter 6: The next chapter paves the way for analyzing the oscilla-
tory character of a model. More precisely, we show how to approximate
the probability of paths of a (possibly infinite state) continuous-time
Markov chain that are accepted by a (single-clock) deterministic timed
automaton on-the-fly using truncation based transient analysis. Fur-
ther, we show how to approximate the derivatives of the acceptance
probability with respect to model parameters in order to provide a way

5
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to maximize that probability by exploiting local and global optimization
strategies.

Chapter 7: Finally, we formally define what it means for a Markov
population model to oscillate in Chapter 7 and give a specialized algo-
rithm to approximate the distribution of period lengths of those oscil-
lations depending of the minimal amplitude of interest.

6



CHAPTER 2

Preliminaries

In the further course of this thesis, many fundamental definitions and
results mainly from the areas of linear algebra and stochastic processes
will be used. In order to make the presentation consistent, we will also
introduce several naming conventions.

2.1 Notation

Sets: We will sometimes use the term infinite set which shall always
mean countably infinite set as we demand the existence of a bijection
of the set to the natural numbers, if not stated otherwise. Given a
family of sets Ai with i ∈ I for some index set I, we denote the disjoint
union by

⋃̇
i∈IAi. Disjoint union of two sets A1 and A2 is denoted by

A1 ∪̇ A2. Given an equivalence relation R ⊆ S × S, we denote the set
of equivalence classes by S/R. When we write ∃!a ∈ A we mean the
unique existence of an element that satisfies a certain property.

Numbers: The set of natural numbers N = {0, 1, 2, . . . } is extended
to the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . . }. When we restrict
to positive integers, we write N+ with N+ = N \ {0}. We associate
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the truth value true with 1 and false with 0. Consequently, the set of
booleans is B = {0, 1} ⊂ N. The character R shall denote the set of real
numbers and C = {a+ b · i | a, b ∈ R} the set of complex numbers with
the imaginary unit i defined as i = (−1)−1. The restriction of R to the
non-negative reals is denoted by R+

0 = {x | x ∈ R, x ≥ 0} and to the
positive reals by R+ = {x | x ∈ R, x > 0}.

Functions: Functions like f : A1 → A2 with domain dom(f) = A1 and
image img(f) = A2 are considered to be total, that is, for all a ∈ A1

the function is defined and has a unique result f(a) ∈ A2.

Hash Maps: In various algorithms described later in this thesis, hash
maps are used. We will treat hash maps as total functions f : A1 → A2,
where the domain A1 will be adjusted dynamically after key insertion
and deletion, especially in order to guarantee totality. Given a hash map
f : A1 → A2, the statement f(a) ← b will extend the domain of f to
A1∪{a} and the mapping is changed or extended, respectively, such that
f(a) = b. The statement remove(f, a) will reduce the domain of f to
A1 \ {a}. When we use hash maps with 0 ∈ A2 ⊆ R, we will sometimes
evaluate them for keys a 6∈ A1 and implicitly assume they will return
the value zero in these cases. Note that by using this convention, mem-
ory space can be saved when storing sparse probability distributions.
Furthermore, given two hash maps f and g with img(f), img(g) ⊆ R,
we can define the hash map h = c1 · f + c2 · g for c1, c2 ∈ R as the
hash map h : dom(f) ∪ dom(g) → R with h(a) = c1 · f(a) + c2 · g(a)
for any a ∈ dom(f) ∪ dom(g). This way, also more complex arithmetic
operations can be defined recursively. Note that we implicitly assume
that the domains of f and g have been expanded to dom(f) ∪ dom(g)
as well as that mappings to zero have been added where the functions
were not defined originally, that is, on dom(f) \ dom(g), respectively
on dom(g) \ dom(f). In order to delete all entries of a hash map
f : A1 → A2 we use the statement reset(f) which effectively sets both,
the domain A1 and the image A2 to the empty set ∅.

Vectors: Vectors are represented by boldface lower case letters like x
and are indexed by xi. Discrete distributions like π(t) are row-vectors
but are not represented by boldface letters. Scalars can be treated as

8



2.1. Notation

one-dimensional vectors. Vector 0 is the zero vector, e represents a
vector of ones, and e(i) is the vector of zeros with a one at position
i. Whether these vectors denote a row- or column-vector is dependent
on the context. Given a finite vector x =

[
x1 . . . xn

]
and (possibly

infinite) vector y =
[
y1 y2 . . .

]
, we define their concatenation as

[
x y

]
=
[
x1 . . . xn y1 y2 . . .

]
.

Sometimes, we index a vector x by a set A as in xA and use it as a short-
hand notation for the (scalar) sum

∑
a∈A xa, where we rely on an index

function defined later on. By P[x] we denote the set of multivariate
polynomial functions over x ∈ RN , that is,

P[x] = {p : RN→R | ∃c0, ci, cij , · · · ∈ R.∀x.

p(x) = c0 +

N∑

i=1

ci · xi +

N∑

i=1

i∑

j=1

cij · xi · xj + . . . }.

To each subset relationship A ⊆ B, we associate a characteristic func-
tion φBA : B → B with φBA(b) = 1 if b ∈ A and 0 otherwise.

Matrices: Matrices like Q are symbolized by capital boldface letters
with their components indexed by Qij . Vectors can be treated as ma-
trices where one of the two dimensions is one depending on whether it is
a row- or column-vector. A matrix indexed by a row index and a set of
column indices is defined as the sum MiA =

∑
j∈AMij . A matrix MA

indexed by a set of indices A is defined as the block MA =
[
Ma

]
a∈A.

The identity matrix I is a matrix with ones on the diagonal and zero
for all off-diagonal entries. Transposition of a vector or a matrix is in-
dicated by T as in QT . A matrix M =

[
f(i, j)

]
ij

denotes the matrix

where each entry Mij is defined by Mij = f(x, y). We overload symbol
0 to denote the matrix of zeros depending on the context. The matrix
exponential eM of matrix M is defined as

eM =
∞∑

i=0

Mi

i!
,

where in general by Mi we mean the i-th power of a matrix M. A
matrix is reducible iff it can be placed into block upper-triangular form

9
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by simultaneous row/column permutations, otherwise it is irreducible.
Note that our notational formalism allows matrices to be of (countably)
infinite size. Whenever this leads to possible problems or pitfalls like
in Chapter 3, we will take special care. In general, we restrict to row-
/column-finite (infinite) matrices [Hal82], that is, matrices where each
row and each column has a finite number of non-zero entries.

Index Functions and Notational Simplifications: Index functions as
defined in Definition 1 allow us to access the entries of vectors and
matrices by vectors, which comes in handy when dealing with stochastic
processes with multi-dimensional state spaces.

Definition 1: Index Function�Definition 1

An index function for a finite set A is a bijective function f : A →
{1, . . . , |A|}. If A is a countably infinite set, an index function is
a bijective function f : A → N.

For example, given matrix Q with entries Qij , those entries might be
accessed via Qf(x)f(y) with x,y ∈ NN via an index function for the set

NN . We will assume that suitable index functions f(x) are implicitly
given and simply write Qxy instead of Qf(x)f(y). We note that index

functions exist for all vector spaces NN regardless of the dimension
N ∈ N [Pol02].

Further, we will sometimes treat vectors and matrices like functions
and vice versa. For example for matrix Q with Qxy ∈ R and function
g(x) : NN → R, the product d(x) = (Q ·g)(x) is a function d(x) : NN →
R with d(x) =

∑
y∈NN Qxy · g(y).

Transformations: For several proofs, hyper-spherical coordinate trans-
formations as defined in the following definition come in handy.

10



2.1. Notation

Definition 2: Hyper-Spherical Coordinates �Definition 2

For each N ∈ N, N > 1, we define the bijective function

ψN : (R+ × [0, π/2]N−1) ∪ {0} → R+
0
N

which maps the origin 0 to itself (ψN (0) = 0) and assigns to a
hyper-spherical coordinate consisting of the distance r from the
origin and N−1 (radiant) angles α = [α1 . . . αN−1] ∈ [0, π/2]N−1

the point

ψN (r, α1, . . . , αN−1) = r ·




cos(α1)
sin(α1) · cos(α2)

sin(α1) · sin(α2) · cos(α3)
. . .

sin(α1) . . . cos(αN−1)
sin(α1) . . . sin(αN−1)




of the non-negative quadrant of RN . Further, we define ψ1 : R+
0 →

R+
0 with ψ1(r) = r. We write ψ if N is clear from the context.

Note that using function ψN , each point x ∈ R+
0
N \ {0} can be repre-

sented by exactly one combination of a distance r and angles α such that
ψN (r,α) = x and the origin is mapped to itself. This way, the hyper-
spherical coordinate transformation can be used to re-parameterize any

function on R+
0
N

for N > 1.

Probability Theory: For the formal treatment of the topics introduced
in this thesis, a basic probability theoretic tool set is required. This tool
set for example includes definitions of probability spaces, probability
functions, sigma-algebrae, random variables and so on. Since there are
far better text books covering these topics like for example [JP04] than
what could be explained in this thesis, we assume those definitions to
be given. Thus, in this paragraph, we mainly deal with the description
of the related notation.

By Pr [A], we denote the probability of an event A and Pr [A | B] is

11
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the conditional probability of event A conditioned on event B. A random
variable like X is indicated by a capital calligraphic letter, Exp [X ]
denotes its expectation, Var [X ] its variance, and Std [X ] its standard
deviation. We write X ∼ Exp(λ) to state that X is distributed according
to the (continuous negative) exponential distribution with rate λ ∈ R+.
Accordingly, we will use the symbol Uni(a, b) with a < b and a, b ∈ R
to denote the (continuous) uniform distribution in the interval [a, b].
A discrete distribution can be expressed as a vector d and we write
X ∼ d to describe that a random variable X is distributed according to
distribution d, that is, Pr [X = i] = di. If d is a probability distribution
over NN , we define the marginal distribution dj| as the distribution
defined by

dj|i =
∞∑

x1=1

· · ·
∞∑

xj−1=1

∞∑

xj+1=1

· · ·
∞∑

xN=1

d[
x1 . . .xj−1 i xj+1 . . .xN

].

2.2 Stochastic Processes

This thesis mainly concentrates on systems modeled as stochastic pro-
cesses. Consequently, we will introduce some basic definitions which we
will rely on in order to develop the further theories and approaches. For
an introduction into probability theory defining concepts like random
variables and expectations, we refer to [JP04].

Definition 3: Stochastic Process�Definition 3

A stochastic process is a family of random variables {X (t)}t∈T ,
defined on a common probability space (Ω,F ,Pr). We demand
the existence of a set S, such that for each t ∈ T , we have that
X (t) : Ω→ S. We restrict set S to be finite or countably infinite.

Index t usually denotes time and set S is called the state space. If
T = N, the stochastic process is referred to as a discrete-time stochastic
process. On the other hand if T = R+

0 , then X (t) is a continuous-time
stochastic process. We will restrict to stochastic processes satisfying

12



2.2. Stochastic Processes

the Markov property as stated in Equation (2.1) for all s0, . . . , sn ∈ S
and t0, . . . , tn ∈ T with t0 < · · · < tn.

Pr [X (tn) = sn | X (tn−1) = sn−1, . . . ,X (t0) = s0]

= Pr [X (tn) = sn | X (tn−1) = sn−1] (2.1)

Furthermore, we only consider time-homogeneous stochastic processes
as formalized in Equation (2.2) for all t, t′ ∈ T with t < t′ and all
s, s′ ∈ S.

Pr
[
X (t′) = s′ | X (t) = s

]

= Pr
[
X (t′ − t) = s′ | X (0) = s

]
(2.2)

Intuitively, the possible future behavior of a process only depends on the
current state and does not change over time. If these two requirements
are met, we call such processes (time-homogeneous) Markov chains. If
in addition T = N, we abbreviate such a process by the term discrete-
time Markov chain (DTMC), respectively if T = R+

0 , we call the process
a continuous-time Markov chain (CTMC). In the case of CTMCs, we
further demand that they are standard, that is, state changes can only
occur when time evolves as formally stated in Equation (2.3).

[
limt→0 Pr [X (t) = j | X (0) = i]

]
ij

= I (2.3)

Further, we only consider non-exploding CTMCs [And91, vD88]. In-
tuitively, if a CTMC explodes, then there is a non-zero probability of
infinitely many transitions being taken in finite time. A CTMC that is
standard and non-exploding is called regular.

The state space S is not necessarily N or a subset thereof. In fact,
S will become multi-dimensional in most cases, that is, S ∈ NN for
some dimension N ∈ N. But still, we want to base our formulations
on matrices and vectors for simplicity. This is where bijective index
functions f : S → N as defined in Definition 1 will be used, mapping
each state s ∈ S to an index f(s). As mentioned, we will abuse notation
and directly use s as the index and mean f(s). For example, we define

13
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the transient (probability) distribution of a Markov chain as the row-
vector defined in Equation (2.4).

πs(t) = πf(s)(t) = Pr [X (t) = s] (2.4)

If the limit of the transient distribution converges for t → ∞ as in
Equation (2.5), the resulting distribution is called limiting distribution.
If the Markov process is ergodic [Cin75], this distribution is unique and
independent of the initial distribution and is called the steady state
(probability) distribution synonymous with the equilibrium distribution.

πs = lim
t→∞

Pr [X (t) = s] (2.5)

Precise conditions for ergodicity will be presented later on. In order to
be able to describe those conditions, we need to define that two states
i and j communicate written i↔ j iff

∃t, t′ ∈ T.Pr [X (t) = j | X (0) = i] > 0∧Pr
[
X (t′) = i | X (0) = j

]
> 0.

(2.6)

Further, a set A ⊆ S is a communicating class if

∀i, j ∈ A.i↔ j∧ 6 ∃k 6∈ A.i↔ k. (2.7)

Finally, a Markov chain X with state space S is irreducible if S is a
single communication class. We want to emphasize that we enforce
a strict definition of the state space S. More precisely, S is defined
such that all states s ∈ S are reachable from the initial distribution as
formalized in Equation (2.8).

∀s ∈ S. ∃t ∈ T. πs(t) > 0 (2.8)

Further, given a set A ⊆ S, we define the probability reachA to reach
some state in A starting from the initial distribution as

reachA = Pr [X (t) ∈ A for some t ≥ 0] . (2.9)

14



2.2. Stochastic Processes

2.2.1 Discrete-Time Markov Chains

To sum up, we can fully describe a discrete-time Markov chain as in
Definition 4.

Definition 4: DTMC (Tuple Representation) �Definition 4

A discrete-time Markov chain (DTMC) is fully determined by a
tuple

(S,P, π(0))

where the finite or countably infinite set S is the state space, P is
the transition matrix, and π(0) is the initial distribution.

The transition matrix P captures all one step transition probabilities
as described in Equation (2.10).

Pij = Pr [X (1) = j | X (0) = i] (2.10)

Due to the law of total probability, the transient distribution π(t) at
time point t of a DTMC (S,P, π(0)) can therefore be formulated as in
Equation (2.11).

π(t) = π(0) ·Pt (2.11)

Equivalently, the transient distribution can be stated using a recursive
definition starting with a given π(0) as the base case and the recursive
step in Equation (2.12).

π(t+ 1) = π(t) ·P (2.12)

For an ergodic DTMC, the equilibrium or steady state distribution π is
characterized by the equation system stated in Equation (2.13).

π = π ·P, π · e = 1 (2.13)

An absorbing state of a DTMC (S,P, π(0)) is a state s ∈ S that can
not be left, that is, Pss = 1.

15
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2.2.2 Continuous-Time Markov Chains

An analogous tuple-based definition can be derived for continuous-time
Markov chains as well. Note that since we restrict to regular CTMCs,
the behavior of a CTMC is uniquely determined by its infinitesimal
generator matrix.

Definition 5: CTMC�Definition 5

A continuous-time Markov chain (CTMC) is fully determined by
a tuple

(S,Q, π(0))

where the finite or countable set S is the state space, matrix Q is
the infinitesimal generator, and π(0) is the initial distribution.

The infinitesimal generator Q defines the time derivatives of the tran-
sition probabilities as defined in Equation (2.14).

Qij =

{
limh→0

Pr[X (h)=j | X (0)=i]−Iij
h if i 6= j, and

−∑k 6=i Qik otherwise.
(2.14)

We call the negated diagonal rates −Qii exit rates since they amount
for the total rate to take any transition. The Chapman-Kolmogorov
Equation (2.15) [Kol31] relates the development of the transient dis-
tribution in time and the infinitesimal generator via a set of ordinary
differential equations

d

dt
π(t) = π(t) ·Q (2.15)

which has the general solution

π(t) = π(0) · eQ·t. (2.16)

if the state space is finite. For an ergodic CTMC, the equilibrium
distribution exists and is characterized by the equation system stated
in Equation (2.17).

π ·Q = 0, π · e = 1 (2.17)

16



2.2. Stochastic Processes

Given a CTMC (S,Q, π(0)), an absorbing state s ∈ S is a state that
can not be left, that is, Qss = 0.

2.2.3 Embedding of Continuous-Time Markov Chains

In certain cases, we are not interested in the time spent in each state,
although we analyze a continuous-time stochastic process X (t). More
precisely, we observe the system at the jump time points, t0, t1, · · · ∈ R+

0

with t0 < t1 < . . . where the current state is left for a successor state.
We define the resulting process as Y (n) = X(tn) for all n ∈ N as long as
state X(tn) can be left and Y (n′) = X(tn) for all n′ > n if X(tn) can not
be left. The resulting process {Y (n)}n∈N is a discrete-time stochastic
process. In the case of CTMCs, the resulting process is a DTMC as
defined by the following matrix.

Definition 6: Embedded Matrix �Definition 6

Let Q be the infinitesimal generator of a CTMC. We define the
corresponding embedded matrix E via

Eij =





−Qij ·Q−1ii if i 6= j ∧Qii 6= 0

0 if i = j ∧Qii 6= 0

0 if i 6= j ∧Qii = 0

1 if i = j ∧Qii = 0.

17
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Definition 7: Embedded DTMC�Definition 7

Given a CTMC (S,Q, π(0)) we define the corresponding embedded
DTMC as the DTMC (S,E, π(0)) where E is the embedded matrix
of Q.

2.2.4 Paths of Continuous-Time Markov Chains

When we deal with formal methods like model checking described in
Chapters 4 and 6, we will need the notion of paths in continuous-time
Markov chains.

Definition 8: CTMC Paths�Definition 8

Given a CTMC (S,Q, π(0)), we define the set of finite paths as
Path∗ ⊆ ⋃n∈N S × (R+

0 × S)n, where

(s0, t0, s1, . . . , tn−1, sn) ∈ Path∗

implies that πs0(0) > 0, Qsnsn = 0, and for all 0 ≤ i < n we have
Qsisi+1 > 0. We extend this definition to the set of infinite paths
Pathω ⊆ (S × R+

0 )ω, where we require πs0(0) > 0 and Qsisi+1 > 0
for all i ≥ 0. Let Path = Path∗∪Pathω be the set of all paths and
Path(s) the set of those paths that start in state s.

In order to access specific states and times of a path, we define the
following path accessors.

Definition 9: CTMC Path Accessors�Definition 9

For the path σ = (s0, t0, s1, . . . ) ∈ Path and i ∈ N, let σ[i] = si
denote the i-th state, and let δ(σ, i) = ti denote the time spent in
state si. For t ∈ R+

0 , let σ@t denote σ[i] such that i is the smallest
index with t ≤∑i

j=0 tj .
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2.3. Markov Population Models

We note that a probability measure Prs on measurable subsets A ⊆
Path is uniquely defined [BHHK03] with Prs[A] = Pr [A | X (0) = s].

2.3 Markov Population Models

Subject to examination in this thesis are mainly systems which describe
the behavior of several different population types. But instead of mod-
eling each individual of each population type on its own, we make use
of a higher level view where we aggregate all individuals of a type to
a counter expressing their number. Formally, we distinguish between
N population types and assume that the number of individuals can be
represented by non-negative integers from N. The corresponding state
space therefore resembles a subset of the N -dimensional vector space of
the non-negative integers, that is, S ⊆ NN . We call such a systems a
Markov population model (MPM) if its underlying behavior is Markov
and homogeneous in continuous time.

Definition 10: MPM �Definition 10

A Markov population model (MPM) for N ∈ N population types
is a CTMC (S,Q, π(0)) with S ⊆ NN .

2.3.1 Transition Classes

Since the number of states |S| might be countably infinite, computing
all entries of Q is infeasible. What we propose instead is to induce
the infinitesimal generator by a compact symbolic representation in the
form of a finite set of change vectors with state-dependent functions
that determine the transition rate [BKPR06, Eng08, Gra91]. In this
thesis, we call those pairs transition classes [HS07, HJW09].
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Definition 11: Transition Class�Definition 11

A transition class (TC) for N ∈ N population types is a tuple
(α,v), where α : NN → R+

0 is the propensity function and v ∈
ZN \ {0} is the change vector.

Intuitively, a transition class (α,v) encodes a possible transition type
from any state x ∈ S to state x + v with rate α(x) if α(x) 6= 0. This
way, given a set of R ∈ N transition classes, the corresponding generator
matrix can have a maximum of R outgoing transitions per state.

Definition 12: TC Induced MPM�Definition 12

A set {(α(r),v(r)}1≤r≤R of R ∈ N transition classes for N popula-
tion types determines the entries of the infinitesimal generator of
an MPM (S,Q, π(0)) with S ⊆ NN via

Qxy =

{∑
{r | x+v(r)=y} α

(r)(x) if x 6= y and

−∑z 6=x Qxz otherwise,

where we demand that the resulting Q uniquely defines a regular
CTMC.

Let the infinitesimal generator Q of an MPM be induced by a finite
number of transition classes. It might be the case that supi |Qii| = ∞
and the number of reachable states from a given initial state is infinite.
But still, Q has only a finite number of nonzero entries in each row and
in each column and is therefore a row-/column-finite (infinite) matrix.
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Theorem 1: Row-/Column-Finiteness �Theorem 1

The generator matrix of an MPM induced by a finite set of tran-
sition classes is row-/column-finite.

Proof: Let an MPM with state space S be described by R transition
classes with change vectors v(1), . . . ,v(R). Then, each state x ∈ S has
at most R transitions to states x + v(1), . . . ,x + v(R), which limits the
number of non-zero entries of Q per row by R. But also state x can
only be reached by a maximum of R states x−v(1), . . . ,x−v(R) which
limits the number of non-zero entries per column also by R. 2

Obviously, if Q is row-/column-finite, also its embedded matrix E as
defined in Definition 6 is well-defined and row-/column-finite. A small
model from the theory of queuing networks shall provide an intuitive
example for the usage of transition classes.

0 1 2 3 . . .

λ λ λ λ

4 · µ3 · µ2 · µµ

Figure 2.1: Graphical representation of an M/M/∞ queue.

Example 1: TC Description of an M/M/∞ Queue �Example 1

An M/M/∞ queue [HP92] describes a queuing network which con-
sists of an unbounded number of servers where incoming packets
are immediately processed. The arrival and service processes are
Markovian with exponential rates λ (arrival) and µ (service). The
system is modeled by a CTMC with state space S = N, where
each state x ∈ S encodes the number x of packets in the buffer.
Note that since we only model a single queue, the state space is
one-dimensional. A graphical representation of the CTMC is de-
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x + v(2) x x + v(1)
α(1)(x)α(2)(x)

Figure 2.2: Graphical representation of the transition classes of an
M/M/∞ queue.

picted in Figure 2.1. The corresponding generator matrix Q has
the diagonal band structure

Q =




−λ λ 0
µ −(λ+ µ) λ

2 · µ −(λ+ 2 · µ) λ
3 · µ −(λ+ 3 · µ) λ

0
. . .

. . .
. . .



.

The same generator matrix can be induced by using only two tran-
sition classes. The first transition class (α(1),v(1)) with α(1)(x) = λ
and v(1) = 1 describes the arrival process and the second transi-
tion class (α(2),v(2)) with α(2)(x) = x · µ and v(2) = −1 encodes
the service process. A symbolic illustration of the two transition
classes is given in Figure 2.2.

Note that the state space S of an MPM induced by a set of transition
classes is not necessarily unique and depends on the initial distribution
as illustrated by the following example.

Example 2: State Space of TC Induced MPMs�Example 2

A single transition class (α,v) with α(x) = 1 for all x ∈ N and
v = 2 and initial distribution π0(0) = 1 induces an MPM with
state space S = {2 · n | n ∈ N} where as for π1(0) = 1 we would
have state space S = {2 · n+ 1 | n ∈ N}.
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Consequently, if the state space of an MPM is not trivially S = NN for
some N ∈ N, we will either specify the initial distribution or directly
constrain the state space to make the model unique.

2.3.2 Chemical Reaction Networks

The majority of models in this thesis are motivated by the field of
systems biology, where biological processes are analyzed on the level of
chemical reaction networks. More precisely, molecules of different chem-
ical species react with each other and are finally transformed into other
chemical species. Each possible transformation is described by a chem-
ical reaction happening at a certain reaction rate, which determines the
likelihood and speed of the respective reaction.

Definition 13: Chemical Reaction Network �Definition 13

A chemical reaction network (CRN) involving N different chemi-
cal species C1, . . . , CN is a system of R different reactions. Each
reaction is of the form

u
(r)
1 · C1 + · · ·+ u

(r)
N · CN

cr−−→ w
(r)
1 · C1 + · · ·+ w

(r)
N · CN ,

for 1 ≤ r ≤ R and where

u(r) =
[
u
(r)
1 , . . . ,u

(r)
N

]
∈ NN

and
w(r) =

[
w

(r)
1 , . . . ,w

(r)
N

]
∈ NN

are the stoichiometric coefficients and cr ∈ R+
0 is the reaction

constant.

We use the symbol ∅ to explicitly state that there are no reactants
(u(r) = 0) or products (w(r) = 0), respectively. Also, we do not number
the chemical reactions of a CRN explicitly but rather assume an implicit
numbering of the reactions in the order of appearance. Further, in most
cases, we will use more intuitive descriptors than just C1, . . . , CN to
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denote the respective chemical species. Those descriptors will serve as
synonyms for the species and their index. In the model description, we
will indicate the species index in parentheses. For example, we might
write A(1) and B(2) to introduce two chemical species A and B, where
A is the species with index 1 and B is the species with index 2. This
will allow us later to associate the components of a state vector in an
MPM with the respective chemical species and vice versa.

Model 1: Gene Expression�Model 1

In every living organism, the complete building plan is stored in
the form of DNA. The information on the DNA is divided into
genes which mainly encode the proteins that are (potentially)
used during the lifetime of an organism. Genes are transcribed
into messenger RNA (mRNA), an intermediate encoding, before
they are finally translated into the respective proteins. We can
model the transcription/translation process of a single protein via
a small CRN consisting of two species, mRNA M(1) and the pro-
tein species P (2). The corresponding chemical reactions are

∅ ρ−−→ M

M
τ−−→ M + P

M
δM−−−→ ∅

P
δP−−−→ ∅

where the first reaction describes the transcription of a gene into
mRNA at a constant rate ρ. The second reaction describes the
translation process of mRNA into proteins with reaction constant
τ . The remaining reactions are related to the degradation of
mRNA and the proteins at reaction constants δM and δP , respec-
tively. Figure 2.3 illustrates that model.

An example of a chemical reaction network is given in Model 1. Approx-
imations of the behavior of chemical reaction networks by interpreting
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cell
DNA
...... ...
gene

mRNA

ρ

tra
ns
cr
ip
tio
n

mRNA + proteintranslation
!

degradationδM δP

∅ ∅

Figure 2.3: Illustration of the gene expression model.

the originally discrete state space as a continuum and approximating
population counts solely by their respective expectation are widely used.
The resulting system of ordinary differential equations resemble the law
of mass action as known in chemistry. Recent discoveries however sug-
gest that for certain models, a stochastic treatment on the molecule
level is more appropriate. We refer to Chapter 7 for a detailed discus-
sion. Then, as it has been shown in the seminal work of Gillespie et
al. [Gil92], the underlying process semantics is best characterized by a
continuous-time Markov chain. We refer to [Kur72] for an investigation
of the relationship between the two views. The quintessence is that if
at least one population count may become small, the effects of intrinsic
noise can not be neglected, hence continuous approximations become
inaccurate [HMMW10], and a stochastic treatment is more appropriate.
This phenomenon has been observed very often in the case of chemical
reaction networks [TvO01, SES02, Pau04].

The use of Markov population models in the stochastic setting allows
for an intuitive way of modeling those systems. More precisely, there
is a one-to-one relationship between chemical species and MPM popu-
lation types as well as reactions and MPM transitions. Formally, this
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relationship is defined as in the following.

Definition 14: CRN Induced TCs�Definition 14

Let a CRN with N chemical species and R reactions be given.
Every reaction r induces a transition class (α(r),v(r)) for the MPM
(S,Q, π(0)) with S ⊆ NN as defined in Equations (2.18) and (2.19).

α(r)(x1, . . . ,xN ) = cr ·
N∏

i=1

xi!

u
(r)
i ! · (xi − u

(r)
i )!

(2.18)

v(r) = w(r) − u(r) (2.19)

Note that the propensity functions are polynomial functions, that
is, α(r) ∈ P[x] since the factorials reduce to polynomials in the
end.

Also note that models with more general propensity functions exist.
However, most of the time, we restrict to the form in Equation (2.18).
The following example shall provide an intuitive understanding about
the relationship between chemical reaction networks and Markov pop-
ulation models.

Example 3: TCs for the Gene Expression Model�Example 3

The state space of the gene expression model as defined in Model 1
is S = N2 and the four transition classes are
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α(1)(x) = ρ, v(1) =
[
1 0

]
,

α(2)(x) = τ · xM , v(2) =
[
0 1

]
,

α(3)(x) = δM · xM , v(3) =
[
−1 0

]
,

α(4)(x) = δP · xP , v(4) =
[
0 −1

]
.

We would like to exemplify the different forms of propensity functions
that usually appear when dealing with CRN in the following.

Example 4: Types of Reactions �Example 4

Any reaction
∅ c1−−→ . . .

with no reactant molecules has a constant propensity function
α(x) = c1. The propensity function corresponding to a mono-
molecular reaction of the form

A
c2−−→ . . .

has the form α(x) = c2 ·xA since each of the xA molecules of type
A can react at rate c2. Bi-molecular reactions

A+B
c3−−→ . . .

have propensity functions α(x) = c3 ·xA ·xB accounting for each of
the xA ·xB combinations of A and B molecules to react at rate c3.
But also two molecules of the same type can react. Such a process
is called dimerization, where two reactants P form a dimer D as
in

2 · P c4−−→ D

whose propensity function has the form α(x) = 0.5 · c3 ·xP · (xP −
1), where each of the xP ·(xP−1)

2 combinations of two different P
molecules can react at rate c4. More than two reactant molecules
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are rare and usually, those reactions can be split into a combination
of these elementary reaction types.

2.4 Transient Analysis for Markov Population
Models

Although this thesis focuses primarily on equilibrium analysis for Markov
population models, various approaches will rely on an approximation
of the transient distribution of an MPM as well. Since MPMs are a
sub-class of CTMCs, this computation boils down to efficiently solving
Equation (2.15). In the following, we would like to give a small overview
of the respective standard methods in the literature.

2.4.1 Stochastic Simulation

The stochastic simulation algorithm (SSA) [Gil76] also widely known as
Gillespie simulation (direct method) is stated in Algorithm 1 and uses
pseudo-random numbers to compute a sample trajectory according to
the model’s underlying stochastic process semantics. Keeping track of
the current time t and state x over multiple simulation runs allows for
the generation of statistics about the events of interest. For example, if
interested in the transient probability πx′(t

′) to be in state x′ at time
t′ and a total of n out of N simulation runs until time t′ would end
in state x′, one would estimate πx′(t

′) ≈ n
N . One could also estimate

the corresponding variance in order to compute confidence intervals for
those estimates and further statistics [LK00].
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Algorithm 1 SSA({(α(r),v(r))}1≤r≤R, π(0), T )

1: t← 0
2: sample x ∼ π(0)
3: while t < T do
4: α0 ←

∑R
r=1 α

(r)(x)
5: if α0 = 0 then
6: t← T
7: else
8: sample τ ∼ Exp(−α0)
9: sample j ∼

[
α(r)(x) · α−10

]
r

10: x← x + v(j)

11: t← t+ τ
12: end if
13: end while

In general, stochastic simulation based on Monte-Carlo simulation is
often used in order to derive quantities based on the transient or steady
state probability distribution [ROB05].

Several techniques like explicit [Gil01] and implicit [RPCG03] τ -
leaping have been developed to speed up the simulation time by not
advancing the simulation step by step but by larger time intervals τ in
which several transitions might occur. But despite those improvements,
the use of these simulation methods is still limited in the case when the
full transient or steady state probability distribution shall be approxi-
mated. The reason is that a large number of simulation runs is needed
to estimate the individual probabilities at a sufficient precision [LK00].
This problem becomes worse when interested in the estimation of small
probabilities since the corresponding events are rarely encountered and
thus increase the number of needed simulation runs even further. Al-
though, techniques like rare-event simulation try to combat that prob-
lem, they are usually not directly usable without model-specific adap-
tations. For example, when using an approach based on importance
sampling [Jun06], an appropriate change of measure is needed, that is,
the transition rates of the system have to be altered in order to make
the rare event more likely. This is complicated without prior knowledge
about the system. One of the biggest challenges when using standard
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simulation for approximating the steady state, is to decide when the
stationary distribution is reached, that is, when the bias introduced by
the choice of the initial state vanishes. Remedy comes in the form of
methods like perfect simulation based on a technique called coupling
from the past [PW96], where the goal is to directly generate samples
of the steady state distribution, provided that structural properties like
monotonicity [PW96] hold.

2.4.2 Uniformization

Assuming an appropriate precision, numerical solution techniques cir-
cumvent the problem of rare events by computing the full transient
probability distribution directly exploiting the Chapman-Kolmogorov
Equation (2.15). Intuitively, this can be seen as considering all possible
simulation runs at once. While there exists a wide variety of meth-
ods like computing [ML78] the matrix exponential of Equation (2.16)
in the case of a finite state space, a prominent and very efficient tech-
nique called uniformization [Gra77a, Gra77b] usually gives better re-
sults [Ste94]. The main idea is that the underlying CTMC is decom-
posed into a Poisson process governing the progress of time and a DTMC
governing the distribution of the probability mass among the states.

Definition 15: Uniformized CTMC�Definition 15

Given a CTMC (S,Q, π(0)) and a uniformization rate

u ≥ sup
x∈S
−Qxx 6=∞,

the uniformized CTMC (UCTMC) is defined as the DTMC

(S,P, π(0))

with
P = I + u−1 ·Q.
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Using the identity Q = u · (P − I) and the general solution of the
Chapman-Kolmogorov Equation (2.16), one can derive

π(t) =
∞∑

i=0

π(0) ·Pi · e−u·t · (u · t)i
i!

. (2.20)

The first part of the sum’s inner term can be computed using the re-
cursion

π(0) ·Pi = p(i) with p(0) = π(0),p(k) = p(k−1) ·P

resembling the transient solution of the uniformized CTMC as in Equa-
tion (2.12). Application of the Fox-Glynn algorithm [FG88] finally gives
lower and upper bounds for the infinite sum’s index i such that π(t) can
be approximated up to an a priori chosen error ε. Further, the algo-
rithm also efficiently computes the Poisson probabilities in the second
part of the sum’s inner term.

In fact, an infinite state space poses a serious problem for most stan-
dard numerical solution algorithms, since the full probability distribu-
tion can not be stored explicitly in memory. Note that techniques based
on simulation do not suffer from this problem since only the current
state and the relevant statistics need to kept in memory. We would like
to illustrate an example where indeed an infinite amount of memory
would be needed.

Example 5: Poisson Process �Example 5

Assume we are given a CRN with a single chemical species A and
the only reaction

∅ λ−−→ A

for λ > 0. The induced TC is given by α(x) = λ and v = 1 on
state space S = N. The corresponding generator matrix Q has a
simple diagonal band structure Qxy = λ if y = x+1, Qxy = −λ if
x = y and 0 otherwise. The resulting process is a Poisson process
with rate λ and assuming π0(0) = 1, the corresponding analytical
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transient solution is

πx(t) =
(λ · t)x

x!
· e−(λ·t).

Obviously, for all x ∈ N we have πt(x) > 0 for any t > 0, that is,
intuitively the probability mass after a non-zero amount of time is
spread over a (countably) infinite amount of states.

As we have seen in Example 5, approximating and storing the tran-
sient probabilities for each state is not possible. One could argue that
a Poisson process has this problem since it is not ergodic, but also an
ergodic M/M/1 queue with a service rate greater than its arrival rate,
shows the same difficulties when examining its analytical solution as
for example exercised in [AW87]. Further, only for very simple mod-
els derived from CRNs [JH07], that is, models where only reactions

are involved with
∑d

i=1 u
(r)
i ≤ 1, an analytical solution can be derived

easily. Consequently, the transient probability distribution needs to be
approximated.

2.4.3 Numerical Methods Based on Dynamic State Space
Truncation

A remedy for the problem of infinite storage needs is to truncate the
state space dynamically. The seminal idea as introduced by Munsky and
Mhammash in 2006 [MK06] and in Munsky’s PhD thesis [Mun08] is to
project the infinite state space onto a finite subset and an additional
single absorbing state corresponding to the rest. The probability mass
absorbed in that state can be used to compute bounds on statistical
quantities of the full system by only taking the behavior inside the
projected state space into account.

Follow-up approaches artificially truncate the support of the transient
probability distribution π(t) dynamically after each numerical transient
analysis iteration step to keep only significant states, that is, states s
with transient probability mass πs(t) > δ for a chosen truncation thresh-
old δ > 0. The basic idea of keeping track of the major part of the tran-
sient probability mass using a finite sliding window possessing specific
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geometric shapes (like rectangles, cubes, and hypercubes) in a multi-
dimensional state space was developed in [HMW09]. Further improve-
ments like an adaptive uniformization scheme taking into account that
the uniformization rate might change over time depending on the cur-
rent set of significant states, were introduced in [DHMW09]. A tool that
includes sophisticated implementations of truncation based approaches
is SHAVE [LMW11], which is under active development at the chair of
modeling and simulation at Saarland University. Still, a problem of ba-
sic truncation-based approaches is that despite the infinite state space
has been reduced to a finite subset via truncation, for many MPMs, the
significant part of the state space grows exponentially with the number
of population types. In addition, if the expected population counts grow
large, the state space significally grows as well. In order to overcome
that issue, the work [HMMW10] proposes to approximate populations
by their expectations and covariances if their population counts grow
above a given threshold. The resulting system becomes a hybrid system
where the state space contains a discrete stochastic part (population
types with a population count below the threshold) and a continuous
deterministic part (population types with a population count above the
threshold). In each time step, the populations that are treated dis-
crete stochastically evolve according to the MPM semantics given in
this chapter. The deterministic species however are each aggregated by
their mean, a single scalar value and optionally higher moments, and
thus evolve deterministically according to a reduced number of ordi-
nary differential equations. The SHAVE tool features this technique
as well. Note that in this thesis, whenever we need to solve a system
transiently, we will assume that the significant part of the state space,
that is, the set of states with a transient probability mass greater than
a given threshold, can be kept in memory and that thus we do not need
to use hybrid systems as an approximation.

In later chapters, we will rely on truncation based transient analysis
as stated in Algorithm 2 inspired by the mentioned work. The algorithm
takes

• the initial distribution π(0),

• a description of the infinitesimal generator Q,

• the time point of interest t,
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• and a function advance that implements a single integration step

as its input and returns p, an approximation of π(t), and the total
approximation error e containing the probability mass of all states that
have been deleted along the way (cf. line 8). Note that the creation
of the hash map p via argument S, the state space, is only meant to
allow the hash map initialization routine to infer the type of the keys.
Consequently, a reachability analysis to determine the full set S is not
needed.

Algorithm 2 transient(π(0),Q,S, t,δ,advance)

1: t′ ← 0; e← 0
2: p← new hash map S → [0, 1]
3: ∀s with πs(0) > 0: p(s)← πs(0)
4: while t′ < t do
5: choose appropriate h
6: ∆t← min(t− t′, h)
7: p← advance(p,Q,∆t)
8: ∀s with p(s) < δ: e← e+ p(s) and remove(p, s)
9: t′ ← t′ + min(t− t′, h)

10: end while
11: return [p, e]

Algorithm 2 propagates the probability mass currently stored in hash
map p for h time units as long as the desired time point t has not been
reached. After each propagation, all insignificant states s with p(s) < δ
are deleted and the total error, that is, the truncated probability mass
is accumulated in e. Note that for a reasonable choice of δ =1e-20, the
total error e remains negligible small (in the order of 1e-10 or less) for
many systems. We refer to [DHMW09, MNSW13] for more detailed
discussions.

In the following Algorithm 3, the flow π(t) · Q as defined in Equa-
tion (2.15) is approximated for all states in dom(p).
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Algorithm 3 flow(p,Q,S)

1: p′ ← new hash map S → R
2: for s ∈ dom(p) do
3: for s′ with Qss′ 6= 0 do
4: p′(s′)← p′(s′) + p(s) ·Qss′

5: end for
6: end for
7: return p′

The Euler method as stated in Algorithm 4, following the flow evalu-
ated at the current approximation of the transient probability mass for
h time units can be used as a simple integration method supplied to
Algorithm 2.

Algorithm 4 euler(p,Q, h)

1: return p+ h · flow(p,Q)

A more advanced integration scheme is the Fourth-Order Runge-Kutta
(RK4) method which is a standard method used to numerically inte-
grate systems of ordinary differential equations and provides a superior
numerical precision compared to many approaches including the Eu-
ler method. For a general overview of integration methods, we refer
to [Atk89]. The usage of RK4 as the numerical integration scheme
of choice is mainly motivated pragmatically. It is usually considered
as very stable for small time steps and easy to implement in the pro-
posed truncation based framework. As mentioned previously, numer-
ical integration based on uniformization would also have been a good
choice. However, sophisticated heuristics for the uniformization rate
would have been needed in advance which becomes non-trivial for infi-
nite state-spaces. Moreover, since the set of significant states and thus
the maximum exit rate might change over time, an adaptive uniformiza-
tion scheme varying the uniformization rate over time would be needed
to efficiently cope with that dynamics. Intuitively, the chosen scheme
using RK4 does not concentrate on how to approximate the transient
distribution for a single time point in the most efficient way but allows
the computation of its evolution over time. This is needed for example
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when dealing with oscillatory systems in Chapter 7. Another advantage
is that it is easy to adapt the only parameter of RK4, the time step h,
at each time point since the current maximum exit rate of all significant
states is known in each time point and does not have to be guessed in
advance.

Algorithm 5 RK4(p,Q, h)

1: k1 = flow(p,Q)
2: k2 = flow(p+ 0.5 · h · k1,Q)
3: k3 = flow(p+ 0.5 · h · k2,Q)
4: k4 = flow(p+ h · k3,Q)
5: return p+ h

6 · (k1 + 2 · k2 + 2 · k3 + k4)

Note that in order to provide an efficient computation, Algorithm 2
relies on an appropriate implementation of hash maps from states to
their current transient probabilities. Also, all outgoing transitions of a
state must be computable in an efficient way. One such way is provided
by the use of MPMs induced by sets of transition classes as defined in
Definition 12 allowing for a symbolic representation of Q. The imple-
mentation of Algorithm 2 with a RK4 integration scheme that is used
in this thesis contains further tweaks. On the one hand, the integration
function is defined as a C++ template which has direct access to all
data structures of the transient analysis algorithm eliminating the need
of several hash maps and function calls. On the other hand, for each
significant state, all outgoing transitions with rate and successor state
are cached in a graph like structure. Note that this is possible since
we only consider time-homogeneous Markov chains. From a theoretical
perspective, the time complexity of Algorithm 2 using RK4 for time
step integration is O(u · t ·n) where u is the maximum exit rate encoun-
tered until time t and n is the maximum number of significant states
until time t. Note that we assume a sparse model which is given in the
case of an MPM induced by a constant number of R transition classes.
Hence, the space complexity is O(n).
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2.5 Steady State Analysis for Markov Population
Models

The main topic of this thesis is to analyze the steady state distribution
of MPMs. For that, we will review general requirements for the exis-
tence of the equilibrium distribution of CTMCs as well as approaches to
compute it. Afterwards, we will clarify the problems of those standard
techniques when trying to apply them to MPMs with an infinite state
space.

2.5.1 Finite Irreducible Continuous-Time Markov Chains

At first, we would like to restrict to the case of CTMCs with a finite state
space and review the conditions for the unique existence of the steady
state distribution. Recall, if the Markov process is ergodic [Cin75],
the limiting distribution coincides with the steady state distribution as
stated in Equation (2.5).

Theorem 2: Ergodicity for Finite CTMCs �Theorem 2

A CTMC with finite state space is ergodic iff it is irreducible.

Proof: We refer to the respective proof in [Tri02]. 2

Checking Irreducibility: Consequently, when analyzing a CTMC with
finite state space, all we need to check in order to ensure the unique
existence of the equilibrium distribution is whether the state space is
a single communicating class as defined in Equation (2.7). We can do
that by analyzing the CTMC’s graph structure.
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Definition 16: Directed Graph�Definition 16

A directed graph is a tuple (V,E) with vertex set V and edge rela-
tion E ⊆ V × V .

Definition 17: Graph Structure of a CTMC�Definition 17

The graph structure of a CTMC (S,Q, π(0)) is defined as the graph
(S, E) with E = {(i, j) ∈ S × S | Qij > 0}.

A communicating class of a CTMC corresponds to a bottom strongly
connected component in its graph structure.

Definition 18: Strongly Connected Component (SCC)�Definition 18

Given a graph (V,E), a strongly connected component (SCC) is a
subset A ⊆ S such that

∀vs, ve ∈ A, vs 6= ve.∃v1, . . . , vn ∈ A.
(vs, v1), (v1, v2), . . . , (vn−1, vn), (vn, ve) ∈ E. (2.21)

Definition 19: BSCC�Definition 19

A SCC A for a graph (V,E) is a bottom strongly connected com-
ponent (BSCC) if

∀v ∈ A. 6 ∃(v, v′) ∈ E.v′ 6∈ A (2.22)
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Theorem 3: Communicating Classes and BSCCs �Theorem 3

Given a CTMC (S,Q, π(0)) and its graph structure (S, E), a sub-
set A ⊆ S is a communicating class of the CTMC iff it is a BSCC
in the graph.

Proof: We refer to the respective parts of the proof of Theorem 3.2.1
in [Nor98]. 2

An efficient algorithm to compute all SCCs of a graph is Tarjan’s
strongly connected components algorithm [Tar72]. In order to compute
all BSCCs of a graph, one can use Tarjan’s algorithm to first compute
all SCCs and filter out all those SCCs that have a transition leaving the
SCC. If there is a single (B)SCC A = S, the CTMC is irreducible and
thus has a unique steady state distribution. We note that in this thesis,
we will not explicitly prove irreducibility in cases where it is obvious.

Relationship Between the Equilibrium Distribution of a CTMC and
its UCTMC: Before we state possible ways of computing the equilib-
rium distribution of CTMC, we would like to clarify the relationship
between the equilibrium distribution of a CTMC and its UCTMC.

Theorem 4: Equilibrium Distribution of UCTMCs �Theorem 4

The equilibrium distribution of the uniformized CTMC with an
uniformization rate u > supx∈S −Qxx 6= ∞ coincides with the
equilibrium distribution of the original Markov chain.

Proof: Let the DTMC (S,P, π(0)) be the uniformized CTMC of the
continuous-time Markov chain (S,Q, π(0)) using uniformization rate u.
Further let π be the steady state distribution of the uniformized CTMC.
Consequently, we have that π ·P = π ⇔ π · (P− I) = 0. Inserting the
definition of P, we get π · (I + u−1 ·Q − I) = 0. Elimination of I and
multiplication of both sides with u finally yields π · Q = 0. We need
to choose a slightly higher uniformization rate than just supx∈S −Qxx
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such that the resulting uniformized CTMC is aperiodic [Ste94] and pos-
sesses a unique steady state distribution. 2

Note that uniformization is only applicable, if the exit rates are bounded.
In the case of MPMs with infinite state spaces, this is not necessarily the
case since the rates α(x) might grow without bounds with increasing
population counts xi. Nevertheless, there is work on numerical analysis
methods that approximate the transient probability distribution of an
MPM [HBS+07, SBM07]. For example, techniques like Fast Adaptive
Uniformization [DHMW09] based on adaptive uniformization [vMS94].
They work on a finite subset of the state space similar to the technique
explained in Chapter 2.4.3. Thus, they enable the application of uni-
formization even for infinite MPMs without any a priori bound on the
uniformization rate.

Computing the Steady State Distribution: In the case of an ergodic
system with finite state space, Equation (2.17) can be solved using a
huge variety of methods depending on the structure of the infinitesimal
generator.

• Transient Analysis: According to its definition, the transient prob-
ability distribution π(t) converges to the steady state distribution
π with increasing time horizon t. Consequently, numerical meth-
ods for transient analysis as discussed in Chapter 2.4.2 can be
used to approximate the equilibrium distribution assuming suit-
able convergence criteria and tests [Ste94]. Depending on the
transition rates and chosen time step size, the convergence speed
might not be satisfactory.

• Simulation: A long simulation run using the Stochastic Simula-
tion Algorithm 1 can also be used to approximate the equilibrium
distribution. For that, for each state, the algorithms needs to keep
track of the time needed to return to the state after it has been
left [Nas04]. A problem of simulative approaches are stiff systems,
where transitions from one region of the state space to another
are very unlikely. In order to faithfully capture the equilibrium
distribution in all regions, the switching between regions must be
observed very often, although it is a rare event. Consequently,
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the needed simulation time is large. Note that τ -leaping meth-
ods as described in Chapter 2.4.1 can not be used since they skip
intermediate states in-between two time steps.

• Iterative Methods: According to Theorem 4, the original prob-
lem can be reduced to the computation of the equilibrium dis-
tribution of a discrete-time Markov chain. Using Equation 2.12
to approximate π by recursively computing π(t) for growing t is
called power method [MPG29]. Depending on the uniformization
rate, the convergence speed might still be slow. Nevertheless,
even for huge state spaces like in the case of the Google page rank
computation [BL06], this method is widely used. Other iterative
methods like Jacobi, Gauss-Seidel, and successive over-relaxation
(SOR) can directly be applied to Equation (2.17). For an overview
of those iterative methods we refer to [Ste94]. In case of large
linear equation systems, iterative Krylov subspace methods like
(bi-)conjugate gradient methods can be applied as well. For an
overview we refer to [VdV03] and [Ste94].

• Direct Solutions: If the state space is small, the equation system
can also be solved directly, for example using Gaussian elimina-
tion [Atk89] or matrix decomposition methods like LU factoriza-
tion [BH72].

• Product Form Solutions: Depending on the structure of the in-
finitesimal generator, the equilibrium distribution of an MPM
with N population types can be represented by the product of
marginal distributions

π[
x1 . . .xN

] = c ·
N∏

i=1

πi|xi

with a scaling factor c ∈ R+. Product form solutions provide
an efficient way to evaluate the steady state distribution even for
larger dimensions N since it suffices to compute and store the
marginal distribution for each dimension. The state wise proba-
bilities then can be computed by a simple product. Population
models induced by chemical reactions only posses a product form
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solution if the chemical reaction network is weakly reversible and
has a deficiency of zero [ACK10].

2.5.2 Finite Reducible Continuous-Time Markov Chains

If a CTMC is not irreducible, the limiting distribution is not unique
since it depends on the initial distribution. We want to illustrate that
situation using the following example.

Example 6: Reducible CTMC�Example 6

Consider the following CTMC which is not irreducible since it has
the two BSCCs B1 = {0} and B2 = {1}.

0 1

1 1

Here, the limiting distribution coincides with the initial distribu-
tion π(0) since none of the two states can be left.

In those cases, the limiting distribution might be of interest instead
which can be computed efficiently as formalized in Theorem 5.

Theorem 5: Limiting Distribution�Theorem 5

Given a finite and reducible CTMC (S,Q, π(0)) with n ∈ N BSCCs
B1, . . . ,Bn, the corresponding limiting distribution is given by

lim
t→∞

Pr [X (t) = s] =

{
0 if s 6∈ Bi ∀1 ≤ i ≤ n
reachBi · πBis if s ∈ Bi,

where πBi is the equilibrium distribution of the (irreducible) CTMC
with state space Bi and infinitesimal generator QBi (and arbitrary
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initial distribution) and reachBi denotes the probability to reach
BSCC Bi starting with the initial distribution.

Proof: We refer to the proof of Theorem 6.16 in [Kul95]. 2

Consequently, when interested in the limit distribution of a finite re-
ducible CTMC, Theorem 5 also gives a suitable computation scheme.
The first task is to compute all BSCCs B1, . . . ,Bn for example using
Tarjan’s algorithm [Tar72] and filtering out all those SCCs that can be
left by a transition. Next, the probability reachBi to reach each BSCC
Bi needs to be computed. Also, the local steady states πBi of BSCCs
Bi need to be computed as described in Chapter 2.5.1. Finally, the lim-
iting distribution can be assembled by weighting the local steady state
distributions πBi with the respective reachability probabilities reachBi
and setting the long run probability of all transient states, that is, states
s ∈ S \ (B1 ∪ · · · ∪ Bn), to zero.

2.5.3 Infinite Continuous-Time Markov Chains

Most stochastic models based on chemical reaction networks as intro-
duced in Chapter 2.3.2 do not have an upper limit on the molecule
counts per chemical species. Consequently, the resulting MPM has an
infinite state space. Unfortunately, if the state space of a CTMC is
infinite, neither the results nor the methods for finite CTMCs in Chap-
ters 2.5.1 and 2.5.2 are directly applicable.

The Problem of Deciding Ergodicity: More precisely, for an infinite
state CTMC, a further condition for ergodicity called positive recurrence
alongside irreducibility must be satisfied which is hard to check directly.
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Theorem 6: Ergodicity for Infinite CTMCs�Theorem 6

A CTMC X (t) with infinite state space S is ergodic iff it is irre-
ducible and at least one state s ∈ S is positive recurrent, that is,
the expected return time

Exp [inf{t ≥ t∗ : X (t) = s} | X (0) = s]

is finite, where t∗ = inf{t ≥ 0 : X (t) 6= X (0)} is the time of the
first jump of X .

Proof: We refer to the proof of Theorem 3.5.3 in [Nor98]. 2

Note that also checking irreducibility is not straightforward since a
graph analysis traversing all states as described in Chapter 2.5.1 is not
possible due to the infinite amount of states.

The Problem of Infinite Support: Even if ergodicity has been shown,
the computation of the equilibrium distribution can not be done as in
the finite case. Standard direct methods like Gauss-elimination operate
on the complete infinitesimal generator matrix which is infinite in size
and therefore can not be kept in memory. But also standard iterative
methods can not be used as they require the current approximation of
the complete equilibrium distribution to be kept in memory although
it might have infinite support as illustrated in Example 7.

Example 7: The M/M/∞ Queue in Equilibrium�Example 7

The M/M/∞ queue as shown in Example 1 is ergodic and has

πi =
(λµ)i

i!
· e−

λ
µ > 0 ∀i ∈ N

as its equilibrium distribution, that is, the Poisson distribution
with parameter ρ = λ

µ .
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Consequently, the state space needs to be truncated to a finite set that
captures the true nature of the steady state distribution. We want to
remark that such an analytical solution only exists when there is a single
population type and the number of individuals in each state may only
change by one [GW76]. When such a change exceeds one, approximation
techniques for example exploiting that the fraction πi+1/πi is a slowly
varying quantity [Lan62] can be used [GW76] to reason about the mean
and variance of π.

One could argue that approaches based on inexact transient analysis
as introduced in Chapter 2.4.2 could be used to approximate the equi-
librium distribution since at each time point the algorithm concentrates
on a finite set of significant states. But unfortunately, exactly that way
of truncating the state space in each iteration poses serious problems
for certain systems. We want to illustrate those problems with the fol-
lowing simple multimodal system. Note that for simplicity and in order
to be able to compare with standard methods, a finite state system was
chosen but the inherent problems are present in infinite systems as well.

Model 2: Simple Multi-Stable System �Model 2

The simple multi-stable system consists of chemical species A(1)
and B(2) and the reactions

A+B
τA−−−→ 2 ·B

B +A
τB−−−→ 2 ·A

A
νA−−−→ B

B
νB−−−→ A

These four reactions can be described by the transition classes
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α(1)(x) = νA · xA + τA · xA · xB, v(1) =
[
−1 1

]

α(2)(x) = νB · xB + τB · xA · xB, v(2) =
[
1 −1

]

since reactions 1 and 3 as well as reactions 2 and 4 share the same
change vector.

Depending on the choice of the initial distribution, the extent of the
state space varies. More precisely, if for example we choose initial dis-
tribution

π[
a b

](0) = 1 with
[
a b

]
∈ N2,

the resulting state space is

S = {
[
xA xB

]
∈ N2 | xA + xB = z}

with z = a+ b. Since the total number of molecules present initially is
preserved by both change vectors, we have xB = z − xA for all states[
xA xB

]
∈ S. Consequently, we can express the exit rate −Qxx =

α(1)(x) + α(2)(x) of a state x =
[
xA z − xA

]
∈ S as

f(xA) = −Qxx = −(τA+ τB) ·x2
A+ (νA−νB + [τA+ τB] · z) ·xA+νB · z.

If we interpret f(xA) as a function f : R → R, we can bound the exit
rate from above in order to find a suitable uniformization rate. Since
f(xA) is a quadratic concave function, it reaches its maximum where
xA satisfies d

dxA
f(xA) = 0 with

d

dxA
f(xA) = −2 · (τA + τB) · xA + νA − νB + [τA + τB] · z

which is the case at

xA =
νA − νB + (τA + τB) · z

2 · (τA + τB)
.

Now, we fix the parameters to

τA = τB = 10.0 and νA = νB = 0.00001
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and start with probability one in state
[
50 0

]
which gives z = 50. The

maximal exit rate therefore is 1250.00025 which is reached in state
[25 25] and also serves as the uniformization rate u.

First, we have a look at the steady state distribution of this system il-
lustrated in Figure 2.4 which was computed by the PRISM tool [KNP11]
using the power method on the UTCMC with a maximum of one million
iterations and relative termination epsilon of 1e−6. Note that this was
only possible since the state space is finite. Clearly, the system is bi-

Figure 2.4: Steady state distribution of Model 2 with initial state [50 0]
and parameter set τA = τB = 10.0, νA = νB = 0.00001.

stable in the sense that the steady state distribution has two peaks, one
in state

[
0 50

]
and another one in state

[
50 0

]
, each with approximately

50% of the total steady state probability mass.
Now, we perform an approximate transient analysis using Algorithm 2

with truncation threshold δ = 1e − 6, RK4 as the integration method
and a time step size of h = 0.5 · u−1. Figure 2.5 illustrates that sce-
nario where states with high transient probability are blue, states with
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50,0 49,1 48,2 47,3 46,4 45,5

. . .

0,50

Figure 2.5: State space of Model 2 with initial state [50 0].

low transient probability mass that are truncated by Algorithm 2 are
red and unreachable states are gray. The actual transition rates are
omitted for simplicity. During the first iteration, state

[
50 0

]
looses

around 1e−6 of its probability mass to states
[
49 1

]
,
[
48 2

]
,
[
47 3

]
,

and
[
46 4

]
. Since none of these successor states has a probability

mass greater than δ = 1e − 6 those states are deleted together with
their probability mass. This process can be witnessed in all further it-
erations while state

[
50 0

]
gradually looses all of its probability mass

and the other states (gray states) including
[
0 50

]
are never reached.

Consequently, an approximate transient analysis method based on state
space truncation like Algorithm 2 might not capture the true shape of
the steady state distribution. The reason is that regions with low steady
state probability mass separating regions with high steady state proba-
bility mass will not be crossed since they will be truncated due to their
low transient probabilities. Note that even when assuming that all rel-
evant states will be kept with their probability mass, it is not obvious
when to stop the approximate transient analysis, that is, when a suf-
ficiently good approximation of the steady state distribution has been
reached that also incorporates the algorithm’s truncation error e.
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To sum up, the task of correctly approximating the steady state dis-
tribution of an MPM with infinite state space can be split into three
sub-tasks:

1. Ergodicity needs to be proven as it is the condition for the unique
existence of the steady state distribution.

2. A finite subset of the potentially infinite state space needs to be
computed that faithfully captures the shape of the equilibrium dis-
tribution like a subset that contains the major part of the steady
state probability mass.

3. The individual steady state probabilities for all states in that finite
subset need to be approximated.

These tasks will be treated in Chapters 3 and 5, where in general, we will
concentrate on ergodic infinite state MPMs and leave reducible infinite
state MPMs with ergodic BSCCs as future work.
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CHAPTER 3

Geometric Bounds for the Equilibrium Distribution of
Markov Population Models

As discussed in the previous chapter, the first two tasks in order to
approximate the steady state distribution of an MPM with infinite state
space is to prove ergodicity and to find a suitable truncation of the state
space which contains most of the steady state probability mass.

3.1 Ergodicity Proofs and Geometric Bounds

We will tackle both problem at once by using Lyapunov functions fol-
lowing the course published in [DHSW11].

Definition 20: Lyapunov Function �Definition 20

A Lyapunov function for set A ⊆ NN with N ∈ N is a function
g : A → R+

0 such that the set {s ∈ A | g(s) ≤ l} is finite ∀l ∈ R+
0 .

The following theorem from the literature states necessary and sufficient
conditions for the ergodicity of infinite state CTMCs using the notion
of Lyapunov functions.
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Theorem 7: Ergodicity via Lyapunov Functions�Theorem 7

An irreducible CTMC X with (possibly infinite) state space S is
ergodic iff there exists a Lyapunov function g for set S, a finite
subset C ⊆ S, and a constant γ > 0 such that

1. d(s) ≤ −γ for all s ∈ S \ C and

2. d(s) <∞ for all s ∈ C

where

d(s) =
d

dt
Exp [g(X (t)) | X (t) = s]

is the drift in state s ∈ S.

Proof: For the proof, we refer to [Twe75]. 2

For a CTMC with infinitesimal generator Q and a Lyapunov function
g, the drift can be expressed by the product

d(s) = (Q · g)(s). (3.1)

In the case of an MPM (S,Q, π(0)) induced by a set of transition classes
{(α(r),v(r)}1≤r≤R, the drift for state x ∈ S as formulated in Equa-
tion (3.1) becomes

d(x) =

R∑

r=1

α(r)(x) ·
[
g(x + v(r))− g(x)

]
. (3.2)

In the following, we assume that both conditions of Theorem 7 are
satisfied, that is, we are given a Lyapunov function g which serves as
aon witness for ergodicity. Thus, we can conclude that the MPM is
ergodic and therefore has a unique equilibrium probability distribution
π which satisfies π ·Q = 0 subject to π · e = 1, where Q is defined as
stated in Definition 12. Moreover, due to the conditions of Theorem 7,
the drift is bounded from above, that is, there exists a number c ∈ R+

0

with

∞ > c ≥ sup
x∈S

d(x). (3.3)
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We use that upper bound c to define the scaled Lyapunov function g∗

as

g∗(x) =
g(x)

c+ γ
. (3.4)

Inserting Equation (3.4) in Equation (3.2) gives the scaled drift d∗ which
simplifies to

d∗(x) =
R∑

r=1

α(r)(x) ·
[
g∗(x + v(r))− g∗(x)

]

=
R∑

r=1

α(r)(x) ·
[
g(x + v(r))

c+ γ
− g(x)

c+ γ

]

=
1

c+ γ
·
R∑

r=1

α(r)(x) ·
[
g(x + v(r))− g(x)

]

=
d(x)

c+ γ
. (3.5)

Intuitively, the drift scales as the Lyapunov function scales. Combin-
ing (3.3) and the conditions of Theorem 7 gives

d∗(x) ≤ c

c+ γ
− φSS\C(x), (3.6)

where φSS\C(x) denotes the characteristic function of set S \ C, since for
states x ∈ C we have

d∗(x) ≤ c

c+ γ
<∞ iff d(x) ≤ c <∞ (3.7)

due to Equation (3.5) and for states x ∈ S \ C we have

d∗(x) ≤ c

c+ γ
− 1 =

−γ
c+ γ

iff d(x) ≤ −γ (3.8)

also due to Equation (3.5). Next, we multiply both sides of Equa-
tion (3.6) with πx, sum over all x ∈ S, and get

∑

x∈S
πx · d∗(x) ≤

∑

x∈S
πx ·

(
c

c+ γ
− φSS\C(x)

)
.
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We insert the definition d∗(x) = (Q · g∗)(x) and arrive at

∑

x∈S
πx ·

∑

y∈S
Qxy · g∗(y) ≤

∑

x∈S
πx ·

(
c

c+ γ

)
−
∑

x∈S
πx · φSS\C(x).

By exploiting distributivity and associativity, the sum on the left-hand
side becomes

∑

x∈S
πx ·

∑

y∈S
Qxy · g∗(y) =

∑

y∈S

∑

x∈S
πx ·Qxy · g∗(y)

=
∑

y∈S
g∗(y) ·

∑

x∈S
πx ·Qxy =

∑

y∈S
g∗(y) · (π ·Q) = 0,

since π · Q = 0. Inserting the definition of φSS\C(x) and bringing the
negative term from the right-hand side to the left-hand side finally gives

∑

x∈S\C
πx ≤

c

c+ γ
. (3.9)

Consequently, we can use Equation (3.9) as an upper bound on the
steady state probability mass outside C as well as a lower bound on the
probability mass inside C. More precisely, we choose some ε ∈ (0, 1)
and an appropriate Lyapunov function g(x). Then, we compute the

corresponding drift d(x) as well as its supremum c, and let γ = c·(1−ε)
ε

which gives c
c+γ = ε. Thus, the scaled drift becomes

d∗(x) =
d(x)

c+ γ
=
ε

c
· d(x) (3.10)

with Equation (3.5) and

ε

c
=

c
c+γ

c
=

1

c+ γ
.

In order to satisfy the fist condition of Theorem 7, we determine set C
such that for all x ∈ S \ C we have that d(x) ≤ −γ, that is in terms of
the scaled drift that d∗(x) ≤ c

c+γ − 1 = ε− 1. Thus, we choose set C as

C = {x ∈ S | d∗(x) > ε− 1}.
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Also the second condition of Theorem 7 holds with Equation (3.7), that
is, d∗(x) ≤ c

c+γ = ε < ∞ since d∗(x) ≤ ε (because d(x) ≤ c) and
Equation (3.10) for all x ∈ S and especially for all x ∈ C. Conse-
quently, since both conditions hold, also Equation (3.9) holds which
gives

∑
x∈S\C πx ≤ c

c+γ = ε and finally we get

∑

x∈C
πx > 1− ε.

We summarize that result in the following definition and theorem.

Definition 21: Drift �Definition 21

Given an MPM induced by the transition classes {(α(r),v(r))}1≤r≤R
with state space S and a Lyapunov function g on S, we define the
function

d(x) =
R∑

r=1

α(r)(x) ·
[
g(x + v(r))− g(x)

]

as the corresponding drift of the MPM.

Intuitively, the drift of a state x is equivalent to the expected change of
the Lyapunov function at this state as stated in Theorem 7.

Theorem 8: Geometric Bounds �Theorem 8

Given an irreducible MPM with state space S and drift d for some
Lyapunov function, if there exists an upper bound on the drift

∞ > c ≥ sup
x∈S

d(x)

and if set
Cε = {x ∈ S | ε

c
· d(x) > ε− 1}

for a chosen ε ∈ (0, 1) is finite, the MPM is ergodic and in addition

55



Chapter 3. Geometric Bounds for the Equilibrium
Distribution of Markov Population Models

we have that ∑

x∈Cε
πx > 1− ε.

Proof: We refer to the preceding argumentation. 2

Note that we demand an irreducible MPM in order to be able to use
Theorem 8. As we will see in Section 3.7.2, generally proving irre-
ducibility for MPMs is undecidable. However, the transition structure
of MPMs is usually relatively regular such that it becomes trivial to
show that each state is reachable by every other state as in the follow-
ing example.

Example 8: Irreducibility of the Gene Expression Model�Example 8

In Model 1, the production of mRNA and its degradation have op-
posing change vectors just like the translation and protein degra-
dation reactions. The resulting transition structure is shown in
Figure 3.1, where an arrow denotes a transition with a non-zero
rate (assuming the reactions rate constants are positive). Note
that there are no arrows correspoding to the translation reaction
for states with M = 0 since mRNA is needed for protein pro-
duction. However, those states can reach any other state via the
successor state of the mRNA producing reaction and each state
with M = 0 can be reached via a sequence of mRNA degradation
reactions.

Indeed, a similar transition pattern is present in all of our models we
will use in this thesis and we will only show proofs of irreducibility in
the non-trivial case.

3.2 Polynomial Drift

In general, it is not obvious how to check whether the set Cε is finite,
but fortunately, our main application area is systems biology, where we
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Figure 3.1: Transition structure of the gene expression model.

study MPMs induced by chemical reaction networks. For those systems,
the transition rates induced by the respective propensity functions as
specified in Definition 14 are polynomials. If we also restrict to polyno-
mial Lyapunov functions, the drift as defined in Definition 21 becomes
a polynomial function as well and we can make use of Theorem 9. Note
that we generalize the use of Lyapunov function to domain RN in order
to simplify the analysis of the occurring polynomials. As a consequence,
the drift is not only defined for states s ∈ S but for all x ∈ RN .

Theorem 9: Polynomial Geometric Bounds �Theorem 9

Given an MPM with S ⊆ NN and polynomial drift d. If

lim
t→∞

d(ψN (t, α1, . . . , αN−1)) = −∞

for all α ∈ [0, π/2]N−1, then there exists an upper bound ∞ >
c ≥ supx∈S d(x) and set Cε as defined in Theorem 8 is finite for all
ε ∈ (0, 1).
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Proof: For N > 1, we have that

lim
t→∞

d(ψN (t, α1, . . . , αN−1)) = −∞

holds for all α ∈ [0, π/2]N−1 and thus for each such α, there exists a
tα ∈ R+

0 such that

d(ψN (t, α1, . . . , αN−1)) ≤ ε− 1 (3.11)

for all t > tα. Now, let tsup = supα∈[0,π/2]N−1 tα < ∞. If N = 1, there

is a tsup ∈ R+
0 for which

d(t) ≤ ε− 1

for all t > tsup. In both cases we have that Cε ⊆ [0, dtsupe]N ⊂ NN ,
that is, Cε is a finite set. Further, in the case of N > 1, each function
d(ψN (t, α1, . . . , αN−1)) for any α ∈ [0, π/2]N−1 is an univariate poly-
nomial in t ∈ R+

0 which has no singularity and diverges to −∞ and
thus must have an upper bound cα. Taking c = supα∈[0,π/2]N−1 cα <∞
gives the desired global upper bound. The same holds for N = 1, that
is, d(t) is a univariate polynomial with no singularities which diverges
to −∞ and thus must have an upper bound c. 2

When analyzing polynomial drift functions d(x) it also becomes clear,
why the bounds are called geometric bounds. The reason is that the
set of solutions to the equation

d(x) = ε− 1

marking the boundaries of set C are geometric objects. For example,
if the drift is a quadratic polynomial, the above equation describes a
quadric surface like a circle, sphere or ellipsoid.

What is left is to prove the criteria of Lyapunov functions for a col-
lection of polynomial functions.

Theorem 10: Polynomial Lyapunov Functions�Theorem 10

Every N -dimensional multivariate polynomial function g ∈ P[x]
with N ∈ N+, only non-negative coefficients, and at least one
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monomial c ·xd11 · . . . ·xdNN with c > 0 and di > 0 for some 1 ≤ i ≤ N
is a Lyapunov function for S ⊆ NN .

Proof: For N = 1, we have that g(t) is strictly monotonic increasing.
Note that constant functions are excluded since there needs to be at
least one monomial. Consequently, for any l ∈ R+

0 there exists a r ∈ R+
0

such that g(t) > l for all t > r which ensures that the set {s ∈ S | g(t) ≤
l} ⊆ [0, dre] ⊂ N is finite.

In the case ofN > 1, we study the hyper-spherical re-parameterization
g(ψ(t, α1, . . . , αN−1)) of g. Like in the one-dimensional case, each func-
tion g(ψ(t, α1, . . . , αN−1)) with fixed angles α ∈ [0, π/2]N−1 is strictly
monotonic increasing in t. Consequently, for any l ∈ R+

0 and any choice
of angles α ∈ [0, π/2]N−1 there exists a rα such that

g(ψ(t, α1, . . . , αN−1)) > l

for all t > rα. Taking the supremum rsup = supα∈([0,π/2]N−1) rα gives
a distance from the origin after which regardless of the angles α, the
function g(ψ(t, α1, . . . , αN−1)) will evaluate to a value greater than l.
Consequently, we can use the over-approximation {s ∈ S | g(s) ≤ l} ⊆
[0, drsupe]N ⊂ NN to show the required finiteness. 2

Thus, according to Theorem 10, linear polynomials of the form p(x) =

cT1 · x with c1 ∈ R+
0
N \ {0} like the one-norm on the positive quadrant

||x||1 = eT · x

and quadratic polynomials of the form p(x) = xT ·C2 · x + cT2 · x with

c2 ∈ R+
0
N

and C2 ∈ R+
0
N×N \ {0} like the squared Euclidean norm

||x||22 = xT · x

are Lyapunov functions for MPMs.

We will also make use of the weighted distance to a point as a Lya-
punov function as stated in the following theorem.
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Theorem 11: Weighted Distance as a Lyapunov Function�Theorem 11

Functions g : R+
0
N → R+

0 with N ∈ N of the form

g(x) = ||x− x̃||22 ◦ c

with x̃ ∈ NN and c ∈ RN>0 are Lyapunov functions for state spaces
S ⊆ NN .

Proof: The proof for N = 1 is trivial. Here, we will only give a proof
for N = 2 (since such a Lyapunov function will be used later on) and
note that proofs for N > 2 can be derived analogously. We observe that
the area

{x ∈ R2 | a · (x1 − x̃1)
2 + b · (x2 − x̃2)

2 ≤ l}

is finite since it belongs to the interior (including the border) of an
ellipse with major and axes

√
( la) and

√
( lb) that coincide with the

Cartesian axes. Consequently, the set

{x ∈ N2 | a · (x1 − x̃1)
2 + b · (x2 − x̃2)

2 ≤ l}

is finite for all l. 2

Now, we have discussed all relevant techniques to practically apply The-
orem 7 in order to retrieve a finite set C ⊆ S that provably contains
at least 1 − ε of the total steady state probability mass (for a chosen
ε ∈ (0, 1)). But what is still missing is a way to approximate the steady
state probabilities of individual states x ∈ C.

3.3 Stochastic Complementation for Infinite State
CTMCs

For that, we first need to extend the theory of stochastic complementa-
tion, originally developed for finite DTMCs [Mey89], to infinite CTMCs.
We assume that the CTMC X with state space S is ergodic and has an
irreducible row-/column-finite infinitesimal generator matrix Q. First,
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we partition Q with respect to a finite set C as

Q =




QCC QCC

QCC QCC


 ,

where the finite square submatrix QCC contains all transitions within
set C, and the possibly infinite matrices QCC , QCC , and QCC contain all
transitions from C to C = S \C, from C to C, and within C, respectively.
Further, we partition the probability transition matrix of the embedded
CTMC likewise as

E =




ECC ECC

ECC ECC


 .

Note that matrix E is well-defined and row-/column-finite since Q is
a row-/column-finite matrix. We make use of those partitions in the
following definition which provides a finite abstraction of the CTMC
where the stochastic process is only observed within set C.

Definition 22: Stochastic Complement �Definition 22

For a CTMC with infinitesimal generator Q and state space S, the
stochastic complement (SC) QC of (finite) set C ⊆ S is defined as

QC = QCC + QCC ·
∞∑

i=0

ECC
i ·ECC ,

where C = S \ C and the infinite series
∑∞

i=0 ECC
i is meant to be

element-wise convergent.

By element-wise convergence of a matrix M we mean that each element
Mij converges.

3.3.1 Properties of the Stochastic Complement

The stochastic complement for a finite block of an infinite generator
matrix has already been defined in [Ris02] (cf. page 22). However, in
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this definition, the matrix inverse of the infinite block −QCC is used,
but no proof of well-definedness is given. However, our definition of the
stochastic complement circumvents this problem by using embedding
and allows us to prove well-definedness of QC .

Theorem 12: Properties of the Stochastic Complement�Theorem 12

The stochastic complement QC of C for an ergodic CTMC is a
well-defined infinitesimal generator matrix and it is irreducible.

Proof: For QC to be well-defined, we need to ensure that
∑∞

i=0 ECC
converges element-wise. Now, since Q is ergodic and therefore irre-
ducible, its embedded matrix E is irreducible as well. Consequently,
we can follow [RT96] to reason that ECC is strictly substochastic, and
with Corollary 2 of Lemma 5.4D of [Sen73] we have that

∑∞
i=0 ECC is

element-wise finite.

In order to prove that QC is an infinitesimal generator matrix, we
will show that

(i) QC · e = 0 and

(ii)
[
QC
]
xy
≥ 0 for x 6= y.

For this, we first observe that

ECC · e + ECC · e = e

can be rewritten as

ECC · e = (I−ECC) · e.

We use this equality to show that
∑n

i=0 ECC
i ·ECC is a stochastic matrix.

Obviously, it is nonnegative and we are left to show that the row sums
converge element-wise to one. We begin with considering the finite
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sequence

n∑

i=0

ECC
i ·ECC · e = (I + ECC + ECC

2 + · · ·+ ECC
n) · (I−ECC

n)

= (I−ECC
n+1) · e

= e−ECC
n+1 · e,

and have to show limn→∞ECC
n+1 · e = 0, that is, that the sequence

ECC
n+1 · e converges element-wise to the zero vector. For that, we will

reason about the k-th row sum of ECC
n, that is, we have

eTk ·ECCn ·e = (eTk ·ECCn ·e)T = e·(ECCT )n ·ek = ||(ECCT )n ·ek||1 (3.12)

which holds since ECC and therefore also ECC
n is row/column-finite for

all n. Now, we observe that limn→∞(ECC
T )n · ek = 0 element-wise

since all entries of ECC
n tend to zero. By Schur’s Theorem [Sch21] (cf.

also [Ban55], page 137) according to which in the sequence space

l1 := {x = (ξ)∞i | ||x||1 :=

∞∑

i=1

|ξi| <∞}

convergence in the 1-norm coincides with element-wise convergence, we
can conclude that limn→∞ ||(ECCT )n · ek||1 = 0 element-wise for all
k. Therefore, in combination with Equation (3.12) we also get that
limn→∞ECC

n+1 · ek = 0 which finally results in
∑n

i=0 ECC
i ·ECC · e = e.

Consequently, for the row sums (i) of QC we get

QC · e = QCC · e + QCC ·
n∑

i=0

ECC
i ·ECC · e

︸ ︷︷ ︸
e

= (QCC + QCC) · e = 0

since Q is an infinitesimal generator with Q · e = 0. The nonnegativity
of the off-diagonal entries of QC (ii) follows from QCC ≥ 0,

∑n
i=0 ECC

i ·
ECC ≥ 0, and QCCxy ≥ 0 for x 6= y.

In order to show the irreducibility of QC , we notice that if QCC is
irreducible, QC is trivially irreducible as well. Otherwise, QCC can be
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symmetrically permuted into a block lower-triangular form in which
the diagonal blocks are irreducible [DR78]. Without loss of generality,
consider partitionings of Q and QC with two diagonal blocks as in

Q =




QCC(11) 0 QCC
(1)

QCC(21) QCC(22) QCC
(2)

QCC
(1) QCC

(2) QCC




QC =




QC
(11)

QC
(12)

QC
(21)

QC
(22)


 .

In this partitioning, QCC(11) and QCC(22) are irreducible, and therefore,

QC
(11)

and QC
(22)

are irreducible as well. Let Pr [x; y] denote the
probability of reaching state y from state x independent of time. Obvi-
ously, there exist states x,w ∈ C and y, z ∈ C such that

QCC
(1)

xy > 0,ECC
(2)

zw > 0, and Pr [y ; z] > 0,

otherwise Q must have been reducible. Here, ECC
(2) corresponds to

the block QCC
(2) of Q in E assuming the same partitioning. Moreover,

there exists an i ≥ 0 such that

(ECC
i)yz > 0

since Pr [y ; z] > 0. Consequently, we get

QC
(12)
xw =

(
QCC ·

∞∑

i=0

ECC
i ·ECC

)

xw

> 0.

If QCC(21) = 0 or there are more than two irreducible diagonal blocks,
similar arguments can be used to prove that appropriate off-diagonal
blocks in the upper-triangular part of Q are nonzero. 2

3.3.2 Equilibrium Distribution of the Stochastic Complement

The following theorem relates the equilibrium distribution of the origi-
nal CTMC with the equilibrium distribution of the stochastic comple-
ment.
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Theorem 13: Equilibrium Distribution of the SC �Theorem 13

Let π be the unique equilibrium distribution that corresponds to
the generator matrix QC of the stochastic complement of an er-
godic CTMC for set C. Then,

πx =
πx∑
y∈C πy

holds for all x ∈ C, where π denotes the (unique) equilibrium
distribution of the original CTMC.

Proof: First, we proof the identity



QCC QCC

QCC QCC


 ·




I 0

∑∞
i=0 ECC

i ·ECC I




=




QCC + QCC ·
∑∞

i=0 ECC
i ·ECC QCC

0 QCC


 (3.13)

and express the probability transition matrix of the embedded matrix
of Q as

E = I + dinv(Q) ·Q
where dinv(Q) is a diagonal matrix with

dinv(Q)xy = |Qxx|−1

if x = y and 0 otherwise. Note that the product dinv(Q) · Q of the
two infinite matrices is well-defined since both factors are row-/column-
finite infinite matrices. By dinv(QCC) we denote the block of dinv(Q)
that corresponds to block QCC in Q. Further, we observe that

(I−T) ·
∞∑

i=0

Ti = I

for any strictly substochastic row-/column-finite infinite matrix T where
the infinite series

∑∞
i=0 Ti is meant to converge element-wise. Now we
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choose T = ECC = I + dinv(QCC) ·QCC for which substochasticity has
been shown in the proof of Theorem 12 and get

(I− (I + dinv(QCC) ·QCC)) ·
∞∑

i=0

(I + dinv(QCC) ·QCC)i = I,

which reduces to

dinv(QCC) ·QCC ·
∞∑

i=0

(I + dinv(QCC) ·QCC)i = −I.

Now, let the infinite matrix diag(QCC) be defined by

diag(QCC)xy = |QCCxy|
if x = y and 0 otherwise. Then, multiplying the previous equality on
both sides by diag(QCC) from the left gives

QCC ·
∞∑

i=0

(I + dinv(QCC) ·QCC)i = −diag(QCC)

since diag(QCC) · dinv(QCC) = I. Exploiting this equality finally yields

QCC + QCC ·
∞∑

i=0

ECC
i ·ECC

= QCC + QCC ·
∞∑

i=0

(I + dinv(QCC) ·QCC)i · (dinv(QCC) ·QCC)

= QCC + (−diag(QCC)) · dinv(QCC)︸ ︷︷ ︸
−I

·QCC = 0.

Note that the multiplications involved in taking the powers of ECC and
in the product of dinv(QCC) and diag(QCC) are well-defined since these
matrices are row-/column-finite. Now, let

π =
[
πC πC

]

be the unique equilibrium distribution of the original CTMC partitioned
according to the sets C and C satisfying π ·Q = 0 subject to π · e = 1.
If we multiply Equation (3.13) by π from the left, we get

πC ·Q + πC · 0 = 0.
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With Theorem 12, Q is irreducible and therefore πC is the unique solu-
tion of πC ·Q = 0 up to the unit 1-norm and thus, π = πC ·(∑x∈C πx)−1.
2

3.4 State-Wise Bounds

Our goal is to derive lower and upper bounds for the equilibrium prob-
ability of each state in the finite subset C. For that, we will adapt the
results in [CS84] and [Cou85]. As in the previous section, we assume
that Q is the infinitesimal generator matrix of an ergodic CTMC. Let
the substochastic matrix C be defined as

C = I + u−1 ·QCC (3.14)

where u > maxx |QCCxx|. We define the transition probability matrices
C(x) for x ∈ C as

C(x) = C + (e−C · e) · eTx , (3.15)

that is, we increase the elements of the column corresponding to state
x in C to obtain a stochastic matrix. Thus, C(x) corresponds to a
DTMC for which we want to compute the steady state distribution.
We remark that QCC , and hence, C may be reducible. In that case, the
quality of the bounds computed using C(x) deteriorate [Cou85, Section
6]. However, in all problems we consider, QCC turns out to be irre-
ducible, implying the irreducibility of C(x). Therefore, in the following
derivations, we assume QCC to be irreducible. The following theorem
gives the desired bounds for the equilibrium distribution conditioned on
set C.

Theorem 14: State-Wise Bounds �Theorem 14

Let π be the unique equilibrium probability distribution of a CTMC
(S,Q, π(0)) and let C ⊆ S be a finite set. If the matrices C(y)

as defined in Equations (3.14) and (3.15) are irreducible for all
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y ∈ B = {z ∈ C | ∃w ∈ S \ C.Qwz > 0}, then, for all x ∈ C holds

min
y∈B

π(y)x ≤
πx∑
z∈C πz

≤ max
y∈B

π(y)x , (3.16)

where π(y) is the unique equilibrium probability distribution of the
DTMC associated with C(y).

Proof: From Theorem 12 we know that QC is well-defined and irre-
ducible. Furthermore, Theorem 13 ensures that π conditioned on C is
identical to the equilibrium distribution of QC which also coincides with
the equilibrium distribution of

C = I + u−1 ·QC .

Note that

u > max
x∈C
|QCCxx| ≥ max

x∈C
|QCxx|

implies that C is a stochastic matrix. The same arguments as in [CS84]
can be used to conclude that the equilibrium distribution of C is con-
tained in the convex hull of the unit 1-norm Perron vectors of the irre-
ducible matrices C(x) for x ∈ B (see also [Cou85] and [MdSeSG89]). 2

Now, if we choose set C for ε ∈ (0, 1) according to Theorem 8, that is,
we have

1− ε <
∑

x∈C
πx ≤ 1,

Theorem 14 allows us to bound the (unconditional) individual equilib-
rium probabilities for states x ∈ C by

(1− ε) ·min
y∈B

π(y)x < πx ≤ max
y∈B

π(y)x . (3.17)

This equation reveals an algorithmic procedure for the computation of
lower and upper bounds on the equilibrium probabilities. More pre-
cisely, we determine the set C as suggested in Chapter 3.1. Then, for
each y ∈ B, we construct C(y) and, provided it is irreducible, compute
the distribution π(y). Note that if the CTMC is an MPM induced by a
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Figure 3.2: Redirection of transitions leaving set C.

set of transition classes {(α(r),v(r)}1≤r≤R, it is easy to compute the set
B ⊆ C of states that have incoming transitions from C, since

B = {x ∈ C | ∃r ∈ {1, . . . , R}.α(r)(x− v(r)) > 0 ∧ (x− v(r)) ∈ C},

that is, for each state in the finite set C, a finite number of R possible
predecessor states have to be checked. Finally, for all x ∈ C, we derive
bounds according to Equation (3.17) where for the states x ∈ C, we
have the trivial bound 0 < πx ≤ ε. Figure 3.2 illustrates the redirection
scheme.

3.5 Automated Ergodicity Proofs and Efficient
Computation of Geometric and State-Wise
Bounds

We developed a prototypical tool called Geobound [Spi13b] written in
Java 6 which implements both, the computation of geometric bounds
via Lyapunov functions and the computation of the conditional proba-
bilities, using the approach presented in the previous section.

3.5.1 Extrema of Polynomial Functions

Several steps in Geobound rely on the computation of all global and

local extrema of polynomial functions f(x) ∈ P[x] in R+
0
N

. For that,
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we equate the gradient

∇f(x) =
[
∂
∂x1

f(x), . . . , ∂
∂xN

f(x)
]

with the zero vector 0. Note that this alone would not yield all extrema

since we neglect the borders of R+
0
N

. Therefore, we additionally solve
∇f(x) = 0 for every projection of f(x) onto each subspace of RN by set-
ting all combinations of variables xi with i ∈ {1, . . . , N} to zero. Finally,

we filter out all extrema outside of R+
0
N

. The resulting nonlinear equa-
tion systems are solved using the HOM4PS-2.0 package [LLT08], an
implementation of the polyhedral homotopy continuation method. Note
that traditional global optimization techniques like gradient descent or
simulated annealing cannot be used since we need to guarantee that the
found maximum is indeed the global maximum. The time and space
complexities are those of solving 2N multi-variate polynomial equation
systems whose actual complexity highly depends on the solution method
of choice. For a discussion of the costs of the polyhedral continuation
method for polynomial systems we refer to [Ver96].

3.5.2 Ergodicity Proof

Geobound takes as input a description based on a set of transition
classes {(α(r),v(r))}1≤r≤R of an MPM with state space S ⊆ NN and
tries to prove ergodicity using a user specified Lyapunov function. If the
drift d(x) tends to −∞ with increasing distance to the origin, then only
finitely many states have a nonnegative drift and the first two conditions
of Theorem 7 hold. We can check this condition automatically by re-
parameterizing the drift d(x) via x = t · x with t ∈ R+

0 and x ∈ [0, 1]N .
Now, if m is the maximum degree of all monomials in f(x), the re-
parameterized f(x) has the form

f(t,x) = tm · pm(x) + tm−1 · pm−1(x) + · · ·+ t · p1(x) + p0

with pm(x), . . . , p1(x) ∈ P[x] and p0 ∈ R. We can interpret t as the
distance from the origin with respect to the direction vector x. Since

we are only interested in the behavior inside R+
0
N

, we restrict x to
[0, 1]N . We could restrict x even further like we did in the proof of
Theorem 10 but from a computational perspective, the region [0, 1]N is
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easier to manage. Consequently, we observe that for a fixed x ∈ [0, 1]N ,
the limit of f(t,x) for t → ∞ is determined by the monomial with
maximum degree, that is, tm · pm(x). More precisely, if pm(x) < 0, we
have that limt→∞ f(t, pm(x)) = −∞. Thus, all we need no check is
whether pm(x) < 0 for all x ∈ [0, 1]N . For that, we compute the global
maximum c of pm(x) inside [0, 1]N using the technique described in the
previous paragraph where we make sure that we also project on the
borders with xi = 0 and xi = 1 for the respective indices 1 ≤ i ≤ N

and ignore extrema in R+
0
N \ [0, 1]N . Finally, if c < 0, we can conclude

that the drift tends to −∞ in all directions. Again, the time and space
complexities are those of solving 2N multi-variate polynomial equation
systems as mentioned in the previous subsection.

3.5.3 Geometric Bounds

In order to determine the maximum drift c, we compute all extrema
of d(x) as described above and assemble the scaled drift polynomial
d∗(x). Next, we start with the local maxima and recursively add all
neighboring points of the integer grid that satisfy the condition in The-
orem 8 for the scaled drift. In order to compute B, we calculate for each
x ∈ C and each transition class (α(r),v(r)) the predecessor (x − v(r)).
If (x − v(r)) 6∈ C and α(r)(x − v(r)) > 0, then we add x to B. Since
we are not aware of any border for the number of states |C| inside C,
we can not express the time and space complexities of the computation
of C a priori. However, if |C| is known, the time and space complex-
ity is O(|C|). Time and space complexity of computing B then lies in
O(R · |C|)

3.5.4 State-Wise Bounds

Next, we compute the nonzero entries of the finite matrix QCC and
the conditional bounds of πx for x ∈ C as explained in the previous
section. For this, the tool employs the SuperLU [DEG+99] package for
LU factorization. More precisely, in order to compute the equilibrium
probability distributions π(y) of C(y) for y ∈ B efficiently, we consider
π(y) · C(y) = π(y) subject to π(y) · e = 1. Since this equation needs to
be solved |B| times for matrices C(y) that differ from each other only in
two columns, we uncouple the slack probability mass added to column y
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Figure 3.3: Modified redirection scheme of transitions leaving set C in
order to allow LU factorization.

and, assuming that QCC is irreducible, obtain the irreducible stochastic
matrix

P(y) =




C e−C · e

eTy 0




of order |C| + 1. Intuitively, an additional state collects all transitions
leaving set C and redirects them to a single state in B. Figure 3.3
illustrates this new redirection scheme. Now, let p(y) =

[
p(y)′ p(y)

′]

denote the equilibrium probability distribution of P(y), that is, p(y) ·
P(y) = p(y) subject to p(y)·e = 1. Multiplying (P(y)−I) on the left-hand
side with p(y) and equating to 0, we obtain p(y)′ · (C− I) = −p(y)′ · eTy ,

which can be solved subject to p(y)′ · e = 1 for y ∈ B. We remark that
the coefficient matrix C − I does not depend on y and therefore can
be LU factorized once. Consequently, the time complexity of the whole
procedure of computing conditional bounds reduces to that of a sparse
LU factorization of a matrix of order |C| plus |B| forward and backward
substitutions giving O(|C|3). However, we trade time for space, that is,
the resulting LU decomposition matrix might not be sparse any more
resulting in a O(|C|2) space complexity.
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3.6 Case Studies

In the following we will evaluate the approach to bound the equilibrium
distribution of infinite state CTMCs using a series of case studies. All
computations were performed on a dual-core 2.66 GHz machine with 3
gigabytes of memory under Ubuntu 10.04.

3.6.1 Exclusive Switch

First, we consider a case study from biology, called the exclusive switch.
In previous work, the equilibrium distribution of this gene regulatory
network has been approximated by Monte-Carlo simulations [LLBB07],
but no execution times are reported. Here, we present a direct method
to truncate the state space using the approach based on Lyapunov func-
tions presented in Chapter 3.1 and we approximate the equilibrium by
computing state-wise bounds as explained in Chapter 3.4.

Model 3: Exclusive Switch �Model 3

The exclusive switch is a gene regulatory network consisting of
two genes that share a promotor region (cf. Figure 3.4). The state
of the promotor region determines whether the genes are used to
produce proteins or not. Let P1(1) be the product of the first
gene and let P2(2) be the product of the second gene. Each of the
proteins can bind to the unbound promotor region G(3) at rates
β1 and β2, respectively, and thereby inhibit the production of the
other protein. More precisely, if the promotor region is free, both
proteins, P1 and P2, are produced at rates ρ1 and ρ1, respectively.
Otherwise, if P1 (P2) is bound to the promotor region represented
by chemical species G.P1(4) (G.P1(5)), only the first (second) gene
is active and thus only P1 (P2) is produced. The proteins can also
unbind from the promotor region at rates ν1 and ν2 and degrade
at rates δ1 and δ2, respectively.
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P1 P2

P1 or P2

gene 1 gene 2common promotor

Figure 3.4: Illustration of the exclusive switch model. The picture has
been adapted from [LLBB07].

G
ρ1−−→ G+ P1 G

ρ2−−→ G+ P2

P1
δ1−−→ ∅ P2

δ2−−→ ∅
G+ P1

β1−−→ G.P1 G+ P2
β2−−→ G.P2

G.P1
ν1−−→ G+ P1 G.P2

ν2−−→ G+ P2

G.P1
ρ1−−→ G.P1 + P1 G.P2

ρ2−−→ G.P2 + P2

Geometric Bounds: For sake of simplicity we choose the squared Eu-
clidean norm as the Lyapunov function for our case study. Note that
this choice influences the accuracy of the probability bounds. Obviously,
it is possible to take as Lyapunov function a multivariate polynomial
and optimize over the coefficients. Our experimental results, however,
indicate that for the models that we consider, the squared Euclidean
norm performs well. Thus, the Lyapunov function g is defined as

g(x) = xT · x.

We choose symmetric model parameters ρ = ρ1 = ρ2 = 0.05, δ = δ1 =
δ2 = 0.005, β = β1 = β2 = 0.01, ν = ν1 = ν2 = 0.008 and the drift
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function d(x) becomes

d(x) =
10∑

j=1

α(j)(x)(g(x + v(j))− g(x))

= ρ · x3 · (2 · x1 + 1) + ρ · x3 · (2 · x2 + 1)

+ δ · x1 · (−2 · x1 + 1) + δ · x2 · (−2 · x2 + 1)

+ β · x1 · x3 · (−2 · x1 − 2 · x3 + 2 · x4 + 3)

+ β · x2 · x3 · (−2 · x2 − 2 · x3 + 2 · x5 + 3)

+ ν · x4 · (−2 · x4 + 2 · x1 + 2 · x3 + 3)

+ ν · x5 · (−2 · x5 + 2 · x2 + 2 · x3 + 3)

+ ρ · x4 · (2 · x1 + 1) + ρ · x5 · (2 · x2 + 1).

With the initial condition x =
[
0 0 1 0 0

]
, it is easy to see that

xk ∈ {0, 1} for k ∈ {3, 4, 5} and x3+x4+x5 = 1, that is, at any time the
promotor region is either free or a molecule of type P1 or P2 is bound
to it. We consider the drift functions

d3(x1,x2) = d(x1,x2, 1, 0, 0)

= −2·(δ + β)·(x2
1 + x2

2) + (2·ρ+ δ + β)·(x1 + x2) + 2·ρ
d4(x1,x2) = d(x1,x2, 0, 1, 0)

= −2·δ·(x2
1 + x2

2) + δ·(x1 + x2) + 2·(ν + ρ)·x1 + ρ+ ν

d5(x1,x2) = d(x1,x2, 0, 0, 1)

= −2·δ·(x2
1 + x2

2) + δ·(x1 + x2) + 2·(ν + ρ)·x2 + ρ+ ν

that is, one for each state of the promotor. It turns out that the global
maximum drift c = maxx∈S d(x) = 0.42465 is reached in

x(1) =
[
6.05 0.25 0 1 0

]
and x(2) =

[
0.25 6.05 0 0 1

]
.

Note that the coefficients of the highest order terms are negative, which
implies that C = {x ∈ S | d(x) ≥ −γ} is finite. We choose ε = 0.1
which yields a set of states that contains at least 90% of the equilibrium
probability mass. The value of γ in this case is γ = c·(1−ε)

ε = 3.82185.
We derive the scaled drift functions

d∗k(x) =
ε

c
· dk(x) with k ∈ {3, 4, 5}
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Figure 3.5: A set C that contains at least 90% of the steady state proba-
bility mass for the exclusive switch model. The dashed lines
confine the three sets whose union is C.

and finally compute

C = {x ∈ S | d∗(x) > −0.9}
= {(x1,x2, 1, 0, 0) ∈ S | d∗3(x1,x2) > −0.9}
∪ {(x1,x2, 0, 1, 0) ∈ S | d∗4(x1,x2) > −0.9}
∪ {(x1,x2, 0, 0, 1) ∈ S | d∗5(x1,x2) > −0.9}.

We illustrate the set C in Figure 3.5, with respect to the state space
projected on P1 and P2. The set C contains 1,680 states altogether.
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ε |C| |B| Time (s) Memory (MB) ∆
C,B Bounds

1.0e-1 1,680 108 1.0 5.0 43.5 2.9e-3
5.0e-2 2,934 144 1.4 5.7 64.2 1.4e-3
1.0e-2 11,994 297 1.4 83.2 304.6 2.8e-4

Table 3.1: Numerical results (geometric bounds) for the exclusive
switch.

State-wise Bounds: We apply Theorem 14 to bound the individual
equilibrium probabilities conditioned on being in C. In order to com-
pute unconditional bounds, the lower bounds must be multiplied by
(1 − ε) = 0.9. We list the numerical results for the exclusive switch in
Table 3.1 where we vary ε (first column). The columns “|C|” and “|B|”
list the size of the sets C and B. In the two columns with heading “Time
(s)” we give the execution time in seconds that was needed to determine
the sets C and B as well as the execution time for the LU factorization
that was used to compute the bounds on the conditional probabili-
ties. Moreover, we list our memory requirements (in MegaBytes) in
column “Memory (MB)”. Finally, in the last column we give the maxi-
mum absolute difference of the bounds of the unconditional equilibrium
probabilities, ∆, that is,

∆ = max
x∈C

(max
y∈B

π
(y)
x − (1− ε) ·min

y∈B
π
(y)
x ).

In Table 3.2 we illustrate the lower conditional bounds (left) and the
difference between upper and lower bounds (right) for various choices
of ε. Note that the maximum absolute difference of the conditional
probabilities is smaller than ∆. In order to compute bounds on the
unconditional probabilities, each lower bound of the conditional proba-
bility is multiplied by (1− ε) while the upper bound remains the same.

3.6.2 Toggle Switch

The next case study is the toggle switch [GCC00, LLBB06], a gene
regulatory system that has even been implemented in-vivo.

77



Chapter 3. Geometric Bounds for the Equilibrium
Distribution of Markov Population Models

ε miny∈B π
(y)
x maxy∈B π

(y)
x −miny∈B π
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Table 3.2: State-wise lower bounds of the conditional equilibrium dis-
tribution of the exclusive switch (left) and the difference
between state-wise lower and upper bounds (right) for ε ∈
{0.01, 0.05, 0.1}.
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ε |C| |B| Time (s) Memory (MB) ∆
C,B Bounds

1.0e-1 7,964 292 1.5 29.0 227.3 1.9e-3
5.0e-2 14,016 384 1.9 65.8 433.2 9.7e-4

Table 3.3: Numerical results (geometric bounds) for the toggle switch
model.

Model 4: Toggle Switch �Model 4

The toggle switch is a gene regulatory network that is similar to
the exclusive switch but instead of a single promotor it has two
promotor regions. If the first promotor RB(1) is free, the produc-
tion of protein A (3) at rate ρA is enabled. The other promotor
RA(2) controls the production of protein B(4) at rate ρB. Both
proteins can repress the expression of the other protein by binding
to the promotor of the corresponding gene at rates βA and βB,
respectively. In the repressed state the promotors are represented
by the species RA and RB. Proteins bound to the promotor can
unbind at rates νA and νB, respectively, and protein molecules
degrade over time at rates δA and δB, respectively.

RB
ρA−−−→ RB +A, A

δA−−−→ ∅,
RA +A

βA−−−→ RA, RA
νA−−−→ RA +A,

RA
ρB−−−→ RA +B, B

δB−−−→ ∅,
RB +B

βB−−−→ RB, RB
νB−−−→ RB +B

We choose parameters ρA = ρB = 6.0, δA = δB = 0.4, βA = βB = 1.0,
and νA = νB = 0.5. The reachable state space is S = B2 × N2 for
any initial condition with x1,x2 ∈ B. We state the numerical results in
Table 3.3 and the bounds are plotted in Table 3.4. The global maximum
drift c = 124.225 was found at x3 = x4 = 8.375 where both promotor
regions are free.
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Table 3.4: State-wise lower bounds of the conditional equilibrium distri-
bution of the toggle switch (left) and the difference between
state-wise lower and upper bounds (right) for ε ∈ {0.05, 0.1}.
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For this system we could verify tristability, that is, in addition to the
two regions with a high number of protein molecules of one of the two
species, we could identify another peak in the equilibrium distribution
in the region with a low number of protein molecules. In [LLBB06],
the authors explain that peak by a deadlock situation caused by both
promotor regions being bound simultaneously.

3.6.3 Protein Synthesis

The following model is a simple protein synthesis model as described
in [GP98] as a stochastic Petri net (SPN). Often, MPMs and SPNs
(without zero-arcs) can trivially be encoded within each other.

Model 5: Protein Synthesis �Model 5

The protein synthesis model describes the transcription of a single
gene G(1) that switches between being active (represented by G)
and inactive (represented by G). If the gene is active, protein
molecules P (2) are produced which degrade over time.

G
λ−−→ G G

µ−−→ G G
ν−−→ G+ P P

δ−−→ ∅

Note that in the transition class description, we encode both, the
activity and the inactivity of the gene, by the variable x1 since
x1 = 0 if the gene is inactive.

α(1) = λ · (1− x1) v(1) =
[
1 0

]

α(2) = µ · x1 v(2) =
[
−1 0

]

α(3) = ν · x1 v(3) =
[
0 1

]

α(4) = δ · x2 v(4) =
[
0 −1

]
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We use the same parameters as in [GP98], that is, λ = 1.0, µ = 5.0, ν =
1.0, δ = 0.02. The reachable state space is S = B × N for any initial
condition with x1 ∈ B and we summarize our results in Table 3.5. The
global maximum drift c = 21.5025 was found at x2 = 25.25 when the
gene is active. We plot the lower bounds on the conditional equilibrium
for ε = 0.1 in Figure 3.6. Note that we do not plot the difference between
lower and upper bounds since ∆ is lower than the double floating point
precision of 1.0e–15. Due to the same reason, we do not plot the bounds
for smaller values of ε.

ε |C| |B| Time (s) Memory (MB) ∆
C,B Bounds

1.0e–1 198 2 0.1 0.7 21.5 < 1.0e–15
5.0e–2 258 2 0.1 0.7 24.6 < 1.0e–15
1.0e–2 516 2 0.1 0.7 27.7 < 1.0e–15
1.0e–3 1,518 2 0.4 1.7 36.9 < 1.0e–15
1.0e–4 4,688 2 0.9 3.5 58.4 < 1.0e–15
1.0e–5 14,716 2 1.0 5.4 61.4 < 1.0e–15
1.0e–6 46,422 2 1.0 7.8 150.5 < 1.0e–15

Table 3.5: Numerical results (geometric bounds) for the protein synthe-
sis model.

3.6.4 Gene Expression

Our next case study is the gene expression model described in Model 1
with the parameter set ρ = 100.0, τ = 0.01, δM = 0.2 and δP = 0.02 and
reachable state space N2 for any initial condition. The parameters are
chosen such that the attracting regions are located far from the origin.
This implies that the state space must be truncated from ”above” and
additionally from ”below” because otherwise the number of states in the
set C becomes intractably large. In the examples presented so far, the
set C always included the origin. The reason is that all states “below”
an attractor have positive drift if the squared Euclidean norm is used.
If we take as Lyapunov function the distance to attracting regions, it is
possible to derive a set C that does not include the origin. The reason is
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Figure 3.6: State-wise lower bounds of the conditional equilibrium dis-
tribution of the protein synthesis for ε = 0.1.
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that a state that is located far “below” an attractor may have a negative
drift. In general, it is difficult to guess attracting regions. We refer to
Chapter 5 for a more detailed discussion of attracting regions. One
possibility to locate them is to find points where the multi-dimensional
drift function

d̃(x) =
d

dt
Exp [X (t) | X (t) = x]

becomes zero. Then, another Lyapunov function is used to bound the
equilibrium probability, namely, the function that measures the distance
to these points. Thus, we set d̃(x) to zero and get

ρ− δM · x1 = 0 τ · x1 − δP · x2 = 0,

which has the unique solution (x̃1, x̃2) = ( ρ
δM
, ρ·τ
δM ·δP ). Next, we consider

the Lyapunov function

g(x) = a · (x1 − x̃1)
2 + b · (x2 − x̃2)

2,

that is, the weighted squared distance to the possible attractor (x̃1, x̃2)
computed before. We tested different weights and found that the choice
a = 1.0, b = 20.0 provides good numerical results which we list in Table
3.6. Figure 3.7 shows the corresponding geometric bounds for ε = 0.1
and Table 3.7 illustrates the state-wise bounds for ε = 0.1 and ε = 0.05.
Note that for a = b = 1.0 and ε = 0.1 the set C contains 52,316 states
(vs. 23,770 for a = 1.0, b = 20.0) and the results (not shown) are slightly
more accurate. This indicates that the choice of the Lyapunov function
is particularly important if the attracting regions must be bounded from
below as well.

ε |C| |B| Time (s) Memory (MB) ∆
C,B Bounds

1.0e-1 23,770 515 0.7 19.0 605.2 1.4e-4
5.0e-2 47,517 728 1.3 90.1 866.3 2.2e-5

Table 3.6: Numerical results (geometric bounds) for the gene expression
model.
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Figure 3.7: A set C (dashed line) that contains at least 90% of the steady
state probability mass for the gene expression model.
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ε miny∈B π
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Table 3.7: State-wise lower bounds of the conditional equilibrium dis-
tribution of the gene expression model (left) and the differ-
ence between state-wise lower and upper bounds (right) for
ε ∈ {0.05, 0.1}.
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3.7 Extensions

Several models need extensions to the theory and methods presented so
far, be it more expressible propensity functions or more flexible struc-
tural possibilities. In the following section, we will show two of those
examples.

3.7.1 Rational Propensity Functions

As already described in Chapter 2.3.2, the propensity functions of or-
dinary chemical reactions are polynomial functions. However, when for
example analyzing systems where reactions exhibit different time-scales,
that is, propensities of different magnitudes, it might be beneficial to ap-
ply the quasi-steady-state assumption originating from [BH25], where
one chemical species is assumed to stagnate on the time-scale of the
other. In the end, it turns out that the amount of one species can be
expressed by a rational function involving the amount of one or mul-
tiple other species. This greatly helps to reduce the complexity of the
analysis since the dimensionality is decreased.

We want to illustrate this at the example of the toggle switch from
Chapter 3.6.2. Usually, the binding-unbinding processes are magnitudes
faster than the DNA transcription/translation and protein degradation
processes [LLBB06]. Thus, when assuming the binding-unbinding to be
in equilibrium with respect to the other processes, the toggle switch can
be formulated in Michaelis-Menten form as summarized in Model 6.

Model 6: Toggle Switch – Michaelis-Menten Form �Model 6

The Michaelis-Menten form of the toggle switch consists of the
two protein species A(1) and B(2) as well as the four chemical
reactions

∅
ρA

1+BnA−−−−−−→ A, A
δA−−−→ ∅,

∅
ρB

1+AnB−−−−−−→ B, B
δB−−−→ ∅

with protein production rates ρA and ρB, protein degradation rates
δA and δB and repression coefficients nA and nB.
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In this model, the mutual repression of the two protein species becomes
apparent when looking at reactions 1 and 3, where the total produc-
tion rate of one protein species is inversely proportional to a power
(the repression coefficient) of the other species. Further, the propensity
functions

α(1)(x) =
ρA

1 + xnA2
and α(3)(x) =

ρB
1 + xnB1

of these two reactions are not polynomials as in the previous sections
but rational functions. Now, when we choose the Lyapunov function

g(x) = x2
1 + x2

2

and the parameter set ρA = 60.0, ρB = 30.0, nA = 3, nB = 2, and
δA = δB = 1.0, we get the drift function

d(x) = −2 ·
(
x2
1 + x2

2

)
+

(
120

1 + x3
2

+ 1

)
· x1 +

(
60

1 + x2
1

+ 1

)
· x2

+
120

1 + x3
2

+
60

1 + x2
1

.

We observe that also the drift d(x) became a rational function. Nev-

ertheless, the denominators do not become zero for any x ∈ R+
0
2

and
thus (i) d(x) < ∞ for all x ∈ N2. In order to analyze the limiting be-
havior of the drift function, we change the coordinate system to polar
coordinates, that is, we define the line equation lβ : R+

0 → R+
0
2

in the
positive quadrant by

lβ(t) =
[
t · sin(β) t · cos(β)

]

for β ∈ [0, π] and get

dβ(t) = d(lβ(t)) = −2 · t2 + Uβ · t+ Vβ

with

Uβ =

[
120

1 + t3 · cos3(β)
+ 1

]
· sin(β) +

[
60

1 + t2 · sin2(β)
+ 1

]
· cos(β)

and

Vβ =
120

1 + t3 · cos3(β)
+

60

1 + t2 · sin2(β)
.
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We can derive the limit

lim
t→∞

dβ(t) = −∞

for every direction β ∈ [0, π] since dβ(t) is clearly dominated by the
−2 · t2 term. Therefore, there is a γ ∈ R+ such that for each β ∈ [0, π]
there is a tβ ∈ R+

0 such that dβ(t) < −γ for all t > tβ. Thus, (ii) the
set of all x ∈ N2 with d(x) ≥ −γ is finite. Finally, since the MPM is
irreducible, that is, the reachable state space is S = N2 (independent
of the initial distribution) and every state is reachable from any other
state as well as sub-results (i) and (ii), the MPM of the toggle switch is
ergodic according to Theorem 7.

Next, we are interested in an upper bound ∞ > c ≥ supx∈N2 d(x) of
the drift function. Consequently, we determine the partial derivatives
of the drift as

∂

∂x1
d(x) = −4 · x1 +

120

1 + x3
2

− 60 · x1 · (2 · x2 + 1)

(1 + x2
1)

2
+ 1 and

∂

∂x2
d(x) = −4 · x2 +

60

1 + x2
1

− 180 · x2
2 · (2 · x1 + 1)

(1 + x3
2)

2
+ 1.

Setting the gradient to zero in order to find local extrema, that is,
setting

∇d(x) =
[
∂
∂x1

d(x) ∂
∂x2

d(x)
]

= 0

boils down to solving

f1(x)

(1 + x3
2) · (1 + x2

1)
2

= 0 and
f2(x)

(1 + x2
1) · (1 + x3

2)
2

= 0

with

f1(x) = (−4 · x1 + 1) · (1 + x3
2) · (1 + x2

1)
2

+ 120 · (1 + x2
1)

2 − 100 · x1 · (2 · x2 + 1) · (1− x3
2)

and

f2(x) = (−4 · x2 + 1) · (1 + x2
1) · (1 + x3

2)
2

+ 100 · (1 + x3
2)

2 − 180 · x2
2 · (2 · x1 + 1) · (1− x2

1)
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Figure 3.8: Geometric bounds for the Michaelis-Menten form of the tog-
gle switch model for ε = 0.01. The set C contains all integer
grid points in the grey region.

where each fraction has been multiplied by the denominators of the
other fractions in order to establish a common denominator. These
equations are satisfied if the numerators become zero, that is, if

f1(x) = 0 and f2(x) = 0.

From here, we again use the homotopy continuation method as imple-
mented in the HOM4PS-2.0 tool [LLT08] to compute all solutions. In
addition, we analyze the drift at the borders where x1 respectively x2

is zero and at the origin 0. The maximal drift is c ≈ 1.890165e+ 3 and
we over-approximate the global maximum by setting c = 1891. If we
choose a moderate ε of 0.01, we get a set C as illustrated in Figure 3.8.
Consequently, inside that region C, most, that is at least 99%, of the
steady state probability mass must be located.

We conclude that the geometric bounding technique presented in
this chapter is also applicable when the propensity functions are ra-
tional functions as they appear in Michaelis-Menten approximations or
in models that exhibit Hill-functions [Hil10] in general. More precisely,
if the drift d(x) can be written as

d(x) =

n∑

i=1

pi(x)

qi(x)
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with pi(x), qi(x) ∈ P[x] and qi(x) > 0 for all x ∈ R+
0
N

, re-parameterization
of d(x) via x = t ·x with direction vector x ∈ [0, 1]N and distance value
t ∈ R+

0 can be used to reason about the limit behavior. However, note
that parameter t might also appear in denominators which makes the
argumentation harder. Further, equating each partial derivative ∂

∂jd(x)
with zero, that is

∂

∂xj
d(x) =

n∑

i=1

∂
∂xj

pi(x) · qi(x)− pi(x) · ∂
∂xj

qi(x)

(qi(x))2
= 0

becomes

n∑

i=1

∏

k 6=i
(qk(x))2 ·

(
∂

∂xj
pi(x) · qi(x)− pi(x) · ∂

∂xj
qi(x)

)
= 0

which is a polynomial. Consequently, we can apply the methods pre-
sented in Chapter 3.5. Again, note that the problem becomes harder
from a computational perspective when compared to the polynomial
drift case since in the worst case, the degree of the polynomial equation
system grows with the doubled degrees of the denominator polynomials.

3.7.2 Guards

A further extension to the standard modeling formalism are guards,
that is, predicates over states. Guards annotate transition classes such
that a transition is only enabled if the corresponding guard evaluates
to true.

Definition 23: Guard �Definition 23

A guard β(x) with x =
[
x1 . . . xN

]
is a boolean expression over

x1, . . . ,xN .
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Definition 24: Guarded Transition Class�Definition 24

A guarded transition class (GTC) for N population types is a tuple
(β, α,v), where β(x) is a guard, α : NN → R+

0 is the propensity
function, and v ∈ ZN \ {0} is the change vector.

Definition 25: GTC Induced MPM�Definition 25

A set {(β(r), α(r),v(r)}1≤r≤R of R guarded transition classes for N
population types determines the entries of the infinitesimal gener-
ator of an MPM (S,Q, π(0)) with S ⊆ NN via

Qxy =

{∑
{r | β(r)(x) ∧ x+v(r)=y} α

(r)(x) if x 6= y and

−∑z 6=x Qxz otherwise.

We want to exemplify the use of guards using the following performance
model of a Bit-Torrent-like peer-to-peer network.

Model 7: Bit-Torrent-Like Peer-To-Peer Network�Model 7

We study a peer-to-peer network primarily used for file sharing
which consists of two population types, that is, downloaders x(1)
and uploaders y(2). The guarded transition classes are

α(1)(x) = λ, v(1) =
[
1 0

]
,

α(2)(x) = θ · x1, v(2) =
[
−1 0

]
,

α(3)(x) = c · x1, v(3) =
[
−1 1

]
,

α(4)(x) = µ · (η · x1 + x2), v(4) =
[
−1 1

]
,

α(5)(x) = γ · x2, v(5) =
[
0 −1

]
,
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with the guards

β(1)(x) = true

β(2)(x) = true

β(3)(x) = c · x1 ≤ µ · (η · x1 + x2)

β(4)(x) = c · x1 > µ · (η · x1 + x2)

β(5)(x) = true

where the first GTC models new requests at a rate of λ, the second
GTC represents the impatience of peers that abort at rate θ, and
the fifth GTC describes the process of seeds y leaving the system
at a rate of γ each. The interesting ones are the third and fourth
GTCs, where peers x that are serviced are transformed into seeds
y. The rate of that process is µ · (η · x1 + x2) constrained by the
total downloading bandwidth c·x1, where c (µ) is the downloading
(uploading) bandwidth of a peer and η is the effectiveness of the
file sharing. The reachable state space of this model (for positive
rates) is S = N2. We refer to [QS04] for details about the model.

When using guarded transition classes, the drift function becomes a
piecewise-defined function with the partition of the domain being in-
duced by the validity of the guard expressions. For example, if we
choose the Lyapunov function

g(x) = x2
1 + x2

2 + x1 · x2,

we retrieve the drift function d(x) defined as

d(x) =

{
d1(x) if c · x1 ≤ µ · (η · x1 + x2) and

d2(x) otherwise.
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with

d1(x) = −(2 · θ + c) · x2
1 − 2 · γ · x2

2 − (θ + γ − c) · x1 · x2

+ (2 · λ+ c+ θ) · x1 + (λ+ γ) · x2 + λ, and

d2(x) = −(2 · θ + µ · η) · x2
1 − (2 · γ − µ) · x2

2

− (θ + γ + [1− η] · µ) · x1 · x2

+ (2 · λ+ θ + µ · η) · x1 + (λ+ γ + µ) · x2 + λ.

Choosing the parameter set

η = 1, µ = 0.00125, c = 0.002, θ = 0.001, γ = 0.001, λ = 0.04

as in [QS04] yields

d1(x) = −0.004·x2
1 − 0.002·x2

2 + 0.083·x1 + 0.041·x2 + 0.04, and

d2(x) = −0.00325·x2
1 − 0.00075·x2

2 − 0.002·x1·x2

+ 0.08225·x1 + 0.04225·x2 + 0.04.

The global maximum of d1(x) and d2(x) is approximatively 0.6806875
respectively 0.7226304. Consequently, we scale the drift d(x) by ε ·
0.7226304−1 by effectively scaling d1(x) and d2(x) yielding d∗1(x) and
d∗2(x). Finally, we retrieve the geometric bounds as illustrated in Fig-
ure 3.9 (left) for ε = 0.01. Note the bend at around

[
30 17.5

]
which

is the discontinuity introduced by switching between d1(x) and d2(x).
Figure 3.9 (right) illustrates the conditional geometric bounds induced
by d∗1(x) and d∗2(x) as well as the line c · x1 = µ · (η · x1 + x2) that
separates the two regions of different guard validity.

Consequently, given a set {(β(r), α(r),v(r)}1≤r≤R of R guarded tran-
sition classes in general, the first task is to determine the partitioning
of the state space

S =
⋃̇

b∈BN
Pb

with
Pb = {x ∈ S | β(i)(x) evaluates to bi}

which is induced by the validity of the guards. Each region Pb has
a specific drift function db(x) that incorporates exactly those GTCs
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Figure 3.9: Geometric bounds (left) and conditional geometric bounds
(right) of the peer-to-peer model for ε = 0.01 as well as the
line c · x1 = µ · (η · x1 + x2).

whose guard evaluates to true inside the respective region. The global
maximum drift can be found by examining all drift functions db(x)
inside their respective regions as well as on their borders. Note that in
the worst case, 2R regions have to be examined since in principle every
combination where each of the R guards might evaluate to true or false
can manifest as a region. On the other hand, regions might also collapse
due to overlapping guard validities as it is the case in the peer-to-peer
example. Moreover, the expressivity added by allowing general boolean
expressions for guards makes the problem of (dis-)proving ergodicity
undecidable as stated in the following theorem.
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Theorem 15: Undecidability of Ergodicity of GTCMPMs�Theorem 15

The problem of determining whether an MPM induced by a set
of guarded transition classes {(β(r), α(r),v(r)}1≤r≤R is ergodic is
undecidable.

Proof: We will show that sets of guarded transition classes allow
us to simulate any Random Access Machine (RAM) [SS63] which is a
Turing powerful formalism. A RAM consists of a finite set of registers
r1, . . . , rn which can be assigned any natural number as well as of a
finite set of instructions (1 : I1), . . . , (m : Im). The state of a RAM
is defined by a tuple (i, c) where i is the index of the next instruction
to be executed and c ∈ Nn contains the current values of the registers
r1, . . . , rn. In fact, only two instruction types are needed to be able
to simulate recursive functions [Min67]. Assuming the current state is
(i, c) and the next instruction is

• (i : INC(rj)), the next state will be (i+ 1, c + ej) and if it is

• (i : DECJ(rj , s)), the successor state is (i+1, c−ej) if cj > 0 and
(s, c) otherwise,

for j ∈ {1, . . . , n}. If a state (i, c) with i > m is reached, the machine
halts in that state. We model a given RAM by an MPM with state
space S ⊆ Nn+1 and add for each instruction

• (i : INC(rj)), the guarded transition classes (xn+1 = i, α, ej +
en+1) and (xn+1 = i+ 1, α,−ej − en+1)

• (i : DECJ(rj , s)), the guarded transition classes (xn+1 = i ∧ xj >
0, α,−ej + en+1), (xn+1 = i ∧ xj = 0, α, (s − i) · en+1), (xn+1 =
i+ 1, α, ej − en+1), and (xn+1 = i ∧ xj = 0, α, (i− s) · en+1).

where α(x) = 1. We also add the guarded transition class (xn+1 >
m,α, en+1). First of all, we observe that already the problem of comput-
ing the set of reachable states assuming initial condition πen+1(0) = 1
is not decidable, since states x ∈ Nn+1 with xn+1 > m will be reached
if and only if the RAM halts. Further, note that for each instruction
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i ∈ {1, . . . ,m}, we added guarded transition classes in both directions,
that is, from one state to its successor state and back. But as soon
as any halting state x with xn+1 = i > m is reached, only states x′

with x′n+1 > i are reachable. This scheme ensures that the MPM is
irreducible if and only if the RAM does not halt. Consequently, the
problem of determining irreducibility and thus ergodicity is undecid-
able. 2

We want to remark that for simplicity, we decided to proof the unde-
cidability result via irreducibility. In fact, we could also have proven
it via positive-recurrence, by ensuring the behavior corresponding to
instructions I1, . . . , Im to be ergodic and connecting a null-recurrent
process like an M/M/1 queue with a larger arrival than service rate to
the halting states.

Theorem 16: Undecidability of Ergodicity for MPMs �Theorem 16

Theorem 15 also implies the undecidability of ergodicity for MPMs
that are induced by ordinary transition classes with propensity
functions that are expressible enough to test whether a component
of the state vector is zero (either directly or in any combination).

This result tells us that there is no algorithm that can fully automati-
cally check whether any MPM is ergodic or not. In our case that means
that there is no algorithm that can synthesize a Lyapunov function for
any ergodic MPM or state non-ergodicity otherwise. However, since our
models are usually based on polynomial propensity functions induced by
chemical reaction networks and we anyway use a semi-automatic proof
technique, where we choose a Lyapunov function to test beforehand, we
are not directly affected by this result.
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CHAPTER 4

Model Checking Markov Population Models

In the context of continuous-time Markov chains, properties of interest
can be specified using the continuous stochastic logic (CSL) [ASSB00,
BHHK03]. CSL is a branching-time temporal logic inspired by the com-
putation tree logic (CTL) [EC82]. It allows to reason about properties
of states via atomic propositions that are associated with a state, like
the number of certain molecules given in this state. But also properties
about which sets of states can be reached at all or within certain time
bounds as well as long run properties can be specified. Because the un-
derlying semantics of a Markov population model is given as a CTMC,
we can also use CSL to reason about properties of such models, when
interpreting CSL formulae on the CTMC semantics. Using CSL, we can
express many important measures for biological models, like switching
times as presented later.

We consider the complete set of CSL formulae specified in [BHHK03],
including the steady-state operator and in certain cases also the un-
bounded until operator but excluding the next-operator in order to keep
the presentation simple. Note that the next operator can be added eas-
ily but requires a rate matrix formulation of the CTMC that allows
explicit self-loops [BHHK03]. The resulting logic can express nested
probabilistic properties such as “the long-run probability is at least 0.4
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that we reach Ψ-states along Φ-states within the time interval [6.5,8.5]
with a probability larger than 0.98” via

S≥0.4(P>0.98(Φ U[6.5,8.5] Ψ)).

In the work [HHWZ09b], the authors have extended results on trun-
cation based analysis of infinite state CTMCs similar to the techniques
described in Chapter 2.4.3 such that they were able to do approxi-
mate model checking for a subset of CSL. This subset excluded the
steady-state operator as well as the unbounded until operator. The
respective techniques have been implemented in the model checker In-
famy [HHWZ09a]. In this chapter, we combine Geobound and In-
famy, such that we can also handle the CSL steady-state operator
for Markov population models with an infinite state space. Using a
ternary logic [KKLW07, Kli10] allows us to compute safe lower and
upper bounds for the respective probabilities. In turn, we can decide
exactly whether a certain formula holds, does not hold or whether this
cannot be decided on the chosen finite truncation of the current model.
We show the applicability of the approach on a number of biological
models. The results of this chapter have been published in [SHZ14].

4.1 Ternary-Logic Formulation of CSL

Definition 26: Ternary Logic�Definition 26

We consider a ternary logic [KKLW07, Kli10] with values B3 :=
{>,⊥, ?} which forms a complete lattice with the ordering ⊥ < ? <
>, B3. We interpret u as the meet (“and” operator), and ·c as the
complement (“not”) operation, with the usual semantics. Other
operators like t (“or” operator) can be derived easily. Then, >
and ⊥ can be interpreted as the values definitely true and definitely
false respectively. The symbol ? denotes the unknown value. The
respective truth tables of the operators are stated below.
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t ⊥ ? >
⊥ ⊥ ? >
? ? ? >
> > > >

u ⊥ ? >
⊥ ⊥ ⊥ ⊥
? ⊥ ? ?
> ⊥ ? >

·c
⊥ >
? ?
> ⊥

Consider a formula over a number of values some of which are ?. If the
value of this formula is different from ?, we know that when inserting ⊥
or > instead of some of these values, the result would still be the same.
This way, in some cases we can obtain a truth value even though we do
not known the truth values of some formula parts.

When we want to check whether a CTMC satisfies a property, we
need to define what atomic propositions from a given set AP hold in a
state. We therefore demand that a CTMC is annotated by a ternary
labeling function.

Definition 27: Ternary Labeling Function �Definition 27

A ternary labeling function for state space S and a set of atomic
propositions AP is a function L : (S ×AP)→ B3.

If an MPM with N population types is the subject of analysis, we
implicitly demand that each state state x ∈ S is labeled with all boolean
expressions over xi and the respective truth values.

Example 9: Ternary Labeling of an MPM �Example 9

For example, given an MPM with two population types and a state
x =

[
3 4

]
, we have

• L(x,x1 ≤ z) = > for all z ≥ 3,

• L(x,x1 + x2 ≤ 7) = >,

• L(x,x2
1 + x2

2 < 30) = >, and

• L(x,x1 + x2 > 7) = ⊥,
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to name just a few.

We consider the logic CSL [BHHK03] without the next-operator inter-
preted over the ternary logic of Definition 26.

Definition 28: Syntax of CSL�Definition 28

Let I = [t, t′] be an interval with t, t′ ∈ R+
0 ∪{∞}, t′ =∞⇒ t = 0,

and t ≤ t′. Let p ∈ [0, 1] and ./ ∈ {≤, <,>,≥}. The syntax of
state formulae (Φ) and path formulae (φ) is:

Φ = true | a ∈ AP | ¬Φ | Φ ∧ Φ | P./p(φ) | S./p(Φ),

φ = Φ UI Φ.

Let F be the set of all CSL formulae. The truth value J·K : ((S∪Path)×
F)→ B3 of formulae is defined inductively as in the following definition.

Definition 29: Ternary Semantics of CSL�Definition 29

The ternary semantics of CSL is defined recursively by the mapping
depicted in Figure 4.1.

In order to simplify presentation, we demand the existence of an initial
state sinit ∈ S, that is, πsinit(0) = 1. This way, a CTMC satisfies a
formula Φ if the initial state sinit does. Further, we specify two derived
operators, the unbounded until

Φ1 U Φ2 := Φ1 U
[0,∞) Φ2

and the eventually operator

3IΦ := true UI Φ.

Moreover, let A ⊆ S be a set of states. For better readability, we use the
name of the set A as an atomic proposition in formulae to characterize
that the system is in a state contained in A.
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Js, trueK := >

Js, aK := L(s, a)

Js,Φ1 ∧ Φ2K := Js,Φ1K u Js,Φ2K

Js,¬ΦK := Js,ΦKc

Js,P./p(φ)K :=





> if Prs{σ|Jσ, φK=>}./p and

Prs{σ|Jσ, φK6=⊥}./p,
⊥ if Prs{σ|Jσ, φK=>}6./p and

Prs{σ|Jσ, φK6=⊥}6./p,
? otherwise,

Js, S./p(Φ)K :=





> if SL(Φ)./p ∧ SU (Φ)./p,

⊥ if SL(Φ)6./p ∧ SU (Φ)6./p,
? otherwise, where

SL(Φ) := lim
t→∞

Prs{σ | Jσ@t,ΦK = >}

SU (Φ) := lim
t→∞

Prs{σ | Jσ@t,ΦK 6= ⊥}

Jσ,Φ1 U
I Φ2K :=





> if ∃t∈I.Jσ@t,Φ2K=> and

∀t′<t.Jσ@t′,Φ1K=>,
⊥ if ∀t∈I.Jσ@t,Φ2K=⊥ or

∃t′<t.Jσ@t′,Φ1K=⊥,
? otherwise.

Figure 4.1: Ternary semantics of CSL.
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4.2 Model Checking CSL Based on Truncation

Model checking CSL formulae without the steady state operator S on
a finite CTMC over a ternary logic has already been used before to
handle a different abstraction technique for CTMCs [KKLW07, Kli10].

Now we discuss how to model check CSL formulae on infinite CTMCs.
To this end, our goal is to operate on a finite truncation instead of the
original infinite CTMC. In a nutshell, starting from the initial state, we
explore the states of the infinite model until we can safely assume that
we have explored enough of them to obtain a result in the following steps
that can be used to decide the formula. Then, we remove all transitions
from the states at the border and set all of their atomic propositions to
?. In [HHWZ09b] the authors already discussed some variants of such
a model exploration. In the following, we give another such technique,
which is more efficient, because it needs to explore less states.

4.2.1 Truncation-Based Reachability Analysis

We define the set of successor states post(A) of a set A ⊆ S as the set

post(A) = {s ∈ S | ∃s′ ∈ A.Qs′s > 0}.

This way, given a CTMC model, a subset of the state space C0, and a
CSL formula of the form

Φ = P./p(Φ1 U
I Φ2),

we want to compute a finite truncation sufficient to evaluate Js,ΦK, that
is, whether formula Φ holds in state s, for all states s ∈ C0.

Definition 30: Finite Truncation�Definition 30

Let C = (S,Q, π(0)) be a CTMC with initial state sinit and la-
beling L, C ⊆ S with sinit ∈ C a finite subset of S, and let
Ċ = post(C) \ C. The finite truncation of C is the finite state
CTMC C |C = (C ∪ Ċ,QC , π(0)) with labeling LC where for all
a ∈ AP, LC(s, a) = L(s, a) if s ∈ C and LC(s, a) =? otherwise.
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C0

C
Ċ

S

Definition 31: Finite Truncation ⇤Definition 31

Let C = (S,Q,⇡(0)) be a CTMC with initial state sinit and la-
belling L, C ✓ S with sinit 2 C a finite subset of S, and let
Ċ = post(C) \ C. The finite truncation of C is the finite state
CTMC C |C = (C [ Ċ,QC ,⇡(0)) with labelling LC where for all
a 2 AP, LC(s, a) = L(s, a) if s 2 C and LC(s, a) =? otherwise.
The infinitesimal generator is defined by QC

ss0 = Qss0 if s 2 C and
QC

ss0 = 0 otherwise as well as QC
ss = �Ps0 6=s QC

ss0 .

We build the truncation of a model iteratively, using a high-level de-
scription of the model as for example given by transition classes. We
explore the model until for all s 2 C0 the probability to reach states in
Ċ is below an accuracy ✏, which we may choose as a fixed value or due
to the probability bound p.

Algorithm 8 describes how we can obtain a su�ciently large state set
C. For s 2 S, s0 2 Ċ and t 2 R+

0 [ {1} we use ⇡s0(t)
s to denote the

probability that at time t 2 R+
0 , the CTMC is in state s0, under the

condition that it was in s initially. For t = 1, we let ⇡ denote the
limit for t ! 1. As s0 is absorbing, this value exists. Further, for a
set of absorbing states A, we let ⇠(s, t, A) :=

P
s02A ⇡s0(t)

s denote the
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Ċ = post(C) \ C. The finite truncation of C is the finite state
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CTMC C |C = (C [ Ċ,QC ,⇡(0)) with labelling LC where for all
a 2 AP, LC(s, a) = L(s, a) if s 2 C and LC(s, a) =? otherwise.
The infinitesimal generator is defined by QC

ss0 = Qss0 if s 2 C and
QC

ss0 = 0 otherwise as well as QC
ss = �Ps0 6=s QC

ss0 .

We build the truncation of a model iteratively, using a high-level de-
scription of the model as for example given by transition classes. We
explore the model until for all s 2 C0 the probability to reach states in
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The infinitesimal generator is defined by QCss′ = Qss′ if s ∈ C and
QCss′ = 0 otherwise as well as QCss = −∑s′ 6=s QCss′ .

Intuitively, C0 is the set of all states for which we want to decide the
given formula and set C is the total set of states needed in order to
achieve that goal. Figure 4.2 illustrates the relationship between the
respective sets. We build the truncation of a model iteratively, using a
high-level description of the model as for example given by transition
classes. We explore the model until for all s ∈ C0 the probability to
reach states in Ċ is below an accuracy ε (blue curve in Figure 4.2),
which we may choose as a fixed value or due to the probability bound
p.

Algorithm 6 describes how we can obtain a sufficiently large state set

C. For s ∈ S, s′ ∈ Ċ and t ∈ R+
0 ∪ {∞} we use π

(s)
s′ (t) to denote the

probability that at time t ∈ R+
0 , the CTMC is in state s′, under the

condition that it was in state s initially. For t = ∞, we let π denote
the limit for t→∞. As s′ is absorbing, this value exists. Further, for a

set of absorbing states A, we let ξ(s, t,A) :=
∑

s′∈A π
(s)
s′ (t) denote the
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probability to reach setA within time t ∈ R+
0 ∪{∞}. Given a fixed s and

t, we can compute π
(s)
s′ (t) for all s′ at once effectively, and given A and

t we can compute ξ(s, t,A) for all s at once effectively [BHHK03]. We
use the notation ξC [D](s, t,A) to denote that the respective quantity is
computed on the CTMC C , where states in D ⊆ S are made absorbing.

The algorithm is started on a CTMC C and a set of states C0, for
which we want to decide a given property expressed as a CSL formula.
We also provide the time bound t as well as the accuracy ε. With C̃
we denote a set of states for which the exploration algorithm may stop
immediately, as further exploration is not needed to decide the given
property. For Φ = P./p(Φ1U

[0,t]Φ2) with t ∈ R+
0 ∪{∞}, we could specify

C̃ as the states which fulfill Φ2 ∨ (¬Φ1 ∧ ¬Φ2).

Algorithm 6 treachability(C , C0, C̃, t, ε)
1: C := C0
2: Ċ := post(C) \ C
3: while maxs∈C0 ξC [Ċ](s, t, Ċ \ C̃) ≥ ε do

4: choose s from arg maxs∈C0 ξC [Ċ](s, t, Ċ \ C̃)
5: while ξC [Ċ](s, t, Ċ \ C̃) ≥ ε do

6: choose A ⊆ (Ċ \ C̃) such that ξC [Ċ](s, t,A) ≥ ε
7: C := C ∪ A
8: Ċ := post(C) \ C
9: end while

10: end while
11: return C ∪ (post(C) ∩ C̃)

Let n be the number of states in the final state set C. In the worst
case, the state space resembles a linear structure and we will need n
time-bounded reachability computations of length in order to arrive
at the final set C. Thus, the time complexity is O(u · n2 · t) and the
space complexity is O(n) assuming a sparse model as given by an MPM
induced by transition classes.
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4.2.2 Truncation-Based Steady-State Analysis

We use the state-wise bounds that we retrieve as described in Chap-
ter 3.4 for a finite subset of the state space as computed in Chapter 3.1.

4.2.3 Combining Truncation-Based Analysis Methods for
CSL Model Checking

Given a CTMC, we want to check whether it satisfies Φ. This is done in
two phases. At first, we construct a finite truncation that is sufficient to
check the formula. To this end, we employ an algorithm to determine
suitable CTMC truncations. The states explored depend on the specific
CSL formula analyzed. The computation works by recursive descent
into sub-formulae. The most intricate formulae are the probabilistic
operators. After the exploration, we can compute Jsinit,ΦK on the finite
truncation.

Algorithm 7 explore(C , C,Φ, ε)
1: switch Φ do
2: case true:
3: return C
4: case a ∈ AP:
5: return C
6: case ¬Ψ:
7: return explore(C , C,Ψ, ε)
8: case Φ1 ∧ Φ2:
9: return explore(C , C,Φ1, ε) ∪ explore(C , C,Φ2, ε)

10: case P./p(Φ1 U
[t,t′] Φ2):

11: Ct = treachability(C , C, stop(Φ), t, ε)
12: Ct′ = treachability(C , Ct, stop(Φ), t′ − t, ε)
13: return explore(C , Ct′ ,Φ1, ε) ∪ explore(C , Ct′ ,Φ2, ε)

14: case S./p(Ψ):
15: return explore(C , post(C) \ C,Ψ, ε)

Algorithm 7 describes the exploration component and returns the
finite set of states needed for deciding the specified formula. Given a
CTMC C and a state formula Φ, we call explore(C , {sinit},Φ, ε) for
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a chosen ε ∈ (0, 1). Afterwards, we can use the CSL model checking
algorithm for a ternary logic on the model obtained this way. With
stop(Φ) we denote a set of states for which we can stop the exploration
immediately. For nested formulae, this value is computed by a simple
precomputation in a recursive manner.

We assume that we have already obtained the steady-state proba-
bilities beforehand. Thus, to obtain the lower bound probabilities of
S./p(Ψ), we sum up the lower bound steady-state probabilities of states
s ∈ C with Js,ΨK = >. For the upper probability bound, we sum up-
per steady-state probabilities of states s with Jx,ΨK 6= ⊥ and add the
probability ε that limits the steady-state probability outside C. The
probabilities computed are the probabilities for all states, because the
model is ergodic.

Correctness: Consider a truncation CC constructed for the CTMC C
and a state formula Φ. If we obtain the truth value Js,ΦK 6=? in CC ,
then this is also the truth value in C . The correctness is independent
of the exploration algorithm, which plays a role for performance and
applicability of the approach. If too many states are explored, we may
run out of memory, but if too few are explored, we are unable to decide
the value in the original model. As a result, the correctness of the
algorithm for CSL without steady state follows by giving a simulation
relation [Kli10, Definition 3.4.2] between C and CC and [Kli10, Theorem
4.5.2]. The correctness of the steady-state extension follows as we give
safe upper and lower bounds in exactly the same way as it is done in
[Kli10, Theorem 4.5.2].

Complexity: The space and time complexity of the presented model
checking algorithm is that of standard CSL model checking algorithms
as for example in [BHHK03] assuming the truncated state space has
been computed using the methods of Chapters 4.2.1 and 4.2.2.

4.3 Case Studies

Using several case studies, we assess the effectiveness of our technique.
For that, we have combined the tool Geobound [Spi13b] to compute
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bounds on steady-state probabilities for Markov population models with
the infinite-state model checker Infamy [HHWZ09a] to form the tool
chain GeoInf [HS13]. To show the efficiency of the approach, we applied
GeoInf on a number of models from systems biology. The results were
obtained on an Ubuntu 10.04 machine with an Intel dual-core processor
at 2.66 GHz equipped with 3 GB of RAM. Instead of the truth value for
the formula under considerations, in the result tables we give intervals
of the probability measure of the outer formula. We also make use of a
derived operator for conditional steady-state measures defined as

Js, S./p(Φ1 | Φ2)K:=





>, SL(Φ1|Φ2)./p∧SU (Φ1|Φ2)./p,

⊥, SL(Φ1|Φ2)6./p∧SU (Φ1|Φ2)6./p,
? else,

where

SL(Φ1 | Φ2) :=
SL(Φ1 ∧ Φ2)

SU (Φ2)
,

SU (Φ1 | Φ2) :=
SU (Φ1 ∧ Φ2)

SL(Φ2)
.

4.3.1 Protein Synthesis

We analyze the MPM encoding protein synthesis, as given in Model 5,
with the parameter set

λ = 1.0, µ = 5.0, ν = 1.0, δ = 0.02.

We consider the property that on the long run, given that there are
more than 20 proteins, a state with 20 or less proteins is most likely
(with a probability of at least 0.9) reached within t time units:

S>p(P>0.9(3[0,t]P ≤ 20) | P > 20).

We illustrate this property in Figure 4.3 and give the model checking
results in Table 4.1. The shortcut ”stop” of Algorithm 7 was not used
for the analysis. With “depth” we specify the number of states of the
shortest path from the initial state to any other state of the truncation.
The run-times of Geobound and Infamy is given in seconds. The rate of
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P
0 10 20 30

≤ t

Figure 4.3: Stability property of the protein synthesis model.

decay of proteins depends on the number of proteins existing. For the
states on the border of C, we have large rates back to existing states.
Because of this, for the given parameters the state space exploration
algorithm does not need to explore further states, and the total number
n of explored states does not increase with the time bound. To obtain
different values of n, we would have needed to choose extremely large
time bounds, for which analysis would be on the one hand infeasible
and on the other hand would lead to results extremely close to 1. The
lower and upper bounds are further away than ε. The reason is that
we have to divide by SU (Φ2) for the lower and by SL(Φ2) for the upper
bound. In turn, this may lead to a much larger error than ε as witnessed
in the following table. For this model, a choice of ε = 1e − 6 seems to
be appropriate in order to achieve meaningful bounds.

ε t Depth
Time (s)

n
Probability Bounds

Geobound Infamy [SL, SU ]

1e–1
10 8

0.9
0.1 217 [0.002, 1.0]

20 8 0.1 217 [0.003, 1.0]
60 8 0.1 217 [0.004, 1.0]

1e–3
10 5

3.2
0.3 1531 [0.144, 1.0]

20 5 0.4 1531 [0.259, 0.816]
60 5 0.7 1531 [0.317, 1.0]

1e–6
10 3

7.8
34.3 46431 [0.451350, 0.454779]

20 3 67.0 46431 [0.813116, 0.817401]
60 3 257.5 46431 [0.997642, 1.0]

Table 4.1: Model checking results of the protein synthesis model.
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Figure 4.4: CSL property of the gene expression model.

4.3.2 Gene Expression

Next, we analyze the gene expression system formalized in Model 1 with
the parameter set

ρ = 25.0, τ = 1.0, δM = 2.0, δP = 1.0.

The property of interest is the steady-state probability of leaving a
certain set of states W enclosing more than 80% of the steady-state
probability mass most likely within t time units, that is,

S>p(P>0.9(3[0,t]¬W ) | W ),

where

W := M > 5 ∧M < 20 ∧ P > 5 ∧ P < 20

with S>0.8(W ) = >. We illustrate this property in Figure 4.4 and
state the model checking results in Table 4.2. Similar to the protein
synthesis case study, we see that there is no increase in the number
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of states, because the window size already comprises enough states for
the transient analysis. Here, a value of ε = 0.01 is needed in order to
retrieve reasonable bounds.

ε t Depth
Time (s)

n
Probability Bounds

Geobound Infamy [SL, SU ]

0.1
2 24

3.4
5.2 2558 [0.01, 0.2]

4 24 6.0 2558 [0.3, 0.6]
8 24 8.5 2558 [0.8, 1.0]

0.05
2 20

6.1
11.9 3663 [0.015, 0.078]

4 20 15.4 3663 [0.34, 0.46]
8 20 22.1 3663 [0.90, 1.0]

0.01
2 15

8.5
99.3 11736 [0.015, 0.029]

4 15 139.9 11736 [0.37, 0.40]
8 15 219.5 11736 [0.97, 1.0]

Table 4.2: Model checking results of the gene expression model.

4.3.3 Exclusive Switch

The last case study is the exclusive switch as described in Model 3 with
the symmetric parameter set

ρ1 = ρ2 = 0.05, δ1 = δ2 = 0.005, β1 = β2 = 0.01, ν1 = ν2 = 0.008.

As already depicted in Table 3.2, this system has two attractor regions,
that is, two spatial maxima in the steady-state probability distribution
over the protein levels, one at P1 = 10, P2 = 0 and the other one at
P1 = 0, P2 = 10. We are interested in the switching time between these
two regions. For this, we estimate the time needed for a 90%-quantile of
the steady-state probability mass of one of the two attractors to reach
the other attractor region. More precisely, let

start := ||(P1, P2)− (10, 0)||22 ≤ 4

end := ||(P1, P2)− (0, 10)||22 ≤ 4.

Then, the formula to check is

S>p(P>0.9(3[0,t]end) | start).
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examples/exswitch5.tcm [epsilon = 0.1]
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≤ t

start

end

Figure 4.5: CSL property of the exclusive switch model.

We illustrate this formula in Figure 4.5. Note that since the model is
symmetric we only have to check one formula, that is, from one attractor
to the other. The corresponding results are depicted in Table 4.3. From
these results we may conclude that in half of the cases, most likely the
switching time between the attractor regions is at most 7800 time units,
while in almost all cases the switching time is most likely below 8000
time units, assuming the system has stabilized to a steady state. Again,
a value of ε = 0.01 is needed in order to retrieve reasonable bounds.
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ε t Depth
Time (s)

n
Probability Bounds

Geobound Infamy [SL, SU ]

0.1

7700 14

5.8

47.9 3414 [0.2, 0.7]
7800 14 48.0 3414 [0.3, 0.9]
7900 14 47.6 3414 [0.5, 1.0]
8000 14 48.1 3414 [0.6, 1.0]

0.05

7700 12

6.9

128.3 4848 [0.26, 0.49]
7800 12 129.7 4848 [0.43, 0.70]
7900 12 130.5 4848 [0.64, 0.98]
8000 12 131.0 4848 [0.83, 1.0]

0.01

7700 8

86.2

1881.6 14806 [0.30, 0.35]
7800 8 1904.5 14806 [0.50, 0.56]
7900 8 1930.1 14806 [0.75, 0.82]
8000 8 1942.9 14806 [0.96, 1.0]

Table 4.3: Model checking results of the exclusive switch model.

114



CHAPTER 5

Steady State Analysis of Multimodal Markov Chains

For many Markov population models, an efficient computation of the
equilibrium distribution is hindered by both a very large or even infinite
state space and stiff dynamics. In particular if the distribution is multi-
modal, the main part of the steady state probability mass concentrates
on several attracting regions. Typically, the locations of such attractors
are not known a-priori, but even if their locations are known, the prob-
lem is that they are usually separated by low-probability regions which
renders the application of standard numerical and simulative methods
very difficult. The reason is that switching from one attractor to the
other is a rare event and a large number of trajectories is needed to
estimate the amount of probability mass of one attractor relative to the
mass of the other attractors. Similarly, standard numerical approaches,
which are often iterative methods, show slow convergence properties.

In Chapter 3.1, we have seen how to efficiently compute a finite trun-
cation C of the (possibly infinite) state space of a Markov population
model. If that truncation is of numerically tractable size, we can di-
rectly use the results of Chapter 3.4 to compute state-wise bounds for
the equilibrium distribution. However, the problems related to stiffness
are still present. For example, the case study that was considered by
Milias-Argeitis and Lygeros [MAL11] could not be solved using the tool



Chapter 5. Steady State Analysis of Multimodal Markov
Chains

PRISM which provides a large number of different numerical methods
to obtain the steady state distribution of a Markov chain. Even after a
reasonable amount of one million iterations and a relative precision of
1e–15, none of these methods converged. However, since for this exam-
ple the state space is small (19600 states) it can be solved exactly with
direct methods implemented in Matlab using a sparse matrix repre-
sentation. A three-dimensional extension of that system, the tri-stable
toggle switch [LNH+07], containing around 1.5 million states can not
be handled by Matlab within a maximum computation time of one day.
Here, the number of states corresponds to an appropriate truncation
of the infinite state space which is necessary because Matlab (and also
PRISM) can only analyze finite systems.

The purpose of this chapter is to develop and analyze a numerical
method that approximates the steady state distribution of a large (or
infinite) ergodic Markov chain with one or several attractors. We pro-
pose an algorithm that overcomes both the problems of largeness of the
state space and the problems related to stiffness. Our method provides
answers to the following questions:

1. How can we find the attractors of the system, that is, finite regions
containing most of the steady state probability?

2. If there is more than one attractor, how can we efficiently com-
pute the accumulated steady state probability of each attracting
region?

Note that once the total probabilities of the attractors are known, the
probabilities of the individual states can be computed using the ap-
proach presented in Chapter 3.4.

To solve problem 1, we use the geometric bounding techniques de-
veloped in Chapter 3.1 to first find a region containing all attractors,
that is, a single region containing at least 1-ε of the total steady state
probability mass. In order to separate multiple attractor regions in
problem 2, we numerically explore the most likely paths leading from
one attractor to the other. This method does not explore the whole
state space but allows to direct the exploration behavior. Once we have
found the attractor regions, we compute their relative strength using
a novel approach combining stochastic complementation and inexact
matrix-vector multiplication.
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We remark that steady state analysis has been widely considered in
the area of queuing and computer systems [Ste94] but to the best of
the author’s knowledge, specific solutions for systems with multimodal
distributions as they occur in biological applications have not been de-
veloped. A dynamic state space exploration algorithm has been pro-
posed by de Souza e Silva and Ochoa [dSeSO92] for performance and
dependability analysis based on finite Markov models. Their method
can only be used for the approximation of the steady state probabil-
ity conditioned on a certain subset. The same applies to Chapter 3.1
where also only a single attractor is considered. In contrast, here we
propose a technique to overcome the numerical problems that arise due
to the stiffness inherent to multimodal systems, by considering the most
likely paths leading from one attractor to any other. In particular, we
construct a so called attractor Markov chain to obtain the steady state
probability of each attractor relative to the others. The closest work to
ours is that of Milias-Argeitis and Lygeros [MAL11] where the authors
consider the same problem but combine stochastic complementation
with a simulative approach. Here, we focus on numerical solutions and
show that they are superior to the simulative approach in [MAL11] both
in terms of computation time and accuracy. In addition, we describe
how to locate the attractors of the system which was not considered
by Milias-Argeitis and Lygeros. The results of this chapter have been
published in [SW13].

5.1 Approximation of Attractor Probabilities

In this chapter we propose an approximation algorithm for the effi-
cient computation of the steady state distribution of multimodal CTMC,
where certain regions of the state space are attracting regions, that is,
regions corresponding to local maxima of the steady state distribution.

For that, we first concentrate on the problem of approximating the
probability of each attractor and assume that the locations of all at-
tractors of the Markov chain are already known. Formally, we parti-
tion the state space S of the Markov chain into n attractors Ai with
i ∈ {1, . . . , n} and |Ai| ∈ N and the possibly infinite set I which con-
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tains all states that are not part of an attractor, that is,

S = A1 ∪̇ . . . ∪̇ An ∪̇ I.

The goal is to compute the cumulative steady state probabilities pi with

pi =
∑

s∈Ai
πs,

n∑

i=1

pi > 1− ε.

We proceed in two steps:

(a) We approximate for each Ai the conditional steady state distri-
bution π(i) with

π(i)s =
πs∑

s′∈Ai πs′

for all states s ∈ Ai.

(b) We approximate the steady state distribution π̂ of the aggregated
system, that is, the Markov chain that consists of the macro states
A1, . . . ,An, which yields an approximation of p1, . . . , pn.

Note that in step (b) we use the fact that ε is small and that the
probability mass in I is negligible. Given approximations of pi and
π(i), the steady state probability of a state s ∈ Ai can be approximated
as well via

πs = pi · π(i)s .
Further, we implicitly assume that each Markov chain associated with
the (finite) state space Ai is irreducible such that the corresponding
local steady state distribution uniquely exists.

5.1.1 Computation of the Conditional Steady State
Distributions of Attractors

For step (a) we remark that the exact conditional distributions π(i) are
the (unique) solutions of

π(i) ·QAi = 0 and π(i) · e = 1

where QAi is the stochastic complement of Q with respect to the set
Ai. The problem is that in order to obtain the exact entries of QAi ,
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the whole state space has to be considered (see Definition 22) which is
infeasible for large or even infinite Markov chains. Therefore, the be-
havior outside of Ai has to be approximated in an appropriate way. By
abuse of notation, for a vector x let diag(x) denote the diagonal matrix
M with entries Mij = xi if i = j and 0 otherwise. An approximation

π̃(i) ≈ π(i) is given by

π̃(i) · (Qii − diag(Qii · e)) = 0, π̃(i) · e = 1 (5.1)

where Qii is the block matrix induced by the partitioning with respect
to the attractor sets, that is,

Q =




Q11 . . . Q1n Q1I
...

. . .
...

...
Qn1 . . . Qnn QnI

QI1 · · · QIn QII



.

Note that the block Qij contains all rates of transitions from Ai to Aj
and that Qii−diag(Qii · e) is an infinitesimal generator matrix. Thus,
in the corresponding Markov chain the transitions for leaving the set Ai
are redirected to the state from which the set is left. We remark that
for solving Equation (5.1), direct methods such as Gaussian elimination
can be applied since typically the attractors are of tractable size.

Moreover, we can improve the approximation of the local steady state
distribution by considering an enlarged set Ai ∪ A′i where A′i contains
the states reachable from Ai within a certain number of transitions. For
example, in the experimental results shown later, we will choose A′i as

the set of states reachable from Ai within 15 steps. Let π̃(i) denote the
obtained approximate distribution on Ai ∪ A′i. In this case we re-scale

π̃(i) such that it yields a distribution on Ai, that is, for s ∈ Ai we use
the approximation

π(i)s ≈
π̃(i)s∑
k∈Ai π̃

(i)
k

.
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5.1.2 Unbounded Reachability Analysis for Markov
Population Models

In the following section, we need an efficient way to compute the (un-
bounded) reachability probability reachA to reach some set A ⊆ S
starting with some initial distribution. The idea is to distribute the
probability mass according to the embedded DTMC of the MPM and
make states in A absorbing, that is, we ignore all outgoing transitions.
Note that we can employ the embedded DTMC (cf. Definition 7 on
page 18) since we are not interested in the distribution over time but
in the limit. Since again, the algorithm should also be applicable for
MPMs with infinite state space, the idea is to use dynamic state space
truncation inspired by the transient analysis approach in Algorithm 2.
Algorithm 8 provides such a reachability analysis where in the end∑

x∈A p(x) approximates reachA. In detail, after every iteration, states
with a probability mass smaller than the threshold δ will be deleted. An
iteration step involves the invocation of Algorithm 9, which distributes
the current probability distribution along the next-step probabilities
encoded in the transition probability matrix of the embedded DTMC.
The iterations finally end when there is no significant state left outside
of set A, that is, the initial probability mass has either been truncated
or absorbed in A. As in Algorithm 2, the total truncation error is
accumulated and returned in e.

Algorithm 8 reachability(π(0),Q,S,A, δ)
1: e← 0
2: p← new hash map S → [0, 1]
3: ∀s with πs(0) > δ: p(s)← πs(0)
4: while

∑
s∈dom(p)\A p(s) > 0 do

5: p← rstep(p,Q,A, δ)
6: ∀s with p(s) < δ: e← e+ p(s) and remove(p, s)
7: end while
8: return [p, e]
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Algorithm 9 rstep(p,Q,A)

1: for s ∈ dom(p) \ A do
2: for s′ with Qss′ > 0 do
3: p(s′)← p(s′)− p(s) ·Qss′ ·Q−1ss
4: end for
5: end for

Note that each step in Algorithm 9 already uses the results of the pre-
vious step eliminating the need to store the previous probability dis-
tribution in a separate hash map and speeding up convergence. This
is justified, since we are not interested in the distribution over time
but only the limit. Algorithm 8 can also be used to approximate the
reachability of several BSCCs B1, . . . ,Bn ⊆ S at once. For that, the
algorithm needs to be called with A = B1 ∪ · · · ∪ Bn which will yield
approximations

∑
x∈Bi p(x) for the individual reachBi quantities. This

is justified since BSCCs can not be left.

5.1.3 Computation of the Steady State Distribution of the
Attractor Markov Chain

As discussed in Section 5.1, we first assume the attracting regions Ai
to be given and will show a method to compute them later on. For step
(b) we consider the embedded matrix with respect to the partitioning
induced by the attractor regions, that is,

E =




E11 . . . E1n E1I
...

. . .
...

...
En1 . . . Enn EnI

EI1 · · · EIn EII




= I + |diag(Q)|−1 ·Q.

Extending the stochastic complement to several sets, we define
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Q11 . . . Q1n
...

. . .
...

Qn1 . . . Qnn


+




Q1I
...

QnI


 ·
(∑∞

k=0 Ek
II
)
·
[
EI1 · · ·EIn

]

=




Q11+Q1I ·
(∑∞

k=0 Ek
II
)
·EI1 · · · Q1n+Q1I ·

(∑∞
k=0 Ek

II
)
·EIn

...
. . .

...
Qn1+QnI ·

(∑∞
k=0 Ek

II
)
·EI1 · · · Qnn+QnI ·

(∑∞
k=0 Ek

II
)
·EIn




=
[
Qij

]
i,j∈{1,...,n} = Q.

The block Qii of the complement with respect to all attractor sets
should not be confused with the generator matrix QAi which is the
stochastic complement of Q with respect to the attractor set Ai only.
Now we are able to define the attractor Markov chain.

Definition 31: Attractor Markov Chain�Definition 31

The attractor Markov chain for a CTMC (S,Q, π(0)) and a par-
titioning of the state space S = A1 ∪̇ . . . ∪̇ An ∪̇ I is the

CTMC ({A1, . . . ,An}, Q̂, π̂(0)) with π̂Ai(0) =

∑
s∈Ai πs(0)∑
s′∈A πs′ (0)

, A =

A1 ∪̇ . . . ∪̇ An, and Q̂ defined by

Q̂ =




Q̂11 · · · Q̂1n
...

. . .
...

Q̂n1 · · · Q̂nn


 =

[
Q̂ij

]
i,j∈{1,...,n}

,

where

Q̂ij = π(i) Qij ·e = π(i) ·
[
QiI ·

( ∞∑

k=0

Ek
II

)
·EIj + Qij

]
·e. (5.2)

Rate Q̂ij is the aggregated rate of the transition from attractor Ai to
Aj ignoring the time spent outside the attractor regions. To approxi-

mate Q̂, we first replace π
(i)
j by its approximation from step (a). Then,
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the idea is to exploit Algorithm 8 implementing reachability based on
inexact matrix-vector multiplications for computing Q̂ row-wise as il-
lustrated in Algorithm 10.

Algorithm 10 attract(Q,S, {Aj}1≤j≤n, i, δ)
1: θ ← π(i) ·QiI · e
2:
[
m e

]
← reachability(π(i) ·QiI ,Q,S,A1 ∪̇ . . . ∪̇ An, δ · θ)

3: for j ∈ {1, . . . , n} do
4: Q̂ij ←

∑
r∈Aj m(r) + π(i) ·Qij · e

5: end for
6: return [Q̂i1 . . . Q̂in]

Theorem 17: Correctness of Algorithm 10 �Theorem 17

Given a CTMC (S,Q, π(0)) and a partitioning

S = A1 ∪̇ . . . ∪̇ An ∪̇ I

of the state space, then Algorithm 10 attract(Q, {Aj}1≤j≤n, i, δ)
approximates the i-th row of the infinitesimal generator matrix Q̂
of the corresponding attractor Markov chain.

Proof: Based on a small significance threshold δ, we consider only
the relevant summands of Equation (5.2), similar to approximation al-
gorithms for the transient distribution of a Markov chain [HMW09,
DHMW09]. In other words, we use inexact matrix-vector multiplica-
tions while propagating the rate-mass vector π(i) ·QiI through the infi-
nite sum. For that we employ Algorithm 8 which was originally designed
to propagate probability distributions. Likewise, Algorithm 10 iterates
until the rate mass is absorbed in a set of absorbing states and truncates
all states with insignificant rate mass. By insignificant rate mass, we
mean the total weighted rate mass θ = π(i) ·QiI ·e that leaves attracting
region Ai, as computed in line 1, times the desired threshold δ. Note
that we need to weight δ by θ in line 2, since we no longer iterate on
a probability distribution with total accumulated probability sum one,
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but on a rate mass vector as described above.

In the while-loop of Algorithm 8, we consider those states that are
reachable from Ai within K transitions where K is the number of times
the while loop is executed. This corresponds to a truncation of the
infinite sum in Equation (5.2) after K summands.

In Algorithm 9, we only consider transitions of states in I. This en-
sures that the while-loop of Algorithm 8 will terminate after a finite
number of steps because eventually the set I is left and the sets Ai are
absorbing. Note that Qxy · Q−1xx (Algorithm 9, line 3) corresponds to
the entries in EII and EIj . Thus, we propagate the vector π(i) · QiI
step-by-step in the embedded Markov chain represented by EII and
EIj which yields an approximation of the vector π(i) ·QiI · (

∑K−1
k=0 Ek

II)
where K is the number of times the while-loop has been executed so
far. In line 6 of Algorithm 8 we find all relevant states, that is, states
that contribute at least a fraction δ of the total rate mass θ. The states
that contribute less are dropped. Note that this ensures that among the
states reachable from Ai within K transitions, we consider only those
that are relevant. The for-loop in lines 3 and 4 in Algorithm 10 finally
adds the last summand πi ·Qij · e as in Equation 5.2. 2

The approximation proposed in Algorithm 10 corresponds to a reacha-
bility analysis during which the main part of the rate mass drifts back
towards the attractor. The remaining part drifts to the other attractors
where the truncation based on δ ensures that the most likely paths be-
tween the attractors are explored (they correspond to the subset of I),
that is, we do not explore regions holding an negligible portion of the
total rate mass θ. More precisely, regions that are rarely visited when
switching between attractors will not be included.

Once an approximation of Q̂ is obtained we can compute the steady
state distribution π̃ of the attractor Markov chain using, for instance,
a direct solution method such as Gaussian elimination. Note that the
attractor Markov chain has only n states. Thus, even if the transition
rates in Q̂ differ widely, an efficient solution is possible.
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5.2 Approximation Error Analysis

5.2.1 Error of the Local Steady State Computation

We first consider the error made in step (a), that is, when approximating
π(i). For each state s in Ai that has a transition to a state outside of Ai
we construct a Markov chain with generator Q̃(s). Matrix Q̃(s) is equal
to matrix Qii except that from the s-th column we subtract the vector
Qii · e, that is, we redirect all transitions of state s leaving Ai back to
state s just like we did in Chapter 3.4. Consequently, solving the steady
state distributions for all Q̃(s) and taking the component-wise minima
and maxima gives bounds on πs as in Equation (3.16). It is of course
computationally quite expensive to bound the error in this way except
if the attractor is very small. The approximation obtained in step (a)
yields a solution which lies within these bounds since any redirection
induces a distribution that lies in the polyhedral hull spanned by the
steady state distributions of Q̃(i) [CS84]. The bounds correspond to the
worst case and in practice our approximation is much better than the
bounds obtained in the way that we describe above.

5.2.2 Error of the Computation of the Steady State of the
Attractor Markov Chain

For step (b), we note that some parts of the total rate mass θ is dropped
because of the threshold δ. Consequently, when we approximate the
rows of Q̂ using Algorithm 10, that is,

Q̂ ≈ Q̃ =




attract(Q, {Ai}1≤i≤n, 1, δ)
...

attract(Q, {Ai}1≤i≤n, n, δ)


 ,

the resulting matrix Q̃ will not be an infinitesimal generator matrix
since the row sum will be smaller than zero. The reason is that for the
off-diagonal entries we obtain under-approximations as

Q̂ij = π(i) ·Qij ·e = π(i) ·Qij ·e+π(i) ·QiI · (
∑∞

k=0
Ek
II) ·EIj · e︸ ︷︷ ︸

≥∑r∈Aj m(r)

≥ Q̃ij ,
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where m(r) refers to the value of state r in hash map m of Algorithm 10.
The diagonal entries Q̃ii, however, contain the total rate at which at-
tractor Ai is left. Given that we have the exact local steady states π(i),
we bound the approximation error made during the computation of π̃
(the steady state of Q̂) as follows. The idea is again similar to Chap-
ter 3.4, that is, we consider the slack rate mass vector s = −Q̃e whose
i-th entry is the difference between the total rate mass at which macro
state Ai is left and the approximated rate mass that accumulated in
the attractors (including Ai). In order to transform Q̃ into a generator
matrix, the amount si has to be distributed among the elements in the
i-th row (including the diagonal entry since it is possible to enter I
from Ai and return to Ai). Bounds for the approximation error can be
derived by considering all extreme cases where vector s is added to the
j-th column. Formally, we define the matrices Q̃(j) with entries

Q̃
(j)
ik =

{
Q̃ik if k 6= j, and

Q̃ik + si otherwise

for 1 ≤ j ≤ n. Now, if π̃(j) is the unique steady state of Q̃(j), for the
steady state π̂i of Q̂ we have [CS84, DHSW11]

π̂i ∈ [min
j

π̃
(j)
i ,max

j
π̃
(j)
i ].

Since the number of attractor regions n is small, we can compute the
bounds on π̂i efficiently using direct methods. Multiplication of the

above bounds on π̂i with the conditional steady state probability π
(i)
s

yields a bounded approximation of the steady state probability πs for
state s ∈ Ai. Note that the probability of all states in I is approxi-
mated as zero. In order to combine the bounds from steps (a) and (b),
Algorithm 10 can be executed twice where π(i) is replaced by its upper
and lower bound, respectively.

5.2.3 Choosing the Truncation Threshold

The accuracy of the approximation depends on the parameter δ. It is
possible to dynamically control the amount of rate mass that gets lost
due to the truncation by repeating a step of the reachability analysis
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with a lower value for δ. In this case, one has to determine a priori an
upper bound on the rate mass lost per step. We note that for δ = 0, the
attractor Markov chain of an ergodic CTMC is always ergodic [Mey89,
DHSW11]. However, if δ is chosen too high it might happen that Q̂ is
not ergodic. In such a case the computation has to be repeated using
a smaller value for δ. In our experiments we chose δ ∈ [1e− 20, 1e− 8]
and we always obtained an ergodic Q̂. Moreover, we found that the
approximation of π̂ is accurate even for δ = 1e − 8. In fact, choosing
δ ∈ [1e− 20, 1e− 10] was also suggested in [DHMW09].

5.3 Locating Attracting Regions

Theorem 8 provides a way to truncate a large system in an appropriate
way. The problem of locating attractors is, however, not fully solved
since the set C contains all attractors of the system but it might also
contain low probability regions. Moreover, the drift d does not provide
enough information to locate attractors. Regions where the drift is close
to zero are, of course, good candidates for attractors but since d is an
expectation, there might be states with d(x) ≈ 0 where the system does
resides for a short time span. Similarly, there might be states with high
absolute drift and high steady state probability.

A simple way of locating attractors is to generate a long trajectory
of the system for example by employing simulation as in Algorithm 1.
Then, attractors are those regions where the process resides most of
the time, that is, regions that have a small probability of exiting. The
problem is that once an attractor is found it is unlikely that the system
switches to another attractor rendering this strategy inefficient. If many
trajectories are generated that start from different initial states, it is
more likely that all attractors are found. It is however not clear how to
determine the extents of an attractor and when a simulation run can
be finished.

We suggest an alternative strategy where we employ Algorithm 11,
a modified version of Algorithm 8, that is, reachability analysis on a
dynamically truncated state space. The idea is to perform the analysis
from several starting points which can be chosen at random, based on
prior knowledge about the system or based on approximations such
as the mean field of the Markov chain. It will follow the main part
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of the probability mass and terminates as soon as the set of states
corresponding to the attracting regions stabilizes, that is, set D does
not change within a reachability step. Again δ > 0 is a small threshold

Algorithm 11 locate(Q,S,W, δ)

1: p← new hash map S → [0, 1]
2: ∀x ∈ W: p(x)← |W|−1
3: D ← ∅
4: while dom(p) 6= D do
5: D ← dom(p)
6: p← rstep(p,Q, ∅, δ)
7: ∀x with p(x) < δ: remove(p,x)
8: end while
9: return The set {A1, . . . ,An} of BSCCs in set D

which is either fixed during the analysis or chosen in an adaptive way
to ensure that the total number of states in D remains small. Note that
in order to guarantee that all attractors are found, we must choose the
initial set W such that C ⊆ W, where C is a subset of the state space
that contains at least 1 − ε of the steady state probability mass as for
example determined in Chapter 3.1. Our experimental results, show
that even with the high choice δ = 1e − 7 we can locate all attractor
regions of the examples that we considered.

5.4 Case Studies

In the following, we apply our approach to two case studies from bi-
ology. The first case study was also considered in [MAL11] and since
experimental results were reported, we can compare our results to those
in [MAL11]. All computations were done on a 2.66 GHz machine with 4
GB of RAM using a single core, that is, a machine with the same specifi-
cation as in [MAL11]. The two models that we consider are structurally
similar (both are genetic switches) but differ in the number of attrac-
tors (two and three). Moreover, the attractors of the second model
have very different probabilities while for the first model the probabil-
ity mass distributes nearly equally. We remark that these two models
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Method δ π̂1 π̂2 Time (s)
Exact – 0.472719... 0.527280... 463
[MAL11] – 0.4759 0.5241 290
Ours 1e–5 0.5 0.5 60.1+0.170+0.304
Ours 1e–7 0.47 0.53 60.1+0.170+0.307
Ours 1e–8 0.473 0.527 60.1+0.170+0.312
Ours 1e–9 0.4727 0.5273 60.1+0.170+0.313
Ours 1e–20 0.47272 0.52728 60.1+0.170+0.367

Table 5.1: Results of the multimodal steady state analysis applied to the
Michaelis-Menten form of the genetic toggle switch model.

are exemplary for gene regulatory networks with multimodal steady
state distributions.

5.4.1 Genetic Toggle Switch

In Table 5.1 we list the experimental results of the methods of the
previous sections applied to the Michaelis-Menten form of the genetic
toggle switch as described in Model 6. The parameter set is

ρA = 60.0, ρB = 30.0, nA = 3, nB = 2, δA = δB = 1.0,

as in Chapter 3.7.1 where also the respective geometric bounds have
been constructed. We took these bounds to truncate the infinite state
space. In order to locate the attractor regions, we determined the start-
ing points by considering the mean field of the model. More precisely,
the expected molecule numbers (x1(t),x2(t)) can be approximated as

d
dt

[
x1 x2

]
=
[
ρA · (1 + xnA2 )−1 − δA · x1 ρB · (1 + xnB1 )−1 − δB · x2

]
.

We solved d
dtx = 0 using the HOM4PS2 [LLT08] package which took

less than one second. This yielded the three (rounded) solutions (0, 30),
(60, 0), and (3, 3) which lie inside the geometric bounds given by the
set C. We performed a truncation-based transient analysis starting in
the two points with truncation threshold of δ = 1e − 7. The method
converged after 421 steps, that is, when the set of significant states re-
mained unchanged. This took 60.1 seconds of computation time. The
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Figure 5.1: Steady state distribution of the Michaelis-Menten form of
the toggle switch model on a logarithmic scale. Completely
white states are states that have been truncated.

resulting significant sets correspond to our approximation of the attrac-
tor regions A1 and A2. Note that the probability mass that started in
the third point (3, 3) distributed among the sets A1 and A2 implying
that it corresponds to an unstable fixed point of the mean field. The
sets that we derived for δ = 1e− 7 are slightly smaller than the regions

A1 = {x ∈ N2 | 0 ≤ x1 ≤ 2 and 5 ≤ x2 ≤ 60}, and

A2 = {x ∈ N2 | 14 ≤ x1 ≤ 105 and 0 ≤ x2 ≤ 2}.

defined in [MAL11]. Using a threshold of δ = 1e − 8 for our method
resulted in slightly larger sets. In order to allow a comparison with the
results in [MAL11], we use the regions defined above for the approxi-
mation of the attractor probabilities.

To obtain a more accurate approximation of π(1) and π(2), we used
enlarged sets A1 and A2 by including those states reachable within 15
steps for the computation as described in Chapter 5.1.1. Then, we con-
structed the attractor Markov chain using Algorithm 10. Note that the
chain only consists of two states, A1 and A2. In the second column in
Table 5.1 we list the final result of our approximation for different values
of the truncation threshold δ of Algorithm 10. Moreover, since the trun-
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cated model (containing those states inside the geometric bounds) was
of tractable size, we used the direct solution methods implemented in
Matlab to compute the exact solution circumventing problems related
to stiffness. We also list the results given in [MAL11] for comparison.
The number of digits corresponds to the computational precision, where
the Matlab solution was computed up to the machine precision of 15
digits. In our method, the computation time consists of the time needed
to locate the attractor regions (left), to compute the local steady states
(middle) and the time needed to compute the attractor probabilities π̂i
using Algorithm 10 (right). The time needed to compute the geometric
bounds and to solve the steady state of the mean-field was negligible
(below 0.03 seconds each). The final steady state distribution of this
model is depicted in Figure 5.1.

Our method is magnitudes faster than the exact solution using Mat-
lab and the simulation based approach in [MAL11]. Note that in con-
trast to [MAL11], our method allows for an identification of the attrac-
tor regions. Also, the precision of our algorithm is much higher than the
results presented in [MAL11]. From the table, it can also be seen that
the accuracy of the approximation is very good for thresholds δ ≤ 1e−8
and the computation time is short even for δ = 1e− 20.

5.4.2 Tri-Stable Genetic Switch

In order to show the applicability of our approach in the presence of
multiple attractors, we also analyzed a model with three attractors.

Model 8: Tri-Stable Toggle Switch �Model 8

The tri-stable toggle switch [LNH+07] consists of three protein
species A(1), B(2), and C(3) encoded by three genes, where each
species represses the production of the other two species. The
chemical reactions are given below, where the parameters nij reg-
ulate the repression strength among the proteins and rates ρij and
δi control protein production and degradation for i, j ∈ {A,B,C}.

∅
ρAB

1+BnAB
+ ρAC

1+CnAC−−−−−−−−−−−−−→ A, A
δA−−−→ ∅,
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∅
ρBA

1+AnBA
+ ρBC

1+CnBC−−−−−−−−−−−−−→ B, B
δB−−−→ ∅,

∅
ρCA

1+AnCA
+ ρCB

1+CnCB−−−−−−−−−−−−−→ C, C
δC−−−→ ∅

For the analysis, we chose the parameter set ρAB = ρAC = 60.0, ρBA =
ρBC = 30.0, ρCA = ρCB = 50.0, δA = δB = δC = 1.0 and nAB = nAC =
nBA = nBC = nCA = nCB = 3. First, we computed geometric bounds
as described in Chapter 3.1 for ε = 0.01. The bounds are depicted
in Figure 5.2 where the computation time was 2.641 seconds. Next,
we computed the possible steady states of the mean-field by solving
d
dtx = 0 for

d

dt
x =

[
ρAB

1+x
nAB
2

+ ρAC
1+x

nAC
3

ρBA
1+x

nBA
1

+ ρBC
1+x

nBC
3

ρCA
1+x

nCA
1

+ ρCA
1+x

nCA
2

]

−
[
δA · x1 δB · x2 δC · x3

]
,

using the HOM4PS2 package [LLT08] (which took less than 0.030 sec-
onds). We got the five (rounded) solutions [60 0 50], [0 30 50], [60 30 0],
[2 3 7], and [8 3 2] located within the geometric bounds.

Truncation-based transient analysis with threshold δ = 1e−7 revealed
that only the first three points correspond to attracting regions. The
sets stabilized after 493 iterations and the total computation time was
136.4 seconds. We will refer to these three regions as A1, A2, and A3

where

A1 ≈ {x ∈ N3 | 10 ≤ x1 ≤ 110, 0 ≤ x2 ≤ 3, 10 ≤ x3 ≤ 95},
A2 ≈ {x ∈ N3 | 0 ≤ x1 ≤ 3, 5 ≤ x2 ≤ 70, 5 ≤ x3 ≤ 95}, and

A3 ≈ {x ∈ N3 | 5 ≤ x1 ≤ 110, 5 ≤ x2 ≤ 70, 0 ≤ x3 ≤ 3}.

For approximating the local steady states, we enlarged each set Ai by
those states reachable within 15 steps. We ran Algorithm 10 and list the
results in Table 5.2. A plot of the full steady state distribution is given
in Figure 5.3. The time needed to compute the local steady state was
246 seconds and to compute π̂ was below five seconds for any precision.
Note that for this model, we could not solve the linear equation using
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Figure 5.2: Geometric bounds of the tri-stable toggle switch for ε =
0.01.

δ π̂1 π̂2 π̂3 Time (s)
1e–9 0.995 0.001 0.004 2.641+ 136.4 + 246.011 + 1.194
1e–10 0.9952 0.0013 0.0035 2.641+ 136.4 + 246.011 + 1.338
1e–11 0.99516 0.00132 0.00352 2.641+ 136.4 + 246.011 + 1.472
1e–20 0.995165 0.001315 0.003520 2.641+ 136.4 + 246.011 + 4.536

Table 5.2: Results of the multimodal steady state analysis of the tri-
stable toggle switch case study.
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Figure 5.3: Steady state distribution of the tri-stable toggle switch
model on a logarithmic scale. Completely white states are
states that have been truncated.
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Matlab since the corresponding linear equation system has more than
1.5 million equations. But even if the memory requirements could be
met, the stiffness of the model would prevent an efficient solution. As
opposed to that, our method does not suffer from problems related to
stiffness because the time scales are separated during the stochastic
complementation. Therefore, we got accurate results and very short
computation times as presented in Table 5.2.
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CHAPTER 6

On-the-Fly Verification and Optimization of
DTA-Properties for Large Markov Chains

In this chapter we consider CTMCs together with specifications given
as (single-clock) deterministic timed automata (DTA). We propose al-
gorithms to approximate the probability that the CTMC fulfills the
property specified by the DTA, that is, we approximate the acceptance
probability. DTA can be used to describe linear-time properties such as
the occurrence of several events where the time between two successive
events is smaller or greater than a certain threshold. For instance, it is
possible to specify oscillatory behavior or the switching between attract-
ing regions in a CTMC. Such properties are particularly important for
applications in systems biology. Also, DTA are in practice often more
intuitive and easier to construct than, for instance, logical formulas of
the continuous stochastic logic (CSL) [BHHK03].

We focus on CTMCs with very large or most of the time even infinite
state spaces. Previously developed model-checking algorithms cannot
be applied to such chains, because they explore the whole state space
and are based on vector-matrix multiplications of the size of the number
of states. For the CTMCs that we consider here, it is infeasible to ex-
plore the whole state space due to memory and time limitations. In the
worst case, the state space is infinite and even a simple static truncation
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of the state space does not suffice to make the analysis efficient.

The algorithms that we propose are based on results in [BCH+11],
where the computation of the acceptance probability is based on a tran-
sient analysis of augmented CTMCs (or column CTMCs) and the solu-
tion of a linear equation system. Here, we also consider column CTMCs
but we discretize time and for each time step we consider a dynamic
subset of the state space, namely those states that are most relevant
in the sense that their probability is greater than a certain threshold.
Moreover, instead of deriving the limiting distribution by solving a lin-
ear equation system, we construct the column CTMCs in such a way
that a simple convergence check for the transient distribution is suffi-
cient to obtain an accurate approximation of the acceptance probability.
These improvements allow us to deal with infinite state spaces.

In addition, we investigate the case where the CTMC is paramet-
ric as in [BCDS13] and show how the acceptance probability can be
optimized. More precisely, we assume that the transition rates of the
CTMC may depend on certain parameters, say λ1, . . . , λk, and extend
our algorithm for computing the acceptance probability in such a way
that the derivatives with respect to λ1, . . . , λk are approximated along-
side. Then, we apply a global optimization method to find values for the
parameters that maximize the acceptance probability. Such optimiza-
tions are particularly interesting for systems where a certain property
expressible as a DTA has been observed and the parameters of the
CTMC are unknown and have to be estimated accordingly. The results
of this chapter have been published in [MNSW13].

6.1 Labeled CTMCs

Similar to the procedure of Chapter 4, in this chapter, we assume the
states of a CTMC to be labeled with atomic propositions from a set
AP via a labeling function defined as follows.
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Definition 32: Labeling Function �Definition 32

A labeling function L for the state space S of a CTMC and a set
of atomic propositions AP is a function L : S → AP.

Example 10: Labeled CTMC �Example 10

Below we illustrate the M/M/∞ queue from Example 1 with state
labels positioned above the nodes assigned by a labeling function.
This CTMC serves as our running example for this chapter. We
assume the initial distribution given by π0(0) = 1. The state labels
encode the number of objects of type A, that is, state i is labeled
with A = i where i is the number of individuals of type A. Note
that there is no bound on the number of objects, that is, the state
space of this example is countably infinite. Moreover, independent
of the choice of λ and µ, this CTMC is ergodic and thus the limiting
distribution π always exists uniquely.

0

A = 0

1

A = 1

2

A = 2

3

A = 3

. . .

λ λ λ λ

4 · µ3 · µ2 · µµ

6.2 Single-Clock Deterministic Timed Automata

We use deterministic timed automata with a single clock x to specify
the measures of interest for a given CTMC.

139



Chapter 6. On-the-Fly Verification and Optimization of
DTA-Properties for Large Markov Chains

Definition 33: Clock Constraint and Valuation�Definition 33

A clock constraint g over constants {c0, . . . , cn} ⊂ (N ∪ {∞}) with
c0 = 0 and cn = ∞ is a conjunction

∧k
i=0 ei of expressions ei =

x ./ cj where x is a symbol which denotes the (single) clock, ./∈
{<,≥}, k ≥ 1, and 0 ≤ j < n. A clock valuation η ∈ R+

0 satisfies
an expression x ./ cj , written η |= x ./ cj iff η ./ cj . Accordingly,

if g =
∧k
i=0 ei, then η |= g iff η |= ei for all i ≤ k. We use CC to

denote the set of all clock constraints.

To simplify the presentation of our approach we restrict the comparison
operators to < and ≥. This ensures that we only consider intervals of
the form [a, b) with a ∈ N and b ∈ N ∪ {∞}. Note that an extension to
more complex clock constraints is straightforward. Further, we choose
c0 = 0 and cn = ∞ for convenience in order to reduce the number of
case distinction in the later presentation. In addition, we want to add
that the choice for the constants c1, . . . , cn−1 to be natural numbers is
not as restrictive as it might seem, since time can be scaled by a factor
to achieve rational time constraints.

Definition 34: Deterministic Timed Automaton�Definition 34

A (single-clock) deterministic timed automaton (DTA) [AD94] is a
tuple (M, AP, m0, MF , →) where M is a set of locations, AP a
set of atomic propositions, m0 ∈M the initial location,MF ⊆M
a set of final locations, and

→⊆ (M\MF )× 2AP × 2AP × CC × {�, } ×M

an edge relation satisfying the determinism/non-blocking condition

∀m ∈M \MF , a, a
′ ∈ AP, η ∈ R+

0 .

∃! (m,A,A′, g, r,m′) ∈→ . a ∈ A ∧ a′ ∈ A′ ∧ η |= g. (6.1)

If (m,A,A′, g, r,m′) ∈→, we also write m
A,A′,g,r−−−−−→ m′. Informally,

in a clock valuation η ∈ R+
0 , the DTA can move from location m to
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m0 m1

m2

else, {A=0}, {A=1}, true,� else, 

{A=3}, {A=4}, x<2, 

{A=3}, {A=4}, 2≤x<6, 

Figure 6.1: Exemplary DTA specification.

location m′ along the edge m
A,A′,g,r−−−−−→ m′ if the pre-input symbol is

in A ⊆ AP, the post-input symbol is in A′ ⊆ AP and if η satisfies
the guard g ∈ CC. Note that this allows us to specify label changes
in a more succinct way compared to DTA where only a single input
symbol is considered. Taking a transition in the DTA consumes no
time. Hence, for current clock valuation η, the new clock valuation η′

obtained by executing a transition m
A,A′,g,r−−−−−→ m′ is determined by the

reset action r. More precisely, if r = , then η′ equals η, as no time is
consumed by the transition. Otherwise, r = � and the clock is reset. In
this case, we have η′ = 0. We follow the restriction in [CHKM11] and
assume that all final locations in a DTA are absorbing. Further, note
that our treatment of DTA allows state-based reasoning in contrast to
action-based reasoning.
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Example 11: DTA Specification�Example 11

In Figure 6.1 we illustrate a DTA that serves as a specification for
the CTMC in Example 10. To satisfy the non-blocking condition
as stated in Equation (6.1), we use else-transitions as a catch-all
for otherwise missing outgoing transitions. Similarly, we simply
write true for a transition with A = A′ = AP and clock constraint
true.
This automaton works as follows. When the number of objects of
type A jumps from 0 to 1, the clock is reset and the automaton
moves to location m1. From there, the DTA accepts if the CTMC
moves from state 3 to state 4 within the next two time units.
Stated differently, the DTA accepts upon entering m1 if 4 objects
of type A become available within the next 2 time units. If, on the
other hand, the CTMC manages to take the transition from 3 to 4
only within six time units, the DTA returns to state m0 waiting
for the CTMC to eventually increase the object count from 0 to 1,
again. Finally, if the CTMC does not create 4 objects of type A
within 6 time units while residing in location m1, the DTA gets
stuck and cannot accept any more. Note that in this example,
the set A′ = {A = 3} of allowed pre-input labels from m1 can be
replaced by A′ = AP since the CTMC can only reach A = 4 from
state 3 and not from state 5 due to the constraints of the previous
transition from location m0 to m1.

Definition 35: Accepting Paths of a DTA�Definition 35

We define the set of all accepting paths of a DTA D =(M, AP,m0,
MF , →) as the subset

PathsD
acc ⊆

⋃

n∈N
M× (2AP × 2AP × R+ ×M)n

such that (m0,A0,A′0, t0,m1, . . . ,An−1,A′n−1, tn−1,mn) ∈ PathsD
acc
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implies that mn ∈MF and

∀i < n. ∃ (mi,Ai,A′i, gi, ri,mi+1) ∈→ . ηi + ti |= gi,

where η0 = 0 and ηi+1 = ηi + ti if ri = and ηi+1 = 0 if ri = �.

Definition 36: DTA Acceptance of CTMC Paths �Definition 36

Let (S,Q, π(0)) be a CTMC labeled with atomic propositions from
the set AP via a labeling function L. Then, a finite CTMC
path (s0,t0,s1,. . . ,tk−1,sk) ∈ Path∗, respectively an infinite path
(s0,t0,s1,t1,. . . ) ∈ Pathω, is accepted by the DTA D iff there exists
an accepting DTA path

(m0,A0,A′0, t0,m1, . . . ,An−1,A′n−1, tn−1,mn) ∈ PathD
acc

such that L(si) ∈ Ai ∧ L(si+1) ∈ A′i for all i < n and k ≥ n for
finite paths.

We remark that the above definition requires that the DTA and the
CTMC change state simultaneously, that is, the DTA can only perform
a jump if the CTMC does so. It is possible to extend this definition
such that the DTA jumps even though the CTMC remains in a certain
state (because some clock constraint became true). The algorithm that
we propose in Chapter 6.4 can be modified accordingly. In order to
keep our presentation simple we do not consider this extension here.

Example 12: DTA Path Acceptance �Example 12

All paths of the CTMC in Example 10 starting with the prefixes

(s0, 1.0, s1, 0.2, s2, 0.5, s3, 0.3, s2, 0.2, s3, 0.2, s4, 1.0, s5, 1.0)
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and

(s0, 1.0, s1, 0.2, s2, 1.0, s3, 0.5, s2, 1.0, s3, 0.5, s4, 1.2, s3, 1.5,
s2, 1.1, s1, 0.3, s0, 0.7, s1, 0.5, s2, 0.2, s3, 1.2, s4, 1.0, s5, 1.0)

are accepted by the DTA from Example 11.

6.3 Region Graph

We begin by defining clock regions before introducing region graphs.

Definition 37: Clock Region�Definition 37

Assuming a set {c0, . . . , cn} ⊂ N ∪ {∞} of clock constraint con-
stants with 0 = c0 < · · · < cn =∞, we partition the time-line into
the clock regions Ri = [ci−1, ci), i ∈ {1, . . . , n}. For i < n we define
the successor clock region scr(Ri) of Ri as Ri+1 and scr(Rn) = Rn.
Moreover, R is the set of all clock regions. For each clock valua-
tion η, we define [η] = Ri = [ci−1, ci) for i ∈ {1, . . . , n} such that
ci−1 ≤ η < ci. A clock region Ri satisfies a clock constraint g over
{c0, . . . , cn} if ci−1 |= g.

Note that checking the lower bound suffices here since all clock valua-
tions η ∈ [ci−1, ci) satisfy the same clock constraints over constants c0
to cn and we only consider the comparison operators < and ≥.

Definition 38: Region Graph�Definition 38

Let D = (M,AP,m0,MF ,→) be a DTA with clock region set
R = {Ri | 1 ≤ i ≤ n}. The region graph G(D) of D is the tuple
(W,AP, w0,WF , � ) where W = M×R, w0 = (m0, R1), and
WF =MF ×R. The transition relation

� ⊆ W × ((2AP × 2AP × {�, }) ∪ {δ})×W
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is the smallest relation such that

• (m,R)
A,A′, r

� (m′, R′) if m
A,A′,g,r−−−−−→ m′, R |= g, and

R′ =

{
R1 if r = �

R otherwise,

• (m,R)
δ
� (m,R′) if R′ = scr(R).

Intuitively, a region graph is a finite abstract representation of a DTA.
The state of a DTA is determined by the current location and the clock
valuation, which results in an (uncountably) infinite number of possible
states. A region graph partitions the DTA states according to their
locations and the regions of the clock valuations. The rationale behind
this representation is that clock valuations of the same region satisfy
the same clock constraints appearing as guards in the DTA.

Example 13: Region Graph �Example 13

In Figure 6.2 we illustrate the region graph of the DTA from Ex-
ample 11, where the edge label true (else) indicates that all (the
otherwise missing combinations of) pre- and post-input symbols
are accepted.

Definition 39: Product of CTMC and Region Graph �Definition 39

For a DTA D with region graph G(D) = (W,AP, w0,WF , � )
and a CTMC C = (S,Q, π(0)) labeled by a labeling function L :
S → AP, the product [CHKM11] of C and G(D) is defined as
the tuple Z = C ⊗ G(D) = (V,−→, π(0)′,VF ) where V = S ×W,
VF = S ×WF , and π(s,w)(0)′ = πs(0) if w = w0 and π(s,w)(0)′ = 0,
otherwise. Further, −→ ⊆ V×((R+ × {�, }) ∪ {δ})×V is defined
such that
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m0, [0, 2) m0, [2, 6) m0, [6,∞)

m1, [0, 2) m1, [2, 6) m1, [6,∞)

m2, [0, 2) m2, [2, 6) m2, [6,∞)

else, else, else, 

else, 

else, true, 

δ δ
δ

δ δ
δ

δ δ
δ

{A = 0}, {A = 1},�

{A = 3}, {A = 4}, 

{A
=

0}
, {A

=
1}
,�

{A = 3}, {A = 4}, 
{A=0},

{A=1},
�

Figure 6.2: Region graph of the DTA from Example 11.
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• (s, w)
δ−→ (s, w′) iff w

δ
� w′ and

• (s, w)
q,r−−→ (s′, w′) iff q = Qss′ > 0 and w

A,A′, r
� w′ with

L(s) ∈ A and L(s′) ∈ A′.

In the following, we will use the shorthand notation Z for C ⊗G(D).
Note that process Z can be interpreted as a Markov renewal process
(MRP) [Ger00], that is, a process very similar to a CTMC except that
the residence times in the states may not follow an exponential distri-
bution. Here, this occurs when the process moves to a different clock
region. We omit a formal definition of Markov renewal processes here as
it is not of importance for the algorithm that we propose in the sequel.
We refer to [Ger00, DHS09] for more details as well as to [CHKM11]
where the more general class of piecewise deterministic Markov pro-
cesses is considered.

Theorem 18: Acceptance Probability of DTA paths �Theorem 18

For a CTMC C and a DTA D , the probability measure of all paths
in C that are accepted by D equals the probability of eventually
reaching a state v ∈ VF in the Markov renewal process Z = (V,−→
, π(0),VF ).

Proof: We refer to [CHKM11] for the respective proof. 2

We remark that the above theorem is a slight variation of the one by
Chen et al. since we do not consider the embedded process of Z . The
proof of Theorem 1, however, goes along the same lines as the proof
in [CHKM11]. The reason that we do not need embedding here is that,
for the approximation algorithm presented in the sequel, a conversion
to discrete time does not have any numerical advantages.

In the next section we will see that Z can be analyzed using several
CTMCs (one for each region). Thus, we will approximate the prob-
ability measure of all paths in C that are accepted by D based on a
decomposition of Z .
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6.4 Iterative Computation of the Acceptance
Probability and its Derivatives

6.4.1 Iterative Steady State Analysis

The iterative algorithm that will be developed in this chapter relies on
Algorithm 2 as described in Chapter 2.4.3 for truncation based transient
analysis of the product Z . More precisely, this algorithm will be used
to compute the probability of acceptance of a DTA by approximating
the limiting distributions π = limt→∞ π(t) of several CTMCs. For this,
we keep both, the hash map of the current probabilities p as well as the
hash map of the old probabilities p′ that are updated in each transient
iteration step. During each step of the integration we also check whether
π(t) has converged by monitoring the maximal difference

max
s∈dom(p) ∪ dom(p′)

|p(s)− p′(s)|.

Recall that for hash map p (p′) holds p(s) = 0 (p′(s) = 0) if s 6∈ dom(p)
(s 6∈ dom(p′)). If the maximal difference is small, then convergence
is very likely. We can, however, never guarantee that convergence is
reached when the system is multimodal as argued in Chapter 2.5.3.

For ergodic multimodal Markov chains, this problem can be avoided
by constructing geometric bounds beforehand as described in Chap-
ter 3.1. However, for the case studies that we present in this chapter,
such a preprocessing was not necessary and the convergence check ex-
plained above was sufficient to obtain an accurate approximation of the
limiting distribution.

6.4.2 Acceptance Probabilities

In this section, we consider the Markov renewal process

Z = (V,−→, π(0)′,VF )

and present an algorithm for the approximation of the probability to
reach an accepting state, that is, a state in VF . As shown by Chen et
al., this probability is equal to the probability measure of all accepting
paths of C with respect to D [CHKM11, Theorem 1]. There, the authors
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also show that the acceptance probability in Z can be computed by
considering column CTMCs as defined below.

Definition 40: Column �Definition 40

For i ∈ {1, . . . , n} where n relates to the number of clock regions,
we define the column Vi ⊆ V of Z as the set Vi = S × M ×
{[ci−1, ci)} where S is the state space of C , M is the state space
of D , and [ci−1, ci) is the i-th clock region of D . Further, we let
V̂ = S ×M× {�}.

Definition 41: Column CTMC �Definition 41

Let Z be the product of the CTMC C (labeled with atomic propo-
sitions from the set AP by a labeling function L) and the region
graph of the DTA D . For i ∈ {1, . . . , n} let π(i) be a distribution.
The column CTMC C (i) = (S(i),AP,Q(i), L(i), π(i)) is defined by
S(i) = V̂ ∪ Vi, L(i) : S(i) → AP with L(i)(s,m, r) = L(s), and

Q(i) =
[
Q

(i)
uv

]
u,v∈S(i)

with

Q(i)
uv =





q if u
q, −−→ v ∧ u ∈ Vi ∧ v ∈ Vi

or u
q,�−−→ (s,m,R1) ∧ u ∈ Vi∧

v = (s,m,�) ∈ V̂
−∑v 6=u Q

(i)
uv if u = v, u ∈ Vi

0 otherwise.

The idea behind the column CTMC construction is that for each region
of the DTA, in Definition 39, we consider a CTMC that describes the
probability flow, within a certain clock region, of the Markov renewal
process Z . Obviously, if we do not enter a new clock region, the prob-
ability flow inside the i-th clock region is as in the CTMC associated
with generator Q(i). Entering a new clock region occurs if we either
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stay longer in the region than ci−ci−1 time units or if a reset transition
is taken. Therefore, we accumulate the probability mass of all paths,
in which a reset occurs, in the states of the set V̂. We remark that this
is exactly the behavior of the MRP Z , that is, it performs Markovian
jumps according to Q(i) as long as the clock region does not change or
a reset occurs.

Example 14: Column CTMCs�Example 14

In Figures 6.3, 6.4, and 6.5 we illustrate the column CTMCs of
our running examples, that is, the product of the CTMC from
Example 10 and the region graph of the DTA from Example 13
where we ignore the initial distributions and assume that states
(k,mj , [ci−1, ci)) and (k,mj ,�) have label A = k for k = 0, 1, . . ..

The main idea behind the approximation of acceptance probabilities
is that we iteratively run each column CTMC for time intervals that
are equal to the length of the corresponding clock region. After each
step of the iteration we move the probability mass of the states in Vi
to the corresponding state copies in Vi+1. The probability mass of the
states in V̂ is moved to the corresponding state copies in V1 (since we
have a reset in the MRP). This shift of probability mass can, however,
not be done before the successor region and the first region reach the
end of their current time interval. Otherwise we would mix probability
mass with different clock values. We describe the computation of the
acceptance probability in Algorithm 12.

We use vectors p1, . . . , pn for the current probability distributions in
the column CTMCs C (1), . . . ,C (n). Initially, only C (1) is considered
since in line 4, the initial distribution π(0) is only assigned to states in
S(1). The remaining column CTMCs are considered when probability
mass arrives in the corresponding clock regions. The while loop in line 5
is executed until the probability mass in the original CTMC converges,
that is, for the convergence check we construct a probability distribution
p such that

p(s) =
n∑

i=1

∑

m∈M
pi(s,m,Ri).
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0,m0, [0, 2) 0,m1, [0, 2)

1,m0, [0, 2) 1,m1, [0, 2)

2,m0, [0, 2) 2,m1, [0, 2)

3,m0, [0, 2) 3,m1, [0, 2)

4,m0, [0, 2) 4,m1, [0, 2)

. . . . . .

1,m0,�

4,m2, [0, 2)

λ

λ

λ

λ

λ

λ

λ

λ

λ

λ

µ

2 · µ

3 · µ

4 · µ

5 · µ

µ

2 · µ

3 · µ

4 · µ

5 · µ

Figure 6.3: Column CTMC C (1) of the product of the CTMC from Ex-
ample 10 and the region graph of the DTA in Example 13.
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0,m0, [2, 6) 0,m1, [2, 6)

1,m0, [2, 6) 1,m1, [2, 6)

2,m0, [2, 6) 2,m1, [2, 6)

3,m0, [2, 6) 3,m1, [2, 6)

4,m0, [2, 6) 4,m1, [2, 6)
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Figure 6.4: Column CTMC C (2) of the product of the CTMC from Ex-
ample 10 and the region graph of the DTA in Example 13.
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0,m0, [6,∞) 0,m1, [6,∞)

1,m0, [6,∞) 1,m1, [6,∞)

2,m0, [6,∞) 2,m1, [6,∞)

3,m0, [6,∞) 3,m1, [6,∞)

4,m0, [6,∞) 4,m1, [6,∞)

. . . . . .
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3 · µ

4 · µ
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Figure 6.5: Column CTMC C (3) of the product of the CTMC from Ex-
ample 10 and the region graph of the DTA in Example 13.
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Algorithm 12 accept(C = (Q,S, π(0)), L : S → AP, D =
(M,AP,m0,MF ,→),δ)

1: ∆max ← max1≤i<n{ci − ci−1}
2: ∀1 ≤ i ≤ n: pi ← new hash map S(i) → [0, 1]
3: p̂← new hash map V̂ → [0, 1]
4: ∀s ∈ S with πs(0) > 0: p1(s,m0, R1)← πs(0)
5: while no convergence do
6: reset(p̂)
7: for i = 1 . . . n do
8: transient(pi,Q

(i),S(i),min{ci − ci−1,∆max}, δ, RK4)
9: end for

10: for i = n . . . 1 do
11: ∀v ∈ V̂: p̂(v)← p̂(v) + pi(v) and remove(pi, v)
12: if i 6= n then
13: for all (s,m,Ri) ∈ Vi do
14: pi+1(s,m,Ri+1)← pi+1(s,m,Ri+1) + pi(s,m,Ri)
15: remove(pi, (s,m,Ri))
16: end for
17: end if
18: end for
19: ∀(s,m,R1) ∈ V1: p1(s,m,R1)← p1(s,m,R1) + p̂(s,m,�)
20: end while
21: pacc ←

∑n
i=1

∑
v∈VF pi(v)

22: e← 1−∑n
i=1

∑
v∈Vi∪V̂ pi(v)

23: return
[
pacc e

]
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Note that only the convergence of the original CTMC can be guaranteed
(since we assume that the limiting distribution of the original CTMC
exists) while the probability distribution of the column CTMCs may not
converge in time due to reset cycles in the DTA. Therefore, we check the
convergence of p as explained at the end of this chapter which ensures
the convergence of the acceptance probability

n∑

i=1

∑

v∈VF
pi(v)

in line 21 of Algorithm 12.

Inside the while loop we perform a transient analysis of all column
CTMCs for a time equal to the length of the clock region. For this we
use truncation based transient analysis as stated in Algorithm 2 which is
efficient even if the CTMCs are very large or infinite. It is important to
note that these approximations can be parallelized in a straightforward
way and indeed, in our implementation, we perform these transient
analyses in parallel threads. For the last column CTMC C (n) the length
of the time interval cn−cn−1 is infinite and thus we perform the transient
analysis for the time interval ∆max = max1≤i<n{ci−ci−1} instead. Note
that one can choose any time interval of length at least ∆max for that
last column CTMC since the probability mass is either moved to C (1)

due to the occurrence of a reset or it remains in C (n). In the for loop
of line 10, we first move the probability mass where a reset occurred
to the auxiliary hash map p̂ (line 11) and then we move the remaining
probability mass of region Ri to region Ri+1. This step corresponds to
a δ-transition in the MRP. Note that we have nothing to move in the
last region Rn since, if no reset occurs, the probability mass will remain
there. By traversing the regions from Rn down to R1, we ensure that
the probability mass is correctly divided among the regions.

If the numerical integration in line 8 was exact, it would hold that

n∑

i=1

∑

v∈Vi∪V̂

pi(v) = 1
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since during the whole procedure probability mass is only moved be-
tween the states of the column CTMCs. Therefore,

1−
n∑

i=1

∑

v∈Vi∪V̂

pi(v)

gives us an estimation of the approximation error similar to the esti-
mation in Algorithm 2 itself. Note that this is only an approximation
of the total approximation error since further errors may be introduced
due to the numerical integration method (explicit fourth-order Runge-
Kutta) and due to the convergence check. If, however, the time step of
the numerical integration method as well as the threshold used for the
convergence check are small, then the estimation of the approximation
error will be accurate because the error that originates from the trun-
cation of insignificant states dominates the other approximation errors.

Example 15: Approximation of pacc�Example 15

For the CTMC of Example 10 and the DTA in Example 11 the
probability of acceptance is around 0.01535. For instance, if we
choose ε =1e–15, after five steps of the outer while loop in Al-
gorithm 12, we get pacc = 0.0152140414, after eight iterations we
get pacc = 0.0153512141, and after twelve steps we get pacc =
0.0153523506. The total number of significant states in the column
CTMCs is about 50 and the running time is less than 1 second.

Theorem 19: Correctness of Algorithm 12�Theorem 19

Assuming the numerical integration in line 8 to be exact, Algo-
rithm 12 computes the acceptance probability, that is, the proba-
bility of eventually reaching a state v ∈ VF in the Markov renewal
process Z = C ⊗G(D) = (V,−→, π(0)′,VF ).

Proof: For the correctness of Algorithm 12 we use similar arguments
as in [BCH+11]. We first note that Z has the same initial probabilities

156



6.4. Iterative Computation of the Acceptance Probability
and its Derivatives

as the column CTMCs. We omit an induction on the number of steps in
Z but sketch the proof by considering the three cases for the transitions
in Z :

1. Assume that Z takes a transition of the form

(s,m,Ri)
δ−→ (s,m,Ri+1)

for i < n. This occurs if Z remained in Ri for ci−ci−1 time units
(and no reset transition was taken). Since in line 8 we integrate
the i-th column CTMC for ci − ci−1 time units and afterwards
move the probability mass (without reset) of region Ri to Ri+1,
this transition is correctly mimicked in Algorithm 12. In the case

(s,m,Rn)
δ−→ (s,m,Rn)

the probability mass remains in region Rn (note that i 6= n in line
12).

2. Consider a transition of the form

(s,m,Ri)
q, −−−→ (s′,m′, Ri).

Such transitions are considered during the numerical integration
in line 8. Note that the transition rates of Z and the column
CTMCs are identical. Thus, the probability flow in the column
CTMCs and in Z is the same.

3. Assume that Z takes a transition of the form

(s,m,Ri)
q,�−−→ (s′,m′, R1).

In this case the probability mass is moved to V̂ during the nu-
merical integration in line 8 (which is due to the structure of the
column CTMCs). Then, before the next iteration of the while
loop, this probability mass is moved to the first clock region in
line 17. Thus, in the next iteration the process continues in the
first clock region.

2
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6.4.3 Maximization of the Acceptance Probability:

In order to maximize the probability of acceptance when the CTMC is
parametric in one or more variables, we need to compute the derivatives
of the acceptance probability with respect to those variables. Moreover,
these derivative depend on the derivatives of the transient distribution
of the CTMC, whose formulae will be developed in the following the
lines of [BRT88].

6.4.3.1 Derivatives of the Transient Distribution of a CTMC

Let λi be a parameter and assume that the generator matrix Q is depen-
dent on λi. For simplicity, we do not consider the case where the initial
conditions are dependent on λi. Similar results to those stated below
can be derived in that case. Let ρi(t) be the vector ∂

∂λi
π(t). Taking the

derivative of Chapman-Kolmogorov Equation (2.15) yields

d

dt
ρi(t) = ρi(t) ·Q + π(t) · ∂

∂λi
Q (6.2)

with initial condition ρi(t) = 0. Note that the chain rule is applicable,
since Q as well as π(t) depend on λi.

Thus, integrating Equations (2.15) and (6.2) simultaneously yields
π(t) and ρi(t). As for π(t), during the computation of ρi(t) we only
consider significant states. In other words, we use the same dynamic
state space truncation during the integration of Equation (6.2) that is
used for Equation (2.15). If we have several parameters, we consider
multiple vectors ρi(t) and always truncate the state space according to
the threshold δ for the probabilities p(s) for states s ∈ dom(p). Recall
that we assume Q to be such that π(t) converges. Moreover, we assume
that the dependence of Q on λi is such that the derivatives converge as
well. In our case studies, the derivatives always converged.

When maximizing (or minimizing) the probability of a certain event,
it is useful to be able to approximate not only the first but also the
second derivatives. Then, optimization approaches based on gradient
descent will perform better since the step size can be adjusted dy-
namically and thus local optima are found faster. Assume that the
generator matrix Q depends on the parameters λi and λj and that
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%ij(t) = ∂2

∂λi∂λj
π(t). Then

d

dt
%ij(t) = %ij(t) ·Q + ρi(t) ·

∂

∂λj
Q + ρj(t) ·

∂

∂λi
Q + π(t) · ∂2

∂λi∂λj
Q

with initial condition %ij(0) = 0. Again, we can integrate %ij(t) si-
multaneously with π(t) and the first order derivatives on the truncated
dynamic state space. We remark that if we have k parameters then we
need to store 0.5 · k · (k + 1) second order derivatives since we have to
consider all possible combinations of two parameters.

6.4.3.2 Derivatives of the Acceptance Probability

Finally, we discuss how to maximize the probability of acceptance. It
is straightforward to extend Algorithm 12 such that besides the state
probabilities of the column CTMCs also the derivatives with respect
to certain parameters are approximated simultaneously as discussed in
the previous section. Technically, the first order derivatives require one
additional hash maps per parameter λi and column CTMC and the
second order derivatives require k(k+1)

2 additional hash maps for each
column CTMC where k is the number of parameters. Then, as a result,
the algorithm returns not only the acceptance probability but also its
derivatives

∂

∂λi
pacc =

n∑

m=1

∑

v∈VF

∂

∂λi
pm(v) and (6.3)

∂2

∂λi∂λj
pacc =

n∑

m=1

∑

v∈VF

∂2

∂λi∂λj
pm(v). (6.4)

6.4.3.3 Global Optimization

Our global optimization method gets as input a constraint interval for
each parameter λi and approximates the acceptance probability and
the derivatives for particular choices of λi. It uses a gradient decent
approach to find local maxima and a heuristic for the starting points in
the interval in which it tries to find all maxima. Note that, since this is
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in general a nonlinear optimization problem, it may still be possible that
the global maximum is not found. Moreover, we remark that, since we
provide second order derivatives as well, local maxima are found using
fewer calls of the approximation algorithm compared to the case where
second order derivatives are not approximated since the step size of
the gradient descent method can be determined efficiently using the
Hessian matrix of the acceptance probability consisting of the second
derivatives.

6.5 Case Studies

We consider two case studies from systems biology in the sequel. The
exclusive switch and the repressilator. For that, we implemented Algo-
rithm 12 in C++ and ran experiments on an Intel Core i7 at 2.8 GHz
with 8 GB of main memory. For the maximization of the acceptance
probability we linked our code to MATLAB’s global search routine,
which calls our C++ program with different parameters. Our imple-
mentation also approximates the first and second order derivatives of the
acceptance probability, which is needed for the gradient descent part in
global search. The running time of our method depends on the tightness
of the intervals that we use as constraints for the unknown parameters
as well as on the number of starting points of the global search proce-
dure. We chose intervals that correspond to the order of magnitude of
the parameters, that is, if λi ∈ O(10n) for some n ∈ Z then we use the
interval [10n−1, 10n+1] as constraint for λi. For example, if λi = 0.1 then
n = −1 and we use the interval [0.01, 1]. Moreover, for global search we
used 10 starting points for both case studies and for our experiments,
we chose a probability truncation threshold of δ =1e-15. For both case
studies the distribution of the underlying CTMC converges when the
acceptance probability converges. We therefore stopped the iteration
when the relative difference of the acceptance probability became less
than 0.001. Note that in general, one has to check the convergence of the
distribution of the underlying CTMC, since the acceptance probability
may not alter for several iteration steps even though the distribution of
the CTMC has not yet reached equilibrium. For more details, we refer
to the discussion in Chapter 2.5.3.
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6.5.1 Exclusive Switch

We consider the exclusive switch as described in Model 3 with the la-
beling function L labeling states x ∈ S by their variable valuation, that
is, L(x) equals P1 = x1, P2 = x2, G = x3, G.P1 = x4, G.P2 = x5. The
reaction rate constants are

ρ1 = 0.2, ρ2 = 0.3, δ1 = δ2 = 0.005, β1 = 0.003, β2 = 0.002, ν1 = ν2 = 0.2

and the initial condition is πe3(0) = 1. A plot of the limiting distribution
of the CTMC is depicted in Figure 6.6. The two dark regions where
most of the probability mass is located are the attractor regions.

6.5.1.1 Switching time

We are interested in the time needed to go from one attractor region
to the other and back within T time units. Note that such switching
events and times are of particular importance in gene regulatory net-
works [LLBB07]. In the DTA in Figure 6.7 we define the two attractor
regions using bounds on the two protein populations (see boxes in the
illustration in Figure 6.6). The DTA accepts paths that switch from
one attractor to the other and back within T time units as illustrated
by the red dashed arrow in Figure 6.6. Note that in Figure 6.7 we
describe subsets of AP by conjunctions of inequalities. For example,
{P1<A1∧P2>A2} refers to the set of all labels where P1 is smaller than
the threshold A1 and P2 is greater than A2. For the thresholds we used
two parameter sets, namely

• PSet1 : (A1, A2) = (15, 40), (B1, B2) = (25, 30) and

• PSet2 : (A1, A2) = (10, 50), (B1, B2) = (30, 20).

Here, A1, A2 define the upper left box and B1, B2 define the lower right
box (second attractor). Moreover, we considered different time bounds
T ∈ {200, 500, 1000}, chose T = 1000, and approximated the acceptance
probabilities using Algorithm 12. The corresponding results are listed
in Table 6.1.

When we decrease T , the acceptance probability, the run-time, and
the average number of significant states becomes smaller. For PSet2,
the acceptance probability is smaller than for PSet1 since the boxes
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Figure 6.6: Limiting distribution of the exclusive switch model and at-
tractor bounding boxes for parameter sets PSet1 and PSet2.
The arrow shows an example path of the underlying CTMC
that is accepted by the DTA in Figure 6.7 for parameter set
1 assuming the total time that path needed to traverse the
attractor regions is not larger than T .
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m0

m1

m2

m3

else, 

else, 

else, 

true, {P1 < A1 ∧ P2 > A2}, true,�

true, {P1 > B1 ∧ P2 < B2}, true, 

true, {P1 < A1 ∧ P2 > A2}, x ≤ T, 

Figure 6.7: DTA specification for the exclusive switch expressing a
switching time less than T .

PSeti T pacc states time (s)

1 200 0.1154 68658 433
1 500 0.2313 71285 506
1 1000 0.4062 71021 516
2 200 0.004757 69343 593
2 500 0.02522 72983 640
2 1000 0.1069 73062 831

Table 6.1: Results of the exclusive switch case study.

163



Chapter 6. On-the-Fly Verification and Optimization of
DTA-Properties for Large Markov Chains

0.5

1

1.5

2 0
0.5

1
1.5

2

 0

 0.4

 0.8

PSet1

k1

k2

ρ1
ρ2

0.5

1

1.5

2 0
0.5

1
1.5

2

 0

 0.4

 0.8

PSet2

k1

k2

ρ1
ρ2

Figure 6.8: Acceptance probabilities for different instances of (ρ1, ρ2).

around the attractors are tighter (see Figure 6.6). The average number
of significant states is similar for both PSet1 and PSet2, but the run-
time of the algorithm is slightly larger for PSet2. This is because it
takes longer for the acceptance probability to converge.

6.5.1.2 Optimizing the Switching Time

In this section, we assume that the rate constants ρ1 and ρ2 of protein
production are parameters and we seek a pair (ρ1, ρ2) for which the ac-
ceptance probability becomes maximal. We use the technique described
in Chapter 6.4.3 to approximate the derivatives of the acceptance prob-
ability with respect to ρ1 and ρ2 and link our implementation to MAT-
LAB’s global search. We remark that the optimization increases the
running time significantly since we have to compute acceptance prob-
abilities and derivatives for many instances of (ρ1, ρ2). Note that it
was not possible to find parameters such that the acceptance probabil-
ity is very close to one since there will always be paths on which the
process stays too long in one of the attractors. Moreover, it is not ob-
vious whether increasing/decreasing ρ1 and ρ2 increases/decreases the
acceptance probability since the relationship between pacc and ρ1, ρ2 is
not linear. If we increase the constants, then the attractors are too far
away from each other and it becomes unlikely that, once an attractor
is entered, the process leaves it. If, on the other hand, ρ1 and ρ2 are
too small, then reaching the two boxes becomes too unlikely. For PSet1
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Figure 6.9: Illustration of the repressilator.

we achieve a maximal acceptance probability of pacc = 0.7990 with the
constants ρ1 = 1.3890 and ρ2 = 2. For PSet2 we found ρ1 = 0.7603 and
ρ2 = 1.0344 with an acceptance probability of pacc = 0.7865. Note that
for ρ1 and ρ2 we chose the constraints ρ1, ρ2 ∈ [0.01, 2.0]. In both cases
the running time of the optimization was about two days.

In Figure 6.8, we plot for both parameter sets the maximal acceptance
probability (dotted red line) and the acceptance probabilities (solid blue
grid) for different instances (ρ1, ρ2). As mentioned before, the total
run-time of the optimization depends on the number and the choice of
starting points. The run-time of the gradient descent method which
is used for each starting point depends on how far the starting point
is from the optimal one. For each starting point it took the gradient
descent method on average about 5 hours until convergence with up
to ten iterations. In each iteration, the computation of the acceptance
probabilities and its derivatives took about half an hour depending on
the parameters.

6.5.2 Repressilator

The other case study is the repressilator model as described in Model 9.
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Model 9: Repressilator�Model 9

The repressilator [EL00] is a synthetic, self-regulating, oscillatory
gene network consisting of three protein types A, B, and C encoded
by three genes GA, GB, and GC , respectively. We illustrate the
relationships between the genes in Figure 6.9 and the chemical
reactions are as follows.

GA
ρA−−−→ GA +A, GB

ρB−−−→ GB +B, GC
ρC−−−→ GC + C,

A
δA−−−→ ∅, B

δB−−−→ ∅, C
δC−−−→ ∅,

GA + C
βC−−−→ GA, GB +A

βA−−−→ GB, GC +B
βB−−−→ GC

GA
νC−−−→ GA + C, GB

νA−−−→ GB +A, GC
νB−−−→ GC +B

As long as a gene GA(4)/GB(5)/GC(6) is active, it produces pro-
teins A(1)/B(2)/C(3) at rate ρA/ρB/ρC as modeled in the first
row of reactions. The next three reactions model the degradation
of proteins A/B/C at rate δA/δB/δC . The third line encodes the
mutual repression, that is, the proteins A, B, and C bind to the
genes GB, GC , and GA at rate βB, βC , and βA suppressing the
production of the respective proteins as illustrated in Figure 6.9.
In the illustration, a normal arrow means expression and a hooked
arrow means repression. The proteins may also unbind from the
genes as described in the last three reactions with rates νB, νC ,
and νA.

We assume symmetric reaction rate constants

ρ = ρA = ρB = ρC = 5.0, δ = δA = δB = ρd = 0.1,

β = βA = βB = βC = 1.0, ν = νA = νB = νC = 1.0,
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m0

m1

m2

true, 

∀a ∈ N.{A = a}, {A = a,A = a+ 1}, x < Tm, 

else, x < Tm, 

true, x ≥ Tm, 

Figure 6.10: DTA specification for the repressilator expressing mono-
tonicity.

and the initial condition π0(0) = 1, that is, we have no proteins and
all genes start repressed. As in the previous case study, states in the
underlying CTMC are labeled by their variable valuation. For the prop-
erties we check, it is not important for which chemical species we do the
analysis since we have symmetric reaction rate constants. The prop-
erty expressed by the DTA of Figure 6.10 is related to monotonicity,
that is, whether the number of molecules of interest is (non-strictly)
monotonically increasing along a path until a certain time bound Tm is
reached as illustrated in Figure 6.11. This is, for example, of interest
during the analysis of noisy oscillations, that is, the higher the prob-
ability of monotonicity [BG10], the less probable are deviations in the
increasing phase of a period. The initial state m0 is not left as long the
number of molecules stays the same or increases and the time remains
below the threshold. If finally time point Tm is reached without any
decrease, the DTA accepts by entering state m2, otherwise a decrease
in the number of molecules is captured by a change to state m1 where
the DTA will stay forever and never accept. The acceptance probabil-
ities of the DTA for varying values of Tm are plotted in Figure 6.12.
As expected, the probability drops exponentially with increasing time
constraint Tm. Still, in about one of ten runs, we get on average a
monotonically increasing number of A molecules for at least 5 time
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Figure 6.11: Illustration of the monotonicity property.

units. The computation of the acceptance probabilities required only
a few minutes for each value of Tm (for example about 2 minutes for
Tm = 20) and the average number of significant states during each step
of the integration was about 250, 000.

We remark that it is trivial to change the DTA to capture (non-
strictly) monotonically decreasing behavior by changing the post-guard
of state m0 from {A = a,A = a+ 1} to {A = a,A = a− 1} in order to
be able to analyze the decreasing phase of a period [BG10] as well.
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Tm

pacc

Figure 6.12: Results of the repressilator case study for the monotonicity
property.
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CHAPTER 7

Characterizing Oscillatory and Noisy Periodic Behavior in
Markov Population Models

In the years 1926 respectively 1924, V. Volterra and A. Lotka inde-
pendently from each other studied the dynamics of predator and prey
populations [Vol26, Lot56]. Their key insight was that the amount of
both species showed regular oscillatory fluctuations, where the preda-
tor population followed the prey population. But the phenomenon of
oscillation is also present at various granularities and forms in many
other systems. Examples are the 24 hour day/night rhythm of living
organisms on this planet [BL00] and calcium ion transport between
membranes in cells [SMH02]. But oscillations can also be found at
macroscopic levels as for example within whole ecospheres like Savan-
nah patches [MWWM07]. Parts of the overview of the literature related
to oscillations have been published in [AKS14].

7.1 Continuous-Deterministic Solutions for Noisy
Systems

The formalism that was used by Lotka and Volterra were deterministic
models, where the expected amount of each species was computed over
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time. Those models and the respective analysis techniques are well-
understood and are still used widely today to reason about reaction
networks in the fields of chemistry and systems biology [FTY11, Kri06,
SMH02].

However, as already briefly mentioned in Chapter 2.3.2, recent in-
sights suggest that a completely deterministic approach might not be
appropriate in all of the cases since noise resulting from low copy num-
bers of certain populations plays an important role. For example, cir-
cadian clocks, the basic mechanism behind the 24 hour rhythm, rely
on stochastic effects to maintain an oscillatory pattern and to prevent
being trapped in an equilibrium state [BL00]. Results like that and oth-
ers [ARM98, MA97] clearly speak in favor of stochastic modeling. In
order to motivate the use of stochastic modeling for certain systems in
contrast to traditional techniques based on continuous-deterministic so-
lutions, we will use the 3-way oscillator model [RMF06, Car06, Car08].

Model 10: 3-Way Oscillator�Model 10

As its name suggests, the 3-way oscillator is an oscillatory CRN.
The basic mechanism is a positive feedback loop incorporating
three species A(1), B(2), and C(3), where A boosts the production
of B, B boosts the production of C, and C boosts the production
of A, forming a positive feedback cycle. The corresponding chem-
ical reactions with conversion rates τA, τB, τC for species A, B,
and C are

A+B
τA−−−→ 2 ·B

B + C
τB−−−→ 2 · C

C +A
τC−−−→ 2 ·A

The transition class structure of the 3-way oscillator is

α(1)(x) = τA · xA · xB, v(1) =
[
−1 1 0

]
,

α(2)(x) = τB · xB · xC , v(2) =
[
0 −1 1

]
,

α(3)(x) = τC · xC · xA, v(3) =
[
1 0 −1

]
.
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Depending on the choice of the initial distribution, the extents of the
state space varies. More precisely, if for example we fix the initial
distribution

π[
a b c

](0) = 1 with
[
a b c

]
∈ N3

the resulting state space is

S = {
[
xA xB xC

]
∈ N3 | xA + xB + xC = a+ b+ c}

with |S| = 0.5·(z+1)·(z+2) since the total number of molecules present
initially is preserved by all of the three change vectors. A problem of the
(undoped) 3-way oscillator in Model 10 is that once a species is depleted,
it will never be replenished. From the view of the underlying Markov
chain this can be interpreted as follows. Given an initial condition as
above and defining z = a + b + c, the transient probability mass will
eventually be absorbed in the states

[
z 0 0

]
,
[
0 z 0

]
, and

[
0 0 z

]

which have no outgoing transition. In order to prevent such a deadlock
situation, the three doping reactions defined in Model 11 can be used.

Model 11: Doped 3-Way Oscillator �Model 11

The doped 3-way oscillator [Car06] is defined as in Model 10 with
three additional chemical reactions

A
νA−−−→ B

B
νB−−−→ C

C
νC−−−→ A

The additional transition classes are

α(4)(x) = νA · xA, v(4) = v(1) =
[
−1 1 0

]
,

α(5)(x) = νB · xB, v(5) = v(2) =
[
0 −1 1

]
,

α(6)(x) = νC · xC , v(6) = v(3) =
[
1 0 −1

]
.
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The reachable state space for the initial distribution as specified above
is the same as for the undoped 3-way oscillator since the change vectors
of the additional reactions are the same as the original ones. Note that
the former absorbing states

[
z 0 0

]
,
[
0 z 0

]
, and

[
0 0 z

]

now have outgoing transitions since the doping reactions do not demand
the existence of two molecules of different species anymore. Further,
we can now proof that the doped 3-way oscillator is ergodic.

Theorem 20: Ergodicity of the (Doped) 3-Way Oscillator�Theorem 20

For any initial distribution

π[
a b c

](0) = 1 with
[
a b c

]
∈ N3,

the MPM of the doped 3-way oscillator as specified in Model 11 is
ergodic.

Proof: Since the state space of the MPM S = {
[
xA xB xC

]
∈

N3 | xA + xB + xC = z} with z = a + b + c is finite, we only need to
show irreducibility in order to proof ergodicity. For that, we will show
that any state

[
xA xB xC

]
∈ S can reach state

[
z 0 0

]
∈ S and

vice versa. Starting in state
[
xA xB xC

]
∈ S, we can apply reaction

5 (or if possible reaction 2) xB times to reach state
[
xA 0 xB + xC

]
.

Applying reaction 6 (or if possible reaction 3) xB + xC times brings
us to state

[
xA + xB + xC 0 0

]
=
[
z 0 0

]
. In order to get to

state
[
xA xB xC

]
from state

[
z 0 0

]
, we can apply reaction 4 (or

if possible reaction 1) z − xA times to get to state
[
xA z − xA 0

]
.

From that state, we can apply reaction 5 (or if possible reaction 2)
z−xA−xB times to get to state

[
xA xB z − xA − xB

]
. Note that in

any case xC = z−xA−xB due to the conservation of the total number
of molecules. 2

Note that for this model, we chose a manual proof to show irreducibility
for a wide range of model instances depending on the initial distribution.
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(a) Phase plot of the ODE solution. (b) Sample trajectory (observing A).

Figure 7.1: 3-way oscillator

If we were to give a proof for a single model, we could rely on tools like
PRISM [KNP11] to automatically compute the reachable state space as
well as all (B)SCCs in order to check whether the state space consists
of a single (B)SCC.

For further analysis, we will assume the reaction rate constants

τA = τB = τC = νA = νB = νC = 1.0.

Now, we would like to compare the results of the traditional approach,
that is, deriving a continuous-deterministic solution, based on the law
of mass action of chemistry, with the stochastic view. A phase plot
of the deterministic solution with initial concentration

[
A B C

]
=[

30 0 0
]

is shown in Figure 7.1a. As can be seen in the plot, the un-
derlying structure is a damped oscillation, that is, an initial perturbation
caused by the asymmetric initial condition is followed by an oscillatory
phase with shrinking amplitude until the equilibrium for all species is
reached. Here the equilibrium point is

[
10 10 10

]
. On the other

hand, the state space of the MPM induced by the 3-way oscillator’s
chemical reaction network for initial state

[
x1 x2 x3

]
=
[
30 0 0

]

is

S = {
[
x1 x2 x3

]
∈ N3 | x1 + x2 + x3 = 30}
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and due to ergodicity of the model as proofed in Theorem 20 we have
for all states s ∈ S that πs > 0. This implies that every state is visited
infinitely often which contradicts convergence to any molecule level and
further implies everlasting perturbations. Indeed, state

[
30 0 0

]
for

example has a non-negligible steady state probability of around 0.002
and any simulation run (cf. Figure 7.1b) of the stochastic system almost
surely shows never-ending fluctuations. Actually, the deterministic ap-
proach reasoning about expected population counts is only justified in
the thermodynamic limit, when the number of molecules is very high
compared to the considered volume. The treatment of a total number
of 30 molecules in our case certainly violates that condition and in the
following, we restrict to the case where a deterministic treatment is not
justified due to stochastic noise.

7.2 Temporal Logic Based Model Checking
Approaches

One basic approach that is widely used when analyzing stochastic sys-
tems with respect to periodic and oscillatory behavior is model check-
ing. More precisely, the property of interest is encoded as a formula in
some temporal logic or as some kind of (finite state) automaton and the
model checking routine efficiently decides whether the model satisfies
the property or not. Model checking based approaches reason about
the structure of the models and allow precise statements that hold for
sure, unlike simulative approaches which can not give such strong guar-
antees [BMM09].

In an early model checking approach used to analyze biochemical sys-
tems [CRCD+03], the authors make use of the computation tree-logic
(CTL) [EC82]. For a detailed introduction to CTL, we refer to [BK08].
In the context of reasoning about qualitative aspects of biological mod-
els, the idea of requiring an infinite repetition of cyclic behavior was
first described in [CRCD+03]. The authors capture that property via
the CTL formula

∃2 ((P ⇒ ∃3¬P ) ∧ (¬P ⇒ ∃3P )) . (7.1)

Formula (7.1) demands that there exists at least one path such that
whenever some predicate P is satisfied it will be invalid later on, and
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vice versa whenever it is not satisfied it will become valid again in the
future. Intuitively, that means that there should exist at least one path
such that the validity of P alternates forever. CTL model checking was
originally applied to labeled transition systems (LTS), but a CTMC can
be interpreted as a LTS as well by assuming a state transition whenever
there is a positive rate between a state and its successor. Using such a
construction, one can reason qualitatively about the possible behavior
of a CTMC as done in [BMM09] for example. Here, the authors propose
the CTL formula

∀2(((Xi = k)⇒ ∃3(Xi 6= k)) ∧ ((Xi 6= k)⇒ ∃3(Xi = k))), (7.2)

in order to query whether a system shows permanent oscillations. This
formula is similar to Formula (7.1) where the inner formula is strength-
ened by exchanging the outer ∃ by a ∀ operator and predicate P is
instantiated with Xi = k. The intuitive meaning of this formula is that
all paths should cross a level of k molecules infinitely often. Note that
there is an implicit assumption that all oscillations will hit the level
of exactly k molecules, that is, the maximum change of the molecule
number is one.

The authors are concerned that noise could affect the fluctuations.
Thus, they change the previous formula slightly to

∀2(((Xi = k)⇒ ∃3φn) ∧ (φn ⇒ ∃3(Xi = k))) (7.3)

with φn := (Xi > k + n) ∨ (Xi < k − n). They call Formula (7.3)
noise filtered oscillations permanence and intuitively, in contrast to the
previous formula, the required crossing of molecule level k is extended
to a crossing of the interval (k−n, k+n) which resembles a noise band
of size n around the desired level k.

So far, we have discussed how qualitative aspects like the permanence
of oscillatory behavior are analyzed in the literature. The logic CTL
proved to be expressive enough for this task but in order to be able to
reason about quantities like the time needed for an oscillation or the
probability of a peak, CTL is ill-equipped. Consequently, approaches
like [BG10, BMM09] make use of the continuous stochastic logic (CSL)
which lifts CTL to the continuous-time probabilistic setting, that is, to
continuous-time Markov chains. For a detailed introduction to CSL,
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we refer the reader to [BHHK03] and Chapter 4. In [BMM09], Ballar-
ini et al. extend their qualitative approach by incorporating time and
probability bounds.

P=?[3 (P≥1[3(Xi = k)] ∧ P≥1[3(Xi 6= k)])] (7.4)

More precisely, they use Formula (7.4) to compute for each state s, the
probability ps that oscillations will not terminate in the respective state.
With the rest of the probability mass 1−ps, the oscillatory pattern will
end in state s since either a level of Xi = k can not be reached or left any
more. The authors further analyze the specific model structure of their
case study, the 3-way oscillator as described in Model 10, to define short-
cut predicates Xi = INV holding in states where oscillations terminate
in species i. For the initial condition assigning probability one to a state
with molecule count xa + xB + xC = n, we have that INV = n. This
way, the probability of termination of oscillation for any species within
time T is captured by the formula

P=?[3[0,T ] (X1 = INV ∨X2 = INV ∨ · · · ∨XN = INV )]. (7.5)

Note that in [BMM09], only three short-cut predicates were used, where
we generalized the formula to N species. Moreover, computing the sat-
isfaction probability of formula S=?[Xi = k] for every molecule level
k allows the authors to reason about the long-run probability distri-
bution of molecules of type i. Finally, they use rewards introduced in
CSLR [CKKP05, KNP02], an extension of CSL, to query the expected
perimeter of k molecules around the initial state resembling the am-
plitude of oscillation. We will not elaborate the construction in detail,
since the described approach is tailored to the specific case study and
can not be used for arbitrary models.

In a follow-up paper [BG10], the authors base their qualitative char-
acterization of oscillatory behavior on several notions of monotonicity.
More precisely, a chemical species i is either monotonically increasing or
decreasing indicated by boolean flags inc i respectively dec i, or noth-
ing thereof. In order to relax the strict sense of monotonicity, increasing
(decreasing) behavior might include up to a maximum of ns steps with-
out an increase (decrease) in the number of molecules of species i. For
that, an additional model variable keeps track of the current center of
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the noise band. This additional information is provided by the augmen-
tation of the model by an automaton that keeps track of the noise band
and the boolean flags. Technically, the PRISM model is composed in
parallel with a module encoding the automaton and synchronizing on
the chemical reactions to detect changes in the molecule counts. Finally,
a CSL formula to query the probability that some species i increases
monotonically (modulo noise) until some level k is reached is given by

P=?[inc i U (Xi = k)]. (7.6)

Oscillatory behavior of a species i, more precisely, a single period, is then
characterized by a monotonic increase from a current level j to some
level k > j, followed by a monotonic decrease back to level j, where
the noise band ns is used. The authors finally use linear temporal logic
(LTL) to formalize such an oscillation pattern of amplitude j − 1 via

P=? [inc i U (Xi = k ∧ (dec i U Xi = j))] . (7.7)

Note that the original formula in [BG10] uses the W operator which
behaves like the U operator but is also satisfied if the first sub-formula
holds forever. The major difference between LTL and the branching
time logics CTL and CSL is that it is a linear time logic, that is, the
semantics is based on the paths of a model in contrast to the states
as in CTL/CSL. More precisely, although there is a path operator in
CTL/CSL, the final judgment, whether a path formula is satisfied is
done per state (by validating the path formula satisfaction probability
against the probability bounds). As a consequence, path formulae can
not be nested. Since the semantics of LTL is based on paths, nesting
is possible. We will not give a full introduction to LTL but will discuss
the intuitive meaning of the presented formulae and refer to [Pnu77]
for details. Formula (7.7) queries the probability measure of all paths
where species i is monotonically increasing until a level of k molecules
is reached, followed by a monotonic decrease until level j.

P=? [inc i U (Xi = k ∧ ((k − ns ≤ Xi ≤ k + ns) U (dec i UXi = j)))]

(7.8)

Note that again, the original formula used the W operator instead of the
U operator. The authors further relax the requirements of oscillatory
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behavior by allowing the fluctuation to stay at the peak, that is, around
a molecule level of k (module noise band ns), for an unlimited amount
of time as described by Formula (7.8).

7.3 Defining Oscillatory and Noisy Periodic
Behavior

Inspired by these results we want to formally approach the problem of
defining and analyzing oscillatory behavior for continuous-time Markov
chains. Before we can start however, we must first define what quantity
we are interested in. For that, we will use the notion of observation
functions.

Definition 42: Observation Function�Definition 42

Given the state space S ⊆ NN of a Markov population model and
an observation weight o ∈ RN we define the observation function
as the function that maps a state x ∈ S to the scalar x · o.

Definition 43: Observed Process�Definition 43

Given a Markov population model X and a suitable observation
weight o ∈ RN we define the observed process as the process X o

with X o(t) = X (t) · o for all t ∈ R≥0.

7.3.1 Why Fourier Analysis Fails

In the following, we will be interested in sequences of observations at
time points t1, t2, . . . , tT ∈ R+

0 with t1 < t2 < · · · < tT that make
up a total observation by summation. More precisely, for a Markov
population model X with state space S and a complex function f :
S × R+

0 → C, we define the random variable

Yf =

T∑

i=1

f(X (ti), ti).
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Further, we define the matrices

P(i,j) =
[
Pr [X (tj) = y | X (ti) = x]

]
x,y∈S

with i < j representing the transition probabilities from time point ti to
tj , where t0 = 0 and let π(t) denote the transient distribution of X (t).
The expectation Exp [Yf ] can be expressed by

Exp [Yf ]

=
∑

x1,...,xT∈S Pr [X (t1) = x1, ...,X (tT ) = xT ] ·∑T
i=1 f(xi, ti)

=
∑

x1∈S πx1(t1) ·
∑

x2∈S P
(1,2)
x1x2 · ... ·

∑
xT∈S P

(T−1,T )
xT−1xT ·

∑T
i=1 f(xi, ti)

=
∑

x1∈S πx1(t1) ·
[
f(x1, t1) +

∑
x2∈S P

(1,2)
x1x2 · [f(x2, t2) + ...]

]

Proof: The proof of the last step for T = 1 is trivial. For T ≥ 2, the
proof is done by proving the stronger transformation

∑
x2∈S P

(1,2)
x1x2 · ... ·

∑
xT∈S P

(T−1,T )
xT−1xT ·

(
C +

∑T
i=1 f(xi, ti)

)

= C + f(x1, t1) +
∑

x2∈S P
(1,2)
x1x2 · [f(x2, t2) + ...]

for a fixed x1 ∈ S and a constant C ∈ C via induction on T . For T = 2
we get

∑
x2∈S P

(1,2)
x1x2 · (C + f(x1, t1) + f(x2, t2))

= (C + f(x1, t1)) ·
∑

x2∈S
P(1,2)
x1x2

︸ ︷︷ ︸
=1

+
∑

x2∈S P
(1,2)
x1x2 · f(x2, t2)

= C + f(x1, t1) +
∑

x2∈S P(1,2)x1x2 · f(x2, t2).

And for T → T + 1 we can infer
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∑
x2∈S P

(1,2)
x1x2 · ... ·

∑
xT+1∈S P

(T,T+1)
xT xT+1 ·

(
C +

∑T+1
i=1 f(xi, ti)

)

=
∑

x2∈S P
(1,2)
x1x2 ·

[
C + f(x1, t1) +

∑
x2∈S P

(1,2)
x1x2 · [f(x2, t2) + ...]

]

= (C + f(x1, t1)) ·
∑

x2∈S
P(1,2)
x1x2

︸ ︷︷ ︸
=1

+
∑

x2∈S P
(1,2)
x1x2 · [f(x2, t2) + ...]

= C + f(x1, t1) +
∑

x2∈S P
(1,2)
x1x2 · [f(x2, t2) + ...] .

2

In the induction step we used the fact that C and f(x1, t1) are constants
with respect to all occurring sums. By defining f (i) =

[
f(x, ti)

]
x∈S , the

last formula can easily be transformed into matrix vector form

Exp [Yf ] = π(0) ·P(0,1) ·
[
f (1) + P(1,2) ·

[
f (2) + P(2,3) ·

[
f (3) + ...

]]]
·e,

(7.9)

which is equivalent to the weighted sum

T∑

i=1

π(ti) · f (i) · e. (7.10)

Now, if we start the analysis in steady state, that is, π(0) = π, we loose
the ability to reason about time-inhomogeneous observations in many
cases since Equation (7.10) becomes

π ·
T∑

i=1

f (i) · e,

where the actual time-dependency of the Markov process vanishes and
is subsumed by the equilibrium distribution.

Since we are interested in the oscillatory character of a Markov pop-
ulation process, it might be tempting to compute the expected discrete
Fourier transform of the observations over time. Consequently, given
an observed Markov population model X o(t) we can define the k-th
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frequency component of its discrete Fourier transform as

X o
(k) =

T−1∑

t=0

X o(t) · e−2·i·π· kT ·t. (7.11)

Defining T functions

f(k)(x, t) = (x · o) · e−i·2·π· kT ·t (7.12)

with k ∈ {0, . . . , T − 1} and assuming π(0) = π gives

Exp
[
X o
(k)

]
= Exp [Yfk ] = π ·

T−1∑

t=0

f
(t)
(k) · e

with f
(i)
(k) =

[
f(k)(x, ti)

]
x∈S .

Thus, when we are interested in the expected Fourier coefficients on
the long run, that is, taking steady state distribution as the initial dis-
tribution, the time dependency in the computation vanishes and barely
any information can be extracted. Note that this result also affects
simulative approaches, where long simulation runs are used to sample
X o
(k) in the steady state.

7.3.2 Threshold-Based Definition of Oscillatory Character
and Noisy Periods

Due to that result, we are forced to follow a different strategy to analyze
oscillatory behavior in Markov population models. For that, we first
define what it means for a system to be oscillatory. Similar to the
CSL-based approach of Ballarini et al. [BMM09, BG10], which defines
oscillatory behavior as never-ending fluctuations around a single value,
we demand for an oscillatory model that both, a lower and a higher
amplitude level, is crossed infinitely often.

Definition 44: Oscillatory MPM �Definition 44

An MPM X is called oscillatory for observation weights o and
amplitude levels L,H ∈ N with H > L, if the probability measure
of all trajectories of X o visiting intervals (−∞, L), [L,H), and
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L

t

X (t)

H

LE LC HC LE ...
noisy period length

o

Figure 7.2: Events and phases of a (noisy) period.

[H,∞) infinitely often is one.

Obviously, an MPM is either oscillatory or the probability mass of
trajectories with converging or diverging observations is greater than
zero. Assuming a system is oscillatory, we are also interested in the
time needed to oscillate once around this interval. We call this duration
noisy period length. A single period can be split into several events and
phases (cf. Figure 7.2). It starts with crossing the lower bound L (event
LE) which is succeeded by a phase where the upper bound H has not
been reached yet (phase LC). When this bound is finally reached, the
period switches into the HC phase which is ended by another crossing
of the lower bound L from below. This is indicated by another LE
event and the classification pattern repeats.

In order to simplify presentation, we assume that L and H are cho-
sen such that no transition in the MPM may skip the LC phase. Since
we only consider bimolecular reactions which do not alter the observa-
tion level by more than one, this is the case if we choose H − L ≥ 2.
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m3

m4

m5

else, 

else, 

else, 

else, 

else, 

{A < L}, {A ≥ L}, true,�

{A < H}, {A ≥ H}, true, 

{A ≥ L}, {A < L}, true, 

{A < L}, {A ≥ L}, x ≥ Tmin
o ∧ x < Tmax

o , 

true, {A > M}, true, 

Figure 7.3: DTA specification for the repressilator expressing oscillatory
behavior.

Nevertheless, for the case studies later in this chapter, we also choose
H = L+1, but we made sure that the resulting special cases are handled
correctly in the actual implementation of the numerical analysis.

7.3.3 DTA-Based Model Checking Approach

We formalized the above classification pattern for a single noisy period
in the DTA in Figure 7.3. The DTA accepts if starting in an LE event, a
second LE event is reached within [Tmin, Tmax] time units. Further, we
constrained the maximum observation level to M , that is, we demand
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that a maximal molecule number M = 20 is not surpassed, enforcing a
controlled behavior and preventing extreme spikes.

In order to study that property for the repressilator, we use the same
reaction rate constants, algorithm, implementation, and machine as in
Chapter 6. Moreover, we use two parameter sets for L and H:

PSet1 : (L,H) = (6, 10),

PSet2 : (L,H) = (4, 12)

and set M = 20. We are interested in oscillations with a short pe-
riod and choose Tmin = 0, Tmax = 5 for the clock constraint in Fig-
ure 7.3. This yields relatively small acceptance probabilities, namely
pacc = 0.06018 for PSet1 and pacc = 0.04968 for PSet2. Larger values
of Tmax yield higher acceptance probabilities and long running times
for the algorithm. For Tmax = 5 we used on average about 1,300,000
significant states per iteration for both parameter sets. The running
times were about one hour.

Optimization of the Oscillatory Behavior: We also optimized the ac-
ceptance probability assuming that the production rate ρ as well as
the binding rate β are parameters. The optimization procedure as de-
scribed in Section 6.4.3 was used. We found that both values decrease
for a maximal acceptance probability of pacc = 0.1357 (PSet1) and
pacc = 0.1651 (PSet2). While ρ becomes optimal at 2.3333 (PSet1) and
3.3051 (PSet2), the optimal value of β reaches the border of the interval
that we used as constraint, that is, 0.1 for both parameter sets. The
running time for the optimization was about 13 hours for PSet1 and 10
hours for PSet2. Note that the lower production rate ρ ensures that the
protein populations do not become so large (compared to the original
choice of ρ) such that it takes too long to reach the lower threshold L.
Moreover, the influence of the binding rate β determines the height of
the peak and how far the protein populations of repressed genes goes
down. Thus, with a too large β the molecule numbers raise and fall too
extremely and a smaller value of β is more beneficial. Note, however,
that when β becomes very small, then it becomes more likely that the
molecule numbers stay above the lower bound L. Indeed, in another
experiment we chose the larger interval [0.0001, 10] as constraint for β
and we found the maximal acceptance probability at β ≈ 0.8.
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7.4 Period Detector Expansion

Inspecting the DTA in Figure 7.3 reveals, that in fact, no clock re-
set is needed if the model is started in a state corresponding to an LE
event. Consequently, the classification pattern of a noisy period can also
be done more efficiently via finite state automata. This procedure has
been inspired by model checking algorithms for pathCSL [BCH+03] and
asCSL [BCK+07], extensions to standard CSL, where the until operator
is replaced by a more general regular-expression-based path operator.
The main motivation not to directly apply these approaches was to cre-
ate a highly specialized algorithm optimized for speed and to be able to
cope with infinite state spaces. This was achieved by using truncation
based transient analysis and lazy product CTMC construction. By lazy,
we mean that not the whole product CTMC is built a priori but only
as far as it is needed for the computation – trivially a strong require-
ment to be able to support infinite state spaces. Further, unnecessary
computational overhead caused by re-computations introduced by the
classical model checking algorithm as experienced in [Spi09] is avoided.
In the following we will describe this approach in detail, that is, how
to incorporate the period classification pattern into a given MPM us-
ing a compositional approach. The material of this chapter has been
published in [Spi13a].

Definition 45: Deterministic Finite Automaton �Definition 45

A deterministic (non-blocking) finite automaton (DFA) on a set A
is a tuple (M,m0,→), where M is a finite set of states, m0 ∈ M
is the initial state, and →⊆ M × P × P ×M is the transition
relation. Here, P denotes the set of predicates over A. We further
demand that

∀m ∈M, x ∈ A.∃!p, p′ ∈ P,m′ ∈M.p(x)∧p′(x)∧(m, p, p′,m′) ∈→,

that is, that the transition relation is deterministic and non-blocking.
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Definition 46: Product of MPM and DFA�Definition 46

The product C ⊗ D of an MPM C = (S,Q, π(0)) and a DFA
D = (M,m0,→) on S is an MPM C ′ = (S ′,Q′, π(0)) where S ′ =
S ×M, π[

x m
](0)′ = πx(0) if m = m0 and 0 otherwise, and its

infinitesimal generator Q′ is defined by

Q′[
x m

][
y m′

] =





Qxy if x 6= y ∧ eval(x,y,m,m′),
E(
[
x m

]
) if x = y ∧m = m′,

0 otherwise,

where
E(
[
x m

]
) = −

∑

z 6=x∨m′′ 6=m
Q′[

x m
][

z m′′
]

and predicate eval(x,y,m,m′) is true iff

∃p, p′ ∈ P.p(x) ∧ p′(y) ∧ (m, p, p′,m′) ∈→ .

For a state s = [x m], we define sM = m.

Definition 47: Period Detector Expanded MPM�Definition 47

Given an MPM C = (S,Q, π(0)) with S ⊆ NN , the period detector
expanded MPM (PDMPM) of C for observation weights o is the
product MPM C ′ = C ⊗ DPD where DPD denotes the DFA de-
picted in Figure 7.4. In order to keep the presentation readable, we
have abbreviated some transitions to make the DFA deterministic
and non-blocking by the expression else.

The intuition behind the period detector expanded MPM construction
is that it mimics the original behavior but additionally annotates the
state space of the MPM by the information of the DFA in which event
or phase of an oscillation the system currently is. Note that we do not
need an acceptance condition for the DFA.
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LE

LC

HC

true,true

true,x · o < H

true,x · o ≥ H

else

x · o < L,x · o ≥ L

Figure 7.4: Period detector DFA.

Theorem 21: Equivalence of an MPM and its PDMPM �Theorem 21

An MPM C = (S,Q, π(0)) and its product with a DFA D on S
are F -bisimilar according to [BHHK03] written C ∼F C ⊗ D for
F = R with respect to the labeling functions L(x) = {x · o} on
C and L(

[
x m

]
) = {x · o} for all x ∈ S on C ⊗ D and fixed

observation weights o.

Proof: Let DFA D = (M,m0,→) and relations R1 and R2 be defined
as

R1 = {(x,
[
x m

]
) | x ∈ S,m ∈M} and

R2 = {(
[
x m

]
,
[
x m′

]
) | x ∈ S,m,m′ ∈M}.

Then, relationR = R1 ∪ R−11 ∪ R2 ∪ id(S), where id(S) = {(x,x) | x ∈
S} denotes the identity relation on S, is a F-bisimulation relation. For
a detailed proof, we refer to the author’s Master thesis [Spi09]. 2

Theorem 21 ensures, that the MPM and its period detector expanded
MPM are equal in the sense that they behave the same with respect to
the probability of any observations that can be made starting in any
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state. In particular, no oscillations are artificially introduced due to the
described extension.

7.5 Analysis of the PDMPM

The following theorem shows how the oscillatory character of an MPM
can be checked with the help of period detector expansion.

Theorem 22: Oscillation Property�Theorem 22

Given an MPM with observation weights o and amplitude levels
L,H ∈ N with H > L. If its PDMPM with state space S ′ ⊆
S × {LE,LC,HC} is ergodic and

∀m ∈ {LE,LC,HC}.∃x ∈ S.π[
x m

] > 0,

where π denotes the steady state probability distribution of the
PDMPM, the MPM is oscillatory according to Definition 44.

Proof: Ergodicity implies positive-recurrence of all states and there-
fore divergence is ruled out. The existence of at least one state

[
x m

]

in each phase m ∈ {LE,LC,HC} with positive steady state probability
and the construction of the PDMPM imply that each of the observation
intervals (−∞, L), [L,H), [H,∞) is visited infinitely often contradicting
convergence. 2 2

In case of an oscillatory system, we also want to quantify the time
needed for oscillations in the long run. We start by defining the time
L(t) needed for the next two LE events in the PDMPM after time point
t. Since the underlying process is stochastic, L(t) is a random variable
as defined in Equation (7.13).

L(t)= min[t2 : ∃t1 ≥ t, t1 < t2.

XM (t1) = XM (t2) = LE ∧ ∀t′ ∈ (t1, t2).XM (t′) 6= LE]− t (7.13)

Next, we define the noisy period length as the time L(t) for those states
and times where an oscillation just begins, that is, when XM (t) = LE.
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Our final goal is to approximate the cumulative distribution function
(CDF)

lim
t→∞

Pr [L(t) ≤ T | XM (t) = LE] (7.14)

of the noisy period length on the long run for a given time bound T .
Algorithm 13 returns two vectors, cdf and pdf, containing approxima-
tions of the cumulative respectively probability distribution of the noisy
period length.

Algorithm 13 nperiod(C = (S,Q, π(0)),o, L,H,∆, α)

1: let C ′ = (S ′ = S × {LE,LC,HC},Q′, π(0)′) be the PDMPM of C
for observation weight o

2: solve π ·Q′ = 0 with π · e = 1
3: p← new hash map S ′ → [0, 1]
4: p(

[
x m

]
) ← π[

x LE
] if m = LC and 0 otherwise ∀x ∈ S,m ∈

{LE,LC,HC}
5: p← p · (p · e)−1

6: t← 0
7: ea ← 0
8: cdf(−∆)← 0
9: while

∑
x p(
[
x LE

]
) + ea < α do

10: [p, e] ← transient(Q′, p,S ′,∆, δ, RK4) where states [x LE] are
absorbing

11: cdf(t)←∑
x p(
[
x LE

]
)

12: ea ← ea + e
13: pdf(t)← cdf(t)− cdf(t−∆)
14: t← t+ ∆
15: end while
16: return [cdf, pdf]
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Theorem 23: Correctness of Algorithm 13�Theorem 23

Given an oscillatory MPM X (t), Algorithm 13 approximates prob-
ability

lim
t→∞

Pr [L(t) ≤ T | XM (t) = LE]

by cdf(T ).

Proof: First, we note that the set of paths satisfying L(t) ≤ T is mea-
surable since the problem can be reduced to bounded reachability where
respective proofs as in [BHHK03] can be used. Concerning the algo-
rithm, we first compute the steady state distribution π of the PDMPM
in line 2 and normalize the sub-distribution with entries π[x LE] for
x ∈ S corresponding to states in the LE event in lines 4 and 5 which
resembles the conditioning in Equation (7.14).

Note that in line 4 we take states in the LC phase instead of the LE
event for the initial distribution. The reason is that this way we do
not have to distinguish between the first and second LE event. Conse-
quently, if a state s with M(s) = LE is entered, a full period has been
performed. This is justified if H − L ≥ 2 and only a maximal increase
of one in the observation level per transition can be made (bimolecular
reactions), since the LE event is over in any case after one step. We
restricted to that case in order to simplify the presentation. In our im-
plementation, we do have separate annotations for the first and second
LE event.

The while-loop from lines 9 to 15 performs a transient analysis using
this distribution as the initial distribution and states corresponding to
a second LE event are made absorbing. Consequently, after the tran-
sient analysis, the total mass in the absorbing states corresponds to the
proportion of paths having finished a full oscillatory cycle up to time
t. Note that the transient analysis is not exact since we truncate states
with probability less than δ as described in Algorithm 2. Therefore, in
addition, we compute the accumulated error in ea (line 12). We stop
the iteration as soon as a threshold α of the total initial probability
mass minus the accumulated error has been absorbed, e.g. α = 0.99.
In lines 11 and 14, we keep track of the time and the absorbed mass
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which gives the CDF quantized by the time step ∆. Taking finite dif-
ferences of the CDF in line 13 finally gives an approximation of the
probability density function (PDF) of the noisy period length. The al-
gorithm terminates since each period will finally end with probability
one due to the construction of the PDMPM, the ergodicity implied by
the oscillatory character of the MPM and the states corresponding to
the end of an oscillation being made absorbing. More precisely, the sum∑

x p(
[
x LE

]
) + e will approach one with t→∞. 2

The total error θ = (1 − α) + ea corresponds to the probability mass
where we can not tell whether it belongs to an LE state or not. If the
support of the steady state distribution is infinite and has to be trun-
cated as shown in Chapter 3, error ε has to be added to θ as well. The
error θ can be controlled by increasing α. A choice of δ = 10−20 usually
results in a negligible error ea [DHMW09]. The time complexity of the
steady state computation is O(n3), where n is the number of states and
the complexity of the CDF/PDF computation using truncation based
transient analysis is O(u · t · n) assuming a sparse model which is given
in the case of an MPM induced by a constant number of R transition
classes. Here, t is determined by α and corresponds to maximal period
length which still occurs with significant probability, u is the maximum
exit rate encountered and n is the maximum number of states with
significant probability mass until time t. The space complexity is O(n).

7.6 Case Studies

Finally, we will show the numerical results of applying the presented
method to two case studies from systems biology. All computations
were performed on an Intel Core i5 2.66 GHz machine with 8 GB of
RAM. In all experiments, we used thresholds δ = 10−20, α = 0.9999,
and chose ∆ = 0.5 · u−1, where u is the maximum exit rate over the
complete time course.

7.6.1 3-Way Oscillator

First, we will analyze the (doped) 3-way oscillator as described in
Model 11. We choose initial state (x1,x2,x3) = (30, 0, 0) with prob-
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Figure 7.5: Noisy period length PDF of the 3-way oscillator model for
several amplitudes.

Figure 7.6: Computation times for computing the noisy period length
PDF.
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Figure 7.7: Sample trajectory of the repressilator model (observing A).

ability one and rates τA = τB = τC = νA = νB = νC = 1.0. As argued
in Chapter 7.1, the resulting state space is finite. The mean popula-
tion counts in steady state are (x1,x2,x3) = (10, 10, 10) and due the
symmetric choice of rate constants, we are only interested in species A,
that is, o = e1. As can be seen in the sample trace in Figure 7.1b,
the oscillations are around this mean value. Consequently, we took
L = x1 − a

2 and H = x1 + a
2 for the interval bounds and varied the

amplitude a ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18}.
The system is oscillatory for all those amplitude levels and the re-

sults of the noisy period length analysis are depicted in Figure 7.5 with
the computation times presented in Figure 7.6. Most likely, the (noisy)
period length of the 3-way oscillator is around 0.5 time units and pe-
riod lengths of 5 or more time units are rare, even in the case of full
amplitudes (a = 18). This coincides with the observations that can be
made from the sample trajectory in Figure 7.1b.

7.6.2 Two-Species Repressilator

The other case study studies the repressilator model as described in
Model 12 with parameter set ρ = ρA = ρB = 10.0, δ = δA = δB = 1.0,
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β = βA = βB = 0.05, and ν = νA = νB = 0.2.

Model 12: Two-Species Repressilator�Model 12

The two-species repressilator is the repressilator of Model 9 for
two protein types A(1) and B(2) encoded by two genes GA(3) and
GB(4). The chemical reactions are

GA
ρA−−−→ GA +A, GB

ρB−−−→ GB +B,

A
δA−−−→ ∅, B

δB−−−→ ∅,

GA +B
βB−−−→ GA, GB +A

βA−−−→ GB,

GA
νB−−−→ GA +B, GB

νA−−−→ GB +A,

and the reaction rate constants have the same interpretation as in
Model 9.

Here, the state space S = N2 × {0, 1}2 is not finite for initial state
(0, 0, 1, 1). Consequently, geometric bounds for 90% of the steady state
probability mass were computed according to Chapter 3.1 which re-
sulted in upper bounds of 32 molecules for both protein species.

Sample traces of the repressilator model as illustrated in Figure 7.7
reveal that unlike the oscillation around a mean value, the repressilator
with the specified parameters has a rather peak-like oscillation pattern,
that is, periods start at the zero level, reach a maximum peak level and
finally return to the zero level again. Therefore, we chose L = 1 and
H = L+ a for varying a with 1 ≤ a ≤ 19.

The system is oscillatory for all amplitude values and the results of
the noisy period length analysis are depicted in Figure 7.8 with the re-
spective computation times presented in Figure 7.6. The majority of
periods have durations of less than 80 time units and the larger the
amplitudes, the larger also the period length becomes, since peaks of
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Figure 7.8: Noisy period length PDF of the repressilator model for sev-
eral amplitudes.

Figure 7.9: Noisy period length PDF of the repressilator model for a =
1.
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higher amplitudes become more rare. An interesting phenomenon of
the repressilator can be witnessed for an amplitude of a = 1 as depicted
in Figure 7.9 where we set the smallest constraint on the minimal am-
plitude. While more than 98% of the oscillations have a period length
of 1.23 time units or more, a small amount of around 1.87% of the os-
cillations only lasts for 1.23 time units or less as can be seen by the first
peak in probability in Figure 7.9. This bi-modality of the probability
distribution can be explained by two effects. On the one hand, the
smaller peak within t ∈ [0, 1.23] occurs since there is little time to build
up a significant amount of A molecules. Consequently, the chance of
the A molecules repressing gene GB is small and therefore the amount
of B molecules grows as well and finally species B may win the com-
petition to represses its competitor, gene GA. On the other hand, the
degradation rate δ of the molecules is high compared to the gene un-
binding rate ν. Thus, it is very likely that all A molecules degrade until
the unbinding event happens and the oscillatory cycle ends. Therefore,
each oscillation must first cross a kick-start level of molecules in order
to perform a longer cycle. However, most of the time this threshold
is surpassed and the oscillation is only ended by spontaneous and long
enduring repressions by B molecules.

198



CHAPTER 8

Conclusion

Markov population models (MPMs) can capture a wide variety of sys-
tems from many fields like queuing theory and systems biology where
the usual interest is on the behavior over time as captured by tran-
sient analysis and on the long-run behavior as captured by steady state
analysis.

This doctoral thesis focused on the latter, proposing highly efficient
methods to elegantly circumvent problems related to infinite state spaces.
The key idea was to exploit Lyapunov functions in order to construct an
algorithm capable of automatically generating symbolic descriptions of
finite state space truncations called geometric bounds. This algorithm
is based on the computation of the global maximum expected change of
the Lyapunov function called the drift. We empowered symbolic global
optimization by solving sets of non-linear equation systems which can
be done efficiently using methods like polyhedral homotopy continuation.
This finally allowed us to to answer questions like what finite region in
the state space entails more than a given lower bound (close to one),
of the steady state probability mass. Moreover, we showed how to lift
methods like stochastic complementation to the infinite state setting in
order to refine those bounds, that is, to compute even state-wise bounds
for all states inside that region. We could successfully integrate those
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techniques to construct a model checking routine for the steady state
operator of the continuous stochastic logic.

If the system of consideration only had a single attractor, that is, a
single peak in the equilibrium distribution, the methods presented in
Chapter 3 were already efficient. However, if the steady state distribu-
tion was multimodal, that is, it had multiple peaks, a fast solution was
hindered by the underlying stiffness of the model. In order to combat
that problem, we were able to combine truncation-based reachability
analysis, aggregation, and stochastic complementation in order to con-
struct the attractor Markov chain (AMC), that is, a high-level view
of the original model. The decisive advantage of the AMC is that the
computational complexity is reduced drastically since this Markov chain
has exactly one state per attractor and analysis becomes manageable.
This way, information about the strengths of the respective attractors
relative to each other can be computed efficiently. In combination with
the computation of the local steady state distributions of each attractor,
even the full steady state distribution could be approximated accurately.

The final goal was to study the oscillatory behavior of MPMs. For
that, we developed an approximative algorithm that computes the ac-
ceptance probability of an MPM with respect to a specification given as
a deterministic (single-clock) timed automaton. This class of automata
allows for the encoding of a subset of linear-time properties such as os-
cillatory behavior. It turned out, that the analysis of the underlying
Markov renewal process could be improved even further via truncation-
based transient analysis of a set of altered MPMs. In order to further
speed up the computation time of this approach for the property of os-
cillation, a specialized algorithm, based on truncation-based transient
analysis of the product of the original MPM and a small deterministic
finite state automaton, was constructed in order to analyze the oscilla-
tory properties of the MPM, that is the probability distribution function
of the period length.

During the whole course of this thesis, we evaluated the precision
and performance of the developed methods and algorithms using a large
variety of models from the application area of systems biology.

Future Work: The extents of usability of the presented techniques are
reached when even the finite reduced state space containing only the
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significant states grows too large. The main reason for this happening
is the curse of dimensionality, that is, the exponential blow-up in the
computational complexity with respect to the number of population
types. While we could easily solve systems with up to three chemical
species and several bounded species like genes, experiments with larger
models showed that in several cases the drastically increased run-time
and/or memory demands rendered the practical usability very difficult.
Several techniques like Michaelis-Menten approximation allow the re-
duction of a model’s dimensionality but depend on the validity of sev-
eral assumptions, like that a fast reacting species is in quasi-equilibrium
with respect to a slower species. One promising remedy the author sees
is the usage of hybrid models, where population types with low vari-
ance are modeled deterministically via ordinary differential equations
and population types with high variance retain their stochastic nature.
For transient analysis, efficient techniques have already been developed
and show excellent results [LMW11]. It remains to examine whether
the same can be done for steady state analysis as well – for example by
following and extending [HKNT96, BHK+11, TV13].
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