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Abstract

Kaleidoscopes have a great potential in computational photography as a
tool for redistributing light rays. In time-of-flight imaging the concept of the
kaleidoscope is also useful when dealing with the reconstruction of the geo-
metry that causes multiple reflections. This work is a step towards opening
new possibilities for the use of mirror systems as well as towards making
their use more practical. The focus of this work is the analysis of planar
kaleidoscope systems to enable their practical applicability in 3D imaging
tasks.

We analyse important practical properties of mirror systems and develop
a theoretical toolbox for dealing with planar kaleidoscopes. Based on this
theoretical toolbox we explore the use of planar kaleidoscopes for multi-
view imaging and for the acquisition of 3D objects. The knowledge of the
mirrors positions is crucial for these multi-view applications. On the other
hand, the reconstruction of the geometry of a mirror room from time-of-
flight measurements is also an important problem. We therefore employ the
developed tools for solving this problem using multiple observations of a
single scene point.
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Kurzfassung

Kaleidoskope haben in der rechnergestützten Fotografie ein großes Anwen-
dungspotenzial, da sie flexibel zur Umverteilung von Lichtstrahlen genutzt
werden können. Diese Arbeit ist ein Schritt auf dem Weg zu neuen Einsatz-
möglichkeiten von Spiegelsystemen und zu ihrer praktischen Anwendung.
Das Hauptaugenmerk der Arbeit liegt dabei auf der Analyse planarer Spie-
gelsysteme mit dem Ziel, sie für Aufgaben in der 3D-Bilderzeugung praktisch
nutzbar zu machen. Auch für die Time-of-flight-Technologie ist das Konzept
des Kaleidoskops, wie in der Arbeit gezeigt wird, bei der Rekonstruktion
von Mehrfachreflektionen erzeugender Geometrie von Nutzen.

In der Arbeit wird ein theoretischer Ansatz entwickelt der die Analyse
planarer Kaleidoskope stark vereinfacht. Mithilfe dieses Ansatzes wird der
Einsatz planarer Spiegelsysteme im Multiview Imaging und bei der Erfas-
sung von 3-D-Objekten untersucht. Das Wissen um die Spiegelpositionen in-
nerhalb des Systems ist für diese Anwendungen entscheidend und erfordert
die Entwicklung geeigneter Methoden zur Kalibrierung dieser Positionen.
Ein ähnliches Problem tritt in Time-of-Flight Anwendungen bei der, oft un-
erwünschten, Aufnahme von Mehrfachreflektionen auf. Beide Problemstel-
lungen lassen sich auf die Rekonstruktion der Geometrie eines Spiegelraums
zurückführen, das mit Hilfe des entwickelten Ansatzes in allgemeinerer Weise
als bisher gelöst werden kann.
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Summary

Mirrors have been used in a number of vision applications in the past. Exam-
ples using curved mirror surfaces include catadioptric imaging, reflectance,
and texture measurement systems. Planar mirror systems have been used
for multi-view imaging of flat and extended depth samples and for confocal
imaging. Most of these systems are designed to work with single bounce re-
flections. On the other hand, multiple bounce systems are rarely used even
though, as we show in this thesis, they have a great potential, especially for
multi-view imaging applications.

The initial simplicity of the reflection operator converts into something
non-trivial when multiple reflections are considered. Even for configura-
tions with only planar mirrors, the light propagation map is hard to predict
in most of the cases. This complicates the design of mirror systems with
required properties. Another complicating factor is the laboriousness of ge-
ometrical calibration routines for such systems.

The target of the thesis is to open new horizons for the use of multiple-
bounce planar mirror systems, known as kaleidoscopes, in computer vision
and other related areas by enabling a better understanding of the properties
of such systems and by providing practical ways for the interpretation of
mirror interactions with light. In addition, we develop a flexible method to
recover the structure of planar mirror systems which can be, e.g., used for
an automatic calibration of kaleidoscopes.

Theory of Mirror Systems Part II of the thesis is concerned with the-
oretical aspects of planar mirror systems. We introduce the concept of
a "space partitioning" to describe the behavior of idealized light rays in
multiple-bounce planar mirror systems.

This concept allows us to derive a novel continuity result for the mod-
ification of an observer position in a planar mirror system which, in turn,
enables viewpoint sampling, e.g., in order to optimize the observer position.
Another application of the observer continuity is a simplification of the mir-
ror system interpretation when dealing with non-central camera/projector
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devices.

Labeling of Kaleidoscopic Images Part III of the thesis presents the
solution of the labeling problem. Planar kaleidoscopes are capable of gen-
erating multiple views of the same scene in a single camera image. For a
successful interpretation of such images it is important to distinguish differ-
ent viewpoints, which may overlap in the recorded image. Image labeling
is the assignment of viewpoints to image pixels. Successful labeling enables
the extraction of single view point images from the recorded multiple-bounce
mirror image, opening the way for the application of standard multi-view
computer vision algorithms.

Additionally, we show how the labeling can be produced for projectors.
That enables controlled illumination of an object inside a kaleidoscope from
multiple directions by a single projector. Thus, a camera-projector pair in-
side a multiple-bounce mirror system can be successfully used for reflectance
acquisition.

Recovering the Structure of Planar Mirror Systems Most of the
vision applications involving mirrors require the geometrical calibration of
the mirrors. In the last part of the thesis we address this problem and
develop an approach for recovering the structure of a planar mirror system
from multiple observations of a single scene point.

By formulating the problem in terms of apparent distance of the observed
point via multiply reflected paths, our method applies to time-of-flight mea-
surement systems like RADAR, active SONAR, and LIDAR, but also to
acoustics where room geometry is to be inferred from the travel time of a
pulse emitted by a speaker.

Our approach enables the recovery of the geometry of a mirror room
from such data in more general settings than previously available techniques.

The work described in this thesis has been published at different interna-
tional conferences. The core of Chapter 2 is published in [Reshetouski13a].
Chapter 5 is based on the publications [Reshetouski11, Ihrke12a, Klehm12].
Section 6.3 has its origins in [Ihrke12b], while Chapter 7 describes material
from [Reshetouski13b]. The theoretical Part II is under submission.



Zusammenfassung

Spiegel werden für eine Reihe von Bildverarbeitungsanwendungen genutzt.
Beispiele für den Gebrauch gekrümmter Spiegeloberflächen sind die kata-
dioptrische Bilderzeugung, und die Erfassung von Reflektanz- und Textur-
parametern von strukturierten Oberflächen. Planare Spiegelsysteme werden
auch für Multiview Imaging und zur konfokalen Bildgebung verwendet. Die
Mehrheit dieser Systeme ist auf Einzelspiegelungen ausgelegt. Systeme in de-
nen Mehrfachspiegelungen auftreten werden dagegen selten genutzt, obwohl
sie – wie in dieser Arbeit aufgezeigt wird – ein großes Potenzial, insbesondere
für Multiview Imaging-Anwendungen, besitzen.

Die anfängliche Einfachheit der Einfachreflektion wird bei der Betrach-
tung von Mehrfachspiegelungen zu etwas nicht trivialem. Die Lichtausbrei-
tung ist in den meisten Fällen, selbst bei Systemen von lediglich planaren
Spiegeln, nur schwer vorherzusehen. Dies erschwert den Entwurf von Spiegel-
systemen mit gewünschten Eigenschaften. Ein weitere Schwierigkeit besteht
hinsichtlich des Arbeitsaufwands der für die geometrische Kalibrierung sol-
cher Systeme aufgewandt werden muss.

Das Ziel dieser Arbeit ist es, mittels eines verbesserten Verständnisses
der Eigenschaften solcher Systeme, Hilfsmittel für die Interpretation von
Spiegel-Licht-Interaktionen zu schaffen. Hierdurch ergeben sich neue Wege
zur Nutzung von planaren Mehrfachreflexionsspiegelsystemen – auch Ka-
leidoskope genannt – in der rechnergestützten Bildanalyse und verwandten
Bereichen. Darüber hinaus wird eine flexible Methode zur automatischen
Kalibrierung planarer Spiegelsysteme entwickelt.

Theorie planarer Spiegelsysteme Teil II der Arbeit befasst sich mit
theoretischen Aspekten planarer Spiegelsysteme. Als Kernkonzept wird eine
Zerlegung des virtuellen Spiegelraumes eingeführt um das Verhalten ideali-
sierter Lichtstrahlen in planaren Spiegelsystemen, die durch einen perspekti-
vischen Beobachter betrachtet werden, einfach und anschaulich beschreiben
zu können.

Dieses Konzept erlaubt die Herleitung eines neuen Kontinuitätsresul-
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tats: Die Zerlegung des Spiegelraumes erfährt, bei Veränderung der Beob-
achterposition, eine gleichmässig stetige Änderung. Dieses Ergebnis ermög-
licht, z.B., ein Sampling der Beobachterposition und somit deren globale
Optimierung. Eine weitere Anwendung der Beobachterkontinuität ist eine
Vereinfachung der Interpretation von planaren Spiegelsystemen bei nicht-
zentralperspektivischen Kameras/Projektoren.

Die Kennzeichnung von kaleidoskopischen Bildern Teil III der Ar-
beit zeigt die Lösung des Kennzeichnungsproblems auf. Planare Kaleidosko-
pe sind in der Lage, Aufnahmen derselben Szene aus verschiedenen Blick-
winkeln in einem einzigen Kamerabild darzustellen. Für eine erfolgreiche In-
terpretation solcher Bilder ist die Unterscheidung der verschiedenen Blick-
punkte wichtig da diese sich im aufgenommenen Bild überschneiden kön-
nen. Das Kennzeichnungsproblem von kaleidoskopischen Bildern bezieht sich
hierbei auf die Zuweisung von Blickpunkten auf Bildelemente (Pixel). Die er-
folgreiche Kennzeichnung eines kaleidoskopischen Bildes erlaubt es einzelne
Blickpunkt-Bilder aus dem aufgenommenen Mehrfachspiegelbild zu extra-
hieren, was den Grundstein für die Anwendbarkeit von bekannten Multiview-
Algorithmen im Bereich Computer Vision legt.

Außerdem wird aufgezeigt wie die Kennzeichnung von Projektoren in ei-
nem kaleidoskopischen System durchgeführt werden kann. Dies erlaubt die
kontrollierte Beleuchtung eines Objekts aus mehreren Richtungen mithil-
fe eines einzigen Projektors. So kann ein Kamera-Projektor-Paar innerhalb
eines Mehrfachspiegelsystems erfolgreich zur Reflektanzerfassung von kom-
plexen drei-dimensionalen Objekten genutzt werden.

Geometrierekonstruktion planarer Spiegelsysteme Die meisten Bild-
verarbeitungsanwendungen in Spiegelsystemen erfordern die geometrische
Kalibrierung dieser Spiegel. Der letzte Teil der Arbeit beschäftigt sich daher
mit diesem Problem. Es wird ein Ansatz zur Rekonstruktion der Geome-
trie planarer Spiegelsysteme mit Hilfe der Aufnahme eines einzigen Sze-
nenpunktes demonstriert. Das Problem wird dabei auf die Messung des
scheinbaren Abstands des beobachteten Punktes über verschiedene mehr-
fach reflektierte Pfade zurückgeführt und ist damit potentiell für Time-of-
Flight-Messsysteme wie RADAR, aktives SONAR und LIDAR anwendbar.
Eine zusätzliche Verbindung besteht zur Akustik, in der ein wichtiges Pro-
blem die Aufnahme einer Raumgeometrie, z.B. einer Konzerthalle, durch die
Echomessung von Lautsprecherimpulsen ist. Der in der Arbeit vorgestellte
Ansatz erlaubt eine allgemeinere Lösung des Problems als bislang verfügba-
re Techniken.

Die in dieser Doktorarbeit vorgestellten Arbeiten wurde schon im Rah-
men mehrerer internationaler Konferenzen veröffentlicht. Die Kernaussa-
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gen des zweiten Kapitels finden sich in [Reshetouski13a]. Kapitel 5 ba-
siert auf den Veröffentlichungen [Reshetouski11, Ihrke12a, Klehm12]. Ab-
schnitt 6.3 hat seinen Ursprung in [Ihrke12b], während Kapitel 7 Material
aus [Reshetouski13b] beschreibt. Der theoretische Teil II wird zur Veröffent-
lichung eingereicht.
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CHAPTER 1

Kaleidoscopes in Multi-View and
Time-of-Flight Imaging

1.1 Motivation
Mirrors traditionally have an important role in optics. In the last decades,
mirror systems have found new applications in areas such as computational
photography, where many proposed acquisition systems use mirrors as an
instrument for shaping and rearranging camera/projector rays. Among the
many kinds of mirror shapes that can be used in computational photog-
raphy, planar kaleidoscopic mirror configurations play a special role. It
was previously shown that a simple kaleidoscope can redistribute the cam-
era/projector resolution into hundreds of sub-images, representing different
points of view/illumination. This principle is very promising, since available
resolution of today’s cameras/projectors is large and still growing. However,
to enable the practical use of such systems, several challenging problems need
to be solved. In this thesis we address these problems and provide a step
towards the ultimate goal of using a single device’s available megapixels in
the context of multiple-view imaging and acquisition. To advance towards
this goal, a combination of three components is necessary.

The first component is the possibility to select a kaleidoscopic mirror
configuration that generates a user-defined distribution of views of the given
scene on a single camera sensor or/and on a single projector illumination
image. Unfortunately, designing kaleidoscopes in order to achieve a desired
view distribution is non-trivial. However, our theoretical results provide the
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first step towards the possibility of sampling kaleidoscopes.
The second important component is the availability of practical methods

to "unpack" and interpret captured data in case of a camera and to be able
to illuminate the scene from required directions in case of a projector. In
the thesis, this component relates to the solution of the labeling problem.

The third component of our multi-view approach using kaleidoscopes is
geometric calibration of the mirrors in conjunction with a camera/projector.
A similar problem arises in the area of Time-of-Flight imaging, where a room
geometry is to be recovered from time-of-flight measurements. In these sce-
narios fiducial markers or Time-of-Flight devices allow us to automatically
detect 3D positions of different observations of a common point inside the
kaleidoscope. The ability to recover the structure of the kaleidoscope using
such 3D observations only, would significantly simplify the practical use of
the mirror systems and improve the related area in Time-of-Flight imaging.
We discuss a solution to this problem in the 21

2D case.

1.2 Thesis Outline
The structure of the thesis is as follows. In the next two chapters, Chapter 2
and Chapter 3 we discuss prior art, introduce the basic concepts underlying
this work, and describe experimental prerequisites.

In the theoretical Part II (Chapter 4) we formalize and extend the mirror
unfolding concept introduced in Chapter 3 and use this formalization to
prove the observer continuity property of planar mirror systems.

The practical aspects of the use of kaleidoscopes for multi-view imaging
and acquisition are considered in Part III. Kaleidoscopes allow us to observe
the same scene from many different points of view by a single camera. One
problem, which arises here is how to distinguish or, in other words, how
to label different views, which may even partially overlap. Chapter 5 de-
scribes our solution to the labeling problem. Chapter 6 concludes Part III
by demonstrating some of the applications, which become possible with our
labeling solution.

Another practical aspect for the use of mirror systems is their calibra-
tion. This problem is rather complex in kaleidoscopic scenarios. In the last
Part IV of the thesis we formulate the calibration problem as the problem of
finding the structure of mirrors from multiple observations of a single point.
In this formulation the problem is similar to problems in the field of time-
of-flight imaging. We describe our solution for the 21

2D case in Chapter 7.



CHAPTER 2

Related Work

2.1 Overview
This chapter is dedicated to review the design and application of mirror
systems in computer graphics and computer vision, as well as the related
problem of the determination of the geometry of a mirror or mirror system.
While less obvious, we point out a connection between mirror calibration or
mirror shape estimation and time-of-flight imaging.

Our approach is based on a classification scheme for mirror systems,
Fig. 2.1, that builds on the fundamental imaging properties of the employed
mirror surfaces. We categorize existing systems into classes based on their
mirroring properties and their use in active or passive imaging systems.
The main categories for mirror systems are whether the mirrors are planar
or curved, whether single or multiple mirrors are used and whether single-
bounce or multi-bounce per mirror interaction is employed. However, in this
thesis we focus only on planar mirror systems.

In the following sections we discuss passive imaging devices that utilize
mirrors, Sect. 2.2. Passive systems have the property that light rays that
cover a common scene point do not influence each other. On the other
hand, if active illumination is introduced, light can superpose in a scene. We
discuss active imaging systems in Sect. 2.3. All systems involving mirrors
need to be calibrated, i.e. the geometry and position of the mirrors in the
scene has to be determined. For this reason, we review related computer
vision methods that aim at determining the shape of specular reflective
surfaces or the position of a camera with respect to a known mirror geometry
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Number of mirrors

Single mirror Multiple mirrors

Mirror shape

Planar Curved Active Passive

Number of bounces per mirror

Single bounce Multiple bounces

Classification criteria

Type of mirror system

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Single 

planar

curved

active 

passive 

system with

active

passive

single bounce

Multiple 

mirror

single bounce

single bounce

multiple bounces

single bounce

multiple bounces

planar

curved

active 

passive 

system with

active

passive

single bounce

multiple bounces

mirrors

single bounce

multiple bounces

single bounce

multiple bounces

single bounce

multiple bounces

CLASSES:

-  classes, where our theory is applicable (planar mirrors systems)

-  main focus of the thesis

-  we do not consider these classes in this thesis (curved mirrors systems)

-  classes, which are not explored yet

Figure 2.1: Classification scheme. In our work we are dealing only with two
classes: active and passive multiple planar mirrors systems with multiple
bounces (indicated in bold in the picture and marked by red squares). Most
of the methods developed in the thesis are, however, applicable to any planar
mirror system (marked by blue squares).

in Sect. 2.4. Our calibration related approach, Part IV, deals with the
recovery of a mirror system’s geometry from depth measurements, which is
a special case of the calibration problem. However, this problem has its own
literature and approaches in the field of time-of-flight imaging and acoustics.
We therefore draw connections between the previously discussed techniques
and the time-of-flight literature in Sect. 2.5.

2.2 Passive Imaging Systems Utilizing Pla-
nar Mirrors

In this section we describe passive imaging devices that utilize planar mir-
rors in their design. The applications are mostly in stereo, multi-view and
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Figure 2.2: Single mirror rectified catadioptric stereo camera [Gluckman00].
(left) Image formation draft. (right) Camera prototype (http://www.cs.
columbia.edu/CAVE/projects/cad_stereo/).

panoramic imaging. The advantages of employing mirrors in a system are
usually

• a reduction in system cost by utilizing less sensor hardware,
• a simplification of synchronization by compressing several views onto
a single sensor, and
• homogeneous radiometric and colorimetric properties of the sensor
hardware.

In utilizing these advantages, sensor resolution is usually traded off for
an expanded view point coverage of a scene.

2.2.1 Single-Mirror, Single-Bounce
Single planar mirror systems are necessarily single-bounce. They can thus
be used to generate two viewpoints in a single image. This feature is often
used to produce inexpensive stereo viewers in a dual screen setup [Wu10]
and many hobbyists make use of this capability1.

Similarly, a stereo camera can be built with a single mirror [Gluckman98a]
and commercial modifications of standard cameras are being offered2. De-
pending on the mirror orientation with respect to the camera optical axes,
the resulting epipolar geometry can be more or less suitable for stereo match-
ing. Gluckman and Nayar [Gluckman00, Gluckman02] describe the condi-
tions for epipolar lines to be parallel and along horizontal scan lines, a case
that is particularly easy to handle in matching algorithms, see also Fig. 2.2.

1http://klub.stereofotograf.eu/dual_monitor.php
2http://hineslab.com/old/Mirror_Stereo.html

http://www.cs.columbia.edu/CAVE/projects/cad_stereo/
http://www.cs.columbia.edu/CAVE/projects/cad_stereo/
http://klub.stereofotograf.eu/dual_monitor.php
http://hineslab.com/old/Mirror_Stereo.html
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Figure 2.3: A mirror array used for light field imaging [Sen05] (left). A fab-
ricated mirror array with an optimized facet distribution [Fuchs12] (right).

In early work, Mitsumoto et al. [Mitsumoto92] describe object triangu-
lation and geometric constraints for 3D reconstruction in case of a single
plane mirror symmetry. They time-sequentially move the mirror to differ-
ent positions and merge the reconstructions to obtain a larger coverage of
the object.

Moving planar mirrors are also used to inexpensively generate many
different viewpoints, e.g. for light field imaging [Ihrke08] or 3D reconstruc-
tion [Murray95, Hu09].

Beamsplitters are often employed to distribute a single view of a scene
onto several imaging sensors [McGuire07]. These devices can be consid-
ered as a special case of a single mirroring operation for one of the sensors,
whereas the beamsplitter appears transparent to the other.

2.2.2 Multi-Mirror, Single-Bounce per Mirror
An increase in complexity and achievable imaging geometry is obtained when
introducing several planar mirrors [Gluckman00, Gluckman02]. Restrictions
that guarantee a single bounce per mirror are a) that inter-reflections be-
tween mirrors are avoided, or b) that all camera rays only encounter mir-
roring sequences where each of the mirrors participates at most once.

No Inter-Reflections These arrangements are often employed for light
field imaging with a single sensor [Levoy04, Sen05, Mukaigawa11, Fuchs12],
see also Fig. 2.3. Since light field views differ only slightly from one an-
other, mirror arrangements like the ones shown in the Figure can be suit-
ably employed without too strong requirements on the positioning of the
mirrors to avoid inter-reflections. Since views are usually supposed to cover
a common viewing area, the carrier surface is chosen in a concave man-
ner. If manufactured on a very small scale, faceted mirrors can be used
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Figure 2.4: Design for a four mirror stereo camera or viewing de-
vice [Gluckman00] (left). The Sokkia MS27 commercial stereo viewer for
aerial imagery (right).

to mimic bidirectional reflection distribution functions (BRDFs) with pre-
defined properties [Weyrich09].

Another way to avoid inter-reflections is to position planar mirrors on
a convex surface [Aggarwal01, Tan04] and is realized using pyramidal or
truncated pyramid structures. This measure yields out-ward facing views
for panoramic imaging [Tan04], or a means of performing aperture splitting
of a single image onto several sensors [Aggarwal01], an application that is
heavily used in computational photography applications.

In optics, in the area of multi-spectral imaging, especially manufactured
mirrors, so called “image slicers” are being used to differently deflect the
scan-lines of an image such that vertical sensor space is freed up for sensing
spectrally expanded versions of the scan-lines that are obtained by passing
them through a diffraction grating [Harvey05, Gao09, Gorman10].

Inter-Reflections with a Single Reflection per Mirror Several mir-
rors can also be arranged in a sequential sequence which yields a higher
flexibility in generating virtual views and purely optical means of image
manipulation. The most common commercial applications are probably
erecting prisms in SLR viewfinders and other prism-based optical designs
that are intended to flip or displace an image without distorting it other-
wise [Smith08].

However, several planar mirrors are also used to obtain a higher de-
gree of flexibility in the design of stereo imaging systems [Gluckman98a,
Gluckman00, Gluckman02] or in the production of stereo viewing equip-
ment as e.g. produced by Sokkia, see also Fig. 2.4.

In computational photography settings, beamsplitter trees are often em-
ployed to deliver a single physical image to different sensor units. The optical
path towards each of those sensor units can be modified such that optically
differently filtered images are recorded. For an overview of this area the
interested reader is referred to [McGuire07, Wetzstein11, Zhou11].
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Figure 2.5: The five-view case employing inter-reflections up to second or-
der [Lanman07] – self-occlusion is clearly visible (left). In the case of many
inter-reflections (middle) a pixel labeling procedure is necessary, see Chap-
ter 5, that can resolve the view assignment to pixels – up to eight reflection
levels have been employed (right).

2.2.3 Multi-Mirror, Multi-Bounce
Multi-bounce planar mirror systems are considerably more difficult to com-
prehend and to make use of. Early work in mirror-based single-image 3D
reconstruction focused on setups consisting of two mirrors arranged such
that their normals are in a common plane and that the angle between them
is equal to 2π/N . This has been a popular choice for three-dimensional imag-
ing with a single camera with N = 5 views [Huang06, Forbes06, Lanman07,
Lanman09]. It should be mentioned that this geometry results in a non-
Coxeter structure, see Sect. 3.1, and therefore the camera position has to be
suitably chosen to hide discontinuous views, see Part II. The multiple view
geometry of this setting has been explored in [Ying10].

A common problem with this arrangement, and in fact with any multi-
bounce system, is that the object position has to be chosen very carefully.
The problem that occurs in the multi-bounce case is that an object might
occlude its virtual counter parts, an effect that is easily observed when
viewing one-self in a set of opened bathroom mirrors. A solution to this
problem is presented later in this thesis, see Chapter 5, and consists in a
pixel labeling procedure that determines for every pixel of an image with
multiple inter-reflections which virtual view it belongs to, see also Fig. 2.5.
This assignment can be computed from a single image and for arbitrary
calibrated planar mirror geometries. Because of the kaleidoscopic nature of
the resulting images, these systems are referred to as kaleidoscopic imaging
systems.

2.3 Active Imaging Systems
Active imaging systems employ a light source in addition to an imaging
device. Nowadays, these light sources are typically digital projectors which
enable a per-pixel control of the illumination. The use of combinations of
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cameras and projectors enables applications such as corrected projection
onto curved surfaces, virtual large scale projection displays, 3D structured
light scanning, reflectance scanning and more. An overview of the area of
camera-projector systems is given in [Bimber08].

The combination of light sources with mirrors introduces additional
problems in a measurement setting. Emitted light can superpose in a
scene [Fasano03, Ihrke12b], defocusing problems [Baker98, Baker99, Zhang06]
are exaggerated since projectors typically employ large apertures for light
efficiency. On the other hand, active light helps in coding a scene, as e.g. in
structured light scanning, or enables the scanning of surface properties.

Planar mirrors are most often used to multiply the number of physical
projectors or to virtually position them in a physically impossible location.

2.3.1 Single-Mirror, Single-Bounce
The most common use of a single planar mirroring device is the use of
a beamsplitter to bring a projector and a camera into a coaxial arrange-
ment [Fujii05, Zhang06, Garg06, Ghosh07, Ghosh10, Holroyd10]. This con-
figuration allows for illumination along the same rays that form the camera
image and is often part of more complex active imaging systems.

In a different application, the use of a single planar mirror for range
scanning inaccessible parts of an object has been reported [Fasano03]. To
avoid the super-position of light, the operator has to manually ensure that
the real and virtual laser lines are formed in distinct regions and that a
distance heuristic can distinguish between the 3D points generated in the
real space and in the virtual space, respectively.

2.3.2 Multi-Mirror, Single-Bounce per Mirror
In the active setting, systems of planar mirrors multiply a single projector
into a set of virtual projectors, in effect realizing a large aperture projec-
tion system. These virtual large apertures have been employed in synthetic
aperture confocal imaging techniques [Levoy04, Mukaigawa11] where the
superposition of light is a crucial part of the functioning of the device.
Confocal imaging systems can slice a volumetric scene via very shallow
depth-of-field imaging and illumination. The planar mirrors are arranged
tangent to a concave base shape [Levoy04] which is ellipsoidal in the case
of [Mukaigawa11]. The mirror array is simultaneously used as a light field
imaging unit, Sect. 2.2.2. The geometrical layout and interpretation are as
discussed in Section 3.1.

Sequential folding of projection cones is often employed in rear-projection
screens to reduce the size of the room that is required behind the screen.
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Typically, large-scale front-surface mirrors are employed for this purpose3.

2.3.3 Multi-Mirror, Multi-Bounce
As mentioned in Sect. 2.2.2, the main complication in utilizing multiple
ray bounces in a mirror system is that self-occlusion between the object
and its virtual counter-parts has to be avoided. The simplest solution to
this problem is the imaging of flat objects [Han03, Bangay04]. In [Han03],
a kaleidoscopic mirror system was introduced that was capable of scanning
the bidirectional texture function (BTF4) of a planar sample without moving
the acquisition apparatus or the sample. In this case it is possible to observe
a surface light field with a single picture and the sample can be illuminated
from different directions by using a digital projector that is only highlighting
from specific virtual directions. A sampling analysis of this type of system
can be found in [Bangay04].

In this thesis we present an extension of planar sample kaleidoscopic re-
flectance scanning [Han03], which allows to scan extended depth objects, see
Section 6.3. The solution is similar to the pixel labeling procedure, Chap-
ter 5, Fig. 2.5 (right), this time applied to the projector coordinate system.
If only pixels that have a unique label are illuminated simultaneously, the
virtual illumination is guaranteed to come from a single direction without
causing illumination overlap in the scene. We combine reflectance scanning
with omnidirectional laser-range scanning.

The superposition of light can also be arranged such that a projected
pattern perfectly super-positions onto itself. This approach requires orthog-
onal illumination with a direction that is contained in the plane spanned by
the mirror normals. The two-mirror/five-virtual view system mentioned in
Sect. 2.2.2 has been used for this purpose [Lanman07, Lanman09].

2.4 Planar Mirror Calibration
In order to successfully use planar mirror systems, they have to be cal-
ibrated. Usually this involves the estimation of the mirror position and
orientation, potentially its shape (contours), and its radiometric proper-
ties [Reshetouski11, Ihrke12b].

Planar mirrors are relatively simple to calibrate since they do not intro-
duce additional distortions into the image. Instead, the image taken by a
perspective camera shows different perspective sub-views in parts of the ac-
quired image. It is therefore only necessary to determine the image regions
that correspond to a particular view, a task that is often performed manu-
ally. Within these viewing regions, standard perspective camera calibration

3http://www.screen-tech.eu
4See definition in Section 3.2.2

http://www.screen-tech.eu


2.5. Connection to Time-of-Flight Imaging
and the Multi-Bounce Problem 13

techniques can be employed [Bouguet05]. In the case of single bounce ob-
servation, this calibration is usually sufficient.

Single Mirror, Single-Bounce

In case of a moving mirror, it is usually necessary to estimate the mirror
pose with respect to the recording camera, since an offline calibration step
cannot easily be employed. For this purpose, self-identifying markers that
are attached to the mirror can be used [Ihrke08]. Moving platforms are also
often employed in the case of robotic applications. The case of a two-planar
mirror setup with a moving camera mounted on a robotic platform has been
analyzed in [Mariottini09]. The authors derive a calibration procedure for
computing the pose of the camera with respect to the mirrors as well as the
mirrors’ relative position and orientation.

Multiple Mirrors, Multi-Bounce

In the case of multi-bounce observation, the mirror poses as well as the single
real camera pose need to be estimated very accurately since the calibration
error increases exponentially with the level of reflection. For this reason,
special calibration procedures are necessary. In [Ramalingam11] a fixed
(and known) mirror geometry is assumed and an algorithm for pose recovery
of the real camera that is based on scene point correspondences (without
knowing their reflection level) is derived.

The manual identification of reflection levels in a multi-bounce image is
tedious and error prone. In Chapter 7, we propose an automatic procedure
that can recover the number of mirrors and their parameters without user
intervention. Currently, the method is restricted to 21

2D settings.

2.5 Connection to Time-of-Flight Imaging
and the Multi-Bounce Problem

The time-of-flight problem, at first hand, appears to be disconnected from
the problem settings considered so far and in fact, the literature is largely
orthogonal to that of kaleidoscopic systems. In time-of-flight imaging, a
pulse is emitted at one spatial location and the time difference until the
signal returns is measured by the sensor. The classical time-of-flight tech-
nique is RADAR, where radio waves are used as probes. SONAR uses sound
waves and LIDAR is using light pulses, usually infrared, to determine the
distance of objects. In pulse-based time-of-flight imaging, most commonly,
a single reflection of the emitted pulse from the environment is assumed.
This situation is equivalent to a single-mirroring operation. In practice,
multiple echoes, or multi-bounce signals, can corrupt the detection. Most
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often, these echoes are considered to be undesirable noise and filtering pro-
cedures are developed to identify first times of arrival, see [Scheuing06] and
the references therein.

Multi-bounce analysis in this area is investigating the forward modeling
of reverberation and recovery of a room geometry from impulse responses
of a room. The forward modeling frequently employs unfolding procedures,
Section 3.1, for Coxeter geometries [Allen79], or for arbitrary polyhedral
models [Borish84].

The recovery of room geometries from multi-bounce data often considers
the special case of a rectangular Coxeter geometry [Ribeiro12] also known
as the shoebox model, which allows for the interpretation as a perfectly sub-
divided space. Only recently methods for general convex geometries have
started to appear ([Dokmanic11, Antonacci12, Dokmanic13] and the refer-
ences therein). These methods usually assume the first-bounce, other reflec-
tion levels, or the number of walls of the room to be known. For example, in
the work proposed by Tervo et. al. [Tervo12], the method assumes, that the
position of the real source (zero-bounce source) is known and all the first
level reflection sources are visible. Our method, see Part IV, requires only
a sufficient amount of virtual sources to be observed and is capable of infer-
ring the room geometry even when the real source and the first level sources
are not visible. Moreover, the observation region might be restricted (for
example by angle of view of the receiver). However, the method is currently
implemented for 21

2D rooms only.
We would also like to point out recent developments that enable the

recording of the temporal profile of light for every pixel [Kirmani09]. While
the initial transient imaging work used a very expensive femto-second laser
setup, recently the use of a standard time-of-flight imager for the measure-
ment of transient images has been proposed [Heide13, Kadambi13]. The
information acquired with these devices can be used to reconstruct geom-
etry from indirectly observed bounces, i.e. the geometry of hidden ob-
jects [Velten12]. An extensive overview of the computer vision literature
on time-of-flight is presented in [Grzegorzek13].

2.6 Curved Mirrors
Curved mirrors are not the focus of our work, but we would like to touch
on this subject for the sake of completeness.

Curved mirrors are different from planar ones in the sense that they usu-
ally do not yield perspective views but rather transform the world according
to their surface curvature. One can consider the curved mirror as a surface,
that, at each point, has a corresponding planar mirror that is tangent to the
surface.

In order to use such mirrors in practice, their geometry and pose with
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respect to a recording camera or a projector has to be known very accu-
rately. It is a difficult problem to estimate general mirror shapes precisely,
[Ihrke10]. Therefore, in practice, only a limited number of mirror shapes are
considered. The classes of mirrors utilized in practical settings so far are
restricted to conic sections and to axially symmetric mirrors. These simple
types of curved mirrors can be classified into the following groups:

• Circular cone mirrors, including cylinders ([Kuthirummal06]),
• Spherical mirrors ([Nayar88, Unger03, Lensch03, Lanman06a, Ding09b,

Taguchi10b, Agrawal13, Lanman06b]),
• Elliptic mirrors ([Mukaigawa07a, Mukaigawa07b]),
• Parabolic mirrors ([Nayar97, Gluckman98b, Gluckman98c, Dana01,

Dana04, Ghosh07]),
• Hyperbolic mirrors ([Cabral04, Jang05]), and
• Cylindrical mirrors ([Ding09a]).

We want to highlight circular cone mirrors and mirror surfaces of revolu-
tion with piece-wise linear cross-section as those where the light trajectories
can be explained with the theoretical apparatus for 2D planar mirror sys-
tems, developed in Part II, under the condition that imaging rays and the
mirror axis are coplanar. This case often occurs in practice.

An in-depth discussion of curved mirrors in computer vision according
to our classification, Fig. 2.1, can be found in our recent overview arti-
cle, [Reshetouski13a].
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CHAPTER 3

Basic Concepts, Experimental
Setting, Calibration, and

Pre-Processing

This chapter is introduces the basic theoretical concepts and initial experi-
mental steps which are prerequisites to our work.

Section 3.1 describes the unfolding principle and can be considered a
gentle introduction to the theoretical Part II. In Section 3.2, we introduce
the definition of the visual hull which will be heavily used in Part III of this
thesis. We also discuss the necessary terminology for understanding our
results in reflectance acquisition in that part. In Section 3.3, we describe
the prerequisites (experimental setting, calibration, pre-processing) to our
practical solutions which are not the focus of this thesis, but important in
order to achieve our goals.

3.1 Unfolding - A Convenient Way for Inter-
preting Image Formation in Planar Mir-
ror Systems

Our work is based on the ray unfolding procedure. According to Cox-
eter [Coxeter67] one of the first to apply ray unfolding was H. A. Schwarz
(1843-1921) for his solution of Fagnano’s problem, using a 5-fold unfold-
ing of an acute-angled triangle. Unfolding is also a common operation in
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Figure 3.1: Unfolding of a single reflection.

the optical description of prism and mirror systems [Smith08] and in the
time-of-flight literature.

In this technique, every mirror interaction is applied to the world instead
of the ray. The result is a straight ray that passes through a sequence of
virtual copies of the world that is equivalent to the bouncing ray in the real
world. This way, complex ray interactions can be visualized in an intuitive
manner and a change of coordinate systems can easily be tracked. In the
following, we will introduce and apply unfolding to different types of planar
mirror systems.

Single-Mirror, Single-Bounce Consider a single planar mirrorM and a
camera S observing an object point P via a single-bounce reflection, Fig. 3.1.

When a ray of light is hitting the mirror it is mirrored from the plane
according to the law of reflection. Instead of mirroring the ray, we can
consider that the world is being reflected, creating a virtual world, or as
we will call it, a virtual chamber. In this case, the ray appears to continue
straight into the virtual mirror world. The mirror copy of the scene is an
isometric transformation of the real world. The world coordinate system is
transformed to the mirrored one by reflecting it in the mirror plane. Left-
handed mirror systems transform into right-handed ones and vice versa. The
procedure of ray straightening just described is called unfolding. Because
light paths are reversible, we can consider the ray straightening procedure
from the point of view of a scene point or from the point of view of a camera
or a projector. Consider a ray from camera S observing a scene point P
through a reflection from the planar mirrorM . Then from the point of view
of the camera, we observe the virtual point P ′ which is the mirror copy of
the real point P . But from the point of view of the point P we are observing
the virtual camera S′ which is the reflection of the real camera S.

Multi-Mirror, Single-Bounce per Mirror If there are several planar
mirrors that are arranged around a camera, as for example in Fig. 3.2 (left),
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Figure 3.2: Two planar mirrors: unfolding for two different rays (left) and
unfolding for sequential reflection (right).

for rays hitting different mirrors the ray straightening process will introduce
a different virtual world (or a different virtual camera if we consider the point
of view from the scene). A second possibility is to arrange the planar mirrors
such, that there is a sequential ray bouncing from mirror to mirror as shown
in Fig. 3.2 (right). In this case the unfolding procedure is applied recursively.
Thus, if an even number of reflections is involved, the resulting virtual world
(virtual camera) coordinate system will not change its handedness while it
changes handedness if the reflection level is odd.

As long as the reflection sequence includes every mirror only once, the
recursive unfolding procedure can be applied without ambiguity.

Multi-Mirror, Multi-Bounce However, multiple bounces in systems
with several planar mirrors could be such, that the same mirrors are partic-
ipating in a reflection sequence multiple times. In a theoretical setting, this
number could well be infinite.

The simplest such system is an angle constructed from two planar mirrors
as in Fig. 3.3. If the angle ∠ABC between the mirrors is πk , where k ∈ N\{1},
then the unfolding of all possible rays will introduce a partitioning of the
space into continuous regions such that the space is divided into 2k different
parts. These are the inner part of the original angle (base chamber) and
the copies associated with different reflection levels (virtual chambers). The
partitioning is, in this case, independent of the origin of the ray, see Fig 3.3.

A simple example involving several mirrors is a bouncing ray inside a
rectangular room, see Fig. 3.4. This type of geometry is most often con-
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Figure 3.3: Rays are bouncing inside an angle with matching coordinate
systems. The magenta and green rays are propagating after the second
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Figure 3.4: Ray bouncing inside the rectangle ABCD. Light propagates from
point S up to point P.
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Figure 3.5: Unfolding of the ray from Fig. 3.4 bouncing inside the rectangle.

sidered in multi-bounce time-of-flight imaging, Sect. 2.5. If we repeatedly
unfold the ray while it is propagating in space, we obtain the result seen
in Fig. 3.5. In every virtual rectangle (virtual chamber) we have a virtual
world that is specific to the sequence of reflections. If we consider all possi-
ble ray directions from any possible inner point of the original rectangle, we
obtain a partitioning of the space into virtual rectangles. Since the rectangle
is a regular structure, unfolding via different reflection sequences yields the
same virtual worlds (perfectly overlapping chambers and equal coordinate
systems), independent of the sequence of reflections we travel along the ray
to reach the virtual rectangle from the real one (see Fig. 3.6).

Unfortunately, only the two-mirror wedges with angles π
k , a few types of

polygons and another single special case (see the note below) produce perfect
space partitioning schemes. In these cases, the partitioning is independent of
the initial ray position. The polygons (or polyhedra in the 3D case) having
this property are known as Coxeter polygons (polyhedra). A polygon is a
Coxeter polygon iff all its angles are in the form of π

k , k ∈ N \ {1}. There
are only 4 such polygons: rectangles, equilateral triangles, the isosceles right
triangles, and right triangles with angles π

3 and π
6 .

In the 3D case, the dihedral angles π
k produce a perfect partitioning.

Moreover, we can add one or two orthogonal walls (to both sides) to such
types of dihedral angles without loosing the perfect partitioning property.
Here we can also add trihedral angles consisting of the following dihedral
angle triples: (π5 ,

π
3 ,

π
2 ), (π4 ,

π
3 ,

π
2 ), (π3 ,

π
3 ,

π
2 ).

For polyhedra in 3D, the condition to be a Coxeter polyhedron is that
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Figure 3.6: Ray bouncing from two different camera locations, S1, S2 to the
same object point P .

Figure 3.7: The seven Coxeter polyhedra in 3D [Sossinsky12].

all the dihedral angles are of the form π
k , k ∈ N\{1}. There are only 7 types

of Coxeter polyhedra, Fig. 3.7.

Note, that the perfect partition property persists if we remove some of
the sides from a Coxeter polygon or polyhedron. For example, a rectangle
without one side still has this property.

All other types of planar mirror configurations (including other types
of polygons and polyhedra) generate a more complicated space partitioning
that depends on the ray origin. We will study this general situation in detail
in the next part of the thesis, see Part II.
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3.2 Background Concepts

3.2.1 The Visual Hull
The concept of the visual hull in the Euclidean space R3 was first introduced
by A. Laurentini, see [Laurentini94].

Definition 3.2.1. The visual hull V H(O, V ) of an object O ⊂ R3 relative
to a viewing region V ⊂ R3 is the region in R3 which consist of those and
only those points p ∈ R3 such that for each viewpoint v ∈ V the half-line
starting at v and passing through p contains at least one point of O.

Another concept, related to the visual hull, is the object’s silhouette,
which is the projection of the object O onto a camera image. The silhou-
ette information is usually available through a binary segmentation of the
camera image into background and foreground. If the object O is situated
completely inside the camera’s frustrum, then we say that the object is fully
observable by the camera. This means that every object point p ∈ O can be
projected onto the camera’s image plane and that the projection is inside
the camera’s image.

In this thesis, we will mostly consider viewing regions V , that consist of
a finite set of points - the positions of the projective centers of cameras or
virtual cameras. If for all these cameras the object O is fully observable,
the visual hull V H(O, V ) is equal to the intersection of generalized cones
originating at the centers of projection of the cameras and passing through
the corresponding object’s silhouettes.

This second way of defining the visual hull (image-based visual hull)
gives us a direct way of computing it as an intersection of generalized cones.

The visual hull is always larger or equal to the object (O ⊆ V H(O, V ))
and the main use of visual hulls in computer graphics is the approximation
of the object’s geometry. As can be seen in Fig. 3.8, the visual hull from
the image silhouettes of only 7 views is already close to the original object
geometry.

On the other hand, to produce the silhouette of an object at viewpoint
v ∈ V it is sufficient to only know the visual hull V H(O, V ).

In this thesis we will use approximations of visual hulls to estimate sil-
houettes for our labeling solution, Chapter 5.

3.2.2 BRDF
An important property of any material is the way it is redistributing in-
coming light, or, in other words, its reflectance behavior. For simple homo-
geneous materials (for example, without subsurface scattering and without
visible surface variations), interaction with single wavelength light can be
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Figure 3.8: Example of the image-based visual hull of the bunny model
obtained from 7 different viewpoints. Ground truth view (left), visual hull
image with gray-coded (by 7 different gray levels) indication of influences
of different viewpoints (middle), visual hull image with color-coded depth,
where pixels closer to the camera are brighter (right).

characterized at the coarse scale by the Bidirectional Reflection Distribu-
tion Function (BRDF) fr(ωi, ωo) [sr−1]. This function returns the fraction
of light that is reflected from the incoming direction ωi to the outgoing direc-
tion ωo. Knowing the BRDF for a given material allows for the prediction of
the material appearance under given (synthetic) lighting conditions, which
is highly important in computer graphics.

It is worth to mention, that when it is necessary to characterize the
appearance of a complex material at a fine scale, i.e. when surface variations
are observable, the appearance can be more adequately described by the
Bidirectional Texture Function (BTF).

According to the definition, the BRDF is a four-dimensional function.
However, if we want to characterize the reflectance of a 3D object made
of multiple materials, we need to assign a BRDF to every surface point
of the object. This way, a six-dimensional Spatially Varying Bidirectional
Reflectance Distribution Function (SVBRDF) fr(ωi, ωo, u, v) [sr−1] can be
introduced, where (u, v) are the two-dimensional coordinates on the object’s
surface.

The classical way to reconstruct reflectance of a given object is to sample
the reflectance function and to interpolate it. In this thesis we will use a
kaleidoscopic setup to distribute illumination and viewing directions in order
to sample the SVBRDF of an object with a static single camera, single
projector setup, Section 6.3.

3.3 Experimental Setting, Calibration, and
Pre-Processing

In Part III of this thesis, we utilize raytracing in planar mirror systems and
capture reflectance data. For this reason, the systems have to be calibrated
before our approaches can be applied. The calibration process involves:
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the geometric calibration of the mirrors, the camera and the projector (if
present); the calibration of the mirrors reflectivity coefficients; and the ra-
diometric calibration of the camera.

Later in this thesis we assume that the necessary calibration steps are al-
ready performed and concentrate on the conceptual aspects of the problems
being solved.

3.3.1 Geometric Calibration
Geometric calibration is intended to relate camera or/and projector pix-
els with rays in a common 3D space S, as well as to relate mirrors with
corresponding sets of 3D points in the same space. If the behavior of the
camera/projector rays in the virtual setting matches the behavior of the
camera/projector pixels in the real setting, we call the system geometri-
cally calibrated. There are different ways to calibrate cameras, projectors or
planar mirrors. For our practical applications there is no difference, which
calibration method is selected and what kind of camera/projector models
(with central projection or not) are used as long as we can predict cam-
era/projector rays with sufficient precision.

In our practical experiments we used a central projection model for the
camera and a non-central one for the projector [Manakov11]. Practically,
we perform geometric calibration by first estimating the camera intrinsics
using a number of checkerboard images using Zhang’s method [Zhang99] as
implemented in Bouguet’s calibration toolbox [Bouguet05]. We then place
the camera into our setup and observe a checkerboard pattern placed in
the kaleidoscope at different heights above the ground plane, Fig. 3.9. This
measure helps to keep the calibration consistent in the whole acquisition
volume. We remove radial distortion from the images and identify the real
image as well as the first-order reflections of the checkerboard. We compute
plane equations using the known intrinsics and from those estimate initial
guesses for the mirror planes. We perform a bundle adjustment procedure,
optimizing the camera extrinsics and the mirror plane parameters while
keeping the intrinsics fixed. We then use this initial calibration to predict the
position of the second-order reflections. Matching to the extracted corners
we optimize again to minimize the reprojection error. We then proceed in a
similar manner to add third- and higher-order reflections. The checkerboards
are typically well visible up to the sixth reflection order and we use all of this
information in a final bundle adjustment of all parameters, camera intrinsics,
extrinsics and mirror plane parameters. The reprojection error is typically
within 1.2 pixels.

The laser projector was calibrated for its internal parameters using the
non-central projection model and procedure of Manakov et al. [Manakov11].
To improve the position and orientation estimate of the laser projector with
respect to the mirror system and the camera we place a checkerboard in-
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Figure 3.9: Images of our kaleidoscope with the checkerboard at two different
heights.

side the mirror system and illuminate a set of projector coordinates, taking
an image for every illuminated point. Since the camera/mirror system is
calibrated already, the checkerboard allows for the computation of the 3D
coordinates of the illuminated point. These are usually in disagreement with
the prediction produced by the initial calibration of the laser system. We
perform an optimization on the laser intrinsic and extrinsic parameters to
improve this prediction. In a final step, we perform a bundle adjustment on
the parameters of all system components.

3.3.2 Radiometric Calibration

Figure 3.10: Image of a "Macbeth ColorChecker" chart placed in the kalei-
doscope and illuminated by laser "white light".
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We linearize the camera response curve by taking exposure sequences of
5 images and applying the technique of Robertson et al. [Robertson03] as
implemented in the PFSTools package [Mantiuk06].

For the projector, since we use a laser source that is only roughly white,
we compute an affine RGB correction matrix using a "Macbeth ColorChecker"
chart positioned inside the mirror system and illuminated by laser “white
light”, see Fig. 3.10. This color transformation is applied to all captured
images.

We estimate the attenuation factor of the mirrors by imaging a uniformly
illuminated Spectralon target, an almost perfectly Lambertian reflector, in-
side the system. Since the mirroring sequence for every virtual camera is
known from the system geometry, the individual mirrors’ attenuation co-
efficients can be estimated from observed products of these factors on the
Spectralon patch as it is visible in different camera chambers. In our case,
the coefficient values were constant for the different color channels.
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PART II

Theory of Planar Mirror Systems





CHAPTER 4

A Theory of Projective Imaging
within Mirror Systems

The unfolding principle described above in Section 3.1 is very useful. How-
ever, if we want to deal with complicated planar mirror configurations, the
unfolding approach needs to be extended.

Section 4.1 of this part of the thesis is dedicated to mathematically for-
mulate the physical propagation of idealized light rays inside a planar mirror
system and to develop some basic tools for dealing with them. As a result,
we propose a natural extension of the unfolding procedure by introducing a
so called space partitioning.

Section 4.2 uses the theoretical basics from the previous section to obtain
the first non-trivial result: the uniform continuity of a bounded part of the
space partitioning under observation point change.

4.1 Mirror Unfolding and Space Partitioning

4.1.1 Basic Definitions
Prerequisites

In the following, we introduce the notation and tools used in the remainder
of this thesis. We use the n-dimensional Euclidean space Rn with its usual
two-norm. We make use of the topology of the Euclidean space with its open
and closed sets induced by the metric. Many of the mathematical objects
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defined below will be sets of points. We denote elements of Rn as lower-case
bold characters (for example x, y, v) and real scalars as italic lower-case
characters (for example a, b, c).

Definition 4.1.1. Distances.
The distance d(p1,p2) between two points p1 and p2 of Rn is, as usual,

the norm of the difference: d(p1,p2) = ‖p1 − p2‖.
We define the distance d(S1, S2) between two sets of points S1 and S2,

both from Rn, as d(S1, S2) = inf
s1∈S1
s2∈S2

d(s1, s2).

In our derivations, we make extensive use of rays.

Definition 4.1.2. Ray.
A ray r̃ := r̃(c,d) with origin c and direction d 6= 0 (see Fig. 4.1) is a

set of points r̃(c,d) = {c + λd |λ ∈ R, λ ≥ 0}.

Figure 4.1: Ray.

A ray is a half-line, the points of which are ordered according to the
parameter λ which can be thought of as a time value: For two points p1
and p2 on the same ray r̃(c,d) with p1 = c + λ1 d and p2 = c + λ2 d
(0 ≤ λ1 < λ2 ), we will speak about the ray r̃ passing point p1 earlier than
point p2. In the following, we will use the ray symbol r̃ in two ways: 1) if it
is written as r̃, i.e. without parameters, it denotes the point set constituting
the ray; 2) if parameters are indicated, e.g. r̃(c,d), it is acting as a function
returning the point set r̃ according to the parameters c and d. An expression
like r̃(r̃∩f,d) indicates a new starting point for the ray r̃ at the intersection
point with the set f (assuming there is only a single one). Typically, f will
be a planar set.

Our goal is to describe the propagation of rays in systems of planar mir-
rors. In the following, we define one-sided mirrors in terms of subsets of
hyperplanes that are considered to be the mirroring portion of the hyper-
plane. The mirroring side is described by the orientation of the hyperplane.

Definition 4.1.3. Oriented hyperplane.
An oriented hyperplane in Rn, parameterized by the unit normal n and

the offset d, is the set of points F := F (n, d) = {x |n · x + d = 0} together
with the orientation of its normal.
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Figure 4.2: Oriented hyperplane. o - origin of the space.

A hyperplane induces two half-spaces

Fin := {x |n · x + d > 0}, and
Fout := {x |n · x + d < 0},

the inside and outside half-spaces, respectively. The unit normal n points
towards the outside half-space, see Fig. 4.2. The hyperplane does not belong
to either half-space.

We refer to points relative to a given hyperplane as inside points if they
are elements of the inside half-space, as outside points when they are part
of the outside half-space, and as points on the plane if they belong to the
defining hyperplane.

Definition 4.1.4. Coincident and identical oriented hyperplanes
Two oriented hyperplanes F1 and F2 are coincident (F1 ∼ F2) iff they have
equal point sets, Fig. 4.3. They are identical (F1 = F2) iff they are coinci-
dent and have the same orientation.

Figure 4.3: Coincident hyperplanes F1 and F2.
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Reflections, Mirrors, and Systems thereof
Definition 4.1.5. Mirror. A mirror is an ordered pair M := M(f, F ) =
(f, F ) consisting of a mirror face f and a supporting oriented hyperplane
F , where f is a closed and bounded nonempty subset of F .

The concept is illustrated in Fig. 4.4. Mirrors are one-sided by the
orientation of the supporting hyperplane, the mirroring side being in the
direction towards the inside halfspace. Some examples for mirrors are a)
a planar convex set f , b) unions of such sets sharing the same supporting
hyperplane, and more generally, c) arbitrary bounded closed sets with the
same property. As a counter-example, the full hyperplane F is un-bounded
and is not permissible as a mirror face.

The definition implies that all points p ∈ M are also points of the
supporting hyperplane. Mirrors are therefore flat even if the outline of their
reflective area may be irregular or may contain holes.

Figure 4.4: Mirror.

We classify points in Rn relative to a given mirror as inside, outside, or
points on the plane, if these conditions apply to the mirror’s hyperplane.
The points are said to be on the mirror if, in addition to being on the
hyperplane, they belong to the mirror’s face.

Definition 4.1.6. Reflection.
A point reflection operator m := mM (x) for mirror M(f, F ) is a func-

tion mM : Rn → Rn, given by the mirror operation at the corresponding
hyperplane F : x′ = x− 2(dM + nM · x)nM .

This is the standard definition of the reflection. It can be written in
matrix notation as: x′ = HMx − 2dMnM = (I − 2nMnMT )x − 2dMnM ,
where HM = I − 2nMnMT is a Householder transformation matrix.

Note: We sometimes apply a function that is defined point-wise to a
set of points. This notation implies element-wise application, producing a
new set: Let f : Rn 7→ Rn, f(A) := {b|b = f(a), ∀a ∈ A}. As an example
mM (r̃) is a set of points belonging to a ray r̃ mirrored in mirror M .

The point reflection operator, applied to all of Rn results in a global
isometry, i.e. it is a bijective operator and preserves point-wise distances.
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In the following, we consider a mirror system and its surrounding space
as sets of points that are in certain relations to each other such as incidence,
element of a half space, etc. A global reflection, due to its isometric property,
then transforms the whole space together with its objects such that the
relations still hold for the mirrored (we also say virtual) object versions.

As an example, the inside, outside, and point in hyperplane conditions
are maintained with respect to the reflected hyperplane of the mirror.

Our goal is to work with a generic reflection operator that can be applied
to all objects of interest (i.e. mirrors, points, rays, ...). For this it is necessary
to formally define what is meant by reflecting an object in Rn. We start by
defining the reflection of hyperplanes as building blocks for mirrors and
mirror systems.

Lemma 1. The reflection of an oriented hyperplane F = F (n, d) =
{x |n · x + d = 0} from a mirror M is another oriented hyperplane mM (F )
= F ′ = F (n′, d ′), where n′ = HMn and d ′ = d − 2dMnM · n.

Proof. To proof the assertion, we show that ∀x ∈ Rn: 1. x ∈ F ⇔ mM (x) ∈
F ′. 2. x ∈ Fin ⇔ mM (x) ∈ Fin′.

After some algebraic manipulations we find that indeed n′ ·mM (x)+d ′ =
n · x + d. Therefore, 1. and 2. are satisified for all x ∈ Rn.

We apply the same principle to define the reflection of a mirror M0 from
another mirror M . Because M0 is a pair consisting of a hyperplane and a
point set (F0, f0), we define the reflection mM (M0) = M0

′ =
(mM (F0),mM (f0)) to be the mirror that consists of the oriented hyperplane
and face obtained by reflection from mirror M .

Similarly, a ray r̃ = r̃(c,d) that is reflected from mirrorM is a reflection
of all the ray’s points in the mirror’s hyperplane.

Lemma 2. A reflected ray is equal to a new ray r̃′ = mM (r̃) = r̃(c′,d′),
where c′ = mM (c) and d′ = HMd.

Proof. r̃(c,d) = {c + λd |λ ∈ R, λ ≥ 0}. Then

mM (r̃) = mM ({c + λd |λ ∈ R, λ ≥ 0})
= {mM (c + λd) |λ ∈ R, λ ≥ 0}
= {HM (c + λd)− 2dMnM |λ ∈ R, λ ≥ 0}
= {HMc− 2dMnM + λHMd) |λ ∈ R, λ ≥ 0}
= {mM (c) + λHMd) |λ ∈ R, λ ≥ 0}

Having defined the mirroring operation for different structures, i.e. sets
of points, oriented hyperplanes, mirrors, and rays, we can now reflect several
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Figure 4.5: Physical reflection pM (r̃(c,d)) = r̃(c1,d′) of a ray from mirror
M = M(f, F ).

objects from one given mirror simultaneously by applying the global mirror
operator mM on the whole of Rn including its objects.

We will denote the application of the reflection operator for the object
types: points, sets of points, mirrors, oriented hyperplanes, and rays, as
mM (∗), where ∗ should be substituted by the corresponding object.

Note that if we reflect an object * from a mirror M(f, F ), then F ∩ ∗ =
F ∩ mM (∗) because the reflection operation is leaving all points on the
mirror’s hyperplane F unchanged.

Definition 4.1.7. Physical reflection.
Let r̃ = r̃(c,d) be a ray in Rn and M(f, F ) a mirror, also in Rn. A

physical reflection (see Fig. 4.5) of the ray r̃ from mirror M is

pM (r̃) =
{
mM (r̃(r̃ ∩ f,d)), if c ∈ Fin and r̃ ∩ f 6= ∅
∅, otherwise.

From the definition of the physical reflection of a ray, we see that rays
can be reflected only from the inner side of the mirror and only when the ray
intersects the mirror at the mirror’s face. In this case, the physical reflection
is again a ray.

The physical reflection is undefined if ray r̃ does not intersect any mir-
rors, if the ray traverses inside a mirror’s hyperplane, or if the ray intersects
a mirror from its outside half-space. This models the real world behavior of
rays of light interacting with mirrors.

To simplify the notation, we introduce a short-hand for the composition
of reflections (or physical reflections) from mirrorsM1, M2, ..., MN : Instead
of writing mMN

(mMN−1(...(mM1(∗))...)) (or pMN
(pMN−1(...(pM1(∗))...))) we

will write mMNMN−1...M1(∗) (or pMNMN−1...M1(∗)). The inverse
m−1
MNMN−1...M1

(∗) of a mirror operation is mM1M2...MN
(∗).

Having introduced a mirror operator for all our objects in the single
mirror case, we now define more complex mirror systems that consist of
multiple mirrors.
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Definition 4.1.8. Mirror system. A mirror system (see Fig. 4.6) is a
finite set of mirrorsM = {Mi = (fi, Fi) | i = 1..N,N ∈ N}, subject to the
condition: if fi ∩ fj 6= ∅ ⇒ (Fi ∼ Fj and Fi 6= Fj). N is the number of
mirrors in the system.

The mirror system defined such has the following restriction: The only
way that a point in the ambient space Rn can be assigned to more than
one mirror is if these mirrors share the same hyperplane but have opposite
orientations, i.e. we allow mirrors to be two-sided, but we do not allow
mirror faces from different hyperplanes to intersect.

Definition 4.1.9. Set of points of the mirror system. Mf :=
⋃
i fi.

Ray Propagation in Planar Mirror Systems
In the following we introduce a formal description of ray propagation in
planar mirror systems. Since ray paths in such systems are polygonal, they
consist of straight ray segments. We define such segments, giving proper
attention to exclude special cases such as rays propagating inside a mirror’s
hyperplane. Straight segments are again defined as sets of points belonging
to them.

Definition 4.1.10. Straight segment.
Let r̃ = r̃(c,d) be a ray in a mirror system M = {(fi, Fi) | i = 1..N}

such that the ray is not completely inside some mirror’s hyperplane where
the ray origin is an element of that mirror’s face, i.e. c ∈ fi ⇒ r̃ 6⊂ Fi. Then
the straight segment sM(r̃) of the ray r̃ in the mirror systemM is defined
as sM(r̃) :=

⋂
i
(r̃ \ r̃i), where

r̃i =


r̃( arginf

a∈(r̃\{c})∩fi

d(a, c),d), if (r̃ \ {c}) ∩ fi 6= ∅

∅, otherwise.

Properties: The straight segment can be a finite interval or semi-
infinite. The first case (finite interval) occurs if the ray (without its ori-
gin) intersects the face of a mirror (under conditions of the definition of the
straight segment). In this case, the straight segment is connecting the ray
origin to the point on the first mirror, excluding the point on the mirror
itself. The second case (semi-infinite interval) occurs if the ray (without its
origin) does not hit any mirror face. It continues to propagate infinitely.
More precisely:

1. If r̃i is non-empty, it is a semi-infinite set starting on mirror Mi, but
not from the point c:

• If r̃i is non-empty, (r̃ \ {c}) ∩ fi 6= ∅.
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• Because mirrors are closed sets, arginf
a∈(r̃\{c})∩fi

d(a, c) is a point on

the mirror Mi if (r̃ \ {c}) ∩ fi 6= ∅.

• Consider the mirror Mi ∈M:

(a) If c 6∈ Fi, which implies c /∈ fi, and r̃ ∩ fi 6= ∅, then the
expression arginf

a∈(r̃\{c})∩fi

d(a, c) is equal to r̃ ∩ fi 6= c.

(b) If c ∈ Fi, but c /∈ fi, then, using that (r̃ \ {c}) ∩ fi 6= ∅
and that fi is a closed set, the expression arginf

a∈(r̃\{c})∩fi

d(a, c)

is equal to argmin
a∈(r̃\{c})∩fi

d(a, c) 6= c.

(c) If c ∈ fi, then, using that (r̃ \ {c}) ∩ fi 6= ∅, the ray r̃ ∈ Fi
(two different ray points are on the hyperplane) with the
origin c ∈ fi - that is the case excluded by Def. 4.1.10 of a
straight segment.

2. When defined, the straight segment connects c and the first mirror,
excluding the one at the origin. It is equal to the ray if no mirror is
intersected:

• The straight segment of a ray r̃(c,d) is the part of the ray from
its origin c to the first intersection with any mirror in the mirror
system: According to the definition of r̃i we have that ∀i, j ∈
{1, ..., N} ⇒ (r̃ \ r̃i) ⊆ (r̃ \ r̃j) or (r̃ \ r̃j) ⊆ (r̃ \ r̃i). Therefore,
∃k ∈ {1, ..., N} such that sM(r̃) = (r̃ \ r̃k): The straight segment
is the part of the ray between the point of origin c and the first
intersection with a mirror Mk ∈M.

• If there are no mirrors on the ray r̃ \c, then the straight segment
of the ray is the ray itself.

• If the ray origin is part of some mirror M0, the straight segment
is equivalent to the straight segment of the ray in a mirror system
M\M0.

The Double-Sided Mirror

It should be noted that the intersection of the ray with the first mirror
may not be unique due to our mirror definition (Def. 4.1.5) that allows for
two-sided mirrors.

Ambiguity of the mirror intersection point: We have shown above that
for the straight segment, there ∃k ∈ {1, ..., N} such that sM(r̃) = (r̃ \ r̃k),
with r̃k 6= ∅. However, there can be more than one such k, but no more
than two:
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If sM(r̃) = (r̃ \ ˜rk1) = (r̃ \ ˜rk2)⇒ ˜rk1 = ˜rk2 . Then, because ˜rk1 = ˜rk2 6=
∅⇒

r̃( arginf
a∈(r̃\{c})∩fk1

d(a, c),d) = r̃( arginf
a∈(r̃\{c})∩fk2

d(a, c),d)⇒

arginf
a∈(r̃\{c})∩fk1

d(a, c) = arginf
a∈(r̃\{c})∩fk2

d(a, c) 6= ∅.

As noted before in our remarks corresponding to property 1), if
arginf

a∈(r̃\{c})∩fk1

d(a, c) and arginf
a∈(r̃\{c})∩fk2

d(a, c) are non-empty, they are points

on the mirrorMk1 andMk2 , respectively. By definition of the mirror system
(Def. 4.1.8), these points can only be equal if the oriented hyperplanes Fk1

and Fk2 are coincident (Fk1 ∼ Fk2), but not equal (Fk1 6= Fk2). Put differ-
ently, Fk1 and Fk2 are differently oriented (i.e. a two-sided mirror). More-
over, in the case of more than two pairwise coincident oriented hyperplanes,
at least two of them will be equal, which is impossible by the definition ofM.

Selection of the reflecting mirror side: Let r̃ = r̃(c,d) be a ray in a
mirror system M = {(fi, Fi) | i = 1..N} and c /∈ Mf . The last condition
ensures that the ray r̃ starts from a point that does not belong to any of
the mirrors. This implies that the straight segment sM(r̃) is non-empty.
If sM(r̃) 6= r̃, i.e. the ray intersects a mirror, then there ∃k1 ∈ {1, ..., N}
such that sM(r̃) = (r̃ \ ˜rk1), where ˜rk1 = r̃( arginf

a∈(r̃\{c})∩fk1

d(a, c),d) 6= ∅.

arginf
a∈(r̃\{c})∩fk1

d(a, c) is a single point on the mirror Mk1 ∈M.

If we can select more than one (i.e. two) such k1, then we choose the
one for which c ∈ Fin of Fk1 . In this case we are encountering a two-sided
mirror and we select the side that can reflect the ray r̃.

Recursive Application of Mirror Reflections

Let us consider the new ray pMk1
(r̃) that is obtained by a physical reflection

(Def. 4.1.7) of the initial ray from the mirror Mk1 . If the physical reflection
is non-empty, we proceed by applying to it the same operations as to the
initial ray, realizing the description of a ray tracing scheme.

In particular, the scheme consists in taking the straight segment
sM(pMk1

(r̃)) that ends at mirror Mk2 ∈ M and continuing the ray reflec-
tion there. Since the physical reflection pMk1

(r̃) is not empty, the straight
segment sM(pMk1

(r̃)) is defined and is certainly not empty.
A recursive application of this operation results in a sequence of straight

segments: sM(r̃), sM(pMk1
(r̃)), sM(pMk2Mk1

(r̃)), ..., sM(pMkL
...Mk2Mk1

(r̃)),
...; and in a corresponding sequence of mirrors that were intersected by the
bouncing ray: Mk1 , Mk2 , ..., MkL

, ... .
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This sequence is finite if at some step l we have: pMkl
...Mk2Mk1

(r̃) = ∅,
i.e. the ray hits a mirror from its non-reflecting side or along the mirror’s
hyperplane, or if sM(pMkl

...Mk2Mk1
(r̃)) = pMkl

...Mk2Mk1
(r̃). The latter con-

dition describes the case where the ray does not intersect any more mirrors.

Definition 4.1.11. Physical ray path. Let r̃ = r̃(c,d) be a ray in a
mirror system M = {(fi, Fi) | i = 1..N} such that c /∈ Mf . The physical
ray path (see Fig. 4.6) in the mirror system M is the sequence PM(r̃) :=
(sM(r̃), sM(pMk1

(r̃)), sM(pMk2Mk1
(r̃)), ..., sM(pMkL

...Mk2Mk1
(r̃)), ...).

Note that sM(r̃) is defined since c 6∈ Mf .

Corollary 1. The physical ray path PM(r̃) is C0 continuous.

The sequence of straight segments is end-to-beginning connected, i.e.
the closure of the end of one segment is the beginning of the next segment
in the sequence. The physical ray path describes the bouncing path of the
ray inside the mirror system. The first segment is the straight segment
between the ray origin c and mirror Mk1 . The following straight segments
are connecting mirrors Mki

and Mki+1 , i = 1, 2, ..., L, .... If the sequence
PM(r̃) is finite, it is possible, that the last segment is semi-infinite, i.e. the
final ray is not intersecting any more mirrors, or finite, i.e. a mirror back-side
is being hit or the final ray intersects a mirror along its hyperplane.

Figure 4.6: Ray propagation in a mirror system: The mirror system M
consists of three mirrors: M1, M2, and M3. The ray r̃ = r̃(c0,d0) continues
to infinity (dashed lines). Its straight segment sM(r̃(c0,d0)) = [c0; a1) is
determined byM1. The physical reflection pM1(r̃(c0,d0)) is the original ray
reflected from mirrorM1 whereas its straight segment sM(pM1(r̃(c0,d0))) =
[a1; a2) is only running betweenM1 andM2. The physical ray path sequence
is PM(r̃): ([c0; a1), [a1; a2),[a2; a3), [a3; a4),r̃(a4,d)).
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4.1.2 Ray Unfolding
In the following, we describe ray unfolding, a procedure to turn the physical
ray path into a straight line, while keeping track of the required transfor-
mations. Often, the other geometric objects in the space are transformed
as well. We will use this operation extensively in the remainder of the the-
sis. As mentioned in Section 3.1, unfolding is usually applied to Coxeter
geometries, yielding perfectly overlapping tilings of the surrounding space,
or in finite reflection sequences such that overlap is avoided for non-Coxeter
geometries.

The goal of the following sections is to introduce an unfolding scheme
that is applicable to arbitrary planar mirror systems. We start by defining
a per-ray unfolding procedure, later extending the arguments to ray groups
with common properties.

Ray Decomposition
[

)

[

[

[

Figure 4.7: An example of the decomposition of the ray r̃ = r̃(c,d) from its
physical ray path. Here, the red semi-interval is the straight segment sM(r̃)
and the green half-line is the ray’s physical reflection from mirror MK1 with
normal nK1 and face fK1 .

Lemma 3. Suppose for a given mirror system M = {Mi = (fi, Fi) | i =
1..N} and a ray r̃ = r̃(c,d) | c /∈ Mf , we have the physical ray path
sequence: PM(r̃) = (sM(r̃), sM(pMk1

(r̃)), sM(pMk2Mk1
(r̃)), ...,
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sM(pMkL
...Mk2Mk1

(r̃)), ...) with the corresponding mirror sequence: (Mk1,
Mk2, Mk3, ..., MkL

, ...).
If the physical reflection pMk1

(r̃) 6= ∅, the ray r̃ is fully covered by the
straight segment sM(r̃) and the mirrored physical reflection mMk1

(pMk1
(r̃))

of that ray. Moreover, the straight segment and the mirrored physical reflec-
tion are disjoint:

r̃ = sM(r̃) tmMk1
(pMk1

(r̃)),

where t denotes the union of disjoint sets, see Fig. 4.7.

Proof. According to the conditions of the Lemma, pMk1
(r̃) 6= ∅, i.e. a

physical reflection exists. This, together with c /∈ Mf , implies that the
straight segment sM(r̃) is non-empty, and, moreover, sM(r̃) = (r̃ \ ˜rk1),
where k1 is the index of the first intersection with a mirror (Mk1) and ˜rk1 is
the semi-infinite interval of r̃ that is starting at the intersection point with
the mirror and going to infinity as defined in Def. 4.1.10. In particular, since
the intersection point exists, ˜rk1 = r̃(r̃ ∩ fk1 ,d).

Moreover, from Def. 4.1.7, the physical reflection is pMk1
(r̃) = mMk1

(r̃(r̃∩
fk1 ,d)), i.e., pMk1

(r̃) = mMk1
( ˜rk1). Undoing the reflection via mMk1

(pMk1
),

we have ˜rk1 = mMk1
(pMk1

(r̃)) and therefore sM(r̃) = r̃ \ mMk1
(pMk1

(r̃)).
The latter statement is equivalent to the assertion in the Lemma.

If we recursively apply Lemma 3 to the second part of the right side of
the equality (i.e. to the pMk1

(r̃), pMk2Mk1
(r̃), ..., pMkL

...Mk2Mk1
(r̃), ... ), and

none of the sets pMk1
(r̃), pMk2Mk1

(r̃), ..., pMkL
...Mk2Mk1

(r̃), ... is equal to ∅,
we obtain the following ray decomposition r̃d′:

r̃d
′ = sM(r̃) tmMk1

(pMk1
(r̃))

= sM(r̃) tmMk1
[sM(pMk1

(r̃))
tmMk2

(pMk2Mk1
(r̃))]

= sM(r̃) tmMk1
(sM(pMk1

(r̃)))
tmMk1Mk2

(pMk2Mk1
(r̃))

= ...

= sM(r̃) tmMk1
(sM(pMk1

(r̃)))
tmMk1Mk2

(sM(pMk2Mk1
(r̃)))

tmMk1Mk2 ...MkL
(sM(pMkL

...Mk2Mk1
(r̃)))

t ... .

In case of an infinitely propagating ray (but not necessarily infinitely
bouncing), the ray r̃ equals the decomposition r̃d′: r̃ = r̃d

′ since all points
of the ray are assigned uniquely to one of the unfolded straight segments.
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This follows from the fact, that faces of mirrors in the mirror systemM are
closed and bounded disjoint sets. Thus, there is a minimal positive distance
d between them [Berg08]. The length of any straight segment is not smaller
than this distance d. In particular, segments cannot become infinitely small.
Therefore, when the ray is infinitely bouncing, the unfolded segments even-
tually cover the ray and any point of r̃ belongs to a corresponding disjoint
element of the ray decomposition.

We refer to the unfolded straight segments, i.e. to the members of the
disjoint union, as unfolded segments. So far, we are within the limits of
validity of Lemma 3.

If, however, at some point the physical ray path hits a mirror in such
a way that the physical reflection no longer exists (pMkL

...Mk2Mk1
(r̃) = ∅),

then the unfolded ray r̃′d stops after a finite distance. In this case, we
artificially add a last semi-infinite segment to extend the decomposition to
infinity.

r̃d :=
{
r̃d
′ ∀L ∈ N, pMkL

...Mk2Mk1
(r̃) 6= ∅

r̃d
′ t (r̃ \ r̃d′) otherwise.

(4.1)

With these prerequisites, we can state that, for a starting point c /∈Mf

outside the mirrors, there exists a unique decomposition of the ray r̃ = r̃d
into classes of points corresponding to a unique mirroring sequence or to a
rest class.

Partitioning of the Space Along the Ray

Definition 4.1.12. Chamber and chamber transformation. For a
given mirror system M and a sequence of mirrors M1,M2, ...,MN ∈ M,
we define a chamber CM1M2...MN

to be a transformed version of the whole
space Rn including the contained objects. The associated chamber trans-
formation mM1M2...MN

: Rn → Rn is determined by the mirror sequence
M1,M2, ...,MN ∈M. Then CM1M2...MN

:= mM1M2...MN
(Rn, ∗). We refer to

N as the chamber level. The associated space without objects is RnM1M2...MN
.

We denote the inverse of a chamber CM1M2...MN
as the chamber with reversed

sequence of mirrors: C−1
M1M2...MN

:= CMNMN−1...M1 .
If the sequence of mirrors is empty, the chamber for it is defined to be

C0 := (Rn0 , ∗) with level 0 which is Rn itself including all objects. C0 is
called the base chamber, while Rn0 is the Euclidean space containing the
base chamber. Chambers with a higher level than zero are called virtual
chambers.

Rn0 is the base space in which the mirror system, its points, rays, hy-
perplanes, etc. are defined. Together, these entities constitute the base
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chamber C0. Our goal will be to unfold the physical ray paths that occur
within the base chamber into the ambient Rn0 .

Important note: Two chambers are equal iff the corresponding se-
quences of mirrors are the same. Two different sequences of reflections may
lead to the same transformation of the ambient space Rn. The corresponding
chambers will still be considered as being different. We use this property to
associate the corresponding chamber transformation with the chamber with
the following notation: mCM1M2...MN

(∗) := mM1M2...MN
(∗), where the cham-

ber CM1M2...MN
is parameterizing the chamber transformation. We denote

its inverse as m−1
CM1M2...MN

(∗) := mMNMN−1...M1(∗) .

Definition 4.1.13. Set of chambers and Extended set of chambers.
For a given mirror system M, consider the set of chambers CM, i.e. all
possible chambers CM := {C0, CM1 , CM2 , ..., CMi1Mi2 ...Mij

, ...} and the spe-
cial element Cø called the empty chamber. The empty chamber has no
associated Rn. The set CM = CM

⋃
{Cø} is defining the extended set of

chambers. An element of the extended set of chambers is referred to as an
extended chamber.

Corollary 2. If the number of mirrors in mirror system M is finite, the
set CM, and, consequently, the set CM from Def. 4.1.13 is countable.

Definition 4.1.14. Chamber function. For a given mirror system M
and a point c ∈ (Rn0 \Mf ), we define a chamber function fM,c : Rn0 7→ CM
as follows:

1. fM,c(c) = C0;

Let p ∈ Rn0 and p 6= c, and consider the ray r̃ = r̃(c,p− c) with the
decomposition (4.1). Then:

2. fM,c(p) = C0, if p ∈ sM(r̃);

3. fM,c(p) = CMk1Mk2Mk3 ...MkL
, if

p ∈ mMk1Mk2Mk3 ...MkL
(sM(pMkL

...Mk3Mk2Mk1
(r̃)));

4. fM,c(p) = Cø, if fM,c(p) is not assigned by the previous conditions.

As can be seen from the definition, the chamber function fM,c : Rn0 7→
CM is defined for any fixed mirror systemM and any fixed point c that is
not part of that mirror system. We refer to c as an observation point.

Lemma 4. The chamber function fM,c : Rn0 7→ CM is a function.

Proof. We need to prove that ∀p ∈ Rn0 ⇒ (∃!C ∈ CM | fM,c(p) = C).
Existence is following directly from the function’s definition. We need to
prove the uniqueness: If p = c ⇒ C = C0 and the assignment is unique.
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If p 6= c ⇒ ∃!r̃ = r̃(c,p− c). For that ray we have the uniquely de-
fined ray path sequence PM(r̃) in the mirror system M and therefore the
uniquely defined decomposition (4.1). Because decomposition (4.1) consists
of non-intersecting ray intervals, the point p belongs to exactly one of them.
According to the definition of function fM,c this results in the unique as-
signment of a single value from CM.

The chamber function fM,c of the mirror systemM with the observation
point c is assigning an extended chamber (i.e. an element of CM) to each
point of Rn0 . In particular, for a given ray r̃ = r̃(c,d) ∈ Rn0 , it assigns
extended chambers to all of the ray’s points according to decomposition
(4.1) of the ray r̃.

Definition 4.1.15. Ray partitioning. The ray partitioning ΠM(r̃) is an
application of the chamber function fM,c to all points of ray r̃. LetM be a
mirror system, r̃ = r̃(c,d), c ∈ (Rn0 \Mf ) a ray with origin c, and let fM,c
share the origin c and the mirror systemM with the ray.

Then, the ray partitioning ΠM(r̃) := {(p, fM,c(p)) | p ∈ r̃} is a set of
point/chamber pairs defined for all points of the ray r̃.

Theorem 1. Ray Unfolding
For any ray r̃ = r̃(c,d) where c ∈ (Rn0 \ Mf ), without points {p |

fM,c(p) = Cø},

PM(r̃) = {m−1
fM,c(p)(p)|p ∈ r̃}.

The theorem states that any physical ray path PM(r̃) can be represented
by a straight ray r̃ ⊂ Rn0 with a partitioning ΠM(r̃) and vice versa. More-
over, the physical ray path is obtained by applying the spatially varying
inverse chamber transformation m−1

fM,c(p)(p) to the straight ray.
The proof is based on the construction of a bijection between the straight

segments and the unfolded segments of a ray r̃.

Proof. According to Def. 4.1.11, the physical ray path consists of straight
segments sM(pMkL

...Mk2Mk1
(r̃)). Their corresponding unfolded segments in

decomposition (4.1) are given by mMk1Mk2 ...MkL
(sM(pMkL

...Mk2Mk1
(r̃))).

Consider one particular such straight segment a = sM(pMaL
...Ma2Ma1

(r̃))
and its corresponding unfolded segment mMa1Ma2 ...MaL

(a) =
mMa1Ma2 ...MaL

(sM(pMaL
...Ma2Ma1

(r̃))). According to Def. 4.1.14, a gets as-
signed a constant chamber CMa1Ma2 ...MaL

. Therefore, the corresponding
chamber transformation mCMa1 Ma2 ...MaL

(∗) = mMa1Ma2 ...MaL
(∗) is constant

and its inverse can be applied to the whole unfolded segment
mMa1Ma2 ...MaL

(a), yielding
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m−1
CMa1 Ma2 ...MaL

(mMa1Ma2 ...MaL
(a)) =

m−1
Ma1Ma2 ...MaL

(mMa1Ma2 ...MaL
(a)) =

mMaL
MaL−1 ...Ma1

(mMa1Ma2 ...MaL
(a)) =

mMaL
MaL−1 ...Ma1Ma1Ma2 ...MaL

(a) = a

Applying this construction of a bijection between the straight segment
a and its corresponding unfolded segment mMa1Ma2 ...MaL

(a) to all straight
segments of the physical path completes the proof.

Note that the bijection constructed above is only valid per-straight seg-
ment, i.e. that the complete physical ray path can have self-intersections.
Thus, in general, there is no bijection between the ray r̃ \ Cø and the full
set of points of the physical ray path.

Corollary 3. The mirror system M, as an object of Rn0 is also affected
by the chamber transformations according to the partitioning of ray r̃. In
particular, the sequence of mirrors Mk1, Mk2, ..., MkL

, ..., where reflections
of the ray occur for a given ray path sequence PM(r̃) is transforming into
the following sequence of virtual mirrors: mMk1

(Mk1), mMk1Mk2
(Mk2), ...,

mMk1Mk2 ...MkL
(MkL

), the corresponding chambers being CMk1
, CMk1Mk2

, ...,
CMk1Mk2 ...MkL

, ...

Corollary 4. From Corollary 3 we see, that two sequential unfolded seg-
ments of the unfolded ray are bordered by a unique virtual mirror, that is
defined only by the corresponding sequence of reflections.

Ray straightening is a very useful operation: 1) In analyzing multi-
bounce mirror systems, it allows us to consider unfolded straight rays instead
of the chain of straight segments that constitute the physical path, and 2)
the associated chamber subdivision of the surrounding space provides us
with a proper relative environment (sets of points, mirrors etc.) for any
given valid point on the ray.

4.1.3 Space Partitioning
For a given mirror systemM and a point c ∈ (Rn0 \Mf ), if we take any point
p ∈ Rn0 with p 6= c, this point will be on the ray r̃ = r̃(c,p− c), with the
origin at c. For this ray the ray partitioning ΠM(r̃) is defined. If the point
p = c, then for any ray with this point as the origin, the ray partitioning will
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associate it with chamber C0. Thus, all the points in Rn0 can be classified
into extended chambers by the ray partitioning procedure. In other words,
the chamber function, in conjunction with the ray partitioning is creating a
partitioning of the full space Rn0 into sets, belonging to chambers from CM.
In this section we discuss the structure of such partitioning.

Definition 4.1.16. Space partitioning.
A space partitioning Π∗M(c0) of Rn0 with respect to a mirror systemM

and point c0 ∈ (Rn0 \Mf ) is the set of ray partitionings for all rays with a
common origin c0: Π∗M(c0) = {ΠM(r̃(c,d)) | c = c0}.

Just as the ray partitioning, Def. 4.1.15, the space partitioning Π∗M(c0)
is a set of point/chamber pairs, this time covering the whole of Rn0 , i.e.
∀p ∈ Rn0 ⇒ ∃!(p, C) ∈ Π∗M(c0). We will speak about Π∗M(c0) assigning a
chamber C to the point p, or, alternatively, a chamber C being associated
with point p by Π∗M(c0).

Structure of Space Partitioning Π∗M(c0).

Consider a mirror system M and a point c0 ∈ (Rn0 \Mf ). If we consider
all possible unfolded rays from c0 up to the N ≥ 0 first levels of reflection,
including N , we obtain a set of points in Rn0 . We call this set of points
N-unfolding. Practically, the decomposition (4.1) can be evaluated up to
and including N -unfolded segments for all rays through c0. The following
properties for N -unfoldings hold:

Lemma 5.

1. The chamber, associated with a given point a in the partitioning Π∗M(c0)
is uniquely defining the chamber sequence when traveling along the ray
from point c0 to point a. In particular, if fM,c0(a) = CMk1Mk2 ...MkL

,
this sequence is C0, CMk1

, CMk1Mk2
, ..., CMk1Mk2 ...MkL

. Compare
Def. 4.1.14 and decomposition (4.1).

2. ∀N ≥ 0⇒ An N -unfolding is a subset of an (N + 1)-unfolding.

3. Since all rays r̃ pass through c0 and the decomposition (4.1) is con-
nected, an N -unfolding is star-shaped.

From the lemma above we see, that the space partitioning Π∗M(c0) is not
just an arbitrary subdivision of the space, but it has a tree-like star-shaped
structure, which grows with an increasing number of reflections, see Fig. 4.8.
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Figure 4.8: 0-,1- and 2-unfoldings of the mirror systemM = {M1,M2,M3}
from the point c0. Green, violet and pink areas depict visible areas (from
c0) of chambers C0, CMi and CMiMj , correspondingly.

Visibility in a Space Partition
Definition 4.1.17. Visible point.

Let c ∈ (Rn0 \ Mf ), a ∈ Rn0 and M be a mirror system. The point a
is called visible (visible in direction d) from the point c iff there is a ray
r̃ = r̃(c,d) such that a ∈ PM(r̃).

In other words, the point is visible from the given point of observation
c iff there is a bouncing path from point c to it.

If a point a is visible from c inM, then ∃r̃ = r̃(c,d) | a ∈ PM(r̃), where
PM(r̃) = (sM(r̃), sM(pMk1

(r̃)), sM(pMk2Mk1
(r̃)), ..., sM(pMkL

...Mk2Mk1
(r̃)),

...). Consequently ∃K ∈ N∪{0} | a ∈ sM(pMkK
...Mk2Mk1

(r̃)). Then, accord-
ing to the space partitioning the straight segment sM(pMkK

...Mk2Mk1
(r̃))

has a corresponding unfolded segment on the ray r̃ in the partitioned space.
Moreover, it belongs to the chamber CMk1Mk2 ...MkK

. Thus, point
mMk1Mk2 ...MkK

(a) is on the ray r̃ and assigned by the space partitioning to
the chamber CMk1Mk2 ...MkK

.
Because the mirror transformation is bijective, we can apply the inverse

argument, i.e. if the point a′ is a part of the ray r̃ and belongs to a chamber
CMk1Mk2 ...MkK

, then the point mMkK
...Mk2Mk1

(a′) is visible.
Note, that the ray r̃ and the number K above are not necessarily unique.

In other words, a point a can be reachable from the point of observation c
via different rays and different sequences of reflections.

Definition 4.1.18. Visible point in a chamber. Let c ∈ (Rn0 \ Mf ),
a ∈ Rn0 and M be a mirror system. The point a is called visible in a non-
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empty chamber CMk1Mk2 ...MkK
from point c iff there is a point a′ in Rn0

which is associated with chamber CMk1Mk2 ...MkK
by the space partitioning

Π∗M(c), i.e. ∃a′|mMkK
...Mk2Mk1

(a′) = a.
Note: We refer to sets of points as being visible in a given chamber iff

all the points of the set are visible in that chamber, ignoring self-occlusion.

From the definition we have, that if the point is visible in a given cham-
ber, it is reachable by a sequence of bounces from the point c, see also
Fig. 4.8. The sequence of mirror bounces corresponds to the chamber.

Lemma 6. Independence of chambers from the observation point.
In a mirror system M, all chambers C ∈ CM \ C∅ are independent of

the position of the point of observation c0 and defined only by the mirrors in
the systemM. The point of observation c0 is only influencing the area that
is visible in a given chamber as seen from that point. Changing the position
of the observation point can make some chambers visible, or invisible. Some
chambers may never be visible independent of the position of point c0.

Proof. The proof is a direct consequence of the definition of a chamber
(Def. 4.1.12) and the definition of the space partitioning (Def. 4.1.16).

4.2 Continuity of The Space Partitioning
An important property of the space partitioning defined in the previous
section is its continuity with respect to changes in observation point. In
the following we will formally define and prove this continuity, followed by
a discussion of its practical importance.

But let us first introduce some necessary definitions and notations.

Definition 4.2.1. Open ball. Let r ∈ R, r > 0 and a ∈ Rn. Then an
open ball So(r,a) of radius r with center a is So(r,a) = {a′ | ‖a′ − a‖ < r}.

Definition 4.2.2. Closed ball. Let r ∈ R, r > 0 and a ∈ Rn. Then a
closed ball Sc(r,a) of radius r with center a is Sc(r,a) = {a′ | ‖a′−a‖ ≤ r}.

Definition 4.2.3. Distance to the mirror system. LetM = {M1,M2, ...,
MN} be a mirror system in Rn and S a set of points in Rn. Then the distance
between the mirror systemM and the set S is given by

d(M, S) = inf
m∈Mf ,s∈S

d(m, s).

4.2.1 Continuity of the Space Partitioning with Re-
spect to Changes in Observation Point

Definition 4.2.4. Continuity with respect to observation point.
A mirror system M is called chamber-continuous with respect to a given
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Figure 4.9: Illustrating observer continuity of a mirror system. If a is visible
from c0 through a common mirror sequence together with an open ball, then
there exists an open ball around c0 such that a is visible from any of its
points with the same mirror sequence. The proof is based on an unfolding
of the situation, see Fig. 4.10.

chamber CMk1Mk2 ...MkK
and a point of observation c0 ∈ (Rn \ Mf ) iff

(∀r > 0, ∀a ∈ Rn | ∀a′ ∈ So(r,a) ⇒ a′ is visible from c0 in the cham-
ber CMk1Mk2 ...MkK

) ⇒ (∃ r1 > 0 | ( ∀c′ ∈ So(r1, c0) ⇒

a) c′ ∈ (Rn \Mf ), and

b) The point a is visible in the chamber CMk1Mk2 ...MkK
from the point c′)).

The mirror system is called continuous with respect to change in the
observation point iff it is chamber-continuous for all chambers CM \ Cø.

The setting is illustrated in Fig. 4.9: Chamber-continuity describes the
situation where an open ball around point a that is visible from c0 under
a common mirror sequence, implies the existance of an open ball around c0
that is visible from point a through the same mirror sequence as before.

The definition therefore describes the idea that a mirror system is con-
tinuous with respect to a point of observation iff the visibility of any point
in the system is smooth under changes of the observation point.

In order to proof that any mirror systemM is continuous with respect
to the observer position (Theorem 2), we need a number of technical pre-
requisites.

An Open Ball that is Fully Visible in a Common Chamber does
not Contain Mirror Points
The first of these is Lemma 8 which states that an open ball that is com-
pletely visible in a common chamber has no mirror intersections. To proof
this, we need the help of
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Lemma 7. In a mirror systemM, suppose two points q1 and q2 are visible
from an observation point c0 ∈ (Rn\Mf ) in a chamber C = CMk1Mk2 ...MkK

,
(K ≥ 1), i.e. a chamber C that is different from the base chamber C0.
The point q1 belongs to the straight segment s1 = sM(pMkK

MkK−1 ...Mk1
(r̃1))

of the ray r̃1 = r̃(c0,q′1 − c0) with the origin at point c0 and with point
q′1 = mMk1Mk2 ...MkK

(q1) (see Theorem 1). Let l1 be a line such that s1 ⊂ l1.
Then, if

q2 ∈ l1 ⇒ q2 ∈ s1.

Proof. If the point q2 ∈ l1 and q2 /∈ s1, then, since q2 is visible in the same
chamber as q1, we have: q2 belongs to s2 = sM(pMkK

MkK−1 ...Mk1
(r̃2)),

where r̃2 = r̃(c,q′2 − c), q′2 = mMk1Mk2 ...MkK
(q2).

There are two possible cases:

• s1 ⊂ l1 and s2 ⊂ l1.
In this case r̃1 and r̃2 belong to the common line l′1 = mMk1Mk2 ...MkK

(l1),
while sharing the common origin c0. Then r̃1 is equal to r̃2, or r̃1 is
directed in the opposite direction of r̃2. The first case leads to the con-
tradictory fact, that s1 = s2. In the second case the ray partitionings
ΠM(r̃1) and ΠM(r̃2) cannot contain a common chamber, except for
the base chamber C0 (which is excluded by the Lemma’s conditions).
This is because the same mirror hyperplane cannot be intersected by
the line twice. Therefore, the very first mirror in the mirror sequences
for the two opposite rays cannot be the same.

• s1 ⊂ l1 and s2 6⊂ l1.
In this case s2 belongs to another line: s2 ⊂ l2 6= l1. Then r̃1 and
r̃2 are parts of two different lines: l′1 = mMk1Mk2 ...MkK

(l1) and l′2 =
mMk1Mk2 ...MkK

(l2). These lines are intersecting at the point q′2 =
mMk1Mk2 ...MkK

(q2). Obviously, this is only possible if q′2 = c0. But
then, q′2 must be associated with the base chamber C0 which is a
contrary to the Lemma’s conditions.

Lemma 8. If an open ball is completely visible in a common chamber, it
does not contain points of the mirror system: Let a′ ∈ So(r,a) and a′ be
visible from c0 in chamber CMk1Mk2 ...MkK

,K ≥ 0, then So(r,a)∩Mf = ∅.

Proof. We proof the Lemma by contradiction. Suppose, an open ball So(r,a)
is visible from the point of observation c0 ∈ (Rn \Mf ) in a chamber C =
CMk1Mk2 ...MkK

(K ≥ 0). If ∃i |Mki
∩So(r,a) 6= ∅, then ∃a1 | (a1 ∈ So(r,a)

and a1 ∈Mki
). There are two possible cases:
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1) Chamber C = C0.
Since a1 ∈ Mki

⇒ for the ray r̃1 = r̃(c0,a1 − c0) we have: sM(r̃1) ⊆
[c0; a1). However, under partitioning Π∗M(c0), a1 is associated with
chamber C0 which implies that a1 ∈ sM(r̃1) which is a contradiction.

2) Chamber C = CMk1Mk2 ...MkK
, where K ≥ 1

For point a1 ∈Mki
the corresponding straight segment passing through

it is given by s1 = sM(pMkL
MkL−1 ...Mk1

(r̃1)), where r̃1 = r̃(c0,a′1 − c0).
Here a′1 = mMk1Mk2 ...MkK

(a1). Let l be a line, such that s1 ⊂ l. Let also
q = l∩So(r,a). Obviously, q is an open set. But from Lemma 7, we have
q ⊆ s1. This implies that the mirror point a1 is contained in the open
set q and simultaneously in straight segment s1. But, by definition of
the straight segment (Def. 4.1.10), its open part, i.e. its interior, cannot
contain mirror points which is a contradiction.

Corollary 5. If for a given mirror system M and a point c0 ∈ Rn with
a positive distance to the mirror system d = d(M, c0) > 0 (which implies
c0 ∈ (Rn \ Mf )), the open ball So(r,a) is visible in a virtual non-empty
chamber C, then the distance d(c0,mC(a)) ≥ d+ r.

Visibility of an Open Ball from One Observation Point Implies
Visibility of the Center of that Ball from Nearby Observation Points
The purpose of this subsection is to show that if an open ball of points is
visible in a common chamber C from a common observation point c0, then
there are points around c0 that can see the center of that open ball in the
same chamber.

For a given mirror system M in Rn, c0 ∈ Rn | d = d(M, c0) > 0.
Suppose, the open ball So(r,a), with the center at a and radius r > 0 is
visible from point c0 in the chamber C = CMk1Mk2 ...MkK

, K ≥ 0. Point
a transformed by the chamber C is given by mC(a) = mMk1Mk2 ...MkK

(a)
while the open ball So(r,a), transformed by the same chamber is the ball
So(r,mC(a)).

Statement A: Since all the points inside the open ball So(r,mC(a))
belong to the same chamber C, there is a common sequence of virtual
mirrors Q = (mMk1

(Mk1), mMk1Mk2
(Mk2), ..., mMk1Mk2 ...MkK

(MkK
)) that

is intersected by any ray starting from the origin c0 and ending at some
point inside the open ball So(r,mC(a)), see Fig. 4.10. For the special case
K = 0⇒ (c0 ∈ C0, a ∈ C0) and there are no intersections with mirrors.

Moreover, the intersection of any virtual mirror from sequence Q with
any of the rays is such that it is not along the hyperplane of the virtual
mirror since the partitioning assigns a common non-empty chamber to all
points of the open ball.
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In the following, we argue in a two-dimensional setting that is obtained
by embedding a ray through the observation point c0 and the center mC(a)
of the open ball So(r,mC(a)) in an arbitrary “cut plane” P . The intersec-
tion of this plane P with the world in the full Rn is used to construct our
argument.

Let us refer to the ray r̃(c0,mC(a) − c0) as the ’axial ray’. Consider a
2D plane P , i.e, a two-dimensional subspace of Rn containing the axial ray.
The intersection of the open ball So(r,mC(a)) and the plane P is the open
disk D with center mC(a) and radius r, see Fig. 4.10.

The points mC(a′) and mC(a′′) are the points of intersection of the
closure of the disk D with the tangent lines, passing through the common
point c0. The open disk D0 with the center at c0 and with radius d is the
intersection of the open ball So(d, c0) with P .

According to Statement A, virtual mirrors from the original sequence Q
intersect the plane P such, that the mirrors appear as open segments with
their ends at the different sides of the angle α = ∠mC(a′)c0mC(a′′). In the
following, let us refer to this sequence of segments asQ, replacing the original
meaning with our 2D interpretation in plane P . Each segment contained in
the sequence is outside the two disks D and D0 In the illustration, Fig. 4.10,
these open segments are: (x1; y1), (x2; y2), ..., (xK; yK).

More specifically, all the segments are arranged in such a way, that: a)
for each such segment, if we divide the 2D plane P into two half-planes
along the line containing the segment, one half-plane contains the open disk
D0 and all those segments for which the virtual mirrors appear before the
current segment in sequence Q; while b) the other half-plane contains all
the remaining segments and the open disk D.

Lemma 9. In the above construction, for K > 0, consider the ray r̃1 from
the observation point c1 ∈ So(d, c0)∩P and passing through the pointmC(a).
If the first mirror reflecting the ray r̃1 is mirror Mk1 and the reflection point
is z1 ∈ (x1; y1), then the point a is visible in chamber C as seen from c1.

Proof. We prove the lemma by mathematical induction. The base for induc-
tion is the Lemma’s condition that the ray r̃1 is intersecting the mirror Mk1

first. Suppose now, the physical ray path for the ray r̃1 has u first reflec-
tions, 1 ≤ u ≤ K, taken in the sequence Mk1 ,Mk2 , ...,Mku . If u = K = 1,
then the lemma is true.

Otherwise, let us prove that the physical ray path for the ray r̃1 continues
to u+ 1 mirrors in the sequence Mk1 ,Mk2 , ...,Mku ,Mku+1 .

The ray r̃1 intersects the mirror Mk1 , i.e. the mirror coincident with the
virtual mirrormMk1

(Mk1) at point z1. Moreover, according to the conditions
of the Lemma, this is the first intersection along the ray r̃1. Now, the point
z1 ∈ (x1; y1) is inside the angle α = ∠mC(a′)c0mC(a′′). Since mC(a) is
contained in the same angle and the angle is a convex set, all the points in
the interval [z1;mC(a)] are also inside the angle α.
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Moreover, by assumption, the physical path for the ray r̃1 encounters
the same first u mirrors in the sequence Mk1 ,Mk2 , ...,Mku as any other ray
connecting c0 and So(r,a).

Then, according to Corollary 3 and 4, the ray r̃1 has the same sequence
of virtual mirrors (mMk1

(Mk1), mMk1Mk2
(Mk2), ..., mMk1Mk2 ...Mku

(Mku))
and intersects them at the points z1, z2, ..., zu correspondingly, where zi ∈
(xi; yi), i = 1..u.

Thus, after intersection with the virtual mirror mMk1Mk2 ...Mku
(Mku), the

ray partitioning ΠM(r̃1) will have a following unfolded segment [zu; z∗) as-
sociated with the chamber CMk1Mk2 ...Mku

, where z∗ ∈ r̃1. Let us show, that
z∗ = zu+1.

The point z∗ must correspond to a point on a mirror from mirror system
M in the space Rn, transformed by the chamber transformation associated
with chamber CMk1Mk2 ...Mku

.
Then z∗ ∈ (zu; zu+1). Otherwise, the ray r̃1 will intersect the point

zu+1 first, which is the point on the mirror Mku+1 and which is assigned to
chamber CMk1Mk2 ...Mku+1

by the ray partitioning ΠM(r̃1).
But if z∗ ∈ (zu; zu+1), then the ray r̃(c0, z∗−c0) in angle α is intersecting

the point z∗ in the chamber CMk1Mk2 ...Mku
which is a contradiction because

the next intersection point belongs to the next chamber CMk1Mk2 ...Mku+1
.

Thus, z∗ = zu+1 and the physical ray path for the ray r̃1 begins with
u+ 1 reflections in the sequence Mk1 ,Mk2 , ...,Mku ,Mku+1 .

Corollary 6. The statement of the Lemma remains true for the case K = 0,
i.e. C = C0, if we change the requirement for the ray r̃1 to hit the mirror
Mk1 first to the requirement that the ray r̃1 can be divided into two parts by
a point ξ ∈ Rn such that:

1. ξ is inside the angle ∠mC(a′)c0mC(a′′);

2. Points ξ and c0 are either on the same half-plane, relative to the mirror
Mk1 or ξ is on the mirror Mk1 (in case of no mirrors we require the
point ξ to be between c1 and mC(a));

3. [c1; ξ) ∩Mf = ∅.

Mirror Systems are Observer-Continuous
On the basis of the previous Lemma and its Corollary, we now prove the
following theorem:

Theorem 2. In Rn: (∀M, Given any chamber C and c0 ∈ Rn | d =
d(M, c0) > 0) ⇒ (M is observation-continuous with respect to point c0
and chamber C).
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Figure 4.10: Mirror systemM, intersected by the 2D plane P.

Proof. Suppose, chamber C = CMk1Mk2 ...MkK
with K ≥ 0. A point a ∈ Rn

transformed by chamber C is mC(a) = mMk1Mk2 ...MkK
(a). Suppose also

that the point a is visible in chamber C together with an open ball So(r,a).
The transformation of the open ball So(r,a) by chamber C is given by the
open ball So(r,mC(a)).

We define again an ’axial ray’, i.e. the ray r̃a = r̃(c0,mC(a) − c0)
and a segment connecting the observation point c0 and the center of the
chamber-transformed ball So(r,mC(a)): L = d(c0,mC(a)), see Fig. 4.11.

To prove the theorem, it suffices to prove that there is a d1 > 0, such
that choosing any point c1 ∈ So(d1, c0) results in the point a being visible in
chamber C as seen from point c1. An equivalent requirement is that the ray
r̃c1 = r̃(c1,mC(a)−c1), up to the point mC(a) intersects the sequence of vir-
tual mirrors Q = (mMk1

(Mk1), mMk1Mk2
(Mk2), ..., mMk1Mk2 ...MkK

(MkK
)).

Note that if 0 < d1 < d ⇒ So(d1, c0) ∩M = ∅. Thus, for any ray with
the origin situated inside the open ball So(d1, c0), its partitioning associates
all points of the ray inside the ball So(d1, c0) with the base chamber C0.

If the point c1 ∈ So(d1, c0) and c1 lies on the line containing the axial
ray, the statement is obviously true.
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Otherwise, let us consider the 2D plane P spanned by the axial ray
and the point c1. As in the previous Lemma, the open disk D with center
mC(a) and radius r is the intersection of the open ball So(r,mC(a)) and the
plane P . The points mC(a′) and mC(a′′) are the points of intersection of
the closure of disk D with those tangent lines that are passing through the
common point c0. The open disk D0 with the radius d is the intersection of
the open ball So(d, c0) and the plane P .

Figure 4.11: Sketch of projection of the unfolded mirror system onto the
plane P spanned by points c0, c1 and mC(a), when L2 > r2 + d2.

There exist two cases: 1) L2 > r2 +d2 (Fig. 4.11, the balls around c0 and
mC(a) do not intersect), and 2) L2 ≤ r2 +d2 (Fig. 4.12, the balls intersect).
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Figure 4.12: The case, when [d(c0,mC(a))]2 = L2 ≤ r2 + d2.

1. The situation is similar to Fig. 4.10. Consider the two points h1
and h2, the intersections of the border of disk D0 with the segments
[c0;mC(a′)] and [c0;mC(a′′)], respectively. Consider now the angle
∠h1mC(a)h2. It can be shown (see Appendix A) that the distance
from point c0 to the sides of the angle is given by:

d(c0,b1) = d(c0,b2) = r · d√
(
√
L2 − r2 − d)2 + r2

, (4.2)

Let d1 = d(c0,b1) = d(c0,b2). From Eq. 4.2 we see that d1 =
r·d√

(
√
L2−r2−d)2+r2

> r·d√
(
√
L2−r2)2+r2

= r·d
L . On the other hand, since

case 1) covers L2 > r2 + d2 ⇒ d1 = r·d√
(
√
L2−r2−d)2+r2

< r·d
r = d.

Consequently:

r · d
L

< d1 < d. (4.3)

If the point c1 is situated inside the open disk with radius d1 and
center c0, then, obviously, the segment [c1;mC(a)] is inside the angle
∠h1mC(a)h2. Simultaneously, point c1 is automatically part of the
disk D0 since d1 < d.

Moreover, the point ξ, which is the intersection of the segment
[c1;mC(a)] with the border of the disk D0 (which is a circle) satisfies
the conditions of Corollary 6. Thus, the theorem is proven for the
case 1).
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2. The second case, L2 ≤ r2 + d2, is sketched in Fig. 4.12. Consider any
point z ∈ D0. The segment [z;mC(a)] is contained completely inside
the union of the two open disks D and D0. To see this, consider any
point on the segment [z;mC(a)], for example point f (see Fig. 4.12), to
be located outside of these disks. Then, d(f , c0) ≥ d and d(f ,mC(a)) ≥
r.
Adding the condition L2 ≤ r2 + d2 of case 2), we conclude that the
angle ∠c0fmC(a) ≤ π

2 and that therefore the angle ∠zfc0 = π −
∠c0fmC(a) ≥ π

2 . Thus, d(c0, z) > d(c0, f) > d which is contradicting
the assumption that z ∈ D0.
On the other hand, by using Lemma 8 we see that there are no real
and no virtual mirrors intersecting the disk D for any point z ∈ D0.
Thus, the union of the open disks D ∪D0 does not contain either real
or virtual mirrors.
Thus, the point a is visible from any point z ∈ D0 and, moreover, the
chamber C = C0.

In plain words, Theorem 2 states that if in a mirror system, the obser-
vation point c0 is remote from all mirrors of the system, and if, from c0, it
is possible to observe some ball with center a through a common reflection
sequence (chamber C), then there is a ball around the observation point c0
such that point a is visible in chamber C from any point within this ball.
Put differently, if the point of observation is smoothly changing, then the
set of observable points is also smoothly changing.

The next Corollary provides a bound for the radius of the ball around
the observation point c0:

Corollary 7. In Rn: (∀M, chamber C and c0 ∈ Rn | d = d(M, c0) > 0)
⇒ if So(r,a) is visible in chamber C, then the point a is visible from any
point of the ball So(d∗, c0), where

d∗ = min( r · d
d(c0,mC(a)) , d) > 0. (4.4)

4.2.2 Observer-Continuity For Point Sets
Definition 4.2.5. A mirror system M is called L-uniformly continuous
with respect to a given set of points of observation S ⊂ Rn iff ∀r > 0, ∃r1(r)
such that (∀C ∈ CM \ C∅, ∀a ∈ Rn,∀c0 ∈ S |

a) d(c0,mC(a)) ≤ L;
b) ∀a′ ∈ So(r,a)⇒ a′ is visible from c0 in chamber C)
⇒ ∀c′ ∈ So(r1, c0)⇒ a is visible from c′ in chamber C.
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The definition states that visibility is uniformly continuous within an
L-ball around an arbitrary c0 ∈ S, i.e. the radius r1 of the open ball around
c0 depends only on the globally chosen radius r of the open ball around
mC(a).

Theorem 3. If for a given mirror system M and a set of points S ∈ Rn,
the distance d(M, S) = d > 0, then for any fixed L > 0 the mirror system
M is L-uniformly continuous with respect to S.

Proof. Since d = d(M, S) > 0 ⇒ (∀c0 ∈ S ⇒ d(M, c0) ≥ d). Then by
Theorem 2 ∀c0 ∈ S, chamber C ∈ CM \ C∅ ⇒ the mirror system M is
observer-continuous with respect to point c0 and chamber C. Then (∀a ∈
Rn | (∀a′ ∈ So(r,a) ⇒ (a′ is visible in chamber C from point c0))) ⇒ a is
visible from any c′ ∈ So(r1, c0), where r1 = min( r·d

d(c0,mC(a)) , d) in accordance
with Corollary 7.

Selecting only such pairs a and C for which d(c,mC(a)) ≤ L results in
r1 ≥ min( r∗dL , d), fulfilling the theorem’s conditions.

If we consider a mirror system M, some finite n-dimensional area of
interest A ∈ Rn, some finite n-dimensional area of observation S ∈ Rn, d =
d(M, S) > 0 and a finite number of reflections N , then the area A in the
mirror systemM under the chamber transformation mC of a level not ex-
ceeding N will be at a finite distance to any of the points in S, this distance
not exceeding some L.

Theorem 3 implies, that in such case, we may sample all the possible
observations of up to N reflections of the set A as observed in the mirror
system M from the set of points S. The sampling can be made accurate
up to an arbitrary precision that is given in advance. This is achieved by
sampling S with a uniform grid, where the spacing of the grid is determined
by Corollary 7.

This situation is of practical interest since in a real scenario, the number
of reflections and the areas of interest and observations are limited.
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Conclusions

We have presented a theoretical toolbox for interpreting and analysing pla-
nar mirror systems. The key concept of this toolbox is the space partitioning
based on the well-known ray straightening procedure. With support of the
partitioning concept we have shown the continuity of planar mirror systems
with respect to observation point change. This result may lead to global
optimization schemes for determining a best observer position in a given
mirror system. Additionally, the result enables direct triangulation within
unfolded space, a capability that may lead to new reconstruction schemes.

In the following part of the thesis we start using our theoretical basics for
approaching practical problems involving planar mirror systems in computer
vision.
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PART III

Three-Dimensional Kaleidoscopic
Imaging





Introduction

In this part of the thesis, we start using the theory, developed in the previous
part, for practical applications. The main application class considered here
is multi-view imaging and multi-directional illumination.

The classical way to acquire multi-view imagery is the use of multi-
camera systems [Wilburn05] or light field camera designs [Levoy96, Gortler96,
Ng05]. These options are typically expensive if many cameras are used,
or involve time-sequential capture. In addition, available sensor resolu-
tion is used inefficiently, mostly recording background information. For
in-camera light field imaging, e.g. [Ng05], there is the limited aperture
of the main lens and thus the achievable coverage of view-points is lim-
ited. Time sequential capture can also be performed with a moving planar
mirror [Murray95, Ihrke08, Hu09]. Mirrors have also been used to cap-
ture light field information [Levoy04, Sen05] but without considering inter-
reflections. Light field imaging has also been performed with a conical mir-
ror [Taguchi10a]. More typically, catadioptric systems are used to achieve
a wide field of view as in panoramic imaging, e.g. [Lin06]. 3D reconstruc-
tion using a conical mirror device by taking multiple images has also been
demonstrated [Kuthirummal06].

Multi-directional illumination is often applied for reflectance field acqui-
sition. The classical ways here are similar to the camera case. They can be
classified into those, which capture the scene time sequentially while mov-
ing the light source(s) and/or the object [Debevec00, Schwartz13, Holroyd10,
Masselus03, Lensch03] and into those, utilizing a large amount of fixed light
sources [Schwartz11, Ben-Ezra08].

In contrast to all these techniques, kaleidoscopic systems enable to per-
form massively multi-view imaging with a single high-resolution camera us-
ing only a single image as well as performing multi-directional illumination
with a single projector.



66 Introduction



CHAPTER 5

The Labeling Problem and its
Solution

5.1 Planar Mirror System Containing Objects
In the theoretical Part II of this thesis we introduced unfolding for an arbi-
trary planar mirror system. However, we assumed an absence of obstacles
along the path of rays. When objects are introduced into a mirror sys-
tem, some rays may be blocked by these objects after a certain number of
reflections.

LetM be a planar mirror system in Rn, H a set of rays in Rn (r̃(c,d) ∈
H ⇒ c ∈ (Rn \Mf )), and O1 tO2 ⊂ (Rn \Mf ) two distinct sets of points
(two objects: foreground O1 and background O2) in Rn, see Fig. 5.1.

Definition 5.1.1. Observable object (in a chamber). In a mirror
system M an object O1 is observable by the ray r̃ = r̃(c,d) ∈ H in a
non-empty chamber CMk1Mk2 ...MkL

iff

• ∃o1 ∈ O1 | ( point o1 is visible, Def. 4.1.17, from c in direction of d
in a chamber CMk1Mk2 ...MkL

, at a distance λ1 ≥ 0).
• 6 ∃o2 ∈ O2 | ( point o2 is visible from c in direction of d, at distance
λ2 < λ1, λ2 ≥ 0), i.e. there is no earlier ray intersection with the
background object.

• (∀o′ ∈ O1, Cx ∈ {C0, CMk1
, CMk1Mk2

, ..., CMk1Mk2 ...MkL−1
}) ⇒ (the

point o′ is not visible in chamber Cx from the point c in direction d),
i.e. the object does not block the ray itself at an earlier reflection.



68 Chapter 5. The Labeling Problem and its Solution

Figure 5.1: Illustrating an object O1, its convex bounding set O1 and a
background O2 in a mirror system M containing three mirrors M1, M2,
M3.

In our practical experiments we will work in R3. The setH models a cam-
era/projector, where every pixel is represented by one ray, O1 is an object of
interest, while all other physical objects, excluding the mirrors forming the
mirror system M (e.g. background area, camera and/or projector body)
will be represented by O2.

We also need to introduce O1 which is a convex bounding set for the
object O1, see Fig. 5.1. More precisely, we require O1 ⊂ (Rn \ Mf ) |
(O1 ∩O2 = ∅, O1 is a convex set, and O1 ⊂ O1). The convex bounding set
will be necessary for our theoretical argumentation and later, in practical
applications, we will use it as the object’s bounding box.

Let an object O1 be observable by ray r̃ = r̃(c,d) ∈ H in a non-empty
chamber CMk1Mk2 ...MkL

of a mirror system M. It follows that the virtual1
object mMk1Mk2 ...MkL

(O1) is the first obstacle on the way of the straight-
ened ray r̃. For our applications it is more convenient to consider different
virtual views rather than different virtual objects, Section 3.1. This can be
achieved by applying the inverse chamber transformations m−1

Mk1Mk2 ...MkL

to those chambers, where the object O1 is observed. The result is the vir-
tual ray m−1

Mk1Mk2 ...MkL
(r̃) which first hits the object O1 (this is because

mMkL
MkL−1 ...Mk1Mk1 ...MkL−1MkL

(O1) = O1).
Because rays are propagating independently from each other, for a given

set of rays H, an object O1 may be observable in different chambers for

1From now on, to avoid repetitive statements, the word ’virtual’ includes also the real
case.
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different rays, causing different virtual view points of the object. For ex-
ample, if all the rays in H have a common origin c0 (a projection center),
then the object O1 may be observable from different virtual points of view
(according to those chambers where the object O1 is observable). This is
how an object inside a kaleidoscope, observed by a single camera, can be
seen from different virtual points of view.

In practice, the overall number of rays is usually much larger than the
number of considered chambers. Therefore, it is convenient to perform a ray
classification, joining into the same class those and only those rays which
observe the object O1 in a common chamber and those that do not see
the object O1. More precisely this classification can be summarized in the
following

Definition 5.1.2. Labeling function.
Consider a mirror system M with objects O1 and O2, and a ray r̃ =

r̃(c,d), c ∈ (Rn \Mf ). The labeling function LabelM,O1,O2(r̃) =C
−1
Mk1Mk2 ...MkL

, if the object O1 is observable by r̃ in CMk1Mk2 ...MkL

∅, otherwise.

Note that the labeling function is a function as for each ray there is no
more than one chamber, where the object is observable.

If H is a set of rays in mirror system M with objects O1 and O2,
then H can obviously be decomposed into H=H∅ t H1 t H2 . . . t HN . . .,
where H∅ = Label−1

M,O1,O2
(∅) ∩ H, H1 = Label−1

M,O1,O2
(C−1

1 ) ∩ H, H2 =
Label−1

M,O1,O2
(C−1

2 ) ∩H,. . ., HN = Label−1
M,O1,O2

(C−1
N ) ∩H,. . ..

Here Label−1
M,O1,O2

(x) means the set of all the rays from H for which
the labeling function is equal to x. C−1

1 , C−1
2 , ...,C−1

N , ... are the inverted
enumerated chambers (chambers are countable, see Part II) of the mirror
systemM.

Then the object O1 is observed from the following sets of virtual rays:

V1 = m1(H1), V2 = m2(H2), ...,mN (HN ), .... (5.1)
Here mi, i ≥ 1, are the chamber transformations corresponding to the

chambers Ci. On the other hand, the object O1 is not observed from the set
of rays H∅.

In real applications, the set of rays H is finite. In this case, no matter
if object O1 is observable in a finite amount of chambers or not, the set in
Equation 5.1 contain only a finite amount of non-empty elements.

Definition 5.1.3. Virtual viewset. We refer to an element mi(Hi) from
the set in Equation 5.1 as a virtual viewset Vi.

An obvious property of virtual viewsets is that if all the rays in H have a
common origin, any non-empty virtual viewset has a common virtual origin,
i.e. a virtual viewpoint.
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C1

2

3
4

5
67

Figure 5.2: Labeled pixels providing virtual viewpoints. Virtual objects
1 − 4 are fully observable, 5 and 6 are partially observable while 7 is fully
occluded. Even if 7 was observable only part of it could be observed due to
the space partitioning introduced by the mirrors.

Definition 5.1.4. Virtual viewsets observing the object. Let the
set of rays H be finite. Then we define the set of virtual viewsets where
the object O1 is observable as V (M, O1, O2, H), i.e. V (M, O1, O2, H) :=
{Vi1 , Vi2 , ..., ViL}, where Vij (j = 1..L) are those and only those virtual
viewsets that are non-empty.

If the labeling function for the whole set of rays H is known, the cor-
responding set V of virtual viewsets observing the object is well-defined
and can be directly used in multi-view applications. Practically, when H
is finite, the set of virtual viewsets observing an object may be constructed
by classifying each ray in H separately into viewsets. The labeling function
LabelM,O1,O2(H) (and the set V (M, O1, O2, H)) depend onM, O1, O2, and
H. When all these parameters are known, the labeling (and thus the virtual
viewsets) are trivial to obtain. An illustration of this in case of a projective
observer C in 2D is shown in Fig. 5.2. Differently colored cones encode
different viewpoints of the object. Virtual objects 1−4 are fully observable,
5 and 6 are partially observable while 7 is fully occluded. Even if 7 was
observable, only part of it could be observed due to the space partitioning
introduced by the mirrors. As can be seen from the figure, to estimate the
labeling function, the object only has to be intersected in all its observable
mirrored positions, as determined by the space-partitioning of the system,
with occlusion taken into account (see Definition 5.1.2).

In practice, the geometric calibration steps described in Section 3.3.1
provide us withM and H. We organize the background O2 in such a way
that it is not influencing the observability of the object O1 (this is possible if,
for example, O2 is outside of the convex hull of the mirror system). However,
the geometry and exact pose of O1 is, usually, unknown. Thus, to recover
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the labeling function, it is necessary to infer some geometric structure of the
object under consideration.

5.2 Visual Hull as Sufficient Approximation
of the Object for the Determination of
the Labeling Function

In the previous section we showed, that knowledge of O1 is required to
evaluate the labeling function (and the set of virtual viewsets). In this
section we show, that, under special conditions, the labeling function can be
recovered if only a certain visual hull (for the definition of a visual hull see
Section 3.2.1), of the object O1 is known. For simplicity, we consider only
the case where the observer uses a central projection model (all rays in H
have a common origin c0), but it is relatively straightforward to generalize
the argument to arbitrary sets of rays H (in this case multiple unfoldings
with different observation points should be considered).

Theorem 4. Let a mirror system M, with foreground and background ob-
jects O1 and O2 be observed by a bundle of rays H with a common origin
c0.

Let S={C1, C2, ..., CN , ...} be the set of chambers observable from point
c0, i.e. those and only those chambers, where at least one point in (Rn\Mf )
is visible from c0).

Let S∗={C∗1 , C∗2 , ..., C∗N , ...} be the set of inverted chambers obtained
from S, i.e. C∗i = C−1

i .
Let V ∗={m∗1(c0), m∗2(c0), ..., m∗N (c0), ...} be the set of virtual view-

points, corresponding to the chambers from S∗, i.e. m∗i (c0) = mC−1
i

(c0) =
m−1
Ci

(c0).
Suppose ∃O1 (a convex bounding set for the object O1, O1 ∩Mf = ∅).

Then ∀r̃ ∈ H ⇒ LabelM,O1,O2(r̃) = LabelM,V H(O1,V ∗)∩O1,O2
(r̃).

Proof. We proof the theorem in two steps.
1) If the object O1 is observable by the ray in the chamber Ci (chamber,

inverted to the chamber C∗i ), then the object V H(O1, V
∗) ∩O1, containing

O1, is also observable (in chamber Ci or in one of the preceding chambers).
Let for some ray r̃ ∈ H ⇒ LabelM,O1,O2(r̃) 6= ∅. Then ∃!C∗i =

CMkL
MkL−1 ...Mk1

∈ S∗ | LabelM,O1,O2(r̃) = C∗i . But O1 ⊆ (V H(O1, V
∗)∩

O1) ⇒ LabelM,V H(O1,V ∗)∩O1,O2
(r̃) = C∗j , where C∗j ∈ {C0, CMk1

, CMk2Mk1
,

..., CMkL
MkL−1 ...Mk1

}.
2) A ray from H that has a label under V H(O1, V

∗) ∩O1 has the same
label under O1.
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For some ray r̃, let r̃ = r̃(c0,d) ∈ H ⇒ LabelM,V H(O1,V ∗)∩O1,O2
(r̃) 6= ∅.

Then ∃!C∗i = CMkL
MkL−1 ...Mk1

∈ S∗ | LabelM,V H(O1,V ∗)∩O1,O2
(r̃) = C∗i .

Because O1 is convex and does not contain points from Mf , the set O1 ∩
m∗i (r̃) is connected and does not contain points fromMf . Thus, the points
mi(O1) ∩ r̃ [and, consequently, the points mi(V H(O1, V

∗) ∩ O1) ∩ r̃] are
assigned to the common chamber Ci (according to the value of the labeling
function) in the space partitioning Π∗M(c0) and none of these points belongs
to mi(O2) (O1 ∩O2 = ∅). On the other hand, m∗i (c0) ∈ V ∗ and thus, from
the visual hull definition, m∗i (r̃) ∩ O1 6= ∅ while m∗i (r̃) ∩ O1 ⊂ m∗i (r̃) ∩
V H(O1, V

∗). Consequently, ∅ 6= m∗i (r̃) ∩O1 = m∗i (r̃) ∩O1 ∩O1 ⊂ m∗i (r̃) ∩
V H(O1, V

∗)∩O1⇒ [if we apply mirror transformationmi(∗)]∅ 6= r̃∩mi(O1)
⊂ r̃ ∩ mi(V H(O1, V

∗) ∩ O1) which is entirely assigned to the chamber Ci
and contains no points from mi(O2). Then the ray r̃ is intersecting the
virtual object mi(O1) in chamber Ci and does not intersect any virtual
copies of O2 or O1 before this event. Thus, LabelM,V H(O1,V ∗)∩O1,O2

(r̃) =
LabelM,O1,O2(r̃).

Arguments 1) and 2) prove the theorem.

Theorem 4 allows us to estimate the labeling function using only the
visual hull of an unknown object O1, i.e to establish a proper labeling we
do not actually need to know the true object geometry, but an object visual
hull V H(O1, V

∗) suffices. However, if the number of reflections is unlimited,
the set of virtual viewpoints V ∗ may contain an infinite amount of elements,
even if the ray set H is finite.

5.3 Visual Hull Estimation
While the knowledge of the visual hull V H(O1, V

∗) of the foreground object
O1 is sufficient to exactly recover the labeling function (and the set of vir-
tual viewsets), it is more practical to be able to produce a labeling function
for arbitrary objects directly from the kaleidoscope images. In this case the
visual hull computation is restricted by self-occlusions and partial visibility
in different chambers. Our method is to find an approximation of the la-
beling function using an approximation to the visual hull V H(O1, V

∗). The
approximation of the object’s visual hull is based on considering rays that
do not intersect any real or mirrored version of the object.

If, in the kaleidoscopic setup, gaps between an object and its mirror
images are observable, these gaps provide the means to perform an approx-
imation of the visual hull V H(O1, V

∗) of the object.
Consider a ray that does not intersect the object nor any of its virtual

counterparts. Folding back this ray into the base chamber, we obtain a re-
flected light path that is guaranteed to be free of intersections. Performing
this operation on the set of all rays that do not intersect the object anywhere
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in mirror space, we obtain a space carving scheme to determine an approx-
imation of the visual hull V H(O1, V

∗) of the object O1: It is computed by
successively removing free space from an initial volume (convex bounding
set O1) that is marked as containing the object O1.

Definition 5.3.1. The approximation of the intersection of a visual hull
V H(O1, V

∗) with a bounding volume O1, obtained by the algorithm above is
called kaleidoscopic visual hull. We denote it as KVH := KVH(O1, O1,
V ∗0 ), where V ∗0 is the set of virtual viewpoints that is generated by the virtual
chambers that are intersected by rays from H.

Using KVH(O1, O1, V
∗

0 )=KVH(O1, O1, V
∗

0 )∩O1, our labeling function
approximation method can be explained by the following three steps:

1. We compute KVH(O1, O1, V
∗

0 ), where KVH(O1, O1, V
∗

0 )=KVH(O1,
O1, V

∗
0 )∩ O1 ≈ V H(O1, V

∗)∩ O1;
2. Then LabelM,KV H(O1,O1,V ∗0 ),O2

(H) = LabelM,KV H(O1,O1,V ∗0 )∩O1,O2
(H)

≈ LabelM,V H(O1,V ∗)∩O1,O2
(H);

3. Using Theorem 4, LabelM,V H(O1,V ∗)∩O1,O2
(H) = LabelM,O1,O2(H).

Then LabelM,KV H(O1,O1,V ∗0 ),O2
(H) ≈ LabelM,O1,O2(H).

The space carving nature of the kaleidoscopic visual hull computation
approach provides us with some additional properties:

1. If the calibration of the system is perfect in the sense that all rays from
H that do not intersect the object in the mirror space are precise, the
kaleidoscopic visual hull KVH(O1, O1, V

∗
0 ) is always larger or equal

to the intersection of the object’s visual hull with a bounding set:
V H(O1, V

∗) ∩O1.
2. The first property remains true if instead of considering complete ray

paths, we use only parts of them. For example, we can select only ray
paths up to a limited number of reflections, up to a given distance, or
even restrict the computation to some set of intervals or points on the
ray path. Finally, it is possible to ignore any subset of rays in H (this
corresponds to parts of the camera/projector image).

3. If a background ray is selected incorrectly (i.e., it intersects the object
in one of the virtual chambers) or if the background ray is badly cal-
ibrated (it propagates too far from the estimated trajectory) it may
"damage" the visual hull approximation by cutting extra volume, that
belongs to the visual hull V H(O1, V

∗), see Fig. 5.4 (e)-(f)-(g).

The properties above are useful in practical situations. They allow us
to not propagate rays too far. Typically, no more than 7-9 reflection levels
were considered in our experiments. The main reason is the relatively low
calibration precision at high levels of reflections. Another reason is to limit
the computational costs.
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Figure 5.3: Unreliable pixel labeling can occur by a ray intersecting the
kaleidoscopic visual hull while the real ray passes the object. Two cases are
important: (a) the ray passes at an object boundary and (b) the object has
a hole that cannot be recovered from kaleidoscopic silhouette information.
(c) The pixels can be grouped into reliable and unreliable pixels according to
the number of kaleidoscopic visual hulls they intersect (one and more than
one respectively).

5.4 Applicability of the Kaleidoscopic Visual
Hull for Image Labeling

The kaleidoscopic visual hull computed as described above can effectively be
used as a geometric proxy for the object. By transforming the kaleidoscopic
visual hull into the mirror chambers and intersecting the straightened camera
rays in unfolded mirror space with the set of mirrored kaleidoscopic visual
hulls, we can label the rays with respect to the mirror chamber where the
ray first intersects the kaleidoscopic visual hull. This way a virtual view
of the object is determined for each pixel. In the following, we discuss the
limits of applicability of this scheme.

If we aim to properly label a set of rays H (e.g. an image of a camera),
we, ideally, should know the visual hull V H(O1, V

∗), where V ∗ is defined
as above. But the proposed labeling scheme has one important drawback:
the kaleidoscopic visual hull is not the object’s visual hull V H(O1, V

∗).
Especially in cases of overlapping silhouettes it is possible that rays that
intersect the kaleidoscopic visual hull do not actually intersect the object’s
visual hull V H(O1, V

∗), see Fig. 5.3.
In practical situations, the case of Fig. 5.3 (a) is the most important.

The kaleidoscopic visual hull as obtained from the mirror system is slightly
too large and the ray r̃ is not intersecting object O1 (and its visual hull
V H(O1, V

∗)) while intersecting its kaleidoscopic visual hull. The pixel is
classified as belonging to base chamber C0. In reality, however, the ray
intersects the virtual object O′1 obtained by reflection through mirror 1 and
thus should be labeled as belonging to chamber C1.

We have been unable to provide a narrow classification rule for these
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types of pixels. We can however show that the problem is unsolvable for
general objects and that there is thus no simple solution, i.e. one without
heuristics. Consider the case of Fig. 5.3 (b). The real object O1, which has
the same kaleidoscopic visual hull as O1 of Fig. 5.3 (a), has a very narrow
hole (in the limit a Dirac-like opening only permitting a single ray), only
visible from c. The ray passes through the hole but is blocked by virtual
object O′1. Since the hole direction only permits a single ray, the hole is
not visible from any other direction. It is thus impossible to update the
kaleidoscopic visual hull to include the hole (in contrast, the visual hull
V H(O1, V

∗) will have this hole) and the labeling fails. The proper course of
action is to classify all pixels corresponding to rays intersecting more than
one real or virtual kaleidoscopic visual hull of the object as unreliable which
means that they cannot be properly assigned to any particular view, see
Fig. 5.3 (c). Note however that there is only a certain number of candidate
views, namely the ones corresponding to the intersected virtual kaleidoscopic
visual hulls. Future multi-view algorithms could exploit this information.

In practice the hole problem, Fig. 5.3 (b) is insignificant in all cases that
we investigated. The case of Fig. 5.3 (a) however, where different virtual
views meet side by side, is unavoidable except for simple systems where there
is no overlap between mirror images. The better the kaleidoscopic visual hull
approximates the visual hull V H(O1, V

∗), the smaller is this error. Since we
have a large number of views (typically around 200 usable ones) this error
is small and can be mitigated by enforcing a safety region around occlusion
boundaries in image space.

5.5 Projector Image Labeling
When a projector is introduced into a planar kaleidoscopic system it is
possible to highlight the object from different virtual directions. These can
be determined by the same unfolding procedure as in the camera case. This
property is especially useful for reflectance measurements, but superposition
of light due to possible illumination of the same surface areas from different
directions is highly undesirable in such applications.

The solution to this problem is to illuminate the object from a single
virtual projector view at a time. This can be easily done if the projector’s
image is properly labeled.

Unfortunately, in contrast to the camera, it is not obvious how to classify
projector rays into those which propagate through the kaleidoscope without
intersection with the object and those that highlight the object (we also need
to know from which virtual view the object was illuminated). Thus, the
visual hull estimation algorithm (see Section 5.3) is not directly applicable
in case of a projector.

However, the labeling procedure is rather independent from the way
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we obtained the object’s visual hull approximation. Thus, to produce an
approximate labeling it is possible to use the approximation to the visual hull
V H(O1, V

∗) of the object O1. In particular, such visual hull approximation
may be the kaleidoscopic visual hull KVH(O1, O1, V

∗
1 ), produced from a

different set of rays H1 (for example from a camera). Then, if the projector
is calibrated, the labeling is straightforward.

In Chapter 6 we develop a joint reflectance and geometry scanner, ex-
ploiting the possibility of labeling the projector’s image by using the kalei-
doscopic visual hull obtained from a camera, observing the same scene, but
from a different viewpoint.

5.6 Non-central Projection Camera and Pro-
jector Image Labeling

In the previous sections we discussed the labeling for central projection cam-
eras and projectors. In such cameras and projectors all the camera/projector
rays are originating from a single point, i.e. from the projection center. The
projection center is the point of observation in the mirror system and the
determining parameter for the space partitioning (or unfolding) into cham-
bers. The space partitioning for the central projection camera or projector
is therefore single and common for all image rays.

When the camera or the projector are non-central projection devices,
each image ray is originating from its own 3D point, i.e. in the non-central
projection case each image ray has its own space partitioning. Note, as the
mirrors do not change, the virtual chambers remain unchanged for different
rays. Only the chamber visibility may vary.

Our labeling procedure performs independent computations for different
image rays. Which makes it applicable for non-central projection devices
without any modifications. The only difference is that the visualization
of the situation (in the sense of unfolding) is becoming more complicated.
On the other hand, if the camera or projector imaging properties are close
enough to being central-projective and if the image rays are sufficiently
bounded, we can still approximate the system with a single space partition-
ing from the average projection center. The theoretical foundations for such
possibility are established in Part II of the thesis, where the mirror systems
were shown to be L-uniform continuous under the move of the point of ob-
servation. We will use this fact in Section 6.3, where we employ a non-single
projection center galvanometric laser scanning system for illumination.
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5.7 Segmentation
Our visual hull estimation approach is based on a binary segmentation of
the camera image into background (gaps between objects) and foreground
(rest of image).

The three properties of our visual hull estimation approach, mentioned
in Section 5.3 require our segmentation to be precise in determining the back-
ground pixels to avoid damaging the kaleidoscopic visual hull (see Fig. 5.4 (e)-
(f)-(g)). On the other hand, we often may leave many background pix-
els in the foreground class with only minor effect on the KVH quality,
see Fig. 5.4 (b). In other words, incorrect silhouettes should never under-
estimate the object since this leads to erroneous space carving results, while
coarse silhouette estimates can in fact be used with such system. Moreover,
some of the pure foreground pixels, where the object is visible in some vir-
tual chamber, may be assigned to the background if this chamber and all the
chambers succeeding it are not considered by our volume carving algorithm
for that particular image pixel.

5.8 Experiments
It should be noted that the tools developed so far are applicable to any
system of planar mirrors. In this section we concentrate on a specific kalei-
doscopic setup to verify our theoretical developments in practice.

5.8.1 Setup Details
We chose the frustum of a triangular pyramid as our base chamber, the
narrow end pointed downward, see Fig. 5.5.

We chose the opening angle of the system to permit up to 10 levels of
reflection (≈ 6.8◦). The setup was recorded by a Canon 5D Mark II equipped
with a Canon EF14mm f/2.8L USM lens. The smallest aperture of this lens
is f/22. We set it to f/20 for our experiments to have large enough depth-
of-field and to limit diffraction effects. The mirrors are optical front-surface
mirrors of a trapezoidal form, see Fig. 5.5 (right), in the low end of the price
range (≈ AC200 for three of them).

After the calibration of the intrinsic, extrinsic and radiometric param-
eters of the camera, the geometry, and the reflectivity coefficients of the
mirrors, Section 3.3, our system is ready to capture the scene.

5.8.2 Space Carving Implementation
We implemented our space carving scheme as a voxel-based algorithm. The
voxel grid is defined in the base chamber. To account for diverging rays we
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Figure 5.4: (a) Image of an object (Emily) inside our kaleidoscope. (b)
Binary segmentation of the image (black is the background). Note, that
the segmentation is far from the perfect one, but the resulting kaleidoscopic
visual hull (c) and labeling (d) are good. Moreover, most of the remaining
unsegmented background pixels do not contribute to the visual hull estima-
tion anymore. (c)-(d) Kaleidoscopic visual hull and labeled image, based
on segmentation (b). (e) Binary segmentation of the image with one small
region incorrectly marked as background. (f)-(g) Kaleidoscopic visual hull
and labeled image, based on segmentation (e). The small region misclassi-
fied as background "damaged" the kaleidoscopic visual hull and the labeling
with a hole in one of the wings of Emily. It is not straightforward to fix
this hole if the incorrectly segmented area is unknown. This is due to the
fact, that there are multiple potential places (see, for example, the number
of labels in (g) having a hole in the wing now) in the segmented image, that
could have caused the incorrect result.
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Figure 5.5: Photograph of our practical setup, left. A view inside showing
the mirror space, middle. Draft of one of the three identical mirrors in the
kaleidoscope, right.

Figure 5.6: In this figure the estimated mirrors are superimposed as atten-
uation layers (the original image is shown in Fig.2.5 (middle)). Notice, that
the mirror planes are not connected (dark stripes) due to the safety regions.

implemented a sub-sampling scheme for the pixels in the camera view. We
also exclude a region of ε ≈ 5mm around the mirrors borders (safety regions)
to avoid erroneous ray paths due to potential errors in the estimation of the
mirror plane parameters, see Fig. 5.6. To achieve the most efficient use of
the available voxel resolution, the size of the bounding box of the voxel grid
is chosen to enclose the object tightly. The number N of reflection levels to
be used for visual hull reconstruction and pixel labeling is a user parameter
to our algorithm.

5.8.3 Results
We recorded our images at a resolution of 3866 × 2574 pixels. The data
sets as well as the computed kaleidoscopic visual hulls, labeling and radio-
metrically corrected images are shown in Fig. 5.7. Table 5.1 summarizes
some statistics. All results have been computed only using the silhouette
image and the calibration information. The objects cover different sizes and
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Figure 5.7: Results from top to bottom: input image, silhouette image, kalei-
doscopic visual hull, corresponding labeling, reliable pixels, radiometrically
compensated image.



5.9. Limitations 81

object refl. KVH discretiz. views labeled unrel. occ. bnd.
Cone 7 256×256×236 128 18.38% 2.31% 0.08%
Cone 8 256×256×236 166 19.60% 4.44% 0.12%
Cone 9 256×256×236 212 19.91% 5.04% 0.20%
Duck 7 256×256×221 128 15.16% 1.44% 0.06%
Duck 8 256×256×221 166 15.94% 3.46% 0.12%
Duck 9 256×256×221 212 16.24% 5.97% 0.19%
Pumpkin 7 300×300×346 128 25.70% 5.89% 0.16%
Pumpkin 8 300×300×346 166 27.20% 8.94% 0.21%
Pumpkin 9 300×300×346 212 27.79% 12.86% 0.26%
Vase 7 256×256×354 128 29.02% 10.64% 0.25%
Vase 8 256×256×354 166 30.41% 13.49% 0.33%
Vase 9 256×256×354 212 31.08% 15.29% 0.39%

Table 5.1: Statistics for the different data sets. From left to right: name of
the data set, number of reflection levels used to compute result, discretiza-
tion of the kaleidoscopic visual hull, number of virtual views that have been
used for computation, the number of labeled pixels, unreliable pixels as a
percentage of labeled pixels, and number of pixels in a 3-pixel error region
to each side of an occlusion boundary. We used 9 sub-samples per pixel for
all results shown here.

vary drastically in silhouette quality. The results in the figure were com-
puted using the information from 8 levels of reflection, equaling 166 views.
For 9 reflection levels results deteriorated due to insufficient accuracy of the
silhouette estimation (chromatic aberration) and residual radial distortion,
see Sect. 5.9. The dark streaks in the images are due to the safety region
around mirror boundaries. As can be seen in the results, we achieve almost
pixel-accurate labeling results: if errors occur, they are conservative, i.e. to
the inside of the object. Even if sub-optimal, the labeling is thus still cor-
rect. Overlaps between virtual views can be well resolved. The table shows
that the unreliable pixel measure is overly conservative and that a heuristic
can yield a much higher usable pixel count. Since the objects do not have
narrow holes this approach appears reasonable. Further and high-resolution
results can be found on our project web page2 in the supplemental materials
document.

5.9 Limitations
In this section we would like to discuss the physical limitations of kaleido-
scopic imaging systems.

2http://ilya.o-x-t.com/kaleidoscopic_imaging/

http://ilya.o-x-t.com/kaleidoscopic_imaging/
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In our experiments, see Section 5.8, we are operating the camera at
the physical limits of the optics. The most important aspect is the limited
depth-of-field of real camera systems. Since in our experimental setup the
virtual views cover a very wide depth range, both very close to the camera
for the imaged real object and very far away, for the distant reflections, a
suitable trade-off has to be found. Also, we use a very wide field-of-view
to cover the chamber structure imposed by our prototype system. This
implies that the higher-order reflections which carry significant silhouette
information, since the object is seen from the side in these views, are imaged
at the periphery of the image. Thus, any uncorrected radial distortion and
in particular other optical aberrations found in these regions are of major
concern. Chromatic aberration was a major problem in our experiments.
The correct silhouette boundary is not discernible even by a human observer.
The spread of the aberration is up to 7 pixels, a much higher value than the
geometric calibration error. Use of a different lens (Canon EF 14mm f/2.8L
II) reduces this problem.

An inherent property of our data is that they are multi-resolution. Pixels
in distant images of higher reflection levels cover a larger surface area of the
object. This apparent disadvantage might turn out to be a useful feature in
future multi-view reconstruction algorithms. In any case it is a particular
property that cannot be achieved easily in different systems.

Finally, scaling a setup might present a problem. However, e.g. Science
World in Vancouver is operating a kaleidoscope at human proportions. Foil
mirrors can easily be produced up to a size of 4− 5m. We thus believe that
planar kaleidoscopic systems are applicable to real problems of interest.



CHAPTER 6

Application Examples

Overview
As mentioned in the previous Chapter, once the labeling for a camera and/or
projector image is available, it can easily be used by classical multi-view
algorithms. In this section, we will show three examples of such a use - visual
hull estimation, geometry reconstruction using a classical structure from
motion technique, and simultaneous geometry and reflectance estimation in
a laser scanning setup.

6.1 Visual Hull Approximation
The kaleidoscopic visual hull, which we used in the previous Section for la-
beling, can be directly used as an approximation to the object’s visual hull.
This possibility is quite attractive as (besides the necessary calibration) only
segmentation is required in order to construct the KVH. However, the re-
striction that the pixels marked as background have to be absolutely correct
and the complex appearance of kaleidoscopic scenes makes the application
of state of the art fully automatic segmentation methods extremely chal-
lenging. Moreover, if some of the foreground pixels are incorrectly classified
by such an automatic algorithm, it is very difficult to locate them after-
wards. Thus, the applicability of automatic segmentation algorithms is very
restricted even under the final supervision by a human. For humans, the
segmentation task is also a non-trivial and tedious procedure.

While it is still possible to produce a reasonable automatic segmentation
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for a particular scene or even for a particular movie (see the labeling videos
of the moving flower example on our project page1), it requires considerable
tuning and is not applicable as a general solution. Instead, an interactive
segmentation tool, where the user can be provided with feedback immedi-
ately (in both, the 2D image domain, and in the 3D domain of the visual
hull) can be very useful.

Figure 6.1: Showing the application in action: The user draws in the win-
dow on the right side. Already drawn patches are rendered with a green
checkerboard pattern and are listed in a widget at the right border. The
current visual hull and a preview of the current brush are rendered in the
left window.

We have developed such a tool [Klehm12]. Our interactive application
enables a fast manual foreground/background segmentation of kaleidoscopic
images for high-quality results by guiding the user and giving constant feed-
back. It includes an on-line technique for estimating the visual hull of an
object inside a system of arbitrarily positioned planar mirrors. The appli-
cation provides feedback to the user in the 2D kaleidoscope domain, see
Fig. 6.1 (right), as well as in the 3D domain of the visual hull, see Fig. 6.2.
In the application we handle the complex computations of drawing, ren-
dering, visual-hull derivation, and labeling by exploiting the GPU. We also
explore suitable interaction schemes and visualization techniques that guide
the user in rapidly creating an accurate segmentation, Figs. 6.1 and 6.2.

6.2 Multiview Stereo Reconstruction
For our example we used the photometrically compensated image and the
corresponding labeling of Fig. 6.3. We applied the software VisualSfm
[Wu11a, Wu11b] to this data.

1http://ilya.o-x-t.com/kaleidoscopic_imaging/

http://ilya.o-x-t.com/kaleidoscopic_imaging/
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Figure 6.2: Semi-transparent mode (left): Visual-hull voxels are shown in
white with a low density. Outside voxels covered by the brush are shown
in blue. Finally, visual-hull voxels covered by the brush are shown in red.
Image-based shading (middle and right): Pixels are transferred from the
kaleidoscope image.

Figure 6.3: Images, used in our experiment: photometrically compensated
kaleidoscopic image (left), corresponding labeling (right).

The input set of 98 single-view input images is produced from the com-
pensated kaleidoscopic image, Fig 6.3 (left), by keeping only those image
pixels that are corresponding to a single chamber object, while filling the
remaining pixels black. Images corresponding to odd levels of reflection are
flipped in order to have the same orientation for all images. This flipping
is necessary for SIFT feature matching [Lowe04] as SIFT features are not
reflection invariant. Using the VLFeat library [Vedaldi08], we then compute
SIFT features for the image set generated this way. We exclude those pixels
that are outside the object silhouette or on the border of our labeled region.
This step allows us to get rid of incorrectly matched feature points that do
not fully belong to the object. Finally, because all our virtual cameras have
the same intrinsics, we use our calibrated camera intrinsics for all virtual
views.

It is worth mentioning, that, since virtual camera positions are estimated
by matching SIFT features and bundle adjustment, there is no need to
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Figure 6.4: Reconstructed point cloud (5492 points)

provide VisualSFM with the extrinsic parameters of the virtual cameras.
The output of VisualSFM, a point cloud of the object’s surface consisting

of 5492 points is depicted in Fig. 6.4.
Note that the example here is not intended to improve on state-of-the-

art results in terms of reconstruction quality, but rather to show how easily
the kaleidoscopic image can be used in multi-view applications once it is
labeled.

6.3 Surround Geometry and Reflectance Ac-
quisition

As an additional application, we describe a system for acquiring reflectance
fields of objects without moving parts and without a massively parallel hard-
ware setup. Our system consists of a set of planar mirrors which serve to
multiply a single camera and a single projector into a multitude of virtual
counterparts. Using this arrangement, we can acquire reflectance fields with
an average angular sampling rate of about 120+ view/light pairs per surface
point. The mirror system allows for freely programmable illumination with
full directional coverage. We employ this setup to realize a 3D acquisition
system that employs structured illumination to capture the unknown ob-
ject geometry, in addition to dense reflectance sampling. We demonstrate
for a number of test scenes that the kaleidoscopic approach can acquire
complex reflectance properties faithfully. The main limitation is that the
multiplexing approach limits the attainable spatial resolution, trading it off
for improved directional coverage.
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6.3.1 Operational Principle
Our system is built around imaging and projection within systems of pla-
nar mirrors. It exploits the multitude of reflections and inter-reflections to
compress a full surround field of view into the aperture of a single camera
and/or projector. The basis for our design is the analysis of planar mirror
systems described in Part II of this thesis. Due to Helmholtz reciprocity,
this analysis applies to cameras as well as projectors, see Section 5.5, with
one difference:

Simple scene illumination by a projector leads to superposition of light
due to different mirror reflections of the light source, which is not desirable.

Point Scanning in Planar Mirror Systems

Consider a two-dimensional mirror system as shown in Fig. 6.5. On the top,
we illustrate how a projector is illuminating a single point on the surface of
an object. By unfolding the system we can visualize the mirror world with
a number of virtual objects. The illuminated point can be considered to
be present on all copies of the object. The camera can then observe those
illuminated points that are not occluded. The four points observable by the
camera are e.g. generated by the reflection sequences (from left to right)
(1, 2, 1), (1), (), and (2, 1). These numbers indicate the mirrors that are
being traversed by the ray before it hits the object.

Alternatively, we can consider the system as consisting of virtual cam-
eras and projectors observing the real object as shown in the middle of
Fig. 6.5. In our example, the virtual cameras observe the illuminated point
via the reflection sequences (from left to right) (1, 2, 1), (2, 1), (1), and ().
As expected, these sequences are the same as in the previous case. This
alternative interpretation immediately shows that a pair of reflectance val-
ues is sampled simultaneously: For one projector illumination direction, we
obtain reflectance samples from four viewing directions. Furthermore, since
multiple viewing rays are available that observe the same object point, we
can triangulate the point and obtain part of the object geometry. Finally,
the same object point can be illuminated by different virtual projectors, one
at a time. This results in Nk ×Mk reflectance samples per object point xk,
where Nk is the number of unoccluded views and Mk the number of un-
occluded illumination directions. In our example, this yields 20 reflectance
samples for the illuminated point.

Of course, point sampling an object is inefficient. It would require the
acquisition of O(K ×M) images for sampling K surface points, and M =
maxkMk. Key to our method is the use of structured light in the present
context. The main challenge is that we have to avoid illuminating a surface
point from more than one direction in a single image of the scan since this
would lead to the superposition of light and thus to summed reflectance
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Figure 6.5: Illustration of imaging and projection inside a mirror system.
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samples.

Structured Light in Planar Mirror Systems

As shown above, a camera image of a planar mirror system can be decom-
posed into a number of sets of image coordinates for which a certain virtual
camera view is valid, Fig. 6.5 (bottom). These image regions are camera
labels. A virtual camera in a virtual multi-view system is then given by
this set of image coordinates in conjunction with the calibration parame-
ters that define the projection operation of the virtual camera. Applying
the Helmholtz reciprocity principle, we describe virtual projectors, similar
to virtual cameras, as a set of coordinates of the original projector (not
shown). A virtual projector is given by a projector label, i.e. a set of pro-
jector coordinates for which the virtual projector is valid, in conjunction
with its calibration parameters that define the projection operation for the
virtual projector.

By illuminating only a single projector label at a time, we are able to
decompose reflectance acquisition into non-overlapping regions of illumina-
tion.

The camera and projector labels enable the decomposition of imagery,
obtained from projecting light into a planar mirror system, into different
light/direction pairs. Each combination of camera and projector labels gives
rise to a unique viewing/lighting direction pair. We are thus able to sample
the reflectance field of an object using N ×M (sub-)images. In practice,
we achieve an average of about 120 unoccluded view/light directions per
surface point. Without exact surface geometry which serves as an interpola-
tion guide, parallax effects, both for view and lighting interpolation become
apparent. We therefore opt for structured light projection which enables
geometry reconstruction on top of reflectance sampling.

In the following we discuss the hardware design that was used for our
experiments.

6.3.2 Hardware design
Our hardware setup consists of four planar mirrors, one digital SLR camera,
and one RGB laser projector with a double axis mirror galvanometer for
control. Next we discuss our design choices regarding these components.

Mirror System: We employ a kaleidoscopic mirror system consisting
of four mirrors: three of them are arranged in the classical configuration of
a truncated three-sided pyramid as in [Han03]. As described there, this
type of system can only generate hemispherical view distributions which
is sufficient to perform exhaustive reflectance sampling if the sample is flat.
However, non-flat geometry requires sampling of the full sphere of viewpoints
in order to obtain dense coverage of both, surface geometry and reflectance.
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Figure 6.6: Images of our acquisition system: Left: the laser/camera system,
the red line indicates a laser ray that can be steered inside the mirror system.
Middle: an outside view of our system with dimensions. Right: the back
mirror is attached to the back entrance of the system once an object is
mounted inside.

To enable spherical sampling, we add one additional mirror at the back
entrance of the system which generates reflections that also show the object
from below, see Fig. 6.7. The mirrors are optical quality first surface mirrors.
The mirror on the back side has a hole cut by a water jet. This hole enables
an object holder assembly to protrude inside the system. Images of our
system are shown in Fig. 6.6.

Projector: For our projector we use a system of coaxial red, green, and
blue lasers with approximately 5mW output power per channel. The choice
of using a laser system is motivated by the much larger depth-of-field of a
laser beam as compared to a standard digital projector: Since our system
folds the rays into the mirror system, distances between the apparent closest
object (no reflection) and the farthest virtual objects is quite significant
(about 4m). Since we need to be able to control the scan in both, x- and
y-directions we are using a two-mirror galvanometer scanner.

To cover the large field of view inside the mirror system, we employ a
wide angle two-axis mirror galvanometer (Thorlabs GVS012) with an open-
ing angle of 80 degrees in both dimensions. The projector is mounted close
to the entrance of the mirror system to make full use of the aperture of the
mirror system, i.e. no rays miss the opening at the front side.

Camera: We employ a Canon 5D mark II DSLR equipped with a Canon
EF 14mm f/2.8 L II USM lens. This lens has a large field of view and com-
paratively minor radial distortion and chromatic aberrations. As a compro-
mise between light efficiency and depth-of-field, we use an aperture setting
of f/14. The camera is mounted such that it is close to the entrance of
the mirror system while simultaneously avoiding to image parts of the laser
projector.
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top view

bottom view

Figure 6.7: Top: Image of an object inside our acquisition system. The inset
shows that both, views from the top and views from below are generated by
our system. Side views from different directions and at different elevations
are visible towards the boundary of the image. Bottom: Virtual camera
distribution in our setup. The red box is the bounding box of the object, blue
cones are virtual cameras in the upper hemisphere, cyan ones are located
in the lower hemisphere. The camera marked in green is the real camera
location. Units are given in mm.
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Figure 6.8: Visualization of the camera (left) and projector labeling (right).
Different colors correspond to different labels. The plot simultaneously
shows the viewpoint and lighting direction coverage of our system.

6.3.3 Implementation

The labeling computation is based on the segmentation of a flood-lit image
of the object positioned inside the mirror system taken with the camera, see
Fig. 5.4 (a)-(b) for an example. Using this image, the kaleidoscopic visual
hull of the object can be estimated, Fig. 5.4 (c), see also Section 5.3. This
geometry is then used to determine the camera and projector labeling. We
perform the actual computation of the labels by ray-tracing until the ray
intersects the kaleidoscopic visual hull, recording the mirror intersections
that occur along the way. Pixels with equal mirror sequences belong to a
common chamber and are assigned a common label. This implies that a
pixel can only belong to one camera or projector chamber, respectively. The
procedure is the same for the virtual cameras and the virtual projectors.
The result can be visualized in an image as shown in Fig. 6.8.

After labeling both the camera and the projector, we can prepare a
capture session. For this, we scan-convert the projector labels into horizon-
tal scan-lines which we refer to as segments. Due to the geometry of our
galvanometric scanning system, this ensures that the scanned laser sheets
correspond to three-dimensional plane segments. Restriction of the scan-
lines to projector labels guarantees that object points are illuminated only
from a single direction and that the plane segment does not split up regard-
less of the mirroring sequence traversed until the object is hit. Each virtual
projector is assigned a list of segments. The total number of segments is
typically on the order of 20.000, see Table 6.2. We capture one HDR image
for each segment of all virtual projectors.

When capturing is done, we proceed to the final steps: geometry and
reflectance estimation. The overview of our pipeline is shown in Fig. 6.9.
The implementation details are given in [Ihrke12b].



6.3. Surround Geometry and Reflectance Acquisition 93

calibration segmentation

visual hull 

camera 
labels

projector 
labels

+

segments

segment
images

capturepre-processing geometry

refl. field

triangulation

post-processing

global / local 
separation

photometric 
compensation

refl. estimation

+

+

+

triangulation view + light 
reflectance 
sampling

reflectance 
sharing

output

object geometry
and spatially
varying BRDF

Figure 6.9: Overview of our reconstruction pipeline.

dataset min max
√
max avg √avg

Angel cam 1 28274 168 7718 88
proj 32 35947 190 9299 96

Emily cam 10 20963 145 5744 76
proj 3 29946 173 6536 81

Max Planck cam 1 23732 154 7838 89
proj 19 32283 180 9344 97

Table 6.1: Number of camera and projector pixels for the virtual cameras
and projectors. This statistic counts object pixels only, i.e. background is
ignored. We give the minimum, the maximum, and the average numbers.
The square roots give the side length of an equivalent square of pixels.

6.3.4 Results
We have tested our system on the three objects Angel, Emily, and Max
Planck shown in Fig. 6.11. Two of the objects, Emily and Max Planck, are
almost single material, metallic objects, whereas the Angel data set shows
a larger number of different materials.

For the Max Planck data set, a high resolution range scan is available
from the Aim@Shape repository. It was acquired by coating the object with
white powder and range scanning it with a Minolta vi910 which is at least an
order of magnitude more accurate than our system and can be considered as
ground truth. In order to evaluate our reconstruction pipeline we registered
the geometry recovered by our technique with the ground truth scan using
rigid ICP. The error distribution is shown in Fig. 6.10. The accuracy of our
system, with an average error of about 5− 6mm, is low by current standards.
However, taking into account the actual resolution achieved by our virtual
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0 mm

17 mm

Figure 6.10: First row: Geometric quality of our recovered geometry as
compared to laser scanned geometry (object coated with white powder).
Most of the errors are below 6mm, the gap behind the ear could not be
resolved. Second row: A comparison of appearance computed with our
approximate geometry (left) and with laser scanned ground truth geometry
(right). Details appear less blurred in the accurate geometry version.
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dataset #cam #proj # segs avg max samples total
Angel 246 144 20177 223 901 31.9 million
Emily 235 139 18863 133 815 20.8 million
Max Planck 239 134 14483 123 606 17.7 million

Table 6.2: System properties for the different data sets. #cam and #proj
are the number of virtual cameras and projectors in the system, avg sam-
ples is the average number of view and lighting directions per surface point.
Max samples reports the surface point with the maximum number of re-
flectance samples. Total samples shows the overall number of samples used
for reflectance estimation.

multi-view/multi-projection system, the results can be interpreted as quite
satisfactory, see Table 6.1: Multiplexing onto a 5 MPixel sensor results in
a very low number of pixels that are available for every virtual view and
projector. The equivalent square numbers are provided to give an impression
of the image size of the object in each virtual view. The fill rate of our sensor
with useful information is between 20 and 25%.

In another experiment, we investigated the impact of the low resolu-
tion geometry as output by our system. We registered the available ground
truth geometry of the Max Planck data set with our reflectance field. As
can be seen in the images, more detail is preserved with the more accurate
geometry. This effect can be attributed to parallax effects if the geome-
try is expected in the wrong position. Thus, improving the geometry, e.g.
by separately scanning it as in [Schwartz11] might be a viable option for
reflectance scanning with a kaleidoscope.



96 Chapter 6. Application Examples

900

0

815

0

600

0

Figure 6.11: Results for our data sets Angel (top row), Emily (middle row),
and Max Planck (bottom row). The left two columns show the distribution
of the number of unoccluded reflectance samples (view/light pairs) on the
object surface. The center right column shows the objects illuminated from
a single direction (Angel and Emily) and from four directions for the Max
Planck data set. In the right column, we show the objects illuminated by
environment lighting.



Conclusions

In this part of the thesis we proved that the decomposition of a kaleido-
scopic image into different viewpoints is possible and accurate when the
specific visual hull V H(O1, V

∗) of an object of observation is known. The
requirement to have the visual hull of an object of interest is, in many cases,
impractical. For this reason, we proposed to use the kaleidoscopic visual
hull, which can be easily computed if the kaleidoscopic image is segmented
into background and foreground, instead of the visual hull. Additionally, we
developed a kaleidoscopic segmentation software which makes the produc-
tion of the kaleidoscopic visual hull very comfortable. Finally, we demon-
strated the feasibility of our techniques in a number of different multi-view
applications.

In the next part of this thesis we turn to a different problem: the recovery
of the structure of planar mirror systems.
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PART IV

Structure Reconstruction of Planar
Mirror Systems





CHAPTER 7

Discovering the Structure of a
Planar Mirror System from Multiple

Observations of a Single Point

7.1 Introduction
In the previous part of the thesis we described some novel applications of
kaleidoscopic systems in the multi-view area of computational photography.
However, all these applications strongly rely on the geometric calibration of
mirrors. Thus, if we want to apply the techniques from Part III in practice,
we need sophisticated methods for the geometric reconstruction of complex
mirror designs.

This task is complicated by the fact that we typically do not have access
to the chamber information at this point. Tedious human intervention is
therefore necessary to perform the calibration, see Section 3.3.1.

In this part we aim at developing a fully automatic technique for deter-
mining the geometry of multiple planar mirrors and the pose of the camera
with respect to this mirror configuration. Our work is showing the feasi-
bility of solving the problem in a 21

2D convex room setting. Because we
aim at demonstrating the principal feasibility, we consider a minimal case.
Using only the measurements of apparent depth of a single scene point that
is visible via many different multi-bounce interactions with the mirrors, we
develop an algorithm to identify the geometry of the room, and the position
and orientation of the camera. Our setting is considerably more general
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than state-of-the-art solutions [Ribeiro12, Antonacci12, Tervo12] that re-
quire zero- and first-bounce reflections to be observable and that can deal
only with a very limited class of mirror shapes in practice.

7.2 Problem Formulation
We consider an abstract angularly resolved distance measurement system
in a situation with specular multi-bounce paths, Fig. 7.1 (a). The scene
consists of a room with specular walls and one scene point (dark green), as
well as a recording device (red). The interpretation of the left-most sub-

up to two 
bounces

zero bounces one bounce two bounces

unfolded representation
for up to two bounces

(a)

(b)

receiver

scene point

0th order ray 

1st  order ray

2nd order ray

Figure 7.1: Problem definition: (a) A point is visible to an omni-directional
receiver via multiple specular reflections. The receiver is capable of mea-
suring the incidence angle and the distance of the point via the reflected
ray paths without being able to detect the specular interaction. (b) To the
receiver, the situation appears as if there are multiple points at different dis-
tances from its own position. The mirroring room geometry (faint yellow)
is unknown and has to be recovered from the point measurements.

image is difficult. It contains all ray paths up to second order that hit
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the receiver. For this reason the following sketches show the ray paths of
different reflection orders separately. We assume that the receiver is capable
of measuring the angle of incidence of the rays as well as the apparent
distance of the point along each reflected ray path. The task is to reconstruct
the positions of the unknown mirror planes and to locate the receiver with
respect to the mirror system.

In Fig. 7.1 (b), we show how the receiver could naïvely interpret the
surrounding world as a virtual mirror world consisting of many point ob-
jects at different distances. This interpretation corresponds to the unfolding
operation, see Part II, if the mirror geometry is known. Instead, we ask
for the mirrors geometry given the unfolded representation. In a sense,
Part III of this thesis describes the solution to the dual problem: Given the
mirror geometry, compute the object. In the current part, we consider the
object geometry to be given (a single point) at different virtual locations
but the mirror room geometry has to be recovered. In the following we will
present all analyses in two dimensions. This restricts our practical examples,
Sect. 7.7, to 21

2D cases.
Here and later in the text we consider only rays starting from the obser-

vation point c (red dot in Fig. 7.2). Thus, to interpret the rays behaviour,
the unfolded representation can be considered, see a simulation in Fig. 7.2.
In this picture, polygonal regions illustrate areas of the corresponding cham-
bers that are visible from the observation point. The the base chamber is
marked in yellow.

As discussed above, in Section 3.1 and Part II, any real mirror system
will fail to subdivide the plane perfectly when generating the unfolded rep-
resentation of the mirror world. Therefore, a real system includes lines of
discontinuity as illustrated in Fig. 7.2. Areas between two discontinuity
lines indicate a common reflection sequence. The discontinuity lines cor-
respond to mirror corners being hit by a ray bundle after a sequence of
reflections. The bundle splits up at these points and traverses different mir-
ror sequences thereafter. This implies that the measurement points are not
necessarily visible for every possible combination of mirrors into a sequence.
As an example, there is exactly one ray among those that traverse the mir-
ror sequence (2) that hits the object point. There is no ray amongst those
continuing to mirror sequence (2, 3) that sees the object point after these
two reflections (i.e. the object is not in the visible part of the chamber C2,3).
However, the bundle of rays continuing to mirror sequence (2, 1) contains
such ray. Moreover, the invisibility of the object point after a certain sub-
sequence of reflections does not imply that the point will be invisible in the
future as the continued reflections sequence (2, 3, 1) shows. After exactly
three reflections, one of the rays with this reflection sequence hits the object
point.

In the following, we will discuss a solution for recovering the mirror
room geometry as well as the position of the receiver within such system.
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Figure 7.2: Simulation of a general four-sided room geometry. We show 4
levels of reflection. The geometry is greyed out to emphasize that we only
consider the point distribution to be available. The numbers indicate mirrors
in the base chamber (faint yellow) and their respective reflections. The pink
lines mark lines of discontinuity that split areas of different mirror sequences.
The room geometry and these lines have to be predicted in conjunction in
order to use the data points as measurements. Again, red is the receiver and
the virtual point objects are marked green. The spatial locations of these
points are the only input to our method.

Our method allows for the recovery of convex room geometries with an
arbitrary unknown number of mirror walls. The virtual point positions and
the receiver coordinates are the only input to our algorithm. In particular,
the reflection levels through which the virtual points are seen are assumed to
be unknown. We also do not require any particular reflection (for example
the direct view) to be available. We demonstrate the performance of our
algorithm through simulations and a challenging real-world example.

7.3 Overview
In order to discuss our recovery algorithm it is necessary to introduce a few
definitions as well as to explore some properties of mirror systems. Our
main tool for recovery is a validation procedure: Given a candidate config-
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uration (consisting of mirror geometry, observer position and scene point
position), determine if this configuration is compatible with the observa-
tions. We describe this part of the algorithm in Section 7.4. We derive
sufficient conditions for a configuration to be reconstructable. A naïve al-
gorithm then consists in checking all possible configurations which we term
the exhaustive search algorithm, Section 7.5. This algorithm operates on a
graph structure, that, in the absence of all optimizations, is a fully connected
graph. The computational costs of performing this search are exponential
and we develop theoretically sound graph pruning strategies that ensure that
no false negatives occur, Section 7.5.1. The exhaustive search algorithm can
be executed on the pruned graph, ensuring that a solution is found if the
configuration is reconstructable in our sense, however, at a significant cost.
For this reason, we introduce a heuristic search algorithm in Section 7.6 that
is based on random graph sampling to improve the reconstruction perfor-
mance. Finally, we validate our algorithm in Section 7.7 via simulations and
a real experiment.

7.3.1 Problem Setting
Our algorithm is based on a number of assumptions about the scene that
directly inform the constraints we may apply and the algorithmic strategies
we employ. In particular, we consider

• the room geometry to be convex,
• the room and scene to be essentially planar, and
• the scene to consist of a single object point.

This list allows for rooms with gaps in the mirrors, e.g. to place a camera.
The planarity constraint permits rooms with walls that are orthogonal to
a common ground plane and a common ceiling (which may be mirrors)
while having a convex layout in the ground plane. The single object point
constraint avoids a matching procedure to identify images of a common
world point.

For the discussion of the basic algorithm idea we introduce some further
restrictions. These are didactic in nature and will be relaxed later, Sect 7.6.1:

• the room geometry is closed,
• the room geometry is irregular,
• the object point is in a general position with respect to the mirror

planes, and
• the perspective center of the receiver is inside the convex hull of the

room.

By a closed convex room we mean a room that is equal to its convex hull.
Irregularity relates to asymmetric configurations. These are easier to deal
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Figure 7.3: An overview of our approach. Left: Doublets are pairs of points
that are separated by a single mirror reflection. They are indicative of mir-
ror planes. Equivalent doublets are coded with the same color. As can be
seen, doublets usually occur several times, making them stable features of
the system. Moreover, combinations of doublets are repeated throughout
the system. The sketch shows 4 reflection levels. Middle: Doublets can be
joined into triplets that are indicative of room corners. By identifying com-
mon doublets, these triplets can be joined together in an iterative process.
This way, a candidate room geometry can be recovered in some virtual loca-
tion. Right: In order to verify the correctness of a particular configuration,
we reflect the reconstructed geometry along a line of sight (black) until it
contains the receiver. The sequence of reflections is shown in a color-coded
fashion. In this position, the candidate geometry serves as a base chamber
of the mirror system from which a representation of the mirror world can be
computed by an unfolding procedure. This last step enables the comparison
of predicted and recorded point positions and therefore the validation of the
candidate geometry.

with initially because mirror walls cannot be exchanged by an invariant
transformation that keeps the mirror system apparently unchanged. Fur-
ther, we require that mirrors produce unique actions on the object point.
This condition is satisfied if the point is at different distances to each of
the mirror walls. The condition that the perspective center of the receiver
is within the mirroring room is needed to uniquely predict the pose of the
receiver with respect to the reconstructed mirror geometry.

We emphasize that we do not require the number of reflections for a
particular ray path to be known and that we do not need to observe special
identifiable reflections like the direct image (0 bounce) or the first order
reflections. Our algorithm is designed to be agnostic to this information.
While this type of information would simplify the task considerably, we aim
for a general method that can work with limited data, both in the field-of-
view of the receiver and in the depth range that can be reliably measured.
We also consider the number of mirror walls of the room geometry to be
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unknown.

7.3.2 Definitions
The current discussion is based on an ideal setting where the system layout
is known. Under these conditions, we first derive constraints and conditions
that allow for the reconstruction of the mirror geometry from the virtual
point distribution. Later, in Section 7.6, we then extend our ideas to the
case where the system layout is unknown.

Definition 7.3.1. Let a be a point in the base chamber C0, visible in
chambers CMK1MK2 ...MKN

and CMK1MK2 ...MKN
MKN+1

, N ≥ 0. Then a
doublet is a pair of points D = (a′,a′′), where a′ = mMK1MK2 ...MKN

(a),
a′′ = mMK1MK2 ...MKN

MKN+1
(a).

3

1

a''

a'

c

3

Ma'a''

Figure 7.4: A doublet (a′,a′′) and corresponding receiver position c. This
sketch is an enlarged version of the marked triangle in Fig. 7.3 (left).

Properties:

• A doublet uniquely defines a virtual mirror Ma′a′′ that takes point a′
into a′′ (a′′ = mMa′a′′ (a

′)). On the other hand, according to the dou-
blet definition, the virtual mirror Ma′a′′ = mMK1MK2 ...MKN

(MKN+1),
i.e. mirror MKN+1 in the corresponding chamber CMK1MK2 ...MKN

.
• If we denote the receiver position by c, then d(c,a′) < d(c,a′′) since

an indirect view via virtual mirrorMa′a′′ has a longer path length than
the direct view.

• Doublets never intersect with discontinuity lines since they are indica-
tive of a real mirror.

• Even though doublets define a mirror transformation, it is in general
impossible to transfer them to the base chamber (in effect reconstruct-
ing a single wall of the room (MKN+1 in our example)) without knowing
the remaining room geometry.
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The doublet in Fig. 7.4 and all other doublets in the system of Fig. 7.2 are
shown in Fig. 7.3 (left). Doublets belonging to the same physical mirror are
marked with the same color. They usually re-appear in different locations
of the virtual mirror world. The properties just mentioned can be verified
in the figure.

Definition 7.3.2. A triplet is a pair of doublets T = (D,D′) that shares
a common point. It consists of three observed points.

Properties:

• A triplet defines the angle between two mirror planes. This often is
a corner of the mirror room reflected to some position in the virtual
mirror world. It may happen though that two doublets that do not
correspond to directly adjacent mirrors form a triplet. Nevertheless,
the angle between these two mirror planes is fixed by the triplet. We
will refer to the doublets that constitute the triplet as its legs.
• As in the case of doublets, a triplet can typically not be transformed
to the base chamber without knowing the remaining geometry of the
mirror world since an unspecified sequence of reflections lies between
the observed position and the canonical position of the legs in the base
chamber.

Some examples of triplets in conjunction with the mirror corners defined
by them are shown in Fig. 7.3 (middle). It should be noted though that all
adjacent doublets form triplets even though we only show a subset of them.

7.4 Verifying a Candidate Configuration
The core of our algorithm is based on being able to verify a given configu-
ration against the observed data. The basis for the verification step are the
triplets just defined. They serve as building blocks in constructing candidate
configurations.

7.4.1 Joining Triplets
Given that a triplet defines the relative position and orientation of two walls
of the mirror room it is natural to attempt to join them into quadruplets,
quintets, sextets, and so forth, until the relative position and orientation
of all mirror planes with respect to each other has been fixed. This would
constitute a reconstruction of the room geometry.

For this scheme to work we need to be able to relate different triplets
that are observed in different locations of the virtual mirror world. Two
triplets fit together if they have one common leg, i.e. they share a doublet.
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triplets

quadruplet quintet

Figure 7.5: Joining procedure

In general, the different observations are related by an odd or an even num-
ber of reflections through the base chamber which is unknown. However, an
even sequence of reflections is equivalent to a rotation, and an odd sequence
is equivalent to a rotation and a flip. Given two triplets with a common
leg, we therefore have two options of joining them resulting in two candi-
date quadruplets that fix two potentially consistent relative positions and
orientations of three mirror planes.

The joining process can be continued by joining a quadruplet with an-
other triplet, yielding a quintet.

In the current discussion we assume that doublets and triplets that are
being observed in different locations can be identified and that no erroneous
doublets or triplets exist. We will discuss the extension to the case with
erroneous information in Sect. 7.6. In practice, the identification of doublets
is based on their length (distance between points) which is twice the distance
to the corresponding mirror plane. Since we assumed that the object point
is in general position with respect to all mirror planes this identification can
easily be performed, yielding equivalence classes of doublets. Equivalence
classes of triplets are formed by considering the two constituting doublets. In
Fig. 7.3 (left,middle), the equivalence classes are color-coded with doublets
of the same color, and triplets of the same color pair, belonging to the same
class, respectively. In the following, we will drop the explicit mention of
the equivalence classes, simply referring to them as doublets or triplets, it
should be understood, however, that individual doublets or triplets are only
representatives of their class.
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7.4.2 Conditions for Reconstructability
A necessary condition for the proposed algorithm to work is that all doublets
are being observed by the system, i.e. all mirrors in the room must be ob-
served by their action on a set of two points. In addition to that, a sufficient
number of triplets must be observed in order to recover the complete geom-
etry. Consider the case of N doublets (which in the perfect case considered
here corresponds to exactly N mirror walls in the room geometry), then the
minimum amount of triplets that could yield a solution is N − 1. This is
the case if the triplets can be joined in a sequential manner as indicated in
Fig. 7.5.

The amount of triplets that certainly yields a solution is (N − 1)(N −
2)/2 + 1. Consider a graph structure that we refer to as the doublet graph
where the nodes are doublets and there are edges if a triplet with the two
doublets in question exists. The condition for the room to be recoverable is
that a connected component covering all nodes exists. The meaning of this is
that all mirrors can be related to one another via pairwise relative position
and orientation. In the worst case we have a fully connected component
of N − 1 nodes with a single unconnected node. This structure has (N −
1)(N − 2)/2 edges. If one additional edge is known the complete graph is
fully connected.

In practice, the number of triplets is somewhere between these two ex-
tremes. The condition for recovery is that the full graph is covered by at
least one connected component. In the perfect case, all such connected
components are equivalent and yield the same solution.

Summarizing the previous discussion, sufficient conditions for a mir-
ror/source/observer configuration to be reconstructable are:

1. All doublets are observed,

2. the available triplets contain all doublets, and

3. the doublet graph is connected.

7.4.3 Verification Algorithm
The algorithm for joining triplets into a candidate room configuration is
then the discovery of connected components. The discovery of one such
component suffices in theory. However, each triplet might occur in two
flavors, corresponding to whether it resulted from an odd or even sequence
of reflections from the unknown base chamber. Denoting by M the number
of edges (triplets) in the connected component, there are 2M possible room
configurations in the worst case. If cycles are present, they reduce this
complexity. Intuitively, cycles correspond to consistent subsets of triplets
that can only have two possible orientations.
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Graph theoretical arguments cannot differentiate between these possible
solutions. We therefore need a way to verify them by comparison to the
actual data.

The idea for verification is depicted in Fig. 7.3 (right). Assume we have
constructed a candidate configuration at the position shown in red. We
join the virtual object point a∗ in the reconstructed room with the receiver
position c by a line of sight shown in black. The line of sight intersects
exactly one mirror plane which must be the mirror that produced the virtual
object point a∗. If the candidate configuration is correct, this mirror is the
last in the reflection sequence leading up to the observation of a∗. We can
therefore undo this operation yielding the geometry in green. Since we have
assumed that the receiver is inside the convex room, this process can be
repeated until the condition holds. In the illustration, this is the case for
the yellow position of the geometry.

This position corresponds to the unknown base chamber assuming the
candidate configuration is correct. Therefore, we can determine visibility
inside the mirror system by unfolding. Since a∗ is transformed to the base
chamber in conjunction with the geometry, we can now simulate where the
point would appear in the system even if we have not observed the direct
view. Comparing the predicted point distribution with the observed one we
find whether the candidate configuration is a correct reconstruction.

The verification operation consists of a linear time (in the number of
doublet classes, i.e. mirrors) spanning tree computation on the doublet
graph and an exponential (in the number of triplets, i.e. mirror corners)
determination of the correct flipping configuration.

7.5 Exhaustive Search Algorithm
In the previous section, we assumed a known candidate configuration that
could be verified. Unfortunately, we do not have access to which pairs of the
input points correspond to doublets. This implies that the triplets are un-
known as well. A naïve algorithm for discovering an unknown configuration
would have to consider all possible pairs of points, i.e. all potential doublets.
Clearly, the number of nodes in the doublet graph is quadratic in the num-
ber of observations. Further, the number of all possible triplets is quadratic
in the number of nodes in the doublet graph. In the naïve algorithm, the
exponential verification procedure, Sect. 7.4.3, has to be performed starting
at every possible triplet.

An illustration of all potential doublets in an example configuration is
depicted in Fig. 7.6 (left). In this figure, the real doublets are shown in red
whereas pairs of points that are no doublets are shown in light blue. The
mirror system shown is the same as in Figs. 7.2 and 7.3. As can be seen, the
number of false doublets is far larger than the number of real ones, making
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an exhaustive search strategy on the full graph structure extremely costly.

Figure 7.6: Left: In the case of unknown doublets and triplets, naïvely,
all possible pairs of points have to be considered. Right: Our geometric
constraints are able to remove most of the false connections. The weakly
visible unfolding geometry is shown only for illustration. It is still unknown
at this point of our algorithm.

7.5.1 Geometric Search Space Pruning
We therefore derive a number of filtering operations that are intended to
reduce the number of potential doublets and the potential number of triplets
that are built from them, effectively pruning the search space. A result of
our filtering operations is shown in Fig. 7.6 (right).

Our filtering operations exploit the geometric features of a mirror con-
figuration that impose strong constraints on valid distributions of observed
points. In addition, they are conservative, i.e., no false negatives are gener-
ated. The filter operations come in four flavors, these being filters on

• individual point pairs, i.e. potential doublets, f1(D),
• pairs of potential doublets, i.e. potential triplets, f2(T ),
• compatibility between two potential doublets, f3(D,D′), and
• compatibility between two potential triplets, f4(T, T ′).

Each of these filter types can determine impossible configurations, which,
however, does not imply correctness of the filter argument. We next describe
the individual filters.
Potential Doublets If (a′,a′′) is a doublet generated by the mirror Ma′a′′ ,
and b is the point of intersection of the virtual mirror Ma′a′′ and the side
ca′′, then the intersection area of the inner part of the angle ∠a′ca′′ and
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a''

c

a'

Ma'a''

b

Figure 7.7: For the receiver position c, if (a′,a′′) is a doublet, then the
shaded area must be empty.

the inner part of the circle with center b and radius a′b must not contain
any other observed points, see Fig. 7.7. To see this, consider the following:
Point b is located on the mirrorMa′a′′ , therefore, using the assumption that
our room is convex, we can conclude, that the half-closed interval [a′; b)
entirely belongs to chamber CMK1MK2 ...MKN

. Therefore, any point a∗ inside
the angle ∠a′ca′′ is associated with one of the following chambers: C0,
CMK1MK2 ...MKi

(i ≥ 1), or with C∅. Note, that if i > N , then we have a
super-sequence of the mirror sequence (MK1 ,MK2 , . . . ,MKN

). Suppose we
would like to generate an additional point a∗ by reflecting point a′ from the
virtual mirrors of chamber CMK1MK2 ...MKN

. In this case, we need to use
more than one reflection of a′ from the virtual mirrors in CMK1MK2 ...MKN

.
Because the direct observation distance is always shortest, the point a∗ must
be located outside the inner part of the circle.
Potential Triplets Triplets cannot be in an arbitrary orientation with re-

a''

c

a' a*

a''

c

a'

a*

a''a*

a'

c

Figure 7.8: Examples of the invalid (left) and valid (middle, right) triplet
orientations.

spect to the receiver, see Fig. 7.8. The left of the figure shows an impossible
configuration where a′′ is both an image of a′ and a∗. Conversely, if a′ and



114
Chapter 7. Discovering the Structure of a Planar Mirror System from

Multiple Observations of a Single Point

a∗ were images of a′′, they would be incorrect because d(c,a′) < d(c,a′′),
and similarly, d(c,a∗) < d(c,a′′) which is violating the fact that apparent
distance increases with every reflection. The two sequences on the right are
possible, indicating a sequential bouncing (i.e. a′ = mMK1MK2 ...MKN

(a),
a′′ = mMK1MK2 ...MKN

MKN+1
(a), a∗ = mMK1MK2 ...MKN

MKN+1MKN+2
(a)) for

the middle case, and a splitting ray bundle with a common subsequence
up to a′ (i.e. a′ = mMK1MK2 ...MKN

(a), a′′ = mMK1MK2 ...MKN
M

K
′′
N+1

(a),

a∗ = mMK1MK2 ...MKN
MK∗

N+1
(a)) for the right case, respectively.

Doublet Compatibility This filter can only determine that two potential

a' a''a'

a'

c

b' b'

b''

c

a''

c

b''

b'

a''

b''

Figure 7.9: Examples of the incompatible doublets (left) and compatible
ones (middle, right).

doublets are incompatible with each other. It cannot determine which of the
potential doublets is the violating one. We exploit this condition by setting
up a compatibility matrix for all pairs of potential doublets. When building
potential triplets, we verify that the constituent doublets are compatible
with each other. Otherwise the triplet is incorrect. The left part of Fig. 7.9
shows an impossible case since proper doublets have a unique reflection
sequence in the complete triangle spanned by the receiver and the doublet.
In this case a′ must be in a preceding chamber to the chamber of b′ and vice
versa, which is impossible. For the middle and right cases, the two doublets
do not conflict.
Triplet Compatibility is based on the doublet compatibility constraint.
By definition, a potential triplet consists of compatible doublets. Unfortu-
nately, the doublet compatibility relation is not transitive since it can only
report incorrect pairs of potential doublets. Therefore, two potential triplets
even though consistent themselves can contain a combination of inconsistent
potential doublets. Fig. 7.10 shows two triplets built from potential doublets
D1 and D2, and D1 and D3, respectively. For the resulting quadruplet to be
consistent, D2 and D3 have to be compatible via doublet compatibility as
well. The same considerations hold for larger assemblies of triplets. When
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D

1

23

Figure 7.10: For two triplets T = (D1, D2) and T ′ = (D1, D3) with a com-
mon leg D1 to be compatible it is necessary, that doublets D2 and D3 are
compatible themselves.

a new triplet is joined in, all doublets have to be checked for compatibility,
again due to the non-transitivity of the relation.

As can be seen from Fig. 7.6 (right), our filtering strategies are very ef-
fective in pruning false point pairs. However, we cannot remove all incorrect
pairs. Therefore, the doublet graph contains false doublets. An exhaustive
search strategy can be employed on the pruned doublet graph and will find
a solution if it exists (in the sense of Sect. 7.4.2). However, due to its expo-
nential nature, the search is not very efficient and large problem instances
may be practically unfeasible.

7.6 Randomized Search Algorithm
We therefore adapt our search strategy for connected components that is
used to build candidate configurations. In the ideal case considered in Sec-
tion 7.4.1, the doublet graph contained only valid doublets. In the case of
the doublet graph containing invalid doublets, we maintain the search for
a connected component. However, we perform this search in a randomized
manner by employing a forward search strategy that is using importance
sampling to decide on likely transitions for the triplet joining procedure.
In every step, we perform a validation of the current configuration via the
method outlined in Section 7.4.3. The importance scores are based on dou-
blet and triplet statistics (correct doublets and triplets occur more often)
and compatibility checks as outlined in Section 7.5.1. Each connected com-
ponent discovered such is checked in all its possible flipped configurations.
If unsuccessful, the search ends after an upper number of triplet additions
(provided by the user) has been reached or if no triplet can be added in a
consistent manner. In this case, the procedure is restarted until an upper
number of trials has been reached.
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7.6.1 Extensions
So far, we have concentrated on an idealized simulation setting. In reality, a
number of issues might occur. The most important aspect is measurement
noise. It not only influences the measured positions of the point data that
we use for our reconstruction algorithm, it also complicates the process of
establishing equivalence classes for doublets. In practice, we use a user
supplied ε on the length of potential doublets to account for the expected
variation. This in turn puts constraints on the point’s position with respect
to the mirror planes. Our current algorithm is not designed to handle the
issue of incorrect class assignments or mixed equivalence classes explicitly.
However, even in this case there is a chance that the correct mirror structure
is recovered due to the randomized nature of the algorithm.

Another constraint that we introduced in Section 7.3.1 is that the re-
ceiver has to be positioned in the base chamber. We were using this con-
straint to terminate the repeated backward mirror operation necessary for
the validation of candidate configurations. In practice, the camera can be
positioned outside the base chamber. Our algorithm will still recover the
geometry if sufficient data is available. However, the position of the camera
with respect to the mirror geometry can only be recovered up to a discrete
number of positions. For an intuitive understanding, please refer to Fig. 7.3
and consider that the backward mirroring operation is stopped early, yield-
ing one possible position and orientation with respect to the reconstructed
mirror geometry for each possible stopping position. Depending on the lo-
cation of the reconstruction in the virtual world, it might be necessary to
perform forward mirroring along the line-of-sight as well.

Finally, gaps in the mirrors only lead to missing data, i.e. some of the
data points that would be observed otherwise are missing. Our algorithm
therefore can be applied unchanged if, e.g. mirrors are not meeting at a
corner or if the field of view of the receiver is restricted.

7.7 Experimental Results

7.7.1 Simulation Results
We performed extensive simulations with our algorithm to investigate the
stability of the results and to study recoverability of the geometry with
respect to the number of sides in a polygon and the number of observed
inter-reflections. We randomly generated 2000 different convex mirror sys-
tems with random object point positions for each n-gon, where n ∈ [3..8].
We simulated both a full surround receiver and a field-of-view that was re-
stricted to 90◦. In the case of a surround receiver, the direct observation will
always be observed. However, this is not the case in the limited field-of-view
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Figure 7.11: Simulation results for 2000 randomly generated n-gons. The
plots show the number of reconstructable systems versus the number of re-
flections considered for the reconstruction task. Left: full surround receiver,
Right: field-of-view limited to 90◦. The solid lines indicate the exhaustive
search algorithm, the dashed lines the randomized search.

example. We did not pay attention to include or exclude any particular re-
flection level such as the direct observation in our simulated mirror systems.
To avoid a bias in the statistics due to extreme configurations, we limited
the systems to a ratio of 3 : 1 between the largest mirror and the smallest
one.
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Figure 7.12: Simulation results for 2000 randomly generated n-gons. The
plots show reasons for reconstruction failure. Left: failure due to missing
doublets, Right: failure due to missing triplets. The solid lines indicate the
360◦ receiver, the dashed lines the 90◦ receiver.

For analysis, we performed an exhaustive search, as described in Sec-
tion 7.4.1 on the clean doublet graph structure, i.e. only true doublets and
triplets participate. This way, we established an upper bound on perfor-
mance for any triplet-based reconstruction algorithm. The results are shown
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in Fig. 7.11 as solid lines. The plot shows the number of reconstructable
room geometries. Then we ran the randomized search algorithm described
in Section 7.6 that utilized the filtered graph structure, Fig. 7.6 (right). We
again tested whether the geometry could be recovered. The results of this
test are shown in Fig. 7.11 as dashed lines.

First, analyzing the exhaustive search results to have a comparison base-
line, we find that the case of a surround receiver is favorable, especially in
the case of a low number of usable reflections. Another interesting aspect
is that an increasing number of reflections leads to a convergence in the re-
coverable geometries. This suggests an intrinsic bound for the information
in our data: higher levels of reflection are so fractured that no additional
useful information can be observed. If the number of mirror walls in the
geometry increases, our chances of success decrease rapidly. In the vast ma-
jority of cases, the reason for a failure to reconstruct the geometry is that
doublets are missing from the observation, see Fig. 7.12 (left). This indicates
that some mirror planes are never observed via a direct reflection in many
cases. Once sufficiently many doublets are observed, the failure to identify
sufficiently many triplets is not a serious problem, Fig. 7.12 (right).

The results for our randomized search strategy, which constitutes our
practical reconstruction algorithm, show that for a low number n of mirror
walls we can perform a reasonable job. Again, the results deteriorate quickly
with larger n. We ran the algorithm with a fixed user threshold of 50 con-
nected component recovery trials. The decrease of the performance curves
with larger number of reflections shows that the complexity of the graph
structure increases and that the randomized algorithm has less success in
discovering one of the correct configurations. We would like to mention that
if a solution is found, it is exact since we work in a noise-less setting.

7.7.2 Real World Example
To test our algorithm in a real setting, we performed a calibration experi-
ment. We set up a system of six planar mirrors containing a checkerboard
and took a photograph with an intrinsically calibrated camera. The setup
together with a sketch of the ground plan according to which the system
was set up manually is shown in Fig. 7.13. It contains four walls that are
approximately orthogonal to both the ground plane and the ceiling which
also consist of mirrors, realizing a 21

2D setup. We triangulated the midpoint
of the checkerboard in various apparent locations. This data matches the
requirements of our algorithm. We then reconstructed the polygonal out-
line of the four walls. The result is shown in Fig. 7.13 as a super-imposed
outline on the sketch. A visual impression of the accuracy of our reconstruc-
tion can be gained from Fig. 7.14 (right) where we rendered the multiply
reflected mirror planes as semi-transparent polygons. The results show that
we can reconstruct a mirror geometry even from real-world samples. The
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Figure 7.13: Left: Photograph of our system with mirrors indicated. The
top mirror is removed to show the inside. Right: A sketch of the ground
plan according to which we built our system super-imposed with the recon-
struction result (green).

only change to our algorithm is that we use 3D uncertainties available from
the triangulation procedure to evaluate our potential configurations. The
remaining mismatches can be attributed to the manual setup and alignment
of the mirrors as well as to imperfect orthogonality between the ground and
ceiling planes and the mirror walls.

Figure 7.14: Left: View inside the mirror system that was used for recon-
struction. Right: The reconstructed mirrors are super-imposed on the image
as attenuating layers. Further reflection levels appear brighter.

7.8 Conclusions
We have shown that it is possible to reconstruct the geometry of a con-
vex room of mirrors from the measurement of a single scene point and we
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have identified sufficient conditions for doing so. For this it is necessary
to measure its distance to the receiver via many different inter-reflection
light paths. Our technique relates to time-of-flight measurements and could
possibly be used beneficially in areas such as active SONAR, RADAR and
LIDAR where “ghosts” are a frequent problem. Our work shows that these
ghosts carry valuable information about the scene.
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Conclusions
In this thesis we have introduced a general framework for dealing with sys-
tems of planar mirrors. Its goal is to simplify the interpretation of light
ray trajectories in planar mirror systems. The framework’s main tool is the
space partitioning concept. Using this concept, we have shown that planar
mirror systems are continuous with respect to change of the observation
point.

On the practical side, we have illustrated the value of the proposed frame-
work in solving important but challenging problems arising in computer vi-
sion and time-of-flight imaging that involve multiple interactions with planar
mirrors.

For example, we have shown that generalized kaleidoscopic imaging sys-
tems can be used to obtain dense spherical multi-view data for extended
(in contrast to planar) objects that are calibrated both geometrically and
photometrically. We have also shown that the output of these techniques
is directly usable in standard multi-view reconstruction algorithms as well
as for reflectance acquisition. All these properties allow for inexpensive so-
lutions when compared to traditional multi-view acquisition systems and
allows for an improved use of the available sensor area and/or projector res-
olution. Additional advantages include perfect synchronization and common
radiometric and colorimetric properties for all views and/or illumination di-
rections.

The theoretical framework has also enabled progress in the solution of
the problem of reconstructing a planar mirror system from multiple ob-
servations of a single point. In particular, we have enlarged the family of
reconstructable planar mirror configurations in 21

2D. In contrast to previous
results in this area, under certain constraints, our algorithm is capable to
recover the mirror structure even when the point is not observable directly
and/or through a single reflection.
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Future Work
The tools and methods developed in this thesis open new possibilities for the
use of virtual mirror worlds generated by planar kaleidoscopes in computer
vision. However, to achieve a true freedom in the use of planar mirror
systems, we still have to find solutions to several questions.

Sampling of kaleidoscopes. The principal problems associated with
depth-of-field, field-of-view and multi-resolution are related to the specific
design of the kaleidoscope. Other, better kaleidoscope configurations may
minimize these drawbacks. In the future, better configurations of planar
mirror systems could be established by sampling the space of planar mirror
systems. We have already obtained partial result towards this goal in Part II:
the observer-continuity of a fixed system allows for a sampling of the best
observation point. For a full optimization, however, continuity has to be
proven for a change in the mirror configuration as well.

Kaleidoscopic visual hull and labeling. Future work includes devel-
opment of rigorous bounds for the pixel labeling error at occlusion bound-
aries. Since this is impossible in the general case, suitable object classes
that cover all scenes of interest while still enabling an estimation of a tight
error bound have to be found. Future algorithmic developments include the
incorporation of inherently multi-resolution data in multi-view reconstruc-
tion algorithms as well as investigating techniques to differentiate between
the limited number of views that are potentially responsible for unreliable
pixels. Another direction for future work is the improvement of the space
carving implementation. We used a simple but relatively slow and impre-
cise voxel-based algorithm. In the future, the polyhedral-based algorithm
[Franco03] could be adapted to improve the current solution.

Acquisition of dynamic scenes. The acquisition of dynamic scenes,
i.e. both geometry and reflectance, is one of the promising areas of appli-
cation of kaleidoscopes. This is due to the perfect synchronization between
different views. However, the problem of automatically labeling a dynamic
scene has to be solved.

Structure reconstruction of planar mirror systems. In the future
we would like to investigate problem instances where the sufficient mirror
reconstruction conditions derived in Chapter 7 do not hold. The goal would
be to identify the class of reconstructable mirror systems, i.e., the necessary
and sufficient conditions for reconstructability. In particular, our definitions
of doublets and triplets rely on a single bounce separation of two observed
points. There may be problem instances where mirrors can only be observed
through second or higher-order bounces. A different way to overcome the
insufficient amount of connections via doublets and triplets, as well as the
burden of reconstruction complexity, is to use multiple distinct observation
points in the system. Another task for the future is the generalization of
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the described 21
2D approach to truly 3D cases. In this situation the concept

of doublets and triplets remains the same, while assembling them together
into quadruplets, quintets etc. will not be performed in the 2D plane, but
in 3D space.

Curved mirrors and refractive systems. Curved mirror systems
or systems with refractive elements are even less understood and harder
to predict than planar mirror systems. This thesis is dedicated to planar
mirror systems, but the theory developed here may be partially used in the
curved mirror case or in the case when there is a refraction of rays (or even
combinations thereof). In particular, the space partitioning concept may be
adopted to the curved or refractive cases in future work. Note, that in these
cases, chambers, except maybe the base chamber, will have a non-Euclidean
structure.
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Appendix





CHAPTER A

Length of the perpendiculars in
Theorem 2

We refer to the sketch in Figure 4.11. Remember that L = d(c0,mC(a)),
r = d(mC(a),mC(a′)), and d = d(M, c0).

We aim at expressing d(c0,b1) in terms of L, r and d.
Since (∠h1b1c0 = ∠h1mC(a′)mC(a) = π

2 and ∠c0h1b1 =
∠mC(a′)h1mC(a)) ⇒ 4c0b1h1 ∼ 4mC(a′)mC(a)h1.

Then d(c0,b1)
r = d(c0,h1)

d(mC(a),h1) ⇒ d(c0,b1) = r·d(c0,h1)
d(mC(a),h1) = r·d

d(mC(a),h1) .
Applying the Pythagorean theorem to the triangle4c0mC(a′)mC(a), we

have: d(c0,mC(a′)) =
√

(d(c0,mC(a)))2 − (d(mC(a),mC(a′)))2 =
√
L2 − r2.

Then d(h1,mC(a′)) =
√
L2 − r2 − d.

Applying the Pythagorean theorem to the triangle 4h1mC(a′)mC(a)
yields: d(mC(a),h1) =

√
(d(h1,mC(a′)))2 + (d(mC(a),mC(a′)))2 =√

(
√
L2 − r2 − d)2 + r2. Then:
d(c0,b1) = r·d√

(
√
L2−r2−d)2+r2

.

d(c,b2) is computed similarly to d(c,b1). Since d(mC(a),mC(a′′)) =
d(mC(a),mC(a′)) = r and d(h2, c)=d(h1, c)=d ⇒ d(c,b2) = d(c,b1).
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CHAPTER B

Practical Recommendations for
Kaleidoscope Construction

Before starting the design and the construction of a real kaleidoscopic imag-
ing system it is very important to plan the experimental details in advance.
We suggest to select a mirror configuration having the following questions
in mind:

• Which objects will be imaged in the kaleidoscope? What are their
physical dimensions?

• Which cameras/projectors will be used (including lens selection)? What
are their intrinsic parameters, including field-of-view? What are their
depth-of-field parameters? What are their physical dimensions?

• How many virtual views are needed? How should the virtual views be
distributed?

• What is the maximum size of the mirrors?
• How well does the kaleidoscopic visual hull approximate the visual

hull?

Our approach is to perform computer simulations before the actual kalei-
doscope construction. For this purpose we render views from inside the
kaleidoscopes in PBRT1. Renderings should be performed with representa-
tive objects to evaluate the approximation of the visual hull by the corre-
sponding kaleidoscopic visual hull.

1http://www.pbrt.org

http://www.pbrt.org
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The knowledge of the real camera/projector intrinsics allow us to prop-
erly set up the camera parameters of the rendering part, while the knowledge
of the dimensions of the object allows us to estimate the dimensions of the
mirrors.

Once the mirror size is determined and the camera/projector, the ob-
ject, and the illumination are placed into the virtual scene, we can render the
camera/projector image. This image may be processed in the same fashion
as the image from the real kaleidoscope (note, all the mirror positions are ex-
actly known in the simulation, i.e. the virtual scene is perfectly calibrated).
In other words, having the rendered image, we can produce the kaleidoscopic
visual hull, the labeling and the list of virtual cameras/projectors. The re-
sult now can be used to estimate if our configuration satisfies additional
important requirements:

• Are the virtual objects in the depth-of-field range?
• Is the number and the distribution of the virtual views satisfactory?
• Is the kaleidoscopic visual hull a satisfactory approximation of the
visual hull?

Although the acceptability of the kaleidoscopic visual hull for one par-
ticular object does not guarantee, in general, the acceptability of the kalei-
doscopic visual hull for other objects of similar size, it is a good indicator
for major problems.

Once a mirror design satisfying the above-mentioned requirements is
found, it needs to be checked further (in order to accept, modify, or reject
it) with the following questions:

• How can objects be inserted into / removed from the kaleidoscope
(without touching the mirrors)?
• How will the scene be illuminated? Is there sufficient space in/around
the kaleidoscope? Is there sufficient illumination power?
• How to physically build the proposed kaleidoscope (frame structure
and attachment)?
• How will the kaleidoscope be calibrated?
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