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Abstract

In the last decade ray tracing performance reached interactive frame rates for non-
trivial scenes, which roused the desire to also ray trace dynamic scenes. Changing the
geometry of a scene, however, invalidates the precomputed auxiliary data-structures
needed to accelerate ray tracing. In this thesis we review and discuss several approaches
to deal with the challenge of ray tracing dynamic scenes.

In particular we present the motion decomposition approach that avoids the invali-
dation of acceleration structures due to changing geometry. To this end, the animated
scene is analyzed in a preprocessing step to split it into coherently moving parts. Be-
cause the relative movement of the primitives within each part is small it can be handled
by special, pre-built kd-trees. Motion decomposition enables ray tracing of predefined
animations and skinned meshed at interactive frame rates.

Our second main contribution is the streamed binning approach. It approximates
the evaluation of the cost function that governs the construction of optimized kd-trees
and BVHs. As a result, construction speed especially for BVHs can be increased by
one order of magnitude while still maintaining their high quality for raytracing.
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Kurzfassung

Im letzten Jahrzehnt wurden interaktive Bildwiederholraten bei dem Raytracen von
nicht trivialen Szenen erreicht. Dies hat den Wunsch geweckt, auch sich verändernde
Szenen mit Raytracing darstellen zu können. Allerdings werden die vorberechneten
Datenstrukturen, welche für die Beschleunigung von Raytracing gebraucht werden,
durch Veränderungen an der Geometrie einer Szene unbrauchbar gemacht. In dieser
Dissertation untersuchen und diskutieren wir mehrere Lösungsansätze für das Problem
der Darstellung von sich verändernden Szenen mittels Raytracings.

Insbesondere stellen wir den Motion Decomposition Ansatz vor, welcher die bisher
nötige Neuberechnung der Beschleunigungsdatenstrukturen aufgrund von Geometrie-
änderungen zu einem großen Teil vermeidet. Dazu wird in einem Vorberechnungs-
schritt die animierte Szene untersucht und diese in sich ähnlich bewegende Teile zer-
legt. Da dadurch die relative Bewegung der Primitiven der Teilszenen zueinander sehr
klein ist kann sie durch spezielle, vorberechnete kd-Bäume toleriert werden. Motion
Decomposition ermöglicht das Raytracen von vordefinierte Animationen und Skinned
Meshes mit interaktiven Bildwiederholraten.

Unser zweiten Hauptbeitrag ist der Streamed Binning Ansatz. Dabei wird die Ko-
stenfunktion, welche die Konstruktion von für Raytracing optimierten kd-Bäumen und
BVHs steuert, näherungsweise ausgewertet, wobei deren Qualität kaum beeinträchtigt
wird. Im Ergebnis wird insbesondere die Zeit für den Aufbau von BVHs um eine Grö-
ßenordnung reduziert.
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Zusammenfassung

Die Fortschritte des letzten Jahrzehnts in der Geschwindigkeit von Raytracing haben
– mit dem Erreichen interaktive Bildwiederholraten für nicht triviale Szenen – den
Wunsch geweckt, auch sich verändernde Szenen mittels Raytracings darstellen zu kön-
nen. Sich verändernde Szenen stellen eine große Herausforderung für Raytracing dar,
denn die vorberechneten Datenstrukturen für die Beschleunigung des Bildsynthesever-
fahrens werden durch Veränderungen in der Geometrie unbrauchbar gemacht. In dieser
Dissertation diskutieren wir mehrere Lösungsansätze für das Problem der Darstellung
von sich verändernden Szenen mittels Raytracings. Als Hauptbeiträge entwickelten wir
zwei dieser Ansätze: Motion Decomposition und Streamed Binning.

Das Ziel des Motion Decomposition Ansatzes ist es, möglichst zu vermeiden, dass
Veränderungen der Szene eine Neuberechnung der Beschleunigungsdatenstrukturen
nach sich ziehen, weil sie ungültig geworden waren. Die Idee des Ansatzes besteht
darin, die Szene in Teile zu zerlegen, und damit auch die Bewegungen in der Szene
zu zerlegen: in einen Hauptanteil, welcher die Bewegungen der Szenenteile relativ zu-
einander beschreibt, und einen Restanteil an Bewegung, welcher sich innerhalb eines
jeden Szenenteils abspielt. Die Szenenteilstücke werden in einem kleinen kd-Baum auf
oberster Hierarchieebene indexiert, welcher schnell für jedes Bild neu aufgebaut wer-
den kann, um die groben, relativen Bewegungen zu berücksichtigen. Die Restbewegun-
gen werden von toleranten kd-Bäumen abgedeckt, welche robust gegenüber kleinen
Änderungen der Geometrie sind und somit gültig bleiben und keine Neuberechnung
benötigen. Der Motion Decomposition Ansatz beruht auf der Annahme, dass Bewe-
gungen räumlich kohärent stattfinden. Zusätzlich muss das Ausmaß der Bewegungen
vorher bekannt sein.

Wir zeigen, wie der Ansatz auf zwei Gebieten angewandt wird: auf vordefinierte
Animationen und auf Skinned Meshes. Um die Zerteilung der Szene bei vordefinierten
Animationen zu finden entwickelten wir ein Zerlegungsverfahren, welches auf Lloyds
Relaxation basiert. Es minimiert die Restbewegungen in jedem erzeugten Szenenteil
und optimiert so die Geschwindigkeit von Raytracing. Bei Skinned Meshes nutzt das
Zerlegungsverfahren die Informationen der Knochentransformationen aus, welche die
Deformation des Oberflächennetzes bestimmen. Im Ergebnis kann man mit dem Mo-
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tion Decomposition Ansatz diese Arten der veränderlichen Szenen mittels Raytracings
mit interaktiven Bildwiederholraten darstellen.

Das Ziel des Streamed Binning Ansatzes ist es, die Zeit zum Erstellen der Be-
schleunigungsdatenstrukturen zu verringern, so dass diese nach Veränderungen der
Szene schnell genug neuberechnet werden können – idealerweise mehrmals in einer
Sekunde.

Als Grundlage beschreiben und analysieren wir die konventionelle Methode für
den Aufbau von Beschleunigungsdatenstrukturen, welche mit der Surface-Area Heu-
ristik (SAH) für Raytracing optimiert werden. Daraus leiten wir den Streamed Bin-
ning Ansatz ab, welcher sowohl den Aufbau von kd-Bäumen als auch den Aufbau
von Bounding Volume Hierarchies (BVHs) beschleunigt. Dazu wird das Minimum der
SAH Kostenfunktion und somit die beste Position für die Teilung eines Baumknotens
näherungsweise bestimmt, indem die Anzahl der untersuchten Positionen deutlich re-
duziert wird. Zusätzlich vermeiden wir die vorher zu Beginn des Aufbaus notwendige
Sortierung der Geometrieprimitiven, was zu schnellen, zusammenhängenden Speicher-
zugriffen führt.

Der eingeführte Näherungsfehler ist sehr klein, so dass die erzeugten kd-Bäume
und BVHs von hoher Qualität für Raytracing sind. Daher kann der Streamed Binning
Ansatz den konventionellen Aufbau der Beschleunigungsdatenstrukturen in den mei-
sten Einsatzgebieten ersetzen. Wir zeigen, dass der Aufbau von BVHs deutlich mehr
von unserer neuen Methode profitiert als der Aufbau von kd-Bäumen. BVHs können
bereits schnell genug neu aufgebaut werden, um beliebige, interaktive Veränderungen
an Szenen von kleinerer bis mittlerer Größe zu unterstützen. Bei sehr großen Szenen
verringert der Streamed Binning Ansatz die Zeit bis zum Erscheinen des ersten Bildes
um eine Größenordnung.

Wie wir in dieser Dissertation zeigen gibt es mehrere unterschiedliche Ansätze, um
sich verändernde Szenen mittels Raytracings darzustellen, welche jeweils für verschie-
dene Gebiete und Anforderungen geeignet sind.
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Chapter 1

Introduction

1.1 Problem and Motivation

Ray tracing has long been known to be the method of choice to produce convincing
and realistically looking computer generated images of virtual worlds. Likewise, it has
been known for its long rendering times, taking hours for just a single image.

Fortunately, rendering times improved significantly in recent years. With the grow-
ing computational power and fine-tuned algorithms, ray tracing became fast enough
for interactive rendering. Even non-trivial scenes with millions of triangles can be
ray traced at real-time frame rates for full-screen images. Nevertheless, most fast ray
tracing techniques only support very simple shading and in particular only static walk-
through applications.

However, this new ability of real-time ray tracing rouses the desire for more inter-
action: to not only change camera parameters, but to also change the geometry of the
scene between frames. Additionally, there are many scientific or entertaining applica-
tions – such as games or visualization of fluid simulations – that require dynamic scenes
and interactive changes to the geometry. These applications have previously been the
domain of the hardware-assisted rasterization algorithm but could tremendously profit
from the ease of use and from the photorealism of ray tracing – if ray tracing would
support dynamic scenes.

Unfortunately, changing the scene contents between frames is problematic, because
fast ray tracing relies on preprocessing the geometry into a spatial index structure. The
speed of this preprocessing phase was traditionally not so important, because rendering
times were much higher than the preprocessing times. Therefore dynamically changing
scenes were not supported by ray tracing systems nor investigated by researches in the
past.

However, the situation changed: dynamic scenes are now interesting and within
reach. Games could not only use advantages of ray tracing for visual realism as
sketched above, but also interact with a fully dynamic world, freely changing the en-
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tire environment. Or ray tracing could interactively visualize the results of physics
simulations such as elastic deformations, cloth simulations, explosions, or smoke and
fluid simulations. Consequently, several researchers around the world are attracted to
the problem of ray tracing dynamic scenes – including ourselves. Thus, the work pre-
sented in this thesis deals with several approaches to handle dynamic scenes.

1.2 Contributions

Parts of this thesis have already been published elsewhere [Günther06a, Günther06b,
Popov06, Günther07, Wald09].

The main contributions can be summarized as follows:

• We present one of the first methods for ray tracing non-rigidly deforming scenes
interactively. The motion decomposition approach supports predefined anima-
tions as well as skinned meshes, and can be adapted to other kinds of deforma-
tions.

• We present a novel approach to quickly construct high-quality acceleration struc-
tures. With streamed binning we can build acceleration structures one order of
magnitude faster than with previous methods.

1.3 Outline of Thesis

After establishing a background of ray tracing and its related problems in Chapter 2 we
present two approaches to ray tracing dynamic scenes. Chapter 3 introduces motion
decomposition as first approach. The second approach in Chapter 4 deals with faster
construction of acceleration structures by using streamed binning.



Chapter 2

Background

In this chapter we will give a brief overview of ray tracing in general and its evolu-
tion and trends. We will discuss several possible approaches to ray tracing dynamic
scenes to establish a context for our work. Additionally, we will also review alternative
methods in more detail.

2.1 Ray Tracing

The ray tracing algorithm simulates optical transport of light to generate images of vir-
tual worlds. But ray tracing is also the more fundamental function that simply returns
the closest intersection of the scene geometry with a ray for a given ray origin and
ray direction. It is important to distinguish between these different meanings of the
term ray tracing: between the more general method of (recursive) ray tracing [Whit-
ted80, Cook84] – which tracks for each pixel the path of light from the camera into the
scene to the light sources – and the ray tracing function, that is used for these tracking
tasks. In this thesis we mainly focus on the ray tracing function, and in particular on
the construction of the acceleration structures that are necessary for its efficiency.

We assume a basic understanding of the ray tracing algorithm. For a deeper intro-
duction and overview of ray tracing see e.g. [Shirley03, Pharr10].

2.1.1 Acceleration Structures

One of the main components of an efficient ray tracing function is the acceleration
structure. The acceleration structure spatially indexes the primitives of a scenes and
can then be queried to greatly reduce the number of ray-primitive intersection calcula-
tions. Many different data structures for accelerating ray tracing have been proposed
including, among others, octrees [Glassner84, Arvo88], bounding volume hierarchies
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(BVHs) [Rubin80], grids [Cleary83, Amanatides87], ray classification [Arvo87], bi-
nary space partition (BSP) trees [Fuchs80, Ize08], and kd-trees [Jansen86, MacDon-
ald90, Subramanian90]. With the renewed interest in ray tracing several hybrid data-
structures and variants have been proposed, such as the s-kd-tree / bounding inter-
val hierarchy (BIH) [Ooi87, Wächter06, Havran06], the b-kd-tree [Woop06], the H-
tree [Havran06], the RBSP-tree [Kammaje07], and BVHs with a higher branching fac-
tor then two [Dammertz08a, Ernst08, Wald08a].

All these acceleration structures have different properties, advantages and disad-
vantages. They differ in construction time and complexity, query time, implementation
complexity, their ability to adapt to the scene geometry, and memory requirements,
among others.

Based on a detailed evaluation of acceleration structures Havran concluded that
in general kd-trees perform best or are at least highly competitive [Havran01]. As
a result, many real-time ray tracing systems use kd-trees, including CPU-based sys-
tems [Wald01, Reshetov05, Overbeck07, Georgiev08, Djeu11], GPU-based ray trac-
ers [Foley05], and ray tracing hardware [Woop05].

However, Havran’s evaluation concentrated on static scenes and thus excluded con-
struction time. For dynamic scenes the situation may change completely. For example,
it has been shown that BVHs are easier to update after geometry changes [Lauter-
bach06, Wald07b, Yoon07]. BVHs can be quickly constructed as well, as we will
discuss in Chapter 4. Thus BVHs seem to be the better suited acceleration structure
for animated scenes. Regarding ray tracing performance it has been demonstrated that
BVHs built according to the surface area heuristic (SAH) [MacDonald90] are quite
competitive to kd-trees, in particular if groups of rays are traversed together [Wald07b,
Benthin12]. Furthermore, BVHs are successfully used for GPU ray tracing [Aila09,
Parker10, Garanzha10] and mobile ray tracing hardware [Nah11, Lee13].

2.2 Types of Motion

Firstly we want to distinguish between different kinds of motion that can be encountered
in a dynamic scene before we look into their implications on acceleration structures.

First, there are static objects which are neither moved nor deformed. Static objects
can be rendered very quickly with ray tracing using kd-trees [Reshetov05, Wald01,
Havran01].

Second, there are objects which undergo simple affine transformations like transla-
tion or rotation. Lext and Akenine-Möller [Lext01] proposed a hierarchy of oriented
bounding boxes to minimize reconstruction times via lazy rebuilds for this kind of
rigid-body motion. Furthermore, Wald et al. [Wald03] have proposed a two-level kd-
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tree scheme based on hierarchically affine transforming sub-meshes. Though this is
sufficient for several engineering-style VR applications, more general animations can-
not be handled.

Third, there is locally coherent deformation. This type of motion can be plentifully
encountered in the real world and is thus widely simulated in graphical systems such
as games and animated movies. For example, locally coherent deformation can be
observed when wind bends a tree and the leaves are rippling, or when fingers are moved
and their skin stretches.

Finally, our last category is completely random motion like in particle systems and
turbulence simulations. This is the hardest type of motion to deal with, because in
general no assumptions can be made anymore: the topology of the objects may change
and one cannot rely on spatial or temporal coherence.

2.3 Approaches to Ray Tracing Dynamic Scenes

Research in the past focused on making the acceleration structure more efficient in
culling unnecessary intersection test – and achieved outstanding results. For example,
a well prepared kd-tree can reduce the number of necessary ray-triangle intersections
to only two or three until the closest intersection is found [Havran01].

Ironically, these highly-efficient indexing methods are the source of the problem
of ray tracing dynamic scenes. Dynamically changing scenes invalidate the pre-built
acceleration structure and rebuilding it is expensive and takes several seconds, even for
a moderate number of primitives, which is clearly not fast enough for interactive frame
rates.

This leads us to several approaches to nevertheless ray trace dynamic scenes:

1. Avoid the reconstruction of the acceleration structure by ensuring that certain
changes of the geometry of the scene do not invalidate the acceleration structure.

2. Develop faster construction algorithms that reduce the time to build the accel-
eration structure, such that it can ultimately be built several times per second to
adapt to scene changes.

3. Refit or update an acceleration structure instead of rebuilding it from scratch
when the scene changes. BVHs can be easily and quickly adapted to changing
geometry by just recomputing the bounds of all nodes. However, because the
hierarchy itself is not changed, the quality of the BVH quickly deteriorates and
ray tracing becomes slower and slower after several of such updates. Such de-
terioration can be detected and, if above a threshold, the BVH is rebuilt from
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scratch [Lauterbach06]. However, the reconstruction of the BVH leads to a dis-
ruptive pause in rendering, which can be avoided when the reconstruction is per-
formed asynchronously to refitting and rendering [Ize07, Wald08b].

Another strategy to mitigate the quality degradation of BVH refitting requires
knowledge of the changes to the scene to some degree beforehand. Then, the
BVH can be constructed over a range of an animation or over different poses,
such that the structure of the BVH is somewhat adapted to all these changes and
not only to one instance of the scene [Wald07b].

Although refitting alone is often not enough to retain BVH quality, completely
rebuilding the tree is also often not necessary. Instead, it can be sufficient to
locally update the BVH structure to react to changes of the scene [Yoon07, Eise-
mann07, Kopta12]. The fast BVH update scheme of Bittner et al. [Bittner13]
could be applied to animated scenes as well.

4. Improve the culling performance of acceleration structures that can be generated
very quickly, but have previously been abandoned because of poor ray tracing
performance. Probably the prime example of this approach is the grid. Con-
structing a grid is relatively simple and can be done in O(n). Very fast con-
struction is possible by using multiple CPUs [Ize06] or the GPU [Kalojanov09].
Already simple to traverse with single rays, traversal of grids can be significantly
accelerated by exploiting ray coherence [Wald06b]. However, grid performance
suffers a lot if the geometry is distributed non-uniformly – as is the case in most
real world scenes. A common solution is to nest grids, which also has been
demonstrated recently for GPU ray tracing [Kalojanov11].

To some degree the approach to improve ray tracing performance for accelera-
tions structures that are better suited for dynamic scenes also applies to BVHs.
Scenes that have both small and large triangles are problematic for BVHs, be-
cause their nodes need to be at least as large as the largest primitive they bound.
This can lead to considerably overlapping bounding boxes and consequently to
poor ray tracing efficiency. Kd-trees do not suffer from this problem, because
they partition space instead of objects and simply split large primitives. BVH
performance has been improved by adopting this property of kd-trees, by either
splitting large triangles before BVH construction [Ernst07, Dammertz08b], or by
introducing additional spatial splits during the construction of BVHs [Stich09,
Popov09].

5. Develop hybrid acceleration structures that try to combine good construction per-
formance and good culling performance. The s-kd-tree and its variants [Ooi87,
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Wächter06, Woop06, Havran06] are such hybrid acceleration structures. By hav-
ing two (or four) parallel planes per node to bound the children in one dimension
they combine properties of the kd-tree and the BVH.

6. Use no explicit acceleration structure at all. Recently, a new approach to ray
trace dynamic scenes has been introduced, called divide-and-conquer ray trac-
ing [Mora11, Áfra12]. All rays to be intersected are gathered first and are pro-
cessed together. The bounding box of the scene is recursively split, and each split
partitions the rays as well as the primitives of the scene. Divide-and-conquer ray
tracing adapts nicely to the distribution of the rays – parts of the scene that are not
visited by rays are not further subdivided – and works also well for incoherent
rays.

In this thesis, we focus on the first two approaches, avoid the reconstruction and faster
construction, which will be discussed in detail in Chapter 3 and Chapter 4, respectively.
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Chapter 3

Motion Decomposition

In this chapter we present our motion decomposition approach to ray trace dynamic
scenes where deformations are locally coherent. After an overview of the motion de-
composition framework we show in detail how to apply this general technique to pre-
defined animations and to skinned meshes. At the end of this chapter we evaluate and
discuss our proposed algorithms.

3.1 Introduction and Related Work

To approach the problem of ray tracing dynamic scenes we developed the motion de-
composition framework with two goals in mind: On the one hand the proven kd-trees
should be utilized as acceleration structure to allow for a high level of ray tracing per-
formance. On the other hand updating or costly reconstruction of kd-trees in order to
adapt to changing geometry should be avoided (while still ensuring correct ray tracing).

The key for achieving these goals can actually be found in the notion of relativity of
motion: whether one moves an object filmed by a camera to the left or one moves that
camera to the right will not change the result on screen, which is showing the object
moving left. This principle equally works with rays that intersect moving objects: the
intersection result will be the same regardless of whether the object is moved or the ray
moved in the opposite direction.

Lext and Akenine-Möller [Lext01] have been the first to apply this principle to ray
tracing animated objects. Every potentially moving object has its own acceleration
structure (a recursive grid), and all objects (with their current position and orientation)
are organized in an oriented bounding box hierarchy. The same idea was later adapted
by Wald et al. [Wald03] to solely use kd-trees. Although ray tracing of animated scenes
was realized, both implementations can only deal with rigid-body animations.

With the motion decomposition approach we further generalize this basic principle
to non-rigid-body transformations. To this end we need to exploit knowledge about

27
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the motion in the scene, and we need to make certain assumptions about the scene
properties.

First, we assume that objects are defined as deformations of a base mesh. This
means that the connectivity of the mesh remains the same during dynamic changes and
only the vertices are animated. Second, we assume that all possible deformations of a
mesh are bounded and that this bound can be determined in advance. Third, we assume
that the motion is locally coherent, i.e., vertices that are topologically close to each
other should have similar trajectories.

These assumptions hold for a variety of real-world animations. Vertex animations
are quite common in visualization and games. If the animation is predefined our second
assumption is automatically fulfilled. But we also show that interactive deformation
which are defined through skinning of a base skeleton – as typically done for game
characters – are supported by our method.

3.2 Method Overview

The concept and motivation of the motion decomposition framework is sketched in
Figure 3.1. We exploit locally coherent motion of an animation (a) by automatically
clustering coherently moving parts of the scene together in a preprocessing step (b).
The common motion of these parts can be expressed by affine transformations. Us-
ing only these affine transformations to transform rays during ray tracing can quite
closely reconstruct the original animation (c). However, the close-up (d) reveals cracks
and other errors, because affine transformations alone cannot represent non-rigid body
motion. Therefore we also account for the residual motion, which is handled by so
called fuzzy kd-trees. Decomposing the motion into affine transformations and residual
motion yields an correctly animated mesh (e).

In the following we describe in more detail the individual parts of our approach.

3.2.1 Decomposition of Motion

In Figure 3.2 we exercise the decomposition of motion for the example animation of
a ball that is thrown onto a floor. The motion decomposition approach requires that
the motion is locally coherent. This is the case for the floor (which is coherently “not
moving”) as well as for the ball. Therefore we can decompose the motion of these two
objects into two parts: affine transformation and residual motion. For the floor these
two parts are trivially zero. “Subtracting” the affine transformation for the ball yields a
local coordinate system in which the (residual) motion of the vertices is much smaller
– it represents now only the deformation without the higher-level movement of the ball.
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(a) (b) (c) (d) (e)

Figure 3.1: Motion decomposition together with fuzzy kd-trees allow for ray tracing
deforming meshes by decomposing the motion of the mesh into an affine transforma-
tion plus some residual motion. (a) One frame of an animated hand. (b) The deforming
mesh is split into sub-meshes of similar motion, shown in the rest pose. (c) Reconstruc-
tion of frame (a) using the affine transformations of each cluster only. (d) Close-up view
of (c) revealing the erroneous mesh when approximated only by affine transformations.
(e) Adding the residual motion handled by the fuzzy kd-trees yields the original mesh.

Note that affine transformations can also compensate the shearing of the ball in the
third frame of the animation (green), which yields smaller bounding boxes in the local
coordinate system.

3.2.2 Fuzzy KD-Trees

The residual motion is only in rare cases completely zero (e.g. when there are only
rigid-body transformations). Thus to generally handle residual motion we introduce
fuzzy kd-trees. First, the residual motion of each triangle is bounded by a fuzzy box,
a box in the local coordinate system that encloses the motion of the three vertices of
the triangle. Then a kd-tree is built over these fuzzy boxes instead of just the triangles,
resulting in a fuzzy kd-tree. As long as we assure that the fuzzy boxes are not violated
by too strong residual motion the fuzzy kd-trees stay valid even during mesh animations
(see Figure 3.3). Thus fuzzy kd-trees can be built in a preprocessing phase and do not
require rebuilding during animation. This is the key benefit of our approach.

3.2.3 Two-level KD-Trees

Because the relationship between the coherently moving parts of an animation and
their motion is determined by affine-only transformations we use a two-level acceler-
ation structure in the spirit of [Lext01] and similar to [Wald03]. For each frame to be
rendered we update the transformations and current bounding boxes of objects having
an own fuzzy kd-tree (shown in Figure 3.4). Then a small top-level kd-tree is built
over these bounding boxes. Only this top-level kd-tree needs to be reconstructed ev-
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Figure 3.2: Example of a motion decomposition. Top row: Three frames of an ani-
mation where a ball is thrown onto a floor, together with the bounding boxes and local
coordinate systems of the two objects. The motion of these objects is encoded by affine
transformations. Bottom row: Visualization of the bounded residual motion in the local
coordinate system of the ball – coherent dynamic geometry is now “almost static”.

Figure 3.3: The triangles of the index finger of the Hand animation are clustered
together and are shown here. The residual motion of each triangle (green) is bounded
by a fuzzy box (red). Although the triangles move a little bit in the local coordinate
system their fuzzy boxes do not change. As the fuzzy kd-tree is built over these fuzzy
boxes instead of the triangles it is valid for all time steps.
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Figure 3.4: To ray trace a frame of an animation we firstly build a small kd-tree over
the current bounding boxes of each cluster. These boxes are shown for three frames of
the Chicken animation. Rays hitting a cluster get inversely transformed into the local
coordinate system of this cluster and traverse its associated fuzzy kd-tree.

ery frame, which can be done very quickly because the number of moving objects is
usually small (say 100 or 1000).

Ray traversal of this two-level kd-tree scheme works as in [Wald03]. When ray
traversal of the top-level kd-tree reaches a top-level leaf the rays are transformed into
the local coordinate system of the contained objects. Subsequently they continue the
traversal of the corresponding fuzzy kd-tree.

When rays finally visit a leaf of a fuzzy kd-tree they must be tested against the
current instantiation of any contained triangle. These triangle intersection tests can be
done in world coordinate system with the untransformed rays. Thus the positions of the
triangles in the local coordinate system are not explicitly required for rendering, which
saves memory and computation time.

3.3 Motion Decomposition of Predefined Animations

The general approach of motion decomposition holds for predefined animations and
skinned meshes. However, the way how coherently moving triangles are found and
clustered together is quite different for both scenarios. Therefore we explain the two
specialized clustering algorithms separately.

3.3.1 Details of Motion Decomposition

Before we describe the clustering algorithm we designed for predefined animations we
first need to specify its input and goals more formally. This section discusses the details
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of the motion decomposition approach and fuzzy kd-trees and provides a more formal
description of the techniques involved.

Our method requires that the animation is defined as deformations of a base mesh,
i.e. that the connectivity of the mesh is the same at any time. Thus the animation is
given by a constant set of triangles {∆} and their vertex positions {v}. The trajec-
tory vi(t) ∈ R3 describes the motion of a vertex over time. No additional knowledge
about the deforming mesh is necessary. However, we inherently assume coherent lo-
cal motion, i.e., vertices that are topologically close1 to each other should have similar
trajectories.

We exploit this coherent motion of the mesh to “subtract” common motion be-
cause the resulting smaller residual motion can be better handled by fuzzy kd-trees,
thus improving performance of ray tracing the animation. Mathematically this motion
decomposition can be described as follows. The position v at time t of the vertices in
world space can be expressed by applying the appropriate affine transformation X to a
rest pose M̃ = {ṽ} plus a (world-space) residual motion δ :

vi(t) = X(t) · ṽi +δi(t) (3.1)

The rest pose of an animated object is usually the state of the mesh during modeling
before a skeleton or an animation is applied and where typically all parts of the object
are in a relaxed and exposed position.

Transforming into the coordinate system of the rest pose by multiplying (3.1) with
the inverse transformation X−1(t) and substituting δ̃i(t) = X−1(t) ·δi(t) yields

ṽi(t) = ṽi + δ̃i(t) = X−1(t) ·vi(t), (3.2)

the fuzzy position ṽi(t) of vertex i at time t. The fuzzy box FB(∆abc) of triangle ∆abc
with vertices a,b,c is the axis-aligned bounding box (AABB) of all fuzzy positions
ṽa(t), ṽb(t), ṽc(t)∀t and bounds the local residual motion δ̃ (t). The fuzzy kd-tree is
then built over these fuzzy boxes instead of the triangles and is thus valid for all time
steps.

3.3.2 Clustering for Predefined Animations

The performance of the fuzzy kd-tree for ray tracing is strongly dependent on the size
of the fuzzy boxes, because the surface area of the fuzzy boxes is proportional to the
probability that a random ray will hit this box [MacDonald90]. In other words, if the
fuzzy boxes are large – due to high “fuzziness” of the triangles they bound – they

1There are short paths in the mesh that connect these vertices.



CHAPTER 3. MOTION DECOMPOSITION 33

Figure 3.5: Top row: Several frames of the Hand animation. Bottom row: Clustering
of the Hand animation with 1, 2, 4, 8, and 12 clusters, respectively. Triangles with the
same color belong to the same cluster. The wire frame boxes denote the bounding box
of each cluster. Note how the cost-driven clustering approach automatically segments
the hand into clusters in which the triangles perform roughly the same motion. For
example the pinky and the ring finger are clustered first as they perform similar motion.

will overlap significantly. Such overlap is the reason that the acceleration structure can
avoid less intersection computations, resulting in many costly ray-triangle intersections
until the closest intersection is found.

Therefore we like to minimize the residual motion, or equivalently, we want to
subtract as much common motion as possible. This can only be achieved by exploiting
the local coherence in motion, which requires a clustering of the mesh into sub-meshes
that deform coherently.

To partition the triangles of the mesh into clusters we apply a generalized Lloyd
relaxation [Lloyd82] algorithm (see e.g. [Du99] or [Gersho91] for an introduction).
Note that we need to cluster triangles and not vertices because the triangles are the
primitives which will be tested for intersections with rays.

In each iteration step we firstly find affine transformations that minimize the resid-
ual motion of each cluster and subsequently reassign each triangle to the cluster where
its residual motion is smallest.

The iteration process stops when the clustering converged, i.e. when no triangle
changes its cluster anymore. Practically we stop when the decrease in the overall resid-
ual motion drops below some threshold, e.g. below 1‰.

As Lloyd relaxation is prone to find local minima and as the optimal number of
clusters is not known in advance we start with one cluster and iteratively insert a new
cluster until the cost function converges.

A new cluster is inserted in the following way. We take as seed triangle the triangle
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with the largest residual motion. We also include its neighboring triangles such that
they define a unique coordinate system. The existing clusters are also newly initialized
with the seed triangles that have the smallest residual motion in each cluster. These seed
triangles act as prototypes of the common motion of the (currently) clustered triangles
and ensure a stable clustering procedure. We stop adding clusters when overall residual
motion cannot be reduced significantly anymore.

The clustering process is demonstrated in Figure 3.5. Note that the most similar
moving parts of the mesh are clustered first. The proposed clustering algorithm is
summarized in pseudo code in Algorithm 1.

Algorithm 1 Clustering

1: start with one cluster containing all triangles of the scene
2: while global cost still changes significantly do
3: while cost not converged for current #clusters do
4: find transformations, minimizing δ̃ ∀cluster
5: recluster triangles, minimizing δ̃

6: end while
7: create new cluster
8: choose seed ∆s
9: end while

3.3.3 Finding “Good” Transformations

For the motion decomposition and the clustering we need to find affine transformations
between the rest pose and all other poses that minimize the residual motion ‖δ̃i(t)‖ =
‖X−1

t ·vi(t)− ṽi‖ ∀t.
The affine-only 3×3 transformation matrix and a translation can be combined to a

4×4 transformation matrix using the homogeneous coordinate system. Thus X−1 has
12 unknown elements and we need (at least) four linearly independent vertex positions
for a unique solution. With more than four vertex positions (the general case) we solve
the linear least squares problem that minimizes the L2-norm ‖X−1 ·vi(t)− ṽi‖2 of the
residual motion δ̃ .

Instead of minimizing the L2-norm of the residual motion we actually want to op-
timize the surface area of the resulting fuzzy boxes. This is more closely linked to the
L∞-norm. But we found that using the L2-norm is already giving good results while
guaranteeing convergence.
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3.3.4 Selecting the Rest Pose

So far we have not yet defined the rest pose M̃ = {ṽ}. To avoid an expensive general
optimization problem we simply take as M̃ the positions {ṽi(t)} of one of the key
frames of the animation. During the clustering we try all key frames and take the one
that minimizes the sum over all cluster c and all time steps t:

t̃ = argmin
t ′

∑
t

∑
c

∑
i∈c

‖X−1
c (t) ·vi(t)− vi(t ′)‖ (3.3)

If the animation consists of a large number of frames we uniformly subsample the
set of frames while searching for an optimal rest pose in order to reduce the search
space.

3.3.5 Optimizing Local Bounding Boxes

We can make two observations that can lead to better ray tracing performance if ex-
ploited properly.

First, when rays hit the axis-aligned bounding boxes of the clusters in the top-level
kd-tree they get inversely transformed to the local coordinate system of that cluster.
The following traversal of its fuzzy kd-tree starts by clipping the transformed rays to
the local AABB of the cluster. This is meaningful because the affine transformation
can rotate the coordinate systems and thus rays hitting the global AABB do necessarily
also hit the local AABB.

Second, the vertices of each cluster can be rotated arbitrary in the local coordinate
system because this rotation can be compensated by multiplying the affine transforma-
tions of the corresponding cluster with a rotation matrix.

We can take advantage of these facts to make tighter local axis-aligned bounding
boxes of clusters. By calculating an oriented bounding box (OBB) of the fuzzy posi-
tions and rotating this box to make it axis-aligned we can directly minimize the local
bounding boxes.

To approximately compute the OBB of each cluster (in local coordinates) we apply
principal component analysis (PCA) to the fuzzy positions and take the first three PCA
vectors as new coordinate system axes. Exactly finding the OBB [Barequet01] could
also be used.

3.4 Motion Decomposition of Skinned Meshes

Skinned meshes are a powerful tool for content creation in computer games and ani-
mated movies. Artists create meshes and attach a bone model to it. Using this skeleton



36 3.4. MOTION DECOMPOSITION OF SKINNED MESHES

(and optionally a physical behavior model) they can apply deformations to the mesh.
This type of motion is a good approximation of many real scenarios and is also com-
mon for animated synthetic datasets. Skinned meshes provide many advantages over
predefined animations, such as more flexibility and artistic freedom as well as being
more memory efficient. Thus our goal is to also ray trace skinned animations – with
the introduced motion decomposition approach. As we will see, the motion decompo-
sition and clustering task is simpler for skinned animations: The affine transformations
are directly provided from the application in form of bone transformations.

3.4.1 Vertex Skinning

A skinned mesh is animated with the help of an underlying skeleton, usually referred to
as skeleton subspace deformation [Magnenat-Thalmann88, Magnenat-Thalmann91].
Each vertex of the mesh is influenced by one or more bones. For example, vertices
forming an arm move together with the corresponding arm bone. Additionally, vertices
near the joints of two bones are influenced by both bones, resulting in a smooth skin
surface without cracks or other artifacts near the joints.

Mathematically, bones are described by transformations, and standard skinning is
a simple weighted interpolation:

v =
n

∑
i=1

wiXiṽ, with
n

∑
i=1

wi = 1

The value n is the number of bones influencing the skinned position v. Xi is the current
transformation of bone i and wi is the associated scalar weight (or influence) of that
bone for the vertex ṽ in the rest pose of the mesh. The rest pose is the original mesh
configuration modeled by an artist without applied skinning.

If all vertices were to be influenced by only one bone (n = 1) we would have the
situation of simple affine-only transformations where the two-level kd-tree alone is
sufficient [Wald03].

However, it is an important observation that even when n > 1 the interpolated mo-
tion of a vertex in the local coordinate system of a carefully chosen bone is typically
rather small, because usually vertices are significantly influenced by neighboring bones
only. This small residual motion of the vertices and triangles can be bounded by the
fuzzy boxes. Then for each bone, a fuzzy kd-tree is built over the fuzzy boxes rather
than over the triangles. Again, this has to be done only once in a preprocessing step,
because the local movement of the triangles does not invalidate the fuzzy kd-tree (Fig-
ure 3.3).

To render a new frame the pose of the skeleton is updated as well as the vertex
positions. Then the bounding boxes of each bone and associated triangles are calculated
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in world-space. Finally, we can apply the two-level kd-tree scheme and rebuild the
small top-level kd-tree over the bone fuzzy kd-trees.

3.4.2 Stochastic Fuzzy Box Computation

For the correctness of this algorithm it is crucial that the fuzzy boxes used to build the
fuzzy kd-trees are conservative. Otherwise it might happen that triangles get culled dur-
ing traversal of the fuzzy kd-trees and that rays erroneously miss these triangles, which
will result in holes in the mesh. Additionally, to optimize ray tracing performance, we
prefer to have small fuzzy boxes.

To estimate a set of small, but sufficiently conservative fuzzy boxes, we sample
the pose space during a preprocessing phase. The full pose space can be sampled by
rotating each bone arbitrarily. However, tighter fuzzy boxes and thus better ray tracing
performance can be achieved by restricting the bone rotation relative to its parent bone.
Additional information from the rendering application – such as joint limits – can be
used to restrict the pose space, because arbitrary bone rotations are quite unnatural for
most models. Another possibility is to only sample the different animation sequences
– such as walking, running, or kicking – used e.g. by a game application.

Note that the size of the fuzzy boxes depends not only on the pose space but also
on the choice of the bone a triangle is assigned to. In order to find the optimal bone, we
do an exhaustive search by calculating the fuzzy box in every bone’s local coordinate
system. The fuzzy box of a triangle is the union of the fuzzy boxes of its vertices.

The fuzzy boxes of all vertices are calculated by sampling as follows. For each
sample (i.e. a pose of the skeleton), every vertex is skinned and subsequently trans-
formed into the local coordinate space of each bone. The fuzzy box of a vertex in a
bone’s local coordinate system is the axis-aligned bounding box of its samples, i.e. its
transformed positions.

3.5 Results

We implemented the motion decomposition approach and the ray tracer with fuzzy kd-
trees using C++ and SSE [Intel02]. The kd-tree traversal is loosely based on multi-level
ray tracing and the inverse frustum culling approach of Reshetov et al. [Reshetov05]
with a ray packet size of 4×4. The ray-triangle intersection test is basically the same
as described in [Wald04] for packets of rays.

We used the LAPACK library [Anderson99] for fast matrix operations and linear
algebra computations needed by the clustering step for predefined animations. To man-
age the skeleton and vertex skinning parameters of the models we used the open source
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Figure 3.6: Example animations for motion decomposition. The first two rows show
predefined animations: Hand (16855 triangles, 30 frames), Ben (78029 triangles, 30
frames), Dolphin (12377 triangles, 101 frames), Cow (5804 triangles, 204 frames),
and Chicken (5664 triangles, 400 frames). The last row shows skinned meshes: Cally
(3342–271k triangles) and UT2003 (2478–201k triangles).
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library Cal3D [Cal3D]. With Cal3D we can also smoothly blend different animation
sequences as well as interpolate between key frames (see Figure 3.11).

The measurements were done on two dual-core AMD Opteron workstations, one
with 2.4GHz processors and one with 2.8GHz processors. Each workstation was
equipped with a GeForce 6800 GT PCIe graphics board.

Figure 3.6 shows several of our example scenes. They cover different amounts of
animation complexity and contain between approximately 2k and 271k triangles. The
Hand and Ben scenes are examples of hierarchical animations and were created using
a skeleton with vertex skinning. However, this skinning information was not avail-
able after exporting the animations, thus we still treat them as predefined animations.
Because the hierarchical motion of these scenes directly matches our assumptions we
expect that our motion decomposition approach will perform well. Although the mo-
tion of the Dolphin is not controlled by a skeleton but by a mass-spring simulation it
still moves naturally and thus also meets our assumptions.

The Cow scene, on the contrary, shows highly unnatural motion. It is an example
of an animation generated by a physics-based simulation of a cow consisting of very
elastic material, resulting in “jelly-like”, unnatural poses. As a stress test for our algo-
rithm we include the Chicken animation. This section of an animated film is difficult
because of the extreme, cartoon-like sequences around frame 250 (see Figure 3.6 and
the middle of Figure 3.4) that include strong stretching of the chickens’ neck and ooz-
ing of its eyes. Even though the motion in these two scenes violates the assumptions of
our motion decomposition framework it still works surprisingly well.

Finally, the last two scenes consist of the skinned models Cally and UT2003, as
typically found in games. We were not able to acquire meshes with a high number of
polygons that include the necessary skeleton and skinning parameters. To still be able
to estimate the performance of our system for scenes with a high number of triangles
we decided to additionally subdivide the low-resolution models several times.

3.5.1 Clustering of Predefined Animations

Our proposed clustering algorithm minimizes the residual motion by using the least
square distances of the vertex positions in the local coordinate system as a cost measure.
However, the surface area of the fuzzy boxes is the better measure for the expected ray
tracing performance [MacDonald90]. Figure 3.7 compares these two measures during
the clustering process. It shows that the least square distances by the relaxation-based
clustering is highly correlated with the surface area of the fuzzy boxes, and both are
minimized. Note that the absolute values of the cost functions cannot be compared as
they are dependent on the density of the mesh and the scale of the scene. Furthermore,
it can be seen that adding new clusters is not beneficial anymore at some point and
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Figure 3.7: The sum of all residual motion (top) and the accumulated surface area of
the fuzzy boxes (bottom) during the clustering process. The residual motion is mini-
mized by our clustering algorithm while the surface area of the fuzzy boxes is a better
measure for ray tracing performance. Still, both measures correlate well.
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Figure 3.8: Resulting clusters for the Hand (left) and the Ben (right) animation. The
found clusters correspond well to the skeleton used to create the animations though it
was not available as input to our algorithm.

clustering is automatically terminated by a threshold on the change of the least square
distances.

Also note that a number of clusters around 20–25 is sufficient for our example
animations. The clustering process takes from about 20 minutes for the Hand to about
95 minutes for the Chicken when 25 poses were tested for the rest pose. The clustering
time increases linear with the number of time steps and is also linear in the number of
candidate rest poses. Thus it can be shortened drastically by sub-sampling the time
steps during the clustering process with a negligible effect on clustering quality.

Although our algorithm only sees the animated vertex positions of the mesh and has
no knowledge about the underlying skeleton, the resulting clusters correspond well to
the bones of the Hand and Ben model (see Figure 3.8). Also for the Dolphin and even
for the Cow and Chicken animations meaningful sub-meshes that move coherently
were found (see middle row of Figure 3.6).

3.5.2 Fuzzy Box Estimation for Skinned Meshes

To evaluate the trade-off between the flexibility of posing a skinned mesh and ray
tracing performance, we restricted the valid pose space in several steps. Arbitrary
rotations of the bones on the one hand allow the greatest freedom for a user to interact
with the model. On the other hand, it is often meaningful to apply joint limits to the
skeleton to avoid unnatural mesh deformations. The pose space can be further restricted
by allowing only certain types of (predefined) movements (such as walking or waving),
which is often the case in game applications.
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fuzzy box avg. #tris
pose space #samples surface area per leaf fps
arbitrary bone rotations 1000 747k 4.1 7.7
applying joint limits 245 580k 3.4 10.2
many animation sequences 124 552k 3.2 11.6
just one animation sequence 62 515k 3.1 12.0

Table 3.1: Influence of the valid pose space on the fuzzy box surface area, the qual-
ity of the fuzzy kd-trees and subsequently the rendering performance for the UT2003
scene. Restricting the pose space – at least by joint limits – greatly improves ray tracing
performance.

Table 3.1 shows our measurements for all these pose space configurations. With
increasing freedom of the bone rotations, the fuzzy boxes become larger. This leads to
more overlap of the fuzzy boxes, which decreases the efficiency of the fuzzy kd-tree.
More intersections need to be calculated, resulting in decreased ray tracing perfor-
mance.

As already mentioned, the accumulated surface area of the fuzzy boxes of all trian-
gles is a good measure for the expected ray tracing performance because it is propor-
tional to the number of intersections of a random ray with these boxes [MacDonald90].
Another measure for the efficiency of kd-trees is the average number of triangles per
kd-tree leaf. Higher numbers account for larger overlap of fuzzy boxes, because it is
not meaningful to split the overlapping area during kd-tree creation – every child node
would contain the same triangles – and we cannot save intersection tests. Finally, we
verified our expectations by measuring the achieved frames per second for ray tracing
the rest pose with the same viewpoint for all the different pose space configurations.

All these measures show that restricting the pose space improves the ray tracing
performance. The biggest performance gain can be obtained by applying joint limits.

The time required for preprocessing and sampling the pose space can be found in
Table 3.3. For the original skinned models it took less than a second on one 2.4GHz
Opteron CPU. And even with higher resolution meshes with hundreds of thousands of
triangles we achieved reasonable fast preprocessing within seconds to a few minutes
– which is two orders of magnitude faster than the clustering of predefined animations.
Also note that sampling is usually faster than the subsequent building of the fuzzy
kd-trees over the found fuzzy boxes.
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#traversal steps #intersections average fps
scene static fuzzy ratio static fuzzy ratio static fuzzy ratio
Hand 1,331k 2,308k 1.76 1.28 1.48 1.15 17.98 10.94 1.64
Ben 722k 1,112k 1.54 1.2 2.28 1.9 20.98 10.77 1.94
Dolphin 534k 1,020k 1.91 1.08 1.72 1.59 22.56 19.31 1.16
Cow 634k 947k 1.49 0.92 3.68 4.0 19.21 12.49 1.53
Chicken 210k 379k 1.80 0.80 4.96 6.2 39.24 15.03 2.61

Table 3.2: Comparison of the fuzzy kd-tree with a classic kd-tree in numbers of traver-
sal steps and intersections (amortized per ray). We pay only a factor between 1.5 and
2 in the number of traversal steps and typically a factor of about 2 in the number of
intersections for the ability to ray trace animations. Even the difficult Chicken and
Cow animations can be ray traced at interactive frame rates.

3.5.3 Comparison to Static KD-Tree

To evaluate the efficiency of our proposed fuzzy kd-tree for ray tracing animated scenes
we compare it to a static kd-tree.

For the predefined animations, Table 3.2 lists two characteristic values for acceler-
ation structures, namely the number of traversal steps and the number of ray-triangle
intersections. These values are given amortized per ray as we use frustum traversal on
entire packets. We compare our two-level fuzzy kd-tree with an one-level kd-tree that is
re-built and optimized for every time step of the animation. Apart from the structure of
the resulting tree the traversal and intersection routines are the same for both kd-trees.

The measurements show that the number of traversal steps increases by only 50% to
100% for the fuzzy kd-tree. The ray-triangle intersections increase only by 15% for the
Hand and typically up to 100%, except for the Cow and Chicken scene. Because these
two animations do not strictly obey our assumption of local coherent motion the motion
decomposition cannot work optimally, resulting in larger residual motion and overlap
of the fuzzy boxes, which eventually increases the number of intersections. Although
the increase in intersections of a factor of 6 for the Chicken may seem high, overall
ray tracing performance is much less affected (as shown in the following section) and
ray tracing this animation is still reasonably fast.

Although not shown here, the situation is similar with skinned meshes: Ray tracing
animations with fuzzy kd-trees takes about 2× longer compared to using a static kd-tree
for a single frame, which is a reasonable price for the added ability to handle flexible
skinned models at interactive frame rates.
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Figure 3.9: Ray tracing performance for our predefined animations in frames per sec-
ond on a single 2.8GHz CPU including shading at 1024×1024 pixels. For all scenes
at least interactive frames rates of 5 frames per second are achieved.

3.5.4 Absolute Performance

In this section we present the overall performance of our ray tracing system for prede-
fined animations and skinned meshes. All measurements were done at a resolution of
1024×1024 pixels with a simple diffuse shader and a packet size of 4×4 rays.

Figure 3.9 shows the frame rate achieved by our system over the course of each
predefined animation. As can be seen we achieve interactive frame rates of 5 to 15
frames per second at full-screen resolution on a single 2.8GHz CPU.

Additionally, Table 3.2 also compares the average frame rate achieved by ray trac-
ing with fuzzy kd-trees to the performance of ray tracing with optimized static kd-trees
pre-built for every frame. The overhead introduced by fuzzy kd-trees is between a
factor of 1.2 and 2.6 and is roughly constant for a specific animation independent of
the camera view or advanced shading using secondary rays (e.g. the shadows in Fig-
ure 3.10). Note that simply switching to a two-level kd-tree without any other changes
already decreases ray tracing performance about 30% due to the costs of transforming
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preprocessing time in seconds
scene #tris sampling building kd-trees fps
Cally 3k 0.63 0.65 9.5
Cally 10k 1.80 2.28 7.1
Cally 30k 5.21 8.77 5.7
Cally 90k 16.4 34.5 3.6
Cally 271k 50.4 150 2.0
UT2003 2k 0.59 0.39 15.5
UT2003 7k 1.23 1.67 12.3
UT2003 22k 3.08 6.41 7.4
UT2003 67k 8.63 23.8 4.0
UT2003 200k 29.7 88.9 1.9

Table 3.3: Measured performance data of our skinned models for different subdivi-
sion levels. Even with hundreds of thousands of triangles we achieved reasonable fast
preprocessing within a few minutes and still ray trace at interactive frame rates.

the rays to the local coordinate system, restarted traversal, and the fact that a two-level
kd-tree cannot adapt to the scene geometry as well as one single kd-tree.

Finally, Table 3.3 also reports our performance measurements for skinned meshes.
When ray tracing these dynamic scenes on a 2.4GHz CPU we achieved a rendering
performance of up to 15 frames per second. Furthermore, interactive frame rates were
still possible for large scenes.

3.6 Discussion and Future Work

The motion decomposition framework with the fuzzy kd-trees can efficiently handle
dynamic scenes. As fuzzy kd-trees are essential kd-trees they can be used together
with many kd-tree algorithms and share their outstanding performance properties – this
was the main motivation of the motion decomposition approach and makes the integra-
tion of motion decomposition into an existing ray tracer easy. In Particular, besides
traditional single ray traversal also packet [Wald01] or frustum traversal [Reshetov05]
algorithms work with fuzzy kd-trees; layout and cache optimizations (e.g. [Yoon06])
can be applied to fuzzy kd-trees as well; advanced kd-tree construction algorithms can
also be used for fuzzy kd-trees – including the algorithms we present in Chapter 4 –
because they are constructed over fuzzy boxes, which are just ordinary boxes when
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seen by a construction algorithm2.
The use of a two-level acceleration structure (Section 3.2.3) and fuzzy kd-trees – as

required by our approach – is about 2× slower compared to use of a single kd-tree
(which does not support dynamic changes). This overhead is caused by the reduced
culling efficiency of the kd-trees due to overlapping object bounding boxes and/or
overlapping fuzzy boxes, the time needed to rebuild the top-level tree, and the more
complex ray traversal that includes the transformation of rays between coordinate sys-
tems.

However, using a top-level acceleration structure also provides additional advan-
tages. For example, we can easily support instantiation of objects [Wald03]. Further-
more, the local coordinate system of the axis-aligned fuzzy kd-trees can be rotated to
achieve better bounds and thus performance.

Larger scenes consisting of several independently animated objects should also be
feasible. All clusters of all objects are organized into the top-level kd-tree. As long
as the total number of clusters is sufficiently small (say < 10000) the rebuild of the
top-level kd-tree will not become a bottleneck.

The motion decomposition approach is restricted to semi-hierarchical, locally co-
herent motion – handling random motion is not supported. Animations that violate our
implicit assumption of locally coherent motion will still be ray traced correctly but with
non-optimal performance.

The efficiency of our fuzzy kd-trees also depends on the level of tessellation. If
the same animated mesh is tessellated to a higher number of triangles the overlap of
the fuzzy boxes will increase. This leads to more ray-triangle intersections because
the kd-tree cannot cull so much intersections as before. One promising idea to cope
with this problem is to combine the fuzzy kd-trees with vertex culling [Reshetov07],
which handles large fuzzy boxes with many triangles, resulting in less relative overlap
of fuzzy boxes. Note that this approach would need a different cost function, as now not
the overall residual motion should be minimized anymore, but ultimately the surface
area of all fuzzy boxes.

Besides predefined animations we also support skinned meshes. Skinned meshes
have several advantages over predefined animations:

• The preprocessing time is greatly reduced. For predefined animations an expen-
sive clustering step is necessary to find coherent moving triangles.

2Note however, that optimizations like perfect split [Havran01] cannot be used, as these require
triangles and not boxes as building primitive.
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• Skinned meshes save a lot of memory because they just need one base mesh for
the entire animation, plus the corresponding bones and skinning information – in
contrast to many meshes, one for every time-step.

• The most important advantage is the gained flexibility: With skinned meshes it
is no problem to smoothly interpolate between key frames or to blend several
animation sequences. Even direct user interaction is possible if we sample the
(optionally limited) pose space.

As an alternative to ray trace predefined animations with fuzzy kd-trees on could
pre-build many static kd-trees, one for each frame of the animation. Obviously, the
total data size using a separate static kd-tree for each time step will linearly increase
with the number of frames, whereas the memory consumption of our fuzzy kd-tree will
be roughly the same, largely independent of the length of the animation. Thus, motion
decomposition can be seen as a kind of compression scheme, where the clustering
algorithm extracts the redundant information. Additional memory could be saved by
compressing the triangle information as well, either storing only the residual motion,
or using lossy methods such as principal component analysis [Alexa00].

Another promising direction of future research is to enhance the quality of the clus-
ters by clustering also in the time domain. This would be quite helpful e.g. for the
Chicken sequence where the difficult extreme poses could then be separated.

Additionally we like to extend our approach to also handle the interpolation be-
tween key frames of an predefined animation, which is useful to smooth the animation
or for motion blur. This may be possible by interpolating the computed affine transfor-
mations similar to [Alexa02]. Another possibility would be to find the transformations
directly for the interpolated mesh (as explained in Section 3.3.3), which should be fast
enough to do it just before rendering. On-the-fly interpolation between frames would
not be possible anymore with pre-build, static kd-trees – neither would be skinned
meshes.

For skinned meshes, under-sampling of the pose space can lead to underestimation
of the fuzzy boxes and consequently to rendering artifacts. Thus instead of sampling
the pose space it might be desirable to find the extent of the fuzzy boxes analytically,
or by using affine arithmetic. Nevertheless, in practice we noticed no such artifacts
when using a moderate number of samples (i.e. one sample per key frame, see also
Table 3.1).

One direction for future work is the investigation of ray tracing even more general
types of animations, such as blending meshes or meshes deformed by physical simula-
tions. For example, ray tracing the cloth worn by a game character is not yet possible
with our method.
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3.7 Conclusion

We have presented a novel algorithmic approach to ray trace predefined animations and
skinned meshes efficiently. We use a small top-level kd-tree and either automatically
determined clusters or use the bone transformations to account for the dominating de-
formations of the mesh. As the residual motion of triangles can be handled by fuzzy
kd-trees, we avoid almost completely the costly reconstruction of acceleration struc-
tures. As a result, we are able to achieve interactive frame rates even for high polygonal
models.
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Figure 3.10: Example images of the Ben animation with textures and shadows. En-
abling shadows we ray trace this detailed animation with a frame rate of about 2.2fps
using our fuzzy kd-trees compared to 4.1fps when a single mesh is ray traced with a
static kd-tree.

Figure 3.11: Cally featuring self shadowing in different poses, ray traced at interactive
frame rates on a single 2.4GHz Opteron CPU while supporting interpolation between
poses with Cal3D.
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Chapter 4

Streamed Binning

In this chapter we present a new approach to construct high-quality kd-trees and BVHs.
With streamed binning we achieve a much faster construction of these acceleration
structures without sacrificing their culling performance for ray tracing. After reviewing
traditional construction algorithms we show in detail how to apply streamed binning
to the construction of kd-trees as well as to BVHs. Finally, we evaluate, compare and
discuss our proposed algorithms.

4.1 Introduction and Related Work

Our goal is to construct acceleration structures from scratch every frame without any
pre-knowledge of the scene. Consequently, the proposed algorithms are very flexible
and do not imply any restrictions on the dynamic behavior of the scene: Primitives can
be added or removed between frames, the connectivity as well as the topology can be
changed, and primitives such as triangles can undergo completely random motion.

Historically, research of acceleration structures for ray tracing has concentrated on
improving their culling performance, i.e., how well they can exclude primitives (in
most cases triangles) from being tested for intersection with a ray. Kd-trees are already
known for their protruding performance [Havran01], but also BVHs gained popularity
due to their flexibility and their competitive performance [Wald07b]. Thus, we focus
on these two acceleration structures in this chapter.

Key to efficient kd-trees and BVHs for ray tracing is the usage of the surface
area heuristic (SAH) [MacDonald90] to guide their construction. Unfortunately, SAH-
based construction of these high-performance acceleration structures is quite slow. This
is not a problem for static scenes, as here the construction can be seen as a preprocess
and its time is amortized over many rendered frames. For dynamic scenes, however,
this is not the case anymore. Consequently, we look into methods to speed-up the build-
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process and the SAH evaluation. Because of the importance of the SAH we discuss it
in detail in Section 4.1.1.

An O(n logn) algorithm for building kd-trees with a cost function (for photon map-
ping) is sketched in [Wald04] – this is the theoretical lower bound for comparison-based
sorting algorithms. For a detailed analysis and a derivation of SAH-based kd-tree con-
struction see [Wald06a] by Wald and Havran. Because our improvements are based on
their algorithm we will also review it in Section 4.1.2.

Havran et al. [Havran06] analyzed the problem of fast construction of different
spatial hierarchies. They also proposed a SAH-based hybrid acceleration structure that
can be constructed quickly by exploiting the discretization of the whole 3D domain.

Hunt et al. [Hunt06] also aim at fast construction of kd-trees. By adaptive sub-
sampling they approximate the SAH cost function by a piecewise quadratic function.
Their SIMD scanning approach has complexity O(n ·k), with n being the number of
primitives of the current node and k being the samples to take. That is why they can
afford only a relative small number of samples (16) per split. Although we approximate
the cost function only by a piecewise linear function, the degradation in quality of
our constructed kd-trees can be neglected as we can use many more samples (1024),
because streamed binning has complexity O(n+ k) for finding a split.

Concurrently to our work, Wald [Wald07a] also applied streamed binning to BVHs.
Wald tries only the major axis with only 16 bins in search for the split location, whereas
we look at all three axes with up to 256 bins each. Also, we need at most 2/3 of the mem-
ory bandwidth because we calculate the AABBs of the primitives from their centroid
and extents on the fly instead of storing the AABBs and the centroids. Nevertheless,
the resulting construction speeds of both implementations are comparable.

A memory efficient variant to split the triangle list during tree construction was
proposed by Wächter and Keller [Wächter06]. They also report build times orders of
magnitude faster than [Wald06a] by not using the costly SAH at all – consequently the
resulting trees are not as efficient for ray tracing.

Hunt et al. [Hunt07] highlighted the benefits of closely coupling the scene graph
and the acceleration structure for the quick and lazy construction of kd-trees, a strategy
used by the Razor ray tracing system [Djeu11]. By exploiting that a reasonable scene
graph provides geometry that is pre-sorted they can lower the asymptotic complexity
of kd-tree construction to O(n). A further significant speed-up can be achieved when
only these parts of the kd-tree are built that are actually needed.

A different class of approaches to accelerate tree construction is to parallelize the
build and to utilize the high compute power of GPUs, which was firstly demonstrated
by Zhou et al. [Zhou08]. They build kd-trees in breath-first order and according to cost
functions in the lower levels of the tree.
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Instead of a top-down construction, Lauterbach et al. [Lauterbach09] first sort the
primitives in 3D according to their Morton code. They then build the tree bottom-up by
stepwise clustering the primitives with group-wise identical bits in their morton code.
This linear bounding volume hierarchy (LBVH) approach corresponds to splitting in
middle and thus results in poor BVHs for ray tracing. Nevertheless, construction per-
formance is very fast, also thanks to available parallel sorting primitives on the GPU.
Lauterbach et al. also describe another GPU-based construction technique which uses
SAH, resulting in good BVHs, but construction time suffers dramatically. Finally, they
combine both methods to build only slightly inferior BVHs at reasonable fast speed.

A hierarchical version of LBVH, called HLBVH, was proposed by Pantaleoni and
Luebke [Pantaleoni10]. They typically also apply SAH in top levels, resulting in BVHs
with only moderate traversal performance loss (5–20 %). A simpler and even faster
implementation of HLBVH was later presented by Garanzha et al. [Garanzha11a].

Garanzha et al. [Garanzha11b] also present an SAH-based BVH construction algo-
rithm for the GPU with linear asymptotic complexity. As an auxiliary data structure
they build a grid over the primitives and then hierarchically add the primitive-counts of
neighboring cells in a mipmap-like manner. For each split they operate on one level of
the grid and try at most 21 potential partitions (7 splits per dimension), taking the one
with lowest SAH cost. As this is just a coarse approximation of the SAH, the resulting
BVHs are up to 50% slower than BVHs build with the full SAH evaluation.

Quite astonishingly, Karras [Karras12] demonstrated that actually each node of a
tree can be constructed in parallel, independent of all other nodes. Unfortunately, this
finding resulted in no practical performance improvement.

So far, these GPU methods focus on parallelization, and need to trade tree quality
for build performance. In contrast, Wu et al. [Wu11] fully evaluate SAH during kd-tree
construction on the GPU, i.e. SAH is computed at all levels of the tree.

All these GPU-based construction algorithms are one to two orders of magnitude
faster than our proposed algorithms for the CPU, which is relativized by the fact that
GPU hardware offers one order of magnitude more compute power. But these GPU-
based methods also share the disadvantage that all the to-be-processed geometry needs
to fit into the rather small GPU memory. Thus, for large scenes such as the Boeing 777
(see Section 4.3) with its 350 million triangles there is currently no alternative to fast
CPU-based construction algorithms.

The limited memory of GPUs is addressed by Hou et al. [Hou11] by proposing
an out-of-core algorithm, where only parts of the BVH are processed at a time on the
GPU. With this technique they can build BVHs for models of up to 20 million triangles.
Although this is an order of magnitude larger than previously possible on the GPU, it
is still far from what can be handled on the CPU. Additionally, the streaming of geom-
etry to, and resulting BVH nodes from the GPU reduces the construction performance
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to the point where it is not significantly faster anymore than CPU-based construction
methods.

There have also been several attempts to parallelize tree construction on the CPU
– with limited success in terms of scalability. Shevtsov et al. [Shevtsov07] report
only 4× speedup on a 8 core machine for parallel kd-tree construction. Similarly,
Wald [Wald07a] state poor scalability beyond two CPU cores for parallel BVH con-
struction. More recently, Choi et al. [Choi10] achieve just about 8× speedup on a
32 core workstation for kd-tree construction. The reasons for this poor scalability be-
havior are not fully clear. One reason may be that there are still significant serial parts
in the construction algorithm, e.g. that the initial sort of the primitives was not par-
allelized. Another reason could be limitations of the memory subsystem, i.e. that the
bandwidth of the main memory is to small to sufficiently serve all CPU cores.

However, the currently best results were reported by Wald [Wald12] for the In-
tel Many Integrated Cores (MIC) architecture with near linear speedup for reason-
able large scenes. Also, absolute construction performance is very competitive to
GPU-based construction algorithms while simultaneously providing quite high-quality
BVHs based on SAH. The carefully optimized implementation is based on several con-
cepts: bounding boxes are quantized during build to minimize the cache footprint and
the required memory bandwidth, data structures and kernels are tailored for the MIC
instruction set, and a lightweight tasking system reduces synchronization overhead.
Unfortunately, the used MIC architecture prototype board has quite limited memory
and thus the test scenes were rather small.

4.1.1 The Surface Area Heuristic

The surface area heuristic (SAH) [Goldsmith87, MacDonald89, MacDonald90, Sub-
ramanian90] estimates the ray tracing performance of a given acceleration structure.
This global cost CTree can be computed for a given constructed kd-tree or BVH Tree as

CTree = KTrav ∑
N∈Nodes

SA(VN)
SA(VS)

+KIsec ∑
L∈Leaves

SA(VL)
SA(VS)

nL, (4.1)

where SA(V ) is the surface area of the axis-aligned bounding box (AABB) V , VS is the
AABB of the whole scene, KTrav and KIsec are constants for the cost of a traversal and
an intersection step, respectively, and nL is the number of primitives in leaf L.

The derivation of this statistical cost-model is based on the assumption that rays
can be seen as infinite lines that are uniformly distributed. Then, the probability P of a
ray hitting a (convex) volume V is proportional to the surface area SA of that volume
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(see e.g. [Santalo02]). In particular, if a ray is known to hit a volume VS, the probability
of hitting a sub-volume VS is

P(V |VS) =
SA(V )
SA(VS)

(4.2)

Actually, these assumptions are idealized and do not hold in practice: rays are often
not uniformly distributed and are not infinite lines, but usually start within the scene
and terminate when hitting a primitive. Consequently, several researchers addressed
these shortcomings and proposed improved heuristics with more realistic assumptions.
Havran developed a general cost metric [Havran01], which also considers ray and ge-
ometry interaction. Ize and Hansen also proposed a modified SAH accounting for ray
termination, called RTSAH [Ize11]. They successfully use RTSAH to guide the traver-
sal order of occlusion rays. Others studied the construction of trees tailored for non-
uniform ray distributions [Bittner09, Feltman12, Vinkler12]. Further improvements to
the SAH are described in [Hunt08, Fabianowski09]. Note however, despite its theoret-
ical shortcomings the SAH works surprisingly well in practice and we will therefore
work with the original heuristic.

High-performance kd-trees and BVHs are built according to the SAH by minimiz-
ing their expected cost (4.1) for ray tracing. However, evaluating all potential tree
configurations to solve this global optimization problem is impractical even for small
scenes. Fortunately, a local greedy approximation for a recursive top-down construc-
tion works well for kd-trees and BVHs [Wald07b]. For each node N to be split into two
child nodes Nl and Nr the cost CPart of each potential partition is computed according
to

CPart = KTrav +KIsec [nl P(Nl|N)+nr P(Nr|N)]
(4.2)= KTrav +

KIsec

SA(N)
[nl SA(Nl)+nr SA(Nr)] , (4.3)

where nl and nr are the number of contained primitives in the respective child nodes,
i.e. the children are treated as leaves and their costs are weighted by the probability of
hitting them. We take that partition that has minimal local cost CPart, or, if the minimal
CPart is greater than the cost of not splitting at all (KIsec ·(nl +nr)), a leaf is created.

For a kd-tree the minimum of CPart can only be realized at a split plane position
where primitives start or end, thus the bounding planes of primitives are taken as po-
tential split plane candidates. Furthermore, CPart depends on the surface area SA of the
children – which can be directly computed – and the primitive count of the children
– which is the hardest part to compute efficiently.
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For a BVH the partitions are usually also found by trying axis-parallel split planes
and comparing the centroids of the primitives against the split plane [Wald07b]. How-
ever, this way many of the 2n−1 − 1 possible partitions of n primitives for a BVH are
not tested. Notably, although considering these additional partitions can indeed result
in lower SAH cost per local greedy split [Popov09], Popov et al. found that the com-
plete BVH has higher SAH cost and performs worse compared to a BVH built with
just using the axis-parallel split planes.

4.1.2 Conventional SAH-based Tree Construction

We will revisit the conventional SAH-based construction of kd-trees [Wald06a] and
BVHs [Wald07b]. Both construction algorithms are sufficiently similar so we describe
them together and only mention differences where appropriate. Also note that both
construction algorithms already have asymptotic complexity of O(n logn), which is
optimal for comparison-based sorting algorithms.

The trees are typically built in a top-down fashion by recursively splitting the tree
into two sub-trees, or correspondingly, partitioning a node into two children. The ex-
pected ray tracing cost is calculated according to the SAH for possible split configura-
tions, and the split with minimal cost is taken. The recursion stops – and the current
node is made a leaf – if the minimal splitting cost is higher than the cost of not splitting.

The cost function (4.3) is evaluated by sweeping the bounding box of the current
node N with three planes perpendicular to the x-, y- and z-axis. For kd-trees it has been
shown that the cost function is linear between the boundaries of the AABBs of the
primitives inside N [Havran01]. Hence, only these locations, or events, need to be con-
sidered when searching for the minimum of the cost function. For BVHs traditionally
the centroids of the primitives are taken as potential split events [Wald07b].

The cost function is evaluated incrementally during the sweep by keeping track of
the number of primitives belonging to the left and right child for each split event, which
requires the events of each dimension to be sorted. For a kd-tree the surface area of
each potential child can directly be computed from the position of the split plane. For
a BVH this is not so easy, because during the sweep the AABB of each potential child
can change in each dimension. Therefore, actually two sweeps are needed: the first
one incrementally enlarges one child by adding each primitive step-by-step, calculates
its surface area and temporarily stores the result; the second sweep in the opposite
direction incrementally enlarges the other child and computes the cost function.

Sorting the events for each split results in a O(n log2 n) construction algorithm. To
achieve the better time complexity of O(n logn), the event lists are sorted only once at
the beginning of the construction. During the split the events are then sifted to the two
new nodes, keeping their order. To do so, the primitives are first classified as belonging
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to the left or right with respect to the chosen event location and dimension, such that
the events of the other both dimensions can be sifted accordingly.

4.2 Fast Construction of Acceleration Structures

Although reaching the optimal asymptotic complexity of O(n logn) the classic con-
struction algorithms for kd-trees and BVHs have several main drawbacks: First, the
initial sort of the events is expensive, already having a time complexity of O(n logn).
Thus, only partially building the tree in a lazy construction scheme is not reasonable.
Second, the sifting phase generates random memory accesses, because in general the
events of the same primitive have a difference place in the sorted event lists per dimen-
sion. This is in particular problematic for the first splits for larger (real-world) scenes,
where these random memory accesses cannot be caught by the cache hierarchy. Third,
for each split many passes over the data of a node are performed (SAH evaluation,
classification, sifting), which considerably consumes the bandwidth to the slow main
memory (again, at least for the first splits of larger scenes).

Because we cannot hope to find tree construction algorithms with lower time com-
plexity, we need to concentrate on lowering the constants, i.e. doing less work for each
split and in particular optimizing memory access patterns. Thus we look again at the
actual problem of efficiently evaluating the SAH cost for a partition (4.3): at each po-
tential split location we need the number of the primitives that will go to either side1.
If we want to have these counts for all (O(n) many) events then they must be available
in constant time, leading to the incremental counting algorithm in sorted event list of
the classical approach. However, if we evaluate Equation (4.3) only at a fixed number
of locations, counting can take O(n) time and we still achieve optimal time complexity
for the complete tree construction.

This is the core idea of our new approach: we approximately find the minimum of
the SAH cost by sub-sampling this function at fixed locations. Thus we save computa-
tions due to less SAH evaluations. To get the primitive counts we iterate once per split
over the primitives and sort them into bins in O(n) time. The gathered information in
the bins is then used to reconstruct the primitive counts on both sides of each border
between the bins, and thus to compute the SAH cost function at each border location.
This way we also skip the initial sort of the events and only access the memory for the
bulk data of primitives in a regular, streamed manner.

In the following we detail how this general idea is applied and specialized to the
fast construction of kd-trees and BVHs, as there are some differences in binning, SAH

1We ignore the surface area for the moment.
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evaluation, and splitting.

4.2.1 Streamed Binning for KD-Trees

For a kd-tree primitives that straddle the split plane2 of a node need to be referenced in
both children, and consequently they also need to be considered twice when calculating
the SAH cost function. More precisely, all primitives that start left of the split position
will go to the left child, and all primitives that end right of the split position will go to
the right child. Therefore, each bin has two entries: one counter for the start events
and one counter for the end events that fall into this bin.

Binning is done for all three dimensions at once: the AABBs of the primitives are
streamed in, the indices of the bins are found from the minimum (for the start counters)
and the maximum extents (for the end counters) of the AABB, and the corresponding
counters of the bins are incremented.

After binning the bins are processed from left to right to find the approximate min-
imum of the SAH cost function. The number of primitives going left (nl) and going
right (nr) are computed by a prefix sum. At the beginning nl = 0 and nr is initialized
with the total number of primitives of the processed node. Then, from bin to bin nl
is updated by adding the start counter whereas nr is updated by subtracting the end
counter. Updating the surface areas of the left and right child is easy as they only
change by a constant from bin to bin.

We use vector SIMD instructions to perform binning and SAH evaluation for all
three dimensions in parallel. For binning we use 1024 uniformly distributed sample
locations per dimension.

When the split with minimal cost is found the AABBs of the primitives are sifted
to the left and right child by comparing them to the split location, AABBs that go to
both child nodes are clipped. During sifting we already perform binning for the two
children, further reducing memory bandwidth. The child nodes are then processed
recursively.

When a node is small enough we revert to the classic construction approach, be-
cause binning becomes inefficient when the number of primitives gets close to the
number of bins. But now the working set fits into the cache and thus the random mem-
ory access and bandwidth disadvantages of the classic approach do not hurt anymore.
Being in the cache now also offers the option to use the fast O(n) radix sort algo-
rithm [Knuth98, Sedgewick98] to initially sort the events of the node, because radix
sort also accesses memory in random order.

2Note that we skip a potential optimization called perfect split [Havran01] for the straddling primi-
tives, which would require costly clipping operations and bounding box recomputations.
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4.2.2 Streamed Binning for BVHs

To enumerate partitions of a node during BVH construction we follow [Wald07b] and
use a set of uniformly distributed, axis-aligned planes to distribute the primitives by
means of their centroids. For each potential partition we need to compute (4.3), hence
we need to know the primitive counts and the surface areas of both children.

Therefore, each bin consists of an AABB and a counter. The primitives are repre-
sented by the centroid and the extent of their AABBs. For each primitive we compute
the indices of the bins of all three dimensions from its centroid in SIMD. Then, the
counters of all three bins are incremented, and their AABBs are enlarged with the prim-
itive’s AABB using SIMD min/max operations. Note that accumulating the extent in
the bins is necessary as well, because – unlike kd-trees – the split plane location alone
is not sufficient to compute the surface areas of the child nodes, because the AABBs of
the children can shrink in all three dimensions.

We enhance the resolution of the binning by uniformly distributing the bins over
the current interval of all the centroids rather than over the current bounding box of the
primitives. This is especially important when there are large primitives.

After binning we evaluate Equation (4.3) with two passes over the bins: In the
first pass from left to right we compute nl and SA(Nl) at the borders of the bins by
accumulating the counters and by successively enlarge the AABBs of the bins. In the
second pass from right to left we reconstruct nr and SA(Nr), and finally find the index
imin and dimension of the bin that has minimal cost CPart at its left border.

Computing the split plane position from imin turned out to be surprisingly difficult.
Because of floating point precision problems we cannot just invert the linear function
used during binning. An inaccurate split plane can not only lead to sub-optimal parti-
tions. In the worst case, an inaccurate split plane can even lead to an invalid partitions
(one child is empty) if the split plane is computed to be completely on one side of all
centroids. Using double precision only reduces the chances of invalid partitions but
does not solve the problem. Our solutions is to not compute the splitting plane from
imin at all, but to keep track of the centroids during binning. Therefore each bin addi-
tionally stores the minimum of the coordinates of all centroids that fell into it. Using
the centroid minimum of bin imin as split plane location then ensures consistent and
robust partitioning.

As with kd-tree construction we minimize the required memory bandwidth by per-
forming the binning in all three dimensions for both children during the split of the
parent node. Because primitives are referenced exactly once in a BVH we can actually
perform the sifting of the AABBs in place. Also for BVH construction we extensively
use SIMD operations to exploit instruction level parallelism of modern CPUs, working
on all three dimensions at once during binning and during SAH evaluation.
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The number of bins is a crucial parameter controlling the construction speed and
accuracy. The more bins there are, the more accurate is the sampling of the SAH cost
function, but the more work has to be done during calculation of the SAH function
from the binned data (the binning steps themselves are independent of the number of
the bins). The number of bins per dimension should be chosen such that the binning
data of both children still fits into the L1 cache.

Additionally, binning becomes inefficient if the number of bins is close to the num-
ber of to-be-binned primitives. Instead of switching to the classical construction algo-
rithm as done for kd-trees we adaptively choose the number of bins k per dimension
linearly depending on the number of primitives n and bin-ratio r as k = n/r and clamp
it to [kmin,kmax]. We experimented with different parameter sets representing a trade-
off between speed and accuracy. The default settings are kmax = 128, kmin = 8, and
r = 6. The fast settings are kmax = 32, kmin = 4, and r = 16.

4.3 Results and Discussion

We evaluated our construction algorithms with a variety of scenes (see Figure 4.1).
These scenes differ not only in size (number of triangles), but also in regularity:

On the one hand, there are the Bunny, Buddha, Blade, and Thai Statue models
from the Stanford 3D Scanning Repository, which were acquired using a 3D scanning
process. That is why these four scenes have very uniformly distributed triangles of
similar size. Additionally, the triangles are already stored in a spatial order.

On the other hand, the Hand, Fairy Forest, Conference room, the Beetle model,
Soda Hall, Power Plant, and the Boeing 777 were designed by hand or with CAD
tools. Except for the Hand these scenes have quite differently sized triangles that are
irregularly distributed. Thus the SAH should be effective in guiding the acceleration
structure construction.

For our measurements we used a workstation with two AMD 2.6GHz dual-core
Opterons as well as an Intel 2.4GHz Core 2 system.

To evaluate the performance of our streamed binning construction algorithms for
kd-tree and BVH we compare them to the conventional construction algorithms in
terms of the time needed to build an SAH-based acceleration structure for the test
scenes and in terms of quality of the resulting acceleration structures.

4.3.1 KD-Tree Construction Speed

Table 4.1 reveals that several factors influence the benefit of streamed binning for kd-
trees. First, the number of triangles determines the memory requirements and thus the
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Figure 4.1: The scenes used for testing and evaluation of our streamed binning con-
struction algorithms. In reading order: Hand, Bunny, Fairy Forest, Conference,
Buddha, Blade, Beetle, Soda Hall, Thai Statue, Power Plant, and Boeing 777.
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cache efficiency. For larger scenes it is likely that the irregular and incoherent memory
accesses of the classic construction cannot be compensated by the caches. Therefore,
the improvement using our streamed binning construction over the conventional algo-
rithm is higher for larger scenes.

Second, if the triangles of a scene are already partially sorted (as is the case with
the scanned models), then the locality of memory accesses is improved in favor for the
conventional kd-tree construction. To measure the impact of this pre-sorting we also
tried our kd-tree construction algorithm on the same scenes, but with randomly shuffled
triangles. With the shuffled scenes the streamed binning approach clearly outperforms
the conventional construction with a speedup of up to 50%. Furthermore, we provide
strong evidence that our streamed binning construction is independent of the order of
the input data, because shuffling the triangles has hardly any effect on the construction
times, even for large scenes. This is important because we cannot (and should not) rely
on any meaningful sorting for dynamic scenes.

Finally, we see that the construction times also depend on the type of the scene and
the distribution of the triangles. For example the Blade and the Beetle have roughly
the same number of triangles. Still, to build a kd-tree for the Beetle takes about twice
as long, because of the more irregularly sized triangles.

Additional to these measurements we also profiled the different parts of our con-
struction algorithm. Building the many smaller nodes that are lower in the tree con-
sumes most of the construction time, and unfortunately, the streamed binning approach
does not help anymore for these nodes. Furthermore, we observe that the time spent in
sifting the events to the left and right children already dominates the construction time.

4.3.2 BVH Construction Speed

In Table 4.2 we compare absolute construction times of the conventional BVH con-
struction algorithm (from [Wald07b] and also from an own implementation) with the
results of our new streamed binning approach. As can be seen, streamed binning is one
order of magnitude faster, at almost the same BVH quality. Using the fast param-
eter settings (see Section 4.2.2) BVH construction is about 20% faster than using the
default settings, at the cost of slightly decreased BVH quality. Even for such a large
scene as the 350 million triangle Boeing 777 we show that with our streamed binning
construction algorithm we can produce a high quality BVH in less than ten minutes.

Streamed binning for BVH construction is more computational demanding than for
kd-tree construction, because we need to keep track not only of the primitive counts,
but also of the surface areas of the children. Additionally, the surface area cannot be in-
crementally computed, because the AABBs may have changed in all three dimensions.
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Nevertheless, constructing an SAH BVH with streamed binning can still be faster than
constructing an SAH kd-tree for the same scene: Because a BVH does not split prim-
itives, less nodes need to be created. Also, a BVH is usually not as deep as a kd-tree
(using the same SAH termination criterion), because a BVH node bounds in three di-
mensions whereas a kd-tree node bounds only in one dimension. Thus, the number of
splits and binning steps to be performed during construction is lower for a BVH.

These considerations are backed up by our measurements when comparing the
times of Table 4.1 and Table 4.2. Building BVHs with streamed binning is several
times faster than building kd-trees, whether the kd-trees are build with streamed bin-
ning or conventionally.

We also observe that streamed binning is much more beneficial for BVH construc-
tion than for kd-tree construction. For BVHs the evaluation of the SAH cost function
is dominating, in particular the computation of the surface area. With binning we sig-
nificantly reduce this part of the construction. Another reason may also be that for
BVHs we do not switch to conventional construction once a node is below a certain
size. Instead we cope with the reduced efficiency of binning when there are only few
primitives by accordingly reducing the numbers of bins.

4.3.3 Approximative Cost Function Evaluation

We also estimated the approximation error introduced by sub-sampling the SAH cost
function in the streamed binning splits, because this influences the quality of the built
kd-trees and BVHs. Therefore, Table 4.1 and Table 4.2 also provide the expected
ray tracing cost according the SAH (4.1) for the constructed acceleration structures.
Additionally, we also evaluated the average intersection cost for a ray by intersecting
uniformly generated rays with the scene using the generated kd-trees. As the expected
costs and the measured intersection costs were strongly correlated we excluded these
latter numbers.

For our test scenes the sub-sampling approach during streamed binning construc-
tion hardly decreased the quality of neither the kd-trees nor of the BVHs. With at most
2.2% the approximation error is very low. Although the fast settings for BVH con-
struction gain about 20% construction speed they can also reduce the BVH quality in
extreme cases as for the Conference scene from 0.6% to 7.5%.

Interestingly, for some scenes the binning approximation of the SAH cost function
results in even better BVHs (quality > 100% in Table 4.2) than when exactly evaluating
Equation (4.3). This is a strong confirmation that the local greedy SAH function is
exactly that, a local greedy optimization, failing to provide the global minimal SAH
cost (4.1).
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4.4 Conclusion

We presented a new construction method for kd-trees and BVHs that is based on
streamed binning to approximately evaluate the SAH cost function when searching for
the best split position. Due to the very low approximation error the resulting kd-trees
and BVHs are of high quality for ray tracing.

Because BVHs can be built much faster than kd-trees BVHs should be used for
ray tracing dynamic scenes: With a construction speed of about 2 million triangles
per second we can already build a BVH from scratch every frame to handle arbitrary
dynamic changes in smaller to medium sized scenes.

The high construction performance in time and quality and the easy implementation
make the streamed binning algorithm a prime candidate for BVH construction for ray
tracing. It can also efficiently handle huge scenes on the CPU.

Currently we place the bins uniformly, which helps when computing the indices
of the bins form the coordinates of the AABBs. However, it is also possible to place
the samples non-uniformly according to a simple-to-evaluate function to increase the
sampling density, for example, near the spatial center of a node.



Chapter 5

Conclusion

The advances in ray tracing performance in the last decade – reaching interactive frame
rates for non-trivial scenes – roused the desire to also ray trace dynamic scenes. Chang-
ing scenes, however, pose a great challenge to ray tracing, because the precomputed
auxiliary data-structures to accelerate ray tracing get invalidated by changes of the
geometry. In this thesis we reviewed and discussed several approaches to deal with
this problem, the problem of ray tracing dynamic scenes. As main contributions we
developed and described two of these approaches, namely motion decomposition and
streamed binning.

The motion decomposition approach aims to avoid many invalidations and conse-
quently recomputations of acceleration structures upon changes of the scene. The idea
is to segment the scene into parts, to separate large-scale motion between these parts
from residual motion within each part. These parts of the scene are organized into a
small top-level kd-tree, which is quickly rebuilt every frame to accommodate for the
large-scale motion. In contrast, the residual motion is handled by fuzzy kd-trees that
are robust against small changes in geometry and thus stay valid and do not require
reconstruction. Motion decomposition assumes locally coherent motion. Additionally,
the amount of motion needs to be known in advance.

We demonstrated how to apply this approach to two scenarios: to predefined ani-
mations and to skinned meshes. To find the decomposition of the scene for predefined
animations we developed a clustering algorithm based on Lloyd relaxation. It mini-
mizes the residual motion in each produced part of the scene and thus optimizes ray
tracing performance. For skinned meshes the decomposition exploits the information
of the bones that drive the skinning animation of the mesh. As a result, with motion
decomposition we can ray trace these types of animations at interactive frame rates.

Although is was not the original goal of the motion decomposition framework we
could also combine it with BVHs. BVHs can be refitted to adapt to the residual motion
and they could thus replace the fuzzy kd-trees. The clustering algorithms of motion
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decomposition would still adapt to the dominating deformations of the scene and would
thus find good structures of BVHs. This is crucial, because using BVH refitting alone
quickly leads to deteriorated trees.

The streamed binning approach aims to reduce the time required for building the
acceleration structures, so that they can be reconstructed fast enough after changes to
the scene, ultimately several times a second. Streamed binning quickens the construc-
tion of kd-trees and BVHs by approximately finding the minimum of the SAH cost
function for the best split position by reducing the number of tested split positions.
Additionally, we avoid the previously necessary initial sort of the primitives, leading to
fast, streamed memory accesses.

The introduced approximation error is very low, such that the resulting kd-trees
and BVHs are of high quality for ray tracing. Therefore, streamed binning can replace
the conventional construction algorithms in most usage scenarios. We showed that the
construction of BVHs benefits much more from our new technique than the construc-
tion of kd-trees. BVHs can already be built fast enough from scratch every frame to
handle arbitrary dynamic changes in smaller to medium sized scenes. For large scenes
streamed binning greatly reduces the time to image, but is alone not yet fast enough for
interactive use and should be complemented with other techniques such as a two-level
acceleration structure scheme if necessary.

As we have shown in this thesis there are several different approaches to ray trace
changing scenes, suited for different requirements and scenarios.



List of Publications

[Wald09] Ingo Wald, William R. Mark, Johannes Günther, Solomon Boulos, Thi-
ago Ize, Warren Hunt, Steven G. Parker, and Peter Shirley. State of
the Art in Ray Tracing Animated Scenes. Computer Graphics Forum,
28(6):1691–1722, 2009.

[Günther07] Johannes Günther, Stefan Popov, Hans-Peter Seidel, and Philipp
Slusallek. Realtime Ray Tracing on GPU with BVH-based Packet
Traversal. In Proceedings of the IEEE/Eurographics Symposium on In-
teractive Ray Tracing 2007, pages 113–118, September 2007.

[Wald07] Ingo Wald, William R. Mark, Johannes Günther, Solomon Boulos, Thi-
ago Ize, Warren Hunt, Steven G. Parker, and Peter Shirley. State of the
Art in Ray Tracing Animated Scenes. In STAR Proceedings of Euro-
graphics 2007, pages 89–116. The Eurographics Association, Septem-
ber 2007.

[Popov07] Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp
Slusallek. Stackless KD-Tree Traversal for High Performance GPU Ray
Tracing. Computer Graphics Forum, 26(3):415–424, September 2007.
(Proceedings of Eurographics).

[Popov06] Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp
Slusallek. Experiences with Streaming Construction of SAH KD-Trees.
In Proceedings of the 2006 IEEE Symposium on Interactive Ray Trac-
ing, pages 89–94, September 2006.

[Wald06] Ingo Wald, Andreas Dietrich, Carsten Benthin, Alexander Efremov, Tim
Dahmen, Johannes Günther, Vlastimil Havran, Hans-Peter Seidel, and
Philipp Slusallek. A Ray Tracing based Framework for High-Quality
Virtual Reality in Industrial Design Applications. In Proceedings of
the 2006 IEEE Symposium on Interactive Ray Tracing, pages 177–185,
September 2006.

69



70 LIST OF PUBLICATIONS

[Friedrich06] Heiko Friedrich, Johannes Günther, Andreas Dietrich, Michael
Scherbaum, Hans-Peter Seidel, and Philipp Slusallek. Exploring the
Use of Ray Tracing for Future Games. In sandbox ’06: Proceedings
of the 2006 ACM SIGGRAPH Symposium on Videogames, pages 41–50.
ACM Press, 2006.

[Günther06b] Johannes Günther, Heiko Friedrich, Hans-Peter Seidel, and Philipp
Slusallek. Interactive Ray Tracing of Skinned Animations. The Visual
Computer, 22(9):785–792, September 2006. (Proceedings of Pacific
Graphics).

[Günther06a] Johannes Günther, Heiko Friedrich, Ingo Wald, Hans-Peter Seidel, and
Philipp Slusallek. Ray Tracing Animated Scenes using Motion Decom-
position. Computer Graphics Forum, 25(3):517–525, September 2006.
(Proceedings of Eurographics).

[Günther05] Johannes Günther, Tongbo Chen, Michael Goesele, Ingo Wald, and
Hans-Peter Seidel. Efficient Acquisition and Realistic Rendering of
Car Paint. In Proceedings of 10th International Fall Workshop - Vision,
Modeling, and Visualization (VMV) 2005, pages 487–494, November
2005.

[Günther04] Johannes Günther, Ingo Wald, and Philipp Slusallek. Realtime Caustics
using Distributed Photon Mapping. In Rendering Techniques, pages
111–121, June 2004. (Proceedings of the 15th Eurographics Symposium
on Rendering).

[Wald04] Ingo Wald, Johannes Günther, and Philipp Slusallek. Balancing Consid-
ered Harmful – Faster Photon Mapping using the Voxel Volume Heuris-
tic. Computer Graphics Forum, 22(3):595–603, 2004. (Proceedings of
Eurographics).



Bibliography

[Áfra12] Attila T. Áfra. Incoherent Ray Tracing without Acceleration
Structures. In Carlos Andujar and Enrico Puppo, editors, EG
2012 – Short Papers, pages 97–100. Eurographics Associa-
tion, 2012. 25

[Aila09] Timo Aila and Samuli Laine. Understanding the Efficiency
of Ray Traversal on GPUs. In Proceedings of the Conference
on High Performance Graphics, pages 145–149, 2009. 22

[Alexa00] Marc Alexa and Wolfgang Müller. Representing Anima-
tions by Principal Components. Computer Graphics Forum,
19(3):411–418, 2000. 47

[Alexa02] Marc Alexa. Linear Combination of Transformations. In
SIGGRAPH ’02: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, pages
380–387, New York, NY, USA, 2002. ACM Press. 47

[Amanatides87] John Amanatides and Andrew Woo. A Fast Voxel Traversal
Algorithm for Ray Tracing. In Proceedings of Eurograph-
ics, pages 3–10. Elsevier Science Publishers, Amsterdam,
North-Holland, 1987. 22

[Anderson99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. LAPACK Users’ Guide. So-
ciety for Industrial and Applied Mathematics, Philadelphia,
PA, Third edition, 1999. 37

[Arvo87] James Arvo and David Kirk. Fast Ray Tracing by Ray Clas-
sification. Computer Graphics (Proceedings of ACM SIG-
GRAPH), 21(4):55–64, 1987. 22

71



72 BIBLIOGRAPHY

[Arvo88] James Arvo. Linear-time Voxel Walking for Octrees. Ray
Tracing News (available at http: // tog. acm. org/
resources/ RTNews/ html/ rtnews2d. html# art5 ),
1(5), March 1988. 21

[Barequet01] Gill Barequet and Sariel Har-Peled. Efficiently Approxi-
mating the Minimum-Volume Bounding Box of a Point Set
in Three Dimensions. J. Algorithms, 38:91–109, 2001. 35

[Benthin12] Carsten Benthin, Ingo Wald, Sven Woop, Manfred Ernst, and
William R. Mark. Combining Single and Packet-Ray Trac-
ing for Arbitrary Ray Distributions on the Intel MIC Archi-
tecture. IEEE Transactions on Visualization and Computer
Graphics, 18(9):1438–1448, September 2012. 22
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