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Abstract

Epigenetic marks, such as DNA methylation and histone modifications, are important
regulatory mechanisms that allow a single genomic sequence to give rise to a complex
multicellular organism. When studying mechanisms of epigenetic regulation, the analyses
depend on the experimental technologies and the available data. Recent advancements
in sequencing technologies allow for the efficient extraction of genome-wide maps of epi-
genetic marks. A number of large-scale mapping projects, such as ENCODE and IHEC,
intensively produce data for different tissues and cell cultures. The increasing quantity of
data highlights a major bottleneck in bioinformatic research, namely the lack of bioinfor-
matic tools for analyzing these data. To date, there are bioinformatics tools for detailed
(mostly visual) inspection of single genomic loci, allowing biologists to focus research on
regions of interest. Also, efficient tools for manipulation and analysis of the data have
been published, but often they require computer science abilities. Furthermore, the avail-
able tools provide solutions to only already well formulated biological questions. What is
missing, in our opinion, are tools (or pipelines of tools) to explore the data interactively,
in a process that would facilitate a trained biologist to recognize interesting aspects and
pursue them further until concrete hypotheses are formulated. A possible solution stems
from the best practices in the fields of information retrieval and exploratory search. In this
thesis, I propose EpiExplorer, a paradigm for integration of state-of-the-art information
retrieval methods and indexing structures, applied to offer instant interactive exploration
of large epigenetic datasets. The algorithms we use are developed for semi-structured text
data, but we apply them on bioinformatic data through clever textual mapping of bio-
logical properties. We demonstrate the power of EpiExplorer in a series of studies that
address interesting biological problems. We also present in this manuscript EpiGRAPH, a
bioinformatic software that we developed with colleagues. EpiGRAPH helps identify and
model significant biological associations among epigenetic and genetic properties for sets
of regions. Using EpiExplorer and EpiGRAPH, independently or in a pipeline, provides
the bioinformatic community with access to large databases of annotations, allows for ex-
ploratory visualizations or statistical analysis and facilitates reproduction and sharing of
results.
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Kurzfassung

Epigenetische Signaturen wie die Methylierung der DNS oder posttranslationale Modi-
fikationen der Histonproteine stellen wichtige regulatorische Mechanismen dar. Diese er-
möglichen es, dass ein komplexer, multizellulärer Organismus aus einer einzelnen geno-
mische Sequenz hervorgeht. Adequate Analysemethoden hängen von den verwendeten ex-
perimentellen Technologien und den verfügbaren Daten ab. Jüngste Fortschritte in der
DNS-Sequenzierungstechnologie ermöglichen die effiziente Erstellung genomweiter Karten
epigenetischer Informationen. Diese Epigenomkarten werden von einigen Projekten und
Initiativen wie ENCODE und IHEC im grossen Massstab für diverse Gewebe- und Zellty-
pen erstellt. Hierbei stellt der Mangel an effizienten bioinformatischen Softwarewerkzeugen
einen wesentlichen Engpass in der Analyse dieser stetig wachsenden Datenflut dar. Expe-
rimentelle Biologen können heute einzelne genomische Loci mithilfe benutzerfreundlicher
(meist visueller) bioinformatischer Software im Detail inspizieren. Des Weiteren existie-
ren effiziente Werkzeuge für die Manipulation und Analyse dieser Datensätze, die jedoch
ein gewisses Mass informatischer Expertise erfordern und sich zumeist auf die Lösung be-
reits wohldefinierter biologischer Fragestellungen fokussieren. Unserer Ansicht nach fehlen
Werkzeuge und Softwarepipelines mithilfe derer ein Benutzer, der über ein fundiertes Wis-
sen der biologischen Grundlagen, jedoch nicht unbedingt über informatische Kenntnisse
verfügt, die verfügbaren Datensätze interaktiv durchstöbern und darauf aufbauend wei-
terführende Hypothesen entwickeln kann. Eine möglichen Ansatz hierfür bieten Methoden
aus den Bereichen Information Retrieval und der explorativen Suche. Diese Arbeit be-
schreibt EpiExplorer, eine Software, die auf dem Paradigma der Integration von modernen
Information Retrieval und Indexstrukturen basiert und darauf ausgelegt ist eine Vielzahl
von (epi-)genomweiten Datensätzen in Echtzeit zu explorieren. Die verwendeten Algorith-
men wurden ursprünglich für die Suche in semistrukturierten, textuellen Datensätzen ent-
wickelt. EpiExplorer ermöglicht ihre Verwendung durch eine systematische Umwandlung
biologischer Eigenschaften in Textdukumente. Ausserdem demonstriert diese Arbeit Epi-
Explorers Leistungsfähigkeit und Nützlichkeit durch relevante Anwendungsbeispiele biolo-
gisch interessanter Fragestellungen. Komplementär zu EpiExplorer wurde in Kollaboration
mit Kollegen EpiGRAPH entwickelt, mithilfe dessen signifikante biologische Assoziatio-
nen zwischen genetischen und epigenetischen Eigenschaften regionsbasiert identifiziert und
modelliert werden können. EpiExplorer und EpiGRAPH stellen - unabhängig voneinan-
der oder im Verbund miteinander - nützliche Ressourcen dar. In einer bioinformatischen
Softwarepipeline ermöglichen sie den Datenbank-basierten Zugriff auf eine Vielzahl (epi-
)genomischer Datensätze, deren explorative Visualisierung oder statistische Analyse sowie
die Reproduzierbarkeit und den Austausch von Analyseergebnissen.
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1. Introduction

Since the discovery of the genome, scientists have sought the secrets of the structure,
evolution and complexity of mammalian life that it carries. The mammalian genome
encodes genes that drive the function of complex organisms with trillions of cells. The
genomes of those cells are close to identical as they originate from a a single cell (zygote).
Life has evolved regulatory mechanisms that utilize the identical genome to serve the
needs of different cell types. Recent technological advancements reveal intricate functions
of epigenetic regulatory mechanisms that regulate the access of transcriptional mechanisms
to the DNA sequence, are faithfully maintained over cell divisions, but are not encoded in
the DNA sequence itself. In this work, we focus on the two best known epigenetic marks,
DNA methylation and histone modifications.
When studying epigenetic mechanisms of regulation, the quality of insights depends

highly on the experimental technology and data available. Recent advancements in se-
quencing technologies (Schuster, 2007) combined with bisulfite treatment (for DNA methy-
lation, Frommer et al. (1992)) and chromatin immunoprecipitation (ChIP) enable the ex-
traction of genome-wide maps of epigenetic regulation. Data have already been collected
for different tissues and cell cultures. The ever increasing quantity of data pressures the
bioinformatics community to continuously provide tools for visualizing data, extracting
meaningful associations and testing statistical hypotheses. To date, the most popular
bioinformatic tools, genome browsers, support detailed (mostly visual) inspection of only
individual genomic loci (Karolchik et al., 2011; Flicek et al., 2008; Zhou et al., 2011). Effi-
cient tools for analysis of multiple genomic locations in concert exist (Goecks et al., 2010;
Quinlan and Hall, 2010), but often provide solutions to only already well formulated bio-
logical questions that themselves require deeper understanding of the data and underlying
biological processes. What is missing, in my opinion, is a tool (or a pipeline of tools) to
explore epigenetic data interactively, in a process that would facilitate a trained biologist
to recognize interesting aspects and pursue them further until concrete hypotheses are
formulated. A possible inspiration for such methodology could be adapted from state-of-
the-art methods in information retrieval, e-commerce and web search engines. Information
retrieval methods focus on efficient data indexing that allows quickly answering to a variety
of queries about the data. E-commerce applications focus on identifying intuitive ways to
present and suggest product data to the users, often assuming that the user is not familiar
with the product catalog. Web search engines, used by hundreds of millions of people every
day, use information retrieval methods to enable access to large amounts of heterogeneous
web data that users query using natural language.
In this thesis, we propose two tools available as public software services called EpiEx-

plorer and EpiGRAPH, and we describe the methodology involved. With EpiExplorer, I
prototyped a new paradigm for interactive visual exploration of large genetic and epigenetic
data based on concepts from text indexing and information retrieval. EpiExplorer enables

7
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users to interactively inspect via dynamic visualizations the association between custom
datasets and a variety of public genetic and epigenetic annotations. The near-instant
query responses and the intuitive interface makes the web service a convenient mediator
that helps the biologists ask questions, receive answers and interpret them in a simple
interactive process that does not require knowledge in programming or statistics. EpiEx-
plorer helps sift through biological data, but it does not provide definitive answers, in a
rigorous mathematical or statistical sense. For this goal, one can pipe EpiExplorer analysis
into the rigorous statistical framework that EpiGRAPH offers. EpiGRAPH uses statistical
and machine learning methods to establish associations between genomic and epigenomic
properties of a set of regions. There are large database of epigenetic and genetic annota-
tions underlying both tools that users can easily analyze without facing the challenges of
data handling or the necessity of programming skills. In combination, EpiExplorer and
EpiGRAPH assist biologists and bioinformaticians with the integration of epigenetic and
genetic datasets, extraction of interesting hypotheses and testing their validity.

1.1. Overview

In Chapter 2, we give a short overview of epigenetic mechanisms of regulation, existing ex-
perimental technologies for measuring epigenetic modifications and bioinformatic tools that
are commonly used for epigenetic data analysis. In Chapter 3, we introduce EpiExplorer, a
tool for intuitive interaction with and visualization of large genetic and epigenetic datasets.
We discuss the methodology, as well as the implementation details. We present three use
cases: first, we use EpiExplorer to rediscover known properties of CpG islands (see Section
3.4.1. Then, we explore a novel epigenetic mark, 5-hydroxymethylation (5hmC), together
with reference genetic and epigenetic maps and we identify a subset of 5hmC hotspots
suitable for experimental validation (see Section 3.4.2). Third, we report on the use of
EpiExplorer with cohorts of patient data representing DNA breakpoints from seven cancer
types and identify epigenetic and genetic properties of recurring breakpoints (see Section
3.4.3). Finally, we present user statistics that are informative of the impact of our tool in
the bioinformatic community (see Section 3.4.5).
In Chapter 4, we present the design and implementation of the EpiGRAPH backend that

addresses the computational needs of the EpiGRAPH service. Chronologically, EpiGRAPH
was designed and implemented before EpiExplorer, but in this thesis, from a data workflow
point of view, I present it after EpiExplorer. In Section 4.3.1, we demonstrate the benefits of
using EpiGRAPH and EpiExplorer together by statistically validating hypotheses inspired
by EpiExplorer on the association between DNA methylation and sequence patterns. Next,
we look into how the association between DNA sequence and DNA methylation varies in
different tissues (see Section 4.3.2). Last, we use EpiGRAPH to look at the evolution of
DNA sequence and DNA methylation in gene promoters orthologous between mouse and
human (Section 4.3.3).
Finally, in Chapter 5, we summarize the work, comment on its impact in the field and

provide an outlook into the future challenges and possible developments of our tools.



2. Computational epigenetics and text
retrieval

Visual representation of DNA
methylation by Christoph Bock

2.1. The genome. Genomic annotations.

Every mammalian organism starts from a single cell, the zygote. The zygote comprises
the genome of the organism in the form of several strings of deoxyribonucleic acid (DNA).
The DNA is organized into a double-stranded helix structure, each strand consisting of
a long sequence of nucleotides. There are four nucleotides: adenine, cytosine, guanine
and thymine, noted using the letters A, C, G and T, respectively. The two strands of the
genome run in parallel and every nucleotide on one of the strand is paired with a nucleotide
on the other: guanine is always matched with cytosine and thymine is always matched with
adenine.
To ensure optimal packing as well as control accessibility, the DNA is organized into

a multi-layered structure. The basic unit of DNA packaging is called nucleosome and
consists of the DNA wrapped about two-and-a-half times around eight histone proteins.
After further folding, the nucleosomes are organized into chromosomes.
In the course of development of the organism, the cells replicate and differentiate. The

DNA is copied (near perfectly) to every new cell. As a consequence, every cell in the
mammalian genome has (almost) identical DNA.
Most cellular processes are carried out by biological macromolecules called proteins,

which consist of more or less long chains of amino acid residues. The amino-acid sequence
of each protein is encoded into the DNA, by sequences of nucleotides called genes.
DNA and histones together with other proteins involved in cell regulation make up the

chromatin. The chromatin is a complex structure, organizing three billion basepairs of

9
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Figure 2.1.: Schematic representation of gene structure and transcription process.
From Wikipedia (http://upload.wikimedia.org/wikipedia/commons/a/
a7/Gene2-plain.svg)

DNA in human, for instance. Its organization and function, even though intensively inves-
tigated, is still not completely understood. In their attempts to answer questions related
to the functioning of the DNA and related molecular processes, biologists and bioinfor-
maticians typically extract features of the DNA, that are informative of some function.
Computational tools commonly encode these features as sets of genomic regions, or ge-
nomic annotations. Below we list several annotations that we refer to throughout this
thesis:

• Genes, promoters, introns, exons. Each gene region consists of the following
elements: a promoter, a transcription start site, exons and introns (see Figure 2.1).
Genes are transcribed into proteins by the RNA polymerase. The RNA polymerase
first binds to the gene promoters, separates the DNA strands, and beginning from
the transcription start site, produces RNA (ribonucleic acid) complementary to the
DNA strand. The resulting RNA undergoes splicing. During splicing a select subset
of the exon sequences comprising the splice variant forms a messenger RNA that can
be used by the cell to synthesize a protein. The exon sequence used to synthesize
the protein is referred to as coding sequence.

• Repeats. A large part of the mammalian genomes comprises repeat elements, or
repeats. These are patterns of DNA sequence that occur multiple times across the
genome. DNA repeats fall into two main classes: tandem repeats, where multiple
copies of a sequence appear next to each other and interspersed repeats, where mul-
tiple copies of the same sequence appears in different locations in the genome.

• Enhancers, silencers, insulators, transcription factor binding sites. Tran-
scription levels and accessibility of each gene can be influenced by multiple noncoding

http://upload.wikimedia.org/wikipedia/commons/a/a7/Gene2-plain.svg
http://upload.wikimedia.org/wikipedia/commons/a/a7/Gene2-plain.svg
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functional elements such as enhancers, insulators and transcription factors (TF). En-
hancer elements are short regions of DNA, that can attract activator proteins that
bind to them and, in turn, recruit mediator complexes. A mediator complex attracts
RNA polymerase II which facilitates transcription. Another type of gene regulatory
regions are silencers. They are the opposite of the enhancers as they inhibit the
transcription of nearby genes. Just as enhancers, silencers do not influence the gene
directly but attract proteins (repressors) that directly or via additional protein com-
plexes interfere with gene transcription. Often when two nearby genes have different
transcription patterns, it is important the enhancing or silencing mechanisms that
influencing one should not interfere with the other. Insulator sequences binded by
the CTCF protein serve as genomic barriers that block interactions across them. An
important type of regulatory mechanisms are the transcription factors and their DNA
binding sites. Transcription factors are proteins that bind to specific DNA sequence
patterns found on the DNA (TFBS). Bound transcription factors in turn can interact
with additional proteins and implement various regulatory functions.

• CpG islands. A cytosine followed by a guanine in the DNA sequence is called a
CpG dinucleotide. The CpG dinucleotide pattern is underrepresented in mammalian
sequence, but tends to cluster in short CpG-rich regions called CpG islands (in
this manuscript, we also refer to them as CGIs) (Deaton and Bird, 2011). CpG
islands are characterized by high guanine and cytosine content (G+C) and elevated
CpG occurrences. These criteria, together with a condition on the minimum length
of the sequence are how CpG islands are traditionally defined (Gardiner-Garden
and Frommer, 1987; Takai and Jones, 2002). CpG islands are important functional
regions of the genome, being often a target location for transcription regulation via
DNA methylation. DNA methylation involves a methyl group that attaches to an
individual cytosine nucleotide usually in the CpG context. An important cause of
the underrepresentation of the CpG pattern is CpG decay as a consequence of DNA
methylation (Feuerbach, 2014). Specifically, methylated cytosines (C), due to their
biochemical properties, are prone to deaminate into thymine (T) (Holliday and Grigg,
1993). Unmethylated cytosines, on the other hand, deaminate into the nucleotide
uracil (U) which is easily recognized and repaired by the DNA repair mechanisms.
This is not the case when a methylated C deaminates into a T, leaving DNA repair
mechanisms to repair a T/G mismatch. As a result, the T/G mismatch is either
repaired to an unmethylated C/G pattern, or wrongly ‘repaired’ into a A/T, thus
stably mutating the cytosine into a thymine. Thus, in methylated CpG islands ,
the methylated CpG dinucleotides are often lost leading to the slow decay of the
islands. CpG islands are often found in gene promoters. The reverse association is
also observed, as more than two/thirds of all gene promoters co-localize with a CpG
island (Deaton and Bird, 2011).

All genomic functional elements discussed above are DNA sequence-based and are iden-
tical in all cells. Naturally, complex organisms need to employ dynamic regulatory mech-
anisms as the cells in different tissues express different proteins and thus need to read
off different parts of the genome. A family of regulatory mechanisms that afford such
dynamic regulation without changing the DNA sequence are epigenetic regulatory mecha-
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nisms, which are the main subject of biological research in this thesis.

2.2. Epigenetics

Figure 2.2.: Representation of DNA methylation and histone modifications, the two main
actors in epigenetic regulation. Reprinted from Qiu (2006))

In Greek, ‘epigenetics’ translates as ‘on top of genetics’. The term was introduced in
the early 1940s by Conrad Waddington (Waddington, 1942). More than 70 years later,
there are many definitions of epigenetics, but there is still no established one. A commonly
used definition is that epigenetics is ‘the study of mitotically and/or meiotically heritable
changes in gene function that cannot be explained by changes in DNA sequence’ (Russo
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et al., 1996). A more recent proposal is that ‘epigenetic state is the structural adaptation
of chromosomal regions so as to register, signal or perpetuate altered activity states’ (Bird,
2007). Berger et al. (2009) propose the following definition: ‘an epigenetic trait is a stably
heritable phenotype resulting from changes in a chromosome without alterations in the
DNA sequence’. In a broader sense, epigenetics connects the genome and the phenotype
by empowering the same genetic information to give rise to cells with different identities
within the same organisms. There are several well known epigenetic mechanisms, among
which: DNA methylation, chromatin modifications, RNA-induced silencing. In this thesis
we focus on the first two, as they are to date the most studied epigenetic mechanisms (see
Figure 2.2). In the following sections, we present them in detail.

2.3. DNA methylation

DNA methylation is the only epigenetic modification that targets directly the DNA se-
quence. In vertebrates, DNA methylation refers to a methyl group attaching (mostly) to
cytosines in the context of CpG dinucleotides. In fact, 60%-80% of all CpG dinucleotides in
the human genome are methylated (Smith and Meissner, 2013). Unlike CpG dinucleotides,
the majority of CpG islands tend to be consistently unmethylated. The methylation of
promoter CGIs has been linked to the transcriptional activity of the associated genes.
Methylated CpG islands in gene promoters have been demonstrated to be associated with
transcriptional silencing, while the unmethylated state is associated with transcriptional
activation (Deaton and Bird, 2011). Notably, for gene promoters that do not overlap with
CpG islands, the DNA methylation of the present CpG dinucleotides does not seem to
influence the gene expression. These observations hint at the important regulatory role of
DNA methylation.

2.3.1. Functions and mechanisms

DNA methylation plays an important role in regulating gene transcription, early embryonic
development and cell differentiation, a number of diseases and aging. Specifically, DNA
methylation increases or decreases the binding affinity of specific proteins to the DNA
sequence in question (Jaenisch and Bird, 2003). A well studied example is suppressing
imprinted gene copies and DNA sequences with latent transcriptional activities, such as
transposable elements (Smith and Meissner, 2013).
DNA methylation guides epigenetic regulation during early embryonic development and

dynamically changes in the course of cell differentiation (Reik, 2007). A number of gene
promoters have been identified to possess tissue-specific methylation pattern associated
with their expression patterns (Song et al., 2005; Illingworth et al., 2008). That is, genes
have been shown to be unmethylated in some tissue and methylated in another. Further-
more, housekeeping genes are constitutively unmethylated in all tissues. To demonstrate
the causal relationship between methylation and transcription, gene transfer experiments
were performed in which unmethylated genes were actively transcribed and if the same
genes were remethylated transcription was inhibited (Cedar and Bergman, 2012).
DNA methylation plays an important role in suppressing transposons. Transposable el-

ements, (also called transposons, or jumping genes) are DNA sequence segments that have
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the ability to move across the genome. They often duplicate and as a consequence are a
major type of DNA repeats, which constitute nearly 40% of the mammalian genomes. The
three main types of DNA repeats associated with transposable elements are long inter-
spersed nuclear elements (LINEs), short interspersed nuclear elements (SINEs) and long
terminal repeats (LTR). Transposons often contain a promoter that needs to be repressed
in order to prevent their transcriptional activity that can be lethal to the cell. In adult
cells, these regions and especially their promoters are consistently hypermethylated (Smith
and Meissner, 2013).
DNA methylation has long been associated with establishing and maintaining of genomic

imprinting (Li et al., 1993). Imprinting is a process by which several dozens genes are
transcribed only from the paternal (or maternal) genome and silenced in the other (Reik
and Walter, 2001). After they are formed, the imprinted methylation marks are preserved
during the developmental cycle and are faithfully transferred during each mitosis.
DNA methylation has also been indicated as an important factor in diseases, including

in the progression of multiple cancer types (Esteller, 2007). In addition to the coordinated
changes during normal development, in cancer the DNA methylome exhibits characteris-
tic changes. Such abnormal methylation patterns have been used to diagnose functionally
compromised cell states (Esteller, 2007). These may include both genome-wide hypomethy-
lation or hypermethylation or more specific targeted aberrant gene promoter methylation.
In particular, hypermethylation of promoters of tumor-suppressor genes can lead to their
transcriptional suppression and result in abnormal cell functions (Bernstein et al., 2007).
Mechanistically, methylated cytosines promote or prevent the access to a genome loci of

regulatory proteins (Bernstein et al., 2007). Methylated cytosines can mediate transcrip-
tional repression if bound by a family of methyl-binding proteins. These proteins removes
acetylation from the chromatin-forming histone proteins thus reducing chromatin accessi-
bility (Bird, 2002). DNA methylation has been shown to influence the chromatin structure
and thus the accessibility of the DNA sequence. A particular convincing evidence is when
an unmethylated DNA sequence after its integration in the genome is packed into an open
chromatin structure, while if the same sequence is artificially methylated, it is packed into
a closed chromatin (Keshet et al., 1986). Alternatively, DNA methylation of a transcrip-
tion factor binding site can prevent binding, as observed for the CTCF protein(Bernstein
et al., 2007).

2.3.2. The dynamics of DNA methylation during embryonic development and
tissue differentiation

DNA methylation undergoes two distinct epigenetic reprogramming phases (see Figure
2.3). The first phases occurs early during embryonic development, as DNA methylation
is actively erased genome-wide (Reik et al., 2001). This is followed by a wave of de novo
methylation during which genome-wide methylation is reestablished (Reik, 2007). During
this phase, pluripotency-associated genes, such as Oct4 and Nanog are reactivated. As the
cell differentiates, pluripotency-associated genes are silenced in order to protect the differ-
entiated cells from undesired return to pluripotency and tissue-specific genes are activated
(Epsztejn-Litman et al., 2008). Once established, DNA methylation patterns in differenti-
ated cells are believed to be generally stable (Reik, 2007). Not all DNA methylation marks
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Figure 2.3.: Schematic representation of the two reprogramming stages of DNA methyla-
tion and histone modifications. Figure reprinted from Reik (2007)

are erased during the early genome-wide DNA demethylation. For example, CpG islands
associated with transposons need to be stably silenced in order to protect the host genome.
Also, the repressive marks of imprinted genes are protected during the developmental re-
programming and are preserved for all differentiated cells. These marks are only erased
during the second reprogramming phase in primordial germ line cells, the cells that give
rise to the germ line. The second phase of epigenetic reprogramming resets DNA methyla-
tion and re-establishes pluripotency in germ line cells (Laurent et al., 2010). An important
function of that phase is to remove the methylation marks of imprinted genes, which are
later re-established in a parent-specific manner (Cedar and Bergman, 2012). Outside these
two major reprogramming events, the development and differentiation is characterized by
stable somatic inheritance of DNA methylation, low mutation rate, differential methyla-
tion of tissue-specific genes and stable silencing of pluripotency-associated genes, imprinted
genes and transposon elements.
The dynamics of DNA methylome discussed previously are only possible with efficient

DNA methylation deposition and maintenance. Three DNA methyltransferase enzymes
are responsible for this: Dnmt1, Dnmt3a, Dnmt3b (Li et al., 1992; Okano et al., 1999;
Jones and Liang, 2009). Dnmt1 is a maintenance methyltransferase, as it propagates DNA
methylation during replication (see Figure 2.4). Dnmt3a and Dnmt3b are responsible
for de novo DNA methylation (Smith and Meissner, 2013) and play a critical role in re-
establishing of DNA methylation in early embryonic development (see Figure 2.3). A
number of experiments were performed to better understand the dependencies between
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Figure 2.4.: DNA methylation deposition and maintenance by DNA methyltransferases
Dnmt1, Dnmt3a and Dnmt3b. Figure reprinted from Jones and Liang (2009)

DNA methylation, pluripotency and differentiation of embryonic stem cells (ESC)(Smith
and Meissner, 2013). For example, ESC deprived of Dnmt1 experience a rapid loss of
DNA methylation until they stabilize with around a fifth of the DNA methylation of
normal ESC. The cells are stable, but die of apoptosis when induced to differentiate. If
Dnmt1 is reintroduced in those cells then DNA methylation is restored with the exception
of imprinted patterns (Tucker et al., 1996). If Dnmt3a and Dnmt3b are knocked out in
ESC, the cells lose almost all DNA methylation after multiple divisions (Chen et al., 2003;
Jackson et al., 2004).
DNA methylation patterns are primarily maintained through cell division via Dnmt1.

The so-called maintenance methyltransferase targets hemi-methylated CpG dinucleotides
and methylates the unmethylated strand. In that way, it efficiently preserves DNA methy-
lation during cell division as it propagates any DNA methylation to the daughter cells
(Bernstein et al., 2007). Dnmt1 is constantly found at the replication foci (Leonhardt
et al., 1992) thus ensuring the consistent replication of DNA methylation pattern across
the genome.
Unlike mechanisms for de novo methylation and maintenance, mechanisms for DNA

demethylation are less understood. Demethylation occurs globally in two waves during
early development and gametogenesis. Alternatively, site-specific demethylation ocurs,
often involving tissue-specific regulation. DNA demethylation is hypothesized to work
in three main modes: active demethylation, passive demethylation by cell division and
demethylation by repair (Cedar and Bergman, 2012). The exact specifics of DNA demethy-
lation are not entirely clear, but one of the proposed workflows suggests an initial conversion
of methylated cytosine (5mC) to 5-hydroxymethylated cytosine (5hmC), which in turn is
converted to 5-hydroxymethyluridine (5hmU) and subsequently converted to a cytosine by
DNA repair (Cedar and Bergman, 2012). Recent studies analyze the specifics of how 5mC
can be converted to 5hmC that in turn results in demethylation, a process often catalyzed
by a ten-eleven translocation (TET) family of proteins (Ito et al., 2010; Wu and Zhang,
2010). An interesting experiment showed that reducing the activity of the Tet1 protein
results in increased DNA methylation in CpG islands (Wu et al., 2011; Ficz et al., 2011).
These results have led to the hypothesis that the genome-wide DNA methylation is even
more dynamic than previously believed and involves continuous reseting through 5hmC
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(Deaton and Bird, 2011).
Active demethylation may also involve a deamination step (Wu and Zhang, 2010). A

link between deamination and DNA demethylation has been shown experimentally, as
Popp et al. (2010) report increased DNA methylation levels in embryos without activation-
induced deaminase (AID) enzyme. AID stimulates the deamination of methylated cytosines
in a CpG pattern to uracils that often are wrongly repaired to thymine, resulting into a
TpG pattern. As we discuss later in this thesis, in methylated CpG islands the TpG
dinucleotide has a higher frequency (and its reverse complementary CpA), which are the
dinucleotides methylated CpGs deaminate into.

2.3.3. Experimental technologies

Below we present an overview of the experimental technologies available for measuring
DNA methylation.
Available sequencing and microarray technologies cannot recognize DNA methylation di-

rectly because standard molecular techniques such as as polymerase chain reaction (PCR)
erase the DNA methylation marks (Laird, 2010). As a consequence, methods were devel-
oped that translate DNA methylation information into DNA sequence information based
on the chemical properties. These are often combined with high-throughput sequencing or
microarray technologies (Bock et al., 2010a; Bock and Lengauer, 2008). In this section, we
briefly discuss the bisulfite sequencing, microarrays and enrichment-based methods (Bock,
2012).
The gold standard for determining if a cytosine is methylated is bisulfite sequencing (see

Figure 2.5). The method uses the following property: when DNA is treated with sodium
bisulfite, the unmethylated cytosines are converted to uracil (U), while the methylated
cytosines remain. These are processed by a standard genetic sequencing procedure, yielding
either thymine (unmethylated C) or cytosine (methylated C). In short, the method converts
the methylation mark into a sequence difference that can be identified by comparison
with a reference sequence. The advantage of bisulfite sequencing is that it provides exact
measurements of methylation for every CpG. The quality of the data comes at a cost, as
bisulfite methods struggle to scale to the genome (Eckhardt et al., 2006). To address this
shortcoming, bisulfite sequencing has been combined with enriching of specific enzymes
(as in reduced representation bisulfite sequencing - RRBS (Meissner et al., 2008)) allowing
to target large parts of the genome at significantly reduced cost (Gu et al., 2010). While
cost-effective and providing genome coverage, the specificity of the enzyme targeting do
not afford truly genome-wide analysis of DNA methylation patterns due to the biases of
the data sampling, such as sampling predominantly from CpG-rich regions. As of recently,
it was also discovered that bisulfite sequencing struggles to distinguish between methylated
and hydroxymethylated cytosines (Huang et al., 2010; Bock, 2012).
An alternative to the previous method combines bisulfite treatment of DNA methylation

with custom-designed microarrays. Similarly to the RRBS, the costs to obtain genome-
scale measurements are affordable. However, the disadvantages include the need for a com-
plicated initial array setup, and again access to only limited part of the genome(Bibikova
et al., 2009). Illumina offers popular custom arrays to interrogate DNA methylation in hu-
man. The Illumina GoldenGate BeadArray covers around 1, 500 CpG sites, the Illumina
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Figure 2.5.: Schematic representation of bisulfite sequencing from Wikipedia
(http://upload.wikimedia.org/wikipedia/en/c/c9/Wiki_Bisulfite_
sequencing_Figure_1_small.png)

Infinium assay covers more than 27 thousand CpG sites (Laird, 2010) and the Illumina In-
finium HumanMethylation450 that offers interrogation of more than 485,000 methylation
sites.

An alternative to bisulfite sequencing for measuring DNAmethylation are the enrichment-
based strategies. These methods identify DNA regions with methylated or unmethylated
DNA and use next-generation sequencing to extract the sequences (Bock et al., 2010a).
When using MeDIP-seq (Weber et al., 2005), antibodies are used that bind to methylated
DNA fragments. With MethylCap-seq (Brinkman et al., 2010), a methyl-binding domain is
used to identify domains with similar levels of DNA methylation. Alternatively, restriction
enzymes can be used to identify only DNA sequences with high levels of DNA methylation
(Brunner et al., 2009). Generally, enrichment-based strategies succeed where the bisulfite
sequencing methods fail and vice versa. Namely, one can perform genome-scale experi-
ments at a relatively low cost, however this comes at the cost of the lack of information
about the CpG-poor regions combined with lower quality of the experimentally measured
levels of DNA methylation. A final advantage of these methods is the ability to distinguish
between 5mC and 5hmC (Bock, 2012).

http://upload.wikimedia.org/wikipedia/en/c/c9/Wiki_Bisulfite_sequencing_Figure_1_small.png
http://upload.wikimedia.org/wikipedia/en/c/c9/Wiki_Bisulfite_sequencing_Figure_1_small.png
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2.4. Histone modifications

DNA is wrapped around nucleosome molecules. A nucleosome is an octamer formed of
four pairs of histone proteins: H2A, H2B, H3 and H4. Each histone protein has a long
unstructured tail at the end of its amino-acid chain. The amino acids on the histone tails
are often subject to various chemical modifications. These include methylation, phospho-
rylation and ubiquitination. Unlike DNA methylation, histone modifications regulate the
access to the DNA by influencing the compaction level of the chromatin. Specifically,
they do so not only by their presence and affecting inter-nucleosomal interactions, but
also by recruiting of remodelling enzymes and other proteins and complexes with specific
enzymatic activities (Bannister and Kouzarides, 2011). Open euchromatin increases the
accessibility of the DNA for binding, while tightly packed heterochromatin has the op-
posite effect. Heterochromatin covers large sections of the genome and is considered to
have evolved as a highly repressive structure that limits the access to the underlying DNA
sequence, for example to prevent the activation of transposable elements (Beisel and Paro,
2011). Most importantly, histone modifications (and chromatin-based silencing) is propa-
gated through DNA replication, for example through the activity of the Polycomb-group
(PcG) and trithorax-group(trxG) protein complexes, ensuring the consistency of epigenetic
regulation between cells (Beisel and Paro, 2011).

2.4.1. Dynamic regulation via histone modifications

Histone modifications regulate transcription via two main mechanisms: either by directly
affecting the chromatin structure or by managing (recruiting or preventing) the access
of specific proteins to the DNA sequence(Bannister and Kouzarides, 2011). The latter
are better characterized as various proteins have been identified that interact with specific
sequence domains depending on the presence or absence of particular histone modifications
(Xhemalce et al., 2011). For the former, one of the better understood examples is how
histone acetylation by reducing the electrostatic interactions between the DNA molecules
and the histone proteins leads to open chromatin (Bannister and Kouzarides, 2011).
There are more than 100 post-translational histone modifications. They are annotated

based on the histone protein on which they occur, the amino acid they influence and its
position on the histone tail and the type of the modification. These are commonly anno-
tated with short abbreviations. For example, H3K9ac would indicate an acetylation of the
H3 histone at the lysine at the 9th position. Similarly, H3K27me3 refers to a lysine on
the 27th position of the H3 with observed trimethylation. A specific lysine can have up
to three methylation group attached and the resulting function can differ depending on
the number of methyl groups. For example, monomethylation of H3K4 is associated with
marking of enhancer elements, while trimethylation on the same position is generally as-
sociated with active unmethylated CpG island promoters. Furthermore, trimethylation at
different positions can have different regulatory function. For example, H3K27me3 is often
associated with repression, while H3K4me3 is associated with transcriptional activity.
Trimethylation of H3K4 is often observed at unmethylated CpG-island gene promoters

(Bernstein et al., 2007). The association between H3K4me3 and unmethylated CpG islands
may be the result of the activity of trithorax-group (trxG) protein complexes, associated
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with maintaining gene expression, that bind to unmethylated DNA and catalyze H3K4
methylation (Bernstein et al., 2007). However, several experiments have shown that the
modification does not influence gene transcription directly. For example, the depletion of
the H3K4 methyltransferase complex results in globally reduced H3K4me3, but does not
result in immediate difference in transcriptional activity (Zentner and Henikoff, 2013).
Monomethylation of H3K4 has been associated with putative Âŋenhancers (Heintzman

et al., 2009; Zentner et al., 2011). Additionally, enhancer sequences often co-localize with
trimethylation or acetylation marks on H3K27 (Zentner and Henikoff, 2013). As we will
show later in this thesis, H3K4me1 often co-localizes also with DNA 5-hydroxymethylation
(5hmC), often in the context of enhancers (Section 3.4.2)
The trimethylation of H3K27 has been a subject of a lot of research and is classically

associated with closed chromatin. H3K27me3 is often observed in repeat regions potentially
repressing their activity. However, in ES cells the repressive H3K27me3 modification is
often discovered together with the activating mark H3K4me3 in gene promoters. As the
ES cells differentiate, these so called bivalent promoters ofter lose one of those marks and
remain repressed or activated in adult cells. H3K27me3 displays a variety of functions in
dynamic tissue-specific transcriptional regulation (Bernstein et al., 2007).
Unlike the variance in the regulatory functions of histone methylation, lysine acetylation

generally is associated with euchromatin and transcriptional activity. The exact mecha-
nism involves reducing the positive charge of the histones, leading to less tight interaction
between the DNA and the histones preventing closed chromatin and in effect leading to
open chromatin (Kouzarides, 2007). This has also been observed for histone phosphory-
lation (Bannister and Kouzarides, 2011). The challenges of understanding the dynamics
of histone regulation increase as different histone modifications can influence each other
(Bernstein et al., 2007)
Most histone modifications are directly applied by specific enzymes. Many of these en-

zymes are identified, such as for methylation (Zhang and Reinberg, 2001) and for acetyla-
tion (Sterner and Berger, 2000). Moreover, the enzymes that remove the modifications are
also identified (Kouzarides, 2007). Histone modifications also employ complex mechanisms
to ensure their epigenetic inheritance. These often involve recruiting multiple proteins
to ensure the preservation of the histone marks on the daughter cells. For example, the
heredity of H3K4 and H3K27 methylation are mediated by Polycomb-group (PcG) and
trithorax-group(trxG) protein complexes (Bernstein et al., 2007). The H3 and H4 histones
are distributed randomly between the new cells, thus ensuring that the DNA of both cells
is packed in chromatin with the same histone modifications, further propagated by PcG
and trxG (Zentner and Henikoff, 2013).

2.4.2. Experimental technologies

Chromatin immunoprecipitation (ChIP) remains the main method to identify histone mod-
ifications (Figure 2.6). The standard ChIP protocol involves shearing the chromatin (by
sonication) to generate only DNA segments of small size and then binding antibodies
against a specific histone modification to isolate DNA segments by precipitation (Bernstein
et al., 2007). Afterwards, the precipitated DNA sequence fragments can be analyzed using
different methods. Similarly to bisulfite sequencing, ChIP can be combined with microar-
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Figure 2.6.: Schematic representation of chromatin immunoprecipitation. Figure adapted
from Collas and Dahl (2008)

rays (ChIP-chip) and with high throughput sequencing (ChIP-seq) to provide genome-wide
maps. The main issues of the method are related to the quality of the used antibody. Prob-
lems such as the specificity of the antibody binding and potential disrupting when binding
neighboring nucleosomes can lead to underestimation and biases in the estimations of the
presence of specific histone modifications (Kouzarides, 2007).
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2.5. Computational analysis of genomic and epigenomic data

Hawkins et al. (2010) suggest that computational biology needs tools that offer integrated
analyses on all the various experimental data types. Goecks et al. (2010) propose bioinfor-
matic tools to support accessible, reproducible and transparent research. In what follows,
we give a short overview of the existing types of tools for working with epigenome data
and how they meet a variety of criteria.

2.5.1. Overview of bioinformatic tools for working with epigenome annotations

• Tools for data preprocessing and quality control In the previous sections, we
discussed various methods for extracting DNA methylation and histone modification
data. After the raw data is obtained, a processing and quality control step is typically
performed (Bock, 2012). The main goal of the data processing is to produce com-
parable (among different experiments) and accurate absolute values for the correct
genomic positions. In the case of DNA methylation, the purpose is to extract abso-
lute and comparable DNA methylation levels for every CpG. In the case of histone
modifications, the result is a map with observed occurrences for every genomic po-
sition. These values are often subject to a peak-identification algorithm to precisely
indicate genomic regions where the modification is located. The data processing tech-
niques vary, depending on the technology used. During the quality control step, one
keeps an eye on a number of technical details and ensures that potential biases due
to the study cohort, sample material, experimental protocol, batch effect or others
do not influence the quality of the data. In this thesis, we work directly with already
processed and quality-controlled data and do not go into further details regarding
the existing methods. However, interested readers can find a detailed overview of the
preprocessing and quality control methods in Bock (2012).

• Integrated databases and genome browsers Epigenetic data that is mapped
onto the genome can be readily visualized in alignment with other established refer-
ence genomic and epigenomic maps. Genome browsers – probably the most known
and widely used bioinformatic tools – serve this purpose, to navigate the user through
data aligned to the genome. ‘Genome browsers’ is a generic name by which the clas-
sic UCSC Genome Browser (Karolchik et al., 2011) and Ensembl (Flicek et al., 2010)
are known, as well as the new WashU Human Epigenome Browser (Zhou et al., 2011)
and Integrative genomics viewer (Robinson et al., 2011). They provide an intuitive
visual interface that represents the genome as a one-dimensional map, onto which
data from multiple annotations are overlayed. The users can zoom into and out of any
genomic region and observe interesting local associations between annotation tracks.
The power of the genome browsers lies in their easy-to-use, intuitive interface and
the extensive annotation database that they support. They are often used in studies
focused on the properties of one or several genomic loci. The main shortcoming of
browsers is their inability to provide a simultaneous analysis of a set of regions, and
thus to generalize observations outside the scope of a (narrow) region.

• Genome calculators An important family of computational tools are designed
for performing common operations, such as filtering region sets to comply with cer-
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tain properties, intersection between region sets, computing genome coverages etc.
UCSC Table Browser (Karolchik et al., 2004) and Ensembl BioMarts (Kinsella et al.,
2011) provide user-friendly interfaces for selecting and refining datasets based on dif-
ferent criteria. They essentially provide interfaces to the databases underlying the
genome browsers. Command-line tools, such as BEDTools(Quinlan and Hall, 2010)
and BEDOPS (Neph et al., 2012) are often used to perform these operations via
a command-line interface and, while they lack user-friendly interfaces and intuitive
data visualizations, they can be easily integrated into workflows. Finally, scripting
and programming languages, such as R/Bioconductor (Gentleman et al., 2004) and
Python (Python Programming Language, 2009), allow great flexibility of the opera-
tions, but require extensive programming experience. All these tools suffer from the
same drawback: it is relatively difficult to discover interesting aspects in new data;
they lack quick visualizations and exploratory output; rather, it takes large effort and
computer skills to investigate single aspects of the data, which have to be thought of
and planned ahead.

• Workflow tools Basic operations with genomic annotations, as discussed above,
are often an integral part of visual workflow toolkits such as Galaxy (Giardine et al.,
2005), its extension the Genomic HyperBrowser (Sandve et al., 2010), Taverna (Hull
et al., 2006) and Genome-Space (Reich et al., 2012). They offer intuitive user inter-
faces that allow complex analysis pipelines, but often require require careful planning
of each data analysis.

• Statistical analysis and prediction There are very few tools that offer a gener-
alized framework for modeling statistical dependencies between genomic and epige-
nomic annotations. Among the tools with narrower scope we mention: GREAT
(McLean et al., 2010) and the Genomic HyperBrowser (Sandve et al., 2010). GREAT
offers insights into the biological function of sets of genomic regions based on their
nearby genes. The Genomic HyperBrowser offers a visual interface to define and eval-
uate statistical association between genomic annotations. In this thesis we present
EpiGRAPH, our web service that can be used to define general purpose statistical
models on epigenomic and genomic data.

2.5.2. The characteristics of existing bioinformatic tools

In Table 2.1, we present a summarized view of the characteristics of bioinformatic tools for
analysis of epigenetic data. We formulate a set of criteria that in our view are meaningful
for most types of epigenetic data analysis and we appreciate how these criteria are met by
the various tools. The criteria are:

• User interface: can the user define an analysis via a user interface, or does he or
she need knowledge of command-line scripting or programming?

• Visual results: are the results of the analysis presented in a visually intuitive way,
by meaningful graphics for example?

• Speed of the analysis: can the user set up, run the analysis and get the results
very fast (within a minute)?
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Type Example User Visual Speed of Analyzes Integrated Statistical Naïve
interface results analysis region sets database inference exploration

Genome UCSC 3 3 3 7 3 7 3

browsers Genome
Browser

Database Ensembl 3 7 7 3 3 7 7

interfaces Biomarts
Command-line BEDTools 7 7 7 3 7 7 7

computations
Programming R 7 3 7 3 7 3 7

Workflow Galaxy 3 3 7 3 3 7 7

tools
Enrichment Genomic 3 3 7 3 3 3 7

analysis HyperBrowser

Statistical EpiGRAPH - 3 3 7 3 3 3 3

analysis presented
in this thesis

Interactive EpiExplorer - 3 3 3 3 3 7 3

exploration presented
in this thesis

Table 2.1.: Characteristics of the most popular bioinformatic tools for analysis of
epigenome data.

• Analyzes sets of regions: can the tool work with sets of regions and thus provide
general views on genomic and epigenomic function, or is it focused on the properties
of single regions?

• Integrate database: does the tool support or connect to a database with substantial
number of reference annotations or the user needs to provide all data?

• Statistical inference: can the tool perform statistical testing or statistical modeling
in order to rigorously evaluate significance of associations?

• Naïve exploration can the tool help the user understand basic characteristics of
new, unfamiliar datasets or does it expect prior knowledge on features, name spaces,
ranges of values etc?

Note, that the lack of a certain characteristic does not necessary mean that we believe
that the tool is inferior in some way. For example, BEDTools may only fit one of our
criteria, but is very good at performing basic operations with region sets.
In the upper part of Table 2.1, we observe that there is a lack of tools that offer statistical

evaluation of analysis results and real-time interaction. Also, genome browsers are the only
tools that do not expect the user to be familiar with the data in a way that she can code
the analysis by herself. For example, databases and command-line tools require the user
to at least know the tables, value types and ranges of the features. Programming tools can
provide information about the data, but the user needs to have advanced computer science
skills. In our view, only genome browsers are simple and intuitive enough to help the user
familiarize themselves with a new dataset without prior knowledge. However, they lack
flexibility to work with sets of regions.
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Motivated by those observations, in this thesis we describe two software tools and in-
teractive web servers: EpiExplorer and EpiGRAPH. With EpiExplorer, we developed a
method and software that combines the interactive nature of genome browsers with the
region-based analytical approach of Galaxy, enabling users to explore large-scale genomic
datasets in search of interesting functional associations. EpiGRAPH provides a statistical
framework that automatically tests a large number of possible associations and reports to
the user the significant findings. The characteristics of the toolkits are represented in the
lower part of Table 2.1 in blue.

2.6. Text retrieval and exploratory search

2.6.1. Information retrieval and text retrieval

The field of Information retrieval (IR) is concerned with ‘finding material (usually doc-
uments) of an unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers)’ (Manning et al., 2008). Text re-
trieval is a branch of IR that specializes in finding textual information in collections of
text documents. Popular examples of text retrieval, which daily engage hundreds of mil-
lions of people, are web search engines. Web search engines enable Internet users to find
relevant information in billions of web pages. Text retrieval systems expect a short textual
query and automatically compute a list of documents ordered by estimated relevance to
the query. An IR system aims to efficiently retrieve all documents related to the query
and to rank them in decreasing number of relevance. If the ranking of the documents is
not of importance, then we refer to the problem as boolean retrieval, that is a document
either matches the query or not.

An common scenario in information retrieval is Exploratory Search (Marchionini, 2006).
Exploratory search refers to performing a search when the user is unfamiliar with the
domain or unsure about the expected results or the queries needed to achieve them. For
example, exploratory search is popular in e-commerce websites, where clients often are
unsure of the exact product they are searching for or of the terminology to describe it.
Exploratory search is also a common scenario in web search.

Most commonly, web users query search engines to identify the most relevant information
about a concept. Web users often have little or no prior knowledge of the topic and use a
series of evolving queries to familiarize themselves with it. Similarly to web users, biologists
are often interested in finding the relevant genomic and epigenomic properties of a set of
genomic regions (for example, maps of enrichment of a novel epigenetic mark) about which
they do not have extensive prior knowledge. In web search, instant response is crucial as it
enables the user to update and refine a request quickly, thus increasing the knowledge about
the topic of interest. In bioinformatics, similar speed of simple queries can be as important
when offering a flexible and intuitive interface for probing into epigenetic properties. Fast
responses also facilitate quick feedback and easy correction of imprecise queries offering
a fault-tolerant service, which is of value especially when dealing with investigating novel
biological properties about which little is known.
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2.6.2. Data indexing and query types

The efficiency of an information retrieval system depends on how its data collection is
preprocessed and stored and the types of queries it should answer. Data can be indexed
into relational databases, non-relational database or search index structures.
Relational databases, such as MySQL (MySQL Database, 1995) and Oracle (Oracle

Database, 2009), require the data to be well structured, with associated data types and
described by a database schema. The efficiency of a relational database solution depends
on optimized design of a database schema to match the data and the queries. Traditional
relational databases focus on answering boolean queries (identify all records that match a
query) and often do not provide ranking of the matching results. The query language, SQL,
allows very flexible and complex queries, but often requires advanced database knowledge.
The requirement for a fixed database schema together with complex query language limits
the applicability of relational databases to bioinformatic software.
Non-relational databases (or NoSQL databases) are characterized as semi-structured

databases that do not have a schema and supports records with different fields. NoSQL
databases fall into several different types: document stores (e.g. MongoDB, MongoDB
(2009)), key-value stores (e.g. Redis, Redis (2009)) and wide column stores (e.g. HBase,
HBase (2008)). Each type is optimized for different data formats and queries, thus enabling
a large range of applications not suitable for relational databases. However, they often do
not support JOIN-line queries.
Search-engine indexes facilitate full text search with advanced ranking methods. The

data structures are optimized for textual data with little or no structure and for easy
forming and answering of queries. They often support prefix search (find on-the-fly words
that start with a query term) and wildcard search (queries can have wildcard characters
allowing flexible text search). Prefix search and wildcard search enable auto-completion
and faceted search
Auto-completion – also known as suggest search – has been introduced in various services

on the web over the last few years, most commonly in web search. It typically consists of
an input interface through which the user starts introducing a query. As the input query
is being typed, the search engine automatically suggests the most probable completions of
the current partial query. The idea has revolutionized the field of text search as the search
engine assists the user to form a relevant request. Auto-completion was added to the search
engines relatively late (around 2006), mainly because the index structure commonly used
for search engines, the inverted index, did not naturally support efficient auto-completion.
Faceted search is a technique for accessing and visualizing structured or semi-structured

information that can be described by multiple properties. Faceted browsing is commonly
used in web commerce to organize and visualize a set of products offered to buyers, based on
the different attributes that products have: e.g. size, color, price, categories etc. Typically,
if a web shop offers faceting by color, i.e. it displays information on all colors a product
can have and the number of products available for each color. Selecting a color from the
listing will refine the product selection to only products with the specified color. Thus,
faceting serves multiple purposes. It presents the distributions of values for each prop-
erty (dimension) and it allows for filtering by conditioning on the values of a particular
dimension.
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The most popular indexing structures for full text search is the inverted index (Zobel
et al., 1998). The inverted index is a structure that is built from a set of text documents, by
extracting all words appearing in the documents and for each word storing the documents
in which the word appears. There is a popular extension of the inverted index called the full
inverted index, where also the position of the word in the document is stored (Baeza-Yates
and Ribeiro-Neto, 1999).
Among the popular search engines that are open source and publicly available we mention

Solr (Apache Solr, 2004) and ElasticSearch (ElasticSearch, 2010). Solr and ElasticSearch
provide efficient full text search with automated scaling and ranking and are both based
on Lucene (Apache Lucene, 1999). The inverted index offers efficient indexing and instant
query processing, however, it does not support efficient faceting and auto-completion. A
novel indexing structure optimized for auto-completion, called HYB, was proposed by
Bast and Weber (2006). HYB was shown to efficiently answer plain search queries, sup-
port faceting and instantly suggest automatic completions of partial queries. The HYB
indexing was used as a base of a novel search engine called CompleteSearch(Bast and We-
ber, 2007). Through creative use of prefix indexing, CompleteSearch provides support for
faceted navigation and query auto-completion and it has been shown to outperform more
standard approaches based on inverted indices.
In this thesis, we used HYB indexing and CompleteSearch to enable interactive visual

exploration of large epigenomic datasets using EpiExplorer.
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3. Live exploration and global analysis of
large epigenomic datasets using
EpiExplorer

Representing epigenome
annotations as words in text

documents

The advancements of biological technologies enabled epigenome mapping consortia to
generate resources of great value for studying epigenetic regulation(Bernstein et al., 2010;
Consortium, 2004; Hudson et al., 2010). To maximize their utility and impact, bioinfor-
matic tools are needed to facilitate the analysis of these data. In this chapter, we describe
EpiExplorer, a methodology and software for exploring genome and epigenome data on a
genomic scale. EpiExplorer proposes a novel method for visual exploration of large datasets
that addresses a major challenge in epigenetics research using state-of-the-art information
retrieval methods1. EpiExplorer is available at http://epiexplorer.mpi-inf.mpg.de
The chapter is organized as follows. First, we discuss in detail the novel concept and

methods that make EpiExplorer useful to bioinformaticians and biologists with various
bioinformatic backgrounds. We present the efficient and versatile text indexing scheme
that allows EpiExplorer analyses to complete within seconds. We validate the approach
by demonstrating how one can reproduce well established findings about the epigenetic
properties of CpG islands by a short EpiExplorer session. Then, we describe an insightful
analysis of the DNA hydroxymethylation dataset published by Szulwach et al. (2011) in

1The work presented in this chapter has been published in Halachev et al. (2012). I conceived the project
with support from Christoph Bock and Thomas Lengauer. KH, TL and CB planned the research. KH
and CB conducted the research. KH developed the methods and software. Felipe Albrecht extended the
annotation database and assisted with software development. Hannah Bast contributed software, ideas
and technical guidance. KH and CB wrote the manuscript of Halachev et al. (2012), parts of which
are used in this chapter. Section 3.4.3 is based on a collaborative work with Laura Toloşi published in
Toloşi et al. (2013).
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relation to public reference genetic and epigenetic annotations. We show how with Epi-
Explorer we identify a small subset of biologically interesting 5-hydroxymethylated sites,
that are suitable for further biological validation. In a separate study, we demonstrate how
EpiExplorer can be used in a disease-specific study, as we identify epigenetic characteristics
of regions corresponding to recurring DNA breakpoints in large cohorts of cancer tissues.
Finally, we summarize the impact of EpiExplorer on the community during its first year
after publication, by showing and discussing relevant user statistics.

3.1. Background

Understanding gene regulation is an important goal in biomedical research. Historically,
much of what we know about regulatory mechanisms has been discovered by mechanism-
focused studies on a small set of model genes (Mitchell and Tjian, 1989; Orkin, 1990).
High-throughput genomic mapping technologies have recently emerged as a complemen-
tary approach (Hawkins et al., 2010); and large-scale community projects are now gener-
ating comprehensive maps of genetic and epigenetic regulation for the human and mouse
genomes (Adams et al., 2012; Bernstein et al., 2010; Consortium, 2004; Satterlee et al.,
2010). Substantial potential for discovery lies in better connecting mechanism-focused
studies investigating the wealth of functional genomics and epigenomics data that are be-
ing generated. A handful of pilot studies highlight the value of combining high-throughput
and mechanism-focused research (for example, in (Huarte et al., 2010; Mikkelsen et al.,
2010; Musunuru et al., 2010)), but few research groups are equally proficient in bioinfor-
matics, large-scale genomics and in-depth functional analysis to conduct highly integrated
studies of gene regulation. A new generation of software tools could reduce those require-
ments by enabling user-friendly navigation and analysis of large genomic databases.
Genome browsers are probably the most widely known type of bioinformatics software

related to genomics. They are currently the only software tools for navigating through
genome data that are widely used, not only by bioinformaticians but also by biomedical
researchers with little computational background. The strength of web tools such as the
UCSC Genome Browser(Karolchik et al., 2011; Fujita et al., 2011; Karolchik et al., 2008),
Ensembl (Birney et al., 2004; Flicek et al., 2010, 2008), Integrative genomics viewer (Robin-
son et al., 2011) and the WashU Human Epigenome Browser (Zhou et al., 2011) lies in
their intuitive interface, which enables users to browse through the genome by representing
it as a one-dimensional map with various annotation tracks. The extensive database of
annotation tracks together with the intuitive, detailed and configurable visualization of in-
dividual gene loci have established genome browsers as tools of choice for many small-scale
studies for exploring the properties of one or several loci. However, the focus on single
locations is also the main limitation of genome browsers, as they lack the potential to
perform truly genome-wide analysis of complex datasets by investigating multiple genomic
regions together. Therefore, complementary tools are needed that suitably address the
complexity of large genomic datasets while maintaining the interactive and user-friendly
character of genome browsers.
Existing tools, however, do not fully address that need. For example, the UCSC Table

Browser (Karolchik et al., 2004) and Ensembl BioMarts (Kinsella et al., 2011) provide
user-friendly support for selecting and downloading sets of genomic regions. However,
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the analysis of the downloaded data needs to be performed locally using command-line
tools, such as BEDTools (Quinlan and Hall, 2010), BEDOPS (Neph et al., 2012) and
R/Bioconductor (Gentleman et al., 2004) thus lacking an interactive and user-friendly
interface. Workflow tools such as Galaxy (Goecks et al., 2010; Blankenberg et al., 2010),
Taverna (Oinn et al., 2006; Hull et al., 2006) and the Genomic HyperBrowser (Sandve
et al., 2010) combine user friendliness and flexibility, but they require careful planning and
tend to be too slow for performing truly interactive and exploratory analyses. Finally,
enrichment analysis servers such as GREAT (McLean et al., 2010) and EpiGRAPH (Bock
et al., 2009) (see chapter 4) are powerful tools for identifying significant associations in
large biological datasets, but they lack the flexibility to explore the observed enrichments
in a dynamic and interactive fashion.
None of the tools discussed above enables the user to easily navigate through the plethora

of publicly available genomic and epigenomic data and easily form hypotheses about the
interplay of the various biological mechanisms. Similar challenges have been faced by a
different branch of applied computer science over the last decade: the challenge of providing
efficient and intuitive search in web content.
To provide efficient web search, search engines continuously process and index the avail-

able web content. During the last decade, web search engines have increased the number
of web sites they index by several orders of magnitude, while maintaining almost instant
search response. The algorithms used address the problems of providing intuitive and
instantaneous exploration of large heterogeneous datasets, generated from various sources
and following different formats. These properties also characterize genomic and epigenomic
data. With proper adaptation, methods for indexing and searching in web content can also
be of use for bioinformatic tools.
In Section 2.6.1, we presented information retrieval approaches for indexing and quering

text data. Specifically, we discussed CompleteSearch (Bast and Weber, 2007), a search
engine based on HYB data indexing (Bast and Weber, 2006) that enables not only standard
text queries, but also prefix, range, negation and JOIN queries. Using CompleteSearch in
an innovative manner, with biological data, we developed EpiExplorer, a new paradigm
for live visual exploration of massive epigenetic datasets.

3.2. Concept and main features of EpiExplorer

With EpiExplorer, we developed a web server that combines the interactive nature of
genome browsers with the region-based analytical approach of Galaxy. EpiExplorer is
based on an efficient indexing structure powering the CompleteSearch engine that instantly
answers search queries and provides faceted navigation. The service enables users to ca-
sually explore large-scale genomic datasets in search of interesting functional associations.
EpiExplorer does not aim to replace any existing tool; instead it facilitates dynamic integra-
tion with tools such as the UCSC Genome Browser(Karolchik et al., 2008), Galaxy(Goecks
et al., 2010) and the Genomic HyperBrowser(Sandve et al., 2010), it bases its preprocessing
of a dataset on the efficient command-line tool BEDTools (Quinlan and Hall, 2010) and it
uses the CompleteSearch text search engine(Bast and Weber, 2007) to provide instant re-
sponses. EpiExplorer does not expect the user to define a detailed framework for searching
for relevant associations in the data — as enrichment analysis tools do with their statistical
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testing environments. Instead, EpiExplorer’s key strength lies in supporting exploratory
hypothesis generation using a broad range of genomic analyses performed in real time over
the Internet. Such exploratory analyses often provide a first indication of relevant associa-
tions that are worth following up by in-depth statistical analysis using other software tools
or by experimental validation in the wet lab.
EpiExplorer works with built-in or user-uploaded genomic region sets. Five types of

genomic regions are available in EpiExplorer by default, namely CpG islands, gene pro-
moters, transcription start sites, predicted enhancer elements and a map of 5-kb tiling
regions spanning the entire genome. The user-uploaded datasets can be investigated with
the same speed and flexibility as any of EpiExplorer’s default region sets. Every custom
region set needs to be preprocessed to be available in EpiExplorer. During the dataset
preprocessing phase, the set of genomic regions is annotated with various properties and
is transformed into a data structure that allows efficient querying. More specifically, pre-
processing involves the following steps:

1. The user prepares and supplies a list of genomic regions as a BED file.

2. The list of genomic regions is uploaded into the EpiExplorer server.

3. The genomic regions are internally annotated with a wide range of genomic and
epigenomic attributes using BEDTools (Quinlan and Hall, 2010) and efficient script-
ing operations.

4. EpiExplorer represents each genomic region by a text document containing keywords
for all its annotation features each region. Thus it creates a large virtual collection
of text documents that represent the genomic regions and their properties.

5. CompleteSearch creates a search index for the collection of text documents repre-
senting the dataset.

After preprocessing, a user can load the dataset into the EpiExplorer interface and imme-
diately start exploring it. At every step, EpiExplorer presents the user with visualizations
that summarize different aspects of the dataset, as well as provide intuitive interface for
follow-up steps, such as alternative visualizations and refinements. The power of EpiEx-
plorer is the speed and ease with which the user can request and receive different visualiza-
tions and to refine the initial set of regions based on different filtering criteria. And despite
our extensive reliance on text search for the above, the user never has to formulate any
textual search phrases – they are dynamically constructed based on the user interaction
with EpiExplorer’s graphical frontend.
EpiExplorer is based on four main concepts:

• Mapping of biological data into text format. The genomic region – epigenetic an-
notation is transformed into a document – word format, suitable for indexing and
searching with efficient text-search algorithms. In order to utilize powerful text search
operations for genomic analyses, we developed an encoding scheme that translates
heterogeneous genome and epigenome datasets into a semi-structured text format.
For that purpose, we designed a custom “dictionary” of keywords representing epi-
genetic properties; for example the keyword ‘overlap:CGI’ is present in documents
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corresponding to regions that overlap with CpG islands. Moreover, keywords in Epi-
Explorer are structured hierarchically, which affords prefix search at various levels
of granularity. For example, the term overlap:histones:H3K4me3 selects all regions
that overlap with an H3K4me3 peak in any tissue, while the more specific term
overlap:histones:H3K4me3:H1hESC selects only those regions that overlap with an
H3K4me3 peak in ES cells. Furthermore, we can perform auto-completion queries
such as overlap:histones:H3K4me3:* that returns the number of regions that overlap
with an H3K4me3 peak separately for each tissue. EpiExplorer also encodes various
numeric scores (such as overlap ratios and DNA methylation levels) in a manner
suitable for prefix (text) search.

• Faceted visualizations. EpiExplorer utilizes autocompletion queries supported by
CompleteSearch to offer faceting visualizations on biological data. Faceting in web
commerce serves multiple purpose. It offers easier navigation to specific products, but
it also advertises and indirectly familiarizes online shoppers with different aspects of
a product catalog. We transfer these concepts to biological data analysis by offering
easy dataset refinements and intuitive visualizations, while advertising multiple other
aspects of the datasets that are not subject to the current analysis. Overall, the
use of the CompleteSearch engine for semi-structured text search confers a level of
flexibility, efficiency and scalability that would not be easy to achieve with a simple
text-tagging approach or with a relational database management system.

• The real-time responsiveness of the interactive user interface. Running an analysis
with EpiExplorer means continuous interaction with the tool via its user interface.
Through the user interface, the user can perform dynamic refinements and request
custom visualizations and complex data views. All actions take place in real-time,
enabling the user to focus on their dataset and not on the specifics of the tool.

• Scalable software implementation. EpiExplorer employs a scalable software infras-
tructure that allows for the analysis of thousands of custom datasets without the
need of large-scale computational resources.

3.2.1. Functionalities of the EpiExplorer software server

In this section, we discuss the main functionalities of the EpiExplorer web service.
Dynamic refinements. EpiExplorer facilitates the refinement of a set of regions if pro-

vided a property the regions should or should not have. For example, if the current set
of regions is ’gene promoters’, the user can easily select only those gene promoters that
overlap with ’CpG islands’ to investigate the epigenetic properties associated with gene
promoters and CpG islands. As a target for such refinements, the user can choose from
hundreds of categorical and numerical properties (see Appendix A). When refining by a
categorical property, the user is presented with a list of the possible values from which to
select. When refining on numerical properties, the users is presented with visual sliders
that enable to specify ranges of values that interest them. For example, when exploring
the default dataset ’CpG islands’, the lengths of the islands range from 200 basepairs to
several thousand basepairs. The user can easily refine the dataset to only islands with
lengths of at least 700bp, namely the longer (and assumed stronger) CpG islands.
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Interactive browsing of the properties of current region set via detailed faceted informa-
tion. One of the most prominent and frequently used features of EpiExplorer is the quick
overview in the form of a column chart of the properties of a dynamic set of regions (see
Figure 3.19 as an example). Queries like ‘how many regions from a specific set overlap with
a certain genetic or epigenetic annotation’ are highly common in bioinformatic analyses
and bioinformatic tools provide various approaches to answering them. Due to the appro-
priate data indexing, EpiExplorer is able to answer hundreds of such questions instantly.
Via this functionality, the user can select a set of properties of interest and quickly get an
overview on the profile of her set of regions with respect to these properties. For example,
the user can find out what percentage of the regions overlap with CpG islands, with gene
promoters, with several H3K4me3 and H3K27me3 histone modifications, with enhancers,
with insulators, with repeats by directly from looking at the summary plot. Then with
a single click she can follow up by inspecting the overlap with H3K4me3 in all available
tissues. Finally, the exploratory power of EpiExplorer comes from the combination of dy-
namic refinements and instant visualization. Following dynamic refinement, EpiExplorer
instantly updates the summary of properties for the new regions subset, thus enabling
the user to explore practically any describable subset of the dataset, while progressively
gaining insights into the biological makeup of the targeted regions.

Custom dataset upload. For each of the genome assemblies that EpiExplorer supports,
it provides five standard, precomputed and ready-to-use datasets: CpG islands, gene pro-
moters, gene transcription start sites, enhancers and tiling regions. These datasets serve a
double purpose: to easily demonstrate to new users how EpiExplorer works and to easily
check and confirm known and accepted biological results, for example that CpG islands
are often overlapping with gene promoters, thus validating the EpiExplorer preprocessing.
However, these precomputed datasets are mostly for introductory purposes. The interest
of users lies mainly in exploring the properties of novel sets of regions. Users can upload
their datasets to EpiExplorer and they are automatically annotated, indexed and made
ready for investigation. The combination of instant browsing and dynamic refinements on
custom datasets makes EpiExplorer useful to a wide range of biologists and bioinformati-
cians.

Comparative analysis. As the user investigates the properties of a set of regions, inter-
esting biological observations (hypotheses) often arise. For example, a peak of a H3K4me3
histone modification occurring within a large percentage of the regions can either carry
biological relevance or is expected by chance given the distribution of the peaks across the
genome. In order to offer a rough estimate of the relevance of the association, EpiExplorer
provides with a basic comparison to a randomized control set, which is automatically gen-
erated when custom datasets are uploaded into EpiExplorer. Randomized control sets are
generated simply by reshuffling the genomic position of all regions in the dataset, in a pro-
cedure inspired by the popular permutation tests. If the user has a control set that suits
the purpose of the analysis better, then that set can be provided to EpiExplorer as a refer-
ence set. Any analysis steps that are performed on the active set of regions (refinements),
can either be simultaneously applied to the control set as well (dynamic comparison), or
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the control set can remain unchanged (static comparison). EpiExplorer generates only one
control set, which is not sufficient for running a proper permutation test and assessing sta-
tistical significance. More control sets would be necessary for variance estimation, however
the computational effort might be too large and may lead to slowing down of the explo-
ration of the data. Speed is one of the most important requirements of our web service,
whereas statistical inference is not a priority. Instead, we facilitate direct export from Epi-
Explorer to external resources specialized in statistical inference such as EpiGRAPH (see
Chapter 4) and the Genomic HyperBrowser (as illustrated in the corresponding tutorial on
the supplementary website (EpiExplorer: supplementary information, 2012)). Despite its
limitation, the comparison with a control set gives a fast visual intuition of the strength of
the association between genomic attributes, association which has a high chance of being
statistically significant.

Flexible disjunctive(OR) refinements. Successive refinements with EpiExplorer correspond
to an conjunctive (AND) query. For example, if from a set of regions, the regions with prop-
erty P are selected first and then from those only the regions with property R are selected,
then all regions in the resulting set will have both the properties P and R. Combining of
search terms with the AND operator is considered standard for search engines and is eas-
ily addressed algorithmically, whereas disjunctive (OR) queries are not always supported.
The CompleteSearch engine supports OR queries. This feature extends the diverse filtering
options for performing complex analyses. For example, the query dnameth:ES:ratio:00–
dnameth:ES:ratio:33 | dnameth:ES:ratio:66–dnameth:ES:ratio:99 selects all regions that
have a methylation score between 0 and 0.33 or between 0.66 and 1. As methylation
score ranges from 0 and 1, the filter above identifies only the strongly unmethylated and
the strongly methylated regions in the process disregarding the regions with intermediate
methylation.

Sharing results. We believe that reproducibility of bioinformatic analyses is extremely
important, considering that the results they deliver are often tested in clinics and require
large resources. EpiExplorer adheres to this requirement (Gentleman and Lang, 2004) by
providing several ways of documenting and sharing analyses. Each user-uploaded region
set is assigned a unique identifier that also serves as a password for accessing this dataset.
Sharing this identifier with other researchers enables them to analyze the same dataset
in EpiExplorer without any need for copying or transferring datasets. Furthermore, at
any point in an EpiExplorer analysis, an identifying URL can be obtained to dynamically
recreate the analysis and to enable the user to follow up on the results without affecting the
original analysis snapshot. Because all steps of an EpiExplorer analysis are documented in
the control menu, the snapshot functionality ensures that EpiExplorer analyses are read-
ily reproducible (see tutorials on the supplementary website (EpiExplorer: supplementary
information, 2012)). EpiExplorer also supports the export of its visualizations, of any
region set as a downloadable BED file, as custom tracks in the UCSC Genome Browser
and Ensembl, and the transfer into Galaxy and Galaxy-powered tools such as the Genomic
HyperBrowser for further analysis; it also provides lists of gene identifiers for export to
gene set tools such as DAVID and Gene Set Enrichment Analysis (GSEA).
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Data privacy. Every custom dataset, refinement and visualization is accessible only to
its creator (unless explicitly shared with other researchers) and protected by unique iden-
tifiers functioning as passwords, thus ensuring the privacy of data and analyses. When a
user uploads a dataset, the data is sent directly to an EpiExplorer server behind a firewall.
No part of the data is ever stored on the EpiExplorer web server and thus is never directly
accessible from the web. After preprocessing of the custom dataset the user is provided
a unique identifier. The identifiers are formed by the dataset name provided by the user
coupled with a randomly generated string that makes it impossible to access the data of
other users by chance. The only way to access a dataset is via its identifier, and initially
the identifier is known only by the person uploading the dataset. We also provide a man-
ual service to fully erase all user data on the EpiExplorer servers. For the purpose, the
user needs to send us an email, from the email associated with the dataset, specifying the
dataset identifier and explicitly requesting the deletion of the dataset.

3.3. Methods

In the following section, we present the details of the EpiExplorer method and software.
We start by introducing the textual encoding scheme EpiExplorer uses to store and effi-
ciently query epigenetic and genetic properties. Then, we discuss how custom datasets are
preprocessed. We continue by presenting the software architecture and implementation
details followed by an overview of the common workflows when using EpiExplorer. We
conclude with a detailed presentation of the user interface elements as well as descriptions
of the main operations.

3.3.1. Translating biological concepts to text

EpiExplorer internally represents each genomic region as a text file that encodes region-
specific annotations in a semi-structured text format. For binary and categorical attributes
(such as a region’s association with an H3K4me1 peak or a 5hmC hotspot), the key concept
is overlap. Two genomic regions are treated as overlapping if they have at least one base
pair in common, and it is often plausible to assume that region sets that overlap more
frequently than expected by chance are involved in similar biological processes (for exam-
ple, co-binding of functionally related transcription factors). EpiExplorer precomputes two
additional overlap concepts: overlap10% and overlap50%. A dataset region is considered
to overlap50% with an annotation if at least 50% of the region is covered by regions from
the annotation. To effectively handle such data in the context of text search, we define the
prefix overlap: followed by an annotation identifier. For example, the word overlap:genes
indicates that the current region overlaps with the body of a gene, overlap:conserved en-
codes the overlap with a conserved element, and overlap:CGI denotes overlap with a CpG
island. Using CompleteSearch’s prefix search functionality, it we can efficiently retrieve
all completions of a given prefix. For example, the query overlap:* retrieves all possible
completions of the prefix overlap:, reporting the number of regions for each completion
(see Figure 3.10 for an example). In this way, overlap information for a large number of
genome and epigenome attributes can be obtained via a single text search query that is
almost always answered within seconds (see Table 3.2 from Section 3.4.5 for details). Fur-
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thermore, the general overlap query overlap:* can be refined according to the hierarchical
structure of the encoding scheme. For example, the query overlap:histones:H3K4me3:*
retrieves an overlap summary of the H3K4me3 mark for all cell types included in EpiEx-
plorer, whereas overlap:histones:H3K4me3:ES only obtains the regions that overlap with
an H3K4me3 peak in ES cells.

Textual encoding of binary and categorical genomic attributes

In order to utilize text search algorithms for interactive exploration of large biological
datasets, we developed an encoding scheme that translates heterogeneous genome and
epigenome datasets into a semi-structured text format. Each genomic region (e.g. CpG
island or 5hmC hotspot) is represented by a text document containing keywords for all its
annotation features (see Section 3.3.2). This textual encoding utilizes a prefix format that
readily supports binary and categorical attributes (e.g. as overlap with H3K4me1 peaks
or association with a Gene Ontology term) as well as numerical attributes (e.g. region
length or 5hmC hotspot significance). The resulting collection of text documents — each
representing a genomic region with extensive genome and epigenome annotations — can
be searched in a highly efficient manner using the CompleteSearch engine (Bast and We-
ber, 2007). CompleteSearch implements an index structure that was specifically designed
for feature-rich search in semi-structured text (Bast and Weber, 2006). Through creative
use of prefix indexing, CompleteSearch provides support for a number of advanced fea-
tures such as query autocompletion, semi-structured text search and database-style JOIN
operations (Bast and Weber, 2007). EpiExplorer makes use of these features in order to
implement complex operations in a highly efficient manner. For example, we combine the
autocompletion feature with a hierarchical encoding scheme for genomic annotations in
order to produce each of EpiExplorer’s diagram types with a single query to the Com-
pleteSearch engine. Similarly, we utilize JOIN operations to perform complex refinement
operations that combine region-based filtering with gene-based filtering. The empirical
performance of EpiExplorer is summarized in Table 3.2 in Section 3.4.4. For example,
more than 99% of approximately 4,000 queries that have been run on the user-uploaded
5hmC hotspot dataset consisting of 82, 221 genomic regions completed in less than two
seconds. EpiExplorer runs a dedicated instance of the CompleteSearch engine for each
set of genomic regions (see Figure 3.6), which makes the software highly parallel and scal-
able to very large numbers of user-defined region sets. Figures 3.7 to 3.10 illustrate the
typical workflow of an EpiExplorer analysis. Once a user-defined region set has been up-
loaded, the middleware annotates each region with data from EpiExplorer’s genome and
epigenome annotation database, encodes these annotations as structured text and creates
a dedicated CompleteSearch instance supporting search on this region set. For every anal-
ysis that is requested via the user interface, EpiExplorer’s middleware constructs a text
search query that is then sent to the corresponding CompleteSearch instance. The text
search engine runs the query against its precalculated index and returns a set of matching
regions. The middleware decodes the textual format and passes the results on to the user
interface. Although EpiExplorer is internally implemented as a text search engine for ge-
nomic datasets, the text search is not visible by the user. Search results are automatically
converted into visual representations, which have been designed to facilitate the discovery
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of relevant biological associations and the identification of strong candidates for follow-up
research. EpiExplorer also provides a straightforward way for users to keep track of their
results and to share specific datasets or analyses with their collaborators. When a custom
dataset is uploaded, EpiExplorer assigns to it a unique identifier URL, which also serves
as a password for accessing this dataset. Sharing this identifier URL with collaborators
allows them access to the dataset. Analogously, an identifier URL can be obtained at
any point during an EpiExplorer analysis, providing a permanent snapshot of the dataset,
analysis and filtering steps that led to the result. When the snapshot-identifying URL
is shared with other researchers, it enables them not only to reproduce the analysis but
also to edit, customize and refine it independently of the original snapshot. These features
make EpiExplorer well-suited for data sharing and reproducible research while providing
strong data protection for user-specific analyses and datasets.

Textual encoding of numeric genomic attributes

Many genomic attributes are numeric - for example, the CpG content or the distance to a
neighboring gene. To be able to perform efficient text search on these attributes, we limit
their numerical precision (number of digits) to a fixed number and use a binning scheme
when necessary. We can then incorporate numeric score values into the textual encoding
scheme by creating words such as dnaseq:freq:CG:010, which indicates that a genomic re-
gion exhibits a CpG frequency of 0.010 (1.0%). This textual encoding enables EpiExplorer
to retrieve the distribution of CpG frequencies in a set of regions using the prefix query
dnaseq:freq:CG:*, which facilitates efficient data collection and plotting of histograms. Us-
ing CompleteSearch’s range query feature, it is also straightforward to obtain all genomic
regions with numeric attributes that fall into a certain range. For example, the query
dnaseq:freq:CG:010–dnaseq:freq:CG:050 retrieves only those regions that have a CpG fre-
quency of at least 1% and not more than 5%. Beyond region score attributes, additional
numeric attributes supported by EpiExplorer include overlap ratios for filtering on the per-
cent overlap between genomic regions as well as distances to neighboring genomic elements,
which enable filtering steps such as ’identify all regions within 20 kb from the nearest gene’.
Binary, categorical and numeric queries can be combined and iteratively refined in arbi-
trary ways. For example, the query overlap:CGI dnaseq:freq:CG:010–dnaseq:freq:CG:050
retrieves all regions that overlap with CpG islands and exhibit a CpG frequency in the
range of 1% to 5%.

Integration of gene-centric textual annotations

In addition to binary, categorical and numeric attributes, EpiExplorer also incorporates
textual information that is associated with genes, which includes Gene Ontology terms
and OMIM phenotypes. As these annotations are already in text format, they can be used
directly as keywords in the text search index. However, because these textual annotations
can be lengthy and often apply to multiple genomic regions overlapping with the same gene,
it is not ideal to store them directly in the description of each region. Instead, EpiExplorer
maintains genes and their textual annotations as separate documents and stores only the
gene identifier in the annotation of every overlapping genomic region. For example, if a
region overlaps with the BRCA2 gene, EpiExplorer will add the word gene:BRCA2 to



3.3 Methods 39

the document that represents the region, while the lengthy textual annotations of BRCA2
are stored in a separate document named gene:BRCA2. To answer text search queries
that include these gene annotations, EpiExplorer makes use of the database JOIN feature
that is supported by CompleteSearch. In this way, the results from a region-based search
and the results from a gene-based search can be combined in a single query, and only the
matches are returned for visualization.

3.3.2. Precomputing epigenomic and genomic properties of genomic regions

The main steps that prepare a dataset for analysis with EpiExplorer are:

1. the user uploads a set of regions,

2. EpiExplorer annotates each genomic region with properties from its database,

3. EpiExplorer creates a data index of the dataset regions and their properties and
provides the user with the unique identifier of the dataset.

First, a dataset in a standard BED format is sent to EpiExplorer for processing (Fig-
ure 3.1). EpiExplorer requires that every region is specified by its chromosome and the
chromosome start and end coordinates. Additionally, EpiExplorer offers to utilize strand
information if such is available. Moreover, the user may provide an additional score col-
umn, which contains some quantitative indicator relevant for the analysis, that can be
used for interactive refining with EpiExplorer. For example, the BED file given by the
user may contain a column with a score for each region, which indicates the strength of
the property. The score is be encoded into EpiGRAPH and indexed, thereby the user is be
able to easily refine the regions to subsets of certain strength, or for example to compare
strong and weak regions.

Figure 3.1.: Genomic region files are uploaded to EpiExplorer in the UCSC Genome
Browser’s BED format (UCSC Genome Browser BED format documentation,
2011)], with mandatory columns specifying the chromosome, start and end
positions of each region

As a next step, every genomic region is annotated with multiple properties (Figure 3.2),
such as length, frequency of DNA patterns, overlap with CGI, distance to nearest CGI and
many, many others. The EpiExplorer backend uses the BEDTools (Quinlan and Hall, 2010)
software to compute some of the properties such as overlap percentages and distances to
the nearest genomic region from an annotation. By default, EpiExplorer computes all
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Figure 3.2.: The EpiExplorer middleware annotates the uploaded regions with qualitative
and quantitative attributes such as overlap with CpG islands and distance to
the nearest CpG island

available properties of the custom datasets, but it also offers the possibility of choosing a
custom subset of properties, thus significantly speeding up the preprocessing time.

Once the relevant qualitative and quantitative attributes of each region are computed,
EpiExplorer converts these data into a collection of text documents (Figure 3.3). This
is done by creating a separate text document corresponding to each genomic region and
adding to it the words that correspond to the computed properties for this region. Pre-
viously in this section, we discussed the details of the textual encoding of the various
attributes (see Section 3.3.1).

Figure 3.3.: A text document is created for every genomic region, and its annotations are
encoded in a semi-structured text format

Next, the CompleteSearch indexing scheme receives the collection of documents and
starts creating an efficient HYB index. For that purpose, first two sorted lists are created,
the list of all occurring words sorted alphabetically and the list of all documents sorted by
document ID (Figure 3.4).

Finally, CompleteSearch splits the sorted list of words into ranges. Each range is stored
efficiently into a single memory block. The advantage of the memory blocks is that it
enables very efficient prefix search within a block. Each blocks stores in a sorted manner
all pairs (wordId, documentId) for which the wordId is within the word range corresponding
to the block and documentId is a document in which the word wordId appears (Figure 3.5).
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Figure 3.4.: To enable alphanumeric search for numeric attributes, leading zeros are added
until all numbers have the same number of digits. Two sorted lists are cre-
ated, one containing document identifiers and the other containing keyword
identifiers

Figure 3.5.: CompleteSearch creates a text index connecting sorted word identifier ranges
with sorted document-word pairs, which handles text search queries in a highly
efficient fashion .

Genomic and epigenomic annotations of region sets

EpiExplorer makes no conceptual distinction between default and user-uploaded region
sets. Every feature that is available for default region sets can also be used on custom data.
Upon upload, new region sets are automatically annotated with a broad range of genome
and epigenome attributes that are maintained in EpiExplorer’s annotation database (see
Appendix A). The user can also select custom region sets as annotations for other user-
uploaded region sets. The current version of EpiExplorer provides full support for the
human genome assemblies hg18/NCBI36 and hg19/GRCh37, as well as for the mouse
genome assembly mm9/NCBIM37. By default, EpiExplorer annotates every region with
its chromosomal position, region length, strand and score attributes (if included in the up-
loaded BED file), and with annotations of ten different types: DNA sequence composition,
histone modifications, transcription factor binding sites, DNaseI hypersensitive sites, DNA
methylation, chromatin state segmentation, CpG islands, evolutionary conservation, repeat
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elements and gene-associated attributes. These annotations are derived from the following
sources: (i) DNA sequence composition attributes are calculated directly from the ge-
nomic DNA sequence, which was downloaded from the UCSC Genome Browser (Karolchik
et al., 2008). (ii) Histone modification data have been generated as part of the ENCODE
project (Consortium, 2004) and were obtained from the UCSC Genome Browser (Raney
et al., 2011). We used preprocessed peak regions for 11 histone modifications and chro-
matin marks (H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me1, H3K27ac, H3K27me3,
H3K36me3, H4K20me1, CTCF and Pol2) in nine cell lines (GM12878, H1hESC, HepG2,
HMEC, HSMM, HUVEC, K562, NHEK and NHLF; described in more detail in the EN-
CODE documentation (ENCODE Common Cell Types, 2013). (iii) Experimental data
for transcription factor binding have also been generated as part of the ENCODE project
and were obtained from the UCSC Genome Browser. We used preprocessed peaks for 33
transcription factors (AP2alpha, AP2gamma, ATF3, BDP1, BRF1, BRF2, cFos, cJun,
cMyc, E2F1, E2F4, E2F6, GATA1, GATA2, GTF2B, HELFe, junD, MAX, NFE2, NFKB,
Pol2, Pol3, Rad21, RPC155, SETDB1, SIRT6, TFIIIC110, TR4, XRCC4, YY1, ZNF263,
ZNF274 and ZZZ3) in at least one cell line. (iv) DNA methylation data have been gen-
erated and preprocessed in the context of the Roadmap Epigenomics initiative (Human
Epigenome Atlas, 2013) as described previously (Bock et al., 2010a; Gu et al., 2010). They
include ten tissue types: ES cells, fetal brain, fetal heart, fetal kidney, fetal lung, fibrob-
lasts, hematopoietic progenitor cells, skeletal muscle, smooth muscle and stomach mucosa.
(v) Chromatin segmentation data were obtained from a recent paper describing a hid-
den Markov model segmentation of histone modification data from the ENCODE project
(Ernst et al., 2011). (vi) DNaseI hypersensitive sites were also obtained from the ENCODE
project. (vii) CpG island annotations were downloaded from the UCSC Genome Browser
(’CpG islands (specific)’) and from the CgiHunter website (’CpG islands (sensitive)’) (Cgi-
Hunter, 2013). (viii) Evolutionary conservation data were obtained from the phastCons
annotation track of the UCSC Genome Browser (Siepel et al., 2005). (ix) Repeat element
annotations were obtained from the RepeatMasker annotation track in the UCSC Genome
Browser (Smit et al., 2010). (x) Gene-associated attributes were retrieved via Ensembl
Biomart (Kasprzyk et al., 2004) and include the gene name, textual description as well as
annotations from the Gene Ontology (Ashburner et al., 2000) and OMIM (Hamosh et al.,
2005) databases.

3.3.3. Software architecture

EpiExplorer is implemented according to a three-tier architecture scheme (Figure 3.6).
The web-based user interface communicates with EpiExplorer’s middleware, which in turn
is supported by an annotation database and dynamically loaded text search engines in
the backend. The web-based interface enables users to explore, upload and refine ge-
nomic region datasets. The interface is highly dynamic through the combination of server-
side scripting (in PHP) and client-side scripting (in JavaScript). EpiExplorer utilizes the
jQuery library (jQuery, 2013) for implementing flexible client-side interface functionality
and Google Chart Tools (Google Chart Tools, 2013) for generating interactive visualiza-
tions of the data. (The charts used by EpiExplorer do not exchange any data with Google
or other servers and therefore do not compromise data privacy in any way.) All visual-
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Figure 3.6.: Schematic outline of EpiExplorer’s software architecture, consisting of a web-
based user interface, a query-processing and annotation-mapping middleware,
and a text-search backend. The user interface is a dynamic web-based fron-
tend implemented in PHP and JavaScript. The EpiExplorer middleware layer
is implemented in the Python programming language and has two separate
components: the query processing and annotation mapping. The backend of
EpiExplorer consists of an annotation database implemented using SQLite and
a collection of CompleteSearch server instances (one for each region set) that
respond to text search queries sent by the middleware.

izations are dynamically generated based on region set data obtained via an XML-RPC
connection with the middleware. The EpiExplorer middleware layer is implemented in
the Python programming language and has two separate components. First, the annota-
tion mapping module uses BEDTools (Quinlan and Hall, 2010) in combination with an
annotation database (in the backend) to annotate user-uploaded datasets with genome
and epigenome data. These annotations are translated into a semi-structured text format,
and then used by the CompleteSearch index builder (Bast and Weber, 2007) to create a
a text index and a CompleteSearch instance corresponding to the dataset. Second, the
middleware’s query processing module receives analysis requests from the web frontend,
translates them into text search queries and polls the CompleteSearch instance that hosts
the corresponding genomic region set. The CompleteSearch engine returns the results to
the middleware, which decodes the text format and sends the results back to the user
interface for visualization. The process also handles the active CompleteSearch instances.
The backend of EpiExplorer consists of an annotation database implemented using SQLite
and a collection of CompleteSearch server instances (one for each region set) that respond
to text search queries sent by the middleware. The backend can be parallelized across mul-
tiple servers to increase performance. Unused CompleteSearch instances are automatically
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suspended to disk by the middleware query server, from where they can be reactivated
with minimal delay.

Scalability of the EpiExplorer software implementation as user load or computational
demand increases

To be able to handle the wave of epigenome data produced by international consortia,
EpiExplorer was designed to scale to high user load and to be readily extensible with
additional datasets. Because of the parallel nature of the computation-heavy backend,
performance bottlenecks resulting from increasing user load can be resolved simply by
adding more compute nodes for the backend. Furthermore, due to dynamic loading of
backend instances, only parts of the indices of those region sets that are actively used need
to be kept in memory, while additional user datasets are quickly reloaded from hard disk
when a user accesses them. In its current version, EpiExplorer already handles hundreds of
genome and epigenome annotations (Appendix A) and hundreds of custom datasets, even
though we are not currently utilizing all the parallelization options that the EpiExplorer
architecture provides. For example, during its first year as a public service, EpiExplorer
has been working on a single machine that handles the preprocessing and user requests to
thousands of custom datasets. As the demand increases these can be parallelized easily on
multiple compute nodes.

Extensibility of the EpiExplorer concept by adding new annotation datasets, genome
assemblies, novel data and analysis types

Incorporating new datasets into EpiExplorer is straightforward and can be done by any
user, provided that the data are available in (or can be converted to) one of several sup-
ported data types, namely genomic regions with or without a quantitative score and op-
tionally including additional annotations such as strand information. For example, adding
a new histone modification requires just a few mouse clicks in the frontend and less than
an hour of computation time for the middleware and backend. Adding support for new
genome assemblies is also relatively straightforward though not fully automated, as it re-
quires minor modifications of the frontend and middleware. We demonstrated this as we
integrated in EpiExplorer the TFBS and histone data from mouse ENCODE data (Mouse
ENCODE Consortium et al., 2012) within a week of its publication2. Finally, the tex-
tual encoding behind EpiExplorer is flexible enough to incorporate conceptually new data
types (for example, three-dimensional genomic interaction maps that link two or more ge-
nomic regions together), which would require modifications in the middleware’s annotation
mapping component and the implementation of new diagram types (for example, Circos
plots (Krzywinski et al., 2009)) in the frontend. The source code of EpiExplorer is freely
available for download from the support menu on EpiExplorer’s supplementary website
(EpiExplorer: supplementary information, 2012).

2Together with Felipe Albrecht
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3.3.4. Computation workflow when processing a typical EpiExplorer query

For every data-analysis action that the user performs via the user interface, EpiExplorer’s
middleware constructs a text search query that is sent to the corresponding CompleteSearch
instance. The text search engine runs the query against its index and returns a set of
matching regions. The middleware decodes the textual format and passes the results on
to the user interface, which visualizes the data in ways that facilitate intuitive exploration
of genomic datasets. This computational approach makes it possible to solve complex
non-textual analysis problems using single queries to a text search index, and thereby it
enables the real-time exploration of large genomic datasets.

Figure 3.7.: When a user uploads a genomic region set (here: chromosome, start and end
position for ten regions named R1 to R10), the middleware annotates this
region set with genome and epigenome data, encodes the results in a semi-
structured text format, and launches a CompleteSearch server instance to host
the corresponding search index.

Figure 3.8 shows how EpiExplorer processes the request to retrieve all regions that
have the property that they overlap with a CpG island. In this example, during the
preprocessing phase every region that overlaps with a CpG island is marked with the
artificial word overlap:CGI. Hence, when the user indicates his request the user interface
sends the query overlap:CGI that is matched by CompleteSearch against the index of
all regions. CompleteSearch then retrieves the number of regions that contain the word
overlap:CGI and if indicated in the query returns the list of the regions.
Figure 3.9 shows how EpiExplorer processes requests with more than one term. In

this case, the user request all regions that both overlap with a CpG island and also co-
localize with an H3K4me3 peak. Again, there are artificial words that correspond to both
properties. As a consequence, the query that retrieves the regions with the requested
properties combines the two terms: overlap:CGI overlap:H3K4me3. The subset of regions
that contain both properties are sent back to the user interface and visualized accordingly.
Finally, Figure 3.10 demonstrates one of the most innovative features of EpiExplorer.

With a single prefix query, detailed faceted information for a region set is retrieved. In
the examples above, we already pointed out that the textual representation of the regions
contains multiple words like: overlap:CGI, overlap:H3K4me3, overlap:exons etc. The com-
mon characteristic of these words is that all of them are overlap properties, being encoded
with the same prefix –"overlap:". Thus if CompleteSearch is presented with the prefix
query "overlap:* ", it runs all possible completions of the prefix. For each completion, the
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Figure 3.8.: To identify which regions overlap with a CpG island, a simple query over-
lap:CGI is sent to the backend, and the backend returns an XML file with the
matching regions.

Figure 3.9.: To identify regions that overlap with CpG islands as well as with H3K4me3
peaks, an AND search is performed (query: overlap:CGI overlap:H3K4me3),
and the backend returns only regions that are annotated with both keywords.

exact number of documents that contains the term is returned, which is the quantitative
information that EpiExplorer uses for visualization. Thus, the result of the prefix query
is an informative bar chart that summarizes the genomic and epigenomic context of the
inspected set of regions.
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Figure 3.10.: To efficiently generate percent overlap diagrams, a prefix query overlap:* is
sent to the backend, which identifies all possible completions of the prefix and
returns the total number of regions matching each query completion.

3.3.5. EpiExplorer user interface and user experience

The EpiExplorer backend is complemented by a visual and intuitive frontend. In this
section, we discuss the EpiExplorer user interface elements and how they provide dynamic
and informative visualizations.

Basic elements of the user interface

When starting to work with EpiExplorer, the user needs to select a dataset to explore. The
interface of EpiExplorer shows a screen that facilitates data input. Figure 3.11 presents
the dataset selection view.

Figure 3.11.: Selecting a dataset view of EpiExplorer



48 3 Live exploration and global analysis of large epigenomic datasets using
EpiExplorer

The right-hand side of the screen is split into two sections, the top part contains a
visualization and the bottom part contains explanatory text about the dataset and about
the visualization. On the left-hand side of the screen, EpiExplorer shows the currently
available datasets as well as the two buttons that can be used to introduce new datasets,
the ‘Reload a dataset’ button in the top left and ‘Upload a new custom dataset’ next to
it. Below them, the user sees the custom datasets that have been already loaded and
below them the default datasets provided by EpiExplorer. For every dataset, we show the
dataset name and the number of regions. To the left of the dataset name there are two
buttons. For a custom dataset, the user can remove it from his list from there. The other
button activates the comparison mode, that is explained in more details later (see Section
3.3.5). Clicking on each dataset name or on the button to its right selects the dataset
for exploration and shows the exploration mode as shown in Figure 3.12. In exploration

Figure 3.12.: Exploring a dataset view in EpiExplorer

mode, the user interface is split into three main parts. The top of the right-hand side shows
visualizations and their settings and the bottom of the right-hand side shows information
about the visualization, annotations used to compute it and details about the methods (if
available). The left part of the screen displays possible actions. On top is the management
menu, below are the current dataset and all applied refinements. Further below them is a
listing of the possible annotations and the different visualizations and refinements that can
be performed for each. When a user selects a visualization (for example, in Figure 3.12 the
regions lengths are selected), then the right-hand side of the screen updates automatically
with the relevant visualization and additional information. Also on the left-hand, in the
yellow region a control appears that enables the user to refine the current selection. In this
example, the user can use the controls to select a custom range of regions lengths; as the
control is moved the information just above it changes dynamically to inform on how many
regions (and what percentage) of the current selection have values in the selected range.
If the user selects the "Filter to this selection" button, the current selection is instantly
refined, the visualization on the left is updated to reflect the new subset of regions; any
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analysis performed from this point on will only be applied on this selection. In Figure
3.13, we show the selection that results from applying to all CpG islands two refinements:
overlap with a H3K4me3 peak in H1hESC tissue and overlap with a gene promoter regions.
The listing indicates that there are 13, 106 such regions identified. The controls on the right
allow to remove a single refinement, to add an OR clause to a refinement or to completely
reset the dataset selection.

Figure 3.13.: Refining a selection of an EpiExplorer dataset

Finally, the management menu (see top left of Figure 3.12) contains quick links to some of
the popular features. The first button resets all dataset refinements and puts the program
back into dataset selection mode. The second button activates the comparison mode. The
third button creates a URL link to the full state of the current analysis, including dataset
selection, added refinements and chosen visualization. This functionality enables users to
easily store an exact analysis state. The next four buttons allow the direct export of the
current selection to four popular tools: UCSC Genome Browser, Ensembl, Galaxy and the
Genomic HyperBrowser. The last button, moves the program into the export mode from
which the user can export the full list of genomic regions in the current selection
EpiExplorer packs a lot of functionalities that allow to dynamically refine datasets,

change visualizations and reset selection with a single click. This can be overwhelming for
some first-time users. For that purpose, we introduced dynamic notifications that inform
the user whenever he performs a specific action for a first time. The notifications explain
the consequences of the action and the reason why it was taken. When the user feels
confident in his understanding of EpiExplorer, he can easily switch off these notifications.

EpiExplorer visualizes analysis results using six types of dynamically generated
diagrams

The bar chart (see Figure 3.28 for an example) reports the percentage overlap of a selected
region set with genomic regions of different types. Using the EpiExplorer control menu, it
is straightforward to restrict a region set to those regions that overlap (or do not overlap)
with another type of genomic regions shown in this diagram.

The area chart (see Figure 3.32 for an example) is essentially a histogram, which sum-
marizes the distribution of numeric attributes within a relatively narrow value range. The
control menu provides a dynamic slider that can be used to restrict the selection to a subset
of regions within a user-specified value range.

The pie chart (see Figure 3.34 for an example) is shown in addition to the area chart
to summarize the distribution of numeric attributes that may span a wide value range. In
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this case, clicking any segment of the pie chart opens a zoomed-in area chart specific for
the genomic regions that fall into the selected value range.

The neighborhood chart (see Figure 3.30 for an example) illustrates the distribution of
genome-wide maps — such as histone marks and transcription factor binding sites — in
the vicinity of the selected region set. Average levels of overlap are calculated over all
genomic regions in the set.

The bubble chart3(see Figure 3.20 for an example) plots the percentage of genomic re-
gions that overlap with a given annotation (y-axis) against the total genome coverage of
this type of annotation (x-axis). In this context, the genome coverage provides an indica-
tion of the expected overlap, highlighting annotations with substantially different overlap
percentages. When used in comparison mode, we utilize the potential of a bubble chart
to present any 3-dimensional data, by adding a dimension to represent the overlap of the
annotations with the control set.

The enrichment chart (see Figure 3.33 for an example) summarizes gene-centric tex-
tual information in the form of a table and a word cloud. In the word cloud, the font
size is scaled by the enrichment ratio, which is calculated relative to random expectation.
Clicking on any annotation term refines the search to include only those regions that are
associated with a gene carrying the corresponding annotation.

Common actions when using the EpiExplorer user interface

Uploading a custom dataset. In the previous sections, we discussed how a custom dataset
is preprocessed (see 3.3.2). In this section, we present the actions the user takes in order to
upload a custom dataset into EpiExplorer. We assume the user has a correctly formatted
BED file containing the list of genomic regions. Then the user needs to press the Upload
button.

An upload page is shown where the user fills in various information about the dataset,
such as dataset name, genome assembly, description (see Figure 3.14). He can addition-
ally specify optional details such as if EpiExplorer should take strand information from
the BED file into account and also what annotations EpiExplorer should use. By default,
EpiExplorer uses all annotations. Finally, the user is asked if he wants to provide an email
to use for notification. If the user chooses to provide an email, EpiExplorer automatically
sends an email as soon as the preprocessing finishes. The email contains the dataset iden-
tifier and a direct link that loads the dataset into the EpiExplorer. If the user does not
provide an email, once he finishes the upload he is provided a dialog window containing
the URL location of a dynamic web page that notifies the user of the status of his dataset
computation (see Figure 3.15. Before the dataset computation starts, EpiExplorer reports
how many computations are in the queue ahead of the requested dataset. Once the dataset
computation starts, the page is continuously updated with detailed information about the
stage of the computation. After the preprocessing is complete, the page is updated to

3Implemented by Felipe Albrecht
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Figure 3.14.: Uploading a custom dataset

contain the dataset identifier and a URL link that opens EpiExplorer with the custom
dataset already loaded.
Maintaining custom datasets. EpiExplorer users commonly process more than one cus-

Figure 3.15.: Dynamic status when preprocessing a custom dataset

tom dataset. These datasets can be loaded at different times and can be based on different
genome assemblies. The EpiExplorer user interface helps the user by storing at his local
computer the full list of his loaded datasets for each genome assembly. When the user
opens EpiExplorer the datasets are automatically loaded in the backend and displayed in
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the user interface. Similarly, when the user switches genome assemblies only the datasets
corresponding to the selected genome assembly are loaded and all others are hidden.

Sharing datasets and results. Sharing and saving results from EpiExplorer is key to the
usability of the software as was discussed in Section 3.2.1. EpiExplorer offers export op-
tions of two main types: dynamic and static. Dynamic exports aim to share either an
EpiExplorer dataset or an exploration state that is saved with the purpose to be shared
or explored later. The dynamic exports include dataset identifiers and analysis identifiers.
The static exports have a different purpose, namely to facilitate integration with other
tools. Static exports include exports of charts, region sets and gene-related lists.

The most commonly used export are dataset identifiers, which are discussed in multiple
places in this chapter. The dataset identifiers enable any user who has the dataset iden-
tifier to load the dataset in EpiExplorer and generate any visualization, add and remove
refinements and generally use all EpiExplorer features on it. To use a dataset identifier
provided by a colleague, the user need to press the ‘Reload’ button and enter the identifier
in the field that appears below.

Another type of dynamic export is saving a link to the current selection and visualiza-
tion. This facilitates users to save their current state for documentation purposes and
provides for sharing it with interested colleagues (as demonstrated by the supplementary
tutorials of EpiExplorer (EpiExplorer: supplementary information, 2012)). To obtain a
link to the current analysis, one needs to press the ‘Save as URL’ button below the main
logo. A link appears under the top menu. This dynamically-generated URL can thereafter
be used to reload the exact state of the current analysis.

The static exports include basic exporting and sharing of charts. Under most visualiza-
tions, the user can find the ‘To PNG’ button that immediately converts the visualization
to a PNG image and offers the user to download it. Additionally, most charts have a ‘Show
as table’ button below them that substitutes the visual chart with a table representing the
chart data. This table is easily exported to spreadsheet software (i.e. Microsoft Excel or
Google spreadsheets).

Other types of static exports refer to the current selection of regions. The easiest way
to reach the full list of export options is to press on the ‘List the regions’ element imme-
diately under the ‘Summary’ in the dataset view (see Figure 3.12). From there the user
can export the current selection to a BED file, generate a URL that contains the listing of
the regions, load it as custom track in the UCSC genome browser, load it with Ensembl,
export it to Galaxy and to the Genomic HyperBrowser.

Finally, the user can export the gene-related properties of the current selection: nearby
genes(within 5kb), the gene ontology terms and the OMIM terms associated with them. To
do so, in the ‘Gene and annotations’ component of the dataset view (see Figure 3.12) the
appropriate submenu must be selected. Next to the automatically generated table, there
are export options that include: exporting gene identifiers, exporting Ensembl identifiers,
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exporting gene symbols and exporting all GO terms associated with them.

Comparing two datasets. The comparison mode of EpiExplorer is used to explore the
properties of two datasets together (see Section 3.2.1). In comparison mode, the current
selection is the main dataset that is compared to a reference selection. There are several
ways to choose a reference dataset. At any point, when exploring a selection the compare
button can be chosen (see Figure 3.16). Immediately, the current dataset with all previ-

Figure 3.16.: The compare button (highlighted) activates the mode that allows direct com-
parison of two region selections

ous refinements is chosen as a reference dataset. Then, while the active dataset is being
subjected to refinements, all visualizations will include also the reference dataset. Another
way to select a reference dataset is to add it directly from the dataset selection screen (see
Figure 3.11) by choosing the button to the left of the dataset name. The interface lists
both the current selection as well as the reference dataset with all its refinements at all
times (see Figure 3.17).

By default, a reference dataset is static. This means that once selected, the reference

Figure 3.17.: At all times in comparison mode, the interface lists the current selection as
well as the full details of the reference dataset

will remain unchanged, independently of any refinements that are added to the current
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selection, removed from it or if the dataset of the current selection is changed altogether.
The static reference is the default option. For more flexibility, a dynamic reference mode
can be chosen. The dynamic mode synchronizes the active selection and the reference.
Any refinement added to the current selection is also added to the reference selection. For
example, the user wants to compare CpG islands located in gene promoters and compare
their epigenetic properties to CpG islands located at least 20kb from the nearest gene (as
in Figure 3.22). Imagine that as a next step, she wants to add to both region sets the
refinement that the CpG islands do not overlap with any repeats and compare these two
new region subsets. Using the dynamic reference mode (activated as in Figure 3.18), this
is possible by simply adding the "no repeats" refinement to the active selection and it is
automatically added to the reference. Also in dynamic mode, the user can remove any
refinement from the reference (these are not removed from the current selection). The user
may switch off the reference at any point by selecting the ‘X’ button on the right of the
reference.

Figure 3.18.: Select the unlock button to activate the dynamic reference mode

3.4. Applications of EpiExplorer

In what follows, we use EpiExplorer in five different studies. First, we validate the software
by presenting how one can rediscover known properties of CpG islands. Then, we explore
the properties of 5hmC (5-hydroxymenthylation), a novel epigenetic mark that may be
important for CpG demethylation. We follow this up by narrowing down a large set of
genomic locations to a strong candidate subset, useful for further experimental investiga-
tion. As a last biological study, we show that EpiExplorer can also be employed to analyze
disease-specific data. More specifically, we compare the properties of locations of recurrent
(consensus) breakpoints in several cancer tissue, to the properties of breakpoints, which
were not observed in multiple samples. Finally, we present an overview of the activity on
the EpiExplorer server during its first year as a public web service.

3.4.1. Rediscovering properties of CpG islands and application for discovery of
robust CpG island annotations

In this section4, we report on a validation of the EpiExplorer method by studying the
genome and epigenome characteristics of CpG islands, which is a relatively well-understood
topic (Deaton and Bird, 2011). As outlined in the text below and the step-by-step online
tutorial on the supplementary website (EpiExplorer: supplementary information, 2012),
EpiExplorer makes it easy to rediscover the distinctive epigenetic characteristics of CpG
islands, which have previously been studied using computational and experimental methods
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(Bock et al., 2007; Cohen et al., 2011; Birney et al., 2007; Weber et al., 2007). The entire
analysis can be performed in less than ten minutes without any bioinformatic training,
guided by EpiExplorer’s context-specific visualizations. The exact steps leading to all
results in this section are easy to verify using EpiExplorer, as described in a step-by-step
tutorial on the Supplementary Website (EpiExplorer: supplementary information, 2012).
CpG islands account for some of the most important regulatory regions in the human

genome (Deaton and Bird, 2011). These regions exhibit highly non-random epigenetic
characteristics: on the one hand, most CpG islands are enriched for histone modifications
indicative of open chromatin (e.g., H3K4me1 and H3K4me3), and they exhibit low levels of
DNA methylation. On the other hand, specific subsets of CpG islands have been described
as highly methylated or enriched for the repressive histone modification H3K27me3 (Bock
et al., 2007; Cohen et al., 2011; Birney et al., 2007; Mendenhall et al., 2010; Straussman
et al., 2009; Weber et al., 2007). In order to validate EpiExplorer on the well-studied topic
of epigenetic regulation at CpG islands, here we analyze the characteristics of CpG islands
across the human genome, using EpiExplorer’s functionality for exploring genomic region
sets in the context of public genome and epigenome datasets.

Figure 3.19.: Bar chart summarizing the percent overlap (y-axis) between CpG islands and
various genomic region sets (x-axis) in H1hESC cells.

CpG islands are already available as one of EpiExplorer’s default region sets, hence it
is not necessary to upload any new dataset to perform this analysis. Once we select ‘CpG
islands (specific)’ from the exploration menu on the left of EpiExplorer’s start screen, Epi-
Explorer displays a summary of genome and epigenome annotations that co-localize with
CpG islands (Figure 3.19). According to this diagram, more than half of all CpG islands
overlap with Ensembl-annotated gene promoter regions, which is a well-established obser-
vation in the literature (Bajic et al., 2006; Ioshikhes and Zhang, 2000). Furthermore, we
observe that two-thirds of all CpG islands overlap with the promoter-associated histone
H3K4me3 mark in ES cells (Figure 3.19) and in other tissues (Figure 3.20). This observa-
tion underlines that a large subset of CpG islands indeed carry the key chromatin mark
indicative of active promoters, and it constitutes a substantial enrichment as genomic

4The work presented in this section was published as part of Halachev et al. (2012).
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regions carrying this mark cover only two to four percent of the genome (Figure 3.20).
Furthermore, EpiExplorer’s neighborhood plot (Figure 3.21) highlights how strongly and
specifically the H3K4me3 mark is enriched at the boundaries of CpG islands compared to
the broader genomic neighborhood of these regions.

Figure 3.20.: Bubble chart plotting the percent overlap (y-axis) between CpG islands and
H3K4me3 peaks in specific tissues (color-coded) against the total genomic
coverage of all corresponding peaks (x-axis)

While association with open chromatin appears to be the default state of most bona fide
CpG islands in the human genome (Bock et al., 2007; Cohen et al., 2011; Birney et al.,
2007; Mendenhall et al., 2010; Straussman et al., 2009), it has been shown that a subset
of CpG islands are frequently associated with the repressive histone H3K27me3 mark (Ku
et al., 2008; Mikkelsen et al., 2007). CpG islands have also even been reported to play
a role in recruiting Polycomb proteins and the H3K27me3 mark in ES cells (Mendenhall
et al., 2010). An EpiExplorer neighborhood plot shows specific and localized enrichment
of the H3K27me3 mark in a human ES cell line, with an enrichment peak that ranges from
one kilobase upstream of the annotated CpG island borders to one kilobase downstream
(Figure 3.22). This ES-cell specific enrichment peak is only marginally broader than the
one observed for the H3K4me3 mark (Figure 3.21). In contrast, for cell types other than
ES cells, we observe elevated levels of H3K27me3 in a broad neighborhood surrounding
CpG islands, consistent with the observation that localized peaks of H3K27me3 in ES cells
are resolved into broad H3K27me3-enriched broad local enrichments in differentiated cells
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Figure 3.21.: Neighborhood plot illustrating the percent overlap (y-axis) with histone
H3K4me3 peaks in the vicinity of CpG islands (x-axis). Line colors cor-
respond to histone modification data for different cell types.

Figure 3.22.: Neighborhood plot illustrating the percent overlap (y-axis) with histone
H3K27me3 peaks in the vicinity of CpG islands (x-axis). Line colors cor-
respond to histone modification data for different cell types.

(Pauler et al., 2009).
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Figure 3.23.: Percent overlap (y-axis) of 13,519 CpG islands located within one kilobase
from a gene transcription start site (orange) and 2,327 CpG islands located at
least 20 kilobases from the nearest gene (gray) with genome and epigenome
annotation data (x-axis)

Figure 3.24.: Percent overlap (y-axis) of 15,377 constitutively unmethylated CpG islands
(orange, less than 30% methylation in seven tissues) and 3,171 constitutively
methylated CpG islands (grey, more than 60% methylation in the same seven
tissues) with genome and epigenome annotation data (x-axis).

Despite the strong overlap of CpG islands with gene promoters and other genic regions
(Figure 3.19), almost a quarter of CpG islands (6,705 in total) do not overlap with any
annotated promoter regions or genes and are therefore categorized as intergenic CpG is-
lands (Illingworth et al., 2010). Some of these intergenic CpG islands may be linked to
genes and promoters that are currently missed by genome annotations (e.g. lincRNAs),
but others may have non-canonical roles for example as distal enhancers or as anchor points
in the maintenance of three-dimensional genome organization. Using the refinement tools
of EpiExplorer, we can dynamically reduce the set of all CpG islands to those that are
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Figure 3.25.: Overview of the length distribution of constitutively unmethylated CpG is-
lands (left) and constitutively methylated CpG islands (right).

clearly intergenic (i.e. located at least 20 kilobases distant from the nearest gene) and
compare their properties with those of a set of promoter-associated CpG islands (i.e. lo-
cated within a kilobase of an annotated transcription start site). The results show that
intergenic CpG islands less frequently exhibit the promoter-associated H3K4me3 mark
and the transcription-associated H3K36me3 mark than promoter-associated CpG islands
(Figure 3.23), consistent with their intergenic nature. On the other hand, they are asso-
ciated more frequently with H3K27me3 peaks and insulator elements (Figure 3.23), which
is suggestive of a structural role in the organization of chromatin. We also explored the
distribution of DNA methylation among CpG islands. While most CpG islands appear to
be unmethylated in the germline and thus protected from the increased C-to-T mutation
rates associated with cytosine methylation (Cohen et al., 2011; Bock et al., 2006; Small-
wood et al., 2011), a subset of CpG islands becomes methylated during somatic tissue
differentiation (Meissner et al., 2008; Mohn et al., 2008). Furthermore, certain types of
repeat-associated and exonic CpG islands appear to be methylated in all tissues and retain
their moderate levels of CpG density by means other than the absence of DNA methylation
in the germline (Cohen et al., 2011; Maunakea et al., 2010). To compare the genomic char-
acteristics of methylated and unmethylated CpG islands, we derived within EpiExplorer
a test set of constitutively unmethylated CpG islands and a reference set of constitutively
methylated CpG islands (Figure 3.24). Comparison of both types (unmethylated CpG
islands shown in orange, methylated ones in gray) identified striking enrichment for open-
chromatin associated marks (H3K4me1, H3K4me3, DNaseI hypersensitive sites) among
unmethylated CpG islands. In contrast, methylated CpG islands were strongly associated
with the transcription-linked H3K36me3 mark and exhibited a similar level of evolution-



60 3 Live exploration and global analysis of large epigenomic datasets using
EpiExplorer

ary conservation and gene association as unmethylated CpG islands. The characteristic

Figure 3.26.: Distribution of CpG dinucleotide frequencies among constitutively unmethy-
lated CpG islands (orange) and among constitutively methylated CpG islands
(grey).

Figure 3.27.: Distribution of TpG dinucleotide frequencies among constitutively unmethy-
lated CpG islands (orange) and among constitutively methylated CpG islands
(grey).

differences between unmethylated and methylated CpG islands are not limited to their ge-
nomic location relative to genes and chromatin marks, but also include the genomic DNA
sequence of the CpG islands themselves. Consistent with previous reports that identified
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Figure 3.28.: Bar chart summarizing the percent overlap (y-axis) between 5hmC hotspots
and various genomic datasets (x-axis) in H1hESC cells.

high CpG island length and CpG density as strong predictors of low DNA methylation
levels (Straussman et al., 2009; Weber et al., 2007; Bock et al., 2006; Das et al., 2006), the
EpiExplorer analysis shows that unmethylated CpG islands tend to be longer (Figure 3.25)
and exhibit a CpG density distribution that is substantially shifted toward increased CpG
densities compared to their methylated counterparts (Figure 3.26). In contrast, the TpG
density distribution shows an opposite trend (Figure 3.27), supporting the notion that high
levels of DNA methylation are directly linked to the accumulation of C-to-T mutations in
the germline. In summary, these observations suggest that CpG islands are regulated in
different ways by three epigenetic marks, histone H3K4me3, histone H3K27me3 and DNA
methylation. The presence of H3K4me3 is strongly correlated with low levels of DNA
methylation. Furthermore, H3K27me3 overlaps with H3K4me3 at a subset of CpG islands
(in particular for ES cells), while co-localization between H3K27me3 and DNA methylation
is rare and only observed at CpG islands that are not particularly CpG-rich.

3.4.2. Connecting a new epigenetic mark to reference maps of the human
genome and epigenome

Discovery of properties of 5hmC

To assess the utility of EpiExplorer for exploratory analysis and hypothesis generation
in a more advanced setting, we investigated a recently discovered epigenetic mark5. 5-
Hydroxymethylcytosine (5hmC) is a chemical variant of normal (that is, non-hydroxylated)
cytosine methylation. It was first observed in embryonic stem (ES) cells and in certain types
of neurons (Kriaucionis and Heintz, 2009; Tahiliani et al., 2009). The conversion of cytosine
methylation into 5hmC is catalyzed by proteins of the TET family. One TET protein
(TET2) is frequently mutated in myeloid cancers (Delhommeau et al., 2009), underlining
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Figure 3.29.: Bar chart comparing the percent overlap of 5hmC hotspots (orange) and
randomized control regions (grey) with histone H3K4me1 peaks, based on
ENCODE data (Myers et al., 2011).

the biomedical relevance of studying the role of 5hmC in gene regulation.
From the paper of Szulwach et al. (2011), we obtained the genomic region coordinates

for a total of 82, 221 hotspots of 5hmC that the authors experimentally mapped in human
ES cells. We uploaded these hotspot regions into EpiExplorer, where they are automati-
cally annotated with default genomic attributes such as gene annotations and associated
epigenetic marks. EpiExplorer’s initial overview screen summarizes the overlap of 5hmC
hotspots with the most relevant genomic attributes and provides the starting point for
interactive exploration of the dataset (Figure 3.28). This view is tissue-specific, and we
select a human ES cell line (‘H1hESC’) as the tissue type of interest. In ES cells, we ob-
serve striking overlap between 5hmC hotspots and epigenetic marks associated with distal
gene-regulatory activity. Specifically, more than 80% of the 5hmC hotspots overlap with
peaks of the histone H3K4me1 mark, which is a well-known signature of enhancer elements
(Heintzman et al., 2009). In contrast, less than 20% of 5hmC hotspots overlap with histone
H3K4me3 (Figure 3.28), which is considered the hallmark of active core promoter regions
(Kouzarides, 2007).
To assess whether the association of 5hmC hotspots with H3K4me1 peaks indeed consti-

tutes a relevant enrichment, we performed the same comparison for a randomized control
set. EpiExplorer automatically calculates such control sets for user-uploaded region sets,
which is done by reshuffling the genomic positions while retaining the overall number of
regions and the distribution of region sizes. Visual comparison shows that the overlap
between 5hmC hotspots and H3K4me1 peaks is indeed fourfold higher than expected by
chance (Figure 3.29), constituting a strong enrichment with potential biological implica-
tions. This enrichment is much more pronounced for H3K4me1 in ES cells than for other
tissues, supporting the specificity of the observed association. We could further validate
this association using EpiExplorer’s neighborhood plot (Figure 3.30). When plotting the

5The work presented in this section was published as part of Halachev et al. (2012).
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Figure 3.30.: Genomic neighborhood plot illustrating the percent overlap (y-axis) with
H3K4me1 peaks in the vicinity of 5hmC hotspots (x-axis). Different line
colors correspond to H3K4me1 data for different cell types.

Figure 3.31.: Bar chart comparing the percent overlap of 5hmC hotspots (orange) and
randomized control regions (grey) with a comprehensive catalog of epigenetic
states derived by computational segmentation of ENCODE histone modifi-
cation data (Ernst et al., 2011).

levels of H3K4me1 methylation in the vicinity of 5hmC hotspots across the genome, we
again observed a much stronger enrichment for ES cells than for H3K4me1 data from other
tissues. Furthermore, when we compared the 5hmC hotspots with a comprehensive catalog
of epigenetic states (Ernst et al., 2011), we detected striking enrichment for several classes
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Figure 3.32.: Distribution of DNA methylation levels among 5hmC hotspots (orange) and
randomized control regions (grey), based on Roadmap Epigenomics data (Hu-
man Epigenome Atlas, 2013).

Figure 3.33.: Enrichment table (left) and word cloud (right) illustrating the most highly
enriched Gene Ontology (GO) terms among genes whose transcribed region
is within 10 kb of a 5hmC hotspot. The most general (more than 5,000
associated genes) and most specific GO terms (less than 50 associated genes)
were suppressed in this analysis.

of enhancer elements (Figure 3.31). In summary, these results suggest the hypothesis that
a specific association may exist between 5hmC and H3K4me1-marked enhancer elements
in human ES cells.
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Given the presumed role of 5hmC in the erasure of DNA methylation (Mohr et al.,
2011; Munzel et al., 2011), we also investigated the distribution of normal (that is, non-
hydroxylated) cytosine methylation among 5hmC hotspots, again in comparison with the
randomized control set. To that end, we use the ability of EpiExplorer to work on dy-
namically refined subsets of the data and filter the set of 5hmC hotspots down to those
regions for which we also have sufficient DNA methylation data (a step-by-step tutorial
is available at EpiExplorer: supplementary information (2012)). The results show that
5hmC hotspots are rarely unmethylated but frequently associated with moderate levels of
DNA methylation in the range of 10% to 50% (Figure 3.32), which is consistent with signif-
icant but incomplete demethylation activity occurring at the majority of 5hmC hotspots.
This observation is also supported by a recent report describing enrichment of 5hmC and
enhancer activity in genomic regions with intermediate DNA methylation (Stadler et al.,
2011). Finally, we use EpiExplorer to perform a Gene Ontology analysis for those genes
that are located in close vicinity of 5hmC hotspots (Figure 3.33). The 5hmC-associated
genes are enriched for specific annotation terms related to gene regulation and develop-
ment, including ‘regulation of signal transduction’, ‘cell differentiation’ and ‘anatomical
structure morphogenesis’.
Taken together, these EpiExplorer analyses suggest testable hypotheses about the role

of 5hmC in human ES cells. For example, active DNA demethylation – with 5hmC as an
intermediate – may protect developmental enhancers from gaining DNA methylation in un-
differentiated cells. This mechanism may help ES cells retain their developmental potential
in the presence of high levels of DNA methyltransferase activity. In addition, active DNA
methylation could help avoid the accumulation of cancer-associated epigenetic alterations
in undifferentiated cells, given that the sites of such alterations frequently overlap with
developmental regulatory elements (De Carvalho et al., 2010). To provide further support
for these hypotheses, we can export the analyzed data from EpiExplorer to the Genomic
HyperBrowser and perform more rigorous statistical testing than is possible within Epi-
Explorer. And most importantly, it will be necessary to confirm biological significance by
in-depth functional dissection of the interplay between 5hmC and H3K4me1 at develop-
mental enhancers. Such wet-lab studies are laborious to conduct and inherently limited to
a small number of candidate genes or genomic regions, thus requiring careful selection of
the most relevant candidates. EpiExplorer can help guide the selection of suitable regions
for functional follow-up, as illustrated in the following case study.

Interactive identification and prioritization of candidate regions using EpiExplorer

When studying mechanisms of gene regulation, it is often necessary to select a few model
genes or genomic regions in order to afford a more detailed investigation than is possible
with genome-wide methods. Good candidates should be informative of the phenotype of
interest but must also be easily tractable experimentally. EpiExplorer is a powerful tool
for identifying such candidates through several steps of region set filtering and interactive
refinement of the selection criteria. For example, to unravel the mechanistic basis of
the association between 5hmC and H3K4me1-marked enhancer elements (as described
in the previous section) we need to identify a handful of strong examples for this kind of
association, which can then be studied using biochemical and molecular biological assays.
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Good candidate regions should exhibit robust enrichment for both 5hmC and H3K4me1,
proximity to genes involved in transcriptional regulation, and moderate levels of DNA
methylation. With EpiExplorer, it is straightforward to distill such candidate regions from
the complete list of 82,221 5hmC hotspots.

Figure 3.34.: Using successive filtering steps, a genomic dataset with 82,221 hotspots of 5-
hydroxymethylcytosine (5hmC) in human ES cells (Szulwach et al., 2011) is
refined to a list of 16 regions that provide strong candidates for investigating
the functional association between 5hmC and H3K4me1-marked enhancer
elements. (a) Filtering with a minimum length threshold of 1 kb yields 5,734
genomic regions.

Figure 3.35.: Filtering with a minimum 5hmC hotspot score threshold of 300, which cor-
responds to a detection significance of 10-30 or better, yields 2,535 genomic
regions.

First, we inspect the length distribution of 5hmC hotspots (Figure 3.34) and retain only
those hotspots with a minimum length of 1 kb, which removes spurious peaks that are
occasionally introduced by short repetitive elements in the genomic DNA sequence. Second,
we filter for a detection significance of 10-30 or better in order to focus the analysis on the
most clear-cut 5hmC hotspots (Figure 3.35). Third, we require evidence of an enhancer-
associated chromatin signature and retain only those 5hmC hotspots that overlap with
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Figure 3.36.: Filtering for overlap with H3K4me1 peaks in a human ES cell line (H1hESC)
yields 2,334 genomic regions.

Figure 3.37.: Filtering for association with genes that are annotated with any of the 1,608
Gene Ontology terms containing the word ’regulation’ yields 1,064 genomic
regions.

H3K4me1 peaks (Figure 3.36). Fourth, in order to maximize relevance of the candidate
regions for drawing conclusions about gene regulation, we restrict the analysis to genomic
regions located in the vicinity of genes that are annotated with Gene Ontology terms
containing the word ‘regulation’ (Figure 3.37). Fifth, we import an additional dataset of
5hmC hotspots in human ES cells (Stroud et al., 2011) into EpiExplorer and retain only
those hotspots that are present in both datasets (Figure 3.38). Because these two 5hmC
datasets were obtained using different experimental methods, our selection of consensus
hotspots should effectively remove technical artifacts of either dataset. Sixth, to be able to
robustly select 5hmC hotspots with intermediate DNA methylation levels in the last step,
we discard those regions for which insufficient bisulfite sequencing coverage is available from
the Roadmap Epigenomics datasets (Figure 3.39). Seventh and last, we focus the analysis
on those regions that exhibit moderate levels of DNA methylation because it is plausible to
hypothesize that the epigenetic state of these regions might be the result of significant but
incomplete levels of active DNA demethylation (Figure 3.40). Each of these filtering steps
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Figure 3.38.: Filtering for overlap with an alternative dataset of 5hmC hotspots (Stroud
et al., 2011) yields 99 genomic regions.

Figure 3.39.: Filtering for a minimum DNA methylation coverage threshold of five CpGs
yields 65 genomic regions.

Figure 3.40.: Filtering for intermediate DNA methylation with levels in the range of 20%
to 50% yields 16 genomic regions.



3.4 Applications of EpiExplorer 69

is interactively performed using EpiExplorer. Together they bring the original list of 82,221
5hmC hotspots down to 16 regions that fulfill all criteria and constitute strong candidates
for a mechanistic study exploring the association between 5hmC and H3K4me1-marked
enhancer elements (Figure 3.41).

Figure 3.41.: EpiExplorer screenshot showing the final list of candidate regions, ready for
visualization in a genome browser, for download and manual inspection, and
for export to other web-based tools for further analysis.

To facilitate follow-up research, EpiExplorer provides extensive functionality for data
export and visualization using external tools. First, every genomic region set in EpiEx-
plorer can be exported and visualized as a custom track in the UCSC Genome Browser
(Karolchik et al., 2008), which is usually a good starting point for designing locus-specific
experiments. Second, the results generated by EpiExplorer can be transferred to Galaxy
(Goecks et al., 2010) in order to perform sequence motif search, primer design and a num-
ber of other useful analyses that facilitate wet-lab experimental planning. Third, export
to EpiGRAPH (Bock et al., 2009) or the Genomic HyperBrowser (Sandve et al., 2010) can
provide the starting point for additional statistical analyses performed online. Fourth, it
is possible to export and download all region sets as text files for customized analysis with
spreadsheet software (for example, Excel) or statistical analysis tools (for example, R).

3.4.3. Epigenetic properties of cancer breakpoints

In this section6, we present results described in Toloşi et al. (2013) . In that study,
our colleagues define consensus breakpoints in cancer as genomic locations around which
copy number breakpoints occur more frequently than expected by chance. A method
is proposed (called C-KS) for identification of consensus breakpoints. The method is
applied to several cancer arrayCGH datasets: breast, colon, ovarian, neuroblastoma and
glioblastoma. We used EpiExplorer for a qualitative validation of the C-KS algorithm:
we investigate genomic and epigenomic properties of consensus breakpoints and show that
they tend to be enriched in functional elements and certain DNA sequence patterns. More
importantly, we demonstrate the usability of EpiExplorer in disease-specific studies.

6The work presented in this section was published as part of Toloşi et al. (2013).
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Dataset No. of samples No. of breakpoints No. of consensus breakpoints
per sample identified by C-KS

Neuroblastoma 162 54 62

Colon 98 168 173

Glioblastoma 539 261 492

Breast173 173 339 320

Breast54 54 394 327

Breast167 167 461 503

Ovarian 290 806 662

Table 3.1.: Number of tumor, samples. breakpoints and consensus breakpoints identified
in sever cancer datasets.

Algorithm for identification of consensus breakpoints and application to cancer data

Toloşi et al. (2013) introduces the Consensus breakpoints by Kernel Smoothing (C-KS)
algorithm for identifying recurrent breakpoints (or consensus breakpoints) in multiple tu-
mor samples of DNA copy number aberration data. C-KS identifies genomic locations
around which breakpoints tend to accumulate more frequently than expected by chance
and assigns to each a significance z-score. The algorithm takes as input the locations of
breakpoints of all tumors in the cohort and uses a Gaussian kernel for obtaining a moving-
average-like statistic reflecting breakpoint abundance along the genome. Then, by means
of a permutation scheme, significance z-scores are estimated for each genomic location. In-
teresting regions are reported, that yield z-score larger than a certain threshold, typically
3.
The authors applied the C-KS algorithm to a number of datasets, that we also show in

table 3.1. In the table, we also included the average number of breakpoints identified per
tumor as well as the total number of breakpoints identified by the C-KS algorithm.

Exploring the genetic and epigenetic properties of the consensus breakpoints

We investigated the genomic and epigenomic properties of the consensus breakpoints re-
ported by C-KS. In Figure 3.42 we compare the overlap of consensus breakpoints with
CpG islands in all cancer datasets. For each dataset, we compared to two reference sets: a
randomly generated control set (using EpiExplorer’s built-in algorithm), shown in in blue
in the figure, and the set of all breakpoints from all cancer datasets taken together, shown
in gray in the figure. The comparison to a random reference shows a clear enrichment
in the overlap with CpG islands (with the exception of the glioblastoma dataset). Such
enrichment has been reported previously (Abeysinghe et al., 2003). However, since one can
argue that the enrichment is due to the biased selection of array probes that are mostly
located within promoters and genes, we repeated the analysis after excluding the regions
overlapping with gene promoters and re-evaluated the overlap with CpG islands (result
not showed here). The enrichment still holds. This result leads to the hypothesis that
the consensus breakpoints, meaning those breakpoints that are likely to play an important
role in cancer progression, tend to colocalize with CpG islands, which general are highly
functional regions, subject to dynamic regulation in various tissues. Thus, breaking the
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Figure 3.42.: The diagram shows the overlap of consensus breakpoints(orange), all other
breakpoints(gray) and randomly selected control set(blue) in seven different
cancer cohorts with CpG islands

Figure 3.43.: The diagram shows the overlap of consensus breakpoints(orange), all other
breakpoints(gray) and randomly selected control set(blue) in seven different
cancer cohorts with H3K4me3 peaks in ES cells

DNA within a CpG island with biological function, likely disturbs its function leading to
further irregularities in the cell. Next, we investigated the properties of the consensus
breakpoints with focus on histone modifications. We started by inspecting H3K4me3, a
histone modification that we already showed in section 3.4.1 to be highly associated with
CpG islands and especially with unmethylated CpG islands (see Figure 3.24). Not sur-
prisingly, we observe that the consensus breakpoints are enriched in H3K4me3 peaks when
compared to all breakpoints and to random regions (see Figure 3.43).
We also inspected another histone modification, commonly associated with repressive
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Figure 3.44.: The diagram shows the overlap of consensus breakpoints(orange), all other
breakpoints(gray) and randomly selected control set(blue) in seven different
cancer cohorts with H3K27me3 peaks in ES cells

Figure 3.45.: The diagram shows the overlap of consensus breakpoints(orange), all other
breakpoints (gray) and randomly selected control set (blue) in seven different
cancer cohorts with insulator regions in ES cells

functions and also often observed together with H3K4me3, namely H3K27me3. It marks
dynamically regulated CpG islands (more discussion in section 3.4.1). In Figure 3.22, we
already demonstrated how the H3K27me3 histone modification tends to target CpG islands
in ES cells. Again, We observe an enrichment in the consensus breakpoint regions when
compared to individual breakpoints and to randomly selected regions (see Figure 3.44).
We also investigated the overlap with insulators. Figure 3.45 indicates slight enrichment

of insulator regions overlapping with consensus breakpoints, in all cancer cohorts except
ovarian. The enrichment is an interesting finding, because insulators have been linked to
cancer before. For example, the function of the CTCF insulator protein is often disrupted
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in cancer, e.g. by hypermethylation of its binding site ((Feinberg and Tycko, 2004)).
Whereas many studies show that the location of the DNA breakpoint in fusion transcripts

is critical (eg. BCR-ABL fusion in chronic myelogenous leukemia), little is known about the
biological relevance of the breakpoints associated with DNA gain or loss. It is often believed
that the oncogenes or tumor suppressors located within the aberrations are responsible for
tumor progression, whereas the location of the breakpoint is not essential. This hypothesis
is probably true in most cases, as data show that start and end locations of recurrent
aberrations may vary greatly. However, many tumors display local aberrations with tightly
aligned breakpoints, which suggests that the local structure of the chromatin ‘forces’ the
breaks to occur within certain regions by hindering DNA repair (Soria et al., 2012). The
EpiExplorer analysis that we performed supports the hypothesis that the DNA locations
of tightly aligned consensus breakpoints have interesting biological properties.
In the previous sections 3.4.1, 3.4.2 and 3.4.2, we used EpiExplorer to analyze and explore

associations within and between reference genome annotations. However, the analysis
above underlines the power of EpiExplorer to be used to draw interesting hypotheses in a
disease-oriented study with cohorts of samples.

3.4.4. EpiExplorer performance evaluation

EpiExplorer’s distinguishing feature is the ability to perform a broad range of genome-scale
analyses within seconds, thus enabling live exploration, visualization, summarization and
interactive filtering of large genomic datasets. Our use of multiple filtering and iterative
refinement has important similarities with the concept of faceted search, which is a widely
studied paradigm in information retrieval (Hearst, 2009; Tunkelang, 2009). It critically
depends on the speed with which complex search queries can be handled. In EpiExplorer,
we achieve the necessary runtime performance by using the CompleteSearch engine (Bast
and Weber, 2007), which has originally been developed for semi-structured text search
in large document repositories. Through creative use of prefix indexing, CompleteSearch
provides native support for advanced search features such as query autocompletion and
database-style JOIN operations, and has been shown to outperform more standard ap-
proaches based on inverted indices (Bast and Weber, 2007). As a result, EpiExplorer was
able to complete more than 99% of approximately 4,000 genome-scale analyses performed
in the context of the 5hmC case studies in less than two seconds (see Table 3.2).

Performance evaluation

Table 3.2 summarizes EpiExplorer’s runtime performance and resource consumption for
its five default region sets, as well as for the user-uploaded set of 5hmC hotspots. The
preprocessing time needed to annotate and index user-uploaded datasets is usually on
the order of minutes to hours (depending on the size of the region set); but it has to be
performed only once when a set of genomic regions is uploaded into EpiExplorer. The size
of the resulting index structure is typically in the order of few hundred megabytes. Once
an index structure has been created, it takes very limited resources for the EpiExplorer
server to perform analyses on the corresponding region set. We evaluated the performance
of EpiExplorer by measuring the CompleteSearch response times on thousands of queries
that were executed during the preparation of the main publication. For every region set,
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Dataset Putative CpG islands Transcription Gene 5hmC hotspots Genome-wide
enhancers (specific) start sites promoters (Szulwach et al.) tiling regions

(-5kb to 1kb) (5kb)
Number of

1,762 27,638 36,655 36,655 82,221 616,093
genomic regions
Preprocessing

0.2 0.8 0.9 0.9 1.5 17
time (h)

Search index
11 145 122 127 240 962

size (MB)
Mean query

0.02 0.06 0.12 0.13 0.2 0.8
time (s)

95th percentile
0.07 0.34 0.5 0.57 0.64 3.2

query time (s)
Percent queries

100% 99.9% 99.7% 99.1% 99.1% 88%completed
in ≤ 2 sec

Table 3.2.: EpiExplorer’s response time and memory footprint across thousands of actual
user analyses.

we measured the average query time, the time in which 95% of queries were processed, and
the percentage of queries that required less than 2 seconds (Table 3.2). The results show
that the average query time for each region set is consistently below 1 second, and that
95% of all analyses even for the largest region set completed in less than 4 seconds, which
makes the dynamic exploration of datasets via EpiExplorer a continuous and interactive
process for the users.

3.4.5. EpiExplorer usage statistics

Overview of the first year

Below we present statistics on the usage of EpiExplorer during the first year from publica-
tion that indicate its relevance to the bioinformatic community (Table 3.3). EpiExplorer

Total Per day
Analysis performed 51,453 141

Dataset sessions 1,603 4.4

Custom datasets computed 1,293 3.5

Paper views 7,594 20.8

Table 3.3.: Overview statistics of EpiExplorer’s first year.

provided more than 50 thousand analyses. These average to around 140 analyses per day.
These are distributed into an average of 4.4 dataset sessions per day (a dataset session
is defined as at least 5 analyses computed for a specific dataset on a specific day). If we
inspect the distribution of analysis by months (Figure 3.46) we notice that most months
the number of analyses are between 4,000 and 8,000.

We also inspected the interest in the different genome assemblies that EpiExplorer offers
(see Figure 3.47). In the first months after the release of the service we observed similar
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Figure 3.46.: Number of EpiExplorer analysis per month in its first year

interest in hg18 and the latest human genome assembly – hg19. Since the beginning of
2013 we observe a predominant usage of hg19. The analyses on the mouse genome are
much more infrequent, with occasional peaks.

Figure 3.47.: Number of EpiExplorer analysis per genome per month in its first year
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As for the different annotations that EpiExplorer offers (see Figure 3.48), we observe the
summary views dominating, as is the purpose of these summary views, with the analysis
on the histone peaks and chromatin state segmentation following in second and third place.
During the first year almost 1, 300 custom datasets (uploaded by users) were processed.

Figure 3.48.: Distribution of performed EpiExplorer analyses for different epigenetic
annotations

These average to 3.5 custom datasets per day. Over the year, we observe a consistent
interest in computing custom datasets (see Figure 3.49). Averaging 3.5 custom dataset
computations and around 140 analyses per day, the EpiExplorer service has proven its
value to the biological and bioinformatic community.
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Figure 3.49.: Number of computed custom datasets per month during EpiExplorer’s first
year

3.5. Conclusions and outlook

Toward the goal of interactively exploring large epigenomic datasets, EpiExplorer borrows
key concepts from interactive web search. In contrast to genome browsers, which implement
browse-and-zoom navigation similar to that of map viewing software, EpiExplorer was
inspired by the interactive filter-and-refine workflow of web search engines: Most web
searches start broadly (for example, with the search term ’epigenetics’) and are then refined
iteratively (for example, with the additional terms ’bioinformatic’, ’software’ and ’tools’)
until relevant websites show up among the top hits. EpiExplorer supports the same kind
of exploratory search by making it easy to dynamically filter genomic region sets and by
providing instant feedback in the form of graphical results summaries. Just like web search
engines EpiExplorer is highly fault-tolerant, and it enables users to change any aspect of
an analysis (for example, thresholds or filtering criteria) at any time without having to
repeat previous steps.
The interactive nature of such analyses depends on fast response times, as any delay

tends to inhibit the creative act of live data exploration. For this reason, we designed and
optimized EpiExplorer to complete complex genome-wide analyses in seconds, rather than
the minutes or hours that are the norm for existing genome analysis toolkits (for example,
Galaxy (Goecks et al., 2010), Genomic HyperBrowser (Sandve et al., 2010) and EpiGRAPH
(Bock et al., 2009)). This level of runtime performance was achieved by utilizing an
indexing algorithm that was originally developed for text search. We anticipate that this
design principle of EpiExplorer – to encode complex analyses into ultrafast text search
queries – will be broadly applicable for interactive analysis of biomedical datasets (for
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example, for annotating disease-associated genotypes and in the interpretation of personal
genomes).

EpiExplorer successfully delegates complicated and computation heavy aspects to spe-
cialized softwares, such as annotation mapping (to BEDtools), text index building (to the
CompleteSearch index builder) and query processing (to CompleteSearch). The in-depth
statistical analysis of such hypotheses is left to specialized tools such as EpiGRAPH (dis-
cussed in the next chapter) and the Genomic HyperBrowser. We validated the EpiExplorer
methodology by reproducing already known discoveries about the epigenetic properties
of CpG islands. We illustrated EpiExplorer’s utility for interactive data exploration by
a case study of hydroxymethylation in relation to public reference epigenome datasets,
which recreates and extends results from a recently published paper (Szulwach et al.,
2011) in ten minutes of analysis time. We also demonstrated that EpiExplorer can be
used in disease-specific studies. Detailed tutorials are available from the supplementary
website (EpiExplorer: supplementary information, 2012) emphasizing the ease of sharing
EpiExplorer analyses and their reproducibility. Finally, we reported usage numbers from
EpiExplorer’s first year as a publicly available service during which users requested more
than 140 EpiExplorer analysis per day. With these examples in mind, we are optimistic
that EpiExplorer is a step toward making large-scale epigenome datasets more useful and
readily explorable for researchers with little or no bioinformatic experience. Ultimately,
EpiExplorer facilitates quick and iterative generation of hypotheses about the interplay of
genetic and epigenetic properties.

Limitations of the EpiExplorer approach and software

Using CompleteSearch as a text-search basis for EpiExplorer brings not only benefits, but
also limitations. For example, operating with millions of regions sometimes decreases the
query response time from milliseconds to seconds. Another drawback is that Complete-
Search does not allow easy sharding (splitting into parts) or updates of its index. A simple
task such as exporting the values of an epigenetic property mapped to the set of regions
should be easy, as EpiExplorer already computes them during preprocessing. However,
these values are indexed and cannot be retrieved easily, therefore EpiExplorer does not
support such exports. In order to increment the database of EpiExplorer with annotations
of new types, the support team has to manually define the textual mapping (i.e. keywords,
values). Frequently, in biological studies, the relation between two epigenetic properties
is intuitively pictured by a scatterplot. With EpiExplorer, such visualization is not yet
possible, because it is very difficult (within speed requirements) to formulate a Complete-
Search query that returns the necessary values. Via visualizations, EpiExplorer suggests
associations between epigenetic properties over a set of regions. However, any sound study
should present rigorous evidence that the association holds, typically by statistical hypoth-
esis testing. For now, EpiExplorer does not support statistical validation. Finally, in order
to keep the software simple to use and not require advanced querying knowledge, we had
to predefine the visualizations and refinements available through the user interface. This
limits the types of queries that the system can address (in fact, CompleteSearch can answer
a broader set of queries).
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Outlook

EpiExplorer can be adapted to support the search for genomic regions with specific prop-
erties, in the way that text-based engines retrieve documents relevant to certain keywords.
Furthermore, it can be extended to searching for regions similar to a region of interest,
based on the epigenetic properties within and around the target region. This can later
lead to computing a full map of similarity between all genomic regions. EpiExplorer can
benefit from integrated hypothesis testing, for example based on open-source toolkits for
testing statistical associations. An important future extension of EpiExplorer would be
to systematize and standardize its annotation database. Finally, it is possible to provide
programming access (API), for example via REST protocol, to the dataset processing and
querying service. This will allow EpiExplorer to be easily included in pipelines and will
afford a more diverse filtering and querying.
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4. EpiGRAPH: user-friendly software for
statistical analysis and prediction of
(epi)genomic data

Cover of the Genome
Biology issue 10-2,2009

inspired by an
EpiGRAPH analysis

In this chapter, we present the methodology, implementation and applications of the
EpiGRAPH software toolkit1. EpiGRAPH uses statistical methods to automatically iden-
tify statistically significant associations between genomic and epigenomic features. These
associations are often the result of biological regulation of gene transcription. Understand-
ing the rules of transcription regulation can have a high impact on understanding of disease
and advancing progress of medicine.
The rest of this chapter is organized as follows. First, we discuss the background and re-

lated work that motivated the development of EpiGRAPH. Then, we present the concept
of EpiGRAPH. Next, we describe the methodology supporting the software, discussing
in detail the algorithmical, statistical and software engineering solutions. Afterwards, we
present three applications of EpiGRAPH to biological studies: i) we explore the differences

1The EpiGRAPH software discussed in this chapter was implemented in close collaboration with
Christoph Bock. CB initiated the EpiGRAPH project, conceptualized the software, implemented the
front-end, middleware and database components as well as an early back-end prototype. Joachim Büch
set up the technical infrastructure. I designed and implemented a substantially enhanced version of the
back-end (based on previous work in Halachev (2006)), performed extensive testing and contributed
important ideas to all aspects of the project. EpiGRAPH is presented in (Bock et al., 2009; Bock,
2008). In (Bock et al., 2010b), we present how EpiGRAPH can be used together with the Galaxy
service. I also performed the studies presented in Sections 4.3.1 and 4.3.2. The study presented in
Section 4.3.3 was published in (Feuerbach et al., 2012).
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between consistently methylated and consistently unmethylated CpG islands, ii) we ana-
lyze the association between DNA sequence and DNA methylation in multiple tissues and
iii) we use EpiGRAPH to analyze the properties of orthologous gene promoters. In the
same section, we demonstrate how EpiGRAPH can be integrated into an analysis pipeline
with EpiExplorer (see Chapter 3). Finally, we conclude the chapter by discussing the
results, challenges and outlook of this work.

4.1. Background

EpiGRAPH helps identify and evaluate associations between genetic and epigenetic prop-
erties. The discovery of such associations may facilitate the prediction of properties of novel
genomic regions for which less experimental data is available. A novelty of EpiGRAPH is
that it operates with sets of arbitrary genomic regions. This affords integration of multiple
heterogeneous annotations of the genome and epigenome. Bioinformatic software available
prior to EpiGRAPH is mostly gene-centric (DAVID (Subramanian et al., 2007), GSEA
(Huang et al., 2007)), that can not exploit the rich genome-wide annotations that are
stored and available by for example UCSC Genome Browser(Karolchik et al., 2008) and
Ensembl(Flicek et al., 2008). Researchers often need to manually proces and analyse data.
((Allen et al., 2003; Berry et al., 2006; Karolchik et al., 2008)) Colleagues have noticed the
need for automation and proposed a method (Bock et al., 2006) that automatically iden-
tifies statistically significant associations between an annotation or a group of annotations
with a set of genomic locations. We then extended the method into a fully automated web
service, named EpiGRAPH (Bock et al., 2009). EpiGRAPH offers its computational in-
frastructure and methodology as a public service. Thus, biologists without computational
background no longer have to operate directly on data, design statistical studies and create
complicated frameworks.

4.1.1. EpiGRAPH overview

EpiGRAPH solves the following problem: given a set of genomic regions of interest (cases)
and a reference set of genomic regions (controls), EpiGRAPH maps multiple annotations
(properties) from a large database of genomic attributes onto the cases and controls. Epi-
GRAPH then uses statistical testing to identify significantly enriched or depleted proper-
ties. It also trains and evaluates machine learning models that can predict whether a given
additional genomic region belongs to the cases or to the controls.
EpiGRAPH was developed to address the generic question formulated above, by provid-

ing standard statistical and machine learning methodology, which is completely automa-
tized and made available as an easy-to-use web tool. Thus, a wide range of analyses are
achievable fast by any scientist, without requiring background in bioinformatics. Moreover,
using a standardized tool like EpiGRAPH ensures that studies providing a certain type of
statistical analysis become easily reproducible and directly comparable.
Analytical modules. From the methodological perspective, EpiGRAPH provides four

main types of analysis, which we call analytical modules. Say that the user is interested
in investigating the association between the target property T and the set of properties
P1, ...Pn. Also, assume that these properties have been summarized as numeric values over
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a set of genomic regions R1, ..., Rk, such that each property can be represented as a vector
of k values.

- The statistical analysis module focuses on evaluating univariate associations between
some property Pi and the target variable T , by means of statistical tests.

- The visualization module provides relevant plots that illustrate the results obtained
with the statistical module.

- The machine learning module can be used for building multivariate prediction models
for the target variable T based on subsets of properties P1, .., Pn and estimating
accuracies of such models using cross validation.

- The prediction module provides predictions for the values of property T on new
regions, based on known values of the properties P1, ..., Pn for the region and the
model obtained with the machine learning module. The machine learning model is
used to train and evaluate models on a training set, while the prediction model is
used to predict (and evaluate) the values on the test set.

Analysis workflow. A typical analysis with EpiGRAPH (see Figure 4.1) follows these
steps:

1. Select data (a set of genomic regions R1, ..., Rk with values of the target property T
for each region).

2. Upload data.

3. Compute attributes (assign values for properties P1, ..., Pn to each of the regions).

4. Analyze statistical dependencies (by means of the statistical module).

5. Generate visualizations (by means of the visualization module).

6. Model T based on P1, ..., Pn using the machine leaning module.

7. Predict T for a new set of genomic regions.

8. Test predictions externally by wet lab experiments of additional statistical analysis.

Software. In the development of EpiGRAPH, we chose established software engi-
neering strategies. For storing and accessing data we use relational databases. For com-
putational efficiency we implemented parallelizable algorithms. In order to easily be able
to extend the functionality of the tool with new methods, we opted for a plugin-based
software and data architecture. Also, our code is open source.
We generate detailed documentation of each analysis, to ensure reproducibility of the

results. The results can be easily shared with colleagues who can inspect and customize
the analysis. We also facilitate the export of results in suitable machine-readable format
to other tools and custom scripts.
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Figure 4.1.: EpiGRAPH analysis workflow. The user prepares two sets of genomic regions
(positive and negative). Depending on the set a regions belongs to, it is as-
signed either 1 (positive) or 0 (negative) value as its target property T . The
user uploads these two sets of regions into EpiGRAPH, where EpiGRAPH
computes the representative numeric and categorical values of multiple ge-
nomic and epigenomic annotations for each of the regions. Afterwards, Epi-
GRAPH performs univariate statistical tests and multivariate machine learn-
ing modeling to identify and test associations between the properties and the
target.

4.2. Methods

The efficiency, accuracy and usability of EpiGRAPH relies on a number of methodological
decisions. In the rest of this section, we discuss them in detail. We start by describing the
algorithm for computing genomic and epigenomic properties for a set of genomic regions.
This requires a consistent and automated method for mapping any genome annotation to
suitable representative values for any genomic region. Then, we present the statistical and
machine learning methods that are at the basis of the EpiGRAPH processes. We con-
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tinue with the discussion of the software architecture of EpiGRAPH and specific software
implementation details.

4.2.1. Mapping of genomic and epigenomic annotations

EpiGRAPH’s database of genomic and epigenomic annotations

The EpiGRAPH database is one of the central pillars of the web tool. It supports annota-
tions for four species: human (genome assemblies hg18 and hg17), mouse (mm9), chicken
(galGal3) and chimp (panTro2). For each of these genomes, EpiGRAPH supports an ex-
tensive set of manually curated annotations. These annotations belong to several general
groups:

- DNA sequence attributes that describe the base composition of the sequence as well
as the distribution of oligonucleotide patterns.

- DNA structure attributes, such as distortions of the DNA helix and predicted solvent
accessibility, are inferred from the DNA sequence.

- Repetitive DNA attributes describing repetitive elements, such as transposable ele-
ments, tandem repeats and segmental duplications.

- Chromosome organization attributes describe the large-scale functional organization
of the chromosomes, such as chromosomal bands.

- Evolutionary history attributes include conservation and local recombination rates.

- Population variation attributes, such as SNPs and microdeletions, describe the vari-
ability among individuals, .

- Genes describe the distribution of known and predicted protein-coding genes within
the genome as well as the concrete gene parts such as exons, introns, promoters etc.

- Regulatory regions describe putative regulatory regions and functional elements in
the genome.

- Transcriptome describe the transcriptional activity, including non-genic transcrip-
tion.

- Epigenome and chromatin structure describe the chromatin structure and epigenetic
modifications, including histone modifications and protein binding.

The numbers of attributes for each genome assembly are listed in Table 4.2.1. For a
detailed list of all available attributes see the supplementary resource (Bock, 2009) for
EpiGRAPH (Bock et al., 2009).
We collected most of the above mentioned annotations automatically from the UCSC

Genome Browser ((Karolchik et al., 2008)). We also added to the database a set of pub-
lished datasets that we considered to be of high interest to the community. Specifically,
we included histone modifications ((Barski et al., 2007)), DNA methylation ((Meissner
et al., 2008; Rollins et al., 2006)), regulatory CpG islands ((Bock et al., 2007)), DNA helix
structure ((Gardiner et al., 2003)), DNA solvent accessibility ((Greenbaum et al., 2007)),
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Attribute groups hg18 hg17 mm9 panTro2 galGal3
Total 931 911 464 328 414

DNA sequence 189 189 189 189 189
DNA structure 21 21 21 21 21
Repetitive DNA 95 95 91 94 94

Chromosome organization 18 29 15 – –
Evolutionary history 94 101 – – 86
Population variation 75 75 – – –

Genes 37 60 20 10 10
Regulatory regions 249 259 5 5 5
Transcriptome 49 65 9 9 9

Epigenome and chromatin structure 104 17 114 – –

Table 4.1.: Numbers of attributes included in EpiGRAPH by type and genome assembly.

tissue-specific gene expression ((Su et al., 2004)), isochores ((Costantini et al., 2006)) and
transcription initiation events ((Carninci et al., 2006)).
Furthermore, we offer the user to work with custom annotations, which lends additional

value to the EpiGRAPH service. For this purpose, we provide the infrastructure necessary
for uploading and processing custom datasets. Custom datasets are available for analy-
sis and can be used just as any other general EpiGRAPH dataset, without any further
limitations.

Computing attributes for genome regions

Most genomic and epigenomic annotations from EpiGRAPH’s database consist of some nu-
meric or categorical property attached to a set of genomic regions. We call these patch at-
tributes or patch annotations. Let us denote the respective regions by A1, ..., Am. The user
is interested in evaluating the property on her own set of regions R1, ..., Rk. EpiGRAPH
extrapolates values for these regions by using some natural and intuitive procedures.

Figure 4.2.: Overlap of a region with a patch annotation. Region Ri overlaps with regions
Aj , Aj+1, Aj+2, Aj+3, Aj+4.

Figure 4.2 shows an example of a region overlapping with five regions belonging to a
patch annotation. EpiGRAPH reports three representative values for region Ri:

- Overlap frequency, which is given by the proportion of the region is covered by the
annotation, 50% in the example from Figure 4.2.
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- Overlap count, which is the number of annotation regions overlapping with the tar-
geted genomic region, 5 in the example from Figure 4.2.

- Overlap average count, which is the average size the the overlaps, (2+3+1+2+5)/5 =

2.6 in the example from Figure 4.2.

The overlap count scores are standardized to a default region size of 1000 in order to be
comparable between regions of different sizes. For example, the actual overlap count for
the region from Figure 4.2 would be (5 ∗ 18)/1000 = 0.9

In addition, each region from a patch annotations can have an associated numeric score
(as in Figure 4.3). EpiGRAPH takes these scores into account and reports additional
scores for the target regions, which are meaningful summary statistics over the scores of
the overlapping attributes. Specifically, we use a weighted average of the scores of the
overlapping annotations, where the weights are the lengths of the individual overlaps. For
example, if the scores are as in Figure 4.3, then the score of region Ri is (1 · 1 + 3 · 5 + 1 ·
2 + 2 · 1 + 2 · 1)/18 = 22/18.
One attribute can have multiple scores, for example the Bona_Fide_CpG_Islands at-

tribute proposed in (Bock et al., 2007) reports two scores for every region: the CombinedE-
pigeneticScore and the OptimizedScore.

Figure 4.3.: Overlap of a region with a patch annotation with scores. Regions Aj , ..., Aj+4

have additional scores.

Patch attributes can also have categorical values associated with each region. In that
case, EpiGRAPH generates the three overlap scores discussed above for every observed
categorical value. This is discussed in detail in Appendix B.
Not all attributes in EpiGRAPH’s database are patch attributes. Some, such as for

example the class of DNA sequence attributes, are genome-wide, meaning that they are
not associated to a limited set of regions. We process these attributes separately.
Regarding DNA sequence, EpiGRAPH reports for each regions frequencies of patterns

of 1, 2 and 4 nucleotides. The counting is not strand-specific. The frequency of a pattern
is measured in terms of the number of occurrences of the pattern, divided by the length
of the region. However, the frequency does not include information about the distribution
of the pattern within the region. For that reason, EpiGRAPH reports helpful statistics
such as mean, standard deviation, skewness and kurtosis. In order to compute these
values, the region is split into smaller blocks of sequence of equal length and the frequency
of the pattern is measured for each. For the resulting distribution of block frequencies,
EpiGRAPH computes standard deviation, skewness and kurtosis.
If the user is interested in particular patterns which are not included by default then

EpiGRAPH allows her to specify the pattern, whether it is strand-specific or not and which
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statistics to be computed (mean, standard deviation, skewness and kurtosis). These will
then be computed and used in all standard EpiGRAPH analyses.

DNA structure predictions are calculated for a given genomic region by sliding a window
of fixed size over the region and comparing the DNA sequence pattern in this window with
a set of oligomers with known structure (which is described by numerical score values).
For example, the predicted helix structure of all possible octamers has been quantified by
a set of six numeric scores: twist, roll, tilt, rise, slide and shift (Gardiner et al., 2003).
For each type of score, EpiGRAPH reports one value, which is given by the mean of
corresponding scores of all oligomer hits observed while shifting the sliding window over
the genomic region. Similar to the pattern frequency attributes described above, we also
report standard deviation, skewness and kurtosis.

Strategies for computing attributes efficiently

Every EpiGRAPH analysis requires automatic calculation of a large number of annotation
scores for a potentially high number of regions not only extracted from the rich database
of default attributes discussed in the previous part, but also defined and uploaded by the
user. EpiGRAPH thus automates one of the most error-prone processes in bioinformatics,
extracting and mapping of data. However, this convenience comes at a large computational
cost. We use several strategies in order to ensure efficient computation of the attributes.
First, we employ multi-threading to parallelize the computations. Second, as we compute
scores for consecutive genomic regions, we use caching where possible to reuse already
processed resources. Third, even though the default analysis includes all attributes avail-
able, we also offer the user to choose a subset of attributes to be computed, should she
have a more specific analysis in mind. Last but not least, we ensure that an interrupted
calculation (due to external factors) can be restarted and continued from where it failed.
Even with these improvements, it is expected that large datasets take a long time to be
processed.

From a programming perspective, the computations take place as follows. When a user
uploads a set of regions, the EpiGRAPH backend first sorts the regions by chromosome
and start position. Next, EpiGRAPH virtually prepares an ordered list of multiple smaller
tasks. Each such task involves the computing of the regions scores for a region R and
an attribute A. EpiGRAPH starts multiple computational workers (threads) that simul-
taneously perform such tasks. Each worker receives a task, computes the specified score,
then saves the result in a temporary structure and proceeds to the next job. Preserving
intermediate results in such structure reduces the amount of data that needs to be stored
in memory and allows interrupted computation processes to be easily resumed without loss
of data. EpiGRAPH uses additional caching when computing scores for the same attribute
and for nearby and overlapping regions as it optimizes the queries it sends to fetch the data
needed for the computation of the region result. After all jobs are complete, the results
from the temporary structure are assembled and stored in the analysis file. EpiGRAPH
provides feedback to the users via its user interface about the stage of completion of their
computations as well as an automated email as soon as the computation is complete.
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Derived attributes, neighborhood annotation and control region sets

In addition to standard attributes, EpiGRAPH provides two other types of attributes that
ensure a large coverage of biological properties that are frequently explored in studies:
derived attributes and neighborhood annotations.
The user can derive new annotations based on custom formulas involving already exist-

ing annotations. For example, a user could add an attribute that computes observed vs
expected ratio of the CpG dinucleotides only based on the DNA sequence scores that we
provide by default. The user can specify complex analytical functions either automatically
via the web user interface or by using scripting language to implement a method that can
be plugged in the backend engine.
The users of EpiGRAPH can request annotation scores to be computed not only for

the genomic regions given as input, but also for extended regions next to them (eg. 1kb
upstream and downstream from the ends of the regions). These regions may contain cis-
regulatory functional elements, such as transcription factor binding sites and insulators
that are not present in the region itself but influence the biological function of the region.
By computing the annotation scores for them and using univariate statistical tests and
machine learning modeling EpiGRAPH may help identify cis-acting biological associations.
In many studies, users have only one set of ‘interesting’ or ‘special’ regions, the proper-

ties of which they would like to compare to a set of ‘uninteresting’, ‘not special’ regions.
EpiGRAPH assists the user in automatically generating a set of control regions, in a mean-
ingful way. Specifically, we automatically generate a set which is similar to the target region
set in the number of regions and distribution of region lengths. The user can also control
the sequence composition of the control set, repeats content and overlap with exons, as we
recognize that these are requirements often present in studies.

4.2.2. Statistical and machine learning analyses of EpiGRAPH

Statistical analysis and diagram generation

As mentioned earlier in this chapter, EpiGRAPH implements statistical methods for iden-
tification of attributes which are significantly different between two sets of genomic regions.
These two sets of regions are either one set of regions annotated with some binary prop-
erty, or resulting from one set of regions (target regions), to which a control set has been
generated (as discussed in the previous section).
For the purpose of finding discriminating attributes, EpiGRAPH uses well established

statistical tests.
Wilcoxon rank-sum test. For numeric attributes, the Wilcoxon rank-sum test (also known

as the Mann-Whitney U test) is used (Mann and Whitney, 1947). It tests the hypothesis
that the distributions of the values of the attributes for the two sets of regions are the same.
We choose the Wilcoxon rank-sum test whenever we cannot make any prior assumption
on the distributions of the attributes.
Assume given two sets of continuous observations on random variablesX and Y : {x1, ..., xn1}

and {y1, ..., yn2}, respectively. All observations from both sets are sorted in a common
ranked list. Assume that RX is the sum of the ranks of observations on X and RY is the
sum of ranks of observations on Y . Under the hypothesis that the distributions of X and
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Y are equal, the following statistic is approximately normally distributed:

U = RX −
n1(n1 + 1)

2
.

Fisher’s exact test. For categorical attributes, EpiGRAPH uses the Fisher’s exact test
(Fisher, 1922). Assuming that the contingency table of attributes X and Y is as in Table
4.2.2, the probability of observing exactly the counts a, b, c, d is given by the hypergeomet-
rical distribution:

P =

(
a+b
a

)(
c+d
c

)(
a+b+c+d

a+c

) =
(a+ b)!(c+ d)!(a+ c)!(b+ d)!

a!b!c!d!(a+ b+ c+ d)!

.

X1 X2

Y1 a b

Y2 c d

Table 4.2.: Contingency table of attributes X and Y for Fisher’s exact test.

EpiGRAPH uses a standard default p-value cutoff of 0.05 for all statistical tests, but the
cutoff can be altered by the user.
Naturally, EpiGRAPH tests multiple hypothesis in each analysis, leading to the widely

known multiple testing problem. Specifically, if a large number of independent tests is
performed in concert, some null hypotheses can be rejected by chance only. For example,
at the 5% level, the chance of rejecting a true null hypothesis is 5%, which means that
from 100 tests with true null hypothesis, 5 are expected to be rejected incorrectly. These
are false positive instances. To control the expected number of false positives, we perform
multiple testing correction. For this purpose, EpiGRAPH implements two approaches: the
classic and highly conservative Bonferroni (Dunn, 1961) correction and the more recently
proposed false discovery rate (FDR) (Benjamini and Hochberg, 1995). Furthermore, Epi-
GRAPH reports a table with all significance scores.
To visualize the difference in distributions of a specific numeric attribute, EpiGRAPH

automatically generates boxplot diagrams. The user can thus get a visual confirmation of
the significant attributes and easily export the result to a scientific paper (in formats such
as PDF and PNG).

Machine learning analysis and prediction analysis

The univariate analysis discussed in the previous section only afford quantification of uni-
variate associations between an attribute and a binary property of a group of regions. A
more general and potentially more revealing task is to identify multivariate patterns of
attributes that can predict a binary property of a set of regions. For this purpose, we
formulate a classification task in which every attribute is a feature and the outcome is
defined by the categorical property associated to the set of regions.
EpiGRAPH supports seven classification models: 1) support vector machine with linear

kernel; 2) support vector machine with RBF kernel; 3) AdaBoost on tree stumps; 4) logistic
regression; 5) random forest; 6) C4.5 tree generator; 7) naive Bayes (Hastie et al., 2009).
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These are used from the external library Weka (Hall et al., 2009) with default parameters.
To provide a baseline for classification, EpiGRAPH also reports the prediction performance
of a trivial classifier that always predicts the majority class.
For estimating the performance of a classifier, EpiGRAPH uses 10-fold cross validation

by which the machine learning algorithm is trained on 90% of the regions and tested on
the remaining 10%. This is performed for all 10 folds. The cross validation is repeated
10 times with on randomized subsets of the data to capture variation effects. Finally, the
performance is reported via several measures, in order to reveal different aspects that may
be of interest to the user: percent accuracy, sensitivity and specificity. We also report the
Pearson correlation coefficient between the values predicted by the cross validation runs
and the real outcome.
EpiGRAPH enables the user to customize the classification task. By default EpiGRAPH

uses all attributes from a biological group (defined in Section 4.2.1) as features to train a
model, thus training separate models for each group. Then, it reports the association of
each group to the response variable. However, the user can choose which attributes to be
included for each particular group. She can also merge groups of attributes into a single
model. If the set of regions (i.e. samples for the classification) is too large (e.g. in the
thousands), a large runtime is expected for training the model. EpiGRAPH facilitates the
definition of downsampling scheme, in which the user specifies the maximum number of
regions associated with every value of the response. Especially for the cases in which the
classes are unbalanced, EpiGRAPH suggests the user to enforce a more convenient ratio
between the class cardinalities via downsampling.
Additionally, we implemented (in Java) two extensions to the Weka library. The first

ensures that cross-validation sampling is stratified. Stratified sampling enforces the random
sampling to preserve the ratio of the possible values of the response variable for each cross-
validation sample. The second extension adds information to the standard Weka output
and to the EpiGRAPH output, in order to facilitate exporting of results into the ROCR
package (Sing et al., 2005).
If a classifier has a good performance, the user may be interested in predictions for

genomic regions for which the outcome is not known. The prediction module of EpiGRAPH
uses 10 models trained on 10 bootstrap datasets drawn from the training set, respectively,
to report 10 different predictions for a new region. The predictions are aggregated and the
forecast to either class 0 or class 1 is reported. EpiGRAPH also reports the mean and the
standard deviation of pertaining to the set of 10 predictions, to give a measure of certainty
of the prediction.

4.2.3. Software architecture and implementation of the EpiGRAPH service

Software architecture

The software architecture of EpiGRAPH is schematically represented in Figure 4.4. The
web service consists of three main software components and two logical databases, as well
as an XML schema format called X-GRAF that is described in detail later (see Section
4.2.3).
The web-based frontend is used to provide an intuitive and interactive user interface that

allows to define and customize an EpiGRAPH analysis, submit it to the service, follow its
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Figure 4.4.: EpiGRAPH software architecture. Figure adapted from Bock et al. (2009)

status and access the results. For this purpose, Christoph Bock implemented the web-
based service in Java (Java, 2009) using JavaServer Faces framework, Java servlets and
JavaServer Pages.
The user interface is separated from the analysis engine via a middleware component that

provides access to the analysis and user management. The middleware component provides
an interface layer over the access and management of XML analysis. It is implemented as
a Java servlet and is accessed from the other components via XML-RPC (Laurent et al.,
2001). The middleware provides access to the XML analyses and documentation. These
are stored in an Oracle XML DB (Oracle XML DB, 2009), which is an XML extension of
the Oracle database.
The main computational component of EpiGRAPH service is the backend. It is respon-

sible for all attribute calculations and the follow-up analyses. I implemented the backend
in Python (Python Programming Language, 2009), using the R software for statistical
calculations and diagram generations (R Project for Statistical Computing, 2009) and the
Weka package (Hall et al., 2009) for machine learning and prediction analysis. For at-
tribute calculations EpiGRAPH uses an Oracle database (Oracle Database, 2009) to store
the default attributes.
The technologies chosen to implement EpiGRAPH reflect the requirements for the com-
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ponent matched to the available solutions at the time of implementation. A simple frontend
implementation ensures consistency with a variety of web browsers, which is facilitated by
the use of JavaServlet Faces. The middleware needs to support multiple connections and
requests to an XML database efficiently, hence Java was used together with specific libraries
for Oracle XML database (Oracle XML DB, 2009) and XML processing (van Steensel, 2005;
Java Architecture for XML Binding, 2009) were used. The backend implements most of
the computational logic and its source code is provided to the public. Therefore, a good
choice is the popular Python language, together with the widely-used statistical softwares
R and Weka.

The standalone version of EpiGRAPH

EpiGRAPH also provides two standalone versions to be used and extended by interested
researchers. The two versions differ in their usage of a relational database to store de-
fault attributes. The database standalone version comprises a backend and a relational
database. The no-database standalone version consists only of a backend that expects
that all datasets needed for an analysis are provided in the X-GRAF XML format. The
no-database standalone version is designed for employing the EpiGRAPH methodology
within larger pipelines.

Internal workflow of an EpiGRAPH analysis

The standard workflow of an analysis with EpiGRAPH runs as follows. First, via the
frontend the user sets up the analysis, by selecting data, specifying parameters and choosing
methods. The analysis is submitted and sent to the middleware, where after it is verified,
it is submitted to the Oracle XML database. The backend regularly checks the XML
database via the middleware for analyses waiting to be processed. Each analysis is fetched
by the backend. In the most computationally demanding step, the backend maps all
attributes required by the analysis and then proceeds with the statistical and machine
learning analysis. The processing status of the analysis is regularly updated in the XML
database and the user can view it via the user interface. When the analysis is completed,the
results or any error notifications are stored in the analysis file in the XML database and
the user is notified. She can request the results via the frontend that presents them
accompanied by meaningful and intuitive visualizations.
Additionally, the EpiGRAPH backend is accessible via command line. The user can

thus submit an analysis in XML format, but can also run more specific computations, such
as mapping of a particular attribute. The command-line interface allows to easily submit
batches of analyses, as well as to include an EpiGRAPH analysis into a pipelines. Finally,
the standalone versions of EpiGRAPH support only the command line interface.

Extendibility of the EpiGRAPH methodology and data

Diverse sources of attribute data Every genomic or epigenomic attribute has to be loaded
into the service. EpiGRAPH comprises a plugin-based implementation of the data sources.
On one hand, attribute data can be stored in (and loaded from) relational databases, text
files or analysis definitions. On the other hand, calculated attributes can be defined based
on formula-like expressions involving already existing attributes.
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The database of default annotations that we support, while sufficient for many analy-
ses, can lack features needed for very specific user needs. The user can expand the set of
attributes by defining derived attributes. This can be done either via a genomic calcula-
tor interface or by inserting a script-based description directly into X-GRAF XML. For
example, the observed vs expected CpG ratio is a score that is often computed and used
to determine if a specific genomic region is a CpG island or not. The formula is (#CpG∗N)

(#C∗#G)

where N is length of sequence and it can be easily added and computed via the EpiGRAPH
genome calculator.
Specifying the parameters of an analysis or attribute calculation directly in an X-GRAF

XML file requires advanced scripting skills, but provides more computational options than
use of the frontend. Additionally, it is easier to run an analysis with slightly different
parameters, by editing the X-GRAF XML file, then by re-introducing it via the user
interface. Sharing analyses with other researchers is also easier by sharing X-GRAF files,
who can in turn extend, change data and re-run the analysis.

Adding new statistical, machine learning and visualization modules By default, Epi-
GRAPH offers statistical, machine learning, visualization and prediction modules. How-
ever, future developments of the service are likely to feature new methods and visualiza-
tions. Hence, we made the software implementation easily extensible with new analysis
modules.

The X-GRAF XML format

Description of the X-GRAF format EpiGRAPH analyses and attribute definitions are
stored in XML files. In order to standardize the format and to ensure the consistent usage
of these files between the frontend, backend and middleware, we defined the X-GRAF
format. The X-GRAF format implements an XML schema that ensures the correctness of
each X-GRAF file and a set of rules that define the meaning of and interaction between
the different components (X-GRAF XML Format Documentation, 2009; Illustration of the
X-GRAF File Format, 2009). An X-GRAF XML is used for two main purposes: attribute
and analysis definitions. The attribute definitions specify how and where the attribute
data is stored. The alternatives are: tab-based data directly included in the XML file, link
to external databases or links to other attributes and corresponding functional description
on how to derive new data. In addition to the data, the X-GRAF format also specifies the
semantics of the attribute. Specifically, the biological group to which the attribute belongs
is specified, together with some human-readable description. Also, the type of information
contained in each column (chromosome start, end, chromosome, scores, categories) must
be given, so that the attribute can be interpreted automatically by EpiGRAPH. Similarly,
the X-GRAF definition of an analysis has a separate section for each analysis type. Each
such section lists the complete settings necessary to specify the analysis, a tracking section
that lists the current state of computations of the analysis and finally a results section that
embeds the results from the analysis.

Advantages of using the X-GRAF format EpiGRAPH stores attribute and analysis defi-
nitions, supplementary data and results in the same X-GRAF XML file. There are several
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advantages of this approach: reproducibility, documentation, extensibility and ease of col-
laborative work. By storing the complete specification of an analysis, supplementary data
and results in the same file, it contains the full documentation of the analysis and ensures
that the analysis can be rerun at any time and will result in the same or similar results
(the results may differ slightly if a randomization is employed such as with downsampling
for machine learning). The X-GRAF format includes both machine-readable and human-
readable sections and thus the XML file together with the X-GRAF rules (X-GRAF XML
Format Documentation, 2009; Illustration of the X-GRAF File Format, 2009) can be easily
exported as human-readable documentation. The X-GRAF format stimulates collabora-
tive research. Users can share analyses by simply sharing the X-GRAF XML files, which
can be easily verified or extended and re-submitted via the web user interface or via the
command line interface. Finally, the clear and standardized format allows EpiGRAPH
analyses to be easily processed by other software tools.

4.3. Applications

In this section we will present three real-world applications of EpiGRAPH. The first study
– methylation of CpG islands in promoters – is in fact closely related to the use case that
inspired the development of the software. We mentioned this study in the previous chapter
(see Section 3.4.1) and we use it as a running example throughout this thesis. Furthermore,
the study demonstrates how EpiExplorer and EpiGRAPH can be piped together in order
to discover and test interesting associations (see Section 3.4.1). The second use case is
concerned with investigating the diversity of DNA methylation across multiple tissues and
the varying association with the DNA sequence. In the third use case we utilize EpiGRAPH
to perform a cross-species analysis on homologous gene promoters.

4.3.1. Running example: DNA methylation of CpG islands

Overview

While the negative genomic correlation between CpG density and DNA methylation has
been known for a long time (Bird, 1985), recent bioinformatic studies on predicting DNA
methylation have substantially refined our knowledge of which genomic attributes dis-
tinguish methylation-prone from methylation-resistant regions. Specifically, it has been
reported that the DNA methylation state of CpG islands is highly associated with DNA
sequence and repeats (Bock et al., 2006; Das et al., 2006; Fang et al., 2006). These authors
used methylation measurements from early experimental technologies in order to construct
computational models for DNA methylation of CpG islands.
In section 3.4.1, we used EpiExplorer to extract a set of consistently methylated CpG

islands and a set of consistently unmethylated CpG islands. Our results suggested that
certain sequence patterns are discriminative regarding the methylation status of the set of
regions. However, these observations were mostly visual and not statistically confirmed.
Here2, we use EpiGRAPH to rigorously evaluate these associations, by means of statis-
tical analysis and machine learning. In the process we demonstrate the analytical power
of EpiExplorer and EpiGRAPH working in tandem: EpiExplorer helps to interactively
explore various possible associations and identify some for follow up statistical analysis,
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EpiGRAPH performs advanced statistical and machine learning analysis to confirm such
hypotheses.
We define an EpiGRAPH analysis in which we compare the set of consistently methylated

CpG islands with the consistently unmethylated CpG islands as derived by EpiExplorer. By
consistently methylated (unmethylated) we mean methylated (unmethylated) in 7 different
embryonic and somatic tissues. This study is closely related to the initial case study that
provoked the development of EpiGRAPH in the form of a publicly available service by
(Bock et al., 2006). In their work, Bock and colleagues used a prototype version of the
EpiGRAPH methodology and database to investigate the differences between methylated
and unmethylated CpG islands in 132 islands (data from Yamada et al. (2004)) located
on chromosome 21. Additionally, a version of this analysis based on the extended dataset
from Yamada et al. (2006) comprising 149 CpG islands is used as a tutorial demonstration
of the EpiGRAPH software in (EpiGRAPH tutorial, 2009). The study we present in
this section extends these two analyses, by using high-resolution DNA methylation data
from multiple tissues to identify the sets of consistently methylated and unmethylated
CpG islands (almost twenty thousand CpG islands). Notably, the results reported by the
extended analysis are consistent with the limited initial analysis, based on 149 CpG islands
from a single chromosome in one tissue.

EpiGRAPH analysis confirms significant association between DNA sequence and CpG
island methylation

The EpiGRAPH analysis of the methylation of CpG islands takes the following steps.
First, EpiGRAPH computes the values of all default features for each methylated or un-
methylated CpG island. This is the most computationally intense part of the analysis as
EpiGRAPH has to extract and aggregate the data for hundreds of genomic and epige-
nomic annotations and match them against almost twenty thousand CpG islands. Then,
EpiGRAPH performs a statistical analysis to identify the features that are most discrimi-
natory (in the sense of statistical significance, i.e. smallest p-values) between the positives
(consistently unmethylated) and the negatives (consistently methylated) CpG islands. We
observe that the most significant feature is Pat_CA_freq (Figure 4.5). As explained in
Appendix B this feature represents the frequency of the strand-unspecific DNA sequence
pattern ‘CA’, meaning that EpiGRAPH counted all occurrences of CpA and its reverse
complement TpG. Consequently, the results of the EpiGRAPH statistical analysis con-
firm the suggestion of EpiExplorer (see Section 3.4.1) that TpG and CpA frequency differs
between methylated and unmethylated CpG islands. Our finding has biological support.
Indeed, it has been shown that erroneous repair of spontaneous deamination causes methy-
lated CpGs to be repaired into CpAs or TpGs.
The next most distinguishing feature is the DNA helix rise as predicted based on the

simulation data from Gardiner et al. (2003). As pointed out in the original study ((Bock
et al., 2006)), the methylated CpG islands tend to have higher values for the DNA helix rise,
indicating unusual DNA structures in methylated CpG islands. However, the DNA helix
rise values are calculated based on the DNA sequence, so this association may be mediated
by sequence patterns. Among the other significant features we mention the frequency

2This section reports on an unpublished work performed by the author of this thesis.
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Figure 4.5.: Top ten most significant attributes reported by EpiGRAPH statistical analysis
when predicting CGIs with constitutive methylation.

of the CpG pattern as well as its standard deviation. The standard deviation feature is
given by the distribution of CpG frequencies obtained by partitioning each region into
many consecutive subregions. It has lower values when the distribution of CpGs is similar
along the whole region and higher values if certain parts have high CpG frequencies while
others are CpG poor. High values of CG_std are usually indicative of regions overlapping
with CGIs. Previously, it has been reported that CpG frequency is a strong predictor
of DNA methylation (Straussman et al., 2009; Weber et al., 2007; Bock et al., 2006; Das
et al., 2006). Naturally, the characteristics of the distribution of CpGs within a region (eg.
the standard deviation Pat_CG_std) also are associated with the DNA methylation state.
‘Low complexity repeats’ and ‘Simple repeats’ are also discriminative features. Enrichment
of such repeats in unmethylated CpG islands has been reported previously (De et al., 2013)
and has been also suggested by the analysis with EpiExplorer earlier in this thesis (see
Section 3.4.1).

Interestingly, the results of our analysis are consistent with a similar EpiGRAPH analysis
conducted on the very restricted dataset of Yamada et al. (2006), consisting of only 149

CpG islands on chromosome 21. Figure 4.6 summarizes the results of this analysis.

Figure 4.7 shows the automatically generated box plot that demonstrates the significant
difference between the distributions of the CpA pattern in the two subsets of CpG islands.
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Figure 4.6.: Top ten most significant attributes as reported by the original EpiGRAPH
analysis on 149 CpG islands located on chromosome 21 Yamada et al. (2006).

Machine learning analysis successfully models DNA sequence pattern features to
predict DNA methylation

Further quantitative information on the strength of the association between DNA sequence
and DNA methylation is provided by the EpiGRAPH machine learning analysis (see Figure
4.8). The machine learning module uses cross validation to estimate prediction accuracy
when using DNA sequence features to predict the DNA methylation status of CpG islands.
The analysis reports a prediction accuracy of 86.6% only based on DNA sequence. We
observe strong prediction signal based only on the DNA structure features (83.4%), repeat-
based features (71.4%) and gene-based features (67.7%). Interestingly, when we combine
all features together the prediction accuracy increases only slightly, to 88.7%, indicating
that groups of features different from the DNA sequence add little predictive power. The
results on the restricted set of CpG islands on chromosome 21 (see Figure 4.9) confirm the
strongest signal coming from DNA sequence (84.5%). Under these experimental conditions,
the combination of all feature groups achieves lower prediction accuracy than the DNA
sequence itself (81.2%). This can be explained by the small number of samples used with
large number of features, which can affect the performance of the model by overfitting.
We also investigate how different combinations of feature groups perform on the same
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Figure 4.7.: Diagram visualizing the difference of the CpA/TpG distributions

Figure 4.8.: Machine learning analysis results when predicting methylation of CpG islands
with constitutive methylation. Rows show the performance of various linear
SVM models, trained with different sets of features.

prediction task. The results (see Figure 4.10) show that combining the groups ‘DNA
structure’, ‘Repetitive DNA’ and ‘Genes’ with the ‘DNA sequence’ group strengthens the
predictive power of the model.
All analyses above have been carried out using a linear SVM model. Linearity may limit

the performance of the model, as it may not be flexible enough to capture the underlying
interplay between features. We repeated the analyses using all machine learning models
available in EpiGRAPH. In Figure 4.11 we report the prediction performance of different
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Figure 4.9.: Machine learning analysis results when predicting methylation of CpG islands
from Yamada et al. (2006): rows show the performance of various linear SVM
models, trained with different sets of features.

Figure 4.10.: Performance of linear SVM models trained with combinations of groups of
features (rows).

models that predict DNA methylation based on DNA sequence. We observe that most of
the models report prediction accuracies similar with those of the linear SVMs, between
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Figure 4.11.: Performance of various machine learning models, trained with DNA sequence
features.

84% and 86%. We believe that linear models are already expressive enough to describe
the relation between sequence and DNA methylation state, whereas introducing a more
complex interplay between features does not improve the prediction models.

Discussion

In this section, we used EpiGRAPH to test hypotheses suggested by EpiExplorer (in Sec-
tion 3.4.1. We confirmed the strong association between specific DNA sequence patterns
and the DNA methylation of CpG islands. Using EpiGRAPH, we modeled and predicted
DNA methylation state of CpG islands only based on their DNA sequence with 86.6%

accuracy. However, in this study we did not discuss one important aspect, namely that
DNA methylation and histone modifications are tissue-specific, while DNA sequence is
not. In the next section, we analyze the tissue-specific aspects of DNA methylation and
its association with DNA sequence.

4.3.2. DNA methylation in pluripotent cells may constitute an epigenetic ground
state

DNA methylation is a key mechanism of epigenetic gene regulation. It is known that DNA
methylation dynamically changes during the development of an organism, with two major
waves of epigenetic reprogramming occurring in germ cells and during early embryonic
development (Reik, 2007). In the previous section, we reported that constitutive DNA
methylation patterns in somatic cells can be predicted from DNA sequence with high
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accuracy. The result is a rather generic one, therefore we were interested in finding out if
the strength of the relation between sequence and methylation status varies among different
tissues or stages of cell development. Below we present our findings3.

Motivation

In the previous section, we used EpiGRAPH to evaluate the association between the DNA
methylation state of CpG islands and DNA sequence. We formulated a classification task
with the target variable being whether a CpG island is consistently methylated or not and
reported a prediction accuracy of more than 86%.
With the advancement of next generation sequencing technology, the accuracy and the

resolution of methylation measurements improves greatly, allowing for detailed analyses
of variation of methylation patterns between individuals (Bock et al., 2008) or across
different tissues (Rakyan et al., 2008; Straussman et al., 2009; Meissner et al., 2008). A
major limitation of previous published work (Bock et al., 2006; Das et al., 2006; Fang et al.,
2006) on prediction of DNA methylation is the focus on single somatic tissues for which
sufficient data were available. While it has been argued that DNA methylation patterns
are relatively stable between different somatic cell types (Rakyan et al., 2008; Song et al.,
2005), there is also considerable evidence that DNA methylation changes in response to
developmental clues and environmental influences such as in-vitro culture (Meissner et al.,
2008; Mohn et al., 2008). Furthermore, it is well established that DNA methylation follows
a complex and dynamic life cycle (Reik et al., 2001; Reik, 2007).
In the view of a dynamically changing epigenome, the question is how to interpret DNA

methylation predictions that are derived from a static genome sequence. On one hand,
DNA methylation predictions might capture a single stable epigenetic state encoded in the
DNA sequence. In this case we expect different prediction accuracies between cell types,
depending on how similar each cell type’s DNA methylation profile is to the sequence-
encoded state. On the other hand, the prediction algorithm might be able to identify
tissue-specific clues for DNA methylation from training data (e.g. the binding sites of
tissue-specific transcription factors), enabling it to predict DNA methylation equally well
in multiple cell types.
The available genome-wide DNA methylation data from different tissues enables us to

revisit DNA methylation prediction on a large scale. First, genome-scale methods for DNA
methylation profiling have been developed and applied across a wide range of cell types
(Meissner et al., 2008; Rakyan et al., 2008). We use EpiGRAPH to perform genome-scale
DNA methylation prediction for multiple cell types, including pluripotent cells (embry-
onic stem cells and embryonic germ cells), somatic cells (neural progenitor cells, primary
astrocytes, fibroblasts, B cells, T cells, liver tissue, lung tissue, spleen tissue, brain tis-
sue) and in vitro derived cells (neural progenitor cells and astrocytes obtained by in vitro
differentiation). We used data published in Meissner et al. (2008); Gu et al. (2010).
In what follows, we train classification models to predict methylation of CpG islands and

other genomic regions such as gene promoters, 3’ UTRs and others in multiple tissues and
we compare the accuracies of these models to better understand the link between static

3This section reports on an unpublished work. The study was planned together with Christoph Bock.
The analysis was conducted by the author of this thesis.
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DNA sequence and tissue-specific DNA methylation.

Methods

Methylation was measured by sequencing genomic DNA from mouse using reduced repre-
sentation bisulfite sequencing (RRBS). This procedure provides methylation measurements
for about 5% of the CpGs, approximately half of which are located within CpG islands.
The authors include methylation maps for embryonic stem cells, primary neural cells and
other primary tissues. In Table 4.3 we list the available datasets and we enumerate the
number of observed CpGs as well as the distribution between methylated (with methyla-
tion ratio greater than 0.66) and unmethylated (with methylation ratio less than 0.34).
For most of the tissues, the data contains DNA methylation measurements for around nine
hundred thousand CpGs that are predominantly unmethylated. Even though, we previ-
ously reported that the majority of CpGs are unmethylated, the reported numbers are
not surprising as the RRBS technology focuses mainly on CpG dinucleotides within CpG
islands (Bock et al., 2010a).
In our analysis, we investigate genomic regions, the biological function of which may be

influenced by their methylation state. Our main focus is on (1) gene promoters and (2)
bona fide CpG islands (BFCGIs). The latter are defined by (Bock et al., 2007) as DNA
regions with G+C content greater than 50%, CpG observed vs. expected ratio greater than
0.6 and length at least 700bp. We also consider interesting the following sets of regions:
(3) middle exons of RefSeq genes with at least 3 exons, (4) 3’ untranslated regions (UTRs)
of RefSeq genes, (5) putative enhancers (Visel et al., 2009), (6) conserved regions longer
than 100bp, and (7) a control set of regions that were selected by randomly sampling from
the genome.
For each of the above region sets, we compute DNA methylation levels by averaging

over the methylation of each CpG dinucleotide within each region. The scores range from
0 to 1, with low values for unmethylated sites and high values for methylated sites. For
the purpose of our study, all regions with scores below 0.34 are considered unmethylated,
whereas regions with scores above 0.66 are considered methylated. In order to ensure high
confidence in the methylation scores, we also restrict our analysis to regions that contain
measurements for at least 5 CpGs. Regions with methylation scores between 0.33 and 0.66

or that contain less than 5 CpG covered by the experimental data are not included in the
analyses. Based on these conditions, in Table 4.4 we count the CpG islands for which
representative information is available.
We define regions with consistent DNA methylation as regions that have the same methy-

lation state (e.g. methylated) in at least half of the tissues and are not, for example, un-
methylated in any of the tissues. All other regions are considered differentially methylated
(DMR).
We used EpiGRAPH to predict binary methylation states of genomic regions from at-

tributes derived from DNA sequence. As we discussed previously in this chapter, given a
set of genomic regions, EpiGRAPH computes automatically a vast set of DNA sequence
pattern features. Based on these features, EpiGRAPH fits a linear SVM classifier that pre-
dict the methylation state of genomic regions. Cross-validated (10-fold) prediction accu-
racies are reported, as well as sensitivity (TP/(TP+FN)) and specificity (TN/(TN+FP)).
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Tissue Number of Proportion of Proportion of Proportion of
CpGs methylated CpGs unmethylated CpGs other CpGs

Embryonic stem cells 300ng 736,339 0.204 0.72 0.076

(ES_300ng)
Embryonic stem cells 1000ng 858,720 0.256 0.641 0.103

(ES_1000ng)
Lung 796,667 0.278 0.651 0.071

Brain 907,066 0.298 0.618 0.084

Tail-tip fibroblasts 948,293 0.302 0.611 0.087

(TT)
Embryonic stem cells 100ng 855,232 0.323 0.564 0.113

(ES_100ng)
Spleen 799,697 0.335 0.586 0.079

Embryonic stem cells 30ng 916,923 0.343 0.559 0.098

(ES_30ng)
Liver 668,615 0.344 0.59 0.066

Mouse embryonic fibroblast 903,946 0.345 0.57 0.085

(MEF)
Embryonic stem cells 950,703 0.354 0.579 0.067

(ES)
Embryonic germ line 952,388 0.354 0.563 0.083

(EG)
Primary astrocytes passage 2 919,424 0.369 0.558 0.073

(Astro_primary_p2)
Tcell CD4 874,832 0.371 0.577 0.052

Bcell 894,912 0.376 0.576 0.048

Tcell CD8 821,428 0.38 0.568 0.052

ES-derived neural progenitor 1,007,270 0.391 0.541 0.068

cells passage 50 (NPC_p50)
Primary astrocytes passage 11 928,225 0.398 0.522 0.08

(Astro_primary_p11)
ES-derived neural progenitor 912,441 0.421 0.482 0.097

cells passage 9 (NPC_p9)
ES-derived neural progenitor 921,158 0.425 0.491 0.084

cells passage 18 (NPC_p18)

Table 4.3.: Methylation of CpGs in multiple mouse RRBS experiments from Meissner et al.
(2008); Gu et al. (2010) sorted by number of methylated CpGs

Balanced sampling was performed prior to model fitting, when the classes were highly
unbalanced.

Results

We trained a support vector machine classification model to differentiate between consis-
tently methylated BFCGIs with consistently unmethylated based on their DNA sequence
patterns. The estimated prediction accuracy is 92.3% with sensitivity of 94.7% and speci-
ficity of 96.6%. Note that this accuracy is higher than the results reported in the previous
section for a similar analysis on human DNA methylation. One of the main differences be-
tween the analyses is that the current analysis used much more detailed sequence data as all
possible 4-mers are also included in the model. Furthermore, the selection of consistently
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Tissue Number of Number of Number of Number of CGIs
methylated CGIs unmethylated CGIs undecided CGIs with insufficient data

ES_300ng 174 12,799 337 14,148
ES_1000ng 321 13,013 421 13,703
ES_100ng 356 13,098 483 13,521
ES_30ng 502 13,156 498 13,302
Liver 537 11,275 677 14,969
Lung 627 12,343 388 14,100
EG 692 12,750 601 13,415
ES 709 12,787 593 13,369
Spleen 820 12,189 439 14,010
Brain 910 12,613 391 13,544
TT 1,009 12,636 422 13,391
TcellCD8 1,041 11,839 390 14,188
TcellCD4 1,089 12,201 407 13,761
Astro_primary_p2 1,118 12,026 798 13,516
Bcell 1,121 12,271 369 13,697
NPC_p9 1,639 10,189 2,094 13,536
MEF 1,027 12,242 661 13,528
Astro_primary_p11 1,618 10,996 1382 13,462
NPC_p18 2,384 9,961 1,651 13,462
NPC_p50 2,659 10,478 1,193 13,128

Table 4.4.: Methylation of CpG islands in multiple mouse RRBS experiments from Meiss-
ner et al. (2008); Gu et al. (2010) sorted by number of methylated CGIs

methylated cases in the previous analysis was more permissive (consistently methylated
in seven tissues), as compared to the current analysis (a region is marked as consistently
methylated if it does not have different methylation in any of the tissues). Finally, in the
current analysis we use a more restrictive definition of a CpG island, i.e. length of at least
700bp, while in the previous section we used the UCSC annotation that includes CpG
islands as little as 200bp in length. The analyses were also performed in difference species.
We discuss more about the differences between the mouse and human CpG islands in the
Section 4.3.3.

We evaluated the performance of the model trained on the cases with consistent methy-
lation by predicting the DNA methylation state of a test set comprising of all differentially
methylated BFCGIs and evaluated the prediction accuracies against the methylation pat-
tern of every individual tissue. The results in Table 4.5 show that the prediction accu-
racies achieved on the differentially methylated cases are much lower: between 55% (for
NPC_p18) and 75% (for ES). Moreover, we observe higher prediction accuracies in ES and
EG cells (75% and 74%) when compared to the rest of the tissues. This suggests that the
association between the constitutive DNA methylation and DNA sequence most closely
resembles the methylation pattern in embryonic tissues. An alternative interpretation of
this result can be that ES cells have the smallest amount of tissue-specific methylation.

Table 4.6 reports the prediction accuracies of models trained to predict the DNA methy-
lation for each tissue separately. The results indicate that the prediction accuracies of
most models are above 90%, except neural progenitor cells, for which we report a low
83%. We observe that the methylation in embryonic tissues shows stronger association
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Tissue Prediction accuracy Number of cases Sensitivity Specificity
ES 75.16± 0.12 803 76.84 73.98

EG 74.02± 0.1 844 77.48 71.83

ES_30ng 69.9± 0.15 1127 84.17 65.34

Brain 69.81± 0.11 918 70.98 67.97

Bcell 67.6± 0.1 960 58.83 69.64

Astro_primary_p2 66.99± 0.13 1006 65.26 73.27

Spleen 66.6± 0.1 793 59.19 64.15

ES_100ng 66.24± 0.15 1037 84.87 62.9

ES_1000ng 66.2± 0.14 929 85.43 63.09

MEF 65.42± 0.14 911 63.93 70.52

Lung 65.4± 0.15 748 66.05 64.74

ES_300ng 64.25± 0.15 898 86 62.12

TT 63.52± 0.12 978 63.35 63.86

Astro_primary_p11 62.13± 0.11 1128 60.05 77.04
Liver 62.02± 0.11 628 61.01 63.37

TcellCD8 59.49± 0.1 890 57.9 67.72

TcellCD4 59.27± 0.11 941 57.55 66.56

NPC_p9 58.87± 0.12 973 57.76 71.53

NPC_p50 58.64± 0.12 1358 54.92 83.68

NPC_p18 55.34± 0.12 1112 54.73 69.99

Table 4.5.: Prediction accuracies on the DMR BFCGI methylation in multiple mouse
RRBS experiments based on an SVM model trained on the consistently methy-
lated BFCGIs

with DNA sequence patterns than the methylation of somatic cells. This effect seems to
be the result of higher sensitivity or ability to correctly predict methylated cases. This
hypothesis has a biological basis: following the early epigenetic reprogramming events, a
ground methylation state is restored on the genome and DNA sequence can be one of the
main factors that determines the methylation state set immediately after. Later on, as
bona fide CpG islands acquire or lose methylation during differentiation, the association
between methylation and DNA sequence decreases.

DNA sequence predictors of DNA methylation state across different tissues In the pre-
vious section, we reported the high prediction accuracy of the models based on DNA se-
quence patterns when predicting the methylation state of bona fide CpG islands. The sta-
tistical analysis of EpiGRAPH quantifies the statistical association between DNA methy-
lation and each of the DNA sequence patterns. In Figure 4.12, we present the properties
that were found significantly associated with the DNA methylation in all tissues (the nam-
ing conventions for features are explained in Appendix B). First, we observe that the CpA
pattern and its reverse complement TpG appear significantly more in methylated BFCGIs.
This observation is consistent with our previous findings in Sections 3.4.1 and 4.3.1. The
results also indicate that frequencies of G and C-rich patterns tend to be higher in un-
methylated CpG islands. Multiple ‘standard-deviation’ features (‘std’ features), for which
higher values indicate irregular distributions of a sequence pattern, have significantly higher
values in unmethylated CpG islands. A possible interpretation is that unmethylated CpG
islands often have a core with consistent CpG-related sequence patterns, but these patterns
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Tissue Prediction accuracy Sensitivity Specificity AUC
ES_1000ng 94.5± 0.06 93.4 95.1 98.7

ES_300ng 94.4± 0.05 94 94.6 98.6

ES_30ng 94± 0.05 92.5 94.7 98.4

ES 93.9± 0.04 91.4 95.1 98.3

ES_100ng 93.8± 0.03 92.4 94.5 98.3

EG 93.6± 0.04 90.5 95.1 98.2

Brain 92.7± 0.06 88.6 94.8 97.3

Lung 92.6± 0.05 89.1 94.4 97.3

MEF 92.2± 0.06 87 94.8 96.9

Astro_primary_p2 91.9± 0.06 86.6 94.6 96.9

Liver 91.6± 0.06 86.9 94 96.8

TT 91.4± 0.06 85.5 94.3 96.2

TcellCD8 91.1± 0.09 84.8 94.3 96.1

Spleen 91± 0.05 85.2 93.8 96

Bcell 90.9± 0.06 84.6 94 95.8

TcellCD4 90.6± 0.06 84 93.9 95.7

NPC_p9 87.6± 0.1 76.8 93 93.5

Astro_primary_p11 87.2± 0.08 76.6 92.5 92.9

NPC_p18 84± 0.12 69 91.4 90.1

NPC_p50 83.4± 0.06 68.9 90.7 88.9

Table 4.6.: Prediction accuracies of the BFCGI methylation in multiple mouse RRBS ex-
periments based on SVM models trained for each individual tissue

appear less towards the borders of the CpG island.
We further inspected features that were significantly associated with the methylation

profile of at least one, but not with all tissues. The results (see Figure 4.13) show that
multiple features appear significant in only few tissues. Interestingly, two major clusters
of tissues seem to form: the pluripotent tissues and the somatic tissues. A potentially
interesting finding is that the group of features, which are significant only in somatic
tissues seem to be highly associated with the TATA-box sequence pattern (TATAAA),
possibly indicating that TATA-box BFCGI (usually associated with tissue-specific genes)
are unmethylated in somatic tissues, but silenced in embryonic ones.

Analyzing DNA methylation in different region types We extended the scope of the study
by analyzing DNA methylation in relation to several other groups of genomic functional
elements. We evaluated the DNA methylation state of gene body representatives (gene
exons and 3’ UTR), gene enhancers, conserved regions and a set of arbitrary sampled
genomic regions that do not overlap with any of the aforementioned groups. Similarly to
the CpG islands analysis, we extracted methylation profiles for these genomic regions and
used EpiGRAPH to train classification models that predict DNA methylation states for
every combination of genomic region and tissue. The results (see Figure 4.14) confirm that
for gene promoters and CpG islands (not the BFCGI definition, but a relaxed definition
with length of at least 200 bp), the methylation state is more associated with DNA sequence
in pluripotent cells than in adult cells. The same holds for gene body regions (exons and
3’ UTR). Interestingly, we get low prediction accuracies for the case of conserved elements
and random regions. A possible explanation is that these sets of regions are selected so
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Figure 4.12.: The table displays all features that were found to be significantly associated
with DNA methylation state in all tissues by a p-value threshold of 0.001
after Bonferoni correction. The features on the left have higher values in un-
methylated BFCGI, while those on the right have higher values in methylated
CGI

that they do not overlap with any gene or CpG island overlap and thus are less often
subject to active epigenetic regulation.

Discussion

In the above analysis, we extended the study that reports DNA sequence being a strong
predictor of DNA methylation state. We started by evaluating the performance of the
model derived on BFCGIs with constitutive methylation and observed that it predicts
best the methylation patterns in pluripotent cells. To estimate the association between
DNA sequence and tissue-specific methylation, we modeled the dependency for each tissue
individually. We observe strong association in all tissues, but highest performance was
obtained for embryonic stem cells and embryonic germ cells. The accuracies are lower
in somatic cells and further deteriorate for in-vitro cultured cells. Our results suggest
a model in which reprogramming establishes an epigenetic ground state that is largely
encoded in the DNA sequence. With the establishment of tissue-specific methylation, the
association between DNA methylation and the DNA sequence slowly decreases, until it is
reestablished in the following germline transmission. When inspecting the actual sequence
patterns, we observe that T/A patterns are indicative of methylated regions and G/C
patterns of unmethylated regions. Furthermore, there is a clear group of sequence patterns
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Figure 4.13.: Histogram of DNA sequence patterns that were found significant in at least
one tissue. Red color indicates that a feature is significant and the values of
the feature are higher in unmethylated regions, green means that the feature is
significant and its values are higher in methylated region and yellow indicates
that the feature was not found significant in the particular tissue
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Figure 4.14.: Heatmap representation of the prediction accuracies from machine learning
classification scenarios for multiple tissues and region types. Each cell corre-
sponds to a specific setting of genomic region set (rows) and a tissue (column).
The color of the cells indicates the prediction accuracy estimation based on
a stratified cross-validation of a machine learning classification model based
on DNA sequence features.

significant only for the embryonic tissues. Finally, we inspected the DNA methylation
of non-genic and non-CGI regions, where we observe little to no predictive associations
between the DNA sequence and the DNA methylation.

4.3.3. Epigenetics of orthologous gene promoters

This study demonstrates how EpiGRAPH can be used for analyzing epigenomic differ-
ences between species. Specifically, we take a look at the CpG islands co-locating with
orthologous promoters in human and mouse. The study was part of more extensive work
we present in (Feuerbach et al., 2012)4.

Motivation

In Chapter 2 of this thesis, we described the main epigenetic mechanisms of regulation of
gene expression: methylation and histone modifications. Presently, genome-wide and high-
resolution assays afford the investigation of epigenetic modifications in various organisms,
tissues and in diseased cells. For example, abnormal methylation patterns are associated
with a variety of diseases. Such patterns can be used to diagnose functionally deviating

4The author of this thesis prepared and carried out the EpiGRAPH analyses reported in this section.
These analyses were designed and interpreted together with Lars Feuerbach and his other co-authors
in Feuerbach et al. (2012).
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cell states (Noushmehr et al., 2010; Figueroa et al., 2010; Yi et al., 2011; Bock et al., 2011).
Identifying such associations between DNA methylation states and different diseases and
extracting relevant biomarkers is a nontrivial task. It is essential that these associations are
studied in appropriate model systems. Studies in mouse are a typical practice. Using other
organisms as model is not straightforward, as the conservation of a functional region (e.g.
promoter) in a model organism does not imply similar epigenetic regulation machinery. A
common studied target is the conservation of gene promoter regulation. Our application
aims at analyzing the conservation of epigenetic regulation of promoters between human
and mouse. The study takes the following steps.

• We start from a sequence-based classification of human-mouse orthologous gene pro-
moters in two types, co-localizing or not with a CGI. Specifically, we select gene
promoters in human and assign them to two different categories, those the orthologs
of which co-localize with CGIs in mouse, and those the orthologs of which are not
CGIs in mouse. We refer to that as the CGI-state of a gene promoter. We use
EpiGRAPH to try and identify genomic and epigenomic attributes that differentiate
between these categories.

• Next, we involve in the analysis the methylation status of the promoters. We investi-
gate the methylation status depending on overlap with CGIs, in human and mouse.
We use EpiGRAPH to find attributes that discriminate between the methylation
status of promoters.

• Last, we gather the human and mouse promoters together and use EpiGRAPH to
predict the corresponding genome of each case.

Conservation of CpG islands in orthologous gene promoters in human and mouse

We used the dataset consisting of 3197 manually curated human-mouse orthologous gene
pairs reported and analyzed in (Jiang et al., 2007). We used Galaxy ((Goecks et al.,
2010)) to determine the gene promoter regions and to match them against the dataset of
human and mouse CpG islands. At the end of this preprocessing work (described in detail
in (Feuerbach et al., 2012)) we obtained a set of 2910 orthologous gene promoters from
mouse and human with their genome coordinates as well as their CGI-state in human and
mouse. Then, we used EpiGRAPH to annotate these genomic regions with a large number
of genomic and epigenetic features, such as G+C content and histone modifications.

Mouse CGI promoter Mouse non-CGI promoter

Human CGI promoter 1820 284

Human non-CGI promoter 152 654

Table 4.7.: Conservation of CpG islands in promoters orthologous in human and mouse

We subsequently partitioned the dataset into different subsets according to promoter
type and host species. Specifically, we are interested if promoters overlap with CpG islands
(CGIs), in each of the two organisms. Table 4.7 shows that the majority of orthologous
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promoters share the same CGI-state. However, there are gene promoters that overlap with
a CGI only in one of the species.
By definition, genes orthologous in two species can be traced to a common ancestor. For

a pair of orthologous genes in human and mouse, the situation that one of the genes has a
promoter overlapping a CGI and the other does not can arise in three different ways: (i) in
one species, the CGI has been lost by mutation or genomic rearrangement and alternative
regulation mechanisms have become dominant; (ii) in the common ancestor, the gene was
alternatively regulated, but then the promoter in one species evolved to be regulated by
promoter CpG island DNA methylation ; (iii) the CGI definition fails to correctly classify
promoters that are close to violating the relevant constraints. These promoters have been
described as intermediate CpG content promoters (ICPs) (Weber et al., 2007). In this last
case, even small fluctuations in the general species-specific genome sequence composition
can put such a promoter above or below the thresholds of the CGI definition, thus leading
to the wrong assumption that a change in biological function has occurred.
A possible mechanism for a loss of CGIs in promoter regions (i) is a slow erosion process

that is triggered by increased DNA methylation in the germline followed by subsequent
loss of individual CpGs through spontaneous deamination. Such erosion has previously
been observed for CGIs in the mouse genome (Matsuo et al., 1993). Here, we investigate
if this process is associated with the genomic properties of the promoter and can also be
observed at the orthologous human loci (albeit at a slower pace).

Features of human CGI promoters predictive of the CGI-state of the orthologous mouse
promoter

The objective of the first analysis is to identify features of human CGI promoters that
are predictive of the CGI-state of the orthologous gene promoters in mouse. The two
types of promoters distinguished in this study are CGI-associated promoters and non-
CGI-associated promoters. Hence, the target variable of the EpiGRAPH analysis is the
CGI status of the orthologous promoter in mouse. The features that we investigate for
associations include: frequency counts for various DNA sequence patterns, predicted DNA
structure, information for overlap with repeats, evolutionary history, population variation,
and others.
In the results table of the statistical analysis (Figure 4.15), the features are displayed

ranked according to p-value. The statistical test on the frequency of the CpG dinucleotides
(Pat_CG_freq) reports a very low p-value that remains significant after multiple testing
correction, indicating the rejection of the null hypothesis – in our case, that the frequency
of CpG dinucleotides in human CGI promoters orthologous to mouse CGI promoters has
the same distribution as in the human CGI promoters orthologous to mouse non-CGI
promoters. Another feature used to define CGIs – the observed versus expected ratio
of CpG within the regions (CpG_obs_vs_exp_ratio) (defined as (#CpG∗N)

(#C∗#G) where N is
length of sequence – is also significantly different between the groups. Also, a more complex
measure for CGI strength that integrates the combined epigenetic score for bona fide
CGI prediction (Bock et al., 2007) with DNA sequence features shows significant higher
values for the human CGI promoters that have matching state in mouse. Furthermore,
we notice that the H3K4me3 and H4K20me1 histone modifications are enriched in the
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Figure 4.15.: Statistical results of the EpiGRAPH analysis of CGI-state of mouse promoters
orthologous to human CGI promoters

human CGI promoters whose orthologs resemble CGI promoters in mouse as well. These
post-translational modifications of histones are generally associated with open chromatin
and CGIs that are especially enriched for CpGs. However, the experimental data for
those histone modifications used in that analysis were obtained only from blood tissues
(see (EpiGRAPH attribute documentation, 2009)) and should be interpreted cautiously,
as they do not necessarily correlate with histone modification states in other tissues. More
precisely, the presence of these marks indicates that a promoter is subject to epigenetic
regulation in at least one tissue, but their absence in one tissue does not rule out that
the promoter is epigenetically regulated in other tissues. Among the most significant
sequence patterns are a measure for the ratio between CpG frequency and the frequency
of the spontaneous deamination products TpG and CpG (CpG_vs_TpG_v_CpA_ratio)
and the CpA/TpG frequency (CA_freq as search is performed on both strands and thus
includes the reverse complement as well). Both values indicate that deamination products
are enriched in those promoters that do not have a CGI status in mouse.

As previously mentioned, visual inspection of the data is an important step. The diagram
generation module of EpiGRAPH enables the user to inspect the distribution of a feature
with respect to the target. The box plot presented in Figure 4.16 indicates that for human
CGI promoters the observed versus expected ratio of CpG counts of orthologous to mouse
non-CGI promoters is significantly lower as that of orthologous to mouse CGI promoters.
Nonetheless, the substantial overlap of the two distributions in the range between 0.55

and 0.65 also indicates that this feature alone does not offer sufficient power to predict
whether or not the orthologous mouse promoter of a human CGI promoter also contains a
CGI. These observations are quantified by the machine learning analysis, which measures
the predictive power of genomic features grouped by biological function (Figure 4.17). We
used only the default linear SVM model for this application. Prediction accuracies barely
exceed 70%, which suggests that no group of features is strongly predictive if a human CGI
promoter of an gene has a CGI promoter in its orthologous gene in mouse.
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Figure 4.16.: Box plot showing the distributions of observed versus expected ratios of CpG
counts of human CpG island promoters that are orthologous to mouse CGI
promoters (yellow) or mouse non-CGI promoters (red).

Figure 4.17.: Machine learning results of the EpiGRAPH analysis of CGI-state of mouse
promoters orthologous to human CGI promoters

In this analysis, we tested and confirmed the hypothesis that human CGI promoters
that do not overlap with CGIs at the homologous mouse loci display general properties
of ICP-like CGIs (Weber et al., 2007), such as lower frequency of CpG and lower CpG
observed versus expected ratio, and furthermore show less evidence for open chromatin,
such as H3K4me3 histone modifications. A potential explanation can be that the Takai-
Jones CGI definition could be too strict for the mouse genome. The previously mentioned
CGI erosion process (Matsuo et al., 1993) has caused loss of CpGs at the boundaries of
many CGIs (Jiang et al., 2007) and produced a somewhat shrunken CGI type in mouse.
This would primarily affect weaker islands, as those require fewer mutations to be pushed
below one of the three thresholds of the definition and as a result not to be considered to
be CGIs any more. Hence, not a full change in promoter type explains most of the lost
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CGIs, but a slight evolutionary change in their structure that is not reflected in the CGI
definition. To test these hypotheses in the context of more epigenetic data, in the next
analysis we inspect the DNA methylation properties of the promoters in more detail.

Analyzing DNA methylation state of orthologous promoters

Here, we analyze the association of DNA methylation and CpG conservation in the con-
text of orthologous gene promoters in human and mouse. For this purpose, we extract
methylation information for all orthologous promoters both in human and mouse. We
use methylation data obtained from Reduced Representation Bisulfite Sequencing (RRBS)
experiments (Gu et al., 2010). RRBS allows for the assignment of a methylation score to
every covered cytosine. To obtain a representative methylation score for a promoter, Epi-
GRAPH averages the methylation scores of the individual CpG sites within this promoter.

CGI promoter
Unmethylated Methylated
Human Mouse Human Mouse

Human and mouse 1746 1759 28 10

Only human 224 94 18 40

Only mouse 14 119 28 3

Neither 34 42 165 137

Table 4.8.: Distribution of methylation data for orthologous promoters visualized by
genome and promoter CGI status

We inspect the distribution of the methylated and unmethylated promoters in the dif-
ferent groups of promoters, with respect to their CGI status (Table 4.8). To this end, the
methylation information for every promoter is converted from a continuous value between
0 and 1 to a discrete state – methylated or unmethylated. We performed the current anal-
ysis, with cutoff values of 0.34 and 0.66 as well as with the stricter 0.25 and 0.75 and we
did not observe significant difference in the results (analysis not included).
We observe that promoters in the group ‘mouse CGI promoters orthologous to non-CGI

human promoters’ are predominantly methylated in human. In contrast, the corresponding
promoters in mouse are predominantly unmethylated. In spite of the relatively small
number of cases, it potentially indicates that in human most of these promoters either
have lost their ability to be epigenetically regulated or are silenced by DNA methylation
in the analyzed tissues. However, in mouse, the majority of these promoters appear to be
still epigenetically active, even though they do not meet the CGI criteria.
To set up an EpiGRAPH analysis, we select mouse promoters that are CGI in human

but are not CGI in mouse. We exclude all cases that do not have strong methylation
scores by adding to the inclusion filter a restriction that methylation score is either less
than 0.33 or more than 0.66. The target variable is the methylation status of mouse
promoters as a binary value obtained by rounding the methylation score. We analyze the
genetic properties of these promoters for significant differences between the methylated
and unmethylated promoters. The results (Figure 4.18) indicate that unmethylated non-
CGI promoters in mouse have significantly higher frequency of CpG (Figure 4.18A) as
well as higher CpG observed versus expected ratios (Figure 4.18B) and lower CpA and
TpG frequencies (Figure 4.18C) which indicate CpG decay. The unmethylated non-CGI
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Figure 4.18.: Visualization of some of the most significant features differentiating between
methylated and unmethylated mouse non-CGI promoters orthologous to hu-
man CGI promoters.

promoters are either protected from this decay or it is considerable slower. Interestingly,
the most significantly discriminating feature is the standard deviation of CpG content
(CG_std)(Figure 4.18D). As we discussed previously in this chapter, lower values for a
standard deviation of a sequence pattern are associated with a homogeneous distribution
of the pattern within the regions (close to a uniform distribution). A possible explanation
for the significantly elevated values of this feature in unmethylated non-CGI promoters is
the previously described erosion process (Jiang et al., 2007) that starts from the edges of
the CGI. Alternatively, the mouse genome may possess smaller CGIs that are somewhat
below the minimal length of human CGIs.
These results indicate that among the promoters that lost or never gained CGIs in mouse

we observe two different classes. On the one hand, there are the methylated promoters,
which apparently homogeneously lose CpGs due to the CpG decay effect. On the other
hand, we have the unmethylated promoter type, which represents a shrunken type of CGI
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that dropped below the thresholds of the classical CGI definition but still shows many of
the classical CGI characteristics. To assess variation in the general evolutionary trends
between mouse and human, the next section compares the orthologous promoters with
unchanged CGI state. This provides an additional background against which the results
from this section can be evaluated.

Differential analysis of human and mouse promoter traits.

As a follow-up analysis, we test which genomic features are significantly different between
human and mouse promoters. For this purpose, we use EpiGRAPH to compute all common
attributes for human and mouse promoters (attributes from the EpiGRAPH database
available for both human and mouse genomes). We then combine the two sets of promoter
regions into one analysis file, to which we add the target variable, called ‘Genome’, which
indicates to which organism each promoter belongs to. We then perform a machine learning
analysis with EpiGRAPH to identify the differentiating features.

Figure 4.19.: List of genomic features that significantly differ between human and mouse
promoters.

The results show that the set of features could differentiate almost perfectly (prediction
accuracy of 98%) between the mouse cases and the human cases. Furthermore, the features
that distinguish most significantly are associated with G+C content and CpG markers, as
well as repeat content (Figure 4.19). We repeat the above analysis only for the True/True
group, i.e., promoters that overlap with CGIs both in mouse and human. The results indi-
cate similar predictive power (prediction accuracy of 98%) and show that the human CGI
promoters have significantly more CpGs and higher observed versus expected ratio in the
context of only slightly higher G+C content. Furthermore, we notice that the TpG/CpA
pattern is more frequent in mouse promoters. Both observations are in accordance with the
findings of (Jiang et al., 2007) and indicate that CGIs in mouse have lost CpGs probably
due to the CpG decay effect. We also observe significantly higher overlap with repeats for
human promoters. As third analysis in this subsection, we compare promoters that are
neither CGI in human, nor in mouse. The results point to a number of patterns of A+T-
rich patterns indicative for the original genome of the regions. In all cases, the available
features could almost perfectly distinguish between human and mouse promoters.
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Hence, the EpiGRAPH analyses show that orthologous human and mouse promoters
have significantly different genetic and epigenetic features. We showed that the corre-
sponding CGI promoters in mouse have significantly less CpG dinucleotides and enriched
products of spontaneous deamination compared to human while orthologous non-CGI pro-
moters differ in mouse and human mainly in their A+T-rich patterns. This indicates
that CGI promoters have lost CpG content in mouse compared to the orthologous human
promoters.

4.4. Conclusions

In this chapter, we present the methodology and implementation of a software toolkit for
identifying associations between genetic and epigenetic annotations, called EpiGRAPH.
EpiGRAPH supports an extensive database of genomic and epigenomic annotations and
offers a powerful backend computation engine that can map these annotations onto sets
of regions. The properties of the regions can be analyzed via statistical tests and machine
learning models, integrated into the software. The EpiGRAPH analysis is provided as a
public web service and is accessible via a user interface. Thus, the users do not need to
have programming abilities in order to process their data. In this chapter, we also demon-
strate how EpiExplorer and EpiGRAPH can be used together in a pipeline. We show the
performance of the software on a large scale analysis and finally, we go beyond genome
borders in a cross-species study of orthologous promoters.

Limitations and future directions. The EpiGRAPH annotation database is loaded into
an Oracle database. While efficient, the Oracle database requires nontrivial maintenance,
complex updates and requires advanced programming skills to implement efficient annota-
tion mapping. Furthermore, the need for database support may have prevented researchers
from hosting local EpiGRAPH instances, despite us offering the EpiGRAPH source code
and providing standalone versions. In the meantime, while developing EpiExplorer, we del-
egated annotation mapping to open-source software libraries, such as BEDtools (Quinlan
and Hall, 2010) that work directly with annotation BED files. This reduced the mainte-
nance need and increased the speed of dataset computations. Probably, EpiGRAPH can
benefit from the same approach, namely to delegate most of the annotations processing
and mapping to specialized tools.
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Biologists and the medical community increasingly recognize the power of computational
technologies and statistical methods to assist with understanding biological processes, due
to the increasing size and quality of the experimental data available. On the other hand,
increasing number of scientists with computer background are attracted by the applica-
tions in the field of bioinformatics. In the field of genetics and epigenetics, improved
sequencing technologies produce high quality experimental data at reasonable cost, pro-
viding the prerequisites for development of advanced data visualization and mining tools.
In this thesis, we presented two software toolkits and the related methodology: EpiEx-
plorer and EpiGRAPH. They are available as public web services, easy to use by biologists
and bioinformatic researchers without requiring programming skills.
With EpiExplorer, we provide a tool for interactive mining and visualization of large

epigenomic datasets. EpiExplorer moves away from the classic concept of genome browsers,
which focus on a single genomic locus at a time, but instead, it provides overviews on sets
of regions. The visualizations provide information on the proportion of the regions that
co-localize with specific genomic annotations (e.g. conserved regions), on the distributions
of DNA sequence patterns within the regions, the distribution of histone modifications
in the vicinity of the regions and many others. These visualizations are requested via
the user interface through easy mouse clicks and are provided instantly. The user is not
limited to a fixed set of regions, but can interact with virtually all subsets of the dataset
she starts with. The qualities of EpiExplorer stem from an innovative combination of
the best practices from four data analysis fields. Specifically, EpiExplorer uses the power
of text search engines (web search) on genomic and epigenomic data (bioinformatics) to
provide faceting overviews (e-commerce) on dynamic intersections of the data (business
intelligence). During its first year, users uploaded an average of 3.5 custom datasets into
EpiExplorer and it answered about 140 analyses daily.
We demonstrated the use of EpiExplorer in a validation study where we reproduced

known properties of CpG islands. Then, we inspected the properties of a novel epigenetic
mark – 5hmC – where we observed strong association with the H3K4me1 histone modi-
fication and co-localization with enhancer elements. Furthermore, we used the ability of
EpiExplorer to refine a dataset to select a candidate set that can be further analyzed in an
experimental setting. Finally, we demonstrated how EpiExplorer can be used with cohorts
of patient data as we looked into datasets representing DNA breakpoints from seven can-
cer types (identified from arrayCGH data). We observed that recurring DNA breakpoints
in these cancers tend to be in genomic locations with functional epigenetic markings, as
opposed to the non-recurring breakpoints. These analyses demonstrate how EpiExplorer
can be used to generate biological hypothesis that claim non-random associations among
two or more epigenomic or genomic properties.
EpiGRAPH, the second toolkit and methodology that we introduced in this thesis, fo-
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cuses on providing a sound statistical and machine learning framework for automatically
testing hypotheses of associations among genomic and epigenomic annotations on given
sets of regions. In this manuscript, I discussed in detail the design and implementation
of the general and scalable backend that sustains the heavy computational tasks – train-
ing large classification models, assessing feature relevance, generating meaningful reports
to the user. We demonstrated how to connect EpiExplorer and EpiGRAPH in a single
analysis workflow: EpiExplorer suggests that there is an interesting association between
methylation of CpG islands and DNA sequence patterns and EpiGRAPH proves that the
association holds, with statistical testing. More generally, we showed that DNA sequence
patterns are strongly predictive of the methylation state of CpG islands. We then looked
into how the strength of the association changes in different tissue types. Finally, we
moved beyond the single organism bounds and analyzed the epigenomic properties of gene
promoters orthologous in mouse and human and their association with DNA sequence and
DNA methylation.
We provided both EpiGRAPH and EpiExplorer as open-source, publicly available web

services. When implementing the tools, we emphasized on reproducible and documented
analyses that are easy to share with colleagues. One of the key aspects of these tools is
their ability to sustain large databases of epigenetic and genetic maps, the maintenance of
which is entirely hidden from the users. In that way, we facilitate complex analyses that
otherwise require advanced computational and programming skills. With the expected
increase in available data, maintaining easy interaction, instant querying and continuous
updates of such integrated databases remains a major challenge to the next generation of
epigenetic software.

5.1. Outlook

A major challenge in our work was to assemble, maintain and update the databases of Epi-
Explorer and EpiGRAPH. Nowadays, there are multiple distributed relational or NoSQL
databases (mongoDB, Couchbase, SciDB) and search indexes (ElasticSearch, Solr, Lucene)
available. These provide solutions that are transparently scalable on multiple servers as
the size of the data changes, support easy updates, reliable data storage and are easily de-
ployable in the cloud. Scalable cloud-based storage with integrated indexing and querying
services can enable instant access to the enormous datasets expected in the near future in
the bioinformatic field. Providing such general solutions for access to biological datasets
will save bioinformaticians the large overhead of maintaining local copies of these databases
and empower them to focus on answering the biological questions they are interested in.
Finally, we emphasize again the importance of reproducible and verifiable results at also

discussed in Goecks et al. (2010). At this moment, most analytical results are shared only
as a static view (usually a figure or a table) in a scientific paper. However, we (and a
large part of the community) feel that this is not satisfactory. Current technology allows
already for better sharing of results. With our tools, we make sure that fellow researchers
can seamlessly reproduce and extend our research with their own ideas within minutes.
With most of biological datasets being public and most tools being offered as public web
services, the bioinformatic community has fewer excuses not to embrace fully open research.
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A. EpiExplorer annotations listing

An up-to-date listing of the EpiExplorer annotations is available here: https://docs.
google.com/spreadsheet/pub?key=0AmGLN6XZ0HmydGNoSi1pVDRmQkg3OERURkh5N09NX1E&
output=html&widget=true.

A.1. Human genome

A.1.1. hg19

Table A.1.: Full listing of the EpiExplorer’s annotation datasets for human genome assembly hg19.
Annotation name Annotation group Annotation source
Active promoters (GM12878) Chromatin state segmentation ENCODE
Active promoters (H1-hESC) Chromatin state segmentation ENCODE
Active promoters (HepG2) Chromatin state segmentation ENCODE
Active promoters (HMEC) Chromatin state segmentation ENCODE
Active promoters (HSMM) Chromatin state segmentation ENCODE
Active promoters (HUVEC) Chromatin state segmentation ENCODE
Active promoters (K562) Chromatin state segmentation ENCODE
Active promoters (NHEK) Chromatin state segmentation ENCODE
Active promoters (NHLF) Chromatin state segmentation ENCODE
Heterochromatin (low signal)
(GM12878)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(H1-hESC)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(HepG2)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(HMEC)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(HSMM)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(HUVEC)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(K562)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(NHEK)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(NHLF)

Chromatin state segmentation ENCODE

Insulators (GM12878) Chromatin state segmentation ENCODE
Insulators (H1-hESC) Chromatin state segmentation ENCODE
Insulators (HepG2) Chromatin state segmentation ENCODE
Insulators (HMEC) Chromatin state segmentation ENCODE
Insulators (HSMM) Chromatin state segmentation ENCODE
Insulators (HUVEC) Chromatin state segmentation ENCODE
Continued on next page
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Annotation name Annotation group Annotation source
Insulators (K562) Chromatin state segmentation ENCODE
Insulators (NHEK) Chromatin state segmentation ENCODE
Insulators (NHLF) Chromatin state segmentation ENCODE
Poised promoters (GM12878) Chromatin state segmentation ENCODE
Poised promoters (H1-hESC) Chromatin state segmentation ENCODE
Poised promoters (HepG2) Chromatin state segmentation ENCODE
Poised promoters (HMEC) Chromatin state segmentation ENCODE
Poised promoters (HSMM) Chromatin state segmentation ENCODE
Poised promoters (HUVEC) Chromatin state segmentation ENCODE
Poised promoters (K562) Chromatin state segmentation ENCODE
Poised promoters (NHEK) Chromatin state segmentation ENCODE
Poised promoters (NHLF) Chromatin state segmentation ENCODE
Polycomb repressed (GM12878) Chromatin state segmentation ENCODE
Polycomb repressed (H1-hESC) Chromatin state segmentation ENCODE
Polycomb repressed (HepG2) Chromatin state segmentation ENCODE
Polycomb repressed (HMEC) Chromatin state segmentation ENCODE
Polycomb repressed (HSMM) Chromatin state segmentation ENCODE
Polycomb repressed (HUVEC) Chromatin state segmentation ENCODE
Polycomb repressed (K562) Chromatin state segmentation ENCODE
Polycomb repressed (NHEK) Chromatin state segmentation ENCODE
Polycomb repressed (NHLF) Chromatin state segmentation ENCODE
Repetitive CNV (GM12878) Chromatin state segmentation ENCODE
Repetitive CNV (H1-hESC) Chromatin state segmentation ENCODE
Repetitive CNV (HepG2) Chromatin state segmentation ENCODE
Repetitive CNV (HMEC) Chromatin state segmentation ENCODE
Repetitive CNV (HSMM) Chromatin state segmentation ENCODE
Repetitive CNV (HUVEC) Chromatin state segmentation ENCODE
Repetitive CNV (K562) Chromatin state segmentation ENCODE
Repetitive CNV (NHEK) Chromatin state segmentation ENCODE
Repetitive CNV (NHLF) Chromatin state segmentation ENCODE
Strong enhancers (GM12878) Chromatin state segmentation ENCODE
Strong enhancers (H1-hESC) Chromatin state segmentation ENCODE
Strong enhancers (HepG2) Chromatin state segmentation ENCODE
Strong enhancers (HMEC) Chromatin state segmentation ENCODE
Strong enhancers (HSMM) Chromatin state segmentation ENCODE
Strong enhancers (HUVEC) Chromatin state segmentation ENCODE
Strong enhancers (K562) Chromatin state segmentation ENCODE
Strong enhancers (NHEK) Chromatin state segmentation ENCODE
Strong enhancers (NHLF) Chromatin state segmentation ENCODE
Transcriptional elongation
(GM12878)

Chromatin state segmentation ENCODE

Transcriptional elongation (H1-
hESC)

Chromatin state segmentation ENCODE

Transcriptional elongation
(HepG2)

Chromatin state segmentation ENCODE

Transcriptional elongation
(HMEC)

Chromatin state segmentation ENCODE

Transcriptional elongation
(HSMM)

Chromatin state segmentation ENCODE

Transcriptional elongation (HU-
VEC)

Chromatin state segmentation ENCODE

Transcriptional elongation
(K562)

Chromatin state segmentation ENCODE
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Annotation name Annotation group Annotation source
Transcriptional elongation
(NHEK)

Chromatin state segmentation ENCODE

Transcriptional elongation
(NHLF)

Chromatin state segmentation ENCODE

Transcriptional transition
(GM12878)

Chromatin state segmentation ENCODE

Transcriptional transition (H1-
hESC)

Chromatin state segmentation ENCODE

Transcriptional transition
(HepG2)

Chromatin state segmentation ENCODE

Transcriptional transition
(HMEC)

Chromatin state segmentation ENCODE

Transcriptional transition
(HSMM)

Chromatin state segmentation ENCODE

Transcriptional transition (HU-
VEC)

Chromatin state segmentation ENCODE

Transcriptional transition
(K562)

Chromatin state segmentation ENCODE

Transcriptional transition
(NHEK)

Chromatin state segmentation ENCODE

Transcriptional transition
(NHLF)

Chromatin state segmentation ENCODE

Weak enhancers (GM12878) Chromatin state segmentation ENCODE
Weak enhancers (H1-hESC) Chromatin state segmentation ENCODE
Weak enhancers (HepG2) Chromatin state segmentation ENCODE
Weak enhancers (HMEC) Chromatin state segmentation ENCODE
Weak enhancers (HSMM) Chromatin state segmentation ENCODE
Weak enhancers (HUVEC) Chromatin state segmentation ENCODE
Weak enhancers (K562) Chromatin state segmentation ENCODE
Weak enhancers (NHEK) Chromatin state segmentation ENCODE
Weak enhancers (NHLF) Chromatin state segmentation ENCODE
Weak promoters (GM12878) Chromatin state segmentation ENCODE
Weak promoters (H1-hESC) Chromatin state segmentation ENCODE
Weak promoters (HepG2) Chromatin state segmentation ENCODE
Weak promoters (HMEC) Chromatin state segmentation ENCODE
Weak promoters (HSMM) Chromatin state segmentation ENCODE
Weak promoters (HUVEC) Chromatin state segmentation ENCODE
Weak promoters (K562) Chromatin state segmentation ENCODE
Weak promoters (NHEK) Chromatin state segmentation ENCODE
Weak promoters (NHLF) Chromatin state segmentation ENCODE
Weak transcribed (GM12878) Chromatin state segmentation ENCODE
Weak transcribed (H1-hESC) Chromatin state segmentation ENCODE
Weak transcribed (HepG2) Chromatin state segmentation ENCODE
Weak transcribed (HMEC) Chromatin state segmentation ENCODE
Weak transcribed (HSMM) Chromatin state segmentation ENCODE
Weak transcribed (HUVEC) Chromatin state segmentation ENCODE
Weak transcribed (K562) Chromatin state segmentation ENCODE
Weak transcribed (NHEK) Chromatin state segmentation ENCODE
Weak transcribed (NHLF) Chromatin state segmentation ENCODE
Conservation, 46-way by Phast-
Cons

Conservation UCSC Genome Browser

CpG islands (specific) CpG islands UCSC Genome Browser
HMEC (RRBS) DNA methylation ENCODE
HSMM (RRBS) DNA methylation ENCODE
Continued on next page



126 A EpiExplorer annotations listing

Annotation name Annotation group Annotation source
HepG2 (RRBS) DNA methylation ENCODE
H1-hESC (RRBS) DNA methylation ENCODE
HeLaS3 (RRBS) DNA methylation ENCODE
GM12878 (RRBS) DNA methylation ENCODE
DNA DNA Repeats UCSC Genome Browser
LINE DNA Repeats UCSC Genome Browser
Low complexity DNA Repeats UCSC Genome Browser
LTR DNA Repeats UCSC Genome Browser
rRNA DNA Repeats UCSC Genome Browser
Satellite DNA Repeats UCSC Genome Browser
Simple repeats DNA Repeats UCSC Genome Browser
SINE DNA Repeats UCSC Genome Browser
snRNA DNA Repeats UCSC Genome Browser
tRNA DNA Repeats UCSC Genome Browser
Unknown DNA Repeats UCSC Genome Browser
A frequency DNA sequence UCSC Genome Browser
A+T frequency DNA sequence UCSC Genome Browser
C frequency DNA sequence UCSC Genome Browser
C+G frequency DNA sequence UCSC Genome Browser
CpA frequency DNA sequence UCSC Genome Browser
CpA+TpG frequency DNA sequence UCSC Genome Browser
CpG frequency DNA sequence UCSC Genome Browser
G frequency DNA sequence UCSC Genome Browser
T frequency DNA sequence UCSC Genome Browser
TpG frequency DNA sequence UCSC Genome Browser
DNaseI (GM12878) DNaseI hypersensitive sites ENCODE
DNaseI (H1-hESC) DNaseI hypersensitive sites ENCODE
DNaseI (HelaS3) DNaseI hypersensitive sites ENCODE
DNaseI (HepG2) DNaseI hypersensitive sites ENCODE
DNaseI (HMEC) DNaseI hypersensitive sites ENCODE
DNaseI (HUVEC) DNaseI hypersensitive sites ENCODE
DNaseI (K562) DNaseI hypersensitive sites ENCODE
DNaseI (NHEK) DNaseI hypersensitive sites ENCODE
DNaseI (NHLF) DNaseI hypersensitive sites ENCODE
Gene bodies Genes and annotations UCSC Genome Browser and En-

sembl
Gene exons Genes and annotations UCSC Genome Browser and En-

sembl
Gene names and symbols Genes and annotations UCSC Genome Browser and En-

sembl
Gene promoters (-10kb to 2kb) Genes and annotations UCSC Genome Browser and En-

sembl
Gene promoters (-1kb to 1kb) Genes and annotations UCSC Genome Browser and En-

sembl
Gene promoters (-5kb to 1kb) Genes and annotations UCSC Genome Browser and En-

sembl
Gene transcription start sites Genes and annotations UCSC Genome Browser and En-

sembl
GO annotations Genes and annotations UCSC Genome Browser and En-

sembl
OMIM annotations Genes and annotations UCSC Genome Browser and En-

sembl
CTCF (GM12878) Histone modifications ENCODE
CTCF (H1-hESC) Histone modifications ENCODE
CTCF (HepG2) Histone modifications ENCODE
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CTCF (HMEC) Histone modifications ENCODE
CTCF (HSMM) Histone modifications ENCODE
CTCF (HUVEC) Histone modifications ENCODE
CTCF (K562) Histone modifications ENCODE
CTCF (NHEK) Histone modifications ENCODE
CTCF (NHLF) Histone modifications ENCODE
CTCF (Osteobl) Histone modifications ENCODE
CTCF (HSMMtube) Histone modifications ENCODE
CTCF (NHA) Histone modifications ENCODE
CTCF (NHDFAd) Histone modifications ENCODE
H2A.Z (HepG2) Histone modifications ENCODE
H2A.Z (Osteobl) Histone modifications ENCODE
H2A.Z (K562) Histone modifications ENCODE
H2A.Z (HSMM) Histone modifications ENCODE
H2A.Z (HSMMtube) Histone modifications ENCODE
H2A.Z (GM12878) Histone modifications ENCODE
H3K27ac (GM12878) Histone modifications ENCODE
H3K27ac (HepG2) Histone modifications ENCODE
H3K27ac (HMEC) Histone modifications ENCODE
H3K27ac (HSMM) Histone modifications ENCODE
H3K27ac (HUVEC) Histone modifications ENCODE
H3K27ac (K562) Histone modifications ENCODE
H3K27ac (NHEK) Histone modifications ENCODE
H3K27ac (NHLF) Histone modifications ENCODE
H3K27ac (NHDFAd) Histone modifications ENCODE
H3K27ac (Osteobl) Histone modifications ENCODE
H3K27ac (H1hESC) Histone modifications ENCODE
H3K27ac (HSMMtube) Histone modifications ENCODE
H3K27ac (NHA) Histone modifications ENCODE
H3K27ac (HelaS3) Histone modifications ENCODE
H3K27me3 (GM12878) Histone modifications ENCODE
H3K27me3 (H1-hESC) Histone modifications ENCODE
H3K27me3 (HMEC) Histone modifications ENCODE
H3K27me3 (HSMM) Histone modifications ENCODE
H3K27me3 (HUVEC) Histone modifications ENCODE
H3K27me3 (K562) Histone modifications ENCODE
H3K27me3 (NHEK) Histone modifications ENCODE
H3K27me3 (NHLF) Histone modifications ENCODE
H3K27me3 (HepG2) Histone modifications ENCODE
H3K27me3 (NHDFAd) Histone modifications ENCODE
H3K27me3 (NHA) Histone modifications ENCODE
H3K27me3 (HelaS3) Histone modifications ENCODE
H3K36me3 (GM12878) Histone modifications ENCODE
H3K36me3 (H1-hESC) Histone modifications ENCODE
H3K36me3 (HepG2) Histone modifications ENCODE
H3K36me3 (HMEC) Histone modifications ENCODE
H3K36me3 (HSMM) Histone modifications ENCODE
H3K36me3 (HUVEC) Histone modifications ENCODE
H3K36me3 (K562) Histone modifications ENCODE
H3K36me3 (NHEK) Histone modifications ENCODE
H3K36me3 (NHLF) Histone modifications ENCODE
H3K36me3 (NHDFAd) Histone modifications ENCODE
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Annotation name Annotation group Annotation source
H3K36me3 (Osteobl) Histone modifications ENCODE
H3K36me3 (HSMMtube) Histone modifications ENCODE
H3K36me3 (NHA) Histone modifications ENCODE
H3K36me3 (HelaS3) Histone modifications ENCODE
H3K4me1 (GM12878) Histone modifications ENCODE
H3K4me1 (H1-hESC) Histone modifications ENCODE
H3K4me1 (HMEC) Histone modifications ENCODE
H3K4me1 (HSMM) Histone modifications ENCODE
H3K4me1 (HUVEC) Histone modifications ENCODE
H3K4me1 (K562) Histone modifications ENCODE
H3K4me1 (NHEK) Histone modifications ENCODE
H3K4me1 (NHLF) Histone modifications ENCODE
H3K4me1 (Osteobl) Histone modifications ENCODE
H3K4me1 (HSMMtube) Histone modifications ENCODE
H3K4me1 (NHA) Histone modifications ENCODE
H3K4me2 (GM12878) Histone modifications ENCODE
H3K4me2 (H1-hESC) Histone modifications ENCODE
H3K4me2 (HepG2) Histone modifications ENCODE
H3K4me2 (HMEC) Histone modifications ENCODE
H3K4me2 (HSMM) Histone modifications ENCODE
H3K4me2 (HUVEC) Histone modifications ENCODE
H3K4me2 (K562) Histone modifications ENCODE
H3K4me2 (NHEK) Histone modifications ENCODE
H3K4me2 (NHLF) Histone modifications ENCODE
H3K4me2 (HSMMtube) Histone modifications ENCODE
H3K4me2 (HelaS3) Histone modifications ENCODE
H3K4me2 (NHDFAd) Histone modifications ENCODE
H3K4me2 (Osteobl) Histone modifications ENCODE
H3K4me3 (GM12878) Histone modifications ENCODE
H3K4me3 (H1-hESC) Histone modifications ENCODE
H3K4me3 (HepG2) Histone modifications ENCODE
H3K4me3 (HMEC) Histone modifications ENCODE
H3K4me3 (HSMM) Histone modifications ENCODE
H3K4me3 (HUVEC) Histone modifications ENCODE
H3K4me3 (K562) Histone modifications ENCODE
H3K4me3 (NHEK) Histone modifications ENCODE
H3K4me3 (NHLF) Histone modifications ENCODE
H3K4me3 (HSMMtube) Histone modifications ENCODE
H3K4me3 (NHDFAd) Histone modifications ENCODE
H3K4me3 (HelaS3) Histone modifications ENCODE
H3K4me3 (NHA) Histone modifications ENCODE
H3K9ac (GM12878) Histone modifications ENCODE
H3K9ac (H1-hESC) Histone modifications ENCODE
H3K9ac (HepG2) Histone modifications ENCODE
H3K9ac (HMEC) Histone modifications ENCODE
H3K9ac (HSMM) Histone modifications ENCODE
H3K9ac (HUVEC) Histone modifications ENCODE
H3K9ac (K562) Histone modifications ENCODE
H3K9ac (NHEK) Histone modifications ENCODE
H3K9ac (NHLF) Histone modifications ENCODE
H3K9ac (HSMMtube) Histone modifications ENCODE
H3K9ac (HelaS3) Histone modifications ENCODE
Continued on next page



A.1 Human genome 129

Annotation name Annotation group Annotation source
H3K9ac (NHDFAd) Histone modifications ENCODE
H3K9me1 (HUVEC) Histone modifications ENCODE
H3K9me1 (K562) Histone modifications ENCODE
H3K9me1 (NHEK) Histone modifications ENCODE
H3K9me3 (GM12878) Histone modifications ENCODE
H3K9me3 (Osteobl) Histone modifications ENCODE
H3K9me3 (HSMM) Histone modifications ENCODE
H3K9me3 (K562) Histone modifications ENCODE
H3K79me2 (HepG2) Histone modifications ENCODE
H3K79me2 (K562) Histone modifications ENCODE
H3K79me2 (HSMM) Histone modifications ENCODE
H3K79me2 (HSMMtube) Histone modifications ENCODE
H3K79me2 (GM12878) Histone modifications ENCODE
H3K79me2 (HelaS3) Histone modifications ENCODE
H4K20me1 (GM12878) Histone modifications ENCODE
H4K20me1 (H1-hESC) Histone modifications ENCODE
H4K20me1 (HepG2) Histone modifications ENCODE
H4K20me1 (HMEC) Histone modifications ENCODE
H4K20me1 (HSMM) Histone modifications ENCODE
H4K20me1 (HUVEC) Histone modifications ENCODE
H4K20me1 (K562) Histone modifications ENCODE
H4K20me1 (NHEK) Histone modifications ENCODE
H4K20me1 (NHLF) Histone modifications ENCODE
H4K20me1 (HSMMtube) Histone modifications ENCODE
H4K20me1 (HelaS3) Histone modifications ENCODE
Pol2(b) (HUVEC) Histone modifications ENCODE
Pol2(b) (K562) Histone modifications ENCODE
Pol2(b) (HelaS3) Histone modifications ENCODE
Pol2(b) (NHEK) Histone modifications ENCODE
Lamina associated domains Lamina associated domains UCSC Genome Browser
MAX (K562) Transcription factor binding

sites
UCSC Genome Browser

PU.1 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

PU.1 (K562) Transcription factor binding
sites

UCSC Genome Browser

Sp1 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

Sp1 (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

Sp1 (K562) Transcription factor binding
sites

UCSC Genome Browser

Sp1 (HepG2) Transcription factor binding
sites

UCSC Genome Browser

SRF (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

SRF (K562) Transcription factor binding
sites

UCSC Genome Browser

SRF (GM12878) Transcription factor binding
sites

UCSC Genome Browser

SRF (HepG2) Transcription factor binding
sites

UCSC Genome Browser

YY1 (K562) Transcription factor binding
sites

UCSC Genome Browser

ATF3 (H1hESC) Transcription factor binding
sites

UCSC Genome Browser
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ATF3 (K562) Transcription factor binding

sites
UCSC Genome Browser

ATF3 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

ATF3 (HepG2) Transcription factor binding
sites

UCSC Genome Browser

BATF (GM12878) Transcription factor binding
sites

UCSC Genome Browser

BCL3 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

EGR-1 (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

EGR-1 (K562) Transcription factor binding
sites

UCSC Genome Browser

EGR-1 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

ETS1 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

ETS1 (K562) Transcription factor binding
sites

UCSC Genome Browser

GABP (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

GABP (K562) Transcription factor binding
sites

UCSC Genome Browser

GABP (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

GABP (GM12878) Transcription factor binding
sites

UCSC Genome Browser

JunD (HepG2) Transcription factor binding
sites

UCSC Genome Browser

JunD (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

NRSF (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

NRSF (K562) Transcription factor binding
sites

UCSC Genome Browser

NRSF (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

NRSF (GM12878) Transcription factor binding
sites

UCSC Genome Browser

NRSF (HepG2) Transcription factor binding
sites

UCSC Genome Browser

P300 (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

P300 (HepG2) Transcription factor binding
sites

UCSC Genome Browser

P300 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

PBX3 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

Pol2 (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

Pol2 (K562) Transcription factor binding
sites

UCSC Genome Browser

Pol2 (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

Pol2 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

Pol2 (HepG2) Transcription factor binding
sites

UCSC Genome Browser

RXRa (H1hESC) Transcription factor binding
sites

UCSC Genome Browser
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RXRa (HepG2) Transcription factor binding

sites
UCSC Genome Browser

RXRa (GM12878) Transcription factor binding
sites

UCSC Genome Browser

SIX5 (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

SIX5 (K562) Transcription factor binding
sites

UCSC Genome Browser

SIX5 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

TAF1 (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

TAF1 (K562) Transcription factor binding
sites

UCSC Genome Browser

TAF1 (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

TAF1 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

TAF1 (HepG2) Transcription factor binding
sites

UCSC Genome Browser

USF1 (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

USF1 (K562) Transcription factor binding
sites

UCSC Genome Browser

USF1 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

USF1 (HepG2) Transcription factor binding
sites

UCSC Genome Browser

FOSL2 (HepG2) Transcription factor binding
sites

UCSC Genome Browser

MEF2A (K562) Transcription factor binding
sites

UCSC Genome Browser

MEF2A (GM12878) Transcription factor binding
sites

UCSC Genome Browser

Rad21 (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

Rad21 (K562) Transcription factor binding
sites

UCSC Genome Browser

Rad21 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

Rad21 (HepG2) Transcription factor binding
sites

UCSC Genome Browser

TCF12 (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

TCF12 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

BCL11A (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

BCL11A (GM12878) Transcription factor binding
sites

UCSC Genome Browser

BCLAF1 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

BCLAF1 (K562) Transcription factor binding
sites

UCSC Genome Browser

POU2F2 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

ZBTB33 (K562) Transcription factor binding
sites

UCSC Genome Browser

ZBTB33 (HepG2) Transcription factor binding
sites

UCSC Genome Browser

ZBTB33 (GM12878) Transcription factor binding
sites

UCSC Genome Browser
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BHLNE40 (HepG2) Transcription factor binding

sites
UCSC Genome Browser

PAX5-C19 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

PAX5-C20 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

Sin3Ak-20 (H1hESC) Transcription factor binding
sites

UCSC Genome Browser

Sin3Ak-20 (K562) Transcription factor binding
sites

UCSC Genome Browser

Sin3Ak-20 (HepG2) Transcription factor binding
sites

UCSC Genome Browser

A.1.2. hg18

Table A.2.: Full listing of the EpiExplorer’s annotation datasets for human genome assembly hg18.
Annotation name Annotation group Annotation source
Active promoters (GM12878) Chromatin state segmentation ENCODE
Active promoters (H1-hESC) Chromatin state segmentation ENCODE
Active promoters (HepG2) Chromatin state segmentation ENCODE
Active promoters (HMEC) Chromatin state segmentation ENCODE
Active promoters (HSMM) Chromatin state segmentation ENCODE
Active promoters (HUVEC) Chromatin state segmentation ENCODE
Active promoters (K562) Chromatin state segmentation ENCODE
Active promoters (NHEK) Chromatin state segmentation ENCODE
Active promoters (NHLF) Chromatin state segmentation ENCODE
Heterochromatin (low signal)
(GM12878)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(H1-hESC)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(HepG2)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(HMEC)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(HSMM)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(HUVEC)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(K562)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(NHEK)

Chromatin state segmentation ENCODE

Heterochromatin (low signal)
(NHLF)

Chromatin state segmentation ENCODE

Insulators (GM12878) Chromatin state segmentation ENCODE
Insulators (H1-hESC) Chromatin state segmentation ENCODE
Insulators (HepG2) Chromatin state segmentation ENCODE
Insulators (HMEC) Chromatin state segmentation ENCODE
Insulators (HSMM) Chromatin state segmentation ENCODE
Insulators (HUVEC) Chromatin state segmentation ENCODE
Insulators (K562) Chromatin state segmentation ENCODE
Insulators (NHEK) Chromatin state segmentation ENCODE
Insulators (NHLF) Chromatin state segmentation ENCODE
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Poised promoters (GM12878) Chromatin state segmentation ENCODE
Poised promoters (H1-hESC) Chromatin state segmentation ENCODE
Poised promoters (HepG2) Chromatin state segmentation ENCODE
Poised promoters (HMEC) Chromatin state segmentation ENCODE
Poised promoters (HSMM) Chromatin state segmentation ENCODE
Poised promoters (HUVEC) Chromatin state segmentation ENCODE
Poised promoters (K562) Chromatin state segmentation ENCODE
Poised promoters (NHEK) Chromatin state segmentation ENCODE
Poised promoters (NHLF) Chromatin state segmentation ENCODE
Polycomb repressed (GM12878) Chromatin state segmentation ENCODE
Polycomb repressed (H1-hESC) Chromatin state segmentation ENCODE
Polycomb repressed (HepG2) Chromatin state segmentation ENCODE
Polycomb repressed (HMEC) Chromatin state segmentation ENCODE
Polycomb repressed (HSMM) Chromatin state segmentation ENCODE
Polycomb repressed (HUVEC) Chromatin state segmentation ENCODE
Polycomb repressed (K562) Chromatin state segmentation ENCODE
Polycomb repressed (NHEK) Chromatin state segmentation ENCODE
Polycomb repressed (NHLF) Chromatin state segmentation ENCODE
Repetitive CNV (GM12878) Chromatin state segmentation ENCODE
Repetitive CNV (H1-hESC) Chromatin state segmentation ENCODE
Repetitive CNV (HepG2) Chromatin state segmentation ENCODE
Repetitive CNV (HMEC) Chromatin state segmentation ENCODE
Repetitive CNV (HSMM) Chromatin state segmentation ENCODE
Repetitive CNV (HUVEC) Chromatin state segmentation ENCODE
Repetitive CNV (K562) Chromatin state segmentation ENCODE
Repetitive CNV (NHEK) Chromatin state segmentation ENCODE
Repetitive CNV (NHLF) Chromatin state segmentation ENCODE
Strong enhancers (GM12878) Chromatin state segmentation ENCODE
Strong enhancers (H1-hESC) Chromatin state segmentation ENCODE
Strong enhancers (HepG2) Chromatin state segmentation ENCODE
Strong enhancers (HMEC) Chromatin state segmentation ENCODE
Strong enhancers (HSMM) Chromatin state segmentation ENCODE
Strong enhancers (HUVEC) Chromatin state segmentation ENCODE
Strong enhancers (K562) Chromatin state segmentation ENCODE
Strong enhancers (NHEK) Chromatin state segmentation ENCODE
Strong enhancers (NHLF) Chromatin state segmentation ENCODE
Transcriptional elongation
(GM12878)

Chromatin state segmentation ENCODE

Transcriptional elongation (H1-
hESC)

Chromatin state segmentation ENCODE

Transcriptional elongation
(HepG2)

Chromatin state segmentation ENCODE

Transcriptional elongation
(HMEC)

Chromatin state segmentation ENCODE

Transcriptional elongation
(HSMM)

Chromatin state segmentation ENCODE

Transcriptional elongation (HU-
VEC)

Chromatin state segmentation ENCODE

Transcriptional elongation
(K562)

Chromatin state segmentation ENCODE

Transcriptional elongation
(NHEK)

Chromatin state segmentation ENCODE
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Annotation name Annotation group Annotation source
Transcriptional elongation
(NHLF)

Chromatin state segmentation ENCODE

Transcriptional transition
(GM12878)

Chromatin state segmentation ENCODE

Transcriptional transition (H1-
hESC)

Chromatin state segmentation ENCODE

Transcriptional transition
(HepG2)

Chromatin state segmentation ENCODE

Transcriptional transition
(HMEC)

Chromatin state segmentation ENCODE

Transcriptional transition
(HSMM)

Chromatin state segmentation ENCODE

Transcriptional transition (HU-
VEC)

Chromatin state segmentation ENCODE

Transcriptional transition
(K562)

Chromatin state segmentation ENCODE

Transcriptional transition
(NHEK)

Chromatin state segmentation ENCODE

Transcriptional transition
(NHLF)

Chromatin state segmentation ENCODE

Weak enhancers (GM12878) Chromatin state segmentation ENCODE
Weak enhancers (H1-hESC) Chromatin state segmentation ENCODE
Weak enhancers (HepG2) Chromatin state segmentation ENCODE
Weak enhancers (HMEC) Chromatin state segmentation ENCODE
Weak enhancers (HSMM) Chromatin state segmentation ENCODE
Weak enhancers (HUVEC) Chromatin state segmentation ENCODE
Weak enhancers (K562) Chromatin state segmentation ENCODE
Weak enhancers (NHEK) Chromatin state segmentation ENCODE
Weak enhancers (NHLF) Chromatin state segmentation ENCODE
Weak promoters (GM12878) Chromatin state segmentation ENCODE
Weak promoters (H1-hESC) Chromatin state segmentation ENCODE
Weak promoters (HepG2) Chromatin state segmentation ENCODE
Weak promoters (HMEC) Chromatin state segmentation ENCODE
Weak promoters (HSMM) Chromatin state segmentation ENCODE
Weak promoters (HUVEC) Chromatin state segmentation ENCODE
Weak promoters (K562) Chromatin state segmentation ENCODE
Weak promoters (NHEK) Chromatin state segmentation ENCODE
Weak promoters (NHLF) Chromatin state segmentation ENCODE
Weak transcribed (GM12878) Chromatin state segmentation ENCODE
Weak transcribed (H1-hESC) Chromatin state segmentation ENCODE
Weak transcribed (HepG2) Chromatin state segmentation ENCODE
Weak transcribed (HMEC) Chromatin state segmentation ENCODE
Weak transcribed (HSMM) Chromatin state segmentation ENCODE
Weak transcribed (HUVEC) Chromatin state segmentation ENCODE
Weak transcribed (K562) Chromatin state segmentation ENCODE
Weak transcribed (NHEK) Chromatin state segmentation ENCODE
Weak transcribed (NHLF) Chromatin state segmentation ENCODE
28-way most conserved elements Conservation UCSC Genome Browser
CpG islands (sensitive) CpG islands CGIHunter
CpG islands (specific) CpG islands UCSC Genome Browser
Fetal brain (RRBS) DNA methylation ROADMAP
Fetal heart (RRBS) DNA methylation ROADMAP
Fetal kidney (RRBS) DNA methylation ROADMAP
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Fetal lung (RRBS) DNA methylation ROADMAP
hEB16d H1 p38 (RRBS) DNA methylation ROADMAP
hES H1 p38 (RRBS) DNA methylation ROADMAP
hES H9 p58 (RRBS) DNA methylation ROADMAP
hFib 11 p8 (RRBS) DNA methylation ROADMAP
Human blood CD34 mobilized
REMC (RRBS)

DNA methylation ROADMAP

Neuron H9 derived (RRBS) DNA methylation ROADMAP
NPC H9 derived (RRBS) DNA methylation ROADMAP
Skeletal muscle (RRBS) DNA methylation ROADMAP
Smooth muscle (RRBS) DNA methylation ROADMAP
Stomach mucosa (RRBS) DNA methylation ROADMAP
DNA DNA Repeats UCSC Genome Browser
LINE DNA Repeats UCSC Genome Browser
Low complexity DNA Repeats UCSC Genome Browser
LTR DNA Repeats UCSC Genome Browser
rRNA DNA Repeats UCSC Genome Browser
Satellite DNA Repeats UCSC Genome Browser
Simple repeats DNA Repeats UCSC Genome Browser
SINE DNA Repeats UCSC Genome Browser
snRNA DNA Repeats UCSC Genome Browser
tRNA DNA Repeats UCSC Genome Browser
Unknown DNA Repeats UCSC Genome Browser
A frequency DNA sequence UCSC Genome Browser
A+T frequency DNA sequence UCSC Genome Browser
C frequency DNA sequence UCSC Genome Browser
C+G frequency DNA sequence UCSC Genome Browser
CpA frequency DNA sequence UCSC Genome Browser
CpA+TpG frequency DNA sequence UCSC Genome Browser
CpG frequency DNA sequence UCSC Genome Browser
G frequency DNA sequence UCSC Genome Browser
T frequency DNA sequence UCSC Genome Browser
TpG frequency DNA sequence UCSC Genome Browser
DNaseI (GM12878) DNaseI hypersensitive sites ENCODE
DNaseI (H1-hESC) DNaseI hypersensitive sites ENCODE
DNaseI (HelaS3) DNaseI hypersensitive sites ENCODE
DNaseI (HepG2) DNaseI hypersensitive sites ENCODE
DNaseI (HMEC) DNaseI hypersensitive sites ENCODE
DNaseI (HUVEC) DNaseI hypersensitive sites ENCODE
DNaseI (K562) DNaseI hypersensitive sites ENCODE
DNaseI (NHEK) DNaseI hypersensitive sites ENCODE
DNaseI (NHLF) DNaseI hypersensitive sites ENCODE
Gene bodies Genes and annotations UCSC Genome Browser and En-

sembl
Gene exons Genes and annotations UCSC Genome Browser and En-

sembl
Gene names and symbols Genes and annotations UCSC Genome Browser and En-

sembl
Gene promoters (-10kb to 2kb) Genes and annotations UCSC Genome Browser and En-

sembl
Gene promoters (-1kb to 1kb) Genes and annotations UCSC Genome Browser and En-

sembl
Gene promoters (-5kb to 1kb) Genes and annotations UCSC Genome Browser and En-

sembl
Continued on next page
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Annotation name Annotation group Annotation source
Gene transcription start sites Genes and annotations UCSC Genome Browser and En-

sembl
GO annotations Genes and annotations UCSC Genome Browser and En-

sembl
OMIM annotations Genes and annotations UCSC Genome Browser and En-

sembl
CTCF (GM12878) Histone modifications ENCODE
CTCF (H1-hESC) Histone modifications ENCODE
CTCF (HepG2) Histone modifications ENCODE
CTCF (HMEC) Histone modifications ENCODE
CTCF (HSMM) Histone modifications ENCODE
CTCF (HUVEC) Histone modifications ENCODE
CTCF (K562) Histone modifications ENCODE
CTCF (NHEK) Histone modifications ENCODE
CTCF (NHLF) Histone modifications ENCODE
H3K27ac (GM12878) Histone modifications ENCODE
H3K27ac (HepG2) Histone modifications ENCODE
H3K27ac (HMEC) Histone modifications ENCODE
H3K27ac (HSMM) Histone modifications ENCODE
H3K27ac (HUVEC) Histone modifications ENCODE
H3K27ac (K562) Histone modifications ENCODE
H3K27ac (NHEK) Histone modifications ENCODE
H3K27ac (NHLF) Histone modifications ENCODE
H3K27me3 (GM12878) Histone modifications ENCODE
H3K27me3 (H1-hESC) Histone modifications ENCODE
H3K27me3 (HMEC) Histone modifications ENCODE
H3K27me3 (HSMM) Histone modifications ENCODE
H3K27me3 (HUVEC) Histone modifications ENCODE
H3K27me3 (K562) Histone modifications ENCODE
H3K27me3 (NHEK) Histone modifications ENCODE
H3K27me3 (NHLF) Histone modifications ENCODE
H3K36me3 (GM12878) Histone modifications ENCODE
H3K36me3 (H1-hESC) Histone modifications ENCODE
H3K36me3 (HepG2) Histone modifications ENCODE
H3K36me3 (HMEC) Histone modifications ENCODE
H3K36me3 (HSMM) Histone modifications ENCODE
H3K36me3 (HUVEC) Histone modifications ENCODE
H3K36me3 (K562) Histone modifications ENCODE
H3K36me3 (NHEK) Histone modifications ENCODE
H3K36me3 (NHLF) Histone modifications ENCODE
H3K4me1 (GM12878) Histone modifications ENCODE
H3K4me1 (H1-hESC) Histone modifications ENCODE
H3K4me1 (HMEC) Histone modifications ENCODE
H3K4me1 (HSMM) Histone modifications ENCODE
H3K4me1 (HUVEC) Histone modifications ENCODE
H3K4me1 (K562) Histone modifications ENCODE
H3K4me1 (NHEK) Histone modifications ENCODE
H3K4me1 (NHLF) Histone modifications ENCODE
H3K4me2 (GM12878) Histone modifications ENCODE
H3K4me2 (H1-hESC) Histone modifications ENCODE
H3K4me2 (HepG2) Histone modifications ENCODE
H3K4me2 (HMEC) Histone modifications ENCODE
H3K4me2 (HSMM) Histone modifications ENCODE
Continued on next page
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Annotation name Annotation group Annotation source
H3K4me2 (HUVEC) Histone modifications ENCODE
H3K4me2 (K562) Histone modifications ENCODE
H3K4me2 (NHEK) Histone modifications ENCODE
H3K4me2 (NHLF) Histone modifications ENCODE
H3K4me3 (GM12878) Histone modifications ENCODE
H3K4me3 (H1-hESC) Histone modifications ENCODE
H3K4me3 (HepG2) Histone modifications ENCODE
H3K4me3 (HMEC) Histone modifications ENCODE
H3K4me3 (HSMM) Histone modifications ENCODE
H3K4me3 (HUVEC) Histone modifications ENCODE
H3K4me3 (K562) Histone modifications ENCODE
H3K4me3 (NHEK) Histone modifications ENCODE
H3K4me3 (NHLF) Histone modifications ENCODE
H3K9ac (GM12878) Histone modifications ENCODE
H3K9ac (H1-hESC) Histone modifications ENCODE
H3K9ac (HepG2) Histone modifications ENCODE
H3K9ac (HMEC) Histone modifications ENCODE
H3K9ac (HSMM) Histone modifications ENCODE
H3K9ac (HUVEC) Histone modifications ENCODE
H3K9ac (K562) Histone modifications ENCODE
H3K9ac (NHEK) Histone modifications ENCODE
H3K9ac (NHLF) Histone modifications ENCODE
H3K9me1 (HUVEC) Histone modifications ENCODE
H3K9me1 (K562) Histone modifications ENCODE
H3K9me1 (NHEK) Histone modifications ENCODE
H4K20me1 (GM12878) Histone modifications ENCODE
H4K20me1 (H1-hESC) Histone modifications ENCODE
H4K20me1 (HepG2) Histone modifications ENCODE
H4K20me1 (HMEC) Histone modifications ENCODE
H4K20me1 (HSMM) Histone modifications ENCODE
H4K20me1 (HUVEC) Histone modifications ENCODE
H4K20me1 (K562) Histone modifications ENCODE
H4K20me1 (NHEK) Histone modifications ENCODE
H4K20me1 (NHLF) Histone modifications ENCODE
Pol2(b) (HUVEC) Histone modifications ENCODE
Pol2(b) (K562) Histone modifications ENCODE
Pol2(b) (NHEK) Histone modifications ENCODE
Lamina associated domains Lamina associated domains UCSC Genome Browser
AP2alpha (HeLaS3) Transcription factor binding

sites
UCSC Genome Browser

AP2gamma (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

ATF3 (K562) Transcription factor binding
sites

UCSC Genome Browser

BDP1 (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

BDP1 (K562) Transcription factor binding
sites

UCSC Genome Browser

BRF1 (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

BRF1 (K562) Transcription factor binding
sites

UCSC Genome Browser

BRF2 (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

Continued on next page
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Annotation name Annotation group Annotation source
BRF2 (K562) Transcription factor binding

sites
UCSC Genome Browser

cFos (GM12878) Transcription factor binding
sites

UCSC Genome Browser

cFos (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

cFos (K562) Transcription factor binding
sites

UCSC Genome Browser

cJun (GM12878) Transcription factor binding
sites

UCSC Genome Browser

cJun (HUVEC) Transcription factor binding
sites

UCSC Genome Browser

cJun (K562) Transcription factor binding
sites

UCSC Genome Browser

cMyc (GM12878) Transcription factor binding
sites

UCSC Genome Browser

cMyc (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

cMyc (K562) Transcription factor binding
sites

UCSC Genome Browser

E2F1 (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

E2F4 (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

E2F4 (K562) Transcription factor binding
sites

UCSC Genome Browser

E2F6 (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

E2F6 (K562) Transcription factor binding
sites

UCSC Genome Browser

GATA1 (K562) Transcription factor binding
sites

UCSC Genome Browser

GATA2 (K562) Transcription factor binding
sites

UCSC Genome Browser

GTF2B (K562) Transcription factor binding
sites

UCSC Genome Browser

HELFe (K562) Transcription factor binding
sites

UCSC Genome Browser

junD (GM12878) Transcription factor binding
sites

UCSC Genome Browser

junD (K562) Transcription factor binding
sites

UCSC Genome Browser

MAX (GM12878) Transcription factor binding
sites

UCSC Genome Browser

MAX (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

MAX (HUVEC) Transcription factor binding
sites

UCSC Genome Browser

MAX (K562) Transcription factor binding
sites

UCSC Genome Browser

NFE2 (K562) Transcription factor binding
sites

UCSC Genome Browser

NFKB (GM12878) Transcription factor binding
sites

UCSC Genome Browser

Pol2 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

Pol2 (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

Pol2 (HUVEC) Transcription factor binding
sites

UCSC Genome Browser

Pol2 (K562) Transcription factor binding
sites

UCSC Genome Browser

Continued on next page
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Annotation name Annotation group Annotation source
Pol3 (GM12878) Transcription factor binding

sites
UCSC Genome Browser

Pol3 (K562) Transcription factor binding
sites

UCSC Genome Browser

Rad21 (K562) Transcription factor binding
sites

UCSC Genome Browser

RPC155 (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

RPC155 (K562) Transcription factor binding
sites

UCSC Genome Browser

SETDB1 (K562) Transcription factor binding
sites

UCSC Genome Browser

SIRT6 (K562) Transcription factor binding
sites

UCSC Genome Browser

TFIIIC110 (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

TFIIIC110 (K562) Transcription factor binding
sites

UCSC Genome Browser

TR4 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

TR4 (HeLaS3) Transcription factor binding
sites

UCSC Genome Browser

TR4 (HepG2) Transcription factor binding
sites

UCSC Genome Browser

TR4 (K562) Transcription factor binding
sites

UCSC Genome Browser

XRCC4 (K562) Transcription factor binding
sites

UCSC Genome Browser

YY1 (GM12878) Transcription factor binding
sites

UCSC Genome Browser

YY1 (K562) Transcription factor binding
sites

UCSC Genome Browser

ZNF263 (K562) Transcription factor binding
sites

UCSC Genome Browser

ZNF274 (K562) Transcription factor binding
sites

UCSC Genome Browser

ZZZ3 (K562) Transcription factor binding
sites

UCSC Genome Browser

A.2. Mouse genome

A.2.1. mm9

Table A.3.: Full listing of the EpiExplorer’s annotation datasets for mouse genome assembly mm9.
Annotation name Annotation group Annotation source
30-way most conserved elements Conservation UCSC Genome Browser
CpG islands (sensitive) CpG islands CGIHunter
CpG islands (specific) CpG islands UCSC Genome Browser
Brain (RRBS) DNA methylation ROADMAP
Heart (RRBS) DNA methylation ROADMAP
Liver (RRBS) DNA methylation ROADMAP
DNA DNA Repeats UCSC Genome Browser
LINE DNA Repeats UCSC Genome Browser
Low complexity DNA Repeats UCSC Genome Browser
LTR DNA Repeats UCSC Genome Browser
rRNA DNA Repeats UCSC Genome Browser
Continued on next page
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Annotation name Annotation group Annotation source
Satellite DNA Repeats UCSC Genome Browser
Simple repeats DNA Repeats UCSC Genome Browser
SINE DNA Repeats UCSC Genome Browser
snRNA DNA Repeats UCSC Genome Browser
tRNA DNA Repeats UCSC Genome Browser
Unknown DNA Repeats UCSC Genome Browser
A frequency DNA sequence UCSC Genome Browser
A+T frequency DNA sequence UCSC Genome Browser
C frequency DNA sequence UCSC Genome Browser
C+G frequency DNA sequence UCSC Genome Browser
CpA frequency DNA sequence UCSC Genome Browser
CpA+TpG frequency DNA sequence UCSC Genome Browser
CpG frequency DNA sequence UCSC Genome Browser
G frequency DNA sequence UCSC Genome Browser
T frequency DNA sequence UCSC Genome Browser
TpG frequency DNA sequence UCSC Genome Browser
DNaseI adult(A20) DNaseI hypersensitive sites ENCODE
DNaseI adult(Bcellcd19p) DNaseI hypersensitive sites ENCODE
DNaseI adult(Bcellcd43n) DNaseI hypersensitive sites ENCODE
DNaseI adult(Cerebellum) DNaseI hypersensitive sites ENCODE
DNaseI adult(Cerebrum) DNaseI hypersensitive sites ENCODE
DNaseI adult(Fat) DNaseI hypersensitive sites ENCODE
DNaseI adult(Fibroblast) DNaseI hypersensitive sites ENCODE
DNaseI adult(Kidney) DNaseI hypersensitive sites ENCODE
DNaseI adult(Liver) DNaseI hypersensitive sites ENCODE
DNaseI adult(Lung) DNaseI hypersensitive sites ENCODE
DNaseI adult(Tnaive) DNaseI hypersensitive sites ENCODE
DNaseI adult(Wholebrain) DNaseI hypersensitive sites ENCODE
DNaseI E0 (Escj7S129) DNaseI hypersensitive sites ENCODE
DNaseI E0 (Zhbtc4129ola) DNaseI hypersensitive sites ENCODE
DNaseI E14.5 (Brain) DNaseI hypersensitive sites ENCODE
DNaseI immortal (3134Riii) DNaseI hypersensitive sites ENCODE
DNaseI immortal (PatskiSpbl6) DNaseI hypersensitive sites ENCODE
Gene bodies Genes and annotations UCSC Genome Browser and En-

sembl
Gene exons Genes and annotations UCSC Genome Browser and En-

sembl
Gene names and symbols Genes and annotations UCSC Genome Browser and En-

sembl
Gene promoters (-10kb to 2kb) Genes and annotations UCSC Genome Browser and En-

sembl
Gene promoters (-1kb to 1kb) Genes and annotations UCSC Genome Browser and En-

sembl
Gene promoters (-5kb to 1kb) Genes and annotations UCSC Genome Browser and En-

sembl
Gene transcription start sites Genes and annotations UCSC Genome Browser and En-

sembl
GO annotations Genes and annotations UCSC Genome Browser and En-

sembl
H3K4me1 (Bmarrow) Histone modifications ENCODE
H3K4me1 (Cbellum) Histone modifications ENCODE
H3K4me1 (Cortex) Histone modifications ENCODE
H3K4me1 (Heart) Histone modifications ENCODE
H3K4me1 (Kidney) Histone modifications ENCODE
Continued on next page
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Annotation name Annotation group Annotation source
H3K4me1 (Liver) Histone modifications ENCODE
H3K4me1 (Lung) Histone modifications ENCODE
H3K4me1 (Mef) Histone modifications ENCODE
H3K4me1 (Spleen) Histone modifications ENCODE
H3K4me3 (Bmarrow) Histone modifications ENCODE
H3K4me3 (Cbellum) Histone modifications ENCODE
H3K4me3 (Cortex) Histone modifications ENCODE
H3K4me3 (Heart) Histone modifications ENCODE
H3K4me3 (Kidney) Histone modifications ENCODE
H3K4me3 (Liver) Histone modifications ENCODE
H3K4me3 (Lung) Histone modifications ENCODE
H3K4me3 (Mef) Histone modifications ENCODE
H3K4me3 (Spleen) Histone modifications ENCODE
Lamina associated domains Lamina associated domains UCSC Genome Browser
MAX (MEL) Transcription factor binding

sites
UCSC Genome Browser

MAX (CH12) Transcription factor binding
sites

UCSC Genome Browser

TBP (MEL) Transcription factor binding
sites

UCSC Genome Browser

TBP (CH12) Transcription factor binding
sites

UCSC Genome Browser

CHD2 (MEL) Transcription factor binding
sites

UCSC Genome Browser

CHD2 (CH12) Transcription factor binding
sites

UCSC Genome Browser

cJun (CH12) Transcription factor binding
sites

UCSC Genome Browser

cMyb (MEL) Transcription factor binding
sites

UCSC Genome Browser

cMyc (MEL) Transcription factor binding
sites

UCSC Genome Browser

cMyc (CH12) Transcription factor binding
sites

UCSC Genome Browser

CTCF (MEL) Transcription factor binding
sites

UCSC Genome Browser

CTCF (CH12) Transcription factor binding
sites

UCSC Genome Browser

E2F4 (MEL) Transcription factor binding
sites

UCSC Genome Browser

E2F4 (CH12) Transcription factor binding
sites

UCSC Genome Browser

JunD (MEL) Transcription factor binding
sites

UCSC Genome Browser

JunD (CH12) Transcription factor binding
sites

UCSC Genome Browser

MafK (MEL) Transcription factor binding
sites

UCSC Genome Browser

MafK (CH12) Transcription factor binding
sites

UCSC Genome Browser

MxiI (MEL) Transcription factor binding
sites

UCSC Genome Browser

MxiI (CH12) Transcription factor binding
sites

UCSC Genome Browser

P300 (MEL) Transcription factor binding
sites

UCSC Genome Browser

Pol2 (MEL) Transcription factor binding
sites

UCSC Genome Browser

Continued on next page



142 A EpiExplorer annotations listing

Annotation name Annotation group Annotation source
Pol2 (CH12) Transcription factor binding

sites
UCSC Genome Browser

SMC3 (MEL) Transcription factor binding
sites

UCSC Genome Browser

SMC3 (CH12) Transcription factor binding
sites

UCSC Genome Browser

USF2 (MEL) Transcription factor binding
sites

UCSC Genome Browser

USF2 (CH12) Transcription factor binding
sites

UCSC Genome Browser

NELFe (MEL) Transcription factor binding
sites

UCSC Genome Browser

NELFe (CH12) Transcription factor binding
sites

UCSC Genome Browser

GATA1 (MEL) Transcription factor binding
sites

UCSC Genome Browser

Rad21 (MEL) Transcription factor binding
sites

UCSC Genome Browser

Rad21 (CH12) Transcription factor binding
sites

UCSC Genome Browser

Bhlhe40nb100 (CH12) Transcription factor binding
sites

UCSC Genome Browser



B. EpiGRAPH attribute reference sheet

B.1. Overview

All attributes calculated by EpiGRAPH are given names according to the following hier-
archical naming schema:

<full−attribute−identifier> ::= [<window>.]<attribute−group−name> . <attribute−name>
. <column−name>

• At the top level (<attribute−group−name>), an attribute group pools a set of bi-
ologically related attributes, e.g. DNA sequence patterns in the attribute group
"DNA_Sequence" or gene−related attributes in the attribute group "Genes".

• The intermediate level (<attribute−name>) refers to a set of attributes and columns
that are derived from the same dataset, e.g. "RefSeq_Genes” and "CCDS", both
belonging to the attribute group "Genes".

• The bottom level (<column−name>) refers to a specific column in the table of at-
tributes that EpiGRAPH calculates. All column names are given based on rules
identifying a certain mode of calculation (e.g. frequency of overlap or average score),
which are described in more detail below.

• An optional top level (<window>) is used when the attribute calculation includes not
only the genomic regions provided by the input dataset, but also adjacent windows
upstream and downstream.

Because the full attribute names are often quite long, we also use a shorthand, which
is for example used in the column header of EpiGRAPH’s dataset of calculated attributes
(downloadable from the EpiGRAPH website via the "Download Data Table" button on
EpiGRAPHś results overview page). A complete mapping from long to short attribute
names is provided in the corresponding X−GRAF file, which can be downloaded via the
"Download XML Documentation" button on the results overview page.
Below, we describe four types of attributes that are calculated in different ways as

indicated by the <column−name> segment of their full attribute name. DNA sequence
attributes and patch attributes are most common within EpiGRAPH.

B.2. DNA sequence attributes (calculated from pattern
frequencies)

The columns of DNA sequence attributes represent the frequency of appearance of a specific
DNA sequence pattern (e.g. "CGCG") within the genome sequence of the genomic region
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specified in the input file. The names of the corresponding columns are composed according
to the following rule ("+" stands for string concatenation):

"Pat_"+<pattern−string>+"_freq"

For every sequence pattern, EpiGRAPH provides the option to compute additional
statistics on the pattern occurrence throughout the region, such as standard deviation,
skewness and kurtosis of the frequency values. These statistics are computed by dividing
the genomic region into subregions and calculating the frequency of the pattern in each
subregion. This results in a set of pattern frequencies from which standard deviation, skew-
ness and kurtosis are computed. The names of the corresponding columns are composed
according to the following rules:

"Pat"+<pattern−string >+"_std" for standard deviation

"Pat"+<pattern−string >+"_skew" for skewness

"Pat"+<pattern−string >+"_kurt" for kurtosis

All pattern frequencies can be computed either in a strand-specific or non-strand-specific
way (strand specificity refers to the genomic plus-strand, not to the direction of transcrip-
tion of the nearest gene). Strand specificity is indicated in the column names according to
the following rule:

<strand−specific−pattern−string > ::= "plus"|"minus"+<pattern−string>

B.3. DNA structure attributes (calculated from oligomers with
known structure)

DNA structure predictions are calculated for a given genomic region by sliding a window
of fixed size over the region and comparing the DNA sequence pattern in this window with
a set of oligomers with known structure (which is described by numerical score values).
For example, the predicted helix structure of all possible octamers has been quantified by
a set of six numeric scores: twist, roll, tilt, rise, slide and shift ((Gardiner et al., 2003)).

For each score, a new column named <score−name> is added, its value being the mean of
the scores corresponding to all oligomer hits observed while shifting the sliding window over
the genomic region. Similar to the pattern frequency attributes described above, we also re-
port standard deviation (<score−name>+"_std"), skewness (<score−name>+"_skew")
and kurtosis (<score−name>+"_kurt").

B.4. Patch attributes (quantifying overlap with sets of genomic
regions)

Patch attributes describe the frequency of overlap between the genomic regions in the
input dataset and various types of other genome annotations that take the form of genomic
regions (e.g. CpG islands, repetitive regions and SNPs). For every patch attribute, three
basal columns are introduced, which report general statistics about the overlap between
the regions in the input dataset and the patch attribute:
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"overlapRegionsCount" total number of patch attribute regions overlapping
the input region, standardized to 1kb

"overlapTotalLength" total length of patch attribute regions overlapping the
input region, standardized to 1kb

"overlapAverageSize" average size of the overlapping regions

In addition to its three basic features (chromosome, start position, end position), a patch
attribute may also contain additional columns that can be numeric (referred to as score
attributes), binary (class attributes) or categorical (category attributes), giving rise to
additional columns during the attribute calculation.
Score attributes give rise to columns with the same name as the score column in the

patch attribute and are calculated as weighted averages of the patch regions overlapping
with the region specified in the input dataset. Weighting is performed according to the
length of overlap.
Class attributes give rise to columns with the same name as the class column in the patch

attribute and are calculated as the dominant class among the patch regions overlapping
with the region specified in the input dataset. Furthermore, distribution statistics for each
class are reported in additional columns:

<class−name>+"_"+<class−value>+"_overlapRegionsCount" − total num-
ber of patch attribute regions with value<class−value> for class<class−name>
overlapping with the input region, standardized to 1kb

<class−name>+"_"+<class−value>+"_overlapTotalLength" total length of
patch attribute regions with value <class-value> for class <class-name> over-
lapping the input region, standardized to 1kb

<class−name>+"_"+<class−value>+"_overlapAverageSize" average size of
the overlapping patch attribute regions with value <class−value> for class
<class−name>

Category attributes split the patch attribute into several sub−attributes, and the stan-
dard measures of overlap are calculated separately for each category, giving rise to the
following columns:

<category−name>+"_"+<category−value>+"_overlapRegionsCount" total
number of patch attribute regions with value<category−value> for class<category−name>
overlapping with the input region, standardized to 1kb

<category−name>+"_"+<category−value>+"_overlapTotalLength" total length
of patch attribute regions with value<category−value> for class<category−name>
overlapping the input region, standardized to 1kb

<category−name>+"_"+<category−value>+"_overlapAverageSize" average
size of the overlapping patch attribute regions with value <category−value> for
class <category−name>

Furthermore, for each category EpiGRAPH reports separate averages for all score at-
tributes. The names of the corresponding columns are composed according to the following
rule:
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"c"+<category−name>+<category−value>+"_o"+<score−name> mean score
of all patch attribute regions belonging to the category <category-value> and
overlapping with the input region

Genomic strand columns are treated as special type of categories, and the columns derived
from a strand-specific patch attribute are named by the same rules, except for the prefix
"c" being changed to "s":

"s"+<strand−name>+<strand−value>+"_o"+<score−name>

B.5. Gene attributes (quantifying overlap with genes and exons)

Gene attributes are a special case of patch attributes that take the specific structure of
eukaryotic genes (exons and introns) into account. They contain a number of additional
columns, with names composed according to the following rules

<attribute−name> + _elen : total length of exonic DNA within the region,
standardized to 1kb

<attribute−name> + _eno : total number of exons within the region, stan-
dardized to 1kb

<attribute−name> + _eavg : average length of the exons overlapping the
target region

<attribute−name> + _estd : standard deviation of the lengths of the exons
overlapping the region

<attribute−name> + _glen : total length of genic DNA within the region,
standardized to 1kb

<attribute−name> + _gno : total number of genes within the region, stan-
dardized to 1kb

<attribute−name> + _gavg : average full of the genes overlapping the region

<attribute−name> + _gstd : standard deviation of the lengths of the genes
overlapping the region

<attribute−name> + _gcav : average number of exons per gene

<attribute−name> + _gcsd : standard deviation of the exon number per gene

An up-to-date version of this document can be found here : http://epigraph.mpi-inf.
mpg.de/documentation/EpiGRAPH_Attribute_Reference_Sheet.pdf

http://epigraph.mpi-inf.mpg.de/documentation/EpiGRAPH_Attribute_Reference_Sheet.pdf
http://epigraph.mpi-inf.mpg.de/documentation/EpiGRAPH_Attribute_Reference_Sheet.pdf
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