
Labelled Superposition

Arnaud Fietzke

Dissertation zur Erlangung des Grades

des Doktors der Naturwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

vorgelegt im

Oktober 2013

Tag des Kolloquiums: 5. Juni 2014
Dekan: Prof. Dr. Markus Bläser
Vorsitzender des Prüfungsausschusses: Prof. Dr. Reinhard Wilhelm
Berichterstatter: Prof. Dr. Maria Paola Bonacina

Prof. Dr. Holger Hermanns
Prof. Dr. Christoph Weidenbach

Akademischer Mitarbeiter: Dr. Martin Hoefer

ii

Abstract

The work presented in this thesis consists of two parts: The first part presents a formal-
ization of the splitting rule for case analysis in superposition and a proof of its correct-
ness, as well as the integration into splitting of a novel approach to lemma learning, which
allows the derivation of non-ground lemmas. The second part deals with the application
of hierarchic superposition, and in particular superposition modulo linear arithmetic
SUP(LA), to the verification of timed and probabilistic timed systems. It contains the
following three main contributions: Firstly, a SUP(LA) decision procedure for reacha-
bility in timed automata, which is among the first decision procedures for free first-order
logic modulo linear arithmetic; secondly, an automatic induction rule for SUP(LA) based
on loop detection, whose application allows a generalization of the decidability result
for timed automata to timed automata with unbounded integer variables; and thirdly,
a formalism for modelling probabilistic timed systems with first-order background the-
ories, as well as a novel approach for the analysis of such systems based on a reduction
to model checking using SUP(LA) proof enumeration.

iii

Zusammenfassung

Diese Arbeit besteht aus zwei Teilen: Im ersten Teil wird die Splitting-Regel zur Fal-
lunterscheidung im Superpositionskalkül formalisiert und die Korrektheit der Formal-
isierung bewiesen. Ausserdem wird die Splitting-Regel mit einem neuartigen Verfahren
zum Lernen von Lemmata erweitert, welches das Lernen von nicht-grund Lemmata er-
laubt. Der zweite Teil befasst sich mit der Anwendung des hierarchischen Superpo-
sitionskalküls, insbesondere von Superposition modulo linearer Arithmetik SUP(LA),
zur Verifikation von Echtzeit- und probabilistischen Echtzeitsystemen. Die drei wichtig-
sten Beiträge in diesem Teil sind: Erstens, ein SUP(LA)-basiertes Entscheidungsver-
fahren für Timed Automata, welches zu den ersten Entscheidungsverfahren für die hi-
erarchische Kombination der freien Logik erster Stufe mit linear Arithmetik gehört;
zweitens, eine Regel zur automatischen Induktion in SUP(LA), die auf der Erkennung
von Schleifen basiert, und dank derer das Entscheidbarkeitsresultat für Timed Automata
hin zu Timed Automata mit unbeschränkten Integer-Variablen verallgemeinert wird; und
drittens, ein Formalismus zur Modellierung probabilistischer Echtzeitsysteme mit Hinter-
grundtheorien erster Stufe, sowie ein neuartiges Verfahren zur Analyse ebensolcher Sys-
teme, welches auf einer Aufzählung von Erreichbarkeitsbeweisen in SUP(LA) sowie einer
Zurückführung auf das Model Checking-Verfahren basiert.

v

Acknowledgements

I am grateful to my thesis advisor Christoph Weidenbach for his constant support and
insightful guidance, and to Holger Hermanns for accepting to be my co-advisor and for
his expertise on concurrency and probability.

Working in the Automation of Logic group has been an inspiring and enriching experi-
ence, and I want to thank my current and former colleagues for providing a great research
environment. Special thanks go to Willem Hagemann, Matthias Horbach, Carsten Ihle-
mann, Evgeny Kruglov, Tianxiang Lu, Viorica Sofronie-Stokkermans, Thomas Sturm,
Martin Suda, Uwe Waldmann, Daniel Wand and Patrick Wischnewski.

Moreover, I want to thank the anonymous reviewers of the publications underlying this
thesis for their valuable input, Arnd Hartmanns for answering all my questions about
probabilistic timed automata, and Martin Suda and Marek Kosta for proofreading parts
of this thesis.

I would also like to thank Maria Paola Bonacina who kindly agreed to review this
thesis.

This work has been partly supported by the International Max Planck Research School
and by the German Research Foundation (DFG), in particular by the German Transre-
gional Collaborative Research Center SFB/TR 14 AVACS.

Finally, I want to thank my wife and my mother for their unrelenting support, which
has made this work possible.

vii

Contents

1 Introduction 1
1.1 Superposition . 1
1.2 Splitting . 2
1.3 Hierarchic Superposition . 3
1.4 Automation of Inductive Reasoning . 3
1.5 Contributions of This Thesis . 4

2 Foundations 7
2.1 Mathematical Foundations . 7
2.2 Syntax . 8
2.3 Semantics . 13
2.4 Calculi . 16
2.5 Architecture of Saturation-Based Theorem Provers 18

3 Labelled Splitting 19
3.1 Introduction . 19
3.2 A Calculus for Explicit Splitting . 21

3.2.1 Completeness . 32
3.2.2 Consistency-Preserving Rules . 36

3.3 Splitting With Clause Learning . 37
3.4 Implementation . 44

3.4.1 Representation of Complex Labels 45
3.4.2 Handling of Conditionally Deleted Clauses 47

3.5 Comparison With Previous Work . 47
3.6 Experimental Evaluation of Clause Learning 51
3.7 Related Work . 55
3.8 Comparison With CDCL . 56
3.9 Future Work . 58

4 SUP(T) for Reachability 59
4.1 Introduction . 59
4.2 Preliminaries . 61

4.2.1 Operations on Relations . 61
4.2.2 Theory of Fixpoints . 62
4.2.3 Transition Systems . 63

ix

Contents

4.3 Hierarchic Superposition and Minimal Models 64
4.3.1 Hierarchic Specifications . 65
4.3.2 Syntax . 65
4.3.3 Semantics . 66
4.3.4 Superposition Modulo Theory . 68
4.3.5 Minimal Models of Hierarchic Theories 72

4.4 Reachability Theories . 76
4.4.1 Forward and Backward Encodings 81

4.5 SUP(LA) for Timed Systems . 82
4.5.1 Timed Automata . 83
4.5.2 Reachability Theories for Timed Automata 85
4.5.3 Extended Timed Automata . 86
4.5.4 Reachability Theories for Extended Timed Automata 88
4.5.5 Parametric Clock Constraints . 88
4.5.6 SUP(LA) as a Decision Procedure for Timed Automata 95

4.6 Constraint Induction . 97
4.6.1 Constraint Induction by Loop Detection 99
4.6.2 Computing the Transitive Closure of LA Constraints 102
4.6.3 SUP(LA) with Constraint Induction as a Decision Procedure for

ETA . 106
4.6.4 Implementation and Results . 114

4.7 First-Order Probabilistic Timed Automata 120
4.7.1 Preliminaries . 121
4.7.2 First-Order Probabilistic Timed Automata 125
4.7.3 Labelled Superposition for Max Reachability 129
4.7.4 Reduction Rules for LSUP(LA) 132
4.7.5 Instantiating the FPTA . 133
4.7.6 Implementation . 142
4.7.7 Experimental Results: Analyzing DHCP 143
4.7.8 Future Work . 147

4.8 Outlook: Language-based Reachability Analysis 147
4.8.1 Discussion . 152

4.9 Outlook: Avoiding Building the Product Automaton 152
4.10 Discussion and Related Work . 155

5 Conclusion 159

Bibliography 161

Index 171

x

List of Figures

3.1 Transition Rules of a Splitting Calculus With Backtracking 22
3.2 Three Reduction steps (left to right) illustrating Lemma 3.11 26
3.3 Transition Rules of a Splitting Calculus With Complex Labels 39
3.4 Clause Learning Rule . 41
3.5 Comparison of old and new splitting: Number of problems solved 49
3.6 Comparison of old and new splitting: Derived clauses and splits performed

per problem . 50
3.7 Comparison of different clause learning schemes: Number of problems

solved within time limit . 53
3.8 Number of splits (left) and derived clauses (right) for learning schemes 4

(top), 5 (middle) and 6 (bottom), compared to 1 54
3.9 Implication graph (left) and derivation of an empty clause (right) 57

4.1 Inference rules of the Calculus SUP(T) (1) 69
4.2 Inference rules of the Calculus SUP(T) (2) 70
4.3 SUP(T) reduction rules . 71
4.4 Illustration of tpre(Λ) . 93
4.5 Illustration of [y]Λ . 93
4.6 Constraint induction rule . 98
4.7 Illustration of location numbering with π(L) = 2 107
4.8 Location diagram: Repeated traversal of an acceleratable cycle 112
4.9 An extended timed automaton . 116
4.10 Producer and Consumer . 117
4.11 Water tank controller . 118
4.12 Instantiating an FPTA (left) into a PTA (right) 121
4.13 Illustration of an FPTA P , MDP(P) and TS(NP) 129
4.14 Incompleteness caused by subsumption and tautology deletion 133
4.15 Subsumption deletion and tautology deletion for LSUP(LA) 134
4.16 Pipeline for FPTA reachability analysis 143
4.17 The DHCP example consisting of 6 FPTA 145
4.18 FPTA for the DHCP client’s resend mechanism 145
4.19 FPTA for the DHCP client’s faulty network 146
4.20 Resolution with respect to a fixed transition system TS 150

xi

1 Introduction

This thesis presents novel extensions and applications of the superposition calculus. On
the one hand, these concern the splitting rule for case analysis, which we formalize and
extend with a new conflict-driven clause learning technique. On the other hand, we
explore the use of hierarchic superposition to solve the reachability problem for timed
automata, timed automata extended with unbounded integer variables, and probabilistic
timed automata extended with first-order background theories. As part of this investi-
gation, we develop a new inference rule for automatic induction in hierarchic superpo-
sition, based on loop detection. A recurrent theme across these approaches is the use
of clause labels to capture extra-logical information, hence the title labelled superposi-
tion.

This chapter provides an overview of the central topics underlying this thesis: Superposi-
tion in the context of refutational theorem proving (Section 1.1), splitting (Section 1.2),
hierarchic superposition (Section 1.3), and the automation of inductive reasoning (Sec-
tion 1.4). The chapter ends with an outline of the main contributions of this thesis
(Section 1.5).

1.1 Superposition

In refutational theorem proving, a formula φ is shown to follow logically from a set
of formulas N , by proving N ∪ {¬φ} to be contradictory. Saturation is a method to
derive a contradiction from a set of formulas by computing its closure under a set of
inference rules. A prominent example of this approach is the resolution method [Rob65],
which operates on normalized formulas called clauses and is particularly well-suited
to automation. Since saturation typically produces large numbers of formulas, a key
ingredient in making saturation-based theorem proving efficient in practice is redundancy
elimination, whereby only certain formulas and inferences required for the proof are
considered, and all others are discarded.

The presence of the equality predicate, ubiquitous in mathematics, poses additional
challenges, because equality axioms cause the search space for resolution to become
prohibitively large. The most successful answer to this problem is the superposition
calculus [KB70, RW69, HR87, Rus91, BG91b, NR01, Wei01], which combines resolution
with completion techniques and ordering restrictions. It constitutes a refutationally
complete calculus for full first-order logic with equality, meaning that a contradiction,

1

1 Introduction

in the form of the empty clause, can be derived from any unsatisfiable clause set in a
finite number of inference steps. As unsatisfiability of first-order formulas is only semi-
decidable however, a superposition-based saturation procedure may well diverge when
applied to a satisfiable clause set. The identification of decidable fragments of first-order
logic and the design of superposition-based decision procedures for such fragments are
therefore important research topics, and they often go hand in hand, as evidenced by
fragments whose decidability has been first established by means of superposition [Nie96,
JMW98, Wei99a, JRV06].

1.2 Splitting

Boolean satisfiability (SAT) solvers are among the most successful systems for automated
reasoning available today, a fact witnessed not only by their widespread use in industry,
but also by a large and ever growing number of research projects which reduce the
reasoning in more expressive formalisms to Boolean satisfiability by an encoding into
propositional logic. Most state-of-the-art SAT solvers are based on CDCL [SS96], which
itself builds on the DPLL procedure [DP60, DLL62]. The DPLL procedure performs a
systematic case analysis, trying to build a satisfying assignment for the variables in the
given SAT problem instance by successive decisions and propagations, and backtracking
whenever a clause becomes false under the current assumptions. CDCL adds to this the
learning of clauses from conflicts, which is a key ingredient that makes SAT solvers fast
in practice.

The splitting rule [Wei01] is similar to the DPLL decision step, but suited for non-ground
clauses. Instead of making a given propositional variable true or false, splitting instead
splits a clause C occurring in a clause set N into variable-disjoint components C1, C2,
and conceptually replaces N by the two sets N ∪ {C1} and N ∪ {C2}. Satisfiability of
either of these two sets is equivalent to satisfiability of N , and since C1 and C2 both
subsume C, splitting transforms a complex problem (the satisfiability of N) into two
simpler problems (the satisfiability of N ∪ {C1} or N ∪ {C2}). This makes splitting
an important component of superposition-based decision procedures [BGW93, FLHT01,
HW07].

In practical implementations, splitting is not carried out by duplicating clause sets, but
by a depth-first backtracking search, like in DPLL. Since superposition-based theorem
proving relies on the generation of new clauses via inferences and the deletion of re-
dundant clauses via reductions, this backtracking search however requires a much more
complex bookkeeping than in DPLL.

Finally, the integration of CDCL-style clause learning into superposition with splitting
is a challenging problem as well, because of the universally quantified variables in clauses.
So far, only ground clause learning has been available for splitting.

2

1.3 Hierarchic Superposition

1.3 Hierarchic Superposition

While reasoning in pure first-order logic has many applications, in practice one often
deals with formulas where the semantics of certain symbols is given by fixed theories,
like the theory of linear integer or real arithmetic, yielding a hierarchic combination of
pure first-order logic with a base theory. Often, such base theories are not axiomatizable
in first-order logic, or using an explicit axiomatization is impractical. This has led to
the development of reasoning modulo theory.

A prominent example of this is Satisfiability Modulo Theories (SMT, see [dMB11] for
an overview), which combines a CDCL-style SAT solver with theory-specific solvers,
which are used to decide conjunctions of ground formulas. While effective in prac-
tice, SMT procedures are typically incomplete for formulas outside the existential frag-
ment.

Superposition modulo theories, or SUP(T) [BGW92, BGW94], is an alternative ap-
proach to the hierarchic reasoning problem, and is based on the superposition cal-
culus. In contrast to SMT, SUP(T) offers the advantage of refutational complete-
ness in the presence of full quantification, under the condition that the clause sets
are sufficiently complete, which essentially requires the non-base symbols of base sort
to be sufficiently defined. Additionally, the powerful redundancy elimination mech-
anisms of superposition carry over to SUP(T). In particular, the hierarchic combi-
nation of first-order logic with linear real arithmetic, FOL(LA), has been in the fo-
cus of recent research, which has resulted in the development of the SUP(LA) calcu-
lus [AKW09, Kru13].

Obtaining decision procedures for FOL(LA) can be considered even more challenging
than for the pure first-order case, because the hierarchic combination of pure first-order
logic with linear arithmetic yields a very expressive logic [Hal91]. Even when restricted
to a decidable first-order fragment like Bernays-Schönfinkel-Horn (BSH), the resulting
FOL(LA) theory is undecidable.1

1.4 Automation of Inductive Reasoning

Another active research topic in the area of automated reasoning concerns the mech-
anization of inductive reasoning. While proof by induction in general requires human
guidance in the form of inductive hypotheses, many forms of inductive reasoning can be
carried out automatically.

1See [FW12] for a discussion of the combination of BSH with linear arithmetic.

3

1 Introduction

There are many automatic and semi-automatic methods for inductive reasoning in first-
order logic and extensions or fragments thereof,2 but they typically rely on predefined
induction schemata, or on pre-saturated clause sets.

An interesting approach to the automation of induction in saturation-based theorem
proving relies on the detection of cycles in the proof search: A prover may deduce a se-
quence of formulas of the same shape, like P (1), P (2), P (3), . . . , and this sequence may be
infinite. A human observer would eventually notice the regularity and check whether the
step that led from P (k) to P (k+1) could also be applied to deduce P (n+1) from P (n),
for arbitrary n, in which case he or she could add ∀n(n ∈ N → P (n)) as an additional
axiom, allowing the prover to terminate. If the prover is able to detect this regularity
by itself, then this kind of reasoning can be automated.

In the area of symbolic model checking, acceleration is another form of induction which
consists in computing the transitive closure of a sequence of transitions of an infinite-state
system, to allow the set of reachable states to be computed in finite time. Acceleration
and loop detection in proof search can be combined, as we will show.

1.5 Contributions of This Thesis

The contributions of this thesis can be divided into two parts. The first part deals with
splitting, and contains the following contributions:

• We present a formalization of splitting with backtracking in terms of a transition
system, in a modular way by turning an arbitrary superposition-based calculus
C without splitting into a calculus SC with splitting (Section 3.2). Dependencies
between clauses and splits are captured by clause labels. We prove that soundness
and completeness of the underlying calculus C carry over to SC. The classical notion
of fairness for derivations without splitting is too weak to ensure completeness in
the presence of splitting, and we introduce a stronger notion of fairness and use it
to prove the completeness result.

• We extend the splitting calculus SC by a rule for conflict-driven clause learning
(Section 3.3). This rule relies on the instantiations of variables in split clauses that
have been applied in the derivation of the empty clause to allow the “negation” of
non-ground clauses without using Skolemization. The instantiation information is
tracked by the clause labels, which we generalize for this purpose. Thanks to the
labels, conflict-driven lemmas can be computed without the need for additional
resolution steps.

• We describe an implementation of splitting with backtracking and clause learning
inside the SPASS theorem prover, and we provide experimental evidence showing

2See Section 4.10 for a discussion of existing approaches.

4

1.5 Contributions of This Thesis

that the integration of clause learning improves the performance of superposition
with splitting (Section 3.6).

The second part is concerned with superposition modulo linear arithmetic SUP(LA), and
its application to the reachability problem for timed automata, probabilistic timed au-
tomata and extensions thereof. It contains the following main contributions:

• We extend well-known minimal-model results for pure first-order logic to the hier-
archic combination of first-order logic with a base theory T , in order to ensure the
existence of unique minimal Herbrand models of reachability theories (Section 4.3).
We show that

– if T has a unique minimal Herbrand model (possibly among other Herbrand
models), then any extension by a sufficiently complete Horn clause set yields
again a theory with a unique minimal Herbrand model, and

– if T has a unique Herbrand model, then any extension by a sufficiently com-
plete clause set that is Horn modulo T has a unique minimal Herbrand model.

• We formally define reachability theories and define their semantics in terms of
minimal Herbrand models (Section 4.4).

• We prove that SUP(LA) constitutes a decision procedure for reachability in timed
automata (Section 4.5.6).

• We introduce a SUP(T) inference rule called constraint induction, which derives
clauses by induction (Section 4.6). The rule is based on loop detection and on the
computation of the transitive closure of base theory constraints. We present an
effective instance of the rule for SUP(LA).

• We provide evidence of the usefulness of constraint induction by extending the
superposition-based decision procedure for timed automata to timed automata
with unbounded integer variables.

• We define the formalism of first-order probabilistic timed automata (FPTA) which
extends probabilistic timed automata (PTA) with first-order background theories.
We present a SUP(LA)-based approach for reducing the max-reachability problem
in FPTA to the reachability problem in PTA. The approach relies on the enumer-
ation of reachability proofs, again using a clause labelling scheme (Section 4.7).

5

2 Foundations

In this chapter, we recall basic notions and definitions related to orderings, first-order
logic and first-order theorem proving. More detailed introductions can be found in
[BN98] and [BG01, Wei01].

2.1 Mathematical Foundations

Definition 2.1 (Properties of Binary Relations)
A binary relation . on a set S is called

• transitive, if s1 . s2 and s2 . s3 imply s1 . s3, for all s1, s2, s3 ∈ S;

• reflexive, if s . s holds for all s ∈ S;

• symmetric, if s1 . s2 implies s2 . s1, for all s1, s2 ∈ S;

• asymmetric, if for no s1, s2 ∈ S, both s1 . s2 and s2 . s1 hold;

• antisymmetric, if s1 . s2 and s2 . s1 imply s1 = s2, for all s1, s2 ∈ S. �

Definition 2.2 (Orderings)
A partial ordering � on a set S is a binary relation on S that is reflexive, antisymmetric,
and transitive. A strict partial ordering � on a set S is a binary relation on S that is
asymmetric and transitive. If = is the identity relation on S and � is a partial ordering
on S, then �= (� \ =) is a strict partial ordering. Conversely, if � is a strict partial
ordering on S, then �= (� ∪ =) is a partial ordering. A (strict) partial ordering � is
total on S ′ ⊆ S if s1 � s2 or s2 � s1 holds for any s1, s2 ∈ S ′. �

Definition 2.3 (Multisets)
A multiset M over a set S is a function M : S → N. An element s ∈ S is an element of
M if and only if M(s) 6= 0. The empty multiset over S, denoted ∅, satisfies M(s) = 0
for all s ∈ S. The standard relations and operations on sets, like ⊆,∪ and ∩, naturally
extend to multisets, for instance, (M1 ∪M2)(s) = M1(s) +M2(s). Multisets are written
in set-like notation, for instance, {1, 1} denotes a multiset M over N with M(1) = 2 and
M(x) = 0 for all x 6= 1 in N. �

7

2 Foundations

Definition 2.4 (Lexicographic and Multiset Orderings)
A strict partial ordering � on a set S can be extended to a strict partial ordering �mul on
multisets over S as follows: M �mul M ′ if M 6= M ′ and whenever there is s ∈ S such that
M ′(s) �M(s), then M(s′) �M ′(s′) for some s′ � s. The ordering � can be extended to
a strict partial ordering �lex on n-tuples over S as follows: (s1, . . . , sn) �lex (s′1, . . . , s

′
n)

if there is i ∈ [1, n] such that sj = s′j for all 1 ≤ i < i, and si � s′i. Analogously, a
partial ordering � on S can be extended to a partial ordering �mul on multisets over S
and to a partial ordering �lex on n-tuples over S. �

Definition 2.5 (Minimal and Maximal Elements)
Let � be a strict partial ordering on a set S and let S ′ be a subset of S or a multiset
over S. An element s ∈ S is called

• maximal if there is no s′ ∈ S ′ with s′ � s,

• minimal if there is no s′ ∈ S ′ with s � s′,

• strictly maximal if s is maximal and, if S ′ is a multiset, then S ′(s) = 1,

• strictly minimal if s is minimal and, if S ′ is a multiset, then S ′(s) = 1. �

Definition 2.6 (Equivalence Relations and Quotients)
An equivalence relation ∼= on a set S is a binary relation on S that is reflexive, symmetric,
and transitive. For every element s ∈ S, the subset [s]∼= = {s′ ∈ S | s ∼= s′} of S is
called the equivalence class of s. Note that s ∼= s′ if and only if [s]∼= = [s′]∼=. The set
S/∼= = {[s]∼= | s ∈ S} is the quotient of S by ∼=. If the considered equivalence relation is
clear from the context, [s]∼= is also written simply as [s]. �

Definition 2.7 (Composition and Closure of Binary Relations)
Given two binary relations .1 ⊆ S1× S2 and .2 ⊆ S2× S3, their composition (.1 ◦ .2) ⊆
S1 × S3 is defined by s1(.1 ◦ .2)s3 if and only if there exists s2 ∈ S2 such that s1 .1 s2

and s2 .2 s3. Given any binary relation . on S, we define

• .0 = {(s, s) | s ∈ S}, the identity ;

• .i+1 = .i ◦ . for i ≥ 0;

• .+ =
⋃
i>0 .

i, the transitive closure of .;

• .∗ = .+ ∪ .0, the reflexive transitive closure of .. �

2.2 Syntax

Definition 2.8 (Signatures)
A many-sorted signature is a tuple Σ = (S,Ω) consisting of a finite, non-empty set S
of sort symbols , and a set Ω of operator symbols . Every operator symbol f ∈ Ω comes
with a unique arity n ∈ N and a unique sort declaration f : S1 . . . Sn → S, where

8

2.2 Syntax

S, S1, . . . , Sn ∈ S. A constant is an operator symbol of arity zero. For every sort S ∈ S,
there exists at least one f ∈ Ω and S1, . . . , Sn ∈ S, n ≥ 0, such that f : S1 . . . Sn → S.

In addition to any signature Σ, we assume a countably infinite set X of variables, disjoint
from Ω. Every variable x ∈ X comes with a unique sort declaration x : S with S ∈ S,
and we assume that for every S ∈ S, there are infinitely many variables of sort S in
X . If X is any set of variables x1, x2, . . ., we denote by X ′ the set of primed copies
x′1, x

′
2, . . . of variables in X. For convenience, we also assume an arbitrary, fixed, total

ordering on X , so that any finite set X ⊆ X can be uniquely written as a vector ~x, and
we accordingly use set-like notation for vectors of variables (~x = X, ~u = ~x∪~z, ~x = ~u\~z,
etc.) with the obvious meaning. �

Given signatures Σ = (S,Ω) and Σ′ = (S ′,Ω′), we write Σ ⊆ Σ′ if S ⊆ S ′ and Ω ⊆ Ω′.
By Σ′ \ Σ we mean (S ′ \ S,Ω′ \ Ω).

Definition 2.9 (Terms)
Given a signature Σ = (S,Ω) and a sort S ∈ S, the set TΣ(S,X) of terms of sort S
over Σ,X is the least set containing all x : S ∈ X , and containing f(t1, . . . , tn) whenever
f : S1 . . . Sn → S ∈ Ω and ti ∈ TΣ(Si,X). We also write t : S whenever t ∈ TΣ(S,X).
By TΣ(S) we denote the set of ground terms in TΣ(S,X), i.e., terms not containing any
variables. The set of terms over Σ (or Σ-terms) is defined as TΣ(X) =

⋃
S∈S TΣ(S,X)

and the set of ground terms over Σ is defined as TΣ =
⋃
S∈S TΣ(S). The set of all ground

instances of a term t is denoted by gnd(t). �

A list t1, . . . , tn of terms is often written as ~t, and the n-fold application f(. . . (f(t)) . . .)
of a unary function symbol f to a term t is written as fn(t).

Definition 2.10 (Equations)
An equation over a signature Σ is a multiset of two Σ-terms s, t of the same sort, written
as s' t. �

Definition 2.11 (Atoms, Formulas)
An atom (or atomic formula) over Σ is an equation over Σ. The set FΣ(X) of formu-
las over Σ (or Σ-formulas) is the least set containing all atoms over Σ, the two logical
constants > (true) and ⊥ (false), and for all Σ-formulas φ1, φ2, the negation ¬φ1, the con-
junction φ1∧φ2, the disjunction φ1∨φ2, and for any x ∈ X , the universal quantification
∀x.φ1 and the existential quantification ∃x.φ1. �

Formally, equations are the only atomic formulas. To deal with predicate symbols other
than equality, we use the following, standard encoding: For each predicate symbol P
taking arguments of sorts S1, . . . , Sn, we add a distinct sort SP , and we introduce a
new constant trueP of sort SP , and a new operator symbol fP : S1 . . . Sn → SP to the
signature. The predicative atom P (t1, . . . , tn) is then regarded as an abbreviation1 for
fP (t1, . . . , tn)' trueP .

1A single extra sort Sbool would suffice, but adding a “Boolean” sort for each predicate symbol is more
suited for the hierarchic superposition, see Section 4.3.4.

9

2 Foundations

We will use the following conventions: For any formulas φ1, φ2, φ3, we write φ1 ∨ φ2 ∨ φ3

for (φ1 ∨ φ2) ∨ φ3 and φ1 ∧ φ2 ∧ φ3 for (φ1 ∧ φ2) ∧ φ3. The notation φ1 → φ2 denotes
the formula ¬φ1 ∨ φ2, and φ1 ↔ φ2 denotes (φ1 → φ2) ∧ (φ2 → φ1). For any set
I = {i1, . . . , in}, we write

∨
i∈I φi for φi1∨φi2∨ . . .∨φin and

∧
i∈I φi for φi1∧φi2∧ . . .∧φin .

For a list of variables ~x = x1, . . . , xn, we write ∀~x.φ for ∀x1 . . . ∀xn.φ, and ∃~x.φ for
∃x1 . . . ∃xn.φ.

Definition 2.12 (Subterms, Subformulas)
An expression is any term or formula. A position is a finite sequence of natural numbers.
The empty position is denoted by ε. Given an expression e and a position p, subexpression
e|p of e at position p is defined recursively as

• e|ε = e, and

• e|p = ei|q if p = iq and either

– e = f(e1, . . . , en) and i ≤ n, or

– e = e1 ∨ e2 or e = e1 ∧ e2 and i ≤ 2, or

– e = ¬e1 or e = ∃x.e1 or e = ∀x.e1 and i = 1.

The expression e is said to contain e′ and e′ occurs in e if e′ is a subexpression of e. If e′

is a subexpression of e and e′ 6= e, then e′ is a proper subexpression of e. A subformula
is a subexpression that is a formula and a subterm is a subexpression that is a term.
The number of positions p for which e|p is defined is called the size of e and denoted by
|e|. A formula is quantifier-free if it does not contain a subformula ∃x.φ or ∀x.φ, and
ground if it does not contain any variable. �

Definition 2.13 (Variables, Universal and Existential Closure)
Let Σ be a signature and let e be a formula or a term over Σ. The set var(e) of variables
of e is defined as the set of all variables occurring in e. If e does not contain any variables,
it is ground .

A variable x occurs freely in a formula φ if φ|i1...in = x and none of the subexpressions
φ|i1...im , m ≤ n, is of the form φ|i1...im = ∃x.φ1 or φ|i1...im = ∀x.φ1. A formula that does
not contain any free variable occurrences is closed . If x1, . . . , xn are the free variables
in φ, then ∀x1. · · · ∀xn.φ and ∃x1. · · · ∃xn.φ are the universal closure and existential
closure of φ, respectively. The universal and existential closure of a formula φ is often
abbreviated as ∀φ and ∃φ, respectively. A closed formula is also called a sentence. �

Definition 2.14 (Literals, Clauses)
Let Σ be a signature. A literal over Σ is either an atom A over Σ or its negation ¬A.
It is called positive if it is an atom, and negative otherwise. A literal ¬(s' t), written
as s 6' t, is called a disequation. A clause over Σ is a pair (Γ,∆) of multisets of atoms
over Σ, written Γ → ∆. The multiset Γ is called the antecedent and the multiset ∆ is
called the succedent of the clause. Equivalently, a clause can be viewed as a multiset of
literals, where the atoms from Γ occur negatively and the atoms from ∆ occur positively.
Logically, a clause represents the universal closure of the disjunction of its literals. The

10

2.2 Syntax

clause is Horn if ∆ contains at most one atom. The empty clause, where Γ = ∆ = ∅, is
denoted by �. �

The notion of ground instance of a term is naturally lifted to atoms, literals, clauses and
clause sets.

Definition 2.15 (Selection Function)
A selection function Sel assigns to each clause C = Γ → ∆ a multiset of atoms in the
antecedent Γ. The atoms (and the corresponding negative literals) in Sel(C) are said to
be selected in C. �

Definition 2.16 (Substitutions)
For any signature Σ, a (Σ-)substitution σ is a mapping from X to TΣ(X), written in
postfix notation, such that xσ always has the same sort as x, and xσ 6= x holds for only
finitely many x. The set dom(σ) = {x ∈ X | xσ 6= x} is the domain of σ, and the set
im(σ) = {xσ | x ∈ dom(σ)} is the image of σ. The set cdom(σ) =

⋃
t∈im(σ) var(t) is the

codomain of σ. The modification of σ at x is defined as

σ[x 7→ t](y) =

{
t if x = y,

yσ otherwise.

A substitution σ is identified with its homomorphic extension to terms, quantifier-free
formulas and clauses. It is extended to quantified formulas by (Qx.φ)σ = Qy.(φσ[x 7→
y]), where y is a fresh variable. The composition σσ′ of two substitutions is the substi-
tution that maps every x to (xσ)σ′. For an expression e, we call eσ an instance of e.
A bijective substitution is called a renaming . A substitution σ is ground if all terms in
im(σ) are ground; it is grounding for an expression e if eσ is ground. �

Definition 2.17 (Variants)
Two clauses C1 = Γ1 → ∆1, C2 = Γ2 → ∆2 are variants of each other, if there exists a
renaming σ such that C1σ = C2. �

Definition 2.18 (Unifiers)
Two terms s, t are unifiable if they are of the same sort and there is a substitution σ
such that sσ = tσ; similarly, two atoms A,B are unifiable if there is a substitution σ
such that Aσ = Bσ. In both cases, σ is called a unifier . A substitution σ is called
more general than a substitution τ , denoted by σ ≤ τ , if there exists a substitution ρ
such that σρ = τ . A unifier of two terms or atoms e and e′ is called a most general
unifier (or mgu) if it is more general than any other unifier of e and e′. The most general
unifier is unique up to variable renaming and (ambiguously) denoted by mgu(e, e′). A
substitution σ is called a matcher from e to e′ if eσ = e′. �

Definition 2.19 (Relations on Terms)
Let Σ be a signature, and let � be a binary relation on TΣ(X). The relation � is called

• well-founded if there is no infinite chain t1, t2, . . . such that ti � ti+1 for all i ≥ 1;

11

2 Foundations

• stable under substitutions if t1 � t2 implies t1σ � t2σ, for all terms t1, t2 and
substitutions σ;

• compatible with contexts if t1 � t2 implies s[t1]p � s[t2]p, for all terms t1, t2 and s
and all positions p in s.

The relation� has the subterm property if t[s] � s, for all terms t and all proper subterms
s of t. A rewrite ordering , also called rewrite relation, is a strict ordering on terms that
is stable under substitutions and compatible with contexts. A reduction ordering is a
well-founded rewrite ordering. A simplification ordering is a reduction ordering with
the subterm property. A congruence relation is an equivalence relation on terms that is
compatible with contexts. �

Definition 2.20 (Clause Orderings)
Let Σ be a signature. Given a partial ordering � on TΣ(X), a partial ordering on
clauses over Σ is obtained as follows: The occurrence of an atom s' t in the antecedent is
identified with the multiset {s, s, t, t}; the occurrence of s' t in the succedent is identified
with the multiset {s, t}. The multiset extension of � on terms thereby yields a partial
ordering on atom occurrences, which we again denote by �. This ordering on atom
occurrences is in turn extended to clauses—where both the antecedent and succedent
are viewed as as multisets of atom occurrences—by taking its multiset extension, which
we again denote by �. �

The ordering on atom occurrences (which may equivalently be viewed as an ordering on
literals) has the property that an occurrence of an atom s' t in the antecedent (equiva-
lently: the literal s 6' t) is strictly larger than an occurrence of the same atom in the succe-
dent (equivalently: the literal s' t), because {s, s, t, t} � {s, t}.
There are several ways in which a well-founded strict partial ordering �, also called a
precedence, on the operator symbols Ω of a signature Σ can be turned into a reduction
ordering. A prominent example, often used for superposition, is the lexicographic path
ordering (LPO):

Definition 2.21 (Lexicographic Path Ordering �lpo)
Let Σ = (S,Ω) be a signature and � be a strict partial ordering on Ω. The lexicographic
path ordering �lpo on TΣ(X) induced by � is defined by s �lpo t if and only if

(i) t ∈ var(s) and t 6= s, or

(ii) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

a) si �lpo t for some i, or

b) f � g and s �lpo tj for all j, or

c) f = g, s �lpo tj for all j, and (s1, . . . , sm) �lexlpo (t1, . . . , tn). �

If the precedence� is total on Ω, then�lpo is total on ground terms TΣ.

12

2.3 Semantics

Definition 2.22 (Rewrite Systems)
A set R of equations is called a rewrite system with respect to a strict partial term
ordering �, if s � t or t � s holds for each s' t ∈ R. If R is a rewrite system then an
equation s' t ∈ R with s � t is called a rewrite rule, and is written s _ t. The rewrite
relation _R is defined as q _R r iff there is s _ t ∈ R such that q|p = sσ and r = q[tσ]p
for some position p of q and substitution σ. A term s is reducible by R if s _R t for
some term t, and irreducible or in normal form (with respect to R) otherwise.

A rewrite system R is ground if all equations in R are ground. It is terminating if _ is
well-founded, and it is confluent if for all terms t, t1, t2 satisfying t _∗

R t1 and t _∗
R t2

there is a term t3 such that t1 _∗
R t3 and t2 _∗

R t3. �

2.3 Semantics

Definition 2.23 (Interpretations)
An interpretation over a signature Σ = (S,Ω) (also called a Σ-interpretation or Σ-
algebra) is a mapping I that assigns to every sort S ∈ S a non-empty carrier set I(S),
and to every operator symbol f : S1 . . . Sn → S ∈ Ω a function I(f) : I(S1) × . . . ×
I(Sn) → I(S). We assume that I(S1), I(S2) are disjoint for any distinct S1, S2 ∈ S.
The set UI =

⋃
S∈S I(S) is called the universe of I. We occasionally write SI and fI

for I(S) and I(f), respectively.

An assignment for I over a set of variables X ⊆ X is a function ν : X → UI such that
ν(x) ∈ I(S) for every x : S ∈ X. We denote the set of all assignments for I over X
by ValI(X). Given a sequence ~x = x1, . . . , xn containing all variables of X, we write

ν(~x) for the sequence ν(x1), . . . , ν(xn), and ValI(~x) for {ν(~x) | ν ∈ ValI(X)} ⊆ U
|X|
I .

In general, we identify ValI(X) with ValI(~x), where ~x contains the variables of X in
the order given by the total ordering on X .

For ν ∈ ValI(X) and Y ⊆ X, the restriction of ν to Y is the assignment ν|Y ∈ ValI(Y)
that agrees with ν on all variables in Y .

The modification of ν at x is defined as

ν[x 7→ a](y) =

{
a if x = y,

ν(y) otherwise.

The homomorphic extension of ν to terms, denoted by I(ν), is defined by

I(ν)(x) = ν(x) for x ∈ X ,
I(ν)(f(t1, . . . , tn)) = fI(I(ν)(t1), . . . , I(ν)(tn)) for f ∈ Ω.

�

13

2 Foundations

Definition 2.24
An interpretation I is called term-generated , if for every e ∈ UI , there is a ground term
t such that e = I(t). �

Definition 2.25 (Herbrand Interpretations)
An interpretation I over Σ is called a Herbrand interpretation if there is a congruence
relation ∼= on TΣ such that UI = TΣ/∼= is a quotient of TΣ and every ground term
over Σ is interpreted by its equivalence class, i.e., for every function symbol f it holds
that I(f)([t1]∼=, . . . , [tn]∼=) = [f(t1, . . . , tn)]∼=, where [t]∼= is the ∼= equivalence class of t in
TΣ. �

Historically, the name Herbrand interpretation denotes an interpretation in which ev-
ery ground term is interpreted by itself. The presence of equality gives rise to equality
Herbrand interpretations, in which the equality predicate is interpreted as a congruence
over ground terms. Normal interpretations, on the other hand, are interpretations in
which the equality predicate is interpreted as equality on the universe. It is clear that
there can be only a single normal Herbrand interpretation for any signature, namely
the one in which any two ground terms are different. However, it is well-known that
equality Herbrand interpretations and term-generated normal interpretations are equiv-
alent, in the sense that they can always be transformed into one another. In partic-
ular, a term-generated normal interpretation is obtained from an equality Herbrand
interpretation by interpreting ground terms by their congruence classes. This justifies
Definition 2.25.

As a Herbrand interpretation is uniquely characterized by the congruence ∼=, we will
often identify the two. Moreover, we identify any congruence ∼= on ground terms with
the set of all equations s' t such that s ∼= t. It is well-known that the intersection of
any set of congruences on a given algebra is again a congruence [DW09], hence also the
intersection of a set of Herbrand interpretations over Σ yields a Herbrand interpretation
over Σ.

Definition 2.26 (Specifications)
A specification or theory is a pair Sp = (Σ,C) consisting of a signature Σ and a non-
empty class C of Herbrand interpretations over Σ. If C is the set of all Herbrand models
of a clause set N , we also write the specification as (Σ, N). �

In [BGW94, Kru13], the model class C is only required to consist of term-generated
Σ-interpretations, and, in the context of hierarchic specifications, assumed to be closed
under isomorphisms. As we will only consider hierarchic specifications (in Chapter 4,
Section 4.3), the slight change in our definition is justified by the fact that, as we
discussed above, term-generated normal interpretations are equivalent to Herbrand in-
terpretations, and by the fact that isomorphic Herbrand interpretations over the same
signature are always equal.

14

2.3 Semantics

Definition 2.27 (Semantics of Formulas)
Let Σ be a signature, and I be a Σ-interpretation. An assignment ν : X → UI satisfies
a formula φ over Σ, written I, ν |= φ if

• φ = >, or

• φ = t1' t2 and I(ν)(t1) = I(ν)(t2), or

• φ = ¬φ1 and I, ν 6|= φ1, or

• φ = φ1 ∨ φ2 and I, ν |= φ1 or I, ν |= φ2, or

• φ = φ1 ∧ φ2 and I, ν |= φ1 and I, ν |= φ2, or

• φ = ∃x.φ1, x : S and I, ν[x 7→ a] |= φ1 for some a ∈ I(S), or

• φ = ∀x.φ1, x : S and I, ν[x 7→ a] |= φ1 for all a ∈ I(S).

A formula φ is satisfiable in I if I, ν |= φ for some assignment ν. It is called satisfiable
if there is an interpretation I such that φ is satisfiable in I, and unsatisfiable otherwise.
The formula φ is valid in I, written I |= φ, if I, ν |= φ for all assignments ν; in that
case, I is called a model of φ. The formula φ is valid (or a tautology), written |= φ, if φ
is valid in any interpretation. �

Observe that for a sentence (i.e., a closed formula) φ, the notions of satisfiability and
validity in an interpretation coincide: I, ν |= φ for some ν if and only if I |= φ.
By definition of validity in an interpretation then, one of I |= φ or I |= ¬φ always
holds.

Definition 2.28 (Solutions)
Let I be an interpretation and φ a formula over Σ, and let X ⊆ X . The set SolI(φ,X)
of solutions of φ in I with respect to X is defined as

SolI(φ,X) = {ν ∈ ValI(X) | I, ν |= φ}.

Two formulas φ, φ′ are equivalent with respect to I if SolI(φ,X) = SolI(φ′, X), where X
contains all free variables of φ and φ′. Two formulas are equivalent if they are equivalent
with respect to every interpretation. Given a sequence ~x = x1, . . . , xn containing all
variables of X, we also write SolI(φ, ~x) for {ν(~x) | ν ∈ SolI(φ,X)}, and we identify
SolI(φ,X) with SolI(φ, ~x), where ~x contains the variables of X in the order given by the
total ordering on X . We write SolI(φ) for SolI(φ, var(φ)). �

Definition 2.29 (Semantics of Clauses)
A clause C = Γ → ∆ with Γ = {A1, . . . , Am}, ∆ = {B1, . . . , Bn} is valid in I, written
I |= C, if I |= ∀(¬A1 ∨ . . . ∨ ¬Am ∨ B1 ∨ . . . ∨ Bn). If I is a Herbrand interpretation
(viewed as a set of ground equations) and C is ground, then I |= C if and only if Γ 6⊆ I
or ∆ ∩ I 6= ∅. �

The following definition introduces the model construction originally presented in [BG94],
which is central to the proof of completeness of the superposition calculus.

15

2 Foundations

Definition 2.30 (Candidate Interpretation IN)
Let Σ = (S,Ω) be a signature, let � be a reduction ordering that is total on TΣ, and let
N be a set of clauses over Σ. By induction on �, we define, for each C ∈ N , the ground
rewrite systems EC and RC , and the Herbrand interpretation IC . If C = Γ → ∆, s' t
is a ground instance of a clause in N such that

(i) s' t is a strictly maximal occurrence of an atom in C and s � t,

(ii) s is irreducible by RC ,

(iii) Γ ⊆ IC , and

(iv) ∆ ∩ IC = ∅
then EC = {s _ t}, otherwise EC = ∅. Furthermore, RC =

⋃
C�D ED and IC = {s' t |

s _ t ∈ R∗C}. Finally, we let RN =
⋃
C EC and define the candidate interpretation for

N as IN = TΣ/RN . �

2.4 Calculi

Definition 2.31 (Inferences, Reductions and Calculi)
An inference rule is an n + 1-ary relation on clauses. Its elements are called inferences
and written as

I
C1 . . . Cn

C
.

The clauses C1, . . . , Cn are called the premises , and C the conclusion of the inference.
A reduction rule is an n + m-ary relation on clauses. Its elements are called reductions
and written as

R
C1 . . . Cn

D1 . . . Dm

The clauses C1, . . . , Cn are called the premises , and D1, . . . , Dm the conclusions of the
reduction. By concl(π) we denote the conclusions of an inference or reduction π. A
calculus C is a set of inference and reduction rules. �

An inference can be applied to a clause set N containing the premises, resulting in
N∪{C}. A reduction can be applied to a clause set N containing the premises, resulting
in (N \{C1, . . . , Cn})∪{D1, . . . , Dm}. A reduction can be viewed as a combination of an
inference, deriving clauses New = {D1, . . . , Dm} \ {C1, . . . , Cn}, followed by the removal
of clauses Red = {C1, . . . , Cn} \ {D1, . . . , Dm}.

Definition 2.32 (Derivations)
A derivation (with respect to a calculus C) is a sequence of clause sets, denoted N0 .
N1, such that each Ni+1 is the result of applying an inference or a reduction (of C)
to Ni. �

16

2.4 Calculi

The following notion of redundant clauses and redundant inference is the one normally
used for superposition. It corresponds to the standard redundancy criterion by Bachmair
and Ganzinger [BG01].2

Definition 2.33 (Redundancy)
A ground clause C is redundant with respect to a set N of ground clauses, if there are
clauses C1, . . . , Cn ∈ N , n ≥ 0, such that C1, . . . , Cn |= C and C � Ci for all 1 ≤ i ≤ n.
A non-ground clause C is redundant with respect to a set N of clauses, if all ground
instances of C are redundant with respect to the set of all ground instances of clauses
in N .

A ground inference with conclusion C is redundant with respect to a set N of ground
clauses, if there are clauses C1, . . . , Cn ∈ N , n ≥ 0, smaller than the maximal premise
(with respect to �), such that C1, . . . , Cn |= C. A non-ground inference is redundant
with respect to a set N of clauses, if all its ground instances are redundant with respect
to the set of all ground instances of clauses in N . �

Definition 2.34 (Saturation)
A clause set N is saturated with respect to a calculus C if all inferences in C with non-
redundant premises from N are redundant in N .3 �

Definition 2.35 (Soundness)
An inference is sound if its conclusion is a logical consequence of its premises, i.e.,
C1, . . . , Cn |= C. A reduction is sound if

• C1, . . . , Cn |= New, and

• the clauses in Red are redundant with respect to D1, . . . , Dm.

where New = {D1, . . . , Dm} \ {C1, . . . , Cn} and Red = {C1, . . . , Cn} \ {D1, . . . , Dm}. A
calculus C is sound if all its inferences and reductions are sound. �

Observe that, whenever N ′ is obtained by applying to N a sound inference or reduction,
N and N ′ are logically equivalent, written as N |=| N ′.

Definition 2.36 (Refutational Completeness)
A calculus C is refutationally complete if a contradiction can be derived from an un-
satisfiable clause set by finitely many applications of inferences and reductions from
C. �

2In Section 3.2.1, we will give a completeness proof based on the more general notion of redundancy
criterion by Bachmair and Ganzinger, of which the standard one is a special case.

3In [BG01], this is called saturation up to redundancy.

17

2 Foundations

2.5 Architecture of Saturation-Based Theorem Provers

The pseudocode shown in Algorithm 2.1 is an abstract view of the SPASS [Wei01] main
loop when splitting is deactivated, i.e., using only inference and reduction rules. The
structure of the main loop goes back to the Otter theorem prover [McC03, MW97]
and is common to most saturation-based provers. The procedure maintains two sets
of clauses: Usable, containing the “active” clauses, which have not yet been used for
inferences, and WorkedOff, containing the clauses for which inferences have already been
computed. Inside the loop, a clause Given is chosen and removed from Usable (lines 4
and 5), all inferences between Given and the clauses in WorkedOff are computed (line
6), including inferences of Given with itself, yielding a set Derived of newly derived
clauses. The Given clause is added to WorkedOff (line 7), and the new Derived clauses
are reduced with respect to clauses in Usable and WorkedOff (line 8). This step is
called forward reduction. Then the clauses in Usable and WorkedOff are reduced with
respect to the remaining Derived clauses (line 9). This step is called backward reduction.
Finally, the remaining Derived clauses are added to the Usable set. At this point, the
sets Usable and WorkedOff are completely inter-reduced. Assuming that the inferences
and reductions underlying the procedures Inf, FRed and BRed form a refutationally
complete calculus, and that the function Choose implements a fair selection criterion,
the procedure produces a saturated set WorkedOff, possibly in the limit, and derives the
empty clause � in finitely many steps whenever N is unsatisfiable. In the latter case,
SPASS will answer “Proof found” (and produce a proof if the corresponding option was
active), while the answer “Completion found” signals that the set WorkedOff contains
a finite saturation of the initial clause set N .

Algorithm 2.1: Main loop of SPASS without splitting

Input: Clause set N

1 WorkedOff := ∅;
2 Usable := N ;
3 while Usable 6= ∅ and � 6∈ Usable do
4 Given := Choose(Usable);
5 Usable := Usable \{Given};
6 Derived := Inf(Given,WorkedOff);
7 WorkedOff := WorkedOff ∪{Given};
8 Derived := FRed(Derived,Usable,WorkedOff);
9 (Usable,WorkedOff) := BRed(Usable,WorkedOff,Derived);

10 Usable := Usable∪Derived;

11 if Usable = ∅ then
12 print “Completion found”;

13 else if � ∈ Usable then
14 print “Proof found”;

18

3 Labelled Splitting

3.1 Introduction

A common approach to solving combinatorial problems works by successive case dis-
tinctions. Such an approach resembles a binary search, and is based on the following
idea: If the solution to the problem must assign one of two values to a variable, one
assumes the first choice to be the right one, and explores the implications of that choice.
This process is repeated until a solution is found1, or it becomes obvious that there can
be no solution under the current set of assumptions. This situation typically manifests
itself by the appearance of a conflict , i.e., a set of mutually unsatisfiable constraints. In
this case, some of the decisions have to be revoked, and their alternatives tried. If all
possible choices have been exhausted without finding a solution, then we can conclude
that the problem has no solution at all.

In the case of the Boolean satisfiability problem, this approach is the basis of the DPLL
procedure [DP60, DLL62], which lies at the heart of today’s most powerful SAT solvers:
Given a propositional clause set N , and a propositional variable A occurring both posi-
tively and negatively in N , one assumes A to be true, making it a decision literal , and
simplifies the clause set accordingly. Any clause containing A (as a literal) is satisfied
and can be removed, while all clauses containing ¬A are simplified by removing that lit-
eral. If one of the simplified clauses becomes unit, meaning it has a single literal left, that
literal must be made true, and is added to the current set of assumptions. This process,
known as unit propagation, is repeated, until either a clause becomes false, or there are
no more unit clauses, at which point another decision has to be made. In case a clause
has become false, the solver backtracks to an earlier decision and flips the corresponding
decision literal. In modern solvers, this backtracking is non-chronological , and relies on
conflict analysis . The goal of conflict analysis is to gain as much useful information as
possible from the conflict, in order to drive the search for a solution into more fruitful
directions and avoid repeating bad decisions. It is achieved by analyzing how the various
assumptions interacted to create the conflict. In CDCL [SS96], the conflict analysis not
only yields a backtracking level, but also a conflict clause, or lemma, which follows log-
ically from the clause set and summarizes the conflict.2 The clause is then added to the

1One may also want to find all solutions, or a specific solution, in which case one would continue the
search.

2See Section 3.8 for a more detailed account of CDCL.

19

3 Labelled Splitting

clause set, in a process called clause learning . Clause learning is a key ingredient that
makes CDCL-based SAT-solvers very efficient in practice.

In first-order logic, the DPLL-style case analysis typically does not make sense, because
a given first-order atom A can have infinitely many ground instances Aσ, and it is not
known a priori which instances eventually contribute to a proof or a model. In case of
models having infinite domains, such a procedure won’t terminate on satisfiable clause
sets. Furthermore, the clause sets N ∪ {Aσ} and N ∪ {¬Aσ} are strict subsets of N
(after unit propagation and subsumption) only if Aσ already occurs in N . Therefore, in
the context of clauses with variables, a different style of case analysis is used: Given a
clause C ∈ N that can be decomposed into two non-trivial variable disjoint subclauses
C1, C2 , we split into the clause sets N ∪ {C1} and N ∪ {C2}. As C1 and C2 both
subsume C, the split clause sets are again strict subsets of N and smaller with respect
to the standard superposition ordering for clause sets (see Definition 2.20). Furthermore,
both clauses C1 and C2 contain strictly less different variables than C. This property
is essential in making superposition a decision procedure for certain first-order clause
fragments.

The rest of this chapter is organized as follows:

In Section 3.2, we present a formalization of splitting with backtracking for superposi-
tion, based on clause labels, and prove it to be sound and complete. The completeness
in particular relies on an updated notion of derivation fairness. This work is based
on our earlier publications [FW08, FW09], but has been thoroughly revised and im-
proved.

As a new contribution, we extend the splitting calculus with a rule for conflict-driven
clause learning, presented in Section 3.3. While clause learning in CDCL relies on the
negation of (propositional) literals, negating a non-ground literal A requires Skolemiza-
tion, which causes the introduction of fresh Skolem constants. This is a problem, because
the resulting Skolemized clauses cannot be used for reductions, and also because mod-
ifying the problem signature during proof search interferes with the well-foundedness
required for completeness. Until now, this problem was avoided by restricting lemma
learning to ground clauses [Wei01]. We solve it by using the clause labels to track in-
stantiations of variables in split clauses. When an empty clause has been derived, we use
the instantiation information in its label to compute lemmas. These lemmas are similar
to CDCL-style conflict clauses, but can be non-ground.

Section 3.4 provides an overview of our implementation of splitting with backtracking
and clause learning in SPASS. In Section 3.5, we compare the old splitting calculus and its
implementation from [FW09] to the new one. The results of our experimental evaluation
show the superiority of the new splitting calculus over the old one. In Section 3.6, we
present an experimental evaluation of clause learning, which demonstrates that clause
learning, especially learning of non-ground clauses, improves the performance of SPASS
on problems where splitting is used. This chapter ends with a discussion of related

20

3.2 A Calculus for Explicit Splitting

work, in Section 3.7, and a more detailed comparison of our clause learning with that of
CDCL, in Section 3.8.

3.2 A Calculus for Explicit Splitting

In the following, we assume a calculus C consisting of inference and reduction rules, but
without a splitting rule, and modularly turn it into a calculus SC with splitting. We will
assume that all inferences and reductions in C are sound.

We will lift the calculus C to a calculus SC with explicit splitting and backtracking, in
such a way that the soundness and refutational completeness of C carries over to SC.
The calculus SC is defined in terms of a transition system, that is, a transition relation
over a set of states. We extend the notion of derivation (Definition 2.32) to include
sequences S0 =⇒ S1 =⇒ . . . over states. The transition system is shown in Figure 3.1.

Definition 3.1 (max+)
Let α ⊆ N. We define

max+ α =

{
0 if α = ∅,
maxα otherwise.

�

Definition 3.2 (C+L, C−L)
We assume that the literals in a clause have a fixed order and are identified by indices
0, 1, Given a clause C with n literals and a set L ⊆ {0, . . . , n− 1}, we write C+L for
the clause consisting of the literals of C identified by L, and C−L for the clause consisting
of the remaining literals of C. �

Definition 3.3 (Labelled Clauses)
Labelled clauses are of the form α : C or (β, α) : C, where α, β ⊆ N, and C is a clause.
If N is a set of clauses, we write α : N for {α : C | C ∈ N}. �

Definition 3.4 (Splits, Stacks)
A split is a tuple (n, α : C,L), where n ∈ N is the split level of the split, α : C is a
labelled clause, called the parent clause of the split, and L ⊆ N is a set of literal indices,
such that C = C+L ∨ C−L is a variable-disjoint decomposition of C. A stack S is a
(possibly empty) sequence s1, . . . , sn of splits. We write levels(S) for the set of split
levels occurring in S. By an abuse of set notation, we write ∅ for the empty stack, and
S \ α for the result of removing from stack S all splits with levels in α ⊆ N. �

Definition 3.5 (States)
A state S is a tuple S |M | N , where S is a stack, and M,N are sets of labelled clauses.
The set N contains the active clauses of the form α : C, while the set M contains the
conditionally deleted clauses of the form (α, β) : C. We write levels(S) for levels(S). �

21

3 Labelled Splitting

Splitting:
S |M | N =⇒SC S, (n, α : C,L) |M | N, α ∪ {n} : C+L

where

(i) there is some clause α : C ∈ N such that L splits C, and

(ii) n = (max+ levels(S)) + 1.

Inference:
S |M | N =⇒SC S |M | N, α : C

where

(i) there are clauses α1 : C1, . . . , αn : Cn ∈ N , and

(ii) I
C1 . . . Cn

C
is an inference of C, and

(iii) α = α1 ∪ . . . ∪ αn.

Reduction:

S |M | N, α1 :C1, . . . , αn :Cn =⇒SC S |M ∪M ′ | N, β1 :D1, . . . , βm :Dm

where

(i) R
C1 . . . Cn

D1 . . . Dm

is a reduction of C, and

(ii) γ = α1 ∪ . . . ∪ αn,

(iii) βi =

{
αj if Di = Cj for some j,

γ otherwise,

(iv) M ′ = {(γ, αi) : Ci | Ci 6∈ {D1, . . . , Dm} and γ 6⊆ αi}.

Backtracking:

S |M | N, α : � =⇒SC S ′ |M \M ′ | (N \N ′) ∪N ′′, α′ : C−Lmaxα

if α 6= ∅, where

(i) S ′ = bt(S, α), for a backtracking function bt,

(ii) α′ = α \ {maxα},
(iii) M ′ = {(γ, β) : D ∈M | γ 6⊆ levels(S ′) or β 6⊆ levels(S ′)},
(iv) N ′ = {α : C ∈ N | α 6⊆ levels(S ′)},
(v) N ′′ = {β : D | (γ, β) : D ∈M and γ 6⊆ levels(S ′) and β ⊆ levels(S ′)}.

Figure 3.1: Transition Rules of a Splitting Calculus With Backtracking

22

3.2 A Calculus for Explicit Splitting

The intuition behind labelled clauses, splits and stacks is the following: Each assump-
tion made during the proof search is represented by a split, which is pushed on the stack
and uniquely identified by its split level. Splits are removed from the stack upon back-
tracking, after an empty clause has been derived. The label of a clause α : C contains
the levels of the splits the clause depends on, i.e., the splits that contributed to the
derivation of the clause. A clause of the form (β, α) : C is a conditionally deleted clause,
which depends on the split levels in α, and has been reduced (e.g., subsumed) by clauses
depending on the split levels in β.

Definition 3.6 (Admissible Stacks, Clauses and States, Lk)
A stack S is called admissible if it satisfies the following three conditions:

(i) no two splits in S have the same level;

(ii) n > max+ α for every split (n, α : ,) in S;

(iii) if S = S ′(n, α : ,)S ′′, then α ⊆ levels(S ′).

Given a state S |M | N , a clause α : C ∈ N is admissible if α ⊆ levels(S), and a clause
(γ, β) : D ∈M is admissible if β, γ ⊆ levels(S). The state S |M | N is called admissible
if S is admissible and all clauses in N,M are admissible. In the context of an admissible
stack, we denote by Lk the unique set of literal indices associated with the split of level
k, i.e., the stack contains a split of the form (k, α : C,Lk). �

We will show in Lemma 3.20 that only admissible states are derivable in SC from an
initial state.

Definition 3.7 (Valid Clauses, Sγ, γ#k, S#k)
We say that a clause α : C is valid with respect to a label γ if α ⊆ γ. We say that a
clause (β, α) : D is valid with respect to γ if α ⊆ γ and β 6⊆ γ. For a set N of labelled
clauses, we define

valid(N, γ) = {C | α : C ∈ N and α : C is valid wrt. γ},

and analogously for sets of doubly labelled clauses. Given a state S = (S | N | M) and
a label γ, we define

Sγ = valid(N, γ) ∪ valid(M,γ).

Finally, for # ∈ {<,≤,≥, >}, we define γ#k = {k′ ∈ γ | k′#k}, and we write S#k as
shorthand for Slevels(S)#k . �

For example, if levels(S) = {1, 2, 3}, then S≤2 = S{1,2}.
While admissibility of a (singly or doubly) labelled clause is a simple well-formedness
condition which ensures that the labels only refer to existing splits, validity of a clause
with respect to a label can be understood as follows: An active clause α : C is valid with
respect to γ, if γ contains the levels of all splits on which α : C depends; a conditionally

23

3 Labelled Splitting

deleted clause (β, α) : D is valid with respect to γ, if γ contains the levels of all splits on
which α : D depends, and additionally, at least one level in β is missing from γ, meaning
that the active clause β : C ′ which was used to reduce α : D (thereby turning it into the
conditionally deleted clause (β, α) : D), is itself not valid with respect to γ, and D may
thus not be redundant anymore.3

The set γ can be viewed as representing a context, or a set of assumptions, consisting of
the split clauses at the split levels contained in γ. Hence Sγ contains all non-redundant
clauses in S that need to be considered for inferences and reductions, under the context
γ.

Definition 3.8 (Open Branches)
Let S be a state. For any k ∈ levels(S), we define

open(S, k) = S<k ∪ {C−Lk}.
The set of open branches of S is defined as

open(S) = {Slevels(S)} ∪
⋃

k∈levels(S)

{open(S, k)}.

For convenience, we will identify the set open(S) with the disjunction over its elements,
i.e., with ∨

N∈open(S)

N . �

Definition 3.9 (Satisfiability of S |M | N)
We call a state S = (S |M | N) satisfiable if open(S) is satisfiable. �

Lemma 3.10
Assume S =⇒SC S ′ by an application of Inference or Reduction, and let δ ⊆ levels(S)
be arbitrary.

(i) If S ′δ \ Sδ 6= ∅, then S ′δ contains all premises that are not redundant with respect
to S ′δ.

(ii) If Sδ \ S ′δ 6= ∅, then S ′δ contains all conclusions.

Proof. We only consider Reduction, as Inference is a special case of it. Let Premises =
{C1, . . . , Cn}, Conclusions = {D1, . . . , Dm}, New = Conclusions \Premises and Red =
Premises \Conclusions.
(i) Let Di ∈ S ′δ \ Sδ. Then Di ∈ New, so the conclusion γ : Di was derived, and γ ⊆ δ.
Hence αj ⊆ δ for all j ∈ [1, n] (since γ =

⋃
j αj), so all Premises are valid wrt. δ. Now

consider an arbitrary premise αj : Cj that is not redundant wrt. S ′δ. As Cj ∈ Sδ and
Cj 6∈ Red, it follows that Cj ∈ S ′δ.
(ii) Let Ci ∈ Sδ \ S ′δ. Then Ci ∈ Red, so the premise αi : Ci was removed. As
αi : Ci ∈ Sδ, the clause is valid wrt. δ, hence αi ⊆ δ. Since Ci 6∈ S ′δ, it must be the case
that either
3This will be made explicit in Lemma 3.13.

24

3.2 A Calculus for Explicit Splitting

• (γ, αi) : Ci 6∈M ′, or

• (γ, αi) : Ci ∈M ′, and (γ, αi) : Ci is not valid wrt. δ.

In the first case, it follows by definition of M ′ that γ ⊆ αi. As βj ⊆ γ for all j ∈ [1,m],
and αi ⊆ δ, it follows that also βj ⊆ δ for all j ∈ [1,m], i.e., all Conclusions are contained
in S ′δ. In the second case, as αi ⊆ δ, the only way for (γ, αi) : Ci to be not valid wrt.
δ is that γ ⊆ δ. As βj ⊆ γ, we also know that βj ⊆ δ for all j ∈ [1,m], hence it again
follows that all Conclusions are contained in S ′δ. �

Lemma 3.11
Assume ∅ | ∅ | N0 =⇒∗SC S | M | N . Then for every clause (β, α) : D ∈ M , there exist
clauses α1 : C1, . . . , αn : Cn ∈ N and (β1, αn+1) : Cn+1, . . . , (βm, αn+m) : Cn+m ∈ M ,
n,m ≥ 0, n+m ≥ 1, such that β ⊇ α1 ∪ . . . ∪ αn+m and D is redundant with respect to
C1, . . . , Cn+m.

Proof. We proceed by induction on the derivation. The statement obviously holds for
the initial state. So let us assume that ∅ | ∅ | N0 =⇒∗SC S =⇒SC S ′. By induction,
the statement holds for S. We distinguish which rule was applied to S. It suffices to
consider the rules Reduction and Backtracking, as they are the only ones modifying the
set M or removing clauses from the set N .

• Reduction: We have S = S | M | N, α1 : C1, . . . , αn : Cn and S ′ = S | M ∪M ′ |
N, β1 : D1, . . . , βm : Dm. We have to establish the existence of suitable reducing
clauses for each clause in M ∪M ′. The clauses in M ′ are of the form (γ, αi) : Ci
and by soundness of the underlying reduction, they are redundant with respect
to D1, . . . , Dm, and γ = α1 ∪ . . . ∪ αn = β1 ∪ . . . ∪ βm. Now consider a clause
(β, α) : D ∈ M . By induction, there are clauses α′1 : C ′1, . . . , α

′
k : C ′k ∈ N ∪

{α1 : C1, . . . , αn : Cn} and (β′1, α
′
k+1) : C ′k+1, . . . , (β

′
l, α
′
k+l) : C ′k+l ∈ M such that

β ⊇ α′1 ∪ . . . ∪ α′k+l and D is redundant with respect to C ′1, . . . , C
′
k+l. Assume

that some clause α′i : C ′i is not contained in N ∪ {β1 : D1, . . . , βm : Dm}. Then, by
soundness of the underlying reduction, C ′i is redundant with respect to D1, . . . , Dm.
Now there are two cases: Either γ 6⊆ α′i, in which case (γ, α′i) : C ′i ∈ M ′ and the
property is still satisfied for (β, α) : D, as C ′i “moves” from N to M . Or γ ⊆ α′i,
in which case α′i : C ′i disappears and is replaced by β1 : D1, . . . , βm : Dm. The
property is still satisfied for (β, α) : D, as β1 ∪ . . . ∪ βm = γ ⊆ α′i.

• Backtracking: We have S = S |M | N, α : � and

S ′ = S |M \M ′ | (N \N ′) ∪N ′′, α′ : C−Lmaxα .

We have to establish the existence of suitable reducing clauses for each clause in
M \M ′. Let (β, α′) : D ∈M \M ′. By induction, there are clauses α1 : C1, . . . , αn :
Cn ∈ N ∪ {α : �} and (β1, αn+1) : Cn+1, . . . , (βm, αn+m) : Cn+m ∈ M , such that
β ⊇ α1 ∪ . . . ∪ αn+m and D is redundant with respect to C1, . . . , Cn+m. Now the
key observation is that αi ⊆ levels(S ′) holds for all i ∈ [1, n + m], for otherwise,
we would have β 6⊆ levels(S ′), implying (β, α′) : D ∈ M ′, a contradiction to our

25

3 Labelled Splitting

assumption. Hence all the αi : Ci are still contained in N \N ′. At worst, one of the
(βi, αn+i) : Cn+i can end up in M ′, but since αn+i ⊆ levels(S ′), the corresponding
αn+i : Cn+i is contained in N ′′, hence the property is satisfied for (β, α′) : D.

�

Remark 3.12
Lemma 3.11 establishes a tree-like relation between the clauses in a state: Each (β, α) :
D ∈ M is the root of a tree and has child nodes αi : Ci ∈ N (leaves) and (βj, αn+j) :
Cn+j ∈M (internal nodes), and each internal node is redundant with respect to its child
nodes, as illustrated in Figure 3.2. Simple circles represent clauses in N , double circles
represent clauses in M . C1 is redundant wrt. C2, C3, C4 and β1 = α2 ∪ α3 ∪ α4. C2 is
redundant wrt. C5 and β2 = α5. C5 is redundant wrt. C6 and α6 ⊆ α5. �

α1 :C1 (β1, α1) :C1

α2 :C2 α3 :C3 α4 :C4

(β2, α2) :C2

α5 :C5 α6 :C6

Figure 3.2: Three Reduction steps (left to right) illustrating Lemma 3.11

Lemma 3.13
Assume ∅ | ∅ | N0 =⇒∗SC S = (S | M | N). Any clause (β, α) : D ∈ M is redundant
with respect to Sγ whenever β ⊆ γ.

Proof. We proceed by induction on M , ordering the clauses in M by increasing height
of their associated tree.4 So let (β, α) : D be an arbitrary clause in M with β ⊆ γ,
and let αi : Ci ∈ N , i ∈ [1, n], and (βj, αn+j) : Cn+j ∈ M , j ∈ [1,m] be its child
clauses, as per Lemma 3.11. In the base case, (β, α) : D is the root of a tree of height
1, and n > 0,m = 0. For the inductive step, we have n ≥ 0,m > 0 and the inductive
hypothesis holds for the (βj, αn+j) : Cn+j. As β ⊆ γ, it follows from Lemma 3.11 that
α1∪. . .∪αn ⊆ γ, hence Ci ∈ valid(N, γ) ⊆ Sγ, for all i ∈ [1, n]. This covers the base case.
Now for the inductive step, consider an arbitrary child clause (βj, αn+j) : Cn+j, j ∈ [1,m].
As β ⊆ γ, it follows from Lemma 3.11 that αn+j ⊆ γ. If βj ∈ γ, then by induction, Cn+j

is redundant with respect to Sγ. Otherwise, βj 6∈ γ, hence Cn+j ∈ valid(M,γ) ⊆ Sγ. In
sum, as D is redundant with respect to C1, . . . , Cn+m and each Ci, i ∈ [1, n+m] is either
contained in Sγ or redundant with respect to it, it follows that D itself is redundant
with respect to Sγ. �

Lemma 3.14
Assume ∅ | ∅ | N0 =⇒∗SC S. If α ⊆ β, then Sα ⊆ Sβ ∪ Redβ, where all clauses in Redβ
are redundant with respect to Sβ.

4As defined in Remark 3.12

26

3.2 A Calculus for Explicit Splitting

Proof. Let S = (S |M | N) and α ⊆ β. Clearly, valid(N,α) ⊆ valid(N, β), so it remains
to show that valid(M,α) ⊆ valid(M,β) ∪ Redβ. Let D ∈ valid(M,α). Then there is
(β′, α′) : D ∈ M such that α′ ⊆ α (implying α′ ⊆ β) and β′ 6⊆ α. If also β′ 6⊆ β, then
D ∈ valid(M,β). Otherwise, β′ ⊆ β, thus by Lemma 3.13, D is redundant with respect
to Sβ and hence D ∈ Redβ. �

As an immediate consequence of Lemma 3.14, we get that α ⊆ β implies Sβ |= Sα.
Thus for any k, we get S≤k |= S<k, and for k ≤ k′, we get Sα≤k′ |= Sα≤k and S≤k′ |=
S≤k.

Definition 3.15 (Dependency Graph)
Given a stack S, the dependency graph of S is DG(S) = (V,E), where V consists of ∅
and α∪{n} for every split (n, α : ,) in S, and E ⊆ V ×V is the smallest set containing
(αi, α ∪ {n}) for all i ∈ [1,m], whenever α = α1 ∪ . . . ∪ αm. The set of descendants of a
split level k wrt. S is defined5 as

descS(k) = {k′ | there is γ ∈ DG(S) such that k ∈ γ and k′ = max γ},

and extended to labels by

descS(α) =
⋃
k∈α

descS(k) . �

Lemma 3.16
Let S be an admissible stack. For any union α of nodes in DG(S), there exist unique
nodes α1, . . . , αn ∈ DG(S), such that α = α1 ∪ . . .∪αn, and no two αi, αj are subsets of
each other.

Proof. Let α1, . . . , αn ∈ DG(S) be arbitrary such that α = α1 ∪ . . . ∪ αn and αi 6⊆ αj
whenever i 6= j. Observe that, by definition of DG(S), for every k ∈ levels(S), there is
a unique γ with max γ = k, and k ∈ β implies γ ⊆ β. Now assume for contradiction
that α = β1 ∪ . . . ∪ βm ∪ β, where β is not a subset of any βj, and β is different from
all αi. Consider any αi with max β ∈ αi: By assumption, β 6= αi, so it follows that
β ⊂ αi. Now consider any βj with maxαi ∈ βj: We have αi ⊆ βj and hence β ⊂ βj, a
contradiction. �

Lemma 3.17
Let S be an admissible stack. Let α be a union of DG(S)-nodes, and let k ∈ α be
arbitrary. Then α<k is also a union of DG(S)-nodes.

Proof. Observe that α<k = ((. . . (α<km) . . .)<k1)<k if there are km > . . . k1 > k ∈ α,
hence we can assume without loss of generality that k = maxα. So let α = α1∪ . . .∪αn
and αi be the unique node with maxαi = k. Then we obtain α<k from α, by replacing
αi with the union of its ancestors in DG(S). �

5We write γ ∈ DG(S) for γ ∈ V .

27

3 Labelled Splitting

Example 3.18
Consider the stack

S = (1, ∅ : ,), (2, ∅ : ,), (3, {1} : ,),

(4, {1} : ,), (5, ∅ : ,), (6, {1, 4, 5} : ,),

(7, ∅ : ,), (8, ∅ : ,), (9, {7} : ,).

S is admissible, and DG(S) looks as follows:

∅

{1}

{1, 3} {1, 4}

{1, 4, 5, 6}

{2} {5} {7}

{7, 9}

{8}

Observe that descS(1) = {1, 3, 4, 6}. �

Definition 3.19 (Backtracking Function)
Given an admissible stack S and non-empty α ⊆ levels(S), a backtracking function is
any function defined by

(S, α) 7→ S \ descS(β)

where β is any set with β ∩ α = {maxα}. We distinguish three backtracking functions:

• regular backtracking (or backjumping), with6 β = levels(S)≥maxα,

• eager backtracking (or branch condensing), with β = (levels(S) \ α) ∪ {maxα},

• lazy backtracking , with β = {maxα}. �

Regular backtracking consists in removing the levels below the last level that contributed
to the conflict, while eager backtracking removes all levels that did not contribute to the
conflict. Lazy backtracking only removes the last level that contributed to the conflict.
The three backtracking modes are sound, and one could expect eager backtracking to
perform better on unsatisfiable problems, while lazy backtracking might do better on
satisfiable problems. We leave these questions as future work however, and focus on
regular backtracking for the rest of this chapter.

Lemma 3.20
Assume ∅ | ∅ | N0 =⇒∗SC S. Then S is admissible.

6See Definition 3.7

28

3.2 A Calculus for Explicit Splitting

Proof. We proceed by induction on the derivation. The initial state is obviously admissi-
ble. So let S = (S |M | N), S ′ = (S ′ |M ′ | N ′) and assume ∅ | ∅ | N0 =⇒∗SC S =⇒SC S ′.
By induction, S is admissible. We distinguish which rule was applied:

• Splitting: S ′ obviously satisfies conditions (i) and (ii) of Definition 3.6 by induction;
furthermore, α : C is admissible by induction hence S ′ also satisfies condition (iii),
and the clause α ∪ {n} : C+L is admissible.

• Inference, Reduction: S ′ = S, and admissibility of all newly derived clauses follows
immediately from the definition.

• Backtracking: S ′ obviously satisfies conditions (i) and (ii) of Definition 3.6 by in-
duction; furthermore, (α \ {maxα}) : C−Lmaxα is admissible, as (α \ {maxα}) ⊆
levels(S ′). Admissibility of the clauses in N ′′ follows immediately from the defini-
tion. It remains to show that S ′ satisfies condition (iii) of Definition 3.6: Assume
not. Then there must be two splits (ni, αi : ,) and (nj, αi : ,) in S, such
that nj ∈ levels(S ′), ni 6∈ levels(S ′) and ni ∈ αj. From ni 6∈ levels(S ′), it follows,
by definition of the backtracking function, that ni ∈ descS(β). Since ni ∈ αj, and
thus ni ∈ αj∪{nj}, it follows from the definition of DG(S) that also nj ∈ descS(β).
But then nj 6∈ levels(S ′), a contradiction.

We conclude that S ′ is admissible. �

Justified by Lemma 3.20, we will assume that all considered states in the following are ad-
missible. In particular, this justifies the notation C+Lk , C−Lk for any k ∈ levelsS.

Invariant 3.21
Let S = (S | M | N) be a state. Let γ 6= ∅ be a union of nodes in DG(S), and let
k = max γ. Then7

Sγ<k |= Sγ ∨ Sγ<k , C−Lk . �

Lemma 3.22
Let S = (S | M | N) be a state satisfying Invariant 3.21. Let α = {k1, . . . , km} be a
union of nodes in DG(S), such that k1 < . . . < km. Then

S∅ |=| Sα ∨ Sα<km , C−Lkm ∨ . . . ∨ Sα<k2 , C−Lk2 ∨ S∅, C−Lk1 .

Proof. We have S∅ = Sα<k1 . By Lemma 3.17, since α is a union of nodes, so is every
α<ki . Hence, by Invariant 3.21, we have

Sα<k1 |= Sα<k2 ∨ Sα<k1 , C−Lk1 ,
Sα<k2 |= Sα<k3 ∨ Sα<k2 , C−Lk2 ,

...

Sα<km |= Sα ∨ Sα<km , C−Lkm .
7We treat the clause sets Sγ , Sγ<k as conjunctions of their clauses.

29

3 Labelled Splitting

By induction on m, it follows that

S∅ |= Sα ∨ Sα<km , C−Lkm ∨ . . . ∨ Sα<k2 , C−Lk2 ∨ S∅, C−Lk1 .

We can strengthen the entailment to an equivalence, because S∅ is a subset of each of
the sets Sα,Sα<km , . . . ,S∅. �

Observe that by taking α = levels(S), Lemma 3.22 yields S∅ |=| open(S).

Lemma 3.23
Let S = (S | M | N) be a state satisfying Invariant 3.21, such that α : � ∈ N , and let
α′ = α \ {maxα}. Then Sδ |= C−Lmaxα whenever α′ ⊆ δ.

Proof. By Invariant 3.21, Sα′ |= Sα ∨ Sα′ , C−Lmaxα . As � ∈ Sα, it follows that Sα′ |=
Sα′ , C−Lmaxα and thus Sα′ |= C−Lmaxα . If α′ ⊆ δ, then Sδ |= Sα′ (by Lemma 3.14), and
hence also Sδ |= C−Lmaxα . �

Lemma 3.24
Assume S =⇒SC S ′ by an application of Backtracking. Then, for all δ ⊆ levels(S ′), it
holds that

S ′δ =

{
Sδ ∪ {C−Lmaxα} if α′ ⊆ δ,

Sδ otherwise.

Proof. Let δ′ = levels(S ′). First observe that

valid((N \N ′) ∪N ′′, δ) = {C | β : C ∈ (N \N ′) ∪N ′′ ∧ β ⊆ δ}
= {C | β : C ∈ N ∧ β ⊆ δ} \
{C | β : C ∈ N ∧ β 6⊆ δ′ ∧ β ⊆ δ} ∪
{C | (γ, β) : D ∈M ∧ γ 6⊆ δ′ ∧ β ⊆ δ′ ∧ β ⊆ δ}

= {C | β : C ∈ N ∧ β ⊆ δ} ∪
{C | (γ, β) : D ∈M ∧ γ 6⊆ δ ∧ β ⊆ δ}

= valid(N, δ) ∪ valid(M, δ)

and

valid(M \M ′, δ) = {D | (γ, β) : D ∈M ∧ β ⊆ δ ∧ γ 6⊆ δ} \
{D | (γ, β) : D ∈M ∧ (γ 6⊆ δ′ ∨ β 6⊆ δ′) ∧ γ 6⊆ δ ∧ β ⊆ δ}

= valid(M, δ) \ ∅
= valid(M, δ).

30

3.2 A Calculus for Explicit Splitting

Therefore

S ′δ = valid((N \N ′) ∪N ′′ ∪ {α′ :C−Lmaxα}, δ) ∪ valid(M \M ′, δ)

= valid((N \N ′) ∪N ′′, δ) ∪ valid({α′ :C−Lmaxα}, δ) ∪ valid(M \M ′, δ)

= valid(N, δ) ∪ valid(M, δ) ∪ valid({α′ :C−Lmaxα}, δ)
= Sδ ∪ valid({α′ :C−Lmaxα}, δ)

=

{
Sδ ∪ {C−Lmaxα} if α′ ⊆ δ,

Sδ otherwise.

�

Lemma 3.25
Assume S =⇒SC S ′ by an application of Backtracking, such that S satisfies Invariant
3.21. Then Sδ |=| S ′δ for all δ ⊆ levels(S ′).

Proof. Follows immediately from Lemmas 3.24 and 3.23. �

Theorem 3.26 (Soundness of =⇒SC)
Assume ∅ | ∅ | N0 =⇒∗SC S. Then N0 |=| open(S).

Proof. We prove the stronger statement

(i) S satisfies Invariant 3.21, and

(ii) N0 |=| open(S),

by induction on the derivation: For S = (∅ | ∅ | N0), DG(∅) has ∅ as only node, and
(i) and (ii) hold trivially. So let S = (S | M | N), S ′ = (S ′ | M ′ | N ′) and assume
∅ | ∅ | N0 =⇒∗SC S =⇒SC S ′. By induction, S satisfies (i) and (ii). We distinguish which
rule was applied:

• Splitting: For (i), observe that DG(S ′) has one additional node, namely α ∪ {n},
and that S ′β = Sβ for all nodes β in DG(S). Furthermore, n > max(γ ∪ α) for
any union γ of nodes in DG(S). Therefore it suffices to show that

Sγ∪α |= Sγ∪α∪{n} ∨ Sγ∪α, C−L .

This is straightforward, since C ∈ Sα and Sα∪γ |= Sα (by Lemma 3.14), and
Sγ∪α∪{n} = Sγ∪α ∪ {C+L}.
For (ii), let levels(S) = {l1, . . . , lm}, n = lm + 1, and observe that

open(S) = {open(S, l1), . . . , open(S, lm), S<n}, and

open(S ′) = {open(S ′, l1), . . . , open(S ′, lm), open(S ′, n), S ′≤n}
= {open(S, l1), . . . , open(S, lm), S<n ∪ {C+L}, S<n ∪ {C−L}}.

As C ∈ S<n, it follows that open(S) |=| open(S ′), and thus (ii) holds by induction.

31

3 Labelled Splitting

• Inference, Reduction: For (i), observe that S ′ = S. For (i) and (ii), let S∗ be one
of Sγ, Sγ<k , open(S, k), or S≤n for n = max levels(S) and arbitrary k ∈ levels(S),
γ ⊆ levels(S), and let S ′∗ be the analogous set for S ′. Assume that S ′∗ 6= S∗. If
S ′∗ \ S∗ 6= ∅, then S ′∗ contains a newly derived conclusion, and, by Lemma 3.10,
S ′∗ also contains all non-redundant premises. If S∗ \S ′∗ 6= ∅, then some redundant
clause was removed, and, by Lemma 3.10, S ′∗ also contains all conclusions. Hence,
by soundness of the underlying reduction, S∗ |=| S ′∗, and thus (i) and (ii) hold by
induction.

• Backtracking: For (i), note that every node of DG(S ′) is a node of DG(S). By
induction and Lemma 3.25, we can deduce that S ′ also satisfies Invariant 3.21. For
(ii), it follows from Lemma 3.25 that open(S) |=| open(S ′), and thus (ii) holds by
induction.

�

More generally, we can observe that, given a state S = S |M | N , adding labelled clauses
N ′ to N preserves soundness as long as Sδ |= valid(N ′, δ) holds for all δ ⊆ levels(S).
This motivates the following definition:

Definition 3.27 (Labelled Inference Rule)
A labelled inference rule is any function mapping a state S = S | M | N to a set N ′ of
labelled clauses. The rule is sound if Sδ |= valid(N ′, δ) holds for all δ ⊆ levels(S). �

We have already established (in Lemma 3.10 and Theorem 3.26) that inference rules of
C yield sound labelled inference rules of SC via the Inference rule. It is easy to see that
SC can be extended by sound labelled inference rules without affecting soundness of SC,
by adding transitions

S |M | N =⇒SC S |M | N ∪N ′

where N ′ is the result of applying the labelled inference rule to N . In Section 3.3, we
will consider clause learning as an example of a labelled inference rule which is not lifted
from an underlying inference rule of C.

3.2.1 Completeness

Refutational completeness of a superposition-based (or more generally, saturation-based)
theorem proving system relies on static as well as dynamic conditions.

Static completeness refers to the refutational completeness of the calculus, and requires
that there exist a derivation of the empty clause from any unsatisfiable clause set, or,
equivalently, that any unsatisfiable set saturated by the calculus contains the empty
clause. Refutational completeness of superposition relies on the definition of a model

32

3.2 A Calculus for Explicit Splitting

functor, which maps any clause set N to the candidate interpretation IN (see Defini-
tion 2.30), which is a model of N whenever N is saturated and does not contain the
empty clause.

Dynamic completeness concerns the strategy with which inferences and reductions are
applied, and requires that any derivation following the strategy eventually produces a
saturated set (possibly in the limit). Dynamic completeness relies on fairness, which
essentially requires that no inference be postponed forever if it is required for satu-
ration. Formally, given a derivation N0, N1, . . . in a calculus without splitting, one
defines the set N∞ =

⋃
i

⋂
j≥iNj of persistent clauses. The derivation is fair if every

inference with premises in N∞ is redundant with respect to
⋃
j Nj. This captures the

intuitive notion of fairness, because inferences become redundant when their conclusions
are added.

When splitting with explicit backtracking is added to the calculus however, this notion
of fairness is no longer sufficient to guarantee dynamic completeness. This is because
the proof of dynamic completeness assumes the derivation to be “monotonic”, in the
sense that each step Ni . Ni+1 consists of adding derived clauses and/or removing re-
dundant clauses, and redundant clauses stay redundant forever. This property does not
hold for derivations in SC: The Backtracking rule removes clauses that depend on re-
moved splits, but are not necessarily redundant, and the Reduction rule removes clauses
that are redundant with respect to the current set Ni, but may become non-redundant
later.

The following example shows a derivation in SC that is fair in the classical sense, yet
fails to produce a saturated set.

Example 3.28
Consider the clause set N0 containing the following clauses:

(1) ∅ : → S(a)
(2) ∅ : S(a) →
(3) ∅ : → P (a)
(4) ∅ : P (x) → Q(y), P (f(x))
(5) ∅ : Q(x) → S(y)

Because of (1), (2), the set is unsatisfiable. Now we derive

Res(3,4)=(6) ∅ : → Q(x), P (f(a))
Split(6)=(7) {1} : → Q(x)

Res(7,5)=(8) {1} : → S(x)

and use (8) to subsume (1), removing it from the active clause set. Finally, we derive

Res(8,2)=(9) {1} : �
Backtrack(9)=(10) ∅ : → P (f(a))

33

3 Labelled Splitting

at which point (1) is reinserted. We now repeat the same steps with (10) in place of (3),
and so on, producing an infinite derivation. Because of the repeated subsumption, (1)
is not persistent, and the derivation is fair in the sense discussed above. But the “real”
contradiction ∅ : � is never derived. �

In the light of the above example, we have to modify the notions of persistent clause and
fair derivation in order to obtain dynamic completeness for SC.

Definition 3.29 (Persistent Levels, Persistent Clauses)
Consider a derivation S0 =⇒SC S1 =⇒SC . . . We define the set of persistent levels at step
i ≥ 0 as

levels∞i =
⋂
j≥i

levels(Sj),

and define
S∞i = (Si)levels∞i .

The set of persistent clauses is defined as

S∞ =
⋃
i

⋂
j≥i
S∞j .

�

In Example 3.28 above, the stack alternates between being empty and consisting of a
single split with level 1. Hence levels∞i = ∅, for all i ≥ 0. The subsumption of (1) by
(8) causes (1) to be removed by N , and added to M as ({1}, ∅) : → S(a). This clause
however is valid with respect to ∅, hence both clauses→ S(a) and S(a)→ are contained
in S∞i , for all i ≥ 0.

The following lemma states that (S∞i)i≥0 forms a “monotonic” sequence, as opposed to
(Ni)i≥0:

Lemma 3.30
For every i ≥ 0, S∞i+1 = (S∞i ∪New) \Red, where the clauses in Red are redundant with
respect to S∞i ∪ New.

Proof. Inference is trivial. For Reduction, observe that as in the soundness proof, the
conclusions are in S∞i+1 whenever Red 6= ∅, and hence all clauses in Red are redundant
in S∞i+1. For Backtracking, observe that levels∞i+1 = levels∞i , as no new splits are added,
and any removed split level cannot have been in levels∞i . By Lemma 3.24, it follows that
Red = ∅. �

Note that in Lemma 3.30, we don’t care about the set New, because for completeness, we
only need to ensure that the successive sets S∞i don’t become too weak.

A redundancy criterion [BG01] is a pairR = (RF ,RI) of mappings which associate with
each clause set a set of clauses and a set of inferences, respectively, that are deemed to

34

3.2 A Calculus for Explicit Splitting

be redundant with respect to that clause set. An effective redundancy criterion, such
as the standard redundancy criterion employed in superposition, satisfies the following
four requirements, for all clause sets N and N ′:

(R1) if N ⊆ N ′, then RF(N) ⊆ RF(N ′) and RI(N) ⊆ RI(N ′);
(R2) if N ′ ⊆ RF(N), then RF(N) ⊆ RF(N \N ′) and RI(N) ⊆ RI(N \N ′);
(R3) if N is inconsistent, then N \ RF(N) is also inconsistent;

(R4) an inference is in RI(N) whenever its conclusion is in N ∪RF(N).

In the following, we assume an effective redundancy criterionR = (RF ,RI). The follow-
ing is a slightly modified version of Lemma 4.2 from [BG01]:

Lemma 3.31
Let S0 =⇒SC S1 =⇒SC . . . be a derivation. Then

R(
⋃
j

S∞j) ⊆ R(S∞)

(where R stands for RF and RI) and S∞ |= N0.

Proof. By Lemma 3.30, any clause in
⋃
j S∞j but not in S∞ must be in some RF(S∞i).

Hence (
⋃
j S∞j) \ S∞ ⊆

⋃
jRF(S∞j). By (R1), we have

⋃
jRF(S∞j) ⊆ RF(

⋃
j S∞j) and

hence

(
⋃
j

S∞j) \ RF(
⋃
j

S∞j) ⊆ S∞. (3.1)

By (R1) and (R2), we get R(
⋃
j S∞j) ⊆ R(S∞) (see [BG01] for details). Furthermore,

S∞ |= (
⋃
j

S∞j) \ RF(
⋃
j

S∞j) by 3.1

|=
⋃
j

S∞j by definition of redundancy

|= S∞0 ,

and S∞0 |=| N0, hence S∞ |= N0. �

Definition 3.32 (Fairness)
We call a derivation S0 =⇒SC S1 =⇒SC . . . fair if the conclusion of every non-redundancy
inference from non-redundant clauses in S∞ is contained in

⋃
j S∞j , or redundant with

respect to it, i.e.,

concl(Inf(N ′) \ RI(N ′)) ⊆
⋃
j

S∞j ∪RF
(
S∞j
)

where N ′ = S∞ \ RF(S∞). �

35

3 Labelled Splitting

The following lemma is equivalent to Theorem 4.3 from [BG01] and proved in the same
way, using Lemma 3.31 in place of Lemma 4.2 [BG01].

Lemma 3.33
Let S0 =⇒SC S1 =⇒SC . . . be a fair derivation. Then S∞ is saturated up to redundancy .

Theorem 3.34 (Completeness)
Assume the underlying calculus C is refutationally complete, and let S0 =⇒SC S1 =⇒SC

. . . be a fair derivation, such that, whenever there is α : � ∈ Ni with α 6= ∅, then there
exists j ≥ i such that Backtracking is applied to Sj and α : �. Then ∅ : � ∈ S∞
whenever N0 is unsatisfiable.

Proof. If the derivation is fair, then S∞ is saturated up to redundancy (by Lemma 3.33),
and S∞ |= N0 (by Lemma 3.31). Hence, if N0 is unsatisfiable, then S∞ is unsatisfiable
as well, and by saturation and refutational completeness of C, S∞ contains the empty
clause. Hence there are i ≥ 0 and α such that α : � ∈ ⋃j≥i S∞j . Therefore Backtracking
was not applied to α : �, so it must be the case that α = ∅. �

In Section 3.4, we will discuss how to obtain fair derivations in practice.

3.2.2 Consistency-Preserving Rules

In the context of refutational theorem proving, one sometimes considers a weaker notion
of soundness, namely consistency preservation. Whenever N ′ is obtained by applying to
N a consistency-preserving inference or reduction, N and N ′ are equisatisfiable, but not
necessarily logically equivalent. It is straightforward to adapt the results of this section
to consistency-preserving rules:

• Invariant 3.21 is weakened to

[Sγ<k]⇔ [Sγ] ∨ [Sγ<k , C−Lk];

• Theorem 3.26 is weakened to stating that N0 and open(S) are equisatisfiable (in-
stead of equivalent), and is proven analogously;

• Lemma 3.31 is weakened to stating that N0 is satisfiable if S∞ is, i.e., one loses
the property that saturated branches yield models of the input clause set.

Theorem 3.34 is then proven analogously, using the weakened version of Lemma 3.31.

36

3.3 Splitting With Clause Learning

3.3 Splitting With Clause Learning

One of the major breakthroughs in DPLL-based SAT-solving was the introduction of
conflict-driven clause learning (CDCL) [SS96]. In CDCL, whenever a conflict occurs,
it is analyzed and a conflict clause is derived and added to the clause set. This con-
flict clause can be thought of as summarizing the reason for the conflict. Adding the
clause to the clause set has two benefits: First, the conflict clause is used to guide the
backtracking process of the solver. The solver undoes all decisions up to the second-
highest decision level of the conflict clause, after which the presence of the conflict
clause causes a unit propagation step that drives the model search away from the con-
flict. For this reason a conflict clause used in this fashion is often called an asserting
clause. The second benefit of learning the conflict clause is that its presence in the
clause sets prevents the solver from running into the same or a similar conflict again in
the future.

In our setting, we don’t use conflict clauses for backtracking. The intuitive reason is that
backtracking based on conflict clauses relies on the possibility of negating literals. Split-
ting generalizes the decision process of DPLL/CDCL in two dimensions: First, instead
of decision literals, we have split clauses, which in general contain more than one literal.
But more importantly, as we are in the first-order setting, split clauses may contain vari-
ables. While negating a propositional literal is no problem, negating a non-ground (and
universally quantified) clause requires Skolemization. For instance, assume that we have
a split clause A(x). The usefulness of splitting is based in large parts on the possibility to
use split clauses to reduce other clauses. If, during backtracking, we negate this clause,
we get ¬A(c), where c must be a fresh Skolem constant. As c does not occur in any other
clauses, the clause ¬A(c) cannot be used for reductions.

Nevertheless, adding the negation of the “left” split clause when backtracking into the
corresponding “right” branch is a powerful technique. In the case where the split clause
is ground, negating it and adding the resulting unit clauses can be done without prob-
lems, and this has been implemented in SPASS for a long time, significantly improving
performance. Moreover, the addition of ground lemmas allows the splitting rule to
simulate DPLL on propositional problems.

Even though we cannot negate non-ground split clauses without Skolemization, we can
use the terms instantiating the split clauses’ variables in the refutation of the left
branch instead of Skolem constants. For example, assume again a split clause A(x),
and suppose that the refutation of the branch involved substituting x by both a and
f(b) in different subtrees (of the refutation). Then ¬A(a) ∨ ¬A(f(b)) could be used
instead of ¬A(c) for the fresh Skolem constant c. More formally, assume the refu-
tation is based on the split clause A(x) and some other clauses C1, . . . , Cm, that is,
there is a derivation A(x), C1, . . . , Cm ` �. From this it follows that C1, . . . , Cm |=
¬∀xA(x). But if a and f(b) were the only instances of x used in the refutation, we
actually have A(a), A(f(b)), C1, . . . , Cm ` � from which it follows that C1, . . . , Cm |=
¬A(a) ∨ ¬A(f(b)). More interestingly, variables occurring in such instantiations and

37

3 Labelled Splitting

that never get instantiated by ground terms, can be viewed as “don’t care” or existen-
tially quantified. For instance, suppose that x is only instantiated by f(y). Then we
have ∃yA(f(y)), C1, . . . , Cm ` � from which it follows that C1, . . . , Cm |= ∀y (¬A(f(y))).
This opens up the possibility of learning non-ground clauses, which would not be possible
with a Skolemization approach.

It is clear that in the context of superposition with splitting, no form of conflict-driven
clause learning should be expected to deliver the same boost in performance as it does
in the SAT setting [BKS04]. The reason is simply that in a SAT solver, clause learning
is the only way to generate new clauses, whereas clauses are generated all the time in a
saturation-based prover. In a sense, superposition already performs clause learning, al-
beit not necessarily a “conflict-driven” one. Nevertheless, the addition of negated ground
split clauses during backtracking has proven to be very useful for superposition-based
proof search, and it is a natural question to ask whether the addition of more powerful
conflict-driven clause learning may also benefit superposition with splitting. In particu-
lar, it could be hoped that clauses learned from conflicts would prevent the prover from
repeating past mistakes, as they do in the SAT setting.

In order to achieve clause learning in the first-order case, our first step will be to ex-
tend the calculus such that instantiations of split clauses can be tracked in derivations.
For this we will generalize the clause labels of the previous section, so that they carry
instantiation information.

Definition 3.35 (Simple and Complex Labels)
We call complex labels sets of tuples consisting of a natural number l and m ≥ 0 terms
t1, . . . , tm. We write such an element as l(t1, . . . , tm) and treat it as a term with function
symbol l. For clarity we refer to labels as used until now (i.e., subsets of N) as simple
labels . �

The splitting calculus is extended to handle complex labels. We call the resulting calculus
SCL. Its transition rules are shown in Figure 3.3.

As usual, we assume that the premises of an inference or a reduction are pairwise
variable-disjoint, and this also applies to variables which occur only in the labels. More
concretely, we can assume that prior to computing a unifier, a renaming of all variables in
the clause and in the label has been applied to each premise.

Definition 3.36
Let α, β be a complex and a simple label, respectively. We define

〈α〉 = {l | l(~t) ∈ α for some ~t},
α∩β = {l(~t) ∈ α | l ∈ β}, and

α\β = {l(~t) ∈ α | l 6∈ β}. �

For example, if α = {1(x), 2(f(x))} and β = {1}, then 〈α〉 = {1, 2}, α∩β = {1(x)} and
α\β = {2(f(x))}.

38

3.3 Splitting With Clause Learning

Splitting:

S |M | N =⇒SCL S, (n, α : C,L) |M | N, α ∪ {n(~x)} : C+L

where

(i) there is some clause α : C ∈ N such that L splits C, and

(ii) n = (max+ levels(S)) + 1, and

(iii) ~x = var(C+L).

Inference:
S |M | N =⇒SCL S |M | N, ασ : C

where

(i) there are clauses α1 : C1, . . . , αn : Cn ∈ N , and

(ii) I
C1 . . . Cn

C
is an inference of C with unifier σ, and

(iii) α = α1 ∪ . . . ∪ αn.

Reduction:

S |M | N, α1 :C1, . . . , αn :Cn =⇒SCL S |M ∪M ′ | N, β1 :D1, . . . , βm :Dm

where

(i) R
C1 . . . Cn

D1 . . . Dm

is a reduction of C with unifier σ, and

(ii) γ = α1 ∪ . . . ∪ αn,

(iii) βi =

{
αj if Di = Cj for some j,

γσ otherwise,

(iv) M ′ = {(〈γ〉, αi) : Ci | Ci 6∈ {D1, . . . , Dm} and 〈γ〉 6⊆ 〈αi〉}.

Backtracking:

S |M | N, α : � =⇒SCL S ′ |M \M ′ | (N \N ′) ∪N ′′, α′ : C−Lmaxα

if α 6= ∅, where

(i) S ′ = bt(S, α), for a backtracking function bt,

(ii) α′ = α \ {maxα},
(iii) M ′ = {(γ, β) : D ∈M | γ 6⊆ levels(S ′) or 〈β〉 6⊆ levels(S ′)},
(iv) N ′ = {α : C ∈ N | 〈α〉 6⊆ levels(S ′)},
(v) N ′′ = {β : D | (γ, β) : D ∈M and γ 6⊆ levels(S ′) and 〈β〉 ⊆ levels(S ′)}.

Figure 3.3: Transition Rules of a Splitting Calculus With Complex Labels

39

3 Labelled Splitting

Definition 3.37
Given a stack S and respective complex and simple labels α, β with 〈α〉, β ⊆ levels(S),
we define the operators

sc+(S, α) = { (C+Lk)[~t] | k(~t) ∈ α},
sc+(S, β) = {C+Lk | k ∈ β},
sc−(S, β) = {C−Lk | k ∈ β}. �

The set sc+(S, α) contains the instances of left split clauses of S represented by α, while
sc−(S, β) contains the right split clauses of S represented by β. Note that the clauses
in sc+(S, α) may share variables, because the terms in α may share variables. On the
other hand, we assume the clauses in sc+(S, β) and sc−(S, β) to be pairwise variable-
disjoint.

Example 3.38
Consider the stack S = (1, (α1 :P (x, y)→ Q(z)), {0}), (2, (α2 :→ R(u), S(v)), {0}).
We have8

sc+(S, {1(a, b), 1(x, f(y)), 2(y)}) = { {¬P (a, b)}, {¬P (x, f(y))}, {Q(y)} }
sc+(S, {1, 2}) = { {¬P (x, y)}, {R(u)} }
sc−(S, {1, 2}) = { {Q(z)}, {S(v)} } . �

In the following, in order to simplify notation, we treat the (implicitly universally quan-
tified) variables in clauses like free variables. For instance, if C is the clause P (x, y)→
Q(x), then ¬C is the (implicitly universally quantified) formula ¬¬P (x, y)∧¬Q(x), or,
equivalently, P (x, y) ∧ ¬Q(x). Furthermore, we extend the clause notation Γ→ ∆ (see
Definition 2.14) to include the case where Γ and ∆ are sets of (not necessarily variable-
disjoint) clauses, with the usual semantics: Γ → ∆ stands for ∀~x.¬(

∧
Γ) ∨∨∆, where

~x are all variables occurring in Γ,∆.

Definition 3.39 (Clause Learning Function)
Let S be a stack, and α be a complex label. A (conflict-driven) clause learning function
is any function defined by

(S, α) 7→ γ : cnf(sc+(S, α \ γ)→).

where γ ⊆ α such that α \ γ = α\〈γ〉. �

Different styles of clause learning can be modelled using the above definition. With γ =
∅, we get a global learning function. With γ = α\{max〈α〉} and the additional requirement
of sc+(S, α \ γ) being ground, we get local ground lemma learning, as described at the
beginning of this section. We will consider more examples of concrete clause learning
functions in Section 3.6.

40

3.3 Splitting With Clause Learning

Learning:
S |M | N =⇒SCL S |M | N ∪ learn(S, α)

if there is α : � ∈ N , and learn is a clause learning function.

Figure 3.4: Clause Learning Rule

Clause learning is integrated into SCL via the rule Learn, shown in Figure 3.4.

It is straightforward to adapt Theorem 3.26 and all lemmas it depends on to the rules
shown in Figure 3.3, simply by replacing α by 〈α〉 in the appropriate places. However,
to obtain soundness of SCL, it still remains to show that the clause learning rule is
actually a sound labelled inference rule. For this, we first establish the following simple
lemma:

Lemma 3.40
Assume ∅ | ∅ | N0 =⇒∗SCL S with S = S | M | N . Then Sδ |= sc+(S, δ) holds for any
δ ⊆ levels(S).

Proof. By induction on the derivation. Use Lemma 3.25 for Backtracking. �

As we will show in Lemma 3.42, the above Lemma 3.40 suffices to prove soundness of
Learn, if additionally, the invariant

S∅ |= sc+(S, α)→ C

can be shown to hold for every clause α : C in any state S reachable by SCL. Because of
the Backtracking rule, the above invariant is not inductive with respect to =⇒SCL, and we
therefore prove a stronger property in the following lemma:

Lemma 3.41
Assume ∅ | ∅ | N0 =⇒∗SCL S = (S |M | N). Let α : C ∈ N , and let β ⊆ 〈α〉. Then

S∅ |= sc+(S, α\β) → C, sc−(S, β).

Proof. By induction on the derivation. For the initial state, the statement reduces to

S∅ |= > → C

which holds as C ∈ S∅. So let S = (S | M | N), S ′ = (S ′ | M ′ | N ′) and assume
∅ | ∅ | N0 =⇒∗SCL S =⇒SCL S ′. We distinguish which rule was applied:

• Inference: Assume the clause ασ : C ∈ N ′ was derived from premises α1 :
C1, . . . , αn : Cn ∈ N by an inference with unifier σ, and let β ⊆ 〈α〉. Let i ∈ [1, n],
and βi = β ∩ αi. By induction, we have

S∅ |= sc+(S, α
\βi
i)→ Ci, sc−(S, βi)

8We write the clauses as multisets of literals to improve readability.

41

3 Labelled Splitting

and, since sc−(S, βi) shares no variables with sc+(S, α
\βi
i) or Ci,

S∅ |= sc+(S, α
\βi
i)σ → Ciσ, sc−(S, βi).

It follows that

S∅ |=
⋃
i

sc+(S, α
\βi
i)σ → (C1σ ∧ . . . ∧ Cnσ),

⋃
j

sc−(S, βj)

⇔ S∅ |= sc+(S, α\β)σ → (C1σ ∧ . . . ∧ Cnσ), sc−(S, β).

By soundness of the underlying inference (or reduction), we obtain

S∅ |= sc+(S, α\β)σ → C, sc−(S, β)

or, equivalently (by S ′ = S):

S∅ |= sc+(S ′, α\β)σ → C, sc−(S ′, β).

Finally, as S∅ ⊆ S ′∅, we get

S ′∅ |= sc+(S ′, α\β)σ → C, sc−(S ′, β).

• Reduction: Analogous to Inference. In the last step, S∅ ⊆ S ′∅ does not necessarily
hold, but it follows by Lemma 3.10 that S∅ |=| S ′∅.
• Splitting: Let β ⊆ 〈α〉. If n 6∈ β, then n(~x) ∈ (α∪{n(~x)})\β and C+L ∈ sc+(S, (α∪
{n(~x)})\β), so sc+(S, (α ∪ {n(~x)})\β) → C+L is valid. If n ∈ β, then C−L ∈
sc−(S, β). Let β′ = β \ {n}. By induction,

S ′∅ |= sc+(S, α\β
′
)→ C+L, C−L, sc−(S, β′)

or, equivalently, as levels(S) ⊆ levels(S ′):

S ′∅ |= sc+(S ′, α\β
′
)→ C+L, C−L, sc−(S ′, β′).

As sc−(S ′, β) = sc−(S ′, β′) ∪ {C−L}, it follows that

S ′∅ |= sc+(S ′, (α ∪ {n(~x)})\β)→ C+L, sc−(S ′, β).

• Backtracking: Let m = maxα, and let β ⊆ α′ (so m 6∈ β). By induction applied
to α :� ∈ N ,

S ′∅ |= sc+(S, α\(β∪{m}))→ sc−(S, β ∪ {m})

or, equivalently, as α′ = α \ {m} and sc−(S, β ∪ {m}) = sc−(S, β) ∪ {C−Lm}:

S ′∅ |= sc+(S, α′\β)→ C−Lm , sc−(S, β)

which is equivalent to

S ′∅ |= sc+(S ′, α′\β)→ C−Lm , sc−(S ′, β).

42

3.3 Splitting With Clause Learning

• Learn: Let β ⊆ 〈γ〉. By induction applied to α :� ∈ N ,

S∅ |= sc+(S, α\β)→ sc−(S, β).

Because of β ⊆ 〈γ〉 and γ ⊆ α, it follows that (α \ γ) ∪ γ\β = α\β, and hence

S∅ |= sc+(S, γ\β) ∪ sc+(S, α \ γ)→ sc−(S, β)

or, equivalently,

S∅ |= sc+(S, γ\β)→ ¬sc+(S, α \ γ), sc−(S, β)

Now assume that cnf(¬sc+(S, α \ γ)) = {C1, . . . , Cm}. Then

S∅ |= sc+(S, γ\β)→ (C1 ∧ . . . ∧ Cm), sc−(S, β)

which can be weakened to

S∅ |= sc+(S, γ\β)→ Ci, sc−(S, β)

for any i ∈ [1,m]. Thus the the invariant holds for any learned clause γ : Ci in
γ : cnf(sc+(S, α \ γ)→).

�

Lemma 3.42 (Soundness of Learn)
Learn is a sound labelled inference rule, i.e., for any S = (S | M | N) with ∅ | ∅ |
N0 =⇒∗SCL S, and α : � ∈ N , it holds that Sδ |= Ci, for any Ci ∈ cnf(sc+(S, α \γ)→)
returned by a clause learning function, for any δ with 〈γ〉 ⊆ δ.

Proof. Assume S, α, γ and δ as described above. By Lemma 3.41 applied to α : �,

S∅ |= sc+(S, α)→

which implies

Sδ |= sc+(S, α)→

as S∅ ⊆ Sδ. By Lemma 3.40,

Sδ |= sc+(S, δ).

Hence,

Sδ |= sc+(S, δ) ∧ (sc+(S, α)→).

43

3 Labelled Splitting

As 〈γ〉 ⊆ (〈α〉 ∩ δ), this implies

Sδ |= sc+(S, δ) ∧ (sc+(S, α\〈γ〉)→)

which, by α\〈γ〉 = α \ γ, implies

Sδ |= sc+(S, α \ γ)→

Now let {C1, . . . , Cm} = cnf(sc+(S, α \ γ)→). Then

Sδ |= C1 ∧ . . . ∧ Cm

and thus

Sδ |= Ci

for any i ∈ [1,m]. �

Theorem 3.43 (Soundness of =⇒SCL)
Assume ∅ | ∅ | N0 =⇒∗SCL S. Then N0 |=| open(S).

Proof. The proof is analogous to the proof of Theorem 3.26, with α replaced by 〈α〉 in
the appropriate places in the proof, and in all required lemmas. The additional rule
Learn is sound by Lemma 3.42. �

Example 3.44
Consider a stack S with levels(S) = {1, 2, 3} and sc+(S, {1}) = {P (x)}, sc+(S, {2}) =
{Q(y)} and sc+(S, {3}) = {R(z)}, and let α = {1(x), 2(a), 2(b), 3(f(x))}. Then, for
γ = α\{max〈α〉} = {1(x), 2(a), 2(b)} we get

γ : cnf(sc+(S, α \ γ)→) = γ : cnf(sc+(S, {3(f(x))})→)

= { {1(x), 2(a), 2(b)} : R(f(x))→ }

which corresponds to a “local” learning scheme. On the other hand, for γ = ∅, we get

γ : cnf(sc+(S, α \ γ)→) = ∅ : cnf(sc+(S, α)→)

= { ∅ : P (x), Q(a), Q(b), R(f(x))→ }

which corresponds to a “global” learning scheme. �

3.4 Implementation

Algorithm 3.1 shows the main loop of SPASS with splitting based on the calculus
SC. For easier comparison with Algorithm 2.1, states (as they appear in the calcu-
lus SC) do not appear explicitly in the pseudocode: The sets Usable and WorkedOff

44

3.4 Implementation

together make up the clause set N in the corresponding state S | M | N , while
the set M of conditionally deleted clauses is modified implicitly by the procedures
FRed, BRed and Backtrack. Clause learning is implemented inside the procedure
Backtrack.

The loop is quite similar to the loop without splitting (Algorithm 2.1), with the following
exceptions:

• The occurrence of an empty clause α : � ∈ Usable causes the loop to terminate
only if the stack is empty (line 4), in which case α must be empty as well;

• If Usable contains an empty clause α : � with α 6= ∅, backtracking is performed
(line 6);

• The Given clause is split if certain conditions are satisfied (lines 11 and 12, where
n is |S|+ 1 and L is the chosen set of literals to split on), otherwise it is used for
inferences as usual (lines 14 and 15).

The function IsSplittable has three purposes: (i) To check whether the clause is splittable
at all, i.e., whether it has non-empty variable-disjoint components, (ii) to implement a
splitting heuristic, and (iii) to ensure fairness in the sense of Definition 3.32.

A splitting heuristic could consist in splitting only if the resulting split clauses both con-
tain at least one positive literal, in order to get “closer” to Horn [FW09].

In order to ensure fairness, different approaches can be used. In SPASS, the “reductive
potential” of a split clause, i.e., the number of clauses in the Usable and WorkedOff sets
that would be subsumed by the split clause, is computed. Consecutive splitting steps
are only allowed if their corresponding reductive potential is monotonically increasing.
Thus in SPASS, IsSplittable(Given) returns true if and only if Given is splittable into
variable-disjoint components having both at least one positive literal, and the reductive
potential of consecutive splits is monotonically increasing.

A less sophisticated approach simply consists in performing at least one “fair” inference
step between any two splitting steps, for instance by maintaining the Usable clauses in
a priority queue according to some fair measure, like clause weight, size or derivation
depth.

3.4.1 Representation of Complex Labels

We represent complex labels as additional special literals in clauses (in a way similar
to answer literals [Gre68]). The predicate symbols for these literals don’t occur in the
original problem signature, and the calculus rules are modified so that they completely
ignore these extra literals, except when applying substitutions to a clause. This has the
advantage that the existing data structures and operations for terms and substitutions
can be directly used on the labels. For efficiency, clauses with a complex label α still
keep their simple label 〈α〉 in bit vector representation, even though this information

45

3 Labelled Splitting

Algorithm 3.1: Main loop of SPASS with splitting

Input: Clause set N

1 WorkedOff := ∅;
2 Usable := N ;
3 S := ∅;
4 while Usable 6= ∅ and (α : � 6∈ Usable or S 6= ∅) do
5 if α : � ∈ Usable with α 6= ∅ then
6 (S,Usable,WorkedOff) := Backtrack(S,Usable,WorkedOff);

7 else
8 Given := Choose(Usable);
9 Usable := Usable \{Given};

10 if IsSplittable(Given) then
11 Derived := {α ∪ {n} : C+L};
12 S := S, (n,Given, L);

13 else
14 Derived := Inf(Given,WorkedOff);
15 WorkedOff := WorkedOff ∪{Given};
16 Derived := FRed(Derived,Usable,WorkedOff);
17 (Usable,WorkedOff) := BRed(Usable,WorkedOff,Derived);
18 Usable := Usable∪Derived;

19 if Usable = ∅ then
20 print “Completion found”;

21 else if ∅ : � ∈ Usable then
22 print “Proof found”;

46

3.5 Comparison With Previous Work

is redundant. Keeping it allows to efficiently handle conditional clause deletion, as
explained below.

3.4.2 Handling of Conditionally Deleted Clauses

We store conditionally deleted clauses in an array deleted, where deleted[k] contains the
list of all conditionally deleted clauses (γ, α) : C with k = max{max+ γ, max+ α}.
The rationale for this indexing scheme is that the validity and/or redundancy of a
conditionally deleted clause in deleted[k] can only be affected by the removal of a split
with level less or equal to k. Therefore, after a Backtracking step, only the indices
greater or equal to the minimum of the removed levels need to be checked for clauses
that may have become invalid, or that have to be reinserted. Algorithm 3.2 takes as
input the set β = levels(S) \ levels(S ′) of levels which have been removed, and the level
n of the topmost split of S, and returns the set N ′′ of clauses that have to be reinserted,
deleting them and all invalid clauses from deleted. Labels are represented as bit vectors,
so that checking for an empty intersection between two labels is done by computing the
bitwise AND and checking if the result is zero.

Algorithm 3.2: ReinsertDeletedClauses

Input: β = levels(S) \ levels(S ′), n = max levels(S)
Output: Set N ′′ of clauses to reinsert

1 N ′′ := ∅;
2 for l := min β to n do
3 foreach (γ, α) : C ∈ deleted[l] do
4 if β ∩ α 6= ∅ then /* α : C is no longer valid */

5 remove (γ, α) : C from deleted[l];

6 else if β ∩ γ 6= ∅ then /* α : C is no longer redundant */

7 remove (γ, α) : C from deleted[l];
8 N ′′ := N ′′ ∪ {α : C};

9 return N ′′

3.5 Comparison With Previous Work

The splitting calculus SC presented in Section 3.2 is an improved version of the calculus
presented in [FW08] and [FW09], which we refer to as the “old” splitting procedure in
the following. The main improvements are the following:

47

3 Labelled Splitting

• The calculus SC is much simpler than its predecessor: There is no more distinction
between “left” and “right” splits, and no more need for “leaf markers”. Backtrack-
ing is defined as a single rule in SC, instead of four (Backjump, Branch-condense,
Right-collapse, Enter-right). Hence the correctness proofs are also simpler and
easier to understand.

• The calculus SC can model different backtracking styles, via the bactracking func-
tion, and clause learning can be straightforwardly integrated into SC, as we did in
Section 3.3. Adding clause learning to the earlier calculus and proving correctness
of the resulting system would have been much more tedious. This was one of the
motivations for developing the improved calculus.

• The handling of conditionally deleted clauses in SC is more precise and efficient than
in the previous calculus: On the theoretical side, conditionally deleted clauses are
reinserted only when the level of the subsuming clause is deleted—in the previous
calculus, conditionally deleted clauses were stored on the stack, at the level of
the reducing clause, which required a complicated traversal of the whole stack
whenever a split was to be deleted, and also had the consequence that clauses
were being reinserted even though they were still redundant. On the practical
side, the simplified handling of conditionally deleted clauses makes backtracking
in the SC-based implementation twice as fast as in the earlier implementation, on
average.

• Finally, in the previous calculus ground lemmas unnecessarily depend on the cur-
rent right split. In SC, this dependency no longer exists and the lemmas thus have
a greater scope.

Figure 3.5 shows a comparison between the old implementation of splitting with back-
tracking and the new implementation based on SC, on a random sample of 1946 problems
from the TPTP problem library, version 5.4.0 [Sut09], where splitting was used. In both
procedures, regular backtracking (see Definition 3.19) and the default ground lemma
generation (learning scheme 1 in Section 3.6) are used. The plot shows the number of
problems solved (vertical axis) within a given time limit of up to five minutes (horizontal
axis). It can be seen that the new splitting procedure performs better, solving about 20
more problems within the five minute time limit.

Figure 3.6 compares the old and the new splitting procedures in terms of the number
of derived clauses per problem (upper plot) and the number of splits performed per
problem (lower plot). It can be seen that the number of derived clauses and splits tends
to be lower under the new backtracking scheme, especially for problems with large search
spaces.

The reason why the performance degrades for some problems is that first-order theorem
provers—just like SAT solvers—can be very sensitive to the order in which clauses are
processed. In the new splitting procedure, conditionally deleted clauses may be rein-
serted earlier than in the old procedure, and such a reinserted clause may then be selected

48

3.5 Comparison With Previous Work�������������������������� ��� ���� ���� ���� ���� �����	
������
��� �������
����
������������������������
Figure 3.5: Comparison of old and new splitting: Number of problems solved

49

3 Labelled Splitting��������������������������� ��� ��� ��� ��� ��� ��� ����	
��	������	����	�� �	
��	������	�������	
��	������	���������������������������� ��� ��� ��� ��� ��� ��� ����	
���	�������������� �	
���	�����������
���	
���	��������
Figure 3.6: Comparison of old and new splitting: Derived clauses and splits performed

per problem

50

3.6 Experimental Evaluation of Clause Learning

for inferences leading to a completely different part of the search space being explored,
and causing divergence of the two prover runs from that point on.

3.6 Experimental Evaluation of Clause Learning

We have implemented five different clause learning functions, shown in Table 3.1.

Scheme Lemmas based on

1 the last used split clause if it is ground: γ = α\{m}, if C+Lm is ground

2
the single used ground instance of the last used split clause, if there is
such a single ground instance: γ = α\{m}, if sc+(S, α \ γ) = {C} and
C is ground;

3
the single used (possibly non-ground) instance of the last used split
clause, if there is such a single instance: γ = α\{m}, if sc+(S, α \ γ) =
{C};

4 all used instances of the last used split clause: γ = α\{m};

5 all used split clause instances: γ = ∅.

Table 3.1: Clause learning schemes, with m = max〈α〉.

The learning functions 1 to 4 all produce local lemmas, usually having non-empty la-
bels and hence being valid only in a certain part of the split tree, in particular in
the right branch entered upon backtracking. The learning functions 1 to 4 become in-
creasingly more powerful, as any lemma produced by function 1 is also produced by
functions 2, 3, and 4, and so on. Function 5 produces global lemmas only, i.e., clauses
with empty labels that are globally valid. The motivation for global lemma learning
is that global lemmas can be reused across the split tree and are not discarded upon
backtracking.

Table 3.2 shows the effect of the clause learning schemes 2 to 5 on the number of
derived clauses and splits per problem, measured as the average over all problems of the
ratio between the number of derived clauses (or splits performed) under the respective
learning scheme and the number of derived clauses (or splits performed) under scheme
1 (the default scheme), expressed in percent (ignore the last row for now). The numbers
are separately aggregated for problems yielding a proof and for problems yielding a
completion. For instance, the first number in the top left corner means that on average
over all problems where both splitting without learning and learning scheme 2 yield a
proof, 1.5% fewer clauses are derived per problem under learning scheme 2 than under
learning scheme 1.

51

3 Labelled Splitting

Clauses derived Splits performed

Scheme Proofs Completions Overall Proofs Completions Overall

2 -1.5 -0.2 -1.2 -1.6 -0.2 -1.3
3 -1.9 0.0 -1.5 -2.0 -0.4 -1.6
4 -3.7 -0.5 -2.9 -5.1 -0.7 -4.1
5 +11.1 +1.6 +9.0 +23.2 +0.6 +18.1
6 -4.7 -0.5 -3.8 -6.5 -0.7 -5.2

Table 3.2: Effect of the different clause learning schemes on the number of derived clauses
and splits per problem, compared to the default scheme 1.

As expected, scheme 4 gives the best result among the local learning schemes. Surpris-
ingly, the global learning scheme 5 performs even worse than the default local learning
scheme 1. The reason turned out to be the following: It often happens that the in-
stances of split clauses used in the derivation of the empty clause together already form
an unsatisfiable conjunction, i.e., the clause set sc+(S, α) is unsatisfiable. In that case,
the lemma cnf(¬sc+(S, α)) is a tautology, hence nothing is learned at all. However,
in the same situation, local lemmas could be learned, which in turn could be used
to speed up the refutation of the right branch.9 While this absence of local lemmas
causes worse performance for many problems, the learned global lemmas significantly
improve performance for other problems. We therefore decided to combine schemes 4
and 5 into an new learning scheme (number 6), producing both local and global lem-
mas.

Figure 3.7 compares the number of problems solved within a given time limit of up to
five minutes under the six different learning schemes, on the same random sample of
1797 TPTP problems used for Figure 3.5. It can be seen that learning scheme 6 indeed
performs best.

Figure 3.8 compares the number of derived clauses and splits performed per problem
under learning schemes 4, 5 and 6 compared to 1. It can be seen that scheme 6 com-
bines the improvements of schemes 4 and 5 without the degradation incurred by scheme
5.

All experiments in this and the preceding section were run on machines with a 3.16 GHz
Xeon CPU and 16 GB RAM, running Debian 6.0.

9It is worth noting that an analogous problem cannot occur in CDCL: If the conjunction of the
current decision literals were unsatisfiable, the last such literal would have been produced by unit
propagation, and not by a decision. See Section 3.8 for a comparison of our clause learning with
CDCL.

52

3.6 Experimental Evaluation of Clause Learning�������������������������������������� ��� ���� ���� ���� ���� ����	
����������� �������������� ��
��������
��������
��������
��������
��������
������
Figure 3.7: Comparison of different clause learning schemes: Number of problems solved

within time limit

53

3 Labelled Splitting��������������������������� ��� ��� ��� ��� ��� ��� ����	
������ �	
�������������	�����	� ��������������������������� ��� ��� ��� ��� ��� ��� ����	
������ �	
�������	��	����
��	���������������������������� ��� ��� ��� ��� ��� ��� ����	
������ �	
�������������	�����	� ��������������������������� ��� ��� ��� ��� ��� ��� ����	
������ �	
�������	��	����
��	���������������������������� ��� ��� ��� ��� ��� ��� ����	
������ �	
�������������	�����	� ��������������������������� ��� ��� ��� ��� ��� ��� ����	
������ �	
�������	��	����
��	�
Figure 3.8: Number of splits (left) and derived clauses (right) for learning schemes 4

(top), 5 (middle) and 6 (bottom), compared to 1

54

3.7 Related Work

3.7 Related Work

The splitting rule goes back to the DPLL procedure [DP60, DLL62] for propositional
logic, where a propositional clause set N is split into the clause sets N ∪ {A} and
N ∪ {¬A} for some propositional variable A occurring positively and negatively in N ,
and the resulting tree is traversed in a depth-first way, by backtracking each time a
contradiction has been found.

In the context of first-order logic, splitting is an indispensable ingredient of superposition-
based decision procedures [BGW93, FLHT01, HW07]. Splitting with backtracking
was first implemented in SPASS [Wei01, WGR96, WDF+09]. The formalization of
splitting in this chapter (and in our previous work [FW09], out of which this chap-
ter developed) can be viewed as an extension of the formalization of DPLL as an
abstract calculus in [NOT06] to the full first-order case, with the additional formal-
ization of clause learning. Clause learning in the SAT setting was first introduced
in [SS96]. The use of clause labels to model explicit case analysis was first suggested
in [LAWRS07].

A different lifting of DPLL/CDCL to the first-order level is the Model Evolution calculus
[BT08, BPT12]. The calculus essentially splits a clause set N into the clause sets N∪{A}
and N∪{skolem(¬A)}, where A is a first-order atom potentially including variables that
are replaced by fresh Skolem constants in skolem(¬A). The new Skolem constants are
not treated naively, instead special refinements of the calculus ensure that they can be
reused to a certain extent. The clause set N ∪ {skolem(¬A)} is not a strict subset
of N (after redundancy elimination), and it is therefore not clear whether the Model
Evolution calculus can be turned into a decision procedure for all the fragments for which
superposition with splitting is known to be a decision procedure. Also the fairness issues
we discussed in Section 3.2.1 are not addressed by the work, which instead suggests
an iterative deepening approach, where the number of splits for any round is finitely
bounded. The Model Evolution calculus has also been extended with rules for lemma
learning [BFT06], which can also produce non-ground lemmas. Lemmas are synthesized
by a guided resolution process, closely resembling the way conflict clauses are computed
in CDCL. This is in contrast to the way lemmas are computed in our approach: Since
we store instantiation information in the clause labels, no additional inferences need to
be performed in order to produce a lemma. Indeed the authors acknowledge the high
computational overhead of their approach, which is reflected in the experimental results,
where the use of lemma learning does not significantly increase the number of problems
solved within a given time bound.

An alternative to splitting with backtracking is based on the introduction of new propo-
sitional symbols [dN01, RV01]. In this approach, a clause C that can be decomposed
into two variable disjoint components C1 and C2, is replaced by two clauses q ∨ C1 and
¬q∨C2, where q is a new propositional symbol. If ¬q is selected in ¬q∨C2 and q is made
the smallest atom in the ordering, no inference step between q and ¬q is done as long
as C1 or C2 have not been “resolved away”, giving a flavor of explicit splitting. While

55

3 Labelled Splitting

the transformation preserves satisfiability, the introduction of new propositional symbols
prevents the effective use of the generated split clauses for reductions, and cannot replace
the explicit splitting needed for decidability results.10

Recently, splitting with backtracking has also been integrated into other provers, and
its performance has been compared to that of splitting through new propositional sym-
bols [HV13, BP13]. Splitting with backtracking has been shown to perform better, as
predicted by the theory.

3.8 Comparison With CDCL

In order to contrast our clause learning approach with CDCL, let us briefly recall how
clause learning works in CDCL (see [SLM09] for a detailed account).

A CDCL solver tries to construct a truth assignment for all propositional variables in
a given clause set, alternating between an assignment phase and a backtracking phase.
During the assignment phase, the solver assigns truth values to yet unassigned variables.
If a variable is unconstrained, the solver decides on a value, analogously to splitting, and
associates a unique decision level with the literal. As soon as a clause becomes unit,
meaning that all but one of its literals are assigned to false and the remaining literal
is unassigned, this remaining literal is assigned to true. This is done repeatedly, in a
process called unit propagation, until either there are no more unit clauses, or else a
clause has all its literals assigned to false, in which case a conflict has been reached, and
the backtracking phase begins.

The unit clause that caused a literal to become true by unit propagation is called the
literal’s antecedent , and the solver keeps track of the relation between literals and their
antecedents in the implication graph. When a conflict occurs, the implication graph is
analyzed and a conflict clause is computed, whose literals are negated unique implication
points of the implication graph with respect to the current conflict. In the simplest case,
these are just negated decision literals. The solver then backtracks to the next-smallest
decision level occurring in the conflict clause, and adds the conflict clause to the clause
set. Thus the choice of conflict clause affects both the backtracking as well as subsequent
propagation steps. In most state-of-the-art CDCL solvers, the conflict clause is computed
according to the first unique implication point (or 1-UIP) scheme [ZMMM01], whereby
the conflict graph is traversed backwards in a breadth-first fashion until a conflict clause
with a single literal at the current decision level is obtained. The 1-UIP scheme is optimal
in terms of the obtained backtracking level [ABH+08].

From the point of view of superposition with splitting, the decision steps correspond
to splitting steps, and the unit propagation steps correspond to inferences (or rather,
reductions). When an empty clause is derived by superposition, its derivation (i.e., a

10See [FW09] for a more detailed discussion of the issues related to splitting through new propositional
symbols.

56

3.8 Comparison With CDCL

DAG over clauses with the empty clause at the root) can be viewed as the counterpart
to the implication graph, as illustrated by Figure 3.9. The left part shows an implication
graph. The notation li@d stands for a literal li assigned at decision level d. l1 and l2
are decision literals, l3 is a propagated literal. The conflict occurs because of the clause
l5 ∨ l6. The literal l4@2 is the first unique implication point. Possible conflict clauses
are l1 ∨ l2 (the negated decision literals) or l4 (the 1-UIP). The right part of Figure 3.9
shows the derivation of an empty clause from split clauses C1 and C2 and an input clause
C3, not necessarily unit. Assuming all clauses are ground, the global learning function
returns cnf(¬(C1∧C2)), which corresponds to the naive CDCL conflict clause consisting
entirely of negated decision literals.

l1@1 l2@2

l3@0 l4@2

l5@2 l6@2

⊥

{1} :C1 {2} :C2

∅ :C3 {1, 2} :C4

{1, 2} :C5 {1, 2} :C6

{1, 2} :�

Figure 3.9: Implication graph (left) and derivation of an empty clause (right)

A natural question to ask is whether a learning scheme like 1-UIP can also be used in
the context of splitting. In principle, the derivation of the empty clause could also be
traversed backwards from the root in a breadth-first way, until a single clause with the
same split level as the empty clause remains. In the example above, this would result
in learning cnf(¬C4). If the clauses are non-ground however, they cannot be negated
without introducing fresh Skolem constants, as discussed in Section 3.3, and the clauses
corresponding to the first UIP may contain variables that do not occur in the clause
label. Therefore, tracking the instantiation of variables originating from split clauses is
not enough, instead all variable instantiations need to be recorded. In CDCL, the 1-UIP
scheme is useful mainly because it produces better backjump levels. But in our setting,
the learned clauses do not affect the backjump level at all, hence the only benefit of the
1-UIP scheme would be to produce shorter lemmas. Whether this benefit justifies the
overhead of full instantiation tracking is an open question.

Finally, observe that in CDCL, as the learned clause consists of negated literals cor-
responding to unique implication points, it forces unit propagation under any partial
assignment that makes all but one of its literals false. In this way, the learned clause
functions as an explanation of the conflict which allows the solver to avoid repeating
the conflict. In the context of splitting, an analogous property would be that a learned
clause enables the prover to derive the empty clause using only reductions (and hence
no proof search), whenever the split stack contains the same assumptions that caused
the conflict. However, since split clauses are not unit in general, such a property does
not hold. For example, assume that the stack contains the split clauses A ∨ B, C ∨D,

57

3 Labelled Splitting

and E, and that they all contributed to the derivation of the empty clause. Under the
global learning scheme, we would learn

cnf(¬((A ∨B) ∧ (C ∨D) ∧ E)) =

(¬A ∨ ¬C ∨ ¬E) ∧ (¬B ∨ ¬C ∨ ¬E) ∧ (¬A ∨ ¬D ∨ ¬E) ∨ (¬B ∨ ¬D ∨ ¬E) (1)

Now assuming we again get a split stack containing A∨B, C∨D, and E, the empty clause
cannot be derived from the split clauses and (1) using only reductions (like matching re-
placement resolution), but inferences have to be performed.

3.9 Future Work

While it would also be interesting to compare the behavior of different backtracking
functions, in particular branch condensing and lazy backtracking (see Definition 3.19),
our preliminary evaluation has so far been inconclusive, and we leave a thorough inves-
tigation of this as future work.

The dependency graph (Definition 3.15) of the split stack, which captures the depen-
dencies between splits, could be exploited for other purposes as well, like for instance
parallelization, as sets of clauses depending on mutually independent splits could be
saturated independently of each other.

Finally, clause learning needs to be studied in more detail. So far, we have shown
empirical evidence suggesting that clause learning improves the overall performance of
superposition with splitting, but many open questions remain on the theoretical side:
How exactly do the learned clauses contribute to shorter proofs or saturations? What
types of problems benefit most from clause learning? Can we learn clauses that provide
a “proof by reduction”, in the sense discussed in the previous section? What theoretical
results about clause learning in CDCL can be carried over or adapted to clause learning
for splitting?

58

4 SUP(T) for Reachability

4.1 Introduction

Formal methods such as verification aim at providing correctness guarantees for hard-
and software systems. Among the well-established approaches to verification, model
checking, which checks whether a given model of a system satisfies a required property
by exhaustively exploring its state space, has been very successful in practice [CGP01,
BK08]. While explicit model checking suffers from the state explosion problem and
is limited to finite-state systems, symbolic methods usually represent sets of reachable
states as a logical formula.

To model practically useful systems, background theories describing the data domain
are also needed. Reasoning on logical formulas together with background theories is
then done using satisfiability modulo theories (SMT) methods. In a nutshell, applying
transitions corresponds to syntactic transformation of the formula, and the SMT pro-
cedure is used to detect whether the set of states represented by the current formula
either intersects a set of goal states, or whether it is implied by the previous formula,
meaning that a fixpoint has been reached. These two checks are sufficient to obtain
a procedure for checking reachability, which is a fundamental property to which other
system properties can be reduced.

This approach has two drawbacks: First, the formula representing the set of reachable
states can become very big. In order to simplify it, theory knowledge has to be used
that goes beyond simple satisfiability. Secondly, SMT methods are typically not com-
plete on quantified formulas, meaning that they return “unknown” even for unsatisfiable
instances, thus often preventing termination.

A different approach consists in representing the system in (some form of) higher-order
logic (see for example [Pau98]). While this approach has been successfully applied in
practice, it has the drawback that the high expressivity of higher-order logic in general
means that reasoning cannot be carried out automatically, but needs user guidance. In
particular, the user has to supply suitable inductive invariants which entail the correct-
ness of the system.

We follow a third approach, relying on first-order logic and automatic theorem prov-
ing. In our approach, the set of reachable states is implicitly described by a first-order
theory, and reachable states are characterized as logical consequences. Reachability of
a set of states is established by a reachability proof, or refutation of a corresponding

59

4 SUP(T) for Reachability

set of clauses. Our approach is based on superposition, and in particular on hierarchic
superposition modulo theory, SUP(T), which offers completeness guarantees for reason-
ing in the combination of full first-order logic with a background theory, FOL(T), under
suitable conditions. When dealing with infinite-state systems, one of the main challenges
of saturation-based reachability analysis is termination, since the reachability problem
for arbitrary reachability theories is undecidable, and decidability becomes even more
elusive in the FOL(T) setting.

Our first contribution, in Section 4.3, is an extension of well-known minimal-model re-
sults to FOL(T), as a prerequisite to the following contributions.

In Section 4.4, we formally define reachability theories and establish the connection be-
tween reachability analysis and superposition-based theorem proving.

Then, in Section 4.5 we focus on FOL(LA), the combination of first-order logic with
linear arithmetic, and give a first example of the power of the approach by showing that
SUP(LA) is a decision procedure for reachability in timed automata. This result has
previously been published in [FW12].

As reachability analysis benefits from the addition of loop invariants, we devise a rule for
automatic invariant computation in SUP(LA), in Section 4.6, called constraint induction,
which strictly increases the power of the calculus. We again provide an example of the
usefulness of the rule, by showing that SUP(LA) with constraint induction can be turned
into a decision procedure for reachability in timed automata extended with unbounded
integer variables. This result has been published in [FKW12], but the treatment here
fills some gaps in the presentation.

Finally, we extend the approach in two directions: First by adding background theories
beyond LA to model messages and data structures, and secondly, by generalizing it to
probabilistic systems, thus moving from qualitative to quantitative reachability prob-
lems. This yields the formalism of first-order probabilistic timed automata (FPTA),
which we present in Section 4.7. We present a saturation-based approach for reducing
max-reachability problems in FPTA to corresponding reachability problems in standard
probabilistic timed automata (PTA), which can be dealt with using well-established
model checking techniques. The approach relies on a labelling scheme similar to the
one in Chapter 3 to enumerate reachability proofs, based on which the FPTA is in-
stantiated into a PTA. Section 4.7 ends with a discussion of our implementation of the
FPTA analysis framework and experimental evaluation on a model of a DHCP protocol
over an unreliable network. This work has been previously published in [FHW10], but
Section 4.7 presents a thoroughly revised version of it.

In Section 4.8, we briefly sketch an alternative approach to path enumeration, also based
on labelled superposition, which may be better suited for combination with inductive
reasoning.

60

4.2 Preliminaries

In Section 4.9, we discuss some ideas on how to exploit the structure of systems con-
sisting of interacting components, to avoid building the exponentially large product
automaton.

The chapter ends with a discussion of related work, in Section 4.10.

4.2 Preliminaries

4.2.1 Operations on Relations

We generalize the notions about binary relations from Section 2.1 to 2n-ary relations,
for n ≥ 1.

Definition 4.1 (Composition and Closure of Relations)
Given two relations R1, R2 ⊆ S2n, their composition (R1 ◦ R2) ⊆ S2n is defined by
(R1 ◦ R2)(~s1, ~s3) if and only if there exists ~s2 ∈ Sn such that R1(~s1, ~s2) and R2(~s2, ~s3).
Given any relation R ⊆ S2n, we define

• R0 = {(~x, ~x) | ~s ∈ Sn},

• Ri+1 = Ri ◦R for i ≥ 0;

• R+ =
⋃
i>0R

i, the transitive closure of R;

• R∗ = R+ ∪R0, the reflexive transitive closure of R;

• R>k =
⋃
i>k R

i. �

Definition 4.2 (Product of Relations)
Given two relations R1, R2 ⊆ S2n, their product R1 · R2 ⊆ S4n is defined by (R1 ·
R2)(~s1, ~s2, ~s

′
1, ~s
′
2,) if and only if R1(~s1, ~s

′
1) and R2(~s2, ~s

′
2). �

It is easy to see that (R1 ·R2)i = Ri
1 ·Ri

2 for all i ≥ 0, and hence also (R1 ·R2)+ = R+
1 ·R+

2

and (R1 ·R2)∗ = R∗1 ·R∗2

To streamline notation, we occasionally1 take real-valued (meta-)variables to range over
R ∪ {−∞,∞}, with the obvious meaning: For any arithmetic expression e, e +∞ is
equivalent to ∞, e −∞ is equivalent to −∞, and e ≥ −∞, e ≤ ∞ are equivalent to
true.

1For instance in Proposition 4.90, page 102.

61

4 SUP(T) for Reachability

4.2.2 Theory of Fixpoints

We review a few standard results of the theory of monotonic mappings and their fix-
points. Proofs of these propositions, as well as further details can be found e.g., in
[Llo93].

Definition 4.3 (Least Upper Bound, Greatest Lower Bound)
Let S be a set with a partial order �, and let X ⊆ S. An element a ∈ S is an upper
bound of X if x � a for all x ∈ X; it is the least upper bound of X if additionally a � a′

holds for any upper bound a′ of X. The least upper bound of X is unique if it exists,
and is denoted by lub(X). Similarly, b ∈ S is a lower bound of X if b � x for all x ∈ X;
it is the greatest lower bound of X if additionally b′ � b holds for any lower bound b′ of
X. The greatest lower bound of X is unique if it exists, and is denoted by glb(X). �

Definition 4.4 (Complete Lattice)
A partially ordered set L is a complete lattice if lub(X) and glb(X) exist for every subset
X ⊆ L. The top element lub(L) is denoted by >, and the bottom element glb(L) is
denoted by ⊥. �

Definition 4.5 (Directed Subset)
Let L be a complete lattice. A subset X ⊆ L is called directed if every finite subset of
X has an upper bound in X. �

Definition 4.6 (Monotonic and Continuous Mappings)
Let L be a complete lattice. A mapping T : L→ L is called monotonic if x � y implies
T (x) � T (y), for all x, y ∈ L; it is called continuous if T (lub(X)) = lub(T (X)) for every
directed subset2 X ⊆ L. Every continuous mapping is monotonic. �

Definition 4.7 (Least and Greatest Fixpoint)
Let L be a complete lattice and T : L→ L be a mapping. An element a ∈ L is a fixpoint
of T if T (a) = a; it is the least fixpoint of T if additionally a � a′ holds for any fixpoint
a′ of T ; it is the greatest fixpoint of T if a′ � a holds for any fixpoint a′ of T . �

Proposition 4.8 (Fixpoints of a Monotonic Mapping)
Let L be a complete lattice. Any monotonic mapping T : L → L has a least fixpoint,
denoted by lfp(T), and a greatest fixpoint, denoted by gfp(T). Furthermore,

lfp(T) = glb{x | T (x) = x} = glb{x | T (x) � x}, and

gfp(T) = lub{x | T (x) = x} = lub{x | x � T (x)}. �

Definition 4.9 (Ordinal Powers of T up to ω)
Let L be a complete lattice and T : L → L be monotonic. Then the ordinal powers of
T up to ω are

T 0 = ⊥,
T n+1 = T (T n),
T ω = lub{T n | n ∈ N}.

�
2T is naturally extended to subsets of L.

62

4.2 Preliminaries

Proposition 4.10 (Least Fixpoint of a Continuous Mapping)
Let L be a complete lattice and T : L→ L be continuous. Then lfp(T) = T ω. �

The set of all Herbrand interpretations over a given signature forms a complete lattice un-
der the partial order of set inclusion, whose bottom element is the empty set, and whose
top element is the set of all ground atoms over the signature.

4.2.3 Transition Systems

The following treatment of transition systems and parallel composition is based on
[BK08].

Definition 4.11 (Transition Systems)
A transition system is a tuple (S,Act,→, S0) where S is a set of states , Act is a set of
actions , → ⊆ S × Act × S is a transition relation and S0 ⊆ S is a set of initial states.
We write (S,Act,→, s0) for (S,Act,→, {s0}). �

For convenience, we write s
α→ s′ for (s, α, s′) ∈→.

Definition 4.12 (Paths in a Transition System)
Let T = (S,Act,→, S0) be a transition system. A finite path in T is an alternating
sequence π = s0α1s1α2 . . . αnsn of states and actions ending with a state, such that

s0 ∈ S0 and si
αi+1→ si+1 for all 0 ≤ i < n, with n ≥ 0. The length of π is n. An infinite

path in T is an infinite alternating sequence π = s0α1s1α2 . . . of states and actions, such

that s0 ∈ S0 and si
αi+1→ si+1 for all i ≥ 0. �

Definition 4.13 (Parallel Composition)
Let Ti = (Si, Acti,→i, S0,i), i = 1, 2 be two transition systems and H ⊆ Act1 ∩ Act2 be
a set of handshake actions . The parallel composition of T1 and T2 is defined as

T1 ‖H T2 = (S1 × S2, Act1 ∪ Act2,→, S0,1 × S0,2)

where (s1, s2)
α→ (s′1, s

′
2) if and only if

(i) α ∈ H and s1
α→1 s

′
1 and s2

α→2 s
′
2, or

(ii) α 6∈ H and s1
α→1 s

′
1 and s′2 = s2, or

(iii) α 6∈ H and s′1 = s1 and s2
α→2 s

′
2.

We write T1 ‖T2 for T1 ‖H T2 with H = Act1 ∩ Act2. �

The operator ‖H is commutative, but not associative in general, i.e.,

T1 ‖H (T2 ‖H′ T3) 6= (T1 ‖H T2) ‖H′ T3

63

4 SUP(T) for Reachability

for H 6= H ′. However, ‖H is associative for a fixed set H.

In the sequel, we will only consider composition with synchronization over the intersec-
tion of all actions, i.e., T1 ‖T2. This is sufficient, as any T1 ‖H T2 can be represented as
T ′1 ‖T ′2 by renaming the actions in (Act1 ∩ Act2) \H.

Definition 4.14 (Post,Pre, Reachable States)
Let T = (S,Act,→, S0) be a transition system. For s ∈ S and α ∈ Act, the sets of
(α-)successors of s are defined as

PostT (s, α) = {s′ | s α→ s′}, and PostT (s) =
⋃
α∈Act

PostT (s, α).

Similarly, the sets of (α-)predecessors of s are defined as

PreT (s, α) = {s′ | s′ α→ s}, and PreT (s) =
⋃
α∈Act

PreT (s, α).

These definitions are naturally extended to Q ⊆ S:

PostT (Q,α) =
⋃
q∈Q

PostT (q, α), and PostT (Q) =
⋃
q∈Q

PostT (q),

PreT (Q,α) =
⋃
q∈Q

PreT (q, α), and PreT (Q) =
⋃
q∈Q

PreT (q).

A state s ∈ S is reachable in T if s ∈ Post∗T (S0). �

An easy consequence of the above definition is that

PostT (Q1, α) ∪ PostT (Q2, α) = PostT (Q1 ∪Q2, α)

PreT (Q1, α) ∪ PreT (Q2, α) = PreT (Q1 ∪Q2, α)

holds for any transition system T and sets of states Q1, Q2.

Sometimes, we will not be interested in the actions of a transition system. In those
cases, we omit them from the definition and consider transition systems to be tuples
(S,→, S0). The notions of successors, predecessors and reachability carry over in the
obvious way.

4.3 Hierarchic Superposition and Minimal Models

Since we want to model a transition system by a reachability theory, a particular model
of the theory has to be singled out to represent the transition system. A natural choice
is the minimal Herbrand model. For this reason, we will require reachability theories to
have unique minimal Herbrand models.

64

4.3 Hierarchic Superposition and Minimal Models

It is well-known that Horn theories have at most one minimal Herbrand model, and our
reachability theories will essentially be Horn theories.

However, to be able to model practically useful transition systems, we will require back-
ground theories. For example, in order to represent the transition system of a timed
automaton, one has to be able to express arithmetic operations and relations. The tran-
sition system would then be encoded as a transition system modulo the theory of linear
arithmetic, a notion we will formally introduce in Definition 4.32.

Modular integration of theory reasoning into superposition is an active research topic,
which has yielded the concept of hierarchic superposition, also called SUP(T) [BGW94,
Kru13]. We will base our treatment of background theories on the hierarchic superposi-
tion framework. We here recall its main notions and results.

4.3.1 Hierarchic Specifications

Definition 4.15 (Hierarchic Specifications)
A hierarchic specification is a pair (Spb, Spe) of specifications, where Spb = (Σb,Cb) is the
base specification, and Spe = (Σe, Ne) is the extension, and Σb ⊆ Σe. The interpretations
in Cb are called base models , and Spb is called the base theory . The sorts and operator
symbols in Σb are called base sorts and base operator symbols , respectively. The sorts and
operator symbols in Σe \Σb are called free sorts and free operator symbols , respectively.
Together with Ne they are also referred to as the enrichment . A free operator symbol
is called an extension symbol if it ranges into a base sort. We define the sets of base
variables and non-base variables , Xb, Xe ⊆ X , to consist of all variables whose sort is in
Sb or Se, respectively. �

We use the word theory to refer both to specifications and to hierarchic specifica-
tions.

4.3.2 Syntax

Definition 4.16 (Pure, (Non-)Base and Free Expressions)
A Σe-term t is called

• pure if the operator symbols occurring in it are either all base or all free;

• base if all operator symbols and variables occurring in it are base;

• non-base if it is not base;

• free if all operator symbols occurring in it are free.

These notions are naturally extended to atoms, literals and clauses. �

65

4 SUP(T) for Reachability

Definition 4.17 (Abstracted Clauses)
A clause is said to be abstracted if all its literals are pure. An abstracted clause C is
usually written as

C = Λ ‖Γ→ ∆

where Λ consists of base literals, and Γ,∆ consist of free atoms. Λ, Γ and ∆ are called the
(clause) constraint , the antecedent and the succedent of C, respectively. The constraint
is also called the base part of C, while the antecedent and succedent form the free part
of C. Two abstracted clauses Λ1 ‖C1 and Λ2 ‖C2 are variants of each other, if C1, C2

are variants of each other. �

Semantically, an abstracted clause Λ ‖Γ→ ∆ represents the implication∧
Λ ∧

∧
Γ→

∨
∆.

Any disjunction of Σe-literals can be transformed into an abstracted clause by the fol-
lowing syntactic transformation called abstraction or purification: Whenever a subterm
t, whose top symbol is base, occurs immediately below a free operator symbol, it is
replaced by a new base variable x (“abstracted out”) and the equation x' t is added to
Γ. The same transformation is applied if the top symbol of t is an extension symbol, and
t occurs immediately below a base operator symbol. This transformation is repeated
until all terms in the clause are pure; then all base atoms are moved to Λ and all free
ones to Γ or ∆, depending on their polarity.

Definition 4.18 (Simple Substitutions and Instances)
A substitution σ is called simple if it maps base variables to base terms. If t is a term
and σ a simple substitution, then tσ is called a simple instance of t; if tσ is ground, it
is called a simple ground instance of t. The set of all simple ground instances of t is
denoted by sgi(t). The notion of simple (ground) instance is naturally lifted to atoms,
literals, clauses and clause sets. �

4.3.3 Semantics

Definition 4.19 (Restriction I ′|Σ)
Let Σ = (S,Ω), Σ′ = (S ′,Ω′), Σ ⊆ Σ′ be signatures, and let I ′ be a Σ′-interpretation.
The restriction of I ′ to Σ, written I ′|Σ, is the Σ-interpretation I such that SI = SI′ for
all S ∈ S, and fI = fI′ for all f ∈ Ω. �

That is, I ′|Σ is obtained from I by removing all carrier sets SI′ with S ∈ S ′ \ S and all
functions fI′ with f ∈ Ω′ \ Ω.

Definition 4.20 (Hierarchic Interpretation)
A hierarchic interpretation for a hierarchic specification (Spb, Spe) is a Σe-interpretation
I whose restriction I|Σb to Σb is isomorphic to some base model B ∈ Cb. A hierarchic
interpretation that satisfies a set N of clauses over Σe is a Spb-hierarchic model of N , or
simply a hierarchic model. �

66

4.3 Hierarchic Superposition and Minimal Models

The above definition of hierarchic interpretations differs slightly from the one given in
[BGW94, Kru13], where I|Σb is required to be contained in Cb, while we only require
I|Σb to be isomorphic to some B ∈ Cb. This change is in line with our definition
of hierarchic specifications (Definition 2.26) and is equivalent to the original defini-
tion.

Definition 4.21
Let T be a base theory (i.e., a base specification), and N an extension over Σ. We write

• Mod(N) for the set of all models of N ,

• ModΣ(N) for the set of all Herbrand models of N ,

• ModT (N) for the set of all T -hierarchic models of N ,

• ModT ,Σ(N) for the set of all T -hierarchic Herbrand models of N .

If φ is a Σ-formula, we write

• N |=Σ φ if I |= φ for all I ∈ ModΣ(N),

• N |=T φ if I |= φ for all I ∈ ModT (N),

• N |=T ,Σ φ if I |= φ for all I ∈ ModT ,Σ(N). �

It follows from the Definition 4.21 that

ModT ,Σ(N) ⊆ ModT (N) ⊆ Mod(N)

and

ModT ,Σ(N) ⊆ ModΣ(N) ⊆ Mod(N).

Another easy consequence of the above definitions is that whenever T is the hierarchic
combination of two signature-disjoint theories T1 and T2 (which in particular have no
sorts in common), then |=T φ is equivalent to |=Ti φ, for any formula φ containing only
symbols from Ti.

Definition 4.22 (EI, DI, EI, DI)
Let I be a Herbrand-interpretation over Σ. We define the sets

EI = {s' t | s, t ∈ T (Σ) and s 6= t and s' t ∈ I} and

DI = {s 6' t | s, t ∈ T (Σ) and s 6= t and s' t 6∈ I}

of equations (disequations) between distinct ground base terms that do (not) hold in
I. By EI (DI) we denote the complement of EI (DI) with respect to the set of all
equations (disequations) between distinct ground base terms. �

67

4 SUP(T) for Reachability

Definition 4.23 (Sufficient Completeness)
Given a hierarchic specification (Spb, Spe), a set N of clauses over Σb is called sufficiently
complete (with respect to simple instances), if for every non-base ground term of base
sort t, and for any base model I ∈ Cb, there exists a base ground term t′ of the same
sort as t, such that sgi(N) ∪ EI |= t' t′. �

The above definition is the one given in [AKW09]. A weaker sufficient completeness
criterion (i.e., one that is satisfied by more clause sets) is given in [Kru13], involving the
notion of weak algebras. We stick with the stronger definition for the sake of simplicity.
All results presented in the following can be straightforwardly adapted to the refined
sufficient completeness criterion.

In the following, we will always view the base specification as (Σb,Cb), by taking Cb =
ModΣb(Nb) if the base models are axiomatized by some clause set Nb. That is, we
consider the Herbrand models of Nb as base models.3

4.3.4 Superposition Modulo Theory

In this section, we briefly introduce the hierarchic superposition calculus SUP(T). More
details can be found in [BGW92, BGW94, AKW09, Kru13]. We write SUP(T) to refer to
the general hierarchic superposition calculus, while we use SUP(T) to denote a particular
instance of the calculus with a base theory T , like in the case of SUP(LA). Similarly,
we write FOL(T) and FOL(T), respectively, to refer to the hierarchic combination of
free first-order logic with some unspecified base theory, and to the combination with a
particular base theory T . Figures 4.1 and 4.2 show the inference rules constituting the
superposition modulo T , or SUP(T) calculus.

Besides inference rules, reduction rules can also be lifted from the standard superposi-
tion calculus to SUP(T), and are indeed essential for efficient reasoning. We will only
consider subsumption deletion and tautology deletion, as these are the most impor-
tant reduction rules, and also the only ones we will need in this chapter. They are
shown in Figure 4.3. The function smgu returns the most general simple unifier of two
terms.

Variable Elimination in Constraints In practical implementations of SUP(T), like
SUP(LA), the constraints of derived clauses are often simplified (in an equivalence-
preserving way) before the clause is added to the set of derived clauses. Such sim-
plification may in particular include the elimination of variables occurring only in the
constraint, but not in the free part of the clause. In the case of SUP(LA), real-sorted
variables not occurring in the free part are eliminated by default. Formally, a clause

3See the discussion after Definition 2.26 on page 14.

68

4.3 Hierarchic Superposition and Minimal Models

Hierarchic Superposition Left:

I
Λ1 ‖Γ1 → ∆1, l' r Λ2 ‖ s[l′]' t,Γ2 → ∆2

(Λ1,Λ2 ‖ s[r]' t,Γ1,Γ2 → ∆1,∆2)σ

where

(i) σ = smgu(l, l′),
(ii) l′ is not a variable,

(iii) lσ 6� rσ,

(iv) sσ 6� tσ,

(v) (l' r)σ is strictly maximal in (Γ1 → ∆1, l' r)σ and no literal is selected in Γ1,
and

(vi) (s' t)σ is maximal in (s' t,Γ2 → ∆2)σ and either no literal in Γ2 is selected,
or s' t is selected

Hierarchic Superposition Right:

I
Λ1 ‖Γ1 → ∆1, l' r Λ2 ‖Γ2 → ∆2, s[l

′]' t
(Λ1,Λ2 ‖Γ1,Γ2 → ∆1,∆2, s[r]' t)σ

where

(i) σ = smgu(l, l′),
(ii) l′ is not a variable,

(iii) lσ 6� rσ,

(iv) sσ 6� tσ,

(v) (l' r)σ is strictly maximal in (Γ1 → ∆1, l' r)σ and no literal is selected in Γ1,
and

(vi) (s' t)σ is strictly maximal in (Γ2 → ∆2, s' t)σ and no literal is selected in Γ2

Hierarchic Equality Resolution:

I
Λ ‖Γ, s' t→ ∆

(Λ ‖Γ→ ∆)σ

where

(i) σ = smgu(s, t) and

(ii) either (s' t)σ is maximal in (Λ ‖Γ, s' t→ ∆)σ and no literal is selected in Γ,
or s' t is selected in the premise.

Figure 4.1: Inference rules of the Calculus SUP(T) (1)

69

4 SUP(T) for Reachability

Hierarchic Equality Factoring:

I
Λ ‖Γ→ ∆, s' t, s′' t′

(Λ ‖Γ, t' t′ → ∆, s′' t′)σ

where

(i) σ = smgu(s, s′),
(ii) sσ 6� tσ, and

(iii) (s' t)σ is maximal in (Γ → ∆, s' t, s′' t′)σ and no literal is selected in the
premise.

Constraint Refutation:

I
Λ1 ‖→ . . . Λn ‖→

�
where (Λ1 ‖→), . . . , (Λn ‖→) |=T ⊥

Figure 4.2: Inference rules of the Calculus SUP(T) (2)

Λ[~x, ~y] ‖C[~x] is simplified to Λ′[~x] ‖C[~x] where Λ′ is computed by real quantifier elimina-
tion from ∃~y.Λ. This also works if Λ contains integer variables, as long as all eliminated
variables ~y are real-sorted. Integer-sorted variables cannot be eliminated in general.4

The original and the simplified clause are obviously equivalent (wrt. T), and it is also
easy to see that a clause C1 with constraint Λ1 subsumes a clause C2 with constraint
Λ2 if and only if the simplified version of C1 subsumes the simplified version of C2,
since

∀~x.∃~y.((∃~u.Λ2)→ (∃v.Λ1σ))

is logically equivalent to
∀~x~u.∃~y~v.(Λ2 → Λ1σ).

Therefore we can (and will) assume without loss of generality that all real-sorted vari-
ables occurring in the LA constraint of a FOL(LA) clause also occur in the free part of
the clause.

Effect of Simple Unifiers on Constraints Another important observation is that, since
all unifiers are simple, and base terms are always abstracted, any unifier in SUP(LA)
maps base variables to base variables. So whenever a simple unifier σ is applied to
an LA constraint Λ, there exists an “inverse renaming” substitution ρ, such that Λσρ
implies ∃~x.Λ for some ~x ⊆ var(Λ). For example, consider Λ = 1 ≤ x, y ≤ 2 and
σ = {x 7→ u, y 7→ u}. Then Λσ = 1 ≤ u ≤ 2 and (1 ≤ u ≤ 2){u 7→ x} = 1 ≤ x ≤ 2 and
|=LA ∀x.(1 ≤ x ≤ 2→ ∃y.Λ) .

4The language of clause constraints is not powerful enough to allow elimination of integer-sorted
variables. It could be suitably strengthened by adding the floor function b·c, see [Wei99b].

70

4.3 Hierarchic Superposition and Minimal Models

Subsumption Deletion:

I
Λ1 ‖Γ1 → ∆1 Λ2 ‖Γ2 → ∆2

Λ1 ‖Γ1 → ∆1

where σ is a simple matcher such that

(i) Γ1σ ⊆ Γ2, ∆1σ ⊆ ∆2,

(ii) |=T ∀~x.∃~y.(Λ2 → Λ1σ), where ~x are all variables of base sort in Λ2 ‖Γ2 → ∆2,
and ~y = var(Λ1σ) \ ~x, and

(iii) Λ2 ‖Γ2 → ∆2 6= �.

Tautology Deletion:

I
Λ ‖Γ→ ∆

where |= Γ→ ∆ or ∃~x.Λ |=T ⊥, for ~x = var(Λ).

[

Figure 4.3: SUP(T) reduction rules

Remark 4.24
Consider a SUP(T) derivation

C1, . . . , Cm ` Cm+1

where each Ci is an abstracted clause with constraint Λi. Then

Λm+1 =
⋃

i∈[1,m]

Λ̂i with Λ̂i =
⋃
j∈Ii

Λiσj

where the Ii are non-empty sets of indices and the σj are substitutions.

Furthermore, soundness of the inference rules guarantees that

|=T

 ∧
i∈[1,m]

∧
j∈Ii

Ciσj

→ Cm+1

�

Example 4.25
Consider the following SUP(T) derivation, where only the clause constraints and unifiers

71

4 SUP(T) for Reachability

are shown:
Λ1

σ

!!

Λ2

σ

}}

σ′

!!

Λ3

σ′

~~
(Λ1,Λ2)σ

σ′′

!!

(Λ2,Λ3)σ′

σ′′

}}
((Λ1,Λ2)σ, (Λ2,Λ3)σ′)σ′′

The constraint of the final conclusion is equivalent to Λ1σ1,Λ2σ1,Λ2σ2,Λ3σ2 with σ1 =
σσ′′ and σ2 = σ′σ′′. �

4.3.5 Minimal Models of Hierarchic Theories

For sufficiently complete clause sets, an alternative characterization of hierarchic models
is given by the Hierarchic Model Lemma ([Kru13], Lemma 3.79):

Lemma 4.26 (Hierarchic Model Lemma [Kru13])
The hierarchic models of a sufficiently complete extension N are exactly the Σe-inter-
pretations satisfying sgi(N) ∪ EI ∪DI for some I ∈ Cb. �

Intuitively, the reason is the following: LetM be a Σe-interpretation. IfM |= EI , then
there must be a homomorphism from I into the base universe of M. If additionally
M |= DI , then this homomorphism must be injective (i.e.,M does not collapse elements
of the base universe). Finally, sufficient completeness of N guarantees that (i) the
homomorphism is also surjective, because inM, any non-base ground term of base sort
is equal to a base ground term (i.e.,M does not add extra elements to the base universe),
and (ii) that M satisfies all ground instances of N , because any ground substitution is
“equivalent” to a simple ground substitution. In sum, the restriction of M to the base
signature is isomorphic to I ∈ Cb, and M satisfies all clauses in N , therefore M is a
hierarchic model of N .

We will use hierarchic specifications to represent transition systems modulo background
theories. The idea is to represent the reachability theory5 TTS as a hierarchic specifica-
tion, whose base specification describes the background theory. The background theory
may itself be given as a hierarchic specification, and so on, all the way down to an initial
theory T0:

T0 T1 . . . Tn = TTS

(Σ0,C0) (Σ1, N1) (Σn, Nn)

In this scheme, each Ti+1 is an extension of Ti, and Σi ⊆ Σi+1. The initial theory T0

may have its models defined explicitly as a class of models, which need not be first-order
axiomatizable, whereas all subsequent extensions are given by clausal axiomatizations.

5We will formally define reachability theories in Section 4.4.

72

4.3 Hierarchic Superposition and Minimal Models

When T0 is given by a set of models, the corresponding hierarchic superposition calculus
SUP(T0) will be used (the only such theory we will consider is the theory of linear real
arithmetic). Otherwise, the standard superposition calculus can be used, as we will show
in the following.

As discussed in the introduction, we want TTS to have a unique minimal Herbrand model.
Therefore, the successive Ti should also have this property. We will now discuss how
this can be achieved.

The main result of this section can be summarized as follows: First, if Ti has a unique
minimal Herbrand model (possibly among other Herbrand models), then any extension
by a sufficiently complete Horn clause set Ni+1 yields a theory Ti+1 with a unique minimal
Herbrand model. Secondly, if Ti has a unique Herbrand model, then any extension by
a sufficiently complete clause set Ni+1 that is Horn modulo Ti (Definition 4.29) yields a
theory Ti+1 with a unique minimal Herbrand model. A special case of the second result
is that any sufficiently complete FOL(LA) theory that is Horn modulo LA has a unique
minimal Herbrand model.

Model Intersection for Hierarchic Horn Specifications. We begin with the first case.
Assume a hierarchic specification (Spb, Spe), where the class of base models is closed
under intersection,6 i.e., whenever {Bi}i∈I is a non-empty set of Herbrand interpretations
in Cb, then

⋂
i∈I Bi is also in Cb. Hence there is a unique minimal (with respect to subset

inclusion) model in Cb. The model intersection property also (trivially) holds if Cb

consists of a single Herbrand interpretation (as is the case for any complete theory, like
the theory of linear arithmetic).

Lemma 4.27
Let {Bi}i∈I be a non-empty set of Herbrand interpretations over some signature Σ. Then⋃
i∈I DBi = D(

⋂
i∈I Bi)

.

Proof. As Bi are Herbrand interpretations, we have DBi = {s 6' t | s, t ∈ T (Σ) and s 6=
t and s' t 6∈ Bi}. Hence⋃

i∈I
DBi = {s 6' t | s, t ∈ T (Σ) and s 6= t and s' t 6∈

⋂
i∈I
Bi}

= D(
⋂
i∈I Bi)

. �

Proposition 4.28
Let (Spb, Spe) be a hierarchic specification where the class of base models is closed under
intersection, and Ne is sufficiently complete and Horn. Then, writing T for Spb and Σ
for Σb ∪ Σe, the set ModT ,Σ(Ne) is closed under intersection.

6Here we view Herbrand interpretations as sets of ground equations.

73

4 SUP(T) for Reachability

Proof. Let {Ii}i∈I be a non-empty subset of ModT ,Σ(Ne), and let I =
⋂
i∈I Ii. We show

that I ∈ ModT ,Σ(Ne). By Lemma 4.26, we know that there exist base models Bi ∈ Cb

such that

Ii |= sgi(Ne) ∪ EBi ∪DBi .

for each i ∈ I. Let B =
⋂
i∈I Bi. By assumption, B ∈ Cb. Furthermore, as Ne is Horn,

so is sgi(Ne), and hence ModΣ(sgi(Ne)) is closed under intersection. Thus Ii |= sgi(Ne)
implies I |= sgi(Ne). From Ii |= EBi , it follows that EBi ⊆ Ii, and hence

⋂
i∈I EBi =

E⋂Bi = EB ⊆ I. Finally, from Ii |= DBi , it follows that DBi ∩ Ii = ∅, and hence
(
⋃
i∈I DBi) ∩ I = ∅. Since

⋃
i∈I DBi = D⋂Bi = DB, we get that I |= DB. In sum,

I |= sgi(Ne) ∪ EB ∪DB. Applying Lemma 4.26 again, we obtain I ∈ ModT ,Σ(Ne). �

Horn Modulo Theory Specifications. Now we turn to the second case, namely base
theories with unique Herbrand models.

Definition 4.29 (Horn modulo Theory)
Given a hierarchic specification (Spb, Spe) we call the extension Ne Horn modulo Spb (or
Horn modulo the base theory) if every clause in Ne contains at most one non-base atom
in the succedent. �

Proposition 4.30
Let (Spb, Spe) be a hierarchic specification where Spb has a unique base model Cb = {B},
and Ne is sufficiently complete and Horn modulo Spb. Then, writing T for Spb and Σ
for Σb ∪ Σe, the set ModT ,Σ(Ne) is closed under intersection.

Proof. Let {Ii}i∈I be a non-empty subset of ModT ,Σ(Ne), and let I =
⋂
i∈I Ii. We show

that I ∈ ModT ,Σ(Ne). By Lemma 4.26, we know that

Ii |= sgi(Ne) ∪ EB ∪DB.

holds for each i ∈ I. From Ii |= EB, it follows that EB ⊆ Ii, so EB ⊆ I and hence
I |= EB. From Ii |= DB, it follows that DB ∩ Ii = ∅, so DB ∩ I = ∅, and hence
I |= DB. Now assume for contradiction that I 6|= sgi(Ne) ∪ EB ∪ DB, which is equiv-
alent to I 6|= sgi(Ne). So let C = A1, . . . , An, B1, . . . , Bk → A,Bk+1, . . . , Bm ∈ sgi(Ne)
where A,Aj are non-base, and the Bj are base atoms, such that I 6|= C. Thus I |=
{A1, . . . , An, B1, . . . , Bk} and I |= {¬A,¬Bk+1, . . . ,¬Bm}. The truth value of the Bj is
fixed by B, i.e., B |= Bj or B |= ¬Bj, and Ii |= Bj if and only if B |= Bj. Therefore
Ii |= {A1, . . . , An, B1, . . . , Bk,¬Bk+1, . . . ,¬Bm} for all i ∈ I. So there must be j ∈ I
such that Ij |= ¬A. But then Ij 6|= C, a contradiction. �

Clausal Base Theories. While Propositions 4.28 and 4.30 fit nicely into the hierarchic
superposition framework, they are also applicable to hierarchic specifications where the
base theory is axiomatized by a set of first-order clauses. It is well-known that the class

74

4.3 Hierarchic Superposition and Minimal Models

of Herbrand models of a Horn clause set is closed under intersection and hence has, if
any, a unique minimal element (see for example [BG91a]). Proposition 4.28 thus applies
to hierarchic specifications with Horn base theories. Similarly, predicate completion tech-
niques [Cla77, CN00, Hor10] can be applied to obtain clause sets with unique Herbrand
models, making also Proposition 4.30 applicable.

We will show that for hierarchic specifications of the form ((Σb, Nb), (Σe, Ne)), the Her-
brand models of the clause set Nb ∪Ne are precisely the hierarchic Herbrand models of
Ne with respect to the base theory consisting of the Herbrand models of Nb, under the
condition that Ne is sufficiently complete. In this case, standard superposition can be
used for hierarchic reasoning, instead of SUP(T).

Proposition 4.31
Let ((Σb, Nb), (Σe, Ne)) be a hierarchic specification where Nb and Ne are Horn, and Ne

is sufficiently complete. Then, writing T for (Σb, Nb) and Σ for Σb ∪ Σe, it holds that
ModΣ(Nb ∪Ne) = ModT ,Σ(Ne).

Proof. Let Σ = Σb ∪ Σe and N = Nb ∪Ne.

⊇: Let I ∈ ModT ,Σ(Ne). By Lemma 4.26), we have I |= sgi(Ne) ∪ EB ∪ DB for some
B ∈ ModΣb(Nb). By sufficient completeness of Ne, I |= sgi(Ne) implies I |= gnd(Ne)
and hence I |= Ne. From I |= EB ∪DB it follows that I |= gnd(Nb) and hence I |= Nb.
Thus I ∈ ModΣ(N).

⊆: Let I ∈ ModΣ(N). We have I |= gnd(Nb) ∪ gnd(Ne). From sgi(Ne) ⊆ gnd(Ne)
it follows that I |= sgi(Ne). Since I |= gnd(Nb), there is a B ∈ ModΣb(Nb) such that
I |= EB ∪DB. Thus we get I ∈ ModT ,Σ(Ne) by Lemma 4.26). �

The following trivial example shows how the hierarchic model property is lost if Ne

is not sufficiently complete: Let Σb = {a, b}, Nb = {a 6' b} and Σe = {c}, Ne = ∅,
where a, b, c are of the same sort. Clearly Ne is not sufficiently complete, because
it contains no equation for c. Indeed, the Herbrand interpretation over Σb ∪ Σe in
which c is different from both a and b is a model of Nb ∪ Ne, but not a hierarchic
model.

Together with Propositions 4.28 and 4.30, Proposition 4.31 gives us a recipe for con-
structing theories with unique minimal Herbrand models, using repeated hierarchic com-
bination. Starting with a base theory T0 that is given either by a set of Herbrand models
or by a set of clausal axioms, we extend it with sufficiently complete Horn theories (or
theories Horn modulo the previous theory, in case that theory has a unique model),
all the while maintaining the unique minimal model property, until the final extension
(Σn, Nn). Then hierarchic reasoning can be performed by using SUP(T0) on N1∪ . . .∪Nn

(in the case where T0 is given by a set of models), or by using standard superposition
on N0 ∪N1 ∪ . . . ∪Nn (in the clausal case).

75

4 SUP(T) for Reachability

4.4 Reachability Theories

We now formally define reachability theories. Assume we have a theory T with a unique
minimal Herbrand model, possibly as the result of repeated hierarchic combination, as
outlined in the previous section. Let the signature ΣR consist of a single predicate symbol
R, the reachability predicate. We call anyR-atom a state atom.

Definition 4.32 (Reachability Theories)
Let T be a theory with a unique minimal Herbrand model. Let n ≥ 0,m ≥ 1. We call
a clause of the form

l1, . . . , ln → A

an initial clause, a clause of the form

A1, . . . , Am, l1, . . . , ln → B

a transition clause, and a clause of the form

B1, . . . , Bm, l1, . . . , ln →
a goal clause, whenever the li are ΣT -literals, and A,Ai and B,Bi are state atoms. A
transition clause with m = 1 is called binary , and a goal clause with m = 1 is called unit .
A generalized (T -)reachability theory is a clause set consisting of initial and transition
clauses, and all li are positive if T has more than one Herbrand model. The theory
T is also called the background theory of the generalized reachability theory. We call
N a (T -)reachability theory if all transition clauses in N are binary. A (generalized)
reachability query is a (generalized) reachability theory additionally containing one or
more goal clauses (which may be non-unit only for a generalized reachability query). �

Note that in the above definition of initial, transition and goal clauses, the li are literals
and not atoms, unlike in the standard clause notation Γ→ ∆ where Γ,∆ are multisets
of atoms. We use this notation to convey the intuition that the li are to be seen as
conditions, somewhat like the body of a program clause in logic programming. Of course,
these formulas are still clauses in the standard sense, and they can be written in standard
notation by removing the negation from the negative li and moving the resulting atoms
to the succedent.

We now associate a transition system with each reachability theory. The idea is that
the states are the interpretations of the arguments of state atoms with respect to the
minimal Herbrand model of T .

Definition 4.33 (sT , ST)
Let IT be the minimal Herbrand model of T . We define the operator sT as

sT (ν,R(t1, . . . , tn)) = (IT (ν)(t1), . . . , IT (ν)(tn))

and the set of states with respect to T as

ST = {sT (ν,A) | A is a state atom and ν is an assignment for IT }. �

76

4.4 Reachability Theories

Definition 4.34 (Transition System of a Reachability Theory)
Given a T -reachability theory N , the transition system associated with N is defined as
TS(N) = (ST ,→, S0) where

→ = { (sT (ν,A), sT (ν,B)) | A, l1, . . . , ln → B ∈ N and

IT , ν |= {l1, . . . , ln} },
S0 = { sT (ν,A) | l1, . . . , ln → A ∈ N and IT , ν |= {l1, . . . , ln} }. �

Definition 4.35 (Reachability Problem)
The reachability problem for a class of reachability theories R is the problem of deciding,
given N ∈ R and a subset S of the states of TS(N), whether some s ∈ S is reachable in
TS(N). �

Proposition 4.36
The reachability problem for arbitrary reachability theories is undecidable.

Proof. Post’s Correspondence Problem (PCP) [Pos46] is straightforwardly represented
as a reachability theory (with empty background theory): Consider sequences of words
(αi)1≤i≤n and (βi)1≤i≤n where αi = ai1ai2 . . . aiki and βi = bi1bi2 . . . bimi . We assume
a constant symbol ε and a unary function symbol for every symbol ai, bj in the PCP
alphabet. The term aiki(. . . ai2(ai1(x)) . . .), which we abbreviate by αi(x), represents the
concatenation of x with αi (similarly for βi). The reachability theory NPCP contains the
clauses → R(αi(ε), βi(ε)) and R(x, y) → R(αi(x), βi(y)) for all i ∈ [1, n]. Solving the
PCP reduces to deciding whether any ground instance of (x, x) is reachable in TS(NPCP).

�

Proposition 4.37
If T has a unique minimal Herbrand model, then any generalized T -reachability theory
N also has a unique minimal Herbrand model.

Proof. As ΣR contains only one predicate symbol, N is trivially sufficiently complete.
Furthermore, N is either Horn, or Horn modulo T , if T has a unique Herbrand model.
The statement follows from Propositions 4.28 and 4.30 together with the fact that N
is satisfiable whenever T is (a trivial model is obtained by interpreting all ground state
atoms as true). �

There is a direct correspondence between subsets of ST and hierarchic Herbrand inter-
pretations over Σ: As in any hierarchic Herbrand interpretation over Σ, the restriction to
ΣT must be isomorphic to IT , the minimal Herbrand model of T (actually, it must even
be equal to IT , because the enrichment contains only a predicate symbol), different hi-
erarchic Σ-interpretations can only differ in their interpretation of the predicate symbol
R. The bijection between subsets S ⊆ ST and hierarchic Herbrand Σ-interpretations I
is given by I(R)(a1, . . . , an) = {trueR} iff (a1, . . . , an) ∈ S.

77

4 SUP(T) for Reachability

Definition 4.38
Let N be a generalized T -reachability theory. The mapping TN on subsets of ST is
defined as follows:

TN(S) = { sT (ν,B) |A1, . . . , Am, l1, . . . , ln → B ∈ N,
where m,n ≥ 0 and

IT , ν |= {l1, . . . , ln}, and

sT (ν,Ai) ∈ S for all i ∈ [1,m] }.

�

The following Propositions 4.39, 4.40 and 4.41 are generalizations of well-known results
for Horn clause sets and their immediate consequence operator (see for example Proposi-
tions 6.3, 6.4 and Theorem 6.5, respectively, from [Llo93]).

Proposition 4.39
For any generalized T -reachability theory N , the mapping TN is continuous.

Proof. Let S be a directed subset of P(ST). Now we have that s ∈ TN(lub(S)) iff
there is A1, . . . , Am, l1, . . . , ln → B ∈ N with m,n ≥ 0, such that s = sT (ν,B) and
IT , ν |= {l1, . . . , ln} and

{sT (ν,A1), . . . , sT (ν,Am)} ⊆ lub(S), (4.1)

for some assignment ν. Now, as S is directed, (4.1) is equivalent to

{sT (ν,A1), . . . , sT (ν,Am)} ⊆ S,

for some S ∈ S. Hence s ∈ TN(lub(S)) iff s ∈ TN(S) iff s ∈ lub(TN(S)). Thus
TN(lub(S)) = lub(TN(S)). �

Proposition 4.40
Let N be a generalized T -reachability theory and S ⊆ ST a set of states. Then S defines
a hierarchic model of N if and only if TN(S) ⊆ S.

Proof. Let C = A1, . . . , Am, l1, . . . , ln → B with m,n ≥ 0 be an arbitrary clause in N . S
satisfies C iff for any assignment ν with IT , ν |= {l1, . . . , ln}, it holds that sT (ν,B) ∈ S
whenever {sT (ν,A1), . . . , sT (ν,Am)} ⊆ S. This condition is equivalent to TN(S) ⊆ S. �

Proposition 4.41
Let N be a generalized T -reachability theory. Then IN = lfp(TN) = T ωN , up to isomor-
phism.

Proof. As IN is the minimal Herbrand model of N , it is the intersection of all Her-
brand models of N , or, equivalently, the greatest lower bound of those models with
respect to the complete lattice of all T -hierarchic Herbrand interpretations over Σ.
IN = glb{S ⊆ ST | S ∈ ModT ,Σ(N)} (here we use the fact that there is a bijection

78

4.4 Reachability Theories

between T -hierarchic Herbrand interpretations over Σ and sets of states). By Propo-
sition 4.40, this is equivalent to IN = glb{S ⊆ ST | TN(S) ⊆ S}, from which we get
IN = lfp(TN) by Proposition 4.8. Finally, applying Propositions 4.10 and 4.39, we get
IN = T ωN . �

The following proposition establishes the connection between the notions of minimal
model of a reachability theory and the set of reachable states of the associated transition
system.

Proposition 4.42
LetN be a T -reachability theory, and let TS(N) = (ST ,→, S0). Then IN = Post∗TS(N)(S0).

Proof. Writing Post for PostTS(N), we first show T nN =
⋃n
i=1 Posti−1(S0) by induction on

n. For n = 1 we have T 1
N = TN(∅) = S0 = Post0(S0). For n > 1, we have

T nN = TN(T n−1
N)

= T
(⋃n−1

i=1 Posti−1(S0)
)

= S0 ∪ Post
(⋃n−1

i=1 Posti−1(S0)
)

= S0 ∪
⋃n
i=2 Posti−1(S0)

=
⋃n
i=1 Posti−1(S0) .

Consequently,

IN = T ωN =
⋃
n∈N T

n
N

=
⋃
n∈N

⋃n
i=1 Posti−1(S0)

=
⋃
n∈N Postn(S0)

= Post∗(S0) . �

The following proposition generalizes a well-known result about arbitrary models of
clause sets to hierarchic models.

Proposition 4.43
Let N be a clause set over Σ that is an extension of a base theory T . If N has a
hierarchic model, then N has a hierarchic Herbrand model.

Proof. Let I ∈ ModT (N). We construct I ′ ∈ ModT ,Σ(N). We can assume without
loss of generality that I is a normal model, hence for any ground Σ-terms s, t, we
have I |= s' t iff I(s) = I(t). By assumption, I|ΣT is isomorphic to a Herbrand
interpretation B ∈ CT , and I |= gnd(N). Let ∼=I be the relation on ground Σ-terms
defined by s ∼=I t iff I(s) = I(t). Clearly, ∼=I is a congruence. Let I ′ be the Herbrand
interpretation defined by ∼=I . It is straightforward to show that also I ′|ΣT is isomorphic
to B and I ′ |= gnd(N). Hence I ′ ∈ ModT ,Σ(N). �

79

4 SUP(T) for Reachability

Corollary 4.44
Let N be a clause set over Σ that is an extension of a base theory T . N is T -unsatisfiable
if and only if N has no hierarchic Herbrand model.

Proof. The “only if” direction is trivial, as ModT ,Σ(N) ⊆ ModT (N). The “if” direction
follows immediately from Proposition 4.43. �

Proposition 4.45
Let N be a clause set over Σ that is an extension of a base theory T . Let φ be a
quantifier-free formula over Σ. Then N |=T ∃φ if and only if N |=T ,Σ ∃φ.

Proof.
N |=T ∃φ

⇔ I |= ∃φ for every I ∈ ModT (N) (by definition of |=T)
⇔ ModT (N ∪ {∀¬φ}) = ∅
⇔ ModT ,Σ(N ∪ {∀¬φ}) = ∅ (by Corollary 4.44)
⇔ I 6|= ∀¬φ for every I ∈ ModT ,Σ(N)
⇔ I |= ∃φ for every I ∈ ModT ,Σ(N)
⇔ N |=T ,Σ ∃φ

We can apply Corollary 4.44 in the third step because ∀¬φ is logically equivalent to a
set of Σ-clauses. �

Proposition 4.46
Let I,J be two Herbrand interpretations over Σ such that I ⊆ J , and I |= ∃φ where
φ is a conjunction of positive literals. Then J |= ∃φ.

Proof. We assume without loss of generality that φ consists of a single equation s' t
containing one variable x. I |= ∃x.s' t iff there exists a in UI (of the same sort as x)
such that I, [x 7→ a] |= s' t. Let σ be a substitution that maps x to any ground term t′

such that I(t′) = a (t′ necessarily exists since I is term-generated). Then sσ' tσ ∈ I,
hence also sσ' tσ ∈ J and thus J |= ∃x.s' t. �

Theorem 4.47
Let N be a T -reachability theory, and let l1, . . . , ln, A → be a unit goal clause. Then
N |=T ∃(l1 ∧ . . . ∧ ln ∧A) if and only if sT (ν,A) is a reachable state of TS(N), for some
assignment ν with IT , ν |= {l1, . . . , ln}.

Proof. Let φ = ∃(l1 ∧ . . . ∧ ln ∧ A). By Proposition 4.45, N |=T φ is equivalent to
N |=T ,Σ φ. Now we distinguish two cases:

(i) All li are positive. Then by Proposition 4.46, N |=T ,Σ φ is equivalent to IN |= φ.

(ii) Some li are negative, and T has a unique Herbrand model. Then N |=T ,Σ φ is
equivalent to IT , ν |= {l1, . . . , ln} and sT (ν,A) ∈ IN , for some assignment ν.

In both cases, we conclude IT (ν)(A) ∈ IN , for some assignment ν, and the statement
follows from Proposition 4.42. �

80

4.4 Reachability Theories

From Theorem 4.47, it follows that any complete method for computing |=T , like super-
position or superposition modulo T , can be used to analyze reachability in T -reachability
theories.

Proposition 4.48
Let ((Σb, Nb), (Σe, Ne)) be a hierarchic specification where Nb and Ne are Horn, and Ne

is sufficiently complete. Let φ be a quantifier-free formula over Σ = Σb ∪ Σe. Then,
writing T for (Σb, Nb), it holds that Ne |=T ∃φ if and only if Nb ∪Ne ∪ {∀¬φ} |= ⊥.

Proof. By Proposition 4.46, Ne |=T ∃φ is equivalent to Ne |=T ,Σ ∃φ. Then we have

Ne |=T ,Σ ∃φ
⇔ I |= ∃φ for every I ∈ ModT ,Σ(N)
⇔ I |= ∃φ for every I ∈ ModΣ(Nb ∪Ne) (by Proposition 4.31)
⇔ ModΣ(Nb ∪Ne ∪ {∀¬φ}) = ∅
⇔ Mod(Nb ∪Ne ∪ {∀¬φ}) = ∅ (since Nb ∪Ne ∪ {∀¬φ} is a clause set)
⇔ Nb ∪Ne ∪ {∀¬φ} |= ⊥

�

4.4.1 Forward and Backward Encodings

We say that a T -reachability theory represents a transition system T if TS(N) = T . In
that case, we also say that N is a forward encoding of T . Given a reachability query
based on a forward encoding, there also exists a corresponding backward encoding , which
is obtained by reversing the polarities of all state literals. The backward encoding N [

represents a transition system TS(N [) in which the transition relation is the inverse
of the one of TS(N), and the states represented by the initial and goal clauses are
exchanged.

Definition 4.49 (Backward Encoding)
Let N be a set of initial clauses, binary transition clauses and unit goal clauses. Then
N [is the set

N [= { A, l1, . . . , ln→ | l1, . . . , ln→ A ∈ N } ∪
{ B, l1, . . . , ln→ A | A, l1, . . . , ln→ B ∈ N } ∪
{ l1, . . . , ln→ B | B, l1, . . . , ln→ ∈ N }. �

Let TS(N) = (ST ,→, S0) and TS(N [) = (ST ,→[, S[0), and let

SG = { sT (ν,B) | B, l1, . . . , ln → ∈ N and IT , ν |= {l1, . . . , ln} }.

It follows immediately from Definition 4.32 that

→[= →−1 and S[0 = SG

81

4 SUP(T) for Reachability

and thus

PostTS(N[) = PreTS(N) .

Applying Proposition 4.42 finally yields

IN[= Post∗TS(N[)(S
[
0) = Pre∗TS(N)(SG).

Thus the minimal Herbrand model of the backward encoding is the set of states that can
reach a goal state, also called backward-reachable from the goal states.

The superposition calculus can always be forced to perform either backward or forward
traversal of the transition system’s state space, by using a selection strategy that selects
all negative state literals. Under the forward encoding, this yields forward traversal, and
under the backward encoding, it yields backward traversal.

Example 4.50
Consider the following automaton:7

A B
x=0

x:=x+1

x≥5

x:=x−1

The reachability queries based on the forward and backward encodings, respectively, are
given by

N : N [:

→ A(0) A(0) →
A(x) → A(x+ 1) A(x+ 1) → A(x)

A(x), x ≥ 5 → B(x) B(x), x ≥ 5 → A(x)

B(x) → B(x− 1) B(x− 1) → B(x)

B(3) → → B(3)

where selected literals are underlined. The clauses B(3) → and → B(3) are the goal
clauses. �

4.5 SUP(LA) for Timed Systems

In this section, we apply the concepts of hierarchic superposition (Section 4.3) and
reachability theories (Section 4.4) to the analysis of timed automata and extended
timed automata—timed automata with additional, unbounded integer variables. We

7See Section 4.6.4 for further examples.

82

4.5 SUP(LA) for Timed Systems

will see that SUP(LA) constitutes a decision procedure for reachability in timed au-
tomata (Section 4.5.6). In the Section 4.6, we will augment the SUP(LA) calculus with
an automatic induction rule, generalizing the latter result to extended timed automata
(Section 4.6.3).

As we will focus on FOL(LA)—the hierarchic combination of first-order logic with linear
arithmetic—we now introduce a few concepts that we will rely on in the rest of this
section and in Section 4.6.

The base theory LA has a unique model, with universe R, and a corresponding base sort
R. In the context of extended timed automata, we will also deal with integer variables,
of sort Z. While it would be desirable to treat Z as a subsort of R, a formal integration
of subsorts into the SUP(LA) framework has not yet been developed, and is beyond
the scope of this work. We therefore stay in the multisorted framework introduced in
Section 2.2, and treat Z and R as different sorts, while overloading all base operators like
addition, subtraction and multiplication with constants to handle both reals and integers.
For instance, the addition (+) symbol stands for five functions of sorts Z × Z → Z,
Z × Z → R, R × Z → R, Z × R → R and R × R → R, respectively. Since unifiers in
SUP(LA) only ever map base variables to base variables, this ensures that any term has
a unique sort.

4.5.1 Timed Automata

Timed Automata were originally introduced in [AD94]. Our presentation of timed au-
tomata is partly based on [BK08].

To streamline the definitions, we define instructions, which are substitutions whose effect
on clocks, if any, is to reset them to zero.

Definition 4.51 (Instructions)
Let T be an extension of R, and let X ⊆ X be a set of variables with a subset XC ⊆ X of
real-valued clock variables. An instruction for T and X is a substitution A : X → TT (X)
such that A(x) ∈ {0, x} if x ∈ XC . The set of all instructions for T and X is denoted
by InstrT (X). Given an instruction A and ~x = x1, . . . , xn, we write ~x ′'A(~x) for
x′1'A(x1) ∧ . . . ∧ x′n'A(xn). Given an assignment ν for T , we write A(ν) for the
assignment mapping x to ν(A(x)). �

Definition 4.52 (Clock Constraints)
A clock constraint over a set C of clocks is formed according to the grammar

g ::= x ◦ c
∣∣ x− y ◦ c ∣∣ g ∧ g

where x, y ∈ C, c ∈ N and ◦ ∈ {<,≤,≥, >}.8 The set of all clock constraints over C
is denoted by CC(C). An atomic clock constraint is a clock constraint containing no
conjunction.

8We abbreviate x ≥ c ∧ x ≤ c by x' c.

83

4 SUP(T) for Reachability

We also use the notation CC(X, Y) to denote the set of clock constraints built over
atomic constraints with x, y ∈ X and c ∈ Y . Thus CC(C) = CC(C,N).9 �

Definition 4.53 (Timed Automata)
A timed automaton is a tuple (Loc,Act, C, ↪→, L0, Inv) where Loc is a finite set of loca-
tions, with initial location L0 ∈ Loc, Act is a finite set of actions, C is a finite set of
clocks,

↪→ ⊆ Loc× CC(C)× Act×P(C)× Loc
is a transition relation10, and Inv : Loc → CC(C) is a function assigning invariants to
locations. �

For convenience, we write L
g:α,D
↪→ L′ for (L, g, α,D, L′) ∈↪→, and L

g,D
↪→ L′ if L

g:α,D
↪→ L′ for

some α ∈ Act.
We assume that each state variable in an automaton—TA or ETA (see Section 4.5.3)—
has an associated sort declaration x : S, where S is either R (for TA and ETA) or Z (for
ETA only).

Definition 4.54 (Semantics of Timed Automata)
Let TA = (Loc,Act, C, ↪→, L0, Inv) be a timed automaton. The semantics of TA is given
by the transition system TS(TA) = (S,Act′,→, s0) with

• S = Loc× {ν ∈ Val(C) | ν(x) ≥ 0 for all x ∈ C}
• Act′ = Act ∪ R≥0

• s0 = (L0, {~x 7→ 0})
• the transition relation → is defined by the following two rules:

(i) discrete transitions: (L, ν)
α→ (L′, ν ′) iff L

g:α,D
↪→ L′ and ν |= g and

ν ′ = ν[D 7→ 0] and ν ′ |= Inv(L′)

(ii) delay transitions: (L, ν)
δ→ (L, ν + δ) iff ν + δ |= Inv(L) for δ ∈ R≥0.

We write
disc−→ for

⋃
α∈Act

α→ and
time−→ for

⋃
δ∈R≥0

δ→. �

Clearly → =
disc−→ ∪ time−→.

Remark 4.55
Condition (ii) of Definition 4.54 exploits the convexity of the invariants, which holds
because they are clock constraints. For non-convex invariants, one would have to re-
quire ν + δ′ |= Inv(L) to hold for all 0 ≤ δ′ ≤ δ. The fact that invariants are convex
also allows us to give a sufficiently complete encoding of TA into FOL(LA), as the addi-
tional quantification over δ′ would cause the introduction of a Skolem function ranging
into the reals. The same applies to the encoding of ETA (Definition 4.61) and FPTA
(Definition 4.117). �

9The notation will be used in Sections 4.5.5 and 4.7.
10P(C) denotes the powerset of C.

84

4.5 SUP(LA) for Timed Systems

Definition 4.56 (Parallel Composition of Timed Automata)
Let TAi = (Loci, Acti, Ci, ↪→i, L0,i, Invi), i = 1, 2 be timed automata with C1 ∩ C2 = ∅.
Let H = Act1 ∩ Act2. The parallel composition of TA1, TA2 is the timed automaton

TA1 ‖TA2 = (Loc1 × Loc2, Act1 ∪ Act2, C1 ∪ C2, ↪→, (L0,1, L0,2), Inv)

where Inv(L1, L2) = Inv1(L1) ∧ Inv2(L2), and (L1, L2)
g:α,D
↪→ (L′1, L

′
2) if and only if

(i) α ∈ H and L1

g1:α,D1
↪→ L′1 and L2

g2:α,D2
↪→ L′2 and g = g1 ∧ g2 and D = D1 ∪D2, or

(ii) α 6∈ H and L1

g:α,D
↪→ L′1 and L′2 = L2, or

(iii) α 6∈ H and L′1 = L1 and L2

g:α,D
↪→ L′2. �

An easy consequence of the above definitions is that

TS(TA1) ‖ TS(TA2) = TS(TA1 ‖TA2)

holds up to isomorphism, whenever T1, T2 have disjoint sets of clocks [BK08].

4.5.2 Reachability Theories for Timed Automata

Definition 4.57 (Reachability Theory for Timed Automata)
Let TA = (Loc,Act, C, ↪→, L0, Inv) be a timed automaton. Let TTA be the extension of
R with a new sort SLoc and constant symbols {L|L ∈ Loc} of sort SLoc. The reachability
theory for TA, denoted by NTA, is the TTA-reachability theory consisting of the following
clauses:11

~x' 0 → R(L0, ~x)

R(L, ~x), t ≥ 0, ~x ≥ 0, ~x ′' ~x+t, Inv(L)[~x ′/~x] → R(L, ~x ′) for all L ∈ Loc

R(L, ~x), g[~x], ~x ′'AD(~x), Inv(L′)[~x ′/~x] → R(L′, ~x ′) for all L
g,D
↪→ L′

where ~x contains all variables in C, and ~x ′ contains the corresponding variables in C ′,
and AD is the instruction defined by AD(x) = 0 if x ∈ D and AD(x) = x otherwise.
We call clauses of the second and third type time-step clauses and discrete-step clauses ,
respectively. �

Proposition 4.58 (Adequacy of the Encoding)
Let TA = (Loc,Act, C, ↪→, L0, Inv) be a timed automaton. Then TS(NTA) = TS(TA).

11See Remark 4.76 on page 93 about the constraint ~x ≥ 0 in the second clause.

85

4 SUP(T) for Reachability

Proof. First observe that the background theory TTA has a unique Herbrand model ITTA ,
as it is the combination of two signature-disjoint theories with unique Herbrand models.12

Let TS(TA) = (S,Act′,→, s0) and TS(NTA) = (STTA ,→N , s0,N). First observe that
(L, ν) = sT (ν,R(L, ~x)) for any L ∈ Loc and assignment ν from C into R≥0, and thus
S = STTA . Furthermore, we have

s0 = (L0, {~x 7→ 0}) = sT ({~x 7→ 0}, R(L0, ~x)) = s0,N .

It remains to show →=→N . Let
disc−→N ,

time−→N ⊆→N be the relations induced by the

discrete-step clauses and the time-step clauses of NTA, respectively. Clearly→N =
disc−→N

∪ time−→N . Let X be a set of real-sorted variables such that C ∪ C ′ ∪ {t} ⊆ X , and let ν̃
be an assignment from X into R≥0, let L,L′ ∈ Loc and s = (L, ν̃(~x)) = sT (ν̃, R(L, ~x)),
s′ = (L′, ν̃(~x ′)) = sT (ν̃, R(L′, ~x ′)). Then

s
disc−→ s′ iff L

g,D
↪→ L′ and ν̃ |= g[~x], ν̃ = ν̃[D 7→ 0], ν̃ |= Inv(L′)[~x ′/~x]

iff R(L, ~x), g[~x], ~x ′'AD(~x), Inv(L′)[~x ′/~x] → R(L′, ~x ′) ∈ NTA

and ν̃ |= {g[~x], ~x ′'AD(~x), Inv(L′)[~x ′/~x]}

iff s
disc−→N s′

and, assuming L = L′ and ν̃(t) = δ ∈ R≥0,

s
time−→ s′ iff δ ∈ R≥0, ν̃(~x ′) = ν̃(~x) + δ, ν̃ |= Inv(L)[~x ′/~x]

iff ν̃(t) ≥ 0, ν̃(~x ′) = ν̃(~x) + ν̃(t), ν̃ |= Inv(L)[~x ′/~x]

iff R(L, ~x), t ≥ 0, ~x ≥ 0, ~x ′' ~x+t, Inv(L)[~x ′/~x] → R(L, ~x ′) ∈ NTA

and ν̃ |= {t ≥ 0, ~x ′' ~x+ t, Inv(L)[~x ′/~x]}

iff s
time−→N s′. �

4.5.3 Extended Timed Automata

In this section, we consider timed automata extended with unbounded integer variables
and corresponding guards and assignments.

The designation “extended timed automata” has been applied in the literature to differ-
ent concepts: To TA with diagonal constraints (i.e., atomic clock constraints with two
variables, which we include by default) [BL10], to TA whose clocks can be updated to
integral values other than zero [BHR06], and to various extensions of TA with additional
data variables [Fri98] or annotations [NWY99, FPY02, BKST97].

12Strictly speaking, TTA has more than one Herbrand model, because interpretations identifying con-
stants in Loc are also models of it. This can be fixed by adding to the extension the axioms Li 6'Lj
for all Li, Lj ∈ Loc. This is however not necessary here, since there are no negative atoms containing
location symbols in the antecedent of any clause of NTA.

86

4.5 SUP(LA) for Timed Systems

Definition 4.59 (Linear Integer Constraints)
A linear integer constraint over a set X of integer-valued variables is a conjunction of
one or more linear inequalities of the form a1x1 + . . .+anxn ≤ a0, where xi ∈ X, ai ∈ Z.
The set of all linear integer constraints over X is denoted by LIC (X). �

Definition 4.60 (ETA Guards and Instructions)
Let X be a set of variables with subsets XC , XD of real- and integer-valued variables,
respectively.

The set of ETA-guards over X is defined as GuardETA(X) = CC(XC)× LIC (XD).

The set InstrETA(X) ⊆ InstrLA(X) of ETA-instructions contains all instructions A such
that A(x) ∈ {x+ a | a ∈ Z} if x ∈ XD. �

Definition 4.61 (Extended Timed Automaton)
An extended timed automaton is a tuple (Loc,Act,X, ↪→, L0, g0, Inv) where Loc is a finite
set of locations, with initial location L0 ∈ Loc, Act is a finite set of actions, X = XC]XD

is a finite set of clocks and integer variables, respectively,

↪→ ⊆ Loc×GuardETA(X)× Act× InstrETA(X)× Loc

is a transition relation, g0 ∈ LIC (XD) is the initial condition, and Inv : Loc→ CC(XC)
is a function assigning invariants to locations. �

For convenience, we write L
g:α,A
↪→ L′ for (L, g, α,A, L′) ∈↪→, and L

g,A
↪→ L′ if L

g:α,A
↪→ L′ for

some α ∈ Act.

Definition 4.62 (Semantics of Extended Timed Automata)
Let ETA = (Loc,Act,X, ↪→, L0, g0, Inv) be an extended timed automaton. The seman-
tics of ETA is given by the transition system TS(ETA) = (S,Act′,→, S0) with

• S = Loc× {ν ∈ Val(X) | ν(x) ≥ 0 for all x ∈ XC}
• Act′ = Act ∪ R≥0

• S0 = {(L0, ν) | ν(x) = 0 for all x ∈ XC and ν |= g0}
• the transition relation → is defined by the following two rules:

(i) discrete transitions: (L, ν)
α→ (L′, ν ′) iff L

g:α,A
↪→ L′ and ν |= g and ν ′ = A(ν)

and ν ′ |= Inv(L′)

(ii) delay transitions: (L, ν)
δ→ (L, ν ′) iff ν ′(x) = ν(x) + δ for all x ∈ XC and

ν ′(x) = ν(x) for all x ∈ XD and ν ′ |= Inv(L) for δ ∈ R≥0.

We write
disc−→ for

⋃
α∈Act

α→ and
time−→ for

⋃
δ∈R≥0

δ→. �

87

4 SUP(T) for Reachability

Remark 4.63
A linear integer constraint and the restriction of an instruction to XD can always be
written in matrix form as A~x ≤ ~b and ~x 7→ D~x+ ~c, respectively, where D is a diagonal
matrix over {0, 1} and ~x are the variables in XD. Furthermore, the sequential execution
of two transitions can again be expressed in this form: Executing transitions with guards
A1~x ≤ ~b1 and A2~x ≤ ~b2 and instructions ~x 7→ D1~x + ~c1 and ~x 7→ D2~x + ~c2, respec-
tively, has the same effect as executing a transition with guard A2D1~x ≤ ~b2−A2~c1 and
instruction ~x 7→ D2D1~x+ D2~c1 + ~c2. We will exploit this fact in Section 4.6.3. �

4.5.4 Reachability Theories for Extended Timed Automata

Definition 4.64 (Reachability Theory for Extended Timed Automata)
Let ETA = (Loc,Act,X, ↪→, L0, g0, Inv) be an extended timed automaton. Let TETA
be the extension of R with a new sort SLoc and constant symbols {L|L ∈ Loc} of sort
SLoc. The reachability theory for ETA, denoted by NETA, is the TETA-reachability theory
consisting of the following clauses:

~x' 0, g0[~z] → R(L0, ~x, ~z)

R(L, ~x, ~z), t≥0, ~x ≥ 0, ~x ′' ~x+t, Inv(L)[~x ′/~x] → R(L, ~x ′, ~z) for all L ∈ Loc

R(L, ~x, ~z), g[~x, ~z], (~x ′, ~z ′)'A(~x, ~z), Inv(L′)[~x ′/~x] → R(L′, ~x ′, ~z ′) for all L
g,A
↪→ L′

where ~x, ~z are the variables in XC , XD, and ~x ′, ~z ′ are the corresponding variables in
X ′C , X

′
D, respectively. �

Proposition 4.65 (Adequacy of the Encoding)
Let ETA = (Loc,Act,X, ↪→, L0, g0, Inv) be an extended timed automaton. Then
TS(NETA) = TS(ETA).

Proof. The proof is analogous to the one of Proposition 4.58. �

4.5.5 Parametric Clock Constraints

In this section, we introduce parametric clock constraints, a generalization of clock con-
straints (Definition 4.52). We present the notion of c-closed clock constraints, which will
enable us, in the next section (Section 4.5.6), to prove that SUP(LA) finitely saturates
reachability queries for timed automata. We then generalize the notion of c-closedness
to that of κ-closedness for parametric clock constraints. Together with constraint in-
duction (Section 4.6), the properties of κ-closed parametric constraints will enable us
to prove an analogous termination result for reachability theories of extended timed
automata.

88

4.5 SUP(LA) for Timed Systems

Definition 4.66 (Parametric Clock Constraints)
Let X,K be finite sets of real-valued clock variables and natural-valued variables called
parameters , respectively. A linear expression over K is an expression of the form a0 +
a1k1 + . . .+amkm with a1, . . . , am ∈ Z and k1, . . . , km ∈ K. The set of linear expressions
over K is denoted by LE(K). A parametric clock constraint g over X,K is formed
according to the grammar

g ::= x ◦ κ
∣∣ x− y ◦ κ ∣∣ g ∧ g

where x, y ∈ X, ◦ ∈ {<,≤,≥, >}, and κ ∈ LE(K). A parametric clock constraint is
atomic if it contains no conjunction. The set of all parametric clock constraints over
X,K is denoted by CC(X,LE(K)). �

Parametric clock constraints, originally introduced in the context of parametric timed
automata [AHV93], are a generalization of clock constraints (Definition 4.52), in the
sense that CC(X) ⊆ CC(X,LE(∅)) = CC(X,Z). The other direction does not hold,
because the constants in CC(X) are assumed to be natural numbers, but are inte-
gers in CC(X,Z). This makes no difference for two-variable constraints, since x −
y ≤ a is equivalent to y − x ≥ −a. It does however make a difference for one-
variable constraints: For instance, x ≤ a with a < 0 is in CC(X,Z), but not in
CC(X).

We now first focus on non-parametric constraints and define the notion of c-closed con-
straints (Definition 4.68). Later we will consider parametric constraints and generalize
c-closedness to κ-closedness (Def 4.71).

c-closed Clock Constraints

The notion of c-equivalence was originally introduced in [Tri98]. The definition below
extends the original one to handle negative constants.13

Definition 4.67 (c-equivalence)
Let c ∈ N. Two clock valuations ν, ν ′ ∈ Val(X) are called c-equivalent , written ν ∼c ν ′,
if

(i) for all x ∈ X, either

a) ν(x) = ν ′(x) or

b) ν(x), ν ′(x) > c or

c) ν(x), ν ′(x) < −c,
and

13Additionally, the condition |ν(x)− ν(y)| , |ν′(x)− ν′(y)| > c from [Tri98] has been replaced by con-
ditions (ii) b), c), an improvement suggested by S. Tripakis.

89

4 SUP(T) for Reachability

(ii) for all x, y ∈ X, either

a) ν(x)− ν(y) = ν ′(x)− ν ′(y) or

b) ν(x)− ν(y), ν ′(x)− ν ′(y) > c or

c) ν(y)− ν(x), ν ′(y)− ν ′(x) > c. �

The intuition is that two clock valuations are c-equivalent if they cannot be distinguished
by any atomic (non-parametric) constraint containing only constants in the interval
[−c, c].

Definition 4.68 (c-closed Constraints)
A constraint g ∈ CC(X,Z) is called c-closed if ν |= g and ν ∼c ν ′ imply ν ′ |= g, for any
ν, ν ′ ∈ Val(X). �

Proposition 4.69
An atomic constraint x− δy ◦a ∈ CC(X,Z), δ ∈ {0, 1}, is c-closed if and only if |a| ≤ c.

Proof. We give a proof for x− δy ≤ a, the other cases are proven analogously.

If: Assume |a| ≤ c and let ν, ν ′ ∈ Val(X) such that ν(x) − δν(y) ≤ a and ν ∼c ν ′. We
show ν ′(x) − δν ′(y) ≤ a. If δ = 0, then ν(x) ≤ a ≤ c, and thus either ν(x) = ν ′(x)
or ν(x), ν ′(x) < −c ≤ a. Hence ν ′(x) ≤ a. If δ = 1 then ν(x) − ν(y) ≤ a ≤ c, and
thus either ν(x) − ν(y) = ν ′(x) − ν ′(y) or ν(x) − ν(y), ν ′(x) − ν ′(y) < −c ≤ a. Hence
ν ′(x)− ν ′(y) ≤ a.

Only if: Assume |a| > c. Pick any ν, ν ′ ∈ Val(X) such that ν(y) = ν ′(y) = 0, and

(i) c < ν(x) ≤ a and c < a < ν ′(x) if a ≥ 0, or

(ii) ν(x) ≤ a and a < ν ′(x) < −c if a < 0.

Clearly ν ∼c ν ′ holds, since ν(x), ν ′(x) > c or ν(x), ν(x) < −c. On the other hand,
ν(x) − δν(y) = ν(x) ≤ a, but ν ′(x) − δν ′(y) = ν ′(x) > a. Hence x − δy ≤ a is not
c-closed. �

Proposition 4.70 (Properties of c-closed Constraints)
Let g, g′ ∈ CC(X,Z), and c, c′ ∈ N.

(i) If g is c-closed and c′ > c, then g is c′-closed.

(ii) If g and g′ are c-closed, then g ∧ g′ is c-closed.

(iii) For any g ∈ CC(X,Z), there exists c ∈ N such that g is c-closed.

(iv) There are only finitely many non-equivalent c-closed constraints in CC(X,Z).

90

4.5 SUP(LA) for Timed Systems

Proof. (i) Straightforward, by observing that ν ∼c′ ν ′ implies ν ∼c ν ′. (ii) Assume g, g′

are c-closed, ν |= g ∧ g′ and ν ∼c ν ′. Then ν |= g and ν |= g′, hence ν ′ |= g and ν ′ |= g′

thus ν ′ |= g∧g′. (iii) Take any c greater than the absolute value of all right-hand sides of
atomic constraints in g. (iv) By Proposition 4.69, there are only finitely many c-closed
atomic constraints, and a constraint g is c-closed iff there is an equivalent constraint
g′ whose atomic constraints are all c-closed. Hence there can be only finitely many
non-equivalent c-closed constraints. �

κ-closed Parametric Clock Constraints

We now consider parametric constraints. For parametric constraints, the notion of c-
closedness is too weak, and we therefore generalize it. Let � be the partial order on
linear expressions over K defined by

a0 + a1k1 + . . .+ ankn � b0 + b1k1 + . . .+ bnkn

if and only if |ai| ≤ |bi| for all i ∈ [0, n]. Obviously, for any κ, there are only finitely
many κ′ such that κ′ � κ.

Definition 4.71 (κ-closed Parametric Constraints)
Let g ∈ CC(X,LE(K)), and let κ be a linear expression over K having only coefficients
in N. We say that g is κ-closed if gσ is κσ-closed, for all σ ∈ K → N. �

The following proposition generalizes Proposition 4.69 to κ-closed constraints:

Proposition 4.72
An atomic constraint x− δy ◦ κ′ ∈ CC(X,LE(K)) is κ-closed if and only if κ′ � κ.

Proof. Let κ = a0 + a1k1 + . . .+ amkm and κ′ = b0 + b1k1 + . . .+ bmkm.

If: Assume κ′ � κ. Then |bi| ≤ |ai| hence |bi| ≤ ai, as ai ∈ N. Thus for any σ ∈ K → N,
we have |κ′σ| ≤ κσ, hence by Proposition 4.69, x− δy ◦ κ′σ is κσ-closed.

Only if: Assume κ′ 6� κ. Then |bn| > an for some n ∈ [0,m]. Now let σ ∈ K → N be
such that σ(kn) = 1 and σ(ki) = 0 for all i 6= n. Then |κ′σ| = |bn| > an = κσ. Hence by
Proposition 4.69, x− δy ◦ κ′σ is not κσ-closed. Hence x− δy ◦ κ′ is not κ-closed. �

Proposition 4.73 (Properties of κ-closed Constraints)
Let g, g′ ∈ CC(X,LE(K)), and κ, κ′ be linear expressions over K with coefficients in N.

(i) If g is κ-closed and κ � κ′, then g is κ′-closed.

(ii) If g and g′ are κ-closed, then g ∧ g′ is κ-closed.

(iii) For any g ∈ CC(X,LE(K)), there exists κ such that g is κ-closed.

(iv) There are only finitely many non-equivalent κ-closed constraints in CC(X,LE(K)).

91

4 SUP(T) for Reachability

Proof. (i) Follows by Proposition 4.72. (ii) Assume g, g′ are κ-closed. Let σ ∈ K → N
be arbitrary. Then gσ, g′σ are κσ-closed. Assume ν |= (g ∧ g′)σ and ν ∼κσ ν ′. Then
ν |= gσ and ν |= g′σ, hence ν ′ |= gσ and ν ′ |= g′σ. Thus ν ′ |= (g ∧ g′)σ and hence
(g ∧ g)σ is κσ-closed. (iii) Take any κ such that κ′ � κ for every right-hand side κ′ of
atomic constraints of g. (iv) By Proposition 4.72, there are only finitely many κ-closed
atomic constraints, and a constraint g is κ-closed iff there is an equivalent constraint
g′ whose atomic constraints are all κ-closed. Hence there can be only finitely many
non-equivalent κ-closed constraints. �

Operations on Parametric Clock Constraints

Definition 4.74 (tpre(g), [Y]g)
Let g ∈ CC(X,LE(K)), and G = Sol(g). Let ν ∈ Val(X] K) and t ∈ R. Let
Y ⊆ X. The assignment ν +Y t is defined by (ν + t)(x) = ν(x) + t if x ∈ Y and
(ν + t)(x) = ν(x) otherwise. We write ν + t instead of ν +X t. The assignment ν[Y] is
defined by ν[Y](x) = 0 if x ∈ Y and ν[Y](x) = ν(x) otherwise. We write ν[y] instead of
ν[{y}]. We write ν ≥Y 0 if ν(x) ≥ 0 for all x ∈ Y . We write ν ≥ 0 instead of ν ≥X 0.
We define the time-predecessor (also called backward diagonal projection) as

tpre(G) = {ν | ν ≥X 0 and t ≥ 0 and ν +X t ∈ G}

and

[Y]G = {ν | ν[Y] ∈ G}

By tpre(g) we denote any constraint obtained by eliminating the existential quantifier
from the formula ∃t.~x ≥ 0∧t ≥ 0∧g[~x+t/~x] by a conjunction-preserving procedure (like
Fourier-Motzkin elimination), and discarding any true ground conjuncts, and possibly
discarding implied conjuncts. By [Y]g we denote the constraint obtained by replacing by
zero all occurrences in g of variables from Y and discarding any true ground conjuncts,
and possibly discarding implied conjuncts. �

It is easy to see that both Sol(tpre(g)) = tpre(Sol(g)) and Sol([Y]g) = [Y] Sol(g)
hold.

For any conjunction g of constraints, let g|X denote the conjunction of all atomic con-
straints from g that contain variables from X. If g ∈ CC(X,Z), then tpre(g)|X =
tpre(g) ∈ CC(X,Z) if tpre(g) is satisfiable, since all conjuncts resulting from the quan-
tifier elimination and that do not contain a variable from X are ground and thus dis-
carded. By the same argument, we have ([Y]g)|X = [Y]g ∈ CC(X,Z) if [Y]g is satisfi-
able.

On the other hand, if g ∈ CC(X,LE(K)), then in general tpre(g) = tpre(g)|X ∧ φ,
and [Y]g = ([Y]g)|X ∧ φ′, where φ, φ′ contain parameters from K. For example, if
g = k1 ≤ x ≤ k2, then tpre(g) = 0 ≤ x ≤ k2 ∧ k1 ≤ k2 and [x](g) = k1 ≤ 0 ≤ k2. For

92

4.5 SUP(LA) for Timed Systems

any σ : K → N however, we have tpre(gσ) = tpre(gσ)|X = (tpre(g)|X)σ and [Y](gσ) =
(([Y]g)|X)σ, since φσ, φ′σ are ground.

Example 4.75
Figure 4.4 shows the geometric interpretation of tpre(Λ) for Λ = a1 ≤ x ≤ a2, b1 ≤ y ≤
b2, assuming that 0 ≤ a1 ≤ a2 and 0 ≤ b1 ≤ b2. The constraint tpre(Λ) is obtained
by eliminating the existential quantifier from ∃t.x ≥ 0 ∧ y ≥ 0 ∧ t ≥ 0 ∧ a1 ≤ x + t ≤
a2 ∧ b1 ≤ y + t ≤ b2, yielding 0 ≤ x ≤ a2, 0 ≤ y ≤ b2, a1 − b2 ≤ x − y ≤ a2 − b1 after
removal of the true conjuncts a1 ≤ a2 and b1 ≤ b2.

Figure 4.5 shows the geometric interpretation of [y]Λ for Λ = a1 ≤ x ≤ a2, y ≤ b1. The
constraint [y]Λ is obtained from Λ by substituting zero for y, yielding a1 ≤ x ≤ a2 after
removal of the true conjunct 0 ≤ b1.

x

y

a1 a2

b1

b2

Λ

x

y

a1 a2

b1

b2

tpre(Λ)

Figure 4.4: Illustration of tpre(Λ)

x

y

a1 a2

b1
Λ

x

y

a1 a2

b1

[y]Λ

Figure 4.5: Illustration of [y]Λ

�

Remark 4.76
The original definition of c-equivalence in [Tri98] omits the condition (i) c) from Defi-
nition 4.67, but is sufficiently strong to ensure the properties from Proposition 4.70 for
standard clock constraints CC(X). When considering CC(X,Z) however, where clocks
may be compared to negative constants, the absence of condition (i) c) means that, say,
x≤−1, x≤−2, x≤−3, . . . are all c-closed, for any c ≥ 0, hence there are infinitely
many non-equivalent c-closed constraints.

93

4 SUP(T) for Reachability

The addition of condition (i) c) requires us to adapt the definition of tpre(G): Usually,
the time-predecessor is simply defined as

tpre(G) = {ν | t ≥ 0 and ν +X t ∈ G}

which preserves the c-closedness (according to the old definition from [Tri98]) of standard
clock constraints; it does not, however, preserve the c-closedness based on Definition 4.67,
as ν(x) < −c does not imply ν(x) + t < −c. This is why we add the condition ν ≥X 0 in
the definition of tpre(G), ensuring that the operation preserves c-closedness of constraints
with respect to our definition of c-equivalence, as we prove in Proposition 4.77. It is
natural to restrict the time-predecessors to non-negative values, as clocks can only take
non-negative values anyway.

As a final step, the addition of the condition ν ≥X 0 in tpre(G) means that the constraint
~x ≥ 0 also has to be added to the time-reachability clauses of TA (Definition 4.57)
and ETA (Definition 4.64). While this extra constraint is crucial in the case of ETA
reachability theories, it is not necessary for TA, since termination of saturation for TA
theories can be proven using the old definition of c-equivalence, as we did in earlier
work [FW12]. For the sake of a uniform presentation, we rely on the definitions of this
section for both TA and ETA. �

Proposition 4.77
Let g ∈ CC(X,Z) be c-closed. Then tpre(g) is c-closed.

Proof. Let ν, ν ′ ∈ Val(X) such that ν |= tpre(g) and ν ∼c ν ′. Then ν ≥ 0 and ν + t |= g
for some t ≥ 0. We show ν + t ∼c ν ′ + t. Let x, y ∈ X be arbitrary. It suffices to
consider case (i) of Definition 4.67, since (ν + t)(x)− (ν + t)(y) = ν(x) + t− ν(y)− t =
ν(x) − ν(y). If ν(x) = ν ′(x), then also ν(x) + t = ν ′(x) + t, and if ν(x), ν ′(x) > c then
also ν(x) + t, ν ′(x) + t > c. The case ν(x), ν ′(x) < −c is ruled out by ν ≥ 0. �

Proposition 4.78
Let g ∈ CC(X) be c-closed and let Y ⊆ X. Then [Y]g is c-closed.

Proof. Let ν, ν ′ ∈ Val(X) such that ν |= [Y]g and ν ∼c ν ′. Then ν[Y] |= g. We show
ν[Y] ∼c ν ′[Y]. Let x, y ∈ X be arbitrary. We write ν, ν ′ |= a(x) if ν, ν ′ and x satisfy
condition (i) a) of Definition 4.67, and analogously we use b(x), c(x), a(x, y), b(x, y) and
b(y, x) for the other conditions.14 It follows from ν ∼c ν ′ that ν, ν ′ must satisfy one
of a(x), b(x), c(x), and one of a(x, y), b(x, y), b(y, x), for all x, y ∈ X. The table below
shows the corresponding case analysis:

14Condition (ii) c) of Def. 4.67 is the same as (ii) b) with x and y swapped, therefore we denote it by
b(y, x) instead of c(x, y).

94

4.5 SUP(LA) for Timed Systems

if ν, ν ′ |= and then ν[Y], ν ′[Y] |=

— x ∈ Y a(x)

a(x) x 6∈ Y a(x)

b(x) x 6∈ Y b(x)

c(x) x 6∈ Y c(x)

— x, y ∈ Y a(x, y)

a(x, y) x, y 6∈ Y a(x, y)

b(x, y) x, y 6∈ Y b(x, y)

— x ∈ Y, y 6∈ Y, a(y) a(x, y)
b(y) b(y, x)
c(y) b(x, y)

For example, if x ∈ Y, y 6∈ Y and b(y), then ν(y)− ν(x) = ν(y) > c and ν ′(y)− ν ′(x) =
ν ′(y) > c. The other cases are proved analogously. �

Proposition 4.79
Let g ∈ CC(X,LE(K)) be κ-closed and let Y ⊆ X. Then tpre(g)|X and ([Y]g)|X are
κ-closed.

Proof. Let σ : K → N be arbitrary. Since g is κ-closed, gσ is κσ-closed. By Proposi-
tion 4.77, tpre(gσ) = (tpre(g)|X)σ is κσ-closed. Hence tpre(g)|X is κ-closed. By Propo-
sition 4.78, [Y](gσ) = (([Y]g)|X)σ is κσ-closed. Hence ([Y]g)|X is κ-closed. �

4.5.6 SUP(LA) as a Decision Procedure for Timed Automata

In this section, we will show that SUP(LA) can be turned into a decision procedure for
reachability in timed automata. The result we will establish is that, under a suitable
derivation strategy, any SUP(LA) derivation from N [

TA—a reachability query based on
the backward encoding of TA—terminates.

The termination argument relies on the fact that there are only finitely many non-
equivalent c-closed clock constraints over a given set of clock variables (Proposition 4.70),
by showing that for a suitable constant c ∈ N, the constraints of all derived clauses are
c-closed.

Proposition 4.80
Consider an ordered resolution inference

I
t≥0, ~x ′' ~x+t, Inv(L)[~x ′/~x] ‖R(L, ~x ′)→ R(L, ~x) Λ ‖ → R(L, ~x ′)

Λ′ ‖ → R(L, ~x)

95

4 SUP(T) for Reachability

between a time-reachability clause and a goal clause. Assume Λ and Inv(L) are c-closed,
for some c ∈ N. Then Λ′ is c-closed.

Proof. Λ′ is equivalent to ∃t.(t ≥ 0 ∧ Inv(L)[~x + t/~x] ∧ Λ[~x + t/~x ′]) or equivalently
tpre(Inv(L)[~x] ∧ Λ[~x/~x ′]). By Proposition 4.70, Inv(L)[~x] ∧ Λ[~x/~x ′] is c-closed and thus
Λ′ is c-closed by Proposition 4.77. �

Proposition 4.81
Consider an ordered resolution inference

I
g[~x], ~x ′'AD(~x), Inv(L′)[~x ′/~x] ‖ R(L′, ~x ′)→ R(L, ~x) Λ ‖ → R(L, ~x ′)

Λ′ ‖ → R(L, ~x)

between a discrete-step clause and a goal clause. Assume Λ, g and Inv(L) are c-closed,
for some c ∈ N. Then Λ′ is c-closed.

Proof. Λ′ is equivalent to g[~x] ∧ Inv(L′)[AD(~x)/~x] ∧ Λ[AD(~x)/~x ′] or equivalently g[~x] ∧
[D](Inv(L′)[~x]∧Λ[~x/~x ′]). It follows by Propositions 4.70 and 4.78 that Λ′ is c-closed. �

Derivation Strategy

We apply the following derivation strategy:

(i) all negative literals are selected;

(ii) the only inference rule is ordered resolution;

(iii) reduction rules include subsumption deletion.

An immediate consequence of the selection strategy is that ordered resolution can only
derive positive unit clauses of the form Λ ‖→ R(L, ~x), which we call goal clauses ,15 where
L ∈ Loc is a location constant.

Theorem 4.82
Let TA be a timed automaton and N [

TA be a reachability query based on the backward
encoding of TA. Then any derivation from N [

TA following the above strategy terminates.

Proof. Assume for contradiction that N [
TA = N0 . N1 . N2 is an infinite derivation,

where Ni+1 = Ni ∪ {Ci+1} such that Ci is a positive unit clause not subsumed by any
clause in Ni. By Proposition 4.70, there exists c ∈ N such that all guards and invariants
in TA, as well as the clause constraints of all goal clauses in N [

TA are c-closed. It follows
from Propositions 4.80 and 4.81 that any derived Ci has a c-closed constraint as well. As
Loc is finite, there must be an infinite subsequence of positive unit clauses all containing
the same location constant, and as there are only finitely many non-equivalent c-closed
constraints (by Proposition 4.70), there exists an index k such that any Ci with i ≥ k
is subsumed by some Cj with j < k. Now either Cj itself or some clause subsuming it,
and hence also subsuming Ci, is contained in Nj, a contradiction. �

15This terminology is consistent with Definition 4.32, since we work with a backward encoding.

96

4.6 Constraint Induction

4.6 Constraint Induction

In this section, we introduce a new SUP(T) rule, called constraint induction. The focus
of the rule is on the clause constraints (hence the name), and it relies on the computation
of the transitive closure of constraints involved in loops that arise in the SUP(T) search
space.

In the following, we first give a general definition of the rule that applies to arbitrary
incarnations of SUP(T) (Proposition 4.83) and then show an effective instance of the
rule based on loop detection (Section 4.6.1).

For the transitive closure computation, we restrict ourselves to the special case of
SUP(LA) (Section 4.6.2). The constraint induction rule strictly increases the power
of the SUP(LA) calculus, as evidenced by the resulting decision procedure for reacha-
bility in ETA (Section 4.6.3) and by improved termination and performance on other
examples as well (Section 4.6.4).

Proposition 4.83 (Constraint Induction)
Let Λ be a T -formula with free variables ~x, ~x ′, and φ[~x] a formula with free variables ~x.
Suppose there exists a T -formula Λ+ with free variables ~x, ~x ′, such that

SolI(Λ
+, ~x~x ′) = SolI(Λ, ~x~x

′)+ (4.2)

holds in any T -model I. Then

∀~x, ~x ′. Λ ∧ φ[~x]→ φ[~x ′] |=T ∀~x, ~x ′. Λ+ ∧ φ[~x]→ φ[~x ′].

Proof. Let I be a T -model such that

I |= ∀~x, ~x ′. Λ ∧ φ[~x]→ φ[~x ′]. (4.3)

Let ν be an arbitrary assignment for I, and ~a,~a ′ be sequences of elements in UI , such
that

I, ν[~x 7→ ~a, ~x ′ 7→ ~a ′] |= Λ+[~x, ~x ′] ∧ φ[~x].

By (4.2), there exists k ≥ 2 and ~a1, . . . ,~ak in UI , with ~a = ~a1,~a
′ = ~ak, such that

I, ν[~x1 7→ ~a1, . . . , ~xk 7→ ~ak] |= Λ[~x1, ~x2] ∧ . . . ∧ Λ[~xk−1, ~xk] ∧ φ[~x1].

Using (4.3), it follows by induction on i that

I, ν[~x1 7→ ~a1, . . . , ~xk 7→ ~ak] |= φ[~xi]

for all i ∈ [2, k]. Thus

I, ν[~x1 7→ ~a1, . . . , ~xk 7→ ~ak] |= Λ+[~x1, ~xk] ∧ φ[~x1]→ φ[~xk].

or equivalently
I, ν[~x 7→ ~a, ~x ′ 7→ ~a ′] |= Λ+[~x, ~x ′] ∧ φ[~x]→ φ[~x ′].

97

4 SUP(T) for Reachability

as ~x2, . . . , ~xk−1 don’t occur in the formula. Thus we conclude that

I |= Λ+[~x, ~x ′] ∧ φ[~x]→ φ[~x ′].

�

Proposition 4.83 can be straightforwardly turned into an inference rule for SUP(T),
which we call constraint induction. The rule is shown in Figure 4.6.16

Constraint Induction:

I
C1, . . . , Cn

D1
...
Dm

where

(i) C1, . . . , Cn |=T ∀~x, ~x ′. Λ[~x, ~x ′] ∧ φ[~x]→ φ[~x ′]

(ii) {D1, . . . , Dm} = cnf(∀~x, ~x ′. Λ+[~x, ~x ′] ∧ φ[~x]→ φ[~x ′])

if Λ+ exists.

Figure 4.6: Constraint induction rule

Remark 4.84
The constraint Λ+ typically represents a relation of the form

∃m. m ≥ 1 ∧ Λ′[m,~x, ~x ′]

where m is an integer-sorted variable. For example, the transitive closure of x′ = x+ 1
is equivalent to ∃m. m ≥ 1 ∧ x′ = x+m. This existential quantification however comes
“for free” in abstracted FOL(T) clauses, as long as m does not occur in the free part of
the clause. For instance,

m ≥ 1, x′ = x+m ‖P (x)→ P (x′)

is logically equivalent to

(∃m. m ≥ 1, x′ = x+m) ‖P (x)→ P (x′).

We refer to the integer-sorted variables introduced by constraint induction as loop coun-
ters . �

16In Definition 2.31, inference rules have only a single conclusion. The generalization to multiple
conclusions, as required for constraint induction, is straightforward.

98

4.6 Constraint Induction

The constraint induction rule as shown in Figure 4.6 is not effective, because, firstly,
condition (i) is undecidable in general and secondly, the “transitive closure formula” Λ+

may not be expressible in the language of T .

To address the first problem, we will now consider an instance of the constraint induction
rule which relies on the detection of “loops” in the search space. This technique applies
to the general SUP(T) framework with arbitrary base theories. The second problem is
specific to the base theory and will be addressed in Section 4.6.2 for the case of linear
arithmetic.

4.6.1 Constraint Induction by Loop Detection

Suppose we have a SUP(T)-derivation

Λ ‖C, D1, . . . , Dm ` Λ′ ‖C.

where the first premise and the conclusion have the same free part and differ only in
their constraints. Since the applicability of inference rules in SUP(T) does not depend
on the constraints of the premises (except in the case of constraint refutation), such a
situation can lead to an infinite derivation

Λ′ ‖C, D1, . . . , Dm ` Λ′′ ‖C
Λ′′ ‖C, D1, . . . , Dm ` Λ′′′ ‖C

. . .

unless some clauses become redundant, or constraint refutation derives the empty clause.
We call such a situation a loop in the proof search space. Constraint induction makes
it possible to avoid such infinite looping by deriving a clause that “summarizes” (or
“accelerates”) the loop.

Proposition 4.85
Let Λ0 ‖C0, Λ1 ‖C1, . . . , Λm ‖Cm ` Λ ‖C0 be a derivation in SUP(T) (without vari-
able elimination), where Λ0 ‖C0 is used exactly once. Then there exists a conjunctive
constraint Λ∆[~x, ~x ′] such that

Λ1 ‖C1, . . . , Λm ‖Cm |=T ∀~x, ~x ′. Λ∆[~x, ~x ′] ∧ C0[~x]→ C0[~x ′].

Proof. Since the applicability of inference rules in SUP(T) does not depend on the con-
straints of the premises, we can replace Λ0 by > (the empty constraint), and again obtain
a valid SUP(T)-derivation

>‖C0, Λ1 ‖D1, . . . , Λm ‖Dm ` Λ̂ ‖C0

99

4 SUP(T) for Reachability

where Λ̂ is a conjunction of instances of Λ1, . . . ,Λm, with unifiers applied.17 By soundness
of SUP(T), we get

|=T ∀~x0, . . . , ~xm. C0[~x0] ∧ Ĉ1[~x0, ~x1] ∧ . . . ∧ Ĉm[~xm−1, ~xm]→
(

Λ̂[~x0, . . . , ~xm]→ C0[~xm]
)

where

Ĉi =
∧
j∈Ii

((Λi → Ci)σj)

Λ̂ =
∧

i∈[1,m]

∧
j∈Ii

Λiσj

for some non-empty sets of indices18 Ii. It follows that

|=T ∀~x0, . . . , ~xm. Ĉ1[~x0, ~x1] ∧ . . . ∧ Ĉm[~xm−1, ~xm]→
(

Λ̂[~x0, . . . , ~xm] ∧ C0[~x0]→ C0[~xm]
)
.

As Λi ‖Ci |=T ∀Ĉi for all i ∈ [1,m], we get

Λ1 ‖C1, . . . , Λm ‖Cm |=T Λ∆[~x, ~x ′] ∧ C0[~x]→ C0[~x ′].

by taking Λ∆ = ∃~x1, . . . , ~xm−1. Λ̂[~x, ~x1, . . . , ~xm−1, ~x
′]. �

Example 4.86
Consider the FOL(LA) clauses

(1) x' 1 ‖ →P (x)
(2) x′'x+ 2 ‖P (x)→Q(x′)
(3) x′'x− 1 ‖Q(x)→P (x′)

Resolution of (1) with (2) and (3) yields

(4) x' 1, x′'x+ 2, x′′'x′ − 1 ‖ →P (x′′)

or

(4’) x' 2 ‖ →P (x)

after constraint simplification and variable normalization. Indeed it holds that

(2), (3) |=LA x′'x+1 ∧ P (x)→ P (x′).

Now the clause

17See the remark on page 71.
18See the remark on page 71.

100

4.6 Constraint Induction

(5) k ≥ 1, x′'x+ k ‖P (x)→P (x′)

where k is an integer-sorted variable, can be derived by constraint induction. Note that
(5) depends only on (2) and (3), and not on (1) or (4)—the latter two clauses only serve
as witnesses to the existence of the loop. �

Remark 4.87
The constraint induction rule presented here is stronger than the one from our earlier
work [FKW12], which would produce a clause depending also on the initial clause, e.g.,

(5’) k ≥ 1, x' k + 1 ‖ →P (x)

in the example above. This clause is clearly weaker than (5), as it can be obtained by
resolution of (1) and (5). �

Remark 4.88
In Proposition 4.85, the restriction of Λ0 ‖C0 being used exactly once in the derivation of
Λ ‖C0 is required to ensure that condition (i) of the constraint induction rule is satisfied.
In order to handle arbitrary derivations, the proposition would need to be strengthened
to deal with formulas of the form

Λ ∧ φ[~x1] ∧ . . . ∧ φ[~xn]→ φ[~x ′].

For instance, from x′'x + y ∧ φ[x] ∧ φ[y] → φ[x′] one could then obtain k ≥ 1 ∧
x′' 2k−1(x+y)∧φ[x]∧φ[y]→ φ[x′]. This generalization requires a more involved theory
however, and we leave it as future work. �

There is a practical problem that remains to be solved if we want to integrate constraint
induction into the SUP(T) calculus: The constraint Λ∆ cannot be simply read off from
the conclusion of the loop. Indeed, consider clause (4) in Example 4.86: We cannot
tell which of the variables x, x′ is the “original” variable that should be kept in order to
define Λ∆. The situation becomes even worse when constraint simplification and variable
normalization are used (as is the case in any practical implementation): Clause (4’) could
just as well have been derived by resolution of (1) with the clause x′' 2 ‖P (x)→ P (x′).
So the information needed to reconstruct Λ∆ is lost by constraint simplification and
variable normalization.

We can recover this information by using the following trick: We replace the initial
constraint by a constraint containing fresh base constant symbols, and “replay” the loop
with the modified constraint, as shown in Algorithm 4.1. The purpose of the constant
symbols is to “pin down” the variables of the first occurrence of C0 so that they don’t
get eliminated.

The procedure can be called whenever a clause Λ′ ‖C is derived which has an ancestor
Λ ‖C with the same free part. The constraint Λ0 is x1' c1, . . . , xn' cn where ci is a

101

4 SUP(T) for Reachability

Algorithm 4.1: ReplayLoop

Input: Partial SUP(T) derivation D = Λ ‖C, D1, . . . , Dm ` Λ′ ‖C
Output: Constraint Λ∆[~x, ~x ′]

1 Λ0 := ~x'~c for fresh base constants ~c;
2 C0[~x] := C[~x];
3 for i := 1 to m do
4 Λi ‖Ci := infD,i(Λi−1 ‖Ci−1, Di,1, . . . , Di,ki);

5 return Λm[~x/~c, ~x ′/~x];

fresh constant of the same sort as xi, where x1, . . . , xn are the base variables of Λ ‖C.
On lines 3 and 4, the derivation D is replayed, starting with Λ0 ‖C0. The ith inference
of D is denoted by infD,i, and Di,1, . . . , Di,ki are the remaining premises. This replaying
of inferences is always possible, as the applicability of inference rules in SUP(T) does
not depend on the constraints of the premises.

Example 4.89
Consider again the clauses from Example 4.86. When clause (4’) is derived, we no-
tice that clause (1) is among its ancestors and has the same free part. So we execute
ReplayLoop, producing the following clauses:

Λ0 ‖C0 x' c ‖ →P (x)
Λ1 ‖C1 = Res(Λ0 ‖C0, (2)) x' c+ 2 ‖ →Q(x)
Λ2 ‖C2 = Res(Λ1 ‖C1, (3)) x' c+ 1 ‖ →P (x)

The returned constraint is (x' c+ 1)[x/c, x′/x] = x′'x+ 1, as expected, so constraint
induction can be applied to produce (5). �

4.6.2 Computing the Transitive Closure of LA Constraints

The second problem we have to solve in order to make the constraint induction rule effec-
tive concerns the computation of the transitive closure constraint Λ+.

We show how this can be realized for the case of FOL(LA).

Proposition 4.90
Let a, c ∈ R ∪ {−∞} and b, d ∈ R ∪ {∞} such that a ≤ b and c ≤ d. If R(x, x′) ⊆ R2 is
defined by a ≤ x ≤ b ∧ c ≤ x′ − x ≤ d then for any m ≥ 1, Rm(x, x′) is defined by

m−1∧
i=0

x ≥ a− id ∧
m−1∧
i=0

x ≤ b− ic ∧
m−1∧
i=1

x′ ≥ a+ ic ∧
m−1∧
i=1

x′ ≤ b+ id

∧ mc ≤ x′ − x ≤ md .

102

4.6 Constraint Induction

In particular, Rm(x, x′) is equivalent to

a ≤ x ≤ b− (m−1)c ∧ a+ (m−1)c ≤ x′ ≤ b+ d ∧ mc ≤ x′ − x ≤ md

if c, d ≥ 0, and equivalent to

a ≤ x ≤ b ∧ a+ c ≤ x′ ≤ b+ d ∧ mc ≤ x′ − x ≤ md

if c < 0 and d ≥ 0, and equivalent to

a− (m−1)d ≤ x ≤ b ∧ a+ c ≤ x′ ≤ b+ (m−1)d ∧ mc ≤ x′ − x ≤ md

if c, d < 0.

Proof. The general form is established by a straightforward though tedious induction on
m. The special forms are obtained by taking greatest upper bounds and smallest lower
bounds. For instance, if d ≥ 0, then x ≥ a implies x ≥ a − id for all i ≥ 0, whereas if
d < 0, then x ≥ a− id, i ≥ 0 implies x ≥ a. �

It is straightforward to extend Proposition 4.90 to constraints with strict inequali-
ties.

Example 4.91
Consider the constraint Λ = x1 ≥ 3, x′1 ≥ x1 + 2, x2 + 1 > x′2. It represents the product
relation

Sol(Λ) = (x1 ≥ 3 ∧ x′1 ≥ x1 + 2) · x2 + 1 > x′2 .

By Proposition 4.90, we get

Sol(Λ)m = (x1 ≥ 3 ∧ x′1 ≥ x1 + 2)m · (x2 + 1 > x′2)m

= (x1 ≥ 3 ∧ x′1 ≥ 5 ∧ x′1 − x1 ≥ 2m) · (x′2 − x2 ≤ m)

= x1 ≥ 3 ∧ x′1 ≥ 5 ∧ x′1 − x1 ≥ 2m ∧ x′2 − x2 ≤ m

with a = 3, c = 2, b = d =∞ for the first component relation and d = 1, b =∞, a = c =
−∞ for the second component relation.

Thus Λ+ is

∃m. m ≥ 1 ∧ x1 ≥ 3 ∧ x′1 ≥ 5 ∧ x′1 − x1 ≥ 2m ∧ x′2 − x2 ≤ m

where x1, x2 are real-sorted variables, and m is an integer-sorted variable. Assuming
that we have concluded

N |=T Λ ∧ P (x1, x2)→ P (x′1, x
′
2)

by loop detection, we can thus derive the clause

m ≥ 1, x1 ≥ 3, x′1 ≥ 5, x′1 − x1 ≥ 2m, x′2 − x2 ≤ m ‖P (x1, x2)→ P (x′1, x
′
2)

by constraint induction. �

103

4 SUP(T) for Reachability

Proposition 4.92
Let ~x = x1, . . . , xn, let A ∈ Zm×n be a matrix, ~b ∈ Zm, and let D be a n × n diagonal
matrix over {0, 1}, and ~c ∈ Zn. If R(~x, ~x ′) ∈ Z2n is defined by

A~x ≤ ~b ∧ ~x ′ = D~x+ ~c

then Rm(~x, ~x ′), for any m ≥ 1, is defined by(
(m = 1∧A~x ≤ ~b)

∨ (m > 1∧A~x ≤ ~b
∧A(D~x+ ~c) ≤ ~b
∧A(D~x+ (m− 2)D~c+ ~c) ≤ ~b)

)
∧ ~x ′ = D~x+ (m− 1)D~c+ ~c

Proof. The proof relies on the convexity of the constraints and on the fact that D is
idempotent. It can be found in [BW94]. �

Example 4.93
Consider the LA constraint Λ = x ≤ y, x′'x + 1, y′' y. In the matrix notation of
Proposition 4.92, this is

(
1 −1

)(x
y

)
≤ 0 ∧

(
x′

y′

)
=

(
1 0
0 1

)(
x
y

)
+

(
1
0

)
.

Following Proposition 4.92, Sol(Λ)m is defined by(
(m = 1∧x ≤ y)

∨ (m > 1∧x ≤ y
∧x+ 1 ≤ y
∧x+m− 1 ≤ y)

)
∧ x′ = x+m ∧ y′ = y

which can be simplified to

m ≥ 1 ∧ x+m− 1 ≤ y ∧ x′ = x+m ∧ y′ = y .

Assuming that we have concluded

N |=T Λ ∧ P (x, y)→ P (x′, y′)

by loop detection, we can thus derive the clause

m ≥ 1, x+m− 1 ≤ y, x′'x+m, y′' y ‖P (x, y)→ P (x′, y′)

by constraint induction. �

104

4.6 Constraint Induction

Remark 4.94
In general, the transitive closure of constraints of the type defined in Proposition 4.92
cannot be simplified into a purely conjunctive form. If the constraint remains dis-
junctive, then the clausification performed by the constraint induction rule yields two
clauses. Consider for instance x ≤ y ∧ x′ = x + 1 ∧ y′ = 3, whose transitive closure is
((m = 1 ∧ x ≤ y) ∨ (m > 1 ∧ x ≤ y ∧ x+m− 1 ≤ 3)) ∧ x′ = x+m ∧ y′ = 3. �

Remark 4.95 (Transitive closure of parametric constraints)

Proposition 4.92 is also applicable when A, ~b and ~c contain parameters, since the proof
makes no assumption about their values. Example 4.107 in Section 4.6.4 shows an
application of constraint induction to a parametric system, based on Proposition 4.92.
Extending Proposition 4.90 to parametric constraints is more complicated, since the
simplification of the initial conjunction depends on the signs of a, b, c and d. In order
to justify the simplification when some of a, b, c, d are parameters, suitable assumptions
need to made about them. Such assumptions must be represented by additional base
clauses (i.e., constrained empty clauses). For instance, assuming c and d are parameters,
the constraint c, d ≥ 0 is represented by the two clauses c < 0 ‖� and d < 0 ‖�. When
computing the transitive closure of a parametric constraint, the clause set has to be
searched for such base clauses in order to justify the simplification. �

Strengthening Constraints

In general, the constraint returned by ReplayLoop (Algorithm 4.1) may not be of the type
required by Propositions 4.90 and 4.92, or it may even be such that its transitive closure
cannot be expressed as a linear constraint at all. In this case, constraint induction may
still be applicable to a strengthened version of the constraint.

Consider for instance Λ = x′' 2x, y′'x + y and assume we have established N |=LA

Λ ∧ φ[x, y]→ φ[x′, y′] by loop detection. It follows that

k ≥ 1 ∧ x′' 2kx ∧ y′' (2k−1)x+ y ∧ φ[x, y]→ φ[x′, y′], (4.4)

is also a consequence of N , but this formula is not expressible in the language of
FOL(LA). However, N |=LA Λ′ ∧ φ[x, y] → φ[x′, y′] also holds, for any strengthening
Λ′ of Λ. If we choose (say) Λ′ = Λ ∧ x' 1, then the transitive closure can be computed
as per Proposition 4.92, yielding

k ≥ 1 ∧ x' 1 ∧ x′' 2 ∧ y′' y + k ∧ φ[x, y]→ φ[x′, y′], (4.5)

which can be represented by FOL(LA) clauses. Evidently, (4.5) is weaker than (4.4),
but the former may still be useful. We will exploit this technique in Section 4.6.3 to
ensure that constraint induction produces only clauses with clock constraints: We will
strengthen any Λ of the form

x+ ay + b ◦ x′, y′' 0

105

4 SUP(T) for Reachability

to
x+ b ◦ x′, y′' 0, y' 0

by adding y' 0, before computing the transitive closure according to Proposition 4.90.

4.6.3 SUP(LA) with Constraint Induction as a Decision Procedure
for ETA

We now define acceleratable cycles of extended timed automata. The notion of acceler-
atable cycle was introduced in [HL02]

Definition 4.96 (Acceleratable Cycle)
Let ETA = (Loc,Act,X, ↪→, L0, g0, Inv) be an extended timed automaton. A cycle over
L(0), . . . , L(n−1) ∈ Loc, n ≥ 1, is a sequence of edges e0, . . . , en−1 ∈ ↪→ such that

ei = (L(i), g(i), α(i), A(i), L(i+1 mod n)).

The cycle is called simple if L(i) 6= L(j) whenever i 6= j. The cycle is called acceleratable
if it is simple and all guards and invariants on the cycle contain at most a single clock
variable, which is the same for all guards and invariants on the cycle, and this clock is
reset on all incoming edges to L(0). The clock being reset on an acceleratable cycle is
called the clock of the cycle, and L(0) is called the reset location. �

Note that acceleratability of a cycle places no restrictions on the integer guards and
instructions occurring on the cycle.

In [HL02], it is shown that any acceleratable cycle has an interval [a, b], called the window
of the cycle, that contains all possible traversal times of the cycle, independently of any
path prefix. That is, starting from the reset location with the clock of the cycle set to
zero, traversing the cycle once takes between a and b time units, and for any t ∈ [a, b],
there is a path (of the underlying transition system) through the cycle that takes exactly
t time units.

Example 4.97
Consider the following cycle in an ETA:

L
y≤4

L′

y≤3

y≥2

y≥1
y:=0

y:=0

The cycle is acceleratable, L is the reset location and y is the clock of the cycle. Assume
we start in L with y = 0. According to the invariant, up to 4 time units can be spent in
L. But in order to make the transition to L′, y must not be larger than 3, for otherwise

106

4.6 Constraint Induction

the invariant of L′ would be violated. Moreover, the guard y ≥ 1 is redundant, since y
must be at least 2 when going from L′ back to L. However, the automaton can stay in
L′ until y becomes equal to 3 (i.e., at most one time unit). In conclusion, the total time
needed to traverse the cycle is in the interval [2, 3], and this interval is determined only
by the guard y ≥ 2 and the invariant y ≤ 3. Conversely, for any t ∈ [2, 3], the traversal
of the cycle can be scheduled to take exactly t time units. �

The cycle in Example 4.97 has a single reset location L. In general, an acceleratable
cycle may have more than one reset location, i.e., more than one location whose incoming
edges reset the cycle’s clock. Such a cycle can be decomposed into maximal segments of
the form (ek, ek+1, . . . , ek′), where the cycle’s clock is reset on edge ek′ , but on none of
the edges ek, . . . , ek′−1. If edge ei has a guard of the form y ≥ ai, and each location L(i)

has an invariant of the form y ≤ bi (possibly bi = ∞ to represent the invariant true),
then the time required to traverse the segment (ek, ek+1, . . . , ek′) lies in the interval
[max{ak, ak+1, . . . , ak′}, bk′]. The window of the whole cycle is then [a, b], where a is
the sum over all lower bounds and b is the sum over all upper bounds of the individual
segments’ intervals. More details can be found in [HL02].

Definition 4.98 (Integer-Flat ETA)
An extended timed automaton ETA is called integer-flat if every strongly connected
component of its underlying graph that contains an integer assignment on some edge, is
an acceleratable cycle. �

In particular, integer-flatness rules out nested cycles with integer assignments, which
could be used to encode multiplication.

Given an integer-flat ETA, we fix a topological sorting19 π of the SCCs in the underlying
graph of ETA, and let π(L) ∈ {1, 2, . . .} be the index of the SCC that L belongs to. We
extend π to positive unit clauses by π(Λ ‖→ R(L, . . .)) = π(L).

SCC

π 1 2 3 4

L

Figure 4.7: Illustration of location numbering with π(L) = 2

19Any directed graph is a DAG of its strongly connected components, and any DAG admits a topological
sorting.

107

4 SUP(T) for Reachability

We will now see how SUP(LA) with constraint induction can be turned into a decision
procedure for reachability in extended timed automata. We fix an extended timed
automaton ETA = (Loc,Act,X, ↪→, L0, g0, Inv) for the rest of this section. We start
with a reachability query in the backward encoding N [

ETA, where we assume that all
clauses have been purified.

Definition 4.99 (CL, Ce)
We adopt the following notation for the clauses in N [

ETA: We write CL for the time-
reachability clause

t≥0, ~x ≥ 0, ~x ′' ~x+t, Inv(L)[~x ′/~x] ‖ R(L, ~x ′, ~z)→ R(L, ~x, ~z)

corresponding to location L ∈ Loc, and Ce for the discrete-step clause

g[~x, ~z], (~x ′, ~z ′)'A(~x, ~z), Inv(L′)[~x ′/~x] ‖ R(L′, ~x ′, ~z ′)→ R(L, ~x, ~z)

corresponding to transition e = (L, g, α,A, L′) ∈ ↪→. �

Derivation Strategy

We apply the following derivation strategy:

(i) all negative literals are selected;

(ii) the only inference rules used are

a) ordered resolution, and

b) constraint induction by loop detection, using the rules from Propositions 4.90
and 4.92 (together with the strengthening explained in Section 4.6.2) for
transitive closure computation;

(iii) forward subsumption deletion is the only reduction rule.20

An immediate consequence of the selection strategy is that ordered resolution can only
derive positive unit clauses (goal clauses) of the form Λ ‖→ R(l, ~x), where l is a location
constant or variable. The constraint induction rule derives only binary clauses, which
we call acceleration clauses . More generally, any derivation following the above strategy
is of the form N [

ETA = N0 . N1 . N2 where

Ni+1 =

{
Ni ∪ {Ci} or

Ni ∪ {Ci, C ′i, . . .}

such that

20Forward subsumption is sufficient for termination. Other reduction rules can be used as well, as
long as they don’t interfere with constraint induction, like non-strict backward subsumption—see
the discussion on page 116.

108

4.6 Constraint Induction

• if Ni+1 = Ni ∪ {Ci}, then Ci is either a goal clause derived by resolution from
another goal clause and a binary clause in Ni, or an acceleration clause derived by
constraint induction from binary clauses in Ni, and

• if Ni∪{Ci, C ′i, . . .}, then Ci, C
′
i, . . . are acceleration clauses21 derived by constraint

induction from binary clauses in Ni, and

• neither of Ci, C
′
i, . . . is subsumed by any clause in Ni.

We use the notation C(1) .C(2) .C(3) to denote a sequence of clauses in a derivation
where each C(j+1) is the conclusion of an inference with main premise C(j).

For positive unit clauses C,C ′, and binary clausesD1, . . . , Dn, we write

C `D1,...,Dn C
′

to denote the fact that C ′ is the result of successively resolving C with D1, . . . , Dn, i.e.,
C ′ = Res(. . .Res(C,D1), . . . , Dn).

Relation between Clauses and Sets of States

We now extend the mapping sT defined in Section 4.4 to unary and binary FOL(LA)
clauses. Here, the theory T is fixed to be TETA, so we omit the subscript from sTETA .
The mapping s is defined as follows:

s(Λ ‖ → R(l, ~x)) = { s(ν,R(l, ~x)) | ν |=LA Λ }
s(Λ ‖R(l′, ~x ′)→ R(l, ~x)) = { (s(ν,R(l′, ~x ′)), s(ν,R(l, ~x))) | ν |=LA Λ }

where l, l′ stand for either location constants or variables.22 Under this mapping, unit
clauses represent sets of states of TS(ETA), while binary clauses represent binary rela-
tions on states, or, equivalently, functions from sets of states to sets of states.

Proposition 4.100
Consider an arbitrary ordered resolution inference

I
C1 = (Λ1 ‖ → R(l′, ~x ′)) C2 = (Λ2 ‖R(l′, ~x ′)→ R(l, ~x))

C3 = (Λ1Λ2 ‖ → R(l, ~x))

between clauses in or derived from N [
ETA, where the unifier has already been applied. It

holds that s(C3) = (s(C2))(s(C1)).

21Constraint induction based on Propositions 4.90, 4.92 produces at most two acceleration clauses.
22Either way, we have ν(l) ∈ Loc, no matter whether l is a variable of “location sort”, or a constant

L ∈ Loc.

109

4 SUP(T) for Reachability

Proof.

s(C3) = {s(ν,R(l, ~x)) | ν |=LA Λ1,Λ2}
= {s(ν,R(l, ~x)) | (s(ν,R(l′, ~x ′)), s(ν,R(l, ~x))) ∈ s(C2), (s(ν,R(l′, ~x ′))) ∈ s(C1)}
= (s(C2))(s(C1)). �

Proposition 4.101
A clause C1 = (Λ1 ‖ → R(l, ~x)) subsumes a clause C2 = (Λ2 ‖ → R(l, ~x)) if and only
if s(C2) ⊆ s(C1); it subsumes a clause C3 = (Λ3 ‖R(l′, ~x ′)→ R(l, ~x)) if and only if
im(s(C3)) ⊆ s(C1).

Proof. Straightforward. �

Definition 4.102
We define

PreL(Q) = {s | s = (L, ν), s′ = (L, ν ′), s
time−→ s′, s′ ∈ Q}

Pree(Q) = {s | s = (L, ν), s′ = (L′, ν ′), s
e→ s′, s′ ∈ Q}

for any L ∈ Loc and e = (L, g, α,A, L′) ∈ ↪→.

For a cycle cyc = e0, . . . , en−1 over L(0), . . . , L(n−1), we define

Precyc = Preen−1 ◦PreL(n−1) ◦ . . . ◦ Pree0 ◦PreL(0)

and Pre≥kcyc =
⋃
i≥k Preicyc . �

It is easy to see that s(CL) = PreL and s(Ce) = Pree.

Cycle Acceleration by Constraint Induction

Consider an acceleratable cycle e0, . . . , en−1 over L(0), . . . , L(n−1) in ETA, with reset
location L = L(0), and suppose that

Λ ‖ → R(L, . . .) `Cen−1 , CL(n−1) , Cen−2 , ..., Ce0 , CL(0)
Λ′ ‖ → R(L, . . .) .

Now constraint induction is potentially applicable. ReplayLoop (Algorithm 4.1) returns
a constraint equivalent to

∃~x1, . . . , ~x2n−1.
∧

1≤m≤n

(
Λen−m [~x2m−2, ~x2m−1] ∧ ΛL(n−m) [~x2m−1, ~x2m]

)
where Λei and ΛL(i) are the constraints of Cei and CL(i) , respectively. It is straightfor-
ward to check that this constraint (after renaming ~x0 to ~x ′ and ~xn to ~x) is equivalent
to

y ≤ b ∧ y′' 0 ∧ ~x ′ ≥ ~x ∧ a ≤ ~x ′ − ~x+ y ≤ b ∧ g[~z] ∧ ~z ′'A(~z) (4.6)

110

4.6 Constraint Induction

where y is the clock of the cycle, ~x are the variables in XC \ {y}, ~z are the variables
in XD, [a, b] is the window of the cycle, and g and A are a linear integer constraint
and an instruction, respectively, corresponding to the composition of integer guards and
instructions on the cycle (see Remark 4.63). Note that each atomic constraint in the
conjunction contains either only clock variables, or only integer variables, and thus the
whole constraint describes a product of relations on clock and integer variables. The
clock part of the constraint is of the form mentioned in Section 4.6.2 and we strengthen
it by y' 0, yielding y' 0 ∧ y′' 0 ∧ a ≤ ~x ′ − ~x ≤ b (which implies ~x ′ ≥ ~x) before
computing the transitive closure. The integer part of the constraint is of the form
required by Proposition 4.92. Hence one or two clauses—depending on g and A—can
be derived by constraint induction. We denote these clauses by C≥1

L and C=1
L , C≥2

L ,
respectively. They have the following form:

C≥1
L : k≥ 1, y' 0, y′' 0, ak≤ ~x ′−~x≤ bk, g(k)[~z], ~z ′'A(k)(~z) ‖ R(L, ~u ′)→R(L, ~u)

C=1
L : y' 0, y′' 0, a≤ ~x ′−~x≤ b, g[~z], ~z ′'A(~z) ‖ R(L, ~u ′)→R(L, ~u)

C≥2
L : k≥ 2, y' 0, y′' 0, ak≤ ~x ′−~x≤ bk, g(k)[~z], ~z ′'A(k)(~z) ‖ R(L, ~u ′)→R(L, ~u)

where ~u are all variables in X.

The purpose of the strengthening by y' 0 is to ensure that the clock part of the con-
straints of acceleration clauses is a parametric clock constraint. The transitive closure
could also be computed directly from (4.6), without strengthening, yielding

k ≥ 1, y ≤ b, y′' 0, ~x ′ ≥ ~x, ak ≤ ~x ′−~x+y ≤ bk, g(k)[~z], ~z ′'A(k)(~z).

This constraint is still linear, but it is not a parametric clock constraint, because of the
occurrence of three clock variables in ak ≤ ~x ′−~x+y ≤ bk.

While the strengthening ensures that only clock constraints are produced, it weakens
the obtained acceleration clauses: For instance, s(C≥1

L) does not return all predecessor
states reachable by any k ≥ 1 backward traversals of the cycle (like Pre≥1

cyc), but only
those satisfying y' 0. This is not a problem however, because the “lost” information
is eventually recovered, when resolution with the clauses Cen−1 , . . . , Ce0 , CL(0) of the
cycle is performed: If

C `
C≥1
L , Cen−1 , ..., CL(0)

C ′

then

s(C ′) = Pre≥2
cyc(s(C)).

Fairness of the derivation ensures that C ′ is eventually derived. The situation is illus-
trated in Figure 4.8.

111

4 SUP(T) for Reachability

t

L(0)

L(1)

..

.
L(n−1)

...

..
.

..
.

..
.

...

..
.

...

k ≥ 1 times

Pre≥1
cyc

s(C≥1
L)Precyc

Pre≥2
cyc

Figure 4.8: Location diagram: Repeated traversal of an acceleratable cycle

Termination of Saturation

We are now ready to show termination of our derivation strategy on N [
ETA. For this we

will rely on the notion of κ-closed parametric clock constraints (Definition 4.71) and on
the following key invariants:

(I1) Any derived goal clause is of the form

φ1[~x,~k], φ2[~z,~k], φ3[~k] ‖ → R(L, ~u)

where ~x ⊆ XC , ~z ⊆ XD, ~k ⊆ K, ~u = ~x∪~z, and φ1 is a parametric clock constraint,
and φ2, φ3 are linear constraints, assuming that any goal clause in N [

ETA has this
form.

(I2) Whenever a unit clause C ′ is derived from another unit clause C, then π(C ′) ≤
π(C).

(I1) is established by a straightforward though tedious induction on the derivation. (I2)
is an immediate consequence of the shape of binary clauses in the backward encod-
ing.

Proposition 4.103
Let Λ = φ1, φ2, φ3 as per Invariant (I1), and let κ be a linear expression over K such
that φ1 and all guards and invariants in ETA are κ-closed. Consider a resolution step

Λ ‖ → R(L, ~u) ` Λ′ ‖ → R(L′, ~u)

by resolution with some Ce or CL. Then Λ′ = φ′1, φ
′, φ′2, φ3 where

• φ′1 ∈ CC(X,LE(K)) is κ-closed, and

• φ′ is a linear constraint over K that is uniquely determined by φ1 and the guards
and invariants in ETA, and

112

4.6 Constraint Induction

• φ′2 is the conjunction of φ2 with zero or more integer guards in ETA.

Proof. Consider the case C = CL. Then

Λ′ = t ≥ 0, ~x ≥ 0, Inv(L)[~x ′/~x], Λ[~x+ t/~x]

= tpre(φ1 ∧ Inv(L)), φ2, φ3

= tpre(φ1 ∧ Inv(L))|X , φ′, φ2, φ3

where φ′ is a linear constraint over K that is uniquely determined23 by φ1 and Inv(L).
By assumption, φ1 and Inv(L) are κ-closed. Hence by Propositions 4.73 and 4.79,
φ′1 = tpre(φ1 ∧ Inv(L))|X is also κ-closed. Now consider C = Ce. In this case,

Λ′ = g[~x, ~z], ~x ′'AD(~x), Inv(L′)[~x ′/~x], Λ[~x ′/~x]

= g|X , g|Z , [D](φ1 ∧ Inv(l′)), φ2, φ3

= g|X , [D](φ1 ∧ Inv(l′))|X , φ′, φ2, g|Z , φ3

where again φ′ is a linear constraint over K uniquely determined by φ1 and Inv(L′).
Observe that g = g|X ∧ g|Z by definition of GuardETA.24 By assumption, g, φ1 and
Inv(L′) are κ-closed.25 Hence by Propositions 4.73 and 4.79, φ′1 = g∧ [D](φ1∧Inv(l′))|X
is also κ-closed. �

Let D(N [
ETA) denote the set of all fair derivations from N [

ETA in SUP(LA) with constraint
induction, following the above derivation strategy.

Lemma 4.104
Consider an acceleratable cycle with reset location L, and let N be a clause set containing
the acceleration clauses for L. Then any D(N [

ETA)-derivation starting in N can produce
only finitely many L-clauses.26

Proof. Assume for contradiction that N 3 D1.D2.. . . is an infinite sequence of L-clauses.
Then s(Di+1) = Precyc(s(Di)). By fairness, some Dj is resolved with the acceleration
clauses, and with the clauses of the cycle, yielding D′j such that s(D′j) = Pre≥2

cyc(s(Dj)).
The clause D′j subsumes all clauses Dj+2, Dj+3, . . ., contradicting the assumption. �

Theorem 4.105
Assume ETA is integer-flat. Then all derivations in D(N [

ETA) are finite.

Proof. Let N [
ETA = N0 .N1 .N2 be a derivation in D(N [

ETA) and assume for contra-
diction that the derivation is infinite. By (I2), the derivation must contain an infinite
sequence of unit clauses

C(1) . C(2) . C(3) (4.7)

23See discussion after Definition 4.74, page 92.
24See page 92 for the definition of g|X .
25Note that g does not refer to the integer variables ~z, since we are in a clock SCC.
26An L-clause is a clause of the form Λ ‖ → R(L, ~x).

113

4 SUP(T) for Reachability

where π(C(i+1)) = π(C(i)) for all i ≥ 1, and no C(i) is subsumed by any C(j) with j < i.
We distinguish two cases, depending on whether the location in C(1) lies on an integer
cycle or a clock SCC:

Assume the location in C(1) lies on an integer cycle with reset location L(0). Then (4.7)
contains an infinite subsequence of L(0)-clauses. By fairness, the acceleration clause for
L(0) is derived in some Ni. But Lemma 4.104 implies that there can be no infinite
sequence of L(0)-clauses starting in Ni, a contradiction.

Now assume C(1) refers to a clock SCC. Then each C(i+1) is derived from C(i) by res-
olution with some Ce or CL. Let φ1, φ2, φ3 be the constraint of clause C(1) as per
Invariant (I1). By Proposition 4.73 (i) and (iii), there exists a linear expression κ over
K such that φ1 and all guards and invariants in ETA are κ-closed: By (iii), each indi-
vidual constraint is κ′-closed for some κ′, and by (i), we can choose κ such that κ′ � κ
for all κ′. By Proposition 4.103, the constraint of C(k), k ≥ 1, is of the form

φ
(k)
1 , φ′, φ′′, . . . , φ(k−1), φ

(k−1)
2 , φ3

where

• φ(k)
1 is κ-closed,

• φ′, φ′′, . . . are linear constraints over K that are uniquely determined by κ-closed
clock constraints, and

• φ(k−1)
2 is the conjunction of φ2 with integer guards in ETA.

As there are only finitely many non-equivalent κ-closed clock constraints, there can be
only finitely many non-equivalent φ(i); as there are only finitely many integer guards in
ETA, there can be only finitely many non-equivalent φ

(k−1)
2 . Hence, there can be only

finitely many non-equivalent C(k), k ≥ 1, contradicting the assumption that (4.7) is
infinite. �

4.6.4 Implementation and Results

We have implemented constraint induction by loop detection together with the transitive
closure computation for LA constraints as an extension to the SPASS(LA) theorem
prover.

The implementation is based on the constraint induction rule presented in [FKW12],
which differs from the rule presented in this section in the fact that the derived accelera-
tion clause also depends on the initial clause of the loop (see Remark 4.87).

The implementation can (and will hopefully soon be) adapted to the improved con-
straint induction rule without changing the general framework, which we describe in
this section.

114

4.6 Constraint Induction

Another minor difference is that the current implementation, due to limitations of the
underlying SPASS(LA) implementation, cannot yet handle arithmetic constants (i.e.,
parameters) occurring in the constraints of a loop, as would be necessary to handle the
Producer-Consumer problem from Example 4.107. We therefore refer to [FKW12] for
the experimental evaluation, and limit ourselves to a general discussion of the exam-
ples.

Implementation

In order to find a partial derivation

Λ ‖C, D1, . . . , Dm ` Λ′ ‖C.

to which constraint induction is potentially applicable, we proceed as follows: Whenever
a new clause C with a non-empty constraint has been derived, the term index is queried
to find all clauses with same free part as C. Then the ancestors of C are checked in
order of decreasing derivation depth to check whether one of the retrieved clauses is
an ancestor of C. This traversal is stopped as soon as one of the potential partner
clauses has been reached— in which case the constraint induction rule is applied—, or
when the minimum of the derivation depths of all potential partner clauses has been
reached.

Algorithm 4.2: ConstraintInduction

Input: clause Given, index WorkedOff

1 Derived := ∅;
2 Candidates := GetVariants(Given, WorkedOff);
3 foreach Candidate in Candidates do
4 if Derivation := GetDerivation(Candidate,Given) then
5 Λ := ReplayLoop(Derivation);
6 if Λ+ := Closure(Λ) then
7 Derived := Derived ∪ Purify(cnf(Λ+ ∧Given→ Given[~x ′/~x]));

8 return Derived ;

Algorithm 4.2 shows the implementation of constraint induction by loop detection. The
procedure GetVariants returns all variants of the Given clause stored in the Worked-
Off index. The procedure GetDerivation checks whether the first clause is an ancestor
of the second one, and if so, returns the corresponding partial derivation. The pro-
cedure Closure computes the transitive closure of an LA constraint as explained in
Section 4.6.2. If the given constraint does not have the required form, Closure returns
false.

115

4 SUP(T) for Reachability

GetDerivation relies on the assumption that all clauses in the partial derivation of Given
from Candidate are still available. This means that redundant clauses cannot in general
be deleted, but must be kept in memory.

Additionally, since the Candidate clauses are taken from the WorkedOff set, non-strict
backward subsumption should be deactivated. Non-strict backward subsumption re-
moves a clause from the WorkedOff set if a newly derived clause subsumes it non-strictly,
implying that the new clause is a variant of the one in WorkedOff. If this subsumption
is applied, potential candidate clauses could be deleted from WorkedOff right after the
derivation of a clause that would later be selected as Given clause for constraint induc-
tion.

Finally, to enable efficient reconstruction of the derivation, each clause now has pointers
to its parent clauses, instead of just its parents’ clause numbers.

All these requirements increase the memory consumption, and could be avoided if clauses
could be (recursively) reconstructed based on information about their origin, as is the
case in the Waldmeister [HJL99] prover, for example. Given the current architecture
of SPASS(LA), implementing such a system would require a significant programming
effort.

Example Problems

The following two examples show how constraint induction can enable termination of
saturation for satisfiable clause sets, thereby proving the unreachability of certain (bad)
states.

Example 4.106 (Extended timed automaton)
Consider the extended timed automaton in Figure 4.9, where ~x = x1, x2 are clocks and
~z = z1, z2 are integer variables, and the initial condition is x1' 0, x2' 0, z1' 0, z2' 10.
We want to check whether location L2 is reachable with a valuation such that z1 ≥ z2

and x2 < 12. Since x2 is never reset to zero, its value represents the total time elapsed
since first entering L1. As the cycle at L1 must be traversed four times before z1 has
overtaken z2, and each cycle traversal takes at least three time units, such a state is not
reachable. The backward encoding of this ETA together with the negated conjecture

L0 L1

x1 ≥ 3

z1 := z1 + 2,
z2 := z2 − 1

x1 := 0

Figure 4.9: An extended timed automaton

(last clause) is

116

4.6 Constraint Induction

~x' 0, z1' 0, z2' 10 ‖ R(L0, ~x, ~z) →
~x ≥ 0, t ≥ 0, ~x ′' ~x+ t ‖ R(L0, ~x

′, ~z)→R(L0, ~x, ~z)

x1 ≥ 3, z1' z1 + 2, z2' z2 − 1 ‖ R(L1, ~x, ~z
′)→R(L0, ~x, ~z)

~x ≥ 0, t ≥ 0, ~x ′' ~x+ t ‖ R(L1, ~x
′, ~z)→R(L1, ~x, ~z)

x′1' 0, x′2'x2 ‖ R(L0, ~x
′, ~z)→R(L1, ~x, ~z)

z1 ≥ z2, x2 < 12 ‖ →R(L1, ~x, ~z)

The clause set is satisfiable. Without the constraint induction rule, saturation does not
terminate. With constraint induction activated, the acceleration clause

k ≥ 1, x1' 0, x′1' 0, x′1 − x1 ≥ 3k, z′1' z1+2k, z′2' z2−k ‖L0(~x ′, ~z ′)→ L0(~x, ~z)

is derived as soon as the cycle has been traversed once, enabling the termination of
saturation. �

Example 4.107 (Parametric Producer-Consumer Problem)
Figure 4.10 depicts a simple model of the producer-consumer problem, consisting of a
producer P and a consumer C sharing a common buffer of capacity cap > 0. Here the
buffer is modelled as a shared integer variable x representing the number of elements
in the buffer, initially zero. The producer can add an element to the buffer if it is not
full, and the consumer can remove an element from the buffer if it is not empty. The

P

x < cap

x := x+ 1

‖ C

x ≥ 1

x := x− 1

Figure 4.10: Producer and Consumer

combined system is encoded by the following three clauses:

x' 0 ‖ →S(x)
x < cap, x′'x+ 1 ‖ S(x)→S(x′)
x ≥ 1, x′'x− 1 ‖ S(x)→S(x′)

where cap is a parameter. The second and third clauses give rise to loops which can be
accelerated by constraint induction, yielding the clauses

n ≥ 1, x+ n− 1 < cap, x′'x+ n ‖ S(x)→S(x′)

and

n ≥ 1, x− n+ 1 ≥ 1, x′'x− n ‖ S(x)→S(x′)

117

4 SUP(T) for Reachability

respectively.27 It can now be checked by finite saturation that the buffer can never
overflow, by adding the conjecture

x' 0, x′ > cap ‖ S(x)→S(x′) .

Similarly, the impossibility of buffer underflow can be checked by adding the conjecture

x' 0, x′ < 0 ‖ S(x)→S(x′) .

Without constraint induction, saturation of these clause sets does not terminate. �

The next example shows that the induction rule is also useful for speeding up proof search
and finding shorter proofs in the case of unsatisfiable clause sets.

Example 4.108 (Water tank controller)
In this example we consider a family of problems parameterized by natural numbers
cmaxin, cout and cthresh.

28 Figure 4.11 depicts a water tank controller [AKW09] monitoring
the water level x in a water tank. There is a non-controllable inflow from the outside of
the system that adds at most cmaxin units per cycle to the water tank, and a controllable
outflow valve that can reduce the content of the tank by cout units per cycle. The
controller is meant to keep the level of the water tank below cthresh+cmaxin units, provided
the initial level is at most cthresh + cmaxin. The problem instance in [AKW09] has fixed
values cthresh = 200, cmaxin = 40 and cout = 40.

S0

S1

S2

x ≥ cthresh

x < cthresh

0 ≤ z ≤ cmaxin, x := x+ z − cout

0 ≤ z ≤ cmaxin, x := x+ z

Figure 4.11: Water tank controller

The system is modelled by the following clauses:

x' 0 ‖ →S0(x)
x ≥ cthresh ‖ S0(x)→S1(x)
x < cthresh ‖ S0(x)→S2(x)

−cout ≤ x′ − x ≤ cmaxin − cout ‖ S1(x)→S0(x′)
0 ≤ x′ − x ≤ cmaxin ‖ S2(x)→S0(x′) .

27The acceleration clauses are computed based on Proposition 4.92, so no assumption on cap is needed.
28cmaxin, cout and cthresh are natural numbers, not parameters.

118

4.6 Constraint Induction

Consider the negated conjecture

x' cthresh ‖S0(x)→

which, when added to the above clauses, yields an unsatisfiable clause set, since the
water level cthresh is indeed reachable. The number of clauses derived to establish un-
satisfiability, and thus also the length of the reachability proof, directly depends on the
ratio of cthresh and cmaxin, since without constraint induction, the shortest possible proof
consists of cthresh/cmaxin traversals of the cycle S0 → S2 → S0.

This loop is represented by the third and fifth clauses, and it can be accelerated by
constraint induction, yielding the clause

k ≥ 1, x < cthresh, x
′ ≤ cthresh + cmaxin, 0 ≤ x′ − x ≤ cmaxink ‖ S0(x)→S0(x′)

Resolving this clause with the first clause and the conjecture yields the empty clause

k ≥ 1, 0 < cthresh, 0 ≤ cmaxin, 0 ≤ cthresh ≤ cmaxink ‖ � .

The constraint is satisfiable, thus we have a proof of constant length, independently of
the constants cthresh and cmaxin. �

119

4 SUP(T) for Reachability

4.7 First-Order Probabilistic Timed Automata

In the preceding parts of this chapter, we have seen how superposition modulo linear
arithmetic can be used as a (decision) procedure for reachability in timed systems, by
encoding the system’s transition relation into FOL(LA).

For the (extended) timed automata we have considered until now, a relatively restricted
fragment of FOL(LA) was sufficient. But the SUP(LA) calculus is complete for much
more expressive fragments of FOL(LA), namely any class of sufficiently complete clause
sets. It is therefore a natural question to ask to what extent the reachability-by-
saturation approach developed so far can be applied to modelling formalisms richer
than (extended) timed automata.

In this section, we give one answer to this question, by developing the model of first-order
probabilistic timed automata, or FPTA, which generalize probabilistic timed automata
(PTA) [Jen96, KNSS02], themselves a combination of probabilistic and timed automata,
by first-order background theories (Section 4.7.2).

Extending the reachability-by-saturation approach to FPTA poses two new challenges:
On the one hand, the resulting reachability theories are no longer trivial enrichments of
LA, but in addition have to accommodate the automaton’s first-order background theory.
We will make use of the results established in Section 4.3.5 to address this challenge, by
placing suitable restrictions on FPTA background theories.

On the other hand, probabilistic systems give rise to the notion of quantitative reacha-
bility properties. While qualitative reachability—which we have dealt with until now—
concerns the question whether a set of states is reachable or not, quantitative reacha-
bility asks about the probability of reaching certain states. In order to compute reach-
ability probabilities, it is no longer sufficient to consider a single path from an initial
state to a goal state—corresponding to a reachability proof in our setting—but sev-
eral (and for completeness even all) such paths need to be enumerated. We will use
a clause labelling scheme similar to the one of Chapter 3 to enumerate reachability
proofs.

For the final step from reachability proofs to reachability probabilities, we will rely on
existing model checking techniques for PTA, by “instantiating” the FPTA with the
reachability proofs in order to obtain a finite PTA. Since probabilistic timed systems
exhibit a combination of probabilistic and non-deterministic behavior, one distinguishes
between maximum and minimum reachability probabilities, reflecting the possible ways
in which non-determinism can be resolved. The original FPTA and the constructed
PTA will agree on maximal reachability probabilities, enabling the verification of safety
properties of the FPTA (see Section 4.7.3).

To illustrate the idea of instantiating an automaton using constraints, consider Fig-
ure 4.12, showing part of an FPTA (left) with a clock variable x and an integer variable
y. The guard P (y, z) is a first-order atom and contains an auxiliary variable z used for

120

4.7 First-Order Probabilistic Timed Automata

binding. Assuming that z ≤ 2 → P (z, 1) and z > 2 → P (z, 2) hold in the background
theory, the instantiation yields a PTA, the corresponding part of which is shown on the
right.

. . . L1 L2

x ≤ y

. . .
P (y, z)

y := z
x := 0

. . . L1 L2

x ≤ y

. . .

y ≤ 2

y := 1
x := 0

y > 2

y := 2
x := 0

Figure 4.12: Instantiating an FPTA (left) into a PTA (right)

State variables do not have to be of arithmetic sort, but can have arbitrary sorts, al-
lowing, e.g., the representation of messages as terms. A more involved example will be
presented in Section 4.7.7.

4.7.1 Preliminaries

Definition 4.109 (Discrete Probability Distributions)
A discrete probability distribution over a countable set Q is a function µ : Q→ [0, 1] such
that

∑
q∈Q µ(q) = 1. We denote the set of discrete probability distributions over Q by

Dist(Q). The support of a distribution µ ∈ Dist(Q), written as supp(µ), is the largest
set Q′ ⊆ Q such that µ(q) > 0 for all q ∈ Q′. We call µ finite if supp(µ) is finite. The
point distribution for q ∈ Q, written as ~(q), is the distribution with supp(~(q)) = {q}.

�

Definition 4.110 (Markov Decision Processes)
A Markov decision process (MDP) is a tuple M = (S,Act,�, s0) consisting of a set
S of states, a set Act of actions, a nondeterministic-probabilistic transition relation
�⊆ S×Act×Dist(S), and an initial state29 s0 ∈ S. We always require M to be action-
deterministic: For every s ∈ S and α ∈ Act, there is at most one µ with (s, α, µ) ∈�. �

We write s
α� s′ to mean that (s, α, µ) ∈� for some (unique) µ with µ(s′) > 0. Because

of action-determinism, we can also view the transition relation of an MDP as a transition
probability function P : S × Act× S → [0, 1] defined as

P(s, α, s′) =

{
µ(s′) if (s, α, µ) ∈� ,

0 otherwise.

29 MDP are often defined with an initial distribution µ0 ∈ Dist(S). Requiring a single initial state
does not restrict expressivity, as the initial distribution can always be achieved by a corresponding
transition from the initial state.

121

4 SUP(T) for Reachability

For technical reasons, we also introduce MDP with update labels:

Definition 4.111 (Markov Decision Process with Update Labels)
An Markov decision process with update labels is a tuple M = (S,Act, U,�, s0) where
S and Act are sets of states and actions, respectively, U is a set of update labels , and
�⊆ S × Act × Dist(U × S), and s0 ∈ S is the initial state. As for standard MDP, we
always require M to be action-deterministic: For every s ∈ S and α ∈ Act, there is at
most one µ with (s, α, µ) ∈�. �

We write s
α,u
� s′ to mean that (s, α, µ) ∈� for some (unique) µ with with µ(u, s′) > 0.

The transition probability function P : S × Act × S → [0, 1] for an MDP with update
labels is defined as

P(s, α, s′) =

{∑
u∈U µ(u, s′) if (s, α, µ) ∈� ,

0 otherwise.

An MDP with update labels is straightforwardly transformed into a standard MDP by
dropping the update labels and replacing every µ ∈ Dist(U × S) by µ′ with µ′(s) =∑

u∈U µ(u, s). When talking about reachability probabilities in an MDP with update la-
bels, we always mean the respective probabilities in the associated standard MDP.

To simplify notation, we omit the update label from a point distribution, i.e., we identify

(s, α,~((u, s′))) ∈� with (s, α,~(s′)) and write s
α� s′ instead of s

α,u
� s′.

Definition 4.112 (Underlying Transition System of an MDP)
Let M = (S,Act,�, s0) be an MDP. The underlying transition system of M is TS(M) =

(S,Act,→, s0) where s
α→ s′ if and only if s

α� s′. If M = (S,Act, U,�, s0) is an MDP
with update labels, then its underlying transition system is TS(M) = (S,Act′,→, s0)

with Act′ = Act × U and s
α,u→ s′ if and only if s

α,u
� s′. A (finite or infinite) path in an

MDP is a path in its underlying transition system. �

When M is an MDP (with or without update labels), we write PreM and PostM for
PreTS(M) and PostTS(M), respectively.

Reachability Probabilities in MDP Markov decision processes extend Markov chains
with nondeterministic choice. Computation in an MDP in state s takes place by first
nondeterministically selecting an action α ∈ Act such that (s, α, µ) ∈� and then choos-
ing a destination state s′ with probability µ(s′) > 0. Different nondeterministic choices
thus induce different reachability probabilities. This is captured by the notion of sched-
uler (or adversary, or strategy), a function which takes as input a finite path from s0 to
s, and outputs an action α ∈ Act with (s, α, µ) ∈�. Given an MDP M , a scheduler S
induces a Markov chain MS whose states are finite paths of M . A probability measure
PrS can then be defined for MS in a standard way, see [BK08] for details. The maximum

122

4.7 First-Order Probabilistic Timed Automata

and minimum reachability probability in M for a set of target states B ⊆ S, starting
from s ∈ S, are then respectively defined as

Prmax(s |= ♦B) = sup
S

PrS(s |= ♦B)

and

Prmin(s |= ♦B) = inf
S

PrS(s |= ♦B)

where S ranges over all possible schedulers. Fortunately, minimal and maximal reach-
ability probabilities are already attained by memoryless schedulers, whose decision on
what action to take next only depends on the current state, and not on the path leading
to it. This allows minimal and maximal probabilities to be characterized as the unique
solutions of a suitable equation system. In particular, the maximal reachability proba-
bility Prmax(s |= ♦B) is given by the unique solution (xs)s∈S to the following equation
system30 [BK08]:

(i) If s ∈ B, then xs = 1.

(ii) If Post∗(s) ∩B = ∅, then xs = 0.

(iii) If s 6∈ B and Post∗(s) ∩B 6= ∅, then

xs = max
{∑

t∈S
P(s, α, t) · xt | α ∈ Act

}
.

Probabilistic Timed Automata Probabilistic timed automata (PTA) [Jen96, KNSS02]
combine discrete probabilistic choice, real time and nondeterminism. They arise as the
natural orthogonal combination of probabilistic [Seg02] and timed automata. They can
also be thought of as extending Markov decision processes with the ability of resetting
and testing the value of clocks [Spr04].

Here we assume that PTA can have discrete-valued variables with finite domains in
addition to clock variables, and that the language of transition guards is extended ac-
cordingly. Such PTA are sometimes called VPTA [HH09]. This generalization facilitates
modelling, but does not increase expressivity, as any VPTA can be transformed into a
standard PTA by encoding the values of the extra variables in the locations and sub-
stituting their values in all expressions where they occur. We therefore refer to VPTA
simply as PTA. We also assume that, as we did for (E)TA, each state variable in X has
an associated sort declaration x : S, where S is an arithmetic sort (R or N), or some
finite set of values. For simplicity, we assume that the domains of discrete variables
consist of integers. We abuse the notation Val to denote the set of assignments mapping
each variable to a value of the appropriate sort.

30 We don’t need the notion of enabled actions [BK08] because by definition,
∑
t∈S P(s, α, t) ∈ {0, 1}

for all α ∈ Act.

123

4 SUP(T) for Reachability

Definition 4.113 (PTA Guards and Instructions)
Let X be a set of variables with subsets XC , XD of real-valued variables and integer-
valued variables, respectively.

The GuardPTA(X) set of PTA-guards over X consists of conjunctions of clock constraints
over XC and Boolean combinations of atomic constraints over XD, of the form t1 ◦ t2,
where t1, t2 are LA terms over XD and ◦ ∈ {<,≤, ' ,≥, >}.

The set InstrPTA(X) ⊆ InstrLA(X) of PTA-instructions contains all instructions which
map variables in XD to LA terms over XD. �

Definition 4.114 (Probabilistic Timed Automata)
A probabilistic timed automaton (PTA) is a tuple (Loc,Act,X, ↪→, L0, ν0, Inv) where Loc
is a finite set of locations with initial location L0 ∈ Loc, Act is a finite set of actions,
X = XC]XD is a finite set of clocks and discrete variables, respectively,

↪→ ⊆ Loc×GuardPTA(X)× Act× Dist(InstrPTA(X)× Loc)

is the probabilistic edge relation, ν0 ∈ Val(X) is the initial valuation with ν0(x) = 0 for
all x ∈ XC , and

Inv : Loc→ CC(XC , XD)

is a function assigning invariants to locations. �

The semantics of a PTA is defined in terms of a Markov decision process:

Definition 4.115 (Semantics of Probabilistic Timed Automata)
Let PTA = (Loc,Act,X, ↪→, L0, ν0, Inv) be a PTA. The semantics of PTA is the Markov
decision process MDP(PTA) = (S,Act′,�, s0) with S = Loc×Val(X), Act′ = Act∪R≥0,
and � ⊆ S × Act′ × Dist(S) being the smallest relation such that

(i) (s, δ, ~(s′)) ∈� if s = (L, ν), s′ = (L, ν ′), δ ∈ R≥0 and ν ′(x) = ν(x)+δ for x ∈ XC

and ν ′(x) = ν(x) otherwise, and ν ′ |= Inv(L);

(ii) (s, α, µ̇) ∈� if s = (L, ν) and there is (L, g, α, µ) ∈↪→ such that ν |= g and
A(ν) |= Inv(L′) for all (A,L′) ∈ supp(µ), and µ̇ is defined by

µ̇(L′, ν ′) =
∑

A: ν′=A(ν)

µ(A,L′) . �

The summation in the definition of discrete transitions (ii) is needed for the case where
multiple assignments may result in the same target state (L′, ν ′).

124

4.7 First-Order Probabilistic Timed Automata

4.7.2 First-Order Probabilistic Timed Automata

We will now extend PTA with a first-order background theory T , first-order state vari-
ables and first-order transition guards, resulting in first-order probabilistic timed au-
tomata (FPTA). In order to keep FPTA amenable to analysis (which will be presented
in Section 4.7.3), we make the following assumptions about the background theory
T :

(i) T is Horn modulo LA (see Definition 4.29) and hence has a unique minimal Her-
brand model IT ;

(ii) T is a non-equational extension of LA, hence any distinct non-base ground terms
are different under T , and thus there is a bijection between ground substitutions
and assignments.

We call any theory satisfying these assumptions an FPTA background theory .

Condition (ii) is required for the construction of a max-reachability equivalent PTA,
which will be defined in Section 4.7.3. The reason is that, while guards in FPTA are
evaluated with respect to the theory T , the guards in a PTA are evaluated with respect
to LA only. In particular, distinct non-base ground terms occurring in a PTA are
treated as distinct constants (from some finite variable domain). Since we cannot in
general assume that ground terms in SUP(LA) derivations are minimal (with respect
to some reduction ordering), condition (ii) makes sure that distinct non-base ground
terms are indeed different under T . This will become more clear when we define the
PTA PE in Definition 4.131. The restriction can be dropped if one is only interested in
qualitative reachability, because then a single reachability proof (or a finite saturation
of the reachability theory without an empty clause) is already conclusive, and no PTA
needs to be constructed.

Definition 4.116 (T -guards, T -instructions)
A T -guard over X ⊆ X is formed according to the grammar

g ::= cc
∣∣ l ∣∣ g ∧ g

where cc ∈ CC(XC , XD) and l is a ΣT -literal over X , which may be negative only
if T has a unique Herbrand model.31 The set of all T -guards over X is denoted by
GuardT (X).

A T -instruction over X ⊆ X is a substitution A : X → TΣT (X) such that A(x) ∈ {0, x}
if x ∈ XC . The set of all T -instructions over X is denoted by InstrT (X). Given
A ∈ InstrT (X), we define the auxiliary variables and the argument variables of A as

auxvar(A) = var(cdom(A)) \X
argvar(A) = (var(cdom(A)) \ cdom(A)) ∩X

31See Definition 4.32.

125

4 SUP(T) for Reachability

respectively.

A T -instruction A is closed with respect to a T -guard g if auxvar(A) ⊆ var(g). �

The intuition behind auxiliary and argument variables is that auxiliary variables are all
variables that occur on the right-hand side of an assignment but are not state variables,
while argument variables are states variables that occur below a function symbol on the
right-hand side of an assignment.

Definition 4.117 (First-Order Probabilistic Timed Automata)
A first-order probabilistic timed automaton (FPTA) is a tuple (T , Loc, Act,X, ↪→, L0, g0,
Inv) where T is an FPTA background theory, Loc is a finite set of locations, with initial
location L0 ∈ Loc, Act is a finite set of actions, X = XC] XD is a finite set of clocks
and discrete variables, respectively,

↪→ ⊆ Loc×GuardT (X)× Act× Dist(InstrT (X)× Loc)

is the probabilistic edge relation, g0 ∈ GuardT (X) is the initial condition, and

Inv : Loc→ CC(XC , XD)

is a function assigning invariants to locations. We additionally require that

(i) g0 is a conjunction of equations,32one for each x ∈ X, and in particular contains
x' 0 for each x ∈ XC , and

(ii) for every (L, g, α, µ) ∈↪→ and all A,L′ with µ(A,L′) > 0, A is closed with respect
to g.

The sets of auxiliary and argument variables for p = (L, g, α, µ) ∈↪→ are defined as

auxvar(p) =
⋃

(A,L′)∈supp(µ)

auxvar(A)

argvar(p) =
⋃

(A,L′)∈supp(µ)

argvar(A) .

respectively.

An FPTA is action-deterministic if, for every L ∈ Loc and α ∈ Act, there is at most
one (L, g, α, µ) ∈↪→. �

For convenience, we write

• L g:α,µ,A
↪→ L′ if (L, g, α, µ) ∈↪→ with µ(A,L′) > 0,

• L g:α,µ
↪→ L′ if L

g:α,µ,A
↪→ L′ for some A,

32So g0 describes a unique assignment.

126

4.7 First-Order Probabilistic Timed Automata

• L g:α,A
↪→ L′ if L

g:α,µ,A
↪→ L′ for some µ,

• L α,A
↪→ L′ if L

g:α,µ,A
↪→ L′ for some g and µ.

An FPTA is well-formed , if every enabled edge can be taken without violating the in-
variant of any target location. Just as PTA, any FPTA can be transformed into a
well-formed one by strengthening the guard on every probabilistic edge with a condi-
tion ensuring that the invariants of all target locations will be satisfied after taking
the corresponding transition, see [KNSW07]. Since this transformation has no effect
on the semantics of the automaton, we assume all FPTA to be well-formed from now
on.

Parallel Composition for FPTA

To facilitate higher-level modelling of complex systems, it is often useful to describe them
as the parallel composition of several independently specified but interacting compo-
nents. To this end, we provide a parallel composition operator on FPTA via synchroniza-
tion on shared actions. The parallel composition operator is based on the parallel com-
position operator for PTA [KNPS06], but with the added possibility for the components
to exchange messages. Message exchange is implemented by giving component automata
the possibility to read other components’ state variables (in a way similar to, e.g., the
language of the PRISM model checker [KNP11]). To make this possible, we allow com-
ponent FPTA inside a parallel composition to violate condition (ii) of Definition 4.117,
i.e., the codomain of an assignment may refer to variables that do not occur in the guard,
as long as these variables are state variables of other component automata. The final
product automaton, on the other hand, must satisfy the condition, as the semantics of
FPTA is only defined when all assignments are closed.

For simplicity, we assume all components in a parallel composition to have the same
background theory. Several background theories can be combined into a single one,
following the approach from Section 4.3.5.

Definition 4.118 (Parallel Composition of FPTA)
Let Pi = (T , Loci, Acti, Xi, ↪→i, L0,i, g0,i, Invi), i ∈ {1, 2} be two FPTA with X1∩X2 = ∅.
The parallel composition of P1 and P2 is defined as

P1 ‖P2 = (T , Loc1 × Loc2, Act1 ∪ Act2, X1 ∪X2, ↪→, (L0,1, L0,2), (g0,1 ∧ g0,2), Inv)

where for all (L1, L2) ∈ Loc1 × Loc2 we have

Inv(L1, L2) = Inv1(L1) ∧ Inv2(L2)

and ((L1, L2), g, α, µ) ∈↪→ if and only if

(i) α ∈ Act1 \ Act2 and (L1, g, α, µ1) ∈↪→1 and µ = µ1 ⊗~(∅, L2), or

127

4 SUP(T) for Reachability

(ii) α ∈ Act2 \ Act1 and (L2, g, α, µ2) ∈↪→2 and µ = ~(∅, L1)⊗ µ2, or

(iii) α ∈ Act2∩Act1 and (Li, gi, α, µi) ∈↪→i for i ∈ {1, 2} and g = g1∧g2 and µ = µ1⊗µ2

where ⊗ is the product operation on probability distributions, in this case

(µ1 ⊗ µ2)(A1 ∪ A2, (L1, L2)) = µ1(A1, L1) · µ2(A2, L2) . �

It would also be possible to add message passing over channels to FPTA, like for channel
systems [BK08], but we leave this as future work.

Semantics of FPTA

The extra variables in FPTA guards, which are not state variables (like the variable z
in the introductory example at the beginning of Section 4.7), produce additional non-
determinism at the semantic level, because the background theory can “choose” to in-
stantiate them in different ways. As we will define the semantics of FPTA in terms of
MDP—which we require to be action-deterministic (see Definition 4.110)—the set of ac-
tions has to be extended when mapping an FPTA to its corresponding MDP. For this rea-
son we introduce the setActT of actions indexed by T -assignments:

Definition 4.119 (ActT)
Given a set Act of actions and a theory T , we define the set

ActT = {αν | α ∈ Act, ν ∈ ValT (Y), Y ⊆ X}

of actions indexed by T -assignments. �

The semantics of an FPTA is defined in terms of a Markov decision process with update
labels—as opposed to PTA semantics (Definition 4.115), where we did not require update
labels:

Definition 4.120 (Semantics of First-Order Probabilistic Timed Automata)
Let P = (T , Loc, Act,X, ↪→, L0, g0, Inv) be an FPTA. The semantics of P is the MDP
MDP(P) = (S,Act′, U,�, s0) with S = Loc× ValT (X), s0 = (L0, ν0) with ν0 being the
unique valuation satisfying g0, Act′ = ActT ∪ R≥0, update labels U = InstrT (X), and
� ⊆ S × Act′ × Dist(U × S) being the smallest relation such that

(i) (s, δ, ~(s′)) ∈� if s = (L, ν), s′ = (L, ν ′), δ ∈ R≥0 and ν ′(x) = ν(x)+δ for x ∈ XC

and ν ′(x) = ν(x) otherwise, and IT , ν ′ |= Inv(L);

(ii) (s, ανaux , µνaux) ∈� if s = (L, ν) and there is p = (L, g, α, ν) ∈↪→ and νaux ∈
ValT (auxvar(p)), ν ′′ ∈ ValT (var(g) \ (X ∪ auxvar(p))) such that ν ∪ νaux ∪ ν ′′ ∈
SolT (g), and for all (A,L′) ∈ supp(µ) it holds that ν ′ |=T Inv(L′) and
µνaux(A, (L′, ν ′)) = µ(A,L′) for ν ′ = A(ν ∪ νaux ∪ ν ′′)|X . �

128

4.7 First-Order Probabilistic Timed Automata

The update labels in MDP(P) prevent the collapsing of assignments which result in the
same target state (L′, ν ′). This ensures that MDP(P) is isomorphic to the transition sys-
tem of the reachability theory of P , as shown in Proposition 4.125.

L0 L1µ
g : α

A1

A2
s0

s′0
...

s1

s2

s3
...

µν1

µν2

δ

αν1

αν2

...

A1

A2

A1

A2

s0

s′0
...

s1

s2

s3
...

e1(~t1)

e2(~t2)

e1(~t3)

e2(~t4)
...

Figure 4.13: Illustration of an FPTA P , MDP(P) and TS(NP)

4.7.3 Labelled Superposition for Max Reachability

We now present a saturation-based approach to enumerate reachability proofs in FPTA,
and to instantiate the FPTA using these proofs to obtain a PTA that can be model-
checked.

The first step will be to generalize the notion of reachability theory (Definition 4.32) to
labelled reachability theories (Definition 4.121), which consist of labelled clauses. The
labels act as identifiers for transitions. We then give an encoding of FPTA into a labelled
reachability theory (Definition 4.124).

The second step is to extend the SUP(LA) calculus to handle the clause labels, in such
a way that saturation leads to the enumeration of all the paths needed for the instan-
tiation of a max-reachability equivalent PTA. We call this property path completeness
(see Proposition 4.138). The extension of SUP(LA) is similar to the splitting calculus
of Chapter 3. However, reduction rules like subsumption deletion and tautology deletion
have to be restricted in order to preserve path completeness.

The final step consists in constructing a PTA from the initial FPTA and the col-
lected reachability proofs, in such a way that maximal reachability probabilities are
preserved.

129

4 SUP(T) for Reachability

The method can thus be used to validate safety properties of the FPTA: Showing that
Prmax(s |= ♦B) ≤ ε establishes that PrS(s |= �¬B) ≥ 1− ε for any scheduler S, where
B stands for a set of bad states.

Of course, the labels can be omitted, and the procedure then becomes the classical
(qualitative) reachability procedure.

Labelled Reachability Theories

For this section, we assume the same setting as in Section 4.4, namely a theory T with
a unique minimal Herbrand model. We again assume a signature ΣR containing a single
reachability predicate symbol R, and additionally an edge sort SE and function symbols
called edge identifiers , ranging into SE. An edge term is a term of the form fe(t1, . . . , tn)
where fe ∈ ΣE and the ti are ΣT -terms.

Definition 4.121 (Labelled Reachability Theories)
Let T be a theory with a unique minimal Herbrand model. A set of labelled clauses
N is a labelled (T -)reachability theory if the corresponding set of unlabelled clauses is
a T -reachability theory, and every initial clause has label ∅ and every transition clause
has either label ∅, or a label of the form {e}, where e is an edge term, such that all
variables of e are contained in the remainder of the clause. �

Example 4.122
The following clauses constitute a labelled reachability theory for the automaton from
Example 4.50 (page 82):

∅: → A(0)

{e1(x)}: A(x) → A(x+ 1)

{e2(x)}: A(x), x ≥ 5 → B(x)

{e3(x)}: B(x) → B(x− 1) . �

Definition 4.123 (Transition System of a Labelled Reachability Theory)
Given a labelled T -reachability theory N , the transition system associated with N is
defined as TS(N) = (ST , Act,→, S0) with

Act = { IT (ν)(e) | e is an edge term } ∪ {τ},
→ = { (sT (ν,A), lab(`), sT (ν,B)) | ` : A, l1, . . . , ln → B ∈ N and

IT , ν |= {l1, . . . , ln} },
S0 = { sT (ν,A) | ∅ : l1, . . . , ln → A ∈ N and IT , ν |= {l1, . . . , ln} }.

where τ is a special silent action, distinct from all other symbols, and lab(∅) = τ and
lab({e}) = IT (ν)(e). �

130

4.7 First-Order Probabilistic Timed Automata

We are now ready to define the labelled reachability theory of an FPTA. The idea is the
same as for (E)TA, with the exception that each discrete-step clause now has a label
referring to the edge it encodes:

Definition 4.124 (Reachability Theories for First-Order Probabilistic Timed Au-
tomata)
Let P = (T , Loc, Act,X, ↪→, L0, g0, Inv) be an FPTA. Let TP be the extension of T with
a new sort SLoc and constant symbols {L|L ∈ Loc} of sort SLoc. The edge identifiers in

ΣE are all tuples (L, α,A, L′) such that L
α,A
↪→ L′. The reachability theory for P , denoted

by NP , is the labelled TP -reachability theory consisting of the following clauses:

∅ : g0[~x~z] → R(L0, ~x~z)

∅ : R(L, ~x~z), t≥0, ~x ′' ~x+t, Inv(L)[~x ′/~x] → R(L, ~x ′~z) for all L ∈ Loc
{e(~x~y~z)} : R(L, ~x~y), g, (~x ′~y ′)'A(~x~y), Inv(L′)[~x ′~y ′/~x~y] → R(L′, ~x ′~y ′)

for all L
g:α,µ,A
↪→ L′, with e = (L, α,A, L′)

where ~x, ~y are the variables in XC , XD, and ~x ′, ~y ′ are the corresponding variables in
X ′C , X

′
D, respectively, and ~z = auxvar(L, g, α, µ). �

Proposition 4.125
TS(NP) is isomorphic to TS(MDP(P)).

Proof. The proof is similar to the proof of adequacy of the TA encoding (Prop. 4.58).
First observe that TS(MDP(P)) and TS(NP) have same set of states. Then we show
isomorphism between transitions: Let→ be the transition relation of TS(MDP(P)) and
→N be the transition relation of TS(N). For the time steps, observe that (s, δ, s′) ∈→
if and only if (s, δ,~(s′)) ∈�, which by Definitions 4.120, 4.124 and 4.123 is equiv-
alent to (s, τ, s′) ∈→N . For the discrete steps, observe that (s, αν , s

′) ∈→ if and
only if (s, αν , µν) ∈�, which again Definitions 4.120, 4.124 and 4.123 is equivalent
to (s, e, s′) ∈→N . �

Extending SUP(LA) to Labelled Clauses

In order for SUP(LA) to deal with the clause labels, we extend the rules of the calculus
accordingly, in a way similar to the splitting calculus of Chapter 3: Given any SUP(LA)
inference

I
Λ1 ‖Γ1 → ∆1 . . . Λn ‖Γn → ∆n

(Λ ‖Γ→ ∆)σ

with most general simple unifier σ, the corresponding labelled inference is

I
`1 : Λ1 ‖Γ1 → ∆1 . . . `n : Λn ‖Γn → ∆n

(`1 ∪ . . . ∪ `n : Λ ‖Γ→ ∆)σ
.

131

4 SUP(T) for Reachability

We call the resulting calculus LSUP(LA).

At the beginning of Section 4.3.4, we noted that real quantifier elimination was implicitly
used in SUP(LA) to ensure that only those real-valued variables which occur in the free
part of an abstracted FOL(LA) clause remain in the constraint. In LSUP(LA), we
assume that only those variables are eliminated which occur neither in the free part nor
in the clause label.

It is straightforward to generalize the hierarchic lifting lemma [Kru13] from SUP(LA)
to LSUP(LA):

Lemma 4.126 (Lifting Lemma for LSUP(LA))
Let `1 : C1, . . . , `n : Cn be two variable-disjoint clauses, and let θ be a simple substitution
such that

I
C1θ . . . Cnθ

C ′

is a non-redundant ground SUP(LA) inference. Then

I
(`1 : C1)θ . . . (`n : Cn)θ

(`1 ∪ . . . ∪ `n)θ : C ′

is a corresponding ground LSUP(LA) inference, and there is a corresponding non-
redundant LSUP(LA) inference

I
`1 : C1 . . . `n : Cn

`′′ : C ′′

and a simple ground substitution τ such that (`′′ : C ′′)τ = (`1 ∪ . . . ∪ `n)θ : C ′.

Proof. The proof proceeds exactly as in [Kru13] with the labels being carried along and
substitutions applied to them, as the labels play no role in the applicability of inference
rules. �

4.7.4 Reduction Rules for LSUP(LA)

Reduction rules like subsumption deletion remove redundant clauses from the search
space, and are an important ingredient in superposition-based theorem proving.

In the context of reachability proof enumeration with LSUP(LA), however, standard
subsumption deletion can cause incompleteness, in the sense that some paths from
the initial to a goal state will be missed, when it is applied to clauses containing
state atoms. The same holds for tautology deletion. Figure 4.14 illustrates the prob-
lem.

On the left-hand side, the clause `, {e3, e4} : A→ subsumes {e1} : A→ B but deleting
the latter can mean that no path using edge e1 is derived.

132

4.7 First-Order Probabilistic Timed Automata

. . . A

B

C

D . . .

e1

e2

e3

e4

...
ℓ: D →

{e4}: C → D
{e3}: A → C
{e1}: A → B

ℓ, {e3, e4}: A →

. . . A B C . . .e1

e2

e3

...
{e1}: A → B
{e2}: B → B
{e3}: B → C

{e1, e3}: A → C
{e1, e2, e3}: A → C

Figure 4.14: Incompleteness caused by subsumption and tautology deletion

On the right-hand side, there are two problems: Clause {e2} : B → B is a tautology
(logically), but deleting it can mean that no path using edge e2 is derived. Secondly,
{e1, e3} : A→ C subsumes {e1, e2, e3} : A→ C, but deleting the latter means losing all
paths which contain the edges e1, e2, e3.

Let’s first consider subsumption deletion. The first problem suggests that a ground
clause should only subsume another ground clause if both clauses have the same state
literals, i.e., the literals built from state atoms. For the theory literals, the standard sub-
set notion of subsumption can be used. On the non-ground level, a clause C1 should sub-
sume another clause C2 if all (simple) ground instances of C1 subsume all (simple) ground
instances of C2. Putting things together, we get the subsumption deletion rule shown in
Figure 4.15, where State(C) denote the state literals of a clause C, and Theory(C) denote
the theory literals, i.e., all literals that are not state literals.

Conditions (ii) and (iii) of subsumption deletion are the standard conditions for SUP(LA)
subsumption deletion. The other conditions ensure the lifting of the requirements dis-
cussed above.

The tautology deletion rule is identical to the corresponding SUP(LA) rule, except
that state literals are not considered when determining whether the clause is a tau-
tology.

4.7.5 Instantiating the FPTA

For the rest of this section, we fix an arbitrary action-deterministic FPTA

P = (T , Loc, Act,X, ↪→, L0, g0, Inv) .

133

4 SUP(T) for Reachability

Subsumption Deletion:

R
`1 : Λ1 ‖C1 `2 : Λ2 ‖C2

`1 : Λ1 ‖C1

where σ is a simple matcher such that

(i) `2 ⊆ `1σ, and

(ii) |=LA ∀~x.∃~y.(Λ2 → Λ1σ), where ~x are all base variables in `2 : Λ2 ‖C2, and
~y = var(Λ1σ) \ ~x

(iii) State(C1σ) = State(C2), and

(iv) Theory(C1σ) ⊆ Theory(C2).

Tautology Deletion:

R
` : Λ ‖C

where |=T Theory(C) or ∃~x.Λ |=LA ⊥, for ~x = var(Λ).

Figure 4.15: Subsumption deletion and tautology deletion for LSUP(LA)

We identify each labelled, constrained empty clause ` : Λ ‖� with the pair (`,Λ),
and each set E of empty clauses with the set

⋃
(`,Λ)∈E

⋃
e∈`{(e,Λ)}. For a set E of

empty clauses, we write EL,α,A,L′ for {(e(~t),Λ) ∈ E | e = (L, α,A, L′)} and EL,α for⋃
A,L′ EL,α,A,L′ .

Definition 4.127 (Edge Constraints)
Let p = (L, g, α, µ) ∈↪→ such that µ(A,L′) > 0, and let ~u = u1, . . . , um = X ∪auxvar(p).
Let e = (L, α,A, L′) be the corresponding edge identifier, and consider an edge term
e = e(t1, . . . , tm) and an LA constraint Λ. We define

ϕ(e,Λ) = ∃~y.Λσe ∧
∧

tiσ 6=ui
ui' tiσe

where ~y = var(Λσe) \ var(eσe), and σe is the normalizing renaming defined as σe =
σm ◦ . . . ◦ σ1, for

σi =

{
{ti 7→ ui} if ti is a variable,

∅ otherwise.

Given a set E of empty clauses, the edge constraints represented by E are defined as

ϕ(E) =
⋃

(e,Λ)∈E
ϕ(e,Λ) . �

134

4.7 First-Order Probabilistic Timed Automata

Example 4.128
For ~u = u1u2u3, we get

ϕ(e(x, x, f(x)), (x≥y+1, y≥2)) = ∃y.(u1 ≥ y+1, y ≥ 2) ∧ u2'u1 ∧ u3' f(u1)

= u1 ≥ 3 ∧ u2'u1 ∧ u3' f(u1)

with the normalizing renaming {x 7→ u1}. �

Definition 4.129 (Assignment-deterministic Edge Constraints)
Let ~x = X and consider p = (L, g, α, µ) ∈↪→ such that µ(A,L′) > 0. An edge constraint
φ ∈ ϕ(EL,α,A,L′) is called assignment-deterministic if

|=LA (∃~y.φ)↔
k∧
i=1

zi' ci

where ~z = auxvar(p) ∪ argvar(p) and ~y = var(φ) \ ~z, and the ci are ground terms of the
same sort as zi.

33 If φ is assignment-deterministic, we write σφ for the substitution that
maps each zi to ci. �

That is, an edge constraint is assignment-deterministic if it forces each argument variable
and each auxiliary variable of its transition to take a fixed value.

Example 4.130
Suppose X = {x1, x2} and consider p = (L, g, α, µ) ∈↪→ such that µ(A,L′) > 0. Assume
that argvar(p) = {x2} and auxvar(p) = {z}. Let e be the corresponding edge identifier,
and consider the set of empty clauses E = {(e(x1, a, f(a)), x1 ≥ 1), (e(x1, b, f(b)), x1 ≥
2)}. Then ϕ(E) = {φ1, φ2} with

φ1 = x1 ≥ 1 ∧ x2' a ∧ z' f(a)

φ2 = x1 ≥ 2 ∧ x2' b ∧ z' f(b) .

Both φ1, φ2 are assignment-deterministic, and σφ1 = {x2 7→ a, z 7→ f(a)}, σφ2 = {x2 7→
b, z 7→ f(b)}. �

Now we come to the instantiation of FPTA by edge constraints. Given an FPTA P
and a set E of empty clauses derived from N [

P by LSUP(LA), we construct the PTA
PE.

Definition 4.131 (Probabilistic Timed Automaton PE)
Let E be a finite, assignment-deterministic set of empty clauses. Let Eσ

L,α denote the
largest subset of EL,α such that σφ = σ holds for all φ ∈ ϕ(Eσ

L,α). The instantiation of P
by E is the probabilistic timed automaton PE = (Loc] {⊥}, ActE, X, ↪→E, L0, ν0, Inv)
where ↪→E is the smallest relation such that (L, gσ, ασaux , µσ) ∈↪→E if there are

33Non-arithmetic symbols are treated as constants.

135

4 SUP(T) for Reachability

• (L, g, α, µ) ∈↪→ and

• ground substitutions σarg, σaux with domains argvar(p) and auxvar(p), respectively,
and σ = σarg ◦ σaux ,

such that Eσ
L,α 6= ∅, and gσ is equivalent to∨

∃~z.ϕ(Eσ
L,α) with ~z = var(ϕ(Eσ

L,α)) \X ,

and µσ is defined by

µσ(A,L′) =
∑

(A′,L′)∈Q:
A′σ=A

µ(A′, L′)

µσ(∅,⊥) =
∑

(A,L′)∈supp(µ)\Q
µ(A,L′)

where Q = {(A,L′) | Eσ
L,α ∩ EL,α,A,L′ 6= ∅}. Finally, ActE is the set of all actions

occurring in ↪→E. �

Since all σφ are ground substitutions, the codomain of assignments in PE consists only
of state variables and ground terms. Taking the domain of discrete variables to con-
sist of all values they are assigned to on any transition of PE, we obtain finite dis-
crete domains for the non-clock variables, as required for PTA (see discussion on page
123).

Example 4.132
We illustrate the construction with a very simple example of an FPTA P without clock
variables. Suppose X = XD = {x} and consider the transition p = (L0, g[x, z], α, µ)
shown below:

. . . L0

L1

L2

µ
g(x, z) : α

x := z
1
2

x := f(x)

1
2

Assume that ΣT contains only the constants a and b, and that T is axiomatized by
g(a, a)∧ g(a, b)∧ g(b, a)∧ g(b, b) and suppose we are interested in reachability of the set
of states B = {(L1, a), (L2, f(b))}. The corresponding part of MDP(P) looks as follows:

136

4.7 First-Order Probabilistic Timed Automata

. . . (L0, a) . . .(L0, b)

(L1, a)

(L1, b)

(L2, f(a))

(L2, f(b))

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

We have auxvar(p) = {z} and argvar(p) = {x}, and the clauses of NP corresponding to
p are

{e1(x, z)} : R(L0, x), g[x, z]→ R(L1, z)
{e2(x, z)} : R(L0, x), g[x, z]→ R(L2, f(x))

with e1 = (L0, α, {x := z}, L1) and e2 = (L0, α, {x := f(x)}, L2). Saturation of

NP ∪ {∅ : R(L1, a)→ , ∅ : R(L2, f(b))→ }

yields the set of empty clauses

E = { e1(a, a), e1(b, a), e2(b, a), e2(b, b) }

which is partitioned into

E{x 7→a, z 7→a} = {e1(a, a)},
E{x 7→b, z 7→a} = {e1(b, a), e2(b, a)},
E{x7→b, z 7→b} = {e2(b, b)} .

Accordingly, ↪→E contains the three transitions

(L0, x' a, α, µa,a), (L0, x' b, α, µb,a), (L0, x' b, α, µb,b)

and the corresponding part of PE looks as follows:

. . . L0

L1

L2

⊥

µa,a

µb,a

µb,b

x≃ a
1
2 x := a

1
2

x≃ b

x≃ b
1
2 x := f(b)

1
2

1
2

x := a

1
2

x := f(b)

The corresponding part of MDP(PE) looks like this:

137

4 SUP(T) for Reachability

. . . (L0, a) . . .(L0, b)

(L1, a)

(L2, f(b))

⊥

1
2

1
2

1
2

1
2

1
2

1
2

In this example we can see why the construction can preserve only maximum reach-
ability probabilities: Since the states (L1, b) and (L2, f(a)) don’t lie in Pre∗(B), the
corresponding edge instances are not derived. The transition from (L0, a) to (L1, b)
and (L2, f(a)), which is present in MDP(P), is thus missing from MDP(PE). There-
fore Prmin((L0, a) |= ♦B) = 0 in MDP(P), but Prmin((L0, a) |= ♦B) = 1

2
in MDP(PE).

On the other hand, the maximum probability of reaching B is 1 in both MDP(P) and
MDP(PE).

The example also illustrates why the argument variables (in this case x) have to be
taken into account for assignment determinism: Had we partitioned E only into E{z 7→a}

and E{z 7→b}, then PE would contain transitions with guard x' a∨ x' b and assignment
x := f(x). Such assignments, however, are not expressible in the language of PTA. �

Definition 4.133 (Coverage of a Path)
Let π be a path in MDP(P). A set E of empty clauses covers π if for every discrete step

(L, ν)
ανaux ,A� (L′, ν ′)

of π there is a constraint φ ∈ ϕ(EL,α,A,L′) such that ν ∪ νaux |=LA φ. �

Because T contains no non-base equations, and any non-base term t occurs only in equa-
tions x' t in E, ν∪νaux |=LA φ is equivalent to IT , (ν∪νaux) |= φ.

Proposition 4.134
Consider an edge term e(t1, . . . , tm) and an LA constraint Λ, and let σ be a grounding
substitution for e(t1, . . . , tm) and ∃~y.Λ, ~y = var(Λ) \ var(t1, . . . , tm), such that (∃~y.Λ)σ
is true. Then there exists a substitution θ ≥ σ such that |=LA ϕ(e(t1, . . . , tm),Λ)θ.

Proof. We have

ϕ(e(t1, . . . , tm),Λ)θ = (∃~y.Λ)θ ∧
∧

xiθ' tiθ
= (∃~y.Λ)σ ∧

∧
xiθ' tiσ

so we get |=LA ϕ(e(t1, . . . , tm),Λ)θ by choosing θ = σ ◦ {xi 7→ tiσ | xi 6∈ dom(σ)}. �

Example 4.135
Consider e(x1, f(y)) and Λ = x1 ≥ 0. Let σ = {x1 7→ 1, y 7→ a}. Now choose θ =
σ ◦ {x2 7→ f(a)}, then ϕ(e(x1, f(y)), x1 ≥ 0)θ = (x1 ≥ 0 ∧ x2' f(y))θ = 1 ≥ 0 ∧
f(a)' f(a). �

138

4.7 First-Order Probabilistic Timed Automata

Path Enumeration by Saturation

Consider an FPTA P and its labelled reachability theory NP , where all clauses have
been abstracted (see Definition 4.17). Let G be a set of goal clauses representing a set of
goal states B. We will use LSUP(LA) saturation to enumerate paths from s0 to B. We
apply the following derivation strategy: After purification, all negative theory literals
are selected. We denote the resulting set of purified clauses by NB

P . The transition
clauses in NB

P have the form

` : Λ ‖ R(. . .), l1, . . . , ln → R(. . .)

where ` is the label, consisting of edge terms, Λ is the LA constraint, R(. . .) are state
atoms, and the li are negative T -literals, all of which are selected. Initial and goal
clauses have an analogous form, with only a positive or a negative state atom, respec-
tively.

Remark 4.136 (Discrete-step Clauses after Purification)
Consider a discrete-step clause from NP

{e(~x~y)} : R(L, ~x), g[~x~y~z], ~x ′'A(~x), Inv(L′)[~x ′b] → R(L′, ~x ′)

where X = ~x = ~xb ∪ ~xn and auxvar(p) = ~y = ~yb ∪ ~yn, where subscripts b and n
denote base and non-base variables, respectively. In the backward encoding N [

P and
after purification, this yields

{e(~x~y)} : Λg[~xb~yb~zb], ΛA[~xb~x
′
b~yb], ΛInv[~x

′
b] ‖ R(L′, A′(~x)), g′[~x~y~z] → R(L, ~x)

where Λg and ΛA are the base literals resulting from purification of g and ~x ′'A(~x),
respectively, and ΛInv are the literals of Inv(L′)[~x ′b] (which are all base) and A′ is the
remainder of A after purification. For example, if A = {x1 7→ 0, x2 7→ f(a)} where x1, x2

are base and x3 is non-base, then ΛA = x′1' 0 and A′ = {x1 7→ x′1, x2 7→ f(a)}. �

The following two propositions establish the connection between the empty clauses and
edge constraints produced by the saturation of NB

P and the corresponding transitions of
P . Path soundness (Proposition 4.137) states that the edge constraints imply their corre-
sponding guards in P , while path completeness (Proposition 4.138) states that any path
of P reaching a goal state is covered by some empty clause.

Proposition 4.137 (Path soundness)
Let p = (L, g, α, µ) ∈↪→ and φ ∈ ϕ(EL,α,A,L′). Then

IT |= ∀~x. φ→ ∃~z. g

where ~z = var(g) \ (X ∪ auxvar(p)).

139

4 SUP(T) for Reachability

Proof. As noted in Remark 4.136, the clause corresponding to e = (L, α,A, L′) is of the
form34

C = {e(~x~y)} : Λg[~xb~yb~zb], ΛA[~xb~x
′
b~yb], ΛInv[~x

′
b] ‖ R′, g′[~x~y~z] → R

where the literals of g′ are selected. Consider any refutation using C. Before C can
interact with any other clause of N [

P , the g′ literals have to be resolved away by inferences
with theory clauses, eventually yielding a clause of the form

({e(~x~y)} : Λ′ ‖ R′ → R)τ

for some simple substitution τ , and Λ′ is equivalent to the conjunction of Λg,ΛA,ΛInv and
some Λ′′ such that T |= ∀.Λ′′τ → g′τ . In the empty clause (`,Λ) eventually derived, we
have e(~x~y)τρ ∈ ` for some substitution ρ, and the base equations of ϕ(e(~x~y)τρ,Λ) imply
∃~zb.Λg, and also imply ∃~z.Λ′′τ , modulo appropriate renaming. It is then straightforward
to show that

|=T ∀~x~y.ϕ(e(~x~y)τρ,Λ)→ ∃~z.(Λg ∧ g′τ)

hence

|=T ∀~x~y.ϕ(e(~x~y)τρ,Λ)→ ∃~z.(Λg ∧ g′) .
Since g is equivalent to Λg ∧ g′, it follows that

|=T ∀~x~y.ϕ(e(~x~y)τρ,Λ)→ ∃~z.g . �

Proposition 4.138 (Path completeness)
Let π be a finite path of MDP(P) ending in B. Then there is a derivation of an empty
clause (`,Λ) from NB

P such that (`,Λ) covers π.

Proof. By Proposition 4.125, π corresponds to a path of TS(NP). So consider the set
Nπ ⊆ gnd(NB

P) of ground clauses corresponding to π, and consider an arbitrary discrete
step

(L, ν)
ανaux ,A� (L′, ν ′)

of π. Following Remark 4.136, the corresponding ground clause is Cθ with

C = e(~x~y) : Λe ‖R(L′, A′(~x)), g′[~x~y~z]→ R(L, ~x)

where θ = σσauxσ
′′ with ground substitutions σ, σaux and σ′′ corresponding to ν, νaux and

ν ′′ as in Definition 4.120. By Theorem 4.47, derivation of a ground empty clause (lτ,Λτ)
from Nπ, using Cθ. By definition of LSUP(LA), it follows that e(~x~y)θ ∈ `τ . Applying
the lifting lemma (Lemma 4.126), there is a corresponding non-ground derivation from
NB
P of the empty clause (`,Λ), using C, and there is a substitution ρ such that e(~x~y)ρ ∈ `,

34Writing R for R(L, ~x) and R′ for R(L′, A′(~x)).

140

4.7 First-Order Probabilistic Timed Automata

and e(~x~y)ρτ = e(~x~y)θ, and |=LA Λ→ Λeρ. As ϕ(e(~x~y)ρ,Λ) ∈ ϕ(`,Λ), it remains to show
that35

|=LA ϕ(e(~x~y)ρ,Λ)θ. (1)

Now

|=LA ϕ(e(~x~y)ρ,Λ)θ ↔ ϕ(e(~x~y)ρ,Λ)τ

as e(~x~y)ρτ = e(~x~y)θ and Λτ is ground. As Λτ is true, we can apply Proposition 4.134
to deduce (1). �

The following two Propositions establish that P and PE agree on all one-step transition
probabilities between states that are both reachable from the initial state and that can
reach a goal state in B. We write PostP , PreP , PP for PostMDP(P), PreMDP(P), PMDP(P),
respectively (and analogously for PE).

Proposition 4.139
Consider two states s, s′ ∈ Post∗P (s0) ∩ Pre∗P (B) such that s′ ∈ PostP (s). Then for all
ανaux ∈ ActT , there is ασaux ∈ ActPE such that σaux is equivalent to νaux and

PP (s, ανaux , s
′) = PPE(s, ασaux , s

′) .

Proof. Let s = (L, ν) and s′ = (L′, ν ′), and let

s
ανaux ,A� s′

be a step of MDP(P). Let p = (L, g, α, µ) ∈↪→ be the corresponding transition of P .
Let A = A(1), . . . , A(n) be all assignments such that

s
ανaux ,A

(i)

� s′ .

It holds that
PP (s, ανaux , s

′) =
∑
i

µ(A(i), L′) .

Since each step from s to s′ lies on a path from s0 to B, each such step is covered by E
(Proposition 4.138), i.e., there are constraints φ(i) ∈ ϕ(Eσ

L,α), for σ = σarg ◦ σaux, such

that ν, νaux |= φ(i) for all i, and σarg is compatible with ν and σaux is equivalent to νaux.
Hence, by Definition 4.131, there is (L, gσ, ασaux , µσ) ∈↪→E such that ν |= gσ and

µσ(A′, L′) =
∑

A(i)σ=A′

µ(A(i), L′) .

By definition of MDP(PE), we get

PPE(s, ασaux , s
′) =

∑
A′

µσ(A′, L′)

=
∑
i

µ(A(i), L′)

= PP (s, ανaux , s
′) . �

35Again, non-arithmetic terms are treated as constants.

141

4 SUP(T) for Reachability

Now for the other direction:

Proposition 4.140
Consider two states s, s′ ∈ MDP(PE) such that s′ ∈ PostPE(s). Then for all ασaux ∈
ActPE there is ανaux ∈ ActT , such that σaux is equivalent to νaux and

PP (s, ανaux , s
′) = PPE(s, ασaux , s

′) .

Proof. Let s = (L, ν) and s′ = (L′, ν ′), and consider the step

s
ασaux� s′

in MDP(PE), and let (L, gσ, ασaux , µσ) ∈↪→E with σ = σarg ◦ σaux be the corresponding
transition in PE, and (L, g, α, µ) ∈↪→ be the corresponding transition in P . By Proposi-
tion 4.137, it follows that IT |= gσ → ∃~z. g, where ~z are the variables of g not occurring
in gσ. Hence there are transitions

s
ανaux ,A

(i)

� s′

in MDP(P). Then

PP (s, ανaux , s
′) =

∑
µ(A(i), L′)

= PPE(s, ασaux , s
′) . �

Theorem 4.141
P and PE agree on maximal reachability probabilities of B.

Proof. It follows by induction from Propositions 4.139 and 4.140 that

Post∗P (s0) ∩ Pre∗P (B) = Post∗PE(s0) ∩ Pre∗PE(B) .

Now consider the equation system for max reachability (page 123): On the one hand, the
value of xs0 depends only the xs with s ∈ Post∗(s0), and on the other hand, xs = 0 holds
for all s 6∈ Pre∗(B). Hence xs0 is uniquely determined by the xs with s ∈ Post∗(s0) ∩
Pre∗(B). By Propositions 4.139 and 4.140, we have

PP (s, ανaux , s
′) = PPE(s, ασaux , s

′) .

for all s, s′ ∈ Post∗(s0) ∩ Pre∗(B). Hence Prmax
P (s0 |= ♦B) = Prmax

PE
(s0 |= ♦B). �

4.7.6 Implementation

We have implemented the approach presented in this section as an extension to the
SPASS(LA) theorem prover. The extension accepts a system of FPTA described in a

142

4.7 First-Order Probabilistic Timed Automata

format based on the standard SPASS syntax [WDF+09], together with a set of reach-
ability conjectures. It computes the product FPTA (Definition 4.118), constructs the
labelled reachability theory (Definition 4.124), and saturates the resulting clause set
using the LSUP(LA) calculus (Section 4.7.3). If saturation terminates, PTA PE (Defi-
nition 4.131) is constructed, which is then output in the Modest format for use with the
mcpta model checker [HH09].

The reachability conjectures are translated into corresponding reachability property
goals in the Modest property specification language, and the PTA PE is augmented
so as to trigger a special action reach in the corresponding states. In this way, the
output of the SPASS(LA) extension can be passed directly to mcpta to compute the
respective reachability probabilities. Figure 4.16 gives a high-level overview of the
pipeline.

input file

P1, . . . , Pn

P1 ‖ . . . ‖Pn

conjecture

labelled clauses

saturation

PTA PE

Modest
+ properties
(mcpta)

Figure 4.16: Pipeline for FPTA reachability analysis

The mcpta model checker applies an integral time semantics, and then uses the proba-
bilistic model checker PRISM [KNP11] as a back-end, which finally builds and analyzes
a probabilistic automata model. The most recent version of PRISM natively supports
PTA, which it did not at the time we developed the pipeline. Using PRISM directly as
a back-end is part of future work.

4.7.7 Experimental Results: Analyzing DHCP

We tested our implementation on a simple model of a DHCP [Dro97] dialog between
a client and a server over a faulty network. The first-order structures of the FPTA
represent messages as terms starting from the IP-layer. We omit detailed modeling of
IP-addresses and the needed masking operations in order to keep the model small and
to focus on timing and probability aspects. Our model could be extended that way (see

143

4 SUP(T) for Reachability

the first-order LAN model available at http://www.spass-prover.org/prototypes/).
Nevertheless, the term structure enables a reasonably detailed model of the network
stack. The IP-address lease database of the server is modeled in form of first-order
atoms. For each participant (client, server) the model contains three layers – in the
form of FPTA: The DHCP protocol layer, a resend mechanism, and the respective
connected faulty networks, as shown in Figure 4.17. The inter-network communication
(dashed arrows) has been shortcut to keep the example simple. The networks have a
fixed latency and message loss probability.

The FPTA on the protocol layer closely follow the steps of the DHCP protocol from the
init state to a bound state on the client side and the respective steps on the server side.
The resend and network automata are identical for both server and client. The resend
automaton tries two resends with a time out of 3 time units to the network before it
gives up. The network forwards a message with probability 0.9 and causes a latency
delay of 1 time unit.

The input file contains six FPTA, modelling the server and the client with their re-
spective resend mechanisms and networks, the background theory – in this case de-
scribing only the lease table – and the reachability conjecture for the client’s bound
state.

The composed FPTA as computed by SPASS(LA) has 1230 locations, and the FOL(LA)
encoding consists of 5811 clauses. The number of generated edge terms is 4578. SPASS(LA)
takes about 13 minutes (on recent Linux driven Xeon X5460 hardware) to finitely satu-
rate the clause set, deriving about 16000 clauses, of which 81 are labelled empty clauses
corresponding to reachability proofs. Using these proofs, SPASS(LA) produces a PTA
with 27 locations, which is then passed to mcpta. The PTA model constructed by mcpta
has 8524 states, and takes less than a second to construct.

As example quantities, we are able to calculate that the probability of successfully ob-
taining a DHCP lease within 0.4 time units (meaning no message is lost) is 0.656, and
the probability of obtaining one after 3.6 time units (allowing for message loss at every
stage of the protocol) is 0.996.

The input file containing the FPTA and the input file to mcpta produced by SPASS from
the saturation are also available at http://www.spass-prover.org/prototypes/.

The client network is described by the following FPTA:

begin_automaton(FPTA,ClientNetwork).

variables[clock(vcntime), discr(vcnmsg)].

actions[cdmsg, csend].

locations[Init,

(Wait, le(vcntime, 1)),

Ok,

Fail].

144

http://www.spass-prover.org/prototypes/
http://www.spass-prover.org/prototypes/

4.7 First-Order Probabilistic Timed Automata

Client

Resend

Network

Server

Resend

Network

Figure 4.17: The DHCP example consisting of 6 FPTA

init send rep
vcdtime ≤ 1

error

vcdmsg := vcmsg
cmsg

vcdtime := 0
vcdcount := 0

cdmsg

vcdcount < 2∧
vcdtime = 3

cdmsg
vcdcount := vcdcount +1
vcdtime := 0

vcdcount ≥ 2∧
vcdtime = 3

csend

Figure 4.18: FPTA for the DHCP client’s resend mechanism

initial(Init(0, % vcntime

null)). % vcnmsg

branch(Init,

external([vcdmsg], true),

cdmsg,

Wait,

[vcnmsg=vcdmsg, vcntime=0]).

pbranch(Wait,

equal(vcntime, 1),

[edge(9, Ok), edge(1, Fail)]).

branch(Ok,

true,

csend,

Init).

branch(Fail,

true,

Init).

end_automaton.

The variables keyword declares the automaton’s state variables, which are either clock
variables, or discrete variables (discr), i.e. of integer or first-order sort. The actions

145

4 SUP(T) for Reachability

init

fail

ok

wait vcntime ≤ 1

vcnmsg := vcdmsg, vcntime := 0

cdmsg

vcntime = 1

9
10

1
10

csend

Figure 4.19: FPTA for the DHCP client’s faulty network

keyword declares the automaton’s action alphabet. The locations keyword declares
the automaton’s locations, optionally with their invariant (like for Wait). The keyword
branch declares a transition without probabilistic choice, i.e., the target location is
entered with probability 1. The pbranch keyword declares a transition with a probability
distribution. Both take the source location, and the guard as arguments, followed by
the target location and the assignment (for branch), or the the distribution over the
target locations and assignments (for pbranch). The keyword external in guards is
used to declare a variable as being the state variable of another component FPTA in
the composition.36 The keyword bind, which doesn’t appear in the example above, but
can be found in the input files under http://www.spass-prover.org/prototypes/,
declares a variable as being not a state variable. Such a variable is either an auxiliary
variable if it appears in some assignment, or acts as an existentially quantified variable
otherwise.37

The client starts with his vcmsg variable containing the ground term

ippacket(networkip, broadcastip, udp,
udppacket(port68, port67,
dhcpdata(broadcast, networkip, networkip, networkip, networkip, clientmac,
dhcpoptions(DHCPdiscover, networkip, networkip))))

representing the initial DHCP discover message.

The background theory consists of the single ground atom

Leasefree(leasefreetuple(clientip, clientmac))

modelling the server’s lease table.

Because clock variables only occur in equations, like vcdtime = 3 and vcntime = 1,
there is actually no nondeterminism in this model, only probabilistic choice. The maxi-
mum reachability probabilities computed are thus also minimum reachability probabili-
ties.

36See the section on parallel composition for FPTA on page 127.
37See the semantics of FPTA, Definition 4.120.

146

http://www.spass-prover.org/prototypes/

4.8 Outlook: Language-based Reachability Analysis

Comparison With Previous Work In [FHW10] we erroneously claimed that P and PE
agreed on maximal and minimal reachability probabilities. As shown in Example 4.132,
only maximal reachability probabilities are preserved by the construction.

4.7.8 Future Work

A natural question is what restrictions on background theories can yield decidable classes
of FPTA. Here one must distinguish between “qualitative decidability”, meaning that
the reachability problem is decidable, and “quantitative decidability”, meaning that
proof enumeration can be made to terminate.

A related question is whether the proof enumeration presented in this section can be
combined with constraint induction, which may aid in termination, like in the case of
ETA (Section 4.6.3). This could be difficult using the labelling and proof enumeration
scheme, but see Section 4.8 for an alternative approach which might better fit with
constraint induction.

Even if proof enumeration cannot be guaranteed to terminate, reachability probabilities
could be generated “on-the-fly”, during saturation: Using the constrained empty clauses
derived so far, a PTA could be generated incrementally. Using such an approach, a
sequence of lower bounds for the maximum reachability probability could be derived,
converging to the actual value in the limit.

Sections 4.8 and 4.9 present some further ideas for future work.

4.8 Outlook: Language-based Reachability Analysis

In general, the state space of an FPTA is infinite, because of the clocks, which always
have an infinite domain, and because of potentially infinite domains of discrete vari-
ables. While the labelling scheme introduced in Section 4.7 exploits the expressivity of
FOL(LA) to finitely represent infinitely many clock valuations, infinite discrete domains
can quickly lead to non-termination. As a simple example, consider the automaton with
a single discrete variable x:

A B
x≃ a

p

x := f(x)

1 − p

147

4 SUP(T) for Reachability

The encoding under the labelling scheme from Section 4.7 would be of the form

∅: → A(a)

{e1(x)}: A(x) → A(f(x))

{e2(x)}: A(x) → B(x)

∅: B(x) →

There are infinitely many paths from the initial state A(a) to states of the form B(t), and
saturation by the labelled calculus of Section 4.7.3 doesn’t terminate, because all edge in-
stances e1(fn(a)) and e2(fn(a)), n ≥ 0, are being enumerated.

We now briefly sketch a different labelling scheme that can finitely saturate examples
such as the one above. It is based on the idea of replacing probabilities by symbols and
describing paths through the automaton as regular expressions over those symbols. A
similar idea was used in [Daw05] to symbolically compute exact reachability probabilities
in finite discrete-timed Markov chains. Here, we use it to obtain a regular expression
describing all paths from the initial state to a goal state in a potentially infinite transition
system.

As we only provide a preliminary sketch of the approach, we restrict ourselves to purely
probabilistic automata. We can think of these as FPTA without clocks, without non-
deterministic branching and without a background theory (except for the theory of equal-
ity). We leave it as future work to extend this approach to full FPTA.

Let P be an automaton as described above, and let Act consist of the non-zero proba-
bilities in P . Consider the underlying transition system TS(P) = (S,Act,→, s0). Given
a set B of goal states, we say that P accepts a word w ∈ Act∗ if there is a path s0

w→ s for
some s ∈ B. We write L(P) for the language accepted by P .

The reachability probability Pr(s0 |= ♦B) can be computed whenever L(P) is regular,
since any finite-state machine accepting L(P) is isomorphic to a finite Markov chain
which agrees with P on Pr(s0 |= ♦B).

We now sketch a saturation-based (incomplete) procedure to compute L(P), if it is
regular. Figure 4.20 shows the rules of the calculus.

Definition 4.142 (Star Expressions)
A star expression over Act is a regular expression formed according to the grammar

e ::= ε
∣∣ α ∣∣ e∗ ∣∣ e1e2

where α ∈ Act. By L(e) we denote the language represented by e. �

We only consider clauses of the form e :→ A, e : A→ , e : A→ B, and e : �, where e is
a star expression.

We define the semantics of such clauses with respect to a transition system and a set B
of goal states:

148

4.8 Outlook: Language-based Reachability Analysis

Definition 4.143 (Semantics of Labelled Clauses)
Let TS = (S,Act,→, S0) be a transition system such that S consists of ground atoms,
and B ⊆ S be a set of goal states. The semantics of labelled clauses is defined as follows:
Let w ∈ Act∗. Then

TS |= w :→ A if for any ground Aσ, there exists s ∈ S0 with Aσ ∈ Post(s, w);

TS |= w : A→ B if for any ground Aσ,Bσ: Bσ ∈ Post(Aσ,w);

TS |= w : A→ if for any ground Aσ, there exists s ∈ B with s ∈ Post(Aσ,w);

TS |= w : � if there exist s ∈ S0, s
′ ∈ B with s′ ∈ Post(s, w).

If e is a star expression over Act, then TS |= e : C if TS |= w : C for all w ∈ L(e). �

As a consequence of the above definition, we get that TS |= e : � if and only if L(e) ⊆
L(P).

For a set of statesQ ⊆ S and a star expression e, we let PostTS(Q, e) =
⋃
w∈L(e) PostTS(Q,w),

and analogously for PreTS.

The side conditions of the Loop rules are undecidable in general, but sufficient conditions
can be checked syntactically. Consider for example the condition PostTS(gnd(A), e) ⊆
gnd(B). If e = ε is the empty word, then the condition reduces to gnd(A) ⊆ gnd(B),
i.e., A is an instance of B. If e = α ∈ Act, then a sufficient condition is the existence of
a clause α : A′ → B′ in N , such that A′ = Aσ and B′σ′ = Bσ, for some substitutions
σ, σ′. More complex expressions e can be reduced to these base cases by observing that,
for arbitrary sets of states Q,Q ⊆ S,

• PostTS(Q,αe) ⊆ Q′ if there exists Q′′ ⊆ S such that PostTS(Q,α) ⊆ Q′′ and
PostTS(Q′′, e) ⊆ Q′;

• PostTS(Q, e∗e′) ⊆ Q′ if PostTS(Q, e) ⊆ Q and PostTS(Q, e′) ⊆ Q′.

If saturation terminates, we derive a set of labelled empty clauses e1 : �, . . . , en : �
such that L(P) = L(e1| . . . |en). Regular expressions over probabilities can be evalu-
ated to probabilities by applying the function val, presented in [Daw05], and defined
by

val(p) = p

val(e1e2) = val(e1) · val(e2)

val(e1|e2) = val(e1) + val(e2)

val(e∗) =
1

1− val(e)
.

Example 4.144
Consider again the automaton from the introduction. It can now be encoded as follows
(with q = 1− p):

149

4 SUP(T) for Reachability

Resolution:

I
e1 :→ A e2 : A′ → B

e1e2 : (→ B)σ
I
e1 : B → A e2 : A′ →

e1e2 : (B →)σ

I
e1 : B → A e2 : A′ → C

e1e2 : (B → C)σ
I
e1 :→ A e2 : A′ →

e1e2 : �

where σ = mgu(A,A′).

Backward Loop:

I
e1 : A→ e2e1 : A′ →

e∗2e1 : (A→)σ

if σ=mgu(A,A′) and TS |=gnd(Aσ)
e2−→ gnd(Aσ) or PostTS(gnd(Aσ), e2)⊆gnd(Aσ).

Forward Loop:

I
e1 :→ A e1e2 :→ A′

e1e∗2 : (→ A)σ

if σ = mgu(A,A′) and gnd(Aσ) ⊆ PreTS(gnd(Aσ), e2).

Inner Loop:

I
e1e2 : A→ B e1e3e2 : A′ → B′

e1e∗3e2 : (A→ B)σ

where σ = mgu(A,A′) and every clause in PreTS(Bσ, e2) is an instance of a clause in
PostTS(Aσ, e1).

Subsumption:
Clause e : C subsumes e′ : D if Cσ = D for some substitution σ, and L(e′) ⊆ L(e).

Figure 4.20: Resolution with respect to a fixed transition system TS

150

4.8 Outlook: Language-based Reachability Analysis

(1) ε : → A(a)
(2) p : A(x) → A(f(x))
(3) q : A(x) → B(x)
(4) ε : B(x) →

Res(3,4)=(5) q : A(x) →
Res(2,5)=(6) pq : A(x) →

Backward Loop(5,6)=(7) p∗q : A(x) →
Res(1,7)=(8) p∗q : �

The clause set is saturated, as the clauses q : � and pq : � which could be derived by
resolution from (5),(1) and (5),(2), respectively, are subsumed by clause (8). So L(P) =
L(p∗q) and the probability to reach any B(x) from A(a) is (as expected) val(p∗(1−p)) =
1. �

Example 4.145
Consider the automaton shown below:

A B
x≃ a

p

x := f(x)

q

x := g(x)

r

It can be encoded as follows, using a reduction ordering with B � A (maximal literals
are underlined):

(1) ε : → A(a)

(2) p : A(x) → A(f(x))

(3) q : A(x) → A(g(x))

(4) r : A(x) → B(x)

(5) ε : B(x) →
Res(4,5)=(6) r : A(x) →
Res(2,6)=(7) pr : A(x) →

Backward Loop(6,7)=(8) p∗r : A(x) →
Res(3,8)=(9) qp∗r : A(x) →

Backward Loop(8,9)=(10) q∗p∗r : A(x) →
Backward Loop(6,10)=(11) (q∗p∗)∗r : A(x) →

Res(1,11)=(12) (q∗p∗)∗r : �

The clause set is saturated, and we deduce L(P) = L((q∗p∗)∗r), thus the probability to
reach any B(x) from A(a) is

val((q∗p∗)∗r) =
r

1− 1
(1−p)(1−q)

. �

151

4 SUP(T) for Reachability

Example 4.146
As a counterexample, consider the following automaton:

A B
x≃ a

p

x := f(x)

q

x := f−1(x)

r

An encoding using a reduction ordering with B � A would be:

(1) ε : → A(a)

(2) p : A(x) → A(f(x))

(3) r : A(x) → B(x)

(4) q : B(f(x)) → B(x)

(5) ε : B(x) →

with goal clause ε : B(x) → . By successive resolution with (3) and (5), clauses of the
form pnrqn : A(x) → B(x) can be derived, for all n ≥ 0, which don’t subsume each
other, and to which the rule Inner Loop is not applicable. Hence saturation doesn’t
terminate. This is not surprising, as the language pnrqn describing the paths to B(x) is
not regular. �

4.8.1 Discussion

The ideas presented in this section are still in a very preliminary stage. Many questions
remain to be investigated, among which are the nature of the transition system TS with
respect to which the calculus operates (intuitively, this should be the minimal model of
the “positive” clauses in the clause set, i.e., the clauses of the form α :→ A and α : A→
B), the integration of background theories, the generalization to nondeterministic and
timed systems, and effective redundancy handling. We hope that this approach will be
further developed in the near future.

4.9 Outlook: Avoiding Building the Product Automaton

So far, when dealing with the parallel composition of automata, we have only con-
sidered the reachability theory of the product automaton. The size of the product
automaton, and hence of the encoding, grows exponentially with the number of compo-
nents. More compact encodings can be obtained by treating the component automata
separately.

152

4.9 Outlook: Avoiding Building the Product Automaton

Concurrent Encoding Consider the two automata below, which don’t share any action,
hence operate completely asynchronously.

A B

x := x+ 1

‖ C D

y := y − 1

The product automaton has 4 locations and 8 transitions, hence its reachability theory
consists of 9 clauses (including one for the initial state). Assuming both automata start
with their respective state variable set to zero, the same system can be represented by
the following 5 clauses:

→ R(A,C, 0, 0)
R(A, l, x, y) → R(B, l, x+ 1, y)
R(B, l, x, y) → R(A, l, x, y)
R(l, C, x, y) → R(l, D, x, y − 1)
R(l, D, x, y) → R(l, C, x, y) .

Let’s call such an encoding a concurrent encoding , as opposed to the product encoding
we have considered so far. The concurrent encoding is used, for instance, in [DP01].
Depending on the degree of synchronization of the system, the concurrent encoding may
be exponentially smaller than the product encoding, since in the totally asynchronous
case, its size is proportional to the sum of the sizes of the encodings of the individual
components. It is also clear that the concurrent encoding may yield shorter reachability
proofs, since several transitions in one component which do not synchronize with any
other transition, can be combined into a single transition, corresponding to a single
clause, which can act as a lemma and be reused multiple times—it is easy to construct
examples where the shortest proof from the product encoding is exponentially longer
than the shortest proof from the concurrent encoding.

Timed systems, however, are very synchronous by nature, since every time step needs
to be synchronized across all components. So even using a concurrent encoding, there
will be exponentially many (in the number of components) time-step clauses. But even
for timed systems, the concurrent encoding may still give an advantage, when there are
many independent transitions.

Generalized Reachability Theories Finally, let us briefly mention an encoding using
generalized reachability theories (Definition 4.32). To illustrate it, consider the following
fully synchronous system:

153

4 SUP(T) for Reachability

A1 B1

C1

a

b
c

‖ A2 B2

C2

a

b
c

An encoding into a generalized reachability theory would be the following:

→ R(A1)
→ R(A2)

R(A1), R(A2) → R(B1)
R(A1), R(A2) → R(B2)
R(B1), R(B2) → R(A1)
R(B1), R(B2) → R(A2)
R(A1), R(B2) → R(C1)
R(A1), R(B2) → R(C2) .

An advantage of using this encoding may be that in case of a satisfiable clause set, i.e.,
unreachable goal states, saturation may be even faster than in the concurrent encoding.
However, this encoding yields an over-approximation of reachability, in the sense that
the set of reachable states of all component automata is a subset of the extension of
the reachability predicate in the minimal model, but is in general not equal to it. For
instance, the states C1 and C2 are not reachable in the above system, but R(C1) and
R(C2) hold in the minimal model of the theory. So the encoding may be used to quickly
establish the unreachability of unsafe states by saturation, but reachability proofs can
be spurious.

Furthermore, the encoding can be used to model asynchronous systems exchanging mes-
sages by means of a special predicate Sent, in the style of [Wei99a]. For instance, a transi-
tion fromA toB, sending a messagem, would be modelled by the clause

R(A) → R(B), Sent(m)

while a transition from A to B depending on message m having been previously sent,
would be modelled by the clause

R(A), Sent(m) → R(B) .

The encoding would cease to be an over-approximation when considered as a description
of an unbounded number of copies of the system running in parallel, as is customary in
the analysis of security protocols.

154

4.10 Discussion and Related Work

Conclusion The use of different encoding schemes and their effects in the context of
the approach presented in this chapter, including optimizations to the SUP(LA) calculus
to take full advantage of the concurrent encoding, are beyond the scope of this work,
and we leave them to future investigation.

4.10 Discussion and Related Work

Reasoning in the combination of first-order logic and background theories such as linear
arithmetic, the analysis of timed systems, and automatic induction are all active research
areas, and we here give a brief overview of the current state of the art and how the work
presented in this thesis relates to it.

FOL(T) Decision Procedures. While many superposition-based decision procedures
for fragments of pure first-order logic exist [Nie96, JMW98, Wei99a, JRV06], the ex-
pressivity of FOL(T) makes the identification of interesting decidable fragments more
challenging.38

Kruglov and Weidenbach [KW12] present a SUP(T)-based decision procedure for the
FOL(T) fragment called Bernays-Schönfinkel-Horn class with equality and ground base
sort terms, or BSHE(GBST), where every non-constant function symbol from the under-
lying FOL signature ranges into a base sort, and every term of base sort is ground.

Bonacina, Lynch and de Moura [BLdM09, BLdM11] present a decision procedure using
DPLL(Γ+T), which is a deep integration of a superposition-based inference system Γ
with a DPLL(T)-based [NOT06] SMT-solver, and the additional introduction of “spec-
ulative” axioms to enforce termination in satisfiable cases. These act as hypothetical
clauses, which are treated in a special way by the prover, and thus bear a certain resem-
blance with our labelled clauses.

Our SUP(LA)-based decision procedures for TA and ETA can be viewed as a contribu-
tion to the research about FOL(T) decision procedures.

Analysis of Timed and Infinite-State Systems. Decidability of the reachability prob-
lem for timed automata was originally shown using the region graph, a finite quotient
of the state space [ACD90]. The size of the region graph is exponential in the largest
time constant occurring in the automaton and the number of clocks, and it is thus of
theoretical interest only. In practice, reachability analysis for timed automata is based
on the zone graph, in which zones, i.e., sets of clock valuations, are represented by differ-
ence bound matrices (DBM) [BY03]. In order to represent discrete values, like locations
or additional discrete variables, one can distinguish semi-symbolic from fully symbolic

38See [FW12] for a discussion of the combination of BSH with linear arithmetic.

155

4 SUP(T) for Reachability

approaches. In a semi-symbolic approach, clock valuations are represented symboli-
cally, while the discrete part of the system is represented explicitly. This approach is
well-suited for systems with a small discrete state space. Fully symbolic approaches
represent the discrete part of the state space symbolically as well, using data structures
like BDDs. The encoding and derivation strategy for timed automata presented in Sec-
tion 4.5.6 behaves like a semi-symbolic, backward fixpoint computation, while for ETA,
in Section 4.6.3, the valuations of discrete variables are represented symbolically in the
clause constraints.

The essential difference between such model checking-based approaches and the one
presented here is that SUP(LA) is a more general method, supporting full quantification
and integrating powerful redundancy criteria, and we obtain our TA decision procedure
by applying this general-purpose calculus practically out-of-the-box to a straightforward
encoding of the automaton.

The idea of encoding the reachability problem for timed automata and their extensions
into logical formulas, as we do in this chapter, has also been explored by other authors:
Comon and Jurski [CJ99] present an encoding of the binary reachability relation of
timed automata into the decidable additive theory of real numbers, thereby providing
yet another proof of the decidability of the reachability problem. The size of the resulting
formulas makes the method unsuitable for practical applications, while the complexity of
our method is comparable to that of zone-based backward model checking. On the other
hand, their result relies on an earlier decidability result for counter automata [CJ98],
whose variables, called counters, can be of real or integer type. We have yet to investigate
whether this result implies the decidability of the extended timed automata presented
in Section 4.5.3.

Fribourg [Fri98] applies Revesz’s procedure [Rev93] to analyze reachability in timed
automata, where clocks can also act as data registers. The method relies on the intro-
duction of an additional, universal clock.

On the other hand, extensions of (probabilistic) timed automata with additional state
variables and data structures have been considered in the literature as well: Lanotte
et al. present Systems of Data Management Timed Automata (SDMTA) [LMST10],
which are timed automata which can construct, send and receive terms over (finite sets
of) elementary messages (constants), natural numbers and functions. They show that
reachability is decidable for systems of DMTA which have only one integer variable.
The result is proven by a reduction to Vector Addition Systems, not by using a stan-
dard saturation-based calculus like in our work. The authors mention an extension to
probabilistic automata as future work.

A well-established method for dealing with infinite models is predicate abstraction [GS97],
where the state space is partitioned into finitely many abstract states, represented
by predicates over the system variables. The coarseness of the abstraction can be
adapted automatically in a process called counterexample-guided abstraction refine-
ment (CEGAR) [CGJ+00]. CEGAR has recently been adapted to probabilistic systems

156

4.10 Discussion and Related Work

as well [HWZ08]. Wachter, Zhang, Hermanns and Hahn [WZH07, HHWZ10] have de-
veloped the model checker PASS based on probabilistic CEGAR and SMT, which can
handle probabilistic programs in a guarded command language with unbounded integer
and real variables, and which can also be extended to other data types handled by the
SMT solvers, like bitvectors and arrays. Extending this approach to probabilistic timed
automata poses some additional challenges, because a naive treatment of clock variables
can make abstraction refinement impractical. Recently, Fioriti and Hermanns [FH12]
have proposed heuristics allowing the probabilistic CEGAR approach to be applied to
PTA as well. The idea is to exclude clocks from the abstraction process, and to only
abstract the values of data variables.

Induction and Automatic Invariant Generation Inductive reasoning often plays an
important role in the the verification of infinite-state systems, such as imperative pro-
grams or automata with unbounded data structures, and inductive theorem proving
is an active research area. In general, proof by induction is an inherently interactive
process, since it requires human ingenuity to come up with suitable inductive hypothe-
ses. However, semi-automatic and fully automatic methods are applicable in certain
cases.

Among semi-automatic approaches to inductive theorem proving one can distinguish ex-
plicit induction techniques [Bun01, BMS10], implicit induction schemes used in rewrite-
based theorem provers [BR95a, BR95b], and “inductionless induction” [Com01, HW08]
or proof by consistency [KM87]. All the above methods usually rely on inductive lemmas
or schemata provided by the user, or they require the clause set to be pre-saturated, and
thus do not produce inductive invariants on-the-fly during proof search.

On the other hand, fully automatic approaches to inductive reasoning in non-saturated
set have been recently developed as well: Peltier has proposed an approach to reasoning
on parametric or schematized formulas [Pel01, EP12] and integrated it into the superpo-
sition calculus [KP13a, KP13b]. This technique, like ours, is based on a loop detection
rule, however, the language of formulas is more restricted than FOL(T). Horbach and
Weidenbach [HW09] have presented a rule called melting for induction in the context
of superposition for fixed domains [HW08], which is also based on loop detection. It is
however a purely syntactic rule, whereas constraint induction takes the semantics of the
base theory into account.

In the context of symbolic model checking, a form of induction called acceleration is of-
ten employed when exploring infinite-state systems [BW94, WB98, FL02, HL02, BIK10].
Acceleration consists in computing the transitive closure of a sequence of transitions
of the system being analyzed, with the goal of speeding up the fixpoint computation
of reachable states, or to make it terminate in the first place. Our constraint in-
duction rule can be viewed as a combination of acceleration and induction in proof
search.

157

5 Conclusion

In this thesis, we have presented novel contributions to the area of superposition-based
theorem proving.

On the one hand, we have presented a modular formalization of explicit splitting with
backtracking for superposition, and shown it to be sound and complete. In the pro-
cess, we have defined a notion of derivation fairness suited to splitting with backtrack-
ing.

We have developed a novel approach to conflict-driven clause learning for splitting, which
can produce local as well as global non-ground lemmas, going beyond the existing local
ground lemma learning technique. The approach relies on clause labels to track variable
instantiations. Experimental evaluation of our implementation shows that it improves
the performance of superposition with splitting in SPASS.

On the other hand, we have developed an approach for reachability analysis based on
hierarchic superposition SUP(T). We have shown SUP(LA) to be a decision procedure
for reachability in timed automata.

We have introduced a novel inference rule for SUP(T), called constraint induction, which
performs inductive reasoning by loop detection during proof search.

Moreover, we have presented a practical realization of constraint induction for SUP(LA).
Furthermore, we have shown that SUP(LA) with constraint induction constitutes a
decision procedure for reachability in timed automata extended with unbounded integer
variables.

We have developed the formalism of first-order probabilistic timed automata (FPTA),
combining probabilistic timed automata (PTA) with first-order background theories,
and we have presented a SUP(LA)-based labelled calculus for proof enumeration and
shown how to construct a max-reachability-equivalent PTA using the saturation of an
FPTA reachability theory.

Finally, we have sketched a different approach to reachability proof enumeration, using
a clause labelling scheme based on regular expressions.

159

Bibliography

[ABH+08] Gilles Audemard, Lucas Bordeaux, Youssef Hamadi, Säıd Jabbour, and
Lakhdar Sais. A generalized framework for conflict analysis. In Hans Kleine
Büning and Xishun Zhao, editors, SAT, volume 4996 of Lecture Notes in
Computer Science, pages 21–27. Springer, 2008.

[ACD90] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time sys-
tems. In Logic in Computer Science, 1990. LICS ’90, Proceedings., Fifth
Annual IEEE Symposium on e, pages 414 –425, June 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183235, 1994.

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-
time reasoning. In Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, STOC ’93, page 592601, New York, NY, USA,
1993. ACM.

[AKW09] Ernst Althaus, Evgeny Kruglov, and Christoph Weidenbach. Superposi-
tion modulo linear arithmetic SUP(LA). In Silvio Ghilardi and Roberto
Sebastiani, editors, 7th international Symposium on Frontiers of Combin-
ing Systems, volume 5749 of Lecture Notes in Artificial Intelligence, pages
84–99, Trento, Italy, September 2009. Springer.

[BFT06] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Lemma learning
in the model evolution calculus. In Miki Hermann and Andrei Voronkov,
editors, LPAR, volume 4246 of Lecture Notes in Computer Science, pages
572–586. Springer, 2006.

[BG91a] Leo Bachmair and Harald Ganzinger. Perfect model semantics for logic
programs with equality. In Proceedings International Conference on Logic
Programming ’91, pages 645–659, Paris, France, 1991. MIT Press.

[BG91b] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem
proving with selection and simplification. MPI-Report MPI-I-91-208, Max-
Planck-Institut für Informatik, Saarbrücken, Germany, September 1991.

[BG94] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem
proving with selection and simplification. Journal of Logic and Computa-
tion, 4(3):217–247, 1994. Revised version of Technical Report MPI-I-91-208,
1991.

161

Bibliography

[BG01] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, volume 1, chapter 2, pages 19–99. Elsevier and MIT Press, 2001.

[BGW92] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Theorem proving
for hierarchic first-order theories. In Hélène Kirchner and Giorgio Levi,
editors, ALP, volume 632 of Lecture Notes in Computer Science, pages
420–434. Springer, 1992.

[BGW93] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Superposition with
simplification as a decision procedure for the monadic class with equality.
In Georg Gottlob, Alexander Leitsch, and Daniele Mundici, editors, Pro-
ceedings of the Third Kurt Gödel Colloquium on Computational Logic and
Proof Theory, KGC ’93, volume 713 of Lecture Notes in Computer Science,
pages 83–96, London, UK, August 1993. Springer.

[BGW94] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Refutational theo-
rem proving for hierarchic first-order theories. Applicable Algebra in Engi-
neering, Communication and Computing, AAECC, 5(3/4):193212, 1994.

[BHR06] P. Bouyer, S. Haddad, and P.-A. Reynier. Extended timed automata and
time petri nets. In Sixth International Conference on Application of Con-
currency to System Design, 2006. ACSD 2006, pages 91–100, 2006.

[BIK10] Marius Bozga, Radu Iosif, and Filip Konecný. Fast acceleration of ulti-
mately periodic relations. In CAV, pages 227–242, 2010.

[BK08] C. Baier and J.P. Katoen. Principles of Model Checking. Mit Press, 2008.

[BKS04] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards understand-
ing and harnessing the potential of clause learning. J. Artif. Intell. Res.
(JAIR), 22:319–351, 2004.

[BKST97] K. Brink, J. van Katwijk, R. F. Lutje Spelberg, and W. J. Toetenel. Analyz-
ing schedulability of astral specifications using extended timed automata.
In Christian Lengauer, Martin Griebl, and Sergei Gorlatch, editors, Euro-
Par’97 Parallel Processing, number 1300 in Lecture Notes in Computer
Science, pages 1290–1297. Springer Berlin Heidelberg, January 1997.

[BL10] Patricia Bouyer and François Laroussinie. Model checking timed automata.
In Stephan Merz and Nicolas Navet, editors, Modeling and Verification of
Real-Time Systems, pages 111–140. ISTE, 2010.

[BLdM09] Maria Paola Bonacina, Christopher Lynch, and Leonardo Mendonça
de Moura. On deciding satisfiability by DPLL(Γ + T) and unsound theo-
rem proving. In Renate A. Schmidt, editor, CADE, volume 5663 of Lecture
Notes in Computer Science, pages 35–50. Springer, 2009.

162

Bibliography

[BLdM11] Maria Paola Bonacina, Christopher Lynch, and Leonardo Mendonça
de Moura. On deciding satisfiability by theorem proving with speculative
inferences. J. Autom. Reasoning, 47(2):161–189, 2011.

[BMS10] David Baelde, Dale Miller, and Zachary Snow. Focused inductive theorem
proving. In Jürgen Giesl and Reiner Hähnle, editors, IJCAR, volume 6173
of Lecture Notes in Computer Science, pages 278–292. Springer, 2010.

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
University Press, 1998.

[Bon13] Maria Paola Bonacina, editor. Automated Deduction - CADE-24 - 24th
International Conference on Automated Deduction, Lake Placid, NY, USA,
June 9-14, 2013. Proceedings, volume 7898 of Lecture Notes in Computer
Science. Springer, 2013.

[BP13] James P. Bridge and Lawrence C. Paulson. Case splitting in an automatic
theorem prover for real-valued special functions. J. Autom. Reasoning,
50(1):99–117, 2013.

[BPT12] Peter Baumgartner, Björn Pelzer, and Cesare Tinelli. Model evolution with
equality - revised and implemented. J. Symb. Comput., 47(9):1011–1045,
2012.

[BR95a] Adel Bouhoula and Michaël Rusinowitch. Implicit induction in conditional
theories. J. Autom. Reasoning, 14(2):189–235, 1995.

[BR95b] Adel Bouhoula and Michaël Rusinowitch. Spike: A system for automatic in-
ductive proofs. In Vangalur S. Alagar and Maurice Nivat, editors, AMAST,
volume 936 of Lecture Notes in Computer Science, pages 576–577. Springer,
1995.

[BT08] Peter Baumgartner and Cesare Tinelli. The model evolution calculus as a
first-order DPLL method. Artif. Intell., 172(4-5):591–632, 2008.

[Bun01] Alan Bundy. The automation of proof by mathematical induction. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, pages 845–911. Elsevier and MIT Press, 2001.

[BW94] Bernard Boigelot and Pierre Wolper. Symbolic verification with periodic
sets. In CAV, pages 55–67, 1994.

[BY03] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In Lectures on Concurrency and Petri Nets, pages 87–124, 2003.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In E. Allen Emer-
son and A. Prasad Sistla, editors, CAV, volume 1855 of Lecture Notes in
Computer Science, pages 154–169. Springer, 2000.

163

Bibliography

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking.
MIT Press, 2001.

[CJ98] Hubert Comon and Yan Jurski. Multiple counters automata, safety analysis
and Presburger arithmetic. In Alan J. Hu and Moshe Y. Vardi, editors,
CAV, volume 1427 of Lecture Notes in Computer Science, pages 268–279.
Springer, 1998.

[CJ99] Hubert Comon and Yan Jurski. Timed automata and the theory of real
numbers. In Jos C. M. Baeten and Sjouke Mauw, editors, CONCUR, vol-
ume 1664 of Lecture Notes in Computer Science, pages 242–257. Springer,
1999.

[Cla77] Keith L. Clark. Negation as failure. In Hervé Gallaire and Jack Minker,
editors, Logic and Data Bases, pages 293–322, New York, 1977. Plenum
Press.

[CN00] Hubert Comon and Robert Nieuwenhuis. Induction = I-axiomatization +
first-order consistency. Information and Computation, 159(1/2):151–186,
May 2000.

[Com01] Hubert Comon. Inductionless induction. In John Alan Robinson and An-
drei Voronkov, editors, Handbook of Automated Reasoning, volume 1, chap-
ter 14, pages 913–962. Elsevier and MIT Press, 2001.

[Daw05] Conrado Daws. Symbolic and parametric model checking of discrete-time
markov chains. In Zhiming Liu and Keijiro Araki, editors, Theoretical As-
pects of Computing - ICTAC 2004, number 3407 in Lecture Notes in Com-
puter Science, pages 280–294. Springer Berlin Heidelberg, January 2005.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[dMB11] Leonardo Mendonça de Moura and Nikolaj Bjørner. Satisfiability modulo
theories: introduction and applications. Commun. ACM, 54(9):69–77, 2011.

[dN01] Hans de Nivelle. Splitting through new proposition symbols. In Robert
Nieuwenhuis and Andrei Voronkov, editors, LPAR, volume 2250 of Lecture
Notes in Computer Science, pages 172–185. Springer, 2001.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. J. ACM, 7(3):201–215, 1960.

[DP01] Giorgio Delzanno and Andreas Podelski. Constraint-based deductive model
checking. International Journal on Software Tools for Technology Transfer,
3(3):250–270, August 2001.

[Dro97] R. Droms. Rfc 2131: Dynamic host configuration protocol. The Inter-
net Engineering Task Force (IETF), 1997. Obsoletes RFC 1541. Status:
DRAFT STANDARD.

164

Bibliography

[DW09] Klaus Denecke and Shelly L. Wismath. Universal Algebra and Coalgebra.
World Scientific, March 2009.

[EP12] Mnacho Echenim and Nicolas Peltier. Reasoning on schemata of
formulæ. In Johan Jeuring, John A. Campbell, Jacques Carette,
Gabriel Dos Reis, Petr Sojka, Makarius Wenzel, and Volker Sorge, edi-
tors, AISC/MKM/Calculemus, volume 7362 of Lecture Notes in Computer
Science, pages 310–325. Springer, 2012.

[FH12] Luis Maŕıa Ferrer Fioriti and Holger Hermanns. Heuristics for probabilistic
timed automata with abstraction refinement. In Jens B. Schmitt, editor,
MMB/DFT, volume 7201 of Lecture Notes in Computer Science, pages
151–165. Springer, 2012.

[FHW10] Arnaud Fietzke, Holger Hermanns, and Christoph Weidenbach.
Superposition-based analysis of first-order probabilistic timed automata.
In Christian G. Fermüller and Andrei Voronkov, editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, volume 6397 of Lecture
Notes in Computer Science, pages 302–316. Springer Berlin Heidelberg,
2010.

[FKW12] Arnaud Fietzke, Evgeny Kruglov, and Christoph Weidenbach. Automatic
generation of invariants for circular derivations in SUP(LA). In Nikolaj
Bjørner and Andrei Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning, volume 7180 of Lecture Notes in Computer
Science, pages 197–211. Springer Berlin Heidelberg, 2012.

[FL02] Alain Finkel and Jérôme Leroux. How to compose Presburger-accelerations:
Applications to broadcast protocols. In FSTTCS, pages 145–156, 2002.

[FLHT01] Christian G. Fermüller, Alexander Leitsch, Ullrich Hustadt, and Tanel
Tamet. Resolution decision procedures. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume II, chap-
ter 25, pages 1791–1849. Elsevier, 2001.

[FPY02] Elena Fersman, Paul Pettersson, and Wang Yi. Timed automata with asyn-
chronous processes: Schedulability and decidability. In Joost-Pieter Katoen
and Perdita Stevens, editors, Tools and Algorithms for the Construction and
Analysis of Systems, number 2280 in Lecture Notes in Computer Science,
pages 67–82. Springer Berlin Heidelberg, January 2002.

[Fri98] Laurent Fribourg. A closed-form evaluation for extended timed automata.
Technical report, CNRS & Ecole Normale Suprieure de Cachan, 1998.

[FW08] Arnaud Fietzke and Christoph Weidenbach. Labelled splitting. In IJCAR
’08: Proceedings of the 4th international joint conference on Automated
Reasoning, page 459474, Berlin, Heidelberg, 2008. Springer-Verlag.

165

Bibliography

[FW09] Arnaud Fietzke and Christoph Weidenbach. Labelled splitting. Ann. Math.
Artif. Intell., 55(1-2):3–34, 2009.

[FW12] Arnaud Fietzke and Christoph Weidenbach. Superposition as a deci-
sion procedure for timed automata. Mathematics in Computer Science,
6(4):409–425, December 2012.

[Gre68] Cordell Green. Theorem Proving by Resolution as a Basic for Question-
Answering Systems. Stanford Rsearch Institute, 1968.

[GS97] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with
pvs. In Orna Grumberg, editor, CAV, volume 1254 of Lecture Notes in
Computer Science, pages 72–83. Springer, 1997.

[Hal91] Joseph Y. Halpern. Presburger arithmetic with unarr predicates is pi1
1

complete. J. Symb. Log., 56(2):637–642, 1991.

[HH09] Arnd Hartmanns and Holger Hermanns. A modest approach to checking
probabilistic timed automata. In QEST, pages 187–196, 2009.

[HHWZ10] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang.
PASS: Abstraction refinement for infinite probabilistic models. In Javier
Esparza and Rupak Majumdar, editors, TACAS, volume 6015 of Lecture
Notes in Computer Science, pages 353–357. Springer, 2010.

[HJL99] Thomas Hillenbrand, Andreas Jaeger, and Bernd Löchner. System de-
scription: Waldmeister - improvements in performance and ease of use. In
CADE, pages 232–236, 1999.

[HL02] Martijn Hendriks and Kim Guldstrand Larsen. Exact acceleration of real-
time model checking. Electr. Notes Theor. Comput. Sci., 65(6), 2002.

[Hor10] Matthias Horbach. Disunification for ultimately periodic interpretations. In
Edmund M. Clarke and Andrei Voronkov, editors, LPAR (Dakar), volume
6355 of Lecture Notes in Computer Science, pages 290–311. Springer, 2010.

[HR87] Jieh Hsiang and Michaël Rusinowitch. On word problems in equational
theories. In Thomas Ottmann, editor, Proceedings of the 14th Interna-
tional Colloquium on Automata, Languages and Programming, ICALP’87,
volume 267 of Lecture Notes in Computer Science, pages 54–71, Karlsruhe,
Germany, July 1987.

[HV13] Krystof Hoder and Andrei Voronkov. The 481 ways to split a clause and
deal with propositional variables. In Bonacina [Bon13], pages 450–464.

[HW07] Thomas Hillenbrand and Christoph Weidenbach. Superposition for finite
domains. Research Report MPI–I–2007–RG1–002, Max-Planck Institute
for Informatics, Saarbrücken, Germany, April 2007.

166

Bibliography

[HW08] Matthias Horbach and Christoph Weidenbach. Superposition for fixed do-
mains. In Michael Kaminski and Simone Martini, editors, Proceedings of
the 17th Annual Conference of the European Association for Computer Sci-
ence Logic, CSL 08, volume 5213 of Lecture Notes in Computer Science,
pages 293–307, Berlin / Heidelberg, September 2008. Springer.

[HW09] Matthias Horbach and Christoph Weidenbach. Deciding the inductive valid-
ity of ∀∃∗ queries. In Erich Grädel and Reinhard Kahle, editors, Proceedings
of the 18th Annual Conference of the European Association for Computer
Science Logic, CSL 2009, volume 5771 of Lecture Notes in Computer Sci-
ence, pages 332–347, Berlin / Heidelberg, September 2009. Springer.

[HWZ08] Holger Hermanns, Björn Wachter, and Lijun Zhang. Probabilistic CEGAR.
In Aarti Gupta and Sharad Malik, editors, CAV, volume 5123 of Lecture
Notes in Computer Science, pages 162–175. Springer, 2008.

[Jen96] Henrik E Jensen. Model checking probabilistic real time systems. In
B. Bjerner, M. Larsson, and B. Nordström, editors, Proceedings of the 7th
Nordic Workshop on Programming Theory, volume 86, pages 247–261, 1996.

[JMW98] Florent Jacquemard, Christoph Meyer, and Christoph Weidenbach. Uni-
fication in extensions of shallow equational theories. In Tobias Nipkow,
editor, Rewriting Techniques and Applications, 9th International Confer-
ence, RTA-98, volume 1379 of Lecture Notes in Computer Science, pages
76–90. Springer, 1998.

[JRV06] Florent Jacquemard, Michaël Rusinowitch, and Laurent Vigneron. Tree au-
tomata with equality constraints modulo equational theories. In Proceedings
of the 3rd International Joint Conference on Automated Reasoning, IJCAR
2006, volume 4130 of Lecture Notes in Computer Science, pages 557–571.
Springer, 2006.

[KB70] Donald E. Knuth and Peter B. Bendix. Simple word problems in univer-
sal algebras. In John Leech, editor, Computational Problems in Abstract
Algebra, pages 263–297. Pergamon Press, 1970.

[KM87] Deepak Kapur and David R. Musser. Proof by consistency. Artificial In-
telligence, 31(2):125–157, 1987.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, edi-
tors, Proc. 23rd International Conference on Computer Aided Verification
(CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

[KNPS06] Marta Kwiatkowska, Gethin Norman, David Parker, and Jeremy Sproston.
Performance analysis of probabilistic timed automata using digital clocks.
Formal Methods in System Design, 29(1):3378, 2006.

167

Bibliography

[KNSS02] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy
Sproston. Automatic verification of real-time systems with discrete proba-
bility distributions. Theoretical Computer Science, 282(1):101150, 2002.

[KNSW07] Marta Z. Kwiatkowska, Gethin Norman, Jeremy Sproston, and Fuzhi Wang.
Symbolic model checking for probabilistic timed automata. Information
and Computation, 205(7):10271077, 2007.

[KP13a] Abdelkader Kersani and Nicolas Peltier. Combining superposition and in-
duction: A practical realization. In Pascal Fontaine, Christophe Ringeissen,
and Renate A. Schmidt, editors, FroCos, volume 8152 of Lecture Notes in
Computer Science, pages 7–22. Springer, 2013.

[KP13b] Abdelkader Kersani and Nicolas Peltier. Completeness and decidability
results for first-order clauses with indices. In Bonacina [Bon13], pages 58–
75.

[Kru13] Evgeny Kruglov. Superposition Modulo Theory. PhD thesis, Max Planck
Institute for Informatics, 2013.

[KW12] Evgeny Kruglov and Christoph Weidenbach. Superposition decides the
first-order logic fragment over ground theories. Mathematics in Computer
Science, 6(4):427–456, 2012.

[LAWRS07] Tal Lev-Ami, Christoph Weidenbach, Thomas W. Reps, and Mooly Sagiv.
Labelled clauses. In Frank Pfenning, editor, CADE, volume 4603 of Lecture
Notes in Computer Science, pages 311–327. Springer, 2007.

[Llo93] John W. Lloyd. Foundations of Logic Programming. Springer, 1993.

[LMST10] Ruggero Lanotte, Andrea Maggiolo-Schettini, and Angelo Troina. Reach-
ability results for timed automata with unbounded data structures. Acta
Inf., 47(5-6):279–311, 2010.

[McC03] William McCune. Otter 3.3 reference manual. CoRR, cs.SC/0310056, 2003.

[MW97] William McCune and Larry Wos. Otter - the CADE-13 competition incar-
nations. J. Autom. Reasoning, 18(2):211–220, 1997.

[Nie96] Robert Nieuwenhuis. Basic paramodulation and decidable theories (ex-
tended abstract). In Proceedings 11th IEEE Symposium on Logic in Com-
puter Science, LICS’96, pages 473–482. IEEE Computer Society Press,
1996.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and
SAT modulo theories: From an abstract davis–putnam–logemann–loveland
procedure to DPLL(T). J. ACM, 53(6):937–977, 2006.

168

Bibliography

[NR01] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem
proving. In John Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning, volume 1, chapter 7, pages 371–443. Elsevier and
MIT Press, 2001.

[NWY99] Christer Norström, Anders Wall, and Wang Yi. Timed automata as task
models for event-driven systems. In RTCSA, pages 182–189. IEEE Com-
puter Society, 1999.

[Pau98] Lauwrence C. Paulson. The inductive approach to verifying cryptographic
protocols. In Journal of Computer Security, volume 6, pages 85–128. IOS
Press, 1998.

[Pel01] Nicolas Peltier. A general method for using schematizations in automated
deduction. In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors,
IJCAR, volume 2083 of Lecture Notes in Computer Science, pages 578–592.
Springer, 2001.

[Pos46] Emil L. Post. A variant of a recursively unsolvable problem. J. Symbolic
Logic, 12(2):255–56, 1946.

[Rev93] Peter Z. Revesz. A closed-form evaluation for datalog queries with integer
(gap)-order constraints. Theor. Comput. Sci., 116(1&2):117–149, 1993.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, 1965.

[Rus91] Michaël Rusinowitch. Theorem-proving with resolution and superposition.
J. Symb. Comput., 11(1/2):21–49, 1991.

[RV01] Alexandre Riazanov and Andrei Voronkov. Splitting without backtracking.
In Bernhard Nebel, editor, IJCAI, pages 611–617. Morgan Kaufmann, 2001.

[RW69] George A. Robinson and Larry Wos. Paramodulation and theorem-proving
in first-order theories with equality. In Bernard Meltzer and Donald Michie,
editors, Machine Intelligence 4, pages 135–150. Edinburgh University Press,
1969.

[Seg02] Robert Segala. Modeling and Verification of Randomized Distributed Real-
Time Systems. PhD thesis, University of Birmingham, 2002.

[SLM09] João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause
learning SAT solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, pages 131–153. IOS Press, 2009.

[Spr04] Jeremy Sproston. Model checking for probabilistic timed systems. In Chris-
tel Baier, Boudewijn R. Haverkort, Holger Hermanns, Joost-Pieter Katoen,
and Markus Siegle, editors, Validation of Stochastic Systems, number 2925

169

Bibliography

in Lecture Notes in Computer Science, pages 189–229. Springer Berlin Hei-
delberg, January 2004.

[SS96] João P. Marques Silva and Karem A. Sakallah. GRASP - a new search
algorithm for satisfiability. In ICCAD, pages 220–227, 1996.

[Sut09] G. Sutcliffe. The TPTP Problem Library and Associated Infrastruc-
ture: The FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning,
43(4):337–362, 2009.

[Tri98] Stavros Tripakis. L’Analyse Formelle des Systèmes Temporisés en Pratique.
PhD thesis, Université Joseph Fourier – Grenoble 1, 1998.

[WB98] Pierre Wolper and Bernard Boigelot. Verifying systems with infinite but
regular state spaces. In CAV, pages 88–97, 1998.

[WDF+09] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar,
Martin Suda, and Patrick Wischnewski. SPASS version 3.5. In Renate
Schmidt, editor, Proceedings of the 22nd International Conference on Au-
tomated Deduction, CADE-22, volume 5663 of Lecture Notes in Computer
Science, pages 140–145. Springer, 2009.

[Wei99a] Christoph Weidenbach. Towards an automatic analysis of security protocols
in first-order logic. In Harald Ganzinger, editor, Proceedings of the 16th
International Conference on Automated Deduction, CADE-16, volume 1632
of Lecture Notes in Artificial Intelligence, pages 378–382. Springer, 1999.

[Wei99b] Volker Weispfenning. Mixed real-integer linear quantifier elimination. In
Sam Dooley, editor, Proceedings of the 1999 International Symposium on
Symbolic and Algebraic Computation, Vancouver, BC (ISSAC 99), pages
129–136. ACM Press, New York, July 1999.

[Wei01] Christoph Weidenbach. Combining superposition, sorts and splitting. In
Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Rea-
soning, volume 2, chapter 27, pages 1965–2012. Elsevier, 2001.

[WGR96] Christoph Weidenbach, Bernd Gaede, and Georg Rock. SPASS & FLOT-
TER version 0.42. In Michael A. McRobbie and John K. Slaney, editors,
CADE, volume 1104 of Lecture Notes in Computer Science, pages 141–145.
Springer, 1996.

[WZH07] Björn Wachter, Lijun Zhang, and Holger Hermanns. Probabilistic model
checking modulo theories. In QEST, pages 129–140. IEEE Computer Soci-
ety, 2007.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad
Malik. Efficient conflict driven learning in boolean satisfiability solver. In
ICCAD, pages 279–285, 2001.

170

Index

�lpo, 12
C+L, C−L, 21
α : C, (β, α) : C, 21
α : N , 21
Sγ, 23
γ≤k, 23
S≤k, 23
S∞i , 34
S∞, 34
‖H , 63
‖ , 63, 85, 128
|=T ,Σ, |=Σ, |=T , 67
+Y , 92
≥Y , 92
[Y]G, 92
[Y]g, 92
`D1,...,Dn , 109
⊗, 128
~(q), 121

abstracted clause, 66
abstraction, 66
acceleratable cycle, 106
acceleration clauses, 108
accepts, 148
action-deterministic FPTA, 126
action-deterministic MDP, 121
actions, 63
active clauses, 21
ActT , 128
admissible

clause, 23
stack, 23
state, 23

antecedent, 10, 66

antecedent (in CDCL), 56
antisymmetric, 7
argument variables, 125
argvar(p), 126
arity, 8
asserting clause, 37
assignment, 13

satisfying, 15
assignment-deterministic, 135
asymmetric, 7
atom, 9
atomic clock constraint, 83
atomic parametric clock constraint, 89
auxiliary variables, 125
auxvar(p), 126

background theory, 76
backjumping, 28
backtracking, 19

eager, 28
lazy, 28
non-chronological, 19
regular, 28

backtracking function, 28
backward diagonal projection, 92
backward encoding, 81
backward reduction, 18
base models, 65
base operator symbols, 65
base part, 66
base sorts, 65
base specification, 65
base term, 65
base theory, 65
base variables, 65

171

Index

binary transition clause, 76
branch condensing, 28

c-closed constraint, 90
c-equivalence, 89
calculus, 16
candidate interpretation, 16
CC(C), 83
CC(X, Y), 84
clause, 10
clause constraint, 66
clause learning, 20
clause learning function, 40
clock constraint, 83
clock of a cycle, 106
closed, 10
closed T -instruction, 126
codomain of a substitution, 11
compatible with contexts, 12
complete lattice, 62
complex label, 38
composition of relations, 8
concl(π), 16
conclusion

of a reduction, 16
of an inference, 16

concurrent encoding, 153
conditionally deleted clause, 21
conflict, 19
conflict analysis, 19
conflict clause, 19, 37
confluent, 13
congruence relation, 12
conjunction, 9
constant, 9
contain, 10
continuous mapping, 62
covered path, 138
cycle of an automaton, 106

decision level, 56
decision literal, 19
dependency graph, 27
derivation, 16, 21

fair, 35
descS(α), 27
descendants, 27
DG(S), 27
directed subset of a complete lattice, 62
discrete probability distribution, 121
discrete-step clauses, 85
disequation, 10
disjunction, 9
Dist(Q), 121
domain

of a substitution, 11

Eσ
L,α, 135

eager backtracking, 28
edge constraints, 134
edge identifier, 130
edge sort, 130
edge term, 130
element

of a multiset, 7
empty clause, 11
enrichment, 65
equation, 9
equivalence class, 8
equivalence relation, 8
equivalent formulas, 15

wrt. an interpretation, 15
existential closure, 10
existential quantification, 9
expression, 10
extended timed automaton, 87
extension, 65
extension symbol, 65

fair derivation, 35
finite probability distribution, 121
first-order probabilistic timed automaton,

126
fixpoint, 62
formula, 9

ground, 10
satisfiable, 15
satisfiable in an interpretation, 15

172

Index

unsatisfiable, 15
valid, 15
valid in an interpretation, 15

forward encoding, 81
forward reduction, 18
FPTA, 126
FPTA background theory, 125
free operator symbols, 65
free part, 66
free sorts, 65
free term, 65

gnd(t), 9
generalized (T -)reachability theory, 76
goal clause, 76, 96
greatest fixpoint, 62
greatest lower bound, 62
ground formula, 10
ground substitution, 11
ground term, 9
grounding, 11
GuardETA(X), 87
GuardPTA(X), 124

handshake actions, 63
Herbrand interpretation, 14
hierarchic interpretation, 66
hierarchic model, 66
hierarchic specification, 65
Horn, 11
Horn modulo Spb, 74

identity, 8
image of a substitution, 11
implication graph, 56
IN , 16
inference, 16
inference rule, 16
infinite path, 63
initial clause, 76
instance, 11
InstrETA(X) ⊆ InstrLA(X), 87
InstrPTA(X), 124
InstrT (X), 83
instruction, 83

integer-flat, 107
interpretation, 13

κ-closed constraint, 91

labelled (T -)reachability theory, 130
labelled clause, 21
labelled inference rule, 32
lazy backtracking, 28
LE(K), 89
least fixpoint, 62
least upper bound, 62
length of a path, 63
level

split, 21
levels(S), 21
levels∞i , 34
lexicographic path ordering, 12
LIC (X), 87
linear expression, 89
linear integer constraint, 87
literal, 10
loop counter, 98
loop in proof search, 99
lower bound, 62
LSUP(LA), 132

many-sorted signature, 8
Markov decision process, 121

with update labels, 122
maximal element, 8
maximum reachability probability, 122
minimal element, 8
minimum reachability probability, 123
Mod(N), ModΣ(N), 67
ModT (N), ModT ,Σ(N), 67
model

of a formula, 15
modification

of a substitution, 11
of an assignment, 13

monotonic mapping, 62
most general unifier, 11
multiset, 7

173

Index

N [, 81
negation, 9
negative literal, 10
non-base term, 65
non-base variables, 65
normal form, 13
normalizing renaming, 134
NTA, 85
NETA, 88
NP , 131

occurs, 10
occurs freely, 10
open(S), 24
open branches, 24
operator symbols, 8
Otter, 18

parallel composition, 63
of timed automata, 85
of FPTA, 127

parameter, 89
parametric clock constraint, 89
parent clause, 21
partial ordering, 7

strict, 7
total, 7

path
in a TS, 63
in an MDP, 122

PE, 135
persistent clauses, 34
persistent levels, 34
point distribution, 121
position, 10
positive literal, 10
PreL, Pree, 110
Precyc, 110
precedence, 12
predecessor states, 64
premise

of a reduction, 16
of an inference, 16

probabilistic edge relation

FPTA, 126
PTA, 124

probabilistic timed automaton, 124
product encoding, 153
product of relations, 61
pure term, 65
purification, 66

quantifier-free, 10
quotient set, 8

(T -)reachability theory, 76
reachability predicate, 76
reachability problem, 77
reachability query, 76
reachable, 64
reduction, 16
reduction ordering, 12
reduction rule, 16
redundancy criterion, 34

effective, 35
redundant

clause, 17
inference, 17

reflexive, 7
reflexive transitive closure, 8, 61
refutationally complete, 17
regular backtracking, 28
ReinsertDeletedClauses, 47
renaming, 11
ReplayLoop, 102
reset location, 106
restriction

of an assignment, 13
restriction of an interpretation, 66
rewrite ordering, 12
rewrite relation, 12, 13
rewrite rule, 13
rewrite system, 13

ground, 13

satisfiability
of a state, 24

saturated set, 17
SC, 22

174

Index

SCL, 39
selected literal, 11
selection function, 11
sentence, 10
sgi(t), 66
Σ-algebra, 13
signature, 8
silent action, 130
simple cycle, 106
simple ground instance, 66
simple instance, 66
simple label, 38
simple substitution, 66
simplification ordering, 12
size, 10
solution of a formula, 15
sort symbols, 8
soundness

of a calculus, 17
of a reduction, 17
of an inference, 17

specification, 14
split, 21
splitting, 2, 20
sT , 76
ST , 76
stable under substitutions, 12
stack, 21
star expression, 148
state, 21, 76
state atom, 76
State(C), 133
states, 63
strictly maximal element, 8
strictly minimal element, 8
subexpression, 10

proper, 10
subformula, 10
substitution, 11
subterm, 10
subterm property, 12
succedent, 10, 66
successor states, 64
sufficiently complete, 68

supp(µ), 121
support of a probability distribution, 121
symmetric, 7

T -guard, 125
T -instruction, 125
tautology, 15
term, 9

ground, 10
irreducible, 13
reducible, 13

term-generated, 14
terminating, 13
theory, 14, 65
Theory(C), 133
time-predecessor, 92
time-step clauses, 85
timed automaton, 84
tpre(G), 92
transition clause, 76
transition relation, 63
transition system, 63

of a labelled reachability theory, 130
of a reachability theory, 77

transitive, 7
transitive closure, 8, 61
TS(N), 77
TTA, 85
TETA, 88
TP , 131

underlying transition system
of an MDP, 122

unifiable, 11
unifier, 11
unique implication point, 56
unit goal clause, 76
unit propagation, 19, 56
universal closure, 10
universal quantification, 9
universe, 13
update labels, 122
upper bound, 62

valid, 23

175

Index

clause, 23
variable, 9
variables

of a term, 10
variant, 11

of abstracted clauses, 66

well-formed FPTA, 127
well-founded, 11
window of a cycle, 106

176

	Contents
	Introduction
	Superposition
	Splitting
	Hierarchic Superposition
	Automation of Inductive Reasoning
	Contributions of This Thesis

	Foundations
	Mathematical Foundations
	Syntax
	Semantics
	Calculi
	Architecture of Saturation-Based Theorem Provers

	Labelled Splitting
	Introduction
	A Calculus for Explicit Splitting
	Completeness
	Consistency-Preserving Rules

	Splitting With Clause Learning
	Implementation
	Representation of Complex Labels
	Handling of Conditionally Deleted Clauses

	Comparison With Previous Work
	Experimental Evaluation of Clause Learning
	Related Work
	Comparison With CDCL
	Future Work

	SUP(T) for Reachability
	Introduction
	Preliminaries
	Operations on Relations
	Theory of Fixpoints
	Transition Systems

	Hierarchic Superposition and Minimal Models
	Hierarchic Specifications
	Syntax
	Semantics
	Superposition Modulo Theory
	Minimal Models of Hierarchic Theories

	Reachability Theories
	Forward and Backward Encodings

	SUP(LA) for Timed Systems
	Timed Automata
	Reachability Theories for Timed Automata
	Extended Timed Automata
	Reachability Theories for Extended Timed Automata
	Parametric Clock Constraints
	SUP(LA) as a Decision Procedure for Timed Automata

	Constraint Induction
	Constraint Induction by Loop Detection
	Computing the Transitive Closure of LA Constraints
	SUP(LA) with Constraint Induction as a Decision Procedure for ETA
	Implementation and Results

	First-Order Probabilistic Timed Automata
	Preliminaries
	First-Order Probabilistic Timed Automata
	Labelled Superposition for Max Reachability
	Reduction Rules for LSUP(LA)
	Instantiating the FPTA
	Implementation
	Experimental Results: Analyzing DHCP
	Future Work

	Outlook: Language-based Reachability Analysis
	Discussion

	Outlook: Avoiding Building the Product Automaton
	Discussion and Related Work

	Conclusion
	Bibliography
	Index

