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Vorsitzender: Univ.-Prof. Dr. Jörg Eschmeier
Berichterstatter Univ.-Prof. Dr. Dr. h.c. mult. Alfred K. Louis

Univ.-Prof. Dr. Sergej Rjasanow
Akademischer Mitarbeiter: Dr. Aref. Lakhal



Kurze Zusammenfassung

In dieser Arbeit wird das inverse Streuproblem für Wellen, die bei der op-
tischen Schicht auf Solarzellen auftritt, untersucht. Das Ziel ist es, den
ortsabhängigen Brechungsindex in einer solchen inhomogenen Schicht zu
optimieren um eine Verbesserung der Leistungsfähigkeit der Solarzellen zu
erreichen. Das zugehörige Berechnungsmodell besteht aus einem Randw-
ertproblem für die eindimensionale Helmholtz-Gleichung, aus der wir eine
Integralgleichung ableiten. Das inverse Problem ist nicht linear und schlecht
gestellt. Als erste Möglichkeit wird die Born-Approximation verwendet,
um das mathematische Modell zu linearisieren. Zur Regularisierung des
formulierten inversen Problems benutzen wir die Methode der Approxi-
mativen Inversen. Zum Vergleich führen wir ebenfalls numerische Tests
mit Hilfe der Tikhonov-Phillips Methode durch. Als alternative Herange-
hensweise lösen wir das nicht-lineare Problem unter Verwendung des Ap-
proximativen Inversen für quadratische Probleme. Numerische Ergebnisse
werden vorgestellt, um die Effizienz der verschiedenen Methoden zu vergle-
ichen.
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Abstract

We consider the inverse scattering problem arising in an optical coating
deposited onto photovoltaic solar cells. Our objective is to optimize the
space-dependent refractive index in this inhomogeneous cover to enhance
the efficiency of the solar cells. The relevant model yields a boundary value
problem for the one-dimensional Helmholtz equation, from which we derive
an equivalent integral equation formulation. The resulting inverse problem
is nonlinear and ill-posed. Firstly, we use the Born approximation to lin-
earize the mathematical model. For regularizing, we apply the method of
the Approximate Inverse. For the purpose of comparison, we also make nu-
merical tests using Tikhonov-Phillips as a regularization method. Secondly,
we treat the nonlinear problem using the method of the Approximate Inverse
for the quadratic problem. Numerical results are presented to compare the
efficiency of the methods.
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Introduction

Depositing Anti-Reflection Coatings (ARCs) is essential for producing
solar cells. More than 35% of the incident sunlight can be lost by normal
installation without using ARCs. To enhance the efficiency of photovoltaics,
an ARC is laid on the surface of the cell, [10,11]. Depositing these thin films
with appropriate refractive index onto the solar cells traps the sun light
which should remain propagating between two media with two different
refractive indices, see Figure (1). As a result, one saves the sunlight inside
by minimizing or eliminating the light reflection.

Besides photovoltaics, ARCs are widely used to ensure the decreasing of
the light reflection in various application areas including displays, telescopes,
microscopes, ophthalmics, and camera lenses.

A different approach is the diffraction gratings [9,17,20], where a periodic
structure of the surface is to be determined.
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Figure 1: Anti-Reflection Coatings (ARCs) (1) Old setting of solar cell with-
out ARC. (2) Single-layer ARC with thickness d1 in contact with a glass
substarate. (3) Double-layer ARC in contact with a glass substarate.

ARCs, in their simplest settings, are designed for one-layer with a single
wavelength λ at normal incidence. An approximately-complete cancellation
of the reflection occurs when the refractive index is equal to the geometric
mean of the refractive indices of the ambient upper and lower media, namely
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10 Introduction

nARC = n =
√
n0ns and λ = 4dn. The parameters n, n0, and nGlass = ns

stand for the refractive indices of the coating, free space, and the glass,
respectively. The parameter d is the thickness of the coating. This cancel-
lation of the reflection happens when the coating has the refractive index
n = 1.23. However, this possibility assumes that the ARC has one constant
refractive index. Moreover it works only for one wavelength. In contrast
to uni-layer films, multi-layer coatings reduce the reflections throughout a
wide range of the wavelengths, [6, 16, 54]. In this multi-layer setting, the
coating is a stack of homogeneous layers with different constant refractive
indices. Another additional setting for the ARC is to use a coating with
space-dependent refractive index. A graded-index ARCs with varying in-
dex of refraction assures more absorbed energy and achieves best perfor-
mance [41, 49]. Therefore, we consider in our research a coating, which is
inhomogeneous i.e., its refractive index n varies in the space x, [2, 3, 31].
Both cases of the single-layer with a constant refractive index or the multi-
layer with a piece-wise constant refractive index, are special cases of this
setting.

The design of ARC is usually achieved in a direct way. In this direct
design method, a prototype with specified optical properties of the coat-
ing is considered, and the generated electromagnetic field is investigated.
The constitutive properties are calibrated until the desired effect is realized.
However, the practical improvement of the coating design requires dealing
with internal quantities, namely the refractive index. Dealing with such
internal quantity requires solving the inverse problem of the related math-
ematical model. Therefore, solving the inverse problem is the main task
in our research. The objective in the inverse problem is to determine the
refractive index of the ARC from the given values of the electromagnetic
field at the surface. These given values represent the reflection coefficients,
which are the input data for solving the inverse problem.

The nature of the problem treated in this work is closely related to the
concept of cloaking [4]. The objective in such an application is to make a
target invisible with respect to probing by electromagnetic waves. Cloaking
happens when a body of dielectric material is coated by a plasmonic struc-
ture of ”negative” dielectric constant. The approach in [5] proposes a new
cancellation technique in order to achieve enhanced near invisibility.

For modeling the light propagation through a stratified isotropic non-
magnetic medium the corresponding time-harmonic Maxwell’s equations are ∇×E− iωµ0H = 0,

∇×H + iωε(x)E = 0,
(0.1)

where E and H are the electric and magnetic vector fields respectively. The
parameter ω denotes the angular frequency, while µ0 is the magnetic perme-
ability of the free space. The function ε(x) is the dielectric permittivity of the
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coating. In Chapter 1, we discuss in detail the Maxwell’s equations, which
describe the propagation of an electromagnetic wave. From these equations,
we derive in Chapter 2 the related mathematical model. Since the ARC is
assumed to be in a bounded volume, the resulting model is prescribed as a
boundary value problem (BVP) for the one-dimensional Helmholtz equation:

(BVP)


u′′(x) + β2n2(x)u(x) = 0, x ∈ (0, 1),

u′(0) + in0βu(0) = 2in0β,
u′(1)− insβu(1) = 0.

(0.2)

The equation n2(x) = 1 + f(x) relates refractive index n(x) to the contrast
function f(x) of the ARC. The variable u denotes the magnitude of the field,
the second derivative of the field is u′′. The parameter β = κd denotes the
nondimensionalised wave number where κ = 2π/λ is the free space wave
number, and λ is the wave length.

In Chapter 2, we transform the model (0.2) into an equivalent integral
equation formulation. As a result, we obtain the Fredholm integral equation
of the second kind

u(x) + β2

∫ 1

0
kβ(x, y)f(y)u(y)dy = u0(x), x ∈ (0, 1), (0.3)

where u0(x) is the incident field and kβ(x, y) is the integral kernel which
satisfies the boundary conditions in the BVP (0.2). In the scattering theory,
equation (0.3) is known as Lippmann-Schwinger integral equation [13].

To generate the data of the inverse problem, we solve the direct problem.
Based on a Nyström quadrature method, we develop a direct solver using
Matlab. Depending on a given incident field impinging upon the ARC, the
direct solver determines the total field for a given contrast function. This, in
turn, produces the reflection coefficients which are the differences between
the values of the incident and the total fields on the surface. The direct
solver program offers a crucial advantage when dealing with space-dependent
contrast function. This is due to lacking an explicit analytic formula for the
related total field. For more details, we refer to the discussion in Chapter 4.

The general existing methods to solve the inverse scattering problem de-
pend on two approaches. Whether using nonlinear techniques by applying
iterative algorithms or using linearized inversion schemes. The nonlinear
methods reconstruct the unknowns of the problem iteratively from a pri-
ori guess. These methods solve usually a sequence of forward problems
using techniques such as the finite difference schemes, as done in [41], where
the regularization method of Tikhonov-Phillips is used to solve the relevant
nonlinear problem in the sense of least squares. As opposed to nonlinear
techniques, the linearized inversion schemes are based on approximations of
Born or Rytov type, which are valid for media with low contrasts. As an
application of this Approximation, consult [2, 25].
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To solve our inverse scattering problem, we face two main difficulties.
The first is the nonlinearity; the field depends on the contrast function
of the object in a nonlinear manner. The second is the ill-posedness of the
problem, since small errors on the data, no matter how small they are, result
with large errors on the solution, which is typical for inverse problems.

We use Born approximation for linearizing the mathematical model of
our problem. Consult [32, 53]. In this approximation, we assume that the
scattered field is very small compared to the incident field. Having the scat-
tered field sufficiently small, so that it can be neglected, allows for extracting
a linearized form of the problem as we do in Chapter3. The Born approx-
imation is practical and feasible under some important limitations on the
contrast function, and on the relevant range of the wave numbers.

The ill-posedness of the inverse problem is twofold. This is due to non-
uniqueness and ill-conditioning. The application of a regularization method
is then required to stabilize the solution [36, 37], and [38]. We refer to [42],
and [45] for a general analytical study on the regularization of ill-posed
problems. A short related discussion can be found in Chapter 3.

The method of the Approximate Inverse (AI) is a stable and flexible
regularization scheme. This method, introduced by Louis and Maass [48],
and analyzed by Louis [43], is used as a main regularization method in this
work. It is an efficient method for solving linear problems [45] and nonlinear
problems [43,44]. It has been extended for image reconstruction [46], feature
extraction [47], and for solving inverse problems on Banach-spaces [35,58].

To briefly describe the AI method for solving the linearized problem,
let A : X −→ Y denote a linear non-degenerate compact operator between
the Hilbert spaces X ⊂ L2(Ω) and Y ⊂ L2(Γ), on some measurable sets Ω
and Γ, endowed with the scalar product 〈., .〉. This method finds a stable
solution f to the equation Af = g by computing the approximation fγ(x) =
〈f, δγx〉X . The mollifier δγx is an approximation of the Delta distribution for
the reconstruction point x. To find this mollifier, we solve the following
auxiliary equation

A∗ψγx = δγx , (0.4)

where A∗ is the adjoint operator of A and ψγx is the reconstruction kernel.
Thus, it holds

fγ(x) = 〈f, δγx〉X = 〈f,A∗ψγx〉X = 〈Af, ψγx〉Y = 〈g, ψγx〉Y =: Sγg(x). (0.5)

For solving the nonlinear problem, Louis [43] extended the previously
mentioned method for some nonlinear problems. In Chapter 3, we apply this
extension to approximate the nonlinear problem of our model (0.3). More-
over, we introduce the efficient concept of the adaptive modeling, where we
use a threshold to decide locally where to apply a higher (quadratic) order
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of approximation. We take here advantage of the method of the Approxi-
mate Inverse which is a local method. We use a criterion which evaluates
the quality of the linear reconstruction in every part of the function f .

Let us briefly outline the contents of this thesis. In Chapter 1, we intro-
duce Maxwell equations which will be needed for deriving our mathematical
model. Furthermore, the derivation is completely developed as a boundary
value problem (BVP) in Chapter 2. The resulting BVP is transformed into
an equivalent integral equation of Lippmann-Schwinger type. In Chapter 3,
the inverse nonlinear problem of the model (0.3) is formulated and then
linearized using the first iteration of the Born approximations. The second
iteration of the Born approximations yields the quadratic approximation of
the nonlinear problem which is discussed in the same chapter. Moreover,
the application of the method of Approximate Inverse to solve the linearized
problem as well as to quadratically approximate the nonlinear problem is
also treated in Chapter 3. Chapter 4 is dedicated to the presentation and
discussion of the numerical simulations. In the conclusion, we summarize the
features characterizing our method. Finally, we give an outlook about some
interesting issues for a future research. In Appendix A, we present some
relevant details about solar cells and Anti-Reflection Coatings including the
transmission and reflection coefficients T and R respectively.
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Chapter 1

Electromagnetic Scattering

The design of Anti-Reflection Coatings requires a good understanding of the
behavior of electromagnetic waves in inhomogeneous media. Therefore, we
shed the light in this chapter on the Maxwell’s equations which describe the
propagation of an electromagnetic wave. We refer basically to [13], [14], [18],
[39], and [52] for the contents of this chapter.

1.1 The Maxwell equations

We start this section by introducing the equations of Maxwell which model
the propagation of an electromagnetic wave in inhomogeneous media

∇× E = M− ∂B
∂t

(1.1)

∇×H = Jc + Je +
∂D
∂t
, (1.2)

where E = E(x, t) ∈ C3 and H = H(x, t) ∈ C3 are the complex-valued
three-dimensional electric and magnetic vector fields in a space position
x = (x1, x2, x3) ∈ R3 at time t ∈ R.
D is the electric flux density, B is the magnetic flux density, Jc is the con-

duction current density, Je is the extraneous electric current source density,
and M is the magnetic current source density.

The differential operators are denoted using the nabla operator ∇ =
(∂x, ∂y, ∂z)

T as∇,∇·, and∇× indicate respectively the gradient, divergence,
and the curl.

The constitutive equations relate the electric and magnetic flux densities
B and D to the magnetic and electric intensities H and E , respectively. Here
we consider a linear isotropic medium:

B = µH
D = εE ,

17



18 CHAPTER 1. ELECTROMAGNETIC SCATTERING

where µ is the magnetic permeability and ε is the electric permittivity.
In the general case of anisotropic medium, µ and ε are symmetric two-

dimensional tensors specified to vectors formed with the corresponding eigen-
values. The medium is called isotropic if all the eigenvalues of each tensor
are equal, here we may refer to [8].

Thus, the underlying medium is assumed to be isotropic and also in-
homogeneous, this means its permeability and permittivity are real valued
functions depending on the position x, µ = µ(x) and ε = ε(x). In the case
of free space, the latter functions have constant values as µ = µ0 and ε = ε0.

The conduction current density Jc is determined by the electric field
intensity E through Ohm’s law

Jc = σeE ,

where σ = σe(x) is the electric conductivity of the medium ranging between
0 and∞ for a non-conducting and a perfect-conducting medium respectively.

The magnetic current source density M is related to the magnetic field
intensity H through the following equation

M = −Jm + σmH,

where Jm = Jm(x, t) is the complex-valued vector field which stands for
the extraneous magnetic current density and σm = σm(x) is the magnetic
conductivity as a real-valued function.

Any electromagnetic field quantity is assumed to be time-harmonic i.e.
it is periodic in time and can be written in terms of the real part operator
as a product of spatial function and a periodic temporal function:

E(x, t) = E(x, ω)e−iωt,

H(x, t) = H(x, ω)e−iωt,

where ω > 0 is the fixed angular frequency. Thus, the time-dependence of
the electromagnetic fields can be suppressed using Fourier transform.

In addition to the electromagnetic fields, the current sources are assumed
to be also time-harmonic:

Je(x, t) = Je(x, ω)e−iωt,

Jm(x, t) = Jm(x, ω)e−iωt.

Under the time-harmonic assumption, the Maxwell’s equations (1.1),(1.2)
are reduced to the following time-independent system

∇×E− iωµ̃H = −Jm,

∇×H + iωε̃E = Je,
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where the magnetic and the electric indices µ̃ and ε̃ are complex valued
functions defined as

µ̃(x) := µ(x) + i
σm(x)

ω
, x ∈ R3,

ε̃(x) := ε(x) + i
σe(x)

ω
, x ∈ R3,

with µ > 0, σm ≥ 0, ε > 0, σe ≥ 0.
The refractive index is defined by, (see [8])

n =

(
ε−1

0

(
ε+ i

4πσ

ω

)) 1
2

.

The wave number κ is defined as

κ := ω
√
ε0µ0.

In order to introduce the direct electromagnetic scattering problem, we may
assume that the extraneous current sources Jm and Je are only generated in
a bounded region and the medium is inhomogeneous in a bounded volume.

Definition 1.1. Let Ω and Ω′ be two bounded domains in R3 with smooth
boundaries ∂Ω and ∂Ω′, respectively. We assume that the closure sets Ω :=
∂Ω ∪ Ω and Ω′ := ∂Ω′ ∪ Ω′ do not intersect i.e. Ω ∩ Ω′ = ∅.
Furthermore we suppose

1. the complex valued functions µ̃ and ε̃ are continuously differentiable on
Ω and constant outside with µ(x) = µ0 and ε(x) = ε0 for x /∈ Ω.

2. the complex-valued vector fields Jm and Je are continuous on Ω′, and
vanish outside i.e. Jm(x) = Je(x) = 0 for x /∈ Ω′, and admit diver-
gence fields ∇ · Jm and ∇ · Je, which are continuous on Ω′.

The direct electromagnetic scattering problem is to determine the elec-
tromagnetic fields E and H by solving the time-harmonic Maxwell equations
in R3, for given µ̃, ε̃,Jm,Je.

The boundary conditions at infinity for Maxwell’s equations are intro-
duced in the following definition:

Definition 1.2. Let the regular electromagnetic fields E,H, be solutions to
the homogeneous Maxwell’s equations

∇×E− iωµ0 H = 0, (1.3)

∇×H + iωε0 E = 0, (1.4)
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in R3 \ Ω, where Ω is a bounded domain in R3.
The solutions E,H, are called radiating if they satisfy one of the following
equivalent Silver-Müller radiation conditions

lim
x→∞

(E× x+ |x|H) = 0,

lim
x→∞

(H× x− |x|E) = 0,

uniformly in all directions x
|x| , where r = |x|, x ∈ R3 \ {0}.

1.2 The homogeneous Helmholtz equation

In this section, we introduce the connection between the Maxwell and the
Helmholtz differential equation. Let Ω be a bounded domain in R3 with a
regular boundary ∂Ω. The permeability and permittivity are considered in
the free space and thus supposed to be positive constants, namely µ0 and
ε0 respectively. We denote C1(R3 \ Ω) and C2(R3 \ Ω) to be the spaces
of one-time and two-times continuously differentiable functions on R3 \ Ω
respectively. We suppose that the regular electromagnetic fields E,H ∈
C1(R3) are solutions of the Maxwell’s equations

∇×E− iωµ0H = −Jm, (1.5)

∇×H + iωε0E = Je, (1.6)

where Jm and Je are given regular current fields on Ω with compact support
in Ω i.e.

Jm(x) = Je(x) = 0 for x /∈ Ω.

We find that E,H ∈ C1(R3 \Ω) admit vanishing divergence fields on R3 \Ω:

∇ ·E = 0, (1.7)

∇ ·H = 0, (1.8)

resulting from considering the homogeneous forms of equations (1.5),(1.6)
together with the properties of the nabla operator, namely ∇·∇×E = 0 and
∇ · ∇×H = 0. If we further suppose that E,H are two-times continuously
differentiable functions on R3 \Ω, namely E,H ∈ C2(R3 \Ω), then we take
the curl of (1.5) on R3 \ Ω:

∇×∇×E = iωµ0 ∇×H. (1.9)
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Substituting (1.6) in (1.9) gives

∇×∇×E− ω2µ0ε0 E = 0. (1.10)

Equation (1.10) is called the vector wave equation. We can moreover use
the identity

∇×∇×E = −∆E +∇(∇ ·E), (1.11)

together with (1.7). By substituting them in (1.10), we get on R3 \ Ω the
vector Helmholtz equation for the electric field

∆E + ω2ε0µ0E = 0, (1.12)

where ∆ is the Laplacian. Similarly, we get the vector Helmholtz equation
for the magnetic field, thus:

∆E + κ2E = 0, (1.13)

∆H + κ2H = 0, (1.14)

where κ := ω
√
ε0µ0. The Maxwell’s equations are then reduced to the

Helmholtz equation in the case of divergence-free fields. Equations (1.13),
(1.14) are true for each cartesian component of the electromagnetic fields. If
we denote the magnitude of this component with u, then we get the scalar
Helmholtz equation:

∆u+ κ2u = 0 (1.15)

From physical point of view, the solutions of the scalar Helmholtz equation
must satisfy the Sommerfeld radiation condition. This condition specifies the
appropriate geometric attenuation of a solution to the Helmholtz equation.

Definition 1.3. Let κ > 0 and Ω be a bounded domain in R3. A solution
u ∈ C2(R3 \ Ω,C) to the scalar Helmholtz equation

∆u+ κ2u = 0 in R3 \ Ω, (1.16)

satisfies the Sommerfeld radiation condition if

lim
r→∞

r

(
∂u

∂r
− iκu

)
= 0,

uniformly in all directions x
|x| , where r = |x|, x ∈ R3 \ {0}.
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The fundamental solution Φn
κ of the Helmholtz equation ∆u + κ2u = 0

in Rn, n ∈ N, which satisfies the Sommerfeld radiation condition, is given
by

Φ1
κ(x) =

i

2κ
eiκ|x| for x ∈ R \ {0}.

Φ2
κ(x) =

i

4
H0(κ|x|) for x ∈ R2 \ {0},

Φ3
κ(x) =

1

4π

eiκ|x|

|x|
for x ∈ R3 \ {0},

where H0 is the zero order Hankel function of the first kind, see, e.g., [8,30].
The Green’s function associated with the Helmholtz operator (∆ + κ2),

κ > 0 and with the Sommerfeld radiation condition, is given by

gnκ(x, y) := Φn
κ(x− y) for x 6= y, x, y ∈ Rn, n = 1, 2, 3. (1.17)



Chapter 2

Mathematical Modeling

In this chapter we derive the mathematical modeling of the ARC. Based on
the Maxwell’s equations, we derive first a boundary value problem (BVP) to
describe electromagnetic waves in a stratified medium [8]. The direct prob-
lem is concerned with determining of the electromagnetic field based on given
coating refractive indices. Next, we derive an equivalent integral equation of
Lippmann-Schwinger type by calculating the corresponding integral kernel.
The direct problem of the model assigns the values of the electromagnetic
fields. In practice, there is a physical possibility to measure these values.
Moreover, there is a practical need to improve the quality of the coatings.
This improvement is achievable by choosing the most appropriate refractive
index. The best choice of the contrast function of the coating leads, in turn,
to a more absorbed energy inside the coating. Dealing with such internal
quantity requires solving the inverse problem of the model. Therefore, it
is worth dealing with the inverse problem which determines the refractive
index of the coating depending on the given values of the field. This will
be done in Chapter 3. On the free surface of the coating, the boundary
values are determined by the reflection coefficients which are the input data
used for solving the inverse problem. Accomplishing true direct simulations
on the boundary is useful for data generation. The accuracy of the data is
crucial when solving the inverse problem.

2.1 Model as a boundary value problem

The theory of Maxwell, prescribed in the first chapter of this thesis, plays a
key role in dealing with the light propagation and scattering in dielectric thin
films. Depending on this theory, we describe the mathematical modeling of
this physical electromagnetic phenomenon. We refer to Appendix (A) for
details about the physics of Anti-Reflection Coatings. We consider the case
of a normal incidence, namely the incident angle θ = 0, since it proposes
most of the related physics, see figure (2.1). For the case of an arbitrary

23
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incident angle, we refer to [30].

y

d

z

nARC(z)
nGLASS = 1.52

θ

Figure 2.1: ARC in contact with a glass substrate

A medium is said to be stratified if the electromagnetic properties ε and
µ are constant throughout each plane perpendicular to a fixed direction [8],
say z, it means

ε(x, y, z) = ε(z) and µ(x, y, z) = µ(z)

We consider a plane time-harmonic wave propagating through a stratified
nonmagnetic (i .e., µ(z ) = µ0 ) medium. We suppose the electric wave to be
linearly polarized in the direction perpendicular to the plane of incidence
i .e., a transverse electric wave (denoted by TE). An electromagnetic wave is
said to be transverse magnetic (denoted by TM) when it is linearly polarized
with its magnetic wave orthogonal to the plane of incidence. Since any plane
wave with an arbitrary polarization may be decomposed into two waves,
one is TE and the other is a TM wave, we may use the duality between the
electric and the magnetic fields in the Maxwell’s equations to deduce results
on TM from corresponding results on TE, see [8].

We take the plane incidence to be y, z plane where z is the direction of
stratification and of incidence.

For a TE wave, the polarization is along the x-direction, this means
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Ey = Ez = 0. In this case the Maxwell’s equation read

∇×E− iωµ0H = 0, (2.1)

∇×H + iωε(z)E = 0. (2.2)

By using the properties of the nabla operator ∇ = (∂x, ∂y, ∂z)
T , equations

(2.1), (2.2) become

∂Hz

∂y
− ∂Hy

∂z
+ iωε(z)Ex = 0 (2.3)

∂Hx

∂z
− ∂Hz

∂x
= 0 (2.4)

∂Hy

∂x
− ∂Hx

∂y
= 0 (2.5)

and

iωµ0Hx = 0 (2.6)

∂Ex
∂z
− iωµ0Hy = 0 (2.7)

∂Ex
∂y

+ iωµ0Hz = 0 (2.8)

By taking the derivative of Hy and Hz in (2.7), (2.8) then substituting the

values of
∂Hy
∂z , ∂Hz

∂y in (2.3), we get

∂2Ex

∂y2 +
∂2Ex

∂z2 + ω2µ0ε(z)Ex = 0

The coating space-dependent permittivity is given by

ε(z) = ε0n
2(z) = ε0(1 + f(z)),

with n(z) and f(z) the refractive index and the contrast function of the
coating respectively. We have the free space wave number κ = ω

√
µoε0. We

further set the magnetic permeability µ0 = 1 since we have a nonmagnetic
medium, we get

∂2Ex

∂y2 +
∂2Ex

∂z2 + κ2n2(z)Ex = 0.

Using a separation ansatz

Ex = v(y)u(z),



26 CHAPTER 2. MATHEMATICAL MODELING

we get the differential system provided that the complex valued functions u
and v do not vanish:

−v
′′(y)

v(y)
=
u′′(z)

u(z)
+ κ2ε(z),

where the left hand side depends on y and the right hand side depends on z.
It yields that there exists a positive constant for physically relevant solutions

v′′(y)

v(y)
= −a2,

and

u′′(z) + κ2n2(z)u(z) = a2u(z).

Let α be such that α2 = a2

κ2
, then

u′′(z) + κ2
(
n2(z)− α2

)
u(z) = 0. (2.9)

It follows that

v(y) = v(0)(c1e
iκαy + c2e

−iκαy),

with the constants c1, c2. Consequently

Ex = u(z)(c1e
iκαy + c2e

−iκαy),

where the complex-valued function u, depending on z, satisfies the differen-
tial equation (2.9). We consider an incident wave uinc(z) = eiκn0z, where
n0 is the refractive index of the air environment (n0 = 1). The ARC has
a given thickness d and a refractive index nARC(z) = n(z), in contact with
a glass substrate of uniform refractive index nGlass = ns = 1.52. Let the
interval Ω = (0, d) ∈ R be the bounded domain of the relevant coating with
the points z = 0 and z = d as model boundaries. We consider only wave
propagation in the z−direction, i .e., we set α = 0 in (2.9). Denoting the
magnitude of Ex with u, we get the scalar Helmholtz equation

u′′(z) + κ2n2(z) u(z) = 0, z ∈ (0, d), (2.10)

where u′′ is the second derivative of u with respect to the model variable z.
Equation (2.10) represents our model in the coating’s interval (0, d).

For the sake of scaling into the interval [0, 1], we replace z with z/d to
obtain

u′′(z) + κ2d2n2(z) u(z) = 0, z ∈ (0, 1). (2.11)

If we denote with β = κd the nondimensionalised wave number, we get:

u′′(z) + β2n2(z) u(z) = 0, z ∈ (0, 1). (2.12)

Equation (2.12) is the second order differential Helmholtz equation with vari-
able coefficient. It represents our model problem with the related boundary
conditions.
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Boundary conditions

The second order differential Helmholtz equation (2.12) is endowed with
conditions at the boundaries of the medium. These are generated by the
continuity of the tangential components of electric and magnetic fields across
the boundaries z = 0 and z = 1. The continuity at the upper interface of the
slab (z < 0) implies that each tangential component of the electromagnetic
fields is expressed as sum of the incident and reflected (scattered) fields,
see (A.4), (A.5). The magnetic field H is indicated by the gradient of the
electric field E, check (2.7), (2.8). Thus, the continuity condition is reduced
into the magnitudes of the electromagnetic field u(0) together with its first
derivative u′(0). The solution u(z) of equation (2.12) at z < 0 is a linear
combination between the incident and reflected fields

u(z) = ein0βz +R(β)e−in0βz, z < 0.

The first derivative of u(z) is given by

u′(z) = in0β e
in0βz − in0β R(β)e−in0βz z < 0,

where R(β) is called the reflection coefficient. Practically, the reflection
coefficient can be measured for any value of β which is ranging in some
interval [βmin, βmax]. In the case of the inverse problem of our model, the
varying of the wave number β is motivated by the need of numerically solving
the model problem. The model problem is reduced, after discretization, into
solving a system of linear equations. To numerically solve this system, we
have to vary the wave number.

By taking the values of u(z),u′(z) at z = 0 we obtain

u(0) = 1 +R(β), (2.13)

u′(0) = in0β − in0β R(β). (2.14)

It yields

u′(0) + in0β u(0) = 2in0β. (2.15)

The continuity at the lower interface of the slab (z > 1) considers only
the transmitted wave. Hence, the second boundary condition is similarly
produced by taking the values of u(1) and u′(1). The solution u(z) of equa-
tion (2.12) at z > 1 is given by

u(z) = T (β)e−insβz, z > 1,

where T (β) is the transmission coefficient. The first derivative u′(z) is given
by

u′(z) = +insβ T (β)einsβz.
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We take the values of u(z),u′(z) at z = 1 to obtain

u(1) = T (β) einsβ, (2.16)

u′(1) = insβ T (β) einsβ. (2.17)

The second boundary condition of our problem is obtained by solving equa-
tions (2.16),(2.17) as

u′(1)− insβ u(1) = 0. (2.18)

For formulas relating R(β) and T (β) to the refractive indices of the
stratified interfaces, we refer to Appendix (A).

Considering the equation (2.12) in addition to the slab boundary condi-
tions (2.15),(2.18) produces mainly our model as a boundary value problem:

(BV P )


u′′(z) + β2u(z) = −β2f(z)u(z), z ∈ (0, 1),

u′(0) + in0β u(0) = 2in0β,
u′(1)− insβu(1) = 0.

(2.19)

In the direct problem, we are concerned with the determination of the
scattered electromagnetic field for a given incident field impinging upon
our medium with given electromagnetic properties, namely the given space-
dependent refractive index of the coating. However, in the inverse problem,
we have to determine the refractive index of the coating depending on the
given incident and scattered fields which are represented by the reflection
coefficients.

In section (2.2), we formulate the direct problem as an integral equation,
in which the boundary conditions are already embedded.

2.2 Formulation of the direct problem as an inte-
gral equation

For solving the boundary value problem defined in (2.19), we formulate it
as an equivalent integral equation. We recall the model equation as

u′′(x) + β2u(x) = −β2f(x)u(x). (2.20)

We split the total solution of equation (2.20) into a sum of an incident wave
and a scattered wave

u(x) = u0(x) + us(x), (2.21)

where u0 is a solution of the homogeneous Helmholtz equation

u′′(x) + β2u(x) = 0. (2.22)
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A solution u0 of (2.22) is given as (see, e.g., [28, 29])

u0(x) = c1e
iβx + c2e

−iβx, (2.23)

where the constants c1 and c2 must satisfy the boundary conditions in (2.19).
After some calculations, we obtain

u0(x) = eiβx + ηe−iβ(x−2), (2.24)

with η := 1−ns
1+ns

. Alternatively, the fundamental solution u0 of (2.22) is given
in terms of trigonometric functions as

u0(x) = d1 cos(βx) + d2 sin(βx),

where the corresponding constants in this case are

d1 =
2i cosβ + 2ns sinβ

(1 + ns) sinβ + i(1 + ns) cosβ
,

d2 = i(2− d1).

The solution us of the inhomogeneous Helmholtz equation (2.20), related to
the model, is given by

us(x) = −β2

∫ 1

0
kβ(x, y)u(y)f(y)dy, (2.25)

where kβ(x, y) the corresponding integral kernel which is to be computed.
If we substitute (2.24),(2.25) in equation (2.21) we obtain the total solution
as

u(β, x) = −
∫ 1

0
β2k(β, x, y)f(y)u(β, y)dy + u0(β, x). (2.26)

For a given contrast function f of the coating we get a Fredholm equation
of the second kind with respect to the electromagnetic field u

u(β, x) +

∫ 1

0
kf (β, x, y)u(y)dy = u0(β, x), x ∈ (0, 1), (2.27)

with the kernel:

kf (β, x, y) = β2k(β, x, y)f(y).

Equation (2.27) is known in the scattering theory as Lippmann-Schwinger
integral equation [13]. Formulating (2.27) using operator notation produces(

I +Kf

)
u = u0,
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with the identity operator I and the integral operator Kf given by:

Kfu(β, x) =

∫ 1

0
kf (β, x, y)u(y)dy. (2.28)

Thus, the direct problem is concerned with the determination of the total
field u from a given incident field u0 and a given refractive index n where
n2 = 1 + f .

For fixed wave number β, we set kβ(x, y) = k(β, x, y). For calculating
the integral kernel kβ(x, y), we consider the elliptic differential operator of
Helmholtz

Lu = (∆ + β2)u (2.29)

defined on the space of twice differentiable functions. The computation of
the integral kernel is classical [29]. We calculate the kernel using a construc-
tive method.

Theorem 2.2.1. Let the incident field u0 be as in (2.24). Then, u ∈
C2 ((0, 1)) ∩ C1 ([0, 1]) is solution of the BVP (2.19) iff

u(x) = −
∫ 1

0
β2kβ(x, y)f(y)u(y)dy + u0(x),

with the integral kernel kβ(x, y) given by

kβ(x, y) =


1

2iβ e
−iβ(x−y) + η

2iβ e
−iβ(x+y−2) for x ≤ y,

1
2iβ e

+iβ(x−y) + η
2iβ e

−iβ(x+y−2) for x > y.
(2.30)

Proof. We seek an integral operator K with

Ku(x) =

∫ 1

0
k(x, y)u(y)dy u ∈ L2[0, 1] (2.31)

defined on the space L2[0, 1] such that Ku satisfies the boundary conditions
and

LKu = u. (2.32)

For k to satisfy (2.32) we require that∫ 1

0
Lk(x, y)u(y)dy = u(x). (2.33)

Thus, we seek a Green’s function k(x, y) such that

Lk(x, y) = 0, x 6= y. (2.34)
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We solve the equation (2.34) subject to the homogeneous forms of the bound-
ary conditions in (2.19). Let k1 be solution to the initial value problem

k′′1 + β2k1 = 0, (2.35)

k′1(0) + in0βk1(0) = 0. (2.36)

Moreover, let k2 be solution to the initial value problem

k′′2 + β2k2 = 0, (2.37)

k′2(1)− insβk2(1) = 0. (2.38)

With k′ and k′′ we denote the corresponding first and second partial deriva-
tives of the kernel with respect to x. Equation (2.35) is the homogeneous
Helmholtz equation and its solution is given as:

k1(x) = c1e
iβx + c2e

−iβx.

By taking the first derivative with respect to x we obtain

k′1(x) = iβc1e
iβx − iβc2e

−iβx.

The boundary condition (2.36) implies that c1 = 0 and the parameter c2

can be assigned arbitrarily, we get

k1(x) = c2e
−iβx.

Similarly, equation (2.37) is the homogeneous Helmholtz equation with
the following solution and its first derivative

k2(x) = c3e
iβx + c4e

−iβx,

k′2(x) = iβc3e
iβx − iβc4e

−iβx.

We do some calculations to obtain that

c3 =
c4

η
e−2iβ,

and

k2(x) = c4

(
1

η
eiβ(x−2) + e−iβx

)
.

Now we write the kernel as

k(x, y) =

 k1(x)k2(y) for x < y,

k2(x)k1(y) for x > y.
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We require that k(x, y) be continuous at x = y, this means that

k1(x)k2(x) = k2(x)k1(x)⇒ c2 = c4 = c,

and then

k(x, y) = c

 k1(x)k2(y) for x < y,

k2(x)k1(y) for x > y
(2.39)

In order to fix the constant c we integrate equation (2.34) over x in the
interval [y − ε, y + ε]. To satisfy (2.33) we have∫ y+ε

y−ε
(k′′ + β2k)dx = 1,

This leads to

lim
ε→0

[
k′(y + ε, y)− k′(y − ε, y)

]
= 1. (2.40)

We calculate the first partial derivative of K(x, y) with respect to x as

k′(x, y) = c

 k′1(x)k2(y) for x < y,

k′2(x)k1(y) for x > y.

For x = y, substituting the last in (2.40) produces:

c =
1

k1(y)k′2(y)− k′1(y)k2(y)
,

after doing some calculations we obtain

c =
ηe2iβ

2iβ
.

substituting the value of c in (2.39) and doing calculations we obtain the
aimed integral kernel in the form

kβ(x, y) =


1

2iβ e
−iβ(x−y) + η

2iβ e
−iβ(x+y−2) for x ≤ y,

1
2iβ e

+iβ(x−y) + η
2iβ e

−iβ(x+y−2) for x > y.
(2.41)

After finding this kernel we easily check that it satisfies the Helmholtz equa-
tion and the corresponding boundary conditions.

In Chapter 4, we use a quadrature method to solve the direct problem.
For that purpose, we prepare a Matlab-code called the direct solver. This
code computes the total field for a given contrast function. We use this
direct solver to generate data required as an input for solving the inverse
problem. The data are presented in the reflection coefficients which are
the difference between the values of the incident and the total fields on the
surface of the coating.



Chapter 3

The Inverse Problem and
Methods of Solution

In this chapter, we investigate the inverse scattering problem of the model
(2.19). The objective in this problem is to determine the spatially-varying
refractive index based on the values of the reflection coefficients. Solving
this problem consists of dealing with two major difficulties. The first is the
nonlinearity; this is because of the nonlinear dependence of the field on the
refractive index. The second is the ill-posedness. According to Hadamard,
the existence, uniqueness, and stability of a solution are the three main con-
ditions for the well-posedness of some linear or even nonlinear problem. If
one of these conditions is not satisfied, then the problem is said to be ill-
posed. Physically, regarding the existence of the solution, it is not necessary
to find an ARC which fulfills a specific given range of the reflection coef-
ficients. The non-uniqueness means that it is possible that different ARCs
may produce the same range of the given reflection coefficients. Third con-
cerning the instability, small errors in the reflection coefficients, lead to large
errors in the contrast function which is the solution of this problem. This
chapter proposes the regularization methods which are applied to stabilize
the solution of both linearized and nonlinear inverse problems. We refer 1

mainly to [42,45] for a general analytic study of the regularization of ill-posed
problems, besides [21, 55]. We formulate the inverse nonlinear problem of
our model in Section 3.1. To deal with the nonlinearity, we consider an it-
erated Born approximation in Section 3.2. The second iteration of the Born
approximation yields a quadratic approximation of the problem which is dis-
cussed also in the same section. Next, we introduce regularization methods
including the AI-method to solve the linearized problem in Section 3.3. The
last section of this chapter is devoted to dealing with the nonlinear problem
of our model. For that purpose, we present an extension, introduced by
Louis [43], of the AI-method for solving the quadratic problem.

1Both references [42] and [55] are in German language.
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3.1 The inverse nonlinear scattering problem

In this work, we consider the inverse problem concerned with the determi-
nation of the optical coating refractive indices based on the values of the
reflection coefficients which represent the input data. These reflection coef-
ficients are the difference between total and incident fields at the surface of
the coating. They are computed for different values of the wave numbers.
We recall the boundary value problem (2.19) of our model:

(BV P )


u′′(x) + β2u(x) = −β2f(x)u(x), x ∈ (0, 1),

u′(0) + in0β u(0) = 2in0β,
u′(1)− insβu(1) = 0.

(3.1)

If we consider the integral formulation (2.26), we obtain the total field as

u(x, β) = u0(x, β)− β2

∫ 1

0
kβ(x, y)u(y, β)f(y)dy, with x, y ∈ [0, 1]. (3.2)

The electric field is measured at x = 0. We get∫ 1

0
−β2kβ(0, y)u(y, β)f(y)dy = u(0, β)− u0(0, β)︸ ︷︷ ︸

Data=:g(β)

, (3.3)

which is a first kind integral equation. The kernel kβ(0, y) is obtained from
(2.30) as

kβ(0, y) =
1

2iβ

(
eiβy + ηe−iβye2iβ

)
.

For a given field u we have to find the unknown contrast function f , and
then the refractive index n2 = 1 +f . This optical coating synthesis problem
is an inverse medium scattering problem. Inverse scattering problems arise
when information about some unknown object are recovered depending on
measurements of waves scattered by this object. Such problems exist in
diverse areas of applications as medical diagnostics, nondestructive indus-
trial testing, submarine, and oil exploration. For more details about inverse
scattering problems, we refer to [13]. One of the main difficulties in solv-
ing the inverse scattering problems is the nonlinearity. This is because the
dependence of the field u on the contrast function f is nonlinear. The meth-
ods deal with nonlinearity vary between two approaches, the first one uses
nonlinear techniques by applying e.g. iterative algorithms, consult Section
(3.4) for details. Whereas, the second approach discusses linearized inver-
sion schemes. The linearized schemes depend on approximations of Born or
Rytov type [32, 53] which are valid for media with low contrasts, e.g., [25].
We use Born approximation for linearizing the mathematical integral model
(3.2).
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3.2 Born series and approximations

We consider the integral formulation (3.2) of the BVP (3.1). In operator
notation, it reads

u = u0 +Afu, (3.4)

where A is the linear operator given by

Aϕ(x, β) =

∫ 1

0
−β2kβ(x, y)ϕ(y)dy = u(x, β)− u0(x, β), with ϕ = fu.

(3.5)
We denote by Af the operator defined as Afu = Afu. Equation (3.4)reads
as

u−Afu = u0,[
I −Af

]
u = u0,

u =
[
I −Af

]−1
u0,

The operator (I − Af ) is supposed to be invertible in the vicinity of f = 0
and (I−Af )−1 denoting the inverse operator of (I−Af ). We get the infinite
Born series for the field u

u =

∞∑
l=0

(Af )lu0. (3.6)

Thus, the Born series is an expansion of (3.4). The terms of this series
represent the successively higher orders of the scattering [8]. If we just
consider the first two orders in (3.6) and ignore the other higher orders, we
obtain the finite Born series as

u(x, β) ≈ u0(x, β)︸ ︷︷ ︸
l=0

+Af [u0(y, β)]︸ ︷︷ ︸
l=1

+Af
[
Af [u0(y, β)]

]︸ ︷︷ ︸
l=2

, (3.7)

here l = 1 and l = 2 stand for the Born Approximation for the field u of
the first-order and of the second-order, respectively. The electric field is
measured at the point x = 0. We substitute that in (3.7) to obtain

Af [u0(y, β)](β)︸ ︷︷ ︸
A linearized (A1)

+Af
[
Af [u0(y, β)]

]
(β)︸ ︷︷ ︸

A quadratic (A2)

≈ u(0, β)− u0(0, β)︸ ︷︷ ︸
=g(β) (Data)

. (3.8)

Equation (3.8) stands for the iterated Born approximation with regards to
the field u.
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3.2.1 The linear approximation

Here we are concerned with the case l = 1 in (3.7). Thus, we linearize the
problem using the first-order Born approximation. The scattered field us is
supposed to be much smaller than the incident field u0. Therefore, it could
be neglected in (2.21) by setting

u(y, β) ≈ u0(y, β). (3.9)

By substituting (3.9) in the left hand side of (3.3) we obtain the linear
Fredholm integral equation of the first kind∫ 1

0
−β2kβ(0, y)u0(y, β)︸ ︷︷ ︸

=:k̃(β,y)

f(y)dy = u(0, β)− u0(0, β)︸ ︷︷ ︸
=:g(β)

. (3.10)

We formulate equation (3.10) using operator notation, we obtain:

A1 : X = L2([0, 1]) −→ L2([βmin, βmax]) = Y,

A1f(β) =

∫ 1

0
k̃(β, y)f(y)dy = g(β), y ∈ [0, 1]

(3.11)

where A1 is the linearized operator and k̃(β, y) is the integral kernel given
by

k̃(β, y) =
βi

2

(
e2iβy + η2e−2iβ(y−2) + 2ηe2iβ

)
. (3.12)

The data are the differences between the values of the total and incident
fields at the point x = 0. These differences are called the reflection coef-
ficients. From these data, we have to find the unknown contrast function
f and, respectively the refractive index n =

√
1 + f . To numerically solve

this inverse problem, we seek a system of linear equations. This requires a
diversity of the wave number β. The diversity enables the descretization,
and then, the reduction of this problem into a system of linear equations.
According to [27, 40]; there is no unique solution to the inverse scattering
problem neither linearized nor normalized, for a single frequency. The nondi-
mensionalised wave number β is ranging in the interval [βmin, βmax]. Hence,
our linearized semi-discrete problem seeks f as a solution of the equation:

A1f(βj) = g(βj) j = 1, ....,M, (3.13)

where βj are samplings of the wave numbers.
The Born Approximation is a practically feasible linearizing method.

The validity of this method is ensured when the contrast function f satisfies
the inequality

κd sup
x∈(0,1)

|f(x)| < 4πb, (3.14)
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where b is a small constant, in practice we take b = 0.16, see, e.g., [53].
The left hand side of this inequality is a rough estimate for the phase shift
between the incident field and the wave propagation throughout the object.
The range of the wave numbers [βmin, βmax] taken in the numerical test
examples must satisfy the condition above in order to get a good recon-
struction.

3.2.2 The quadratic approximation

The quadratic approximation of the inverse problem discusses the case where
l = 2 in (3.7). This comes as an additional step to improve the linear
approximation. We have

A2f(β) = A1f
[
A1f [u0]

]
(β) = A1f

[
− β2

∫ 1

0
k(y1, β)u0(y1, β)f(y1)dy1

]

= −β2

∫ 1

0
k(y2, β)

[
− β2

∫ 1

0
kβ(y1, y2)u0(y1, β)f(y1)dy1

]
f(y2)dy2

=

∫ 1

0

∫ 1

0

[
β4k(y2, β)kβ(y1, y2)u0(y1, β)

]︸ ︷︷ ︸
k2β(y1,y2)

f(y1)f(y2)dy1dy2.

(3.15)
Thus, the quadratic operator of our model is defined as

A2f(β) =

∫ 1

0

∫ 1

0
k2
β(y1, y2)f(y1)f(y2)dy1dy2. (3.16)

We compute next the integral kernel k2
β(y1, y2) of this quadratic operator.

By changing the variables in (2.41), we obtain the integral kernel kβ(y1, y2)
as:

kβ(y1, y2) =


1

2iβ e
−iβ(y1−y2) + η

2iβ e
−iβ(y1+y2−2) for y1 ≤ y2,

1
2iβ e

+iβ(y1−y2) + η
2iβ e

−iβ(y1+y2−2) for y1 > y2.

(3.17)

From equation (2.24), we have

u0(y1, β) = eiβy1 + ηe−iβ(y1−2). (3.18)

We refer to [8, 32] for more details about the Born approximation.
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3.3 Regularization methods for linear problems

After linearizing the nonlinear inverse problem (3.3) in the last section, we
still have to deal with the ill-posedness of the new linearized inverse scat-
tering problem (3.11). The ill-posedness means that the solution of this
problem may not exist. This solution, if it exists, may not be unique. More-
over, the dependence of this solution on the data is discontinuous. This
ill-posedness occurs since the underlying operator is a compact operator
with non-closed range defined between two Hilbert spaces. To stabilize the
solution of our linearized inverse problem, we need to apply regularization
methods. Famous regularization methods are truncated singular value de-
composition, Tikhonov-Phillips methods, and the method of the Approxi-
mate Inverse.

If we consider a bounded linear operator A between the Hilbert spaces
X and Y with the norm ‖ x ‖=< x, x >, where < x, x > is the scalar
product. Then according to the famous concept of Hadamard, the problem
(A,X, Y ) of solving the equation Af = g is called well posed if there exists
a unique and a stable solution f ∈ X for every data g ∈ Y . Otherwise
the problem is called ill-posed. The stability of the solution is here in the
sense that the operator A has a continuous inverse. The problem is then
ill-posed if the solution does not depend continuously on the data, i.e., a
small error in the data may produce a large error in the solution. This
data noise is unavoidable and typical in practice since the measurements are
endowed with errors. The integral equations of the first kind lead to compact
operators with a non-closed range R(A) between two Hilbert spaces. The
problem (A,X, Y ) is thus ill-posed since the pseudoinverse or the generalized
inverse A† of a linear operator A is not continuous. The operator A†, named
also Moore-Penrose inverse, with the domain D(A†) := R(A) ⊕ R(A)⊥ is
defined as [42]:

Definition 3.1. If we consider the problem (A,X, Y ) then the generalized
inverse of the linear operator A is defined as

A† : D(A†) ⊂ R(A)⊕N (A∗) = Y −→ N (A)⊥ ⊂ X,
g −→ f †,

(3.19)

where N (A∗) is the null-space of the adjoint operator A∗ of A, N (A)⊥ is
the orthogonal complement of the null-space of A and f † is the minimum
norm solution which minimizes the residual:

J(f †; g) =‖ Af † − g ‖≤‖ Af − g ‖ ∀f ∈ X.

Any compact operator A between the Hilbert spaces X and Y admits a
singular value decomposition {vn, un;σn}n, n ∈ N where vn, un are normal-
ized and

Avn = σnun and A∗un = σnvn.
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Theorem 3.3.1. Let A be a compact operator with the singular system
{vn, un;σn}n. Then we have

A†g =
∑
σn>0

σ−1
n < g, un > vn for g ∈ D(A†).

Proof. We refer to [42, Chapter 3].

The regularization methods are used to stabilize the solution, e.g., [36],
[37], [38]. The aim is to approximate the unbounded operator A† with a
family of continuous operators Tγ as explained in the following definition.

Definition 3.2. Let A be a compact operator between the Hilbert spaces X
and Y , a regularization {Tγ}γ>0 of A† is a family of continuous operators
Tγ : Y → X such that there exists a mapping

γ : R+ × Y → R+

called a regularization parameter satisfying

lim
ε→0

Tγ(ε,gε)g
ε = A†g (3.20)

for every g ∈ D(A†) := R(A)⊕R(A)⊥ and gε ∈ Y with ‖g − gε‖ ≤ ε.
If Tγ are linear, then {Tγ}γ>0 is called linear regularization.

To evaluate the total error of solving an inverse problem we compare A†

and Tγ with respect to the L2-norm in (3.20), we obtain

‖ Tγgε −A†g ‖ ≤‖ Tγgε − Tγg + Tγg −A†g ‖
≤‖ Tγ ‖ ‖ gε − g ‖︸ ︷︷ ︸

Data Error

+ ‖ Tγ −A† ‖︸ ︷︷ ︸
Approximation Error

‖ g ‖ . (3.21)

If γ is very small, the approximation error will be very small too. In this
situation, Tγ tends to A† which is unbounded, a condition which is unde-
sirable. The discretization leads to a numerically ill-conditioned system of
equations. For large γ, the system tends to be well conditioned, however, T γ

will go far away from A†. Thus, T γ is no more a good approximation of A†.
As a result, the regularization parameter γ is chosen optimally as a trade-
off in order to keep the total error as small as possible. In our numerical
simulation, γ is chosen based on trial and error.

In our numerical simulation in Chapter 4, we apply the method of Ap-
proximate Inverse as a main regularization method for solving the inverse
problem. This method is introduced sections (3.3.1) and (3.4.1) for both
cases of linearized and quadratic problems, respectively. Moreover, we com-
pare our numerical results in the case of the linearized problem with the
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classical method of Tikhonov-Phillips. This method replaces minimizing
‖ Af − g ‖Y by minimizing the cost functional

Jγ(f) :=‖ Af − g ‖2Y +γ2 ‖ f ‖2X , (3.22)

with the penalty term γ2 ‖ f ‖2 where ‖ . ‖ is the L2-norm. The functional
Jγ(f) admits a unique minimizer fγ ∈ X computed as the solution of the
normal equation:

A∗Afγ = A∗g,

A∗Afγ + γfγ = A∗g,

(A∗A+ γI)fγ = A∗g,

(3.23)

where I is the identity operator, A∗ is the adjoint operator of A and γ > 0
is the regularization parameter. Finding the solution fγ is then reduced
to numerically solving a system of linear equations with respect to the dis-
cretization of the aforementioned regularized normal equation (3.23). For
more details, we refer mainly to [42, Chapter 4.2]. As an efficient and sta-
ble scheme, we next introduce the method of the Approximate Inverse for
solving the linearized problem.

3.3.1 Approximate Inverse for the linearized problem

In order to stabilize the solution of our ill-posed linearized problem (3.11),
we mainly use the method of the Approximate Inverse (AI). This method
was firstly introduced in [48]. For the analytic study of this regulariza-
tion method we refer to Louis [43]. AI is efficient method for solving
linear problems [45] and nonlinear problems [43, 44] and later on in sub-
section (3.4.1). It has been extended for image reconstruction [46], for
feature reconstruction [47], and for solving inverse problems on Banach-
spaces [35, 58]. This method has been implemented successfully in many
applications [1, 23,24,34,36,56,59].

We consider a compact linear operator A, the aim of this method is to
find a stable solution f to the equation Af = g by computing an approxi-
mation

fγ(x) = 〈f, δγx〉X with δγx ≈ δx.

The mollifier δγx converges (as γ tends to zero) to the Delta distribution δx
for the reconstruction point x. Let n,m ∈ N,Ω ⊂ Rn and let X,Y be Hilbert
spaces with X = L2(Ω)n, let also L(X,Y ) be the space of linear continuous
operators between X and Y and L(X) = L(X,X). Then, we can introduce
the following definition.
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Definition 3.3. The family of operators {Mγ}γ>0 ⊂ L(X) forms an ap-
proximation of the identity if

lim
γ→0

Mγf = f for f ∈ X.

{Mγ}γ>0 has the rate α > 0 if there exist a positive constant C > 0 such
that

‖Mγf − f ‖≤ Cγα ‖ f ‖ for f ∈ X.

If furthermore for x ∈ Ω, there exists δγx ∈ X such that for f ∈ X

Mγf(x) =< f, δγx >, x ∈ Ω,

then the function δγ defined by

δγ(x, y) := δγx for x, y ∈ Ω

is called the mollifier associated to Mγ.

A typical example is the Gaussian mollifier given by

δγ(x, y) = (2π)−n/2γ−n exp(−| x− y |2/(2γ2)) (3.24)

Some other example is the band-limiting filter

δγ(x, y) =
(γ
π

)n
sinc(γ(x− y)).

In both examples γ acts as a regularization parameter. To relate the data g
to the solution we have to determine a reconstruction kernel ψγx by solving
the following auxiliary equation

A∗ψγx = δγx , (3.25)

where δγx is the mollifier defined above and A∗ is the adjoint operator of
A. If equation 3.25 is not solvable then the reconstruction kernel ψγx is
approximated by minimizing the defect ‖ A∗ψγ − δγ ‖ which leads to the
normal equation of 3.25 as

AA∗ψγx = Aδγx . (3.26)

Then, depending on (3.25), it holds

fγ(x) = 〈f, δγx〉X
= 〈f,A∗ψγx〉X
= 〈Af, ψγx〉Y
= 〈g, ψγx〉Y =: Sγg(x).

(3.27)
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For the case of (3.26), we have

fγ(x) = 〈f, δγx〉X
' 〈f,A∗ψγx〉X
= 〈Af, ψγx〉Y
= 〈g, ψγx〉Y =: Sγg(x).

(3.28)

Definition 3.4. Let δγx be a suitable mollifier and let ψγx be the solution
of (3.26), then Sγg := 〈g, ψγx〉 is called the approximate inverse of the
operator A and ψγx is called the reconstruction kernel.

The minimum-norm solution of the equation Af = g is the solution with
the smallest norm. It lies in the range of the adjoint operator A∗ and then
it is computed by solving the equation

AA∗u = g where f † = A∗u. (3.29)

The next theorem [43] states the relation between the minimum norm solu-
tion f † and the approximate inverse

Theorem 3.3.2. The approximate inverse maps the right hand side of the
equation Af = g to the mollified version of the minimum norm solution fM ,
i.e.,

Sγg = 〈f †, δγ〉.

Proof. From (3.29) and depending on the injectivity of AA∗, we write

f † = A∗(AA∗)−1g. (3.30)

From (3.26) we obtain

ψγx = (AA∗)−1Aδγx . (3.31)

Thus, we find

Sγg(x) = 〈g, ψγx〉Y
= 〈g, (AA∗)−1Aδγx〉Y from (3.31)

= 〈A∗(AA∗)−1g, δγx〉X Def. of A∗

= 〈f †, δγx〉X from (3.30).

The method of the approximate inverse is then stable since the recon-
struction kernel ψγx is precomputed independently from the data g and the
related measurement errors. Some other advantage of this method is the
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flexibility in the choice of the mollifier δγx appropriately to the problem. We
may also mention that this method is efficient taking in consideration how
the invariance properties compute the reconstruction kernel with less nu-
merical computation effort. Since it suffices, in the case of invariance, to
compute the reconstruction kernel ψγx at few, instead of all, reconstruction
points x in the underlying interval. For more details about the invariance
we may refer to [43].

Application of the Approximate Inverse

We recall now the linearized operator (3.11) of our model

A1 : X = L2([0, 1]) −→ L2([βmin, βmax]) = Y,

A1f(β) =

∫ 1

0
k̃(y, β)f(y)dy = g(β),

(3.32)

where the related integral kernel (3.12) is

k̃(y, β) =
βi

2

(
e2iβy + η2e−2iβ(y−2) + 2ηe2iβ

)
. (3.33)

Thus, the adjoint operator of A is given by

A∗1 : L2([βmin, βmax]) −→ L2([0, 1]),

(A∗1g)(y) =

∫ βmax

βmin

k̃∗(y, β)g(β)dβ, y ∈ [0, 1].

(3.34)

Applying the adjoint operator on the reconstruction kernel we get the aux-
iliary equation in the following integral form

(A∗1ψ
γ
x)(y) =

∫ βmax

βmin

k̃∗(y, β)ψγx(β)dβ = δγx(y), y ∈ [0, 1], (3.35)

where the integral kernel of A∗ is computed by

k̃∗(y, β) = k̃(y, β) =
−βi

2

(
e−2iβy + η2e2iβ(y−2) + 2ηe−2iβ

)
. (3.36)

By discretizing the interval [βmin, βmax], the space Y in (3.32) is replaced
by the euclidean space RM . M denotes the number of the wave lengths
λj , j = 1, .....,M taken in the interval [λmin, λmax]. Thus we have now βj
with 1 ≤ j ≤M such that

β1 = βmin =
2πd

λmax
and βM = βmax =

2πd

λmin
. (3.37)
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Depending on this discretization, the matrix that represents A1A
∗
1 is called

the Gram matrix. We find the Gram matrix by setting

A1A
∗
1 : L2([βmin, βmax]) −→ L2([βmin, βmax]),

where

A1A
∗
1g(β) =

∫ 1

0
k̃(y, β)A∗1g(y)︸ ︷︷ ︸

3.34

dy

=

∫ 1

0
k̃(y, β)

[∫ βmax

βmin

k̃∗(y, β′)g(β′)dβ′
]
dy

=

∫ βmax

βmin

[∫ 1

0
k̃(y, β)k̃∗(y, β′)dy

]
︸ ︷︷ ︸

Gram Matrix

g(β′)dβ′, for β, β
′ ∈ [βmin, βmax] .

(3.38)
Thus, the Gram matrix denoted by G is given by

Gββ′ =

∫ 1

0
k̃(y, β)k̃∗(y, β′)dy, for β, β

′ ∈ [βmin, βmax]

The analytical computation of the Gram matrix of our model for the case
β 6= β′ is given by

Gββ′ = ββ′

e2i(β−β′) − 1

8i(β − β′)
+
η2e−4iβ′

[
e2i(β+β′) − 1

]
8i(β + β′)

+
ηe−2iβ′

[
e2iβ − 1

]
4iβ



− ββ′
η2e4iβ

[
e−2i(β+β′) − 1

]
8i(β + β′)

+
η4e4i(β−β′)

[
e−2i(β−β′) − 1

]
8i(β − β′)



− ββ′
η3e2i(2β−β′) [e−2iβ − 1

]
4iβ

+
ηe2iβ

[
e−2iβ′ − 1

]
4iβ′



+ ββ′

η3e2i(β−2β′)
[
e2iβ′ − 1

]
4iβ′

+ η2e2i(β−β′)

 .
(3.39)

The wave numbers β, β
′

are ranging in the interval [βmin, βmax].



3.4. REGULARIZATION METHODS FOR NONLINEAR PROBLEMS45

The Gram matrix is computed for the case of β = β′ as

Gββ = β2

[
(η2 + 1)2

4
+
η2

2

]
+ ηβ

[
(η2 + 1)

2
sin 2β +

η

8
sin 4β

]
. (3.40)

Similar to the discrete system of equations in (3.35), the Gram matrix is ill-
conditioned. Therefore, we compute the reconstruction kernel numerically
using the method of Tikhonov-Phillips

(A1A
∗
1︸ ︷︷ ︸

G

+γI) ψγx = A1δ
γ
x .

Thus, the numerical implementation of the Approximate Inverse on our
model deals with two regularization parameters. Another use of the Gram
matrix is considered within the quadratic approximation of the problem as
explained in the next section. The numerical implementation of this method
is discussed in Chapter (4).

3.4 Regularization methods for nonlinear problems

The linearization methods, such as the previously introduced Born approx-
imation, have a limited scope of application. This is because of their re-
stricted validity (3.14). Therefor, in many applications it is necessary to
treat the nonlinear model. The theory of linear ill-posed problems is rather
completely developed [42,45]. This, however, is not the case for the nonlinear
ill-posed problems.

Among the well-known methods for solving nonlinear inverse problems
are the iterative schemes. These schemes reconstruct the unknowns of the
problem iteratively from an a priori guess. The method of Tikhonov-Phillips
is reformulated to solve nonlinear problems in the sense of least squares. To
briefly explain that, we consider a nonlinear operator equation of the form

A(f) = g,

where A : X −→ Y is a continuous nonlinear operator. Recalling the
Tikhonov-Phillips minimizer described in equation (3.22) for solving the
linearized problem

Jγ(f) :=‖ Af − g ‖2Y +γ2 ‖ f ‖2X . (3.41)

A generalization of the functional (3.41) to the nonlinear case is given by

Jγ(f) :=‖ A(f)− g ‖2Y +γ2 ‖ f − f∗ ‖2X , (3.42)

where f∗ ∈ X is an a priori guess of the solution f and γ2 ‖ f − f∗ ‖2
is the penalty regularization term. For more details, the reader is advised
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to consult [21, Chapter 10] and [55, Chapter 7]. The iteration methods
are typically used to solve a sequence of forward problems via, e.g., finite
difference schemes as done in [41], where a similar generalization to (3.42)
was used to solve the inverse nonlinear problem of the BVP (3.1). We refer
to [21, Chapter 11] for other iterative methods including Landweber method
and Gauss-Newton-type methods.

Other schemes such as [7, 57] solve the nonlinear inverse problem of
(3.1) by using coupled-mode Zakharov-Shabat systems. Theses methods
are applied after a reduction of the second order Helmholtz equation into a
system of first order differential equations. Such systems are solved, in most
cases, numerically. We refer also to [12] for methods based on trace formula,
and for [19] for methods that use spline approximation projection.

We use in this work a direct method to solve the nonlinear inverse prob-
lem. The framework for this approach was introduced in [60, 61]. An algo-
rithmic realization using the Approximate Inverse is due to Louis [43]. In
this approach, the Born series is firstly expressed as a formal power series in
tensor powers of the searched-for quantity. After that, this quantity, which
is the solution of the inverse problem, is formulated explicitly as an inverse
Born series in tensor powers of the scattering data. This method reduces
the ill-posed nonlinear problem into multilinear problems with successive
orders. The first problem is an ill-posed linear equation resulting from con-
sidering the first order in the inverse Born series. Whereas, the multilinear
problems of higher orders are obtained by power series identification. For
application of this approach to solve nonlinear inverse scattering problems
in optical tomography, see [50,51].

In our research, we solve the inverse nonlinear problem described in
equation (3.3) by considering only the first two orders of the forward Born
series (3.6). The regularization method used is due to Louis [43, 44] who
extended the method of the Approximate Inverse to calculate a quadratic
approximation to the solution of the nonlinear problem.

3.4.1 Approximate Inverse for the quadratic problem

In [43], Louis extended the method of the Approximate Inverse for solv-
ing some nonlinear problems successfully. For simplicity, we consider the
quadratic problem which coincides with the finite Born series (3.7), see Sec-
tion (3.2.2). We directly apply the approach on our model as follows. Con-
sider the nonlinear operator

A : X = L2([0, 1]) −→ L2([βmin, βmax]) = Y, (3.43)

Suppose that, the interval [βmin, βmax] is descretized, then the co-domain
of operator A in (3.43) is replaced by the euclidean space RM . Here M
denotes the number of the wave numbers βj , 1 ≤ j ≤ M chosen in the
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interval [βmin, βmax]. We suppose further, that the nonlinear operator A is
splitted as

Af = A1f +A2f, (3.44)

where A1 is the linear operator (3.11) of our model, given as

(A1f)βj =

∫ 1

0
k̃1
βj

(y)f(y)dy, j = 1, ....,M,

with the corresponding integral kernel, recall (3.12)

k̃1
βj

(y) =
−βj
2i

(
e2iβjy + η2e−2iβj(y−2) + 2ηe2iβj

)
,

and A2 is the quadratic operator (3.16) defined as

(A2f)βj =

∫ 1

0

∫ 1

0
k2
βj

(y1, y2)f(y1)f(y2)dy1dy2,

where y1 and y2 are the integration variables. The second iterated or the
squared kernel k2

βj
(y1, y2) of our model is computed from (3.15) as

• for y1 ≤ y2

−β2
j η

3

4

(
e2iβjy2

η3
+

2e2iβj

η2
+

2e−2iβj(y1−2)

η
+
e−2iβj(y1−y2−1)

η2
+
e−2iβj(y2−2)

η
+ e−2iβj(y1+y2−3)

)
,

• for y1 > y2

−β2
j η

3

4

(
e2iβjy1

η3
+

2e2iβj

η2
+

2e−2iβj(y2−2)

η
+
e−2iβj(y2−y1−1)

η2
+
e−2iβj(y1−2)

η
+ e−2iβj(y1+y2−3)

)
.

(3.45)

To approximate the solution f , Louis uses the following ansatz

fγ(x) = 〈g, ψγx〉+ 〈g, V γ
x g〉 , (3.46)

where x is the reconstruction point, ψγx is the reconstruction kernel consid-
ered for the linearized operator A1, and V γ

x is M ×M matrix. If we replace
g by Af and use the properties of the inner product, we obtain

fγ(x) = 〈Af, ψγx〉+ 〈Af, V γ
x Af〉

= 〈A1f +A2f, ψ
γ
x〉+ 〈A1f +A2f, V

γ
x (A1f +A2f)〉

' 〈A1f, ψ
γ
x〉+ 〈A2f, ψ

γ
x〉+ 〈A1f, V

γ
x A1f〉 .

(3.47)

The (') in the third line of equation (3.47) implies, that the high order
terms are ignored as only a quadratic problem is considered. Thus, we have

fγ(x) ' 〈A1f, ψ
γ
x〉+ 〈A2f, ψ

γ
x〉+ 〈A1f, V

γ
x A1f〉 . (3.48)
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The linear term 〈A1f, ψ
γ
x〉 is approximated as for the case of linear operators.

This means

〈A1f, ψ
γ
x〉Y ' 〈f, δ

γ
x〉X ,

which coincides with (3.26)

A1A
∗
1ψ

γ
x = A1δ

γ
x .

The computation of the reconstruction kernel ψγx follows as discussed in
Section (3.3.1) for the linear case. If the linear term 〈A1f, ψ

γ
x〉 represents

the solution, then the other two terms in equation (3.48) must be minimized
as much as possible. As a result of this minimizing and since the kernels k̃1

βj

are linearly independent, then the matrix V γ
x is given by

V γ
x = −

M∑
j=1

ψγ,jx Cj .

Thus, from the ansatz (3.46), we obtain

fγ(x) = 〈g, ψγx〉 −
M∑
j=1

ψγ,jx 〈g, Cjg〉 , (3.49)

where the matrices Cj are independent of the reconstruction point x and
given by

Cj = (A1A
∗
1)−1Bj(A1A

∗
1)−1.

The matrices Bj have the form

Bj =

∫ 1

0

∫ 1

0
k̃1(y1)k2

βj
(y1, y2)k̃1(y2)Tdy1dy2, for each j.

We denote with k̃1(y2)T the transpose of k̃1(y2), and with k̃1(y1), k̃1(y2) the
vectors of M components of k̃1

βj
(y1), k̃1

β′j
(y2) respectively. We obtain

k̃1(y1) =
−β
2i

(
e2iβy1 + η2e−2iβ(y1−2) + 2ηe2iβ

)
,

k̃1(y2) =
−β′

2i

(
e2iβ

′
y2 + η2e−2iβ

′
(y2−2) + 2ηe2iβ

′)
.

(3.50)

For generalization to operators with arbitrary orders, we may refer to [43,60].
The numerical implementation of this method is treated in Chapter 4.



Chapter 4

Numerical Results

In this chapter, we apply the method of the Approximate Inverse for solving
both the linearized and the quadratic inverse problems described in Chapter
3. In the case of the linearized problem, we compare our results with those
obtained by applying the regularization method of Tikhonov-Phillips. Ac-
complishing accurate direct simulations is very helpful to test the proposed
solution methods. These direct simulations check the equivalency between
the BVP (2.19) and its integral formulation (2.27). Moreover, they generate
the data for every given contrast function. This, in turn, assures us good
test examples especially when dealing with space-dependent contrast func-
tions. Depending on these data as an input, we solve the inverse problems
which reconstruct the ARC’s contrast function as an output.

4.1 Direct simulations

Recall the Lippmann-Schwinger integral equation (2.27):

u(x) +

∫ 1

0
k̄β(x, y)u(y)dy = u0(x), x ∈ (0, 1), (4.1)

where the kernel is given by:

k̄β(x, y) = β2kβ(x, y)f(y).

For computing a numerical integration using a quadrature rule we have∫
Ω
ϕ(x)dx ≈

n∑
j=1

ωjϕ(xj),

where ωj are the weights, xj are the discretization nodes of the interval Ω
(in our model Ω = [0, 1]), and n is the number of the discretization points.
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We mainly apply Nyström method, see, e.g., [15, 22, 33] to get the linear
system

u(x) +
n∑
j=1

ωj k̄β(x, yj)u(yj) = u0(x), (4.2)

here yj = (j−1)h and the step-size h1 = 1/(n−1). We thus approximate the
integral operator K defined in (2.28) by a sequence of numerical integration
operators

Knu(x) =

n∑
j=1

ωj k̄β(x, yj)u(yj).

We also discretize the variable x by setting xi = (i− 1)h with i = 1, ....., n.
Equation (4.2) becomes

u(xi) +
n∑
j=1

ωj k̄β(xi, yj)u(yj) = u0(xi). (4.3)

The solution to the Fredholm integral equation of the second kind (4.1) is
then approximated by solving the finite dimensional linear system (4.3).

For a fixed wave number β and a given incident field u0(x) as in (2.24),
we consider a contrast function f(x) as an input embedded in k̄β(x, y) =
β2kβ(x, y)f(y) in (4.3). Then, we numerically compute the electric field
u(x) as an output. For the numerical computations, we use Matlab as a
programming language, see, e.g., [26].

To test the accuracy of our system, we consider a test example for a
homogeneous ARC. This means that we deal, as a first step, with the dif-
ferential Helmholtz equation with constant coefficients. For such constant
contrast functions, we compute the analytic electric field as a solution of the
BVP (2.19) then we compare it with the numerical solution of the integral
formulation (4.1).

Test example 1 If we consider an arbitrary constant contrast function
f(x), then the BVP (2.19) becomes

(BV P )


u′′(x) + c2β2u(x) = 0, x ∈ (0, 1),
u′(0) + in0β u(0) = 2in0β,
u′(1)− insβu(1) = 0,

(4.4)

where the relation between the function f and the constant c is

c =
√

1 + f.
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The general solution of (4.4) is

u(x) = c1e
+icβx + c2e

−icβx, (4.5)

where the constants c1 and c2 are computed to satisfy the boundary condi-
tions in (4.4) as

c1 =
2(c+ ns)

(1− c)(c− ns)e2icβ + (1 + c)(c+ ns)

c2 =
2(c2 − n2

s)e
2icβ

(1− c)(c2 − n2
s)e

2icβ + (c+ ns)2(1 + c)
.

Alternatively, the general solution of (4.4) is given in terms of trigono-
metric functions as

u(x) = d1 cos(cβx) + d2 sin(cβx),

where the corresponding constants d1 and d2 are computed as

d1 =
2β [ci cos(cβ) + ns sin(cβ)]

β(c2 + ns) sin(cβ) + icβ(1 + ns) cos(cβ)

d2 =
i(2− d1)

c
.

A comparision between the exact field (4.5) as solution of equation (4.4)
and the numerical field as solution of equation (4.3) is given in figures (4.1)
and (4.2). The real and the image parts of the fields are considered in the
both figures, respectively. In this example, the function f(x) = 0.1 is used
as an input.

A similar comparison between the fields is given in figures (4.3) and (4.4).
The function f(x) = 0.52 is used as an input in this example. Here we have
chosen λ = 4dn = 600.24 where d = 122 nm and nARC = 1.23. This choice
coincides with (A.16) and the discussion hereafter.

We test our direct simulation for many different constant contrasts. The
related relative errors between the exact and the numerical fields are very
small as soon as the wavelength is not smaller than 10 nanometres. These
very small errors assure the equivalency between the BVP and its integral
formulation in the sense of Theorem(2.2.1). Depending on these good re-
sults, we generate the data which will be used for solving the inverse problem.
The Matlab-code prepared for this purpose is called the direct solver. For
a given incident field, this code determines the total field for every input
contrast function. As a result, we get the reflection coefficients which are
the differences between the values of the incident and the total fields on
the surface. The direct solver program is very important especially when
dealing with space-dependent contrast function. This is because there is no
explicit analytic formula for the related total field.
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4.2 Inverse simulations

We test now the proposed reconstruction methods. We begin with the lin-
earized inverse problem, check (3.13). We want to reconstruct the contrast
function f based on the given data or given reflection coefficients. This
reconstruction is achievable by descretization, and then, reduction of the
inverse problem into a system of linear equations. This system is not ex-
plicitly solvable for just one value β of the wave numbers. In order to solve
this system numerically, multiple values for the wave number β have to be
considered. According to [27, 40]; there is no unique solution to the inverse
scattering problem, neither linearized nor normalized, for a single frequency.

This is also compatible with what we have in practice. The measure-
ments correspond to a range of the wave lengths along the surface of the
ARC. We take sampling of wave numbers [βmin, βmax], we use the step-size
h2 = (βmax − βmin)/(M − 1), where M denotes the number of the wave
lengths λl, l = 1, .....,M taken in the interval [λmin, λmax]. The wave num-
bers at the boundaries are given by

β1 = βmin =
2πd

λmax
and βM = βmax =

2πd

λmin
. (4.6)

The data is the difference between the values of the incident and the
total fields at the surface of the ARC: u(0, β) − u0(0, β). For the case of
reconstructing a constant contrast functions, we compute the data directly
as we have the explicit formulas (2.24) and (4.5) of both incident and to-
tal fields, respectively. For the case of reconstructing a space-dependent
contrast functions, we introduce the following example.

Test example 2 We rewrite the BVP (2.19) in terms of the Helmholtz
differential equation with a variable refractive index, we obtain

(BV P )


u′′(x) + β2n2(x)u(x) = 0, x ∈ (0, 1),

u′(0) + in0β u(0) = 2in0β,
u′(1)− insβu(1) = 0,

(4.7)

with n2 = 1+f . The formula which connects the space-dependent refractive
index n with the field u is given by:

u(x) =
1√
βn(x)

(
A(x)eiS(x) +B(x)e−iS(x)

)
, (4.8)

u′(x) = i
√
βn(x)

(
A(x)eiS(x) −B(x)e−iS(x)

)
, (4.9)

where

S(x) = β

∫ x

0
n(ζ)dζ.
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The first derivatives of the functions A(x) and B(x) are

A′(x) =
n′(x)

2n(x)
B(x)e−2iS(x) and B′(x) =

n′(x)

2n(x)
A(x)e2iS(x).

We choose the contrast function f(x), which we want to reconstruct, to be
the function

f(x) =

 x for 0 ≤ x ≤ 1
2

1− x for 1
2 < x ≤ 1

(4.10)

After some calculations we obtain

S(x) =


2β
3

[
(x+ 1)3/2 − 1

]
for 0 ≤ x ≤ 1

2

2β
3

[
2.6742− (2− x)3/2

]
for 1

2 < x ≤ 1.

An analytic computation of the field u (4.8), requires finding explicit formu-
las of the functions A(x) and B(x). This is mostly replaced by numerical
computations, we refer to [7, 41, 57] for more details. Thus, it is also ad-
vantageous making use of our direct solver, which numerically computes the
field and then generate the required data for solving the inverse problem.

We consider the interval of the wave numbers [βmin, βmax]. We seek
the value of the total field at the point x = 0. The direct solver computes
M−times the difference u(0, β)−u0(0, β). This, in turn, generates our data,
check (3.10).

To ensure the validity of the Born approximation, the contrast function
f(x) and the interval [βmin, βmax] must satisfy the condition

β sup
x∈(0,1)

|f(x)| < 4πb, (4.11)

where b is a small constant, e.g., b = 0.16 or b = 0.2.
The relative errors in the linear and quadratic approximations for the

reconstructed function f(x) are defined respectively as

δlin :=
‖ flin − fexact ‖L2(0,1)

‖ fexact ‖L2(0,1)

δquad :=
‖ fquad − fexact ‖L2(0,1)

‖ fexact ‖L2(0,1)

where flin and fquad denote the contrast functions computed using the linear
and the quadratic approximations respectively.
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Firstly, we deal with the linear approximation. For the inversion, the
reconstruction kernel ψγx is computed numerically as a solution of equation
(3.35) independently of the data. In this computation, we use the Gaus-
sian mollifier described in equation (3.24). Next, we compare the calculated
results of the Tikhonov-Phillips method to those of the method of the Ap-
proximate Inverse. For the reconstruction procedure, the equations (3.23)
and (3.28) are applied to the two methods respectively.

Beginning with test example 1, we applied the method of AI to recon-
struct the constant contrast function f(x) = 0.1. The reconstruction was
achieved in the interval [40, 900]. See Figure (4.5). As previously mentioned,
satisfying the validity of the Born Approximation is crucial for the success-
ful application of the reconstruction methods. Attempting to reconstruct
the same function in the interval [15, 900] results with bad reconstruction.
This is because of not respecting the aforementioned validity condition, see
Figure (4.6). For the reconstruction of the space-dependent contrast func-
tion f = 1

4y, see Figure (4.7). The data here are generated using the direct
solver.

In the case of test example 2, the validity of the first iteration of
the Born approximation is checked in the interval [βmin, βmax]. For that
purpose, we established a comparison between the numerical solutions of
two equations. These are equation (4.1) and the one-time linearized integral
equation (3.10). The result is shown in Figure (4.8). Figure (4.9) shows the
outcomes of applying both methods; TP and AI to reconstruct the function
in this example. A reconstruction of the same function, with perturbed
data, is presented in Figure (4.10).

Secondly, we discuss the case of the quadratic approximation. For that
purpose, the validities of both, the first and the second iterations of the
Born approximation are checked in the interval [βmin, βmax]. In this case,
an additional comparison is needed. This is due to having a third equation
attributed to second iteration of the Born approximation. This equation is
the two-time linearized integral equation (3.8). The two remaining equations
to be compared are (4.1) and (3.10). See Figure (4.11). Figures (4.12)
and(4.13) show the outcomes of applying the method of AI to both, linear
and quadratic approximations to reconstruct the function in test example
2. A reconstruction with perturbed data is presented in Figure (4.14).

4.3 Adaptive modeling

An efficient alternative way to improve the linear approximation is to use a
threshold to decide where to apply a higher (quadratic) order of approxima-
tion. This leads to what we call adaptive modeling. We take here advantage
of the method of the Approximate Inverse which is a local method. Hence,
we seek some criterion which evaluates the quality of the linear reconstruc-
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tion in every part of the function f . Such a criterion depends on the validity
of the Born approximation. For fixed frequency, the Born condition de-
pends on the strength of the contrast f . By setting another upper-bound
for the contrast as a threshold, we can locally choose where we need to apply
the quadratic approximation. In Figure (4.9), it is clear that the parts of
the function that match low contrasts are well-reconstructed. This is due
to matching the Born approximation which is valid for low contrasts. We
recall the global validity-condition (4.11)

β sup
x∈(0,1)

|f(x)| < 4πb, (4.12)

with b = 0.2. The aforementioned criterion assumes a stronger condition
than (4.12), namely the computable condition with the linear approximation
flin of f

β sup
x∈(0,1)

|flin(x)| < πb. (4.13)

The low contrasts and respectively the parts of the function which obey the
a-posteriori condition (4.13), are well reconstructed by the linear approxi-
mation. For these parts, there is no need to accomplish any approximation
of higher order. Numerically, we prepare a small Matlab-code to implement
this criterion. The resulting vector, has a length N , where N represents
the number of the discretization points chosen in the reconstruction interval
(0, 1). The nonzero values in this vector coincide with the good reconstructed
parts in the function. However, the zero values leads to the parts, which
need higher order of reconstruction. The quadratic approximation is used
then only to improve the reconstruction in these relevant parts, which are
not good reconstructed. Comparing equations (3.49) and (3.28), we see that
the corrections C achieved in the quadratic approximation are given by

C(x) = −
M∑
j=1

ψγ,jx 〈g, Cjg〉 . (4.14)

These corrections were computed numerically for each sampling of the gen-
erated data. During this numerical computation, the method of Tikhonov-
Phillips was used to find the inverse of the ill-conditioned Gram matrix
(3.39). Thus, we consider the corrections described in equation (4.14) for
the improvement of the reconstruction only in the relevant parts. Figure
(4.15) stands for the comparison between both, the linear and the quadratic
approximations using the idea of the adaptive modeling. See also Figure
(4.16) for the reconstruction of the Ramp function.
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Figure 4.1: Direct Simulation: L2 − Relative error = 0.0023 with fixed wave
length λ = 80 nm, for reconstruction of the of the field in its real
part.

Figure 4.2: Direct Simulation: The image part of the field considered in the Figure
above
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Figure 4.3: Direct Simulation: L2 − Relative error = 0.0016 with fixed wave
length λ = 600.24 nm, for the reconstruction of the of the field in
its real part.

Figure 4.4: Direct Simulation: The image part of the field considered in the Figure
above.
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Figure 4.5: The inverse problem: Reconstruction of f(x) = 0.1 in the wavelength
interval [40, 900] nm, δlin = 0.1350 for the method of AI.

Figure 4.6: Inverse simulation: Bad reconstruction of f(x) = 0.1 in the wave-
length interval [15, 900] nm. Since this interval does not satisfy the
validity of Born approximation (4.11). δlin = 2.0911 for the method
of AI
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Figure 4.7: The inverse problem: Reconstruction of the function f = 1
4y for exact

solution (in blue) and reconstructed solution for the AI (in red) and
TP (in green) as methods of regularization. The relative errors are
δlin = 0.0904 and 0.6139, respectively, with simulated data considered
for a wave lengths ranging between 60 and 1300 nm.

Figure 4.8: Linearization validity: L2−Relative error = 0.1178 for simulated data
(in blue) and one-time linearized data (in red) using the first Born
approximation where Example (4.10) is considered for a wave lengths
ranging between 350 and 900 nm.
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Figure 4.9: The inverse problem: Reconstruction of Example (4.10) for exact solu-
tion (in blue) and reconstructed solution for the Approximate Inverse
(in red) and Tikhonov-Phillips (in green) as methods of regulariza-
tion. The relative errors are δlin = 0.1911 and 0.2282 respectively,
with simulated data considered for a wave lengths ranging between
350 and 900 nm.

Figure 4.10: The inverse problem: Reconstruction of Example (4.10) with per-
turbed data of level 0.2% with relative errors δlin = 0.1996 and
0.2336 for AI and TP respectively
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Figure 4.11: Linearization validity of both first and second iterations of Born:
L2 − Relative errors are 0.1178 and 0.0291 respectively. For simu-
lated data (in blue), one-time linearized data (in red), and two-times
linearized data (in green)

Figure 4.12: The inverse problem: Reconstruction of Example (4.10) for exact
solution (in blue), reconstructed solution for AI- linear approxima-
tion (in red), and for AI- quadratic approximation (in green). The
relative errors are δlin = 0.1911 and δquad = 0.1079 respectively,
with simulated data considered for a wave length ranging between
350 and 900 nm.
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Figure 4.13: The inverse problem: Another reconstruction of Example (4.10) for
exact solution (in blue), reconstructed solution for AI- linear approx-
imation (in red), and for AI- quadratic approximation (in green).

Figure 4.14: The inverse problem: Reconstruction of Example (4.10) with per-
turbed data of level 0.15 %.
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Figure 4.15: The inverse problem ( Adaptive modeling): Reconstruction of Ex-
ample (4.10) for exact solution (in blue), reconstructed solution for
AI- linear approximation (in red), and for AI- quadratic approxi-
mation (in green). The corrections are partially considered. The
relative errors are δlin = 0.1911 and δquad = 0.0418 respectively.

Figure 4.16: The inverse problem ( Adaptive modeling): Reconstruction of the
Ramp function for exact solution (in blue), reconstructed solution
for AI- linear approximation (in red), and for AI- quadratic approx-
imation (in green). The corrections are partially considered.
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Short discussion

We first solved the direct problem accurately as shown in Figures (4.1)
through (4.4). This was done by applying the Nyström quadrature method
to solve Fredholm integral equation. Based on that, we prepared a direct
solver to generate the data, which are required to solve the inverse problem.
Secondly, we checked the validity of the Born approximation. Any interval
that does not satisfy the validity of the Born approximation leads to a bad
reconstruction as shown in Figure (4.6). The reconstruction of the space-
dependent contrast function f = 1

4y in Figure (4.7) assures that the Born
approximation is valid for low contrasts. The lower the contrast the better
the reconstruction. This validity was also checked for the case of test exam-
ple 2 in Figure (4.8). The next step was to test the stability of the method of
the Approximate Inverse in comparison to the method of Tikhonov-Phillips.
We then checked the validity of the second iteration of the Born approxima-
tion as in Figure (4.11). Figures (4.12) and (4.13) showed the improvement
achieved by applying the quadratic approximation. The nonlinear part was
responsible for the middle error in the result. Although there was no data
error in the middle, see Figure (4.15). The choice of the regularization pa-
rameters in both, the linear and the quadratic approximations was achieved
empirically. The approach was fast, since during the computation of the
nonlinear coefficients, the same Gram matrix was reused. This, in turn,
reduced the computation time.



Conclusion

In this research, we solved an inverse scattering problem for the design of
Anti-Reflection Coatings. The main objective in the inverse problem was
to determine the space-dependent refractive index of some coating from
prescribed reflection coefficients on the surface. The more general case of
an inhomogeneous ARC was discussed. For modeling the light propaga-
tion through a stratified isotropic medium, we reduced the time-harmonic
Maxwell’s equations into a one-dimensional Helmholtz equation with pre-
scribed boundary conditions. From the resulting boundary value problem,
we derived an equivalent formulation as a Fredholm integral equation of the
first kind. The difficulty in inverse scattering problems is twofold as they
are nonlinear and ill-posed. We applied an iterated Born approximation for
linearizing the relevant nonlinear mathematical model. The second iteration
of the Born approximation was used to approximate the nonlinear problem.
We solved both the linearized and the quadratic problems using the efficient
method of the Approximate Inverse. We developed a direct solver based
on Nyström quadrature method for solving the integral equation of the sec-
ond kind. Using the direct solver, it was possible to generate the data for
a known contrast function. We checked the validity of the Born approx-
imation as a linearization method of the nonlinear inverse problem. We
tested the stability of the method of the Approximate Inverse in compari-
son to the widely used Tikhonov-Phillips regularization method. Observing
the outcomes of the numerical simulations provided evidence for the better
performance achievable by the method of the Approximate Inverse. The
method was extended by Louis using nonlinear approximation of higher or-
der. This extension enabled applying the method to solve the nonlinear
inverse problem using the quadratic approximation. The validity of the
second iteration of the Born approximation is checked. It was shown that
the quadratic approximation did, in fact, improve the linear approximation
considerably.
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Outlook

As interesting issues for further investigations we can mention:

• The validation of the numerical method presented in this contribution
by using experimentally-generated data.

• Computing the singular value decomposition of the relevant linearized
operator. This is important, not only to apply and compare an ad-
ditional classical regularization method, but also to find another way
for the computation of the inverse Gram matrix. Such a matter may
be helpful for solving the quadratic problem.

• The applicability of the approach in the optimal design of some higher
dimensional models and thin-film structures. For example, diffraction
gratings, guided-mode grating resonant structures, as well as models
with omnidirectional Anti-Reflection properties.

• A complete discussion about the diversity of the wave numbers re-
quired for solving the inverse problem.

• Finding an optimal implicit criterion to be used in the adaptive mod-
eling.
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Appendix A

Physical Background

In this Appendix we discuss some elementary physical concepts related to
our model. We start with the importance of solar energy in comparison to
other energy resources. Then we talk about the solar photovoltaics, history,
types and the efficiency of the solar cells. Next, we describe the concept of
Anti-Reflection Coatings (ARCs) to see how they improve the efficiency of
the solar cells. We deduce the coefficients of light transmission and reflection
and compare them for some different interfaces.

Solar energy and other energy resources

Solar energy represents largest and most important renewable energy re-
source. Examples for other energy renewable resources are hydroelectric
power, wind power, bioenergy, shallow geothermal energy, and deep geother-
mal energy. The natural resources of nuclear materials and fossil fuel are
limited. Therefore, their production will be expensive in the future. The
cost of crude oil prospecting increases and so does the cost of the energy
used to generate it hereafter.

The constant that represents the average power density of the solar ra-
diation outside the the Earth atmosphere is called the solar constant. It
is specified according to well-established measurements and equals 1366 W/
m2. The total annual solar energy which arrives to the surface of Earth is
5.46 × 1024 J. The J denotes the Joule the energy measurement unit. Al-
though there exists a 30% reflected loss of the solar radiation reaching the
Earth, in addition to a 20% absorbed loss into the sky clouds, nearly 0.01%
of the aforementioned annual solar energy can cover the energy demand of
the entire world. The following equation evaluates the worth of an energy
production [10]:

Energy Balance or EROI =
energy return

investment
=

energy in a volume of fuel

energy required to produce it
,
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with EROI standing for energy return on investment. For example, the
value of energy balance in the crude oil production was about 100 in the
1930s, while it dropped to 25 in 1970s. The solar electricity is based on a
well established technology that is constantly being improved by scientists
in the field. Therefore, the value of their energy balance is expected to
grow up in the coming years. With this steady increase in the value of the
solar electricity, one can prospect their prevalence as an alternative of the
classical energy productions. For more information we may refer to e.g.
German Solar Industry Association1.

Solar photovoltaics and solar cells

A well-established predicts report that the worldwide energy demand can’t
be supported by only depending on the fossil fuel. One of the solar energy
applications is the solar water heaters. These heaters can cover just a decent
part of the whole energy demand. Solar photovoltaics come as a suitable
replacement of the old fossil energy. Solar photovoltaic energy is not only
the most, but also the fastest increasing energy technology to date.
Photovoltaics (PV) is a method for generating electric power using the
solar cells by converting the sun light, as a flow of photons, into electricity.
Solar cells are solid-state devices used in the above mentioned technology
to convert the solar radiations into a flow of electrons.

Figure A.1: Crystalline silicon solar cells in the Nellis Solar Cell Planet, located
within Nellis Air Force Base in Nevada- US. Photo source is [10]

1www.solarwirtschaft.de
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Efficiency of solar cells

According to American Society for Testing and Materials: In order to evalu-
ate their efficiency, solar cells must satisfy standard illumination conditions,
these are:

• intensity of 1000 W/ m2,

• ambient temperature of 25◦C,

• a sunlight spectrum passed through the atmosphere into the cells,
when the elevation between the sun and the horizon is at 42◦.

Respecting the above mentioned illumination conditions in addition to reach-
ing the maximun power point [10], the efficiency of solar cells is defined with
the following ratio

Efficiency =
Output power as electricity

Input power as solar radiation
.

Solar cells, types and history

In the 1870s, when the first solar cells were made, selenium was the mate-
rial of choice. However its poor efficiency (about 0.5%) motivated research
for better materials for this purpose. More efficient discovered materials
are the modern crystalline silicon solar cells designed and demonstrated in
1954s by Gerald Pearson, Darryl Chapin and Calvin Fuller. The related re-
search project was first established in 1953s in Bell Laboratories in Berkeley
Heights, New Jersey, US. The efficiency of the silicon solar cells started from
5.7% at that time, which is ten time more than that obtained from selenium,
and has been improved to 24% before 2000s. These crystalline silicon solar
cells occupy the largest proportion of the market share with about 80%.
They vary in two main types: monocrystalline and polycrystalline silicon
solar cells, see Table (A.1)

Type Efficiency (%) Cost $/Wp Market share (%)

Monocrystalline Si 17-20 3.0 30

Polycrystalline Si 15-18 2.0 40

Amouphous Si 5-10 1.0 5

CIGS 11-13 1.5 5

Table A.1: Comparision between some types of solar cells, table source is [10]

where Wp denotes the peak watt which is the power (in watts) produced
by solar module under standard illumination conditions. Other types of solar
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cells are the thin-film solar cells, like the amorphous silicon solar cells which
is less-efficient than the first two types. Other examples of thin-film solar
cells are those made from CIGS (copper, indium, gallium, selenide) and
CdTe-CdS, they lie after the crystalline silicon ones in market share. The
newest but not yet high efficient are the organic solar cells. The policy in the
economy and the improvement in the Photovoltaics technology had a key
role in decreasing the price of solar cells. It is worth mentioning some factors
behind the general price-differences in the various types of solar cells. Such
factors include: efficiency, life time, and the amount of materials needed for
manufacturing ,e.g., silicon feedstock, wafers and ingot and the production
itself.

Anti-Reflection Coatings

Anti-Reflection Coatings (ARCs) are thin films deposited, e.g., onto
solar cells to enhance their efficiency by reducing the reflected light, see
Figure (A.2).

Figure A.2: The setting of the ARC onto solar cells.

Anti-Reflection Coatings were invented in early twentieth century, and
since then they have found several fields of applications, e.g., camera lenses,
ophthalmics, displays, optical-fiber devices and microscopes.
The Refractive index of some medium is defined as

n ≡ c

v
,

where c is the speed of light in a vaccum and v is the speed of light in this
medium.
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Coefficients of transmission and reflection

Assume that we have some classical silicon solar cell without ARCs. We want
to evaluate the transmission and reflection of the light at normal incidence
(incident angle θ = 0) on the interface of this silicon solar cell at x = 0, see
Figure (A.3). We follow [10] and consider two media, the first medium is
the air environment with refractive index n0 = 1 and the second medium is
a silicon solar cell with refractive index nsi = 3.49. The incident wave eiκn0x

with the x-axis as a direction of propagation has the free space wavenumber
κ as

κ =
wn0

c
,

where the frequency is denoted by ω and c stands for the speed of the light
in the vacuum. The electric and magnetic fields intensities E and H of the
incident wave are computed via the following formulas:

EI = Iei(κx−ωt), (A.1)

HI =
n0

c
Iei(κx−ωt), (A.2)

respectively, where I is a constant which denotes the incident light intensity.

Figure A.3: Medium 1 is a vacuum and medium 2 is a silicon solar cell without
ARC.

The wavenumber for the light transmitted into the silicon medium is
given by

κT =
wnsi
c

.

The electric and magnetic fields intensities of the transmitted wave are

ET = T ei(κT x−ωt),



76 APPENDIX A. PHYSICAL BACKGROUND

HT =
nsi

c
T ei(κT x−ωt),

respectively, where T is a constant which denotes the intensity of the trans-
mitted light. The reflected wave lies in the same medium as the incident
wave (air environment). Both of them have the same absolute value, how-
ever, their directions are reversed with respect to the x-axis. Thus the
electric and magnetic fields intensities of the reflected wave are given by

ER = Rei(−κx−ωt),

HR =
−n0

c
Rei(−κx−ωt), (A.3)

with R a constant which denotes the intensity of the reflected light.

The electric and magnetic fields intensities are continuous at the interface
x = 0, which implies that:

EI + ER = ET , (A.4)

HI +HR = HT . (A.5)

We substitute equations (A.1)-(A.3) in (A.4),(A.5) to get:

I +R = T , (A.6)

n0(I −R) = nsiT . (A.7)

Solving equations (A.6), (A.7) is straightforward and leads to the following
formulas, known as Frensel formulas:

R =
n0 − nsi

n0 + nsi
I, (A.8)

T =
−2nsi

n0 + nsi
I. (A.9)

The power density of the electromagnetic field or the Poynting vector is
defined as in [10, Chapter 2]:

S =
1

µ0
E ×H,

where µ0 denotes the permeability of the free space. Now, we compute the
magnitudes of the power densities of the incident, transmitted, and reflected
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light respectively:

SI =
1

µ0
EI ×HI =

n0

µ0c
I2e−2iωt,

ST =
1

µ0
ET ×HT =

nsi

µ0c
T 2e−2iωt,

SR =
1

µ0
ER ×HR =

−n0

µ0c
R2e−2iωt.

The nondimensionalised transmission and reflection coefficients are
defined respectively as:

T ≡ ST
SI

=
4n0nsi

(n0 + nsi)2
, (A.10)

R ≡ SR
SI

= −
(
n0 − nsi

n0 + nsi

)2

. (A.11)

Example we compute now the percentages of the transmission and reflec-
tion coefficients in the aforementioned setting:

Tsi ≡ 400× 3.49

(1 + 3.49)2
% ≈ 69.24% (A.12)

Rsi ≡ −100× (1− 3.49)2

(1 + 3.49)2
% ≈ 30.76% (A.13)

Thus there is about 30% loss of sunlight in that classical case.

The importance of ARCs

To minimize the light-loss we consider now the last example after depositing
a glass substrate above the solar cell. From equations (A.10), (A.11) we
compute the percentages of the transmission and reflection coefficients in
this new setting. The refractive indices of a vaccum and a glas are n0 = 1
and nGlass = ns = 1.52 respectively, we find:

Ts ≡ 400× 1.52

(1 + 1.52)2
% ≈ 95.75%,

Rs ≡ −100× (1− 1.52)2

(1 + 1.52)2
% ≈ 4.25%.

The less the refractive index of the upper medium, the less the reflected
sunlight and the more the absorbed sunlight.
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One more practical step is to install another layer with a lower refractive
index above the glass one. The idea is to approximately eliminate or reduce
the reflected light. The role of ARCs here is to try to satisfy the desired full
light absorption. They have low refractive indices, varying in the interval
(nVaccum, nGlass). We compute now the percentages of the transmission and
reflection coefficients at the surface x = 0 in the newest setting. We consider
some ARC with thickness d equals to the quarter wavelength in this coating
λ = 4dnARC. This coating has the refractive index nARC = 1.23, we obtain

TARC ≡ 400× 1.23

(1 + 1.23)2
% ≈ 98.93%, (A.14)

RARC ≡ −100× (1− 1.23)2

(1 + 1.23)2
% ≈ 1.06%. (A.15)

Thus, the new setting is necessary to reduce the loss in the incident light to
about 30%. The reason of choosing nARC = 1.23 is due to the need of having
a complete cancellation of the reflection, and this happens if the intensities
of the two reflected light waves on the upper and lower interfaces are equal,
namely: (

n0 − nARC

n0 + nARC

)2

=

(
nARC − ns
nARC + ns

)2

, (A.16)

which leads to the solution nARC =
√
n0ns =

√
1× 1.52 = 1.23.

According to the discussion above, we see that there is a possibility to
approximately eliminate the reflection. However, this possibility is limited
as it assumes that the ARC has a constant refractive index and works for
just one wavelength. This thing, in turn, does not match the experimen-
tally measured data of the reflection which involve a range of wavelengths.
Therefore, we deal in our research with a graded refractive index ARCs, i.e.,
the refractive index of this inhomogeneous coating depends on the space x.
Both the cases of the single or even the multiple layer ARCs could be as
special cases of this setting. This depends, of course, on how we choose the
function that we want to reconstruct.
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