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Executive Summary
Clustering is a popular computational approach for partitioning data sets into groups
of objects that share common traits. Due to recent advances in wet-lab technology,
the amount of available biological data grows exponentially and increasingly poses
problems in terms of computational complexity for current clustering approaches. In
this thesis, we introduce two novel approaches, TransClustMV and ActiveTrans-
Clust, that enable the handling of large scale datasets by reducing the amount of
required information drastically by means of exploiting missing values.
Furthermore, there exists a plethora of different clustering tools and standards

making it very difficult for researchers to choose the correct methods for a given
problem. In order to clarify this multifarious field, we developed ClustEval which
streamlines the clustering process and enables practitioners conducting large-scale
cluster analyses in a standardized and bias-free manner.
We conclude the thesis by demonstrating the power of clustering tools and the

need for the previously developed methods by conducting real-world analyses. We
transferred the regulatory network of E. coli K-12 to pathogenic EHEC organisms
based on evolutionary conservation therefore avoiding tedious and potentially dan-
gerous wet-lab experiments. In another example, we identify pathogenicity specific
core genomes of actinobacteria in order to identify potential drug targets.

Kurzzusammenfassung
Clustering ist ein populärer Ansatz um Datensätze in Gruppen ähnlicher Objekte zu
partitionieren. Nicht zuletzt aufgrund der jüngsten Fortschritte in der Labortechnik
wächst die Menge der biologischen Daten exponentiell und stellt zunehmend ein Pro-
blem für heutige Clusteralgorithmen dar. Im Rahmen dieser Arbeit stellen wir zwei
neue Ansätze, TransClustMV und ActiveTransClust, vor die auch das Bear-
beiten sehr großer Datensätze ermöglichen, indem sie den Umfang der benötigten
Informationen drastisch reduzieren da fehlende Werte kompensiert werden können.
Allein die schiere Vielfalt der vorhanden Cluster-Methoden und Standards stellt

den Anwender darüber hinaus vor das Problem, den am besten geeigneten Algo-
rithmus für das vorliegende Problem zu wählen. ClustEval wurde mit dem Ziel
entwickelt, diese Unübersichtlichkeit zu beseitigen und gleichzeitig die Clusteranalyse
zu vereinheitlichen und zu automatisieren um auch aufwendige Clusteranalysen zu
realisieren.
Abschließend demonstrieren wir die Nützlichkeit von Clustering anhand von realen

Anwendungsfällen die darüber hinaus auch den Bedarf der zuvor entwickelten Me-
thoden aufzeigen. Wir haben das genregulatorische Netzwerk von E. coli K-12 ohne
langwierige und potentiell gefährliche Laborarbeit auf pathogene EHEC Stämme
übertragen. In einem weiteren Beispiel bestimmen wir das pathogenitätsspeziefische
„Kerngenom“ von Actinobakterien um potenzielle Angriffspunkte für Medikamente
zu identifizieren.
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Abstract

Motivation

Currently, researchers conducting cluster analyses face a set of methodological and
practical problems. We identify the following three most critical objectives:

Missing Values
Especially in the post-genome area, a tremendous growth of available biological
datasets of ever increasing precision and quality can be observed. As welcome as
this growing amount of available biological datasets is, this trend also poses a multi-
tude of problems when applied to clustering algorithms. Particularly problematic is
the calculation of pairwise similarities between all objects, a necessary prerequisite for
a cluster analysis. It appears to be more and more the actual bottleneck, especially
when applying complicated similarity measures. The existence of this bottleneck has
been widely neglected so far but limits the research community in conducting clus-
tering analyses on a large scale. Thus, sophisticated methods have to be developed
which also enable the usage of complex similarity functions for massive datasets.

Unifying Clustering
As the second problem for the practitioner we identified the plethora of existing clus-
tering algorithms being a huge obstacle. Every newly proposed method is compared
only to a selected handful of already existing tools on a possibly biased selection
of datasets. Furthermore, almost all clustering tools use their very own input and
output format which renders the conduction of large comparative clustering studies
a very exhausting and error-prone process.

Practical Issues
Even in cases were the researcher has identified a feasible clustering tool able to cope
with the dataset size, the actual execution of a cluster analysis still poses several
problems. For most problems, reliable gold standards do not exist; thus, finding
a meaningful and unbiased density parameter poses a problem. Furthermore, the
results of a cluster analysis need to be integrated into entire pipelines and combined
with other datasets. All this impacts the clustering process and guidelines are needed.

Results

In the framework of this thesis, we developed a solution for the aforementioned ob-
jectives:

Missing Values
We show that most of the calculated pairwise similarities only carry redundant infor-
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mation, and neglecting them barely influences the clustering result. Our main con-
tribution is the development of methods enabling the existing and widely accepted
clustering tool TransClust to strategically exploit this fact and produce high quality
cluster results while using only a small fraction of the pairwise similarities. We in-
troduced two new approaches, TransClustMV and ActiveTransClust. With that, we
were able to reduce the required time for the calculation of the similarity file drasti-
cally, and thus enable the usage of computationally intensive similarity functions on
massive datasets.

Unifying Clustering
With ClustEval, we introduce an integrated clustering framework, assisting the user
in all steps of cluster analyses, from data preprocessing and parameter optimization
to evaluating the reported clusters. The flexibility of the framework allows convenient
extension with new tools, datasets, and quality measures. Furthermore, the layman
is able to inform himself about the different clustering tools and their performance
upon different types of datasets on an easy to use website.

Practical Issues
We demonstrate the integration of our clustering tool into an entire biological frame-
work in a real world application. We successfully transferred the regulatory network of
E. coli K-12 to several pathogenic EHEC strains based on evolutionary conservation
avoiding tedious and potentially dangerous wet-lab experiments. In a second exam-
ple, we identified the pathogenicity core-genome of numerous bacteria of the phylum
actinobacterium. In this study, we also developed a reliable method for determining
a meaningful threshold for protein homology detection without gold standard using
only intrinsic information of the dataset.
In conclusion, we developed three novel tools and frameworks, TransClustMV,

ActiveTransClust, and ClustEval, in order to unify cluster analyses in bioinfor-
matics and meet today’s requirements for state of the art clustering approaches.

6



Acknowledgements

First of all, I want to express my gratitude to my supervisor Prof. Jan Baumbach
and Prof. Thomas Lengauer for not only granting me the possibility to work on such
an interesting and challenging topic but also their support, advice and motivation
throughout the entire thesis and setting up such a fruitful environment allowing my
own ideas to prosper and maturate. I dedicate special thanks to Prof. Jan Baumbach
for his tireless commitment to setting my yet young scientific career on track and for
his advice and friendship outside of the office.
I also want to thank the International Max Planck Research School for granting

my fellowship, the Center for Bioinformatics for providing me office space and ma-
terial, the Cluster of Excellence on Multimodal Computing and Interaction and the
University of the Saarland for financing my traveling. In all institutes, I would like
to thank the supporting staff and IT helpdesk for their always fast and exemplary
help and support, namely, Sabine Nermerich, Polina Quaranta, Jennifer Gerling and
Dirk Raufer.
Of course, all colleagues of the Computational Systems Biology group, including

my office mate Anne-Christin, Rashid, Peng, Nic, and Josch, have earned my grate-
fulness for their kindness, input, valuable feedback and inspiring discussions. Special
thanks is dedicated to my student assistants Christoph L., Christian, Alexander,
Prabhav, and Christoph K. for their great work and dedication to the projects. I also
want to thank my colleagues in Brasil, Prof. Vasco Azevedo, Vini, Eudes and Julio,
and in Newcastle, Prof. Anil Wipat and Goksel for their collaboration, successful
publications and valuable input.
Outside the University, I owe countless people my thank-yous and deepest respect.

I especially want to thank Laura and Fabian, for the tiresome and tedious task of
proofreading my thesis, and providing inspiring input and suggestions for improving
my work. I want to dedicate the last sentence of my acknowledgements to my loving,
caring and supportive parents Margit and Walter and my brother Michael for being
such a great support not only during the thesis, but during my entire life.

7





Contents

1. Introduction 13
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2. Objectives of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3. Structure of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4. Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2. Background and Related Work 23
2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1. Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2. Definition of a Clustering . . . . . . . . . . . . . . . . . . . . . 24
2.1.3. Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2. Similarity Functions & Preprocessing . . . . . . . . . . . . . . . . . . . 27
2.2.1. Metric Based Distances . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2. Correlation-based Distances . . . . . . . . . . . . . . . . . . . . 28
2.2.3. BLAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4. Converting Distances into Similarities . . . . . . . . . . . . . . 31
2.2.5. Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3. Quality Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.1. Internal Quality Measures . . . . . . . . . . . . . . . . . . . . . 33
2.3.2. External Quality Measures . . . . . . . . . . . . . . . . . . . . 35
2.3.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4. Clustering Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1. Affinity Propagation (AP) . . . . . . . . . . . . . . . . . . . . . 39
2.4.2. CFinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.3. Clustering with Overlapping Neighborhood Expansion (Clus-

terONE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.4. Clustering Based on Maximal Cliques (CMC) . . . . . . . . . . 43
2.4.5. Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.6. K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.7. Markov Clustering (MCL) . . . . . . . . . . . . . . . . . . . . . 47
2.4.8. Restricted Neighborhood Search Clustering (RNSC) . . . . . . 47
2.4.9. Repeated Random Walks (RRW) . . . . . . . . . . . . . . . . . 48
2.4.10. Transitivity Clustering (TransClust) . . . . . . . . . . . . . . . 49
2.4.11. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9



Contents

2.5. Evaluation Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5.1. Environment for Developing KDD-Applications Supported by

Index-Structures (ELKI) . . . . . . . . . . . . . . . . . . . . . . 58
2.5.2. jClust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.5.3. The Konstanz Information Miner (KNIME) . . . . . . . . . . . 58
2.5.4. RapidMiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.5.5. The Waikato Environment for Knowledge Analysis (WEKA) . 59
2.5.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6.1. Brown et al. Dataset . . . . . . . . . . . . . . . . . . . . . . . . 62
2.6.2. Actinobacteria Dataset . . . . . . . . . . . . . . . . . . . . . . . 62

3. Handling of Large Scale Similarity Files 65
3.1. Overview and Problem Statement . . . . . . . . . . . . . . . . . . . . . 65

3.1.1. Problem Statement & Introduction . . . . . . . . . . . . . . . . 65
3.1.2. Requirements for a Memory Efficient Cost-Matrix Creator . . . 67

3.2. Methods for Memory-Aware Similarity Processing . . . . . . . . . . . . 68
3.2.1. BLAST and FASTA to Similarity File . . . . . . . . . . . . . . 68
3.2.2. Similarity File to Cost Matrices . . . . . . . . . . . . . . . . . . 69

3.3. Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1. Runtime Analysis and Memory Requirements . . . . . . . . . . 71
3.3.2. Comparison to the Original Cost-Matrix Creator . . . . . . . . 74
3.3.3. Conclusion & Discussion . . . . . . . . . . . . . . . . . . . . . . 76

4. Clustering with Missing Values 77
4.1. The Moving Bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2. Integration of Missing Values into TransClust . . . . . . . . . . . . . . 78

4.2.1. Extension of the Weighted Transitive Graph Projection Prob-
lem (WTGPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2. Cost-Matrix Creation . . . . . . . . . . . . . . . . . . . . . . . 81
4.3. Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5. Active Transitivity Clustering 85
5.1. Evaluation of the Importance of Missing Values . . . . . . . . . . . . . 86

5.1.1. Analyzing the Random Clustering Results . . . . . . . . . . . . 86
5.1.2. Large Critical Clusters . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.3. Small Critical Clusters . . . . . . . . . . . . . . . . . . . . . . . 90
5.1.4. Landmark Method . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2. Strategies for Active Clustering . . . . . . . . . . . . . . . . . . . . . . 93
5.2.1. Similarity Calculation Strategies . . . . . . . . . . . . . . . . . 93

5.2.1.1. Intra/Inter-Cluster Strategy (IICS) . . . . . . . . . . 93
5.2.1.2. Landmark Strategy (LS) . . . . . . . . . . . . . . . . 94
5.2.1.3. Extended Landmark Strategy (ELS) . . . . . . . . . . 94
5.2.1.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . 95

10



Contents

5.2.2. Re-Clustering Strategy . . . . . . . . . . . . . . . . . . . . . . . 96
5.3. Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1. Biological Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.2. Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.3. Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6. ClustEval - A Cluster Evaluation Framework 107
6.1. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.1. Highlevel Setup of the Framework . . . . . . . . . . . . . . . . 108
6.1.2. Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.1.3. Extending the Framework . . . . . . . . . . . . . . . . . . . . . 113

6.2. Methods for Creating Artificial Datasets . . . . . . . . . . . . . . . . . 113
6.3. Automated Threshold Probing . . . . . . . . . . . . . . . . . . . . . . 116
6.4. Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.1. Case Study I: Cluster Evaluation with Synthetic Data . . . . . 120
6.4.2. Case Study II: Detecting Leukemia Subtypes in Gene Expres-

sion Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.3. Case Study III: Inducing a Protein Taxonomy using Protein

Sequence Similarities . . . . . . . . . . . . . . . . . . . . . . . . 124
6.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7. Biological Applications 127
7.1. EHECRegNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.1.2. Materials & Methods . . . . . . . . . . . . . . . . . . . . . . . . 130
7.1.3. Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . 133
7.1.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2. Actinobacterial Core Genome . . . . . . . . . . . . . . . . . . . . . . . 136
7.2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2.2. Materials and Methods . . . . . . . . . . . . . . . . . . . . . . 137

7.2.2.1. Threshold Estimation . . . . . . . . . . . . . . . . . . 137
7.2.2.2. Robustness Analysis . . . . . . . . . . . . . . . . . . . 141
7.2.2.3. The Actinobacterial Phylogenetic Tree . . . . . . . . . 142

7.2.3. Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2.3.1. Threshold Estimation . . . . . . . . . . . . . . . . . . 143
7.2.3.2. Pathogenicity as a Genetic Model . . . . . . . . . . . 144
7.2.3.3. Quality of the Homology Detection . . . . . . . . . . 147
7.2.3.4. The Actinobacterial Phylogenetic Tree . . . . . . . . . 148

7.2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8. Discussion 151
8.1. Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.2. ClustEval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

11



Contents

9. Conclusion 157

10.Outlook 159

Bibliography 163

Nomenclature 175

List of Figures 178

List of Tables 179

A. ClustEval 181
A.1. File System Structure of the Repository . . . . . . . . . . . . . . . . . 181
A.2. Configuration File Examples . . . . . . . . . . . . . . . . . . . . . . . 183

A.2.1. Program Configuration . . . . . . . . . . . . . . . . . . . . . . 183
A.2.2. Dataset Configuration . . . . . . . . . . . . . . . . . . . . . . . 184
A.2.3. Run Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.3. Integrated Dataset Measures . . . . . . . . . . . . . . . . . . . . . . . 185
A.4. Case Study I - Additional Results . . . . . . . . . . . . . . . . . . . . . 186

A.4.1. Dataset Properties . . . . . . . . . . . . . . . . . . . . . . . . . 186
A.4.2. Cluster Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

B. EHECRegNet 189

C. Actinobacterial Dataset 211
C.1. Complete Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
C.2. Additional Proteobacterial Dataset . . . . . . . . . . . . . . . . . . . . 213
C.3. Mapping with the Ortholog Matrix Project . . . . . . . . . . . . . . . 215

12



1. Introduction

1.1. Motivation
Clustering is an unsupervised machine-learning technique [7, 127, 47, 60] and de-
scribes the task of grouping objects in a given dataset in such a way that all objects
in a group (called a cluster) are more similar to each other than to objects of different
clusters [60]. The set of all clusters forms a clustering. In this context, unsupervised
means that no a priori knowledge about the classification of the objects is used [7].
Clustering is used in various disciplines, e.g., information retrieval [104], economics
and marketing [27], astronomy [9, 26], archeology [77], and many others (most ex-
amples and citations were taken from [47]). In the field of computational biology,
clustering is applied to various different problems, e.g., unraveling protein-protein
interactions [22], gene expression data analysis [4], and many other applications.
In this work, we distinguish between three different kinds of clustering [120, 90, 127]:

Partitional Clustering (sometimes also called disjoint or crisp clustering): Each ob-
ject is assigned to exactly one cluster [120, 90, 127].

Overlapping/Fuzzy Clustering: Each object may be assigned to more than one clus-
ter [120, 90, 127].

Hierarchical Clustering: In this case, the algorithm reports hierarchically-nested sets
of clusters, ranging from one cluster containing all objects to a set of clusters
each containing exactly one object [55].

Refer to Subsection 2.1.2 on page 24 for formal definitions. In the course of this thesis,
we mainly discuss partitional clusterings. A central aspect of every clustering task is
the definition of the relationship between the given objects [60]. This is achieved by
the definition of a:

Proximity Measure A proximity measure is a function assigning each object pair
either a similarity (similarity measure) or a distance (distance measure).

This proximity information is often represented in a proximity matrix (or similari-
ty/distance matrix) which serves as the input (in the form of a similarity/distance
file) of a clustering method [60]. Furthermore, every partitional clustering method
requires at least one parameter [57].

Parameter A partitional clustering algorithm takes at least one parameter as an
input and attempts to report the best clustering for the given dataset with
respect to the parameter [57].
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Figure 1.1.: Growth of the GenBank database (left) and the GenExpressionOmnibus (right).
Both databases have shown the same exponential-like growth since their existence.

Clustering tools may require a single parameter (then often called density parame-
ter or threshold) or a parameter set. The parameter k in the well-known K-means
approach defining the number of desired clusters may serve as an example for such
a parameter. Refer to Section 2.4 on page 39 for an overview of the clustering algo-
rithms and their according parameters.
Generally, the aim of a cluster analysis is unraveling the hidden structure of datasets

which are too large for a manual inspection, thus retrieving information more effi-
ciently [47]. In the light of the ever growing amount of available biological data, clus-
tering becomes increasingly popular [127]. As an example, GenBank [18], hosted on
the websites of the NCBI [86], contains more than 165 million sequences resulting in
more than 152 billion base-pairs1, doubling its contents every 18 months. Figure 1.1
depicts the growth of the GenBank since its existence. In total, the full genome
sequences of 200 eukaryotes (including 44 mammals), 2,599 prokaryotes (including
2,442 bacteria and 157 archaea) and 3,845 viruses are ready for download from the
websites of the NCBI2. The same growth can also be observed in other databases,
like gene expression studies collected at the GenExpressionOmnibus (GEO) [40, 12]
holding currently almost one million samples3. Figure 1.1 also depicts the growth
of GEO. These two measures may serve as an example for an ongoing observation:
The development of new wet-lab techniques foster further speed-up of the database
growth. For example, emerging next-generation sequencing technologies have drasti-
cally reduced the cost for DNA sequencing over the last years, allowing for entirely
new possibilities of research [80, 105].

1These numbers are taken from the GenBank growth statistics document of June 15th,
2013, Subsection 2.2.8, “Growth of GenBank”. The up-to-date version can be found at
ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt.

2The numbers were taken from the NCBI genome browser filtering on complete projects only. The
numbers reflect the state as of 6th August 2013. http://www.ncbi.nlm.nih.gov/genome/browse/

3Statistics taken from http://www.ncbi.nlm.nih.gov/geo/summary/ on August 6th, 2013.
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1.1. Motivation

On the one hand, data abundance is a blessing for systems biology, as it enables
new perspectives for research. On the other hand, computational power of current-
day computers is not always sufficient to cope with this increasing amount of available
data [67, 61]. Frequently, the calculation of the the

(N
2
)
pairwise proximities for N

objects consumes the main share of the computation time of a cluster analysis [29, 67,
61]. In order to enable clustering tools to cope with millions of objects, specialized,
single-purpose clustering tools have been developed. These utilize a case-specific
approximate similarity function, e.g., in [61, 71].
In contrast to these single-purpose tools, we aim to enable researchers to utilize the

general-purpose clustering tool TransClust [122, 123, 125] using almost any proximity
function. Therefore, we have to reduce the required computational time spent in
calculating the pairwise similarities. With TransClustMV and ActiveTransClust, we
introduce two novel clustering approaches which only require parts of the proximity
matrix for clustering. This characteristic results in a reduction in both the size of
the proximity file and the runtime used to calculate the proximity matrix. Refer to
Section 1.2 on page 17 where we clarify the objectives of this thesis.

z

Abundance of Biological Data

• Exponential growth of biological information.

• Growing size of datasets reaches the boundaries of computational
power.

• In clustering, the calculation of the proximity measures consumes
most of the computation time.

Even in cases where the size of the dataset does not pose a problem in terms of
computational time, a cluster analysis is still error-prone and complicated. In order
to apply a clustering algorithm to a certain dataset, the practitioner has to overcome
several different obstacles. One challenge for the practitioner is the choice of a suitable
clustering tool for the dataset at hand; not every clustering tool performs equally well
on each dataset [7]. Milligan wrote that “there is no single approach to clustering that
can be regarded as appropriate for most situations” [83] and regards the choice of an
appropriate clustering tool as a fundamental clustering problem. In order to make an
informed decision, the researcher is required to have a solid knowledge in clustering
algorithms in order to know (a) which approaches exist, (b) their limitations, and (c)
how they are applied most efficiently. Ignorance of these facts may lead researchers to
make sub-optimal choices [83]. The problem worsens as there is no repository where
all available tools can be found. Furthermore, there is a lack of readily-available,
unbiased information concerning the performance of the different tools on a sufficient
number of datasets [83]. New clustering approaches tend to be tested solely against a
handful of other algorithms. The impartiality of the datasets selected for this purpose
is not guaranteed. Thus, even for experts, it is very hard to identify the best-suited
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clustering tool for a specific problem [83, 47] and “in many applications it might be
reasonable to apply a number of clustering methods” [47].
We intend to assist researchers in conducting a cluster analysis with our clustering

framework ClustEval (refer to Chapter 6 on page 107) which automatizes most of
the common processes in a cluster analysis. Refer to Section 1.2 on the facing page
where we clarify the objectives of this thesis.

z

Challenges when Utilizing Current Clustering Approaches

• The plethora of clustering tools is confusing and selecting the most
feasible tool for a task is challenging.

• There is no standard pipeline for conducting high quality clustering
analyses.

Once the researcher has identified a feasible clustering tool, a meaningful cluster
analysis still makes high demands on the researcher. Almost all clustering approaches
require at least one parameter to be set specifying the behavior of the algorithm
(compare to Section 2.4 on page 39). Generally, this parameter or parameter set is
used to tune the tool to obtain optimal results, e.g., controlling the average size of
or the number of clusters in the result. Finding such a parameter is a challenging
task, as there is no generally accepted definition of a good clustering since the quality
of a clustering is highly problem specific [127, 83]. Thus, proposing a generally
accepted method for obtaining suitable parameters is impossible. Especially if no
gold standard for a similar problem instance is available for training, the correct
application of a clustering tool poses a challenge in practice. Furthermore, the bare
result of a clustering alone does not necessarily lead to new insights. In order to
derive new knowledge, these results must be integrated into the relevant biological
context using further data from different sources. Again, there is no general approach
for the meaningful handling of clustering results.
In the scope of this thesis, we will concentrate on the application of clustering

for protein-homology detection. We will exemplarily demonstrate the application of
TransClust in two studies and develop a method for reliably discovering a parameter
set for protein homology detection. Refer to Section 1.2 on the facing page where we
clarify the objectives of this thesis.

z

Challenges of Deriving Insights from a Cluster Analysis

• There are no generally accepted guidelines for setting the parame-
ter(s) of a clustering tool.

• The clustering result is rarely the final analysis step in a study; fre-
quently, it needs to be integrated with other methods and datasets.
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1.2. Objectives of This Work

In the motivation we have highlighted three challenges of current-day cluster-analyses:
(1) the abundance of biological data, (2) the plethora of different clustering tools and
their utilization, and (3) the integration of clustering results in biological frameworks.
In this section we want to summarize the objectives of the thesis and outline how we
account for those challenges .

Missing Values The abundance of biological data and the resulting size of the data-
sets reaches the limits of current computational power. Especially the calcu-
lation of pairwise similarities consumes the biggest part of computational time
spent during a cluster analysis. In order to cluster large datasets more effi-
ciently, we exploit the fact that most similarities may be redundant and thus
play only a minor role in the overall clustering result; thus, only parts of the
similarity matrix are required for clustering. We test this assumption in two
steps:

1. We enable TransClust to cope with missing values (TransClustMV). That
means TransClust does not require a full pairwise proximity matrix any-
more but can cluster a dataset when only part of the proximity matrix is
available. This has several consequences:

a) The researcher can intentionally omit the calculation of similarities in
order to save runtime for the calculation and space for the storage of
the proximity matrix.

b) TransClust can also cluster similarity matrices which are unintention-
ally incomplete, e.g., since some similarities were never measured in a
wet-lab experiment.

2. We develop an approach called ActiveTransClust in which the clustering
tool does not solely cope with a similarity file with missing values, but
actively chooses which similarity values must be calculated in an iterative
process.

z

Summary of Objective "Missing Values"

Challenge Enable the utilization of large similarity files and the usage of
complicated similarity functions even for large datasets.

Solution Exploitation of missing values in order to reduce the amount
of required similarity calculations.

Anticipated Result A clustering tool which produces high-quality re-
sults while only using a small fraction of the similarities.
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Unifying Clustering As described in the motivation, we identified that the growing
number of different clustering tools and data standards make the execution
of a cluster analysis increasingly difficult. Here, we aim to ease conducting
cluster analyses, especially comparative ones, using several tools and datasets.
Furthermore, we want to give an overview of the wide variety of algorithms and
data standards. We propose a standardized format for input and output files.
We develop an entire clustering framework (called ClustEval) automating most
of the typical steps of a cluster analysis. This high degree of automation will
not only reduce the amount of time required for conducting a clustering study,
but also increase the comparability of the tools’ performances as all tools are
tested following an identical protocol. Especially methods for the automated
detection of the best density parameter will render the results created by this
framework bias-free and reproducible as no tool is favored over another. We also
present results of clustering runs of prominent datasets on a website, enabling
non-experts to make an informed decision as to which clustering tool to use
for which kind of dataset. The desired features of our clustering framework
ClustEval can be summarized as follows:

1. ClustEval provides an overview of commonly used clustering tools in bioin-
formatics (refer to Section 2.4 on page 39) together with their performance
on several biological datasets.

2. ClustEval automates the application of several clustering tools on a dataset.
3. ClustEval also automates the identification of a parameter set maximizing

a given cluster quality measure (refer to Section 2.3 on page 32).

z

Summary of Objective "Unifying Clustering"

Challenge Ease the utilization of the plethora of clustering tools; devel-
opment of a standard pipeline for conducting high quality clustering
analyses.

Solution Development of the clustering platform ClustEval.

Anticipated Result (a) Standard input and output formats; (b) large
clustering studies can be realized in a highly automated manner;
(c) an overview of the available clustering tools and their true
performance.

Clustering in Practice As a third goal, we demonstrate the power of clustering al-
gorithms in real-world biological applications. Here, the practitioner faces
problem-specific challenges which render it impossible to provide general guide-
lines. In order to ease the widely used and challenging task of clustering in
biological applications, namely, protein homology detection [7, 29], we present

18



1.3. Structure of This Work

Figure 1.2.: Structure of this thesis. From left to right: We start with (a) the related work and
background, then (b) enable the handling of large similarity files by utilizing background storage.
Afterwards, we (c) introduce missing values, followed by (d) introducing active clustering. In
the next part, we (e) introduce the ClustEval framework which is followed by (f) two studies
with biological datasets. We finish this thesis with (g) a discussion, conclusion and an outlook.

two studies. One demonstrates the integration of a clustering into an entire
analysis pipeline aiming to transfer gene regulatory networks of a model or-
ganism to several target organisms. In another study, we develop a reliable
and stable method for detecting a meaningful threshold using only intrinsic
information from the dataset. We will use this threshold in order to detect
homologous proteins by means of clustering selected actinobacteria in order to
unravel pathogenicity specific genes which may help to distinguish harmless
bacteria from pathogens.

z

Summary of Objective "Clustering in Practice"

Challenge Integration of clustering results into a biological analysis
pipeline; development of a guideline to detect a meaningful thresh-
old for protein homology detection without a gold standard.

Solution Using intrinsic information of the dataset to derive a suitable
threshold; integration of the clustering tool in an evolutionary data
analysis pipeline.

Anticipated Result (a) a robust method for detecting a threshold with-
out a gold standard; (b) evolutionarily conserved networks.

1.3. Structure of This Work
Chapter 1: In this chapter, the motivation for this thesis is presented and the objec-

tives are defined.

Chapter 2: This chapter provides the reader with all basic definitions and the general
design of a cluster analysis. In the remainder, the most common proximity
measures, clustering approaches, and cluster-quality measures are presented.

Chapter 3: In this chapter, an efficient method for decomposing large similarity files
into connected components is presented. This method circumvents the shortage
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of main memory by utilizing background storage while still being computation-
ally effective. At the end, runtime analyses are presented.

Chapter 4: This chapter describes the decomposition of cost-matrices while strate-
gically omitting the calculation of many similarities. The cluster quality is
compared to a clustering with full information using different datasets.

Chapter 5: Active clustering is introduced in this chapter. First, problems with the
method presented in the previous chapter are discussed followed by an analysis
and strategy of how to evaluate the importance of missing values. Again, the
results are compared against a clustering based on full information.

Chapter 6: In this chapter, the ClustEval framework is introduced. After describing
the concept, the chapter explains how to create artificial datasets and efficient
ways for probing for an optimal threshold. The results are summarized by
giving three example usecases for the framework and comparing them to a
manual study design.

Chapter 7: Here, two real-world applications are presented. (1) EHECRegNet, which
demonstrates the integration of clustering results into an entire analysis pipeline
transferring evolutionarily conserved gene regulation from a model organism to
several target organisms. (2) We develop a reliable method for calculating a
meaningful density parameter for protein homology detection using only intrin-
sic information of the dataset.

Chapters 8 & 9: Discussion and conclusion of the presented methods and studies,
their powers and limitations. In comparison to the previous chapters which
also contain a small discussion and conclusion, we focus in these chapters on
the overall context of the entire thesis.

Chapter 10: In the last chapter, we give an outlook on possible future developments
and suggest follow-up studies to overcome some of the limitations outlined in
the discussion chapter.

Figure 1.2 depicts the structure of the work and is displayed at the beginning of each
chapter to ease the reader’s orientation. Furthermore, summaries are displayed in a
box like the following (as already seen in the motivation):

z Summary

The small arrow on the left side is changed to a check (") when findings of a chapter
are summarized. Outlooks are indicated with a different box:

z Outlook
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1.4. Publications

In the framework of this thesis several scientific papers emerged. The thesis itself is
highly based on the following publications:

Richard Röttger, Prabhav Kalaghatgi, Peng Sun, Siomar de Castro Soares, Vasco
Azevedo, Tobias Wittkop, Jan Baumbach. Density parameter estima-
tion for finding clusters of homologous proteins - tracing actinobac-
terial pathogenicity lifestyles. Bioinformatics (2013), 29 (2), 215-222,
DOI:10.1093/bioinformatics/ bts653
Section 7.2 is based on this publication.

Richard Röttger, Jan Baumbach. How Little Do We Actually Know? - On
the Size of Gene Regulatory Networks. Shortened form for the highlight
track of the German Conference on Bioinformatics 2012 (original publication
appeared in the IEEE/ACM transactions on computational biology and bioin-
formatics).
Findings of this publication are used in Subsection 7.2.3.

Richard Röttger, Christoph Kreutzer, Thuy Duong Vu, Tobias Wittkop, Jan Baum-
bach. Online Transitivity Clustering of Biological Data with Missing
Values. German Conference on Bioinformatics 2012, 57-68, ISBN: 978-3-
939897-44-6, DOI: 10.4230/OASIcs.GCB.2012.57
Chapter 4 is based on this publication.

Richard Röttger, Ulrich Rückert, Jan Taubert, Jan Baumbach. How Little Do
We Actually Know? - On the Size of Gene Regulatory Networks.
IEEE/ACM transactions on computational biology and bioinformatics (2012),
9(5), 1293-1300, DOI: 10.1109/TCBB.2012.71.
Findings of this publication are used in Subsection 7.2.3.

Richard Röttger4, Josch Pauling4, Andreas Neuner, Heladia Salgado, Julio Collado-
Vides, Prabhav Kalaghatgi, Vasco Azevedo, Andreas Tauch, Alfred Pühler,
Jan Baumbach. On the trail of EHEC/EAEC - Unraveling the gene
regulatory networks of human pathogenic Escherichia coli bacteria.
Integrative Biology. 2012 Jul;4(7):728-33. doi: 10.1039/c2ib00132b.
Section 7.1 is based on this publication.

Josch Pauling, Richard Röttger, Andreas Tauch, Vasco Azevedo, Jan Baumbach.
CoryneRegNet 6.0 - Updated database content, new analysis meth-
ods and novel features focusing on community demands. Nucleic Acids
Res. (2012) Jan;40(1):D610-4.
Findings of this publication are used in Section 7.1.

4Joint first authorship of Richard Röttger and Josch Pauling.
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Tobias Wittkop, Sven Rahmann, Richard Röttger, Sebastian Böcker, Jan Baum-
bach. Extension and robustness of Transitivity Clustering for protein-
protein interaction network analysis. Int. Math. (2011), 7:4, 255-273.
Findings of this publication are used in Section 2.4 and in Chapter 3, 4, and 5.

The following four publications are either submitted or in preparation:

Richard Röttger, Christoph Kreutzer, Sebastian Böcker, Sven Rahmann, Tobias Wit-
tkop, Jan Baumbach. Fuzzy Transitivity Clustering for unraveling com-
plexes in protein-protein interaction networks. (submitted)
Findings of this publication are used in Section 2.4 and Chapter 6.

Peng Sun, Nora K. Speicher, Richard Röttger, Jiong Guo, Jan Baumbach. Bi-Force
- Large-scale bicluster editing and its application to gene expression
data biclustering. (accepted, Nucleic Acids Res.)
Findings of this publication are used in Chapter 6.

Richard Röttger, Alexander Junge, Jan Baumbach. Active Transitivity Cluster-
ing. (working title, in preparation)
Chapter 5 is based on this publication.

Christian Wiwie, Jan Baumbach, Richard Röttger. Standardization and Eval-
uation of Popular Bioinformatics Clustering Tools - An Integrated
Online Framework. (in preparation)
Chapter 6 is based on this publication.
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2. Background and Related Work

2.1. Overview
2.1.1. Basic Definitions
As this thesis focuses on transitivity clustering, a graph-based clustering method, the
basic definitions of a graph must be given.

Definition 2.1.1. Undirected Simple Graph A graph G is a pair of sets G =
(V,E) with E ⊆ [V ]2. Normally, the set V is called vertices or nodes whereas the
set E compromises the edges. Here, [V ]2 denotes all two-element subsets of V , which
means the graph neither contains self-loops nor multiple edges between a pair of
nodes. We will use uv ∈ E as shorthand for {u, v} ∈ E to denote edges.

Definition 2.1.2. Directed Graph A directed graph G = (V,E) again consists of
a set of vertices V but the set of edges is now defined as E ⊆ V × V . Let (u, v) ∈ E
be an edge of the graph, by convention we define u as the start of the edge and v
as the end. We also use uv as a shorthand for directed edges. With this definition,
self-loops are allowed.

Definition 2.1.3. Subgraph A graph G′ = (V ′, E′) is called a subgraph of G =
(V,E) if V ′ ⊆ V and E′ ⊆ E. In short, we write G′ ⊆ G.

Definition 2.1.4. Induced Subgraph A subgraph G′ of G is called an induced
subgraph, iff G′ contains all edges uv ∈ E with u, v ∈ V ′.

Definition 2.1.5. Path A path P = (V,E) is a non-empty graph of the form

V = {v0, . . . , vk} E = {v0v1, v1v2, . . . , vk−1vk}

with all vi being distinct. The length of a path is defined as the number of edges in
this path. The notation of a path can be shortened as P = v0v1 . . . vk. Commonly, a
path P is a subgraph of a graph G.

Definition 2.1.6. Connected Component A connected component G′ = (V ′, E′)
is defined as an induced subgraph of an undirected simple graph G = (V,E) such
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that (1) there is a path between all pairs of nodes in V ′ and (2) there exists no
edge uv with u ∈ V ′ and v ∈ V \V ′. In other words, no vertex can be added to
V ′ without violating requirement (1). For an directed graph we call this defines a
strongly connected component.

Definition 2.1.7. Transitivity We call a graph G = (V,E) transitive if for every
triplet {u, v, w} ∈

(V
3
)

uv ∈ E ∧ vw ∈ E ⇒ uw ∈ E

holds true.

2.1.2. Definition of a Clustering
To begin, we need to establish a definition of a clustering. As already mentioned, a
cluster analysis is performed whenever hidden traits in a dataset need to be exposed.
Nevertheless, due to the many different application areas of clusterings, it is almost
impossible to find a definition fulfilling all demands to a clustering for all different
scientific areas [127, 83]. As Xu et al. [127] put it, “there exists no universally
agreed-upon and precise definition of the term cluster, partially due to the inherent
subjectivity of clustering, which precludes an absolute judgment as to the relative
efficacy of all clustering techniques”. In this work however, we will give a definition of
clustering based upon a proximity measure, i.e., a similarity measure. We are looking
for a partition of a given set of objects, such that the objects within a cluster are
more similar to each other (intra-cluster similarity) than objects of different clusters
(inter-cluster similarity) to each other on average.
In the focus of this work, we distinguish between three different kinds of clustering.

We assume to have a set of N objects V = {v1, . . . , vN}

Definition 2.1.8. Partitional Clustering The (hard) partitional clustering (also
called disjoint or crisp clustering) assigns each object vi ∈ V to exactly one cluster
Cj . A clustering C = {C1, . . . , CK} with K < N is a subset of the power set P(V )
for which holds true:

1. Ci 6= ∅ ∀i = 1, . . . ,K

2.
⋃K
i=1Ci = V

3. Ci ∩ Cj = ∅ ∀i, j = 1, . . . ,K and i 6= j

In the remainder of the manuscript, we refer to this type just as clustering.

Definition 2.1.9. Fuzzy Clustering The fuzzy clustering follows a similar intuition
as the partitional clustering. Again, we consider a clustering C = {C1, . . . , CK} as
a subset of of the power set P(V ). In contrast to hard partitional clustering, with
fuzzy clustering, each object vi can belong to several clusters to a certain degree.
Therefore, we define a membership of vi to cluster Cj as ui,j = [0, 1]. For a valid
clustering, the following properties hold true:
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1.
∑K
i=1 ui,j = 1 ∀j

2. 0 <
∑N
j=1 ui,j < N ∀i

The first condition assures that all objects are contained completely in the clustering,
the second condition forbids the existence of empty clusters analogously to the points
1 and 2 to the definition of the hard partitional clustering.

Definition 2.1.10. Overlapping Clustering The overlapping clustering is similar
to the fuzzy clustering. In contrast to fuzzy clustering, the elements of an overlapping
clustering C = {C1, . . . , CK} do not have a degree of their membership and is defined
as follows:

1. Ci 6= ∅ ∀i = 1, . . . ,K

2.
⋃K
i=1Ci = V

Definition 2.1.11. Hierarchical Clustering In contrast to both aforementioned
clusterings, hierarchical clustering does not simply partition a set into a unique clus-
tering but rather builds a nested structural partition. Again, we consider a cluster-
ing C = {C1, . . . , CK} as a subset of the power set P(V ) such that

⋃K
i=1Ci = V

and Ci 6= ∅ for i = 1, . . . ,K. Furthermore, for each pair Ci, Cj of clusters with
i, j = 1, . . . ,K and i 6= j, exactly one of the following conditions holds:

1. Ci ∩ Cj = ∅

2. Ci ⊂ Cj

3. Cj ⊂ Ci

2.1.3. Cluster Analysis

Despite the large variety of problems tackled with a cluster analysis, all applications
follow a certain structure, which is also depicted in Figure 2.1. They are based on
the concepts presented in [57, 48, 59]:

1. Data acquisition and preparation: This step refers to the process of acquiring
the raw-data and processing them to a ready-to-use similarity file as an input
for a clustering tool. This process itself can be subdivided into the following
steps:

a) Data acquisition: all data involved in the cluster analysis is acquired.
In the framework of the thesis, these are datasets generated in wet-lab
experiments or artificial generated data.

b) Pattern representation: In this step, the features relevant for the cluster
analysis are selected and/or extracted [48, 57]. Feature selection describes
the search and evaluation of a set of features of the dataset which are best
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Figure 2.1.: Workflow of a common cluster analysis. All data required for the analysis, for
example measurements of wet-lab studies, need to be homogenized and transfered to a single
similarity file which forms the input for the clustering algorithm. The next step is the actual
execution of the clustering, followed by the evaluation. The evaluation can be the comparison
of reported clusters with a gold standard or some other measure for judging the result quality.
After the best possible clustering is found, the actual result can be used and interpreted.

suited for the clustering. In contrast to feature selection, feature extraction
involves transformations of the original features into new features that are
more appropriate for the clustering (e.g., principal component analysis,
dimension reduction, etc.) [48].

c) Similarity measure: Here, a suitable proximity measure is selected. Such
a similarity function is highly problem dependent. In Section 2.2 on the
next page, common proximity measures are described. Generally, "it is
important to check that all selected features contribute equally to the
computation of the proximity measure and that no features dominate oth-
ers" [48].

2. Clustering: In the next step, the actual clustering is performed. Generally,
the selection of the most suitable algorithm and its correct application requires
experience in clustering from the scientist in order to achieve optimal results.
Normally, this is done by defining “the clustering criterion, which can be ex-
pressed via a cost function or some other type of rules” [57] first, then selecting
an algorithm most suited for optimizing that criterion (e.g., minimizing the
average distance of objects to their cluster center for a fixed number of clus-
ter). Once an algorithm is selected, finding optimal the parameters for the
algorithm is a challenging task as well. Several prominent algorithms used in
bioinformatics are introduced in Section 2.4 on page 39.

3. Evaluation: In this step, the cluster results are evaluated. Whenever a gold
standard is available, external quality measures can be applied which assess the
agreement of the reported clustering and the gold standard. In contrast, if there
is no gold standard available, so called internal measures are utilized. These
measures evaluate a clustering based on statistical properties of the result, e.g.,
the distribution of the intra- vs. inter-cluster similarity (refer to Section 2.3
on page 32 for more details on quality measures). The result of the evaluation
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process is used to optimize the parameter settings of the applied algorithm by
re-performing the clustering step. Note that in Section 7.2 on page 136, we
introduce a novel internal measure specifically tailored for protein homology
detection.

4. Interpretation: In the last part of a cluster study, the results are interpreted and
a hypothesis can be checked or formulated. It is important that steps 3 and 4 are
not interchanged, meaning that the clustering must not be optimized to support
the researcher’s hypothesis best, but should follow a preferably objective and
independent (from the hypothesis) measure.

In order to receive good quality results, each step must be carried out as carefully
as possible, as mistakes or biases are carried forward through the entire analysis.
All steps should be carried out with a feedback loop (as depicted in Figure 2.1),
thus results in one step may cause revised decisions in a previous step [59]. In
order to support practitioners with such a tedious and error-prone cluster analysis,
we developed an integrated clustering framework, ClustEval (refer to Chapter 6 on
page 107), which assists the user through the aforementioned steps 1-3.

2.2. Similarity Functions & Preprocessing
Once the data is acquired, several steps of preprocessing need to be performed in
order to convert the data at hand into a readable format for clustering algorithms.
A common trait of all clustering approaches discussed in this thesis is the necessity
of a proximity measure. Such a proximity measure quantifies how “close” or how
“distant” two objects are to each other [48]. These measures are called similarity
or distance measure respectively. Note that distance measures can be transformed
into a similarity measure and vice versa. Depending on the data type (continuous or
categorical), a multitude of different measures exist. In the framework of this thesis,
we focus on continuous datasets. Furthermore, we will handle some special cases
used in bioinformatics, like protein similarities based on their amino acid sequence.
Generally, the raw data is available in a N × d data matrix representing N different
objects described with d different attributes. The aim of the proximity function is
the calculation of the proximity measures stored in a symmetrical N ×N similarity
matrix.

2.2.1. Metric Based Distances
Definition 2.2.1. Metric A function m : V ×V → R on an arbitrary set V is called
metric on V if for any u, v, w ∈ V holds:

1. m(u, v) ≥ 0

2. m(u, v) = 0 ⇔ u = v

3. m(u, v) = m(v, u)
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4. m(u,w) ≤ m(u, v) +m(v, w)

Refer to Gower et al. [56] for an extensive discussion about different metric dissim-
ilarity measures. Nonetheless, the most commonly used distance measures belong to
the family of the Minkowski distance.

Definition 2.2.2. Minkowski distance Let u = (u1, . . . , ud) and v = (v1, . . . , vd)
be two objects of the set V . The Minkowski distance is now defined for every p ≥ 1
as

mp(u, v) =
(

d∑
k=1
|uk − vk|p

) 1
p

The best known representatives for this class of metrics is the Euclidean distance
with p = 2,

m2(u, v) =
(

d∑
k=1
|uk − vk|2

) 1
2

,

the City-block or Manhattan distance with p = 1,

m1(u, v) =
d∑

k=1
|uk − vk| ,

and the Sup distance with p =∞,

m∞(u, v) = max1≤k≤d |uk − vk| .

All metrics mentioned above also have disadvantages which should be considered
when using such a metric. Every dimension is weighted equally which can potentially
lead to a domination of one dimension over the others. As an example, consider data
points in two-dimensional Euclidean space where the values of dimension 1 range
between [0, 1] and of dimension 2 between [0, 100]. Let x = (0, 20) and y = (1, 50).
Using a metric, the distance between x and y is clearly dominated by the second
dimension even though the difference of the first dimension is more significant in
relative terms (as it spreads over the entire range of that dimension). To counter
that, the data can be normalized, so that all dimensions have the same range. A
feasible normalization is very problem-dependent and would exceed the scope of this
thesis. Commonly used examples can be found in [47].

2.2.2. Correlation-based Distances

A very popular class of distance measures is presented by measures based on the
correlation coefficient. In bioinformatics, the correlation coefficient is often used for
analyzing gene expression studies [41]. This is mainly due to the property of the
correlation that it is oblivious to the span of magnitudes of the observed values [47].
The correlation measures the similarity of the observations’ relative profiles [47] which
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matches the intuition of genes being co-expressed [41]. For example if we look at
two genes u and v which show the following “expression levels” in three patients of
v = (1, 2, 1) and u = (3, 6, 3), we want them to be labeled as co-expressed, as their
expression pattern follows the same relative profile. In one of the aforementioned
metrics, these genes would be rather dissimilar. Therefore, the correlation coefficient
should only be used in cases where all the data was measured on the same scale and
the actual value is not of particular interest [47].
Definition 2.2.3. Pearson Correlation Let u = (u1, . . . , ud) and v = (v1, . . . , vd)
be two objects of the set V . Furthermore, let w = 1

d

∑d
k=1wk the average of w ∈ V .

The Pearson correlation δ(u, v) is now defined as

δ(u, v) = (1− φ (u, v))
2 with

φ(u, v) =
∑d
k=1(uk − u)(vk − v)(∑d

k=1(uk − u)2 ·
∑d
k=1(vk − v)2

) 1
2

Definition 2.2.4. Spearman Correlation The Spearman correlation is the Pear-
son correlation between the ranked variables rg(u) and rg(v) with

rg(u) = (rg(u1), . . . , rg(ud))
rg(v) = (rg(v1), . . . , rg(vd)).

That means, every real value of a point u ∈ V is ranked according to a given ranking
function rg. Generally, any ranking function rg may be used. The final Spearman
correlation ρ(u, v) is defined as

ρ(u, v) = δ(rg(u), rg(v))

with δ being the Pearson correlation.
The Spearman correlation is less sensitive to large outliers [85]. Furthermore, the

Pearson correlation yields perfect results when the two variables are related linearly,
the Spearman correlation only requires a monotonic relation for a perfect correlation.
Thus, when testing for a linear correlation, the Pearson correlation should be favored
over the Spearman correlation.

2.2.3. BLAST
Besides the metric and correlation based distances, there exist specialized similarity
functions for certain data types. Protein sequences are an example for such a data
type. Here, we introduce a common method for calculating similarities between
protein amino acid sequences based on the sequence alignment of the Basic Local
Alignment Search Tool (BLAST) [5, 6, 25].
BLAST is used to create local alignments of the input sequences (called query

sequences) of proteins with an already existing database of sequences (called subject
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sequences). For a cluster study, a so-called all-vs.-all search is performed, which
means that the database contains the same sequences which are queried afterwards.
BLAST divides the query sequence into small “words”, typically of length three [6].

The database is searched for these words and whenever a “good” hit is found, the
hit is expanded to a local alignment. Such a local alignment is then reported as a
High Scoring Pair (HSP). The most important result for a cluster analysis is the
reported E-value of such a HSP. The E-value reports the number of expected hits
which would be found by mere chance in a random database of the same size. In
other words, the lower the E-value, the more significant the reported hit. In order to
transfer the E-value into a similarity value, the negative log-likelihood is calculated.
For two proteins u and v, the similarity s is s(u, v) = − log10(E-value).
One characteristic of BLAST is that it can report several HSPs for every pair of

proteins u and v in both directions (direction means if u is aligned to v or v is aligned
to u). Let (u← v)k and (u→ v)l with k = 1, . . . ,K and l = 1, . . . , L be the HSPs of
u and v in the indicated direction. Following the suggestions of Wittkop [120], there
are three different means of combining these HSPs to one similarity value.

Definition 2.2.5. Best Hit (BeH) This method selects the best HSP in each
direction (the HSP with the lowest E-value) and in order to “play save” (reduce the
number of false positives), chooses the worst of these two HSPs (the one with the
highest E-value):

s(u, v) = − log
(

max
{

min
k=1,...,K

E-value((u← v)k), min
l=1,...,L

E-value((u→ v)l)
})

.

Definition 2.2.6. Sum of Hits (SoH) This method combines all HSPs in each
direction and afterwards chooses the worst direction for the final similarity:

s(u, v) = − log
(

max
{

K∏
k=1

E-value((u← v)k),
L∏
l=1

E-value((u→ v)l)
})

.

Definition 2.2.7. Coverage (Cov) The last approach additionally accounts for
the length of the two proteins in question. For example the perfect match of a short
protein to a very long one would result in a good HSP, but the biological homology
of both proteins is quite unlikely (given the large difference length alone). In order
to judge the coverage, we define an indicator function:

Iuv(p) =
{

1 if in u the position p is covered by any HSP (u← v)k or (u→ v)l
0 otherwise.

The coverage is again the worst-case of both directions:

coverage(uv) = min

 1
|u|

|u|∑
p=1

Iuv(p),
1
|v|

|v|∑
p=1

Iuv(p)

 .
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This function does not yet account for the quality of the coverage. Letting s′ be
either the BeH or SoH similarity function, the Cov similarity is defined as

s(u, v) = s′(u, v) + λ · coverage(u, v)

with λ being a parameter defining the importance of the coverage. As the coverage
is a measure between [0, 1], λ has to be chosen large enough to compete with the
similarities calculated by BeH or SoH which approximately range between [0, 200],
depending on the implementation. In several studies a λ between 15 and 25 has
proven useful for protein homology detection [121, 120].

2.2.4. Converting Distances into Similarities

In this section we introduced both distance measures and similarity measures and
treated them equally by just naming them proximity measures as both describe the
relationship between two objects. On the other hand, each clustering tool requires
a specific type of proximity measure. TransClust requires a similarity measure, for
instance.
As already mentioned above, similarities and distances can be converted into each

other. Here we will describe some general concepts to convert a distance into a
similarity; in practice, however, a meaningful conversion depends on the clustering
algorithm (e.g., some require similarities between [0, 1]) and the distance used. If
the given distance is limited, e.g., within [0, 1], the conversion can be performed
rather easily. Let d(u, v) denote the distance between the two objects u, v ∈ V ; the
application of one of the following formulas results in a similarity s(u, v) :

s(u, v) = 1− d(u, v)

s(u, v) =
√

1− d(u, v)
s(u, v) = − log(d(u, v))

s(u, v) = 1
d(u, v) − 1 ∀d(u, v) 6= 0

Which formula to apply depends highly on the nature of the distance function. For
example, BLAST E-values get converted by applying − log(E-value).
If the range of the values of a distance function is not bound to an upper limit,

the idea of the above conversions needs to be generalized. That can be achieved
by applying a monotonically decreasing function [60]. For example, the euclidean
distance m2(u, v) is normally converted to a similarity by

s(u, v) = 1
1 +m2(u, v)
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or as suggested for example in the paper of Strahl et al. [109] with

s(u, v) = e−m2(u,v)2
.

These are some examples of how to convert distances into similarities and why
we treat them in the entire thesis as equivalent in practice. Again, the specific
best conversion highly depends on the problem at hand and the distribution of the
distances in the given dataset.

2.2.5. Missing Values
In the course of this work, we will concentrate on missing values and their influence
on clustering algorithms. We can distinguish between two different types of missing
values which must not be confused.

Definition 2.2.8. Implicitly Missing Values The first type of missing values is
what we call implicitly missing values. Depending on the type of data used it can
happen that some values for the similarity matrix are missing as they fall below a
certain detection limit. For example, when using BLAST, the user can specify a
so-called E-value cut-off. Here, BLAST discards the calculation of a HSP whenever
a certain similarity cannot be reached anymore; thus, the result file is missing this
pair. In fact, nevertheless, these missing values do carry information, namely that
the actual value is very low. Most clustering algorithms treat these missing values
by setting them to the lowest possible similarity (depending on the function) or a
certain user defined value. In practice this is usually done to speed up computing the
similarity matrix.

Definition 2.2.9. Explicitly Missing Values In contrast to the implicitly missing
values, we do not have any meaningful assumption about the actual value of explicitly
missing values. These missing values arise by omitting the calculation of the similarity
in the first place, or by the design of the dataset. For example, when the dataset
reflects some wet-lab experiment, it is quite usual that not all pairs were actually
measured. In that case, just because it was never measured, we cannot assume the
similarity to be low or any other predefined value. In fact, we may not draw any
assumption. That poses a problem for clustering algorithms because they cannot be
filled up with some fall-back value; the algorithm must find a way to deal with them
without distorting the entire clustering result.

Here, we will focus mainly on explicitly missing values as we will exploit them in
order to reduce the computational effort required to calculate the similarity file.

2.3. Quality Measures
A crucial part of a cluster analysis is the evaluation of the reported clusters in order
to train or optimize the algorithm’s parameters. Two main types of quality measures
can be distinguished [59, 73]:
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Internal measures Internal quality measures judge the clustering C by certain in-
trinsic statistical properties of the clustering itself.

External measures External measures compare the clustering result C with an avail-
able gold standard K.

The latter method is more straightforward but poses the problem of a possible over-
training of the parameters and is, of course, highly dependent upon the quality of the
gold standard. At the end of this section, we provide on overview of the discussed
quality measures and provide guidelines when to use a certain quality measure.

2.3.1. Internal Quality Measures

One often used internal quality measure was introduced in 1974 by J.C. Dunn [38].
The intuition is that the clusters of a good clustering are compact and well-separated
with regards to the distance measure d. Therefore, a cluster diameter for a cluster
Ci is defined as

diam(Ci) = max
u,v∈Ci

d(u, v)

and an inter-cluster distance between two clusters Ci, Cj as

d(Ci, Cj) = min
u∈Ci;v∈Cj

d(u, v).

Definition 2.3.1. Dunn index The Dunn index is defined as

D(C) = min
Ci∈C


min

Cj ∈ C
Ci 6= Cj

{
d(Ci, Cj)

maxCp∈C diam(Cp)

}
.

A clustering C is said to consists of compact separated clusters relative to d iff D(C) >
1.

The Dunn index is overly sensitive to noise as just one outlier can dramatically
change the diameter of an otherwise very compact cluster or the distance between
two clusters [21]. Thus, several other indexes based on the Dunn index have been
proposed using different methods for defining the diameter and inter-cluster distance,
e.g., using the cluster centers for the distance.
The central idea of the Davies-Bouldin index is to assess the average similarity

of each cluster to its most similar cluster [32]. For that index, we consider a d-
dimensional feature space and the usage of a Minkowski distance as the proximity
measure. In their original work, Davies et al. [32] do not restrict themselves to a
certain metric; however, in the scope of this work, we concentrate on the case of
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using a Minkowski distance rather than the generalized approach. Let Ci denote the
centroid of cluster Ci. We define a scatter measure σi of cluster Ci as

σi = p

√√√√ 1
|Ci|

∑
c∈Ci
|c− Ci|p

using the p as in the Minkowski distance. The distance between two clusters Ci, Cj
is defined as the distance m(Ci, Cj) of the corresponding centroids according to the
metric used. The similarity measure Rij between two clusters Ci, Cj is usually defined
as

R(Ci, Cj) = σi + σj

m(Ci, Cj)
.

Definition 2.3.2. Davies-Bouldin index The Davies-Bouldin index (DB) is de-
fined as

DB(C) = 1
|C|

∑
Ci∈C

R(Ci) with

R(Ci) = max
Cj ∈ C
Ci 6= Cj

R(Ci, Cj)

A lower DB index indicates a better cluster quality. The DB index is often used to
determine the number of clusters k when using K-means (the k resulting in the lowest
DB index) [32, 127].

The next measure, the silhouette value, is based on a similar approach but in
contrast to the aforementioned measures, factors in all pairwise dissimilarities. It was
first introduced by Rousseeuw in 1986 [103]. For every object u ∈ V , a(u) denotes the
average dissimilarity of the object to its own cluster Ci. For the Euclidean distance,
a(u) is the average distance of u to all other objects of the cluster Ci. In contrast,
for every cluster Cj with j 6= i, d = (u,Cj) denotes the average dissimilarity to the
cluster Cj . Further, let b(u) be defined as

b(u) = min
Cj ∈ C
Ci 6= Cj

d(u,Cj).

Definition 2.3.3. Silhouette value Following the definitions of a(u) and b(u) from
above with u ∈ V , the silhouette value s(u) is now defined to reward objects which
are on average closer to their own cluster than to the closest neighboring cluster:

s(u) = b(u)− a(u)
max{a(u), b(u)} .
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For the entire clustering C, the silhouette value is defined as the average silhouette
of all N objects of the object set V :

s(C) = 1
N

∑
u∈V

s(u).

It is apparent that the silhouette values vary between [−1, 1]. For singletons, i.e.,
all clusters Ci with |Ci| = 1, the silhouette value is defined as 0. This measure is
more robust than the other measures as a single outlier does not determine the entire
measure for a cluster. It is also very common to plot the silhouette values of all
objects sorted by the size of the cluster and their value.

2.3.2. External Quality Measures

Generally, external quality measures compare a clustering C = {C1, . . . , Cn} received
as a result of a cluster analysis with an existing gold standard or reference clustering
K = {K1, . . . ,Km}. Most external measures are base on the concept of true posi-
tives (TP), true negatives (TN), false positives (FP) and false negatives (FN). We
distinguish between two different approaches to define these values:

Pairwise This approach compares the relationship between a pair of objects u, v ∈ V
in the clustering C and the reference clustering K. Each pair is counted as TP,
TN, FP, or FN according to the following rules:

TP Objects u, v ∈ Ki for some i and u, v ∈ Cj for some j.
TN Object u ∈ Ki and v ∈ Ki′ with i 6= i′ and u ∈ Cj and v ∈ Cj′ with i 6= j′.
FP Object u ∈ Ki and v ∈ Ki′ with i 6= i′ but u, v ∈ Cj for some j.
FN Objects u, v ∈ Ki for some i but u ∈ Cj and v ∈ Cj′ with i 6= j′.

Mapping In this approach, each cluster Ki from the gold standard gets mapped to
a cluster c(Ki) ∈ C. For each cluster Ki ∈ K we can define an object v ∈ V as
TP, TN, FP, or FN according to the following conditions:

TP v ∈ Ki and v ∈ c(Ki).
TN v /∈ Ki and v /∈ c(Ki).
FP v /∈ Ki but v ∈ c(Ki).
FN v ∈ Ki but v /∈ c(Ki).In 1971, William M. Rand introduced an approach

to comparing clusterings by comparing object pairs of the clusterings [99].

Definition 2.3.4. Rand index Using the pairwise definition of TP, TN,FP, and
FN , the Rand index is defined as

R(K,C) = TP + TN

TP + TN + FP + FN
= TP + TN(N

2
)
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which corresponds to the number of agreeing pairs divided by the total number of
pairs.

The Rand index varies between 0 and 1, with 0 meaning no agreement at all and 1
corresponding to two identical clusterings. There also exists an adjusted Rand index
which factors in the expected agreement between two clusterings when the objects
get assigned randomly to clusters.
The Rand index can be regarded as an extension of the Jaccard’s coefficient, orig-

inally published in 1908. In contrast to the Rand index, the Jaccard index does not
consider “true negatives”, i.e., pairs of objects which belong in both clusterings to
different clusters.

Definition 2.3.5. Jaccard index Using the pairwise definition of TP, TN,FP, and
FN , the Jaccard index is defined as

J(K,C) = TP

TP + FN + FN
.

The next measures follow a different approach as they do not utilize object pairs
but rather compare entire clusters against each other. The most intuitive way of
comparing two clusters is assessing their overlap in terms of common elements.

Definition 2.3.6. Overlap Score The overlap score is defined as

ω(Ki, Cj) = |Ki ∩ Cj |2

|Ki||Cj |
.

An overlap score of 0.25 or greater corresponds to a 50% agreement, given Ki and
Cj are of the same size. The fraction of matched clusters is the number of clusters
exceeding an overlap score of 0.25, divided by the total number of clusters in C.
All following measures are based on the mapping approach. The mapping of clus-

ters Ki ∈ K to clusters Ci ∈ C is normally achieved by maximizing a given function.
In order to simplify the notation, we first define the confusion matrix.

Definition 2.3.7. Confusion matrix The matrix T = (tij) ∈ Nm×n,

tij = |{Ki ∩ Cj}| , 1 ≤ i ≤ m, 1 ≤ j ≤ n

defines the confusion matrix, i.e., the overlap of all reference clusters with all clusters
received from the algorithm.

Furthermore, we define |T | as the sum of all entries in the confusion matrix, |T•j |
as the sum of all entries in jth column, and |Ti•| as the sum of all entries in the ith
row.
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Definition 2.3.8. Positive predictive value The positive predictive value (PPV)
between a pair of clusters Ki, Cj is defined as the ratio between correct assignments
(TP ) to a reference cluster and all assignments to that reference cluster (TP +FP ),

PPV(Ki, Cj) = TP
TP + FP = tij

|T•j |
.

Furthermore, for each cluster Cj the cluster-wise PPV is defined as

PPV(Cj) = max
i

PPV(Ki, Cj).

The overall PPV between two partitionings is obtained by

PPV(K,C) =
∑n
j=1 PPV(Cj) · |T•j |

|T |
.

Definition 2.3.9. Sensitivity The sensitivity (Sn) between a clustering C and a
reference cluster Ki is defined as the ratio between the correct assignments (TP ) and
the number of objects of the reference cluster,

Sn(Ki) = TP
TP + FN = max

j

tij
|Ki|

Analogous to the overall PPV, this reference-cluster-wise sensitivity can be com-
bined to an overall sensitivity between two clusterings as

Sn(K,C) =
∑m
i=1 |Ki| · Sn(Ki)

|K|

Definition 2.3.10. Accuracy The accuracy (Acc) is defined as the geometric mean
of PPV and sensitivity:

Acc(K,C) =
√
Sn(K,C) · PPV(K,C)

One of the most commonly used external quality measures is the so-called F-
measure. The original F-measure is defined as the harmonic mean between the gen-
eral definitions of precision

(
TP

TP+FP

)
and recall

(
TP

TP+FN

)
. This definition must be

generalized for usage with clusterings.

Definition 2.3.11. F-measure The F-measure between a clustering C and a refer-
ence cluster Ki is defined as

F(Ki, C) = max
Cj∈C

2 · tij
|Cj |+ |Ki|

.
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The overall F-measure for the entire clustering is calculated as

F(K,C) = 1∑
Ki∈K |Ki|

∑
Ki∈K

(|Ki| · F(Ki, C)).

There are also variants of the F-measure where there is a weighting of precision and
recall to favor one over the other. The F-measure presented here is also sometimes
referred to as F1-score, meaning neither precision nor recall is favored.

2.3.3. Summary
All measures are summarized in Table 2.1. It is important to acknowledge that there
is no superior quality measure. Each individual quality measure emphasis certain
properties of the clustering. The internal measure can basically assess two important
properties of a clustering [73]:

Compactness “It measures how closely related the objects in a cluster are” [73].

Separation “It measures how distinct or well-separated a cluster is from other clus-
ters.” [73].

All internal quality measures presented here, attempt to balance between compact-
ness and separation. As already mentioned, the Dunn index is very susceptible to
noise, whereas the silhouette value and the Davies-Bouldin index are more consistent
in presence of noise. Furthermore, the silhouette value has the advantage that “the
entire clustering is displayed by combining the silhouettes into a single plot, allowing
an appreciation of the relative quality of the clusters and an overview of the data con-
figuration” [103] which may help researchers to gain further insights in the reported
result.
Generally, whenever a gold standard is available, external measures should be fa-

vored over internal measures because only they allow an “entirely objective evaluation
and comparison of clustering algorithms on benchmark data, for which the class la-
bels are known to correspond to true cluster structure” [59]. As described in the
previous subsection, the external quality measures usually measure combinations of
TP, FP, TN, and FN. Depending on the actual clustering task, the external measure
emphasizing the most important requirements to the clustering should be chosen. For
example, if it is crucial for the cluster quality to minimize the number of false posi-
tives, e.g., the Rand index should be preferred over the Jaccard index (the Jaccard
index does not account for false positives at all).
Probably the most commonly used measure is the F-measure, as it provides a

compromise of precision and recall, both of which are fundamental properties of a
clustering. Throughout the thesis, mostly the F-measure is used in order to compare
a clustering against a gold standard. On the other hand, it must be emphasized that
there is no “best” measure; the choice of measure always depends on the context of
the cluster study. It is even harder to pick a good internal measure as they naturally
lack a basis to compare with. The researcher necessarily already needs a hint as
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to how an optimal clustering should look in order to choose the internal measure
emphasizing that property best.

2.4. Clustering Algorithms
Clustering has been a long standing problem in computer science for the unsupervised
analysis of datasets. As a result, many different approaches have been developed and
published. As different as these approaches are, all of them share common traits.
All clustering methods require at least one density parameter which more or less
directly influences the average size of the clusters. This necessity is apparent as the
algorithm has no means to “know” in advance if the user is looking for a fine or
a coarse clustering of the dataset. For example, identifying protein families (finer
clustering) or protein super-families (coarser clustering) are both legitimate goals
for the same dataset but require different parameters. Furthermore, all clustering
algorithms necessarily require a proximity measure for all objects in question.
As already mentioned in the introduction, there is no generally accepted definition

of a cluster. Each algorithm is based on the authors’ idea of an ideal clustering, often
formulated as an objective function which is then maximized (or minimized) by the
algorithm. (Estivill-Castro argues in [46] that this is in fact the reason why so many
clustering algorithms are developed.) For example, K-means seeks to minimize the
average distance of the objects to their cluster centers (minimizing the within-cluster
(WC) squared-error criterion, refer to Subsection 2.4.6 on page 46 for more details on
K-means), producing mostly spherical clusters [89]. This reason renders it impossible
to give general advice as to what clustering tool performs best in terms of cluster
quality. For example, if a dataset contains concave and elongate clusters, K-means is
a poor choice as the structure of the dataset conflicts with the definition of a cluster
on which K-means is based. This section gives a non-exhaustive overview of the most-
commonly used clustering algorithms in bioinformatics. We briefly discuss the core
principle of each algorithm and the required parameters. The algorithms are ordered
alphabetically and neither reflect the importance nor the quality of the algorithm.
In the summary (Subsection 2.4.11 on page 53) we give an overview which desirable
features are fulfilled by the different clustering tools.

2.4.1. Affinity Propagation (AP)
Affinity propagation [49] performs the clustering by identifying exemplars (sometimes
also called prototypes) among the available data points and reports their neighbor-
hoods as clusters. In contrast to many other exemplar finding clustering methods
(sometimes also called prototype methods), affinity propagation considers all data
points as possible exemplars. The final set of exemplars is determined by sending
messages between the data points voting for the best set of exemplars for the given
similarity function in combination with the preference.
Affinity propagation requires as input a similarity function s(u, v) with u, v ∈ V

and u 6= v. As a parameter, AP requires the “self-similarity” s(u, u) for each data
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Internal Measure Formula

Dunn index D(C) = min
Ci∈C

 min
Cj ∈ C
Ci 6= Cj

{ minu∈Ci;v∈Cj d(u,v)

maxCp∈C{maxu,v∈Cp d(u,v)}

}

Davies-Bouldin index
DB(C) = 1

|C|

∑
Ci∈C

 max
Cj ∈ C
Ci 6= Cj

σi+σj
m(Ci,Cj)


with σi = p

√
1
|Ci|

∑
c∈Ci

|c− Ci|p

Silhouette value s(C) = 1
N

∑
u∈V

b(u)−a(u)
max{a(u),b(u)}

External Measure

Rand index R(K,C) = TP+TN
(N2 )

Jaccard index J(K,C) = TP
TP+FP+FN

Overlap score ω(Ki, Cj) = |Ki∩Cj |2

|Ki||Cj |

Positive predictive value PPV(K,C) =

n∑
j=1

(
maxi

(
tij
|T•j |

))
·|T•j |

|T |

Sensitivity Sn(K,C) =

m∑
i=1

|Ki|·
(

maxj
tij
|Ki|

)
|K|

Accuracy Acc(K,C) =
√

Sn(K,C) · PPV(K,C)

F-measure F(K,C) = 1∑
Ki∈K

|Ki|

∑
Ki∈K

(
|Ki| ·

(
maxCj∈C

2·tij
|Cj |+|Kj |

))
Table 2.1.: Overview of the most commonly used measures. C = {C1, . . . , CN} denotes the

clusters reported by the algorithm, K = {K1, . . . ,K2} the gold standard, Ci the centroid of
the ith cluster. d(u, v) represents the distance measure. The p in the Davis-Bouldin index
refers to the same p as in the used Minkowski distance. T = (tij) is the confusion matrix with
|T | being the sum of all entries, |T•j | as the sum of all entries in jth column, and |Ti•| as the
sum of all entries in the ith row. In the silhouette value, a(u) is the average distance of x to
all objects in its own cluster, b(u) the average distance of u to the closet other cluster. For the
Jaccard and Rand index, TP, TN,FP and FN are defined following the pairwise approach.
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point u, which determines the probability of u to be selected as exemplar. Usually,
all data points get the same value assigned; thus, AP requires only one parameter to
be set. During a run of AP, two different types of messages are exchanged, namely:

Responsibility The responsibility r(u, v) is a number that is sent from point u to
candidate exemplar v, reflecting how well suited v is as an exemplar for u.

Availability The availability a(u, v) is a number that is sent in the opposite direction,
from candidate exemplar v to point u. The availability corresponds to how
feasible it is for point u to choose v as exemplar.

The authors state that both messages can be seen as the log-probability ratios for
point v being an exemplar and u choosing v as its exemplar [49]. The algorithm
starts by setting the availability to zero,

a(u, v) = 0 ∀u, v ∈ V.

Afterwards, the responsibilities are updated as follows:

r(u, v) = s(u, v)−max
u6=w
{a(u,w) + s(u,w)}.

The responsibility of v for the point u is highest when v only weakly prefers different
points as its exemplar. A negative self-responsibility means that the point rather
belongs to a different exemplar than being an exemplar itself. In the next step, the
availability of u, v with u 6= v, is updated to

a(u, v) = min

0, r(v, v) +
∑
w 6=u,v

max{0, r(w, v)}


whereas the self-availability is set to

a(v, v) =
∑
u6=v

max{0, r(u, v)}.

That means, the more responsible v is for other points w, the higher is the availabil-
ity of point u to v. “To limit the influence of strong incoming positive responsibilities,
the total sum is thresholded so that it cannot go above zero” [49]. After each iter-
ation, the actual cluster structure is determined by finding the exemplar for every
data point u. The exemplar for u is that data point v maximizing the function

a(u, v) + r(u, v).
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If the function is maximized for i = j, this means the point xi is its own exemplar.
In order to prevent numerical oscillations, a user-defined dumping factor λ ∈ [0, 1] is
introduced. The kth iteration of r(k)(u, v) and a(k)(u, v) is then calculated as

r(k)(u, v) = λ · r(k−1)(u, v) + (1− λ) · r(u, v)
a(k)(u, v) = λ · a(k−1)(u, v) + (1− λ) · a(u, v).

The algorithm terminates whenever the exemplar decision does not change for
a certain number of iterations, the availability/responsibility-changes fall below a
certain threshold, or a user-defined number of iterations is reached. Convergence
of the algorithm cannot be guaranteed; thus, the termination criteria can also be
regarded as additional parameters as the clustering result can change depending on
the number of iterations performed.

2.4.2. CFinder
CFinder [3, 92] is an overlapping clustering approach based on discovering k-clique
communities. The input is considered a graph of which all maximal cliques (fully
connected subgraphs which are not part of a larger fully connected subgraph) of size
k or larger are extracted. The authors implemented the clique finding strategy as
follows:

1. The maximal possible clique size γ is determined by the degree sequence of the
nodes. (A node with degree d cannot be part of a clique Ci of size |Ci| > d as
each member of a clique requires an edge connecting it to all other members of
the clique. The algorithm can only find a clique of size l if there are at least l
nodes having a degree of at least l − 1.)

2. Next, nodes are repeatably chosen and all cliques of size γ containing the chosen
node are extracted. Then, the node and all its adjacent edges are removed from
the graph until all cliques of size γ are discovered. The process is now repeated
with the new clique size γnew = γ − 1 on the original graph until γ = k.

The discovery of cliques of size γ containing the node v is achieved by maintaining
two sets of nodes A and B. A is initialized by containing only v, B with all neighbors
v. Then the algorithm recursively transfers a node u ∈ B to A. All nodes of B which
are not neighbors of the newly transferred node u are removed; thus, B contains only
those nodes which are directly connected to all nodes in A. Whenever A reaches
the size of γ, the clique is reported. The recursion ensures that all combinations of
node-transfers from B to A are tested and thus, all cliques of size γ containing v are
found.
After all L cliques C = {C1, . . . , CL} of size at least k are found, each clique Ci is

now considered a node in an adjacency graph G = (C, E). The edges E of the graph
G fulfill the following:

CiCj ∈ E ⇐⇒ |Ci ∩ Cj | ≥ k − 1 ∀Ci, Cj ∈ C.
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The connected components of this adjacency graph now form the k-clique commu-
nities. All nodes in one of these connected components form a cluster in the final
result. The user can specify k which is suggested by the authors to be between four
and six [3].

2.4.3. Clustering with Overlapping Neighborhood Expansion
(ClusterONE)

Clustering with Overlapping Neighborhood Expansion (ClusterONE) [87] is a recently
developed clustering method for detecting overlapping protein complexes. The pri-
mary concept behind the algorithm is the so-called cohesiveness measure, which is a
combination of the number of reliable interactions within a cluster and the separa-
tion of the cluster from the rest of the network. Letting U be a group of nodes, the
cohesiveness f(U) is given by

f(U) = win(U)
win(U) + wbound(U) + p|U |

.

Here, win(U) denotes the sum of all edge weights within U ; wbound(U) represents the
sum of all edge weights connecting this group with the rest of the network. p is used
to express the uncertainty within the data, i.e., the probability that there are yet
undiscovered connections from the group to the network.
The algorithm starts with growing cohesive groups from a seed node. The node

u with the highest degree is selected as first seed node. Let U (0) = u be the initial
set and let U (t) be the cohesive group in iteration t. The set U (t+1) is determined
by either adding the incident external vertex v /∈ U (t) yielding the greatest gain of
f(U (t)∪{v}), or by removing a previously added (and now suboptimal) internal node
w ∈ U (t) yielding the greatest gain of f(U (t)\{w}). The growth-process terminates
whenever no vertex for neither adding nor removing can be discovered to increase
f(U (t)). The next cohesive group is seeded by the yet unassigned node with the
highest degree until no unassigned nodes are left. A node can only be a seed node once
(i.e., when the seed node gets removed from the group during the growth process).
After this growth process, cohesive groups with an overlap score ω > 0.8 are merged

into one group (for the overlap score, refer to definition 2.3.6 on page 36).
In a last step, all clusters with less than three objects and loosely connected clusters

whose density
win(U)(|U |

2
)

is below a given threshold δ, get removed from the reported clustering result.

2.4.4. Clustering Based on Maximal Cliques (CMC)

The Clustering based on Maximal Cliques (CMC) [72] also operates on a graph rep-
resentation of the input data. CMC was especially designed to work on unweighted,

43



Chapter 2. Background and Related Work

i.e., binary interaction networks of proteins. The main idea is to iteratively reweigh
the edges of the binary network before maximal cliques are extracted.

Let w(t)(u, v) denote the weight of the edge uv in the tth iteration. The weights
of w(0)(u, v) are set to either 1 or 0, depending upon whether the edge does or does
not exist. Furthermore, let Nu denote the neighborhood of node u. The iterative
reweighing is performed by

w(t)(u, v) =
∑
w∈Nu∩Nv

(
w(t−1)(w, u) + w(t−1)(w, v)

)
∑
w∈Nu w

(t−1)(w, u) + λ(t)(u) +
∑
w∈Nv w

(t−1)(w, v) + λ(t)(v)
with

λ(t)(u) = max

0,
∑
v∈V

∑
w∈Nv w

(t−1)(v, w)
|V |

−
∑
w∈Nu

w(t−1)(w, u)

 .
Basically, w(t)(u, v) is the weight of the connections of the common neighborhood

of the points u and v divided by the weight of the entire neighborhood of u and v.
The correction factor λ(t)(u) lifts weakly connected nodes of the network (when the
sum of the weights of the adjacent edges of u is below the network average) by lifting
them to at least the average neighborhood weight. The authors state that after two
iterations the clustering result does not improve anymore.

In the next step, all maximal cliques are extracted. Even though extracting max-
imal cliques of graphs is NP-hard, it does not pose a problem as PPI networks are
sparse. However, this can lead to problems, when the algorithm is applied to different
clustering problems. The extracted cliques C = (C1, . . . , CL), which can have an large
overlap, are post-processed in order to merge them into highly connected clusters. In
order to do so, each extracted clique Ck is scored by

score(Ck) =
∑
u,v∈Ck w(u, v)
|Ck| · (|Ck| − 1) .

Here, w(u, v) is normally the value of the last iteration of the reweighing. Further-
more, the inter-clique score between two cliques Ck and Cl is defined as

inter-score(Ck, Cl) =

√∑
u∈Ck\Cl

∑
v∈Cl w(u, v)

|Ck − Cl| · |Cl|
·
∑
u∈Cl\Ck

∑
v∈Ck w(u, v)

|Cl − Ck| · |Ck|
.

Let C = (C1, . . . , CL) be the extracted cliques sorted by their score in descending
order. For every clique Ck, a clique Cl with a lower score is searched such that
|Ck∩Cl|
|Cl| ≥ to, with to being the user-defined “overlap threshold”. If such a Cl is found

and inter-score(Ck, Cl) ≥ tm, with tm being the user-defined “merge threshold”, both
cliques are merged. If the inter-score is below tm, Cl is removed from the list of
cliques. After the merging and removing process, the remaining cliques are returned
as the final clustering result.
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2.4.5. Hierarchical Clustering
Hierarchical clustering approaches are different from the other clustering methods
presented in this section. In contrast to the other methods, hierarchical clustering
does not return a partitioning of the input object set into a set of clusters. Rather
they return a sequence of consecutive partitionings represented as a tree, ranging from
one big cluster containing all objects, to the point where every object is a singleton.
The different approaches can be divided into two main branches [47]:

• Divisive or top-down: The clustering starts with one big clustering containing
all objects and subsequently divides the cluster into finer parts.

• Agglomerative or bottom-up: This is the opposite approach starting with all
objects being singletons. These singletons are merged into coarser clusterings
with each step of the process.

There exist an enormous number of approaches to calculate the division- or agglom-
eration-points. A good overview can be found in [55]. Here, we will focus on the
most commonly used agglomerative methods. The clustering process starts with a
partitioning of the dataset V = {v1, . . . , vN} in only singletons. In subsequent steps,
the two most similar clusters are merged into one cluster. Therefore, a similarity
s(Ci, Cj) between two clusters Ci, Cj must be defined. Furthermore, let sim(u, v) be
the similarity between two objects u, v ∈ V with u 6= v. The most commonly used
approaches are:

Single linkage The single linkage method is also called nearest neighbor. This method
does not take the cluster structure into account and tends to produce elongated
clusters [47].

s(Ci, Cj) = max {sim(u, v); u ∈ Ci, v ∈ Cj}

Complete linkage This cluster similarity measure is also called furthest neighbor. In
contrast to the “nearest neighbor” this methods prefers compact clusters with
equal diameter [47].

s(Ci, Cj) = min {sim(u, v); u ∈ Ci, v ∈ Cj}

Average linkage This method tends to join clusters with small variance and can be
seen as a compromise between nearest and furthest neighbor [47].

s(Ci, Cj) = 1
|Ci| · |Cj |

∑
u∈Ci

∑
v∈Cj

sim(u, v)

As hierarchical clustering produces a series of clusterings, in the agglomerative case
ranging from only singletons to one cluster containing all objects, a certain cut-off
must be defined for receiving a partial clustering. As examples, that cut-off can be a
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certain hierarchy level, or more complex version using nodes of the tree of different
levels as clusters, e.g., the dynamic tree cutting [70]. The definition of the cut can be
seen as the density parameter for hierarchical clusterings.

All hierarchical clusterings suffer from a common problem: The division of agglom-
eration performed at a certain step cannot be undone in a later step, even though that
would yield to a better overall clustering. In other words, the decision is normally
made locally, meaning that it looks greedily for the best possible split/agglomeration
of the current clustering and disregards the consequences for the subsequent steps.

2.4.6. K-means

K-means [75] clustering is probably the most well-known clustering method and has
already been around for several decades. K-means’ general idea is the separation
of the dataset V into k disjoint classes C = {C1, . . . , Ck}, such that the distance
of all points to the center of their class gets minimized. Let µi denote the center of
cluster Ci. Thus the optimal partitioning C ′ = {C ′1, . . . C ′k} is that partitioning which
minimizes the object function

C = argmax
C′

 ∑
C′i∈C′

∑
v∈C′

d(v, µi)2


with d(v, µi) being a distance function. As the explicit enumeration of all possible
separations of V into k groups is infeasible, heuristics are applied.

The most common approach is the so-called “Least Squares Quantization” of S.
Lloyd, developed in 1957, published in 1982 [74]. The algorithms starts with randomly
chosen initial cluster centers. In the second step, all points are assigned to that cluster
whose mean is closest to the particular point. Based on the current assignments of the
points to their clusters, new cluster centers are calculated. This process of assignment
and refinement is repeated until the assignment of points to clusters does not change
anymore. Naturally, such a heuristic can be stuck in a local minimum; thus, the
initial selection of the clustering centers is of great importance.

Most currently conducted research is dedicated to specify the number of clusters
and to optimize the initial choice of clustering centers. Note, that when using a dis-
tance function like the Euclidean distance, the cluster centers can easily be calculated
as that point minimizing the distance to all points of the cluster. That center is not
required to be an element of the dataset V . An adaption of K-means, K-medoids, is
applied to instances where such a center cannot be calculated. In these cases, µi can
for example be chosen as µi = argmin

v∈Ci

∑
u∈Ci\{v} d(u, v).
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2.4.7. Markov Clustering (MCL)
In Markov Clustering (MCL) [42, 112], the problem instance is again interpreted as
a graph. The graph is represented as a column stochastic matrix

M = (mij) ∈ [0, 1]N ;
N∑
j=1

mij = 1 ∀1 ≤ i ≤ N.

Random walks on the input graph are now simulated by the repeated alternating
application of the following two operations:
Expansion The expansion step is obtained by squaring the matrix

M = M2.

The authors state, this step simulates long walks as “it associates new proba-
bilities with all pairs of nodes, where one node is the point of departure and
the other is the destination” [42]. After that step, the matrix M is no longer
column stochastic. This is repaired in the next step.

Inflation The second step simulates random walks within each cluster, thus enforcing
the gradual separation of the clusters. This is done by taking each entry of the
matrix to the power of r (the user-defined inflation parameter) and scaling the
matrix back to a column stochastic matrix:

mij =
mr
ij∑N

i=1m
r
ij

.

The parameter r hugely influences the final clustering, as higher values for r result in
more densely connected smaller clusters. The final clustering is obtained by returning
the connected components represented by the matrix M . In practice, the algorithm
converges quite quickly after ten iterations to a stable state.

2.4.8. Restricted Neighborhood Search Clustering (RNSC)
The Restricted Neighborhood Search Clustering (RNSC)[66] is a randomized graph-
based clustering approach. It performs a cost-based local search starting with a ran-
dom assignment of nodes to clusters. In each iteration, nodes are randomly shuffled
between clusters in order to improve the overall cost function based on the number
of intra-cluster and inter-cluster edges. Given a clustering C = (C1, . . . , CK) of the
object set V , the overall goal is to minimize the following “scaled cost function”:

cost(G,C) = |V | − 1
3

∑
v∈V

αv
βv
.

Here, αv is the number of “bad connections” of node v, i.e., the number of connections
of v to nodes not elements of the same cluster of v. Letting v ∈ Ci and Nv the
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neighborhood of v, then αv = |Nv\Ci∪Ci\Nv|. βv is a measure for the influence of the
node v, how many nodes are influenced by v. Again, let v ∈ Ci, then βv = |Nv ∪Ci|.
In order to increase the computational speed, RNSC also uses the integer based “naive
cost function”

costnaive(G,C) = 1
2
∑
v∈V

αv.

Both cost-functions reach their lowest values with clusterings with a high degree of
connectivity within a cluster and a low connectivity between two clusterings.
Generally, the algorithm starts off with a random clustering Cr and tries to improve

the naive costs of that clustering by moving nodes randomly from one cluster into
another. If the costs of the clustering are not improved over the last Tn steps (the
user-defined parameter “naive stopping tolerance”), this phase ends.
The best clustering found is now optimized in order to improve the scaled cost

function using LE steps (the user-defined parameter “scaled experiment length”).
Additionally to the random moves, during the optimization of the scaled cost function,
every FD-steps (the user-defined parameter “diversification period”) LD (the user-
defined parameter “diversification length”) diversifications steps are performed. In
this step, a randomly selected cluster is destroyed and all elements are distributed
to different clusters. In order to improve the quality of the clustering results, RNSC
maintains a tabu-list of length LT (user-defined parameter “tabu length”) which
stores nodes which are not allowed to be moved anymore since they did not improve
the result. The parameter TT “tabu tolerance” allows nodes to appear several times
in the tabu list and they are classified as unmovable when they are TT -times in the
list.
The best clustering achieved after both phases is returned as the result of that

“experiment”. As RNSC is a randomized algorithm, NE (user-defined parameter
“number of experiments”) such runs are performed until the final result is reported
to the user. Furthermore, the parameter NC , “maximal number of clusters” limits
the number of allowed clusters to NC which is comparable to a density parameter.

2.4.9. Repeated Random Walks (RRW)

The Repeated random walks (RRW)[76] algorithm detects clusters by simulating
random walks on the given input graph with restarts. The graph is represented as a
row normalized matrix

M = (mij) ∈ [0, 1]N ;
N∑
i=1

mij = 1 ∀1 ≤ j ≤ N.

The algorithm starts with calculating random walks for every node vi ∈ V . The
result is a stationary vector s(vi) = {σ1, . . . , σN} which indicates the proximity of
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node vi to node vj as σj . The starting point for the iterative process is s(0)(vi) with
all entries set to zero except σi set to 1. The kth step is calculated with

s(k)(vi) = αs(0)(vi) + (1− α)MT s(k−1)(vi).

This process stops whenever s(k)(vi) converges. The parameter α is the user-defined
restart probability. With a larger α, the random walk is concentrated to smaller
walks resulting in smaller clusters. The vectors are the basis for calculating random
walks starting from a cluster instead of a single node. The random walk for an entire
cluster Ck is simulated by the linear combination of the stationary vectors s(vi) of
all nodes of the cluster:

s(Ck) = 1
|Ck|

∑
v∈Ck

s(v).

In order to build the clusters, the algorithm starts with each node as a cluster and
repeatedly expands that cluster. Letting C(0)

i = {vi} be the cluster to expand, and
sc(k) be the proximity of the point to the cluster added in the kth step (sc(0) = 0).

C(k)
i = C(k−1)

i ∪ argmax
{
s(C(k−1)

i )
}

⇐⇒ max
{
s(C(k−1)

i )
}
≥ λ · sc(k−1),

with λ ∈ [0, 1] being the “early cutoff”, the function argmax
{
s(C(k−1)

i )
}
returns that

point with the highest proximity to the cluster C(k−1)
i . The process stops whenever

either no point exceeds the early cutoff λ, or the cluster whenever the cluster reaches
the user-defined maximal cluster-size of K. All clusters found are now sorted by their
statistical significance which is calculated by

p-value(Ci) = 1− Ci ·
√
|Ci|.

Here, Ci denotes the average proximity of all points of the cluster Ci to each other. In
a final step, for all overlapping clusters Ci, Cj with an overlap score ω(Ci, Cj) ≥ γ, with
γ being the user defined overlap threshold, the cluster with the smaller significance is
removed (Note that the authors use a slightly different definition of the overlap score:
ω(Ci, Cj) = |Ci∩Cj |

min{|Ci|,|Cj |}). All remaining clusters are reported as the final clustering
result.

2.4.10. Transitivity Clustering (TransClust)

Transitivity Clustering (TransClust) [122, 123] is based on the weighted transitive
graph projection problem (WTGPP), also called the cluster editing problem. The
input is interpreted as a graph. For a user-given threshold t, we can define a threshold
graph Gt = (V,Et) with

Et = {uv : s(u, v) > t} .

In other words, the graph contains only those edges whose similarity value exceeds
the user-specified threshold.
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The resulting graph usually decomposes into several connected components, which
could be already used as a clustering, i.e., every connected component corresponds
to a cluster. Nevertheless, this method potentially matches very dissimilar elements
into one cluster whenever there is a path between those elements. In order to account
for that fact, we transfer the graph into a transitive graph G′ = (V,E′) by adding
or removing edges. For each editing step, we assign corresponding edit costs of
cost(uv) = |s(u, v) − t| for adding or removing the edge uv. The total editing costs
for transferring the graph Gt into the transitive graph G′ can be calculated by

cost(Gt → G′) =
∑

uv∈Et\E′
|s(u, v)− t|

︸ ︷︷ ︸
deletion costs

+
∑

uv∈E′\Et

|s(u, v)− t|

︸ ︷︷ ︸
insertion costs

.

The solution of the WTGPP is given by the graph with the least edit costs. One
observation is that each connected component of Gt can be treated as a own problem
instance. In terms of total costs it is never beneficial to join two connected com-
ponents into one cluster, as all edges between these two connected components are
below the threshold. Thus, the algorithm only needs to transform each connected
component into a transitive graph. Even though that significantly reduces the prob-
lem size in most problem instances, it has already been shown that the WTGPP is
NP-hard [120] and even APX-hard [120, 28]. Thus, the problem can only be solved
exactly for small instances; for larger instances, heuristics are applied.
Greedy heuristic The greedy algorithm CAST [98, 17] starts by removing “the most

promising” edges. Afterwards, the the transitive solution is generated by re-
porting the transitive closure of the remaining connected components as result
of the clustering. The main challenge is to identify those edges whose removal
yield the greatest gains in the overall costs. Here, the algorithm concentrates
on the conflicting triples uvw ∈ [V ]3 ([V ]3 denotes the set of all three-element
subsets of V ). Without loss of generality, let the entire graph G = (V,E) be
a connected component and the similarity function s is chosen in such a way
that two objects u and v are similar iff s(u, v) ≥ 0, i.e., a threshold of t = 0
is selected. Furthermore, let C(G) the set of all conflicting triplets of G. The
deviation D(G) of the entire graph G from transitivity is defined as

D(G, s) =
∑

uvw∈C(G)
min{|s(u, v)|, |s(u,w)|, |s(v, w)|}.

In order to decide, which edge to remove, the transitivity improvement imp(uv)
of the removal of uv is defined as

imp(uv) = D(G)−D(G′, s′)− s(u, v)

with G′ = (V,E\{uv}) and s′ as the identical similarity function as s except
that s′(uv) = −∞. The algorithm proceeds with removing the highest scoring
edges until the graph G decomposes into two connected components G1 and
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G2. All removed edges which do not reconnect G1 and G2 are added back to
the edge set of the corresponding subgraph. This procedure is repeated with G1
and G2 until all connected components are either transitive or no edge-removal
is beneficial. The transitive closure of the connected components are returned
as the final clustering result.

Nature-inspired The FORCE heuristic is a nature-inspired graph layout algorithm
simulating repulsion and attraction forces of the nodes, similar to the layout
algorithm of Fruchterman and Reingold [121]. The process is divided into three
steps, the layout and the partitioning phase followed by a post-processing phase.
The algorithm starts by arranging the nodes u ∈ V on a usually two-dimensional
plane (higher dimensions are also supported) in a circle with radius ρ. Let
pos(r)(u) ∈ R2 denote the current position of u in the pane in iteration r. For
each node u, the repulsion or attraction forces f (r)

u←v inflicted by node v can be
calculated by

f (r)
u←v =


cost(uv)·fatt·log(d(r−1)(u,v)+1)

|V | if s(u, v) ≥ t (attraction)
cost(uv)·frep

|V |·log(d(r−1)(u,v)+1) if s(u, v) < t (repulsion)

with d(r−1)(u, v) being the Euclidean distance of pos(r−1)(u) and pos(r−1)(v)
in the plane, and fatt and frep as two parameters defining the influence of the
repulsion or attraction forces. The accumulated displacement vector ∆(r)

u for
each point u in the rth iteration is calculated as

∆(r)
u =

∑
v∈X\{u}

fu←v ·
pos(r−1)(u)− pos(r−1)(v)

d(r−1)(u, v)

In order to retain a cool-down effect, the maximal displacement in iteration r
is limited by M(r). Thus, the new position of u is calculated as

pos(r)(u) = pos(r−1)(u) + ∆(r)
u

||∆(r)
u ||
·min{||∆(r)

u ||,M(r)}.

In this algorithm, all parameters are optimized by utilizing the parameter set
resulting in the least edit costs [121].

In the next phase, the points are assigned to clusters by a geometric single-
linkage clustering with a maximal node distance δ. The algorithm begins with
an arbitrary node u to build the cluster C(0)

i by assigning u to that cluster. In
the next steps, C(r−1)

i gets expanded with

C(r)
i = C(r−1) ∪ {v;∃w ∈ C(r−1)

i : d(v, w) < δ}.

Again, δ can be optimized by choosing the δ resulting in the least edit costs.
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Let C = {C1, . . . , CL} be the clustering obtained by the partitioning phase.
The algorithm performs two different post-processing optimizations on that
clustering C:

1. Merge Clusters: The algorithm merges a pair of clusters Ci, Cj and keeps
the clustering C ′ = {C1, . . . , Ci∪Cj , . . . , CL} whenever cost(C ′) < cost(C).
This process is repeated with C ′ as a new reference clustering C until no
pair of clusters can be found which further reduces the costs.

2. Move nodes: Now, let C be the already optimized clustering of step 1.
In this step, a node u ∈ Ck is picked and assigned to a different cluster
Cl. If the clustering C ′ = {C1, . . . , Ck\{u}, . . . , Cl ∪{u}, . . . , CL} yields to
no cost-reduction, another target cluster Cl with l 6= k is selected. If no
assignment of u to a different cluster improves the result, the next point
is selected. Whenever such an exchange is beneficial with respect to the
costs, the process starts over with C ′ as a new reference clustering C.

After this optimization, the final result is returned.

Exact FPT The first fixed parameter tractable (FPT) algorithm for the WTGPP
was introduced by Rahmann et al. in 2007 [98]. The parameter k used is
the maximal cost of the solution. Again, without loss of generality, let the
similarity function s be chosen in such a way that two objects u, v are similar iff
s(u, v) ≥ 0; thus, a threshold of t = 0 is selected. All non-transitive connected
components are treated by the algorithm as an own problem instance. The
first step is to “check for unaffordable edge modifications” in the connected
component G = (V,E) in order to reduce the problem size. For each edge
uv ∈

(V
2
)
, the lower bounds

icf(uv) =
∑

w∈Nu∪Nv
min{s(w, u), s(w, v)}

icp(uv) =
∑

w∈Nu∆Nv
min{|s(w, u)|, |s(w, v)|}

are calculated. Here, icf(uv) denotes the minimal costs for removing the edge
uv (i.e., putting u and v in different clusters) and icp(uv) the minimal costs
for keeping the edge uv (i.e., putting u and v in the same cluster). The set
Nu ∪ Nv is the common neighborhood of u and v (if u and v should be put
into different clusters, every common neighbor needs to be assigned to one of
the two clusters) and Nu∆Nv is the symmetric set difference (if u and v should
be put into the same cluster, each non-common neighbor must be put in either
the same cluster as u and v or into a different one). When icf(uv) > k, the
edge uv is set to permanent, when icp(uv) > k the edge is set to forbidden. If
both lower bounds are greater than k, the problem cannot be solved for the
given maximal k. When all pairs of nodes uv connected by an edge marked as
permanent are merged into a new node w, the costs for all operations for edges
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incident to w are calculated as a combination of the costs for the nodes u and
v. The parameter k is reduced by the costs used for performing the merging.
The Branching strategy iterates over all conflicting triplets uvw ∈

(X
3
)
with u

being the node with a degree of two and distinguishes between three different
branches:
• Insert vw and set all edges to permanent
• Delete uv, set uw to permanent, and set both other edges to forbidden
• Delete uw and set only uw to forbidden

With every operation, the parameter k is reduced by the according costs. If an
operation exceeds k, the branch can be neglected.

TransClust operates using all mentioned algorithms. For every connected component,
the upper-cost limit is calculated by the greedy heuristic. If this upper bound is low
enough, TransClust solves that instance with the exact FPT. In all other cases, the
FORCE heuristic is applied.

2.4.11. Summary

In the previous subsections, we introduced widely-used clustering approaches in bioin-
formatics. The projects’ websites and the according citations are summarized in Table
2.2. As already mentioned, “there is no single approach to clustering that can be re-
garded as appropriate for most situations” [83], thus we do not attempt to rank the
previously introduced clustering tools according to a certain performance measure.
In other words, the performance of a clustering tool can only be judged in combi-
nation with a certain dataset, thus in a “method × data” relation [47]. ClustEval,
which will be introduced later in Chapter 6 on page 107, eases conducting compara-
tive cluster analyses and we will give a performance comparison of various tools on
different datasets.
In this subsection we give an overview on what we deem to be generally desirable

characteristics of a clustering tool and tabulate the presence of absence of these
characteristics for a selection of tools. The following list of the characteristics is
based on the work of Andreopoulos et al. [7] and Wittkop [120]. This selection
reflects our experience with cluster analyses and is not intended to be exhaustive or
universally accepted. Depending on the actual clustering task, certain characteristics
may gain or lose importance or even non-mentioned features may become crucial. The
characteristics we consider important in current-day cluster analyses of biomedical
data are:

Scalability: The ability to perform well in terms of runtime and memory consumption
in both small and large datasets.

In the framework of this thesis, we require a clustering algorithm to be able to cope
with datasets most prevalent in bioinformatics on a standard computer. We consider
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Website Availability Citation

Affinity Propagation
http://www.psi.toronto.edu/index.

php?q=affinity%20propagation
online, free [49]

CFinder http://cfinder.org/ upon request [3, 92]

ClusterONE
http://www.paccanarolab.org/

cluster-one/index.html
online, free [87]

CMC
http://www.comp.nus.edu.sg/~wongls/

projects/complexprediction/

CMC-26may09/

online, free [72]

Hierarchical
Clustering

different implementations libraries, free -

K-means different implementations libraries, free [74]

Markov Clustering http://www.micans.org/mcl/ online, free [42, 112]

RNSC
http://www.cs.utoronto.ca/~juris/

data/rnsc/
upon request [66]

RRW http://cs.ucsb.edu/~kpm/RRW/ online, free [76]

TransClust http://transclust.mpi-inf.mpg.de online, free [122, 123]

Table 2.2.: Overview over the existing clustering tools typically utilized in bioinformatics and
the project websites. There is no reference implementation for neither K-means or hierarchical
clustering. These tools can be obtained as libraries for many different programming languages
or they are included in statistical software packages like WEKA [58].
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Integration of existing knowledge " % % % % % % % % "

Arbitrary-shaped clusters " " " " % % " " " "
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Interpretable results % (") % % % " % % % "

Reproducibility of results " " " " " % " % " "

Missing Values % % % % % % % % % %

Active Clustering % % % % % % % % % %

Table 2.3.: Not all currently used clustering tools in bioinformatics support all features defined
in in the text. This table provides an overview of the characteristics of the different tools.

the size of a typical dataset to range from a couple of hundreds of objects (e.g., gene
expression datasets) to 100,000 objects (e.g., sequence datasets).

Robustness: “Ability to detect outliers that are distant from the rest of the samples”
[7] and the ability of the algorithm to produce consistent results in presence of
noise.

As the data we consider in this thesis usually originates from wet-lab experiments and
the measurements often contain noise in terms of small errors due to the measurement
procedure (technical errors). Thus, a clustering algorithm should produce meaningful
results even in the presence of noisy data and produce similar results with slightly
different input. Nevertheless, the algorithm should be able to group distant outliers
(caused by natural variations in the dataset) into a group of otherwise homogeneous
objects [7].

Integration of existing knowledge: The ability of the algorithm to incorporate user-
provided a priori knowledge of the clustering.

In many cases, the researcher has a priori knowledge about the optimal clustering.
This may be, for instance, the information that certain objects have to be grouped in
one cluster or in two separate clusters. The clustering algorithms should be capable
of integrating such information in order to help reducing false positives and false
negatives (refer to Subsection 2.3.2 on page 35 for the definitions of false positive and
false negative in the context of clustering).
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Arbitrary-shaped clusters: “A clustering algorithm should find arbitrary shaped clus-
ters” [7].

Typical cluster shapes are depicted Figure 6.4 on page 114. Obviously, algorithms
preferring circle-shaped compact clusters are not a good choice for datasets consisting
of stripe-shaped clusters. As the nature of the cluster shape is not necessarily known
a priori or can even be of mixed form, the clustering tool should be indifferent in
preferring a certain shape.

Minimal user-specified input: The algorithm’s behavior should depend on as few as
possible parameters.

All partitional clustering algorithms discussed in this thesis require at least one pa-
rameter to be set in order to influence the behavior of the algorithm. A multitude of
available parameters may cause problems in practice. For instance, tools with many
parameters are prone to over-training. Generally, finding good parameters becomes
increasingly difficult with a growing parameter-space, often leading to the use of a
suboptimal parameter set for a certain problem.

Interpretable results: A clustering result should be intuitively interpretable with re-
spect to the given similarity function and the used parameters.

Ideally, the algorithm guarantees certain properties of the reported clustering result
in dependency of the used parameter set. E.g., the parameter k of the widely used
K-means approach defines the number of clusters in the result. Given parameters
with such clear influence on the result, the user can intuitively decide how to change
the parameter set in order to receive a clustering better suited to the given problem.
In cases where the algorithm cannot provide such an intuitive connection between the
results and the parameters, the practitioner needs to have a deep understanding of
how the given clustering process works in order to influence the result in the desired
way.

Reproducibility of results: Running the algorithm several times on the same dataset
should yield the same results.

This is given for all deterministic algorithms. If the result differs in each run, it
is hard to find an optimal parameter set as the quality of the result is not solely
dependent of the parameters and the given input.

Availability: The clustering algorithm should be available as a reference implemen-
tation and in source code, preferably free to download.

This eases the integration of the algorithm into pipelines of larger projects and allows
for the adaption of the program for certain application cases. An important point
for lowering the entry barrier, especially for non-expert users, is the availability of a
web-service performing small cluster analyses without the need for any installation.
In consideration of the rapid growth of the available biological data mentioned in

the motivation (Section 1.1 on page 13), we define two additional requirements and
will extend TransClust in the framework of this thesis to support these:
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Missing Values: The algorithm should be able to support similarity files with explic-
itly missing values (refer to Subsection 2.2.5 on page 32 for the definition of
explicitly missing values).

Biological datasets are not only prone to noise but may also be incomplete. This
incompleteness can be caused by many different reasons, e.g., a certain measurement
was never performed or is not measurable (e.g., it would require the knock-out of
a vital gene) or can be intentional in order to reduce the runtime for the similarity
calculation. A clustering algorithm should allow for those explicitly missing values
and still produce meaningful results.

Active Clustering: The algorithm actively decides which similarities need to be cal-
culated and which can be disregarded.

This point can be regarded as an extension of the “Missing Values” criteria. An
active-clustering approach iteratively decides, based on intermediate results, which
proximity measures need to be calculated in order to improve the result the most.
This reduces the cost in terms of computational time and space for the creation and
storage of the similarity values. For a detailed description of active clustering, refer
to Chapter 5 on page 85.
Even though clustering is a long standing problem in computer science and has

obviously been tackled several times, there is no clustering tool fulfilling all crite-
ria. Some of them miss features which can be implemented (e.g., integration of
prior knowledge), or are intrinsically tied to the algorithmic approach (e.g., non-
reproducibility of a random algorithm). Which features are present in which tool is
summarized in Table 2.3.
Among the major challenges when performing a cluster analysis are the optimal

selection of the clustering tool, and the correct tuning of the tool’s parameters. These
tasks require considerable knowledge from the researcher, especially with regard to
the methodological diversity with which the different algorithms tackle the clustering
problem. It is apparent that many details of an algorithm in question must be known
before one can efficiently fine-tune the different parameters. That becomes even more
apparent when the user has to specify parameters which have only indirect influence
on the result and represent some internal implementation detail (e.g., the length of
the tabu list of RNSC, see Subsection 2.4.8 on page 47). Only a few algorithms have
parameters which have a provable influence on the results: K-means where k defines
the number of clusters, and TransClust, where it is guaranteed that all clusters have
an average intra-cluster similarity above the threshold t and respectively, an inter-
cluster similarity below t [125]. CFinder has (among other parameters) the parameter
k which asserts that all reported clusters are at least k-cliques.

2.5. Evaluation Frameworks
As seen in the previous section and also laid out in the motivation, the practitioner
faces a plethora of different clustering algorithms. In order to decide for a certain
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algorithm and use them in the most efficient and reliable way, a lot of prior knowledge
regarding the algorithms is required. Even for an expert, a large cluster analysis,
involving several datasets and clustering tools, remains a tedious and complicated
task, as most clustering algorithms require different input formats and the parameters
need to be trained for optimal results. Here, we give a short overview of existing
frameworks supporting the researcher with conducting a cluster analysis.

2.5.1. Environment for Developing KDD-Applications Supported by
Index-Structures (ELKI)

ELKI (Environment for Developing KDD-Applications Supported by Index-Struc-
tures) [2] is a software framework written in Java designed for knowledge discovery in
databases. The authors mainly concentrate on the standardization and fair evaluation
of so-called subspace clustering methods. These clustering methods are sometimes
also called biclustering, especially in bioinformatics [69]. They normally reduce the
problem space by looking for clusters in subspaces of the original space. The frame-
work itself is programmed in Java and ships with a variety of implementations of
clustering algorithms, especially subspace approaches. Among the general purpose
algorithms are SLINK [106], k-means [75], EM-clustering [34], DBSCAN [45], Shared-
Nearest-Neighbor-Clustering [44], OPTICS [8], and DeLiClu [1] (all algorithms ref-
erenced as in [2]). The framework is extensible but all implementations require im-
plementation in Java for a seamless integration. The framework can handle several
different input formats and provides interfaces for easily including more formats.
The framework specializes mainly in the precise evaluation of clustering algorithms
(in terms of runtime and memory usage) and does not support the user in performing
a large-scale clustering study.

2.5.2. jClust

With jClust [95], Pavlopoulos et al. presented an approach to unify clustering ap-
proaches. The Framework is written in Java and includes some of the most widely
used clustering approaches in bioinformatics: Affinity Propagation [49], K-means [75],
Markov Clustering [42, 112] and Spectral Clustering [91]. They use one simple input
and output format and provide a variety of different methods for post-processing the
clustering results. The results can be visualized by means of an implementation of
the Medusa visualization module [62]. The tool is not open source, and thus cannot
be extended to use new clustering algorithms or different input formats.

2.5.3. The Konstanz Information Miner (KNIME)

The Konstanz Information Miner (KNIME) [20] is an environment for interactively
assembling data pipelines. The framework is implemented as a plug-in for the widely
used IDE (Integrated Development Environment) Eclipse1 and thus bound to Java.

1The Eclipse Foundation. http://www.eclipse.org/
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Again, the main focus of the framework is not clustering but the handling of data
processing pipelines in general. The project is similar by means of functionality
and concept to RapidMiner [82] (see Subsection 2.5.4). Therefore, parameter opti-
mizations can only be included rudimentarily by including loops in the pipeline. The
desktop version of KNIME is open source and provides an API for additional modules
implemented by the user. The standard version ships only with an implementation
of K-means and hierarchical clustering, but allows for the integration of WEKA [58]
and RapidMiner modules. Due to the implementation as an Eclipse plug-in, KN-
IME provides a sophisticated user interface and provides a variety of different data
visualizations.

2.5.4. RapidMiner

RapidMiner (formerly YALE - Yet Another Learning Environment) [82] follows a
similar approach as the aforementioned KNIME. RapidMiner also represents tasks
as nodes whose inputs can be connected to outputs of other nodes. It ships as a
stand-alone program written in Java. The graphical interface also provides numerous
data and cluster visualizations. As the name YALE already suggests, it is mainly
tailored for machine learning processes and not specialized for large scale cluster anal-
yses. RapidMiner provides its own scripting language and the source code with an
extensive API for extending the framework. Thus, new methods as well as new prox-
imity measures can be included. For finding optimal density parameters, RapidMiner
provides basic parameter optimization. Furthermore, comparable to KNIME, it also
includes the WEKA library and thus ships with all clustering methods provided by
WEKA.

2.5.5. The Waikato Environment for Knowledge Analysis (WEKA)

The Waikato Environment for Knowledge Analysis (WEKA) [58] is probably one
of the best known applications for statistical learning and data mining. The main
foci of WEKA are typical machine learning tasks such as classification, support vec-
tor machines, decision tree learning and many others. In contrast, WEKA only
rudimentarily supports clustering. WEKA ships only with a few standard cluster-
ing algorithms, including EM clustering, K-means, and hierarchical clustering. By
means of the plug-in system, a few more clustering algorithms can be installed. Since
version 3 appeared in 1999, WEKA is implemented in JAVA and available as an
open source program [58]. Thus, WEKA can be extended either by plug-ins or by
extending the source code itself. WEKA defined an own file format, called ARFF
(Attribute Relation File Format) which is quite commonly used in machine learning
tasks, but also supports several other file formats. WEKA also supports the user by
means of a graphical user interface modeling data workflows, but lacks for methods
of automated threshold probing. The GUI also provides a range of different dataset
analysis tools and graphical representations. One of the standard text books for ma-
chine learning, “Data Mining: Practical Machine Learning Tools and Techniques” by
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Table 2.4.: Overview of features defined in the text which are fulfilled by the clustering tools.
For criterion “Integration of existing tools” we have ranked all tools only as partly fulfilled as
no tool provides a significant amount of the state of the art biological clustering tools but only
ship with older and simpler methods like k-means or hierarchical clustering. The same applies
for the criterion “Availability”: All tools can freely be downloaded but no website provides an
overview of the existing clustering tools and their performance which is especially useful for
non-experts.

Ian Witten, Eibe Frank, and Mark Hall [119], is built around WEKA. This arguably
helped WEKA to become the most important tool for machine learning.

2.5.6. Summary

The previous subsections introduced mainly machine-learning frameworks. These
frameworks can be used to perform automated cluster analyses, but most of them
have not been designed for the specific problems that arise during a cluster analysis.
It is not possible to define one objective measure ranking the tools according to the
capability conducting a cluster analysis. In the course of this thesis, we will develop
the cluster evaluation framework ClustEval. Thus we will describe the requirements
we have defined for the development of ClustEval:

Integration of existing tools: The ability of the framework to support most of the
commonly used clustering algorithms in bioinformatics.

This is a crucial requirement for such a framework to get accepted in the clustering
community. This allows the user to simultaneously apply one dataset to multiple
algorithms. Therefore, the platform must support different input formats and data
preprocessors in order to serve every clustering tool with the correct input.

Data analysis: The ability of the framework to calculate and present common statis-
tics for a given dataset.
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One major task before conducting a cluster analysis is the exploration of the dataset
at hand. Here, the framework should assist the user with a wide variety of different
measures providing a good overview of the properties of the dataset.

Cluster Evaluation: The ability of the framework to assess the quality of the clus-
tering results by means of the most common internal and external quality mea-
sures.

This includes the calculation of different internal and external quality measures. Refer
to Section 2.3 on page 32 for on overview of commonly used quality measures.

Parameter Optimization: The capability to detect the best parameter set for a clus-
tering tool maximizing a specified quality measure for a given dataset.

Finding a good parameter set is one of the most time-consuming tasks when perform-
ing a cluster analysis. Here, the framework should support methods for automated
parameter testing. This also increases the comparability between different clustering
tools, as both were tested with parameter sets derived from a standardized optimiza-
tion procedure.

Extensibility: The availability of mechanisms allowing for extensions of all parts of
the framework by the user.

This criterion describes the ability of the framework to include new clustering algo-
rithms, datasets, data formats, quality measures, etc. Additionally, the ability of the
framework to invoke binaries is very important to support closed source programs.

Runtime Efficiency: The ability of the framework to efficiently utilize all available
resources.

As already mentioned in the motivation, clustering is a computational intensive task.
Thus, the framework should be able to use the available computing resources as
efficient as possible, e.g., parallel execution on multi-core computers.

Availability: The framework should be available as an open-source project.

Furthermore, the framework should be accompanied with a website presenting the
performance of the different tools on different datasets. This supports especially non-
expert users to judge the quality of different clustering tools and find the best suited
tool for a given problem.
Table 2.4 summarizes the existing tools and their features. No existing tool fulfills

all the requirements which we described here, mainly because none of the tools was
specifically designed for cluster analyses. All tools lack a convenient way of integrating
binary executables of clustering tools and thus hinder the integration of tools with no
open-source reference implementation. Automated parameter probing is only partly
fulfilled by two frameworks, mainly due to the lack of the most prominent cluster
quality measures.
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2.6. Datasets

To finish up the introduction, we briefly describe two dataset we will use throughout
the entire thesis. The Brown et al. [23] dataset is widely used for assessing the per-
formance of clustering algorithms. For this dataset, a gold standard is available. The
description is based on our previous publication [101]. The Actinobacteria dataset
emerged during a project published in [100]. This dataset is significantly larger as
the Brown et al. dataset but does not have a gold standard.

2.6.1. Brown et al. Dataset

The gold standard of Brown et al. [23], published in 2006, is a widely used dataset
for clustering approaches in bioinformatics. The dataset comprises of five enzyme
superfamilies (amidohydrolase, crotonase, enolase, haloacid dehalogenase, and vicinal
oxygen chelate) with different levels of sequence diversity. On the one hand, the
enolase and crotonase superfamilies contain a very homogeneous set of sequences,
i.e., high sequence similarities thus are expected to be easily clustered. The other
extreme are the haloacid dehalogenase and parts of the amidohydrolase, which include
a very divers set of sequences with a comparably high number of outliers. Therefore,
this set of protein sequences serves as a suitable evaluation dataset for clustering
tools. The five superfamilies consist of 4,887 proteins which are further divided into
91 families. Each of the amino-acid sequences is either annotated to a gold or a silver
standard family. Gold standard families only contain sequences with experimentally
determined functions, while silver standard families are less restrictive. As done in
previous studies, when we compared Transitivity Clustering to other approaches [122],
we only used the 866 sequences that are assigned to a gold standard family.

2.6.2. Actinobacteria Dataset

One common task in bioinformatics is the protein homology detection. In the frame-
work of the aforementioned paper “Density parameter estimation for finding clusters
of homologous proteins - tracing actinobacterial pathogenicity lifestyles” [100] we
compiled a dataset consisting of the protein sequences of 89 different actinobacteria.
The phylum actinobacteria is one of the biggest clades of bacteria. Their members
show a high diversity throughout different lifestyles and can cope with a variety of
different habitats [81]. Many of these bacteria are important for biotechnological pro-
duction processes, as well as human and animal medicine [113]. In this dataset, we
focus on selected species of the following so-called CMNR group: corynebacteria, my-
cobacteria, nocardia and rhodococcus. Our main focus of attention is Corynebacterium
pseudotuberculosis. It causes caseous lymphadenitis in animals [118], with dramatic
effects on livestock all over the world. All CMNR organisms selected for this dataset
share common properties with impact on the design of effective vaccinations; they all
share a common cell wall organization [37], for instance. For drug target detection,
accurate homology information about the protein space in this group is important,
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e.g., for reducing drug side effects and negative effects on the other microorganisms
that are part of the host’s microbiome.
We obtained the protein sequences in FASTA format from NCBI [86] for the 89

sequenced and annotated actinobacteria of the CMNR group. See Table C.1 on
page 211 in the appendix for a list of all species and a classification into the four
pathogencity classes. We also report the associated disease where available. Our
dataset comprises 344,421 proteins of 89 species: 27 corynebacteria, 55 mycobacteria,
6 rhodococcus and 1 nocardia. We use this dataset throughout the entire thesis as
an example for a large dataset posing a computational challenge for clustering tools.
In some chapters, we use a reduced dataset (the “Coryne dataset”) consisting only
of the 27 corynebacteria of the entire dataset.
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Beginning with this first method section, we concentrate on extending transitivity
clustering and its implementation TransClust. Some of the presented ideas could also
be implemented for other clustering tools, but we limit ourselves to TransClust for
the following reasons:

• TransClust already supports most of the desired features of a state of the art
clustering tool (compare to Subsection 2.4.11 on page 53).

• TransClust has shown on several occasions to rank amongst the best clustering
tools commonly used in bioinformatics (e.g., refer to [121, 125]).

• TransClust is based on the WTGPP (refer to Subsection 2.4.10 on page 49)
for which is proven that the average similarities between objects of one cluster
are above the threshold whereas the similarities of objects between clusters are
below the threshold on average [125]. We will exploit this property for extending
TransClust in Chapter 4 on page 77 and 5 on page 85.

z

Objectives of this Chapter

• Enable the decomposition of large similarity files in connected com-
ponents on standard desktop computers.

• Development of a cost-matrix creator efficiently utilizing back-
ground storage to account for limited main memory.

3.1. Overview and Problem Statement

3.1.1. Problem Statement & Introduction

As mentioned in Subsection 2.4.10 on page 49, each connected component of a given
input can be treated as an independent problem instance. This decomposition reduces
the problem size for solving the WTGPP as in most practical applications the different
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Figure 3.1.: This figure depicts a typical TransClust workflow. The input similarity file is sep-
arated into connected components and written into cost-matrices. These cost-matrices are
treated as independent problem instances. The clusters resulting from each of these connected
components are combined to the clustering result reported by TransClust.

connected components are significantly smaller than the original input graph. Given
a similarity file as input, a typical TransClust workflow consists of the following steps
(also depicted in Figure 3.1):

1. Identification of the connected components

2. Creation of the cost-matrix files

3. Individual clustering of each cost-matrix file

4. Combination of the individual clustering results to the overall clustering result

A cost-matrix represents a connected component. In contrast to the similarity file,
such a cost-matrix stores the costs for each edge modification and is therefore thresh-
old dependent. For each pair of objects u, v ∈ V , the cost-matrix file stores the edit
costs c(u, v) = |t− s(u, v)|.
During the entire clustering process, the decomposition of the similarity file into

connected components is the only time where the complete input (i.e., the similar-
ity file) needs to be processed as a whole. Finding these connected components is
usually done with a depth- or breadth-first search (DFS or BFS respectively) on the
given input graph. Implementing such a DFS efficiently, the entire graph with all its
edges must be stored in the main memory of the computer. Storing the edges can
pose problems as their number grows quadratically with the number of nodes:

(|V |
2
)
.

Depending on the input size, this task can already be infeasible on modest comput-
ing hardware. For instance, a homology detection involving 50 organisms with 2000
genes each results in ∼ 5 billion similarities. When stored as double (8 bytes follow-
ing IEEE 754), only the similarities require ∼ 37 GB to be held in main memory. In
case of protein sequences and BLAST as similarity function, this problem can still be
solved with normal computers, as most similarities are zero (i.e., below the BLAST
E-value cut-off) and thus do not need to be stored explicitly. Whenever a different
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similarity function without this favorable property is used, it is quite apparent that
even rather small studies will hit the boundaries of today’s computers.
In order to enable users with restricted access to computers with large main memory

the decomposition of the similarity matrix into connected components, we developed
an extended cost-matrix creator (CMC) by utilizing external algorithms. An external
algorithm keeps most of the information on external memory such as the hard disk,
and holds only the currently relevant part of the task in main memory. The main
bottleneck here is obviously the I/O performance of the computer in question. Hence
the application of less efficient algorithms (in terms of runtime behavior) which reduce
the need for I/O accesses can be beneficial. In the following section we will discuss
the used algorithms and evaluate runtime and memory consumption in comparison
to the currently available CMC included in TransClust.
In this work, we always consider the use of a normal general-purpose computer

with a hierarchical memory setup. We distinguish between external storage, the
background storage devices like hard drives, and internal storage, the main memory.
We do not consider the different levels of cache hierarchy as we present a general
approach to the problem implemented in Java. The access times of the main memory
and the background memory differ by a factor of approximately a million (∼ 10−9

seconds compared to ∼ 10−3 seconds) [115], thus the usage of the background storage
should be limited to a minimum. In the following, we call an algorithm internal when
all data required for the execution fit in the main memory, and external when the
background storage is used in order to cope with the data.

3.1.2. Requirements for a Memory Efficient Cost-Matrix Creator

A common type of input for clustering algorithms used in bioinformatics is a similarity
file. Such a file already contains all pairs of nodes and specifies the proximity between
them and the calculation of those similarities is not performed by the clustering algo-
rithm itself (in contrast to algorithms which take as input the geometrical coordinates
of the objects and apply, e.g., metric-based distances). Usually, specialized programs
are utilized to calculate the similarities, e.g., in case of protein sequences programs
like BLAST.
Furthermore, in most publications and analyses of clustering algorithms the ex-

istence of such a similarity file is simply assumed. Nevertheless, this neglects the
important and time-consuming construction of such a similarity file which can create
a hurdle for non-expert practitioners. This is the reason that we do not only support
the usage of an already existing similarity file, but also the direct usage of BLAST
and FASTA files, as this is a common application in bioinformatics. In the method
section, we first describe how CMC transforms such a BLAST and FASTA file into
a regular similarity file; then we proceed with the decomposition of a similarity file
into cost-matrices.
To summarize, in this part of the thesis, we extend the currently built-in cost-

matrix creation functionality of TransClust to support the following main features:
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Chapter 3. Handling of Large Scale Similarity Files

Figure 3.2.: The conversion of a BLAST file to a similarity file. The upper part of the figure
demonstrates that the entries required for scoring the protein pair A,B can be spread over the
entire BLAST file (required entries are indicated with green and all other entries are represented
as the light red). The lower part depicts the process of the conversion of a BLAST file into a
sorted similarity file (the green bars represent the relevant entries for a protein-pair). First, the
BLAST file is split into chunks which can then be separately sorted using an internal algorithm.
With these sorted chunks, the protein pairs can easily be scored and written into a sorted
similarity file on the fly.

• Direct handling of BLAST and FASTA files with different cost models (refer to
Subsection 2.2.3 on page 29)

• No sorting of the input files is required

• Large files must be efficiently processed even on computers with limited main
memory

3.2. Methods for Memory-Aware Similarity Processing

3.2.1. BLAST and FASTA to Similarity File

As all HSPs of a pair of proteins in a BLAST file can be distributed over the entire
file, it is not possible to convert an arbitrary BLAST file into a similarity file on the
fly without storing all entries in the main memory (compare to the top-part of Figure
3.2) as all HSPs for a protein pair are required for the calculation of the similarity
value. To be able to process such a BLAST file on the fly with limited main memory,
all HSPs for a certain protein pair need to appear subsequently in the file, i.e., the
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BLAST file needs to be sorted (“sorted” means that all HSPs of one pair are grouped
together, otherwise no specific order of the protein IDs is required). With that, the
sorted BLAST file can easily be read in small chunks and the similarities can be
calculated and written into the similarity file. The sorting itself is handled by our
CostMatrixCreator as we do not want to impose the task of sorting to the user.
The sorting must be accomplished with an external algorithm. All such algorithms

consists basically of two parts, an external and an internal part. Whilst the internal
part sorts chunks of data which fit into the main memory, the external part sorts
large portions of the total file [114] which do not fit in the main memory. External
sorting is a long standing problem and very well understood [115]. As we aim for
usage on modest computing hardware, we can neglect load balancing problems caused
by using several disks in parallel. Basically, two main methods have been established,
sorting by distribution (equivalent to the internal bucket sort) and sorting by merging
(equivalent to the internal merge sort) [115]. In the one-disk/one-CPU setting which
we are considering, both methods have an almost identical performance.
For a setting as presented here, external sorting by merging is the favored method as

sorting by distribution would require the development of a hash-function distributing
pairs of proteins in equal chunks in order to yield optimal performance. Let us assume
a BLAST file with a total of N entries and an internal memory which can hold up
to Q entries. Sorting by merging consists of the following steps (compare to the
lower-part of Figure 3.2):

1. Read Q entries of the original file and sort them with an internal sorting algo-
rithm.

2. Write this sorted chunk to the disk.

3. Repeat until the entire original file has been processed, i.e.,
⌈
N
Q

⌉
chunks are

written.

4. Open all sorted chunks and subsequently read the entries until all HSPs of a
protein pair are collected. Calculate the final similarity and write the according
line into the similarity file.

For the internal sorting, there are many possible algorithms available. Only algo-
rithms operating in-situ1 should be chosen, otherwise the number of entries Q which
can be sorted in the main memory would be reduced. In our implementation, we facil-
itated heapsort as it has an optimal worst case performance for sorting of O(n · logn)
and does not require recursive function calls, thus keeping the required auxiliary space
complexity at O(1).

3.2.2. Similarity File to Cost Matrices
In this subsection, we assume to have a similarity file which exceeds the capacity of the
internal memory as input. This file must be split into connected components which

1An algorithm is called in-situ if the execution of the algorithm only requires a constant amount of
memory besides the input, i.e., the memory overhead is O(1) for every input.
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then may be clustered. In order to ease the construction of the connected components,
the similarity file is sorted. Let S = (si,j) ∈ Rn×n be the similarity matrix with n
being the number of nodes and si,j the similarity s(ui, uj) with ui, uj ∈ V . The
similarity file is sorted in such a way that the entries appear in the following order:

s1,2, . . . , s1,n, s2,3, . . . , s2,n, . . . , sk,k+1, . . . , sk,n, . . . , sn−1,n.

This step is unnecessary when processing a similarity file which was created from
the BLAST file described in the previous subsection. The sorting of an arbitrary
similarity file is performed with the algorithm also presented in the previous Subsec-
tion 3.2.1.
In order to decompose the file into connected components, mechanisms like DFS or

BFS are infeasible for this task, as the storage of the edges and their weights exceed
the internal memory. Thus, we are facilitating a different data structure, namely a
disjoint-set or union-find data structure with path compression. Such a data structure
can be implemented as a forest of rooted trees, where each tree represents one distinct
set and supports two operations:

Find(u) This operation traverses the tree of u upwards and reports the root v of that
tree as the representative of the set u belongs to. Two objects are in one set
whenever they report the same root v.

Union(u, v) With this operation, the two sets of u and v are united. This is accom-
plished by connecting the root of one tree to the root of the other tree.

This can be implemented using an array and the value of each entry points to the
entry of the parent. Note, that the union-find data structure is also feasible to be
utilized in an in-memory approach. In order to increase the efficiency of the find
operations, path-compression is used. Whenever the representative of an object is
searched, all nodes on the way up to the root are connected to the root. Hence,
after the first find on u, the next find is accomplished in O(1) time. In total, that
reduces the amortized costs for both operations to O(α(n)) with α(n) being the
inverse Ackermann function [110], whereas the space requirement is O(n). The entire
data structure is built on the fly and requires only one read of the similarity file.
In the case that the entire similarity matrix fits into the main memory, the creation

of the individual cost-matrix files is straightforward. For each connected component,
all similarities are looked up and in case of an implicitly missing value, replaced by
the fall-back value and written to the output file. This is no longer possible if the
similarities are stored on external memory, as in our case. Again, in order to limit the
I/O load, a computationally less efficient approach is chosen which requires only one
additional reading of the file. As stated above, the similarities are in the same order
as a line-wise traversal through the entire “virtual” similarity matrix. We use the
term “virtual” here because the entire similarity matrix is never explicitly stored due
to the many implicitly missing values. The algorithm iterates over all pairs of objects
u, v in the same order as the similarity file. For each pair, it is checked whether
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Connected Components
Organisms Sequences Total Non-Transitive Ø File Size [MB]

30 116,361 36,495 2,191 3.19 342
40 158,200 41,493 2,350 3.81 660
50 193,432 49,951 2,619 3.87 945
60 243,641 62,055 3,392 3.92 1,438
70 271,626 67,309 3,534 4.04 1,721
80 305,166 71,674 3,616 4.26 2,244
89 344,421 78,734 3,969 4.37 2,845

Table 3.1.: The datasets used for the evaluation. These are all sub-datasets of the original
Actino dataset (bottom line in italics). The column “Connected Components” contains the
following information based on a threshold of 48: “Total” - number of connected components
(including transitive components and singletons); “Non-Transitive” - number of non-transitive
components; “Ø” - average size of a connected component.

the two objects u and v are in the same connected component. If so, there are two
possibilities:

1. The next entry of the similarity file corresponds to the similarity s(u, v) of u
and v. In this case, the costs (normally c(u, v) = |s(u, v) − t|) are calculated
from the similarity and written in the cost-matrix file. Afterwards, the next
entry of the similarity file is read.

2. The next entry in the similarity file is not the similarity s(u, v) of u and v.
Hence, this similarity is an indirectly missing similarity and is replaced with
the user defined fall-back value.

The drawback of this approach is that many file-handlers need to be kept open or
repeatedly opened and closed (depending on the limitation of the operating system
and the available main memory) as the similarities are not sorted by their membership
to connected components. On the other hand, this approach requires only one read
of the similarity file and thus minimizes the I/O operations.

3.3. Results & Discussion

3.3.1. Runtime Analysis and Memory Requirements

First, we analyze the runtime behavior of the memory-aware CMC. We hypothesized
that the main factor determining the runtime is the I/O load, which should lead to a
linear growth of the runtime with the growing size of the input files. Nevertheless, the
writing of the cost-matrices must be achieved by using an algorithm with a quadratic
runtime; thus, the overall scaling can also be driven by that part of the algorithm.
For the analysis, we used the Actino dataset (refer to Subsection 2.6.2) containing
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Figure 3.3.: The left figure shows the runtime behavior of CMC depending on the size of the
BLAST input file. CMC was set up to use only 512 MB of heap space and shows a linear
scaling. The red line further indicates the linear growth as the rate of processed BLAST file
per minute remains constant. The right part of the figure depicts the runtime behavior with
varying heap space. Here, only the complete Actino dataset was used. As the main bottleneck
is the I/O load which remains constant, the overall runtime also remains constant.

the proteins of 89 bacteria with a BLAST file size of 2, 800 MB. We also created
subsamples of this dataset including less organisms. All datasets are summarized in
Table 2.6.2 on page 62. All runtime tests were executed on a 24 core XEON server
with 100 GB of RAM running a 64 bit Linux system. Note that the given times are
reflecting the actual runtime and can vary slightly.
The results indicate that in fact, the new CMC scales linearly with the size of the

BLAST input file (see Figure 3.3). Even though the output of the cost-matrices takes
by far most of the time and is a quadratic algorithm, the runtime is determined by the
I/O operations. Figure 3.4 depicts the memory usage as well as the I/O load over the
execution time using the entire Actino dataset with threshold 48 which corresponds
to an BLAST E-value of 10−48. This threshold was selected as this results in the
best clustering for protein homology detection and thus resembles the most relevant
scenario (refer to Section 7.2 on page 136 for further details on the threshold). The
reason why the algorithm scales linearly even though most of the runtime is spent in
a quadratic algorithm is the usage of the file handlers. For example, for the entire
Actino dataset, almost four thousand files, need to be written concurrently. As the
number of parallel file handlers is limited (both by the operating system as well as
memory wise as every file handler produces overload, e.g., for buffering), the CMC is
required to open currently required files while closing others repeatedly. The overhead
of these operations is the main factor for the runtime which also reflects the quite
low writing rate during the cost-matrix creation. Thus, even though the algorithm
scales quadratically, the runtime is determined by the number of files which in turn
is determined by the number of connected components. Table 3.1 clearly shows that
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Figure 3.5.: the left side depicts the runtime of the new CMC (named “CMC”) against the built-
in CMC of TransClust (named “TC-CMC”). Both programs show a linear relationship between
runtime and input file size. The line “Runtime TC-CMC” depicts the runtime of TC-CMC
without any memory restrictions, whereas “Runtime TC-CMC MinHeap” shows the runtime
when TC-CMC was limited to the smallest heap-size possible (slow-down due to increased
garbage collection activity). The right figure represents the minimal memory requirement of
TC-CMC (dark red line) for each dataset compared to the new CMC (green line).

the number of connected components grows even sub-linearly (which can also be seen
on the fact that the average size of the connected components grows from 3.19 for
the smallest dataset to 4.37 for the entire dataset) and thus compensates for the
quadratic algorithm.
As the influences discussed above on the runtime are determined mainly by external

circumstances, the amount of available physical memory should not affect the runtime
significantly. In fact, as shown at the right side of Figure 3.3, the runtime of CMC
remains constant when varying the available heap space from 256 MB to 2 GB.

3.3.2. Comparison to the Original Cost-Matrix Creator
After analyzing the runtime and memory behavior of the novel CMC, we want to
compare the performance to the built-in version of CMC in TransClust. In the
remainder of this section, TC-CMC refers to the built-in version of the cost-matrix
creator whereas CMC refers to the new approach. As expected, the original version
is significantly faster than the novel approach. The main reason for this is that the
legacy version can write the cost-matrices far more efficiently than the new memory
aware version. Figure 3.5 depicts the runtime for both versions, again using the
datasets summarized in Table 3.1.
The minimal memory requirement for TC-CMC (probed in 256 MB steps) grows

linearly with the size of the BLAST file. Due to the increased activity of the garbage
collection, the runtime of TC-CMC more than doubles in some cases (depending on
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Chapter 3. Handling of Large Scale Similarity Files

how closely the 256 MB steps are to an absolute minimum). Nevertheless, as a rule
of thumb, TC-CMC consumes about as much memory as the size of the BLAST
input file. That limits the application of TransClust on modern personal computers
to around 8 GB (approximately less than 600, 000 sequences), which is crucial as
many biologists do not have access to a larger shared memory server infrastructure.
In comparison, the minimal memory requirement of CMC scales with the number
of nodes, as they need to be constantly held in the main memory which grow at a
much slower pace. In the used datasets, tripling the number of sequences lead to an
eightfold similarity file size.

3.3.3. Conclusion & Discussion
The approach of decomposing similarities, or rather, BLAST files, into connected
components and their associated cost-matrices now enables handling very large sim-
ilarity files exceeding the main memory size. The analysis shows that the runtime
scales linearly with the size of the input file as the main bottleneck is the overload for
the concurrently required file-handler, which are directly connected to the number of
connected components in the dataset.
On the other hand, the inefficient output of the cost-matrices has a large impact

on the overall runtime, increasing it by the factor of 10 to 20. Even though memory
requirements no longer pose a problem, this advantage is traded off by a much worse
runtime. To conclude, the decomposing of large similarity files still poses problems
either in terms of memory usage or in terms of runtime. More sophisticated strategies
to limit the overload by the file handlers (e.g., keeping a pool of frequently used output
files open) may soften that issue but cannot solve the underlying general problem of
the actual size of the similarity files.

"

Results of this Chapter

• The new cost-matrix creator enables standard desktop computers
to decompose similarity files of almost arbitrary size.

• This advantage has to be traded off by a significantly increased
runtime.

• Availability: http://transclust.mpi-inf.mpg.de

In the next chapters, we will discuss approaches on how to avoid large similarity
files by drastically reducing the amount of required similarities for clustering in the
first place.
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4. Clustering with Missing Values

This chapter is based on the publication [101]:

Richard Röttger, Christoph Kreutzer, Thuy Duong Vu, Tobias Wittkop, Jan Baum-
bach. Online Transitivity Clustering of Biological Data with Missing
Values. German Conference on Bioinformatics 2012, 57-68, ISBN: 978-3-
939897-44-6, DOI: 10.4230/OASIcs.GCB.2012.57

z

Objectives of this Chapter

• The calculation of the similarity file is computational expensive and
limits the applicability of clustering algorithms.

• Development of a method for exploiting missing values in datasets;
thus reducing the number of required similarities.

4.1. The Moving Bottleneck
In the previous chapter, the handling of large similarity files, i.e., the decomposition
into connected components, was discussed. Although the new algorithm allows for
the handling of very large similarity files, it increases the runtime. Thus, the size of
the similarity files still poses problems, albeit of a lesser nature, during the clustering
analysis.
In addition to the size of such a similarity file, a widely neglected issue for most

clustering approaches is the computation of the similarities in the first place. Espe-
cially when using complex similarity functions, e.g., protein interaction predictions
or protein structure predictions, the actual calculation of the similarities between the
objects consumes most of the time [29, 67, 61].
An indication how to widen the bottleneck arises from the definition of a cluster-

ing itself: we are looking for densely connected components sharing common traits.
Hence, most similarities within one cluster are redundant in that they further confirm
the similarities between the objects of a cluster (refer to the end of Subsection 4.2.1
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Chapter 4. Clustering with Missing Values

Figure 4.1.: This Figure depicts the minimal sample size k′ for which P (k′) < 0.05 in dependency
of µ (“Mean”) and σ2 (“Variance”). The color black indicates k > 100. Note the logarithmic
scale of the color scheme.

for a formal explanation). The similarities between clusters also tend to be very sim-
ilar, namely low (as discussed in Subsection 2.2.5 on page 32). These observations
suggest that a large share of the similarities can be excluded from the calculation in
the first place without deteriorating the clustering result. Exploiting this fact by the
utilization of missing values in order to limit the resources spent on the calculation
of the similarities and as a consequence reduce the size of the similarity file appears
to be a promising approach to tackle this problem.
In a previous study [125], we showed that TransClust is robust with respect to

noise in the dataset. That makes TransClust a suitable approach for the exploitation
of missing values. In this chapter, we demonstrate how explicitly missing values
are accounted for in TransClust. We evaluate the influence of missing values on
the clustering by comparing clusterings with missing values against the results of
clusterings using full information. Similar to the previous study, we use protein
homology detection as an example application. In the next chapter we will then
extend this method to a more sophisticated active clustering approach.

4.2. Integration of Missing Values into TransClust

4.2.1. Extension of the Weighted Transitive Graph Projection Problem
(WTGPP)

The similarity matrices used so far only contained indirectly missing values (refer to
Subsection 2.2.5 on page 32). Thus, the edges E can be split into two distinct sets EK
and EI . The set EK denotes the edges uv ∈ EK with known similarities s(u, v) ∈ R.
The set EI denotes those edges for which the similarity function did not return a
value because their similarity is below the detection limit λ of the similarity function
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4.2. Integration of Missing Values into TransClust

(e.g., below the E-value cut-off of BLAST). In other words, an indirectly missing
edge uv ∈ EI is not without any information but rather carries the information that
s(u, v) < λ. This information was used to impute the indirectly missing values by a
modified similarity function s′:

s′(u, v) =
{
s(u, v) ∀uv ∈ EK
λ ∀uv ∈ EI

Depending on the used similarity function, λ either is set to a user-defined value (e.g.,
the E-value cut-off) or to the minimal measured similarity λ = minuv∈EK s(u, v).

In this chapter, we introduce explicitly missing values, i.e., similarities which were
not calculated at all. Consequently, the set of edges E is split into three distinct
sets EK , EI and EE . For these explicitly missing values EE we can not assume a
boundary as for edges in EI .

We adapt the weighted transitive graph projection problem (WTGPP) in order to
handle explicitly missing values. As already stated in 2.4.10 on page 49, the total edit
costs to transform a graph Gt (with t being the threshold) into a transitive graph G′
is

cost(Gt → G′) =
∑

uv∈Et\E′
|s(u, v)− t|

︸ ︷︷ ︸
deletion costs

+
∑

uv∈E′\Et

|s(u, v)− t|

︸ ︷︷ ︸
insertion costs

.

In order to integrate a possibility to deal with missing edges in the graph G, we
slightly adjust the underlying similarity function:

s?(u, v) =


s(u, v) ∀uv ∈ EK
λ ∀uv ∈ EI
t ∀uv ∈ EE

The similarity for edges uv ∈ EE is set to the user-given threshold t. As a result, the
costs for adding/removing an edge uv ∈ EE is

|s?(u, v)− t|︸ ︷︷ ︸
deletion cost

= |s?(u, v)− t|︸ ︷︷ ︸
insertion cost

= |t− t| = 0.

As a consequence, the overall costs for transforming a graph Gt into the transitive
G′ is not affected by the missing values:

cost(EE) =
∑

uv∈EE∩(Et\E′)
|s?(u, v)− t| =

∑
uv∈EE∩(E′\Et)

|s?(u, v)− t| = 0.

Since the explicitly missing values have no information content, we adapted our
approach such that they do not impact the clustering process. The remaining edges
with existing similarity values have to account for the clustering result. We are
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Chapter 4. Clustering with Missing Values

confident that this does not harm the quality of the clustering result significantly,
since we assume that most of the information of the edges of a cluster is redundant.
This can be demonstrated on a simplified model. Let us assume the intra-cluster

similarity is following a normal distribution X+ ∼ N (µ, σ2), the inter-cluster sim-
ilarity a normal distribution X− ∼ N (−µ, σ2), and the threshold is set to t = 0.
In [125], we have proven that the average intra-cluster similarity of each cluster is
above the threshold. That means in turn, a connected component is falsely separated
into several clusters if the missing values cause the average similarity of the present
edge weights to drop below the threshold. First, we can give the probability that an
edge sampled from N (µ, σ2) is below 0:

P [X+ < 0] = 1
2

(
1 + erf

( −µ√
2σ2

))
.

When drawing k samples from the given normal distribution, the sampling distribu-
tion X+ itself follows

X+ ∼ N (µ, σ
2

k
).

The probability P (k) that k samples are on average below the threshold can be
calculated as

P (k) = 1
2

1 + erf

 −µ√
2σ2

k

 .
Because of the symmetry of the normal distribution, the identical argument holds for
the probability that a sample of k similarities from the inter-cluster distribution X−
is above the threshold which would cause a false joining of two separated clusters.
Figure 4.1 on page 78 depicts the minimal sample size k′ for which P (k′) < 0.05

in dependency of µ and σ2. The figure shows that only a small number of samples
is required in order to ensure an average similarity above the threshold. In fact,
whenever the variance σ2 < 3.69 · µ2 of the normal distribution, only 10 similarities
are sufficient to ensure that P (10) < 0.051.
This model only estimates the probability that the remaining edges compensate

the missing edges in terms of preserving an average similarity above the threshold for
a given cluster. In Subsection 5.1.1 on page 86, we will discuss the likelihood that
randomly selected edges form a connected component in the first place.
Even though biological datasets generally do not follow a normal distribution, the

presented model can be used for a rough estimation as to how well a given dataset
may be clustered with missing values2. For example, the intra-cluster distribution

1A quadratic relationship between µ and σ2 ensures that erf
(

−µ√
2σ2
k

)
remains constant. The

factor of 3.69 was determined numerically.
2According to the central limit theorem, the sample-mean distribution X will approximate a normal
distribution if the sample size is sufficiently large enough, even though X itself does not follow a
normal distribution.
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4.2. Integration of Missing Values into TransClust

Figure 4.2.: Illustration of the block-based scheme for saving similarity value computation time.
For illustrative reasons, we arbitrarily ordered the data to form six blocks. Now, only the data
from block three and six are selected to be BLASTed against the database. The remaining
values in the similarity matrix are displayed as "?". These are the steps used by the CMC to
create cost matrices for TransClust.

of the Brown et al. dataset has a mean of µ = 164.5 and a variance of σ2 = 9604
whereas the inter-cluster distribution has a mean of µ = 0.352 and a variance of
σ2 = 6.995. According to the model, choosing a threshold t ∈ [2, 113] ensures that
P (10) < 0.05. For P (2) < 0.05, the threshold should be picked from [4, 50]. In fact,
the best clustering quality (in terms of the best F-measure when compared to the
gold standard) with missing values is achieved when using a threshold between 22
and 24, depending on the number of missing values. Refer to Section 4.3 on the next
page for details of the evaluation.
In summary, the model suggests that the existing similarities can account for the

missing values. In the Section 4.3 on the following page, we will evaluate the Trans-
Clust with missing values with two datasets.

4.2.2. Cost-Matrix Creation

In the previous subsection, we demonstrated how to integrate explicitly missing val-
ues into the WTGPP. Once a threshold for the clustering using TransClust is chosen,
all explicitly missing values are replaced by the actual threshold and all other parts
of the clustering process remain unchanged. Hence the integration of explicitly miss-
ing values only requires changes in the creation of the cost-matrices. There is one
restriction to this approach: during the cost-matrix creation, implicitly and explicitly
missing edge weights must be distinguished. As it is already convention to leave im-
plicitly missing similarities out, we now use “?” for indicating that an edge uv ∈ EE .
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Such an integration in the CMC is straightforward but requires the existence of such
a similarity file.
We again integrate the support for the clustering of protein sequences based on a

BLAST all-vs.-all run. In order to provide the user with the possibility to systemat-
ically benefit from missing values in a BLAST all-vs.-all run, we do not use missing
values at randomly chosen positions in the similarity matrix, but omit the calcula-
tion of entire blocks of the similarity matrix. First, a BLAST database for all protein
sequences V is created by the CMC. Afterwards, only a selected subset VE ⊂ V
of the available proteins V are BLASTed against the database. Figure 4.2 depicts
this process. In other words, instead of performing an entire all-vs.-all BLAST run,
CMC performs “one-vs.-all” runs for VE . VE either can consist of randomly selected
proteins or be manually created by the user in order to incorporate prior knowledge.
This is a reasonable approach as BLAST queries protein sequences against a database
structure. Thus, a “one-vs.-all” query has a significantly smaller runtime than the
same number of subsequent “single pair” queries. The combination of TransClust
with the novel CMC omitting the calculation of entire stripes of the similarity matrix
is called TransClustMV (TransClust with randomly missing values) in the remainder
of this thesis.
That approach also enables an efficient distinction between a missing edge uv ∈ EI

and uv ∈ EE . If an edge weight is missing in the similarity matrix, indirectly and
explicitly missing values can be distinguished as follows:

uv ∈
{
EE u /∈ VE ∧ v /∈ VE
EI otherwise.

Consequently, only the set VE needs to be stored additionally to the similarity matrix
instead of storing every explicitly missing edge uv ∈ EE in the similarity matrix with
a “?”. To summarize, this approach has four major advantages:

1. The user is able to utilize the well accepted standard NCBI BLAST.

2. The user saves the calculation time for the missing similarities.

3. As the missing values are not stored explicitly, the size of the similarity file
remains small.

4. The created cost matrices can afterwards be integrated into existing TransClust
analysis pipelines.

Also note that our approach would work with similarity functions other than BLAST
as well. The user has to provide the similarity file and the set VE used for creating
the similarity matrix.

4.3. Results & Discussion
We utilize the gold standard dataset from Brown et al. [23] for studying the effect of
missing values to the clustering performance, i.e., accuracy and runtime (for a descrip-
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Figure 4.3.: The plots depict the runtime and accuracy of both datasets; the Coryne dataset is
in the first row ((a) and (b)), and the dataset of Brown et al. is in the second row ((c) and
(d)). Figures (a) and (c) display the F-measure as a function of the coverage. The numbers
on the line indicate the threshold, which yielded to the corresponding F-meassure. Figures
(b) and (d) give two runtime measures, again as a function of the coverage: blue displays
the time consumed for calculating the BLAST results, and red depicts the runtime only for
the clustering. Note that both runtime plots have different timescales displayed on the left for
BLAST and on the right for clustering respectively.
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Figure 4.4.: Runtime of TransClustMV as a function of the F-Measure for (a) Coryne dataset
and (b) Brown et al. dataset. Due to the small size of the Brown et al. dataset and the
resulting short BLAST runs, we observe a certain variation of the clustering runtime. For the
larger dataset, this is not observed anymore.
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Chapter 4. Clustering with Missing Values

tion of the dataset refer to Subsection 2.6.1 on page 62). As the dataset from Brown
et al. comprises a rather small problem instance, we cannot expect large improve-
ments in terms of reduced computational time. Thus, we also apply our methods to a
larger remote homology detection dataset consisting of 66,000 proteins of 27 different
corynebacteria, a subsample of the Actino dataset described in Subsection 2.6.2 on
page 62. In the remainder of this chapter, we refer to this dataset as the Coryne
dataset.
We use the F-measure for comparing the results of TransClustMV to the above

described gold standard. As the Coryne dataset has no gold standard, we compare
the results of TransClustMV against the clustering result of TransClust with full
information. For creating this “gold standard” we used a threshold of 20. For sys-
tematic evaluation, we vary the coverage from 1% to 90% (proteins used for one-vs.-all
queries) and create the cost matrices accordingly. For each clustering, we compute the
F-measure and measure the runtime. The runtime for the entire clustering includes
both the time for creating the similarities and the successive clustering process. In
order to assess the variability (robustness) of the best threshold, we clustered both
datasets with different thresholds and always picked (and reported) the threshold
leading to the best F-measure.
The results of the clusterings are depicted in Figure 4.3. We can see that even for

a low coverage (high amount of missing values), the F-measure for both datasets only
drops by a low percentage. Furthermore, it is important to notice that the threshold
resulting in the best F-measure is very stable for all coverages. In conclusion, all
methods for finding a good threshold (e.g., using a smaller gold standard dataset for
parameter training or utilizing the same threshold from a comparable study) can be
applied for clustering with missing values as well. The runtime scales as expected:
BLAST computing times grow linearly with the number of sequence comparisons
while the runtime for the clustering process is essentially constant with little variation.
Figure 4.4 plots the average runtime of TransClustMV against the F-Measures. It
shows that with our approach, the runtime can be drastically reduced, while the drop
of the F-Measure is comparably moderate, i.e., less than a 10% F-Measure drop for
about 70% runtime reduction. All runtimes are based on a single thread execution
of BLAST and TransClustMV. Note that the novel CMC also supports parallel
execution which further reduces the runtime.

"

Results of this Chapter

• Many similarities are redundant and do not effect the clustering
result.

• TransClustMV enables the strategic exploitation of missing values.

• For protein homology detection, when we accept a quality drop of
only 10% we can save ≈ 70% runtime.

• Availability: http://transclust.mpi-inf.mpg.de
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5. Active Transitivity Clustering

This section is based on the not yet published work:

Richard Röttger, Alexander Junge, Jan Baumbach. Active Transitivity Cluster-
ing. (working title, in preparation)

z

Objectives of this Chapter

• Development of strategies for judging the importance of missing
similarities.

• Selective calculation of only those similarities promising the highest
impact on the cluster quality.

In the last chapter we have demonstrated that omitting the calculation of randomly
selected similarities reduces the overall calculation time while the cluster quality re-
mains high even for small percentages of known similarities. The next step in exploit-
ing missing values is to omit missing values not randomly but selectively, considering
those values that are deemed most redundant. In other words, we aim to calculate
only those similarities which carry the most valuable information for improving the
cluster result. We aim to further reduce the amount of calculated similarities while
improving the quality compared to the random approach. This enables the handling
of large datasets and at the same time, the utilization of computationally expensive
similarity functions.
In comparison to the approach presented in the previous chapter, active clustering

requires the implementation of an entirely new clustering strategy rather than only
a modified cost-matrix creation. The new overall strategy is depicted in Figure 5.1.
First, the clustering process is started by calculating a small percentage of randomly
chosen similarities which are used to calculate an initial clustering. This clustering
is analyzed and the missing similarity values are ranked according to their estimated
importance. The ranking of the missing information is the most crucial part of the
entire process and will be discussed in detail in the following sections. In the next step,
the highest ranking similarities are calculated on the fly and the current clustering
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Chapter 5. Active Transitivity Clustering

Figure 5.1.: The general active clustering approach: In the first step, initial similarities are
calculated and an initial clustering is computed. The next step is the ranking of the missing
similarities according to their likelihood to improve the cluster result. The most promising
similarities are reordered in general by invoking an external program, e.g., BLAST. The current
clustering is updated according to the new similarities. If no abort criterion is met (e.g., user
interrupt, similarities are very unlikely to improve the result, etc.), the current clustering is
reported to the user (if such an intermediate result is desired) and the process starts over with
the evaluation of the missing values.

is updated using the new similarities. This similarity calculation and re-clustering
cycle is repeated until certain abort criteria are met. As every clustering between
the single steps is a valid clustering result, the user has the possibility to investigate
these intermediate results and judge their quality. Thus, the user can already work on
results based on these intermediate steps, while the clustering results are continuously
improved.
The following sections discuss methods for judging the importance of missing val-

ues, introduce different active clustering strategies, and present the obtained results
of the active clustering approach.

5.1. Evaluation of the Importance of Missing Values
5.1.1. Analyzing the Random Clustering Results
As seen in the previous section, the most important task is the development of a
reliable method to judge the importance of missing values. In order to do so, we
further investigate the results from the previous chapter. It is notable that the F-
measure increases quickly initially and reaches a plateau; from there, only small
improvements can be made while increasing the percentage of known similarities
(refer to Figure 4.3 on page 83).
Figure 5.2 depicts the percentage of successfully reconstructed clusters depending

on their size. We used the clusters of the Coryne dataset and utilized approximately
5% of all possible similarities1. We observe a clear bias towards the large clusters

1The Coryne dataset is compiled of 66, 143 proteins resulting in 2.18 billion similarities. For the
one-vs.-all queries, we used 1, 654 proteins resulting in 108 million actually calculated similarities
which correspond to a coverage of about 5%.
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Figure 5.2.: The analysis of the clustering of the Coryne dataset with TransClustMV (5% of the
similarities were calculated). The blue line indicates the number of clusters for a given cluster
size of the result using full information (gold standard). The orange line shows the number
of reconstructed clusters (overlap ω > 0.75). Note the logarithmic scale for the “Number of
Clusters” axis. The yellow line indicates the percentage of reconstructed clusters. One can
clearly observe a higher reconstruction rate with growing cluster size.

which are almost always reconstructed correctly. In this context, “reconstructed”
means we compare the reported clustering C with the gold standard clustering K.
The gold standard is the result of a clustering with TransClust using full information.
A cluster Ci is regarded as reconstructed, whenever there is a cluster Kj such that
the overlap score ω(Ci,Kj) ≥ 0.75 (refer to Definition 2.3.6 on page 36). An overlap
score ω(Ci,Kj) ≥ 0.75 prevents a cluster Kj = {u, v} of size |Kj | =2 from being
counted as reconstructed when compared to a singleton Ci = {u} (this would result
in ω(Ci,Kj) = 0.5). Also, clusters of size three are only counted as reconstructed
when they are either completely matched or contained in a cluster of size at most
four (ω({u, v, w, x}, {u, v, w} = 0.75)).
On the other hand, the performance for small clusters is comparably poor. This

is apparent for clusters with exactly two elements. These two elements u and v are
matched together if and only if the similarity s(u, v) was calculated. With the random
approach, this similarity is calculated with the probability of exactly the coverage, in
this example, 5%.
To investigate that dependency further, we concentrate only on the detection of

connected components for the remainder of this section. This is reasonable because
TransClust only detects clusters within a connected component, thus the discovery
of the connected components is the first crucial step towards the final clustering.
To formalize the problem, let G = (V,E) be a fully connected graph and C =
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Figure 5.3.: Average overlap score between the artificially generated gold standard and the dis-
covered connected components when using only a small sample of similarities (1%, 2.5%, 5%,
7.5%, and 10%).

{C1, . . . , Cn} the clusters in the dataset with s(u, v) ∈ [0, 1]. We consider the ideal
case in which all intra-cluster similarities are 1 and all inter-cluster similarities are 0,
thus

s(u, v) =
{

1 if u, v ∈ Ci
0 if u ∈ Ci, v ∈ Cj with i 6= j

holds true for all u, v ∈ V . We consider two objects belonging to the same connected
component whenever their similarity is 1. If we now pick, with a probability of p,
edges of the

(|V |
2
)
available edges, we ask how likely it is to discover a connected

component of size c. This problem is a hard graph theoretical problem andto our
knowledge, so far, has been solved only for graphs with the number of nodes growing
asymptotically to infinity [43, 30, 88]2.
We want to provide an explanation for the problems with small connected com-

ponents. As already mentioned above, for a connected component Ci with |Ci| = 2,
the probability of detecting that component is exactly p. For connected components
of size c with c > 2, the minimal required number of edges to be picked is c − 1,
namely when picking a spanning tree. On the other hand, the total number of edges
in that connected component is c·(c−1)

2 . That means that the minimal number of

2The study of random graphs was pioneered by Erdös and Rényi in the 1950s and has remained a
subject of research since then. In their work, they defined a random graph Γ|V |,|E| as a graph
with |V | vertices and |E| edges, which are uniformly chosen at random of the

((|V |2 )
|E|

)
possi-

ble edges. They proved that the possibility of Γ|V |,|E|′ being completely connected is given by
limn→∞ P (|V |, |E|′) = e−e

−2c
with |E|′ = 1

2 |V | log |V | + c · |V | and c being an arbitrarily fixed
number [43]. More recent work has been dedicated to allow for arbitrary node degree distribu-
tions, for example in [30, 88].

88



5.1. Evaluation of the Importance of Missing Values

required edges grows only linearly whereas the number of “available” edges (and thus
the number of picked edges with constant pick probability) grows quadratically. This
intuitively explains that bigger connected components are more likely to be picked.
To empirically validate this observation, we created a dataset containing one cluster

of each of the following sizes: 2, 3, 4, 6, 8, 10, 15, 20, 30, . . . , 100, 120, . . . , 300. We ran
the experiment picking 1%, 2.5%, 5%, 7.5%, and 10% of the edges with 10, 000
repetitions for each pick probability. The results are depicted in Figure 5.3. The
data clearly shows the anticipated behavior that the larger the connected component,
the higher the likelihood of being discovered. Furthermore, with increasing pick-
probability, the size of the fully rediscovered clusters (average overlap greater than
0.75) shrinks to a cluster size of 20.
These results show where we can improve the results of the randomly missing

values. We also need an effective method for tackling small clusters, even though
the effects on the F-measure are relatively small. The remainder of the chapter first
discusses how to judge the importance of missing values of big clusters, what we will
now call “large critical clusters,” and then suggest method to judge the importance
of very small clusters, called “small critical clusters.”
We will not give a sharp separation of a large and a small cluster. The reason for

that reluctance is that in the remainder of this chapter, we will introduce different
approaches in order to rank the importance of missing information. We designed
methods which specifically are biased towards improving on small clusters and meth-
ods which tend to improve on large clusters. Nevertheless, these methods do improve
the overall clustering, thus this “virtual” separation should only serve the purpose of
easing the reading and not a strict separation of the set of clusters or the methods.

5.1.2. Large Critical Clusters

In this stage of clustering, we assume that we already have an intermediate clustering
result, either based on the initial random similarity selection or due to previous
iterations (see Figure 5.1). Let C = {C1, . . . , Cn} denote the current clustering.
As mentioned above, we want to extract those clusters of C which promise the most
increase in the clustering quality when more similarities adjacent to these clusters are
computed. Basically, we distinguish between two operations which can be performed
with large critical clusters:

Split a large critical cluster into several smaller clusters

Join a critical pair of large clusters into one bigger cluster

In order to determine the most promising candidates for splitting, we must discuss
the definition of the “criticality” of a cluster, i.e., the likelihood that cluster is split in
the clustering with full information into several smaller clusters. The “criticality” of a
cluster is defined as a relative measure resulting in a ranking of the available clusters.
Let Q(Ci) : C 7→ R be a measure which assigns each cluster Ci a certain quality.
As there is normally no gold standard at hand, we can only use internal measures.
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Apparently, for calculating the measure, only the already known similarities can be
taken into consideration.
Here, we suggest a measure based on the intra-cluster similarity. We consider those

clusters as most critical whose average intra-cluster similarity is closest to the user-
defined threshold t (refer to Subsection 2.4.10 on page 49 for an explanation of the
threshold). Thus, Q(Ci) is defined as

Q(Ci) = 2
|Ci| · (|Ci| − 1)

∑
{u,v}∈(Ci2 )

s(u, v)− t

with s(u, v) being the similarity function used for the clustering. We have already
shown that the average intra-cluster similarity is always above the threshold [125],
which also holds for clusterings with missing values as shown in [101]. Thus clusters
close to the threshold, i.e., Q(Ci) close to zero, are exactly those clusters which are
most likely to fall apart.
For the operation “Join,” we need to consider pairs of clusters. The general ap-

proach remains similar; we now consider a measure Q(Ci, Cj) :
(C

2
)
7→ R which assigns

every pair of clusters Ci and Cj a certain quality. In that case, it is the likelihood
of these two clusters being joined together. Again, the measure Q(Ci, Cj) forms a
relative measure, thus only comparing pairs of clusters with other pairs of clusters.
Analogous to the split operation, we base the measure on the inter-cluster similarity.

The reasoning for the measure is that when the average similarity between two clusters
Ci and Cj is only slightly below the threshold t, this pair is likely to be joined whenever
new similarities are calculated. The measure is defined as

Q(Ci, Cj) = 1
|Ci| · |Cj |

∑
u∈Ci,v∈Cj

t− s(u, v).

Again, the closer Q(Ci, Cj) is to zero, the more critical the pair of clusters.
For both operations, the usage of any other internal measure is applicable as well,

but using the similarities and the threshold of TransClust seems most promising
as we can directly exploit the internal mechanisms of the WTGPP: Whenever the
average similarity of one cluster drops below the threshold, the cluster necessarily
falls apart to form an optimal solution of the WTGPP. The same is true whenever
the average similarities between two clusters raises above the threshold; these two
clusters in the current form cannot be longer part of the optimal WTGPP solution.
We proved these properties of the WTGPP in [125]. With other measures, such a
strong connection between the measure and the consequential change in the clustering
cannot be established.

5.1.3. Small Critical Clusters

In the analysis of the results of the random missing values approach, we have seen that
many small clusters remain undetected. In the active clustering approach, especially
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after the first clustering steps, many objects are singletons, i.e., they do not yet belong
to any cluster. If we consider the example of a two-element cluster, the similarity
between these exact two elements must be known to join them into one cluster,
which is not possible with the approach discussed in the last subsection as there are
no inter-cluster similarities known between singletons.
The method we propose requires that entire stripes of the similarity matrix are

calculated, the same principle as in the random missing values approach described
in Section 4.2 on page 78. That is not a very harsh restriction, as many similarity
functions (BLAST is among them) perform a one-vs.-all query more efficiently than
single pairwise similarity queries. Let S = {s1, . . . , sk} be the objects for which all
similarities are calculated and U = {u1, . . . , uN−k} with N � k the remaining objects
(compare to Figure 4.2 on page 81). In other words, every similarity s(ui, uj) with
ui, uj ∈ U is unknown and all others are known. We now concentrate on the objects
of small clusters of the set U . In order to receive a ranking of importance between
the elements of U , we need to assess their expected similarity indirectly. Therefore,
we construct a feature vector ũi ∈ Rk for every object ui:

ũi = (s(s1, ui), . . . , s(sk, ui)).

The vector ũi describes the “behavior” of the object ui regarding the objects in S.
The intuition is that two objects ui and uj of the same (not yet detected) small cluster
show similar behavior, i.e., similar proximities towards the objects in S. Thus, all
objects with a very similar vector ũi are candidates for belonging into the same cluster.
The similarity ŝ(ũi, ũj) : Rk×Rk → R between the vectors ũi and ũj can be assessed,
for example, with the Euclidean or the Manhattan distance. With the similarities
ŝ(ũi, ũj), a ranking of the most promising pairs of objects can be calculated.
An obvious drawback of this method is the necessity of calculating

(|U |
2
)
similarities

between the objects of U and |U | · |S| features. That makes this method computa-
tionally challenging for large datasets. Furthermore, the actual similarity function
s(u, v) : V × V → R must produce continuous values with a considerably high res-
olution, also in the case of dissimilar objects. When using a similarity function like
the E-value of BLAST, most entries of ũ would be zero (because BLAST normally
aborts the calculation in case of very dissimilar protein pairs), leading to unfeasible
feature vectors.

5.1.4. Landmark Method

In 2011, Voevodski et al. published an approach Landmark-Clustering [116]. They
also utilize a setting where “one-vs.-all queries” are actively exploited to generate
an optimal K-median clustering. In their paper, they were able to show that they
can reproduce a K-means clustering with only O(k) such one-vs.-all queries (with k
being the number of clusters) if the problem instance resembles the (c, ε)-property of
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Balcan et al.3 [11]. This property basically ensures a “clusterability” of the problem
instance using K-means. In other words, this approach only works on problems being
favorable to K-means in the first place (i.e., well separated compact circle-shaped
clusters).
The intuition of this method is to actively identify the potential centroids of the

clusters (the authors call them landmarks) and utilize them for the one-versus-all
queries. Their algorithm starts with a landmark selection process:

1. The first landmark l1 is chosen randomly and added to the set of landmarks L.

2. The minimal distance from each point v ∈ V to any landmark l ∈ L is calcu-
lated: dmin(v) = minl∈L d(v, l).

3. Let V ′ = V \L be an ordered list of the remaining non-landmark objects such
that for all vi, vj ∈ V with i < j holds dmin(vi) < dmin(vj). The next landmark
is randomly chosen from the q last (i.e., most distant) objects of V ′.

4. Steps (2) and (3) are repeated until the desired number of landmarks is reached.

These landmarks are used in an adapted K-median algorithm to determine the final
clustering.
This selection process ensures that the landmarks, i.e., the stripes in the similarity

matrix, are well spread over the entire feature space of the given problem. For
clustering with TransClust, the same principle can be applied, except that TransClust
uses a similarity function as proximity measure. This approach also works best for
large clusters, as small clusters can easily go missing because at least one member of
a clusters has to be selected as landmark. The authors of [116] claim that besides the
(c, ε)-property, the target clusters should be “large” but without specifying a concrete
definition of large.
Furthermore, TransClust does not have a parameter k defining the number of

desired clusters, thus there is no predetermined stopping criterion. Obviously, with
an increasing sample over time, the selection will converge to the random missing
value approach as at some point, there is no longer a meaningful most-distant object.
As the sample strategy (calculating entire stripes of the similarity matrix) is the same
as for the method for small critical clusters, both methods can be combined. Such
an approach is presented in the following section.

3Definition of the (c, ε)-property as given in [11]: “Given an objective function Φ (such as k-
median, k-means, or min-sum), we say that instance (M, V ) satisfies the (c, ε)-property for if all
clusterings C with Φ(C) ≤ c · OPT are ε-close to the target clustering CT for (M, V ).” In this
definition,M defines the metric space and V the objects in question. In other words, whenever
a clustering is a c-approximation of the optimal clustering given the objective function Φ, it also
limits the error compared to the target clustering (e.g., gold standard) to at most ε. The definition
of error is not fixed, it can be for example the deviation of an external quality measure or the
number of misclassified objects (see[11, 116] for more details).
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5.2. Strategies for Active Clustering

5.2.1. Similarity Calculation Strategies

In the previous section, we developed methods to rank the importance of missing
values. This section describes the actual implemented strategies in ActiveTransClust
and their parameters. These strategies have been developed particularly to validate
the different importance measures and will be discussed afterwards in the results
section.

5.2.1.1. Intra/Inter-Cluster Strategy (IICS)

Intuition This method is based on the importance ranking of the “Large Critical
Clusters” (Subsection 5.1.2 on page 89) and attempts to calculate those simi-
larities which most likely lead to a merger of several clusters or to a split of a
cluster.

Implementation Let EE denote the set of edges for which no similarity was calcu-
lated so far, and EK and EI the edges for which similarities were calculated
(compare to Section 4.2 on page 78). Given an intermediate clustering result
C = {C1, . . . , Cn} based on the similarities of the edges in EK , the clusters
and the pairs of clusters are ranked according to the method described in Sub-
section 5.1.2 on page 89. Let RC = (Ci1 , . . . , Cin) be the sorted sequence of
all clusters of C according to their criticality, i.e., Q(Cik) ≤ Q(Cil) ∀0 <

k < l ≤ n. Analogously, let RP = ((Ci1 , Cj1), . . . , (Cim , Cjm)) with m =
(|C|

2
)

be the sorted sequence of all cluster pairs according to their criticality, i.e.,
Q(Cik , Cjk) < Q(Cil , Cjl) ∀0 < k < l ≤ m. From both lists, the top elements
are selected for further investigation (parameter numberOfClustersNewSimilar-
ities). In case of a critical cluster, the number of unknown similarities are
calculated and a user-defined fixed fraction of them are calculated (parameter
fractionOfClusterSims). The same strategy is applied to the critical pairs of
clusters. Here, a fixed fraction (parameter fractionOfClusterPairSims) of miss-
ing inter-cluster similarities between the current cluster pair are selected. This
straightforward implementation suffers two important shortcomings:

1. It can happen that after the initial clustering, there is no information at
all between a pair of clusters (Ci, Cj), i.e., uv ∈ EE ∀u ∈ Ci, v ∈ Cj .
Consequentially, this cluster pair cannot be ranked and thus would never
be considered as a potential merge candidate. To overcome this problem,
the user can specify a default criticality λ which these pairs are assigned
(parameter noInformationInterClusterQuality), i.e., Q(Ci, Cj) = λ. The
closer λ is to zero, the more likely those cluster pairs are ranked on top in
RP .

2. Explicitly missing edges EE and indirectly missing edges EI need to be
distinguished. In contrast to TransClustMV, they cannot be distinguished
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by storing a list of objects VE used for one-vs.-all queries but need to be
stored completely (compare to Section 4.2 on page 78). That enlarges the
similarity file in comparison to TransClustMV.

Parameters

numberClustersNewSimilarities The number of clusters/pairs of clusters for
which new similarities are reordered. Higher ranking (pairs of) clusters
are picked first.

fractionOfClusterPairSims The fraction of currently unknown intra-cluster sim-
ilarities that is reordered for a pair of clusters that was selected.

fractionOfClusterSims The fraction of similarities that is reordered for each of
the highest ranking clusters.

noInformationInterClusterQuality Average cluster-pair quality for a pair of
clusters with no known inter-cluster similarities. A low value leads to
preferred computation of similarities for these pairs of clusters.

5.2.1.2. Landmark Strategy (LS)

Intuition This method follows the landmark approach described in Subsection 5.1.4
using one-vs.-all queries. This method aims to distribute the one-vs.-all queries
as efficiently as possible by choosing those objects as landmarks which are fur-
thest away from the already known landmarks. This method is especially effi-
cient if the used similarity function supports fast one-vs.-all queries (e.g., queries
against a database or BLAST).

Implementation The algorithm starts with the one-vs.-all query of a randomly se-
lected seed landmark. The object most distant to the current set of landmarks
serves as the next landmark. Whenever several nodes are equally dissimilar to
the set of existing landmarks, the new landmark is chosen randomly.

Parameters No additional parameters are required.

5.2.1.3. Extended Landmark Strategy (ELS)

Intuition The landmark strategy only takes the distribution of the landmarks over
the entire space of objects into account but neglects the actual clustering struc-
ture so far. In other words, the landmark strategy might concentrate on the
most distinct and easily detectable clusters as they are furthest away from all
other data points but neglects small clusters, especially singletons. In Subsec-
tion 5.1.3, we introduced a strategy for ranking small clusters and singletons
also based on one-vs.-all queries. The extended landmark strategy is the com-
bination of both methods.
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Implementation As already explained in Subsection 5.1.3, the ranking of the small
clusters is computationally very expensive, as between all pairs of small clus-
ters and singletons a similarity needs to be calculated. We implemented the
small-clusters ranking (using the Manhattan distance) only as a post-processing
step rather than a concurrent strategy to the landmark calculations. Let Ci
denote the clustering after the similarity calculations for the ith landmark li.
Given an internal quality measure Q(Ci) → R or an external quality measure
Q(Ci,K) → R with K being the gold standard, we can define the notation
of stagnation of the clustering quality: When the quality improvement of an
iteration Q(Ci)−Q(Ci−1) is less than ε for k successive steps (paramter num-
berOfSteadyIterations), i.e., Q(Ci)−Q(Ci−(j+1)) < ε j = 0, . . . , k− 1, we call
the clustering stagnating (same definition applies for the usage of an external
quality function Q(Ci,K) → R). We utilize the F-measure when a gold stan-
dard is available, the silhouette value otherwise (see Section 2.3 on page 32 for
details on the quality measures). Whenever the clustering quality is stagnating,
we apply the extended step described in Subsection 5.1.3. In order to speed
up the small cluster ranking, the algorithm takes only small clusters up to a
user-defined size into account (parameter maxClusterSize). From the ranking
of the missing similarities, reorderVolume values are calculated.

Parameters

ε, numberOfSteadyIterations Steady-state is reached when the F-measure or
silhouette value does not change by at least ε over numberOfSteadyItera-
tions iterations.

reorderVolume Number of similarities calculated for the “extended” step.

maxClusterSize Objects assigned to a cluster larger than this parameter are
not considered in the ranking produced by the small-cluster ranking.

5.2.1.4. Summary

In the previous paragraphs, we introduced the actual implementation of the different
strategies based on the ideas introduced in Section 5.1. Table 5.1 briefly summa-
rizes the strategies. All these strategies have additional parameters controlling the
actual execution of the program. The user can decide for a certain abort criterion
(comparable to the parameters ε and numberOfSteadyIterations of the ELS) and
whether intermediate clustering results should be reported and written as output or
not. Furthermore, the user has the possibility to abort the clustering at any time
and ActiveTransClust will report the current clustering as result.
The list of possible strategies is far from being exhaustive. There is the possibility of

forming different combinations of these strategies and of course implementing different
measures for judging the importance of missing values. The similarities queued for
calculation are based on the ranking of only one measure. It might be beneficial to
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IICS LS ELS

Central Idea

Identify clusters/pair of
clusters which are most
likely to fall apart/be

joined

Distribute one-vs.-all
queries such that they
most likely match
cluster centroids

Same as LS, additionally
account particularly for

small clusters

Most
important
parameters

numberClustersNew-
Similarities,

fractionOfClusterPair-
Sims,

fractionOfClusterSims

no parameters
reorderVolume, number-

OfSteadyIterations

Possible
Drawback

Entire similarity file
needs to be hold in main

memory

No special treatment for
small critical clusters

The “extended” step is
computational ineffective

Table 5.1.: This table briefly summarizes the active clustering strategies implemented.

derive the ranking by means of a combination of different criteria (compare also to
the Outlook Chapter 10 on page 159).
In the framework of this thesis, we understand the described methods as a proof

of concept. The IICS allows the evaluation of the performance of concentrating on
the “Large Critical Clusters” ranking. This method is also beneficial when there is
an effective way of calculating single pairwise similarities. In contrast, if a one-vs.-all
query yields performance advantages (in comparison to single queries resulting in the
the number of similarities), the LS indicates the performance of exploiting this fact.
The last strategy, ELS, will enable us to assess the influence of small clusters and the
possible improvements by utilizing the “Small Critical Clusters” ranking.

5.2.2. Re-Clustering Strategy

After each iteration, the active clustering algorithm must create an updated version
of the current clustering incorporating the new similarities. These additional steps
pose a runtime disadvantage to normal clustering approaches and to TransClustMV.
Consequently, active clustering can only be beneficial in terms of runtime saving when
the time saved by omitting the calculation of the similarities outweighs the overhead
for the clustering itself. In order to decrease that overhead, a re-clustering strategy
must be developed which efficiently reuses the clustering obtained from the previous
iteration.
All strategies allow to influence the number of new similarities calculated in each

step (except for the LS). That can be used to influence the number of re-clusterings as
the higher the number of calculated similarities per iteration is, the fewer iterations
are required to reach a certain coverage of calculated similarities.
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Figure 5.4.: Small example where the calculation of similarities between two clusters affects a
third cluster. In this example, we use a threshold of 0 and unknown similarities are represented
by dashed lines. In step (1), the optimal solution for the given problem is displayed in the
upper-right corner and consists of three clusters with a total solution cost of 6 (deletion of the
green edges). In (2) an additional similarity is added between the brown and yellow cluster.
When only the directly affected clusters of this new similarity are considered, the algorithm
reports (2a) as the optimal solution (two clusters with total costs of 9). Nevertheless, the
optimal solution is displayed in (2b) and requires to split the blue cluster (total costs of 7).
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The next step is to reduce the computational effort for a re-clustering. As already
seen in the previous chapters, TransClust basically performs two steps to calculate a
clustering:

1. The dataset is split into connected components based on the known similarities

2. Each connected component is clustered

Splitting the dataset into connected components can be optimized in a straightforward
manner. If a similarity value s(u, v) with u and v belonging to the same connected
component Ci is calculated, the connected component does not change. Only in case
that u ∈ Ci and u ∈ Cj with i 6= j and the similarity s(u, v) is greater than the thresh-
old t, the connected components Ci and Cj are merged. After updating the connected
components, only those connected components require a re-clustering for which new
similarities were reordered. On the other hand, these connected components can be
very large and the total time spent in clustering is dominated by the largest connected
component. Of course, the largest connected component is also most likely to receive
updated similarities. Consequently, the above mentioned strategy has only limited
influence on the overall clustering time.
When applying the IICS strategy, only similarities of high-ranked clusters (ac-

cording to their criticality Q(Ci)) or between high-ranked cluster pairs (according
to their criticality Q(Cik , Cjk)) are calculated in each iteration. In order to re-
duce the calculation effort for a re-clustering, we no longer re-cluster the entire af-
fected connected components Ci but just the affected clusters Cj . Let E? be the
set of edges for which similarities were calculated in the current iteration. Let
C? = {Ci ∈ Ck : ∃uv ∈ E? : u ∈ Ci ∨ v ∈ Ci} be the set of affected clusters
of the current clustering Ck in the kth iteration. We construct “connected cluster
components” CC which are maximal sets of clusters of which any two clusters are
connected by a path of edges uv ∈ E? with s(u, v) > t (note, a connected cluster
component can also consist of only a single cluster). Each of these connected cluster
components is re-clustered in order to form the updated clustering Ck+1. In contrast
to the previous optimization, this approach can no longer guarantee to result in the
best possible clustering. Changing the internal structure of a cluster or a cluster pair
by calculating new similarities can have side effects on other clusters (i.e., clusters
with no new similarities) as well. Figure 5.4 depicts a small example using three clus-
ters. In order to limit the divergence of the intermediate clustering from the actual
best solution of the WGTPP over time, the user can specify a number of steps (fas-
tUpdateLength) after which all of the affected connected components are re-clustered.
This ensures that runtime is saved while still maintaining an optimal or near optimal
intermediate cluster result.
To summarize, we are employing two different re-cluster strategies. The first

method called “save re-clustering” ensures that TransClust delivers the best possible
solution to the WTGPP:

1. Maintain an Union-Find data structure representing the connected components.
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2. Let E? be the edges for which new similarities are calculated, C the current
connected components.

3. Update the connected components, i.e., union two connected components Ci
and Cj iff ∃uv ∈ E? : u ∈ Ci ∧ v ∈ Cj ∧ s(u, v) > t.

4. Let C? = {Ci ∈ C|∃uv ∈ E? : u, v ∈ Ci} be the set of connected components
affected by the new similarities. Cluster each Ci ∈ C?.

The second update strategy further reduces the re-clustering effort, but cannot guar-
antee that TransClust produces the best possible solution anymore. We call this
strategy the “cluster-wise re-clustering”:

1. Again, let E? be the edges for which new similarities are calculated. Update
the connected components as described above in steps 1 to 3.

2. Perform either a “full update” or a “fast update”. After fastUpdateLength fast
updates, a full update is performed:

a) Fast update: Construct the “connected cluster components” CC as de-
scribed in the text. Cluster each connected cluster component of CC.

b) Full update: Cluster each affected component since the last full update.

In the evaluation of the different similarity calculation strategies in the next section,
we only utilized the “save re-clustering” method in order to prevent any distortions
from sub-optimal clusterings caused by the re-clustering strategy.

5.3. Results & Discussion

5.3.1. Biological Datasets

In order to assess the result quality of ActiveTransClust, we use the Brown et al.
and Coryne datasets. For further information on these dataset, refer to Section 2.6
on page 62. As gold standard we use the result of a normal TransClust run with full
information. Thus, in this chapter, a F-measure of 1 means that ActiveTransClust
produced exactly the same result as the normal TransClust using full information.
As competition, we evaluate the different strategies against each other as well as

TransClustMV. Figure 5.5 depicts the performance of the three different Active-
TransClust reordering strategies vs. TransClustMV. For the Brown et al. dataset,
we can see that all three strategies perform better than the random approach of
TransClustMV. Especially the performance leap of the ELS strategy is noteworthy.
After calculating 6% of the similarities following the LS strategy, ELS performs the
“extended” step which is responsible for the jump in the F-measure of over 10%. Ex-
cept this peak, the quality performance advantage (in terms of a better F-measure)
of ActiveTransClust over TransClustMV is about 5%. The Coryne dataset was only
clustered with the LS strategy as the other strategies could not cope with the size
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Figure 5.5.: Performance comparison of ActiveTransClust strategies IICS, LS, ELS, and
TransClustMV (random) using the datasets of Brown et al. (left) and the Coryne dataset
(right).
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Figure 5.6.: Development of the F-measure with growing cluster-size using ActiveTransClust
strategy IICS, LS, ELS, and TransClustMV (random). On the left side, the Brown et al. was
used; the right side represents the results of the Coryne dataset. The F-measure is based on
the clustering result utilizing 10% of all available similarities.
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of the dataset. The ELS strategy requires the calculation and storage of all pairwise
similarities for all objects of small clusters (compare to Subsection 5.1.3 on page 90).
The IICS strategy necessarily needs the entire similarity matrix in the memory and
cannot store explicitly and implicitly missing values as effectively as the other meth-
ods. This is the reason why ActiveTransClust was not able to produce results for
that dataset using the IICS strategy. The remaining LS strategy performs better than
TransClustMV on the Coryne dataset clearly indicating that the strategic selection
of landmarks enhances the quality of the clustering result compared to the random
approach.
Nevertheless, we can only observe a slight performance improvement over Trans-

ClustMV on both datasets. One reason is that few large clusters, which are efficiently
reconstructed using any of the ActiveTransClust strategies or TransClustMV, dom-
inate the F-measure. In fact, when only accounting for clusters up to a certain size
(in the gold standard), we can see that the improvements over TransClustMV are
more significant. Figure 5.6 depicts the F-measure as a function of the maximal
cluster size. We calculated the clustering with a total of 10% of the similarities. We
can clearly observe that TransClustMV performs much worse on small clusters than
the active approaches. For the Brown et al. dataset, the IICS strategy performs
similar to TransClustMV (which is expected, as IICS does not particularly account
for small clusters), whereas the LS and ELS strategies show performance improve-
ments. The ELS strategy shows almost a constant cluster quality over all cluster
sizes which indicates that the treatment of the small clusters is important and works
as intended. The F-measure only considering clusters |Ci| < 10 improved from 0.61
(TransClustMV) to 0.94 (ELS).
Even though the overall difference to the performance of the randomly missing

values approach are rather small, the results are a strong indicator that the active
clustering approach improves the cluster quality compared to TransClustMV using
the same number of similarities. First, we have to consider that TransClustMV al-
ready performs well even when using only a small fraction of the similarities (compare
to Subsection 2.2.5 on page 32). Second, the structure of the used datasets does not
favor the active approach. For the Brown et al. dataset, only ≈ 19% of the similari-
ties are above the BLAST detection limit. The situation is even worse for the Coryne
dataset where only ≈ 0.05% of the similarities are above the BLAST detection limit.
That means in turn that 99.95% of all similarities are indirectly missing edges Ei and
thus set to the lowest possible similarity λ4. Even though we use more sophisticated
methods to select the similarities compared to TransClustMV, chances are high that
we select similarities of indirectly missing edges which cannot contribute significantly
to unravel the actual structure of the dataset.

4The Brown et al. dataset contains 833 proteins (thus ≈ 345, 000 pairwise similarities) whereas
the BLAST file stores only 70, 000 similarities. The Coryne dataset comprises of 66k proteins,
resulting in a total of 2.2 billion similarities of which only 1.2 million are above the detection limit.
That is also the reason why TransClustMV and ActiveTransClust can handle this dataset easily,
as both methods do not need to store explicitly and implicitly missing values in the memory.
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Figure 5.7.: Performance comparison of ActiveTransClust strategies IICS, LS, ELS and
TransClustMV (random) using the artificially generated dataset. The left figure depicts the
restricted F-measure at a sampling fraction of 20%.

The fact that the vast majority of all similarities are below the “detection limit”
of BLAST also has consequences for the “Small Critical Clusters” ranking. Here on
average, 99.95% of the elements of the feature vectors ũi are λ. Thus, selecting the
next landmark, i.e., finding the most distant object to any of the existing landmarks,
is based on the difference in the 0.05% similarities unequal to λ. We therefore use an
artificial dataset with no such detection limit in the next subsection in order to see
the potential of ActiveTransClust for non-BLAST similarity matrices.

5.3.2. Synthetic Datasets

Here, we follow the same evaluation process as with the biological datasets. The only
difference is that we utilize a large artificially generated dataset. We generated this
dataset following the dataset generator “Intra-vs.-Inter” described in Section 6.2 of
the next chapter on page 115. In this case, we sampled the similarities from two
normal distributions

s(u, v)
{
∼ N (µ, 1) ∀u, v ∈ V : ∃Ci ∈ C : u, v ∈ Ci
∼ N (−µ, 1) otherwise

with N (µ, 1) being the normal distribution. In this example, we used µ = 2.5 and a
threshold of zero.
We created the dataset using the following cluster structure: we added 2x clusters

of size 28−x for x = 0..8 to the dataset. That means we have clusters ranging from
singletons to size 256. In order to reduce the bias of the F-measure, we have the
same number of objects involved (2x · 28−x = 256) in every cluster size, resulting in
9 · 28 = 2, 304 objects. TransClust with full information achieves an F-measure of
0.97.
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Figure 5.8.: Performance comparison of ActiveTransClust strategies IICS, LS, ELS and
TransClustMV (random) using the Brown et al. dataset.

The main difference to the biological datasets is that this dataset possesses a real
distinct value for each similarity and does not have most similarities set to a cut-off
value λ. Figure 5.7 depicts the simulation results for the artificial dataset. Again,
ActiveTransClust outperforms TransClustMV in the overall clustering result as well
in the restricted F-measure. The worst performing active method is IICS which
outperforms TransClustMV only at sampling fractions > 25%, which was expected.
The dataset was designed in such a way that the large clusters do not dominate this
dataset (every cluster-size contributes the same number of objects to the dataset);
thus, a method especially tailored for improving large clusters cannot benefit from
the good performance on those large clusters to the same extent. The LS and ELS
methods are consistently better than TransClustMV and deliver up to 20% better
F-measures than the random sampling of TransClustMV. It is remarkable that the
“extended” step of the ELS strategy does not seem to improve the clustering as pro-
foundly as with the Brown et al. dataset. The ELS method can only improve on small
clusters if they were falsely classified in the first place. As this dataset is quite well
separated, the LS strategy and TransClustMV already perform quite well on these
small clusters. Again, this can also be seen from the quite poor performance of the
IICS method, which primarily improves on the large clusters. Thus, the “extended”
step only confirms the current clustering of the small clusters but does not change
them in a significant way.

5.3.3. Runtime Analysis

We have already seen that the active clustering approach can improve the clustering
result significantly compared to the random approach using the same number of
similarities. An obvious disadvantage of the active clustering approach is the necessity
for calculating intermediate clustering results with which the potential importance of
the missing values is estimated. That means in turn that the time saved by omitting
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Figure 5.9.: This figure depicts the required coverage of the LS strategy (y-axis) to achieve the
same F-measure as TransClustMV for a given coverage (x-axis). The dotted black line indicates
the baseline, meaning no similarity saving.

the calculation of similarities should outweigh the additional calculation time for the
more complex active approach in order to save runtime in comparison to TransClust.
Figure 5.8 depicts the calculation time of the different strategies of ActiveTrans-

Clust and TransClustMV in comparison to the normal TransClust. Here, we used
the Brown et al. dataset and measured the required time of the different approaches
until they reached an F-measure of 0.99 compared to the result of TransClust with full
information. To show the effect of an increasingly more complex similarity function
(in terms of computational time), we artificially delayed each similarity calculation
a certain amount of time ranging from immediate reporting up to 50ms. The results
show that even on a rather small dataset, the exploitation of missing values can be
beneficial. The methods LS and ELS outperform TransClust already at a calculation
of 4ms, the random approach and IICS require a delay of about 10− 15ms.

5.4. Conclusion
The evaluation of ActiveTransClust clearly shows an advantage over the clustering
with randomly missing values. Especially on the synthetic dataset, the improvements
were quite large. Figure 5.9 depicts the required similarity coverage to reach the
same F-measure as TransClustMV. On all datasets, less than 30% of the similarities
were required to outperform TransClustMV using 50% of the similarities. On the
other hand, the evaluation of the biological datasets has shown that the application
of ActiveTransClust might be subject to some restrictions. The similarity function
should also be precise when two objects are dissimilar, and not only return a default
value λ at a certain level of dissimilarity as e.g., BLAST does. With the artificial
dataset where we did not have such a cut-off for the similarity function, we have seen
that this information improves the effectiveness of the active clustering approach.
Unfortunately, whenever using biological datasets, especially the “dissimilarities” are
often only weakly documented. This is sometimes due to technical restriction but
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often simply not of interest for the biologists creating these datasets (e.g. if an
experiment shows that two proteins do not interact, such a “negative” result is very
often simply not stored in the databases).
Furthermore, the benefits of ActiveTransClust are larger if the used similarity func-

tion is complex in terms of required computational time. The longer a calculation for
a similarity takes, the more the user benefits from omitted similarity calculations in
order to save running time in the overall clustering process.
To summarize, ActiveTransClust further reduces the required amount of similarity

calculations while maintaining at least the same result quality in comparison to the
randomly missing values approach.

"

Results of this Chapter

• ActiveTransClust reduces the required number of similarities.

• The ActiveTransClust approach is more beneficial (in terms of run-
time saved) the longer the calculation of each similarity takes.

• We suggest using the LS method on large datasets, while on small
datasets the ELS method should be preferred.

• Availability: http://transclust.mpi-inf.mpg.de
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6. ClustEval - A Cluster Evaluation
Framework

This section is based on the not yet published work:

Christian Wiwie, Jan Baumbach, Richard Röttger. Standardization and Eval-
uation of Popular Bioinformatics Clustering Tools - An Integrated
Online Framework. (in preparation)

z

Objectives of this Chapter

• The last chapters have demonstrated that clustering is complex
and confusing for non-specialists.

• Unifying clustering approaches and data formats.

• Development of highly automatized clustering workflows guaran-
teeing bias-free high quality results for large-scale studies.

6.1. System Overview
The last chapters might have illustrated that performing a high-quality clustering
study is a challenge as clustering is complex and several steps of an analysis have to
work perfectly together in order to produce reliable results. Following the general
design of a cluster analysis as described in Subsection 2.1.3 on page 25, the most
important factors and tasks to be considered are:

• Nature and structure of the input dataset

• Choosing the best suited clustering algorithm

• Performing the appropriate preprocessing

• Choosing the correct similarity function

• Evaluate the results and optimize the algorithm’s parameters
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All these points above are challenging for the practitioner. As already mentioned,
there is no clustering algorithm which is the best choice for all problem instances [83].
Many clustering methods exist, all using different approaches to the task, as well as
different file formats for input and output (compare to Section 2.4 on page 39). In
order to find a well suited clustering algorithm, a meaningful evaluation scheme needs
to be applied. For the evaluation of the datasets and clustering results, a plethora of
measures with different key aspects exist (compare to Section 2.3 on page 32). The
choice of a quality measure is also highly problem specific [59]. Thus, it is often a
practical choice to apply several clustering algorithms and quality measures to the
same dataset [47] and modify each step of the cluster analysis depending on the
result [59]. In order to apply several clustering algorithms to the same dataset, the
researcher faces further problems: Most clustering tools have different standards for
input and output, each algorithm’s parameter need to be optimized for the problem
at hand, etc.
In order to bring more structure to the numerous methods and approaches, we

developed the clustering framework ClustEval. ClustEval eases these obstacles for
performing a cluster analysis. The framework automates the simultaneous execution
of several clustering tools and also performs an automated threshold probing for the
clustering algorithms. Along with the framework we provide several representative
datasets, gold standards, and clustering tools. These results are published on our
website so the user can easily spot the similarities between his dataset and the pro-
vided datasets, and see the performance (and the corresponding parameter sets) of
the different clustering tools on these datasets. This eases the decision of which tool,
parameter set, and evaluation method to choose.

6.1.1. Highlevel Setup of the Framework

In general, the framework is separated into a back end, performing all calculations,
and a front end, presenting the results as a website. In this thesis, we discuss the
design of the back end. The structure of the back end is depicted in Figure 6.1.
The back end is implemented in Java and utilizes Rserve1 in order to facilitate the
numerous R routines existing for different measures. The central part of the back-
end is the server in combination with the repository. The repository itself is a file
and directory structure on the file system and provides ClustEval with all available
entities (for the actual structure refer to Appendix A.1 on page 181). These entities
are oriented on the typical steps of a cluster analysis as outlined in Section 2.1.3. The
following four entities are used in ClustEval:

1. Dataset

2. Clustering Algorithm

3. Statistic

4. Run
1http://rforge.net/Rserve/
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Figure 6.1.: Technical organization of the ClustEval Framework. The back end consists primarily
of the server which manages all running processes of the back end. The Repository organizes
all resources available to the server and also stores the generated results on the file system. As
displayed, the front end consists of two parts: (1) the client which is used to control the server
and (2) a presentation layer implemented as a website.

All entities are defined by means of a configuration file located in the appropriate
folder of the repository. The first three entities can be regarded as static “provider”
entities whereas the “run” entity represent the logic of the system. Figure 6.2 depicts
the general interconnection between these entities. In the Appendix A.2 on page 183
examples for the different configuration files are given. The server automatically
screens the repository for changes in the entities and loads newly added entities on
demand.
Beside the management of the repository, the main task of the server is the invo-

cation of the different clustering and analysis tasks. The server receives tasks and
control instructions via the command line client. Once a clustering task is executed,
the server organizes the interplay of the different entities and maintains an optimal
load of the hardware. Once the processes have generated results, they are stored
in the repository file structure for further analysis by the user. Furthermore, results
stored in the repository are also stored in a MySQL database which is in turn queried
by the web interface of ClustEval. This interface presents all results in a user-friendly
manner to the researcher. The separation of the repository and the website by means
of an extra database as mediator was implemented for greater flexibility. With that
design, presentation and calculation are cleanly separated and can even run on differ-
ent machines; the ClustEval server does not need to run in the background in order
to host the ClustEval website.
In the remainder of this subsection, we describe different entities in more detail

and explain the possible configurations.
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Figure 6.2.: Schematic overview of a cluster analysis performed by ClustEval. All tasks which are
performed in an automated fashion are presented in a box; the boundaries of the framework
are indicated by the solid lines. Cluster studies are eased by ClustEval by automatization and
standardization. Data inputs are automatically converted to the standard input format, and
calculated clusterings to the standard output format. For each clustering, many clustering
quality measures can be evaluated automatically. When good density parameters are unknown
for the clustering methods, parameter optimization can be performed in a highly automated
fashion. Data inputs, as well as clustering results, can be analyzed and visualized on the website.

The Dataset Entity The dataset entity provides ClustEval with datasets. Every
dataset consists of the actual data and a corresponding configuration file con-
taining additional information. The most crucial information about a dataset
is the file-format. Generally, we distinguish between relative and absolute
datasets. In absolute datasets, objects are given as absolute coordinates of
points located in a d-dimensional space; thus the information needs to be trans-
formed into similarities for most clustering tools used in bioinformatics. The
relative dataset already contains a proximity measure between pairs of objects.

The Clustering Algorithm Entity The clustering algorithm entity provides cluster-
ing algorithms to the framework. ClustEval is designed to work directly with the
binary file of a clustering tool. This ensures that also closed-source algorithms
and reference implementations, regardless of their programming language, can
be utilized. Analogously to the configuration of the datasets, the clustering al-
gorithms must be accompanied with a configuration file. This file contains the
format of the system call for the binary and the required parameters. ClustEval
supports four different types of parameters: integer, float, enumeration, and
flags. For integer and float, the allowed range can be specified; for enumer-
ation, the allowed item names (e.g., if a program allows the choice between
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three different measures: -m manhattan | euclidean | maximum). Further-
more, for every clustering tool, the input and output format is specified, so the
framework can convert the result into the ClustEval standard format to further
process the results.

The Statistic Entity This entity represents a certain measure or statistic which is
used in different occasions in the framework. Of course, this includes the clus-
ter quality measures presented in Section 2.3 on page 32 in order to automati-
cally assess the quality of the clustering or the agreement with a gold standard.
Besides these commonly used measures, ClustEval also provides more special-
ized measures, for example co-occurrence matrices which count how often two
objects were clustered together within a given parameter range or when us-
ing different clustering algorithms. Furthermore, several “dataset measures”
are implemented. These measures solely analyze the dataset or gold standard
without any prior clustering. Examples for these measures are the clustering
coefficient or the node degree distribution. Appendix A.3 on page 185 lists all
available measures.

The Run Entity This entity interconnects all other entities with each other. A run
is represented by a configuration file and can basically be classified into two
different types:

Analysis Run In an analysis run the user specifies a dataset and defines the
measures which he wants evaluated on that dataset. This run does not
include any clustering and is supposed to assist the user in exploring the
nature of a new dataset.

Clustering Run In the clustering run, one or more datasets are specified to-
gether with one or more clustering tools. ClustEval applies each tool on
each dataset with a given parameter set. If the user has not yet determined
a feasible parameter set, he can also include automated threshold probing
based on a method described in Section 6.3 on page 116. The thresh-
old probing can be utilized in combination with a gold standard and an
external measure or without a gold standard utilizing internal measures.

6.1.2. Data Formats

One main obstacle hindering users to easily apply several clustering algorithms on a
certain dataset is that almost every clustering tool requires a unique input format and
also reports the results in a unique output format. Here, we suggest a standard format
for datasets, thus for input, as well as for clustering results. We provide converters
which can convert a dataset given in the standard format into the input format of
the most commonly used clustering approaches used in bioinformatics. The same is
true for the clustering results. We designed the formats as simple yet as flexible as
possible. Datasets in standard input and output format are stored as tab-separated
plain text files.
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Figure 6.3.: This figure depicts the flow of a dataset through the ClustEval framework. Red arrows
represent a data format conversion, green arrows indicate that the dataset can directly be used.
Every dataset is converted into the standard input format. All measures are implemented to
work on this format. In order to apply the given dataset to a clustering tool, the dataset is
converted from the standard input format into the tool specific input format. The resulting
output files is in turn converted back to a standard output format. That means, once a dataset
is converted to the standard input format, all available tools and measures can be applied.
When in turn for a new clustering tools converters for the input and output data are provided,
this tool can be applied to all available datasets.

We suggest the following standards:

Input This format is a complete quadratic tab-separated similarity matrix with header
row and column containing the ids of the objects.

1 id_1 id_2 ... id_n
2 id_1 s(id_1 ,id_1) s(id_1 ,id_2) ... s(id_1 ,id_n)
3 id_2 s(id_2 ,id_1) s(id_2 ,id_2) ... s(id_2 ,id_n)
4 ...

In this file, s(id_i,id_j) refers to the similarity between the object id_i and
id_j. This file format also allows for unsymmetrical similarity functions, thus
for two objects u, v ∈ V the similarity function s can produce results with
s(u, v) 6= s(v, u). In most cases, this design enlarges the file unnecessarily but
ensures high flexibility.

Output The standard output format is designed to store the clustering result (with
support for fuzzy clustering) together with the used parameter set. Let P =
{P1, ..., Pl} be the available parameters for the clustering tool in question, and
P = {p1, . . . , pl} the actual values of the corresponding parameters. Further-
more, let C = {C1, . . . Ck} denote the clustering result. Each cluster contains
elements Ci = {ci,1, . . . , ci,si} with si = |Ci|. As ClustEval also supports fuzzy
clustering (refer to Definition 2.1.9 on page 24), each object possesses a factor
fi,j describing to which degree the element cj belongs to cluster Ci. The format
itself starts with a header naming the parameters, followed by the clustering
result of every parameter set, each encoded in one line:

1 P_1 ,P_2 ,... , P_l
2 p_1 ,p_2 ,... , p_l <C_1 >;<C_2 >;...; < C_k >
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Here, <C_k> is replaced with a string representing each cluster. The cluster
Ci = {ci,1, . . . , ci,si} is encoded as:

1 c_i_1:f_i_1 ,c_i_2:f_i_2 ,... , c_i_s_i :f_s_i

6.1.3. Extending the Framework

We developed the framework to be extendible by the users. The extension of the
framework requires the implementation of a Java interface and copying the resulting
binary file into the repository of ClustEval. The additional class-file is automati-
cally detected and included by ClustEval. The most common extensions are briefly
discussed below:

Dataset If the dataset is provided in a yet unknown format, the user must specify
a new data format and implement a parser which transforms datasets of the
new format into the standard input format. Afterwards, the dataset can be
analyzed and clustered.

Statistic Adding a statistic (e.g., a quality measure) requires the user to implement
the statistic only for the use of datasets in the standard format. All other data
formats are converted to the standard format automatically.

Clustering Algorithm The user needs to provide a parser to convert the ClustEval
standard input format to the input format required by the clustering tool.
Furthermore, a converter is required to transform the result of the tool into the
standard output format. Additionally, the user must provide a configuration
file for the clustering tool such that the framework is aware of how to execute
the binary with which parameters.

Even though the extension of the framework requires some additional work, the effort
is drastically reduced in comparison to a manually processing of the tasks. If the
dataset is already provided in the standard format or the clustering tool already
accepts the standard format (or are provided in/accepts a format for which already
parsers are available), no implementations are required for extending the framework.

6.2. Methods for Creating Artificial Datasets
A typical and important challenge in bioinformatics is the retrieval of datasets with a
high quality gold standard. Gold standards are used in clustering for the determina-
tion of the best suited threshold or for the evaluation and comparison of the clustering
performance (in terms of agreement with the gold standard, e.g., using the F-measure)
of different tools. Generating gold standards for biological datasets is in most cases
costly and time intensive as it normally requires wet-lab experiments coupled with
a manual evaluation of the received data. For some problems, gold standards exist
(e.g., the Brown et al. [23] for the classification of proteins into protein families).
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Figure 6.4.: Example datasets generated by the different artificial dataset generators. (A) Cassini
dataset; (B) Cuboid dataset; (C) Gaussian 2D with 5 Gaussian curves and a very high overlap;
(D) Simplex dataset in 2D; (E) Spiral dataset; (F) Intra-vs.-Inter dataset. The Intra-vs.-Inter
dataset is only a schematic representation, as these datasets have no canonical projection into
a two-dimensional space. On the left side, the two overlapping probability functions for the
inter-cluster similarity (red) and intra cluster similarity (green) are displayed. The right side
symbolizes the final dataset consisting of four clusters, where green indicates that the similarities
were drawn from the green probability function and the space between clusters was sampled
from the red function.

Nevertheless, even when a gold standard is available, further problems may arise.
Gold standards of biological datasets are not necessarily complete. The fact that an
element ci is not a member of the cluster Kj in the gold standard K = {K1, . . . ,Km}
can be due to two different reasons: (1) the relationship of ci to the cluster Kj was
experimentally tested and a membership of ci to Kj was inconceivable based on the
evidence; or (2) the relationship of ci to Kj was not yet exhaustively evaluated in
the wet-lab, thus ci ∈ Kj can neither be guaranteed nor ruled out for certain. In the
second case, if the clustering tool assigns ci to Kj , it cannot be determined if that
assignment is a false positive (for a definition of false positive in clustering refer to
Section 2.3.2 on page 35). Treating those potentially false assignments as false posi-
tive may lead to an over-fitting of the clustering algorithm towards the true positives.
To summarize, even in the presence of a gold standard, it is difficult to accurately

assess the quality of the cluster results and thus the performance of the clustering
tools. “Entirely objective cluster validation is possible only on the data with known
well-defined cluster structures and the development and evaluation of new clustering
algorithms should therefore always include such data. In this context, the develop-
ment of synthetic datasets that realistically mimic the properties of biological data
are of particular importance as such an approach permits a controlled study of an
algorithm’s sensitivity with respect to specific data properties” [59]. Therefore, we
integrated the following artificial dataset creators in ClustEval:
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Cassini: The Cassini dataset is probably one of the most commonly used artificial
datasets. It consists of three clusters, a circle in the middle and two Cassini-
shaped2 clusters bend around the circle. This non-convex shaped Cassini clus-
ters pose a problem for algorithms favoring a certain shape of the clusters, e.g.,
for k-Means with the tendency to form circular clusters.

Cuboid: This is a three-dimensional dataset consisting of four clusters. Three cuboids
are located at edges of the cubic space and one cube is placed in the middle
of the space. This dataset is relatively easy to cluster but again penalizes
clustering methods preferring spherical shaped clusters, as the clusters on the
edges are elongated, box-shaped cuboids.

Gaussian 2D: In this two-dimensional dataset, the members of each cluster are dis-
tributed following a given two-dimensional Gaussian distribution. Here, the
degree of overlap of the different clusters and the number of clusters can be
varied by defining the according Gaussian distributions. Depending on the
overlap and variance, this dataset can be very hard to cluster.

Simplex: This dataset generator places the clusters on the corners of a simplex3.
Through the variance, the user can define the overlap between the different
clusters but generally, the clusters in this dataset are very well separated.

Spirals: An often used two-dimensional dataset with two different clusters. The
clusters are two entangled spirals. The correct clustering of this dataset is a
very challenging task for most clustering algorithms. Due to the spiral form,
both clusters spread over the entire plane and have a low cluster density (the
average distance between two points of the cluster). Nevertheless, this dataset
is more of academic interest, as it hardly resembles any known real-life dataset.

Intra-vs.-Inter: This dataset generator was specially intended to work with cluster
algorithms using a similarity file as input. The number and size of the clus-
ters can be arbitrarily chosen. The intra-cluster similarities are sampled from
Gaussian normal distributions X+ ∼ N (µ+, σ

2
+), the inter-cluster similarities

are sampled form X− ∼ N (µ−, σ2
−) respectively. The user defines the mean

µ+, µ− and the variance σ2
+, σ

2
− of both distributions.

Figure 6.4 depicts example datasets generated with ClustEval. The researcher can
choose a data generator which fits a given real-world dataset best and test the different
clustering tools on an artificial dataset with a given gold standard. The framework
can also be easily extended with new data-generators.

2The Cassini oval is the set of points which quadratic distance between two given points remain
constant. Given p and q, then for all points xi of the Cassini curve, the following equation holds
true: d(xi, p) · d(xi, q) = b2, where b is the parameter defining the actual shape of the curve.

3A simplex can be seen as the generalization of a triangle to an to arbitrary dimension. For
example, a triangle is a two-dimensional simplex, a tetrahedron (pyramid with a triangular base)
is a three-dimensional simplex. This simplex structure helps to distribute the different clusters
evenly through the space in order to prevent biases.
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Figure 6.5.: This Figure illustrates the “Adaptive Divisive Parameter Optimization” method on
a two-dimensional parameter-space. The background coloring represents the cluster quality as
a heat-map (green for high quality, red for bad). In each step, the parameter set is selected
(indicated as blue) and new parameters are probed on a smaller space centered around the
previously selected parameter set. The small cross indicates the optimal parameter set.

6.3. Automated Threshold Probing
As already mentioned in the previous chapters, applying a certain existing clustering
method to a given dataset is not straightforward. Besides the correct conversion into
the tool’s own data format, the tool itself must be used correctly with meaningful
parameters. As seen in Section 2.4 on page 39, most clustering tools have parameters
which are not directly connected to an interpretable property of the clustering result,
but rather fine-tune some internal algorithmic details. To use these tools efficiently,
expert knowledge about the algorithm is necessary.
The procedure of detecting a good parameter set can be separated into the following

steps:

1. Select a quality measure Q(C)→ R for assessing the clustering result quality.

2. Select a set of parameter sets P = {P1, . . . , Pk} which are evaluated.

3. Perform a clustering for each parameter set Pi.

4. Determine the best parameter set P ? = argmaxPi∈P {Q(C(Pi))} with C(Pi)
being the clustering generated using the parameter set Pi.

5. Optional: Refine the set of parameter sets P based on the clustering results.

It is important to note that the parameters are optimized in order to maximize a
given quality measure Q(C), i.e., the usage of different quality measures can lead to
different optimal parameter sets.
In order to ease the usage of the different clustering tools and to enhance compa-

rability of the different clustering approaches by means of a standardized threshold
optimization, ClustEval provides several methods for automating steps 2-5. If a gold
standard K is available, an external quality measure Q(C,K)→ R can be used.

Grid-Based Parameter Optimization The range of each numerical parameter is cov-
ered by equidistant points. For Boolean values, both “true” and “false” are
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tested. Each combination of these values forms the set of parameter sets P.
This method does not include any feedback mechanisms, and the number of
combinations scales exponentially with the number of samples taken from each
parameter.

Gap Statistic Parameter Optimization Clustering tools using the number of desired
clusters as only parameter, e.g., k-Means, can benefit from previously performed
work on the estimation of the optimal number of clusters in a dataset. ClustEval
supports the gap statistic, introduced by Robert Tibshirani et al. in 2001 [111]
The gap statistic compares the intra-cluster distance of the clustering results
for varying k (i.e., the number of reported clusters) with the expected intra-
cluster distances of a clustering of a reference dataset. Such a reference dataset
is generated by sampling each reference feature uniformly over the range of the
observed features in the actual dataset. To be formally correct, let us assume
a dataset V with |V | = N and C = {C1, . . . , Ck} being a clustering with k
clusters. First, the authors in [111] define a measure of compactness of the
entire clustering by

Dr =
∑

u,v∈Cr
d(u, v)

Wk =
k∑
r=1

1
2|Cr|

·Dr

where d(u, v) denotes a distance measure. When using a distance measure, the
compactness is a monotonic decreasing function with growing k, as each newly
introduced cluster decreases the variance of the clusters. The gap statistic is
now calculated as

GapN (k) = E∗N [log(Wk)]− log(Wk)

where E∗N denotes the expectation of log(Wk) using N samples of the refer-
ence dataset (generated as described above). The expected compactness of the
clusters based on the reference dataset is supposed to decrease slower than the
compactness of the clusters of the real dataset. The optimal kopt is where the
gap between expectation and observation reaches its maximum:

kopt = arg max
k
{Gapn(k)}.

Adaptive-Grid-Based Parameter Optimization This method represents an iterative
approach to detect the best threshold for a given quality measure. The idea is
to concentrate the parameter set search to the most promising area of the entire
parameter space. It starts with a very coarse grid for the entire parameter space,
using only three values for each numerical parameter. Let P = [Pmin, Pmax]
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Name Alias Parameter Range Version

Affinity Propagation AP preference [min(S),max(S)] 16/02/07
Hierarchical Clustering HC #clusters [1, n] R, 2.15.1

K-Means KM #clusters [1, n− 1] R, 2.15.1
Markov Clustering MC inflation [1.0, 10.0] 12-068

Transitivity Clustering TC threshold [min(S),max(S)] 1.0
Table 6.1.: The clustering methods integrated into ClustEval. Every clustering method has

at least one density parameter. Here we only show the main parameter. For each of those
parameters, we indicate the valid value range. min(S) and max(S) are minimal and maximal
similarities of the input similarity matrix S, n denotes the number of objects in the given
dataset. The k parameter denotes the number of clusters.

be the parameter range of parameter P . The three parameter values p1, p2, p3
are chosen as

pi = Pmin + i · Pmax − Pmin
4 .

After each iteration, all parameter ranges are halved and centered around the
best performing value. Formally, letting pi be the best value of the best per-
forming parameter set, the new parameter range Pnew is defined as

Pnew =
[
pi −

Pmax − Pmin
4 , pi + Pmax − Pmin

4

]
.

This process is repeated until a predefined number of iterations or parameter
sets have been tested. Figure 6.5 depicts the scheme on a small two-dimensional
example. This method drastically reduces the number of required parameter
sets compared to the “Grid-Based Parameter Optimization Method” as it con-
centrates the parameter set samples on the part of the parameter space yielding
the best clustering qualities. Nevertheless, the adaptive method has some re-
strictions compared to the non-adaptive method and cannot be applied to all
clustering methods equally well. It is apparent that the adaptive approach can
potentially be stuck in local maxima. In order to prevent suboptimal solutions,
the behavior of the quality in dependency of the parameters should be tested,
for example on a small sub-sample of the original dataset using the simple
“Divisive Parameter Optimization” method. Figure 7.8 on page 148 depicts
the behavior of the parameter of TransClust as an example for a well-suited
application for this method.
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Figure 6.6.: This Figure shows the archived cluster quality measures for the Cuboid dataset. The
values for the Dunn Index are scaled to [0..1] as the Dunn index range is not bound.
This figure was taken from the ClustEval website and slightly modified to fit the style of the thesis.

6.4. Results & Discussion

In this section we want to demonstrate the power of ClustEval by means of three
selected case studies. All case studies are based on a clustering task and are carried
out using several clustering approaches, i.e., Affinity Propagation, Hierarchical Clus-
tering, K-Means, Markov Clustering, and TransClust. Refer to Section 2.4 on page 39
for a detailed description of the different tools. Furthermore, for each clustering tool,
a parameter optimization is performed. For every clustering method we specified
which of its density parameters to optimize, and which parameter values to evaluate
for the parameters respectively (refer to Table 6.1). Table 6.2 gives an overview of
the run configurations used for the different case studies. We ran Markov Clustering
with normalized similarities between 0.0 and 1.0.
In the following, we describe the case studies in detail and discuss their results.

6.4.1. Case Study I: Cluster Evaluation with Synthetic Data

In the first case study, we want to assess the cluster quality of the different clustering
tools using several dataset. As already mentioned in the introduction, real-world
datasets can pose the problem of an over-fitting as most of the time false negatives
cannot be distinguished from true negatives. To overcome this problem, we utilized
the dataset-generating capabilities of ClustEval. In this case study, we generated a
Cassini, Cuboid, and Spiral dataset (refer to picture 6.4 A,B, and E). Here, Cassini
and Cuboid resemble more natural problems, whereas the Spiral dataset was mainly
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Figure 6.7.: This figure displays the statistics calculated for the Cuboid dataset. On the left
side, the intra and inter cluster similarity is displayed. The overlap between both curves is
relatively small which is an indicator of the general separability of the dataset. On the right,
the node-degree distribution is displayed. In that case, it is the combined weight of all adjacent
edges of an object.
This figure was taken from the ClustEval website and slightly modified to fit the style of the thesis.

Property Value

Intra-vs.Inter Cluster Similarity Figure 6.7
Overlap Intra-vs.-Inter 0.094
Similarity Distribution Figure 6.7

Graph Adhesion 248
Graph Cohesion 248
Graph Min-Cut 101.38

Clustering Coefficient 1.00
Node Degree Distribution Figure 6.7

Graph Density 1.00
Graph Diversity 0.99
Matrix Rank 250

Table 6.3.: Summery of the calculated properties of the Cuboid dataset.
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chosen because the two entangled spirals are difficult to cluster for most clustering
algorithms.

We created a clustering run with parameter optimization using the settings shown
in Table 6.2. Additionally, we created an analysis run, assessing the following prop-
erties for each dataset: (1) The Intra-vs.-Inter similarity distribution, (2) the overlap
of intra-inter similarity distribution, (3) similarity distribution, (4) graph adhesion,
(5) graph cohesion, (6) graph min-cut, (7) clustering coefficient, (8) node degree dis-
tribution, (9) graph density, (10) graph diversity, and (11) matrix rank. Refer to the
appendix A.3 on page 185 for an explanation of the measures.

In the remainder of this subsection, we concentrate on the results of the Cuboid
dataset, as they showed the most interesting results. The results of the other datasets
can be found in the Appendix A.4 on page 186. The Cubic dataset was created with
a total of 250 points. Since the clusters are convex and isolated, we assumed this
dataset to be easy to cluster. Furthermore, other measures for the dataset suggest
that this dataset is very feasible for a cluster analysis, e.g., the intra-vs.-inter cluster
similarity distribution or the clustering coefficient of 1.0. Figure 6.7 and Table 6.3
depict all calculated properties of the Cuboid dataset. For the other datasets, refer
to Appendix A.4 on page 186.

Surprisingly, several clustering methods were not capable of separating the 250 data
points into the four clusters. Figure 6.6 on page 120 visualizes all achieved clustering
qualities on the cuboid dataset. TransClust and K-means were the only clustering
methods solving the problem exactly according to the gold standard with an opti-
mal achieved F-measure of 1.0 (TransClust was archiving the best F-measure on all
three artificial datasets among the tested tools). They are followed by Hierarchi-
cal Clustering (F-measure of 0.869), Affinity Propagation (F-measure of 0.613), and
Markov Clustering (F-measure of 0.415). Affinity Propagation turns out to be quite
insensitive to different choices of its preference density parameter; the best achieved
qualities are much worse than those of the competitive methods.

The silhouette value is around S ≈ 0.5 for all methods except Markov Clustering.
Its silhouette value of −1.0 is due to the fact that it generated only clusterings with
one cluster for which the silhouette value is undefined and ClustEval returns the
minimal quality. Since the silhouette value is defined in [−1, 1], values of 0.5 are
reasonably good. This points to the fact that the silhouette value is well suited
for this type of clusters, since its assumption is that points of different groups are
farther apart than points of the same group. The Davies-Bouldin index is close to
0 for all tools, except Markov Clustering. Analogous to the silhouette value, the
Davies-Bouldin index cannot be calculated for only one cluster. We represented this
fact in Figure 6.6 on page 120 by assigning 1 to the index for Markov Clustering (a
Davies-Bouldin index of 0 is ideal).
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Figure 6.8.: This Figure shows the archived cluster quality measures for the Bone Marrow dataset.
The values for the Dunn Index are scaled to [0, 1] as the Dunn index does not have a bound
values range.
This figure was taken from the ClustEval website and slightly modified to fit the style of the thesis.

6.4.2. Case Study II: Detecting Leukemia Subtypes in Gene Expression
Levels

We used our framework to cluster a gene expression dataset containing 38 bone mar-
row cell samples of three acute leukemia sub-types [54]: 20 Acute lymphoblastic
leukemia in B-Cells (ALL-B), 8 Acute lymphoblastic leukemia in T-Cells (ALL-T),
and 10 Acute myelogenous leukemia (AML). We used ClustEval to assess the per-
formance of several clustering methods and to identify the clustering method and
respective density parameter values which clustered the dataset optimally according
to the gold standard at hand (division into ALL-B, ALL-T, and AML).
We used ClustEval to calculate pairwise distances of samples in the dataset using

three different distance measures and clustered each resulting similarity dataset in-
dependently. For each resulting dataset, we created one parameter optimization run,
with the settings shown in 6.2. Best clusterings results were achieved on the Spear-
man Correlation dataset followed by Pearson Correlation and Euclidean distance.
In the following, we present clustering results using the Spearman correlation as

they lead to the best clustering results. Figure 6.8 depicts all qualities using the
Spearman correlation. No clustering method achieved a perfect separation of the
dataset into the three leukemia sub-types, but overall achieved qualities (with the
exception of Markov Clustering, all F-measures are≥ 0.90) were indicating that the
cancer sub-types are well reflected by the gene expression levels, and the chosen dis-
tance measure preserves the information content. The best clustering in terms of
maximal F-measure was achieved by Affinity Propagation and Hierarchical Cluster-
ing (0.948), followed by TransClust (0.933), KMeans (0.921), and Markov Clustering
(0.783). The corresponding clusterings of Affinity Propagation, Hierarchical Cluster-
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Figure 6.9.: This Figure shows the archived cluster quality measures for the Brown et al. dataset.
The values for the Dunn Index are scaled to 1 as the Dunn index does not have a bound values
range.
This figure was taken from the ClustEval website and slightly modified to fit the style of the thesis.

ing, K-Means, and Spectral Clustering contained three clusters which reflected the
three sub-types with only a few misclassifications. Markov Clustering produced two
clusters where the two ALL sub-types were merged into one cluster. TransClust also
clustered with few misclassifications but returned four clusters, where one ALL-B
sample was put into a singleton.

6.4.3. Case Study III: Inducing a Protein Taxonomy using Protein
Sequence Similarities

In the last case study we clustered a hand-curated collection of 232 protein sequences
originating from the SCOP database [84]. The dataset contains proteins of the su-
perfamily amidohydrolases [23] belonging to 29 protein families which is a subset of
the Brown et al. dataset (refer to Subsection 2.6.1 on page 62 for more information
on the dataset). We aimed to subdivide the proteins according to the family annota-
tion. The pairwise similarities were calculated by an all-vs.-all BLAST run. Since the
input dataset consists of pairwise similarities, we cannot apply K-Means to the data.
We created one parameter optimization run, with the settings shown in Table 6.2.
The best performer (highest F-measure) was Hierarchical Clustering (0.987), followed
by TransClust (0.986), Markov Clustering (0.923), and Affinity Propagation (0.724).
The best clustering of Hierarchical Clustering was achieved with k = 25. TransClust
performed best with t ≈ 52± 5, and the corresponding clustering contained 28 clus-
ters. Compared to 29 being the actual number of protein-families, these clusterings
appear to identify the gold standard classification well. Markov Clustering separated
the proteins into 20 clusters with I ≈ 2.2. Affinity Propagation performed best with
preference p = 46, and resulted in a clustering with 18 groups. In general, ClustEval
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was able to identify parameter sets for all clustering methods (except for Affinity
Propagation) such that the resulting clusterings agreed well with the protein-families
given in the gold standard (F-measure above 0.9).

6.5. Conclusion
Due to the multitude of available clustering approaches, data standards, and eval-
uation principles, cluster analyses require a high degree of manual work and expert
knowledge. This affects the practitioner, e.g., a biologist as well as computer scien-
tists developing novel clustering methods to the same degree. Until now, every new
clustering approach was only tested on some selected datasets and compared only
against a selection of competing tools. Every author decides on slightly different pro-
tocols and tweaks for the evaluation resulting in the newly developed tool to perform
superiorly. Often, the data handling is quite poorly described so that reproducing
the results can be hard and time consuming. All these reasons render it nearly im-
possible to compare existing tools with each other and their feasibility for different
tasks based on the original publications of the tools.
ClustEval tackles these obstacles to ease the burden of conducting a comparative,

large-scale cluster analysis. Our framework is tailored to the needs of different target
groups and supports them in their typical day to day decisions concerning cluster
analyses:

Non-Expert The non-expert can inform himself on the website about the available
clustering tools typically used in bioinformatics. Depending on his dataset,
he can identify similar datasets included in the platform and is shown the
performance of the different tools. After he has made the decision to use a
certain tool, he can track down the program parameters the platform used to
achieve the presented results. In short, the website consults the practitioner
what tool to use for which dataset and also suggests good parameters.

Expert Experts can download the entire back end and define their own analysis runs.
That includes all steps from creating artificial datasets with gold-standards,
automated threshold probing and the execution of different tools on different
datasets. All of that is supported with numerous analysis features and tools for
the user.

Developers As the entire framework is open-source and was designed to be as flexible
as possible, every user can extend the framework. Developers of new clustering
tools can include their new approach and compare their tool against the others
in a standardized and transparent manner. That ensures that all results were
produced fair and bias free and can easily be reproduced by researchers all over
the world.

Furthermore, we suggest standard input and output formats for clustering tools in
order to ease the interoperability between different clustering approaches. With the
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three case studies, we have demonstrated the effectiveness of ClustEval. Each study
was set-up within minutes, and provides the user with conclusive, fair, and high-
quality results.

"

Results of this Chapter

• ClustEval gives an overview of the confusing field of clustering
algorithms and their usage.

• Experts can set-up and run complex cluster analyses in a highly
automatized fashion including parameter training.

• Universal standard input and output formats were suggested help-
ing to increase the compatibility between different approaches.

• Availability: http://clusteval.mpi-inf.mpg.de
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7. Biological Applications

In the course of the thesis, we have discussed novel methods in order to tackle
massive biological datasets. We have already demonstrated the feasibility of these
methods for clustering approaches in general and have shown that including support
for missing values drastically reduces the computational effort for the calculation of
the similarities between the objects.

In this chapter, we present two real-world applications of a cluster analysis in
systems biology. The first study uses clustering of homologous proteins in order to
transfer conserved regulations of a model organism to several non-model organisms.
In a second study, we identify the core-genome of 89 actinobacteria (the core-genome
can be seen as the set of common house-keeping genes shared among the organisms of
an entire phyla). We aimed at identifying pathogenicity specific genes among them.
That case study also suggest a solution for the long-standing problem of finding a
good density parameter in the case of homology detection without a gold standard.

7.1. EHECRegNet

This section is based on the publication [93]:

Richard Röttger1, Josch Pauling1, Andreas Neuner, Heladia Salgado, Julio Collado-
Vides, Prabhav Kalaghatgi, Vasco Azevedo, Andreas Tauch, Alfred Pühler,
Jan Baumbach. On the trail of EHEC/EAEC - Unraveling the gene
regulatory networks of human pathogenic Escherichia coli bacteria.
Integrative Biology. 2012 Jul;4(7):728-33. doi: 10.1039/c2ib00132b.

1Joint first authorship of Richard Röttger and Josch Pauling.
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z

Objectives of this Section

• Combine TransClust/TransClustMV with several data sources in
order to transfer conserved transcriptional regulations between or-
ganisms.

• Use these findings to identify essential regulatory pathways for
EHEC’s pathogenicity.

7.1.1. Introduction
In this case study, we utilize TransClust for identifying evolutionarily conserved gene
regulations among several organisms. As already mentioned in the motivation of
the thesis on page 13,even for the best researched organisms like Escherichia coli
K-12, we estimated in a previous study that in the best case, only 37 percent of
the transactional regulatory network is known [102]. This is due to the costs and
effort required for identifying a gene regulation in the wet-lab. Thus, mechanisms
are needed in order to transfer the knowledge acquired in those model organisms to
other organisms of interest.
As an example, we focus in this section on pathogenic Escherichia coli, such as

Enterohemorrhagic E. coli (EHEC) and Enteroaggregative E. coli (EAEC) which are
globally widespread bacteria. They have gained significance as a serious public health
problem since 1982 and are causing sporadic outbreaks all over the world with up to
75,000 annual infections in the United States alone [63]. Some strains may cause the
hemolytic uremic syndrome (HUS), which approximately 10% of the patients with
an EHEC infection develop. Typical symptoms of HUS include haemolytic anaemia,
thrombocytopenia and acute renal failure. It can cause neurological complications
in 25% of the patients and chronic renal sequelae in 50% of survivors. In 3-5% HUS
is fatal. Between 63% and 85% of EHEC infections derive from the consumption
of contaminated food2. The cause for pathogenicity was attributed to five O157
strains, also referred to as the “gang of five”, mostly present in raw meat, milk and
eggs3. In fall 2011, we observed an epidemic outbreak of a new serotype in Western
Europe, mainly in Germany4. In contrast to previous outbreaks the rare serotype
O104:H4 was isolated and identified as the cause and it was most probably trans-
ferred to humans via contaminated sprouts5. It is yet unknown if the sprouts’ seeds

2Enterohaemorrhagic Escherichia coli (EHEC): http://www.who.int/mediacentre/factsheets/
fs125/en/ Accessed on 22.07.2013

3German Scientists Finger Rare Serotype in Massive E. coli Outbreak: http://news.sciencemag.
org/scienceinsider/2011/05/german-scientists-finger-rare.html Accessed on 22.07.2013.

4Phage on the rampage: http://www.nature.com/news/2011/110609/full/news.2011.360.html
Accessed on 22.07.2013.

5EHEC-Ausbruch: BfR bestätigt Kontamination von Sprossen mit O104:H4 http:
//www.bfr.bund.de/de/presseinformation/2011/17/ehec_ausbruch__bfr_bestaetigt_
kontamination_von_sprossen_mit_o104_h4-70934.html Accessed on 22.07.2013.
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were already contaminated or if there is the possibility of a direct smear-infection.
The complex of major virulence factors of O104:H4 includes the production of Shiga
toxin, bacterial adhesion, flagellar motility, tellurite dioxide insensitivity and antibi-
otic resistances. Shiga toxins are able to cross the intestinal barrier of the host
and bind to the endothelial cells, inhibiting protein synthesis or inducing apoptosis.
Shiga toxin virtually shuts down the protein machinery of the susceptible cell [65].
All known EHEC virulence determinants are located on mobile genetic elements, of-
ten horizontally acquired leading to a dynamic evolution of EHEC, including various
genetic mechanisms. The major virulent genetic compound is the locus of the en-
terocyte effacement (LEE) pathogenicity island. The key regulator, Ler, is essential
for the expression of the LEE operon genes, including those encoding a type III se-
cretion pathway as well as effector proteins and bacterial adhesin. LEE genes are
also regulated by a mechanism of cell to cell signaling (quorum sensing) involving the
production of hormone-like compounds, activating genes such as qseB/C. Flagellar
motility, encoded by the flhD/C contributes to colonization and adherence to epithe-
lial cells during an EHEC infection [79]. Figure 7.1 illustrates the molecular genetic
program that is involved in EHEC’s pathogenicity and toxicity. Because the O104:H4
has acquired both enteroaggregative and enterohemorrhagic characteristics it has re-
cently been suggested to denominate it as an EAH (entero-aggregative-hemorrhagic)
E. coli [24].
To contribute to the elucidation of gene regulatory interactions in pathogenic E.

coli, we developed the integrated online database and analysis platform EhecRegNet.
We transferred known regulations from E. coli K-12 to 16 human pathogens (see Table
7.1 for a summary). These virulent strains were sequenced, annotated and deposited
with NCBI [19]. The platform is based on the identification of evolutionary conserved
regulatory DNA sequences of the E. coli K-12 and the pathogens. This large-scale
approach to the reconstruction and characterization of the pathogens’ genetic control
mechanism networks allows for a better understanding of their survival strategies and
supports the development of new treatments.
EhecRegNet is a publicly available data source and interactive analysis platform

for the transcriptional gene regulatory interaction networks of human pathogenic E.
coli bacteria. It consists of three parts:

1. Integrated interaction data from the harmless E. coli K-12 strain and inter-
actions transferred to the pathogens by identifying conserved regulatory DNA
sites.

2. Access to the reconstructed networks as well as network visualization and anal-
ysis facilities available in the web.

3. In addition, we provide web-based access to further prediction methods as well
as methods for the analysis of user-uploaded data, for instance gene expression
data, together with stored network data.
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Figure 7.1.: This figure depicts the molecular genetic program of EHEC’s pathogenicity and
toxicity. Illustrated is the transcriptional gene regulatory interplay of those genes and proteins
that are associated with EHEC’s pathogenicity or toxicity capabilities (see text). Elements
colored in blue are conserved in E. coli K-12. Abbreviations and symbols: Arrows = genes,
circles = proteins, QS = quorum sensing, TTSS = type III secretion system

7.1.2. Materials & Methods
The main target of this platform is the transfer of known regulations of the model
organisms (or source organism) to the human pathogenic E. coli strands (the target
organisms). Figure 7.2 gives a brief overview of this process. Our main strategy
follows suggestions from [13]. A transcriptional gene regulation can be described as
follows: (a) certain gene products, here proteins, can act as so-called transcription
factors (TF). (b) Such a transcription factor has the ability to bind to the DNA on
those positions which encode the transcription factor binding site (BS). (c) Whenever
a gene has this binding site in its upstream sequence and the TF binds to that bind-
ing site, the transcription factor may regulate the expression of that gene (which is
called a target gene (TG)). Regulating means that the transcription factor can either
increase the expression of this target gene or inhibit the expression. A transcription
factor itself can also be the target of a regulation. We require three conditions to be
met for transferring a known regulation into a new organism:

1. The transcription factor is conserved

2. The target gene is conserved

3. The binding site of the regulator is found in the upstream region of the target
gene

130



7.1. EHECRegNet

Reg.
Organism Genes RIs TFs genes TFBSs

E. coli 536 (NC_008253) 4619 2206 116 978 1054
E. coli 55989 (NC_011748) 4759 2311 126 1014 1109
E. coli E24377A (NC_009801) 4749 2310 124 981 1098
E. coli IAI39 (NC_011750) 4730 2164 119 981 1081
E. coli O103:H2 str. 12009 (NC_013353) 5050 2345 123 1011 1119
E. coli O111:H- str. 11128 (NC_013364) 4968 2264 126 1001 1078
E. coli O127:H6 str. E2348/69 (NC_011601) 4549 2095 116 969 988
E. coli O157:H7 str. EC4115 (NC_011353) 5315 2337 121 1006 1074
E. coli O157:H7 str. EDL933 (NC_002655) 5297 2594 121 1097 1071
E. coli O157:H7 str. Sakai (NC_002695) 5229 2458 121 1036 1083
E. coli O157:H7 str. TW14359 (NC_013008) 5255 2485 119 1046 1066
E. coli O26:H11 str. 11368 (NC_013361) 5361 2368 122 1028 1117
E. coli O55:H7 str. CB9615 (NC_013941) 5014 2376 110 1112 557
E. coli S88 (NC_011742) 4692 2304 116 1006 1101
E. coli str. K-12 substr. MG1655 (NC_000913) 4319 3489 174 1440 2075
E. coli UMN026 (NC_011751) 4823 2475 127 1058 1128
E. coli UTI89 (NC_007946) 5017 2332 116 1001 1090

Table 7.1.: This table summarizes the database content of the EhecRegNet platform. The data
for E. coli K-12 was integrated from the RegulonDB database and subsequently transferred to
the pathogenic E. coli bacteria. On average 68% of the known E. coli K-12 gene regulatory
interactions are conserved in the pathogens. Abbreviations: TFs = Transcription factors, RIs =
Regulatory interactions, Reg. genes = Regulated target genes, TFBSs = Transcription factor
binding sites

Only if all these conditions are fulfilled by the target organism, we consider that reg-
ulation as conserved. For the first two tasks, we require the knowledge of homologous
proteins of the source and target organisms. As similarity function, the BeH score of
an all-vs.-all BLAST run was calculated on the protein sequences of all organisms.
Here, we used an E-Value cut-off of 0.01. Refer to Section 2.2.3 on page 29 for further
details of using BLAST as a similarity function. Following the suggestion from [123],
we used a similarity threshold of 40 for TransClust, which corresponds to an average
intra-cluster E-value of 10−40. The resulting clusters are interpreted as the set of
homologous proteins.

In order to fulfill the third condition, the binding sites of the TFs in the model
organism must be found in the target organism in the upstream sequence of the target
gene. Therefore, we learned so-called position specific scoring matrices from known
binding sites of each conserved TF and subsequently applied PoSSuMsearch [16] with
a p-value cut-off of 10−4 to the upstream sequences of the orthologous target genes
(−460 . . .+ 20 bp relative to the gene start).
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Figure 7.2.: The figure depicts the inter-species network transfer implemented in the back end
of the EhecRegNet system. The experimental version of EhecRegNet consists of gene annota-
tions obtained from NCBI, operon predictions downloaded from MicrobesOnline, and experi-
mentally verified transcriptional gene regulatory interactions for E. coli K-12 from RegulonDB.
For the predicted version, we first detect homologous genes by utilizing BLAST and Transitivity
Clustering. Second, we identify putative transcription factor (TF) binding sites (TFBSs) for
homologous TFs in the upstream sequences of homologous target genes by means of the PoS-
SuMsearch software. Whenever TF, target gene and TFBS are conserved between E. coli K-12
and the pathogens, we consider the regulatory interaction as conserved (see text for details).
All conserved interactions are added to the predicted version of EhecRegNet; see Table 7.1 for
a database summary.

Whenever we meet all three of the above described conditions, the EhecRegNet
data integration pipeline considers a gene regulatory interaction as conserved and
adds the corresponding regulation to the EhecRegNet database. Furthermore, if
the target gene is the first gene of an operon, the entire operon is considered as
being regulated. The same prediction model was already used in [14, 13, 15], where
further details on the used parameters and their effect on the prediction accuracy are
given. We set all parameters in such a way that our predictions are reliable, but not
necessarily comprehensive (i.e., minimizing the false-positive rate).
In order to perform the described steps, EhecRegNet requires incorporating knowl-

edge from several different sources. First, we integrated the genome annotations
of 16 pathogenic E. coli species (including plasmids) as well as the E. coli K-12
genome annotation from the NCBI database. We also included operon prediction
data with EhecRegNet provided by MicrobesOnline [33]. Note that in the case of E.
coli O55:H7 str. CB9615 we used data from OperonDB [96]. Afterwards, we inte-
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grated 3, 489 known regulatory interactions from the RegulonDB database [50]. Its’
content covers experimentally proven regulations for E. coli K-12, the best studied
organism on Earth [13, 50, 68]. Here, we excluded all regulations marked as obsolete
and those with unknown regulatory effect (repression or activation). In addition, we
preprocess all transcription factor binding sites with MoRAine [124]. This is a se-
quence motif re-adjustment tool that enhances the information content of a sequence
motif in order to improve profile-based binding site scans; refer to [124] for details.
The EhecRegNet data integration pipeline performs all these steps in an automated
manner. This allows us to easily include more genome annotations for more E. coli
pathogens should they become available in the future. Further information regarding
all the genes, functional annotations, regulatory pathways, etc. may be found at the
gene detail pages of the EhecRegNet web sites.

7.1.3. Results & Discussion

EHECRegNet provides a reliable and comprehensive source for transcriptional gene
regulation of E. coli K-12 and 16 pathogenic EHEC strands. Nevertheless, the
database content is not static and will be extended in the future. New gene anno-
tations, updated RegulonDB content or the outbreak of new strands require a rerun
of the entire transfer pipeline. This task usually takes a couple of days to weeks and
with every additionally included EHEC strand the effort of completing the transfer
will even increase. Particularly when facing a new outbreak, a fast response time is
crucial. Our newly developed clustering approaches, TransClustMV and ActiveTrans-
Clust, reduce the time for updating the database content and running the transfer
pipeline to mere hours instead of days or weeks.
We illustrate the power of EhecRegNet with nine genes associated with pathogenic-

ity or toxicity and evolutionarily conserved in the E. coli K-12 strain: qseB, flhD,
flhB, fliA, motA, ompA, ompR, yhiE, and yhiF. As for many others, we transferred
transcriptional regulatory interactions for these nine genes from E. coli K-12 to the
pathogens. While some of the identified TFs regulating the nine genes are global
hubs, others are more specific, involved in the regulation of a comparably small num-
ber of genes. We suggest these specific regulatory interactions as potential targets
for further wet-lab validation. Regarding yhiE (gadE in E. coli K-12), we found five
TFs. Two of them are predicted to regulate yhiE in all 16 pathogens. The yhiE-
regulation of the three others is conserved in 15 of the 16 pathogens. The gadW and
gadX TFs are interesting because they regulate a small number of genes, 10 and 22
respectively, while crp is regulating 386 genes. In the case of motA, we have found 8
TFs in 15 pathogens, with regulators acting on 4 genes (irhA), 12 genes (ompR), 28
genes (rcsA/B), and the key regulator crp. For fliA, we found three TFs occurring
in at least 14 of 16 pathogens, regulating 79 genes (flhD/C ) and 82 genes (nsrR).
We identified several TFs regulating flhB, but no consistent picture for all or most
of the pathogens. However, we detected potential regulations of flhB by flhD in 15
strains and through flhC in 14 pathogenic strains. A putatively conserved regulatory
interaction is more likely to be a true positive when we observe it in many pathogens.
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Table B.1 on page 189 in the appendix displays a brief overview of the analyzed genes
and the findings for each species separately.

Evaluation of these results is difficult since no gold standard exists. We are far
away from having a set of closely related organisms with enough experimentally
proven transcriptional interactions that would allow us to evaluate our approach on
a large scale. However, a recent study [13] suggests that our strategy works well for
four corynebacteria, where at least some TFs have been characterized for more than
one organism. Consequently, since the E. coli pathogens are evolutionarily close to
E. coli K-12, we believe that the EhecRegNet inter-species network transfer pipeline
is appropriate for our E. coli organisms as well. Regarding our concrete results,
note that EhecRegNet detects the known self-regulations of qseB in all pathogens
but no other regulatory interaction. Furthermore, note that we also find all fhlCD
self-regulatory interactions ( B.1 on page 189).

To ensure reliable results that provide high-potential candidates for wet-lab studies
the automatic inter-species transfer pipeline of EhecRegNet is comparably restrictive.
In the examples discussed above, for all genes and for each of the pathogenic E.
coli strains the transcription factor, the target gene and the binding site had to
be conserved in order to define a predicted interaction. However, EhecRegNet’s
website offers access to several bioinformatics tools, one of them is the TFBScan
feature. With TFBScan the user can semi-automatically detect transcription factor
binding sites in the upstream sequence of a specific gene of interest. For Ler, one of
the key TFs regulating the critical LEE operons in EHEC, we found two regulating
transcriptional factors, fruR and nagC, using this feature. For one of the other main
factors of virulence, the Shiga Toxine genes stx1A/B, organized in an operon, we found
five potential binding sites of high confidence, delivering interesting new targets for
further wet-lab validation.

7.1.4. Conclusion

EhecRegNet is the largest compilation of data about transcriptional regulatory in-
teractions of E. coli pathogens publicly available. Our inter-species network transfer
pipeline identified in average 68% of the E. coli K-12 regulatory interactions as con-
served in the 16 human pathogenic E. coli bacteria (Table 7.1 on page 131). If
interactions are not transferable, for in-orthologous genes, for instance, EhecRegNet
provides integrated methods for detecting putative regulatory sites. EhecRegNet will
support wet-lab researchers with reconstructing and characterizing the pathogens’
genetic control mechanism network. It will allow for a better understanding of their
pathogenicity and toxicity. This will support the development of urgently needed
new treatments.
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"

Results of this Section

• Almost 60% of the known regulations of E. coli K-12 were suc-
cessfully transfered.

• Several transcriptional regulators of EHEC’s pathogenicity pathway
were unraveled.

• Availability: http://www.ehecregnet.de or http://www.
ehecreg.net
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7.2. Actinobacterial Core Genome
This section is based on the publication [100]:

Richard Röttger, Prabhav Kalaghatgi, Peng Sun, Siomar de Castro Soares, Vasco
Azevedo, Tobias Wittkop, Jan Baumbach. Density parameter estima-
tion for finding clusters of homologous proteins - tracing actinobac-
terial pathogenicity lifestyles. Bioinformatics (2013), 29 (2), 215-222,
DOI:10.1093/bioinformatics/ bts653

z

Objectives of this Section

• Unravel the actinobacterial core gnome for tracing pathogenicity
lifestyles.

• Development of a reliable method for finding a reasonable threshold
in the absence a gold standard.

7.2.1. Introduction
In the last section, clustering was used in a prediction pipeline in order to unravel
regulatory mechanisms in an organism. This approach has proven very useful not only
for EHEC but also for corynebacteria [94]. In these approaches, the threshold was
chosen relatively low, i.e., forming fewer bigger clusters. This poses no problem, as
protein homology is not the only criterion for the prediction. Potential false positives
(i.e., genes considered falsely as homolgous) get filtered out of the list of conserved
regulations as the corresponding binding site cannot be found in the upstream region
of this gene. Nevertheless, in most situations, picking a good threshold or parameter
set is vital for the result quality.
Clusters of homologous proteins across a number of organisms allow for studying

lifestyle-specific genetic repertoires, i.e., the genes that have homologous counterparts
in all organisms or in a specific set of organisms. Such studies can lead, for instance,
to the discovery of mutual proteins shared only among pathogenic strains of a certain
phyla, thus suggesting new drug targets and wet laboratory candidates for vaccine
design. The quality of such studies is highly dependent on the quality of the clustering
process and consequently dependent on the choice of the clustering method and a good
estimate of the parameter set.
Despite the efforts put into the development of new clustering algorithms, the

general problem of detecting a good parameter set has widely been neglected. A
clustering tool cannot ‘know’ a priori if we seek to find protein families (restrictive
parameters) or protein superfamilies (weak parameters), for instance. It is intuitively
apparent that choosing a very low threshold leads to many false-positives whereas a
high threshold leads to many false-negatives.
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Normally, such a density parameter is estimated by utilizing a gold standard by
picking that threshold yielding the best agreement. In this section we present a robust
method for selecting a suitable density parameter for the task of protein homology
detection. We utilize TransClust but the method is suitable for any clustering tool.
Using all protein sequences from the given set of organisms, we build our method
upon two assumptions: (i) clusters of size equal to the number of input organisms
are likely to contain housekeeping genes and thus should be over-represented, and (ii)
clusters greater than the number of input organisms are more likely to contain many
false positives (non-homologous genes). Maximizing (i) while minimizing (ii) allows
us to estimate a meaningful threshold for discovering clusters of homologous proteins
without manually curated gold standard associations for any of the proteins.
As an example for this novel method, we compute and analyze the core genome of

89 actinobacteria. The core genome is the set of evolutionarily highly conserved genes
which are present in all organisms in question. The fact that these genes are conserved
within all organisms suggests that the genes are of vital importance. We further
divide them into four different groups of pathogenicity: non-pathogens (NPs), human
pathogens (HPs), animal pathogens (APs) and opportunistic pathogens (OPs). See
Table C.1 on page 211 in the Appendix for a complete list of the used organisms.
We then study the class-specific genetic repertoire of the 89 actinobacteria. Refer to
Subsection 2.6.2 on page 62 for a detailed description of this dataset.
There have been several studies about the actinobacterial evolution (refer to Gao

and Gupta [51]). Most of them concentrated on phylogenetic tree reconstruction
solely based on the DNA sequence information of the 16S RNA. Despite the many
advantages of this method, it cannot provide insights into the evolutionary relation-
ship on a species level [107]. Gao and Gupta in [52] used only a limited dataset
of only a few genes that were expected to be conserved along the phylum for phy-
logenetic tree reconstruction. In several recent studies, best bidirectional hits from
genome-wide all-vs.-all BLAST results of all genes were used for homology detection
(Karberg et al. [64] or [53], for instance). This strategy, however, neglects the impact
of careful BLAST cutoff evaluation, as well as the effect of transitive dependencies in
the similarity function. Gene A may be similar to gene B, which is similar to gene
C, but gene C is not similar to gene A. These problem instances can be ‘repaired’
with clustering tools such as TransClust. However, the problem of finding a reason-
able density parameter remains with TransClust, as well as with any other clustering
method.

7.2.2. Materials and Methods

7.2.2.1. Threshold Estimation

To reasonably investigate the clustering results, the density parameter must be set
correctly such that most of the clusters actually contain groups of homologous pro-
teins. In our study with >300,000 proteins from 89 different bacteria, we do not have
a given gold standard that would allow us to find a reliable threshold. We will present
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Figure 7.3.: Cluster size distribution of the 89 actinobacteria for similarity threshold 48 (which
corresponds to a BLAST E-value cutoff of 10−48). Arrow (A) highlights the core genome peak
at cluster size 89. These peaks in area (B) represent more specific core genomes, for example,
all mutual proteins of the different mycobacteria/corynebacteria strains. The beginning of the
unspecific clusters is marked by arrow (C).

an approach that only uses intrinsic indirect information of the dataset to determine
such a threshold.

In what follows, n denotes the number of species. This number, i.e., n = 89 in our
study, is constant and independent on the chosen threshold. Our first assumption
is based on the expectation of observing significantly more clusters of size n than
clusters of other sizes, as housekeeping genes and essential genes are expected to be
conserved across all bacteria. Thus, they are more likely to cluster together in a group
of exactly (or almost exactly) 89 proteins. In our analysis, we observed a peak in the
cluster size distribution (Figure 7.3) at n = 89, with most of these clusters containing
exactly one protein from each of the 89 organisms. This gives evidence in favor of
our first assumption. Setting the clustering threshold such that we maximize the
size (height) of this peak would increase the number of allowed housekeeping gene.
However, on the other hand, we cannot assess the number of false positives in these
clusters directly, as we do not have a given reliable gold standard. What we require is
a second measure for allowing us to minimize these false positives. Here, our second
assumption is used: clusters with larger sizes (far bigger than n proteins) are likely
to contain non-homologous proteins (i.e., false positives). The more a cluster size
exceeds n, the more unlikely it is that this increase can be explained by true-positive
paralogous proteins. We will use this assumption to obtain a measure for handling
the number of false positives.
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Figure 7.4.: The cumulative distribution function (CDF) of the cluster size distribution. The
CDF denotes the probability to sample a value from a probability function X larger than x,
i.e., CDF (x) = P[X > x]. The picture displays the observed CDF when clustering the Proteo
dataset (refer to Subsection 7.2.2.2 for more information on this dataset; we chose this dataset
as it contains the greatest diversity of species resulting in the smallest relative core genome
peak, thus the power-law is least disturbed compared to the other datasets) with a threshold
of 48. The orange line indicates the ideal power-law following the parameters estimated for the
observed distribution. We can see, that the cluster size distribution follows the power-law very
well, at least till the core genome peak (in this dataset n = 40, indicated by the black dashed
line).

Put in other words, our strategy is to vary the similarity threshold such that our
TransClust-based clustering results yields the following two optimizations:

1. Maximize the number of clusters of size n (most likely containing common
housekeeping genes).

2. Minimize number of large clusters (most likely containing many false positives).

To account for the first point, we have to separate the desired peak from the back-
ground distribution to get the relative peak height. The base line of the cluster size
distribution seems to follow a power law. For that reason, we learned the best fitting
discrete power-law:

Pα,xmin(x) = x−α

ζ(α, xmin) ,

with ζ(α, xmin) being Riemann’s Zeta function for the background distribution using
the Python tools provided by Clauset et al. [31]. Figure 7.3 depicts the cluster size
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distribution and the best fit power law for threshold 48 (we will later explain why we
picked 48). We decided to approximate the background distribution with a power-law
by visual verification (compare to Figure 7.3 and 7.4). The formal plausibility check
if the power-law is a valid assumption (as suggested in [31]) can not be applied, as
the peak of the core genome in fact distorts the power-law behavior of the cluster
size distribution. Furthermore, as the influence of the background distribution on
the relative peak height is rather small (again, compare to Figure 7.3), the optical
verification serves our purpose at this point.

Let α̂t and x̂min,t be the approximated parameters for the best fitting power-law
for the cluster size distribution Dt(x) for threshold t. The function Dt(x) gives
the absolute number of clusters of size x. Furthermore, mt denotes the number of
observations, i.e., the total number of clusters, again for threshold t. We now define
the relative peak height ht(x) as

ht(x) = Dt(x)− Pα̂t,x̂min,t(x) ·mt

where Pα̂t,x̂min,t(x) · mt denotes the expected number of observation of a perfect
power-law of the given sample size mt, as Pα̂t,x̂min,t(x) is a probability function. In
the following, we refer to the relative core-genome height ht(n) as ht.

In order to address the second optimization criterion, we need to penalize the
occurrence of unrealistically large clusters (false positives). In this work, we define
such a cluster as a cluster containing more than 1.5 · n proteins. It is very unlikely,
that there are clusters of that size containing only real homologous and functional
identical proteins, because our actinobacterial dataset is quite diverse. A “real”
cluster of size 3

2 ·n would imply that at least half of the species must have undergone
the same duplication event. That means this duplication event most likely happened
at an evolutionarily very early time point in their common ancestor. On the other
hand, the genetic variation was small enough such that these paralogous proteins
still belong to the same cluster of homologous proteins. If that would happen to be a
common case, one would also expect core-genome peaks for paralogous proteins, e.g.,
at 2 · n or 3 · n. We were not able to identify such a peak for any of the similarity
thresholds. In conclusion a cut-off for unrealistic big cluster at 1.5·n is reasonable and
the accidental punishment of real paralogous clusters is negligible. Thus we define
the number of unrealistic clusters ut for threshold t as

ut =
∑
x> 3

2 ·n

Dt(x).

In a final step, we have to combine both quality measures to a single overall quality
value that we can assign to the TransClust results for the varying thresholds. As ht
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and ut are two completely different measures, we scale them to the range [0, 1] with
T being the set of all used thresholds:

h′t = ht −min(hi, ∀i ∈ T )
max(hi,∀i ∈ T )−min(hi, ∀i ∈ T )

u′t = ut −min(ui, ∀i ∈ T )
max(ui, ∀i ∈ T )−min(ui,∀i ∈ T )

Following the F-measure, we calculate our final quality measure Q(t) as the harmonic
mean of both of them:

Q(t) = 2 · h
′
t · (1− u′t)

h′t + (1− u′t)
.

We are using (1−u′t) such that lower numbers of unrealistic clusters result in better
quality measures. We may now use this approach to find that similarity threshold t
of TransClust, which gives the best quality measure Q(t). Figure 7.5 plots Q(t) for
several TransClust results for thresholds ranging from 8 to 100, corresponding to a
BLAST E-value of 10−8 to 10−100.

7.2.2.2. Robustness Analysis

So far, we have derived a quality measure Q(t) using only intrinsic information of the
provided dataset. On the other hand, actinobacteria are known to be quite diverse,
suggesting that our dataset is biased. For example, we have 35 different strains of
Mycobacterium tuberculosis which are all likely to be more similar to each other than
to the other actinobacteria. In order to respect for this potential bias, we split our
datasets to investigate the stability of our approach. The following datasets were
created:

• Myco-Only: All organisms of the genus mycobacteria (here: 55 species).

• Coryne-Only: Same as Myco-Only but with all corynebacteria (here: 27 species).

• Rand-20: Here we randomly selected 20 out of the 89 species without replace-
ment. We created 20 such datasets, in order to get an impression of the vari-
ability of our approach.

As expected, our approach is limited by the level of biological diversity amongst
the studied organisms. Although the actinobacerial phylum already is quite diverse,
we also selected a dataset consisting of 40 different proteobacteria. Proteobacteria
comprise one of the largest bacterial phyla with a large genetic diversity [108]. In the
remainder of this section we will call this the Proteo dataset. With Proteo we aim
to assess the stability and the limits of our approach for more diverse genomes. We
used the protein sequences of ten bacteria of each of the following four proteobacterial
subgroups: alphaproteobacteria, betaproteobacteria, gammaproteobacteria and the
delta/epsilon subdivisions (40 genomes in total). Refer to Table C.2 on page 213 in
the appendix for a detailed description. As we only use intrinsic information ’hidden’
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Figure 7.5.: In this figure, we plot our quality measure against the similarity threshold of
TransClust. The red plot represents the quality measure Q(t) for the entire dataset and the
blue box-and-whisker plot in the background represents the variance and mean of all Rand-20
datasets (see text). The green and orange lines plot the quality measure for the Coryne-Only
and the Myco-Only dataset respectively (see text). The three boxes in the plot mark the pick
range, i.e., that range of thresholds where we see 10% of the best quality hits Q(t). For the
two rather phylum-biased datasets, i.e.Myco-Only and Coryne-Only, the pick range is larger
than the pick range of the entire dataset. Notably, the pick range for the entire dataset is
completely contained in the pick range of both, the Myco-Only and the Coryne-Only datasets.
The gray line indicates the quality measure for the Proteo dataset. This dataset is too diverse
for the presented quality measure, which is indicated by the generally lower quality values and
the shifted box toward a weak threshold. The dotted red line indicates the threshold 48, which
was chosen for the core genome analysis (see text).

in the dataset, we rely on a certain level of homogeneity amongst the genomes in order
to receive a reasonably large ’core-genome peak’. Hence, we may expect a slightly
lower quality measures for the more diverse Proteo dataset highlighting the limits of
our approach.

7.2.2.3. The Actinobacterial Phylogenetic Tree

Given a meaningful clustering of homologous proteins, we may now calculate an
inter-species similarity. Let O = {o1, . . . , on} be the set of n organisms with oi =
{pi1, . . . , pini} as a set of ni different proteins. Furthermore, let C = {c1, . . . , cm} be
the set of m clusters. We define δoi(ck) to be the number of proteins that organism
oi has in cluster ck. The function

δoi,oj (ck) =
{

0 if δoi(ck) = 0 ∨ δoj (ck) = 0
δoi(ck) + δoj (ck) otherwise
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denotes the number of mutual proteins in cluster ck of organisms oi and oj if both
organisms are represented by at least one protein. The similarity function s(oi, oj)
between two organisms oi and oj is now defined as

s(oi, oj) =
∑
ci∈C δoi,oj (ci)
noi + noj

.

This is basically the number of all mutual proteins of oi and oj normalized by the
total number of proteins of both species. This normalization is done to prevent a bias
of the similarity towards species with larger genomes (more genes).
These inter-species similarities fulfill all properties for a similarity function required

for TransClust. In order to create a phylogenetic tree, we ran TransClust in hier-
archical mode with option “top-down”. Set in hierarchical mode, TransClust starts
with a very low threshold that is increased over several iterations. As result, in the
first iteration we obtain one big cluster containing all species. With more restrictive
thresholds, the cluster(s) are divided into smaller clusters until each species ends in
its’ own singelton cluster. The clustering result of all iterations is used to generate a
phylogenetic tree. This tree is now based on the whole-genome repertoire of all acti-
nobacteria. Note that we construct this (simple) tree for supporting our threshold
estimation procedure, rather than introducing a new phylogenetic tree reconstruction
methodology.

7.2.3. Results & Discussion

7.2.3.1. Threshold Estimation

First, we will discuss the evaluation of the threshold estimation method. Figure 7.5
illustrates the stability of our approach. In particular, the results of the 20 randomly
sampled Rand-20 datasets are a very good indicator for the reliability of our approach
(refer to Table 7.2).
We define a threshold pick-range RD = {ti, . . . , tk} as the set of all thresholds,

where the quality measure Q(t) exceeds 90% of the best threshold of dataset D, i.e.,
that similarity threshold area where we find 10% of the best results. The pick-ranges
for the different datasets are marked with a box in Figure 7.5. For the complete
dataset, we observe a pick-range of RAll = {35, . . . , 48}. In this range, the standard
deviation of the 20 Rand-20 datasets is only about three percent from the mean.
As we expected, the Proteo dataset (gray line) shows a lower quality Q(t) than

the actinobacterial dataset(s). We also observe a left-shifted pick-range, i.e., towards
a lower threshold, resulting in a less rigorous homology detection. The main reason
for that is the smaller size of the proteobacterial core genome. This indicates that a
single threshold for all species, ignoring the level or diversity, cannot sufficiently be
detected and, for instance, the alphaproteobacteria should be investigated separately
from the betaprotebacteria. But a deeper investigation of proteobacteria is outside
the focus of our study.
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20×Rand-20 All Data
t µ (Q(t)) σ (Q(t)) Ratio Q(t) ∆(%)

35 0.716 0.0152 2.13% 0.711 -0.72%
36 0.719 0.0196 2.73% 0.717 -0.28%
37 0.724 0.0195 2.69% 0.728 0.56%
38 0.729 0.0157 2.15% 0.749 2.87%
39 0.732 0.0186 2.54% 0.757 3.46%
40 0.731 0.0200 2.74% 0.771 5.36%
41 0.726 0.0192 2.64% 0.776 6.84%
42 0.723 0.0181 2.50% 0.763 5.44%
43 0.721 0.0215 2.98% 0.756 4.90%
44 0.719 0.0232 3.22% 0.746 3.67%
45 0.717 0.0232 3.23% 0.741 3.34%
46 0.715 0.0259 3.63% 0.740 3.49%
47 0.711 0.0257 3.61% 0.744 4.64%
48 0.706 0.0263 3.73% 0.717 1.62%

Table 7.2.: This table shows the exact values for the evaluation of the threshold estimation.
The left part represents the results of the 20 Rand-20 datasets, showing the mean (column
“µ (Q(t))”), the standard deviation (column “σ (Q(t))”) and the percentage of the standard
deviation with respect to the mean (column “Ratio”). For comparison, the right part displays
values for the entire dataset, subdivided into a column showing the quality measure (“Q(t)”)
and column “∆” displays the percentage deviation of “Q(t)” from “µ (Q(t))”.

We now discuss the Myco-Only dataset. The quality measure is better than for the
other datasets and the pick-range is larger (the range of suitable similarity thresholds
is bigger). This is mainly contributed to 35 strains of M. tuberculosis in a dataset
with a total of only 55 species. As the different strains of M. tuberculosis are very
closely related, there is less variance in the clustering result with respect to the
threshold. In other words, the proteins of the core-genome cluster together quite
early (for weaker thresholds) and variance only occurs for the less similar proteins
of the non-tuberculosis species. Therefor, the relative core-genome peak hight stays
pretty stable for a broader range of thresholds compared to the entire dataset.
We suggest, that all thresholds from the pick-range are good candidates. We de-

cided to choose the most restrictive one, i.e., 48, in order to further reduce the possi-
bility of false-positives in the homology detection and thus enhance the confidence in
the presented actinobacterial core-genome. We marked this threshold with a dashed
line in Figure 7.5.

7.2.3.2. Pathogenicity as a Genetic Model

In this first application of our previously obtained clusters of homologous proteins,
we study the relationship between the genetic repertoire and bacterial life styles,
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7.2. Actinobacterial Core Genome

(a) (b)

(c)

Figure 7.6.: (a) for example, represents on the x-axis all pathogens and on the y-axis only non-
pathogens. The colors encode the number of clusters that contain x “x-axis-type-pathogenic”
and y “y-axis-type-pathogenic” species. Note that we ignore paralogs and count every species
only once. The core-genome can be found in the top right corner, whereas the top-left and
bottom-right corners represent the exclusive core-genomes. There are no peaks in the latter
two areas, which means that there are no proteins that uniquely distinguish between the two
pathogenicity classes. Note the log-scale of the color range.
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Figure 7.7.: These Venn diagrams depict the number of shared clusters in each possible inter-
section of the four different kinds of pathogenicity with at least three proteins (for conservative
and optimistic; see text). These intersections are disjoint, for example the intersection of the
non-pathogenic core-genome and the human pathogenic core-genome does not contain the
human-pathogenic-only clusters. The core-genome contains all clusters, which contain proteins
of all species. We marked the NP/HP/AP/OP-only clusters and the core-genome itself with
bold font, for a intersection of two areas we used italic font. Refer to the text for a discussion
of this figure.

pathogenicity classes in our case. In particular, we are looking for genes that we find
exclusively in a certain class of species, pathogens, for instance. Most likely, those
genes would be conserved across several different pathogenic phyla and thus build
a cluster that contains no proteins from non-pathogen organism. In the following,
we work with the TransClust clusters that we obtained by using the conservative
threshold of 48, estimated as described above. In the following we will distinguish
between four different types of pathogenicity:

• HP: human pathogens (44 bacteria)

• AP: animal pathogens (10 bacteria)

• OP: opportunistic pathogens (23 bacteria)

• NP: non-pathogens (12 bacteria)

Note: Opportunistic pathogens are generally not infectious but normally act com-
mensal and do not harm the host. However, they can cause diseases in the case of a
weak host’s (immune) resistance. Figure 7.6 depicts distributions of the cluster size
overlaps between different combinations of the pathogenicity classes. Furthermore,
we provide datasets containing all specific core-genomes, the general core-genome
and all possible combinations, for example clusters containing only proteins from HP
and AP but not from OP and NP. These datasets are disjoint, e.g., the combined
core-genome of HP and AP does not contain the only-HP and only-OP clusters.
Some clusters were bigger than the number of species. Hence, some species must

contribute with two or more proteins. That can happen by means of gene duplication
events or due to clustering mistakes, i.e., false-positives in the homology detection.
Therefore, we provide the core-genome datasets in two different “flavors”:
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7.2. Actinobacterial Core Genome

• Optimistic: All clusters with three or more proteins (includes paralogs).

• Conservative: Only those clusters from the Optimistic, where the number of
proteins equals exactly the number of involved species (no paralogs).

The general core-genome includes only those clusters where all 89 species are involved.
In the conservative case, these clusters are additionally limited to a size of exactly 89
proteins.
Figure 7.7 depicts a Venn diagram containing the number of clusters in the different

categories. Of particular interest are “distinctive clusters” which lack participating
organisms of at least one type of pathogenicity. Thus the core-genome and all other
clusters containing proteins of species of NP, HP, AP and OP are not on that list,
because they do not provide information on how to separate the different types of
pathogenicity. One can clearly observe a connection between human and animal
pathogens. 1, 685 out of 2, 888 HP and 3, 010 AP distinctive clusters are shared,
which account for more of half of the respective distinctive clusters in HP and AP. In
contrast to this, only 646 distinctive clusters contain proteins from HP and NP and
even less, 587, are conserved across AP and NP. The opportunistic pathogens seem
to be less specific as they overlap very well distributed with all other categories (HP:
1, 890, AP: 1, 820, NP: 2, 250). All these results are based on the conservative core-
genome with TransClust threshold 48, although a similar tendency can be observed in
the optimistic case (data not discussed here). Although our results not totally fulfill
our hope of seeing 100% pathogenicity-class-specific proteins, our findings clearly
indicate a certain genetic divergence between the pathogenicity life styles.

7.2.3.3. Quality of the Homology Detection

As already mentioned, there is no gold standard covering our bacteria. This poses
problems for assessing the appropriateness of clustering methods for homology de-
tection. Although slightly beyond the scope of this study, we like to discuss the agree-
ment of our results with existing prediction-based homology repositories, EggNOG [97]
and the Ortholog Matrix Project (OMA) [36], for instance. OMA has the largest
number of common species with our study and was shown to perform superior on
this task [35]. We hence compare against OMA. We mapped 118, 000 proteins of
30 species (9 corynebacteria, 17 mycobacteria, one nocardia, and three rhodococcus)
against our actinobacterial dataset by their IDs and their sequences. Refer to Ta-
ble C.3 on page 215 in the appendix for a list of mapped proteins and species. Finally,
we removed all unmapped proteins from both actinobacterial datasets.
In order to assess the agreement of both datasets, we utilized the F-measure. We

varied the TransClust threshold and compared the results against OMA (see Fig-
ure 7.8). For the best threshold(s) the F-measure of 0.7 is quite good. Most notably,
however, is the observation that the F-measure is best for thresholds almost exactly
within the pick-range that was suggested by our method (between 35 and 48). As
with this paper we particularly focus on detecting a meaningful threshold, i.e., den-
sity parameter, for clustering algorithms (rather than studying the performance of
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Figure 7.8.: Agreement with the OMA homology detection tool. Depicted is the development
of the F-measure as a function of the clustering threshold. The red box marks the pick-range
derived by using our model Q(t). Remarkably, the best F-measures (agreements with OMA)
are achieved for clustering results with thresholds in the pick-range we suggested using our
method. The red dotted line indicates the threshold 48.

clustering algorithms for homology detection in general), this observation further
strengthens our main conclusion. Furthermore, it would be hard to make a qualified
statement about the quality of OMA compared to ours, as both methods are based
on computer predictions.

7.2.3.4. The Actinobacterial Phylogenetic Tree

We utilized our above introduced inter-species similarity to perform a hierarchical
clustering. With this, we were able to construct a phylogentic tree based on the
whole-genome repertoire of all 89 actinobacteria. Figure 7.9 depicts the resulting tree.
Whenever a cluster is split into sub-clusters, with increasing threshold, we branch in
the tree accordingly. If a cluster sticks together for x decreasing thresholds, we set
the length of the branch to log(x + 1). This is necessary mainly for optical reasons,
because some very closely related organisms stick together for many threshold which
would result in very long branches. One can see that most of the mycobacteria
cluster together while the other CMNR groups are slightly more separated. This
observation is reasonable, given the different life styles and was previously reported
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Figure 7.9.: Circular phylogentic tree based on the whole-genome repertoire of all 89 actinobac-
teria. The different subgroups of the CMNR group are marked with the following colors:
mycobacteria, red; corynebacteria, green; rhodococcus, blue; nocardia, yellow. The colored
ring on the outside idicates the pathogenicity: NP, green; HP, red; AP, blue; OP, yellow. The
thick lines in the circle represent the tree, the thin lines are only for representational reasons.
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in other studies, see the review from Ventura et al. [113], for instance. We emphasize
that this tree is supposed to support our threshold estimation procedure, rather than
introducing a new method for phylogenetic tree reconstruction.

7.2.4. Conclusion
To sum up, we studied the actinobacterial genetic repertoire with respect to four
pathogenicity life styles. We used BLAST and TransClust for this purpose. Here,
our main novel contribution was the estimation of a robust similarity threshold for
TransClust. Therefore, we set the threshold such that we balance the size of the core-
genome (number of clusters with exactly 89 genes/proteins; putative true positives)
and the number of unreasonably larger clusters (putative false positives) based on the
cluster size distribution. We studied the robustness of our method by using random
sampling and achieve stable and reasonable core-genomes for similarity thresholds
between 35 and 48. We receive similar results for the exclusive repertoire of the
corynebacteria and mycobacteria, respectively. In conclusion, our results suggest that
we may utilize the intrinsic information contained in the cluster size distribution, at
least in the phylum actinobacteria, to deduce a reasonable density parameter for
robust and accurate protein homology clustering. For future work with bacterial
genomes, we suggest using BLAST E-values between 10−35 (optimistic) and 10−48

(conservative) when utilizing bi-directional BLAST hits only for homology detection.
Remarkably, the same range is also suggested by comparing the agreement of our
clustering result with the results from the OMA project.
Our method, however, is limited by the level of biological diversity amongst the set

of species to be studied. As we only use the intrinsic information that is “hidden”
in the dataset, we rely on a certain level of homogeneity. Hence, we can expect a
reduced accuracy for more diverse sets of genomes.

"

Results of this Section

• Discovery of pathogenicity specific core-genomes.

• Construction of a whole genome repertoire phyologenetic tree of
the actinobacterial CMNR group.

• Reliable and robust method for estimating a density parameter for
protein homology detection.

• Our results suggest that 10−48 as optimal BLAST E-value cutoff
for microbial protein homology detection.
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8. Discussion

In the framework of this thesis, three main objectives were accomplished:

1. Extend TransClust for coping with missing values

2. Development of ClustEval for automatizing and unifying cluster analyses

3. The integration of Clustering in real-world biological examples

As the two biological studies are serving as examples for the application of cluster-
ing in systems biology and are mostly self-contained, we decided to discuss them
in the corresponding section in order to enhance readability of the thesis (refer to
Subsection 7.1.3 on page 133 and 7.2.3 on page 143).
Whereas the remaining two objectives will be discussed in the overall context of

the thesis as they are highly interconnected in the following two sections.

8.1. Missing Values
In the first method section of this thesis, we introduced a memory efficient method
for splitting a large similarity file into connected components. This approach allows
for handling almost arbitrarily large similarity files on standard desktop computers
with limited main memory. The new cost-matrix creator seamlessly integrates into
existing clustering pipelines as it is compatible with the existing TransClust. The
ability to decompose large similarity files on modest computing hardware resulted in
a significantly increased runtime of the cost-matrix creator. That means the problem
with handling large similarity files was not solved; rather, the bottleneck was shifted
from memory consumption towards runtime requirements. This fact emphasizes the
need to address the problem of increasingly larger similarity files with a different
approach.
As a consequence, the central concept we elaborated upon in this work is reducing

the size of the similarity file in the first place. We achieved this by the strategic
use of missing values thus omitting the most similarities from being ever calculated.
This does not only reduce the size of the similarity file but also enables the usage
of computationally expensive similarity functions even for large datasets. In the
framework of this thesis, we have developed two different approaches to integrate
missing values into Transitivity Clustering:
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Robustness " % " % % % " % " " " "

Integration of existing knowledge " % % % % % % % % " " "

Arbitrary-shaped clusters " " " " % % " " " " " "

Minimal user-specified input " " " " " " " % " " " (")
Interpretable results % (") % % % " % % % " " "

Reproducibility of results " " " " " % " % " " % %*
Missing Values % % % % % % % % % % " "

Active Clustering % % % % % % % % % % % "

Table 8.1.: Overview of features defined in Subsection 2.4.11 on page 53 which are fulfilled by
the clustering tools.
*due to the randomized nature of the active clustering approach, see text for details.

1. By randomly omitting similarity calculations

2. By actively calculating only the most important similarities

The first method called “TransClust with Randomly Missing Values” (TransClustMV)
extends TransClust and only requires a different method for the creation of the cost-
matrices. TransClustMV can handle single missing values as well as entirely missing
one-vs.-all queries, i.e., the absence of entire stripes in the similarity matrix. The
latter approach is more effective in terms of memory usage, as it does not require
the explicit storage of the missing values within the similarity file but only requires
a list of the omitted one-vs.-all queries. On our websites, we provide an implementa-
tion for the direct processing of FASTA files (using BLAST as similarity function);
nevertheless, it can be implemented for different similarity functions as well.
The downside of this approach is that it only randomly choses the missing values

(except the researcher includes prior knowledge by providing a list of objects used for
the one-vs.-all queries) and thus we can hardly guarantee any limits for the quality
of the clustering result. Our tests on protein homology detection suggest that the
results merely differentiate, even when using only a small fraction of the available
similarities, but this might not necessarily be true for all problem instances. Never-
theless, we removed the tick from “Reproducible results” from the Summary Table
8.1 because the reported results of TransClustMV depend on the selection of the
one-vs.-all queries.
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Our second approach, ActiveTransClust, takes the idea of using missing values in
the similarity file further. ActiveTransClust starts with a small fraction of known
similarity values. Based on the clustering of these initial similarities, ActiveTrans-
Clust calculates only those missing values which are most promising for improving
the clustering result in addition to the already available similarities. Because of
the additional process of calculating selected missing similarities, the user has to set
more parameters compared to standard TransClust. We have set these parameters
to well-evaluated default values which should produce good results while maintaining
fast runtimes. Nevertheless, in Table 8.1, which summarizes all discussed clustering
algorithms, we place the tick for “Minimum user-specified input” within in paren-
theses because some problems might require a deeper fine-tuning of the parameters.
Furthermore, as ActiveTransClust also requires a randomized initialization step, we
removed the tick from “Reproducible results” as we cannot guarantee that two runs
report the same result. Nevertheless, our tests have shown that the variance between
the different runs is very small.
To summarize (refer to Table 8.1), TransClustMV does fulfill all requirements of

a state of the art clustering tool except the active clustering and the reproducibility
of the results, whereas ActiveTransClust performs the active clustering by means
of a more complex procedure. Furthermore, both methods are also dependent on
acceptance within the scientific community. Results based on only a fraction of the
similarities need to be acknowledged by the researchers as a valid clustering result.
Otherwise, these tools, regardless of how accurate they are, will not be considered
as real alternatives to clustering approaches using all similarities. Therefore, more
studies with even larger datasets and computationally expensive similarity functions
must be conducted in order to convince the scientific community. Some suggestions
for such studies are outlined in the Outlook Chapter on page 159.
In the framework of this thesis, we have only used datasets which would not neces-

sarily require an active clustering approach as they are still small enough for a classical
approach. Additionally, we restricted ourselves to the usage of BLAST E-values as
similarity function. We deliberately chose this approach as right now, demonstrating
the feasibility of the active clustering approach achieving high quality results is the
most important task. That of course means that we require comparable results from
“classical” clustering approaches on well-known datasets using an established simi-
larity measure. The results show that ActiveTransClust can produce high quality
results with utilizing only a fraction of the available similarity information. Based on
these results, we now can go large-scale and put reasonable confidence in reported
future results.
Nevertheless, the influence of the active approach seems not that significant when

looking at the F-measure only, especially on the non-artificial datasets. As already
discussed in the chapter about ActiveTransClust (Chapter 5 on page 85), this is
mainly due to two reasons: (1) large clusters, which are identified reliably, dominate
the F-measure and (2) the tremendous amount of indirectly missing values in the sim-
ilarity files (those values set to a cut-off value λ). We are convinced that the active
approach is in fact improving the clustering quality, especially regarding small clus-
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Table 8.2.: Overview of features defined in Subsection 2.5.6 on page 60 which are fulfilled by the
different evaluation frameworks.

ters, compared to the TransClustMV approach even though this fact is only poorly
represented by the F-measure. When using the artificial datasets, we observe a much
better performance as the cluster size distribution ensures that the large clusters do
not contain the majority of the objects of the dataset. Furthermore, the artificial
datasets also use a similarity measure with the same detection sensitivity for very
dissimilar objects (i.e., not producing indirectly missing values), which increases the
effectiveness of the algorithm. Generally, we followed a heuristic approach for inte-
grating missing values into TransClust. We can not give conditions or properties of
the dataset which assure that ActiveTransClust or TransClustMV report the optimal
result or inverted, we can not give suggestions when the usage leads to poor results.
To summarize, ActiveTransClust does improve the results over TransClustMV (at
least for protein homology prediction) but works best when the similarity function
is precise over the whole range of possible values (e.g., does not simply cut-off at a
certain point of dissimilarity).

8.2. ClustEval

ClustEval is the first integrated evaluation platform specifically designed for cluster-
ing analyses. Table 8.2 summarizes the features of ClustEval in comparison to other
evaluation frameworks. With ClustEval, we attempt to assist researchers in conduct-
ing a cluster analysis. We suggest a standard input and output format which is easily
generated, parsed, and sufficiently feature-rich to address most use cases arising while
clustering. At the moment, this file format is only supported by ActiveTransClust;
for all other tools, parsers are required. ClustEval already provides parsers for the
most commonly used tools in bioinformatics.
ClustEval also performs standardized and automated parameter training in order

to enable transparent, reproducible, and fair studies. Nevertheless, no automated
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threshold probing can replace the experience of experts. Thus, even though the
threshold probing is fair in terms of the strategy applied to find the threshold, not
every strategy necessarily fits to every clustering tool to the same extent. One can
argue that even with ClustEval, there can be a bias introduced towards tools harmo-
nizing with the chosen threshold probing best. Furthermore, such automated probing
uses “only” a statistic measure for judging the quality of the tested parameter set
whereas an expert might rule out an entire range of parameter sets by looking at the
reported results.
ClustEval was designed to be as flexible as possible. That enables the integration

of many different tools and allows the framework to be extended for future tools as
well. On the other hand, exactly this flexibility necessitates configuration work of the
researcher. Although we designed ClustEval to support practitioners in conducting
a clustering study, they have to weigh the initialization costs (in terms of becoming
familiar with the framework, installation, and configuration time) over the anticipated
time saved during the actual study. Thus, for some studies, it is more efficient to
conduct the study manually rather than using ClustEval. We attempted to reduce
the set-up costs as much as possible, e.g., by providing an image of a Linux virtual
machine with a fully functional pre-configured ClustEval framework; nevertheless,
the complexity of the framework cannot be ignored, especially when the web front
end for the result presentation is required.
Furthermore, ClustEval requires Linux and thereby rules out all clustering tools

only available for a different operating system. Even though most tools are available
for Linux, some practitioners use different operating systems. As ClustEval executes
command line programs, it restricts the usage of tools being provided exclusively
with a GUI or integrated into other frameworks, e.g., in Cytoscape (as an example,
MCODE[10] is only available as Cytoscape plug-in1). We decided to evoke binaries
because of the following advantages: (1) We can use the reference implementation
of the tool, (2) including an updated version of a tool is only a matter of replacing
a binary, (3) we are independent from the original programming language as long
as there is a Linux version of the tool, and (4) we can also use closed-source tools
without limitation. In our view, these advantages outweigh the advantages of directly
including the different algorithms into ClustEval.
ClustEval provides a good overview of existing tools and their performance on dif-

ferent datasets which was especially tailored to the non-expert who wants to conduct
a clustering study. Here, ClustEval should be regarded as a guide but it cannot
reflect all possible options available for conducting an analysis. That can lead to a
false confidence in terms of what is the best tool and the best parameter setting for
a certain task if the results presented on ClustEval are not used with precaution.

1Of course, if these tools are open-source, they can be integrated in a modified version. ClustEval
is not bound to execute command line tools.
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9. Conclusion

In the course of this thesis, we have demonstrated the power and limits of cluster
analyses in bioinformatics. We have elaborated on two main challenges which in our
opinion are the currently most severe restrictions:

1. We have broadened the more and more apparent bottleneck of the similarity
calculation inflicted by the increasing dataset size by exploiting missing values
by introducing TransClustMV and ActiveTransClust.

2. We have eased the utilization of the complex and confusing field of clustering
with its plethora of algorithms and methods by introducing ClustEval.

Regarding the first point, we have identified the similarity files and especially the
calculation of all pairwise similarities as a bottleneck. As we have laid out in the in-
troduction, this bottleneck will become even more severe with the growing amount of
available biological datasets. As of yet, the application of complex similarity functions
in terms of computational time (e.g., protein structure prediction and comparison)
limits the size of feasible dataset drastically. We have tackled this challenge by in-
troducing missing values to the well-established clustering tool TransClust. This
approach does not need all pairwise similarities; for protein sequence clustering, we
were able to show that in fact only a fraction of all similarities are required. Further-
more, we extended this approach by introducing a feedback loop when we combine
the clustering itself and the calculation of the similarities. Here, we base a clustering
on few similarities and calculate specifically those similarities which promise the best
effect on the clustering result. With that, we were able to reduce the required amount
of information even further while still delivering the same result quality. To conclude,
with the approaches presented in this thesis, the bottleneck of the similarity calcula-
tion was widened and enables large-scale studies with complex similarity functions in
future applications. The user is given the choice: If the calculation of an entire all-
vs.-all similarity file is no longer suitable, he can either choose TransClustMV which
is faster but requires more similarities for the same quality, or ActiveTransClust if
the calculations of the similarities are sufficiently time consuming to outweigh the
increased runtime of ActiveTransClust compared to TransClustMV.
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z

Application of the new Clustering Approaches

Classical TransClust Classical TransClust can be applied whenever the
similarity file is already calculated.

TransClustMV Best used when the similarity function is computation-
ally simple but the amount of objects render a complete calculation
impossible.

ActiveTransClust In cases of very complex and time-consuming simi-
larity functions such that the time saved in similarity file creation
outweighs the runtime advantage of TransClustMV.

In the second main part of the thesis, we developed ClustEval. As clustering is
a long standing problem in computer science, there exist many different approaches
and tools to calculate a clustering. The amount of possibilities is quite overwhelming
especially for non-experts. Furthermore, the correct usage of a clustering tool requires
extensive knowledge in the underlying algorithm to be efficient and produce the best
possible result. ClustEval addresses many of these problems. First, the non-expert
can inform himself through a useful overview of the existing tools, their performance
on different datasets, and the best parameter setting for certain applications. The
expert is supported by ClustEval by means of an automatization of the laborious
parts of a cluster analysis, like the parameter training of several algorithms. Here,
we proposed standards for input and output files as well as for parameter training
and result evaluation. Results based on an evaluation standard render the results
more significant and easier to compare. The platform is open for the community
to contribute and has the potential to become the “one-stop-shop” for conducting
cluster-analysis.

z

The Clustering Evaluation Platform ClustEval

• One-stop-shop for practitioners conducting cluster analyses.

• Automatization and unification of the entire clustering process in-
cluding bias-free parameter training.

• Easily extendible for future developments.
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10. Outlook

To finish the work, we want to outline some possible future developments in order
to further broaden the capabilities of clustering algorithms in bioinformatics.

Multiple Disks
The presented method for creating cost-matrices by means of utilizing background
storage right now assumes a simple one disk environment. An increasing number
of modest computing hardware is equipped with more than one hard disk, thus the
efficient usage of multiple disk systems will be of increasing importance in the future.
Furthermore, as the main limiting factor of the cost-matrix creation process is the
I/O load, an compressed format for cost-matrices could further reduce the I/O load
and thus lead to a drop in the runtime.

External Cost-Matrices
The clustering algorithm of TransClust still relies on the entire cost-matrix being
stored in the main memory. Even though the creation of large cost-matrices poses
no problem anymore, the actual clustering of such a matrix does. Here, methods
for utilizing background storage during the clustering process may ease the problem.
During the clustering, the costs for the edge insertions/removals are not queried in a
predefined order, but show almost random-access behavior. Therefore, efficient meth-
ods for random access to data on the background storage need to be implemented.
Possible solutions are the usage of databases or external hash tables, e.g., as described
in [126]. Implementing these steps would allow for almost arbitrarily large clustering
projects using TransClust.

Complex Similarity Functions
We have demonstrated the capabilities and the quality of TransClustMV and Active-
TransClust in this thesis using well-known datasets. This foundation allows for the
the development of projects specifically benefiting from these new capabilities and
going beyond the proof-of-concept phase as done in this work. Especially the usage
of complex similarity functions promises to generate new insights. As an example,
entire regulatory networks could be used as objects combined with their degree of
alignment (which is in fact a NP-hard problem in itself) as a similarity function in
order to discover closely related sets of regulatory networks of different species. An-
other example is the usage of protein homology detection using 3D protein structure
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alignment, e.g. 3D-BLAST1 [78]. To summarize, the computational complexity of
the similarity function does not influence the overall runtime of a cluster analysis
that drastically anymore.

Hybrid Similarity Functions
With the rise of such complex similarity functions, the development of a “hybrid
approach” could further speed-up the process while increasing the result quality. In
a hybrid approach, we combine a fast similarity function with a computationally
expensive but more accurate one. Thus, the active clustering approach uses the
information from the fast similarity function in order to identify critical clusters. For
those critical clusters, the expensive similarity function is applied for calculating more
reliable similarities.

Online Clustering
A further extension to the active clustering approach could be the introduction of an
online mode. That means that not all objects of the dataset are known right away,
but are added at a later point in time without discarding the already performed
cluster analysis. This approach is compatible with the methods already developed in
this chapter, as the newly added objects will simply be treated as singletons with no
information so far and thus are automatically ranked high for possible improvements.
When using the landmark method, the newly added objects can be integrated not
with an one-vs.-all query but a still efficient “one-vs.-new” query using the existing
landmarks.

Practical Implications
To outline the new possibilities with the clustering approaches presented here, a
system comparable to EHECRegNet could now be realized hosting more species. The
usage of several model organisms (instead of just one) together with target organisms
spread all over the different phyla of bacteria could create new levels of evidence for
conserved regulations. With the active approach, such a project could be realized
using an intermediate clustering and then improving the quality of the database over
time, increasing the confidence in the predicted regulations. Together with the online
approach, results for newly added organisms could be already utilized after a couple
of minutes.
To conclude, a high quality similarity function is one of the most important parts

of a cluster analysis. A clustering based on an infeasible similarity function can never
produce meaningful results, regardless of the used clustering algorithm. With the
work presented here, the number of applicable similarity functions is increased (as
the runtime of a similarity calculation is less important than before) and also allows
for the development of novel similarity approaches. In the meantime, several existing
systems can be supported by a larger data basis, especially when implementing the
suggested improvements.

ClustEval Beyond Bioinformatics
ClustEval, the integrated clustering framework developed in this thesis can also be

1A single protein pair query can take up to 4 seconds, depending on the search depth used.

160



extended to broaden the range of possible application areas. The scope of the frame-
work can also include clustering methods popular in other disciplines besides bioin-
formatics. The same applies for the accompanying datasets. This will enable the
researchers to have an unbiased and realistic view on the performance of the most
important clustering algorithms and will assist them in the selection process of an
appropriate tool for their dataset.

Automated Tool Suggestion
An increasing number of datasets integrated into ClustEval, especially those with a
reliable gold standard, will allow for new types analyses. As for every dataset many
properties are known, we can relate the performance of the different clustering tools
to these properties. This can be realized with a machine learning approach using
the dataset properties as features. With that knowledge, we will be able to predict
the anticipated performance of each clustering tool for an unknown dataset once its
properties are calculated. That would further ease the difficult process of choosing
the best possible clustering tool as ClustEval will provide an objective suggestion.

ClustEval as an Online Clustering Service
A further step to improve the user-friendliness of ClustEval would be the transfor-
mation of the framework to an online service. That means, a user can upload a
dataset and will automatically receive his clustering result retrieved from the desired
clustering tools. All that would not require any installation or deep knowledge con-
cerning the different tools by the user. Such a step will be especially important for
non-computer experts as the necessity of running an unknown tool locally vanishes.

ClustEval Outside of Clustering
The modular and flexible design of ClustEval also allows for adaption to different tasks
than clustering. The internal structure of ClustEval can be used wherever different
tools and measures are supposed to run on numerous datasets. For example, we
could provide a ClustEval fork specialized for classification or graph editing which
only requires the implementation of additional parsers and measures for assessing the
result quality.
All these implications will further improve the acceptance and importance of Clust-

Eval outside of the clustering community.
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A. ClustEval

This appendix supplements the chapter about ClustEval. Here, we will give an
overview of the files system structure and give examples for configuration files. For
all options and details about ClustEval, refer to the technical documentation which
can be found on the website clusteval.mpi-inf.mpg.de.

A.1. File System Structure of the Repository
The repository is the main data source for the ClustEval framework. The file structure
is automatically generated by the server whenever a new repository is generated. The
structure is as follows:

repository/
repository.config
data/

configs/
brown.dataconfig
...

datasets/
configs/
brown/
.../

goldstandards/
configs/
brown/
.../

programs/
configs/

transclust.config
...

TransClust/
TransClust.jar

.../
...
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...
results/

<date>_<runconfig>/
analyses
clusters
configs
goldstandards
inputs
logs

.../
runs/

CaseStude_I.run
CaseStude_II.run
CaseStude_III.run
...

supp/
clustering/
distanceMeasures/
formats/
generators/
statistics/
.../

As seen in the listing, the repository consists mainly of five directories:

data This directory stores all datasets and gold standards. Each dataset is located
in its own directory. In order to propagate the existence of a dataset, a config-
uration files has to be placed in the “config” subdirectory. The configuration
files in the subdirectory “data” link the dataset and the gold standard to-
gether. The configuration files in the “config” subdirectories of “dataset”
and “goldstandard” finally point to the actual data file. An example can be
found in the Appendix A.2 on the next page.

programs Here, all binaries of the clustering tools are stored. Each program is put
in its own directory and a configuration file has to be stored in the “config”
subdirectory. An example for a program configuration can be found in the
Appendix A.2 on the facing page.

results Every run creates a own subdirectory beginning with the execution date and
the name of the executed run configuration. In each of these result directories,
the user not only finds the results but also all used input files. This ensures
reproducibility, even when the datasets in the “data” directory are changed, as
everything required for a re-run is stored together with the results.

runs This directory only consists of run configuration files. An example can be found
in the Appendix A.2 on the next page.
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supp This directory contains all plug-ins for ClustEval. In every subdirectory “JAR”
files are stored implementing a given Interface of ClustEval, e.g., the implemen-
tation of the Euclidean distance can be found at
“/repository/supp/distanceMeasures/EuclidianDistanceMeasure.jar”

All directories are automatically scanned by the server for changes. These changes
are then included into the Server and can be used right after copying the files into
the proper directories.

A.2. Configuration File Examples
A.2.1. Program Configuration
The following listing displays the configuration for TransClust and its parameters.

1 program = TransClust / TransClust .jar
2 parameters = minT ,maxT ,T,tss ,mode
3 optimizationParameters = T
4 compatibleDataSetFormats = RowSimDataSetFormat
5 outputFormat = TransClustRunResultFormat
6 alias = Transitivity Clustering
7

8 [ invocationFormat ]
9 invocationFormat = java -jar %e% -i %i% -sim %i% -gs %gs% -o %o% -minT

%minT% -maxT %maxT% -tss %tss% -mode %mode% -verbose
10

11 [T]
12 desc = Threshold
13 type = 2
14 def = $( meanSimilarity )
15 minValue = $( minSimilarity )
16 maxValue = $( maxSimilarity )
17

18 [minT]
19 desc = min. Threshold
20 type = 2
21 def = 0.8
22

23 [maxT]
24 desc = max. Threshold
25 type = 2
26 def = 1.0
27

28 [tss]
29 desc = Threshold stepsize
30 type = 2
31 def = 0.01
32

33 [mode]
34 type = 1
35 def = 2
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A.2.2. Dataset Configuration
A dataset has an entire hierarchy of configurations. In the “data” directory, the
dataset is linked to its gold standard, if existent. An example for the Brown et al.
dataset looks as follows:

1 datasetConfig = brown
2 goldstandardConfig = brown

The configuration file of the Brown et al. dataset in the “dataset” directory reads
as follows:

1 datasetName = brown
2 datasetFile = brown_et_al .txt

Here, the link to the actual data file is established, which looks as follows:
1 // dataSetFormat = RowSimDataSetFormat
2 // dataSetType = ProteinSequenceSimilarityDataSetType
3 // dataSetFormatVersion = 1
4 // alias = brown
5 gi15801179 gi16129025 323.3062153431158
6 gi15801179 gi1346930 3.0969100130080562
7 gi15801179 gi3122654 3.0
8 ...

The same scheme is applied for the gold standard file as well.

A.2.3. Run Configuration
The following listing displays the a sample configuration file used for case study I
(see Subsection 6.4.1 on page 120):

1 programConfig = AffinityPropagation , Hierarchical_Clustering ,K-means ,MCL
, TransClust

2 dataConfig = synthetic_cuboid250 , synthetic_cassini250 ,
synthetic_spirals250

3 qualityMeasures = DunnIndexRClusteringQualityMeasure ,
DaviesBouldinIndexRClusteringQualityMeasure ,
SilhouetteValueRClusteringQualityMeasure ,
FmeasureClusteringQualityMeasure ,
JaccardIndexRClusteringQualityMeasure ,
RandIndexRClusteringQualityMeasure ,
SensitivityClusteringQualityMeasure

4 mode = parameter_optimization
5 optimizationMethod = LayeredDivisiveParameterOptimizationMethod
6 optimizationCriterion = FmeasureClusteringQualityMeasure
7 optimizationIterations = 1001
8

9 [ TransClust ]
10 optimizationParameters = T
11

12 [MCL]
13 optimizationParameters = I
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14

15 [ AffinityPropagation ]
16 optimizationParameters = preference ,dampfact ,maxits , convits
17

18 [ Hierarchical_Clustering ]
19 optimizationParameters = k
20

21 [K-means]
22 optimizationParameters = k

In this file, all used datasets and clustering tools are specified. The “mode” specifies
that ClustEval is supposed to perform a parameter optimization, using the “Layered
Divisive Method” testing 1001 . The parameters are optimized to achieve the best F-
measure. In the lower part of the configuration file, further details for the clustering
algorithms are given. This listing only serves as example, for all options and details
about ClustEval, refer to the technical documentation which can be found on the
website of ClustEval clusteval.mpi-inf.mpg.de.

A.3. Integrated Dataset Measures

Besides the mentioned measures for the clustering quality, ClustEval provides the
following properties for datasets:

Intra-vs.-Inter This property plots a digram showing the similarity distribution for
similarities within clusters and between clusters. This measure is only available
for datasets with a gold standard.

Overlap of Intra-vs.Inter This measure is only available for datasets with a gold
standard. The measure calculates the proportion of the area of the overlap
within the Intra-vs.-Inter plot.

Similarity Distribution Plots the distribution of the similarities.

Graph Adhesion The graph adhesion is a measure introduced by White and Harary
in [117]. This measure describes the minimal sum of edge weights which need to
be removed from the graph such that the graph is no longer strongly connected.

Graph Cohesion The analogous property to the adhesion, but this time describes the
minimal number of nodes to be removed from the graph such that the graph is
no longer strongly connected.

Graph Min-Cut The minimal sum of edge weights of edges required to be removed
in order to decompose the graph in at least two connected components.
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Clustering Coefficient The cluster coefficient is the ratio of triangles (i.e., three
nodes with three edges, thus a clique) and “connected triplets” (three node
connected by at least two edges). The coefficient C is calculated as

C = 3 ·#triangles
#triplets .

The factor 3 is necessary, as every triangle is also counted as three triplets.

Node Degree Distribution Plots the node degree distribution. In case of weighted
networks, the sum of the weights of all adjacent edges of a node are reported
as its degree.

Graph Density The ratio of existing edges and the maximal possible number of edges
(in a network with n Node, this would be n(n−1)

2 ).

Graph Diversity Measures the diversity of the node degrees (or the weight sum of
all adjacent edges) utilizing the Shannon entropy. The approach follows the
publication of Eagle et al. [39]. The normalized graph diversity is calculated
as:

D = 1
n

∑
u∈V

D(u) = 1
n

∑ H(u)
log(deg(u)) with

H(u) = −
∑
v∈V

w(u, v) log(w(u, v))

with deg(u) being the degree of the node u and H(u) the Shannon entropy.
The term w(u, v) is the weight of the edge uv.

Matrix Rank Calculates the rank of the similarity matrix, i.e., the number of linear
independent rows of the matrix.

A.4. Case Study I - Additional Results
A.4.1. Dataset Properties
Figure A.1 displays the the Intra-vs.-Inter similarity distribution and the node degree
distribution of the Cassini and the Spiral dataset. Table A.1 shows the remaining
properties of both datasets. Noteworthy is the very high overlap of the Intra-vs.-Inter
cluster similarity of the spiral dataset which is a prominent property of that dataset.

A.4.2. Cluster Results
Figure A.2 depicts the clustering result for the remaining two datasets of case study
I.
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Figure A.1.: This figure displays the statistics calculated for the Cassini dataset in the top part,
the Spiral dataset in the lower part. On the left side, the intra and inter cluster similarity is
displayed. The overlap between both curves is relatively small which is an indicator of the
cluster-ability of the dataset. On the right, the node-degree distribution is displayed. In that
case, the node-distribution is the combined weight of all adjacent edges of an object.

Property Cassini Spiral

Intra-vs.Inter Cluster Similarity Figure A.1 Figure A.1
Overlap Intra-vs.-Inter 0.189 0.419
Similarity Distribution Figure A.1 Figure A.1

Graph Adhesion 248 248
Graph Cohesion 248 248
Graph Min-Cut 110.31 110.55

Clustering Coefficient 1.00 1.00
Node Degree Distribution Figure A.1 Figure A.1

Graph Density 1.00 1.00
Graph Diversity 0.99 0.99
Matrix Rank 250 250

Table A.1.: Summery of the calculated properties of the Cassini and Spiral dataset.
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Figure A.2.: This Figure shows the archived cluster quality measures for the Cassini and Spiral
dataset. The values for the Dunn Index are scaled to 1 as the Dunn index does not have a
bound value range.
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Table B.1.: Findings for the indicated gene of interest. The columns are: “Pathogen” - strain
name of the pathogen; “TG” - the homologous target gene in the pathogen; “TF” - the
regulating transcription factor of the target gene in the pathogen; “BS” - binding site; “#TG”
- number of target gene regulated by this transcription factor; “Hom. TF” - the homologous
transcription factor in E. coli K-12.

Pathogen TG TF BS #TG Hom. TF
Target gene of Interest: b3025 (gseb)

O55:H7 str.
CB9615

g2583_3746
(qseb)

g2583_3746
(qseb)

acaattacggatt 4 b3025 (qseb)

O111:H- str. 11128
eco111_3848

(qseb)
eco111_3848

(qseb)
acaattacggatt 2 b3025 (qseb)

O26:H11 str. 11368
eco26_4126

(qseb)
eco26_4126

(qseb)
acaattacggatt 2 b3025 (qseb)

UMN026
ecumn_3510

(qseb)
ecumn_3510

(qseb)
acaattacggatt 2 b3025 (qseb)

IAI39
eciai39_3520

(qseb)
eciai39_3520

(qseb)
acaattacggatt 2 b3025 (qseb)

E24377A
ece24377a_3490

(qseb)
ece24377a_3490

(qseb)
acaattacggatt 2 b3025 (qseb)

O157:H7 str.
TW14359

ecsp_3999
(qseb)

ecsp_3999
(qseb)

acaattacggatt 2 b3025 (qseb)

55989
ec55989_3441

(qseb)
ec55989_3441

(qseb)
acaattacggatt 2 b3025 (qseb)

O103:H2 str. 12009
eco103_3703

(qseb)
eco103_3703

(qseb)
acaattacggatt 2 b3025 (qseb)

S88
ecs88_3411

(qseb)
ecs88_3411

(qseb)
acaattacggatt 1 b3025 (qseb)

O157:H7 str.
EC4115

ech74115_4334
(qseb)

ech74115_4334
(qseb)

acaattacggatt 2 b3025 (qseb)

O157:H7 str. Sakai ecs3907 () ecs3907 () acaattacggatt 2 b3025 (qseb)

536 ecp_3112 () ecp_3112 () acaattacggatt 2 b3025 (qseb)

O127:H6 str.
E2348/69

e2348c_3315
(qseb)

e2348c_3315
(qseb)

acaattacggatt 2 b3025 (qseb)

O157:H7 str.
EDL933

z4377 (qseb) z4377 (qseb) acaattacggatt 2 b3025 (qseb)
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Pathogen TG TF BS #TG Hom. TF

UTI89
uti89_c3450

(ygix)
uti89_c3450

(ygix)
acaattacggatt 2 b3025 (qseb)

Target gene of Interest: b1892 (flhd)

O55:H7 str.
CB9615

g2583_2345
(flhd)

g2583_4063
(crp)

tgtgtgatctgcatcacacatt 368 b3357 (crp)

g2583_2759
(rcsb)

taggaaaaatctta 42 b2217 (rcsb)

g2583_4102
(ompr)

ttttgtaaaataattgtaat 37 b3405 (ompr)

g2583_0844
(fur)

agattacgattaataaaaa 62 b0683 (fur)

g2583_2402
(rcsa)

taggaaaaatctta 42 b1951 (rcsa)

g2583_2826
(lrha)

ttcacatttctgggg 15 b2289 (lrha)

g2583_2159
(ihfa)

attcattaactca 100 b1712 (ihfa)

g2583_4247
(gade)

aatcctttttagaa 46 b3512 (gade)

O111:H- str. 11128
eco111_2478

(flhd)
eco111_2533

(rcsa)
taggaaaaatctta 9 b1951 (rcsa)

eco111_0702
(fur)

agattacgattaataaaaa 71 b0683 (fur)

eco111_2954
(rcsb)

taggaaaaatctta 9 b2217 (rcsb)

eco111_4326
(gade)

aatcctttttagaa 8 b3512 (gade)

eco111_4167
(crp)

tgtgtgatctgcatcacacatt 306 b3357 (crp)

eco111_3037
(lrha)

ttcacatttctgggt 6 b2289 (lrha)

eco111_4214
(ompr)

aaatcttagataagtgtaaa 19 b3405 (ompr)

eco111_2221
(ihfa)

attcattaactca 143 b1712 (ihfa)

O26:H11 str. 11368
eco26_2744

(flhd)
eco26_2484

(ihfa)
attcattaactca 147 b1712 (ihfa)

eco26_4493
(ompr)

aaatcttagataagtgtaaa 20 b3405 (ompr)

eco26_0747 (fur) agattacgattaataaaaa 79 b0683 (fur)
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eco26_2838

(rcsa)
taggaaaaatctta 23 b1951 (rcsa)

eco26_3144
(rcsb)

taggaaaaatctta 23 b2217 (rcsb)

eco26_3277
(lrha)

ttcacatttctgggt 6 b2289 (lrha)

eco26_4446
(crp)

tgtgtgatctgcatcacacatt 301 b3357 (crp)

eco26_4602
(gade)

aatcctttttagaa 22 b3512 (gade)

UMN026
ecumn_2189

(flhd)
ecumn_0768

(fur)
agattacgattaataaaaa 77 b0683 (fur)

ecumn_3820
(crp)

tgtgtgatctgcatcacacatt 329 b3357 (crp)

ecumn_2003
(ihfa)

attcattaactca 140 b1712 (ihfa)

ecumn_2243
(rcsa)

taggaaaaatctta 24 b1951 (rcsa)

ecumn_4012
(gade)

aatcctttttagaa 22 b3512 (gade)

ecumn_2554
(rcsb)

taggaaaaatctta 24 b2217 (rcsb)

ecumn_3864
(ompr)

ttttgtaaaataattgtaac 23 b3405 (ompr)

ecumn_2628
(lrha)

ttcacatttctgggg 6 b2289 (lrha)

IAI39
eciai39_1158

(flhd)
eciai39_4014

(gade)
aatcctttttagaa 20 b3512 (gade)

eciai39_3841
(crp)

tatgtgatctgcatcacacatt 296 b3357 (crp)

eciai39_1105
(rcsa)

taggaaaaatctta 22 b1951 (rcsa)

eciai39_0640
(fur)

agattacgattaataaaaa 71 b0683 (fur)

eciai39_1341
(ihfa)

attcacaaacaaa 138 b1712 (ihfa)

eciai39_3885
(ompr)

aaatcttagataagtgtaaa 15 b3405 (ompr)

eciai39_2436
(lrha)

ttcacatttctgggg 1 b2289 (lrha)

eciai39_2355
(rcsb)

taggaaaaatctta 22 b2217 (rcsb)
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Pathogen TG TF BS #TG Hom. TF

E24377A
ece24377a_2125

(flhd)
ece24377a_1931

(ihfa)
attcattaactca 141 b1712 (ihfa)

ece24377a_2582
(lrha)

ttcacatttctgggt 12 b2289 (lrha)

ece24377a_3998
(gade)

aatcctttttagaa 17 b3512 (gade)

ece24377a_2184
(rcsa)

taggaaaaatctta 22 b1951 (rcsa)

ece24377a_2517
(rcsb)

taggaaaaatctta 22 b2217 (rcsb)

ece24377a_3827
(crp)

tgtgtgatctgcatcacacatt 297 b3357 (crp)

ece24377a_3879
(ompr)

aaatcttagataagtgtaaa 29 b3405 (ompr)

ece24377a_0711
(fur)

agattacgattaataaaaa 85 b0683 (fur)

O157:H7 str.
TW14359

ecsp_2466 (flhd) ecsp_2555 (rcsa) taggaaaaatctta 30 b1951 (rcsa)

ecsp_4355
(ompr)

aaatcttagataagtgtaaa 28 b3405 (ompr)

ecsp_3097 (rcsb) taggaaaaatctta 30 b2217 (rcsb)
ecsp_4501
(gade)

aatcctttttagaa 28 b3512 (gade)

ecsp_4315 (crp) tgtgtgatctgcatcacacatt 313 b3357 (crp)
ecsp_2279 (ihfa) attcattaactca 141 b1712 (ihfa)
ecsp_3163 (lrha) ttcacatttctgggg 12 b2289 (lrha)
ecsp_0731 (fur) agattacgattaataaaaa 78 b0683 (fur)

55989
ec55989_2071

(flhd)
ec55989_3763

(crp)
tgtgtgatctgtatcacacatt 297 b3357 (crp)

ec55989_1880
(ihfa)

attcattaactca 133 b1712 (ihfa)

ec55989_2472
(rcsb)

taggaaaaatctta 16 b2217 (rcsb)

ec55989_0669
(fur)

agattacgattaataaaaa 71 b0683 (fur)

ec55989_3955
(gade)

aatcctttttagaa 14 b3512 (gade)

ec55989_2171
(rcsa)

taggaaaaatctta 16 b1951 (rcsa)

ec55989_2533
(lrha)

ttcacatttctgggg 6 b2289 (lrha)
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Pathogen TG TF BS #TG Hom. TF
ec55989_3813

(ompr)
aaatcttagataagtgtaaa 19 b3405 (ompr)

O103:H2 str. 12009
eco103_2154

(flhd)
eco103_2753

(lrha)
ttcacatttctgggt 6 b2289 (lrha)

eco103_4076
(crp)

tgtgtgatctgcatcacacatt 296 b3357 (crp)

eco103_4123
(ompr)

aaatcttagataagtgtaaa 21 b3405 (ompr)

eco103_0679
(fur)

agattacgattaataaaaa 70 b0683 (fur)

eco103_2693
(rcsb)

taggaaaaatctta 13 b2217 (rcsb)

eco103_1903
(ihfa)

attcattaactca 152 b1712 (ihfa)

eco103_2202
(rcsa)

taggaaaaatctta 13 b1951 (rcsa)

eco103_4240
(gade)

aatcctttttagaa 11 b3512 (gade)

S88
ecs88_1949

(flhd)
ecs88_1763

(ihfa)
attcacaaacaaa 139 b1712 (ihfa)

ecs88_2436
(lrha)

ttcacatttctgggg 6 b2289 (lrha)

ecs88_2004
(rcsa)

taggaaaaatctta 24 b1951 (rcsa)

ecs88_3924
(gade)

aatcctttttagaa 22 b3512 (gade)

ecs88_3792
(ompr)

ttttgtaaaataattgtaac 24 b3405 (ompr)

ecs88_2366
(rcsb)

taggaaaaatctta 24 b2217 (rcsb)

ecs88_0719 (fur) agattacgattaataaaaa 78 b0683 (fur)
ecs88_3748 (crp) tgtgtgatctgcatcacacatt 279 b3357 (crp)

O157:H7 str.
EC4115

ech74115_2631
(flhd)

ech74115_4667
(crp)

tgtgtgatctgcatcacacatt 300 b3357 (crp)

ech74115_2728
(rcsa)

taggaaaaatctta 27 b1951 (rcsa)

ech74115_3428
(lrha)

ttcacatttctgggg 6 b2289 (lrha)

ech74115_4711
(ompr)

aaatcttagataagtgtaaa 20 b3405 (ompr)

ech74115_4871
(gade)

aatcctttttagaa 25 b3512 (gade)
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Pathogen TG TF BS #TG Hom. TF
ech74115_2430

(ihfa)
attcattaactca 126 b1712 (ihfa)

ech74115_0778
(fur)

agattacgattaataaaaa 67 b0683 (fur)

ech74115_3357
(rcsb)

taggaaaaatctta 27 b2217 (rcsb)

O157:H7 str. Sakai ecs2602 () ecs2690 () taggaaaaatctta 30 b1951 (rcsa)
ecs4247 (ompr) aaatcttagataagtgtaaa 26 b3405 (ompr)

ecs3173 () ttcacatttctgggg 12 b2289 (lrha)
ecs0714 (fur) agattacgattaataaaaa 75 b0683 (fur)
ecs4208 () tgtgtgatctgcatcacacatt 301 b3357 (crp)
ecs3106 () taggaaaaatctta 30 b2217 (rcsb)
ecs4392 () aatcctttttagaa 28 b3512 (gade)

ecs2419 (ihfa) attcattaactca 141 b1712 (ihfa)

536 ecp_1836 () ecp_3448 () tatgtgatctgcatcacacatt 267 b3357 (crp)
ecp_0703 (fur) agattacgattaataaaaa 72 b0683 (fur)
ecp_1885 () taggaaaaatctta 25 b1951 (rcsa)
ecp_2260 () taggaaaaatctta 25 b2217 (rcsb)

ecp_3491 (ompr) aaatcttagataagtgtaaa 24 b3405 (ompr)
ecp_1660 (ihfa) attcacaaacaaa 124 b1712 (ihfa)
ecp_2328 () ttcacatttctgggg 7 b2289 (lrha)
ecp_3610 () aatcctttttagaa 23 b3512 (gade)

O127:H6 str.
E2348/69

e2348c_2015
(flhd)

e2348c_3650
(ompr)

aaatcttagataagtgtaaa 21 b3405 (ompr)

e2348c_0574
(fur)

agattacgattaataaaaa 71 b0683 (fur)

e2348c_2065
(rcsa)

taggaaaaatctta 13 b1951 (rcsa)

e2348c_3754
(gade)

aatcctttttagaa 11 b3512 (gade)

e2348c_2362
(rcsb)

taggaaaaatctta 13 b2217 (rcsb)

e2348c_3607
(crp)

tgtgtgatctgcatcacacatt 257 b3357 (crp)

e2348c_1841
(ihfa)

attcacaaacaaa 126 b1712 (ihfa)

e2348c_2429
(lrha)

ttcacatttctgggg 6 b2289 (lrha)

O157:H7 str.
EDL933

z2946 (flhd) z3549 (lrha) ttcacatttctgggg 12 b2289 (lrha)

z2741 (ihfa) attcattaactca 139 b1712 (ihfa)
z0831 (fur) agattacgattaataaaaa 86 b0683 (fur)
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Pathogen TG TF BS #TG Hom. TF
z3041 (rcsa) taggaaaaatctta 30 b1951 (rcsa)
z4718 (crp) tgtgtgatctgcatcacacatt 330 b3357 (crp)
z4925 (yhie) aatcctttttagaa 28 b3512 (gade)
z4760 (ompr) ttttgtaaaataattgtaat 27 b3405 (ompr)
z3476 (rcsb) taggaaaaatctta 30 b2217 (rcsb)

UTI89
uti89_c2095

(flhd)
uti89_c2570

(lrha)
ttcacatttctgggg 7 b2289 (lrha)

uti89_c0687
(fur)

agattacgattaataaaaa 66 b0683 (fur)

uti89_c4043
(yhie)

aatcctttttagaa 18 b3512 (gade)

uti89_c1905
(ihfa)

attcacaaacaaa 134 b1712 (ihfa)

uti89_c2499
(rcsb)

taggaaaaatctta 20 b2217 (rcsb)

uti89_c3860
(crp)

tgtgtgatctgcatcacacatt 278 b3357 (crp)

uti89_c2151
(rcsa)

taggaaaaatctta 20 b1951 (rcsa)

uti89_c3905
(ompr)

ttttgtaaaataattgtaac 23 b3405 (ompr)

Target gene of Interest: b1880 (flhb)

O55:H7 str.
CB9615

g2583_2332
(flhb)

g2583_4063
(crp)

368 b3357 (crp)

g2583_2759
(rcsb)

42 b2217 (rcsb)

g2583_4102
(ompr)

37 b3405 (ompr)

g2583_0844
(fur)

62 b0683 (fur)

g2583_2402
(rcsa)

42 b1951 (rcsa)

g2583_2826
(lrha)

15 b2289 (lrha)

g2583_2159
(ihfa)

100 b1712 (ihfa)

g2583_4247
(gade)

46 b3512 (gade)

O111:H- str. 11128 eco111_0253 ()
eco111_2466

(flhb)
eco111_2478

(flhd)
ggaatgagtttggtaa 42 b1892 (flhd)
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Pathogen TG TF BS #TG Hom. TF
eco111_2477

(flhc)
ggaatgagtttggtaa 42 b1891 (flhc)

O26:H11 str. 11368
eco26_2732

(flhb)
eco26_2744

(flhd)
ggaatgagtttggtaa 42 b1892 (flhd)

eco26_2743
(flhc)

ggaatgagtttggtaa 42 b1891 (flhc)

eco26_0247 ()

UMN026
ecumn_2177

(flhb)
ecumn_2189

(flhd)
ggaatgagtttggtaa 41 b1892 (flhd)

ecumn_2188
(flhc)

ggaatgagtttggtaa 41 b1891 (flhc)

ecumn_0251 ()

IAI39
eciai39_1170

(flhb)
eciai39_1158

(flhd)
ggaatgagtttggtaa 14 b1892 (flhd)

E24377A
ece24377a_2112

(flhb)
ece24377a_2124

(flhc)
ggaatgagtttggtaa 37 b1891 (flhc)

ece24377a_2125
(flhd)

ggaatgagtttggtaa 37 b1892 (flhd)

O157:H7 str.
TW14359

ecsp_2454 (flhb) ecsp_2466 (flhd) ggaatgagtttggtaa 41 b1892 (flhd)

ecsp_2465 (flhc) ggaatgagtttggtaa 41 b1891 (flhc)

55989
ec55989_2059

(flhb)
ec55989_2071

(flhd)
ggaatgagtttggtaa 41 b1892 (flhd)

ec55989_2070
(flhc)

ggaatgagtttggtaa 41 b1891 (flhc)

O103:H2 str. 12009
eco103_2142

(flhb)
eco103_2154

(flhd)
ggaatgagtttggtaa 42 b1892 (flhd)

eco103_2153
(flhc)

ggaatgagtttggtaa 42 b1891 (flhc)

S88
ecs88_1938

(flhb)
ecs88_1949

(flhd)
ggaatgagtttggtaa 41 b1892 (flhd)

ecs88_1948
(flhc)

ggaatgagtttggtaa 41 b1891 (flhc)

O157:H7 str.
EC4115

ech74115_2617
(flhb)

ech74115_2631
(flhd)

ggaatgagtttggtaa 31 b1892 (flhd)

ech74115_2630
(flhc)

ggaatgagtttggtaa 31 b1891 (flhc)

O157:H7 str. Sakai ecs2590 (flhb)
ech74115_2631

(flhd)
ggaatgagtttggtaa 31 b1892 (flhd)

ech74115_2630
(flhc)

ggaatgagtttggtaa 31 b1891 (flhc)
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Pathogen TG TF BS #TG Hom. TF

536 ecp_1825 (flhb)
ech74115_2631

(flhd)
ggaatgagtttggtaa 31 b1892 (flhd)

ech74115_2630
(flhc)

ggaatgagtttggtaa 31 b1891 (flhc)

O127:H6 str.
E2348/69

e2348c_2004
(flhb)

ech74115_2631
(flhd)

ggaatgagtttggtaa 31 b1892 (flhd)

ech74115_2630
(flhc)

ggaatgagtttggtaa 31 b1891 (flhc)

O157:H7 str.
EDL933

z2934 (flhb)
ech74115_2631

(flhd)
ggaatgagtttggtaa 31 b1892 (flhd)

ech74115_2630
(flhc)

ggaatgagtttggtaa 31 b1891 (flhc)

UTI89
uti89_c2083

(flhb)
ech74115_2631

(flhd)
ggaatgagtttggtaa 31 b1892 (flhd)

ech74115_2630
(flhc)

ggaatgagtttggtaa 31 b1891 (flhc)

Target gene of Interest: b1922 (flia)

O55:H7 str.
CB9615

g2583_2373 ()

O111:H- str. 11128
eco111_2502

(flia)
eco111_2478

(flhd)
taacccccaaataacc 42 b1892 (flhd)

eco111_5036
(nsrr)

aagatgcagca 72 b4178 (nsrr)

eco111_2477
(flhc)

taacccccaaataacc 42 b1891 (flhc)

O26:H11 str. 11368
eco26_2814

(flia)
eco26_2744

(flhd)
taacccccaaataacc 42 b1892 (flhd)

eco26_2743
(flhc)

taacccccaaataacc 42 b1891 (flhc)

eco26_5344
(nsrr)

aagatgcagca 65 b4178 (nsrr)

UMN026
ecumn_2214

(flia)
ecumn_4711

(nsrr)
ttaacgttaaa 74 b4178 (nsrr)

ecumn_2189
(flhd)

taacccccaaataacc 41 b1892 (flhd)

ecumn_2188
(flhc)

taacccccaaataacc 41 b1891 (flhc)

IAI39
eciai39_1133

(flia)
eciai39_1158

(flhd)
taacccccaaataacc 14 b1892 (flhd)

eciai39_4643
(nsrr)

attgagtatat 59 b4178 (nsrr)
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Pathogen TG TF BS #TG Hom. TF

E24377A
ece24377a_2156

(flia)
ece24377a_2124

(flhc)
taacccccaaataacc 37 b1891 (flhc)

ece24377a_4737
(nsrr)

ttaacgttaaa 62 b4178 (nsrr)

ece24377a_2125
(flhd)

taacccccaaataacc 37 b1892 (flhd)

O157:H7 str.
TW14359

ecsp_2526 (flia) ecsp_2466 (flhd) taacccccaaataacc 41 b1892 (flhd)

ecsp_2465 (flhc) taacccccaaataacc 41 b1891 (flhc)
ecsp_5278 (nsrr) ttaacgttaaa 65 b4178 (nsrr)

55989
ec55989_2143

(flia)
ec55989_2071

(flhd)
taacccccaaataacc 41 b1892 (flhd)

ec55989_4733
(nsrr)

attgagtatat 65 b4178 (nsrr)

ec55989_2070
(flhc)

taacccccaaataacc 41 b1891 (flhc)

O103:H2 str. 12009
eco103_2178

(flia)
eco103_2154

(flhd)
taacccccaaataacc 42 b1892 (flhd)

eco103_2153
(flhc)

taacccccaaataacc 42 b1891 (flhc)

eco103_4971
(nsrr)

attgagtatat 67 b4178 (nsrr)

S88 ecs88_1976 (flia)
ecs88_4764

(nsrr)
ttaacgttaaa 75 b4178 (nsrr)

ecs88_1949
(flhd)

aatcgcccgattaaaa 41 b1892 (flhd)

ecs88_1948
(flhc)

aatcgcccgattaaaa 41 b1891 (flhc)

O157:H7 str.
EC4115

ech74115_2696
(flia)

ech74115_5694
(nsrr)

ttaacgttaaa 60 b4178 (nsrr)

ech74115_2631
(flhd)

taacccccaaataacc 31 b1892 (flhd)

ech74115_2630
(flhc)

taacccccaaataacc 31 b1891 (flhc)

O157:H7 str. Sakai ecs2661 (flia) ecs5154 () ttaacgttaaa 64 b4178 (nsrr)
ecs2602 () taacccccaaataacc 38 b1892 (flhd)
ecs2601 () taacccccaaataacc 38 b1891 (flhc)

536 ecp_1855 (flia) ecp_4423 () ttaacgttaaa 64 b4178 (nsrr)
ecp_1836 () taacccccaaataacc 36 b1892 (flhd)
ecp_1835 () taacccccaaataacc 36 b1891 (flhc)

O127:H6 str.
E2348/69

e2348c_2040
(flia)

e2348c_4501
(nsrr)

ttaacgttaaa 63 b4178 (nsrr)
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Pathogen TG TF BS #TG Hom. TF
e2348c_2015

(flhd)
aatcgcccgattaaaa 41 b1892 (flhd)

e2348c_2014
(flhc)

aatcgcccgattaaaa 41 b1891 (flhc)

O157:H7 str.
EDL933

z3012 (flia) z5785 (yjeb) ttaacgttaaa 64 b4178 (nsrr)

z2946 (flhd) taacccccaaataacc 42 b1892 (flhd)
z2945 (flhc) taacccccaaataacc 42 b1891 (flhc)

UTI89
uti89_c2123

(flia)
uti89_c2095

(flhd)
aatcgcccgattaaaa 41 b1892 (flhd)

uti89_c2094
(flhc)

aatcgcccgattaaaa 41 b1891 (flhc)

uti89_c4778
(yjeb)

ttaacgttaaa 67 b4178 (nsrr)

Target gene of Interest: b1890 (mota)

O55:H7 str.
CB9615

g2583_2343
(mota)

g2583_4063
(crp)

368 b3357 (crp)

g2583_2759
(rcsb)

42 b2217 (rcsb)

g2583_4102
(ompr)

37 b3405 (ompr)

g2583_0844
(fur)

62 b0683 (fur)

g2583_2402
(rcsa)

42 b1951 (rcsa)

g2583_2826
(lrha)

15 b2289 (lrha)

g2583_2159
(ihfa)

100 b1712 (ihfa)

g2583_4247
(gade)

46 b3512 (gade)

O111:H- str. 11128
eco111_2476

(mota)
eco111_2533

(rcsa)
9 b1951 (rcsa)

eco111_0702
(fur)

71 b0683 (fur)

eco111_2954
(rcsb)

9 b2217 (rcsb)

eco111_4326
(gade)

8 b3512 (gade)

eco111_4167
(crp)

306 b3357 (crp)
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Pathogen TG TF BS #TG Hom. TF
eco111_3037

(lrha)
6 b2289 (lrha)

eco111_4214
(ompr)

19 b3405 (ompr)

eco111_2221
(ihfa)

143 b1712 (ihfa)

eco111_0293 ()

O26:H11 str. 11368
eco26_2742

(mota)
eco26_2484

(ihfa)
147 b1712 (ihfa)

eco26_4493
(ompr)

20 b3405 (ompr)

eco26_0747 (fur) 79 b0683 (fur)
eco26_2838

(rcsa)
23 b1951 (rcsa)

eco26_3144
(rcsb)

23 b2217 (rcsb)

eco26_3277
(lrha)

6 b2289 (lrha)

eco26_4446
(crp)

301 b3357 (crp)

eco26_4602
(gade)

22 b3512 (gade)

eco26_0287 ()

UMN026
ecumn_2187

(mota)
ecumn_0768

(fur)
77 b0683 (fur)

ecumn_3820
(crp)

329 b3357 (crp)

ecumn_2003
(ihfa)

140 b1712 (ihfa)

ecumn_2243
(rcsa)

24 b1951 (rcsa)

ecumn_4012
(gade)

22 b3512 (gade)

ecumn_2554
(rcsb)

24 b2217 (rcsb)

ecumn_3864
(ompr)

23 b3405 (ompr)

ecumn_2628
(lrha)

6 b2289 (lrha)

ecumn_0292 ()

IAI39
eciai39_1161

(mota)
eciai39_3083

(cpxr)
agtaaaaagacgtaa 55 b3912 (cpxr)
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Pathogen TG TF BS #TG Hom. TF

E24377A
ece24377a_2123

(mota)
ece24377a_1931

(ihfa)
141 b1712 (ihfa)

ece24377a_2582
(lrha)

12 b2289 (lrha)

ece24377a_3998
(gade)

17 b3512 (gade)

ece24377a_2184
(rcsa)

22 b1951 (rcsa)

ece24377a_2517
(rcsb)

22 b2217 (rcsb)

ece24377a_3827
(crp)

297 b3357 (crp)

ece24377a_3879
(ompr)

29 b3405 (ompr)

ece24377a_0711
(fur)

85 b0683 (fur)

O157:H7 str.
TW14359

ecsp_2464
(mota)

ecsp_2555 (rcsa) 30 b1951 (rcsa)

ecsp_4355
(ompr)

28 b3405 (ompr)

ecsp_3097 (rcsb) 30 b2217 (rcsb)
ecsp_4501
(gade)

28 b3512 (gade)

ecsp_4315 (crp) 313 b3357 (crp)
ecsp_2279 (ihfa) 141 b1712 (ihfa)
ecsp_3163 (lrha) 12 b2289 (lrha)
ecsp_0731 (fur) 78 b0683 (fur)

55989
ec55989_2069

(mota)
ec55989_3763

(crp)
297 b3357 (crp)

ec55989_1880
(ihfa)

133 b1712 (ihfa)

ec55989_2472
(rcsb)

16 b2217 (rcsb)

ec55989_0669
(fur)

71 b0683 (fur)

ec55989_3955
(gade)

14 b3512 (gade)

ec55989_2171
(rcsa)

16 b1951 (rcsa)

ec55989_2533
(lrha)

6 b2289 (lrha)
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Pathogen TG TF BS #TG Hom. TF
ec55989_3813

(ompr)
19 b3405 (ompr)

O103:H2 str. 12009
eco103_2152

(mota)
eco103_2753

(lrha)
6 b2289 (lrha)

eco103_4076
(crp)

296 b3357 (crp)

eco103_4123
(ompr)

21 b3405 (ompr)

eco103_0679
(fur)

70 b0683 (fur)

eco103_2693
(rcsb)

13 b2217 (rcsb)

eco103_1903
(ihfa)

152 b1712 (ihfa)

eco103_2202
(rcsa)

13 b1951 (rcsa)

eco103_4240
(gade)

11 b3512 (gade)

S88
ecs88_1947

(mota)
ecs88_1763

(ihfa)
139 b1712 (ihfa)

ecs88_2436
(lrha)

6 b2289 (lrha)

ecs88_2004
(rcsa)

24 b1951 (rcsa)

ecs88_3924
(gade)

22 b3512 (gade)

ecs88_3792
(ompr)

24 b3405 (ompr)

ecs88_2366
(rcsb)

24 b2217 (rcsb)

ecs88_0719 (fur) 78 b0683 (fur)
ecs88_3748 (crp) 279 b3357 (crp)

O157:H7 str.
EC4115

ech74115_2629
(mota)

ech74115_4667
(crp)

300 b3357 (crp)

ech74115_2728
(rcsa)

27 b1951 (rcsa)

ech74115_3428
(lrha)

6 b2289 (lrha)

ech74115_4711
(ompr)

20 b3405 (ompr)

ech74115_4871
(gade)

25 b3512 (gade)
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Pathogen TG TF BS #TG Hom. TF
ech74115_2430

(ihfa)
126 b1712 (ihfa)

ech74115_0778
(fur)

67 b0683 (fur)

ech74115_3357
(rcsb)

27 b2217 (rcsb)

O157:H7 str. Sakai ecs2600 () ecs2690 () 30 b1951 (rcsa)
ecs4247 (ompr) 26 b3405 (ompr)

ecs3173 () 12 b2289 (lrha)
ecs0714 (fur) 75 b0683 (fur)
ecs4208 () 301 b3357 (crp)
ecs3106 () 30 b2217 (rcsb)
ecs4392 () 28 b3512 (gade)

ecs2419 (ihfa) 141 b1712 (ihfa)

536 ecp_1834 () ecp_3448 () 267 b3357 (crp)
ecp_0703 (fur) 72 b0683 (fur)
ecp_1885 () 25 b1951 (rcsa)
ecp_2260 () 25 b2217 (rcsb)

ecp_3491 (ompr) 24 b3405 (ompr)
ecp_1660 (ihfa) 124 b1712 (ihfa)
ecp_2328 () 7 b2289 (lrha)
ecp_3610 () 23 b3512 (gade)

O127:H6 str.
E2348/69

e2348c_2013
(mota)

e2348c_3650
(ompr)

21 b3405 (ompr)

e2348c_0574
(fur)

71 b0683 (fur)

e2348c_2065
(rcsa)

13 b1951 (rcsa)

e2348c_3754
(gade)

11 b3512 (gade)

e2348c_2362
(rcsb)

13 b2217 (rcsb)

e2348c_3607
(crp)

257 b3357 (crp)

e2348c_1841
(ihfa)

126 b1712 (ihfa)

e2348c_2429
(lrha)

6 b2289 (lrha)

O157:H7 str.
EDL933

z2944 (mota) z3549 (lrha) 12 b2289 (lrha)

z2741 (ihfa) 139 b1712 (ihfa)
z0831 (fur) 86 b0683 (fur)
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Pathogen TG TF BS #TG Hom. TF
z3041 (rcsa) 30 b1951 (rcsa)
z4718 (crp) 330 b3357 (crp)
z4925 (yhie) 28 b3512 (gade)
z4760 (ompr) 27 b3405 (ompr)
z3476 (rcsb) 30 b2217 (rcsb)

UTI89
uti89_c2093

(mota)
uti89_c2570

(lrha)
7 b2289 (lrha)

uti89_c0687
(fur)

66 b0683 (fur)

uti89_c4043
(yhie)

18 b3512 (gade)

uti89_c1905
(ihfa)

134 b1712 (ihfa)

uti89_c2499
(rcsb)

20 b2217 (rcsb)

uti89_c3860
(crp)

278 b3357 (crp)

uti89_c2151
(rcsa)

20 b1951 (rcsa)

uti89_c3905
(ompr)

23 b3405 (ompr)

Target gene of Interest: b0957 (ompa)

O55:H7 str.
CB9615

g2583_1192 ()

O111:H- str. 11128
eco111_1025

(ompa)
eco111_4167

(crp)
atacggactgcctcaagtgtga 306 b3357 (crp)

O26:H11 str. 11368
eco26_1084
(ompa)

eco26_4446
(crp)

atacggactgcctcaagtgtga 301 b3357 (crp)

UMN026
ecumn_1146

(ompa)
ecumn_3820

(crp)
atacggactgcctcaagtgtga 329 b3357 (crp)

IAI39
eciai39_2190

(ompa)
eciai39_3841

(crp)
atacggactgcctcaagtgtga 296 b3357 (crp)

E24377A
ece24377a_1071

(ompa)
ece24377a_3827

(crp)
atacggactgcctcaagtgtga 297 b3357 (crp)

O157:H7 str.
TW14359

ecsp_1063
(ompa)

ecsp_4315 (crp) atacggactgcctcaagtgtga 313 b3357 (crp)

55989
ec55989_1006

(ompa)
ec55989_3763

(crp)
atacggactgcctcaagtgtga 297 b3357 (crp)

O103:H2 str. 12009
eco103_1003

(ompa)
eco103_4076

(crp)
atacggactgcctcaagtgtga 296 b3357 (crp)
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Pathogen TG TF BS #TG Hom. TF

S88
ecs88_0978
(ompa)

ecs88_3748 (crp) atacggactgcctcaagtgtga 279 b3357 (crp)

O157:H7 str.
EC4115

ech74115_1121
(ompa)

ech74115_4667
(crp)

atacggactgcctcaagtgtga 300 b3357 (crp)

O157:H7 str. Sakai ecs1041 () ecs4208 () atacggactgcctcaagtgtga 301 b3357 (crp)

536 ecp_0962 () ecp_3448 () atacggactgcctcaagtgtga 267 b3357 (crp)

O127:H6 str.
E2348/69

e2348c_0943
(ompa)

e2348c_3607
(crp)

atacggactgcctcaagtgtga 257 b3357 (crp)

O157:H7 str.
EDL933

z1307 (ompa) z4718 (crp) atacggactgcctcaagtgtga 330 b3357 (crp)

UTI89
uti89_c1022

(ompa)
uti89_c3860

(crp)
atacggactgcctcaagtgtga 278 b3357 (crp)

Target gene of Interest: b3405 (ompr)

O55:H7 str.
CB9615

g2583_4102
(ompr)

g2583_2159
(ihfa)

attcgagaacaaa 100 b1712 (ihfa)

O111:H- str. 11128
eco111_4214

(ompr)
eco111_2221

(ihfa)
attcgagaacaaa 143 b1712 (ihfa)

O26:H11 str. 11368
eco26_4493

(ompr)
eco26_2484

(ihfa)
attcgagaacaaa 147 b1712 (ihfa)

UMN026
ecumn_3864

(ompr)
ecumn_2003

(ihfa)
attcgagaacaaa 140 b1712 (ihfa)

IAI39
eciai39_3885

(ompr)
eciai39_1341

(ihfa)
aatcaataatgtt 138 b1712 (ihfa)

E24377A
ece24377a_3879

(ompr)
ece24377a_1931

(ihfa)
attcgagaacaaa 141 b1712 (ihfa)

O157:H7 str.
TW14359

ecsp_4355
(ompr)

ecsp_2279 (ihfa) attcgagaacaaa 141 b1712 (ihfa)

55989
ec55989_3813

(ompr)
ec55989_1880

(ihfa)
attcgagaacaaa 133 b1712 (ihfa)

O103:H2 str. 12009
eco103_4123

(ompr)
eco103_1903

(ihfa)
attcgagaacaaa 152 b1712 (ihfa)

S88
ecs88_3792

(ompr)
ecs88_1763

(ihfa)
attcgagaacaaa 139 b1712 (ihfa)

O157:H7 str.
EC4115

ech74115_4711
(ompr)

ech74115_2430
(ihfa)

attcgagaacaaa 126 b1712 (ihfa)

O157:H7 str. Sakai ecs4247 (ompr) ecs2419 (ihfa) attcgagaacaaa 141 b1712 (ihfa)

536 ecp_3491 (ompr) ecp_1660 (ihfa) attcgagaacaaa 124 b1712 (ihfa)

O127:H6 str.
E2348/69

e2348c_3650
(ompr)

e2348c_1841
(ihfa)

attcgagaacaaa 126 b1712 (ihfa)
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Pathogen TG TF BS #TG Hom. TF
O157:H7 str.
EDL933

z4760 (ompr) z2741 (ihfa) attcgagaacaaa 139 b1712 (ihfa)

UTI89
uti89_c3905

(ompr)
uti89_c1905

(ihfa)
attcgagaacaaa 134 b1712 (ihfa)

Target gene of Interest: b3507 (dctr)

O55:H7 str.
CB9615

g2583_4233
(dctr)

g2583_4227
(arsr)

6 b3501 (arsr)

O111:H- str. 11128 eco111_4321 ()

O26:H11 str. 11368 eco26_4597 ()

UMN026 ecumn_3998 ()

IAI39 eciai39_4000 ()

E24377A
ece24377a_3993

()

O157:H7 str.
TW14359

ecsp_4487 ()

55989 ec55989_3950 ()

O103:H2 str. 12009 eco103_4235 ()

S88 ecs88_3911 ()

O157:H7 str.
EC4115

ech74115_4855
()

O157:H7 str. Sakai ecs4378 ()

536 ecp_3595 ()

O127:H6 str.
E2348/69

e2348c_3741 ()

O157:H7 str.
EDL933

z4909 ()

UTI89 uti89_c4026 ()

Target gene of Interest: b3512 (gade)

O55:H7 str.
CB9615

g2583_4247
(gade)

g2583_4247
(gade)

46 b3512 (gade)

g2583_1406
(phop)

62 b1130 (phop)

O111:H- str. 11128
eco111_4326

(gade)
eco111_4167

(crp)
ttataagaagtctctagtgttt 306 b3357 (crp)

eco111_4329
(gadw)

atgggcggttaaataagtaa
tccgggttcatttttttgcaac

3 b3515 (gadw)

eco111_4330
(gadx)

gtgtttgaccaataactattg 5 b3516 (gadx)

eco111_4326
(gade)

taggcgtttactat 8 b3512 (gade)
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Pathogen TG TF BS #TG Hom. TF
eco111_1478

(phop)
tatttacaaattgataa 40 b1130 (phop)

O26:H11 str. 11368
eco26_4602

(gade)
eco26_4606

(gadx)
gtgtttgaccaataactattg 4 b3516 (gadx)

eco26_1664
(phop)

tatttacaaattgataa 40 b1130 (phop)

eco26_4605
(gadw)

atgggcggttaaataagtaa
tccgggttcatttttttgcaac

2 b3515 (gadw)

eco26_4602
(gade)

taggcgtttactat 22 b3512 (gade)

eco26_4446
(crp)

ttataagaagtctctagtgttt 301 b3357 (crp)

UMN026
ecumn_4012

(gade)
ecumn_4017

(gadx)
gtgtttgaccaataactattg 6 b3516 (gadx)

ecumn_4016
(gadw)

atgggcggttaaataagtaa
tccgggttcattttttgcaaca

3 b3515 (gadw)

ecumn_1374
(phop)

tatttacaaactgttaa 39 b1130 (phop)

ecumn_3820
(crp)

ttataagaagtctctagtgttt 329 b3357 (crp)

ecumn_4012
(gade)

taggcgtttactat 22 b3512 (gade)

IAI39
eciai39_4014

(gade)
eciai39_4014

(gade)
taggcgtttactat 20 b3512 (gade)

eciai39_2007
(phop)

cgttaactttttgttta 36 b1130 (phop)

eciai39_3841
(crp)

ttataagaagtctctagtgttt 296 b3357 (crp)

eciai39_4019
(gadx)

gtgtttgaccaataactattg 6 b3516 (gadx)

eciai39_4018
(gadw)

tttaccatttacaaactgata
acaaccaggaattttacttag

3 b3515 (gadw)

E24377A
ece24377a_3998

(gade)
ece24377a_1293

(phop)
cgttaactttttgttta 36 b1130 (phop)

ece24377a_4003
(gadx)

gtgtttgaccaataactattg 6 b3516 (gadx)

ece24377a_3998
(gade)

taggcgtttactat 17 b3512 (gade)

ece24377a_4001
(gadw)

atgggcggttaaataagtaa
tccgggttcatttttttgcaac

3 b3515 (gadw)

ece24377a_3827
(crp)

ttataagaagtctctagtgttt 297 b3357 (crp)
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Pathogen TG TF BS #TG Hom. TF
O157:H7 str.
TW14359

ecsp_4501
(gade)

ecsp_4506
(gadx)

gtttactatttacaagctgat 6 b3516 (gadx)

ecsp_4315 (crp) ttataagaagtctctagtgttt 313 b3357 (crp)
ecsp_4504
(gadw)

atgggcggttaaataagtaa
tccgggttcatttttttgcaac

3 b3515 (gadw)

ecsp_4501
(gade)

taggcgtttactat 28 b3512 (gade)

ecsp_1510
(phop)

cgttaactttttgttta 40 b1130 (phop)

55989
ec55989_3955

(gade)
ec55989_3961

(gadx)
gtgtttgaccaataactattg 6 b3516 (gadx)

ec55989_3960
(gadw)

atgggcggttaaataagtaa
tccgggttcatttttttgcaac

3 b3515 (gadw)

ec55989_3955
(gade)

taggcgtttactat 14 b3512 (gade)

ec55989_3763
(crp)

ttataagaagtctctagtgttt 297 b3357 (crp)

ec55989_1243
(phop)

cgttaactttttgttta 36 b1130 (phop)

O103:H2 str. 12009
eco103_4240

(gade)
eco103_1254

(phop)
tatttacaaattgataa 40 b1130 (phop)

eco103_4244
(gadx)

gtgtttgaccaataactattg 6 b3516 (gadx)

eco103_4243
(gadw)

atgggcggttaaataagtaa
tccgggttcatttttttgcaac

3 b3515 (gadw)

eco103_4076
(crp)

ttataagaagtctctagtgttt 296 b3357 (crp)

eco103_4240
(gade)

taggcgtttactat 11 b3512 (gade)

S88
ecs88_3924

(gade)
ecs88_3924

(gade)
taggcgtttactat 22 b3512 (gade)

ecs88_3929
(gadx)

gtgtttgaccaataactattg 6 b3516 (gadx)

ecs88_3928
(gadw)

atgggcggttaaataagtaa
tccgggttcatttttttgcaac

3 b3515 (gadw)

ecs88_1145
(phop)

agttaaccttttgttta 41 b1130 (phop)

ecs88_3748 (crp) ttataagaagtctctagtgttt 279 b3357 (crp)

O157:H7 str.
EC4115

ech74115_4871
(gade)

ech74115_4871
(gade)

taggcgtttactat 25 b3512 (gade)

ech74115_4667
(crp)

ttataagaagtctctagtgttt 300 b3357 (crp)
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Pathogen TG TF BS #TG Hom. TF
ech74115_1591

(phop)
cgttaactttttgttta 29 b1130 (phop)

ech74115_4877
(gadx)

gtttactatttacaagctgat 6 b3516 (gadx)

ech74115_4875
(gadw)

atgggcggttaaataagtaa
tccgggttcatttttttgcaac

3 b3515 (gadw)

O157:H7 str. Sakai ecs4392 () ecs1602 () cgttaactttttgttta 42 b1130 (phop)
ecs4208 () ttataagaagtctctagtgttt 301 b3357 (crp)
ecs4396 () gtttactatttacaagctgat 6 b3516 (gadx)

ecs4395 ()
atgggcggttaaataagtaa
tccgggttcatttttttgcaac

3 b3515 (gadw)

ecs4392 () taggcgtttactat 28 b3512 (gade)

536 ecp_3610 () ecp_3615 () gtgtttgaccaataactattg 6 b3516 (gadx)
ecp_3448 () ttataagaagtctctagtgttt 267 b3357 (crp)

ecp_3614 ()
atgggcggttaaataagtaa
tccgggttcatttttttgcaac

3 b3515 (gadw)

ecp_3610 () taggcgtttactat 23 b3512 (gade)
ecp_1125 () agttaaccttttgttta 36 b1130 (phop)

O127:H6 str.
E2348/69

e2348c_3754
(gade)

e2348c_3758
(gadx)

gtgtttgaccaataactattg 6 b3516 (gadx)

e2348c_3757
(gadw)

atgggcggttaaataagcaa
tccgggttcatttttttgcaac

3 b3515 (gadw)

e2348c_3754
(gade)

taggcgtttactat 11 b3512 (gade)

e2348c_1271
(phop)

agttaaccttttgttta 44 b1130 (phop)

e2348c_3607
(crp)

ttataagaagtctctagtgttt 257 b3357 (crp)

O157:H7 str.
EDL933

z4925 (yhie) z4718 (crp) ttataagaagtctctagtgttt 330 b3357 (crp)

z1859 (phop) cgttaactttttgttta 48 b1130 (phop)
z4929 (yhix) gtttactatttacaagctgat 6 b3516 (gadx)

z4928 (yhiw)
atgggcggttaaataagtaa
tccgggttcatttttttgcaac

3 b3515 (gadw)

z4925 (yhie) taggcgtttactat 28 b3512 (gade)

UTI89
uti89_c4043

(yhie)
uti89_c4048

(yhix)
tcaaacattatcatggctgat 6 b3516 (gadx)

uti89_c4047
(yhiw)

attagccatttcaaacattat
catggctgatattttccgtgg

3 b3515 (gadw)

uti89_c1259
(phop)

agttaaccttttgttta 40 b1130 (phop)
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Pathogen TG TF BS #TG Hom. TF
uti89_c4043

(yhie)
taggcgtttactat 18 b3512 (gade)

uti89_c3860
(crp)

ttataagaagtctctagtgttt 278 b3357 (crp)
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C. Actinobacterial Dataset

C.1. Complete Dataset

Table C.1.: List of all actinobacteria used in the Actino dataset. The column “Path.” (Pathogenic-
ity) denotes if the species is a human pathogen (HP), an animal pathogen (AP), an opportunis-
tic pathogen (OP) or a non-pathogen (NP). The last column names the associated disease, if
available.

Species Path. Disease

Corynebacterium accolens ATCC 49725 OP NA
Corynebacterium accolens ATCC 49726 OP NA
Corynebacterium ammoniagenes DSM 20306 OP NA
Corynebacterium amycolatum SK46 HP Endocarditis Sepsis
Corynebacterium aurimucosum ATCC 700975 OP Opportunistic infections
Corynebacterium diphtheriae NCTC 13129 HP Diphtheria
Corynebacterium efficiens YS-314 NP None
Corynebacterium genitalium ATCC 33030 OP NA
Corynebacterium glucuronolyticum ATCC 51866 OP NA
Corynebacterium glucuronolyticum ATCC 51867 OP NA
Corynebacterium glutamicum ATCC 13032 NP None
Corynebacterium glutamicum R NP NA
Corynebacterium jeikeium ATCC 43734 OP NA
Corynebacterium jeikeium K411 OP Nocosomial infections
Corynebacterium kroppenstedtii DSM 44385 HP NA
Corynebacterium lipophiloflavum DSM 44291 HP NA
Corynebacterium matruchotii ATCC 14266 OP Oral infection
Corynebacterium matruchotii ATCC 33806 OP NA
Corynebacterium pseudogenitalium ATCC 33035 OP NA
Corynebacterium pseudotuberculosis 1002 AP caseous lymphadenitis (CLA)
Corynebacterium pseudotuberculosis C231 AP Lymphadenitis
Corynebacterium pseudotuberculosis FRC41 AP NA
Corynebacterium pseudotuberculosis I19 AP NA
Corynebacterium resistens DSM 45100 OP NA
Corynebacterium striatum ATCC 6940 OP NA
Corynebacterium urealyticum DSM 7109 OP Urinary tract infection
Corynebacterium variabile DSM 44702 NP NA
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Species Path. Disease

Mycobacterium avium 104 OP
Tuberculosis type pulmonary

infections

Mycobacterium avium subsp. avium ATCC 25291 OP
Tuberculosis type pulmonary

infections
Mycobacterium avium subsp. paratuberculosis K-10 AP Paratuberculosis
Mycobacterium bovis AF2122/97 AP Tuberculosis in cattle
Mycobacterium bovis BCG str. Pasteur 1173P2 AP Bovine tuberculosis
Mycobacterium bovis BCG str. Tokyo 172 AP NA
Mycobacterium gilvum PYR-GCK NP NA
Mycobacterium intracellulare ATCC 13950 HP Tuberculosis-like disease

Mycobacterium kansasii ATCC 12478 OP
Tuberculosis type pulmonary

infections
Mycobacterium leprae Br4923 HP Leprosy
Mycobacterium leprae TN HP Leprosy

Mycobacterium marinum M OP
Tuberculosis-like infection in fish

Skin/Infection arthritis in
humans

Mycobacterium parascrofulaceum ATCC BAA-614 OP NA
Mycobacterium smegmatis str. MC2 155 OP Soft tissue lesions
Mycobacterium sp. JLS NP None
Mycobacterium sp. KMS NP None
Mycobacterium sp. MCS NP None
Mycobacterium sp. Spyr1 NP NA
Mycobacterium tuberculosis ’98-R604 INH-RIF-EM’ HP Tuberculosis
Mycobacterium tuberculosis 02_1987 HP Tuberculosis
Mycobacterium tuberculosis 210 HP Tuberculosis
Mycobacterium tuberculosis 94_M4241A HP Tuberculosis
Mycobacterium tuberculosis C HP Tuberculosis
Mycobacterium tuberculosis CDC1551 HP Tuberculosis
Mycobacterium tuberculosis CPHL_A HP NA
Mycobacterium tuberculosis EAS054 HP Tuberculosis
Mycobacterium tuberculosis F11 HP Tuberculosis
Mycobacterium tuberculosis GM 1503 HP NA
Mycobacterium tuberculosis H37Ra HP Tuberculosis (attenuated)
Mycobacterium tuberculosis H37Rv HP Tuberculosis
Mycobacterium tuberculosis K85 HP NA
Mycobacterium tuberculosis KZN 1435 HP Tuberculosis
Mycobacterium tuberculosis KZN 4207 HP Tuberculosis
Mycobacterium tuberculosis KZN 605 HP Tuberculosis
Mycobacterium tuberculosis KZN R506 HP NA
Mycobacterium tuberculosis KZN V2475 HP NA
Mycobacterium tuberculosis str. Haarlem HP Tuberculosis
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C.2. Additional Proteobacterial Dataset

Species Path. Disease

Mycobacterium tuberculosis SUMu001 HP Tuberculosis
Mycobacterium tuberculosis SUMu002 HP Tuberculosis
Mycobacterium tuberculosis SUMu003 HP Tuberculosis
Mycobacterium tuberculosis SUMu004 HP Tuberculosis
Mycobacterium tuberculosis SUMu005 HP Tuberculosis
Mycobacterium tuberculosis SUMu006 HP Tuberculosis
Mycobacterium tuberculosis SUMu007 HP Tuberculosis
Mycobacterium tuberculosis SUMu008 HP Tuberculosis
Mycobacterium tuberculosis SUMu009 HP Tuberculosis
Mycobacterium tuberculosis SUMu010 HP Tuberculosis
Mycobacterium tuberculosis SUMu011 HP Tuberculosis
Mycobacterium tuberculosis SUMu012 HP Tuberculosis
Mycobacterium tuberculosis T17 HP NA
Mycobacterium tuberculosis T46 HP NA
Mycobacterium tuberculosis T85 HP Tuberculosis
Mycobacterium tuberculosis T92 HP Tuberculosis
Mycobacterium ulcerans Agy99 HP Buruli ulcer
Mycobacterium vanbaalenii PYR-1 NP NA
Nocardia farcinica IFM 10152 HP Nocardiosis
Rhodococcus equi 103S AP Pneumonia
Rhodococcus equi ATCC 33707 AP Pneumonia
Rhodococcus erythropolis PR4 OP NA
Rhodococcus erythropolis SK121 OP NA
Rhodococcus jostii RHA1 NP Cocci
Rhodococcus opacus B4 NP NA

C.2. Additional Proteobacterial Dataset

Table C.2.: List of all proteobacteria used in this study. The selection within each group was
based on the number of registered projects in NCBI. Only one species was allowed per family.

Organism Subgroup

Brucella abortus A13334 Alphaproteobacteria
Rhizobium leguminosarum bv. viciae 3841 Alphaproteobacteria
Sinorhizobium meliloti 1021 Alphaproteobacteria
Bradyrhizobium sp. BTAi1 Alphaproteobacteria
Rickettsia rickettsii str. Iowa Alphaproteobacteria
Anaplasma marginale str. Florida Alphaproteobacteria
Acetobacter pasteurianus IFO 3283-01 Alphaproteobacteria

213



Appendix C. Actinobacterial Dataset

Organism Subgroup

Agrobacterium radiobacter K84 Alphaproteobacteria
Zymomonas mobilis subsp. mobilis ZM4 Alphaproteobacteria
Rhodobacter sphaeroides 2.4.1 Alphaproteobacteria

Neisseria meningitidis M01-240149 Betaproteobacteria
Burkholderia sp. 383 Betaproteobacteria
Ralstonia solanacearum GMI1000 Betaproteobacteria
Bordetella pertussis CS Betaproteobacteria
Acidovorax sp. JS42 Betaproteobacteria
Comamonas testosteroni CNB-2 Betaproteobacteria
Achromobacter xylosoxidans A8 Betaproteobacteria
Cupriavidus necator N-1 Betaproteobacteria
Taylorella equigenitalis MCE9 Betaproteobacteria
Delftia acidovorans SPH-1 Betaproteobacteria

Escherichia coli str. K-12 substr. MG1655 Gammaproteobacteria
Salmonella enterica subsp. enterica serovar Paratyphi A str. ATCC 9150 Gammaproteobacteria
Acinetobacter baumannii 1656-2 Gammaproteobacteria
Vibrio cholerae O395 Gammaproteobacteria
Yersinia pestis CO92 Gammaproteobacteria
Pseudomonas syringae pv. syringae B728a Gammaproteobacteria
Xanthomonas axonopodis pv. citri str. 306 Gammaproteobacteria
Klebsiella pneumoniae 342 Gammaproteobacteria
Francisella tularensis subsp. tularensis NE061598 Gammaproteobacteria
Shigella flexneri 2002017 Gammaproteobacteria

Helicobacter pylori 26695 delta/epsilon subdivisions
Campylobacter jejuni RM1221 delta/epsilon subdivisions
Desulfovibrio vulgaris RCH1 delta/epsilon subdivisions
Arcobacter butzleri RM4018 delta/epsilon subdivisions
Geobacter sp. M18 delta/epsilon subdivisions
Stigmatella aurantiaca DW4/3-1 delta/epsilon subdivisions
Myxococcus xanthus DK 1622 delta/epsilon subdivisions
Bacteriovorax marinus SJ delta/epsilon subdivisions
Anaeromyxobacter sp. K delta/epsilon subdivisions
Sulfurovum sp. NBC37-1 delta/epsilon subdivisions
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C.3. Mapping with the Ortholog Matrix Project

C.3. Mapping with the Ortholog Matrix Project

Organism #Proteins #Matches

Corynebacterium aurimucosum ATCC 700975 2531 2504
Corynebacterium diphtheriae NCTC 13129 2272 2242
Corynebacterium efficiens YS 314 2938 2824
Corynebacterium glutamicum R 3052 3043
Corynebacterium jeikeium K411 2104 2018
Corynebacterium kroppenstedtii DSM 44385 2018 2018
Corynebacterium pseudotuberculosis C231 2091 1948
Corynebacterium pseudotuberculosis FRC41 2110 2110
Corynebacterium urealyticum DSM 7109 2022 2008

Mycobacterium avium 104 5120 4473
Mycobacterium bovis AF2122 97 3918 3893
Mycobacterium bovis BCG Pasteur 1173P2 3949 3884
Mycobacterium bovis BCG Tokyo 172 3944 3898
Mycobacterium gilvum PYR GCK 5241 5154
Mycobacterium JLS 5739 5693
Mycobacterium KMS 5460 5338
Mycobacterium leprae Br4923 1604 1591
Mycobacterium leprae TN 1605 1582
Mycobacterium marinum M 5423 5388
Mycobacterium MCS 5391 5359
Mycobacterium smegmatis MC2 155 6717 5873
Mycobacterium tuberculosis H37Ra 4034 3915
Mycobacterium tuberculosis H37Rv 4003 3753
Mycobacterium tuberculosis KZN 1435 4059 4017
Mycobacterium ulcerans Agy99 4160 4113
Mycobacterium vanbaalenii PYR 1 5979 5899

Nocardia farcinica IFM 10152 5681 5656

Rhodococcus equi 103S 4512 4492
Rhodococcus erythropolis PR4 6030 6020
Rhodococcus opacus B4 7246 7239

Table C.3.: Summary of the mapping between OMA and the actinobacteria used in our study. The
column “#Proteins” gives the number of proteins of the corresponding species and “#matches”
denotes the number of successfully matched IDs and sequences.
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