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ABSTRACT

Ambiguity, complexity, and diversity in natural language textual expressions are

major hindrances to automated knowledge extraction. As a result state-of-the-art

methods for extracting entities and relationships from unstructured data make in-

correct extractions or produce noise. With the advent of human computing, com-

putationally hard tasks have been addressed through human inputs. While text-

based knowledge acquisition can benefit from this approach, humans alone cannot

bear the burden of extracting knowledge from the vast textual resources that exist

today. Even making payments for crowdsourced acquisition can quickly become

prohibitively expensive.

In this thesis we present principled methods that effectively garner human com-

puting inputs for improving the extraction of knowledge-base facts from natural

language texts. Our methods complement automatic extraction techniques with hu-

man computing to reap benefits of both while overcoming each other’s limitations.

We present the architecture and implementation of HIGGINS , a system that com-

bines an information extraction (IE) engine with a human computing (HC) engine

to produce high quality facts. Using automated methods, the IE engine compiles

dictionaries of entity names and relational phrases. It further combines statistics

derived from large Web corpora with semantic resources like WordNet and Con-

ceptNet to expand the dictionary of relational phrases. It employs specifically de-

signed statistical language models for phrase relatedness to come up with questions

and relevant candidate answers that are presented to human workers. Through

extensive experiments we establish the superiority of this approach in extracting

relation-centric facts from text. In our experiments we extract facts about fictitious

characters in narrative text, where the issues of diversity and complexity in express-

ing relations are far more pronounced. Finally, we also demonstrate how interesting

human computing games can be designed for knowledge acquisition tasks.





KURZFASSUNG

Mehrdeutigkeit, Komplexität sowie Vielfältigkeit im Ausdruck stellen die automa-

tische Extraktion von Wissen aus natürlichsprachlichen Texten vor grosse Heraus-

forderungen. Infolgedessen sind aktuelle Methoden zur Informationsxtraktion (IE)

von Entitäten sowie deren wechselseitigen Relationen aus unstrukturierten Daten

oft fehleranfällig. Durch die Methodik des Human Computing (HC) kann eine

Vielzahl von schwierigen Problemen mit Hilfe menschlicher Eingaben adressiert

werden. Wenngleich Problemstellungen des textbasierten Wissenserwerbs auch

durch HC unterstützt werden, kann die Wissensextraktion aus sehr umfangreichen

Textsammlungen nicht alleine durch diesen manuellen Ansatz gelöst werden. Weit-

erhin sind, im Rahmen eines Bezahlungsmodells, die durch Vergütung der von

menschlichen Anwendern ausgeführten Kleinstaufgaben entstehenden Kosten un-

bezahlbar.

In dieser Arbeit stellen wir Methoden vor, die Algorithmen zur automatischen Ex-

traktion mit den durch Human Computing gewinnbaren Informationen kombinieren.

Wir stellen die Architektur und Implementierung des HIGGINS-Systems vor, das IE

und HC synergetisch verbindet mit dem Ziel hochwertiger und umfassender Wis-

sensakquisition aus Texten. Die IE-Komponente von HIGGINS konstruiert zunächst

umfangreiche Sammlungen von Entitätsbezeichnungen und relationalen Paraphr-

asen. Weiterhin werden aus Webkorpora gewonnene statistische Informationen

mit semantischen Ressourcen wie WordNet und ConceptNet kombiniert, um die

gewonnenen relationalen Phrasen zu expandieren. Spezifisch definierte statistische

Modelle werden zur Bestimmung der semantischen Ähnlichkeit von Phrasen einge-

setzt. Auf diese Weise generiert die IE-Komponente sowohl Fragen für HC als auch

relevante Antwortmöglichkeiten. Die HC-Komponente erzeugt daraus kleine Auf-

gaben für Crowdsourcing oder Onlinespiele und sammelt das daraus resultierende

Nutzerfeedback. Eine umfassende experimentelle Evaluation belegt die Praktikabil-

ität und Vorteile dieser kombinierten IE/HC-Methodologie.





SUMMARY

Automatic information extraction (IE) from text corpora and Web sources enables

the construction of large knowledge bases (KB) of relational facts with millions

of entities. However, fact extraction from natural language text is challenging as

automated IE techniques need to cope with textual sentences that have complex

structure, contain pronouns and other anaphoras, and use ambiguous wording.

In processing such inputs, they often produce erroneous or incomplete facts, or

miss out on extracting relevant facts. As a result, the quality and coverage of the

resulting KB suffers. This motivates the need for exploiting human intelligence and

knowledge for assessing the validity of extracted facts, correcting errors and for

gathering additional knowledge.

For textual inputs, humans still outperform state-of-the-art computational methods

in understanding language and context, in resolving ambiguity and performing ob-

jective reasoning. Therefore human computing (HC) and crowdsourcing methods

offer a natural alternative to overcome the limitations of automated IE. Challeng-

ing IE tasks such as compiling relationships between entities can be converted into

a questions in an HC game, soliciting answers from interested users. Alternatively,

IE tasks could be set up as human intelligence tasks (HITs) on platforms like Ama-

zon Mechanical Turk or CrowdFlower. Despite these opportunities, scaling up is

an issue; HC game players cannot solely bear the burden of extracting facts from

vast textual corpora, and paid crowdsourcing at scale quickly becomes prohibitively

expensive.

In consideration of individual benefits and limitations of automated IE and HC, this

thesis presents methods that enable effective fact acquisition by combining both

of them. The key idea is to use automatic IE to generate questions and candidate

answers and evaluate them through HC inputs. To this end, we designed and built

the HIGGINS system that employs this combination to generate relational facts from

Web corpora. As a running application we utilize movie and book narratives and

compile relationships between character roles in story plots.



The architecture of the HIGGINS system couples an automated IE component with

an HC component. The IE component is recall-oriented: it applies techniques from

computational linguistics and uses additional heuristics to build large lexicons of

entity names and relational phrases from narrative corpora. To increase coverage

over the large variety of relations seen in narratives, the relational phrases are com-

bined with phrases from semantic resources like WordNet and ConceptNet. Fur-

thermore, to obtain highly specific phrases, additional phrase mining is performed

using co-occurrence statistics derived over large Web corpora. All these phrases

are combined using a mixture model and used in specifically designed statistical

(translation) language models that rank candidate relations for entity pairs, taking

as query the contexts in which the pairs occur. In the HC component the ranked

candidates are aggregated, diversified and transformed into crowdsourced HITs or

questions of an HC game.

Our extensive experimentation on HIGGINS , using crowdsourced HITs, consistently

shows high precision and recall, demonstrating the synergistic benefits of combin-

ing IE and HC. HIGGINS obtains a larger number of facts compared to state-of-the-

art IE system OLLIE, and outperforms a purely HC approach in terms of both preci-

sion and recall. Through our experiments we also corroborate that the combination

of semantic resources and statistically derived phrases achieves higher output qual-

ity, compared to using either of them individually. Finally, our experiments show

that questions in HIGGINS generate good inter-annotator agreement with only a

handful of judgements – a fact that directly translates into reduced costs for human

engagement.

In this work we also demonstrate how the HIGGINS system can support the construc-

tion of different HC games for fact acquisition. We map the objectives of game play-

ers onto the generation of correct relational facts. We constructed the MOVIEWIZ-

ARD and BOOKWIZARD games, where individual players compete to achieve high

scores by pointing out appropriate relations between character pairs among the

candidates presented to them. We also built MOVIEGURUS , an interactive two-

player game in which a player helps a randomly-paired partner to guess the movie



title by typing out relationships between anonymized character roles. The HIGGINS

system harnesses relational facts through these player interactions.





ZUSAMMENFASSUNG

Die automatisierte Informationsextraktion (IE) aus Textkorpora und dem World

Wide Web ermöglicht die Generierung umfangreicher Wissensbasen in Form von

relationalen Fakten über Millionen von Entitäten. Aufgrund der komplexen Struk-

tur von natürlichsprachigen Sätzen, Anaphorik (z. B. in der Form von Pronomen),

sowie mehrdeutiger Formulierung, ist die zuverlässige Extraktion von Fakten aus

Texten eine große Herausforderung für IE-Methoden. Dies führt zu fehlerhaften

sowie unvollständigen Fakten und hat negativen Einfluss auf die Qualität und Voll-

ständigkeit der generierten Wissensbasis. Diese Problematik motiviert die Unter-

suchung von Möglichkeiten der Einbindung menschlicher Intelligenz und menschli-

chen Wissens in den Extraktionsprozess, mit dem Ziel der Validierung und Fehlerko-

rrektur extrahierter Fakten sowie der Gewinnung zusätzlicher Fakten.

Methoden des Human-Computing (HC) und Crowdsourcing-Ansätze sind eine na-

heliegende Alternative, um die Defizite automatisierter Verfahren zu beheben. Sch-

wierige IE-Aufgaben können zum Beispiel durch Antworten auf Fragen im Rahmen

eines HC-Spiels adressiert werden. Alternativ können entsprechende Bearbeitung-

seinheiten, sogenannte HITs (Human Intelligence Tasks), auf Crowdsourcing-Platt-

formen wie Amazon Mechanical Turk oder Crowdflower angeboten werden. Für

sehr große Textsammlungen ist jedoch die Zahl der benötigten Spieler viel zu hoch,

und die Kosten für die Vergütung von Arbeitern beim Crowdsourcing sind un-

bezahlbar.

Diese Arbeit stellt Methoden vor, mit denen durch Kombination von IE und HC die

Wissensakquisition für Computer wesentlich verbessert werden kann. Die Kernidee

des Verfahrens liegt im Einsatz von IE-Methoden zur Generierung von Fragen sowie

Antwortmöglichkeiten und dem anschließenden Einsatz von HC in Form des Sam-

melns von Antworten durch Nutzer. Wir stellen das HIGGINS-System vor, in dem

dieser Lösungsansatz realisiert wurde. Als Beispielanwendung in dieser Arbeit dient

die Extraktion von relationalen Beziehungen zwischen Charakteren in Zusammen-

fassungen von Romanen oder Filmen.



Die Architektur des HIGGINS-Systems koppelt eine automatisierte IE-Komponente

mit einer HC-Komponente. Die IE-Komponente zielt auf hohe Ausbeute und basiert

auf computerlinguistischen und heuristischen Methoden, um in einem ersten Schritt

umfangreiche Verzeichnisse von Entitätsbezeichnungen und relationalen Paraph-

rasen zu erstellen. Die so gesammelten Paraphrasen werden mit semantischen Re-

sourcen wie WordNet und ConceptNet kombiniert, um eine bessere Abdeckung der

vielfältigen Relationen zu erreichen. Relationale Phrasen werden mit Hilfe eines

statistischen Modells zueinander in Beziehung gesetzt und als Evidenz für spezifis-

che Relationen gewichtet. In der HC-Komponente wird dieses Modell verwendet,

um eine Rangliste von Phrasen bzw. Relationen zu konstruieren, aus denen die

Antwortmöglichkeiten für Crowdsourcing-HITs oder Spielsituationen erstellt wer-

den.

Unsere experimentelle Evaluation des HIGGINS-Systems auf einer Crowdsourcing-

Plattform untermauert die Verbesserungen in Präzision und Ausbeute, die durch

die Synergie von IE und HC erreicht werden. Im Vergleich mit dem IE-System

OLLIE, einem der führenden vollautomatischen Softwarewerkzeuge, liefert HIG-

GINS eine größere Anzahl von Fakten mit hoher Qualität. Die Experimente zeigen,

dass die Kombination von semantischen Ressourcen und mit statistischen Metho-

den gesammelten Phrasen wesentlich bessere Ergebnisse liefert als jede der beiden

Basiskomponenten alleine. Die Experimente zeigen auch ein hohes Maß an Übere-

instimmung zwischen verschiedenen Nutzern, was sich direkt in geringeren Kosten

niederschlägt.

Desweiteren zeigen wir, wie mit dem HIGGINS-System verschiedene HC-Spiele zur

Wissensakquisition erstellt werden können. Das Ziel eines Spielers ist dabei mit

der Gewinnung korrekter relationaler Fakten verknüpft. Wir präsentieren zwei

Spiele, MOVIEWIZARD und BOOKWIZARD, in denen Spieler durch die Auswahl zutr-

effender Relationen zwischen Charakteren hohe Punktzahlen anstreben. MOVIE-

GURUS ist ein weiteres Spiel, für zwei Personen, bei dem ein Spieler seinem zufällig

zugewiesenen Partner durch Auflistung von Beziehungen zwischen anonymisierten

Charakteren hilft, einen Filmtitel zu erraten. Die Interaktionen zwischen Spielern

werden von HIGGINS genutzt, um relationale Fakten zu akquirieren.
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1 CHAPTER

Introduction

1.1 MOTIVATION

Building computer programs that reason and use knowledge to solve complex prob-

lems is the goal of Artificial Intelligence. This goal can only be fully realized if com-

puting systems are made aware of real-world knowledge. Knowledge Acquisition

(KA), a sub-field in AI, deals with extracting, structuring and organizing data from

various sources, therefore enabling computers to gain knowledge of entities and

their relationships. Structured information thus harnessed is stored in machine-

readable form, typically as entity-relation-entity triples or facts, which are instances

of binary relationships. Information from such repositories of facts, known as

knowledge bases, is readily interpretable by machines. Factual knowledge from

knowledge bases help machines to interpret character strings as entities, and pro-

vide information on their types, their semantic classes or their relationships with

other entities. Given their tremendous utility, large KBs such as Freebase [1, 2],

DBPedia [3], YAGO [4], OpenCyc [5], Probase [6] and NELL [7, 8] are increas-

ingly being built and used in areas that include Web search, machine translation,

summarization, question answering, information integration and expert systems.

Knowledge Acquisition from Text.

Much of the human knowledge is expressed in textual form; either in books, or

as documents on the World Wide Web or elsewhere. Knowledge acquisition from

textual sources therefore becomes crucial to build knowledge bases with high cover-

age. However it is a difficult endeavour to extract factual data from millions of text

1
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documents and reconcile it with already extracted knowledge. Employing humans

solely for this purpose is impracticable and prohibitively expensive. For these rea-

sons, KA critically relies on information extraction (IE) technology, which provides

the capability to capture fact triples from text in an automated way. Developing

automated IE techniques that (i) understand the grammatical arrangements as well

as the semantics of natural language, and (ii) work at scale, is an active research

area in AI.

Limitations of Automatic Extraction Methods.

To extract fact triples from text, IE techniques combine methods from pattern match-

ing, computational linguistics and statistical learning. Traditional techniques of

IE [9–15] make use of prespecified sets of relations to extract relational tuples from

text, relying on extensive human labour to generate extraction rules or training

samples for supervised methods. These IE techniques cannot extend to hetero-

geneous corpora where the relations are diverse and their number is large. For

instance, narratives from movies, books or news carry a large number of diverse

relations. Moreover each relation can be expressed in different ways (often compli-

cated) within the text: for example, “Bond shot Xenia dead” or “Bond quickly got rid

of Xenia” for the relation “Bond killed Xenia”. As there are many such infrequently

occurring expressions in text, there is not much hope to achieve good coverage by

specifying extraction rules or by painstakingly generating training data.

Methods under the Open IE paradigm overcome these limitations and perform scal-

able extraction with no human involvement. Open IE methods [16–20] can derive a

wide diversity of relational facts between entities based on detecting and analyzing

noun phrases for entities and verb-centric phrases for relations, such as: “Vesper”

“was planted to trap” “Bond”, “Bond” “saves” “Vesper” and “Vesper” “finally falls for”

“Bond” (from the movie story Casino Royale).

However, there are fundamental limitations of IE technology. IE methods can yield

noisy or semantically meaningless entity-relation triples such as “Vesper” “certainly

has” “Bond” (from the sentence “Vesper certainly has Bond sized up.”), or, miss out

on interesting relations (from the sentence “Vesper and Bond confess their love for

each other.”, assuming “and” is not detected as a relation). This occurs because

automated IE generally faces obstacles: input sentences with complex structures,
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use of pronouns and other anaphoras, and ambiguous wording. The following

snippet (from imdb.com) is a daunting example: “He quickly grabs Vesper and they

kiss in the stairway entrance to cover themselves.”

Leveraging the Crowds.

The idea of Human Computing (HC) is to leverage capabilities of humans to gener-

ate solutions for tasks that are computationally hard. Human Computing and com-

mercial crowdsourcing have been successfully employed to help with tasks where

fully automated solutions are deemed inadequate [21, 22]. A typical approach is to

place so-called human intelligence tasks or HITs, specifically designed micro-tasks,

on platforms like Amazon’s Mechanical Turk [23] or CrowdFlower [24]. Human

contributors on such platforms (referred as the “crowd”) accomplish these HITs to

be compensated through payments. HC has been applied to various tasks including

quality assessment of rankings, summaries, and IE results [21, 25, 26], query an-

swering [27–29], entity matching [30, 31], ontology alignment [32], image search

and annotation [33–35], and acquiring commonsense properties [36, 37] and tax-

onomies [38]. For certain problems, HC has been successfully leveraged in game

form [39]: correcting OCR errors, generating image annotations, translating words

to foreign languages, and so on.

Our thesis is that HC is a natural alternative to overcome the fundamental limi-

tations of automated IE. It can tap human intelligence and knowledge to assess

candidate facts, to correct errors, and to add new facts. Human intelligence can

help to resolve pronouns in complex sentences or to identify erroneous paths in the

dependency-parsing of natural language. Human knowledge on special topics such

as movies, books, or medicine can add new facts, that may be entirely missing from

the text, or help derive entity-relation triples, e.g., about movie or book characters,

that are virtually impossible to extract automatically, as they may not be explicitly

mentioned. Despite this great potential, to our knowledge there have been no pre-

vious attempts to employ HC and crowdsourcing platforms for the difficult KA task

of extracting entity-relation triples.
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1.2 OUR APPROACH

The goal of our work is to combine HC methods with automated IE for effective ac-

quisition of relational facts. We propose using automatic IE techniques to generate

questions and candidate answers (for multiple-choice questions), for a HC game

or for crowdsourced HITs. Our hypothesis is that this improves the quality of user

contributions and lowers the cost of crowdsourcing.

1.2.1 Challenges

In our work, we consider compiling relational facts from complex textual inputs

such as story narratives and movie plots. While these inputs contain a rich variety

of relations, they are expressed in diverse and complex ways. We use IE techniques

to process the input sentences and generate possible relations for an entity pair,

which are then validated using human inputs.

Overcoming sparseness. Our IE methods should be able to pick meaningful rela-

tion candidates by analyzing phrases from the textual sentences. However, relevant

patterns for advanced relations tend to be rare. For example, phrases like “im-

prison”, “orders to assassinate”, or “pretends to fall in love” are infrequent even in a

large corpus of movie plots and book summaries. Overcoming this sparseness issue

is key to detect appropriate relations and achieve good coverage.

Limiting HC costs. For applications with human experts (e.g., movie aficionados,

or book lovers, or experts in diseases and medicine, etc.), one would expect that

HC can be nicely cast into game form, thus enticing more users to contribute on

the KA task. However, despite the inherent promises of HC for KA, humans alone

cannot carry this burden. First, the number of real experts is typically limited.

Second, these experts are not so likely to participate in online games. Hence, in-

evitably, HC output will contain a wide range from high-quality to highly noisy

and incorrect facts. One may think that these HC errors could be compensated by

large-scale crowdsourcing, with redundant HITs and statistic reasoning over many

contributors. However, there is still the issue of the total cost: each HIT may cost

a few cents only, but paying for hundreds of thousands or millions of HITs quickly

becomes prohibitive.
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1.3 THESIS CONTRIBUTIONS

Addressing the challenges outlined above, this thesis presents methods that com-

bine automatic IE with human computing, harnessing benefits of both while ad-

dressing their individual limitations. A brief synopsis of its contributions is pre-

sented here:

� Architecture for Combining Human Computing with IE. The first contribu-

tion of the dissertation is a system for knowledge acquisition, whose archi-

tecture combines automated extraction techniques with human computing in-

puts. Automated fact extraction methods use a combination of pattern-based,

learning or reasoning approaches to achieve scalable extraction from textual

sources. However the facts extracted may be noisy or incorrect owing to the

complexity of natural language text. In our architecture, the extraction sys-

tem combines statistical evidence in large corpora with semantic resources to

generate large number of relational fact candidates. Moreover it couples this

extraction phase with ranking of the candidates based on their likelihood to

produce correct facts. These candidates form the basis of human involvement

either as human intelligence tasks for crowdsourcing platforms (called HITs)

or questions in a human computing game. The key idea is to complement high-

recall fact extraction methods with high-quality human judgements, reaping

benefits of both. This system architecture, named HIGGINS, was presented at

the World Wide Web Conference 2013 [40].

� Automated HIT Generation for Crowdsourced Fact Acquisition. The sec-

ond contribution of the thesis is a principled framework for discovering and

extracting relationships between entities in narrative text. Based on the HIG-

GINS architecture, our system consists of an Information Extraction (IE) com-

ponent and a Human Computing (HC) component. The IE component com-

piles entity-name and relation phrase dictionaries making use of methods in

computational linguistics and additional heuristics. To overcome sparseness

issues, it additionally assimilates phrases from semantic resources, taps into

co-occurring phrases in large Web copora, and combines all of them using

a mixture model. Taking into account the textual contexts of the entities, it
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ranks the phrases in the relational lexicon using a statistical translation model.

The HC component aggregates and diversifies these candidate entity-pair re-

lation triples to generate questions with relevant multiple-choice answers.

These questions, casted as HITs, are evaluated by workers of crowdsourced

platforms to generate final facts. Through extensive experiments we establish

the high quality of the facts generated by the system. When compared to state-

of-the-art fact extraction systems, our system delivers superior performance,

especially on recall. By tapping into statistics derived from large corpora and

semantic resources, and through judicious ranking, this system substantially

reduces money costs at the crowdsourcing stage, which can be prohibitively

expensive when pure HC is employed. This work was presented at the IEEE

Conference on Data Engineering 2014 [41].

� HIGGINS Games for Knowledge Acquisition. The third contribution of the

thesis is a framework for designing human computing games for KA. The

HIGGINS architecture allows for wrapping various KA tasks as factoid-based

question answering games. To demonstrate the viability of HIGGINS methods

for relation-oriented fact extraction, we built the single-player MOVIEWIZARD

(BOOKWIZARD) games, and the two-player MOVIEGURUS game. These games

are designed to acquire relations between characters in movie and book plots.

As part of the game play, the player’s objective is to gain high scores by cor-

rectly pointing out the relations, interacting either with the system or with a

human partner. As a by-product of playing the HIGGINS games, new facts are

acquired and assessed. KA games based on HIGGINS were demonstrated at

the ACM Conference on Information and Knowledge Management 2013 [42].
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1.4 THESIS ORGANIZATION

The rest of this thesis is structured as follows: Chapter 2 summarizes the state-of-

the-art on automatic extraction techniques for knowledge base construction, and

outlines its limitations. It then presents background on the field of human comput-

ing and efforts made for knowledge acquisition through human computing. Chap-

ter 3 presents the architecture of HIGGINS, a system that couples information ex-

traction with human computing to overcome their individual limitations; it outlines

the key idea and the design principles, and introduces its components. Chapter

4 discusses in detail the components that make up the HIGGINS system, and their

implementation. Chapter 5 provides detailed experiments on the performance of

HIGGINS and its components. Chapter 6 discusses the design and construction of

HC games for KA. It presents the MOVIEWIZARD , BOOKWIZARD and MOVIEGURUS

games that enable extraction of relations from narratives. Chapter 7 provides con-

clusions and directions for future work.





2 CHAPTER

Background and State-of-the-Art

2.1 OVERVIEW

Automated information extraction (IE) is at the heart of knowledge acquisition, al-

lowing factual information to be harvested from a large variety of data sources [9–

15]. However, even state-of-the-art IE methods often fall short in recognizing fac-

tual relationships expressed in natural language. Human computing (HC) is a rel-

atively new field that casts hard computational problems as intelligence tasks for

humans. Our work proposes the use of human computing to overcome challenges

in extracting relational facts from textual sources. This chapter first provides back-

ground on knowledge acquisition and knowledge representation. Then it presents

an overview on the existing work in IE and HC fields.

2.2 KNOWLEDGE ACQUISITION AND REPRESENTATION

In the field of Artificial Intelligence, knowledge acquisition (KA) refers to the trans-

fer and transformation of problem-solving expertise from a knowledge source to a

program. In order to enable a computer program perform meaningful inference,

real-world knowledge is acquired from data sources; and subsequently structured

and organized as inter-related concepts. These concepts and their relationships are

stored as logical assertions in large information repositories called knowledge bases

(KBs).

9
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Ontology. In information sciences, ontologies refer to KBs that possess “semantic

awareness” or the ability to perform logical reasoning with its underlying knowl-

edge. Ontologies represent knowledge using machine-interpretable definitions of

concepts, usually within a domain, and relations among them. Using rules, con-

straints, and procedures, they are not only able deduce new knowledge from what

exists within them but also incorporate external knowledge. Ontologies form cru-

cial components of natural language understanding and knowledge-based problem

solving methods. There are widely used for query answering and information inte-

gration purposes. In scientific research they have been employed for problems such

as word sense disambiguation, document classification, query expansion, natural

language question answering and machine translation.

Ontology building is a difficult process and ontologies generally limit their knowl-

edge to predefined scope of interest or domain (animal, disease, protein, bio-medicine

etc.). Invariably the fundamental knowledge constituents of ontologies are facts,

made up of entities and their relations. For example, an ontological fact 〈Barack
Obama –PRESIDENTOF→ USA〉, has {Barack Obama, USA} as entities with the relation

{PRESIDENTOF} between them. Ontological entities belong to one or more classes,

such as politicians, presidents etc. We briefly describe these components of ontologi-

cal facts here:

• Entities. In an ontology, all concepts, whether abstract or concrete, are repre-

sented as entities. Although there is no formal nomenclature, entity represen-

tations in ontologies are unique. This holds even if the entity in real-world is

referred in various different ways. For example {Bond}, {007} or {James Bond}

could refer to the one ontological entity James Bond. Nevertheless all entities

in the ontology must be distinguishable from one another.

• Classes. Entities that share common properties are grouped into classes (for

example presidents, scientists, buildings, rivers etc.). Every ontological entity

belongs to one or more classes. Classes themselves are represented as on-

tological entities. Moreover subsets of classes are identified and represented

using the subclass relation, for example presidents –SUBCLASSOF→ politicians,

politicians –SUBCLASSOF→ persons and so on. All entities in a class are referred

to as its instances.
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• Relations. For many applications, relations between entities form the most

useful source of knowledge in an ontology. Typically ontologies define set of

relations that entities participate in, based on domain knowledge. ISA and

SUBCLASSOF are most commonly found ontological relations. Any arity of

relations can be supported, but in practice many current-day ontologies use

binary relations. Each relation has domain and range to which the entities

should adhere, for the ontological fact to be valid. For example, the relation

BORNIN can have person and location as its domain and range. Relations them-

selves are entities in the ontology, and as with entities their representation is

unique (WASBORNTO, GAVEBIRTHTO or HASPARENT could all be represented

as PARENTOF).

2.2.1 Knowledge Base Construction.

Traditionally, KBs have been constructed manually, typically by experts from a do-

main. These KBs serve to support decision-making process of humans or machines.

However using human experts to construct KBs is not a scalable approach which

can be employed to create KBs that do not grow or update frequently. For example

WordNet [43] is a human-compiled linguistic KB consisting of words in the En-

glish language, their senses and relationships. Other examples of similar KBs are

OpenCyc [5], SUMO [44], UMLS [45] and GeneOntology [46].

To build general purpose domain-independent KBs that contain large number of

concepts and their relations, human effort has to be minimized and automated

methods have to take over. Towards this end many automated IE methods have

been developed which follow different strategies based on the input they start with.

Several automated methods exploit semi-structured sources like Wikipedia to create

huge KBs such as DBPedia [3] and YAGO [4]. Some approaches focus on extract-

ing concepts and relationships directly from textual sentences. DIPRE [11], Snow-

ball [12], KnowItAll [47], TextRunner [48], ReVerb [17], OLLIE [49] are examples

of automated text-based IE approaches, some of which we discuss in detail in Sec-

tion 2.3. Other approaches like PORE [50] and Kylin [51] combine and consolidate

extracted information from semi-structured text with extractions from natural lan-

guage text.
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If costs were not an issue, allowing humans to participate directly yields KBs of

a higher accuracy. However this requires uniformity checks and quality control

measures. For example, Freebase [1] harvests data from Wikipedia, MusicBrainz

and other directories, as well as individually contributed data from its users.

2.2.2 Knowledge Representation

There exist numerous models that encode ontological knowledge. Among them,

the Resource Description Framework or the RDF data model, standardized by the

World Wide Web Consortium, is widely in use today. This model defines the notion

of resources and uses Unique Resource Identifiers (URIs) to identify them. RDF

supports statements about resources in the form of subject-predicate-object (SPO)

triples. From ontological perspective each triple denotes a fact. For example, one

way to represent the assertion “Microsoft has headquarters in Redmond” as an RDF

triple is: Microsoft –HASHEADQUARTERSIN→ Redmond. RDFS (RDF Schema) extends

RDF to incorporate type information. Hence classes become resources in RDFS,

allowing statements about classes and sub-classes. Web Ontology Language (OWL)

further extends RDF and RDFS by providing terminology so that classes and their

properties can be defined.

The RDFS/OWL model is simple and expressive enough for many purposes but

there is no built-in representation for additional information such as extraction

source, time-period of validity or confidence scores. As a consequence, many sys-

tems developed their own data models by extending RDFS/OWL model to suit their

needs [4, 52].

2.2.3 Tasks for Ontological Fact Acquisition from Text.

IE techniques help build large ontologies with little or no human intervention. In

transforming text to ontological facts, there are several steps, each of which has its

own challenges. We list them below.

1. Entity Extraction: There are three steps performed to map textual strings to

entities in the ontology. First, the IE method identifies character sequences as
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mention(s) of an entity and classifies them into members of semantic classes

such as persons, locations, organizations and so on (named entity recognition).

Second, alternate references to entities such as pronouns and other references

are identified (coreference resolution). Finally, entity strings and their refer-

ences are mapped to the corresponding entity in the ontology (named entity

disambiguation).

2. Relation Extraction: The different relationships that entity pairs participate

in are extracted from textual sentences and stored as relational facts in the

ontology. Naturally this task assumes that the necessary entity recognition,

anaphora resolution and entity disambiguation has been performed before-

hand.

2.3 TECHNIQUES FOR DISCOVERING RELATIONAL FACTS IN TEXT

In this section, we present prior methods for relational fact discovery from text.

These techniques work on a best-effort basis, dealing with varying nature and size

of the input data, balancing precision and recall, while tackling issues of efficiency

and scalability. Their underlying methods are based on rules and patterns (e.g.,

[53–56]), linguistic analysis (e.g., [17, 57–59]), statistical learning (e.g., [6, 7,

18, 19, 60, 61]), consistency reasoning (e.g., [62, 63]) and often combinations of

all these elements. Traditional methods focused on harvesting tuples that satisfy

prespecified relations from a domain, while the more recent OpenIE systems are

data-driven, aiming to capture all relational tuples from heterogeneous sources such

as the World Wide Web. We briefly discuss some of these methods below.

2.3.1 DIPRE

Dual Iterative Procedure for Relation Expansion (DIPRE) [11] is a seminal method

for finding relations on Web-scale corpora. The method relies on the duality of

relations and their occurrence patterns. An iterative procedure is followed for dis-

covering relations in the following manner: Starting with a bootstrap tuple-set of

the target relation, occurrences of all tuples in the corpus are extracted along with
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their context. In the next step, patterns are generated based on the tuple occur-

rences and their surrounding contexts. Finally, the sample is expanded with the

newly found patterns and searched again. Exploiting the redundancy and structure

in large document collections, and through careful expansion of patterns, DIPRE

retrieves tuples that participate in a target relation with high quality.

As the above approach requires no supervision, we use a similar iteration procedure

in HIGGINS to mine relational phrases from large corpora. However, we address two

main challenges that DIPRE faces. As DIPRE benefits from redundancy of structure,

its full potential can only be realized by running it over large text collections. There-

fore, to overcome scalability bottlenecks, HIGGINS uses a Map-Reduce style imple-

mentation. Another drawback with DIPRE is that the patterns during expansion

phase can produce noise and hence digress significantly from the target relation.

HIGGINS adds syntactic constraints on the patterns to get rid of noisy patterns, and

performs one iteration only so as to avoid unrelated patterns.

2.3.2 Snowball, StatSnowball & Espresso

DIPRE’s approach of iterative extraction with bootstrapping was adopted by many

systems given its benefits of minimal supervision. All these methods try to ad-

dress the tricky issue of pattern/tuple selection during the expansion phase. Ideally

the newly-found patterns during expansion need to have high coverage, and at the

same time be selective to avoid incorrect tuples. Snowball [12], StatSnowball [61],

Espresso [64] and PORE [50] are notable works that deal with this issue.

Snowball [12] tries to achieve coverage by using type-lifted entity arguments (e.g.,

LOCATION based ORGANIZATION instead of Irving based Exxon Corp.). For selec-

tivity, the components of the patterns are represented in vector-space using occur-

rence frequency as weights, and near-similar patterns are clustered. Similarly, tu-

ples that generate noisy patterns are avoided by assigning confidence scores, based

on selectivity and the number of patterns that generated them. Such control mecha-

nism increases the overall recall while retaining the precision. However, pattern se-

lectivity through entity type-lifting helps in case of certain type combinations (e.g.,

ORGANIZATION-LOCATION), while for some combinations it does not work well
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(e.g., PERSON-PERSON, which can produce large number of different patterns).

HIGGINS instead uses noun phrases rather than typed-lifting to achieve high recall.

The StatSnowball [61] system which improves over Snowball defines patterns over

features instead of matching terms, and uses an L1-norm regularized Maximum

Likelihood Estimator for pattern selection. The method, however, uses shallow fea-

tures and can miss relations when presented with sentences of arbitrary complexity.

On the other hand HIGGINS does not depend on word-level features but employs

dependency parsing. Also it does not discard patterns but uses ranking model for

phrases to narrow down to the correct relation.

The Espresso [64] algorithm follows a conservative expansion approach by ranking

patterns and including top-k patterns, incrementing k in each round. The pat-

terns are generated by querying web search engines with wild-card expansions.

Generic patterns that have high coverage but low precision are dealt with using

Point-wise Mutual Information (PMI) scores, a collocation measure between seed

and the newly-found patterns. However, it is not clear if PMI scores, or collocation

measures in general, boost good but rare patterns; and scaling to many relations

remains a question.

2.3.3 SOFIE & PROSPERA

SOFIE [63] extracts ontological facts from natural language documents. Starting

with a set of target relations, it extracts patterns and performs consistency checks

using a weighted MAX-SAT model to ensure correctness of the extractions. The sys-

tem takes into account type-specific, functional and domain rules to verify newly

acquired knowledge against the existing facts in the ontology. Although this results

in very precise facts, SOFIE is very slow in practice and does not scale to Web-size

corpora. PROSPERA [65] extends SOFIE’s pattern analysis with n-gram itemsets

and carries over the confidence scores from this phase as weights to the reasoner’s

input. Both phases are organized to support distributed processing for better scal-

ability. The SOFIE/PROSPERA approaches, however, require target relations to be

known upfront.
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2.3.4 TextRunner

TextRunner [48], the first of systems developed under the OpenIE paradigm, pur-

sues an aggressive approach by capturing verb-centric relations between pairs of

noun-phrases. Its design does not require knowing relations upfront and brings

higher scalability as it is able to efficiently extract relational facts from Web-scale

corpora. In the first of its three-step process, TextRunner builds a self-supervised

Bayes classifier that runs on dependency parse tree paths built from sentences, and

assigns “trustworthiness” to extractions. In the second step, it performs a single

pass on the corpus to pick candidate tuples, and labels them as good or bad us-

ing the classifier built in the first step. Finally, the system retains tuples that are

labeled good and have high corpus frequencies. The downside of TextRunner’s ap-

proach is that labeling needs a sufficiently large sample. Moreover word-level trust

labels cannot be directly extended to phrases as the trustworthiness decreases with

its length, irrespective of words that comprise them (e.g., Bill –SUCCEEDED→ Hillary

and Bill –SUCCEEDED IN NOMINATING→ Hillary).

2.3.5 ReVerb

ReVerb [17] extends TextRunner by enforcing syntactic and lexical constraints on

patterns to reduce noisy and incoherent patterns. Syntactic constraint enforces a

verb-phrase based regular expression over parts-of-speech tags to eliminate noisy

and uninformative patterns. In addition lexical constraint gets rid of very specific

phrases by looking at frequency counts over a global corpus. Finally, ReVerb trains a

logistic classifier to assign confidence scores to the extractions, allowing it to retain

precise extractions and trade-off recall if necessary.

Experimental evaluation shows that by considering only verb-centric phrases, Re-

Verb does not lose out on too many relational extractions. However ReVerb does

not capture noun-centric relations, or relations spread over long range in sentences.

For complex sentences it may capture factual assertions with incomplete relational

patterns. The authors also report that incorrect identification of arguments leads to

high error rate in Reverb, either by missing the extraction or producing incorrect
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extractions. Despite all these drawbacks, the ReVerb method scales well, provides

high recall and does not make any assumptions on the input text.

2.3.6 PATTY

The PATTY [66, 67] system builds a large lexicon of binary relations which are se-

mantically typed and organized into a taxonomy of semantic subsumptions. PATTY

enriches pattern representations with syntactic, lexical and ontological (SOL) infor-

mation (POS tags, wild-cards and ontological types of the arguments — for exam-

ple 〈person〉’s [adj] performance * 〈event〉). PATTY defines syntactic matches to the

SOL pattern as textual strings that can be mapped to pattern in an order-preserving

manner. Also it establishes a notion of semantic generalization of SOL patterns by

looking at the set overlap of their entity arguments. The SOL pattern model is able

to capture fine-grained relations, enabling pattern generalization for high coverage

and efficient processing for scalable mining.

PATTY also constructs a taxonomy of subsuming patterns, looking at set of argument

pairs of each the pattern. However it avoids pairwise comparison of set of argument

pairs by constructing a prefix-tree of these sets, where patterns with common ar-

gument pairs have the same prefix path. It also adds node-to-node links across

different paths, connecting nodes that have the same argument pair. By traversing

the prefix-tree bottom up following these links, all paths that are subsumed by each

pattern are mined, yielding a taxonomy of patterns.

2.3.7 OLLIE

OLLIE [49] system builds pattern templates on dependency tree paths. This allows

OLLIE to capture noun-form and adjectival patterns as well, unlike ReVerb and Text-

Runner, that only capture relations mediated by verbs. In addition, by allowing both

syntactic and semantic/lexical patterns over dependency paths, and performing re-

laxed pattern matching, OLLIE yields high recall while maintaining good precision.

Another feature of OLLIE is the ability to detect non-factual assertions, which is

achieved by performing context analysis (e.g., in the case of “Early astronomers

believed that earth is the center of the universe.”). These non-factual assertions
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can be attributional, hypothetical or conditional. To detect attributional relations,

the contextual verb in the dependency parse is matched to a list of communication

and cognition verbs in VerbNet [68] such as {“believe” or “talk about”}. In addition

the prefix of the adverbial clause modifier in the parse structure is checked against

terms such as {if, although, when, because etc.}. While these measures cover most

cases, a supervised logistic classifier (trained over extractions from Wikipedia, news

and biology) is used to reduce confidence scores if the context is not likely to be fac-

tual.

OLLIE achieves higher yield compared to ReVerb-like systems owing to use of depen-

dency parse structures, allowing relational terms to positionally occur outside their

arguments. On the flip side, the approach heavily relies on dependency parsers,

which are prone to errors (over 30% of their errors in their experiments). Other

sources of errors are aggressive generalization of patterns, errors in detecting con-

texts, and inability to detect n-ary relations. Nonetheless, OLLIE obtains a higher

number of precise extractions than existing state-of-the-art OpenIE systems. More-

over, so far it is the only automatic OpenIE system that detects non-factual asser-

tions which are only hypothetically or conditionally true.

2.4 HUMAN COMPUTING SYSTEMS

Human computing (HC) refers to the paradigm of designing procedures that em-

ploy large crowd of users to solving computationally hard problems. This underly-

ing idea is to leverage the innate cognitive and intellectual capabilities of humans

for certain tasks, especially in cases where algorithmic solutions fare poorly; for

example, tasks that involve understanding content in images, audio or videos. Hu-

man computing is increasingly being applied in areas that include, but not limited

to, information accessibility and security, computer vision, content recognition, data

filtering, and translation.

HC has generated massive interest in research communities given its wide range

of applications. Academics in the areas of data and knowledge management have

started principled research on how to systematically exploit collective human intel-

ligence [21, 22]. Recent works have studied application of HC in quality assessment
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of rankings, summaries, and IE results [21, 25, 26], query answering [27–29], en-

tity matching [30, 31], ontology alignment [32], image search and annotation [33–

35], and acquiring commonsense properties [36, 37] and taxonomies [38].

User participation in human computing tasks needs incentives. Three main streams

of incentivization exist: Most prominent stream is of users who earn direct incen-

tives in the form of monetary payments for working on tasks requested by others

over online “crowdsourcing” platforms. Secondly altruistic Web users motivated by

information sharing, collaborate to create and maintain online knowledge reposito-

ries and make them available for everyone’s use. Thirdly, HC games can be designed

that disguise tasks, soliciting user’s contributions implicitly and exploiting their de-

sire to be entertained. Classified based on the type of incentivization, we discuss

here the important HC works and their attributes.

2.4.1 Crowdsourcing

Crowdsourcing refers to the practice of employing a large pool of humans, typically

from online Web users, to work on microtasks – tasks that can be done by any user

in a short amount of time (seconds or few minutes). In crowdsourcing terminol-

ogy, microtasks are often referred to as Human Intelligence Tasks or HITs and the

users as “workers” or “turkers”. Typical HITs are labeling, ranking or classifying

items, recognizing objects in multimedia, answering survey questions, or testing

websites. More involved HITs include transcribing audios or videos, summarizing

text passages, or developing and correcting text descriptions. Upon completion of

one or more HITs, the worker gets micropayments in the tune of cents or few dol-

lars. Most HITs are designed so that they can be accomplished by any worker in

the population with no assumption on their background knowledge on the subject.

Easy-to-accomplish (and high paying) HITs attract a larger subset of the worker

population and result in lesser turn-around time for the requester.

Many crowdsourcing platforms have emerged that enrol internet population as

workers for crowdsourcing tasks. There are many benefits of the requester-worker

symbiotic environment that these platforms provide. The requesters benefit by by-

passing the tedious process of recruiting employees, while the workers can choose

and work on tasks that suit them. However the contrasting goals of the requester
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trying to acquire good results, and the workers maximizing their earnings has cer-

tain pitfalls. Relying on a single worker often leads to low quality or erroneous

solutions. Crowdsourcing platforms employ two strategies to overcome this effect.

They produce redundant HITs and aggregate the workers’ inputs (here the workers

are chosen randomly to minimize collusion). Majority voting is the de-facto method

for this purpose; different variants of this method and other aggregation methods

are subject of active research [69, 70]. Another widely employed strategy is to

assign trust or confidence scores to workers and weed out solutions of unreliable

workers by subjecting them apriori to control tests [71].

Amazon Mechanical Turk [23] and CrowdFlower [24] are forerunners among over

1000 commercial crowdsourcing platforms that exist today. They employ millions

of workers world-wide for tasks in areas related to design, data gathering, idea

generation, search and surveillance, documentation and proofreading, and many

more 1. Given the wide range of its application areas, crowdsourcing has generated

massive interest among researchers [72] and has been the focus of both DB and IR

communities for the past few years.

• Applications in Vision. Vision applications that require detecting objects

and patterns in images and other multimedia have greatly benefited from

crowdsourcing. Techniques to use crowds for labeling images for content

search [35, 73], correcting OCR errors, annotating video content for tran-

scription, classification [74] and detecting events [75] have been proposed.

Most prominent among these systems is reCaptcha [76] which uses OCR er-

rors to discern humans from programs. Users who correctly identify these

errors are allowed access to the Web resources that use this tool, resolving

OCR errors as a by-product.

• Applications in Database Management. Within data management, CrowdDB

[27], Qurk [77, 78], and [28, 29] attempt to extend database systems by in-

corporating crowd functionality. CrowdDB augments databases with new data

that humans can easily find (say utilizing search engines) and aims to answer

fuzzy-comparison queries, such as different text sentences or photos referring

1http://en.wikipedia.org/wiki/List_of_crowdsourcing_projects

http://en.wikipedia.org/wiki/List_of_crowdsourcing_projects
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to the same entity. It models human participation in the task of query an-

swering, extending SQL with operators reflecting these data-adding and com-

parison needs. Qurk [77] aims at managing the work-flow and the returned

answers by humans to HITs. It extends SQL and represents human answers

as multivalued attributes and aggregation functions are defined (such as ma-

jority voting) to declare the eventual single attribute value. It also allows the

addition of new operators, such as filters, sorts, and joins. For instance, join

operators are employed whereby humans are called to find the same entities

in different “tables” (e.g. identify the same person in two different sets of

photos). In [78] authors show how the human-based sort and join operators

are implemented and optimizations are presented regarding the generation of

HITs and their costs. Similarly, [28] attempts to involve humans in data man-

agement tasks, presenting a new query model which allows for predicates to

be evaluated by humans, the DB, and/or external algorithms.

• Applications in Information Retrieval. Crowdsourcing is increasingly be-

ing employed also for Information Retrieval tasks [25, 26]. CrowdSearch,

[34], for example, tackles the problems associated with the low-quality results

achieved when searching for images, especially when using mobile phones

where image quality is typically poor. It adds a human-validation phase,

whereby the AMT infrastructure is employed and human intelligence im-

proves search result quality. CrowdSearch addresses the issues of selecting

the results for which validation is sought and how to validate them, using

models for the delay-accuracy-cost trade-offs involved in the crowdsourced

tasks. Crowds have also been successfully employed for relevance assess-

ments: Alonso et al. [25] show that crowdsource workers can perform rel-

evance assessment as well as TREC experts.

2.4.2 Collaborative Knowledge Building

With increasing usage of the World Wide Web in the recent years, there has been

tremendous development in internet-based platforms for collaborative sharing of

knowledge.
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Wikipedia. Wikipedia, a collaboratively-edited online encyclopedia, is one of the

largest and most popular efforts in this direction. As of date, it contains over 30

million articles in 287 languages (over 4.3 million in English) – written, struc-

tured, and edited by volunteers on the Web. Its high quality, freely available and

dynamically-updated content is widely used for research purposes. Though ren-

dered in HTML, Wikipedia articles are authored in the Wiki markup language which

provides a loose structure and makes its content particularly amenable for harvest-

ing [3, 4]. There are various informative components of a Wikipedia article that

can be directly tapped into for extraction. A typical article contains summarized

information on important attributes of the entity (such as birth-date, profession,

nationality for articles of the PERSON class) in a table called infobox. The rest of

the article contains information in the form of unstructured text organized into

sections. Often they contain lists and tables. Important entities in the text are

linked to their respective articles through Wikipedia intra-wiki links. Each article

is also assigned categories based on the topics to which it belongs. Each article is

linked to its equivalent in other languages through inter-wiki links. Different sur-

face string formulations are manually disambiguated to point to the correct article

(for e.g., {Obama} & {Barack Obama} point to the same article while {Amazon (river)}

& {Amazon (warrior)} point to different articles). While Wikipedia infoboxes, links

and categories have been extensively utilized for fact harvesting, exploiting their

rich textual content is still an active area of research.

Wiki Farms & Community Wikis. Platforms such as wikia.com, sparknotes.com,

cliffnotes.com etc. enable close-knit communities to share information from specific

domains such as movies, video games, history, sports or literature. These repos-

itories vary in richness and organization depending on the community size, time

period and existence and update activity. Like previous systems, HIGGINS exploits

community-gathered knowledge for its purposes. In HIGGINS we harvest movie

articles from Wikipedia and book story articles from Sparknotes [79].

2.4.3 Human Computing Games.

Human computing games, pioneered by Luis von Ahn [39], transform or mask com-

putationally challenging tasks into interesting games. Here humans inadvertently
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indulge in solving instances of a computational problem, only to fulfill their desire

to be entertained. The outcome of these games help gather data, which is other-

wise hard to acquire (for example, by applying computer vision techniques). Such

data is invaluable and can directly serve for various purposes (e.g., image search)

or indirectly as training data for machine learning approaches.

Luis von Ahn et al. introduced “Games With A Purpose” or “GWAP” [39], and

proposed several games that aid in solving hard AI problems such as image labeling,

object recognition and commonsense fact acquisition. In all of these games, the

game interaction is tied up with the task to be accomplished. During the interaction,

the player tries to achieve a fully specified goal following pre-defined rules which

are carefully designed to partially or fully solve the computational task. Three

general strategies for game play were outlined under GWAP:

a. Output-agreement Games: Two randomly paired players are given the same

input and the goal is to produce the same output. ESP game [33] (later

adopted as Google Image Labeler), is a popular game that adopts this strategy.

The system shows an identical image to a pair of players and they provide

keywords description about the image. The game is won if a common keyword

is provided by both. These keywords are used to tag the input images and

consequently utilized for enhancing Web image search.

b. Input-agreement Games. Two randomly paired players are given individual

inputs known only to the system. They are shown the data generated by

their each other and the goal is to verify if the system provided them with

the same input. For example, in TagATune [80], two sound clips are used as

inputs and the players describe to each other their content or features. These

descriptions form important audio metadata and can consequently be used

for audio search and retrieval.

c. Inversion-problem Games. Two randomly paired players are given different

roles. A player under the ‘narrator’ role is given the input which he describes

to the partner, who assumes the ‘guesser’ role. The goal is achieved when

the guesser correctly identifies the input based on the descriptions created

by the partner. The Verbosity [36] game follows this strategy. In each of
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several rounds, the narrator is given an object (e.g., apple, grass, milk etc.)

based on which he fills in template sentences. Using these sentences as hints

the guesser tries to detect the object. Both players win the round when the

guesser is successful in identifying the object. The system uses the sentence

templates to construct common sense facts.

2.5 HUMAN COMPUTING FOR KNOWLEDGE ACQUISITION

Finally, with respect to knowledge acquisition, crowdsourcing techniques also have

enjoyed successes. An early representative example are common sense knowledge

bases, with the Open Mind Common Sense (OMCS) project [81], being a prototyp-

ical example. OMCS relies on volunteers to provide statements of common sense

regarding real-world objects, people, and events. In parallel to such ‘brute-force’

crowdsourcing efforts, games with a purpose, have shown that knowledge can be

acquired, as a ‘side-affect’, when humans play carefully designed games. Verbosity

[36] is an interesting example game, which was successful in terms of both the

number of people players and the knowledge acquired. Interestingly, OMCS and

Verbosity have been combined [37] in order to increase OMCS’s ‘entertainment

value’ and thus its human involvement. This is facilitated by the fact that the state-

ments acquired by Verbosity resemble greatly the facts in ConceptNet [82] (OMCS’s

semantic network representation).

Very recently, crowdsourcing has also been employed for the creation of taxonomies

[38], collecting seed facts as labeled training data [83], entity resolution [31], and

ontology alignment [32]. However, all above efforts rely solely on human input for

knowledge acquisition.



3 CHAPTER

The HIGGINS System for Combining

Information Extraction and

Crowdsourcing

3.1 OVERVIEW

In this chapter, we present an architecture that combines techniques for automated

information extraction (IE) with human computing (HC), for acquiring knowledge

base facts. Termed HIGGINS , this architecture blends an automated IE engine with

a crowdsourced-based (or game-based) HC engine. The IE engine harvests fact

candidates from free text by compiling large entity and relation lexicons and using

statistics and semantic resources for relational phrases. From the large pool of gen-

erated fact candidates, the HC engine uses ranking based on statistical language

models to provide most likely candidates for human judgements, casting them ei-

ther in the form of crowdsourced HITs or questions of a HC game.

3.2 ARCHITECTURE OF HIGGINS

The key idea of HIGGINS is to use automatic IE to generate questions and relevant

candidate answers (for multiple-choice questions), enabling effective collection of

human inputs. Our expectation is that this can improve the quality of user con-

tributions and reduce the overall cost of crowdsourcing. Therefore in HIGGINS ,

25
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FIGURE 3.1: HIGGINS workflow

the strategy for acquisition of entity-relation triples has two components (shown in

Fig. 3.1):

1. IE engine: We employ automated IE on Web corpora, in order to derive candi-

dates for entity-relation-entity triples, with an open set of potential relations.

We use a suite of techniques from computational linguistics, including depen-

dency parsing (with the Stanford Parser) and pronoun resolution (with our

own customized method). The resulting triples are usually of mixed quality,

necessitating the second stage.

2. HC engine: The sets of candidates from the IE engine and their underlying

patterns are then used to generate HITs in game form. Abstractly, each HIT

presents the user with a knowledge quad of the form (c, e1, r, e2) where e1

and e2 are entities, r is a relation, and c is a cue or textual context. One or

more of the components c, e1, r, and e2 can be empty slots (variables) to be

filled by the user; we may present a multiple-choice list to the user to pick

the missing value. The quads are presented in the form of questions, with

relevant candidate answers and additional free-text fields for entering further

values. We formally define the notion of knowledge quads in the following

section.

3.2.1 Definitions.

HIGGINS generates fact candidates from text through automated IE and validates

them through HC producing factually correct knowledge triples and quads. In this

work, we look at the following definitions for knowledge triples and quads.



Chapter III. The HIGGINS System for Combining Information Extraction and
Crowdsourcing 27

Definition 3.2.1. A KNOWLEDGE TRIPLE is a triple 〈e1, r, e2〉 consisting of entities

e1 and e2 and a relation r, where each of the three slots may also be a variable

(starting with a question mark and indicating a missing value).

Definition 3.2.2. A KNOWLEDGE QUAD is a quadruple 〈c, e1, r, e2〉 where c is a con-

text entity and the other three components form a knowledge triple within the scope

of c. All slots may also be variables.

In both triples and quads, HIGGINS allows semantic classes in the place of the e2

entity. In this case, r is the type relation (an example being Michael_Corleone type

MafiaGangster).

Definition 3.2.3. BOUND/UNBOUND SLOTS. The IE engine of HIGGINS generates

fact hypotheses as quads z = 〈c, e1, e2, r〉, where one or more of c, e1, e2 and r can

be bound. A slot is bound if the HIGGINS IE engine extracts a candidate value for

the slot. For example, i = 〈 The Godfather, Michael Corleone, Vito Corleone, r 〉 has c, e1

and e2 bound and r is unbound.

In our notation, a quad instance and its constituent slots are denoted using small

case and bold-face shows bound items. For example, a quad instance z ∈ Z, z =

〈c, e1, e2, r〉, has c, e1 and e2 bound and r is unbound.

3.2.2 Functionality of HIGGINS Components.

The HIGGINS IE and HC engines in combination take textual sources as input and

produce knowledge quads by formulating acquisition or validation tasks. In this

section we outline the steps followed and provide an overview of the functional

integration of HIGGINS ’ components.

In the following procedures we focus on the acquisition task where the relation is

unbounded. For this task, the HIGGINS IE engine takes as input the narrative text

and produces fact hypotheses H. These fact hypotheses are fed to the HC engine

and transformed into fully qualified knowledge quads via human inputs.

In the IE stage, the procedure shown in Higgins.IEEngine is followed for the relation

extraction task shown as t. For each context (for example, a movie, book or a news
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Procedure Higgins(t)
Input: Example Task t : 〈c, e1, e2, r〉, Narrative Collection: M
Output: Knowledge quad instances K

1 H ← Higgins.IEEngine (t,M);
2 K ← Higgins.HCEngine (H);
3 return K;

article) in the narrative collection M , we retrieve from the entity phrase lexicon,

the entity phrases that are of interest in the context. From the narrative text, other

entity phrases occurring in the same sentence are paired. Based on the text in these

sentences, a set of relation candidates are chosen from the dictionary of relations

based to their relevance to the text. The resulting set of fact hypotheses H are

collected and passed to the HC engine, where each h ∈ H is a quad comprising

of the context, the entity pair and candidate relations that potentially apply to the

pair.

Procedure Higgins.IEEngine(t,M)
Input: Task t : 〈c, e1, e2, r〉, Narrative Collection: M
Output: Set of HITs H

1 H = [ ]
2 for c ∈M do
3 E ← getEntitiesOfInterest (c)
4 for e1 ∈ E do
5 e2 ← getPairingEntity (c, e1, E)
6 R← generateRelationCandidates (c, e1, e2)
7 h← 〈c, e1, e2, R〉
8 H ← H.append (h)

9 return H

The HC engine, shown in Higgins.HCEngine, generates natural language questions

Q on the basis of the fact hypotheses H. These questions when ratified via a human

input become fully qualified knowledge quads K.



Chapter III. The HIGGINS System for Combining Information Extraction and
Crowdsourcing 29

Procedure Higgins.HCEngine(H)
Input: HITs : h ∈ H, where h = 〈c, e1, e2, R〉
Output: Knowledge quad instances K

1 K = [ ]
2 for h ∈ H do
3 q ← generateQuestion(h)
4 h := 〈c, e1, e2, r〉 ← obtainHumanInput (q)
5 K ← K.append (h)

6 return K

3.3 DESIGN OF HIGGINS COMPONENTS

In designing HIGGINS components, two important issues need to be considered.

Firstly the IE engine should generate all likely fact hypotheses taking into consid-

eration the diversity and sparseness of relational phrases. Secondly, in order not to

overwhelm the users at HC stage, the IE engine needs to come up with only a hand-

ful of relevant fact candidates for HITs. Therefore we follow the design principles

of HIGGINS listed below:

1. The IE engine is tuned to work aggressively (aiming for high recall), capturing

as many relational patterns as possible, and we expand this set by specifically

designed statistical (translation) language models (LM’s).

2. We use statistics and heuristics to generate interesting questions about im-

portant entities and salient but not obvious relationships. Candidate answers

for multiple-choice input are judiciously ranked, using corpus-collected statis-

tics. An additional diversification step serves to avoid boring the user with

near-duplicate choices.

3. The statistically derived relational phrases for candidate answers are comple-

mented by phrases from semantic resources, specifically WordNet [84], Con-

ceptNet [82], ReVerb [17], and PATTY [66]. All this information is combined

by a mixture model that generates, expands, and ranks relationships for a

given context using a statistical language model.

Figure 3.2 depicts the system architecture and main components of HIGGINS . It

also shows a sample question from a game instance.
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θd 

In the movie Casino Royale (2005), Daniel Craig 

played the role James Bond and Eva Green 

played the role Vesper Lynd. In the screen 

described below, what was true about James 

Bond and Vesper Lynd? 

Prelude: Hoping that a defeat would force Le Chiffre to 
aid the British government in exchange for protection from 
his creditors, MI 6 enters James Bond into the tournament. 

o cheated 

o met 

o looked for 

o played against 

o lent money to 

o   
 

Other (type here) 

James Bond Vesper Lynd 

context entity 
target entities target relations 

FIGURE 3.2: Overview of the HIGGINS Architecture

3.4 HIGGINS IE ENGINE

The HIGGINS IE approach follows the rationale of Open IE [6, 16, 17, 20] to achieve

high recall. The IE engine aggressively gathers noun phrases for entities and verb-

centric or role-centric phrases for relationships. Given a corpus, e.g., a set of movie

narratives, we process all its documents in three phases:

1. identifying entity occurrences,

2. gathering relational phrases from sentences that contain two interesting entity

names, using light-weight NLP techniques like part-of-speech tagging,

3. pruning the set of potential candidate relationships, by using more expensive

NLP techniques like dependency parsing.

3.4.1 Entity occurrences

Entities. We consider all proper noun phrases (names, used without article) as enti-

ties. In addition, we consider a specific set of general noun phrases and occurrences
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of personal pronouns. If possible, we relate these phrases to canonical entities regis-

tered in a knowledge base like Freebase or Yago (or to the lists of actors, characters

in Wikipedia/IMDB). The phrase-entity pairs form the entity part of the HIGGINS

dictionary.

Entity descriptions. In addition, we have identified general noun phrases near

each character and mapped them to the type system of the Yago knowledge base,

using the same heuristics that Yago uses for mapping Wikipedia category names

onto WordNet synsets [4, 85] and keeping only subtypes of the Yago class person.

This way, we have compiled knowledge triples that provide us with fine-grained

types of characters such as 〈 Captain Jack Sparrow, isa, pirate lord 〉 and 〈 Will Turner,

isa, blacksmith 〉. This gives us a way of connecting role names occurring in narrative

texts, e.g., “. . . the pirate lord”, to the corresponding entities.

Pronouns. Finally, we have developed a heuristic method for resolving personal

pronouns in such texts. We focus on pronouns in singular form, and we exploit

gender information for characters. We map a male (female) pronoun to the clos-

est preceding male (female) name occurring as grammatical subject. The gender

properties for entities are derived from character descriptions using a classifier (over

features such as frequencies of male vs. female pronouns, prior information on male

vs. female first names, etc.). All these techniques serve to increase the number of

sentences that we can tap into for extracting relationships. We relay this gender

information to state-of-the-art co-reference resolution tool [86] to increase its res-

olution accuracy. If any errors are produced at this IE stage, the HC stage serves to

capture them. Without these additional steps, the number of sentences that contain

two explicitly and fully named entities and an interesting relation would often be

disappointingly low.

These techniques can be applied, with minor variations, to other Web sources, and

can be generalized to other kinds of entities. For example, for people’s biographies

as context entities, we can extract surface names of related entities from href anchor

texts in Wikipedia and other sources.
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3.4.2 Relations and Relational Phrases

As surface expressions for binary relations, HIGGINS uses lexico-syntactic patterns

like verbal phrases occurring in sentences that mention two entities. For mining

these, we give ourselves a head-start by using verbs from WordNet [43] and Con-

ceptNet [82], and more general phrases from ReVerb [17] and PATTY [66].

These semantic resources already provide us with a fairly big set of phrases. How-

ever, when considering human relationships in movies or books, one sometimes

comes upon very special phrases. Therefore, we manually compiled a set of 500 re-

lations, and mined additional paraphrases through co-occurring entity pairs in the

Wikipedia corpus. We limit phrases to one of the following two cases:

i) verb constructs or verbal phrases ending with a preposition (e.g. “falls in love

with”), or

ii) noun phrases ending with a preposition (e.g., “wise counselor of”).

Examples of knowledge triples with phrase-relation pairs obtained this way are:

〈 “had an affair with" means romance_with 〉,

〈 “stabbed from behind" means attacked 〉,

〈 “cut his head off" means murdered 〉.

We have a total of 116,471 relational phrases compiled in this way. We also use

the co-occurrence frequencies of phrases with entity pairs in the Wikipedia corpus

to estimate the semantic relatedness between phrases, which is later used by the

HC engine for ranking and diversification in questions and candidate answers. This

statistical estimation is discussed in detail in Section 4.5.

3.4.3 Pruning of Candidates

By detecting entity mentions in sentences and matching phrases from the dictionary

in the same sentences, we can compile a huge set of candidates for relationships

between entities. This gives us a very rich pool for generating HITs at the HC stage.
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However, the ratio of spurious relation instances is very high. This is due to the

complexity of the input sentences and the aggressiveness of our IE methodology.

We experimented with more conservative approaches as well, but they tend to miss

out many interesting candidates and lose big in recall.

To reduce the number of false positives, we employ a more expensive post-processing

phase on the collected relationship candidates by running a dependency parser on

all relevant sentences. Specifically, we use the Stanford Parser [87, 88] and identify

all dependency paths in a sentence connecting a pair of entities that occurs in a can-

didate from the previous phases. If no such path exists, the candidate is discarded.

Otherwise, we retain all candidates whose relational phrases overlap with words

on at least one of the dependency paths. For example, in the sentence “Le Chiffre

abducts Vesper Lynd and uses her as bait to capture James Bond.”, to detect the

relation between Le Chi�re and James Bond, we keep the top-k relations that match

the dependency path [uses as bait to capture].

3.5 HIGGINS HC ENGINE

The IE engine of HIGGINS generates hypotheses h = 〈c, e1, e2, r〉. These hypotheses

are transformed into HITs by the HC engine of HIGGINS. When the players fill in

values for the unbound arguments, the hypotheses turn into fully bound knowledge

quads. Thus, a set of HITs H is eventually turned into a set of knowledge quads K.

HITs come in two flavors. If instance h ∈ H contains unbound arguments, the HIT

is termed as an acquisition task. The player’s objective is to come up with the correct

binding(s). The IE engine may additionally provide candidate values for unbound

arguments, in which case, the player sees a multiple-choice question for the correct

binding. If the instance h ∈ H contains only bound arguments, the HIT is called a

validation task. Here the player’s objective is to confirm or refute the hypothesis.

3.5.1 HIGGINS HC tasks

If the IE engine provides candidate values for unbound arguments, the worker/-

player at the HC stage chooses the correct binding. If all the instances i ∈ I contain
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bound arguments, the HIT is called a validation task. Here the player’s objective is

to confirm or reject the instance.

Acquisition Tasks. An acquisition task transforms a partially bound quad instance

generated by the IE engine into a fully bound instance by completion of all bindings

via inputs from the human players. The players choose from the provided list of

candidates or type in their response.

In Table 3.1, we enumerate the different types of HITs depending on the unbound

arguments, and show an example each.

HITs with unbound slots Example HIT

〈c, e1, e2, r〉 In the movie The Godfather, what happened between Michael
Corleone and Sonny Corleone?

〈e1, e2, r, c〉 In which movie did Lord Aragorn marry Elf-Queen Arwen?

〈c, e1, r, e2〉
〈c, e2, r, e1〉

In the 1992 presidential elections, whom did Bill Clinton
defeat?

〈c, r, e1, e2〉 In the JK Rowling’s book Harry Potter and the Half-Blood
Prince, who killed whom?

〈c, e1, r, e2〉
〈c, e2, r, e1〉

In the movie Rambo: First Blood, what is true about Colonel
Sam Trautman?

〈r, e1, c, e2〉
〈r, e2, c, e1〉

Whom did Casanova fall in love with?

〈c, e1, e2, r〉 What of the following incidents happened in Shakespeare’s
play Macbeth?

〈r, c, e1, e2〉 Which biographies involve assassinations?

〈e1, c, e2, r〉
〈e2, c, e1, r〉

Which of the following are true about Nicolas Sarkozy?

TABLE 3.1: Acquisition Tasks

Validation Tasks. A validation task confirms or rejects a fully bound quad instance

generated by the IE engine via inputs from the human players. Table 3.2 shows an

instance of the validation task.
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HITs with unbound slots Example HIT

〈c, e1, e2, r〉 In the movie The Batman Begins, Joker killed Batman.
Confirm/Reject.

TABLE 3.2: Validation Tasks

3.5.2 Question Generation

The key issue for the HC engine is to generate the questions for a game (or crowd-

sourced HITs) and, if it is a multiple-choice question, a set of candidate answers.

For simpler explanation, here we focus on the case of hypotheses where only the

relation argument is unbound.

In principle, we could randomly pick instances from the pool H of hypotheses gen-

erated by the IE engine. However, this would inevitably yield poor results, because

many instances would not be suited for a specific user. Examples are entities that

are unfamiliar to the user and/or obscure entities involving peripheral characters in

a movie or book.

To avoid this pitfall, we tailor the questions to i) relate to context entities that

match the user’s interests (e.g., movies she knows well), and ii) refer to relations

between salient entities (e.g., main characters of a movie) of popular movies. For

the latter, we exploit knowledge sources like Wikipedia and IMDB for identifying

popular movies and their important entities.

Once a hypothesis h ∈ H is chosen as a question for a particular user, it merely

needs to be cast into the surface form that the game uses, e.g., by adding cues from

text about the context entity and the sentence that led to h and its surrounding

paragraph. Figure 3.2 contains a screen-shot example. Analogously, for crowd-

sourced HITs we group the questions so as to allow human contributors to choose

movies of their interest.

3.5.3 Generating Candidate Answers

In a game, HIGGINS could simply ask the user to fill in the missing value for a re-

lationship, by providing a free-text form field. However, experience shows that it
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is easier to engage a broad set of users with multiple-choice questions and candi-

date answers to choose from. Therefore, we generate a small number of candidate

answers (usually 5) and additionally offer a free-text field for entering other re-

lationships. For the game effectiveness, it is important that the offered candidate

answers i) are reasonable, that is, exclude nonsensical relations for the given con-

text entity (e.g., exclude “is the grandmother of” for a question about James Bond

and Le Chi�re), ii) include a good answer, if known from the original sentence that

generated the HIT, and iii) are sufficiently diverse so that users see actual choices,

as opposed to proposing only candidates that are so close that only a very sophisti-

cated user could distinguish them (e.g., “orders to kill” vs. “hired goons to eliminate”

- which would be considered the same by most players).

To satisfy these desiderata, the possible answers for a HIT are first ranked, based

on the statistical language models, and then diversified. The details are presented

in Chapter 4.

• Ranking: For this step, we start with the relational phrase from the original

sentence that generated the HIT question. We use the statistical language model

for phrase relatedness to enumerate semantically similar phrases in descending

order of relatedness scores. For example, when starting with “falls in love with”,

highly related phrases would be “loves”, “love affair with”, “has romantic passion

for”, “engages in romance with”, etc.

• Diversification: For diversification, we aim to remove near-duplicates from the

top-k candidates according to the relatedness ranking. To this end, we remove

all phrases that have significant overlap with a phrase that is ranked higher.

Overlap in words is considered significant if there is a noun or verb contained

in both phrases (excluding light verbs such as has, was etc.). In the above

example, the phrases “loves” and “love affair with” are viewed as near-duplicates.

Same is the case for “has romantic passion for”, and “engages in romance with”.

In addition to this syntactic form of diversification, we use randomization by

picking the final phrases for the multiple-choice question from a larger pool of

top-ranked and de-duplicated candidates (typically picking 5 out of a pool of

20).
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3.5.4 Rewards for HC

HIGGINS uses predefined question templates and plugs in the context, the entities,

and the relation(s), to present a HIT to a game player or a crowdsourced worker.

In the game form, points are awarded to the player upon providing a response. The

player can choose to either respond or skip a question that is presented. Notably,

the game can be configured to give additional cues (from the context) upon request

by the player. This is strategic: when the presented choices do not satisfy the player,

the player can see the sentence for which the entity-relation fact occurs. In this way,

noisy relations (that may occur for instance due to errors in pronoun resolution)

can be corrected by players. To do this, players simply engage human intelligence

using which correct resolution is much easier. In this case, the player can obtain

only half the points for an answer. And, we enhance our KB quality using the

intelligence of humans who may not be experts in a specific domain. When players

can know/guess the answer without the cue, they gain full bonus points, as in this

case we additionally tap into human knowledge.

For crowdsourced HITs, each response secures monetary rewards to the worker.

The workers are also provided sentences of the source text, from which the IE

engine generated the fact candidates. When none of the candidate answers hold,

the worker types-in the correct relation/entity based on the text provided.

3.6 SUMMARY

The HIGGINS architecture aims at the synergistic benefits of combining automatic

fact extraction methods with human computing systems. Its IE engine combines

phrase statistics mined from large corpora with semantic resources to discover re-

lations that manifest from complex and diverse phrasal expressions. Designed for

achieving high recall, the IE engine may permit incorrect fact candidates or noise.

Statistical language model based ranking of the resulting fact candidates (specif-

ically its unbound slots) is performed to present the top-ranked ones at the HC

stage. This helps eliminate noisy, incorrect and irrelevant candidates and as a result

reduces the overall cost of human judgements.





4 CHAPTER

Candidate Fact Extraction and Ranking

4.1 OVERVIEW

In this chapter we present details of the IE engine in the HIGGINS framework.

Specifically we describe the extraction methods employed to extract entities and

their relational phrases from text. We describe the ranking models for relational

phrases which help prune the fallacious quads, enabling effective crowdsourcing by

producing only a handful of choices for the humans. Figure 4.1 pictorially summa-

rizes the workflow of the HIGGINS IE engine.

4.2 BUILDING THE ENTITY LEXICON FOR HITS: EXTRACTION, RESOLUTION AND

ALIAS DETECTION

HIGGINS compiles a dictionary of canonical entity names, their mentions and de-

scriptive noun-phrases for its purposes. For canonical entity names, we tap into

the character lists (and tables) in movie or book articles. Fig. 4.2 shows an ex-

ample screen-shot from Wikipedia. We harvest names, aliases and nicknames of

the characters from the descriptions in these lists using a regular expression based

wrapper (see Appendix A). Examples of knowledge triples (all in the context of the

Godfather movies) extracted in the above manner are: 〈 Vito_Corleone knownAs "Don

Corleone" 〉, 〈 Santino_Corleone knownAs "Sonny" 〉, 〈 Kay_Adams knownAs "Michael’s non-

Italian girlfriend" 〉, 〈 Tom_Hagen knownAs "the Consigliere" 〉, 〈 Virgil_Sollozzo knownAs "the

Turk" 〉.

39
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FIGURE 4.1: Generating HITs with HIGGINS

Often these sections contain brief character potrayal snippets that provide descrip-

tive noun phrases for the characters (for example, in Fig. 4.2, the phrases “infor-

mally adopted son” or “family lawyer” in the description of Tom Hagen). For snippet

of each character, we extract these phrases using regular expressions on part-of-

speech tags, listed in Appendix A. The common nouns in the extracted phrases

are identified by the ‘NN’ tag in their parts-of-speech. By looking up the common

nouns contained in the noun phrases of each character (“son”, “lawyer”, etc.) in the

type system of YAGO ontology (for example, in the subtypes of the type PERSON) we

identify phrases that describe these characters. This way we harvest fine-grained

information about the entities such as 〈 Vito_ Corleone, isa, boss 〉, 〈 Tom_Hagen, isa,

lawyer 〉 and so on. Using this information and by generating term combinations of
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FIGURE 4.2: Cast section in the ‘The Godfather’ movie article in Wikipedia
(figure shows a truncated snapshot)

full names using heuristics, we identify entity mentions in the storyline text.

Finally we perform coreference resolution using the Stanford Coreference Resolu-

tion Tool [86] to recognize anaphoras. The accuracy of the tool can be enhanced

by using gender information of the entities. We developed a heuristic method for

resolving personal pronouns in such texts for this purpose. We focus on pronouns

in singular form, and gather gender-resolving pronouns for characters. We map a

male (female) pronoun to the closest preceding male (female) name occurring as

grammatical subject. The gender properties for entities are derived from character
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descriptions using a classifier (over features such as frequencies of male vs. female

pronouns, prior information on male vs. female first names, etc.).

4.3 RELATIONS & RELATIONAL PHRASES

The relationships between humans or fictional characters seen in narrative text are

diverse and multifarious. While some of these relations are common place (for e.g.,

“sister of”, “criticized”, or “murdered”), many are less frequent but equally interest-

ing (for example, “tries to overthrow”, “was the inspiration for” or “nearly lost to”).

Moreover authors of narrative text use a variety of phrases to express such rela-

tions (for example, the relation “criticized” may be expressed using phrases such as

“knocked” or “picked apart”). For achieving a decent recall over such relations, it is

essential that the IE engine has knowledge of phrases that express them. We em-

ploy a two-staged approach for the collection of relations and relationship phrases.

We first establish a dictionary of relations utilizing existing IE resources. We then

collect phrases that express these relations using co-occurrence statistics on a large

corpus. To increase coverage, these phrases are expanded further by using semantic

resources such as WordNet and ConceptNet.

4.3.1 Building the Dictionary of Relations

As surface expressions for binary relations we construct a dictionary of relations

using noun and verb-form lexico-syntactic patterns. They come from the following

sources:

1. Extractions of OpenIE systems. We include relational instances from high

quality extractions of REVERB [17, 89] and PATTY [66, 67].

• REVERB is an OpenIE system that identifies and extracts verb-mediated

binary relations from Web-scale textual collections. It captures relational

phrases that adhere to a syntactic constraint enforced using regular ex-

pressions over part-of-speech (POS) tags, to reduce incoherent and un-

informative phrases. To remove highly specific phrases from the result-

ing set, filtering based on a lexical constraint is applied. This is done
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by retaining phrases if their POS pattern is observed with at least one

distinct argument pair in ClueWeb09 corpus. Unlike other OpenIE sys-

tems, REVERB achieves higher coverage by allowing phrases with light-

verb construction (such as “had a deal with”) and phrases with multiple

verbs (“refuses to negotiate with”). Such characteristic phrases often oc-

cur between character roles in narrative text. We make use of REVERB

extractions on the Clueweb091 dataset, made available by the authors

(http://reverb.cs.washington.edu/).

• PATTY extracts semantically typed binary relations from Web-scale cor-

pora and organizes them into a subsumption taxonomy. It transforms

relational phrases found using dependency parse trees into syntactic-

lexical-ontological (SOL) patterns, where the arguments have ontolog-

ical type signatures. With the arguments forming support sets, the SOL

patterns are organized into subsumption hierarchy by determining inclu-

sion, mutual inclusion and independence among the support sets. Un-

like the REVERB system, PATTY makes use of arbitrary patterns which

include noun-mediated relational phrases. Therefore we make use of

PATTY extractions on the English Wikipedia corpus, made available by

the authors (http://www.mpi-inf.mpg.de/yago-naga/patty/).

REVERB performs general extraction with no type restrictions on the argu-

ments while PATTY uses ontological types from YAGO. Not all of these ar-

gument types are useful in the context of relations that occur between char-

acter roles in movies or books. We restrict the OpenIE extractions to the ar-

guments with the Freebase and YAGO types (and their sub-types) shown in

Table 4.1. From 14.7 million ReVerb extractions on Clueweb09, this step pro-

duced 192,291 surface phrases for relations. Similarly 199,855 phrases from

PATTY were produced.

2. Manual Compilation of Relations. In order to ensure the presence of salient

relations in our dictionary, we manually produced a set of 544 relations. Ap-

pendix B lists these relations.

1http://lemurproject.org/clueweb09.php/

http://reverb.cs.washington.edu/
http://www.mpi-inf.mpg.de/yago-naga/patty/
http://lemurproject.org/clueweb09.php/
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Freebase Types YAGO types

/people/person person

/people/appointee living_thing

/people/appointed_role imaginary_being

/people/appointed_nomination fictional

/people/deceased_person film_characters

/people/family_name social_group

/people/measured_person

/tv/tv_character

/film/film_character

/book/book_character

/theater/theater_character

/fictional_universe/fictional_character

/celebrities/celebrity

TABLE 4.1: Freebase & YAGO types for narrative characters

In the spirit of [17], we perform additional checks based on heuristic to prune out

noisy and incorrect OpenIE phrases. They are:

i) presence of at least one common noun or a verb

ii) multi-word phrases that do not end with a verb must end with a preposition.

All the phrases are then lemmatized and POS lifted to generate lexico-syntactic

forms. The duplicates are then merged, providing us a bootstrap set of 116,471

relations. All corresponding surface forms of the relational phrases are retained to

be used in HIT generation at the HC stage.

4.4 PHRASE DISCOVERY FOR RELATIONS

The dictionary of relations provides us a fairly large set of potential relations, us-

ing which the HIGGINS system can automatically discover participating entities in

text – thus procuring fact candidates. However, the number of candidate instances
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wherein the exact lexical forms of the relations are observed in the document text

can be very limited. To overcome this, we generalize the relational phrases by al-

lowing wild-cards in their matching criteria. As in PATTY, words within the phrases

that do not alter their semantic sense such as pronouns, determiners, adjectives and

modifiers can be relaxed to within any member of their class (for example, the pat-

tern “be 〈det〉 inspiration for” in place of “was the inspiration for”, or, the pattern

“files 〈prp〉 report about” in place of “files his report about”).

However given the diversity of expression in textual sources such as narratives,

pattern generalization over lexical forms does not suffice. Many of the relations are

expressed in semantically similar phrases are unrelated in their lexical forms. For

example, the relation “ADMIRED” may be expressed using phrases such as “looked up

to” or “repeatedly praised”, and loosely as “eulogized”, “idolized”, or “was an austere

devotee of”. Similarly the noun-form relation “ACCOMPLICE” can be expressed using

“confederate”, “aid of” or in the verb-form as “conspired along with” or “provided

support to”. If such associated phrases for the relations are not taken into account,

overall recall of the system would suffer.

To collect phrases for relations in the dictionary, we mine patterns using co-occurring

entity pairs in Wikipedia article text. This process is detailed below.

4.4.1 Statistical Mining of Relational Phrases

Our mining procedure hinges on the idea that a phrase p is associated with relation

r, if many entity pairs in a large corpus are observed with both r and p. For example

the phrase “entered a wedlock” is associated with the relation “MARRIEDTO” if many

entity pairs (e.g., (Kate, William), (Jigme, Jetsun), (Victoria, Daniel) and so on) co-occur

with both these phrases in the corpus documents. Our procedure allows for general

noun phrases as arguments, to capture a larger proportion of phrase expressions

(for e.g., Blair’s son .. ties the knot with .. his long-term girlfriend). Regex-based

rules on parts-of-speech tags listed in A.2 of Appendix A are used for noun-phrase

detection.

We use the full text of 4.1 million English Wikipedia articles, which are split into

sentences, lemmatize and POS tag using Stanford CoreNLP processing tool [90].
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4.4.1.1 Mining Procedure.

The dictionary of relations, D, compiled in 4.3.1 is used to bootstrap the mining

process. The mining procedure has two steps:

i. Finding noun-phrase arguments: For each relation r ∈ D, the bootstrap set,

find contexts C (we use sentence-level text as contexts) in the corpus where

r occurs. For each context in C, extract the set of noun-phrase pairs E that

surround r.

ii. Extracting phrases: For each noun-phrase pair in e ∈ E, find contexts C ′ where

e occurs and extract encompassing phrases P .

From the above two steps we collect relational phrases, their co-occurring noun-

phrase pairs, and co-occurrence statistics. We also collect overall corpus frequency

counts of the noun-phrase pairs and the mined patterns.

4.4.1.2 Statistical Relatedness of Phrases.

We use the co-occurrence statistics of noun-phrase pairs with a dictionary relation

and a mined relational phrase to quantify the strength of association between the

relation and the phrase. For a relation r and a phrase p, stronger semantic closeness

between p and r is indicated by the presence of a large number of different noun-

phrase pairs in the corpus that co-occur with both r and p. We quantify this degree

of closeness by assigning relatedness scores to each (p, r) pair. We studied several

existing statistical relatedness measures for this purpose.

Statistical measures based on word-based collocation in large corpora have exten-

sively been studied in the field of natural language processing (see Chapter 5 in

[91] for an overview). We experimented with several different measures by adapt-

ing them to our setting – Pointwise Mutual Information (PMI), normalized PMI,

Mutual Information, Pearson’s chi-square test and cosine of PMI. For a dictionary

relation r, a mined relational phrase p, and the set of co-occurring noun-phrase

pairs N , Table 4.2 lists these measures.



Chapter IV. Candidate Fact Extraction and Ranking 47

Measure Evaluation

PMI PMI(p, r) = log Pr(p,r)
Pr(p)∗Pr(r)

normalized PMI nPMI(p, r) = log Pr(p,r)/Pr(p)∗Pr(r)
−logPr(p,r)

Mutual Information MI(p, r) =
∑

p∈p
∑

r∈r Pr(p, r) ∗ log
Pr(p,r)

Pr(p)∗Pr(r)

Pearson’s chi-square test X2 =
∑

p,r
(Op,r−Ep,r)2

Ep,r

cosine of PMI cPMI(p, r) =
∑

n∈N PMI(p,n)∗PMI(r,n)√∑
n∈N PMI(p,n)2∗

√∑
n∈N PMI(r,n)2

TABLE 4.2: Collocation measures for phrase ‘p’ and dictionary relation ‘r’

We used these collocation measures to establish strength of dependence between

p and r based on the sets of noun-phrase pairs that they co-occur with (see Ap-

pendix B for details on estimation of probabilities in each measure). In practice

however, given the sparseness of phrases in the underlying corpus, we observed in

our experimentation that these measures perform poorly. Also we observed that

phrase mining on the much larger ClueWeb09 corpus produced a higher degree of

noisy phrases without alleviating the phrase sparseness issue. Therefore, for relat-

edness scores, we adopted the Jaccard index, a simpler similarity measure which

showed robust results.

Jaccard Index for Statistical Phrase Relatedness.

The Jaccard index is a statistical degree of similarity, defined as the ratio of the in-

tersection and union of two sets. In our setting, the noun-phrase pairs co-occurring

with two relational phrases form the sets. However we take into consideration

the occurrence frequencies with each phrase, and treat occurrences of noun-phrase

pairs as bags (rather than sets). For two relational phrases p and r and their respec-

tive noun-phrase pair bags JN(p)K and JN(r)K, Jaccard’s index is given as,

J(p, r) =
|JN(p)K ∩ JN(r)K|
|JN(p)K ∪ JN(r)K|

(4.1)

This is equivalent to a weighted version of Jaccard index, which for a noun-phrase

pair n ∈ JN(p)K ∩ JN(r)K is evaluated as,
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J(p, r) =

∑
n(min(countJN(p)Kn, countJN(r)Kn))∑
n(max(countJN(p)Kn, countJN(r)Kn))

(4.2)

where countJN(p)Kn and countJN(p)Kn denote frequencies of the pair n in the

bags JN(p)K and JN(r)K respectively.

The principal benefits of using statistical phrase mining is discovery of relational

phrases that do not strictly have syntactic or lexical similarity with the initial set of

relations. Based on co-occurring noun-phrase pairs, relational phrases such as “de-

throned” or “successfully organized a coup against” or “end the reign of” for the rela-

tion “successor of” can be mined while such information cannot be directly obtained

by exploiting thesauri-like linguistic resources. Sophisticated entailment phrases

that result from corpus idiosyncrasies such as “wanted to destroy” and “defeated”

for the relation “confronted” are also produced as a result of the mining process.

Majority of the relations in our dictionary yielded phrases that are infrequent in

the corpus. We observed that discarding infrequent phrases based on thresholding

resulted in decrease of recall. These infrequent but highly specific relational phrases

such as “wrote songs in praise of”, or “disregarded the advice of” often form crucial

evidence to the relations in our dictionary. So we retain all mined phrases regardless

of their co-occurrence frequencies.

4.4.2 Scalable Mining

To achieve decent coverage over both the salient as well as the highly specific re-

lational phrases, the mining procedure described in 4.4.1.1 needs to be run over a

large text corpus. The procedure involves book keeping of relations, noun-phrase

pairs, relational phrases that occur with each noun-phrase pair and their corre-

sponding co-occurrence frequencies in each step. A centralized implementation

hence would be memory-intensive, requiring to keep millions of phrases in main

memory for efficient statistics aggregation. Alternatively a Map-Reduce style im-

plementation is a natural fit wherein the statistics aggregation can be performed

in the reduce phase. Therefore we developed the mining procedure as a sequence

of three Map-Reduce jobs: DICTRELATIONSEARCH, NOUNPHRASEPAIRSEARCH and

RELATIONALPHRASESEARCH.
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• DICTRELATIONSEARCH.

In DICTRELATIONSEARCH, we start with the dictionary relations, look for their

occurrences in the corpus and capture co-occurring noun-phrase pairs. The

mapper takes dictionary relations as keys, performs corpus search and con-

structs composite keys consisting of noun phrase arguments and the relation.

The composite keys are grouped by the noun-phrase pair prior to the reduce

phase, making the aggregation efficient. The reducer produces aggregate oc-

currence counts of relations and their co-occurrence counts with the noun-

phrase pairs.

• NOUNPHRASEPAIRSEARCH.

In NOUNPHRASEPAIRSEARCH, we search for occurrences of noun-phrase pairs

captured in the previous job and co-occurring relational phrases. The noun-

phrase pairs form the keys to the mapper which triggers a corpus search for

each pair and extracts their encompassing relational phrases. The mapper

also performs a phrase filtering step to constrain phrases to the same form as

our dictionary relations. The filtering step therefore weeds out phrases that

do not contain at least one common noun or verb and multi-word phrases that

do not end with a verb or preposition. As in the previous job, composite keys

are constructed using the noun-phrase pairs and the co-occurring relational

phrases. The output of the mapper are grouped by the relational phrases

before aggregation at the reduce stage. The reducer produces aggregate oc-

currence counts of noun-phrase pairs and their co-occurrence counts with the

relational phrases.

• RELATIONALPHRASESEARCH.

Finally, in the RELATIONALPHRASESEARCH job, we capture global co-occurrence

frequencies of the relational phrases with all noun-phrase pairs of the corpus.

The relational phrases form the keys to the mapper which performs a corpus

search and extracts co-occurring noun-phrase pairs. The reducer produces ag-

gregate occurrence counts of the phrases and their co-occurrence counts with

the noun-phrase pairs.

We use the Hadoop implementation for the above Map-Reduce jobs and collect

frequency statistics by maintaining global counters in each job. To make the entire
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mining process faster we collect all 〈noun−phrase〉〈∗〉〈noun−phrase〉 triples in the

corpus and materialize them beforehand, thus avoiding corpus search at each step.

4.4.3 Semantic Expansion of Relational Phrases

Statistical phrase mining yielded us a large number of relational phrases that have

varying degrees of co-occurrence similarity with our dictionary of relations. For the

116,471 relations in the dictionary, we obtained 985,069 phrases from Wikipedia

articles. Nevertheless the output quality and coverage is highly dependent on the

richness of the text corpus, and it is difficult to assess if most phrases that express

a certain relation have been covered. Therefore, to complement the two phrases

obtained via statistical mining, we exploit manually crafted relations from two se-

mantic resources: WordNet and ConceptNet.

4.4.3.1 WordNet Relations

WordNet [43, 84] is a large lexicon of nouns, verbs, adjectives and adverbs which

are grouped based on semantic similarity. Each such group, called a synset, repre-

sents a distinct concept and different synsets are interlinked by means of conceptual-

semantic and lexical relations. Two synsets can be interlinked by an isA relationship,

which includes hyponyms (specialization, as in ‘half sister’ hyponym of ‘sister’) and

hypernyms (generalization, as in ‘female sibling’ hypernym of ‘sister’). Such Word-

Net relationships are directly added into out list of relational phrases in case they

have not been obtained from corpus mining. Also the mined phrases can be rec-

onciled by substituting the participating common nouns and verbs with WordNet

hyponyms and hypernyms. For example, a phrase “stabbed with a knife” can be

expanded into other meaningful phrases “stabbed with a hunting knife” or “stabbed

with a sharp metal blade” using hyponyms and hypernyms respectively.

4.4.3.2 ConceptNet Relations

ConceptNet [82, 92] is a semantic network of common-sense facts collected from

human contributors, to make available “unstated” knowledge to NLP and computer
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vision applications. The ConceptNet graph contains concepts as nodes (which could

be nouns or short phrases) and relationships as edges, for example “uncle→ isA→
male”, “husband→ relatedTo→ married man” or “hanging→ isA→ killing”. From

the ConceptNet graph we incorporate into our relational phrases the concepts that

take part in the following relationships: IsA, SimilarTo, DerivedFrom, RelatedTo

and ConceptuallyRelatedTo. These concepts from ConceptNet supplement worldly

knowledge to our relational phrases such as “award→ isa→ recognition”, “account

→ relatedTo → credit card” or “record producer → conceptuallyRelatedTo → music

group”. As in the case with WordNet relations, these phrases can be directly added

to our list when absent, or reconciled by substituting the participating nouns or

verbs in the statistically mined phrases.

By combining 985,000 phrases obtained from statistical mining with 1,668,042

phrases from WordNet and 205,432 phrases from ConceptNet, we obtain a total

of 2,858,474 unique relational phrases. Given a textual sentence from any narra-

tive text, these phrases form the basis of identifying if one of the relations from

our dictionary hold between any entity pair of that sentence. To narrow down on

the relevant phrases we employ phrase pruning using dependency parse of the sen-

tence. Thereafter, taking the resultant phrases into account we rank the relations

in our dictionary and provide them as candidate answers at the HC stage. We use

statistical language models for ranking relations taking the phrases into account.

Specifically, we adopt the statistical translation model [93] for this task. The details

on language model based ranking are provided in the section 4.5.

4.4.4 Pruning Phrase Candidates.

Given a snippet of narrative text such as movie/book plot story, any sentence-level

context that contain at least a pair of entity mentions is of interest for extracting

relations. However these sentences from narratives often contain multiple entity

mentions and express relations in a convoluted way. Therefore, to eliminate false

positives, we employ dependency parsing on all relevant sentences. The nodes

(words) on the shortest path in the dependency parse tree between a pair of entity

mentions give a cue on the relation between them [94]. As these nodes do not

capture semantic relations in their entirety we augment them with adjective/adverb
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modifiers and negations, and also take conjunctions into account. Specifically we

allow all nodes in the parse tree that have grammatical relations in {agent, aux,

cc, ccomp, complm, det, infmod, mark, neg, nn, npadvmod, poss, possessive, prt,

punct, rcmod}. Also {prep} are allowed if they are descendents of the subject entity

in the pair. In addition, we restrict ourselves to the mention pair being grammatical

subjects or objects of the clauses in the sentence.

We use the Stanford Dependency Parser [87, 88] and identify all dependency paths

in a sentence connecting a pair of entities that occurs in a candidate from the pre-

vious phases. If no such path exists, the candidate is discarded. Otherwise, we

retain all candidates whose relational phrases overlap with words on at least one of

the dependency paths. For example, in the sentence “Shortly after the meeting be-

tween Vincent and Lucchesi, Altobello travels to the small village of Montelepre, where

he hires Mosca (Mario Donatone), a veteran hitman, to assassinate Michael.”, to de-

tect the relation between Altobellow and Mosca, we keep the top-k relations that

match the dependency path [travels to the small village of Montelepre hires

to assassinate].

4.5 RANKING RELATION CANDIDATES

In order to generate candidate answers for HITs, we determine the relevance of

the relational phrases to a query context. For this purpose, given a query sentence,

we use a statistical language model to rank the relations in our dictionary. Ranked

in the descending order of relevance, these relations are presented to the human

contributor at the HC stage.

4.5.1 Background: Statistical Language Models

Statistical Language Models [95] (LM), in the field of information retrieval (IR),

form a principled approach to address the central problem of query-based ranked

retrieval on documents. LMs, therefore, have been used for ranking in different

contexts: ranking documents for keyword queries, ranking passages as a first stage

in question answering, ranking entities for semantic search, ranking sentences for
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summarization, etc. Albeit based on sound probabilistic principles, LMs have rarely

been used for problems other than IR tasks. Our approach here is a novel way of

harnessing statistical LMs for knowledge acquisition.

4.5.2 Language Model for Ranking Relations

A language model is a probability distribution over words or bigrams or variable-

length sequences, often using a multinomial model. Each document, each query,

each passage, etc. is associated with an LM, where the parameters are estimated

from the document, query, or passage, respectively, and are additionally smoothed

by statistics over an entire corpus or query log or other background information.

The principle for ranking is that the best document for a given query is the one

whose LM has the highest likelihood of generating the query (and analogously

for other IR tasks). This is typically cast into computing conditional probabilities

Pr(q|d) or information-theoretic scores like the Kullback-Leibler divergence KL(q|d)
(aka. information gain or relative entropy).

In our problem setting, we are interested in which of the relations in our dictionary

apply given a query sentence. For the sentence as a query we consider only the

paths from the dependency tree between the entity pair as explained in 4.4.4.

Given an entity pair E = {e1, e2} occurring in a sentence s, a set of candidate

relations Gr we need to rank the relations in Gr according to their plausibility to

relate e1 and e2. This probability Pr(r) is given by

Pr(r) = α ∗ Pr(r|s) + (1− α) ∗ Pr(r|c) (4.3)

where s is a sentence and c is the corpus. Pr(r|c) is the Jelinek-Mercer based

smoothing factor. Therefore, each dictionary relation holds a non-zero probabil-

ity provided it occurs within the corpus. In our case, smoothing using a corpus of

documents only partially alleviates the problem of data sparseness by taking into

account the occurrences of the relation in the corpus. Due to variations in express-

ing relations in natural language, corpus-based smoothing of the relations in our
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model does not ensure that these variations obtain a non-zero probability. We over-

come this problem by using our relational phrases and a specifically relevant form

of LMs called statistical translation model.

4.5.3 Translation Model for Phrase Relatedness

Statistical translation models offer a principled approach to capture semantic trans-

lations of one word sequence to another. The basic idea is to estimate the likeli-

hood of translating a word into another word in the vocabulary, or, the likelihood of

translating the document to a query posed in a different language. They have been

successfully employed for crosslingual information retrieval and question answer-

ing systems. Such settings typically consider probabilities of the form Pr(q|d) =∑
w∈q
(∑

v∈d Pr(w|v) Pr(v|d)
)
, where ‘w’ is a query term (say, in French), and the

document ‘d’ to be retrieved contains terms belonging to a different vocabulary (for

example, in English). The Pr(w|v) terms constitute the translation model, allowing

the French term ‘w’ to be translated to semantically related words v ∈ d.

In our setting, we use this principle in a generalized way for “translating” one re-

lational phrase into a different paraphrase. For example, we are interested in the

probability Pr(“consigliere”|“adviser”). This is the basis for the phrase relatedness

scores. By using a translation model for relation ranking, we allow the relation to

be expressed in any of its variations during its likelihood estimation (the likelihood

of one expression of a relation into another).

In Eq. 4.3, we use the translation model to estimate Pr(r|s), the probability of a

relation r being applicable to an entity pair in the query sentence s. Intuitively,

the idea of the translation model is to allow the relation to occur in any of its

variations. If Gr = {r1, r2, .., rn} is the set of different relations in our dictionary

that occur between the entities in the text and Pi = {pi1, pi2, .., pim} are m different

phrases for the relation ri, we use the translation model to obtain the probability

Pr(ri|s) as

Pr(ri|s) =
m∑
j=1

Pr(ri|pij) Pr(pij|s) (4.4)
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In the above equation, to estimate Pr(p|s), we use the Dice coefficient over bigrams

of the phrase p and the dependency path in sentence s. However, the key part

of the translation model is the estimation of the relation translation probability

Pr(r|p). For crosslingual query likelihood, Brown et al [96] estimated this word-

word probability using the EM algorithm over parallel corpora of two languages.

In mono-lingual cases, Berger et al [93] created synthetic word queries as training

data, i.e., queries artificially created from the document to make it relevant. In

our setting, we use the scores for the relational phrases using a mixture model,

described in the section below.

4.5.4 Mixture Model for Combining Statistical and Semantic Components

The translation probabilities Pr(r|p) in our model encode the likelihood of a dictio-

nary relation r to be translated to the relational phrases. Recall that the relational

phrases are collected through co-occurrence based phrase mining from a text corpus

and later expanded with phrases from WordNet and ConceptNet. Since we combine

these statistics with semantic resources for phrases, we need to combine different

kinds of relatedness scores as well.

If pi are all the phrases of the dictionary relation r, the probability Pr(r|p) is esti-

mated as

Pr(r|p) = relscore(r, p)∑
i relscore(r, pi)

(4.5)

where the relatedness score between r and p are obtained using a mixture model

with a linear combination of scores, given as,

relscore(r, p) = αstats × scorestats(r, p)

+ βWordNet × scoreWordNet(r, p)

+ γConceptNet × scoreConceptNet(r, p).
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Here, the scores for the statistics component are the Jaccard overlap scores dis-

cussed in section 4.4.1.2.

For resources like WordNet or ConceptNet, there are explicit, manually crafted rela-

tions that connect the phrases. The ISA relation from WordNet and the SIMILARTO

relation from ConceptNet establish equivalence among participating phrases while

DERIVEDFROM and CONCEPTUALLYRELATEDTO relations establish loose relationships

among the phrases. Therefore these relations offer the degree of similarity between

the phrases, which needs to be taken into account for scoring them. We extend

the mixture model for fine-grained control over the phrases that arrive from differ-

ent WordNet/ConceptNet relations and flexibility in their combination. Weighing

is achieved by associating a coefficient with each type of WordNet/ConceptNet re-

lation between phrases, that is set to a fixed value between 0 and 1. For example,

when two phrases are in the DERIVEDFROM relation in ConceptNet, we assign a

fixed relatedness score of γConceptNetDerivedFrom
. All these scores are combined into

the mixture-model score, first for WordNet and ConceptNet separately, and finally

combined with the statistical Jaccard scores. So the final relatedness score between

r and p becomes

relscore(r, p) = αstats × scorestats(r, p)

+ β1
WordNethypernym

× scoreWordNet(r, p)

+ β2
WordNethyponym

× scoreWordNet(r, p)

+ γ1ConceptNetIsA
× scoreConceptNet(r, p)

+ γ2ConceptNetSimilarTo
× scoreConceptNet(r, p)

+ γ3ConceptNetDerivedFrom
× scoreConceptNet(r, p)

+ γ4ConceptNetRelatedTo
× scoreConceptNet(r, p)

+ γ5ConceptNetConceptuallyRelatedTo
× scoreConceptNet(r, p).
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4.6 SUMMARY

The HIGGINS IE engine makes use of entity names, entity descriptive phrases, a

lexicon of relations and a large number of relational phrases. The generation of

candidate answers for multiple-choice questions is based on the relations from our

dictionary, which is done by ranking and diversifying them given a specific question

(HIT). Recall that the dictionary is built from a variety of sources, including seman-

tic resources like WordNet or ConceptNet and statistics collected by Web mining.

For each pair of relational phrases, we compute a relatedness score using a mixture

model that combines multiple kinds of statistical language models (LM’s).





5 CHAPTER

Generating Crowdsourced Human

Intelligence Tasks for Fact Acquisition

5.1 OVERVIEW

The previous chapter presented in detail the compilation of entity and relation lex-

icons, and the underlying ranking model that the HIGGINS IE engine employs to

facilitate crowdsourcing tasks at the HC stage. This chapter discusses the construc-

tion of crowdsourced HITs in HIGGINS. We present experimental evidence of the

superior performance of HIGGINS, in three parts:

A. First, we present experiments demonstrating the effectiveness of HIGGINS in gen-

eration of knowledge-base facts. The notion of effectiveness centers on

a) the quality of worker-evaluated fact triples compared to the ground-truth, as

shown by precision and recall measurements,

b) the costs incurred, as measured by the agreement among the responses of the

workers to the HITs

B. Second, we compare HIGGINS against pure automated IE approaches and pure

HC based approaches to demonstrate its benefits.

C. Finally, we experimentally investigate the influence of different components of

the HIGGINS IE engine and verify the right combination of its ingredients.

59
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5.2 GENERATING HITS FOR CROWDSOURCED FACT ACQUISITION

We conducted experiments using plots and character descriptions of books stories

from www.sparknotes.com/lit/ [79] and movies articles from Wikipedia. We com-

piled data for about 3,374 movies and 352 books, with a total of 52,700 characters.

In total, we generated about 27,980 questions for the HC stage. We outline the

question generation process for HITs below.

5.2.1 Building HITs

First, we extract character names, their alternative names, titles and descriptional

phrases from the character descriptions of the movie/book articles, thus building an

entity phrase dictionary. We use the text from movie or book story plots to extract

relations between the character roles. To effectively identify characters in such text,

we generate character name combinations from the entity phrase dictionary. These

combinations are then resolved in the plot sentences and replaced with their full

canonical names from the entity dictionary. For example all occurrences of “Vito”,

“Vito Corleone” or “Don Corleone” are replaced by “Don Vito Corleone” in the plot

text. However, in case of conflicts in name combinations (for e.g., whether “Cor-

leone” seen in the text “... the Corleone family ...” is “Don Vito Corleone” or “Michael

Corleone”), we do not perform replacements. Combined with the extensive name

phrases in our dictionary (such as “Don Corleone” nickname of “The Godfather”, or,

“Sonny” nickname of “Santiano Corleone”), we observed that this heuristics-based

character name resolution works well in most cases.

Second, we split the text from the story plot section in the movie/book articles into

sentences. To deal with the complexity of long sentences in the narrative plots, we

used dependency parsing and extracted the shortest paths between occurrences of

the movie/book characters. All words on the these paths used as query to the statis-

tical language model described in Section 4.5 which rank the dictionary of relations

in relevance to this query. For question generation we considered all sentences that

mention the pair of character roles, obtain the ranked list generated by each sen-

tence and finally aggregate the lists. The aggregation procedure is described below.
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Obtaining aggregate candidates. If S = {s1, s2, ..sn} are the sentences that contain

mentions of the character pair, we rank the relational phrases from the dictionary D

using the mixture model (described in Chapter. 4) for each sentence si and obtain

the ranked lists R = {L1, L2, .., Ln} respectively.

Processing all the lists for each pair, the aggregate score for each relation r ∈ D is

obtained as
n∑

i=1

1
posi(r)

, where posi(r) is the position of r in the ranked list Li. The

relations are ranked by the aggregate score and the top-5 are presented as choices

to the player.

The top-5 options thus generated always include the most likely candidate phrases.

However, because of errors in dependency parsing, pronoun resolution, and other

steps, even the most likely phrase could be incorrect. For some sentences and choice

of entity pairs, actually no relationship would hold. Therefore, the interface for HC

contributors always included the options NORELATION and OTHER. In the latter

case, the users could enter a relationship as free text. Furthermore, for some en-

tity pairs, multiple relationships could hold and the top-5 candidates could include

more than one of these.

Fig. 5.1 shows two example questions generated by the system and the aggregated

answer candidates.

5.3 EXPERIMENTAL SETUP

For evaluation, we consider two samples drawn from the pool of all questions: a) a

prominent set of questions drawn from popular movies & books; b) a random set

of questions drawn randomly from the entire pool, excluding the set of movies &

books from the prominent sample.

In addition, to test how HIGGINS performs with varying complexity of text, we ex-

perimented with two different choices of input texts: i) plots and story summaries of

movies and books (shown as MoviePlots & BookPlots respectively), containing con-

voluted sentences, often containing more than two character mentions in a sentence

and ii) character descriptions of main characters in the movies & books (shown as
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———————————————————————————————————————-
EXAMPLE 1

Book: The Kite Runner
Character One: Assef
Character Two: Sohrab
Sentences: “Sohrab threatens Assef with his slingshot and when Assef lunges at him, Sohrab
shoots him in the eye, allowing Amir and Sohrab to escape.”
o Sohrab threatens Assef
o Sohrab shoots Assef
o Sohrab lunges at Assef
o Sohrab kills Assef
o Sohrab finds Assef
—————————————————————-
EXAMPLE 2

Movie: Lord of the Rings: Return of the King
Character One: Frodo Baggins
Character Two: Gollum
Sentences: “Gollum betrays Frodo, leaving him in the lair of giant spider Shelob.”
“When Sam and Frodo are captured by the Rangers of Ithilien, Frodo reveals Gollum’s presence
to spare his life; Gollum nevertheless feels betrayed and begins plotting against the new mas-
ter.”
“Frodo and Sam take pity on him, understanding the burden of the ring.”
o Frodo Baggins was captured by Gollum
o Frodo Baggins was forced to endure Gollum
o Frodo Baggins made life miserable for Gollum
o Frodo Baggins left Gollum
o Frodo Baggins betrays Gollum
———————————————————————————————————————-

FIGURE 5.1: Sample HITs

MovieCast & BookCast respectively), made up of relatively simpler sentences. Table

5.1 summarizes the test samples.

Prominent Sample Random Sample

No. of movies/books No. of questions No. of movies/books No. of questions

MovieCast 20 109 59 75

MoviePlots 20 130 58 75

BookCast 20 135 49 75

BookPlots 20 167 61 75

TABLE 5.1: Datasets for evaluation

5.3.1 Crowdsourcing Setup

Each HIT shows the sentences from which the options were generated to the worker.

When deploying the game on CrowdFlower [24], as there is no provision to swap
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the character roles, we generated twice the number of options in a question by

considering both orders of the character roles. Each question is answered by 5

different workers on CrowdFlower.

This section presents results on the precision and recall of acquiring relationships

with HIGGINS , as well as insights on inter-judge agreement and the overall cost.

All results here are from the full configuration that integrates all assets described in

the previous chapter. The mixture-model parameters (see Section 4.5) were set to

αstats = 0.991, αWordNet = 0.0049, αConceptNet = 0.0039.

5.3.1.1 Conservative and Liberal settings

We manually constructed ground-truth answers for the two datasets. Since some

sentences produce multiple relationships, we consider all correct answers for the

ground-truth. In cases where a relation exists in the sentence but is not captured by

any of the generated answers, OTHER is considered as ground-truth. For character

role pairs that do not describe any relation in the sentences, we consider NORE-

LATION as the ground-truth. This naturally leads us to two different settings for

evaluating the HC results.

In the conservative evaluation, we only consider questions from the ground-truth

that do not have OTHER or NORELATION as answers, thereby evaluating the good-

ness of the options generated by our system. In the liberal evaluation, we calculate

precision and recall over all the answers including NORELATION and OTHER.

5.4 MEASURES OF QUALITY: PRECISION AND RECALL

5.4.1 Precision

The precision measure in the field of IR is defined as the fraction of answers re-

trieved by the system that are relevant or correct. The generated HIGGINS ques-

tions, however, produce multiple correct answers for each question. Therefore, we

define the following notion of precision to account for multiple possible answers for

a question.
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Let Q = {q1, q2, .., qi, ..qn} be the set of generated questions. We present the options

to the worker in terms of facts f constructed using the entity pair and the gener-

ated top-5 relations. For each qi we have {f1, f2, ...fj, ..f12} options provided to the

players, where {f1, .., f5} are facts obtained top-5 candidate answers and {f6, .., f10}
are obtained by swapping the entity roles. f11 and f12 are the NORELATION and

OTHER options, respectively. For each fj ∈ qi we have,

fj =

k count of workers who chose fi

0 otherwise

Let tj be a boolean variable that represents the correctness of a fact to question qi.

We have tj ∈ {0, 1} where tj = 1 if the answer is in the ground-truth of correct

answers, and 0 otherwise.

The precision pi for questions qi is calculated as,

pi =

∑
j

fj ∗ tj∑
j

fj
. (5.1)

The overall precision P we report is the average over all questions in the set Q,

P =
n∑
i

pi
n
. (5.2)

5.4.2 Recall

Conventionally, recall is defined as the fraction of relevant answers retrieved over

the total relevant answers that exist. However, it is not feasible to enumerate all

relational phrases in our vast dictionary of relations (∼116000 relations), that apply

to each of the entity pairs. Hence we generated ground-truth – the set of correct

answers generated by HIGGINS for each question, using expert human judgements.

We define our recall measures as the fraction of correct answers in the ground-truth

that the crowdsourced HITs obtained.

We use two different measures of recall when aggregating the workers’ answers.
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5.4.2.1 Recall-Any

Recall-Any measures the fraction of relations in the ground-truth chosen by at least

one worker. For question qi we set a boolean gj = 1 if at least one worker chose the

fact fj with tj = 1. The recall-any per question is

ri =

∑
j tj ∗ gj∑

j tj
. (5.3)

5.4.2.2 Recall-Majority

Recall-Majority measures the fraction of relations in the ground-truth that were

chosen by majority of the workers. For question qi we set a boolean gj = 1 if the

“majority” of the workers who answered qi chose a the fact fj with tj = 1. The

recall-majority per question qi then is

ri =

∑
j tj ∗ gj∑

j tj
. (5.4)

The overall Recall-Any and Recall-Majority are averaged over all questions qi in Q,

R =
n∑
i

ri
n
. (5.5)

Note that our setting allows multiple correct answers per question. Therefore, our

notion of majority allows that different users choose different answers as long as

any of the chosen answers is correct.

5.5 QUALITY OF HIGGINS RESULTS

The results are shown in Tables 5.2, 5.3 and 5.4. We see that HIGGINS generally

achieved high precision and, even in the majority mode, decent recall.
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Prominent Sample Random Sample

Conservative Liberal Conservative Liberal

MovieCast 0.661 0.795 0.732 0.848

MoviePlots 0.558 0.678 0.633 0.715

BookCast 0.600 0.754 0.529 0.699

BookPlots 0.695 0.781 0.601 0.723

TABLE 5.2: Precision Measurements for HIGGINS

Prominent Sample

Conservative Liberal

Recall-Any Recall-majority Recall-Any Recall-majority

MovieCast 0.673 0.578 0.963 0.862

MoviePlots 0.625 0.616 0.927 0.880

BookCast 0.633 0.578 0.956 0.867

BookPlots 0.743 0.663 0.948 0.855

TABLE 5.3: Recall Measurements for HIGGINS with Prominent Sample

Random Sample

Conservative Liberal

Recall-Any Recall-majority Recall-Any Recall-majority

MovieCast 0.727 0.720 0.961 0.950

MoviePlots 0.711 0.547 0.978 0.840

BookCast 0.591 0.520 0.921 0.853

BookPlots 0.689 0.603 0.971 0.850

TABLE 5.4: Recall Measurements for HIGGINS with Random Sample

5.6 CROWDSOURCING COSTS

Regarding the cost of crowdsourcing, we looked at the inter-judge agreement as

a function of the number of contributors for a question. We broke this down by

the number of workers. The results reflected by the Fleiss Kappa measure and the
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average precision are shown in Table 5.5. We see that the agreement increases with

more users per questions, but quickly saturates. So for high-quality HC contribu-

tions, we do not need a large number of users per question. Of course, this holds

when the questions and candidate answers are generated in a meaningful way. This

is exactly the contribution of our IE engine for a well-prepared and cost-effective

HC phase.

Prominent Random

No. of workers 3 4 5 3 4 5

Fleiss Kappa 0.470 0.470 0.460 0.510 0.500 0.510

Avg. Precision 0.722 0.748 0.742 0.729 0.739 0.739

Avg. Recall-Any 0.843 0.907 0.914 0.863 0.910 0.950

TABLE 5.5: Inter-Judge Agreement

5.7 BASELINE COMPARISONS – IE AND HC ONLY

Our main hypothesis in this paper is that the combination of IE and HC yields

synergies and thus provides benefits that neither an IE-only nor an HC-only method

can achieve. For experimental insight in this hypothesis, we compared HIGGINS

against two baselines that use solely IE or solely HC.

5.7.1 IE-only Baseline

While there exist several OpenIE methods, we consider the OLLIE [49] system for

performance comparison as its extraction functionality comes close to HIGGINS .

OLLIE is a high performance OpenIE system that performs bootstrap learning of

patterns in dependency parse trees to detect factual triples. The OLLIE extractor

further analyzes the structure of the dependency trees enabling it to detect non-

factual assertions such as beliefs, hypothetical or conditional sentence constructs.

We ran OLLIE on our datasets and manually identified all correct extractions com-

puted by this IE-only method. Since OLLIE produces relations directly from the

textual input while HIGGINS presents the relations from its dictionary of relations,
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we cannot easily define a notion of recall to compare the two systems. Even the

comparison based on the standard notion of precision would be debatable or unfair

in this setting, as each system may capture relations in different representations.

Rather than using heuristics for thresholding on extraction confidence measures,

we compared the set of OLLIE extractions directly against the extractions by HIG-

GINS and vice versa. This is done as follows.

Let H ⊆ Q be the set of questions for which HIGGINS provided at least one truly

correct answer. Let I ⊆ Q be the set of questions for which OLLIE generated a cor-

rect fact. Now we can compare the performance of OLLIE relative to what HIGGINS

returned, and vice versa. Table 5.6 shows values for |H|, |I|, |H \ I|, |I \ H|, and

H ∩ I respectively.

Prominent Random

DataSet |H| |I| |H \ I| |I \H| |H ∩ I| |H| |I| |H \ I| |I \H| |H ∩ I|

MovieCast 76 18 61 3 15 58 27 33 2 25

MoviePlot 81 30 57 6 24 54 16 40 2 14

BookCast 100 45 61 6 39 47 10 38 1 9

BookPlot 128 48 84 4 44 51 19 34 2 17

TABLE 5.6: Comparison of HIGGINS (H) and OLLIE (I)

The numbers in Table 5.6 clearly show that HIGGINS provides many more correct

facts, compared to OLLIE (shown by |H \ I|). Conversely, OLLIE provided only very

few correct facts that were not acquired by HIGGINS (shown by |I \H|). This shows

that the joint IE-and-HC method of HIGGINS outperforms state-of-the-art IE-only

methods.

5.7.2 HC-only Baseline

As a baseline for an HC-only method, we generated candidate answers for ques-

tions in an uninformed random manner but using heuristics to avoid meaningless

candidates. For each pair of character roles in a question, we picked the pool of can-

didates from the dictionary of relations that have a non-empty word-level Jaccard

overlap with the words on the dependency path between the characters. A sample
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of five relations chosen randomly from this pool were presented to the worker. The

precision and recall measurements are summarized in table 5.7 and 5.8.

Prominent Sample Random Sample

Conservative Liberal Conservative Liberal

MovieCast 0.316 0.601 0.196 0.594

MoviePlots 0.155 0.508 0.118 0.459

BookCast 0.111 0.700 0.430 0.708

BookPlots 0.316 0.583 0.149 0.490

TABLE 5.7: Precision Measurements for HC-only Method

Prominent Sample Random Sample

Dataset Conservative Liberal Conservative Liberal

MovieCast
Recall-Any 0.822 0.953 0.789 0.960

Recall-Majority 0.355 0.383 0.236 0.272

MoviePlot
Recall-Any 0.674 0.952 0.635 0.898

Recall-Majority 0.116 0.193 0.148 0.202

BookCast
Recall-Any 0.895 0.926 0.706 0.800

Recall-Majority 0.118 0.119 0.400 0.480

BookPlot
Recall-Any 0.709 0.962 0.640 0.902

Recall-Majority 0.206 0.255 0.173 0.200

TABLE 5.8: Recall Measurements for HC-only Method

5.8 INFLUENCE OF HIGGINS COMPONENTS

HIGGINS uses a variety of components, and we were interested in identifying which

components are essential for high-quality output and which ones merely contribute

marginal benefits. We studied different configurations of HIGGINS, and how this

influenced the generated candidate answers presented to the user and how this

in turn influenced the overall quality of the HC stage. We compared the full sys-

tem against two variants that used i) only the semantic components (WordNet and



Chapter V. Generating Crowdsourced Human Intelligence Tasks for Fact
Acquisition 70

ConceptNet) for the language model, or ii) only the statistical assets (excluding

WordNet and ConceptNet). These two variants are referred to as sem-only HIGGINS

and stat-only HIGGINS, respectively.

The results over the random sample are shown in Tables 5.9 and 5.10 for the pre-

cision and recall, respectively. In all cases, we see that the full combination outper-

forms the other configurations by a large margin. This demonstrates that combining

semantic resources and statistics is vital for generating meaningful answer candi-

dates and obtaining high-quality results.

stats-only sem-only full

Dataset Conservative Liberal Conservative Liberal Conservative Liberal

MovieCast 0.605 0.754 0.713 0.797 0.732 0.848

MoviePlot 0.252 0.536 0.299 0.516 0.633 0.714

BookCast 0.544 0.630 0.477 0.649 0.529 0.699

BookPlot 0.254 0.611 0.318 0.456 0.601 0.723

TABLE 5.9: Impact of HIGGINS Variants: Precision Measurements

stats-only sem-only full HIGGINS

Dataset Conservative Liberal Conservative Liberal Conservative Liberal

MovieCast
Recall-Any 0.623 0.888 0.663 0.878 0.727 0.951

Recall-Majority 0.623 0.836 0.720 0.875 0.729 0.960

MoviePlot
Recall-Any 0.339 0.868 0.401 0.795 0.711 0.978

Recall-Majority 0.240 0.613 0.284 0.595 0.547 0.840

BookCast
Recall-Any 0.528 0.821 0.514 0.918 0.591 0.920

Recall-Majority 0.513 0.716 0.534 0.794 0.520 0.853

BookPlot
Recall-Any 0.260 0.948 0.399 0.872 0.689 0.971

Recall-Majority 0.173 0.640 0.253 0.547 0.603 0.850

TABLE 5.10: Impact of HIGGINS Variants: Recall Measurements

5.9 STRENGTHS, LIMITATIONS, LESSONS LEARNED, AND OUTLOOK

As the above results substantiate, HIGGINS delivers high performance. It consis-

tently and significantly outperforms both the IE-only and HC-only approaches in



Chapter V. Generating Crowdsourced Human Intelligence Tasks for Fact
Acquisition 71

terms of recall and/or precision. Perhaps even more encouraging is the result that

high inter-annotator agreement per question can be reached, even with only a small

number of participants. This is crucial, as it implies that the high-quality output of

HIGGINS can be achieved at low capital costs (which are a typical concern whenever

crowdsourcing is involved).

Limitations: One would expect that HC-only methods can achieve near-perfect re-

sults as the number of workers per question is increased, thus aggregating the

“wisdom of crowds” over more independent people. Apart from the fact that this

may quickly become prohibitively expensive, our experience with a small subset of

questions even makes us sceptical whether the user inputs actually converge to an

agreed-upon fact in (nearly) all cases. Some relationships between characters in

movies or books are very subtle, and the sentences that express them in narrative

descriptions are sometimes quite sophisticated. An example is: “With a single gun-

shot, Blondie severs the rope, dropping Tuco face-first onto his share of the gold. Blondie smiles

and rides off as Tuco curses him in rage, shouting, ‘Hey Blonde! You know what you are? Just a

dirty son of a bitch!’”, from the movie “Good, the Bad, and the Ugly”. Should this lead

to a fact 〈Blondie helped Tuco〉 or 〈Blondie saved Tuco〉 or 〈Blondie likes Tuco〉 or 〈Tuco likes

Blondie〉? Such situations pose a daunting challenge to both humans and automated

IE. It is widely open whether a pure HC method or a combined IE & HC approach

are suitable for such difficult inputs. This could be an interesting direction of future

work.

IE for HC: All our experiments confirmed that, in most cases, having a smart IE

phase before embarking on HC is very beneficial. The quality of the candidate an-

swers generated for multiple-choice questions is substantially improved by our com-

bination of statistical (language-model-based) and semantic (ontology or thesaurus-

based) assets. We believe that our judicious combination of the right assets and

controlling their interplay is one of the main contributions of HIGGINS.

HC for IE: In addition to IE boosting the performance of HC, there is also a virtuous

feedback from HC to IE. As we acquired more and more correct relationships from

the HC stage of HIGGINS , we can use these to improve the semantic dictionary

and the language-model statistics used in IE to drive the generation of candidate

answers. Most notably, the translation LM that estimates the relatedness of different
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phrases is crucial. Texts sometimes use subtle or rare formulations (sometimes even

with irony) to denote a relationship. For example, phrases like “develops feelings for”

or “is drawn closer to” are rare, so their relatedness with “falls in love with” cannot

be estimated that well by IE techniques alone. Once we have HC results for such

cases, we can feed them back into the IE statistics and improve the estimates of the

translation LM’s.

Cost of Crowd-sourced Experimental Research: In our experimental studies, we tried

to scale up as much as possible. We realize, though, that we did not reach out to the

level of large game communities or big online groups. We believe that our approach

has the potential for further scaling, but at this point, the total cost of experiments

has been a limiting factor. In total, our experiments involved more than 12,800 HITs

on CrowdFlower. Although each HIT costs only 5 cents, the total cost is a concern.

In addition and even more troublesome, we had to create ground-truth output for

all instances that were evaluated. In total, these were more than 20,000 question-

answer pairs. We are not aware of similarly intensive studies on crowdsourcing

for knowledge acquisition. All our experimental data is made available for further

research in the community at http://www.mpi-inf.mpg.de/yago-naga/higgins/.

Outlook: HIGGINS manages to produce high quality knowledge at low crowd costs.

This begs the interesting question, at least from a theoretical point of view: If money

were not an issue, how much can we improve our KA engines, say by engaging a

much greater number of users per question? Put differently: is gathering the “wis-

dom of the crowds” by engaging large numbers of humans, capable of improving

substantially the quality of KA? Perhaps surprisingly at first sight, our preliminary

evidence is not entirely supportive of this. The complex relationships we are seek-

ing to discover are by their very nature very subtle and they typically appear in

narratives in various sophisticated ways. As such, they typically escape the atten-

tion of many. Intrigued by this observation, our future plans include the study of

robust KA engines (for our problem domain space) which will be able to predict,

subject to cost constraints, in which situations extensive IE involvement is needed

and what will be its expected quality improvement/impact.

http://www.mpi-inf.mpg.de/yago-naga/higgins/
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Building Human Computing Games for

Knowledge Acquisition

6.1 OVERVIEW

The previous chapter provided experimental proof on the effectiveness of the HIG-

GINS system by constructing and evaluating HITs for crowdsourcing platforms. On

the other hand, the output of the HIGGINS IE phase can also form the basis for

factoid-based human computing games. In this chapter we present HC games for

fact-based knowledge acquisition, discuss how different games for KA can be de-

signed with HIGGINS generating the game questions in the background. We present

MOVIEWIZARD, BOOKWIZARD and MOVIEGURUS games that demonstrate the viabil-

ity of HIGGINS for game-based relational fact acquisition.

6.2 GAME DESIGN FOR FACT ACQUISITION

A knowledge acquisition game is a sequence of interactions between the system and

one or more players, centered around the notion of knowledge triples or knowledge

quads (if context is included). In each interaction, the system generates a knowl-

edge triple or quad, presents it to the player(s), and asks the player(s) to complete

the missing slot values. In this case, the player inputs the values for the missing

slots or chooses from a list of candidate values provided by the system, to gener-

ate a fully bound quad. Alternatively the system provides a fully bound quad and

determines the truthfulness of the quad through the player’s inputs.
73
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This basic game structure can be extended in several ways:

• Anonymized slots: The entity slots in a knowledge quad (e1 and e2 in the quad

〈c, e1, r, e2〉) may be anonymized with codenames provided by the system, and

consistently used across multiple interaction steps of a game.

• Multiple players: Triples or quads can be shown to a single player or to multiple

players simultaneously. In the latter case, we either aim to achieve agreement

among players or we assign roles to players so that one player gives hints and

the other player(s) attempts to guess the missing values.

• Clues and callbacks: Players may actively ask for clues; these would be provided

by the system or another player. The clues are completely filled knowledge

triples or quads: without variables, but possibly with anonymized slots.

System Perspective versus Player Perspective.

KA Games are perceived differently by the system and by the players. The system

understands the notion of knowledge triples and quads and how they can be built

from an underlying database of entities, semantic classes, relations, and relation

instances. Players, on the other hand, need to view these items in a simpler and

intuitive form, either as natural language text with gaps to be filled or as form fields.

Moreover, humans may refer to entities in shorthand form or by role names rather

than using “official” entity names, e.g., using “Tom” or “the family lawyer” instead of

“Tom Hagen”, or using “it Lady Di” or “the queen of hearts” instead of “Diana, Princess

of Wales”. This holds for relations as well, for example, the players may provide

“ordered his goons to assassinate’’ or “gave the order to eliminate” instead of simply

“ordered to kill”. This is where we can exploit the vast entity name dictionaries, the

lexicon of relations and the phrase translation model in HIGGINS .

6.3 HIGGINS GAMES

In the HIGGINS system, the IE engine generates fact hypotheses in the form of

incomplete (partially bound) or unverified (fully bound) 〈c, e1, r, e2〉 knowledge

quads. Based on which of the slots are unbound in these fact hypotheses, differ-

ent game scenarios at the HC stage are possible. In these cases, the system designs
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questions by withholding one of the c, e1, r or e2 values and presenting alterna-

tives to the player(s). The player chooses the appropriate alternative, providing a

completed knowledge quad to the system. Alternatively a fully bound quad can be

presented to the player to be validated.

6.3.1 Game Scenarios

The following list describes different possible game scenarios by leaving out differ-

ent slots of the fact hypotheses as variables, and presents the benefits to the system

in each of these scenarios.

• Variable e1 or e2: In this case the system leaves out e1 or e2 to be determined

by the player. This game scenario is helpful for the coreference resolution

task. Candidates for the unknown coreference are generated by HIGGINS and

presented as multiple-choice to the player.

• Variable r: By leaving r unbounded, the player is tasked to determine the

appropriate relation in which the two entities participate within the context.

This game scenario can be applied by the system for the relation extraction

task. Here’s an example question: “In the movie Shawshank Redemption, how

are Andy Dufrense and Ellis Boyd Red related?”. HIGGINS generates possible

relevant relation phrase candidates for P by processing the dependency path

between e1 and e2 and ranking the phrases in its dictionary.

• Variable c: An interesting game scenario can be generated when the context

c is unbound. A set of 〈e1, r, e2〉 triples for the same c (movie or book) are

presented to the player. The player, in a series of interactions with the system

or another player, tries to determine C. The key idea here is to consistently

anonymize e1 and e2 when presented to the partner. In a two-player set-

ting, one player constructs 〈e1, r, e2〉 triples with anonymized e1 and e2 and

a randomly-paired partner tries to guess c. The constructed 〈e1, r, e2〉 triples

from the game are used by the system to form new facts.
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Using movie and book narratives, we build two games, MOVIEWIZARD and BOOK-

WIZARD , that are based on the scenarios where r or e1/e2 are unbound. MOVIE-

GURUS, a two-player game, demonstrates the scenario where c is unbound. These

games are available here: http://higgins.mpi-inf.mpg.de.

6.3.2 Player Reward Strategy for HIGGINS Games

HIGGINS has no gold standard solutions to directly evaluate the correctness of the

players’ responses. In a single-player environment where players play the game

independently, we deal with this issue by awarding future agreement bonuses based

on the fraction of the players that agreed with the player’s responses. The objective

of each player thus is to maximize her long-term overall score and obtain a top

rank among all players. And the objective from the system’s point of view is to

place more faith in the highly-agreed responses, as we expect that these will yield

a better KB.

6.4 MOVIEWIZARD & BOOKWIZARD GAMES

The MOVIEWIZARD game aims to establish relations between movie character roles

by posing factoid questions to the player based on its storyline (BOOKWIZARD is a

functionally identical game on book stories). The player starts the game by picking

a movie of his choice from the list of movies provided. The game server provides a

question from the selected movie which consists of three parts (see Fig. 6.1). The

first part states the question on two prominent characters in the movie. The second

part contains hidden cues which are sentences about the character-pair in the plot.

The third part contains five relation phrases presented in multiple-choice, an option

for no relation between the pair, and an optional input-field. The task of the player

is to choose an appropriate relation that holds between the two characters. If there

exists a relation and none among the multiple-choice holds, the player types in a re-

lational phrase. Otherwise, the option for no relation has to be chosen. The player

may choose to use the hidden cues to arrive at an answer.

http://higgins.mpi-inf.mpg.de
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Scoring scheme. The player score has two components: a) fixed points, called base

points, for responding with an answer to the question and b) bonus points, awarded

to the player based on the fraction of players who responded with the same answer.

If the player chooses to utilize the hidden cue, the base points for the question are

halved. Upon skipping the question no points are added to the score. The game

server presents only unanswered questions to the player. The overall score of the

player is determined by aggregating the base and bonus points. The position of the

player among all players, ranked on overall score, is shown at the end of a game

session. The objective of the player is to maximize the score and achieve top rank-

ing among all the players.

FIGURE 6.1: MOVIEWIZARD game
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6.5 GAME-BASED USER STUDY

We conducted a user-study of the MOVIEWIZARD game using Wikipedia movie plot

sections from 14 popular movies. In total, we generated 220 multiple-choice ques-

tions from individual sentences in the plot. We ran the game over the generated

questions with student volunteers in our lab. None of the players was involved with

the Higgins project. In total, 14 players participated. In the game mode, the player

is given the choice of selecting movies that she/he is familiar with. In addition to

the top-5 candidate answers and the options NONE and OTHER, users also have an

option to swap the roles of the two entities in a question. This is useful, when the

orientation of a suggested relation is wrong (e.g., with a candidate answer “James

Bond tortures Le Chiffre”).

In the game, players are shown a prelude text to provide context about a specific

situation in the movie. The subsequent sentence is the one from which the question

is generated, but the sentence is not directly shown but offered as a hidden cue.

Players can earn points when a question is answered. When they ask to reveal the

cue, the points to be earned are halved.

We manually constructed ground-truth answers for the 220 questions. Since some

sentences produce multiple relationships, we consider all correct answers for the

ground-truth. For sentences that do not describe any relation, we consider NONE as

the ground-truth. In cases where a relation exists in the sentence but is not captured

by any of the generated answers, OTHER is considered as ground-truth. As with the

case of crowdsourced HITs, we consider conservative and liberal settings defined

in 5.3.1.1 for our game-based evaluation.

We use the precision/recall measures defined in 5.4. The results for conservative

and liberal settings are shown in Table 6.1. We see that the game achieved high

precision, and even in the majority mode, high recall.



Chapter VI. Building Human Computing Games for Knowledge Acquisition 79

Conservative Liberal

Precision 0.815 0.829

Recall-any 0.893 0.897

Recall-majority 0.854 0.882

TABLE 6.1: Precision & Recall for MOVIEWIZARD Game

Regarding the cost of crowdsourcing, we looked at the inter-judge agreement as a

function of the number of contributors for a question. We broke this down by the

number of players.

Players Questions Fleiss Kappa

2 209 0.7176

3 199 0.7339

4 172 0.6956

5 146 0.6520

6 118 0.6979

TABLE 6.2: Inter-Judge Agreement for MOVIEWIZARD game

The results are shown in Table 6.2. We see that the agreement increases with more

users per questions, but quickly saturates. So for high-quality HC contributions, we

do not need a large number of players per question from the system perspective.

6.6 THE MOVIEGURUS GAME

MOVIEGURUS is a two-player interactive fact-generation game. It is an inversion-

problem game (see [39]) wherein the system does not provide any candidates,

and the relational facts are generated by the interactions between randomly paired

players.

Game Play. The game is played in multiple rounds. In each round, one player

assumes the player of “helper”, and is assigned to a partner, randomly picked from
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all players of the game. The partner then assumes the role of a “guesser”. Upon

pairing, the helper is presented with a movie title and its storyline. The helper is

also provided with the list of characters in the movie and codenames corresponding

to each of them. These purpose of the codenames is to hide the identity of the

character roles in the movie and they are randomly chosen by the system from a

pool.

The helper chooses any pair of characters from the list and types in a relational

phrase. This phrase along with the corresponding codenames is shown on the

screen of the guesser to help guess the movie title. The helper repeats the pro-

cess until the guesser correctly identifies the movie title, in which case the round is

won and both the players earn points. The round is lost when either of the players

choose to give up or upon stipulated time out. From a successful round, the system

benefits by harnessing the fact triples that are constructed by the player-typed re-

lational phrases and the respective pairs of movie characters. Figures 6.2 and 6.3

show screenshots of the interactions between the helper and guesser in a round

(here system presented the movie “The Godfather Part II”).
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FIGURE 6.2: MOVIEGURUS game – Helper screen
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FIGURE 6.3: MOVIEGURUS game – Guesser screen
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6.7 DISCUSSION AND OUTLOOK

Unlike crowdsourced workers, game players are motivated by competition and their

desire to be entertained. By designing interesting games that attract enthusiasts in

specific domains such as movies, books, current affairs, sports, bio-medicine etc.,

factual knowledge can be acquired through game play. In this work, we used movie

and book narratives, and presented interesting game scenarios in HIGGINS for dif-

ferent KA tasks. We demonstrated the MOVIEWIZARD, BOOKWIZARD and MOVIEGU-

RUS games that help acquire relations between character roles in movie and book

stories. Our in-house experiment of the MOVIEWIZARD game with a small set of

players showed high precision and recall. Also, we found that answers from only

a handful of players are sufficient to obtain good inter-player agreement. How-

ever, to fully leverage the potential of HC games for large-scale fact acquisition,

targeting communities of interested players on the Web is essential. This requires

deeper study on game-level factors, which is beyond the scope of this work and an

interesting direction in itself.





7 CHAPTER

Conclusion

In this thesis we presented the design and implementation of a system that com-

bines information extraction with human computing for advanced knowledge ac-

quisition tasks. We recapitulate the contributions below and outline some directions

for potential future work.

7.1 THESIS CONTRIBUTIONS

We presented a novel system architecture, called HIGGINS, that combines an IE en-

gine with an HC engine for effective knowledge acquisition. This HIGGINS strategy

enables the use of automated IE methods to generate questions and possible an-

swers that are cast into crowdsourced HITs. This way, the cost of the HC phase can

be controlled and is substantially reduced compared to an HC-only approach. We

successfully applied this combination to the difficult task of compiling relationships

between characters in movie and book narratives.

The HIGGINS IE engine derives entity-relation triples from Web corpora aiming for

high recall. The resulting triples, which contain noisy candidates, are ranked by

specifically designed statistical language models. By harnessing semantic and sta-

tistical resources, the IE engine is able to create meaningful questions and answer

candidates, fed into the HC engine for crowdsourcing. Our experiments demon-

strate the benefits of our system in terms of both output quality and HC cost. Using

the right combination of these resources alleviates the sparseness problem of rela-

tional phrases as demonstrated by its superior performance against its underlying

85
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statistical or semantic components. Our experiments on movie and book narra-

tive summaries show that HIGGINS performs well in terms of precision and recall,

and scores higher than state-of-the-art OpenIE systems or a pure crowdsourced ap-

proach.

Finally, we demonstrated how the fact candidates generated by the HIGGINS IE en-

gine can be used to construct human computing games for fact acquisition. The

MOVIEWIZARD and BOOKWIZARD games create multiple-choice questions with re-

lation candidates for the players to choose from. Players are rewarded points based

on output agreement and majority voting is used to determine correctness of facts.

MOVIEGURUS is an interactive two-player game in which one of the two randomly-

paired players helps the other player guess a context provided by the system, by

constructing fact triples related to the context. By mapping the construction of cor-

rect fact triples to the success of the players, the game collects valid fact triples

through their interactions.

7.2 OUTLOOK AND FUTURE WORK

The methods presented in this dissertation deviate significantly from existing ap-

proaches in the way humans participate in text-based knowledge acquisition pro-

cesses. We utilize human inputs to assess and validate fact candidates generated by

automated IE; by transforming them into HITs or game questions. In doing so we

need to limit the number of candidates in order not to overwhelm the contributors.

Producing redundant HITs is not desirable as costs present a scalability bottleneck.

We achieve a fine balance by developing appropriate ranking models for fact candi-

dates. There are several directions forward from here:

A. Active Learning

Although HIGGINS delivers decent precision, we expect its performance to

improve if the candidates provided by the contributors are incorporated into

the system.

• Improving IE. Feedback obtained from crowdsourced output can be

used to improve the language model statistics at the IE phase to drive
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generation or pruning of certain candidates. This will be especially useful

for boosting infrequent phrases at the IE stage.

• Improving HC. As HIGGINS produces quick consensus when good can-

didates are presented, HITs with perfect agreement require fewer overall

judgements. This can be exploited to further reduce crowdsourcing costs.

On the other hand, IE engine generates candidates even in cases where

no relations exist between the entity pairs, and these can quickly be elim-

inated using the feedback.

B. Game Trails

In HIGGINS games, players interact with the system or with other players to

generate fact triples. The sequence of interactions i.e., the clues presented

and the corresponding player responses is what we term ‘game trails’. Gener-

ated game trails can be mined to establish new facts, derive fact confidence,

and strength of relation-phrase pairs. Other interesting associations such as

important relations pertaining to an entity or context can also be obtained (in

the MOVIEGURUS game, for example). Similar to the crowdsourcing case, we

expect active learning on game trails to be beneficial for effective fact acqui-

sition and inciting more player interest in the game play.

C. Taxonomy for Relations in Narratives

Although the relations we consider have subtle differences, some relations

are abstract and subsume many different relational phrases (for example, i)

“wanted to kill” subsumes “shot at”, “laid a trap for” etc. ii) “X dreamt of Y”

subsumes “X dreamt of killing Y”, “X dreamt of marrying Y” etc.). By develop-

ing a taxonomy for relations (and their phrases) in narratives and stories, one

can target specific relations while harvesting relational facts, further reducing

crowdsourcing costs.

HIGGINS generates entity-relation triples for knowledge bases. As a by-product

it also produces a relation-to-phrase mapping for long tail relations, that will be

refined by incorporating feedback from HITs. We expect that this resource will find

use in paraphrasing, summarization and semantic search applications.





Bibliography

[1] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-

lor. Freebase: A collaboratively created graph database for structuring human

knowledge. In Proceedings of the ACM SIGMOD International Conference on

Management of Data, pages 1247–1250, Vancouver, Canada, 2008. ACM.

[2] Freebase. http://freebase.com.

[3] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, and Zachary

Ives. Dbpedia: A nucleus for a web of open data. In Proceedings of the Inter-

national Semantic Web Conference (ISWC), pages 11–15, Busan, Korea, 2007.

Springer.

[4] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core

of semantic knowledge. In Proceedings of the International World Wide Web

Conference (WWW), pages 697–706, Banff, Alberta, Canada, 2007. ACM.

[5] Douglas B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems;

Representation and Inference in the Cyc Project. Addison-Wesley Longman Pub-

lishing, Boston, Massachusetts, USA, 1st edition, 1989.

[6] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q. Zhu. Probase: a prob-

abilistic taxonomy for text understanding. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 481–492, Scottsdale,

Arizona, USA, 2012. ACM.

[7] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hr-

uschka, and Tom M. Mitchell. Toward an architecture for never-ending lan-

guage learning. In Proceedings of the National Conference on Artificial Intelli-

gence (AAAI), pages 1306–1313, Atlanta, Georgia, USA, 2010. AAAI Press.

[8] NELL. http://rtw.ml.cmu.edu.
89

http://freebase.com
http://rtw.ml.cmu.edu


Bibliography 90

[9] Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora.

In Proceedings of the Conference on Computational Linguistics (COLING) - Vol-

ume 2, pages 539–545, Nantes, France, 1992. ACL.

[10] Nicholas Kushmerick, Daniel S. Weld, and Robert B. Doorenbos. Wrapper

induction for information extraction. In Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI), pages 729–737, Nagoya, Aichi,

Japan, 1997. Morgan Kaufmann Publishers.

[11] Sergey Brin. Extracting patterns and relations from the world wide web.

In Proceedings of the International Workshop on The World Wide Web and

Databases (WebDB), pages 172–183, Valencia, Spain, 1998. Springer-Verlag.

[12] Eugene Agichtein and Luis Gravano. Snowball: extracting relations from large

plain-text collections. In Proceedings of the ACM Conference on Digital Libraries,

pages 85–94, San Antonio, Texas, USA, 2000. ACM.

[13] Mary Elaine Califf and Raymond J. Mooney. Relational learning of pattern-

match rules for information extraction. In Proceedings of the National Confer-

ence on Artificial Intelligence and Conference on Innovative Applications of Arti-

ficial Intelligence (AAAI/IAAI), pages 328–334, Orlando, Florida, USA, 1999.

AAAI Press.

[14] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Visual web informa-

tion extraction with lixto. In Proceedings of the International Conference on

Very Large Data Bases (VLDB), pages 119–128, Roma, Italy, 2001. Morgan

Kaufmann Publishers.

[15] Oren Etzioni, Michael J. Cafarella, Doug Downey, Ana-Maria Popescu, Tal

Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates. Methods for

domain-independent information extraction from the web: An experimental

comparison. In Proceedings of the National Conference on Artifical Intelligence

(AAAI), pages 391–398, Cancun, Mexico, 2004. AAAI Press.

[16] Michele Banko, Michael J Cafarella, Stephen Soderland, Matt Broadhead, and

Oren Etzioni. Open information extraction from the web. In Proceedings of

the International Joint Conference on Artifical Intelligence (IJCAI), pages 2670–

2676, Hyderabad, India, 2007. Morgan Kaufmann Publishers.



Bibliography 91

[17] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations

for open information extraction. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1535–1545, Edin-

burgh, United Kingdom, 2011. ACL.

[18] Danushka Tarupathi Bollegala, Yutaka Matsuo, and Mitsuru Ishizuka. Rela-

tional duality: Unsupervised extraction of semantic relations between entities

on the web. In Proceedings of the International World Wide Web Conference

(WWW), pages 151–160, Raleigh, North Carolina, USA, 2010. ACM.

[19] Rahul Gupta and Sunita Sarawagi. Joint training for open-domain extraction

on the web: Exploiting overlap when supervision is limited. In Proceedings

of the ACM International Conference on Web Search and Data Mining (WSDM),

pages 217–226, Hong Kong, China, 2011. ACM.

[20] Petros Venetis, Alon Halevy, Jayant Madhavan, Marius Paşca, Warren Shen,
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A APPENDIX

Entities and Entity Phrases

A.1 EXTRACTING ENTITIES

Following is the regular expression that HIGGINS uses to extract canonical entity

names from cast sections of Wikipedia movie articles.

( ? : \∗ ) ? ( ? : [ \ s ]+) ? ( ? : \ [ \ [ ) ? ( .∗? ) ( ? : \ ] \ ] \ s +−|\]\]\ s+as |\]\]\ s+s t a r s

\ sas |\]\]\ s+plays \ s |\]\]\ s+por t ray s \ s |\]\]\ s {0 ,15}\ .{2 ,}|\]\]\

s+|\s+−|\s+as |\ s+s t a r s \ sas |\ s+plays \ s |\ s+por t ray s \ s |\ s

{0 ,15}\ .{2 ,}) ( ( ? :Mr\ . |Ms\ . | Mrs \ . | J r \ . | Sr \ . | Col \ . | Cpl \ . | Maj \ . |

Gen \ . | Pvt \ . | Sgt \ . | Capt \ . | Br ig \ . | Dr \ . | [A−Z ] \ . | Lt \ . | , Mr\ . | , Ms

\ . | , Mrs \ . | , J r \ . | , Sr \ . | , Col \ . | , Cpl \ . | , Maj \ . | , Gen \ . | , Pvt \ . | ,

Sgt \ . | , Capt \ . | , Br ig \ . | , \ s [A−Z ] \ . | , Lt \.|[^?:\ r \n\. , <]) ∗)

A.2 NOUN PHRASE DETECTION

Following is the list of regex rules on part-of-speech tags (PennTreeBank tags) for

extracting noun phrases from descriptions of characters in the cast sections.

1. Potentially a proper noun or common noun in either singular or plural form (e.g.,

“Gamekeeper”, “Death-eaters”, “Transfigurations teacher” ,“news reader’ etc.).

nounPhrase0 = " (NNP\\ s ?) {1 ,}(NNPS\\ s ?) {0 ,}(NNS\\ s ?) {0 ,}(NN\\ s ?)

{0 ,}(NNP\\ s ?) {0 ,}(NNPS\\ s ?) {0 ,}(NNS\\ s ?) {0 ,} " ;
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2. Potentially a title with a determiner (or Wh-determiner) and a proper noun in

the beginning (e.g., “ex-Defense Against the Dark Arts teacher”).

nounPhrase1 = " ((?=[^A−Z])DT\\ s ) {0 ,}( JJS ?\\ s ) {0 ,}(NN\\ s ) {0 ,}(NNP

?\\ s ?) {1 ,}(POS\\ s ?) ?( IN\\ s ?) ?(\\bDT\\ s ?) ?( JJS ?\\ s ?) ?(NNP?S?\\ s

?) {1 ,}(NNS?\\ s ?) {0 ,} " ;

3. Potentially a title without a proper noun in the beginning (e.g., “sarcastic chair-

man of the East India Company”).

nounPhrase2 = " ( JJS ?\\ s ) {0 ,}(NN\\ s ?) {1 ,}(POS\\ s ) ?( IN\\ s ) ?(\\bDT\\

s ) ?( JJS ?\\ s ) ?(NNS\\ s ?) {1 ,} " ;

4. Potentially a title with plural common noun in the beginning (e.g., “motherly

figure of Harry”).

nounPhrase3 = " ( JJS ?\\ s ) {0 ,}(NNS\\ s ?) {1 ,}(POS\\ s ) ?( IN\\ s ) ?(\\bDT

\\ s ) ?( JJS ?\\ s ) ?(NN\\ s ?) {0 ,} " ;

5. Potentially a possession (e.g., “Harry’s Muggle Aunt”, “the Dead Man’s Chest”).

nounPhrase4 = " ((?=[^A−Z])DT\\ s ) {0 ,}( JJS ?\\ s ) {0 ,}(NN\\ s ) {0 ,}(NNP?

S?\\ s ?) {1 ,}(CD\\ s ?) {0 ,}(POS\\ s ) {0 ,}( JJS ?\\ s ) {0 ,}(NNP?\\ s ?)

{0 ,}(NNPS?\\ s ?) {0 ,}(NNS?\\ s ?) {0 ,} " ;

6. Potentially a official post (e.g., “Walter of Chatillon”).

nounPhraseIN = " (NNP\\ s ) {1 ,}( IN\\ s ) {1}(NNP\\ s ?) {1 ,} " ;

7. Potentially an adjectival noun phrase (e.g., “scary Death-eaters”).

nounPhraseJJ = " ( JJ \\ s ) {1}(NNPS\\ s ?) {1 ,} " ;

9. Potentially a well-known proper noun (e.g., “The Tigress”).

nounPhraseDT = "((?=[^A−Z])DT\\ s ) {1}(NNP\\ s ) {1 ,} " ;

To obtain longest meaningful description phrases for the character role, the text

from the character description must be evaluated for matches against the above

regular expressions strictly in the following order:
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a l lNounPhrasesRegexL is t = {nounPhrase0 , nounPhrase1 , nounPhrase2 ,

nounPhrase3 , nounPhrase4 , nounPhraseIN , nounPhraseJJ ,

nounPhraseDT } ;

The matched noun phrases are checked against the following types in the YAGO

ontology [85].

{“PERSON”, “LIVING THING”, “IMAGINARY BEING”, “FICTIONAL”, “SOCIAL GROUP”, “FILM CHARACTERS”}.



B APPENDIX

Relations and Relational Phrases

B.1 MANUALLY COMPILED RELATIONS FOR HIGGINS DICTIONARY

Tables B.1, B.2, B.3, B.4, B.5, B.6, B.7 show the list of hand-crafted relations that

hold between a pair of character roles in movie or book narratives. To these rela-

tion strings, two transformations are applied to their lexical representation prior to

performing a corpus search for these relations. They are

1. lemmatize the relation string (e.g. “X have endorse Y” for “X had endorsed Y”).

2. replace modal verbs (e.g., could, will, would etc.), pronouns (e.g., her, his

etc.), determiners (e.g., a, an, the) and adjectives with wild-card place holders

that allow any members of their respective class.

accomplice of accused acknowledged

act on admire admired

admires adopted advisor of

agree to agree with allowed

also appointed also credited also expressed reservations about

also faces also faces resistance from also mocked

TABLE B.1: Hand-crafted Relations I
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also speaks regularly with alter ego of ancestor of

apologized for appointed appreciated

approached approach by approved the sale of

argued with arranged for asked

assailed auctioned auditioned for

aunt of avoid awaited

baby of is responsible for was aware of

was an outspoken critic of was an aide to was the author of

is a daughter of was the father of was the head of

is the heroine of is the image of was the inspiration for

is a stooge of is the wife of was accused by

was addicted to was adored by was aligned with

will accept would actually provide more light
than

could be facing

would be rewarded for should be separated from would defeat

will face would force would give up

would have preferred may have to take would help honour

would inherit would miss would never begin a program
with

will never forget would not be taped by will not block

could not comment on would not prevent would now assent to

will oppose would pay will perform along with

would probably continue
along

would probably miss would pummel

would reconsider would replace would sign

would soon be meeting
with

may well be a pawn of accompanied

is always overshadowed by was appearing before were asked to inform

is backed by is being held captive by is beside

was chosen by is close to is coming under

TABLE B.2: Hand-crafted Relations II
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be concern about was cooperating with is currently working with

was endorsing was endorsed by is expected to take care of

was forced to endure was going with was haunted by

be host of is interested in is investigating

was involved with was killed as is like

was made aware of was made to watch was monitoring

was named was not aware of is not encumbered by

is not too fond of is now working for be oust by

is paying for is press secretary to was probably

was raising money for was reassigning was released yesterday by

was replaced by was running toward was seeking a stay of

was slated to become is still below was striving for

is struggling to hang on to is survived by was taking his cue from

was telling was tired of is to be followed by

was to denounce is to marry was wooed by

beat became became chairman after

befriended befriends began writing about

binds blocked boss of

boy of boyfriend of broke

broke with bride of bridegroom of

briefed brought brother of

brother-in-law of called called for

called on campaigned for cares more about

care-taker of carried challenged

chased cheat cheated

child of chose colleague of

came a day after come across came as

comes to comes to finding come with

controlled converts into cousin of

created dance with dance along with

daughter of daughter-in-law of declined to comment on

TABLE B.3: Hand-crafted Relations III
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defended deftly finds delivered a new plan for

descendant of destroyed developed

devoted his energies to dislike dislike

dismissed did not appear to understand does not comment on

did not deny did not fully understand did n’t have anything to do with

did not know did not require did not respond to

do not try to replicate doctor of drove

dropped elder brother of elder sister of

eliminated emulate encountered

enemy of engaged ex-boyfriend of

ex-girlfriend of ex-spouse of expected

expects to meet with expects to retain fails to deliver

fell behind family member of family of

fatally shot father of father-in-law of

feels terribly let down by fielded complaints from fights with

fought with filed her first report about found

finds out about first met followed

followed even followed with fooled

fools foster-brother of foster-child of

foster-father of foster-mother of foster-sister of

frees friend of generally endorsed

got to girl of girlfriend of

gave out went to grabbed

grandchild of granddaughter of grandfather of

grandmother of grandson of great-granddaughter of

great-grandfather of great-grandmother of great-grandson of

greeted grilled grows up to become

handled hated hates

has little chance of defending has direct control over had a high regard for

TABLE B.4: Hand-crafted Relations IV
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had an argument with had no comment on have a connection to

had no memory of has accepted has accompanied

has accused has acquired had agreed to join

has also retained had answered had appointed

had appointed to oversee has attacked has attacked the credibility of

has baffled has been buffeted by has been dragging

had been driving had been falsely accused
by

has been linked to

has been pursuing had been talking with had been touting

has been under has changed has endorsed

had found no evidence of had got to know had given the book to

have idea about had meetings with had not expected

have not record the name of has not spoken to had not talked to

had nothing to do with has pressed had reached an agreement
with

had recommended has revived had stayed with

had strongly criticized had taken had taught

had testified for has threatened to topple had to battle

had to deal with had troubled had truly addressed the
needs of

have underestimate had used has used his knowledge of

has wasted little time getting
to

has yet to tame helps

helped create helped found hints at

hired husband of immediately accused

immediately telephoned included infant of

influence informs initially refused to support

inquired about interviewed invented

join killed knew

lad of lady of later dropped

lauded laugh at lawyer of

TABLE B.5: Hand-crafted Relations V
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leads left left behind

like liked likes to encourage

liquidate listened to lobbied for

look for lose touch with loved

lover of maid of made his name as

marry master of matched

match maker of met as met with

menial of missed mistress of

mother of mother-in-law of moved

needed needs to get neighbour of

nephew of never took niece of

nominate offend offend

offered offer to release often heard

once was followed home by once shared the limelight with oppose

ordered originally represented orphan of

outperform oversees overwhelmingly supported

parent of partner of performed better than

periodically consult with personally opposes pick up

pitched planned to call plans to nominate

plays with point to praise

praise prepared for promised

proposes protects purchased

pushed quoted raised

rallied around rarely met with reach before

reacted angrily to read a statement on recalls

received recreates recruited

refuses to take refused to travel to relative of

released relied heavily on replaced

reports to requested reshaped

respected returned to returned to tell

ridicule rose less than rob

TABLE B.6: Hand-crafted Relations VI
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rob sanctioned saved

saves seconded seduced

seduces sent sent for

servant of serve shook

shot showed showed evidence of

sided with side-swiped sang with

sings with sister of sister-in-law of

slammed somehow mitigates against son of

son-in-law of spoke on spoke with

spit on spotted stabbed

stalked stalks step-brother of

step-daughter of step-father of step-mother of

step-sister of stuck close to stifle

struck down suggest supervises

supports sweet heart of sympathized with

took took control from take everything from

took issue with took on take power from

took time out from teaches teacher of

teammate of testified about testified for

then devised a scheme for then ranted on think about

thought of threatened to sue threw

torture tortured traces

traded trails trainer of

tried to calm tried to persuade twin of

uncle of used use to refer to

used to sleep with voted for wants

wants to do as wants to finish wanted to use

warmly shook the hands of waved whispers to

widow of widower of wife of

win over wound works closely with

work for writes to younger brother of

younger sister of

TABLE B.7: Hand-crafted Relations VII
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B.2 COLLOCATION MEASURES FOR PHRASE RELATEDNESS

• Pointwise Mutual Information (PMI)

PMI, a collocation metric defined over a pair of words, measures the reduction

of uncertainty about the occurrence of one word when there is knowledge of

occurrence of the other word. We adapted this metric to the co-occurrence of a

dictionary relation r with a noun-phrase pair n, and co-occurrence of a phrase

p with n. Let N is the set of all noun-phrase pairs. For a dictionary relation

r and a mined phrase p, PMI is evaluated as PMI(p, r) = log Pr(p,r)
Pr(p)∗Pr(r) . If

N(r) is the set of noun-phrase pairs co-occurring with r and N(p) is the set of

noun-phrase pairs co-occurring with p, then PMI(p, r) is estimated as,

PMI(p, r) = log
|N(p) ∩N(r)| ∗ |N(p) ∪N(r)|

|N(p)| ∗ |N(r)|
.

• Normalized PMI

PMI has the undesirable property that its value for a pair of perfectly corre-

lated events is higher when their combination is less frequent. As noisy phrases

which often have low frequencies are boosted in such cases, it is desirable to

establish a fixed upper bound for PMI. Therefore to reduce this effect of high

PMI values for lower frequencies, it can be normalized as

nPMI(p, r) =
log(Pr(p, r)/Pr(p) ∗ Pr(r))

− log Pr(p, r)
.

• Cosine of PMI

In PMI and nPMI we considered co-occurrence of r and p with the set of noun-

phrase pairs in the corpus. However this approach ignores the co-occurrence

frequencies of the individual noun-phrase pairs in N with r or p. Therefore

we experimented with comparing PMI values of r with the noun-phrase pairs

in N and the PMI values of p with the noun-phrase pairs in N using cosine

similarity as,
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cosinePMI(p, r) =

∑
e∈E

PMI(r, e) ∗ PMI(p, e)√∑
e∈E

(PMI(r, e))2 ∗
√∑

einE

(PMI(p, e))2
.

Although cosinePMI performed better than PMI and nPMI, its scores are higher

for relations that produce large number of phrases through co-occurring noun-

phrase pairs. As the number of phrases for each relation is highly dependent

on the nature of the corpus, cosinePMI did not yield us the desired robustness.

• Mutual Information (MI)

MI is a information theoretic measure defined over two random variables (un-

like PMI which holds for individual values of random variables). For two ran-

dom variables X and Y , it is given as

MI(X, Y ) =
∑

x∈X,y∈Y

Pr(x, y) ∗ log Pr(x, y)

Pr(x) ∗ Pr(y)
.

In our setting, we define Xce and Xre, two binary random variables indicating

co-occurrence of ewith pattern c and relation r with a noun-phrase pair e ∈ N .

MI(c, r) can be calculated as,

MI(c, r) =
∑
e∈E

∑
Xce=0,1

∑
Xre=0,1

p(Xce, Xre) log
p(Xce, Xre)

p(Xce)p(Xre)

where the probabilities p(Xce) and p(Xre) are estimated as follows:

p(Xce = i) =
1

|E|
∑
e∈E

(Xce = i)

p(Xre = i) =
1

|E|
∑
e∈E

(Xre = i)

p(Xce = i,Xre = i) =
1

|E|
∑
e∈E

(Xce = i,Xre = i)

where i can take values in {0, 1}.
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• Pearson’s Chi-square Test

Pearson’s chi-square test is a statistical test between two variables that com-

pares observed frequencies with the frequencies expected under their inde-

pendence. For large differences in the observed and expected frequencies,

the null hypothesis of independence of the two variables can be rejected. We

employed this test to determine if higher number of common co-occurring

noun-phrase pairs between a relation and a phrase imply dependence among

them. For a (r, p) pair, we create the following 2 × 2 table, consisting of co-

occurrence frequencies of noun-phrase pairs,

r !r

p O11 = |Nr ∩Np| O12 = |Np −Nr|

!p O21 = |Nr −Np| O22 = |Np ∪Nr|

where Nr and Np are noun-phrase pairs occurring with r and p respectively.

χ2 =
(O11O22 −O12O21)

2

(O11 +O12)(O11 +O21)(O12 +O22)(O21 +O22)

We tested the χ2 values against probability level of α = 0.05 in the χ2 distri-

bution. While χ2 test works for large values of co-occurrence frequencies, for

small cell values, the test is inaccurate (which is often the case with a large

majority of our corpus phrases).
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