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Zusammenfassung

Auf kooperativer Spieltheorie basierende Koalitionsbildung in Multia-
gensystemen ermöglicht es rationalen Softwareagenten, zu koope-
rieren um ihren Nutzen zu erhöhen. Wenn dies in offenen Umge-
bungen stattfindet, ergeben sich einige Probleme. In dieser Arbeit
geht es speziell um:

• Unsicherheit: in offenen Umgebungen haben Agenten oft nur
unvollständige Information. Gezeigt wird, wie sich mit unschar-
fen Koalitionswerten effizient Koalitionen bilden lassen, und es
werden Simulationsergebnisse präsentiert. Weiter wird eine
Methode vorgestellt, mir der sich stabile und garantiert risikobe-
grenzende Koalitionen bilden lassen.

• Betrügerische und unverlässliche Agenten: in offenen Umge-
bungen ist zu erwarten, dass einige Agenten versuchen, ihren
Profit auf Kosten anderer unberechtigterweise zu steigern. An-
dere könnten unzuverlässig sein. Es wird gezeigt, wie ein Ver-
trauensmodell mit kryptographischen Techniken verbunden wer-
den kann, sodass ein erfolgreicher Betrug erschwert wird.

• Wahrung der Privatsphäre: viele Koalitionsbildungsverfahren
verlangen von den Agenten, umfangreiche Informationen auszu-
tauschen, z.B. individuelle Kosten und Bewertungen von mög-
lichen Ergebnissen. Es kann jedoch ein Problem sein, wenn
persönliche, finanzielle oder andere heikle Daten verlangt wer-
den. Für solche Situationen wird der (nach unserem besten
Wissen) erste privatsphärensichernde Koalitionsbildungsalgorith-
mus vorgestellt.
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Summary

Multiagent coalition formation based on cooperative game theory is
a means to let rational software agents cooperate to increase their
benefits. When applied in open environments, a number of problems
arise that are not well coped with by existing approaches. Some
specific problems are addressed:

• Uncertainty: in open environments, agents often do not have
complete knowledge. In this thesis, it is shown how to form
coalitions efficiently by modeling uncertainty as fuzzy numbers.
Simulation results are provided. Additionally, a method for
coalition formation is proposed which is shown to form stable
coalitions with guaranteed risk bounds.

• Defrauding or unreliable agents: it might be expected in open
environments that some agents try to unsolicitedly increase
their own profits at the cost of others by deception, or are gen-
erally unreliable. In this thesis, we combine a trust measure
based approach with cryptographic techniques to obtain pay-
ment and communication protocols that are shown to hamper
successful deception.

• Privacy preservation: most approaches require agents to reveal
a considerable amount of information to each other, such as
individual costs and valuations of certain outcomes. This might
be unacceptable when personal, financial or other delicate data
is concerned. To this end, the (to our best knowledge) first
privacy preserving coalition formation algorithm is proposed.
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Chapter 1

Introduction

Today’s highly networked computational world provides its users
with a multitude of available online services which they can em-
ploy to satisfy their needs. This includes services for all sorts of
trades, such as retail, travel, transportation, shipping, finance or
entertainment, to name but a few. Others are purely computing ori-
ented, then also called cloud services, such as services for online
storage, database access or computation itself. More and more of
those services are also made available via machine-usable APIs, then
also called web services1. Typically, each web service thereby offers
some narrowly defined functionality. For example, a travel agency
might provide a web service to query available flights, and another
one to actually book a flight. A traditional application designed for
end-users, such as a flight booking app for smartphones, might then
combine a fixed set of web services to implement its functionality.

Because commercial web service providers aim to make some
profit, the usage of many web services comes at some costs for their
users. This cost might be applicable either for accessing the web
service itself, which is typically the case for cloud services such as
online storage. Or because of a secondary effect, such as the cost of
a plane ticket that is booked via the web service. Common models
include pay-per-user or subscriptions.

Alternatively, web service providers and users might employ ra-
tional software agents to negotiate service use. Agents thereby act
on behalf of their owners, trying to fulfill their goals. For web service
providers, this typically involve maximizing their profit. User agents,

1For example, the website http://www.programmableweb.com lists 9699 ser-
vices in 68 categories as of August 2013



CHAPTER 1. INTRODUCTION

on the other hand, will try to fulfill their given requests at a low cost.
However, the sets of web service providers and users need not be
disjunct. A company offering some service might at the same time
be requesting other services from other providers.

Furthermore, more complex requests might only be fulfilled by
employing a set of offered services in combination. For example, a
user might request her agent to book a ticket for a concert in another
city, as well as a matching train ticket and hotel. However, her
budget is bounded. Therefore, the three bookings have to be made in
concert. Now, it might turn out that this combination is not possible
within the given budget and the usual fixed prices. However, relevant
service provider agents might still agree to offer a matching bundle
at a reduced price which is still profitable for them, but within the
budget. Actually, there might be a number of possible combinations
of service prodiver agents which are able to do this, while there might
be more similar requests from other user agents at the same time.
So who should cooperate with whom, and under which terms?

Questions of this kind are studied in the field of cooperative game
theory, which provides solution concepts that specify which agents
should get into a binding agreement, i.e. form a coalitions bound
by some specific contract. Typically the contract specifies which ac-
tions are to be performed by which agent in the coalition such that
the coalitional profit is achieved. Further, a solution concept de-
termines and how coalition members should distribute the profit
among themselves such that it is profitable for each agent, and that
no agent has a significant incentive to break away from the coalition.
Therefore, a number of coalition formation algorithms and protocols
for use in multiagent systems have been introduced in the literature
(Chalkiadakis et al., 2011, Klusch and Shehory., 1996, Shehory and
Kraus, 1998, Shoham and Leyton-Brown, 2009). Use of such algo-
rithms is not limited to web service scenarios, but can be applied to
any situation involving rational agents trying to negotiate profitable
cooperation when contracts among the agents can be made. Quite a
few problems in this undertaking have been tackled so far with some
success, such as circumventing the high computational complexity
inherent in cooperative game theory solution concepts. But when
applied in open environments such as the internet, additional chal-
lenges arise that are not well coped with by existing approaches. In
this thesis, we tackle three specific of such problems: uncertainty,
deceiving and unreliable agents and privacy preservation. We provide

2



CHAPTER 1. INTRODUCTION

coalition formation algorithms for each of these, and show relevant
properties mostly theoretical, although a few simulation results are
provided as well.

First, we consider uncertainty in coalition formation. In classic
cooperative games, perfect information is assumed in order to com-
pute a solution. But this is generally not realistic to assume in real-
world scenarios. For example, the exact profit of a potential coali-
tion might in general not be known in advance. To this end, a few
approaches have been introduced in the literature to allow for coali-
tion formation under uncertainty. Most of these rely on probabilistic
methods, such as Bayesian coalition formation (Chalkiadakis and
Boutilier, 2012). In this thesis, we propose an alternative approach
which allows to use fuzzy numbers in the setting of possibility theory
to model input values. Possibility theory has been shown to be more
flexible and more in line with human expectations than probability
theory in some settings Chowdhury et al. (2009), Hüllermeier (2003),
Raufaste et al. (2003), especially when knowledge is subjective and
probability distributions are not known. Therefore, we extend the
coalition formation algorithm BSCA (Klusch, 1997), which is based
on the solution concept of the bilateral Shapley value, to operate
on fuzzy numbers. The proposed algorithm is shown to maintain
the low computational and communication complexity of the BSCA.
Additionally, simulation results are provided which show generally
favorable quality of negotiated solutions, both with respect to overall
achieved payoffs as well as stability.

Another kind of uncertainty in coalition formation arises when
coalitions might fail completely, thus inducing only costs instead of
profits. Thus, even though the potential profit of coalition might
be high, and the expected payoff (in probabilistic terms) might be
positive, the possible loss in case of failure might be unacceptable to
agents. For this kind of situation, we show how to use a coherent risk
measure to assess and quantify the financial risk of a coalition. One
property of coherent risk measures is that the combined risk of two
coalitions is less or equal than their added single risks. We exploit
this fact to let agents take part in multiple coalitions at the same
time, thus lowering their risks. We then extend the cooperative game
solution concept of the kernel to respect the agents’ individual risk
bounds when computing a payoff distribution. Based on this, we
outline an algorithm that guarantees to adhere to the risk bounds.

A further issue in open environments is that an agent might come

3
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across others which try to unjustifiably increase their own payoffs
via deception. For the kernel, we show that it is prone to such ma-
nipulations. Furthermore, agents might fail to make their assigned
payments to each other (side-payments) in order to implement a so-
lution. While contracts are assumed to be binding, the question of
who ultimately enforces the adherence to the contracts is typically
not part of cooperative game theory or coalition formation research.
Instead, this is assumed to be part of the environment in which
agents engage in negotiations, such as the legal framework at the
top most level. However, the cost of exercising one’s right at that
level can be high, and thus situations which necessitate such a step
should be avoided if possible. Therefore, we introduce a novel side
payment protocol which ensures that it is rational for each agent to
make its side-payment at the specified time, since we prove that de-
viating from it would induce a loss for the agent. Finally, we show
how agents can combine this with a trust model to measure each
other’s performance when executing the coalitional actions. This
way, unreliable agents and agents which deceived with respect to
their announced capabilities can be coped with.

Finally, we tackle the issue of privacy preservation in coalition
formation in open environments. When agents representing differ-
ent, unrelated, independent and unacquainted entities such as indi-
vidual users and service-offering companies engage in online negoti-
ation, it might be unacceptable for an agent that others learn which
services are accessed and which profits are achieved. For instance,
a company negotiating with potential component suppliers for some
product might not want to let its competitors, which might also take
part in negotiations, know about its requests. Unfortunately, exist-
ing coalition formation approaches generally assume that all agents
share such information freely with each other in order to negotiate.
To this end, we propose the first privacy preserving coalition forma-
tion algorithm (to our best knowdlegde).

Having outlined the basic concerns of this thesis, we provide the
specific research questions in the next section.

1.1 Research Questions

In this thesis, we present methods for multiagent coalition forma-
tion which mitigate some of the strict requierements for classical
game-theoretic approaches while trying to preserve their beneficial

4



CHAPTER 1. INTRODUCTION

solution qualities. The particular research questions we answer are
the following:

Fuzzy-valued coalition formation

1. How can stable coalitions be formed efficiently when the
coalition values are fuzzy?

2. How can a resulting fuzzy solution be used to determine
concrete, non-fuzzy side-payments in a stable manner?

3. What impact does the choice of possibilistic ranking oper-
ators have on the resulting payoffs?

4. Are the resulting fuzzy payoffs core-stable?

Risk-bounded coalition formation

1. How can resource-bounded agents reduce the risk of suf-
fering losses due to failing coalitions according to an ap-
proved measures of risk?

2. How can stability of risk-bounded coalitions be ensured
and what is the computational cost of such an approach?

Coalition formation with deceiving agents
How can stable coalitions be formed while preventing rational
agents from deceiving during

1. coalition negotiations and

2. side payment executions?

Privacy-preserving coalition formation

1. How can profitable coalitions efficiently be formed while
adhering to privacy constraints?

2. How can adherence to these privacy constraints be main-
tained also during the side payment and execution phases?

5



CHAPTER 1. INTRODUCTION

1.2 Thesis structure

The thesis is structured into three main parts: the first part con-
sists of chapters 2 and 3. Chapter 2 starts with a clarification of
what type of multiagent systems we are concerned with in this the-
sis. Then, we introduce the basic notions of cooperative game theory
and provide background on how it has so far been applied to multia-
gent systems. We conclude the chapter by outlining the problems to
which solutions are proposed in this thesis. In chapter 3, we discuss
related work with respect to tackling these problems.

In the second part, chapters 4 - chapters 7, we introduce and
discuss a number of coalition formation algorithms, the main con-
tributions of this thesis.Chapters 4 and 5 tackle coalition formation
under uncertainty using fuzzy values and risk bounds, respectively.
Chapter 6 is concerned with the potential untrustworthiness of other
agents, while chapter 7 introduces privacy-preserving coalition for-
mation. As these four chapters employ different formalisms in ad-
dition to the theory of cooperative games and are concerned with
quite separate problems, we introduce these formalisms within the
preliminaries at the beginning of each chapter.

Finally, we conclude in chapter 8 by giving answers to the re-
search questions and providing an outlook on worthwhile future
work.

6



Chapter 2

Background

In this chapter we introduce the idea of coalition formation as a
means to enable autonomous rational agents to cooperate to their
own benefit in open multiagent systems.

For this purpose, we first clarify the notions of autonomous ratio-
nal agents and open multiagent systems in detail in section 2.1. In
section 2.2, we introduce cooperative game theory as an appropri-
ate theory to model the cooperative settings that we are concerned
with. We then give an overview of how this theory has already been
applied to multiagent coalition formation in the literature in sec-
tion 2.3. Some of the more basic challenges of that undertaking,
such as high computational complexity of cooperative game theory
solutions, and how they been tackled in existing approaches, are
also outlined in that section.

Finally, we introduce the specific problems of coalition formation
which we tackle in this thesis: in section 2.4, we introduce the prob-
lem of coalition formation under uncertainty. To our best knowledge,
almost all of the existing work in this area employs probabilistic ap-
proaches, which we briefly introduce first. Next, we look at employ-
ing fuzzy set theory as means to model uncertainty in the context
of multiagent coalition formation. Such approaches have received
little attention, albeit fuzzy methods have been shown in recent lit-
erature to have certain practical advantages over probabilistic ones
in certain settings.

As another challenge, we introduce the problems of deception,
fraud, and privacy preservation in coalition formation in section 2.4.



CHAPTER 2. BACKGROUND

������������������

��������������������������������������

�������������������������������

������������������

���������������������������������������������������

������������ ���������������������� ���

Figure 2.1: Overview of Multiagent Coalition Formation and con-
tributing research fields.

2.1 Autonomous Rational Agents and Open
Multiagent Systems

The research presented in this work is concerned with enabling au-
tonomous rational agents to form of coalitions in open multiagent sys-
tems in order to jointly satisfy their goals when they cannot do so on
their own, or only sub-optimally. But what exactly are those agents
and multiagent systems? Unfortunately, general and definitive an-
swers to these questions are still missing in the relevant literature,
as Shoham and Leyton-Brown (2009) note in their recent book on
multiagent systems:

“Somewhat strangely for a book that purports to be rigorous, we
will not give a precise definition of a multiagent system. The reason
is that many competing, mutually inconsistent answers have been
offered in the past. Indeed, even the seemingly simpler question —
What is a (single) agent? — has resisted a definitive answer. For
our purposes, the following loose definition will suffice: Multiagent
systems are those systems that include multiple autonomous entities
with either diverging information or diverging interests, or both.”

In addition to this, we also assume that there is no central au-
thority which monitors, controls, schedules or otherwise regulates
the agents. That is, the agents’ are theoretically only bound by ap-

8
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plicable juridical laws. This is what we mean by open multiagent
system.

While the above broad definition in fact includes all sorts of sys-
tem, including the “real world”, in this work we consider only fully
automated (i.e. software or robotic) multiagent systems. That is,
artificial, non-human agents. Nevertheless, in the remainder, we of-
ten say just “system” instead of “open multiagent system”, and just
“agent” instead of “autonomous rational agent”.

We assume the agents themselves to be autonomous and goal-
oriented in the sense of the definition from Franklin and Graesser
(1996):

“An autonomous agent is a system situated within and a part of an
environment that senses that environment and acts on it, over time,
in pursuit of its own agenda and so as to effect what it senses in the
future.”

However, while it might be imaginable that such an autonomous
agent is completely independent and truly has “its own agenda”,
we assume that usually an agent represents another entity, i.e. an
“owner”. This owner might e.g. be a human user, a company or an-
other (software) agent, and sets the goal(s) for its agent(s) to achieve.
An agent then autonomously acts on its owner’s behalf, i.e. it is free
to make its own decisions on how to take action in the system to
achieve its goals.

We additionally assume that the owners of agents in the system
are generally independent, and that they might not poss any prior
knowledge about each other. We indeed assume that this will be a
typical case in larger systems with many paricipants.

If agents might not know each other in advance, they will need
a way to discover each other. We however let it open whether the
system provides some centralized functionality for this (such as a
directory service), or the agents implement some distributed peer-
to-peer protocol to achieve this.

We further assume that the agents’ owners typically also provide
for the agents’ resources. This includes e.g. computational power,
memory, and financial resources. We assume these resources to
be bounded, and also that agents generally will have more or less
specific time constraints for achievement of their goals (i.e. from
strict deadlines to soft requirements such as “find me a solution
soon enough").

Also, agents might not be able to achieve complex goals on their

9
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own. They must therefore take advantage of some form of cooper-
ation and coordination with other to be able to satisfy such goals.
However, if we further assume that the agents’ owners are selfish,
they wouldn’t want their agents to just use their finite resources
for altruistic achievement of other agents’ (or owners’) goals. Agents
are thus required to cooperate only if it is beneficial for themselves.
Such benefit might e.g. stem from mutual help to achieve each coop-
erating agent’s goals, or, if the help is one-sided, via direct monetary
payment to the helping agent. Agents which try to maximize their
own (or their owner’s) benefit are called rational agents.

Please note that to enable the payments between agents, it might
be helpful if the system has a built-in payment mechanism, but this
might also be achieved via external means.

To summarize, the software agents considered in this thesis are

• goal-oriented (where overall goals are typically given by agents’
owners),

• autonomous (makes its own decisions and acts independently
to fulfill its owner’s goals),

• generally ignorant of each other (agents might a priori not know
other agents, their owners, their goals and/or their resources).

• communicative (agents can send messages to each other, in-
cluding contracts and payments),

• resourceful and -bounded (each agent is running on some real,
i.e. finite, computer system and has financial resources typi-
cally provided by its owner),

• rational (i.e. try to maximize their own, or their owner’s, bene-
fit).

And the considered multiagent systems are

• open (agents from independent owners might participate, and
there is no central controlling entity),

• providing communication infrastructure and

• providing some discovery mechanism for the agents.

10
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To give a more concrete idea of what kind of environments we
look at, figure 2.2 shows an example system including agents which
are owned by and acting on the behalf of companies and individual
users. They specify certain goals for their agents, and the agents
would then try to find other agents who are able to satisfy those
goals.

Now, assume that the satisfaction of a given goal requires the ex-
ecution of some specific operations, also called tasks, of some other
agents. Then, depending on how the goal and available operations
are specified, different techniques that have been developed in arti-
ficial intelligence research might be used to determine which tasks
to execute.

For instance, if available operations are made available on the
Internet as web services, semantic web service descriptions can be
used to express service offers (available operations) and requests
(modeling the goals). Examples of suitable description languages
include OWL-S or WSMO and annotated WSDL (see OWL-Services-
Coalition, 2004, Patil et al., 2004, Roman et al., 2005, respectively).
This approach has the advantage that there already exist technolo-
gies for discovery, matchmaking, composition planning and auto-
mated execution for semantic web services. For instance, Klusch
(2008) provides an overview of solutions for each of these tasks.

More recently, Bartalos and Bieliková (2011) compared different
composition planning approaches for semantic web services. But
they also note that despite a number of problems thereof have al-
ready been solved, there has not been a wide adoption of semantic
web services in practice. But there exist also alternative approaches
which circumvent the requirement of semantic descriptions by em-
ploying other artificial intelligence techniques such as genetic pro-
gramming (e.g. Xiao et al., 2012).

However, in this thesis we are not particularly concerned about
the concrete technologies which the agents employ to determine the
actions that will satisfy some goal. We only assume that such tech-
nologies exist and can be used by the agents. On the other hand,
the service model provides explicit notions of requests, offers, ser-
vice composition etc. This is sometimes helpful, and we specifically
exploit this in chapters 5 and 7.

Nevertheless, it should be kept in mind that we mostly use the
terms “task” and “(web) service” in an abstract way and mostly in-
terchangeably. So even if some of the proposed algorithms are for-

11
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MAS
Sell my car!

Buy used VW Golf 
5, max. 50.000km, blue 

or gray!

Book trip to Mombasa, 
10.-15.08.2012, 3-4 star 

hotel, max. 2k EUR. 

Travel agency: find 
airlines/trains/cars, 

hotels etc. to satisfy trip 
request.

Airline: sell Tickets.

Car dealer: 1, sell 
our cars. 2, find & 

buy good cars.

Company Individual User

Agent

Legend:

1

2

Server User‘s Computer

Find Java Developers,
3-4 PM, Deadline 31.08.2012

Offer developer 
time, Java or 

Clojure, 20h/week

Offer developer 
time, Java or Scala, 

50h/week

Developer Agency: 
find jobs for developers 

at 100€/h

Figure 2.2: Example multiagent system with different types of agents
owned by companies and human end users. Goals for the agents are
stated in the balloons. 12
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mulated in terms of services, they should still be generally adaptable
to scenarios where task executions lead to goal satisfactions.

We now provide the theoretical background of cooperative game
theory and how it can be employed as a basis for multiagent coalition
formation in general in the following sections.

2.2 Cooperative Game Theory

Strategic decision situations involving independent and rational par-
ticipants are the subject of study in the microeconomic field of game
theory, first introduced in von Neumann and Morgenstern (1944).
Such situations are called games, and the participating agents are
also called players in the game theory context. In the following, we
use the terms “player" and “agent" interchangeably. Game theory
has numerous theoretical and practical applications in the fields of
economics and politics (see e.g. Aumann, 2010, Aumannn, 1997,
1999, Aumannn and Hart, 1992, Rapoport, 2001).

There are two main strands of games theory, non-cooperative and
cooperative. In both variants, agents are assumed to be rational
and selfish. But cooperative game theory allows them to engage in
binding contracts by negotiation, while non-cooperative game theory
considers settings where this, or in fact any agreement among the
agents, is not possible or not allowed (agents that nevertheless man-
age to cooperate in non-cooperative settings are also said to collude).
Therefore, if cooperation is desired in a multiagent system, coopera-
tive game theory provides an applicable theoretical basis to study the
cooperation opportunities. For general introductions to game theory
we also point to, for instance, Osborne (2003), Peleg and Sudhölter
(2007) or Owen (1995).

In cooperative game theory, agents which reach an agreement
and thus establish a contract among each other are said to from a
coalition. Being rational and selfish, they will only do so if they can
somehow profit from being in the coalition. Assume that an agent
has at its disposal a utility function u which maps the set of possible
outcomes X of the game to real values:

u : X 7→ R

Thus, a utility function establishes a complete ordering of an agent’s
preferences over the outcomes: being rational, an agent will (strictly)
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prefer an outcome x to another one y if u(x) > u(y)(von Neumann
and Morgenstern, 1944). For example, if x implies that the agent is
a member of certain coalition and y implies that it stays alone, then
it is preferable for the agent to join this coalition rather than not
joining any coalition. It is then said to be individually rational for
the agent to join the coalition. However, the agent might still have
the possibility to join another coalition, represented by the outcome
z, such that u(z) > u(x) > u(y). Therefore, theoretic game theory
encompasses solution concepts, also called stability concepts, which
determine outcomes such that no agent is motivated to break from
its coalition in the respective outcome.

For this purpose, cooperative game theory distinguishes between
to types of games:

Games without transferable utility , where the utility u(x) of an
outcome x is determined exclusively by the agent’s coalition
membership.

Games with transferable utility , where u(x), in addition to coali-
tion membership, also captures some utility transfers among
the members of a coalition.

Utility transfers are in particular possible in monetarian settings
where coalitions obtain a certain certain amount of money which
is then to be distributed among its members. This is the type of
game which we are concerned with in this thesis, and we proceed by
providing the relevant formal concepts.

Cooperative Games

Definition 2.2.1 Coalition
Given a set of agents A, a coalition C is any subset of A:

C ⊆ A

In the following, when denoting coalitions of specific agents ai, ak, . . .,
i, k, . . . ∈ N, we also write {i, k, . . .}, instead of {ai, ak, . . .}. Further,
the coalition of all agents C = A is called the grand coalition, while
subsets C∗ ⊆ C are called subcoalitions of C. 4
Definition 2.2.2 Cooperative game
A cooperative game or coalition game in characteristic function form
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is a pair (A, v) with the set of agents A and the characteristic function
v mapping coalitions to real numbers:

v : 2A 7→ R

v(C) is called the (coalition) value of the coalition C ⊆ A. v({a}),
a ∈ A, is also called a’s self value. It is assumed to be the maximum
payoff that C can achieve independently of which other coalitions
are formed. The value of the empty coalition is defined as zero:
v(∅) := 0. 4
Thus, the value of a coalition C can be viewed as a measure of the
payoff achievable by C by cooperating behaviour of its members. In
the following, we also say just “game” instead of cooperative or coali-
tion game. Certain classes of games are induced by specific interest-
ing properties of the characteristic function, such as its additivity:

Definition 2.2.3 Additivity
The additiviy of a coalition game is determined by the relation of the
sum v(C1) + v(C2) of the values of two disjunct coalitions C1, C2 ⊂
A, C1∩C2 = ∅ to the value of the union coalition v(Ci∪Ck). The game
(A, v) is called

1. superadditive, iff1

∀C1, C2 ⊆ A, C1 ∩ C2 = ∅ : v(C1 ∪ C2) ≥ v(C1) + v(C2)

2. locally superadditive for C1, C2 ⊆ A, C1 ∩ C2 = ∅, iff

v(C1 ∪ C2) ≥ v(C1) + v(C2)

3. subadditive, iff

∀C1, C2 ⊆ A, C1 ∩ C2 = ∅ : v(C1 ∪ C2) ≤ v(C1) + v(C2)

4. locally subadditive for C1, C2 ⊆ A, C1 ∩ C2 = ∅, iff

v(C1 ∪ C2) ≤ v(C1) + v(C2)

4
1we write “iff” for “if and only if” throughout this thesis.
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Remark 2.2.4. Because super- and subadditivity are defined in terms
of non-strict inequality, a game may be both super- and subadditive
at the same time iff

∀C1, C2 ⊂ A, C1 ∩ C2 = ∅ : v(C1 ∪ C2) = v(C1) + v(C2)

The additivity of a game plays an important role in determining
which coalitions are profitable and which solution concepts are ap-
plicable. Some classic solution concepts assume that the grand
coalition is always formed, which is only the best option if the game
is superadditive. This includes the core and the Shapley value (these
are defined in an upcoming section).

There has been some dispute on the question on whether non-
superadditive games are a viable model for realistic situations. For
example, Wooders (2008) argues that (where “worth” amounts to the
coalition value and “group of players” to coalition): “the worth of a
group of players is independent of the total player set in which it
is embedded and an option open to a group is to achieve the total
worths realizable by a partition of the total player set into smaller
groups”. That is, if cooperation of agents in coalition C1 with agents
in coalition C2 is somehow detrimental to the joint utility of agents in
C = C1 ∪ C2, they simply might abstain from such cooperation even
if C is formed formally. However, it has also been argued that the
environment might impose restrictions on contracts, such as penal-
izing coalitions of certain sizes. Examples include anti-trust or anti-
monopoly laws (Chalkiadakis et al., 2011, p. 15) or the increased
cost of computation and communication involved with coordinating
a bigger coalition (Shehory and Kraus, 1999).

Another interesting property of cooperative games is convexity,
which is yet stronger than superadditivity:
Definition 2.2.5 Convexity of a game
A game (A, v) is called convex if it satisfies

∀C1, C2 ⊆ A : v(C1 ∪ C2) + v(C1 ∩ C2) ≥ v(C1) + v(C2)

4

Remark 2.2.6. A convex game is always also superadditive because
the latter only considers the unions of coalitions C1 and C2 for which
C1 ∩ C2 = ∅. Because v(∅) = 0, for such coalitions the constraint for
convexity coinsides with that for superadditivity.
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Definition 2.2.7 Symmetry
In a game (A, v), two agents a1, a2 ∈ A are called symmetric iff

∀C ⊂ A, a1, a2 6∈ C : v(C ∪ {1}) = v(C ∪ {2})

The game (A, v) itself is called symmetric if all agents a ∈ A are
pairwise symmetric. 4

Finally, we also define the addition of games.
Definition 2.2.8 Addition
A game (A, v) is called an addition of two games (A, v1) and (A, v2) iff

∀C ⊆ A : v(C) = v1(C) + v2(C)

v is then also denoted as v = v1 + v2. 4

Configurations and Solutions

Having introduced cooperative games and their properties, we now
consider their outcomes and which of the possible outcomes are so-
lutions of the game. In a transferable utility game, an outcome is
specified by a configuration which assignes agents to coalitions and
payoffs to agents.
Definition 2.2.9 Configuration
A configuration (C, u) for a game (A, v) specifies a payoff distribution

u : A 7→ R

for a coalition structure C, a partition of A:

C = {C1, . . . , Cn} ⊆ 2A

u(a) denotes the payoff for agent a. For the joint payoff of the agents
in a coalition C ⊆ A, we also write

u(C) =
∑
a∈C

u(a)

Further, for an agent set A = {a1, . . . , an}, n ∈ N, u is also used in
vector notation with u ∈ Rn and ui = u(ai), 1 ≤ i ≤ n. 4
To determine which configurations might be considered solutions,
we introduce the following properties.
Definition 2.2.10 Configuration properties
For a configuration C, the payoff distribution u is called
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• feasible iff ∀ C ∈ C : u(C) ≤ v(C)

• efficient iff ∀ C ∈ C : u(C) = v(C),

• individually rational iff ∀a ∈ A : u(a) ≥ v(a),

• an imputation iff it is both efficient and individually rational.

• (locally) individually rational for a ∈ A iff u(a) ≥ v(a)

• pareto optimal iff there exists no other configuration (C∗, u∗)
such that u∗ is feasible and

∀a ∈ A : u∗(a) ≥ u(a) and 6 ∃a ∈ A : u∗(a) > u(a)

4
Intuitively, efficiency of a configuration means that the value of ev-
ery coalition is distributed completely among its members and so
nothing is lost or gained to or from “outside”. Individual rational-
ity implies that each agent is better off staying in its coalition than
breaking off to form its single-agent coalition. And pareto optimality
implies that no agent can obtain a higher payoff in a different config-
uration without decreasing that of some agent. Therefore, to obtain a
solution to the game, one generally has to additionally employ some
stability concept, of which the core might be the most intuitive one:
Definition 2.2.11 Core
The core of a game (A, v) is defined as the set of configurations whose
payoff distribution u satisfies

∀C ⊆ A : u(C) ≥ v(C)

A configuration in the core is also said to be core-stable. 4
Thus, in the core, alternative coalition C 6∈ C can form (thereby
breaking up existing coalitions in C) to obtain a higher payoff. The
payoff distributions of configurations in the core have been shown to
be pareto optimal. However, for certain games, multiple configura-
tions might be core-stable, or sometimes none at all(see e.g. Owen,
1995). This is demonstrated by the following two examples.
Example 2.2.12
Consider the symmetric, superadditive and convex game ({1, 2}, v)
with v({1}) = v({2}) = 1 and v({1, 2}) = 3. Then every configuration
with coalition structure {{1, 2}} and efficient payoff distribution u,
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with u(a1) ≥ 1 and u(a2) ≥ 1, is core-stable. This example further
demonstrates that the core does not necessarily assign equal payoffs
to symmetric agents. For instance, ({{1, 2}}, u) with u(a1) = 2) and
u(a2) = 1 is core-stable, although a1 and a2 are symmetric. 4
Example 2.2.13
Consider this symmetric and superadditive but non-convex game:

coalition(s) C v(C)

{a1}, {a2}, {a3} 0

{a1, a2}, {a1, a3}, {a2, a3} 10

{a1, a2, a3} 12

This game has an empty core: if a two-agent coalition C is formed,
then at least one of its members a must receive a payoff u(a) < 10.
But then a can threaten to form the two-agent coalition C∗ with the
third agent a∗ instead, because v(C) = 10 > u(a)+0 = u(a)+u(a∗). If the
grand coalition if formed, any pair of agents a, a∗ receiving together
less than 10 can threat to form the coalition {a, a∗}. However, since
v({a1, a2, a3}) = 12 < 15, this cannot be prevented for all three pairs of
agents at the same time. 4
These examples show that the core might not be the best approach
to obtain stable solutions in a multiagent setting. A popular alterna-
tive is the kernel (Davis and Maschler, 1965, Kahan and Rapoport,
1984):
Definition 2.2.14 Kernel
Let (C, u) be a configuration for the cooperative game (A, v).

1. The excess e(C∗, u) of a coalition C∗ /∈ C is defined as

e(C∗, u) := v(C∗)−
∑
a∈C∗

u(a)

2. The surplus surik of agent ai with respect to agent ak with ai, ak ∈
C ∈ C, ai 6= ak, is defined as

surik := max{e(C∗, u) | C∗ 6∈ C, ai ∈ C∗, ak 6∈ C∗}

3. (C, u) is in an equilibrium of surpluses, if ∀ai, ak ∈ C ∈ C:

(surik = surki)

∨(surik > ski ∧ u(ak) = v({ak}))
∨(surki > sik ∧ u(ai) = v({ai}))
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Then the kernel of the game (A, v) is the set of all efficient and indi-
vidually rational configurations which are in an equilibrium of sur-
pluses. 4
Example 2.2.15
Consider again the game from example 2.2.13. Since the agents are
symmetrical, we should expect that all agents in the same coalition
should get the same payoff:

coalition structure u(a1) u(a2) u(a3)

{{a1}, {a2}, {a3}} 0 0 0

{{a1, a2}, {a3}} 5 5 0

{{a1, a3}, {a2}} 5 0 5

{{a1}, {a2, a3}} 0 5 5

{{a1, a2, a3}} 4 4 4

Because the Kernel treats symmetric agents equally, these are in-
deed the Kernel-stable configurations of this game. 4

Another popular solution concept is the Shapley value (Shapley,
1953). As opposed to set based stability concepts, the Shapley value
in its original form does not define a set of stable configurations, but
directly assigns stable payoffs to the agents. It is implicitly assumed
that the grand coalition is formed and thus the Shapley value might
reasonably applied only to superadditive games.
Definition 2.2.16 Shapley value
The Shapley value σ(a, v) for an agent a ∈ A in the game (A, v) is
defined as

σ(a, v) =
∑
C⊆A

(|A| − |C|)!(|C| − 1)!

|A|!
(v(C)− v(C \ {a}))

v(C)− c(C \ {a}) is called marginal contribution of a to v(C). 4
Since the number of possible coalitions for a set of agents Ais

2|A| − 1, the computation of the Shapley value for one agent requires
exponential time wrt. the number of agents. However, when it is as-
sumed that coalitions are only bilaterally merged, one might instead
use the bilateral Shapley value. It considers only a sub game of
two coalitions which are to be merged but allows to design coalition
formation algorithms with low polynomial runtime (Ketchpel, 1995,
Klusch, 1997).
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Definition 2.2.17 Bilatral coalition
A union C1 ∪ C2 of two disjunkt coalitions C1, C2 ⊂ A \ ∅ is called a
bilateral coalition. C1 and C2 are called subcoalitions of C1 ∪ C2. 4
Definition 2.2.18 Bilateral Shapley value
The bilateral Shapley value σb(C1 ∪ C2, Ci, v),Ci, i ∈ {1, 2} in the bilat-
eral coalition C1∪C2 is defined as the Shapley value of Ci in the game
({C1, C2} , v):

σb(Ci, v) =
1

2
· v(Ci) +

1

2
· (v(C1 ∪ C2)− v(Ck)), k ∈ {1, 2}, k 6= i

4
If coalitions are formed by repeatly merging two coalitions together,
one might keep track of the binary tree structure of subcoalition that
is thereby built up. Therefore, we also define recursively bilateral
variants of coalitions, coalition structures and the bilateral Shapley
value in the following definitions.
Definition 2.2.19 Recursively bilateral coalition
A bilateral coalition C is called a recursively bilateral coalition iff it is
the root node of a binary tree denoted TC for which holds that

1. every non-leaf node is a bilateral coalition whose subcoalitions
are its only children, and

2. every leaf node is a single-agent coalition.

4
Definition 2.2.20 Recursively bilateral coalition structure
A coalition structure C for (A, v) is called a recursively bilateral coali-
tion structure if

∀C ∈ C : C is (recursively) bilateral or C = {a}, a ∈ A

4
Definition 2.2.21 Recursively bilateral Shapley value
Given a recursively bilateral coalition C for a game (A, v) a payoff
distribution u is called recursively bilateral Shapley value stable iff
it is efficient and the payoff for every non-root node C∗i in TC is the
bilateral Shapley value applied to its parent C∗, the subcoalition C∗i
itself and a modified coalition value function vC∗, where vC∗(C

∗) is
a modified v which maps the parent C∗ to its recursively bilateral
Shapley value payoff instead of its coalition value.
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Formally, u is therefore recursively bilateral Shapley value stable
iff it holds that

u(C∗i ) = σb(C
∗, C∗i , vC∗), i ∈ 1, 2, with

∀C∗∗ ⊆ A : vC∗(C
∗∗) =


σb(C

p, Cp
k , vCp) if C∗∗ = C∗, Cp ∈ TC ,

C∗ = Cp
k , k ∈ 1, 2

v(C∗∗) otherwise

4
In other words, when merging two recursively bilateral coalitions
into one its value will be distributed down the corresponding coali-
tion tree to its members by means of recursively replacing the coali-
tion value of the respective parent coalition with its payoff, that is the
bilateral Shapley value (for an illustration, we refer to examples 7.1.3
and 7.1.4 in chapter 7).

Local worth and side payments

As already laid out in section 2.1, we generally assume that agents
in a coalition

1. request certain goals to be satisfied (possibly modeled as service
requests), where the fulfillment of a goal is of a certain value for
the requesting agent; and

2. perform assigned tasks (possibly modeled as offered web ser-
vices), where a task execution has a certain cost for the execut-
ing agent.

We therefore introduce the following notations:
Definition 2.2.22 Goal valuations and task execution costs
We call

• Ga the set of goals of agent a and wa : Ga 7→ R+ a’s (goal satisfac-
tion) valuation function, and

• Ta the set of tasks which a is capable of performing and ca : Ta 7→
R+ a’s (task execution) cost function.

For simplicity, we also call wa(g), g ∈ Ga, a’s valuation of (the satisfac-
tion of) g and ca(τ), τ ∈ Ta, a’s cost of (the execution of) τ . 4
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Definition 2.2.23 Task allocation
Given a coalition C, we define the task allocation

αC ⊆
⋃
a∈C

Ta

as the set of tasks that is to be executed by C ’s members (and so is
part of C ’s coalitional contract). For agent a ∈ C, we also write

Ta(C) := Ta ∩ αC

4
Definition 2.2.24 Satisfied goals
Ga(C) ⊆ Ga denotes the set of goals of agent a ∈ A which are satisfied
in coalition C via the execution of tasks in αC. 4

Corollary 2.2.25. Remember from definition 2.2.2 that the coalition
values are defined as the maximum payoff that a coalition “can inde-
pendently achieve”. Therefore, if agents have perfect information and
unbounded resources, the task allocation within a coalition C must be
optimal with respect to valuations wa(g) and costs ca(C) for all a ∈ C.

Remark 2.2.26. The constraints of perfect information and unbounded
(or nearly so) resources in corollary 2.2.25 often do not hold in prac-
tical applications. For example, an optimal task allocation in a large
coalition might exist in the form of a complicated interplay among all
its members. But this might not be found in feasible time by any of
its members. Therefore, the task allocation that a coalition comes up
with and is included in its contract might in practice often be better
understood loosely as “the best one which its members could find in
time”.

From the above definitions it follows that every agent a in a coali-
tion C has a local income and local cost induced by only its own
task executions and goal satisfactions, but without regard for side
payments. Klusch (1997) defined this as the local worth of an agent:
Definition 2.2.27 Local worth
The local worth lwa(C) of a in C is defined as

lwa(C) :=
∑

g∈Ga(C)

wa(g)−
∑

τ∈Ta(C)

ca(τ)

For an agent ai, we also write lwi(C) instead of lwai(C). 4
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Corollary 2.2.28. From the definition of the local worth, and assum-
ing that there exist no externalities (i.e. coalitions do not get or make
payments from/to entities outside the coalition), it follows directly that
the coalition value of a coalition C is the sum of its local worths:

v(C) =
∑
a∈C

lwa(C)

Note that to actually implement the payoffs assigned by a given so-
lution, the agents have to make side payments to each other. From
the definition of the local worth, it further follows:

Corollary 2.2.29. Let (C, u) be a solution for a game (A, v). Then the
net side payment that an agents has to receive to obtain its assigned
payoff u(a), denoted spu(a, C), is the difference of its assigned payoff
and its local worth of its assigned coalition:

spu(a, C) = u(a)− lwa(C)

Note that if spu(a, C) is positive, then a is to receive the amount from
other agents in C. If it is negative, then a has to pay the amount to
other agents in C.

For a subcoalition C∗ ⊆ C we also write spu(C
∗, C) to denote the

sum of the net payoffs of the agents in the subcoalition:

spu(C
∗, C) :=

∑
a∈C∗

spu(a, C)

It follows that if and only if u is efficient, all side payments spu(C,C)
within a coalition C, also denoted spu(C), sum to zero, because

spu(C) =
∑
a∈C∗

(u(a)− lwa(C))

=
∑
a∈C∗

u(a)−
∑
a∈C∗

lwa(C)

=
∑
a∈C∗

u(a)− v(C)

( = 0 iff u is efficient)

2.3 Coalition Formation in Multiagent Sys-
tems

In this section, we outline how rational software agents might gener-
ally utilize game theoretic coalition formation protocols to determine
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who should cooperate with whom. That is, how cooperative game
theory can and has been used as a basis for devising algorithms
and protocols for rational agents in multiagent systems. The basis
in game theory therein generally ensures desired properties of the
solution such as individual rationality, pareto-optimality and sta-
bility according to the chosen stability concept. The basic idea of
multiagent coalition formation is to enable agents to arrive at stable
configurations efficiently in terms of runtime, space and communi-
cation complexity. 2

From Game Theory to Coalition Formation

We note that cooperative game theory is a descriptive model, i.e. it
gives tools to analyze strategic negotiation situations from a global
perspective. The definitions of the classic solution concepts are
therefore given in global and centralized terms because the game
is provided in characteristic form with the set of agents and all the
coalition values already known. In an open multiagent system, how-
ever, no agent can be assumed to possess all the required informa-
tion initially.

Thus, starting with the first algorithms for coalition formation in
multiagent systems that have been proposed in the literature, pro-
tocols for necessary information exchange were incorporated within
the algorithms. Examples include Contreras et al. (1998), Klusch
and Shehory (1996), Shehory and Kraus (1998) and Shehory and
Kraus (1999).

Kraus (1997) points out three issues that should be handled by
any coalition formation scheme:

1. devising an interaction protocol,

2. developing coalition formation algorithm and

3. to address the computational constraints (e.g. communication
and computational costs).

2We note that there are other works in the literature on coalition formation
which do not relate to cooperative game theory concepts such as individual ratio-
nality or stability (e.g. Arib and Aknine, 2012, Barton and Allan, 2008, Xiao-fei
et al., 2012). While those might be applicable in their respective domains, we do
not further consider such approaches in this thesis.
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Naturally for multiagent algorithms, another focus is to distribute
the computation of a solution. Apart from the obvious advantage of
parallelizing the computation, this allows each agent or coalition to
compute the parts of the solution by which it is directly affected. It
thus potentially reduces the need to trust others on the correctness
of computations.

Note that Shehory and Kraus (1998) address a multiagent task
allocation setting and focus on minimizing the cost of coalitions to
execute their tasks. It does not account for agents’ self-interest, and
indeed the utilities of single agents are not included in their model.
That is, only a coalition structure but no configuration is computed.
The other three works mentioned above however account for self-
interested agents and yield stable configurations. These are arrived
at via successive negotiation rounds, in each of which some coali-
tions might form. Although the proposed algorithms differ consider-
ably in their details, an outline can be given as follows (see figure 2.3
for an illustration):

1. Each agent communicates initial data to other agents and sets
up the initial configuration (usually consisting only of single-
agent coalitions).

2. Possibly communicate necessary data for the next coalition for-
mation round.

3. Each coalition in the present configuration computes new sta-
ble (possibly partial) configurations which result from merging
coalitions3. It retains only the configurations which are prof-
itable to itself.

4. Coalitions negotiate (according to a protocol specified in the al-
gorithm) with the goal to obtain the configuration which is

(a) stable according to the employed stability concept and

(b) most profitable for themselves.

If any new coalition was formed, the algorithms will then pro-
ceed with the coalition formation next round. Otherwise, if no
new coalition was formed, the coalition formation terminates
and the coalitions start executing their actions.

3Shehory and Kraus (1999) also allows to add a single members from another
coalition, thereby breaking the other coalition up.
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Figure 2.3: Approximate design of round-based coalition formation
algorithms.

From this outline, it is clear that algorithms of this structure

• are inherently distributed among the agents;

• also specify protocols for the communication steps;

• are only suitable for stability concepts which allow for coalitions
structures other than the one containing only the grand coali-
tion can be used (including e.g. the Kernel or modified versions
of the Shapley value);

• are also anytime algorithms since a stable configuration is ob-
tained after each negotiation step.
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In chapters 4 and 7, we introduce two coalition formation algo-
rithms following this negotiation round-based scheme. The former
enables coalition formation under uncertainty, and the latter allows
for privacy-preserving coalition formation.

In contrast to this approach to building up stable configurations
by negotiation rounds, Sandholm (1999) proposed to employ a more
direct approach to obtain a stable configuration. It consists of just
two steps (see figure 2.4):

1. compute social welfare maximizing coalition structure, which
maximizes the sum of the values of the contained coalitions,
and then

2. compute the payoffs to obtain a stable configuration according
to the chosen stability concept.

Figure 2.4: General design of “two-step” coalition formation algo-
rithms.

But a social welfare-optimizing coalition structure might not al-
ways be the best one for every individual agent, even if the game is
superadditive. In particular, this happens if the game is non-convex.
We show this in the following example.
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Example 2.3.1
Consider again the superadditive but non-convex game from exam-
ple 2.2.13:

coalition(s) C v(C)

{a1}, {a2}, {a3} 0

{a1, a2}, {a1, a3}, {a2, a3} 10

{a1, a2, a3} 12

Note that this game is not as far-fetched as it might seem at first
glance. For example, each of the 2-agent coalitions might be able
to provide a service for a given request at the same cost. However,
each of the agents can perform its necessary action only once, for
example due to resource constraints. Thus the service can still be
provided only once in the grand coalition All three agents however
might together provide another requested service when they work
together in the grand coalition, leading to an additional value of 2.

The social-welfare maximizing coalition structure in this game
is the one containing the grand coalition. The two-step coalition
formation approach thus forms the grand coalition in a top-down
manner. But a rational autonomous agent who does not benefit from
it would not agree to form its assigned coalition in a negotiation
process. Instead, each agent would prefer to form one of the two-
agent coalitions. In a round-based coalition formation approach,
two agents would thus form a coalition in the first negotiation round,
possibly employing some additional preference function other than
the maximal payoff. In the next round, this coalition would not profit
from merging with the third agent and thus no new coalition would
form, finishing the negotiation. 4

Airiau and Sen (2010) explore still more problematic situations
for the two-step approach which might happen if the game is subad-
ditive. They argue that stability might be hampered in such cases,
and propose to re-establish stability in such situations by allowing
inter-coalitional side-payments. However, this means that agents
which are not bound by coalitional contracts have to make side-
payments to each other. This is contrary to the basic model of co-
operative games where agents are in a contractual agreement if and
only if they are in the same coalition.

Nevertheless, we also employ the two-step coalition formation
approach in our proposed trusted coalition formation algorithm in
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chapter 6.

Having outlined the basic structures of coalition formation algo-
rithms which we employ in this work, we now discuss their compu-
tational complexity.

Complexity of Coalition Formation

The issue of computational and communication complexity is cen-
tral for all multiagent coalition formation approaches. We already ar-
gued that in a multiagent system, agents are unlikely to already have
the complete information about coalition values when they come to-
gether to negotiate coalitions. But there is another problem with
the assumption that the input to a coalition formation algorithm is
provided literally in characteristic function form, i.e. specifying each
individual v(C) for all possible coalitions C ⊆ A in the game (A, v).
Then, the input to an algorithm to compute a solution is already
exponential in the size of the agent set n = |A|, as there are 2n coali-
tions. Therefore, Deng and Papadimitriou (1994) note that many so-
lution concepts can be computed “efficiently”, since computational
complexity classes are a function of the problem input length.

As a consequence, it is often assumed that coalition values are
not given as explicit input but are either specified in some com-
pact representation, or can be computed by each agent efficiently by
some procedure which may or may not be further specified. In the
latter case, the coalition value function is an oracle, i.e. a black box
function.

For compact representation schemes, the space requirement of
the input varies depending on the specific representation and the
concrete game that is being negotiated. For coalition value functions
as procedures, the computational complexity of a coalition formation
algorithm depends on the number of agents with the complexity of
the procedure factored-in.

We discuss these two approaches in the following two subsections
a bit more detailed. However, please keep in mind that while our
algorithms are designed to be of polynomial complexity, tackling the
computational complexity of coalition formation in general is not in
the scope of this thesis.
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Compact representation schemes

A compact representation scheme aims to model the coalition value
function in polynomial space with respect to the number of agents
(see e.g. Chalkiadakis et al., 2011, , chapter 3 for a recent overview).
The idea is to exploit structure in the coalition value function, which
is argued to be often existing in real-world scenarios.

For example, Deng and Papadimitriou (1994) introduced graph
games, which are weighted graphs where the agents are the nodes
and the edges between them have some weight. Thus, the input
length is bounded by the number of agents plus the max. number of
edges, i.e. n+ n2 (edges of weight 0 might obviously be omitted). The
coalition value v(C) in a graph game is determined as the sum of all
edges within C, i.e.

v(C) =
∑

a1,a2∈C

weight(a1, a2)

. For such games, they show that the Shapley value can be efficiently
computed in O(n2). However, they also show that the problems of
checking non-emptiness of the core and core-membership of a given
payoff distribution are NP -complete. Further, they conjecture that
checking membership in the kernel of a payoff distribution is NP -
hard. On the other hand, if all edges have non-negative weights, all
of these problems can be solved in polynomial time.

However, graph games do not allow for representation of arbi-
trary coalition games, since coalition value contributions of groups
of more than two agents cannot be modeled. In our example SWS
agent scenario, this translates to not being able to express value con-
tributions of composed services which require more than two agents
for execution. For this purpose, Deng and Papadimitriou (1994) also
consider hypergraphs, where each edge connects k >= 2 nodes. But
the representation power of a hypergraph modeling a coalition value
function is still limited:
Example 2.3.2
Consider again the game from example 2.2.13:

coalition(s) C v(C)

{a1}, {a2}, {a3} 0

{a1, a2}, {a1, a3}, {a2, a3} 10

{a1, a2, a3} 12
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This game cannot be modelled as a graph game, as its set of edges
E would need to contain (a1, a2) : 10, (a1, a3) : 10 and (a2, a3) : 10. But
then the value of the grand coalition is

∑
e∈Eweight(e) = 30 6= 12. 4

More recently, Ieong and Shoham (2005) introduced the more
general marginal contribution nets (MC-nets). This model allows to
specify only marginal contributions of agents to the coalition values,
that is, the difference of the value of a coalition C without a given
agent a and the value of C ∪ a. Rules specified as

pattern→ value

pairs, where a pattern is a conjunction of terms representing the re-
quirement to include or exclude a certain agent. The (non-negative)
value specifies the marginal contribution to the coalition value if the
coalition satisfies the pattern. For example, the rule a1∧a2∧−a3 → 10
specifies that this rule contributes a value of 10 to all coalitions C
containing a1 and a2 but not a3. It is shown that the Shapley value
can be computed in polynomial time in the size of the input. How-
ever, the problems of core non-emptiness and core-membership are
shown to be coNP -hard and coNP -complete.

While it is also shown that MC-nets are fully expressive, i.e. that
every cooperative game can be modelled in this way, an exponen-
tial number of rules might be required(Elkind et al., 2008). This
is essentially the case if many coalitions’ values are not greater or
equal than the sum of the values of their respective subcoalitions
(subsets). The example from above again provides an idea of this
behaviour:
Example 2.3.3
The game of example 2.3.2 can be modeled as an MC-net by these
rules:

a1 ∧ a2 ∧ −a3 → 10

a1 ∧ a3 ∧ −a2 → 10

a2 ∧ a3 ∧ −a1 → 10

a1 ∧ a2 ∧ a3 → 12

Thus, if we allow the literal specification of v to also omit 0-coalition
values, the MC-net representation is not smaller. 4

Elkind et al. (2008) also introduced an extension to MC-nets,
read-once MC-nets, which allows for more flexible pattern specifi-
cations. Therein, read-once boolean formulas are allowed with arbi-
trary binary Boolean connectives such as ∨, wedge and ⊕ (exclusive
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or), while negation is allowed only on the atoms. In a read-once for-
mula, each atom (i.e. agent) is allowed to appear maximally once.
They provide an algorithm to compute the Shapley value for a game
specified with such rules and prove that is has polynomial runtime.
The algorithm and prove are given for patterns with the connectives
∨, wedge and ⊕, but it is argued that all other binary Boolean con-
nectives might be treated analogously. In our example, this allows
us to save one rule:
Example 2.3.4
The game of example 2.3.2 can be modeled as a read-once MC-net
by these rules:

a1 ∧ (a2 ⊕ a3)→ 10

−a1 ∧ (a2 ∧ a3)→ 10

a1 ∧ a2 ∧ a3 → 12

4
Still more representation schemes have been introduced in the lit-
erature, such as skill-based representations. In Ohta et al. (2006),
agents are modelled to possess certain skills, and there exists a func-
tion mapping subsets of skills to values. It allows for a succinct
coalition value function representation if each coalition requires few
skills (Chalkiadakis et al., 2011). The representation introduced
in Bachrach and Rosenschein (2008) additionally employs sets of
tasks, where each task requires certain skills to be fulfilled. They
show that certain restricted games can be represented compactly
with this representation. Computing the Shapley value turns out to
be NP -hard for two of the considered restricted game classes, and
remains unknown for the others.

Finally, Shrot et al. (2010) further reduce the compactness of
game representation to agents’ strategic and representational types.
Therein, two agents have the same strategic type if they are sym-
metric in cooperative game theory terms. They show that several
problems, such as determining core membership or computing the
Shapley value, can be computed in polynomial time with such a
model if the number of agent types is fixed. However, they also
show that in general, it is NP -hard to compute the strategic types of
the agents, such as in coalition resource games (see Wooldridge and
Dunne, 2006).

Summarizing, it can be said that using one of these alternative
representation schemes, games might have either a
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• succinct representation – i.e. they can be specified in polynomial
space wrt. to the number of agents – but with computational
polynomial complexity of classical stability concepts only for
restricted classes of games (indeed, too restrictive already for
our service-agent example), or a

• potentially exponential representation wrt. the number of agents,
thus rendering the complexity of algorithms wrt. to the overall
input size irrelevant.

Coalition value function as procedure

If no structure or other helpful properties like convexity of the coali-
tion value function is known, but it is assumed that coalition values
can be computed in polynomial time, a coalition formation algorithm
may regard it as a black box. Alternatively, the procedure to com-
pute coalition values may be specified as part of the algorithm itself.
This approach is followed by e.g. Contreras et al. (1998), Klusch and
Shehory (1996), Shehory and Kraus (1998, 1999) and Klusch (1997).
The latter employs the local worth model from definition 2.2.27.

If coalition values are computed using some such procedure, the
complexity of the algorithm is given in terms of the number of agents,
with the complexity of the coalition value function factored in. Be-
cause all the classical solution concepts require to evaluate an expo-
nential number of coalitions, one has to employ some kind of modifi-
cation or approximization to obtain polynomial runtime As we men-
tioned above, the round-based building up of coalitions lends itself
to a reduction of the runtime complexity by bounding the coalition
size. The algorithms introduced in the above cited works all follow
this approach.

On the other hand, the two-step coalition formation schemes out-
lined above follow a different route. They typically allow coalitions
of all sizes to form, but approximate the social welfare maximizing
coalition structure. Sandholm (1999) have shown that to establish a
finite bound from the optimum if the game is not known in advance
to be super- or subadditive, one has to examine exactly 2N − 1 coali-
tion structures 4. This is because in a general and unconstrained
game, coalition values are arbitrary and independent of each other,

4If the game is super- or subadditive, finding the social-welfare optimizing coali-
tion structure is trivial: they are the structures containing only the grand and only
single-agent coalitions, respectively
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so every possible coalition and its value have to be evaluated least
once. And as we saw in 2.2, there are 2N − 1 coalitions in a game
of N agents. Michalak et al. (2009), Rahwan (2007), Rahwan et al.
(2009) and other have refined this approach to find good solutions
faster in practice, sometimes compromising on the worst-case run-
time. Rahwan et al. (2012) further extends this line of algorithms
to take externalities (external effects on the performance or utility
of coalitions which are not modeled by the cooperative game itself)
into account. However, these algorithms do not take the payoff dis-
tribution into account. This is to be done “after the fact”, i.e. after
the coalitions have already been formed. As mentioned above, the
classical solution concepts require to examine an exponential num-
ber of coalitions to find a stable solution. An interesting question
is thus whether the approximation of the above cited two-step ap-
proaches to coalition structure generation can be efficiently re-used
for also computing a stable payoff distribution, but this is not taken
into account at all in those works.

Furthermore, remember that the two-step coalition formation ap-
proach may prove problematic for subadditive or non-convex games.
The above mentioned approach by Airiau and Sen (2010) to remedy
this problem is based on inter-coalitional side-payments. These de-
termined by a stability concept Kernel+ which is extended from the
Kernel such that all agents have to be in equilibrium, not just those
in the same coalition. To arrive at such an equilibrium, an agent
has to evaluate 2n−1 coalitions, similar to the classic Kernel. Thus, it
remains to be seen whether the complexity advantages which can be
gained by fast algorithms for generating a social-welfare optimizing
coalition structure can be preserved also over the payoff distribution
phase.

Finally, Arib and Aknine (2011) propose to use an explicit model
of planned actions, where each set of actions has a certain desirabil-
ity for the agents. But their model uses non-transferable utilities, so
no side-payments are allowed and the coalition to which an agent
belongs and which plans are to be executed by that coalition directly
determines the agent’s utility. They argue that by using a preference
order on actions, the search space for desirable coalitions can be re-
duced by each agent. While they provide some experimental results
to support this, they neither give information on how many plans
the agents had in those experiments, nor give a theoretical analysis
of complexity.
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Summary

In summary, we can say that tackling the complexity of cooperative
game theory based coalition formation is a very difficult problem. Ef-
fectively, algorithms with feasible runtime thus either yield solutions
which are arbitrarily different from optimal and stable solutions, or
require considerable assumptions on the types of games they can
solve (in particular the coalition value function) and are thus appli-
cable only in very specific settings.

Before we discuss further open problems in coalition formation,
in particular the ones for which we provide solution approaches in
this thesis, we now briefly consider some other aspects and models
of coalition formation in multiagent systems.

2.4 Open Problems of Coalition Formation

So far we introduced the general approaches to use cooperative game
theory concepts as a basis to model multiagent coalition formation
algorithms and protocols. We saw that a basic challenge is compu-
tational complexity, which all such approaches which are supposed
to be of practical value must tackle. In coalition formation settings
in open multiagent systems, however, more problems arise. In this
section, we summarize the specific challenges that we tackle in this
thesis and how. They are then set into the context of related litera-
ture in the following chapter 3. We also acknowledge here that these
are not the only open problems in this field. For example, some more
are listed in Chalkiadakis et al. (2011).

Coalition Formation under Uncertainty

As we pointed out in section 2.3, coalition formation algorithms and
protocols which are based on traditional stability concepts imply
that the the information required to compute coalition values needs
to be known exactly in advance. But in many real-world environ-
ments, such perfect information cannot be assumed. An agent might
not certainly know the (exact) execution cost of a task that itself is
to perform, or the utility of satisfying a goal of its own:

On one hand, an agent might not be able to assess the costs that
will arise due to its required actions in a given coalition precisely
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before actually performing these actions. For example, in the ap-
plication domain of semantic web service agents, the resource con-
sumption of a service’s execution — such as the amount of memory
needed — might not be exactly known before executing the instance.
Or it might depend on the input, which will not be known if it is a
part of the outputs of previous executions of other services in a com-
position plan.

On the other hand, the value resulting for an agent of successful
execution of a coalition’s actions might be only vaguely known by
the requesting agent. For semantic web service agents, that is the
valuation of the satisfaction of a service request. For instance, an
agent could request a complex service in order to resell it to one of
its own customers, but might not have negotiated a fixed price with
its customer yet.

For this kind of uncertainty, we propose a fuzzy number-based
coalition formation algorithm in chapter 4, BSCA-F. Fuzzy numbers
are a special case of fuzzy set theory as introduced by Zadeh (1965).
A fuzzy set extends the notion of traditional crisp sets such that
membership is not a Boolean property (i.e. an element either is a
member of a given set, or it is not), but a degree of membership. Ap-
plying this notion to the set of real numbers yields the set of fuzzy
numbers. The idea then is to extend solution concepts of cooper-
ative game theory to operate on games with fuzzy coalition values,
which we also call fuzzy cooperative games or fuzzy-valued games.
Thus, the use of fuzzy numbers allows agents to only vaguely specify
costs and rewards. To achieve low computational and communica-
tion complexities, we extend the efficient coalition formation algo-
rithm BSCA (Klusch, 1997), which is based on the solution concept
of the recursively bilateral Shapley value (see 2.2.21). While consid-
ering only intra-coalitional relationships to determine the payoffs,
and thus yielding only subgame-stability, it is very quick to com-
pute.

However, another kind of uncertainty for a game might result
from coalitions failing completely, and thereby not obtaining any
profit. For example, this might happen if the agents are resource-
bounded and have to complete the coalitional action in a given time.
If they fail to achieve this, the respective request is not satisfied, pro-
ducing no value. However, some services might have already been
executed at some cost. Therefore, the coalition experiences a net
loss in this case.
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In situations such as these, an agent might not only be interested
in maximizing the payoff it might expect, but especially how much it
might loose in the worst cases. For this kind of situation, we show
how to use a coherent risk measure to assess and quantify the finan-
cial risk of a coalition(Artzner et al., 1999). Risk measures are often
applied in finance and insurance applications to evaluate the risk of
portfolios. One property of coherent risk measures is that the com-
bined risk of two portfolios is less or equal than their added single
risks. Therefore, portfolio diversification can lead to reduced overall
risk (i.e., not “putting all one’s eggs in one basket”). In chapter 5,
we apply this analogously to coalitions by allowing the agents to be
part of multiple coalitions at the same time. But this means that
each agent is part of its coalitions only to some degree. The degree
determines how much of its resources an agent will “invest” in the
coalition, thereby influencing the probability that the coalition will
finish its task in time. Coalitions of this sort are also called fuzzy
coalitions (not to be confused with fuzzy-valued games as explained
above). Fuzzy coalitions have been first introduced by Aubin (1979)
and Butnariu (1980), including extensions of cooperative game the-
oretic solution concepts. However, they assume a linear relationship
between an agent’s membership degree in a coalition and its payoff.
Unfortunately, as it turns out, this does not fit our model, as the
membership have a non-linear relationship with a coalition’s proba-
bility of success. We therefore extend the cooperative game solution
concept of the kernel to fit with our model and to respect the agents’
individual risk bounds when computing stable payoff distributions.
Based on this, we outline an algorithm for resource-bounded service
provider agents that guarantees to adhere to the risk bounds, the
RCF.

Truth-telling in Coalition Formation

Another issue with common approaches to multiagent coalition for-
mation is the possibility of the participation of deceiving, defrauding
or simply under-performing agents. For example, agents might com-
municate manipulated data to other agents or coalitions in order to
obtain an unjustified higher payoff.

This is possible in many coalition formation methods because
they rely on an initial or incremental exchange of data among the
agents such that each agent is able to assess the coalitions it might
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join and its resulting payoff according to the chosen stability con-
cept. Therefore, an agent might deliberately communicate false data
in order to unjustifiably increase its own payoff, possibly at the cost
of others. For example, an agent could overstate its capabilities, let-
ting the others believe that it will produce more value for the coalition
than it actually can. The agent might behave in such a way inten-
tionally, in which case we say that the agent defrauds or deceives;
or it might do it unintentionally, in which case we call the agent
unreliable.

Another issue is the actual execution of side payments within
coalitions. In corollary 2.2.29 we saw how to determine an agent’s
net side payment spu(a, C) in its coalition C in a solution to a coalition
game in the form of a configuration (C, u). However, nothing is said
so far to which exact other agent it should pay which amount. Or
conversely from which agents it should expect to receive a certain
amount, and how it can sure that it is indeed paid by these others.
After all, the computation and negotiation of a stable solution is not
quite that useful if it is then not actually implemented by the agents.

Finally, agents might underperform when executing tasks, i.e.
the task executions turn out to not produce the promised values.

Therefore, in chapter 6, we investigate how kernel stable coali-
tions might be manipulated. We then devise an appropriate com-
munication protocol using cryptographic techniques to prevent this.
Then, we propose a payment scheme and show that it is rational
for each agent to adhere to it. At last, agents measure each other’s
performance via a generic trust model.

Privacy Preservation in Coalition Formation

Also, remember that traditional coalition formation approaches usu-
ally devise protocols such that each agent informs each other agent
about its requests and offers. This is often necessary to determine
coalition values and stability. However, it is problematic if the agents
have privacy constraints, such that it is not acceptable for them to
provide certain other agents with certain information.

Example applications that would benefit or even require a pri-
vacy preserving coalition formation protocol include health care web
service agents, which form coalitions e.g. to automatically handle
insurance issues, transportation, hospital and medical personal as-
signments. But an agent responsible for transportation should not
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need to know which patients are assigned to which doctors.
But this problem has not received much attention in the litera-

ture, and we provide the first privacy preserving coalition formation
algorithm in chapter 7.
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Related Work

In this chapter, we discuss related work for each of the open chal-
lenges in multiagent coalition formation which we tackle in this the-
sis. Although there are some overlaps, the different approaches
tackle quite separate problems. Therefore, we consider related work
on uncertainty, truth-telling and privacy preserving coalition forma-
tion each in its on section.

3.1 Coalition Formation under Uncertainty

To remedy the situation of uncertainty in coalition formation and
relax this assumption of perfect information on the coalition val-
ues, some approaches have been presented in the literature. Most
popular seem to be probabilistic coalition formation approaches, of
which we discuss some related ones. Before we do that, however,
we first look at some results on the general applicability of modeling
uncertainty with fuzzy numbers as opposed to probabilities in the
following subsection. There we also relate to the (very few) other ex-
isting approaches to fuzzy-valued coalition formation. To conclude
this section, we relate to heuristic approaches to coalition formation
under uncertainty.

Fuzzy-valued Coalition Formation

Like probability distributions on numbers, fuzzy numbers are func-
tions of numbers mapping to the unit interval. There are two com-
mon interpretations of the resulting degrees, both of which are fun-
damentally different to probabilities (see e.g. Delgado et al., 1994,
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Dubois and Prade, 1983, Zadeh, 1978):

1. Vague: the number is interpreted as inherently vague. That is,
an exact value for the given entity represented by such a fuzzy
number does indeed not exist (in the regarded universe) A vague
interpretation thus presumes that the entities of interest are
inherently imprecise. For example, the word “red” as used in
day-to-day human language does not specify a specific colour
with a precise wave-length, but a whole range of colours which
are more or less red. Fuzzy membership degrees in this sense
are thus also called degrees of truth.

2. Possibilistic: the number represents an entity that has some
exact value, but it is not known. It is only known to which
degree it is ‘possible’ or ‘necessary’ that a certain value is equal
to that exact value. While this seems similar to the semantics
of probabilities, it is more flexible (due to non-unitary and non-
additivity) by allowing for a less exact and strict modeling of
a problem instance. In particular, it allows for ignorance of
membership degrees in cases which are not of interest, without
introducing error.

The lack of a well-defined semantics of these interpretations may
seem disadvantageous at first. However, they have certain prop-
erties that make them worthwhile to consider in conceptually and
computationally complex settings such as coalition formation:

• There exist well-defined set and arithmetic operations as well
as preference relations on fuzzy numbers.

• Complex operations on fuzzy numbers can be efficiently ap-
proximated if some loss of information is acceptable.

• There exist empirical evaluations indicating that possibilistic
reasoning is generally more compatible with human conscious
reasoning than probabilistic reasoning is, as it was shown e.g.
by Raufaste et al. (2003). They were able to confirm the claim
by Zadeh (1978) that humans really conjure subjective possi-
bilities rather than subjective probabilities. It means that a
possibilistic system should be potentially able to better capture
the essence of human-specified inputs than a probabilistic sys-
tem. This could be especially useful for designing appropriate
end user interfaces for agents, and might help produce results
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which are more in line with human expectations, although this
would need to be further investigated.

• Possibility theory has been shown theoretically and experimen-
tally to be more flexible than and performing as least as well
as a standard probabilistic approach in instance-based learn-
ing (Hüllermeier, 2003). Although that domain is considerably
different to that of coalition formation, it shows that possibilis-
tic approaches are worth looking into in domains that call for
more flexibility and error-tolerance.

In the context of cooperative game theory, fuzzy-valued games
were first employed by Mareš (2001). In particular, this work intro-
duced fuzzified versions of core concepts like additivity, as well as
the stability concepts of the fuzzy Core and the fuzzy Shapley value.

However, when it comes to concrete coalition formation algorithms
for multiagent systems, not much is available in the literature. In
fact, Blankenburg et al. (2003) proposed the only other coalition
formation algorithm for fuzzy-valued games that we are aware of.
Therein, a fuzzy extension of the kernel and an algorithm KCA-F to
form fuzzy-kernel stable coalitions were introduced. It was shown
that it is possible to obtain polynomial computational complexity of
this algorithm by putting a constant bound on the maximum al-
lowed coalition size. Then the complexity was shown to be in O(|A|7)
if it is assumed that arithmetic operations on fuzzy numbers can
be done in constant time. For practical applications, this is con-
siderably greater than the complexity of O(|A|4) of the BSCA-F (see
section 4.4). Also, the issue of defuzzification of a fuzzy payoff config-
uration was not considered for the KCA-F, but we demonstrate how
it may be done in section 4.5. But given that in the KCA-F the same
possibilistic interpretation of fuzziness is used as in the BSCA-F, the
same methods should be applicable.

Probabilistic Coalition Formation

One approach to tackle uncertain coalition values is to model them
probabilistically. Suijs et al. (1999) introduced stochastic coopera-
tive games where the payoffs are pairs consisting of a deterministic
and an uncertain part. The former determines the side-payments
while the latter models a random variable over the uncertain out-
comes of the associated coalitional actions. Agents might have indi-
vidual preferences over the random payoffs and might generally be

43



CHAPTER 3. RELATED WORK

risk-averse, risk-neutral or risk-loving. Note that it is implied that
the probability distributions are common prior knowledge. That is,
the agents know the probability distributions of the (financial) out-
comes of all possible coalitional actions in advance. The solution
concepts of the core and the nucleolus are then extended to such
games. As in the classic case, the core might be empty, and it turns
out to be difficult to determine non-emptiness of the core in general.
The nucleolus is defined for stochastic games in which each agent’s
preference function satisfies a weak form of continuity. This can be
obtained if the set of outcomes of coalitional actions is finite and the
preference functions have some arguably natural properties. Both
the core and the nucleolus for stochastic games are only applicable
for the formation of the grand coalition, and thus for superadditive
stochastic games. But it is also shown that, equivalent to determin-
istic games, if a payoff distribution of a stochastic game is in the
nucleolus and the core is non-empty, it is also in the core. While the
approach provides a workable theory for the analysis of stochastic
games, no algorithms or schemes are provided to actually determine
a solution, let alone one that is applicable in open multiagent sys-
tems. This concerns in particular a specialization of their theory to
allocate financial risk among insurance providers and clients which
was detailed by Suijs et al. (1998). For a more detailed and complete
account of the theory and the insurance scenario we also point to
Suijs (1998).

This risk allocation setting might seem similar to our risk-bound
coalition formation algorithm RCF. However, while in Suijs et al.
(1998) the risk is the main subject of the game, i.e. the risk is
modelled via the coalition values, in the RCF it is a constraint on
a service allocation game. Also, since the RCF employs the kernel as
a solution concept, solutions to the game always exist.

In the literature, some approaches have been introduced to over-
come the assumption that the agents know in advance the probabil-
ity distributions of the outcomes of coalitional actions. Chalkiadakis
and Boutilier (2004), Chalkiadakis et al. (2007) introduce a Bayesian
core for repeated coalition formation (BCF) where the agents are un-
certain about each others types. That is, the agents do not know
in advance how well other agents will perform their assigned tasks
in the coalitional actions, making costs and rewards and thus the
coalition values uncertain. Additionally, this model implies that the
agents’ expectations of each other’s types are subjective and thus
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can be different. This is in contrast to the classic solution concepts
which imply perfect information of each agent about the objective
values. However, each agent is assumed to know its own type with
certainty. Coalition values then are a function of the types of the
coalition members and each agent might have a different expectation
of a coalition’s value. Consequently, if the agents’ types of a coalition
where known with certainty, so would be the coalition value.

Note that apart from using Bayesian probabilities as opposed to
fuzzy numbers, this is different to the uncertainty modeled in the
BSCA-F, where uncertainty is a quality of the coalition values them-
selves. That is, even though in the BSCA-F it is assumed that the
agents know each others types’ perfectly, the coalition values are
still uncertain.

The agents in BCF then form coalitions and execute coalitional
actions repeatedly while using reinforcement learning to improve
their beliefs about the agents’ types. The learning method is modeled
as a partially observable Markov decision process (POMDP). Thus,
while the agents might have some prior knowledge, they improve
their beliefs individually and independently over time based on their
experiences. To actually form coalitions, agents can propose certain
restricted changes to the coalition structure. If the agents are al-
lowed some experimentation (that is, temporarily accepting a disad-
vantageous configuration in hopes of obtaining a more profitable one
in later stages), it is proved that this process converges to a Bayesian
core-stable configuration. Chalkiadakis et al. (2007) further showed
that there is non-cooperative justification of the Bayesian core. In
particular, they “prove that if the BC of a coalitional game (and of
each subgame) is non-empty, then there exists an equilibrium of the
corresponding bargaining game that produces a BC element; and con-
versely, if there exists a coalitional bargaining equilibrium (with cer-
tain properties), then it induces a BC configuration.” The Bayesian
core, like the classic core, may be empty, and is in general compu-
tationally intractable. The latter also holds for POMDPs on whose
solution the coalition formation model is based. Chalkiadakis et al.
(2012) thus provide an evaluation of several simulated coalition for-
mation sequences which use different approximation methods to
compute the POMDP solutions in feasible time. Although no com-
parison to a global optimum is made (which is intractable to com-
pute), the different methods show quite widely varying results in
different settings with respect to overall payoffs. In a five-agent set-
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ting, all simulated methods do not reliably converge to a Bayesian
core stable configuration, and in a ten-agent setting, the Bayesian
core is empty.

In contrast, in the BSCA-F, by using the recursively bilateral
Shapley value, we have taken a different route in that we chose to
abandon the use of a high-complexity and often empty solution con-
cept from the start, resulting in very low computational complexity
without any further approximation. Still, the simulation results that
we present in section 4.6 show that the BSCA-F very often results
in fuzzy payoffs that are at least possibly in the core. On the other
hand, higher degrees of necessity of core membership turn out to
be achievable only when certain ranking operators are employed in
the BSCA-F (a ranking operator for fuzzy numbers assigns gives a
degree to which one of the numbers is to be considered greater than
the other, see section 4.1). Thus, whether the BSCA-F or the BCF
method is more promising when the trade-off between runtime per-
formance and optimality or stability of the solution is regarded could
only be really assessed by a direct comparison. However, it is still to
be kept in mind that two algorithms handle different kinds of uncer-
tainty.

Ieong and Shoham (2008) propose a further refined theoretical
model for Bayesian coalition games in multiagent systems. To ac-
count for uncertainty, this model explicitly includes a set of possible
worlds and for each agent a partition of those worlds whose members
pool worlds that are indistinguishable from the perspective of the re-
spective agent. Coalitional contracts are defined as mappings from
the set of possible worlds to payoff vectors, which accommodates
the fact that no certain payoffs can be determined before all agents
know which world turns out to be true. Based on this and assuming
that the grand coalition is always formed (i.e. assuming superaddi-
tivity), three notions of Bayesian core-stability for such contracts are
introduced:

1. The ex-ante core models stable contracts before anything is
known about which world is true.

2. The ex-interim core models stable contracts when each agent
knows to which of its partitions of indistinguishable worlds the
true world belongs.

3. The ex-post core models stable contracts when each agent knows
which is the true world.
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It is further argued that this model is a generalization of Suijs et al.
(1999) if each coalition has only one action, and that the ex-interim
core is somewhat similar to the Bayesian core proposed by Chalki-
adakis and Boutilier (2004), Chalkiadakis et al. (2007) if the for-
mation of the grand coalition is assumed. However, as is the case
with Suijs et al. (1999), no actual coalition formation algorithm is
given. Considering the descriptive, all-encompassing nature of their
model, doing so in a computationally feasible manner seems to be
highly non-trivial.

Heuristic Approaches

Another direction is followed in Kraus et al. (2003), a heuristic coali-
tion formation (HCF) approach in the request for proposal domain.
Therein, requester agents issue requests for proposal (RFP), for which
a coalition of service provider agents might make bids to jointly try
and satisfy the request within a given time limit. This setting is thus
comparable to the one considered in our risk-bounded coalition for-
mation algorithm RCF. They evaluate the achieved average payoffs
of different heuristics in different settings, in particular involving
different degrees of imperfect information. However, no conclusions
can be drawn with regards to the risk that agents might experience
losses, which is the main concern of the RCF. Also, no relation of the
resulting payoffs to stable payoffs in the sense of cooperative game
theory is provided.

In the same request for proposal domain, Jones and Barber (2009)
advance the heuristic approach to let the agents be able to also react
to dynamic changes in the requests, as well as use dual heuristics
for task and team (coalition) selection. Then the interdependencies
of these heuristics are studied via simulations. However, again only
average payoffs are analyzed, but neither are risk nor cooperative
game theoretic stability.

Fuzzy Coalitions

Although we employ fuzzy coalitions in our risk-bounded coalition
formation approach, the standard models of fuzzy coalitions do not
fit our approach(Aubin, 1979, Butnariu, 1980). This is because
they assume a linear relationship between coalition membership and
coalition values, which we show in chapter 5 does not fit the model
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employed there.
Nevertheless, we note that Nishizaki and Sakawa (2001) proposed

a number of algorithms to compute solutions according to their con-
cepts. They did however not propose a protocol that enables a coali-
tion negotiation among computational autonomous agents.

Shehory and Kraus (1999) considered the formation of overlap-
ping but non-fuzzy coalitions. They however focus on maximising
the joint payoff of all agents rather than individual payoffs or min-
imising potential individual losses. In contrast, our approach fo-
cuses especially on the latter points. Thus, the motivations and the
properties of the obtained solutions are very different.

More recently, Chalkiadakis et al. (2010) investigated coopera-
tive games with overlapping coalitions in multiagent system settings.
They provide definitions of the core and other basic game theoretic
concepts and study different aspects of stability. However, no coali-
tion formation algorithm is provided.

3.2 Truth-telling in Coalition Formation

In the literature, there exist two general approaches to encourage
agents to be truthful in negotiation settings:

1. Measuring each other’s trust-worthiness with the help of a trust
model and resulting trust measure. This is then used by agents’
to adjust their assessments of what to expect from other agents.

2. Designing the interaction protocols such that truth-telling is
rational for agents, i.e. implement incentive compatibility.

We now consider each of these approaches in turn.

Trust measures

If the agents engage in coalition formation repeatedly, they might
over time learn to map other agents’ communication behaviour to
their actual performance. This is the approach of trust models, as it
was outlined by Dasgupta (1998). Ramchurn et al. (2004) provides
an overview of different approaches to trust in multiagent systems,
summarizing Dasgupta’s definition of trust as follows:
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“Trust is a belief an agent has that the other party will do what it
says it will (being honest and reliable) or reciprocate (being reciproca-
tive for the common good of both), given an opportunity to defect to get
higher payoffs.””

They further view trust as being composed of two main compo-
nents:

1. individual-level trust: the mutual trust among individual agents,
which an agent might assess by e.g. incorporating learning,
reasoning and/or reputation models.

2. system-level trust: the trust of agents in the system to enforce
trustworthy behaviour of other agents by e.g. implementing
appropriate rules of encounter and interaction protocols.

Figure 3.1: Trust in Multiagent Systems, taken from Ramchurn
et al. (2004).
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Figure 3.1 depicts this view of trust. In the literature on multiagent
coalition formation, a number of protocols have been introduced
that incorporate individual-level trust models, such as Breban and
Vassileva (2002), Griffiths and Luck (2003), Hoelz and Ralha (2012)
and Vassileva et al. (2002). These works, however, do not consider
stability in the cooperative game-theoretic sense, and thus actu-
ally use a different notion of “coalition”. In contrast, in chapter 6
we introduce the coalition formation algorithm TKCF which enables
agents to form Kernel-stable coalitions as well as use a trust mea-
sure to assess each other’s likelihood of truth-telling or reliability.

In fact, the uncertainty of other agents’ types modelled by the
approach of Chalkiadakis and Boutilier (2004), Chalkiadakis et al.
(2007) (BCF, see the previous section for a more detailed discus-
sion) seems to be more closely related to the uncertainty about other
agents’ trustworthiness in the TKCF. Also there, learning over re-
peated coalition formation is employed to improve the knowledge
about other agents’ behaviours. However, in contrast to the BCF,
agents in the TKCF also inform each other about their trust mea-
sures of potential coalition partners. Therefore, if the percentage of
malicious or underperforming agents in the TKCF is not too high, it
might be expected that an agent might be able to assess the trust-
worthiness of other agents quicker as opposed to the case where it
only relies on its own learning as in the BCF. However, remember
that the exact choice of trust model in the TKCF is not the focus of
this thesis, but the design of the algorithm to hinder deception by
agents even before employing the trust model. To this end, the BCF
has nothing comparable.

Since coalition formation is usually assumed to be executed just
by the participating agents, without direct involvement of a central
authority (other than the providers of the basic system infrastruc-
ture), the problem of system-level trust might not seem as important
for coalition formation. But depending on the exact implementation
of coalition formation algorithms and protocols, auxiliary services
such as directory services (so that the agents can find each other)
might be used. We do however not consider this problem in this
work.
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Incentive compatibility

The second approach to the problem of deceiving agents is to make
the interaction protocol incentive compatible. That is, to design the
protocol in such a way that truth-telling leads to higher expected
utility for the participating agents, and thus make it a preferred
strategy of rational agents. This approach was introduced and has
been widely studied in the research field of mechanism design. As
Myerson (2008) puts it,

“A mechanism is a specification of how economic decisions are de-
termined as a function of the information that is known by the in-
dividuals in the economy. Mechanism theory shows that incentive
constraints should be considered coequally with resource constraints
in the formulation of the economic problem.”

It should be noted that for a mechanism, the designer is a cen-
tral authority who sets the overall goal of the game and typically
also implements or oversees the environment where the game takes
place. Prominent examples of mechanisms in this sense include
auction and stock markets, where the goal might be to achieve an
efficient market such that goods are traded at their true market val-
ues. Both are examples of regulated markets, where the designers
and implementors are auction houses or stock exchanges, respec-
tively. Another example of a mechanism is voting, where the goal is
usually to get a result that represents the participants’ true prefer-
ences. The designer therefore devises the rules such that participat-
ing agents are likely to behave in a way that reaches the overall goal,
even though they are assumed to be self-interested 1.

Note that, in contrast, coalition formation protocols and algo-
rithms do not assume the existence of a controlling authority. Fur-
thermore, in mechanism design, the agents are also assumed to act
non-cooperatively. Indeed, cooperation among agents is usually for-
bidden in mechanisms, and thus called collusion.

Now, in order for the agents to partake in the mechanism such
that the overall goal is fulfilled, agent’s must be encouraged to act
according to their true private preferences. For example, agents
should make bids in an auction which reflect their true utility of the

1An issue in mechanism design is that the central authority generally has to be
fully trusted by participating agents. It would e.g. be a problem for participants
if the auction house chooses an auction mode that typically leads to higher prices
in order to collect higher fees; or a corrupted voting committee which cheats when
counting the votes because of its own interests.
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traded good or vote according to their true preferences of the options
on vote. In other words, agents should be prevented from bidding
or voting strategically due to their expectations of the behaviour of
other participants.

A mechanism which fulfills this is said to be incentive compatible
(Hurwicz, 1972). More precisely, incentive compatibility of a mech-
anism with rational participants implies that truth-telling leads to a
pareto-optimal Nash-equilibrium. That is, assuming that the agents
are rational, and each agent assuming that all other agents are ra-
tional, the strategy with the highest expected value for each agent is
to tell the truth. If truth-telling is even a dominant strategy of the
mechanism, i.e. it is always the best strategy independently of other
participants’ behaviour (and thus the rationality constraint can be
relaxed), then the mechanism features strong incentive compatibil-
ity (which is also called strategy-proofness). Unfortunately, Myer-
son and Satterthwaite (1983) proved that no incentive-compatible,
budget-balanced (i.e. all payments between agents sum to zero,
which translates to efficiency in terms of cooperative game theory)
and individually rational mechanism can exist (for an explanation,
see also Osborne and Rubinstein, 1994).

In order to devise incentive-compatible mechanisms, the revela-
tion principle is often employed in mechanism design. This principle
states that for every mechanism, there is an equivalent one in which
all agents report their required data directly at the start of the mech-
anisms execution and which motivates the agents to report these
values truthfully. However, Conitzer and Sandholm (2004) criticize
this approach for often being computationally intractable. Also, all
the computational burden lies with the central implementor.

Now, please note that every coalition formation algorithm and
contained protocol can easily be re-designed in a more mechanism-
like and centralized way simply by introducing an additional “man-
ager” agent, which will never join any coalition, and changing the in-
teraction protocol such that this manager acts as a relay for all mes-
sages. That is, if the protocol specifies that agent a1 should send a
certain message to a2 at a certain time, the protocol is changed such
that a1 sends this message to the manager, and the manager then
forwards it to a2. But this means that also no incentive-compatible,
efficient and individually rational coalition formation algorithm can
exist. However, for our proposed kernel-based trusted coalition for-
mation algorithm introduced in chapter 6, we at least show that each
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agent cannot determine whether its non-truth-telling will lead to an
increased payoff, and that indeed it always potentially decreases its
payoff.

3.3 Privacy Preserving Coalition Formation

Another issue with coalition formation algorithms is the preservation
of the participating agents’ privacy. As we have seen in section 2.3,
agents are often required to initially exchange their data which is
relevant to determine all the coalition values. However, what if it
is not acceptable for an agent to reveal all or parts of this data to
certain other agents?

In a web service agent scenario, for example, the public revelation
of the quantity and value of local service sales, as well as individual
requests for particular services which required to play cooperative
games with complete knowledge could lead to an unsolicited com-
petitive advantage for other agents of competing web service oriented
businesses. The problem is, how can certain kinds of local financial
data be kept private while still successfully participating in coalition
negotiations to maximize individual profits?

This question has received little attention in the literature so far;
indeed, to our knowledge Blankenburg and Klusch (2004, 2005a)
and Blankenburg and Klusch (2006) (on which chapter 7 is based),
are the only works to address this problem so far.

However, we note that Ohta et al. (2006), Yokoo et al. (2005a,b)
and Ohta and Conitzer (2008) tackle the complementary problem
of anonymity-proofness for the core, nucleolus and Shapley value.
They model the game such that each agent ai has a set of skills
Skillsi. If Skills denotes the set of all skills in a game, they define the
characteristic function in terms of sets of skills instead of coalition
values:

v : 2Skills 7→ R

The value of coalition is then determined by the union of the sets of
skills of its members.

Note that if such a skill-based coalition value function is non-
decreasing (i.e. adding more skills does not decrease the value), this
model can be easily translated to our simplified service agent model
that we use in chapter 7 by replacing the skills with appropriate
requested and offered services.

53



CHAPTER 3. RELATED WORK

They then define a solution concept to be anonymity proof iff it
holds that if an agent hides some of its skills, its payoff does not in-
crease. Anonymity-proof versions of the core and the Shapley value
are discussed. The motivation behind this is thus not to enable
anonymity or, more general, the hiding of private information in ne-
gotiations, but to ensure that no agent can gain unsolicited profit by
doing so. Consequently, they do not cover the issues of how agents
can hide their information effectively and ensure that it stays hid-
den over the complete process of coalition formation and coalitional
executions, as we do for the BSCA-P. On the other hand, we briefly
argue in section 7.5 that the BSCA-P is not anonymity proof.

Lastly, we point out that the computational complexity of the
anonymity-proof core and Shapley value are very high, i.e. O(n2n)
and O(2n).

3.4 Other Models of Coalition Formation

In this section, we take a brief look at alternative coalition formation
approaches which are not directly applicable to the problems we
consider in this thesis.

Dynamic Coalition Formation

Theories of building up of coalitions in a dynamic process have also
been considered in the classical game theory literature, there named
dynamic coalition formation (e.g. Arnold and Schwalbe, 2002, Aubin,
2005, Filar and Petrosjan, 2000). These are concerned with theo-
retical properties of coalition negotiation processes. For example,
Arnold and Schwalbe (2002) study the reachability of the Core as-
suming that a specific bargaining process is used as the negotiation
method. Aubin (2005) examines the evolution of core-stable coali-
tions in a game where fuzzy coalitions form over time. These works,
however, take a mostly descriptive perspective. Their aim is not to
actually design algorithms which are applicable in multiagent sys-
tems.

To this end, Klusch and Gerber (2002) introduced a generic coali-
tion formation scheme which tackles dynamics in the environment
such as a changing agent set. It simulates multiple possible evolv-
ing scenarios in parallel and thus enables the agents to react to
changes in the game and world states. Khan et al. (2011) propose a
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dynamic coalition formation algorithm for transmitters and receivers
in a wireless network. Their model includes both the dynamics of the
negotiation and changes in the coalition value function. However, it
does not account for changes in the agent set.

In this thesis, we do not consider dynamic changes of the game
during coalition negotiation.

Coalition Formation in the Robot Domain

Coalition formation protocols have been widely applied to enable and
implement cooperation in the robot domain, where teams of robots
are required to achieve certain tasks (e.g. Chen and Sun, 2012,
Guerrero and Oliver, 2012, Ramaekers et al., 2011, Rohrmüller et al.,
2012, Service and Adams, 2011, Vig and Adams, 2007). For such ap-
proaches, achieving small computational and communication com-
plexity is usually of great importance, as is the coping with dynam-
ics and uncertainty in the environment. However, teams of robots
are usually assumed to work together completely cooperatively, and
agents are not assumed to be self-interested. Thus, only the prob-
lem of finding social-welfare maximizing coalition structure is rele-
vant in this domain, but not the problem of obtaining a stable pay-
off distribution. Furthermore, specific assumptions are often made
that are applicable only to the studied problem setting. Thus, these
approaches are not directly relevant or comparable to the coalition
formation approaches which we consider in this thesis.

Argumentation-based Coalition Formation

Amgoud (2006) proposed to utilise argumentation theory to reason
about coalition formation. A formal model of coalitional conflict re-
lationships is proposed for this purpose. It includes different types
of semantics for coalition structures and a proof theory allowing an
agent to identify acceptable coalitions. A coalition is deemed accept-
able if it is either not defeated by any other coalition, according to
some not further specified binary defeat relation, or it can defend
itself against the defeating coalitions via another binary preference
relation. An argumentation-based dialogue process is then proposed
which is shown to arrive at coalition structures which are accept-
able in this sense. Additionally, stable and preferred structures are
defined in terms of the defeat and preference relationships. How-
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ever, agent payoffs are not considered at all, and it is not made clear
whether the proposed coalition structure semantics correspond to
any of the classical solution concepts for cooperative games.

More recently, Riley et al. (2012) expanded on this idea and mod-
eled an argumentation-based dialogue process which induces both a
coalition structure and a core-stable payoff distribution. Therefore,
it is applicable only for games with a non-empty core (they do pro-
vide a method for determining non-emptiness of the core, however).
Also, the agents are expected to maximise social-welfare first and
their individual payoffs only secondary. Unfortunately, no analysis
of the computational or communication complexity of the proposed
process is provided.
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Fuzzy-valued Coalition
Formation

One apporach to tackle multiagent coalition formation in cooper-
ative games with uncertain coalition values is to employ fuzzy set
theory as introduced by Zadeh (1965). A fuzzy set extends the no-
tion of traditional crisp sets such that membership is not a boolean
property (i.e. an element either is a member of a given set, or it is
not), but a degree of membership. Applying this notion to the set
of real numbers yields the set of fuzzy numbers. The idea then is
to extend solution concepts of cooprative game theory to operate on
games with fuzzy coalition values.

The main idea behind fuzzy sets is to provide an intuitive and
rather simple way of modeling vagueness or uncertainty. As opposed
to probability theory, it does neither require unitarity nor additivity
on membership. As we will see, this renders basic operations on
fuzzy sets (or fuzzy numbers) to be simple as well, and in particular
allows for their very efficient computation.

On the downside, however, the actual meaning of a fuzzy mem-
bership degree is not as easily established as e.g. in the case of
probabilities. In the literature, there have traditionally been two
main interpretations: vagueness and possibility. A vague intepreta-
tion presumes that the entities of interest are inherently imprecise.
For example, the word “red” as used in day-to-day human language
does not specify a specific colour with a precise wave-length, but a
whole range of colours which are more or less red. Fuzzy member-
ship degrees in this sense are thus also called degrees of truth.

In contrast, a possibilistic interpretation assumes that the con-
sidered entities do indeed have crisp and exact values, but there is
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uncertainty about these values. While this seems similar to the se-
mantics of probabilities, it is more flexible (due to non-unitary and
non-additivity) by allowing for a less exact and strict modeling of a
problem instance. In particular, it allows for ignorance of member-
ship degrees in cases which are not of interest, without introducing
error. This, we argue, makes it easier for humans to model situations
which they do not fully understand in a possibilistic rather than
a probabilistic way. Additionally, there exist empirical evaluations
indicating that possibilistic reasoning is generally more compatible
with human concious reasoning than probabilistic reasoning is, as
it was shown e.g. in Raufaste et al. (2003). They were able to con-
firm the claim in Zadeh (1978) that humans really conjure subjec-
tive possibilities rather than subjective probabilities. It means that a
possibilistic system should be potentially able to better capture the
essence of human-specified inputs than a probabilistic system.

Because we are specifically interested in modeling games with
uncertain coalition values, we employ the possibilistic interpreta-
tion of fuzziness to devise an appropriate coalition formation algo-
rithm. Its formal theory has been well developed in e.g. Zadeh (1978)
and Dubois and Prade (1994). Furthermore, the extension of coop-
erative game theoretic concepts to use fuzzy coalition values with
possibilistic interpretation is fairly straightforward because of the
existence of appropriate arithmetic and ranking operators. This has
already been done for some of these concepts in e.g. Mareš (2001)
and Blankenburg et al. (2003).

The fuzzy coalition formation algorithm presented in this chapter
is based on the fuzzy bilateral Shapley value. This is a combination
of the bilateral Shapley values as introduced in Klusch (1997) with
the notion of the fuzzy Shapley value introduced in Mareš (2001).
While Mareš assumes the vagueness intrepretation of fuzzy mem-
berships, his definition of the fuzzy Shapley value is completely com-
patible with the possibilistic interpretation employed here.

The proposed algorithm avoids the need to constrain coalition
sizes while obtaining low computational and communication com-
plexity, which we proove theoretically. In order to achieve this, we
utilize the fuzzy bilateral Shapley value. This, however, implies that
only subgame-stability is achieved. We however proove that of the
possible coalitions, the most profitable one is always formed in every
negotiation round of our algorithm.

We further point out that the possibilistic mean value (see Carls-
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son and Fullér (2001)) can reasonably be applied to defuzzify fuzzy
payoffs in order to implement unambiguous coalition contracts.

The remainder of this chapter is organized as follows. In sec-
tion 4.1 we introduce the necessary preliminaries with respect to
fuzzy numbers and fuzzy-valued coalition formation. We then ex-
tend the bilateral Shapley value to a fuzzy version in section fbsv. In
section 4.3, our coalition formation algorithm BSCA-F is presented.
We discuss its properties theoretically in section sec:bscafprops. In
section 4.5 show in detail how to apply the BSCA-F in an example
real world scenario. Finally, we present some evaluation results in
section 4.6 before concluding in section 4.7.

4.1 Preliminaries

We first introduce the basic concepts of fuzzy quantities and opera-
tions on them, and then continue to introduce fuzzy-valued coalition
games.

Fuzzy Sets and Quantities

This section introduces basic notions of fuzzy sets and quantities,
along with some operations on them that will be required in the fol-
lowing sections. The following definitions follow the theory of fuzzy
sets in a possibilistic interpretation as established by Zadeh (1965)
and Zadeh (1978). Additional concepts such as the ranking oper-
ators we employ and the possibilistic mean value have been estab-
lished in Dubois and Prade (1983, 1987, 1994), and Carlsson and
Fullér (2001).
Definition 4.1.1 Fuzzy subset
A fuzzy subset s̃ of a set S is defined by its membership function

µs̃ : S 7→ [0, 1]

where µs̃(x), x ∈ S, is called the degree of membership or membership
value of x in s̃. Further, s̃ is called normalized iff supx∈R{µx̃(x)} =
1. 4

Definition 4.1.2 Membership, support, and modal member
Let s̃ be a fuzzy subset of a set S, and x in S. We say x is a member
or element of s̃ and write x ∈ s̃ if it has a positive membership value:

µs̃(x) > 0, x ∈ S
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and define the support of s̃ as the set of all its members:

support(s̃) := {x | x ∈ s̃}

An element x with maximum membership in s̃ is called a modal ele-
ment of s̃:

x ∈ arg max
y∈S

(µs̃(y))

4
The definition of fuzzy subsets can be applied to any set. Since
we are interested in modeling fuzzy coalition values, we particularly
concern ourselves with fuzzy subsets of the real numbers:

Definition 4.1.3 Fuzzy quantity
Any fuzzy subset of R is called a fuzzy quantity, and R̃ denotes the
set of all fuzzy quantities. 4

Definition 4.1.4 α-level cut
For x̃ ∈ R̃ and α ∈ [0, 1], the α-level cut Lα(x̃) of x̃ is the set of all real
numbers with a membership of at least α in x̃:

Lα(x̃) := {x |x ∈ R, µx̃(x) ≥ α}

An α-level cut is also just called α-cut. We also define αmin(x̃) as the
minimum member with membership level α:

αmin(x̃) := inf{Lα(x̃)}

And, analogously, the maximum member:

αmax(x̃) := sup{Lα(x̃)}

4

Definition 4.1.5 Fuzzy intervals
A fuzzy interval x̃ is a normalized fuzzy quantity with finite support
and convex alpha level cuts, i.e.

∀α1, α2 ∈ R, α1 < α2 : Lα1(x̃) ⊃ Lα2(x̃)

Futher, a trapezoid fuzzy interval is defined as a fuzzy interval of the
form

( ̂x1, x2, x3, x4), x1, x2, x3, x4 ∈ R
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with

µ( ̂x1,x2,x3,x4)(r) =


1 if x2 ≤ r ≤ x3
r−x1
x2−x1 if x1 < r < x2
x4−r
x4−x3 if x3 < r < x4
0 otherwise

, r ∈ R

4

Definition 4.1.6 Fuzzy numbers
A fuzzy number x̃ is defined as a fuzzy interval for which there exists
exactly one modal element:

|{x ∈ R : µx̃(x) = 1}| = 1

A triangular (shaped) fuzzy number (x̂, y, z), x, y, z ∈ R is a trapezoid
fuzzy interval with one modal value:

(x̂, y, z) := ( ̂x, y, y, z)

Finally, for a numeral num, ñum denotes the fuzzy quantity with

µñum(x) =

{
1 if x = num
0 otherwise , x ∈ R

4
For fuzzy quantities, arithmetic operations are defined following the
extension principle, which provides a general means to transform
functions on real numbers to functions on fuzzy quantities(Zadeh,
1965):
Definition 4.1.7 Extension principle
Let x̃ ∈ R̃n, n ∈ N. The function f̃ : R̃n 7→ R̃ is called a fuzzy extension
of a function f : Rn 7→ R iff ∀x ∈ Rn:

µf̃(x̃)(x) =

{
supy∈Rn{min1≤i≤n{µx̃i(yi)} | f(y) = x)} if f−1(x) 6= ∅
0 otherwise

4
Based on the extension principle, we are able to define some specific
fuzzy arithmetic operations that we will require.
Definition 4.1.8 Fuzzy arithmetics
Let x̃, ỹ ∈ R̃, x, y, z, a ∈ R.

µx̃⊕ỹ(x) := sup{min(µx̃(y), µỹ(z)) | y + z = x}
µ−x̃(x) := µx̃(−x)

µx̃	ỹ(x) := µx̃⊕(−ỹ)(x)

µa·x̃(x) :=

{
µx̃(x/a) if a 6= 0
µ0̃(x) if a = 0
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We also use the symbol
∑̃

for the addition of a set of fuzzy quantities
analogously to the symbol

∑
for crisp numbers. 4

When agents negotiate coalitions, they need to compare different
fuzzy utilities and choose one. Thus, we need a ranking method for
fuzzy quantities:

Definition 4.1.9 Fuzzy ranking operators and similarity rela-
tions
Let x̃, ỹ ∈ R̃ and R be a fuzzy subset of R̃ × R̃. R is called a fuzzy
ranking operator if µR(x̃, ỹ) denotes the degree to which x̃ can be con-
sidered greater compared to ỹ. R is called a fuzzy similarity relation if
µR(x̃, ỹ) denotes the degree to which x̃ can be considered "similar" to
ỹ. Further let G be a fuzzy ranking operator and S a fuzzy similarity
relation. We define

(x̃≥̃Gỹ) := µG(x̃, ỹ)

and
(x̃=̃S ỹ) := µS(x̃, ỹ)

4
Several of such methods have been proposed in the literature, for
example by Bortolan and Degani (1985). Dubois and Prade (1983)
introduced four fuzzy ranking operators and two similarity relations
which are applicable in the setting of possibility theory, which is our
employed interpretation of fuzziness in the BSCA-F algorithm.

Definition 4.1.10 Possibility distribution
Let s̃ be a fuzzy subset of a set S. If µs̃(x) models the degree of
possibility1 that a variable X in the domain S takes the value x,
denoted Π(X = x), then s̃ is also called a possibility distribution for
X. 4

Definition 4.1.11 Possibilistic ranking operators
Let x̃, ỹ ∈ R̃ be possibility distributions for variables X, Y ∈ R, respec-
tively. We define

1. the possibility of dominance ≥̃P of X over Y as

Π(X ≥ Y ) = x̃≥̃P ỹ
= sup{min(µx̃(x), µỹ(y)) | x, y ∈ R, x ≥ y}

1the meaning of “degree of possibility” is left open here, but see also section 3.1
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2. the necessity of dominance ≥̃N of X over Y as

N(X ≥ Y ) = x̃≥̃N ỹ
= inf

x
{sup

y
{max(1− µx̃(x), µỹ(y)) | x, y ∈ R, x ≥ y}}

3. the possibility of strict dominance >̃P of X over Y as

Π(X > Y ) = x̃ >P ỹ

= sup
x
{inf
y
{min(µx̃(x), 1− µỹ(y)) | x, y ∈ R, x ≤ y}}

4. the necessity of strict dominance >̃N of X over Y as

N(X > Y ) = x̃ >N ỹ

= inf{max(1− µx̃(x), 1− µỹ(y)) | x, y ∈ R, x ≤ y}

5. the possibility of equality =̃P of X and Y as

Π(X = Y ) = x̃=̃P ỹ

= min(Π(X ≥ Y ),Π(Y ≥ X))

6. the necessity of equality =̃N of X and Y as

N(X = Y ) = x̃=̃N ỹ

= min(

min(N(Y ≥ X), 1− Π(Y > X)),

min(N(X ≥ Y ), 1− Π(X > Y )))

4
Further we define a fuzzy set of maximal elements of a set of fuzzy
quantities X, where the membership of an element of X is defined
by pairwise comparions with all other members:
Definition 4.1.12 Maximum of fuzzy quantities
Let X̃ be a set of fuzzy quantities and G a fuzzy ranking operator.
The fuzzy subset m̃axGX̃ of X̃ is given by

∀x̃ ∈ X̃ : µm̃axGX(x̃) := min
ỹ∈X̃,ỹ 6=x̃

(x̃≥̃Gỹ)

4
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Thus, µm̃axGX̃(x̃) denotes the degree to which x̃ can be considered a
maximal element of X̃. We also define a crisp set of maximal ele-
ments of X̃ containing those elements with maximal membership in
m̃axGX̃:

Definition 4.1.13 Crisp maximum set
Let X̃ be a set of fuzzy quantities and G a fuzzy ranking operator.
The (crisp) set maxGX̃ of maximal elements of X̃ is defined as the set
of modal members of m̃axGX̃. 4
Finally, we will need the logical operations “AND” and “OR” with
operands ∈ [0, 1].

Definition 4.1.14 Possibilistic mean value
Given a fuzzy interval x̃ ∈ R̃,with µX̃ representing a possibility distri-
bution for a variable X ∈ R,

E(X) :=

∫ 1

0

α(αmin(x̃) + αmax(x̃))dα

is called the possibilistic mean value of X. Instead of E(X), we also
write e(x̃). Note that it is additive: e(x̃ ⊕ ỹ) = e(x̃) + e(ỹ), x̃, ỹ ∈ R̃ The
possibilistic mean value is sometimes also called the expected value
of the respective variable due to the similarity of the definition to the
expectation in probability theory. 4
Fullér and Majlender (2003) also introduced a weighted version which
allows for adjustments of the importance of different possibility lev-
els. We use the unweighted version here for simplicity. Since e maps
fuzzy membership functions to crisp real values, it can be seen as a
suitable defuzzification method for fuzzy quantities in the setting of
possibility theory.

Remark 4.1.15. For any trapezoid fuzzy interval Ĩ = ( ̂x1, x2, x3, x4),
x1, x2, x3, x4 ∈ R,

e(Ĩ) =
x1 + x2 + x3 + x4

4
=

x2+x3
2

+ x1+x4
2

2

This form makes clear that for trapezoid fuzzy intervals, e is the real
value in Ĩ minimizing the average distance to the bounds of the most
possible values [x2, x3] of Ĩ and the bounds of the support (x1, x4), i.e.
the values that are possible at all. In this sense, e can also be consid-
ered as a possibilistic error minimizing defuzzification method.
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Fuzzy Cooperative Games

Combining the theories of cooperative games and fuzzy quantities,
Mareš (2001) introduced fuzzy cooperative games, where coalitions
have fuzzy values. Fuzzy versions of the core and Shapley value are
therefore proposed. Here, we consider only the fuzzy Shapley value,
as we will use it as a basis for our coalition formation algorithm for
fuzzy cooperative games.

Definition 4.1.16 Fuzzy coooperative game
A fuzzy cooperative game in characteristic function form, also called
fuzzy-valued game, is a pair (A, ṽ) with the set of agents A and the
fuzzy characteristic function

ṽ : 2A 7→ R̃

ṽ(C) is called the fuzzy value of the coalition C and represents a
possibility distribution for the real coalition value v(C) ∈ R. 4

In the remainder of this chapter, we also say just "fuzzy game"
instead of "fuzzy cooperative game". The real coalition values exhibit
the same meaning as the coaltion values in crisp coalition games,
but are generally unknown in fuzzy games.

Definition 4.1.17 Fuzzy configuration
A fuzzy configuration is a pair (C, ũ) with the (crisp) coalition struc-
ture C and the fuzzy payoff distribution ũ : A 7→ R̃. With a fuzzy
similarity relation =̃, ũ is called =̃- efficient to a degree of

µeff =̃(ũ) := min
C∈C

{∑̃
ai∈C

ũ(ai)=̃ṽ(C)

}

For a ∈ A and a fuzzy ranking operator ≥̃ the degree of individual
≥̃-rationality in ũ is defined as

µ
indrat≥̃

(a) := ũ(a)≥̃ṽ(a)

and the degree of overall individual ≥̃-rationality of ũ is defined as

µ
indrat≥̃

(ũ) := min
a∈A

{
µ
indrat≥̃

(a)
}

4
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Definition 4.1.18 Fuzzy shapley value
The fuzzy Shapley value σ̃(a) of agent a ∈ A in a fuzzy game (A, ṽ) is
defined as

σ̃(a) =
∑̃
C⊆A

(|A| − |C|)!(|C| − 1)!

|A|!
(ṽ(C)	 ṽ(C \ {a}))

4

Remark 4.1.19. Mareš (2001) also showed that a fuzzy Shapley
value stable payoff distribution is ≥̃P -rational as well as =̃P -efficient
with degree 1 if the coalition values are normalized fuzzy intervals.

4.2 Fuzzy Bilateral Shapley-value

Since computing Shapley value-stable configurations is computa-
tionally intractable (see) The fuzzy bilateral Shapley value is accord-
ingly defined.
Definition 4.2.1 Fuzzy bilateral Shapley value
Let a fuzzy game (A, ṽ). The fuzzy bilateral Shapley value σ̃b(C1 ∪
C2, Ci, v),Ci, i ∈ {1, 2} in the bilateral coalition C1 ∪ C2 is defined as
the fuzzy Shapley value of Ci in the game ({C1, C2} , ṽ) .

σ̃b(Ci, ṽ) :=
1

2
· ṽ(Ci)⊕

1

2
· (ṽ(C1 ∪ C2)	 ṽ(Ck)), k ∈ {1, 2}, k 6= i

4
By this procedure, all the uncertainty in ṽ(C1), ṽ(C2) and ṽ(C1∪C2)

is carried into the fuzzy bilateral shapley values. While this is fine
from a theoretical point of view, it can be problematic at the time
a coalition C1 has to decide whether to merge with a coalition C2.
That is because when negotiations are finished and the agents carry
out their tasks, crisp (side-) payments will have to be made, i.e. the
fuzzy payoff distribution must be defuzzified. When e.g. the coali-
tion C1 ∪ C2 is an element of the final coalition structure of the ne-
gotiations, it might be possible to determine the real coalition value
v(C1 ∪ C2), because it is possible that the actual costs and rewards
are known after the agents carried out their actions. However, the
real coalition values v(C1) and v(C2) will in general remain unkown
and need to be defuzzified. As we mentioned earlier, the possibilis-
tic mean value is an appropriate defuzzifier for fuzzy quantities in
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the setting of possibility theory, and thus in particular for our fuzzy
coalition values. Thus, we will use a modified fuzzy bilateral shapley
value for which the coalition values of the subcoalitions are defuzzi-
fied by the possibilistic mean. This implies that the fuzziness of the
resulting payoffs is caused only by the fuzziness of the joint coalition
value.
Definition 4.2.2 Fuzzy bilateral Shapley value with defuzzified
values of subcoalitions
Let there be a fuzzy game (A, ṽ). The fuzzy bilateral Shapley value
with defuzzified values of subcoalitions σ̃eb(C1 ∪ C2, Ci, v),Ci, i ∈ {1, 2}
in the bilateral coalition C1 ∪C2 is defined as the fuzzy Shapley value
of Ciin the game({C1, C2} , ṽ) .

σ̃eb(Ci, ṽ) :=
1

2
· e(ṽ(Ci))⊕

1

2
· (ṽ(C1 ∪ C2)	 e(ṽ(Ck))), k ∈ {1, 2}, k 6= i

4
In the following, when we just say “fuzzy bilateral Shapley value”,

we always refer to the latter definition. Similarly to the crisp case of
definition 2.2.21, we define a recursive fuzzy payoff distribution:
Definition 4.2.3 Recursive fuzzy bilateral Shapley value
Given a recursively bilateral coalition C for a fuzzy game (A, ṽ) a
fuzzy payoff distribution ũ is called recursively fuzzy bilateral Shap-
ley value stable iff for every non-leaf node

C∗ ∈ TC : u(C∗i ) = σ̃eb(C
∗, C∗i , ṽC∗), i ∈ 1, 2, with

∀C∗∗ ⊆ A : ṽC∗(C
∗∗) =

{
σ̃eb(C

p, Cp
k , ṽCp) if Cp ∈ TC , C∗ = Cp

k , k ∈ 1, 2
ṽ(C∗∗) otherwise

4
In order to be able to actually utilize the above concepts, com-

putational agents need a feasible means to compute the coalition
values. We therefore introduce the fuzzy local worth of an agent:
Definition 4.2.4 Fuzzy local worth and coalition value
In a fuzzy game (A, ṽ), ∀C ⊆ A and a ∈ C, the fuzzy local worth is de-
fined analogously to its crisp counterpart of definition 2.2.27. That
is, with fuzzy valuation and cost functions w̃a and c̃a, respectively,

l̃wa(C) :=
∑̃

g∈Ga(C)

w̃a(g)	
∑̃

τ∈Ta(C)

c̃a(τ)
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We also write l̃wC(C∗) :=
∑̃

a∈C l̃w(C∗) with C∗ ⊆ A, C ⊆ C∗.
Finally, also analogously to the crisp case, the coalition value is

the fuzzy sum of the fuzzy local worths:

ṽ(C) =
∑̃
a∈C

l̃wa(C)

4

4.3 Algorithm BSCA-F

In this section, we present the algorithm BSCA-F for the formation
of coalitions with fuzzy coalition values. It is based on the algorithm
BSCA (Klusch, 1997) for the formation of bilateral Shapley value
stable for crisp games. Before we present the exact definition, we
first provide an informal outline.

A negoatiation with the BSCA-F consists of several negotiation
rounds in which new coalitions are formed. Every coalition is rep-
resented by one of its members. These agents do not have any priv-
eledges, but are responsible for certain computations and commu-
nications. In one round, each coalition representative

1. determines the values of bilateral coalitions resulting from a
merge with each other coalition;

2. identifies the most profitable merging options;

3. chooses one of these options and sends a proposal to the other
coalition;

4. if the other coalition also sent a proposal, merge with it; oth-
erwise, try to find another coalition to merge with (i.e. go to
step 3);

5. if no new coalitions have been formed in this round, stop; oth-
erwise, go to step 1.

With fuzzy coalition and Shapley values, the choice of a “most prof-
itable” option becomes ambiguous as opposed to the crisp case. To
achieve unambiguous coalition choices, the agents have to apply the
same fuzzy ranking method to compare the fuzzy increase in profit
for different coalitions. This prevents the agents’ to implement a
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truly individual strategy: the chosen ranking operator determines
whether rather optimistic or pessimistic coalition choices are made
(this is demonstrated in section 4.5). But allowing such individ-
ual strategies requires not only a more complex proposal protocol.
Also additional negotiations within coalitions in order to agree on a
shared strategy are required. Because the main focus of this work is
to provide an efficient coalition formation algorithm, we do not follow
this line.

Now, if a coalition C assesses the option to form the coalition
C ∪C∗ by means of the possible utility gain σ̃eb(C ∪C∗, C, ṽ)− ṽ(C), this
value is different from the possible utility gain of C∗ (assuming the
coalition values are indeed fuzzy):

σ̃eb(C ∪ C∗, C, ṽ)− ṽ(C) 6= σ̃eb(C ∪ C∗, C∗, ṽ)− ṽ(C∗).

It might thus happen that there exists no global most profitable
choice in this sense, and coalitions fail to agree to merge. We there-
fore base this decision on the expected utility gain of a bilateral coali-
tion instead, which we show to be equal for both subcoalitions:
Definition 4.3.1 Expected utility gain
For a fuzzy game (A, ṽ), the bilateral Shapley value based expected
utility gain of a subcoalition C in the coalition C ∪ C∗, C, C∗ ⊂ A is

g̃ṽ(C,C ∪ C∗) := σ̃eb(C ∪ C∗, C, ṽ)− e(ṽ(C))

4

Lemma 4.3.2. Let there be a fuzzy game (A, ṽ) and C1, C2 ⊂ A. Then
g̃ṽ(C1, C1 ∪ C2) = g̃ṽ(C2, C1 ∪ C2)

Proof. By definitions 4.3.1 and 4.2.2, and because of the properties
of ⊕ and 	 when applied to at least one crisp operand discussed e.g.
in Dubois and Prade (1994), we rewrite

g̃ṽ(C1, C1 ∪ C2) =
1

2
· e(ṽ(C1))⊕

1

2
· (ṽ(C1 ∪ C2)	 e(ṽ(C2)))	 e(ṽ(C1))

=
1

2
· ṽ(C1 ∪ C2)	

1

2
e(ṽ(C2))	

1

2
e(ṽ(C1))

=
1

2
· ṽ(C1 ∪ C2)	

1

2
e(ṽ(C1))	

1

2
e(ṽ(C2))

= g̃ṽ(C2, C1 ∪ C2)
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Finally, for cases with multiple coalitions with maximum expected
utility gain, and also to choose coalition representatives in a simple
way, we utilize an agent ordering function. This could, for example,
be based on the agents’ available computational resources.
Definition 4.3.3 Agent ordering function
Given an agent set A, o : A 7→ N, with ∀a, a∗ ∈ A, a 6= a∗ : o(a) 6= o(a∗) is
called an agent ordering function. 4
Algorithm 4.3.4 BSCA-F
In the following, let A, (C0, ũ0) with ∀C ∈ C0 : C = a, a ∈ A, ũ0(a) =
ṽ(a) and an agent ordering function o. Further, let a fuzzy ranking
operator ◦̃ ∈ {≥̃P , ≥̃N , >̃P , >̃N} and a ranking threshold t. With the
variables r := 1 and ∀C, a, C = {a} : RepC := a, each agent a performs:
Let C ∈ Cr such that a ∈ C;

1. Communication: If a 6= RepCthen go to step 3e; otherwise do for
all C∗ ∈ Cr, C∗ 6= C:

(a) send l̃wC(C ∪ C∗) to RepC∗

(b) receive l̃wC∗(C ∪ C∗) from RepC∗

(c) compute ṽ(C ∪ C∗) = l̃wC(C ∪ C∗)⊕ l̃wC∗(C ∪ C∗)

2. Proposal Generation

(a) set CandC :=
{
C∗
∣∣∣C∗ ∈ C \ C, (g̃(C,C ∪ C∗, ṽ)◦̃0̃) ≥ t

}
(b) if CandC 6= ∅, then set

C+ := arg min
C∗∈MaxCandC

{o(RepC∗)} with

MaxCandC =

{
C∗
∣∣∣∣g̃ṽ(C,C ∪ C∗) ∈ ◦̃

arg max
C∗∗∈CandC

{g̃ṽ(C,C ∪ C∗∗)}
}

else set C+ := nil

(c) if C+ 6= nil then send a proposal to form C ∪ C+ to RepC+

(d) receive all proposals

3. Coalition Forming

(a) set New := ∅ and Obs := ∅
(b) if C+ 6= nil and a proposal was received from RepC+ , form

the coalition C ∪ C+:
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i. if o(RepC) < o(RepC+) then set RepC∪C+ := RepC; else set
RepC∪C+ := RepC+

ii. inform all other RepC∗ , C∗ ∈ Cr, C∗ 6= C,C∗ 6= C+ and all
a∗ ∈ C, a 6= RepC about the new coalition and RepC∪C+

iii. New := {C ∪ C+}, Obs := {C,C+}, CandC := ∅

(c) receive all messages about each new coalition. For each
new coalition C1 ∪ C2 and RepC1∪C2, set CandC := CandC \
{C1, C2}, New := New ∪ {C1 ∪ C2}and Obs := Obs ∪ {C1, C2}.

(d) send the sets New and Obs to all other coalition members
a∗ ∈ C, a 6= RepC

(e) if a 6= RepC then receive the sets New and Obs from RepC.

(f) set r := r + 1, Cr := (Cr−1 \ Obs) ∪ New, and ur according
to the recursive fuzzy bilateral Shapley value based on the
coalition structures Cr . . . C0.

(g) if Cr = Cr−1then stop; else go to step 1

4

Remark 4.3.5. In steps 2d and 3c, not all other representatives will
have sent proposal or new coalition messages, respectively, so either
a timeout or some other synchronisation method must be used here.
This has been omitted here for clarity. However, the flow chart of
the BSCA-F shown in figure 4.1 includes synchronisation steps by
sending “no proposal” and “no new coalition” messages, respectively.

Remark 4.3.6. In the conference paper version (Blankenburg and
Klusch, 2005b), there was a loop between steps 2c and the place just
before step 3d to negotiate also with the rest of the candidates for the
round if the first choice merged with another coalition. However, the
newly formed coalitions might be better candidates than the rest of the
candidates for the round. Therefore, we removed this loop. This also
has the effect that the degree of the polynomial runtime complexity
is reduced by one (the runtime complexity is stated in theorem 4.4.3
below).
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Figure 4.1: Coalition formation algorithm BSCA-F. 72
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4.4 BSCA-F Properties

Proposition 4.4.1. In any round r ∈ N, the coalition C1 ∪ C2, C1, C2 ∈
Cr, which is (a) among the overall most profitable coalitions in the
sense that

g̃ṽ(C1, C1 ∪ C2) ∈
◦̃

max {g̃ṽ(C,C ∪ C∗∗) |C ∈ Cr, C∗∗ ∈ CandC }

, and (b) o(RepC1∪C2) is minimal as compared to o of other overall most
profitable coalitions, is formed, or no proposals are sent at all.

Proof. Because of lemma 4.3.2, we have that if C1 ∪ C2 is in the set
CandC1, it is also in the set CandC2. From the properties of ≥̃P , ≥̃N , >̃P

and >̃N discussed in Dubois and Prade (1983), it is clear that for
a set of fuzzy quantities X, if F1 ∈ X: F1 ∈ maxGX, then also F1 ∈
maxGY ⊆ X with F1 ∈ Y . Further, g̃ṽ(C1, C1 ∪ C2) = g̃ṽ(C2, C1 ∪ C2)
because of lemma 4.3.2. Thus, with (a) it follows that g̃ṽ(C1, C1∪C2) ∈
max◦̃ {g̃ṽ(Ci, Ci ∪ C∗∗) |C∗∗ ∈ CandCi

} for both i = 1 and i = 2. With the
unambiguousness of the agent ordering function o and (b), it is then
clear that in step 2.b C1 and C2 send proposals to each other and
thus form C1 ∪ C2 in step 3.c.

Lemma 4.4.2. The BSCA-F terminates after at most |A| rounds.

Proof. In non-terminating each round r ∈ N of the BSCA-F at least
one new coalition is formed, i.e. |C|r+1 ≤ |C|r − 1. Thus, after |A| − 1
rounds, we have |C||A|−1 ≤ 1, which means that the BSCA-F termi-
nates in round |A|.

Theorem 4.4.3. The worst-case runtime of the BSCA-F for each agent
is in O(|A|3) assuming constant time for operations on fuzzy quantities.

Proof. In step 2b, each C has to find the (crisp) maximum set of
the fuzzy gains for coalitions in CandC, with |CandC | ≤ |Cr|. From
definitions 4.1.12 and 4.1.13 it follows that this can be done in
O(|Cr|2). All other individual operations are of less complexity. Since
|Cr| ≤ |A| and lemma 4.4.2, the overall runtime of the BSCA-F is then
O(|A|3).

Remark 4.4.4. Note that the constant time assumption for opera-
tions on fuzzy quantities holds at least for the use of trapezoid fuzzy
intervals, some parametric representations (see e.g. Giachetti and
Young (1997)) and by using e.g. α-level-cut based approximations
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with a fixed set of cuts. Otherwise, the runtime complexity becomes
O(|A|3) · O(Compfuzzy), where Compfuzzy denotes the max. complexity
of a single operation on fuzzy quantities.

Theorem 4.4.5. The total number of messages sent is in O(|A|2).

Proof. In each round r ∈ N, each representative of a coalition C sends
|Cr| − 1 messages in step 1a. A single proposal message is sent in
step 2c; if agents are synchronized via also sending “no proposal”
messages as shown in figure 4.1, at most |Cr| such messages are
sent. At most one time |Cr|−2 messages are sent in step 3(b)ii; again,
at most |Cr| “no new coalition” messages must be sent if synchronized
this way. Finally, |C|−1 messages are sent in step 3d. So the number
of messages per representative per round is bound by |C| ≤ |A|. The
number of messages sent by the |A|−|C| non-representatives is zero.
So with lemma 4.4.2, the overall number of messages sent is lower
or equal |A|2.

When negotiations with the BSCA-F are finished, we have a final
recursive bilateral coalition structure C with a recursively fuzzy bi-
lateral Shapley value stable configuration. Remember that the fuzzy-
ness in the fuzzy payoffs comes only from the fuzzy coalition values
of the coalitions in C. All other fuzzy coalition values which are used
in the computation of the recursive bilateral Shapley values are de-
fuzzified by means of the possibilistic mean value. Thus, in order to
obtain crisp payoffs, one only has to also defuzzify the coalition val-
ues of coalitions in C. As we mentioned earlier, it seems plausible for
a number of applications that real coalition values become known
to the resp. coalition members after coalitions have been formed
and the according actions have been carried out. If that is not the
case, we can also use the possibilistic mean to obtain at least a good
expectation of what the real coalition value is. So in both cases,
we now have crisp coalition values for all coalitions in C, and thus
obtain crisp payoffs.

4.5 Example Application

Definition of the Game

In this section we show how the BSCA-F can be applied to negoti-
ate cooperation of online magazines. We consider a situation where
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Category M1 M2 M3 M4

a) politics column column 1 photography mag
b) feature section travel mag column 2 feature section

Table 4.1: Content provided by magazines

I1 Ã1
. I2 Ã2

.

M2 a) ( ̂2.4, 3.6, 4.2, 4.8) M1 a) ( ̂8.4, 12, 14.4, 16.8)

M2 b) ( ̂1.08, 1.2, 1.56, 1.8) M3 a) ( ̂6.6, 7.2, 7.8, 8.4)

M3 a) ( ̂9.6, 12, 14.4, 15.6) M4a) ( ̂6, 9, 9.333, 10)

M4 a) ( ̂3.6, 7.2, 12.8, 16.4)

I3 Ã3
. I4 Ã4

.

M2 b) ( ̂13.2, 14.4, 15, 15.6) M1 b) ( ̂3.6, 3.72, 4.08, 4.2)

M2 b) ( ̂7.2, 7.56, 10, 12.5)

Table 4.2: Additional income for categories of interest

four such magazines, M1 − M4, are interested in exchanging con-
tent to extend their customer bases. We assume that cooperation
is realized via coalition forming. Two magazines cooperate iff they
are in the same coalition. Also, magazines are reluctant to give out
more content to other magazines then they receive in return, even
though they receive appropriate payoffs. Thus, the magazines agree
to contribute exactly two categories of their content to their coalition,
regardless whether the contributed content is actually used or not.
Contributions will be submitted electronically to each coalition part-
ner on a daily basis, while coalition contracts hold for one year, after
which negotiations might be re-initiated. To prevent antitrust mat-
ters, coalitions with more than three members are ruled out. Each
magazine Mi is represented by an agent ai which carries out negoti-
ation on behalf of Mi. The magazines provide content in categories
which are summarized in table 4.1. Each magazine Mi would pub-
lish only such content provided by coalition partners which is in line
with the general style of Mi. The set of categories Mi is interested in
is called Ii. For each x ∈ Ii, Mi fuzzily estimates the number Ãix of
additional accesses it can achieve by publishing x for one year. For
simplicity, we assume these estimations are independent of each
other. The sets Ii and estimations Ãix (in thousands) are given in
table 4.2.
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VM.a) VM.b)

M1 ( ̂1200, 1800, 2400, 4200) ( ̂600, 1200, 3000, 6000)

M2 ( ̂120, 360, 600, 720) ( ̂9600, 12000, 15600, 20400)

M3 ( ̂360, 840, 1200, 1440) ( ̂240, 360, 420, 540)

M4 ( ̂18000, 19200, 20400, 21600) ( ̂1800, 2400, 3000, 3600)

Table 4.3: Amount of data per category in MB

Any single access to content of a magazine Mi, 1 ≤ i ≤ 4, is subject
to a given price Pi determined by Mi. The Pi are given as follows: P1 :=
EUR 2.0, P2 := EUR 1.5, P3 := EUR 1.8 and P4 := EUR 2.0. Thus,
the additional income produced by a magazine Mi by coalescing with
a magazine Mk is

∑̃
Mkx)∈Ii Ã

i
Mkx)

� Pi and the total additional income
ãii(C) for Mi in coalition C is given with

ãii(C) =
∑̃

Mk∈C,k 6=i

∑̃
Mkx)∈Ii

ÃiMkx)
� Pi

The inner sum therein corresponds to the goal valuation term in
definition 4.2.4. M1 and M2 arguably have the best cooperation op-
portunities in this game.

On the cost side, we consider only transfer costs and assume they
are volume-based with a given transfer price Ti per MB depending on
the internet connection of magazine Mi. The Ti are given as follows:
T1 := 0.02EUR/MB, T2 := 0.01EUR/MB, T3 := 0.025EUR/MB and
T4 := 0.012EUR/MB. Based on experiences in the past, each Mi

fuzzily estimates the amount of data Vx it would transfer for each
contributed categorie x during the one year as shown in table 4.3.
Every magazine has to pay for incoming as well as outgoing traffic.
Thus, every magazine Mi has to pay (VMia)⊕VMib)⊕VMka)⊕VMkb))�Ti for
the data transmitted to/from each coalition partner Mk. Therefore,
the total cost c̃i(C) for Mi in coalition C is given with

c̃i(C) =
∑̃

Mk∈C,k 6=i

(VMia) ⊕ VMib) ⊕ VMka) ⊕ VMkb))� Ti

Having both the total additional income and costs for every magazine
Mi in any coalition C, we can now obtain the local worths: l̃wai(C)
= ãii(C)	 c̃i(C) Table 4.4 shows the resulting coalition values.
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C ṽ(C) C ṽ(C)

a1, a2 ( ̂38060, 48552, 60739, 70454) a1, a3 ( ̂18835, 23789, 28674, 31128)

a1, a4 ( ̂13338, 20976, 33022, 40552) a2, a3 ( ̂32967, 36185, 38293, 40370)

a2, a4 ( ̂19010, 22932, 32981, 39114) a3, a4 ( ̂−815,−751,−684,−612)
a1, a2, a3 ( ̂89564, 108332, 127576, 141865) a1, a2, a4 ( ̂69646, 91830, 126204, 149649)

a1, a3, a4 ( ̂30690, 43458, 60529, 70642) a2, a3, a4 ( ̂50331, 57648, 69967, 78328)

others (0̂)

Table 4.4: Coalition values (rounded)

Negotiation with the BSCA-F

As ranking operator we chose the necessity of dominace ≥̃N which,
as we will see, leads to rather conservative choices which configura-
tions are preferred by a coalition. As agent ordering function we use
o(ai) := i.

In the first round in step 2a, all coalitions put each other into
their resp. set of candidates, with the exception of {3, 4} which is
clearly a non-profitable coalition. As {1, 2} is the most profitable
coalition, a1 and a2 bilaterally propose this coalition. Their payoffs
are both half of the coalition value, as all coalition values of single-
agent coalitions are equally 0:

ũ(a1) = ũ(a2) =
1

2
0̃⊕ 1

2
(( ̂38060, 48552, 60739, 70454)	 0̃)

= ( ̂19030, 24276, 30369.5, 35227)

Because a3 and a4 are no candidates for each other, nothing more
happens in the first round.

In the second round, for {1, 2} both a3 and a4 are candidates. A
proposal is sent to a3 because the gain for {1, 2} in this coalition is
greater than the one in a coalition with a4 according to ≥̃N . This
is because ≥̃N considers only the left sides of fuzzy interval (in the
follwing, all real values are rounded): with
e(ṽ({a1, a2}) = 38060+48552+60739+70454

4
= 54451, we have

g̃ṽ({1, 2}, ({1, 2}) ∪ {3}) =
1

2
(ṽ({a1, a2, a3})	 e(ṽ({a1, a2})	 e(ṽ({a3}))

=
1

2
(( ̂89564, 108332, 127576, 141865)	 54451	 0)

= ( ̂17556, 26940, 36562, 43706)

77



CHAPTER 4. FUZZY-VALUED COALITION FORMATION

Because of lemma 4.3.2, we further have = g̃ṽ(a3, ({1, 2}) ∪ {3}). Sim-
ilarily,

g̃ṽ({1, 2}, ({1, 2}) ∪ {4}) = g̃ṽ(a4, (a1 ∪ a2) ∪ {4})
= ( ̂7597, 18689, 35876, 47599)

Please note that with >P , the choice would have been a4 because
the expected utility gain is slightly better on the right side. In this
sense, the choice of >P can indeed be viewed as a more optimistic
approach. As {1, 2} is the only candidate for both a3 and a4, coalition
{1, 2, 3} is formed and the round is completed. The payoff of the new
coalition is distributed as follows:

ũ(a1) = ũ(a2) = σ̃eb({1, 2}, a1, σ̃eb(C∗, {1, 2}, ṽ(C∗)))

=
1

2
(
1

2
e(ṽ({1, 2}))⊕ 1

2
(( ̂89564, 108332, 127576, 141865)	 0))

=
1

2
(
1

2
54451⊕ 1

2
(( ̂89564, 108332, 127576, 141865)	 0))

= ( ̂36004, 40696, 45507, 49079)

and

ũ(a3) =
1

2
(( ̂89564, 108332, 127576, 141865)	 54451)

= ( ̂17556, 26940, 36562, 43706)

In the third round, the BSCA-F terminates, since the value of the
grand coalition is zero and so is not a candidate for anyone.

Defuzzification

For this particular example, in which cooperation contracts for one
year are negotiated, the magazines now have two options to obtain
crisp coalition values:

1. wait for one year and then analyze the additional income and
the costs that were realized in the period;

2. defuzzify the coalition values just when negotiations are fin-
ished, using the possibilistic mean value. We first look at the
first case.
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In the following, let C∗ := {1, 2, 3} the single non one-agent coali-
tion that was formed. In the first case, the fuzzy value ṽ(C∗) =

( ̂89564, 108332, 127576, 141865) tells us that the real value v(C∗) is cer-
tainly in (89564, 141865) and “most possibly” in [108332, 127576]. As in-
dicated in section 4.1, the fuzziness of the fuzzy payoffs obtained by
applying the recursive bilateral Shapley value comes only from the
fuzziness of the values of the coalitions in the final configuration.
This means that, shown for the example of a1 (resp. M1), the crisp
payoffs that are obtained for each of these bounding values of v(C∗)
are:

1. For v(C∗) = inf{support(ṽ(C∗))} = 89564, we have

u(a1) = σb({1, 2}, a1, σb(C∗, {1, 2}, 89564))

= σb({1, 2}, a1,
54451 + 89564− 0

2
)

= σb({1, 2}, a1, 72008)

= 36004

= inf{support(ũ(a1))}.

2. For v(C∗) = 108332, the minimum modal value of ṽ(C∗), we have

u(a1) = σb({1, 2}, a1, σb(C∗, {1, 2}, 108332))

= σb({1, 2}, a1, 81392)

= 40696, the minimum modal value of ũ(a1)

3. For v(C∗) taking the maximum modal value or the supremum
of the support of ṽ(C∗), we similarly get the maximum modal
value or the supremum, resp., of the support of ũ(a1) for u(a1).

4. For the above cases, the crisp payoffs of the other agents also
take the resp. bounding values of their respective fuzzy payoffs.

This supports our impression that the recursively bilateral Shapley
value stable payoffs using the partially defuzzified values for sub-
coalitions are “just as fuzzy as needed”.
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However, one year might be considered as too long a time to dis-
tribute payoffs in fast-paced internet businesses such as the publi-
cation of online magazines. Thus, we also consider the possibilistic
mean value of

ṽ(C∗) : e(ṽ(C∗)) =
89564 + 108332 + 127576 + 141865

4
= 116834

Applying the recursive bilateral Shapley value to e(ṽ(C∗)), we obtain
u(a1) = u(a2) = 42821 which turns out to be equal to e(ũ(a1)) (= e(ũ(a2))
due to the additiveness of e. Similarily, u(a3) = e(ũ(a3)) = 31192. Thus,
when negotiations are finished, one only has to compute the possi-
bilistic mean values of the fuzzy payoffs to obtain the same result
as if computing the recursively bilateral Shapley value stable pay-
offs for the possibilistic mean of the coalition values. The payoffs
seem to be intuitively sound: a1 and a2, being the agents with the
best cooperation opportunities, are assigned more payoff than a3.
Further, let us consider computing the fuzzy payoffs by recursively
applying the non-defuzzyfying fuzzy bilateral Shapley value as de-
fined in 4.2.1 instead. This means that the fuzzy payoffs now also
contain the fuzzyness of the values of the subcoalitions. Then we
obtain the fuzzy payoffs

ũ∗(a1) = σ̃b({1, 2}, a1, σ̃b(C∗, {1, 2}, ṽ(C∗)))

= ( ̂31906, 39221, 47079, 53080) (= ũ∗(a2))

and

ũ∗(a3) = σ̃b(C
∗, a3, ṽ(C∗)))

= ( ̂9555, 23797, 39512, 51903)

Again because of the additivity of e, it turns out that e(ũ∗(a1)) =
42821 = e(ũ(a1)), and accordingly e(ũ∗(a2)) = e(ũ(a2)) and e(ũ∗(a3)) =
e(ũ(a3)). Thus, it can be said that by using e(ũ) together with the
partially defuzzified recursive bilateral Shapley values, not only is
the possible error wrt. v(C∗) possibilistically minimized in the sense
of remark 4.1.15, but also the possible errors wrt. the values of the
subcoalitions.

4.6 Evaluation

In this section, we present evaluation results that we obtained from
simulating the BSCA-F with different fuzzy ranking operators and
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thresholds. The questions that we are interested in finding out by
the simultation are:

• How do the average fuzzy payoffs generated by the BSCA-F
compare to the fuzzy Shapley value payoffs, especially concern-
ing guaranteed (i.e. minimum support) and possibilistic mean
payoffs?

• How do the different possibilistic ranking operators compare to
each other in these regards?

• To what degree are they BSCA-F payoffs correlated with the
fuzzy Shapley value payoffs?

• What are the worst case behaviours of the different ranking
operators, and how do they compare to the fuzzy Shapley value?

• Whith which degrees of possibility and necessity lie the fuzzy
payoffs in the core?

We aim to get answers to these questions in a realistic service agent
setting. To accomplish this, the games are randomly generated us-
ing a simple service model described in the following subsection.
However, since we compute optimal service allocations and evalu-
ate fuzzy Shapley value and core memberships, we have to restrict
the number agent of agents to be rather small (5 agents) to obtain
manageable runtime2.

Simulation Setup

The simulation was run for 200 randomly generated service agent
games with 5 agents. The games use a simple service agent model:

• Each agent may offer and request any number of services.

• There exists a number of globally known service composition
plans. Each composition plan consists of a sequence of offered
services.

2The simulation has been implemented in Clojure, a LISP dialect for the JVM.
Each agent ran in its own thread, using a simple channel-based message system.
For the simulated 5-agent games, each run of the BSAC-F took less than one sec-
ond on a 4-core 2.2 GHz machine. However, the service allocation, fuzzy Shapley
value and core memberships were computed brute-force, taking several seconds
each
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• Each plan satisfies exactly one request.

• Each offered service might only appear once in the same plan.

• Each offered service might be employed only once in coalitional
plan execution.

Each game was then randomly generated as follows:

1. 10 service offers were randomly generated with random fuzzy
cost with expected mean modal value between 100 and 1000.

2. 10 service requests were randomly generated with random fuzzy
valuations with expected mean modal value between 100 and
1000.

3. 10 service composition plans with randomly drawn length of 2
or 3 and composed of randomly drawn offered services where
generated.

4. All requests and offers were randomly but completely assigned
to the agents.

5. For each coalition, an optimum service allocation was com-
puted. For this purpose, the fuzzy net values of sets of plans
allocatable in a coalition where compared using the same pos-
sibilistic ranking operator and threshold as the used by the
respective BSCA-F invocation.

6. Coalition values where then determined via the agents’ local
worths resulting from their added fuzzy valuations and costs of
satisfied and executed services, respectively, according to the
optimum plan allocation.

Therein, the random assignments to agents where implemented us-
ing a uniform distribution over the assignable agents. The fuzzy
costs and valuations where generated as follows: first, an expected
mean value was drawn from a uniform distribution between 100 and
1000. Given this, four distinct random numbers from drawn from a
normal distribution with mean 1 and standard deviation 0.25. The
four numbers where then sorted and multiplied by the expected
mean value, and the resulting numbers where then used to con-
struct a trapezoid fuzzy interval, acting as minimum support, min-
imum modal value, maximum modal value and maximum support,
respectively.
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>N 1,00 >=N 1,00 >N 0,50 >=N 0,50 >P 0,50 >P 1,00 >=P 0,50 >=P 1,00 sv 
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possibilistic 
mean
maximum 
support
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Figure 4.2: Mean payoff indicators

Note that the games generated in this are mostly superadditive.
However, as it can happen with fuzzy games, a game might have high
possibilities of both super- and subadditivity at the same time.

Simulation Results

The BSCA-F was run for the 200 generated games with each com-
bination of the four possibilistic ranking operators (see 4.1.11) and
thresholds 0.5 and 1.0 (remember that given a ranking operator ◦̃,
the BSCA-F considers a fuzzy payoff ũ1 beneficial to another one ũ2
if ũ1◦̃ũ2 ≥ threshold).

First, figure 4.2 shows the means of the payoffs minimum sup-
port, possibilistic mean and maximum support, respectively. In the
chart’s x-axis, “>N” denotes fgN , “>=N” denotes fgeN etc., while “sv”
denotes the Shapley value. The minimum and maximum supports
lie at −175 and 400, respectively, far out of the chart, so we have cut
them off for better readability.

Not surprisingly in our superadditive setting, the possibility-based
ranking operators, i.e. fgeP and fgP obtain the (almost) same mean
possibilistic mean payoffs as the Shapley value. That is because if it
is of any possible benefit to form the grand coalition, then the BSCA-
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Figure 4.3: Correlation of Shapley values to BSCA-F payoffs

F will do so with these operators. The large mean support size of the
Shapley value can be explained by the fact that we used the origi-
nal Shapley value definition as provided in definition 4.1.18, which
does no defuzzification of the values of subcoalitions. Therefore, the
fuzziness of all the coalition values is caried over to the payoffs. In
contrast, the bilateral Shapley value with defuzzified subcoalition
values used by the BSCA-F retains only the fuzziness of the root
coalitions.

Also not surprisingly, the fgeP and fgP operators generally lead to
the formation of coalitions whose values have a greater support size.
Accordingly, they obtain a possibly higher payoff than fgeN and fgN .
The latter ones do miss out on some cooperation opportunities, as
can be concluded from their lower posibilistic mean payoffs. How-
ever, they still fare quite well in this regard, especially with the 0.5
threshold. Also, their consistently higher minimum payoffs support
the intuition that they might be preferred by risk-averse agents.

In figure 4.3, the linear correlation of degrees of the BSCA-F pay-
offs with respect to the Shapley value according to Pearson product-
moment correlation coefficient are displayed, a standard correlation
measure in statistics. A degree of 1 thereby implies full positive cor-
relation. With a degree of 0.937, the possibility-based operators lead
to a high correlation of BSCA-F payoffs with the Shapley value. The

84



CHAPTER 4. FUZZY-VALUED COALITION FORMATION
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Figure 4.4: worst case losses

necessity-based operators, on the other hand, show less correlation,
which is the obvious consequence of forming less coalitions.

Figure 4.4 shows the minimum supports of payoffs. It shows that
all operators except ≥̃N and >̃N with threshold 1 lead to a possible
loss for at least some agents. With ≥̃N and >̃N and threshold 1, how-
ever, coalitions leading to potential loss, i.e. with negative minimum
support, are never formed. Thus, the N-operators might be suited
for risk averse agents.

Next, we consider the possibility of core membership as defined
by Mareš (2001) in figure 4.5. As it turns out, the possibility that
the fuzzy payoffs obtained via the BSCA-F lie in the core is quite high
for all operators, as is the number of payoffs which have possibility
degree of 1 to lie in the core. However, the necessity of payoffs to be
in the core is (naturally) much smaller, as can be seen in figure 4.6.

However, given that generally non-convex games were used to
run the simulation, and that the BSCA-F does not consider core
membership at all, we consider these results quite favourable. In
particular, it shows that >̃N achieves quite high values for such a
setting.

Therefore, we can conclude that generally the P -operators max-
imize the possibilistic expected payoff, the N-operators minimize
worst case losses, and specifically >̃N manages to achieve a higher
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Figure 4.5: Possibility of core membership

degree of necessity of core membership.
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Figure 4.6: Necessity of core membership

4.7 Summary

In the setting of possibilistic fuzzy-valued cooperative game theory,
we devised a new algorithm BSCA-F to form fuzzy recursiveley bilat-
eral Shapley value stable coalitions. It was shown to be of low poly-
nomial computational and communication complexity. The proce-
dures of modeling a realistic economical situation as a fuzzy cooper-
ative game and forming coalitions using the BSCA-F were illustrated
with the help of an explanatory example. It was also demonstrated
that using the possibilistic mean value to defuzzify the fuzzy payoffs
is reasonable and consistent with the framework. Further, it was
shown how the choice of an apropriate fuzzy ranking method can
be utilized to implement optimistic or pessimistic strategies for the
agents.

This was then confirmed in the evaluation section, were it was
demonstrated that the N-operators might be a suitable choice for
risk averse agents.

However, ranking operator needs to be agreed upon by all par-
ticipating agents for the BSCA-F. Further work is thus needed to
relax this requirement, such that each agent can deal with the un-
certainties according to its individual preference in each step. The
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particular challenge of such an approach is to not seriously increase
the communication complexity due to the required additional nego-
tiations.
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Chapter 5

On Risk-bounded Coalition
Formation

In chapter 4, we introduced a coalition formation algorithm for fuzzy-
valued games. There it was also demonstrated that choosing ranking
operators based on necessity might lower the risk for agents to ex-
perience losses. However, the risk itself was not measured, and so
has to be viewed as more of an ad-hoc method when it comes to risk
control.

In this chapter, we introduce an approach that allows the agents
to form stable coalitions such that strict individual risk bounds
are adhered (this approach has been first outlined in Blankenburg
et al., 2006). We therefore measure risk of coalitional failure via a
standard financial measure of risk, assuming that the probability of
failure of a coalition can be determined. We consider a setting of
resource-bounded service provider agents forming coalitions to sat-
isfy requests with deadlines. To do so, they are assumed to be able
to compute service composition plans. The runtime of service exe-
cutions therein is determined by the amount of resources spent by
each agent.

To measure the risk of a coalition, we then employ the risk mea-
sure tail conditional expectation (TCE), which is a coherent risk mea-
sure. Coherent risk measures are subadditive, that is, given the
independent risks of two options X and Y , then the sum of their
risks Risk(X) + Risk(Y ) is greater or equal to Risk(X + Y ). Trans-
lated to coalitions, this means that the risk of two coalitions which
are formed at the same time cannot be greater then the sum of their
individual risks. We therefore allow agents to be part in multiple
coalitions, each with some degree, where an agent’s degree in the
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coalition determines how much of its resources it “invests” into the
coalition.

Therefore, these coalitions can be viewed as fuzzy coalitions as
introduced by Aubin (1979) and Butnariu (1980). Several solution
concepts have been adapted for cooperative games with fuzzy coali-
tions, for instance by Li and Zhang (2009), Nishizaki and Sakawa
(2001). But as it turns out, we cannot directly use these existing
solution concepts, because they assume that the coalition value is
a proportional function of the agents’ membership degrees. As this
assumption does not hold in our setting, we introduce appropriate
extensions of the excess and surplus. We then show that it is pos-
sible to compute the surplus in polynomial time under some addi-
tional assumptions, similar to the approach taken in Shehory and
Kraus (1999). As in the classic kernel, the transfer scheme intro-
duced in Stearns (1968) can then be used to compute Kernel-stable
solutions for the game. However, to obtain polynomial runtime, we
show that not only the coalition size has to be bounded, but also the
number of plans containing the same set of agents, and the number
of coalitions in which an agent might simultaneously be a member
of.

The remainder of this chapter is organized as follows: in sec-
tion 5.1 we introduce some basic notions of continuous random
variables and measures of risk which are employed in later sec-
tions, as well as our service agent and coalition model and finally
the employed notion of fuzzy coalition games among service provider
agents. We then show how to compute the risk of fuzzy coalitions
and fuzzy coalition structures in section 5.2. Section 5.3 is con-
cerned with the stability of risk-bounded fuzzy coalitions. We pro-
pose our coalition formation protocol RFCF in section 5.4. We con-
clude in section 5.5.

5.1 Preliminaries

Continuous random variables and measures of risk

Our service agent model which we use in this chapter is based on
modelling service execution times as continuous random variables.
In this section, we therefore first present their basic definitions and
properties (see e.g. Grimmett and Stirzaker, 2001), although we as-
sume that the reader is familiar with the basics of probability theory.
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Definition 5.1.1 Continuous random variable and probability
density function
A random variable X over values in R is called continuous if the
probability P (X ≤ x) that X ≤ x, x ∈ R, is given by

P (X ≤ x) =

∫ x

−∞
pdfX(y)dy

where pdfX is the probability density function of X, an integrable
function pdfX : R 7→ [0,∞). 4
We will also need to add up continuous random variables, for which
purpose we require the convolution of functions (see e.g. Hirschman
and Widder, 1955):
Definition 5.1.2 Convolution of functions
The convolution of two functions f and g on R is defined, with x ∈ R,
as

(f ∗ g)(x) :=

∫ ∞
0

f(y)g(x− y)dy

4

Theorem 5.1.3. Some well-known properties of convolutions are that

1. convolutions are commutative and associative (again, see e.g.
Hirschman and Widder, 1955), and that

2. the sum of the PDFs of two independent continuous random vari-
ables A and B is equal to their convolution (see e.g. Grimmett
and Stirzaker, 2001, p. 113):

pdfA+B(x) = (pdfA ∗ pdfB)(x)

These notions of continuous random variables are already sufficient
for our purposes. Since the purpose of this chapter is to investi-
gate risk-bounded coalition formation, we now introduce measures
of risk. Intuitively, assume that there is a variety of combination of
coalitions that an agent can possibly join, each of which has some
random coalition value. A rational agent will then prefer the coali-
tions with a high expected value. However, considering only the
expected value is said to be risk-neutral behaviour, because it is in-
different to the cost that is inflicted on the agent in case the coali-
tion fails. But if an agent cannot afford to lose more than some
amount, even a low probability of vailure of the coalition might be
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still too risky. To control and avoid such situations, a number of
financial risk measures have been introduced in the literature (for
an overview, see Cheng et al. (2004) and references therein).

For the definitions in the remainder of this section, we follow
Artzner et al. (1999), omitting certain details which are not impor-
tant in our setting. Also, where Artzner et al. speak of positions
(meaning investment positions), we speak of strategies, meaning an
agent’s decision with whom to coalesce and service requests to work
on. Lastly, note that the definitions of the Value-at-Risk and other
measures in Artzner et al. (1999) include the reward of a reference
investment (e.g. interest rates) as a scaling factor, which we omit
here for simplicity.
Definition 5.1.4 Risk and Measure of Risk
Let Ω denote the set of states of nature, and assume it is finite.
Considering Ω as the set of outcomes of an experiment, we compute
the final net worth of a strategy for each element of Ω. Risk is the
investor’s future net worth, which is described by a random variable.
Let G be the set of all risks, that is the set of all real valued functions
on Ω. A measure of risk r is a mapping r: G 7→ R. 4
According to Cheng et al. (2004), a widely known and used one is the
Value-at-Risk (V aR), which also has become part of financial regu-
lations. V aR calculates how much one may lose during a specified
period given a probability of failure, and the amount of capital that
should be used to control the risk.
Definition 5.1.5 Value-at-Risk (V aR)
Given α ∈ [0, 1], the Value-at-Risk V aRα at level α of the final net
worth X ∈ G with distribution P is

V aRα(X) = − inf{x ∈ R : P (X ≤ x) > α}

4
Artzner et al. (1999) also introduce the notion of coherent risk mea-
sures.
Definition 5.1.6 Coherent risk measure
With X, Y ∈ G, z ∈ R, a risk measure r is called coherent if it satisfies

1. subadditivity: for all X, Y ∈ G: r(X + Y ) ≤ r(X) + r(Y )

2. translation invariance: r(X + z) = r(X)− z

3. positive homogeneity: ∀z ≥ 0, r(zX) = zr(X)
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4. monotonicity: if X ≤ Y then r(Y ) ≤ r(X)

4
As has also been shown in Artzner et al. (1999), V aR is not coher-
ent, since it does not fulfill subadditivity. As it turns out (see sec-
tion 5.2), this lack of superadditivity constitutes a major drawback
in the design of a risk-bound coalition formation algorithm. Fortu-
nately, a number of coherent measures which are derived from V aR
have been proposed. Here, we employ the tail conditional expecta-
tion (TCE) which is coherent if the probability of failure is given by
a continuous random variable:

Definition 5.1.7 Tail Conditional Expectation
Given a probability measure P on Ω and a level α, the tail conditional
expectation is defined by:

TCEα(X) = −EP{X|X ≤ −V aRα(X)}

4

Service Agent Model

In this section we specify more precisely the environment of service
agents that we consider in this chapter.

We consider two types of agents: service request agents and ser-
vice provider agents.

Definition 5.1.8 Service Request Agent
A service request agent sra requests exactly one (possibly complex)
service s and some deadline d. It will pay a certain monetary reward
rw ∈ R for a successful execution of s before d. Otherwise, no reward
is paid.

SRA denotes the set of all service request agents in the system.
4

On the other hand, service provider agents offer the execution of
exactly one type of service. They are assumed to be computation-
ally bounded, i.e. to have only limited resources per time for the
execution of their service. For simplicity, we assume that the execu-
tion time for a service instance is a linear function of the resources
devoted to it. This is reasonable in the case where the bounded
resources are computing power and/or memory, for example.
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Definition 5.1.9 Service Provider Agent
A service provider agent spa offers the execution of exactly one service
sspa and has the following properties:

1. Service Composition

(a) spa is able to send service advertisements for sspa.

(b) given a requested service s and a set of service advertise-
ments, spa has the ability to compute service composition
plans; each such plan is a list of advertised services whose
execution implements the requested service s.

(c) each element of a plan P is called a service instance of the
respective service.

(d) all service instances in a plan P are to be executed sequen-
tially.

2. Service Execution

(a) spa can spend only some max. amount of resources per
time in service executions.

(b) the minimum execution time of an instance i of sspa is de-
noted tmini (i.e. this is the execution time if spa devotes all
its resources to it).

(c) spa can split its resources and execute multiple instances
of sspa at the same time. The fraction of resources per time
(wrt. the maximum) devoted to the execution of service
instance i is denoted ri.

(d) the execution time ti of service instance i is

ti =
1

ri
· tmini

All execution times of services are assumed to be indepen-
dent of each other.

(e) spa might not be able to determine tmini exactly in advance.
Instead, tmini (and therefore also ti) is assumed to be a con-
tinuous random variable for which spa is able to determine
its probability density function pdftmin

i
.

(f) there is a monetary cost for resource consumption of spa. We
assume this is constant, so that because of point 2d. the
cost costi for executing service instance i is also constant
and does not depend on ri.
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SPA denotes the set of all service provider agents in the system. 4

Probability of plan execution failure

According to definitions 5.1.8 and 5.1.9, plan executions lead to
a positive reward only if they are completed before their respec-
tive deadlines, and service provider agents might devote different
amount of resources to different plan executions. So the question
is, given a resource allocation of spas to a plan, what is the proba-
bility that it can be executed completely before the deadline, that is,
the probability of success? Or conversely, what is the probability of
failure. Formally, we define these concepts as follows:
Definition 5.1.10 Probability of success and failure
Given a plan P for a service request with deadline d, a set R of frac-
tions ri of resources per time for each service instance i in P and
assuming that agents start executing P at time ts and that the plan
execution time is given by a random variable tP , subject to R, we
define the probability of success PoS(P , ts) that execution is finished
before the deadline:

PoS(P , R, ts) := P (tP ≤ d− ts)

Accordingly, the probability of failure PoF (P , ts) that the actual plan
execution finishes later than the deadline is defined as:

PoF (P , R, ts) := 1− PoS(P , R, ts)

4
To show how to compute these probabilities, we first establish that
tP is a continuous random variable and that we can deduce its PDF
from the PDFs of the single service instance execution times:

Proposition 5.1.11. For a plan P with m ∈ N service instances, the
PDF of its execution time is an m−1-fold convolution over the individual
service instance execution time PDFs. Formally, with x ∈ R+ (it is
sufficient to consider only positive values since execution times are
always positive),

pdftP (x) = (· · · (pdfti1 ∗ pdfti2 ) · · · ∗ pdftim )(x)

Proof. Because of the linear relationship assumed in definition 5.1.9,
point 2d, the PDF of the execution time of a service instance i with
fraction of resources per time ri is:

pdfti(x) = pdftmin
i

(ri · x)
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Further, because of the assumptions in definition 5.1.9 that the exe-
cution times of service instances are independent of each other and
that the services in any plan are executed sequentially, the total ex-
ecution time of P is the sum of the execution times of the individual
service instances:

tP =
∑
i∈P

ti

Since the PDF of the sum of independent random variables is equal
to the convolution of the PDFs of the summands (see theorem 5.1.3),
the proposition is proved.

Having this, it is now easy to obtain the probabilities of success and
failure of a plan:

Corollary 5.1.12. From definitions 5.1.1 and 5.1.10, as well as propo-
sition 5.1.11, it follows directly that

PoS(P , ts) =

∫ d−ts

−∞
pdftP (x)dx

Remark 5.1.13. While proposition 5.1.11 specifies how to theoreti-
cally compute the PDF of the execution time for a plan, it is quite not so
obvious how to do it in practice. We note that for specific cases, there
exist simple analytical solutions of the convolution. For example, the
convolution of two normal PDFs is again normal, as is the convolution
of a normal PDF with an exponential one. But this is not the case for
arbitrary distribution types. Fortunately, there are alternative ways
to obtain the convolution, such as the pointwise multiplication of the
Fourier Transform of the PDFs (Bracewell, 1999). We do not go into
its details here, but note that the Fast Fourier Transform algorithm
efficiently approximates the Fourier Transform with complexity k log k,
where k is the number of sample points taken from the functions.

Fuzzy Coalition Games of SPA Agents

In our setting, the capability of service provider agents to split their
resources among different service instance executions makes it pos-
sible for them to take part in several service composition plan exe-
cutions. This suggests to allow the agents to be a (partial) member
of several coalitions. For this purpose, e.g. Aubin (1979), Butnariu
(1980), Nishizaki and Sakawa (2001) extended concepts from coop-
erative game theory to allow for fuzzy coalitions, where each agent is
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a member only to a certain membership degree. In our model, each
fuzzy coalition will execute exactly one service composition plan. The
membership degree represents the relative amount of resources they
spend for their respective service instance executions in the plan. If
the same group of agents decides to execute an additional plan, it
simply forms an additional fuzzy coalition. We also disallow any
members that are not actually involved in the execution of P .
Definition 5.1.14 Fuzzy Coalition of Service Provider Agents
Let there be a request for a service ws from a service request agent
sra and a plan P whose execution satisfies ws.

1. SPAP ⊆ SPA is the set of service provider agents involved in P.

2. The fuzzy coalition of service provider agents C̃ for sra and P is
written as

C̃ = (spa1/mem1, . . . , spak/memk, sra,P)

with k = |SPAP |, spaj ∈ SPAP , 1 ≤ j ≤ k; memj ∈ [0, 1] is a
guaranteed minimum for the fraction of resources per time ri
devoted by spaj to any i of its service instances in P.

3. mem(spa, C̃) is agent spa’s membership in C̃.

4. We write spa ∈ C̃ if spa is a member of C̃ with some positive
membership, i.e. mem(spa, C̃) > 0.

5. C̃⊆̃C̃ ′ if ∀spa ∈ C̃ : mem(spa, C̃) ≤ mem(spa, C̃ ′), where C̃ and C̃ ′

are fuzzy coalitions for the same service request agent and plan.

6. C̃(sra, plan) denotes the set of all fuzzy coalitions C̃ = (., sra, plan).

7. |C̃| is the number of agents in C̃.

4
In the remainder of this chapter, we also denote “fuzzy coalition” or
just “coalition” instead of “fuzzy coalition of service provider agents”
where the context is clear.

Corollary 5.1.15. Since the membership degree memi of agent spai in
a fuzzy coalition C̃ is a lower bound on the fractions ri of resources
per time for each service instance i in the coalitional plan P, PoS(P , ts)
for a given start time ts is also a lower bound for the probability that
the coalition fails to complete the service execution by the deadline.
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Although spas might actually devote more resources than guaran-
teed to a fuzzy coalition, we define the probability of success of a
fuzzy coalition by assuming the worst-case scenario:
Definition 5.1.16
The probability of success of a fuzzy coalition C̃ is defined as the
probability of success of the coalitional plan P assuming that every
spa ∈ C̃ only devotes the resources which it guarantees to C̃. That is,
assuming plan execution start time ts and that for all spak ∈ C̃ and
each service instance i of spak: ri = memk, we define

PoS(C̃) := PoS(P , ts)

Accordingly, the probability of failure of a fuzzy coalition is defined
as

PoF (C̃) := 1− PoS(C̃) = PoF (P , ts)
4

Corollary 5.1.17. Given that PoS(C̃) is a lower bound for the proba-
bility of success of a coalition, a lower bound on the expected reward
of C̃ is equal to PoS(C̃) · rw.

Note that the monetary reward rw that is paid for a successful plan
execution corresponds to the valuation w(g) of goal g to satisfy the
service request in the definition of the local worth 2.2.27. However,
in this chapter, only the service provider agents form coalitions, and
it is not important which of them receives the payment from the
respective sra to distribute among the coalition members. In fact,
we do not consider local worths here at all. Therefore, we define the
coalition value directly in terms of rw.

We proceed analogously with the costs arising in a fuzzy coalition.
Also, although agents should reasonably stop the execution once the
deadline is reached, we consider only the worst case, i.e. the case
where maximum costs have been produced even if the coalition fails:
Definition 5.1.18 Value of a Fuzzy Service Provider Agent Coali-
tion
Let there be a fuzzy coalition C̃ with plan P and reward rw. The
value v(C̃) of C̃, also called coalition value, is defined as

v(C̃) := PoS(C̃) · rw −
∑
i∈P

costi

4
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Although fuzzy coalition structures allow the agents to be a member
in several coalitions at the same time, we still have to require that
each agent does not allocate more resources to coalitions than it can
actually provide. Formally, we therefore define
Definition 5.1.19 Feasible Fuzzy Coalition Structure
For a fuzzy coalition C̃, let memC̃

spa denote the membership degree of
spa in C̃, with memC̃

spa = 0 if spa is not member of C̃. A feasible fuzzy
coalition structure C̃ for the agents in SPA is defined as a set of fuzzy
coalitions with

∀spa ∈ SPA :
∑
C̃∈C

memC̃
spa ≤ 1

4

5.2 Risk of Fuzzy Coalition Structures

Using this measure, each agent spai may individually specify a pa-
rameter αi and a TCE-threshold tTCEi, expressing that it will only
accept coalition structures which satisfy

TCEαi(ui) ≤ tTCEi

where ui is agent spai’s final net worth, i.e. the total net result from
all coalitions it is involved in.

Proposition 5.2.1. Let service provider agent spai be a member in a
fuzzy coalition C̃, let costi be the cost for spai if C̃ fails, and let ui(C̃) >

−costi be the payoff obtained by spai if C̃ is successful. The TCEαi(C̃),
i.e. the TCEα restricted to consider only spai and C̃, can be computed
as follows:

TCEαi(C̃) =

{
PoF (C̃)costi(C̃) + PoS(C̃)(−ui(C̃)) PoF (C̃) ≤ αi
costi(C̃) PoF (C̃) > αi

Proof. Let Xi be spai’s net result from C̃, with Xi = ui in case of
success of C̃ and Xi = −costi in case of failure. Consider the first
case, i.e. assume that PoF (C̃) ≤ αi. Then the Value-at-Risk, i.e.
the TCEα restricted to consider only spai and C̃, is V aRαi(C̃) = −ui
because P (Xi ≤ −costi) = PoF (C̃) ≯ αi, but P (Xi ≤ ui) = 1 (since
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PoS(C̃) = 1−PoF (C̃)). Thus, the set of relevant outcomes considered
in TCEα includes both Xi = −costi and Xi = ui. In the second case,
with PoF (C̃) > αi, we have V aRαi(C̃) = costi because P (Xi ≤ −costi) =

PoF (C̃) > αi. Thus, the set of relevant outcomes considered in TCEα

contains only Xi = −costi, and the case Xi = ui is disregarded.

To obtain the TCEαi for a fuzzy coalition structure, we have to con-
sider the probability of failure for each subset of fuzzy coalitions that
spai is involved in, as well as the payoffs and costs for spai in these
cases. From the independence of the PoF of different coalitions and
the definition of V aR, it follows directly:

Corollary 5.2.2. Let there be a fuzzy coalition structure C̃ and let
C̃spai ⊆ C̃ be the subset of all coalitions involving spai. For each C̃∗spai ∈
2C̃spai (including the empty set) let costi(C̃∗spai) be the cost for spai if all
coalitions in C̃∗spai fail, and let ui(C̃∗spai) be the net payoff obtained by
spai from the coalitions in C̃spai \ C̃∗spai (i.e. the reward minus costs for
the successful coalitions).

The probability PoF (C̃∗spai) that the coalitions in C̃∗spai fail while those
in C̃spai \ C̃∗spai succeed is

PoF (C̃∗spai) =
∏

C̃∈C̃∗spai

PoF (C̃) ·
∏

C̃∈C̃spai\C̃∗spai

PoS(C̃)

The V aRαi(C̃), i.e. the V aRα restricted to consider only spai and C̃, is
then

V aRαi(C̃) = −min
C̃∗spai∈2

C̃spai


ui(C̃∗spai) :

∑
C̃′spai∈2

C̃spai

ui(C̃′spai )≤ui(C̃
∗
spai

)

PoF (C̃∗spai) > αi


Having V aRαi(C̃), the computation of the TCEαi(C̃) is straight-forward.
Please note that V aRαi(C̃) and thus also TCEαi depend on the agent’s
payoff. But as becomes clear in section 5.3, computing a stable pay-
off depends on the risk. Also, we have to consider each element
in the power-set of coalitions that spai is involved in, making the
complexity of this computation exponential. However, by bounding
the number of coalitions an agent might be involved in, we obtain
polynomial complexity. This is also shown in section 5.3.
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5.3 Stability of Fuzzy Coalitions Structures

In this section, we finally show how a coalition’s payoff should be
distributed among its members. Cooperative game theory tradition-
ally deals with the question how this can be done in a stable way.
Stable means that no agent has a reasonable incentive to break its
coalition(s). For games with fuzzy coalitions, several such solution
concepts, including the Core and the Shapley Value, have been in-
troduced in the literature, such as Aubin (1979), Butnariu (1980) or
Nishizaki and Sakawa (2001). Unfortunately, these assume a linear
or even proportional relationship of the membership and coalition
values. This does not hold in our case, because the coalition either
gets the payoff or not, while the membership values determine the
involved risk. But even considering the expected values does not
help, since

1. the execution time of a service instance is characterized by an
1
x
-relationship wrt. to the membership and

2. the actual probability of failure also depends on the underlying
distributions of the service instance runtimes which might be
arbitrary.

We thus introduce a new variant of the excess which is compliant
with out setting. Since the excess is the basis for a number of solu-
tion concepts including the Core, Kernel and Nucleolus, this allows
us to use these concepts. In this paper, however, we consider only
the Kernel.
In crisp games, the excess of a coalition C wrt. a given coalition
structure C̃ with C /∈ C̃ quantifies the difference in payoff that the
agents in C obtain by forming C and leaving their resp. coalitions in
C̃. Because each agent can be a member of only one coalition in a
crisp coalition game, they then do not obtain any payoff from their
former coalitions. But this is not the case in fuzzy coalition games.
Here, it is possible to withdraw just some membership and put it
into a new coalition. However, not all coalitions might be feasible
wrt. the involved agents’ individual risk bounds. We consider such
coalitions not to be a feasible threat. Also, we exclude the case that
an agent threatens to withdraw any amount membership from an
existing coalition such that its own risk bound would be exceeded.
While this makes sure that the hard risk bounds are taken into
account, we also have to consider that more membership means

101



CHAPTER 5. ON RISK-BOUNDED COALITION FORMATION

a better chance of success. Thus, we regard the expected coalition
values.
Definition 5.3.1 Excess of a fuzzy coalition
Let there be fuzzy coalition C̃ and fuzzy coalition structures C̃ and C̃ ′
with C̃ ∈ C̃ ′, C̃ 6∈ C̃, C̃ ′ is feasible, and ∀C̃ ′ ∈ C̃ ′, C̃ ′ 6= C̃ : ∃C̃ ′′ ∈ C̃ : C̃ ′⊆̃C̃ ′′.
Further, let there be a payoff distribution u. We define

ẽ(C̃, C̃ ′, ũ)|TCE := v|TCE(C̃, C̃ ′)−
∑
spai∈C̃

di(C̃, C̃ ′)

with

v|TCE(C̃, C̃ ′) =

{
v(C̃) if ∀spai ∈ C̃ : TCEαi(C̃ ′ ∪ C̃) ≤ tTCEi
0 otherwise

and
di(C̃, C̃ ′) =

∑
C̃∗∈C̃,C̃′∈C̃′,C̃′⊆̃C̃∗

v(C̃ ′)− v(C̃∗)

4
Remember from definition 2.2.14 that in crisp games, for a given
configuration (C, u), the surplus of an agent ai over another agent ak
with ai, ak ∈ C ∈ C is then defined as the maximum excess of all coali-
tions including agent ai but without agent ak. For games with fuzzy
coalitions, however, it is possible to threaten with a number of alter-
native coalitions at the same time. Also, only a membership transfer
from coalitions that include both ai and ak should be considered. Fi-
nally, we require that all membership of ai from such coalitions is
transferred.
Definition 5.3.2 Fuzzy coalition surplus
Let there be a fuzzy coalition structure C̃ and payoff distribution u
and agents ai and ak.

1. A feasible fuzzy coalition structure C̃ ′ with ∀C̃ ∈ C̃ ′, C̃ /∈ C̃ : ai ∈
C̃, ak /∈ C̃, ∀C ∈ C̃, ak 6∈ C : C ∈ C̃ ′ and @C̃ ∈ C̃ ′ : ai, ak ∈ C̃ is called
an ik-fuzzy surplus structure.

2. The set of all ik-fuzzy surplus structures wrt. C̃ is denoted
C̃Sik(C̃)

3. The fuzzy coalition surplus of ai over ak is

s̃urik|TCE := max
C̃′∈C̃Sik(C̃)

{
∑

ai∈C̃∈C̃′

ẽ(C̃, ũ)|TCE}
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4
To compute a fuzzy coalition surplus it is thus not only necessary to
identify the best set of agents that should form alternative coalitions
when excluding the other agent, but also to find the best member-
ship values for them wrt. feasibility and the individual agent risk
thresholds.
Definition 5.3.3
Let Qik denote a set of pairs (sra,P) with P satisfies the request from
sra, ai ∈ SPAP and ak 6∈ SPAP . For a feasible coalition structure C̃,
let C̃Sik(Qik) denote the set of all ik-fuzzy surplus structures C̃ ′ wrt.
C̃ such that for all pairs (sra,P) ∈ Qik there exists C̃ ∈ C̃(sra,P) with
C̃ ∈ C̃ ′. We define the function MaxC̃(Qik, C̃, u) to return C̃∗ ∈ C̃Sik(Qik)

such that
∑

ai∈C̃∈C̃∗ ẽ(C̃, ũ)|TCE is maximized wrt. all other elements in
C̃Sik(Qik). 4
Because the service instance runtime depends on the spent resources
and thus the membership values by a 1

x
-relationship (see Defini-

tion 5.1.9.2(d)), MaxC̃ has to solve a non-linear optimization prob-
lem. The complexity to compute a fuzzy coalition surplus is thus
even worse than in the crisp case, where we have exponential com-
plexity wrt. the number of agents in the system because of the ex-
ponential number of possible coalitions and excesses. Shehory and
Kraus proposed to reduce this to a polynomial complexity by limiting
the maximum coalition sizeShehory and Kraus (1999). We achieve
the same effect for the fuzzy coalition surplus by not only bounding
the number of agents in a coalition, but also the number of coali-
tions that an agent threatens to transfer membership to as well as
the number of plans per set of agents.

Proposition 5.3.4. Let aMax ∈ N be an upper bound for the num-
ber agents in a coalition and C̃Max ∈ N be an upper bound for all
sets |Qik|, i.e. the number of new coalitions including agent ai and
excluding agent ak in the computation of s̃urik|TCE. Let further PMax
be an upper bound for the number of plans that involve the same set
of agents and let n ∈ N be the number of agents. Then the number of
sets Qik, constrained by C̃Max and ∀(sra,P) ∈ Qik : P ∈ Plans, is less
or equal than n(aMax·PMax)C̃Max.

Proof. It was shown in Shehory and Kraus (1999) that the num-
ber of crisp coalitions with maximum size aMax among n agents is
bounded by naMax. Because each set of agents might be involved in

103



CHAPTER 5. ON RISK-BOUNDED COALITION FORMATION

multiple plans, this has to be multiplied PMax to obtain the upper
bound for the number of considered coalitions. By the same argu-
ment as in the proof in Shehory and Kraus (1999), the number of
sets of these coalitions with maximum size C̃Max is then bounded
by n(aMax·PMax)C̃Max.

Remember from definition 2.2.14 that in crisp games, the kernel of a
cooperative game (A, v) with respect to a given coalition structure C is
a set of configurations (C, u) wherein each pair of agents ai, ak in each
coalition C ∈ C is in equilibrium wrt. their surpluses: ∀ai, ak ∈ C ∈ C:

(surik = surki)

∨(surik > ski ∧ u(ak) = v({ak}))
∨(surki > sik ∧ u(ai) = v({ai}))

Fortunately, having defined the surplus also for fuzzy coalitions, we
can substitute it in this definition to obtain a definition for the kernel
for games with fuzzy coalitions:
Definition 5.3.5
Let there be a fuzzy coalition structure C̃ and payoff distribution u.
(C̃, u) is in the kernel of the fuzzy coalition game iff each pair of agents
ai, ak in each fuzzy coalition C ∈
fCs is in equilibrium wrt. their fuzzy coalition surpluses. 4
To make a payoff distribution kernel-stable for a given coalition
structure, the transfer scheme introduced by Stearns (1968) can be
used in the case of crisp games. The same can be applied here, since
a side-payment from one agent to another will increase the former
agent’s payoff while lowering the latter agent ones.

5.4 Algorithm RFCF

In this section, we propose a fuzzy coalition formation protocol that
guarantees to form coalitions which are compliant to the agents’ in-
dividual risk bounds. The negotiation is to be finished in a fixed
amount of time in order to ensure a timely start service executions.
In order to achieve polynomial complexity in the negotiation, some
compromises have to be made. In particular, upper bounds for the
risk of a coalition structure can be obtained by either considering
only the self-values of the agents instead the actual utilities or by
computing the risk for subsets of the structure and utilizing the
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subadditivity of TCE. The main drawback of using upper bounds for
the risk is that it might prevent the formation of some coalitions
which are then considered too risky although they are acceptable.
We thus propose to execute a parallel process to continually improve
the bound as long as there is time.

Before we give the actual definition of RFCF, we here provide a
short outline of the protocol to emphasize the main ideas of the
individual steps. In RFCF, each agent performs multiple tasks in
parallel:

• Composition Planning Every agent performs service composi-
tion planning. Since only agents that can execute a plan to-
gether will form coalitions, this step is necessary to identify
possibly worthwhile coalitions.

• Coalition Negotiation

1. Proposal generation - The agent computes fuzzy coalitions
such that their formation certainly leads to a feasible coali-
tion structure while minimising the membership values.
This way, no more membership (i.e. resources) than neces-
sary is used, allowing the involved agents to possibly form
additional coalitions later. A proposal is then send to the
agents of the fuzzy coalition which maximises the value per
membership.

2. Proposal evaluation - From the received proposals, form
feasible coalitions with acceptable risk the and maximal
value per membership

3. Payoff distribution and risk bound update - Use the transfer
scheme to compute the Kernel-stable payoff distribution.
Compute the single-coalition TCE and add it to previous
coalition structure TCE bound to obtain an updated bound
on the coalition structure TCE.

• Risk Measure Computation - Compute TCE for a new random
subset of coalitions to obtain a tighter bound for the coalition
structure TCE.

In the following definition of the algorithm, we use the following
functions and constants:

• PMax: the maximum number of plans to be considered for a
set of agents
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• aMax: the maximum coalition size

• C̃Max: the maximum number of coalitions that an agent threat-
ens to transfer membership to in the surplus computation

• sra(P) Returns the service request agent for whose request P
was generated.

• findFuzzyCoalition(C̃,P , risk): Computes a fuzzy coalition C̃ such
that the membership degrees in C̃ are minimized while C̃ ∪ C̃
is acceptable for all agents wrt. risk. Use C̃(sra(P),P) as a
starting point. If risk = nil then compute an upper bound for
TCEαa(C̃∪C̃(sra(P),P)), otherwise use risk as this upper bound.
It is possible to efficiently implement this function by exploiting
the monotonicity of the TCE wrt. to the membership values. If
this is not possible or |C̃| > MaxCSize, return nil

• makeStable(C̃): Computes a new stable payoff distribution u∗

for the fuzzy coalition structure C̃ using the transfer scheme
(see 5.3) and the bounds PMax, aMax and C̃Max.

Algorithm 5.4.1 RFCF
Each agent a performs:

Initialization:

1. set Plans := ∅

2. set PPlans := ∅

3. set PPlansRisk := ∅

4. set Props := new priority queue

5. set riska := TCE({a}/1)

Parallel Execution:

• Composition plan generation: repeat (until terminated)

1. Generate a new composition plan P for a random service
request and for a set of agents for which the number of
previously generated plans is less than PMax.
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2. Plans := Plans ∪ P

• Coalition negotiation: repeat (until terminated)

1. Proposal generation

(a) set BestCoalition := nil, BestPayoffperMembership := 0

(b) for each P in Plans do:
i. C̃ := findFuzzyCoalition(C̃,P , nil)
ii. if C̃ = nil then Plans := Plans \ P;

PPlans := ∪P ;next 1b
iii. if v(C̃)/|C̃| > BestPayoffperMembership then

Plans := Plans \ P; BestCoalition := C̃;
BestPayoffperMembership := |C̃|

(c) if BestCoalition = nil then for each P in PPlans do:
i. if PPlansRisk contains (P , .) then
C̃ := findFuzzyCoalition(C̃,P , PP lansRisk(P))

ii. if C̃ = nil then next 1b
iii. if v(C̃)/|C̃| > BestPayoffperMembership then

PPlansRisk := PPlansRisk \ P;
BestCoalition := C̃; BestPayoffperMembership := |C̃|

2. send (BestCoalition,BestPayoffperMembership) as a proposal
to all other agents

3. Proposal evaluation

(a) receive coalition proposals from all other agents and
self

(b) for each non-nil proposal (C̃, ppm), put C̃ in Props with
priority ppm.

(c) set C̃∗ = ∅
(d) while Props is not empty do

i. get and remove the highest priority coalition C̃ from
Props

ii. if C̃ is feasible, set C̃∗ := C̃∗ ∪ C̃
4. Payoff distribution and TCE update

(a) set u∗ = makeStable(C̃ ∪ C̃∗)
(b) do atomically: set C̃ := C̃ ∪ C̃∗ and u := u∗

(c) set riska := riska +
∑

C̃∈C̃∗a
(TCEa(C̃))
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• Risk measure computation of current structure: repeat (until
terminated)

1. randomly choose a previously unconsidered subset C∗ from
Ca

2. riska := riska −
∑

C̃∈C∗ TCEa(C̃) + TCEa(C∗)

• Risk measure computation of potential structures for postponed
plans: repeat (until terminated)

1. Randomly choose P ∈ PPlans such that (P , .) /∈ PPlansRisk

2. Compute exact TCEαa(C̃ ∪ C̃(sra(P),P)) and
put (P , TCEαa(C̃ ∪ C̃(sra(P),P))) into PPlansRisk

• Termination of negotiation

1. Wait(ExecutionStartTime)

2. terminate all other tasks

3. start service instance execution in my coalitions; terminate

4

Proposition 5.4.2. The runtime of the coalition negotiation section of
the RFCF is polynomial.

Proof. In the proposal evaluation, each agent orders the coalition
proposals in the same way in the priority queue since the priority is
defined as payoff per membership which is a global measure. Be-
cause of the bounds used in the surplus computation, the payoff
distribution is done in polynomial time (see 5.3). All other steps in
the coalition negotiation section are of less complexity.

5.5 Summary

We have studied a setting of cooperative service provider agents that
form fuzzy coalitions in order to share and combine resources and
services to efficiently respond to market demands while bounding in-
dividual risk. We showed how a coherent risk measure, the TCE, can
be used to assess the risk for agents when taking part in coalitions
to satisfy service requests with deadlines. By splitting resources
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among different coalitions, an agent might lower its overall risk. De-
spite previous work on fuzzy coalitions in the literature, we found it
necessary to give our own definitions for the fuzzy coalition game,
including the excess and surplus for fuzzy coalitions. This is be-
cause of unrealistic assumptions in the cited models that do not
hold in our setting. In the surplus computation, sets of alternative
fuzzy coalitions have to be considered. As a consequence, we had
to bound not only the maximum coalition size, but also the num-
ber of coalitions in these sets as well as the number of plans for a
set of agents to obtain a polynomial computation time for the fuzzy
coalition surplus.

Finally, we point out that the RFCF is easily adaptable to set-
tings with other agent models than the one used in this chapter, as
long as one can determine the probability of success/failure of fuzzy
coalitions.
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Chapter 6

Trusted Kernel Stable
Coalition Formation

In this chapter, we consider the problem of deceiving and unreli-
able agents in kernel-based coalition formation algorithms. Such
matters are very relevant to multiagent coalition formation in open
environments.

Recall that many coalition formation algorithms and their cor-
responding communication protocols rely on the exchange of data
among the agents in order to compute solutions for a game (see 2.3).
Thus, agents might try to unjustifiably increase their own payoffs
by sending manipulated data to other agents. Building on results
from Blankenburg and Klusch (2004), Blankenburg et al. (2005), we
first show in the following section 6.2 how agents can achieve this
in kernel-based coalition formation algorithms. We then show how
a protocol might be extended to hinder such manipulations. This
is done by employing a communication protocol using cryptographic
techniques to ensure that all agents learn about the full game data
at the same time. We show that this greatly reduces the possibility
of an agent to determine how to manipulated the data that it sends
to other agents in order to increase its own payoff unjustifiably.

Another aspect of multiagent coalitions that, to our best knowl-
edge, has received very little attention in the literature, is the actual
execution of side payments. In corollary 2.2.29 we saw how to de-
termine an agent’s net side payment spu(a, C) in its coalition C in
configuration (C, u). However, nothing is said so far to which exact
other agent it should pay which amount. Or conversely from which
agents it should expect to receive a certain amount, and how it can
sure that it is indeed paid by these others. After all, the computa-
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tion and negotiation of a stable solution is not quite that useful if it
is then not actually implemented by the agents.

For example, consider a coalition of two agents {a1, a2}, where a1
is assigned to execute the single service in the coalition for the sat-
isfaction of a request of a2. Then, a1’s local worth is just its cost of
executing the service and thus it will have to receive some positive
side payment a2 (whose positive local worth is determined by its val-
uation of the service execution) to obtain a positive and individually
rational utility. Now, shall a1 just execute the service in hopes of
eventually receiving its side payment from a2, or should it wait until
it has indeed received it? Conversely, should a2 just make the side
payment in hopes of a1 actually executing the service to a2’s satisfac-
tion, or should it wait until the execution has finished?

To solve this dilemma in repeated coalition formation in task (or
service) allocation scenarios, we employ a two-folded approach:

1. We introduce a novel side payment protocol which is to be exe-
cuted before the task execution. This protocol ensures that it is
rational for each agent (except one) to make its side-payment at
the specified time, since we prove that deviating from it would
induce a loss for the agent. However, the agent which has to
make the biggest side payment (and thus profits only from sat-
isfaction of its requests) has to rely on a different means to
ensure that it can expect the services to be executed faithfully,
which is covered in step 2:

2. After making the side payments, the agents perform their as-
signed tasks while mutually tracking each others performance.
In doing so, agents learn to assess the probability of success
of other agents task executions. This is done with the help of
a trust measure which is integrated into the coalition forma-
tion algorithm. Therein, trust is defined as the expectation that
agents will perform reliably when defecting would prove more
profitable. It is determined via an agent’s own observation of
another agent’s behaviour as well as the other agent’s reputa-
tion by considering also the reports of other agents about the
agent in question. In this way, expected coalition values are
derived and refined over repeated coalition negotiations.
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6.1 Preliminaries

Agent Model

In this chapter, we are mainly interested in investigating the options
of agents to manipulate the game by sending false data. We therefore
use a generic task allocation model, but need to explicitly model
valuations and costs of task executions.
Definition 6.1.1 Task Agent Model
With T denoting the set of all agent-executable tasks, agents can
perform and/or request tasks τ ∈ T to be performed. We define

1. wi(τ) as the agent ai’s valuation for the execution of task τ ,

2. ci(τ) as the agent a’s cost for the execution of task τ ,

3. AllocC as the set of all possible mappings from tasks to agents
in coalition C,

4. τ ji ∈ α with αC ∈ AllocC as a task τ requested by agent ai and to
be executed by agent aj in coalition C,

5.
wαC

:=
∑
τ ji ∈αC

wi(τ)− cj(τ)

6. α∗C as a task allocation which maximizes the achievable total
payoff for C:

∀ αC ∈ AllocC : wα∗C ≥ wαC

4

Remark 6.1.2. Note that the same task might be requested by many
agents which will all derive a positive value when the task is per-
formed.

Corollary 6.1.3. From the general definition 2.2.27 of the local worth,
it follows that the local worth in the task agent model for agent ai is
given by

lwi(C) :=
∑
τ ji ∈α∗C

wi(τ)−
∑
τ ij∈α∗C

ci(τ)
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Trust Model

The coalition formation algorithm proposed in this chapter makes
use of a trust model to let agents assess each others’ trustworthi-
ness. More precisely, if an agent announces that it is able to per-
form a task to the satisfaction of the requesting agents, i.e. such
that the valuations of the requests for the tasks are realized, this
might actually turn out to be not true. This might happen because
the execution agent overestimated its own abilities, or because it
maliciously misinformed the other agents. From a requester’s per-
spective, however, it does not have to matter why exactly the task
was not executed to its satisfaction.

Here, we employ a generic trust model, which was adapted from
Dash et al. (2004) and also used in Blankenburg et al. (2005). Sev-
eral computational trust models have been developed in the litera-
ture (see e.g. Ramchurn et al., 2004), but here we do not focus on
a particular trust model. Instead, we concentrate on the abstract
properties to keep the focus on the relationship between trust and
the design of the coalition formation algorithm. We therefore ensure
that the properties of the algorithm are independent of any specific
trust model.
Definition 6.1.4 Generic Trust Model

1. The trust measure of an agent i in an agent j depends both on
i’s perception of j’s POS and on the perception of other agents
about j’s probability of success (POS). This latter point encap-
sulates the concept of reputation whereby the society of agents
generally attributes some characteristic to one of its members
by aggregating some/all the opinions of its other members about
that member. Thus, each agent can consider this societal view
on other members when building up its own measure of trust
in its counterparts Ramchurn et al. (2004). Specifically, the
trust of agent i in its counterpart j, trustji ∈ [0, 1], is given by
a function, g : [0, 1]|I| → [0, 1], (which, in the simplest case, is
a weighted sum) of all POS measures sent by other agents to
agent i about agent j as shown below:

trustji = g({ηj1, . . . , η
j
i , . . . , η

j
N})

where ηji ∈ [0, 1] is the POS of agent j as perceived by agent i and
g is the function that combines both personal measures of POS
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and other agents’ measures. In general, trust models compute
the POS measures over multiple interactions. Thus, the level
of success recorded in each interaction is normally averaged to
give a representative value (see Ramchurn et al. (2004) for a
general discussion on trust metrics).

2. Trust results from an analysis of an agent’s POS in performing
a given task. The more successful, the more trustworthy it is.
Thus, the models assume that trust monotonically increases
with POS. Therefore, the relationship between trust and POS is

expressed as: ∂trustji
∂ηji

> 0, where trustji is the trust of i in agent j

and ηji is the actual POS of agent j as perceived by i.

4
Given the above, agents can update their trust rating for another
agent each time they perceive the execution of a task (both by record-
ing their view of the success of their counterpart and by gathering
new reports from other agents about it). Thus, if an agent’s POS does
not change, the trust measure in it should become more precise as
more observations are made and received from other agents.

Since the trust model provides an estimation of the probability
of success of other agents’ task executions, we can use it to obtain
according expected local worths and coalition values:
Definition 6.1.5 Expected Local Worth

lwk(C) :=
∑
τ jk∈α

∗
C

trustjk · wk(τ)−
∑
τkj ∈α∗C

ck(τ)

4

Corollary 6.1.6. It follows that the expected coalition value is accord-
ingly

v(C) =
∑
k∈C

lwk(C)

6.2 Preventing Manipulation of the Kernel

In our model, the coalition values are defined as the sum of the
local worths of the agents in a coalition. Each agent’s local worth is
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determined by its reported valuation of requested tasks, the costs of
its offered tasks and its trust values.

Even though agents are supposed measure each other’s perfor-
mance and compute resulting expected coalition values using the
trust value, they might still try to manipulate their reported values
so as to get a better payoff.

Therefore, in this section, we investigate how agents might try to
manipulate their net outcome if taking part in kernel-based coali-
tion negotiations. But first, we establish a general condition for a
successful coalition negotiation manipulation, independent of the
solution concept.

Profitability of a Game Manipulation

In this section, we take a step back again from the task agent model
involving trust as defined in section 6.1 and consider the generic
local worths and coalition values of definitions 2.2.27 and 2.2.28,
respectively.

Therefore, remember from definition 2.2.27 that the local worth
lwa(C) is the sum of a’s valuations wa(g) of satisfied goals and a’s cost
ca(τ) of its assigned tasks. But suppose that agent a manipulates
the coalition negotiation by misleading the other agents about its
true goal satisfaction valuations and/or task execution costs. Then,
these modified valuations/costs induce a modified game with respect
to the original game. We capture these notions in the following defi-
nition:
Definition 6.2.1 Original and Modified Game
Let (A, v) be a game for which a solution is to be found via some coali-
tion formation algorithm, but let an agent a ∈ A mislead the other
participating agents such that modified goal valuations, denoted ←→w a

and/or modified task execution costs, denoted ←→c a, instead of their
true counterparts wa and ca are employed in the negotiation.

We then generally write ←→x for any entity x of the modified game
(A,←→v ). Particularly, this includes (but is not limited to) the modified
local worths

←→
lw and the modified solution (

←→
C ,←→u ).

Further, if for an entity x agent a privately knows its value to be
really xt which might be different from ←→x , we also call xt the true
value of x.

In this context, (A, v) is also called the original game, and simi-
larly we speak of the original local worths etc. Also, we call agent a a
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manipulator. 4
For such a modified game, we can immediately state the following
implications:

Corollary 6.2.2. Assume the negotiation of the modified game (A,←→v )

leads to the formation of coalition
←→
C , with the manipulator a ∈

←→
C .

Then,

•
←→
C might be equal or not equal to the coalition C, a ∈ C, which
would have been formed if the original game (A, v) had been
negotiated and

• the modified task allocation in
←→
C , based on the modified valu-

ations ←→w a(g) and costs ←→c a(τ), might be different to the original
task allocation that would have resulted from considering the
true valuations wa(g) and costs ca(τ) in

←→
C .

The fact that the modified task allocation for the coalition
←→
C might

be different to its original task allocation implies that in the modified
game, we need to consider different kinds of local worths of a ∈

←→
C :

Corollary 6.2.3. In the modified game (A,←→v ), the true local worth in
the modified game of agent a in coalition

←→
C ⊆ A is the sum of a’s true

goal valuations and costs for the modified task allocation in
←→
C :

←→
lw t

a(
←→
C ) =

∑
g∈
←→
G a(
←→
C )

wa(g)−
∑

τ∈
←→
T a(
←→
C )

ca(τ)

Since the true valuations and costs of a are private knowledge of a, so
is its true local worth. From the other agents’ point of view, a’s local
worth in

←→
C is its modified local worth

←→
lw a(
←→
C ) =

∑
g∈
←→
G a(
←→
C )

←→w a(g)−
∑

τ∈
←→
T a(
←→
C )

←→c a(τ)

Also note that both the true and the modified local worth of a might be
different to a’s original local worth in

←→
C :

lwa(
←→
C ) =

∑
g∈Ga(

←→
C )

wa(g)−
∑

τ∈Ta(
←→
C )

ca(τ)

117



CHAPTER 6. TRUSTED KERNEL STABLE COALITION FORMATION

Now, remember from corollary 2.2.29 that for a game (A, v) and so-
lution (C, u), an agent a’s side payment is determined by spu(a, C) =
u(a)− lwa(C), a ∈ C, C ∈ C. Hence it follows:

Corollary 6.2.4. In the modified game (A,←→v ), a ∈ A and modified
solution (

←→
C ,←→u ), a’s modified side payment is

←→sp←→u (a,
←→
C ) =←→u (a)−

←→
lw a(
←→
C )

Further, note that an agent’s payoff can also be stated as the sum of
its local worth and its side payment:

Corollary 6.2.5. In a game (A, v) and solution (C, u),

u(a) = lwa(C) + spu(a, C)

and similarly, in the modified game (A,←→v ) and modified solution
(
←→
C ,←→u ),

←→u (a) =
←→
lw a(
←→
C ) +←→sp←→u (a,

←→
C )

Proposition 6.2.6. In the modified game (A,←→v ) and modified solu-
tion (

←→
C ,←→u ), the true utility ut(a) of the manipulator a ∈

←→
C ⊆ A is

ut(a) = lwta(
←→
C ) +←→sp←→u (a,

←→
C )

Proof. Remember that from the other agents’ point of view,
←→
lw a(
←→
C )

is indeed a’s local worth, and likewise ←→u (a) is a’s utility. Therefore,
they will indeed expect a to make the side payment of ←→sp←→u (a,

←→
C ).

However, we already pointed out in corollary 6.2.3 that if a is the
manipulator, a’s true local worth might be different from its modified
local worth. Hence, a’s modified side payment but true local worth
constitute a’s true utility of the modified solution.

Having thus disentangled the modified and true payoffs and local
worths, and which agents believe which to be true, it is clear that:

Corollary 6.2.7. An agent a’s manipulation of a game (A, v) leading
to the modified game (A,←→v )is profitable for a iff

ut(a) ≥ u(a)
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Corollary 6.2.8. From corollary 6.2.5 and proposition 6.2.6, it also
follows that

←→u (a)− ut(a) =
←→
lw a(
←→
C )− lwta(

←→
C )

⇔ ut(a) =←→u (a) + lwta(
←→
C )−

←→
lw a(
←→
C )

Thus, we can assert that in order to determine whether a game ma-
nipulation by agent a will be profitable for a, it must ensure that the
right part of the last equation in corollary 6.2.8 is greater or equal
than u(a), the payoff it would obtain in the unmodified game. It
therefore follows:

Proposition 6.2.9. If a manipulator a does not have sufficient prior
knowledge of the negotiated game (A, v), a ∈ A, a is in general not
able to determine how to modify the game such that it is profitable for
a.

Proof. From corollary 6.2.8, it follows that a needs to at least ap-
proximately be able to compute u(a), ←→u (a), lwta(

←→
C ) and

←→
lw . In order

to compute (bounds on) lwta(
←→
C ) and

←→
lw , a is required to at least ap-

proximately know the task allocation in modified game. And in order
to compute (bounds on) u(a) and ←→u (a), it is additionally required to
at least approximately know the task allocation in the original game,
as well as the goal valuations and task execution costs of the other
agents in coalitions C and

←→
C .

However, we also point out the special case where
←→
C = C and

lwta(C) = lwa(C). That is, neither the manipulator’s assigned coali-
tion C nor the task allocation for C changes as a result from the
game manipulation. In this case, it is sufficient for the manipulator
to ensure that its side payments are increased:

Proposition 6.2.10. In the modified game (A,←→v ) and modified solu-
tion (

←→
C ,←→u ) with

←→
C = C and lwta(C) = lwa(C), the true utility ut(a) of

the manipulator a ∈
←→
C ⊆ A is

ut(a) = u(a) +←→sp←→u (a, C)− spu(a, C)
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Proof. According to proposition 6.2.6,

ut(a) = lwta(
←→
C ) +←→sp←→u (a,

←→
C )

= lwa(C) +←→sp←→u (a, C)

= lwa(C) +←→sp←→u (a, C) + u(a)− u(a)

= u(a) + lwa(C) +←→sp←→u (a, C)− lwa(C)− spu(a, C)

= u(a) +←→sp←→u (a, C)− spu(a, C)

Game Manipulation and the Kernel

Having established when a game manipulation is profitable for an
agent in general, we now look more specifically at kernel-stable coali-
tions.

Therefore, recall from definition 2.2.14 that for a configuration
(C, u), the excess of a coalition C∗ /∈ C is given by

e(C∗, u) := v(C∗)−
∑
a∈C∗

u(a)

and that the surplus of agent ai with respect to agent ak with ai, ak ∈
C ∈ C, ai 6= ak, is defined as

surik := max{e(C∗, u) | C∗ 6∈ C, ai ∈ C∗, ak 6∈ C∗}

Lastly, recall that for a configuration (C, u) to be kernel-stable, it
must hold that ∀ai, ak ∈ C ∈ C:

(surik = surki)

∨(surik > ski ∧ u(ak) = v({ak}))
∨(surki > sik ∧ u(ai) = v({ai}))

Proposition 6.2.11. An agent ai in coalition C ⊆ A might increase
its kernel-stable payoff by modifying the game in such a way that its
surplus with respect to some other agent ak ∈ C is increased.

Proof. The described manipulation implements the special case of
corollary 6.2.7, and it is directly clear from the definition of the ker-
nel that an increased surplus of surik leads to a higher payoff for i.
From the definitions of the surplus and excess, it is also clear that ai
has therefore to increase the value of a coalition C∗, such that ai ∈ C∗
and ak 6∈ C∗ and that C∗ becomes (or stays) the coalition which yields
the excess which is the modified surplus.
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While proposition 6.2.11 suggests a way to successfully manipulate
kernel-stable coalition formation, the manipulator must be careful
not to increase the value of its assigned coalition. This is shown in
by following proposition:

Proposition 6.2.12. Let (A, v) be a game, (A,←→v ) be a corresponding
modified game, r ∈ R+, and let C∗ ⊆ A with

∀C ⊆ A :←→v (C) :=

{
v(C) + r for C = C∗

v(C) otherwise

Further, let (C, u) be a kernel stable configuration for (A, v), let a∗ ∈
C∗ ∈ C, and let←→u be the modified payoff distribution such that←→u (a) =
u(a) + r, a ∈ A, if a = a∗, and←→u (a) = u(a) otherwise.

Then (C,←→u ) is not kernel stable for (A,←→v ) if there exists an agent
a+ ∈ C∗, a+ 6= a∗, such that sura∗,a+ − sura+,a∗ < r holds in (A, v)

Proof. Let ←→sura1,a2 be the modified surplus of agent a1 over agent a2 in
the modified game (A,←→v ) and Z := {C|C ⊆ 2A, a∗ ∈ C, a+ 6∈ C}. Fur-
ther, let ←→e (C) be the modified excess of coalition C in the modified
game (A,←→v ). Then

←→sura∗,a+ = max
C∈Z
{←→e (C)}

= max
C∈Z
{v(C)−

∑
a′∈C,a′ 6=a∗

u(a′)−←→u (a∗)}

= max
C∈Z
{v(C)−

∑
a′∈C,a′ 6=a∗

u(a′)− (u(a∗) + r)}

= max
C∈Z
{v(C)−

∑
a′∈C

u(a′)} − r

= sura∗,a+ − r < sura+,a∗

But since ←→u (a∗) > ←→v ({a∗}) = v({a∗}), configuration (C,←→u ) is not
kernel stable for (A,←→v ).

Corollary 6.2.13. The inequality at the end of the proof of proposi-
tion 6.2.12 implies that a∗ will have to make a side payment to a+ in
order to restore kernel stability. In other words, a∗ is not “paid back”
the full amount of r.

Corollary 6.2.14. If r is taken to be negative in proposition 6.2.12,
the proof shows that a∗ might indeed increase its surplus sura∗,a+, thus
obtaining a higher side-payment and increasing its profit.
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Theorem 6.2.15. For a game (A, v) and solution (C, u), a manipulator
a ∈ A profits from modifying the game in kernel-based coalition nego-
tiations such that (C,←→u ) results, i.e. the coalition structure remains
unchanged, only if it either

• increases its surplus by increasing the value of an appropriate
other coalition C∗ 6∈ C or

• decreases the value of its own coalition C ∈ C, a ∈ C.

Otherwise, a loss might be incurred by a.

Proof. The theorem follows directly from proposition 6.2.12 and corol-
laries 6.2.13 and 6.2.14.

Proposition 6.2.9 and theorem 6.2.15 make it clear that a manipu-
lator needs both prior knowledge about the game being negotiated
and rather fine-grained control over coalition values to manipulate
in order to manipulate profitably. Prior knowledge can only be en-
sured by assuming that agents do not possess it at the beginning of
negotiations, and that they do not obtain such information during
the negotiation and before they have to make their moves. As for the
second constraint, we show in the next section that in the task agent
model defined in section 6.1, only limited control over coalition value
manipulation is available to the agents.

Manipulating Coalition Values in the Task Agent Model

In this section, we consider again the task agent model as defined in
section 6.1 to investigate the possibilities of coalition value manipu-
lation. Therefore, in the following, we assume that task valuations,
costs and trust values (in the form of probability of success) are com-
municated among the agents, and that the task agent model from
definition 6.1.1 applies to the participating agents. We now consider
which modified local worths and coalition values might result when
agents misreport any of those values.

We first consider which effect reporting modified task valuations
have on the resulting modified game and the reporting agent’s local
worth:

Lemma 6.2.16. Let agent i report an overstated task valuation for a
task τ :

←→w i(τ) := wi(τ) + r, r ∈ R+
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Then for the resulting coalition values of the modified game it holds
that

∀C, i ∈ C : ∃rC ∈ [0, r] : ←→v (C) = v(C) + rC and

∃r′ ∈ [0, r] :
←→
lw i(C) = lwi(C) + r

′

Proof. Let α∗C and ←→α ∗C be the task allocations established by the
TKCF for C, i ∈ C, in (A, v) and (A,←→v ), respectively. Then, if τi ∈ α∗C,
increasing the valuation of τ will not have an effect on the allocation
as it was already assumed to be optimal. Formally, in this case,

α∗C =←→α ∗C with
←→w i(C) =

∑
πj
i∈α∗C\τ

trustji · wi(π) + trustji ·
←→w i(τ)

=
∑

πj
i∈α∗C\τ

trustji · wi(π) + trustji · (wi(τ) + r)

=
∑
πj
i∈α∗C

trustji · wi(π) + trustji · r

= wi(C) + trustji · r
≤ wi(C) + r (because trustji ≤ 1)

However, if τi /∈ α∗C, then we have two possible cases:

1. r is too small to let τi be included in ←→α ∗C, and thus

α∗C =←→α ∗C with ←→w i(C) = wi(C)

2. r is big enough to let τi be included in ←→α ∗C. Then it might ei-
ther be the case that no other tasks are affected, which might
happen if vi(τ) < 0 and the coalition possesses still enough re-
sources to execute τi additionally, such that again

α∗C =←→α ∗C with ←→w i(C) ≤ wi(C) + r

Or there exist some other tasks assignments in α∗C but not in
←→α ∗C, whose valuations therefore do not contribute to ←→v (C).
However, their sum must be ≤ r or otherwise ←→α ∗C would not be
optimal. Therefore (the inequality again comes from the trust
values)

←→v (C) ≤ v(C) + rC
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In particular, this might include also tasks that i additionally
requests. Thus it holds that

∃r′ ∈ [0, r] : ←→w i(C) ≤ wi(C) + r
′

From the above cases combined and the fact that the coalition value
is the sum of the local worths, it then follows that the lemma is
true.

Remark 6.2.17. Note that in lemma 6.2.16, each coalition value (of
coalitions including i) might change differently, depending on the op-
timal task allocations, in case where resources are bounded or there
exist multiple agents offering the same task at different costs.

Corollary 6.2.18. From lemma 6.2.16 it follows that if agent i reports
an understated task valuation, i.e. r ∈ R−, then

∀C, i ∈ C : ∃rC ∈ [r, 0] : ←→v (C) = v(C) + rC

The arguments in the proof just have to be reversed: if τi ∈ α∗C, either r
is not small enough for τi to be not included in←→α ∗C, such that←→w i(C) =
wi(C). Or it is small enough such that τi /∈ ←→α ∗C. In that case, either
analogously (r being negative)←→w i(C) = wi(C) + trustji · r ≥ wi(C) + r, if
no other tasks can then be included in ←→α ∗C. Or other tasks can then
be allocated, e.g. due to freed resources from the removal of τi, such
that they contribute a value r ∈ [r0] to ←→v (C). Finally, if τi /∈ α∗C, then
also τi /∈ ←→α ∗C.

Corollary 6.2.19. From lemma 6.2.16 and corollary 6.2.18 it further
follows symmetrically for costs: if agent i understates its cost for a
task assignment τ i, i.e. ←→c i(τ) := ci(τ)− r, r ∈ R+ then

∀C, i ∈ C : ∃rC ∈ [0, r] : ←→v (C) = v(C) + rC

And, similarly, if it overstates the cost with r ∈ R−, then

∀C, i ∈ C : ∃rC ∈ [r, 0] : ←→v (C) = v(C) + rC

To summarize, the results of this section show that an agent has
only limited control over single coalition values. However, it is also
clear that some such control exists. Therefore, in the next section,
the proposed coalition formation algorithm employs cryptographic
techniques in order to make it hard for the agents to obtain an un-
fair information advantage which could help agent to profitable ma-
nipulate the negotiations.
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6.3 Algorithm TKCF

In this section we describe the coalition formation algorithm TKCF.
It employs the task agent model from definition 6.1.1 and the generic
trust model from definition 6.1.4. It consists of four parts, which we
describe in turn.

Communication

This covers the protocol agents use to exchange valuations, costs,
and trust values with one another so that no information asymmetry
can exist among them such that one agent can find exploit another
(which would make the mechanism unattractive to potential partic-
ipants). Perhaps the easiest way of achieving this is to ensure that
all agents get information about these variables at the same time.
Otherwise, agents can simply wait for messages about other agents’
valuations and costs, analyse these and, in turn, transmit their own
valuations and costs such that the latter exploit the agents that have
already transmitted their private information. To achieve such si-
multaneous information revelation, we adapt the common Data En-
cryption Standard (DES) cryptographic technique Schneier (1996)
to build our communication protocol (any other encryption method
can be easily substituted, which might be advisable because DES
is known to have weaknesses). Specifically, we assume that each
agent has a unique key ei (randomly chosen) that allows it to en-
crypt a message (e.g. containing information about valuations and
costs) using a commonly known function enc. The message can only
be decrypted using that key and inverting the function enc−1. The
protocol is as follows:

1. All agents transmit enc(〈τ , vi, ci,ηi, gi(.)〉, ei). This means that
they encrypt their private information with their key ei. Then,
this encrypted message is sent to all agents directly (it is rea-
sonable to assume here that all agents are directly connected
to each other).

2. All agents confirm to all other agents that they have received all
encrypted messages from all the other agents. This means that
for I agents, each one needs to receive I−1 encrypted messages
and send a confirmation of this to all others.
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3. When I − 1 confirmations (of the reception of I − 1 messages)
have been received by each agent, all agents send their key
ei to all agents in the population. Then all agents can use
this key to decrypt received messages simultaneously using
enc−1(enc(〈τ , vi, ci,ηi, gi(.)〉), ei)) = 〈τ , vi, ci,ηi, gi(.)〉.

The above protocol guarantees that there is no information asym-
metry between any pair of agents in the population. Note that the
agents need to obtain I − 1 confirmations before sending their keys
since, doing otherwise, results in an information asymmetry that
could lead to agents being exploited. For example, let agent A send
its (encrypted) private information to agents B and C, while B sends
its private information to A and C, and C only sends its private in-
formation to B. Then, let A send its key to B, and B responds by
sending its key to A. C then sends its key to B and gets B’s key in
return. Now, C can analyse its own information and B’s information
in order to select valuations, costs, and trust vectors that could al-
low it to exploit unfairly both A and B. This happens because C can
calculate what it can profitably reveal (i.e. its valuations and costs)
to A since A does not already possess C’s encrypted private infor-
mation while C already has A’s private information which it can no
more change (i.e. there exists an information asymmetry). To avoid
this, our protocol forces agents to wait for I − 1 confirmations each
time private information is shared, and ensures that all agents have
the same information.

Kernel Stable Solution Computation

We now provide a protocol that lets the agents achieve a Kernel-
stable configuration given the information they obtained by execut-
ing the communication protocol of section 6.3. As has been stated
in section 6.1, there generally exist multiple coalition structures for
which Kernel-stable solutions can be found. In the proposed pro-
tocol, a coalition structure which maximizes the sum of the val-
ues (sometimes also called social welfare) of the formed coalitions
is chosen. We consider this a favorable approach with respect to the
experimental evaluation (see section 6.5), because it enables us to
compare the quality of the generated coalition structures to a theo-
retical optimum. But there exist also other, more individual agent or
coalition centric coalition structure generation approaches (as e.g.
proposed in Shehory and Kraus (1998)).
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Now, since there might exist multiple optimal coalition struc-
tures, task assignments in individual coalitions, and kernel stable
payoff distributions for a given coalition structure we introduce a
function to allow the agents to jointly make unambiguous choices.
We therein assume that each agent possesses a strictly ordered list
LA of all agents in A. This list could, for example, be obtained by
the agents’ joining order in the system, but since the exact method
is not important here, we simply consider it as given.

Let p be a task assignment, coalition structure, or payoff dis-
tribution, let pi denote that p was computed by agent ai and let
P := 〈p1, . . . , p|A|〉. Then let Choose(P ) return p which was computed
by the greatest number of agents. If there are more than one such
elements, among them choose the one which was computed by an
agent which is considered lowest by LA. To achieve a kernel stable
configuration which maximizes the sum of the coalition values, each
agent ai ∈ A performs:

1. Determine trust values trustji of ai in other agents aj where
ai, aj ∈ A.

2. Compute expected coalition values; for each C ⊆ A do:

(a) Compute an optimal task allocation αiC for C and send it to
each other agent aj ∈ C; receive all αCj

. Pα := 〈αC1 , . . . , αC|A|〉;
determine α∗C := Choose(Pα).

(b) Given the trust values about agents, for each coalition C ∈
C assess the expected local worths lwk(C) according to def-
inition 6.1.5 for all agents in ak ∈ C.

(c) Compute the overall expected coalition value v(C).

3. Find a coalition structure Ci such that
∑

C∈Ci v(C) is maximised.
Send Ci to each other agent aj ∈ A and receive all other Cj. Let
P C := 〈C1, . . . , C|A|〉; determine C := Choose(P C)

4. Compute a kernel stable payoff distribution ui for C.

5. Send ui to all other agents j and receive all uj.

6. Determine u := Choose(Pu)

After completing the execution of the TKCF, each agent is assigned
to a coalition and a payoff, which completes the coalition formation
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process. However, these coalitions and payoffs still have to be imple-
mented in order to actually realize the solution. While the task ex-
ecution performance of the agents is measured via the trust values,
it is still unclear how to enforce the execution of the side-payments
resulting from the solution. This is covered in the following section.

Payment Execution

We now develop a payment protocol which provides the incentives to
the agents to faithfully implement it so as to ensure that each agent
ai ∈ A derives the payment mi.

Our protocol initially involves the creation of |C| strictly ordered
lists for each coalition in the stable configuration computed in sec-
tion 6.3. With PLC = {a1, . . . , ak, . . . , aK} we denote the list of all
agents in a coalition C (hence K = |C|) with agents sorted in de-
scending order of the difference, u(ai)− lwi(C). Ties are broken such
that an agent in PLC gets a higher index if it has a higher index in the
list LA. Thus agent a1 in PLC corresponds to the agent which has the
maximum u(ai) − lwi(C). Since all information required to form this
list has already been transmitted in the communication stage (de-
scribed in section 6.3), PLC is commonly known to all agents in |C|.
Now, our protocol intuitively works by cascading payments between
agents, with an agent providing a payment before it receives one.
The sorted list allows us to condition payments such that agents al-
ways make positive transfers to each other. The transfer mk

k+1 each
agent ak+1 makes to agent ak is computed as:

mk
k+1 = u(ak)− lwk(C) +mk−1

k (6.1)

The following specification of the payment protocol is designed
for the case when |C| ≥ 3 (figure 6.2 graphically depicts the protocol
when all agents implement it faithfully with each step below corre-
sponding to the labelled steps in the figure). Note that the payment
protocols for the cases when |C| ≤ 2 are trivial. When |C| = 1, no
transfers occur and when |C| = 2 a single transfer occurs between
the two agents.

1. The protocol is initiated by agent aK sending an encrypted but
verifiable payment, enc(mK−1

K , e′K), to agent aK−1. That is, agent
aK−1 can check the amount but cannot access it. This is what
secure digital cash achieves and can be intuitively seen as an
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unbreakable glass safe Schneier (1996). Agent aK−1 then broad-
casts the message 〈start_payment〉 to all agents in the list if the
value of the encrypted transfer from agent aK to aK−1 is accord-
ing to equation 6.1. Otherwise, agent aK−1 transmits 〈m̂K−1

K _rec〉
(which means payment m̂K−1

K has been received) and the coali-
tion dissolves and a new coalition structure is computed with-
out agent aK.

2. Each agent ak+1 (ak ∈ PLC \ aK) then pays agent ak accord-
ing to equation 6.1 if it receives the message 〈mk−1

k _rec〉 from
agent ak−1. Otherwise, if it receives message 〈m̂k−1

k _rec〉 where
m̂k−1
k 6= mk−1

k , it then decides according to whether it has also
received a message 〈m̂k−2

k−1_rec〉 from agent ak−2. If it has received
such a message and mk−2

k−1 − m̂
k−2
k−1 + δ = mk−1

k − m̂k−1
k , it then im-

plements the transfer according to equation 6.1. Otherwise, it
then implements the following transfer:

mk
k+1 = uk − wk(C) + m̂k−1

k − δ (6.2)

where δ ∈ <+ is a penalty applied for wrong payment (which
may happen if the agent is irrational). The transfer m21 is ini-
tialised to be u(a1)− lw1(C).

3. Upon receipt of payment mk
k+1, each agent ak (ak ∈ PLC \ aK)

transmits message 〈mk−1
k _〉 to agent ak+2. However, if the pay-

ment received is m̂k
k+1 where m̂k

k+1 6= mk−1
k , agent ak then trans-

mits 〈m̂k
k+1_rec〉 to both agents ak+2 and ak+3.

4. The protocol is different for the last three agents since these
agents control the message which will start the task execu-
tion stage. If agent aK receives the message 〈mK−2

K−1_rec〉 (or if
it receives message 〈m̂k−1

k _rec〉 from aK−2 and it also receives
〈m̂K−3

K−2_rec〉 from agent aK−3 and mK−2
K−1−m̂

K−2
K−1−δ = mK−3

K−2−m̂
K−3
K−2) it

then transmits the key and broadcasts the message 〈key_sent〉.
If lwK−1(C) ≥ 0, agent aK transmits the key to agent aK−1 who
then broadcasts the message 〈start_tasks〉. Otherwise, it then
transmits the key to the agent an such that lwn(C) ≥ 0 and has
the highest index in PLC . This agent then transmits the key
to agent aK−1 and broadcasts the message 〈start_tasks〉. If ever
agent aK receives 〈m̂k−1

k _rec〉 and it detects a deviation by aK−1,
agent aK then broadcasts the message 〈no_key_sent〉.
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Figure 6.1: For agents a1, . . . , aK−3

Figure 6.2: For agents aK−2, aK−1 and aK
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In theorem 6.4.3, it is shown that a rational agent would not find
it in its best interest to deviate from the payment protocol, i.e. it will
implement the payments specified by equation 6.1 and would not
send erroneous messages once it has received the payments.

For now, however, we first complete the TKCF protocol with spec-
ifying the task execution phase.

Task Execution

Once the payment execution phase is completed (i.e. after the agents
have received the two broadcasted messages 〈key_sent〉 and 〈start_tasks〉
or the single message 〈no_key_sent〉), the agents start performing
their tasks. All agents deriving value from a task τ ∈ T then mea-
sure the POS values of the respective executing agents, and the next
round of CF starts.

6.4 TKCF Properties

Theorem 6.4.1. Assuming no prior knowledge of the agents about
each other, in the TKCF, no agent a is able to determine values ←→x 6= x
to report that will unjustifiably increase a’s payoff with certainty with
respect to the original game (A, v).

Proof. The encrypted communication protocol at the start of the TKCF
ensures that all agents have to report their values before they learn
about reported values from other agents. Therefore, with no prior
knowledge about each other, proposition 6.2.9 and theorem 6.2.15
it is clear that no agent is able to determine how to profitably ma-
nipulate the game.

Remark 6.4.2. We further argue that proposition 6.2.9, theorem 6.2.15,
lemma 6.2.16 and corollaries 6.2.18 and 6.2.19 together suggest that
agents might actually be allowed some limited prior knowledge with-
out being able to determine how to profitably manipulate the game.
However, the exact amount or kind of prior knowledge which is suffi-
cient to make profitable manipulation certainly or at least expectedly
achievable remains unknown for now.

Theorem 6.4.3. It is rational for each agent to follow the payment
scheme.
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Proof. (Sketch) We prove the above theorem by comparing the utility
that an agent derives when following the protocol to that when it
deviates.

The net utility an agent derives when following the protocol faith-
fully is its payoff which can be rewritten from equation 6.1 as :

uk(C) = wk +


m1

2, k = 1

mk
k+1 −mk−1

k , ∀k ∈ PLC \ {K, 1}
−mK−1

K , k = K

(6.3)

Now consider each agent’s opportunity to defect as the protocol
proceeds (assuming all other agents have followed it till that point).
At the beginning, agent aK can deviate by not sending the correct
value in the encrypted payment. Then, this is detected by agent aK−1
and thus the coalition does not start. Agent aK then derives a utility
of v({aK}) (v({aK}) ≤ u(aK) by the definition of kernel stability) and
thus will not deviate.

On the second step, agent aK−1 may deviate by not acknowledging
the payment and not sending the 〈start_payment〉message. But then,
it will not be able to decrypt and make use of the received payment.
Thus its net payoff would be v({aK}), not beneficial for agent aK−1.

On the third step, agent a2 can deviate by sending an incorrect
payment, m̂1

2, to agent a1. In this case, agent a1 sends to agent a3 and
agent a4 the message 〈m̂1

2_rec〉 and agent a3 then pays agent a2 the
amount u(ak)−lwk(C)+m̂1

2−δ. As a result, the net transfer to agent a2
is u(ak)− lwk(C)− δ which is strictly less than in equation 6.3. Thus,
agent a2 cannot benefit by providing a payment m̂1

2 6= m12. Notice also
that by the protocol, agent a3 derives a benefit of δ when applying the
correct penalty and will not get charged by agent a4 who has been
informed of agent a2’s deviation. However, if agent a3 deviates and
does not apply the correct penalty, then agent a4 will also penalise
it. Notice also that if agent a1 receives the correct payment, it can
still deviate by misreporting this payment. Furthermore, the agent is
indifferent between all the messages it can send (in a scenario where
the coalition game is run only once) once it has received its correct
payment. However, in a repeated coalition game (which is the case
we consider here), this would amount to penalising a good payer or
not penalising a bad payer, which is clearly not what an agent would
like to do here. The same argument as used for agents a1 and a2 can
now be used for all other payments between agents until agent aK−1.
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Now if agent aK−1 deviates when paying, then agent aK−2 will re-
port this deviation to agent aK who will withhold the key. Then
agent aK−1 will derive a net payment of −m̂K−2

K−1 which is less than
the amount it derives in equation 6.3. Agent aK can also deviate by
sending the wrong key. In this case agent aK does not derive any
higher utility by so doing. Finally the agent who has to send the
message 〈start_tasks〉 can deviate by not sending it. However, the
agent sending it (either agent aK−1 or some other agent) would not
find any utility in doing so since it gains a positive lwk(C) when the
coalition tasks are performed.

6.5 Experimental Evaluation

Having ensured that TKCF incentivises agents to reveal their true
costs and valuations and that they execute the payments that are
due, agents have to rely on the trust model to assess each other’s
performance correctly. As mentioned before, the trust model itself is
not the focus of this chapter. Nevertheless, we include some evalua-
tion results (which have been obtained collaboratively with the other
authors of Blankenburg et al. (2005)) for completeness.

The aim is to see whether the TKCF can use the trust model de-
fined in section 6.1.4 in order to evaluate the reliability of agents
over multiple interactions. Here we consider a super-additive game,
but restrict the maximum coalition size (which remains non-trivial)
in order to analyze the TKCF’s behaviour when finding an optimal
coalition structure. This size is fixed to half of the number of agents
in our case. The agents’ valuations and costs are taken from a uni-
form distribution between 0 and 1. The agents’ POS are determined
a priori and their actual success after each coalition executes tasks
is taken from a uniform distribution whose mean is equal to their
POS. Then, according to our trust model, the agents’ reported POS
in each other are summed using a weight vector to give the actual
trust values. Given this, a number of agents, six in this case, are
allowed to form coalitions of a maximum of 3 agents. To simplify
the analysis, each agent is allowed to execute more than one task
and asks for only one task to be completed. However, agents might
request different tasks and vary valuations and costs in each game.
Thus, in each iteration, a solution to a possibly different game is
to be found. Although this might increase the number of iterations
until the correct POS are determined, and thus the correct solutions
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are found, we consider this a more realistic situation than the case
of repeating just one game all the time.

Given that the payoffs described in section 6.3 are calculated ac-
cording to the expected value (resulting from the trustworthiness of
agents) of coalitions (see definition 6.1.5), we postulate the following
hypothesis:

H1:The agents’ payoffs converge to those reflecting their actual
POS in the long run. Given this, the coalition structure C chosen con-
verges to C∗ which maximises the overall value υ(C) =

∑
C∈C v(C). To

test this hypothesis we performed an experiment given the above
settings and recorded each agent’s payoff and determined the ra-
tio |u∗i−ui|

ui
which indicates the distance of the calculated payoff ui

from the exact payoff u∗i . We also recorded the ratio υ(C)
υ(C∗) to check

whether we actually chose the most valuable coalition structures.
We repeated the CF game 200 times over which trust measures were
refined each time the tasks were executed. The results are shown on
figure 6.3. As can be seen, the difference between the payoffs con-
verge to 0 indicating that the exact payoffs are chosen in the long
run. Moreover, an optimal coalition structure (C∗) is chosen well be-
fore the payoffs stabilise (when the trust is exactly determined after
200 interactions). This means that even though an optimal coalition
structure has been chosen (after around 167 interactions in this
case), the payoffs are still affected by slight deviations of the trust
perceived by agents.We used ANOVA (Analysis Of VAriance) to deter-
mine whether there were any significant differences between means
of |u

∗−u|
u∗

of the agents. Thus, it was found that for 10 samples of
200 games that p = 0.5534 for α = 0.5 such that p > α and the null
hypothesis is validated. Also, for the value of υ(C)

υ(C∗) , it was found that
p = 0.0182 for α = 0.1. This validates the null hypothesis in this case
since p > α, which tells us there is no significant difference between
the means of the samples.

We can also note that the results show that as trust is being
learnt by all agents, the agents’ payoffs may, at times, significantly
diverge from the optimal ones (the spikes in the graph), though the
size of this occasional divergence decreases over time (due to more
precises trust values). In such cases, the spikes are due to u∗i being
very low compared to the difference u∗i − ui. These, in turn, are due
to the sensitivity of the kernel-based payoffs to slight changes in the
trust values.
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Figure 6.3: Computing stable payoffs as trust values converge.

The convergence of the TKCF might seem slow, but taking into
account that different games are played and thus different coali-
tions are formed in each iteration, we consider the result at least
reasonable.

6.6 Summary

In the task allocation via coalition formation domain, we proposed
a novel model to compute expected coalition values that account for
agents’ trust in each others’ ability to execute tasks with satisfactory
reliability. Instead of specifying a particular trust model, we identi-
fied necessary properties of trust models in general in order that they
can be soundly applied within this context. Thus, any trust model
exhibiting these properties can be used.

We further presented a protocol that allows the agents, based on
the expected coalition values, to form kernel stable coalitions. The
protocol accounts for every step in the coalition formation process
from the communication of individual valuations and costs to the
actual execution of side payments and tasks, as well as updating of
the trust values. It was experimentally shown that for the realistic
case of repeated games with varying task requests, valuations and
costs, the computed solutions over time converge to their theoretical
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optimum. Moreover, it was formally shown that for all communica-
tions and payments required by this protocol, it is not rational for
any agent to deviate from what we specify. To achieve this, we ap-
plied encryption-based communication techniques and developed a
sequential payment protocol.

In our proposed mechanism, expected optimal coalition struc-
tures and kernel stable solutions are computed and this involves
exponential complexities. This was done in order to demonstrate
convergence to the theoretical optimum in the experiments. How-
ever, we believe that none of our results actually depend on this
property, and that polynomial kernel based coalition formation can
equally be applied. However further work is needed to confirm this
conjecture.
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Chapter 7

Privacy Preserving Coalition
Formation

In the previous chapters, we covered the general issues of uncer-
tainty and trust of multiagent coalition formation. Here, we tackle a
problem which has not received much attention yet in the literature:
privacy preservation in coalition formation.

When agents representing different, unrelated, independent and
unacquainted entities such as individual users and service-offering
companies engage in online negotiation, it might be unacceptable for
an agent that others learn which services are accessed and which
utilities are achieved. This is especially a problem for algorithms
based on cooperative game theory since the computation of a clas-
sic solution requires complete knowledge of the game. Example ap-
plications that would benefit or even require a privacy preserving
coalition formation protocol include health care web service agents,
which form coalitions e.g. to automatically handle insurance issues,
transportation, hospital and medical personal assignments. But an
agent responsible for transportation should not need to know which
patients are assigned to which doctors.

In this chapter, we thus present a coalition formation algorithm
and protocol BSCA-P for service agents which overcomes such pri-
vacy issues. More precisely, we show that distributing the coalition
value by application of the recursively bilateral Shapley value, agents
are not required to reveal their payoffs and particularly their self val-
ues. However, as it turns out, the existence of service requests might
not be completely hidden in certain cases. As a resort to this prob-
lem, we propose to anonymize service accesses, as well as a simple
means to measure this anonymity. This allows the agents to individ-
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ually specify minimum degrees for these anonymities, which might
also account for particular other agents.

An additional effect of the utilized anonymous routing protocol
is that all input/output data for service accesses can also be hid-
den from all agents except the recipient, since the protocol relies on
message encryption. This ensures that the even during the execu-
tion phase, the established anonymity degrees can be preserved.

Preliminary versions of the BSCA-P have been previously pub-
lished in Blankenburg and Klusch (2005a) and Blankenburg and
Klusch (2006).

Additionally, we provide a section on some basic properties of the
kernel which are relevant for privacy preservation. In particular, we
show that agents can theoretically hide their self values completely
if an appropriate coalition formation algorithm and protocol are em-
ployed. This section is based on Blankenburg and Klusch (2004).

The remainder of this chapter is organized as follows: in sec-
tion 7.1 we briefly introduce a simplified service agent model and
coalition game that we use in this chapter. In section 7.2 we show
how this model can be exploited to negotiate coalitions while hid-
ing information about coalition values, local worths and payoffs, but
also show that the existence of service requests might not be hidden
completely in general. In section 7.3 we then alliviate this problem
by introducing means to let the agents at least stay anonymous to
some degrees, and adopt an anonymous routing protocol to enable
anonymous service access. Based on these results, we propose and
discuss the coalition formation protocol BSCA-P in section 7.4. In
section 7.6 we additionally show some basic properties of the kernel
which are relevant for privacy preservation. Finally, we summarize
in section 7.7.

7.1 Preliminaries

Since our focus is the design of a coalition formation algorithm and
protocol that preserves privacy, we employ a service agent model
where requests and offers are explicitly modeled. We therein assume
that only primitive services are offered, and no composed ones. How-
ever, the requesting agents might still compute and employ compo-
sitions of the offered services.
Definition 7.1.1 Simplified Service Agent Model
We define
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• OSa as the the set of (primitive) services offered by agent a,

• OSC :=
⋃
OSa, a ∈ C, as the the set of (primitive) services offered

by all agents in coalition C,

• Ra as the the set of all services requested by agent a,

• KRa(C) ⊆
⋃
a∗∈C Ra′ as the subset of requests by agents a′ in

coalition C which agent a ∈ C knows about,

• Ea(C) ⊆ OSa ∩ KRa(C) as the the set of services that are to be
executed by a in coalition C,

• Ra(C) ⊆ OSC ∩ Ra as the set of services which are executed by
specific agents in coalition C, for which we also say that these
services are accessed by a,

• wa(ws), ws ∈ Ra, as the agent a’s valuation for the execution of
service ws and

• ca(ws), ws ∈ OSa, as the agent a’s cost for the execution of service
ws.

It is further assumed that

• ∀ws ∈ Ra ∩Ea′(C) : wa(ws) ≥ ca′(ws), i.e. the agents abstain from
service execution with negative net value.

• the agents have no resource constraints, i.e. that each offered
service might be executed multiple times in a coalition.

4

Corollary 7.1.2. From the general definition 2.2.27 of the local worth,
it follows that the local worth in the simplified service agent model is
given by

lwa(C) =
∑

ws∈Ra(C)

wa(ws)−
∑

ws∈Ea(C)

ca(ws)

We provide a simple example game which will be used as a running
example throughout this chapter:
Example 7.1.3
Consider a 3-agent coalition game in the simplified service agent
model as shown in figure 7.1. Service agent a1, for example, offers
its own web service ws1 to any other known agent of the game, that
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offers:
•Web service ws1 (local execution cost: 1 k€)
requests:
•Web service ws2 (local sales value: 2 k€)

offers:
• ws2 (c: 1 k€)
• ws4 (c: 2 k€)

requests:

• ws3 (v: 2 k€)

offers:
•ws3 (c: 1 k€)
requests:
•ws1 (v: 3 k€)

1

2

3

30)(})3,1({
1)(0})3,1({

133

111

=−=
−=−=

wsvlw
wsclw

1)(0})2,1({
20)(})2,1({

222

211

−=−=
=−=

wsclw
wsvlw

C {i} {1,2} {1,3} {2,3} {1,2,3}
v(C) 0 1 2 1 4

3-Agent 
Coalition Game

Figure 7.1: Example coalition game for three web service agents.

are service agents a2 and a3. Each local execution of its service would
cost a1 an amount of 1ke, but produces no monetary income as it is
of no relevance for its own users. Hence, its self value v(a1) is zero.

Agent a3 is requesting access to service ws1 from a1, as it can
charge its local users with an total amount of 3ke per use, but does
not offer any service of interest for users of a1 in turn. As a conse-
quence, the local worth of a1 in a joint coalition with a3 is lwa1(C1) =
−ca1(ws1) = −1 whereas that of a3 is lwa3(C1) = −ca3(ws1) = 3. 4

As stability concept, we employ the recursively bilateral Shapley
value. Remember that the bilateral Shapley value, as introduced
in definition 2.2.18, is

σb(Ci, v) =
1

2
v(Ci) +

1

2
(v(C1 ∪ C2)− v(Ck)), k ∈ {1, 2}, k 6= i

Further, recall that the recursively bilateral as presented in defini-
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{1}
v=0

u=1.5

{2}
v=0
u=1

{3}
v=0

u=1.5

{1, 3}
v=2
u=3

{1, 3}
v=2
u=3

C={1,2,3}
v=4

C={1,2,3}
v=4

S = { {1,2,3} }, 

u = <1.5, 1, 1.5>

S = { {1,3}, {2} }

U = <0.5, 0.5, 0>

Figure 7.2: Binary tree of bilateral coalitions for the example game.

tion 2.2.21, is defined as

u(C∗i ) = σb(C
∗, C∗i , vC∗), i ∈ 1, 2, with

∀C∗∗ ⊆ A : vC∗(C
∗∗) =


σb(C

p, Cp
k , vCp) if C∗∗ = C∗, Cp ∈ TC ,

C∗ = Cp
k , k ∈ 1, 2

v(C∗∗) otherwise

Example 7.1.4
In the game of example 7.1.3, consider the bilateral coalition C1 =
{1} ∪ {3}. Since v({1}) = v({3}) = 0, it holds that σb({1}, {1} ∪ {3}, v) =
σb({1}, {1} ∪ {3}, v) = 0 + 1

2
(2− 0) = 1. Merging of C1 with C2 = {2} (C =

C1∪C2) yields v(C) = 4 and v(C2) = 0, thus σb(C1, C, v) = 2+ 1
2
(4−2) = 3

and σb(C2, C, v) = 0 + 1
2
(4 − 2) = 1. Recursively replacing the coalition

value v(Ci) in (5) with the bilateral Shapley value of Ci then leads to
the following payoff distribution (cf. figure 7.2): u(a1) = σb({1}, {1} ∪
{3}, v∗) = 0+ 1

2
(3−0) = 1.5 and u(a3) = σb({3}, {1}∪{3}, v∗) = 0+ 1

2
(3−0) =

1.5. 4
Like the BSCA-F algorithm presented in chapter 4, the coalition for-
mation algorithm BSCA-P introduced in this chapter is based on the
classic BSCA algorithm for the formation of bilateral Shapley value
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stable coalitions. The BSCA protocol restricts negotiation to pairs
of voted leaders of coalitions of given maximum size, thereby reduc-
ing the communication complexity. Each coalition leader recursively
distributes the potential joint coalition value to those agents that are
members of its current coalition according to the bilateral Shapley
values (cf. figure 7.2). Coalitions are formed bilaterally per round
based on coalition proposals that are mutually accepted based on
the expected maximum of individually rational payoffs for the agents
involved. However, to determine these potential payoffs, the BSCA
protocol requires each agent to reveal its local worth to every poten-
tial coalition partner per round.

From the defition of the local worths in section 7.1 it is clear that
knowing an agent’s local worths, one is able to deduce at least

• its self value, i.e. the local income of the agent from selling its
own services exclusively to local users.

• stronger interest of the agent in certain services offered by par-
ticular agents than by others.

But such knowledge could lead to an unwanted competitive advan-
tage, in particular if a broader context than just the game at hand
is considered. Fortunately, as we show in the following section, it
turns out that the recursively bilateral Shapley value is very well-
suited to hide local worths and coalition values from other agents
participating in the game.

7.2 Hiding Local Worths and Coalition Val-
ues

In this section, we show that in order to implement recursively bilat-
eral Shapley value stable payoff distributions by repeatedly merging
coalitions, local worths and coalition values do not need to be com-
micated at all. Instead, for every merge of two coalitions, it is suffi-
cient to compute the updated side payments using only the previous
side payment and the additional local worths (defined below) of some
subcoalitions.

To see how this can be done, we first consider an alternative view
of the recursively bilateral Shaply value stable payoffs. It makes
clearer that each non-root node gets its own coalition’s value plus
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half of the additional payoff allocated to its parent node (its sibling
getting the other half):

Lemma 7.2.1. If C is a recursively bilateral coalition and u a recur-
sively bilateral Shapley value stable payoff distribution, it follows di-
rectly from the definitions 2.2.18 and 2.2.21 that for non-root nodes
C∗i in TC, i ∈ {1, 2},

u(C∗i ) = v(C∗i ) +
1

2
(u(C∗)− v(C∗1)− v(C∗2)), k ∈ {1, 2}, k 6= i

Proof. Because C∗i is a non-root node, it must have the parent C∗ ∈
TC. Thus, by applying definitions 2.2.18 and 2.2.21 we get

u(C∗i ) = σb(C
∗, C∗i , vC∗)

=
1

2
vC∗(C

∗
i ) +

1

2
(vC∗(C

∗)− vC∗(C∗k))

=
1

2
v(C∗i ) +

1

2
(vC∗(C

∗)− v(C∗k))

The last equation holds because C∗i 6= C∗ and C∗k 6= C∗. To show that
vC∗(C

∗) = u(C∗), we have to consider two cases: either C∗ is the root
node, or it has a parent Cp ∈ TC.

In the first case, definition 2.2.21 asserts that vC∗(C∗) = v(C∗) and
that u is efficient, so v(C∗) = u(C∗).

In the second case, because C∗ = Cp
m, m ∈ {1, 2}, by defini-

tion 2.2.21
u(C∗) = σb(C

p, C∗, vCp)

while at the same time (because C∗ = Cp
m, m ∈ {1, 2})

vC∗(C
∗) = σb(C

p, C∗, vCp)
2.2.21
= u(C∗)

Finally, we can thus rewrite

u(C∗i ) =
1

2
v(C∗i ) +

1

2
(vC∗(C

∗)− v(C∗k))

=
1

2
v(C∗i ) +

1

2
(u(C∗)− v(C∗k))

= v(C∗i )− 1

2
v(C∗i ) +

1

2
(u(C∗)− v(C∗k))

= v(C∗i ) +
1

2
(u(C∗)− v(C∗k)− v(C∗i ))

k 6=i
= v(C∗i ) +

1

2
(u(C∗)− v(C∗1)− v(C∗2))
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The last term in the proof thus signifies the additional payoff ob-
tained by C∗1 and C∗2 joining together. If C∗ is the root node in TC and
thus u(C∗) = v(C∗), we also call it the additional coalition value:

Definition 7.2.2 Additional coalition value
For a bilateral coalition C, its additional coalition value (in the con-
text of v) is defined as the difference of C ’s value and the values of
its subcoalitions C1 and C2:

av(C1, C2) := v(C1 ∪ C2)− v(C1)− v(C2)

4
Now we consider the case where two coalitions are joined together
from one configuration to another. Together with lemma 7.2.1 we
can show that the recursively bilateral Shapley value payoff of each
non-root node can be stated as a function of its payoff in the first
configuration, the additional coalition value of the new root and the
node’s depth in the tree:

Lemma 7.2.3. Let (C1, u1) and (C2, u2) be configurations for a game
(A, v), with u1 and u2 being recursively bilateral Shapley value stable,
and ∃C1, C2 ∈ C1 : C = C1 ∪ C2 ∈ C2. Then

∀C∗ ∈ TC , d(C∗, TC) > 0 : u2(C
∗) = u1(C

∗) +
av(C1, C2)

2d(C∗,TC)

Proof. By induction over d(C∗, TC):

d(C∗, TC) = 1: In this case, it holds that C∗ = Ci, i ∈ {1, 2} (one of
C ’s direct children). Because of lemma 7.2.1 and because u2 is
efficient (by definition 2.2.18), we can write

u2(C
∗) = σb(C

∗, C, v)

7.2.1
= v(C∗) +

1

2
(u(C)− v(C∗1)− v(C∗2))

= v(C∗) +
1

2
(v(C)− v(C∗1)− v(C∗2))

7.2.2
= v(C∗) +

1

2
av(C1, C2)

Because also u1 is efficient, and because C∗ ∈ C1, we have
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v(C∗) = u1(C
∗) and thus

v(C∗) +
1

2
av(C1, C2) = u1(C

∗) +
1

2
av(C1, C2)

= u1(C
∗) +

av(C1, C2)

2d(C∗,TC)

d(C∗, TC) = k > 1: In this case, we assume lemma 1 holds for all C∗∗

with d(C∗∗, TC) < k. Because C is recursively bilateral, C∗ is a
bilateral coalition at a depth > 1 in TC. Formally, this implies
that

C∗ = Cp
i , i ∈ {1, 2},

Cp ∈ TC and
d(Cp

i , TC) = d(Cp, TC) + 1

Because u2 is recursively bilateral Shapley value stable and
thus also efficient, and applying the induction hypothesis, we
can write

u2(C
p
i )

2.2.21
= σb(C

p
i , C

p, vCp
i
) with

vCp
i
(Cp) = u2(C

p)

= u1(C
p) +

av(C1, C2)

2d(Cp,TC)

Therefore, applying lemma 7.2.1 and the induction hypothesis,
we can then rewrite

u2(C
p
i )

7.2.1
= v(Cp

i ) +
1

2
(u2(C

p)− v(Cp
1 )− v(Cp

2 ))

ind.h.
= v(Cp

i ) +
1

2
(u1(C

p) +
av(C1, C2)

2d(Cp,TC)
− v(Cp

1 )− v(Cp
2 ))

= v(Cp
i ) +

1

2
(u1(C

p)− v(Cp
1 )− v(Cp

2 )) +
av(C1, C2)

2d(Cp,TC)+1

7.2.1
= u1(C

p
i ) +

av(C1, C2)

2d(Cp,TC)+1

= u1(C
p
i ) +

av(C1, C2)

2d(C
p
i ,TC)
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For a merge of C1 and C2 to form C = C1 ∪ C2, we further define the
additional local worth of agents and subcoalitions with respect to a
coalition:
Definition 7.2.4 Additional local worth
Let C1 and C2 be coalitions, and a ∈ Ci, i ∈ {1, 2}. Then a’s additional
local worth is defined as

alwa(Ci, C) := lwa(C)− lwa(Ci)

We also define the additional local worth for a subcoalition C∗ ∈ TCi
:

alw(C∗, Ci, C) :=
∑
a∈C∗

alwa(Ci, C)

4
Corollary 7.2.5. Given a recusively bilateral coalition C = C1∪C2 and
a non-leaf coalition C∗ ∈ TCi

, i ∈ {1, 2}, then with C∗ = C∗1 ∪ C∗2

alw(C∗, Ci, C) =
∑
a∈C∗

alwa(Ci, C)

=
∑
a∈C∗1

alwa(Ci, C) +
∑
a∈C∗2

alwa(Ci, C)

= alw(C∗1 , Ci, C) + alw(C∗2 , Ci, C)

Therefore, if the representative agent a of C∗ is the agent to to com-
pute alw(C∗, Ci, C) and receives the additional local worths of C∗’s
subcoalitions from their respective representatives, a has simply
to sum up the two values. Additionally, the representatives of C1

and C2, having thus obtained their respective alw(Ci, Ci, C), can do
analogously to compute the additional coalition value by exchanging
alw(Ci, Ci, C) among each other and adding them up, because:

Corollary 7.2.6. The additional coalition value av(C1, C2) for a poten-
tial merge to form coalition C = C1 ∪C2 is equal to the sum of C1’s and
C2’2 additional local worth with respect to C:

av(C1, C2) =
∑
a∈C

lwa(C)−
∑
a∈C1

lwa(C1)−
∑
a∈C2

lwa(C2)

=
∑
a∈C1

lwa(C1 ∪ C2)−
∑
a∈C1

lwa(C1)

+
∑
a∈C2

lwa(C1 ∪ C2)−
∑
a∈C2

lwa(C2)

= alw(C1, C1, C) + alw(C2, C2, C)
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Finally, the following theorem shows that in order to compute its
side payment when merging coalitions C1 and C2, each subcoalition
C∗ ∈ TCi

only needs to consider its sidepayment for the case without
the merge and the additional local worths of C1, C2 and C∗:

Theorem 7.2.7. Let (C1, u1) and (C2, u2) be configurations for a game
(A, v), with u1 and u2 being recursively bilateral Shapley value stable,
and ∃C1, C2 ∈ C1 : C = C1 ∪ C2 ∈ C2. Then ∀C∗ ∈ TCi

, i ∈ {1, 2}:

spu2(C
∗, C) =spu1(C

∗, Ci)− alw(C∗, Ci, C)

+
alw(C1, C1, C) + alw(C2, C2, C)

2d(C∗,TC)

Proof. Remember that by definition 2.2.29, for any u it holds that

spu(C
∗, C) =

∑
a∈C∗

u(a)− lwa(C) = u(C∗)−
∑
a∈C∗

lwa(C)

Because of lemma 7.2.3, definition 7.2.4 and corollary 7.2.5, we can
rewrite

spu2(C
∗, C) = u2(C

∗)−
∑
a∈C∗

lwa(C)

7.2.3
= u1(C

∗) +
av(C1, C2)

2d(C∗,TC)
−
∑
a∈C∗

lwa(C)

7.2.4
= u1(C

∗) +
av(C1, C2)

2d(C∗,TC)

−
∑
a∈C∗

(lwa(Ci) + alwa(Ci, C))

7.2.4
= spu1(C

∗, Ci)− alw(C∗, Ci, C) +
av(C1, C2)

2d(C∗,TC)

7.2.5
= spu1(C

∗, Ci)− alw(C∗, Ci, C)

+
alw(C1, C1, C) + alw(C2, C2, C)

2d(C∗,TC)

Please note that in the particular case of C∗ = Ci, it holds that
spu1(C

∗, Ci) = 0 because of corollary 2.2.29. Hence, in order to imple-
ment recursively bilateral Shapley value stable payoff distributions
by repeatedly merging coalitions, all subcoalitions in the tree TC of a
coalition C = C1 ∪ C2 to be formed can compute their side payments
directly by using only
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ws2 (c: 1 k€)
ws4 (c: 2 k€)
ws3 (v: 2 k€)

Expected benefit of agent 1 from coalition {1,2} ?
alw1({1}, {1,2}) = 2, alw2({2}, {1,2}) = -1
av({1}, {2}) = 1, u(1) = v({1})+.5*av({1},{2})

u1=<0.50.5, 0.5, 00.5, 0>
Expected benefit agent 1 from coalition {1,3} ?

alw1({1}, {1,3}) = -1, alw2({2}, {1,2}) = 3
av({1}, {3}) = 2, u(1) = v({1})+.5*av({1},{3})

u1=<11, 0, 1>

ws3 (c: 1 k€)
ws1 (v: 3 k€)

ws1 (c: 1 k€)
ws2 (v: 2 k€)

1
v=0

2
v=0

3
v=0Expected benefit of agent 2 from coalition {2,3} ?

alw2({2}, {2,3}) = 2, alw3({2}, {1,2}) = -1
av({2}, {3}) = 1

u1=<0, 0.50.5, 0.5>

Negotiation round 1:

Preferences: 3 > 2

Preferences: 1 = 3 Preferences: 1 > 2

Figure 7.3: Privacy preserving negotiation of coalitions (round 1).

1. their side payment in their current coalition C1 or C2,

2. their own as well as C1 and C2’s additional local worths for
the merge, which can be computed recursively from the addi-
tional local worths of their respective subcoalitions, or directly
for single-agent coalitions.

Therefore, local worths as well as coalition values do not have to be
revealed at all. This is in contrast to the traditional way of nego-
tiating stable coalitions with complete prior knowledge about local
worth and coalition values that constitute the game to be solved.
We acknowledge that this does hold in particular for the bilateral
Shapley value but not necessarily for other game-theoretic stability
concepts.
Example 7.2.8
Consider, again, our example coalition game (cf. figure 7.1). During
the first negotiation round, it turns out that agents a1 and a3 would
prefer each other as a coalition partner, since both of them could
obtain a higher individually rational payoff in a joint coalition than
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1
v=0

2
v=0

3
v=0

Negotiation round 2:

C1
v=2
C1

v=2

C
v=4
C

v=4

S1={ {1,3}, {2} }
u1=<0.5, 0.5, 0>

Expected benefit from grand coalition
C = {1,2,3} ?

alw1({1,3}, C) = 2
alw3({1,3}, C) = -1
alw2({2], C) = 1

av({1,3}, {2}) = 2

u2({2}) = v({2}) + .5 * av({1,3}, {2}) 
=1 > v({2}) = 0  individual rational

u2({1,3}) = v({1,3}) + .5 * av({1,3}, {2}) = 3
recursively distributed down the tree:

u2({1}) = v({1}) + .5 * u2({1,3}) = 1.5 

u2({3}) = v({3}) + .5 * u2({1,3}) = 1.5            
> v({1}) = v({3}) individual rational

S2 = { {1,2,3} }, 

u2 = <1.5, 1, 1.5>

Figure 7.4: Privacy preserving negotiation of coalitions (round 2).

each could get in a separate coalition with agent a2 (cf. figure 7.3).
Agent a2 is even indifferent in respect to the coalition it would prefer.

More concrete, {1} and {3} form a coalition C1, with alwa1({1}, C1) =
−1− 0 = −1 and alwa3({3}, C1) = 3− 0 = 3. According to theorem 7.2.7
we get

spu({1}) = 0 +
(−1) + 3

21
− (−1) = 2

and

spu({2}) = 0 +
(−1) + 3

21
− 3 = −2.

Thus, the net amount received by a1 and a3 are

u(a1) = lwa1(C1) + spu({1}) = −1 + 2 = 1

= σb({1}, {1} ∪ {3}, v)

and

u(a3) = lwa3(C1) + spu({3}) = 3− 2 = 1

= σb({2}, {1} ∪ {2}, v).

In the second round (cf. figure 7.4), agent a2 negotiates with the
leader of the newly formed coalition C1 for joining as it is individually
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rational to do so: Its expected payoff in a potential grand coalition
amounts to 1ke, that is it may obtain more by means of coopera-
tion than it would by staying alone. On the other hand, forming
of coalition C1 is consent with this proposal for the same reason:
Its bilateral Shapley value of 3ke, recursively distributed down the
coalition tree to agents a1 and a3, yields a rational expected payoff
for both members.

More concrete, their additional local worths in the grand coalition
C are

alwa1({1}, C) = 1− (−1) = 2,

alwa3({3}, C) = 2− 3 = −1

alw(C1, C1, C) = alwa1({1}, C) + alwa3({2}, C) = 1

alw(C2, C2, C) = 1− 0 = 1

The additional coalition value is thus

av(C1, C2) = alw(C1, C1, C) + alw(C2, C2, C) = 2

Applying theorem 7.2.7 again, we get the new payoff distribution u∗

with
spu∗(C1) = 0 +

1 + 1

21
− 1 = 0

(= spu∗(C2))

The net payoffs of C1 and C2 are equal to their bilateral Shapley
values:

u∗(C1) = lwa1(C) + lwa3(C) + spu∗(C1)

= 1 + 2 + 0 = 3 = σb(C1, C, v)

u∗(C2) = lwa2(C) + spu∗(C2)

= 1 + 0 = 1 = σb(C2, C, v)

For sidepayments within C1, we again apply theorem 7.2.7:

spu∗({1}, C) = spu({1}, C1) +
1 + 1

22
− 2

= 2 + 0.5− 2 = 0.5

spu∗({3}, C) = spu({3}, C1) +
1 + 1

22
+ 1

= −2 + 0.5 + 1 = −0.5

150



CHAPTER 7. PRIVACY PRESERVING COALITION FORMATION

Consequently, the net payoffs of a1 and a3 are equal to their recur-
sively bilateral Shapley value stable payoffs:

u∗(a1) = lwa1(C) + spu∗(a1)

= 1 + 0.5 = 1.5 = σb({1}, C, v)

u∗(a3) = lwa3(C) + spu∗(a2)

= 2 + (−0.5) = 1.5 = σb({3}, C, v)

4
Now, the question is, to which extent can the agents’ privacy be
preserved by negotiating coalitions while hiding their local worths
and coalition values as outlined above?

Proposition 7.2.9. Let there be an additional local worth alw(C∗, Ci, C),
i, k ∈ {1, 2}, k 6= i. Further assume that the agents in Ci know about all
requests in Ci, i.e. that ∀a ∈ Ci : KRa(Ci) =

⋃
a′∈Ci

Ra′. Then, if

1. alw(C∗, Ci, C) < 0, it can be deduced that an agent a ∈ C∗ exe-
cutes some service ws ∈ OSa for an agent a′ ∈ Ck.

2. alw(C∗, Ci, C) > 0, it can be deduced that

(a) an agent in C∗ requests some service in Ck, or

(b) that a service which was to be executed in C∗ previous to the
merge with Ck is to be executed by an agent in Ck after the
merge.

Both cases might also be true at the same time.

Proof. We proof the different cases according to their numbering in
the proposition:

1. alw(C∗, Ci, C) < 0 implies that∑
a∈C∗

alwa(Ci, C) < 0

⇔
∑
a∈C∗

(lwa(C)− lwa(Ci)) < 0

⇔
∑
a∈C∗

lwa(C) <
∑
a∈C∗

lwa(Ci)

and therefore that for at least one agent a ∈ C∗: lwa(C) < lwa(Ci).
But remember the requirement of definition 7.1.1 that excludes
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service executions with negative net value. It then follows that
a must execute at least one additionally requested service in
coalition C. Then, considering the assumption that the agents
in Ci know about all requests in Ci, it further follows that this
request cannot come from an agent in Ci.

2. Conversely, alw(C∗, Ci, C) > 0 implies that for at least one agent
a ∈ C∗: lwa(C) > lwa(Ci). Therefore, reversing the argument of
the first case, it follows that this incease of a’s payoff can only
be induced by either one or both of these two possible cases:

(a) At least one more of a’s requested services is executed in C
with respect to Ci. This additional execution cannot come
from an agent in Ci, since otherwise the assigned service
executions in Ci would have already contained it because of
the assumption of perfect knowledge of service requests in
Ci. Note that this might be true only transitively if there is
at least one other agent a′ ∈ Ci requesting the same service,
and for which the service was to be executed by an agent
a∗ ∈ Ci. Then it might happen in C that a∗ executes the
service for a instead of a′. But then, service needs to be
executed by yet another agent for a′, so ultimately an agent
in Ck must provide an additional execution.

(b) In C, a does not have to execute a service which it is to
execute in Ci. It follows that an agent in Ck must take
over this execution in C, at a lower or equal cost. Similar
to the case 2a, this might be true only transitively, but
in which case the same argument can be used to show
that ultimately an agent in Ck must take over an additional
execution of the service in C.

It is interesting to regard some corner cases of proposition 7.2.9:

Corollary 7.2.10. Consider case 1 of proposition 7.2.9 and assume
that the sets of service offers OSa are known for all a ∈ A. Then to all
beholders of alw(C∗, Ci, C),

• if |Ck| = 1, the identity of agent a′ with an additional request is
immediately known;
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• if |OSa| = 1, the identity of the additionally requested service is
immediately known;

• if |OSC∗| = 1, the identity of the additionally requested service as
well as the net profit of its execution are immediately known.

In the case 2, if OSCi
∩OSCk

= ∅, then case 2a must be true. Then, the
same above statements for case 1 hold in in reverse for C∗ instead of
Ck, and vice versa.

7.3 Anonymous Service Requests and Ac-
cess

With the result of proposition 7.2.9 in the previous section, it is
clear that the direct computation of side payments based on ad-
ditional local worths is not quite enough for the agents to preserve
their privacy, or at least compromise it in a controlled way. However,
proposition 7.2.9 and corollary 7.2.10 also show that it depends on
the sizes of coalitions and offer sets what exactly can be deduced,
and with which certainty.

For example, it might be unacceptable for an agent a to be iden-
fiable as the certain originator of a service request. But it might be
acceptable for a if the request can only be known to originate from
any one of k ∈ N agents. Likewise, it might be also acceptable for a
to be identifiable as the originator of a service request if the service
can only be identified to be one of k possible services.

In other words, agents might constrain their service requests to
adhere to some degree of anonymity, thereby achieving some weaker
notion of privacy at least. This is the approach that we outline in
this section.

To measure degrees of anonymity, different notions have been
proposed in the literature, such as total, or group anonymity, un-
der possibilistic or probabilistic interpretations Halpern and O’Neill
(2003), Pfitzmann and Köhntopp (2001).

For simplicity, we employ the concept of possibilistic k-anonymity,
which requires only that there exists some set of agents K with size
k, such that each a ∈ K is a possible sender. If we assume that
each (sub-)coalition communicates with other (sub-)coalition only
via their respective representatives, then from the perspective of
agents in C2, any agent in C1 might be the originator of the service
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request. The determination of the agent k-anonymity for agents in
C1 wrt. agents in C2 and a matching minimum-constraint are thus
straightforwardly defined:
Definition 7.3.1 Agent anonymity constraint
Given a coalition C1, for every agent a ∈ C1 its agent anonymity aa
with respect to (agents in) any other coalition C2, C1 ∩ C2 = ∅, is
defined as

aaC1 = |C1|
Each agent ai might then specify agent anonymity (minimum) con-

traints aaimin(ws) with respect to requests for service ws. With ai in
coalition C1, sending a request for service ws to coalition C2, C1∩C2 =
∅, is said to adehre to ai’s agent anonymity constraints iff

aaimin(ws) ≤ aaC1

4
Thus, the adherence to agent anonymity constraints enables agents
in a coalition to maintain a degree of privacy when negotiating a
merge with another coalition. However, this doesn’t yet help an agent
to also preserve its privacy with respect to other agents in its own
coalition: for a merge of coalition C1 with coalition C2 to form C =
C1 ∪ C2, the additional local worth alw(C1, C) has to be computed.
Therefore, each subcoalition C∗ ∈ TC1 has to compute alw(C∗, C1, C)
first. In particular, agent a has in general to inform some other agent
in C1 about alw({a}, C1, C). For example, assume that the additional
local worths are computed recursively as outlined in the previous
section. Then they will be propagated up the coalition tree TC1 via the
respective subcoalition representatives, though being accumulated
with the additional local worth of the respective sibling subcoalition
at each step.

Thus, we additionally use the concept of service anonymity, ex-
pressing that an agent accesses any one of a number of possible
services:
Definition 7.3.2 Service anonymity constraint
Let OSa denote the set of offered services of agent a. Then the ser-
vice anonymity for requested services offered by a coalition C1 with
respect to (agents in) any other coalition C2, C1∩C2 = ∅, is defined as
the number of unique services offered by C1’s members:

sa(C1) =

∣∣∣∣∣ ⋃
a∈C1

OSa

∣∣∣∣∣
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Checking of desired service and agent anonymity in C = C1 U {2} 
before proposal submission:

alw({2},C)=-1alw({a1}, C)=2

sa(srws2) in C1 = 2

agent 3 does not know
whether agent 1 requests
ws2 or ws4

aa(srws2) wrt C2 = 2
agent 2 does not know
whether agent 1 or 3 
requests ws2

1

alw(C1,C)=1

alw({2},C)=2

1offers:
•ws1 (c: 1 k€)
requests:
•ws2 (v: 2 k€)

3

sa(srws3) in {3} = 1
aa(srws3) wrt C1 = 1

agents 1 and 3 know
that agent 2 requests
ws3 

2

offers:
•ws2 (c: 1 k€)
•ws4 (c: 2 k€)
requests:
•ws3 (v: 2 k€)

offers:
•ws3 (c: 1 k€)
requests:
•ws1 (v: 3 k€)

2

av(C)=2

Figure 7.5: Individual service request anonymities.

Analogously to the agent anonymity contraints, each agent ai
might then additionally specify service anonymity (minimum) con-
traints saimin(ws) with respect to requests for service ws. With ai in
coalition C2, sending a request for service ws to coalition C1, C1∩C2 =
∅, is said to adehre to ai’s service anonymity constraints iff

saimin(ws) ≤ saC1

4
For an example demonstrating agent and service anonymity, see fig-
ure 7.5.

Having outlined how to maintain the minimum anonymity con-
raints during the coalition negotiation, there is still one part missing:
after the negotiation, requesting agents will need to actually engage
in communication with the executing agents (assuming that there
is some input/output involved). But an agent sending a message to
another agent in another coalition can then still be identified by the
receiving agent (and possibly others) simply as the originator of that
message.

Therefore, to maintain the above mentioned types of anonymity
also at the communication level for the service execution phase, we
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Figure 7.6: Options of encrypted service request message "onion"
routing from agent a2 to agent a3.

Figure 7.7: Two ways of a2 contacting a3 via Onion Routing.

adopt the simple onion routing protocol Syverson et al. (1997), which
is based on rerouting.

In a rerouting protocol, a message is not directly sent to the re-
ceiver, but travels over intermediate network nodes, or agents in our
case. The onion routing protocol was originally defined for HTTP-
connections, but we adopt it here for our agent coalition formation
setting, by looking only at high-level messages sent between the
agents instead of technical details of an underlying protocol. Our
focus is to enable the agents to request and access services within
their coalition anonymously. We thus also do not bother about prob-
lems like possible eavesdropper agents or traffic analysis, as such
problems are out of scope of this thesis. The basic idea of the onion
routing protocol is to wrap a message in several layers of encryption
and reroute it over several rerouting nodes such that no single node
is able to determine the sender and receiver of a message. Also, when
one agent contacts another, the nodes over which messages are sent
are chosen randomly. Figure 7.7 illustrates this for a three-agent
case. It incorporates a public/private key encryption method, such
as the well-known RSA method (originally proposed in Rivest et al.
(1978)). Thus, we extend our agent model such that every agent a is
required to possess a private key privkeya and a matching public key
pubkeya for the chosen encryption method. Further, a needs to be
able to execute according encryption/decryption functions. In the
following, enc(pubkey,m) denotes a function that encrypts message m
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using the public key pubkey, and dec(privkey, em) denotes the corre-
sponding decryption function for the encrypted message em using
the private key privkey. To let agent a1 send an encrypted message m
to agent a2, a1 encrypts m by executing enc(pubkeya2 ,m), sends the re-
sult em to a2 which decrypts it by executing dec(privkeya2 , em). Thus,
the agents need to perform an initial public key exchange.

In the onion protocol, actually only a part of a message is en-
crypted with the public key method. This part contains a key for
a symmetric encryption method, i.e. one that uses the same key
for encryption and decryption. The remainder of the message is en-
crypted with this method. This is done because of performance rea-
sons, since symmetric encryption methods usually are much faster
than public key methods. However, we go not into those details here.

Once an initial onion routed circuit, i.e. the overall route from
the originator to the receiver, is established, it might be kept open
to allow for further mutual messages. This is achieved by assigning
randomly generated identifiers to each part of the route. Therefore,
by employing onion routing, each agent might establish a circuit
with each other agent to send anonymized messages which can also
be replied to. But since the list of relay nodes is generated randomly,
its length should be bounded by a max. value, which we call cmax.
Otherwise, circuits of arbitrary length could be constructed, mak-
ing it impossible to put a bount on the additional communication
complexity that is induced by employing onion routing.

Thus, having a means to also anonymize the service execution
phase in place, we are finally ready to present our privacy preserving
coalition formation algorithm and protocol, BSCA-P, in the following
section.

7.4 Algorithm BSCA-P

In this section, we finally propose the coalition formation protocol
BSCA-P that makes use of all concepts and means that have been
introduced in the previous sections. In the algorithm, we assume
that

• service offers along with service execution costs are known in
prior (they could be distributed among the agents in a simple
initial step of offer exchange).
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• all agents are capable of sending, receiving and replying to
anonymous messages to all other agents via onion routing with
constant max. circuit length cmax.

• there exists a function Rep : 2A 7→ A which unambiguously iden-
tifies the representative of a given coalition.

Algorithm 7.4.1
For a game (A, v), C0 := {{a}|a ∈ A}, r := 0 and ∀C ∈ C0 : sp0(C) := 0.
In every coalition C ∈ Cr, every agent a ∈ C performs:

1. Let C ∈ Cr, a ∈ C and C∗ := C \ C.

2. Communication:

(a) For all C∗ ∈ C∗ do:

i. Determine the set Ra(C
∗) of requests, subject to the set

OSC∗ of offers, service execution costs and minimum
anonymity constraints aaimin(ws) and saimin(ws)

ii. For each service request which is in Ra(C)∩Ra(C
∗) keep

the one with minimum costs, thereby determining set
Ra(C ∪ C∗) of a’s requests in the merged coalition.

iii. Inform all agents in C ∪ C∗ about a’s accessing their
offered services according to Ra(C ∪ C∗) via an anony-
mously sent message.

iv. Receive anonymously sent messages about a’s offered
services being accessed from all agents in C∗, thereby
determining Ea(C ∪ C∗).

v. Set alwsa(C∗) := alwa(C,C
∗).

vi. For each bilateral coalition Ca, Ca ∈ TC , a ∈ Ca, a =
Rep(Ca), wait for a message from Rep(Ca

i ), i ∈ 1, 2, a /∈ Ca
i

containing
alwsRep(C)(C

∗) and set

alwsa(C
∗) := alwsa(C

∗) + alwsRep(C)(C
∗)

vii. If a = Rep(C) then send alwsa(C
∗) to Rep(C∗); else send

alwsa(C
∗) to Rep(C+) with C+ ∈ TC , a = Rep(C+

i ), i ∈
1, 2, a 6= Rep(C+).

(b) If a = Rep(C) then receive alwsRep(C∗)(C) and set
alws(C∗) := alwsRep(C∗)(C) + alwsa(C

∗) for all C∗ ∈ C∗; else go
to step 3i.
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3. Coalition Proposals:

(a) Set Candidates := C∗, New := ∅ and Obs := ∅
(b) Determine a coalition C+ ∈ Candidates with

∀C∗ ∈ Candidates : alwsa(C
+) ≥ alwsa(C

∗)

(c) Send a proposal to Rep(C+) to form coalition C ∪ C+.

(d) Receive all coalition proposals from other agents.

(e) If no proposal from Rep(C+) is received and Candidates 6= ∅,
set Candidates := Candidates \ {C+} and go to step 3b.

(f) If a proposal from Rep(C+) is received, then form the coali-
tion C ∪ C+:

i. If o(Rep(C)) < o(Rep(C+)) then set Rep(C∪C+) := Rep(C);
else set Rep(C ∪ C+) := Rep(C+).

ii. Inform all other Rep(C∗), C∗ ∈ C∗ \C+ and all a∗ ∈ C, a∗ 6=
a about the new coalition and Rep(C ∪ C+)

iii. New := {C ∪ C+}, Obs := {C,C+}
(g) Receive all messages about new coalitions. For each new

coalition C1∪C2 and Rep(C1∪C2), set New := New∪{C1 ∪ C2},
Obs := Obs ∪ {C1, C2} and Candidates := Candidates \ {C1, C2}.

(h) Send the sets New and Obs to all other coalition members
a∗ ∈ C, a∗ 6= a

(i) If a 6= Rep(C) then receive the sets New and Obs from Rep(C).

(j) Set r := r + 1, Cr := (Cr−1 \Obs) ∪New.

(k) For each (sub-)coalition C∗ ∈ TC with Rep(C∗) = a, deter-
mine spr(C∗) according to theorem 7.2.7 (applying spr−1(C∗)
as the original side payment).

(l) If Cr = Cr−1then stop; else go to step 2

4

7.5 BSCA-P Properties

Theorem 7.5.1. The BSCA-P maintains the privacy of each agent a,
with a∗ denoting the agent with whom a first forms a coalition, by
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1. adhering to a’s anonymity constraints,

2. hiding a’s local worths, and in particular its self value, from all
other agents, although a∗ might establish lower bounds, and

3. hiding a’s additional local worths from all other agents but a∗.

Proof. We first show that anonymity contraints are adhered to by
Ra(C ∪ C∗) via induction over the rounds:

• In round 0, Ra(C) = Ra({a}), which trivially adheres to the con-
straints.

• In round k > 0, assume that Ra(C) adheres to the anonymity
constraints. Also observe that if Ra(C) and Ra(C

∗) adhere to the
constraints, then so does Ra(C) ∪ Ra(C

∗), because the service
accesses are bound to the offering agents by definition 7.1.1.
Then

1. in step 2(a)i, including only those service requests in the
set Ra(C

∗) for which the anonymity constraints hold pre-
vents the access of services in OSC∗ for which the con-
straint do not hold.

2. in step 2(a)ii, the set Ra(C ∪ C∗) is constructed such that
Ra(C ∪ C∗) ⊆ Ra(C) ∪Ra(C

∗).

Having established that Ra(C ∪ C∗) adheres to the constraints, we
now show that anonymity is upheld also in all other steps of the
BSCA-P:

1. in step 2(a)iii, the anonymity constraints are upheld by inform-
ing the agents which are to execute the accessed services via
an anonymously sent message.

2. Elements of Ra(C ∪ C∗) are not sent to any additional agents in
any other step.

3. Since the additional local worths are computed using only val-
uations of accessed services Ra(C ∪ C∗), analysis of additional
local worths by an agent in C to deduce information about ser-
vice requests (as in 7.2.9) cannot lead to the discovery of service
requests for which the anonymity contraints do not hold.
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4. Additional local worths of subcoalitions in TC, except for the
root node, involving requests Ra(C) ∩ Ra(C ∪ C∗) might be an-
alyzed by agents in C∗ to deduce information about service
requests within TC, thereby possibly violating anonymity con-
straints. But these additional local worths are communicated
only within TC in step 2(a)vii. Only alw(C,C∗) (which is built
up recursively by the representatives of subcoalitions in TC) is
sent to Rep(C∗). From alw(C,C∗), agents in C∗ might deduce
that agents in C request services from agents in C∗ and vice
versa (see 7.2.9). But if this is the case, then the anonymity
contraints of the respective agents allow for this, because oth-
erwise they would not have been included in their respective
sets of accessed services and thus also not be involved in the
computation of additional local worths.

5. The same argument holds also for other coalitions observing
that C ∪C∗ forms (or might form), thereby being able to deduce
that av(C,C∗) > 0: from their perspective, the degree of agent
anonymity of agents in C ∪ C∗ is |C ∪ C∗| > |C|, and the de-
gree of service anonymity is |OSC∪C∗| ≥ |OSC∗|. Therefore, the
anonymity constraints are also upheld in this case.

6. No other steps or effects of the BSCA-P involve information
about service requests (the actual service execution obviously
does involve service requests, but this is seen as a part exter-
nal to the BSCA-P and outlined below, again using anonymous
messages to uphold anonymity also during service execution).

It is thus proved that the anonymity constraints are upheld throught
all steps of the BSCA-P. It now remains to be shown that each agent
can hide its

1. local worths, including its self value, from all other agents,
while a∗ might establish a lower bound, and

2. its additional local worths from all other agents but a∗.

For the first case, remember that only additional local worths are
communicated within the BSCA-P. Thus, no agent can determine a’s
local worths or self value. However, if agent a∗ services are accessed
by a in the coalition {a, a∗}, then a∗ can establish a lower bound on
a’s self value: if service ws is accessed in coalition C, this implies by
definition 7.1.1 that wa(ws)− ca∗(ws) > 0, and thus lwa(C) ≥ wa(ws)−
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ca∗(ws). If more than one of a∗’s services are accessed, then the lower
bound is the sum of their differences of valuations and costs. Having
this, for the next merge with a coalition CNext to form {a, a∗} ∪ CNext,
a∗ can add the lower bound on the self value to alwa({a, a∗}, CNext),
thus obtaining a lower bound for lwa(CNext), because a’s self value
is equal to lwa({a}) and definition 7.2.4. For subsequent additional
local worths received from a, a∗ might successively update its lower
bounds for a’s local worths in the same way.

For the second case, remember that the additional local worths
of each subcoalition in TC are computed recursively by summing up
the additional local worths of each direct subcoalition of a node in
TC. Thus, the fact that each additional local worth is sent only to the
representative of the immediate parent node C+ in TC ensures that
only the representative of {a, a∗} (which might be a∗ or a itself) will
ever know a’s additional local worths.

Corollary 7.5.2. The fact that service requests might be withhold
within the BSCA-P to adhere to anonymity constrains implies that the
agents solve a game G which might be different to the correspond-
ing game G0 which is equal to G except that anonymity constrains
are ignored. In particular, there might exist coalitions which are more
profitable in G0 than in G.

Theorem 7.5.3. With n = |A| and maxR := maxa∈A{|Ra|} , the compu-
tational complexity of the BSCA-P is in O(n3maxR2).

Proof. In any round r, Cr ≤ n. The iteration in step 2a is thus done at
most n times. In step 2(a)i, for each service in Ra, a has to find
an agent in the potential partner coalition which offers this ser-
vice at the least cost. The conditions 7.3.1 and 7.3.2 only have
to be checked once for each service, for which we assume negligi-
ble complexity. Thus, at most n maxR operations are required in
this step. Step 2(a)ii can be done in less than maxR2 steps. All
other steps within and outside of the iteration in step 2a are of less
complexity. Thus, the complexity of one round of the BSCA-P is
in O(n)(O(nmaxR) + O(maxR2)) = O(n2maxR2). Since the maximum
number of coalition merges is smaller than n (because after at most
n−1 merges, the grand coalition is formed), the number of rounds is
also bound by n. The overall computational complexity of the BSCA-
P is thus O(n)O(n2maxR2) = O(n3maxR2).

Theorem 7.5.4. In the BSCA-P, the number of messages caused by
each agent is in O(n2).
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Proof. In each round of the BSCA-P, the iteration in step 2a is per-
formed |Cr| − 1 < n times. Therein,

1. in step 2(a)iii, an anonymous message is sent to each agent in
C ∪ C∗, and thus relayed via at most cmax agents. Including
the relayed messages, this therefore amounts to max. cmax n
messages in the worst case. But with C ′ := C ∪ {C ∪ C∗} \ {C,C∗}
being a partition of A,

∑
C∗∈C′ |C∗| = |C ′| ≤ n. Therefore, and

since cmax is constant, the number of messages caused by this
step over all iterations is in O(n).

2. in step 2(a)vii, a message to the agent’s subcoalition represen-
tative or to Rep(C∗) is sent. Assuming that agents which are
representatives of several subcoalitions omit sending messages
to themselves, and with less than n iterations, the number of
messages sent in this step over all iterations is in O(n).

The loop between steps 3b and 3e is executed at most |Candidates| <
n times. In each iteration, in step 3c one message is sent, and there-
fore the overall number is in O(n).

In step 3(f)ii, the number of messages sent is < |C| ≤ n and so is
also in O(n).

Finally, in step 3h, |C| − 1 < n messages are sent, again being in
O(n).

Thus, in each message-sending step, O(n) messages are sent per
round. With at most n rounds, as shown in the proof of 7.5.3, the
overall number of messages caused by each agent in the BSCA-P is
thus in O(n2).

When the protocol is finished and thus coalitions are formed, agents
still have to execute the following steps in order to implement the
coalitions:

1. Each agent accesses its fulfilled services from other agents via
anonymous routing.

2. All (sub-)coalition representatives execute their respective side-
payments spr for their (sub-)coalitions. Each representative
only makes/receives payments to/from representatives of im-
mediate parent and child coalitions, such that no additional
information about payments is gained by any agent.
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The last step ensures that only a representative of a two-agent coali-
tion is informed about individual side-payments, and only about two
of them: its own, and the other agent of the two-agent coalition.
Therefore, only the first partner agent that an agent a coalesces with
might ever know a’s exact side payment.

Lastly, we point out that while corollary 7.5.2 might seem to in-
dicate that anonymity proofness, as briefly discussed in section 3.3,
also holds for the BSCA-P, this is actually not the case: because re-
cursively bilateral Shaply value stable payoffs depend on the joining
order of the subcoalitions (as opposed to the classic Shapley value),
an agent a might be better off if it joins the coalition later rather than
earlier. But exactly this can happen if a is at first prevented to join
the building-up coalition due to its anonymity constraints. Later,
when coalitions merged several times, joining the bigger coalition
might then be allowed by a’s anonymity constraints.

Having thus shown how to form an execute privacy preserving
bilateral Shapley value stable coalition formation, we now briefly
consider privacy preservation in kernel-stable coalitions before con-
cluding this chapter.

7.6 On Privacy Preservation in Kernel-stable
Coalitions

In this section we show that agents involved in the negotiations of
kernel-stable coalitions can hide their local data and information
used to compute their self-values, as well as the self values them-
selves, from other agents. This can be done without even risking any
loss of profit in the final coalition configuration.

This property of the kernel is an inherent property of the defini-
tion of kernel stability, which is stated in the following lemma.

Lemma 7.6.1. Let (A, v) and (A, v∗) with

∃a∗ ∈ A, r ∈ R : v∗(C) :=

{
v(C) + r for a∗ ∈ C
v(C) otherwise

Then it holds that the configuration (C, u∗) with u∗(a∗) = u(a∗) + r and
∀a ∈ A, a 6= a∗ : u∗(a) = u(a) is kernel-stable with respect to the game
(A, v∗) iff (C, u) is kernel-stable with respect the game (A, v).
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Proof. Let sur∗a∗,a◦(C) be the surplus of agent a∗ over agent a◦, a∗, a◦ ∈
C ∈ C in configuration (C, u∗). Then it holds

sur∗a∗,a◦(C) = max
C+:a∗∈C+,a◦ 6∈C+

{v∗(C+)−
∑
a∈C+

u∗(a)}

= max
C+:a∗∈C+,a◦ 6∈C+

{v(C+) + r(−
∑
a∈C+

u(a) + r)}

= max
C+:a∗∈C+,a◦ 6∈C+

{v(C+) + r −
∑
a∈C+

u(a)− r}

= sura∗,a◦(C)(in configuration(C, u).)

From this property of the kernel, we can make the following conclu-
sion:

Corollary 7.6.2. Assume that an agent a can modify coalition values
as stated as in lemma 7.6.1 in a coalition game to form kernel-stable
coalitions. Then a can completely hide its self value from other agents
without loss of utility, under the assumption that they are not revealed
by other means, by applying lemma 7.6.1 with r = −v({a}).

Example 7.6.3
Let a1 offer a service ws at cost 2 and request the same service once
with valuation 3. Let a2 also offer the same service ws at cost 1, and
request no service. Further assume that agents inform each other
about their local worths in order to compute coalition values, but
not about individual service offers and requests (it is not important
here to consider how the local worths are actually obtained since we
are only interested in what can be inferred from local worths and the
game itself).

In the unmodified game, we thus have the following local worths
and coalition values:

lw1({1}) = 3− 2 = 1 v({1}) = 1

lw2({2}) = 0 v({2}) = 0

lw1({1, 2}) = 3

lw2({1, 2}) = −1 v({1, 2}) = 3− 1 = 2

The kernel-stable configuration including the grand coalition of this
game is ({{1, 2}}, u) with u(1) = 1.5 and u(2) = 0.5.
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Now suppose that a likes to hide the fact that it accesses its own
service which can be easily inferred from the fact that lw1({1}) = 1
(in this example, we ignore other means of getting this information
that might be given in the specific negotiation protocol that is used).
a1 thus induces a modified game, resulting in different local worths
for a1 and different coalition values:

lw∗1({1}) = 1− 1 = 0 v∗({1}) = 0

lw∗2({2}) = 0 v∗({2}) = 0

lw∗1({1, 2}) = 3− 1 = 2

lw∗2({1, 2}) = −1 v∗({1, 2}) = 2− 1 = 1

The kernel-stable configuration including the grand coalition of this
game is ({{1, 2}}, u∗) with u∗(1) = 0.5 and u(2) = 0.5. Now, observe that
the side payments resulting from this are

sp∗1({1, 2}) = u∗(1)− lw∗1({1, 2}) = 0.5− 2 = −1.5

sp∗2({1, 2}) = u∗(2)− lw∗2({1, 2}) = 0.5− (−1) = 1.5

But since a1’s valuation of ws is 3, after making the side payment it
obtains still the same net payoff of

3− 1.5 = 1.5 = u(1)

as in the unmodified game. Now, a2 might infer that a1’s valuation
of its request for ws must be ≥ lw∗1({1, 2}) = 2, because ws is the only
service executed in the grand coalition. But it cannot infer anything
about a1’s true self value. 4
On the other hand, it was shown in Blankenburg and Klusch (2004)
that in the classic kernel-based coalition formation protocol KCA,
agents might establish a lower bound on an agent a’s self value if
it is not independent of the coalition that a ends up being in. This
is because the KCA requires the public announcement of requests
and offers including valuations and costs, respectively, among the
participating agents. If we change our example to make a similar
requirement, the same problem arises:
Example 7.6.4
Consider again example 7.6.4, but this time agents are expected to
inform each other about their mutual requests and offers including
valuations and costs, respectively. Then agent a1 might still try to
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hide its self value by again modifying the game as in example 7.6.4.
Additionally, it might not inform a2 about a1’s own offer of ws, which
is not used outside a1’s single-agent coalition and thus this omitment
has no impact on the modified game.

However, in this scenario, a2 is informed about a1’s valuation of its
request for ws, namely that it is 3. But this does not match the fact
that lw∗1({1, 2}) = 2 because, again, ws is the only executed service
in the grand coalition. Thus, a2 might infer that a1’s self value is at
least 1 (“at least” because a1 potentially executes yet more services
for its own requests in {1} which a2 doesn’t know about). 4
The two examples demonstrate once more that the exact design of
the communication protocol within a coalition formation algorithm
is crucial when privacy preservation is concerned. However, it is not
quite clear whether the kernel theoretically allows for more privacy
preservation at all. Since in the kernel, all agents in a coalition need
to be in quilibrium with respect to their surpluses, this seems rather
unlikely.

Also, note that the kernel of a two-agent game is equal to the
Shapley value of that game (see e.g. Peleg and Sudhölter, 2007).
Therefore, if one devised a “recursively bilateral kernel” analogously
to the recursively bilateral Shapley value in order to again exploit
the tree structure, these two solution concepts would simply be the
same.

7.7 Summary

We have proven that the recursive nature of the recursively bilateral
Shapley value can be exploited to enable iterative bilateral coalition
formation while keeping agents’ local worths and coalition values
hidden. In fact, agents can compute their stable side payments at
each round of coalition formation directly using only their side pay-
ments from the previous round and some additional local worths,
the latter modeling only the difference of local worths to the local
worths of the previous round.

We then also proved that this is however not enough to enable
privacy preserving coalition formation, since it is still possible to
deduce the existence of service requests among certain agents from
additional local worths in particular situations.

To remedy this, we outlined how minimum conctraints on agent
and service anonymity can be used together with an anonymous
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routing protocol to allow coalition formation with at least some de-
gree of privacy.

Based on these results, we proposed the algorithm and protocol
for privacy preserving and stable coalition formation among ratio-
nal service agents, BSCA-P. It allows the participating agents to hide
their service requests and payoffs while having low polynomial com-
putational and communication complexities. Specifically, the BSCA-
P was proved to

1. adhere to agents’ and service anonymity constraints,

2. hide the agents’ local worths, and in particular its self values,
from all other agents,

3. hide the agents’ additional local worths from all other agents
but the one with whom they first form a coalition and

To our best knowledge, the BSCA-P is the first coalition formation
algorithm to have this set of properties, and also the first privacy
preserving coalition formation algorithm in general, at least when
similar notions of privacy are regarded.

Additionally, it was outlined how services and side payments
should be executed such that the level of privacy and anonymity
established by the BSCA-P is maintained also over these activities.

In summary, the BSCA-P allows service agents in open environ-
ments to keep personal financial data private, while increasing their
individual profits by means of rational cooperation with others in
coalitions.

Finally, we showed that agents can theoretically hide their self
values completely also in kernel-based coalition formation if an ap-
propriate coalition formation algorithm and protocol are employed.
However, as we demonstrated by an example, this might not be easy
to achieve.
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Conclusion

8.1 Research Questions Answered

Fuzzy-valued coalition formation

1. How can stable coalitions be formed efficiently when the
coalition values are fuzzy?
To form fuzzy-valued coalitions efficiently, we devised a
new coalition formation algorithm BSCA-F by extending an
existing one for crisp games, the BSCA, to cope with fuzzy
coalition values. Therefore, we provided a fuzzified ver-
sion of the underlying solution concept, the (recursively)
bilateral Shapley value with defuzzified subcoalition val-
ues. We showed that this induces coalitions to have unam-
biguous preferences for other coalitions to merge with, pro-
vided that the same possibilistic ranking operator is used
by all agents. Thus, no additional communication steps
are necessary in the proposal generation and evaluation
steps. We could therefore prove that polynomial computa-
tion and communication complexities could be maintained
also in the BSCA-F.

2. How can a resulting fuzzy solution be used to determine
concrete, non-fuzzy side-payments in a stable manner?
It was shown that employing the possibilistic mean de-
fuzzification method is generally applicable to fuzzy pay-
offs obtained with the BSCA-F. In particular, such defuzzi-
fied values were shown to gave a high correlation to the
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fuzzy Shapley value’s possibilistic mean, in particular for
the possibility-based ranking operators.

3. What impact does the choice of possibilistic ranking oper-
ators have on the resulting payoffs?
It was shown by evaluation that the different operators
do lead to different solutions with different characteris-
tics. Generally, the possibility based operators maximize
the possibilistic expected payoff, while the necessity based
operators minimize worst case losses, and specifically >̃N

manages to achieve a higher degree of necessity of core
membership. Therefore, agents might choose one based
on their preferences.

4. Are the resulting fuzzy payoffs core-stable?
As the evaluation demonstrated, the possibility that the
fuzzy payoffs obtained via the BSCA-F lie in the core is
quite high for all operators, as is the number of payoffs
which have possibility degree of 1 to lie in the core. How-
ever, the necessity of payoffs to be in the core was shown
to be much smaller generally, but the >̃N-operator achieves
much better degrees than the other operators in this case.

Risk-bounded coalition formation

1. How can resource-bounded agents reduce the risk of suf-
fering losses due to failing coalitions according to an ap-
proved measures of risk?
Using a coherent risk measure, it was shown that an agent
can reduce its risk by being a member of multiple fuzzy
coalitions. The coherence of the risk measure ensures that
if an agent a is a member of a set of fuzzy coalitions whose
combined risk is acceptable for a and additionally becomes
a member of another coalition whose risk is acceptable,
then the overall risk is also acceptable for a.

2. How can stability of risk-bounded coalitions be ensured
and what is the computational cost of such an approach?
The kernel was extended to adhere to agents’ individual
risk bounds. The extension was necessary because the risk
depends on the payoffs, and a standard kernel stable pay-
off distribution might thus be unacceptable to some agents

170



CHAPTER 8. CONCLUSION

given their risk bounds. We showed that the computational
complexity to compute a risk-bounded kernel stable coali-
tions can be reduced to be polynomial if each of the coali-
tion size, the number of plans containing the same set of
agents, and the number of coalitions in which an agent
might simultaneously be a member of are bounded by con-
stants. Using this, we provided an algorithm which forms
risk-bounded kernel stable coalitions in polynomial time.

Coalition formation with deceiving agents
How can stable coalitions be formed while preventing rational
agents from deceiving during

1. coalition negotiations and

2. side payment executions?

1. A protocol to communicate initial data about requests and
offers was devised. Using cryptographic techniques, it was
shown that this prevents the agents to determine manipu-
lated valuations and costs to send in order to unjustifiably
increase their payoffs in kernel stable coalitions. Specifi-
cally, for the kernel it was proved that an agent has to ma-
nipulate data in a certain way in order to receive a higher
net payoff. But with the proposed protocol, it was shown
that no agent is able to determine such values before it has
to send them to the other agents.
For repeated coalition formation, a trust model was ad-
ditionally integrated in the coalition formation algorithm.
This is used to compute corrected expected coalition val-
ues if agents over- or understate their capabilities. Agents
also exchange trust values among each other to assess one
another’s reputation. Since it was also shown that report-
ing over- or understated trust values has a similar effect
on kernel stable payoffs as sending manipulated valua-
tions and costs, an agent’s chances to gain a profit from
defrauding are further decreased.

2. A protocol for the execution of side payments was devised,
again using cryptographic techniques. The protocol or-
ders the agents into a sequence such that successive side
payments are made. It was shown that for all except one
agents in the sequence, it is rational to stick to the protocol
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and execute the side payment at the specify time. The last
agent, however, is shown to have to execute some assigned
tasks (or services), and therefore will be subject to trust
measure evaluation by other agents.

Privacy-preserving coalition formation

1. How can profitable coalitions efficiently be formed while
adhering to privacy constraints?

A privacy preserving coalition formation algorithm BSCA-P
was proposed and shown to let agents hide their private
financial data (almost) completely. Further, it was shown
that service requests can be kept private to given mini-
mum degrees of anonymities. In particular, it was proved
that by exploiting the coalition tree structure induced by
the recursively bilateral Shapley value, the side payments
can be computed without direct reference to private values
such as local worths and service requests, but by using
only the additional local worths. But it was also shown
that private information might be deduced from additional
local worths in certain situations, depending on the size of
the involved coalitions and sets of offered services. There-
fore, we proposed to employ possibilistic k-anonymity in
combination with minimum anonymity constraints.

Finally, we also briefly considered the kernel in terms of
privacy preservation, and proved that agents can hide their
self values completely if the coalition formation protocol is
designed appropriately.

2. How can adherence to these privacy constraints be main-
tained also during the side payment and execution phases?

It was shown that the coalition tree structure can be re-
used to not reveal any further information in the side pay-
ment execution phase.

For the service execution phase, it was shown that access-
ing services via the anonymous message routing protocol
used during the coalition negotiation, adherence to the
anonymity constraints is maintained.
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8.2 Outlook

In this thesis, we provided algorithms and mostly theoretical re-
sults for coalition formation in uncertain and untrustworthy en-
vironments. Although these results indicate that coalition forma-
tion algorithms and protocols can be adapted to such environments,
there is still much to be done. In particular, the questions of truth-
telling and privacy preservation should be further explored. While
these issues have been addressed in other, also related, areas like
mechanism design, they have not received much attention in the
coalition formation research community. The approaches outlined
in this thesis are solid, but can only be first steps. For instance,
while the TKCF encourages hinders deception and ensures execu-
tion of side payments, the coalition formation phase itself was kept
very simple. Also, it always forms the social welfare coalition struc-
ture. It would thus be beneficial to devise a more flexible algorithm
which still gives the same guarantees.

Concerning privacy preserving coalition formation, it is as of now
unclear which other solution concepts might be employed while keep-
ing the agents’ information private. Also, a very simple measure of
anonymity was used, which might be extended in order to model
more elaborate anonymity constraints. Furthermore, the combina-
tion of trusted and privacy preserving coalition formation seem to
pose a major obstacle, since their goals seem to contradict each
other: while trusted coalitions formation aims to make agents re-
veal their true private values, the goal of privacy preserving coalition
formation is to allow agents to hide as much information as possible.

Finally, while coalition formation under uncertainty has received
the greatest attention of these problems in the literature, algorithms
that at the same time are fast, lead to stable results, and are adapt-
able to agents’ needs yet have to be devised.
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