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Abstract

For hard real-time applications, tight provable bounds on the application’s worst-
case execution time must be derivable. Employing dynamic memory allocation,
in general, significantly decreases an application’s timing predictability. In conse-
quence, current hard real-time applications rely on static memory management.
This thesis studies how the predictability issues of dynamic memory allocation
can be overcome and dynamic memory allocation be enabled for hard real-time
applications. We give a detailed analysis of the predictability challenges imposed
on current state-of-the-art timing analyses by dynamic memory allocation. We
propose two approaches to overcome these issues and enable dynamic memory
allocation for hard real-time systems: automatically transforming dynamic into
static allocation and using a novel, cache-aware and predictable memory allo-
cator. Statically transforming dynamic into static memory allocation allows for
very precise WCET bounds as all accessed memory addresses are completely
known. However, this approach requires much information about the applica-
tion’s allocation behavior to be available statically. For programs where a static
precomputation of a suitable allocation scheme is not applicable, we investigate
approaches to construct predictable dynamic memory allocators to replace the stan-
dard, general-purpose allocators in real-time applications. We present evaluations
of the proposed approaches to evidence their practical applicability.
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Zusammenfassung

Harte Echtzeitsysteme bedingen beweisbare obere Schranken bezüglich ihrer max-
imalen Laufzeit. Die Verwendung dynamischer Speicherverwaltung (DSV) inner-
halb eine Anwendung verschlechtert deren Zeitvorhersagbarkeit im Allgemeinen
erheblich. Folglich findet sich derzeit lediglich statische Speicherverwaltung in
solchen Systemen.
Diese Arbeit untersucht Wege, Probleme bezüglich der Vorhersagbar von Anwen-
dungen, die aus dem Einsatz einer DSV resultieren, zu überbrücken. Aufbauend
auf einer Analyse der Probleme, denen sich Zeitanalysen durch DSV konfrontiert
sehen, erarbeiten wir zwei Lösungsansätze. Unser erster Ansatz verfolgt eine
automatische Transformation einer gegebenen DSV in eine statische Verwaltung.
Dieser Ansatz erfordert hinreichend genaue Information über Speicheranforderun-
gen der Anwendung sowie die Lebenszyklen der angeforderten Speicherblöcke.
Hinsichtlich Anwendungen, bei denen dieser erste Ansatz nicht anwendbar ist,
untersuchen wir neuartige Algorithmen zur Implementierung vorhersagbarer Ver-
fahren zur dynamischen Speicherverwaltung. Auf diesen Algorithmen basierende
Speicherverwalter können die für Echtzeitsysteme ungeeigneten, allgemeinen
Speicherverwalter bei Bedarf ersetzen. Wir belegen weiter die praktische Anwend-
barkeit der von uns vorgeschlagenen Verfahren.

5





Acknowledgements

Many people contributed to this thesis in a myriad of ways: through collaborations,
enlightening discussions, and guidance, by providing an excellent working and
research environment; or by simply being a role model.

First and foremost, I owe my sincere gratitude to my supervisor Professor Rein-

hard Wilhelm for always providing guidance and a research environment that
continuously offered countless opportunities and the freedom to steer one’s re-
search in a variety of interesting directions.

I would also like to thank all the members of my thesis committee, namely
Professor Eljas Soisalon-Soininen and Professor Alfons Crespo for carefully
reviewing this thesis as well as Professor Jan Reineke and Dr. Alejandro Salinger

for serving on my committee.

Some of the research leading to this thesis was done in collaboration with other
researchers: Jan Reineke, Peter Backes, Sebastian Altmeyer, and Christoph Mallon.
To these colleagues I owe a big Thank You! for our rewarding collaboration, their
insights and help.

Last but not least, I want to thank all other current or previous members of Rein-
hard Wilhelm’s research group that, knowingly or not, had a positive influence
on me and/or my research: Daniel Grund, Oleg Parshin, Sebastian Hahn, Mo-

7



hamed Abdel Maksoud, Andreas Abel, Claire Maiza, Philipp Lucas, and Florian

Haupenthal.
In case I inadvertently omitted anybody to whom acknowledgment is due, I
sincerely apologize to that person.

8



Contents

1 Introduction 11

1.1 Contributions and Structure of this Thesis . . . . . . . . . . . . 15
1.1.1 Contributions of this Thesis . . . . . . . . . . . . . . . 15
1.1.2 Structure of this Thesis . . . . . . . . . . . . . . . . . . 17

2 On Dynamic Memory Allocation, Caches, and Static WCET Anal-

ysis 19

2.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Dynamic Memory Allocation . . . . . . . . . . . . . . . . . . . 20
2.3 Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Cache Analysis in the Context of WCET Analysis . . . . . . . . 40

2.4.1 Ferdinand’s LRU Cache Analyses . . . . . . . . . . . . 44
2.4.2 Relational Cache Analysis . . . . . . . . . . . . . . . . 56

2.5 References & Further Reading . . . . . . . . . . . . . . . . . . 63

3 Static Precomputation of Allocation Schemes 65

3.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Algorithms for Programs with Numerical Bounds . . . . . . . . 67
3.3 Algorithms for Programs with Parametric Bounds . . . . . . . . 80

9



Contents

3.4 Allocation Site Aware Shape Analysis . . . . . . . . . . . . . . 95
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Predictable Cache-Aware Memory Allocation 107

4.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2 CAMA—A Cache-Aware Memory Allocator . . . . . . . . . . 108
4.3 An Alternative Interface: RelCAMA . . . . . . . . . . . . . . . . 130
4.4 An Alternative Approach: PRADA . . . . . . . . . . . . . . . . . 132

5 Experimental Evaluation 137

5.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2 Allocators and Metrics Used in our Benchmarks . . . . . . . . . 138
5.3 Memory Performance for Random (De-)Allocation Sequences . 146
5.4 Memory Performance for Real-Life Programs . . . . . . . . . . 153

6 Summary & Conclusions 161

7 Future Work 163

10



1
Introduction

But how can I hope to explain myself here; and

yet, in some dim, random way, explain myself I

must, else all these chapters might be naugh.

HermanMelville

in Moby Dick (1851)

Will my plane crash? Will my car’s airbag save me in case of a traffic accident?
The answer to both questions highly depends on the functional and timing behavior
of embedded applications running on controller chips like airplane and airbag
controllers. Consider the car crash example where the airbag controller has to
correctly and also timely detect the crash and fire the appropriate airbags. Failure
to finish within a few milliseconds may be fatal and—even given all computations
of the controller were correct—may be considered an application failure. Such
computer programs for which the correctness of operations depends not only upon
their functional correctness, but also upon the time in which they are performed,
are called real-time applications. Usually, one further distinguishes between soft

and hard real-time systems. In soft real-time systems, deadlines may sometimes
be missed by single operations or procedures, upon which the system may respond
with decreased quality of service. Consider, for example, a software for displaying
video. If some operation does not finish in a timely manner, single frames may be
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1 Introduction

dropped while displaying a video. Hence, the application does not fail completely,
but the quality is decreased. In hard real-time systems, it is in contrast mandatory
for all operations to always meet their respective deadlines. Such strong timing
constraints are required of applications for which reacting in time is safety-critical.
The airbag controller and the controlling system of an airplane examples from the
beginning of this chapter constitute such safety-critical hard real-time applications.
In case any of these two applications misses a deadline and does not react timely
to a critical event, human lives are at stake.

Automatic proofs that all tasks involved in time-critical computations always
meet their deadlines are derived by so-called schedulability analyses. These
analyses rely in turn on safe bounds on the single tasks’ worst-case execution
times (WCETs). Deriving safe and precise WCET bounds for a given task is a
challenging problem. While a program’s functional behavior usually only depends
on its input data, a worst-case execution time analysis considering a program’s
timing behavior has to take into account also the timing behavior—and conse-
quently the initial state—of the hardware on which the program will be executed.
Modern embedded hardware, unfortunately, implements a number of average-case
execution-time enhancing features like caches, pipelines, and speculation that
make timing behavior less predictable. Caches, for instance, strive to reduce
processor waiting times by closing the ever increasing gap between increasing
processor speeds and slowly decreasing memory latencies. They achieve their
goal by exploiting the principle of locality. I.e., the tendency observed in computer
programs to access memory locations more likely if they were already accessed
recently or if they are close to recently accessed locations. Today, caches are
ubiquitous, even in embedded hardware. While significantly decreasing mem-
ory access times, they also add to hardware complexity and unpredictability
with respect to WCET bounds. A WCET analysis—or more precisely, a cache
analysis—needs to address these predictability issues with caches. Simply treating
each memory access as a cache miss is, although a conservative approach, not a
feasible one. It has been shown that turning off caches completely may result in
a 30-fold increase of running times [LTH02]. Hence, the oversimplification that
in the worst case all memory accesses are cache misses yields overly pessimistic
and virtually useless WCET bounds. Furthermore, some hardware architectures

12



are susceptible to timing anomalies [LS99, RWT+06]: situations where a locally
faster execution leads to an increased global execution time of the application.
For such architectures, assuming all memory accesses to be cache misses is even
unsafe.

Predictability of a program’s timing behavior is not dependent on hardware
features alone. Certain programming techniques and features of the programming
language used in the implementation of an embedded application also strongly
affect the timing predictability of this application. Consider, for example, dynamic
memory allocation. Dynamic memory allocation allows programs to request mem-
ory during their runtime as well as freeing, i.e., giving back, this memory at any
time. Dynamic memory allocation provides desirable advantages over static alloca-
tion to programmers and has consequently been supported by most programming
languages since the 1960s. While often yielding better structured source code,
another, more important advantage of dynamic memory allocation is to alleviate
the programmer from finding ways to cope with a small amount of memory. I.e.,
alleviating him or her from assigning memory addresses such that objects not allo-
cated contemporaneously can share memory locations to reduce overall memory
consumption. The C standard [ISO99] defines functions for dynamic memory
(de-)allocation. However, hard real-time applications do currently not—or better
very rarely—make use of dynamically allocated memory. The unpredictability of
an application’s cache behavior introduced by dynamic memory allocation simply
outweighs its advantages. What are the sources of this unpredictability? Current
algorithms for dynamic memory allocators introduce cache unpredictability in
two ways. First, they are not designed to provide any guarantees about the cache
set that a newly allocated block maps to. Static cache analyses, however, rely
on this information to classify memory accesses as cache hits or cache misses.
Such a classification for most memory accesses, again, is a prerequisite for the
derivation of precise WCET bounds. The second source of cache unpredictability
stems from the execution of the allocator itself. Modern allocators manage free
memory blocks in internal data structures that themselves reside on the heap.
Finding a free block to satisfy allocation requests often involves traversals of these
structures to find the best suitable blocks. These traversals and consequently their
effects on the cache are statically unpredictable. Hence, also otherwise derived
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1 Introduction

information about cache contents may be lost whenever the allocator is invoked
and traverses its internal data structures. Furthermore, the unpredictability of the
cache performance during the traversal itself may lead to drastic overestimations
of the execution times of memory (de-)allocations. In summary, using dynamic
memory allocation as provided by common programming languages may render a
program’s cache behavior completely unpredictable.

This thesis investigates two approaches to enable a predictable dynamic memory
allocation for hard real-time systems: automatically transforming dynamic into
static allocation and using a cache-aware, predictable memory allocator.

Automatically Replacing Dynamic by Static Memory Allocation WCET
analyses already impose a number of restrictions on the programs they are able
to analyze. They require all program loops—or, if recursion is supported, the
maximal recursion depth—to be bounded, at least parametrically. In consequence,
the number of objects an application may allocate is also bounded. Our first
approach investigates how we can exploit this boundedness of allocations to
automatically precompute suitable memory addresses for all possibly allocated
objects. These addresses can subsequently be used to statically replace dynamic
memory allocation by a static allocation scheme. This approach allows for very
precise WCET bounds as all accessed memory addresses are completely known.
However, memory efficiency, i.e., how efficient memory addresses are shared
among objects not allocated at the same time, depends on the precision of the
(objects’) liveness information that can be derived statically.

Predictable, Cache-Aware Dynamic Memory Allocation There are pro-
grams, however, where static precomputation of a suitable allocation scheme is
not applicable. We already noted that memory efficiency depends on the statically
available liveness information. When this information is too imprecise, memory
efficiency of the precomputed scheme may degenerate to a point where the mem-
ory consumption becomes prohibitively large. Furthermore, consider reactive

systems that produce outputs upon stimuli from within or outside the system,
and virtually run forever. Such systems often run as real-time applications and
sufficiently precise WCET bounds may often be derived for how long it may take a
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1.1 Contributions and Structure of this Thesis

given system to produce an output. However, due to the long execution periods of
the overall systems, static address computations for dynamically allocated objects
may quickly become infeasible given limited memory and imprecise liveness
information. When precomputing suitable memory addresses to replace dynamic
memory allocation is not applicable, a predictable dynamic memory allocator may
be utilized. Our proposed allocator, CAMA, is such a predictable constant-time
dynamic memory allocator that aims at eliminating all sources of unpredictabil-
ity common in standard allocators. To enable cache-aware memory allocation,
CAMA receives allocation requests with a target cache set as an additional ar-
gument. The cache influence of the (de-)allocation procedures themselves are
bounded and statically known. Predictability and hence compatibility with WCET
analyses is achieved as follows. Free blocks are managed in segregated free lists
to allow for constant look-up times and hence constant response times. CAMA
uses cache-aware splitting and coalescing techniques relying on an indirect free
block management to keep external fragmentation low. Internal fragmentation is
reduced by using multi-level segregated lists.

The focus of this thesis lies on the second approach, constructing a versatile,
cache-predictable dynamic memory allocator to replace general-purpose alloca-
tors in real-time applications. A more detailed summary of the contributions of
this thesis is given in the following subsection.

1.1 Contributions and Structure of this Thesis

1.1.1 Contributions of this Thesis

This thesis discusses the applicability of dynamic memory allocation in real-time
systems. It extends our main publications on cache-aware memory allocation
[HBHR11] and static precomputations of memory addresses for data structures
[HR09, HA10] in that it provides a uniform presentation and significant improve-
ments of those approaches, a thorough and formal discussion of the challenges
that dynamic memory allocation poses in a hard real-time environment, and an
extended evaluation of our proposed techniques.
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1 Introduction

The following paragraphs summarize the technical contributions of this thesis.

Discussion of the Challenges Introduced by Dynamic Memory Alloca-

tion for State-Of-The-Art Timing Analyses We give a comprehensive over-
view on existing dynamic memory allocation techniques and the current state-of-
the-art of static cache analysis. Furthermore, we formally show how and to what
degree dynamic memory allocation introduces unpredictability into the presented
cache analyses.

Algorithms to Statically Precompute Data Locations to Replace Dynamic

Memory Allocation We propose algorithms to statically precompute addresses
for a program’s otherwise dynamically allocated objects. These addresses can be
used to subsequently transform dynamic into static memory allocation and hence
circumvent all predictability issues of the dynamic approach. We furthermore
discuss for what classes of real-time applications such an approach is applicable.

Predictable, Cache-Aware Memory Allocator We propose CAMA, a novel,
highly configurable dynamic memory allocator, directly tailored towards usage
in real-time systems. The key innovation is CAMA’s indirect management of
memory blocks. In contrast to other, existing dynamic memory allocators, CAMA
does not store data necessary to manage memory blocks directly at the respective
blocks themselves. Internal management information is instead stored in so-
called descriptors: small management units with a statically predefined cache-set
mapping. CAMA is able to manage memory blocks by only working on their
descriptors. Even memory consumption optimizing operations like splitting and
merging are available and can be performed accessing descriptors only. Using
descriptors allows to give strong guarantees about CAMA’s influence on the
systems’ cache. Cache predictability is further increased by cache-set guided
allocations. I.e., CAMA allows the user to pass an additional argument to the
allocation routine that defines to which cache set the returned memory address
shall be mapped. Furthermore, segregated free-lists are used to enable a constant-
time lookup for currently free blocks during allocations. The latter is a well-known
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1.1 Contributions and Structure of this Thesis

technique used in constant-time memory allocation algorithms that could be easily
adapted to work with CAMA’s descriptors.

Evaluation of the Memory Consumption of Several Dynamic Memory Al-

locators on Different (De-)Allocation Sequences, Typical for Real-Time

Applications We measure the memory consumption of a meaningful set of al-
locators for randomized (de-)allocation sequences modeling allocation behaviors
typical for real-time systems to evidence the competitiveness of our proposed allo-
cator. Furthermore, we give a comprehensive discussion of the different sources
of memory waste contributing to the measured overall memory consumption. I.e.,
making explicit the contribution of internal and external memory fragmentation as
well as incomplete memory use to the overall memory consumption. We further-
more identify the design choices contributing to these different sources of memory
waste.

1.1.2 Structure of this Thesis

This thesis is structured as follows. Chapter 2 introduces dynamic memory
allocation, caches, and worst-case execution time (WCET) analysis. This chapter
discusses the state-of-the-art of these concepts as well as their respective research
histories. The challenges this thesis tackles are also identified in this chapter. We
propose and discuss our two approaches to enable dynamic memory allocation
for hard real-time systems in Chapter 3 and Chapter 4, respectively. Experimental
evaluations of both approaches are presented and discussed in Chapter 5. In this
chapter, we also evaluate and discuss typical memory allocation patterns of hard
real-time systems and how well different allocation algorithms cope with those.
We conclude in Chapter 6. A brief discussion of future research directions based
on our proposed solutions follows in Chapter 7.
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2
On Dynamic Memory Allocation, Caches, and

Static WCET Analysis

The advanced reader who skips parts that appear

too elementary may miss more than the reader

who skips parts that appear too complex.

György Pólya

in Mathematics and Plausible Reasoning: Patterns

of plausible inference (1954)

2.1 Chapter Overview

This chapter introduces general notions of dynamic memory allocation, caches,
and cache analysis in the context of a worst-case execution time (WCET) analysis.
Section 2.2 elaborates on dynamic memory allocation and summarizes relevant
work in this area. In Section 2.3, general cache notions are introduced. This
section explains the architecture of caches, their merits as well as pitfalls. The
state-of-the-art of static cache analysis is reviewed in Section 2.4. This final
introductory chapter also elaborates on the challenges dynamic memory allocation
and caches themselves pose on the derivation of tight WCET bounds. A detailed
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2 On Dynamic Memory Allocation, Caches, and Static WCET Analysis

overview on relevant literature for further reading on the concepts and techniques
introduced in this chapter is given in Section 2.5.

2.2 Dynamic Memory Allocation

Management of many is the same as management

of few. It is a matter of organization.

Sun Tzu

in The Art of War (c. 6th century BC)

Dynamic memory allocation or sometimes also called dynamic storage allo-
cation, denotes techniques that allow programs to request memory during their
runtime as well as freeing, i.e., giving back, this memory at any time. We call a
request for a block of memory an allocation, while the term deallocation denotes
the freeing of a memory block. Consequently, a dynamic memory allocator is
an application that keeps track of which blocks of memory are currently in use
by a program, and which are free. When receiving an allocation request, the
dynamic memory allocator has to select a free block it deems suitable to satisfy
the request. This decision can in general not be revised later. Consider for example
a language like C that allows the programmer to access dynamically allocated
objects via arbitrarily complex pointer arithmetics. As neither the compiler nor
the allocator can in general find and update all pointers to dynamically allocated
objects, an allocator that moves in-use blocks around may break the program
semantics. When receiving a deallocation request, it must change the status of the
respective memory block from “in use” to “free”. Therefore, a dynamic memory
allocator is an online algorithm as it must respond to requests immediately and
in the strict sequence the application presents them to it. As allocators cannot
compact memory by moving allocated memory blocks around to have free and in
use blocks contiguous in memory, they are prone to memory fragmentation.

Memory fragmentation refers to the fragmenting of the available memory
into blocks that are in use, i.e., allocated by an application, separated by blocks
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2.2 Dynamic Memory Allocation

that are either free or used by the allocator itself. Fragmentation becomes a
problem when each free block is either too small to satisfy a waiting request to the
allocator or the allocator uses an overly large amount of memory for its internal
management data. Note that fragmentation may arise from two different sources:
through management overhead, including rounded block sizes, and bad placement
decisions. To account for this, two types of fragmentation are distinguished:
internal fragmentation and external fragmentation, respectively [Ran69]. Internal
fragmentation denotes all memory not usable by the application due to rounded
up requests to ensure block alignment or to map blocks to given size classes.
Furthermore, storage used by the allocator to place its own management data
contributes to internal fragmentation. This kind of fragmentation is independent
of the processed (de-)allocation sequence and may be statically bounded with
reasonable precision. External fragmentation is caused by the inability of the
allocator to use free memory either because it is fragmented into blocks smaller
than the requested size or free blocks cannot be found by the allocator when
requested. This second kind of fragmentation is dependent on the sequence of
requests posed to the allocator and consequently harder to analyze statically. For
some allocators, memory waste can additionally become problematic when, given
a waiting allocation request, sufficiently large free blocks exist, but the allocator
cannot find any of these blocks.

How can we precisely quantify fragmentation, especially external fragmentation
due to the inability of the allocator to use free memory to satisfy waiting allocation
requests? Whether fragmentation is problematic (or really existent in a sense)
depends not only on the number and sizes of holes of free memory segregating
in-use blocks, but also on the future memory requests of the application and
whether the allocator can then use these holes to satisfy them. If the allocator
can later make use of these holes, the current fragmentation may be seen as
prearrangement for future requests, instead of an increased memory consumption.
We may conclude that fragmentation is less of an issue at times of lower overall
memory usage than when an application’s memory usage is at its highest. Or,
in the words of [WJNB95], the “average fragmentation is less important than
peak fragmentation—scattered holes in the heap most of the times may not be
a problem if those holes are well-filled when it counts.” To account for those

21



2 On Dynamic Memory Allocation, Caches, and Static WCET Analysis

observations, we quantify the fragmentation an applications causes within a given
allocator as the ratio of the maximum memory usage to the maximum memory
need of the application. Hence, we define (the percentage of) fragmentation as:

fragmentation =

(
max. memory usage
max. memory need

− 1
)
· 100%

High fragmentation bears the potential to become a disastrous problem; at
least when applications are allowed to allocate arbitrarily sized memory blocks at
arbitrary times and also dispose of them any time they choose. Especially in em-
bedded systems where memory is more limited, a program failure due to memory
exhaustion for seemingly moderate memory requirements of the application is an
ever-present threat that cannot be ignored. But may high fragmentation really oc-
cur in practice or are memory allocators sophisticated enough to make efficient use
of a system’s memory? Unfortunately, there is no algorithm for dynamic memory
allocation that ensures efficient memory usage. Even worse, not “only are there
no provable good allocation algorithms, there are proofs that any allocator will be
bad for some possible applications.” [WJNB95, Rob71, GGU72, Rob74, Rob77].
However, real programs do in general not allocate arbitrarily sized blocks at
arbitrary times. They are designed to solve a specific problem which certainly
has a strong effect on their allocations patterns. Hence, real applications may
exhibit regularities rather than random allocation behavior that may be exploited
by allocators to use memory more efficiently. Nevertheless, [WJNB95] concludes
that these regularities are still surprisingly poorly understood, despite 35 years of
allocator research at the time the cited paper was published.

Dynamic memory allocators try to counteract and minimize fragmentation
mainly with three techniques: (1) splitting larger memory blocks to satisfy requests
for smaller blocks, (2) coalescing blocks to yield larger free blocks, and (3)
applying an appropriate placement choice. Splitting a larger free memory block
into two smaller blocks when lacking a free block just large enough to satisfy
a waiting request is intuitively more favorable than getting additional memory
to satisfy the request. Also, coalescing two adjacent free blocks into one larger
free block is often advantageous. A larger block has a higher probability of being
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2.2 Dynamic Memory Allocation

useful to satisfy future allocation requests than two smaller blocks. Given the
allocator’s ability to split blocks, the large block can be used to satisfy requests for
small and large blocks. Still, both operations introduce additional computational
costs for the allocator that may decrease their usefulness for some applications.
Consider for example the following simple sequence of requests posed to an
allocator (

αx
8α

y
8δ

xδy
)+

where αaddr
size is an allocation request for size bytes that the allocator satisfies

by a pointer to memory address addr and δaddr is a request to deallocate the
memory block starting at memory address addr. Furthermore, assume the blocks
allocated in the first two requests were adjacent in memory. An allocator that
uses splitting and coalescing to counteract fragmentation may in this scenario
merge the two free blocks after the two deallocation requests (requests three
and four in the sequence) and split the resulting larger block again, once the
sequence repeats. Hence, nothing is gained by always merging when possible
after a deallocation and these merge operations just add to the computational costs
of dynamic memory allocation. To prevent such kind of behavior, some allocators
use deferred coalescing. I.e., they avoid coalescing at deallocation requests, but
use it intermittently to counteract fragmentation at times where they would without
coalescing be forced to request additional memory instead of efficiently using
already claimed memory.

Most of the basic designs still used in dynamic memory allocators were con-
ceived in the 1960’s or even the late 1950’s, including sequential fits, segregated

free lists, and buddy systems [Knu97, WJNB95]. Sequential fit allocators manage
all currently free blocks in a single linked list. This list is typically doubly-linked
“so that entries may conveniently be deleted from random parts of the list” [Knu97].
To speed up coalescing operations even more, Knuth’s boundary tag technique
[Knu97] is normally implemented in these allocators [WJNB95]. While easy to
implement, sequential fits do not scale well when a large number of free blocks
needs to be managed. Best-fit sequential fits that always search for a smallest free
block still large enough to satisfy an allocation request have time costs linear in the
number of managed free blocks. Returning always the first block large enough to
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2 On Dynamic Memory Allocation, Caches, and Static WCET Analysis

fulfill a request (first fit sequential fit) may yield better average case performance
with respect to time costs, but may also introduce more splitting operations and
thus negating any positive effect from shorter list traversals. Searching for a block
of (at least) a given size can be accelerated by having dedicated segregated free
lists for different block sizes. A simple segregated free list allocator implementing
this idea was described by Comfort in 1964 which used three segregated free lists
for single-, double-, and triple-word blocks [Com64]. The described allocator
is already able to perform simple split operations. If a double-word block is
requested but the respective free list is empty, the allocator splits a triple-word
block into a single- and double-word block. Analogously, double-word blocks
can be used to get two single-word blocks. To make this concept of segregated
free lists generally applicable, a consequent variation is to collect blocks of the
same size class, but not necessarily the same exact size in segregated free lists.
Blocks from a given size class can be used to satisfy requests for any size equal to
or smaller than the smallest size contained in that size class. A common scheme
to build size classes is to use size classes of powers of two, e.g., classes containing
blocks of at least 4, 8, 16 bytes, and rounding-up allocation requests to the next
larger size class [WJNB95]. Upon allocation, the allocator just needs to determine
the appropriate free list to serve a request for the given size and return any block
from that list.

Segregated free-list allocators can be further subdivided into simple segregated

storage and segregated fits. Following the notions of [WJNB95], simple seg-
regated storage denotes an algorithm that completely avoids splitting in order
to serve requests for smaller blocks using larger blocks. If a free list is empty,
one or more virtual memory pages of additional memory are requested from the
underlying operating system. These are then split into same-sized blocks, strung
together, and put into the empty free list. Hence, simple segregated storage always
yields areas (relatively large units like pages) that contain blocks of only one size
class. This gives the allocator two advantages. First, no headers are required for
managing single in-use blocks; size information can be recorded per page. Second,
coalescing can be implemented by simply making a whole page available (for
all size classes) once all blocks of the page became free. Segregated fits handle
empty free lists by looking for a non-empty larger size class and splitting a larger
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than requested block. If no such block is available, just the minimal amount of
memory to satisfy the request is requested from the underlying operating system.
Both variants allow for fast, constant-time allocation and deallocation procedures;
where simple segregated storage is in general faster than segregated fits. Especially
simple segregated storage is usually quite fast when objects of a given, single
size class are repeatedly deallocated and re-allocated. The advantage of simple
segregated storage, avoiding split operations and its simple coalescing, turns into
a disadvantage with respect to memory fragmentation. The worst-case application
would allocate many blocks of one size class, deallocate all but one of those blocks
again and then do the same for many other size classes. This application would
eventually cause the allocator to use one page per allocated object. Compared to
sequential fits, segregated free lists provide a constant-time access to a suitable
free block without any search. Even better: a segregated free list’s “first fit” policy
that always returns the first free block in a free list, actually constitutes a “good fit”
policy due to the sorting by size classes. However, the need for rounding requested
sizes and using possibly much larger blocks than needed bears the potential for
high memory fragmentation. Buddy systems are yet another variant of segregated
free list allocators that provide efficient splitting and coalescing. A free memory
block may in such an allocator only be merged with its buddy block. This block
can efficiently be determined by a simple address computation.

Buddy systems also guarantee that a block will always be either entirely avail-
able and hence free to merge or will be an unavailable block. Consequently,
coalescing is fast and requires little memory overhead. Normally, a single bit
indicating whether or not a block is entirely free suffices; as the buddy systems
remove the need to link, i.e., reference, neighboring blocks for merging. The three
best-known buddy schemes are binary buddies, fibonacci buddies, and weighted

buddies [PN77, WJNB95]. Binary buddies are the earliest and simplest variant of
a buddy system, firstly described in [Kno65]. In binary buddy schemes, all buddy
sizes are a power of two and each buddy is divided into two equal parts. This
makes address computations very simple: all blocks are aligned on the boundary
of a power-of-two offset from the starting address of heap memory and each bit
of a block’s offset represents one level in the systems hierarchical splitting. I.e.,
if a bit is set, the block is the second block of a pair of buddies, otherwise the
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first. Despite efficient operations enabled by this simple address scheme, closer
size spacings may still be more desirable with respect to internal fragmentation.
Fibonacci buddies [Hir73] provide such a closer size spacing by using size classes
based on a Fibonacci series. In this scheme, blocks can be split into two blocks
of (different) sizes that are also in the series, as each Fibonacci number is the
sum of its two predecessors in the series. Weighted buddies [SP74] base their
size classes again on power-of-two size classes, however, additionally add three-
times-a-power-of-two size classes in-between. The used series for building size
classes is thus: 2, 3, 4, 6, 8, 12, 16, 24, . . . (words). In this scheme, power-of-two
blocks are split as in the binary buddy system, whereas blocks divisible by three
can be split in two different ways. They may be split evenly in two, yielding two
smaller three-times-a-power-of-two blocks, or be split in a 1 to 2 ratio, yielding
two smaller power-of-two blocks (of different sizes). While offering very efficient
coalescing and splitting operations, in experiments using real and (unfortunately
in most studies) synthetic traces, buddy systems generally exhibit significantly
more fragmentation than other segregated fits [WJNB95].

Allocators that may be used in real-time systems are restricted to designs
that allow for constant-time allocation and deallocation operations. Hence in
theory, any segregated free-list allocator that does not use searching to implement
a best-fit strategy but relies on a first-fit strategy that returns always the first (or
last) element of an appropriate free list may be used within a real-time system.
In practice, however, most segregated fit allocators are still unsuitable. When
implementing techniques to counteract fragmentation like splitting and merging,
execution times may be bounded only by a constant, but overly large number.
Simpler segregated fits without further means to decreasing fragmentation, how-
ever, bear the risk of failing due to not being able to cope with the often very
limited memory available in real-time systems. In 1995, Ogasawara proposed a
segregated-fit allocator, called Half-Fit, explicitly designed for usage within
real-time applications. Ogasawara aimed at a dynamic memory allocation algo-
rithm “whose memory efficiency is better than that of buddy systems” and “that
touches very few cache lines” [Oga95]. The second design goal was motivated
by the observation that, in the worst case, “buddy systems access many memory
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addresses at both allocation and deallocation time”, as split and merge operations
may occur. Furthermore, a “high probability that the accesses will result in cache
misses and TLB entry misses, since buddies are distant from each other when
free blocks are large” was observed [Oga95]. Hence, the constant worst-case
time bound for buddy systems easily becomes forbiddingly large. Half-Fit
circumvents these issues as follows. The allocator groups free blocks with sizes
in the range

[
2i, 2i+1

)
in a segregated free-list indexed by i. Upon an allocation

request for s bytes, the allocator returns the first block from the free list indexed
by i′, where

i′ =

 0 if s = 1⌊
log2 (s − 1)

⌋
+ 1 otherwise

When the free list indexed by i′ does not contain any blocks, a block from the
subsequent non-empty free list whose index is closest to i′ is taken. To avoid
the need for linear searching or other non-constant-time operations, Half-Fit
maintains a word-length bit vector to keep track of which free lists are empty
and which are not. If the free block is larger than needed, the algorithm splits it
into two blocks: one large enough to satisfy the request and a remainder that is
relinked on the appropriate free list. Upon deallocation, the algorithms checks
whether adjacent memory blocks are also free. This can be done in constant time
as links to physically adjacent blocks are always maintained by the allocator and
at most 3 blocks are to be merged at a time. The index of the free list to hold the
newly freed block can be easily computed as i =

⌊
log2 s

⌋
, where s is the size of the

respective block. As Half-Fit’s simplified allocation and deallocation operations
can be implemented by a small number of machine instructions, its WCET can be
tightly bounded well below bounds provable for binary buddy systems [Oga95].
For simulations using synthetic (de-)allocation sequences and a limited amount
of memory, the failure ratios of Half-Fit are strictly smaller than those of a
binary buddy allocator [Oga95]. Analytically, the worst-case fragmentation of a
binary buddy system can be bounded by 2M

(
1 + dlog2 me

)
, Half-Fit’s worst-

case memory consumption, however, is unbounded when block sizes are not
rounded-up and bounded by 2M

(
1 + dlog2 me

)
, too, otherwise. WhereM denotes

the maximal live memory and m the largest block size manageable by the allocator.
We formally show those claims in the following paragraphs.
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Theorem 2.1 (Worst-Case Memory Consumption of a Binary Buddy). The worst-

case memory consumption including combined internal and external fragmenta-

tion of a binary buddy system is 2M
(
1 + dlog2 me

)
, whereM is the peak memory

need and m the largest allocation/block size. We observe that due to rounded block

sizes, internal fragmentation may cause a peak memory use of approximately two

times the peak memory need. External fragmentation (for the rounded blocks) is

bounded byM′ · (1 + log2 m′), whereM′ is the peak memory need for rounded

blocks, m′ the maximal actual block size.

We prove the claimed bounds on external and internal fragmentation separately.

Proof. Assume a binary buddy allocator as described in [Knu97], where all (man-
aged) memory blocks have a power-of-two size; as do allocation requests. Fur-
thermore, memory blocks/requests have maximal size m = 2r. Assume a total
memory of I = 2x+r. Then, the worst-case memory usageH for a peak memory
needM does not exceedM · (1 + log2 m). We show the claim by induction over
r. For r = 0, H ≤ M · (1 + log2 m) = M trivially holds as all blocks are of the
same size and hence no external fragmentation can occur. Assume the claim holds
for r = n. We show that it must then consequently hold for r = n + 1, too, i.e.,
H ≤ M·

(
1 + log2

(
2n+1

))
=M· (1 + n + 1). Per induction,M· (1 + n) memory is

sufficient to serve all the requests for blocks of sizes less than or equal to 2n. We
observe that due to the allocator’s policy to always select a smallest available free
block to satisfy a request (possibly including a split operation for this smallest
block) all requests for blocks of sizes ≤ 2n are served from the same blocks of
size ≤ 2n+1. Hence, the remainingM memory is guaranteed to be untouched and
can always be split into completely free blocks of size 2n+1 (assuming such a size
is requested and henceM is large enough). With the same reasoning as in the
(r = 0)-case, we can serve possible remaining requests for blocks of size 2n+1 with
those blocks. Again, as all blocks are of the same size, no further fragmentation
can occur. Furthermore, the maximal requested amount of memory in blocks of
size 2n+1 obviously has to be less than the peak memory need ofM. �

We note that such a buddy system allocator does not suffer from internal
fragmentation. However, the worst-case bound onH requires strong assumptions
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about the requested block sizes: they have to be a power of two. In practice, not
all requests are for blocks of power-of-two sizes. Hence, allocators implementing
such buddy systems round-up all requests to the next power-of-two. This additional
internal fragmentation is maximal for requests for blocks of size 2r−1 +1, which are
rounded up to 2r, again assuming 2r to be the maximal block size. This worst-case
internal fragmentation can be easily bounded by a factor of 2, i.e.,H ≤ 2 · M.

Proof. Let there be n requests for blocks of size 2r−1 + 1 so that the allocator
always serves blocks of size 2r. Putting peak memory need and peak memory use
into relation yields the desired factor:

lim
r 7→∞

H

M
= lim

r 7→∞

n · 2r

n ·
(
2r−1 + 1

) = lim
r 7→∞

n · 2r−1

n · 2r−1 ·
2

1 + 1
2r−1

r 7→∞
→

2
1 + 0

= 2

�

In summary, total memory consumption of a buddy system for a peak memory
need ofM is bounded by 2M

(
1 +

⌈
log2 m

⌉)
as claimed in Theorem 2.1.

Theorem 2.2 (Worst-Case Memory Consumption of Half-Fit). The worst-case

memory consumption of Half-Fit is unbounded when block sizes are not rounded

up to the next power of two (and the allocator does not give memory back to the

operating system), as initially proposed in [Oga95]. If block sizes are rounded

to the next power of two, Half-Fit’s memory consumption can be bounded by

2M(1 + dlog2 me).

Proof. We show the claim for an implementation of Half-Fit without rounded
block sizes first. Assume the following (de-)allocation sequence:(

αx
2imax+1−1δ

x
)n

that allocates a block of the maximal block size, deallocates this block again,
and repeats those two operations. We observe that when blocks are deallocated,
Half-Fit puts them in the free list for size class [2imax , 2imax+1 − 1]. At allocations,
however, the allocator cannot pick a block from this size class, as this class also
contains blocks smaller than requested, i.e., those of sizes [2imax , 2imax+1−2]. Hence,
assuming no memory is returned to the operating system, a new block needs to be
created at each allocation although fitting ones would be available. �
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Proof. Let us consider next an instantiation of the Half-Fit algorithm that rounds
requested sizes to the next power of two. In this case, we can conclude a worst-
case bound of 2M(1 + dlog2 me) on the actual memory use for a peak memory
need ofM from two observations. Rounding requests to the next power of two
may at most double the memory need by adding internal fragmentation as shown
earlier (observation one). Rounding all requests also entails that the internal size
classes contain only blocks of the same size: the lower bound of the respective
size class. All blocks of a size classes are of equal size and the algorithm always
selects a block from the smallest size class large enough to satisfy the request.
Hence, such an instance of the Half-Fit algorithm selects free blocks according
to the same strategy as a binary buddy system with all block sizes being a power
of two (observation two). The worst-case bound on the memory use of such a
binary buddy system isM · (1 + log2 m) as shown before. �

It is interesting to note that there exists memory waste in Half-Fit when
not rounding the requested sizes that can neither be attributed to internal nor
(traditional) external fragmentation. In Half-Fit, free blocks larger than the base
size of their respective free list can never be used to serve requests for blocks
of sizes larger than this base size. There may be free blocks suitable to satisfy
requests, but the lookup mechanism does not find them as it always searches for
blocks in the next bigger size class (than requested). We exploited this flaw to
hide suitable, free blocks from the allocator when showing that, without rounding
requests, Half-Fit may be forced to allocate an unbounded amount of memory
for a fixed peak memory use. Ogasawara coined the term incomplete memory

use to describe this problem of Half-Fit [Oga95]. Rounding up requested sizes
to the next size class simply transforms incomplete memory use into internal
fragmentation which is more predictable and allows for much better worst-case
bounds on the memory use to be proven. Ogasawara did, however, not propose
such a transformation of incomplete memory use into internal fragmentation,
but opted for having no internal fragmentation. This is likely due to him not
observing incomplete memory use to be overly occurring within his benchmark
programs, while the otherwise introduced internal fragmentation would have been
observable.
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TLSF Masmano et al. proposed a more refined scheme to building size classes
for their constant-time dynamic memory allocator TLSF [MRCR04, MRR+08].
While otherwise behaving analogously to Half-Fit (with rounded requests),
their algorithm builds size classes in a two-level approach. The logical first level
segregates free blocks that are a power of two apart, i.e., a first-level index of
i is assigned to blocks whose sizes are in the range

[
2i, 2i+1 − 1

]
. The second

level splits each such interval linearly into an over all first-level intervals constant
number J of equally-sized ranges. I.e., a second-level index j is assigned to
blocks whose sizes are in the range

[
2i + 2i

J
· j, 2i + 2i

J
· ( j + 1) − 1

]
. While pro-

viding equally good WCET bounds (in terms of operations) for allocation and
deallocation operations as Half-Fit, due to finer grained size classes, TLSF’s
internal fragmentation can be arbitrarily decreased by adjusting the number of
second-level ranges (per power-of-two size class), i.e., by increasing J .

Theorem 2.3 (Worst-Case Memory Consumption of TLSF). TLSF worst-case

memory consumption can be bounded by J+1
J
· M(m − 2).

We can show this claim by using the same observations and arguments we used
for Half-Fit in the proof of Theorem 2.2 paired with an adapted bound on the
internal fragmentation as follows. In contrast to Half-Fit, TLSF’s block sizes
are not guaranteed to be a power of two. Instantiating TLSF with J = 1 still
leads to block sizes of a power of two and consequently a worst-case memory
consumption equal to Half-Fit. In fact, Half-Fit is just the special case of
instantiating TLSF with J = 1. Increasing J degenerates TLSF to approximate
the behavior of a best-fit sequential fit allocator. TLSF selects always the best
fitting free block and once J is large enough, there exists a size class for every
possible block size. For best-fit allocators, a worst-case memory consumption due
to external fragmentation ofM(m − 2) can be shown [Rob77].

Furthermore, the worst-case internal fragmentation for TLSF can be bounded
by a factor of J+1

J
.
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Proof. Let there be n requests for blocks of size 2imax + 1, so that the allocator
always serves blocks of size 2imax + 2imax

J
. Putting peak memory needM and peak

memory useH for this worst-case sequence of allocations into relation yields the
desired result:

lim
imax 7→∞

H

M
= lim

imax 7→∞

n
(
2imax + 2imax

J

)
n
(
2imax + 1

)
= lim

imax 7→∞

n · 2imax

n · 2imax
·

1 + 1
J

1 + 1
2imax

imax 7→∞
→ 1 +

1
J

=
J + 1
J

�

The worst-case memory consumption of these three constant-time allocators
(binary buddy, Half-Fit, TLSF) may seem overly high at first glance. However,
also for non-constant-time allocators, (de-)allocation sequences can be given
which lead to equally high worst-case memory consumption. Even for linear time
sequential fits that may take the time to always consider all currently managed
memory blocks, worst-case memory consumption is close to the theoretical worst-
case for any allocator (not prone to incomplete memory use): M · m (amount of
maximally live memory times the largest requestable size) [Rob77].

The worst-case memory consumption of a first-fit sequential fit allocator is
M

ln 2 ·
∑m

i=1
1
i or about M · log2 m. A best-fit sequential fit allocator may even

use up to (M− 4m + 11) (m − 2) words (or about M · m) in order to satisfy
requests forM words [Rob77]. Despite that for real programs the best-fit allocator
performs usually better and both perform nowhere near their respective worst
cases [Rob77, WJNB95].

Unfortunately, drastic worst-case memory consumption is an inherent problem
to dynamic memory allocation. We already pointed out that for any allocation
algorithm there exists a worst-case (de-)allocation sequence for which memory
consumption becomes overly high. In a hard real-time system where provable
bounds on an application’s memory consumption are required, we suggest to
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rather show the absence of bad (de-)allocation sequences instead of constructing
a predictably bad allocator1.

Table 2.1 summarizes the worst-case performance properties of the (represen-
tatives of the most relevant classes of) dynamic memory allocators discussed in
this chapter. In this table, we also list Doug Lea’s memory allocator (DLMalloc)
[Lea96] as a representative for hybrid allocators. Hybrid allocators combine
several mechanisms—for example depending on the requested allocation size a
different lookup mechanism is chosen—to improve on certain performance char-
acteristics like memory consumption and execution times. We choose DLMalloc
as a representative for this class of allocators as it is widely considered one of
the best or even the best general purpose dynamic memory allocator when using
average-case memory consumption and execution times to judge an allocator’s
performance.

2.3 Caches

Science never solves a problem without creating

ten more.

George Bernard Shaw

Playwright (1856–1950)

The storage of modern computing systems is normally not a single, uniform
memory, but a hierarchical system composed of several (sub-)memories. Different
memories or components differ—often strongly—in their respective properties.
Registers, for example, have access latencies of just up to a single processor cycle,
while accesses to the hard disk may require millions of cycles. A computer’s
main memory, the random access memory (RAM), may take hundreds of cycles
to be accessed. Its cache memory can usually be accessed in just a few cycles,
especially in case of the level 1 cache. Level 2 and level 3 caches have higher

1An allocator that provably performs close to its worst-case memory behavior which, in turn, is
better than the worst-case behavior of the allocators discussed here, but much worse than the
memory consumption of these for normal programs without (mostly theoretical) bad (de-)allocation
sequences.
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Allocator Allocation Deallocation Max. Memory Use References
(temporal worst-cases) H

Sequential Fit O
(
H

2M

)
O (1) M

ln 2
∑m

i=1
1
i [MRBC08]

(First-Fit)
Sequential Fit O

(
H

2M

)
O (1) M · (m − 2) [MRBC08]

(Best-Fit)
Binary Buddy O

(
log2

(
H

M

))
O

(
log2

(
H

M

))
2M(1 + dlog2 me) [MRBC08]

[Knu97]
Theorem 2.1

DLMalloc O
(
H

M

)
O (1) M · m [MRBC08]

Half-Fit O (1) O (1) ∞, 2M(1 + dlog2 me) [MRBC08]
Theorem 2.2

TLSF O (1) O (1) J+1
J
M(m − 2) [MRBC08]

Theorem 2.3

Table 2.1: Worst-case properties of different dynamic memory allocators. H
denotes the (actual) memory consumption for an application with max-
imum live memoryM. The maximal size of an allocation request is
denoted by m.
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Microprocessor

Registers

L1 Cache

L2 Cache

(Main)

Memory

Memory Type Size Access Times
(in words) (in cycles)

Register 64 - 256 ≤ 1
L1 Cache ≤ 8K 1 - 2
L2 Cache ≤ 256K 5 - 15
(Main) Memory ≤ 4G 40 - 100

Figure 2.1: A typical memory hierarchy.

latencies, but are still significantly faster than accesses to the main memory. Given
such significant performance advantages of some memory techniques over others,
why is not the entire storage of a computer built-up of the fastest kind of memory?
Production costs are certainly an obvious factor, i.e., faster memory is more
expensive to produce. Hence, the ratio of faster to slower memory within a system
depends on one’s willingness or ability to pay for the improved performance.
However, the more important factors are technological constraints. The fastest
memories, the processor registers, are part of the central processing unit, and hence
limited by the small space available on the processor die. Caches, for example,
can only be built efficiently up to a certain size. If the size of the cache becomes
too large, lookup operations can no longer be efficiently implemented.

Figure 2.1 depicts a typical memory hierarchy of modern computing systems.
Such memory hierarchies aim to provide average access latencies close to the
latencies of its fastest component as well as costs per bit and an overall size
close to the component that can technically provide the largest amount of bits at
the smallest costs per bit. The second goal is trivially fulfilled: as the cheapest
memory, the system’s hard disk, accounts for the largest part of the overall memory,
the average costs per bit are strongly shifted towards the costs of a bit of hard
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disk storage. When, in practice, the system manages to serve a better part of the
memory accesses by faster components like (memory) caches, also the first goal,
fast average access latencies, is achieved. Fortunately, computer programs tend
to obey, to one degree or another, the so-called principle of locality or locality of

references. This principle asserts that

1. a program distributes references it accesses during any interval of time
non-uniformly over the pages it accesses, i.e., during any time interval,
some references or pages are accessed more frequently than others,

2. access frequencies to given pages change only slowly over time, and

3. the correlation between immediate past and immediate future page accesses
tends to be high, whereas this correlation decreases when the time between
the accesses increases.

We can extract two, typically distinguished properties from this principle to which
program memory accesses tend to adhere:

1. addresses are more likely to be accessed if they were accessed recently,
which is typically denoted by temporal locality, and

2. addresses are more likely to be accessed if addresses near to them have
already been accessed (recently), usually called spatial locality.

Denning and Schwartz explain this behavior abstraction by three observations
[DS72]. First, a program’s loop structures cluster references to given pages in short
time intervals. Second, programmers tend to use divide-and-conquer approaches
and consequently concentrate on small parts of larger problems for moderately
long intervals. And third, programs run efficiently with only a subset of their
pages in main memory. Hence, for programs to run efficiently, at a given time
interval, only a very limited subset of memory needs to be accessible with low
latencies. In consequence, when the memory hierarchy performs well in keeping
the at any time interval relevant memory pages in the faster components, average
access times tend towards the access times of the faster memories as desired. The
principle of locality was first exploited in the concept of working sets used in the
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late 1960s and early 1970s to prevent thrashing, the sudden collapse of throughput
as the number of programs executed simultaneously rises. Intuitively, a working
set is the smallest subset of the pages accessed by a given program that must reside
in fast memory components in order that this program operates efficiently [DS72].
Today, ubiquitous caches exploit the principles of temporal and spatial locality
in order to decrease memory latency. They cache, i.e., keep in faster memories,
recently accessed addresses to exploit temporal locality. Furthermore, upon a
cache miss, not only the requested but not cached memory block is loaded into the
cache. A so-called cache line, a larger block of contiguous data, is transferred into
the cache that also contains the immediate neighborhood of the requested address,
thus exploiting spatial locality.

Technically, caches are usually implemented as follows. LetM be a memory
component cached by a cache memory component C. To reduce management
and traffic overhead of the cache itself and between C andM, respectively,M is
logically partitioned into a set of memory blocks of size b. Choosing b to be a
power of two—as is common practice—allows for efficient lookup operations: the
block offset, i.e., the memory block that contains a given address, is determined by
the most significant bits of the memory address. When accessing a memory block,
it has to be determined whether this block is contained in C, in which case the
cache memory can serve this request at low latency. We call this a cache hit. When
the requested block is not contained in C, it is transferred fromM to C which, in
turn, can then satisfy the request. We call this a cache miss. The increased access
latency caused by the access toM is called the cache miss penalty. To keep the
latency of the cache low, determining whether a memory block is contained in the
cache has to be sufficiently fast. It is therefore necessary to limit the number of
cache lines at which a given memory block may reside. To this end, caches are
partitioned into equally-sized cache sets, each holding k (possibly empty) cache
lines. This k, the size of a single cache set, measured in cache lines, is called the
associativity of the cache. In order to further increase the efficiency of a cache
lookup, k is chosen such that the overall number of cache sets is a power of two.
Consequently, the set number in which a memory block may reside is determined
by the least significant bits of the block number (assuming the size of a memory
block equals the size of a cache line). Obviously, cache performance, in terms of
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latency, decreases when k and/or b is increased. Hence, a desired access latency
restricts the overall cache size. Caches can therefore hold just a small fraction of
the memory component succeeding them in the memory hierarchy. Consequently,
most cache misses will not simply evict empty lines from the cache, but other,
previously accessed memory blocks. What is evicted from cache is decided by
a so-called replacement policy. Such a policy aims at minimizing cache misses
by always evicting the “least useful” memory block currently contained in the
respective cache set. Popular replacement strategies are:

1. Least-recently used (LRU) replacement policy that, upon a cache miss,
evicts the least-recently-used cache line from the cache. This policy per-
forms very well in practice and follows directly the principle of temporal
locality: according to this principle, the probability for a cache line to
be accessed decreases with the time since the last access to this line in-
creasing. By always evicting the least-recently accessed cache line, this
policy strives to always evict the cache line with the presumably small-
est probability to be accessed again. LRU is the most predictable re-
placement policy [Rei08] and has been the target of most cache analyses
[FMW97, FW99, GMM98, CPHL01, CP03]. The main advantage of LRU
with respect to predictability is the fact that cache hits and cache misses are
treated similarly: the currently accessed line will become the most recently
used entry. Hence, even when a cache analysis cannot classify a given
memory access as a hit or miss, useful information about the cache state
after the access can be derived.

2. Pseudo least-recently-used (PLRU) is a tree-based approximation to LRU.
PLRU is significantly cheaper to implement than LRU in terms of space
(storage requirement) and time (update logic) and hence more common in
existing hardware. The policy performs also well in practice [AZMM04].
However, PLRU may not always evict the least-recently-used block and,
consequently, perform worse than LRU. This unwanted behavior is also
detrimental to the predictability of the policy as shown in [Rei08].

3. First In, First Out (FIFO) always evicts the block that has been cached
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for the longest time span. FIFO caches can thus be implemented as a
simple queue, making them very cheap to implement and consequently
very popular in practice. However, they may incur severe performance
degradation compared to LRU caches, but tend to perform only slightly
worse than LRU in many benchmarks [AZMM04]. Predictability of FIFO
caches is low due to their non-uniform treatment of cache hits and misses:
blocks may be evicted right after an access when they are at the first-in
position [Rei08].

4. The most-recently-used (MRU) policy keeps status bits for each cache line,
where a 1 indicates recent use. If a cache line needs to be evicted, the first,
i.e., the cache line with the lowest index, set to 0 is evicted. This policy
is the most unpredictable due to asymmetries from the update logic of the
status bits: upon an access, the bit of the accessed line is set to 1; if this
operation sets the last remaining 0 to 1, all other bits are set back to 0 again.
[Rei08] shows that it is impossible to ever infer the precise cache contents
for MRU caches.

With respect to write accesses, the following design choices are available. The
write policy that determines when data is written back to M and can either
be a write-through or write-back policy. A write-through policy updates M
immediately on every write access and may incur additional, unnecessary data
transfer if a cache line is modified several times. A write-back policy writes
a cache line back to M upon its eviction from C. Write-back caches require
additional storage in the form of status bits to keep track of which cache lines
have to be written back upon eviction. Write accesses to currently non-cached
blocks, so-called write-misses, can also be treated in two ways. A write-miss may
bypass the cache completely and be written directly in the subsequent memory
(no-write-allocate). Given a write-back policy, it may, however, be advantageous
to transfer the respective block to the cache and modify it there (write-allocate).
And hence be able to decrease access times when more write accesses to this block
occur in the recent future.
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2.4 Cache Analysis in the Context of WCET

Analysis

If we can really understand the problem, the

answer will come out of it, because the answer is

not separate from the problem.

Jiddu Krishnamurti

in The Penguin Krishnamurti Reader (1970)

A cache analysis aims to statically determine the cache behavior of a given
program or program fragment on a set of possible inputs for an initially unknown
cache state. As the cache behavior depends on both, the varying inputs and the
varying initial cache states, such an analysis can in general only derive approxima-
tions of the cache behavior of the analyzed program. A concrete classification of
all memory accesses into cache hits and cache misses cannot be achieved.

However, classifying all possible memory accesses as cache hits or cache misses
is often not required. In compiler optimizations, cache analyses simply strive to
give good estimates on the overall number of cache misses a given code fragment
generates. In most cases, such estimates are sufficient to guide code optimizations
for improving cache performance by making occurring sequences of memory
accesses more cache-friendly.

Ghosh et al. as well as Chatterjee et al. observe that there are two main ap-
proaches to automatically improving data locality of loop-oriented programs:
loop nest restructuring, i.e., loop transformations, and data layout optimizations

[GMM98, CPHL01]. Loop transformations reorder access patterns to achieve
better temporal as well as spatial locality by mechanism like iteration space tiling
[Wol89], loop fusion [War84], and loop permutation (reordering of inner/outer
loops, such that fewer cache lines are accessed) [IT88, MCT96]. While data
layout transformations include techniques like intra- and inter-array padding, ar-
ray merging, and blocking, i.e., tiling of data structures [RT98, RwT98, LW94].
Both approaches rely on a proper choice of parameters for the different tech-
niques to be effective, i.e., choosing good tile sizes, inter-array pads, etc. A
compiler that relies on heuristics to choose these parameters risks applying
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transformations that severely degrade cache performance, instead of improv-
ing cache performance. In [CS00], Chatterjee and Sen provide empirical evi-
dence that, when using heuristics to choose inter-array pad, most choices may
be catastrophically bad for some programs. In consequence, Chatterjee et al.
propose an approach to quantitatively determine the number of cache misses
of a proposed transformation in order to guide the choice of parameters for
transformation [CPHL01]. Their approach works without explicit simulation
by using Presburger formulas to express the various kinds of cache misses as
well as the state of the cache at the end of a loop nest. Ghosh et al. intro-
duce cache miss equations as a means to precisely represent the cache misses
of a loop nest and count cache misses in a given code fragment [GMM97].
In their model, a solution to a system of cache miss equations corresponds
to a potential cache miss. Their approach enabled them to even find optimal
solutions (where no solutions to the cache miss equations exist) to padding
and blocking algorithms. In summary, these works provide strong evidence
that precisely estimating the number of cache misses a given code fragment
will produce is sufficient to guide automatic compiler optimizations. And that
such estimates can be derived fast enough to be of practical use within a com-
piler.

When aiming to statically derive (bounds on) the worst-case execution time
of programs, however, the requirements for a cache analysis are different. The
overall number of possible cache misses is not a suitable abstraction anymore;
when and where these misses may occur becomes of interest.

But why does a precise classification of accesses into cache hits and misses
become important instead of just the number of hits and misses a sequence of
memory accesses will produce? A timing analysis [Wil06, WEE+08] is normally
done within the context of (hard) real-time applications. Assume a hard real-time
system whose functionality is given by a set of tasks τ. For a timing validation

of this system for a given hardware platform, a scheduling analysis has to check
whether all the timing constraints of the tasks contained in τ will always be met on
that hardware. In order to do this, scheduling analysis requires bounds on the worst-
case execution times of all tasks of τ. The aim of a WCET analysis, i.e., a timing
analysis tailored to derive upper bounds on a task’s execution times, is to provide
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Fr
eq

ue
nc

y

Execution

time
LB BCET WCET UB

Analysis-guaranteed Timing Bounds

Possible Execution Times Overest.Underest.

Figure 2.2: Hypothetical distribution of the execution times of an application. LB
and UB denote the statically derivable lower bound and upper bound,
respectively, on the application’s execution times. BCET and WCET
its actual best- and worst-case execution time.

these time bounds. These bounds need to be safe and tight. Otherwise, the results
of the scheduling analysis might deem a non-schedulable system schedulable (in
case the bound was not safe), possibly resulting in system failures when such a
system is deployed. Or, in case the bound was not tight enough, the scheduler
might deem a schedulable system not schedulable, leading to increased hardware
costs (when switching to faster hardware in order to become schedulable) or
simply non-deployment of the system.

Figure 2.2 shows the distribution of possible execution times for a hypothetical
application. While the application and hence its execution times and frequencies
thereof are hypothetical, we can still observe typical properties of real applications
with which a timing analysis has to cope. Most importantly, there is often a
high variability of execution times, depending on inputs to the application and
the hardware state in which execution starts. Timing accidents are situations that
drastically increase local timing variability. Consider for example a cache hit and a
cache miss. While the former may take just 1 to 2 cycles, a miss may require 6 to 66
clock cycles to serve the accessed data [HP96]. Hence, cache performance is one
of the major factors contributing to this variability. Additionally, many hardware
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A (hit) prefetch C (miss due to prefetching)

A (miss) C (hit)

Branch Condition Evaluated

Figure 2.3: Example for a Speculation Anomaly from [RWT+06]. In the first case
(first row), the access to A is a cache hit and while the condition for
a subsequent branch is not yet available, the processor mispredicts
the branch and an unnecessarily prefetched instruction evicts C from
the cache. Thus, the subsequent access to C results in a cache miss.
In the second case, while A is served after a cache miss, this longer
execution of the access to A prevents a misprediction of the branch.
The subsequent access to C results in this case in a cache hit. Which
in turn results in a shorter global execution time compared to the first
scenario.

architectures exhibit so-called timing anomalies, i.e., situations where locally
faster execution leads to an increased global execution time [LS99, RWT+06].

[RWT+06] provides an easy-to-follow example of a speculation anomaly where
a mispredicted branch after a cache hit leads to a longer execution time than the
one resulting after a cache miss. Figure 2.3 shows this example in more detail.
This example serves to illustrate that knowing where cache hits or misses occur
is crucial when striving for safe and also tight bounds on a program’s execution
times.

While required to be more precise, fortunately, a cache analysis in the context of
timing analysis is allowed to take significantly longer than the previously discussed
cache analyses used in compilers to guide optimizing program transformations.

In Subsections 2.4.1 and 2.4.2, we describe two cache analyses tailored to
provide precise information about an application’s cache performance for a timing
analysis such that safe and tight timing bounds are derivable. These analyses also
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represent the current state-of-the-art. At the end of each subsection, we discuss
why these analyses yield only very imprecise results for programs using dynamic
memory allocation and employing standard, non-cache-aware allocators.

2.4.1 Ferdinand’s LRU Cache Analyses

Intuitively, when aiming to classify each memory access as either a cache hit
or a cache miss, one needs to know what is definitely in the cache at the time
of the access and what is definitely not in the cache. The former allows for a
classification of accesses as cache hits, the latter for a classification as cache
misses. Ferdinand et al. propose a static program analysis based on abstract
interpretation [CC77] that computes this information [Fer97, FW99]. I.e. per
program point, an over- as well as an under-approximation of the cache contents
are computed. When the memory block referenced at a program point is contained
in the under-approximation, a cache hit can be guaranteed. When the referenced
block is not contained in the over-approximation, a cache miss can be safely
predicted. In the remainder of this subsection, we will summarize their analysis
and discuss its applicability to programs using dynamic memory allocation.

Consider a k-way set associative cache architecture with n cache sets, a cache-
line and memory-block size of b bytes, and an overall capacity c = n · k · b bytes.
We assume the utilized replacement strategy to be LRU. Note that fully associative
and direct mapped caches are special cases of such an architecture where n = 1
and n = c

b , respectively. Cache and memory can be described by a set of sequences
of cache lines C = { f1, . . . , fn}, where fi = 〈l1, . . . , lk〉, and a set of memory blocks
M = {m1,m2, . . .}. Each fi models the contents of a single cache set. The ordering
of the sequence of cache lines l j for each cache set fi is such that j represents the
age of the entry stored in line l j. Two functions addr : M → N and set : M → C

map memory blocks to their addresses and to the cache sets in which they are to
be placed when being cached. The latter, set, can be defined in terms of addr and
the cache parameters c, b, and k.
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Definition 2.1 (Cache Set Mapping). Let addr : M → N constitute a mapping of

memory blocks to their memory addresses, c the capacity of the cache, b the size

of a cache line, and k the cache’s associativity. A function set : M → C mapping

memory blocks to the cache set in which they are to be stored is then given by:

set(m) = f(addr(m) mod c
b·k )+1,m ∈ M

We introduce a new element I to express the absence of any memory block in a
cache line and define a concrete set state as follows.

Definition 2.2 (Concrete Set State). A concrete set state for a cache set fi =

〈l1, . . . , lk〉 is a function

s :
k⋃
1

l j → M ∪ {I}

such that s is injective except on I, i.e., memory blocks are stored at most once.

Furthermore, let S denote the set of all concrete set states.

Note that we have now the means to describe the relative age of a cached memory
block according to the LRU replacement strategy, as s(lx) = m∧m , I entails that
memory block m has relative age x. Furthermore, we can use S to define concrete
cache states.

Definition 2.3 (Concrete Cache State). A concrete cache state is a function

cs : C → S , where

∀ fi = 〈l1, . . . , lk〉 ∈ C . ∀l j . (cs( fi))(l j) , I ⇒ set((cs( fi))(l j)) = fi

Furthermore, let CS denote the set of all concrete cache states.

To model the effects of accesses to the memory on the current cache state, we
introduce two update functions: a set update function US : S × M → S and a
cache update function UCS : CS × M → CS to describe the new set state and
the new cache state, respectively, for a given set or cache state and a referenced
memory block. Let

[
x 7→ y

]
denote a function that maps x to y and f

[
x 7→ y

]
denote a function that maps x to y and ∀z , x : z 7→ f (z). Then,US andUCS can
be defined as follows.

45



2 On Dynamic Memory Allocation, Caches, and Static WCET Analysis

Definition 2.4 (Set and Cache Update).

US (s,m) =



[l1 7→ m ,

li 7→ s (li−1) | i = 2 . . . h
li 7→ s (li) | i = h + 1 . . . k] : if ∃lh . s (lh) = m

[l1 7→ m,

li 7→ s (li−1) | i = 2 . . . k] : otherwise

and

UCS(cs,m) = cs[set(m) 7→ US (cs (set(m)) ,m)]

We assume the program to be analyzed to be given as its control-flow graph
(V, E ⊆ V × V, start ∈ V) with its nodes V representing the program’s basic blocks.
I.e., branch- and halting-point-free sequences of instructions where control flow
enters at the first instruction of a sequence and always exits at the last instruction.
We also assume that there is a mapping of these basic blocks to the sequences of
memory blocks that are accessed within this block: L : V → M∗. We can easily
extend the update function UCS to model the effects of sequences of memory
accesses on a given cache state c:

UCS (c, 〈m1, . . . ,me〉) = UCS (. . .UCS (c,m1) . . . ,me)

And consequently, we can model the effects of a program execution, i.e., a path
π = π1, . . . , πp in the control-flow graph on an initial cache state cI by:

UCS

(
cI ,

〈
L(π1), . . . ,L(πp)

〉)

In general, there exist several, possibly infinitely many paths from the program’s
start node to the other nodes. As a cache analysis needs to derive properties that
hold for all possible program executions, we continue by setting up an abstract
domain describing the so-far developed concrete domain. The analyses described
by Ferdinand et al. will then use these abstract domains.
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Definition 2.5 (Abstract Set State). An abstract set state for a cache set fi =

〈l1, . . . , lk〉 is a function

ŝ :
k⋃
1

l j → 2M

mapping cache lines of a given cache set fi to sets of memory blocks, such that

∀la, lb ∈ fi . ∀m ∈ M . m ∈
(̂
s(la) ∩ ŝ(lb)

)
⇒ la = lb

Furthermore, let Ŝ denote the set of all abstract set states.

Definition 2.6 (Abstract Cache State). An abstract cache state is a function

ĉs : C → Ŝ , where

∀ fi = 〈l1, . . . , lk〉 ∈ C . ∀l j . ∀m ∈ M . m ∈ (ĉs( fi))(l j)⇒ set(m) = fi

Furthermore, let ĈS denote the set of all abstract cache states.

The aim of Ferdinand’s analyses is to classify memory references as always

hit, always miss or not classified. In order to do so, two analyses are performed.
A must analysis to determine which memory blocks are definitely in the cache
in order classify memory references as always hit. As well as a may analysis to
determine for each program point the set of memory blocks that may be in the
cache. This information can be used to classify references to memory blocks that
are not contained in the computed sets as always miss.

The definitions of the abstract update functions depend on what the analysis
aims at: the sets of memory blocks that must be or that may be in the cache. The
same holds true for a join function Ĵ : Ĉ × Ĉ 7→ Ĉ that combines two abstract
cache states. In the following paragraphs, we will briefly summarize both analyses
and give their respective definitions for appropriate update and join functions.

Ferdinand’s Must Cache Analysis

To determine the set of definitely cached memory blocks, abstract cache and
set states are used with the invariant that the position of a memory block in the
abstract set state ŝ (or in other words its relative age) is an upper bound on the
positions of this block in all concrete set states that ŝ describes. Accordingly, the
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set of concrete cache and set states described by abstract states is given by the
following concretization functions.

Definition 2.7 (Concretization Functions for LRU Must Cache Analysis).

γ∩
ĈS

(
ĉs

)
=

{
cs ∈ CS | ∀ fi . cs ( fi) ∈ γ∩Ŝ

(
ĉs ( fi)

)}
where

γ∩
Ŝ

(
ŝ
)

=
{
s ∈ S | ∀a ∈ [k] . ∀m ∈ ŝ (la) . ∃b . s (lb) = m ∧ b ≤ a

}
We can define appropriate abstract update formulæ to model the effect of referenc-
ing memory addresses on abstract cache states as follows.

Definition 2.8 (Abstract Set and Cache Update for LRU Must Cache Analysis).

Û∩
Ŝ

(̂s,m) =



[l1 7→ {m} ,
li 7→ ŝ (li−1) | i = 2 . . . h − 1
lh 7→ ŝ (lh−1) ∪

(
ŝ (lh)\{m}

)
li 7→ ŝ (li) | i = h + 1 . . . k

]
: if ∃lh . m ∈ ŝ (lh)

[l1 7→ {m},
li 7→ ŝ (li−1) | i = 2 . . . k

]
: otherwise

and

Û∩
ĈS

(ĉs,m) = ĉs
[
set(m) 7→ Û∩

Ŝ

(
ĉs (set(m)) ,m

)]

Furthermore, we need a way to join several abstract cache states as, in general,
more than a single path may lead to a given program point. Definition 2.10 defines
such a join function that computes a least upper bound on two abstract cache
states. Joining more than two abstract states can be done by repeatedly applying
this function. Definition 2.9 defines the join function on abstract set states that is
used in Definition 2.10.
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Definition 2.9 (Join Function for Abstract Set States for LRU Must Cache Analy-
sis). Let Ĵ∩

Ŝ
: Ŝ × Ŝ → Ŝ be an associative function:

Ĵ∩
Ŝ

(
ŝ 1, ŝ 2

)
= ŝ

such that

∀lx . ŝ (lx) = {m|∃la, lb . m ∈ ŝ1 (la) ∧ m ∈ ŝ2 (lb) ∧ x = max{a, b}}

Definition 2.10 (Join Function for Abstract Cache States for LRU Must Cache
Analysis). Let Ĵ∩

ĈS
: ĈS × ĈS→ ĈS be an associative function:

Ĵ∩
ĈS

(
ĉs1, ĉs2

)
=

[
fi 7→ Ĵ∩Ŝ

(
ĉs1( fi), ĉs2( fi)

)∣∣∣∣ i ∈ [k]
]

Ferdinand’s May Cache Analysis

The May Cache Analysis, in contrast, computes the sets of memory blocks that
may be present in the cache at the different program points by deriving abstract
cache states in which the position of a memory block is always a lower bound
on the positions of this block in all concrete set states that these abstract states
describe. With this in mind, concrete and abstract states shall be connected via the
following concretization functions.

Definition 2.11 (Concretization Functions Connecting Abstract Set and Cache
States of the LRU May Cache Analysis to Concrete Set and Cache States).

γ∪
ĈS

(
ĉs

)
=

{
cs|∀ fi . cs ( fi) ∈ γ∪Ŝ

(
ĉs ( fi)

)}
γ∪

Ŝ

(
ŝ
)

=
{
s|∀a ∈ [k] . s (la) , I . ∃b . s (la) ∈ ŝ (lb) ∧ b ≤ a

}
Definition 2.12 gives appropriate update functions for a may cache analysis

assuming an LRU replacement policy. The definitions of the join functions
for abstract set and cache states used in the may cache analysis are given in
Definition 2.13
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Definition 2.12 (Abstract Set and Cache Update for LRU May Cache Analysis).

Û∪
Ŝ

(̂s,m) =



[l1 7→ {m} ,
li 7→ ŝ (li−1) | i = 2 . . . h
lh+1 7→ ŝ (lh+1) ∪

(̂
s(lh)\{m}

)
li 7→ ŝ (li) | i = h + 2 . . . k

]
: if ∃lh . m ∈ ŝ (lh)

[l1 7→ {m},
li 7→ ŝ (li−1) | i = 2 . . . k

]
: otherwise

and

Û∪
ĈS

(ĉs,m) = ĉs
[
set(m) 7→ Û∪

Ŝ

(
ĉs (set(m)) ,m

)]
Definition 2.13 (Abstract Set and Cache State Join Functions for LRU May Cache
Analysis). Let Ĵ∪

Ŝ
: Ŝ × Ŝ → Ŝ be an associative function to compute the least

upper bound of two abstract set states, where

Ĵ∪
Ŝ

(̂
s1, ŝ2

)
= ŝ

such that

ŝ (lx) =
{
m|∃la, lb . m ∈ ŝ1 (la) ∧ m ∈ ŝ2 (lb) ∧ x = min{a, b}

}
∪

{
m|m ∈ ŝ1 (lx) ∧ ∀la . m < ŝ2 (la)

}
∪

{
m|m ∈ ŝ2 (lx) ∧ ∀la . m < ŝ1 (la)

}
Furthermore, let Ĵ∪

ĈS
: ĈS × ĈS→ ĈS be an associative function to compute the

least upper bound of two abstract cache states:

Ĵ∪
ĈS

(
ĉs1, ĉs2

)
=

[
fi 7→ Ĵ∪Ŝ

(
ĉs1( fi), ĉs2( fi)

)∣∣∣∣ i ∈ [k]
]

So far, this models only read accesses to the cache. But while originally aimed to
analyze just the behavior of instruction caches where only reads occur, Ferdinand’s
approach can also be applied to data caches and combined instruction/data caches
[FMWA96, FW99]. Assume a program in a language with only global functions,
like C, that uses only scalar variable types. The addresses within a function’s stack
frame of local variables, including function parameters, can in such a scenario be
statically computed by static stack level simulation [WM95]. The address of the
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stack frame of an instance of a function, i.e., an active call to this function, can be
computed as an offset to the caller function’s stack frame. This can also be done
statically. To do so, however, we need to extend our function L that maps the
nodes of the program’s control-flow graph V to a list of accessed memory blocks
by a set of possible absolute stack addresses (for these nodes). Furthermore, let
H : V → N0 be a function mapping control-flow graph nodes to their relative
stack frame offset, i.e., their stack height. Similarly to L, the update and join
functions need to be extended to operate on pairs of abstract cache states and sets
of possible stack frame addresses. In [FMWA96], the authors extend L, Û, and
Ĵ as follows.

Definition 2.14 (Extended Mapping Function from Control-Flow Graph Nodes to
Memory Blocks, Extended Update Function, and Extended Join Functions). Let

L′ : V × 2N0 → S ∗ be a function mapping pairs of nodes and absolute stack frame

addresses to referenced memory blocks. Furthermore, let the adjusted cache-set

update function Û′
ĈS

: ĈS × M × 2N0 → ĈS × 2N0 be defined as

Û′
ĈS

(
ĉ ,m, {h1, . . . , hx}

)
=



(
Û′

ĈS

(
ĉ ,m, {h1 +H(n), . . . , hx +H(n)}

))
for a call node n(

Û′
ĈS

(
ĉ ,m, {h1, . . . , hx}

))
otherwise

where
(
Û′

ĈS

(̂
c,m, {h1, . . . , hx}

))
is the obvious extension of Û∩

ĈS
(ĉs,m) or

Û∪
ĈS

(ĉs,m), depending on whether a must- or a may-analysis is to be implemented.

Finally, Ĵ ′
ĈS

:
(
ĈS × 2N0

)
×

(
ĈS × 2N0

)
→

(
ĈS × 2N0

)
is defined as

Ĵ ′
ĈS

((
ĉs1,H1

)
,
(
ĉs2,H2

))
=

(
Ĵ
∩\∪

ĈS
,H1 ∪ H2

)
where, again, depending on whether a must- or a may-analysis is to be imple-

mented, Ĵ∩\∪
ĈS

resolves to Ĵ∩
ĈS

or Ĵ∪
ĈS

.

For programs with recursive procedures, the number of stack frame addresses
may grow indefinitely and thus prevent the analysis from terminating. However, a
suitable widening operator [CC76] can be used to ensure termination [FMWA96].
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Lastly, the analysis has to correctly model the influence of writes on the cache
state. Besides different cache behavior induced by the two write policies (write-
through and write-back), upon a write miss, two cache designs are common. The
block to write is first loaded into the cache (write-allocate) or the write changes
only the main memory (no-write-allocate). For a cache architecture employing a
write-through/write-allocate policy, writes can simply be treated as reads and no
adjustments need to be made. For an architecture with a write-through/no-write-
allocate policy, we have to distinguish two cases. In case the written memory
block is currently contained in the (abstract or concrete) cache state, we can again
treat this access as a read. In case the memory block is not currently cached, the
cache state does not change and the update function is just the identity function.

For write-back architectures, more adjustments are required. Write-back caches
write modified cache lines back to main memory at the time the line is evicted
from the cache. Hence, the analysis needs to track whether memory blocks were
modified while cached, in order to determine whether evicting a block will cause
a write back to memory. To keep track of modified cache lines, the concrete and
abstract set state function can easily be extended by a dirty bit indicating whether
a line was modified (i.e., is dirty) or not (is clean).

Definition 2.15 (Concrete and Abstract Set States For Write-Back Caches). Given

a write-back cache architecture, a concrete set state for a cache set fi = 〈l1, . . . , lk〉

is a function

s :
k⋃
1

l j → {d, c} × (M ∪ {I})

An abstract set state fi = 〈l1, . . . , lk〉 is a function

ŝ :
k⋃
1

l j → 2{d,c}×M

Furthermore, update functions are required to distinguish between read and write
accesses and set the dirty bit on writes to a cache line.

How can the extended analysis determine whether write-backs (may) occur?
Consider a situation as depicted in Figure 2.4, where a memory block m is
accessed and the analysis computed pairs of may and must information that are
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access m

(
ĉs∪1 , ĉs∩1

)

(
ĉs∪2 , ĉs∩2

)
Figure 2.4: An access to a memory block m with may- and must-cache states(

ĉs∪1 , ĉs∩1
)

and
(
ĉs∪2 , ĉs∩2

)
before and after the access.

valid immediately before (denoted
(
ĉs∪1 , ĉs∩1

)
) and after (denoted

(
ĉs∪2 , ĉs∩2

)
) this

access. Let lm be the cache line where m is stored in ĉs∪2 . Consequently, ĉs∪1 (lm)

contains all blocks that may have been evicted by accessing m. The analysis can
then distinguish three cases.

C1 ĉs∪1 (lm) does not contain any modified lines, i.e.,
{
x
∣∣∣(d, x) ∈ ĉs∪1 (lm)

}
= ∅.

In this case, the analysis can guarantee the absence of a write-back.

C2 There exists a memory block md in
{
x
∣∣∣(d, x) ∈ ĉs∪1 (lm)

}
such that md is an

always hit in ĉs∩1 and an always miss in ĉs∪2 . In this case, the analysis can
guarantee the occurrence of a write-back.

C3 Otherwise, the analysis has to consider a possible write-back.

Concluding Remarks and Discussion of Applicability on Programs

Using Dynamic Memory Allocation

Ferdinand’s cache analyses can be considered current state-of-the-art and have
been implemented in industrial strength tools. Namely, the aiT WCET analyzers
[HFG04] that aim to statically compute tight bounds on the WCET of tasks in
real-time systems. Those analyzers take into account the intrinsic cache behavior
of programs in order to yield tighter WCET bounds. The proposed must- and
may-cache analyses discussed in this chapter have since been proved to be precise
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2 On Dynamic Memory Allocation, Caches, and Static WCET Analysis

enough to enable a subsequent timing analysis to derive tight bounds on the
WCET of real-life industrial code as well as academical benchmark programs
[San04, Seh05, SPH+05, FHW+08, Tan06].

But how useful can the results of such cache analyses be in the presence of
dynamic memory allocation? Consider an access to a dynamically allocated
object. Statically, we cannot predict its memory address as dynamic memory
allocators only provide guarantees about the sizes, not the locations of the memory
blocks they return upon allocation requests. Hence, the best we can do is to
define abstract update functions to extend those given in Definitions 2.8, 2.12,
and 2.14 that account for a single, unknown access to every cache set. Definition
2.16 defines appropriate update functions that can be used when referencing a
dynamically allocated object with unknown memory address mapping. Note that,
for the sake of readability, we simplified the function signature and omitted the
accessed (abstract) memory block as well as the potential stack heights as we
cannot extract any information from them. For other memory blocks (instructions,
statically allocated objects), we further rely on Ferdinand’s update functions.

Definition 2.16 (Abstract Set and Cache Update for LRU Must and May Cache
Analysis When Referencing Unknown Memory Addresses).

ÛD
∩

Ŝ
(̂s) =

 [l1 7→ {},
li 7→ ŝ (li−1) | i = 2 . . . k

]
ÛD

∪

Ŝ
(̂s) =

 [l1 7→ M,

li 7→ {} | i = 2 . . . k]

and

ÛD
∩

ĈS
(ĉs) =

[
fi 7→ ÛD

∩

Ŝ
( fi) | i = 1 . . . k

]
ÛD

∪

ĈS
(ĉs) =

[
fi 7→ ÛD

∪

Ŝ
( fi) | i = 1 . . . k

]
After an access to an unknown memory location, the must analysis retains no

information about the youngest entries of the different cache sets, but information
about other entries may be retained. The effect on a may-cache is, however,
more drastic. Every memory block may potentially be contained in the cache, all
information about the current cache state is de facto lost. We observe that this
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does not only prevent the analysis from predicting cache hits or cache misses for
dynamically allocated objects, we also lose otherwise derived information about
the cache state. Potentially, this may of course also prevent the analysis from
predicting hits or misses for other, statically allocated objects.

We also need to account for the cache influence of the allocation and deal-
location routines themselves, i.e., calls to malloc and free. If we assume the
allocator to be a black box, what guarantees about the behavior of an allocator
can be safely given? Realistically, we assume that only upper bounds on the
maximum number of pairwise different cache lines (per cache set) accessed during
an allocation and a deallocation request, respectively, may be provided. Other
properties that might be stated (like bounds on execution times) are not relevant
for a static cache analysis.

In Definition 2.17, we provide appropriate update functions to model the influ-
ence of invocations of the allocator on the abstract cache state. As with accesses
to unknown memory blocks, invoking the dynamic memory allocator leads to a
complete loss of information in case of a may cache analysis. The information
loss in case of a must analysis depends on the allocator, i.e., whether LA or LF
are larger than the associativity of the cache. When LA ≥ k, an allocation also
leads to a complete loss of information regarding the current (must) cache state.
Unfortunately, for standard allocators, we must almost always assume LA ≥ k due
to their search policies. The same pessimistic assumption must often be made
for LF either due to unpredictable merging operations or the allocator keeping a
sorted list of free blocks which entails a sorted insertion.

In summary, we observe that in the presence of dynamic memory allocation,
a cache analysis as discussed in this chapter is quickly rendered useless. This
is, however, not a problem of precision of the analysis, but caused by uncertain-
ties inherent to the allocator itself. When a statically unknown memory block
is accessed, any block may be consequently copied to the cache. Hence, any
conservative may cache analysis must revert to the least precise cache state, where
any memory block may be in youngest position in any cache set.
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Definition 2.17 (Abstract Set and Cache Update for LRU Must and May Cache
Analysis For Invocations of the Dynamic Allocator). Let LA and LF be the

maximum number of pairwise different cache lines (per cache set) accessed during

an allocation and a deallocation request, respectively. Furthermore, let

ÛA
∩

Ŝ
(̂s) =

 [li 7→ {} | i = 1 . . . LA,
li 7→ ŝ

(
li−LA

)
| i = LA + 1 . . . k

]
ÛA

∪

Ŝ
(̂s) =

 [l1 7→ M,

li 7→ {} | i = 2 . . . k]

ÛF
∩

Ŝ
(̂s) =

 [li 7→ {} | i = 1 . . . LF ,
li 7→ ŝ

(
li−LF

)
| i = LF + 1 . . . k

]
ÛF

∪

Ŝ
(̂s) =

 [l1 7→ M,

li 7→ {} | i = 2 . . . k]

and

ÛA
∩

ĈS
(ĉs) =

[
fi 7→ ÛA

∩

Ŝ
( fi) | i = 1 . . . k

]
ÛA

∪

ĈS
(ĉs) =

[
fi 7→ ÛA

∪

Ŝ
( fi) | i = 1 . . . k

]
ÛF

∩

ĈS
(ĉs) =

[
fi 7→ ÛF

∩

Ŝ
( fi) | i = 1 . . . k

]
ÛF

∪

ĈS
(ĉs) =

[
fi 7→ ÛF

∪

Ŝ
( fi) | i = 1 . . . k

]
where ÛA

∩

ĈS
and ÛF

∩

ĈS
model the effects of an allocation and deallocation request,

respectively, on the abstract may cache (state); ÛA
∩

ĈS
and ÛF

∩

ĈS
the corresponding

effects on a must cache.

2.4.2 Relational Cache Analysis

There are certain drawbacks to state-of-the-art cache analyses that use memory
blocks as abstract cache elements—like Ferdinand’s cache analyses described in
the previous subsection. In particular, the precision of such an analysis strongly
depends on the precision of a previous value or address analysis, i.e., how precisely
referenced addresses can be determined.
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In [HG12], Hahn and Grund make the following observations:

• A cache analysis cannot predict hits for accesses with imprecisely deter-
mined addresses when memory blocks are used as abstract cache elements.

• A cache analysis suffers from excessive information loss in the presence
of accesses to imprecisely determined addresses when memory blocks are
used as abstract cache elements.

• State-of-the-art cache analyses need to be highly context sensitive in order
to be precise.

However, a cache analysis does not inherently require the exact information that
can be obtained when memory blocks are used as abstract cache elements. Why
is knowing the precise memory block that is accessed normally not needed?
Being able to determine that an accessed memory block and a cached memory
are the same block is sufficient to predict a cache hit; regardless of what memory
block this is, i.e., regardless of its (memory) address. An analysis can exclude
possible cache evictions once it can determine that an accessed memory block
and cached memory blocks map to different cache sets. Again, regardless of the
addresses of those memory blocks. In order to argue exertion of influence on cache
sets, determining that an accessed memory block and cached memory blocks are
mapped to the same set, but are different memory blocks suffices.

Consequently, Hahn and Grund propose to use symbolic names—unique iden-
tifiers of occurrences of address expressions—as abstract cache elements and
approximate concrete cache contents exploiting relations between these symbolic
names. Formally, their relational cache analysis as proposed in [Hah11, HG12]
is defined as follows. As abstract cache elements, symbolic names are utilized,
where a symbolic name is a name that uniquely identifies an occurrence of an
address expression within a program. At all program points, a symbolic name
s associated with an occurrence of an address expression o represents the most
recently computed address at o.

The analysis itself consists of two modules: a so-called congruence analysis
module and the actual relational cache analysis module. The sole purpose of the
congruence analysis is to compute relations between possibly unknown addresses
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Congruence
Analysis Module

Relational Cache
Analysis Module

(1) classify access to s1

(4) classification: cache hit

(2) query relation between s1 and s2

(3) relation is same set and same block

Figure 2.5: Interaction between the congruence analysis and the relational cache
analysis modules.

and consequently relations between the symbolic names representing these ad-
dresses. The relational cache analysis module computes approximations to the
cache contents by exploiting knowledge about relations between accessed and
cached symbolic names provided by the congruence analysis module. Figure 2.5
depicts this interaction.

We already stated the relations a cache analysis can exploit (namely: same
block, same set and different block, different set). However, a sound static analysis
striving to determine these relations needs to be incomplete. Hence, they introduce
additional relations in order to build-up a complete lattice of relations. Figure 2.6
shows the Hasse diagram of this lattice of relations R.

The meaning of these relations can be defined as follows. Consider reduced

execution traces that contain only the address computations and memory accesses
of the original complete executions traces. Furthermore, 〈s 7→ a〉 stands for an
address computation yielding the address a computed at the occurrence uniquely
identified by symbolic name s. A memory access to the address computed most
recently at the occurrence identified by symbolic name s is denoted by 〈s〉. For
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>

ss ssdb db

sb ssdb ds

⊥

Relation Meaning

ss same cache set
ds different cache set
sb same block
db different block

ssdb ss ∧ db

ssdb ds ∨ sb (= ¬ (ss ∧ db))

Figure 2.6: Hasse diagram of the lattice of relations R.

instance, given a reduced execution trace τ, where

τ = 〈s1 7→ 0x00A20128〉 〈s1〉 〈s2 7→ 0x00A2012C〉

〈s2〉 〈s2 7→ 0x00A20144〉

〈s1〉 〈s2〉 〈s1 7→ 0x00A21144〉

〈s1〉 〈s3 7→ 0x00A20128〉 〈s1〉 〈s2〉 〈s3〉

the following relations hold when assuming a cache architecture with 128 cache
sets and a cache line size of 32 bytes. At the end of line 1, the same block relation
(sb) holds between s1 and s2. By the end of line 2, their relation changed to the
different set relation (ds). Their relation changes once more to same set, different
block (ssdb) by the end of line 3. In the last line of the trace, symbolic name s3 is
introduced related to s1 and s2 by ds(s1, s3) and ds(s2, s3), respectively.

Formally, given a function mb that maps memory addresses to the memory
block encompassing this address, and a function cs that maps memory addresses
to the cache set their encompassing memory block is mapped to, the relation
between two memory addresses a and b is given by

rel(a, b) =


sb : mb(a) = mb(b)
ssdb : cs(a) = cs(b) ∧ mb(a) , mb(b)
ds : cs(a) , cs(b)

Let S denote the set of symbolic names, then congruence information maps

59



2 On Dynamic Memory Allocation, Caches, and Static WCET Analysis

a tuple of symbolic names from S to a relation, i.e., an element of R. Hence,
congruence information can be modeled as a set of functions

{
cgrv|v ∈ PLoc

}
,

defined as

cgrv : S × S 7→ R

where PLoc is the set of program locations and a function value of cgrv is to be
interpreted according to function rel. In general, any program point v may be
reached by several traces through the program. Useful congruence information at
a program point needs to safely approximate relations holding on all these traces.
Given a program P, we denote TP,v the set of all traces through P up to program
point v. A function cgrv safely approximates congruence information at program
point v if for all symbolic names s and t as well as for all traces τ ∈ TP,v it holds:

cgrv (s, t) w r̂el (last (τ, s) , last (τ, t))

where last (τ, s) evaluates to the address that has been computed most recently for
symbolic name s on trace τ—or to ⊥ if no address computation with symbolic
name s occurs on τ. The function r̂el extends rel as follows:

r̂el(a, b) =

 ⊥ : a = ⊥ ∨ b = ⊥

rel (a, b) : otherwise

How can congruence information be used to implement a (relational) cache
analysis? As in Ferdinand’s cache analysis, Hahn and Grund propose to maintain
upper bounds on the age of abstract cache elements. However, both approaches
differ in that Hahn and Grund use symbolic names as abstract cache elements
instead of memory blocks. Furthermore, Ferdinand proposes to analyze cache
sets independently. With symbolic names and therefore the absence of absolute
memory addresses, we do not have any information about which cache set is
accessed. Hence, a concrete block represented by a symbolic name may reside in
any cache set. What the analysis maintains is a function ab : S → {0, . . . , k−1,∞}
mapping symbolic names to upper bound on their age,where k is the associativity.
On a memory access, the evaluation of ab may need to be modified in order to still
produce valid age bounds. A suitable update function is given in Definition 2.18.
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Definition 2.18 (Abstract Update Function for Relational Cache Analysis). Let

U≤rel (ab, s) : (S → {0, . . . , k − 1,∞}) × S → (S → {0, . . . , k − 1,∞})

be defined as:

U≤rel (ab, s) := λt.



0 : c = sb

ab(t) : c ∈ {ds, ssdb}

ab(t) : c w ssdb ∧ ab(s) ≤ ab(t)
ab(t) + 1 : c w ssdb ∧ ab(s) > ab(t) ∧ ab(t) < k − 1
∞ : c w ssdb ∧ ab(s) > ab(t) ∧ ab(t) ≥ k − 1
∞ : c = ⊥

where c = cgrv (s, t).

Again, program locations may in general be reached via several paths. Hence,
age bounds computed along the different paths need to be combined in a sound
manner.

Striving for a must-cache analysis, a sound combination of age bounds is to
take the maximum age of all abstract cache elements. A sound join function for
age bound functions can therefore be defined as

ab1 t ab2 = λs ∈ S.max {ab1(s), ab2(s)}

Given such age bounds for abstract cache elements, a classification function

Class≤rel : S → {0, . . . , k − 1,∞} × S → {H,M,>}

to classify memory accesses as always hit (H) or always miss (M) can be easily
defined as

Class≤rel (ab, s) :=

 H : ab(s) ≤ k − 1
> : otherwise

Concluding Remarks and Discussion of Applicability on Programs

Using Dynamic Memory Allocation

The relational cache analysis was just recently proposed and has not yet been
implemented in industrial-strength tools. However, such a relational cache analysis
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is guaranteed to always be at least as precise as Ferdinand’s analysis. But it is also
often able to classify stack-relative references and array references as cache hits in
cases where Ferdinand’s analysis fails to do so due to limited context sensitivity.

We can thus safely conclude that precise information about memory addresses
is not a prerequisite for a precise cache analysis, but precise relations are. A
relational cache analysis, hence, strictly lowers the requirements on the precision
of absolute addresses for a precise cache analysis.

But how well can such a relational cache analysis perform in the presence of
dynamically allocated objects? Accessing dynamically allocated data with an
unknown cache set mapping does not require a modification of the update function
given in Definition 2.18. However, we note that when referencing a symbolic
name m with a completely unknown memory address, cgrv (m, t) will evaluate to
> for all t , m (and to sb for t = m). Hence, the update function will age all t , m

by 1 and set the age of m to 0.
We observe that again, every entry of the cache is conservatively aged. However,

as symbolic names are used and concrete addresses are not required, the relational
analysis adds m with age 0 to the cache. Unlike Ferdinand’s analysis, where the
youngest entry for all cache sets is set to unknown, the relational cache analysis
may potentially derive cache hits for further, contemporaneous references to m.

Furthermore, we need to account for the cache influence of the allocation
and deallocation routines themselves. We, again, assume the dynamic memory
allocator to be a black box incurring a maximum of LA and LF accesses to
pairwise different cache lines per cache set during allocation and deallocation,
respectively. Then Definition 2.19 suitably models the influence of invocations of
the allocator on the current cache state.

Again, when LA ≥ k or LF ≥ k, each allocation and deallocation, respectively,
leads to a complete loss of information regarding the current (must) cache state.

In summary, a relational cache analysis may be able to classify accesses to
dynamically allocated objects as cache hits. However, there is still a significant
loss of precision of information about cache states each time the analysis needs to
consider references to unknown memory locations. Additionally, invocations of
the dynamic allocator, whether they may be allocation or deallocation requests,
result in a complete loss of information about potential cache states for (most)
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dynamic allocators. The latter two observed sources of decreased precision are
again inherent to the dynamic allocators and references to unknown memory
locations and not a weakness of the analysis itself.

Definition 2.19 (Abstract Update Function for Relative Cache Analysis For Invo-
cations of the Dynamic Memory Allocator). Let

UA
≤

rel (ab) : (S → {0, . . . , k − 1,∞})→ (S → {0, . . . , k − 1,∞})

be defined as:

UA
≤

rel (ab) := λt.

 ab(t) + LA : ab(t) < k − LA
∞ : otherwise

and

UF
≤

rel (ab) : (S → {0, . . . , k − 1,∞})→ (S → {0, . . . , k − 1,∞})

be defined as:

UF
≤

rel (ab) := λt.

 ab(t) + LF : ab(t) < k − LF
∞ : otherwise

2.5 References & Further Reading

Dynamic Memory Allocation Dynamic memory allocation is employed and
has been a topic of research for over half a century now. Consequently, any
summary of the topic as the one given in this chapter is bound to be brief on some
aspects and leave out other aspects that are less relevant in the context. For a more
detailed survey on dynamic memory allocation, we refer to [WJNB95] which
reviews the majority of the literature on dynamic memory allocators published
between 1961 and 1995. This survey establishes now widely accepted notations
and performance measures to classify and compare dynamic memory allocators,
dynamic memory allocation strategies, policies, and techniques. Dynamic memory
allocation suitable for real-time applications, however, is not discussed in this
survey. This is no surprise, as the first real-time dynamic memory allocator was
proposed in 1995 in a time when real-time applications became more complex.
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Until then, simple and fast constant-time allocators like the buddy systems were
considered a suitable real-time alternative. An early, but very detailed review
of these buddy systems can be found in [PN77]. The current state-of-the-art of
real-time dynamic memory allocation is TLSF which was first proposed (as a
work-in-progress) in 2003 [MRC03].

Static Cache Analyses Besides the two cache analyses we presented in detail,
other approaches to cache analysis aiming at a local classification of memory
accesses into cache hits and misses exist. The work probably closest to Ferdinand’s
analyses is the static cache simulation for direct-mapped instruction caches by
Mueller et al. [MH93]. Their analysis classifies memory accesses as always-miss,
always-hit, first-miss or conflict. While this seems to be more precise, similar
results are obtained when combining Ferdinand’s approach with virtual loop
unrolling. Static cache simulation was also subsequently extended to cope with
data caches [WHW+97].

Furthermore, Li et al. can handle caches within their approach to timing analysis
using ILP formulations [LMW96]. With the extension proposed in [LMW96],
their work can cope with caches and pipelines and handle path analysis. However,
encoding all these aspects in an ILP formulation causes severe complexity issues,
in practice rendering their approach infeasible but for very limited and simple
cache and pipeline architectures.
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3
Static Precomputation of Allocation Schemes

for Otherwise Dynamic Allocation Schemes

The best-laid schemes o’ mice an’ men

Gang aft agley,

An’ lea’e us nought but grief an’ pain,

For promis’d joy!

Robert Burns

in To A Mouse (1785)

3.1 Chapter Overview

This chapter summarizes our work on algorithms for a static precomputation of
memory locations for (otherwise) dynamically allocated memory structures.

As discussed in the previous chapter, dynamic memory allocation makes the
static determination of tight bounds on an application’s worst-case execution time
challenging. As a consequence, current best practice in industry is to simply resort
to static memory allocation. And, hence, circumvent the predictability issues of
using dynamic memory allocation completely. However, there are advantages of
dynamic memory allocation. With the techniques presented in this chapter, we
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aim to statically precompute memory addresses and replace calls to the memory
allocator by (functions returning) sequences of fixed addresses. This way, a pro-
grammer can make full use of dynamic memory allocation to alleviate the task of
efficiently reusing memory, thus often significantly decreasing implementation as
well as maintenance times. Once dynamic memory management is automatically
replaced by a static allocation scheme, the final program does not suffer any addi-
tional predictability issues due to dynamic memory management. Furthermore,
the modified program can be analyzed using current WCET analyses.

Figure 3.1 visualizes the field of application for the algorithms proposed in this
chapter. As depicted, the workflow we aim at can be summarized as follows. We
start with a program using dynamic memory allocation that is, however, intended
to be deployed in a hard real-time setting. In a first phase, we apply a static
program analysis to compute liveness information for the dynamically allocated
objects. This information together with statically derived or user supplied loop
and recursion bounds is used as input to our algorithms for precomputing static
memory addresses. In the final phase, we replace calls for dynamic memory
allocation, i.e., calls to malloc, by functions that simply return a sequence of
precomputed addresses. Using fixed memory addresses, calls to free become
obsolete and are consequently removed from the program. In the modified output
program, the memory addresses of all objects are statically known. For such
a program, current WCET analyses may compute tight bounds on its worst-
case execution time as no additional uncertainty regarding its cache behavior is
introduced by its memory allocation scheme anymore.

The remainder of this chapter is organized as follows. Section 3.2 summarizes
our work on algorithms to precompute memory addresses for dynamic allocations
in programs with numerical bounds on the number and sizes of allocations. The
algorithms described in this section are already published in [HR09]. Section 3.3
elaborates on an algorithm that can also cope with programs for which only
parametric bounds on the number and sizes of their allocations are available. This
section reports on work already published in [HA10]. In Section 3.4, we discuss a
suitable preanalysis to derive the inputs to the algorithms proposed in the previous
sections. Section 3.5 concludes the chapter.
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x = malloc(
      sizeof (list));
...
y = x->data;          

Static
Analysis

Pre-computation
of Static Addresses

Analysis 
results

User 
supplied 
Param. 

Loop/Size 
Bounds

x = nextAddr();
...
y = x->data;          

Original Program Modified Program

x = malloc(
      sizeof (list));
...
y = x->data;          

Figure 3.1: Workflow in which to employ our algorithms to precompute static
allocations.

3.2 Precomputing Allocation Schemes for

Programs with Numerical Bounds on Loop

Iterations and Allocation Sizes

It is often argued that dynamic memory allocation prohibits a precise WCET
analysis. We evidenced such an effect in Chapter 2.4. But may we nonetheless
be able to exploit the special requirements for hard real-time systems to actually
circumvent predictability issues introduced by dynamic allocation? Hard real-time
software is guaranteed to contain no unbounded loops nor unbounded recursion.
Hence, there can be no unbounded number of allocations. Assume all loops/itera-
tions can even be bounded by a numerical value; as do the requested sizes. We
can then use this information to transform dynamic memory allocation into static
memory allocation.
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Our proposed algorithms statically determine a memory address for each dy-
namically allocated heap object such that

• the WCET bound calculated by the standard IPET method is minimized,

• as a secondary objective the memory consumption is minimized, and

• no objects that may be contemporaneously allocated overlap in memory.

For the algorithms proposed in this section, we assume that for hard real-time
applications a good memory mapping has to enable the computation of small
WCET bounds. I.e., it has to enable a timing analysis to derive small bounds by
either increasing the precision of the analysis or decreasing the actual WCET of
the application.

Memory Mapping What do we mean by a memory mapping? Assume the
main memory to be partitioned into memory blocks the size of a cache line such
that each block maps into exactly one cache set. I.e., the memory blocks are
aligned with the cache sets. We will later address the memory at the granularity
of such memory blocks and never below. Consequently, memory address (i − 1)
refers to the ith memory block. Analogously to the main memory, we also partition
the program’s dynamically allocated memory into blocks the size of a cache line
which we call heap allocated objects. A memory mapping, then, assigns to each
heap allocated object a memory block.

A heap allocated object may contain several program objects or just a fraction
of a single program object. If a program object does not fit into a single heap
allocated object, it has to be spread over several. Heap allocated objects holding a
single program object have to be placed consecutively in memory in order to not
break the program semantics. To this end, we introduce heap allocated structures:
ordered sets of heap allocated objects. The heap allocated objects of a heap
allocated structure must always be mapped to consecutive memory addresses.

We can relate heap allocated structures to dynamically allocated memory blocks
of the analyzed program, i.e., program objects, like for example single nodes of a
binary search tree or large arrays. We can also relate such heap allocated structures
to entire data structures of the analyzed programs that are built from dynamically
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allocated objects. Such data structures are for example linked lists consisting of
several node objects. What relation we choose depends on the program we want to
analyze. For example, it may for some applications be advantageous to consider a
linked list structure to be a single heap allocated structure. Consider for example
a program working on several, disjoint linked lists. Simply putting the objects of
each list consecutively in memory and separating the different lists in the cache
by choosing memory locations such that objects of different lists always map to
different cache sets, may already constitute a good solution. I.e, a solution aimed
at maximizing cache hits and minimizing cache misses due to cache evictions
from accesses to objects of different structures. For other applications we may
want to consider each single program object to be a single heap allocated structure.
Consider for example an application performing an in-situ transformation of one
of its internal data structures. Considering the source and the target structure each
a single object, we have no opportunity for objects to share memory locations.
Considering each (program) object of these structures to be a single heap allocated
object, instead, enables objects to share memory locations.

Consequently, a memory mapping m is a function that maps each heap allocated
object to a memory address:

m =
⋃

oi, j∈O

{oi, j 7→ ai, j}

Where oi, j ∈ O is a heap allocated object, ai, j its memory address, and (i, j) ∈ I×Ji

an index for elements of O, the set of all heap allocated objects. Furthermore, I
denotes an index set for the set of heap allocated structures and, for all i ∈ I, Ji

an index set for the set of (heap allocated) objects contained in structure i or rather
◦
|Ji |

j=0

(
oi, j

)
where ◦ denotes the concatenation of heap allocated objects.

Problem Definition Given a program P, we strive for a memory mapping that
allows for a minimal WCET bound on P that uses as little memory as possible.
Or more formally, we strive for a WCET bound of

min
m ∈ M?

{WCET(P,m)}

where M? is the set of all valid memory mappings, with the side condition to use
as little memory as possible.
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An IPET Approach to Compute a Program’s WCET How can we compute
WCET(P,m), the execution time of the program’s longest execution path? As
proposed by Li and Malik, the longest execution path of a program can be com-
puted by implicit path enumeration techniques (IPET) [LM95]. Their approach
formulates the problem of finding the longest execution path as an integer linear
program (ILP). Assume we have the control-flow graph G (P) = (V, E, s, e) of a
program P, where V is the set of nodes, i.e., the basic blocks of P and E the set of
edges between those nodes representing possible program flow. The start node of
P is denoted by s, its end node by e. Furthermore, assume loop bounds bk for the
loops contained in P to be also statically available. Then an ILP according to Li
and Malik’s approach is constructed as follows. First, we introduce two types of
counter variables: xi—the execution frequency of basic block Bi—for counting
the number of executions of basic block Bi ∈ V and y j for storing the number of
traversals of edge E j ∈ E. We can then represent and describe the possible control
flow by stating that the start and end node of the control-flow graph are executed
exactly once. This is modeled by the constraints generated according to Equation
(3.1). Equations (3.2) and (3.3) generate constraints to model that each node is
executed as often as the control flow enters and leaves the node, respectively. And
finally, Equation (3.4) incorporates loop bounds into our ILP representation of the
program’s control flow. For each loop l with an (upper) iteration bound of bl, this
equation adds a constraint ensuring that each outgoing edge of the first block b

within the loop is taken at most as often as the sum over all ingoing edges to b

times the loop bound bl.

xi = 1 if Bi = s ∨ Bi = e (3.1)∑
j∈J

y j = xk where J = { j | E j = (·, Bk)} (3.2)∑
j∈J

y j = xk where J = { j | E j = (Bk, ·)} (3.3)

yl ≤ bl ·

∑
j∈J

y j

 where J =
{
j | E j is loop entry edge to l

}
(3.4)
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The WCET bound is then obtained using the objective function:

max
∑

i ∈ {i | Bi∈V}

(
xi · cm

i
)

where cm
i is an upper bound on the WCET of basic block Bi for a given memory

mapping m.

WCET-optimal Memory Mapping Combining a computation of WCET(P,m)
as discussed above with our desired result from the problem definition yields a
new objective function. This function incorporates different memory mappings
into Li and Malik’s approach. Given this new objective function, a WCET-optimal
memory mapping yields a WCET bound equal to

min
m ∈ M?

max
∑

i ∈ {i | Bi∈V}

(
xi · cm

i
) (3.5)

Unfortunately, our new problem does not constitute an ILP anymore. We
propose to simply approximate solutions to Equation (3.5) as follows. Initially,
we start with a memory mapping m that uses minimal memory.We then compute
the WCET of the program for this memory mapping m using an ILP as described
earlier. Subsequently, we improve the memory mapping of our current solution
with respect to the WCET by selecting the basic block Bi whose penalty due
to conflict misses has the greatest contribution to the overall WCET bound and
modifying m such that cm

i is minimized. This last step is then repeated until no
further improvements can be achieved.

Algorithm 1 implements this strategy as a hill climbing algorithm. Internally,
this algorithm relies on methods to compute a bound on the WCET of a program
using an IPET approach (WCETIPET()), to compute an initial memory optimal
mapping (mem opt()), and to compute a block optimal mapping for a given basic
block (block opt()). To enable our hill climbing algorithm to escape local maxima,
we allow for a certain number of side steps. A side step means that the algorithm
selects an equally good or even worse mapping if no improved mapping can be
found during an iteration. The maximum number of allowed side steps should be
at least the number of program blocks in order to allow the optimization of each
block. In our experiments, we set the maximum number of side steps to 2 · |V |.
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Algorithm 1: Hill climbing algorithm to approximate a WCET-optimal mem-
ory mapping.
Data: functions WCETIPET(), mem opt(), and block opt(); program P;

integer sideSteps number of allowed side steps
Result: approximation to WCET-optimal memory mapping for dynamically

allocated objects of P

mappingbest ← mem opt();
mappingcurr ← mappingbest;
skip← {};
while sideSteps > 0 do

calculate WCETIPET(P,mappingcurr);
select basic block b with largest WCET contribution due to conflict
misses such that b < skip or return if no such block exists;
mappingtmp ← block opt(mappingcurr, b);
skip← skip ∪ {b};
if WCETIPET(P,mappingtmp) < WCETIPET(P,mappingcurr) then

mappingcurr ← mappingtmp;
if WCETIPET(P,mappingtmp) < WCETIPET(P,mappingbest) then

mappingbest ← mappingtmp;
end

else
sideSteps← sideSteps − 1;
mappingcurr ← mappingtmp;

end
end

An ILP formulation to implement WCETIPET() has already been proposed.
The remaining memory mappings, mem opt() and block opt(), can also be com-
puted by ILPs. We give generating equations for suitable ILP formulations in the
following paragraphs.
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Memory Optimal Mapping (mem opt()) Let ai, j be an integer variable of an
ILP. Furthermore, let ai, j store the memory address of the jth heap allocated object
of heap allocated structure i. Again, memory address does not refer to the physical
address, but rather the

(
ai, j

)th
memory block by partitioning the memory into

blocks of the size of a cache line. For all i, j, i′, j′ such that the jth object of
structure i may be allocated contemporaneously with the j′th object of structure i′,
we add two constraints:

ai′, j′ + 1 − ai, j − bi, j,i′, j′ · C ≤ 0 (3.6)

ai′, j′ −
(
ai, j + 1

)
+

(
1 − bi, j,i′, j′

)
· C ≥ 0 (3.7)

where the ba,b,c,d are auxiliary binary variables and C a constant larger than the
value any expression within the ILP can take. Note that such a C may easily be
computed statically. These constraints serve to ensure that parts of heap allocated
structures allocated contemporaneously do not reside at the same memory address.
Consider the case that ai′, j′ = ai, j (which we want to exclude in a solution). In
this case, the first of the two equations can be simplified to 1 − bi, j,i′, j′ · C ≤ 0 and
the ILP solver must set bi, j,i′, j′ to 1 in order to satisfy the equation. This, however,
makes the second equation, which can then be simplified to −1 ≥ 0, unsatisfiable.
As intended, both equations can only be satisfied in case ai′, j′ , ai, j.

To not break with the program semantics and change its behavior, we need to
ensure a consecutive placement of parts of the same heap allocated structure. To
this end, we add further constraints for all i, j according to the following equation:

ai, j+1 = ai, j + 1 (3.8)

Let ā denote the largest memory address used in the computed memory mapping.
A correct value of ā is ensured by adding the following constraints for all i, j:

ai, j < ā (3.9)

Finally, we need to provide an objective function for the ILP. As we want to
minimize our memory consumption, we can simply minimize the largest address
in use, i.e., ā:

min ā (3.10)
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Block Optimal Mapping (block opt()) We can modify the ILP used to com-
pute a memory usage optimal mapping in the previous paragraph to compute a
block-optimal mapping as follows. As we defined block-optimal with respect to
potential conflict cache misses, we start with a computation of the cache sets to
which memory blocks are mapped that are accessed in the basic block for which
we want to optimize the mapping.

Let #cs denote the number of cache sets and csa,i, j denote binary variables set
to 1 if and only if the jth block of heap allocated structure i is mapped to cache
set a. Equations (3.11) to (3.22) generate a set of constraints that set these csa,i, j

accordingly.
However, in order to do so, also several auxiliary variables are needed. Let oi, j

denote the jth block of heap allocated structure i. Integer variable ai, j, again, stores
the memory address of oi, j. Equations (3.11) to (3.14) set csi, j to the cache set
to which oi, j is mapped. The auxiliary variable ni, j also used in these equations
stores the result of an integer division of the address of oi, j by #cs. We generate
constraints according to these equations for all i, j such that block j of structure i

is accessed in the considered basic block.
Equations (3.15) to (3.22) are used to generate constraints for all a, i, j, such

that a is a cache set and block j of structure i is accessed in the considered basic
block. These constraints set further auxiliary variables. Namely, ya,i, j which is set
to store the result of a computation of |a − csi, j|. Furthermore, variables ltza,i, j are
set to 0 if and only if a − csi, j < 0 holds.

Finally, we set all csa,i, j by the constraints generated from Equations (3.21)
and (3.22).

ai, j − ni, j · #cs − csi, j = 0 (3.11)

ni, j ≥ 0 (3.12)

csi, j ≥ 0 (3.13)

csi, j − #cs + 1 ≤ 0 (3.14)
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a − csi, j − ltza,i, j · C ≤ 0 (3.15)

a − csi, j +
(
1 − ltza,i, j

)
· C ≥ 0 (3.16)

a − csi, j ≤ ya,i, j (3.17)

−
(
a − csi, j

)
≤ ya,i, j (3.18)

a − csi, j +
(
1 − ltza,i, j

)
· C ≥ ya,i, j (3.19)

−
(
a − csi, j

)
+ ltza,i, j · C ≥ ya,i, j (3.20)

ya,i, j − C ·
(
1 − csa,i, j

)
≤ 0 (3.21)

ya,i, j −
(
1 − csa,i, j

)
≥ 0 (3.22)

We compute the number of potential cache misses pa due to cache conflicts
resulting from accessing cache set a using the following constraints for all cache
sets a. With ba being auxiliary binary variables and k denoting the associativity of
the cache: ∑

i, j

csa,i, j

 − k − ba · C ≤ 0 (3.23)∑
i, j

csa,i, j

 − k + (1 − ba) · C ≥ 0 (3.24)

0 ≤ pa (3.25)∑
i, j

csa,i, j

 − (1 − ba) · C ≤ pa (3.26)

As we aim to minimize the number of conflict misses that may occur during
execution of the considered basic block, we replace our ILP’s objective function
by:

min C ·

 ∑
0 ≤ a < k

pa

 + ā (3.27)

Where, again, we use a very large constant C to weigh a reduction of potential
conflict misses higher than any reduction in memory consumption.
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A Heuristic Approach However, once the number of cache sets increases, the
ILP to compute block optimal mappings becomes intractable; even independently
of the number of heap objects. Preliminary experiments suggest that for target
hardware with 256 or more cache sets solutions to the ILPs cannot be computed in
reasonable time anymore. Furthermore, computing block optimal mappings using
ILP formulations also introduces severe complexity issues for programs with a
large number of heap allocated memory blocks.

Hence, in order to allow for an analysis of programs with more allocations
as well as programs for a more complex target hardware with more cache sets,
we propose to replace the block optimal ILP by a heuristic algorithm. Consider
a simulated annealing [KGV83] algorithm as sketched in Algorithm 2 as an
alternative implementation of block opt(). Simulated annealing is a generic,
probabilistic heuristics to find a good approximation to a global optimum by a
non-exhaustive search. Intuitively, it mimics the cooling process of some material.
The temperature corresponds to the probability to select a worse solution over the
current one in order to escape local maxima. This probability decreases over time,
like the temperature of a cooling material.

In this algorithm, we call N(m), where m is a memory mapping, the neighbor-

hood of m. A neighborhood of a memory mapping m is defined as the set of all
memory mappings, such that the address of a single structure s differs from its
address in m by exactly 1. Formally speaking, for a memory mapping

m =
⋃

oi, j∈O

{oi, j 7→ ai, j}

we define the neighborhood N(m) as

N(m) =
{
m ⊕

{
oi, j 7→ a′i, j

}
|
∣∣∣ai, j − a′i, j

∣∣∣ = 1
}

The evaluation function eval() to determine the costs of a memory mapping m

is defined as

eval(m) = C2 ·memoryConflicts(m)+C·potentialConflictMisses(m)+maxAddr(m)

The first component ensures that memory mappings with fewer memory conflicts
are preferred. Hence, a mapping with zero memory conflicts will be selected as the
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Algorithm 2: Simulated annealing algorithm to compute a block optimal
mapping.
Data: TemperatureMAX , TemperatureMIN , Cooling Ratio

Result: approximation of a memory mapping with minimal number of
potential conflict misses in program block b

restarts← 0;
mappingbest ← mem opt();
while restarts < RESTARTS do

mappingcurr ← mem opt();
Temperature← TemperatureMAX;
while Temperature > TemperatureMIN do

compute the set N
(
mappingcurr

)
of neighboring mappings of

mappingcurr;
foreach mappingtmp ∈ N

(
mappingcurr

)
do

if eval
(
mappingtmp

)
< eval

(
mappingbest

)
then

mappingbest ← mappingtmp;
end
set mappingcurr to mappingtmp with a probability Pset (m1,m2) of

Pset

(
mappingcurr,mappingtmp

)
= e

eval(mappingcurr)−eval(mappingtmp)
Temperature ;

end
Temperature← Temperature · Cooling Ratio;

end
restarts← restarts + 1;

end
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algorithm can always use more memory locations. The number of potential conflict
misses is then minimized by the second component. Among memory mappings
with no memory conflicts and the same number of conflict misses, component
three ensures that a memory mapping with minimal memory consumption is
selected. This third component is used to ensure that in any selected mapping,
there is an upper bound on the highest address assigned to any heap allocated
object of |O|.

As maximal temperature, we use TemperatureMAX = |O|2. The intention is to
have TemperatureMAX large enough to allow for almost random behavior at the
beginning of each restart, converging to a local optimum. The current cooling
ratio is 1.2−|I|·restarts, where |I| denotes the number of heap allocated structures.

Although a memory optimal mapping can be computed by our ILP formulation
for most programs, mem opt() can be easily replaced by a similar simulated
annealing heuristic.

Applicability The approach described so far relies on the static availability of
tight, numerical bounds on all program loops and requested allocation sizes. While
this is an appropriate assumption for a large class of hard real-time applications,
there already exist algorithms to derive parametric WCETs [AHLW08, BEL11,
AAN11]. I.e., techniques that allow for parametric upper bounds on an applica-
tion’s WCET in case only parametric loop bounds are available. Unfortunately, our
approach is, per construction, not applicable to this extended class of applications
for which precise timing analysis is already available. It is, of course, desirable to
enable dynamic memory allocation for these applications, too.

Furthermore, even our heuristic approach scales rather poorly with an increasing
number of heap allocated objects. Table 3.1, shows an excerpt of the benchmark
results presented in [HR09]. The target hardware was modeled after the Pow-
erPC MPC603e. The PowerPC CPU utilizes separated 4-way set-associative
instruction and data caches of 16 KB, each. The cache architecture consists of
128 cache sets with a cache line size of 32 bytes. These benchmarks analyze a
program performing an in-situ transformation of a data structure.

Suppose said program transforms a data structure A consisting of n objects
where each object occupies l memory blocks. The target data structure, B, conse-
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Program Target Hardware Memory-/Block-Optimal Algorithm Analysis Time (min/max/avg) ms

Structure-copy(3) PPC603e ILP/ILP 23/79/43.2
Structure-copy(3) PPC603e ILP/Simulated Annealing 23/89/43.6

Structure-copy(100) PPC603e Simulated Annealing/Simulated Annealing 9,025/9,629/9,345.1
Structure-copy(500) PPC603e Simulated Annealing/Simulated Annealing 260,401/276,797/268,932.7

Table 3.1: Running times of example analyses each executed 10 times on a
2.66 GHz Core 2 Duo with 2 GB RAM. Excerpt of the benchmark
results given in [HR09].

quently consists of n objects, too. In B, however, each element occupies k memory
blocks. When transforming one data structure into another, dynamic memory
allocation can easily lead to a memory consumption smaller than the sum of the
memory needed to hold both structures by freeing each component of the first
data structure as soon as its contents are copied to the second structure. Assuming
that k ≥ l, one can show that we need just n · k + l memory blocks for a program
performing an in-situ transformation as described. In all instances, our algorithms
computed solutions that use exactly n · k + l memory blocks.

While the computed allocation schemes are very promising with respect to
memory consumption, the running times of the analyses themselves are less
promising. Consider the last two entries where a data structure consisting of 100
and 500 elements, respectively, is copied. While the number of heap allocated
objects increases by a factor of 5, the analysis’ execution time increases by a factor
of roughly 28.78 (on average). A similar effect can be observed by comparing
entries two and three. Increasing the number of heap allocated objects from 3
to 100 results in a 214.34 fold increase of the running time of the analysis (on
average).

The next section proposes a different approach that is applicable to both classes
of real-time applications: those for which numerical bounds on loop iterations and
requested allocation sizes are available as well as those for which only parametric
bounds are available.
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3.3 Precomputing Allocation Schemes for

Programs with Parametric Loop Bounds and

Allocation Sizes

While the previously proposed algorithms take into account the possible control
flow of a program, our proposed algorithm to cope with parametric allocation
bounds reduces a program to its memory allocation behavior. A formal description
of a program’s memory allocation behavior is consequently the only input data to
this algorithm.

Memory Allocation Behavior To formally describe a program’s memory al-
location behavior, we start by collecting all allocation sites. An allocation site is
simply an occurrence of malloc within the program. Let M denote the set of all
allocation sites.

By assumption, we statically know how often each allocation site may be
reached during program execution: as loop and recursion bounds are known,
at least parametrically. Let P denote the set of parametric loop and recursion
bounds, L a possibly empty set of constraints on the parameters in P. We can then
introduce a further set

U =
⋃
m∈M

{um}

where um ∈ N ∪ P is an upper bound on how often allocation site m may be
reached, i.e., how often this function call to malloc may be invoked.

We furthermore assume an at least parametric bound on the requested allocation
sizes. For each allocation site m, we construct a function fm such that fm (i)

evaluates to the size requested at the ith invocation of malloc at allocation site m.
These sizes may be overapproximated by intervals.

Consequently, we can construct a set of functions describing the allocation
requests for all allocation sites as:

A =
⋃
m∈M

{
fm : N≤um∈U 7→ Im

}
where Im is a set of intervals.
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The set

R =
{
(m, i) | m ∈ M ∧ i ∈ N≤um∈U

}
contains all allocation requests that may occur during program execution.

Optimization Goals Any precomputed allocation scheme needs to be feasible.
I.e., objects with overlapping lifetimes must not be mapped to overlapping memory
locations. As with our previously discussed algorithms, we assume liveness
information to be available. For our algorithm, we encode this information in a
conflict function

C : 2R 7→ {0, 1}

that evaluates to 1 if and only if its argument contains requests for at least two
memory blocks with potentially overlapping lifetimes.

Furthermore, when precomputing static memory addresses for originally dy-
namically allocated memory blocks, we do not want to ignore cache set mappings
completely. In our previous approach, we aim for a cache-set mapping with a
minimal number of potential conflict misses. While this is a reasonable heuristics,
there are potential issues with this approach. As we just considered potential

conflict misses, there is a risk that our algorithm removes potential, but in actual
program executions never occurring conflict misses in order to keep or even in-
troduce potential and actually occurring misses. Furthermore, with this approach,
it is always unclear, whether a subsequent timing (or rather cache) analysis may
even profit from the optimization. In the worst-case scenario, our optimization
of potential conflict misses may, hence, actually decrease cache performance and
analyzability or predictability.

In theory, there are two ways how to incorporate an optimization of the cache-
set mapping into our algorithm. We may strive for cache-set mappings leading to
further improved predictability of the program. This, however, requires us to be
aware of many details of the subsequent cache analysis applied to the transformed
program. Basically, to be able to decide which cache-set mapping may enable
a subsequent cache analysis to classify the largest number of memory accesses
as hits or misses calls for knowing the exact analysis algorithm. With such an
approach, we also have to be careful not to decrease actual cache performance
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by just considering predictability. The second option would be to just strive for
good cache performance in order to reduce the risk that the statically precomputed
addresses decrease program performance. In order not to rely on assumptions
about subsequently applied analysis techniques or to be restricted to specific
analyses, we favor the second option.

Unfortunately, under the assumption that P , NP, one cannot efficiently
approximate an optimal placement of objects in memory that reduces the number
of cache misses; not even up to a very liberal approximation ratio [PR02, PR05].
However, Chilimbi et al. showed that simply trying to place objects that are
likely to be accessed contemporaneously next to each other in memory achieves
significant increases in performance [CHL00]. To incorporate this simple, but
efficient heuristics into our algorithm, we construct a bias function

B : (R × R) 7→ {0, 1}

such that B(r1, r2) evaluates to 1 if and only if the block for which memory is
requested in r1 is likely to be accessed shortly prior to the one for which memory
is requested in r2.

But how can we statically obtain information about what objects will be ac-
cessed contemporaneously during program execution? Chilimbi’s work relied on
the user to provide this information. While this yields the most precise information
in most cases, we may also approximate object access behavior using shape analy-
sis [SRW02] in order to not rely on user interaction. We say that two objects o1

and o2 are likely to be accessed contemporaneously if there exist field pointers be-
tween o1 and o2. A third, more efficient, but potentially less precise way to gather
this information is to apply an efficient data structure analysis [LA03] together
with the heuristics that objects organized in the same data structure are likely to be
accessed contemporaneously. We will elaborate on the issue of obtaining useful
data regarding which objects are likely to be accessed contemporaneously in more
detail in Section 3.4. For now, assume this information to be available to our
algorithm.
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Symbol Formal Definition Intended Meaning

M set of allocation sites

P set of parametric loop/recursion bounds

L set of constraints on elements of P

U U =
⋃

m∈M {um} set of upper bounds on invocations of
where um ∈ (N ∪ P) allocation sites

A A =
⋃

m∈M

{
fm : N≤um∈U 7→ Im

}
set of functions mapping invocations

where Im is a set of intervals of allocation sites to (the requested) sizes

R R =
{
(m, i) | m ∈ M ∧ i ∈ N≤um∈U

}
set of all allocation requests (of a program)

C C : 2R 7→ {0, 1} conflict function, capturing liveness information

B B : (R × R) 7→ {0, 1} bias function to guide cache set placement
according to Chilimbi’s heuristics

Table 3.2: Definitions used in our approach to precompute a static memory alloca-
tion scheme for a given dynamic memory allocation scheme.

Table 3.2 summarizes the definitions introduced in this section so far.

Formal Problem Definition Given a formal description of a program’s mem-
ory allocation behavior and the discussed optimization goals, an allocation problem
is a six-tuple

(M,U, L, A,C,B)

A (static) allocation scheme is a feasible solution to an allocation problem of
the form ⋃

r∈R

{(r, addrr)}

where addrr denotes the precomputed starting address of the memory block
requested by r.

An optimal allocation scheme is a feasible solution to an allocation problem
such that (1) there is no other feasible solution with smaller memory consumption.
And (2), considering the set of all feasible solutions with minimum memory
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consumption, no solution exists that places more blocks for which the bias function
B evaluates to 1 in memory next to each other.

Unfortunately, finding such optimal solutions is still at least NP-hard, despite
our simple heuristics for reasonable cache-set mappings.

Theorem 3.1 (NP-Hardness of the Computation of Optimal Allocation Schemes).
Computing optimal solutions to an allocation problem is at least NP-hard.

Proof. Let (V, E, k) be a given instance of the k-colorability problem for a graph
G = (V, E). Generate the allocation problem

K = (V, {1}, {}, { f : {1} 7→ [1, 1]},C : R × R 7→ {0, 1},B : R × R 7→ {0})

where B maps all arguments to 0 and C is defined such that

C(S ) = 1⇔ ∃v1, v2.(v1, v2) ∈ E ∧ {v1, v2} ⊆ S

This transformation can be done in polynomial time and can be used to solve the
k-colorability problem for G as follows. Find an optimal allocation for K and
check whether less than or equal to k memory addresses are used, in which case G

is k-colorable by associating each memory location with a (different) color. �

Consequently, we choose a heuristic approach to finding good solutions, rather
than optimal solutions. As striving for optimal solutions would render our tech-
nique only applicable to very small applications.

Problem/Input Normalization The first phase of our proposed algorithm con-
sists of a normalization of its input. In this initial phase, the algorithm transforms
its input I into a normalized input I′, where

I = (M,U, L, A,C,B)

as follows. For sake of readability, in the following, we denote a request for a
block of dynamically allocated memory simply by an allocated memory block.
For its normalization of I, the algorithm uses the bias function B to identify
maximal ranges, i.e., concatenations, of allocated memory blocks that should be
placed adjacent in memory. These ranges are subsequently split again to yield
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new memory blocks such that the sizes of the resulting normalized memory blocks

are multiples of the size of a cache line. However, the tailing normalized block
resulting from splitting such a maximal range may be of smaller size. Also,
splitting must not occur within the bounds of an allocated memory block. I.e.,
each normalized memory block of I′ consists of n ≥ 1 complete, i.e., unsplit,
allocated blocks from the original problem I.

This transformation yields a new, normalized allocation problem I′ for a para-
metric set of normalized blocks where

I′ =
(
M′,U′, L′, A′,C′

)
In this normalized problem, M′ denotes the set of abstract allocation sites, while
the functions collected in A′ map to the sizes of the single normalized blocks
of these abstract allocation sites. An abstract allocation site, consequently, is
a sequence of consecutive allocation requests. U′ ⊂ N ∪ P′ and L′ are the
accordingly updated constraints on loop/recursion bounds and parameters.

We gain two advantages from this transformation step. Firstly, the number of
memory blocks considered by the algorithm is in general reduced, leading to a
smaller problem instance. Secondly and more importantly, the bias function is
consumed by this transformation. Consequently, the algorithm does not need to
respect further constraints introduced by this function.

But is this normalization a reasonable exploitation of B and Chilimbi’s heuris-
tics? Chilimbi’s heuristics is based on the following two assumptions regarding
general program properties. First, spatial locality of memory accesses (see Sec-
tion 2.3) strongly exists, i.e., addresses are more likely to be accessed if addresses
near to them have already been accessed recently. Second, accessed objects share

memory blocks and consequently cache lines when these shared blocks are cached.
Hence, increased cache performance is attributed to (parts of) an accessed object
being already cached as a result of recently accessing the object next to it in
memory. These cache hits, however, are explicitly preserved by our normalization.
Objects likely to be accessed contemporaneously are concatenated during the iden-
tification of maximal sequences of memory blocks. When these concatenations
are split again, we only split at cache set boundaries. Hence, a potential cache hit
due to spatial locality can never be precluded by our splitting strategy.
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Memory Block Chunks Given the normalized input I′, the concrete, numerical
values of the parameters P′ are unknown at design time. Hence, the resulting
allocation scheme is parameterized in P′. To enable the algorithm to cope with
this, we introduce the concept of memory block chunks.

A memory block chunk, or simply chunk, is a relative placement of memory
blocks from different abstract allocation sites of M′ in such a way that there
is no conflict within a chunk itself. Conflict, again, denotes a situation where
two contemporaneously live objects overlap in memory. Chunks are then placed
sequentially in memory; potentially repeatedly such that the memory blocks of
each abstract allocation site m ∈ M′ occur exactly um times. Formally, a chunk is
a set of triples (m, i, o), with the intended meaning that the ith request from abstract
allocation site m is located within the chunk at relative position o.

An allocation scheme, i.e., a solution to an allocation problem, consists of
(potentially several types of) chunks together with the number of occurrences of
each chunk. This number of occurrences is in general parametric. We distinguish
two kinds of chunks: singleton chunks and repetitive chunks. A singleton chunk
is a chunk that is generated exactly once, while multiple instances of repetitive
chunks are generated.

By introducing these chunks, we reduce the computation of a solution to an
allocation problem to finding an appropriate set of chunks that, when concatenated
in any order, yield a feasible allocation scheme.

Memory Chunks for an In-Situ Copy Let us consider the example from
the previously discussed approach again, where an in-situ transformation was
performed by the analyzed application. Assume this to be the only operation of
this application and no further heap allocated objects to be present. Furthermore,
assume that we want to transform a singly-linked list of objects allocated at
allocation site Ms into a doubly-linked list of objects allocated at Md. This
transformation shall be performed using only a minimum amount of memory. Let
the number of elements of the list be determined by a parameter p. Assume, the
singly-linked list is traversed once and on this traversal the visited elements are
copied to newly allocated elements of the doubly-linked list. Then, the ith element
of the singly-linked list has a conflict with the jth element of the doubly-linked
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if and only if j ≤ i. For simplicity, assume the sizes of all list elements to be a
multiple of the cache line size.

What kinds of memory block chunks would we expect our algorithm to com-
pute? A possible allocation scheme with minimal memory consumption is given
in Figure 3.2(a). This allocation scheme consists of three memory block chunks
c1, c2, and c3 where

c1 = {(Md, 1, 0)} ∧ c2 = {(Md, i, 0) , (Ms, i − 1, 0)} ∧ c3 = {(Ms, p, 0)}

Both, c1 and c3 are repeated once, each. Memory block chunk c2 is repeated
(p − 1) times with variable i ∈

[
2; p

]
. Formally, we get the following solution S

to our allocation problem

S = {{(Md, 1, 0)}, {(Ms, p, 0)}} ∪
⋃

i∈[2,p]

{(Md, i, 0), (Ms, i − 1, 0)}

To yield an addressing scheme, we can concatenate chunks (possibly generated
from chunk repetitions) in any order and map the resulting concatenation to
memory locations. Let S be a chunk set and

S ? = s1 ◦ s2 ◦ . . . ◦ sn . si ∈ S

an allocation scheme, i.e., a concatenation of the chunks contained in S . We
extract a memory mapping from S ? by assigning memory addresses as follows.
We first construct a function addrc : S → N mapping memory block chunks to
(relative) memory addresses such that

addrc(s) =

 0 s = s1

addrc(sr−1) + |sr−1| otherwise

where the size of a memory block chunk is defined as

|s| = max
{
fm(i) ∈ A′ | (m, i, ·) ∈ s

}
Finally, a function addr : R′ → N assigns a (relative) target address to an (abstract)
request (m, i) in the straightforward manner

addr(m, i) = addrc(s) + o , (m, i, o) ∈ s
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Md, 1 Md, 2 Md, 3 Md, 4 . . . Md, p − 1 Md, p

Ms, 1 Ms, 2 Ms, 3 . . . Ms, p − 2 Ms, p − 1 Ms, p

{(Md, 1, 0)}
1 repetition

{(Md, p, i) , (Ms, p, i − 1)}
(p − 1) repetitions

i ∈
[
2; p

]
{(Ms, p, 0)}
1 repetition

(a)

Md, 1 Md, 2 . . . Md, p − 1 Md, p

Ms, 1 . . . Ms, p − 2 Ms, p − 1Ms, p

(b)

Figure 3.2: Allocation schemes for an in-situ list-copy with minimum memory
consumption generated from the chunk set {{(Md, 1, 0)}, {(Ms, p, 0)}}∪⋃

i∈[2,p] {(Md, i, 0), (Ms, i − 1, 0)}.

Note that an allocation scheme corresponding to a given chunk set is not
necessarily unique. We could also have concatenated the chunks as depicted in
Figure 3.2(b), yielding an alternative, but still memory optimal allocation scheme.

Computing Memory Block Chunks But how can we efficiently compute
such memory block chunk sets? The algorithm we propose to compute these
sets of chunks for a given allocation problem works as follows. The algorithm
maintains a workset of unprocessed requests for normalized blocks, i.e., requests
not yet assigned to a chunk. We initialize this workset with the set of all abstract
requests, i.e., with

R′ =
{
(m, i) | m ∈ M′ ∧ i ∈ N≤um∈U′

}
While the workset is not empty, the algorithm creates singleton chunks fol-

lowed by sequences of repetitive chunks to remove requests from its workset.
Algorithm 3 gives the pseudo code for this main routine of our algorithm.

The function createChunk() creates new memory block chunks and adds normal-
ized blocks to these until (1) no further blocks are requested for a given abstract
allocation site or (2) no further blocks can be added without either causing a
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Algorithm 3: Algorithm to compute a suitable set of memory block chunks
to yield reasonable allocation schemes.
Data: Problem specification I′ = (M′,U′, L′, A′,C′)
Result: Allocation scheme as a set of chunks
workset = Set of (abstract) requests R′ obtained from M′, U′ and A′;
while workset , ∅ do

createChunk(workset, true); // first chunk—unrolling
removeProcessedRequests();
if workset = ∅ then break;
createChunk(workset, false); // create repetitive chunk
computeRepetitions(); // repeat last chunk
removeProcessedRequests();

end

conflict or (3) adding the block would exceed the size of the chunk. The order in
which blocks are added is either given by the problem specification (in the case of
singleton chunks) or in decreasing order of block sizes (in the case of repetitive
chunks). This order also determines the size of a chunk. Algorithm 4 gives the
pseudo code for this function.

While the function sortByRequestSize() is self-explanatory, we discuss the
function addRequestToChunk() in more detail. This function adds requests for
normalized blocks to a given memory block chunk in the following way. If the
chunk is empty, then the request is always added at the first position (offset 0)
of the chunk and the size of the memory block chunk is set to the size of this
request. Subsequent blocks, i.e., requests for blocks added to a non-empty chunk,
are temporarily placed at position pos = 0. In case this does not cause conflicts,
the request is fixed there and the algorithm returns true. While conflicts do occur,
the request is shifted to the next position pos + 1, until either all conflicts are
solved and the requested block is fixed at this position or there is no space left
in the chunk. In the latter case, the request is not added and the function returns
false to notify its caller accordingly. Algorithm 5 gives the pseudo code for this
operation.
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Algorithm 4: Pseudo code for function createChunk().
Data: Set of abstract requests R′, boolean isSingleton

Result: Memory block chunk
if ¬IsSingleton then sortByRequestSize(R′)
for (m, i) ∈ R′ do

boolean added = true;
while i < um ∧ added do

added = addRequestToChunk();
if added then i = i + 1;

end
end

Algorithm 5: Pseudo code for function addRequestToChunk().
Data: Request r

Result: boolean added
if chunk.isEmpty() then

addAtZero(r);
return true;

end
int pos = 0;
while pos ≤ ChunkSize − sizeOf(r) do

If ¬conflictInChunk() return true;
pos++;

end
return false;
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The problem specification may contain several non-numerical parameters. Also
the sizes of requested blocks can be parametric. Hence, not all conditionals
within the above functions may be computed directly. Only the set of parameter
constraints L given as part of the problem specification may be used to decide
these conditions. If the set L is, however, not sufficient to allow for deciding
conditionals, we need to split the specification depending on the various outcomes.

For instance, a conditional
if p < q

leads to a split resulting in the following two problem specifications:

S = (M,U, L ∪ {(p < q}, A,C,B)

and
S = (M,U, L ∪ {(p ≥ q}, A,C,B)

Hence, each time the set of restrictions on parameters, L, does not contain
enough information to decide whether a conditional cond is satisfied, we replace
the current allocation problem S by two new allocation problems, St and S f . In St,
we set L to L ∪ {cond}, while in S f , L is set to to L ∪ {¬cond}.

Applicability How well does this algorithm do in practice? Let us consider the
in-situ copy example once more. This time, we use more realistic values and omit
the assumption that the sizes of list elements are multiples of the cache line size.
We also set the sizes of list elements to the same concrete values that we use in
the evaluation of the algorithms assuming numerical bounds, in order to compare
the new approach to our former one. The memory allocation behavior of such a
program copying a singly-linked list to a doubly-linked list can be formalized as(
{ms,md}, {ps, pd}, {ps = pd}, { fms : [ps] 7→ [8, 8], fmd : [pd] 7→ [12, 12]},Clc,Blc

)
With the intended meaning that there are two allocation sites, one for the elements
of the singly-linked list (ms), one for those of the doubly-linked one (md). Each site
can be reached at most ps and pd times, respectively. We know that ps = pd =: p

as all elements are copied and store this constraint in L. All elements of the singly-
linked list are of size 8 bytes, those of the doubly-linked list of size 12 bytes. Clc
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md, 1

1 repetition

md, i

ms, 2i − 3 ms, 2i − 2

(p′d − 1) repetitions
i ∈ [2; p′d]

ms, i

2 repetitions
i ∈ [p′ s − 1; p′ s]

Figure 3.3: Allocation chunks for normalized in-situ list copy

is constructed, such that there are conflicts between list elements that are in-use
at the same time. With Blc constructed such that elements adjacent within a list
are to be put adjacent in memory, our algorithm computes a set of memory block
chunks as depicted in Figure 3.3. This normalization yields blocks of size 96 bytes
and 32 bytes for the doubly- and singly-linked list, composed of 8 and 4 objects
of the original lists, respectively.

Comparing this result to the allocation scheme given in Figure 3.2 quickly
reveals that our algorithm did not compute a memory optimal allocation scheme
for this problem. Our solution has two tailing memory block chunks consisting
of a normalized block, each, together containing the tailing 8 elements of the
singly-linked list. Instead of a singleton chunk containing just the tailing element
of this list. Furthermore, the heading singleton chunk containing the head of
the doubly-linked list contains now 8 elements of the doubly linked list instead
of one. This is, however, not due to shortcomings of the algorithm. It is rather
a result from the algorithm trying to preserve a maximal number of cache hits
due to memory accesses following the principle of spatial locality, according to
Chilimbi’s heuristics. Our bias function B tells the algorithm that consecutive
elements of the lists are likely to be contemporarily accessed. Hence, it strives to
have consecutive elements overlap in cache lines. Which is why it always keeps
8 elements of the doubly-linked lists together, as 8 · 12 = 96 is the least common
multiple of the size of an element (12 bytes) and the cache line size (32 bytes).
Analogously, 4 elements of the singly-linked list of size 8 bytes, each, are always
kept together. The different number of elements per abstract request also changes
the conflicts. The second to last abstract request for singly-linked list elements
(containing the first four of the last eight elements) now has a conflict with the last
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abstract request for doubly-linked list elements (containing the last eight elements)
and hence they cannot share a memory location anymore.

Assume we construct Blc such that it always evaluates to 0 for all inputs, i.e., no
bias is given, in order to prevent bias disabling the algorithm to compute memory
optimal solutions. Then, our algorithm computes a memory optimal set of memory
block chunks; at the price of potentially preventing cache hits during program
execution.

Finally consider a reverse list-copy from doubly-linked to singly-linked ele-
ments(
{ms,md}, {p}, {}, { fms : [ps] 7→ [q, q], fmd : [pd] 7→ [12, 12]},Clc, 2R 7→ {0}

)
with parametric sizes to demonstrate how the algorithm copes with incomplete
information about requested sizes. At allocation site ms blocks of size q bytes are
requested, at site md 12 byte blocks. Let 4 < q ≤ 12 bytes be statically known.

On this example, our algorithm computes the solutions depicted in Figure 3.4.
Again, memory consumption of the solutions computed by our new algorithm is
very promising.

Scalability was observed to not be a problem in any of the benchmarks per-
formed [HA10]. Although in theory, splits due to incomplete information bear the
potential for very high analysis times; or rather a large set of solutions. Further-
more, our parametric algorithm can also be applied to a broader class of programs
than our previous approach. Hence, the limitations of the algorithms described in
the previous section seem to be overcome.

However, we also note some disadvantages of this alternative approach. The
main drawback is that we do not have a real notion of optimality regarding the
computations of the algorithm. While in our first approach, we—at least implicitly
within an ILP formulation—have a definition of what is optimal and strive to
reach an optimum, our algorithm to solve parametric problem instances works
differently. This algorithm simply constructs an allocation scheme according to
heuristics that have proven useful. We can therefore not provide any guarantees
about the quality of the computed solutions.

Furthermore, in order to yield good results, this algorithm requires very detailed
information about the program for which an allocation scheme is to be computed.
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L = {6 < q ≤ 12}

Ms, 1

1 repetition

Md, i − 1

Ms, i

(p − 1) repetitions
i ∈ [2; p]

Md, p

1 repetition

L = {4 < q ≤ 6, p ≡ 1 mod 2}

Ms, 1

1 repetition

Md, i

Ms, 2i Ms, 2i + 1

(p − 1)/2 repetitions
i ∈ [1; (p − 1)/2]

Md, p

(p − 1)/2 + 1 repetition
i ∈ [(p − 1)/2 + 1; p]

L = {4 < q ≤ 6, p ≡ 0 mod 2}

Ms, 1

1 repetition

Md, i

Ms, 2i Ms, 2i + 1

p/2 − 1 repetitions
i ∈ [1; p/2 − 1]

Md, p/2

Ms, p

1 repetition

Md, p

p/2 repetition
i ∈ [p/2; p]

Figure 3.4: Computed memory block chunks for the reversed in-situ list-copy
example with incomplete information.
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Hence, there is a much higher dependence on a precise static (pre)analysis to derive
the input for the parametric algorithm than there is for the numeric algorithms.

The following section summarizes our research aimed at constructing a static
analysis to derive sufficiently precise information to enable our parametric ap-
proach to yield good results.

3.4 Allocation Site Aware Shape Analysis

The algorithms discussed in the previous section all rely on the availability of
precise information about a program’s allocation behaviors or at least the lifespans
of allocated objects. In [Her10], we propose an extended, allocation-site aware
shape analysis to statically derive this information. An extended shape analysis
as proposed was subsequently implemented and evaluated [Leg13]. This section
summarizes our proposal and elaborates on the applicability and precision of such
an analysis.

Shape Analysis Shape analysis, generally, denotes a static program analysis
that determines the shape of—or invariants that hold for—the heap and the in-
terlinked structures built within at the different program points. Shape analysis
techniques rely on a sophisticated heap abstraction that abstracts the in general
infinite set of possible heap shapes to a finite one, but still preserves enough
information to show that invariants do hold.

Most recent approaches to shape analysis rely either on separation logic [Rey02]
to express inferred properties of structures arising on the heap [CR08, DOY06], or
they model the heap by three-valued logical structures [SRW02]. The commonality
of all these approaches is that they are storeless. I.e., they only model what heap
structures may arise, not where, i.e., at what memory addresses, they reside on
the heap, nor where and when, i.e., at what allocation site and which invocation
thereof, they were allocated. This is, however, not a shortcoming of these analyses.
For the current field of applications for shape analyses like checking data structure
invariants [SRW02, CR08] and memory safety or even verifying partial program
correctness [LARSW00], information about where and when heap objects were
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allocated is not required. Hence, abstracting from allocation sites in order to
increase performance is a reasonable, obvious design choice.

We propose to extend the framework for parametric shape analysis via three-
valued logic proposed in [SRW02]. As to not lose focus of this chapter, we will
just very briefly sketch this approach to shape analysis in the next paragraph. For a
detailed discussion of shape analysis via three-valued logic, we refer to [SRW02].

Shape Analysis via Three-Valued Logic This shape analysis technique uses
two-valued logical structures to describe concrete heap states. Each heap allocated
object is represented by a logical individual, each pointer variable by a unary pred-
icate that evaluates to true if and only if its argument is the individual representing
the heap object to which the variable points. Field pointers referencing one heap
object from another are analogously modeled by binary predicates. I.e., for each
field f , we define a predicate f (a, b) that evaluates to true if and only if a is a
logical individual representing a structure whose f field points to the structure
modeled by logical individual b.

In addition, so-called instrumentation predicates are employed to increase the
precision or the performance of the analysis. Instrumentation predicates, basically,
record information derived from other predicates and are defined in terms of a
formula possibly including other (instrumentation) predicates. However, such a
definition must of course not become mutually recursive. By explicitly storing
the value to which a formula ϕ evaluates within a structure in an instrumentation
predicate, it is sometimes possible to extract more precise information from that
structure than that obtained by simply (re-)evaluating ϕ.

Properties of the heap are formulated as logical formulæ. Such properties can
then be easily checked to hold at a given heap state by evaluating their defining
formulæ on the logical structure describing this heap state.

Effects of program statements on the heap state are captured by predicate-update
formulæ that state how predicates are updated to yield a structure describing the
heap state after the execution of these program statements.

Figure 3.5 gives an example for a shape graph. The figure depicts the graphical
representation of a logical structure that describes three heap allocated objects
organized in a singly-linked list. The single logical individuals are depicted as
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x 1 2next 3next

Figure 3.5: A shape graph depicting three heap objects organized in a singly linked
list.

1

2

next

3next

x

Figure 3.6: The resulting shape graph after advancing the pointer variable x in the
structure depicted in Figure3.5.

circles, predicates evaluating to true as arrows. Predicates evaluating to false are
not drawn.

Applying the effects of the program statement

x = x→next;

modeled by predicate-update formulæ

x(v) ← ∃u.x(u) ∧ next(u, v)

next(u, v) ← next(u, v)

yields a structure as depicted in Figure 3.6.
A shape analysis of a given program can then be implemented as a fixed

point computation collecting for each program point the set of logical structures
describing all heap states that may arise at this point. For the starting point of the
program, an initial heap description is required. However, an unbounded number
of concrete heap descriptions may arise at program points. Therefore, abstract
heap descriptions are introduced that use three-valued logical structures that can
themselves represent a possibly infinite number of concrete two-valued logical
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x 1 2,3next

next

Figure 3.7: Abstract shape graph embedding (in particular) the structure from
Figure 3.5.

structures. A concrete logical structure is abstracted by partitioning individuals
into equivalence classes such that all individuals within one class yield the same
truth values for a predefined setA of abstraction predicates. The individuals of the
abstracted structures correspond to these equivalence classes. Abstract individuals
that may represent more than one concrete individual are called summary nodes.
Predicates not in A need to be reevaluated and may evaluate to the indefinite
truth value 1/2 in case not all concrete individuals summarized by the abstract
individual evaluate to the same definite truth value.

Abstracting the structure from Figure 3.5 under A = {x} results in the three-
valued logical structure depicted in Figure 3.7. Dotted arrows represent predicates
evaluating to 1/2 and summary nodes are drawn doubly circled.

Modeling the effects of program statements on abstract heap descriptions is
done using the same update formulæ as in the concrete, two-valued setting. These
formulæ are now simply evaluated using three-valued logic instead of two-valued
logic. However, to increase precision, before applying update formulæ the relevant

parts of the structure are concretized (focus or partial concretization). As focusing
may generate contradicting or less precise structures, after application of the
update formula, the resulting structures are coerced into more precise structures
and contradicting structures are completely eliminated.

Allocation-Site Aware Shape Analysis via Three-Valued Logic How can
we add allocation-site awareness to such an analysis? We propose to start by
simply associating with each heap object where and when it was allocated. The
number of allocation sites, i.e., calls to malloc, is statically known and for most
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programs very small. Hence, to model where an object was allocated, it suffices to
introduce additional unary predicates

allocm ∈ {allocm′ | m′ is an allocation site} ⊂ A

such that allocm(u) = 1 if and only if u was allocated at program location m. Note
that these predicates are defined as abstraction predicates.

Furthermore, to model when the object was allocated, we construct a function

t\ : U 7→ N

that maps individuals of a concrete structure to invocations of an allocation site.
In an abstract structure, we map to intervals of possible invocations

t : U 7→ I

where the set of intervals is defined as

I = {[l, u] |l ∈ N ∧ u ∈ N ∧ l ≤ u}

Analogously, we add functions s\ and s to associate heap objects with their
(requested) sizes.

Summarization of two individuals v1 and v2 is adapted as follows. Let the new
summary node be vsm, then

t(vsm) = t(v1) t t(v2)

and

s(vsm) = s(v1) t s(v2)

where

[l1, u1] t [l2, u2] = [min {l1, l2} ,max {u1, u2}]

Note that this least upper bound operator for intervals, the whole domain, rather,
may be very imprecise. However, a first evaluation of the proposed analysis
evidences no precision issues [Leg13]. Still, alternative, more precise domains
may be used at this point. Simply (but expensively) using a power set domain (over
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integers) as well as more sophisticated domains as an octagon domain [Min06]
and interval polyhedra [CMWC09] are potential alternatives.

Furthermore note that this additional information modifies the implementations
of the focus and coerce functions. As these operations are not relevant at this
point, we omit a detailed discussion here. A discussion on how both functions are
adapted can, however, be found in [Leg13].

The logical predicates are reevaluated as in the stateless framework.

Precision & Performance of Such an Allocation-Site Aware Shape Analy-

sis We can further improve the results from such an allocation-site aware shape
analysis. In a real-time setting, shape analysis can be performed almost arbitrar-
ily precisely. Why is that so? Of course, as in the general setting, we can add
instrumentation predicates to further increase precision. But we can, for real-time
applications, also deactivate abstraction, i.e., the summarization of individuals,
completely as no unbounded structures may arise as we statically know all loop
and recursion bounds. However, abstract heap structures are still desirable as they
may lead to significantly shorter analysis times.

The following set of (instrumentation) predicates and additional, precision
increasing techniques have shown good tradeoffs between the precision and com-
plexity of shape analyses; for both stateless and allocation-site aware analyses.
First, in order to separate different data structures, a predicate rx(v) modeling
reachability from program variables can be used. This predicate has already been
shown to significantly increase the precision of general (stateless) shape analyses
[SRW02]. We define for all pointer variables x a reachability predicate as

rx(v) := ∃u . x(u) ∧ fr(u, v)∗

where x and fr are predicates corresponding to pointer variables and field refer-
ences, respectively. Second, we propose to not simply remove deallocated objects
from shape graphs, but to mark such objects as freed. This can easily be achieved
by a unary predicate deallocated(v). Third, we propose to further increase the
precision of partial concretization with respect to numeric intervals by allowing
the analysis to mark predicates modeling field references with superscripts < and >.
These superscripts < and > indicate that if and only if the predicate evaluates to

100



3.4 Allocation Site Aware Shape Analysis

true, then both arguments to the predicate are allocated directly after (in case of <)
or before (in case of >) each other at the same allocation site.

Furthermore, in order to keep the number of different shape graphs per program
location small, we do want an embedding of structures that differ only in numerical
values used as interval bounds. To achieve this, we, basically, want to substitute
numerical interval boundaries by variables. In our current implementation, this
is implemented as a post-processing step after the fixed-point iteration finished.
Hence, this step does not increase performance by reducing the number of struc-
tures during the fixed-point iteration. It does, however, produce more readable and
more compact analysis results. To a certain degree, implementing this variable

abstraction as a post-processing step is also a necessity. As, firstly, we cannot
correlate interval boundaries based solely on a single structure arising during the
fixed-point computation, since matching values could then be a pure coincident.
And secondly, embedding structures too early may also decrease precision. Dur-
ing the evaluation of our allocation-site aware shape analysis, we observed that
always embedding all structures that may be embedded after an iteration of the
fixed-point computations does significantly hinder the detection of new, potential
annotations as the exact invocation for a new node is lost too early [Leg13]. Hence,
for each program point, we consider all shape graphs that have the same canonical
abstraction and try to consolidate them into a single structure by using variables
instead of differing numerical values to represent interval boundaries. If the same
variable can be used in all structures to express the same boundaries, just with
possibly different values, then it becomes more likely that these boundaries are
really correlated [Leg13].

Applicability How does the result of an allocation-site aware shape analysis
help in automatically finding good formal descriptions of an application’s alloca-
tion behavior? A useful preanalysis allows an at least semi-automatic construction
of an allocation problem instance of the form

(M,U, L, A,C,B)

M can be directly extracted from the program code or, in our proposed shape
analysis, is available as a subset of the abstraction predicates. In fact, our current

101



3 Static Precomputation of Allocation Schemes

implementation automatically generates the corresponding predicates from the
program code [Leg13]. U and L are either provided by the user or a static loop
bound analysis [ESG+07, MBCS08, Hon09] and are input to our allocation-site
aware shape analysis, too. A is constructed from M, L, and the requested sizes.
The size of a heap object, i.e., requested memory block, is explicitly stored in
the shape graphs. The functions C and B can be extracted from an allocation-site
aware shape analysis as follows. C evaluates to 1 if and only if representatives of
at least two elements of its argument set are present in the same shape graph and
none is marked as deallocated. B(r1, r2) evaluates to 1 if and only if there exists a
field-pointer predicate evaluating to true for the individuals representing r1 to r2.

Please note that an allocation-site aware shape analysis as described in this
subsection, while tailored directly at analyzing a program’s allocation behavior,
can also be employed to other fields of application. In [Her10], we already outlined
the applicability of such an analysis to perform a data structure analysis [LA03]
or an escape analysis [WR99].

Evaluation How does our proposed allocation-site aware shape analysis per-
form on our running example, the in-situ transformation? Consider the simplified
C function given in Figure 3.1. Figure 3.8 gives the analysis results for the most
general case for the three most relevant program locations. Those results are
obtained in the evaluation elaborated on in [Leg13]. In Figure 3.8, the shape
graph given in row input structure describes the initial heap state (at program
location 1) and is provided as input to the analysis. Row loop structure describes
a possible structure occurring at the end of the while loop (end of program loca-
tion 14). This structure embeds most potential structures computed during the
fixed-point iteration via our proposed variable abstraction. The structures not
embedded within the depicted one constitute edge cases (first and last iterations).
Examining this structure reveals the relevant liveness information to construct
a conflict function as the one manually derived in [HA10]. Finally, row final
structure depicts the analysis result for the function’s final program location (at
the beginning of line 17). From the computed shape graphs, the bias function
from [HA10] can also be (re-)constructed automatically.
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Listing 3.1: Simplified In-Situ List Copy Function

1struct dll el ∗ copy( struct sll el ∗ src ) {
2struct dll el ∗ result;
3struct dll el ∗ e;
4...
5while ( src != NULL ) { /∗ loop bound exactly 256 ∗/
6struct dll el ∗ tmp = malloc(...);
7if ( result == null )
8result = tmp;
9else
10e−>next = tmp;
11e = tmp;
12tmp = src;
13src = tmp−>next;
14free(tmp);
15}

16...
17return result;
18}

In [Leg13], our proposed analysis is also tested on the Dijkstra benchmark
program(s) (see Section 5.4, page 153). Again, the information that is extractable
from the resulting shape graphs matches the information that we derived manually

in [HA10].

3.5 Conclusions

Statically precomputing memory addresses and thus being able to remove the
dynamic memory allocator completely gives many advantages. Obviously, without
any need for calls to malloc and free, we do not have to worry about the
preciseness of overapproximations of their execution times and cache effects. The
resulting programs will be faster and also more predictable with static memory
allocations.

Even with respect to memory consumption, a static allocation scheme may
outperform dynamic allocation. If an application does not bear potential for mem-
ory reuse, static allocation always performs better as dynamic memory allocation
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Figure 3.8: Analysis results for the in-situ list copy example.
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always incurs a memory overhead for management information. However, for
programs that can highly reuse memory, the memory performance of a static
precomputation of memory addresses depends on the quality of the precomputed
conflict function. We can differentiate two classes of applications here. Those for
which no good conflict function can be constructed because statically we cannot
decide which objects’ lifetimes overlap. And those, for which this information may
statically be available, but the employed analysis to derive the conflict function is
too imprecise. For both classes, a static precomputation may need significantly
more memory than is required with a dynamic allocation scheme.

In conclusion, static precomputation of memory addresses for otherwise dy-
namically allocated objects is the technique of choice if a static analysis is able to
compute a reasonably good conflict function. From our experiments, our paramet-
ric algorithm generally outperforms the numeric ones as it normally yields a better
cross-benefit ratio of analysis times vs. memory consumption of the computed
allocation scheme.
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4
Predictable Cache-Aware Memory Allocation

Problems worthy of attack prove their worth by

hitting back.

Piet Hein

Scientist, mathematician, inventor, designer,

author, and poet (1905–1996)

4.1 Chapter Overview

This chapter elaborates on the construction of a class of predictable, cache-aware
memory allocators. Section 4.2 describes our main proposal how such an allocator
can be constructed and what techniques can be employed to counteract memory
fragmentation and increase overall performance. This section significantly extends
and improves our algorithm presented in [HBHR11]. Section 4.3 discusses an
alternative interface to our allocator that is better suited for a relational cache
analysis as discussed in Section 2.4.2. In Section 4.4, we summarize work on
PRADA [Hau12, HH13], an alternative, more lightweight approach to achieve
cache-awareness and predictability in a dynamic memory allocator.
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4.2 CAMA—A Cache-Aware Memory Allocator

What sets a predictable, cache-aware dynamic memory allocator apart from its
general purpose counterparts? Ogasawara identified the following design goals
that an allocator must meet in order to be considered sufficiently predictable
for utilization in real-time systems: a WCET of (de-)allocations in O(1) and
touching only few cache lines during (de-)allocation operations together with
a still reasonable memory efficiency [Oga95]. Ogasawara defined reasonable
memory efficiency very loosely as performing better than a binary buddy system
on random allocation traces. To effectively support a subsequent cache analysis,
constant execution times and only a small set of possibly affected cache lines are
in general not sufficient as discussed in Chapters 2.4.1 and 2.4.2. We therefore
extend the list of design goals that a predictable, cache-aware allocator must
meet as follows. The allocator shall also be able to provide guarantees about the
cache-set mapping of the memory blocks it returns to satisfy allocation requests.
Furthermore, more detailed knowledge has to be statically available about the
cache-set mapping of memory blocks that may be read or written during the
allocator’s operations. Hence, in the design of CAMA, we aimed at constant
execution times for allocation and deallocation requests, the possibility to guide
the allocator with respect to which cache set the returned memory addresses
are mapped to, and the absence of statically unpredictable influences on the
cache, i.e., cache pollution, by (de-)allocation operations. We added an additional
parameter to allocation requests, so that the memory allocation function now has
two parameters: the requested block size and the cache set to which the block’s
memory address shall be mapped.

How to Manage Free Memory Blocks with Constant-Time Allocation and

Deallocation in Mind CAMA uses a segregated-fit allocation algorithm like
Ogasawara’s Half-Fit. Segregation is done on multiple-levels to incorporate
cache mapping information and to decrease internal fragmentation by using finer
grained size classes. The latter has originally been proposed by Masmano et al.
for their Two-Level Segregated Fit (TLSF) [MRCR04, MRR+08]. Consequently,
CAMA organizes the free memory blocks currently managed by the allocator in
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4.2 CAMA—A Cache-Aware Memory Allocator

segregated free-lists, where a single segregated list consists of all memory blocks
within the same size class and whose (starting) memory addresses are mapped to
the same cache set.

Formally, we associate with each free memory block a tuple (addr, size), where
addr is the starting address of the free block and size is its size (in bytes). Let B
denote the set of all such tuples associated with the free blocks currently managed
by our allocator. Furthermore, let Sk,i, j denote the set of tuples associated with
free blocks whose start addresses are mapped to cache set k and whose size is in
the interval Ii, j. We define these intervals as

Ii, j =

[
2i +

j
jmax + 1

· 2i; 2i +
j + 1

jmax + 1
· 2i

)
where i and j are index variables ranging from imin to imax and 0 to jmax, respec-
tively. These intervals constitute the size classes of our allocator. Note that they
are constructed using the same two-level approach to building size classes that is
used with TLSF. I.e., the first level (the i index) logically generates the series of
intervals containing all numbers between two succeeding powers of two. While
the second level (the j index) partitions these exponentially growing intervals
into a fixed number of ( jmax + 1) intervals of equal size. Figure 4.1 illustrates the
partitioning of the natural numbers by these intervals for imin = 2, imax = 6, and
jmax = 1.

1 4 8 16 32 64 128

· · · I4,0 I4,1 I5,0 I5,1 I6,0 I6,1

Figure 4.1: Illustration of
⊎

2≤i≤6∧0≤ j≤1 Ii, j as a partition of [4, 128].

We observe that the Sk,i, j are pairwise disjoint and formally defined as

Sk,i, j =

{
(addr, size) ∈ B

∣∣∣∣∣∣
⌊

addr
sizecline

⌋
≡ k mod sets ∧ size ∈ Ii, j

}
where sizecline denotes the size of a cache line and sets the number of cache sets.
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If we enforce a minimum size for managed memory blocks and choose imin

appropriately, the set of all Sk,i, j is a partition on B, i.e.,⊎
0≤k<sets

imin≤i≤imax
0≤ j≤ jmax

Sk,i, j = B.

We can associate a segregated list with each set Sk,i, j and put all memory blocks
associated with tuples in Sk,i, j into this segregated list. Satisfying an allocation
request for a block of size size whose memory address is mapped to cache set k′ is
reduced to determining the smallest set Sk,i, j with which only blocks large enough
to satisfy the request are associated. The allocator can then return any block from
the segregated list associated with this set. This set can be determined in constant
time by computing its index triple (k, i, j) as

k = k′

i =
⌊
log2(size)

⌋
j =


(
size − 2i

)
( jmax + 1)

2i


Please note that due to the rounding of j, we may compute an invalid third index
component of jmax + 1. In that case, we get the desired result by setting j to 0 and
i to i + 1.

For deallocation, we also have to determine the appropriate segregated list for
the newly freed memory block. Remember that this list depends solely on the size
of the block and the cache-set mapping of its starting address. While the latter
could be derived directly from the pointer passed to the deallocation procedure, the
size information would have to be otherwise supplied. Alternatively, there is also
the option to store an explicit pointer to the appropriate free list at a block header
preceding the managed memory blocks. This alleviates the allocator from any
address computations to determine the associated free lists, while still requiring
the same amount of management overhead.

How to Implement Splitting and Merging Techniques in a Predictable,

Cache-Aware Manner To counteract external fragmentation, we further need
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to incorporate splitting and merging capabilities into CAMA. In order to be able
to split larger blocks into smaller blocks at allocation time to satisfy requests
for smaller blocks using a larger block (splitting), we proceed as follows. We
introduce for each cache set k a bit vector

vk ∈ {0, 1}(imax−imin+1)( jmax+1)

such that the nth component of vk is 1 if and only if

Sk,i′, j′ , ∅

where i′ B bn/ ( jmax + 1)c and j′ B n mod ( jmax + 1).

Our adapted allocation procedure still starts with computing an address triple
(k, i, j) upon a request for

(
size ∈ Ii, j

)
bytes starting in cache set k. However, in a

second step, the allocator scans vk to find the non-empty segregated list which is
associated with the smallest size class still large enough to satisfy the requested
block size, assuming such a list exists. Technically, we look for the first bit set
to 1, starting from the (i · ( jmax + 1) + j)th bit of vk. Assume this bit to be the n′th

component of vk. Any block from the list containing the free blocks associated
with the set

Sk,bn′/( jmax+1)c,(n′ mod ( jmax+1))

can, per construction of vk and Sk,·,·, be used to satisfy the request. Furthermore, in
the current state of the allocator, this list contains the smallest blocks large enough
to satisfy this request.

CAMA splits blocks from this list if the blocks have a minimum size large
enough such that after splitting a block b ∈ Sk,bn′/( jmax+1)c,(n′ mod ( jmax+1)) into two
blocks bl and br it holds that

1. bl is suitable to satisfy the original request, i.e., the tuple (addr, size) asso-
ciated with bl would be an element of Sk,i, j according to our partitioning
and

2. the size of br is at least the minimum size for managed memory blocks, i.e.,
given the tuple (addr′, size′) associated with br, it holds that size′ ≥ 2imin .
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Otherwise, i.e., when the size criteria for br cannot be satisfied, CAMA does
not split, but simply returns b. While the latter case returns a larger block than
requested to satisfy the allocation request and thus causes internal fragmentation,
this is still preferable over potentially much larger external fragmentation, when
new memory has to be obtained in order to generate new memory blocks to satisfy
the request with a better fitting memory block.

But is allocation still a constant-time operation when splitting requires scanning
some bit vector? Obviously, we can statically determine the size of those bit
vectors: each bit vector contains one bit per size class. Hence, at allocation
( jmax + 1) · (imax − imin) bits have to be read in the worst case. This gives us a
constant upper bound on the number of read operations necessary to read the whole
bit sequence. In our prototype implementation with 48 size classes per cache set
(12 power-of-two classes, each split into 4 linearly increasing subclasses), at least
two and at most three 32 bit words have to be read. This number of additional
read operations to some bitmap in order to scan all relevant free lists in constant
time for a suitable free block is very similar to that of TLSF. TLSF reads one (best
case) or three (worst case) 32 bit words at allocation time to identify the smallest
non-empty size class with blocks large enough to satisfy the current request.

After splitting, we need to insert br into the appropriate free list. Technically, we
set a back pointer as a block header of br as discussed above. Consider organizing
our free lists in the usual way, i.e., consisting of the free memory blocks themselves
with each free block containing pointers to its predecessor and successor within
the free list. Adding br to a free list would generate three more memory accesses
for adjusting these links and setting br as the new first block in the list. This
sums up to potentially four accesses. Statically, we can in general never know
whether these additional memory accesses occur during an allocation. We may,
of course, narrow down the number of affected cache sets from those accesses
in case we split a larger than requested block starting in the requested cache set.
But what happens if an allocation requires to increase the managed memory and
hence splitting a memory block with an unknown cache-set mapping of its start
address? Unfortunately, in this case, no precise cache-set mapping for any of these
four accesses can be statically determined. Note that the second, new free block
created in this scenario is located left of the split block used to satisfy the request
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and its cache-set mapping is completely unknown. Hence, a subsequent cache
analysis would have to cope with four unknown cache accesses.

A cache-aware memory allocator, however, should strive to support subsequent
cache analyses by providing strong guarantees regarding which cache sets may be
accessed during allocation operations. To be able to provide such guarantees, we
do not organize the free memory blocks directly in the segregated free-lists as is
common practice. Instead, we build CAMA’s segregated free lists over so-called
descriptors, small management units logically built-up as depicted in Figure 4.2.

void *
managed block

int
size and free bit

void *
prev (in free list)

void *
next (in free list)

void *
prev (in memory)

void *
next (in memory)

Figure 4.2: Layout of a descriptor.

As shown, a descriptor stores the following information. A pointer to the
memory block for whose management it is used as well as the size of this block.
Those two entries can be used to compute the address triple (k, i, j) to identify
the appropriate free list into which to insert the block’s descriptor when the
memory block is deallocated. Additionally, one bit of the size entry is used as
a free bit indicating whether the memory block referred to by this descriptor is
currently free, i.e., deallocated, or in-use, i.e., allocated. A descriptor further
stores pointers to the descriptors of the memory blocks physically adjacent to the
memory block associated with the given descriptor. Finally, we want to organize
descriptors denoting currently free memory blocks in doubly-linked free lists.
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Therefore, a descriptor stores pointers to its pre- and successors in these free
lists. CAMA guarantees to place descriptors exclusively at memory locations
mapped to a predefined range of cache sets. Thus, accesses to descriptors always
result in accesses to a statically known, limited part of the cache. Descriptors are
themselves relatively small memory blocks. Therefore, it seems appropriate to
allocate them in bulks: in descriptor areas that span the whole part of a cache page
mapped to the cache-set range destined for descriptors. This approach reduces
the block headers of memory blocks managed by CAMA to a single pointer to
its descriptor, no matter if the block is currently allocated, i.e., in-use or free for
allocation.

External fragmentation may be further counteracted by an inverse operation to
splitting: the merging of consecutive free blocks into a single large free memory
block. This merging is performed at deallocation time in order to satisfy requests
for larger blocks later on. As noted earlier, each in-use block stores a pointer to
its descriptor block. Furthermore, a descriptor contains pointers to the memory
blocks residing in memory locations adjacent to the memory location in which the
block managed by this descriptor resides. If a memory block is deallocated, we
can hence easily check whether its left-adjacent and/or right-adjacent neighboring
blocks are currently free. To determine whether a memory block is currently
in-use or free, we use the additional free bit within the size entry of the block’s
descriptor. If one or both adjacent blocks are currently free, we merge these
blocks into a single free block. This merging can be done by updating entries
in descriptors and consequently requires only accesses to statically known cache
areas. As the memory blocks are merged into one block, one descriptor is used to
manage this new block, while the descriptor of the second memory block is not
needed anymore.

Hence, storing management information in descriptors instead of at the free
blocks themselves enables us to implement splitting and merging operations in
a predictable, cache-aware manner. However, this may come at the price of
increasing fragmentation.

Counteracting Internal Fragmentation From Descriptor Overhead Obvi-
ously, descriptors are bigger and hence cause higher internal fragmentation than
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traditional headers. The ratio is six entries for a descriptor versus one to two
entries for a header used by a buddy system and TLSF, respectively. For larger
memory blocks, this increase in management overhead is negligible. But what
about very small blocks of just a few bytes themselves? One could adjust the
minimum size for managed blocks such that a reasonable ratio of block size to
management overhead is achieved. However, given the four times larger manage-
ment overhead by using descriptors, this could put CAMA at huge disadvantage
when compared to other allocators. This is especially true since requests for
small memory blocks are the majority of all allocation requests for a significant
number of programs [WJNB95]. Another approach would be to disable splitting
and merging for very small blocks completely. In that case, such blocks would
not need descriptors, but could be easily managed while in-use with a simple
back pointer to their appropriate free list when deallocated. If not in-use, such
a block could be organized in its free list by storing the necessary pointers in
its (payload) body. While splitting small blocks would not occur anyways, this
approach, however, would also prevent the merging of small blocks. Merging
consecutive free small blocks to yield a larger block with an increased probability
of being useful in the future, in turn, is often desirable.

To enable splitting and merging for all block sizes without incurring any of the
problems mentioned above, we propose the following approach. Intuitively, we
want small blocks to share a common single descriptor responsible for managing
the whole group of small memory blocks. The smaller the block sizes are within a
group that shares a descriptor, the bigger that group has to be—in terms of memory
blocks organized within. To achieve this effect, we introduce so-called area blocks:
consecutive memory ranges divided into a fixed number of equally-sized blocks.
An area block is managed by a single descriptor. The number of memory blocks
building-up an area block is determined by the size threshold sizebmin that regulates
when a memory block is large enough to have its own, exclusive descriptor. For
blocks of size s < sizebmin, areas of k (s) blocks of s bytes, each, are created, where
k (s) is the smallest number such that k (s) · s constitutes a size large enough to be
eligible for an exclusive descriptor. I.e.,

k (s) = min {n ∈ N | n · s ≥ sizebmin}
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However, this reduced internal fragmentation comes at the price of reduced
cache predictability. For small blocks sharing a descriptor, we cannot guarantee a
single, concrete cache set to which their starting memory addresses are mapped.
Instead, we can guarantee only an interval of cache sets containing all sets to
which starting locations of the blocks grouped in an area are mapped.

Counteracting External Fragmentation Caused By Descriptor Placement

External fragmentation may be increased by using descriptors as well—even much
more severely than internal fragmentation. Consider a naı̈ve implementation of a
dynamic memory allocator as outlined so far. Assume the allocator does only reuse
descriptors but not recycle descriptor areas, i.e., it never merges free descriptor
areas with adjacent free memory blocks. Such an allocator is prone to generate
states as sketched in Figure 4.3.

- +
memory

addresses

empty/unused memory block
allocated/in-use memory block

Dk/n descriptor area
k of n descriptors in-use

D 0/n D 0/n D 0/n

brk

Figure 4.3: Empty descriptor areas fragmenting the managed memory range.

In such a state, a request for a very large (or for a moderately large block that
starts in a cache set closely preceding the cache set range used for descriptors)
forces the allocator to increase the managed memory range, although, enough
unused memory would be available.

Even with an intelligent recycling for descriptor areas, as long as the only
restriction on descriptor placement is that their memory locations must be mapped
to a given range of cache sets, bad descriptor placement may cause additional
external fragmentation. Consider, for example, an allocator state as sketched in
Figure 4.4 and an open allocation request for s bytes starting at a memory location
mapped to cache set k.

In the depicted state sketch, a single, badly placed descriptor prevents that a
free memory block of suitable length starting at a location mapped to the desired
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Figure 4.4: Allocator state where descriptor placement may be causing additional
external fragmentation.

cache set (gray-shaded area) is available. While moving this descriptor to the left
depicted descriptor area would solve this problem, moving descriptors at allocation
time is not desirable. Technically, we would either need a search over all descriptor
areas to find a free descriptor slot to which to move a badly placed descriptor. Or
we need to keep pointers to all only partially used descriptor areas. And what if
not moving one, but two or even more descriptors enables the allocator to satisfy
a pending request using just its currently managed memory range? Obviously,
allowing descriptor relocations at allocation time would severely impair timing
predictability of this operation.

To circumvent or at least counteract these problems, we propose to implement a
descriptor placement policy that strives to prevent such situations from developing.
This can be achieved by requiring the descriptor placement policy to guarantee
the following invariants.

IV1 No two consecutive free memory blocks of any kind exist. I.e., a free
descriptor area is merged with adjacent free memory blocks whenever
possible.

IV2 At most one descriptor area is not fully used, i.e., contains currently unused
descriptors.

IV3 Each descriptor area contains the descriptor by which the area itself is
managed.

IV1 ensures that free descriptor areas are recycled, thus situations as depicted
in Figure 4.3 cannot occur. IV2 minimizes the number of descriptor areas used
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at any time. Consequently, the probability of having a descriptor area blocking

an allocation as depicted in Figure 4.4 is decreased. The impact of IV3 on
fragmentation is less strong compared to IV1 and IV2. It prevents states as
sketched in Figure 4.5 where an additional, actually unnecessary descriptor area
is maintained due to a cycle where one area stores the descriptor to manage the
other and vice versa. However, IV3 allows for a more efficient way to implement

- +
memory

addresses

empty/unused memory block
allocated/in-use memory block

Dk/n descriptor area
k of n descriptors in-use

D n/n D 1/n

Figure 4.5: Unfavorable placement of descriptors resulting in the allocation of an
additional descriptor area.

our allocator. Without IV3, the situation that a descriptor area is managed by
a descriptor it stores itself would constitute a special case that both allocator
interfaces, malloc and free, would have to consider. Maintaining IV3 as an
invariant makes this self-management the only valid case, allowing for more
efficient and clearer implementations. Furthermore, for the free operation, we
can use IV3 to guarantee fewer descriptor relocations in the worst case. Which
consequently yields a smaller WCET for this operation as well as a more restricted
effect on the respective cache state. Thus, it increases overall predictability.

How can we maintain these invariants and what are the worst-case allocator-
states during allocation and deallocation operations?

Maintaining IV1 through IV3 when processing an allocation request is fairly
straightforward. In the worst-case, a suitable memory block needs to be extracted
from splitting a memory block newly requested from the operating system. In
this case, at most four additional descriptors are needed to manage the four new
blocks created. As one of those blocks is a descriptor area, its descriptor will
reside within that newly created area to maintain IV3. Figure 4.6 illustrates this
case.

As no free blocks are created, IV1 will still hold if it held before the split
operation. Given that IV2 held before, we either have a descriptor area that still
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Figure 4.6: Allocator state where an allocation for s bytes starting from an address
mapped to cache set k causes a maximal number of split operations.
Four new memory blocks will be created in order to satisfy such a
request while keeping invariants IV1 to IV3 intact. Each new block i

spans from si to ei.

has free descriptors we can use. Or all descriptor areas are fully used (as depicted
in Figure 4.6). In the latter case, we create a new descriptor area from which to
allocate the required descriptors for the newly created memory blocks. In case
a descriptor area exists with unused descriptors left, we allocate as many of the
descriptors we require from there to keep IV2 intact. If we cannot allocate all
required descriptors from an existing area, we still have to create a new area
from which to allocate the remaining descriptors. Creating new descriptor areas
is trivially implemented in such a way that their management descriptor resides
within the area itself, thus maintaining IV3.

Figure 4.7 depicts an allocator state that may yield a worst-case behavior when
processing a deallocation request.

- +
memory

addresses

empty/unused memory block
allocated/in-use memory block

Dk/n descriptor area
k of n descriptors in-use

D n/n D n/n D 1/n

Figure 4.7: An allocator state where a deallocation of either of the two leftmost in-
use blocks results in the worst-case number of four merge operations.
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A worst-case situation arises when either one of the two left-most in-use blocks
gets deallocated. In both cases, we end up with three adjacent free blocks: the
currently freed block and its two already free neighbors. To maintain IV1, CAMA
has to merge those three blocks into a single free block. IV1 also guarantees
that three is the maximum number of free adjacent blocks after a block becomes
free: as two adjacent free blocks will be directly merged into a single free block,
free blocks must always be separated by a non-free block. When such a non-free
block becomes free, the largest sequence of adjacent free blocks that may be
created encompasses three blocks. However, merging three blocks also frees two
descriptors. This in turn may render a descriptor area completely empty; either
directly or after relocating used descriptors to maintain IV2. In our example,
the rightmost descriptor area will be completely depleted once the descriptor it
holds is relocated. Consequently, another merge of three free blocks is triggered.
Leading to the worst case of two merges of three adjacent blocks, each. Comparing
CAMA to TLSF with its similar merging strategy, we observe that CAMA needs
exactly the double amount of merge operations in the worst case: four instead of
two. This is exactly what one would expect, given that both allocators maintain
that a maximal sequence of free adjacent blocks is at most of length one. But a
deallocation in CAMA may free two memory blocks: the block to be deallocated
itself and a depleted descriptor area; instead of just the memory block itself with
TLSF. Also note that we implicitly assume a minimum descriptor area size of
3 descriptors per area to guarantee that at most one descriptor area can get freed
during a deallocation.

Counteracting Incomplete Memory Use An implementation of an allocator
as described so far would unfortunately introduce incomplete memory use as a
third source of memory fragmentation. Originally, the term incomplete memory
use was coined to describe Half-Fit’s inability to find free blocks larger than
the base size of their respective free list to serve requests for blocks of sizes
larger than this base size; even if they are just one byte larger. This was due to
the allocation routine starting its search at the smallest size class of which all
blocks are at least of the requested size, i.e., the next bigger size class than the
one in which the requested size lies. As discussed in Chapter 2, simply rounding
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all requests and hence block sizes to the next size class solves this problem
and transforms incomplete memory use into (also highly predictable) internal
fragmentation. In CAMA’s case, however, incomplete memory use is caused by
the lookup mechanism starting at the requested cache set. I.e., only size classes
whose free blocks have a starting address with the given cache set mapping are
considered. Larger blocks whose starting addresses are mapped to another cache
set, but nonetheless contain a subblock with the requested cache set mapping and
sufficient size cannot be found.

With regard to CAMA’s worst-case memory consumption, we can exploit this
incomplete memory use—as we did in the discussion of Half-Fit—to hide free,
suitable memory blocks from the allocator. And hence construct a (de-)allocation
sequence that forces the allocator to use an unbounded amount of memory for
a fixed, constant amount of live memory. Even worse, we can even show that
incomplete memory use due to restricting the allocator’s lookup mechanism to
free blocks starting at a given cache set causes severe memory waste for common
(de-)allocation patterns as well as real-life programs [HH13] (see also Chapter 5
for a more detailed analysis of the sources of fragmentation for different allocators
and (de-)allocation behaviors).

With incomplete memory use bearing the potential to cause a prohibitively
large memory consumption for many (de-)allocation sequences, we propose the
following adaption of CAMA’s allocation routine. In situations where CAMA
fails to find a suitable, free memory block starting at the requested set to satisfy an
allocation request, instead of directly getting more memory from the underlying
operating system, we propose to try a constant-time search for a free block that
can be split to yield a suitable one with the requested cache set mapping.

To allow for a constant-time search, we let the allocator manage a second
bit sequence where, again, a set bit indicates that the free list of the corre-
sponding size class is non-empty. When scanning this sequence, we are in-
terested in only the larger size classes, but associated to any cache set. As
we can freely choose what we consider a larger size class, we can restrict the
size of this bit vector such that the additional runtime costs for reading this se-
quence do not overly increase the WCET of CAMA’s allocation routine. We
also want an ordering on the bits such that picking the first block from the free
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list associated with the first set bit that we encounter constitutes a reasonable
choice.

Intuitively, as we are allowed to just check a single free block for its capacity to
fulfill a given request, we strive to increase the probability for this check to turn
out positive. We do so by trying to select the largest free block with a starting
address mapped to a cache set smaller, but as close as possible, to the requested
set.

Formally, we build a suitable bit sequence v? as follows.

v? =
〈
fbi, j

〉
, ilmin ≤ i ≤ imax ∧ 0 ≤ j ≤ jmax + 1

where we use ilmin to formally define the term large size class: a size class Ii, j

is considered to be a large size class if and only if i ≥ ilmin. Furthermore, each
subsequence fbi, j ∈ {0, 1}

sets contains one bit per cache set k (in descending order)
set to 1 if and only if the corresponding free list is non-empty. I.e., if the nth bit of
fbi, j is set to 1, then S sets−1−n,i, j , ∅ holds.

When an allocation request for size bytes cannot be satisfied from a free list of
blocks with starting addresses mapped to the requested cache set, v? is scanned
in the intuitive manner. The subsequences fbi, j with size ∈ Ii, j are read until a
set bit is found. This bit is associated with a non-empty free list containing the
largest currently free blocks. Furthermore, if several such free lists exist, due to
the reverse ordering on the bits of the fb·,·, the first set bit corresponds to the free
list containing blocks whose starting address is mapped to a cache set closest to
the requested set. The first block of the associated free list is then considered for
satisfying the pending request.

Setting ilmin such that every size class greater or equal to sizebmin is considered
during the search for a suitable free block, eliminates incomplete memory use
completely (assuming block sizes are rounded and size classes degenerated to
sets of equally sized blocks). However, the smaller ilmin is chosen, the higher the
worst-case execution time of the allocator’s allocation routine. For an architecture
with 128 cache sets, 4 additional bytes per considered size class need to be read
in the worst case. But the probability that a found block can be used to satisfy a
request decreases with decreasing size classes. Hence, it may often be desirable
to choose a more restrictive ilmin in order to find a reasonable trade-off between
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4.2 CAMA—A Cache-Aware Memory Allocator

worst-case execution times and memory waste due to incomplete memory use.

Summarizing our Proposed Cache-Aware Memory Allocator CAMA On
a higher level of abstraction, what do we end up constructing so far? In summary,
CAMA constitutes a constant-time multi-level segregated-list allocator with an
indirect in-heap management of memory. Free memory blocks are organized in
segregated free-lists which are addressed using a multi-level addressing scheme.
The first layer groups free lists according to the cache sets the free memory blocks
start in. While two more layers build size classes to group memory blocks ac-
cording to their block sizes. Allocation and deallocation is mostly reduced to
computing the address of a suitable free-list to allocate a block from and deallocate
a block to, respectively. Such a computation can be performed in constant time.
Furthermore, CAMA implements splitting and merging operations to counteract
fragmentation. These are also constant time operations with a tightly bounded
number of memory accesses directed to a memory area mapped to a statically
strictly bounded portion of the cache. This restriction of accesses to a given part of
the cache only is enabled by CAMA’s indirect block managing scheme using de-
scriptors with a statically predefined cache set mapping to manage memory blocks.

How well does such an allocator meet the criteria for a dynamic memory al-
locator suitable for hard real-time systems that we established at the beginning of
this chapter?

Constant-Time (De-)Allocation Routines Even in the worst case, all internal
procedures proposed for usage in a predictable allocator (free-list lookups, splitting
at allocation, merging at deallocation) can be tightly bounded by a constant number
of operations. We refrain from giving concrete worst-case execution times in
processor cycles for procedures as they greatly vary depending on the target
platform and CAMA’s configuration. WCET bounds also depend significantly
on the implementation of the allocator, further decreasing the information value
of concrete processor cycles. In consequence, we cannot be sure whether the
complexity of the algorithms or a too unpredictable implementation thereof is
responsible for a concrete WCET bound. Furthermore, the worst-case execution
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times of procedures are in general not compositional, i.e., we cannot simply add
up the execution times of single subprocedures (bit vector scans, index tuple
computations, and so on) to yield the worst-case execution time of an entire
(de-)allocation.

The following listing gives a summary that may also serve as a worst-case count
of operations for the single procedures.

1. At allocations

a) Free-list lookup: In the worst case, all free lists associated with the
requested cache-set mapping are empty. In this case, we need to
compute the index triple and, during the first search phase, read at
most 2 + b( jmax + 1) (imax − imin)/ 32c words (of 32 bits) to verify that
no free block with a suitable starting address exists.

If CAMA is configured to perform a subsequent worst-fit approach
to find a biggest block that may be split to yield an appropriate block
to satisfy the request, we need to scan another bit vector. In the worst
case, this second round will need to read another, additional bit vector
of sets

32 · ( jmax + 1) (imax − ilmin) words.

b) Splitting of a larger than required block: In the worst-case, the second
search found a block that needs to be split into three blocks, where
the middle block is suitable to satisfy the original request. Hence, we
need to write three descriptors and, again in the worst-case, create a
new descriptor area including writing a fourth and fifth descriptor to
manage said area as well as a newly created memory gap left of that
area.

2. At deallocations

a) Checking free-bits of memory-adjacent blocks: To check whether the
newly freed block’s adjacent memory blocks are also free and a merge
is required, we need to read two entries of the newly freed block’s
descriptor (linked from the (header of) the block itself) as well as the
size fields of the descriptors of the adjacent blocks.
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b) Merging the maximal number of adjacent free blocks: In the worst
case, the newly freed block is located between two already free blocks
which results in two merge operations to create one new, continuous
free block spanning these three blocks. Furthermore, after merging
these, we free two descriptors which may lead to a completely free
descriptor area that again may be located between two currently free
memory blocks. Which again results in two merge operations. Note
that merging cannot cascade due to invariants IV1 to IV3 coupled with
the minimum size of the descriptor areas of larger than three.

Please note that, while we argue against the informative value of concrete execu-
tion times, we have derived such values for specific architectures and parameters
before [HBHR11, HH13].

In [HBHR11], we derived WCET bounds considering as target platform the
PowerPC MPC603e. This hardware is widely used in embedded systems. It
possesses separate data and instruction caches with 128 cache sets each and a
cache line size of 32 bytes. The instantiation of CAMA that we considered did not
use area blocks, so the WCET bounds we obtained give a good impression on the
(execution time) costs of using descriptors and a three-level lookup mechanism
(as opposed to TLSF’s two-level approach). For allocation requests, we were able
to derive upper bounds of 9,935 cycles and 16,260 cycles for CAMA and TLSF,
respectively, using aiT. This result is a bit surprising, given that CAMA’s algo-
rithm is more complex than that of TLSF. By simply implementing TLSF’s internal
computation of logarithms in a more predictably way, we were able to reduce
TLSF’s bound to 13,026 cycles. This, of course, strengthens our argument against
the usefulness of processor cycles at this point. Furthermore, free operations can
be bounded by 6,891 and 5,703 cycles for CAMA and TLSF, respectively.

The WCET bounds given in [HH13] compare the allocation routine of TLSF
to that of CAMA with area blocks and a small second bit search to counteract
incomplete memory use of 128 considered free lists. The considered target
platform is again the PowerPC MPC603e. Figure 4.8 summarizes the results given
in [HH13] in two scatterplots. As we can see in those plots, upper bounds on
the execution times are, in this case, very similar for both allocators. Despite
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Figure 4.8: WCET bounds of TLSF and CAMA (using areas for small blocks and a
128 bit bad-fit fallback).

the significantly more complex algorithms of CAMA (compared to TLSF), the
provable bound on its WCET rises to just 13,867 cycles. Additionally, we could
decrease the WCET bound of TLSF’s allocation routine to 12,533 cycles with
a newer, more precise version of aiT. Again, we may still largely overestimate
the WCET of TLSF due to a less predictable programming style used in the
implementation of TLSF. Note that the jump in the derivable WCET bounds
for CAMA for the different requested sizes is attributed to the more complex
management of smaller blocks in areas.

Predictable Cache Behavior The main goal, allowing to guide dynamic al-
locations with respect to the cache-set mapping of allocated blocks, is achieved
by construction: CAMA’s allocation routine takes the desired cache-set mapping
as an additional parameter. Furthermore, its real-time properties with respect
to providing constant-time (de-)allocation routines is evidenced in the previous
paragraph. But how well does CAMA do with respect to its overall cache pre-
dictability, i.e., the predictability of the effects of CAMA’s internal routines on the
cache state? CAMA’s allocation routine may access its internal bit sequences, its
free list table, and descriptors. All accesses to descriptors are directed to a small,
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statically known number of cache sets. We may also store CAMA’s bit sequences
and free list table at memory locations mapped to the same cache sets. In this case,
when invoking the allocation routine, only the small set of cache sets to which
descriptors are mapped may be affected. Furthermore, the number of pairwise
different accesses to these sets (w.r.t. cache lines) may then, at least for current
hardware, potentially exceed the number of cache lines. Hence, simply dropping
information about these cache sets in the current cache state is an easy, precise
enough way to update the cache state when our allocator’s allocation routine is
invoked. CAMA’s deallocation routine may only access descriptors and its free
list table and can consequently be handled the same way.

Memory Consumption As already discussed in Chapter 2.2, static worst-case
bounds on the memory consumption of a dynamic memory allocator are bound to
be rather discouraging. For CAMA, such a bound is heavily dependent on whether
or not the allocator is configured to be prone to incomplete memory use. If a
configuration is chosen in which incomplete memory use may occur, CAMA’s
worst-case memory consumption is unbounded. Nonetheless, such a configuration
may in practice be a good choice if one can prove that the applications using
CAMA do not exhibit (de-)allocation sequences that cause overly high memory
waste due to incomplete memory use.

If we configure the allocator such that incomplete memory use cannot occur,
CAMA selects blocks either to a best-fit (a suitable free block is found in the
free lists associated with the requested cache set) or bad-fit (a suitable, large
block is found that spans over the requested cache set) strategy. Hence, external
fragmentation can be bounded by the bounds known for these strategies: M · m,
where M is the sum of the requested memory and m the maximal size of an
allocation.

Overhead for descriptors as well as the predefined cache-set mapping can be
attributed to internal fragmentation. In the worst case, a block of size s with
a starting address mapped to a cache set to which descriptors are mapped is
requested in a state where no free descriptors are available. In this case, we may
need to allocate s + sizeway bytes to create such a block, plus a whole cache page
for a new descriptor block area with the correct cache-set mapping.
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Overall, memory usage to satisfy such a request for s bytes sums up to
s + 2 · sizeway bytes. Hence, maximal internal fragmentation for requests for
a total of M bytes is bounded by

(
1 + 2 · sizeway

)
· M. And the overall mem-

ory consumption including external and internal fragmentation is consequently
bounded by

(
1 + 2 · sizeway

)
· M ·m, where m is the maximal size of an allocation.

The additional memory need for CAMA’s descriptors as well as memory holes

due to the enforced cache-set mapping of dynamically allocated blocks to which
the allocator must adhere are both attributed to internal fragmentation.

Comparing the upper bounds on CAMA’s and TLSF’s memory consumption
nicely reflects their respective design choices. As shown, TLSF’s worst-case
memory consumption is bounded by

J + 1
J︸ ︷︷ ︸

upper bound on internal fragmentation per block

· M︸︷︷︸
upper bound on memory blocks

· (m − 2)

︸                                   ︷︷                                   ︸
upper bound on memory usage incl. external fragmentation

The first factor bounds internal fragmentation dependent on the number of second-
level size classes. This factor covers memory waste due to rounded block sizes.
The second and third factor bound the worst-case memory use due to maximal
external fragmentation. TLSF selects blocks (of rounded sizes) to a best-fit strategy.
Hence, we can sharpen the trivial general bound on external fragmentation of
M · m to the bound on external fragmentation for best-fit allocators, which is
M · (m − 2).

In CAMA’s case, we showed a bound of:(
1 + 2 · sizeway

)︸             ︷︷             ︸
upper bound on internal fragmentation per block

· M︸︷︷︸
upper bound on memory blocks

·m

︸                          ︷︷                          ︸
upper bound on memory usage incl. external fragmentation

Again, the first factor bounds internal fragmentation. In CAMA’s case, this factor
is significantly larger to cover for memory wasted to adhere to the given cache-set
mapping and to store descriptors. As in TLSF’s case, the second and third factor
bound the worst-case memory use due to maximal external fragmentation. CAMA,
however, employs either a best-fit (a suitable block with the requested cache-set
mapping exists) or a bad-fit (a block with a suitable cache-set mapping needs to be
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created first) strategy to selecting free blocks. Hence, the general bound ofM · m
cannot be sharpened in CAMA’s case.

Concluding Remarks In conclusion, we consider our design goals for a cache-
aware, predictable memory allocator to be met by CAMA. However, we do also
consider CAMA to be more of a set of cache-aware techniques than an allocator
that can be used out-of-the-box. The more suitable CAMA is configured for
a given application, i.e., the more appropriate one sets size classes, sizes of
descriptor areas, depth of bit vector scans, and so on, the higher is its predictability
and the better its performance.

A Classification of CAMA According to Wilson et al. In [WJNB95], Wil-
son et al. propose to classify allocators according to a three-level distinction of
strategies, policies, and mechanisms. The authors see an allocator as a set of
strategies to decrease memory fragmentation that exploit regularities of programs,
or rather that attempt to avoid pitfalls stemming from those regularities. A policy
is an implementable decision procedure determined by a strategy. A mechanism
is a set of algorithms and data structures that actually implement a policy. In those
terms, CAMA follows three strategies.

1. Avoid searching for suitable blocks, which aims at constant response times
rather than low memory usage.

2. Never cause unpredictable memory accesses, which aims at cache pre-
dictability.

3. Avoid letting small, long-lived blocks prevent the reclaiming of larger, con-

tiguous free memory areas, which aims at low memory use.

The corresponding policies concretize these strategies into implementable proce-
dures.

1. Sort free blocks into reasonably small equivalence classes such that a given

allocation may be satisfied by any block from this class, rendering unnec-

essary any (further) searching within an equivalence class and manage
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such classes in a way that allows for a constant-time mapping of allocator

requests to suitable classes.

2. Organize equivalence classes in such a way that the cache set mapping of

all potentially accessed data fields is statically known.

3. Always take the first block from the smallest, non-empty class that contains

only blocks that are guaranteed to be large enough to satisfy a request and
always split blocks when a larger than needed block was used.

The following mechanisms implement these policies.

1. Reasonably sized equivalence classes are built by our three-leveled approach.
Blocks of the same class are organized in a singly-linked list. The segregated,
singly-linked lists are organized in a multidimensional array such that the
suitable list for a given (de-)allocation can be easily computed and accessed
in constant-time.

2. A statically known cache set mapping of accessed data fields is achieved by
employing descriptors. I.e., an indirect management of free blocks instead
of the traditional direct management at the blocks themselves.

3. CAMA strives to always take a smallest block to satisfy requests including
internal requests for descriptors by employing a good fit strategy and our
proposed descriptor placement strategies, respectively.

4.3 An Alternative Approach to Guiding

Cache-Set Mappings of Allocations: RelCAMA

CAMA modifies the standard interface to the memory allocator by adding an
additional argument to the allocation routine: the cache set to which the starting
address of the returned memory block shall be mapped. This design choice was
clearly motivated by aiming to support a subsequent cache analysis with as precise
information about cache set mappings as possible. However, as discussed in
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Section 2.4.2, Hahn and Grund show that for a precise cache analysis, knowing
the relations between accessed memory blocks is sufficient.

Our implementation of CAMA currently features an alternative allocation
interface aimed at supporting relational cache analyses. This alternative interface
has the following function signature

void* carelmalloc(size t size, enum relation t rel, ...);

Invoking this allocation routines returns a pointer to a free memory block of at
least size bytes with a starting address with relation rel to all addresses in the
null-pointer terminated list of pointers following the first two arguments (...).

What relations can be requested? In the lattice of relations used by Hahn and
Grund (see Figure 2.6, page 59), the most precise and hence desirable relations
are the same block, same set but different block, and different set relations. For the
first two relations, the same block and same set but different block, an allocator
can in general not guarantee to find such a block in constant time. Mapping
newly allocated memory to a given block may simply not be possible due to the
block already being full. Finding a block with the same cache set mapping as
a given block, but not being the same block, can be implemented as a constant
time operation, but would further add to the complexity of CAMA. The different

set relation, however, may be guaranteed as such a block can always be created
assuming more memory can be obtained from the underlying operating system.
Besides this relation, also the same set relation can be generally guaranteed by an
allocator and is consequently supported by CAMA.

While this interface also breaks with the standard aim of keeping caches trans-
parent to the application (as do other, existing cache-conscious allocators), we note
several advantages of the relational allocation interface. Although both arguments
(fixed cache set or fixed relation) can be determined by a static preanalysis or via
simple heuristics [HRW08], when done manually, good relations may be easier to
find for a programmer than good fixed cache sets. From a more technical point of
view, just having to adhere to a fixed relation instead of a fixed cache set mapping
imposes fewer restrictions on the blocks the allocator may return to fulfill an
allocation request.

Many adjustments of CAMA’s allocation strategy are conceivable and may
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potentially further decrease CAMA’s memory consumption. While the same set

relation is as restrictive as a fixed cache set, the different set relations may allow
the allocator to choose from a large set of cache sets to which a returned block
must be mapped. In this case, the allocator can switch its allocation strategy to the
following heuristics that may often decrease memory consumption in practice:

• Always return a block from a cache set with the highest number of currently

free blocks.

This strategy aims at counteracting imbalances in the request frequencies
of the different sets which may otherwise lead to an increased memory
consumption.

• Always return a best fitting block by choosing the cache set accordingly.

This strategy aims to (further) mimic a best-fit strategy which has been
shown to often yield the lowest memory consumption in practice as dis-
cussed in Section 2.2.

4.4 An Alternative Approach: PRADA

Compared to other dynamic memory allocators, CAMA’s algorithms are rather
complex, mainly due to its indirect management of blocks. This complexity
prevents simple and efficient implementations. At least, this puts CAMA at a
disadvantage when looking at best-case or average-case execution times. This also
raises the question, whether there are simpler ways to cache-aware, predictable
dynamic memory allocation that do not rely on a complex indirect memory
management.

In [Hau12], PRADA, an alternative approach to predictable and cache-aware dy-
namic memory allocation is described. PRADA uses the same three-level approach
to set up segregated free lists to manage free memory blocks as CAMA. Hence,
constant time allocation and deallocation routines are achieved in the same manner.
Unlike CAMA, PRADA builds those free lists in the standard, straightforward way:
using the free blocks themselves to store pointers to the free blocks preceding
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and succeeding the current block within its free lists. Still, split and merge op-
erations may need to access those data fields. As it is statically impossible to
precisely derive when splits and merges are executed, storing information directly
at the free blocks themselves leads to unpredictable cache accesses, corroding
information about the cache state. To circumvent this problem, PRADA defers all
actions, i.e., split and merge operations, which would introduce unpredictable
behavior when always immediately executed. Instead of a guaranteed immediate
execution of such operations, PRADA stores them as action requests first. The
actions themselves are executed during subsequent (de-)allocations directed to
exactly the cache set those operations need to access. Hence, PRADA can guarantee
that during (de-)allocations internal actions access only the cache set to which the
(de-)allocated memory block is mapped.

While we omit a detailed description of the PRADA algorithm and refer to
[Hau12] for more details on that topic, we still highlight the differences between
the two allocators in the remainder of this section.

CAMA maintains one descriptor per managed memory block to enable cache-
predictable split and merge operations for this block. In case such an operation is
never applied to a block, this block’s descriptor can be considered an unnecessary
management overhead. PRADA, however, creates its internal action request only
in cases in which an action actually can be applied. Hence, there is less potential
for unnecessary management overhead in this allocator. However, the number of
requests that PRADA can contemporaneously store is limited to a small, statically
fixed number. If at any point the maximal number of action requests is reached,
further requests are simply dropped and never executed. This has the obvious dis-
advantage that for certain request sequence splitting and merging gets deactivated,
although memory usage may significantly profit from those operations. Consider
for example a program that performs an in-situ copy of one of its data structures.
Splitting and merging may enable efficient memory use in such a scenario. This is
achieved either by allowing the program to merge and reuse memory locations
from the source structure to hold elements of the destination structure, in case a
smaller data structure is transformed into a larger one. Or splitting free memory
locations from the source structure to hold elements of the destination structure,
in cases where the source structure’s elements are of a larger type than the destina-
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tion’s. If this example program, however, fills up its request queue before its data
structure transformation, these opportunities to efficiently reuse memory are lost.
Still, for other request sequences, PRADA’s delayed application of operations may,
however, be beneficial. Consider the following (de-)allocation sequence

(
αx

sα
y
sδ

xδy
)+

If the memory blocks served in the two allocations are adjacent in memory, a
non-deferred merge will result in an unnecessary merge operation after the second
deallocation and, in consequence, an additional split at the following allocation
(when the sequence is repeated).

Hence, PRADA’s overall performance highly depends on a suitable choice of the
number of requests that can be contemporaneously stored.

To justify PRADA’s approach and expect it to perform reasonably well in practice
even with only a constant, fixed number of contemporaneous split and merge
requests, one needs to make two assumptions regarding regularities in real-life
programs. Namely that real-life programs do not feature sequences that lead to
the dropping of beneficial actions and that there are programs in which merges are
often followed by split operations of the same block. In the latter case, allocator
performance will increase when these merges were deferred until they become
obsolete and are consequently dropped. The latter regularity, at least, has been
often observed [WJNB95].

In terms of the classification proposed by Wilson et al., PRADA is motivated by
the same strategies as CAMA. However, the policy designed to implement the
Never cause unpredictable memory accesses-strategy is different. PRADA’s policy
for ensuring the absence of unpredictable memory accesses, or better accesses to
memory locations with a statically unknown cache set mapping can be summarized
as:

• Defer memory accesses until they are directed to memory locations with

a statically known cache-set mapping; even if this entails splitting an

operation into several micro steps or possibly never executing an operation

at all.
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Concluding Remarks CAMA’s indirect memory management via descriptors
is, arguably, the greatest drawback of our approach as it makes implementations
rather complex. PRADA’s additional management overhead, its action requests,
are, in contrast, rather trivial to implement. Action requests do also not influence
external fragmentation (we evidence the influence of CAMA’s descriptor areas on
overall external fragmentation in Chapter 5).

Does this mean PRADA may be the better, more promising approach? Besides
bearing the risk to drop useful split and merge operations, we note another source
for overly high memory consumption with PRADA. Unlike in CAMA, with PRADA
there is no obvious way to counteract incomplete memory use. Unfortunately,
incomplete memory use occurs rather often and drastically in allocators using
our proposed free list structure [HH13, Hau12] (see also Chapter 5). Hence, in
general, CAMA must be considered the more robust and more promising approach
after all.

In order to get a better impression on PRADA’s memory performance, we in-
cluded two instantiations of the allocator in our evaluations. We discuss our
findings in Chapter 5.
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Experimental Evaluation

The fundamental principle of science, the

definition almost, is this: the sole test of the

validity of any idea is experiment.

Richard P. Feynman

Physicist (1918–1988)

5.1 Chapter Overview

In Section 2.2, we discussed the general issue that for all dynamic memory alloca-
tors there exists a worst-case (de-)allocation sequence that forces the allocator to
use an overly large amount of memory. This amount of memory is often close to
the absolute maximum for allocators without incomplete memory use of I · M ·m.
Again,M denotes the sum of all requests, m the largest block size manageable by
the allocator, and I captures memory waste due to internal fragmentation. The re-
sulting worst-case bounds on an allocator’s memory consumption have in practice
been shown to be overly pessimistic, as real-life programs do in general not feature
these worst-case (de-)allocation sequences. CAMA, obviously, does not make an
exception to this end. Hence, in order to argue CAMA’s usefulness, we have to
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provide sufficient evidence that for real-life programs—or better: (de-)allocation
sequences that may occur in practice—a reasonable memory consumption is
achieved.

This chapter reports in detail on the benchmarks and measurements we per-
formed in order to show that CAMA does indeed achieve predictability without
incurring a prohibitively large memory overhead. The chapter is structured as
follows. Section 5.2 elaborates on our choice of allocators and metrics used
to compare CAMA against. Section 5.3 evaluates these allocators on synthetic,
randomized (de-)allocations sequences that model typical behaviors expected of
real-time applications. In Section 5.4, a small set of existing real-time applications
is used to benchmark our set of allocators.

5.2 Allocators and Metrics Used in our

Benchmarks

We used the following (instantiations of) dynamic memory allocators and metrics
in our comparisons.

1. CAMA (two instantiations, with and without counteracting incomplete
memory use by a bad-fit fallback mechanism),

2. PRADA (two instantiations, one configuration with splitting and merging
disabled),

3. Cache-Set-Guided Address-Ordered Sequential-Fit Allocators with best-fit,
first-fit, and worst-fit policies,

4. TLSF,

5. DLMalloc,

6. the sum over all allocation requests (M), and

7. the maximally live memory.
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The following paragraphs elaborate on the choices of allocators used in our
comparisons. They furthermore discuss what we intent to evidence by these
different allocators or configurations. In those paragraphs, we also give the
detailed configuration of each allocator that we used in our measurements.

CAMA We used two instantiations of CAMA: one instantiation where incom-
plete memory use is counteracted by a subsequent bad-fit approach if CAMA’s
standard best-fit approach fails (denoted CAMA) as well as an instantiation where
the allocator relies on its best-fit approach only (denoted by CAMA0). For the
bad-fit approach, all size classes containing blocks of sizes greater than or equal
to 1024 bytes are considered.

The instantiation of our proposed allocator that we denote just CAMA con-
stitutes a reasonable tradeoff between (worst-case) execution times and memory
usage. CAMA0 evidences the severity of incomplete memory use resulting from
our proposed best-fit lookup mechanism that considers only free blocks with a
starting address mapped to the requested cache set and ignoring splittable, larger
blocks with a different cache-set mapping but spanning a suitable memory range.
The detailed configurations of those two allocators are given in Table 5.1 and
Table 5.2, respectively.

PRADA We also added two versions of PRADA to our benchmarks. PRADA32
is configured to store a maximum of 32 contemporaneous requests per cache
set (for splitting/merge operations plus 32 so-called top-level requests), PRADA0
cannot store any requests. By setting the number of requests to 0, we aim to
get some insights into the importance of being able to split and merge to coun-
teract high memory fragmentation. The selection of 32 requests per cache set
seems rather arbitrary at first. However, this number is motivated by two ob-
servations. In previous benchmarks, we observed that 32 contemporaneous
requests are sufficient in all test cases such that no request is ever dropped
[HH13, Hau12]. Furthermore, this selection allows for an efficient implementation
of the PRADA’s lookup routine for a pending request. We can use the 32 bits of
a 4 byte word to encode whether a reserved request slot currently stores a pending
request.
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Parameter Value Remarks

Cache sets (sets) 128 sets
Cache line size 32 bytes
Cache way/page size 4096 bytes
imin 2
imax 21
First-level size classes 19
Second-level size classes 4
Size classes 76 3 to 5 words are read

during the best-fit phase
sizemin 160 bytes Blocks larger than this value

are managed by an own,
exclusive descriptor.

sizelmin 1024 bytes All size classes with blocks
larger than this value are
considered during the bad-fit phase.
May lead to 3 words per set to be read.

Descriptors per area 13 320 bytes per cache way
can be used for descriptors.

Table 5.1: Configuration of CAMA used for benchmarking.
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Parameter Value Remarks

Cache sets (sets) 128 sets
Cache line size 32 bytes
Cache way/page size 4096 bytes
imin 2
imax 21
First-level size classes 19
Second-level size classes 4
Size classes 76 3 to 5 words are read

during the best-fit phase.
sizemin 160 bytes Blocks larger than this value

are managed by an own,
exclusive descriptor.

sizelmin ∞ Disables the bad-fit phase.
Descriptors per area 13 320 bytes per cache way

can be used for descriptors.

Table 5.2: Configuration of CAMA0 used for benchmarking.
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By comparing CAMA to PRADA32, we cannot isolate and compare the memory
costs of using an indirect block management scheme with descriptors to those of
using a direct managing scheme with delayed split and merge operations. Changes
in memory usage due to a different degree of incomplete memory use caused by
the presence of descriptor areas may be much more significant and superpose
the changes due to an indirect memory management. We observed this effect
in previous benchmarks [HH13, Hau12]. We can, however, evidence whether a
simpler algorithm like PRADA that can be implemented much more efficiently than
CAMA’s indirect memory organization is sufficient for typical (de-)allocation
sequences occurring in (hard) real-time systems. Furthermore, we can get insights
about the degree of memory waste due to incomplete memory use from comparing
the instantiations of PRADA to our cache-set-guided address-ordered sequential-fit
allocators.

The detailed configurations of the two instantiations of PRADA are given in
Table 5.3 and Table 5.4, respectively.

Cache-Set-Guided Sequential-Fit Allocators To isolate the memory costs
for adhering to a statically predefined cache-set mapping of dynamically allocated
data, we implemented three simple linear-time allocators. These allocators provide
the same allocation interface with an additional cache-set argument as CAMA
and PRADA. Technically, these allocators maintain a single free list in which all
managed free blocks are stored. This list is ordered with respect to the starting
addresses of the memory blocks. Hence, deallocation takes linear time (in the
number of managed blocks), but merge operation can be efficiently implemented
as constant-time operations. Upon an allocation request, these algorithms sequen-
tially search their respective free lists to find a block that can be split to yield a
large enough (sub-)block with the requested cache-set mapping. The instantiation
denoted aoff always selects the first such block to satisfy the allocation request.
Hence, aoff implements a sequential first-fit algorithm. aobf, in contrast, selects
the smallest block that may be split to yield a suitable block to satisfy the request;
aowf selects the largest such block. Hence, they implement sequential best-fit and
worst-fit algorithms, respectively. If several smallest or largest blocks exist, both
algorithms select the one with the smallest memory address.
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Parameter Value Remarks

Cache sets (sets) 128 sets
Cache line size 32 bytes
Cache page/way size 4096 bytes
imin 5 This allocator returns

cache-set aligned blocks
and always rounds block sizes
to multiples of the line size (25 bytes).

imax 24 Set to 24 to result in a free-list table
of the same size as CAMA’s.

First-level size classes 19
Second-level size classes 4
Size classes 76 3 to 5 words are read

during the best-fit phase.
Max. no. of requests 32
Max. no. of top-level requests 32

Table 5.3: Configuration of PRADA32 used for benchmarking.
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Parameter Value Remarks

Cache sets (sets) 128 sets
Cache line size 32 bytes
Cache page/way size 4096 bytes
imin 5 This allocator returns

cache-set aligned blocks
and always rounds block sizes
to multiples of the line size (25 bytes).

imax 24 Set to 24 to result in a free-list table
of the same size as CAMA’s.

First-level size classes 19
Second-level size classes 4
Size classes 76 3 to 5 words are read

during the best-fit phase
Max. no. of requests 0 Disables splitting and merging.
Max. no. of top-level requests 0 Disables splitting and merging.

Table 5.4: Configuration of PRADA0 used for benchmarking.
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Other Allocators and Metrics In order to put the memory performances of
our cache-set guided allocators into context, we also included well-known and
widely-used allocators as well as two general metrics.
TLSF represents the current state-of-the-art of non-cache-aware, real-time dy-

namic memory allocators. In a similar evaluation of the memory consumption of
TLSF, Half-Fit, and a binary buddy allocator, TLSF has been shown to perform
strictly better than the other two [MRR+08]. For the test cases used in [MRR+08],
memory waste was roughly ten times higher with Half-Fit and five times higher
with a binary buddy, respectively, than with TLSF. On average, TLSF incurred a
9.73% rise in memory consumption in those benchmarks due to internal and exter-
nal fragmentation. We use TLSF in its latest version, version 2.4.6, in its standard
configuration with 24 first-level and 32 (4 bytes) second-level size classes.
DLMalloc denotes Doug Lea’s memory allocator. This allocator represents the

current state-of-the-art of general purpose dynamic memory allocators. In the
evaluations reported on in [MRR+08], Doug Lea’s allocator performed strictly
better than the real-time allocators (TLSF, Half-Fit, and the binary buddy). On
average, internal and external fragmentation summed up to a 8.77% increase
in memory consumption in those benchmarks. Doug Lea’s allocator is used in
version 2.8.4 in our evaluation.

Furthermore,M, again, denotes the sum over all requests blocks. We addition-
ally recorded the maximal live memory for each test case. This value, denoted
Oracle, is rather theoretical in nature. An allocator aiming to always allocate
just the maximal live memory would have to (1) know all future requests, (2) be
allowed to revoke placement decisions, i.e., move allocated objects in memory,
and (3) would not be allowed to incur any management (memory) overhead. Ob-
viously, requirements (1) and (3) are practically not achievable, and requirement
(2) is incompatible with the C semantics.
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5.3 Memory Performance for Random

(De-)Allocation Sequences

For our evaluation, we generated several synthetic, randomized (de-)allocation
traces that we consider representative for real-time applications. We agree with
Wilson et al. that the regularities existing in real programs are not well enough
understood to model them formally and perform probabilistic analyses that are
directly applicable to real program behavior [WJNB95]. Nonetheless, this is still
the best we can do as we lack representative real-life programs. With our synthetic
traces, we follow the typical (de-)allocation patterns of programs discussed in
[WJNB95]. The following paragraphs elaborate on those patterns and explain our
instantiations of these patterns.

The ramp pattern The simplest (de-)allocation pattern consists of just a se-
quence of allocations. I.e., a program following this pattern allocates a certain
amount of memory, performs its actual computations, and finally deallocates all
dynamically allocated objects without any further allocation nor computation
(or it might just terminate once its actual computations are completed). This
pattern is known as a ramp. For our evaluation, we generated two synthetic traces
implementing this pattern. The trace denoted ramp small consists of a sequence
of 100,000 allocation requests. Each request is for one of five size classes and
requests either 8, 12, 16, 20, or 24 bytes. The sequence is generated such that the
numbers of requests for the respective size classes follow a binomial distribution.
Figure 5.1 depicts the concrete frequencies of occurrences of requests per size
class. With this instantiation of a ramp pattern, we strive to incorporate the often
observed behavior of programs to just request a very limited number of different
sizes [WJNB95]. Hence, our 5 size classes only. Furthermore, we assume that
those size classes correspond to the different sizes of object types used within an
application. Therefore, we chose those classes to be rather small as we would
expect objects in a hard real-time application to be rather small, too. The binomial
distribution is used to model that the different object types are created with a
different frequency.
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Figure 5.1: Bar plot of allocation requests issued in ramp small.

In the ramp large test case, we generated a smaller sequence of allocation
requests but for larger sizes. Figure 5.1 depicts the concrete frequencies of occur-
rences of requests per size class. The 10,000 requests we generated adhere to a
normal distribution with a mean of 256 words, i.e., 1024 bytes, and a 4 byte align-
ment. Figure 5.2 gives the scatter plot of the concrete frequencies of occurrences
of requests per size.

The peak pattern Another typical (de-)allocation pattern is to allocate a cer-
tain amount of memory, perform some computations, deallocate all objects again,
and repeat those steps. This behavior can often be observed in reactive systems. A
reactive system typically produces an output upon receiving stimuli from within
or outside the system. During the computation of a single task to produce such
an output, objects might be allocated that become obsolete and are consequently
deallocated once the output upon a given stimulus is computed. Upon the next
stimulus, objects are allocated again and this procedure repeats. Again, we gener-

147



5 Experimental Evaluation

1,0
24

1,0
20

1,0
16

1,0
12

1,0
08

1,0
04

1,0
28

1,0
32

1,0
36

0

1,000

2,000

3,000

Requested Sizes (bytes)

N
um

be
ro

fR
eq

ue
st

s

Figure 5.2: Scatter plot of allocation requests issued in ramp large.

ated two synthetic, randomized (de-)allocation traces modeling such a behavior.
For the trace peak small, we generated and concatenated 100 subsequences (or
rounds) consisting of 1,000 allocations for small objects with a randomized life
time. Small objects were again of sizes 8, 12, 16, 20, or 24 bytes and selected
to a binomial distribution. To determine an allocation’s life span, we generate a
random number adhering to an exponential distribution with parameter λ = 3

1,000 .
I.e., the expected value of an object’s life span is one third of the number of
allocations per round. Our second peak trace, peak large, is set-up in the same
way. We only changed the random number generator for requested sizes to the
same normal distribution used for the ramp large test case.

As we would expect, from a certain point on, the number of rounds does
not influence memory consumption any further. However, the overall requested
memory does and we may of course generate any arbitrary ratio of memory
requested vs. memory used by any allocator. We give the memory consumption
after 100 rounds. Please also note that this pattern is typical for reactive systems
that may virtually run forever.
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The plateau pattern The third (de-)allocation pattern that we consider is a
combination of the ramp and peak pattern. This pattern, known as a plateau,
starts with a sequence of allocations (a ramp pattern) followed by sequences of
allocations with subsequent deallocations (a peak pattern) on top of the allocations
from the beginning. Aiming to capture another typical behavior of a real-time
system, we generate two plateau patterns as follows. Both our sequences, plateau

small and plateau large start with 100 allocations for small and large objects,
respectively. To generate random requests for this part of the (de-)allocation
sequences, we, again, reuse our random number generators producing binomially
distributed numbers of sizes 8, 12, 16, 20, or 24 (plateau small) and normally
distributed numbers with a mean value of 1024 (plateau large). For the second
part of the plateau patterns, we use the processes for generating a synthetic,
randomized (de-)allocation sequence used for the peak patterns. For our plateau

patterns, we generate a peak with 100 rounds with 500 allocations, each. Once
again, those allocations are for sizes of 8, 12, 16, 20, or 24 and according to a
binomial distribution (plateau small) and for normally distributed sizes with a
mean of 1024 (plateau large), respectively.

Heuristics for Choosing Cache-Set Arguments For the cache-aware dy-
namic memory allocators, we need to provide a cache-set argument. This addi-
tional cache set parameter tells the allocator the cache set to which the returned
memory address shall be mapped. In real-life applications, this parameter is either
set by a timing analysis while (pre-)analyzing the program or by the programmer
himself. Obviously, choosing unsuitable cache set arguments will significantly
increase the memory consumption. Computing the optimal cache set arguments
may, however, lead to overly optimistic results. We therefore set the cache set
arguments according to very simple heuristics as the average programmer would
probably do. We chose the same heuristics for all our six benchmark sequences.
This heuristics simply cycles through the cache sets that are guaranteed to never
contain a descriptor. Hence, we end up with roughly the same number of requests
per cache set. Furthermore, this heuristics reduces placement conflicts between
memory blocks that contain descriptor areas and blocks that contain memory
blocks allocated and accessed by the application.
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Figure 5.3: Memory consumption of different allocators for the (de-)allocation
sequences of our synthetic, randomized test cases.

Benchmark Results Figure 5.3 shows the memory consumption of the differ-
ent allocators for our synthetic allocation sequences. The exact values are given in
Table 5.5.

Comparing CAMA to TLSF, we observe a noticeable increase in memory
consumption for adding cache awareness.

Consider the test case ramp small. The increased memory consumption of
CAMA does not seem to stem from the predefined cache-set mapping to which
the allocator must adhere. This is evidenced by our cache-aware sequential fit
allocators that perform very close to TLSF, with the worst-fit allocator performing
noticeably worse. This may imply that worst-fit strategies perform comparably
bad on this particular allocation sequence. We also note that CAMA often resorts
to a bad-fit approach (approximating a worst-fit) in this test case as evidenced
by the much higher memory consumption of CAMA0 for which we disabled a
worst-fit fallback. More importantly, however, this allocation sequence consists
exclusively of very small requests. This is a particularly bad case for CAMA.
Although these blocks are grouped in areas, each cache page uses its entire
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ramp small ramp large peak small peak large plateau small plateau large

CAMA 5,128,544 17,551,456 36, 544 730,112 34,528 565,568
% fragmentation 220.426 71.729 543.380 101.842 672.784 93.494

CAMA0 8,737,728 17,473,600 3,440,992 24,895,840 770,400 15,098,208
% fragmentation 445.924 70.967 60,480.845 6,782.551 17,142.614 5,065.454

PRADA0 3,758,144 41,332,864 432,192 3,325,920 206,016 2,396,640
% fragmentation 134.805 304.413 7,509.014 819.463 4,510.922 719.947

PRADA 3,758,144 16,859,136 305,216 1,672,768 199,520 1,454,016
% fragmentation 134.805 64.955 5,273.521 362.443 4,365.533 397.453

aoff 2,609,812 12,283,780 21,496 539,716 18,968 503,200
% fragmentation 63.058 20.188 278.451 49.207 324.530 72.157

aobf 2,609,816 12,279,388 23,960 532,580 19000 499,620
% fragmentation 63.058 20.145 321.831 47.234 325.246 70.932

aowf 2,963,188 12,447,844 24,284 587,748 19,992 535,520
% fragmentation 85.137 21.793 327.535 62.485 347.449 83.214

TLSF 2,611,200 10,383,360 20,480 389,120 20,480 307,200
% fragmentation 63.145 1.594 260.563 7.573 358.371 5.100

DLMalloc 2,203,648 10,280,960 8,192 364,544 8,192 299,008
% fragmentation 37.682 0.592 44.225 0.780 83.348 2.298

Oracle 1,600,540 10,220,464 5,680 361,724 4,468 292,292

M 1,600,540 10,220,464 1,600,992 102,201,168 800,980 51,203,048

Table 5.5: Memory consumption (in bytes) and percentage of fragmentation of
the different allocators for our synthetic (de-)allocation traces.
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descriptor area to manage the (payload) areas of the same cache page. CAMA
is consequently forced to produce the maximal number of descriptor areas for
its currently allocated memory range. This results in the worst possible ratio of
descriptor overhead to usable (by the program) memory. The descriptor areas also
incur additional external fragmentation.

In ramp large, the allocation sequence allows for a better ratio of descriptor
areas to managed memory blocks. We consequently observe a significant decrease
in CAMA’s memory fragmentation. However, the predefined cache-set mapping
does raise memory demands in this case, putting CAMA at a disadvantage again.

These observations are confirmed by the remaining four test cases: for se-
quences containing many small allocations, CAMA suffers from a bad ratio of
descriptor areas to managed blocks as well as increased external fragmentation
from those descriptor blocks. On sequences with mainly large requests, CAMA
performs reasonably well. Please note that in those test cases, the predefined
cache-set mapping alone raises memory demands already well above TLSF’s
overall memory consumption.

In conclusion, we consider CAMA’s performance rather encouraging consider-
ing that, as already pointed out, the predefined mapping already increases memory
demands. Furthermore, descriptors incur comparably high memory overhead and
also raise external fragmentation.

What else can we conclude from those results? Comparing PRADA to PRADA0,
our data evidences the usefulness of enabling split and merge operations in an
allocator. CAMA0, PRADA, and PRADA0 also prove that incomplete memory use
is indeed a serious problem with our proposed lookup mechanism and managing
of free lists. Without counteracting incomplete memory use, one always risks
prohibitively large memory consumption. Nevertheless, the allocators performed
still well belowM and hence below their provable worst-case behavior. This may
suggest that typical (de)allocation sequences do not provoke worst-case behavior
in our cache-aware allocators.
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5.4 Memory Performance for Real-Life Programs

To further evidence the validity of the memory performance observed with our
randomized (de-)allocation traces, (de-)allocation traces of real-life programs
are desirable. However, embedded systems currently avoid dynamic memory
management due to the problems we discussed in Chapter 2.4. Still, a very small
set of soft real-time applications using dynamic memory allocation is contained
in the MiBench benchmark suite [GRE+01]. The MiBench suite itself consists
of a set of embedded programs, considered to be representative for commercial
applications. Unfortunately, only six test cases of this suite use dynamic memory
allocation. These six test cases execute the programs Susan, Patricia, and
Dijkstra, each on a set of small and large input data, respectively.

Susan was originally developed for recognizing corners and edges in magnetic
resonance images of the brain. The software is, however, also used for image
recognition in unmanned vehicles. The instantiation working on a small input im-
age processes a black and white image of a rectangle, while in the large input data
instance a complex picture is processed. Both test cases perform four allocation
requests only. The requested sizes vary (three different sizes, each) and adhere
to a ramp pattern. In total, 43,836 bytes (susan small) and 664,068 bytes (susan
large) are requested, respectively.

Dijkstra constructs a graph (as a 100 × 100 adjacency matrix) and then
computes 20 and 100 shortest paths, respectively, between pairs of nodes using
repeated applications of Dijkstra’s algorithm. The small and the large test case
for Dijkstra differ only in the number of path computations and hence the
number of (de-)allocations. The requested sizes are always the same (16 bytes),
the (de-)allocation pattern is neither strictly following a peak, ramp or plateau
pattern. It can probably be best described as a LIFO pattern (in the sense of last
allocated, first deallocated) within a peak pattern showing no further observable
regularities. The complete (de-)allocation sequences are of length 29,950 (dijkstra
small) and 151,442 (dijkstra large), respectively.

Patricia uses patricia tries to construct routing tables. A patricia trie is a data
structure used in place of full trees with very sparse leaf nodes. Patricia tries are
often used to represent routing tables in network applications. The (de-)allocation
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sequences produced by the two Patricia test cases adhere to a ramp pattern.
Both sequences request only three sizes: 8, 12, and 20 bytes. Each size is requested
10,891 (patricia small) and 62,722 (patricia large) times, respectively.
Hence, both test cases differ only in the total number of allocation requests.

For our benchmarking, we recorded the (de-)allocation sequences of the respec-
tive program executions and generated reduced programs that simply reproduce
these sequences without the actual program computations. Again, the heuristics
we used for setting the additional cache set argument for our cache-set guided
memory allocators were intentionally kept very simple.

The heuristics used for the Susan test cases is based on the assumption that
memory is never deallocated and just put consecutively in memory. The heuristics
simulates this behavior and sets cache-set arguments to the cache set that the start
addresses of allocated blocks are mapped to in its simulation. For Dijkstra, we
aimed for an equal distribution over the cache sets not mapped to by descriptor
areas; as we do with our synthetic test cases. To achieve this, we, again, simply
cycle through the cache sets that are guaranteed to never contain a descriptor. In
the Patricia test cases, we use the same heuristics as in the Dijkstra test cases.

Figure 5.4 shows the results of our memory performance measurements for
those real-life (de-)allocation sequences. The exact values are given in Table 5.6.

On these real-life applications, CAMA performs noticeably better than what
we would expect from the evaluation on synthetic benchmarks. For the Susan
test cases, we provided a better cache-set mapping that does not increase memory
demands. We therefore do only observe a slight increase in memory consumption
compared to TLSF (susan large) or even none at all (susan small, where
rounded allocations when obtaining fresh memory from the operating system put
TLSF at a disadvantage).

In the Dijkstra test cases, our again very simple cache-set mapping puts the
cache-aware allocators already at a disadvantage. Additionally, only very small
blocks are requested, forcing CAMA to, again, cope with a bad-case sequence
of allocations. Still, overall memory consumption is very reasonable for CAMA,
especially when compared to the sum of requested memory (M). These test cases
also evidence the significant influence of splitting and merging on the overall
memory consumption (see difference between PRADA and PRADA0).
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susan small susan large dijkstra small dijkstra large patricia small patricia large

CAMA 48,288 676,736 17,024 17,024 1,503,584 8,654,912
% fragmentation 10.156 1.908 237.778 223.404 245.144 244.971

CAMA0 92,532 716,884 359,988 1,596,980 4,730,420 26,623,540
% fragmentation 111.087 7.953 7,042.619 30,237.766 985.855 961.172

PRADA0 157,696 782,048 1,148,544 1,148,544 78,602,912 452,203,808
% fragmentation 259.741 17.766 22,688.571 21,718.845 17,943.089 17,924.131

PRADA 157,696 782,048 181,696 245,760 1,229,472 6,268,160
% fragmentation 259.741 17.766 3,505,079 4,568.693 182.222 149.839

aoff 43,852 664,084 12,264 12,296 611,768 3,516,368
% fragmentation 0.037 0.002 143.333 133.587 40.430 40.157

aobf 43,852 664,084 12,264 12,296 611,768 3,516,368
% fragmentation 0.037 0.002 143.333 133.587 40.430 40.157

aowf 43,852 664,084 16,180 16,276 623,928 3,538,224
% fragmentation 0.037 0.002 221.032 209.195 43.221 41.028

TLSF 50,756 675,012 21,508 21,508 789,508 4,527,108
% fragmentation 15.786 1.648 326.746 368.587 81.229 80.443

DLMalloc 45,056 667,648 8,192 8,192 610,304 3,514,368
% fragmentation 2.783 0.539 62.540 55.623 40.094 40.077

Oracle 43,836 664,068 5,040 5,264 435,640 2,508,880

M 43,836 664,068 239,600 1,211,536 435,640 2,508,880

Table 5.6: Memory consumption (in bytes) and percentage of fragmentation of the
different allocators for the (de-)allocation sequences of the MiBench
test cases.
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Figure 5.4: Memory consumption of different allocators for the (de-)allocation
sequences of the MiBench test cases.
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The Patricia test cases do not allow for memory reuse and request a very
large number of very small blocks. Consequently, all allocators perform rather
poorly.

Again, allocators prone to incomplete memory use show overly high memory
consumption in all test cases.

Precomputed Allocation Schemes for Real-Life Programs In [HA10], we
also evaluated our approach to a static precomputation of suitable memory ad-
dresses for a program’s dynamic allocations, as discussed in Chapter 3.3, on
this same set of benchmark programs (Susan, Dijkstra, and Patricia). We
reproduce these results in the following paragraphs and compare the memory
performance of a static precomputation to that of a dynamic memory allocation.

Susan’s allocation behavior can be formalized to

(Ms,Us, {}, As,Cs, (R × R) 7→ {0})

where

Ms = {1, 2, 3, 4, 5, 6, 7, 8, 9}

Us =
⋃

m∈Ms

us = {1}

As = { f1 : {1 7→ x · y}, f2 : {1 7→ 516}, f3 : {1 7→ (14 + x)(14 + y)},

f4 : {1 7→ 16}, f5 : {1 7→ 4 · x · y}, f6 : {1 7→ 4 · x · y},

f7 : {1 7→ 4 · x · y}, f8 : {1 7→ x · y}, f9 : {1 7→ 4 · x · y}}

Cs(C) =



1 if {(1, 1)} ⊆ C

∨{(2, 1)} ⊆ C

∨{(7, 1), (8, 1)} ⊆ C

∨{(3, 1), (4, 1)} ⊆ C

0 otherwise

Here, x and y are fixed parameters determining the size of the processed images.
Our algorithm computed a set of memory block chunks as depicted in Figure 5.5.
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Figure 5.5: Allocation chunks for the Susan test case.

Transforming this chunk set yields static allocation schemes requiring m mem-
ory, where m is just the sum over the memory requirements for the four concate-
nated chunks, i.e.,

m = x · y + 516 + max {(14 + x) (14 + y) , 4 · x · y, 512} + max {8, x · y}

For our two instantiations of Susan, x and y are set to x = 76 ∧ y = 95 and
x = 384 ∧ y = 288 for susan small and susan large, respectively. Hence,
these schemes require 7,220 + 516 + 28,880 + 7,220 = 43,836 and 110,592 +

516 + 442,368 + 110,592 = 664,068 bytes of memory. We observe that our
precomputation yields memory optimal allocation schemes in both cases.

The allocation behavior of the Dijkstra test cases can be described by

(Md,Ud, {}, Ad,Cd, (R × R) 7→ {0})

where

Md = {1}

Ud = {u1} =
{
n2

}
Ad =

{
f1 : N≤n2

7→ [16, 16]
}

Cd(C) =

0 if C = {(1, 1), (1, 2)}

1 otherwise
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5.4 Memory Performance for Real-Life Programs

Md, 1

Md, 2

1 repetition

Md, i

(p − 2) repetitions
i ∈ [3; p]

Figure 5.6: Allocation chunks for the Dijkstra test cases, where p = n2.

Here, n corresponds to the number of nodes of the constructed graph. Figure 5.6
depicts the computed set of memory block chunks for this allocation problem. The
resulting allocation schemes from these chunks would require (1+(1002−2))·16 =

159,984 bytes of memory (as the 20 and 100 searches performed in the test cases
are pairwise independent).

This application shows one limitation of precomputing memory addresses,
namely that it requires precise liveness information regarding which allocated
blocks are alive at the same time.

The Patricia benchmark programs are reduced to the following formalization
of their allocation behavior:(

Mp,Up, {}, Ap,Cp,Bp, (R × R) 7→ {0}
)

where

Mp = {1, 2, 3}

Up = {u}

Ap = { f1 : N≤I 7→ [20, 20], f2 : N≤I 7→ [8, 8], f3 : N≤I 7→ [12, 12]}

Cp(C) = 1

As we cannot safely determine that two allocated blocks are not contemporane-
ously in-use, our algorithm is not able to compute a better set of memory block
chunks than the one given in Figure 5.7. However, in this case, all blocks overlap
in their lifetimes, so this result cannot be improved.

Furthermore, as each allocation site always requests the same, statically known
size, there is no uncertainty about the requested sizes. But what memory consump-
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5 Experimental Evaluation

M1, i

u repetitions
i ∈ [1; u]

M3, i

u repetitions
i ∈ [1; u]

M2, i

u repetitions
i ∈ [1; u]

Figure 5.7: Allocation chunks for the Patricia test cases.

tion does our precomputed memory scheme exhibit in this case? The only variable
in our set of chunks is the upper bound u on the invocations of the allocation
sites. This variable, however, simply corresponds to the number of inputs (i.e.,
UDP packets in this case) plus one header node that is always generated. The
Patricia test cases process 10,891 and 62,722 such packets, yielding upper
bounds of 32,673 and 188,166 for patricia small and patricia large, re-
spectively. Hence, we generate schemes using 435,640 and 2,508,880 bytes of
memory, respectively. Again, these schemes are memory optimal.
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6
Summary & Conclusions

Reason is itself a matter of faith. It is an act of

faith to assert that our thoughts have any relation

to reality at all.

G. K. Chesterton

Writer (1874–1936)

We have discussed the challenges dynamic memory allocation imposes on
static timing analysis. On modern embedded hardware, cache performance has a
large influence on an application’s timing behavior. Hence, real-time applications
have to exhibit predictable cache behavior. Otherwise, tight bounds on the cache
performance of an application and hence its execution times cannot be statically
determined.

When precise information about an application’s allocation behavior can be
derived statically, precomputing a static allocation scheme to replace the appli-
cation’s dynamic memory allocation is the preferable option to circumvent the
challenges we identified. We have developed algorithms to statically precom-
pute suitable allocation schemes. We furthermore proposed a static analysis
capable of deriving precise information about an application’s allocation behav-
ior.
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6 Summary & Conclusions

In case this first approach is not applicable due to the absence of useful liveness
information, we proposed techniques to build a predictable, cache-aware memory
allocator by which to replace the standard allocator. CAMA provides predictable
cache behavior in the sense that it (a) can be guided with respect to which cache
set allocated memory is mapped to and it (b) guarantees to access only a statically
known subset of cache sets while processing allocation and deallocation requests.
Furthermore, CAMA’s execution times can be tightly bounded.
TLSF is already successfully used within soft real-time systems. This indi-

cates that the price paid for real-time behavior in terms of increased memory
consumption is considered worth paying in order to be able to use dynamic mem-
ory allocation. Hard real-time systems, however, still rely exclusively on static
memory allocation as the cache influence of dynamic memory allocation, even
when using TLSF, introduces too much uncertainty about the cache performance.
CAMA may provide guarantees about an application’s cache behavior that may
equally be worth the corresponding further increase in memory consumption. It
therefore seems reasonable to believe that CAMA can enable the use of dynamic
memory allocation within future, more complex hard real-time systems.
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7
Future Work

We learn something every day, and lots of times

it’s that what we learned the day before was

wrong.

Bill Vaughan

Columnist and author (1915–1977)

This thesis proposes two approaches to enable dynamic memory allocations for
programmers writing real-time applications: statically transforming dynamic into
static allocation and employing a predictable dynamic memory allocator. Enabled
by the latter approach, we identified two research directions worthy of further
investigations.

Lookup Mechanism for Predictable Allocators As our evaluations show,
the weak spot of our predictable allocators seems to be their lookup mechanism.
I.e., their internal table of free lists that can only be efficiently searched when
considering only free blocks starting at a given cache set. This, however, is shown
to be often too restrictive: blocks that may be split to yield a suitable block to
satisfy a request are overlooked because they start in a different cache set. While
we circumvent this with an additional bounded (bit-) search over promising free
lists that may start in any cache set, there might be an alternative, more elegant
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7 Future Work

solution. We also propose to allow non-constant lookup mechanisms, as long as
they can be tightly bounded, to widen the field of techniques that may be employed
for this lookup.

Decreasing an Application’s WCET By employing our proposed predictable
dynamic memory allocator, not just the statically provable bound on an applica-
tion’s WCET, but its actual WCET may be decreased. Given a set of representative
real-time applications, the degree to which these applications’ WCETs are reduced
seems to be worth measuring. While currently a useful set of such applications is
not available, this may change in the near future.

Please note that in [HBHR11], we show very encouraging results in that di-
rection. In this paper, we demonstrate the impact of cache awareness on WCET
bounds by analyzing a simplified task scheduler (see Listing 7.1).

Listing 7.1: The main loop body of a simplified task scheduler.

1struct task descr∗ lowPriority = low;
2struct task descr∗ highPriority = high;
3for(i = 0; i < HUGE LIST SIZE; i++) {
4for(j = 0; j < SMALL LIST SIZE; j++) { // high prioritized tasks waiting?
5high = high−>next;
6...
7}

8high = highPriority;
9low = low−>next; // next lower prioritized task waiting?
10...
11}

12low = lowPriority;

For this application, we could manually annotate the statically available infor-
mation about the cache-set mapping to which our dynamically allocated objects
adhere. This scheduler manages two singly-linked lists composed of task descrip-
tors with maximally 4 and 16 entries, respectively. The smaller list is used for high
priority tasks, the other for all other tasks. CAMA is used to ensure that all high-
priority objects map to a cache set different from the other objects. In this setup,
analyzing the WCET of the program fragment given in Listing 7.1 using aiT yields
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an upper bound on the WCET of 6,505 cycles on a PowerPC MPC603e. With a
statically unknown cache-set mapping, however, only a WCET of 10,915 cycles
can be guaranteed on the same hardware.

Note that the analyzed code does not contain any invocations of the memory
allocator, so the gain in WCET guarantees is completely attributed to the analysis
being able to exclude that objects of the lower prioritized list evict higher priority
objects from the cache, which leads to the safe prediction of cache hits when
traversing the higher priority list again. Also note that the use of CAMA does also
decrease the real WCET, not just the provable WCET, as potential conflict misses
are actually eliminated.
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University, Västerås, Sweden, 2004.

[Seh05] Daniel Sehlberg. Static WCET Analysis of Task-Oriented Code for
Construction Vehicles. Technical report, Department of Computer
Science and Electronics, Mälardalen University, Västerås, Sweden,
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