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Abstract

Sentiments are positive and negative emotions, evaluations and stances. This
dissertation focuses on learning based systems for automatic analysis of
sentiments and comparisons in natural language text. The proposed approach
consists of three contributions:

1. Bag-of-opinions model: For predicting document-level polarity and
intensity, we proposed the bag-of-opinions model by modeling each
document as a bag of sentiments, which can explore the syntactic
structures of sentiment-bearing phrases for improved rating prediction of
online reviews.

2. Multi-experts model: Due to the sparsity of manually-labeled training
data, we designed the multi-experts model for sentence-level analysis of
sentiment polarity and intensity by fully exploiting any available
sentiment indicators, such as phrase-level predictors and sentence
similarity measures.

3. SENTI-LSSVMRAE model: To understand the sentiments regarding entities,
we proposed SENTI-LSSVMRAE model for extracting sentiments and
comparisons of entities at both sentence and subsentential level.

Different granularity of analysis leads to different model complexity, the finer
the more complex. All proposed models aim to minimize the use of
hand-labeled data by maximizing the use of the freely available resources.
These models explore also different feature representations to capture the
compositional semantics inherent in sentiment-bearing expressions. Our
experimental results on real-world data showed that all models significantly
outperform the state-of-the-art methods on the respective tasks.
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Kurzfassung

Sentiments sind positive und negative Gefühle, Bewertungen und
Einstellungen. Die Dissertation beschäftigt sich mit lernbasierten Systemen zur
automatischen Analyse von Sentiments und Vergleichen in Texten in
natürlicher Sprache. Die vorliegende Abeit leistet dazu drei Beiträge:

1. Bag-of-Opinions-Modell: Zur Vorhersage der Polarität und Intensität auf
Dokumentenebene haben wir das Bag-of-Opinions-Modell
vorgeschlagen, bei dem jedes Dokument als ein Beutel Sentiments
dargestellt wird. Das Modell kann die syntaktischen Strukturen von
subjektiven Ausdrücken untersuchen, um eine verbesserte
Bewertungsvorhersage von Online-Rezensionen zu erzielen.

2. Multi-Experten-Modell: Wegen des Mangels an manuell annotierten
Trainingsdaten haben wir das Multi-Experten-Modell entworfen, um die
Sentimentpolarität und -intensität auf Satzebene zu analysieren. Das
Modell kann alle möglichen Sentiment-Indikatoren verwenden, wie
Prädiktoren auf Phrasenebene und Ähnlichkeitsmaße von Sätzen.

3. SENTI-LSSVMRAE -Modell: Um Sentiments von Entitäten zu verstehen, wir
haben wir das SENTI-LSSVMRAE -Modell zur Extraktion von Sentiments und
Vergleichen von Entitäten auf Satz- und Ausdrucksebene vorgeschlagen.

Die unterschiedliche Granularität der Analyse führt zu unterschiedlicher
Modellkomplexität; je feiner, desto komplexer. Alle vorgeschlagenen Modelle
zielen darauf ab, möglichst wenige manuell annotierte Daten und möglichst
viele frei verfügbare Ressourcen zu verwenden. Diese Modelle untersuchen
auch verschiedene Merkmalsdarstellungen, um die Kompositionssemantik
abzubilden, die subjektiven Ausdrücken inhärent ist. Die Ergebnisse unserer
Experimente mit Realweltdaten haben gezeigt, dass alle Modelle für die
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jeweiligen Aufgaben deutlich bessere Leistungen erzielen als die modernsten
Methoden.
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Summary

Sentiments are positive and negative emotions, evaluations and stances. This
dissertation is concerned with automatic analysis of sentiments and
comparisons in natural language text. The proposed approach consists of three
contributions for sentiment analysis at different granularity levels:

Document-level analysis. The first contribution is the bag-of-opinions (BoO)
model, which predicts document-level polarity and intensity of online reviews.
The two quantities are jointly represented as numerical ratings, thus the task is
also considered as document-rating prediction. The BoO model treats each
document as a bag of sentiments, which correspond to a set of
sentiment-bearing expressions. A sentiment-bearing expression consists of a
root word with a known prior polarity (e.g. interesting), optionally a set of
modifier words (e.g. very) and negation words (e.g. not). Although the
composition rules regarding these components imply a non-linear function, the
new feature representation of sentiment enables the learning with a linear
model. Since the prior polarity of root words is obtained from
domain-independent subjectivity lexicons, the linear model cannot capture the
domain-dependent information. To circumvent the problem, we developed a
two-stage approach: i) in the first stage, we learn a bag-of-opinions model on a
large dataset of online reviews to obtain scores for domain-independent
sentiments; ii) in the second stage, we combine the bag-of-opinions model with
an unigram model trained on the domain-dependent corpus.

Sentence-level analysis. The second contribution is the weakly supervised
multi-experts model (MEM) for sentence rating prediction. This model can
exploit any available sentiment indicators, such as phrase-level predictors,
language heuristics, co-occurrence counts and word order sensitive similarity
measures of sentences. Instead of using them as features, these indicators
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constitute the set of experts used in the model, which are similar to the ideas of
ensemble learning.

Subsentential analysis. The third contribution is the SENTI-LSSVMRAE model,
which is the first learning system to identify sentiments and comparisons of
entities at both sentence and subsentential level. Unlike methods that rely on a
full-fledged training corpus, we do not require any explicit annotation of
sentiment-bearing expressions. To train such a model, we only need to annotate
the entity mentions and their relationships, which are either sentiments,
comparisons or other cases. Since sentiment-bearing expressions and their
association to relationships do not exist in the training data, this model can
detect the expressions and associate them to respective relationships in both
training and testing. Moreover, to address the compositional semantics of
sentiment-bearing expressions, we apply deep learning techniques to construct
latent feature vectors to encode compositional patterns, which make the
learning much easier.

Different granularity of analysis leads to different model complexity, the finer
the more complex. All proposed models aim to minimize the use of
hand-labeled data by maximizing the use of the freely available resources.
These models explore also different feature representations to capture the
compositional semantics inherent in sentiment-bearing expressions. A survey
about sentiment analysis and semi-supervised learning completes the thesis.
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Zusammenfassung

Sentiments sind positive und negative Gefühle, Bewertungen und
Einstellungen. Diese Dissertation beschäftigt sich mit der automatischen
Analyse von Sentiments und Vergleichen in Texten in natürlicher Sprache. Der
vorliegende Ansatz liefert drei Beiträge zur Sentiment-Analyse mit
unterschiedlicher Granularität:

Analyse auf Dokumentebene. Der erste Beitrag ist das
Bag-of-Opinions-Modell (BoO), welches auf Dokumentebene die Polarität und
Intensität von Online-Rezensionen vorhersagt. Die beiden Mengen werden
zusammen als numerische Bewertungen dargestellt, weshalb diese Aufgabe
auch als Dokumentbewertungsvorhersage betrachtet wird. Das BoO-Modell
behandelt jedes Dokument wie einen Beutel Sentiments, welcher einer Menge
subjektiver Ausdrücke entspricht. Ein subjektiver Ausdruck besteht aus einem
Stammwort mit einer bekannten vorangestellten Polarität (z.B. interessant),
einer optionalen Menge Modifikatoren (z.B. sehr) und Verneinungen (z.B.
nicht). Obwohl die Zusammensetzungsregeln bei diesen Komponenten eine
nichtlineare Funktion voraussetzen, ermöglicht die neue Merkmalsdarstelllung
von Sentiments das Lernen mit einem linearen Modell. Da die vorangestellte
Polarität der Stammwörter durch domain-unabhängige Subjektivitätslexika
bestimmt wird, kann das lineare Modell nicht die domain-abhängigen
Informationen berücksichtigen. Um dieses Problem zu umgehen, haben wir
einen zweistufigen Ansatz entwickelt: i) im ersten Schritt trainieren wir ein
Bag-of-Opinions-Modell anhand einer großen Datenmenge von
Online-Rezensionen, um die Punkte für domain-unabhängige Sentiments zu
erhalten; ii) im zweiten Schritt kombinieren wir das Bag-of-Opinions-Modell
mit einem Unigramm-Modell, das anhand eines domain-abhängigen Korpus
trainiert wurde.
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Zusammenfassung

Analyse auf Satzebene. Der zweite Beitrag besteht aus dem schwach
überwachten Multi-Experten-Modell (MEM) zur Vorhersage von
Satzbewertungen. Dieses Modell kann alle verfügbaren Sentiment-Indikatoren
nutzen, wie Prädiktoren auf Phrasenebene, Sprachheuristiken,
Kookkurrenzzählungen und wortstellungssensible Ähnlichkeitsmaße von
Sätzen. Anstatt sie als Merkmale zu verwenden, bilden diese Indikatoren die
Expertenmenge, die im Modell verwendet wird, was an die Ideen des
Ensemble Learning erinnert.

Ausdrucksanalyse. Der dritte Beitrag ist das SENTI-LSSVMRAE -Modell, welches
das erste Lernsystem ist, das Sentiments und Vergleiche von Entitäten auf Satz-
und Ausdrucksebene identifizieren kann. Im Gegensatz zu Methoden, die sich
auf einen voll ausgebildeten Trainingskorpus stützen, brauchen wir keine
explizite Annotation subjektiver Ausdrücke. Um ein soches Modell zu
trainieren, müssen wir nur die Erwähnungen der Entitäten und ihre
Beziehungen annotieren, welche entweder Sentiments, Vergleiche o.Ä. sind. Da
die subjektiven Ausdrücke und ihre Assoziationen mit Beziehungen nicht in
den Trainingsdaten enthalten sind, kann dieses Modell die Ausdrücke
erkennen und sie mit ihren entsprechenden Beziehungen assoziieren, sowohl
im Training als auch in den Tests. Des Weiteren wenden wir im Hinblick auf die
Kompositionssemantik subjektiver Ausdrücke Techniken des Deep Learning
zur Erstellung latenter Merkmalsvektoren an, um Zusammensetzungsmuster
codieren zu können, welche das Training stark erleichtern. Die
unterschiedliche Granularität der Analyse führt zu unterschiedlicher
Modellkomplexität; je feiner, desto komplexer. Alle vorgeschlagenen Modelle
zielen darauf ab, möglichst wenige manuell annotierte Daten und möglichst
viele frei verfügbare Ressourcen zu verwenden. Diese Modelle untersuchen
auch verschiedene Merkmalsdarstellungen, um die Kompositionssemantik
abzubilden, die subjektiven Ausdrücken inhärent ist. Die Dissertation schließt
mit einer Umfrage über die Sentimentanalyse und halb überwachtes Lernen.
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Chapter 1

Introduction

1.1 Movitation

An important kind of information conveyed in many online and traditional
media is sentiments or opinions, which refer to positive and negative emotions,
evaluations and stances (Wilson, 2008). The sentiments of other people often
influence our decision-making process. Many of us asked our friends to
recommend a digital camera or to share travel experiences on a tourist
destination, requested reference letters regarding job applicants from
colleagues, or consulted experts’ reviews in magazines to decide which
computer to buy. In that sense, the web provides a way to access the sentiments
and experiences of a vast number of people and share our own opinions with
them. As more and more people make their sentiments and experiences
available online, this kind of information also assists our decision-making with
growing importance in our daily life Pang and Lee (2007).

Sentiment analysis, also called opinion mining, has become an active rearch
area since the year 2000. In this area, the main concern is to identify when a
sentiment is being expressed and identifying attributes of the sentiment.
Attributes of sentiments include who is expressing the sentiment, about what
or whom the sentiment is being expressed, the polarity (positive, negative or
neural) and intensity (degree to which a sentiment is positive or negative) of
the sentiment (Pang and Lee, 2007). In addition, the identification of relative
comparisons among entities has also gained attention (Jindal and Liu, 2006b;
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Chapter 1 Introduction

Ganapathibhotla and Liu, 2008). Instead of targeting all these subtasks, this
dissertation focuses on building learning systems to analyze the polarity and
intensity of sentiments, as well as comparisons between entities expressed in
natural language text.

Automatic sentiment analysis of linguistic expressions is challenging due to the
inherent ambiguity of natural language. One source of ambiguity is the
polysemy of words and potentially complex syntactic structures of sentences,
which are common for most NLP tasks. Besides that, sentiment analysis is
especially challenging in the following aspects:

Order sensitivity. Bag-of-words representations are often sufficient for
topic-based text categorization or clustering, whereas sentiment and
subjectivity are quite sensitive to word order and sentence order. For example,
at the fine-grained level, “A is worse than B” conveys the opposite sentiment of
“B is worse than A”; at the coarse-grained level, a document could start with a
positive sentiment like “It sounds like a great plot.” but concludes with a
strong negative sentiment such as “However, the film can’t hold up”.

Compositional semantics. As pointed out by Yessenalina and Cardie (2011), it
is important to capture the compositionality of expressions for fine-grained
sentiment analysis. The meaning of a complex expression is a function of the
meanings of its constituent expressions and the rules used to combine them.
For example, the sentence “Tom Cruise does not inject any personality into the
role.” contains soly neutral words but these words jointly express a negative
sentiment. An expression might use negators and intensifiers to modify a
lower-level constituent with a different meaning, such as “not very good”.
Understanding the compositional patterns would significantly improve the
generalization power of learning models.

Limited training data. It is labor-intensive to construct a hand-labeled training
corpus for fine-grained sentiment analysis. Since sentiment-bearing
expressions are often domain dependent, it is not practical to always build new
training data for new domains. However, an intellegent system should be able
to explore other freely available resources such as online review ratings and
subjectivity lexicons, which provide indirect and noisy supervised information
to compensate the sparsity of training data.

2



1.2 Contributions

1.2 Contributions

To address the challenges outlined above, this dissertation presents three
learning models that perform sentiment analysis at different granularity levels.

Bag-of-Opinions model. The first contribution is the bag-of-opinions (BoO)
model, which predicts document-level polarity and intensity by treating each
document as a bag of sentiments. Each sentiment-bearing expression consists
of a root word with a known prior polarity (e.g. happy), optionally a set of
modifier words (e.g. very) and negation words (e.g. not). Although the
composition rules regarding these components imply a non-linear function, the
new feature representation of sentiment enables the learning with a linear
model. However, the prior polarity of root words are obtained from
domain-independent subjectivity lexicons, which cannot capture the domain
dependent information. To circumvent the problem, we developed a two-stage
approach: i) in the first stage, we learn a bag-of-opinions model on a large
dataset of online reviews to obtain scores for domain-independent sentiments;
ii) in the second stage, we combine the bag-of-opinions model with an unigram
model trained on the domain- dependent corpus. The results of BoO were
presented in COLING 2010 (Qu et al., 2010).

Multi-Experts model. The second contribution is the weakly supervised
multi-experts model (MEM) for sentence-level analysis of sentiment polarity and
intensity, where the two quantities are jointly represented as numerical ratings.
The multi-experts model can exploit any available sentiment indicators, such as
phrase-level predictors, language heuristics, co-occurrence counts and word
order sensitive similarity measures of sentences. Instead of using them as
features, these indicators constitute the set of experts used in the model, which
are similar to the ideas of ensemble learning. The results of MEM were
presented in EMNLP 2012 (Qu et al., 2012).

SENTI-LSSVMRAE model. The third contribution is the SENTI-LSSVMRAE model,
which is the first learning system to identify sentiments and comparisons of
entities at both sentence and subsentential level. Unlike methods that rely on a
full-fledged training corpus, we do not require any explicit annotation of
sentiment-bearing expressions. To train such a model, we only need to annotate
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the entity mentions and their relationships, which are either sentiments,
comparisons or other cases. Since sentiment-bearing expressions and their
association to relationships do not exist in the training data, this model can
detect the expressions and associate them to respective relationships in both
training and testing. Moreover, to address the compositional semantics of
sentiment-bearing expressions, we apply deep learning techniques to construct
latent feature vectors to encode compositional patterns, which make the
learning much easier.

1.3 Organization

This dissertation is organized as follows. Chapter 2 establishes essential
foundations for sentiment analysis as well as the semi-supervised techniques
suitable for this application area. Chapter 3 presents the bag-of-opinions model
for document rating prediction. Chapter 4 describes the multi-experts model
that performs sentence rating prediction. Chapter 5 addresses the identification
of sentiments and comparisons of entities at both sentence and subsentential
level. Finally, Chapter 6 concludes this dissertation and points out appealing
directions of future research.
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Chapter 2

Background

This chapter gives a concise overview of the fundamentals for sentiment
analysis as well as the semi-supervised learning methods (SSL) for automatic
textual analysis with few training data. We start with summarizing the core
tasks and works of sentiment analysis and opinion mining in Section 2.1,
followed by introducing the linguistic concepts and observations with regard
to sentiment in Section 2.2. Because sentiment analysis with a small amount of
training data is the central topic investigated in this dissertation, we review the
core techniques of semi-supervised learning as well as their applications in the
area of sentiment analysis in Section 2.3.

2.1 Overview of Sentiment Analysis

Sentiment analysis, also called opinion mining, is concerned with the
computational treatment of opinion, sentiment, and subjectivity in nature
language text. It is the field of study that covers many tasks such as opinion
extraction, opinion summarization, sentiment lexicon generation, and opinion
spam detection etc.. Since the year 2000, the field has become a very active
research area because it has a wide range of applications in a lot of domains like
marketing and politics, and many research benefit directly from the huge
volume of opinionated data in the social media on the Web (Pang and Lee,
2007; Liu, 2010).

The two core tasks of sentiment analysis are polarity classification and rating
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prediction. The former one aims to classify whether a piece of text expresses a
positive or negative sentiment. And it often introduces the third category
neutral for factual expressions. The latter task considers additionally the
intensity of sentiment (degree to which an expression is positive or negative).
Both quantities can be analyzed jointly by mapping them to numerical ratings
so that large positive/negative ratings indicate strong positive/negative
sentiments. The two tasks are mainly investigated at three levels: document
level, sentence level and expression level. At the document level, researchers
often apply supervised models (Pang and Lee, 2005a; Pang et al., 2002a; Dave
et al., 2003; Melville et al., 2009) or rule-based predictors (Turney, 2002; Taboada
et al., 2011) for both tasks. In recent years, the idea of incorporating topic
models with supervised models has also attracted much attention (Titov and
McDonald, 2008a,b; Lin and He, 2009; Lin et al., 2012). At the sentence and
expression levels, the rule-based predictors mainly rely on a domain
independent subjectivity lexicon (Ding et al., 2008a; Taboada et al., 2011; Ding
et al., 2009), while the supervised models often assumes the existence of
sufficient training data, which are hard to obtain (Jin et al., 2009; Choi and
Cardie, 2010; Yessenalina and Cardie, 2011; Wei and Gulla, 2010).

Another widely investigated task is opinion extraction, which aims to identify
opinionated expressions, opinion targets and opinion holders from text. For a
sentiment, the opinion targets are the topics or entities that the sentiment refers
to, opinion holders are the sources or experiencers of the sentiment. For
example, in “John likes the Canon 7D.”, “John” is the opinion holder holding a
positive sentiment toward the target “Canon 7D”. Although most research
work focus either on expression-level polarity classification, opinion target or
holder extraction (Breck et al., 2007; Yessenalina and Cardie, 2011; Wilson et al.,
2005), Choi et al. (2006) show that joint extraction of the three attributes can
lead to significant performance improvement.

Apart from directly expressing positive or negative sentiments about an entity
and its aspects, one can also express sentiments by comparing entities. Such
sentiments are referred to as comparative opinion in (Jindal and Liu, 2006b). One
example sentence carrying such opinions is “Canon 7D has a better image
quality than Nikon D7000.”. To understand which entities are preferred,
current research work decomposes it into three subproblems: the detection of
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sentences carrying comparative opinions (Jindal and Liu, 2006a), the extraction
of entities participating in comparative relationships (Jindal and Liu, 2006b)
and the identification of preferred entities given a comparative
relationship (Ganapathibhotla and Liu, 2008). And these proposed techniques
rely heavily on linguistic heuristics and variants of frequent itemset mining.

Opinion summarization is a way to aggregate and represent sentiment
information drawn from a collection of documents. There are two main
approaches to this task - extraction and abstraction (Carenini et al., 2006; Pang
and Lee, 2007). Extraction involves concatenating the most representative
extracts (e.g. sentences) from the corpus into a summary, whereas abstraction
involves generating novel sentences from sentiment information extracted from
the corpus. The former approach tends to drop the redundant information by
leveraging existing topic-based multi-document summarization algorithms,
while the latter one is concerned with the redundancy of information by
showing e.g. how many web users express the same sentiment toward the
same product. Thus the abstractive summaries can be regarded as the reports
of the results of opinion extraction.

Most sentiment analysis methods employ sentiment lexions, which are lists of
words and phrases labeled with either their prior polarity (positive, negative or
neutral) or numerical ratings. There are three main approaches to build such
lexicons: manual approach, dictionary-based approach, and corpus-based
approach. The MPQA lexicon (Wilson et al., 2005) and SO-CAL
lexicon (Taboada et al., 2011) are the examples of the manual approach, which
requires manual assignment of polarities or numerical ratings to every word
and phrase in the lexicons. The dictionary-based approach starts with a set of
seed words and expands their labels to the remaining words and phrases in a
dictionary (e.g. WordNet (Miller, 1995a)) based on the synonym and antonym
structures of the dictionary (Baccianella et al., 2010; Hu and Liu, 2004a).
Compared to the manually created ones, they often have higher coverage but
lower precision (?). The corpus-based approach targets at building a domain
dependent lexicon utilizing a domain corpus. Such a lexicon is built either from
a seed list of known sentiment-bearing words (Kanayama and Nasukawa,
2006a; Hatzivassiloglou and McKeown, 1997) or by adapting a general-purpose
sentiment lexicon (Choi and Cardie, 2009a).
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Another concern of sentiment analysis is to assess the quality of
sentiment-bearing documents such as reviews and blogs. This problem is either
studied as a regression problem by predicting a quality score for a
document (Ghose and Ipeirotis, 2007; Kim et al., 2006; Lu et al., 2010b) or as a
classification problem to judge if a document is helpful for web users or
not (Liu et al., 2007). Another related problem is opinion spam detection, which
targets at the detection of fake opinions or reviews (Jindal and Liu, 2008, 2007).

2.2 Linguistic Perspective of Sentiment Analysis

In (Wilson, 2008), sentiment is defined as an attitude type of private state, which
refers to the mental and emotional state of a writer or speaker or some other
persons. The original definition of private states is attributed to (Quirk et al.,
1985) (p. 1181): “A person may be observed to assert that God exists, but not to
believe that God exists. Belief is in this sense ’private’.”.

For the analysis of private states and their attributions, Wiebe (1994) developed
a frame-style conceptual representation, which is adapted and expanded
in (Wiebe, 2002; Wiebe et al., 2005; Wilson, 2008). In Section 2.2.1, we give a
brief introduction of the representation framework, followed by discussing
some interesting linguistic observations related to sentiment analysis in Section
2.2.2.

2.2.1 Conceptual Representation

In a basic representation (Wiebe et al., 2005), a private state is a state of an
experiencer, holding an attitude, optionally toward a target. An agent frame is
used to mark expressions that refer to sources or experiencers of private states;
an attitude frame is used for the expressions of attitude and optionally a target
frame represents the target or topic of the private state.

Example 2.1 Analysts have complained that third-quarter corporate earnings haven’t
been very good, but the effect hit home particularly hard yesterday.

8



2.2 Linguistic Perspective of Sentiment Analysis

In Example 2.1, the experiencer, marked by the agent frame “analysts”, holds a
negative sentiment about the target “third-quarter corporate earnings”. The
sentiment is expressed by the attitude frame “have complained that
third-quarter corporate earnings haven’t been very good”.

At the coarse level (Wilson, 2008), there are six attitude types: sentiment,
agreement, arguing, intention, speculation, and all other attitudes. Sentiment,
agreement, arguing, intention can be further categorized into positive and
negative variants. Since analyzing all attribute types is beyond the scope of this
dissertation, we focus on sentiment.

Sentiments are positive and negative emotions, evaluations and stances.
Sentiment analysis is the task of identifying when a sentiment is being
expressed and which attributes the sentiment contains. Attributes of sentiment
include who is expressing the sentiment, about whom or what the sentiment is
being expressed, the polarity and intensity of the sentiment etc.

One of the major concerns of sentiment analysis is to determine its polarity,
which can be either positive or negative. We usually consider an additional
category other or neural to indicate whether a textual utterance conveys neither
positive nor negative sentiment whenever polarity classification is the goal of
an application. An expression can have a prior polarity, which refers to
whether an expression evokes something positive or something negative when
taken out of context. In contrast, the contextual polarity of an expression is the
polarity of the expression considering the context in which it appears. The
context can range from its context words to the sentence or the discourse.

Another important attribute of sentiment is intensity, which refers to the
strength of the sentiment that is being expressed. As language users, we
express sentiment in different intensity levels with diverse utterances. For
example, “delighted” is more intensively positive than “pleased”.

In addition to the frames characterizing the functional components of private
states, Wiebe et al. (2005) also defined frames to categorize the various ways of
expressing private states in language.

Private states may be explicitly mentioned. An example is “fear” in the
following sentence.
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Example 2.2 Experts fear missile launch this weekend to mark founding father’s
birthday.

They may also be expressed in speaking or writing events, as with the word
“criticizes” in Example 2.3.

Example 2.3 Malan criticizes the stance taken by multilateral institutions like the
IMF.

Wiebe et al. (2005) use the term speech event to refer to any speaking and
writing event. Such an event has either a speaker or writer as well as a target,
which is about whatever is said or written.

Private states may also be conveyed through private state actions such as
applauding, laughing and frowning. Another example is “sighed” in the
following sentence.

Example 2.4 He sighed over the lost opportunity.

If private states such as anger, frustration, positive sentiment etc. are expressed
without explicitly stating that they are angry, frustrated, happy etc., these
expressions are referred to as expressive subjective elements (Wiebe et al.,
2005). One example of expressive subjective elements is the phrase “a pillar of
support” in Example 2.5.

Example 2.5 People are questioning corporate profits as a pillar of support for the
equity market.

In (Wiebe et al., 2005), the above different ways of expressing private states are
represented using direct subjective frames and expressive subjective element
frames. Direct subjective frames cover explicit mentions of private states,
speech events stating private states and private state actions, while expressive
subjective element frames represent expressive subjective elements.

2.2.2 Observations of Sentiment-bearing Expressions

Initially, one might think that there is a relatively small set of linguistic
expressions to describe sentiment. In fact, after investigating a manually
annotated corpus, Wiebe et al. (2005) found that there is a large variety of
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words and diverse part-of-speech which appear in subjective expressions,
among which the majority are used to express sentiment. Moreover, the
number of expressive subjective elements is almost the same as the number of
distinct words used to express them.

A sentiment is often conveyed by a complex expression with different
granularities, ranging from one word to a whole sentence. In annotation
studies, Wiebe et al. (2005); Wilson (2008) found that many words are
ambiguous due to the fact that they appear in both subjective and objective
expressions. Likewise, most sentences are mixtures of objectivity and
subjectivity, and often contain subjective expressions of varying intensities.
They were even surprised by the fact that human annotators are not sure about
the subjectivity of a significant number of the direct subjective frames.

The contextual polarity of an expression deviates often from its prior
polarity (Wilson, 2008). Negation is one of the most important influencers,
which may be local (e.g. not bad) or involve long distance dependencies (e.g. I
don’t think it works.). Negation is not simple also because certain phrases
contain negation words but do not change polarity (e.g. Not only his friends but
also his parents like his new song.). Moreover, contextual polarity may be
influenced by irrealis, which is the set of grammatical modalities that indicate a
certain action or situation might not be reliable or does not happen. An
example is the use of modal verbs in “I thought the new phone would be at least
as good as its predecessors, but unfortunately, it wasn’t.”. In addition,
contextual polarity often depends on domain and topic. For example, long
conveys opposite polarities in “The battery life is long.” and “It needs long
charging time.”.

Intensity is a more fine-grained attribute of sentiment than polarity and the
differences of meanings conveyed by the corresponding expressions are often
subtle. As the inter-annotator agreement study (Wilson, 2008) shows, it is more
difficult for humans to achieve agreement on intensity than on polarity. A
severe type of disagreement between annotators is the difference in intensity
ordering for expressive subjective elements, which are the main way of
expressing sentiment. This can be explained by more types of influencers for
expressing intensity. In addition to the ones used for polarity, there are two
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types of modifiers (Taboada et al., 2011): Amplifiers (e.g. very) increase the
semantic intensity of a neighboring lexical item, while downtoners (e.g. little)
decrease it. And the expressions for intensity are also diverse since
high-intensity expression often contain words that are very infrequent such as
“pre-historic” and “tyrannical” (Wilson, 2008).

2.3 Semi-supervised Learning Techniques for

Sentiment Analysis

Semi-supervised learning (SSL) is halfway between supervised and
unsupervised learning. In addition to unlabeled data, an SSL algorithm is
provided with some supervision information in form of labels for a subset of
available data. Formally, given a labeled data set
Dl = {(xi, yi)|(xi, yi) ∈ X × Y, i = 1, ..., l} and an unlabeled data set
Du = {xj|xj ∈ X , j = l + 1, ..., l + u}, where X denotes the input space of data
points and Y is a label space, an SSL algorithm aims to learn a function
f : X → Y in some function family F . In general, it is assumed that the
input-output pairs (xi, yi) are drawn independently and identically distributed
(i.i.d.) from a distribution P on X × Y and the unlabeled examples are drawn
i.i.d. from the marginal distribution PX of P.

There are two slightly different settings for SSL algorithms, namely inductive
and transductive semi-supervised learning. In the former setting, a learned
function is expected to predict the labels of a separate test sample, which is
unseen during training, whereas in the latter setting, a learned function makes
predictions only on the unlabeled data provided in the training phase.
Likewise, we say that an algorithm performs inductive inference when it is
used to infer labels of unseen data, while it performs transductive inference
when using both labeled and unlabeled data.

In Section 2.3.1 and Section 2.3.2, we give an overview of graph-based semi-
supervised learning methods and deep autoencoders, which provide technical
foundation for Chapter 4 and Chapter 5, respectively. Further SSL techniques as
well as their applications in the field of sentiment analysis are briefly introduced
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in Section 2.3.3.

2.3.1 Graph-Based Semi-supervised Learning Methods

Graph-based semi-supervised learning methods (GSSL) propagate the labels of
labeled data points to unlabeled ones based on the similarity of the data. This is
represented by a similarity graph G = 〈V, E〉, where each vertex vi from the
vertex set V represents a data point xi ∈ X and each edge (vi, vj) from the edge
set E is associated with a non-negative weight wij indicating the similarity
between vi and vj. Moreover, V = Vl

⋃
Vu, where each vertex in Vl has an initial

label y ∈ Y and all vertices in Vu are unlabeled.

Given a graph G = 〈V, E〉, the GSSL methods postulates that two vertices vi, vj
should have the same label ywith high probability if there is a path along edges
with high similarity values between them in G. From a probabilistic point of
view, they make the following smoothness assumption (Chapelle et al., 2006):

Smoothness assumption: If two data points xi and xj in a high density region are
close, the corresponding function outputs yi and yj are likely to be the same.

Based on these intuitions, Belkin et al. (2006a) introduced a general framework
for a range of GSSL algorithms, which differ in empirical loss functions and
regularizers. For a Mercer kernel K : X × X → R, there is an associated
Reproducing Kernel Hibert Space (RKHS) HK of functions X → R with the
corresponding norm ‖ · ‖K. In general, the kernel function is the same one used
to compute the similarity values wij in the similarity graph. For a labeled
dataset Dl and an unlabeled dataset Du, the framework estimates a function by
minimizing

f∗ = arg min
f∈HK

λl

l∑
i=1

C(f(xi), yi) + λK‖f‖2K + f>Lf (2.1)

where C(f(xi), yi) is a loss function such as squared loss (yi − f(xi))2 for
regression or the hinge loss function max(0, 1 − yif(xi)) for classification; the
loss function is adjusted by the hyperparameter λl, which indicates the noise
level of initial labels; the hyperparameter λK controls the complexity of the
function by penalizing the RKHS norm ‖f‖2K. The capability of label
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propagation is provided by the graph regularizer f>Lf, where
f = [f(x1), ..., f(xl+u)]> and L is the graph Laplacian based on the similarity
graph G that characterizes the marginal distribution PX . Moreover, the
Representer Theorem (Belkin et al., 2006a) states that the solution to this
optimization problem exists in HK and takes the following form

f∗(x) =
l+u∑
i=1

αiK(x, xi) (2.2)

which involves both labeled and unlabeled data points. Therefore, the problem
is reduced to optimizing over the coefficients αi. As we can see, the solution
shares the similar form as support vector machines (SVM) and Ridge
regression (Bishop et al., 2006) except the expansion to the unlabeled data.
Thus, GSSL algorithms belong to the family of kernel machines.

Graph Laplacians

Two variants of graph Laplacian are widely used for semi-supervised learning.

• An unnormalized graph Laplacian is defined as Lu = D − W, where the
diagonal matrix D is given by dii =

∑l+u
j=1 wij. Then we have

f>Luf = 1
2

∑l+u
i,j=1wij(f(xi) − f(xj))

2. As we can see, minimizing f>Lf is the
same as reducing discrepancies of function values between two data
points proportionally to their similarity defined in the graph G.

• A normalized graph Laplacian takes the form Ln = D−1/2LuD−1/2. For
every f, we have f>Lnf = 1

2

∑l+u
i,j=1wij(

f(xi)√
dii

−
f(xj)√
djj
)2. Compared to

unnormalized graph Laplacian, the difference of two function values are
further influenced by the sum of edge weights adjacent to the
corresponding data points.

Besides enforcing the smoothness constraints on similar data points, the two
graph Laplacian can also be augmented to incorporate dissimilarities between
data points. Interested readers can find details in (Goldberg et al., 2007).

The differences between the two graph Laplacians are mainly studied in the
context of clustering (von Luxburg, 2007). Since GSSL algorithms can be
regarded as the methods of assigning labels to the data points in the existing
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clusters, we can easily extend their findings to understand semi-supervised
learning. More specifically, von Luxburg (2007) found that the two graph
Laplacians lead to different graph partitioning strategies from a graph cut point
of view. The graph cut problem can be stated as follows: given a similarity
graph G = 〈V, E〉, we want to partition a graph such that the edges between
different vertex groups have low weights while the edges within a vertex group
have high weights. In practice we also expect that different vertex groups are
reasonably large, which gives rise to the two commonly used objective
functions ratio cut (RatioCut) (Hagen and Kahng, 1992) and normalized cut
(Ncut) (Shi and Malik, 2000). Let the edge weights between two vertex groups
Va and Vb be denoted as

cut(Va, Vb) =
∑

vi∈Va,vj∈Vb

wij

and Va denote the complement of Va, the two objective functions for partitioning
a graph G into k vertex groups V1, ..., Vk are defined as:

RatioCut(V1, ..., Vk) =
1

2

k∑
i=1

cut(Vi, Vi)
|Vi|

Ncut(V1, ..., Vk) =
1

2

k∑
i=1

cut(Vi, Vi)
vol(Vi)

(2.3)

where |Vi| denote the number of vertices in Vi and vol(Vi) denote the sum of
weights of all edges attached to vertices in Vi. From the definitions we can see
that, both RatioCut and Ncut aim to find a partition such that data points in
different clusters are dissimilar to each other. However, both algorithms behave
differently while maximizing within-cluster similarity. Ncut tends to maximize
the sum of edge weights within clusters, while RatioCut prefers clusters with
large numbers of vertices.

For partitioning a graph into two vertex groups, minimizing the two objective
functions can be approximated by minimizing a graph regularizer f>Lf subject
to a set of constraints (von Luxburg, 2007). If L is an unnnormalized graph
Laplacian, the optimization result is an approximation of ratio cut, whereas a
normalized graph Laplacian leads to a normalized cut. This can also be
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generalized for separating a graph into k groups. Therefore, the choice of graph
Laplacian depends on which graph cut strategy is better suited for a specific
application.

Solving the Optimization Problem

Due to the Representer Theorem (Belkin et al., 2006a), we can solve the
optimization problem (2.1) in the dual space, which is a widely used approach
for SVM. To illustrate the idea, we choose squared loss and normalized graph
Laplacian for the problem (2.1), which becomes

f∗ = arg min
f∈HK

λl(Y − Jf)>(Y − Jf) + λK‖f‖22 + f>Lnf (2.4)

where Y = [y1, ..., yl, 0, ..., 0] is a (l + u) dimensional label vector and J is a (l +

u)× (l+u) diagonal matrix with the first l diagnonal entries as 1 and the rest as
0. After replacing f with the solution form (2.2), we have

α∗ = arg min
α∈Rl+u

λl(Y − JKα)>(Y − JKα) + λKα
>Kα+ α>KLnKα

where K ∈ R(l+u)×(l+u) is the positive semi-definite similarity matrix (Gram
matrix) over labeled and unlabeled data points. Since the derived problem is a
quadratic program, we can use an efficient convex optimization algorithm such
as coordinate descent (Luo and Tseng, 1992) or L-BFGS (Liu and Nocedal, 1989)
to obtain the minimizer α∗. Then α∗ can be substituted back into the function
(2.2) to estimate the labels of unlabeled data points.

The alternative approach is to directly optimize over function values at each
data point. More specifically, we consider f as a vector of function values, where
fi indicates the value of the data point xi. Then the problem (2.4) turns out to be
the equivalent quadratic program in the Euclidean space:

f∗ = arg min
f∈Rl+u

λl(Y − Jf)>(Y − Jf) + λK‖f‖22 + f>Lnf

which is exactly the optimization problem for the local global consistency
algorithm (LGC) (Zhou et al., 2004) so that we can apply either the LGC
algorithm or a convex optimization algorithm to solve the problem. If the
selected loss function is not differentiable such as hinge loss, we can employ
the subgradient methods (Duchi and Singer, 2009b; Duchi et al., 2011).
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Similarity Graph Construction

In the previous discussion, we have assumed that a similarity graph is given.
Since a similarity graph represents the distribution PX , the construction of
similarity graphs can significantly influence the classification results (Jebara
et al., 2009). For a similarity measure sim(xi, xj) with xi, xj ∈ X , there are three
popular ways to build a similarity graph (Maier et al., 2009):

• ε-neighborhood graph: xi and xj are connected if sim(xi, xj) ≥ ε.

• symmetric k-nearest neighbor graph: xi and xj are connected if
xi ∈ kNN(xj) or xj ∈ kNN(xi).

• mutual k-nearest neighbor graph: xi and xj are connected if both xi ∈
kNN(xj) and xj ∈ kNN(xi).

where kNN(xi) denotes the set of k nearest neighors of xi.

From the graph definitions we can see that both ε-neighborhood graphs and
mutual k-nearest neighbor graphs may contain disconnected graphs or even
isolated singleton vertex, while symmetric k-nearest neighbor graph is always
connected. In a symmetric k-nearest neighbor graph, data points in a low
density region can connect to points in a high density region, while in a mutual
k-nearest neighbor graph, data points tend to be connected within regions of
constant density (von Luxburg, 2007). Moreover, theoretical analysis in (Maier
et al., 2008) shows that normalized cut on a ε-neighborhood graph will produce
systematically different clustering results than normalized cut on a symmetric
k-nearest neighbor graph.

The same GSSL algorithms tend to perform better on a graph with similar
vertex degree. Ozaki et al. (2011) show that the same GSSL algorithms perform
significantly better on a mutual k-nearest neighbor graph than on a symmetric
k-nearest neighbor graph for both word sense disambiguation and document
classification. Jebara et al. (2009) also found that when b-matching method is
used to enforce all vertices in a symmetric k-nearest neighbor graph to have the
same number of edges, the same GSSL algorithms always gain a performance
improvement over the one trained on a graph with diverse degree.
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Limitations

Although GSSL algorithms are expected to learn from few labeled data, Bengio
et al. (2005) show that, when the similarity function is local (see below), the
number of required training points could grow exponentially with the
dimensionality of the data for certain target functions. This problem is referred
to as curse of dimensionality in (Bengio et al., 2005) and they show that it is a
shared problem of all kernel machines with local kernel functions. We say that
a kernel function K(· , · ) is local, if for all x ∈ X, there is a neighborhood
N(x) ⊂ X such that

f(x) '
∑

xi∈N(x)

αiK(x, xi) (2.5)

This means that f(x) is mostly determined by the neighbors of x. In that sense, a
number of commonly used kernel functions such as Gaussian kernels and
linear kernels are local. Bengio et al. (2005) further pointed out that for local
kernel machines, curse of dimensionality is hard to avoid due to the
bias-variance dilemma of statistical estimators, where bias of an estimator is
the expected difference between the estimator and the target variable, and
variance of an estimator is the expected squared difference between the
estimator and its expected value. The dilemma states that the way to reduce
variance is to decrease the size of neighborhood but this also increases bias. In
contrast, increasing the size of neighborhood can reduce bias but increase
variance. However, we expect to learn a function with both low bias and low
variance.constant label

Another central argument they made is that local kernel machines require a large
number of data points to learn highly varying target functions, whose outputs
vary a lot across input space. One data point of such a complex function can be
illustrated by Figure 2.1. We can see that near the decision surface, many data
points with opposite labels are quite close to each other so that subtle changes of
inputs will lead to completely differrent outputs. If we want a GSSL algorithm
to learn such a function, a corresponding similarity graph would have many
regions with identical label, where a region with identical label is defined as a
connected maximal subgraph in which all vertices have the same label and no
other vertex can be added while keeping these properties. Bengio et al. (2005)
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claim that in each region with identical label there should be at least one correct
labeled point, as indicated by the following proposition.

Proposition 2.1 After running a GSSL algorithm to solve the optimization problem
(2.1), the number of regions with identical label is less than (or equal to) the number of
labeled data points.

Figure 2.1: Two-dimensional manifold to demonstrate the curse of
dimensionality problem. The curve in the middle is the decision
boundary for the data points labeled by either + or -.

Due to the curse of dimensionality, the number of required labeled data could
grow exponentially with the dimension of the input space (or manifold, if the
data lie on an embedded low-dimensional manifold within the
high-dimensional input space.). It means, if a labeling function varies highly
along each dimension, we cannot achieve low error rates by using a small
amount of labeled data.

Applications to Sentiment Analysis

In the area of opinion mining, almost all prior work using GSSL alogrithms
focus on coarse-grained sentiment analysis. The tasks range from document
polarity classification (Sandler et al., 2008; Sindhwani and Melville, 2008; Ren
et al., 2011), document rating prediction (Goldberg and Zhu, 2006; Zhu and
Goldberg, 2007) to the identification of authors’ political affiliation (Lu et al.,
2010a). Only Rao and Yarowsky (2009) applied GSSL algorithms to learn a
sentiment polarity lexicon from a few seed words.

A suitable similarity measure for a specific task is the key to successful
application of GSSL algorithms, because it determines the distance between
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two data points which implies the similarity of their labels. In other words,
GSSL algorithms work only if a proper similarity measure can be found to
make their assumption hold. For document-level sentiment analysis, such a
measure is non-trivial because the commonly used cosine similarity based on
bag-of-words representation intends to favor the topic similarity rather than
the sentiment similarity. Therefore, a high similarity value based on this
measure often indicates that two documents share a lot of content words (e.g.
“lens”, “car”) rather than similar sentiments. As shown in (Goldberg and Zhu,
2006), using the cosine similarity with bag-of-words representation, the GSSL
algorithms performed even significantly worse than the ε-insensitive support
vector regression (Joachims, 1999b) for rating prediction on movie reviews. If
they change the measure to the PSP-based similarity (Pang and Lee, 2005a),
which is determined by the percentage of positive sentences in a document, the
GSSL algorithms outperform their supervised counterparts when the number
of labeled documents is small.

Instead of defining a proper similarity measure for documents and
constructing a similarity graph-based on the measure, Sandler et al. (2008);
Sindhwani and Melville (2008) pursue different ways of contructing similarity
graphs. Sandler et al. (2008) encode prior knowledge into a graph of word
features x, in which the vertices represent words and the edges represent
similarities and dissimilarities between them. Graph regularization is applied
to ensure that similar/dissimilar words should have similar/dissimilar
weights β, which constitute the function f(x) = β>x to predict document
polarities. Compared to directly learning a linear function to predict document
polarity, the advantage of their approach is to incorporate fine-grained lexical
knowledge for function weights regularization. Sindhwani and Melville (2008)
also assume a linear function for document polarity prediction but for
regularization they construct a bipartite graph with two sets of vertices for
documents and words respectively. In such a bipartite graph, an undirected
edge exists between a document and a word if the document contains the
word. Since the polarity of a sentiment-bearing word can be looked up in a
subjectivity lexicon and the polarities of a subset of documents are known, the
optimal labels of documents can be estimated by “spreading” the initial labels
of both documents and words along the edges of the corresponding bipartite
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graph. In this way, this approach can incorporate knowledge from both
unlabeled documents and subjectivity lexicons.

While most prior work choose one of the previously mentioned graph
Laplacian for regularization, Sandler et al. (2008) proposed a feature network
penalty, which performs better on word feature similarity graph than
normalized graph Laplacian. Suppose the word similarity is encoded into a
matrix W and the out-degree of each vertex must sum to one,

∑
jwij = 1, for a

word weight vector β, the network penalty for d distinct words is defined as

α

d∑
j=1

(βj −
∑
k

wijβk)
2 (2.6)

where the hyperparameter α ensures that each word weight receive a similar
penalty. To see that the penalty fits into the GSSL framework, we can rewritte it
as αβ>Mβ where M = (I − W)>(I − W). For a similarity graph that contains
vertices with diverse degrees, the normalized and unnormalized graph
Laplacians tend to focus most of the regularization cost on vertices with a large
number of neighbors, while the network penalty distributes regularization cost
equally for each vertex since the edge weights are normalized inside the
squared loss. This property is desirable for word similarity graph since we do
not expect a word receives low weight because of its large degree.

Although GSSL algorithms are successfully applied to coarse-grained sentiment
analysis, expression-level analysis is extremely challenging for these algorithms
because the outputs of the target functions vary highly due to tiny changes of
inputs. For example, the polarity of “good image” is positive; “It is difficult to
get a good image.” turns to negative, but “It is not difficult to get a good image.”
is again positive. If the intensity of sentiment is taken into account, different
types of influencers such as amplifiers and irrealis can substantially increase the
complexity of target functions. Moreover, the dimensionality of data is also high
due to the diversity of subjective expressions (Wiebe et al., 2005). Therefore, any
GSSL algorithms with a local similarity measure such as cosine similarity and
string kernels (Lodhi et al., 2000) cannot avoid the curse of dimensionality. To
circumvent the problem, one way is to combine GSSL algorithms with multiple
weak learners that perform differently in different regions with identical label
so that joint estimation is more robust than using only one learner. In Chapter
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4, we show that this idea works well for sentence-level analysis. For the more
difficult expression-level analysis, the key idea discussed in Chapter 5 is to map
semantic similar words to similar low-dimensional representations and use an
encoder function to construct semantically consistent representations of phrases
based on the compositional rules of expressions.

2.3.2 Deep Autoencoders

The purpose of this section is to give an overview of deep autoencoders as well
as its applications in the area of sentiment analysis. Since deep autoencoders
belong to the family of deep learning techniques, which use autoencoders as
basic building blocks to build a deep multi-layer neural network, we start with
introducing basic ideas and concepts of deep learning, followed by a brief
comparison of two variants of autoencoders, and this section ends with
recursive autoencoders (RAE) and its variants for sentiment analysis.

Basic Ideas and Concepts

Many artificial intelligence tasks, such as object recognition or semantic role
labeling (SRL), are often decomposed into several sub-problems and people
may use different levels of representation for different sub-problems. For
example, a state-of-the-art pipeline for object recognition from natural images
involves a sequence of modules that transform raw pixel representation into
gradually more abstract representations such as edges and local shapes of the
image. The identification of target objects could be a result of joint inference
over all these information. Since humans often do not know how to design
hand-crafted features to specify high level abstractions in terms of raw inputs,
it is desirable to let learning algorithms to automatically discover abstractions,
from the lowest level features to the highest level concepts.

The focus of deep learning methods is to learn feature hierarchies, in which
features from higher levels of the hierarchy are formed by the composition of
lower level features. Automatically learning features at multiple levels of
abstraction can be regarded as learning complex functions. One example of
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such a function is multilayer neural networks, which consists of several layers
of non-linear operators for the composition of inputs from lower layers. As
illustrated by Figure 2.2, we can represent a function with deep architecture as
a graph, in which a vertex corresponds to a computational element. The depth
of an architecture is the depth of the corresponding graph, i.e. the longest path
from an input vertex to an output vertex. In practice, the computational
elements in hidden layers can be regarded as “feature dectecors” for the top
layer, which is an application dependent classifier or regression learner. The
popular choices of the top layer could be a logistic regression classifier, a linear
SVM or a ridge regression learner.

Figure 2.2: A multi-layer neural work of depth 3 as an example of a graph of
computation. Each computational element is an artificial neuron
implementing a function such as f(x) = tanh(w>x + b) with
parameters (w, b).

Theoretical results reveal that if a function can be compactly represented by a
depth k architecture, it might need an exponential number of computational
elements to be represented by a depth k − 1 architecture (Bengio, 2009). Here
we say that a function is compact when it has few computational elements. For a
fixed number of training data points, we expect that compact representations of
a target function would yield better generalization.

Although increasing the depth of architecture can significantly improve the
expressive power, several commonly used learning algorithms have only
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shallow architectures (Bengio et al., 2005). For example, logistic regression and
linear regression has depth 1; kernel machines have two levels because the
kernel function K(x, xi) for each selected representative training points xi serves
as the computational element in the first level and the second level performs an
affine combination b +

∑
i αiK(x, xi) of the outputs from the first level.

Therefore, these methods cannot represent a target function that requires
exponentially many computational elements with a shallow archtecture.

As indicated above, a deep architecture can be viewed as the composition of a
sequence of processing stages. Distributed representation is used by deep
learning methods as the intermedia representation between stages. A
distributed representation (Hinton, 1986; Rumelhart et al., 2002) contains a bag
of features, which are in general not mutually exclusive. In practice, it often
takes the form of a continous-valued vector. Distribution representation allows
an abstract concept or an entity to be represented by a subset of correlated
features. In contrast, a local representation uses a single feature to represent
each distinct concept or entity. Compared to local representation, distributed
representation is more compact. For example, a local representation requires a
vector of N bits to represent one of N distinct words while a distributed
representation for the same word could be a vector of log

2
N bits, because we

can use all possible different combinations of bits to distinguish different
words. Note that, distributed representation is a widely used representation
form, which is designed not only for neural networks and deep learning but
also for Principle Component Analysis (PCA) (Jolliffe, 1986) and matrix
factorization (Lee and Seung, 1999) etc..

Deep architecture and distributed representation are in fact old ideas dating
back to the last century, but researchers always failed to train a deep
multi-layer neural network with more than three layers until 2006. In 2006,
Hinton et al. (2006) discovered a pre-training algorithm, which makes the
training of deep architectures practical. More specifically, they suggest that the
training of a deep architecture with both labeled and unlabeled data takes two
steps: i) unsupervised greedy layer-wise pre-training; ii) supervised fine-tuning
of network parameters. In the first step, an unsupervised learning
algorithm (Hinton et al., 2006) greadily trains one layer at a time, which aims to
discover statistical regularities in data and provides a proper initialization of

24



2.3 Semi-supervised Learning Techniques for Sentiment Analysis

the model parameters for the next step. In the second step, the initialized
model parameters are fine-tuned by backpropagation based on the supervised
information (Rumelhart et al., 2002). The two steps can also be carried out
interchangeably, namely, we can randomly draw one or a few instances for
unsupervised training, followed by another set of instances for supervised
training, and repeat the process until certain stop criteria are met. Due to the
incorporation of unlabeled data in the training process, we consider the deep
learning techniques exploiting the two training steps as semi-supervised.

With deep architecture and distributed representation, deep learning methods
can better learn highly varying functions than the algorithms with shallow
architectures. Both deep architecture and distributed representation allows a
system to represent functions in a compact manner. That means, we need fewer
tunable parameters for a complex target function than algorithms with shallow
architectures. Furthermore, the process of learning high level features can be
seen as disentangling factors of variations (Bengio, 2009), where factors of
variations are considered as different aspects of data that can vary separately
and often independently (e.g. named entity types or syntactic properties of a
phrase). If a task requires an abstraction from low level features, a conventional
learner in the top layer should work better with the automatically discovered
factors than directly with the low level features.

Autoencoders

Since the emergence of neural networks, various models are proposed to serve
as basic building blocks for constructing deep neural networks. Here we restrict
our attention to two types of autoencoders: classical autoencoders (Hinton and
Zemel, 1994) and denoising autoencoders (Vincent et al., 2008), which serve as
part of the model in Chapter 5. Both types of autoencoders include an encoder
function and a decoder function in the same parameterized closed form. The
main difference is that denoising autoencoder proactively corrupts an input data
point before the point is fed into the encoder function.

Given an input vector x ∈ Rn, which could be a distributed representation, an
encoder function ge : Rn → Rm computing an output representation h takes the
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following form
ge(x) = a(Wx + b) (2.7)

where a(z) is an activation function that usually performs a nonlinear
transformation of the vector z, which is computed by a linear transformation of
x with the weight matrix W ∈ Rm×n and the bias vector b ∈ Rm. The two main
activation functions used in current applications are hyperbolic tangent and the
logistic function, which are defined as

tanh(z) =
ez − e−z

ez + e−z
(2.8)

logistic(z) =
1

1+ e−z
(2.9)

The encoder function is also referred to as an artificial neuron, when it is used
for building feedforward artificial neural networks.

A decoder function gd : Rm → Rn maps an output representation h back to a
reconstruction r in the input space, which is also parameterized with the weight
matrix W̃ ∈ Rm×n and the bias vector b̃ ∈ Rn.

gd(h) = a(W̃h + b̃) (2.10)

If we constrain the weight matrix of the reverse mapping by W̃ = W>, we say
that the autoencoder has tight weights.

To measure the discrepancy between the original vector x and the reconstruction
r, the reconstruction error is defined as

LAE(x, r) =
1

2
‖x − r‖22 (2.11)

Since minimizing reconstruction errors requires no labeled data, it is exactly the
unsupervised training criterion to perform the greedy layer-wise initialization
of model parameters. For a data set D = {x1, ..., xn}, the model parameters θ =

{W,b, W̃, b̃} are optimized to minimize the average reconstruction error:

θ∗ = arg min
θ

1

n

n∑
i=1

LAE(xi, gd(ge(x))) (2.12)

Then the intermediate representations constructed by the optimized model are
expected to retain a certain amount of information about its input, while at the
same time try to capture the statistical regularities in the data.
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If the activation function of the autoencoder is linear, the autoencoder is
essentially equivalent to PCA, which additionally requires that all basis vectors
are orthogonal (Kramer, 1991). Then each unit hi in the output representation h
can be referred to as a factor. From this point of view, an autoencoder with
non-linear activation functions performs non-linear factor analysis in the
unsupervised learning step.

Vincent et al. (2008) suggest that a good intermediate representation should be
robust to partial destruction of the input. That means, good representations are
expected to capture stable structures in form of dependencies and regularities
of the distribution. They should be recoverable from partial observation and
insensitive to outliers. Based on this idea, they proposed the denosing
autoencoder. For an input vector x, a corrupted version x̂ is created by means of
a stochastic mapping x̂ ∼ pc(x̂|x). Instead of the original input, the encoder
function (2.7) maps the corrupted x̂ to a new representation, which is used as
the input for higher level computational components or as the input for
computing reconstruction error with the same decoder function (2.10). In
practice, the original input is corrupted by randomly choose a fixed number of
units in x and force their values to 0. This procedure can also be viewed as
randomly omitting these units of the input by applying the dropout
operation (Hinton et al., 2012).

Recursive Autoencoders

Recursive autoencoders, which are also referred to as Recursive
Auto-Associative Memory (RAAM) (Pollack, 1990), aim to construct a compact
representation for data with recursive structures such as constituent parse trees.
Given a fixed data structure like the constituent parse tree in Figure 2.3, an RAE
repeatedly applies an autoencoder bottom-up to build the representations for
each vertex. More precisely, in each step, the encoder function ge(x) is applied
to construct a parent vertex representation h ∈ Rn from the input x ∈ Rkn,
which is the concatenation of the k children representations. And a parent
vertex representation can be created if and only if all its children
representations are available. During learning, it optimizes also its model
parameters by minimizing reconstruction error. Otherwise, if no reconstruction
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Figure 2.3: A binary representation tree built by a recursive autoencoder, given
a simplied constituent parse tree.
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error is minimized, the corresponding model is referred to as recursive neural
networks ( RNN) (Goller and Kuchler, 1996; Socher et al., 2011a).

Applications to Sentiment Analysis

Compared to GSSL algorithms, which are mainly applied to coarse-grained
sentiment analysis, deep neural networks have been successfully applied to
more fine-grained tasks such as sentence polarity classification (Socher et al.,
2011b, 2012).

The central challenge of fine-grained sentiment analysis is to model highly
varying functions for flexible sentiment-bearing expressions. As discussed
before, the target functions vary a lot, because there are a large number of
subjective expressions and subtle changes of the expressions often lead to
different sentiments. Since the high volume of expressions are often composed
by using a much smaller set of composition rules (e.g. negating an expression
conveying positive sentiment leads to an expression carrying negative
sentiment.), the intuitive idea is to focus on modeling the composition rules
and map each word and phrase to a representation at the proper abstraction
level required by the rules.

Based on this idea, Socher et al. (2011b) extend the classical RAE for sentence
polarity prediction. They start with mapping each word to a distributed
representation pre-trained by using a neural language model (Collobert and
Weston, 2008). For a sentence with m words, they build a binary representation
tree with an RAE bottom-up in a greedy unsupervised manner. In each step, an
autoencoder is used to create a parent candidate by merging the
representations of two children vertices. From all the parent candidates, the
one with lowest reconstruction error will be selected to represent the
corresponding phrase. Then the process is repeated until a tree root is created
to represent the whole sentence. Because a phrase with more words tends to
carry more information, the method modifies the reconstruction error of the
classical autoencoder by using a weighted combination of L2 norms. Let ri and
rj be the reconstructed vectors of children vertices xi and xj respectively, the
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weighted reconstruction error is defined as

LRAE(x, r) =
ni

ni + nj
‖xi − ri‖22 +

nj

ni + nj
‖xj − rj‖22 (2.13)

where ni and nj are the number of words represented by the corresponding
children. The coefficients of the weighted L2 norm can be regarded as a way of
incorporating prior knowledge. Since the tree roots represent the
corresponding sentences, they add a simple softmax layer on top of the tree
roots while predicting sentence polarities. Let Y denote the polarity label set,
the conditional probability of a label y given a tree root xr is computed by

softmax(y, xr) =
e(β

>
y xr)∑

y ′∈Y e
(β>

y ′xr)
(2.14)

where {βy}y∈Y are the weight vectors for respective polarity classes. Scheible and
Schuetze (2013) further show that the representation trees can be significantly
reduced without loss of classification accuracy. However, they apply this softmax
function to every vertex of a representation tree during training, which indicates
that if a sentence is positive/negative, all its constituents are positive/negative.
This assumption can certainly not hold for most sentences.

Although the RAE proposed in (Socher et al., 2011b) can capture some
compositional patterns of expressions, the experimental results in (Socher et al.,
2012) show that it can hardly cope with negation. To address the issue, the
matrix-vector recursive neural network (MV-RNN) is proposed, which is an
RNN with a special encoder function applied on distributed representations of
words learned by unlabeled data. To improve the expressive power of RAE, the
method assumes that each constituent has a matrix operator in addition to its
distributed representation vector. A matrix operator captures how it modifies
the meaning of the other constituent that it combines with. Let two constituents
be represented by (xi,Oi) and (xj,Oj), where Oi,Oj ∈ Rn×n are their matrix
operators, the encoder function is re-defined as

g ′e(xi,Oi, xj,Oj) = a
(
W

[
Ojxi
Oixj

]
+ b

)
(2.15)

where W ∈ Rn×2n and b ∈ Rn. The function indicates that, if a constituent is
modified by a negator, its representation will be transformed by the matrix
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operator of the negator before it is fed into a classical encoder function.
Experiments in (Socher et al., 2012) show that the additional expressive power
of MV-RNN can indeed shift sentiment of a constituent when it is modified by
a negator. However, the introduction of matrix operators dramatically
increases the number of parameters. Although the method defined a function
for creating a parent matrix operator from two children operators, they still
need to initialize a matrix operator for each word, which are the leaves of a
representation tree. Although the new parameters grow linearly with the
number of dintinct words in a corpus, no unsupervised training criterion is
provided to pre-train this model.

2.3.3 Other Semi-supervised Learning Methods

Self-training

Self-training is a simple wrapper method, which is characterized by the fact
that the learning process uses its own predictions to teach itself. It starts with a
supervised learner trained on available labeled data and works in iterations. In
each round, it uses the learner to predict the labels of the unlabeled data and
selects a subset of unlabeled data, together with their predicted labels to
augment the training dataset. Typically, the subset contains the data points
with the most confident predictions. Then the new training data is used to
update or re-train the supervised learner for the next round. The iterative
learning process implies that self-training works only if its predictions with
highest confidences tend to be correct (Zhu and Goldberg, 2009). One
successful application is to use the self-training algorithm AROW (Crammer
et al., 2009) for large scale review polarity prediction. Haimovitch et al. (2012)
show that this method can reduce the test error by more than half compared to
the supervised classifier trained on the initial labeled dataset.

Co-training

Co-training (Blum and Mitchell, 1998) adopts a similar iterative learning
process as self-training. Instead of using one supervised learner, it uses two
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learners to teach each other. The two learners operate on different feature sets
of a training data point, where each feature set is referred to as a view of the
data. In each iteration, the two learners provide their most confident
predictions of the unlabeled data for one another to enrich its training dataset.
The process terminates if all unlabeled data are exhausted.

For the successful application of co-training, the following assumptions should
hold (Zhu and Goldberg, 2009):

• Each view alone is sufficient for good training, given enough labeled data.

• The views are conditionally independent given a class label.

The assumptions can be used in practice to guide the selection of feature space
partitioning strategies. For the cross-lingual document polarity
classification (Wan, 2009), each view is a set of language dependent features. If
the class distribution is imbalanced, Li et al. (2011) proposed a under-sampling
method to generate balanced datasets of different views. Compared to
self-training, the advantage of co-training is the diversity of the involved
learners, which makes co-training perform better than self-training for
subjectivity detection at the sentence level (Yu and Kübler, 2011).

Transductive Support Vector Machines

Transductive Support Vector Machines (TSVMs) (Vapnik, 1998; Joachims,
1999a) learn a large-margin hyperplane classifier using both labeled and
unlabeled data. The critical difference to SVMs is that TSVMs force the decision
surface to lie in a low-density region. That means, it is assumed that data
points naturally form some clusters and data points from the same cluster are
likely to be of the same class. To assign labels to all unlabeled data, TSVMs
perform transductive inference on all available data and try to put the decision
boundary not close to any labeled and unlabeled points.

TSVMs are used in (Dasgupta and Ng, 2009) as the last stage for review
polarity classification. Their method first performs spectral clustering to find
out unambiguous reviews, then exploits them to classify ambiguous reviews via
active learning, and at the end the TSVMs and ensemble learning are combined
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to assign labels to unlabeled data points.
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Chapter 3

Document Rating Prediction

The main concern of sentiment analysis is analyzing polarity and intensity of
sentiments expressed in natural language text. In this chapter, the two quantities
are analyzed jointly as numerical ratings with the focus on the document level.
To tackle the task, we present the bag-of-opinions model, which can explore the
syntactic structures of sentiment-bearing phrases for improved rating prediction
of online reviews.

3.1 Overview

3.1.1 Motivation

This chapter discusses the learning and prediction of numerical ratings from
review texts, which is modeled as a metric regression problem over an
appropriately defined feature space.

Formally, the input is a set of rated documents (i.e., reviews), {xi, yi}Ni=1, where xi
is a sequence of word-level unigrams (w1, ..., wl) and yi ∈ R is a rating. The goal
is to learn a function f(x) that maps the word vector x into a numerical rating ŷ,
which indicates both the polarity and intensity of the sentiments expressed in a
document.

Numerical review rating prediction is harder than classifying by polarity.
Consider the following example from Amazon book reviews:
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The organization of the book is hard to follow and the chapter titles are not very helpful,
so going back and trying to find information is quite difficult.

We note that there are many subjective words (hard, helpful, difficult) modified
by sentiment modifiers such as (very, quite) and negation words like (not). For
rating prediction, considering sentiment modifiers is crucial; very helpful is a
much stronger sentiment than helpful. Negation words also need attention. As
pointed out by Liu and Seneff (2009) we cannot simply reverse the polarity. For
example, if we assign a higher positive score to very helpful than to helpful,
simply reversing the sign of the scores would incorrectly suggest that not
helpful is less negative than not very helpful.

The widely used unigram (bag-of-words) model (Pang and Lee, 2005b; Snyder
and Barzilay, 2007; Goldberg and Zhu, 2006; Ganu et al., 2009) cannot properly
capture phrase patterns. Consider the following example: not so helpful vs. not
so bad. In a unigram-based regression model each unigram gets a weight
indicating its polarity and intensity. High positive/negative weights are
strongly positive/negative clues. It is reasonable to assign a positive weight to
helpful and a negative weight to bad. The fundamental problem of unigrams
arises when assigning a weight to not. If not had a strongly negative weight, the
positive weight of helpful would be strongly reduced while the negative weight
of bad would be amplified (by combining weights). The same problem holds for
so, which is an amplifier that should keep the same sign as the word it modifies.
We refer to this limitation of the unigram model as polarity incoherence.

A promising way of overcoming this weakness is to include n-grams,
generalizing the bag-of-words model into a bag-of-phrases model (Baccianella
et al., 2009; Pang and Lee, 2008). However, regression models over the feature
space of all n-grams (for either fixed maximal n or variable-length phrases) are
computationally expensive in their training phase. Moreover and most
importantly for our setting, including n-grams in the model results in a very
high dimensional feature space: many features will then occur only very rarely
in the training data. Therefore, it is difficult if not impossible to reliably learn
n-gram weights from limited-size training sets. We refer to this problem as the
n-gram sparsity bottleneck. In our experiments we investigate the effect of
using bigrams and variable-length ngrams for improving review rating
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prediction.

3.1.2 Contribution

To overcome the above limitations of unigram and n-gram features, we have
developed a novel kind of bag-of-opinions model, which exploits
domain-independent corpora of sentiments (e.g., all Amazon reviews), but is
finally applied for learning predictors on domain-specific reviews (e.g., movies
as rated in IMDB or Rottentomatoes). A document is represented as a bag of
sentiments each of which has three components: a root word, a set of modifier
words and one or more negation words. In the phrase not very helpful, the
sentiment root is helpful, one (of potentially many) sentiment modifier(s) is very,
and a negation word is not. We enforce polarity coherence by the design of a
learnable function that assigns a score to a sentiment.

Our approach generalizes the cumulative linear offset model (CLO) presented
in (Liu and Seneff, 2009). The CLO model makes several restrictive
assumptions, most notably, that all sentiment scores within one document are
the same as the overall document rating. This assumption does not hold in
practice, not even in reviews with extremely positive/negative ratings. For
example, in a 5-star Amazon review the phrases most impressive book and it helps
explain should receive different scores. Otherwise, the later transfer step to
different domains would yield poor predictions. Due to this restriction, CLO
works well on particular types of reviews that have pro/con entries listing
characteristic major sentiments about the object under review. For settings with
individual reviews whose texts do not exhibit any specific structure, the CLO
model faces its limitations.

In our bag-of-opinions method, we address the learning of sentiment scores as
a constrained ridge regression problem. We consider the sentiment scores in a
given review to be drawn from an unknown probability distribution (so they
do not have to be the same within a document). We estimate the review rating
based on a set of statistics (e.g., expectation, variance, etc.) derived from the
scores of sentiments in a document. Thus, our method has a sound statistical
foundation and can be applied to arbitrary reviews with mixed sentiment
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polarities and intensities. We avoid the n-gram sparsity problem by the
limited-size structured feature space of (root,modifiers,negators) sentiments.

We treat domain-independent and domain-dependent sentiments differently in
our system. In the first step we learn a bag-of-opinions model on a large dataset
of online reviews to obtain scores for domain-independent sentiments. Since
the polarity of sentiments is not bound to a topic, one can learn sentiment
scores from a pooled corpus of reviews for various categories, e.g., movies,
books, etc., and then use these scored sentiments for predicting the ratings of
reviews belonging to a particular category. In order to also capture
domain-dependent information (possibly complementary to the sentiment
lexicon used for learning domain-independent sentiments), we combine the
bag-of-opinions model with an unigram model trained on the
domain-dependent corpus. Since domain-dependent training is typically
limited, we model it using unigram models rather than bag-of-opinions. By
combining the two models, even if a sentiment does not occur in the
domain-dependent training set but it occurs in a test review, we can still
accurately predict the review rating based on the globally learned sentiment
score. In some sense our combined learning scheme is similar to smoothing in
standard learning techniques, where the estimate based on a limited training
set is smoothed using a large background corpus (Zhai and Lafferty, 2004).

In summary, the contributions of this chapter are the following:

1. We introduce the bag-of-opinions model, for capturing the influence of n-
grams, but in a structured way with root words, modifiers, and negators, to
avoid the explosion of the feature space caused by explicit n-gram models.

2. We develop a constrained ridge regression method for learning scores of
sentiments from domain-independent corpora of rated reviews.

3. For transferring the regression model to newly given domain-dependent
applications, we derive a set of statistics over sentiment scores in
documents and use these as features, together with standard unigrams,
for predicting the rating of a review.

4. Our experiments with Amazon reviews from different categories (books,
movies, music) show that the bag-of-opinions method outperforms prior
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state-of-the-art techniques.

3.1.3 Related Work

Rating Prediction

Document rating prediction is modeled either as an ordinal regression
problem (Pang and Lee, 2005b; Goldberg and Zhu, 2006; Snyder and Barzilay,
2007) or as a metric regression problem (Goldberg and Zhu, 2006). These
methods simply use the bag-of-words representation with regression
algorithms. Titov and McDonald (2008a); Lu et al. (2011) extend the topic
models for multi-aspect rating prediction. As seen previously, either the
bag-of-words representation or latent features induced from sets of words
cannot exploit the syntactic structures of phrases. Baccianella et al. (2009)
restrict the n-grams to the ones having certain POS patterns. However, the long
n-grams matching the patterns still suffer from sparsity. The same seems to
hold for sparse n-gram models (BCR in this chapter) in the spirit of Ifrim et al.
(2008). Although sparse n-gram models can explore arbitrarily large n-gram
feature spaces, they can be of little help if the n-grams of interests occur
sparsely in the datasets.

Sentiment Lexicon Learning

Since our approach can be regarded as learning a domain-independent
sentiment lexicon, it is related to the area of automatically building
domain-independent sentiment lexicons (Esuli and Sebastiani, 2006; Godbole
et al., 2007b; Kim and Hovy, 2004). However, this prior work focused mainly
on the polarity of sentiment words, neglecting the sentiment intensity. Recently,
the lexicon based approaches were extended to learn domain-dependent
lexicons (Kanayama and Nasukawa, 2006b; Qiu et al., 2009; Choi and Cardie,
2009a), but these approaches also neglect the aspect of sentiment intensity. Our
method requires only the prior polarity of sentiment roots and can thus be used
on top of those methods for learning the scores of domain-dependent
sentiment components. The methods proposed in (Hu and Liu, 2004b; Popescu
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and Etzioni, 2005a) can also be categorized into the lexicon based framework
because their procedure starts with a set of seed words whose polarities are
propagated to other sentiment-bearing words.

3.2 Bag-of-Opinions Model

In this section we first introduce the bag-of-opinions model, followed by the
method for learning (domain-independent) model parameters. Then we show
how we annotate sentiments and how we adapt the model to domain-dependent
data.

3.2.1 Model Representation

We model each document as a bag-of-opinions {opk}
K
k=1, where the number of

sentiments K varies among documents. Each sentiment opk consists of an
sentiment root wr, r ∈ SR, a set of sentiment modifiers {wm}

M
m=1, m ∈ SM and a

set of negation words {wz}
Z
z=1, z ∈ SZ, where the sets SR, SM, SZ are component

index sets of sentiment roots, sentiment modifiers and negation words
respectively. The union of these sets forms a global component index set
S ∈ Nd, where d is the dimension of the index space. The sentiment root
determines the prior polarity of the sentiment. Modifiers intensify or weaken
the intensity of the prior polarity. Negation words strongly reduce or reverse
the prior polarity. For each sentiment, the set of negation words consists of at
most a negation valence shifter like not (Kennedy and Inkpen, 2006) and its
modifiers like capitalization of the valence shifter. Each sentiment component
is associated with a score. We assemble the scores of sentiment elements into a
sentiment-score by using a score function. For example, in the sentiment not
very helpful, the sentiment root helpful determines the prior polarity positive say
with a score 0.9, the modifier very intensifies the polarity say with a score 0.5.
The prior polarity is further strongly reduced by the negation word not with
e.g., a score -1.2. Then we sum up the scores to get a score of 0.2 for the
sentiment not very helpful.
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3.2 Bag-of-Opinions Model

Formally, we define the function score(op) as a linear function of sentiment
components, which takes the form

score(op) = sgn(r)βrxr +
M∑
m=1

sgn(r)βmxm +

Z∑
z=1

sgn(r)βzxz (3.1)

where {xz, xm, xr} are binary variables denoting the presence or absence of
negation words, modifiers and sentiment root. {βz, βm, βr} are weights of each
sentiment elements. sgn(r) : wr → {−1, 1} is the sentiment polarity function of
the sentiment root wr. It assigns a value 1/-1 if a sentiment root is
positive/negative. Due to the semantics of sentiment elements, we have
constraints that βr ≥ 0 and βz ≤ 0. The sign of βm is determined in the learning
phase, since we have no prior knowledge whether it intensifies or weakens the
prior polarity.

Since a document is modeled as a bag-of-opinions, we can simply consider the
expectation of sentiment scores as the document rating. If we assume the scores
are uniformly distributed, the prediction function is then
f(x) = 1

K

∑K
k=1 score(opk) which assigns the average of sentiment scores to the

document x.

3.2.2 Learning Regression Parameters

We assume that we can identify the sentiment roots and negation words from a
subjectivity lexicon. In this work we use MPQA (Wilson et al., 2005). In addition,
the lexicon provides the prior polarity of the sentiment roots. In the training
phase, we are given a set of documents with ratings {xi, yi}Ni=1, and our goal is
to find an optimal function f∗ whose predictions {ŷi}

N
i=1 are as close as possibile

to the original ratings {yi}
N
i=1. Formally, we aim to minimize the following loss

function:

L =
1

2N

N∑
i=1

(f(xi) − yi)2 (3.2)

where f(xi) is modeled as the average score of sentiments in review xi.

First, we rewrite score(op) as the dot product 〈β,p〉 between a weight vector
β = [βz,βm, βr] and a feature vector p = [sgn(r)xz, sgn(r)xm, sgn(r)xr]. In order
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to normalize the vectors, we rewrite the weight and feature vectors in the d
dimensional vector space of all root words, modifiers and negation words.
Then β = [..,βz, 0, ..,βm, 0, .., βr, 0..] ∈ Rd and
p = [sgn(r)xz, 0, .., sgn(r)xm, 0, .., sgn(r)xr, ...] ∈ Rd. The function f(xi) can then
be written as the dot product 〈β,vi〉, where vi =

1
Ki

∑Ki

k=1 pk, with Ki the number
of sentiments in review xi. By using this feature representation, the learning
problem is equivalent to:

min
β

L(β) =
1

2N

N∑
i=1

(〈β,vi〉+ β0 − yi)2

s.t.

βz ≤ 0 z ∈ SZ
βr ≥ 0 r ∈ SR (3.3)

where β ∈ Rd, β = [βz,βm,βr]. β0 is the intercept of the regression function,
which is estimated as the mean of the ratings in the training set. We define a
new variable ỹi = yi − β0.

In order to avoid overfitting, we add an l2 norm regularizer to the loss function
with the parameter λ > 0.

LR(β) =
1

2N

N∑
i=1

(〈β,vi〉− ỹi)2 +
λ

2
‖ β ‖22

s.t.

βz ≤ 0 z ∈ SZ
βr ≥ 0 r ∈ SR (3.4)

We solve the above optimization problem by Algorithm 1 using coordinate
descent. The procedure starts with β0 = 0, β0 ∈ Rd. Then it updates iteratively
every coordinate of the vector β until convergence. Algorithm 1 updates every
coordinate βj, j ∈ {1, 2, ..., d} of β by solving the following one-variable
sub-problem:

min
lj≤βj≤cj

LR(β1, ..., βj, ..., βd)

where lj and cj denote the lower and upper bounds of βj. If j ∈ SZ, lj = −∞ and
cj = 0. If j ∈ SR, lj = 0 and cj =∞. Otherwise both bounds are infinity.
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According to (Luo and Tseng, 1992), the solution of this one-variable
sub-problem is

β̂j = max{lj,min{cj, gj}}

where

gj =
1
N

∑N
i=1 vij(ỹi −

∑
l6=j βlvl)

1
N

∑N
i=1 v

2
ij + λ

Here gj is the close form solution of standard ridge regression at coordinate j
(for details see (Friedman et al., 2010)). We prove the convergence of Algorithm
1, by the following theorem using techniques in (Luo and Tseng, 1992).

Theorem 1 A sequence of β generated by Algorithm 1 globally converges to an optimal
solution β∗ ∈ χ∗ of problem (3.4), where χ∗ is the set of optimal solutions.

Proof: Luo and Tseng (1992) show that coordinate descent for constrained quadratic
functions in the following form converges to one of its global optimal solutions.

min
β

h(β) = 〈β,Qβ〉/2+ 〈q,β〉

s.t. ETβ ≥ b

where Q is a d × d symmetric positive-definite matrix, E is a d × d matrix having no
zero column, q is a d-vector and b is a d-vector.

We rewrite LR in matrix form as

1

2N
(ỹ − Vβ)T(ỹ − Vβ) +

λ

2
βTβ

=
1

2N
(Vβ)T(Vβ) +

λ

2
βTβ−

1

2N
((Vβ)T ỹ

−
1

2N
ỹT(Vβ)) +

1

2N
ỹT ỹ

= 〈β,Qβ〉/2+ 〈q,β〉+ constant

where

Q = BTB,B =

 √
1
N

V
√
λId×d

 ,q =
−1

N
(VT ỹ)

where Id×d is the identity matrix. Because λ > 0, all columns of B are linearly
independent. As Q = BTB and symmetric, Q is positive definite.
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Algorithm 1 Constrained Ridge Regression
1: Input: λ and {vn, ỹn}Nn=1
2: Output: optimal β
3: repeat
4: for j = 1, ..., d do
5: gj =

1
N

∑N
i=1 vij(ỹi−

∑
l 6=j βlvl)

1
N

∑N
i=1 v

2
ij+λ

6:

β̂j =


0, if j ∈ SR andgj < 0
0, if j ∈ SZ andgj > 0
gj, else

7: end for
8: until Convergence condition is satisfied

We define E as a d× d diagonal matrix with all entries on the main diagonal equal to 1
except eii = −1, i ∈ SZ and b is a d-vector with all entries equal to −∞ except bi = 0,
for i ∈ SZ or i ∈ SR.

Because the almost cyclic rule is applied to generate the sequence {βt}, the algorithm
converges to a solution β∗ ∈ χ∗.

3.2.3 Annotating Opinions

The MPQA lexicon contains separate lexicons for subjectivity clues, modifiers
and valence shifters (Wilson et al., 2005), which are used for identifying
sentiment roots, modifiers and negation words. Sentiment roots are identified
as the positive and negative subjectivity clues in the subjectivity lexicon. In the
same manner, modifiers and valence shifters of the type {negation, shiftneg} are
mapped to modifiers and negation words. Other modifier candidates are
adverbs, conjunctions and modal verbs around sentiment roots. We consider
non-words modifiers as well, e.g., punctuations, capitalization and repetition of
sentiment roots. If the sentiment root is a noun, adjectives are also included
into modifier sets.

The automatic sentiment annotation starts with locating the continous
subjectivity clue sequence. Once we find such a sequence and at least one of the
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subjectivity clue is positive or negative, we search to the left up to 4 words for
negation words and modifier candidates, and stop if encountering another
sentiment root. Similarly, we search to the right up to 3 unigrams for modifiers
and stop if we find negation words or any other sentiment roots. The prior
polarity of the subjectivity sequence is determined by the polarity of the last
subjectivity clue with either positive or negative polarity in the sequence. The
other subjectivity clues in the same sequence are treated as modifiers.

3.2.4 Adaptation to Domain-Dependent Data

The adaptation of the learned (domain-independent) sentiment scores to the
target domain and the integration of domain-dependent unigrams is done in a
second ridge-regression task. Note that this is a simpler problem than typical
domain-adaptation, since we already know from the sentiment lexicon which
are the domain-independent features. Additionally, its relatively easy to obtain
a large mixed-domain corpus for reliable estimation of domain-independent
sentiment scores (e.g., use all Amazon product reviews). Furthermore, we need
a domain-adaptation step since domain-dependent and domain-independent
data have generally different rating distributions. The differences are mainly
reflected in the intercept of the regression function (estimated as the mean of
the ratings). This means that we need to scale the positive/negative mean of
the sentiment scores differently before using it for prediction on
domain-dependent reviews. Moreover, other statistics further characterize the
sentiment score distribution. We use the variance of sentiment scores to capture
the reliability of the mean, multiplied by the negative sign of the mean to show
how much it strengthens/weakens the estimation of the mean. The mean score
of the dominant polarity (major exp) is also used to reduce the influence of
outliers. Because positive and negative means should be scaled differently, we
represent positive and negative values of the mean and major exp as 4 different
features. Together with variance, they are the 5 statistics of the sentiment score
distribution. The second learning step on sentiment score statistics and
domain-dependent unigrams as features, re-weights the importance of
domain-independent and domain-dependent information according to the
target domain bias.
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3.3 Experimental Setup

feature models uni uni+bi n-gram CLO CRR-BoO

DD
book 1.004 0.961 0.997 1.469 0.942
dvd 1.062 1.018 1.054 1.554 0.946
music 0.686 0.672 0.683 0.870 0.638

DD+MD
book 1.649 1.403 1.611 1.032 0.884
dvd 1.592 1.389 1.533 1.086 0.928
music 1.471 1.281 1.398 0.698 0.627

γDD+(1− γ)MD
book 0.996 0.944 0.986 n/a n/a
dvd 1.061 1.011 1.054 n/a n/a
music 0.695 0.673 0.690 n/a n/a

Table 3.1: Mean squared error for rating prediction methods on Amazon
reviews.

We performed experiments on three target domains of Amazon reviews: books,
movies (DVDs), and music (CDs). For each domain, we use ca. 8000 Amazon
reviews for evaluation; an additional set of ca. 4000 reviews are withheld for
parameter tuning (regularization parameter, etc.). For learning weights for
domain-independent sentiments, we use a mixed-domain corpus of ca. 350,000
reviews from Amazon (electronics, books, dvds, etc.); this data is disjoint from
the test sets and contains no reviews from the music domain. In order to learn
unbiased scores, we select about the same number of positive and negative
reviews (where reviews with more/less than 3 stars are regarded as
positive/negative). The regularization parameters used for this corpus are
tuned on withheld data with ca. 6000 thematically mixed reviews.1.

We compare our method, subsequently referred to as CRR-BoO (Constrained
Ridge Regression for Bag-of-opinions), to a number of alternative
state-of-the-art methods. These competitors are varied along two dimensions:
1) feature space, and 2) training set. Along the first dimension, we consider a)
unigrams coined uni, b) unigrams and bigrams together, coined uni+bi, c)
variable-length n-grams coined n-gram, d) the sentiment model by (Liu and

1All datasets are available from http://www.mpi-inf.mpg.de/∼lqu
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Seneff, 2009) coined CLO (cumulative linear offset model). As learning
procedure, we use ridge regression for a), b), and d), and bounded cyclic
regression, coined BCR, for c). Along the second - orthogonal - dimension, we
consider 3 different training sets: i) domain-dependent training set coined DD,
ii) domain-dependent training set and the large mixed-domain set coined
DD+MD, iii) weighted combination γDD + (1 − γ)MD, γ ∈ (0, 1). For the
DD+MD training set, we apply our two stage approach for CRR-BoO and CLO,
i.e., we use the mixed-domain corpus for learning the sentiment scores in the
first stage, and integrate unigrams from DD in a second domain-adaptation
stage. We train the remaining feature models directly on the combination of the
whole mixed-domain corpus and the training part of DD. For the weighted set
γDD + (1 − γ)MD and the uni, uni+bi and n-gram models, we show
experiments (Table 3.1) for the best γ = 0.998 (tuned by line search).

The CLO model is adapted as follows. Since bags-of-opinions generalize CLO,
adjectives and adverbs are mapped to sentiment roots and modifiers,
respectively; negation words are treated the same as CLO. Subsequently we use
our regression technique. As Amazon reviews do not contain pro and con
entries, we learn from the entire review.

For BCR, we adapt the variable-length n-grams method of (Ifrim et al., 2008) to
elastic-net-regression (Friedman et al., 2010) in order to obtain a fast
regularized regression algorithm for variable-length n-grams. We search for
significant n-grams by incremental expansion in backward direction (e.g.,
expand bad to not bad). BCR pursues a dense solution for unigrams and a sparse
solution for n-grams. Further details on the BCR learning algorithm will be
found on a subsequent technical report.

As for the regression techniques, we show only results with ridge regression (for
all feature and training options except BCR). It outperformed ε-support vector
regression (SVR) of libsvm (Chang and Lin, 2001), lasso (Tibshirani, 1996), and
elastic net (Zou and Hastie, 2005) in our experiments.
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3.4 Results and Discussion

Table 3.1 shows the mean square error (MSE) from each of the three
domain-specific test sets. The error is defined as MSE = 1

N

∑N
i=1(f(xi) − yi)

2.
The right most two columns of the table show results for the full-fledge
two-stage learning for our method and CLO, with domain-dependent weight
learning and the domain adaptation step. The other models are trained directly
on the given training sets. For all methods we use five-fold cross-validation on
the domain-specific sets.

Table 3.1 clearly shows that our CRR-BoO method outperforms all alternative
methods by a significant margin. Most noteworthy is the music domain, which
is not covered by the mixed-domain corpus. As expected, unigrams only
perform poorly, and adding bigrams leads only to marginal improvements.
BCR pursues a dense solution for unigrams and a sparse solution for
variable-length n-grams, but due to the sparsity of occurence of long n-grams,
it filters out many interesting-but-infrequent ngrams and therefore performs
worse than the dense solution of the uni+bi model. The CLO method of (Liu
and Seneff, 2009) shows unexpectedly poor performance. Its main limitation is
the assumption that sentiment scores are identical within one document. This
does not hold in documents with mixed sentiment polarities. It also results in
conflicts for sentiment components that occur in both positive and negative
documents. In contrast, CRR-BoO naturally captures the mixture of sentiments
as a bag of positive/negative scores. We only require that the mean of
sentiment scores equals the overall document rating.

The right most column of Table 1 shows that our method can be improved by
learning sentiment scores from the large mixed-domain corpus. However, the
high error rates of the models learned directly on the DD+MD corpus show
that direct training on the DD+MD combination can introduce a significant
amount of noise into the prediction models. Although the noise can be reduced
by downweighting the influence of documents from MD, the performance is
still comparable to directly learning only from the domain-dependent corpora.
Thus, the two stages of our method (learning domain-independent sentiment
scores plus domain-adaptation) are decisive for a good performance, and the
sentiment-lexicon-based BoO model leads to robust learning of
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sentiment score

good 0.18
recommend 1.64
most difficult -1.66
but it gets very good! 2.37
would highly recommend 2.73
would not recommend -1.93

Table 3.2: Example sentiments learned from the Amazon mixed-domain corpus.

domain-independent sentiment scores.

Another useful property of BoO is its high interpretability. Table 3.2 shows
example sentiment scores learned from the mixed-domain corpus. We observe
that the scores corelate well with our intuitive interpretation of sentiments.

Our CRR-BoO method is highly scalable. Excluding the preprocessing steps
(same for all methods), the learning of sentiment component weights from the
ca. 350,000 domain-independent reviews takes only 11 seconds.

3.5 Conclusion

In this chapter we show that the bag-of-opinions (BoO) representation is better
suited for capturing the expressive power of n-grams while at the same time
overcoming their sparsity bottleneck. Although in this chapter we use the BoO
representation to model domain-independent sentiments, we believe the same
framework can be extended to domain-dependent sentiments and other NLP
applications which can benefit from modelling n-grams (given that the n-grams
are decomposable in some way). Moreover, the learned model can be regarded
as a domain-independent sentiment lexicon with each entry in the lexicon
having an associated score indicating its polarity and intensity. This in turn has
potential applications in sentiment summarization, opinionated information
retrieval and opinion extraction.
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Chapter 4

Sentence Rating Prediction

The previous chapter introduced the bag-of-opinions model, which provides
coarse-grained information to understand users’ preference to entities (such as
products or movies) mentioned in online reviews. To understand why users like
or dislike certain items, however, we need to perform more fine-grained
analysis of the review text itself. Therefore, this chapter presents the weakly
supervised multi-experts model (MEM), which analyzes the polarity and
intensity of sentiments expressed in sentences of online reviews.

4.1 Overview

4.1.1 Motivation

This chapter discusses the task of identifying polarity and intensity of
sentiments expressed at the sentence level. The two quantities are jointly
analyzed in the form of numerical ratings. A key challenge in fine-grained
rating prediction is that fine-grained training data for both polarity and
intensity is hard to obtain. We thus focus on a weakly supervised setting in
which only coarse-level training data (such as document ratings and
subjectivity lexicons) and, optionally, a small amount of fine-grained training
data (such as sentence polarities) is available.

A number of lexicon-based approaches for phrase-level rating prediction has
been proposed in the literature (Taboada et al., 2011; Qu et al., 2010). These
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methods utilize a subjectivity lexicon of words along with information about
their polarity and intensity; they focus on phrases that contain words from the
lexicon. A key advantage of sentence-level methods is that they are able to
cover all sentences in a review and that phrase identification is avoided. To the
best of our knowledge, the problem of rating prediction at the sentence level
has not been addressed in the literature. A naive approach would be to simply
average phrase-level ratings. Such an approach performs poorly, however,
since (1) phrases are analyzed out of context (e.g., modal verbs or conditional
clauses), (2) domain-dependent information about polarity and intensity is not
captured in the lexicons, (3) only phrases that contain lexicon words are
covered. Here (1) and (2) lead to low precision, (3) to low recall.

4.1.2 Contribution

To address the challenges outlined above, we propose the weakly supervised
multi-experts model (MEM) for sentence-level rating prediction. MEM starts
with a set of potentially noisy indicators of sentiments including phrase-level
predictions, language heuristics, and co-occurrence counts. We refer to these
indicators as base predictors; they constitute the set of experts used in our model.
MEM is designed such that new base predictors can be easily integrated. Since
the information provided by the base predictors can be contradicting, we use
ideas from ensemble learning (Dietterichl, 2002) to learn the most confident
indicators and to exploit domain-dependent information revealed by document
ratings. Thus, instead of averaging base predictors, MEM integrates their
features along with the available coarse-grained training data into a unified
probabilistic model.

The integrated model can be regarded as a Gaussian process (GP)
model (Rasmussen, 2004) with a novel multi-expert prior. The multi-expert prior
decomposes into two component distributions. The first component
distribution integrates sentence-local information obtained from the base
predictors. It forms a special realization of stacking (Dzeroski and Zenko, 2004)
but uses the features from the base predictors instead of the actual predictions.
The second component distribution propagates sentiment information across
similar sentences using techniques from graph-based semi-supervised learning
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(GSSL) (Zhu et al., 2003; Belkin et al., 2006b). It aims to improve the predictions
on sentences that are not covered well enough by our base predictors.

In summay, the key constributions of MEM are the following:

• Among the probabilistic models applied for sentiment analysis, MEM
allows integrating the richest resources to tackle the target task.

• As traditional GSSL algorithms support either discrete labels
(classification) or numerical labels (regression), MEM extends these
techniques to support both types of labels simultaneously.

• Our model uses a novel variant of word sequence kernels (Cancedda
et al., 2003) to measure sentence similarity. Our kernel takes the relative
positions of words but also their sentiment scores and synonymity into
account.

• Our experiments indicate that MEM significantly outperforms prior work
in both sentence-level rating prediction and sentence-level polarity
classification.

4.1.3 Related Work

Weakly Supervised Learning

Supervised approaches for sentiment analysis focus mainly on opinion mining
at the document level (Pang and Lee, 2004; Pang et al., 2002b; Pang and Lee,
2005b; Goldberg and Zhu, 2006), but have also been applied to sentence-level
polarity classification in specific domains (Mao and Lebanon, 2006; Pang and
Lee, 2004; McDonald et al., 2007b). In these settings, a sufficient amount of
training data is available. In contrast, we focus on opinion mining tasks with
little or no fine-grained training data.

The weakly supervised HCRF model (Täckström and McDonald, 2011a,b) for
sentence-level polarity classification is perhaps closest to our work in spirit.
Similar to MEM, HCRF uses coarse-grained training data and, when available,
a small amount of fine-grained sentence polarities. In contrast to MEM, HCRF

53



Chapter 4 Sentence Rating Prediction

does not predict the sentiment intensity and ignores the order of words within
sentences.

Lexicon-based Methods

There exists a large number of lexicon-based methods for polarity
classification (Ding et al., 2008b; Choi and Cardie, 2009b; Hu and Liu, 2004b;
Zhuang et al., 2006b; Fu and Wang, 2010; Ku et al., 2008; Wang et al., 2013).
Most of them rely on linguistically-motivatedd rules so that they fail to detect
many domain dependent textual patterns of sentiments. The lexicon-based
methods of (Taboada et al., 2011; Qu et al., 2010) also predict ratings at the
phrase level; these methods are used as experts in our model.

Ensemble and GSSL Methods

MEM leverages ideas from ensemble learning (Dietterichl, 2002; Bishop et al.,
2006) and GSSL methods (Zhu et al., 2003; Zhu and Ghahramani, 2002;
Chapelle et al., 2006; Belkin et al., 2006b). The ensemble methods such as
stacking (Dietterichl, 2002) and bagging (Breiman, 1996) combine multiple
weak learners in an attempt to produce a strong predictor, whereas GSSL
methods aim to build a robust model by making use of both labeled and
unlabeled data. We extend GSSL with support for multiple, heterogenous
labels. This allows us to integrate our base predictors as well as the available
training data into a unified model that exploits that strengths of algorithms
from both families.

4.2 Base Predictors

Each of our base predictors predicts the polarity or the rating of a single phrase.
As indicated above, we do not use these predictions directly in MEM but instead
integrate the features of the base predictors (see Sec. 4.3.4). MEM is designed
such that new base predictors can be integrated easily.
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Our base predictors use a diverse set of available web and linguistic resources.
The hope is that this diversity increases overall prediction
performance (Dietterichl, 2002): The statistical polarity predictor focuses on local
syntactic patterns; it is based on corpus statistics for sentiment-bearing words
and sentiment topic words. The heuristic polarity predictor uses manually
constructed rules to achieve high precision but low recall. Both the
bag-of-opinions rating predictor and the SO-CAL rating predictor are based on
lexicons. The BoO predictor uses a lexicon trained from a large generic-domain
corpus and is recall-oriented; the SO-CAL predictor uses a different lexicon
with manually assigned weights and is precision-oriented.

4.2.1 Statistical Polarity Predictor

The polarity of an sentiment-bearing word strongly depends on its target word.
For example, consider the phrase “I began this novel with the greatest of hopes
[...]”. Here, “greatest” has a positive polarity in all subjectivity lexicons, but the
combination “greatest of hopes” often indicates a negative sentiment. We refer
to a pair of sentiment-bearing word (“greatest”) and a target word (“hopes”) as
an sentiment-target pair. Our statistical polarity predictor learns the polarity of
sentiments and targets jointly, which increases the robustness of its predictions.

Syntactic dependency relations of the form A
R
−→ B are a strong indicator for

sentiment-target pairs (Qiu et al., 2009; Zhuang et al., 2006b); e.g.,
“great” nmod

−−−→“product”. To achieve high precision, we only consider pairs
connected by the following predefined set of shortest dependency paths:

verb
subj←−− noun, verb

obj←− noun, adj nmod
−−−→ noun, adj

prd
−−→ verb

subj←−− noun. We
only retain sentiment-target pairs that are sufficiently frequent.

For each extracted pair z, we count how often it co-occurs with each document
polarity y ∈ Y , where Y = {positive,negative, other} denotes the set of polarities.
If z occurs in a document but is preceded by a negator, we treat it as a
co-occurrence of opposite document polarity. If z occurs in a document with
polarity other, we count the occurrence with only half weight, i.e., we increase
both #z and #(other, z) by 0.5. These documents are typically a mixture of
positive and negative sentiments so that we want to reduce their impact. The
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marginal distribution of polarity label y given that z occurs in a sentence is
estimated as P(y | z) = #(y, z)/#z. The predictor is trained using the text and
ratings of the reviews in the training data, i.e., without relying on fine-grained
annotations.

The statistical polarity predictor can be used to predict sentence-level polarities
by averaging the phrase-level predictions. As discussed previously, such an
approach is problematic; we use it as a baseline approach in our experimental
study. We also employ phrase-level averaging to estimate the variance of base
predictors; see Sec. 4.3.3. Denote by Z(x) the set of sentiment-target pairs in
sentence x. To predict the sentence polarity y ∈ Y , we take the Bayesian
average of the phrase-level predictors:
P(y | Z(x)) =

∑
z∈Z(x) P(y | z)P(z) =

∑
z∈Z(x) P(y, z). Thus the most likely

polarity is the one with the highest co-occurrence count.

4.2.2 Heuristic Polarity Predictor

Heuristic patterns can also serve as base predictors. In particular, we found that
some authors list positive and negative aspects separately after keywords such
as “pros” and “cons”. A heuristic that exploits such patterns achieved a high
precision (> 90%) but low recall (< 5%) in our experiments.

4.2.3 Bag-of-Opinions Rating Predictor

We leverage the bag-of-opinion (BoO) model of Qu et al. (2010) as a base
predictor for phrase-level ratings. As mentioned in the previous chapter, a
sentiment-bearing expression consists of a sentiment root (e.g., “good”)
contained in the MPQA lexicon Wilson et al. (2005), optionally a set of
modifiers (e.g., “very”) and negators (e.g., “not”). After learning the weights
for each component of such expressions from a mixed-domain corpus, the
phrase scores are computed by the function (3.1).
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4.2.4 SO-CAL Rating Predictor

The Semantic Orientation Calculator (SO-CAL) of Taboada et al. (2011) also
predicts phrase-level ratings via a scoring function similar to the one of BoO.
The SO-CAL predictor uses a manually created lexicon, in which each word is
classified as either an sentiment-bearing word (associated with a numerical
score), a modifier (also associated with a numerical score), or a negator.
SO-CAL employs various heuristics to detect irrealis and to correct for the
positive bias inherent in most lexicon-based classifiers. Compared to BoO,
SO-CAL has lower recall but higher precision.

4.3 Multi-Experts Model

Our multi-experts model incorporates features from the individual base
predictors, coarse-grained labels (i.e., document ratings or polarities),
similarities between sentences, and optionally a small amount of sentence
polarity labels into an unified probabilistic model. We first give an overview of
MEM, and then describe its components in detail.

4.3.1 Model Overview

Denote by X = {x1, . . . , xN} a set of sentences. We associate each sentence xi with
a set of initial labels ŷi, which are strong indicators of sentiment polarity and
intensity: the coarse-grained rating of the corresponding document, the
polarity label of our heuristic polarity predictor, the phrase-level ratings from
the SO-CAL predictor, and optionally a manual polarity label. Note that the
number of initial labels may vary from sentence to sentence and that initial
labels are heterogeneous in that they refer to either polarities or ratings. Let
Ŷ = {ŷ1, . . . , ŷN}. Our goal is to predict the unobserved ratings r = {r1, . . . , rN} of
each sentence.

Our multi-experts model is a probabilistic model for X, Ŷ, and r. In particular,
we model the rating vector r via a multi-experts prior PE(r | X,β) with
parameter β (Sec. 4.3.2). PE integrates both features from the base predictors
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and sentence similarities. We correlate ratings to initial labels via a set of
conditional distributions Pb(ŷb | r), where b denotes the type of initial label
(Sec. 4.3.3). The posterior of r is then given by

P(r | X, Ŷ,β) ∝
∏
b

Pb(ŷb | r)PE(r | X,β).

Note that the posterior is influenced by both the multi-experts prior and the set
of initial labels.

We use MAP inference to obtain the most likely rating of each sentence, i.e., we
solve

arg min
r,β

−
∑
b

log(Pb(ŷb | r)) − log(PE(r | X,β)),

where as before β denotes the model parameters. We solve the above
optimization problem using cyclic coordinate descent (Friedman et al., 2010).

4.3.2 Multi-Experts Prior

The multi-experts prior PE(r | X,β) consists of two component distributions N1
and N2. Distribution N1 integrates features from the base predictors, N2
incorporates sentence similarities to propagate information across sentences.

In a slight abuse of notation, denote by xi the set of features for the i-th
sentence. Vector xi contains the features of all the base predictors but also
includes bigram features for increased coverage of syntactic patterns; see
Sec. 4.3.4 for details about the feature design. Let m(xi) = βTxi be a linear
predictor for ri, where β is a real weight vector. Assuming Gaussian noise, ri
follows a Gaussian distribution N1(ri | mi, σ

2) with mean mi = m(xi) and
variance σ2. Note that predictor m can be regarded as a linear combination of
base predictors because both m and each of the base predictors are linear
functions. By integrating all features into a single function, the base predictors
are trained jointly so that weight vector β automatically adapts to
domain-dependent properties of the data. This integrated approach
significantly outperformed the alternative approach of using a weighted vote
of the individual predictions made by the base predictors. We regularize the
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weight vector β using a Laplace prior P(β | α) with parameter α to encourage
sparsity.

Note that the bigram features in xi partially capture sentence similarity.
However, such features cannot be extended to longer subsequences such as
trigrams due to data sparsity: useful features become as infrequent as noisy
terms. Moreover, we would like to capture sentence similarity using gapped
(i.e., non-consecutive) subsequences. For example, the sentences “The book is
an easy read.” and “It is easy to read.” are similar but do not share any
consecutive bigrams. They do share the subsequence “easy read”, however. To
capture this similarity, we make use of a novel sentiment-augmented variant of
word sequence kernels (Cancedda et al., 2003). Our kernel is used to construct
a similarity matrix W among sentences and the corresponding regularized
Laplacian L̃. To capture the intuition that similar sentences should have similar
ratings, we introduce a Gaussian prior N2(r | 0, L̃−1) as a component into our
multi-experts prior; see Sec. 4.3.5 for details and a discussion of why this prior
encourages similar ratings for similar sentences.

Since the two component distributions feature different expertise, we take their
product and obtain the multi-experts prior

PE(r | X,β) ∝ N1(r | m, Iσ2)N2(r | 0, L̃−1)P(β | α),

where m = (m1, . . . ,mN). Note that the normalizing constant of PE can be
ignored during MAP inference since it does not depend on β.

4.3.3 Incorporating Initial Labels

Recall that the initial labels Ŷ provide strong clues about sentiments expressed
in each sentence; they correspond to either discrete polarity labels or to
continuous rating labels. This heterogeneity constitutes the main difficulty for
incorporating the initial labels via the conditional distributions Pb(ŷb | r). We
assume independence throughout so that Pb(ŷb | r) =

∏
i Pb(ŷ

b
i | ri).

Rating Labels For continuous labels, we assume Gaussian noise and set
Pb(ŷ

b
i | ri) = N (ŷbi | ri, η

b
i ), where variance ηbi is a type- and
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sentence-dependent.

For SO-CAL labels, we simply set ηSO-CAL
i = ηSO-CAL, where ηSO-CAL is a

hyperparameter. The SO-CAL scores have limited influence in our overall
model; we found that more complex designs lead to little improvement. We
proceed differently for document ratings. Our experiment suggests that
document ratings constitute the most important indicator of the rating of a
sentence. Thus sentence ratings should be close to document ratings unless
strong evidence to the contrary exists. In other words, we want variance ηDoc

i to
be small.

When no manually created sentence-level polarity labels are available, we set
the value of ηDoc

i depending on the polarity class. In particular, we set ηDoc
i = 1

for both positive and negative documents, and ηDoc
i = 2 for neutral documents.

The reasoning behind this choice is that sentence ratings in neutral documents
express higher variance because these documents often contain a mixture of
positive and negative sentences.

When a small set of manually created sentence polarity labels is available, we
train a classifier that predicts whether the sentence polarity coincides with the
document polarity. If so, we set the corresponding variance ηDoc

i to a small
value; otherwise, we choose a larger value. In particular, we train a logistic
regression classifier (Bishop et al., 2006) using the following binary features: (1)
an indicator variable for each document polarity, and (2) an indicator variable
for each triple of base predictor, predicted polarity, and document polarity (set
to 1 if the polarities match). We then set ηDoc

i = (τpi)
−1, where pi is the

probability of matching polarities obtained from the classifier and τ is a
hyperparameter that ensures correct scaling.

Polarity Labels We now describe how to model the correlation between the
polarity of a sentence and its rating. An simple and effective approach is to
partition the range of ratings into three consecutive partitions, one for each
polarity class. We thus considering the polarity classes {positive, other,negative}
as ordered and formulate polarity classification as an ordinal regression
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Figure 4.1: Distribution of polarity given rating.

problem (Chu and Ghahramani, 2006). We immediately obtain the distribution

Pb(ŷ
b
i = pos | ri) = Φ

(
ri − b

+√
ηb

)

Pb(ŷ
b
i = oth | ri) = Φ

(
b+ − ri√

ηb

)
−Φ

(
b− − ri√

ηb

)

Pb(ŷ
b
i = neg | ri) = Φ

(
b− − ri√

ηb

)
,

where b+ and b− are the partition boundaries between positive/other and
other/negative, respectively,1 Φ(x) denotes the cumulative distribution function
of the Gaussian distribution, and variance ηb is a hyperparameter. It is easy to
verify that

∑
ŷbi ∈Y

p(ŷbi | ri) = 1. The resulting distribution is shown in Fig. 4.1.
We can use the same distribution to use MEM for sentence-level polarity
classification; in this case, we pick the polarity with the highest probability.

1We set b+ = 0.3 and b− = −0.3 to calibrate to SO-CAL, which treats ratings in [−0.3, 0, 3] as
polarity other.
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4.3.4 Incorporating Base Predictors

Base predictors are integrated into MEM via component N1(ri | mi, σ
2) of the

multi-experts prior (see Sec. 4.3.2). Recall that mi is a linear function of the
features xi of each sentence. In this section, we discuss how xi is constructed
from the features of the base predictors. New base predictors can be integrated
easily by exposing their features to MEM.

Most base predictors operate on the phrase level; our goal is to construct
features for the entire sentence. Denote by nbi the number of phrases in the i-th
sentence covered by base predictor b, and let obij denote a set of associated
features. Features obij may or may not correspond directly to the features of base
predictor b; see the discussion below. A straightforward strategy is to set
xbi = (nbi )

−1
∑

j o
b
ij. We proceed slightly differently and average the features

associated with phrases of positive prior polarity separately from those of
phrases with negative prior polarity (Taboada et al., 2011). We then concatenate
the averaged feature vectors, i.e., we set xbi = (ōb,pos

ij ōb,neg
ij ), where ōb,pij denotes

the average of the feature vectors obij associated with phrases of prior polarity p.
This procedure allows us to learn a different weight for each feature depending
on its context (e.g., the weight of intensifier “very” may differ for positive and
negative phrases). We construct xi by concatenating the sentence-level features
xbi of each base predictor and a feature vector of bigrams.

To integrate a base predictor, we only need to specify the relevant features and,
if applicable, prior phrase polarities. For our choice of base predictors, we use
the following features:

SO-CAL predictor. The prior polarity of a SO-CAL phrase is given by the
polarity of its sentiment-bearing word in the SO-CAL lexicon. The feature
vector oSO-CAL

ij consists of the weight of the sentiment-bearing word from the
lexicon as well the set of negator words, irrealis marker words, and modifier
words in the phrase. Moreover, we add the first two words preceding the
sentiment-bearing word as context features (skipping nouns, negators, irrealis
markers, and intensifiers, and stopping at clause boundaries). All words are
encoded as binary indicator features.

BoO predictor. Similar to SO-CAL, we determine the prior polarity of a phrase
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based on the BoO dictionary. In contrast to SO-CAL, we directly use the BoO
score as a feature because the BoO predictor weights have been trained on a
very large corpus and are thus reliable. We also add irrealis marker words in the
form of indicator features.

Statistical polarity predictor. Recall that the statistical polarity predictor is
based on co-occurrence counts of sentiment-topic pairs and document
polarities. We treat each sentiment-topic pair as a phrase and use the most
frequently co-occurring polarity as the phrase’s prior polarity. We use the
logarithm of the co-occurrence counts with positive, negative, and other
polarity as features; this set of features performed better than using the
co-occurrence counts or estimated class probabilities directly. We also add the
same type of context features as for SO-CAL, but rescale each binary feature by
the logarithm of the occurrence count #z of the sentiment-topic pair (i.e., the
features take values in {0, log #z}).

4.3.5 Incorporating Sentence Similarities

The component distribution N2(r | 0, L̃−1) in the multi-experts prior encourages
similar sentences to have similar ratings. The main purpose of N2 is to
propagate information from sentences on which the base predictors perform
well to sentences for which base prediction is unreliable or unavailable (e.g.,
because they do not contain sentiment-bearing words). To obtain this
distribution, we first construct an N × N sentence similarity matrix W using a
sentiment-augmented word sequence kernel (see below). We then compute the
regularized graph Laplacian L̃ = L + I/λ2 based on the unnormalized graph
Laplacian L = D − W (Chapelle et al., 2006), where D be a diagonal matrix with
dii =

∑
jwij and hyperparameter λ2 controls the scale of sentence ratings.

To gain insight into distribution N2, observe that

N2(r | 0, L̃−1) ∝ exp
(
−
1

2

∑
i,j

wij(ri − rj)
2 − ‖r‖22/λ2

)
.

The left term in the exponent forces the ratings of similar sentences to be similar:
the larger the sentence similarity wij, the more penalty is paid for dissimilar
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ratings. For this reason, N2 has a smoothing effect. The right term is an L2
regularizer and encourages small ratings; it is controlled by hyperparameter λ2.

The entries wij in the sentence similarity matrix determine the degree of
smoothing for each pair of sentence ratings. We compute these values by a
novel sentiment-augmented word sequence kernel, which extends the
well-known word sequence kernel of Cancedda et al. (2003) by (1) BoO weights
to strengthen the correlation of sentence similarity and rating similarity and (2)
synonym resolution based on WordNet (Miller, 1995b).

In general, a word sequence kernel computes a similarity score of two
sequences based on their shared subsequences. In more detail, we first define a
score function for a pair of shared subsequences, and then sum up these scores
to obtain the overall similarity score. Consider for example the two sentences
“The book is an easy read.” (s1) and “It is easy to read.” (s2) along with the
shared subsequence “is easy read” (u). Observe that the words “an” and “to”
serve as gaps as they are not part of the subsequence. We represent
subsequence u in sentence s via a real-valued projection function φu(s). In our
example, φu(s1) = υisυ

g
anυeasyυread and φu(s2) = υisυeasyυ

g
toυread. The decay

factors υw ∈ (0, 1] for matching words characterize the importance of a word
(large values for significant words). On the contrary, decay factors υgw ∈ (0, 1]

for gap words are penalty terms for mismatches (small values for significant
words). The score of subsequence u is defined as φu(s1)φu(s2). Thus two
shared subsequences have high similarity if they share significant words and
few gaps. Following Cancedda et al. (2003), we define the similarity between
two sequences as

kn(si, sj) =
∑
u∈Ωn

φu(si)φu(sj),

where Ω is a finite set of words and n denotes the length of the considered
subsequences. This similarity function can be computed efficiently using
dynamic programming.

To apply the word sequence kernel, we need to specify the decay factors. A
traditional choice is υw = log( N

Nw
)/ log(N), where Nw is the document

frequency of the word w and N is the total number of documents. This IDF
decay factor is not well-suited to our setting: Important sentiment-bearing
words such as “great” have a low IDF value due to their high document
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frequency. To overcome this problem, we incorporate additional weights for
sentiment-bearing words using the BoO lexicon. To do so, we first rescale the
BoO weights into [0, 1] using the sigmoid g(w) = (1 + exp(−aωw + b))−1,
where ωw denotes the BoO weight of word w.2 We then set
υw = min(log( N

Nw
)/ log(N) + g(w), 0.9). The decay factor for gaps is given by

υgw = 1 − υw. Thus we strongly penalize gaps that consist of infrequent words
or sentiment-bearing words.

To address data sparsity, we incorporate synonyms and hypernyms from
WordNet into our kernel. In particular, we represent words found in WordNet
by their first two synset names (for verbs, adjectives, nouns) and their direct
hypernym (nouns only). Two words are considered the same when their
synsets overlap. Thus, for example, “writer” has the same representation as
“author”.

To build the similarity matrix W, we construct a k-nearest-neighbor graph for
all sentences.3 We consider subsequences consisting of three words (i.e.,
wij = k3(si, sj)); longer subsequences are overly sparse, shorter subsequences
are covered by the bigrams features in N1.

4.4 Experiments

We evaluated both MEM and a number of alternative approaches for both
sentence-level polarity classification and sentence-level intensity prediction
across a number of domains. We found that MEM outperforms state-of-the-art
approaches by a significant margin.

4.4.1 Experimental Setup

We implemented MEM as well as the HCRF classifier of (Täckström and
McDonald, 2011b,a), which is the best-performing estimator of sentence-level
polarity in the weakly-supervised setting reported in the literature. We train

2We set a = 2 and b = 1 in our experiments.
3We use k = 15 and only consider neighbors with a similarity above 0.001.
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both methods using (1) only coarse labels (MEM-Coarse, HCRF-Coarse) and (2)
additionally a small number of sentence polarities (MEM-Fine, HCRF-Fine4).
We also implemented a number of baselines for both polarity classification and
intensity prediction: a document oracle (DocOracle) that simply uses the
document label for each sentence, the BoO rating predictor (BaseBoO), and the
SO-CAL rating predictor (BaseSO-CAL). For polarity classification, we compare
our methods also to the statistical polarity predictor (Basepolarity). To judge on
the effectiveness of our multi-export prior for combining base predictors, we
take the majority vote of all base predictors and document polarity as an
additional baseline (Majority-Vote). Similarly, for intensity prediction, we take
the arithmetic mean of the document rating and the phrase-level predictions of
BaseBoO and BaseSO-CAL as a baseline (Mean-Rating). We use the same
hyperparameter setting for MEM across all our experiments.

We evaluated all methods on Amazon reviews from different domains using
the corpus of Ding et al. (2008b) and the test set of Täckström and McDonald
(2011b). For each domain, we constructed a large balanced dataset by randomly
sampling 33,000 reviews from the corpus of Ding et al. (2008b). We chose the
books, electronics, and music domains for our experiments; the dvd domain
was used for development. For sentence polarity classification, we use the test
set of Täckström and McDonald (2011b), which contains roughly 60 reviews per
domain (20 for each polarity). For intensity evaluation, we created a test set of
300 pairs of sentences per domain from the polarity test set. Each pair consisted
of two sentences of the same polarity; we manually determined which of the
sentences is more positive. We chose this pairwise approach because (1) we
wanted the evaluation to be invariant to the scale of the predicted ratings, and
(2) it much easier for human annotators to rank a pair of sentences than to rank
a large collection of sentences.

We followed Täckström and McDonald (2011a) and used 3-fold
cross-validation, where each fold consisted of a set of roughly 20 documents
from the test set. In each fold, we merged the test set with the reviews from the
corresponding domain. For MEM-Fine and HCRF-Fine, we use the data from
the other two folds as fine-grained polarity annotations. For our experiments

4We used the best-performing model that fuses HCRF-Coarse and the supervised model
(McDonald et al., 2007b) by interpolation.
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on polarity classification, we converted the predicted ratings of MEM, BaseBoO,
and BaseSO-CAL into polarities by the method described in Sec. 4.3.3. We
compare the performance of each method in terms of accuracy, which is
defined as the fraction of correct predictions on the test set (correct label for
polarity / correct ranking for intensity). All reported numbers are averages
over the three folds. In our tables, boldface numbers are statistically significant
against all other methods (t-test, p-value 0.05).

4.4.2 Results for Polarity Classification

Table 4.1 summarizes the results of our experiments for sentence polarity
classification. The base predictors perform poorly across all domains, mainly
due to the aforementioned problems associated with averaging phrase-level
predictions. In fact, DocOracle performs almost always better than any of the
base predictors. However, accurracy increases when we combine base
predictors and DocOracle using majority voting, which indicates that ensemble
methods work well.

When no fine-grained annotations are available (HCRF-Coarse, MEM-Coarse),
both MEM-Coarse and Majority-Vote outperformed HCRF-Coarse, which in
turn has been shown to outperform a number of lexicon-based methods as well
as classifiers trained on document labels (Täckström and McDonald, 2011b).
MEM-Coarse also performs better than Majority-Vote. This is because MEM
propagates evidence across similar sentences, which is especially useful when
no explicit sentiment-bearing words exist. Also, MEM learns weights of
features of base predictors, which leads to a more adaptive integration, and our
ordinal regression formulation for polarity prediction allows direct competition
among positive and negative evidence for improved accuracy.

When we incorporate a small amount of sentence polarity labels (HCRF-Fine,
MEM-Fine), the accuracy of all models greatly improves. HCRF-Fine has been
shown to outperform the strongest supervised method on the same
dataset (McDonald et al., 2007b; Täckström and McDonald, 2011a). MEM-Fine
falls short of HCRF-Fine only in the electronics domain but performs better on
all other domains. In the book and music domains, where MEM-Fine is
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Book Electronics Music Avg

Basepolarity 43.7 40.3 43.8 42.6

BaseBoO 50.9 48.9 52.6 50.8

BaseSO-CAL 44.6 50.2 45.0 46.6

DocOracle 51.9 49.6 59.3 53.6

Majority-Vote 53.7 53.4 58.7 55.2

HCRF-Coarse 52.2 53.4 57.2 54.3

MEM-Coarse 54.4 54.9 64.5 57.9

HCRF-Fine 55.9 61.0 58.7 58.5

MEM-Fine 59.7 59.6 63.8 61.0

Table 4.1: Accuracy of polarity classification per domain and averaged across
domains.

Book Electronics Music

op fact op fact op fact

HCRF-Fine 55.7 55.9 63.3 54.6 59.0 57.4

MEM-Fine 58.9 62.4 60.7 56.7 64.5 60.8

Table 4.2: Accuracy of polarity classification for sentences with sentiment words
(op) and without sentiment words (fact).

particularly effective, many sentences feature complex syntactic structure and
sentiment-bearing words are often used without reference to the quality of the
product (but to describe contents, e.g., “a love story” or “a horrible accident”).

Our models perform especially well when they are applied to sentences
containing no or few sentiment words from lexicons. Table 4.2 reports the
evaluation results for both sentences containing sentiment-bearing words from
either MPQA or SO-CAL lexicons and for sentences containing no such words.
The results explain why our model falls short of HCRF-Fine in the electronics
domain: reviews of electronic products contain many sentiment-bearing words,
which almost always express sentiments. Nevertheless, MEM-Fine handles
sentences without explicit sentiment-bearing words well across all domains;
here the propagation of information across sentences helps to learn the facts
implying evaluation (such as “short battery life”).
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We found that for all methods, most of the errors are caused by misclassifying
positive/negative sentences as other and vice versa. Moreover, sentences with
polarity opposite to the document polarity are hard cases if they do not feature
frequent strong patterns. Another difficulty lies in off-topic sentences, which
may contain explicit sentiment-bearing words but are not related to the item
under review. This is one of the main reasons for the poor performance of the
lexicon-based methods.

Overall, we found that MEM-Fine is the method of choice. Thus our
multi-experts model can indeed balance the intensity of the individual experts
to obtain better estimation accuracy.

4.4.3 Results for Strength Prediction

Table 4.3 shows the accuracy results for intensity prediction. Here our models
outperformed all baselines by a large margin. Although document ratings are
strong indicators in the polarity classification task, they lead to worse
performance than lexicon-based methods. The main reason for this drop in
accuracy is that the document oracle assigns the same rating to all sentences
within a review. Thus DocOracle cannot rank sentences from the same review,
which is a severe limitation. This shortage can be partly compensated by
averaging the base predictions and document rating (Mean-Rating). Note that
it is non-trivial to apply existing ensemble methods for the weights of
individual base predictors because of the absence of the sentence ratings as
training labels. In contrast, our MEM models use indirect supervision to
adaptively assign weights to the features from base predictors. Similar to
polarity classification, a small amount of sentence polarity labels often
improved the performance of MEM.

4.5 Conclusion

We proposed the Multi-Experts Model for analyzing both sentiment polarity and
intensity at the sentence level. MEM is weakly supervised; it can run without
any fine-grained annotations but is also able to leverage such annotations when
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Book Electronics Music Avg

BaseBoO 58.3 51.6 53.5 54.5

BaseSO-CAL 60.6 57.1 47.6 55.1

DocOracle 45.1 36.2 41.4 40.9

Mean-Rating 70.3 57.0 60.8 62.7

MEM-Coarse 68.7 60.5 69.5 66.2

MEM-Fine 72.4 63.3 67.2 67.6

Table 4.3: Accuracy of intensity prediction.

available. MEM is driven by a novel multi-experts prior, which integrates a
number of diverse base predictors and propagates information across sentences
using a sentiment-augmented word sequence kernel. Our experiments indicate
that MEM achieves better overall accuracy than alternative methods.
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Chapter 5

Subsentential Relationship
Extraction

Previous chapters discussed document-level and sentence-level sentiment
analysis regardless of the entities mentioned in text. However, if we want to
identify sentiments with respect to entities, we need both syntactic and
semantic analysis at both sentence and expression level. We refer to this task as
subsentential relationship extraction. This chapter presents SENTI-LSSVMRAE, a
method capable of extracting both binary and ternary sentiment-oriented
relationships from sentences. It can learn from training datasets that do not
contain explicit annotations of sentiment-bearing expressions. The empirical
evaluation shows that SENTI-LSSVMRAE significantly outperforms the
state-of-the-art baselines across domains (camera and movie) and across genres
(reviews and forum posts).

5.1 Overview

5.1.1 Motivation

Sentiment-oriented relationship extraction is concerned with recognizing
sentiments and comparisons between entities with respect to their attributes
from natural language text. A critical challenge of this task is that a significant
amount of sentences contain more than one type of relationships and most
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sentences are mixtures of both subjective and objective expressions (Wilson,
2008; Wiebe et al., 2005). However, most prior work of sentiment analysis focus
on an individual task, either subjective sentence detection (Yu and Kübler,
2011), polarity classification (Johansson and Moschitti, 2011; Wilson et al.,
2005), or comparative relationship identification (Jindal and Liu, 2006b;
Ganapathibhotla and Liu, 2008). Therefore, our goal is to identify both
comparative relationships and the sentiment polarity for entities of interest
simultaneously from online reviews and forums, with an assumption that all the
mentions of (disambiguated) entities and attributes are given. More
specifically, we focus on extracting two types of relationships from text:

• Sentiment. We are interested in positive and negative sentiments regarding
an entity and its attribute. Thus, a sentiment is a binary relationship in the
form of polarity(entity, attribute) (e.g. positive(Nikon D7000, lens)).

• Comparative relationship. This type of relationship expresses the preference
between two entities concerning an attribute, which takes the form of
better(entity A, entity B, attribute), such as better(Nikon D7000, Canon
7D, price). These relationships are also referred to as non-equal gradable
comparative relations in (Jindal and Liu, 2006b).

For example, a forum post might contain the following sentence

• Example 5.1 : “[The Canon SD880i, which you mention], [is probably better
than the SD770i and the SD790is,] [and also has a wide angle view (28mm)].”

Then a relationship extraction system aims to extract the following relationships

better(Canon SD880i, Canon SD770i, product)
better(Canon SD880i, Canon SD790is, product)
positive(Canon SD880i, lens)

where product is augmented as the implied attribute.

To the best of our knowledge, the only existing system capable of extracting
both comparisons and sentiments is a rule-based system proposed by Ding
et al. (2009). We argue that it is better to formulate the task as a learning problem
with structured outputs, because we can exploit the correlation among the
sentiment-oriented relationships expressed in a sentence to improve
performance. As we can see from the above example sentence, we can reduce
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ambiguity by encoding constraints to ensure that “wide angle view” as the
mention of lens participates either in comparative relationships or in
sentiments. We can also infer that lens is more likely to be associated with a
positive sentiment than a negative one given an obvious preference of Canon
SD880i conveyed by the keyword “better”. As a result, a learning based
system should be able to extract a set of correlated relationships from a given
sentence by performing joint inference.

However, constructing a fully annotated training corpus for this task is
labor-intensive and time-consuming. We found that this overhead can be
largely reduced by applying an output-oriented annotation scheme, in which
annotators only mark entity mentions, disambiguate the entities and label the
relationships for each sentence. As the annotations based on our scheme
provide already full semantic information, the annotations of
sentiment-bearing expressions are in fact optional. Based on this scheme, we
have created a small Sentiment Relationship Graph (SRG) corpus, which is
significantly different from the corpora used in prior work (Wei and Gulla,
2010; Kessler et al., 2010; Toprak et al., 2010; Wiebe et al., 2005; Zhuang et al.,
2006a; Hu and Liu, 2004a) in the following perspectives: i) both sentiments and
comparative relationships are annotated; ii) all mentioned entities are
disambiguated; and iii) no subjective expressions are annotated, unless they are
part of entity mentions.

The light weight annotation scheme raises a new challenge for learning
algorithms that they need to automatically find words, phrases or sentences as
textual evidences for each relationship in the training phase. In Example 5.1,
there are the following 12 relationship candidates with unknown relationships
but much less expressions (a set of possible expressions are marked by brackets
in Example 5.1) potentially conveying certain relationships. As the
relationships between entities and attributes are mainly determined by the
linguistic expressions around them, these three expressions are shared by
different relationship candidates, which can be of different relationship types.
The gold standard training data do not contain i) the annotations of
sentiment-bearing expressions; ii) the ones indicating associations between
expressions and relationship candidates. Hence one approach would be to take
all expressions around a relationship candidate as its feature representation.
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(Canon SD880i, Canon SD770i, product)
(Canon SD880i, Canon SD790is, product)
(Canon SD770i, Canon SD790is, product)
(Canon SD880i, Canon SD770i, lens)
(Canon SD880i, Canon SD790is, lens)
(Canon SD770i, Canon SD790is, lens)
(Canon SD880i, lens)
(Canon SD770i, lens)
(Canon SD790is, lens)
(Canon SD880i, product)
(Canon SD770i, product)
(Canon SD790is, product)

Table 5.1: Relationship candidates of Example 5.1.

However, it leads to overly similar representations for candidates of different
types. For example, the relationships better(Canon SD770i, product) and
other(Canon SD880i, Canon SD770i, product) can include the keyword
“better” into their feature representation despite of different relationship types.
As shown in our experiments below, this problem can lead to poor learning
performance. Therefore, a textual fragment should be assigned to a
relationship, only if it conveys the relationship.

Even if the textual evidences are assigned properly to relationships, it is
beneficial to capture the compositionality of expressions for understanding the
sentiment-bearing expressions (Choi and Cardie, 2008; Yessenalina and Cardie,
2011), since the meanings of higher level expressions are often constructed
based on the low level constituents (words and phrases), which may indicate
different sentiments or relationships. Considering the following example
sentences:

• Example 5.2 : It is very difficult to get good images at the long end without a
tripod.

• Example 5.3 : Tom Cruise does not even attempt a German accent and does not
really inject any personality into the role.
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In Example 5.2, the negative expression “It is very difficult to get good images”
contains a positive phrase “good images”. Example 5.3 consists soly of neutral
words, however, these words jointly express a negative sentiment. Learning
the compositional patterns instead of treating them as different word sets or
sequences could make models much easier generalized to unseen data. In our
problem setting, it is more challenging since the SRG corpus contains only a few
hundred documents without any annotated relation-bearing expressions.

5.1.2 Contribution

This chapter presents SENTI-LSSVMRAE, a latent structural SVM (Yu and
Joachims, 2009) based on recursive autoencoder (RAE) (Socher et al., 2011b) for
sentiment oriented multi-relationship extraction. SENTI-LSSVMRAE is applied to
find the most likely set of the relationships expressed in a given sentence,
where the latent variables are used to assign the most appropriate textual
evidences to the respective relationships. To capture the compositionality of
expressions, we model each textual evidence as a latent feature vector and
apply RAE to construct the latent feature vectors of phrases and sentences from
the latent features of words, which are initialized with unlabeled data.

In summary, the contributions of this chapter are the following:

• To our best knowledge, SENTI-LSSVMRAE is the first learning system with
the capability of extracting both binary and ternary sentiment-oriented
relationships.

• We designed a task-specific integer linear programming (ILP) formulation
for inference over the latent structural SVM method.

• The newly constructed SRG corpus is a valuable asset for the evaluation of
sentiment-oriented relationship extraction.

• Our experiments on the online reviews and forum posts show that
SENTI-LSSVMRAE model can i) effectively learn from a training corpus
without explicitly annotated subjective expressions and ii) it significantly
outperforms the state-of-the-art systems.
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5.1.3 Related Work

Fine-grained Sentiment Analysis

There is ample work on analyzing the sentiment polarities and product
comparisons, but the majority of them studied the two tasks in isolation.

Most prior approaches for fine-grained sentiment analysis focus on polarity
classification. Supervised approaches on expression-level analysis require the
annotations of sentiment-bearing expressions as training data (Choi et al., 2006;
Jin et al., 2009; Choi and Cardie, 2010; Yessenalina and Cardie, 2011; Wei and
Gulla, 2010). However, the corresponding annotation process is
time-consuming. Although sentence-level annotations are easier to obtain, the
analysis at this level cannot cope with sentences conveying relationships of
multiple types (McDonald et al., 2007a; Täckström and McDonald, 2011; Socher
et al., 2012). Moreover, lexicon-based approaches require no training data (Ku
et al., 2006; Kim and Hovy, 2006; Godbole et al., 2007a; Ding et al., 2008a;
Popescu and Etzioni, 2005b; Liu et al., 2005) but suffer from inferior
performance (Wilson et al., 2005; Qu et al., 2012). In contrast, our method
requires no annotations of sentiment-bearing expressions for training and can
predict both sentiment polarities and comparative relationships.

Sentiment-oriented comparative relationships have been studied in the context
of user-generated discourse (Jindal and Liu, 2006a,b; Ganapathibhotla and Liu,
2008). Their approaches rely on linguistically-motivated rules and assume the
existence of independent keywords in sentences which indicate comparative
relationships. Therefore, their methods fall short of extracting the comparative
relationships based on domain dependent information.

Learning for Structured Outputs

Structural SVM is a widely used model for the NLP problems with structured
outputs, such as POS tagging and parsing (Tsochantaridis et al., 2004). This
model aims to learn a mapping from input data points x ∈ X to structured
outputs y ∈ Y based on a set of input-output pairs (x1, y1),...,(xn, yn) ∈ X × Y .
The output y ∈ Y could be, for instance, a sequence of POS tags or a constituent
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parse tree for a sentence. And the mapping is obtained by learning a so called
discriminant function F : X × Y → R, which predicts a score for each input-
output pair to reflect their probabilities. Hence we can derive a prediction by
maximizing F over the response variable for a given input x, as shown by the
following equation.

F∗ = arg max
y∈Y

F(x, y; θ) (5.1)

where θ denotes the function parameters. If we further assume the function is
linear, we obtain the linear variant of the model

F∗ = arg max
y∈Y

βΦ(x, y) (5.2)

whereΦ(x, y) is a feature function characterizing input-output pairs and β is the
corresponding weight vector. In most cases, the feature function is in the form
of a feature vector, which stores the numerical values mapped from application
dependent feature-label pairs. To ensure the tractability of inference, the whole
output structure is decomposed into a bag of correlated substructures, which is
the same as factorizing Φ(x, y) into a set of local feature functions, capturing
local patterns of data points. For example, given a sentence x, the linear model
for dependency parsing can be decomposed as

Φ(x, y) =
∑
e∈E

Φe(x, ye)

where Φe(xi, yi) is a local feature function representing an edge and E is the
edge set of a possible parse tree. The feature function could be a vector storing
the value of an indicator function for the co-occurrence of a surface word and a
certain dependency edge label. It could also be a composite function serving as
a automatic feature detector, which are learned by using deep learning
techniques (Socher et al., 2011a). To apply this model to our relationship
extraction task, we can only associate a fixed local feature function with each
relationship candidate, which leads to the overly similar feature
representations for relationships of different types (cf. Section 5.1.1). In
contrast, our model is based on latent structural SVM, which provides the
flexibility to automatically select textual evidence for each relationship and
ensures that a textual evidence conveys at most one relationship of interest.

As indicated by the function (5.1), the inference problems of structural SVM are
solved by finding the most likely output structures given the model
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parameters. Since the models are factorized into a bag of correlated
substructures, this kind of correlations can often be encoded as a set of soft and
hard constraints. Thus it is convenient to formulate the inference as integer
linear programs (Roth and Yih, 2005; Punyakanok et al., 2004; Riedel and
Clarke, 2006). In the field of sentiment analysis, Choi and Cardie (2009a)
applied ILP to adapt an existing subjectivity lexicon into a new one to reflect
the domain dependent information; Somasundaran and Wiebe (2009)
incorporate constraints in the form of ILP to recognize which stance a person is
taking in an online debate; and Wu et al. (2011) use ILP to infer the most likely
graph representations of sentiments as well as their conditions. In contrast, our
task requires a task-specific ILP reformulation due to 1) the absence of
annotated sentiment expressions and 2) the joint extraction of both sentiments
and comparative relationships.

Both Johansson and Moschitti (2011) and Wu et al. (2011) applied structural
SVM for fine-grained sentiment analysis. Johansson and Moschitti (2011)
proposed a joint model to identify the boundaries and polarities of
sentiment-bearing expressions, while Wu et al. (2011) consider not only the
polarity but also the conditions or scopes associated with sentiments, e.g. the
positive sentiment expressed in “This book is excellent for beginners.” is
restricted only to “beginners”. However, both works require the annotations of
sentiment-bearing expressions and they focus only on polarity classification.

Compositional Semantics

Due to the fact that the meaning of an sentiment-bearing expression can often
be inferred from its parts, there is an emerging interest on modeling
compositionality of subjective expressions. Choi and Cardie (2008) exploit the
idea of computational semantics for expression-level polarity classification by
applying the heuristic rules on the automatically inferred semantic categories
of individual words. Yessenalina and Cardie (2011) represent each word as a
matrix and capture the compositional effects by multiplying these word
matrices. For an expression, these matrix-space representations serve as
features for predicting its ordinal sentiment score, which reflects both its
polarity and strength. In both works, the boundaries of subjective expressions
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are assumed to be given. In our work, we employ the RAE (Socher et al., 2011b)
as an automatic feature extractor of our model, and augment it with L1
regularizers for predicting both sentiment polarity and comparative
relationships. We consider RAE because it provides a principled way to
initialize the vector representations of each word with unlabeled data and these
vectors can be further updated based on supervised information.

5.1.4 Organization

The remainder of this chapter is organized as follows. Section 5.2 gives an
overview of the whole system. After introducing the SENTI-LSSVMRAE model in
Section 5.3, we give the details of its feature space in Section 5.4, its ILP-based
structural inference in Section 5.5 and the learning of the model parameters in
Section 5.6. Moreover, Section 5.7 covers the details of our SRG corpus. The
experimental evaluation and its results based on this corpus are described in
Section 5.8. Finally, we draw the conclusion in Section 5.9.

5.2 System Overview

This section gives an overview of the whole system for extracting
sentiment-oriented relationships. Prior to presenting the system architecture,
we introduce first the essential concepts and the definitions of two kinds of
directed hypergraphs as the representation of correlated relationships extracted
from sentences.

5.2.1 Concepts and Definitions

Entities. An entity is a abstract or concrete thing, which needs not be of
material existence. An entity in this chapter is either a product, product brand
or a product attribute (e.g. camera lens, movie title).

Attribute. An attribute refers to an object closely associated with or belonging
to an entity, such as the lens of a camera.
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Entity Types. We denote by entity types, sets of entities with similar properties.
For example, “Canon 7D” is of the type product and “Christopher Nolan” has
the type director.

Relationships. A relationship is a tuple of entities with a certain association or
connection. In this chapter, we are interested in the binary and ternary
relationships involving at least a product or a product brand and exactly one
product attribute. For unary relationships such as the one from a sentence like
“Canon 7D is excellent.”, we normalize it as positive(Canon 7D, product) by
augmenting with the implied attribute product.

Sentiment-Oriented Relationships. A sentiment-oriented relationship is either
a sentiment or a comparative relationship, which are defined in Section 5.1.1.
Therefore, a sentiment-oriented relationship is either a binary or a ternary
relationship between entities, such as better(Nikon D7000, Canon 7D, price)
and positive(Canon 7D, sensor).

Sentiment Relationship Graphs. A sentiment relationship graph (SRG)
represents all sentiment-oriented relationships conveyed in a sentence, as
illustrated in Figure 5.1. Formally, it is a directed hypergraph R = 〈V,A〉, where
each vertex v ∈ V denotes an entity and an edge e ∈ A denotes a relationship
between entities. A binary relationship in an SRG is in the form of an ordinary
binary edge pointing to an attribute. A ternary comparative relationship is
denoted by a special T-shaped directed hyperedge linking two
products/brands in comparison and an attribute, where the direction between
entities indicates the preference, e.g. better(Nikon D7000, Canon 7D, price) in
Figure 5.3.

Figure 5.1: The sentiment relationship graph of the sentence “The sensor is great,
but the price is higher than Nikon D7000.” about Canon 7D.

Mention-Based Relationships. A mention-based relationship refers to a tuple
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of entity mentions with a certain relation. Such kind of relationships are
introduced as the representations of relationships in a sentence by replacing
entities with the corresponding entity mentions. For example, positive(“Canon
SD880i”, “wide angle view”) is the mention-based relationship of the
relationship positive(Canon SD880i, lens) in Example 5.1.

Relationship Types. A relationship type denotes a set of relationships sharing
the same characteristics between entities. For the mention-based relationships
converted from sentiment oriented relationships, we consider the following
types:

• positve: A relationship of this type refers to a positive sentiment about an
entity and its attribute.

• negative: An instance of this type is a negative sentiment about an entity
and its attribute.

• better: A relationship of this type indicates a preference between two
entities with respect to an attribute.

• worse: This type is introduced to indicate the opposite direction of better.

For any binary relationships of interest between two entities, which are not
sentiment-oriented relationships, we denote them with the type other.
Consequently, all relationships of interest are of one of the five relationship
types: positive, negative, better, worse and other.

Mention-Based Relationship Graphs. A mention-based relationship graph (or
MRG ) represents a collection of mention-based relationships expressed in a
sentence. As illustrated in Figure 5.2, an MRG is a directed hypergraph
G = 〈M,E〉 with a vertex set M and an edge set E. A vertex mi ∈M denotes an
entity mention occurring either within the sentence or in its context. We say
that a mention is from the context if it is mentioned in the previous sentence or
is an attribute implied in the current sentence. An edge el ∈ E is either binary
or ternary. A binary edge el is denoted by a tuple e = (mi,mj) and a label l,
where mi and mj are entity mentions. If both mentions mi and mj are product
mentions, l ∈ {better, worse, other}. Otherwise, if one of the two mentions refers
to an attribute, the edge is assigned a label l ∈ {positive, negative, other} instead.
A ternary edge el includes a tuple e = (mi,mj,ma) and a label l. Herein, two
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product mentions mi and mj are compared with respect to the attribute
mention ma, and the relationship type l ∈ {better, worse}. Since the comparative
relationships are directional, we assumemi occurs beforemj.

Figure 5.2: A mention-based relationship graph.

Textual Evidences. A textual evidence is a word, a phrase or a sentence
conveying a relationship of interest. It is regarded as the support of a particular
relationship assertion.

Figure 5.3: An evidentiary mention-based relationship graph. The textual
evidences are wrapped by green dashed boxes.

Evidentiary Mention-Based Relationship Graphs. An evidentiary
mention-based relationship graph, coined EMRG , extends an MRG by
associating each edge with a textual evidence to support the corresponding
relationship assertions (see Figure 5.3). Formally, an EMRG is a tuple (G,C, r),
where G is an MRG, C is the textual evidence set of G and the function
r : E → C maps an edge of G to its textual evidence. Consequently, an edge in
an EMRG is denoted by a pair (el, c), where el represents a mention-based
relationship and c is the associated textual evidence.
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5.2.2 System Architecture

As illustrated by Figure 5.4, at the core of our system is the SENTI-LSSVMRAE

model, which extracts sets of mention-based relationships in the form of
EMRGs from sentences. For a given sentence, the model starts with
constructing a latent feature vector for each constituent as well as the whole
sentence. Section 5.4.2 will show that the latent feature vectors are created in a
recursive way by using RAE so that each of these vectors corresponds to a
vertex in a binary tree. As entity mentions are given, we select all possible
mention sets as relationship candidates, where each set includes at least one
product mention. Then we associate each relationship candidate with a set of
constituents or the whole sentence as the textual evidence candidates and the
corresponding latent feature vectors are obtained from the built representation
tree (cf. Section 5.5.1). Subsequently, the inference component aims to find the
most likely emrg from all possible combinations of mention-based
relationships and their textual evidences (cf. Section 5.5). The representation
form EMRG is chosen because it characterizes exactly the model outputs by
letting each edge correspond to a mention-based relationship and the
associated textual evidence. Finally, the model parameters of RAE and the
inference module are learned by an online algorithm, whose details are given
in Section 5.6.

The same set of sentiment-oriented relationships can be represented by
different EMRGs due to the correference of entity mentions and the existence
of paraphrases for conveying the same relationship. Therefore, we need to
transform entity mention-based EMRGs into entity-based SRGs as the final
outputs, which is carried out by using Algorithm 2. The algorithm essentially
maps the mentions from an EMRG into entities in an SRG and converts the
mention-to-mention edges from an EMRG into entity-to-entity edges in the
corresponding SRG. Only two exceptional cases require special attention: i) the
binary edges indicating direct comparisons between two products are
normalized by augmenting with the implied attribute product (line 5-7); ii) a
comparative relationship labeled with worse is rewritten as an equivalent
relationship labeled with better, which requires reversing the order of the
products in comparison (line 19-22).
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Figure 5.4: System architecture.

Algorithm 2 Graph Transformation Algorithm
1: Input: an EMRG G = 〈M,E〉
2: Output: an SRG R = 〈V,A〉
3: V = ∅ and A = ∅
4: for el ∈ E do

5: if e = (mi,mj) and l ∈ {better, worse} then

6: e = (mi,mj, product)

7: end if

8: ∀mk in e, map entities inmk to a set Vk ⊆ V
9: if e = (mi,mj) then

10: {Normalizing sentiments.}

11: S = Vi × Vj
12: ifmi is an attribute mention then

13: S = Vj × Vi
14: end if

15: for a = (vi, vj) ∈ S do

16: al → A

17: end for

18: else

19: {Normalizing comparative relationships.}

20: S = Vi × Vj × Vk
21: if l = worse then

22: S =Vj × Vi × Vk
23: l = better
24: end if

25: for a = (vi, vj, vk) ∈ S do

26: al → A

27: end for

28: end if

29: end for
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5.3 SENTI-LSSVMRAE Model

Given entity mentions and disambiguated entities, SENTI-LSSVMRAE aims to
extract the most likely set of mention-based relationships from each sentence.
After generating relationship and textual evidence candidates, this task can be
conceptually divided into two subtasks : i) identifying the most likely set of
mention-based relationships; ii) assigning a proper textual evidence to each
relationship to support their relationship assertions. The latter is a special
challenge of this task, ignoring this step will lead to overly similar feature
representation for relationships with different types, as discussed in Section
5.1.1 and 5.1.3.

The prediction of both mention-based relationships and their textual evidences
is equivalent to selecting the optimal EMRGs for sentences, since each edge in
an EMRG is defined as a mention-based relationship associated with a textual
evidence. In particular, the set of EMRGs are created by attaching every valid
MRG with various assignments of textual evidences. It is also desirable to
carry out the two subtasks jointly as these two subtasks could enhance each
other. First, the identification of relationships requires proper textual evidences;
second, the soft and hard constraints imposed by the correlated relationships
facilitate the recognition of the relationships of the textual evidences. Because
the assignment of textual evidences is not observed in both training and
testing, it is treated as latent variables and thus latent structural SVM instead of
structural SVM is employed as the core component of this model.

As discussed in Section 5.1.1, although we can already use bag-of-words to
represent textual evidences, RAE is selected as the feature detectors to
construct more expressive features for textual evidences in order to capture the
underlying compositional semantics. Figure 5.5 illustrates the relation between
latent structural SVM and RAE. RAE creates the latent feature vectors of textual
evidences for latent structural SVM, whereas in training, latent structural SVM
backpropagate errors based on supervised information to optimize the
parameters of RAE as well as the latent feature vectors.

Formally, let X denote the set of all available sentences, and we define y ∈ Y(x)
as the set of labeled edges of an MRG for a sentence x ∈ X and Y = ∪x∈XY(x).
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Figure 5.5: Dependencies between latent structural SVM and RAE.

The corresponding EMRG is denoted by (y, h), where h ∈ H(x) is a latent
variable indicating a mapping from edges in y to their textual evidences, and
H = ∪x∈XH(x). Then (a, c) ∈ (y, h) denotes an edge a attached with a textual
evidence c. Given a labeled dataset D = {(x1, y1), ..., (xn, yn)} ∈ (X × Y)n, latent
structural SVM aims to learn a discriminant function F : X × Y ×H → R of the
form

F(x, y, h) = β>Φ(x, y, h) (5.3)

whereΦ(x, y, h) is the feature function of an EMRG and β is the corresponding
weight vector. Section 5.5 will show that Φ(x, y, h) includes both the
conventional non-latent feature vectors and the latent features in the form of
composite functions. As the outputs of F(x, y, h) are the scores reflecting the
probabilities of EMRGs, the prediction is derived by maximizing F over all
possible EMRGs, which expands the label space by the latent space for textual
evidence assignment.

f(x) = argmax(y,h)∈Y(x)×H(x)β
>Φ(x, y, h) (5.4)

Note that, the main difference to structural SVM is the inclusion of latent
variables, which enables the selection of the most likely textual evidences for
respective relationships. Given β and the parameters of RAE, the computation
of f(x) is referred to as the inference problem, which will be covered in Section
5.5. And the details about learning model parameters are given in Section 5.6.

To ensure tractability, we employ edge-based factorization for our model. Let
Mp denote the set of product mentions and yr(mi) be a set of edges labeled with
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sentiment-oriented relationships incident tomi, the factorization ofΦ(x, y, h) is
given as

Φ(x, y, h) =
∑

(a,c)∈(y,h)

Φe(x, a, c) +
∑

mi∈Mp

∑
a,a ′∈yr(mi),a 6=a ′

Φc(a, a
′) (5.5)

whereΦe(x, a, c) is a local edge feature function characterizing a labeled edge a
attached with a textual evidence c and Φc(a, a

′) is a feature function capturing
co-occurrence of two labeled edges ami

and a ′mi
incident to a product mention

mi. In the following section, we give more details about these feature functions.

5.4 Feature Space

Due to the manner in which we factorize the model, we specify the features at
the edge level, which are the realization of the local edge function Φe(x, a, c)

and the edge co-occurrence function Φc(a, a
′) in Eq.(5.5). More specifically,

Φe(x, a, c) denotes the conjunction of both the non-latent features of
relationship candidates and the latent features of textual evidences, whose
details are given below. In that sense, Φc(a, a

′) is viewed as the non-latent ones
characterizing pairs of edges.

5.4.1 Non-latent Features

This section summarizes the following non-latent features characterizing edges
in EMRGs. For each edge, the values of non-latent features are stored in a
feature vector as part ofΦe(x, a, c).

POS Tags. As mentioned before, a textual evidence could be either a word,
phrase or sentence. We consider all POS tags in the textual evidence as lexical
features.

Context. Since users often express related sentiments about the same product
across sentence boundaries, we describe the sentiment flow using a set of
contextual binary features. For example, if product A concerned with a
relationship candidate is mentioned in the previous sentence, the contextual
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binary features indicate that the mentioned sentiment-oriented relationships in
this sentence are also related to product A.

Co-occurrence. We have mentioned the co-occurrence feature in Equation 5.5,
indicated by Φc(a, a

′). It captures the co-occurrence of two labeled edges
incident to the same product mention. Note that the co-occurrence feature
function is considered only if there is a contrast conjunction such as “but”
between the non-shared entity mentions incident to the two labeled edges.

Senti-predictors. Following the idea of (Qu et al., 2012), we encode the
prediction results from the rule-based multi-relationship predictor (Ding et al.,
2009) and the bag-of-opinions predictor (cf. Section 4.2.3) as features based on
the textual evidence. The former predictor uses rules and subjectivity lexicons
to classify phrases into one of the four categorizies: “positive”, “negative”,
“better” or “worse”, which are encoded as four boolean features. The output of
the latter predictor is a numerical scores capturing both sentiment polarity and
intensity. We use two numerical features to represent the positive and negative
scores respectively.

Edge type. For an edge candidate, a set of binary features are used to denote the
types of the edge and its entity mentions. For instance, a binary feature indicates
whether an edge is a binary edge related to an entity mentioned in context.

Syntactic path and word distance measures. To characterize the syntactic
dependencies between two adjacent entity mentions, we use the path through
the dependency tree between the heads of the corresponding constituents, the
number of words and other mentions in-between as features. Additionally, if
the textual evidence is a constituent, its feature with respect to an edge is the
dependency path to the closest mention of the edge that is not overlapped with
this constituent.

5.4.2 Constructing Latent Features from Text

In this section we show how to construct latent features for text evidence to
capture the compositionality of expressions.

We observed that the high volume of sentiment-bearing expressions are often
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composed by using a much smaller set of composition rules, such as negating
an expression conveying positive sentiment leads to an expression carrying
negative sentiment. Most of these rules require that the related words and
phrases are represented at the proper abstraction level, such as indicating the
polarity of an expression. Instead of using explicit hand-crafted rules, which
often lack in coverage, we apply RAE to automatically detect the
corresponding compositional patterns, and learn the representations of
constituents and sentences jointly.

As discussed in Section 2.3.2, deep learning techniques such as RAE are well
suited for learning abstract feature representations. Therefore, we choose
distributed representation (Hinton, 1986) as the latent features for each word,
phrase and sentence. In our work, a distributed representation takes the form
of a continuous-valued vector v with v ∈ Rκ̇. It is called distributed because a
piece of information such as “A word X is polar.” can be encoded jointly by a set
of potentially dependent components from the vector. Distributed
representation can be compact in the sense that it can use a low dimensional
vector to represent the same information of a conventional high dimensional
feature vector because it uses different subsets of features to indicate different
information. Compared to conventional hand-crafted feature vectors, another
property of distributed representation is that the representation vectors can be
learned from unlabeled data for prior knowledge of the data and can be fine
tuned by labeled data for application dependent tasks. The latter is a property
that is not featured by the widely used topic models (Blei et al., 2003; Hofmann,
1999). Without this property, a topic model can only learn topic-oriented
representations insensitive to word order and sentiments. Then it is very likely
that “very good” and “very bad” share similar representations since they share
globally similar context words.

In the following, we show how to construct representations for words, phrases
and sentences.
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Word Representation

Our word representation consists of a distributed representation and a
conventional feature vector. The distributed representations can be initialized
with unlabeled data to encode distributional similarity. In our experimental
settings, they are 100-dimensional continuous-valued vectors, where the first
50-dimensions are initialized by the word vectors from (Collobert et al., 2011)
by using the text of the english Wikipedia, the last 50-dimensions are randomly
initialized to increase model capability. These word vectors, pre-trained with
the Wikipedia text, can capture coarse-grained syntactic and semantic
information because they are trained with a special neural language model
capable of encoding distributional similarity. As a result, a supervised model
trained on these word vectors can be generalized to unseen words if there are
distributionally similar words in the training data.

In the conventional feature vector, we store POS and polarity scores from the
SO-CAL lexicon (Taboada et al., 2011). In addition, if a word is part of an entity
mention, a binary feature is used to indicate the type of the entity. In the movie
domain, if the names of a director, actor or role are not manually annotated due
to coreference, we use the jaccard similarity between the entity name and the
longest matched surface string containing the word as the value of the entity
type feature.

Composition Model for Two Words

Once the word representations are initialized, we can construct a new
representation representing two consecutive words by using the RAE.

RAE consists of an encoder and a decoder functions. The encoder function
takes the vector representations vi,vj ∈ Rκ of two words i and j as input. The
corresponding function is defined as

ge(vi,vj) = a
(
W

[
vi
vj

]
+ b

)
(5.6)

where W ∈ Rκ×2κ is the weight matrix for the input vectors and b ∈ Rκ is the
bias vector. a(u) is ususally a nonlinear activation function, which introduces
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nonlinearity into the model. In our experiments, we employ the following
hyperbolic tangent function to make it compatible to the word vectors learned
with the neural language model (Collobert et al., 2011).

a(u) =
eu − e−u

eu + e−u

To measure how well the output v̄ of the encoder function represents the original
inputs, a decoder function is used to reconstruct the original inputs from v̂.

gd(v̄) = a(W>v̂ + b̃) (5.7)

where b̃ ∈ R2κ is the bias vector. Then the quality of the representation v̄ is
measured by the Euclidean distance between the original input and its
reconstruction. Let (v̂i, v̂j) = gd(ge(vi,vj)), the reconstruction error function is
defined as

∆(v̂i, v̂j,vi,vj) =
1

2

[
ωi

ni + nj
‖v̂i − vi‖2 +

ωj

ni + nj
‖v̂j − vj‖2

]
+γ1|θrae|+γ2|v| (5.8)

where ωk is a weight characterizing informativeness of the corresponding
input vectors, which will be referred to as I-weight later for ease of discussion;
nk is the number of words in the corresponding constituent; γ1 and γ2 are the
hyperparameters for the L1 regularization on the model parameters

θrae = (W,b, b̃) and v =

[
vi
vj

]
respectively.

I-weights replace the numerators of the weights ni

ni+nj
in Eq.(2.13), which are

soly based on the number of words. We found that ωi

ni+nj
works better than

ωi

ωi+ωj
in our preliminary experiments because ωi

ni+nj
not only provides a way of

normalization but also indicates the average informativeness of all words in a
constituent. For sentiment analysis, a good choice for a word-level I-weight is a
combination of IDF and sentiment word scores from a subjectivity lexicon (Qu
et al., 2012). For IDF, we use log( N

Ni
)/ log(N) (Cancedda et al., 2003), whereNi is

the document frequency of the word i and N is the total number of documents.
For sentiment words, we normalize the word scores from SO-CAL lexicon into
[0, 1] by |ιi|/5, where ιi is the score of word i ranging from -5 to 5. Then the
I-weight of the word i is defined as

ωi = max(log(
N

Nw

)/ log(N), |ιi|/5)
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To show that RAE can be regarded as a feature detector that can detect factors
of variations, we rewrite the encoder function as ge(vi,vj) = a(u), where

u = W

[
vi
vj

]
+ b

Then each um shares the same form as the factors produced by principle
component analysis (Jolliffe, 1986). If there are correlated features scattered in
some input vectors and the weight matrix is properly trained, we can represent
a group of correlated features by one or few factors, which are easier to learn by
using a linear classifier than the original features. In addition, we expect that
each factor um captures different aspects of the underlying text, thus it is
desirable to make W sparse so that different um encode different subsets of
input units.

Building Representations for Phrases and Sentences

Considering the output of the encoder function represents the composited
representation of input vectors, we can apply the encoder function of RAE
recursively to construct a binary represenation tree (e.g. Figure 5.6) in a
bottom-up manner. The order of composition is guided by constituent parse
trees produced by the Stanford parser (Klein and Manning, 2003) so that each
constituent are mapped to a vertex in the corresponding representation tree.
More precisely, the construction of a representation tree starts with word
representations. In each step, RAE creates a new parent vertex representing
two child constituents by merging their representations using the encoder
function. As the representation of the new parent vertex is now available for
building representations of longer word sequences, the construction step is
repeated until it reaches the root of the tree, which represents the whole
sentence. If a constituent has more than two children, we merge the children
from right to left so that the syntactic heads are merged into the tree often
before their dependents. Moreover, for each phrase, its I-weight is the sum of
the I-weights of all its children.
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Figure 5.6: Building representation tree by using recursive autoencoder

5.5 Structural Inference

This section presents the ILP formulation to infer the most likely EMRG for a
sentence. As EMRGs are generated out of relationship candidates and the
candidate sets for textual evidence, we give first details about selecting
candidates of textual evidence from the constructed representation trees.

5.5.1 Generating Candidate Sets for Textual Evidence

Textual evidences are selected based on the binary representation trees and
entity mentions. For each mention in a sentence, we first locate a vertex in the
tree with the maximal overlap by Jaccard similarity. If a set of entity mentions
are linked by the conjunction “and” or “or”, we merge them into a super
vertex. Starting from this vertex, we consider two types of candidates: type I
candidates are vertices at the highest level which contain neither any word of
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another mention nor any contrast conjunctions such as “but”; type II candidates
are vertices at the highest level which cover exactly two mentions of an edge
and do not overlap with any other mentions. For a binary edge connecting a
product mention and an attribute mention, we consider a type I candidate
starting from the attribute mention. For a binary edge connecting two product
mentions, we consider type I candidates starting from both mentions.
Moreover, for a comparative ternary edge, we consider both type I and type II
candidates starting from the attribute mention. Such strategy is based on our
observation that these candidates often cover the most important information
with respect to the covered entity mentions. Since one candidate usually
conveys only one relationship, it is possible to coarsely segment a sentence
based on potential relationships.

5.5.2 ILP Formulation

We formulate the inference problem of finding the most likely EMRG as an ILP
problem due to its convenient integration of both soft and hard constraints.

Linear Programming (LP) is a technique for optimizing a linear objective
function subject to a set of linear constraints, which takes the following form

max
z∈Rd

s>z

s.t. Az ≤ d

where z represents the vector of variables, s is a vector of coefficients, A and d are
a matrix and a vector for constraints respectively. The function to be maximized
is referred to as the objective function. ILP is an extension of LP where z must take
integer values.

As shown in Section 5.3, the most likely EMRG is predicted by the function
(5.4). From it we can derive the ILP program for inference. Since the function to
maximize is the discriminant function (5.3), we obtain the objective function of
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the ILP program as follows.

β>Φ(x, y, h) =
∑

(a,c)∈(y,h)

β>Φe(x, a, c) +
∑

mi∈Mp

∑
a,a ′∈yr(mi),a 6=a ′

β>Φc(a, a
′)

=
∑

(a,c)∈(y,h)

saczac +
∑

mi∈Mp

∑
a,a ′∈yr(mi),a 6=a ′

saa ′zaa ′

= s>z

where sac = β>Φe(x, a, c) denotes the score of a labeled edge a attached with a
textual evidence c; saa ′ = β>Φc(a, a

′) is the edge co-occurrence score. As
Φe(x, a, c) represents a mention-based relationship attached with a textual
evidence, the binary variables zac are introduced to indicate the presence or
absence of the corresponding relationships. The same for Φc(a, a

′), zaa ′

denotes if two mention-based relationships co-occurr in the same sentence. As
a result, different assignment of these binary variables leads to different
selection of EMRGs.

Since not every relationship candidate set can constitute an EMRG, we define a
valid EMRG by introducing a set of linear constraints, which form our constraint
space. Consequently, the function (5.4) is equivalent to

max
z∈B

s>z

s.t. A

z
η

τ

 ≤ d

z,η,τ ∈ B

where B = 2S with S = {0, 1}; η and τ are auxiliary binary variables that help
defining the constraint space.

In the following, we consider two types of constraint space, 1) an EMRG with
only binary edges and 2) an EMRG with both binary and ternary edges.

EMRG with only Binary Edges An EMRG has only binary edges if a
sentence contains no attribute mention or at most one product mention.

Before describing the constraint space in detail, we introduce first the constraints
for conjunction and disjunction of binary variables, which will be used repeatly
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in this section. Let zca1,...,aK = za1 ∧ ... ∧ zaK , the logical relation is ensured by a
set of agreement constraints (Martins et al., 2009; Nemhauser and Wolsey, 1988)

zca1,...,aK ≤ zai , i = 1, ..., K

zca1,...,aK ≥
K∑
i=1

zai − K+ 1

Then the aggreement constraints for zda1,...,aK = za1 ∨ ...∨ zaK are expressed as:

zda1,...,aK ≥ zai , i = 1, ..., K

zda1,...,aK ≤
K∑
i=1

zai

We expect that each mention-based relationship has only one relationship label
and is supported by a single textual evidence. To facilitate the formulation of
constraints, we introduce ηel to denote the presence or absence of a mention-
based relationship el, and ηec to indicate if a textual evidence c is assigned to a
relationship candidate e. It is trivial to see that zelc = ηec∧ηel , where zelc denotes
an edge in an EMRG.

LetCe denote the candidate set for textual evidence of a relationship candidate e,
the constraint of at most one textual evidence per relationship candidate is formulated
as: ∑

c∈Ce

ηec ≤ 1 (5.9)

Furthermore, we assume that a textual evidence c conveys at most one
relationship so that an evidence will not be assigned to the relationships of
different types, which is the main problem for the structural SVM based model.
Let ηcl indicate that the textual evidence c is labeled by the relationship type l.
The corresponding constraints are expressed as∑

l∈L

ηcl ≤ 1

where L is the set of all relationship types (cf. Section 5.2.1).

Once a textual evidence is assigned to a mention-based relationship, their
relationship labels should match and the number of relationships must agree
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with the number of attached textual evidences:

zelc ≤ ηcl;
∑
l∈Le

ηel =
∑
c∈Ce

ηec

where Le denotes the set of all possible labels for a relationship candidate e.

Another kind of agreement must be made among the textual evidences
overlapping each other. Since a textual evidence corresponds to a vertex in a
binary representation tree, the overlapped textual evidences are the vertices on
the same path in the tree. For a set of such vertices, we require that any two
nearest ones are labeled by either the same relationship type or the type other
unless there is a negator existing only in the higher level vertex. Thus the label
agreement of a set of textual evidences can be decomposed into a set of
pair-wise constraints. In particular, for two vertices c and c ′, which are the
nearest neighbours in a path and there is no negation involved between them,
we consider the following constraint for each non-other relationship type l:

ηcl + ηco = ηc ′l + ηc ′o

where o denotes the relationship type other.

In order to avoid a textual evidence being overly reused by multiple
relationships, we first penalize the assignment of a textual evidence c to a
relationship candidate e by associating the corresponding zec with a fixed
negative cost −µ in the objective function. Then selecting at least one textual
evidence per relationship candidate e is encouraged by associating µ to zde in
the objective function, where zde =

∨
e∈Sc ηec and Sc is the set of relationship

candidates that have the textual evidence c as a candidate. This soft constraint
encourages an injective mapping from a textual evidence to a relationship, but
also keeps it open for many-to-one mappings.

For any two mention-based relationships a and a ′ incident to the same product
mention, the relationship co-occurrence is described by zca,a ′ = za ∧ za ′ .

EMRG with both Binary and Ternary Edges If there are more than one
product mentions and at least one attribute mention in a sentence, an EMRG
can potentially have both binary and ternary edges. In this case, we assume
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that a mention of attributes can participate either in binary relationships or in
ternary relationships. The assumption is held in more than 99.9% of the
sentences in our SRG corpus (cf. Section 5.7), thus we describe it as a set of hard
constraints. Geometrically, the assumption can be visualized as the selection
between two alternative structures incident to the same attribute mention, as
shown in Figure 5.7. Note that, in the binary edge structure, we include not
only the edges incident to the attribute mention but also the edge between the
two product mentions.

(a) Binary edges structure (b) Ternary edges structure

Figure 5.7: Alternative structures associating to an attribute mention.

Let Sbmi
be the set of all possible labeled edges in a binary edge structure of an

attribute mention mi. Variable τbmi
=
∨
el∈Sbmi

ηel indicates whether the attribute
mention is associated with a binary edge structure or not. In the same manner,
we use τtmi

=
∨
el∈Stmi

ηel to indicate the association of the an attribute mention
mi with an ternary edge structure from the set of all incident ternary edges Stmi

.
The selection between two alternative structures is formulated as

τbmi
+ τtmi

= 1

As this influences only the edges incident to an attribute mention, we keep all
the constraints introduced in the previous section unchanged except for
constraint (5.9), which is modified as,

∑
c∈Ce

ηec ≤ τbmi
;

∑
c∈Ce

ηec ≤ τtmi

Therefore, we can have either binary edges or ternary edges for an attribute
mention.
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5.6 Learning Model Parameters

In the previous section, we assume that the model parameters are given. In this
section, we present the online learning algorithm for SENTI-LSSVMRAE . In order
to understand the algorithm, we need to view the model from a different angle.
If the latent structural SVM is treated as the top-level classifier and the RAE is
considered as the underlying hidden layers, SENTI-LSSVMRAE is a neural network.
Thus the discriminant function (5.3) is a composite function in the following
form

f(· ) = fK(fK−1(...f1(· )...)) (5.10)

where fK(· ) corresponds to the latent structural SVM and the functions for lower
layers indicate the composition of children vectors for each parent vertex in a
representation tree. As the number of composition is proportional to the number
of words in a sentence, the neural network has a deep architecture, in which all
hidden layers share the same parameters.

As SENTI-LSSVMRAE can be viewed as a deep neural network, we can apply the
corresponding deep learning algorithms to learn the model (cf. Section 2.3.2).
Given a set of training sentences D = {(x1, y1), . . . , (xn, yn)}, we apply the
unsupervised learning step and the supervised fine-tuning step
interchangeably to learn the model parameters θ = (β, θrae, V), where β is the
weight vector in Eq.(5.3), θrae = (W,b, b̃) denotes the parameters of RAE and V
is the set of latent feature vectors for all words. For a training sentence, the
unsupervised learning step is carried out by minimizing the reconstruction
errors (5.8) after creating each new vertex in the representation tree. To gain
robustness against noise, we proactively corrupt the distributed representation
of each leaf by randomly omitting 20% units, which can be regarded as
applying the denoising autoencoder (Vincent et al., 2008). In the supervised
fine-tuning step, we aim to solve the following optimization problem:

θ∗ = arg min
θ

1

n

n∑
i=1

[ max
(ŷ,ĥ)∈Y(x)×H(x)

(β>Φ(x, ŷ, ĥ)+δ(ŷ, ĥ, y))− max
h̄∈H(x)

β>Φ(x, y, h̄)

+ γ1|θrae|+
∑
v∈V

γ2|v|+ γ3|β|] (5.11)

where δ(ĥ, ŷ, y) is a loss function measuring the discrepancies between an
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EMRG (h̄, y) with gold standard edge labels y and an EMRG (ĥ, ŷ) with
inferred labeled edges ŷ and textual evidences ĥ. Since we expect sparse
parameterization of RAE (cf. Section 5.4.2) and certain sparse non-latent
features such as dependency paths, we apply L1 regularizers to θrae, the word
vectors and the weight vector β, where the degree of sparsity is controlled by
the hyperparameter γ1, γ2 and γ3 respectively.

Because both training criteria involve non-differentiable L1 norms, we apply
the online forward-backward splitting (FOBOS) algorithm (Duchi and Singer,
2009a), which can be viewed as a combination of the stochastic gradient
descent (SGD) (Bottou, 2003) and the projected subgradient method (Calamai
and Moré, 1987). In particular, the online FOBOS is applied in a mini-batch
setting that it considers k training instances each time to compute gradients for
updating the model parameters θ. On iteration t, two steps are required to
update the parameters:

θt+ 1
2

= θt − εtOt (5.12)

θt+1 = arg min
θ

1

2
‖θ− θt‖2 + εtγ|θ| (5.13)

where Ot is the gradient computed for k instances without considering the L1
regularizers and εt is the learning rate. The step (5.12) takes exactly the same
form as the weight updating formula of SGD and Ot is computed by using
backpropagation (Rumelhart et al., 2002). Since the unsupervised and the
supervised steps are taken interchangeably, the gradient are computed based
on both training criterions. In addition, the projection step (5.13) performs L1
regularization and finds a sparse solution of model parameters. Then the two
steps are repeated through the training data several times until the convergence
condition is met.

Minimizing reconstruction errors requires only direct application of the FOBOS
algorithm, whereas the supervised fine-tuning involves two inference problems.
For a labeled sentence x, the gradient Ot of Eq.(5.11) in the step (5.12) takes the
form

Ot =
∂β>Φ(x, ŷ∗, ĥ∗)

∂θ
−
∂β>Φ(x, y, h̄∗)

∂θ
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where the feature functions of the corresponding EMRGs are inferred by solving

(ŷ∗, ĥ∗) = arg max
(ĥ,ŷ)∈H(x)×Y(x)

[β>Φ(x, ŷ, ĥ) + δ(ŷ, ĥ, y)]

and
(y, h̄∗) = arg max

h̄∈H(x)

β>Φ(x, y, h̄)

as indicated in the optimization problem (5.11).

The former inference problem is similar to the one we considered in the
previous section except the inclusion of the loss function. It in fact finds the
most error-prone EMRG according to the loss between an EMRG (h, y) and a
gold standard EMRG. Then the objective function of the ILP program becomes

max
z∈B

s>z + δ(ĥ, ŷ, y)

and the loss is the sum of per-relationship costs for the sake of easy computation.

δ(ĥ, ŷ, y) =
∑
e∈E ′

ϕeze

where E ′ is the set of all candidates of mention-based relationship and ϕe is the
misclassification cost of the corresponding relationship e. Since we aim to
maximize the F-Measure of SRG, which involves edges with non-other
relationship types, the errors by classifying other as non-other relationship
types should be weighted smaller than misclassifying non-other relationship
types. Therefore, ϕe could be one of the two costs ϕfp and ϕfn, which are fixed
for misclassifying other and non-other relationship types respectively.

In addition, since the non-positive weights of relationship labels in the initial
learning phase often lead to EMRGs with few edges, which results in too few
error cases, we fix it by adding a constraint for the minimal number of edges in
an EMRG, ∑

e∈A

∑
e∈Ce

ηec ≥ ζ (5.14)

whereA is the set of all relationship candidates,Ce is the candidate set for textual
evidence of the relationship e, and ζ denotes the lower bound of edges.

Empirically, we find the best way to determine ζ is to make it equal to the
maximal number of edges in an EMRG with the restriction that a textual
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evidence can be assigned to at most one relationship candidate. Hence we
represent all the relationship candidates A and all the textual evidence
candidates C as two vertex sets in a bipartite graph Ĝ = 〈V = (A,C), E〉 (with
edges in E indicating which textual evidence can be assigned to which
relationship candidate). Then ζ corresponds to exactly the size of a maximum
matching of the bipartite graph, which is computed by the Hopcroft-Karp
algorithm (Hopcroft and Karp, 1973) in our implementation.

To find the optimal EMRG (h̄∗, y), we consider the following set of constraints
for inference since the labels of the edges are known for the training data. For
an edge ewith the gold label k, we have∑

c∈Ce

ηec ≤ 1; ηec ≤ lck∑
k̂∈L

lck̂ ≤ 1;
∑
e∈Bc

ηec ≤ 1

We include also the soft constraints to avoid a textual evidence being overly
reused by multiple relationships. In addition, we found it useful to assume a
minimal number of edges labeled with non-other relationship types by∑

a∈Ar

∑
c∈Ca

ηac ≥ ζr (5.15)

where Ar is the set of all non-other relationships and ζr denotes the minimal
number of such edges, computed in the same way as for the constraint (5.14).

5.7 Experimental Corpus

For evaluation we constructed the SRG corpus, which in total consists of 1686
manually annotated online reviews and forum posts in the digital camera and
movie domains1. The numbers of sentences of each subset are summarized in
Table 5.2. For each domain, we maintain a set of entity types and a list of product
names for the sake of entity disambiguation.

1The 107 camera reviews are from bestbuy.com and Amazon.com; the 667 camera forum posts are
downloaded from forum.digitalcamerareview.com; the 138 movie reviews and 774 forum posts
are from imdb.com and boards.ie respectively
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Camera Movie
Reviews Forums Reviews Forums

on-topic sentences 488 1588 1629 1634

all sentences 590 3867 1880 3203

Table 5.2: Number of sentences in SRG corpus

The annotation scheme for the sentiment representation asserts minimal
linguistic knowledge from our annotators. By focusing on the meanings of the
sentences, the annotators make decisions based on their language intuition, not
restricted by specific syntactic structures. As illustrated by Figure 5.8, the
annotators only need to mark the underlined entity mentions and label the
relationships, whereas in prior work, people have annotated the
sentiment-bearing expressions such as “better” and link them to the respective
relationships as well. This also enables them to annotate both sentiment
polarities and comparisons, which are conveyed by not only explicit
sentiment-bearing expressions like “excellent performance”, but also factual
expressions implying evaluations such as “The 7V has 10x optical zoom and the
9V has 16x.”

Figure 5.8: An annotation example.

14 annotators, all university students with various majors, participated in the
annotation project. After a short training period, annotator work on randomly
assigned documents one at a time. For reviews, the system lists all relevant
information about the product and the predefined entity types. For forum
posts, the system shows only the entity types. For each sentence in a document,
the annotator first determines if it refers to a product of interest. If not, the
sentence is marked as off-topic. Otherwise, the annotator will identify the most

103



Chapter 5 Subsentential Relationship Extraction

obvious mentions of relevant entities and disambiguate them by selecting the
product name or entity type provided by the system. Then they select one of
the five possible relationships for each pair of semantically related mentions
(see Table 5.3 for the corpus distribution). Camera forum posts contain the
largest proportion of comparisons because the they are mainly about the
recommendation of digital cameras. In contrast, web users are much less
interested in comparing movies, in both reviews and forums. In all subsets,
positive relationships play a dominant role since web users intend to express
more positive attitudes online than negative ones.

Camera Movie
Reviews Forums Reviews Forums

positive 386 1539 879 905

negative 165 363 529 331

comparison 30 480 39 35

Table 5.3: Distribution of relationships in SRG corpus

5.8 Experiments

This section describes the empirical evaluation of SENTI-LSSVMRAE together with
two competitive baselines on the SRG corpus and found that Senti-LSSVM
outperforms state-of-the-art approaches by a significant margin.

5.8.1 Experimental Setup

We implemented a rule-based baseline (RULE-BASED) and a structural
SVM (Tsochantaridis et al., 2004) baseline (STRUCT-SVM) for comparison.

• RULE-BASED extends the work of Ding et al. (2009), which designed several
linguistically-motivated rules based on a sentiment polarity lexicon for
relationship identification and assumes there is only one type of
sentiment relationship in a sentence. In our implementation, we keep all
the rules of (Ding et al., 2009) and add one phrase-level rule when there
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were more than one mention in a sentence. The additional rule assigns
sentiment-bearing words and negators to its nearest relationship
candidates based on the absolute surface distance between the words and
the corresponding mentions. In this case, the phrase-level sentiments and
comparisons depend only on the assigned sentiment words and negators.

• STRUCT-SVM is based on a structural SVM and does not consider the
assignment of textual evidences to relationships. The textual features of a
relationship candidate are all unigrams, POS and senti-predictor features
within a surface distance of four words from the mentions of the
candidate. Thus, it does not need the inference constraints of
SENTI-LSSVMRAE for the selection of textual evidences.

In addition, we also evaluate the variant of SENTI-LSSVMRAE , coined
SENTI-LSSVMBOW, which replace the latent feature vectors by the bag of words
within the span of textual evidences.

For each domain and text genre, we withheld 15% documents for development
and use the remaining for evaluation. The hyperparameters of all systems are
tuned on the development datasets. For all experiments of SENTI-LSSVMBOW, we
use γ3 = 0.0001 for the L1 regularizer in Eq.(5.11) and ϕfp = ϕfn = 0.05 for the
loss function; for STRUCT-SVM, γ3 = 0.0001 and ϕfp = ϕfn = 0.01; and for SENTI-

LSSVMRAE , γ1 = 0.3, γ2 = 0.01, γ3 = 0.01, ϕfp = 0.01 and ϕfn = 0.1. We let ϕfp =

ϕfn for STRUCT-SVM and SENTI-LSSVMBOW because the configurations with ϕfp 6=
ϕfn led to worse performance. Since the relationship type of off-topic sentences
is certainly other, we evaluate all systems with 5-fold cross-validation only on
the on-topic sentences in the evaluation dataset. Since the same SRG can have
several equivalent EMRGs and the relationship type other is not of our interest,
we evaluate the non-other relationships of SRGs in terms of precision, recall and
F-measure. All reported numbers are averaged over the 5 folds. Boldface figures
are statistically significantly better than all others in the same comparison group
under t-test p = 0.05.
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5.8.2 Results

Table 5.4 shows the complete results of all systems. Here both SENTI-LSSVMRAE

and SENTI-LSSVMBOW outperformed all baselines in terms of the average
F-Measures and recalls by a large margin. The F-Measure on movie reviews is
about 14% over the best baseline. The rule-based system has higher precisions
than recalls in most cases. However, simply increasing the coverage of the
domain independent sentiment polarity lexicon might lead to worse
performance (Taboada et al., 2011) because many sentiment oriented
relationships are conveyed by domain dependent expressions and factual
expressions implying evaluations, such as “This camera does not have manual
control.” Compared to RULE-BASED, STRUCT-SVM performs better in the camera
domain but worse for the movies due to many misclassification of negative
relationships as other. It also wrongly predicted more positive relationships as
other than latent structural SVM based systems. We found that the recalls of
these relationships are low because they often have overly similar features with
the relationships of the type other linking to the same mentions. The problem
gets worse in the movie domain since i) many sentences contain no explicit
sentiment-bearing words; ii) the prior polarity of the sentiment-bearing words
do not agree with their contextual polarity in the sentences. E.g., the following
sentence from a forum post about the movie “Superman Returns”: “Have a look at
Superman: the Animated Series or Justice League Unlimited . . . that is how the
characters of Superman and Lex Luthor should be.”. In contrast, latent structural
SVM based models minimize the overlapped features by assigning them to the
most likely relationship candidates. This leads to significantly better
performance. Although STRUCT-SVM has low recalls for both positive and
negative relationships, it achieves the highest recall for the comparative
relationship among all systems in the movie domain. However, the test dataset
of each fold in these document sets contains less than 10 comparative
relationships. This advantage disappears on the camera forum posts, where
there are about 100 comparative relationships in each test set.

SENTI-LSSVMRAE has an edge over SENTI-LSSVMBOW in terms of recall and
F-Measure on all datasets except movie reviews. Since SENTI-LSSVMRAE

represents every constituent or sentence as a low-dimensional
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Positive Negative Comparison Micro-average

P R F P R F P R F P R F

C
am

er
a

Fo
ru

m

RULE-BASED 0.560 0.392 0.461 0.459 0.240 0.315 0.431 0.107 0.171 0.534 0.302 0.386

STRUCT-SVM 0.602 0.356 0.448 0.442 0.385 0.412 0.280 0.401 0.329 0.437 0.367 0.399

SENTI-LSSVMbow 0.692 0.389 0.498 0.508 0.393 0.443 0.426 0.351 0.385 0.565 0.380 0.454

SENTI-LSSVMRAE 0.618 0.550 0.582 0.424 0.410 0.417 0.416 0.437 0.426 0.525 0.497 0.510

C
am

er
a

R
ev

ie
w

RULE-BASED 0.836 0.693 0.758 0.686 0.388 0.496 0.300 0.169 0.216 0.812 0.589 0.682

STRUCT-SVM 0.726 0.754 0.740 0.639 0.625 0.632 0.280 0.389 0.325 0.681 0.704 0.693

SENTI-LSSVMbow 0.773 0.854 0.812 0.689 0.613 0.649 0.223 0.207 0.216 0.731 0.734 0.737

SENTI-LSSVMRAE 0.763 0.876 0.816 0.629 0.621 0.625 0.433 0.429 0.431 0.727 0.784 0.754

M
ov

ie
Fo

ru
m

RULE-BASED 0.634 0.374 0.470 0.276 0.343 0.306 0.000 0.000 0.000 0.480 0.357 0.409

STRUCT-SVM 0.662 0.301 0.413 0.256 0.173 0.207 0.442 0.567 0.497 0.533 0.279 0.366

SENTI-LSSVMbow 0.633 0.442 0.521 0.297 0.456 0.360 0.401 0.450 0.424 0.497 0.446 0.470

SENTI-LSSVMRAE 0.564 0.525 0.544 0.256 0.568 0.353 0.390 0.550 0.456 0.434 0.537 0.482

M
ov

ie
R

ev
ie

w

RULE-BASED 0.665 0.472 0.552 0.421 0.394 0.407 0.314 0.120 0.174 0.562 0.441 0.494

STRUCT-SVM 0.613 0.540 0.574 0.452 0.137 0.211 0.245 0.633 0.353 0.546 0.392 0.457

SENTI-LSSVMbow 0.590 0.791 0.676 0.533 0.514 0.523 0.283 0.340 0.309 0.579 0.688 0.629

SENTI-LSSVMRAE 0.576 0.809 0.672 0.530 0.517 0.523 0.283 0.567 0.377 0.558 0.698 0.620

Table 5.4: Evaluation results of all systems.

continuous-valued vector, it provides a more compact way to encode the
textual patterns involving multiple words than the high-dimensional
bag-of-words representations. As a result, SENTI-LSSVMRAE can correctly extract
relationships from a sentence like “I would go for the FX55.”, which
SENTI-LSSVMBOW fails to achieve. To gain more insight into the model
performance, we summarize the experimental results in Table 5.5 and Table 5.6,
which are categorized according to whether the gold standard relationships are
from the sentences with multiple non-other relationships or not. As we can see,
when the syntactic structures of subjective expressions become more complex,
such as the ones for comparative relationships and the sentences containing
multiple non-other relationships, SENTI-LSSVMRAE performed significantly better
than SENTI-LSSVMBOW. The slight drop of precision is due to the fact that the
learned distributed representations are more close to each other in the
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low-dimensional space than their high-dimensional counterparts, it is a way of
trading specificity for greater generality.

Positive Negative Comparison Micro-average

P R F P R F P R F P R F

C
am

er
a

Fo
ru

m SENTI-LSSVMbow 0.639 0.202 0.307 0.450 0.203 0.280 0.487 0.348 0.406 0.488 0.256 0.336

SENTI-LSSVMRAE 0.590 0.258 0.359 0.692 0.174 0.278 0.493 0.413 0.450 0.508 0.299 0.377

C
am

er
a

R
ev

ie
w SENTI-LSSVMbow 0.743 0.569 0.645 0.700 0.676 0.688 0.167 0.133 0.148 0.750 0.624 0.681

SENTI-LSSVMRAE 0.743 0.636 0.685 0.743 0.676 0.708 0.107 0.133 0.119 0.733 0.674 0.702

M
ov

ie
Fo

ru
m SENTI-LSSVMbow 0.693 0.365 0.478 0.576 0.192 0.288 0.200 0.100 0.133 0.674 0.277 0.392

SENTI-LSSVMRAE 0.560 0.455 0.502 0.670 0.302 0.417 0.067 0.100 0.080 0.630 0.382 0.476

M
ov

ie
R

ev
ie

w SENTI-LSSVMbow 0.482 0.400 0.437 0.530 0.437 0.479 0.050 0.100 0.067 0.418 0.397 0.407

SENTI-LSSVMRAE 0.567 0.410 0.475 0.553 0.397 0.462 0.150 0.300 0.200 0.451 0.398 0.423

Table 5.5: Evaluation results of SENTI-LSSVMbow and SENTI-LSSVMRAE for sentences
with multiple relationships.

All systems perform better in predicting positive relationships than the
negative ones. This corresponds well to the empirical findings in (Wilson, 2008)
that people intend to use more complex expressions for negative sentiments
than their affirmative counterparts. It is also in accordance with the
distribution of these relationships in our SRG corpus which is randomly
sampled from the online documents. For learning systems, it can also be
explained by the fact that the training data for positive relationships are
considerably more than those for negative ones. The comparative relationship
is the hardest one to process since we found that many corresponding
expressions do not contain explicit keywords for comparison.

5.9 Conclusion

We proposed SENTI-LSSVMRAE model for extracting both sentiments and
comparisons at and below the sentence level. SENTI-LSSVMRAE can effectively
learn from our SRG corpus, created by using the output-oriented annotation
scheme. Due to the use of latent structural SVM, our model can automatically
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Positive Negative Comparison Micro-average

P R F P R F P R F P R F

C
am

er
a

Fo
ru

m SENTI-LSSVMbow 0.811 0.415 0.549 0.659 0.459 0.541 0.465 0.372 0.414 0.702 0.414 0.521

SENTI-LSSVMRAE 0.804 0.601 0.688 0.554 0.484 0.516 0.441 0.472 0.456 0.680 0.557 0.612

C
am

er
a

R
ev

ie
w SENTI-LSSVMbow 0.825 0.865 0.845 0.781 0.586 0.670 0.175 0.156 0.165 0.793 0.751 0.772

SENTI-LSSVMRAE 0.820 0.884 0.851 0.731 0.597 0.657 0.394 0.411 0.402 0.801 0.794 0.798

M
ov

ie
Fo

ru
m SENTI-LSSVMbow 0.886 0.447 0.595 0.508 0.513 0.510 0.442 0.510 0.473 0.748 0.461 0.570

SENTI-LSSVMRAE 0.856 0.529 0.653 0.445 0.625 0.520 0.447 0.610 0.516 0.696 0.551 0.615

M
ov

ie
R

ev
ie

w SENTI-LSSVMbow 0.743 0.805 0.773 0.749 0.524 0.617 0.375 0.318 0.344 0.755 0.703 0.728

SENTI-LSSVMRAE 0.729 0.824 0.773 0.731 0.532 0.616 0.348 0.571 0.433 0.726 0.714 0.720

Table 5.6: Evaluation results of SENTI-LSSVMbow and SENTI-LSSVMRAE for the
sentences with at most one relationships.

find textual evidences to support its relationship predictions and achieves
significantly better F-Measures than alternative state-of-the-art methods.
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Chapter 6

Conclusion

In this dissertation, we have presented three learning models for sentiment
analysis at different granularity levels: the bag-of-opinions model for
document rating prediction (introduced in Chapter 3), the multi-experts model
for sentence rating prediction (presented in Chapter 4), the SENTI-LSSVMRAE

model for identifying sentiment-oriented relationships at both sentence and
expression level (in Chapter 5). Different granularity of analysis leads to
different model complexity, the finer the more complex. All models explore
different feature representations to capture the compositional semantics
inherent in sentiment-bearing expressions. Due to the lack of sufficient
hand-labeled training data, these models maximize the use of freely available
resources such as subjectivity lexicons and document ratings to circumvent the
problem. Since the multi-experts model and SENTI-LSSVMRAE also use unlabeled
data to improve the generalization power, they can be viewed as
semi-supervised models.

There are several opportunities to extend and improve this work. At the
coarse-grained level, as sentiments are often related across sentences or even
documents, we can analyze these correlations to discover patterns for
sentiment-flow. At the fine-grained level, it is straightforward to adapt
SENTI-LSSVMRAE to extract facts of any given binary or n-ary relations. In this
manner, our model allows also joint extraction of both facts and sentiments so
that the two traditional tasks can be tackled by the same model. A more
ambitious goal is to extract sentiment-oriented relationships with respect to
certain facts, which can be regarded as higher order relationship extraction.
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