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Notes on Style
References to web resources (e.g., links to articles published on the Internet) are
provided as URLs within footnotes with date of last access; longer URLs have been
shortened. References to scholarly published resources (e.g., journal articles and
conference proceedings) can be found in the Bibliography at the end of this thesis.

When referring to unknown individuals in third person singular (e.g., users of a
system or anonymous participants of a study) we alternate between the female and
male pronouns between paragraphs for reasons of gender neutrality.



Acknowledgements
Over the last few years I have been fortunate to get into contact with the following
people. They supported me in a variety of ways working on the document which
you are — hopefully — just about to start reading.

I am deeply grateful to Antonio Krüger for supervising my dissertation. He has
shaped my way of thinking with fruitful discussions, while leaving me enough
freedom to set out my own research agenda. I thank my reviewers Anind K. Dey
and Albrecht Schmidt, who inspired my overall work early on with their own pa-
pers and research in related fields. I am thankful that both eventually agreed to
review my thesis. I thank Gernot Bauer for encouraging me to start working on a
PhD, helping me with the first steps, and teaching me: Clarity is essential.

I have always had the luck to work with nice people in pleasant and inspiring
environments. Therefore I thank my former and current colleagues at DFKI in
Saarbrücken, especially Benedict Fehringer, Florian Daiber, Johannes Schöning,
Markus Löchtefeld, and Sven Gehring (in alphabetical order) who refreshed my
brain cells not only with chitchat at the coffee maker, but also with challenging
questions and a lot of fun. I thank Morin Ostkamp, Stefan Jürgens and Sven
Luzar for being supportive colleagues during the first years of my work at Münster
University of Applied Sciences.

I am thankful to all people whom I had the pleasure to collaborate with over the last
few years. Among those the coauthors who worked with me on the papers that this
thesis is based on: Thanks for your input and discussion! I am especially thankful
for the joint work with Brent Hecht and Luis Leiva — both fruitful collaborations
resulted in parts of this thesis. Many thanks also to all students who I had the
pleasure to supervise for their own theses, and who worked with me as student
assistants. Also many thanks to Margaret De Lap for thoroughly proofreading
my thesis.

Finally, I thank my family for their support in all other matters over the years,
and Dorothee: without you none of this would have been possible. Thank you for
understanding and supporting me!

i





Für Doro und die Rabauken.

iii





v

Abstract
In recent years mobile phones have evolved significantly. While the very first cel-
lular phones only provided functionality for conducting phone calls, smartphones
nowadays provide a rich variety of functionalities. Additional hardware capabil-
ities like new sensors (e.g. for location) and touch screens as new input devices
gave rise to new use cases for mobile phones, such as navigation support, tak-
ing pictures or making payments. Mobile phones not only evolved with regard to
technology, they also became ubiquitous and pervasive in people’s daily lives by
becoming capable of supporting them in various tasks. Eventually, the advent of
mobile application stores for the distribution of mobile software enabled the end-
users themselves to functionally customize their mobile phones for their personal
purposes and needs.

So far, little is known about how people make use of the large variety of applica-
tions that are available. Thus, little support exists for end-users to make effective
and efficient use of their smartphones given the huge numbers of applications that
are available. This dissertation is motivated by the evolution of mobile phones
from mere communication devices to multi-functional tool sets, and the challenges
that have arisen as a result. The goal of this thesis is to contribute systems that
support the use of mobile applications and to ground these systems’ designs in an
understanding of user behavior gained through empirical observations.

The contribution of this dissertation is twofold: First, this work aims to understand
how people make use of, organize, discover and multitask between the various
functionalities that are available for their smartphones. Findings are based on ob-
servations of user behavior by conducting studies in the wild. Second, this work
aims to assist people in leveraging their smartphones and the functionality that is
available in a more effective and efficient way. This results in tools and improved
user interfaces for end-users. Given that the number of available applications for
smartphones is rapidly increasing, it is crucial to understand how people make use
of such applications to support smartphone use in everyday life with better designs
for smartphone user interfaces.
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Zusammenfassung
Mobiltelefone haben sich innerhalb der letzten Jahre signifikant weiterentwickelt.
Während erste Modelle lediglich Sprachtelefonie zur Verfügung stellten, ermög-
lichen heutige Smartphones vielseitige Dienste. Technologische Fortschritte, wie
beispielsweise GPS-Lokalisierung und berührungsempfindliche Displays, haben
neue Einsatzbereiche für Mobiltelefone eröffnet, wie solche als Navigationsgerät
oder als Fotoapparat. Doch nicht nur in Bezug auf die Technologie haben sich Mo-
biltelefone weiterentwickelt, sondern auch in der Verbreitung ist die Anzahl der
Geräte enorm gestiegen. Sie werden allgegenwärtig im täglichen Leben genutzt,
da sie ihre Anwender bei verschiedensten Aufgaben unterstützen können. Das Auf-
kommen von Vetriebsplattformen für die Verbreitung mobiler Software erlaubt es
dem Anwender selbstständig Modifikationen an der Funktionalität seines Geräts
vorzunehmen und dieses an persönliche Zwecke und Ansprüche anzupassen.

Bisher ist wenig darüber bekannt, wie sich Anwender die Vielfalt zu Verfügung ste-
hender Applikationen zu Nutze machen. Als Folge daraus gibt es bisher nur rudi-
mentäre Unterstützung für Anwender, die Vielfalt von Applikationen effektiv und
effizient einzusetzen. Diese Dissertation ist durch den Wandel des Mobiltelefons
vom reinen Kommunikationsgerät hin zum multifunktionalen Werkzeug motiviert.
Das Ziel dieser Arbeit ist es, Systeme für die Unterstützung einer besseren mobilen
Applikationsnutzung zu entwickeln, deren Design auf dem neuen Verständnis von
Benutzerverhalten beruht, das durch empirische Studien gewonnen wird.

Diese Dissertation hat einen zweiteiligen Beitrag: Zum einen werden theoretische
Erkenntnisse dazu erarbeitet, wie Anwender die Applikationsvielfalt nutzen, instal-
lierte Applikationen auf ihren Geräten organisieren, neue Applikationen entdecken
und zwischen diesen in der Ausführung wechseln. Die Erkenntnisse hierzu beruhen
auf der empirischen Beobachtung von Nutzungsverhalten. Zum anderen hat diese
Arbeit ingenieurwissenschaftliche Ziele dahingehend, die Anwender von Applika-
tionen dabei zu unterstützen, ihre Smartphones sowie deren Funktionsvielfalt ef-
fektiver und effizienter einzusetzen. Dieser Beitrag resultiert in der Beschreibung
implementierter Systeme und verbesserter Benutzerschnittstellen für Anwender.
Angesichts der rapide wachsenden Zahl zur Verfügung stehender mobiler Appli-
kationen ist es wichtig, zu verstehen wie Endanwender diese nutzen, denn nur so
kann die Nutzung von Smartphones gebrauchstauglicher und einfacher gestaltet
werden.
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He: “Didn’t you want to keep your phone out of the bedroom?”
She: “It’s not my phone — it’s my alarm clock!”

Author and his wife now and then.
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Chapter 1

Introduction

This first chapter motivates our work and provides an introduction into the topic
of this dissertation. We will first briefly recap the evolution of mobile phones, and
discuss challenges that result from that evolution. Based on those challenges we
will derive our research questions. Finally, Chapter 1 will give an overview on
the structure of this work, its different pieces and how they form a bigger picture
towards understanding and supporting mobile application usage.

1.1 The Evolution of Mobile Phones
The mobile phone recently had its 40th anniversary: On April 3rd, 1973, Motorola
employee Martin Cooper made the very first phone call using a handheld mobile
phone.1 From that day until this thesis was written, four decades later, mobile
phones have evolved significantly. In particular, we can distinguish two aspects of
this evolution:

(1) Mobile phones improved in terms of the technology.
(2) Mobile phones became ubiquitous in daily life and worldwide.

The more functionality mobile phones provide and the better the technology is,
the more likely people are to get themselves a new mobile phone [141]; i.e., (1)
supports (2). Inversely, the more people have a mobile phone the bigger the market
grows, and the more likely it becomes that manufacturers of mobile phones will
1The Guardian: Mobile phone’s 40th anniversary: from ’bricks’ to clicks, http://goo.gl/jCtnP, last
accessed on 05.06.2013.

1
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2 1.1 The Evolution of Mobile Phones

improve their devices to increase their market share (e.g. since people will be more
likely to choose the model which has a camera built in); i.e., (2) also leads back to
(1). The relation between these two aspects has lead to the evolution that finally
resulted in the ecosystem of mobile phones as we know it today. Next, we will
discuss both aspects — technology and distribution — leading to the momentum
of mobile application stores.

1.1.1 Technological Development

Martin Cooper’s invention became commercially available as the Motorola Dy-
naTAC in 1983, 10 years after the first call was made using Motorola’s prototype.
The device, shown in Figure 1.1(a), was commonly referred to as the “brick” de-
vice due to its form factor, which had to contain 30 electronic circuit boards.2 The
first mobile phone referred to as fitting into a pocket became available in 1986:
the Technophone EXCELL PC105T.3 This fact was the unique selling point for
advertising this model, as Figure 1.1(b) shows. The miniaturization of electronic
parts is an ongoing trend mainly supported by Moore’s Law, as is the reduction of
the devices’ weight. Nowadays, the size of a mobile phone is mainly determined
by the dimensions of its battery and the display; while the latter cover nearly half
of current devices’ surfaces as can be seen in Figure 1.1, which shows a compar-
ison between the first mobile phone that was commercially available and one of
the latest models of the same company. While the displays on the first cellular
phones were tiny, the displays on latest generation phones cover nearly the whole
front face of the device. This is also leveraged by the fact that today’s displays
are touch-reactive and can be used as input devices, e.g. to implement buttons for
keyboards.

The IBM Simon, which became available in 1994, was the first cellular phone that
was referred to as a smartphone.4 The device, shown in Figure 1.1(c), already pro-
vided many features that we would expect from a modern smartphone, including
“an address book, calendar, appointment scheduler, calculator, world time clock,
electronic note pad, handwritten annotations and standard and predictive stylus
input screen keyboards”.5 Such kind of first mobile phones providing a few ad-
2The Guardian: Mobile phone’s 40th anniversary: from ’bricks’ to clicks, http://goo.gl/jCtnP, last
accessed on 05.06.2013.

3GSM History: Vintage Mobiles. http://goo.gl/QHDOw, last accessed on 07.06.2013.
4Wikipedia: IBM Simon. http://goo.gl/AEcJ7, last accessed on 08.06.2013.
5Wikipedia: IBM Simon. http://goo.gl/AEcJ7, last accessed on 08.06.2013.
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(a) DynaTAC (b) Excell Pocketphone (c) IBM Simon (d) RAZRi

Figure 1.1: Milestones of the mobile phone evolution: (a) Motorola DynaTAC was the
first mobile handheld phone commercially available, (b) an advertisement of the first mo-
bile phone that would fit into a pocket, (c) the IBM Simon as fist mobile phone that was
referred to as a smartphone, and (d) the Motorola RAZRi as a representative of the current
generation of smartphones.

ditional services beyond phone calls, however, were mainly used by either busi-
nesspersons or very tech-savvy people [57], as such a minority.

Figure 1.2 covers some important milestones of the technical evolution of mobile
phones. There were also important advances with regard to connectivity, like the
improvement of mobile networks by switching from analog to digital transmission
and by increasing coverage and bandwidth, wireless internet services like the Wire-
less Application Protocol, and certain influential devices including those already
mentioned and the Apple iPhone, which became available in 2007. Also in terms
of hardware the variety of sensors integrated into mobile phones has increased,
including for instance sensors for positioning (based on the Global Positioning
System), for measuring device acceleration, and compasses.

Another important technical milestone in the evolution of mobile phones to smart-
phones as we know them today in 2013 was the possibility for third party software
developers to program their own applications for mobile devices. While at first
only the device manufacturers and network carriers were able to add new function-
ality to devices, now outside developers could also provide software for mobile
phones [124, 159]. For a long time a special derivate of the Java Platform, the
Micro Edition, was the major technology for building software for mobile devices.
This derivate was especially designed for embedded systems such as mobile de-
vices. It was introduced in 1999 and was also known as Java Platform 2 Micro
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Figure 1.2: Growth of the mobile ecosystem in terms of mobile phone subscriptions in
relation to world population. The figure also shows selected milestones in the technological
development in recent history of mobile phones.6

Edition (J2ME). The J2ME platform provided standardized APIs for access to core
functionalities like storage and web access, to multimedia features of devices, and
to sensors like these for GPS location and acceleration.

To summarize the technical evolution of mobile phones, it can be said that they
evolved from single-purpose communication devices into multi-purpose devices
that support their users in a wide variety of tasks, e.g., playing games, listening to
music, sightseeing, taking pictures, and cookbooks, as well as GPS-assisted nav-
igating. In this way, the mobile phone has become increasingly analogous to a
“Swiss Army Knife” [17, 152, 215] in that mobile phones provide a plethora of
readily-accessible tools for everyday life in the form of small pieces of assistive
software. Want in 2009 even anticipated that the primary computer that people
use will eventually be completely integrated into a mobile phone [259]. This thesis
aims to understand how people make use of their mobile phones as multi-functional
tools — beyond making phone calls — to create a foundation for improving the
ways to make use of this functional richness, and to build assistive systems imple-
menting such solutions.
6Data sources: World population based on figures from the United Nations, http://goo.gl/ZwbPU;
mobile phone subscriptions based on figures from the ITU, http://goo.gl/ojQmX and http://goo.gl/
LlMMa; all last accessed on 31.06.2013; see text for milestones.
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1.1.2 Ubiquitous Spread

Mobile phones have made an enormous leap from the hand of one single person
in 1973 to the hands of billions of people worldwide today. In 2013 more than 6.8
billion mobile cellular phone subscriptions have been existing as reported by the
ITU.7 This enormous spread is reflected in Figure 1.2, which shows the steadily
increasing number of worldwide mobile phone users. While one might think that
the number of mobile phones will be limited by the size of population, it may in-
stead be anticipated that people will start to use more than one mobile device as
reported by the BBC.8 According to a recent report of the Pew Research Center on
smartphone ownership, currently about 91% of the US population owns a mobile
phone, an increase from 83% in 2011; of those, the proportion using smartphones
increased from 35% in 2011 to 56% in 2013.9 In fact, Bell and Dourish [22] in
2007 already argued that mobile phones — at that time already ubiquitous com-
puting devices with capabilities for supporting users during everyday life — are an
fruition of Weiser’s [261] vision of ubiquitous computing.

By looking into the numbers of people who start using specific services on their
mobile phone, we can infer that the time people spent on their devices daily is also
increasing, as the devices assists them with an increasing variety of applications.
For instance, the share of cell phone owners using their devices to check their
bank accounts increased from 18% in 2011 to 29% in 2012; using the device for
recording videos increased from 18% in 2007 to 44% in 2012.10 In fact, the time
people spend with applications on their phones these days comes close to the time
people spend watching television.11

The proliferation of mobile phones also had an impact on personal and inter-
personal social aspects, resulting from the mobile phones’ ubiquitous spread and
pervading of daily life. They became an inherent part of their owners’ daily life,
as discussed by Want [258]. In fact, compared to previous generations of phones,
people are more likely to keep smartphones in the same room, and take less care
7ITU: The World in 2013, http://goo.gl/4Kmwe, last accessed on 26.06.2013.
8BBC: Mobiles ’to outnumber people next year’, says UN agency. http://www.bbc.co.uk/news/
technology-22464368, last accessed on 26.06.2013.

9Pew Research Center: Smartphone Ownership — 2013 Update. http://goo.gl/4y24S, last accessed
on 08.06.2013.

10Pew Research Center: Cell Phone Activities 2012. http://goo.gl/oD3Hq, last accessed on
07.06.2012.

11Techcrunch: Time Spent In Mobile Apps Is Starting To Challenge Television, Flurry Says. http:
//goo.gl/3pRH6, last accessed on 07.06.2013.

http://goo.gl/4Kmwe
http://www.bbc.co.uk/news/technology-22464368
http://www.bbc.co.uk/news/technology-22464368
http://goo.gl/4y24S
http://goo.gl/oD3Hq
http://goo.gl/3pRH6
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that their smartphone use will disrupt other people [83]. Researchers also recog-
nize the disorder of people depending on their mobile phones, called Nomophobia
[145]. And interestingly, the possibility of incessantly being able to check dynam-
ically changing content, like updates from online social networks, has been found
to be habit forming [179].

The spread of mobile phones over the whole world, and the large number of peo-
ple using mobile phones on a daily basis, emphasizes the urgency of the line of
research conducted in this thesis: gaining a better understanding of how people use
their devices will allow us to improve the support for this vast group of users in
making more efficient use of their devices.

1.1.3 The Age of Application Stores

As already briefly mentioned, the invention of a platform for the distribution of
mobile software was a technical invention, which made it “easy, inexpensive and
fast to download programs” to a user’s own mobile phone.12 Jenson [133] coins
this change of paradigm as going from a “one app, one device” model to a “zombie
apocalypse”, referring to technologies and applications that invade our lives. The
most influential of such mobile application platforms was the AppStore release
by Apple in 2008 for the iPhone, which was the fist of its kind.13 However, we
shall emphasize this part of the technical evolution in this section since it had a
major impact on the usage of the recent generation of smartphones, and thus on
this dissertation.

As described, mobile phones have evolved from single- to multi-purpose devices,
and today there exist a huge number and great variety of functional add-ons that
support users in different activities, e.g. banking, navigating, playing games, tak-
ing notes, or sightseeing. The most interesting phenomenon of such application
stores is, that people can now easily alter the purpose of their devices by adding
new functionalities, so called apps. Thereby, a smartphone can easily be trans-
formed from a phone to a camera, sketchbook, bus schedule, musical instrument,
or dictionary. This functional customization is supported by application stores like
Apple’s AppStore or Google Play Market. They provide new means for software
12NBC News: Apps could be overtaking the Web, says report. http://goo.gl/NPcvk, last accessed on

08.06.2013.
13Chris O’Brien: Apple’s path to the app store wasn’t a straight road, http://goo.gl/ibMYT, last

accessed on 08.06.2013.
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Figure 1.3: Number of applications available per application stores between June 2008 to
June 2013.14

providers to develop, market and distribute their applications [7], and for end-users
such platforms provide a convenient way to access applications since the end-users
do not have to handle any technical details [124]. While the customization of a
phone’s look and feel and audio profiles was a very important feature of first mo-
bile phones [109], being able to also customize phone’s functionality in terms of
applications also became increasingly important [17]. As such, the most important
aspect of application stores that we will focus on in this work is that the end-user
himself is able to customize the functionality of his own device. Due to the variety
of services available on application stores, e.g. recreational applications and spir-
itual applications [53], mobile phones were integrated even deeper into people’s
lives [17].

Resulting from the popularity of mobile application stores, the number of available
applications is steadily increasing. At time of writing this thesis there were more
than 775,000 applications available for Apple’s iPhone and more than 900,000 ap-
plications for the Android platform.15 One can expect these numbers to be outdated
soon, and therefore Figure 1.3 shows the recent growth trend of mobile applica-
tions stores, based on which a further increase can be anticipated. The number of
application downloads, i.e., the number of times people installed applications on
14Data source: Wikipedia, http://en.wikipedia.org/wiki/App_Store_(iOS) and http://en.wikipedia.

org/wiki/Google_Play, data interpolated, last accessed on 28.06.2013.
15Wikipedia: List of mobile software distribution platforms. http://is.gd/pzjWb6, last accessed on

07.06.2013.
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Figure 1.4: Cumulative number of downloads of applications from stores between June
2008 to June 2013.17

their phones, is anticipated to surpass 81.4 billion in 2013.16 Figure 1.4 shows the
increasing number of applications that users have downloaded from the applica-
tion stores.

The described age of application stores has a twofold impact on this dissertation:
First, it gave rise to using a large variety of applications on smartphones, and as
such created the apparatus that we will study in this work. Second, the possibility
of easily distributing mobile applications to a large base of users motivated the
research method we are using in this work to study mobile application usage. This
dissertation is motivated by questions like: How do people make use of the large
variety of applications that are available on application stores? How can we help
people to find the right applications to install and launch them? And what are
the costs of integrating a large variety of functions beyond telecommunication into
mobile phones?

1.2 Challenges and Motivation
If the owner of a first generation mobile phone pulled his device out of his pocket,
it was clear what he wanted to do: He wanted to conduct a phone call. Over the
16Gartner: Gartner Says Free Apps Will Account for Nearly 90 Percent of Total Mobile App Store

Downloads in 2012. http://goo.gl/QvCO8, last accessed 07.06.2013.
17Data source: Wikipedia, http://en.wikipedia.org/wiki/App_Store_(iOS) and http://en.wikipedia.

org/wiki/Google_Play, data interpolated, last accessed on 28.06.2013.

http://goo.gl/QvCO8
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course of the evolution of mobile phones, as described in the previous section, this
has changed: If the owner of a mobile phone pulls out his device nowadays, we
cannot know in advance if he wants to make a phone call, read news, check the
weather forecast or play a game.

A Thought Experiment. With the increased variety of functionalities that mo-
bile phones provide to their users, the uncertainty of anticipating which function a
user would use next also increased. However, a theoretical optimum for the design
of current smartphones would be a phone that instantly has the correct application
open when the owner wants to use it — as old phones always had the “phone call
application” immediately available. Whereas the dial pad was directly available for
conducting a phone call on old mobile phones, nowadays a user first has to tell her
phone that she wants to make a phone call by clicking on a telephone icon, before
she can dial a number. An optimal smartphone would remove the additional effort
that users need to make, which have resulted from the variety of applications that
became available for mobile phones. Reasons for this optimal smartphone being
impossible mainly come down to the uncertainty in modeling human behavior and
people’s changing interests [273]; sensor-based approaches bear an a-priori failure
that leads to ambiguity [82].

Challenges. While the optimal smartphone as we sketched it is of theoretical na-
ture and unlikely to be built, we can still draw the motivation of this work from this
thought experiment. In particular, from the effort that users need to make due to the
integration of more than one application on their device, we can derive four chal-
lenges worth investigating to work towards this optimal smartphone design. Thus,
the following four challenges arise from considerations of the thought experiment’s
optimal smartphone.

• Launching applications: For the optimal smartphone, which would auto-
launch the applications in advance when users needed them, we first need to
understand how users launch applications on their own. Patterns we find will
provide a foundation for building systems that anticipate which application is
most likely to be launched next. In addition, we need means to observe how
people make use of the applications that they have available on their devices.
As such, understanding people’s patterns of application launching and help-
ing them to quickly launch the next application is an intermediate challenge
which we need to address in targeting the optimal smartphone design.
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• Housekeeping applications: Having available the functionality of auto-
launching applications will remove the user’s need to maintain his own set
of applications. While for the reasons mentioned above this is not feasi-
ble, the challenge remains how to support people in maintaining the sets of
applications they have installed on their smartphones. To help people with
housekeeping their own applications we first need to understand how people
do maintain their application sets and which concepts they apply to organize
their devices.

• Discovering applications: The optimal smartphone design should not only
consider applications that a user has downloaded to her smartphone, but also
those that are available on the mobile application stores. In fact, the opti-
mal smartphone should not require the user to download applications to this
device but rather make them instantly available without the user needing to
decide which applications to install. In working towards this goal we need
to address the challenge of determining which applications out of those that
are available are important for a user in her current situation. Also we should
provide users with support to find such applications.

• Multitasking between applications: With such an automatic launching of
applications as described in our thought experiment, a fourth challenge will
be to decide what to do if a user already is using an application and a second
application should be auto-launched. Either the user will stay in his primary
application and the second one will be deferred, or the second application
will be auto-launched and will interrupt the usage of the first application.
To solve this challenge, we shall first consider how people currently handle
this problem, and what the consequences of interrupting mobile application
usage are.

The mobile ecosystem, as described in Section 1.1, is scaling at a rate faster than
our understanding of how people make use of it. As such, in the context of the situ-
ation described in the previous paragraph, we are behind in providing solutions for
building better support for smartphone users to leverage the large ecosystem. This
work addresses the challenges we derived from the thought experiment described
above, in the four fields of launching applications, housekeeping applications, dis-
covering applications and multitasking between applications.

Non-goal of This Work. This work has its background in human-computer inter-
action and aims to understand and support people with regard to their smartphone
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usage. It is not a goal of this thesis to develop new hardware. The technological
foundation of this thesis is the state-of-the-art devices and smartphones that are
currently widely used and adopted by end-users, as described in the first section.
Further, it is explicitly not a goal of this thesis to develop new machine learning
algorithms for the prediction of mobile application usage or recommendation of
applications, though such algorithms are related to this work and are being used
and discussed throughout this thesis. Rather, such challenges have been topics of
collaboration apart from the work presented in this thesis, and have been presented
in distinct publications (cf. [139, 140, 183]).

Personal Motivation. The author’s very personal motivation results from his
own experience with mobile phones, as he has witnessed the recent evolution of
mobile phones on his own. While his first late 90s device was only capable of
doing phone calls, sending text messages and setting up an alarm clock, his latest
smartphone allowed him to draft sections of this thesis, take pictures of sketches
that made their way as figures into this work, search for resources on the Internet
and read papers while on the go, and develop and test applications and systems
that will be introduced later in this work. The first time arranging icons on an
iPhone motivated the question of “What’s the best way to do this?” and resulted
in the work presented in Chapter 4, and first queries to find new applications on
an application store resulted in the research presented in Chapters 3 and 5. The
short dialog quoted on page ix at the beginning of this thesis further illustrates this
personal experience.

1.3 Research Questions
The overarching research question that we address in this work is:

How do people use mobile applications on their smartphones, and
how can we build systems to support people in making effective and
efficient use of mobile applications?

This question will be answered more by specifically addressing the challenges
of the aforementioned four fields of launching, housekeeping, discovery of and
multitasking between mobile applications, from the perspective of mobile human-
computer interaction. In particular, we can break down this research question into
more achievable questions, which this work sets out to answer, as follows:
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(Q1) How do people launch mobile applications, and are there particular patterns?
(Q2) How can we support people to more easily launch applications?
(Q3) How do people organize applications on their devices?
(Q4) How can we support people in housekeeping their applications?
(Q5) How can we build a system to help people discover valuable applications?
(Q6) How can we understand which newly discovered applications are of value?
(Q7) What is the impact of integrating different services into a phone?
(Q8) How can we better support application usage that is concurrent with calls?

The goal of this thesis is to contribute systems that support the use of mobile appli-
cations and to ground these systems’ designs in an understanding of user behavior
gained through empirical observations.

1.4 Thesis Outline
The core contributions of this work are twofold: The first part is on gaining insights
into how people interact with applications on their smartphones to inform an un-
derstanding of mobile application use. Results of these sections are, for instance,
descriptions of usage patterns or user behavior. As such, the first part of this thesis
makes contributions to theory. Based on this understanding, we present the second
part of this thesis, which aims to support people during usage of their mobile appli-
cations and make handling applications more effective and efficient. The results of
this second, more systems-oriented part are, for instance, applications and systems
that provide assistive functionality for end-users. As such, this second part of this
thesis makes technical contributions to engineering.

These two fields of contributions — understanding and supporting — are addressed
throughout this thesis and presented in four interwoven chapters to address the fol-
lowing four fields according to the challenges and research questions stated above:

• Launching of mobile applications (Chapter 3)
• Housekeeping of mobile applications (Chapter 4)
• Discovery of mobile applications (Chapter 5)
• Multitasking between mobile applications (Chapter 6)

In each chapter, the initial sections usually contribute to our understanding of how
people use mobile applications, while the latter sections usually contribute to sup-
porting people during application usage, building on the findings of the previous
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sections. Figure 1.5 provides a graphical representation of the structure of the
core parts of this thesis. It shows how chapters and sections relate to each other,
especially how the ideas and approaches to support people during daily applica-
tion usage are based on the knowledge gained from understanding application use
on smartphones.

Following on this first chapter, Chapter 2 describes the methodology of the research
conducted for this thesis, and frames the work set forth in this document by present-
ing related work. Finally, Chapter 7 closes by summarizing the key contributions
made, sketching ideas for future work and concluding with final remarks.
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Figure 1.5: Structure of this thesis: Four main chapters on achieving insights into ap-
plication usage and exploiting the understanding gained to build supportive systems for
end-users.
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Chapter 2

Foundations,
Background and Related Work

This chapter provides the foundations, background and related work for this thesis.
We introduce the notion of context as it relates to the field of mobile Human-
Computer Interaction (HCI), describe our research methodology, and provide a
literature review on works that are related to the four topics of this thesis as well as
on fundamental work to frame this thesis.

2.1 Context in Mobile Human-Computer Interaction
Human-Computer Interaction (HCI) “is a discipline concerned with the design,
evaluation and implementation of interactive computing systems for human use
and with the study of major phenomena surrounding them.”1 Focusing on the
domain of mobile computing for the case of this dissertation, we narrow down
such interactive computing systems to smartphones and mobile applications.

It is inherent to the very nature of smartphones as mobile devices that they can be
used in various situations of daily life. This is particularly the case since people
are carrying around their mobile phones the whole day and their activity changes
over the course of the day, e.g. having breakfast, commuting to work, working,
1Hewett et al.: ACM SIGCHI Curricula for Human-Computer Interaction, http://old.sigchi.org/cdg/
cdg2.html, last accessed 09.06.2013.
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having lunch, and further day-to-day activities. Works relating general usage of
smartphones to their users’ contexts will be discussed in Section 2.3.

To characterize such user activities while using a mobile phone, we will use the
concept of context to characterize the situation of a user’s interaction with smart-
phones and mobile applications throughout the thesis. It attests to the importance
of the concept of context that there is more than one definition, and the dispute over
what makes context is still an open question [147]. For this dissertation, we refer
to the definition of context provided by Dey [80]:

“Context is any information that can be used to characterize the situ-
ation of an entity. An entity is a person, place, or object that is con-
sidered relevant to the interaction between a user and an application,
including the user and applications themselves.”

In this work we refer to Dey’s definition of context when describing the situation of
a person using her smartphone, especially with regard to a user interacting with the
applications her smartphone provides. In the same line of thinking, we use Dey’s
definition of context-awareness to describe a system’s capability to use a user’s
context as an input in order to adapt to it. The first definition of context-aware
computing was made in 1994 by Schilit and Theimer [218] as the “ability of a
mobile user’s application to discover and react to changes in the environment they
are situated in”; although their primary focus was on the locations of people and
objects for their Active Maps System. In this work, we adopt Dey’s [80] definition
of context-awareness, which is:

“A system is context-aware if it uses context to provide relevant in-
formation and/or services to the user, where relevancy depends on the
user’s task.”

There are three categories of context-aware systems [80]: those presenting infor-
mation and services to a user based on context, those automatically executing a ser-
vice for a user, and those tagging information with user’s context to assist in later
retrieval. The context-aware systems that we deal with in this work will typically
be the smartphone’s user interface adapting to the user’s context, e.g. by providing
varying shortcuts to applications. As such, systems of this work typically fall into
the first category: those that present context-aware information to their users.

Apart from different works on defining and understanding context itself (see e.g
[177, 88, 1, 147]), a large body of research dealing with context-aware systems in
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various domains is also available, e.g. approaches for reasoning on user’s activity
from context information (see e.g. [61, 203]), platforms and middleware systems
to make recognition of and access to context transparent to the applications (see
e.g. [211, 192]), and systems making explicit use of certain contextual features
(see e.g. [260, 229, 23]).

In addition to Dey’s general definition of context given above, for different inves-
tigations of this work’s research questions we will operationalize the given defini-
tion as proposed by Zimmermann et al. [272]. Zimmermann et al. categorize five
different categories of information that can be taken into account for context: in-
dividuality, activity, location, time and relations. For our different studies we will
shift our attention regarding these five categories. For instance, although Schmidt
et al. [220] discuss that context is much richer than investigating the mere location
where the interaction between a user and a system takes place, in this work we
will, in particular, frequently discuss the location of a mobile user when using her
device. At other places (cf. Chapter 3) we will in particular discuss time of day
and relations between launches of applications as contextual information, or user
activities such as shopping (cf. Chapter 4).

Taking the initially-given definitions of HCI and context we can reiterate that this
dissertation is concerned with the design, evaluation and implementation of smart-
phone user interfaces, taking into account the impact of context on mobile applica-
tion usage.

2.2 Research Methodology
The methodology of this work was inspired by the idea of deploying real systems
and leveraging them for research purposes. This was motivated by the work of
Müller [174] and Schöning [223], who both rely on the method of deployment-
based research. This approach serves the twofold purpose of (i) gaining scientific
insights and (ii) building systems targeting actual user needs. In deployment-based
research, empirical observations are made based on deployed systems, which help
reflect on a theoretical understanding of interaction. This in turn helps to further
improve the design of the deployed system (cf. [174, 223]). This approach creates
an iterative cycle following a user-centered design process.
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2.2.1 Leveraging Application Stores

The work of this dissertation started, and first systems that we implemented had
been deployed, before the era of application stores became a major driver of the
mobile ecosystem (see Chapter 1). Our early idea was to build a software plat-
form for enabling end-users to create their own mobile applications following an
end-user programming approach, to deploy these applications in a repository and
make them available to other users, who would then be able to use them through
a context-aware recommender system (see [34, 35] for early results). However, as
the ecosystems of mobile application stores grew and an increasing mass of users
as well as applications became available, it felt reasonable to switch to the Android
application store for the research questions concerned about the use of applications,
rather than waiting to bootstrap our own repository of user-generated applications.
As a matter of fact, it was straightforward to conduct studies by leveraging the mo-
mentum of the upcoming mobile application stores and study end-users using the
deployed systems by collecting data on how people use the systems. The appazaar
system was a direct result of this idea (see Chapter 5 and [42]).

In this thesis, we also cover the development and deployment of the AppSensor
framework (see Chapter 3) and the AppKicker application (see Chapter 3) to mobile
application stores. For all three systems (appazaar, AppSensor, AppKicker), we
took into consideration user feedback and data logging. We collected data on the
usage of the applications to iterate on the design of the technical systems as well
as their user interfaces; to improve the technical system (e.g. through users’ bug
reports) and to inform the design (e.g. through users’ feature requests).

Collecting Data in the Wild

According to Rodgers [207] the idea of turning to the wild is to study “phenomena
in the context rather than in isolation”, and is all about observing how people
change, react to, or integrate novel technologies into their everyday lives. The
approach of studying new technologies in the wild was used in different fields
of HCI and ubiquitous computing to study the use of new or existing systems in
situ (see e.g. [45, 181, 196]). Rodgers [207] remarks that isolating specific effects
observed in an in-the-wild study is difficult since the participant rather than the
researcher is in control of the study, and that effects may be caused by dependencies
between various factors.
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According to this understanding, implementing a research study into a mobile ap-
plication and deploying it an application store can be seen as a special case of
conducting research studies in the wild.

Quasi-Experimental Design

Oulasvirta [178] urges rethinking experimental design when studying mobile and
context-aware systems. His rationale is that assumptions about randomization
and control, which can be made for experiments conducted in a controlled lab-
oratory environment, are not necessarily valid in the wild. He proposes ground-
ing the universal practicality of conducting studies in the scientific validity of
quasi-experimentation design. Laying out the theory of experimental and quasi-
experimental designs, Shadish et al. [225] characterize an experiment to be a study
where the investigator purposefully applies two or more treatments to parts of a
sample to observe the treatments’ effects. Common to different forms of experi-
ments is the control of which treatment shall be applied to which units of the sam-
ple, though the form of control can differ. Differentiating the researchers’ degree
of control leads to four different kinds of experiments [225]:

• In randomized experiments the control over the experiment is typically ap-
plied by randomly assigning treatments to units of the sample. Observed dif-
ferences in the effects of treatments between groups are likely to be caused
by the treatments themselves.

• In quasi-experiments the experimenter gives up control of assigning treat-
ments to sample units; most importantly, they are not randomly assigned.
Instead, participants in these studies self-select their treatments.

• In natural experiments the treatment occurs naturally and comparable con-
ditions are introduced afterwards. As such, neither the experimenter nor the
study participants are in control of applying the treatment.

• Finally, in passive observational studies there is no treatment of subjects at
all; strictly speaking, this is by definition a non-experimental design, rather
than an experiment. The aim here is to observe relationships between vari-
ables.

Moving on this continuum from controlled randomized experiments to natural ex-
periments raises questions regarding validity of the study, reasons for this being
loss of control over study participants and loss of randomization of units to study
conditions. Oulasvirta [178] additionally distinguishes randomized experiments
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into the two types of laboratory experiments and analogue experiments when ap-
plying this theory to studies in the field of HCI.

In this thesis, we are motivated by quasi-experiments (when proposing a way to
evaluate recommender engines in Chapter 5), natural experimentation (when study-
ing concepts for arranging icons in Chapter 4 and application multitasking in Chap-
ter 6) and passive observational studies (when investigating application launching
in Chapter 3).

Research in the Large

While we reiterated on the early ideas and goals of this work in the light of a
changing mobile ecosystem, other researchers also began to leverage the momen-
tum of the growing mass of mobile application users who would install applications
through the application store (see Section 2.2.2 for related works). The main mo-
tivation was to be able to gain large amounts of data for statistical analysis, run
studies with a heterogenous sample of participants, and observe behavior in nat-
urally occurring user contexts [116]. Consequently, this new research approach
began to establish itself as a new instrument in mobile HCI research that gained
momentum as research in the large (coined in particular by the workshop series on
Research in the Large [189]).

Research through the Application Store

With an increased focus on application stores as the means for running studies we
also refer to this instrument as research through the application store. In partic-
ular, we make this distinction since studies related to HCI can — obviously —
also go large in terms of number of participants, geospatial spread and length of
time period of observations without being distributed over an application store; e.g.
when relying on web technologies (like [121, 68]) or being an inherent part of the
operating system itself. Further, while Henze and Pielot [116] in particular praise
application stores as a convenient means for the distribution of studies, we also
leverage this possibility to get access to low-level APIs on devices which are only
available to native applications.

Only a few papers utilizing this method have been published at major conferences
and in journals so far (cf. e.g. [165, 117, 173, 119, 71] and Section 2.2.2), four of
them comprising parts of this work ([38, 157, 36, 183]). In 2012 McMillan finished
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the first PhD dissertation [167] describing the method of “mass participation user
trials”, as he calls it, and used this method for his studies.

In this work, we will mainly use this research method throughout (Chapters 3,
5 and 6): firstly, because it is well aligned with the field of study itself, which
is about understanding and supporting the use of mobile applications; secondly,
because it has a strong focus on deployed systems running on the smartphones
of end-users; thirdly, because we have chosen an approach that leverages mobile
application stores as a means to bring our systems into the natural contexts of our
participants for studying their contextual usage; and finally, because collecting data
on a large scale allows us to discover findings that would be difficult to derive from
conventional studies with smaller samples [116], like phone call interruptions (see
Chapter 6).

As described previously, this method of research through the application store is
inspired by the approach of deployment-based research, is grounded in the method
of quasi-experimental design, and can be seen as a special case of collecting data
in the wild. The studies presented in this work follow a quasi-experimental de-
sign, e.g. when users self-select whether they download the application or choose
between different features of an application, which ought to be studied, they fol-
low a natural experiment, e.g. when we study naturally occurring interruptions of
application usage, or else they follow the method of passive observational studies,
e.g. when the application store is a means for distributing systems for the goal of
logging data.

Reflections on Research Approach

Henze and Pielot [116] argue that upscaling studies to thousands of participants
and worldwide distribution of participants makes it possible to claim external va-
lidity. However, we argue that the threats to external validity still exist and need
to be taken into account and discussed when deriving conclusions from findings of
studies in the large.

The main practical disadvantage of research through the application store is that
the study apparatus has to be developed under the objectives and requirements of
commercial applications, i.e., it needs to be “ready for prime time” as Henze2

calls it, because it is competing against other applications on the application stores,
2N. Henze: How to do MobileHCI Research in the Large? Tutorial at MobileHCI 2011, http://goo.
gl/Yo2EI, last accessed on 08.07.2013.

http://goo.gl/Yo2EI
http://goo.gl/Yo2EI
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which are also drumming up user interest. This constitutes a technical challenge
[72]. Further, it can take a lot of time before an application serving as a study has
reached a reasonable number of installations that would make it possible to collect
meaningful data. This and other challenges [72] cannot be addressed in advance,
in contrast to a more controlled lab study, and they are also out of control for the
researchers. Practices like recruiting people from social networks or advertising
applications on famous websites might also bias the sample, and the method of
recruiting participants needs to be reported when describing results of such studies
conducted through the application store.3

When moving form laboratory studies to the application store, contact with the
study participants also gets lost, and when collecting data from individuals on a
large scale, ethical concerns may arise. Guidelines and best practices on ethi-
cal questions are a current topic (cf. e.g. [113, 166, 172, 173, 187]), first studies
in the large having been conducted without taking much care of this topic. We
shall emphasize that for all studies reported in this dissertation, the users had to
explicitly opt-in to data collection, as we implemented the two-button approach
proposed by Pielot et al. [187]. As such, we had large numbers of users not con-
tributing to our studies despite using our applications. This underpins the idea of
deployment-based research where besides inferring knowledge, the development
of the systems is a second goal. More recently, approaches for mitigating some
drawbacks of large-scale trials, by adding traditional local user studies in parallel,
being discussed [173].

Over the course of this thesis we will present different studies. Some of these
studies draw samples from the same deployed systems, but at different points in
time. Based on longitudinal observations following the method laid out in this
chapter, single studies report on different time series of those systems. The number
of users that each study is based on as well as the time spans of investigations
may differ. It is worth keeping in mind that this results in different samples, which
should not lead to confusion on the part of the reader.

Barnard et al. [18] stated that there is a disconnect between the real use and the
evaluation of mobile systems, and they to close the gap between the context of
actual use and the context of studies of mobile systems and applications. The au-
thors study how changes in contextual variables (task type, sitting/walking, light-
3This is regarded as common sense in the community and was agreed on as a result of a discussion
at 3rd Workshop on Research in The Large at MobileHCI 2013.
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ning level) impact users’ performance and workload in reading and comprehension
tasks. Barnard et al. conclude that we need to keep the context of use in mind
when designing and evaluating new systems, as it can strongly impact user behav-
ior when interacting with a mobile device. The method of research through the
application store, which we make use of in this work, is a way to study systems in
their real context. Related studies using the same approaches are presented in the
next section.

This research approach — although it is in its infancy since it is inherently coupled
to the era of mobile application stores — has been used by different researchers
in the last few years. Their works will described in the next section. The studies
we present in this thesis are framed by the theory of experimentation and mainly
driven by the ideas of deployment-based research, research in the wild and research
through the applications store.

2.2.2 Methodically Related Studies

Although the approach of research in the large is relatively young, it has been ap-
plied to different research questions in HCI, ubiquitous computing and related re-
search. For a better overview on work related to this method, and additional classi-
fication of the method, we adopt categories from Henze’s MobileHCI tutorial4. We
distinguish among five categories of works: (1) using application stores as proofs
of concepts and for dissemination of work, (2) leveraging application stores as a
research tool to study distinct research questions and learn about new aspects when
upscaling studies, (3) for study of dedicated research questions at scale, and (4) for
studying the ecosystems of smartphones and application usage itself. We will fur-
ther add to this classification (5) a group of papers presenting lessons learned from
using the approach previously presented. While we will present related work as
belonging in individual categories, some research actually falls into more than one
category.

Proving Concepts and Disseminating Results

The motivation of deploying an application to application stores for some works is
to prove the concept behind the research, or collect additional feedback on research
4N. Henze: How to do MobileHCI Research in the Large? Tutorial at MobileHCI 2011, http://goo.
gl/Yo2EI, last accessed on 08.07.2013.

http://goo.gl/Yo2EI
http://goo.gl/Yo2EI
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contributions by making the work available to users. These types of works mainly
rely on the review and comments function that application stores provide to collect
feedback on their concepts [116]. Another motivation also might be to disseminate
existing work, and make research results available for end-users, maybe aiming to
acquire additional insights by deploying the system.

Wang [257] present the design of Ocarina, which is a musical instrument for the
iPhone that uses its touch display and additional sensors for creation of tones.
By making their application available on the Apple AppStore, they were able to
reach more than a million users, which allowed them to investigate users’ social
experiences of their application.

Buddharaju [51] test the concept of an application for measuring physical activ-
ity while walking, leveraging proxy measures for metabolic measurements. By
deploying the application to the Apple AppStore and collecting data on the body
mass index of users and daily patterns of physical activity, they were able to argue
for the reasonability of their concept.

Zhai et al. [267] present ShapeWriter as a “transfer of user interface research to
end-user practice”, which is an implementation of research on keyboard interac-
tion. ShapeWriter is an early example of how application stores can be leveraged
to get user reviews, and Zhai et al. present the insights they got from analyzing 556
user comments. Similarly, the result of research on an optimized keyboard lay-
out for tablet devices, called KALQ [180], was recently deployed to the Android
application store.5 The application already got first user feedback that might be
taken into account for subsequent iterations on the design of the keyboard. Ric-
camboni et al. [204] tested the concept of educational multimedia applications for
identification of organisms by releasing applications to the Apple AppStore. Based
on their findings, e.g. applications for spatially-limited species are best offered for
free, they adapted their marketing strategy.

Testing early versions of applications as proof of concept can precede other ways
of leveraging an application store, before continuing a line of work, to get first
feedback from users.
5Google Play Store: KALQ Keyboard (Official) Beta, http://goo.gl/e49Pq, last accessed on
12.06.2013.

http://goo.gl/e49Pq
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Using Application Stores as Research Instruments

Application stores can also be leveraged as a tool to the inform design of a sys-
tem following a user-centered approach, as the following papers suggest. As such,
works of this category focus on improving the design of a system rather than in-
vestigating dedicated research questions.

McMillan et al. [165] describe how they collected a maximum number of partici-
pants combining qualitative and quantitative feedback for redesign of a game called
Yoshi. Their approach was to inform the design of the application itself based on
a large amount of feedback collected from end users through in-game feedback
measures and by contacting some players through social networks and interview-
ing them over VoIP or telephone.

Karpischek et al. [143] deployed an application for sharing product reviews based
on barcode scans. First user comments were analyzed to improve the design of
the system. The authors describe their deployment on the application store as a
research tool to learn about customer-product interactions.

Henze and Pielot [116] discuss the research tool of studies through the application
store as a means for increasing external validity, simply because large samples of
world-wide participants, who will use the application in their natural contexts, can
be reached.

Discussions about ethical considerations (e.g. [113, 166, 172, 187]) of using mobile
application stores also fall into this category of thinking about application stores
themselves as a research tool.

Implementing Dedicated Research Questions

Another way to leverage application stores for research studies is to conduct studies
which alternatively also could have been conducted within controlled lab studies.
As such, this category’s goal of using an application store is to study a distinct
research question, with special focus on upscaling the size of a sample, reaching
a wider range of participants, or bringing the apparatus into the natural context of
the participants.

A good example for studies whose research questions are implemented within
applications are Henze’s studies of off-screen visualizations on small screens
[114, 118]. In [114] the study compared stretched arrows, scaled arrows and Halos
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with a task of finding 10 randomly distributed points on a map. In [118] the focus
is more on testing the method. To test such “experiments in the wild [they used]
the well-defined off-screen problem”, which they already had used previously, but
this time with the study task embedded into a game.

Budde et al. [50] study the question of whether a social gaming approach can be
used to build a crowdsourced database of product information. During a rather
short study period of 17 days, the authors were able to provide evidence that it is
possible to motivate users to start submitting information, but the authors could not
show that a full database could be created.

In [119] Henze et al. studied the touch performance of smartphones with regard
to precision. With a task where users had to tap on elements of different size and
position, they replicated a known offset in touch accuracy. Most importantly, they
found that this offset is systematically skewed. By releasing an updated version of
the game, they showed that the resulting touch error could be compensated for, and
touch performance could be improved.

Sharazi et al. [231] investigate whether non-verbal iconic user interfaces are rea-
sonable for real-time opinion sharing in the case of television programs. They
released an application for judging football games, and studied its use during a
football world championship. Using data from 925 users they revealed that the
interface serves its purpose and can even create a sense of connectedness among
users in different locations.

Informing an Understanding of Smartphone and Application Usage

Researchers also apply the instrument of research through the application store
to learn about more general aspects of smartphones and application usage. As
such, in this fourth category we present works which conduct research through
the application store because their research questions are inherently bound to this
ecosystem. Some of the works presented previously on recommender systems for
mobile applications could also be put into this category.

In [255] Watzdorf and Michahelles investigate the accuracy of positioning to un-
derstand how accurate such data is, based on data collected through a commercial
iPhone application. They find that different positioning technologies (GPS, Wifi-
based, Cell-ID) provide different degrees of accuracy. Based on their findings they
suggest which positioning technology should be used for which requirements. In
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[39] we present an approach to exploit users’ smartphones themselves as a study
apparatus by making the original smartphone operating system an integral part of
the gameplay.

Other works in this category strongly relate to the overall topic of this thesis
(cf. [103, 104, 85, 115, 191, 247, 93]), and will therefore be introduced in Sec-
tion 2.3, which describes work relating to the research questions rather than to
the method.

Informing the Research Approach

Lessons learned constitute the main contributions of a few papers conducted using
the approach of research in the large. As such, they inform the approach itself and
provide guidelines for other researchers using this approach.

Henze et al. [117] report on the experience of five studies they have conducted
in the large. One valuable insight is that findings cannot be generalized without
knowing much about the sample, e.g. when they people reside only in one country.
Secondly, when users have to opt-out from the study instead of opting-in, obviously
more data can be collected, though this has to be aligned with legal and ethical
aspects. Further, Henze et al. found that it is important to engage users for long-
term usage since drop-out rates are high, and qualitative feedback received through
market comments is mostly useless. Finally, they note that applications put on
application stores will often be used in unforeseen ways.

Kranz et al. [151] study the adoption of near-field communication (NFC) technol-
ogy (they released a game that motivates people to scan NFC tags they have avail-
able) and investigate people’s behavior with respect to updating applications. The
main lessons are that short development cycles can support fast iterations on user
feedback, visual appeal does attract users, marketing and maintenance is required
to turn downloads into active use, multiple applications for the same research ques-
tion could increase the sample size, and studies in the large are conditioned by
user-side constraints (e.g. whether NFC is available).

In [81] Dey et al. present lessons learned from a study of people’s battery charging
habits observed over a 4-week study of more than 4000 users. They describe how
they improved the application based on user feedback. The paper discusses ideas
for running controlled studies by randomizing conditions based on device iden-
tifiers, and argues that maintaining a deployed system would be well supported
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because update cycles can be short. A downside that was experienced was that
engineering efforts tend to be high when aiming for good reviews, which will im-
pact the visibility of research applications among the large number of applications.
Therefore time and effort to be spent for developing and running research in the
large should be carefully planned.

Miluzzo et al. [170] describe the “deploy-use-refine approach” that they have
adopted. Their strategy creates a circular iterative process similar to the idea of
deployment-based research introduced earlier. In addition to aspects already men-
tioned in works previously discussed, they add that users need an incentive for
using a research application and software limitations need to be considered, since
APIs (especially for sensors) are not necessarily designed for research purposes.
Most importantly, the authors add that when conducting research through the ap-
plication store, the researchers lose the ground truth of traced data; they propose
to add elements of experience sampling or to cross-validate collected data with
participants’ data from status messages on social networks.

Tossel et al. [247] explain nine constraints that need to be taken into account when
using the method of smartphone logging for studies in the wild. These are related
to the variables that are needed, whether data is potentially sensitive and requires
privacy, the degree of obtrusiveness and whether the user will be interrupted for
data collection, whether an interface is required for logging, whether participants’
tasks will be natural or constructed artificial tasks, the type of technology used, who
the participants are, where the study will take place and what the setting will be,
and finally how long the study will be. The authors compare three studies they have
conducted, and conclude that logging can be more accurate than self-reporting, e.g.
about the amount of time people spend in applications.

Last but not least, Coulton and Bamford [71] report on experiences with applica-
tions released to the WidSet6 platform, with two deployed applications with a total
of more than 1.4 million users. Data collection was begun in October 2007, and
— to the best of our knowledge — this constitutes the first and largest conducted
study to be reported. Their lessons are that while value-added functionality can
amplify popularity and usage, it may also impact usage behavior in a way that im-
pacts the study. To the best of our knowledge, this is the only work reporting on
the risk that the evolution of the chosen application store may strongly impact the
6An early application store run by Nokia until 2009; see http://en.wikipedia.org/wiki/WidSets, last
accessed on 12.06.2013.

http://en.wikipedia.org/wiki/WidSets
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research plan, as promotional actions might boost application installs; finally, the
WidSet application store was taken offline, which put an end to the study — such
issues are obviously out of the researchers’ control.

We cannot claim that in these five categories we present an exhaustive list of all
works relating to the method of conducting research through the application store,
but rather we wanted to exemplify the ways the method can be leveraged. As the
approach laid out in this chapter is rather young and still evolving, the papers on
the lessons learned in particular were published after the studies for this disserta-
tion had been conducted. However, most important practices that are suggested are
rather obvious and have been considered nonetheless (e.g. engaging long-term us-
age, providing value as incentive, iterative design based on immediate feedback).
Further readings can be found in the workshop proceedings of related workshops
such as Workshop on Observing the Mobile User Experience7, the Workshop se-
ries on Research in the Large8, and Workshop on Informing Future Designs via
Large-scale Research Methods and Big Data9.

2.2.3 Methodically Related Frameworks and Datasets

In Chapter 3 we will present our means for studying mobile application usage in
the large. Essentially, we will investigate the lifecycle of mobile applications from
an end-user’s perspective and implement and deploy a logging framework to trace
mobile application usage. This is not a new approach as such, and related systems
are available to study user behavior on smartphones or — more generally — in
instrumented ubiquitous computing environments.

Datasets

Some datasets are available for researchers to investigate mobile application usage,
three of which shall be discussed shortly: the Reality Mining Project, the LiveLab
traces10 from Rice University and the Lausanne Data Collection Campaign11 from
7http://omue10.offis.de/files/OMUE10-Proceedings.pdf, last accessed on 12.06.2013.
8http://large.mobilelifecentre.org, last accessed on 12.06.2013.
9http://informdesign.ubiplayground.com/, last accessed on 12.06.2013.
10Rice University: LiveLab: Measuring wireless networks and smartphone users in the field , http:

//livelab.recg.rice.edu/traces.html, last accessed on 13.06.2013.
11Nokia Research Center: Lausanne Data Collection Campaign, http://research.nokia.com/page/

11367, last accessed on 13.06.2013.

http://omue10.offis.de/files/OMUE10-Proceedings.pdf
http://large.mobilelifecentre.org
http://informdesign.ubiplayground.com/
http://livelab.recg.rice.edu/traces.html
http://livelab.recg.rice.edu/traces.html
http://research.nokia.com/page/11367
http://research.nokia.com/page/11367
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Nokia. Analysis and results of this data related to this thesis will be introduced in
Section 2.3 (e.g. [226, 85, 86]).

The Reality Mining Project [89] aims to investigate social phenomena through em-
pirical data collection. The project instruments mobile phones with rich sensing
capabilities and distributes them to 100 participants and collects data over a period
of 9 months. Based on the pieces of data the researchers collect from participants’
phones, for instance direct Bluetooth information, they can investigate people’s
usage of devices, along with the relationships between people, and they can also
reason about individual as well as group behavior.

The LiveLab traces collected by Shepard et al. [226] provide data on smartphone
use over one year. The authors had to apply unusual software modifications to get
access to the information on iPhone, which prevented them from deploying the
system to an application store, and therefore they could only reach 25 participants,
recruited from university students, in their study.

For the Lausanne Data Collection Campaign a Nokia research lab recruited about
170 participants for over one year [146], later extended to 200 people. The logging
focuses on social interaction between people (e.g. phone calls) and spatial behavior
related to movement. Participants were virally recruited using a snowball approach,
and asked to use an instrumented mobile phone as their primary mobile phone. For
a full set of resulting papers we refer the reader to the project’s website12.

In contrast to such datasets that are partly available to the public and the data we
will describe in this thesis, besides the focus of the investigation (application us-
age in our data), publicly available datasets are limited in scale and only reach
users from local areas. In addition, providing participants with instrumented de-
vices might bias their natural usage behavior (see e.g. [171]). Further, we cannot
release our data for ethical reasons as it provides very sensitive information about
individuals. Even though we collect only anonymous data, it is so far unknown
whether parts of our data or specific features can be used to deduce the identity of
individuals. However, we do provide access to the data in a controlled way.13

12See http://research.nokia.com/page/11374, last accessed on 13.06.2013.
13See [139, 140, 157, 183, 228] for results of such collaborations.

http://research.nokia.com/page/11374
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Frameworks

In Chapter 3 we will introduce a framework for tracing mobile application usage.
With the improved capabilities of smartphones, different frameworks for different
purposes have been developed; these can be used for collecting various sensor
information on users’ devices.

Raento et al. [192] present ContextPhone, which is an extendable framework pub-
lished as open source. The framework focuses on logging contextual information
on smartphones (e.g. related to communication, application usage, and location)
and provision and storage of such data. The platform was extended for different
purposes and used within different research projects, e.g. ContextLogger14 to in-
vestigate the reasons for unavailability for mobile phone calls [212].

The AWARE framework15 is similar to ContextPhone in the sense that it provides
an open extendable platform. The main difference is the target platform: while
ContextPhone was built for Symbian OS16 and the Nokia Series 60 platform17,
AWARE is built for the current generation of smartphones running with Android
OS. Studies using AWARE (cf. [83, 81, 93]) will be described in Section 2.3.

In a similar line of work, also the funf Open Sensing Platform18 was developed by
MIT. It resulted out of the Reality Mining project [89]. Like AWARE, funf provides
an open-source extensible approach for collecting data on users’ smartphones. funf
is a little bit more established as it provides support for easy use, e.g. though data
collection in the cloud.

Rawassizadeh et al. [199] present the UbiqLog framework for life logging applica-
tions. UbiqLog logs events such as application use or phone calls with their relation
to location and time. The authors evaluated their approach with an Android-based
implementation for usability and resource efficiency (e.g. CPU usage) with six
users over one to fourteen months.

Wagner et al. [256] present Device Analyzer: An application they implemented
for the Android platform to collect more than 200 different pieces of information
from end-users’ smartphones; e.g., WiFi connection, installed applications, system
characteristics, and information regarding telephony. Over the course of nearly 2
14See http://www.contextlogger.org, last accessed on 13.06.2013.
15See http://www.awareframework.com/, last accessed on 13.06.2013.
16See http://www.symbian.com, last accessed 13.06.2013.
17Wikipedia: S60 (software platform), http://goo.gl/8sqv1, last accessed on 13.06.2013.
18See http://funf.org/, last accessed on 13.06.2013.

http://www.contextlogger.org
http://www.awareframework.com/
http://www.symbian.com
http://goo.gl/8sqv1
http://funf.org/


32 2.3 Related Work

years they were able to collect data from 12,500 users. They present their data
processing pipeline and discuss privacy issues.

Related platforms are typically designed to be exhaustive in tracing and measur-
ing basically everything that can possibly accessed on a smartphone. However, it
is known that due to software limitations, not every piece of information can be
accessed with the same level of accuracy [170]. Therefore, for the framework that
we are developing in this thesis, our design goal was instead to focus and trace
application usage as accurately as possible.

2.3 Related Work
In Section 1.3 we introduced the research questions of this thesis. Work related
to these questions can be found in five different areas: First we will provide an
overview on literature on social and communicational use of mobile phones in
general (Section 2.3.1), and then explain related studies and systems as they apply
to the four areas of this thesis: mobile usage of the Internet and applications (Sec-
tion 2.3.2), housekeeping of mobile applications (Section 2.3.3), context-aware
recommender systems for discovery (Section 2.3.4), and multitasking and task in-
terruptions (Section 2.3.5).

2.3.1 General Mobile Phone Use

The work presented in this thesis contributes to the general understanding of mobile
phones and their usage. In the first place, mobile devices are phones, although they
became smart as Want [259] describes. Thus, we will give an overview on general
aspects of personal and socio-cultural studies dealing with mobile phones, and
present works that reflect on how mobile phones shaped our habits and how we
customize our devices.

Personal and Socio-cultural Aspects

Want [259] discusses an era when our primary computers that we use for work will
be mobile phones. He discusses technological trends like integration of the previ-
ously separate communication processor and application processor into one chip.
He differentiates smartphones from phones as devices whose processors became
computationally powerful enough to execute general purpose applications.
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In [258] Want discusses the metaphor of cell phones as personal proxies for their
owners. Customizations such as like personal ringtones would say something about
the owner’s personality, as physical sensors would give rich information about the
owner’s experiences. Further analysis of the phone’s sensory data would make it
possible to infer information about its user’s activity. Want concludes that mo-
bile phones became a multifarious proxy for their owners, enabling logging and
tracking of their life.

Dey et al. [83] investigate the proximity of people to their smartphones in daily life.
They collected interviews and logging data from 29 people over four weeks, and
surveyed additional 367 smartphone users about their smartphone habits. They
found that smartphones are kept within arm’s reach 53% of the time, and in the
same room (including within arm’s reach) 88% of the time, although the users
themselves perceived their phones to be within arm’s reach 91% of the time. Based
on their data, they created a model to predict phone proximity. Most interestingly,
they found that people keep smartphones within arm’s reach at the same rate as they
kept previous phone models within the same distance, but they keep smartphones
in the same room more often than they did devices of previous phone generations.

In [195] Rahmati et al. elaborate on the social and economic status of smartphone
users and their behavior. They find that such status has a significant impact on
usage behavior, e.g. with people of lower socio-economic status spending more
time on the device and spending more money for applications. Participants of
lowest socio-economic status judged iPhone usability to be poorest (mostly due
to battery lifetime). The authors conclude that for different socio-economic user
groups, different phone designs should be available.

Lang et al. [154] also investigate mobile phone use by people with lower social
status. They conducted an ethnographic study in China to look into the phone
usage of young migrant workers. The authors found that their 26 study participants
used their phones to create, maintain and enhance social ties with both local and
remote contacts, e.g. sharing fun content with acquaintances or staying in contact
with people from their hometowns.

Harmon and Mazmanian [110] study the cultural discourse of smartphone use in a
broader sense of American culture. Their sources of evidence are phone advertise-
ments and news articles collected from magazines through the years 2002–2010.
The authors unpack two distinct idealized tropes: integrating smartphones into
everyday life vs. dis-integrating smartphones from everyday life. Through ethno-
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graphic fieldwork, the authors find that these two overly-simplistic concepts reveal
conflicts, tensions and instability related to people’s values, technologies and ev-
eryday life.

Mehrotra et al. [169] study usage of mobile phones in Rwanda, Africa, with a focus
on differences between women and men regarding communication. The main data
source for their investigation is a dataset on mobile phone activity from telecom-
munication providers containing demographic information. The study reveals that
while men overall have higher levels of phone usage, women have higher usage
during evening hours and at special events. Despite concerns about the external
validity of the study due to locality, it still provides interesting insights about the
ways that societal phenomena (e.g. Christmas, Valentine’s day, politics) can impact
mobile phone usage behavior.

Habits of Mobile Phone Usage

Oulasvirta et al. [179] investigate habitual patterns of smartphone usage. They en-
gage with data of three studies and describe a checking habit: a “brief, repetitive
inspection of dynamic content quickly accessible” on users’ smartphones which
contributes a large part of overall usage, and which may increase phone use in gen-
eral. The authors describe that such a habitual form of smartphone use is triggered
by contextual cues, e.g. situations. Although they relate such habits to mental dis-
orders, they leave open whether smartphone habits are addictions or enablers of
multitasking; participants reported both positive and negative experiences. Relat-
edly, King et al. [145] investigate the disorder of people being afraid of having lost
their phones, called Nomophobia (no-more phone phobia). They present a case
study and consider that that Nomophobia might indicate other social disorders.

Butt et al. [54] relate psychological theory about personality to patterns of mobile
phone use. Interestingly, they find that disagreeable extraverts spent more time
customizing their phones’ appearance. Chittaranjan et al. [60] contribute to the
same line of research, and investigate the personality traits that can be concluded
from smartphone logging data. The authors analyze logging data from 117 users
(call, SMS, application usage, Bluetooth, profile settings) and self-reported Big-
Five personality traits, and find correlations between these measures. For instance,
extraversion positively correlates with use of office and calendar applications, and
negatively with game usage, and extraverts also spent more time on incoming
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participants were active users of mobile phones, and over 
90% had had two or more phones in active use during the 
last year. The respondents consisted of 42 males (70%) and 
18 females (30%), and were predominately in their 20’s 
(30%) and 30’s (55%). The time participants had used their 
current (new) mobile phone was mostly between two weeks 
and a month (43%), or from one to two months (45%). The 
participants were predominately Finnish.  

The study consisted of an online survey, which the 
participants filled out anonymously. The survey consisted 
both multiple-choice and free text questions. The following 
mobile phone customisation items were investigated: 

- Background image (wall paper) 
- Ringing tone 
- Message alert tone 
- Screen saver 
- UI Theme (UI skin) 
- Audio profiles 
- Specified a ringing tone for certain contacts 
- Alarm clock tone 
- Speech commands 
- Adding photo to a phonebook contact 
- Defining fast dial numbers 
- Reorganising menu items 
- Soft key shortcuts 
- Active idle shortcuts 
- Screen brightness 
- Screen backlight off timer 
- Automatic keylock 

In addition, we also investigated the editing of access point 
and email settings, although these are typically not 
considered as personalisation items. Figure 1 illustrates 
some of these personalisable elements of the Nokia Series 
60 mobile phone.  

 
Figure 1. Personalisation elements on the idle mode screen. 

 

RESULTS 

Intensity of Customisation 
A primary motivation of this survey was to examine how 
and when users personalise their mobile phones. We asked 

each respondent to indicate when, if ever, they personalised 
each of the seventeen different personalisable features of 
the Nokia Series 60 mobile phone. The study results 
illustrated active customisation of the phone, with most 
personalisation occurring shortly after using the new phone 
for the first time. Overall we found that 66% of all features 
were personalised, see table 1. Note the table describes the 
percentage against all of the answers. 

Number of personalised items (n = 983) 
First 
Use 

First 
Day 

First 
Week 

Later Never 

133 
(13.5%) 

189 
(19.2%) 

191 
(19.4%) 

133 
(13.5%) 

337 
(34.3%) 

Table 1: Personalisation time period. 

Users described the act of personalisation to be both 
enjoyable and frustrating. Users reported that the 
personalisation was designed to make the phone feel and 
appear as ‘your own’, or to make it look and feel closer to a 
previous phone the users had used. The motivation ‘to make 
the phone feel like the one I had before’ appeared in several 
comments, and was linked with comments where the 
participant wanted to be able to find device functions and 
navigate the phone menus as they had done with an older 
phone. 

The most common features that were personalised were the 
ringing tone (customised by 95% of the respondents), audio 
profiles (93%) and background image (90%). Other features 
that had been personalised by over 75% of the participants 
were the UI theme (86%), message alert tone (83%), soft 
key shortcuts (82%), and menu item reorganisation (76%). 
The least customised features were automatic keylock 
(45%), fast dial numbers (42%) and speech commands 
(38%). 

What Was Customised When 
The results show that half (50%) of all personalisation 
occurred during the first day, and almost four-fifths (79%) 
within the first week. The study reveals that personalisation 
does not happen arbitrarily, but patterns can be seen of what 
kind of features are customised when.  

Audio settings were typically customised very shortly after 
getting a new phone, and they seem to be the first features 
to be personalised. During the first time of the use, almost 
half (43%) of the participants responded that they had 
changed the ringing tone. The message alert tone and audio 
profiles were changed almost as commonly (32% and 30% 
respectively). All other settings were customised much less 
frequently when using the phone for the first time. 

In general, the features affecting on the outer appearance of 
the phone were personalised most predominately at the 
beginning. Whereas audio settings were typically 
personalised in the very beginning, either during the first 
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(a) By Häkkilä and Chatfield [109]

3.1.1. Content personalisation

Users can personalise their iPhones by downloading
applications from the Apple AppStore. In this way,
users add capabilities and content to their devices.
Some applications have a one-time monetary cost to
the user, but many are free, allowing all iPhone users
to personalise the content of their iPhones.

In scoring content personalisation, more applica-
tions added to the iPhone represented a higher
degree of personalisation. A common sigmoid func-
tion was used that grows the most near 100
applications, but slowest at the extreme ends of the
scale. Default applications are not included in the
equation, since their presence does not indicate any
customisation.

Table 1. Items measured to determine personalisation scores.

Personalisation item Measurement and (weight) Scoring

Content
Installed apps Count of new apps (.10) No new apps – 0

Each new app increases
Score on sigmoid function

Interface
Moved apps on bottom bar (BB) Count of apps moved from bottom bar

(.15)
1 – % of original apps in bar

Assess order of apps on bottom bar (.15) .25 for each app that moved
From original location on the bottom

bar

Moved apps on 1st screen Count apps moved from first page (.15) 1 – % of original apps on page

Assess order of apps on first page (.15) 1 pt for each nearest neighbour in same
category and divide by number of
apps on page

1st & subsequent screens Count of holes on each page (.15) Count number of holes on each page

Ringtones View voice call settings (.05) No change – 0
Change, no download – 50
Change with download – 100

Physical/appearance
iPhone case View exterior of phone (.05) No case – 0

Case – 100

Lockscreen image View lockscreen (.05) No change – 0
Change to library image – 50
Change to personal image – 100

Figure 1. iPhone lockscreen and springboard pages.

4 C.C. Tossell et al.

(b) By Tossel et al. [246]

Figure 2.1: Personalization elements of mobile phones as taken into account in re-
lated work.

phone calls. Comparing genders, the paper reports that men are more likely to
use applications like games, video and office applications.

Häkkilä and Chatfield [109] investigate the different ways people customize their
mobile phones and study different properties that people modify, such as audio
settings and look and feel like those shown in Figure 2.1. Their study of 60 partic-
ipants reveals that customization is a highly relevant way of personalizing devices.
Häkkilä and Chatfield were able to distinguish temporal patterns: While modifi-
cations of device look and feel are early personalizations, functional settings (e.g.
short cuts and quick dial keys) are changed over the long term, and even more
complicated features (e.g. access point settings) are often left unchanged. Also
Tossel et al. [246] investigate personalization of smartphones, and look for gender
differences, and relations between personalization, device use and perceived us-
ability. They develop a score to assess a user’s personalization of his device (for
iPhone only). This score for instance takes into account the number of applications
installed, moves of icons from the quick launch menu and on the first page of the
menu, adding an phone case, and setting lock screen image. They collect data from
iPhone users and find that people who personalize their phones perceive it as more
usable. They also report that women customize their phones differently than men;
e.g., females are more concerned about appearance. However, they do not qualita-
tively investigate the concepts that people use for arranging icons; this is what we
do in Chapter 4.

In [196] Rahmati and Zhong present a four-month study on smartphone usage by
14 teenage novice users with little or no experience with mobile phones. The study
took place in 2007 and authors traced mobile phone usage (power, display status,
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WiFi for determining locations) and qualitative data from semi-structured focus
groups. The authors investigated the adoption of the phone and found, for instance,
that the novices quickly learned to use games and music players. As such, they
describe the evolution of phone use during the study and find that personalization,
in terms of storing personal data like pictures, takes time and can have a significant
effect; for example, sharing of the device was limited to close friends.

Ferreira et al. [93] study smartphone charging behavior through a study in the large.
Based on data from more than 4000 people collected using the AWARE framework
(see Section 2.2.3) they found that people charge their phones in long periods over
night, and short bursts during the day, while in the latter case people use USB
charging (connected to a computer via USB) more often than a AC power outlet.
On average, people leave their devices plugged in for 4 hours and 39 minutes after
the battery is full. However, authors also reveal that individual users have unique
battery charging behaviors.

Kujala and Miron-Shatz [153] study the role of emotions and memories with re-
gard to usability and user-experience in mobile phone use. They collect longitudi-
nal data on 22 users of different phone models by surveying them at five different
times over a 5-month timeframe. The authors became convinced that positive emo-
tions mostly evoke good user experience and negative ones result in low usability.
More interestingly, they found that in first-time device ownership people overesti-
mate their positive emotions and mainly focus on their use experience, whereas the
importance of usability increases over time.

Suzuki et al. [239] study the relation of a user’s familiarity with phone models on
task performance. They found that when users are more familiar with their phones,
their perceived usability of the phone correlates more strongly with performance.

2.3.2 Mobile Web and Application Usage

The more ubiquitous and popular smartphones and mobile applications became
in recent years (see Chapter 1), the more important it became to understand the
principles of mobile application usage. In particular, an understanding with regard
to the mobile users’ contexts and changing tasks [18] is of interest. However,
since people were able to access mobile services through websites on their phones
before mobile application stores became popular, we will first present works on
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understanding mobile web access that shall support our understanding of mobile
application usage and needs.

Studies of Mobile Web Access and Mobile Search

Mobile information needs can be seen as a more general case of mobile application
needs, since these also provide information to users (e.g., news and weather fore-
casts). Due to the special nature of people’s mobile information needs, their access
to mobile information by leveraging search engines has been studied thoroughly
(see e.g. [67, 242, 232]), but we can also build on studies of web use that show that
context is a salient concept when describing usage (see e.g. [62, 74, 176]).

Cui and Roto [74] investigated how people use the mobile web based on contextual
inquiries of 47 participants and URL access logging data of 547 phone users. They
found that web use is influenced by spatial, temporal and social factors as well as
means of web access, e.g. the timeframe of web sessions is rather short in general
but browser use is longer if users are connected to a WiFi network. Nylander et
al. [176] describe a study of 19 people using diaries and interviews. They found
that the most frequent location from which people access the Internet with their
mobile phones is at home. In [175] Nylander et al. further found that people find
Internet access using their mobile phones most convenient at home. But interest-
ingly functionality used outside the home, e.g. messaging or picture taking, would
create usage behavior that people then also carry out at home. Lee et al. [155] study
the usage of mobile internet services by 75 Korean participants over a 1-month pe-
riod. In their exploratory study, they investigate the types of services used, the
contexts of use, and relations between both. Interestingly they found that usage
is mainly limited to only a few services (9 services account for 50% of mobile
service usage), but these services differ from those used on stationary computers.
Further, the authors also find that mobile service usage is limited to specific con-
texts (e.g., at public places, when not moving, and when not working). To address
a specific context, Sohn et al. [232] also study people’s information needs while on
the go. They used the experience sampling method to examine the mobile infor-
mation needs of 20 people over two weeks. Mostly, people were interested in trivia
knowledge, directions and points of interest. The authors also found that people
multitask to satisfy urgent information needs (e.g., using the phone while driving
a car). Some information needs (42%) may be postponed or remain unmet due to
attentional costs and contextual factors.
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More specifically Church et al. [63, 64, 65, 66] look into mobile information ac-
cess and how people search for information on their mobile devices: Early work
[68] analyzes a large corpus of mobile web search (6 million search requests by
260,000 users over one week) and discovers that mobile search topics differ from
stationary search, although adult content is a popular topic. A diary study of 18
users over 4 weeks [65] revealed that use of mobile web search in stationary con-
texts at home and office is increasing, but when used in a mobile context location,
time, activity and social surroundings have a strong impact. Another diary study
[66, 67] found that more than 30% of search serves non-informational and geo-
graphical needs, and users mostly conduct mobile searches when they are away
from familiar contexts. In [64] Church et al. elaborate on the social aspects of
mobile search by conducting a 200 person survey and a 20-user diary study over
two weeks. Their findings are that social mobile search is more likely to happen
in unfamiliar areas and is motivated by curiosity and assisting an activity. Church
et al. [63] also present an approach for understanding mobile users’ information
needs at large scale. Their study collects data from more than 100 participants
over 3 months, leveraging experience sampling and online diaries triggered by
SMS. They describe their approach and methods: They asked their participants for
their daily routines beforehand, and investigated participants’ information needs
by scheduling SMS surveys that the participants would answer accordingly. A web
survey asked for additional information to clarify the SMS responses (e.g. about
the participants’ companies and their location at the the information was needed).

A similar line of work is done by Teevan et al. [242], who surveyed 929 people
about their mobile local search. They also report that time, location and people’s
social context influence how people search on their mobile. Most interestingly,
they found that queries not only relate to the users’ actual locations but also to
their travel destination and route. Hinze et al. [122] also investigate mobile search
queries. Based on a diary study of 12 participants over one week, they find that
types of questions people have are influenced by their location (e.g. home, work,
with friends), but also a large portion of questions is unrelated to context. Finally,
Chua et al. [62] conducted a one-week diary study with 20 participants to learn
about mobile search, and among other findings they confirm that mobile informa-
tion needs are triggered by contextual factors like location, intended activity and
social surroundings.

Summarizing studies of mobile information needs and information consumption,
we can conclude that mobile information access is governed by the users’ contexts
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(e.g., the impact of location, time and social context [242, 122]). Mobile access
to information on the Internet was available before information access through
mobile applications became popular. Therefore, we can learn from the studies
of mobile information access to inform our understanding of mobile application
usage, especially with regard to context of usage.

Studies of Mobile Application Usage

Pioneering work by Verkasalo [251], Froehlich et al. [100] and Demieux and Los-
guin [79] investigated mobile application usage on the previous generations of mo-
bile phones not providing application stores for users to install applications, and
was done on a small scale.

Verkasalo [251] showed that people use certain types of mobile services in certain
contexts. He analyzes data from several hundred mobile phone users over 2–3
months concerning their locations and smartphone usage. Based on a heuristic, he
correlates the location and the time of the application usage in the recorded data.
Based on this, for example, Verkasalo finds that people mostly use browsers and
multimedia services when they are on the move, but play more games while they
are at home; other examples are shown in Figure 2.2(a). Froehlich et al. [100]
presented a system that collects real usage data on mobile phones by keeping track
of more than 140 types of events. They provide a method for mobile experience
sampling and describe a system for gathering in-situ data on a user’s device. The
goal of Demieux and Losguin [79] was to collect objective data on the usage and
interactions with mobile phones to incorporate the findings into the design process.
Their framework is capable of tracking the high-level functionality of phones, e.g.
calling, playing games, and downloading external programs.

Verkasalo et al. [252] study the intent behind using or not using mobile services;
in particular, they look into the three most-used applications of their sample (web
browsing, maps and games). The authors collect device logging data from 579
participants and run a web-based survey. They find that perceived technological
barriers impact people’s confidence in the possibility of task fulfillment with ad-
vanced mobile services. Further, the the authors explain that use of games has
a hedonic usage intent, while maps and the mobile web have a more utilitarian
motivation.

With the growing ecosystem of mobile applications as described in Chapter 1, there
also is growing body of research on how people use mobile applications, to which
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• Segmentation of users based on mobility patterns and
mobile service usage

• Visualization of mobile subscriber movement patterns

• Techno-economic calculations leveraging contextual
information (e.g., the potential of WiFi in substituting

for cellular access at home)

• Analyses of individual applications and their potential
for technical improvements (e.g., context adaptation)

The context algorithm together with the handset-based

end-user research platform provides unique data that is
difficult to obtain otherwise.

5 Conclusion

The present paper discussed first the special characteristics
of mobile services. Most importantly, mobile services can

be used from anywhere at any point of time. Mobile ser-

vices cover nowadays quite a portfolio of services from

hedonic to utilitarian ones. A need exists to empirically
model contextual mobile service usage.

A specialized context algorithm was developed to be

used together with a handset-based end-user research
platform. The new algorithm along with the associated

process of obtaining and analyzing huge amounts of usage-
level data automatically helps in assessing contextual

dimensions of mobile services. The new process was tested

with a case example including data from Finland and the
UK from fall 2006. According to the results, multimedia

and Internet services are used quite actively ‘‘on the

move’’, whereas legacy SMS and voice services experience
more evenly distributed usage among home, office and ‘‘on

the move’’ contexts. Different people have unique mobility

patterns, and therefore future end-user research should
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(b) Tossel et al. [245]

Figure 2.2: Works investigating mobile phone use: (a) Share of application usage by
context for different applications; (b) native applications with Internet access (NIAs) are
used more that web access through browsers.

the work presented in this thesis has also contributed. One way to study application
usage on smartphones on a large scale is to analyze the network communication
that those applications cause. This opportunity gives insights into such applications
that require network communication — which is an extensive but not exhaustive
portion. Xu et al. [263] analyzed web access data that was done through native mo-
bile applications, which was provided by a US network carrier. They found diurnal
patterns of application usage (similar to those we will report in Chapter 3; e.g. news
applications are popular in the morning and sports applications are more popular in
the evening). They also found that a large fraction (20%) of available applications
have a rather local use restricted to a few areas. From user traffic they can also see
that the opening of one application can predict the usage of another one, and that
users have alternative applications for the same purpose, e.g. news sources. Xu et
al. discuss ideas for optimization of network traffic rather than for the benefit of the
user herself. Tossel et al. [245] study the web use using the LiveLab traces (intro-
duced in Section 2.2.3) and investigate the use of web browsers and native internet
applications. Compared to browser usage on the PC, they find that mobile browser
usage is not as fundamental as it is on the PC, and on smartphones people instead
use native applications to access Internet content, as Figure 2.2(b) reveals. Further,
their work replicates some of our results in Chapter 3, e.g. that application use per
launch is rather short, with an average duration around one minute. They also re-
port that about 15% of website re-visits are done after an interruption by SMS or
phone call. Tossel et al. propose design optimizations like designing launchers for
better recommendation of new applications by exploiting web visit history.

Mallat et al. [160] investigate the impact of context on the adoption of mobile ser-
vices. Their conclusions are based on the case study of a mobile ticketing service.
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Results of their study are that the contexts in which mobile services are used im-
pact the service’s benefit, and context as such determines a person’s intent to use
the mobile ticketing service. Mallat et al. conclude that it is important to deduce
contexts in which a particular service is likely to be used, and provide functionality
that is valuable for users in those particular contexts.

Falaki et al. [91] study the use of smartphones under the four different aspects of
user interaction, application use, network traffic and energy drain, with special fo-
cus on the latter two. The authors analyze traces of 255 users ranging over periods
of 7–28 weeks, which had been collected by instrumenting Android devices and
Windows Phones. Among others, their main finding is that smartphone usage dif-
fers immensely between different users, though they provide evidence that different
user behaviors can be described by a single model. They conclude that mechanisms
to improve user experience should be personalized. Further, they argue that demo-
graphic factors are only an unreliable predictor of user behavior. In [90] Falaki et
al. specifically look into networking aspects of smartphone usage like throughput
and packet loss based on low-level networking layers and protocols.

Do et al. [85] investigate mobile application usage trails of 77 users of Nokia N95
phones over periods of 9 months in a European city (see Lausanne Data Collection
in Section 2.2.3). Essentially, the contextualized data set they collected by means of
a background logging service contained application usage logs, location data, and
Bluetooth data. Among other results, they find that application usage correlates
with users’ semantic locations; e.g. at holiday locations people are likely to use
their camera and map applications, and at transport-related locations people will
likely use their clock and camera applications. With regard to Bluetooth scans as a
rough proxy for users’ social surroundings, the authors show that the clock applica-
tion has lower usage in dense Bluetooth environments; that short messaging, voice
calls and web usage increases in dense Bluetooth areas; and that usage of email
increases at both extremes of Bluetooth surroundings. The authors present impli-
cations for contextual design of phones. Similarly, Do and Gatica-Perez [86] ana-
lyze patterns of mobile application usage based on a sample of more than 230,000
hours of application usage provided by 111 people (see Lausanne Data Collection
Campaign in Section 2.2.3). Based on this data, they verify a model for recogniz-
ing patterns in daily application usage, and for describing user behavior based on
the patterns found.
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Rahmati et al. [194] present results of a longitudinal study of 34 iPhone users
over one year maximum. To collect data, they instrumented participants phones
with logging software and conducted interviews. They find that smartphone usage
changes over the year and that users can be clustered by similarities and differences
in application usage into classes of users.

Henze and Boll [115] investigate at what times people install games from the An-
droid application market. They analyze data from more than 157,000 users and
observe installations of 24,600 other games. In particular, the authors compare
the usage of their own game application to deployments of other applications on
the market, both with regard to time. Their data reveals that the likelihood a new
application on the market will be launched directly is highest between 11pm and
5am. From this the paper derives advice for researchers as to what time to release
an application to the market.

Brown et al. [45] present a video-based approach for investigating mobile appli-
cation usage by leveraging screen capturing and wearable cameras. They collect
nearly 24 hours of 15 participants’ (5 individuals, 5 couples) activities and four
hours of iPhone usage observing the use of a range of applications. Most interest-
ingly, their method also reveals switches between applications, such as a browser
with search engine and a maps application. Further, the authors conclude that mo-
bile application usage is threaded with other user activities.

Möller et al. [171] use logging to investigate the accuracy of self-reporting of mo-
bile application usage in a six-week study. They developed a self-reporting tool that
would provide three different ways to ask for reports: voluntary (participants are
reminded to report once before study), interval-based (participants are reminded
to report daily), and event-based (participants are reminded to report directly after
each application launch). In particular, they queried about the usage of Facebook
and the mail client and found that in general participants underestimate their ap-
plication usage, down to only 40% of real usage. Further, Möller et al. found
that asking for reports biased the actual application usage behavior which they
had logged.

Our work on investigation of mobile application usage (see Chapter 3) is unique in
that it combines the approach of large-scale, in-the-wild user studies through the
application store with the fine-grained measuring of application usage. In this way,
we are able to (1) study large numbers of users and (2) large numbers of applica-
tions, all over (3) a long time period. Previous work has had to make sacrifices in
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at least one of these dimensions. Furthermore, the mobile phones used in related
studies have been mostly from the last generation, without application stores, i.e.
they could not be customized by the end-users in terms of installing new applica-
tions.

2.3.3 Menus for Launching Mobile Applications

This thesis deals with adaptive and adaptable menus for launching mobile appli-
cations. Findlater and McGrenere [94] define both variants of menus in terms of
who has control over the adaptation of menus: For adaptable menus, the user is
in control of customizing the menu; by contrast, with adaptive menus the sys-
tem is in control of the adaptation. In Chapter 3 we support users to more ef-
ficiently launch their applications on their smartphones by designing an adaptive
menu which change the set of icons that they show. In Chapter 4 we investigate the
concepts people use for adapting menus on their smartphones. In this section, we
will present works related to both understanding how people adapt menus them-
selves, and adaptive menus for supporting item finding.

Users Adapting Menus

Pioneering work on users’ practices for adapting menus in terms of organizing
icons and digital information in general was done in the stationary desktop area:
Barreau and Nardi [19] summarized their studies of file organization on personal
computers. They found that a visual search for files based on location is preferred
over text-based search, that people put icons at special places as a reminder, and
that information can be categorized as ephemeral, frequently-used, or archived.
Ravasio et al. [198] investigated habits and problems during document classifica-
tion and retrieval. Among other findings, they show that people cluster documents
by their types, and that people use different desktop areas for different purposes,
as shown in Figure 2.3. Shipman et al. [230] investigated the implicit structure that
humans implement in layouts when manipulating icons or other visual objects.
They propose to parse and exploit this structure for assistive facilities. In this pa-
per we go beyond desktops and set out to explore people’s practices for arranging
icons on smartphones.

Current research on the recent generation of mobile applications is mostly fo-
cused on how people use applications by means of installing or executing them
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Fig. 3. Five groups are distinguishable on this PC user’s screen: In the top left corner are system
related resources; on the left in the middle is a collection of short cuts to frequently used programs;
in the bottom left corner, there is fast access to the most important folders; in the top right corner is
access to unimportant or ‘fun’ programs; and finally, in the lower right corner, a collection of notes
is assembled.

—Problems concerning the user interface:
(1) The use of metaphors offers the possibility to facilitate system accessibil-

ity to users with varying skill levels. However, with respect to the desktop
metaphor as found in current systems, this has not proven to be the case.
Low and even medium skilled users rarely knew that documents can
actually be placed on the desktop itself. Only with increasing experi-
ence, by observation and copying others was this knowledge gradually
acquired.

(2) The screen plane was regularly misused by the system. Newly installed
programs tended to automatically add short cuts to the screen plane.
Even medium skilled users did not dare to throw the short cuts directly
to the bin, as they thought the respective program might be disposed as
well. Consequently, users preferred to feel confused because of the icons
on the screen rather than to take the risk of having a program disappear
‘magically’ and entirely from their computer.

(3) Low and medium skilled users expressed irritation due to the functional
similarities between the file system’s user interface (File Explorer in Win-
dows, Finder in MacOS) and the screen plane’s user interface (the actual

ACM Transactions on Computer-Human Interaction, Vol. 11, No. 2, June 2004.

(a) Microsoft Windows PC

168 • P. Ravasio et al.

Fig. 4. A thoughtfully arranged Mac desktop. “This surface is cleverly arranged. The analogies in
the physical office would be: On the top left, the access to everything that I need to have at hand,
hence the filing cabinet. On the top in the middle, the briefcases with things I have still to take
care of. On the left in the middle: what I always need for work. At the bottom left: my pencils. And
at the right, there is another filing cabinet and the bin.”

desktop). One interviewee explicitly expressed his irritation, saying that
he perceived them as two totally different entities and did not wish their
functions to be almost entirely identical.

(4) The user interface still acts too intrusively:
One user claimed details such as “those flying papers”, during the copy-
ing process to be extremely irritating, since he would usually be busy
working. For this concrete case he thought it preferable to have a simple
status indication that would allow him to know that the system is active
and completing the task.

—Problems concerned with the underlying system:
(1) The systematic separation of files, emails and bookmarks was determined

by three users to be inconvenient for their work.
From their points of view, all their pieces of data formed one single body of
information and the existing separation only complicated procedures like
data backup, switching from old to new computers, and even searching
for a specific piece of information. They also noted that this separation
led to unwanted redundancy in the various storage locations.

ACM Transactions on Computer-Human Interaction, Vol. 11, No. 2, June 2004.

(b) Mac desktop

Figure 2.3: Examples of customized desktop screens [198].
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Fig. 2. Split menu.

The first limitation of these models is that they assume that users select all
menu items using the same strategy. We believe that different strategies are
used depending on how familiar users are with the item being selected.
Second, each of these models assumes menu selection is performed by press-
ing a key on a keyboard. This is not accurate for many mouse-based computer
menus which are widely available. Our model must deal with menu selections
which are performed using a mouse and a pull-down menu. When selecting
items from a pull-down menu users must move the cursor to the top of the
menu, press a mouse button to select the menu, move the cursor to the
desired item while holding the mouse button down, and release the mouse
button to select the highlighted item. During the process of searching for the

ACM Transactions on Computer-Human Interaction, Vol. 1, No. 1, March 1994.

(a) Split menu [224]
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2   SmartActions Application 

An intelligent mobile device should not only know what its user wants, but also where 
and when its user wants it. Such a device should learn how it is used, that the user sets 
the alarm every night before bed, that typically she quickly checks her e-mail before 
leaving for the office in the morning and maybe even sends a text message to her 
spouse in the evening before leaving the office. 

To this end, SmartActions is an implementation of a context recognition algorithm 
on the Nokia N80, a 3rd edition S60 smartphone, driving an adaptive menu of lists of 
shortcuts. The list of items displayed in the menu adapts based on the current, recog-
nized, user context and the applications associated with that context. The association 
between the context and the actions is learned from the user’s previous use of applica-
tions in the same context. The context recognition is done using the K-Symbol String 
Clustering Map (K-SCM) [6], an efficient unsupervised clustering algorithm. 

In the following two sub-sections the user interface and the operation of the K-
SCM algorithm underlying the application will be described in more detail. 

 

Fig. 1. a) A typical homescreen with SmartActions indicated by the brace. b) One of the short-
cuts highlighted. c) The result of applying the shortcut with sender information filled in. 

2.1   User Interface  

The homescreen of 3rd edition S60 devices can be customized via plug-ins. Plug-ins 
can provide an overview of the current state and contents of the device, such as the 
list of upcoming calendar appointments or a summary of new email messages. 

SmartActions makes use of this framework and presents a quickly glanceable list 
of the 5 most likely functions the user will use in the current context (as defined by 
time and location) embedded in the homescreen (Fig. 1). The list includes not only 
application launcher shortcuts, such as “Launch Messaging”, but also real user-level 
actions, such as “Call to Peter”, “(send) SMS to Mary” or “(set) Profile: Silent”. A 
more complete list of the currently implemented shortcuts is presented in Table 1. 
These suggested actions can be selected in a single key press, typically saving around 
5 key presses or more. Should none of the displayed items be appropriate, the user can 
initiate the intended functionality at no loss in efficiency, as usual via the S60 applica-
tion grid, as the rest of the phone’s UI is left untouched. 

(b) SmartActions [253]

participants (average across different numbers of prediction 
candidates) for the app-NB, 3-NB, MRU, user-NB, C 4.5, 
2-NB, and MFU were 7.1, 5.8, 4.0, 3.7, 1.4, 0.8 and 0.2, 
respectively. Looking at Fig. 5 and 6, 3-NB performed the 
best in terms of accuracy and maximizing performance for 
the largest number of users, when the number of app 
candidates was high (11 or higher), but our model 
performed the best otherwise. Based on these very 
promising results, where our model resulted in the most 
accurate predictions for the smallest number of app 
candidates, we decided to evaluate our model to see how it 
impacts app selection in real-world situations. 

FIELD STUDY 2: HOME SCREEN APPLICATION 

Procedure 

Next, we developed and deployed a dynamic home screen 
application, which uses our proposed prediction app-NB 
model, and evaluated its impact using current Android 
smartphones. In general, home screen applications are 
widely used in smart phones, having several static home 
screens whose icons do not change unless a user adds, 
deletes or moves the icons. Similarly, the Android home 
screen application has icons on its home screens and icons 
for all apps in an application list (AppList). Currently, in 
this static home screen application, users mainly use the 
home screens that they have configured to select apps, but 
use the AppList if the app of interest is not available on 
these screens. Our dynamic home screen application uses 
the prediction model to dynamically reorganize icons on the 
main screen (i.e., first home screen) with icons the user is 
likely to want to use in the current context. This occurred 
each time the user unlocked her smart phone screen. This 
should reduce the use of the AppList as well as the need to 
page through multiple home screens to find an app. Thus, it 
is expected that the selection performance in the dynamic 
home screen will be an improvement over a static home 
screen. Based on our framework in Fig. 1, we implemented 
the home screen application using Launcher Plus [21]. 

As shown in Fig. 7 (left), our dynamic home screen updates 
the home screen with icons that represent the apps with the 
n highest probabilities from the prediction model. The icons 
are presented in decreasing order of probability, from top-
left to bottom-right. The dynamic home screen highlights 
the icon of the application that has the largest increase in 
probability as shown in Fig. 7 (right). While highlighting 
the most probable app may seem to be the better choice, but 
as the most probable app is always located in the top left, 
users in a pilot study found that distracting. 

To evaluate our application, we recruited 12 participants 
from our university community who already owned and 
used Android phones. Six of these participants were staff or 
employees and six were graduate students. The participants 
were asked to use our home screen application for 4 weeks. 
In the first meeting, we installed the home screen 
application on participants’ phones and asked them to 
provide labels for their common locations to aid in location 
clustering. However, in future deployments this step could 

be automated [20]. We also captured a screenshot of the 
home screens from their smart phones to know how many 
icons participants had on their screens. The average number 
of screens on their phones was 3 and the average number of 
icons on the main screen and other screens was 9.1 (std. 
3.5) and 3.3 (std. 3.0), respectively. 

   

Fig. 7. Dynamic home screen: (left) Icons on the screen 

ordered by their probability; (right) an icon highlighted.

 In our 4-week deployment, we used the first 2 weeks to 
collect data with which to build our models and to log how 
users used the existing home screen application (static 

home). For the last 2 weeks, we replaced the static home 
screen application with our model-based dynamic home 
screen application (dynamic home). The prediction model 
for dynamic home predicted the top 9 most likely 
applications to match the average number of main screen 
icons (9.1). Over the 4 weeks, we tracked which apps were 
executed using the home screen and using the AppList. 
Users had an average of 141 apps installed (std. dev. 53) 
and 53 apps used (std. dev. 48) during the deployment. Of 
these, 21 apps (std. dev. 5) were frequently used, 
accounting for 95% of all usage. 

In order to evaluate the applications quantitatively and 
qualitatively, we interviewed participants about their 
experiences in using the static home and dynamic home 

applications at the end of 2 weeks and 4 weeks, 
respectively. They were asked to respond to open-ended 
questions about satisfaction with the number of icons 
presented/predicted, the highlighting feature, how the icons 
were updated, their contextual app usage and their 
experiences with the home screen applications. 

Evaluation Results 

We first measured the accuracy of the predictions with all 
the models considered earlier. Fig. 8 shows the accuracy of 
the prediction models, which consider the different number 
of icons that each user had on the main home screen of 
his/her phone, and the accuracy using 9 predictions. 
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(c) Dynamic home screen [229]

Figure 2.4: Examples of adaptive non-mobile and mobile menus from related work.

(cf. Section 2.3.2). So far, there is little public work available on how people
customize their menus and organize applications on their devices, and how they
can be supported in doing this — aside from the published results of this work
(see [30, 31, 40]).

Systems Adapting and Optimizing Menus

Supporting users with faster access to phone functionality has been a topic of previ-
ous research on phone usage (esp. [138, 253, 265, 229, 268]). Inherent to creating
adaptive mobile menus is the requirement of modeling the usage of the items in the
menu, especially predicting application usage.

In pioneering work Sears and Shneidermann [224] introduced split menus. Their
motivation is to improve selection performance in long menus where only a small
subset is used frequently, and therefore propose to distinguish an area with fre-



2.3.3 Menus for Launching Mobile Applications 45

quently used items from an area with infrequently used items. The authors conduct
studies to provide evidence for the advantage of split menus, both in terms of per-
formance and user preference They derive guidelines and formulate a model to
estimate the benefit of moving items into a split menu. An example of a split menu
is shown in Figure 2.4(a).

Bridle and McCreath [44] have investigated shortcuts for mobile phone UIs that
can be adaptively injected into users’ main menus. They evaluated different ap-
proaches to provide users with shortcuts to common tasks on their mobile devices,
e.g. calling a specific person or sending a specific text message. The presented
simulation-based study is conducted on data on mobile phone usage. They found
that a hybrid approach presenting most-frequently-used communication options
mixed with naive-Bayes filtered options works best.

Vetek et al. [253] present SmartActions: a context-aware menu that automatically
creates shortcuts to phone functionality. The shortcuts appear as textual links di-
rectly on the homescreen of a user’s phone, as Figure 2.4(b) shows. Vetek et al. im-
plement their system based on unsupervised learning and a clustering algorithm
using location (GSM Cell ID) and time and date. The UI provides not only short-
cuts to applications, but also shortcuts for user-level actions, like “(send) SMS to
Mary”. First user feedback for the adaptive UI was positive, though participants
had privacy concerns.

Kamisaka et al. [138] investigate the feasibility of prediction operations on a mo-
bile phone based on observable attributes, such as calls, emails, web browsing,
other applications, location, signal strength, and battery power. They introduce
a priority order as an abstraction layer for all available applications and shortcut
icons, which they predict using a machine learning approach. From a study with
19 users over 4 weeks to 8 months, they learn that the time and last action are
among the best predictors for application usage, while the location was rather not
very useful.

The system for automatic menu customization presented by Fukazawa et al. [101]
on the one hand presents content-based recommendations on the user’s device, but
on the other hand it does not consider the user’s context. Interestingly, however,
they found that novice users can benefit more from adaptive menus than expert
users who have already owned their devices for a longer time.
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St. Amant et al. [234] investigate the optimization of hierarchical text-based menus
for cell phones that can be traversed by keyboard input. Based on their findings,
they propose options for optimizing menu structures that result in reducing traver-
sal time, e.g. by putting commonly used items higher in the hierarchy. Their ap-
proach for menu redesign results in time savings of 30% in simulation studies.
Also, Matsui and Yamanda [163] presented an algorithm for optimizing the menu
structure for hierarchical menus on mobile devices. In their experiment they min-
imize menu item selection time by changing menu structures. Their approach is
based on genetic algorithms and optimizes the menu performance in terms of se-
lection time and for functional similarity and granularity of the menu items.

Do and Gatica-Perez [84] present a model for prediction of a smartphone user’s
next location and application use based on her current context of location, time,
application usage, Bluetooth proximity and communication logs. Based on smart-
phone logging data of 71 users over 17 months the authors were able to evaluate
their model. Interestingly, regarding prediction of application usage, the authors
find the preceding application use is the best predictor for the next application.

Yan et al. [265] present an approach for speeding up application launches up to 6
seconds by pre-fetching content from the Internet and pre-launching applications
into the operating system. While the authors focus on the optimization of low-
level operating system features rather than UI aspects, they also present a model
for predicting application launches. Their machine learning driven approach is
mainly based on the relation of temporal and spatial variables to application usage
and sequences of application launches.

Most recently, Shin et al. [229] presented a model and UI for predicting smart-
phone applications. In a first study, they collect data in-the-wild to build a model
for prediction based on a deployment of an Android application on the application
store. Their model, based on naive Bayes, performed best when compared against
state-of-the-art algorithms like most-recently-used and frequently-used, and they
find that the previous application is the strongest predictor for the next application.
In a second, smaller study they found that their study participants used their adap-
tive application icon menu more often than static launcher menus. The adaptive
launcher menu that they are presenting (shown in Figure 2.4(c)), however, only
refreshes after the user unlocks her device, and not every time the user goes back
to the launcher menu after using an application.
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Along the same line of research as Shin et al. [229], Zhang et al. [268] also present
an adaptive launcher menu, which they call Nihao. They predict application usage
based on exploiting a time-, location- and application-aware Bayesian network, and
study their approach with a small group of users. They conclude that prediction
accuracy is most important for these kinds of menus, since people perform visual
search for application icons in fully adaptive menus starting from the top of the
screen.

However, none of the recent works on adaptive mobile application menus (cf.
e.g. [229, 253, 44, 268, 138]) investigates where (spatially) to place adaptive short-
cuts within a mobile menu. This, instead, has been a topic of work on non-mobile
menus. For instance, Cockburn et al. [70] present a theoretical model to predict
user performance for different desktop menu designs. Based on the Hick-Hyman
Law and on Fitts’ Law, the model allows for evaluation of different menu layouts
before actual implementation. However, we agree with Findlater et al. [95] that
findings on classical desktop menus are not necessarily valid for mobile devices.
This work will contribute solutions to how adaptive mobile launcher menus should
be designed, based on understanding how users themselves customize their mobile
launcher menus.

Other Related Aspects on Mobile Menus

Findlater and McGrenere [95] investigate adaptive user interfaces for small screens.
In a study with 36 subjects, they compared a small screen with a desktop-sized
screen for item selection in a static and two adaptive split menus with different
accuracies. During the study, the authors measured performance, awareness of
items and subjective measures (difficulty, efficiency, satisfaction, consistency, pre-
dictability) for item selection in each menu type. Their findings are that high-
accuracy adaptive menus have a larger impact on improvement of selection per-
formance and satisfaction on small screens. On small screens, users are also more
likely to use the adaptive parts. However, high adaptive accuracy was also found
to negatively impact awareness of menus items. In [94] Findlater and McGrenere
report an experiment with 27 participants comparing static, adaptive and adaptable
menus within a two-split design. They found that their static menu outperformed
their adaptable menu, and their adaptable menu outperformed their adaptive menu
in terms of speed. Participants perceived the adaptable one to be most efficient.
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The authors conclude that mixed-initiative interfaces, where the system and the
user iterate on the optimization of the menu, would be best for user satisfaction.

Ziefle and Bay [270] investigated people’s abilities to build mental models of their
hierarchical mobile phone menus. They found that younger people have a better
mental model of their mobile phones’ menus. Further, they also found that aware-
ness of the menu’s structure increases navigation performance. In [271] Ziefle et
al. particularly investigate young and old users navigating menus on PDAs with or
without hyperlinks. From a 20 person study measuring performance when navigat-
ing websites, the paper reports that older users were less efficient when hyperlinks
were available. Building on mental models of phone menus, Gustafson et al. [108]
build an imaginary phone that is operated by mimicking the interaction with a
smartphone’s interface on the palm of a hand. In this way, they study how well
people can transfer learning from a real device to a non-visual interface. Gustafson
et al. researched how good people’s spatial memory of their phone menus is. They
found that their study participants knew the positions of 64% of home-screen icons
by heart, and could even more accurately recall the positions of applications used
daily at a success rate of 75%.

Kim and Lee [144] investigate the impact of cultural differences on mobile menu
interfaces. They found that Koreans preferred a thematically grouped menu and
Dutch participants preferred a functionally grouped menu. They argue that this
is due to different cognitive styles of the participants, and they propose culturally
adapted interfaces.

Ben Lulu and Kuflik [24] present a clustering approach for applications in smart-
phone launcher menus. Based on the textual descriptions of applications that peo-
ple have installed, they crawl data from the Internet and perform text processing
to extract functional descriptions of applications. Based on these texts, they per-
form a clustering to create a hierarchical clustered launcher menu of applications.
However, they do not discuss how to visually lay out the application clusters.

Bergmann et al. [26] studied the difference in cognitive load between file retrieval
by navigation and by search on stationary computers. They conducted a within-
subject study with 62 participants on a stationary computer and compared file re-
trieval by navigation with retrieval by search. The paper reports that retrieval by
navigation was faster, mentally less demanding than by search, and less error prone.
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Davies and Beeharee [77] study human visual attention on small screen devices.
Most interestingly, they study change blindness on mobile grid-based icon menus
with different visual disruptions (none, black screen, orientation change, push noti-
fication). A study with 29 participants revealed that the more icons a menu shows,
the worse the change detection is, and that orientation change has the highest im-
pact on change blindness. The authors propose to reduce simultaneous ongoing
activities on mobile screens to decrease disruption.

2.3.4 Context-aware Recommender Systems

Helping people to discover interesting items in a huge set of available items is a
problem in different areas. Recommender systems became tools to provide such
support. In this work, we will present the design, implementation and evaluation
framework of a recommender system that suggests mobile applications. Thus, this
section provides related literature on this topic. In particular, we discuss basic work
related to context-aware recommendation in general, work related to context-aware
recommendation in other domains, and work that relates to our domain of recom-
mendation of mobile applications. We will also introduce the concept of conver-
sion funnels and provide background on user-centric evaluation of recommender
systems.

Besides hybrid approaches, content-based recommender systems and collabora-
tive filtering are the two approaches most often deployed in commercial systems.
Ricci gives an introduction to these approaches [206]: The idea of content-based
recommendation is to provide a user with recommendations for items which are
similar to those she has liked in the past, with similarity being computed based
on descriptions of the items. In collaborative-filter-based recommendations, a user
is provided with recommendations for items which other similar users have liked
in the past, with similarity being computed based on comparisons of the feed-
back on items between users, and therefore no content description of items is
required. Other approaches are based on demographic information about users,
domain knowledge, or communities as social networks.

An inherent problem of recommender systems, especially those based on collab-
orative filtering, is the cold start problem [216]: When a new item is available
within a recommender system it is difficult for system, to make any substantiated
recommendations about the item, because data that would describe the items rela-
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tion to users is missing. This problem obviously also arises for new users who join
a recommender system and ask for recommendations; in this case the system will
not be able to give thorough recommendations.

Adomavicius and Tuzhilin [2] provide an introductory overview on integrating con-
text into recommender systems. In particular, they introduce a multidimensional
model for incorporating contextual information into a model that was hitherto only
based on the entities of users and items. In particular, they introduce three different
paradigms for adding context to algorithms to provide context-aware recommen-
dations. In contextual pre-filtering, the data available for the system is limited
to a subset that is relevant for the current context, and then classical techniques
are applied to this subset. In contextual post-filtering, the contextual information is
added after classical recommender techniques have been applied, and in contextual
modeling, the contextual information is directly exploited within the recommender
algorithm itself.

Context-aware Recommendation in Related Domains

The requirement of context-awareness within recommender systems has already
been used in other domains of mobile computing. Ricci [205] provides an overview
on domains where mobile recommendations have been adopted, such as tourist
recommendations, news recommendations, and route recommendations. He con-
cludes that eliciting user feedback by leveraging implicit feedback is a reasonable
solution, especially when feedback is required related to contexts.

Classic domains of recommender systems (e.g., music [156, 43, 15], movies [210],
and consumer goods [254]) are also starting to apply context-aware algorithms to
improve the recommendations they provide. For instance, Lee et al. [156] present
a music recommender system taking into account contextual information such as
the date, region, season, weather conditions, and temperature. The authors’ evalu-
ation shows that their system, which recommends music that the most similar users
have listened to in the most similar contexts, outperforms approaches based on de-
mographic information and listening patterns alone. Braunhofer et al. [43] present
a context-aware music recommender system for tourist guides. The system maps
tracks to points of interest based on tags assigned to both sets of music and points
of interest, which are adjectives describing emotions. Baltrunas et al. [15] present a
context-aware and personalized recommender system for suggesting music in cars.
They investigate which context variables (like road type, mood, weather, sleepi-
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ness) impact the driver’s music selection. For instance, they find that for ratings
of rock music the traffic condition is an important context factor (e.g. it gets lower
ratings in traffic jams, and higher ratings on uncongested roads), and for rating of
blues music the driving style is important (e.g. lower ratings in the context of faster
and “sportier” driving, higher ratings during more relaxed driving). They take these
factors into consideration for building a system to provide recommendations to the
car occupants. Said [210] discusses the advantages and opportunities for leveraging
contextual information and propose an architecture for building context-aware rec-
ommender system for movies. For the domain of shopping, Reischach et al. [254]
present a design space for building systems that recommend products. To collect
feedback from users about items, they focus on leveraging mobile and ubiquitous
computing technologies, especially to facilitate context-sensitive capturing of such
data. Gorglione et al. [105] show that leveraging contextual information on the
customer’s purchase intent and mood can increase customers’ trust in the recom-
mendations and increase sales figures.

In the domain of tourist guides, for instance, Belotti et al. [23] present a context-
aware recommender system for leisure-time activities on mobile devices. The sys-
tem design was informed by a field study and takes into account the current time,
location, weather, store hours, and users’ patterns, and five different kinds of ac-
tivities (e.g. eating and shopping). The system uses a mix of collaborative filter-
ing, content-based approach, explicitly-stated and learned preferences and other
components. Similarly, van Setten et al. [249] present the COMPASS system: a
recommender system for tourists that shows points of interest integrating different
approaches into a hybrid system.

Also in this line of work, Zhuang et al. [269] present a system that recommends
entity types (e.g. local businesses like restaurants and hotels) that users usually
would search for on their mobiles by implicitly understanding the user’s intent.
Their system is informed by the analysis of a large corpus on mobile search queries.
The proposed system takes into account contextual information like location and
time, and considers also the types of entities. A small user study reveals that the
system achieves better user experience than systems asking for explicit feedback.

Recommendation of Mobile Applications

The large variety of mobile applications not only became a practical problem for
end-users when they wanted to install new applications; the discovery of mobile
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Figure 3 shows the user interface to configure the 
triggers. The administrator can select types of Point-of-
Interests and specify within what circumference of an 
actual POI an application is recommended. The types 
in Fig. 3 are some of the return POI type values of the 
ArcWeb service. The POI types represent the context 
attributes that are used for this recommender. 

The advantage of this recommender is that 
administrators can specify exactly when an application 
is suitable (rule-based recommender). On the negative 
side, the registration of applications requires additional 
effort. 

4.3. User interface 

In this chapter we describe the user interface of our 
application. The screens are indented to be as simple as 
possible. The user interface is in German only at this 
time. 

A user can start the client program and log in. She 
then gets a form where she can select one of our four 
recommenders (Fig. 4). In this screen the user gets a 
list with a non-technical explanation of the available 
recommenders. For example, the CFAppRecommender
(2.row) reads: “Users with a comparable taste chose 
…”. 

Figure 4. Step 1: choosing a recommender 

As result of selecting one recommender process, the 
user receives a list of recommended mobile 
applications on the next screen (Fig. 5). The list is 
ranked, i.e. the “best” or most suitable application – 
according to the used recommendation algorithm – is 
on top. Then, she can browse the list and choose an 
application she is interested in. 

Figure 5. Step 2: list of recommended 
applications 

By selecting one application, the detailed 
description is shown (Fig. 6) and the user can either 
install or use the application, or select “Nicht wieder 
empfehlen” (do not recommend anymore) to express 
that she does not want to use this application. The user 
can always click “Zurück” (back) to go back to the 
previous screen. 

Figure 6. Step 3: application details 

The actions of the user are recorded to be used in 
subsequent recommendations. If the user starts an 
application, this information is stored as a positive 
rating for the CFAppRecommender. The ratings 
include available context information. At this time, we 
record the GPS coordinates when the application is 
started. Other than the option to express dislike (Fig. 6) 
in an application, we do not let users explicitly rate 
applications, because this would presumably be too 
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(a) Woerndl et al. [262]Figure 1: Catalog navigation and categories

Method Description

CF-Item Item-to-item collaborative filtering [7].
Content-based A content-based method based on item

descriptions and the cosine similarity of
TF-IDF vectors.

Hybrid A switching hybrid of the first two
which used the content-based method
in cases where less than 8 item ratings
were available.

SlopeOne An item-based filtering technique de-
scribed in [4].

TopSeller Ordering based on sales rank.
TopRating Ordering based on average customer

rating.

Control Manually-edited lists (mostly based on
release date) as before the experiment;
no “My Recommendations” section.

Customers remained in their groups to which they were
randomly assigned throughout the experiment. Each group
comprised around 22,300 customers. Note that from all por-
tal visitors, only such customers were selected for the exper-
iment, for which all algorithms were able to provide rec-
ommendations. Thus, it was also ensured that only similar
customer groups (frequent users) were compared. The item
catalog consisted of about 1,000 games. Since the number
of explicit item ratings was particularly low (less than 2% of
the customers issued at least one rating), also implicit item
ratings were taken into account. On a rating scale from
�2 to +2, an item view action was interpreted as a rating
of 0 (medium); an actual purchase corresponds to a rating
of 1 (good). Explicit customer ratings, finally, override the
implicit ones.

2. RESULTS ANALYSIS
In order to determine the “business value” of a recom-

mender system (as opposed to the system’s accuracy), di�er-
ent measurements can be made. Obviously, one can measure
and compare the total number of sold items per recommen-

dation technique. In addition, one can determine whether
or not personalized recommendations can raise additional
interest in certain items by measuring the number of item
views. This number might be particularly important in pay-
per-click advertisement scenarios. Finally, also “conversion
rates” that, e.g., measure how many site visitors are turned
into buyers, can serve as an indicator for the business value.

In this paper, we focus on the question, whether users
that receive personalized recommendations (a) view more
items, and (b) buy more items than those users that re-
ceive non-personalized or no recommendations. In our ex-
periments (see [3] for additional measurements and results)
also hypotheses regarding two di�erent conversion rates were
tested. In short, these measurements show that in certain
navigational situations a slight increase with respect to con-
version rates can be observed (e.g., more visitors also ac-
tually purchased at least one item). Overall, however, rec-
ommender systems did not measurably help to turn more
visitors into buyers, most probably because the conversion
rates are already relatively high as we only consider frequent
users. Long-term e�ects and“indirect revenues”as described
in [1] were also not in the focus of the current study, because
in our application domain items are only bought once.

In the following, we summarize a selected subset of im-
portant observations from our study in the context of the
following navigational situations; see [3] for more details.

My Recommendations:
Figure 2 shows on how many items a user clicked when

viewing the personalized “My Recommendations” list.1 We
can observe that all personalized methods (except Slope-
One) successfully stimulated users to view the details of the
proposed items, i.e., they have raised more interest in the
o�ered items than a simple list of top-selling or top-rated
items did. The di�erences between the following groups of
techniques are statistically significant (p < 0.01) when con-
sidering the absolute numbers: CF-Item/Hybrid – Content-
based – SlopeOne/TopRating/Topseller.

Figure 2: Average number of item detail views per
“My Recommendations” visits

With respect to downloads (Figure 3) things look dif-
ferent. Although the content-based method raised addi-
tional interest with respect to item views, this did not lead
to significantly more downloads compared with the non-
personalized methods. This indicates that users are gen-
erally interested in things they have bought before (e.g.,
sports games) as they view many of them. Once they have
seen di�erent ones, they however download only one game

1As mentioned above, the control group had no access to
the “My Recommendations” section.
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(b) Jannach and Hegelich [132]

section 4 we follow up discussing its implications for then 
summarizing the AppAware idea in section 5. 

2. RELATED WORK 

In this section, we briefly review the state of the art and related 
work that have informed our design and indicate how AppAware 
differs from these. 

2.1 Mobile Applications Websites 

At present, the Android application portal can be accessed just 
from the Market mobile application and, in a limited way, from 
the related website. To overcome these design decisions by 
Google, many third-party developers are launching new services 
to access applications’ details from a personal computer. These 
services enable users to search for and download Android 
applications on the web instead of doing it directly from a mobile 
device. Good examples are AndroLib2 and AppBrain3. The major 
difference between the two is that AppBrain provides a user with 
an applications shopping cart that can be synced with the device 
through an Android client application. However, the idea is not 
innovative since it is trying to port the concept of Apple's iTunes 
to the Android world. In fact, iTunes already allows its users to 
browse and sync applications from their computer to an iPhone. 
AppAware does not aim at replacing the Android Market or 
providing a proxy, it is rather a companion to plan users' 
serendipity [5] in applications finding. 

2.2 Appazaar and aTrackDog 

Appazaar [2] is a recommender system for mobile applications, 
and is a project of the Lab for Software Engineering at Münster 
University of Applied Sciences. Based on a user current and 
historical locations and applications usage, Appazaar recommends 
applications that might be of interest for her. Therefore, Appazaar 
applies different algorithms from the research field of context 
awareness to analyze all the input data and create profiles of 
different situations. Another tool related to AppAware is called 
aTrackDog4. It is a program for Android devices that makes sure a 
user has the latest version of every installed application by 
checking the release information from either the Android Market, 
other users’ devices or the vendors' web site. Doing this manually 
takes time, thus aTrackDog supports the user in this activity. Even 
more, data from users’ devices is used to generate a most popular 
apps list that can be sorted by category, time, and price. Despite 
AppAware generates similar stats and providing apps 
recommendations is an appealing feature, we focused towards 
new ways to explore mobile apps on an application portal (i.e. 
real time stream, proximity based) and we further underlined the 
users presence into these activities. 

3. CONCEPT AND DESIGN 

In this section, we describe the system design, AppAware's most 
relevant features and their implementation in the user interface. 

                                                                 
2 http://www.androlib.com  
3 http://www.appbrain.com  
4  http://atrackdog.a0soft.com  

AppAware shares online users' installations, updates and removals 
of Android applications. In this way a user becomes conscious of 
what is hot on the Android application portal. To meet these 
conditions, the AppAware system consists in a client-server 
architecture. 

3.1 General Concept 

The client component in this system is the Android mobile 
application, which represents AppAware's graphical user interface 
(GUI) and allows following installations, updates and removals of 
applications shared by other users. Most of the core 
functionalities are supported by the main screen (see Figure 2) 
and are accessible from the application's menu or by touching a 
list item. Each list item represents a single event with its details, 
namely: the name of the application with its description, the type 
of event (installed, updated or removed), the user involved and 
the Android version together with the phone model. Moreover, to 
distinguish the type of event at a glance the application’s name is 
colored in red in case of a removal, green for an installation and 
blue for an update. 

 
Figure 2. Real-time stream of installed, updated and removed 

applications (a) and analogous events in user’s proximity (b).  

The server component is a web application accessible though a 
standard browser and at the same time integrated in the mobile 
client through an Android WebView element that displays web 
pages. The client connects to the server through a RESTful 
interface that accepts and then stores events from users. Among 
the required parameters we have: the user ID, the application 
package name (used by the Android Market as unique identifier 
for an app), event type (installed, updated or removed) and the 
location (latitude and longitude, whenever allowed by the user). 
The server offers its data through an RSS feed that the AppAware 
client uses as data source for its core functionalities as described 
in Sections 3.2 and 3.3. This design decision allows at the same 
time any standard feed reader to keep track of installations, 
updates and removals of Android apps. 
Along with this architecture, AppAware integrates with Twitter 
too. This allows a user to share applications' installations, 
removals and updates on the Twitter account, thus letting her 
followers to see what applications are being installed by that user. 
An example of a Twitter status update is: “Just updated Google 
Translate http://appaware.org/1z on my #Nexus One - via 
#AppAware”. This tweet tells that the application “Google 
Translate” has been just updated on the Android phone model 
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(c) AppAware [103]

Figure 2.5: Screenshots of systems recommending mobile software for download.

applications also became a recent research topic, especially in the field of context-
aware recommendation, since mobile application usage is context-dependent (as
we will discuss in Chapter 3). However, although the ecosystem of mobile appli-
cations is rapidly growing as discussed in Chapter 1, so far there is little research
on recommender systems for mobile applications.

Pioneering work before the application store era was done by Woerndl et al. [262]
and Jannach and Hegelich [132]. Woerndl et al. [262] present a recommender
system for mobile applications that exploits context information and is based on
capturing the installations of applications in relation to this context (basically lo-
cation), though installation times are irrelevant compared to measuring the actual
usage.19 Their recommender engine is based on a hybrid engine following a multi-
dimensional approach. Jannach and Hegelich [132] evaluate recommender engines
suggesting game applications for downloads on a mobile internet platform. They
found that the personalization of recommendations results in an increased number
of views and sales. They did not investigate contextual factors at that time.

Girardello et al. [103, 104] present AppAware: a recommender system that is based
on people’s overall application installations, uninstallations and updates. The sys-
tem recommends applications based on their popularity, i.e. how many times an
application was installed but not removed. The system’s assumption is that good
applications are typically not removed once installed. The AppAware system also
19Jakob Nielsen’s Alertbox: iPhone Apps Need Low Starting Hurdles. http://tiny.cc/eyie8, last ac-

cessed on 12.06.2013.

http://tiny.cc/eyie8
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exploits social ties by showing which applications have recently been installed by
friends. For the end-users the system shows “which applications are hot” by ag-
gregating world-wide occurrences of application installation events.

Yan and Chen [264] present the AppJoy system: a recommender system that sug-
gests mobile applications on the Google Play Market. It is based on application
usage data that is modeled according to the recency, frequency and duration of the
application usage. Yan and Chen show that their recommendation approach based
on implicit usage data performs well without explicit user input, they evaluated
their system by comparing usage times of recommended and not-recommended
applications.

Context-aware models for recommendation of mobile applications have recently
been presented by Karatzoglou et al. [140] and Shi et al. [228]. Both papers present
tensor-factorization-based models that perform better than state of the art context-
aware approaches and non-context-aware approaches when using application usage
as implicit feedback. The work of Karatzoglou et al. [140] is based on results we
present in Chapters 3 and 5, and likewise the work of Shi et al. [228] uses the data
corpus we collected in this work for evaluation of their model.

Davidsson and Moritz [76] present the Applause system, which is a recommender
system that exploits users’ locations to recommend applications. In particular, Ap-
plause tends to exploit context to be able to recommend applications instantly with-
out collecting any additional user data. Shi and Ali [227] present a recommender
engine that addresses characteristics of mobile application markets. Their model is
based on application-usage as implicit feedback and is specially tailored towards
mobile application markets that have heavier heads and longer tails in their distri-
butions. Also Yin et al. [266] present a specialized version of recommender system
for mobile applications. Their approach takes into account the satisfaction of a user
regarding an application, and how tempted he is to replace an application with a
new one providing similar functionality.

Pan et al. [182] present a graph-based approach for predicting the installation of an
application on application stores. They extract different networks from smartphone
logging of phone calls and Bluetooth proximity, and they collect survey data to
construct a social graph. Collecting such data from 55 participants in a study, they
show that they can merge different graphs into a graph describing the adoption of
mobile applications, which can accurately predict the installation of an application.
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More recently, the Frappe.cc system (implementing some of the results of [140])
was released as an application to the Google Play Market.20 The project also deals
with context-aware recommender systems that suggest mobile applications and has
been deployed to the application store to evaluate the algorithms; however, no re-
sults are available yet.

However, none of the related works on recommendation of mobile applications
uses a using a user-centric model based on application engagement for evaluation.
To the best of our knowledge, so far no comprehensive design space for context-
aware recommender systems that suggest mobile applications has been described
either. This is what this work will contribute in Chapter 5. Further, we go beyond
most other recommender systems for mobile applications by using actual usage of
applications instead of download and installation statistics.

User-centric Evaluation

Hayes et al. [112] propose an online evaluation framework for recommender sys-
tems that tackles issues related to the dynamically changing conditions in the wild.
Instead of measuring absolute engine performance, it performs a comparative mea-
sure of how one recommendation strategy performs against another as part of a
real world online system used by a community of users. The authors argue that the
relative comparison provides both recommender engines with the same resources
and that they suffer from the same negative impact of data changes, thus provid-
ing fair evaluation in an online scenario. Swearing and Sinha [240] argue that
the effectiveness of recommender engines is not solely determined by the qual-
ity of the algorithm. Instead they suggest that trust, explanations, serendipity, and
user-customizable filters are important factors for effective recommendation. Also,
McNee et al. [168] argue that accuracy metrics alone cannot be used to judge use-
fulness of recommendations and therefore propose new user-centric directions for
evaluating recommender systems. They define three aspects of the recommenda-
tion process that accuracy metrics cannot measure: similarity of recommendation
lists, serendipity, and importance of user needs and expectations. The authors also
provide several suggestions for improvement: judging the quality of recommenda-
tion lists as a whole, measuring the differences between recommender algorithms
beyond ratability, and judging the recommendations for users based on whether or
not their needs were met. Pu et al. [190] examine combined criteria for usabil-
20Frappe — a new taste of app discovery, http://frappe.cc, last accessed 12.06.2013.

http://frappe.cc
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ity and satisfaction and conceptualize a unifying recommender system evaluation
framework, called ResQue. It consists of thirty-two questions and fifteen con-
structs aimed at measuring qualities of recommended items; systems’ usability,
usefulness, interface and interaction qualities; users’ satisfaction with the systems;
and influence of these qualities on users’ behavioral intentions. These user-centric
questionnaires can be applied to assess different types of recommenders, including
rating-based, utility-based, and knowledge-based systems, regardless of the back-
end engines used.

In the same line of thinking, Knijnenburg et al. [148] present a framework for user-
centric evaluation of recommender systems linking system aspects to user behavior
aspects to explain why and how a recommender’s user experience evolves. Finally,
Konstan and Riedl [150] argue that we need a more diverse set of measures to
evaluate the user experience of recommender systems. In this line of thinking, in
Chapter 5 of this work we will present a user-centric perspective and its capabilities
for the evaluation of recommender engines that suggest mobile applications.

Conversion Funnels

For building up a usage-centric evaluation approach along the lifecycle of mobile
applications, we will rely on the concept of conversion funnels. A conversion fun-
nel describes an action sequence e.g. from showing an advertisement to a user,
to the user clicking on the ad, to the user eventually purchasing the advertised
product. The paradigm of conversion funnels is mostly used in the domains of
marketing and advertising. Bagherjeiran et al. [11] present a ranking method for
scheduling ads that is optimized for different stages of the conversion funnel. Their
model enables a more efficient targeting of ads towards conversions. For online ad-
vertising, Becker et al. [20] provide insight into the relationship between landing
page types, query classes, and conversion. They conclude that the majority of ad
landing pages fall into three distinct classes: home pages, sub pages, and search
result pages. Furthermore, the authors correlate these classes with conversion data
provided by advertisers to show that the conversion rate (i.e., the proportion of
certain users who take a predefined, desirable action, such as a purchase, registra-
tion, download, etc., as compared to simply page browsing) varies considerably
according to these classes. Actions that have some benefit to the advertiser and
that happen after the click are called conversion; thus, a user is then said to convert
from a regular user into a potential business lead or customer [11, 20]. Conversions
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representing the final goal of advertisers are also known as macro conversions. In
order for a conversion to occur, a specific set of events, also known as micro con-
versions, has to occur. These events form the so-called conversion funnel. Rosales
et al. [209] provide a detailed analysis of conversion rates in the context of non-
guaranteed delivery for display advertising. They formalize the problem of pre-
dicting the post-click conversion, i.e. conversions after a user clicks on a referring
advertisement. The authors further provide fundamental properties of the post-
click conversion process based on contextual information, including a comparison
between click-through rate and conversion rate. Finally, conversion rates measure
the proportion of certain users who take a predefined, desirable action, such as a
purchase, registration, download, etc., as compared to simply page browsing.

In Chapter 5 we apply the concept of conversion funnels to the domain of mobile
application recommendation. The nature of mobile applications — being pieces
of software that can be observed during an application’s lifecycle (see Chapter
3) — allows us to define an action sequence that relates to engagement with an
application.

2.3.5 Multitasking and Task Interruptions

Multitasking can be defined for two different domains: Within the context of sys-
tems, multitasking relates to the system’s ability to process more than one computa-
tional task simultaneously [244]. When talking about humans, multitasking refers
“to the handling of more than one task at the same time by a single person.”21

In this dissertation, we are interested in HCI-related aspects of multitasking. Re-
lated work on multitasking and task interruptions will be explained in five major
chunks: multitasking on stationary computers, multitasking while driving a car,
multitasking on mobile devices, context-aware telephony and mobile call interrup-
tions. While the former two areas are established as classical fields for studies
of multitasking, the latter two are related to mobile phones, which only became
ubiquitous in recent years (see Chapter 1). Benbunan-Fich et al. [25] introduce
multitasking as people changing between tasks either because of an external inter-
ruption or because of a person’s internal choice to switch a task.
21“multitasking.” In: New Oxford American Dictionary, edited by Stevenson, Angus, and Chris-

tine A. Lindberg.: Oxford University Press, 2010. http://www.oxfordreference.com/view/10.1093/
acref/9780195392883.001.0001/m_en_us1269878, last accessed on24.06.2013.

http://www.oxfordreference.com/view/10.1093/acref/9780195392883.001.0001/m_en_us1269878
http://www.oxfordreference.com/view/10.1093/acref/9780195392883.001.0001/m_en_us1269878
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Multitasking on Stationary Computers

Task interruptions have been extensively studied on stationary computers (see, e.g.,
[25, 128, 214, 134]). We can learn from these studies about the aspects and pos-
sible impacts of multitasking and task interruptions when they happen within one
system, i.e., the stationary computer in this case.

Iqbal and Bailey [127] are interested in predicting the costs of interruptions. In a
Wizard of Oz experiment, they interrupted 12 participants, whose primary tasks
were video editing, route planning, and document editing, with the peripheral task
of stock trading, and collected the resulting resumption lags. Iqbal and Bailey
found that resumption lags can be predicted by taking into account the difficulty of
the next task and the amount of information that needs to be maintained during the
interruption.

Iqbal and Horvitz [128] conducted a field study by logging the use of applications
and the notifications of messengers and emails on stationary computers of 27 peo-
ple over two weeks. Findings were that users suspended tasks for up to two hours
before resuming them, and users justified this by the loss of context due to task
switch on interruption. Iqbal and Horvitz derive implications for better design of
recovery, like visual cues for finding abandoned windows, thumbnails of suspended
applications or playback of the last actions taken before the interruption.

Jin and Dabbish [134] study the phenomenon of self-interruptions while working
on a computer, which they also refer to as internal interruptions. They observed 13
people doing usual office work on their computers for one hour each, and logged
application interaction and switching. Afterwards they interviewed their partic-
ipants to get insights into the motivations for application interactions. Using a
grounded theory approach, Jin and Dabbish were able to find 7 categories of self-
interruptions, among them (for instance) waiting times for a primary task to con-
tinue, routine as a habit of time and sequence, and switching to a more desirable
task. Further, they categorize self-interruptions to be either stimulus-based or goal-
oriented, internally or situationally initiated.

Dabbish et al. [75] investigate the phenomenon of self-interruptions on stationary
computers. Based on 889 hours of study data from 36 office workers, they found
that self-interruption is strongly influenced by companies’ organizational environ-
ments (e.g., open office spaces), and individual differences. They also discuss a
positive aspect of self-interruptions, as workers self-interrupt to complete work
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they are accountable for. Most interestingly, they reveal that external interruptions
increase the occurrence of self-interruptions in the following hour, which suggests
that interruptions can be habit-forming.

Salvucci [213] argues that task resumption after interruptions is a reconstruction
process rather than a memory-based process. A discussion of empirical results
show that the time people take is too long for memory retrieval. Thus, he argues
that for common HCI tasks, reconstruction of a previous task, e.g. re-reading pre-
viously written text, is a central process.

Multitasking While Driving

As an extension to the literature on desktop multitasking, we present research on
multitasking in the car, since it introduces phone calls as the cause of interruptions.
The effect of phone call interruptions has been extensively studied in this domain
(see e.g. [200, 130, 48]) due to the high cognitive demands on the primary task of
driving and the severity of interruptions.

Early work by Redelmeier et al. [200] suggests that the risk of an accident when us-
ing a cellular phone is four times higher. The authors analyzed phone call behavior
of about 700 drivers based on their billing records.

Iqbal et al. [130] conducted a car driving simulation study with 18 participants
where drivers had to conduct a phone call while driving (setup shown in Figure
2.6(a)). They found that drivers performed worse on more complex routes (more
cars, speed and lane changes), and that the more cognitive demanding the phone
call is, the more problems with driving arise. In [129] Iqbal et al. studied how
displaying pre-alerts of critical driving segments to driver and caller and pausing a
conversation by putting the caller on hold would impact simulated driving (setup
shown in Figure 2.6(b)). They found that pre-alerts could reduce driving errors
and collisions, in particular when they provide details on the drivers’ situations.
While drivers also preferred to put the conversation on hold, callers found this
mode annoying.

Brumby et al. [48] studied how participants would interleave tasks while driving.
They conclude that participants would adapt their strategies for switching between
driving and the secondary task based on the objective of the secondary task. In
their simulation study, participants had to dial a phone number while driving a car,
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Strategies for interleaving secondary tasks with driving 
Given that people can perform two tasks concurrently [36], 
researchers have recently looked at opportunities to inter-
leave secondary tasks with driving. Brumby et al. investi-
gated how interleaving a phone dialing task with driving 
impacted lane keeping and the dialing time under condi-
tions of requests to prioritize either driving or dialing [10]. 
Results showed that when asked to prioritize the secondary 
task, drivers chunk components of the secondary task and 
switch back to driving at chunk boundaries to maintain 
driving performance, and while focusing on driving, the 
secondary task is slowed down. In a related study, Brumby 
et al. showed that the fastest strategy for selecting a song on 
a music player while driving was to scroll in one contiguous 
block without returning attention to the primary task of 
driving. For the safest strategy, more time needs to be given 
to the driving task, at the cost of longer response times for 
the secondary task, and correspondingly longer stretches of 
times for the dual-task scenario [11].   
The prior work suggests that, for automatized tasks like 
driving, it may be possible to formulate strategies to per-
form other tasks without significantly compromising driv-
ing. Successful dual-task scenarios will depend on the 
availability and requirements of cognitive resources for the 
secondary task in light of resource consumption by the pri-
mary task and opportunities for interleaving the two tasks. 
We explore performance in these scenarios by generating 
phone calls with different cognitive demands during driving 
situations of different difficulties. We probe the interaction 
of cognitive resources for driving and handling calls via the 
proxy of measuring performance on both the driving and 
call tasks. We reflect about the timing and nature of conver-
sations that conflict the least with driving and propose strat-
egies for minimizing interference.  

OVERVIEW OF STUDY 
Our goal was to explore if and when opportunities exist 
when car drivers could engage in phone conversations 
without reducing driving performance, to understand which 
conversational tasks cause the most interference with driv-
ing, and the influence of increases in driving difficulty on 
interference between the primary and secondary tasks.  
Understanding performance of driving on conversation has 
not been well studied.  We also investigated how well users 
can carry out the conversation and how much they can re-
call afterwards.  We addressed the following questions: 

1. How is driving performance affected by participating in 
phone conversations where the driver has to interact in 
varying levels of engagement? How do these effects 
vary with changes in driving difficulty? 

2. How are phone conversations influenced by 
concurrently driving, and how do these effects vary with 
changes in the levels of driving difficulty? 

3. How does performance vary with requests to prioritize 
attention on driving, conversation, or both tasks? 

To answer these questions, we conducted a controlled study 
using a driving simulator (see Figure 1). Using the simula-

tor, users engaged in driving a realistic route, with a realis-
tic steering wheel, pedals, and controls. Custom software 
allowed researchers to design driving scenarios and log re-
levant parameters during driving. To simulate a hands-free 
phone call environment, calls were presented through a pe-
ripheral system including a loud speaker and a microphone, 
and calls were accepted via a button on the driving console.  

Experimental Design 
The study was designed as a 3 (driving complexity) X 3 
(call type) X 3 (focus) repeated measures within subjects 
design. Possible effects of order were countered by block-
ing the factors on a fully balanced Latin square design. 

Users  
18 people participated in our study (F=3), recruited through 
a call sent out to people selected randomly from the entire 
employee pool of our organization. The mean age of par-
ticipants was 33.2 years, (S.D.=8.2) with a mean of 16.8 
years of driving experience (S.D.= 9.41). All participants 
reported to be comfortable talking on the phone while driv-
ing.  

Driving Task 
Participants drove routes comprised of multiple 30s seg-
ments, each segment having either of the following three 
levels of complexity: simple, complex, and unexpected oc-
currences. An example of a simple segment is a single 
stretch of driving on a relatively empty road. Complex 
segments involve driving with many cars on a road, and re-
quires changes of speed or lane changing.  A segment with 
unexpected occurrences includes sudden, unexpected 
events, e.g., the car in front of the driver’s car suddenly 
braking, a pedestrian stepping into the road, or an object 
rolling in front of the car. The segments with unexpected 
occurrences include time for the driver to recover and re-
sume safe driving. Routes were about 10 minutes long. 
Drivers were asked to follow the route straight on, unless 
they saw instructions to turn left or right. Instructions ap-
peared in large banners in the frontal view of the driver and 
were easy to see if drivers were looking at the road. 

To preserve the order of driving complexity as dictated by 
the Latin square design, we randomly chose segments 
where users would receive phone calls. Complexities were 

 
Figure 1: The STISim driving simulator. The system hosts a 
console with a steering wheel, turn signals, and buttons mapped 
to external functions. Three 47” screens placed at roughly 45

o
 

generate a convincing impression of driving a vehicle. 
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(a) Iqbal et al. in 2010 [130]

1) How effective are the interventions in maintaining 
driving safety compared to no intervention?  

2) How do the interventions influence the conversation? 
3) How do the drivers and the other participants in the 

conversations feel about such interventions? 
To answer these questions, we conducted a controlled study 
using a driving simulator where we explored different types 
of interventions during a phone conversation between a 
driver and a remote participant. The study was set up so that 
the remote participant (situated in a separate room) talked 
to the driver over a speaker phone while the driver was 
driving through a predetermined route in the simulator, 
mimicking a hands-free phone call setting. The auditory 
interventions interrupted the conversation when some 
critical event or situation was soon to occur on the route. 

Experimental design 
The study was designed as a 2 (Intervention Mode) X 2 
(Call Hold) X 2 (Intervention Timing) repeated measures 
within subjects study. Each condition was repeated twice. 
Additionally, there were two baseline trials with only 
driving (no conversation), and two baseline trials with only 
answering questions (no driving).  

Users 
Users participated in pairs, with one playing the role of the 
driver and the other in the role of the remote participant 
(the caller). Drivers were recruited from a mailing list for 
people who had been previously trained and calibrated for 
using the driving simulator. Recruited drivers were asked to 
bring their own partner for the study; otherwise the 
experimenters matched them up with partners. A total of 18 
pairs were recruited. 15 of the 18 pairs were prior 
acquaintances, including friends, colleagues or family 
members. Prior acquaintance did not have any effects on 
the results. Users were compensated with a free software or 
hardware gratuity. To incentivize appropriate attention on 
performing the task, an extra $50 was offered to the pair 
who had the best overall performance in the study. 

Task  
For each trial, the driver was given a specific destination as 
the goal and was instructed to drive a 3-4 minute route 
where road signs would direct them towards the desired 
destination. Routes were composed of a combination of 
road segments (regular) with light or heavy traffic and had 
a mixture of signals and stop signs. Additionally, each route 
contained a number of critical segments, where the driver 
had to pay extra attention to avoid driving misdemeanors. 
Such segments consisted of road signs indicating turns to 
the destination, construction sites, pedestrian crossings, 
residential areas, police cars, and accident scenes. 
While piloting the vehicle, the driver answered questions 
asked by the caller over a speaker phone system (fig. 1). A 
predefined set of no more than 25 questions were asked in 
each trial. Questions were designed to resemble daily chit-
chat, requiring recall of recent activities and background, 

e.g.  “When  did  you  last  get  gas  for  your  car?”  and “Name  
the   last  movie   you   saw.” We chose these retrieval-centric 
questions in light of findings from a previous study 
showing that drivers have difficulty with driving while 
being challenged with retrieval tasks [14].  The caller was 
instructed to ask questions in a predefined order and to 
write down each answer before moving on to the next one. 
Repetitions of questions for clarification were allowed.  

To provide incentive for allocating attention to both driving 
and answering questions, participants were informed that 
their performance scores depended on both driving and the 
conversations. They were told that they would be scored on 
the number of questions that they completed within a given 
amount of time. They were further told that they would be 
docked points for driving misdemeanors such as accidents, 
missing stop signs and turn signals, and unnecessarily 
slowing down or speeding. The caller was placed in a 
separate room and did not have access to the visual 
rendering of the driving scene, but the driver could provide 
relevant information to the caller over the phone to 
negotiate safe driving while answering questions.  

Intervention 
Before a critical segment (consisting of a critical event 
requiring   the   driver’s   attention)   was   about   to   start   in   the  
route, the conversation would be interrupted with one of the 
auditory interventions being studied, and heard by both the 
driver and remote caller. Interventions happened only for 
critical segments. The intervention was one of two modes 
(Mode):   a   short   message   simply   stating   “Focus needed,”  
and a longer, more descriptive message stating exactly what 
to  expect,  e.g.  “Turn  ahead” or  “Construction  ahead.” For 
each intervention mode, the call was put on hold (Hold) for 
half of the trials, where, the caller also received a message 

Figure 1: Participant driving the STISIM simulator. The 
simulator provides a console with speedometer, steering 
wheel with turn signals, and traditional brake and accelerator. 
Three   47”   screens   generate   an   impression   of   driving   a  
vehicle. The driver used a speaker phone system (center left) 
to converse with the remote caller (inset). 
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(b) Iqbal et al. in 2011 [129]

Figure 2.6: Setups for studying call interruption while driving.

and participants entered chunks of numbers and made quick glances to the road,
rather than making a longer interruption.

Multitasking on Mobile Devices

Although multitasking and task interruptions have extensively been studied on sta-
tionary computers, so far little has been reported for mobile users and their unique
set of difficulties. Studying multitasking on mobile devices became popular when
mobile phones became ubiquitous and provided functionality to support users with
everyday tasks. Pioneering research, strongly related to the previously mentioned
work on driving, was about usage of mobile phone calls. That being said, this is a
rather young field of research, so pioneering work will be presented next.

Oulasvirta et al. [181] investigated the issue that people have to split their cogni-
tive resources in mobile scenarios. They carried out a study (28 subjects) on mobile
Web search tasks while moving, and observed that continuous attention to the mo-
bile device is fragmented, mostly due to environmental distraction, and broke down
to short time spans of 4–8 seconds.

Karlson et al. [142] investigate task flows on stationary desktop computers, smart-
phones and on combinations of both. As such, they analyze tasks as a whole,
including switching to a stationary computer to complete a mobile task, if neces-
sary. They carried out a 2-week diary study mostly focused on email management
(24 subjects), characterizing how problematic interruptions are to mobile users and
identifying primary sources of frustration. They derive implications for support-
ing multi-device task flows, and conclude that a variety of challenges regarding
multitasking on smartphones do not exist on the desktop.



60 2.3 Related Work

Operationalisation Prior work 
Time to attend to an interruption  [19, 5] 
Time to resume the primary task [22, 1] 
Time on the primary task (completion time) [1, 4] 
Time on the interruption [1] 
Pupillary response [17] 
Forgetting the primary task goal  [5] 
Self-reported receptivity rating [13] 
Self-reported emotional state [1] 

Table 1: Dependent measures to assess interruption timing in 
related experimental work. 

RESEARCH QUESTION AND HYPOTHESES 
To test the effects of interrupting after representative 
episodes of mobile interaction, the primary tasks of calling 
and reading SMS were chosen to test our hypotheses, 
because they are arguably among the most common 
examples of episodes of mobile interaction. This approach 
provides an alternative to the constraint of using bodily 
worn sensors in experimentation [13]. Our principal 
research question is as follows:  

RQ: Does the end of an episode of mobile interaction 
represent an opportune moment for an interruption?  

To answer the research question, a naturalistic experiment 
was designed that relies on an application on a mobile 
phone to infer opportunities for interruptions from phone 
activity. We formulate testable hypotheses for a mix of 
behavioural (H1,2,4) and self-reported (H3,5) dependent 
measures inspired by related work (see table 1): 

H1: People will be quicker to accept the notification of an 
interruption at the end of an episode of mobile interaction 
than at random other times.  

H2: People are significantly more responsive to 
interruptions at the end of an episode of mobile interaction 
than at random other times.  

H3: People will perceive completing the task at random 
times as a higher burden than after episodes of mobile 
interaction, and people will rate the appropriateness of the 
timing of a notification after an episode of mobile 
interaction higher than at random other times.  

Whereas H1-3 are aimed at testing the impact of the timing 
strategy (independent variable (IV) 1), H4-5 are aimed at 
testing the influence of the task type (IV2) of the 
interruption. Due to the dynamic nature of context whilst 
being mobile [24], we assume that attentional and cognitive 
demand of the interruption task (as indicated by perceived 
workload through NASA TLX assessment), and its social 
and situational appropriateness influence the perceived 
disruptiveness of an interruption and the completion rate of 
the task.  

 
Figure 1. Temporal metrics (bottom) to analyse user 

behaviour (top decision flow) in phases of the interruption. 

H4: Interruption tasks with a higher perceived workload, 
and/or situational inappropriateness are delayed longer 
before being started and have a lower completion rate. 

H5: Interruption tasks with a higher perceived workload, 
and/or situational inappropriateness are perceived as more 
burdensome to complete and less appropriate when mobile.  

These hypotheses may support the assumption, which 
inspired this experiment: that cognitive breakpoints are 
located at the endings of episodes of interaction. 
EXPERIMENT DESIGN 
In a 3x3 within-subjects design, we manipulated task type 
(multiple-choice, free-text and photo) and timing (random, 
opportune: after SMS, after call). We employed the 
experience-sampling method over a period of two weeks 
and post-hoc interviews and the NASA-TLX questionnaire 
to assess perceived workload of the tasks. 

Methods 
The experience-sampling method (ESM) has been designed 
to collect subjective assessments of experience in situ, over 
a variable period of time and where participants are locally 
dispersed [6]. In addition to self-reported ratings of the 
appropriateness of the timing and the burden to complete 
the task, we also collected behavioural data describing 
device usage as ground truth for parametric data analysis. 
To reflect and study different phases of the interruption 
process in more detail, we computed several temporal 
metrics from timestamps (see figure 1), again similar to 
dependent measures in related work (see table 1).  

• First, acceptance time is the time between notification 
delivery and the participant’s acceptance of the 
notification. So as not to convolute acceptance time by 
task type, a generic notification “new activity request” 
had to be clicked to accept the notification after pulling 
down a task bar equivalent to checking the SMS inbox. 

• Then, decision time is the time between the task type 
being displayed to the participant and accepting the task. 

• Then, the task time is the time the user spent on the task 
and the rating of the burden of the task, which concluded 
every task.  
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Figure 2.7: The study design of Fischer et al. [96] and the durations they measures.

Ames [6] studied mobile multitasking of student iPhone owners on a university
campus. She investigated the techno-social lives of colleague students through
three studies, and finds that her study participants — despite being rather tech-
savvy and “digital natives” — actively set limits to their own smartphone use and
disconnect from their devices due to stress and the increased cognitive load of
constantly being connected and multitasking. The paper suggests improvements of
smartphone designs with regard to social and cognitive aspects.

Fischer et al. [97] investigate how the content and the time of interruptions im-
pacts the receptivity of mobile interruptions, e.g., pushed pieces of information
such as notifications. Through an experience sampling based study, they find that
content (respectively interests, relevance, and actionability) has a major impact on
a person’s receptivity to an interruption. The authors draw the conclusion that for
design of new systems, one needs to consider factors such as whether the content
is interesting, urgent and of high priority for the interrupted person. Regarding
the timing of an interruption, the authors conclude that this strongly relates to the
interrupted person’s current activity and social surroundings. In [96] Fischer et
al. study whether there are opportune moments in mobile device usage to deliver
notifications, since they lead to interruptive tasks. They conduct an experience
sampling study with 20 participants who they interrupt with different tasks (do
multiple choice test, compose free text, take a picture) with different timings (ran-
dom, after phone call, after SMS), as shown in Figure 2.7. During the study Fischer
et al. tracked how participants would interact with the notifications and when they
would conduct the tasks. Authors find that users act on notifications faster if they
have just finished an episode of device usage (calling or reading and SMS).
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METHOD 

Participants 
Fourteen participants (6 female) took part in the study. 
Participants were aged between 22- and 36-years. All had a 
valid driver’s license and at least two years of driving 
experience. All participants were highly proficient at 
reading and speaking in English (i.e., to the standard set by 
the university’s admissions criteria), and regularly sent and 
received text messages using their mobile phone. The study 
took about 60 minutes to complete and participants were 
paid £4 ($6) for their time. 

Materials 
In the study participants had to enter text using a touch-
screen interface while steering a simulated vehicle. The 
driving simulation environment was displayed on a 30-inch 
monitor and was controlled by a Logitech G25 Racing 
Wheel. The secondary task was presented on a 7-inch 
touch-screen display. Figure 1 shows screen shots of the 
text entry interface and the driving simulator environment.  

The driving task required participants to steer a simulated 
vehicle along a three-lane highway environment. The 
participant was only required to steer the vehicle and 
maintain a central lane position. The driving simulator 
added noise to the vehicle dynamics causing it to gradually 
drift about in the lane. This meant that the participant had to 
actively control and monitor the vehicle’s lateral position 
and heading to maintain a central lane position. To 
reinforce safe lane keeping, safety cones were placed at 
either side of the driver’s central lane. A lead vehicle was 
placed at a fixed distance in front of the participant’s 
vehicle. This driving set-up is similar to that used in a 
number of other studies [5,6,15,17,20]. 

The driving environment was made up of alternating 
sections of curved and straight road (see Fig. 2). The 
vehicle’s speed was held at a constant 60 mph (97 km/h). 

This meant that the driver alternated between each section 
of road at a constant rate: 9-seconds of driving around the 
curved section of road followed by 5-seconds of driving 
along a straight section of road. The motivation for having 
these alternating sections of road was to create distinct 
periods of high and of low driving demand so as to consider 
whether this had any effect on when participants choose to 
engage in the secondary text entry task. Previous research 
has shown that participants tend to pause secondary task 
interactions while navigating a corner section of road [17]. 
We therefore wanted to see whether participants would 
suspend typing while navigating the curved sections of 
road.  

The secondary task required participants to copy and enter a 
target word using a touch-screen interface. Figure 1 shows 
the interface that was used for this task. On a given trial, 
participants were ‘notified’ of a new target word by a short 
auditory alert. The to-be-entered target word was then 
displayed in the ‘target text’ area on the display. The 
participant was to enter the target word into the ‘entered 
text’ area using the virtual keyboard. Target words were 
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Figure 2.8: The setup of Brumby and Seyedu [46] for study of auto-locks on smartphones
while driving.

Figure 2: In space-multiplex, the bridging content is dis-
played alongside the new page as it is loading.

HTTP response together with the associated JavaScript code.
Furthermore, an administration (web) interface is provided
that allows the bridging content to be personalized. In the
client (browser), the JavaScript is responsible for displaying
the bridging content in time- or space-multiplexing mode.

For the prototype implementation, we used four different
types of content: weather (from WorldWeatherOnline.com
based on the IP address), RSS new feeds, Facebook news
feeds, and contextual ads. Content is shortened to 100 charac-
ters due to the limited display size on mobile devices. Each
content title is a hyperlink which points to the full article.

The prototype allows each user to specify (a) the content
type, (b) the RSS feed category, and (c) the multiplexing
mode via an admin interface. For each type of content the
user can select whether the respective type of content should
be displayed at all. Furthermore, he can specify a priority,
which affects how frequently it occurs. Similarly, the user
can choose his preferred RSS feed category (sports, comput-
ers, etc.). Based on this, content from the associated RSS
feeds is used. Finally, the multiplexing mode can be selected.

EVALUATION
In a lab study with 15 participants, we were interested in
(a) how suitable the approach is for different devices (smart-
phones, tablets), (b) whether there is an effect of the loading
time on the perceived usability, and (c) the preferred presen-
tation mode. We used a within subject design. The users
had to perform search tasks for products on the Amazon web
page (e.g., “What is the price of the iPad 16GB?”). The
users performed the search tasks on two mobile devices – a
Samsung GalaxyTab and an HTC Desire HD smartphone –
and for each device in time-multiplex, space-multiplex, and
a baseline mode (no bridging content). This resulted in 6
conditions that we counter-balanced between the participants.
The search tasks were read aloud by the experimenter. As
soon as participants found the answer, they informed the ex-
perimenter. The search tasks were performed for 5 minutes
per condition. To reduce the complexity, we only used non-
personalized RSS feeds in the study. We selected 200 RSS
feeds and separated them into 20 categories prior to the study.
Ten categories were used in each mode.

As our prototype loads the bridging content on the requested
page, we were not only able to control how long the content
was shown, but also to measure how long it was visible to the
participants (e.g., when they scrolled away or clicked to close
it). During the study, we logged user interaction (user ID, cur-
rent website, device, loading time of the website). Addition-
ally, for space-multiplex mode, we logged the time until users
scrolled away from the bridging content. For time-multiplex
mode, we recorded whether content was closed prior to the
page being loaded or if content was brought back. Usability
was measured using an SUS questionnaire [4] for each condi-
tion. Finally, a semi-structured interview was conducted.

FINDINGS
In total, 15 people participated in the study (11 male, avg.
age 25.8 years). All were students, 12 owned a touchscreen
phone and 8 had unlimited data access on their phone. Note
that despite the limited demographics, our sample of young
people nevertheless represents one of the main target groups.

The analysis focuses on the mobile phone as we assumed
the surfing experience on the tablet to be more similar to
the PC. In order to assess the perceived usability, we com-
pared the SUS scores for all conditions. For the phone, the
baseline condition (86.9) was rated slightly higher than space-
multiplex (85.2) and time-multiplex mode (79.6). Further
analysis revealed no significant differences between all con-
ditions, which suggests that our approach does not have any
negative influence on usability for mobile surfing.

We were also interested in the effect of the loading time.
The analysis of the log file showed that the average loading
time on the mobile phone (avg.=4.5s, STD=5.09s) was much
higher than on the tablet (avg.=1.9s, STD=2.03s). A Pearson
correlation analysis revealed a negative correlation between
the loading time and the SUS score for the phone in the base-
line condition (r=-.56, p<.04). This is a strong indicator that
for long loading times, browsing on a mobile device was per-
ceived to be less usable. Interestingly, no significant correla-
tion was found for time-multiplex and space-multiplex mode.
Consequently, we believe that our approach has the potential
to overcome the perceived low usability of mobile surfing.
For the tablet we did not find any significant correlation be-
tween the conditions and the SUS scores.

With regard to the content, we were interested in how much
time people would spend with the bridging content. For space-
multiplex mode, we logged the time until users scrolled away
from the content (which was possible at any time). On the
phone, this happened on average after 5.05s (STD=9.38s), on
the tablet after 2.9s (STD=3.9s). When subtracting the aver-
age loading time, participants spent 2.43s longer with the con-
tent on the phone than in the baseline condition, on the tablet
2.27s. These results are interesting, e.g., for advertisers, as
there is a high chance that users indeed perceived the content.
Also, these values are likely to increase if the content is tai-
lored to the users’ interests. In time-multiplex mode, users
were able to hide the content before the page finished loading
in the background, and they were able to redisplay the content
after it had been closed. On the phone, the bridging content
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Figure 2.9: The idea of multiplexing a smartphones’ display for multitasking [5].

In [46] Brumby and Seyedu were interested in the auto-lock feature of modern
mobile phones and found that people feel pressured to return their attention to the
phone sooner than usual to prevent the lock. In a simulated car driving study as
shown in Figure 2.8, they found that lane-keeping improves with longer auto-lock
times, since people took longer pauses and had more time to concentrate on curved
road sections. The authors call attention to a design trade-off: While longer lockout
times might make devices more useable in mobile scenarios, they also make them
less secure and increase energy consumption — which counteracts the reason why
auto-locks were introduced.

Alt et al. [5] introduce two different modes for displaying additional web content
when waiting for websites to load on a smartphone. A prototype implements a
space-multiplexed and a time-multiplexed approach for interweaving content, as
shown in 2.9. Although their study did not reveal any differences in usability or
other negative impacts, they argue that space-multiplexing allows for more control,
as the user can still view the primary website.

Cauchard et al. [56] also investigate the problem of multitasking on a mobile de-
vice, and introduce spatially-aware screens for mobile environments. Their study
reveals that with spatially-aligned workspaces, users are faster, make better deci-
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sions and have a lower physical and mental workload. Further, they introduce a
projection-based approach to provide auxiliary displays when switching through
applications.

Context-aware Telephony

Another large branch of research related to the work on multitasking between
smartphone tasks that we present in Chapter 6 is about phone call interruptions and
how they can be mitigated. Much work (see e.g. [221, 241, 106, 78]) investigates
how this problem can be solved by conveying the context of the callee to the caller,
and vice versa. This topic is also referred to as context-aware telephony [217, 221].

Pioneering work was done by Schmidt et al. [221]. They presented the Context-
Call system which was the first system for sharing contextual information between
communication peers on mobile phones. The system leverages the Wireless Ap-
plication Protocol (WAP) to exchange information between the peers. Users were
able to set their context (either as free text input or chosen from a pre-defined list
of free, meeting, working, home, and busy), which was available to callers through
a shared database implemented in a client-server architecture.

Knittel et al. [149] also present a mobile application that augments the personal ad-
dress book with contextual information. Their design is informed by a study sug-
gesting that people’s abstract location and movement, recent phone usage, sched-
uled appointments and manual cues (like setting the phone to vibrate) are most
valuable for making decisions on placing a call.

Schneider and Kielser have adapted the idea of displaying remote context to the
phone calls during driving [222]: Conveying the driver’s context and traffic infor-
mation to the caller reduced accidents in their study.

Teevan and Hehmeyer [241] investigate the relation of the caller’s interruption de-
cisions when placing phone calls to the callee’s decisions whether to accept the
call. They find that a callee is, interestingly, more likely to accept a call when sig-
naling “busy” or “do not disturb” to the caller, since the caller then might have
decided to call for an urgent reason.

In [106] Grandhi et al. present and study their implementation of TellingCalls: a
mobile phone application that enables the caller and the callee to convey infor-
mation about a phone call, such as its topic. A 36-user qualitative and 30-user
quantitative study revealed that callees used the information to inform their deci-
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sion whether to answer the call, and in particular information provided by callers
on call length, urgency and importance helped to convince somebody to pickup a
call. Further they found that dynamic information is more useful than information
that does not change very often. Provided information was also used to ground the
conversation; however, callers disliked the effort of entering information before
the call.

Guzma et al. [78] investigate what information cues callers and receivers actually
would require to make better decisions rather than what is technically possible.
They conducted a diary study with 13 users over 4 weeks. They found that callers
could benefit from knowing task status and physical activity of the callee, and
the callees considered their social availability to be important. As implications,
Guzman et al. propose to make physical activity (e.g. sleeping or driving a car) and
the callee’s distance from the phone transparent to the caller.

In their study on unavailability in mobile phone communication, Salovaara et
al. [212] revealed that 31.1% of phone calls relate to missed calls and follow-up
actions. They found that reasons for being unavailable fall into four categories: un-
avoidable unavailability (e.g. ring tone not audible), enforced unavailability (e.g.
rejecting calls due to social context), intentional unavailability (user’s own decision
not to respond to others), or negligent unavailability (users are unconcerned about
being available).

Mobile Call Interruptions

Regarding specific research on call interruptions in a mobile phone context, we
found only a few works that studied the costs of responding to a call and discuss
auto-reject of calls.

Ho and Intille [123] presented a sensor-based strategy for delaying call interrup-
tions that are not time-sensitive until a physical activity transition; this was suc-
cessfully tested with 25 subjects. Stamm et al. [235] develop a system that aims
to calculate the costs of interruptions in order to schedule interruptions on mobile
phones. The system collects context information and implements a decision tree
to decide for which incoming calls the phone shall ring and for which not.22 How-
ever, these works do not take into account phone calls with concurrent application
usage on the smartphone, as is possible on the latest generation of mobile phones.
22Stamm et al. do not report what exactly they are using.
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Ter Hofte [243] studied when people are interruptible for mobile phone calls, and
which pieces of information about their contexts they are on the one hand will-
ing to share and are on the other hand predictive for their availability. The paper
presents an experience sampling study (10 participants) and concludes that a pre-
dictor based on a naive Bayesian network and incorporating information that peo-
ple are willing to share (social relation between caller and callee, whether they are
in a conversation or at home) performs better than guessing about the callee’s avail-
ability by chance. Still, the presented method is too inaccurate for automatically
rejecting calls.

It is clear that mobility imposes cognitive restrictions and continuous interruptions
on application usage. However, to the best of our knowledge, there is no previous
research that focuses exclusively on the application level. While Benbunan-Fich et
al. [25] introduce metrics for measuring multitasking on stationary computers (e.g.
based on the number of windows used during a task), since on smartphones only
one window can be open at a time, focusing on the application-level approach is
reasonable for smartphones as we provide first studies on this fine-grained level of
multitasking. Moreover, other studies in a similar vein introduced above have been
performed in carefully controlled settings. Our main aim with this work is to in-
vestigate the costs of mobile application interruptions in the wild, i.e., in a natural,
general environment and at scale that makes it possible to find subtle effects.

2.4 Summary
In this chapter we have introduced the foundations of this thesis, presented the
research approach we have taken for the work we conducted, and discussed works
relating to the four fields of this thesis as well as mobile phone use in general.

First, we introduced the notion of the term context and highlighted its meaning
for the field of this work, i.e. mobile Human-Computer Interaction. The concept
of context can be used to make the ever-changing circumstances of mobile phone
usage accessible.

In Section 2.2.1 we explained the research approach that we are following to carry
out the work we will present in this dissertation. We introduced the impetus for
our approach based on deployment-based research, and presented the method of
research through the application store and how it is motivated through research in
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the wild and grounded in theory of quasi-experimental design. Based on that, we
presented frameworks and datasets which follow a similar idea as our work, and
we presented the results of studies using the same approach. We will refer to the
methods we introduced when reporting on the studies that we conducted.

Next, we presented works relating to the four fields of launching, housekeeping,
discovering and multitasking between mobile applications as well as mobile phone
usage in general in Section 2.3. The link between related work and these four fields
is as follows:

• Launching: From related work on web and application usage we have most
importantly learned that user context influences mobile device usage and
information needs. Based on that, we extend existing literature, in particular
by investigating mobile application usage through combining a fine-grained
tracing approach with running a study through the mobile application store
in Chapter 3 (contribution of paper [38]). We have also taken into account
related work on adaptive menus for designing an adaptive mobile application
launcher (part of the contribution in [183]), such as the idea of two-split
menus.

• Housekeeping: In this chapter we also presented related studies of informa-
tion management on stationary computers looking into how people arrange
icons on their desktops, as well as people’s mental models of their smart-
phone menus. We contribute to this line of work (Chapter 4, published in
[40]) by reaching out to the mobile domain and studying how people arrange
their icons in their smartphone launchers, which concepts and other factors
influence their arrangements, and how this can be exploited for improving
systems and deriving implications for smartphone design.

• Discovery: We also presented related work on context-aware recommender
systems, which we took into account when designing the mobile applica-
tion recommender system in Chapter 5. In particular, we extend existing
literature by presenting an approach for evaluating different recommender
algorithmns based on the engagement of users with a recommended applica-
tion (this led to paper [36]). In addition we will provide a design space and
a system design for recommender systems that suggest mobile applications.

• Multitasking: Our work on multitasking is based on studies of application
switching on stationary computers, phone call interruptions while driving
a car, multitasking on mobile phones and call-related studies. We extend
existing literature by focusing on interruptions that do not happen in the
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environment of a mobile phone user, but on the device itself through another
application. Our study replicates the phenomenon in the mobile domain
and discusses findings on mobile application switching and call interruptions
(contributed in [157]), and leading to the proposal of a new UI design for
phone call applications.

In the following four chapters, we present our work based on the foundation we
presented in this chapter. Our work uses the research approach we introduced and
delivers contributions going beyond what is known in current literature as we have
sketched.



Chapter 3

Launching
Mobile Applications

This chapter deals with the launch of mobile applications on smartphones. We
will first describe our way of tracing mobile application usage, then look into how
people use their applications, and finally propose a solution to help people launch
their mobile applications quickly.

The results of this chapter have been presented in three publications [38, 41, 183].
Work related to this chapter can be found in Sections 2.2.3 on logging frameworks
and 2.3.2 on mobile application usage.

3.1 Introduction
While mobile applications for smartphones have become extremely popular in the
last few years — as we described in Chapter 1 — little public information exists
on how people make effective use of the mobile applications that are available and
that they have installed on their devices. In this chapter, we first develop a means
to trace mobile application usage, then go on to consider how people utilize mobile
applications on their smartphones through collecting data on application launches,
and finally provide support for launching mobile applications easily.

67
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Launching is the act of starting something or putting something into motion.1 In
common parlance the term is often used to describe, e.g., putting a boat put into the
water, or sending a space shuttle into orbit. In this work, we refer to launching as
the act of starting mobile applications, which are represented by icons and which
are activated when a user selects them from a menu and clicks on them — as occurs
in classical WIMP interfaces [208, p. 160].

This chapter is structured as follows. First, in Section 3.2, we describe and discuss
the notion of a virtual sensor that we designed to trace mobile application usage
directly on end-users’ smartphones. In particular, this sensor focuses on the end-
user’s perspective on utilizing an application rather than on a operating system’s
perspective on when an application is actually being executed as a software pro-
cess. Second, in Section 3.3, we describe a large-scale deployment-based study that
logged detailed application usage information from over 4,100 users of Android-
powered mobile devices using the sensor we introduced. As results of this study
we present two types of findings obtained by analyzing the data that we have col-
lected: On the one hand, we provide basic descriptive statistics, and on the other
hand we present contextual descriptive statistics. In the case of the former, we
find for instance that the average session a user spends within an application lasts
less than a minute per launch, even though users spend almost one hour per day
using their smartphones. Our contextual findings include those related to people’s
time of day and location. For instance, we show that applications providing news
and weather information are most popular in the morning and games at night, but
communication applications dominate through most of the day. We also find that
despite the variety of mobile applications that are available, communication appli-
cations are almost always the first applications used when a user starts using the
device again after it has been in standby mode. Finally, in Section 3.4, we present
an adaptive menu that supports smartphone users when launching applications on
their smartphones. This system uses the framework for tracing mobile application
usage that we will introduce and is informed by the results we gained from the
study of mobile application usage. The system’s adaptive UI provides a changing
set of icons so that the user can start the next application more easily.

Contributions of this chapter are a framework for tracing mobile application usage
on end-users’ devices along with contextual information, findings on patterns and
habits of mobile application usage resulting from a large-scale deployment and a
1Oxford Dictionaries: “launch”, Oxford University Press, http://oxforddictionaries.com/definition/
english/launch, last accessed on 02.07.2013

http://oxforddictionaries.com/definition/english/launch
http://oxforddictionaries.com/definition/english/launch
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study of the collected data, and a implementation of an adaptive menu to support
people utilizing their installed applications. Related work on understanding and
supporting the utilization of mobile applications can be found in Section 2.3.2.

3.2 Framework for Tracing Mobile Application Usage
Despite the large numbers of mobile applications and users of mobile application
as described in Chapter 1, public research has only recently begun to understand
how people use their applications (cf. Chapter 2, esp. [251, 100, 79, 103] ). Very
basic and fundamental questions on how people utilize the mobile applications that
they have installed has remained unanswered for a long time; for instance, how
long does each interaction with an application last, and does this vary between
different application categories? If so, which categories and types of applications
inspire the longest interactions with their users? So far, data on the context’s effect
on application usage is equally sparse, leading to additional interesting questions.
How does the user’s context — e.g., location and time of day — affect her choices
of which application to use? What type of application is opened first when users
take devices out of their pockets, and does opening one application predict opening
another?

In this section, we provide a basis for providing answers to these questions by in-
troducing a framework for tracing mobile application usage. We describe a virtual
sensor for measuring mobile application usage right on the users’ smartphones.
Since this framework basically provides a means to measure mobile application
usage, we call this virtual sensor AppSensor.

3.2.1 A Sensor for Measuring Mobile Application Usage

In this section, we describe our data collection tool: AppSensor. Because context
is a known important predictor of the utility of an application [17], AppSensor has
been designed from the ground up to provide context attached to each sample of
application usage that it takes.

Lifecycle of a Mobile Application

The goal of the AppSensor is to trace application usage as the user experiences
it. Therefore, we need to gain an understanding of how users can interact with
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Figure 3.1: The lifecycle of a mobile application on a user’s device according to different
states and events.

their applications in general — abstracting from all the functional aspects that each
application has, and reducing the usage of general common aspects. The design of
the AppSensor is based on the lifecycle of a mobile application, as shown in Figure
3.1. The AppSensor understands five different events in an application’s lifecycle:

• installing
• updating,
• uninstalling,
• opening,
• and closing the application.

The first event that we can observe is an application’s installation. It reveals that
the user has downloaded an application, e.g., from an application market. Another
event that is observable is an update to an application, which might be interpreted
as a sign of enduring interest in the application. However, since updates are some-
times done automatically by the system and the update frequency strongly depends
on the release strategy of the developer, the insights into usage behavior that can
be gained from update events is relatively low, simply because the event does not
happen as a result of the user’s intent or action. The last event that we can capture
of an application on a user’s smartphone is the uninstall event, which expresses the
opposite of the installation event: a user does not want the application anymore.

However, these maintenance events (i.e., installation, update, uninstallation) usu-
ally only occur a few times per application. For some applications, there might
even be only a single installation event (e.g. when the user has found a good ap-
plication) or even no event at all (e.g. for preinstalled applications like the phone
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application). For other applications these events might repeat and result in a loop
over these events, e.g., when a user re-installs an application that he has deleted
once. Further, such maintenance events are also of limited utility for understand-
ing the relationship between a user’s context and his application usage. Because,
such events might be decoupled from the user’s context, for instance, a user might
install an application at one location then use it elsewhere (e.g., an application for
sightseeing might be installed at home in preparation for traveling).

Some systems, e.g., the AppAware system presented by Girardello et al. [103, 104],
rely solely on these events. Instead, AppSensor is designed to continuously sample
a user’s application usage. In other words, we are especially interested in the two
application states of being used and not being used, which can both be inferred
from the open and close events, as Figure 3.1 suggests. For most applications, these
events naturally appear much more often and in a much shorter period of time than
the maintenance events (install, update, uninstall). Tracing the two states of being
used and not being used enables us to observe application usage on a more fine-
grained level and provide a much more accurate understanding of context’s effects
on application usage. In this work, we are particularly interested in the open events,
which we also refer to as the user’s act of launching of the application. The act of
launching an application on a smartphone implies that the user navigates to the icon
of the application within her launcher menu and then clicks on the icon to open the
application.

In order to gather data on the two states being used and not being used, our imple-
mentation of the AppSensor takes advantage of the fact that the Android operating
system can report the most recently started application through its API2. Because
of this feature, we know with which application the user is currently interacting.
We are thus able to infer which single application is in the state of being used ow-
ing to the fact that the Android operating system only shows only one application
to the user at once (as does the iPhone OS and most other mobile operating sys-
tems, due to limited screen real estate). Therefore, we can presume that all other
applications are consequently in the state of not being used in terms of not showing
their graphical user interface to the user. It is worth mentioning that this is con-
trary to using applications on stationary computers which have larger screens and
commonly provide better capabilities for multitasking when multiple application
2In particular, this can be done through an instance of the class ActivityManager.
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windows are open (a deeper discussion on multitasking between mobile applica-
tions will appear in Chapter 6).

Our implementation of the AppSensor does not consider background applications
that are not interacted with through the smartphone’s graphical user interface, e.g.,
background applications like music players that can be controlled through gestures
or other modalities.

A Formal Description of the AppSensor

As noted above, the AppSensor is meant to be a sensor that indicates the specific
application that is currently being used at a given time t. Speaking more formally,
the sensor can be described as follows: Let A= {a1, . . . ,an} be the set of applications
that are available for a smartphone and let A⇤ = A[ {✏} be the set of applications
with which a user can interact. The symbol ✏ means that the user is currently not
using any application at all, e.g., when the smartphone is turned off or in stand-by
mode. For most current platforms (e.g., Google’s Android and iOS), this set A
is usually defined by the applications available on the corresponding application
stores. As we discussed in Chapter 1, the number of applications is growing, and
therefore this set is not static. However, this set always has a defined number n of
elements, i.e., the number of available mobile applications. With time given as t,
the AppSensor shall provide the following values:

as(t) =

8>>><
>>>:

ai if application ai is being used,

✏ if no application is being used.

With respect to the lifecycle of mobile applications the value as(t) describes the
application that a user has launched most recently and is currently using. The value
is distributed on the nominal scale given by the set A⇤ of available applications.
Therefore, the simple conclusion that can be drawn on the mere sensor data of
two measures at times t1 and t2 is a comparison of whether the application a user
is using is the same as before (if as(t1) = as(t2)) or whether it has changed (if
as(t1) , as(t2)).
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3.2.2 Implementation and Deployment

We implemented the virtual sensor that we have designed previously for the An-
droid operating system, where it was possible to implement it as a background
service3. This background service is always running on a user’s smartphone and
traces context information that is available directly on the user’s device (e.g. loca-
tion, local time, previous application interaction) and application usage at the same
time. As such, the sensor is able to collect very rich data as it collects not only
information on application usage, but also data on various other pieces of context
information.

We implemented the main AppSensor loop for tracing which application is cur-
rently being used with a sampling rate of 2 Hz, which means that the background
service checks for the two states of applications of being used or being used every
500ms and collects this data accordingly. This loop starts automatically as soon
as the device’s screen is turned on and stops when the screen is turned off again.
When the device goes into standby mode, we note which application was left open
and omit the standby time from the application’s usage time. We were able to de-
termine when the device was in standby by listening to screen-off and screen-on
events that are provided by the operating system. One special case is the phone
application, since the implementation of most mobile phone applications turns off
the screen as soon as the user holds the phone against her ear, using the proximity
sensory to prevent unwanted button presses.

Running in the loop, the AppSensor keeps track of which application is used every
time the value of the sensor changes, i.e., as(ti�1) , as(ti), which means that the
user has switched to another application. Besides the value of the sensor, i.e., the
identifier of the current application, all sensor data and a local timestamp given in
milliseconds is recorded.

The data measured by the AppSensor is recorded in a local database on the user’s
device and only periodically uploaded to a central server. In the first place, only
uploading it to a central server will allow us to study mobile application usage by
analyzing the data. In case of connectivity failure, the data is kept in the smart-
phone’s database and will be included in the next transmission.
3This is made possible on the Android platform through background threads. Those can be started
and continuously executed in the background, which is not commonly possible on other mobile
operating systems.
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AppUsageLogger

AppUsageDatabaseObservationLoop

AppUsageHistory

SyncThread

NetworkUtils
ActivityManager

LocationObserver

DeviceObserver

HardwareObserver

Figure 3.2: Conceptual architecture of the AppSensor framework.

Figure 3.2 shows the architecture of our implementation of the AppSensor frame-
work. The AppUsageLogger constitutes the core of the AppSensor framework.
This class implements the main thread that executes the main observation loop that
traces which application is currently being used by the smartphone user. To ob-
serve the state of applications, it queries the currently running tasks by using the
ActivityManager, which is part of the API provided by the Android OS. For
reasons of performance and power consumption, the AppUsageLogger keeps the
traces of application usage in memory, and only persists them into a database run-
ning on the smartphone whenever the device goes into standby mode. Additional
contextual information is provided by components for observing location-related
sensors (e.g. speed, geo-location) and hardware-related information (e.g., state of
battery, wireless connections). To upload the data from the mobile database to a
server accessible via the Internet, a dedicated component for synchronizing this
data is available (cf. SyncThread). When the data is uploaded to the Internet,
i.e., when it leaves the smartphone, additional pieces of information related to the
device are attached (e.g. device identifier, device model name, resolution). Since
the values of these variables are inherent to the device, i.e., they will not change,
this information is added only when data is uploaded.

Figure 3.3 shows an example database excerpt of the information that is saved
into the central database. At the bottom line — and most importantly — the
data tells us who (column: device_id) has used which application (columns:
app_id, category) for how long (column: usagetime_sec) at what time (col-
umn: local_time) where (columns: lon, lat); additional context information
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like battery status or the device’s connectivity status to wireless networks was not
shown in the table for space reasons.

For security and privacy reasons our implementation uses one-way hash functions
to anonymize all personal identifiers before the data is collected and sent to the
server (columns app_id and device_id of Figure 3.3 show technical identifiers).
Furthermore, we do not gather any additional personal information like the name,
age or gender of the user. Such demographic information has been shown to be an
unreliable predictor of smartphone usage anyway [91]. We removed data coming
from our own test and development devices from the collected data contributed
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by end-users by using special identifiers for test devices, which we could easily
remove from the data we analyzed.

3.3 Large-scale Study of Mobile Application Usage
In this section, we describe results of a large-scale study on mobile application
usage, where we made use of the framework for tracing mobile application usage
that we presented previously.

3.3.1 Method and Setup of Study

We followed the method of research through the application store that we described
in Chapter 2. Our study can be understood as a passive observational study as we
do not apply any treatment to our participants and rather look for relations between
the observed variables.

We decided to study data collected by means of logging since self-reports on appli-
cation usage are very likely to be error-prone [171], and only this approach allowed
us to collect data on a large scale — both in terms of participants and applications
— for being able to find subtle effects. Therefore, we used the Android applica-
tion store as a means to leverage our study and distribute our deployment of the
AppSensor as described in Chapter 2.

For this study, we were in particular motivated by the question of how people make
active use of the mass of mobile applications that are available on their smartphones
and how they use mobile applications in natural contexts. This study is meant to
answer the basic questions on application usage that we introduced earlier, as well
as those related to contextual usage of mobile applications.

The results reported in this section are based on data from 4,125 users, who used
an application containing an implementation of the aforementioned framework
AppSensor. The application itself containing the sensor for tracing mobile ap-
plication usage was a mobile application recommender system called Appazaar,
which will be described in detail in Chapter 5. The system has been available on
the Google Play Store and end-users were able to download the application from
this application store. It was used by people for varying amounts of time. Users
installed the AppSensor as part of the recommender system which also used the
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Figure 3.4: The geographic distribution of our users

collected data to inform its algorithms for the recommendation of other mobile
applications.

The data that we describe in this section was collected between August 16th, 2010
and January 25th, 2011. The participants of our study were spread out geograph-
ically, although most stayed in the United States or Europe during our study (see
Figure 3.4). Within the timeframe of 163 days, they generated usage events for
22,626 different applications and the deployment of our AppSensor was able to
measure 4.92 million distinct instances of mobile application launches. To get
people to install and use the application that we used to collect data for this study,
we advertised the application on Facebook and Twitter, and two news posts about
the system were published on two well-known technology websites (Gizmodo4 and
ReadWriteWeb5), helping us reach a growing number of users.

To achieve a higher-level understanding of our data, we felt it was necessary to add
the categories to the applications that we had very fine-grained data on. To do so,
we mined the Google Play Market for each application’s category. Table 3.1 shows
the resulting categorization with examples of famous applications in each category.
As such, the categories are largely defined by the applications’ developers: they —
as domain experts — assign their applications to the categories when uploading
4Gizmodo: Appazaar Recommends Android Apps Through Usage, Location, http://goo.gl/ExWbQ,
last accessed on 04.07.2013.

5ReadWriteWeb: This App Recommender Would Like to Use Your Location, http://goo.gl/Lk7XP,
last accessed on 04.07.2013.

http://goo.gl/ExWbQ
http://goo.gl/Lk7XP
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them to the Google Play Store. The only exception to this rule occurred in some
minor manual modifications. For instance, we merged all games in the categories
Arcade & Action, Brain & Puzzle, Cards & Casino, and Comics into one Games
category. Due to the special nature of browsers — i.e., they do not have a clear-cut
domain scope like dedicated applications — we have separated them into their own
dedicated Browsers category. For some applications, no categories were available
on the Google Play Store. These applications are either test applications by devel-
opers that appear only on a few devices, applications that are distributed via other
channels (e.g., pre-installed by device manufacturers or distributed by companies
for their employees), default Android applications (e.g. settings), or applications
that have been taken off the market and whose categories were not available at the
time when we queried the application categories. We crawled the Android Mar-
ket on February 3rd, 2011. We manually added categories for some applications
where possible. For instance, for the branded Twitter clients of some vendors (e.g.
HTC), we added the category of the original Twitter application (i.e. Social). To
the default applications responsible for handling phone calls we added the Commu-
nication category. As we did with the browser, we also put the settings application
into its own category (Settings) due to the special nature of these two applications.
Since on devices running the Android operating system the main launcher menu
itself also is an application and it is treated as such from the system’s perspective,
we additionally removed such launcher applications from the results since they
give few insights into application usage behavior. Finally, it is important to note
that each application can have only one category.

3.3.2 Results of Study

We analyzed the data that we were able to collect to understand how people use
mobile applications. Our results are twofold, and therefore this section is divided
into two parts: First, we provide basic descriptive statistics on application usage
behavior, and second we provide context-sensitive statistics. In the second part,
we look at several different forms of context, including an application’s place in an
“application use chain”, as well as more standard contextual variables such as time
and location. In both sections, our primary resolution of analysis is the “application
category” as defined above, but in the second part we do highlight some interesting
temporal patterns for specific single applications.
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Basic Descriptive Statistics

On average, the participants of our study spent 59.23 minutes per day on their
devices. However, the average application session — from opening an application
to closing it — lasted only 71.56 seconds.

Table 3.1 shows the average usage time of applications by category, which ranged
from 36.47 seconds for applications of the unknown category and 31.91 seconds for
applications of category Finance to 274.23 seconds for category Libraries & De-
mos. The most-used Libraries & Demos applications as measured by total usage
time are inherent applications of the operating system (Google Services Frame-
work, default Updater, Motorola Updater). This suggests that maintaining an An-
droid smartphone can be quite a time-consuming task.

It was interesting to see that the Libraries & Demos category has a much longer
average session than the games category, whose most used applications are Angry
Birds, Wordfeud FREE, and Solitaire. Despite its name, Wordfeud FREE is a full
game and not a demo version, since it provides the same full functionality like
the non-free version of the application. The only difference is that it is free and
contains advertisements for the developer’s revenue. On the low end of the ses-
sion length spectrum of applications with known categories, we found the Finance
category. The most-used applications of this category are for personal money man-
agement (Mint.com Personal Finance), stock market (Google Finance app), and
mobile banking (Bank of America). The briefness of the average session in this
category does not speak well for the success rate of financial applications on the
Android platform. Another explanation might be that people do not keep their fi-
nancial applications open for a very long time since they do not want others to see
their personal data.

Application Usage over Time

The AppSensor further allows us to record temporal information about application
usage. Figure 3.5 shows the total number of application launches in our sample
according to hour of the day. It can be seen that total application usage (in terms
of launches) is at its maximum in the afternoon and evening, peaking around 6pm.
It is not surprising that our participants generally start using applications in the
morning between 6am and 7am, and their activity grows approximately linearly
until 1pm. Activity then increases slowly to a peak around at 6pm. The minimum
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Table 3.1: Categories of applications investigated in our study. The table shows the num-
ber of applications per category, the average usage time of every categories’ applications
per launch, and examples of popular applications in each category.

application usage occurs is around 5am, although it never falls below 16% of the
maximum.

Figure 3.6 shows the average time people spent with an application per launch, after
opening it, versus time of the day. There is a peak around 5am with 6.26 minutes
of average application usage time. The average application session is less than a
minute, however, reaching a minimum of around 40 seconds at 5pm. Interestingly,
the graph in Figure 3.6 is nearly opposite that in Figure 3.5. This means that when
people actively start to use their devices, they spend less time with each application.
This might be due to applications that people explicitly leave active while sleeping
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Figure 3.5: Total number of recorded application utilizations during a day.
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Figure 3.6: Daily average usage duration of opened applications per launch in minutes.

with standby mode prevented, like for instance nightstand clock applications, but
there are other possible explanations.

Figure 3.7 shows the change in the relative usage of the application categories over
the course of the day in terms of number of application launches. Smartphones
are most likely to be used for communication at every hour of the day, especially
in the afternoon and evening (11am till 10pm) with a probability of more than
50% that a launch will open a communication application. News applications have
the highest probability of being used in the morning (from 7am to 9am). Around
11am, finance applications briefly become quite prominent. After communication
winds down late in the evening, games have their highest probability of use. Social
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applications also have their highest probability of use in the late evening (from 9pm
to 1am). Sports applications seem to play their most important role in the afternoon
(between 2pm and 5pm) and in the evening (between 8pm and 10pm). During the
early morning, when total application usage is at its lowest, people spend their time
with applications of various categories. This is also the time when communication
application use share is minimal.

Chains of Application Launches

An important contextual variable in usage behavior is the set of zero or more ap-
plications used before an application is launched and the zero or more applications
used afterwards. We defined an “application chain” as a sequence of applica-
tions that are used without the smartphone being in standby mode for longer than
30 seconds. In total, we can distinguish 1,841,226 of such sessions in our data
set. Examples include one in which a user started with Grocery iQ (Shopping),
switched to GrubHub Food Delivery (Lifestyle), and ended with Epicurious Recipe
App (Lifestyle). Another user started with the AroundMe (Lifestyle) application and
then continued with Find A Starbucks (Shopping), Google Maps (Travel), Find A
Starbucks, Google Maps, Find A Starbucks, Dolphin Browser HD (Browser), Find
A Starbucks, Google Maps, Find A Starbucks, and Google Maps. While the for-
mer user seems to be in a shopping context, checking recipes and his shopping
list, the latter user seems to be looking for a place to get a coffee using different
applications to reach his goal. Another example for such application chains using
a different study method was found by Brown et al. [45]: Users switching between
a search engine and a map application to lookup locations.

Figure 3.8 demonstrates the distribution of application chains by the number of
applications that occur in each particular chain. As the y-axis of Figure 3.8 is
on a log-scale, it can be seen that the majority of sessions (68.2%) only contain
one single application. In other words, people turn on their phone, use a single
application, and put their phone back into standby. This tendency towards the use
of a small number of applications during an interaction with the mobile device is
further evidenced by the fact that only 19.5% of application chains contain two
applications, and only 6.6% contain three. This phenomenon of people frequently
using their smartphone to launch only a few applications can be described by the
checking habit described by Oulasvirta et al. [179], which is a brief but repeated
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Figure 3.8: Number of applications used in a session. We aggregated sessions longer than
40 applications since the graph flattens out and scarcity increases. The maximum number
of applications in one session is 237.

interaction with some applications to quickly inspect the applications’ changing
contents.

We also looked into the number of unique applications used within a session, as
can be seen in Figure 3.9. The first bar in this figure is of course identical to the first
bar in the preceding Figure 3.8. We found a maximum of 14 unique applications
in a single application chain. A vast majority of users use a very small number of
unique applications during an interaction with their device. Thus — according to
our analysis of sessions — people who use more than 14 applications in sequence
tend to re-use applications that they already have launched previously within the
same session.

Examining the amount of time our participants spent in each application chain,
we found that 49.8% of all recorded sessions are shorter than 5 seconds, which
appears to be rather short. The longest session we observed took 59 minutes and 48
seconds. Between these upper and lower limits, the curve has a similar exponential
decay to that in Figure 3.8 and 3.9.

Probably the most revealing statistic in our analysis of application chains is that for
nearly half of all chains (49.60%) the first application belongs to the category Com-
munication (as Figure 3.10 shows). Digging deeper, we found that 15.7% of the
chains within our sample were initiated with short messaging (SMS) application
(9.5% default pre-installed SMS application, 6.2% a application called Handcent
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Figure 3.9: Occurrences of sessions versus number of unique applications used within a
session.

SMS), 9.6% with the phone application, and 5.9% with the standard mail applica-
tion. Interestingly, a browser was only used first in 5.9% of the application chains.

Apart form length of the sessions, we also looked into the cohesion of applications
used within single sessions. Figure 3.11 shows the transition probabilities between
application categories in an application chain. Accordingly, the diagonal of the
figure indicates transitions from one application to another in the same category.
As such, the values along the diagonal can be non-zero. It is worth noting that
this graph obviously considers only those sessions where two or more applications
have been used. For each application, it is very likely that the application used
next is a communication application, except for News and Lifestyle applications.
Apart from these two categories, the probability that the next application is a com-
munication application is at least 23.2% for all categories. For communication
applications, there is a 66.5% chance that the next application will be a commu-
nication application again. This is the highest probability for users to stay within
one category. Next there are Tools, with a probability of 15.7% of staying within
Tools, and Games with a probability of 15.1% of staying within Games. It can also
be seen that applications from category Tools are entered relatively frequently from
applications of any other category.

There are also some important unique connections between application categories.
Most notably, a browser is opened quite frequently following the use of a news
application. The connection between Lifestyle and Shopping applications is also
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Figure 3.10: Categories of first-used application within a session.

quite strong, with Lifestyle applications frequently leading the user to enter into a
Shopping application. The reverse is also true, but to a lesser extent.

Application Usage by Location

Besides local time of our participants and preceding applications, we also analyzed
spatial information that the AppSensor provided. We also found clear empirical
evidence for location as a covariate of application usage behavior. This occurs
across changes in both administrative regions (e.g. USA vs. Europe) and functional
regions (e.g. inside airports vs. outside of airports). Some initial findings from our
spatial analysis are as follows.

We examined 13,190 samples recorded by the AppSensor that occurred while a user
was located within the spatial footprint of a known airport in the United States. We
found that while in the airport, users were 2.78 times more likely to be using a
browser (by usage time) than users located in the United States as a whole. This
may suggest that certain functions related to air travel may not be sufficiently mi-
grated into native applications (e.g. looking up flight status). On the other hand,
users were less likely to be using games, tool applications, or reference applica-
tions while in airports. This was somewhat surprising, especially given that the
Kindle application belongs to the reference category.

The location API also provided us with speed information related to application
usage as traces by AppSensor, and in contrast to Do et al. [85] we also were able to
relate application usage to participants’ movements. We found that when traveling
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Figure 3.11: Transition probabilities in application chains. The transitions are from cate-
gories in a row to categories in a column. The diagonal indicates transitions between ap-
plications in the same category. The probability ranges from yellow (low) to green (high).

at speeds greater than 25kph, not surprisingly that users were more than 2.26 times
more likely (by usage time) to be using an application of the Multimedia category,
to which most music-related applications belong. Interestingly, we found that they
were less likely (0.83 times) to be using applications in the Travel category.

Looking into differences between groups of our participants, we found some in-
teresting differences between users in the United States and in Europe. European
users are 1.21 times more likely to be found using a browser (by usage time).
Americans, however, spent relatively much more time with sports, health, and ref-
erence applications. Social and news applications were the most equally used.

Specific Application Usage

Although we focused our analysis at the application category level, we did ana-
lyze several important and/or well-known individual applications to get a deeper
understanding of how people make use of their applications. Figure 3.12 shows the
usage times of specific applications with regard to time of the day. In contrast to
Figure 3.7, the numbers in Figure 3.12 are not normalized by total usage over all
applications within those hours, but by each application’s total usage per day.

Previously, we saw that social applications in general have their highest probability
of use in the evening. This is somewhat true for Facebook, but its usage time is
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Figure 3.12: Application usage time throughout the day. Within each row (i.e., for each
app) low usage is indicated by white, increasing through yellow and reaching a peak at
red. Percentages indicate the usage time of each application and are normalized within
each row.

spread out throughout the whole day. The same goes for Twitter, although it is not
as much of a late-night activity.

A somewhat surprising finding can be gleaned by looking into the usage of the
Google Maps application (Travel), which has a relatively strong peak in the early
evening hours. Traffic checking is perhaps one possible cause, although one would
expect this pattern to be repeated during the morning commute. Another interest-
ing result concerns the use of the built-in music applications, which is somewhat
focused in the morning hours. This also might be a result of participants listening
to music when commuting to work or to school.

Weather checking is, not surprisingly, largely a morning activity, as is checking
one’s appointments for the day on the calendar. On the other hand, users’ desire to
play Angry Birds6 is absent in the morning, and only picks up in the early afternoon
and in the evening. Kindle usage behavior is even more focused in the late evening.

Another interesting phenomenon emerged from the study of two different alarm
clock applications. It seems that alarm clock applications are mostly used — i.e.,
being the only active application on the device presenting its user interface —
during the night (from 2am until 9am). One reason for this might be that people
“use” this type of application while sleeping, e.g., as a desk clock, which prevents
the device from going into standby mode.

More generally speaking, some applications have spikes in usage and are more
destined for special contexts of use — as Figure 3.12 shows — whereas other
6A game where one has to shoot pigs by flinging birds at them; see http://market.android.com/details?
id=com.rovio.angrybirds, last accessed on 04.07.2013.

http://market.android.com/details?id=com.rovio.angrybirds
http://market.android.com/details?id=com.rovio.angrybirds
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applications are more broadly employed throughout the whole day, and also are
used at different locations.

3.3.3 Implications and Discussion

The results that we describe above give rise to new implications for improving the
design of smartphones, and more particularly for smartphone launchers. However,
our study also has some limitations that we will discuss in this section. Further,
we discuss which other fields the AppSensor can be applied to when systems can
benefit from tracing application usage data.

Implications for Design

The results reported in this chapter can be used to improve the design of mobile
applications and mobile operating systems. For instance, designers of “launcher”
applications (like the home screen on the iPhone and Android) could vary applica-
tion icon position and/or size based on the time of day and/or the user’s location.
This same idea could apply with regard to an application chain with the last applica-
tion opened providing the context rather than time/location. Similarly, application
developers could design smart links between applications that are used frequently
in sequence, which could further benefit from adding functionality like transfer-
ring pieces of data from one application into another. Since people often navigate
from lifestyle applications to shopping applications, application designers of the
former might implement links to shopping applications. Additionally, the AppSen-
sor gives insights into the applications’ contexts of use. For instance, the design
of applications can be optimized if the developers know whether an application is
used only while commuting in the morning, or solely in the evening.

Our results show that smartphones are — despite their evolution towards multi-
purpose devices that we sketched in Chapter 1 — still first and foremost commu-
nication devices. This is not only due to phone calls, as smartphones provide a
variety of new ways to communicate (e.g., instant messengers, email, voice over
IP, video chat). Nevertheless, our findings certainly qualify the mobile phones as
multifunctional tools in the “Swiss Army Knives” [215] line of thinking. That
being said, when people are not sleeping during the late hours of the night and
early morning hours they make more use of the non-communication functionality
provided by different kinds of applications. Additionally, they spend more time
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within an application once they have opened it in the night. One reason might be
that fewer people are awake for active synchronous communications at that time.

Our results also suggest that users frequently switch between applications they have
already used in application chains of single sessions, rather than only opening new
applications. This suggests that there is a functional cohesion between the partic-
ular utilizations of single applications. As such, mobile phone operating systems
should better support navigation between very recently used applications.

Making Use of the AppSensor

The AppSensor, which we introduced earlier, makes it possible to examine the eco-
system of applications residing on a user’s device. This has potential to inform the
design and customization of novel applications, or even new devices themselves.

One may apply the AppSensor to infer a user’s context based on her actually used
applications. According to Dey [80], context awareness involves adapting services
according to a user’s context. For instance, the users’ needs for mobile services
— i.e., applications in our case — depend on their locations [137]. Reasoning
about the context of a user based on sensor data while she is interacting with a de-
vice usually involves uncertainty and leads to ambiguity [82]. We propose that by
adding the AppSensor to context reasoning, one can decrease the uncertainty and
ambiguity of context recognition. An example is sketched in Figure 3.13: Even
though two people may be walking through the same pedestrian mall in a famous
city (i.e, they have the same location), if they use different applications (e.g., one
a shopping list application and the other a sightseeing app) we would be able to
distinguish between the shopper and the tourist, even though other sensors like
location, time, and acceleration might provide similar values. Even without any
meta-information on the in-use application itself, it would be possible to compare
the contexts of two or more people. For instance, if two users are constantly swap-
ping between a map application and a restaurant guide application, they might be
doing the same activity — probably looking for a restaurant, as we saw in the ex-
ample of application chains where the participant was searching for a spot to get
a coffee. This idea follows Want’s [258] line of thinking that mobile phones are
becoming a proxy for their owners’ activities, and the Watson system presented by
Budzik and Hammond [52] which leverages interactions with desktop applications
as contextual information.
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Figure 3.13: Incorporating AppSensor into context-reasoning. This allows one to dis-
tinguish different activities in cases where other sensors provide the same data. In this
example one user is using a tourist application (left), and the other one is using a shop-
ping list application (right). Based on this AppSensor information, we are better able to
distinguish the two activities of sightseeing and shopping near the mall (composed with
screenshots showing applications Stockholm City Guide and Out of Milk Shopping List,
background image showing the Saluhall shopping mall in Stockholm, Sweden; photo pro-
vided by Holger Ellgaard under Creative Commons).

Context-aware recommender systems that suggest mobile applications can also be
made more efficient by exploiting an AppSensor, as we will discuss in Chapter 5.
For instance, recommender systems that follow a post-filtering approach — i.e.,
applying knowledge on context-aware dependencies after using basic techniques
like collaborative filtering [2, 120] — can exploit the time-dependent usage share
as a factor in the estimated ranking of applications. We will present a context-aware
recommender system using the AppSensor in Chapter 5.

Limitations of Our Study

Some applications have a more general purpose that is not well understood by
AppSensor. For instance, a web browser can be used for everything from public
transportation route planning to looking up a word in a dictionary. The meaning
that can be deduced from such applications can be regarded as limited or impre-
cise. For these cases, the insight that the AppSensor provides on the user’s context
might be limited. However, most services that are provided via a browser are also
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available within dedicated applications. Since many users seem to prefer to employ
native applications instead of websites on mobile devices 7, this should not have a
large negative impact. Thus, when applying the AppSensor one should be aware of
this issue.

The current design of the AppSensor is not capable of determining when users
are using applications in parallel. For instance, if a user is listening to music —
with the player running in the background from the operating system’s perspective
— and is browsing the Internet at the same time, the AppSensor will return the
browser as the single open application that is being used. Similarly, on the Android
platform we have the problem that applications’ widgets are part of the UI of the
home screen application. Therefore we cannot measure the widget-related usage
of applications. However, most widgets are simply entry points into applications,
i.e., when users want to use the functionality provided through the widget, they
would open the corresponding application automatically by clicking on an element
of the widget.

While we have no detailed information on the participants due to the domain of the
underlying platform appazaar — i.e., helping people to discover new applications
— we may assume that some of our users are early adopters with a high affinity for
trying out new applications. Thus, our participants in general may have a slightly
higher affinity towards mobile application usage and be a little more tech-savvy
than the general population.

Like every sensor, the AppSensor is not error-free. For instance, our sensor might
return values that do not relate to the user’s current activity. A user might leave
and put away the device with an application still running. The uncertainty of the
reasoned context will increase with the time that the user has not used her device.
However, most devices go into standby after some time of non-usage, as long as
the user does not intentionally use an application that prevents standby. Moreover,
application usage that occurs when standby mode is purposefully disabled can also
be assessed as a valid value of application usage as returned by AppSensor.

Furthermore, the AppSensor cannot be used to reason about a user’s context when
no application is used at all, i.e. when the device is in standby or turned off. In
the formal definition of the AppSensor we dedicated a special symbol to this case.
Secondly, the sensor is obviously only available during active usage of the device.
7AppsFire.com: Infographic: iOS Apps vs. Web Apps. http://goo.gl/1O2rf, last accessed on
13.06.2013.

http://goo.gl/1O2rf
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Otherwise it can only be deduced that the user is currently not using his device.
Thirdly, the accuracy of the AppSensor also depends on its sample rate. This im-
pacts the quality of the measured data. The sample rate needs to be chosen depend-
ing on how often a user is switching between different applications. If the swapping
frequency is higher than the sample rate, the accuracy will decrease. However, at
a high frequency the system load might increase and impact power consumption.
We believe that our sample rate is correctly set given these constraints, as we con-
ducted an informal pre-study on how fast one can switch between and start a new
application.

Of course, our findings cannot be transferred to general usage of the underlying
types of services and use cases. For instance, it might be the case that people
use Facebook during the day on their stationary computer or laptop, and use their
smartphones when they are lying in bed in the evening.

Technically, whether or not an AppSensor is widely deployable within a system
strongly depends on the underlying operating system and the policies of the de-
vice’s vendor. The AppSensor used in this work was implemented based on the
Android platform because the Android operating system provides the required
openness and APIs to trace system-internal information related to the execution
of applications. The sensor itself needed to be implemented as a background ser-
vice, which would not be possible on every device. For these and other reasons the
implementation of the AppSensor would not possible on Apple’s iPhone, or at least
cannot be deployed in the wild.

3.4 Adaptive Menu to Support Launching of Applications
Current smartphone usage can be characterized by devices that have many appli-
cations installed. In Chapter 5 we will investigate people’s habits for organizing
their applications so that they can easily find the right application that they want to
start. The complement to people’s strategies for coping with the problem of find-
ing applications on their devices — as we will discuss in Chapter 4 — is to help
them find the application that they want to start. This form of support results in
application launcher menus that adapt to the user’s application usage habits. This
idea of adaptive launcher widgets for smartphones has existed for some time (see
for instance [44, 253, 31, 268]).
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The time span from deciding to use an application to actually being able to utilize
the application can be separated into two parts: (1) The time to find the application
before launching it, and (2) the time it takes for the application to load before
the user can start using it (i.e., the application has to be loaded into the operating
system’s memory to be executable, and many applications need to download up-
to-date content from the Internet before they can be used, e.g., news feeds) [268].
In this work, we only focus on the first point, since the second point is related
more to a operating system’s perspective rather than to an HCI perspective (related
approaches for pre-loading and pre-fetching applications and content can be found
in [183, 265, 14]).

Based on the AppSensor, which we introduced and designed previously, we have
built an adaptive menu that provides people with shortcuts to applications that they
might want to start next, which we called AppKicker. Further, our approaches for
building strategies to adapt the menu to the user’s application usage behavior have
also been informed by the results of the study we presented. In this section, we will
describe the design of the AppKicker system, and explain the approaches that we
implemented to retrieve sets of applications that we would provide shortcuts for.

3.4.1 Design of Adaptive Menu

Zhang et al. [268] show that the time people spend searching for an icon to launch
the corresponding application positively correlates with the distance of the icon
from the top of the screen. This suggests that people would have to perform a visual
search in a fully adaptive menu starting at the top, with search time being linear to
the number of icons in the menu, if they are unfamiliar with the items [224]. This
is the case for adaptive menus, since the user cannot know where the application
that he wants to launch would show up as he cannot build a mental model of the
menu [270], and cannot apply any means to benefit from motor memory [108]
by arranging the launcher layout for usability reasons (cf. Chapter 4). The main
reason for this deficiency lies in the very nature of an adaptive menu: Every icon
may change its position whenever the menu is updated; in fact it may also be
the case that icons disappear and new icons show up, even all of them. To provide
benefit to the user, such a full-screen adaptive menu would require a highly accurate
prediction algorithm — especially since smartphones are small-screen devices [95]
— that ideally presents the next application’s icon in the top row, to keep visual
search time low. One cannot require the user to always scan through the whole list
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of icons on their menus if the full screen presents an adaptive menu. In fact, Shin
et al. [229], who have built and studied a full-screen adaptive menu, found that
too many changes in the launcher menu leaves users feeling confused and out of
control — despite the benefits provided to the user by adaptive launchers. Further,
many users have very specific habits for arranging their smartphone launchers as
well as very subtle habits for customizing their launchers, as we will discuss in
Chapter 4.

Therefore, we conclude that when providing support for finding icons to launch
the applications, designing the launcher as a full-screen adaptive menu is not the
optimal approach — though it might seem to be a holistic one. Therefore, the de-
sign rationale of the adaptive launcher menu AppKicker that we present is twofold:
On the one hand there is a benefit from an adaptive menu that anticipates the next
application to provide support for launching of applications to more quickly and
easily find applications within launcher menus, but on the other hand occupying
the full screen with an adaptive menu is not the best approach and we would prefer
to leave space for the user to customize parts of her launcher menu on her own.

As a result, we designed a solution that instead follows the approach of two-split
menus [224], with one fixed part and one adaptive part. Figure 3.14 shows the
design of the split menu that we have built for launching mobile applications. At
the top it shows one row of icons that will adapt to the user’s current application
usage. This part is customizable by the user in that he can add it to his launcher
wherever he prefers to have it. Below it are shown stock Android controls and
other elements that users are able to customize in their own way, e.g., add other
widgets and shortcuts to various applications as we will discuss in Chapter 4.

3.4.2 Implementation

We implemented the approach of adaptive smartphone launchers as designed in the
previous section for the Android operating system. For the end-users of our system
we only provide the adaptive part of the designed two-split menu, and they can add
this part as an extension to their launchers. The UI of the AppKicker system itself,
i.e., the adaptive launcher menu providing shortcuts to the user’s applications, was
implemented as a widget on the Android platform, which is shown in Figure 3.14.
The widget has space for icons of five applications that the user can use to launch
these applications. To be adaptive to a user’s actual use of mobile applications the
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Figure 3.14: AppKicker’s menu placed on the homescreen as a widget.

AppKicker application is based on the implementation of the AppSensor presented
earlier in Section 3.2. Figure 3.15 shows the overall architecture of our approach.
AppSensor serves as a vital core for AppKicker, and the traces of application us-
age are made available to different subsystems. In our study of mobile application
usage we found that people have characteristic behaviors to open specific appli-
cations right after unlocking their devices (cf. also reported as the checking habit
by [179]). Therefore, we extended the implementation of AppSensor for the real-
ization of the AppKicker application to also recognize such events in addition to
mobile applications’ lifecycles.

To assign applications to AppKicker’s shortcut menu, we implemented six different
models, which all use an instance of the AppSensor introduced previously to trace
the user’s application usage. As Figure 3.15 also shows, the traces of a user’s appli-
cation usage are being persisted for the different approaches that we implemented
to assign icons to the AppKicker launcher menu. Each model keeps track of those
pieces of information about the user’s application usage and contextual information
that it requires to anticipate which applications might be launched next.

• Most-recently used (MRU): The MRU-based model assigns the top 5 most
recently used applications to the set of icons that will be presented to the
user. These last 5 applications are ordered by time: the most recently used
application will be shown at the first position. This approach is state-of-the
art and available on many devices for switching through applications (e.g. as
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Figure 3.15: Conceptual architecture of the AppKicker application.

a kind of task bar under iOS and in a dedicated recent applications menu on
the latest version of the Android OS). This model is informed by the finding
that people typically only use a few applications within one session, although
they may switch between those applications. Therefore, when using this
MRU-based model the menu will always show applications which are very
likely to be used next, if they already have been used previously — within
the recent five applications.

• Most-frequently used (MFU): The MFU-based model assigns the icons of
those applications to the widget which in total have been used most; i.e.,
those applications which the AppSensor has logged the most launches of.
As such, this model is based on a simple unconditioned probability of which
applications are most likely to be used next.

• Sequentially used (SQU): The SQU-based model is informed by the finding
that there is a certain cohesion between launches of applications, as we found
in the previous study. Therefore we have implemented a model based on
simple conditional probability for predicting the usage of an application if
another one was used previously.

• Most-used at location (MLO): The MLO-based model aims on supporting
users that have strong location-correlated application usage behavior. There-
fore, we implemented this simple model that is conditioned by the current
location of the user. For instance, when at her office the user will have those
applications in the shortcut launcher that she mostly uses at the office; while
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(a) Customization dialog (b) Choosing method (c) Customizing widget

Figure 3.16: Customization of the adaptive launcher menu provided by the AppKicker
application. The user has the possibility to customize AppKicker widget when adding it to
the homescreen

at home she will have those applications in the shortcut launcher that she has
used at home most.

• Predicted next application (PRE): We also used a model that is based on a
more sophisticated approach for mobile application prediction, which is a
follow-up model of the one presented in [265]. This model for prediction
of mobile application usage is based on an algorithm for text compression,
which has been adopted for working on sequences of mobile application
usage [183].8

By design, these five different approaches for assigning applications to the adaptive
menu have certain characteristics. While for instance the MRU- and MFU-based
models will be able to provide applications right after a single first application was
used, the SQU- and MLO-based models will only return applications when other
applications already have been used after a particular application or at the current
location. That being said, the latter two models require some training time and
some time to learn how people use their applications. The PRE-based model, by
contrast, requires zero training time [183].

Since it is important for end-users to customize their personal smartphone (cf.
[109] and Chapter 4), we added simple capabilities to change the background color
8This model’s formulation, implementation and evaluation is not part of the work presented in
this thesis. It resulted from a collaboration of the author with researchers from University of
Massachusetts Amherst and Microsoft Research, and results are published in [183].
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of the widget to increase user adoption, as shown in Figure 3.16(c). In fact, this
was a feature that users of the AppKicker application requested on the application
store by leaving comments on earlier versions of our application that we released
to the Google Play Store.

As Figure 3.16(b) shows, there is one additional mode that the user is able to choose
from to configure a new installation of the widget, which is called “Mashup”.
This actually is not an additional model on its own, but rather is based on the
aforementioned five models for counterbalancing. If a user decides to use this
mode for her adaptive menu, the system will randomly choose one of the presented
models for assigning application to the launcher menu. This mode allows us to
study the different models for application prediction against each other; therefore it
is also marked as “recommended” to the user (see Figure 3.16(b)), for no particular
reason, except to get as many users as possible into this condition. The list for
selecting the other models, as shown in Figure 3.16(b), is always in random order,
so that there is no tendency for users to choose one model over another biased by
the ranking of items in the list.

3.4.3 Case Study

For a proof of concept we were interested in how people make use of the adaptive
menu that we provided in general, and how they would use the different models
that we implemented. Therefore, we made the AppKicker application available on
the Google Play Market for end-users to download, install and use.

Study Design

The design of our study follows the approach of research through the application
store, which we describe in Chapter 2 and which we already used for the deploy-
ment of the AppSensor in the Android market. The AppKicker application was
made available for download on the Google Play Market.9

We compared three of the algorithms that we implemented within the “Mashup”
mode that we dedicated to conducting a counterbalanced study. For a fair com-
parison, we decided to only use those algorithms which are informed by tracing
only application usage without additional context information: We have chosen to
compare the most-recently-used model (MRU), which is used by all major mobile
9See http://goo.gl/mSSN6, last accessed on 06.07.2013.

http://goo.gl/mSSN6
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platforms to show application shortcuts; the model based on sequentially-used ap-
plications (SEQ), which uses only the previously used applications to predict the
next application; and the predictive model that we implemented based on related
work [183] (PRE).

We used a within-subject A/B/C design to test and compare the different prediction
strategies. As described above for the “Mashup” mode, we randomized the condi-
tions: Whenever a new set of icons to be shown in the adaptive menu is requested,
we randomly choose one of MRU-, SEQ- or PRE-based models for estimating a
set of applications. As such, for this study we discarded the data from the modes
that participants configured for themselves.

Within the widget, we tracked how users interacted with the icon menu for each of
the models. However, our evaluation is limited in that we cannot know what other
icons users have placed on their home screens. For example, we might schedule
applications into the adaptive launcher widget that the user has already pinned to
her home screen (Chapter 4 discusses how people customize their homescreens and
launcher menus), or we might not catch application launches that the user initiates
outside of our launcher widget.

Findings

At the time of this study, the widget had been installed more than 43,600 times and
had more than 7,630 active users.10 Note that both the installation of AppKicker
and the participation in the research study are voluntary, and as such participants
self-select their study role. As soon as a user starts the AppKicker application for
the first time, we present a research study disclaimer and ask for an opt-in consent.
Following the Two Buttons Approach [187], users can decline from contributing
data but still use the application.

For a fair comparison of the different prediction algorithms, we report results for
the top 100 users as ranked by the number of application launches participants
made using the widget. These users had a median of 112.5 clicks on icons for
application launches (min 62, max 1,807). This resulted in 16,991 clicks in total.

Figure 3.17 shows the click-through rate as a function of the prediction algorithm’s
ranking. The PRE-based model yields a click-through rate of 38.1% on its top
ranked app, whereas MRU and SEQ produce only 27.7% and 35.4% respectively.
10According to Android Developer Console.
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Figure 3.17: Cumulative click-through rate on icon positions on the adaptive menu for
three different models.

Similarly, the PRE-based model outperforms other prediction algorithms at other
ranked positions as well.

Our case study of the AppKicker application suggests that we were able to reveal
differences in the models that we used for assigning applications to the shortcut
menu, and that the PRE-based model worked best for supporting users with an
adaptive launcher menu for applications.

Further, feedback that we got from users of the application through the Google Play
Store (e.g., “[I] was trying to find an app that allowed me to analyze which apps
I used the most so I could save space on the home screen and this is the closest
I’ve found”, “Helps to find apps faster” or “an interface that subtly blends into
your home screen”) suggests that the AppKicker application has met the design
goal of providing a supportive functionality for users to launch their applications.
Comments like “I would like the ability to ignore apps” and “What about different
sizes?” give hints for future improvement of the application.

3.5 Summary
In this chapter, we investigated how people launch mobile applications on their
smartphones and proposed an approach to support application launching on smart-
phones by extending current launcher menus.

First, as a means to study mobile application usage and to build other tools based
on it, we conceptualized and implemented the AppSensor: a framework for tracing
and analyzing application launches on smartphones in terms of usage counts and
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usage durations. Next, we described a study based on a deployment of this frame-
work in the large on the Google Play Store. For the first time — to the best of
our knowledge — the method of deployment-based research by means of applica-
tion store deployments was combined with fine-grained data collection on mobile
application usage. In contrast to physical sensors (e.g. GPS for locations), we de-
fined a virtual sensor for measuring the usage of mobile applications. The public
deployment of AppSensor provided us with data from more than 4,100 users over a
period longer than four months. Finally, we presented the design and implementa-
tion of an adaptive launcher menu that was built to help end-users start their mobile
applications. In particular, this adaptive menu aims to shorten the search time for
applications by adaptively presenting those applications to the user which he might
start next. In short, this chapter included the following key contributions:

• The conceptual design of our research method for analyzing mobile appli-
cation utilization in the large, namely the AppSensor as a virtual sensor for
measuring mobile application launches.

• Results of a study in the wild showing that (among other findings) smart-
phone users spend almost an hour a day using applications but spend less
than 72 seconds at a time with any given application (on average, per launch),
and that average usage time differs extensively between application cate-
gories. A context-related analysis of our data led to the following conclu-
sions (among other findings): (1) mobile phones are still used mostly for
communication (text and voice); (2) some applications have somewhat in-
tense spikes in relative usage (e.g. music and social applications), whereas
others are more broadly employed throughout the day; (3) when people ac-
tively use their devices they spend less time with each application; (4) short
sessions with only one application are much more frequent than longer ses-
sions with two or more applications, and the first application within a session
is very likely to be an application for communication; (5) when people are
traveling they are more likely to use multimedia applications and they are
surprisingly less likely to use travel applications.

• The design of an adaptive launcher menu for supporting launching of mobile
applications, as well as an implementation of this proposal as an Android
application, called AppKicker.

In the next chapter, we set out to understand how people customize their smart-
phone launcher menus, and we will cover further insights into how adaptive mobile
launcher menus can be designed. In Chapter 5 we will make use of the AppSensor
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described in this chapter to design and build a recommender system for mobile
application usage. Finally, in Chapter 6 we will analyze data collected by the
AppSensor to study the phenomenon of mobile application multitasking.
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Chapter 4

Housekeeping
Mobile Applications

As already discussed briefly in the previous chapter, mobile applications appear as
a collection of icons on the user’s device. In this chapter we will investigate how
smartphone users interact with the icons of the applications that they have installed
on their devices. Two studies will inform our understanding of how people organize
all the applications they have installed, and a system for supporting this task will
be proposed.

The results of this chapter have been presented in three publications [40, 31, 30].
Work related to this chapter can be found in Section 2.3.3 on launcher menus.

4.1 Introduction
By definition, housekeeping comprises the “routine operations of a computer
which make its work possible or more efficient, but do not directly constitute its
performance”.1 In our case, the computer is a smartphone and the records that are
being kept and maintained are mobile applications, which are installed on a user’s
smartphone.

Icons have been introduced with the classical WIMP interfaces, which consist
of graphical user interfaces comprising windows, icons, menus and pointing de-
1OED Online: “housekeeping, n.”, Oxford University Press, http://www.oed.com/view/Entry/88916,
last accessed on 02.07.2013.
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(a) On iPhone (b) On Android (c) On Windows Phone

Figure 4.1: Pictures of smartphone users arranging their icons in launcher menus on de-
vices of three widely used mobile platforms. All platforms provide features for arranging
icons based on drag-and-drop interaction, where users long press an icon to enable mov-
ing it.

vices [208]. Icons were introduced as graphical elements for representing “ob-
jects, commands, and tools that were opened or activated when clicked on” [208,
p. 225]. While in Chapter 3 we addressed the aspect of activating an application
by clicking on the corresponding icon, and we investigated how people utilize ap-
plications in terms of running them on their mobile devices and in terms of using
provided functionality, in this chapter we will investigate how people organize ap-
plications on their mobile devices by means of arranging application icons. Figure
4.1 shows that icons can easily be arranged by drag-and-drop interaction in home-
screen launchers. Understanding how housekeeping mobile applications is done
on smartphones will allow us to help people get and maintain a better overview
of their applications. Having an good overview of their applications and know-
ing where to find them is important for users to be able to effectively utilize the
functionality that is available at their fingertips.

In both parts of this chapter we will investigate how people arrange icons in their
smartphone launchers. In the next section we will provide a first study suggesting
that context impacts people’s icon arrangement, and present a system that exploits
the relation of people’s context to their icon arrangements. In Section 4.2 we will
investigate people’s habits that emerge over time, and present a system that exploits
such patterns to support people as they arrange icons and curate their smartphone
launchers.
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4.2 Exploiting Icon Arrangements
The contextual relevance of mobile applications, i.e. how useful a particular appli-
cation is in a certain context, can only be determined by the user herself. However,
such a measure for an application’s relevance is required as discussed in Chap-
ter 3 for context-adaptive launcher menus and as we will discuss in Chapter 5 for
context-aware recommendation. While in Chapter 3 we investigated the relation
of an application’s launches to its contextual relevance, in this section we propose
an approach for a assessing this metric by looking into how people arrange icons
within a mobile application menu.

This section gives rise to exploiting the user-defined icon arrangement as an im-
plicit feedback for the relevance of services when the arrangement occurs in re-
lation to user’s context. A system correlating a user’s context and with his icon
arrangement will also allow developers and designers to learn about how the user
assesses the application’s contextual relevance, before the application itself is ac-
tually available and any other data can be traced.

4.2.1 Preliminary Study

To understand how people arrange icons on mobile devices and to evaluate the im-
pact of their contexts, we conducted a study where we collected data from people
in the wild, i.e. we observed our participants in their natural contexts how they
arrange icons on a mobile device. We have provided our participants with instru-
mented smartphones, since we were rather interested in a very special aspect of
smartphone usage rather than observing their natural smartphone usage. We have
chosen the following four different contexts for our study, with participants being
in different activities:

(1) At the weekly farmer’s market, i.e. people buying groceries;
(2) during shopping in a mall, i.e. people carrying bags and looking for con-

sumer goods;
(3) at the airport, i.e. people carrying baggage and going to travel by air;
(4) and at the university cafeteria, i.e. students who are out for lunch.

As interviewers we were able to ascertain that our participants were in the specified
contexts by looking at the criteria mentioned.
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(a) Screenshot of application

16 15 14 13

12 11 10 9

8 7 6 5

4 3 2 1

(b) Positions in grid layout

Figure 4.2: Screenshot of the mockup application for the icon arrangements and positions
in the grid layout. In (a) the translations of the icons’ labels are, from top left to bottom
right: Last Minute, Hot Deals, Buddy Finder, Departure, Lectures, Cafés, Fruits, Price
Comparison, Cheese, Vegetables, Parking Spaces, Arrival, Menu, Events, Organic Foods,
and StudiVZ is a German social networking platform for students.

A mockup application, shown in Figure 4.2, simulated an icon-based menu on a
mobile phone. We asked the participants to arrange the icons on the menu so that
the menu would fit to their current activity. They were able to use drag and drop for
moving icons. The initial arrangement was randomized and our participants were
totally free to spatially arrange the icons.

We designed dummy applications with icons showing 4 relevant and 12 irrelevant
services for every context. In every context 4 icons symbolized a worthwhile value
to the users, like for instance applications for price comparison or hot deals for the
shopping context. We designed these icons and their labels such in a way that the
value to the user in his context was obvious, e.g. information services on fish for
the market, on discounts for shopping, on the flight schedule for the airport, and on
the cafeteria menu (see Figure 4.2 for a full list).

Findings of Study

The study took place in Münster, Germany, in 2009. We interviewed 100 people,
25 for each context. There were 49% male and 51% female participants with an
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Figure 4.3: Average positions of icons in different contexts, numbered from 16 (upper left)
to 1 (lower right). Colors highlight the price comparison application (blue), the food menu
application (green), the fruits (light orange) and vegetables (dark orange) applications, and
the departure schedule application (red).

average age of 34 years. On average, they made 7.7 icon moves (min 2, max 16),
which took 28.3 sec (from 6 to 85) on average.

Our data show that in different contexts our participants moved different icons to
specific positions on the menu. Figure 4.3 shows this relation: Each row represents
a distinct context, and each field within a row stands for an icon. The order of
the icons within the rows is the same. The positions are numbered from 16 (upper
left position of the menu) to 1 (lower right), as shown in Figure 4.2(b). Each field
in Figure 4.3 has a certain width, depending on the average position of the icon
among the participants separated by context — i.e. the wider the field the further
up it was placed.

A comparison of the width of specific fields shows that the icons have been moved
to specific positions in different contexts. For instance, on average people moved
the application for price comparison to position 14.9 in the shopping context and
to position 12.6 in the market context, whereas they only moved it to position 6 in
the cafeteria and to position 6.3 at the airport. People moved the icon of the menu
application to position 15.4 in the cafeteria context, and to positions below 7 in the
other contexts. Figure 4.3 shows that other icons show similar relations.

4.2.2 System for Exploiting Icon Arrangement

The findings of our study informed the design of a prototype within a platform
where end-endusers are able to develop their own mobile applications, called pro-
como (see [35, 34] for details of platform). It is a client-server architecture based
on web technology which pushes contextually relevant applications to a client run-
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(a) (b)

Figure 4.4: Prototype of the context-aware icon-based main menu (a), and a user rearrang-
ing the icons and making use of the trash bin (b).

time environment running on smartphones. These user-generated applications are
basically small HTML/JavaScript-based widgets.

The application server hosts the mobile services which are authored by users. It
also infers the contexts the mobile users are currently in by using a sensor data
clustering approach [98]. The mobile client continuously sends context informa-
tion to the server (i.e. location and time as well as estimated values, e.g. distances
from home/workplace, and speed). In response it retrieves a list of applications or-
dered by the estimated contextual relevance; these are presented in the main menu
as shown in figure 4.4.

The server also logs every icon arrangement a user makes. Therefore, snapshots
of the menus are saved to a central database. The relevance of a service can be
deduced as discussed above from the position of an application within the menu.
Following the approach of context-collaborative filtering presented in [29], the pro-
totype aggregates the relevances of services based on all user-given icon arrange-
ments for each context. On context change, e.g. when moving to a different loca-
tion, the menu gets flushed at once and new applications are loaded, which results
in new icons appearing in the menu.
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4.2.3 Discussion of Findings

Our findings support the approach of exploiting icon arrangement as an information
source for context-awareness, as we propose in this section. The study suggests that
context has an impact on the users’ icon arrangements on mobile devices.

The study also suggests that distinct patterns for arranging icons might exist, since
we have found one particular pattern in this study (i.e. relevant services on top,
less relevant services on bottom). We may assume that due to cultural [144] and
individual [109] properties of users and also particular designs of launchers on
smartphones also other patterns exist.

To summarize, in this section we investigated how the current context of a user
impacts his icon arrangement within a smartphone menu. We presented a first
approach and a simple system for assessing icon arrangement of users by looking
into how they visually layout their icons. Our findings suggest that context has an
impact on how users arrange their menus: During different activities, they prefer
different icons to be placed at specific positions. In the next section, we set out
to gain a deeper understanding on which concepts people use for arranging their
icons, and we will investigate if and how this phenomenon also occurs on user’s
personal smartphones, which they can customize over longer time periods.

4.3 Habits of Icon Arrangement
As discussed earlier in Chapter 1, the number of available mobile applications is
steadily increasing. People have rapidly adopted application stores as a means to
customize their smartphones with various functionalities that go beyond communi-
cation. Understanding the principles of their mobile application usage is crucial for
supporting users within this new ecosystem. In this section, we investigate which
concepts people apply when arranging application icons on their smartphones, and
how their habit impacts the visual and hierarchical layout of launcher menus.

We designed a study following the idea of natural experiments (as described in
Section 2.2). We asked more than 130 participants about their habits in icon ar-
rangement and collected more than 1,400 screenshots of their devices’ menus to
further ground our findings based on two major platforms (iPhone and Android).
Based on this data, we can distinguish five different concepts for arranging icons
on smartphone menus, e.g. based on application usage frequency and applications’
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functional relatedness. Additionally, we investigated how these concepts emerge
in relation to frequency of application installations, removals and icon rearrange-
ments, as well as users’ experience levels.

Once installed, a new application resides on the user’s device and is available for
instant usage. One kind of menu for launching applications became standard: Icon-
based menus that are arranged in a grid layout [77, 126], as shown in Figure 4.6,
became common. These menus help people to organize, find and use their appli-
cations. However, since the screen size of mobile devices is limited, at some point
the user has to decide on how to organize the icons, which we refer to as house-
keeping in this chapter. Current smartphones may be able to show up to about 24
icons at once. Icons that do not fit on the screen can either be put on a new page
to be reached by scrolling, or they can be organized hierarchically into folders to
be reached by navigating. While there are intuitions and beliefs on how people
manage their applications (also from Section 4.2), there is little published research
on the topic, except results published from this thesis [31, 40, 30]. As a result, so
far we have not been able to comprehensively support the process of housekeep-
ing mobile applications. Important questions remain unanswered, for instance: Do
people have certain concepts for arranging icons? If so, what are these concepts
and how are they applied? How can we exploit the effort people put into main-
taining their launchers? Do arrangements made by more-experienced users differ
from those of the less-experienced? Or do people remove applications to solve the
problem of limited space?

One major design goal for menus is to adapt them to the users’ tasks [164]. This is
of particular interest for mobile menus, since the tasks of mobile users [18] and the
applications they use [38, 86] are perpetually changing, and the design of context-
aware menus is a topic of current research (cf. [31, 126, 138, 229, 253]). However,
in contrast to pre-designed menus, smartphone launchers are highly customized by
the very users themselves. Customization itself has become a primary activity [109,
161], e.g. to make the device more efficient or to manage complexity. Yet it is
unknown if the design goal of task-relatedness also emerges when users arrange
their mobile menus themselves. This is the focus of this section.
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4.3.1 Study Method and Setup

The study we describe in this section was inspired by a screenshot-based diary
study on mobile task interruption [142] and the work on personalization by Tossel
et al. [246]. We have adopted the method of a screenshot-based study for two rea-
sons: Firstly, in contrast to the study we described in Section 4.2 where subjects
were asked to arrange icons ad-hoc within a launcher menu mock-up, we did not
want to bias our sample by the arrangement task itself at this point. Further, since
the customization of functional phone settings happens over the long term [109]
and usability is a long-term experience [153], the chosen design allows us to col-
lect data that has evolved naturally. Secondly, we decided against using a logging
application as proposed for mobile in-the-wild studies [117] as like done in Chap-
ters 3, 5, and 6, since by introducing a dedicated application with its own icon, we
would have biased what we wanted to observe, i.e. our participants would have had
another icon in their launcher menus that would have been an artifact of our study.
As a result, we have chosen to investigate iPhone and Android devices, since at
time of our studies these were the only widespread representatives of the current
generation of smartphones (allowing users to install applications and arrange icons)
with the capability to easily take screenshots. This was not possible on most Win-
dows Phones at the time the study was conducted. As a result, we thereby were
able to collect data in the wild following the approach of quasi-experimental design
without imposing too much effort on our subjects.

Our study had two steps: First, we asked volunteers to make screenshots of their
menus for the purpose of analyzing their icon arrangements, and to send them to
us by email. Secondly, we sent a short questionnaire to all participants. In four
groups of questions, we asked about their device customization habits, general
phone usage, personal info, and general comments. We set up a website with
instructions, and recruited subjects by email invitation, Facebook and Twitter. Data
collection was done during June and July 2011 for the iPhone, and during July and
August 2012 for Android (when screenshots became possible on Android 4.0).

We asked people to send us screenshots of their customized launchers. As such,
our samples might be biased in that we did not receive data from people who do
not customize their menus at all. However, our goal was to investigate how people
customize their menus, not whether they do so at all. The latter can be concluded
from related work (cf. [28, 109, 161]).
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Referring to the research approach laid out in Chapter 2 the study we present in
this section is not a study through the application store, because we did not collect
data through an application deployed to an application (store for the reasons stated
above). However, the data is collected in the wild. This study can best be under-
stood as an quasi-experiment, since every participant selects the condition that we
want to study on his own; i.e., the participant decides which concept he wants to
use for arranging his icons,

4.3.2 Results of Screenshot Study

In total we received data from 132 people: 1,486 screenshots from 106 iPhone users
(with iPhone version 4 or earlier versions), and 144 screenshots from 26 Android
users. Since taking screenshots on Android is only built into the latest version of the
OS (Android 4.0) we had to rely on a smaller user base. 22 participants were female
and 108 were male (2 participants did not disclose their ages). Their mean age was
28.32 years (SD 8.48). We reached participants from various countries: 60.5%
from Germany, 11.4% from the United States, 4.5% from the United Kingdom,
and the rest from 20 other countries.

We asked our participants to categorize their smartphone experience on a 4-point
scale between novice users (level 1) and expert users (level 4). The mean level
of experience of our participants is 3.46 (SD 0.71). Therefore, we clustered our
participants into 58 less-experienced (those with levels 1, 2 and 3) and 74 more-
experienced users (those with level 4).

Practices of Installing, Arranging, and Removing

We asked participants on a 5-point scale (0 times, 1-10 times, 11-20 times, 21-
30 times, >30 times) how often they have installed applications, rearranged their
icons, or uninstalled applications in the last month. The median is 1-10 times for
all, i.e. in the last month our participants have on average installed 1-10 appli-
cations, rearranged their icons 1-10 times, and uninstalled 1-10 applications. We
designed the scales based on anecdotal reports from an informal pre-study and to
capture a wide range of frequencies for installing, removing and arranging appli-
cations. In fact, the answers on the three questions were distributed over the full
range of the scale, although the medians were at the 1-10 option.
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We then set out to find correlations between the variables we collected. We found
that the more often people install applications, the more often they also uninstall
applications (Spearman’s ⇢ 0.79, p < 0.001). This suggests that people either try
new applications — i.e., install them and remove them if they are not worth keeping
— or that they remove older applications that they do not need any more when they
install new ones. By removing applications when installing new ones, they either
replace the functionality of the removed application with the new application, or
they simply create free space for the new application. Further, we found that the
more often people install applications, the more often they also arrange their icons
(Spearman’s ⇢ 0.68, p < 0.001). This suggests that people sort their icons when
they have installed a new application, so the act of arranging icons is often triggered
by a new application being installed.

Common Concepts for Arranging Icons

Beyond these basic statistics on our participants’ menu structures and arrangement
practices, we looked into our participants’ concepts for arranging icons, and based
on that our experts inductively labeled the data. In this section we extract people’s
concepts for arranging icons and investigate how the concepts found impact the
structures of their launchers.

We asked our participants to describe the concepts they use to arrange their icons, if
any. We chose a free text field over a predefined set of answers, since we wanted to
explore existing concepts instead of providing pre-defined categories. Based on the
participants’ descriptions, we deductively extracted concepts for arranging icons
following a grounded theory approach using open coding to analyze the qualitative
data [207]. We found the following five concepts that our participants applied for
arranging their icons in their launcher menus:

• Usage-based icon arrangement: People who apply the concept of usage-
based arrangement order their icons by a specific criterion that quantifies
an inherent attribute of a single application. In most cases, we found the
frequency of using an application to determine this value. Many of our par-
ticipants move frequently used applications to the first page of their devices.
Some also said that they would move least-used applications to the last page
of their menu — it is worth mentioning that from sorting of the first pages
a sorting of the last pages does not follow implicitly. Additionally, some
people used terms like importance or relevance to name the criteria that they
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used to order their icons. The latter somehow relate to frequency, but are not
necessarily associated with each other. We put these two concepts together
since on the one hand they are indistinguishable from the wording that peo-
ple use to describe their concepts, and on the other hand they both relate to
an attribute that is inherent in the application of an icon.

• Relatedness-based icon arrangement: Participants who follow this concept
cluster applications based on their functionality, i.e. applications that are
related to each other are put into one folder or onto one page, e.g. the two
social networking applications Facebook and Twitter. The similarity of two
applications is judged based on people’s subjective assessment. For instance,
Twitter might also be clustered together with mail clients, when clustering
communication applications. In contrast to the usage-based concept, this
concept takes two or more icons into account when it comes to arranging the
icons.

• Usability-based icon arrangement: A third concept that we found among our
participants is the idea of organizing applications such that the usability of
their device is optimized. For instance, one argument was to be able to eas-
ily reach icons with one’s thumb, since the performance of thumb-interaction
depends on icon position [184], or to have space to swipe through the screens
without accidentally clicking on icons. Obviously the previous two concepts
of usage-based and relatedness-based icon arrangement also contribute to us-
ability, but people in this category have explicitly conceptualized and named
usability aspects for arranging icons.

• Aesthetic-based icon arrangement: Participants who follow this concept
have a tendency to arrange their icons in a way that is aesthetically pleas-
ing to them. For instance, one user without icons on the first page wants to
be able to see the background image showing her friends on the first page;
other participants cluster icons by their color, e.g. a checkered pattern of
brown and blue icons.

• External concepts for icon arrangement: We identified a fifth group of peo-
ple who use external concepts to arrange their icons. These participants use
sorting patterns that have evolved externally from their smartphones and ap-
ply them to their icon arrangement. For instance, people using this concept
keep the arrangement that was pre-configured on the device. Others have
stated that they keep their applications in the order of installation (default
arrangement). One user said he would arrange his icons alphabetically.
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(a) Usage-based (b) Relatedness-based (c) Usability-based (d) Aesthetic-based

Figure 4.5: Example screenshots of participants who used certain concepts for arranging
their icons: (a) one participant who reports to “put the most frequently used applications
on the first screen”; (b) a user with five folders on his first page who tries “to group
[applications] by what they do or what I use them for”; (c) a participant who says he
would “keep third row available for easy swiping to the next page”; (d) a participant who
has created a checkerboard pattern: “most icons are blue, so on my first page of icons it
alternates between blue and brown and I try to keep that consistency throughout”.

Some people also explicitly stated that they have no concept for arranging
their icons. Yet, since every icon arrangement has an inherent order, it is
unclear how this order emerged. It is most likely that people who do not
have any explicit concept also follow an external concept, e.g. just leave the
arrangement as it was preinstalled or add the icons of new installed applica-
tions to the first free spot in the menu.

Hybrid Concepts and Co-Occurrence. It is worth mentioning that these five
concepts are not mutually exclusive, i.e. a user may apply two or more concepts
in parallel. For further analysis, all participants have been categorized based on
the five concepts we found. To reduce the subjectiveness of the categorization, the
labeling has been done by three different analysts whose results have been merged
by the principle of majority rule. For this reason we can take their merged clas-
sification as ground truth. We have been able to partially cross-validate people’s
textual description given in their self-reports with the screenshots they provided:
For people who said that they group by similarity, we found folders of applications,
and those who claimed to exploit icons’ colors have also been proven to be right;
for instance the participant who said that “most icons are blue, so on my first page
of icons it alternates between blue and brown and I try to keep that consistency
throughout” is shown in Figure 4.5(d) — while the color blue is recognizable, the
color brown is rather fuzzy. We had to trust participants’ self-reporting feedback



118 4.3 Habits of Icon Arrangement

(1) (2) (3) (4) (5)
usage-based (1) 79 [62%] 35 [26%] 8 [6%] 3 [2%] 5 [4%]

relatedness-based (2) 35 [38%] 76 [60%] 7 [6%] 4 [4%] 4 [4%]
usability-based (3) 8 [6%] 7 [6%] 11 [9%] 2 [2%] 0 [0%]
aesthetic-based (4) 3 [2%] 4 [3%] 2 [2%] 6 [5%] 0 [0%]

external concepts (5) 5 [4%] 4 [3%] 0 [0%] 0 [0%] 12 [9%]

Table 4.1: Co-occurrences of different concepts for arranging icons. Fields show absolute
number of participants (and relative numbers in parenthesis). The diagonal shows how
often every single concept appears in our data.

on the usage-based concept, since we did not collect any statistics on application
usage. For technical reasons we were not able to apply the AppSensor described in
Section 3 for this study.

We also looked into the co-occurrences of the five concepts. On its diagonal, Table
4.1 shows how often the concepts that emerged appear within our sample. Only
10 participants did not give any answer as to how they organize their menus. Two
of the ten participants using external concepts explicitly stated that they do not use
any concept. As an interesting fact, these two participants graded their own iPhone
experience as less-experienced (level-1 and level-2).

The most commonly used concepts for icon arrangement are relatedness-based (76
participants) and usage-based (79 participants). Table 4.1 shows the pairwise num-
ber of concepts’ co-occurrences; the values on the diagonal show the number of
single appearances. The most often applied tuple of concepts is the combination
of the usage-based concept with the relatedness-based concept, which is used by
35 participants. The usability-based, aesthetic-based and external concepts appear
less frequently together with the two other major concepts. Nonetheless, we tested
for significant correlations but did not find any systematic couplings between the
concepts.

These concepts that we describe in this work emerged both from iPhone and An-
droid users, and all concepts appeared on both platforms. We did not find any
concepts that appeared on only one of the platforms.

Specific Reasons for Arranging Icons

In addition to the aforementioned common concepts for arranging icons, we also
found more specific and subtle reasons for customizing launchers.
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Besides the first page, which is most commonly used for applications that are used
frequently, some participants also mentioned that they use the last pages of their
menus for applications they do not use often, “silly apps”, or applications “that are
never used but might come in handy some day”. One user refers to his last page as
the “land of misfit apps”, and explains that he puts applications there which do not
fit into his sorting schema, which is usage- and relatedness-based. Interestingly,
only one user reported that he consequently removes applications that he did not
use for a month. Another user who follows the usage-based concept reports that he
intentionally also puts applications on the first page if he wants to use them more
often, e.g. an application for taking notes.

Further, for some people having as few pages as possible also seems to be a goal
of arranging icons. One participant reported that he does so in order to have less
pages to browse.

We also got comments from our participants suggesting that context of use plays a
role when people arrange their applications. One user reported that he has a folder
for applications to give them a try, when he has “a few minutes free”. Further,
the general purpose of the device also affects the arrangement. One participant
reported that she tries “to put games in the back and work apps in front, because
it’s a work iPhone”. We will study the impact of context on icon arrangement in
Section 4.2.

Interestingly, one participant told us that he starts to arrange applications into fold-
ers when he loses track of which applications are installed. Only one participant
reports that he makes use of the search functionality provided by the iPhone to
search for applications. It is known that people prefer visual search over search by
names, for instance, since the name of the item would have to be remembered [19],
and further, searching for items for retrieval is cognitively more demanding than
navigation [26].

In addition to the usability-related aspects we already have mentioned, one user
explicitly explained that he tries to keep icons of certain applications “at the same
position”. Another user purposely keeps icons that look similar at different posi-
tions, to be able to distinguish them more easily at a quick glance.
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(a) Page of an iPhone launcher (b) Folder of an iPhone launcher

Figure 4.6: Screenshots of iPhone launcher showing a) a page with icons of nine applica-
tions and four folders, and b) a folder as a submenu.

iPhone-specific Results

The iPhone’s launcher has some constraints that limit the way people are able to
arrange their applications’ icons. Users are able to distribute icons over pages and
cluster them into folders, as Figure 4.6 shows. They can swipe through the pages,
and folders are represented by special icons, which can be opened by clicking
them. Theoretically, people can have as many applications as they want and put
them onto as many pages as they like. In our study, on one page they could have up
to 20 icons (no participants was using an iPhone version 5 at that time, which has
24 icons), which can be arranged within a grid of four columns by five rows. The
fifth row has a special function: its icons appear on every page as a quick start bar.
In the first four rows above, the icons are arranged in a text-like flow from upper
left to bottom right, i.e., users can only fill up rows icon by icon, without leaving
any gaps. The hierarchy of the menu is limited to two levels: On the first level,
people can have icons for applications and icons for folders, and on the second
level people can put up to 12 icons of applications into folders.

iPhone Data Characteristics. Among the iPhone participants, there were some
who customized their devices by jailbreaking2. Jailbreaking enables the users to
install applications not available from the official Apple AppStore and to adapt
2Wikipedia: iOS jailbreaking, http://goo.gl/37msu, last accessed on 05.07.2013.

http://goo.gl/37msu
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Figure 4.7: Frequency of number of pages in participants’ launchers.

their devices to personal requirements and preferences. Four of them used options
to customize their menus beyond the available standard options (e.g. more than
four icons in a row, more than 12 icons in a folder, not filling up row by row).
Since their menus are highly customized, they are not comparable to the other
standard devices’ menus. Therefore, and since these users most likely also had
unusual high technical ability, we removed these four records from our data. We
also removed one participant who submitted screenshots of his iPod Touch, since
this is not a communication device in the first place and therefore not comparable
to smartphone customization. Interestingly, this device had many more screens
(122) than the other participants’ iPhones.

As such, our cleaned iPhone data set is based on 101 participants, 1,166 screenshots
(of 379 pages and 787 folders), and 3,415 unique applications shown as 9,649
icons. An average participant has a mean of 95.53 applications installed (min 22,
max 278, SD 53.62), distributed his icons over 3.75 pages (min 1, max 11, SD
1.88), and created 7.79 folders for additional organization (min 0, max 37, SD
7.31). Figure 4.7 shows the distribution of our participants’ number of pages. Most
people have two pages in their launchers; two participants have only one page.
The top applications that are installed on every device are the pre-installed iPhone
applications, e.g. Phone, Contacts, Notes, Compass, Mail, or Calendar (since they
cannot be removed from the device). On average, any one application was installed
by 2.83 subjects (min 1, max 101, SD 8.797).

Impact of Concept on Icon Arrangement. Based on our categorization, we
investigated whether the concepts have any impact on the user-defined menu struc-
tures. In this section, we analyze the data inferred from the screenshots to quanti-
tatively ground the concepts that emerged.
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Figure 4.8: Histogram of number of application icons on first page grouped by usage-
based concept. Left side (blue) shows distribution of participants using the usage-based
concept; right side (green) shows distribution of participants not using the usage-based
concept. Note that the x-axis is positive on both sides.

We found that the number of applications people have on their first menu page
significantly differs between participants who apply the usage-based concept and
those who do not (t-test, t=2.475, p<0.05). Figure 4.8 shows a histogram of the
number of applications on the first page for both categories of users. The graph
shows that people who arrange their applications by usage tend to have more ap-
plications on the first page.

The number of folder icons on the first page significantly differs between par-
ticipants who apply the relatedness-based concept and those who do not (t-test,
t=2.198, p<0.05). Figure 4.9 shows a histogram of the number of folder icons on
the first page segmented by usage of the relatedness-based concept. It appears that
people who apply the relatedness-based concept are more likely to have folders
on the first page of their menus. This suggests that such participants also use the
concept of similarity to cluster their most important applications.

Further, the distribution of the number of re-arrangements significantly differs be-
tween subjects who do apply the relatedness-based concept for arranging their
icons and those who do not (�2 = 6.634, p < 0.05). Figure 4.10 shows that people
who keep their applications clustered by similarity do rearrange their icons more
often. This suggests that these participants actively make use of the customization
function to keep their applications in an arrangement that fits their own preferences.

Finally, we found a significant difference (t-test, t=2.766, p<0.01) in the average
number of applications people put into a folder between participants who apply
external concepts (mean 5.2) and those who do not (mean 6.8). It is likely that
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Figure 4.9: Histogram of number of folder icons on first page grouped by relatedness-
based concept. Left side (blue) shows distribution of participants using the relatedness-
based concept; right side (green) shows distribution of participants not using the
relatedness-based concept. Note that the x-axis is positive on both sides.
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Figure 4.10: Effect of the relatedness-based concept on frequency of re-arrangements.

the external concepts people apply (e.g. the alphabet or order of installation) pro-
vide an order in only one dimension. Thus, people who apply an external concept
are less likely to sort applications into folders and less inclined to hierarchically
arrange them into a second dimension.

Grouping of Apps into Folders. Further, we looked into how people cluster
applications into folders. Participants applying the relatedness-based concept re-
ported that they use folders to group applications with related functionality. How-
ever, participants who did not explicitly state that they used this concept have also
created folders and grouped applications. Therefore we did not distinguish between
concepts when investigating folder arrangements.
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A maximal co-occurrence can be found among those applications that are pre-
installed on the iPhone. This is not surprising since these applications are installed
on every device. For instance, the Voice Memos application appeared 74 times
together in a folder with the Compass application, and 74 times together with the
Calculator application. Next, Compass and Calculator appear together 64 times,
Voice Memos and Stocks 60 times. Some of our participants have also reported
explicitly that they cluster the original iPhone applications together.

Further, we looked into applications that people have installed from the AppStore.
For instance, Instagram, which is an application for social photo sharing, was in-
stalled by 29 participants. Most often it appears together with PS Express (10
times), an application for photo editing, and Photosynth (10 times), which is an
application for browsing large photo collections and creating panorama images,
and the default Photos application for browsing pictures (8 times). Basically, these
three applications provide follow-up actions after taking pictures. Additionally, In-
stagram also co-occurs with other applications for taking pictures, i.e. applications
that basically provide the same functionality as Instagram. These applications are
the default Camera application (8 times), which provides basic functionality for
taking pictures, and Hipstamatic (8 times), which is a camera application that pro-
vides additional effects.

Next, we looked into what kind of applications people group together with Face-
book, an application for taking the social network mobile that was installed by
82 participants. It appears that Facebook is most often clustered with Twitter (28
times), which is another application in the category of Social Networks. Addition-
ally, other social network applications like FourSquare (18 times), LinkedIn (14
times), and XING (10 times) appear frequently together with Facebook. The sec-
ond most frequent application appearing together with Facebook after Twitter is
Skype (24 times), which is also listed under the Social Networks category on the
Apple AppStore, but the main purpose of this application is communication.

For the Games category we investigated which other applications people cluster
together with Angry Birds. Different editions of Angry Birds were installed by 34 of
our participants. On their smartphones, it appears together with other applications
of the Games category like Cut the Rope (18 times), Fruit Ninja (16 times), Tiny
Wings (12 times) and Doodle Jump (12 times). Additionally, the iPhone’s Game
Center, which is a social gaming platform, appears quite frequently together with
Angry Birds (16 times).
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We also looked into applications for shopping. It appears that the eBay application,
which is in the category Lifestyle, co-occurs most often with a German Craigslist-
like application (16 times). Secondly, it also appears 12 times together with PayPal,
which is an application for mobile money transfers and is in the category Finance,
and 12 times together with Amazon, which is an additional marketplace which is
listed under Lifestyle.

These examples provide evidence that people cluster related applications into fold-
ers. Based on our quantitative screen analysis, we can identify two additional rea-
sons for putting applications together based on their relatedness: On the one hand,
people put applications with similar functionality into folders. When they navigate
to a folder and open it by clicking the folder icon in a first step, e.g. games, in
the second step they can then decide which game to play. For instance, one of our
participants has a folder on his first page containing two applications: the default
short messaging application and WhatsApp, which is an alternative messenger that
transmits text via data networks. On the other hand, people group together applica-
tions that belong to a certain workflow, e.g. photo editing together with camera ap-
plications, and payment applications together with shopping applications. Menus
arranged according to these two approaches — functionally and thematically clus-
tering — have also been found to be differently favored by cultures according to
Kim and Lee [144]. We have found that these two approaches also emerge when
users organize menus themselves, yet we have not been able to show any significant
cultural differences.

Figure 4.11 shows the number of less-experienced and more-experienced users ac-
cording to whether they rearranged their icons within the last month or not. It
appears that more-experienced users rearrange their icons more often than less-
experienced users. We further found that the more-experienced users make more
use of folders in terms of filling them with icons. The mean number of applica-
tions a more-experienced iPhone user puts into one folder significantly differs from
the number of applications a less-experienced user puts into a folder on average
(t-test, t=3.31, p<0.001). More-experienced users fill their folders with more ap-
plications: On average less-experienced participants put 6.0 applications into one
folder, while more-experienced participants put 7.1 applications into one folder.
Also, from stationary computers we know that more skilled people apply more
elaborate arrangement concepts more consciously [198].
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Figure 4.11: Rearrangements of icons within the last month, comparing less-experienced
and more-experiences users.

Android-specific Results

Constraints of Android Devices. Android differs from iPhone and gives users
more freedom in customizing launcher menus. People can change the launcher
application as such an install launchers with different features, e.g. visual appear-
ance. Further, people can place not only icons but also widgets on their screens.
Widgets provide small self-contained UIs for self-updating data, e.g. on weather,
news, stock markets, or social network streams. Furthermore, Android has a dedi-
cated application menu — called the application drawer — that contains the icons
of all applications that are installed, and from there people can drag-and-drop them
to their screens. People can also place more than one instance of an application
icon on their screens. Most interestingly, on Android people can freely place icons
everywhere in the menu grid, while on the iPhone they can only start in the upper
left corner and fill screens up to the bottom right. Android also provides a quick-
start bar for icons of applications and folders that appears at the bottom of every
page.

Android Data Characteristics. Our Android data set is based on 26 participants,
144 screenshots (of 115 pages and 29 folders), and 493 icons. On average our An-
droid users had 4.32 pages (note that the number of pages is preconfigured on most
Android devices and pages may be left empty), and 18.16 application icons on their
pages. They used an average of 5.16 widgets, occupying 26.88 icon positions on
average per user, i.e., our Android participants used more screen space for wid-
gets than for application icons. Due to sparsity of our Android dataset we did not
investigate people’s grouping of applications into folders or analysis of single ap-
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Figure 4.12: Relative y-position of widgets and icons on people’s screens.

plications. However, people also do make use of folders on Android for arranging
applications.

Investigating Free Icon Positioning. For Android we investigated where on the
screen people place their widgets and icons, and analyzed which screen positions
of the grid are filled with either icons or widgets. The median of the relative y-
position of icons is 0.33, and the median of the relative y-position of widgets is
0.66 (with 1 being top and 0 being bottom edge of the grid). A Mann-Whitney U
test revealed that there is a significant difference in the y-position between icons
and widgets (U=496, Z=-9.089, p<0.001), with the former being placed more in
the upper part of the screen, and the latter in the lower part of the screen, as Figure
4.12 shows. Since most widgets are not built for application launching but rather
for mere data presentation or settings (e.g. do not have buttons to click on), one
explanation is that at the lower part of the screen people can reach their application
icons more easily to start applications when using their thumbs [184]. 6 partici-
pants left the clock and weather widgets at the upper screen positions, where they
are usually predefined by device manufacturers. Figure 4.13 shows some examples
of participants and where they have placed their widgets.

We also analyzed the horizontal placement: Icons were placed equally on both
sides (median 0.5, with 0 being left side), and widgets have a tendency to be placed
more on the left (median 0.33), though there is no significant difference.
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(a) Weather (b) Control settings (c) Shopping list (d) Music player

Figure 4.13: Example screenshots of Android users who put their widgets to the top of the
screen and some icons of their applications and folders to the lower part.

4.3.3 Implications for the Design of Launcher Menus

The results from our study of people’s habits in smartphone launcher customization
allow us draw some conclusion for an improved design of smartphone launcher
menus and housekeeping of mobile applications, e.g. to support less-experienced
users or arrangement in general, and to exploit the user-defined menu structure.

Support for Less-experienced Users

We found that less-experienced users install applications as often as more-
experienced users, but do not arrange them equally often. Additionally, it appears
that they have not yet developed a concept to arrange their icons. They might feel
lost and lose track of the applications on their devices more easily. Therefore, we
suggest supporting less-experienced users with functionality for better housekeep-
ing of applications. This support for organization of applications can be stopped
as soon as the users show an increase in application removal and arrangement on
their own, or after some duration of device usage. Convenient patterns of appli-
cation arrangement can be adopted from more-experienced users, e.g. clustering
by application functionality and type (for instance following the categories of ap-
plications on the market), or by placing frequently used applications at the front.
Fukazawa et al. [101] report that functions for automatic menu customization are
most appropriate for novices users.

Although Ziefle and Bay [270] found significant differences between old and
young people concerning the mental models that they build of their smartphone
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menus, we did not find any significant effect of age on any of the variables we
measured. Further, we did not find any significant differences concerning genders
or countries.

Supporting Icon Arrangement

Five participants reported that arranging icons can be annoying and time consum-
ing. One explained that it would be too time consuming to move an icon from the
last page to the first page, and therefore reported leaving icons at random places
occasionally. As a solution, one participant explained that she arranges her icons
on her stationary computer and then synchronizes the layout of icons to her mo-
bile.3 Another participant reported that on his iPad he would put more effort into
arranging icons. This suggest that it is easier to arrange icons on bigger screens.
Since we found that the majority of people do arrange icons, we can assume that
people do benefit from their arrangements. It is very unlikely that they invest the
effort of arranging icons if they do not benefit from doing so. Thus, this suggests
that icon arrangement on smartphones can be improved by supporting the user.

We found that the frequency of rearrangements relates to the frequency of instal-
lations. This suggests that new applications are sorted into the existing schema.
Therefore one way to help people to keep their applications arranged is to provide
assistance when installing new applications. The icon of the new application could
be placed next to icons of those applications next to which other people have placed
it, instead of just adding it to the first free spot in the menu. According to our data,
somebody who installs Hipstamatic could be advised to place the icon into the
folder where the icons for Instagram and the Camera already reside. Additionally,
a device might advise its user to put icons of frequently used applications on the
front page, since this is a common concept. As already proposed by Findlater and
McGrenere [94], a mixed initiative menu where the user and an automatic system
iterate on the design of the optimal menu might work best.

User-built Meta-applications

We found that people cluster complementary applications for workflows, e.g. photo
taking, photo editing, and photo sharing (see Figure 4.14). Compared to stationary
computers, where software usually provides richer and more comprehensive func-
3Arranging icons and synchronizing them to the iPhone is supported by iTunes (desktop software for
managing iPhone content).
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Figure 4.14: Application clusters of different users: photo-related (1-4), city-related (5-7),
activity-related (8-10), games (11), communication (12).

tionality, mobile applications have a more specialized and self-contained function-
ality. As we found, people seem to take single applications as building-blocks and
arrange them into meta-applications for certain tasks. Instead of having different
menu options within one application (e.g. for photos), people cluster functionality
of applications as building blocks, and encapsulate them behind a folder icon or in
dedicated screen areas, as Figure 4.14 shows.

This is interesting for application designers: Knowledge about which other appli-
cations have been placed in the neighborhood of an application is valuable for the
designer of that particular application, since this will provide him with insights
about what functionality might be worth integrating into the application itself (e.g.
payment options into shopping applications, picture sharing options into camera
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applications). In Chapter 3 we concluded that a similar relation between applica-
tions can be concluded from application usage chains. The analysis of the spatial
relation between icons further gives rise to a better understanding of user behav-
ior and needs. In addition, this is interesting for mobile operating systems: Once
the system determines that a user is clustering applications together that provide a
complimentary functionality, the system might provide support for a UI that goes
beyond folder icons. Instead of arranging icons into folders, the system might
provide a new synthesized application that incorporates the single applications as
building blocks and acts as a distinct application on its own.

The Case for Context-aware Paging

The iPhone design, as well as pioneering work on context-aware mobile launcher
menus, suggests that application icons should be ordered from top-left to bottom-
right in a text-like flow related to contextual relevance of applications. This is also
the conclusion of Fukazawa et al. [101] as well as Kamisaka et al. [138] and Shin et
al. [229] who use this design approach to build and study adaptive launcher menus.
According to our results, this assumption needs to be revised. The results of our
Android screenshot study shows that people place application icons on the lower
instead of the upper part of their mobile screens for launching applications, and put
other content above.

As such, for purely adaptive icon menus we conclude that the mapping of relevance
of applications to screen positions should be the opposite of what is used up to
now: Application icons should be shown from most important at the bottom to
least important at the top, to make the application that is most likely to be launched
next most easily accessible. For combining adaptive and static menu items within
split menus [224], we propose to adapt our Android participants’ pattern of putting
static icon menus at the lower part and the adaptive content at the upper part of
screens. This will combine fast access to static icons (leveraging motor memory)
with space to present adaptive content.

However, we do not suggest implementing auto-sorting icons in adaptive launch-
ers as proposed by others (e.g. [229]) since this would break the mental models
users build of their menus [270]. We instead suggest implementing adaptivity on
the higher granularity level of pages and folders. We found evidence that people
dedicate folders to specific contexts, and this provides evidence that people build
their own task-related menus. Therefore, we propose that launchers should sup-
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port users by forwarding them directly to the place that contains the application
with the highest probability of being launched. Reasons for this are that usage of
mobile applications (e.g. weather applications, social applications and games) is
not equally distributed over the the course of the day, as shown in [38, 229] and
Chapter 3 of this work, and in addition such applications can be found on differ-
ent pages and within different folders (see Figures 4.6 and 4.14). In contrast to
automatically rearranging icons — where people have the feeling of losing con-
trol [229], which might be emphasized or caused by the phenomenon of change
blindness or inattenational blindness [77] — this would save time taken to search
for the application and navigate to it, and yet keep the user’s icon layout and mental
model in sync. This implies that for mobile context-aware smartphone menus —
which are motivated by users’ perpetually changing contexts [18, 38, 229] — one
should leave the myopic level of single applications for arranging icons and instead
provide adaptive support on a higher level: e.g. jump to a folder/page (in the case
of iPhone/Android-like launchers), scroll to the right position in an application list
(in the case of WindowsPhone-like launchers), or open the right meta-applications
as introduced earlier.

Exploiting Icon Placement and Spatial Proximity

People do not necessarily remove applications to solve the problem of limited
space. We encountered the phenomenon of people having a special place to move
unused application icons, referred to as “the land of misfit apps” by one partici-
pant. Either they place them on a special page in their launchers, or bury them in
special folders. This is particularly the case for applications that cannot be unin-
stalled from a device, but also for applications that are only rarely used or do not
fit to a user’s general device usage. Since the deinstallation of applications does
not always happen, this “burying” of applications can be used as an implicit signal
about application quality, e.g. to inform application recommender systems. Also,
a rating of applications might be inferred from the icons’ position on the screen to
build valuable user profiles, with applications on the first page implicitly rated as
good, and applications on the last page implicitly rated as bad.

Since applications’ categories are defined by the developers, who might have vari-
ous reasons for putting an application into a specific category (e.g. into Social for
exploiting it as a marketing label), the categorization schema of application mar-
kets can be enriched from the user’s perspective. Two applications belonging to
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the same category are not necessarily related. For the end-user, it would be better
to give a task-related overview.

Further, we have found participants who cluster their applications in a way that
is even more specific than the market categories. For instance, Figure 4.14 shows
four folders of a user who has assorted applications related to photography, but the
user has clustered them into more specific partitions: general camera applications,
applications for organizing photos, applications for editing photos, and applica-
tions for making funny photos. Similar fine-grained sorting schemata can also be
found among other users and for other topics, e.g. racing games vs. brain-twister
applications, or traveling by car vs. traveling by public transport.

We have seen previously that clustering of applications into folders results from
people’s subjective assessment of relatedness, and people put effort into the ar-
rangement of their icons and create a valuable — yet unused — source of informa-
tion. In the line of thinking of Shipman et al. [230] we propose to exploit the spatial
layout of application icons within people’s launchers to infer relatedness between
applications. This is complementary to exploiting temporal chains of application
launches as discussed in Chapter 3 (cf. also [38]) and complementary to clustering
applications based on their textual descriptions [24].

Further, we propose that looking into the ways that people arrange their icons might
also reveal interesting information about the users themselves. For instance, extro-
verts with lower level of agreeableness have been found to spent more time cus-
tomizing their phones’ look and feel [54].

Similarities and Differences to Desktop Computers

While for desktops Barreau and Nardi [19] found three different types of infor-
mation to be organized — ephemeral, frequently-used, and archived — we could
not find an area within smartphone menus where people place ephemeral informa-
tion, i.e. fast changing icons. This is surprising since one would expect people to
have ephemeral states since their mobile environments are perpetually changing.
Though we did not cover any temporal dimension in our study, we found that users
do not arrange icons as frequently as one might assume (median of 1-10 times in
the last month). Instead, on smartphones ephemeral information (e.g. m-ails, todo
lists, appointments) is contained within applications and cannot be embedded into
the launcher itself. However, we also found that frequently-used icons have a spe-
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cial role, and that archived icons exist in the form of loosely organized launcher
subparts.

We found a strong relation to context of use for icon arrangements. While on
desktops users adapt their organization to their current task [19], we argue that
this phenomenon is even more specific for mobile devices. For smartphones one
can find a stronger and more diverse context-related arrangement of applications;
e.g. we assume that on a desktop computer one would only rarely find menus
customized for specific locations or shopping.

Further, and most interestingly, we found ergonomic aspects of smartphone inter-
action to have a major impact on icon arrangement. This motivation was explicitly
mentioned by participants of our study, and this is also implicitly suggested by the
results of the Android study, where people place icons at the bottom of screens.

One Launcher Fits All

Overall, subsuming all aspects, it appears that people divide their menu into three
common conceptual spaces that are distributed on the menu pages: (1) most often
used and important applications, (2) applications that relate to each other, (3) and
least used and unimportant applications. A common spatial distribution is: most
frequently used applications on the first page, followed by pages with folders for
applications that are related, and on the last screen applications that either are only
used rarely or that do not fit into any cluster of related applications. Further, one-
handed interaction should be taken into consideration when designing launcher
menus.

The concepts we found for mobile launchers basically determine how people ar-
range applications. These patterns are applicable on smartphones where people
can move the applications’ icons, and which cope with the lack of space by allow-
ing users to have applications on different virtual spaces (e.g. pages or folders, or
scrolling a long list of tiles on the Windows Phone). We propose this conceptual
distribution to smartphone designers to build launchers that need to work for all
users. These practices relate partially to what people do on stationary computers.

While other platforms have their own constraints for arranging icons, we argue that
the concepts we have found for Android and iPhone devices are independent from
specific constraints for icon layouts.
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4.3.4 System for Supporting Icon Arrangement

In this section we present a system that supports customization of smartphone
launchers. Its design is informed by the study of launcher menus we previously
presented, and mainly driven by the finding that people put related applications
onto the same pages and into the same folders within their menus. This system
is designed to exploit this common pattern by mining association rules for icons.
Based on that we are able to give hints to users on where to put icons, how to alter
their launcher menus, and which new applications to install.

The ideas of this system are to crowd-source the mental effort that people put into
their icon arrangements, and to exploit this knowledge base to support other people
during their icon arrangement.

Prototype Implementation

Given the phenomenon of icon arrangement by application relatedness, we aim
to exploit it to give hints on how to arrange icons. We follow a crowd-sourcing
approach, assuming that the way most people arrange their icons also is beneficial
for other individual users.

Design. Our system is based on the idea that an optimal icon arrangement
emerges from combining common patterns that other people apply. The main find-
ing of our preliminary study that informs our design is that people tend to put re-
lated applications close together, i.e. onto the same page and into the same folder.
Of course, however, some people might have specific personal reasons for arrang-
ing icons that are different from common patterns. Therefore it is worth mentioning
that this system only suggests placement of icons, arrangement of icons, and in-
stallation of applications, and does not compel the user to make any change or alter
the launcher without the user’s approval. Further, to keep the user’s mental model
of his menu aligned with the menu’s actual structure, we do not change the struc-
ture automatically but rather recommend that the user does so, by presenting hints.
Then it is up to the user whether to follow the recommendations or not.

Implementation. Since there is no API on the iPhone for accessing the menu
structure, we use a computer-vision based approach as a workaround for our pro-
totype: Within our system people are asked to upload screenshots of their launcher
menus. From that we can visually recognize the applications’ icons and reconstruct
the menu layout. This is a technical limitation of our current prototype. We used
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the same implementation as we did for analyzing the submitted screenshots of the
study presented previously.

Association Rule Mining

We exploit the relation between co-occurrence and relatedness by mining asso-
ciation rules from the screens. Currently our recommendation of icon moves is
following a crowd-sourcing approach: Based on the launcher menus of users who
have already submitted their screens, we make menu structure recommendations
to other users. The association rule mining of our prototype implementation is
being leveraged by the data set of the screenshot study presented previously. The
association rules in our system have the form of {a1, . . . ,an}) a⇤.

We use the Apriori algorithm [3], which allows us to mine for specific relations
of items in large data sets. A common use case of this algorithm is to analyze
basket data in retail contexts. In short, it provides rules saying how likely it is that
a product is in a customer’s basket if specific other products appear in the same
transaction. TO use this algorithm, we treat single menu pages and folders as single
transactions to mine the rules from the data we have. One rule can be interpreted
as follows: People who have icons of applications {a1, . . . ,an} on a page (or in in
a folder) also have the icons of application a⇤ on the same page (or in the same
folder). Every rule has a confidence value, which is the conditional probability
that application a⇤ appears on a screen given that it already displays the icons of
applications {a1, . . . ,an}.

Support for Arranging Icons

Based on the associations of icons, which the system mines form the collected data
of menu structures, it is able to support users with hints for arranging icons, with
placement advice for icons of new applications, and with recommendations for
installing new applications.

Arrangement Hints. To give hints for re-arrangement of icons we filter out those
rules where a⇤ is not installed by the user. Then we look for pages and folders
of the user that contain all applications {a1, . . . ,an} of a rule. If we find such a
set and if a⇤ is currently on a different page, we will recommend putting a⇤ onto
the same screen. Figure 4.15(b) shows a list view that gives instructions to the
user as to which application to put near which other application. In the figure,
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(a) Recommendations for applications (b) Presenting hints for arrangement.

Figure 4.15: Screenshots of our system to support icon arrangements. (a) shows a list of
recommendations. The applications might be of interest to the user because other people
have put them onto the same page with applications that the user already has installed. (b)
The system provides suggestions on how to arrange the icons.

the system recommends putting Facebook near Skype (both social applications),
Google Earth near another Map application (both mapping applications), and the
IMDb application near YouTube (both movie-related).

Placement Advice. The user can ask the system for placement advice for a spe-
cific application, for instance when the user wants to install the application and
is unsure where to place it. The system looks up all the rules having a⇤ equal to
the application in question. Then it returns those pages of the user that contain
{a1, . . . ,an} of the found matching rules. The user is then advised to put the appli-
cation onto one of these pages after installation.

Suggesting New Applications. Besides giving support for icon arrangements,
the system also exploits the association rules to give recommendations for appli-
cations that are not yet installed by the user might be of interest to him. Therefore
we take all rules with {a1, . . . ,an} being a subset of the user’s applications and ag-
gregate their consequent applications a⇤ to a list ranked by the confidences of the
rules. From that list we recommend the top 10 applications. Recommendation of
applications will be discussed in Chapter 5 in more detail.

Usually, association rules are used in recommender systems based on market basket
analysis, i.e. a transaction comprising items that people have bought. In our case,
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we not only consider which applications the user has installed, but also how she
has clustered the applications onto pages and into folders. That means we exploit
even more implicit feedback beyond purchasing statistics.

4.4 Summary
In this chapter, we investigated the housekeeping of mobile applications done by
end-users on their smartphones. We presented two studies on icon arrangement
in smartphone launchers: one suggesting that icon arrangement is influenced by
context, and a second one investigating long-term icon arrangement. Based on the
insights gained into how people interact with the icons in their smartphone menus,
we have built two systems that support and exploit housekeeping operations on
smartphones.

In the first study, presented in Section 4.2, we investigated if context has an impact
on people’s icon arrangement on smartphones. We gained first insights suggesting
that users in different contexts move different applications to the foremost position
on their devices. These findings suggest that a user’s context has an impact on his
icon arrangement behavior, and the screen position of an icon relates to the rele-
vance of an application. Based on that, we presented the idea of exploiting a user’s
icon arrangement to infer the relevance of the installed applications, and we pre-
sented a system implementing this idea. We also discussed that these preliminary
findings suggest that further insights are needed to understand how people arrange
their icons, which motivated another study.

In the second study, presented in Section 4.3, we investigated which concepts nat-
urally emerge when people arrange their icons on their smartphones. On the one
hand we have found common concepts that are used by most people, and on the
other hand we found very specific reasons for arranging icons. The majority of
smartphone users arrange application icons for four reasons:

(i) so they can reach the most-used applications quickly,
(ii) to cluster similar applications together so they can easily choose between

alternatives and follow-up applications for a certain task,
(iii) so that their launcher looks nice,
(iv) or so they have good usability.
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These concepts emerged from a qualitative study of more than 130 smartphone
users. Quantitative evidence of certain characteristics was found in the analysis
of more than 1,400 screenshots of our participants’ launcher menus. Further, we
found that the concepts people apply impact the layout of icons, e.g. arranging
application icons based on application-similarity results in more folders on the first
page and re-arranging icons more often. Finally, we discussed how the inherent
value of icon arrangements can be exploited (e.g. to improve categorization of mo-
bile applications on mobile application stores), how mobile application launchers
can be improved (e.g. by recognizing users’ self-built meta applications), and how
context-aware launchers could benefit from taking pages and folders instead of
icons into account as a higher level of granularity. We also compared sorting icons
on smartphones to sorting information on desktops in general. The results of this
study informed a system for supporting the housekeeping of smartphone launchers
by providing support for arranging the icons of installed applications and placing
icons for new applications.

The work presented in this chapter provides insights into how people arrange icons
in their smartphone launchers, and provides an understanding of people’s habits
and how context impacts the process of housekeeping of applications on users’ de-
vices. With the results presented in this chapter we were first to study this topic
(e.g., see publications [31, 40, 30]), and first to provide evidence for patterns of
housekeeping of mobile applications that is drawn from a large data set going be-
yond anecdotal findings.
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Chapter 5

Discovering
Mobile Applications

Before people can launch their applications or have a set of applications that they
need to housekeep, they first have to download new applications and install them
on their device. As introduced in Chapter 1, mobile application stores are the main
resource for new applications. In this chapter we deal with people’s problem of
finding new applications on such repositories, and provide assistance in the form
of recommender systems help them to find valuable new applications.

The results of this chapter have been presented in five publications [36, 42, 140, 29,
32]. Work related to this chapter can be found in Section 2.3.4 on context-aware
recommender systems.

5.1 Introduction
As described in Chapter 1, the recent evolution of technology in mobile computing
and the rise of mobile application stores has eased the development and the distri-
bution of mobile applications. This has led to an increasing number of available
applications that are accessible on mobile application stores for end-users. With
an increasing number of available applications, the user’s problem of discovering
valuable applications has come into existence. Discovering describes the process
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of finding something unexpectedly or in the course of a search.1 While in Chap-
ters 3 and 4 we investigated how people interact with the applications they already
have installed on their devices (launching them and arranging their icons), in this
chapter we deal with the end-users’ challenges of finding new applications to in-
stall and use them on their smartphones. In particular, this chapter is motivated
by the question of how to support users in discovering useful new applications for
installation. Searching for applications on application stores is the most used and
most preferred method of finding new applications; second is referring to friends.2

In many domains assistive systems, which are called recommender systems, have
been developed to address this challenge. The general goal of recommender sys-
tems in general is to guide users to relevant items in a large mass of items [206],
in particular in situations when user have not personally experienced the alterna-
tive available items [202]. Domains where recommender systems are used are for
instance recommendation of books, music, videos, or friends on social networks
(see also Chapter 2). For the first mobile phones that were capable of having addi-
tional applications installed onto them, such recommender systems have not been
available. Currently, the most used recommender systems that suggest mobile ap-
plications neglect that the usage of smartphones can be characterized by a perpetu-
ally changing user context, as we explored in Chapter 3 and as can been concluded
from related work (see Chapter 2).

In this chapter, we develop an approach for supporting the discovery of mobile
applications with a focus on improving current systems by incorporating contextual
information and signals such as discussed in the previous chapters. As such, we
introduce the idea of context-aware recommendation to the ecosystem of mobile
applications.

The outline of this chapter is as follows. First, in Section 5.2 we explore the design
space for recommender systems that suggest mobile applications on end-users’
devices. We look into the different dimensions and techniques for capturing the
required pieces of information to run such a system, such as information about the
users, the items, the contexts and the corresponding relevances. Next, in Section
5.3 we present the deployment of a recommender system for mobile applications.
The architecture of this supportive system is based on the presented design space
and is implemented as a recommender system for mobile applications on the An-
1Oxford Dictionaries: “discover”, Oxford University Press, http://oxforddictionaries.com/
definition/english/discover, last accessed on 02.07.2013.

2Nielsen Company: The State Of Mobile Apps, http://goo.gl/Ubhc8, last accessed on 11.06.2013.

http://oxforddictionaries.com/definition/english/discover
http://oxforddictionaries.com/definition/english/discover
http://goo.gl/Ubhc8


143

(a) iOS AppStore (b) Google Play Market (c) Windows Phone Store

Figure 5.1: Users browsing though application stores of major phone platforms. Common
features are recommending applications by popularity (see e.g. “What’s Hot” in (a) and
“top free” and “top paid” in (b))

droid platform. The purpose of this system is twofold: For our work, it serves as a
proof of concept and as a testbed, and in addition it is freely available for end-users
on the Android market. Finally, in Section 5.4 we present a new approach for the
evaluation of context-aware recommendation of mobile applications.

5.2 Design Space of Recommender Systems
Most applications that are available on mobile application stores serve their users
for special purposes and have been developed to support its users during specific
tasks or to meet certain needs, like for instance finding directions, finding the best
price, or taking pictures. This can already be seen from the categorization schema
of applications on application stores with classes for applications like lifestyle,
sports, social and productivity, which we already discussed in Chapter 3. Figure
5.1 shows users browsing through application stores of the major mobile platforms.
Current stores provide support by recommending popular applications like “What’s
Hot” in Figure 5.1(a), or personalized recommendations as in Figure 5.1(b), but
current application stores typically do not take into account context for recom-
mending applications.3

3The latest version of Apple’s iOS incorporates location to show applications that are popular in the
user’s neighborhood. At time of writing this thesis iOS 7 only a developer preview was available,
and the feature was not available for end-users.
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Once installed on a mobile device, an application can be used anytime and any-
where. However, since mobile device usage is characterized by perpetual changes
in the user’s context [18], the set of useful and required applications also changes
as we found in Chapter 3. This occurs both because a user himself is mobile and
changes location and activity, and because the environment of a user also changes.
In Section 2.1 we defined context as any piece of information that is relevant for a
user’s interaction with a system, e.g. with respect to individuality, location, time,
relations, and activity [272]. For the notion of context in the current chapter in
particular we refer to the user’s activity for conceptual aspects, while we will use
location and time of the day for technical aspects and our implementation.

The relation between context and mobile applications is widely neglected in cur-
rent recommender systems that are available to support the discovery of mobile
applications. Since a mobile user’s interests and information needs (cf. [67, 66])
as well as application usage (cf. Chapter 3 and [251]) are dependent on context,
the recommendations a system gives should be adapted to changes in context. For
instance, it is not considered that people are less likely to use game applications
when at work than while being at home [251], and that most users at home might
be more interested in applications for leisure time activities than in applications for
productivity. Further, applications for scanning barcodes to retrieve product infor-
mation and compare prices of products can obviously be used in different contexts,
but in particular they are of interest and provide value to the user when she is close
to items that have barcodes, e.g. products that she sees while shopping. Also, ap-
plications for retrieving the latest train schedules, for instance, should especially
be recommended to people who are at a train station, plan to go by train or are cur-
rently traveling by train. Since systems can be improved by incorporating context
information [160, 105] we argue that commercial systems that recommend mobile
applications — like for instance Apple Genius, the Amazon AppStore or Google
Play Market — underachieve since they neglect the ever-changing context of their
users and solely exploit sales figures and user ratings.4

In summary, and in contrast to most related context-aware recommender systems
presented in Section 2.3.4, mobile applications are a novel type of item to be rec-
ommended for two reasons in particular:

(1) Context plays a crucial role in the recommendation of mobile applications.
4Jacqui Cheng: App Store’s new sections still don’t solve discovery problems. http://goo.gl/uEvPz,
last accessed on 20.06.2013.

http://goo.gl/uEvPz
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(2) The usage of a mobile application can be continuously captured alongside
the context information due to the nature of a mobile application.

The latter means that applications are basically software processes that can be ob-
served by means provided through the operating system, and this can be used to
trace interactions with the application, as described in Chapter 3. Incorporating
such observational information on interaction goes beyond user ratings or implicit
feedback based on sales statistics, as we will discuss in Section 5.4.

In this section, we contribute a conceptional foundation for supporting discovery
of mobile applications by exploring the design space for recommender systems
that suggest mobile applications in particular. We outline options for building such
systems and enabling the context-aware recommendation of mobile applications.
As an example and as a proof of concept we will present a prototype for a context-
aware recommender system in Section 5.3, that is designed within the capabilities
of the design space that we will explore in this section.

5.2.1 Construction of Design Space

The main idea of context-aware recommender systems can be subsumed within the
following formula [2]:

users⇥ items⇥ contexts! relevance

This mapping indicates that the relevance of an item depends on a user and her
current context, where the relevance in the course of our work describes the utility
value of an application for a user in a certain context. This formula further covers
the dimensions of the design space of recommender systems that aim to incorpo-
rate context, as is the case for recommending mobile applications. In the remainder
of this chapter, we refer to an application’s relevance as a variable describing how
useful an application is to the user in her current context. Nota bene, this value can-
not be estimated a priori since it is determined by the user’s perception of whether
something is actually useful or not, but it needs to be formalized so that it becomes
ascertainable for a software system. In Chapters 3 and 4 we looked into launch-
ing of applications and icon arrangement of applications as possible signals for
deducing the relevance of applications.
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Capturing the Required Parameters

Context-aware recommender systems aim to suggest those items to a user that are
relevant to her in a specific context. Computationally, this tasks entails computing
for a given user and her actual context, those tuples (user, item,context) that have
the highest relevance values, and then to decide on the subset of items to recom-
mend. To anticipate the relevance of a certain item for a user in a certain context,
the space of

users⇥ items⇥ contexts

needs to be filled with values for the mapped relevance values. Based on these data
as a knowledge base and by applying different available algorithms, for instance
adapted versions of collaborative filtering using pre-/post-filtering (e.g. ([2, 16])
or context-aware models (e.g. [140, 228]), those relevance values that have not
been recorded beforehand can be estimated to enable the recommendation of the
most relevant items. For the most part, this is the case, since the knowledge base
is sparse and a recommender system usually only aims to recommend items that a
user has not yet installed, i.e. no data is available for that combination of user and
item. To fill the knowledge base and to improve the accuracy of the given recom-
mendations, the four parameters, as a tuple of (user, item,context,relevance), have
to be captured as often and as accurately as possible.

In the following paragraphs, we will conceptualize and describe the design options
for modeling and capturing these four parameters in the domain of mobile applica-
tion recommendation. For each parameter, we will distinguish between an explicit
and an implicit option for capturing the required pieces of information. Explicit
capturing means that the user is required to input some information and thereby
gets interrupted from his current task.

Implicit capturing means that the data can be gathered from users’ actions, which
are not primarily executed by the user to interact with the system, but which can
be exploited and interpreted by the system [219]. The recommender system can
automatically extract valuable information from observation of users’ interactions
with smartphones without any user disruption or effort [12].

The distinction between explicit versus implicit capturing is important and worth
mentioning, since in the domain of smartphone applications the technology gives
new means to capture these parameters. It is not only possible to track context
information like the user’s location due to the sensors that have become common
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on mobile devices. The most important advantage, and a unique point about rec-
ommendation of mobile applications, is that the user’s experience of an item takes
place where the software of the recommender system itself is implemented and
running, i.e. on the user’s smartphone. Therefore, there are new technical as well
as conceptional opportunities to implicitly observe the experience and capture the
required relevance values (as already described for the concept of the AppSensor
in Chapter 3). In contrast, for instance, to a recommender system for books, where
one can only with difficulty capture a user’s experience of a book implicitly after he
bought it (e.g. for how long and how often he has read it of if he has read it at all),
this is possible when recommending mobile applications. The user’s experience
of an item is an elementary parameter in a recommender system since it impacts
the relevance and value the application provides. More on exploiting this fact and
using it as feedback for evaluation will follow in Section 5.4.

Ascertaining Users and Items. The knowledge of the user’s identity is funda-
mental for personalized recommender systems. To give personalized recommenda-
tions, the systems are required to relate all captured information to a unique distin-
guishable user. A user herself could explicitly notify the system of her identity, e.g.
by logging into the system or unlocking the mobile phone with credentials. For an
implicit capturing of the user’s identity, the fact that mobile phones are personal
devices can be utilized [49]. Therefore, all information that requires a reference
to the user’s identity can also be related to the user’s device without any loss of
information and without any effort for the user. However, this implicit capturing is
only possible when the recommender system is running directly on the device. In
contrast, software for stationary computers that recommends mobile applications
(e.g. Apple’s iTunes5) requires an explicit identification of the user.

In the domain of mobile application recommendation, the items to be recom-
mended are obviously the mobile applications themselves. Mobile applications can
be either native or web-based. Although web-based applications — i.e. applica-
tions which are running in a browser environment built with web-technologies like
HTML and JavaScript — have advantages over native applications, the large ma-
jority of applications that are being used on mobile devices are native applications,
even for accessing content provided through the Internet [245]. The recommender
system needs to be able to track which application the currently captured param-
5Apple: iTunes — Everything you need to be entertained, http://www.apple.com/itunes/, last ac-
cessed on 06.07.2013.

http://www.apple.com/itunes/
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eters relate to. On the one hand, this can be done explicitly by having the user
reference a certain application or the system ask about the relevance of a certain
application. On the other hand, since the nature of the items is very close to the
nature of the recommender system itself — i.e. pieces software being executed
on the smartphone — the items in this case can also be tracked implicitly. On
smartphones the available applications can be queried, unless the mobile operating
system is prohibiting access to required method calls, as already described in detail
in Chapter 3.

Determining the Context of Use. While the concept of recording relevance val-
ues within a two-dimensional matrix of users⇥ items is common within most state-
of-the-art commercial recommender systems, the adoption of context has added a
new dimension to recommender systems [2]. Taking this new dimension of context
on its own, we are only beginning to understand how it impacts mobile technology
use. In order to provide users with context-aware recommendations, the system
needs to recognize the context of the user that corresponds to the point in time
when the relevance of an application is being determined. As described earlier, the
consideration of context is important for the domain of mobile application recom-
mendation, since mobile users are on-the-go and their contexts, their tasks and their
interests are perpetually changing (cf. e.g. [18] and Chapter 3). Context mediates
the perceived merit of a mobile service [160].

These pieces of information can either explicitly be provided by the user, for in-
stance in the form of labels assigned to their contexts, or alternatively those vari-
ables can implicitly be obtained from the sensors on the user’s device as well as
from other sources. For explicit context capturing, the users are required to anno-
tate their current context with attributes and provide information on their current
activity. For instance, this can be done by providing keywords (as for the approach
of context tags that we describe in [33]) or choosing their current context within an
ontology. Such ontologies for example can distinguish between traveling, work-
ing or shopping. It is worth mentioning that this does not have to be done in real
time. A user could also annotate her past activities or provide information on her
future actions.

Current mobile technology also makes it possible to implicitly capture and inter-
pret information about the user’s current context. For instance, location, time, and
acceleration data can be used to reason about a user’s activity [185]. Such data
can be obtained in real time from the sensors of the smartphone. Other sources for
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collecting information on a user’s context are the calendar, conversations, and ac-
tivity streams of social networks, which can also be accessed through APIs within
applications and services running on smartphones.

Quantifying the Relevance. The relevance parameter refers to the value that an
item holds for a user in her current context. In the domain of mobile application
recommendation, this relates to the usefulness that an application has for a user
for solving her current task or to fulfill her current requirements, e.g. to recognize
a song in a disco or to compare prices of products. As stated previously, this
parameter describing the usefulness of an application in a specific context cannot
be captured or quantified directly.

An explicit capture of the relevance requires the user’s attention. However, some
ways to capture the relevance of items within recommender systems have evolved
and became common over time. Firstly, people can leave a free-text comment for
an application, which serves as a guideline for other users. On the one hand, free-
text comments are very expressive and can help other people to form an opinion on
the relevance of an application, but on the other hand their semantic meaning is not
directly readable by a machine. Further, absolute rating schemas like the 5 star Lik-
ert scale or the metaphor of thumbs up / thumbs down have become widespread and
are therefore easy for users to understand. They are also very clear in expression
since the user directly transforms his experience into a computable value. Addi-
tional relevance feedback can be designed as a relative ranking of applications, e.g.
by letting the user sort the applications (as in the mockup application we used in
the study presented in Section 4.2).

Implicit relevance feedback on mobile devices is available through observation of
the user’s device interaction. The relevance of an application therefore can be
correlated with certain measurable variables. Based on the assumption that an
application is only relevant when it is actually used, the application usage can be
exploited for capturing relevance. For instance, it can be analyzed how often and
for how long an application has been executed (cf. the concept of the AppSensor
described in Chapter 3). Application installs, uninstalls, and updates can also be
logged. Also, the arrangement of the application icons holds promising as as source
of implicit relevance feedback, as described in [31] and Chapter 4.
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Accessing the Recommendations

Besides the capture of the presented parameters, all collected pieces of information
need to be aggregated before recommendations on applications can be given to
smartphone users. The aggregation makes it possible to query the data for the
relevance of an application for a user in a certain context. In general, the idea
of incorporating context information into recommender systems is not new, and
algorithms can be adapted from existing approaches, e.g. for splitting the relevance
measures of applications according to context [16, 55] or creating new models for
incorporating context [228, 140, 139].

Similar to data gathering, as described before, the user’s access to derived rec-
ommendations can also be designed either in an explicit or implicit way. For an
explicit recommendation access, the user will himself pull recommendations from
the system. This is the case for the largest currently available recommender sys-
tems for mobile applications, i.e. Apple’s Genius on the iPhone and the Android
Market Store on the Android phone. Both recommender systems grant access to
the recommendations directly on the user’s device, when the user opens a dedicated
application store application and asks for recommendations. Implicit recommen-
dation access should follow a push-based approach [188]. Such an access can be
designed directly via the mobile main menu, as presented by Vetek et al. [253].
The recommended applications can directly be started from the main menu, which
in this case acts as a context-aware menu if there is no distinction between appli-
cations that are already installed and those that have not yet been used before.

5.2.2 Discussion of Design Space

The design space presented in this work comprises four different dimensions with
two options each. It allows for 16 different conceptual designs for systems in the
domain of mobile application recommendation. Further, for each option different
implementations are possible, e.g. for the option of implicitly collecting signals for
modeling relevance feedback, one can choose from different implementation pos-
sibilities. Further, the presented options are aimed more at exploring the field and
constructing the space rather than at providing a holistic overview of possibilities.

Combination of the design options are, however, constrained by factors like the
platform and mobile operating system that a recommender system is being built
for, as not every operating system provides access to all of the possibilities previ-
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Figure 5.2: Design space for context-aware recommender systems that suggest mobile
applications.

ously discussed. For instance, there are currently web-based recommender systems
for mobile applications that are used in browsers on stationary computers (e.g., the
online platform appolicious6, that cannot make use of implicit parameter capture,
since they cannot apply means for tracing application usage directly on the device.
Further, not every configuration of options provided by the design space is reason-
able. For instance, an implicit capturing of the relevance values will be counter-
productive due to the need for additional user interaction, if an implicit capturing
of the corresponding application itself is not possible. However, the design options
within each dimension are not mutually exclusive. Especially for the parameters
of capturing context information and the relevance values, explicit and implicit im-
plementations for capturing can be combined. For instance, a user’s explicit rating
on a 5 star Likert scale can be combined with the number of utilizations of an
application, which we analyzed in detail in Chapter 3.

The overall design goal of a recommender system should be to support the user in
the process of retrieving appropriate content. Having the recommender system ask
for feedback from the user will create overhead on the general application usage,
as we will discuss in general for mobile applications in Chapter 6. Therefore, a
mobile recommender system should favor implicit over explicit parameter capture
where possible to avoid creating additional effort for the user, especially because
of the negative impact of mobile task disruption and limited cognitive resources
(cf. Chapter 6 and [12]).

With the inclusion of context as a new dimension, the complexity of recommender
systems increases. Firstly, new reasonable algorithms for data aggregation and
6Appolicious: iPhone apps and iPad apps. http://www.appolicious.com/, last accessed on
11.06.2013.

http://www.appolicious.com/
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relevance estimation are required to cope with this new dimension. Alternatively,
existing approaches can be adapted to make recommendations context-aware, like
for instance context-based splitting of item ratings for collaborative filtering [16,
55]. Secondly, the effect of the cold start problem increases, as we will encounter in
Section 5.4. While hitherto the problem appeared if no data for a user or for an item
was available, sparse data on the context dimension will emphasize this problem.
Thirdly, the amount of data within the system increases, since it is multiplexed by
the cardinality of the new dimension. Additionally, the implicit parameter capture
(in contrast to explicit capture) will allow more meaningful data to be collected.

5.3 Deployment of a System Recommending
Mobile Applications

In this section, we will present an architecture blueprint and a concrete imple-
mentation of a recommender system that suggests applications based the Android
platform and its application store. The system is designed based on the design
space discussed previously in Section 5.2. Following our research methodology, a
deployment of this system will serve as a testbed for the evaluation of different ap-
proaches for recommending mobile applications that we will discuss in Section 5.4.

5.3.1 Architecture

Our approach aims to support users to find new valuable mobile applications in
application stores by reducing the set of available applications to the set of contex-
tually relevant ones. The user is able to install and make use of these applications
on her smartphone, as Figure 5.3 shows. Therefore, the output of the proposed
architecture for a context-aware recommender system is the set of relevant appli-
cations. The input of the system is information about users’ contexts, along with
logged data about the users’ interactions with their mobile applications.

The next sections describe the design of the three required core components
from the bottom up: the context reasoning, the usage interpreter, and the recom-
mender system.
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Figure 5.3: Architecture blueprint of recommender system to support mobile application
discovery.

Context Reasoning

Context is any information that characterizes the situation of a person as defined
in Chapter 2. On today’s smartphones, there are now many of sensors providing
pieces of information that are valuable to this end, e.g. local time, user’s speed,
brightness of light, temperature of environment, device’s acceleration, a person’s
geographic position and azimuth. Such low-level physical context features can
be measured directly. Zimmermann et al. [272] suggest relations as an additional
context category. Raw data can be enriched with such knowledge for deriving more
context information, e.g. user’s mean distance to friends or other social contacts,
density of people nearby, distance traveled in the last hour, or the user’s current
distance from home.

Especially for physical context features, but also for more vague concepts like
collaborative tagging, metrics are available. Methods from machine learning and
data mining can be used to reason about contexts. For example, the contexts at-
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work, at-home or on-the-move can be distinguished by low-level data [251]. Based
on a large pool of historical data, patterns and clusters can be found that represent
different contexts (see e.g. [99]).

Interpreting Service Usage

With knowledge of the user’s actual context, we can observe his behavior accord-
ingly and bring it into relation with his context. By interpreting the actions of the
user we can infer knowledge about the relevance of a service in a certain context.
In a waiting-for-the-train context the application for the train schedule will be used
presumably much more often than a service for bank transactions. Since the con-
text of use mediates the perceived merit of an application [160], we can assume
that in certain contexts irrelevant services are used not at all, and relevant ones are
used much more often — as we also analyzed in Chapter 3. In contrast to incom-
putable properties like the relevance of a service and the satisfaction of a user’s
current needs, this property can simply be related to observable user behavior like
launching of applications (cf. Chapter 3) or context-related arrangement of icons
(cf. Chapter 4).

Another metric can be derived from the duration somebody is using an application.
For example, if the train schedule is used during the whole ride, it is likely more
relevant than the flight schedule if the latter is only used briefly. Although both
might be used only one time, the usage duration of the latter is shorter. Because
the user will focus her attention only on situationally useful applications, the ap-
plication utilization time can be correlated with its relevance — assuming that the
longer the application is used the higher its relevance is.

Besides all this positive feedback making a service more relevant, there is also a
benefit to negative feedback, which gives a hint about irrelevant applications in a
context. For example, this can be concluded from the deletion of an application
and from observation of when people move them to special places in their menus
(see Chapter 4). Also, a temporal decay of the relevance of applications seems
promising. Applications become irrelevant when they are not used anymore.

In the architecture designed in this section, and as shown in Figure 5.3, the in-
terpretation of application usage leads to the creation of a table that contains the
relevance measure of a service for each context class. All figures are aggregated
for an application in a context, e.g. by summing up the usage counters.
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Recommender Engines

The recommender system will suggest applications to the user which have been
useful for other people in the same context. Having figured out the user’s context,
a lookup in the table gives the weighted relevancies of the applications. In the case
of fuzzy context reasoning, the likelihood of the contexts needs to be considered in
the relevance weights.

The applications are pushed to the user’s device from the most relevant to the least
relevant according to their weights. Due to the physical limitation of screen size
there must be a reduction to the most relevant applications. Also, the user should
not be burdened with too much functionality — since being mobile already is cog-
nitively costly and mobile device usage is already intermitted with other activities
(see Chapter 6 and [45, 142, 181]).

A cold start problem (see Section 2.3.4) occurs when a user is in a context where
no application usage has been recorded before. In this case, simple heuristics and
other filters can be used, e.g. location- or content-based. Users should also be able
to search and browse for services that are not yet recommended. This problem fur-
ther occurs when a new application is available in the recommender system. When
a similarity measurement for the applications is available, the relevance weights
could be bootstrapped from similar applications.

Usage-based Context Reasoning

Figure 5.3 also shows a flow of information from the user-given feedback into the
component for context reasoning. The inclusion of the application usage data can
extend the context inference. For example, the context traveling-by-train might
be independent from the weather condition (people go by train in sunshine and
rain). But if people use the rent-a-bike service in this context only when the sun is
shining, and call-a-cab only when it is raining, it will be beneficial for the users if
the system is able to subdivide the context, record the application usage statistics
accordingly and give corresponding recommendations. By reasoning context not
only on raw physical sensor data, but also on the people’s mobile application usage,
the recommendation becomes more valuable for the user. This relates to the idea
of distinguishing a tourist from a shopper in a mall by looking into whether she is
using a shopping list or sightseeing application on her smartphone, as discussed in
Chapter 3.
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5.3.2 Implementation

As a proof of concept of the proposed design space, we have built and implemented
a recommender system for mobile applications. It is realized based on the Google
Android platform, since it provides APIs to access the required context information
as well as capture the application usage as described in Chapter 3. The system
follows the design space explored in Section 5.2 and is based on the architecture
laid out in Section 5.3.1. The technical components are a mobile client and a server.
Conceptually, the system consists of the following three parts:

(1) A logger that runs on the smartphone to capture the user’s identity, context
information and the application usage,

(2) a central unit that runs an inference engine to reason about the user’s context,
relates it to the application usage, and then provides recommendations,

(3) and a user interface that offers recommendations on applications to the users.

The mobile application implements the logger for the implicit parameter capture
and the recommendation interface. The logger runs as a background service and
keeps track of the location, including its accuracy, the local time and speed. Fur-
thermore, it records the start time of applications and their corresponding runtime.
The identity of the user is equated with the technical identity of the device. The
user is able to start and stop the logger and share her usage statistics, as Figure
5.4(a) shows. All recorded data is stored in a local database on the smartphones
and is periodically uploaded to the server.

Figure 5.4(b) shows the user interface that visualizes the recommendations. It is
realized as a widget that can be installed to the home screen of the device. It
refreshes periodically, triggered by changes in context information (e.g. location),
or when the device wakes up from standby. If the user clicks on an icon, the
application either starts directly, if it is already installed on the device, or the click
invokes an installation routine on the Android Market Store, if the application is not
installed. As Figure 5.4(a) shows, the user is able to turn off the recommendation
of already-installed applications. Currently we are not able to make this more
transparent, since we cannot automatically install applications (due to permissions
that the user has to grant to the applications, e.g., for security reasons related to the
location API, and because users may have to make payments before they are able
to download applications).
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(a) Setting (b) Widget (c) Context tags

Figure 5.4: Screenshots of the prototype for proof of concept: a) settings to control log-
ging, b) access to recommendations through a widget, and c) input of contextual keywords.

In an intermediate version of our recommender system, the user is also able to
insert keywords to describe his current context, as shown in Figure 5.4(c). We
supported two forms of input. Firstly, a user is able to insert new tags by typing.
Secondly, the user can choose tags from a list of his recent tags or from a list of tags
that other people used near the user’s current location. The inserted context tags
are used as explicit pieces of context information that allow the user to tailor the
recommendation of the system. Since the tags were also forwarded as a status mes-
sage to a social networking site, those context tags become an implicit parameter
if the user’s primary motivation for entering them is related to the social network.
However, we removed this approach from the system, since it was not adopted by
the users of our system. We described the idea itself as an approach called Context
Tags in [33].

The mobile application uploads the recorded data to the server, which sends back
the recommendations for applications. The server makes all incoming data persis-
tent in a central database. This data is used by the inference engine that applies
clustering algorithms working on the sensor data to reason about the contexts. In
our prototype implementation, the inference engine uses location and time as con-
text information, as we will describe and discuss in the next section. Additionally,
the server maintains metadata about the applications, which is pulled from the
Google Android Market by a crawler (e.g. application type, icon, title), and about
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the devices, which is logged in addition to the data described earlier (e.g. version
of operating system).

5.4 Usage-centric Evaluation
Besides designing and building a recommender system to recommend mobile ap-
plications to the user, users’ perceived quality of the system needs to be taken
into account when building a recommender system for mobile applications. As
described in Chapter 2, current approaches mainly focus on social aspects (e.g.
[103, 4]), context-awareness (e.g. [264, 228, 140, 76]) and characteristics of appli-
cation markets (e.g. [227]). Exploiting context seems especially promising since
smartphone usage is subject to ever-changing contexts [137, 38, 251]. As such, the
set of required applications also varies according to the user’s changing tasks, e.g.
from picture taking to navigating to looking for a restaurant. For the evaluation of
recommendations of mobile applications it must be noted that mobile applications
are a special type of items to be recommended: their usage is not only conditioned
by users’ contexts, but the usage of a mobile application itself can also be tracked
alongside the user’s interaction with the application — since the application is itself
a software process that can be observed (see Chapter 3 and [38]).

Most importantly smartphone use can be characterized by “dead” applications:
fewer than half of installed applications are actually being used [229]. Also, in
Chapter 4 we found that some users are reluctant to delete their applications and in-
stead move them to special places in their menus. Therefore, choosing installations
as an evaluation metric might result in even more applications residing unused on
a user’s device. Consequently, new approaches for evaluating application recom-
mender systems are required: They should go beyond ratings, click-through-rates
or download statistics. Hence, this section gives rise to new paradigms for evaluat-
ing mobile application recommender systems.

This section makes two key contributions to the discovery of mobile applications:

(1) We introduce a usage-centric approach for observing people’s engagement
with mobile applications at different stages along applications’ life-cycles
beyond installation. Therefore, we adopt the concept of conversion funnels
to the mobile ecosystem, presenting AppFunnel. Based on this we can track
the performance of different recommender engines according to this funnel.
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VIEW INSTALLATION DIRECT USAGE LONG-TERM 
USAGE

RECOMMENDATION

Figure 5.5: The AppFunnel’s stages along a user’s application interaction sequence.

(2) We present results of a case study of AppFunnel. This shows capabilities for
ascertaining the performance of different recommender engines by applying
metrics to the AppFunnel.

Further, we will discuss findings showing that a context-aware recommender en-
gine performs better when aimed at direct usage, and a non-context-aware engine
performs better when addressing long-term usage of applications.

5.4.1 Concept of AppFunnel

The idea of the AppFunnel is to draw conclusions on the relevance and user ex-
perience of a recommended application from his observed interactions with the
application, which is based on the concept of the AppSensor described in Chap-
ter 3. AppFunnel aims to provide a quantitative feedback on the performance of
a recommender engine for evaluation purposes. To follow, we describe stages of
mobile application engagement that we are able to observe, as well as describing
different metrics that can be used to measure the recommendation quality.

Stages of Application Engagement

To ascertain an application’s usefulness to a user, we adopted the concept of con-
version funnels [11]. A conversion funnel basically describes the ratio of people
who reach a follow-up stage in a step-based process. The most comprehensive con-
version for mobile application recommendations represents the conversion from a
recommended application to one that is used in the long-term. In order to reach this
conversion, users go through several stages that represent different events resulting
from their interactions with recommended applications. As shown in Figure 5.5,
we can distinguish four different stages in a user’s action sequence for determining
a conversion funnel for a mobile application after it has been recommended.

After the recommendation of a list of applications to the user, the first stage that
an application can reach is the view stage. Reaching this stage is related to the
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event of a user clicking on a specific application that has appeared in the list of
recommended applications. This stage reflects the lowest interest that a user might
have in an recommended application; it can be drummed up, for instance, by the
name, the icon, other users’ ratings, or the category of the application (depending
on what the system shows to the user at this point). By retrieving application
details, the user can view additional information like an application’s description,
screenshots, or other users’ comments.

If a user downloads an application from the application store and installs it to his
device, then the installation stage is reached. From reaching this stage it can be
concluded that the user has an even stronger interest in the application. In addition,
an application reaching this stage tells us that the user finds its description and
the comments that other users have made on the application interesting enough to
download and text the application. For some applications, this also means that the
user is willing to pay for the application.

Directly after the installation of an application, the user might reach the stage of
direct usage. This means that a user launches the application shortly after it has
been installed, which indicates a further increase in the interest level, i.e. he is
interested enough to actually try it. If the user needs the application in his current
context and if the application appears to be useful in the actual context, this might
be an additional motivation to directly use the application. As such, this event is
not necessarily critical and might not appear for applications that are not launched
right away. Instead, the user might wander away from the application and try it
later.

Finally, an application might reach the final stage of long-term usage. This stage
denotes the final funnel conversion and it indicates that an application has reached
the highest possible level of a user’s interest: It shows that a recommended applica-
tion turned out to be sustainably useful and engaging in the long term. In compar-
ison to the previous stages, this one can only be determined from post-processing
of historical application usage data, and not from observing a single event resulting
from user’s application interaction. As we will show in the next section, an appli-
cation’s relative usage time can be used to determine a threshold for considering
application usage to be long-term usage.

The four stages in this funnel can only be reached sequentially following the order
indicated by the arrows shown in Figure 5.5. Every stage can be traversed several



5.4.1 Concept of AppFunnel 161

R
el

at
ive

 u
sa

ge

0.0

0.2

0.4

0.6

0.8

1.0

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

Handcent SMS Barcode Scanner

Figure 5.6: Relative usage of two applications (paired data of 197 users).

           Relative usage

   
  O

wn
er

sh
ip

 d
ay

s

0
50
100
150
200
250
300
350

●

●

●

●

●

●

●

● ●

●

●

●●●
●

● ●●● ●
●

●
●

●
●●

●

●

● ●● ●
●

● ●●

●

●●

●●

●

●
●●●

●

●
● ●● ●●

●

●●●

●● ●
●●

●
●

● ●●

● ●● ●

●

● ●●

●

●
●●

●
● ●

●

●

●

●
●

●

●

● ●
●

●● ● ●● ●
●

●

● ●

●

●

●

●

● ●
●

●●●

●

●
●

●

●
●●

●●● ●

● ●

●

●
●

●

● ●

●

●● ●

●

●

●

●●

●
● ●●

●

●

●
●

●● ●
●

●
●

●
● ●● ●●●●

●

●●

●

●
●

●● ● ●

●
●
●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●●● ●
● ●●● ●

●

●

●
●●

●

●

● ●●
●

●
●

●●

●

●●

●●

●

● ● ●●●
●● ●●

●
●

●

●● ●
●●

●
●

● ●●

● ● ● ●

●

● ●●

●

●
●●

●
● ●

●

●

●

● ●
●

●

● ●
●

●● ●
●

●● ●
●

● ●

●

●

●

●

● ●●
●●●

●

● ●
●

●●
●●● ●

● ●

●

●
●

●

● ●

●

●● ●

●

●

●

●●

●
● ●●

●

●

●
●

●● ●
●

●
●

●
● ●● ●●●●

●

●●

●

●
●

●● ● ●

●
●

●

●

●

●

● ●

●

● ●●
●

●

●

●

●

●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

Application name
Handcent SMS ●● Barcode Scanner

Figure 5.7: Relative usage versus number of ownership days of two applications (paired
data of 197 users).

times, always starting from view stage, if a user has uninstalled an application and
retrieves a recommendation for this particular application again.

Determining Long-term Usage

For determining the long-term usage of an application, we calculate its relative
usage r = u/t 2 [0,1], with u denoting the number of days during which the appli-
cation was used and t denoting the total number of days that the application was
installed. The granularity of days is reasonable, since the quotient r for relative
usage should address long-term usage and the question is whether a user keeps
using an application or not. Aggregating based on days additionally compensates
for the effect that application usage varies over the course of a day, as described in
Chapter 3.
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The relative usage is influenced by an application’s type, meaning that some ap-
plications naturally have a higher and others a lower relative usage; e.g. commu-
nication applications are used more often than applications providing functionality
that is solely useful in particular situations (as discussed in Chapter 3), like shop-
ping on the weekend. Based on the data provided through the deployment of the
recommender system as described in Section 5.3 and Chapter 3, this can be illus-
trated with the two applications Handcent SMS7 and Barcode Scanner8. Figure 5.6
depicts the relative usage of these two applications across a group of 197 users.
The lower and higher borders of the boxes show the lower and higher quartile
respectively. We only considered paired cases, i.e. such users who had both ap-
plications installed. The plot shows a significant difference (Wilcoxon Signed-rank
test, W=16510, Z=11.77, p<.001, r = 0.59) in the relative usage of these two ap-
plications, with a high relative usage for Handcent SMS and a low relative usage
for Barcode Scanner. The median relative usage for Handcent SMS is about 71%,
denoting that people use this application on nearly 5 days a week; the median rel-
ative usage for Barcode Scanner is only 11%, meaning that people use it less than
one day per week.

If a user removes an application from his device, it may not be automatically con-
cluded that the application was of no value to the user, in particular if the applica-
tion was installed on the device for a long duration. As such, removals of applica-
tions require additional analysis of the length of the time periods the applications
have been kept on the device by the users, and we can also compare ownership
times between different users. For instance, if an application gets uninstalled af-
ter a certain ownership time that is longer that the median ownership time of all
other users for this particular application, then the relative usage might potentially
indicate a long-term engagement even though the application as removed. Further,
taking into account these aspects will also allow us to find such cases of users not
finding applications beneficial and uninstalling them after short periods of owner-
ship times. For instance cases where all events of installing an application, using it,
and uninstalling it appear within the same day, would result in a maximum relative
usage of 1.0, although this should obviously not be counted as a long-term usage
of the application. For our two example applications, such cases of relative usages
are shown in the bottom right corner of Figure 5.7 for people who used Handcent
7Handcent SMS is a popular free messaging application for smartphones, see http://goo.gl/5dwy1,
last accessed on 15.07.2013.

8Barcode scanner enables to scan barcodes and decode information such as URLs or contact infor-
mation, see http://goo.gl/WNrpK, last accessed on 15.07.2013.

http://goo.gl/5dwy1
http://goo.gl/WNrpK
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SMS for only a short time. To summarize, there are cases in which high values
of relative usage do not indicate an original long-term usage and, thus, should be
ignored. For instance, if the ownership time of a particular application is long for
the majority of users, it can be assumed that a high relative usage resulting from a
user who only had the application only installed for a short time can be ignored, as
they might have just installed and tried the application before removing it.

5.4.2 Case Study of AppFunnel

We conducted a case study to examine the validity of our approach and to explore
possible conclusions that can be drawn based on data collected from the AppFunnel
framework. To do this, we implemented the proposed framework within a deployed
application recommender system and put it to the test in the wild.

Testbed

We used the appazaar recommender system described in Section 5.3 as our testbed.
At the time of our analysis the system had been installed by 6,680 users9. We do not
know any demographic information about our users, but since our testbed appazaar
is deployed on the Google Play Market, we may assume that those people who have
installed the appazaar application are a good representation of those people who
can be expected to use a mobile application recommender system.

In our testbed we had to add a view market stage between the view stage and the
installation stage. This is specific to appazaar since it builds upon but is not in-
tegrated into the Google Play Market itself. The only way to recommend applica-
tions for installation on Android devices is to forward the user to the Google Play
Market, e.g., because he has to grant the application’s permission request. Figure
5.8 sketches the screens a user traverses from the view stage to long-term usage.
The view market stage is reached when a user decides to review details about an
application, in particular he can have a look at other users’ comments on the appli-
cation, and through an additional button he has the option to install the application.
Since the user intentionally has to perform an additional click for installing the ap-
plication, reaching this stage indicates a stronger interest towards the application
since the user wants to give it a try.
9According to Google Play’s Android Developer Console.
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(a) Recommendation (b) View (c) View market

(d) Installation (e) Direct usage (f) Long-term usage

Figure 5.8: Example screens of a user traversing the stages of our testbed’s conversion
funnel. This usage-centric action sequence can be captured for evaluation of the different
recommender engines.

Applying Metrics to the AppFunnel

We extended the testbed to collect data about the given recommendations and the
corresponding action sequences taken by users as determined by our conversion
funnel. As such, for all given application recommendations we kept track of which
stages the recommended applications reached (view / view market / installation /
direct usage / long-term usage).

In analogy to well-known and widely-used metrics like click-through rates or pay-
per-click, we can define metrics for recommended applications reaching the differ-
ent stages and conversions between those stages. In our case study we have chosen
metrics for the different stages as counters for how many applications per user have
reached a certain stage, e.g. the long-term usage metric is the number of applica-
tions that have been used in the long-term by different users. Conversion rates are
the quotients of two counters of stage events, e.g. the ratio of the number of people



5.4.2 Case Study of AppFunnel 165

Non-personalized Personalized

Context-less – Application popularity – Usage-based CF
Context-aware – Application-aware filtering – Location-aware CF

– Time-aware CF

Table 5.1: Recommender engines put under test.

who viewed a recommended application to the number of people who used it in the
long term.

Testing Recommender Engines

The focus of this section is on the AppFunnel as an evaluation framework and not
on investigating new algorithms for new engines themselves. Thus, we have used
the recommender engines that already have been developed and deployed within
our testbed for evaluating our framework. As shown in Table 5.1, the engines
under test can be classified according to the two dimensions of personalization
and context-awareness. The personalized engines take information about specific
users into account, i.e. application usage history. The context-aware recommender
engines generate recommendations based on users’ current context, e.g. time, lo-
cation, previously used applications.

Within appazaar, users’ requests for application recommendations were scheduled
to the different recommender engines randomly. This allows for counter-balanced
within-subject testing of the engines. All engines that utilize collaborative filtering
are implemented based on the Apache Mahout framework.10

It is worth mentioning that not every recommender engine was able to produce
results for every request. The system suffers from the cold-start problem [216], in
particular for the context-aware engines, as described earlier when exploring the
design space. When no recommendation could be presented to the user, no user
interaction with the recommendation list was possible, and thus no AppFunnel-
related data was collected. However, to present applications to the user regardless,
the fallback strategy for all engines is to return a random set of applications. Since
the interaction with such random data does not contribute to the evaluation of the
engines itself, we do not take it into account. The five engines that we used in this
case study to evaluate our approach, and their characteristics, are as follows.
10Apache Mahout: Scalable machine learning and data mining, http://mahout.apache.org, last ac-

cessed 07.06.2013.

http://mahout.apache.org
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• Application popularity: The first recommender engine implemented in ap-
pazaar is based on applications’ popularities measured by their usage. Since
installations alone do not reveal much about the quality of an application11,
this engine ranks applications according to their popularity based on their
global usage in terms of total number of launches. This engine is neither
personalized nor context-aware. Therefore, this engine was able to return
results for all issued requests for recommendations, since it did not require
any specific additional data.

• Usage-based collaborative filtering: The second engine implements an ap-
proach based on collaborative filtering. It utilizes users’ application usage
data as implicit feedback encoded as binary values for user/item pairs: 1
meaning a user has used an application and 0 meaning a user has never used
an application. This engine is personalized in terms of modeling the user her-
self, but not context-aware. Since we implemented this recommender engine
using a user-based collaborative filtering algorithm, the cold-start problem is
a threat to this engine. It is not able to recommend applications to those users
who did not submit any data to our servers (either because they are new to
the system or have declined to do so12).

• Application-aware filtering: This recommender engine is based on the idea
that people’s usage sessions between screen-on and screen-off have a specific
contextual scope. For instance, there is an increased likelihood that people
stay with games once they have used a game, or with social applications
once they have used a social application [38]. For application usage predic-
tion the precedent application is a also strong predictor (see Chapter 3 and
[229]). Therefore, this application-aware engine recommends applications
that are similar to those that were used recently within the same session.
The application-aware filtering is a context-aware but non-personalized ap-
proach. Since this engine is based on the applications recently used by the
user, this engine failed whenever the user asked for recommendations with-
out using an application other than appazaar previously in the same session.

• Time-aware collaborative filtering: The types of applications that people
use change during the course of the day as we found in Chapter 3, e.g. news
applications are more likely to be launched in the morning, and multimedia

11Jakob Nielsen: iPhone Apps Need Low Starting Hurdles, http://goo.gl/KR09G, last accessed
07.06.2013.

12Users were able to opt out from uploading data, since we wanted to give them control over their
data for privacy reasons.

http://goo.gl/KR09G
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applications are more likely to be launched in the evening [38]. To exploit
this phenomenon we implemented a recommender engine that incorporates
the time of the day (in hours) as additional piece of context information. We
extended the previously described collaborative filtering engine following a
context-splitting approach [16, 55] and split the users according to the hour
of the day. The user-at-time/item pairs denote whether a user has used an ap-
plication at a specific time of the day or not. In the same way as the two other
collaborative-filtering based recommender engines suffer from the cold-start
problem also this engine does. However, the possible contextual values of
this recommender engine are bound to a set of discrete values representing
the hours of the day.

• Location-aware collaborative filtering: Location has a high impact on mo-
bile information needs [137] and application usage patterns [251]. Therefore
— analogous to the time-aware engine — we also tested an engine that ex-
ploits the location of mobile device usage. This engine is also based on the
context-splitting approach, modeling pairs of user-at-location/item denoting
whether a user has used a specific application at a certain location or not.
This engine is personalized and context-aware. By its design this engine
has the same drawbacks like the usage-based collaborative filtering, since it
uses the same core algorithm. In addition, this engine’s location awareness
further decreases its success rate, simply because there is a huge variety of
different locations given by geographic coordinates. Locations have been
discretized into cells of approx. 30m x 30m (to match e.g. sizes of people’s
home offices, stores). Consequently, the collaborative filtering algorithm
of this engine can only provide successful recommendations for those lo-
cations where enough user data is available; otherwise it cannot return any
well-reasoned recommendations.

For the location-aware engine, the data is split to a higher degree than for the time-
aware engine. Since for the time-splitting approach the data only has to be split
by the 24 hours in a day, this results in a more dense data set to be used by the
collaborative filtering algorithm for a particular hour than for a particular location.

Results

The main purpose of our case study was to examine the capabilities of the AppFun-
nel framework to evaluate different recommender engines by applying metrics. As
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determined in Chapter 1 for the goals of this thesis the following analysis does
not compare the different engines to find a new best performing algorithm for run-
ning recommender engines in this domain. Rather we aim to illustrate the differ-
ent conclusions that can be made from observations taking the AppFunnel-based
framework into account.

The data we are analyzing was collected from December 5, 2011, to March 5,
2012, i.e. over a period of three months. In total it contains 287 AppFunnel events
(204 views, 50 market views, 20 installations, 8 direct usages, 5 long-term usages)
contributed by 45 users. The events are distributed across the tested recommender
engines as follows:

• 137 for application-popularity filtering,
• 47 for usage-based collaborative filtering,
• 35 for application-aware filtering,
• 48 for time-aware collaborative filtering,
• and 20 for location-aware collaborative filtering.

Within our testbed, the determination of direct usage is performed directly on the
users’ smartphones. If a user launches a recommended application within five
minutes after its installation, this usage is considered to be a direct usage. In order
to determine long-term usage of a recommended application, we perform several
steps offline, i.e. in a post-processing step on our server. Firstly, we calculate all
applications’ relative usage across all users who have used it. For each particular
application, we then pick the lower quartile of users’ relative usage values as a
threshold. If a particular user’s relative usage is higher than this threshold, we
consider her usage of this particular application as a long-term usage. Thereby we
filter out those application users who had the application installed but did not use
it long enough for the application to be considered as achieving an engaging long-
term usage. Secondly, we calculate the median ownership time for the application
across all users who have used it. If a particular user’s ownership time is less than
the median ownership time, this ownership is filtered out from long-term usage.
Thereby we cut off those cases where people have a high relative usage but only
had the application installed for a very short time, as discussed earlier.

Due to the reasons discussed above, the number of cases in which a recommender
engine has returned a list of successfully estimated recommendations might differ
between the engines (e.g. due to cold-start problem). Consequently, for a com-
parison of the recommender engines’ performances, the data collected from the
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Figure 5.9: Average number of events counted for each recommender engine and each of
AppFunnel’s stages.

AppFunnel cannot be analyzed based on the raw data. Therefore, we normalized
the number of counted AppFunnel stages by the number of successful recommen-
dation lists returned per engine. The resulting data represents the average number
of events related to recommended applications per successful recommendation list.
Since every resulting recommendation list can contain more than one application
which people might interact with (see Figure 5.8(b)), the relative number of ac-
tion sequences per stage can be more than one. This normalization counteracts the
fact that not every recommender engine was able to produce a result set for every
request. The data is shown in Figure 5.9.

Conversion Stages

The conversion stage metric depicts how many applications have reached a certain
stage in the AppFunnel. It appears that the application-popularity based engine re-
sulted in the most views of recommended applications. Having a relative number
bigger than 1 means that on average people have viewed more than one application
from a list of applications recommended by this engine. As for all tested recom-
mender engines, there is a large drop-off in numbers for the following stages, as
Figure 5.9 shows.

The usage-based collaborative filtering engine resulted in the second most views
of recommended applications. However, this engine also shows a high drop-off
after the view event. This engine successfully generated a great initial impression
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with applications that appeared to be valuable for users on a first glimpse, but were
discarded after they have taken a look on the application details.

In contrast to the previous two engines, the application-aware engine has a lower
number of views of recommended applications. In addition, this engine has only
resulted in direct usage and did not produce any long-term usage, which can also
be a result of users just installing similar applications driven by curiosity. Users
did try the installed applications immediately, but did not use them regularly in the
long term.

The time-aware collaborative filtering engine has resulted in the least view events.
However, out of all engines this one has the highest number of action sequences
that have reached the three stages of view market, installation and direct usage. Al-
though this engine has recommended applications that resulted in long-term usage,
these are fewer than the number of applications that were directly used after they
were installed.

The only engine that did not result in any installations or usage events (neither di-
rectly nor long-term) is the the location-aware collaborative filtering engine. This
is interesting, since it has even a slightly higher number of view counts than the
time-aware engine. Although the view interests were no less than for the other
context-aware engines, there was already a larger gap between the view and the
market stage. This engine produced no installations, and therefore also had no
direct or long-term usage.

Conversion Rates

The conversion rate metric denotes the relative number of action sequences that
users follow from one stage to the next. As can already be seen in Figure 5.9, the
further along the stage within an action sequence, the fever events occur. There-
fore, for all transitions a conversion rate naturally is between 0 and 1 (including
endpoints). Although it is possible to calculate conversion rates between all suc-
cessive stages of a conversion funnel, the most interesting ones related to mobile
application usage are: view to installation, installation to direct usage, and instal-
lation to long-term usage. These conversion rates are shown in Figure 5.10. They
are based on the absolute and normalized numbers that also have been taken into
account for Figure 5.9.
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Figure 5.10: Conversion rates of tested engines. The location-aware CF did not result in
any of these conversions (see Figure 5.9).

From the view stage to installation the engine based on application-popularity has
a conversion rate of 9%. Overall, for all engines few people installed applications
that they viewed. In general, the conversion rates from installations to usages —
either direct or in the long term — are higher. For the application-popularity engine
both conversion rates (installation to direct usage and installation to long-term
usage) are above 30%.

The usage-based collaborative filtering engine has a conversion rate of 8% from
views to installations. The conversion rates from installation to direct usage and
installation to long-term usage are both higher than 30% — the same as the
application-popularity based engine. For these two recommender engines it can
be concluded that a lot of users who found a recommended application interesting
enough to download it also have tested those applications directly after the down-
load, and also did not remove these appliations and rather used them in the long
term.

The application-aware filtering engine has a 7% view to installation conversion
rate which is almost equal to that of the application-popularity and usage-based
collaborative filtering engines. This engine did not result in any long-term usage
stages; therefore, its installation to long-term usage conversion rate is 0%. In
contrast, the installation to direct usage is 50%. It can be inferred that applications
recommended by this engine provide a specific functionality, which is useful at the
current moment but is not needed on a regular basis.
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With a rate of 24% the engine based on time-aware usage collaborative filtering has
the highest conversion from view to installation. Further, its installation to long-
term usage conversion rate is 16%. Similarly to the application-aware filtering
engine, it has a high installation to direct usage conversion rate of 50%. Since this
engine recommends applications that are typically used at the same time of day
in which the recommendation request is sent, it can be expected to have a high
installation to direct usage conversion rate.

Since there have been no installations for applications that were recommended by
the location-aware recommender engine (see Figure 5.9), there are no conversion
rates for this engine.

At the bottom line it can be seen that the two context-less recommendation engines
resulted in more views of recommended applications than the others. However, the
preliminary results of our case study suggest that the two context-aware engines
resulted in highest conversion rates from installation to direct usage, while the
two context-less engines resulted in highest conversion from installation to long-
term usage.

5.4.3 Discussion of the Case Study

The case study presented in the previous section is tied to our testbed as well as
to the recommender engines we put under test. In this section we will discuss the
AppFunnel in the light of the results achieved for the tested engines, as well as how
the framework contributed in this work can be applied to the evaluation of other
recommender engines, and how metrics can be defined.

Recommender Engines Tested

It is not surprising that the recommender engine based on applications’ popularities
resulted in the most views. It is known that naive non-personalized approaches can
compete with well-elaborated algorithms [73]. While naive approaches are much
easier to design and implement, the more elaborated recommender engines used
in this study would require more testing and fine-tuning, which is not the focus of
this work.

The high number of views of the application-aware filtering engine might be a
result of this engine’s design, since it recommends applications which have a high
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similarity to applications which have just been used by the user within the same
session. Such similar applications very often contain similar keywords in their
names or have similar icon symbols. Thus, the users might be driven by curiosity
to find out more about these new applications.

The bad performance of the location-aware engine might be a result of the same
factor that causes the low success rate of this engine: Locations defined by geo-
graphical coordinates might result in too-fragmented usage data that is too sparse
and therefore not suitable for a valuable collaborative filtering, which follows from
the splitting approach. Optimization of this particular engine is subject to future
work. However, the AppFunnel framework allowed us to trace down this issue in
the first place. If we had taken a conventional evaluation approach, e.g. solely
based on counts of downloads or installations, the location-aware engine would
have been seen as having better performance than the time-aware engine. Only
the usage-centric AppFunnel-based approach enabled us to investigate this issue
by keeping track of user actions that follow on views of a suggested application.
Also, only this approach enabled us to discover that while the location-aware en-
gine results in clicks, it did not result in user value in terms of direct usage or
long-term usage.

From its design it was expected that the time-aware engine would result in a high
relative number of applications used directly, because this engine recommends
such applications which are typically used in the same hour of the day that the
user asked for recommendations. This can be concluded from the user behavior we
found in Chapter 3.

Two additional events that can be tracked along a mobile application’s lifecycle
are updates and uninstalls of an application [38, 103]. However, the update does
not tell us much about a user’s engagement with the application, since frequency
of updates is specific to each particular application and its developer, and updates
can be done automatically without any user intervention. Additionally, we do not
consider the removal of an application as feedback. This can also be exploited,
but requires further refinements and post-processing, since the removal cannot be
taken as an additional stage in the AppFunnel as such. Firstly, the removal is of
a negative rather than positive feedback, and the AppFunnel currently is based
on positively growing engagement from stage to stage. Secondly, not every user
necessarily removes an application he does not require anymore (e.g., he can also
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remove only the icon of the application from his home screen, cf. Chapter 4). In
contrast, the AppFunnel’s stages necessarily follow from the user’s intent.

Application of AppFunnel

It was interesting to see that — irrespective of the location-aware engine — the two
context-aware engines caused different events within the AppFunnel than the two
context-less engines. The results of our case study suggest that the performance
of the different paradigms of recommender approaches shows more diversity in
terms of stages reached after a recommended item was clicked on, i.e. installa-
tions and direct usages or long-term usages are more diverse than views, especially
in terms or conversion rates. This suggests that the usage-centric evaluation ap-
proach — as introduced by AppFunnel — enables a more elaborated evaluation
of recommender engines that suggest mobile applications and their design goals,
e.g., fostering download and installation counts, or providing instant support in the
form of applications that can be used directly, or pursuing a user benefit in terms
of long-term application engagement.

Choosing from AppFunnel’s Metrics

Recommender systems are commonly implemented in e-commerce websites for
the sake of increasing a merchant’s turnover and revenue. We argue along with
Konstan and Riedl [150] that incorporating the user experience into algorithms
will affect the user’s benefit from a recommender system, and that a more com-
prehensive set of measures than those which are currently being used are required.
For the recommendation of mobile applications, the AppFunnel goes beyond mea-
suring the quality of a recommender engine in terms of installations. In the case of
paid applications, an increase in revenue is already reached as soon as the customer
installs a recommended application. This, however, only is an intermediate stage
that an application can reach in the AppFunnel. Especially considering that a large
portion of installed applications are lying idle [229] it is reasonable that recom-
mending for installations alone is myopic and should not be a top-priority goal.

Based on the AppFunnel we can reason about the quality of a recommender engine
that suggests mobile applications beyond commonly applied metrics, like click-
through rate and pay-per-click events. However, we suggest considering the met-
rics we introduced as additional metrics for evaluation of recommender engines
rather than a replacement. Our metrics aim to extend evaluation from a vendor’s
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view to a usage-centric view of recommender system performance — i.e., which
application was of actual use for a user in her current context or in the long term.

As we have seen in the presented case study, one metric might conflict with others.
Hence, a single recommender engine might not have the best performance best in
all metrics. How to chose and ascertain the metrics should be decided according to
a recommender engine’s design goal. As seen in our case study, a context-aware
engine might achieve good results when looking into direct usage, but have bad
results when taking into account long-term usage. This is sufficient for a context-
aware recommender engine, since its goal is to address the actual user needs, while
a recommender engine generally modeling user taste should aim for higher perfor-
mance according to long-term usage.

We did not take into account applications’ prices. The price of an application
might impact whether it will be installed or not, but this is an attribute of the ap-
plication rather than being inherent to the application’s usage. Prices can be taken
into account when designing new recommender engines. Applying the AppFunnel
approach, one might find that an engine recommending expensive apps to a user
who only installs free apps might result in many view events but perform badly
from the standpoint of view-to-installation conversion rates.

Our case study shows that by applying the AppFunnel and incorporating the metrics
we introduced, one can investigate the performance of recommender engines for
different goals related to user experience. In our case we realized that an engine
with average performance in terms of views performed poorly in terms of usage.

Usage-centric Evaluation in Other Domains

Other researchers and practitioners can benefit from our work by applying the met-
rics to mobile application recommendation or other domains, where one can track
the use of recommended items beyond click-rates or billing statistics and re-using
items is reasonable, e.g. e-books. For instance, since electronic music players are
able to trace whether people are actually playing recommended songs, similar con-
cepts for collecting feedback can be built.

We believe that a deployment-based approach of incrementally developing new
recommendation paradigms alongside with emerging fields where no data is avail-
able for evaluation, alongside with developing the system itself, is a reasonable
approach. The underlying scientific method has been described in Chapter 2.
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5.5 Summary
In this chapter, we investigated the challenge of discovering mobile applications
in a growing mobile ecosystem providing an increasing number of mobile applica-
tions. We presented a design space for mobile application recommender systems,
described a system we implemented and deployed on the Android platform, and
presented a usage-centric evaluation framework for assessing the performance of
algorithms in recommending mobile applications.

The current chapter described the need for context-aware mobile application rec-
ommendation and explored the design space for recommender systems within this
domain. The novelty of investigating mobile applications as items for recom-
mender systems is the ability to draw conclusions on the contextual relevance of an
application by observing signals like the usage time and the usage frequency. We
argued that mobile application recommendation can benefit from integrating con-
text into recommender systems, since it strongly influences a mobile user’s needs.
We explored the design space for context-aware recommender systems for mobile
applications with a focus on parameter capture and recommendation access. Differ-
ent options for implicit or explicit capture of information about the user’s identity,
the applications, the contexts and the relevance values have been described. A brief
discussion explained the advantage of an implicit (as opposed to explicit) parame-
ter capturing. We presented a prototype implementation of a recommender system
for mobile applications called appazaar. This system recommends applications to
mobile device users based on the actual usage of the applications as a relevance
measure related to different contexts.

Finally in this chapter, we presented AppFunnel: a framework for the usage-centric
evaluation of recommender systems that suggest mobile applications. The main
part of this framework is the usage-centric concept of a conversion funnel for
tracking mobile application engagement: from viewing a recommended applica-
tion, to installing it, to using it in the short term, to using it in the long term. The
AppFunnel allows for evaluating recommender engines beyond click-through rates
and download statistics. We have implemented and tested our framework based
on a deployed system in the wild, and presented results of applying metrics to the
AppFunnel. Although the testbed’s recommender engines are simplistic, we were
able to find that the ones that address the current context of the user show a higher
performance in direct usage, while non-contextualized recommender engines result
in a higher long-term usage of installed applications.
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We were first to propose the approach of context-aware recommendation for the
field of recommending mobile applications by presenting the design space [32, 42]
that we describe in Section 5.2 in this work.
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Chapter 6

Multitasking
Between Mobile Applications

While in the previous chapters we investigated patterns of application launching
(Chapter 3), how people organize their applications (Chapter 4), and how we can
help them better discover new applications (Chapter 5), in this chapter we will look
into the interplay and inferences between multiple applications on single smart-
phones and its impact on user experience.

The results of this chapter have been presented in two publications [37, 157]. Work
on multitasking and task interruptions that relates to the studies and investigations
conducted in this chapter appears in Chapter 2, Section 2.3.5.

6.1 Introduction
As described in Chapter 1, mobile phones have evolved from solely
communication-oriented devices for phone calls to multifunctional toolsets, and
people use smartphones for various other tasks beyond communication. The in-
creasing integration of various functionality into one piece of hardware comes at
a cost that we will study in this chapter. Since people’s tasks often change — ei-
ther intentionally because they start doing something different, or unintentionally
by being interrupted — they might also switch the application they are using on
their smartphones from one moment to the next to gain better support for their
current activity.

179
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In this chapter, we first we investigate people’s multitasking behavior between ap-
plications on smartphones. We describe our analysis of a large-scale dataset of mo-
bile application usage that in particular provides insights into application switching
behavior. We will draw special attention to cases where the usage of applications
on the smartphone is being interrupted by incoming phone calls. From this study
we will learn that the costs of phone call interruptions can be exceedingly high. In
light of this study, we secondly will revisit the design of user interfaces for mo-
bile phone call applications. We argue that the evolution of smartphones’ phone
call user interfaces has not kept pace with the evolution of mobile phones into
multifunctional devices, and we will present different new designs to mitigate the
problem of call interruptions.

6.2 The Phenomenon of Application Interruptions
Given the growing number of tasks that can be supported by smartphone applica-
tions, and the growing amount of time that people spend using applications on their
smartphones — as described in Chapter 1 — it follows that the probability of peo-
ple being interrupted by a call while using applications on their smartphones will
increase. Such interruptions of application usage might happen either intentionally,
i.e., at the user’s own will, or unintentionally, i.e., not intended by the user, under
various circumstances. Jin and Dabbish [134] refer to such intended switches from
one application to another prior to a task’s completion as “discretionary task inter-
leaving”. Studies of unintended interruptions, like external and social interruptions
from messaging and notifications, contribute a large body of related research (see
Chapter 2). However, the body of literature on mobile interruptions is relatively
small (see Chapter 2). Examples of mobile interruptions are for instance that one
might be writing an e-mail and then switching to a game before the writing was
finished (intended interruption), or one can be searching for a location on a map
while a phone call comes in that one has to answer (unintended interruption).

In this section, we analyze the phenomenon of application interruptions on smart-
phones in the light of two different cases, as noted above:

• We look into users’ intended back-and-forth switching between applications.
• We investigate unintended interruptions triggered by incoming phone calls.
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Although task interruptions are an inherent problem in smartphone usage — as
sketched previously — little is known about this phenomenon at the fine-grained
level of single application usage, which we made accessible by developing the
AppSensor described in Chapter 3. Since the low-level large-scale analysis of mo-
bile application interruptions was not yet developed, essential questions regard-
ing to mobile application interruptions remain open. For instance, how often do
such interruptions happen? What is the impact of mobile interruptions on a user’s
task performance? And in particular, at what costs do we allow interruptions on
smartphones?

Most related previous works have studied task interruption on stationary computers
(cf. Chapter 2, esp. [25, 128, 214]), and — due to its high relevance to safety —
a large body of research looks into call multitasking while driving (cf. [158, 238,
237, 129, 47, 130, 48]). In this work, we reach out to study the phenomenon of
multitasking on smartphones and go beyond stationary computers. In particular, we
argue along with Karlson et al. [142] that a number of challenges that might derail
fluent task flows on mobile devices do not exist on stationary computers, and that
from the perspective of interaction, being mobile is cognitively costly and mobile
interactions come in short bursts [181]. Applications are designed to provide one
particular functionality for a task, and they are typically used in a fast-paced mode,
which increases the demand for efficient multitasking.

In this section, we present a conceptual framework for investigating mobile ap-
plication interruptions on smartphones, which is based on the AppSensor we intro-
duced in Chapter 3. This framework can help researchers to analyze application in-
terruptions on mobile phones. Further, we analyze a large-scale dataset and present
results of an in-the-wild observational study. When discussing application chains
in Chapter 3, we provided an example for a mobile task of a user switching between
a few applications that helped him search for a place to get a coffee. By contrast,
in this section, we concretely look into the cost of these interruptions on the com-
pletion time of tasks. Therefore, in the context of this work, and acknowledging its
limitations, we consider the task completion time as the time spent using a single
non-interrupted application that is launched and then closed after some time.
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6.2.1 Log-based Study of Application Switching Behavior

For our study, we analyzed the dataset that we collected by means of the AppSensor
in the wild, which we already presented and partly analyzed in Chapter 3. In this
study of application multitasking we use an updated data dump of the deployed
system with possibly different users, other applications and from a later timeframe
than in Chapter 3.

According to our research approach introduced in Chapter 2 the method that we
apply in this study is an natural experiment. The treatment that we observe are the
interruptions of application switches and phone calls, which naturally occur in our
participants’ smartphone usage.

In total, this updated dataset contained around 5,495,815 samples of launched ap-
plications. Data comprises in total about 15,756 different applications used for one
and a half years (532 days, from August 2010 to January 2012) by 3,611 unique
users. As in our study in Chapter 3, those users were spread out geographically and
distributed worldwide. The means of recruiting participants and the underlying de-
ployed system that implemented the AppSensor for data logging were the same as
in Chapter 3.

Analysis of Logging Data

Since AppSensor only provides us with the logs of mobile application usage, we
require an additional layer for detecting and analyzing interruptions on top of the
fine-grained traces of application usage. We developed means to interpret applica-
tion usage logs and detect interruptions as well as to measure the timing of inter-
ruptions and estimate their costs, as we will explain next.

Detecting Interruptions. As Figure 6.1 shows, we consider an application to
be interrupted when the foreground activity of a smartphone changes from one
application to another, and then returns to the previous one. While Figure 6.1(a)
shows the non-interrupted usage of one application, Figure 6.1(b) shows the case
when the usage of a particular application is being interrupted by another one. As
a result, we consider the application that was used in between to be interruptive on
the primary application that the user returns to. More formally — in terms of the
AppSensor — we consider application a to be interrupted by application b, if

as(t) = a ^ as(t+1) = b ^ as(t+2) = a
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Figure 6.1: Detection of interruptions of mobile application usage.

and there are no other applications being used between times t and t+2. Addition-
ally, we impose the following constraints on application switches to be considered
as application interruptions:

• Phone call applications are not considered to be interrupted. Phone calls are
considered to be atomic interactions, with each call being a single one.

• Launcher applications are not considered to be interrupted. Launchers do
not provide any task-related functionality beyond providing a central menu
for launching other applications.

• Launcher applications are not considered to be interruptive. If the user
switches to a launcher and then returns to an application, there has not been
any use of any other functionality related to another task in between.

Imposing these constraints on our analysis of application traces leaves the two pos-
sible cases for application interruptions, which we aimed for earlier: Applications
can either be be deferred, i.e., interrupted on purpose by the user, or interrupted
by an incoming phone call. We were able to distinguish incoming from outgoing
phone calls based on whether a dialer or phone book application was used before,
which indicates an outgoing call since the user dialed a number. From here on, we
will refer to the former case as application switching and to the latter case as call
interruptions.

Please note that applications might be deferred for a longer time due to external
environmental events that are not directly related to a user’s smartphone usage,
in which case the device might change to stand-by mode. For instance, a user
might be prompted by a passer-by to chat for a while. To avoid misleading results
in our analysis, we use a time window to handle such cases. Since the average
application usage length per launch is about 1 minute (cf. Chapter 3 and [38, 250]),
we have chosen this specific duration for the time window as a threshold. That
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being said, if a series of consecutive data samples were found for the same user at
the same day for a particular application without any other application in between,
such application uses were considered as different activities if the time between
occurrences of application uses exceeded 1 minute.

Computing Interruption Overheads. Based on the aforementioned detection of
application interruptions, we are able to quantify the overhead that is introduced by
an interruption of an application. Therefore we introduce the following variables
to measure usage times of applications, as sketched in Figure 6.2. Figure 6.2(a)
shows the application usage duration for the non-interrupted case, which we denote
as Tn. Figure 6.2(b) shows the case of an application use being interrupted by use
of another intermediate application. The usage duration of the primary application
Tr in this case is decomposed into two parts, with Ta being the duration before
and Tb being the duration after the interruption, with Tr = Ta + Tb. As Figure
6.2(c) shows, we can also measure the time of the interruption itself denoted as
Ti, which essentially is the usage time of another application. Finally, we are
interested in finding the overhead that an interruption introduces by comparing the
non-interrupted usage duration Tn to the interrupted usage duration Tr. As Figure
6.2(d) suggests, this overhead time can be estimated as To = Tr �Tn. As such, To

is a measure of the extra time that might be introduced by the interruption time Ti.
In literature, such overheads are also cited as “resumption lags” [128, 214], and
usually they lead to a decreased performance in the primary task [12], which in our
work is the use of an application.

It is worth noting that those variables that denote the usage time of applications and
duration of the interruption are naturally greater than 0 (i.e., {Ta,Tb,Ti,Tn} 2 R+0 ),
while the estimated overhead might also be negative (i.e., To 2 R). The overhead
might be negative, e.g., if applications which people usually use for a very long
time (e.g., games like Angry Birds, cf. Chapter 3) are not resumed after interrup-
tions have happened (e.g., it might not be possible to continue playing, or the user
might lose interest). For desktop applications it has been shown that interrupted
tasks are not resumed half of the time [162].

For our analysis we only investigated paired cases of application uses, since appro-
priate overheads can only be computed for those cases. Therefore we only consid-
ered those cases where, for a particular application and a given user, our dataset
contains both the non-interrupted and the interrupted case of application use. To
quantify how often interruptions happen, however, we mined the whole dataset for
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Figure 6.2: Computing an application overhead when interrupted. In particular we are
interested in the overhead caused by an interruption.

Call interruptions Application switches
Interruption data samples 776,922 970,543
Interrupted users 1,929 [1,676] 2,926 [2,609]
Interrupted applications 1,373 [487] 4,626 [1,043]

Table 6.1: Summary of dataset used for study of application interruptions. Numbers of
balanced (paired) cases are given in brackets.

interrupted cases to get a more comprehensive understanding. To analyze the log-
based dataset provided through the AppSensor, we grouped the application usage
traces based on samples’ timestamps per day and per user. Table 6.1 provides an
overview of the scale of our dataset and in particular of all the cases we found.
As stated, we removed unpaired cases from our further analysis; final numbers are
given in square brackets in Table 6.1.

6.2.2 Results

Table 6.2 and Table 6.3 show descriptive statistics on the cases of call interrup-
tions and application switches that appeared for users in our data set. We macro-
averaged our measures, since we wanted to give equal weight to each user and
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Call interruptions Application switches
Daily interruptions (% usage) 3.2 (2.2) 8.3 (5.3)
Interrupted applications 3.3 (2.6) 8.7 (7.2)

Table 6.2: Occurrences of interruptions. Mean (and SD in parentheses) per user on usage
in terms of application launches.

Call interruptions Application switches
Regular application runtime (s) 24.8 (31.8) 18.9 (24.4)
Runtime when interrupted (s) 107.1 (121.1) 87.9 (75.5)
Interruption duration (s) 12.5 (8.1) 23.7 (19.3)
Overhead duration (s) 43.2 (65.9) 34.4 (40.7)

Table 6.3: Costs of interruptions. Mean (and SD) per application in seconds.

their application usage, because the amount of data contributed per user differs;
i.e., we averaged individually for every single user, and then averaged over those
user-based means. Outliers were considered when the mean exceeded 1.5 the in-
terquartile range which were automatically removed when computing the statistics.

Note that we are reporting the results for call interruptions and application switches
after removing the outliers and unpaired cases from our data here (the size of the
cleaned data set is given in square brackets in Table 6.1). A Shapiro-Wilk test
revealed that our data is not normally distributed (p < .0001 in all cases). There-
fore we used the Kolmogorov-Smirnov test, which is non-parametric and does not
require the underlying data to be normally distributed1.

Unsurprisingly, we found that interruptions related to application switches are more
frequent (D+ = 0.50, p < .0001,Cohen’s d = 1.24) and involve more applications
(D+ = 0.36, p< .0001,d = 0.98) than interruptions caused by incoming phone calls.
Table 6.2 shows that only 3.2% of daily application usages (in terms of launches)
are interrupted by incoming phone calls, whereas for 8.3% of application usages
an interrupting switch happens. These differences were found to be statistically
significant. This relates to the finding about application switches within chains of
application usage we presented in Chapter 3: Users tend to switch back and forth
between applications they already have opened within the same session.

Besides the occurrences of mobile application interruptions, we also looked into
their costs in terms of introduced overhead as resumption lag, based on the data
1Kolmogorov’s D statistic refers to two-tailed comparisons, while D+ and D� refer to one-tailed
comparisons.
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(a) Correlations of occurrences

ni na
ni – 0.26⇤⇤⇤

na 0.27⇤⇤⇤ –

(b) Correlations of time measures

Tr Ti To
Tr – 0.12⇤⇤ 0.68⇤⇤⇤

Ti 0.09⇤ – 0.13⇤⇤

To 0.51⇤⇤⇤ 0.22⇤⇤⇤ –

Table 6.4: Correlations of interruption measures. Tables show correlation coefficients ⇢
for phone call interruptions above the main diagonal, and for application switching below
the main diagonal (statistical significance: ⇤p < .05, ⇤⇤p < .01, ⇤⇤⇤p < .001).

summarized in Table 6.3. Overall, we found that those applications interrupted
by phone calls take more time to complete than those interrupted by application
switches (D+ = 0.06, p = .04,d = 0.18). Notice the differences in application run-
time when compared to its normal usage (D = 0.09, p = .003,d = 0.20): When an
application is interrupted — either by internal or external interruptions — the run-
time of the application is delayed up to a factor of 4. Most importantly, we found
that interruptions caused by phone calls result in a significantly higher overhead
time on the interrupted application than the user’s intentional application switch-
ing (D� = 0.08, p = .006,d = 0.17), with overhead in the case of phone call in-
terruptions being 43.2 seconds and in the case of application switches being 34.4
seconds. These results suggest that interruptions caused by incoming phone calls
are more disruptive with respect to their resumption lag than interruptions due to
application switching.

We also investigated the correlations between the variables we measured, which
appear in Table 6.4. In most cases we found them to be weakly or moderately
correlated. The strongest correlations were for both types of interruptions — i.e.,
application switching and incoming phone calls — between (1) the runtime of an
interrupted application Tr and its overhead To (⇢ > 0.5) and (2) the number of daily
interruptions and the number of interrupted applications (⇢ > 0.2).

Overall, we found on the one hand that mobile application interruptions at the ap-
plication level are an infrequent phenomenon: only about 3% of daily application
usages are interrupted by calls, and 8% by switching back and forth between appli-
cations. On the other hand, we found that if application interruptions do happen,
the resumption cost may be tremendously high.
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6.2.3 Discussion

Interruptions can have a severe effect on task performance and user experience
[12]. Hence, knowing about the phenomenon of mobile application interruptions
implies a need to cope with this issue, and to improve future designs of both single
applications and smartphone operating systems. In particular, using the introduced
framework to assess and measure the impact of interruptions, i.e., the duration of
interruptions and the resulting resumption lag, will help to improve the design of
system UIs and applications that are built to support multitasking between applica-
tions.

A first, rather obvious idea to support better multitasking on smartphones is to help
the user to better be able to regain the context of the interrupted application when
she comes back. Tossel et al. [245] report that a large fraction of web-site re-visits
happen after interruptions by phone calls. In such cases the support of task recon-
struction might leverage the navigation paths on the website which are available in
the browsers history. On stationary computers, users explain long resumption lags
through the loss of the context associated with the task when switching [128]. As
such, it has been been found to be helpful for recovering from the interruption to
give pertinent cues guiding the user back into her previous task [135, 87] so that
she can regain context within the application after an interruption has happened,
or after the user switched away from an application for other reasons. However,
while this is a reasonable technique for desktops, this is usually not applied on
smartphones [142].

From interruptions on stationary computers it is known that people start to inten-
tionally interleave tasks — like switching between applications — when they are
waiting for the primary task to finish or to continue [134]. This might also be
an explanation for the application switching behavior we found, since many mo-
bile applications require that content is downloaded from the Internet, what might
take some time in some cases. Further it is know, that external interruptions might
continue to have an effect even after the interruption, as people start to interrupt
themselves after they had been interrupted externally [75]. The use of an applica-
tion that was interrupted by a phone call or any other interruption beyond our scope
might also result in higher application switching behavior afterwards.

For desktop computers, approaches for mitigating the impact of interruptions have,
for instance, been proposed by Iqbal and Horvitz [128]. For example, reminding
the user of the task that she has left unfinished, or assisting her in efficiently recon-
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structing task context, are two ways to help. For the mobile domain, we believe
that the main factor is to reduce the overhead time that results from application
interruptions. In this line of thinking, we suggest helping the user to keep up the
task state of the primary application while switching to the interruptive applica-
tion, or to help the user recover the task she left in the primary application when
returning after the interruption. Hereafter, we contribute design recommendations
for implementing these ideas for smartphones.

Design Implications

Our findings could inform new mobile interaction designs that aim to reduce the
overhead that results from application interruptions. We present two design impli-
cations, motivated by solutions proposed in the field of stationary computers (cf.
[248]). On the one hand, we propose preventive strategies that are effective before
the user switches to the new task, and on the other hand, curative strategies that are
effective after the interruption, when the user proceeds with her primary task. We
propose the following approaches for implementing such supportive functionality
for mobile multitasking:

• Preventive strategies are about preparing the user for being interrupted. In-
deed, before a task interruption occurs, the smartphone user could be better
prepared to leave the current task. For instance, for incoming phone calls
the caller usually waits on the line for some seconds. Postponing the call a
bit longer (say, 500 ms) might provide time to give the user an auditory, vi-
sual, or haptic signal that soon the phone application will pop up. Thus, the
user would be able to save a mental state of the current open application and
keep his most recent activities in the application in mind before the interrup-
tion happens. On stationary computers in a office scenario, this could be to
first finish writing the current sentence in a word processor, before answer-
ing a ringing phone. Further, with current phone applications users receive
a full-screen visual notification of incoming calls. We believe that gradu-
ally overlaying this notification onto the user’s current primary application
would also allow him to take a subconscious snapshot of his most recent
action, which might allow him to more easily return to his primary applica-
tion after the interruption. This particular approach might also work for the
interruptions that occur due to application switching.
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• Curative strategies are about guiding the user as she goes back into the
interrupted tasks. The main requirement when the user resumes a previ-
ously interrupted application is that she has to reallocate cognitive resources,
which becomes increasingly difficult if the resource demands were high
[128]. For this reason, the user should be supported when resuming her
interrupted application for immediate and easy continuation of her previous
task. For instance, this could be achieved by automatically replaying the last
N milliseconds of UI interactions for better task-reconstruction [213], such
as navigation through a website, or replaying the last scroll interaction to a
certain position on a long document or text input into a form, to give a hint
of what she was doing before the interruption occurred (see e.g. [102] for
visual cues on maps). The mobile operating system could also leave a visual
on-screen cue such that the user could remember at any time to which task
she is switching back, as done on stationary computers [87]. Another way
of visually helping the user find her way back to her previous task and con-
tinue working in the primary application would be to vanish the screen of the
interrupting application in the direction of the last focus point of interaction
on the primary application (e.g., last touch point, or text input field), in order
to guide the user to the screen position she left when the interruption took
place.

Limitations of the Study

The results presented in this section are dependent on the quality of the underlying
dataset. The data was collected by a deployment of the AppSensor, as described in
Chapter 3. As such, the presented study on application multitasking has the same
threats to validity and correctness as our study on mobile application launching.

As already stated, there are other disrupting factors beyond smartphone usage it-
self that lead to people interrupting their application usage and changing tasks [25],
e.g., social interruptions by people in a person’s current vicinity. Moreover, as de-
scribed by Karlson et al. [142], people might change to a nearby stationary com-
puter if they are hindered or frustrated from conducting the task on their mobile.
Due to our study method of conducting a large-scale study in the wild, we unfor-
tunately could not keep track of these issues and other environmental influences in
our data. Our study design and method — in the first place — allow us to report
that mobile application interruptions do happen, and to calculate their probability
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and show that they add significant costs to mobile application usage. However,
since our observational study was non-controlled and was based on data analysis,
we cannot make any other conclusions. Due to the large scale of our user sample,
their worldwide distribution and — presumably — large diversity in backgrounds,
we may assume that our study provides a higher external validity than common
interruption studies conducted in controlled laboratory settings [116].

Finally — as previously mentioned — we recognize that a one-on-one mapping
from tasks onto applications is hard to convey, since a task can span over a single
application (e.g., writing an email) or many (e.g., when searching for a restaurant
one might look up its address in a browser and then use maps to locate the place).
That being said, it remains unclear to which degree the ecological impact of mobile
application interruptions — as revealed in our study — would relate to the user’s
actual cognitive load and higher-level goals. For instance, if a user is interrupted
by a phone call while she is preparing a meeting on this smartphone (e.g., check-
ing dates on this calendar and sending emails for inviting attendees), we cannot
know if the call creates an overhead on her higher-level task, which relates to the
resumption lag that is introduced on the micro-level of application interactions.

6.3 Re-Designing Phone Call Applications
Smartphones became multifunctional devices, which nowadays integrate a huge
variety of services beyond pure communication capabilities. In addition to making
phone calls, people can for instance use their mobile phones for navigation, mobile
payment, making videos, taking photos, or gaming and entertainment. The variety
of activities for which people use their smartphones, and the number of installed
applications, is steadily increasing (cf. Chapter 1).

The previous section provides evidence that this dense integration of various func-
tionalities comes at a non-negligible cost: People have to multitask between ser-
vices. They have to switch between applications, which introduces an overhead
on the application usage time. As the previous study revealed, this overhead is
particularly high when application usage is interrupted by an incoming phone call.
The interruption might increase the completion time of the interrupted application
by a factor of four. Although we previously found that this happens only rarely
(cf. [157] and Section 6.2), the overall smartphone usage time is anticipated to
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(a) Panasonic EB-GD90 (b) iPhone 5

Figure 6.3: Only slight evolution of phone call UIs from a) single-purpose to b) multi-
purpose mobile phones: Essentially only the red and green hardware buttons have been
replaced by touch screen buttons.

increase further.2 This will also result in an increased probability of smartphone
applications being interrupted by incoming phone calls. Hence, rethinking user
interfaces for phone call applications becomes indispensable.

Related work (cf. Chapter 2, Section 2.3.5) mainly investigates phone calls inter-
rupting primary tasks not done with the phone, e.g. driving or office work, and
only a little (cf. e.g. [5, 46, 96, 157]) is known about task interruptions on smart-
phones. However, although it is known that phone calls can be interruptive, new
designs for call notifications with concurrent mobile application usage have not
been investigated yet.

In a typical non-mobile desktop scenario, people are not interrupted abruptly when
a call comes in. Since the incoming phone call happens on a separate device, peo-
ple have a higher degree of freedom for deciding when they allow the interruption
to happen, i.e., to switch from the previous task on the computer to the incoming
call on the phone. For instance, when somebody is writing an e-mail on a desk-
top computer and the phone rings, one can first finish the current line of thought
and finish writing the current sentence before answering the phone. In a mobile
2Pew Research Center (M. Duggan and L. Rainie): Cell Phone Activities 2012, http://goo.gl/YoP0p,
last accessed on 08.07.2013.

http://goo.gl/YoP0p
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scenario, the user’s decision space is very limited, since the interruption happens
on the very same device. When a phone call comes in, not only does the phone
call application open instantly, but also the user must either accept or decline the
call — which compels him to make a decision [107], which is cognitively costly
and amplifies the effect of the interruption if inappropriate [96]. Further, the effect
of change blindness might make the effect of the interruption even worse if the
underlying application updated itself while the interruptive screen was shown [77].

The ability to make mobile phone calls empowers social interactions and makes
smartphones social devices in the first place, as we found in Chapter 3 smartphones
are most likely used as communication devices at least during the day. However,
the current design of phone call applications also has some social implications, as
they lock the smartphone when calls come in until the user makes a decision, or the
user has to let the phone ring until the caller hangs up or the answering machine
takes over (using the home button for multitasking does not work on the latest
versions of Android OS and iOS). For instance, if a user is searching for a place on
a map and a call comes in, she cannot use the map until the call is over (declined,
ended by caller, or accepted and finished). This case of declining a call relates to
the category of enforced unavailability due to practical inconvenience [212].

The current design of phone call applications is a remnant of times when the main
purpose of mobile phones was communication by making phone calls. A com-
parison of the two mobile phone call UIs shown in Figure 6.3 suggests that when
mobile phones evolved to multi-functional devices, the design of phone call appli-
cations essentially remained the same. Apart from the fact that hardware buttons
have been replaced by touch screen buttons and additional content can be shown
(like pictures, the caller’s birthday, or social network information), the user’s op-
tions for handling incoming phone calls essentially did not change.

In this section, we revisit the design of mobile phone call applications in the context
of multipurpose smartphones. We aim to mitigate the negative effect of phone calls
interrupting mobile application usage. We explore the design space and suggest to
new designs for mobile phone call applications.

6.3.1 Extending Phone Call Applications

While mobile phones have evolved significantly in recent years from single-
purpose communication devices to multi-purpose devices, the fundamental design
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CALLER NAME

(a) Current phone apps

CALLER NAME

(b) Added postpone
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CALLER NAME
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cation

Figure 6.4: Extending the design space for mobile phone call applications from (a) cur-
rent accept/decline dialogs to (b) accept/decline/postpone dialogs, (c) multiplexing and (d)
background notifications

of phone call applications did not evolve accordingly. While its implementation
leveraged new hardware and software capabilities, the fundamental decisions peo-
ple are able to make when they receive a call did not change. Currently, when a
call comes in, a modal dialog opens where the callee can either decline or accept
the call. In the previous section, we found that the current user interfaces of phone
call applications (phone UIs) often lead to increased overhead when application
usage is being interrupted by phone calls [157]. In this section, we present work
on revisiting phone call UIs for multipurpose smartphones. We contribute a new
design space for mobile phone call UIs, going beyond the simple accept-or-decline
dilemma.

After analyzing current implementations of phone call applications on some pop-
ular smartphone models, we found that they commonly have two shortcomings,
which may particularly amplify the effect of interruptions:

1. Current phone call applications use full-screen modal dialogs to notify the
user of incoming phone calls. This instantly visually detaches the user from
his previous application and thus might lead to a high impact from call inter-
ruptions, as visual interruptions are known to have a severe impact on small
screens [77].

2. Current phone call applications only provide the user with two options: to
promptly either accept or decline the incoming phone call. This unavoidable
required decision (accept vs. decline) may amplify the effect of an inter-
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ruption, as it is known that inappropriate interruptions significantly delay
primary tasks [96]. Further, accepting the call pulls the user’s attention fur-
ther away from the previous application to the phone call, and declining may
have additional negative side effects.

Figure 6.4(a) sketches the design of currently predominant phone applications. So
far, the most-used design for phone call applications only provides options for
either accepting or declining the incoming phone call. Some implementations pro-
vide additional options, e.g. shortcuts to sending messages like “I am currently
in a meeting” to the caller when declining the call, or augmenting the call with
additional information like the caller’s profile picture or birthday.

As found in the study presented in the previous section (cf. also [157]), this par-
ticular design for call applications results in high overheads in usage times of the
primary applications, which might e.g. be writing a mail or searching for some-
thing on the Internet. As described earlier, this design results from adopting phone
call UIs of the previous generation of mobile phones with hard buttons to the cur-
rent generation of smartphones providing touch screens. In fact, current mobile
operating systems allow users to multitask between different applications, includ-
ing the phone call application, during phone calls. However, current phone call
applications do not provide any options to the user for multitasking or handling
incoming calls beyond accepting or declining the call.

In this work, we tackle the two issues described by revisiting and extending the
design space of phone call applications as follows: In particular, we increase the
user’s freedom in deciding when to pick up a call by introducing the possibility
of postponing an incoming phone call. Furthermore, we reconsider on the design
of user interfaces for phone call applications to mitigate the interruptive effect of
incoming calls while an application is being used. The key contribution of this
work is to extend the conceptual design of current phone call applications to allow
for a higher degree of multitasking and additional options to handle incoming calls
as described hereafter and shown in Figures 6.4(b) to 6.4(d).

Option to Postpone Incoming Calls

A first improvement to mitigate the effect of phone call interruptions is to give the
callee an additional option for when to pick up the call. We provide a third option
for postponing the call, rather than accepting or declining it. Hence, the user can
easily and quickly return to his previous task without a need to decide how to react
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to the incoming call. The approach of postponing calls brings a user’s ability to
pick up the call at will from landline phones to mobile phones. Thus it becomes
possible on mobile phones to have the case where a user is working on an (up to
now stationary) computer and the (up to now landline) phone rings, and he can
either immediately answer the call or first finish his primary task, e.g. writing an
e-mail.

As Figure 6.4(b) shows, this option can be implemented as an additional button
(besides accept and decline) when the full-screen call notification pops up. When
a call is postponed, the phone call application should go into the background and
the user can continue working in her previous application. The caller will wait
on the line. At the choice of the user or after a certain amount of time, the call
application will come to the foreground again, and again the user has the three
options to accept, postpone or decline the call.

Multiplexing Notifications

Space-multiplexing of primary and secondary tasks on the device’s limited screen
real estate has been found to provide the user with more control when interrupted
[5]. Also Ratwani et al. [197] suggest designing interfaces in a way that users have
visual access to their primary task when interruptions occur. Therefore, a second
approach to mitigate phone call interruptions is to alter the visual appearance of
call notifications, as Figure 6.4(b) suggests. Rather than having a full-screen noti-
fication as in current phone applications, we propose to divide the mobile screen’s
limited space into two areas: a smaller area, where the user is notified of the incom-
ing call, as shown at the bottom in Figure 6.4(b); and a second larger area, where
the user can continue working on her primary task, which for example might be
navigating on a map (Figure 6.4(b). Again, the user has the aforementioned op-
tions for reacting to the interruption.

Following on the idea of space-multiplexing, the user can keep his attention on
the primary application and he will not be visually decoupled from the previous
application. For instance, he can continue reading, or finish the sentence he was
just typing.
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Background Alerts

Another way to notify users of incoming calls could be through background alerts,
which will occupy very little space on the screen. As can be seen in Figure 6.4(d),
notifications for incoming phone calls can also be signaled by leveraging the multi-
modal capabilities provided by smartphones, like vibration for tactile or ringtones
for auditive signals. This results in incoming calls being put into the background
immediately. Hence, the user can stay in the primary application, continue with his
current task, and reach a stopping point to leave his application. This allows the
user to intentionally leave his current application to take the call when desired, or
even to leave the phone unanswered.

Scheduling on Completion

Messages have been found to be best delivered on the transition of activities [123].
Therefore, an additional approach for scheduling a call interruption is to wait until
the user closes his current application. Following on this idea, when a call comes
in, the user will not be immediately notified of the call; rather when he closes the
current application, a notification will be shown. Since the user is done with the
recent application, a full-screen notification with a postpone option is reasonable.
Since we cannot know for how long the user will stay in the current application,
after a certain short amount of time, a fallback to one of the aforementioned ap-
proaches is required.

6.3.2 Prototype Implementation

While in previous generations of mobile phones the phone call application was the
device’s essential part, and everything else was built around it or integrated into
it, phone call applications on the current generation of smartphones are just pieces
of software like any other application running on the device. This enabled us to
build a prototype application that implements the four aforementioned approaches
to notify users of incoming calls and to test new ways of handling calls.

We implemented the presented design options for call notifications for Android-
based smartphones. For managing calls, we have implemented an application to
simulate an extension of a Bluetooth headset, and we were thereby able to manage
handling of phone calls. Figure 6.5 depicts the four different UI designs for a user
navigating on a map as a primary task. Figure 6.5(a) shows the option to push
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(a) Option for postponing (b) Multiplexing notifications (c) Background alert

Figure 6.5: Screenshots of our prototype showing 3 of 4 new approaches to notify the user
of incoming calls.

a postpone button, 6.5(a) shows the call notification multiplexed with the user’s
map application so that he is able to continue working on his primary task, and
6.5(c) shows how the user is able to continue in the primary application when the
incoming call is put into the background. Note that in the latter case the user is
notified of the incoming call only by the icon in the screen’s top bar.

6.3.3 Discussion

We designed this approach for mitigating the problem of call interruptions in a pre-
ventive way, as discussed in Section 6.2. However, the problem of the increased
resumption lag when switching between applications remains. Further, the method
we proposed to mitigate phone call interruptions is a preventive one, and curative
ones remain unexplored. However, we decided to address this particular prob-
lem since incoming phone calls introduced the largest overhead. While curative
approaches for mitigating the interruptions might be the same for phone call inter-
ruptions and application switching interruptions, preventive approaches have to be
designed differently since multitasking between two applications on the one hand
or an application interrupted by a call on the other hand are two different problems
due to the nature of a phone call.
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Besides adding the opportunity to postpone a call and extending the UI aspects of
the notification (full-screen, space-multiplexed, background alert, on application
completion) to mitigate the problem of call interruptions, we also need to be con-
cerned about the caller, about other modalities like ring tone and vibration, and
about which UI option should be chosen to display the call.

Reasoning on Predicted Overhead. The four extensions of current phone call
applications differ in the degree to which they pull away the user’s attention from
the application that he currently is using to the call. As described in Section 6.2,
we can measure the overhead that results from a phone call interruption. To reason
about how to handle an incoming phone call, i.e. which UI to use to notify the
user of the incoming call, a model that predicts the overhead will be beneficial
(as Iqbal and Bailey [127] have build a model for predicting the resumption lag
for desktop interruptions). While for instance the accept/decline/postpone dialog
might be best suited when the user is making an entry in his calendar, a space-
multiplexed notification might be best suited when he is watching a video, and
a background notification might be best suited when the user is playing a highly
engaging game. Besides the content (e.g. determined by who is calling), such
factors relate to the receptivity of mobile interruptions [97].

To predict the resulting overhead, various variables are available: Besides the in-
terrupted application’s name and type, the user’s last reaction to an interruption,
and the caller ID as well as contextual factors like time of day or location can also
be taken into account. Social context has also been found to impact the caller’s
interruption decision making and the callee’s availability (cf. [111, 212]). Such a
model will be beneficial when reasoning about how to react to an incoming call:
If the overhead is estimated to be high, a less intrusive background notification
will be chosen; if the overhead is estimated to be low, a more interruptive ac-
cept/decline/postpone dialog might be the best option.

Further, interruptions have been found to improve performance on simple tasks
and to lower performance on complex tasks [233]. Therefore the call-notifying UI
should also be chosen with regard to the complexity of the interrupted application.
The higher the degree of the user’s immersion in his primary application, the higher
also the risk is that he will not see the multiplexed notification due to the matter of
display blindness on mobile devices [77].
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Keeping the Caller Waiting on the Line. When the receiver postpones a call or
the call is put to background automatically, the caller will be kept waiting on the
line. Since related work (see [10, 241, 221] and Section 2.3.5) found that it has a
positive effect when the caller is aware of the callee’s status, one idea might be to
notify the caller as to what is happening. One possibility could be the design of
special call-progress tones (e.g., for “call was postponed” or “call was notified in
background”), or we could for instance use speech-synthesis to tell the caller that
“the callee is currently watching a movie”.

Other Modalities. The notification scenarios described in this section mainly
address visual attention. Different modalities have shown different degrees of in-
terruptiveness (e.g. [8, 197]). In addition to visual notifications, incoming calls
are also being signaled by auditive and haptic signals. A holistic design needs to
consider these ways of notifying the user of incoming phone calls as additional
modalities. One possibility could be changing the ringtone to unobtrusive sounds.
Hence, the user could be notified about an incoming phone call in an ambient way.
As another possibility, we could apply different vibration patterns to create haptic
notifications in accordance with the visual notification. The integration of different
modalities therefore needs to be addressed in the future, and to be aligned with the
visual notification.

6.4 Summary
In this chapter, we began to address the matter of multitasking between applica-
tions on smartphones. As discussed, the saliency of this issue will increase, since
the number of services provided through smartphone applications is perpetually
increasing as is the time that people spend using their smartphones as daily com-
panions (cf. Chapter 1).

In this work, we have shown that application interruptions on smartphones can have
a serious impact on the performance of the users. In our study of smartphone inter-
ruptions, we have replicated previous findings of previous lab studies on desktop
interruptions and extended them to the mobile domain by exploiting a large-scale
dataset of mobile application usage. We have observed that application switching
behavior and incoming phone calls are a non-negligible source of disruption and
therefore they should be diminished. Our study reveals three general findings:
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1. Application interruptions rarely happen on smartphones; but when they do,
they can be really costly for the user. This poses a wealth of new challenges
for mobile designers and smartphone vendors.

2. Application switching behavior does not happen as often as it is presumed.
While smartphones make it possible to change the focus of interaction, users
are reluctant to do so. One reason might be that there are no mechanisms
or suitable interaction techniques (yet) to support regaining context after
switching between mobile applications.

3. Phone call interruptions add a significant overhead on the interrupted appli-
cation in comparison to those due to application switching. This was ex-
pected, as incoming calls potentially can happen anytime. However, it was
surprising to notice the cost on the interrupted application: up to four times
compared to its normal usage in terms of runtime.

Furthermore, we have discussed possible approaches to reduce the overhead caused
by application interruptions and to help users resume task flow. For the case of
phone call interruptions — and in the second part of this chapter — we revisited
the design of mobile phone call applications. Motivated by the high interruption
cost of incoming phone calls on concurrent application usage, we explored new UIs
for notifying users of incoming calls. We extended users’ options for how to handle
incoming calls by a postpone function in addition to accept and decline. Further,
we presented the approaches of multiplexing, background alerts and scheduling
on application completion for call notifications. Besides new design options, we
presented a prototype implementation, and discussed challenges and future work.



202 6.4 Summary



Chapter 7

General Conclusions

In this last chapter we will summarize the key contributions of this work. We will
also discuss new opportunities and challenges for future work that result from our
work but that go beyond the scope of this thesis. Finally, we will close this thesis
with final remarks.

7.1 Major Contributions
The work presented in this thesis has focused on understanding the principles of
mobile smartphone usage, and assisting people to leverage the huge variety of ap-
plications that they can use on their devices. Successfully understanding mobile
application usage is challenging due to the huge mobile ecosystem and large vari-
ety of applications and use contexts of smartphones.

In the first part (Chapter 3), we investigated how people launch the applications
they have installed on their devices and developed adaptive icon menus to ease
launching of applications. Next (Chapter 4), we presented results of a study on
mobile application housekeeping, and presented a system to help people with ar-
ranging icons in their smartphone launchers. Thirdly (Chapter 5), we looked into
how people can find new applications that are of interest and valuable for them
and presented approaches for context-aware recommendation of mobile applica-
tions to support mobile application discovery. In the fourth part (Chapter 6) we
investigated how people multitask on their smartphones and looked into the cost
of mobile application interruptions, especially as regards multitasking with phone
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calls. Since call interruptions can add a significant overhead to application usage,
we developed and presented a new design for phone call UIs.

The contributions of this work were made by applying the methods of research
through the application store and other methods where reasonable to the field of
smartphone usage. Further, we developed and studied prototypes to solve the
shortcomings of current state-of-the-art technology as well as literature. The work
presented in this thesis has made contributions to the four fields of launching (L),
housekeeping (H), discovery (D) of and multitasking (M) with mobile applications
— and to mobile HCI in general:

(L1) A framework for contextualized tracing of mobile application usage.
(L2) A large-scale study on mobile application usage.
(L3) An adaptive shortcut menu for supporting mobile application launching.

(H1) A study suggesting that context impacts icon arrangement.
(H2) A study of people’s concepts for arranging icons in launcher menus.
(H3) A system to support icon arrangement in smartphone launchers.

(D1) A design space for mobile application recommender systems.
(D2) An architecture for recommender systems suggesting mobile applications.
(D3) A new method for a usage-centric evaluation of recommender systems.

(M1) A study of the phenomenon of mobile application interruptions.
(M2) A phone call UI for lowering the impact of mobile phone call interruptions.

In addition to these contributions, which individually can be used to inform the
understanding of smartphone usage and to improve future design of smartphone
interaction, we also contribute the essential technical systems implemented during
the course of this thesis as open source1 as well as parts of the data we collected,
where possible given legal and ethical considerations2. This contribution will allow
other researchers on the one hand to produce their own results, draw their own
conclusions and gain new understanding based on our data, and on the other hand
to build their own systems based on the approaches that we have developed and
provided in this work.

We cannot claim to have invented the approach of conducting research through the
application store itself, since it seemed a natural way to go given the circumstances
described in Chapter 2. However, given the number of citations of our paper on
1http://matthiasboehmer.de/code
2http://matthiasboehmer.de/data

http://matthiasboehmer.de/code
http://matthiasboehmer.de/data
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AppSensor [38] (61 at the times of writing this thesis3) and since it was one of the
first papers in the field, we can claim that we have impacted the field by using this
approach. As such, this can also be seen as a contribution on its own.

The contributions achieved in this thesis have been published and presented at con-
ferences and workshops [29, 30, 31, 32, 33, 36, 37, 38, 40, 42, 157, 183].

7.2 Future Work
The fundamental findings we provide in this thesis open new opportunities and
leave open challenges that can be addressed in future work. To summarize: One
could exploit the information on mobile application usage, refine and extend our
studies, improve presented applications and systems, and build a single solution
integrating all results, as we discuss next:

Exploiting Signals of Application Interaction

In this thesis, we began to understand the end-user’s utilization of mobile appli-
cations. Based on our observations of user behavior, we described patterns and
concepts that people use to inform our understanding of smartphone usage. In
Want’s “you are your cell phone” line of thinking [258] such signals provide rich
information about the users themselves, and can be used to learn about and react
on the users’ profiles. Our work gives rise to identifying and interpreting such new
signals (e.g., application launches, events of icon arrangements). This gives the
opportunity to extend the large body of research done to understand usage of web-
sites on the Internet (usually based on click-through rates and navigation paths) to
the mobile ecosystem of applications. Such an algorithmic grounding and mod-
eling of the user behaviors described in this dissertation (e.g. icon arrangement
and application launching) will further improve our understanding of application
usage, and this will further give rise to its exploitation for improved support of
smartphone usage.

As discussed in Chapter 3, it seems promising to deduce a user’s context from the
applications that he is currently using. This additional piece of context can be used
for other applications as input or with the smartphone’s operating system itself to
3According to Google Scholar, http://scholar.google.de/citations?user=cwlk77oAAAAJ, last ac-
cessed on 15.07.2013

http://scholar.google.de/citations?user=cwlk77oAAAAJ
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adapt functionality to context. Further, one might look for relations between users’
application interactions like the concept of icon arrangement (see Chapter 4) and
general user profiles like personality traits (cf. [59, 60, 125, 54]) as proposed by
Raento et al. [191].

Extension and Refinement of Studies

The results and conclusions presented in this work are based on studies of applica-
tion usage. The method of research through the application store, which this work
mainly relies on, bears some limitations, which can be addressed in future studies.
For instance, we cannot know the ground truth of the behavior of our participants
when looking into application launches (Chapter 3). For future refinement of our
large-scale study of mobile application usage we propose to use the experience
sampling method as done by Church et al. [63] to gain additional insights into
users’ contexts when using applications.

To dig deeper into multitasking of mobile applications, future work might look into
the impact of notifications on application usage behavior. We assume that incom-
ing notifications are also a good predictor of application launching behavior. They
can be treated as external interruptions like the incoming phone calls we analyzed
in Chapter 6. As such, a study of notifications will further improve our understand-
ing of application interruptions (as already studied on stationary computers; see
Chapter 2).

Improvement of Presented Applications and Systems

For discovery of mobile applications we think that better recommender engines can
be built by focusing on improvement of the algorithms. For future work, optimizing
the recommender engines implemented in Chapter 5 seems to be promising (cf.
e.g. [139, 140, 228]). Further, integrating other sources of information to inform
algorithmic supportive functionality seems to be promising, e.g. the large amount
of meta-data that is available for applications like, such as comments provided by
other users. Such new approaches should be evaluated based on the framework
we presented in Chapter 5. In addition, we plan to evaluate different measures for
implicit relevance feedback; as proposed in the design space for mobile application
recommender systems (Chapter 5), the idea of integrating icon arrangement (both
contextual and habitual) as implicit feedback seems promising — but has not been
studied in this work.
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One Integrated Single Solution

One natural next step to the work presented in this thesis would be an integration
of all findings and proposed systems and applications into one single solution, and
the study of such a smartphone under aspects of general usability and user expe-
rience. This would be a smartphone that tracks application usage and supports
launching, that analyses changes in user icon arrangement and acts based on them,
recommends new applications or makes them instantly available to use, and sup-
ports multitasking between phone calls — i.e. the primary device functionality
— and other applications. However, while it would be possible to build such a
single integrated solution that exploits all findings of this thesis and all proposed
supportive functionality into one single solution, this system would demand a high
degree of low-level access to fundamental operating system functionality. Such a
prototype would result in a proprietary branch of a whole operating system that we
would not be able to evaluate with the method of research through the application
store, which we rely on in this work. We would instead have to distribute a new
smartphone with a customized software stack, which would require substantial re-
sources if it were to be done on a large scale. This piece of future work is instead
left for industry to inform the design of a new smartphone.

7.3 Closing Remarks
This thesis has investigated the current generation of smartphones resulting from
the recent development of hardware and software, which transformed mobile
phones into multi-functional toolsets over their 40-year evolution (see Chapter 1).
We can only foresee the future in a tautological way and discuss both options:
Smartphones will either continue to improve or disappear — i.e., we will proceed
either with integration or dis-integration of smartphones into our daily life as de-
scribed by Harmon and Mazmanian [110].

On the one hand, elaborating on the thinking of the recent evolution of smart-
phones, one might anticipate that mobile computing power, devices’ interaction
capabilities and functional richness and variety will further increase. This will call
for further refinements of the approaches and solutions presented in this thesis, as
well as new approaches to tackle the problems of discovery, launching, housekeep-
ing and multitasking. Pioneering work has already been done, e.g., by leveraging
the space around the user as a virtual extension around the body (cf. e.g. [58, 56]).
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On the other hand, one might argue that smartphones will disappear in the future.
The big advantage of applications as digital services over dedicated information
appliances is that digital goods are much easier to duplicate, ship and distribute
than physical goods, as we know from the transition of analogue music that was
shipped as a physical good to digital music that can be “shipped” over the Internet.

There is ongoing and groundbreaking research in the area of tangible interaction
and wearable computing in which everyday objects become smart through en-
richment with sensing, computing and networking capabilities; see for instance
the Bottle Interface [131], MediaCups [21], ShoeSense [13] and even the human
hand as Imaginary Phone [108]. Two other good examples of common artifacts
which are currently starting a similar evolution as the mobile phone and becom-
ing mainstream are wristwatches and eyeglasses. While wristwatches were origi-
nally designed to tell the time centuries ago, they are now becoming smart multi-
purpose artifacts which serve functionalities far beyond telling the time (cf. e.g.
[27, 186, 193]). Similarly, eyeglasses were initially invented to correct human
sight in case of visual impairment. They are now in transition towards becom-
ing devices augmenting human sight with digital information beyond correcting
visual impairments. While groundbreaking research was done years ago (see e.g.
[201, 236, 92]), such devices are now becoming mainstream with first products like
Google Glass.4

The one thing that mobile phones, wristwatches and glasses have in common in
their evolution is that all become smart in terms of integrating more functionality.
We may assume that one piece of tangible user interface will always be used for
more than one service. That is — literally comparing to smartphones — one piece
of hardware will run more than one application. Not only did the phone became a
smart-phone, but things will also become smart-things — especially when consid-
ering paradigms like the Internet of Things [9] and Ubiquitous Computing [261].

First research projects are working in the direction of extending the concepts of
applications and application stores to other smart devices (see e.g. [69] for public
displays or the project SmartF-IT5 for industry domain). As such, we could add
the investigation of extension of our research questions to other systems running
“apps” like glasses, watches, public displays or industrial machines to the body of
future work stated in Section 7.2. However, the main challenges that arise when
4Google: Glass, http://www.google.com/glass/, last accessed on 30.06.2013.
5http://www.smartf-it-projekt.de, last accessed on 30.06.2013.

http://www.google.com/glass/
http://www.smartf-it-projekt.de
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functions beyond a thing’s main purpose are embodied into one single piece of
hardware will remain:

• How to launch the right service at the right time?
(See application launching, Chapter 3)

• How to organize the different applications?
(See application housekeeping, Chapter 4)

• How to discover what can be done with the smart thing?
(See application discovery, Chapter 5)

• What is the impact of adding functionalities beyond the main function?
(See application multitasking, Chapter 6)

With the work presented in this dissertation, we lay the foundation to address these
four central questions (discovering new applications, launching useful applications,
housekeeping installed applications and multitasking between applications) by in-
vestigating them for the first device that became not only smart but also ubiquitous
in our daily life: the mobile phone.

One more thing...6 At the first workshop on Mobile HCI in 1998, Johnson [136]
made a comparison between a mobile phone and a watch to illustrate how com-
monplace using a mobile phone will become in the future — i.e. like wearing a
watch. However, ironically he remarked that the analogy would be limited “since
a watch will normally only tell the time, date and ring an alarm” [136]. This ex-
ample shall illustrate how we need to rethink existing approaches and be aware of
making wrong assumptions during these times where revolutionary technologies
are moving into our daily lives and changing the nature of things.

6In remembrance of Steve Jobs, who had a major impact on how people think about mobile phones
today. http://en.wikipedia.org/wiki/Stevenote, last accessed on 11.06.2013.

http://en.wikipedia.org/wiki/Stevenote
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[3] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between
sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD
international conference on Management of data, SIGMOD ’93, pages 207–
216, New York, NY, USA, 1993. ACM.

[4] Z. Ahmet and K. V. V. Mattila. Mobile service distribution from the end-
user perspective: the survey study on recommendation practices. In CHI ’12
Extended Abstracts on Human Factors in Computing Systems, CHI EA ’12,
pages 573–588, New York, NY, USA, 2012. ACM.

[5] F. Alt, A. S. Shirazi, A. Schmidt, and R. Atterer. Bridging waiting times
on web pages. In Proceedings of the 14th international conference on
Human-computer interaction with mobile devices and services, MobileHCI
’12, pages 305–308, New York, NY, USA, 2012. ACM.

[6] M. G. Ames. Managing mobile multitasking: the culture of iPhones on
stanford campus. In Proceedings of the 2013 Conference on Computer Sup-
ported Cooperative Work, CSCW ’13, pages 1487–1498, New York, NY,
USA, 2013. ACM.

[7] G. Anthes. Invasion of the mobile apps. Commun. ACM, 54(9):16–18, 2011.

[8] E. Arroyo and T. Selker. Self-adaptive multimodal-interruption interfaces.
In Proceedings of the 8th international conference on Intelligent user inter-
faces, IUI ’03, pages 6–11, New York, NY, USA, 2003. ACM.

xxi



xxii BIBLIOGRAPHY

[9] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Com-
puter Networks, 54(15):2787–2805, 2010.

[10] D. Avrahami, D. Gergle, S. E. Hudson, and S. Kiesler. Improving the match
between callers and receivers: A study on the effect of contextual informa-
tion on cell phone interruptions. Behav. Inf. Tech., 26(3):247–259, 2007.

[11] A. Bagherjeiran, A. O. Hatch, and A. Ratnaparkhi. Ranking for the con-
version funnel. In Proceedings of the 33rd international ACM SIGIR con-
ference on Research and development in information retrieval, SIGIR ’10,
pages 146–153, New York, NY, USA, 2010. ACM.

[12] B. P. Bailey, J. A. Konstan, and J. V. Carlis. The effects of interruptions
on task performance, annoyance, and anxiety in the user interface. In Pro-
ceedings of IFIP International Conference on Human Computer Interaction,
INTERACT ’01, pages 593–601, 2001.

[13] G. Bailly, J. Müller, M. Rohs, D. Wigdor, and S. Kratz. ShoeSense: a new
perspective on gestural interaction and wearable applications. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’12, pages 1239–1248, New York, NY, USA, 2012. ACM.

[14] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. Energy
consumption in mobile phones: a measurement study and implications for
network applications. In Proceedings of the 9th ACM SIGCOMM conference
on Internet measurement conference, IMC ’09, pages 280–293, New York,
NY, USA, 2009. ACM.

[15] L. Baltrunas, M. Kaminskas, B. Ludwig, O. Moling, F. Ricci, A. Aydin,
K.-H. Lüke, and R. Schwaiger. InCarMusic: Context-Aware music recom-
mendations in a car. In C. Huemer and T. Setzer, editors, E-Commerce and
Web Technologies, volume 85 of Lecture Notes in Business Information Pro-
cessing, chapter 8, pages 89–100. Springer, Berlin, Heidelberg, 2011.

[16] L. Baltrunas and F. Ricci. Context-based splitting of item ratings in collab-
orative filtering. In RecSys: Proceedings of the third ACM conference on
Recommender systems, pages 245–248, New York, NY, USA, 2009. ACM.

[17] L. Barkhuus and V. Polichar. Empowerment through seamfulness: smart
phones in everyday life. Personal and Ubiquitous Computing, pages 1–11,
2010.

[18] L. Barnard, J. Yi, J. Jacko, and A. Sears. Capturing the effects of context on
human performance in mobile computing systems. Personal and Ubiquitous
Computing, 11(2):81–96, 2007.

[19] D. Barreau and B. A. Nardi. Finding and reminding: file organization from
the desktop. SIGCHI Bull., 27(3):39–43, 1995.



BIBLIOGRAPHY xxiii

[20] H. Becker, A. Broder, E. Gabrilovich, V. Josifovski, and B. Pang. What
happens after an ad click?: quantifying the impact of landing pages in web
advertising. In Proceedings of the 18th ACM conference on Information and
knowledge management, CIKM ’09, pages 57–66, New York, NY, USA,
2009. ACM.

[21] M. Beigl, H.-W. Gellersen, and A. Schmidt. Mediacups: experience with
design and use of computer-augmented everyday artefacts. Computer Net-
works, 35(4):401–409, 2001.

[22] G. Bell and P. Dourish. Yesterday’s tomorrows: notes on ubiquitous comput-
ing’s dominant vision. Personal and Ubiquitous Computing, 11(2):133–143,
2007.

[23] V. Bellotti, B. Begole, E. H. Chi, N. Ducheneaut, J. Fang, E. Isaacs, T. King,
M. W. Newman, K. Partridge, B. Price, P. Rasmussen, M. Roberts, D. J.
Schiano, and A. Walendowski. Activity-based serendipitous recommenda-
tions with the magitti mobile leisure guide. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’08, pages 1157–
1166, New York, NY, USA, 2008. ACM.

[24] D. L. Ben Lulu and T. Kuflik. Functionality-based clustering using short
textual description: helping users to find apps installed on their mobile de-
vice. In Proceedings of the 2013 international conference on Intelligent user
interfaces, IUI ’13, pages 297–306, New York, NY, USA, 2013. ACM.

[25] R. Benbunan-Fich, R. F. Adler, and T. Mavlanova. Measuring multitasking
behavior with activity-based metrics. ACM Trans. Comput.-Hum. Interact.,
18(2), 2011.

[26] O. Bergman, M. Tene-Rubinstein, and J. Shalom. The use of attention re-
sources in navigation versus search. Personal and Ubiquitous Computing,
17(3):583–590, 2013.

[27] G. Blasko and S. Feiner. An interaction system for watch computers us-
ing tactile guidance and bidirectional segmented strokes. In Proceedings
of the Eighth International Symposium on Wearable Computers, ISWC ’04,
pages 120–123, Washington, DC, USA, 2004. IEEE Computer Society. (to
appear).

[28] J. O. Blom and A. F. Monk. Theory of personalization of appearance: why
users personalize their pcs and mobile phones. Human–Computer Interac-
tion, 18(3):193–228, 2003.

[29] M. Böhmer and G. Bauer. The case for Context-Collaborative filtering in
pervasive services environments. In Proceedings of Workshop on Context-
aware Mobile Media and Mobile Social Networks, 2009.



xxiv BIBLIOGRAPHY

[30] M. Böhmer and G. Bauer. Improving the recommendation of mobile ser-
vices by interpreting the user’s icon arrangement. In MobileHCI: Proceed-
ings of the 11th International Conference on Human-Computer Interaction
with Mobile Devices and Services, New York, NY, USA, 2009. ACM.

[31] M. Böhmer and G. Bauer. Exploiting the icon arrangement on mobile de-
vices as information source for context-awareness. In Proceedings of the
12th international conference on Human computer interaction with mobile
devices and services, MobileHCI ’10, pages 195–198, New York, NY, USA,
2010. ACM.

[32] M. Böhmer, G. Bauer, and A. Krüger. Exploring the Design Space of Rec-
ommender Systems that Suggest Mobile Apps. In Proceedings of Workshop
on Context-Aware Recommender Systems, 2010.

[33] M. Böhmer, G. Bauer, and A. Krüger. Context tags: exploiting user-given
contextual cues for disambiguation. In Proceedings of the 13th International
Conference on Human Computer Interaction with Mobile Devices and Ser-
vices, MobileHCI ’11, pages 611–616, New York, NY, USA, 2011. ACM.

[34] M. Böhmer, G. Bauer, and W. Wicht. LBS 2.0 - enabling User-Driven provi-
sion and Context-Aware utilisation of Location-Based services. In 2008 The
Second International Conference on Mobile Ubiquitous Computing, Sys-
tems, Services and Technologies, pages 374–375. IEEE, 2008.

[35] M. Böhmer, G. Bauer, and W. Wicht. Hiding the complexity of LBS. In
LOCWEB: Proceedings of the 2nd International Workshop on Location and
the Web, pages 1–3, New York, NY, USA, 2009. ACM.

[36] M. Böhmer, L. Ganev, and A. Krüger. Appfunnel: A framework for usage-
centric evaluation of recommender systems that suggest mobile applica-
tions. In IUI: Proceedings of the 18th international conference on Intelligent
user interfaces, pages 267–276, New York, NY, USA, 2013. ACM.

[37] M. Böhmer, S. Gehring, J. Hempel, and A. Krüger. Revisiting Phone Call
UIs for Multipurpose Mobile Phones. In Proceedings of the 15th Inter-
national Conference on Human Computer Interaction with Mobile Devices
and Services. ACM, 2013. (to appear).

[38] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, and G. Bauer. Falling asleep
with Angry Birds, Facebook and Kindle: a large scale study on mobile ap-
plication usage. In Proceedings of the 13th International Conference on
Human Computer Interaction with Mobile Devices and Services, Mobile-
HCI ’11, pages 47–56, New York, NY, USA, 2011. ACM.

[39] M. Böhmer and A. Krüger. Gaming the Android OS for Improving the
Design of Smartphone Launchers. In Workshop on Informing Future Design
via Large-Scale Research Methods and Big Data at MobileHCI, 2013.



BIBLIOGRAPHY xxv

[40] M. Böhmer and A. Krüger. A study on icon arrangement by smartphone
users. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’13, pages 2137–2146, New York, NY, USA, 2013.
ACM.

[41] M. Böhmer, C. Lander, and A. Krüger. What’s in the apps for context? ex-
tending a sensor for studying app usage to informing context-awareness. In
Proceedings of 2nd International Workshop on Ubiquitous Mobile Instru-
mentation. ACM, 2013. (to appear).

[42] M. Böhmer, M. Prinz, and G. Bauer. Contextualizing Mobile Applications
for Context-aware Recommendation. In Adjunct Proceedings of Pervasive,
2010.

[43] M. Braunhofer, M. Kaminskas, and F. Ricci. Recommending music for
places of interest in a mobile travel guide. In Proceedings of the fifth ACM
conference on Recommender systems, RecSys ’11, pages 253–256, New
York, NY, USA, 2011. ACM.

[44] R. Bridle and E. McCreath. Inducing shortcuts on a mobile phone inter-
face. In Proceedings of the 11th international conference on Intelligent user
interfaces, IUI ’06, pages 327–329, New York, NY, USA, 2006. ACM.

[45] B. Brown, M. McGregor, and E. Laurier. iPhone in vivo: video analysis of
mobile device use. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’13, pages 1031–1040, New York, NY,
USA, 2013. ACM.

[46] D. Brumby and V. Seyedi. An empirical investigation into how users adapt
to mobile phone auto-locks in a multitask setting. In Proceedings of the
14th international conference on Human-computer interaction with mobile
devices and services, MobileHCI ’12, pages 281–290, New York, NY, USA,
2012. ACM.

[47] D. P. Brumby, S. C. E. Davies, C. P. Janssen, and J. J. Grace. Fast or safe?:
how performance objectives determine modality output choices while inter-
acting on the move. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’11, pages 473–482, New York, NY,
USA, 2011. ACM.

[48] D. P. Brumby, D. D. Salvucci, and A. Howes. Focus on driving: how cogni-
tive constraints shape the adaptation of strategy when dialing while driving.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’09, pages 1629–1638, New York, NY, USA, 2009. ACM.

[49] A. Brush and K. Inkpen. Yours, mine and ours? sharing and use of tech-
nology in domestic environments. In J. Krumm, G. D. Abowd, A. Senevi-
ratne, and T. Strang, editors, UbiComp 2007: Ubiquitous Computing, vol-



xxvi BIBLIOGRAPHY

ume 4717 of Lecture Notes in Computer Science, chapter 7, pages 109–126.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[50] A. Budde and F. Michahelles. Product empire — serious play with barcodes.
In Proceedings of Internet of Things, IOT 2010, pages 1–7. IEEE, 2010.

[51] P. Buddharaju, Y. Fujiki, I. Pavlidis, and E. Akleman. A novel way to con-
duct human studies and do some good. In CHI ’10 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’10, pages 4699–4702, New
York, NY, USA, 2010. ACM.

[52] J. Budzik and K. J. Hammond. User interactions with everyday applications
as context for just-in-time information access. In Proceedings of the 5th
international conference on Intelligent user interfaces, IUI ’00, pages 44–
51, New York, NY, USA, 2000. ACM.

[53] E. Buie and M. Blythe. Spirituality: there’s an app for that! (but not a lot of
research). In CHI ’13 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’13, pages 2315–2324, New York, NY, USA, 2013. ACM.

[54] S. Butt and J. G. Phillips. Personality and self reported mobile phone use.
Comput. Hum. Behav., 24(2):346–360, 2008.

[55] P. G. Campos, I. Cantador, and F. Díez. Exploiting time contexts in col-
laborative filtering: an item splitting approach. In Proceedings of the 3rd
Workshop on Context-awareness in Retrieval and Recommendation, CaRR
’13, pages 3–6, New York, NY, USA, 2013. ACM.

[56] J. Cauchard, M. Löchtefeld, M. Fraser, A. Krüger, and S. Subramanian.
m+pSpaces: virtual workspaces in the spatially-aware mobile environment.
In Proceedings of the 14th international conference on Human-computer
interaction with mobile devices and services, MobileHCI ’12, pages 171–
180, New York, NY, USA, 2012. ACM.

[57] A. Charland and B. Leroux. Mobile application development: web vs. na-
tive. Commun. ACM, 54(5):49–53, 2011.

[58] X. A. Chen. Body-centric interaction with mobile devices. In Proceedings
of the Sixth International Conference on Tangible, Embedded and Embodied
Interaction, TEI ’12, pages 385–386, New York, NY, USA, 2012. ACM.

[59] G. Chittaranjan, J. Blom, and D. Gatica-Perez. Who’s who with Big-Five:
Analyzing and classifying personality traits with smartphones. In 2011 15th
Annual International Symposium on Wearable Computers, pages 29–36.
IEEE, 2011.

[60] G. Chittaranjan, J. Blom, and D. G. Perez. Mining large-scale smartphone
data for personality studies. Personal Ubiquitous Comput., 17(3):433–450,
2013.



BIBLIOGRAPHY xxvii

[61] T. Choudhury, G. Borriello, S. Consolvo, D. Haehnel, B. Harrison, B. Hem-
ingway, J. Hightower, P. Klasnja, K. Koscher, A. LaMarca, J. A. Landay,
L. LeGrand, J. Lester, A. Rahimi, A. Rea, and D. Wyatt. The mobile sens-
ing platform: An embedded activity recognition system. IEEE Pervasive
Computing, 7(2):32–41, 2008.

[62] A. Y. K. Chua, R. S. Balkunje, and D. H. L. Goh. Fulfilling mobile infor-
mation needs: a study on the use of mobile phones. In Proceedings of the
5th International Conference on Ubiquitous Information Management and
Communication, ICUIMC ’11, page Article No. 92, New York, NY, USA,
2011. ACM.

[63] K. Church, M. Cherubini, J. Neumann, and N. Oliver. Understanding mobile
information needs on a large-scale: tools, experiences and challenges. In
Proceedings of the 2nd international workshop on Research in the large,
LARGE ’11, pages 1–4, New York, NY, USA, 2011. ACM.

[64] K. Church, A. Cousin, and N. Oliver. I wanted to settle a bet!: understanding
why and how people use mobile search in social settings. In Proceedings
of the 14th international conference on Human-computer interaction with
mobile devices and services, MobileHCI ’12, pages 393–402, New York,
NY, USA, 2012. ACM.

[65] K. Church and N. Oliver. Understanding mobile web and mobile search
use in today’s dynamic mobile landscape. In Proceedings of the 13th Inter-
national Conference on Human Computer Interaction with Mobile Devices
and Services, MobileHCI ’11, pages 67–76, New York, NY, USA, 2011.
ACM.

[66] K. Church and B. Smyth. Understanding mobile information needs. In
Proceedings of the 10th international conference on Human computer inter-
action with mobile devices and services, MobileHCI, pages 493–494, New
York, NY, USA, 2008. ACM.

[67] K. Church and B. Smyth. Understanding the intent behind mobile infor-
mation needs. In Proceedings of the 14th international conference on In-
telligent user interfaces, IUI, pages 247–256, New York, NY, USA, 2009.
ACM.

[68] K. Church, B. Smyth, K. Bradley, and P. Cotter. A large scale study of eu-
ropean mobile search behaviour. In Proceedings of the 10th international
conference on Human computer interaction with mobile devices and ser-
vices, MobileHCI ’08, pages 13–22, New York, NY, USA, 2008. ACM.

[69] S. Clinch, N. Davies, T. Kubitza, and A. Schmidt. Designing application
stores for public display networks. In Proceedings of the 2012 International
Symposium on Pervasive Displays, PerDis ’12, New York, NY, USA, 2012.
ACM.



xxviii BIBLIOGRAPHY

[70] A. Cockburn, C. Gutwin, and S. Greenberg. A predictive model of menu
performance. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI ’07, pages 627–636, New York, NY, USA,
2007. ACM.

[71] P. Coulton and W. Bamford. Experimenting through mobile ’apps’ and ’app
stores’. Int. J. Mob. Hum. Comput. Interact., 3(4):55–70, 2011.

[72] H. Cramer, M. Rost, N. Belloni, F. Bentley, and D. Chincholle. Research in
the large. using app stores, markets, and other wide distribution channels in
ubicomp research. In Proceedings of the 12th ACM international conference
adjunct papers on Ubiquitous computing - Adjunct, Ubicomp ’10 Adjunct,
pages 511–514, New York, NY, USA, 2010. ACM.

[73] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algo-
rithms on top-n recommendation tasks. In Proceedings of the fourth ACM
conference on Recommender systems, RecSys ’10, pages 39–46, New York,
NY, USA, 2010. ACM.

[74] Y. Cui and V. Roto. How people use the web on mobile devices. In
Proc.eeding of the 17th international conference on World Wide Web,
WWW, pages 905–914, New York, NY, USA, 2008. ACM.

[75] L. Dabbish, G. Mark, and V. M. González. Why do i keep interrupting
myself?: environment, habit and self-interruption. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’11,
pages 3127–3130, New York, NY, USA, 2011. ACM.

[76] C. Davidsson and S. Moritz. Utilizing implicit feedback and context to
recommend mobile applications from first use. In Proceedings of the 2011
Workshop on Context-awareness in Retrieval and Recommendation, CaRR
’11, pages 19–22, New York, NY, USA, 2011. ACM.

[77] T. Davies and A. Beeharee. The case of the missed icon: change blindness
on mobile devices. In Proceedings of the 2012 ACM annual conference on
Human Factors in Computing Systems, CHI ’12, pages 1451–1460, New
York, NY, USA, 2012. ACM.

[78] E. S. De Guzman, M. Sharmin, and B. P. Bailey. Should i call now? un-
derstanding what context is considered when deciding whether to initiate
remote communication via mobile devices. In Proceedings of Graphics In-
terface 2007, GI ’07, pages 143–150, New York, NY, USA, 2007. ACM.

[79] R. Demumieux and P. Losquin. Gather customer’s real usage on mobile
phones. In Proc.eedings of the 7th international conference on Human com-
puter interaction with mobile devices and services, MobileHCI, pages 267–
270, New York, NY, USA, 2005. ACM.



BIBLIOGRAPHY xxix

[80] A. K. Dey. Understanding and using context. Personal and Ubiquitous
Computing, 5(1):4–7–7, 2001.

[81] A. K. Dey, D. Ferreira, and V. Kostakos. Lessons learned from Large-Scale
user studies: Using android market as a source of data. Int. J. Mob. Hum.
Comput. Interact., 4(3):28–43, 2012.

[82] A. K. Dey and J. Mankoff. Designing mediation for context-aware applica-
tions. ACM Trans. Comput.-Hum. Interact., 12(1):53–80, 2005.

[83] A. K. Dey, K. Wac, D. Ferreira, K. Tassini, J. H. Hong, and J. Ramos. Get-
ting closer: an empirical investigation of the proximity of user to their smart
phones. In Proceedings of the 13th international conference on Ubiqui-
tous computing, UbiComp ’11, pages 163–172, New York, NY, USA, 2011.
ACM.

[84] T. M. Do and D. Gatica-Perez. Where and what: Using smartphones to
predict next locations and applications in daily life. Pervasive and Mobile
Computing, (to appear), 2013.

[85] T. M. T. Do, J. Blom, and D. G. Perez. Smartphone usage in the wild: a
large-scale analysis of applications and context. In Proceedings of the 13th
international conference on multimodal interfaces, ICMI ’11, pages 353–
360, New York, NY, USA, 2011. ACM.

[86] T. M. T. Do and D. G. Perez. By their apps you shall understand them:
mining large-scale patterns of mobile phone usage. In Proceedings of the
9th International Conference on Mobile and Ubiquitous Multimedia, MUM
’10, New York, NY, USA, 2010. ACM.

[87] J. Dostal, P. O. Kristensson, and A. Quigley. Subtle gaze-dependent tech-
niques for visualising display changes in multi-display environments. In
Proceedings of the 2013 international conference on Intelligent user inter-
faces, IUI ’13, pages 137–148, New York, NY, USA, 2013. ACM.

[88] P. Dourish. What we talk about when we talk about context. Personal
Ubiquitous Comput., 8(1):19–30, 2004.

[89] N. Eagle and A. S. Pentland. Reality mining: sensing complex social sys-
tems. Personal Ubiquitous Comput., 10(4):255–268, 2006.

[90] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin. A first
look at traffic on smartphones. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement, IMC ’10, pages 281–287, New York,
NY, USA, 2010. ACM.

[91] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and
D. Estrin. Diversity in smartphone usage. In Proceedings of the 8th interna-



xxx BIBLIOGRAPHY

tional conference on Mobile systems, applications, and services, MobiSys
’10, pages 179–194, New York, NY, USA, 2010. ACM.

[92] S. Feiner, B. MacIntyre, T. Hollerer, and A. Webster. A touring machine:
Prototyping 3D mobile augmented reality systems for exploring the urban
environment. In Proceedings of the 1st IEEE International Symposium on
Wearable Computers, ISWC ’97, page 74, Washington, DC, USA, 1997.
IEEE Computer Society.

[93] D. Ferreira, A. K. Dey, and V. Kostakos. Understanding human-smartphone
concerns: a study of battery life. In Proceedings of the 9th international con-
ference on Pervasive computing, Pervasive’11, pages 19–33, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[94] L. Findlater and J. McGrenere. A comparison of static, adaptive, and adapt-
able menus. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’04, pages 89–96, New York, NY, USA, 2004.
ACM.

[95] L. Findlater and J. McGrenere. Impact of screen size on performance,
awareness, and user satisfaction with adaptive graphical user interfaces. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’08, pages 1247–1256, New York, NY, USA, 2008. ACM.

[96] J. E. Fischer, C. Greenhalgh, and S. Benford. Investigating episodes of
mobile phone activity as indicators of opportune moments to deliver noti-
fications. In Proceedings of the 13th International Conference on Human
Computer Interaction with Mobile Devices and Services, MobileHCI ’11,
pages 181–190, New York, NY, USA, 2011. ACM.

[97] J. E. Fischer, N. Yee, V. Bellotti, N. Good, S. Benford, and C. Greenhalgh.
Effects of content and time of delivery on receptivity to mobile interruptions.
In Proceedings of the 12th international conference on Human computer
interaction with mobile devices and services, MobileHCI ’10, pages 103–
112, New York, NY, USA, 2010. ACM.

[98] J. A. Flanagan. Unsupervised clustering of context data and learning user
requirements for a mobile device. In A. Dey, B. Kokinov, D. Leake, and
R. Turner, editors, Modeling and Using Context, volume 3554 of Lecture
Notes in Computer Science, pages 155–168. Springer Berlin Heidelberg,
2005.

[99] J. A. Flanagan. An unsupervised learning paradigm for Peer-to-Peer labeling
and naming of locations and contexts. In M. Hazas, J. Krumm, and T. Strang,
editors, Location- and Context-Awareness, volume 3987 of Lecture Notes in
Computer Science, pages 204–221. Springer, Berlin, Heidelberg, 2006.



BIBLIOGRAPHY xxxi

[100] J. Froehlich, M. Y. Chen, S. Consolvo, B. Harrison, and J. A. Landay. My-
Experience: a system for in situ tracing and capturing of user feedback on
mobile phones. In Proc.eedings of the 5th international conference on Mo-
bile systems, applications and services, MobiSys, pages 57–70, New York,
NY, USA, 2007. ACM.

[101] Y. Fukazawa, M. Hara, M. Onogi, and H. Ueno. Automatic mobile menu
customization based on user operation history. In MobileHCI: Proceedings
of the 11th International Conference on Human-Computer Interaction with
Mobile Devices and Services, pages 1–4, New York, NY, USA, 2009. ACM.

[102] I. Giannopoulos, P. Kiefer, and M. Raubal. GeoGazemarks: providing gaze
history for the orientation on small display maps. In Proceedings of the 14th
ACM international conference on Multimodal interaction, ICMI ’12, pages
165–172, New York, NY, USA, 2012. ACM.

[103] A. Girardello and F. Michahelles. AppAware: which mobile applications are
hot? In Proceedings of the 12th international conference on Human com-
puter interaction with mobile devices and services, MobileHCI ’10, pages
431–434, New York, NY, USA, 2010. ACM.

[104] A. Girardello and F. Michahelles. Explicit and Implicit Ratings for Mobile
Applications. In Proceedings of INFORMATIK 2010, pages 606–612, Bonn,
2010. Gesellschaft für Informatik.

[105] M. Gorgoglione, U. Panniello, and A. Tuzhilin. The effect of context-aware
recommendations on customer purchasing behavior and trust. In Proceed-
ings of the fifth ACM conference on Recommender systems, RecSys ’11,
pages 85–92, New York, NY, USA, 2011. ACM.

[106] S. A. Grandhi, R. Schuler, and Q. G. Jones. Telling calls: facilitating mo-
bile phone conversation grounding and management. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’11,
pages 2153–2162, New York, NY, USA, 2011. ACM.

[107] S. A. Grandhi, R. P. Schuler, and Q. Jones. Telling calls: making informed
call handling decisions. In Proceedings of the 8th ACM Conference on De-
signing Interactive Systems, DIS ’10, pages 43–46, New York, NY, USA,
2010. ACM.

[108] S. Gustafson, C. Holz, and P. Baudisch. Imaginary phone: learning imag-
inary interfaces by transferring spatial memory from a familiar device. In
Proc. of UIST, pages 283–292, New York, NY, USA, 2011. ACM.

[109] J. Häkkilä and C. Chatfield. Personal customisation of mobile phones: a case
study. In Proceedings of the 4th Nordic conference on Human-computer
interaction: changing roles, NordiCHI ’06, pages 409–412, New York, NY,
USA, 2006. ACM.



xxxii BIBLIOGRAPHY

[110] E. Harmon and M. Mazmanian. Stories of the smartphone in everyday dis-
course: conflict, tension &#38; instability. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’13, pages 1051–
1060, New York, NY, USA, 2013. ACM.

[111] R. Harr and V. Kaptelinin. Interrupting or not: exploring the effect of social
context on interrupters’ decision making. In Proceedings of the 7th Nordic
Conference on Human-Computer Interaction: Making Sense Through De-
sign, NordiCHI ’12, pages 707–710, New York, NY, USA, 2012. ACM.

[112] C. Hayes, P. Massa, P. Cunningham, P. Avesani, and P. Cunningham. An
on-line evaluation framework for recommender systems. In Workshop on
Personalization and Recommendation in E-Commerce, 2002.

[113] T. Henderson and F. B. Abdesslem. Scaling measurement experiments to
planet-scale: ethical, regulatory and cultural considerations. In Proceedings
of the 1st ACM International Workshop on Hot Topics of Planet-Scale Mo-
bility Measurements, HotPlanet ’09, pages 1–5, New York, NY, USA, 2009.
ACM.

[114] N. Henze and S. Boll. Push the study to the app store: evaluating off-screen
visualizations for maps in the android market. In Proceedings of the 12th in-
ternational conference on Human computer interaction with mobile devices
and services, MobileHCI ’10, pages 373–374, New York, NY, USA, 2010.
ACM.

[115] N. Henze and S. Boll. Release your app on sunday eve: finding the best time
to deploy apps. In Proceedings of the 13th International Conference on Hu-
man Computer Interaction with Mobile Devices and Services, MobileHCI
’11, pages 581–586, New York, NY, USA, 2011. ACM.

[116] N. Henze and M. Pielot. App stores: external validity for mobile HCI.
interactions, 20(2):33–38, 2013.

[117] N. Henze, M. Pielot, B. Poppinga, T. Schinke, and S. Boll. My app is an ex-
periment: Experience from user studies in mobile app stores. International
Journal of Mobile Human Computer Interaction, 3(4):71–91, 2011.

[118] N. Henze, B. Poppinga, and S. Boll. Experiments in the wild: public eval-
uation of off-screen visualizations in the android market. In Proc.eedings
of the 6th Nordic Conference on Human-Computer Interaction: Extending
Boundaries, NordiCHI, pages 675–678, New York, NY, USA, 2010. ACM.

[119] N. Henze, E. Rukzio, and S. Boll. 100,000,000 taps: analysis and improve-
ment of touch performance in the large. In Proceedings of the 13th Inter-
national Conference on Human Computer Interaction with Mobile Devices
and Services, MobileHCI ’11, pages 133–142, New York, NY, USA, 2011.
ACM.



BIBLIOGRAPHY xxxiii

[120] J. L. Herlocker, J. A. Konstan, and J. Riedl. Explaining collaborative fil-
tering recommendations. In Proceedings of the 2000 ACM conference on
Computer supported cooperative work, CSCW ’00, pages 241–250, New
York, NY, USA, 2000. ACM.

[121] D. M. Hilbert and D. F. Redmiles. An approach to large-scale collection
of application usage data over the internet. In Proceedings of the 20th in-
ternational conference on Software engineering, ICSE ’98, pages 136–145,
Washington, DC, USA, 1998. IEEE Computer Society.

[122] A. M. Hinze, C. Chang, and D. M. Nichols. Contextual queries express
mobile information needs. In Proceedings of the 12th international con-
ference on Human computer interaction with mobile devices and services,
MobileHCI ’10, pages 327–336, New York, NY, USA, 2010. ACM.

[123] J. Ho and S. S. Intille. Using context-aware computing to reduce the per-
ceived burden of interruptions from mobile devices. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’05,
pages 909–918, New York, NY, USA, 2005. ACM.

[124] A. Holzer and J. Ondrus. Mobile application market: A developer’s per-
spective. Telematics and Informatics, 28(1):22–31, 2011.

[125] F.-Y. Hong, S.-I. Chiu, and D.-H. Huang. A model of the relationship be-
tween psychological characteristics, mobile phone addiction and use of mo-
bile phones by taiwanese university female students. Computers in Human
Behavior, 28(6):2152–2159, 2012.

[126] J. Huhtala, J. Mäntyjärvi, A. Ahtinen, L. Ventä, and M. Isomursu. An-
imated transitions for adaptive small size mobile menus. In Proceedings
of the 12th IFIP TC 13 International Conference on Human-Computer In-
teraction: Part I, volume 5726 of INTERACT ’09, pages 772–781, Berlin,
Heidelberg, 2009. Springer-Verlag.

[127] S. T. Iqbal and B. P. Bailey. Leveraging characteristics of task structure to
predict the cost of interruption. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’06, pages 741–750, New
York, NY, USA, 2006. ACM.

[128] S. T. Iqbal and E. Horvitz. Disruption and recovery of computing tasks: field
study, analysis, and directions. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’07, pages 677–686, New
York, NY, USA, 2007. ACM.

[129] S. T. Iqbal, E. Horvitz, Y. C. Ju, and E. Mathews. Hang on a sec!: effects of
proactive mediation of phone conversations while driving. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’11, pages 463–472, New York, NY, USA, 2011. ACM.



xxxiv BIBLIOGRAPHY

[130] S. T. Iqbal, Y. C. Ju, and E. Horvitz. Cars, calls, and cognition: investigating
driving and divided attention. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’10, pages 1281–1290, New
York, NY, USA, 2010. ACM.

[131] H. Ishii, A. Mazalek, and J. Lee. Bottles as a minimal interface to access
digital information. In CHI ’01 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’01, pages 187–188, New York, NY, USA,
2001. ACM.

[132] D. Jannach and K. Hegelich. A case study on the effectiveness of recommen-
dations in the mobile internet. In Proc.eedings of the third ACM conference
on Recommender systems, RecSys, pages 205–208, New York, NY, USA,
2009. ACM.

[133] S. Jenson. Mobile apps and the approaching zombie apocalypse. In Pro-
ceedings of the 12th international conference on Human computer inter-
action with mobile devices and services, MobileHCI ’10, pages 5–6, New
York, NY, USA, 2010. ACM.

[134] J. Jin and L. A. Dabbish. Self-interruption on the computer: a typology of
discretionary task interleaving. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’09, pages 1799–1808, New
York, NY, USA, 2009. ACM.

[135] J. Johnson. Designing with the mind in mind. Morgan Kaufman, 2010.

[136] P. Johnson. Usability and mobility; interactions on the move. In First work-
shop on human computer interaction with mobile devices, 1998.

[137] E. Kaasinen. User needs for location-aware mobile services. Personal and
Ubiquitous Computing, 7(1):70–79, 2003.

[138] D. Kamisaka, S. Muramatsu, H. Yokoyama, and T. Iwamoto. Operation pre-
diction for Context-Aware user interfaces of mobile phones. In Proceedings
of Ninth Annual International Symposium on Applications and the Internet,
SAINT ’09, pages 16–22. IEEE, 2009.

[139] A. Karatzoglou, L. Baltrunas, and M. Böhmer. Collaborative context-aware
preference learning. In NIPS Workshop on Choice Models and Preference
Learning, 2011.

[140] A. Karatzoglou, L. Baltrunas, K. Church, and M. Böhmer. Climbing the
app wall: enabling mobile app discovery through context-aware recommen-
dations. In Proceedings of the 21st ACM international conference on In-
formation and knowledge management, CIKM ’12, pages 2527–2530, New
York, NY, USA, 2012. ACM.



BIBLIOGRAPHY xxxv

[141] H. Karjaluoto, J. Karvonen, M. Kesti, T. Koivumäki, M. Manninen,
J. Pakola, A. Ristola, and J. Salo. Factors affecting consumer choice of mo-
bile phones: Two studies from finland. Journal of Euromarketing, 14(3):59–
82, 2005.

[142] A. K. Karlson, S. T. Iqbal, B. Meyers, G. Ramos, K. Lee, and J. C. Tang.
Mobile taskflow in context: a screenshot study of smartphone usage. In
Proc. of CHI ’10, CHI ’10, pages 2009–2018, New York, NY, USA, 2010.
ACM.

[143] S. Karpischek, F. Michahelles, and E. Fleisch. my2cents: enabling research
on consumer-product interaction. Personal Ubiquitous Comput., 16(6):613–
622, 2012.

[144] J. H. Kim and K. P. Lee. Culturally adapted mobile phone interface design:
correlation between categorization style and menu structure. In Proceedings
of the 9th international conference on Human computer interaction with
mobile devices and services, MobileHCI ’07, pages 379–382, New York,
NY, USA, 2007. ACM.

[145] A. L. S. King, A. M. Valença, A. C. O. Silva, T. Baczynski, M. R. Carvalho,
and A. E. Nardi. Nomophobia: Dependency on virtual environments or
social phobia? Computers in Human Behavior, 29(1):140–144, 2013.

[146] N. Kiukkonen, B. J., O. Dousse, D. Gatica-Perez, and L. J. Towards rich
mobile phone datasets: Lausanne data collection campaign. In Proceedings
of International Conference on Pervasive Services, ICPS 2010. ACM, 2010.

[147] J. Kjeldskov and J. Paay. Indexicality: Understanding mobile human-
computer interaction in context. ACM Trans. Comput.-Hum. Interact., 17(4),
2010.

[148] B. Knijnenburg, M. Willemsen, Z. Gantner, H. Soncu, and C. Newell. Ex-
plaining the user experience of recommender systems. User Modeling and
User-Adapted Interaction, 22(4-5):441–504, 2012.

[149] J. Knittel, A. S. Shirazi, N. Henze, and A. Schmidt. Utilizing contextual
information for mobile communication. In CHI ’13 Extended Abstracts on
Human Factors in Computing Systems, CHI EA ’13, pages 1371–1376, New
York, NY, USA, 2013. ACM.

[150] J. A. Konstan and J. Riedl. Recommender systems: from algorithms to user
experience. User Modeling and User-Adapted Interaction, 22(1):101–123,
2012.

[151] M. Kranz, L. Murmann, and F. Michahelles. Research in the large: Chal-
lenges for large-scale mobile application research – a case study about nfc
adoption using gamification via an app store. International Journal of Mo-
bile Human Computer Interaction, 5(1):45–61, 2013.



xxxvi BIBLIOGRAPHY

[152] C. Kray and M. Rohs. Swiss Army Knife meets Camera Phone: Tool Selec-
tion and Interaction using Visual Markers. In Proc. Joint Workshops MIRW
and MGuides, 2007.

[153] S. Kujala and T. M. Shatz. Emotions, experiences and usability in real-life
mobile phone use. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’13, pages 1061–1070, New York, NY,
USA, 2013. ACM.

[154] X. Lang, E. Oreglia, and S. Thomas. Social practices and mobile phone use
of young migrant workers. In Proceedings of the 12th international con-
ference on Human computer interaction with mobile devices and services,
MobileHCI ’10, pages 59–62, New York, NY, USA, 2010. ACM.

[155] I. Lee, J. Kim, and J. Kim. Use contexts for the mobile internet: A longitu-
dinal study monitoring actual use of mobile internet services. International
Journal of Human-Computer Interaction, 18(3):269–292, 2005.

[156] J. S. Lee and J. C. Lee. Context awareness by case-based reasoning in a mu-
sic recommendation system. In Proceedings of the 4th international con-
ference on Ubiquitous computing systems, UCS’07, pages 45–58, Berlin,
Heidelberg, 2007. Springer.

[157] L. Leiva, M. Böhmer, S. Gehring, and A. Krüger. Back to the app: the
costs of mobile application interruptions. In Proceedings of the 14th in-
ternational conference on Human-computer interaction with mobile devices
and services, MobileHCI ’12, pages 291–294, New York, NY, USA, 2012.
ACM.

[158] D. Lottridge and M. Chignell. Driving under the influence of phones: The
importance of cognitive ability and cognitive style on Interruption-Related
performance. Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, 51(20):1393–1397, 2007.

[159] Q. H. Mahmoud and P. Popowicz. Toward a framework for the discovery and
acquisition of mobile applications. In 2010 Ninth International Conference
on Mobile Business and 2010 Ninth Global Mobility Roundtable (ICMB-
GMR), pages 58–65. IEEE, 2010.

[160] N. Mallat, M. Rossi, V. K. Tuunainen, and A. Öörni. The impact of use
context on mobile services acceptance: The case of mobile ticketing. Infor-
mation & Management, 46(3):190–195, 2009.

[161] S. Marathe and S. S. Sundar. What drives customization?: control or iden-
tity? In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’11, pages 781–790, New York, NY, USA, 2011. ACM.

[162] G. Mark, V. M. Gonzalez, and J. Harris. No task left behind?: examining
the nature of fragmented work. In Proceedings of the SIGCHI Conference



BIBLIOGRAPHY xxxvii

on Human Factors in Computing Systems, CHI ’05, pages 321–330, New
York, NY, USA, 2005. ACM.

[163] S. Matsui and S. Yamada. Genetic algorithm can optimize hierarchical
menus. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’08, pages 1385–1388, New York, NY, USA,
2008. ACM.

[164] J. McDonald, T. Dayton, and D. McDonald. Adapting menu layout to tasks.
International Journal of Man-Machine Studies, 28(4):417—435, 1988.

[165] D. McMillan, A. Morrison, O. Brown, M. Hall, and M. Chalmers. Further
into the wild: Running worldwide trials of mobile systems. In P. Floréen,
A. Krüger, and M. Spasojevic, editors, Pervasive Computing, volume 6030
of Lecture Notes in Computer Science, chapter 13, pages 210–227–227.
Springer, Berlin, Heidelberg, 2010.

[166] D. McMillan, A. Morrison, and M. Chalmers. Categorised ethical guidelines
for large scale mobile HCI. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’13, pages 1853–1862, New
York, NY, USA, 2013. ACM.

[167] D. C. McMillan. Mass participation user trials. PhD thesis, University of
Glasgow, 2012.

[168] S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough:
how accuracy metrics have hurt recommender systems. In CHI ’06 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’06, pages
1097–1101, New York, NY, USA, 2006. ACM.

[169] A. Mehrotra, A. Nguyen, J. Blumenstock, and V. Mohan. Differences in
phone use between men and women: quantitative evidence from rwanda.
In Proceedings of the Fifth International Conference on Information and
Communication Technologies and Development, ICTD ’12, pages 297–306,
New York, NY, USA, 2012. ACM.

[170] E. Miluzzo, N. D. Lane, H. Lu, and A. T. Campbell. Research in the app
store era: Experiences from the cenceme app deployment on the iphone. In
Workshop at UbiComp 2010 on Research in the Large, 2010.

[171] A. Möller, M. Kranz, B. Schmid, L. Roalter, and S. Diewald. Investigating
self-reporting behavior in long-term studies. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’13, pages 2931–
2940, New York, NY, USA, 2013. ACM.

[172] A. Morrison, O. Brown, D. McMillan, and M. Chalmers. Informed consent
and users’ attitudes to logging in large scale trials. In CHI ’11 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’11, pages
1501–1506, New York, NY, USA, 2011. ACM.



xxxviii BIBLIOGRAPHY

[173] A. Morrison, D. McMillan, S. Reeves, S. Sherwood, and M. Chalmers. A
hybrid mass participation approach to mobile software trials. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI
’12, pages 1311–1320, New York, NY, USA, 2012. ACM.

[174] J. Müller. Context Adaptive Digital Signage In Transitional Spaces. PhD
thesis, University of Münster, 2008.

[175] S. Nylander, J. Faadal, and S. Mottaghy. Couch mobility: the cell phone’s
most important feature at home is mobility. In CHI ’12 Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’12, pages 1973–1978,
New York, NY, USA, 2012. ACM.

[176] S. Nylander, T. Lundquist, and A. Brännström. At home and with computer
access: why and where people use cell phones to access the internet. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’09, pages 1639–1642, New York, NY, USA, 2009. ACM.

[177] A. Oulasvirta. Finding meaningful uses for context-aware technologies: the
humanistic research strategy. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’04, pages 247–254, New York,
NY, USA, 2004. ACM.

[178] A. Oulasvirta. Rethinking experimental designs for field evaluations. Per-
vasive Computing, IEEE, 11(4):60–67, 2012.

[179] A. Oulasvirta, T. Rattenbury, L. Ma, and E. Raita. Habits make smartphone
use more pervasive. Personal Ubiquitous Comput., 16(1):105–114, 2012.

[180] A. Oulasvirta, A. Reichel, W. Li, Y. Zhang, M. Bachynskyi, K. Vertanen,
and P. O. Kristensson. Improving two-thumb text entry on touchscreen de-
vices. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’13, pages 2765–2774, New York, NY, USA, 2013.
ACM.

[181] A. Oulasvirta, S. Tamminen, V. Roto, and J. Kuorelahti. Interaction in 4-
second bursts: the fragmented nature of attentional resources in mobile HCI.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’05, pages 919–928, New York, NY, USA, 2005. ACM.

[182] W. Pan, N. Aharony, and A. Pentland. Composite social network for pre-
dicting mobile apps installation. In AAAI’11, pages –1–1, 2011.

[183] A. Parate, M. Böhmer, D. Chu, D. Ganesan, and B. M. Marlin. Practical pre-
diction, prefetch, and prelaunch for faster access to applications on mobile
phones. In Proceedings of the 2013 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, UbiComp ’13, New York, NY, USA,
2013. ACM. (to appear).



BIBLIOGRAPHY xxxix

[184] P. Parhi, A. K. Karlson, and B. B. Bederson. Target size study for one-
handed thumb use on small touchscreen devices. In Proceedings of the 8th
conference on Human-computer interaction with mobile devices and ser-
vices, MobileHCI ’06, pages 203–210, New York, NY, USA, 2006. ACM.

[185] K. Partridge and B. Price. Enhancing mobile recommender systems with
activity inference. In G.-J. Houben, G. McCalla, F. Pianesi, and M. Zan-
canaro, editors, User Modeling, Adaptation, and Personalization, volume
5535, chapter 29, pages 307–318. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2009.

[186] J. Pasquero, S. J. Stobbe, and N. Stonehouse. A haptic wristwatch for eyes-
free interactions. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI ’11, pages 3257–3266, New York, NY,
USA, 2011. ACM.

[187] M. Pielot, N. Henze, and S. Boll. Experiments in app stores - how to ask
users for their consent? In CHI ’11 Workshop on Ethics, Logs and Video-
tape: Ethics in Large Scale Trials & User Generated Content, 2011.

[188] I. Podnar, M. Hauswirth, and M. Jazayeri. Mobile push: Delivering content
to mobile users. In Proceedings of the 22nd International Conference on
Distributed Computing Systems, ICDCSW ’02, pages 563–570, Washing-
ton, DC, USA, 2002. IEEE Computer Society.

[189] B. Poppinga, H. Cramer, M. Böhmer, A. Morrison, F. Bentley, N. Henze,
M. Rost, and F. Michahelles. Research in the large 3.0: app stores, wide dis-
tribution, and big data in MobileHCI research. In Proceedings of the 14th
international conference on Human-computer interaction with mobile de-
vices and services companion, MobileHCI ’12, pages 241–244, New York,
NY, USA, 2012. ACM.

[190] P. Pu, L. Chen, and R. Hu. A user-centric evaluation framework for recom-
mender systems. In Proc. RecSys ’11, pages 157–164, 2011.

[191] M. Raento, A. Oulasvirta, and N. Eagle. Smartphones: An emerging tool for
social scientists. Sociological Methods & Research, 37(3):426–454, 2009.

[192] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen. ContextPhone: A pro-
totyping platform for Context-Aware mobile applications. IEEE Pervasive
Computing, 4(2):51–59, 2005.

[193] M. T. Raghunath and C. Narayanaswami. User interfaces for applications
on a wrist watch. Personal Ubiquitous Comput., 6(1):17–30, 2002.

[194] A. Rahmati, C. Shepard, C. Tossell, M. Dong, Z. Wang, L. Zhong, and P. T.
Kortum. Tales of 34 iphone users: How they change and why they are
different. Technical report tr-2011-0624, Rice University, 2011.



xl BIBLIOGRAPHY

[195] A. Rahmati, C. Tossell, C. Shepard, P. Kortum, and L. Zhong. Exploring
iPhone usage: the influence of socioeconomic differences on smartphone
adoption, usage and usability. In Proceedings of the 14th international con-
ference on Human-computer interaction with mobile devices and services,
MobileHCI ’12, pages 11–20, New York, NY, USA, 2012. ACM.

[196] A. Rahmati and L. Zhong. Studying smartphone usage: Lessons from a
Four- field study. IEEE Transactions on Mobile Computing, 12(7):1417–
1427, 2013.

[197] R. M. Ratwani, A. E. Andrews, J. D. Sousk, and J. G. Trafton. The effect
of interruption modality on primary task resumption. Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, 52(4):393–397,
2008.

[198] P. Ravasio, S. G. Schär, and H. Krueger. In pursuit of desktop evolution:
User problems and practices with modern desktop systems. ACM ToCHI,
11(2):156–180, 2004.

[199] R. Rawassizadeh, M. Tomitsch, K. Wac, and Tjoa. UbiqLog: a generic mo-
bile phone-based life-log framework. Personal and Ubiquitous Computing,
17(4):621–637, 2013.

[200] D. A. Redelmeier and R. J. Tibshirani. Association between cellular-
telephone calls and motor vehicle collisions. New England Journal of
Medicine, 336(7):453–458, 1997.

[201] J. Rekimoto, Y. Ayatsuka, and K. Hayashi. Augment-able reality: Situated
communication through physical and digital spaces. In Proceedings of the
2nd IEEE International Symposium on Wearable Computers, ISWC ’98,
pages 68–75, Washington, DC, USA, 1998. IEEE.

[202] P. Resnick and H. R. Varian. Recommender systems. Commun. ACM,
40(3):56–58, 1997.

[203] D. Riboni and C. Bettini. COSAR: hybrid reasoning for context-aware ac-
tivity recognition. Personal Ubiquitous Comput., 15(3):271–289, 2011.

[204] R. Riccamboni, A. Mereu, and C. Boscarol. Keys to nature: A test on the
iphone market. In Tools for Identifying Biodiversity: Progress and Prob-
lems, pages 445–450. Edizioni Università di Trieste, 2010.

[205] F. Ricci. Mobile Recommender Systems. International Journal of Informa-
tion Technology and Tourism, 12(3):205–231, 2011.

[206] F. Ricci, L. Rokach, and B. Shapira. Introduction to recommender systems
handbook. In F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors, Rec-
ommender Systems Handbook, chapter 1, pages 1–35. Springer US, Boston,
MA, 2011.



BIBLIOGRAPHY xli

[207] Y. Rogers. HCI Theory: Classical, Modern, and Contemporary (Synthesis
Lectures on Human-Centered Informatics). Morgan & Claypool Publishers,
1 edition, 2012.

[208] Y. Rogers, H. Sharp, and J. Preece. Interaction Design: Beyond Human -
Computer Interaction. Wiley, 3 edition, 2011.

[209] R. Rosales, H. Cheng, and E. Manavoglu. Post-click conversion model-
ing and analysis for non-guaranteed delivery display advertising. In Proc.
WSDM ’12, pages 293–302, 2012.

[210] A. Said. Identifying and utilizing contextual data in hybrid recommender
systems. In Proceedings of the fourth ACM conference on Recommender
systems, RecSys ’10, pages 365–368, New York, NY, USA, 2010. ACM.

[211] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit: aiding the
development of context-enabled applications. In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems, CHI ’99, pages 434–
441, New York, NY, USA, 1999. ACM.

[212] A. Salovaara, A. Lindqvist, T. Hasu, and J. Häkkilä. The phone rings but the
user doesn’t answer: unavailability in mobile communication. In Proceed-
ings of the 13th International Conference on Human Computer Interaction
with Mobile Devices and Services, MobileHCI ’11, pages 503–512, New
York, NY, USA, 2011. ACM.

[213] D. D. Salvucci. On reconstruction of task context after interruption. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, pages 89–92, New York, NY, USA, 2010. ACM.

[214] D. D. Salvucci and P. Bogunovich. Multitasking and monotasking: the ef-
fects of mental workload on deferred task interruptions. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’10,
pages 85–88, New York, NY, USA, 2010. ACM.

[215] M. Satyanarayanan. Swiss army knife or wallet? IEEE Pervasive Comput-
ing, 4(2):2–3, 2005.

[216] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and
metrics for cold-start recommendations. In Proceedings of the 25th annual
international ACM SIGIR conference on Research and development in in-
formation retrieval, SIGIR ’02, pages 253–260, New York, NY, USA, 2002.
ACM.

[217] B. N. Schilit, D. M. Hilbert, and J. Trevor. Context-aware communication.
Wireless Communications, IEEE, 9(5):46–54, 2002.

[218] B. N. Schilit and M. M. Theimer. Disseminating active map information to
mobile hosts. IEEE Network, 8(5):22–32, 1994.



xlii BIBLIOGRAPHY

[219] A. Schmidt. Implicit human computer interaction through context. Personal
and Ubiquitous Computing, 4(2-3):191–199, 2000.

[220] A. Schmidt, M. Beigl, and Hans-W. There is more to context than location.
Computers and Graphics, 23(6):893–901, 1999.

[221] A. Schmidt, A. Takaluoma, and J. Mäntyjärvi. Context-Aware telephony
over WAP. Personal Ubiquitous Comput., 4(4):225–229, 2000.

[222] M. Schneider and S. Kiesler. Calling while driving: effects of providing
remote traffic context. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’05, pages 561–569, New York, NY,
USA, 2005. ACM.

[223] J. Schöning. Advanced User Interfaces for Spatial Information. PhD thesis,
Saarland University, 2010.

[224] A. Sears and B. Shneiderman. Split menus: effectively using selection fre-
quency to organize menus. ACM ToCHI, 1(1):27–51, 1994.

[225] W. R. Shadish, T. D. Cook, and D. T. Campbell. Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Cengage Learning,
2 edition, 2001.

[226] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum. LiveLab:
measuring wireless networks and smartphone users in the field. SIGMET-
RICS Perform. Eval. Rev., 38(3):15–20, 2011.

[227] K. Shi and K. Ali. GetJar mobile application recommendations with very
sparse datasets. In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’12, pages 204–
212, New York, NY, USA, 2012. ACM.

[228] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, A. Hanjalic, and N. Oliver.
TFMAP: optimizing MAP for top-n context-aware recommendation. In Pro-
ceedings of the 35th international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’12, pages 155–164, New York,
NY, USA, 2012. ACM.

[229] C. Shin, J. H. Hong, and A. K. Dey. Understanding and prediction of mo-
bile application usage for smart phones. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, UbiComp ’12, pages 173–182, New
York, NY, USA, 2012. ACM.

[230] F. M. Shipman, C. C. Marshall, and T. P. Moran. Finding and using implicit
structure in human-organized spatial layouts of information. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’95, pages 346–353, New York, NY, USA, 1995. ACM Press/Addison-
Wesley Publishing Co.



BIBLIOGRAPHY xliii

[231] A. S. Shirazi, M. Rohs, R. Schleicher, S. Kratz, A. Müller, and A. Schmidt.
Real-time nonverbal opinion sharing through mobile phones during sports
events. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’11, pages 307–310, New York, NY, USA, 2011.
ACM.

[232] T. Sohn, K. A. Li, W. G. Griswold, and J. D. Hollan. A diary study of mobile
information needs. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’08, pages 433–442, New York, NY,
USA, 2008. ACM.

[233] C. Speier, J. S. Valacich, and I. Vessey. The influence of task interruption on
individual decision making: An information overload perspective. Decision
Sciences, 30(2):337–360, 1999.

[234] R. St. Amant, T. E. Horton, and F. E. Ritter. Model-based evaluation of
cell phone menu interaction. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’04, pages 343–350, New York,
NY, USA, 2004. ACM.

[235] K. Stamm, S. I. Ahamed, P. Madiraju, and S. Zulkernain. Mobile intelligent
interruptions management (MIIM): a context aware unavailability system.
In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC
’10, pages 599–600, New York, NY, USA, 2010. ACM.

[236] T. Starner, S. Mann, B. Rhodes, J. Levine, J. Healey, D. Kirsch, R. W. Picard,
and A. Pentland. Augmented reality through wearable computing. Presence:
Teleoperators and Virtual Environments, 6(4):386–398, 1997.

[237] D. L. Strayer, F. A. Drews, and W. A. Johnston. Cell phone-induced fail-
ures of visual attention during simulated driving. Journal of experimental
psychology. Applied, 9(1):23–32, 2003.

[238] D. L. Strayer and W. A. Johnston. Driven to distraction: Dual-Task studies
of simulated driving and conversing on a cellular telephone. Psychological
Science, 12(6):462–466, 2001.

[239] S. Suzuki, V. Bellotti, N. Yee, B. E. John, Y. Nakao, T. Asahi, and
S. Fukuzumi. Variation in importance of time-on-task with familiarity with
mobile phone models. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’11, pages 2551–2554, New York, NY,
USA, 2011. ACM.

[240] K. Swearingen and R. Sinha. Beyond algorithms: An HCI perspective on
recommender systems. ACM SIGIR 2001 Workshop on Recommender Sys-
tems, 2001.

[241] J. Teevan and A. Hehmeyer. Understanding how the projection of availabil-
ity state impacts the reception incoming communication. In Proceedings of



xliv BIBLIOGRAPHY

the 2013 conference on Computer supported cooperative work, CSCW ’13,
pages 753–758, New York, NY, USA, 2013. ACM.

[242] J. Teevan, A. Karlson, S. Amini, A. J. B. Brush, and J. Krumm. Under-
standing the importance of location, time, and people in mobile local search
behavior. In Proceedings of the 13th International Conference on Human
Computer Interaction with Mobile Devices and Services, MobileHCI ’11,
pages 77–80, New York, NY, USA, 2011. ACM.

[243] H. ter Hofte. Xensible interruptions from your mobile phone. In Proceed-
ings of the 9th international conference on Human computer interaction
with mobile devices and services, MobileHCI ’07, pages 178–181, New
York, NY, USA, 2007. ACM.

[244] W. F. Tichy. Multitasking. In Encyclopedia of Computer Science, pages
1210–1211. John Wiley and Sons Ltd., Chichester, UK, 2003.

[245] C. C. Tossell, P. Kortum, A. Rahmati, C. Shepard, and L. Zhong. Charac-
terizing web use on smartphones. In Proceedings of the 2012 ACM annual
conference on Human Factors in Computing Systems, CHI ’12, pages 2769–
2778, New York, NY, USA, 2012. ACM.

[246] C. C. Tossell, P. Kortum, C. Shepard, A. Rahmati, and L. Zhong. An empir-
ical analysis of smartphone personalisation: measurement and user variabil-
ity. Behaviour & Information Technology, 31(10):995–1010, 2012.

[247] C. C. Tossell, P. Kortum, C. W. Shepard, A. Rahmati, and L. Zhong.
Getting real: a naturalistic methodology for using smartphones to col-
lect mediated communications. Advances in Human-Computer Interaction,
2012. http://www.hindawi.com/journals/ahci/2012/815972/, last accessed
10.07.2013.

[248] J. G. Trafton, E. M. Altmann, D. P. Brock, and F. E. Mintz. Preparing to
resume an interrupted task: effects of prospective goal encoding and ret-
rospective rehearsal. International Journal of Human-Computer Studies,
58(5):583–603, 2003.

[249] M. van Setten, S. Pokraev, and J. Koolwaaij. Context-Aware recommenda-
tions in the mobile tourist application COMPASS. In P. Bra and W. Nejdl,
editors, Adaptive Hypermedia and Adaptive Web-Based Systems, volume
3137 of Lecture Notes in Computer Science, chapter 27, pages 235–244.
Springer, Berlin, Heidelberg, 2004.

[250] P. O. S. Vaz De Melo, L. Akoglu, C. Faloutsos, and A. A. F. Loureiro.
Surprising patterns for the call duration distribution of mobile phone users.
In Proceedings of the 2010 European conference on Machine learning and
knowledge discovery in databases: Part III, ECML PKDD’10, pages 354–
369, Berlin, Heidelberg, 2010. Springer-Verlag.



BIBLIOGRAPHY xlv

[251] H. Verkasalo. Contextual patterns in mobile service usage. Personal and
Ubiquitous Computing, 13(5):331–342, 2009.

[252] H. Verkasalo, C. L. Nicolás, F. J. Molina Castillo, and H. Bouwman. Anal-
ysis of users and non-users of smartphone applications. Telemat. Inf.,
27(3):242–255, 2010.

[253] A. Vetek, J. A. Flanagan, A. Colley, and T. Keränen. SmartActions: Context-
Aware mobile phone shortcuts. In T. Gross, J. Gulliksen, P. Kotzé, L. Oestre-
icher, P. Palanque, R. Prates, and M. Winckler, editors, Proceedings of the
12th IFIP TC 13 International Conference on Human-Computer Interac-
tion: Part I, volume 5726 of INTERACT ’09, pages 796–799, Berlin, Hei-
delberg, 2009. Springer-Verlag.

[254] F. von Reischach, F. Michahelles, and A. Schmidt. The design space of
ubiquitous product recommendation systems. In MUM: Proceedings of the
8th International Conference on Mobile and Ubiquitous Multimedia, pages
1–10, New York, NY, USA, 2009. ACM.

[255] S. von Watzdorf and F. Michahelles. Accuracy of positioning data on smart-
phones. In Proceedings of the 3rd International Workshop on Location and
the Web, LocWeb ’10, New York, NY, USA, 2010. ACM.

[256] D. T. Wagner, A. Rice, and A. R. Beresford. Device Analyzer: Large-scale
mobile data collection. In Workshop on Big Data Analytics, 2013.

[257] G. Wang. Designing smule’s ocarina: The iphone’s magic flute. In Proceed-
ings of the International Conference on New Interfaces for Musical Expres-
sion, pages 303—307. http://www.nime.org/archive/?mode=ylist&y=2009,
last accessed 08.07.2013, 2009.

[258] R. Want. You are your cell phone. Pervasive Computing, IEEE, 7(2):2–4,
2008.

[259] R. Want. When cell phones become computers. IEEE Pervasive Computing,
8(2):2–5, 2009.

[260] R. Want, A. Hopper, V. F. Ao, and J. Gibbons. The active badge location
system. ACM Trans. Inf. Syst., 10(1):91–102, 1992.

[261] M. Weiser. The computer for the 21st century. Scientific American,
265(3):66–75, 1991.

[262] W. Woerndl, C. Schueller, and R. Wojtech. A hybrid recommender system
for context-aware recommendations of mobile applications. In 2007 IEEE
23rd International Conference on Data Engineering Workshop, ICDEW
’07, pages 871–878, Washington, DC, USA, 2007. IEEE.

[263] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman. Identify-
ing diverse usage behaviors of smartphone apps. In Proceedings of the 2011



xlvi BIBLIOGRAPHY

ACM SIGCOMM conference on Internet measurement conference, IMC ’11,
pages 329–344, New York, NY, USA, 2011. ACM.

[264] B. Yan and G. Chen. AppJoy: personalized mobile application discovery. In
Proceedings of the 9th international conference on Mobile systems, appli-
cations, and services, MobiSys ’11, pages 113–126, New York, NY, USA,
2011. ACM.

[265] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu. Fast app launching
for mobile devices using predictive user context. In Proceedings of the 10th
international conference on Mobile systems, applications, and services, Mo-
biSys ’12, pages 113–126, New York, NY, USA, 2012. ACM.

[266] P. Yin, P. Luo, W. C. Lee, and M. Wang. App recommendation: a contest
between satisfaction and temptation. In Proceedings of the sixth ACM in-
ternational conference on Web search and data mining, WSDM ’13, pages
395–404, New York, NY, USA, 2013. ACM.

[267] S. Zhai, P. O. Kristensson, P. Gong, M. Greiner, S. A. Peng, L. M. Liu, and
A. Dunnigan. Shapewriter on the iphone: from the laboratory to the real
world. In CHI ’09 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’09, pages 2667–2670, New York, NY, USA, 2009. ACM.

[268] C. Zhang, X. Ding, G. Chen, K. Huang, X. Ma, and B. Yan. Nihao: A
predictive smartphone application launcher. In D. Uhler, K. Mehta, and
J. Wong, editors, Mobile Computing, Applications, and Services, volume
110 of Lecture Notes of the Institute for Computer Sciences, Social Informat-
ics and Telecommunications Engineering, pages 294–313. Springer, Berlin
Heidelberg, 2013.

[269] J. Zhuang, T. Mei, S. C. H. Hoi, Y. Q. Xu, and S. Li. When recommendation
meets mobile: contextual and personalized recommendation on the go. In
Proceedings of the 13th international conference on Ubiquitous computing,
UbiComp ’11, pages 153–162, New York, NY, USA, 2011. ACM.

[270] M. Ziefle and S. Bay. Mental models of a cellular phone menu. comparing
older and younger novice users. In S. Brewster and M. Dunlop, editors, Mo-
bile Human-Computer Interaction - MobileHCI 2004, volume 3160 of Lec-
ture Notes in Computer Science, chapter 3, pages 25–37. Springer, Berlin,
Heidelberg, 2004.

[271] M. Ziefle, U. Schroeder, J. Strenk, and T. Michel. How younger and older
adults master the usage of hyperlinks in small screen devices. In Proceed-
ings of the SIGCHI conference on Human factors in computing systems, CHI
’07, pages 307–316, New York, NY, USA, 2007. ACM.

[272] A. Zimmermann, A. Lorenz, and R. Oppermann. An operational definition
of context. In B. Kokinov, D. C. Richardson, T. R. Roth-Berghofer, and



BIBLIOGRAPHY xlvii

L. Vieu, editors, Proc. CONTEXT, volume 4635 of Lecture Notes in Com-
puter Science, pages 558–571, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[273] I. Zukerman and D. W. Albrecht. Predictive statistical models for user mod-
eling. User Modeling and User-Adapted Interaction, 11(1):5–18, 2001.



xlviii BIBLIOGRAPHY



Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die
aus anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter
Angabe der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im
Ausland in gleicher oder ähnlicher Form in einem Verfahren zur Erlangung eines
akademischen Grades vorgelegt.

Matthias Böhmer
Saarbrücken, den 16. Juli 2013

xlix


	Acknowledgements
	Abstract
	Zusammenfassung
	List of Publications
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The Evolution of Mobile Phones
	1.1.1 Technological Development
	1.1.2 Ubiquitous Spread
	1.1.3 The Age of Application Stores

	1.2 Challenges and Motivation
	1.3 Research Questions
	1.4 Thesis Outline

	2 Foundations, Background and Related Work
	2.1 Context in Mobile Human-Computer Interaction
	2.2 Research Methodology
	2.2.1 Leveraging Application Stores
	2.2.2 Methodically Related Studies
	2.2.3 Methodically Related Frameworks and Datasets

	2.3 Related Work
	2.3.1 General Mobile Phone Use
	2.3.2 Mobile Web and Application Usage
	2.3.3 Menus for Launching Mobile Applications
	2.3.4 Context-aware Recommender Systems
	2.3.5 Multitasking and Task Interruptions

	2.4 Summary

	3 Launching Mobile Applications
	3.1 Introduction
	3.2 Framework for Tracing Mobile Application Usage
	3.2.1 A Sensor for Measuring Mobile Application Usage
	3.2.2 Implementation and Deployment

	3.3 Large-scale Study of Mobile Application Usage
	3.3.1 Method and Setup of Study
	3.3.2 Results of Study
	3.3.3 Implications and Discussion

	3.4 Adaptive Menu to Support Launching of Applications
	3.4.1 Design of Adaptive Menu
	3.4.2 Implementation
	3.4.3 Case Study

	3.5 Summary

	4 Housekeeping Mobile Applications
	4.1 Introduction
	4.2 Exploiting Icon Arrangements
	4.2.1 Preliminary Study
	4.2.2 System for Exploiting Icon Arrangement
	4.2.3 Discussion of Findings

	4.3 Habits of Icon Arrangement
	4.3.1 Study Method and Setup
	4.3.2 Results of Screenshot Study
	4.3.3 Implications for the Design of Launcher Menus
	4.3.4 System for Supporting Icon Arrangement

	4.4 Summary

	5 Discovering Mobile Applications
	5.1 Introduction
	5.2 Design Space of Recommender Systems
	5.2.1 Construction of Design Space
	5.2.2 Discussion of Design Space

	5.3 Deployment of a System Recommending Mobile Applications
	5.3.1 Architecture
	5.3.2 Implementation

	5.4 Usage-centric Evaluation
	5.4.1 Concept of AppFunnel
	5.4.2 Case Study of AppFunnel
	5.4.3 Discussion of the Case Study

	5.5 Summary

	6 Multitasking Between Mobile Applications
	6.1 Introduction
	6.2 The Phenomenon of Application Interruptions
	6.2.1 Log-based Study of Application Switching Behavior
	6.2.2 Results
	6.2.3 Discussion

	6.3 Re-Designing Phone Call Applications
	6.3.1 Extending Phone Call Applications
	6.3.2 Prototype Implementation
	6.3.3 Discussion

	6.4 Summary

	7 General Conclusions
	7.1 Major Contributions
	7.2 Future Work
	7.3 Closing Remarks

	Bibliography

