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SUMMARY

The available doctoral thesis is not a usual paper but it is conceived as a text book for

realistic rendering, made for students in upper courses, as well as for researchers but also

interested people.

The textbook as such ful�lls the principles of modern didactic theories, as it|in

contrast to most of mathematical text books|demonstrates the necessary mathematical

principles that are followed immediately by examples just behind their de�nition. It illus-

trates them and shows their practical use for realistic rendering. As an interdisciplinary

hinge textbook which joins mathematics to realistic rendering as a branch of computer

sciences, it attaches great importance to the exact mathematical formulation of the prob-

lem to be solve, i.e. of the formulation of the light transport equation in a vacuum as in

participating media. Of course, it values highly the imperative mathematical tools and

strategies needed therefore.

Mathematics is the science of essential importance for computer science in general,

for the fast progress of its development in particular. That is a matter of fact that our

book especially reects, courting the favor and the motivation of mathematically interested

readers and future researchers.

By its structure, it satis�es the needs of its readers: It is logically structured by

chapters. So, �rst it mentions a problem and corresponding approaches for solving it.

Furthermore it distinguishes the fundamental course contents from more special contents

to consolidate. The contents are analyzed referring to their importance for applications.

They are presented in a clear and scienti�c way.

Frommathematical view, realistic renderingmeans solving the stationary light trans-

port equation, a complicated Fredholm Integral equation of 2nd kind. Its exact solution

exists|if possible at all|only in an in�nite dimensional functional space. Whereas imple-

mentation of approaches for solving problems are in the center of attention in the existing

textbooks that treat global illumination theory, we are more interested in familiarizing our

reader with the mathematical tools which permit them to formulate the global illumina-

tion problem in accordance with strong mathematical principles and last but not least to

solve it.

New, more e�cient and more elegant algorithms to calculate approximate solutions

for the light transport equation and its existing variants must be developed in the context
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of deep and complete understanding of the light transport equation. As the problems of

realistic rendering are deeply rooted in di�erent mathematical disciplines, the complete

comprehension of all those areas must precede. There are evolving principles of functional

analysis, theory of integral equations, measure and integration theory, as well as probability

theory.

Let us consider for an example Monte Carlo light tracing. With knowledge on func-

tional analysis Monte Carlo light tracing can directly be interpreted as the dual version

of the standard algorithm of realistic rendering: Monte Carlo path tracing. The mathe-

matical foundation for this is based on the concept of the adjoint of an operator equation

from functional analysis.

Another example is Eric Veach's path integral formulation, an extremely elegant

method which can be considered as the basis of a series of e�cient rendering algorithms.

Without the concept of the measure|commonly introduced in special courses on mea-

sure theory, which are rarely visited by students of computer science|the understanding,

respectively the derivation of this elegant formulation is not conceivable. Even so fun-

damental concepts as the probability space or the random variable, de�ned as a special

measure space, respectively, measurable function, require knowledge on σ-algebras, and

countable or uncountable sets. A still deeper understanding of mathematical principles on

measure and integration theory requires the study of continuous probability spaces. Since

we search just in those probability spaces for solutions of the light transport equation, the

handling with the concept of the Lebesgue integral is inevitable. Without knowledge on

the Lebesgue integral and the underlying Lebesgue function spaces it is also not possible

to make variance analysis, which gives statements on the quality of Monte Carlo estima-

tors. Moreover, the Lebesgue integral serves|due to its properties, which let it become

a much more powerful tool than the ordinary Riemann integral|as the modern integral

notion on which the theory of integral equation is based on.

Let us also mention as a further example Eric Veach's Metropolis light transport

algorithm, a rendering procedure, which can be used to simulate di�cult lighting condi-

tions in a scene to be rendered. It is based on the M(RT)2 algorithm|developed in the

�fties of the last century|and adapted to the path integral formulation of light transport

in a vacuum. This adaptation requires, apart from solid knowledge in probability theory,

also knowledge from the theory of Markov processes, which are based on special transition

kernels, constructs from measure and integration theory. Understanding the theory of

Markov processes also requires a new machinery of convergence statements, which are not

covered by the commonly presented limit theorems from probability theory. Finally, let

us build a bridge to the �nite element method based rendering algorithms. All radiosity

methods are based on square Lebesgue-integrable function spaces, so-called Hilbert spaces,

which possess very nice properties, and therefore justify the right usage of this �ne ren-

dering technique. We could extend this short list with other examples, such as the idea to

replace random samples by deterministic chosen points in quasi-Monte Carlo methods,

or the Neumann series approach for solving Fredholm type integral equations of the 2nd
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kind, which, if it is mentioned at all, in most lectures on realistic image synthesis simply

falls from sky.

As we can already conclude from the above list of examples, realistic rendering is

intertwined with many branches of mathematics. We have set ourselves the target, to

remerge this bundle of u� of mathematical concepts and principles, to represent them

to the students in an understandable manner, and to give them, if required, exhaustive

information. That is why our book is a new and unique approach.
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ZUSAMMENFASSUNG

Die vorliegende Dissertation ist keine gew�ohnliche Abhandlung, sondern sie ist als Lehrbuch

zum Realistisic Rendering f�ur Studenten im zweiten Studienabschnitt, f�ur Forscher aber

auch alle am Thema Interessierten konzipiert.

Das Buch als solches entspricht den Prinzipien moderner Lerntheorien, indem es-

|im Unterschied zu den meisten mathematische Lehrb�uchern|die ben�otigten mathe-

matischen Prinzipien in Anschluss an die De�nition direkt an Beispielen aufzeigt, diese

illustriert und auf ihren praktischen Nutzen f�ur das realistische Rendering hinweist. Als

fach�ubergreifendes Scharnierwerk zwischen Mathematik und realistischem Rendering legt

es besonderen Wert auf die exakte mathematische Formulierung des zu l�osenden Problems-

|n�amlich der station�aren Lichttransportgleichung in einem Vakuum aber auch in partizip-

ierenden Medien|sowie der dazu verwendeten mathematischen Tools und Strategien.

Die Mathematik als Wissenschaft hat eine grundlegende Bedeutung f�ur die Informatik

im Allgemeinen, f�ur deren schnell fortschreitende Entwicklung im Besonderen. Dieser

Tatsache, die auch motivationalen Charakter f�ur mathematisch interessierte Leser und

zuk�unftige Forscher hat, tr�agt das Buch in besonderem Ma�e Rechnung. Mit seinem

Aufbau antwortet es auf die Art und Weise der Vermittlung: Es stellt das oben genannte

Problem und entsprechende L�osungsans�atze in logisch aufeinander folgenden Kapiteln dar,

unterscheidet das grundlegend zu Lernende vom Vertiefenden. Die Inhalte sind auf ihre

Bedeutung f�ur Anwendungen analysiert worden und werden sachgerecht pr�asentiert.

Aus mathematischer Sicht versteht man unter realistischem Rendering das L�osen der

station�aren Lichttransportgleichung, einer komplizierten Fredholm Integralgleichung der

2ten Art, deren exakte L�osung, wenn �uberhaupt berechenbar, nur in einem unendlich-

dimensionalen Funktionenraum existiert. W�ahrend in den existierenden B�ucher, die sich

mit globaler Beleuchtungstheorie besch�aftigen, meist vorwiegend die praktische Implemen-

tierung von L�osungsans�atzen im Vordergrund steht, sind wir eher daran interessiert den

Leser mit den mathematischen Hilfsmitteln vertraut zu machen mit welchen das globale

Beleuchtungsproblem streng mathematisch formuliert und letzendlich auch gel�ost werden

kann.

Neue, e�zientere und elegantere Algorithmen zur Berechnung zumindest approxima-

tiver L�osungen der Lichttransportgleichung und ihrer unterschiedlichen Varianten k�onnen

nur im Kontext mit einem vertieften Verst�andnis der Lichttransportgleichung entwickelt
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werden. Da die Probleme des realistischen Renderings tief in verschiedenen mathematis-

che Disziplinen verwurzelt sind, setzt das vollst�andige Verst�andnis des globalen Beleuch-

tungsproblems Kenntnisse aus verschiedenen Bereichen der Mathematik voraus. Als zen-

trale Konzepte kristallisieren sich dabei Prinzipien der Funktionalanalysis, der Theorie der

Integralgleichungen, der Ma�- und Integrationstheorie sowie der Wahrscheinlichkeitstheo-

rie heraus.

Betrachten wir als Beispiel Monte Carlo light tracing. Mit Kenntnissen aus der Funk-

tionalanalysis l�asst sich Monte Carlo light tracing direkt als duale Version des Standardal-

gorithmus im realistischen Rendering, n�amlich Monte Carlo path tracing, interpretieren.

Die mathematische Grundlage hierf�ur liegt n�amlich im dem Konzept der Adjungierten

einer Operatorgleichung aus der Funktionalanalysis.

Oder betrachten wir Eric Veach's Pfadintegralformulierung, eine �au�erst elegante

Methode auf der eine Reihe e�zienter Rendering Algorithmen basieren. Ohne das Konzept

des Ma�es|gew�ohnlich in speziellen Vorlesungen zur Ma�theorie eingef�uhrt, die von Infor-

matikstudenten fast nie besucht werden|ist das Verst�andnis bzw. die Herleitung dieser

eleganten Formulierung nicht vorstellbar. Selbst solch fundamentale Konzepte wie die

des Wahrscheinlichkeitsraums oder der Zufallsvariablen, de�niert als spezieller Ma�raum

bzw. als messbare Funktion, erfordern bereits Kenntnisse �uber σ-Algebren, abz�ahlbar

unendliche und �uberabz�ahlbar-unendliche Mengen.

Ein noch tieferes Verst�andnis mathematischer Prinzipien aus Ma�- und Integrations-

theorie erfordert das Studium stetiger Wahrscheinlichkeitsr�aume. Da wir gerade in diesen

Wahrscheinlichkeitsr�aumen stochastisch nach L�osungen der Lichttransportgleichung suchen,

ist der Umgang mit dem Konzept des Lebesgue Integrals unumg�anglich. Ohne Kenntnisse

�uber das Lebesgue Integral und die ihm unterliegenden Lebesgueschen Funktionenr�aume

sind selbst Varianzanalysen, die Aussagen �uber die Qualit�at von Monte Carlo Sch�atzern

liefern, nicht m�oglich. Zudem dient das Lebesgue Integral aufgrund seiner Eigenschaften,

die es zu einem wesentlich m�achtigeren Instrument werden lassen als das gew�ohnliche Rie-

mann Integral, als der moderne Integralbegri�, auf dem die Theorie der Integralgleichungen

aufgebaut ist.

Erw�ahnen wir als weiteres Beispiel Eric Veach's Metropolis light transport Algo-

rithmus, eine Rendering Methode, die sich zur Simulation schwieriger Lichtverh�altnisse

in einer Szene einsetzen l�asst. Sie basiert auf dem M(RT)2 Algorithmus, entwickelt in

den 50er Jahren des letzten Jahrhunderts, angepasst auf die Pfadintegralformulierung des

Lichttransports im Vakuum. Diese Anpassung erfordert neben fundierten Kenntnissen

in Wahrscheinlichkeitstheorie insbesondere auch Kenntnisse aus der Theorie der Markov

Prozesse, denen spezielle �Ubergangskerne zugrunde liegen. Das Erfassen der Theorie der

Markov Prozesse erfordert auch eine neue Maschinerie an Konvergenzaussagen, die �uber

die gew�ohnlichen Grenzwerts�atze der Wahrscheinlichkeitstheorie nicht abgedeckt sind.

Schlagen wir letztendlich noch eine Br�ucke zu den auf der �nite Elemente Methode

basierenden Rendering Algorithmen. Hier sind es die quadratisch Lebesgue-integrierbaren

Funktionenr�aume, die dem Prinzip aller Radiosity Algorithmen unterliegen.
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Wie man bereits aus dieser Reihe von Beispielen schlie�en kann, so ist das realistische

Rendering engverwoben mit vielen Bereichen der Mathematik. Wir haben uns zum Ziel

gesetzt, dieses Kn�auel an mathematischen Konzepten zu entechten, sie f�ur Studenten

gegen�uber verst�andlich darzustellen und ihnen bei Bedarf und je nach speziellem Inter-

esse ersch�opfend Auskunft zu geben. Unser Buch w�ahlt erstmalig diesen grundlegenden

interdisziplin�aren Ansatz.
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ABSTRACT

The available doctoral thesis is not a usual paper but it is conceived as a text book for

realistic rendering, made for students in upper courses, as well as for researchers and

interested people.

From mathematical point of view, realistic rendering means solving the stationary

light transport equation, a complicated Fredholm Integral equation of 2nd kind. Its exact

solution exists|if possible at all|in an in�nite dimensional functional space. Whereas

practical implementation of approaches for solving problems are in the center of attention

in the existing textbooks that treat global illumination theory, we are more interested in

familiarizing our reader with the mathematical tools which permit them to formulate the

global illumination problem in accordance with strong mathematical principles and last

but not least to solve it.

New, more e�cient and more elegant algorithms to calculate approximate solutions for

the light transport equation and their di�erent variants must be developed in the context

of deep and complete understanding of the light transport equation. As the problems

of realistic rendering are deeply rooted in di�erent mathematical disciplines, there must

precede the complete comprehension of all those areas. There are evolving principles of

functional analysis, theory of integral equations, measure and integration theory as well

as probability theory.

We have set ourselves the target to remerge this bundle of u� of mathematical

concepts and principles, to represent them to the students in an understandable manner,

and to give them, if required, exhaustive information.
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KURZFASSUNG

Die vorliegende Dissertation ist keine gew�ohnliche Abhandlung, sondern sie ist als Lehrbuch

zum realistischen Rendering f�ur Studenten im zweiten Studienabschnitt, sowie Forscher

und am Thema Interessierte konzipiert.

Aus mathematischer Sicht versteht man unter realistischem Rendering das L�osen der

station�aren Lichttransportgleichung, einer komplizierten Fredholm Integralgleichung der

2ten Art, deren exakte L�osung, wenn �uberhaupt berechenbar, nur in einem unendlich-

dimensionalen Funktionenraum existiert. W�ahrend in den existierenden B�uchern, die

sich mit globaler Beleuchtungstheorie besch�aftigen, vorwiegend die praktische Implemen-

tierung von L�osungsans�atzen im Vordergrund steht, sind wir eher daran interessiert, den

Leser mit den mathematischen Hilfsmitteln vertraut zu machen, mit welchen das globale

Beleuchtungsproblem streng mathematisch formuliert und letzendlich auch gel�ost werden

kann.

Neue, e�zientere und elegantere Algorithmen zur Berechnung zumindest approxima-

tiver L�osungen der Lichttransportgleichung und ihrer unterschiedlichen Varianten k�onnen

nur im Kontext mit einem vertieften Verst�andnis der Lichttransportgleichung entwickelt

werden. Da die Probleme des realistischen Renderings tief in verschiedenen mathematis-

chen Disziplinen verwurzelt sind, setzt das vollst�andige Verst�andnis des globalen Beleuch-

tungsproblems Kenntnisse aus verschiedenen Bereichen der Mathematik voraus. Als zen-

trale Konzepte kristallisieren sich dabei Prinzipien der Funktionalanalysis, der Theorie der

Integralgleichungen, der Ma�- und Integrationstheorie sowie der Wahrscheinlichkeitstheo-

rie heraus.

Wir haben uns zum Ziel gesetzt, dieses Kn�auel an mathematischen Konzepten zu

entechten, sie f�ur Studenten verst�andlich darzustellen und ihnen bei Bedarf und je nach

speziellem Interesse ersch�opfend Auskunft zu geben.
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MOTIVATION

Why this book has been written? At the whole beginning there was a USA journey,

a vacation at the end of the 1990s in New York City. I rummaged in the bookstore

Barnes & Noble for mathematical and computer science literature, as I have always been

interested in problems of classical mathematics and computer science. I wanted to deal

with parallelizing sequential algorithms, once a rising branch of computer science. Looking

for good corresponding literature I found a reference book for computer graphics. Its title

is Radiosity and Global Illumination, it is written by Fran�cois Sillion and Claude Puech.

Probably it was one of the �rst works that appeared in this area.

At that time I was not up to date on the development of computer graphics because

twenty years ago I had begun to be active for the German software enterprise SAP, thus

far away and cut o� of the research. As many of my colleagues, as well as many laymen,

I suited with great interest and fascination the rapid development which took computer

science in the nineties. So, further development of the classic ray tracing procedure and

radiosity methods permitted an incredibly fast progress when generating photo-realistic

images: Toy Story and A Bug's Life, two animation �lms from the software manufacturer

Pixar had been created. They exited millions of people. Their technology and their know-

how to create images got me fascinated. I wanted to know how they were generated.

The famous Toy Story and A Bug's Life gave me the opportunity to estimate the

standard of research for the industry: Without any doubt, the computer graphics commu-

nity had made much progress. However �lms as the two mentioned above could easily be

recognized as arti�cial|there were too hard shadows, there were obvious de�cits, as for

example in the representation of participating media such as smoke or fog.

However, in Sillion and Puech's Radiosity and Global Illumination I had already

found very realistic illustrations, for example, the cover of the book, rendered with a

radiosity method, which can not hardly be distinguished from a real photo. Obviously,

with radiosity methods it is possible to represent any kind of light e�ects.

Radiosity and Global Illumination pro�ted, in a much more extensive way than

other reference books in computer science, of much more concepts from mathematical

analysis, linear algebra, numerics, and probability theory. Also the connection of computer

science to physics, particularly optics, and transport theory, was completely new.

xxv
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If all these disciplines played a role for the further development of realistic rendering,

then it should be possible|by means of deeper understanding of mathematical concepts-

|to produce more e�cient, perhaps new, and rather exact procedures to produce realistic

images. My interest in calculating and optimizing images of evidently little convincing

Toy Story quality arose.

I would have liked to understand instantly at that time how to produce such pictures

by computers. As a matter of fact, I lacked the special knowledge, imperative for the

comprehension of rendering. So, I dropped my project.

Until, one year later, in my next vacation, I discovered, just in the same city and in

the same bookstore, Andrew Glassner's Principles of Digital Image Synthesis. I enjoyed

very much discovering there many background information referring to the development

of rendering algorithms. I enjoyed less the great number of omissions or misprints in

it. With the aim of understanding the principles of rendering, I read Glassner's treatise

simultaneously to Sillion and Puech's Radiosity and Global Illumination.

The problem in computer graphics consists in resolving the light transport equation,

which is a complicated integro-di�erential equation that describes the illumination of a

point in a scene, in an exact or in an approximative way.

I mainly dealt with di�erential equations during my university studies, the concept

of the integro-di�erential equation, which is based in functional analysis, is not used in

computer science but rather in physics, where it helps to describe physical processes in

mathematical terms.

The general approach to solve the light transport equation consists in transforming

it to an integral equation in order to solve it numerically or stochastically. However,

I wondered why not to try to transform the light transport equation into a di�erential

equation: there are considerably more solution methods for solving a di�erential than an

integral equation.

Once again I regarded the approach of the radiosity method, which consists in par-

titioning a scene to be rendered into a �nite net of patches. This approach didn't go out

of my head, thus I recognized a connection to my master thesis, in which I examined

algebraic multigrid methods suitable to solve partial di�erential equations. To do this,

we discretized the continuous problem and tried to solve the resulting system of equations

on a much coarser grid than where it was de�ned with the help of numerical procedures.

Then, the coarse solution was transformed via a special operator to the original grid,

resulting in a good approximation to the exact solution.

Comparing the two procedures, the common approach to solve the light transport

equation as an integral equation seemed to have some disadvantages. My own classical

mathematical approach could help to solve better the light transport equation.

From my comparison, I concluded that we could perhaps consult algebraic or geomet-

ric multigrid methods for solving this equation. I thought we could apply a geometric

or algebraic multigrid approach to the rendering equation. Since hierarchical radiosity
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methods re�ne the original net, this procedure seemed to me very similar to the multigrid

approach and would o�er a solution strategy for the rendering equation.

Around the turn of the millennium I decided to contact Philipp Slusallek, who was

building up the chair of computer graphics in Saarbr�ucken at that time and who consid-

ered my intellectual approach as interesting and worthy to research. As a specialist for

global illumination he used to solve the rendering equation by the Monte Carlo method.

So I began studying this method, too, building up a thesis entitled already: Realistic

Rendering|A Mathematical Approach.

Many technical discussions followed between him as a PhD tutor and me as a doctoral

candidate. Departing from the discussions originally focused on my thesis, there arose,

by the time, the exchange between him as a college lecturer and me as a teacher at the

high school. Gradually our subjects were converging to our common professional interest,

namely our pupils respectively students. Remark that my pupils would be his students!

We wanted to do common work to make bene�t the next generation. We decided to

exchange our experiences and to bundle our knowledge.

At the beginning we faced questions: Were my pupils pre-formed and trained ad-

equately well when they came from high school to university? Were his students, who

arrived at university after eight years of high school lessons, able to follow his lectures

and to understand his exercises? Could we help them providing them with a demanding

textbook but which �ts the needs of very young persons? How should be looking such a

textbook? In order to know how modern textbooks are made, I examined the available

textbooks like [36, Cohen & Wallace 1993], [67, Glassner 1995], [185, Shirley 2000], [50,

Dutr�e & al. 2003] and [158, Pharr & Humphreys 2004]. I noticed that they wouldn't need

any innovation or improvement. They are excellent textbooks of computer science with

the focus on practical implementation.

Our textbook should have another aim: It should be mathematically orientated, and

it should follow a strongly mathematical structure. It should be exact and su�ciently

thorough, it should be accessible and well understandable for young students. It should

give them information, and it should be exhaustive if one's special interest requires more

details. Of course, it should systematize and synthesize. In particular, our book should

characterize functional analysis, measure, and integration theory, as well as probability

theory as the three pillars on which the �eld of realistic rendering is mathematically

based. The transport of light, in vacuum but also in participating media, should be

built on a deeply anchored, mathematically based framework. So, each student should

have the chance to develop his understanding for the mathematical perspective and the

fundamental aspects of mathematics, the science on which are based all calculations in the

�eld of realistic rendering.

If the students understand the areas of functional analysis, of measure, and integra-

tion theory as well as probability theory, they will �nd out one day other algorithms or

completely new approaches suitable for arriving at even more exact approximate solu-

tions to the light transport equation and their di�erent variants, whether in stationary or
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non-stationary form, expressed in terms of scalar or vector valued functions, or valid in a

vacuum respectively in participating media.

The textbook is available in its �rst setting now. So, we hope that many students

will bene�t from our enquiries, our research, and compositions and that they will have a

deep insight into the substantial mathematical bases for the solution of the light trans-

port equation. As well we hope that they will enjoy representation, illustrations, and

explanations.



STRUCTURE OF THE BOOK

Mainly due to the continuous increase in processing power of computers, in the mean-

time computer graphics has become one of the most dynamic areas of computer science.

Keywords such as virtual reality, computer animated movies or pictures, and scienti�c

visualization apparently show this trend. Thus, theoretical results, which|due to their

huge computational and storage requirements|a few years ago are unthinkable for prac-

tical applications, determine the state of the art of the leading manufacturers of graphics

chips and graphics-based software components.

In particular, this holds for the �eld of realistic rendering, the �eld of computer

graphics dedicated to generate photorealistic images by using computers. Therefore, the

knowledge of the methods and procedures of the underlying theory and systems, related

technology and its applications is an important prerequisite for the successful career of

any computer scientist, natural scientist, and engineer.

The present book is intended to familiarize the reader with the basic concepts, prin-

ciples, but also with the most advanced techniques from the �eld of realistic rendering.

Here, we are particularly interested in the mathematics behind it. Speci�cally we will

present Monte Carlo rendering and radiosity methods as well as their recent evolutions for

solving the so-called global illumination problem, central in the �eld of realistic rendering.

It will always be our primarily interest to investigate the mathematics that carry these

methods to obtain a solid and compact fundament for further research.

The very formal, theoretical, and mathematical structure of our book seems to re-

quire knowledge of mathematical foundations. So, for reading the book, prerequisites

about functional analysis, as well as measure, integration, and probability theory are use-

ful, but not required. All needed maths is included in Chapter 2 and the Appendix A. We

only assume that the reader has any familiarity with calculus and linear algebra. Despite

the fact that many branches of higher mathematics are covered by our book in a short and

compact manner|in particular with respect to their signi�cance for the �eld of global

illumination|we are sure that an in depth study of Chapter 2 satis�es to provide the

reader with the basic building blocks from so many branches of mathematics useful for a

full understanding of photorealistic rendering. This should be achieved in particular due

to the methodical and didactical framework of the book. Additionally, we expect from
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reader a basic knowledge from some lectures about computer graphics and large interest

to look behind the facades of rendering algorithms, in expectation to be supplied with the

appropriate tools for developing new, more e�cient rendering algorithms. So, our book is

mainly designed for graduate students, but it should also be accessible to a wide spectrum

of students as an accompanying textbook for a course at the graduate level. We hope that

apart from graduate students, the researcher, and the computer enthusiast may also pro�t

from the presentation.

The chapters of our book are organized as follows: At the begin of every chapter,

within an introductory paragraph we familiarize the reader with the content of the chapter.

Here, you �nd out how the chapter is organized, and often, the prerequisites required for

understanding the content of the chapter are already summarized. In the whole book,

important de�nitions, theorems, concepts, constructs, and principles are accessible over

and over again via links in the marginal area of the text. This ensures at one hand that the

knowledge, necessary to understand a chapter, at the appropriate time is present and on

the other hand that the joy of the learner is maintained in spite of some abstract content.
Chapter 1 serves as an introduction. It presents the global illumination problem and

should make aware the reader of mathematics that we will use to formulate and solve the

integral equations underlying the global illumination problem.
In Chapter 2, we introduce the most important mathematical concepts that are needed

to understand the principles of rendering and radiosity methods from �eld of computer

graphics. This material is fundamental for those who are not familiar with functional

analysis, measure, integration, and probability theory. The chapter is divided in four parts:

In the �rst part, we introduce fundamental results from functional analysis that are needed

to understand the theory and the derivation of solution methods of integral equation, such

as: function spaces, linear operators, as well as linear and adjoint operator equations.

The second part of Chapter 2 is devoted to the Lebesgue integral. It is the mathematical

basis of many physical processes. Without this integral notation a strong mathematical

treatment of many physical and stochastic problems is not possible. Afterwards, we talk

about integral equations and the role they play in the �eld of global illumination theory.

So, we present analytically based iteration methods for solving integral equations, and we

will show how the concept of the adjoint can lead to new solution approaches for Fredholm

type equations. Last but not least, the fourth part of the chapter contains an in-depth

description of probability theory. Here, we introduce the concept of the probability space

based on the notion of the measure space from measure theory. We present random

variables as measurable functions from abstract probability spaces into the well-known

Borel sets over Rn, and we will show how the expected value and the variance of a random

variable can be used to make statements about the convergence behavior of sequences of

random variables. The chapter is �nished with a small overview on Markov chains and

Markov processes.
To familiarize the reader with the physical processes involved in the simulation of

global illumination, Chapter 3 deals with the measurement of light. So, we will talk about
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the transport of abstract particles and photons, and we give an overview of the most

relevant concepts of radiometry used in the �eld of transport theory that are needed to

formulate our light transport equations. With the radiometric quantity radiance, then

we introduce the basic concept from radiometry on which all other radiometric quantities

can be de�ned. Since photometry is closely coupled with radiometry, we also shortly talk

about photometry.

Based on principles of transport theory, mathematical derivations of the various par-

ticle transport equations follows in Chapter 4. This chapter can also be seen as being

divided into four parts. First, we derive the stationary particle transport equations in

scalar form. The second part of Chapter 4 is devoted to the scattering behavior of light at

object surfaces. Here, we will formulate these processes via a series of various mathemati-

cal functions, so-called bidirectional distribution functions. After that, we derive di�erent

formulations of the equations of light and importance transport. These are the integral

equations to be solved using rendering algorithms based on Monte Carlo methods. Last

but not least, we will present the measurement equation, the mathematical formulation of

the global illumination problem which has to be solved in realistic rendering.

In Chapter 5 we will develop various mathematical models of light and importance

transport. Here, we discuss in detail two models in detail. The �rst is based on the

functional analytical concept of the operator, as a mapping between linear spaces. The

other is the so-called path integral model of light transport, which is based on a measure

theoretical approach. The entire chapter is of a very formal and theoretical character, since

we try to attempt, for the �rst time in the �eld of global illumination, to de�ne all needed

concepts and constructs in a strict mathematical manner. So, we will exactly describe

the underlying function spaces and operators, and we will also show the construction of

the path measures in more detail, starting with the σ-algebras on which they are de�ned.

Although this approach is of a very theoretical nature, we are convinced that it is the

right way to a complete understanding for the mathematical models of light transport,

that have delivered so many fruitful ideas for solving the light transport equations until

today.

Chapter 6 and Chapter 7 are devoted to Monte Carlo and quasi-Monte integration.

These probabilistic as well as deterministic methods can be used to solve the light trans-

port equations|which are all Fredholm integral equations of the second kind|involved in

various rendering and radiosity methods. First we show why common numerical integra-

tion is not a suitable method for solving high dimensional integrals, but why Monte Carlo

method should be used. Then we introduce the concept of the Monte Carlo estimator as

an approximate solver of high dimensional integrals. We talk about the convergence of

Monte Carlo methods and present some techniques for sampling random numbers, which

are crucial in the construction of e�cient Monte Carlo algorithms for the evaluation of

integrals. So, we will present the transformation methods, talk about acceptance-rejection

sampling, and give an insight into Markov chain Monte Carlo methods. We also discuss

a series of variance reduction techniques to be able to construct fast evaluable estimators
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with a variance as small as possible, and last but not least, we show how Monte Carlo

methods can be used to solve Fredholm integral equations of the 2nd kind. With respect

to quasi-Monte Carlo methods we declare the concept of discrepancy as a measure for the

derivation of a point set from its ideal distribution. Afterwards, we present the construc-

tion of so-called low-discrepancy sequences, such as Halton, Hammersley, and Zaremba

sequences, or (t, s)-sequences, and (t,m, s)-nets. With the help of the Fourier analysis, we

then compare the quality of sampling patterns resulting from low-discrepancy sequences

or sampling strategies form Monte Carlo methods.

Chapter 9 focuses on the classic ray based rendering algorithms. Here, we will start

with ray casting and classic Whitted-style ray tracing, and we will discuss in more detail

distribution ray tracing, the �rst on stochastic principles based rendering algorithm.

In Chapter 9, we talk about Monte Carlo rendering algorithms for solving Fredholm

type integral equations|here in particular the light transport equation in free space. We

present Monte Carlo path tracing, and the associated dual algorithm Monte Carlo light

tracing and show that both procedures can be simulated via discrete-time, continuous-

space Markov processes. After that, we introduce bidirectional path tracing, in some sense

a combination of path tracing and light tracing. With the Metropolis light transport,

we present a �rst Markov chain Monte Carlo approach for solving the light transport

problem. Last but it not least, we will discuss photon mapping, a very e�cient two-pass

algorithm, and we will give a short overview about instant global illumination, which

allows to simulate the most important illumination e�ects at realtime rates.

In Chapter 10, we then deal with radiosity methods. Here, starting with the rendering

equation, we derive the radiosity equation and present the classical radiosity algorithm.

Then, we will discuss the concept of form factors, present properties of form factors, and

show how form factors can easily and e�ciently be computed. Furthermore, we present

techniques from numerical analysis that can be used to compute an approximative solution

to the radiosity integral equation. The chapter will be �nished with a short review on the

general �nite element radiosity approach.

For this students that are not familiar with basic calculus and basic linear algebra,

the book also contains, in the Appendix A a complete refresher to basic concepts from

linear algebra and calculus which are absolutely needed to understand the mathematical

foundations of realistic rendering. Students familiar with basic calculus and linear algebra

can skip the appendix since it must be considered as an introductory preparation for the

main sections of the book.

We have not included separate sections with exercises to practice and deepen the

discussed materials, as many of these things are already included in the numerous exam-

ples. Nevertheless, we give some useful homework assignments to the interested reader at

di�erent places within the book.

In order to not destroy the ow of reading, we have summarized the sources of our

workouts in reference literature and further reading sections. Here, you can also �nd many
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hints and further sources of literature that deal with the content of the chapter and serve

to enhance the discussion in the chapter.

Let us still mention that a version of the book will be soon available as an eBook.
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HOW TO USE THIS BOOK

Both, a textbook or a lecture, are constructed as good literature trying to achieve one

goal: They are designed to spark interest in the reader or listener and to keep it. The

last-mentioned are requested to deepen the subject by their intrinsic motivation. Nowa-

days, lectures are mainly presented with the help of slides created on a computer. The

presentation of a lecture with the help of slides|the voice of the speaker at the same time

for the visual representation as a help, as a second channel of reception|is an excellent

technique for stage-managing, in particular, if it is supported by a textbook, where the

material is deepened and explained.

Our book is designed to be used either as a textbook for an advanced course on

realistic rendering or as a very useful mathematical supplement to all current standard

texts in global illumination, such as [51, Dutr�e & al. 2006] and in particular [159, Pharr

& Humphreys 2010]. It is suitable for a one-semester course meeting four hours per week.

In the following, we give a coarse schedule of nearly 20 lectures. There is also su�cient

time to talk about more recent methods which can be applied if the book is used as basis

of an advanced course in realistic image synthesis:

� An advanced course in realistic image synthesis should begin with a short overview

of the topic, followed by a short review on the most useful mathematical concepts

from linear algebra and calculus.

� Then, we recommend talking about linear function spaces, here in particular on the

function spaces of great relevance for the concerns of global illumination theory, that

is, the ray spaces.

� With the notion of the function space at hand, the functional analytical concepts of

the linear operator, the linear operator equation, and the adjoint equations should

be discussed.

� A deeper discussion should be assigned to the concepts of the integral and the integral

equation. As the Lebesgue integral can be derived intuitively, as we did in Section

2.2.1, the Fredholm integral equation, its representation as linear integral operator

equation and the associated solution techniques should be discussed in more detail.

xxxv



xxxvi

� Probability theory must be our next topic to be dealt with: probability spaces,

random variables, and stochastic processes.

� Afterwards, the �eld of radiometry could build the basis for a further lecture, i.e.

counting photons, and introducing the radiometric quantities: ux, radiance, irradi-

ance, radiosity, and radiant intensity.

� In the next larger block a mathematical formulation of the stationary light transport

equation can be derived. Here, we recommend starting with the derivation of the

stationary particle transport equation in integro-di�erential form, followed by the

process of transforming this integro-di�erential equation into an integral equation.

� As the concept of the BRDF is central for the �eld of global illumination, we suggest

to talk about the BRDF in more detail. So, the BRDF could be derived from the

concept of the BSSRDF. Afterwards it is just the right time to talk about physical

properties of the BRDF and the BTDF, and to introduce the concepts of reectance

and transmittance. Also the representation and the measurement of BRDFs could

be mentioned.

� Then, the most frequently used BRDF models in computer graphics, that is, the ide-

alized BRDF models, as well as the most known examples of phenomenological and

physical based BRDF models, should be presented. Considering the light transport

in participating media, we cannot ignore the concept of the phase function.

� The block about a mathematical formulation of the light transport equation can

be �nished by introducing the di�erent formulations of the light transport equation,

that is, the light transport equation valid in participating media respectively valid in

a vacuum, in its spherical and 3-point forms. The importance and the measurement

equation must also be introduced.

� For its mathematical demands, the block on deriving a mathematical model of light

and importance transport is quite hard to understand. So, we recommend beginning

with a discussion of the light transport in a vacuum. Then, the importance transport

can simply be derived via the adjoint equation. If the students interest lies also on

the light transport in participating media, a mathematical model of light transport

in participating media can be discussed.

� The sections 6.2 and 6.3 are fundamental for the understanding of Monte Carlo meth-

ods. So, we recommend transforming the content of these two sections in one lecture.

Additionally, the convergence of the Monte Carlo methods should be discussed.

� As a Monte Carlo algorithm succeeds or fails according to the chosen samples, the

most e�cient sampling techniques must be presented, that is, we have to talk on the

transformation method, acceptance-rejection sampling, and|if the MLT algorithm

will later be discussed|also the Metropolis sampling algorithm.
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� As they are fundamental for Monte Carlo methods applied to the light transport

equation, the most promising variance reduction techniques|use of expected val-

ues, importance sampling, control variates, strati�ed sampling, as well as LHS and

Jittered sampling|should be presented. Here we recommend in particular the ap-

plication of these strategies for solving the rendering equation.

� Multiple importance sampling can then be presented in a separate lecture.

� With a detailed discussion on the application of Monte Carlo methods for solving

Fredholm integral equations of the 2nd kind, the block on Monte Carlo integration

can be �nished.

� If the student is interested in quasi-Monte Carlo methods, the concept of discrepancy

is necessary, the classical constructs of Halton sequence and Hammersley points

should be shown, and more advanced techniques such as the (t,m, s)-nets and (t, s)-

sequences as well as their randomized variants can also be given. Last but not least,

Fourier analysis as a technique for comparing sampling patterns can be discussed.

� The classic rendering algorithm based on the principle of ray tracing, i.e. ray casting,

Whitted-ray tracing, and distribution ray tracing should be the topic of a more

practically oriented lecture.

� Afterwards, the Markov process based rendering algorithms can be discussed in more

detail. So, we recommend talking intensively on pure-Monte Carlo ray tracing and

Monte Carlo ray tracing with next event estimation. The dual algorithm can be

omitted, or it can be shortly mentioned. Bidirectional path tracing in connection

with the path integral formulation|if it was not introduced when deriving a model

of light transport|should also be discussed in more detail now.

� Afterwards, we recommend discussing the Metropolis light transport algorithm, fol-

lowed by the photon-mapping algorithm, and instant global illumination.

� The block on �nite element based rendering algorithms can be opened via the deriva-

tion of the classical radiosity formulation and its associated discretization. Then, the

concept of the form factor should be introduced. The lecture should also cover talk-

ing about properties of form factors and characterizing solution strategies.

� Finally the classical relaxation methods must be addressed as solution techniques

for the discrete radiosity equation. This last block should be �nished with a short

review of the �nite element radiosity approach and a short comparison of image and

object-based rendering procedures.
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CHAPTER ONE

INTRODUCTION

From a mathematical point of view, realistic rendering is equivalently to solving the so-

called global illumination equation, also denoted as the light transport equation, and

in computer graphics better known as the rendering equation. This equation describes

the light distribution at all points and in all directions within a scene to be rendered. As

solution of a Fredholm type integral equation, the unknown light distribution must be

interpreted as a continuous function living in an in�nite-dimensional function space and

occurring in an equation inside and outside of an integral.

Until today a lot of work was put into the study of solutions to discrete versions of

the light transport equation|in particular into Monte Carlo and �nite element methods

for solving the rendering equation|but only little is known about the continuous equa-

tion beyond the existence and uniqueness of its solution as well as the interaction of the

di�erent mathematical disciplines that deal with the topic. From a practical point of

view, lying the focus of the research to �nding solution methods for discrete versions of

the rendering equation should be justi�ed, since computers, as �nite-space and �nite-state

machines, cannot represent an in�nite-dimensional solution in �nite time. Nevertheless,

new, more e�cient, and elegant algorithms for �nding �nite-dimensional approximate so-

lutions to the light transport equation can only be fully understood in the context of the

continuous global illumination problem and its interaction with the corresponding �elds

of mathematics.

Here many branches of mathematics, such as functional analysis, measure, and in-

tegration theory as well as probability theory come into play. In functional analysis|as

the study of algebraic and topological properties of abstract spaces, particularly in�nite-

dimensional function spaces|a problem such as the light transport equation is �rst refor-

mulated as an operator equation in an abstract in�nite-dimensional function space. In case

of the light transport equation, this transform leads to a linear integral operator equation.

Functional analysis then provides a series of theoretical solution approaches that can be

implemented on a computer to deliver a practically usable solution. Such algorithms are

mainly based on quadrature or projection methods. Now, in case of the light transport

equation, where the resulting operator equation is of such a high dimension, ordinary an-

alytic solution methods are often less suitable due to e�ciency reasons. Here, stochastic

1



2 CHAPTER 1. INTRODUCTION

approaches lead to better results. This means, that the analysis and the derivation of

already existing or new algorithms requires apart from a deeper insight into the theory of

solving integral equations from functional analysis also requires a deeper insight into the

probability theory. As the theory for solving integral equations, it is|similar as proba-

bility theory|based on the concept of the Lebesgue integral. So, we cannot circumvent

also to talk about measure and integration theory.

As the main goal of any realistic rendering algorithm is the creation of physically

accurate synthetic images from complete scene descriptions, apart from the large �eld of

mathematics, also many concepts are required from physics, and here in particular, from

optics and radiometry. It is the goal of this book to cover all these requirements, which are

used for a deeper understanding of the various light transport equations and corresponding

solution techniques, in a clear and strictly mathematically based manner. So, as a starting

point into the study of realistic rendering, we will give the reader in this introductory

chapter a short overview about the content of our book, that is,

� we will formulate the global illumination problem,

� present �rst algorithms for solving the underlying light transport equation, and

� address shortly the mathematics as their fundamental scienti�c base.

OVERVIEW OF THIS CHAPTER. We begin the chapter with some opening remarks to localSection 1.1

and global reection models. Then, we introduce the global illumination problem, and

present with classic Whitted-style ray tracing a �rst ray based algorithm for �nding

approximate solutions to simple variants of the global illumination problem. Based on

functional analytical approaches, we present two di�erent classes of numerical methods forSection 1.2

solving or at least approximate solving the global illumination problem: the Neumann

series approach and the �nite element method. Afterwards, we introduce from each

of these two classes the most promising solution algorithm for the global illumination

problem. This will be Monte Carlo path tracing, a stochastic solution procedure, basedSection 1.3

on the principle of the random walk, and the radiosity method, an algorithm that has its

origin into the �nite element method.

1.1 REALISTIC RENDERING

Quite generally considered, realistic rendering is a �eld of computer graphics where tech-

niques are developed for generating photorealistic images of real objects or scenes by

means of a computer|see Figure 1.1. As a basis for realistic rendering, the modeling of

interaction between light and object has emerged. This modeling requires apart from the

exact geometric description of the scene, and an associated visibility tool also a so-called

illumination model, that is, a procedure for computing the color of a point on the image

plane.
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FIGURE 1.1: REALISTIC RENDERING. Algorithms from the field of realistic rendering,

such as the Markov process based procedures of Monte Carlo path tracing, Monte Carlo

light trancing, bidirectional path tracing, or photon mapping, can simulate all phenomena

of light within a scene.
The model of the Jaguar in the upper left image consists of 140, 000 triangles and was

rendered with Monte Carlo path tracing. The image in the middle is rendered with Monte
Carlo light tracing, the dual algorithm to Monte Carlo path tracing. Image courtesy of Frank
Suykens-De Laet, Department of Computer Science, KU Leuven. The upper right image,
rendered with the photon mapping algorithm shows a translucent marble bust, Diana the
Huntress. It illustrates how the soft appearance of marble can simulated via subsurface
scattering. The lower left image is from the animation ”The Light of Mies van der Rohe”
and demonstrates how photon mapping can be used to compute global illumination in a
complex model. The face model was rendered with photon mapping using a BSSRDF that
does account for subsurface light transport, e.g. light enters and leaves at different locations
on the surface and gives the skin a more natural translucent appearance. The last image
shows a pool of water with small waves and caustics at the ground. The image was rendered
with MLT, a probabilistic rendering algorithm based on the Metropolis algorithm, image
courtesy of Eric Veach, Pixar. All other images are courtesies of Henrik Wann Jensen,
UCSD.
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1.1.1 A BIT ABOUT LOCAL AND GLOBAL ILLUMINATION

In computer graphics, an illumination model can be interpreted as the description of the

geometry and the reection behavior of the surfaces within a scene together with the inu-

ence made by existing light sources due to their position, size, and other properties. That

is, apart from the requirement, that it is easily be computable, an illumination model

has also to describe the process of light propagation as well as the interaction of light at

object surfaces. Here, we distinguish between two types of illumination: local and global

illumination.

LOCAL ILLUMINATION. Introduced in the early seventies of the last century, the idea

behind a local illumination model is to generate images with a computer as realistic as

possible but with minimal e�ort. Thus, local illumination models are not based on strict

physical regularities. As the name already suggests, in a local illumination model the focus

lies on local illumination. That is, for shading a surface point, we consider only the light

that comes directly from existing light sources within a scene.

DEFINITION 1.1 (Local Illumination) The contribution of light that arrives directly at a

surface point s from a light source and is reected at s is called local illumination.

That is, local illumination corresponds to the single-light, single-surface interaction

of light, where the shading of point s on any surface is independent from the shading

of all other surfaces.

Due to the above de�nition, local illumination only takes into account the relationship

between light sources and a single object, it does not consider the e�ects that result from

the presence of multiple objects. Thus for example, if a light source is blocked by another

object, in a local illumination the surface under observation does not contain light from

this source, although light can be contributed to it due to reection from some other

objects.

Similar to the approach of many modern sciences, computer graphics achieved to

consolidate the initially made good progress in a practical and usable local illumination

model, the Phong illumination model, see Figure 1.2. Although the Phong model doesPhong Illumination Model (351)

not describe a physically plausible reection model|it is a phenomenological illuminationSection 4.2.2.5

model, which often reects more light than it receives|the Phong model has become the

most commonly used illumination model in computer graphics until today.

To make the results of a local illumination model appear more realistic, the indirect

reected, transmitted, or scattered fraction of light within a scene is represented by a

so-called ambient term, which is assumed to be constant for all points of the scene, see

Figure 1.2. Now, as this term is constant, it cannot account for the positions of objects

to the observer nor other objects that block the light coming from light sources or neigh-

boring objects. As direct illumination in some situations contributes only a small fraction

to the measured amount of light at a point in a real scene, the embedding of an ambient
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FIGURE 1.2: PHONG SHADING. A set of spheres rendered with the local illumination
model by Phong, for details see Section 4.2.2.5.2. To make the results of Phong reflection
model appear more realistic, the indirect reflected, transmitted, or scattered fraction of light
within a scene is represented by a constant term: the ambient light.

term in a local illumination model for simulating global light interaction delivers only

unsatisfactorily result.

GLOBAL ILLUMINATION. Another problem in local illumination models is the generation of

shadows. As local illumination takes into account only the interaction of direct light with

the objects in a scene, the generation of shadows, a phenomenon of global interaction, is

not involved in any local illumination model. The light intensity in a shadow area can be

determined only by global interaction, as such areas are generated by indirect illumination,

thus indirectly reected, transmitted, or scattered light from objects in the scene.

DEFINITION 1.2 (Global Illumination) Apart from the local illumination at a surface

point s, global illumination accounts for shading a point s also the light reected,

transmitted, or scattered between all objects within a scene. Thus, global illumination

models the interchange of light between all surfaces within a scene model.

Due to the above de�nition, a global illumination model combines the light resulting Chapter 8

from local reection with the light that is reected or refracted from other surfaces to the

current surface. Thus, a global illumination model consists of a local illumination model

and a process that gathers the light incoming at an observation point due to multiple

reections onto objects in a scene. This means, that an illumination model, based on

global illumination, is more comprehensive, more physically correct, and produces more

realistic images, but it is also more computationally expensive.
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FIGURE 1.3: LOCAL ILLUMINATION VS GLOBAL ILLUMINATION. A set of spheres
rendered with a local and a global illumination model. While local illumination models only
consider the interaction of light with objects in a scene coming directly from light sources,
global illumination models take into account also the light reflected, transmitted, or scattered
between all objects in a scene.

1.1.2 THE GLOBAL ILLUMINATION PROBLEM

In computer graphics, one understands under the term of global illumination the com-

putation of light distribution at all points within a 3-dimensional virtual scene model.

Such a scene model is usually constructed via a very large set of surface primitives like

triangles, polygons, spheres, etc. Since our goal is photorealistic rendering, it is required

that a virtual scene model must also be described in a realistic way as much as possible.

This means, that apart from the geometry of the model, we must also specify the types

of existing light sources, the optical and physical properties of the scene objects, thus the

color, nature, and reectance behavior of the object surfaces, as well as the type of the

detector used to produce an image of the scene. We call such a speci�cation the global

illumination problem. Based on [104, Keller 1998], [208, Szirmay-Kalos 1999], we de�ne

the global illumination problem mathematically as follows:

DEFINITION 1.3 (The Global Illumination Problem) Let V be the union of a �nite num-V (41)

ber of 3-dimensional volumes within R3, Le be the radiance, loosely speaking the lightRadiance (250)

emitted from a �nite set of light sources existing in the scene|thus points, surfaces,Section 4.3

or volumetric light sources|furthermore let
⋃m
j=1 fsj be a set of functions character-Section 4.2

izing the color, roughness, and reectance behavior at the surfaces of volumes from

V, or at volumetric points, and let We represent the speci�cation of a detector. Then,Section 4.5

the global illumination problem is given by the quadrupleV, Le,

m⋃
j=1

fsj ,We

 . (1.1)
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Now, the main task in computer graphics is to �nd a solution to the global illumination

problem, in other words, the construction of an image that visualizes a scene, speci�ed by

the global illumination problem.

Solving the global illumination problem can be considered as a two step process:

First, we have to determine which region of the scene is relevant for the �nal image. If it is

clear, which part of the scene should be mapped to the �lm plane, then, we can compute

the illumination at all points within this region.

As we will see in the following chapters, the solution of the global illumination problem

can mathematically be reduced to the evaluation of the so-called measurement equation, Measurement Equation (416)

M
def
= 〈We(s,ω), Li(s,ω)〉. (1.2)

De�ned as an inner product, it uses on the one hand the speci�cation of the detector, Inner Product (859)

We, and on the other hand the illumination, Li(s,ω), at all points relevant for the �nal We (416)

image. Combining these two quantities then results in the �nal image.

Now, the detector speci�cation, occurring in the measurement equation, is already

given via the global illumination problem
(
V, Le,

⋃m
j=1 fsj ,We

)
, but the illumination Li Li (250)

at points s in direction ω is still unknown. That is, solving the measurement equation

requires information about the illumination at points which are relevant for the image.

This information can be achieved by solving|depending on the speci�cation of the global

illumination problem|one of the so-called stationary light transport equations. These Light Transport Equation (295)

equations, that record the light distribution within a scene, can be expressed in form of Section 2.3

linear Fredholm integral equations of the 2nd kind, such as,

Li(x,ωi) = β(s→ x) εb(s,ωo) +

∫
[0,‖s−x‖]

β(x′ → x)Qo(x
′,ωo)dµ(α), (1.3)

and are also often denoted as global illumination equations. They describe the light

incident at a point x coming from direction ωi by means of two terms. The �rst term on

the right hand side of Equation (1.3) describes the light incident at point x coming from

the nearest surface point s in direction ωi, while the second term describes the light, that

comes from volumetric points of a participating medium lying on the straight line to the

surface point s, see Figure 1.4

REMARK 1.1 Usually the radiometric quantity radiance, denoted by L, corresponds Radiance (250)

to a vector from the RGB-color system, consisting of components (R,G, B)T , which

correspond to the intensities for the selected wavelengths of red, green and blue light,

used for �ring the electron guns of a CRT. From our discussions about vector spaces

in the next chapter, it will be clear that this system could easily be replaced by any

other color system without changing the algorithms that are described in the follow-

ing. Therefore, and sake of simplicity we use radiance in all of our equations and

algorithms as a scalar quantity, which naturally implies, that, whenever we write an

equation using L, this equation must be interpreted in the sense that it only holds for

a single component of the color base.
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FIGURE 1.4: VISUALIZATION OF THE STATIONARY LIGHT TRANSPORT WITHIN A
SCENE. During its travel through a scene light is subjected to different phenomena. This
can occur at small particles within a participating medium or at object surfaces. Thus for
example, light can be out-scattered at a particle in many different directions, or a fraction
of its original energy can be absorbed on its way through the scene. Light from other
directions can also be in-scattered or new light particles can be emitted at a point in the
current direction. As shown by the thickness of the arrows, out-scattering and absorption
lead to a decrease in the light flow, while in-scattering and emission processes increase the
amount of light energy within a system.

REMARK 1.2 (Solutions to the Global Illumination Problem) Later we will see, that the

global illumination problem is given by two equations: The stationary light transportSLTE (296)

equation, SLTE, describing the distribution of light in a scene, and the measurement

equation, which can be interpreted as the exposure of an image. Solving the globalMeasurement Equation (416)

illumination problem then means the calculation of the illumination at relevant points

which are speci�ed via the measurement equation, and combining both results in a

proper way.Chapter 5

Now, the goal of any realistic rendering algorithm results in computing solutions to

the equations (1.2) and (1.3) or in other words, the best possible and realistic visualiza-Chapter 5

tion of a 3-dimensional scene to be rendered. In this case, one speaks also of generating

photorealistic images, whereas this objective can obviously only be achieved if all physicalChapter 4

phenomena of light|such as reection, transmission, polarization, interference, and the

di�raction of light as well as phosphorescence and uorescence e�ects|can be modeled

as accurately as possible. For the models of global illumination, this would mean that
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FIGURE 1.5: THE GEOMETRY FOR DERIVING THE STATIONARY LIGHT TRANSPORT IN
A VACUUM. A point s on a surface is illuminated by an area light source. The fraction
of light, exitant from s in direction ωo depends on the light incident at s coming from all
directions over the hemisphere at s and the reflection properties of the surface.

they must satisfy in addition to the laws of geometrical and physical optics, also quantum-

optical phenomena, and the energy conservation laws of physics.

It has been found that this requirements, in relation to the development of appropriate

algorithms, are too strict and for the currently available hardware computationally too

costly. Thus, we are only interested in approximate solutions to the global illumination

problem, where complicated light phenomena such as polarization, interference, and the

di�raction of light as well as phosphorescence and uorescence e�ects are neglected. Under

the further restriction, that we consider only the stationary light transport in a vacuum,

an approximated global illumination problem can be described by the stationary light SLTEV (398)

transport equation in free space, the SLTEV, given by:

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi), (1.4)

in computer graphics also known as the rendering equation. In this equation, the functions Rendering Equation (400)

Lo, Li and Le represent the outgoing, the incoming, as well as the emitted light at point

s in the corresponding directions ωo and ωi, and the function fs returns the fraction of

light incident at s from direction ωi that is reected or refracted in direction ωo, see

Figure 1.5.

As the name already suggests, the light transport equation in a vacuum describes
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how light propagates under vacuum conditions in a real scene. Even this equation is still a

complicated Fredholm integral equation of the 2nd kind, but much simpler than the lightSection 2.3

transport equation from (1.3). With respect to this equation, global illumination then

means the simulation of light interplay with the objects in a 3-dimensional scene under

vacuum conditions.

Due to its high complexity and its requirements to the power of digital computers, the

simulation of light interaction with objects in a 3-dimensional scene, even in a vacuum, was

only di�cult to achieve for a long time. Thus, classical numerical methods were essentiallySection ??

inapplicable, due to the high complexity and the discontinuities of the integrands, induced

by di�erent optical and geometric properties of the objects within the scene.

With the development of so-called Monte Carlo rendering algorithms, based onChapter 9

discrete-time Markov processes, and radiosity algorithms, derived from the �nite ele-

ment method, then the problem of global illumination was getting under control. BothChapter 10

methods achieve, in their most commonly used forms, only partially global interaction

of light with the objects involved in a scene. That is why the generated images only

correspond to approximate solutions of the complete global illumination problem.Global Illumination Problem (6)

While Monte Carlo algorithms are based on stochastic principles from probabilityChapter 10

theory|they try to solve an integral by interpreting the integral as the expected value

of a continuous random variable|radiosity methods are based on the �nite element ap-Section 2.4

proach, which transforms in�nite-dimensional integral equations, such as the stationary

light transport equations, into a systems of �nite-dimensional equations.Section 2.3.3.2.3

In combination with the continuous and rapid development, particularly in terms of

processor performance in computer systems and the increasing interest in photorealism,

then the development of global illumination models has also found its way into computer

graphics. Thus, in particular, there are many application areas in industry, technique,

and science, which all require realistic computations of light distributions in a prede�ned

scene.

Thus, the automotive industry uses these procedures in order to develop vehicles

faster and avoid mistakes in planning from the outset. According to well-known car man-

ufacturers the cost and time involved in the development, can be decreased by a substantial

amount. Also the aircraft industry has great interest in this new technology to represent

complete planes in 3D. Thus, the original CAD model of a 777 requires the interactive

processing of a data volume of more than 30 GB. This new technology makes it possible,

that designers can move interactively through the virtual plane and check every detail to

the point of the smallest bolt and rivet. Thus, new aircraft models can be tested as a

whole and potential problems can be detected already before the construction [226, Wald

& al. 2003], see Figure 1.6.

Realistic rendering methods can also be used to simulate the light propagation in

biological tissues and other scattering materials, which are used for the development of

biomedical devices and in medicine to produce meaningful data from images. But the
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FIGURE 1.6: CG IN AUTOMOTIVE AND AIRCRAFT INDUSTRY. The complete Boeing
777 model, which consists of 350 million triangles and more than 30GB scene data on disk,
rendered with shadows on a single PC and a zoom into the cockpit.

largest scope of realistic rendering techniques is probably in the �lm and television indus-

try, particularly in fantasy, science �ction and commercials, see Figure 1.7. If things are

to be shown that don't exist in reality, but which should contribute most genuinely, then

more often Monte Carlo rendering and radiosity methods are used.

1.1.3 RAY TRACING - A FIRST DETERMINISTIC APPROACH FOR
SOLVING THE GLOBAL ILLUMINATION PROBLEM

Before we shortly speak about Monte Carlo algorithms and radiosity methods, we present Section 1.3

a simple technique, which has been used for a long time to solve the global illumination

problem in an approximative manner: Ray tracing. Section 8.3

The basics of any ray tracing algorithm are the principles of geometric optics, i.e. the Section 4.2.1

�eld of optics, that allows to describe light by the mathematical concept of the light ray.

DEFINITION 1.4 (The Concept of a Mathematical Ray) Let x be a point within the Eu- Euclidean Space (830)

clidean space R3, α a positive real number, and ω a direction over the unit sphere Direction (834)

around point x. Then, a ray r is de�ned by

r
def
= x+ αω, (1.5)

thus, the set of all points lying on the line starting at point x in direction ω, see

Figure 1.8.

REMARK 1.3 In classic Whitted-style ray tracing, rays are emitted from points typi- Section 8.3

cally selected on object surfaces in any arbitrary direction ω of the upper or lower
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FIGURE 1.7: FILM AND VISUAL EFFECTS. Pixar’s history of animation movies:
Ray traced pictures with hard shadows within the upper row. The other images
are rendered with global illumination algorithms simulating soft shadows, light traveling
through participating media, skin, fur, and dust. Image courtesy of Pixar Animation Studios.
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FIGURE 1.8: THE GEOMETRY OF A MATHEMATICAL RAY. A direction ω from the
upper hemisphere and a point s at a surface patch are required to define a mathematical
ray starting from an opaque surface object. Rays starting from points in space R3 are given
via a point x ∈ R3 and a direction ω over the unit sphere.

hemisphere about s. Only in the case of involved participating media the starting

point of a ray is a point from R3.

Simple variants of ray tracing, such as the classic Whitted-style ray tracing algorithm, Section 8.3

[236, Whitted 1980], computes only approximations to the global illumination problem, Global Illumination Problem (6)

that is, they only account for light coming directly from light sources within the scene, or

light that is reected or refracted at specular surfaces. Indirect light, di�usely reected,

transmitted, or scattered at objects within the scene, is simulated by means of a constant

ambient term.

In principle, a ray tracing algorithm works as if one makes a photo, see Figure 1.9.

There is a scene, a viewer with, in the simplest case, a pinhole camera, and a light source,

which illuminates the scene. In a ray tracing algorithm, the viewer or the camera are

replaced by a virtual camera, and the scene and the light sources are described by a model

of 3-dimensional objects in a strictly de�ned manner. The �nal image on the �lm plane

then corresponds to the projection of the scene onto a 2-dimensional pixel array, or perhaps

on a computer screen.

A ray tracing algorithm, see Figure 1.10, sends rays from the eye through every pixel

of the image plane into the scene to be rendered and computes the �rst hit of such a

ray with an object. If there isn't a hit with an object, then the pixel gets the color of

the background of the scene, that is, it will be black. If the ray hits a specular object,

then|due to the law of reection |the algorithm computes a reection ray, which will Law of Reflection (300)

be traced recursively through the scene. Is the object transparent, then a ray tracing

algorithm generates, in addition to the reection ray, also a refracted ray and traces both Law of Refraction (305)

rays recursively through the scene. Eventually occurring shadow areas are computed by
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FIGURE 1.9: THE PRINCIPLE OF RAY TRACING. The principle of ray tracing as it can be
interpreted in fine arts and in computer graphics.

so-called shadow rays. Such rays are �red from every hit point of the original rays with

scene objects towards existing light sources. If a shadow ray hits a blocking object on its

way to a light source, then the starting point of the shadow ray lies in the shadow area of

this light source, that is: The point does not get lit from this light source.

Now, as ray tracing algorithms are based on the law of reection and refraction, they

are capable of simulating a wide variety of optical e�ects such as reection, refraction

or scattering, see Figure 1.11, but for the treatment of di�use phenomena of light, they

require additional e�ort.

REMARK 1.4 One of the main reasons for the success of ray tracing lies in its natural

extensibility. The above primitive method is inadequate for present requirements of

image synthesis. With increasing computing power and increasing inspiration from

physics|in particular the �elds of optics and radiometry|more and more extensions

and variants of ray tracing come into play, and we will also introduce some of them

in this book.Chapter 8

Basically it holds: every extension of the algorithm leads to better quality of theChapter 9

rendered images but also to an increase in the run time of the algorithm.
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FIGURE 1.10: CLASSIC WHITTED-STYLE RAY TRACING. The algorithm starts with gen-
erating a primary ray from a sensor, typically the eye of an observer or a virtual camera,
through a pixel of the image plane into the scene to be rendered. At the first hit point of this
ray with the closest scene object, the algorithm can generate, depending on the properties
of the material of the concerned surface, up to three new types of rays: a reflection ray, a
refraction ray, and a shadow ray. The algorithm estimates the incoming light at the intersec-
tion point of the primary ray with an object and combines this information to a contribution
to the final color of the pixel. The computation of the light contributions of the reflected as
well as the refracted ray are taken recursively until a diffuse surface is hit, the ray doesn’t
intersect an object within the scene, or the intensity of the ray is below a threshold value
respectively the recursion depth of ray generation exceeds a predefined value.
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FIGURE 1.11: RAY TRACING. Typical ray-traced images. The ray tracing algorithm can
render hard shadows and specular reflections, but it does not simulate indirect illumination
of diffuse surfaces. Image Courtesy of Gilles Tran and Jaime Vives Piqueres.

1.2 FUNCTIONAL ANALYTICAL APPROACHES FOR

SOLVING THE GLOBAL ILLUMINATION PROB-
LEM

Let us consider once more the stationary light transport equation valid in a vacuum from

Relation (1.4), thus,

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi), (1.6)

but now a little bit closer.

As already mentioned, it is a linear Fredholm integral equations of the 2nd kind,Linear Integral Equations (126)

where the functions Lo, Le, as well as Li, and fs are elements of abstract function spaces.Linear Function Spaces (27)

As we see further below, the above integral is constructed over spaces, which are more

complicated than the usual space of real numbers, i.e. it is not a Riemann integral, but it

must be interpreted as a so-called Lebesgue integral.Lebesgue Integral (105)

Now, the Lebesgue integral is the integration concept of modern mathematics and

for this type of integral some statements hold that do not hold for the classic Riemann

integral. These properties are also responsible for ensuring that the Lebesgue integral

is the basis for the functional analytical theory of integral equations. That is, for an

exact mathematical formulation of light transport and the derivation of solutions to lightLight Transport Equation (295)

transport equations, fundamental knowledge about measure- and integration theory areSection 2.2

absolutely necessary.
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Unfortunately, only few integral equations arising from practical applications prove to

be analytically solvable. This holds in particular to our case of the light transport equation.

For equations of such kind there exists, if at all, only approximative solutions. For deriving

procedures to approximate solutions of linear Fredholm integral equations of the 2nd kind,

now we have to construct the function spaces underlying the light transport equation. In Linear Function Spaces (27)

order to derive consistent solution methods, which can be used on computers, we then need

on the one hand abstract existence and uniqueness proofs for integral equations, but also

convergence proofs including error estimates, that show theoretically that approximate Section 2.3.3

procedures exist and converge to the real solution to the problem. This is the main task

of functional analysis. Section 2.1

For that purpose, in a �rst step the attempt is made to represent the problem to be

solved in form of a linear operator equation and then apply the results about existence and Linear Operator Equations (61)

uniqueness of solutions to linear operator equations. If the general conditions are satis�ed

in the given problem, then functional analysis provides us with methods for solving the

problem. In this context, abstract, in�nite dimensional function spaces, such as the Section 2.1

Lebesgue spaces de�ned over a given base set, play a central role. Without the concept of Section 2.2.4

the Lebesgue integral it would not be possible to discuss the global illumination problem

in in�nitely dimensional spaces in a strict mathematical way.
As the Lebesgue spaces of global illumination theory allow to represent incident

functions by exitant functions, and vice versa|we will discuss this in a later chapter - Chapter 5

|Equation (1.4) can also be written only in terms of the functions Lo, Le, and fs, that

is,

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Lo(γ(s,ωi),−ωi)dσ
⊥
s (ωi). (1.7)

The unknown function Lo then appears on the left hand side and on the right hand

side of the equal sign under the integrand. This recursive structure now implies, as we

will see this in more detail in the next section, a �rst idea for �nding approximate solution

methods for integral equations of the above type.

1.2.1 THE NEUMANN SERIES APPROACH

Let us now apply the above mentioned approach from functional analysis to the global Global Illumination Problem (6)

illumination problem, namely: To reformulate the vacuum light transport equation into Linear Operator Equation (61)

a linear operator equation on an abstract in�nite dimensional function space. As demon- Linear Function Space (28)

strated in one of the next sections in more detail, the integral occurring in the light

transport equation can then be replaced by a so-called integral operator and the original

integral equation can be written in form of an operator equation as follows: Linear Integral Equation (127)

Lo(s,ωo)︸ ︷︷ ︸
Lo

= Le(s,ωo)︸ ︷︷ ︸
Le

+

∫
S2(s)

fs(s,ωi → ωo)Lo(γ(s,ωi),−ωi)dσ
⊥
s (ωi)︸ ︷︷ ︸

KLo

(1.8)

Lo = Le +KLo, (1.9)
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where K denotes a so-called integral operator, exactly speci�ed in a later section. SlightlyLinear Integral Operator (130)

rephrasing Equation (1.9) then leads to

Lo −KLo = Le, (1.10)

respectively,

(I−K)Lo = Le. (1.11)

Assuming there exists an inverse operator (I−K)−1, where I is the identity, then the

above operator equation can be solved with respect to Lo by

Lo = (I−K)−1 Le. (1.12)

Now, we know from the theory of in�nite series, that an expression of the form

(I−K)−1 can be interpreted as the limit of a geometric series, whose terms are composed[174, Rudin 1998]

of the powers of the operator K, where ‖K‖ < 1 is assumed|we discuss this in moreSection 2.3.3.1.1

detail in one of the next sections. That is, it holds:‖ · ‖ (860)

∞∑
i=0

Ki =
1

(I−K)
= (I−K)−1. (1.13)

De�ning the partial sums:

Sn
def
=

n∑
i=0

Ki = I+K+K2 + · · · (1.14)

and substituting the inverse operator by the partial sums, then Equation (1.12) can be

written as:

Lo = Sn Le, (1.15)

that is, for su�ciently large n, the sequence of partial sums multiplied by Le converges to

an exact solution of the operator equation (1.12), or in other words converges to a solution

of our light transport equation. This procedure of �nding a solution method to an integral

operator equation underlying a Fredholm integral equation of the 2nd kind is called the

Neumann series approach.Section 2.3.3.1.1

As a resume, now we can summarize: If it is possible to implement the Neumann

series approach into a rendering algorithm, then we have a chance to solve the global

illumination problem exactly.
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1.2.2 A FINITE ELEMENT APPROACH

Another approach for �nding a solution to the global illumination problem valid in a

vacuum is based on �nite element methods. To illustrate this technique, we assume, that

the light transport in free space is expressed in terms of another radiometric quantity,

radiosity, instead of radiance. The associated equation is also denoted as the radiosity

equation, and is of the form

B(s) = Be(s) + ρdh(s)

∫
∂V

B(s ′)G′(s′ ↔ s)V(s′ ↔ s)dµ2(s′). (1.16)

In this equation, the functions Be and B represent the emitted as well as the reected Radiosity Equation (784)

fraction of light at point s in all directions. ρdh(s) is a function, that returns the fraction ρdh(s) (338)

of light incident at s which is reected, and V and G′ are functions that provide information V (45)

about the visibility and the geometry of the surface points s and s′. Equation (1.16) can G′ (129)

be considered as a mathematical formulation of light transport in a vacuum, assuming

that the object surfaces existing in the scene are all Lambertian reectors, and the light Lambertian Reflector (349)

sources are ideal di�use emitters.

Now, like the vacuum light transport equation, the radiosity equation is also a Fred-

holm integral equation of the 2nd kind, where the involved functions Be and B are elements Linear Integral Equation (127)

of an in�nite-dimensional function space. By partitioning the underlying integration do- Linear Function Space (28)

main in a �nite set of so-called patches, and restricting these patches furthermore, then,

due to functional analytical considerations, the functions Be and B can be projected onto Section 2.1.1

functions from a �nite-dimensional function space constructed over the set of patches.

This discretizing procedure leads to a modi�cation in the radiosity equation, namely, the

replacement of the integral by a �nite sum. As a result, we get a linear system of equations

of the type

B = Be +MB, (1.17)

where B and Be are vectors, namely the �nite-dimensional analogues of Be respectively

B, and M corresponds to a matrix. Similar to the Neumann series approach, the �nite Section 1.2.1

element approach, thus Equation (1.17), also results in an operator equation, but now Linear Operator Equation (61)

based on operators de�ned on �nite-dimensional spaces, namely matrices.

Analogue to our discussion in the foregoing section, even this operator equation can

be written as:

(I−M)B = Be. (1.18)

Assuming, that the matrix M is invertible, the above operator equation can be solved

via

B = (I−M)−1Be, (1.19)

that is, an approximate solution to the stationary light transport equation in vacuum can SLTEV (398)

also be derived by using one of the well-known direct or iterative solvers for linear systems

of equations. Section 2.3.3.2.4.2
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1.3 MONTE CARLO RAY TRACING AND RADIOS-
ITY METHODS FOR SOLVING THE LIGHT TRANS-
PORT EQUATIONS

Based on the above two approaches from functional analysis, the Neumann series approach

and the �nite elements method, we now present two classes of rendering algorithms for

solving approximations of the global illumination problem: Monte Carlo rendering andChapter 9

radiosity algorithms.Chapter 10

Monte Carlo rendering algorithms are a special class of numerical methods, whichChapter 9

can be used to solve the light transport equation by means of probabilistic principles. TheySection 2.4

all have in common the idea to solve the light transport equation via the probabilistic

concept of the random walk. Random walks are paths generated over the object surfacesSection 9.1

of the scene to be rendered. On these paths, light particles can travel, according to the

laws of geometric optics, from light sources to the eye of an observer or a virtual camera,Section 4.2.1

and contribute their amount of light to the �nal image.

Radiosity approaches �nd their origins in the 50s of the last century, as scientistsChapter 10

are interested in the exchange of radiant heat between object surfaces. Simulations in this

area were especially of enormous relevance for the emerging research of universe. Mid-

80s, researchers from Cornell University [70, Goral & al. 1984] and the universities in

Fukuyama and Hiroshima [139, Nishita & al. 1985] developed, based on these research,

the �rst method for solving the global illumination problem in realistic image synthesis.

These procedures are all based on the law of conservation of energy from physics and allow,

in their simplest versions, the simulation of di�use multiple reections.

1.3.1 MONTE CARLO PATH TRACING - A PROBABILISTIC AP-
PROACH BASED ON THE NEUMANN SERIES

Monte Carlo path tracing, as we will introduce it in Section 9.1, is in some sense aSection 9.1

generalized form of ray tracing. Instead of generating rays in a deterministic way, a path

tracing algorithm generates rays in a probabilistic way. In contrast to classic ray tracing,

path tracing traces|depending on the surface properties of the scene objects|only a

single ray through the scene to be rendered. In its classic form, the algorithm stops the

process of a path extension if the length of the current path extends a prede�ned value,

the contribution of the path to the �nal image is less than a given threshold, if a path

hits one of the existing light sources or if it does not hit any scene object, see Figure

1.12. As Monte Carlo path tracing attempts to map the exact physical behavior of light

at surfaces, the algorithm can simulate e�ects such as soft shadows, depth of �eld, motion

blur, caustics, and indirect illumination, see Figure 1.13.
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FIGURE 1.12: MONTE CARLO PATH TRACING. A ray starting at the eye is shot
through a pixel of the image plane into the scene to be rendered. Monte Carlo path tracing
determines the first hit of the ray with any object of scene and generates in dependence
of the surface properties another new ray. This ray is then traced recursively through the
scene. Note: Since the probability is very small, that a path ends in one of the light sources,
for enhancing the image quality, the algorithm generates shadow rays at each hit point in
direction to the light sources, this then corresponds to Monte Carlo path tracing with next
event estimation.

Apart from all of these advantages, Monte Carlo path tracing has also a signi�cant

disadvantage: Its slow convergence to the exact image. Since the light sources within

a scene are mostly small comparable with the other objects in a scene, the probability

that a path ends in one of the light sources can be very small, that is, a path generated

with MCPT will usually not hit a light source. Due to the fact the most traced paths

do not contribute to the �nal image, the quality of an image can only be enhanced via

the generation of a large number of paths in the hope that one or more of these hit a

light source. These error is noticeable in pictures by noise, in particular if the scene to be

rendered consists of many di�use objects, see Figure 1.14.

Now, we pose the question: How is it possible to interpret the solution of the SLTEV SLTEV (398)

in the sense of an algorithm like path tracing? Can we built a bridge between the light
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FIGURE 1.13: RAY TRACING AND MONTE CARLO PATH TRACING. Left a ray-traced
image of a simple box scene. Right the scene rendered using Monte Carlo path tracing.
Note: Unlike ray tracing algorithms, Monte Carlo path tracing can simulate all light paths.
Notice the illumination of the ceiling and the caustic below the glass sphere. Image courtesy
of Henrik Wann Jensen, UCSD.

transport equation in free space and our simple Monte Carlo path tracing algorithm?

For this, let us consider once more the Neumann series approach for solving theSLTEV (398)

SLTEV from Section (1.2.1). Due to Equation (1.13) an approximate solution is given by:

Lo ≈ Sn Le, (1.20)

=

n∑
i=0

Ki Le (1.21)

= Le +KLe +K2 Le +K3 Le + · · ·+Kn Le, (1.22)

that is, the total amount of light can be computed via the light emitted from light sources

in addition to the emitted light that is reected or transmitted at a surface, and the emitted

light that is twice reected or transmitted at a surface and so on. Obviously, Equation

(1.22) can be interpreted as sum of paths starting at a pixel of an image and ending at a

light source in a scene, thus, a path of length one, a path of length two, a path of length

three and so on. That is, light can ow along these paths from sources to a detector: This

process is identical to Monte Carlo path tracing.Section 9.1

Equation (1.22) shows that Monte Carlo path tracing is a global illumination algo-

rithm since we can combine the terms of the sum as follows:

Lo = Le +KLe︸ ︷︷ ︸
local Illumination

+K2 Le +K3 Le + . . .+Kn Le︸ ︷︷ ︸
global Illumination

, (1.23)

that is, light paths of length ≤ 2 correspond to a local illumination model, and paths of

length > 2 are associated with a global illumination model, that is, they simulate global

interaction of light with the objects of a scene.
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FIGURE 1.14: MONTE CARLO PATH TRACING. Monte Carlo path tracing can simulate
full global illumination, but often results in noisy images as seen in these simple box scenes.
Generating more than one path per pixel can correct the quality of the images: Left, 5 paths,
in the center, 25 paths, and in the right image 125 paths per pixel.

1.3.2 THE RADIOSITY METHOD — A FINITE ELEMENT AP-
PROACH

The radiosity method is based on the principle of energy conservation of physics, that is, Chapter 10

all light falling on a surface is also reected, if it is not absorbed by this surface.

A radiosity algorithm assumes that all surfaces in a scene to be rendered are perfectly

di�use. By discretizing the surfaces into small, simple geometrical patches Pi, such as

quadrilaterals, triangular elements, or Voronoi-diagrams, the entire scene is covered by a

net of these patches, see Figure 1.15. Under the assumption that the reectivity and the

radiosity over all of these patches is constant, thus ρdh(s) = ρi and Bi(s) = Bi, ∀s ∈ Pi, Radiosity (264)

the original radiosity equation, a Fredholm integral equation of the 2nd kind, can be

transformed into a system of n discrete radiosity equations Freholm Integral Equation (127)

Bi = Ei + ρi

n∑
j=1

FijBj (1.24)

for 1 ≤ i ≤ n. In this equation, the factors Fij are called the patch-to-patch form factors. Form Factor (784)

They indicate what fraction of light on patch Pi originates at patch Pj, in other words,

they describe how well the patches can see each other. Thus, patches that are far away

from each other, or that are oriented at oblique angles to each other, will have smaller

form factors than patches that are opposite to each other. If two patches are covered by

a third patch, then their form factor will be reduced or zero, depending on whether the

occlusion is partial or total.

The form factors represent, together with the reectivities ρi, the coe�cients of the

linear system from Equation (1.24). Thus, the linear system of equations can also be
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FIGURE 1.15: RADIOSITY. The Cornell box rendered via a radiosity algorithm, where the
right image shows the associated partition of the surfaces in a mesh of disjoint small surface
patches.

written as

(I−M)B = Be (1.25)

with

(I−M) =


(1− ρ1F11) −ρ1F12 · · · −ρ1F1n
−ρ2F21 (1− ρ2F22) · · · −ρ2F2n

...
...

...
...

−ρnFn1 −ρnFn2 · · · (1− ρnFnn)

 . (1.26)

Assuming, that the matrix (I−M) is invertible, the above operator equation can be

solved using a direct or an iterative solver such as a Jacobi, Gauss-Seidel, or SouthwellSection 2.3.3.2.4.2

iteration method. It then results in the radiosity of each patch, taking into account inter-

action of light at di�use surfaces and soft shadows. While ray tracing can be considered as

a so-called image-space based algorithm, the radiosity method is an object-space based

algorithm, that computes the light distribution in the entire scene independent of the

position of the viewer.



CHAPTER TWO

MATHEMATICAL FOUNDATIONS OF
REALISTIC RENDERING

"Wenn uns die Beantwortung eines mathematischen Problems

nicht gelingen will, so liegt h�au�g der Grund darin, dass wir noch

nicht den allgemeineren Gesichtspunkt erkannt haben, von dem aus

das vorgelegte Problem nur als Glied einer Kette verwandter

Probleme erscheint."

DAVID HILBERT (1862 - 1943)

Until today, a great deal of research has been directed toward Monte Carlo and �nite

element methods for solving the light transport equations, but only little is known about

the continuous equations beyond the existence and uniqueness of its solution. But to design

more e�cient, and elegant algorithms for �nding �nite-dimensional approximate solutions

to the light transport equations a full understood of the continuous global illumination

problem is more than helpful.

The common approach to transform the light transport equations, all together Fred-

holm integral equation of the 2nd whose solutions exist in in�nite-dimensional function

spaces, occurs through the formalism of functional analysis. Functional analysis is the

study of abstract in�nite-dimensional function spaces and mappings that operate on these

spaces. This elegant mathematical theory provides us with the tools for solving concrete

analytical problems �rmly anchored in real world, such as di�erential and linear integral

equations. But not only functional analysis but also many other branches of mathematics,

such as numerical analysis, measure, and integration theory as well as probability theory

play a central role for a full understanding of the global illumination problem.

OVERVIEW OF THIS CHAPTER. The present chapter is divided in four sections. Each of these

sections covers a distinct area from mathematics, which is needed for a full understanding

of the theoretical basis of realistic rendering algorithms.

The �rst section is devoted to the principles of functional analysis. Mathematics, Section 2.1

25
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in particular functional analysis: With its concepts of the linear space and the linear op-

erator as a mapping on and between linear spaces, functional analysis provides us with

the necessary tools for a formal description of the operations de�ned in realistic rendering

processes and their required input parameters. Therefore, the most elementary concepts

of functional analysis, where we turn our attention to the application areas of functional

analysis with respect to global illumination theory, are presented in this part of the chap-

ter. In Section 2.2 we present fundamental constructs and concepts relating to measureSection 2.2

and integration theory. They build the necessary fundament for understanding and an-

alyzing rendering processes based on stochastic and �nite element methods. With theSection 2.3

Lebesgue integral and the concept of the linear operator then we are ready to talk about

integral equations, where we are primarily interested in integral equations of the so-called

Fredholm type. So, we will de�ne and discuss, with respect to the integral equations of

global illumination, the most important solution methods to this type of integral equa-

tions. Finally we will conclude the chapter with a short excursion into the probabilitySection 2.4

theory. With the Lebesgue integral at hand, and the necessary concept of the measurable

function we will be able to study general probability spaces, especial types of random

variables, and estimators. All these tools are necessarily needed to make reasonable state-

ments about the quality of Monte Carlo estimators resulting from rendering algorithms.

2.1 PRINCIPLES OF FUNCTIONAL ANALYSIS

Functional analysis, a melting pot of a large variety of di�erent mathematical disciplines,

may be regarded as the cornerstone of each and every kind of analysis aiming at the

solution of operator equations and extremal problems in abstract, in�nite-dimensional

function spaces. This elegant mathematical theory provides us with the tools for solving

concrete analytical problems �rmly anchored in real world, such as di�erential equations,

variational problems, and of particular interest here, linear integral equations.

For that purpose, the problem to be solved is �rst reformulated as an operator equa-

tion in an abstract in�nite-dimensional function space, such as the Lebesgue space of

square-integrable functions. For these kind of operator equations, functional analysis

makes general statements about the existent and uniqueness of solutions. Provided that

the general assumptions of the given problem are satis�ed, functional analysis, conducted

with the help of highly specialized tools, then supplies exact or at least approximate ap-

proaches for solving the problem.

Applied to the global illumination problem this means, that we will formulate the

general light transport as an operator equation over an abstract, in�nite-dimensional func-

tion space and then identify the rendering algorithms, based on ray tracing or radiosity,

as those solution strategies that have their origin deep in functional analysis.
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We will start in this section with a discussion about linear function spaces. The con-

cept of the linear function space is the building block for the study of functional analysis. Section 2.1.1

So, we will present the well-known function spaces of bounded and continuous functions,

but we will also derive and study the rather more complex function spaces underlying the Section 2.1.2

global illumination problem in more detail. We consider sequences of functions de�ned Section 2.1.3

on function spaces, discuss di�erent types of convergence, and investigate their limit be-

havior. Here, in particular we are interested in complete function spaces, the so-called

Banach and Hilbert spaces. There are Hilbert spaces which ful�ll the properties that

make them appropriate to function spaces from which we can �nd solutions to the global

illumination problem, exact in theory or approximative for the practical use. Afterwards,

we will introduce the reader into the theory of linear operators|closely related to the Section 2.1.4

concept of the linear function space|as those tools, that will allow us to transform the

extremely complicated task of solving a linear integral equation into a simple linear oper-

ator equation. For that purpose, we will also talk about linear operator equations in more Section 2.1.5

detail and demonstrate solution strategies for linear operator equations as well as its dual

analogues, namely: adjoint equations. Section 2.1.6

2.1.1 LINEAR FUNCTION SPACES

Most problems in functional analysis exist in in�nite-dimensional function spaces, that is,

they can often not be solved exactly. In particular, this holds for problems deeply rooted

in practice. Solutions to these problems can only be derived in numerical analysis. This

requires to frequently examine the closeness of a numerical solution to its exact counter-

part. Thus, we need a measure for estimating the di�erence between a numerical solution

and the associated exact solution. From the Appendix it is known, that such a measure

exists for vectors given by the concept of the norm. Therefore, we have to equip a function Norm (860)

space with a topological structure, based on the concept of the norm. This then enables

us to estimate the quality of an approximate solution of a problem. In functional analysis,

such types of function spaces are known as complete, linear normed function spaces, Banach Space (35)

often also better known as Banach spaces. If the norm underlying these spaces arises

from an inner product then we call them Hilbert spaces. Hilbert Space (36)

LINEAR FUNCTION SPACES. The main objective of this book is to �nd solution methods

for solving the stationary light transport equation, also known as SLTE, given by: SLTE (296)

Li(x,ωi) = β(s→ x) εb(s,ωo) +

∫
[0,‖s−x‖]

β(x′ → x)Qo(x
′,ωo)dµ(α), (2.1)

a Fredholm integral equation of the 2nd kind. As in the case of the computation of the Linear Integral Equation (127)

Riemann integral

f(x) =

∫
exdx, (2.2)
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in a certain sense also a simple integral equation, namely an integral equation of the �rst

kind, whose solution ex is an element of the set of all di�erentiable functions. Now, solu-

tions of integral equations are members of sets that are equipped with additional algebraic

and topological structures: so-called function spaces. So, the concept of the function

space is not only required to decide whether there exist solutions to a linear integral equa-

tion and whether a solution is unique, but it is also useful for deriving techniques that

can be applied to �nd these solutions|or at least to �nd approximate solutions of integral

equations in practice.

DEFINITION 2.1 (Linear Function Space) Let S be the set of all functions f from any set

X to a set Y, thus,

S
def
= {f | f : X→ Y}, (2.3)

then S is called a linear function space, or briey a function space, if S satis�es the

conditions required to a linear space. In other words, there must exist two operations,Linear Space (854)

an addition and a s-multiplication, such that for two functions f, g ∈ S apart from

f+ g also α · f ∈ S applies, where α ∈ K and K is either the �eld R or C.

EXAMPLE 2.1 (The Linear Function Space C[a, b]) Let us introduce the function spaceLinear Space (854)

C([a, b]), thus the space of all continuous, real valued functions de�ned over theContinuous Function (868)

closed set [a, b]. It may readily be seen that C([a, b]) satis�es the laws of a linearClosed Interval (829)

space. Intuitive, this should be clear, since with two functions f, g ∈ C([a, b]) also
their sum αf + βg with α,β ∈ R is continuous and C([a, b]) contains with f = 0 and

−f = (−1)f both, the zero as well as the inverse element of the space.

It should also be clear, that 1, x, x2, x3, . . . , xn are all continuous functions and

that this set of functions is linearly independent no matter how large n is. In accor-Linear Independent (857)

dance with De�nition A.16 then the dimension of C([a, b]) is in�nite.

EXAMPLE 2.2 Let us consider the set of all non-negative, real-valued, continuous func-Continuous Function (868)

tions C≥0[0, 1] de�ned on the closed interval [0, 1]. Obviously, this set is not a func-Closed Interval (829)

tion space, as there exists no inverse element −f to any function f ∈ C≥0[0, 1], thus,
C≥0[0, 1] is not closed with respect to the s-multiplication.

EXAMPLE 2.3 (The Linear Function Space B[a, b]) The classic rendering algorithms sim-Chapter 8

ulate many natural light phenomena, such as the glittering play of colors in soap

bubbles, the oily top layers of wet surfaces, and the color spectrum of the rainbow,

only highly unsatisfactorily. For accurate color rendering in computer graphics any

algorithm needs access to the full spectral character of the light sources and surfaces

within a given scene. Thus, a rendering method must get enough spectral informa-

tion to compute �nal values for output to some display such as an RGB-monitor.
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FIGURE 2.1: A LINEAR INDEPENDENT SET OF FUNCTIONS OF SPACE C[0, 1]. The
functions 1, x, x2, x3, . . . correspond to an infinite set of linear independent functions of the
space of continuous functions defined on the closed interval [0, 1].

FIGURE 2.2: SPECTRAL POWER DISTRIBUTIONS. Two different spectral power distri-
butions. Left, a smooth, continuous spectral power distribution right, a SPD as it can be
associated with a fluorescent light bulb. It is very spiky and has discontinuities at a finite
number of locations within Λ.

All these physical data about light and its reecting properties at surfaces is con-

tained in a spectral power distribution, briey denoted as a SPD, see Figure 2.2.

Except for line spectra, spectral power distributions are commonly continuous and Continuous Function (868)

bounded functions de�ned on the set Λ, the visible spectrum of light, where it holds:

Λ = [380 nm, 780 nm]. Bounded Function (863)

Let us consider the function space B([a, b]), that is, the space of all bounded, real

valued functions de�ned on the closed set [a, b]. It may readily be seen that B([a, b]) Closed Interval (829)

satis�es the laws of a linear space. Intuitive, this should be clear, since with two

functions f, g ∈ B([a, b]) also their sum αf+βg with α,β ∈ R is bounded and B([a, b])

contains with f = 0 and −f = (−1)f both, the zero as well as the inverse element of

the space. A �nite set of linear independent functions on B([a, b]) is then given by Linear Independence (857)
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fi(x)
def
=

{
1 x ∈ Bi
0 otherwise,

(2.4)

where [a, b] is partitioned into a �nite subset of disjoint intervals
⋃n
i=1 Bi, Bi ∩ Bj =

∅, i 6= j.
It should be clear, that the functions fi are all bounded functions and that this

set of functions is linearly independent no matter how large n is. In accordance withLinear Independence (857)

De�nition A.16 then the dimension of B([a, b]) is in�nite-dimensional.

REMARK 2.1 Contrary to vector spaces in linear algebra, function spaces are typically

of in�nite dimension, that is, it does not exist a �nite basis of functions that canBasis (857)

be used to describe a function exactly by a linear combination of elements of thisLinear Combination (857)

basis. There is only the possibility to approximate a function by a set of functions

of a given �nite basis.

In Section 2.3.3 we present a series of techniques for approximate solving linearSection 2.3.3.2.1

integral equations of the Fredholm type. They all make use of the idea of approximat-Section 2.3.3.2.2

ing the unknown, usually in�nite-dimensional, function within an integral equationSection 2.3.3.2.2

by a linear combination of basis functions of a �nite-dimensional subspace. As we

shall see later, these techniques transform the original given integral equation into a

linear system of equations that can be solved directly or iteratively by a corresponding

numerical procedure.Section 2.3.3.2.4.2

SEQUENCES OF FUNCTIONS. Now, let (S, ‖ · ‖) be a linear normed function space. If weLinear Normed Space (860)

declare, as consequence of the norm, a real valued function ∆ : S×S→ R≥0 that satis�es theNorm (860)

requirements of a metric, then it is possible to measure the distance between two functionsMetric (866)

f, g ∈ S. This construct enables us to generate sequences of functions (fn)n∈N, (gn)n∈N,

to compare their values and give answers about their limit behavior, see Figure 2.3.

DEFINITION 2.2 (Limit of Sequences of Functions) Suppose (fn)n∈N is a sequence ofSection 2.2.4

functions de�ned on a common domain Dom(fn) of a function space S. We denote

(fn)n∈N to be convergent, if there exists a member f ∈ S for which, given any ε > 0,

a number N can be found, such that

‖fn(x) − f(x)‖ < ε, ∀n > N, (2.5)

then, we call the function f the limit function of fn.

In the appendix is shown, that a linear space can equipped with various norms. But

di�erent norms result in di�erent measures of size for a given element of a linear space,

that is, the convergence of sequences of functions in a linear function space depends on the

chosen norm. Now, one of the most important types of convergence in a function space is

the pointwise convergence. It is de�ned as follows:
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FIGURE 2.3: SEQUENCES OF FUNCTIONS. The first seven elements of the sequences of
functions fn = xn, n ≥ 0 and fn = 2x

1+n2x2
, n ≥ 1.

DEFINITION 2.3 (Pointwise Convergence) A sequence (fn)n∈N of functions of a linear

normed function space (S, ‖ · ‖) is said to converge pointwise to the limit function f,

in sign fn → f, if for every ε > 0, there exists a number N(ε, x), depending on x and Normed Space (860)

ε, such that it holds:

‖fn(x) − f(x)‖ < ε (2.6)

for all n > N(ε, x) and x ∈ Dom(fn).

Let us show the concept of pointwise convergence at a famous example: the sequence

of power functions de�ned on the unit interval:

EXAMPLE 2.4 Let us consider the real-valued sequence of functions, (fn)n∈N0 , with

fn(x) = x
n ∈ C[0, 1]. With respect to the supremum norm, de�ned by,

‖fn‖∞ def
= sup

x∈[0,1]
|fn(x)|, (2.7)

the sequence (fn)n∈N0 converges pointwise to the limit function f, given by,

f(x)
def
=

{
0 if x ∈ [0, 1)

1 if x = 1,
(2.8)

as it holds:

‖fn(x) − f(x)‖∞ = sup
x∈[0,1)

|fn(x) − f(x)| (2.9)

= |xn| < ε, (2.10)



32 CHAPTER 2. MATHEMATICAL FOUNDATIONS OF REALISTIC RENDERING

for all x ∈ [0, 1), and ‖fn(1) − 1‖∞ = 0.

From this observation we can conclude: fn converges pointwise with respect to

the supremum norm ‖fn‖∞, towards the limit function f that takes the value zero Norm (860)

in the half-open interval [0, 1) and is exactly one for x = 1. Obviously, the sequence

fn converges towards a discontinuous function, that is, the limit function is not a

member of the space C[0, 1], see Figure 2.4.C[0, 1] (28)

The fact, that pointwise convergence does not guarantees the retention of good prop-

erties, such as for example continuity of the members of a sequence of functions, is notDiscontinuous Function (868)

desirable. Pointwise convergence of a sequence of functions is a too weak property that

can lead to problems when integrating a sequence of functions in sense of Riemann.Riemann Integral (876)

Let us assume, we have a sequence of continuous functions (fn)n∈N that converges to

a limit function f, such as in the case of a power series, or an in�nite series of polynomials

that describes a particular function from an in�nite-dimensional function space. A good

property, that the Riemann integral should ful�ll, could be:∫1
0

f(x)dx =

∫1
0

lim
n→∞ fn(x)dx = lim

n→∞
∫1
0

fn(x)dx, (2.11)

that is, instead to integrate the limit function|which can be a complicated task|it is

also possible to integrate the members of the sequence of functions, and to compute their

limit. Thus, for integrating power series, the concept of the Riemann integral makes only

sense, if it allows the exchange of the limit and the integral.

Now, let us consider the Riemann integral of the sequence of functions fn given by:Riemann Integral (876)

fn(x) =

{
1 if x ∈ {q1, . . . , qn}

0 if x ∈ [0, 1] \ {q1, . . . , qn},
(2.12)

where {q1, . . . , qn} are the rational numbers in [0, 1].

It is known from calculus that the lower and the upper Riemann-Darboux integral of

each function fn exist and have the same value, that is, each member of the sequence of

functions fn is Riemann-integrable. In Example 2.38 we will see that the limit function

of fn under pointwise convergence, the so-called Dirichlet function, is not Riemann-

integrable. Obviously, pointwise convergence does not support the exchange of the limit

and the integral for the mathematical concept of the Riemann integral. Since this e�ect is

not desirable, we need a stronger convergence type for the Riemann integral that satis�es

this requirement: the concept of uniform convergence.

DEFINITION 2.4 (Uniform Convergence) A sequence (fn)n∈N of functions of a linearSection 2.2.4

normed function space (S, ‖ · ‖) is said to converge uniformly to the limit function f,Linear Normed Space (860)

in sign fn → f, if for every ε > 0, there exists a number N(ε), only depending on ε,

such that it holds:

‖fn(x) − f(x)‖ < ε (2.13)
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FIGURE 2.4: POINTWISE AND UNIFORM CONVERGENCE. Elements of the sequences of
functions fn = xn and gn = 2x

1+n2x2
. Obviously, fn is pointwise convergent to 0 in the

interval [0, 1), but neither pointwise nor uniformly convergent on the closed interval [0, 1].
The sequence gn is uniformly convergent towards 0 on [0, 1] with respect to the infinity
norm.

for all n > N(ε). For a uniform convergent sequence of functions we write

fn ⇒ f. (2.14)

As we can see from Figure 2.4, uniform convergence of a sequence (fn)n∈N of functions

has a very simple geometric interpretation: For any given ε, all functions fn lie in a tube

of diameter 2ε located symmetrically about the limit function f, for n greater than N(ε),

which now depends on ε, but no more on x.

EXAMPLE 2.5 Let us consider once more the sequence of functions from Example 2.4.

As we have seen, fn converges with respect to the supremum norm pointwise to a Supremum Norm (33)

limit function.

With respect to the supremum norm, de�ned by,

‖fn‖∞ def
= sup

x∈[0,1]
|fn(x)|, (2.15)

the sequence of functions is not convergent to the limit function from Equation (2.8)

since it holds:

‖fn − f‖∞ = sup
x∈[0,1]

|fn(x) − f(x)| = 1. (2.16)

As this example shows, in in�nite-dimensional linear spaces convergence de�ned by

a certain norm can be stronger than by another norm.
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REMARK 2.2 As we will see in the following, the mathematical concept of the uni-

form convergence of function sequences plays a fundamental role in mathematics,

since it transforms important properties of a sequence of functions (fn)n∈N, such as

continuity, di�erentiability, and integrability to the limit function f.

When deriving the Lebesgue integral, thus, the integral concept underlying the

theory of linear integral equations, we will see that uniform convergence is already

a very strong requirement for functions to be Lebesgue-integrable. There, we will

see that the Lebesgue integral allows the exchange of limit and integral under much

weaker conditions than uniform convergence of a sequence of functions. This then

leads to a broader class of integrable functions, than those attached to the Riemann-

integral.

REMARK 2.3 From the above example we conclude:

i) It is important to specify which norm is being used when discussing convergence

of sequences of functions in linear normed spaces, as convergence with respectLinear Normed Space (860)

to one norm does not necessarily imply convergence with respect to another

norm.

ii) It is possible that the limit of a sequence of functions in a linear normed space

is not an element of the given space.

As we shall see further below, the behavior of a sequence of functions as described

in Example 2.5, where the limit of (fn)n∈N is not an element of S, is undesirable. For a

number of reasons, we make a strong distinction between spaces in which sequences will

converge towards a member of the space and spaces in which we can construct sequences,

whose limit is not an element of S.

COMPLETENESS, BANACH AND HILBERT SPACES. From the de�nition of the limit of a

sequence we conclude that convergent sequences are characterized by the fact that theLimit of a Sequence (867)

distance of adjacent sequence members|measured in terms of a norm underlying the

linear space|decreases if their indices increase. So, a sequence converges normally towards

an element within space. Unfortunately, this observation is not applicable to all linear

spaces. As demonstrated in functional analysis, in many linear spaces sequences may be

constructed, which conform to the condition that the distance between their members gets

smaller with increasing index, and thus converge, but whose limit is not an element of the

space.

Transcribed to our problem of �nding a solution to the light transport equation this

means: Even if we are able to construct a sequence of functions that are all more or less

approximate solutions of the SLTE, then it is not guaranteed that the limit of this sequence

converges to the exact solution of the SLTE.

For a number of reasons this kind of behavior is not welcome. So a strict di�eren-

tiation is made in functional analysis between spaces containing sequences behaving like
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convergent sequences and converging towards a limit belonging to the linear space S, and

spaces containing sequences that converge towards a value not lying in S. This idea neces-

sitates the introduction of the concept of the completeness of a linear space, leading to

the construction of the most important spaces in functional analysis: Banach and Hilbert

spaces. A tool, that can be used to check the completeness of a linear space is given by

the concept of the Cauchy sequence. Cauchy sequences have, as we see further below, the

properties, that their de�nition makes no reference to the notion of convergence or that

of a limit, since it is possible, that they do not converge. Formally, Cauchy sequences are

de�ned as follows:

DEFINITION 2.5 (Cauchy sequence) A sequence (xn)n∈N of a linear normed space (S, ‖·‖) Linear Normed Space (860)

is termed a Cauchy sequence if, for any given ε ∈ R, ε > 0, there exists a number

N(ε) ∈ N, such that ‖xn − xm‖ < ε whenever m,n > N(ε).

With the concept of the Cauchy sequence, we are now ready to introduce the funda-

mental concept of the Banach space.

DEFINITION 2.6 (Banach Space) Let (S, ‖ · ‖) be a linear normed space. If S satis�es

the condition that every given Cauchy sequence converges to an element of S, then

(S, ‖ · ‖) is referred to as a complete, linear normed space, also denoted as a Banach

space. Linear Normed Space (860)

EXAMPLE 2.6 (The Complete Space Rn) Since any Cauchy sequence in Rn converges

towards an element of the space, (Rn, ‖ · ‖2) is a complete linear normed space. This Linear Normed Space (860)

property is fundamental, as it holds only in complete spaces. In incomplete linear

spaces, such as Q, this property is not valid, as we can construct Cauchy sequences

that do not converge to an element of Q. For example, if we consider the sequence

xn+1 = 1
2

(
xn + 2

xn

)
then all elements of this sequence are rational numbers, but it

holds limn→∞ xn =
√
2 /∈ Q.

EXAMPLE 2.7 (The Banach Space C([a, b])) Let f be a function of C[a, b]. Using the C[a, b] (28)

supremum norm ‖ · ‖∞ then it holds: Supremum Norm (33)

‖f‖∞ def
= sup

x∈[a,b]
|f(x)| (2.17)

= max
x∈[a,b]

|f(x)|, f ∈ C([a, b]), (2.18)

that is, (C([a, b]), ‖ · ‖∞) becomes a linear, normed space. Obviously, this space is Linear Normed Space (860)

complete, as ‖ · ‖∞ ful�lls the conditions required to a norm and every Cauchy se-

quence (fn)n∈N converges uniformly towards a limit function f ∈ C([a, b]). We leave

this proof to the interested reader.

EXAMPLE 2.8 (The Banach Space B([a, b])) Let f be a function of B[a, b]. Using the B[a, b] (28)
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supremum norm ‖ · ‖∞ then it holds:Supremum Norm (33)

‖f‖∞ def
= sup

x∈[a,b]
|f(x)|, f ∈ B([a, b]), (2.19)

that is, (B([a, b]), ‖·‖∞) becomes a linear, normed space. Similar to the space C([a, b]),Linear Normed Space (860)

also the space of all bounded functions on the interval [a, b] is a complete linear

normed space.

REMARK 2.4 Every �nite-dimensional, linear, normed space (S, ‖·‖) is complete. Con-Linear Normed Space (860)

cretely, a complete linear normed space is a space that does not have any holes in

it.

DEFINITION 2.7 (Hilbert Space) If however we provide an arbitrary given linear spaceLinear Space (854)

S with an inner product, then every inner product space (S, 〈·, ·〉S) may be equippedInner Product (859)

with a norm via the constructionInner Product Space (859)

‖x‖ def=
√
〈x, x〉S, (2.20)

which makes it to a linear normed space, also referred to as a pre-Hilbert space. If

this pre-Hilbert space also satis�es the condition of completeness, then it is referred

to as a Hilbert space.Completnesse (34)

EXAMPLE 2.9 (Extending a Banach Space to a Pre-Hilbert Space) As known from above,

(C[a, b]), ‖ · ‖∞) is a Banach space, but not a Hilbert space, since the norm ‖ · ‖∞C[a, b] (28)

was not induced by an inner product. However, if we equip C([a, b]) with the inner

product

〈f, g〉C([a,b])
def
=

∫
[a,b]

f(x)g(x) dx, (2.21)

where the integral is an ordinary Riemann integral, then, due to Relation 2.20 theRiemann Integral (877)

space (C([a, b]), ‖ · ‖) becomes an inner product space, namely a pre-Hilbert space.Pre-Hilbert Spce (36)

Note: (C([a, b]), ‖ ·‖) is not a Hilbert space, but as a pre-Hilbert space it provides
us with the concept of orthogonality.

REMARK 2.5 It is clear that any Hilbert space is also a Banach space. But Hilbert

spaces possess|due to the concept of orthogonality|a richer structure than Banach

spaces.

REMARK 2.6 Completeness is a very important characteristic of linear spaces. It is

precisely this type of a linear space that possesses a number of useful properties

missing in a non-complete space. So, it enables a number of solution methods for

various di�erent analytical problems �rmly anchored within real world.

In the following we are interested in complete, linear normed function spaces,

where the inner product is de�ned via the concept of the Lebesgue integral, which is ofLebesgue Integral (105)
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enormous relevance for the treatment of global illumination algorithms. Depending

on norms underlying these function spaces, we get the only function space that may

be constructed over the Lebesgue integral and which in addition conforms to the

conditions required to a Hilbert space. It is just this space that allows the development

of radiosity and ray tracing algorithms as approximate solution strategies for the Chapter 10

global illumination problem. Chapter 8

As we have seen in the Examples 2.1 and 2.3, the complete, linear, normed spaces C[a, b] (28)

of continuous respectively bounded functions on the closed set [a, b] ⊂ R are of in�nite

dimension, that is, it is not possible to �nd a �nite set of continuous functions in C[a, b]

respectively in B[a, b] that spans the associated function spaces. The best we can achieve B[a, b] (28)

is to construct an in�nite sequence of continuous respectively bounded functions such,

that any function of C[a, b] respectively B[a, b] can be approximated closely by a �nite

linear combination of these functions. Arbitrary Hilbert spaces and the function spaces Linear Combination (857)

lying in our interest are also of this type. Hence, our aim is to extend the idea of a basis

to in�nite-dimensional spaces, which results in an in�nite, but countable set of elements Countable Set (827)

of the spaces.

From an inner product space, a number of important concepts of vector algebra and Inner Product Space (859)

calculus may be transferred onto the concept of the Hilbert space. Thus, not only the

fundamental Cauchy-Schwartz inequality holds in any inner product space, but also the Cauchy-Schwartz Inequality (859)

concept of orthogonality, well-known from the Euclidean space Rn. Section 2.3.3.2.2

DEFINITION 2.8 (Orthonormal Basis) Let S be an in�nite-dimensional inner product Inner Product Space (859)

space. A system B∞φ = {φi | i ≥ 1, 〈φi, φj〉 = 0, i 6= j} of maximal orthogonal elements Orthogonality (859)

of S with ‖φi‖ = 1 is called an orthonormal basis of S if there exist no other non-zero

element φ ∈ S that is orthogonal to all elements of B∞φ .
Now let us assume (S, 〈·, ·〉S) be an in�nite-dimensional inner product space. Con-

sidering the �nite dimensional subspace U of S, spanned by the orthonormal set Bnφ = Linear Subspace (855)

{φ1, . . . , φn}, then any u ∈ U can be written as a linear combination of elements of Bnφ, Linear Combination (857)

thus,

u =

n∑
i=1

αiφi, (2.22)

where αi are uniquely de�ned real or complex numbers. R,C (827)

Extending the orthonormal set Bnφ = {φ1, . . . , φn} successively by orthonormal mem-

bers φn+1, φn+2, · · · from S results in a sequence (Bnφ)n∈N of orthonormal bases for a

sequence of �nite dimensional subspaces (Un)n∈N of our originally given inner product Inner Product Space (859)

space S. Since S is of in�nite dimension, a member f ∈ S can only be represented by a

linear combination of countably in�nite orthonormal elements of S, that is, Countable Set (827)

f =

∞∑
i=1

αiφi, (2.23)
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where αi are uniquely de�ned real or complex numbers and Expression (2.23) must be

interpreted as the limit n → ∞ of the nth-partial sums un de�ned by Equation (2.22).

Thus any partial sum un is an approximation of f, and this approximation improves,

if n increases. That is, contrary to �nite dimensional spaces, the best we can do in

in�nite-dimensional spaces to represent an element of S, is to construct an in�nite sequence

(un)n∈N of members from S with the property, that any element of S can be approximated

arbitrarily closely by a �nite linear combination of these members. This statement is

a conclusion from the Best Approximation Theorem, which also provides information

about the choice of the coe�cients αi, i ≥ 1:

THEOREM 2.1 (Best Approximation Theorem) Let S be an inner product space and B∞φ =Inner Product Space (859)

{φ1, φ2, . . .} be an orthonormal set from S. Furthermore, let f be a member of S andOrthonormal Function (37)

the sequences un and ũn ∈ U ≤ S be given by:

un =

n∑
i=1

αiφi and ũn =

n∑
i=1

〈f, φi〉Sφi, (2.24)

where 〈f, φi〉S are denoted as the Fourier coe�cients of un and ũn, and αi are arbitrary

real or complex numbers. Then it holds:

‖f− ũn‖ = inf
un∈U

‖f− un‖. (2.25)

PROOF 2.1 We omit the proof and point to [22, Berezansky & al. 1996].

EXAMPLE 2.10 (The Linear Function Space C(a, b)) Due to the Best ApproximationBest Approximation Theorem (38)

Theorem any real-valued function f of the pre-Hilbert space (C([a, b]), ‖ · ‖) frompre-Hilbert Space (36)

Example 2.9 can be approximated by:

f(x) =

n∑
i=1

〈f(x), φi(x)〉C([a,b])φi(x) (2.26)

=

n∑
i=1

(∫b
a

f(x)φi(x)dx

)
φi(x) (2.27)

with respect to an n-dimensional orthonormal basis {φ1(x), . . . , φn(x)} of Un ≤ C([a, b]).Orthonormal Basis (37)

Now, an n-dimensional basis of Un ≤ C([a, b]) can be de�ned via a set of piece-

wise continuous and bounded functions φi, see Example 2.3, given by

φi(x)
def
=

{ √
n
b−a x ∈

[
a+ (i− 1)b−a

n
, a+ ib−a

n

]
0 otherwise,

(2.28)
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with 1 ≤ i ≤ n. The orthogonality of the functions can easily be shown by

〈φi(x), φj(x)〉 =

∫a+ib−a
n

a+(i−1)b−a
n

φi(x)φj(x)d(x) (2.29)

=

∫a+ib−a
n

a+(i−1)b−a
n

√
n

b− a
· 0 d(x) (2.30)

= 0 (2.31)

and the unit length of the functions φi can be seen from

〈φi(x), φi(x)〉 =

∫a+ib−a
n

a+(i−1)b−a
n

φi(x)φi(x)d(x) (2.32)

=
n

b− a

∫a+ib−a
n

a+(i−1)b−a
n

d(x) (2.33)

= 1. (2.34)

Extending the Best Approximation Theorem to the case where the orthonormal set

is in�nite then leads to the Fourier Series Theorem.

THEOREM 2.2 (Fourier Series Theorem) Let S be a Hilbert space and let B∞φ = {φ1, φ2, . . .}

be a countably in�nite set of orthonormal elements from S. Then any f ∈ S can be

written in form of an in�nite series of members of (B∞φ ), that is,

f =

∞∑
i=1

〈f, φi〉Sφi (2.35)

if and only if B∞φ is an orthonormal basis, in other words, if it is a maximal or-

thonormal set in S. Orhtonormal Functions (37)

PROOF 2.2 We omit the proof and point to [169, Reddy 1998].

REMARK 2.7 The Fourier Series Theorem plays an important role when we are inter-

ested in representing a BRDF by spherical harmonics. So, we will show in Chapter BRDF (320)

4, that a BRDF is a function of two directional variables, that makes a statement Spherical Harmonics (124)

about how much light is reected at an opaque surface. Under certain circumstances

it is a very common method of evaluating the SLTEV, the stationary light transport

equation within a vacuum, by projecting the integrand, i.e. the BRDF together with

the radiance function Lo, onto spherical harmonics|the spherical analogues of sines

and cosines|which forms a smooth orthonormal basis for functions de�ned on the

unit sphere. Orthonormal Basis (37)

REMARK 2.8 From the above statements we may now conclude, that a Hilbert space Hilbert Space (36)
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corresponds to a Banach space equipped with a norm induced via an inner product. Banach Space (35)

Due to the inner product involved, a Hilbert space possesses properties which do not

apply to general Banach spaces.

Thus, a Hilbert space provides the closest analogue to the Euclidean space Rn
among the function spaces, and its geometry is closely modeled to that of Rn. As

we have seen, it is possible, by means of the integral, to induce a norm via an inner

product, which provides the concept of orthogonality between functions. This gives

any Hilbert space many pleasant properties, such as the Pythagorean theorem as well

as the concept of orthogonal projections, which plays a vital role in particular in the

radiosity procedure of global illumination theory. There, we obtain suitable solutions

from �nite-dimensional linear spaces, which correspond to the projection of in�nite-

dimensional function spaces where the structure of the Hilbert space is required.

EXAMPLE 2.11 (Spectral Power Distributions) From Example 2.3 we know, that accurate

color rendering in computer graphics is based on the concept of the spectral power

distribution, except of line spectra, a bounded function de�ned over the visible spec-

trum of light. Such functions are elements of the function space B([a, b], ‖ · ‖) with
[a, b] ≡ Λ, and Λ = [380 nm, 780 nm], and the norm is given via the inner productB[a, b] (28)

from Equation 2.21. Due to the power of its domain, it should be clear that it is not

possible to represent a SPD exactly in any rendering algorithm, that is, a SPD may

only be addressable for computation via approximations.

Therefore, the in�nite-dimensional space of spectral power distributions is pro-

jected onto the n-dimensional function space spanned by a set of orthonormal func-Orthonormal Basis (37)

tions {φ1, · · · , φn}. As shown in Example 2.10, the functions φi can be chosen as

piecewise bounded function, where the visible spectrum is partitioned into a set of n

bins.

Under these circumstances, the Best Approximation Theorem is applicable, and

the following clearly applies for a spectral power distribution S ∈ B(Λ):

S(λ) =

n∑
i=1

〈S(λ), φi(λ)〉φi(λ) (2.36)

with

〈S(λ), φi(λ)〉
def
=

∫
Λ

S(λ)φi(λ)dλ, (2.37)

where the spectrum of every light source in a scene may be formulated via the n-

dimensional vector (〈S(λ), φ1(λ)〉, . . . , 〈S(λ), φn(λ)〉)T ∈ Rn.
Depending on the accuracy of the approximation, any orthonormal system de-

�ned over B(Λ) is available for the choice of the basis functions {φ1, . . . , φn}. Thus,

apart from the piecewise constant box functions

φi(λ)
def
=

{
1 λi < λ < λi+1, 1 ≤ i ≤ n
0 otherwise,

(2.38)
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the monochromatic functions de�ned solely for one single sample

φi(λ)
def
=

{
1 λ = fix, 1 ≤ i ≤ n
0 otherwise

(2.39)

also represent basis functions that may be e�ciently calculated, however only for the

approximation of a small class of real spectra. According to [153, Peercy 1993] and

[206, Sun & al. 1999] among the more adequate, though computationally more ex-

pensive, methods are orthonormal systems based on the following system of trigono-

metric functions 
φ1(λ)

def
= 1

φ2(λ)
def
= cos

(
2π

(λ−λmin)
(λmax−λmin)

)
φ3(λ)

def
= sin

(
2π

(λ−λmin)
(λmax−λmin)

)
· · ·

(2.40)

or orthonormal systems, whose elements may be described via the Gauss functions

φi(λ)
def
= e− ln 2(2(λ−λc,i)wi)

2

1 ≤ i ≤ n (2.41)

where λc,i and wi denote parameters here not speci�ed further.

2.1.2 THE SCENE MODEL IN RENDERING ALGORITHMS

In view of generating and analyzing realistic rendering procedures the Euclidean space R3 Chapter 8

plays an important role. As we will show in one of the chapters to follow below, realis-

tic rendering algorithms require not only many parameters, but also the description of a

virtual scene, de�ned by a large number of di�erently-shaped objects in R3. Such a scene

object may be visualized as composed of either simple geometric elementary structures,

such as points, lines, and triangles, or simple respectively more or less complex mathemat-

ical constructs of di�erential geometry, such as parallelepipeds, spheres, cones, and tori,

as well as special 2-dimensional surfaces, see Figure 2.5.

We treat the scene, underlying any rendering algorithms, as a union of a �nite number

of 2-dimensional surfaces and 3-dimensional volumes within the space R3. Following

this approach, our scenes are modeled as a set of �nite volumes V = {V1, . . . ,Vn} ⊂ R3 and
their boundaries ∂V, thus a �nite set of surfaces describing the solid objects in the scene.

We assume that all of these boundaries are closed and piecewise di�erentiable, where the Closed Set (864)

space between these objects, an open set denoted by Vo = V \ ∂V, can be �lled with Open Set (864)

participating media.
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FIGURE 2.5: DIFFERENTLY-SHAPED OBJECTS IN R3. A sphere, a torus, and a surface as
examples for 2-dimensional surfaces and a parallelepiped, a cylinder, and a cone as examples
for 2-dimensional surfaces, piecewise differentiable except for their edges and dot singularities.

2.1.3 RAY SPACES AND FUNCTION SPACES ON RAYS

As already informally described in our introductory chapter, a classic ray tracing algorithm

uses the theoretical concept of the mathematical ray to simulate the physical model of a

light ray, known from ray optics. Such an algorithm �res a ray r into the underlying scene,

where at possible hit points of r with object surfaces in the environment, the portion of

incident illumination is determined. Because this amount of light is not only dependent

on the quantity of light that directly arrives from existing light sources, but also of all

other surfaces within the scene, a ray tracing procedure also needs to know information

about the light �eld around a hit point. Via the mechanism of recursive ray generation

at these intersections points, the procedure then samples so to say, the light distribution

in the whole scene via rays and contributes the light traveling along these rays from all

reachable points to the illumination at the point to be shaded, see Figure 2.6.

To describe and analyze this process of light transport formally, it is required to

capture the concept of the light ray and of light energy, carried by a ray, in a more mathe-Cartesian Product (829)

matical way, namely as Cartesian products of sets and elements from linear normed spaces.

These so-called ray spaces, de�ned over all rays starting at points in a scene, are the nat-Linear Normed Space (860)

ural bases of our light transport calculations. They allow the construction of functionRay Spaces (43)

spaces, which|equipped with a norm based on the Lebesgue integral|can be used toFunction Spaces on Rays (46)

specify the interaction of photon events at object surfaces. So, we will also introduce theLebesgue Integral (105)

concept of the incident and exitant function, of fundamental relevance for the de�nition ofIncident & Exitant Function (48)

the operator model of light and importance transport as well as for the �eld of radiome-Chapter 5

try. Incident and exitant functions also play a central role in the measurement of radiance,
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quasi the amount of light, arriving at or leaving from a scene point in a particular direction.

FIGURE 2.6: THE PRINCIPLE OF RAY TRACING BASED ALGORITHMS. At the first hit
point of a ray with the closest scene object, the algorithm can generate, depending on the
properties of the material of the concerned surface, up to three new types of rays: a reflection
ray, a refraction ray, and a shadow ray. The algorithm estimates the incoming light at the
intersection point of the primary ray with an object and combines this information to a
contribution to the final color of the pixel. The computation of the light contributions of the
reflected as well as the refracted ray are taken recursively until a diffuse surface is hit, the ray
doesn’t intersect an object within the scene, or the intensity of the ray is below a threshold
value respectively the recursion depth of ray generation exceeds a predefined value.

THE RAY SPACES R∂V,RVo AND R. Our de�nition of a mathematical ray, given by

r = x+αω, implies the representation of r based on a Cartesian product of two sets: a set

of starting points and a set of directions. As the transport of light in participating media

is di�erent from that in a vacuum|in participating media, light traveling between points

can also be e.g. absorbed by the media, which is not the case in free space|we must

distinguish between a description of light transport in free space and the light transport

in participating media. Hence, we want explicitly distinguish between rays starting at

object surfaces ∂V and rays that start at inner points of a volume. For that purpose, we ∂V (41)

now de�ne three di�erent types of ray spaces: the ray space over the surfaces ∂V ⊂ V, V (41)
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the ray space over inner points of Vo ⊂ V, and the extended ray space, de�ned on

V = ∂V ∪ Vo.Vo (41)

DEFINITION 2.9 (The Ray Spaces R∂V, RVo , and R) The ray space over surfaces of V,
denoted by R∂V, is de�ned as the set of all rays starting at points on surfaces in a∂V (41)

given scene and going in any direction, that is,

R∂V def= ∂V × S2 =
{
(s,ω)| s ∈ ∂V,ω ∈ S2

}
, (2.42)

where S2 is the unit sphere around a point s ∈ ∂V.
In the case where we consider the light transport in participating media our rays

can also start at inner points x ∈ Vo of a medium and the associated ray space overVo (41)

inner points of V, also referred to as RVo , is de�ned by

RVo def= Vo × S2 =
{
(x,ω)| x ∈ Vo,ω ∈ S2

}
. (2.43)

The extended ray space, R, is then de�ned as the union of this two disjoint sets,

that is,

R def
= R∂V ∪RV

o

=
{
(x,ω)| x ∈ V,ω ∈ S2

}
. (2.44)

In Box A.1, we de�ned the construct of a direction ω by a line starting at the center

of the unit sphere and passing through a point on the unit sphere. This construction now

implies that the above ray spaces can also be explained via the following construction,

similar to that in [221, Veach 1998]:

RVo def
= Vo × Vo (2.45)

R∂V def
= ∂V × ∂V (2.46)

R def
= V × V, (2.47)

i.e., a ray r ≡ x → x ′ is given with respect to points within a medium or with respect

to points on the boundaries of the medium. This allows to abstract from the de�nition

of a bounding sphere to the restriction of the scene as no light rays may be generated

towards in�nitely distant points. This representation of a ray is mostly useful when the

rendered scene is closed and we are only interested in light transport between elements of

Vo respectively ∂V.

REMARK 2.9 The construction of a ray space via the Relation (2.46) - (2.47) is of

particular interest for the stochastic generation of shadow rays, as we will present it

in Chapter 8. As already mentioned, shadow rays are generated from a point on a

surface towards a point on a light source or an object surface of special relevance for

the problem at hand. In Chapter 8 we will show, that the ray generation between two

predetermined or stochastically chosen points on two surfaces is to be preferred to



SECTION 2.1. PRINCIPLES OF FUNCTIONAL ANALYSIS 45

the method in which rays are generated via a starting point and a direction ω from

S2 since it can not be guaranteed that ω shows in direction to one of the interesting

surfaces.

BOX 2.1 (The Visibility Function V)

Any rendering algorithm based on ray tracing makes use of a special function that provides

information about the intersection of a ray with objects in a scene: the visibility function V.

The visibility function V is defined as a mapping over any of the ray spaces ∂V or Vo into

the set {0, 1}, where it holds:

V(x↔ x ′)
def
=

{
1 if x and x′ are mutually visible

0 otherwise.
(2.48)

Used in a rendering algorithm, the visibility function returns information about the set of
points that are visible from a given point. More precisely, V(x ↔ x ′) decides if point
x′ is visible from point x. The visibility function V is closely linked to another function,
frequently used in rendering algorithms, the ray-casting function γ.

REMARK 2.10 (The Borel σ-algebras B(R∂V), B(RVo) and B(R)) When discussing the Borel σ-algebra (865)

transport of particles we have often to integrate functions de�ned on the above ray

spaces. As we will show in Section 2.2, this requires the construction of measures Measure (79)

that are de�ned on the Borel σ-algebras over the ray spaces. Now, due to De�nition σ-algebra (828)

A.25 such σ-algebras are generated by all open subsets of R∂V, RVo , and R, that is, Open Set (864)

B(R∂V) = B(∂V× S2) (2.49)

B(RVo) = B(Vo × S2) (2.50)

B(R) = B(V× S2). (2.51)

It will be these σ-algebras on which we construct the throughput measures, which Throughput Measures (94)

makes it possible to integrate functions de�ned on the ray spaces.

Any ray tracing algorithm needs information about the distribution of light in a

given scene. Thus, it would be helpful if one could make a statement about the amount

of light incident at a surface point. In [221, Veach 1998], an elegant and highly signi�cant
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technique was introduced, to reach this: the construction of a linear space based on one

of the ray spaces from above. Such a linear space allows to construct all the tools and

techniques needed for ray tracing procedures aimed at formal descriptions of phenomenaChapter 5

relating to particle transport in participating media and under vacuum conditions: the

function spaces L(R∂V), L(RVo), and L(R) de�ned over the ray spaces R∂V, RVo and R.

THE FUNCTION SPACES L(R∂V), L(RVo), AND L(R). Based on the ray spaces from above,

we now introduce function spaces that play an important role in our further considerations.

Later, we will see, that the elements of these function spaces reect the light distribution

in the given scene and that they simplify the structure of our formulas by hiding the

details of the ray representation. Due to [221, Veach 1998], they also emphasize that the

representations are super�cial decisions that can easily be changed and allow us to de�ne

concepts, whose meaning do not depend on how rays are represented.

DEFINITION 2.10 (The Function Spaces L(R∂V), L(RVo), and L(R)) Let f be a real-valued
function de�ned on one of the ray spaces R∂V, RVo , or R. Let R? denote any of

these ray spaces, then the set of all functions

f : R? −→ R (2.52)

with

r = (x,ω) 7−→ f(r), (2.53)

is referred to as L(R?).

Obviously L(R?) are linear spaces, more precisely, the function spaces of real-Linear Space (854)

valued functions de�ned on one of the ray spaces R?. Together with the supremumFunction Space (28)

norm ‖ · ‖∞ the function spaces L(R?) are linear normed spaces: the linear normedSupremum Norm (33)

function spaces (L(R∂V), ‖ · ‖∞), (L(RVo), ‖ · ‖∞) as well as (L(R), ‖ · ‖∞).Linear Normed Space (860)

EXAMPLE 2.12 An interesting example of a function of the function space L(R∂V) is
the boundary distance function d∂V used in the ray-casting function γ, see Box 2.2.Chapter 5

REMARK 2.11 Relating to L(R?) as the function spaces de�ned on our ray spaces from

De�nition 2.9 we can make the following important statements:

i) It is easy to see that L(R?) satisfy the conditions required to a linear space.Linear Space (854)

As a function f from any of these function spaces may take values from R, the spaces
L(R?) are closed with respect to vector addition and scalar multiplication, i.e. with

f, also the additive inverse function −f and the identity f = 0 exist.

ii) Obviously the spaces of continuous functions de�ned on R? and denoted byC(·) (28)

C(R?) are subspaces of the function spaces L(R?), that is, C(R?) ≤ L(R?). EquippedSubspace (855)
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with the supremum norm ‖ · ‖∞, they become complete linear spaces: the in�nite-Supremum Norm (33)

dimensional Banach spaces (C(R?), ‖ · ‖∞).Banach Space (35)

BOX 2.2 (The Ray-casting Function γ)

The ray-casting function γ defined by

γ : ∂V × S2 −→ ∂V (2.54)

with

γ(s, ω) = s + d∂V(s, ω)ω, (2.55)

where it holds:

d∂V(s, ω)
def
= inf

α>0
{s + αω ∈ ∂V} , (2.56)

returns the nearest point of intersection of a ray starting at s with an object in the scene in

direction ω. It is clear that both functions γ and d∂V , the boundary distance function,

are defined on the ray space R∂V but only d∂V belongs to L(R∂V).

REMARK 2.12 Applied to our present still rudimentary knowledge about particle trans- Chapter 5

port phenomena, the above construction of the function spaces L(R?) means that we

can use elements from these function spaces to describe processes such as emission,

absorption, and scattering of light particles. Those functions then provide informa-

tion about the number of emitted, scattered, or absorbed particles at all points and

directions of the ray spaces.

Note that, due to the vector space requirements, the range of a function from

L(R?) has to be expanded to include the negative domain of the real numbers.

REMARK 2.13 The ray-casting function is a classical problem of computer graphics.

Due to its inuence on the rendering time and e�ort of the procedure it can be

regarded as the heart of any rendering method based on the principle of ray tracing.

For this reason, as well as in particular the fact, that in ray tracing algorithms

routines implementing the ray-casting function must be executed over and over again,
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a large number of techniques have been developed for optimizing the process of ray

intersection with scene objects.

REMARK 2.14 When deriving an operator model for light transport in participating

media, we need a function, that returns the closest hit point of a ray, starting at an

inner point of a medium, with an object in the scene. For that purpose we have to

extend the domain of the ray-casting function γ from ∂V × S2 to V × S2.

BOX 2.3 (The Reversible Ray Space R̃∂V)

In Chapter 5 we discuss mathematical models of light and importance transport. Since, as

we will show in Section 5.2, importance flows in the opposite direction to light, we need a

function space which allows to describe importance functions. This function space is based

on the so-called reversible ray space, R̃∂V , for a more detailed description see [221, Veach

1998].

DEFINITION 2.11 (The Reversible Ray Space, R̃∂V) The reversible ray space, R̃∂V , is
the space of all reversible rays form R∂V . It is de�ned via

R̃∂V def= {r ∈ R∂V |d∂V(r) <∞}, (2.57)

where d∂V(r) is the boundary distance function from Box 2.2. Due to this de�nition,

only rays that end at object surfaces are reversible.

INCIDENT AND EXITANT FUNCTIONS ON L(R?). Until now, we speci�ed directions

as vectors pointing away from some point. But this does not specify necessarily the ow

of a quantity, such as light, at which we are interested in. For that purpose, it is useful

to have a notation that makes it possible to describe light incident or exitant at surface

points. This can be done by classifying functions from L(R?) into incident and exitant

functions, denoted as Li(R?) as well as Lo(R?).Chapter 5

As is illustrated in Figure 2.7, a function fi(s,ωi) ∈ Li(R∂V) provides information onSection 5.1.1.2

the amount of a quantity incident from direction ωi at surface point s, while fo(s,ωo) ∈
Lo(R∂V) describes the amount exitant from s in the direction ωo. It is easy to proveSection 5.1.1.2

that both Li(R?) and Lo(R?) de�ne subspaces of the associated linear spaces L(R?) andSupremum Norm (33)

L(R?), which, equipped with the supremum norm ‖ · ‖∞, then become Banach spaces.Banach Space (35)

Very nice examples based on the concept of an exitant as well as an incident functionq (282)

are the volumetric emission function, q, and the absorption function, σa. In Chapter 4,σa (4.9)

when deriving the stationary particle transport equation, we use this functions to describe

the emission behavior of light at a surface point as well as the absorption behavior of light

particles in participating media.

EXAMPLE 2.13 (Volumetric Emission and Absorption Function) While the volumetric emis-
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FIGURE 2.7: INCIDENT AND EXITANT FUNCTIONS. For incident and exitant functions,
directions are always specified to point away from some point x. The flow of a quantity,
specified by the function, indicates the type of the function. An incident function fi(x, ωi)
transports a quantity in direction ωi towards point x, while an exitant function fo(x, ωo)
transports the quantity from point x away in direction ωo.

sion function q given by: q (282)

q : Vo × S2 → R (2.58)

with

(x,ωo)→ q(x,ωo) (2.59)

is de�ned on the ray space RVo and returns the number of particles created at a

volumetric point x in direction ωo, i.e. q ∈ Lo(RV
o

), the absorption function σa σa (282)

de�ned by

σa : Vo × S2 → R (2.60)

with

(x,ωi)→ σa(x,ωi) (2.61)

is an element of Li(RV
o

). It provides the fraction of particles incident at point x

from direction ωi, which will be absorbed, see Figure 2.8.

For rendering images light sources are necessary that illuminate the underlying scene

model. Now in real world, light sources exist in a variety of shapes, colors, and sizes. So,

we will present and discuss the most important types of light sources and their properties

for rendering in Section 4.3. As all light sources can be interpreted as emitters of light
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FIGURE 2.8: EMISSION AND ABSORPTION FUNCTION. Emission of particles at point x
described via an emission function q, and the absorption of particles at x described via the
absorption function σa.

particles, it lies on the hand to de�ne a light source via the mathematical concept of the

exitant function from a corresponding function space. For that purpose, we now de�ne the

two most important concepts of light sources in computer graphics: point light sources

and area light sources. Later, in Section 4.3, we will once again take with respect to these

types of light sources, talk about their properties and we will introduce additionally a few

other types of light sources often used in rendering.

DEFINITION 2.12 (Ideal Point Light Source) An ideal point light source can be considered

as a point x ∈ R3, that has neither a size nor a shape. The point x then serves as the

center of a spherical �eld of light, where light is uniformly radiated in all directions,

see the left image of Figure 2.9.

Due to this de�nition, an ideal point light source within a scene can then be described

via an exitant function fo, given by

fo : R3 × S2 → R (2.62)

with

(x,ωo) 7→ { C x ∈ R3,ωo ∈ S2(x)
0 otherwise,

(2.63)

where the point x is located within a subvolume V of R3, that represents a vacuum or anyV (41)

participating medium, and ωo is any direction of the upper hemisphere about x.

Now, except of the sun, which, under certain circumstances can be considered as a

point light source, ideal point light emitters does not exist in real world. Light sources in

real world have a �nite size, some amount of surface area, and takes up some �nite amount
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FIGURE 2.9: POINT AND AREA LIGHT SOURCES. Left, a point light source located at a
surface patch emitting a constant light amount from point sj ∈ ∂V in all directions over the
upper hemisphere H2+(sj). Right, the visualization of an area light source that emits light
proportional to a cosine lobe around the surface normal at sj.

of space. Those light sources can rather be considered as an in�nitely large set of points,

that emit their light in all directions uniformly or non uniformly.

DEFINITION 2.13 (Area Light Source) An area light source is any �nite 2-dimensional

surface ∂V of R3. Every point of s ∈ ∂V then serves as an ideal point light source V (41)

that emits light in all directions of the upper hemisphere H2+ about s uniformly or H2+ (849)

non uniformly, see the right image of Figure 2.9.

Due to this de�nition, an area light source within a scene can then be described via

an exitant function f∂Vo , given by:

f∂Vo : ∂V×H2+ → R (2.64)

with

(s,ωo) 7→ { f∂Vo (s) s ∈ ∂V,ωo ∈ H2+(s)
0 otherwise,

(2.65)

where the point s is located on ∂V ⊂ R3 that represents the shape of an area light source

and ωo is any direction of the upper hemisphere about s.

EXAMPLE 2.14 (Point and Area Light Sources) Let fV
o

o be a point light source located at

point x ∈ Vo within a medium and let f∂Vo be an area light source represented by a Vo (41)

surface ∂Vi of ∂V. While the �rst emits a constant light amount in each direction,

the latter emits its constant light energy contribution depending on the emission

direction ω with respect to the normal at a point s ∈ ∂Vi. Based on our concept of
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exitant functions, light sources may be mathematically described by elements of the

function spaces Lo(R∂V) and Lo(RV
o

). While the involved point light source may be

simulated via an exitant function fV
o

o de�ned over RVo with fV
o

o (x,ωo) = C for all

ωo ∈ S2, the area light source may be simulated via an exitant function f∂Vo de�ned

over R∂V , with f∂Vo (s,ωo) = C 〈ωo,N(s)〉, C ∈ R≥0, that is f∂Vo 6= 0 only for the

element ∂Vi of ∂V.
Obviously, the two light sources are described by two functions fV

o

o and f∂Vo of the

function spaces (Lo(RV
o

), ‖ · ‖∞) and (Lo(R∂V , ‖ · ‖∞). Due to their de�nitions over

the above ray spaces these functions may be assumed to be bounded as for physical

reasons both ‖fVoo ‖∞ = c <∞ and ‖f∂Vo ‖∞ = c 〈ωo,N(s)〉 <∞ holds.

EXAMPLE 2.15 (The Incident and Exitant Hemispheres H2i and H2o) For de�ning the

concepts of the BRDF and the BTDF it is convenient to introduce the constructs ofSection 4.2.2.2

the incident and exitant hemispheres, H2i and H2o. Both constructs are based on theH2i and H2o (849)

same set of directions, that is, H2i = H2o, and can be used to represent the upper as

well as the lower hemisphere.

As show in the following, ray tracing procedures based on stochastic principles rep-Chapter 9

resent approximate solutions to the global illumination problem. When a ray, generatedGlobal Illumination problem (6)

at an arbitrary point of a sensor|be this the surface of a primitive or real camera or the

retina of the human eye|enters a given illuminated scene, the algorithm calculates approx-

imates of the portion of light incident at a �nite number of points of the ray spaces R∂V
or RVo . Generating a sx × sy-regular grid onto a sensor, the amount of energy measured

in a visibility test then roughly corresponds to the light incident from the environment

corresponding to the scene projection onto this pixel array. The sensor then reects the

light distribution in the scene via the vector M = (M1,M2, . . . ,Ms), s = sx · sy of theSection 4.6

complete linear normed space (Rs, ‖ · ‖2).

2.1.4 LINEAR OPERATORS AND THEIR ADJOINTS

In order to be able to follow the path suggested by functional analysis for solving a com-

plex mathematical problem it is a good idea to reformulate it as an operator equationLinear Operator Equation (61)

in an abstract linear space. In particular, this holds for problems that underlie linearLinear Integral Equation (127)

integral equations. In this manner, the problem can then be approached using solution

methods developed within functional analysis. As a basis for that serves the functionalLinear Operator (53)

analytic concept of the linear operator and its adjoint as mappings between abstract linearLinear Space (854)

spaces. These concepts enable us to represent the global illumination problem as simple

linear equations based on the well-known concepts of light and importance. Additionally,Chapter 5

operators of this kind play the central role in the theory of �nite-element methods, which,

for example, is the mathematical foundation of all radiosity algorithms.Chapter 10

LINEAR OPERATORS. For our further discussions let S and T be two linear spaces.Linear Space (854)
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DEFINITION 2.14 (Linear Operator) A mapping T de�ned on the domain Dom(T) over Dom(·) (835)

the linear space S taking values within Ran(T) ⊆ T, thus, Ran(·) (835)

T : Dom(T) ⊆ S −→ Ran(T) ⊆ T, (2.66)

is denoted as a linear operator if it satis�es the linearity property:

T(αx+ βy) = α(Tx) + β(Ty), (2.67)

where α,β ∈ R and x, y ∈ S. The linear operator T is termed as degenerated if

dim Im(T) <∞ applies.

EXAMPLE 2.16 (Matrices as Linear Operators Between Finite Dimensional Linear Spaces)

The well-known concept of a matrix from linear algebra is a simple example of a Matrix (853)

linear operator between two �nite-dimensional linear spaces. Linear Space (854)

Let us assume, two �nite-dimensional linear spaces V and W are given, with

dimV = m and dimW = n. Then, we can map an element x ∈ V to an element

y ∈W by means of the matrix-vector product, thus,

A : V →W (2.68)

with

y = Ax, (2.69)

where the components yi of y are given by: yi =
∑m
j=1 aijxj for 1 ≤ i ≤ n. It

can easily be shown that T satis�es the linearity property of a linear operator from

Equation (2.67).

EXAMPLE 2.17 (The Di�erential Operator d
dx
) A common known example of a linear

operator results from the process of di�erentiation. Let us recall, the derivative Section A.4

of a polynomial pn of degree n is a polynomial of degree n − 1. This implies the

construction of a linear operator between the spaces Pn and Pn−1 by: Pn (855)(
d

dx
pn

)
(x) =

d

dx

n∑
i=0

αix
i =

n∑
i=0

αi
d

dx
xi =

n−1∑
i=0

(i+ 1)αi+1x
i. (2.70)

As the space of polynomials of degree n− 1 is �nite-dimensional, d
dx

is a degen-

erated linear operator.

EXAMPLE 2.18 (The Gradient Operator ∇ in Rn) The Gradient operator ∇ is most of-

ten applied to a real-valued function f(x1, . . . , xn), di�erentiable at each point x0 =

(x01 , . . . , x0n). It is de�ned by

(∇f)(x1, . . . , xn)
def
=

∂f

∂x1
e1 + . . .+

∂f

∂xn
en. (2.71)
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Obviously, the image of the gradient operator, also briey denoted as the gradi-

ent, is a vector of the Euclidean space Rn whose components are the partial deriva- Partial Derivative (871)

tives of f. In Section 4.1.1 we will encounter the gradient operator ∇ in combination

with the Gauss Divergence Theorem that enable us to transform a surface integral intoGauss Divergence Theorem (283)

a volume integral.

EXAMPLE 2.19 (Multiplication and Evaluation Operators) Two other interesting exam-

ples of linear operators, now de�ned between two in�nite-dimensional linear function

spaces, are the multiplication operator and the evaluation operator.

Let S be a function space and f, g be two functions from S, let furthermore x be

a point within the domain of f. Due to [8, Arvo 1993] the multiplication operator

Mg is de�ned as:

(Mgf)(x)
def
= g(x) f(x) (2.72)

and for the evaluation operator it holds:

(Ef)(x)
def
= f(x). (2.73)

Both operators play a central role in our further considerations when deriving

a mathematical model of light and importance transport. There, we will need theChapter 5

multiplication operator to express the attenuation of light propagating in participating

media.

EXAMPLE 2.20 (Spectral Power Distributions) Let us consider the inner product spaces

B(Λ) and Rn with dim(Rn) = n. As we have seen in Example 2.11, every function S ∈B(Λ) (40)

B(Λ) can be approximated by a n-dimensional vector (〈S(λ), φ1(λ)〉, . . . , 〈S(λ), φn(λ)〉)T .
With respect to our de�nition of a linear operator the Best Approximation TheoremBest-approximation Theorem (38)

supplies us with a degenerated linear operator T from B(Λ) to Rn, namely:Degenerated Linear Operator (53)

T : B(Λ)→ span(φ1, . . . , φn) ≤ Rn

with

TS = (〈S,φ1〉, . . . , 〈S,φn〉)T (2.74)

and

T(αS+ βS′) = (〈αS+ βS′, φ1〉, . . . , 〈αS+ βS′, φn〉) (2.75)

= (α〈S,φ1〉+ β〈S′, φ1〉, . . . , α〈S,φn〉+ β〈S′, φn〉) (2.76)

= (α〈S,φ1〉, . . . , α〈S,φn〉) + (β〈S′, φ1〉, . . . , β〈S′, φn〉) (2.77)

= α(TS) + β(TS′), (2.78)

where we have used the linearity property of the inner product from De�nition A.17

in the second step.
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REMARK 2.15 Due to De�nition A.2, the condition that T is a linear space in the above

de�nition, is not required. For the de�nition of a linear operator it su�ces if the

domain of the operator T is a linear space, the image of T can also be any arbitrary

set T.

DEFINITION 2.15 (Linear Functional) Let T be a linear operator from linear space T into

the Euclidean space R, then T is called a linear functional.

REMARK 2.16 Due to the Riesz Representation Theorem the inner product 〈·, ·〉 of an
inner product space T can be interpreted as the action of a functional by de�ning the

functional l for a given u ∈ T as:

lv
def
= 〈u, v〉 (2.79)

for any v ∈ T, [169, Reddy 1998].

REMARK 2.17 As we will see in our following discussions, the mathematical concept

of the linear functional is fundamental for the �eld of realistic rendering when mea-

suring the amount of light incident onto a measure device, such as a pixel. Another Section 4.6

reason for the importance of this concept is exempli�ed in the Dirac δ-construct, Dirac δ-Distribution (118)

which plays an important role in many branches of physics and engineering as well

as in describing scattering models in global illumination theroy. Section 4.2.2.2

Now, suppose T is a mapping between the linear normed space (S, ‖ · ‖S) while the Linear Normed Space (860)

linear space T is equipped with a norm ‖·‖T. Then, T is called a bounded linear operator, Norm (860)

if a real number c > 0 exists, so that the following applies for all x ∈ S

‖Tx‖T ≤ c ‖x‖S. (2.80)

EXAMPLE 2.21 (Converting Spectral Values into RGB-Color Values for Output Devices) For

illustrations on output devices the spectral value S, in Example 2.11 calculated via a

rendering procedure and assigned to a pixel, must be converted into a corresponding

RGB-color value. This means that in a �rst step, using the three color-matching

functions �x, �y and �z, the tristimulus values X, Y and Z must be determined via the

relations

X =

∫
Λ

�x(λ)S(λ)dλ
(2.36)
=

n∑
i=1

(∫
Λ

�x(λ)φi(λ)dλ

)
〈S(λ), φi(λ)〉 (2.81)

Y =

∫
Λ

�y(λ)S(λ)dλ
(2.36)
=

n∑
i=1

(∫
Λ

�y(λ)φi(λ)dλ

)
〈S(λ), φi(λ)〉 (2.82)

Z =

∫
Λ

�z(λ)S(λ)dλ
(2.36)
=

n∑
i=1

(∫
Λ

�z(λ)φi(λ)dλ

)
〈S(λ), φi(λ)〉, (2.83)
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which can be formulated in matrix-vector notation as

 X

Y

Z

 = M ·


〈S(λ), φ1(λ)〉
〈S(λ), φ2(λ)〉

· · ·
〈S(λ), φn(λ)〉

 (2.74)
= M ·TS(λ) (2.84)

with

M =

 〈�x(λ), φ1(λ)〉 · · · 〈�x(λ), φn(λ)〉〈�y(λ), φ1(λ)〉 · · · 〈�y(λ), φn(λ)〉
〈�z(λ), φ1(λ)〉 · · · 〈�z(λ), φn(λ)〉

 . (2.85)

According to the de�nition of the inner product 〈·, ·〉 of the function space B(Λ),Inner Product (859)

the matrix M, originating from Equations (2.81) - (2.83), then serves, together withB(Λ) (40)

a (3× 3)-matrix M̃, describing the chromaticities of the output device, as a bounded

linear operator de�ned over the n-dimensional function space generated over the

orthonormal system {φ1, . . . , φn} with values from [0, 1]3 ⊂ [−1, 1]3. This implies thatOrthonormal Set (861)

the RGB-color value assigned to the pixel is given by

 R�
G�

B�

 = M̃M ·TS(λ) (2.74)
= M̃M ·


〈S(λ), φ1(λ)〉
〈S(λ), φ2(λ)〉

. . .

〈S(λ), φn(λ)〉

 . (2.86)

Obviously, the set of all bounded linear operators, L(S,T) satis�es the conditions

required to a linear space. As is shown in functional analysis, it becomes, together with

the operator norm

‖T‖L
def
= sup

x∈S,x6=0

‖Tx‖T
‖x‖S

, (2.87)

a linear normed space: the space (L(S,T), ‖ · ‖L). If we identify the space T with the

real number �eld R then L(S,R) describes the space of all bounded linear functionals.

Equipped with the norm

‖t‖l
def
= sup

x∈S,x6=0

|tx|

‖x‖S
, (2.88)

it becomes a linear normed space: the dual space (l(S,R), ‖ · ‖l).
Let us now consider an interesting example of a bounded linear space, which will serve

as a motivation for the formulation of light transport in free space to be sought below in

terms of an operator equation de�ned over the linear normed spaces (Li(R∂V), ‖ · ‖∞),(L(R∂V), ‖ · ‖∞) (46)

(Lo(R∂V), ‖ · ‖∞) and (L(R∂V), ‖ · ‖∞) respectivly.
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FIGURE 2.10: REFLECTION OPERATOR. The reflection operator K maps the incident
function Li onto the exitant function Lo.

EXAMPLE 2.22 Let us assume the two function spaces (Li(R∂V), ‖·‖∞) and (Lo(R∂V, ‖·
‖∞) from the last section are given. Then, the linear operator K, given by,

K : Li(R∂V) −→ Lo(R∂V), (2.89)

with

Li(x,ωi) 7−→ Lo(x,ωo) = (KLi)(x,ωo), (2.90)

obviously maps the incident function Li onto an exitant function Lo, see Figure 2.10.

Using a bounded operator K, then it becomes possible to mathematically formulate a Incident & Exitant Function (48)

physical process describing a �nite quantity that enters from a direction ωi incident

at a surface point x and exits in a direction ωo. In such a case the operator K

could be interpreted as a mathematical formulation of the physical phenomenon of Section 5.1.1.1

light reection, or refraction at a surface. De�ned between the ray spaces Li(RVo)

and Lo(RVo), K can be considered as the scattering of light at a small particle in

participating media.

REMARK 2.18 The concept of the operator norm, as de�ned in Equation (2.87), is of

great importance when constructing mathematical models for light and importance

transport in Chapter 5. As above illustrated at the example of reection, we will

describe the whole light and importance transport in a scene, thus, all possible e�ects

at object surfaces and within participating media, by a single linear operator, the

so-called light transport operator respectively the importance transport operator. Both
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operators will be de�ned over function spaces based on the ray spaces from Section Section 5.1.2.2

2.1.3, and are used to construct operator norms that help to estimate approximate

solutions of the global illumination problem.Section 5.1.1.2

An other important property of a linear operator is compactness. So, we denote a

linear operator T to be compact if the image of a bounded set B ∈ S under the mappingBounded Set (862)

T is compact1 in T. An important feature of compact operators is their ability to map

bounded sets onto sets with additional characteristics|a fact, which will be of great use

to us in a number of situations. Another important feature of compact operators is thatSection 5.1.1.2

they may be approximated via degenerated operators. This means that for every ε > 0Section 5.1.2.2

there exists a sequence of �nite-dimensional operators (Tn)n∈N that converges towards T,

i.e.: ‖Tn −T‖T < ε.

Let us now assume that the spaces we are interested in are Hilbert spaces. TheHilbert Space (36)

features of these spaces, more speci�cally, the orthogonality property of the spaces, then

allows to construct so-called projection operators. These are operators that map elements

of an in�nite-dimensional Hilbert space S to elements of �nite-dimensional subspaces U of

S.Section 2.3.3

DEFINITION 2.16 (Linear Projection Operator) Let T be a linear operator from S into S,

then T is denoted as a linear projection operator if ∀ x ∈ S the following applies

T2 = T. (2.91)

Obviously, a linear projection operator leaves its image unchanged, that is, it formal-

izes and generalizes the idea of a graphical projection.

In accordance with the Best Approximation Theorem and the de�nition of innerBest Approximation Theorem (38)

product spaces, the linear operator T is termed an orthogonal projection operator if itInner Product Space (859)

permits the representation of Theorem 2.1 as a �nite Fourier series with respect to the or-FourierSeries (39)

thonormal basis {φ1, φ2, . . . , φn}. Conversely, on the basis of the above made statements,Orthonormal Basis (37)

the elements of an in�nite-dimensional space may also be approximated as images of com-

pact linear operators or via a sequence of projection operators, as examples of degenerated

operators.

EXAMPLE 2.23 (Orthogonal Projection) Let Pn be the space of polynomials of degree

n de�ned over a closed set S ⊂ R. Then, a polynomial pn(x) =
∑n
i=0 αix

i can be

represented via the vector (α0, . . . , αn)
T ∈ Rn+1. The Hilbert space structure of theHilbert Space (36)

n+ 1-dimensional Euclidean space is clearly transmitted over the isomorphism T to

Pn, where T(ei) = x
i−1, 1 ≤ i ≤ n+ 1 and (e1, . . . , en+1) forms an orthonormal basisOrthonormal Basis (37)

1A set B of a linear normed space (S, ‖ · ‖) is denoted as compact if for every sequence (xn)n∈N there
exist a convergent subsequence (x′n)n∈N that converges to a limit from S.
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FIGURE 2.11: ORTHOGONAL PROJECTION. The orthogonal projection of the polynomial
1+ 2x+ x2 onto the polynomial 1+ x2 using the orthogonal projection operator T defined
in Example 2.23.

of Rn+1. If we now consider an operator Pr given by:

Pr : Pn −→ Peven (2.92)

with

pn(x) 7−→ (Prpn) (x)
def
=

n
2∑
i=0

α2ix
2i, (2.93)

then Pr projects a polynomial pn ∈ Pn onto the linear subspace of polynomials of Linear Subspace (855)

even degree.

Let us consider the particular case (n = 2), then|as shown in Figure 2.11 for

the polynomial x2 + 2x+ 1|Pr maps a square polynomial, represented by the vector

(α0, α1, α2) ∈ R3, onto the vector (α0, α2) ∈ R2, that is, the even polynomial α0+α2x2.

REMARK 2.19 With respect to �nding solutions to the global illumination problem, Global Illumination Problem (6)

the orthogonal projection occupies a particular position among projection operators. Section 2.3.3

So, the theoretical foundation of a highly popular rendering method often used in

computer graphics, the so-called radiosity procedure [36, Cohen and Wallace 1993], Chapter 10

[13, Ashdown 1994], [190, Sillion and Puech 1994] and [68, Glassner 1995], is the

Best Approximation Theorem and the concept of the linear projection operator from

functional analysis. In particular, radiosity algorithms resulting from the Galerkin

method are based on orthogonal projection methods used for the numerical solution Section 2.3.3.2.2

of linear integral equations. Linear Integral Equations (126)
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ADJOINT OPERATORS. Based on the concept of the linear operator we will now present a

technique that proves to be very interesting in understanding light transport algorithms.

It will allows us to evaluate measurements in a variety of ways leading to new insights and

approaches for solving the light transport equation.Chapter 5

DEFINITION 2.17 (Linear Adjoint Operator) Let us assume that S and T are given HilbertHilbert Space (36)

spaces, and T : Dom(T) ⊂ S −→ T be a linear operator between S and T. Then, we

call a linear mapping T∗ de�ned by

T∗ : Dom(T∗) ⊂ T −→ S (2.94)

where it holds

〈T∗x,y〉S
def
= 〈x,Ty〉T, (2.95)

for all x ∈ Dom(T∗),y ∈ Dom(T), the linear adjoint operator to T. If in particular it

holds that

T = T∗, (2.96)

then the operator T is termed as self-adjoint.

EXAMPLE 2.24 (The Transpose of a Matrix) A well-known example of the adjoint of

a linear operator is the transpose of a matrix as a mapping between two �nite-

dimensional linear spaces.

Let us assume, A be a linear mapping between the linear spaces Rm and Rn.
Then, the following clearly holds to the operator AT : Rn −→ Rm with aTij

def
= aji, 1 ≤

i ≤ m, 1 ≤ j ≤ n for all x ∈ Rn, y ∈ Rm

〈ATx,y〉 = (ATx)Ty = xTAT
T
y = xT (Ay) = 〈x,Ay〉, (2.97)

i.e. the transpose of a matrix represents an adjoint operator between �nite-dimensional

linear spaces. In particular, the matrix A is a self-adjoint linear operator if it is sym-

metric, that is in our case, if it is a mapping between Rm or respectively Rn.

Making use of the linearity properties of the inner product, it is straightforward toInner Product (859)

show that any adjoint operator T∗ satis�es the linearity property of an operator, that is,

〈T∗(αx+ βy), z〉 = 〈(αx+ βy),Tz〉 (2.98)

= 〈αx,Tz〉+ 〈βy,Tz〉 (2.99)

= α〈x,Tz〉+ β〈y,Tz〉 (2.100)

= α〈T∗x, z〉+ β〈T∗y, z〉. (2.101)
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Finally, we still mention a few important properties of adjoint linear operators, which

play a central role in Chapter 5. Thus it holds for two operators T and S:

I∗ = I (2.102)

(T+ S)∗ = T∗ + S∗ (2.103)

(TS)∗ = S∗T∗ (2.104)

(T−1)∗ = (T∗)−1. (2.105)

In a similar way as we proof the linearity of an adjoint operators, we can also proof

the Identities (2.102) - (2.105). We omit this work, and let the proof to the interested

reader.

2.1.5 LINEAR OPERATOR EQUATIONS

A famous problem in functional analysis, resulting from many applications in practice, is

the so-called �xed-point problem. It is based on the concept of the linear operator, and Linear Operator (53)

can be described by a so-called linear operator equation of the type

f(x) = (Tf)(x), (2.106)

where T corresponds to a linear operator on the complete linear normed space S and f is Complete Linear Space (35)

an element from S.

If the involved operator in Equation (2.106) satis�es the condition that it is con-

tractive, that is, the norm of the operator is less than one, then an elegant technique for

solving this equation results from the Banach Fixed-point Theorem:

THEOREM 2.3 (Banach Fixed-point Theorem) Let S be a Banach space over K and D(T)

as well as R(T) non-empty, closed subsets of S, furthermore let T : D(T) ⊆ S −→
R(T) ⊆ S be a contracting linear operator, i.e.,

‖Tx−Ty‖ ≤ k‖x− y‖, (2.107)

∀ x, y ∈ D(T), 0 ≤ k < 1, then the operator equation

x = Tx (2.108)

has a unique solution x ∈ S and the iteration

xn+1 = Txn, n = 0, 1, . . . (2.109)

converges for every x0 ∈ D(T) towards the exact solution x.

PROOF 2.3 We omit the proof and point to [16, Atkinson & Han 2007].
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Applied to Equation (2.106), the Banach Fixed-point theorem then guarantees the

existence of a solution, which can recursively be computed via the limit of a sequence of

functions (fn)n∈N0 de�ned on S, and given by:

fn+1(x)
def
= (Tfn)(x). (2.110)

This can easily be veri�ed by showing, that the sequence (fn)n∈N0 corresponds to

a Cauchy sequence constructed over the space S. For that purpose, let us consider theCauchy Sequence (35)

distance between the sequence elements fn+m and fn, obviously, it holds:

‖fn+m − fm‖ =

∥∥∥∥∥
n+m∑
i=m+1

(fi − fi−1)

∥∥∥∥∥ (2.111)

(2.110)
=

∥∥∥∥∥Tm
n∑
i=1

(fi − fi−1)

∥∥∥∥∥ (2.112)

∆−I.E.
≤ ‖Tm‖

n∑
i=1

‖fi − fi−1‖ (2.113)

= ‖Tm‖
n−1∑
i=0

‖Ti‖‖f1 − f0‖ (2.114)

= ‖T‖m 1

1− ‖T‖
‖f1 − f0‖, (2.115)

where we have used the sum formula for the geometric series in the last step under the

assumption, that n→∞ .

Since the operator T was assumed to be contracting, i.e. T satis�es the condition:

‖T‖ < 1, the distance of elements of fn for su�ciently large n goes to zero. This means,

that the sequence (fn)n∈N0 corresponds to a Cauchy sequence which converges to the

exact unique solution of Equation (2.106), namely f. This can easily be veri�ed as follows:

From f0 ∈ S, we get by induction, that also fn+1(x) = (Tfn)(x) ∈ S for all n ∈ N0.
Since S is a closed set, we obtain with fn ∈ S that it also holds: Tfn ∈ S. Due to the

Banach Fixed-point Theorem, the absolute error of the approximate solution fn can then

be estimated by:

‖fn − f‖ = ‖ (Tfn−1) − (Tf)‖ (2.116)

≤ ‖T‖‖fn−1 − f‖ (2.117)

≤ ‖Tn‖‖f0 − f‖
‖T‖<1−→ 0, (2.118)

which, with fn+1 = (Tfn), implies that it holds: f(x) = (Tf)(x).

REMARK 2.20 (Iteration Methods) In mathematics, equations of the form (2.110) are

called iteration methods. The idea behind an iteration method is to transform the
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given problem into the above �xed-point problem of form,

fn+1(x) = (Tfn)(x), (2.119)

where T is a linear operator, and fn(x) is any arbitrary starting value. Under the

corresponding conditions of the Banach Fixed-point Theorem, repeated application

of this formula then leads to new, always better approximations to the �xed-point,

namely: the solution of the original equation.

Due to make our formulas more readable, we will in the following also often

write the above �xed-point problem in the form

f(k+1)(x) = (Tf(k))(x), k ≥ 0, (2.120)

that is, we use upper indices instead of lower indices. This notation has its advan-

tage in particular when we consider iteration methods on the n-dimensional, linear

normed space (Rn, ‖ · ‖), where the unknown f is a vector f = (f1, . . . , fn) consisting

of n coordinates.

EXAMPLE 2.25 When deriving a mathematical formulation for light transport in Chap-

ter 4, we will encounter apart from the stationary light transport equation in free space SLTEV (296)

its adjoint counterpart, the stationary importance transport equation in free space. SITEV (413)

Based on the construction of the linear as well as the adjoint operator, both may

be written more simply as operator equations of the type Chapter 5

f(x) = g(x) + (T f)(x), (2.121)

where g(x) is a given real-valued function, a so-called source function, and T is a

linear operator of the type introduced in the preceding section.

By de�ning a linear operator T̃ as:

(T̃f)(x)
def
= g(x) + (Tf)(x), (2.122)

Equation (2.121) can then be written as an operator equation of the form (2.106),

thus:

f(x) = (T̃f)(x). (2.123)

Choosing a sequence of functions (fn)n∈N0 according to Equation (2.110) by

f0(x) ≡ 0 (2.124)

fn+1(x) = T̃fn(x), n ≥ 0, (2.125)

then the sequence (fn)n∈N0 is a Cauchy sequence that, under the condition of the Cauchy Sequence (35)

contraction of the integral operator T, converges towards the actual solution

T̃ = (I−T)−1 (2.126)

of Equation (2.121).
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In Section 2.3.3.1.1, we pick up this idea to solve Fredholm integral equations of the

2nd kind. There, we use the fact that the in�nite sum of powers of a contracting linear

operator T can be written as the inverse of the operator (I−T), thus (I−T)−1.

LEMMA 2.1 Let us consider the sequence

(tn)n∈N0 =

n∑
i=0

Ti = I+T+T2 +T3 + . . . , (2.127)

on the linear normed function space S, where T is a contracting linear operator. Let

us furthermore assume that the space S is complete, then it holds:Complete Linear Space (35)

lim
n→∞ tn = (I−T)

−1
, (2.128)

that is, the Cauchy sequence tn converges to an element of S which can be writtenCauchy Sequence (35)

as (I−T)
−1
.

PROOF 2.1 As is easily seen, it holds:

(I−T) tn = (I−T)

n∑
i=0

Ti (2.129)

=

n∑
i=0

Ti (I−T) (2.130)

=

n∑
i=0

Ti −

n+1∑
i=1

Ti (2.131)

= I+

n∑
i=1

Ti −

n∑
i=1

Ti −Tn+1 (2.132)

= I−Tn+1, (2.133)

that is,

‖(I−T) tn − I‖ (2.133)
=

∥∥I−Tn+1 − I
∥∥ (2.134)

=
∥∥Tn+1∥∥ ‖T‖<1→ 0 (2.135)

for su�ciently large n, thus we get: tn → (I−T)−1.

2.1.6 ADJOINT EQUATIONS

In the following, let f and g be functions de�ned on the complete linear normed space S,Complete Linear Space (35)

and T denotes a contracting linear operator on S, where it holds:

f(x) = g(x) + (Tf)(x). (2.136)
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Let us further assume, that the operatorT has an adjoint, T∗. Then, for any arbitrary

function h ∈ S there exists a function i ∈ S satisfying the equation

h(x) = i(x) + (T∗h)(x). (2.137)

The Equations (2.136) and (2.137) are said to be adjoints of each other, often they

are also denoted as a pair of adjoint equations .

Since T∗ is also a linear operator, solutions to adjoint equations are evidently|under

the assumption that T∗ is contracting|given by:

(I−T∗)−1i(x)
(2.102)−(2.105)

=
(
(I−T)−1

)∗
i(x). (2.138)

Now, an interesting property between the solutions of an operator equation and its

associated adjoint equation is hidden in the linear functionals 〈f(x), i(x)〉 and 〈g(x), h(x)〉. Linear Functional (55)

Let us assume, we are interested in measuring the function f with respect to any Measurement Equation (416)

function i. Due to our discussion in Section 2.1.4 this is equivalent to the evaluation of

the linear functional 〈f(x), i(x)〉, that is, it holds:

〈f(x), i(x)〉 (2.126)
= 〈(I−T)−1g(x), i(x)〉 (2.139)

(2.17)
= 〈g(x),

(
(I−T)−1

)∗
i(x)〉 (2.140)

(2.105)
= 〈g(x), ((I−T)∗)

−1
i(x)〉 (2.141)

(2.138)
= 〈g(x), h(x)〉. (2.142)

Obviously, there are two independent ways to achieve the same e�ect. Namely, solving

the direct problem

f(x) = g(x) + (Tf)(x) (2.143)

followed by measuring the solution function f with respect to any function i delivers the

same result as solving the dual problem, that is, the adjoint equation

h(x) = i(x) + (T∗h)(x), (2.144)

and measuring its solution h with respect to the source function g of the direct problem.
One question that now arises is: Which way should be follow? Now, the answer to this

question depends on the problem which has to be solved. From the mathematical point

of view there is no di�erence in implementing either the direct or the adjoint formulation.

REMARK 2.21 The above result is fundamental for the �eld of realistic rendering algo-

rithms. Applied to the stationary light transport, discussed in Chapter 5, the concept

of the adjoint operator allows us to evaluate measurements in a variety of ways

leading to new insights and approaches for solving the light transport equation. Chapter 9

Another example for the use of a linear functional is the problem of antialiasing

where we are forced to measure the weighted average radiance for each pixel of the

image plane.
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2.2 A BIT OF MEASURE AND INTEGRATION THEORY

As will be seen in more detail below, Monte Carlo rendering algorithms are based onChapter 9

measure and probability theoretical approaches for solving the global illumination equation

approximatively. Therefore, and particularly due to Kolmogorov's interpretation of the

probability of an event as the measure2 of a certain set, fundamental knowledge of the

concepts and methods relating to general measure and integration theory are necessary for

the understanding and analyzing rendering processes where stochastic methods are used.

Broadly speaking, measure and integration theory concerns with the theoretical basis

of measurements of the content of intervals, surfaces, and volumes. Here, of particular

interest is the measurement of complex sets in higher dimensional spaces, where we will

utilize already known results of elementary geometry from earlier days of mathematics. So,

to assign to such a region a speci�c volume, a useful approach is to represent this region

as a disjoint union of elementary sets and to de�ne the sum of the volumes of theses

elementary sets as the content of the considered region. As we will see, in such a case it is

not only su�cient to restrict the decomposition of a complex region into a �nite number of

elementary sets, but we also has to account for countably in�nite representations. Then,Countable Set (827)

measure theory shows that a measure with natural properties may be assigned, if not

to all, then at least to all open and closed sets of the given region. The concept of theOpen Set (864)

Lebesgue integral, which results from this procedure, is obtained by means of a natural

approximation process, in which the classical Riemann integral is expanded to form theRiemann Integral (876)

modern Lebesgue integral, generally recognized as the basis of the modern functional

analytical theory of di�erential and integral equations.

On the basis of the Lebesgue integral, a strictly mathematical treatment of many com-

plex problems of physics, including the questions of interest here on global illumination,

is possible via the construction of function spaces based on sets of Lebesgue-integrableFunction Space (28)

functions. Due to the beautiful limiting properties of the Lebesgue integral these function

spaces represent complete metric spaces in which the fundamental Cauchy convergenceMetric Space (866)

criterion holds, which is not valid for the classical Riemann integral.Cauchy Sequence (35)

The goal of this section is the introduction of the Lebesgue integral and the associated

function spaces underlying the global illumination problem. For that purpose, we need

some background from measure theory, that is, we will �rst present the concept of theSection 2.2.1

outer Lebesgue measure as the intuitive tool for measuring intervals, and then classify,

via Carath�eodory's measurability criterion, the subsets of R to which we can assign a

2Modern measure theory goes back to the discovery of the σ-additivity of the elementary geometrical
length by �Emile Borel, on the basis of which Henry Lebesgue shows in his th�ese, that it may be continued
to form a measure on a certain σ-algebra of subsets of R, which he refers to as measurable sets. Henry
Lebesgue's most important contribution lies in his foundation of the Lebesgue integral, an integral concept
with a exibility highly superior to its predecessor, the Riemann integral.
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measure. Because the construction of measurable sets via Carath�eodory's measurability

criterion is hard, we show, at the example of the construction of the Borel measurable

sets on R, that the measurability of a set is closely related to the concept of the σ-algebra

of open sets on R.
Afterwards, we will devote to the concept of the general measure as a real-valued, Section 2.2.2

σ-additive, and non-negative set function de�ned on any σ-algebra over a base set R. We

will present the most important properties of a measure, and introduce the concept of the

discrete measure, of fundamental importance for discrete probability spaces. We also

present the concept of the product measure as a set function de�ned on σ-algebras over

Cartesian products. With the help of examples, we present the most important measures

needed for an understanding of the concepts of global illumination theory. These will

comprise the Dirac measure and the counting measure, the Lebesgue measure on Rn,
the solid angle measures, as well as the throughput measures, as the measures actually

underlying all the mathematical formulations to the global illumination problem.

The topic of Section 2.2.3 will be the construct of the measurable function. It is Section 2.2.3

needed not only for the derivation of the Lebesgue integral, but also serves as the basis

for the de�nition of the probabilistic theoretical concept of the random variable. After

de�ning measurable functions, we investigate some well known functions with respect to

their measurability and introduce the ν-almost everywhere property. We also investigate

di�erent types of convergence of sequences of measurable functions that are of fundamental

importance for the limit theorems of probability theory.

The derivation of the Lebesgue integral as the fundamental concept of measure and

integration theory is given in Section 2.2.4. Based on the Lebesgue integral, we introduce Section 2.2.4

the construct of the Lebesgue spaces, denoted by Lp(R, µ), that is, normed functions

spaces de�ned on a general set R, whose norm is given via the Lebesgue integral. In this

context, we also construct the Lebesgue spaces Lp(R∂V , ζ⊥), Lp(RVo , ζ) and Lp(R, ζ),
de�ned on the ray spaces that we will use in our following discussions as the basis for

generating particle distributions in a scene to be rendered. Here, we are interested in

the cases p = 1 and, in particular p = 2, thus, the spaces that serve as the basis of all

rendering procedures based on the principle of radiosity and representing the only Hilbert

space that may be constructed over the ray spaces known from Section 2.1.3. Afterwards,

we discuss the functional analytical construct of the Fourier Transform|a highly useful

tool which allows to analyze the e�ciency of patterns, resulting from di�erent sampling

processes in Monte Carlo and quasi-Monte Carlo procedures. We �nish this subsection

with the Fubini-Tonelli Theorem, that makes statements about the evaluation of the

Lebesgue integral on multi-dimensional integration domains.

In the last part of this section, we present the Dirac δ-distribution, an important Section 2.2.5

mathematical construct based on the notation of the Lebesgue integral, and we will show,

how this concept can be used to describe the ideal specular reection and ideal refraction

of light at object surfaces in an elegant mathematical way. After this we show that some

Lebesgue square-integrable functions can be represented as a in�nite series of so-called
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spherical harmonic functions, a technique that proves to be useful for representing bidi-

rectional reectance distribution functions.

2.2.1 AN INTUITIVE APPROACH TO THE LEBESGUE MEASURE
ON R

Even if probability theory requires to consider general measure spaces we will introduce

in this section the concept of a measure rather via a more intuitive approach. Contrary to

the common procedure of introducing a measure by specifying a set function de�ned on aSet Function (837)

σ-algebra, our approach is based on the length of a decomposition of an arbitrary set asσ-algebra (828)

a collection of points and intervals. We expect that this approach demonstrates how this

important measure, the Lebesgue measure on the real line, arises quite naturally fromLebesgue Measure (71)

considerations of the lengths of sets of real numbers and leads to a theory of integration

which greatly extends that of Riemann.Riemann Integral (876)

MOTIVATION FOR DEFINING THE LEBESGUE MEASURE. If we are interested in evaluating

the area between the graph of the Dirichlet function and the x-axis in any closed intervalDirichlet Function (836)

[a, b] ⊂ R then we have a problem, as the Dirichlet function is not Riemann-integrable.Riemann Integrable (876)

Since the Dirichlet function takes non-zero values only on intervals of type [a, b]∩Q, where
it equals one, the area under the graph should be very closely linked to the length of the

interval [a, b] ∩ Q. Because the sets Q and R \ Q are so di�erent from intervals, one has

to ask: How should we measure the lengths of such more general sets? An elegant way of

de�ning the length of such a set could be to describe the set by intervals and to measure

the lengths of these intervals.

It is well-known that the length or the measure, as we will say in the future, of

an interval [a, b] ⊂ R, a 6= b, equals to b − a, that is: The closed interval [0, 1] hasClosed Interval (829)

obviously the measure one, and this should be ok. If we now consider half-open or open

intervals what should be the measure of any of these intervals? Now, because these sets areOpen Interval (829)

subsets of the closed interval [a, b] their measure should surely not exceed that of [a, b], in

mathematics one says, the desired measure should be monotonic. Similarly, it would be

make sense, if we de�ne the measure of an interval, where at least one of the end points lies

at in�nity, intuitively to be in�nite. Obviously, we can conclude that the measure, which

we are trying to develop, should be a monotonic function, that maps an arbitrary subset

of R to the non-negative extended real numbers, we also speak of a so-called monotonic

set function.Set Function (837)

Further, it should be irrelevant for our measure whether we consider the interval

[a, b] ⊂ R or the intervall [c + a, c + b] for c ∈ R: Both intervals should have the same

measure, i.e. our measure should be translation invariant.

Since any interval [a, b] can be decomposed in two disjoint intervals
[
a, b−a

2

)
and[

b−a
2
, b
]
, we conclude from the decomposition [a, b] =

[
a, b−a

2

)
∪
[
b−a
2
, b
]
as well as from
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FIGURE 2.12: COMPOSITION OF INTERVALS. Left, the composition of the closed interval
[a, b] into a half-open interval

[
a, b−a

2

)
and a closed interval

[
b−a
2
, b
]

of the same length.
The image on the right-hand side visualizes the decomposition of a closed interval [a, b] into
a half-open interval [a, b) with the same length as the interval [a, b] and the point b with
length zero.

the lengths of the intervals [a, b] and
[
b−a
2
, b
]
, thus, l([a, b]) = b − a and l

[
b−a
2
, b
]
=

b− b−a
2

, that the measure of the half-open interval
[
a, b−a

2

)
and the measure of the closed l (836)

interval
[
b−a
2
, b
]
must be the same, see Figure 2.12. This means that our measure should

be additive. This additivity then implies that the measure of a single point set is zero,

as it holds: [a, b] = [a, b) ∪ {b}, that is, the measures of a closed, half-open, or an open

interval with same end points must be equal, see Figure 2.12. Obviously, the additivity

appears to be a reasonable requirement to a measure because points are dimensionless and

consequently should have the measure zero.

Before we extend this idea to more general sets let us �rst consider the length of a Section 2.2.2

�nite point set. Now, a �nite point set is not an interval. Because it consists of a �nite

number of points, where every single point has measure zero, the measure of a �nite point

set should also be zero. The same argumentation should hold for countably in�nite point Countably Infinite Set (827)

sets. Since any countably in�nite set consist of single points of measure zero, the measure

of such a set should also be zero.

Expressing the closed interval [a, b] as an uncountable in�nite union of points, that Uncountable Set (827)

is,

[a, b] =
⋃

a∈[a,b]

{a}, (2.145)

then we have a problem. The measure of this interval is b − a 6= 0, but the measure of

the expression on the right-hand side is|as the sum of an uncountable in�nite number

of points of measure zero|again zero. Obviously, here we have a discrepancy, since the

whole is not equal to the sum of its parts. In this context, let us consider the closed
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...

...

FIGURE 2.13: A COUNTABLE UNION OF OPEN INTERVALS AND POINTS. The closed
interval [0, 1] and its composition into a countable union of open intervals and points.

interval [0, 1]. Evidently, this interval can be decomposed into a countable union of open

intervals and points, namely,

[0, 1] = {0} ∪
(
0,
1

2

)
∪
{
1

2

}
∪
(
1

2
,
3

4

)
∪
{
3

4

}
∪
(
3

4
,
7

8

)
∪
{
7

8

}
∪ . . . (2.146)

=

∞⋃
i=1

(
2i−1 − 1

2i−1
,
2i − 1

2i

)
∪
∞⋃
i=0

{
2i − 1

2i

}
, (2.147)

see Figure 2.13.

As it is easily seen, the sum of the lengths of the individual intervals on the right-hand

side results in the geometric series

∞∑
i=1

1

2i
=

1

1− 1
2

− 1 = 1, (2.148)

and the measure of the points 2
i−1
2i

is zero, i.e. the whole is the sum of its parts again.

Obviously it appears, that, only in the case where a set is decomposable into a

countable union of disjoint sets, our desired measure should have the property to be

additive, exactly spoken, it should be σ-additive or countably additive.

Now, the above considerations also suggest that countable sets should have measure

zero and, if it is possible to decompose a set into a �nite number of disjoint sets, the

measure of such a set should be the sum of the measures of the corresponding pieces.

Applied to the set of rational numbers, this means, that the measure of Q is zero and thatQ (827)

the measure of any interval [a, b] ⊂ R, a 6= b is di�erent from zero as any interval of this

type consist of an uncountable number of points.
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FIGURE 2.14: THE CANTOR SET ON [0, 1]. The Cantor ternary set is created by repeatedly
deleting the open middle thirds of a closed interval [0, 1]. One starts by deleting the open
middle third

(
1
3
, 2
3

)
from the interval [0, 1] resulting in two intervals

[
0, 1
3

]
∪
[
2
3
, 1
]
. Next, the

open middle third of each of these remaining intervals is deleted. This process is continued
ad infinitum.

In summary, it is fair to say that any countable in�nite set is a so-called null set, that

is, a set with measure zero. Evidently, null sets appear to be closely related to countable

sets. This is certainly not surprising because any proper interval is uncountably in�nite

and the points of any countable subset, compared with an interval, are quite sparsely

distributed, hence making no real contribution to its length.

REMARK 2.22 The concept of the null set is fundamental when discussing direct and Section 4.4.2.2

indirect illumination of a surface point, and here in particular if we consider point

light sources. As point light sources can be interpreted as points of a set, a set of

point light sources has always measure zero.

Finally, let us consider the interval [0, 1] ⊂ R. The great german mathematician

Cantor showed that it is possible to remove a countable number of disjoint intervals from

[0, 1], whose total measure is one. What remains is the so-called Cantor set, see Fig-

ure 2.14, an uncountable in�nite set of measure zero. The Cantor set is an example of

an uncountable set, in which the points are su�ciently sparsely distributed although the

Cantor set is uncountably in�nite with measure zero. Examples like the Cantor set re-

quire a careful and mathematically based approach to de�ne the concept of a measure.

Super�cial phrases like should be, the whole is the sum of its parts etc. must be re-

placed with a careful analysis, and this is what we want to do. But our discussions above

has been fruitful because we now know what conditions our desired measure should satisfy.

THE LEBESGUE MEASURE ON R. Motivated by the foregoing discussion, now, we are

interested in constructing a function µ, also called a measure, de�ned on all subsets of R Set Function (837)

that assigns any of these sets a non-negative real number, see Figure 2.15. Additionally,
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FIGURE 2.15: THE GENERAL MEASURE PROBLEM. Defined on the power set of R, a
measure µ should map any subset of R to a real number.

we expect that this function satis�es as many of the following conditions as possible for

all sets A,B ∈ P(R):P(R) (828)

i) First, we wish that any subset A of the real line is measurable, additionally,

ii) the measure of a set A ⊆ R must always be non-negative, i.e. we require: 0 ≤
µ(A) ≤∞.

iii) The measure of a set A ⊆ B should also not exceed the measure of the set B, i.e. µ

must be monotonic.

iv) Because the empty set contains no elements, its measure has to be zero.

v) Since a point a ∈ R is dimensionless, we also require that its measure µ({a}) is zero.

vi) The measure of an interval [a, b] should corresponds to its length, namely b − a,

which also implies, that

vii) the measure should be translation invariant, that is, µ([c+a, c+b]) = µ([a, b]), c ∈ R
for an interval [a, b] ⊂ R.

viii) Last but not least, we require that the measure µ should be σ-additive, i.e. it should

hold: µ (
⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai).

REMARK 2.23 (Drawing a Random Number) In one of the next sections of this chapterSection 2.4.2

we will show that the probability of drawing a random number from any interval

[a, b] requires the concept of a measure de�ned over this interval. So for exampleExample 2.70

it is desirable, that the probability of drawing a random number is always a non-Random Variable (168)
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negative real number and the probability of choosing the random number from equal

length subintervals [α,β] ⊂ [a, b] should always be the same, namely the length of

the interval. That is, the concept of probability must be translation invariant, since

the probability of choosing a number from
[
0, 1
10

]
⊂ [0, 1] should be the same as the

probability of choosing a number from
[
n−1
10
, n
10

]
for n = 1, . . . , 10.

In the following discussion we show how it is possible to construct a measure, that

satis�es as many of the conditions (i) through (viii) as possible. For this, we utilize that

any subset of the real numbers can always be covered by a countable number of intervals Cover (865)

from R. The key to our idea of the measure is put in the simple concept of the null set, Null Set (80)

which tells us what we can ignore when measuring a set.

DEFINITION 2.18 (The Outer Lebesgue Measure on R) Let P(R) be the set of all subsets P(R) (828)

over the base set R. The outer Lebesgue measure µ∗ is a function de�ned on P(R) Set Function (837)

that maps any set A from P(R) to a real number, that is, Infimum (862)

µ∗ : P(R) −→ R def
= R ∪ ±∞

A 7→ µ∗(A)
def
= inf

{ ∞∑
i=1

l(Ii)
∣∣A ⊂ ∞⋃

i=1

Ii

}
, (2.149)

where
⋃∞
i=1 Ii is a cover of A by open intervals and l(Ii) denotes the length of the Cover (865)

Open Interval (829)interval Ii, see Figure 2.16.

l (836)

Evidently, the outer Lebesgue measure tries to make a statement about the minimal

length of all possible open covers of A. We now ask: Is the outer Lebesgue measure our

desired measure? [30, Burk 1998]

From measure theory it is known that µ∗ satis�es all of our intuitive conditions except

for the last: the σ-additivity, since it holds: σ-additivity (72)

THEOREM 2.4 The outer Lebesgue measure is countably subadditive, briey denoted as

σ-subadditive, i.e. for any sequence of sets (Ai)i∈N with Ai ∈ P(R) it holds:

µ∗

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

µ∗(Ai). (2.150)

PROOF 2.4 We omit the proof and point to [22, Berezansky & al. 1996].

What we really want to reach is to ensure that for a countably in�nite collection of

disjoint sets the Inequality (2.150) should become an equality. This is a natural require-

ment, since a decomposition of a set into a �nite number of disjoint subsets ought not to

alter its measure. If we can show that for all subsets A,B ∈ P(R) the relation

µ∗(A ∪ B) = µ∗(A) + µ∗(B) (2.151)
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FIGURE 2.16: DEFINITION OF THE OUTER LEBESGUE MEASURE ON R. Visualization of
a set A on the real line. Shown are three covers of A by open intervals: Buttom, A ⊂ I1,
in the middle A ⊂ I1 ∪ I2 ∪ I3, and above A ⊂ I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5.

holds for any arbitrary A∩B = ∅, then it can be shown by induction that µ∗ is σ-additive.

This means: µ∗ could be our desired measure.σ-additivity (72)

Unfortunately, as one can suspect, countable subadditivity is by far the best we can

get for the outer Lebesgue measure. In 1905, the italian mathematician Vitali gave a

famous example of a set of real numbers that could not be decomposed in an additive

fashion, for details see [30, Burk 1998]. That is, with the concept of outer Lebesgue

measure we were so close to our desired measure, what should we do now?

In measure theory it is shown that the conditions (ii) through (vii) from above seem

to be indispensable, i.e. if we stay with the outer Lebesgue measure, the only thing we

have to do is to modify the conditions (i) or (viii), or both. Now, Vitali showed, that if one

adheres to condition (viii), then the general measure problem is not solvable in Rn, n ≥ 1
[54, Elstrodt 1996]. So, it doesn't make sense to de�ne µ∗ on the whole power set P(R).P(R) (828)

This means: To demand that every subset of R could be assigned a real number as its

measure is too strong. The way we must go is to restrict ourselves to those sets that can be

decomposed in an additive fashion with respect to the outer Lebesgue measure. But how

do we �lter out such sets? And even if we have determined these sets, is such a collection

large enough to build a useful theory of integration?

The crux to reach this goal is Carath�eodory's measurability criterion, which will

turn out to be the key idea of the abstract concept of a measure. It will be used to

generalize the concept of length to a large class of subsets of R, while it gives a special

role to those sets, which split every other set additively.

DEFINITION 2.19 ( Carath�eodory's Measurability Criterion) A set A ⊆ R is called Lebesgue-
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FIGURE 2.17: CARATHÉODORY’S MEASURABILITY CRITERION. A set A is Lebesgue-
measurable, if A interacts in an additive fashion with every subset E of R.

measurable if for each E ⊆ R it holds:

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩A), (2.152)

i.e. a Lebesgue-measurable set A interacts in an additive fashion with every subset

of R, in other words: A splits every subset of R additively, see Figure 2.17.

Now, let us show how we can use this criterion to �lter out the Lebesgue-measurable

sets from P(R). For that purpose let A ∈ P(R). Then, we test every subset E ∈ P(R), P(R) (828)

whether it ful�lls Carath�eodory's measurability criterion. If we answer yes then the set A

is Lebesgue-measurable. If there exists only a single set E, such that µ∗(E) 6= µ∗(E∩A) +
µ∗(E∩A), then we discard A and say A is a Lebesgue non-measurable set of real numbers,

see Figure 2.18. That is: the set A is Lebesgue-measurable, if it splits every subset of R
additively relative to µ∗

Apparently, the empty set, ∅, and the set of all real numbers, R, are Lebesgue-

measurable sets but does it make sense to develop an integration theory on a collection of

only two sets? Certainly, not! So it is time to lay our focus to the concept of the σ-algebra σ-alegebra (828)

and to show why it is so important in measure theory.

To de�ne our desirable measure, we are interested in a large σ-algebra consisting of

Lebesgue-measurable sets that contains many more elements than ∅ and R. Indeed, this
will be reached via Carath�eodory's Theorem, which provides us with one of the two most

important results about the Lebesgue measure.

THEOREM 2.5 (Carath�eodory Theorem) Let µ∗ be the outer Lebesgue measure as de-

�ned in Equation (2.149) and M denote the collection of sets A ⊆ R that satis�es

Carath�eodory's measurability criterion from Equation (2.152), then it holds:
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 Yes  No

 select a set  from

Lebesgue
non-mesurable sets

 Lebesgue 
 mesurable sets

FIGURE 2.18: LEBESGUE-MEASURABLE SETS. Due to Vitali’s example, we know, that
the left container is not empty and the sets R and ∅ are Lebesgue-measurable sets.

i) M is a σ-algebra and

ii) the restriction µ of the outer Lebesgue measure µ∗ to M, thus,σ-alegebra (828)

µ
def
= µ∗

∣∣
M

(2.153)

is a measure. We call the collection M the Lebesgue-measurable sets and µ is referred

to as the Lebesgue measure on R.

PROOF 2.5 We omit the proof and point to [30, Burk 1998].

As already mentioned above, ∅ and R are surely in M. How does it looks like with

intervals? Do intervals satisfy Carath�eodory's measurability criterion? Yes, intervals areCarathéodory Criterion (74)

ok, they are Lebesgue-measurable [30, Burk 1998]. This fact relates the outer Lebesgueµ∗ (73)

measure to the length of an interval. It contains the crux of the theory, since it demon-

strates, that the formal de�nition of the outer Lebesgue measure, which is applicable to

all subsets of the real numbers, coincides with the intuitive idea of the length of intervals,

which was the start of our thought process. But are we limited to intervals?

As one can easily see, our de�nition of M does not directly lend itself to veri�cation,

that a particular subset of R belongs to M. Evidently, it is also hard to show that M

is closed under various set theoretical operations. Therefore, we will present another
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all subsets of 

algebra

 Lebesgue
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all intervals of 

a algebra      not

FIGURE 2.19: HIERARCHY OF MEASURABLE SETS IN R.

construction, which shows more directly how open sets and the structure of a σ-algebra

lies at the heart of many of the concepts we have developed. Because a σ-algebra is closed

with respect to the set theoretical operations of countable unions, countable intersections, Countability (827)

complements etc. we can also measure countable unions of countable intersections of

complements etc. of intervals. These are very complicated sets. To simplify this, we

utilize the concept of the Borel σ-algebra. Borel σ-algebra (865)

B(R) be the Borel σ-algebra of real numbers, and M(R) be the Lebesgue-measurable Borel σ-algebra (865)

sets on R, then measure theory says, that every Borel set is also Lebesgue-measurable, Lebesgue-measurable Set (75)

that is,

B(R) ⊂M(R). (2.154)

It is just the σ-algebra of Borel-measurable sets, that plays a key role in our further Section 2.4

discussion. We will encounter them not only when introducing the solid angle concepts Solid Angle Measures (84)

and the Lebesgue integral but also when discussing spherical harmonics and many other Spherical Harmonics (124)

important constructs.

We will now take a closer look at the above proposed approach for the construction of

the Lebesgue measure on R, the fundamental concept of integration theory. Additionally,

it allows us to develop many of the important measures used in global illumination and Section 2.2.2

probability theory.

EXAMPLE 2.26 (The Lebesgue Measure of Bounded Sets on R) Let B(R) be the Borel Borel σ-algebra (865)

σ-algebra generated by all half-open intervals of type [a, b) ⊂ R. We de�ne the outer Intervals (829)
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Lebesgue measure µ∗ on the σ-algebra of Lebesgue-measurable sets M(R) by:

µ∗(A)
def
= inf

{ ∞∑
i=1

l(Ii)
∣∣A ⊂ ∞⋃

i=1

Ii

}
, (2.155)

where l(I)
def
= (b − a) is called the length of the half-open interval I = [a, b) and

µ
def
= µ∗

∣∣
M(R) is the restriction of the outer Lebesgue measure to the σ-algebra M(R).l (836)

Clearly the σ-algebra B(R) contains not only the intervals [α,β) ⊆ [a, b), but

also point sets of the form B = {x} and B = ∪∞i=1{xi} respectively. This is due to

the fact, that it is always possible to take an arbitrary half-open interval [α,β) that

contains x as a cover

0 ≤ µ∗({x})
(2.155)

≤ inf
x∈[α,β)

l([α,β)) = inf
x∈[α,β)

(β− α) = 0 (2.156)

and the σ-additivity of the outer measure, resulting inσ-additivity (72)

µ∗

( ∞⋃
i=1

{xi}

)
=

∞∑
i=1

µ∗({xi}) = 0. (2.157)

That is, the sets B = {x} and B = ∪∞i=1{xi} are sets with measure zero and thus

belong to the σ-algebra M(R).
It is readily to seen, that closed and open intervals of R|thus intervals of type

[a, b] and (a, b)|are also measurable. They may be easily constructed by the unionLebesgue-measurable Set (75)

of the measurable sets [a, b) and {b} respectively the di�erence between the interval

[a, b) and the measurable set {a}, i.e. [a, b] = [a, b) ∪ {b} and (a, b) = [a, b) \ {a}

respectively.

Thus, not only open intervals but every kind of open sets of R that may beOpen Set (864)

regarded as a countable union of open intervals are Lebesgue-measurable. If we embedCountability (827)

a closed set F in an open interval (α,β), then the set G = (α,β) \ F is certainly open

and F|as the di�erence between the open sets (α,β) and G|is Lebesgue-measurable.

Finally, apart from these open and closed sets the σ-algebra M([a, b)) contains allClosed Set (864)

sets of the type Go (countable intersection of open sets), Fa (countable union of

closed sets) and Goa and Foa (countable union of Go sets and countable intersection

of Fo) etc..

2.2.2 GENERAL MEASURES

An alternative, rather abstract and theoretical more challenging approach to measure

theory than those we have presented in the previous section is to start with the de�nition

of a measure as a set function de�ned on a σ-algebra which requires the above properties

as axioms. We go this way now because it is the common approach to construct general
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probability measures, which will be of great interest to us.
Set Function (837)

GENERAL MEASURES. Apart from the Lebesgue measure, the central measure concept ofσ-algebra (828)

probability theory, we need further, rather more complex types of measures for developing Section 5.4

new probabilistic solution approaches to the global illumination problem. So, we will now

introduce the general concept of a measure, namely: as a mapping that assigns a real

number to any set of a σ-algebra.

DEFINITION 2.20 (Measure) Let R be a σ-algebra generated on any base set R. Let us σ-algebra (828)

assume that a real-valued and non-negative set function ν is given on the σ-algebra Set Function (837)

R, i.e.

ν : R −→ R def
= R ∪ ±∞ (2.158)

R 3 B 7−→ ν(B) ∈ R, (2.159)

then ν is called a measure, if ν satis�es for all B ∈ R not only the conditions

ν(B) ≥ 0, ν(∅) = 0, (2.160)

but also the σ-additivity, so that the following holds to B1, B2, . . . ∈ R̃ with Bj ∩ Bk =

∅, (j 6= k) and ∪∞j=1Bj ∈ R̃:

ν

( ∞⋃
j=1

Bj

)
=

∞∑
j=1

ν(Bj), (2.161)

see Figure 2.20.

A �rst example for a simple, yet no less important measure, de�ned on a general

set, is the Dirac measure. Apart of its important role in probability theory, the Dirac

measure can also be used as a possibility to de�ne the concept of the Dirac δ-distribution,

which we use to describe physical phenomena such as ideal reection and ideal refraction

of particles at surfaces in an exact mathematical way.

EXAMPLE 2.27 (The Dirac Measure δx) Let us assume a base set R and the σ-algebra R σ-algebra (828)

generated on R are given, then the Dirac measure δx is de�ned for x ∈ R and B ∈ R

as follows:

δx(B)
def
=

{
1 if x ∈ B
0 otherwise.

(2.162)

As is easily seen, the set function δx satis�es the above conditions required to

a measure, since it obviously applies not only that δx(B) ≥ 0,∀B ∈ R and δx(∅) = 0,
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with

FIGURE 2.20: THE CONCEPT OF THE MEASURE, DEFINED AS A SET FUNCTION ON A
σ-ALGEBRA. Defined on the σ-algebra R, a measure ν assigns a real number to any subset
of R.

but also δx(∪∞i=1Bi) =∑∞i=1 δx(Bi), as x can only be an element of one of the disjoint

sets Bi, i ≥ 1.
Since it satis�es the normalization property δx(R) = 1, the Dirac measure is a

probability measure, which in terms of probability can be interpreted as the almost

sure outcome x in the sample space R.Probability Measure (80)

PROPERTIES OF MEASURES. Now a measure given over a σ-algebra possesses a number

of characteristic features. Additionally, it serves as the basis of many concepts required

in measure theory encountered in particular in the de�nition of the measure and the

measurable space.

Let us suppose a σ-algebra R is given over the base set R. Then, the tupel (R,R)

is called a measurable space and the subsets B, with B ∈ R, are called measurable setsσ-algebra A.1

or R-measurable for short. If we equip the measurable space (R,R) with a measure ν

constructed on the σ-algebra R, then the triple (R,R, ν) is called a measure space. IfSection 2.2.4

in particular ν(R) = 1 holds, we denote the measure ν as a probability measure or a

probability distribution and the measure space (R,R, ν) is called a probability space inSection 2.4.1

probability theory. The measure ν is termed as a �nite measure if ∀B ∈ R it holds:

ν(B) < ∞. In the case that ν takes also in�nite values and a non-descending sequence

B1 ⊆ B2 ⊆ B3 . . . ∈ R exists with ν(Bi) < ∞, ∪∞i=1Bi = R, we speak of a σ-�nite

measure. In particular, a set B ∈ R with ν(B) = 0 is called a null set. In such a case ν

is termed complete when every subset of a null set is measurable, thus, if it is an element

of R. Finally, the measure ν is denoted as absolutely continuous with respect to the

measure ν ′, denoted as ν� ν ′, if ν ′ is a measure on R and for every null set B ∈ R with

ν ′(B) = 0 it holds: ν(B) = 0.Section 2.4.2
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All hitherto presented measures were based on σ-algebras generated over uncountable

base sets. However, a category of measures of great importance for the concerns of Uncountable Set (827)

probability theory may also be de�ned over σ-algebras based only on �nite or countably Countable Set (827)

in�nite sets: the class of discrete measures.

DEFINITION 2.21 (Discrete Measure) Let (xn)n∈N be a �xed sequence of distinct points Discrete Probability Space (163)

of a base set R and (νn)n∈N an associated sequence of non-negative numbers. Then,

the real-valued set function ν, de�ned by: Set Function (837)

ν(B)
def
=

∑
{j|xj∈B}

νj, (2.163)

where B ∈ P(R) and ν(∅) def= 0, is denoted as a discrete measure on P(R). P(R) (828)

EXAMPLE 2.28 (The Counting Measure #) Let us de�ne a set function # on the σ-

algebra P(N0), thus the set of all subsets of N0, by:

#(B)
def
=

{
n if |B| = n∞ if |B| =∞, (2.164)

where B ∈ P(N0). Then, the sequences (xn)n∈N0 with xn ∈ N0 and (νn)n∈N0 = n

clearly satis�es the requirements to a measure. Obviously, # represents a discrete

and, in particular, a σ-�nite measure: the counting measure on N0. The counting

measure describes the size of a set by the number of its elements.

The concept of discrepancy, a measure for the derivation of a set of points Discrepancy (621)

from an ideal uniform distribution, is based on the counting measure. It plays an Uniform Distribution (180)

important role in developing and analyzing quasi-Monte Carlo algorithms for solving Chapter 7

integrals and integral equations.

From our introductory chapter, we know that the stationary vacuum light transport

equation describes the total amount of light, that comes from everywhere at a surface

point and is reected along a particular viewing direction. Mathematically this means SLTEV (398)

that we have to integrate a function over the entire unit sphere, one of the hemispheres,

or all existing surfaces in the scene to be rendered. For that purpose, we need measures,

which must be de�ned on product spaces constructed over S2, H2+, H2−, as well as R2. The
measure theoretical concept allowing us to integrate functions de�ned on such complex

spaces is the concept of the product measure.

DEFINITION 2.22 (Product Measure and Product Measure Space) Let (R ′,R ′, ν ′) and Solid Angle Measures (84)

(R ′′, R ′′, ν ′′) be two measure spaces. Furthermore we assume that R = R ′ × R ′′ and Measure Space (80)

R corresponds to the σ-algebra R ′ ×R ′′ generated over the Cartesian product σ-algebra (828){
B ′ × B ′′

∣∣B ′ ∈ R ′, B ′′ ∈ R ′′
}
, (2.165)
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FIGURE 2.21: THE CONSTRUCTION OF THE LEBESGUE AREA MEASURE. Left, the
inner Lebesgue measure µ2∗(B) defined as the supremum over all subsets

⋃n
i=1[αi, βi)

2 of

the set B ⊂ R2. On the right-hand side, the outer Lebesgue measure µ∗2(B) defined as
the infimum over all given covers

⋃n
i=1[αi, βi)

2 of B.

then the product measure ν is de�ned as:

ν(B ′ × B ′′) def= ν ′(B ′)ν ′′(B ′′) (2.166)

and the tupel (R,R, ν) is called the product measure space.

EXAMPLE 2.29 (The Lebesgue Area Measure µ2) Due to De�nition 2.22 the Lebesgue area

measure µ2 can now be de�ned via the common Lebesgue measure from Theorem 2.5

by:

µ2(B) = µ(B′)µ(B′′) (2.167)

where B′ and B′′ are Lebesgue measurable sets of R and B = B′ × B′′.Lebesgue Measurable Set (75)

EXAMPLE 2.30 (The Lebesgue Measure of a Bounded Set on Rn) Let B(Rn) be the BorelB(Rn) (865)

σ-algebra generated by all half-open intervals of type [a,b) ⊂ Rn, n ≥ 3. If we de�ne
a real-valued, non-negative, and σ-additive set function µn on B(Rn) by:Set Function (837)

µn(A)
def
=

∞∑
i=1

vol(Ii) (2.168)

for A ⊂
⋃∞
i=1 Ii, where vol(I)

def
= Πni=1(bi − ai) is called the volume of the half-open

interval I = [a,b) = [a1, b1)× . . .× [an, bn), then µ
n satis�es the conditions required

for a measure. µn is denoted as the Lebesgue measure on Rn. For an illustration of

the case n = 2, see Figure 2.21.

SOLID ANGLES. In Section 4.2.2, we will introduce the concept of the BRDF as a functionBRDF (320)

that measures how light reects o� a surface when viewed under various viewing positions.
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FIGURE 2.22: THE DEFINITION OF ANGLE AND SOLID ANGLE. The angle subtended by
a 2-dimensional shape in the plane is defined as the length of its central projection onto the
unit circle around the center s. Equivalently, the solid angle subtended by a 3-dimensional
shape in R3 is defined as the area of its central projection onto the unit sphere around its
midpoint s.

For that, we must have a good understanding of how much light arrives at or leaves a

surface patch from a particular direction. Now, in radiometry light arriving or leaving a

surface is measured in terms of ux through an area, that is, it makes no sense to consider

light with respect a single direction, instead we should speak of light arriving at or passing

a surface through a small region of directions. This then allows to determine the amount Chapter 3

of light incident or exitant at a small surface element by taking into account the amount Radiant Flux (249)

of light passing through a cross-sectional area surrounding a direction, the so-called solid

angle.

DEFINITION 2.23 (The Construct of Solid Angle) The solid angle Γ(M) subtended by an

object M viewed from point s ∈ R3 is the radial projection M⊥ of M onto a sphere

S2r(s) with radius r centered at s, see Figure 2.22. The size of the solid angle is the

ratio of the area of M⊥ to the squared radius of the sphere, that is,

Γ(M)
def
=

µ2(M⊥)

r2
. (2.169)

Due to this de�nition, the solid angle Γ(M) subtended by an object M can be in-

terpreted as the continuous set of hit points of rays starting at the center of a sphere of

radius r with the surface of the sphere.

EXAMPLE 2.31 (The Solid Angle Subtended by a Small Surface Patch) Let us consider a

small surface patch A whose normal at point s′ is given by N(s′) then it holds for
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the solid angle subtended by A:

Γ(A)
def
=

µ2(A⊥)

r2
(2.170)

=
µ2(A)〈ωi,N(s′)〉

r2
(2.171)

=
µ2(A)| cosωi|

r2
, (2.172)

where ωi is a direction starting at the center of a sphere of radius r, passing through

point s′ on A and cosωi is the cosine of the angle between direction ωi and the patch

normal N.

REMARK 2.24 Since a solid angle is de�ned via an object or a 2-dimensional surface

patch and a point in space, we have also to specify both, the object or the considered

surface patch and the point whenever we will use the concept of the solid angle in

words. So, we will often speak of the solid angle subtended by a surface patch, the

lens of a virtual camera, or a pixel of the image plane as seen from a point in space

or at an object surface.

REMARK 2.25 Evidently, our de�nition of the solid angle is an extension of the angle

in two dimensions, where the angle subtended by an object is de�ned as the arc length

of the central projection of the object onto the unit circle. Although solid angles are

dimensionless, they are expressed in squared radians, or briey steradians, sr, as both,

the width and the length of the rectangular patch are measured in radians. Thus, the

solid angle covered by an entire hemisphere is 2π sr, that covered by the unit sphere

is 4π sr.

To compute the solid angle subtended by a 2-dimensional surface or an object

M in R3, we must �rst project M radially onto the hemisphere or the unit sphere,

and then compute the solid angle of the projection of M. Thus, it should be clear,

that the solid angle subtended by two di�erent objects in shape can be the same, see

Figure 2.23.

THE SOLID ANGLE MEASURES σ AND σ⊥. As already mentioned above, it is convenient

to integrate functions that measure light arriving at or leaving a surface point over areas

surrounding a direction, that is, over regions on spheres, and here in particular the unit

sphere or the lower and upper hemisphere. Thus, for integrating functions e.g. over the

unit sphere, we are interested in a measure de�ned on B(S2), i.e. the Borel σ-algebra

constructed over S2.

For that purpose, let B(S2) be the Borel σ-algebra de�ned on the unit sphere. Now,B(·) (865)

our goal is to construct a measure σ on B(S2), but how should we de�ne this measure?Measure (79)

Now, let us consider the rectangle B = [0, π]× [0, 2π) ⊂ R2 and the mapping

T : R2 → R3 (2.173)
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FIGURE 2.23: ANGLE AND SOLID ANGLE OF TWO DIFFERENT OBJECTS. Two different
objects can occupy the same angle respectively the same solid angle.

with

T(θ,φ) =

 x(θ,φ)

y(θ,φ)

z(θ,φ)

 =

 r sin θ cosφ

r sin θ sinφ

r cos θ

 (2.174)

and r > 0, r ∈ R, which assigns any point (θ,φ) ∈ [0, π] × [0, 2π) a point on the sphere

with radius r around the origin 0. Obviously, T maps points from [0, π] × [0, 2π) onto a

2-dimensional surface over the unit sphere in R3.

Let us now consider an open cover ∪∞i=1Ii of B by open intervals Ii = [θi, θi+1) × Open Cover (865)

[φi, φi+1). The image of the rectangle Ii = [θi, θi+1) × [φi, φi+1) on the unit sphere

is then given via the region enclosed by the four curve segments c(θi, φ), c(θi+1, φ) as

well as c(θ,φi) and c(θ,φi+1), see Figure 2.24. This region can be approximated by a

parallelogram T(Ii) attached at point (θi, φi,T(θi, φi))
T . Obviously, this parallelogram

lies in the tangent plane

t(θ,φ) = T(θi, φi) +
∂T(θi, φi)

∂θ
(θ− θi) +

∂T(θi, φi)

∂φ
(φ− φi) (2.175)

where

∂T(θi, φi)

∂θ
=


∂x(θi,φi)

∂θ
∂y(θi,φi)

∂θ
∂z(θi,φi)

∂θ

 =

 r cos θi cosφ

r cos θi sinφi
−r sin θi

 (2.176)



86 CHAPTER 2. MATHEMATICAL FOUNDATIONS OF REALISTIC RENDERING

FIGURE 2.24: APPROXIMATING A REGION ON A SPHERE BY A PARALLELOGRAM. On
the left side, a region bounded by the spherical interval [θi, θi+1) and [φi, φi+1). The area
of this region can be a approximateted by the area of the parallelogram at point T(θi, φi)

spanned by the vectors ∂T(θi,φi)
∂θ

(θ − θi and ∂T(θi,φi)
∂φ

(φ − φi).

and

∂T(θi, φi)

∂φ
=


∂x(θi,φi)

∂φ
∂y(θi,φi)

∂φ
∂z(θi,φi)
∂φ

 =

 −r sin θi sinφi
r sin θi cosφi

0

 (2.177)

are the tangent vectors at point (θi, φi,T(θi, φi)
T in directions θ and φ, see Figure 2.24.

From Figure 2.24 it should also be clear, that the parallelogram T(Ii) is spanned by

vector ∂T(θi,φi)
∂θ

(θ− θi) in direction θ and by ∂T(θi,φi)
∂φ

(φ− φi) in direction φ. That is,

due to Relation (A.54) the area of T(Ii) is given by the norm of the cross product of the

above spanning vectors, thus,

∥∥∥∥∂T(θi, φi)

∂θ
(θ− θi)×

∂T(θi, φi)

∂φ
(φ− φi)

∥∥∥∥
2

. (2.178)

We now de�ne the solid angle measure of the parallelogram T(Ii) via its area, that
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is,

σ(T(Ii)) =

∥∥∥∥∂T(θi, φi)

∂θ
(θ− θi)×

∂T(θi, φi)

∂φ
(φ− φi)

∥∥∥∥
2

(2.179)

=

∥∥∥∥∂T(θi, φi)

∂θ
× ∂T(θi, φi)

∂φ

∥∥∥∥
2

µ([θ− θi))µ([φ− φi)) (2.180)

=

∥∥∥∥∂T(θi, φi)

∂θ
× ∂T(θi, φi)

∂φ

∥∥∥∥
2

µ2(Ii) (2.181)

=

∥∥∥∥∥∥
 r2 sin2 θi cosφi
r2 sin2 θi sinφi
r2 sin θi cos θi

∥∥∥∥∥∥
2

µ2(Ii) (2.182)

= r2 sin θi µ
2(Ii). (2.183)

This construction then implies the following de�nition of the solid angle measure:

DEFINITION 2.24 (The Solid Angle Measure σ and the Di�erential Solid Angle dσ) Let

B(S2) be the Borel σ-algebra constructed over the unit sphere. The solid angle measure B(·) (865)

σ is a function de�ned on B(S2), which maps any set A from B(S2) to a real number, Set Function (837)

that is,

σ : B(S2) −→ R

with

A 7→ σ(A)
def
= µ2 (∪∞i=1 sin θiIi) =

∞∑
i=1

sin θi µ
2(Ii), (2.184)

where A is the image of the open cover ∪∞i=1Ii ⊆ [0, π]× [0, 2π) under the mapping T Open Cover (865)

from Equation (2.173).

Considering only di�erential quantities, then the di�erential solid angle dσ is

given by:

dσ(ω) (2.185)

or equivalently:

dσ(θ,φ) = sin θdµ(θ)dµ(φ). (2.186)

Another important measure, needed to de�ne important radiometric quantities, is Chapter 3

the projected solid angle measure, that is, the area of the projection of the solid angle

measure of a set A ∈ B(S2) on a disk with radius r, see Figure 2.25.

The projected solid angle measure can then be de�ned via the area of the parallelo-

gram spanned by the orthogonal projection of the vectors ∂T(θi,φi)
∂θ

(θ− θi) in direction θ



88 CHAPTER 2. MATHEMATICAL FOUNDATIONS OF REALISTIC RENDERING

FIGURE 2.25: GEOMETRY FOR CONSTRUCTING THE PROJECTED SOLID ANGLE MEA-
SURE.

and ∂T(θi,φi)
∂φ

(φ−φi) in direction φ. Due to the projection a factor of |cos θi| is attached

at the above spanning vector in direction θ. This then leads to:

σ⊥(T(Ii)) =

∥∥∥∥∥∥cos θi
 r2 sin2 θi cosφi
r2 sin2 θi sinφi
r2 sin θi cos θi

∥∥∥∥∥∥
2

µ2(Ii) (2.187)

= |cos θi| σ(T(Ii)) (2.188)

= r2 sin θi |cos θi| µ
2(Ii). (2.189)

This implies the following de�nition of the projected solid angle measure:

DEFINITION 2.25 (The Projected Solid Angle Measure σ⊥ and the Di�erential Solid Angle

dσ⊥) Let B(S2) be the Borel σ-algebra constructed over the unit sphere. The projectedB(·) (865)

solid angle measure σ⊥ is a function de�ned on B(S2), which maps any set A fromSet Function (837)

B(S2) to a real number, that is,

σ⊥ : B(S2) −→ R

with

A 7→ σ⊥(A)
def
= µ2(∪∞i=1 sin θi |cos θi| Ii) =

∞∑
i=1

sin θi |cos θi| µ
2(Ii), (2.190)

where A is the image of the open cover ∪∞i=1Ii ⊆ [0, π]× [0, 2π) under the mapping TOpen Cover (865)

from Equation (2.173).
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Considering only di�erential quantities, then the di�erential projected solid angle

dσ⊥ is given by:

dσ⊥(ω) = |cos θ| dσ(ω) (2.191)

or equivalently:

dσ⊥(θ,φ) = sin θ |cos θ| dµ(θ)dµ(φ). (2.192)

REMARK 2.26 To circumvent the problem of the orientation of the surface normal in

our formulas|in some rendering systems the surface normal is always assumed to

point outside the surface, others, like pbrt, do not assume that the surface normal

lies on the same side as the incident direction ωi|we have added an absolute value

to the cosine term, hidden in the projected solid angle.

Let us now show how these new concepts can be applied to problems from global

illumination theory.

EXAMPLE 2.32 (Integration with Respect to the Projected Solid Angle Measure) Based

on the de�nition of the projected solid angle measure and the projected di�erential

solid angle measure we have now a better understanding of integrating functions with

respect to the solid angle measures.

Let us consider the stationary light transport equation in a vacuum presented

in Equation (4.390). It was introduced in the form that integration was done with

respect to the projected solid angle measure, thus,

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (2.193)

Expressing a direction ω, due to De�nition A.7, by (θ,φ) and applying the

de�nition of the di�erential projected solid angle from Equation (2.25), then the

integration in the SLTEV can be done with the help of the Lebesgue area measure µ2

with respect to the variable θi and φi by:

Lo(s, θo, φo) = Le(s, θo, φo)+ (2.194)∫
[0,π]×[0,2π)

fs(s, (θi, φi)→ (θo, φo))Li(s, θi, φi) sin θi |cos θi| dµ(θi)dµ(φi).

TRANSFORMING THE SOLID ANGLE MEASURES TO THE LEBESGUE AREA MEASURE. In Section Lebesgue Area Measure (82)

9.1.2 we will see, that, in many cases more e�cient rendering routines can be written if we

could integrate the light transport equations over all visible surfaces instead over the unit

sphere. Now, changing the integration domain is connected with a change in the integration
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measure followed by a variable transformation, resulting in a new representation of the

light transport equations, the so-called area formulations also denoted as the 3-point

formulations of the light transport equations.

Changing the integration domain from S2 to ∂V×∂V requires replacing the projected∂V (41)

solid angle measure σ⊥ by the Lebesgue area measure µ2. From Figure 2.26 it can be seen,σ⊥ (88)

that this can be done as follows: Via the ray-casting function γ we have to �nd the pointγ (47)

on the closest visible surface along a ray starting at point si and pointing in direction ωii,

we call this point sj. Afterwards, we project the in�nitesimal patch dµ2(sj) onto the unit

sphere resulting in the di�erential solid angle dσsi(ω
i
i) subtended by dµ2(sj) as seen from

si. Expressed in terms of the di�erential surface patch dµ2(sj) then it holds:

dσsi(ω
i
i) =

dµ2(sj)
∣∣∣〈ωjo,N(sj)

〉∣∣∣
‖sj − si‖22

(2.195)

=
dµ2(sj)

∣∣∣cos θjo∣∣∣
‖sj − si‖22

, (2.196)

where
〈
ωjo,N(sj)

〉
is the cosine-foreshortening due to the radial projection of dµ2(sj) onto

the unit sphere around si and the distance of the two points sj and si in the denominator

is used to account for the projected area fraction of the patch onto the unit sphere.

Using this result, then the di�erential projected solid angle measure can be expressed

in terms of the Lebesgue area measure as

dσ⊥si(ω
i
i)

(2.191)
=

∣∣〈ωii,N(si)
〉∣∣ dσs(ωii) (2.197)

(2.196)
=

∣∣〈ωii,N(si)
〉∣∣ dµ2(sj)

∣∣∣〈ωjo,N(sj)
〉∣∣∣

‖sj − si‖22
(2.198)

=

∣∣∣cos θii cos θjo∣∣∣
‖sj − si‖22

dµ2(sj), (2.199)

where θii and θ
j
o are the angles between the directions ωii at si and ω

j
o at sj and the

surface normals at si and sj. Note: When deriving equivalent formulations of the light

transport equation in free space in Section 4.4.2, we will use this technique over and over

again.

EXAMPLE 2.33 (The Classical Di�erential-to-Di�erential-Area Form Factor) In Chapter

10 when deriving the radiosity equation, we will encounter the concept of the form

factor, as the proportion of light leaving a surface patch that is received by another

patch. As we show in this and the next example, the concept of the form factor has a

lot in common with our concept of the projected solid angle. Thus, Relation (2.199)

resembles|except of the missing terms 1
π
and the visibility function V(sj ↔ si)|theV (45)
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FIGURE 2.26: TRANSFORMING THE PROJECTED SOLID ANGLE MEASURE TO THE
LEBESGUE AREA MEASURE. The transformation of the projected solid angle area measure
into the Lebesgue area measure can be visualized in a three step procedure. The radial
projection of the patch onto the sphere around si going through the surface point sj, followed
by a projection in direction ωii onto the unit sphere, followed the orthogonal projection of
this new generated patch onto the base of the unit sphere.
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FIGURE 2.27: GEOMETRY FOR COMPUTING THE CLASSICAL DIFFERENTIAL-TO-
DIFFERENTIAL FORM FACTOR.

so-called classical di�erential-to-di�erential-area form factor between di�erential areas

around the points si and sj, denoted as Fsisj . It corresponds to the proportion of light

leaving the di�erential area around si that is received by the di�erential area around

point sj and is de�ned as:

Fsisj =
1

π

∣∣∣cos θii cos θjo∣∣∣
‖sj − si‖22

V(sj ↔ si)dµ
2(sj), (2.200)

see Figure 2.27. Except of the missing terms 1
π
and V(sj ↔ si), Equation (2.200) is

identically to Equation (2.199).

Obviously, the fraction of light leaving the di�erential area around si that ar-

rives at the di�erential area around sj is proportional to the di�erential solid angle

subtended by the di�erential area around sj as seen from si. The form factor thus

depends inversely on the square of the distance between the areas and on the cosines

of the angles between the surface normals N(si) and N(sj) as well as the in and

outgoing directions ωii and ω
j
o. We will discuss the concept of the classical form

factor in more detail in Section 10.1.3.

In the same context, let us also consider the following situation:

EXAMPLE 2.34 (The Nusselt Analog) Let H2+ be the upper hemisphere about surface

point si. Furthermore, let us assume that in our scene there exists a series of opaque

surface patches Pj such as light sources, see Figure 2.28. Now, the solid angle of

patch Pj as seen from the center of the hemisphere is de�ned as the covered surface
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of its radial projection, that is,

Γ(Pj)
(2.196)
=

∫
P⊥
j

dσsi(ωi) (2.201)

=

∫
Pj

| cos θjo|

‖sj − si‖22
dµ2(sj). (2.202)

Due to Equation (2.199), the orthogonal projection of the solid angle subtended

by Pj as seen from si onto the base of the hemisphere can then be computed via

Γ(Pj)
⊥ =

∫
P⊥
j

dσ⊥si(ωi) (2.203)

=

∫
P⊥
j

∣∣cos θii∣∣ dσsi(ωi) (2.204)

=

∫
Pj

∣∣∣cos θii cos θjo∣∣∣
‖sj − si‖22

dµ2(sj). (2.205)

Equipped with the visibility function, V, the fraction of the base area covered by V (45)

this projection is then de�ned as the unoccluded di�erential-to-�nite-area form factor,

denoted by FsiPj , i.e.

FsiPj
def
=

1

π

∫
P⊥
j

∣∣cos θii∣∣ V(sj ↔ si)dσsi(ωi) (2.206)

=

∫
Pj

∣∣∣cos θii cos θjo∣∣∣
π‖sj − si‖22

V(sj ↔ si)dµ
2(sj). (2.207)

We call this construction the Nusselt analog. From the Nusselt analog fol-

lows, that two surface patches with the same solid angle share the same unoccluded

di�erential-to-�nite-area form factor, that is, unoccluded di�erential-to-�nite-area

form factors are only depending on their projection onto the upper hemisphere H2+.
The Nusselt analog can be considered as the basis for the hemicube form factor

algorithm, introduces in Section 10.1.3.2.2, where surface patches are projected onto

the planar faces of a half cube instead onto the hemisphere.

REMARK 2.27 (Direct Illumination) The above measure transformation must also be ap-

plied when computing the direct illumination at a scene point via generating shadow Direct Illumination (617)

rays. As we know, shadow rays are �red from a surface point in direction to the Shadow Ray (14)

light sources for computing the light that directly illuminates the point of interest.

Commonly such rays can be generated by choosing points on the unit sphere around

a surface point and shooting a ray from the center of the sphere through this point
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FIGURE 2.28: THE NUSSELT ANALOG. The form factor from the differential area around
si to patch Pj is proportional to the area of the orthogonal projection of solid angle Γ(Pj).

on the sphere. But if the light sources are small and far away, it should be clear,

that the probability that such a ray hits a light source is very small. A better strategy

to generate shadow rays would be to make use of the knowledge about the position,

orientation, and the shape of the light sources. Such a strategy requires the above

mentioned transformation of a spherical integral into a surface integral via the mea-

sure transformation from Equation (2.199).

THE THROUGHPUT MEASURES. We know, that in cases where we abstract from participat-

ing media, rays will start only at object surfaces, that is, at boundaries ∂V of the involved

participating media. Based on the Lebesgue measure µn, n = 2, 3 and the solid angleµn (82)

measures σ and σ⊥, now the concept of the product measure implies the construction ofSolid Angle Measures (84)

measures ζ⊥, ζo and ζ on the Borel σ-algebras B(R∂V), B(RVo), and B(R) generated
over all open subsets of the ray spaces R∂V , RVo , as well as R, the so-called throughputRay Spaces (44)

measures. They can be used to measure the light-carrying capacity of a ray in a vacuum

and in participating media.

DEFINITION 2.26 (The Throughput Measures ζ⊥, ζo, and ζ) The throughput measures ζChapter 5

and ζ⊥ are simply de�ned via the products of the Lebesgue measures µ2 respectivelyµs (82)

µ3 and the inner volumes Vo respectively the boundaries ∂V combined with the solid∂V, Vo (41)

angle measures σ and σ⊥, thus,Solid Angle Measures (84)

ζ⊥(B∂V × BS2)
def
= µ2(B∂V)σ

⊥(BS2) (2.208)

ζo(BVo × BS2)
def
= µ3(BVo)σ(BS2) (2.209)

with B∂V × BS2 ∈ B(R∂V), when considering ray functions de�ned in a vacuum, re-
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spectively BVo×BS2 ∈ B(RVo) in the case where we consider ray functions in partici-

pating media. Based on the throughput measures, then the triples (R∂V ,B(R∂V), ζ⊥)
and (RVo ,B(RVo), ζ) de�ne measure spaces. Measure Space (80)

Last but not least, we de�ne the extended troughput measure, ζ, via the measures

ζ⊥ and ζo by:

ζ : B(R)→ R (2.210)

by

B 7→ ζ(B)
def
=

{
ζ⊥(B) if B ∈ B(R∂V)
ζo(B) if B ∈ B(RVo). (2.211)

REMARK 2.28 With the throughput measures de�ned on the ray spaces R? and the Ray Spaces (44)

above constructed measures, now we have the means to derive and understand a

number of constructs of great importance to us here, which are based on measure

theoretical concepts and used for the analysis of rendering algorithms based on prob-

abilistic methods. Thus, the signi�cance of the solid angle measure and projected

solid angle measure will become clear in the de�nition of the light transport equa- Chapter 5

tion and its adjoint counterpart, the importance equation. There, the throughput

measures play a central role when we formulate the phenomena, involved in light Linear Integral Operator (61)

transport, as integral operators on the function spaces L(R?). L(R?) (46)

Additionally, in the chapter where we present the approaches of the quasi-Monte Chapter 7

Carlo methods, a new measure will be de�ned via the counting and the Lebesgue mea-

sure, namely the concept of the discrepancy of a point set. This measure will be of Discrepancy (622)

great importance when we analyze quasi randomly chosen point sets to make state- Section 7.2

ments about the quality of their distribution. Last but not least, with the continuous

path measure we will present another important new measure. The continuous path Continuous Path Measure (461)

measure will enable us to represent the global illumination equation not as an integral

equation but as a simple integral. This integral, also called a path integral, must be Section 5.4

solved over the σ-algebra of all paths generated in a scene to be rendered. We will

do this via the probability theoretical model of the Markov chain and the construction Section 2.4.7.2

of so-called random walks.

REMARK 2.29 From the view of measure theory, it will su�ce to discuss for the analysis

and construction of global illumination algorithms the most important σ-algebras in

measure theory: the Borel σ-algebras, and here in particular the Borel σ-algebras Borel σ-algebra (865)

constructed over the ray spaces R?.

2.2.3 MEASURABLE FUNCTIONS

In Appendix A.5 it is shown that there is a crucial di�erence in the approaches for com-

puting the Riemann and the Lebesgue integral. The Riemann integral is based on the
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FIGURE 2.29: THE IDEA BEHIND THE RIEMANN AND THE LEBESGUE INTEGRAL.
The Riemann integral is based on a decomposition of the integration domain [a, b] via the
construction of rectangles of area supx∈Ii f(x) · (xi − xi−1), while the Lebesgue integral is
build over rectangles constructed via the pre-image of a decomposition of the range of f,
i.e., yi · µ(f−1([yi−1, yi])).

evaluation of sums of the form

Iu
def
=

n∑
i=1

sup
x∈Ii

f(x)(xi − xi−1) (2.212)

or

Io
def
=

n∑
i=1

inf
x∈Ii

f(x)(xi − xi−1) (2.213)

for approximating the area between the graph of the function f and the real axis over

the partition of the integration domain into a disjoint union
⋃n
i=1 Ii of small subintervals

Ii = [xi−1, xi], see Figure 2.29.

Henri Lebesgue recognized that in the Riemann approach the shape of the graph

of f plays no role, where arbitrary partitions of the integration domain are constructed

without any reference to the graph of the function f. This can thoroughly lead to bad

approximation results. To utilize the information hidden in the shape of the graph of f,

a better approach is to decompose the range of f into a disjoint union
⋃n
i=1 Ii of small

intervals Ii = [yi−1, yi].

The approximation of the area between the graph f and the real axis over the inte-

gration domain via sums of the formSection A.5

I def=
n∑
i=1

yi−1µ(f
−1([yi−1, yi])) (2.214)
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or

I def=
n∑
i=1

yiµ(f
−1([yi−1, yi])) (2.215)

then requires knowledge about the nature of the pre-images of the intervals, [yi−1, yi]

which are commonly complex sets, and not necessarily intervals, see Figure 2.29.

Here, then we need the concept of the measurable function, which makes statements

about the measurability of these sets. If all these sets are measurable, the measure µ

can be applied to the pre-image of [yi−1, yi] to evaluate the sum for approximating the

Lebesgue integral of f. Thus, one can say that the Lebesgue integral is in some sense

not a blind, but an informed integration technique, such as an importance sampling

strategy. This is expressed in the following statement by Henri Lebesgue: Section 6.6.2

On peut dire encore qu'avec le proc�ed�e de Riemann ... on op�era it ... comme le

ferait un comer�cant sans m�ethode qui compterait pi�eces et billets au hasard de l'ordre

o�u ils lui tomberait sous la main; tandis nous op�erons le comer�cant m�ethodique qui

dit:

i) j'ai m(E1) pi�eces de 1 couronne valent 1 ·m(E1),

ii) j'ai m(E2) pi�eces de 2 couronnes valent 2 ·m(E2),

iii) j'ai m(E3) pi�eces de 5 couronnes valent 5 ·m(E3),

etc., j'ai donc en tout: S = 1 ·m(E1) + 2 ·m(E2) + 5 ·m(E3) + ·. Les deux proc�ed�es

conduiront, certes, le commer�cant au même r�esultat parce que, si riche q'il soit, il

n'a qu'un nombre �ni de billets �a computer; mais pour nous, qui avons �a additionner

une in�nit�e d'indivisibles, la di��erence enter les deuux fa�cons de faire est capital,

[54, Elstrodt 1996].

Now, the concept of the measurable function is not only needed for the derivation

of the Lebesgue integral, it also serves as the basis for the de�nition of the probabilistic

theoretical construct of the random variable. Additionally, measurable functions, which

are di�erent at not to many locations, can be considered as equivalent functions. As we

will see, this property leads to new and beautiful limit notions, which play a relevant role

when considering sequences of measurable functions for the derivation of the Lebesgue

integral in Section 2.2.4 and when introducing the limit theorems of probability theory

in Section 2.4.6.

With the concept of the σ-algebra and the concept of a measure we have already σ-algebra (828)

studied two immensely important concepts of measure theory. But for the de�nition of a Measure (79)

new integral notion, urgently required for integration and probability theory, we still need

a structure-preserving mapping between measurable spaces: the above mentioned concept Measurable Space (80)

of the measurable function.
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DEFINITION 2.27 Let (R,R) and (R ′,R ′) be two measurable spaces. A function f given

by:

f : (R,R) −→ (R ′,R ′) (2.216)

withMeasurable Space (80)

R 3 x 7→ f(x) ∈ R ′ (2.217)

is called R-R′-measurable, also briey denoted as measurable, if the pre-image of an

R ′-measurable set is R-measurable, that is, the following must hold for all B ∈ R ′:

f−1(B) = {x ∈ R | f(x) ∈ B} ∈ R. (2.218)

REMARK 2.30 (Borel or Lebesgue-measurable Functions) A function f is termed Borel-

measurable if it is B(R)-B(R′)-measurable. In the case of a real-valued Borel-measur-

able function f, we only have to check the measurability of the sets

{f < a}
def
= f−1 ((−∞, a)) (2.219)

= {x ∈ R | f(x) < a} (2.220)

for any a ∈ R. Obviously, this holds since f−1 ((−∞, a)) can be written as set di�er-

ence of the two measurable sets, R and f−1 ([a,∞)), namely:

f−1 ((−∞, a)) = f−1 (R \ [a,∞)) (2.221)

= R \ f−1([a,∞)). (2.222)

This statement on the measurability of a real-valued Borel-measurable function

remains valid even if we replace the set {f < a} by {f ≤ a} , {f > a}, or {f ≥ a}.
If the measurability of the function f holds on the measurable spaces (R,M(R))

and (R ′,B(R)), then f is called Lebesgue-measurable.

As the notion of the measurable function is characterized in terms of measurable sets,

measurable sets and measurable functions are closely related. For an illustration of the

concept of the measurable function, see Figure 2.30.

EXAMPLE 2.35 (Two Simple Borel-measurable Functions) Let f : R −→ R with x 7→ f(x) =

c, c ∈ R be a constant, real-valued function de�ned on the measurable space (R,B(R)).Measurable Space (80)

Then the following clearly holds:

{
f < a

}
=

{
R if a > c

∅ otherwise,
(2.223)

which implies that the measurability of f follows from the measurability of R and ∅,
which are B(R)-measurable sets.Measurable Set (80)
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FIGURE 2.30: MEASURABILITY OF REAL-VALUED FUNCTIONS. For the measurability
of a real-valued function defined on the space R it is sufficient to show that the pre-image
f−1([c, d)) of any half-open interval is a measurable set. Whether a function is measurable
depends on the measure on R, and, in particular, it only depends on the σ-algebra of
measurable sets in R. In fact, practically any function that can be described is measurable.

Considering a further example, the characteristic function χB,

χB(x) =

{
1 if x ∈ B
0 otherwise,

(2.224)

with B ∈ R. The measurability of χB follows from the measurability of the sets R, B,
and ∅ as subsets of B(R) since it holds: χB (839)

{
χB < a

}
=


R if a > 1

B if 0 < a ≤ 1
∅ if a ≤ 0,

(2.225)

see Figure 2.31. Which means that the two-valued function χB is measurable if the

base set R, the complement of B, and the empty-set are all measurable sets. Measurable Set (80)

REMARK 2.31 (The Visibility Function, a Measurable Function) As the most important

consequence of the measurability of the characteristic function and the measurabil-

ity of simple functions de�ned over measurable sets it immediately follows that the Measurable Set (80)

visibility function V given by: V (45)

V(x ′ ↔ x) ≡ χB(x,x ′) (2.226)
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FIGURE 2.31: MEASURABILLITY OF THE CHARACTERISTIC FUNCTION, χB. The left
image shows that the set {χB < a} corresponds to the measurable set R. The image in the
center identifies {χB < a} as the set of points which are contained in the complement of
the measurable set B. The right image shows that there are no points of R whose image is
smaller than zero.

with B =
{
(x,x ′) ∈ V × V

∣∣ x and x′ are mutually visible
}
is measurable if and only

if B is measurable. The proof immediately follows from the fact that for a measurable

set B the relation

{
V < a

}
=


V × V if a > 1

B if 0 < a ≤ 1
∅ if a ≤ 0

(2.227)

holds.

In the following discussions we are mainly interested in the class of real-valued mea-

surable functions. Due to [22, Berezansky & al. 1996], this class of measurable functions

is a linear space|we leave the proof to the interested reader. Additionally it holds forLinear Space (854)

two measurable functions f, g, that the product f · g, |f|, f
g
, as well as max {f, g}, and

min {f, g} are measurable functions. The real- or complex-valued functions de�ned over a

measurable set, taking only a �nite number of values out of R or C may also be assumed

to be measurable as they represent a linear combination of simple functions. As everyLinear Combination (857)

measurable function f, de�ned on the measurable space (R,R), permits a partition intoSimple Functions (839)

its positive and negative parts, see Figure 2.32, thus,

f = f+ − f− (2.228)

with

f+
def
= max

x∈R
{f(x), 0} and f−

def
= max

x∈R
{−f(x), 0}, (2.229)
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FIGURE 2.32: POSITIVE AND NEGATIVE PART OF A FUNCTION. A real-valued function
f and its decomposition into a positive part f+ and a negative part f−.

the positive and negative parts of a function are also ultimately found to be measurable as

they are de�ned via the maximum of the measurable functions f and 0. In fact, practically

any function that can be described is measurable. But on the other side it is also possible

to construct non-measurable functions.

Recall from the calculation of the Lebesgue measure of a closed interval [a, b] ⊂ R, µ (75)

then it holds: µ([a, b]) = µ([a, b)) + µ({b}) = µ([a, b)), i.e. the null set {b} does not

contribute to the calculation of the measure µ([a, b]). A similar situation will now be

encountered for calculating the pre-image measures of measurable functions that take on

certain values over null sets of their domain. This leads us to the concept of the equivalence Null Set (80)

of functions on the basis of the ν-almost everywhere property.

DEFINITION 2.28 (ν-almost Everywhere Property) Let (R,R, ν) be a measure space. We Measure Space (80)

call a property a ν-almost everywhere property, if it holds on the set A\N,A ∈ R with

ν(N) = 0. That is, a ν-almost everywhere property holds on a set except for a null

set. Null Set (80)

Let us consider a real-valued, measurable function de�ned on (R,R) that ν-almost

everywhere takes on the value 0, thus ν({x|f(x) 6= 0}) = 0. This in e�ect means that

the measure zero is assigned to a set that is not identical to zero. This situation goes

counter to the natural, elementary geometric features of a measure as a synonym of the

concept of length or volume. We solve such a problem by using the concept of the ν-

almost everywhere property in which two measurable functions f and g are treated as

equivalent, i.e. f ∼ g, if ν({f 6= g}) = 0. The values of f and g coincide except for a
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null set, whereby two equivalent functions are assigned the same measure. So, it can be

shown that ∼ satis�es the conditions required to an equivalence relation, and that anyEquivalence Relation ∼ (834)

function equivalent to a measurable function is therefore measurable itself. If M(R) is

called the set of all measurable functions on the measurable space (R,R), then the factorMeasurable Space (80)

setM
∣∣
∼ consists of the equivalence classes [f] = {h ∈M(R)

∣∣h ∼ f} of equivalent measurableEquivalence Class (834)

functions, where a representative of the class [f] is given via any function f taken from the

class [31, Capi�nski & al. 2000].

Let us illustrate this abstract concept by means of a famous example, the Dirichlet

function.

EXAMPLE 2.36 (Once again the Dirichlet Function) We know from Relation (A.8) thatD (836)

the Dirichlet function takes the value one only at rational points of the measureMeasure Space (80)

space (R,B(R), µ). Since µ(Q) = 0, the Dirichlet function is µ-almost everywhere

zero, thus: D ∼ 0.

EXAMPLE 2.37 (The Function Space L∞(R)) Let L∞(R) be the set of all functions mea-

surable on the base set R, which, apart from a null set, take on �nite values on theirNull Set (80)

domain, that is,

L∞(R)
def
=
{
f | |f(x)| ≤ c ν-almost everywhere on R, c ∈ R>0

}
, (2.230)

then L∞(R) clearly satis�es the conditions requested to a linear space as with f, g ∈Linear Space (854)

L∞(R) also αf+ βg ∈ L∞(R) holds for α,β ∈ R.
Now strictly speaking, an element f ∈ L∞(R) does not correspond to a measurable

function but rather to an equivalence class of measurable functions. This implies

that the concept of the supremum is of no interest and must be replaced by theSupremum (862)

essential supremum, i.e. the largest lower bound of upper bounds which holds ν-Lower & Upper Bound (862)

almost everywhere for f. This may be expressed formally as:

ess sup
x∈R

|f(x)|
def
= inf

{
c | |f(x)| ≤ c ν-almost everywhere on R

}
. (2.231)

Via the essential supremum, we now de�ne a norm on L∞(R) byNorm, ‖ · ‖ (860)

‖f‖L∞ def= ess sup
x∈R

|f(x)|, (2.232)

which (L∞(R), ‖ · ‖L∞) arises to a linear normed space.Linear Normed Space (860)

Let us now show how the ν-almost everywhere property can be coupled to the ray

space R∂V , to obtain a linear normed space (L∞(R∂V), ‖ · ‖L∞) which, apart from theR∂V (44)

natural reection and transmission behavior, also covers the ideal specular reectionSection 4.1

and the ideal refraction properties of materials. De�ningSection 4.3

L∞(R∂V) def=
{
L | |L(s,ω)| ≤ c ν-almost everywhere on R∂V, c ∈ R>0

}
, (2.233)
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with

‖L‖L∞ def= ess sup
s∈∂V

ess sup
ω∈S2

|L(s,ω)|, (2.234)

then (L∞(R∂V), ‖ · ‖L∞) not only contains ray functions with �nite values on R∂V ,
but also a number of important unbounded functions from the �eld of global illumina-

tion. These functions can take on in�nite values, as the space, due to the ν-almost

everywhere property, ignores unbounded function values assumed on null sets. As

a consequence, incident and excitant ν-almost everywhere unbounded functions may Incident & Exitant Function (48)

thus be composed with bounded functions from L∞(R∂V) via the elementary vector

space operations.

REMARK 2.32 Strictly speaking, in all discussions relating to equivalent functions a

di�erence should be made between the equivalent class [f] and a representative f.

Nevertheless, provided the precise nature of the involved spaces is kept in mind, in

measure theory it is general practice to always refer to the elements of a space as

functions, so that in e�ect no explicit di�erence between representatives and classes

is made.

Contrary to the construction of the Riemann integral in calculus, the mathematical Riemann Integral (876)

concept of convergence of sequences of functions plays a fundamental role in measure and Sequence of Functions (30)

integration theory. Coupled with the ν-almost everywhere property, we need this concept

not only for the de�nition of the Lebesgue integral, but also for expressing a number of Lebesgue Integral (105)

important convergence statements in probability theory. These culminate in the Weak

and Strong Laws of the Large Numbers and the Central Limit Theorem. Section 2.4.6

DEFINITION 2.29 (ν-almost Everywhere Convergence and Convergence in Measure) Let

us assume (fn)n∈N be a sequence of measurable functions de�ned on the measure Measure Space (80)

space (R,R, ν). The sequence fn is called ν-almost everywhere convergent to the limit

function f, if, except for a null set, fn converges point-wise to the limit function f. Pointwise Convergence (31)

This means that there exists a set N ⊂ R with ν(N) = 0, so that ∀ x ∈ R \ N the

following holds:

fn(x)
a.e.−→ f(x). (2.235)

Otherwise, we say that fn converges in measure ν to f, if it applies:

lim
n→∞ν ({|fn − f| ≥ τ}) = 0 (2.236)

for any τ > 0. To denote convergence in measure we write fn
ν−→ f.

On the basis of these convergence types one obtains the measurability of the limit

function of a sequence of functions (fn)n∈N that are ν-almost everywhere �nite and con- Limit Function (31)
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verges to f in measure. Additionally, we obtain also the measurability of f under the

condition of uniform and point-wise convergence of the sequence of functions (fn)n∈N, a

result of fundamental importance for the de�nition of the Lebesgue integral.Uniform Convergence (32)

2.2.4 THE LEBESGUE INTEGRAL AND THE Lp SPACES

Why we have decided to introduce the Lebesgue integral? Would it not be satisfying for

our concerns to work with the easier and well-known concept of the Riemann integral?

Then we would have spared us the study of measure, and measurable functions from the

previous section!

Now, as we will see, the class of Lebesgue-integrable functions is considerably richer

than the class of Riemann-integrable functions, that is, the Lebesgue integral extends the

concept of integrability to a class of special functions, such as those with uncountable

in�nite discontinuities. But do we need such functions? No, our goal will not be to be

able to integrate exotic functions like the Dirichlet function.Dirichlet Function (836)

From calculus it is known, that the Riemann integral and the limit can be exchanged

when considering uniformly convergent sequences of functions. But uniform convergence

of a sequence of functions is already a strong condition. In many applications of func-

tional analysis we need limit processes in spaces of integrable functions, which allow us to

exchange the concepts of the integral and the limit of a sequence of functions under much

more general conditions then uniform convergence. Such statements are required in par-

ticular in functional analysis to �nd methods for solving di�erential and integral equations

given over complex function spaces, the so-called Lebesgue spaces. The Lebesgue inte-

gral underlies all those function spaces since the associated convergence theorems require

much weaker conditions from sequences of functions. Additionally, the Lebesgue integral

allows to consider measures that have no densities, such as the Dirac measure. Today,

the Lebesgue integral is the integral concept of modern mathematics. Its generality and

beauty makes them to an indispensable tool for functional analysis and probability theory,

which are completely build on the concept of the Lebesgue integral.

Based on the mathematical concepts of the σ-algebra, the measure, and the measur-σ-algebra (828)

able function, we are now in the position to introduce the Lebesgue integral on generalMeasure (79)

function spaces. As already mentioned above, it is the integral notion of modern mathe-Function Space (28)

matics and may be regarded as the base for the theory of integral equations in functional

analysis as well as the most important function and probability spaces in integration and

probability theory.Section 2.4

The classical procedure for deriving the Lebesgue integral of measurable functions,

carried out on the measure space
(
R,R, µ

)
equipped with a �nite measure, normallyMeasure Space (80)

consists of three phases:

1) In the �rst step a de�nition of the Lebesgue integral is given for simple functions.Simple Function (839)
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2) After that, a µ-almost everywhere non-negative bounded function is approximated

by means of a sequence of nondecreasing simple, measurable functions that converge Sequence of Functions (30)

towards f, where the Lebesgue integral is de�ned in terms of the resulting limit. µ-almost everywhere (101)

3) In the last step, a µ-almost everywhere bounded measurable function f may be par- µ-almost everywhere (101)

titioned into its positive as well as its negative part, i.e. f = f+ − f−, and the f+, f− (100)

associated Lebesgue integrals are computed like in step 2. The di�erence of these

two Lebesgue integrals then results in the integral of f.

THE CLASSICAL PROCEDURE FOR DERIVING THE LEBESGUE INTEGRAL. In the following let Measure Space (80)(
R,R, µ

)
be a measure space with a �nite measure µ. Measure (79)

DEFINITION 2.30 (The Lebesgue Integral of Real-valued Functions) The Lebesgue integral

of f is then de�ned by:

i) If f represents a simple, non-negative measurable function, then the following Simple Function (839)

Measurable Function (98)applies to the Lebesgue integral of f over a measurable set B = ∪mj=1Bj ∈ R:

Measurable Set (80)∫
B

f(x)dµ(x)
def
=

∫
R

χB(x) f(x)dµ(x) (2.237)

=

n∑
i=1

m∑
j=1

αiµ(Bi ∩ Bj). (2.238)

ii) Assuming (fn)n∈N be a nondecreasing sequence of simple, non-negative, bounded, Bounded Function (863)

and measurable functions with values in R, which converges pointwise towards Pointwise Convergence (31)

the limit function f, then the Lebesgue integral of f is de�ned as:∫
B

f(x)dµ(x)
def
= lim

n→∞
∫
B

fn(x)dµ(x) (2.239)

= lim
n→∞

∫
R

χB(x) fn(x)dµ(x) (2.240)

= lim
n→∞

n∑
i=1

m∑
j=1

αniµ(Bi ∩ Bj), (2.241)

where αni are the coe�cients of the simple function fn.

iii) If we now consider a real-valued, µ-almost everywhere �nite, and measurable µ-almost everywhere (101)

function f de�ned on the measure space (R,R, µ), then f may be written as the

sum of its positive and its negative part. If in such a case the Lebesgue inte- f+, f− (100)

gral constructed over the positive and negative parts exists, then the Lebesgue

integral also exists for f, and we obtain:∫
B

f(x)dµ(x)
def
=

∫
B

f+(x)dµ(x) −

∫
B

f−(x)dµ(x)

=

∫
R

χB(x) f
+(x)dµ(x) −

∫
R

χB(x) f
−(x)dµ(x). (2.242)
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The function f is referred to as Lebesgue-integrable with respect to the measure

µ and f is assigned to the set of Lebesgue-integrable functions over R, denoted as

L1(R,R, µ), or briey L1(R, µ).

Let us demonstrate the power of the Lebesgue integral by means of the Dirich-

let function, one of the most famous examples of a function which is non-Riemann but

Lebesgue-integrable.

EXAMPLE 2.38 (The Dirichlet Function, a non Riemann, but Lebesgue-integrable Func-

tion) As any subinterval of [0, 1] contains rational as well as irrational numbers,

we have for the Dirichlet function, that the superior Riemann integral
∫1
0
D(x)dx

over the closed interval [0, 1] is equal to one, while we get the value zero for the

inferior Riemann integral
∫1
0
D(x)dx, that is, the Dirichlet function is not Riemann-Riemann Integral (877)

integrable on the unit interval.D (836)

Let us now consider the Lebesgue integral of D, where the unit interval is par-

titioned into a disjoint union of the sets ([0, 1]∩Q) and ([0, 1]∩ (R \Q)), thus the set

of rational points and the set of irrational points in [0, 1]. From the countability ofCountability (827)

Q and [0, 1] ∩Q, we conclude:∫
[0,1]

D(x)dµ(x)
(2.238)
= 1 · µ([0, 1] ∩Q) + 0 · µ([0, 1] ∩ (R \Q)) (2.243)

µ([0,1]∩Q)=0
= 0 · µ([0, 1] ∩ (R \Q)) (2.244)

= 0. (2.245)

That is, the Dirichlet function is not Riemann-integrable, but it is in fact

Lebesgue-integrable with Lebesgue measure zero. It is an example of a measur-

able function with uncountably in�nite discontinuities, which shows the power ofMeasurable Function (98)

the Lebesgue integral.

Let us now establish some useful properties of the Lebesgue integral, which serve as

base of many new concepts needed for discussing the global illumination problem.

LEMMA 2.2 Let f and g be measurable functions from the measure space (R,R, µ), theMeasure Space (80)

Lebesgue integral then satis�es the following conditions:

i) If f ≥ 0 on a set of measure zero, we have:∫
R

f(x)dµ(x) ≥ 0. (Non-negativity) (2.246)

ii) If f ≥ g on a set of measure zero, then it holds:∫
R

f(x)dµ(x) ≥
∫
R

g(x)dµ(x). (Monotonicity) (2.247)
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iii) Let R =
⋃∞
i=1Ai be a countably additive partition of the base set R, with disjoint

set Ai, then it holds∫
⋃∞
i=1Ai

f(x)dµ(x) =

∞∑
i=1

∫
Ai

f(x)dµ(x). (Countable additivity) (2.248)

PROOF 2.2 The proof of this lemma is based on the de�nition of the Lebesgue integral.

It is very easy and can be found in [22, Berezansky & al. 1996]. Hence we omit the

proof, and leave it to the interested reader as an exercise.

REMARK 2.33 As we will see in Section 10.1.2, the countable additivity of the Lebesgue

integral, that is property iii) from Lemma 2.2, is fundamental for the derivation

of the classical discrete radiosity equation since it allows the decomposition of the Discrete Radiosity Equation (784)

integration domain, thus the scene to be rendered, into a �nite set of 2-dimensional

surfaces. The countable additivity of the Lebesgue integral plays also a central role

when discussing rendering algorithms with respect to direct and indirect illumination

at surface points in the Chapters 8 and 9.

THE LEBESGUE FUNCTION SPACES. Until now, we have treated points of measure spaces as Measure Space (80)

our interesting objects. We will now alter our point of view lying the focus on integrable

functions as points in function spaces and here in particular on function spaces that are Section 2.1.1

the basis for all of our rendering procedures. Section 2.1.3

DEFINITION 2.31 (The Lebesgue Spaces Lp(R, µ)) Let (R,R, µ) be a measure space and Measure Space (80)

Lp(R, µ), de�ned by:

Lp(R, µ)
def
=

{
f ∈ L(R, µ)

∣∣ with ∫
R

|f(x)|pdµ(x) <∞}, p ≥ 1, p 6=∞, (2.249)

be the set of all measurable functions which are p-Lebesgue-integrable. Then it may be Measurable function (98)

shown, via the Minkovski inequality for integrals3, that Lp(R, µ) satis�es the prerequi- Linear Space (854)

sites for a linear space. With the norm ‖ · ‖ (860)

‖f‖Lp
def
=

( ∫
R

|f(x)|pdµ(x)

) 1
p

, p ≥ 1, p 6=∞, (2.251)

Lp(R, µ) becomes a linear normed space. (Lp(R, µ), ‖ · ‖Lp) is referred to as the Linear Normed Space (860)

Lebesgue space with respect to the Lebesgue measure, also briey denoted as the Lp-

space, where ‖f‖Lp is called the Lp-norm. This statement can easily be proofed by

3Assuming f, g ∈ L(R, µ)p and 1 ≤ p <∞, then the following applies:(∫
R

|f± g|pdµ(x)
) 1
p

≤
(∫

R

|f|pdµ(x)

) 1
p

+

(∫
R

|g|pdµ(x)

) 1
p

. (2.250)
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applying the Minkovski inequality and the axioms satisfying a linear space|we leave

the proof to the interested reader as an exercise.

Now, let us explain the new concept of the Lebesgue function space by means of the

ray spaces introduced in Section 2.1.3. These new function spaces are the fundamentalRay Spaces (44)

building block for the derivation of operator models for the light and importance transport

in a vacuum and in participating media, which we will present in Chapter 5.

EXAMPLE 2.39 (The Lebesgue Spaces L1(R∂V, ζ⊥) and L1(RVo , ζ)) Let us recall the func-

tion spaces L(R∂V) and L(RVo) de�ned over the ray space R∂V and RVo . From aRay Spaces (44)

physical perspective it may be said, that in global illumination theory the focus is

placed only on those functions of R∂V and RVo that may in a certain sense be mea-

surable. In particular we are interested in those functions that have a �nite measure.

Further above, it was shown that the throughput-measures are de�ned on theThroughput Measures (94)

ray spaces R∂V and RVo via the ordinary Lebesgue measure and the solid angleLebesgue Measure (75)

measures. Based on this construct, we are now able to de�ne the spaces that containSolid Angle Measures (87)

functions that could be used to describe the particle distribution in a scene to be

rendered. These spaces then play a central role in analyzing the properties of light

transport operators.Chapter 5

Obviously, the space of ray functions L(R∂V) in free space can be equipped withL(R∂V) (46)

the throughput measure ζ⊥. This leads us to a �rst Lebesgue space on R∂V: The

space L1(R∂V, ζ⊥), it is de�ned as:

L1(R∂V, ζ⊥) def=
{
f ∈ L(R∂V)

∣∣ ‖f‖L1 <∞}, (2.252)

where the L1-norm is given via the throughput measure ζ⊥, namely by:

‖f‖L1
def
=

∫
∂V

∫
S2(s)

|f(r)|dζ⊥r (2.253)

(2.208)
=

∫
∂V

∫
S2(s)

|f(s,ω)|dµ2(s)dσ⊥s (ω) (2.254)

with r = (s,ω).

The space L1(R∂V, ζ⊥) contains all functions that integrated over the unit sphere
at all boundary points of a volume V yield a �nite value.

Analog to the above construction, the space of ray functions L(RVo) in partic-L(RVo) (46)

ipating media can be equipped with the throughput measure ζo. This leads us to a

�rst Lebesgue space on RVo : The space L1(RVo , ζo) is de�ned as:

L1(RVo , ζo)
def
=

{
f ∈ L(RVo)

∣∣ ‖f‖L1 <∞}, (2.255)
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where the L1-norm is given via the throughput measure ζo by:

‖f‖L1
def
=

∫
Vo

∫
S2(x)

|f(r)|dζor (2.256)

(2.209)
=

∫
Vo

∫
S2(x)

|f(x,ω)|dµ3(x)dσx(ω). (2.257)

In Section 3.3 we will see, that functions of L1(R∂V, ζ⊥) as well as L1(RVo , ζo)

can be used to describe the radiometric quantity radiant power.

Note: The di�erence between the two above constructed spaces only lies in the

integration with respect to the solid angle measures. At inner points of a medium,

where only hypothetical surfaces exist, we have to integrate with respect to the solid

angle measure σ while at the boundaries of a volume we have to integrate with respect σ (84)

to the projected solid angle measure σ⊥.

REMARK 2.34 In the case, where we consider only functions de�ned on object surfaces

with directions over one of the hemispheres, L1(R∂V, ζ⊥) can be de�ned as:

L1(R∂V, ζ⊥) def=
{
f ∈ L(R∂V)

∣∣ ‖f‖L1 <∞}, (2.258)

where the integration domain within the L1-norm is de�ned over ∂V×H2+ or ∂V×H2−.

REMARK 2.35 Although the L1-function spaces from Example 2.39 are complete linear

spaces, and thus are candidates for function spaces on which solutions to the light

transport equations could exist, we do not use these spaces as the functions spaces

in realistic rendering. In Example 2.41, we will show that the speci�cation of the

global illumination problem requires the restriction of the L1-spaces to smaller linear

spaces. Namely, if we endow the L1-spaces with corresponding inner products, based

on the Lebesgue integral, then we get functions spaces, the so-called L2-spaces, which

are Hilbert spaces. These spaces will be the function spaces on which we will search

for solutions to the global illumination problem.

Due to the de�nition of the Lebesgue integral4, the function spaces Lp(R, µ) also

satisfy the condition of completeness which implies that they are Banach spaces. In the Banach Space (35)

particular case that the set R is bounded, then the following applies for p ≥ q, p, q ∈ R: Bounded Set (862)

Lp(R, µ) ⊂ Lq(R, µ), (2.259)

that is, together with the space L∞(R, µ) we obtain L∞(R, µ) (102)

4Contrary to Lp(R, µ) the space of Riemann p-integrable functions with 1 ≤ p < ∞ is not complete,
as it is possible to construct Cauchy sequences of Riemann p-integrable functions whose limit functions
are not Riemann-integrable themselves.
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FIGURE 2.33: Lp-SPACE: The relationship between the Lp-spaces and the space of con-
tinuous functions.

L∞(R, µ) ⊂ · · · ⊂ Lp(R, µ) ⊂ · · · ⊂ L1(R, µ). (2.260)

From this subset relation, we conclude, that with increasing p, the size of the space

Lp(R, µ) will be smaller.

REMARK 2.36 In this context, it is also interesting to note, that the space C(R) ofContinuous Function (869)

continuous functions is not a subset of any of the Lp-spaces, see Figure 2.33. As

an example let us consider the function x−1, which indeed belongs to C((0, 1)) but

is unbounded on [0, 1). On the other hand it is obvious, that the space of boundedUnbounded Function (863)

continuous functions is a subset of L∞(R, µ).

One special case of a Lp-space of great importance for many applications is the case

(p = 2). A number of features applying in the Euclidian space and used for the solution of

many problems may be transferred to this case via the construction of an inner product.Inner Product (859)

DEFINITION 2.32 (The Lebesgue Space L2(R, µ)) Suppose the Lebesgue space L2(R, µ) is

equipped with the inner productInner Product (859)

〈f, g〉 def=
∫
R

f(x)g(x) dµ(x), (2.261)

∀ f, g ∈ L2(R, µ). If we de�ne a norm ‖ · ‖L2 based on this inner product by:

‖f‖L2
def
= 〈f, f〉 =

∫
R

|f(x)|2 dµ(x), (2.262)

then the Lebesgue L2(R, µ) becomes a Hilbert space, in fact the only Lp-space that isHilbert Space (36)

simultaneously also a Hilbert space.
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EXAMPLE 2.40 (The Lebesgue Space (S2,B(S2), σ)) In the following, again and again,

we need to integrate functions that are de�ned on the unit sphere. Such a function

should be an element of the Lebesgue space (S2,B(S2), σ), where B(S2) is the Borel Spherical Harmonics (124)

σ-algebra over the unit sphere and σ is the solid angle measure. Solid Angle Measure (84)

REMARK 2.37 The inner product on a L2-space makes it possible to apply the concept

of orthogonality to functions of L2(R, µ). Thus, square-integrable functions, de�ned Orthogonality (859)

on in�nite dimensional spaces, can be projected onto approximate functions in �nite

dimensional subspaces, a point of fundamental importance for developing render-

ing methods based on radiosity procedures. Additionally, a number of phenomena Chapter 10

whose integral representations are complex may be formulated more simply as inner Chapter 5

products.

We will now construct three important Lebesgue spaces based on the ray spaces R∂V, Ray Spaces (44)

RVo and R as well as the throughput measures ζ, ζ⊥ and ζ, which we will use in particular Throughput Measures (94)

in Chapter 5.

EXAMPLE 2.41 (The Lebesgue Spaces L2(R∂V, ζ⊥), L2(RVo , ζ) and L2(R, ζ) According to
De�nition 2.32, the space of square Lebesgue-integrable ray functions L2(R∂V, ζ⊥) in
free space is de�ned as:

L2(R∂V, ζ⊥) def=
{
f ∈ L(R∂V)

∣∣ ‖f‖L2 <∞}, (2.263)

and the L2-norm is given by the inner product

‖f‖L2
def
= 〈f, f〉 =

∫
∂V×S2(s)

|f(r)|2 dζ⊥(r) (2.264)

(2.208)
=

∫
∂V

∫
S2(s)

|f(s,ω)|2 dµ2(s)dσ⊥s (ω). (2.265)

Thus, L2(R∂V, ζ⊥) contains all functions, which are square-integrated over the

unit sphere and at all surface points ∂V.
Analogously, we can de�ne the space L2(RVo , ζo) as the space of square Lebesgue-

integrable ray functions in participating media by:

L2(RVo , ζo)
def
=

{
f ∈ L(RVo)

∣∣ ‖f‖L2 <∞}, (2.266)

where the L2-norm is given via the throughput measure ζo by:

‖f‖L2
def
= 〈f, f〉 =

∫
Vo×S2(x)

|f(r)|2 dζo(r) (2.267)

(2.209)
=

∫
Vo

∫
S2(x)

|f(x,ω)|2 dµ3(x)dσx(ω). (2.268)
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Last but not least, we de�ne the Lebesgue space L2(R, ζ) by:

L2(R, ζ) def=
{
f ∈ L(R)

∣∣ ‖f‖L2 <∞, f = f∂V + fV
o

}
, (2.269)

with f∂V(x,ω) ≡ 0 for x ∈ R \ ∂V, fV
o ≡ 0 for x ∈ R \ Vo where V = Vo ∪ ∂V.

REMARK 2.38 In the case, where we consider only functions de�ned on points at object

surfaces with directions over one of the hemispheres, L2(R∂V, ζ⊥) can also be de�ned

as:

L2(R∂V, ζ⊥) def=
{
f ∈ L(R∂V)

∣∣ ‖f‖L2 <∞}, (2.270)

where the integration domain within the L2-norm was de�ned over ∂V×H2+ or ∂V×
H2−.

REMARK 2.39 The spaces L2(R∂V, ζ⊥), L2(RVo , ζ) and L2(R, ζ), generated over the

ray spaces R∂V, RVo and R are the fundamental function spaces within which we

try to develop methods for �nding approximate solutions for the global illumination

problem.

As these spaces are Hilbert spaces, they are complete linear normed spaces, that

ful�ll the Cauchy-convergence criterion, that is, the Banach �xed-point theorem is

applicable to solve operator equations via iteration methods.

So, in Section 4.6 it will be possible to formulate the measurement equation,Measurement Equation (416)

which has to be evaluated for solving the global illumination problem, simply as the

inner product of two functions from the above Lebesgue spaces. The construction

of these Lebesgue spaces also allows to formulate the light transport as well as the

importance transport via an interpretation equivalent to the natural perspective.Chapter 5

In addition, the L2-spaces play a central role in the variance analysis of randomSection 2.4.4

variables and random vectors|as the calculation of the variance of a random vari-

able requires that the random variable is a square-Lebesgue-integrable function|and

represents the basis of �nite element algorithms for solving the global illuminationChapter 10

problem.

REMARK 2.40 In functional analysis it is shown|by constructing exotic sequences

of functions, such as in Relation 2.12|that the space of square-Riemann-integrable

functions, R2(R), given by:

R2(R)
def
=

{
f
∣∣ ∫

R

|f(x)|2 dx

}
, (2.271)

where the integral must be interpreted in the sense of Riemann, is not a com-

plete function space. So, it is possible that a Cauchy-sequence of square-Riemann-

integrable functions fn can converge to a limit function f that is not square-Riemann-

integrable function.
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Since the Riemann integral only leads to pre-Hilbert spaces|where the Cauchy-

convergence criterion is not valid|it can not be used as the concept of integration

in the theory of integral equations. Here it is often only possible to approximate the

exact solution of an integral equation via a sequence of functions from the underlying

function space where the exact solution lives. So, the theory of integral equations can

only be handled in a strict mathematical sense if the underlying function spaces have

at least Banach or Hilbert space structure. This is also the main reason, why we

musten decide to use the Lebesgue integral as the concept of integration in realistic

rendering.

EXAMPLE 2.42 (Fourier Series Representations) Let us recall the Fourier Series Theo- Fourier Series Theorem (39)

rem based on a Hilbert Space S spanned by a countably in�nite set of orthonor- Orthonormal Function (861)

mal functions B∞φ = {φ0, φ1, . . .}. The space of square-Lebesgue-integrable functions

L2([−π, π],B([−π, π]), µ) on the closed interval [−π, π] with the inner product 〈·, ·〉S
de�ned by:

〈f(x), g(x)〉S
def
=

∫
[−π,π]

f(x)g(x)dµ(x) (2.272)

then satis�es the requirements to a Hilbert space. Using the orthonormal basis B∞φ = Orthonormal Basis (37)

{φ0, φ1, . . .} given by:

φ0(x) =
1√
2π
, φ2n(x) =

1√
π
cos (nx), φ2n+1(x) =

1√
π
sin (nx) (2.273)

then any function f ∈ L2([−π, π],B([−π, π]), µ) may be represented by an in�nite

series of sines and cosines, namely as:

f(x) =

∞∑
i=0

〈f, φi〉Sφi. (2.274)

The proof of this statement is leaved to the interested reader as an exercise.

EXAMPLE 2.43 (Fourier Transform) Let B(Rs) be the Borel σ-algebra over the open sub- Section 7.3

sets of Rs and f be a complex-valued, Lebesgue-integrable function of L
(
Rs,B(Rs)

)
, Borel σ-Algebra (865)

then the linear operator Linear Operator (53)

F : L
(
Rs,B(Rs)

)→ L
(
Rs,B(Rs)

)
(2.275)

with

f→ F(f) (2.276)

is referred to as the Fourier transform, while the operator F−1 inverse to F, is called

the inverse Fourier transform. The image f̂
def
= Ff of the function f under the operator

F de�ned as:

f̂(t) : Rs → C (2.277)
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t→ f̂(t) =
1

(2 π)
s
2

∫
Rs
e−i 〈t,x〉Rs f(x)dµs(x) (2.278)

is called the Fourier transform of f. The inverse operator, i.e. f̂−1
def
= F−1f, de�ned

as:

f̂−1 : Rs → C (2.279)

x→ f̂−1(x) =
1

(2 π)
s
2

∫
Rs
ei 〈x,t〉Rs f(t)dµs(t) (2.280)

is referred to as the inverse Fourier transform of f [54, Elstrodt 1996].

Now, as a linear operator the Fourier transform satis�es certain conditions,

where the most important and most powerful of them is given by the convolution

F(f ? g)(t) = F(f)(t) · F(g)(t), (2.281)

de�ned as:

f(x) ? g(x)
def
=

∫
Rs
f(y)g(y − x)dµs(y). (2.282)

With the Fourier transform, the Fourier analysis provides us a tool for analyzing

the e�ciency of patterns resulting from various di�erent sampling processes in MonteChapter 6

Carlo and quasi-Monte Carlo procedures. If f corresponds to a pattern on a pixel orChapter 7

the information relating to an image de�ned over a pixel, then a single point f̂(t1, t2)

of the Fourier transform, referred to in this case as the Fourier spectrum, indicates

how much information of the spatial frequency (t1, t2) is contained in the image.

This implies that a point in the Fourier space contains information on the entire

image.

In a later section further below, we will generate the Fourier spectra of the mostSection 7.3

frequently used sampling techniques in Monte Carlo algorithms. They provide us with

statements on the e�ciency and the use of these techniques in rendering procedures

for the solution of the global illumination problem.

As already mentioned, the Lebesgue integral is the integral concept required not only

in global illumination but also in probability theory. There, we are often faced with theSection 2.4

task of drawing samples from probability spaces composed of R2 or R3, and the upper asSection 6.5

well as the lower hemisphere or the unit sphere. Mathematically, this corresponds to inte-

grating a measurable function over domains which are Cartesian products of di�erent sets.Measurable Function (98)

The Theorem of Fubini-Tonelli now yields not only a simple method for calculating such

integrals, but also delivers a method which allows to de�ne distributions over conditional

probability spaces. Moreover, it is of high practical use in the analysis of rendering pro-Section 2.4.5
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cedures based on Monte Carlo methods for solving the measurement equation underlying

the global illumination problem. De�ned as the integral over ∂V and S2, the theorem of

Fubini-Tonelli suggests to solve this integral by generating a large number of rays emitted

from a point on ∂V in a iterative manner and carrying out the integration over the surface

of the sensor. ∂V (41)

THEOREM2.6 (Theorem of Fubini-Tonelli) Let (R,R, ν) and (R′,R′, ν′) be measure spaces,

additionally let us suppose, that f is a measurable function de�ned on R × R′ with Measure Space (80)

values in R. Under the condition, that the iterated integrals Measurable Function (98)

f′(x′) =

∫
R′′
f(x′, x′′)dν′′(x′′) (2.283)

and

f′′(x′′) =

∫
R′
f(x′, x′′)dν′(x′) (2.284)

can be computed, the following holds:∫
R ′×R ′′

f(x ′, x ′′)d(ν ′ ⊗ ν ′′)(x ′, x ′′) =

∫
R ′

( ∫
R ′′
f(x ′, x ′′)dν ′′(x ′′)

)
dν ′(x ′) (2.285)

=

∫
R ′′

( ∫
R ′
f(x ′, x ′′)dν ′(x ′)

)
dν ′′(x ′′). (2.286)

PROOF 2.6 For a proof, see [31, Capi�nski & Kopp 2000].

The Theorem of Fubini-Tonelli establishes a connection between a multiple integral

and iterated integrals such that it allows to compute a multiple integral using iterated

integrals. Additionally, it allows to change the order of integration in iterated integrals.

Let us demonstrate this technique by means of two simple examples which we will use in

the following again and again.

EXAMPLE 2.44 (The Area of the Unit Sphere) From our discussion about the solid angle Solid Angle Measure (87)

measure, it should be clear, that the area of the unit sphere is given by:∫
S2
dσ(ω). (2.287)

Parameterizing the sphere in spherical coordinates and transforming the solid Spherical Coordinates (832)

angle measure via

dσ(θ,φ)
(2.186)
= sin θdµ(θ)dµ(φ) (2.288)

to the Lebesgue measure on [0, 2π)× [0, π] yields: µ2 (82)
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∫
S2
dσ(ω)

(2.186)
=

∫
[0,2π)×[0,π]

sin θdµ(θ)dµ(φ) (2.289)

=

∫
[0,2π)

(∫
[0,π]

sin θdµ(θ)

)
dµ(φ) (2.290)

(2.6)
=

∫
[0,2π)

(
− cos θ

∣∣π
0

)
dµ(φ) (2.291)

= 2

∫
[0,2π)

dµ(φ) (2.292)

= 4 π. (2.293)

EXAMPLE 2.45 (Projected Area of the Hemisphere) The projected area of the upper hemi-

sphere on a surface can be written as the Lebesgue integral based on the projectedσ⊥ (88)

solid angle measure, σ⊥, thus, ∫
H2+
dσ⊥(ω). (2.294)

Parameterizing the hemisphere in spherical coordinates and transforming theSpherical Coordinates (A.1)

solid angle measure via

dσ⊥(θ,φ)
(2.186)
= sin θ |cos θ| dµ(θ)dµ(φ) (2.295)

to the Lebesgue measure on [0, 2π)×
[
0, π
2

]
yields:∫

H2+
dσ⊥(ω)

(2.186)
=

∫
[0,2π)×[0,π2 ]

sin θ |cos θ| dµ(θ)dµ(φ) (2.296)

=

∫
[0,2π)

(∫
[0,π2 ]

sin θ |cos θ| dµ(θ)

)
dµ(φ) (2.297)

(2.6)
=

∫
[0,2π]

−
cos2 θ

2

∣∣∣∣∣
π
2

0

dµ(φ) (2.298)

=
1

2

∫
[0,2π)

dµ(φ) (2.299)

= π. (2.300)

REMARK 2.41 Let us recall once more the naive principle of ray tracing from ourSection 1.1.3

introductory chapter|a detailed discussion follows in Section 8.3|then ray tracing

may be considered as a rough implementation of the Theorem of Fubini-Tonelli. So,

the shading of a pixel corresponds to the inner integration carried out over the unit

sphere, while the outer integration, carried out on the object surfaces, corresponds

to the construction of an image on the image plane.
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When dealing with probability theory and random variables in Section 6.5.1, we will

be confronted again and again with the following problem: To a given random variable X

with known probability density function pX and a function T we are seeking the density

function of the random variable Y = T(X) in terms of pX. The key to this problem lies in

the Theorem of Transformation for the Lebesgue integral.

THEOREM 2.7 (Theorem of Transformation) Let U be an open subset in Rs and T−1 :

U→ Rs an injective di�erentiable function with continuous partial derivatives, where Injectivity (840)

the Jacobian for every y ∈ U is nonzero. Then, for any real-valued, continuous Jacobian (872)

function f it holds:∫
U

f(y)dµs(y) =

∫
T−1(U)

f(T−1(y))det(JT−1(y))|dµs(y). (2.301)

Usually, the theorem of transformation is not formulated as we did it above, but

it is this formulation, which we make use in all of our discussion when describing the

probability density function of a random variable Y in terms of an already known PDF of

given random X.

PROOF 2.7 For a proof, see [174, Rudin 1998].

2.2.5 THE LEBESGUE INTEGRAL IN GLOBAL ILLUMINATION
THEORY

To conclude this short trip into measure and integration theory, we now present a few

useful concepts for our further discussions. Based on the concept of the Lebesgue integral, Lebesgue Integral (105)

they enable us to represent a number of functions of relevance for global illumination the-

ory in an elegant and more simple way, of great use for a number of perspectives to follow

below.

THE DIRAC δ-DISTRIBUTION FOR GENERAL MEASURES. The Dirac δ-distribution, also

briey denoted as the Dirac delta or the delta function, is a mathematical construct in-

troduced by theoretical physicist Paul Dirac. It is commonly de�ned to be zero everywhere

on the real line with an in�nitely large spike at position x0 such, that its total integral is

1, i.e.:

D0∗) δµ(x) = 0 for x 6= x0

D1∗) δµ(x)→∞ at x = x0 and

D2∗)
∫
]−∞,∞[

δµ(x)dµ(x) = 1,
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FIGURE 2.34: THE DIRAC DELTA. An attempt to visualize the Dirac δ-distribution.

see Figure 2.34.

Considering these properties, then it is clear, that the Dirac delta is not strictly a

function de�ned on R. Due to the fact, that δ is almost-everywhere zero on the real line,

the value of the Lebesgue integral of δ over ] −∞,∞[ should give zero. However, it is not

possible to construct a function in the usual sense having the properties above described.

Thus more correctly, the Dirac delta is de�ned as a bounded linear functional on the spaceLinear Functional (55)

of continuous functions Cn(A), where A is a domain on Rn.

DEFINITION 2.33 (The Dirac Delta Distribution) Let C(A) be the space of continuousContinuous Function (869)

functions on A. Then the mapping δµ

δµ : C(A)→ R

de�ned by

δµf(x)
def
=

∫
A

δµ(x− x0) f(x)dµ
n(x)

=

∫
A

δµ(x1 − x01) · · · δµ(xn − x0n) f(x1, . . . , xn)dµ(x1) · · ·dµ(xn) (2.302)

def
= f(x0)

is called the Dirac δ-distribution with respect to the measure µ, or referred as the

Dirac delta, in the literature often also called the Dirac delta function. Based on this

de�nition, the Dirac delta is a special kind of operator, namely a bounded linear

functional, also known as a distribution, that acts on a continuous function andLinear Functional (55)

delivers the value of that function at position x0.

EXAMPLE 2.46 Let us consider the space C(S2) of all continuous functions de�ned onC([a, b]) (38)

the unit sphere. Then, the corresponding Dirac delta can be constructed as follows:Unit Sphere (849)

δσ : C([0, π]× [0, 2π))→ R (2.303)
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with

δσf(ω)
def
=

∫
S2
δ(ω−ω0) f(ω)dσ(ω) (2.304)

def
= f(ω0). (2.305)

REMARK 2.42 The usage of the integral notation in the above de�nition is only sym-

bolic. The Dirac δ-distribution is not de�ned as an integral with respect to the

Lebesgue measure, but it is the evaluation of the functional δ at f(x). As it pro-

duces the value of the continuous function f at point x0, the Dirac δ-distribution has

a sampling property.

Another more strict method to de�ne the Dirac delta could be to de�ne it as the

Lebesgue integral with respect to the Dirac measure from Example 2.27, thus,∫
A

f(x− x0)dδx0(x) = f(x0). (2.306)

Due to the fact, that in De�nition 2.33 there is nothing to be integrated in the

usual sense, the integral notation in the above de�nition should be thought of as purely

symbolic. In a certain sense the Dirac delta nulli�es integration, replacing the integral

by the integrand at a certain point of the integration area. We mention it once more,

the Dirac delta is, for reasons executed above, not a function, but it is a bounded linear Linear Functional (55)

functional or a distribution, which can be manipulated as a function.

As we will see in our further discussions, the concept of the Dirac δ-distribution is a

useful tool for a mathematical formulation many light phenomena in global illumination

theory. But when deriving formulas for these light phenomena, we have to be careful, in

particular, if the integration measure is di�erent from the measure used for the de�nition

of δ-distribution, since it is possible to get meaningless results. Therefore, we will now

present several properties that make the usage of the Dirac-δ construct easier for us:

(D0)

∫
]−∞,∞[s

δµ(x− x0)dµ
n(x) = 1 (2.307)

(D1)

∫
]−∞,∞[s

δµ(x− x0) f(x)dµ
n(x) = f(x0) (2.308)

(D2) δµ(g(x) − g(x0)) =
1

|g′(x0)|
δµ(x− x0) (2.309)

(D3) δµ(g(x)) =
∑

{xi|g(xi)=0}

1

|g′(xi)|
δµ(x− xi) (2.310)

(D4) δµ(x− x0) f(x) =
dν

dµ
(x0) δν(x0 − x) (2.311)

(D5) δµ(x− x0) f(x) = δµ(x0 − x) f(x) = f(x0). (2.312)
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REMARK 2.43 The above identities are formulated for the multidimensional case. It is

clear that they also hold in one dimension where we only have to use the Lebesgue

integral on R symbolically. We also mention that (D2) is a special case of (D3). Lebesgue Integral (105)

Here, we must sum over all arguments where the function f takes the value zero. In

particular, property (D4) will be very useful when deriving formulas for the reection

of light at ideal specular surfaces. In the following, we give a short insight into the

work with the Dirac δ-distribution.

EXAMPLE 2.47 Let us consider the continuous function g(x) = x2 − a2 with a ∈ R.
Obviously, this function is zero at x1,2 = ±a, that is, for the functional δ(g(x)) x we
have:∫

]−∞,∞[

δµ(x
2 − a2) xdµ(x)

(D3)
=

∫
]−∞,∞[

1

2|a|
(δµ(x− a) + δµ(x+ a)) xdµ(x)(2.313)

=
1

2|a|

∫
]−∞,∞[

δµ(x− a) xdµ(x) + (2.314)

1

2|a|

∫
]−∞,∞[

δµ(x+ a) xdµ(x)

(D1)
=

1

2|a|
a−

1

2|a|
a. (2.315)

EXAMPLE 2.48 For the practical use, formulas in the directional variable ω have often

to be expressed in terms of polar coordinates (θ,φ). With respect to Example 2.46,

where the Dirac δ-distribution was introduced with respect to the solid angle measureσ (87)

σ, we can then formulate an equivalent expression for the δ-distribution with respect

to the Lebesgue measure µ:

δσf(ω)
def
=

∫
S2
δ(ω−ω0) f(ω)dσ(ω) (2.316)

=

∫
S2
δ(ω−ω0) f(ω)

dσ(ω)

dµ(θ)dµ(φ)
dµ(θ)dµ(φ) (2.317)

(2.186)
=

∫
[0,2π)

∫
[0,π]

δ((θ,φ) − (θ0, φ0)) f(θ,φ) sin θdµ(θ)dµ(φ) (2.318)

(2.311)
= sin θ0 f(θ0, φ0). (2.319)

Let us now present the power and elegance of the Dirac delta construct by means of

an example from global illumination: the ideal specular reection. As we will see in one

of the next chapters, a surface is called ideal specular reective if a light ray, incomingSection 4.2.1.2

from a single direction, is reected into the mirrored direction. This physical e�ect can

mathematically be formulated with the help of the Dirac delta.

EXAMPLE 2.49 (A Simple Reection Model) In order to illustrate the elegance of the

Dirac delta construct let us consider two functions Lo and Li de�ned on the LebesgueIncident & Exitant Function (48)
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FIGURE 2.35: A SIMPLE REFLECTION MODEL. Given an incident direction ωi at point s
that makes an angle θi with the surface normal at s then the reflected direction ωo makes
an angle θo = θi with N(s) and lies within the plane spanned by the vectors ωi and N(s).

space L2(R, ζ). Suppose furthermore that the function Li returns the amount of light
that arrives in direction ωi at a surface point s, and that Lo provides information L2(R, ζ) (111)

about the light that leaves that point in direction ωo.

Let us assume that the reection of a light ray at a surface is loss-less, then the

entire amount of incident light Li from direction ωi is reected into a single outgoing

direction ωo. Due to the Law of Reection it holds obviously: Law of Reflection (300)

Lo(s,ωo) = Li(s,ωi), (2.320)

which, with ωi = (θi, φi), as well as ωo = (θo, φo), i.e., Spherical Coordinates (832)

θo = θi and φo = φi ± π, (2.321)

can be written as:

Lo(s, θo, φo) = Li(s, θi, φi ± π) (2.322)

= Li(s, θo, φo ± π), (2.323)

for a visualization, see also Figure 2.35.

This fact can now be modeled by an in�nitely large spike function in direction of

ωo, thus a Dirac δ-distribution. Using the Dirac delta construct|now symbolically

written with respect to the Lebesgue integral based on the solid angle measure σ σ (87)

and transformed into spherical coordinates, see Example 2.46|then the radiance in
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direction ωo can be represented as:

Li(s, θo, φo ± π) (2.324)

def
=

∫
[0,2π)

∫
[0,π]

δµ((θi, φi) − (θo, φo ± π))Li(s, θi, φi))dµ(θi)dµ(φi) (2.325)

(2.302)
=

∫
[0,2π)

∫
[0,π]

δµ(θi − θo)δ(φi − (φo ± π))Li(s, θi, φi))dµ(θi)dµ(φi). (2.326)

Slightly reformulated, this relation can be represented as

Li(s, θo, φo ± π)
def
=

∫
[0,2π)

∫
[0,π]

δµ(θi − θo)

sin θi| cos θi|
δ(φi − (φo ± π)) (2.327)

Li(s, θi, φi)) sin θi| cos θi|dµ(θi)dµ(φi).

Replacing the Dirac δ-distribution in Equation (2.327) by the function f
∨
r , thef∨r (325)

so-called ideal specular BRDF, de�ned by:

f∨r (s, (θi, φi) −→ (θo, φo))
def
=
δµ(θi − θo) δµ(φi − (φo ± π))

sin θi | cos θi|
, (2.328)

then we obtain a version of the light transport equation which describes the physical

e�ect of light reection at an ideal specular surface, well-known to every globillumer,Section 4.2.1.2

namely:

Lo(s, θo, φo) (2.329)

=

∫
H2+(s)

f∨r (s, (θi, φi) −→ (θo, φo))Li(s, θi, φi) sin θi | cos θi|dµ(θi)µ(φi).

Using property (D2) of the Dirac δ-distribution from Equation (2.311), then f
∨
r

in angular form can also be written as:

f∨r (s, (θi, φi) −→ (θo, φo)) =
δµ(cos θi − cos θo) δµ(φi − (φo ± π))

| cos θi|
(2.330)

= 2δµ(sin
2 θi − sin2 θo) δµ(φi − (φo ± π)). (2.331)

We leave the detailed derivation of the representations (2.330) and (2.331) to

the interested reader as an easy exercise.

REMARK 2.44 (Di�erent Mathematical Formulations of Reection at Ideal Specular Sur-

faces) When deriving the so-called specular BRDF in Section 4.2.2.2 we will rely

on a variant of Equation (2.329), where the Lebesgue measure µ is replaced by the

projected solid angle measure σ⊥.σ⊥ (88)

The desired relationship between Li and Lo for a perfect mirror is then given by:

Lo(s,ωo) = Li(MN(ωo)) (2.332)
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which, using the Dirac δ-distribution δσ⊥ can easily be written as:

Lo(s,ωo) =

∫
S2(s)

δσ⊥(ωi −M(N(ωo))Li(s,ωi)dσ
⊥
s (ωi). (2.333)

The ideal specular BRDF f
∨
r |expressed in terms of incident and exitant direc-

tions, ωi and ωo|can then be de�ned via:

f∨r (s,ωi −→ ωo)
def
= δσ⊥(ωi −M(N(ωo)). (2.334)

In the literature, Equation (2.329) is also often expressed in terms of the solid

angle measure σ instead of the projected solid angle measure σ⊥. Using property σ⊥ (88)

(D4), then the ideal specular BRDF f
∨
r can also easily be expressed in terms of the

the Dirac δ-distribution δσ with respect to the solid angle measure, namely:

δσ⊥(ωi −M(N(ωo))
(2.311)
=

dσ

dσ⊥
(M(N(ωo))δσ(ωi −M(N(ωo)) (2.335)

(2.192)
=

δσ(ωi −M(N(ωo))

|〈ωi,N(s)〉|
(2.336)

=
δσ(ωi −M(N(ωo))

| cos θi|
. (2.337)

This implies that the ideal specular BRDF f
∨
r |used in Equation (2.329), which

is given in the form

Lo(s,ωo) =

∫
S2(s)

f∨r (s,ωi → ωo) cos θi dσs(ωi), (2.338)

must be de�ned as:

f∨r (s,ωi −→ ωo)
def
=
δσ(ωi −M(N(ωo))

|〈ωi,N(s)〉| |
. (2.339)

In the above de�nition of the Dirac delta construct, the Lebesgue integral was not Lebesgue Integral (105)

used in its traditional sense, since nothing has to be integrated. In the following discussion

we now show how the Lebesgue integral can be used in its proper sense, namely as the

modern integral concept in mathematics.

SPHERICAL HARMONICS. As a consequence of the Fourier Series Theorem it is known that Fourier Series Theorem (39)

a function given on a Hilbert space admits the representation as an in�nite Fourier series. Hilbert space (36)

In analogy to this Fourier series expansion, there exist for any Lebesgue square-integrable

function, de�ned on the unit sphere S2, a representation as an in�nite series of so-called

spherical harmonic functions. This means, that the spherical harmonic functions form

an orthonormal basis in the Lebesgue space L2(S2,B(S2)), thus the function space of Orthonormal Basis (37)

square-integrable functions de�ned over the unit sphere. L2(S2,B(S2)) (111)
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DEFINITION 2.34 Let us consider the spherical harmonic basis functions Yl,m(ω), which

are de�ned as:

Yl,m(θ,φ)
def
=


Nl,m Pl,m(cos θ) cos(mφ) falls m > 0

Nl,0
Pl,0(cosθ)√

2
falls m = 0

Nl,m Pl,|m|(cos θ) sin(|m|φ) falls m < 0,

(2.340)

with the normalization constants Nl,m:

Nl,m
def
=

√
2l+ 1(l− |m|)!

2π(l+ |m|)!
, (2.341)

where the recursively de�ned associated Legendre polynomials Pl,m [235, Weisstein

2003] corresponds to:

P0,0(cos θ)
def
= 1

Pm,m(cos θ)
def
= (1− 2m)

√
1− cos2 θPm−1,m−1(cos θ)

Pm+1,m(cos θ)
def
= cos θ(2m+ 1)Pm,m(cos θ) (2.342)

Pl,m(cos θ)
def
= cos θ

(
2l− 1

l−m

)
Pl−1,m(cos θ) −

(
l+m− 1

l−m

)
Pl−2,m(cos θ).

Then a function f ∈ L2(S2,B(S2)) can be written as

f(ω) =

∞∑
l=0

l∑
m=−l

Cl,mYl,m(ω), (2.343)

whereby Yl,m are the orthonormal, spherical harmonic basis functions from above and

the coe�cients Cl,m are given according to Equation (2.1) by:Fourier Coefficients (38)

Cl,m
def
=

∫
S2
f(ω)Yl,m(ω)dσ(ω). (2.344)

EXAMPLE 2.50 Obviously, the �rst four spherical harmonics are given as:

Y0,0(ω) =

√
1

4π
, Y1,0(ω) =

√
3
4π

cos θ, Y1,±1(ω) = ∓
√
3

8π
e±iφ sin θ. (2.345)

The spherical harmonics, for a visualization of the �rst basis functions see Figure 2.36,

can be considered as the analogue to the Fourier Transform. While the Fourier TransformFourier Transform (113)

works over the unit circle for one-dimensional functions, spherical harmonics work over

the unit sphere for two-dimensional functions. They can be used to approximate any

mathematical function de�ned on the unit sphere, where the approximation gets better as

more basis functions are used in the series expansion.
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FIGURE 2.36: SPHERICAL HARMONICS. The first few spherical harmonic basis functions
Yl,m(ω) for 0 ≤ l ≤ 6, 0 ≤ m ≤ l.
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As we will see later, spherical harmonics play an important role in global illumina-

tion theory, in particular for the representation of bidirectional reectance distributionBRDF Representation by SH (345)

functions. There, a very common method is to project the BRDF on spherical harmonics,

where, if it is smooth and simple, the BRDF can be represented as a series consisting of

only very few spherical harmonic basis functions. This results in a cost-e�cient variant

for computing the values of a BRDF. Another area where SHs play a central role is pre-

computed radiance transfer, a technique for rendering a scene in real time using complex

light interactions, see Example 4.1.

2.3 LINEAR INTEGRAL EQUATIONS

In our introductory chapter we have introduced the light transport equation in a vacuum,Light Transport Equation (17)

expressed in exitant radiance, it has the formExitant Function (48)

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Lo(γ(s,ωi),−ωi)dσ
⊥
s (ωi). (2.346)

Obviously, it speci�es a function Lo expressed in terms of an integral that contains

this function. In analogy to the de�nition of a di�erential equation|thus, an equation

contains apart from the unknown function also the derivative of the unknown function|an

equation of the above type, where the unknown function also appears under one or more

integrals, is referred to as an integral equation.

The intention of the present section is to make the reader familiar with just this

mathematical construct. Motivated by the light transport equation in free space from

above, we want to introduce the reader speci�cally into the world of Fredholm type integral

equations and their solution methods. Finding solutions to this type of integral equations

is the main task of this book.

For that purpose, �rst, we have to de�ne the construct of the Fredholm integral

equation of the 2nd kind. Based on the functional analytical concept of the linear op-

erator, then we will show how it is possible to transform a linear integral equation intoSection 2.3.1

a linear integral operator equation as well as into its dual analogue, an adjoint integral

equation. Afterwards, we talk about solution approaches for linear operator equations un-Section 2.3.2

derlying Fredholm integral equations of the 2nd kind. Here, we will distinguish between

two di�erent fundamentally approaches:Section 2.3.3

� analytical approaches, resulting from functional analytical methods for �nding the

exact solution of linear operator equations, and

� numerical approaches, also derived from functional analysis, but with the focus on

computing approximate solutions to linear operator equations.
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CLASSIFICATION OF LINEAR INTEGRAL EQUATIONS. Let us start with introducing the

general concept of the integral equation. As already mentioned above, any equation where

the unknown function also appears under one or more integrals, is referred to as an integral

equation. Formally, a linear integral equation is de�ned as:

DEFINITION 2.35 (Linear Integral Equation) Let f, g ∈ L2(R, µ) be real-valued functions, L2(R, µ) (110)

where f is linear and λ in general is a complex number. Let furthermore k ∈ L2(R×
R, µ × µ) be a real-valued function of two variables, called the kernel of integration,

then an equation of the form

f(x) = g(x) + λ

∫
R

k(x, y)f(y)dµ(y) (2.347)

is called a linear integral equation.

Depending on their external form, linear integral equations are classi�ed in equations

of the 1st, 2nd, and 3rd kind. So, Equation (2.347) is called an integral equation of the

1st kind if the unknown function f appears only on the right-hand side under the integral.

It is denoted as an integral equation of the 2nd or 3rd kind, depending on whether f

outside of the integral is weighted by a constant or a function [56, Engl 1997]. If the upper

integration boundary is �xed, the equation is referred to as a Fredholm equation, if it

is dependent on the variable x, it is called a Volterra equation. Is the source function

g(x), often also called the driving function, equals zero, then we talk of a homogeneous,

otherwise of an inhomogeneous integral equation.

REMARK 2.45 (Integro-di�erential Equation) In Chapter 4, we will derive a general

formula for particle transport from which all of the integral equations of global illu- Particle Transport Equation (294)

mination theory can be deduced. This equation contains the unknown function not

only under and outside of the integral but it also contains the derivative of the un-

known function. Such an equation is called a Fredholm integro-di�erential equation

[234, Wazwaz 1997].

FREDHOLM INTEGRAL EQUATIONS OF THE 2nd KIND. As we shall see in Section 4.6,

the measurement equation will tell us something about the precise color of a pixel in Measurement Equation (416)

an image. As the evaluation of the measurement equation requires the computation of

radiance incident at a pixel, the primary job of any realistic rendering algorithm is to �nd Radiance (250)

the solution of the light transport equation. Therefore, we focus exclusively on the class Chapter 9

of integral equations that describes the light and importance transport in form of a linear, Chapter 5

inhomogeneous, Fredholm integral equation of the 2nd kind.

DEFINITION 2.36 (Fredholm Integral Equation of the 2nd Kind) A Fredholm integral equa-

tion of the 2nd kind has the form

f(x) = g(x) +

∫
R

k(x, y)f(y)dµ(y), (2.348)
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where f, g are elements of L2(R, µ) and the kernel k ∈ L2(R× R, µ× µ).L2(R, µ) (110)

Comparing this form with the stationary light transport equation in free space ex-SLTEV (398)

pressed in exitant radiance, namely,

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Lo(γ(s,ωi),−ωi)dσ
⊥
s (ωi), (2.349)

then we note that the SLTEV is not conform to our standard de�nition of a Fredholm

integral equation of the 2nd kind from above. While we integrate in Equation (2.348) over

the entire domain of the unknown function f, the integration in Equation (2.349) goes only

over S2 instead of R∂V = ∂V×S2, which would correspond to the domain of the unknownS2 (849)

function Lo in the light transport equation in a vacuum. Another di�erence comes fromR∂V (44)

the occurence of the ray casting function γ in the �rst argument of the exitant radianceγ (47)

function Lo under the integral, while the unknown function f in Equation (2.348) is notExitant Function (48)

dependent on another function but only on the variable x.

However, it is always possible to transform an equation, equivalent to the light trans-

port equation in free space from Relation (2.349), into the standard form of a Fredholm

integral equation of the 2nd kind. To this, �rst we must remove the ray casting function byγ (47)

changing the variable of integration. Then, we have to transform the original integration

over the smaller subset of the domain of Lo to an integration over the whole domain ∂V
of the unknown function.∂V (41)

Let us show this procedure in the following example based on the SLTEV from Equa-

tion 2.346.

EXAMPLE 2.51 (Transforming the Light Transport Equation into a Fredholm Integral Equa-

tion) For sake of simplicity we rewrite the SLTEV from Equation (2.349) in terms

of a surface point sj with incident and exitant directions ωji and ω
j
o, thus,

Lo(sj,ω
j
o) = Le(sj,ω

j
o) +

∫
S2(sj)

fs(sj,ω
j
i → ωjo)Lo(γ(sj,ω

j
i),−ω

j
i)dσ

⊥
sj
(ωji). (2.350)

Then we de�ne the exitant radiance from point sj outgoing in direction ωjo asExitant Function (48)

a function of the points sj and sj−1 by

L(sj → sj−1) ≡ Lo(sj,ωjo), (2.351)

where sj−1 = γ(sj,ω
j
o) is the hit point of the ray starting in sj with a surface of a

scene, see Figure 2.37. Based on this idea, then we can write the kernel fs at point

sj as:

fs(sj+1 → sj → sj−1) ≡ fs(sj,ωji → ωjo) (2.352)

with sj+1 = γ(sj,ω
j
i).
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FIGURE 2.37: DEFINITION OF EXITANT POINT TO POINT RADIANCE. The radiance
Lo(sj, ω

j
o) exitant from point sj in direction ωjo can also be expressed in terms of radiance

transfer L(sj → sj−1) between two points sj and sj−1 where sj−1 = γ(sj, ω
j
o).

To �nish this procedure, we have to transform the projected solid angle measureσ⊥ (89)

σ⊥ to the Lebesgue area measure µ2 de�ned on object surfaces of ∂V. Via the measureµ2 (82)

transformation from Equation (2.199) and the visibility function V, then we can

de�ne the so-called geometry term, G, by:

G(sj+1 ↔ sj)
def
= V(sj+1 ↔ sj)

∣∣∣cos θj+1o cos θji

∣∣∣
‖sj+1 − sj‖22

, (2.353)

where V(sj+1 ↔ sj) makes a statement about the visibility of sj+1 and sj, cos θ
j+1
o V (45)

and cos θji represent the angles between the corresponding surface normals at point

sj+1 and sj, and the exitant, respectively, the incident directions ωj+1o and ωji and

‖sj+1 − sj‖22 is the distance between sj+1 and sj. Linked with the Lebesgue area

measure µ2, the original integration measure σ⊥ can then be replaced by the product µ2 (82)

of Equation (2.353) and the Lebesgue area measure µ2. That is, we get the SLTEV in SLTEV (398)

a version equivalent to its spherical form from Equation (2.349), namely the SLTEV

in 3-point form 3-point form SLTEV (402)

L(sj → sj−1) = Le(sj → sj−1) + (2.354)∫
∂V
fs(sj+1 → sj → sj−1)G(sj+1 ↔ sj)L(sj+1 → sj)dµ

2(sj+1).

Obviously, de�ning the kernel of an integral equation via the product of the BSDF (371)
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BSDF, fs, and the geometry term, G, this representation of the SLTEV now matches

the form of a Fredholm integral equation of the 2nd kind introduced in De�nition

2.36.

2.3.1 LINEAR INTEGRAL OPERATOR EQUATIONS

As already noted above, the main problem in global illumination theory lies in the con-

struction of e�cient algorithms for solving the light transport equation as well as theChapter 5

importance equation, both Fredholm integral equations of the 2nd kind. While integralFredholm Integral Equation (127)

equations, together with di�erential equations, represent the most important mathemati-

cal models of real processes encountered in physics and technology, in mathematics they

are also of great interest. Here they serve as the basis of many statements formulated in

functional analysis and the inspiration of numerous de�nitions encountered in this �eld.

Let us take a closer look at the Fredholm type integral equationFredholm Integral Equation (127)

f(x) = g(x) +

∫
R

k(x, y) f(y)dµ(y) (2.355)

with k of L2(R×R, µ× µ) and f ∈ L2(R, µ). It may be seen, that, due to the integrationL2(R, µ) (110)

with respect to the 2nd argument, the integral in Equation (2.355) represents a function of

L2(R, µ) depending on the variable x. On the basis of the concept of the linear operator,Linear Operator (53)

the integral term then may also be regarded as a kind of linear operator:

DEFINITION 2.37 (Linear Integral Operator) A linear integral operator K is a linear

mapping de�ned on the Lebesgue space L2(R, µ)L2(R, µ) (110)

K : L2(R, µ)→ L2(R, µ)

with

(Kf)(x)
def
=

∫
R

k(x, y) f(y)dµ(y), (2.356)

where the kernel k of the integral operator K is an element of the space L2(R×R, µ×
µ).L2(R×R, µ× µ) (110)

Obviously, the linearity of the Lebesgue integral identi�es K as a linear operatorLebesgue Integral (105)

between the Lebesgue spaces L2(R, µ). Under the condition of the boundedness of K, thisLinear Bounded Operator (55)

allows the de�nition of a linear normed space of bounded integral operators (L(L2,L2), ‖ ·Linear Normed Space (860)

‖L) equipped with the operator norm from Relation (2.87).

A Fredholm equation of the 2nd kind de�ned via a bounded integral operator fromLinear Bounded Operator (55)
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(L(L2,L2), ‖ · ‖L), can then easily be written in form of an operator equation, that is,Linear Operator Equation (61)

f(x) = g(x) + (Kf)(x) (2.357)

= (K ′f)(x) (2.358)

with

(K ′f)(x)
def
= g(x) +

∫
R

k(x, y) f(y)dµ(y). (2.359)

As this type of equation, a linear integral operator equation, has the form of an

operator equation|well-known to us from Section 2.1.5|it can be solved, under certain

conditions, according to the Banach Fixed-point Theorem, by means of an appropriate Banach Fixed-point Theorem (61)

iteration procedure as proposed in Lemma 2.1.

REMARK 2.46 Integral operator equations of type de�ned in Equation (2.357) are usu-

ally called operator equations or equations of the 2nd kind. Often, we also denote

this type of an operator equation more speci�c as an integral operator equation or an

integral operator equation of the 2nd kind.

REMARK 2.47 Although sigularities|an integral equation is singular, if its domain is

in�nite, the integrand is unbounded somewhere in the domain, the kernel is disconti-

nous, or a combination of some or all of these occurs|play an important role in light

transport equations, we will focus our discussions on nonsingular integral equations.

2.3.2 ADJOINT INTEGRAL EQUATIONS

Let us consider once more the Fredholm type integral equation

f(x) = g(x) +

∫
R

k(x, y) f(y)dµ(y), (2.360)

which we can transform with the help of the linear integral operator K from Equation Fredholm Integral Equation (127)

(2.356) into a linear operator equation of type

f(x) = g(x) + (Kf)(x). (2.361)

Obviously, the linear integral operator K has an adjoint, K∗, given by: Adjoint Operator (60)

K∗(x)
def
=

∫
R

k(y, x) f(y)dµ(y). (2.362)
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This can easily be checked by using Theorem 2.6:

〈f,Kg〉 (2.261)
=

∫
R

f(x) (Kg)(x)dµ(x) (2.363)

(2.356)
=

∫
R

f(x)

(∫
R

k(x, y)g(y)dµ(y)

)
dµ(x) (2.364)

(2.356)
=

∫
R

(∫
R

k(x, y) f(x)dµ(x)

)
︸ ︷︷ ︸

K∗f

g(y)dµ(y) (2.365)

(2.261)
= 〈K∗f, g〉. (2.366)

Via the adjoint K∗, we can then introduce the adjoint to the Fredholm integral

equation of the 2nd kind from (2.360), namely,

h(x) = i(x) +

∫
R

k(y, x)h(y)dµ(y), (2.367)

where the kernel k is an element of the space L2(R × R, µ × µ), the unknown functionL2(R, µ) (110)

h ∈ L2(R, µ), and the source function is given by i ∈ L2(R, µ). It may be seen, that

due to the integration with respect to the 1th argument, the integral in Equation (2.367)

represents a function of L2(R, µ) depending on the variable x.

EXAMPLE 2.52 Let us consider the following integral equation

f(x) = 1+

∫
(0,1]

ln (xy) f(y)dµ(y). (2.368)

The associated operator equation is then given by

f(x) = g(x) + (Kf)(x) (2.369)

with g(x) = 1, and K(x, y) = ln (xy). Due to Equation (2.362) the adjoint operator

K∗ is given by

K∗(y, x) = ln (yx), (2.370)

that is, an adjoint integral equation can be written as:

h(x) = 1+

∫
(0,1]

ln (yx)h(y)dµ(y). (2.371)

From our discussion in Section 2.1.5 it is known, that there exists a solution to

Equation (2.360) if it holds: ‖K‖ < 1, where this solution is given via (I − K)−1. This

means, if the adjoint integral operator K∗ is contracting, then (I − K∗)−1 can also be

considered as the solution, h, of the adjoint integral operator equationAdjoint Operator Equation (65)
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h(x) = i(x) + (K∗h)(y) (2.372)

associated with the integral equation from (2.367).

Now, the fundamental result from Section 2.1.6 for a pair of adjoint equations

f(x) = g(x) + (Tf)(x) (2.373)

and

h(x) = i(x) + (T∗h)(x) (2.374)

was the identity

〈f(x), i(x)〉 = 〈g(x), h(x)〉. (2.375)

Applied to the pair (f, h) of adjoints of the Fredholm integral equations of the 2nd

kind, it is just this type of an inner product that has to be solved for image synthesis,

namely,

〈f(x), i(x)〉 =
〈
(I−T)−1g(x), i(x)

〉
(2.376)

=
〈
g(x),

(
(I−T)−1

)∗
i(x)

〉
(2.377)

=
〈
g(x), ((I−T)∗)

−1
i(x)

〉
(2.378)

= 〈g(x), h(x)〉. (2.379)

REMARK 2.48 We have already introduced an inner product of the above type in the

introductory chapter, namely: the global illumination problem. In Chapter 5, we will

discuss this inner product, that can be used to compute the color of a pixel on the

image plane, or the amount of light striking a surface in a scene to be rendered, in

more detail.

2.3.3 ANALYTICAL APPROACHES AND NUMERICAL METHODS
FOR SOLVING INTEGRAL OPERATOR EQUATIONS OF THE
2nd KIND

Only very few integral equations derived from practical applications are found to be exactly

solvable in practice. In particular this applies to the present case of interest to us here,

in which solutions are sought for the integral equations underlying the global illumination

problem. Now, there are two fundamental approaches for solving linear integral operator Global Illumination Problem (6)

equations:

� analytical approaches, resulting from functional analytical methods for computing

the exact solutions of linear operator equations, and
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� numerical approaches, also derived from functional analysis, but with the focus on

�nding approximate solutions to linear operator equations.

While analytical approaches|often also called in�nite-dimensional approaches|

attempt to solve an integral operator equation exactly in an in�nite dimensional function

space, numerical approaches consider an operator equation as living in a �nite dimensional

space. So, they are also capable to deliver only �nite dimensional, approximate solutions

of the problem.

Under numerical approaches for solving Fredholm type integral equations, we under-Section 2.3.3.2

stand deterministic algorithms that are based on quadrature, �nite basis and projection

methods. In particular, they are based on the concept of the �nite element method. An-

alytical solution approaches, as we will presente them in the next section, play no central

role in numerical algorithms. Rather, they serve as basis of probabilistic algorithms for

solving Fredholm type integral equations, which will be discussed in Chapter 6.

2.3.3.1 ANALYTICAL APPROACHES FOR SOLVING INTEGRAL OPERATOR EQUA-
TIONS OF THE 2nd KIND

From the multitude of analytical procedures for solving integral operator equations, we

pick out two important deterministic ideas from functional analysis:

� the Neumann series approach, andSection 2.3.3.1.1

� the method of successive substitution.Section 2.3.3.1.1

Both techniques are based on di�erent approaches, but lead to the same result,

namely, the in�nite-dimensional solution of an operator equation underlying a Fredholm

integral equation of the 2nd kind. In addition, they guarantee, provided that certain

conditions are valid, the existence of approximate solutions techniques for linear integral

equations that are not solvable in practice.

While the Neumann series approach is based on the representation of the solution of an

operator equation as an in�nite series whose powers are build over a contracting operator,

the method of successive substitution results in a recursive sequence, constructed over a

contracting operator, where the convergence of the sequence is guaranteed by the Banach

Fixed-point Theorem.Banach Fixed-point Theorem (61)

REMARK 2.49 Although these both analytical approaches are not directly applicable in

procedures for solving Fredholm equations, yet they play an import role in the pro-

cess of �nding the unknown function f around them an integral equation is build. To

see the real power of these approaches, we must be patient up to the introduction of

probabilistic methods for solving integral equations.Section 6.7
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2.3.3.1.1 THE NEUMANN SERIES APPROACH

As the kernel of an integral equation can be of an arbitrary complex nature|the kernels of Integral Kernel (127)

integral equations, deeply rooted in real world, can have in�nitely many discontinuities|

often, we have no chance of �nding an exact and general valid solution. But for theoretical

reasons it is useful to know such a solution, since it can help to draw conclusions to an

approximate solution for the given problem. So, our goal is to �nd the exact solution of

the integral operator equation Integral Operator Equation (130)

f(x) = g(x) +Kf(x), (2.380)

which can also be written as:

g(x) = f(x) −Kf(x) (2.381)

= (I−K)f(x), (2.382)

where K is a linear bounded integral operator on L2(R, µ) with ‖K‖ < 1. Linear Bounded Operator (55)

L2(R, µ) (110)

Operator Norm (56)

From Lemma 2.1 in Section 2.1.5 it is known, that ‖K‖ < 1 implies the existence of

the inverse operator (I − K)−1 to (I − K), which is given by the Neumann series, M,

that is,

M
def
= (I−K)−1 (2.383)

= I+K+K2 + · · · (2.384)

=

∞∑
i=0

Ki. (2.385)

Multiplying both sides of Equation (2.382) by the inverse operator (I − K)−1 then

yields:

f(x) = (I−K)−1g(x) (2.386)

(2.385)
=

∞∑
i=0

Ki g(x). (2.387)

Thus, a solution to the above integral operator equation may be represented in form Integral Operator Equation (131)

of the Neumann series, whose terms are composed of the powers of the operator K and the Integral Operator (130)

source function g. So, we can conclude that, under the condition, that the inverse integral

operator (I − K)−1 exists in the form of a Neumann series, a solution to the operator

equation from (2.380), and thus also for the associated integral equation, may be found Linear Operator Equation (61)

easilys by means of the source function, g(x), and the powers of the integral operator K.

Let us check the correctness of this idea by means of a simple example.
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EXAMPLE 2.53 Given be the integral equation

f(x) = 1+
1

4

∫
[0,π2 ]

cos x f(y)dµ(y). (2.388)

With λ = 1
4
, g(x) = 1, and K = λ cos x, the associated integral operator equation

then looks like this:

f(x) = 1+Kf(x), (2.389)

which implies:

f(x)
(2.387)
=

∞∑
i=0

Ki (2.390)

= 1+
1

4

∫
[0,π2 ]

cos xdµ(y) +
1

16

∫
[0,π2 ]

∫
[0,π2 ]

cos x cos x1 dµ(y)dµ(x1) + . . .

= 1+ cos x

(
1

4

∫
[0, 12 ]

dµ(y)︸ ︷︷ ︸
π
2

+
1

16

∫
[0,π2 ]

∫
[0,π2 ]

cos x1 dµ(y)dµ(x1)︸ ︷︷ ︸
π
2

+

1

64

∫
[0,π2 ]

∫
[0,π2 ]

∫
[0,π2 ]

cos x1 cos x2 dµ(y)dµ(x1)dµ(x2))︸ ︷︷ ︸
π
2

+ . . .

)
(2.391)

= 1+
π

2
cos x

∞∑
i=1

1

4i︸ ︷︷ ︸
1
3

(2.392)

= 1+
π

6
cos x. (2.393)

Replacing f(x) in Equation (2.388) by 1+ π
6
cos x then we get:

1+
π

6
cos x = 1+

1

4

∫
[0,π2 ]

cos x
(
1+

π

6
cosy

)
dµ(y) (2.394)

= 1+
1

4

∫
[0,π2 ]

cos xdµ(y) +
π

24

∫
[0,π2 ]

cos x cosydµ(y) (2.395)

= 1+
π

8
cos x+

π

24
cos x (2.396)

= 1+
π

6
cos x. (2.397)

Since any computer is a deterministic machine, the calculation of the value of a

Neumann series by means of a computer must be done via a numerical procedure. Such a
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method approximates the value of the series by using only a �nite number of in�nite series

terms is accounted for. For estimating the absolute error of this approximation from the

true value of the Neumann series let us de�ne a sequence of linear operators Mn by:

Mn
def
=

n∑
i=0

Ki, (2.398)

that is, Mn returns the value of the Neumann series truncated after n + 1 terms. The

absolute error of the approximation can now be estimated as:

‖M−Mn‖ =

∥∥∥∥∥
∞∑
i=0

Ki −

n∑
i=0

Ki

∥∥∥∥∥ (2.399)

=

∥∥∥∥∥
∞∑

i=n+1

Ki

∥∥∥∥∥ (2.400)

∆−inequality
≤

∞∑
i=n+1

‖Ki‖ (2.401)

‖AB‖≤‖A‖‖B‖
≤

∞∑
i=n+1

‖K‖i (2.402)

=

∞∑
i=0

‖K‖i −
n∑
i=0

‖K‖i (2.403)

=
1

1− ‖K‖
−
‖K‖n+1 − 1
‖K‖− 1

(2.404)

=
‖K‖n+1

1− ‖K‖
. (2.405)

Here, the �rst inequality is based on the triangle inequality of the operator norm, the Operator Norm (56)

second follows from ‖AB‖ ≤ ‖A‖‖B‖ with respect to two operators A and B, and we

have used the formula
∑n
i=0 q

i = 1−qn+1

1−q for a �nite geometric series to estimate the sum∑n
i=0 ‖K‖i.

While an estimation for Equation (2.405), measured in the operator norm, supplies a

statement on the quality of the operator Mn for approximating the exact operator M, it

says nothing about the quality of an approximated solution of Equation (2.387). For that

purpose, let us de�ne an approximate solution of the Neumann series by:

fn
def
= Mng, (2.406)

then a statement on the quality of this approximate solution follows directly from the
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residual from Relation (2.405), namely:

‖f− fn‖ = ‖Mg−Mng‖ (2.407)

= ‖(M−Mn)g‖ (2.408)

≤ ‖M−Mn‖‖g‖ (2.409)

(2.405)

≤ ‖K‖n+1

1− ‖K‖
‖g‖. (2.410)

This implies, that for su�ciently large n, the sequence (fn)n∈N0 will converge to the

exact solution of Equation (2.380). That is, with the Neumann series approach we have a

�rst numerical method for solving Fredholm integral equations of the 2nd kind.Section 2.3

2.3.3.1.2 THE METHOD OF SUCCESSIVE SUBSTITUTION

Let us now pursue the approach of successive substitution where the solution of the

integral equation is formulated as an in�nite series of single and multiple integrals. As the

unknown function f is replaced by the known source function g the evaluation of several

multiple integrals is possible and easily computable.

Applied to the associated integral operator equation, the unknown function f on the

right-hand side of Equation (2.380) is replaced by g+Kf. This, then implies

f(x) = g(x) +Kf(x) (2.411)

= g(x) +K (g(x) +Kf(x)︸ ︷︷ ︸
f(x)

(2.412)

= g(x) +K (g(x) +K (g(x) +Kf(x))︸ ︷︷ ︸
f(x)

)

︸ ︷︷ ︸
f(x)

(2.413)

= · · · . (2.414)

Obvioulsy, the function f may then be written in form of the following recurrence

equation

f0(x) = g(x)

fn+1(x) = Kfn(x) + g(x), n ≥ 0. (2.415)

Based on the Banach Fixed-point Theorem for contracting linear operators the fol-Banach Fixed-point Theorem (61)

lowing then applies for the distance of members of the sequence (fn)n∈N0 for su�ciently

large n:

‖fn+m − fm‖
(2.115)

≤ ‖K‖n 1

(1− ‖K‖)
‖Kg‖ (2.416)

≤ ‖K‖n+1

1− ‖K‖
‖g‖. (2.417)
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Obviously, the sequence (fn)n∈N0 is a Cauchy sequence, which, under the conditionCauchy Sequence (35)

of the contraction of the integral operator K, due to Equation (2.118), converges towards

the exact solution of a Fredholm integral equation of the 2nd kind.

2.3.3.2 NUMERICAL METHODS FOR SOLVING INTEGRAL OPERATOR EQUA-
TIONS OF THE 2nd KIND

The current section gives a brief overview of the most important numerical procedures

for solving linear operator equations underlying Fredholm integral equations of the 2nd

kind. Since it is not possible here to present all existing numerical methods for solving

Fredholm type integral equations, our discussion will focus only on the following categories Fredholm Integral Equation (127)

of solution methods:

� quadrature methods as well as

� �nite basis, and projection methods.

While quadrature methods replace the process of integration inside a Fredholm in-

tegral equation by a �nite weighted sum of the involved kernel at predetermined points

of the integration domain, �nite basis and projection methods try to �nd an approximate

solution of the integral equation in a �nite-dimensional subspace, for example in the space, Pn (855)

Pn, of polynomials of degree n− 1.

Following [10, Arvo 1995], we present in the next two sections for each of the above

mentioned methods a single representative, where we are interested in particular in those

numerical solution methods which promise to be useful for solving the global illumination

problem. Global Illumination Problem (6)

2.3.3.2.1 QUADRATURE METHOD

The quadrature method utilizes the similarity between the kernel of an integral operator

and its �nite-dimensional analog, the matrix. The idea behind the quadrature method is Linear Integral Operator (130)

to approximate the integral operator K in Matrix (853)

f(x) = g(x) +Kf(x) (2.418)

by means of a quadrature rule which leads to a linear system of equations. For that, �rst

we choose points x1, x2, . . . , xn and wish to evaluate the function f at these points.

Replacing the operator K in Equation (2.418) by a quadrature rule, Q, of the form

Qf(x) =
n∑
i=1

wi(x) k(x, ti) f(ti), (2.419)



140 CHAPTER 2. MATHEMATICAL FOUNDATIONS OF REALISTIC RENDERING

where wi(x) are weight functions, then leads to an approximation of f at the chosen points

x1, . . . , xn, namely,

f(xj)
(2.422)
≈ g(xj) +

n∑
i=1

wi(xj) k(xj, ti) f(xi) (2.420)

ti=xi≈ g(xj) +

n∑
i=1

wi(xj) k(xj, xi) f(xi), (2.421)

where we have evaluated the kernel k(x, ti) at the points ti = xi for x = xj.

Now, the operator equation from (2.418) can be expressed in terms of the unknowns

yj = f(xj) and yi = f(xi) by:

yj = f(xj) ≈ g(xj) +
n∑
i=1

wi(xj) k(xj, xi)yi, j = 1, 2, . . . , n. (2.422)

Applying this strategy for computing Equation (2.418) at all points x1, x2, . . . , xn,

then we obtain a linear system of n equations, in the unknowns y1, y2, . . . , yn, namely:

yj = g(xj) +

n∑
i=1

wi(xj)k(xj, xi)yi, 1 ≤ i, j ≤ n, (2.423)

which can also be written as a linear operator equationLinear Operator Equation (61)

y = g +WKy. (2.424)

Here y and g are n-dimensional vectors representing the unknowns as well as the

given source function g at points xj and WK is a n × n matrix whose coe�cients are

given by the products of the weights and the integral kernel at points xj and xi, thusIntegral Kernel (127)

wi(xj), k(xj, xi)1≤i,j≤n. Slightly rephrased, then this operator equation has the form:

y −WKy = g (2.425)

(I−WK)y = g (2.426)

y = (I−WK)−1g, (2.427)

which can now be written in matrix-vector notation asLinear Operator Equation (61) 
y1
y2
...

yn

 =


1−w11k11 −w21k12 . . . −wn1k1n
−w12k21 1−w22k22 . . . −wn2k2n

...
...

...

−w1nkn1 −w2nkn2 . . . 1−wnnknn


−1

·


g(x1)

g(x2)
...

g(xn)

 . (2.428)
So, an approximate solution to a linear Fredholm integral equation of the 2nd kind

may also be found via the solution of a linear system of equations in a �nite number of

variables.Chapter 10
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REMARK 2.50 The above method of approximating an integral operator via its �nite-Linear Integral Operator (130)

dimensional analog, namely a matrix, is also known in the literature as the Nystr�om

method. It has the great advantage that it avoids the process of integration for cal-

culating the coe�cients of the linear system of equations.

Although Nystr�om procedures are very e�cient algorithms for solving integral

equations, due to the nature of the integral kernels involved in the global illumination

equation and the associated quadrature rules, not much use will be made of them here.

Instead, we will take recourse to the Neumann series approach and the procedures

presented below which are build on �nite basis methods.

2.3.3.2.2 FINITE BASIS AND PROJECTION METHODS

Finite basis and projection methods pursue the idea of approximating an in�nite dimen- Section 2.1.1

sional function space by a �nite-dimensional subspace Un. The goal is to �nd a function

f̂ ∈ Un that is in some sense a good approximation of f. Subspace (855)

Let us show this approach for �nding approximate solutions to linear integral equa-

tions by means of two di�erent methods:

i) the collocation method and

ii) the Galerkin method,

where we assume, that Un is a �nite-dimensional subspace of L2(R, µ) spanned by a �nite L2(R, µ) (110)

set of basis functions {φ1, φ2, . . . , φn}. Basis (857)

THE COLLOCATION METHOD. Given be the integral operator equation of the 2nd kind,

thus an equation of the form

f(x) = g(x) +K f(x), (2.429)

which also can be written as: Linear Operator Equation (61)

g(x) = (I−K) f(x). (2.430)

Now, the collocation method suggests to approximate the right-hand side of Equation

(2.430) by a function f̂ ∈ Un that can be expressed in terms of the basis function φ1, . . . , φn
namely,

f̂(x) = (I−K)

n∑
i=1

αiφi(x) (2.431)

with αi ∈ R, 1 ≤ i ≤ n. In addition, we require, that f̂ agrees with g at n so-called

collocation points x1, x2, . . . , xn ∈ R, that is,

f̂(xj)
def
= g(xj). (2.432)



142 CHAPTER 2. MATHEMATICAL FOUNDATIONS OF REALISTIC RENDERING

Under these conditions, evaluated at the collocation point xj, Equation (2.430) can

now be written as:

g(xj)
(2.431)
= (I−K)

n∑
i=1

αiφi(xj) (2.433)

=

n∑
i=1

αi (I−K)φi(xj)︸ ︷︷ ︸
φ̂i(xj)

(2.434)

=

n∑
i=1

αiφ̂i(xj). (2.435)

Since Relation (2.432) must hold at n points, we obtain a linear system of n equations

in the unknowns αi, that is,

g(xj) =

n∑
i=1

αi φ̂i(xj), (2.436)

which can be rephrased in form of an operator equation, thus,Linear Operator Equation (61)

g = Φ̂α. (2.437)

Here g is an n-dimensional vector representing the values of function g at the collo-

cation points, α corresponds to the vector of unknowns, and Φ̂ is a n× n matrix, whose

coe�cients are given by the basis function φ̂i evaluated at the collocation points. If Φ̂ is

invertible, then we obtain:

Φ̂
−1

g = α (2.438)

written in matrix form, thus, α1
...

αn

 =

 φ̂1(x1) . . . φ̂n(x1)
...

...

φ̂1(xn) . . . φ̂n(xn)


−1

·

 g(x1)
...

g(xn)

 . (2.439)

This implies, that a solution of Equation (2.436) delivers the coe�cients α1, α2, . . . , αn
of the basis functions φ1, . . . , φn for approximating the unknown f, and thus, an approx-

imate solution of the operator equation from Equation (2.430).

REMARK 2.51 As we will see in Chapter 10, in contrast to the Nystr�om method, the

collocation method is often used in global illumination. The problem that comes with

collocation is the evaluation of the coe�cients φ̂i(xj). As they are the images of the

basis functions φi under the operator I−K, where K represents a complex evaluation

of an integral. So, the computation of the coe�cients φ̂i(xj) can be extremely di�cult

for the most basis function.
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Let us now apply the collocation method to a Fredholm integral equation of theFredholm Integral Equation (127)

2nd kind, which describes the exchange of radiant energy between surfaces, namely, the

radiative transfer in the absence of a participating medium.

EXAMPLE 2.54 (A Simple Radiosity Approach) Let us consider the following Fredholm Fredholm Integral Equation (127)

integral equation of the 2nd kind

Lo(s,ωo) = Le(s,ωo) +

∫
H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi), (2.440)

where the functions Lo and Le are exitant radiance functions and the integral kernel

is given by the BRDF fr. In this context, Lo and Le can be interpreted as the radiance

outgoing as well as emitted at a surface point s in direction ωo and fr returns the

amount of exitant light after reected at point s.

We will show how it is possible to solve this integral equation by means of the

collocation method, for more details see [8, Arvo 1993].

Now, in the collocation method the matrix coe�cients φ̂i(xj) are de�ned due to

Equation (2.434) by:

φ̂i(xj) = (I−K)φi(xj) (2.441)

= φi(xj) − (Kφi)(xj). (2.442)

That is, for generating the linear system from Relation (2.436) there are three

operations that need to be performed: the evaluations of the basis function at the col-

location points, thus, φi(xj) and the computation of the images of the basis function

under the operator I −K, that is, (Kφi)(xj). Based on these values then the source

function g(xj) has to evaluated.

Applied to our integral equation from above, now we break the set of surfaces ∂V
into n disjoint patches P1, . . . , Pn, such as a grid or a Voronoi diagram. For further Voronoi Diagram (577)

simpli�cation, we also assume that these patches are pure di�use reectors, that is, Diffuse Reflector (339)

the BRDF fr is constant, thus, fr = C. The choice of a set of rays
(
sj,ω

j
o

)
, 1 ≤ j ≤ n

as our collocation points xj and the choice of basis functions φi given by:

φi(sj,ω
j
o)
def
=

{
1 if sj ∈ Pi
0 otherwise,

(2.443)

then implies, that the �nite-dimensional subspace Un is spanned by the basis φ1, . . . , φn,Subspace (855)

where only point sj lies within the support of function φi.

Under these conditions, the radiance at point sj in direction to ωjo due to a Radiance (250)

single reection of the radiant energy emitted according to the basis function φi can

be described by:

(Kφi)(sj,ω
j
o) =

∫
H2
i
(sj)

fr(sj,ωi → ωjo)φi(sj,ω
j
o)dσ

2
sj
(ωjo) (2.444)

= C

∫
H2
i
(sj)

φi(sj,ω
j
o)dσ

2
sj
(ωjo) (2.445)
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We will encounter this equation in Chapter 10, but in a di�erent form, where

the integration goes over the set of all patches existing within the scene, not over the

upper hemisphere about a surface point.

THE GALERKIN METHOD. With the so-called Galerkin method we now present a

projection method that in the �eld of computer graphics serves as the basis of numerous

algorithms for solving a particular version of the global illumination equation.Chapter 10

In Section 2.1.4 we introduced the concept of orthogonality under the condition, that

a linear space is a Hilbert space. This concept allows to project functions given in in�nite-

dimensional linear spaces onto functions de�ned in �nite-dimensional spaces. Therefore,Hilbert Space (36)

we will now consider a projection operator Prn de�ned on the Hilbert-space L2(R, µ) withProjection Operator (58)

values in a subspace Un ≤ L2(R, µ). The aim of the Galerkin-procedure is the constructionL2(R, µ) (110)

of an approximation f̂ ∈ Un of Equation (2.430), for which the following applies:(
f̂(x) − g(x)

)
⊥ Un ⇔ (

(I−K)fn(x) − g(x)
)
⊥ Un. (2.446)

This implies that the residual function r de�ned via

r(x)
def
= (I−K)fn(x) − g(x), (2.447)

lies in the orthogonal complement of Un. The following then clearly applies to the image

of the residual function under the projection operator Prn onto Un:

Prn
(
(I−K)fn(x) − g(x)

)
= 0, (2.448)

or with Prnfn = fnProjection Operator (58)

(I−PrnK)fn(x) = Prng(x). (2.449)

Since the set of functions {φ1, . . . , φn} forms a basis of the subspace Un, due to theBasis (857)

orthogonality condition from (2.446), Equation (2.446) may also be written as:Subspace (855) 〈(
(I−K)fn(x) − g(x)

)
, φj(x)

〉
= 0, j = 1, 2, . . . , n (2.450)

or, making use of the bilinearity of the inner product, equivalently to:Inner Product (859) 〈(
(I−K)fn(x)︸ ︷︷ ︸

f̂n(x)

, φj(x)
〉
=
〈
g(x), φj(x)

〉
. (2.451)

De�ning fn via a linear combination of the basis function φ1, . . . , φn as an element

of the �nite-dimensional function sub space Un ≤ R, thus,

fn(x)
def
=

n∑
i=1

αiφi(x), (2.452)
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then leads for j = 1, 2, . . . , n to:〈
(I−K)

n∑
i=1

αiφi(x), φj(x)

〉
= 〈g(x), φj(x)〉 . (2.453)

Slightly reformulated we get:

n∑
i=1

αi
〈
(I−K)φi(x)︸ ︷︷ ︸

φ̂i(x)

, φj(x)
〉

=
〈
g(x), φj(x)

〉
. (2.454)

Let α be the n-dimensional vector of unknowns and gΦ be the vector of the inner

products of the functions g and φj at point x, then with 〈φ̂i, φj〉1≤i,j≤n as the coe�cients

of the matrix, Φ̂Φ, the above equations can be written as a linear operator equation, that

is,

Φ̂Φ · α = gΦ ⇒ α =
(
Φ̂Φ

)−1
· gΦ, (2.455)

or expressed in matrix notation as: α1
...

αn

 =

 〈φ̂1(x), φ1(x)〉 . . . 〈φ̂n(x), φ1(x)〉
...

...

〈φ̂1(x), φn(x)〉 . . . 〈φ̂n(x), φn(x)〉


−1

·

 〈g(x), φ1(x)〉...

〈g(x), φn(x)〉

 . (2.456)
Similar to the collocation method, the scalars α1, α2, . . . , αn used as the coe�cients

of the basis functions for approximating f may be obtained as the solution of the linear

system of equations associated with the Galerkin method.

REMARK 2.52 As we will see in Chapter 10, the Galerkin method is the numerical pro-

cedure normally used for approximating the radiosity equation, like the light transport Radiosity Equation (19)

equation, a Fredholm integral equation of the 2nd kind.

Like the collocation method, so even the Galerkin approach su�ers from the com-

plexity of the evaluation of the matrix coe�cients 〈φ̂i(x), φj(x)〉1≤i,j≤n, that involves
to compute the image of the basis functions φi under the operator I−K.

REMARK 2.53 The above described �nite basis and projection methods applied to Fred-

holm integral equations of the 2nd kind give rise to a number of interesting rendering

procedures used in computer graphics, the so-called radiosity procedures. Restricting

the global illumination equation in a way like we did it in Example 2.54, a large Chapter 10

number of e�cient procedures based on projection methods may be developed for the

solution of speci�c variants of the global illumination equation [13, Ashdown 1994],

[190, Sillion and Puech 1994], [36, Cohen and Wallace 1993] and [68, Glassner

1995].



146 CHAPTER 2. MATHEMATICAL FOUNDATIONS OF REALISTIC RENDERING

REMARK 2.54 Unfortunately, due to the complex geometry of the environment and

the potential discontinuity of the involved kernels, integral equations of the above

type may not be solved analytically. In the search for a solution we will therefore

be forced to submit the problem underlying this equation to certain restrictions or,

alternatively, to fall back upon methods based on probabilistic approaches. Both

alternatives will be presented, the �rst leading us to the radiosity procedure presentedChapter 10

briey in the above example. Regarding procedures for the solution of integrals and

integral equations based on probabilistic approaches, the focus in this work will be

especially on Monte Carlo methods of applied mathematics.Chapter 6

2.3.3.2.3 THE FINITE ELEMENT METHOD FOR SOLVING FREDHOLM INTEGRAL EQUATIONS OF

THE SECOND KIND

The problem that comes with the Galerkin method is the determination of a suitableSection 2.3.3.2.2

set of basis functions {φ1, . . . , φn} for the space Un. In practice, this can be extremely

di�cult in particular in cases, where the domain of the integration does not have a simple

shape. But here, the �nite element method, also briey denoted by FEM, can help.

It circumvents this problem by choosing basis functions that are piecewise polynomials

and that are nonzero only on a relatively small part of the integration domain. So, �nite

element methods can handle domains of fairly arbitrary shapes.

For that, the �nite element method partitions the integration domain in a �nite set

of subdomains. All these subdomains have a �nite area|not an in�nitesimally small or

large area|this gives the method also its name. In a second step, a FEM algorithm

then constructs corresponding basis functions on these subdomains. Applied to integral

equations, the unknown function is approximated by a �nite linear combination of the

chosen basis function|as we did it in the Galerkin method. This then leads to a linearSection 2.3.3.2.2

system of equations, that can be solved via one of the methods presented in the next

section.

Let us now describe the two main steps of a �nite element method and show how it

works for the Galerkin method for solving linear, inhomogeneous integral equations of the

2nd kind.Fredholm Integral Equation (127)

REMARK 2.55 For a better understanding of the discussion in the following it could

be a good idea to interpret the integration domain R of an integral equation as a

bounded subset of R or the two-dimensional Euclidean space R2. So, we will do this

in all the �gures within this section.

THE FINITE ELEMENT MESH. Given be the Fredholm type integral equationFredholm Integral Equation (127)

f(x) = g(x) +

∫
R

k(x, y) f(y)dµ(y) (2.457)
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FIGURE 2.38: A SQUARE AND ITS SUBDIVISION INTO FINITE ELEMENT MESHES. The
square [a,b] ⊂ R2 is partitioned into a finite set of disjoint triangles or other polygonal
shapes.

with k of L2(R× R, µ× µ) and f ∈ L2(R, µ).L2(R, µ) (110)

Initially, any FEM algorithm partitions the domain R into a �nite number m of

disjoint subdomains P1, P2, . . . , Pm, also called a �nite element mesh or a set of patches.

It is required that these patches satisfy the following conditions:

Pi ∩ Pk = ∅ for i 6= k, and

m⋃
k=1

Pk = R, (2.458)

that is, the open subdomains Pk are disjoint, and the closure R can be written as a �nite Closed Set (864)

union of the closed subsets Pk, thus, the open subdomains together with their boundaries. Open Set (864)

EXAMPLE 2.55 Let us assume R be the square [a,b] ⊂ R2, then the domain can be

partitioned into triangles, as shown in Figure 2.38, quadrilaterals, or other polygonal

shapes.

After subdividing the domain, we choose points within the subdomains Pk, so-called

nodes or nodal points, that play a central role in the �nite element method. As nodal

points we identify at least all vertices of a subdomain. But to improve the desirable ap-

proximation, we can choose further points within a subdomain as nodal points, such as the

midpoints or any other point of a subdomain, see Figure 2.39. Numbered with 1, 2, . . . , N,

then we have a set of locations Nn
def
= x1, x2, . . . , xn within the domain R.

THE CHOICE OF THE GLOBAL BASIS FUNCTIONS. Based on the construct of the �nite

element mesh, we are now ready to describe how the basis functions Ni, 1 ≤ i ≤ n, can
be constructed. They have to satisfy the following conditions:

i) All basis functions Ni, 1 ≤ i ≤ n, should at least be bounded|a stronger require- B(·) (28)
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FIGURE 2.39: A SQUARE WITH ASSOCIATED FINITE ELEMENT MESHES. The left
image shows a mesh, where nodal points are only chosen at the vertices of the patches.
The images in the middle and on the right-hand side are Voronoi diagrams associated with
the square [a,b], here we have additionally chosen points within the patches as nodal points.

ment could be continuity|that is, C(·) (28)

Ni ∈ B(R) or perhaps even Ni ∈ C(R). (2.459)

ii) Since the functions Ni should represent a basis of the n-dimensional subspace Un of

R, such a basis consists of n functions Ni, one for each node, where each function is

non-zero only on those patches Pk that are connected with node i. This means that

for the restriction of Ni to Pk, in sign NPki , it must hold:

Ni(x)
∣∣
Pk

def
= NPki (x) ≡ 0 if x /∈ Pk. (2.460)

iii) Furthermore, we require, that the basis functions Ni are equal to 1 only at node i,

at all other nodes they take the value zero, thus,

Ni(xj)
def
=

{
1 if i = j

0 otherwise.
(2.461)

iv) The restriction of Ni to Pk, namely the function NPki , is a polynomial of degree at

most l, that is,

Ni
∣∣
Pk
≡ NPki , NPki ∈ Pl(Pk), (2.462)

where Pl(Pk) is the space of polynomials of degree at most of l on Pk.Pl(·) (855)

From the above conditions, it should be clear, that the restriction NPii ful�lls the

condition:

NPii (xj)
def
=

{
1 if i = j

0 otherwise,
(2.463)
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FIGURE 2.40: LOCAL BASIS FUNCTIONS. The interval [0, 4] is partitioned into 4
subintervals of equal size. The set of nodal points, N5 = {0, 1, 2, 3, 4}, then implies five

local basis functions NPii , 1 ≤ i ≤ 5. The first three linear, local basis functions are plotted
in the right image.

for all xi, xj ∈ Pk. We call NPki a local basis function, see Figure 2.40.

A global basis function Ni can then be patched together from local basis functions

NPki associated with node i and Pk at the neighboring patches of node i. That is, the basis

functions Ni are piecewise polynomials that have small support, in that they are nonzero

only on a small region of the integration domain. Obviously, the number and placement

of the nodal nodes are depending on the degree of the polynomials used. Due to the

limited support of the basis functions, an approximation using the basis functions Ni is

determined by summing only the basis functions, whose support overlaps the element.

EXAMPLE 2.56 (The One-dimensional Linear Basis Functions) In one dimension, the lin-

ear basis function are given by:

Ni(x)
def
=


x−xi−1
xi−xi−1

for xi−1 < x < xi
xi+1−x
xi+1−xi

for xi < x < xi+1

0 otherwise.

(2.464)

Let us assume, that the domain [a, b] is partitioned into 4 elements P1, . . . , P4
each of Lebesgue measure µ(Pi) = (b−a)

4
. The set of nodal points is given by N5 =

{x1, . . . , x5} with xi = a+i ·µ(Pi) for 1 ≤ i ≤ 5, see Figure 2.40. Applied to the interval
[0, 4], the linear basis functions Ni, de�ned on the nodal points N5 = {0, 1, 2, 3, 4} are

then given by:

N1(x)
def
=

{
1− x for 0 < x < 1

0 otherwise,
(2.465)
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N2(x)
def
=


x for 0 < x < 1

2− x for 1 < x < 2

0 otherwise,

(2.466)

etc., see Figure 2.40.

REMARK 2.56 Apart from polynomials, �nite element methods can also be constructed

using other types of polynomials, such as Legendre and Jacobi polynomials, or also

non-polynomial functions, see [29, Brenner & Scott 1994].

DEFINITION 2.38 (The Finite Element) Due to Ciarlet, [29, Brenner & Scott 1994], a

�nite element is de�ned as the tuple (R,Pl,Nn), where R is the domain with piecewise

smooth boundary, Pl is the l-dimensional space of polynomials on R, and Nn =

{x1, x2, . . . , xn} is the set of nodal points given on R.

EXAMPLE 2.57 (The One-dimensional Lagrange Element) i) Let us assume R be the unit

interval [0, 1], the set of nodal points N2 is given by {0, 1}, using linear polynomials

from P1. Obviously, the nodal nodes are located at the boundaries of the interval, so

we get N1(x) = 1− x and N2(x) = x.

ii) If we assume R = [−1, 1], then the set of nodal points Nk+1 is given by

{−1,−1+ 2
k
, . . . , 1− 2

k
, 1}, using polynomials Pk. The local basis functions now corre-

spond to the Lagrange polynomials of degree k, given by:

Nj(x)
def
=

(x− x1) . . . (x− xj−1)(x− xj+1) . . . (x− xk+1)

(xj − x1) . . . (xj − xj−1)(xj − xj+1) . . . (xj − xk+1)
. (2.467)

Thus, for k = 2, we have: N3 = {−1, 0, 1} with N1(x) =
1
2
x(x − 1), N2(x) = 1 − x

2

and N3(x) =
1
2
x(x− 1).

We leave the veri�cation of the constructed �nite elements to the interested

reader as an exercise.

EXAMPLE 2.58 (The Two-dimensional Linear Basis Functions) In two dimensions, the

linear basis functions are given by:

Ni(x)
def
=


1 at node x = xi
[0, 1] within adjacent elements

0 at all other nodal nodes

0 outside adjacent elements.

(2.468)

Obviously, this construction ensures that the basis functions Ni satisfy the con-

ditions from Equation (2.459) to (2.462).

THE GALERKIN METHOD BASED ON A FINITE ELEMENT APPROACH. For the Galerkin

method, based on a �nite element approach, the function fn from Equation (2.450) can
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be written as a linear combination of global basis functions Ni de�ned on R. That is,

approximating fn by:

fn(x) =

n∑
i=1

αiNi(x), (2.469)

then Equation (2.451) has the form:

〈
(I−K)

n∑
i=1

αiNi(x), Nj(x)
〉

=
〈
g(x), Nj(x)

〉
, (2.470)

thus

n∑
i=1

αi
〈
(I−K)Ni(x)︸ ︷︷ ︸

N̂i(x)

, Nj(x)
〉

=
〈
g(x), Nj(x)

〉
. (2.471)

If α represents the n-dimensional vector of unknowns, the term gN stands for the

vector of inner products of the functions g and Nj at node x, and 〈N̂j, Ni〉1≤i,j≤n are the

coe�cients (aij)1≤i,j≤nof the linear operator N̂N, then we can rewrite the above equation

in form of an operator equation, that is: Linear Operator Equation (61)

N̂N · α = bN ⇒ α =
(
N̂N

)−1
· g, (2.472)

which can be formulated in matrix notation as α1
...

αn

 =

 〈N̂1(x), N1(x)〉 . . . 〈N̂n(x), N1(x)〉
...

...

〈N̂1(x), Nn(x)〉 . . . 〈N̂n(x), Nn(x)〉


−1

·

 〈g(x), N1(x)〉...

〈g(x), Nn(x)〉

 . (2.473)
2.3.3.2.4 SOLUTION METHODS FOR LINEAR SYSTEMS OF EQUATIONS

Whether quadrature or �nite basis and projection methods, applied to Fredholm integral

equations of the 2nd kind, they all lead to a linear system of equations of the form

Ax = b, (2.474)

where A is a (n× n)-matrix, b ∈ Rn, and x is an n-dimensional vector of unknowns.

Now, in mathematics, there exists are large �eld of algorithms for solving linear

systems which can be partitioned into two classes:

� direct solution procedures, and Section 2.3.3.2.4.1

� iterative methods. Section 2.3.3.2.4.2



152 CHAPTER 2. MATHEMATICAL FOUNDATIONS OF REALISTIC RENDERING

The idea behind direct methods is to determine the inverse A−1 of the matrix A, if it

exist. If A−1 is known, then the solution of the above system can easily be computed by

multiplying the right hand side of Equation (2.474) with the inverse matrix A−1, leading

to:

x = A−1b. (2.475)

In contrast to direct solution procedures, iterative methods starts with an initial guess

of the solution, any vector x(0) ∈ Rn, and successively improve it until the computed

iterate is as accurate as desired. So, an iteration method generates a sequence
(
x(n)

)
n∈N0

of approximate solutions, which should converge to the desired, exact solution. Thus, in

practice, an iteration procedure can be terminated if the error between the exact solution

and the approximation is smaller than a pre-given bound.

2.3.3.2.4.1 DIRECT METHODS FOR SOLVING LINEAR SYSTEM OF EQUATIONS

Let us assume that the matrix A of the linear system of equations

Ax = b (2.476)

is invertible, that is, there exists A−1. Then, the �rst idea for solving this system is to

�nd the analytic solution

x = A−1b. (2.477)

A well-known method for computing the vector x is the Gaussian elimination pro-

cedure, know from school mathematics. But there are still other direct methods, mostly

variants of the Gaussian elimination, such as the Gauss-Jordan algorithm, the Cholesky

procedure, or the procedure by Crout, see [202, Stoer & Bulirsch 1979] or [179, Schmei�er

& Schirmeier 1976]. But all of these methods su�er from that they are prohibitively expen-

sive when applied to large matrices. Since direct solution methods, such as the Gaussian

elimination, require O(n3) operations to solve a linear system of equations or to compute

the inverse of the associated matrix|where n is the number of unknowns in the system-

|these methods are not suitable for solving large systems of equations. Applied to large

problems, direct methods are prohibitively expensive and should only be used for solving

linear system whose associated matrices are sparse. Here, numerical methods, as we will

discus them in the next section, have been proved to be more e�cient solvers.

2.3.3.2.4.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS OF EQUATIONS

The idea behind iterative methods for solving linear systems of equations is to express the

operator equation

Ax = b (2.478)
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as a �xed-point problem, similar to our discussion in Section 2.1.5. That is, we transformFixed-point Problem (62)

a linear system of equations into an equation of the form,

x(k+1) = Tx(k), k ≥ 0, (2.479)

where T is a linear operator on Rn, and x(0) = (x
(0)
1 , . . . , x

(0)
n )T ∈ Rn is any arbitrary

starting value. New values can then be computed by repeated application of Formula

(2.479).

Under the condition that the linear operator T|now describing a linear mapping

de�ned between the �nite-dimensional space Rn|is contracting, that is, if it holds, ‖T‖ <
1, the Banach Fixed-point Theorem guarantees the convergence of the sequence x(k+1) Banach Fixed-point Theorem (61)

towards the right solution of Equation (2.478), for a detailed discussion see Section 2.1.5.

As the theoretical foundations for the convergence of iteration methods are already

given by the Banach �xed-point Theorem, the question that now arises: How can we �nd

appropriate iteration methods for solving linear systems of equations?

THE CLASSICAL ITERATION METHODS. For the following discussion, letA be a non-singular,

that is, an invertible, (n×n)-matrix with coe�cients from R, and let b be a n-dimensional

vector from Rn. The linear system of equations of type

Ax = b, (2.480)

can then be transformed into an iteration method by using any arbitrary invertible matrix

B via

Bx+ (A−B)x = b (2.481)

Bx = (B−A)x+ b (2.482)

x = B−1(B−A)x+B−1b (2.483)

x = (I−B−1A)x+B−1b. (2.484)

Choosing

Tx
def
= (I−B−1A)x+B−1b, (2.485)

then Equation (2.484) can be considered as a recurrence equation of the form (2.479) and

for solving the equation, we can construct the following iteration method:

x(k+1) def
= Tx(k) (2.486)

= (I−B−1A)x(k) +B−1b, k ≥ 0 (2.487)

where x(0) = (x01, . . . , x
0
n) is any arbitrary so-called starting vector.
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REMARK 2.57 From numerical analysis it is also known that the starting vector x(0)

can inuence the rate of convergence, that is, a starting vector close to the �nal

solution will require fewer iterations. If there is no information available for the

choice on an initial guess, x(0) can easily be chosen as a vector of zeros.

REMARK 2.58 As we have seen at the beginning of this section, the choice of any

arbitrary invertible matrix B leads to an iteration method. Such an iteration method

becomes even more e�cient, the better it satis�es the following conditions:

i) The system from (2.487) can easily be evaluated for computing x(k+1), and

ii) the norm ‖A‖ of the operator A is small.

REMARK 2.59 (Used Notation in Iteration Methods) All classical iteration methods gen-

erate sequences of vectors from Rn. Since they generate a new iterate x(k+1) ∈ Rn
from an already computed vector x(k) due to the Formula (2.487) in one iteration|

we also often say in an iteration cycle|such an iteration requires the computation

of all components of x(k+1). So, a complete iteration step of an iteration method

consists of n steps for computing the single components of the vector x(k+1).

Now, iterative methods start with a guess x(0) for the solution. By repeated, prefer-

ably inexpensive, and e�cient computation of the following members of the sequence x(k),

the method then drives the original guess to a better approximate. If this approximate is

close to the exact solution, then we call the procedure convergent. But how can we specify

an approximate, if the exact solution is unknown?

Now, due to

Ax(k) −Ax = A(x(k) − x), (2.488)

the error e(k) between the exact solution x and the result from the kth-step of an iteration

method, x(k), can be speci�ed as:

e(k)
def
= x(k) − x. (2.489)

Since the exact solution x is not known, the error e(k) cannot be quanti�ed directly.

To make a statement about the quality of the approximate x(k), we have to use another

measure, the residual r(k), already known from the discussion of the Galerkin method.Residual (144)

The residual r(k) is de�ned by:

r(k)
def
= Ae(k) (2.490)

= Ax(k) −Ax (2.491)

= Ax(k) − b. (2.492)

It should be clear, that, if the residual is zero, then the approximate x(k) is correct

and the error is zero. Unlike the error, the residual is a quantity that can be directly
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measured. Thus, the essence behind any iterative method is to compute a more accurate

iterate x(k+1) and residual r(k+1), and to replace the last computed approximate x(k) and

residual r(k) by these new values.

We will now introduce the most important iteration methods resulting from the vary-

ing choice of the matrix B. The idea behind these methods is, that at each step of the

procedure one component of the residual vector will be forced to be zero, that is, if the

ith component of the iterate x(k) will be changed then we expect that this change leads to

r
(k+1)
i = 0. Even if this requirement can lead to an increase of other components of r(k),

we hope that a complete iteration cycle leads to a better approximate x(k+1). Since ad-

justing a component of an approximate so that the associated residual goes to zero is called

relaxing the component, iterative methods of this type are also often called relaxation

methods.

For the following, let us assume, that the matrixA can be decomposed in the following

way

A = D−U− L, (2.493)

where

D = (aii)1≤i≤n =


a11 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 ann

 (2.494)

is a diagonal matrix consisting of the diagonal elements of A,

L = (−aij)1≤j<i≤n =


0 . . . . . . 0

−a21
. . .

...
...

. . .
. . . 0

−an1 . . . −ann−1 0

 (2.495)

is a lower triangle matrix, consisting of the reverse elements below the diagonal of A, and

U = (−aij)1≤i<j≤n =


0 −a12 . . . −a1n
...

. . .
. . .

...
...

. . . −an−1n
0 . . . . . . 0

 (2.496)

are the reverse elements of the remaining upper triangle matrix.

THE JACOBI ITERATION. The Jacobi iteration method is based on the choice

B = D, (2.497)
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that is, we set:

x = (I−D−1A)x+D−1b (2.498)

= (I−D−1(D−U− L))x+D−1b (2.499)

= D−1(U+ L)x+D−1b (2.500)

= D−1(b+ (U+ L)x). (2.501)

As D is a diagonal matrix, the coe�cients of D−1 are the reciprocals of D and the

ith component of x can easily be computed by multiplying the vectors (b + (U + L)x)

with 1
aii

. Then, the ith component of the new approximate x(k+1) corresponds to

xi
(k+1) =

1

aii

bi − n∑
j=1
j6=i

aijx
(k)
j

 , (2.502)

for k ≥ 0 and 1 ≤ i ≤ n.
This means: Computing one element of the new iterate x(k+1) from the previous

approximate x(k) requires the evaluation of Formula (2.502). Since the iterate x(k) is a

n-dimensional vector, n steps of the Jacobi method has to be performed to get the new

iterate x(k+1). As the components of a new iterate do not depend on each other, they

can not be computed simultaneously, that is, apart from storage requirements for the new

iterate x(k+1), we also need memory for storing x(k). The Jacobi method does not always

converge, but it is guaranteed to converge under the condition that the matrix is strictly

diagonally dominant, i.e. |aii| >
∑n

j=1
j6=i

|aij| for 1 ≤ i ≤ n, but the convergence rate may

be very slow.

Expressed in terms of the residual vector r(k+1), then the Jacobi iteration can also

be written as:

xi
(k+1) =

1

aii

bi − n∑
j=1
i 6=j

aijx
(k)
j

 (2.503)

=
1

aii

aiix
(k)
i + bi −

n∑
j=1

aijx
(k)
j︸ ︷︷ ︸

r
(k)
i

 (2.504)

= x
(k)
i +

r
(k)
i

aii
k ≥ 0, 1 ≤ i ≤ n. (2.505)

The Jacobi iteration, see Figure 2.41, works as follows: First, a starting vector x(0) =

0 is created. Then, if the error in the solution is not low enough, the residual vector r(k)
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JACOBI ITERATION {

∀ x
(0)
i ∈ x(0) do {

x
(0)
i = 0

}
while (not converged) {

r(k) = b−Ax(k)

∀ x
(k+1)
i ∈ x(k+1) do {

x
(k+1)
i = x

(k)
i +

r
(k)
i

aii

}
}

FIGURE 2.41: JACOBI ITERATION.

must be computed and for each component x
(k)
i , the correction factor

r
(k)
i

aii
is added to

x
(k)
i . This brings the associated residual component r

(k+1)
i to zero, as it holds:

r
(k+1)
i = bi −

n∑
j=1

aijx
(k+1)
i (2.506)

(2.505)
= bi −

n∑
j=1
i 6=j

aijx
(k)
i − aii

(
x
(k)
i +

r
(k)
i

aii

)
︸ ︷︷ ︸

x
(k+1)
i

(2.507)

= bi −

n∑
j=1

aijx
(k)
i︸ ︷︷ ︸

r
(k)
i

−r
(k)
i = 0, (2.508)

where we have assumed that only the the ith component of the iterate x(k+1) was used

for computing the residual-component r
(k+1)
i . Afterwards, the method returns to the top

and test for convergence again.

REMARK 2.60 Note: The Jacobi algorithm is, strictly speaking, not a relaxation method,

as always only the �rst component of the residual r(k+1) would actually result in ze-

roing when using all new computed components of an iterate x(k+1). We leave the

proof for this statement to the interested reader as an exercise.

Let us now analyze the Jacobi iteration: Computing the residual vector r(k) requires
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taking the dot product of the guess x(k) with the matrix A for each component of r(k) and

a subtraction with the associated element of the vector b. That is, a complete iteration of

the Jacobi iteration has costs O(n2).

REMARK 2.61 In Section 10.1.4.2 we will pick up the Jacoby iteration and discuss

the method when applied to the discrete radiosity equation. There we will reveal its

essential similarity to the Neumann series described in Section 1.2.1. Thus, we can

conclude that this simple algorithm will converge to the correct solution.

THE GAUSS-SEIDEL ITERATION. Often, the Jacobi iteration only converges slowly to a

desired solution, which is also the reason, why it is seldom used for solving linear systems

of equations. But the Jacobi method gives us a good understanding of how and why

iterative methods work. A more promising method for solving a linear system of equations

is the Gauss-Seidel iteration. It is based on the choice

B = D−U, (2.509)

that is, we get:

x = (I− (D−U)−1A)x+ (D−U)−1b (2.510)

= (I− (D−U)−1(D−U− L))x+ (D−U)−1b (2.511)

= (D−U)−1Lx+ (D−U)−1b (2.512)

= (D−U)−1(Lx+ b). (2.513)

The resulting iteration formula is then given by

xi
(k+1) =

1

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 , k ≥ 0, 1 ≤ i ≤ n. (2.514)

Obviously, the Gauss-Seidel method uses for generating the new iterate x(k+1) already

computed components of x(k+1), while the Jacobi method generates the new iterate x(k+1)

solely on the basis of the iterate x(k), computed in the previous iteration cycle.

Compared with the Jacobi iteration, the Gauss-Seidel method does not require du-

plicate storage for storing the vector x(k+1), since the components of x(k+1) can be over-

written if they are computed. As each component depends on previous ones, the iterate

x(k+1) has to be computed successively. Although the Gauss-Seidel iteration does not

always converge, it is guaranteed to converge under conditions that are somewhat weaker-

|if matrix is symmetric and positive de�nite|than those for the Jacobi method. The

Gauss-Seidel iteration provides a true relaxation method that converges about twice as

fast as the Jacobi iteration scheme.
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Let us now consider the ith component of the residual in iteration cycle k, obviously,

then it holds:

r
(k→k+1)
i = bi −

i∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j . (2.515)

Using this formula in Equation (2.514), we get for the residual r
(k→k+1)
i :

x
(k+1)
i

(2.514)
=

1

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 (2.516)

=
1

aii

bi − i∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j + aiix

(k+1)
i

 (2.517)

= x
(k+1)
i +

r
(k→k+1)
i

aii
, (2.518)

that is, the ith-component of the residual r(k→k+1) will be zero.
If all residuals r

(k→k+1)
i are updated after an iteration, we can compute the iterate

x(k+1) via:

x
(k+1)
i = x

(k)
i +

r
(k→k+1)
i

aii
, for 1 ≤ i ≤ n. (2.519)

Like the Jacobi iteration, a complete iteration cycle of the Gauss-Seidel method, see

Figure 2.42, has even costs O(n2). This can easily be shown by analyzing the computation

of the residual vector or the construction of the iterate x(k+1). We leave this simple task

to the interested reader as an exercise.

CONVERGENCE OF THE CLASSICAL ITERATION METHODS. Obviously, the classical iteration

methods deliver for every starting vector x(0) a sequence (x(k))k∈N0 of vectors from Rn.
We denote an iteration method as convergent, if this sequence converges, for all starting

vectors x(0), towards the exact solution A−1b of the system.

As already mentioned in the introductory paragraph of this section, all iteration

methods of the form (2.487) are convergent, if the operator (I − B−1A) is contracting,

that is, if it holds:

‖I−B−1A‖ < 1. (2.520)

Since we are moving within the �nite dimensional space Rn, the operator (I−B−1A)

is a (n× n)-matrix, that is, the matrix is contracting if its spectral radius ρ(I −B−1A),

i.e. its largest eigenvalue, is smaller than one.

Now, numerical analysis supports with two fundamental lemmata, valid only for con-

tracting linear operators between �nite dimensional linear spaces, that make a statement

about the convergence of iterative methods:
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GAUSS-SEIDEL ITERATION {

∀ x
(0)
i ∈ x(0) do {

x
(0)
i = 0

}
while (not converged) {

∀ x
(k+1)
i ∈ x(k+1) do {

x
(k+1)
i = 1

aii

(
bi −

∑i−1
j=1 aijx

(k+1)
j −

∑n
j=i+1 aijx

k)
j

)
}

}

FIGURE 2.42: GAUSS-SEIDEL ITERATION.

LEMMA 2.3 (The Strong Row Sum Criterion) Let A be a n × n-matrix on Rn. The

classical iteration methods are convergent for all matrices A with

|aii| >

n∑
j=1
j6=i

|aij| (2.521)

for 1 ≤ i ≤ s.

PROOF 2.3 For a proof of this lemma, see [203, Stoer & Bulirsch 1978].

REMARK 2.62 (The Strong Column Sum Criterion) There exists also a Strong Column

Sum Criterion that guarantees the convergence of the matrix A. It can be formulated

as

|aii| >

n∑
i=1
i6=j

|aij| (2.522)

for 1 ≤ k ≤ s. For a proof of this statement, see [203, Stoer & Bulirsch 1978].

OVER AND UNDER RELAXATION. For accelerating the convergence behavior of an iterative

method, you can also reformulate the �xed-point form in dependence of a parameter α,

in such a way that the norm of the operator T becomes smaller than with the classical

iteration methods, described above. So, the so-called Jacobi relaxation method is given
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by:

xi
(k+1) = (1− α)x

(k)
i +

α

aii

bi − n∑
i=1
i 6=j

aijx
(k)
j

 , (2.523)

and the Gauss-Seidel relaxation method has the form:

xi
(k+1) = (1− α)x

(k)
i +

α

aii

bi − I−1∑
j=1

aijx
(k+1)
i −

n∑
j=I+1

aijx
k)
i

 (2.524)

for k ≥ 0 and 1 ≤ i ≤ n.
Depending on the choice of parameter α, we speak of over relaxation in the case,

where α is chosen greater than 1, while under relaxation corresponds a value of α less

than 1.

2.4 THE MOST IMPORTANT CONCEPTS FROM PROB-
ABILITY THEORY

As a branch of higher mathematics, probability theory deals with the description and

analysis of random processes and the features of mathematical structures conceived for

them. Although early research in the �eld of probability were not based on an axiomatic

theory in its present sense, a number of features, congruent with the intuitive concepts of

probability, were already valid for the Laplacian concept of probability, which is based

on �nite sets.

If one limits to the classical Laplace concept of probability, de�ned over a �nitely or

countably in�nite base set Ω, then we have a problem when modeling natural random

experiments, whose results represent real numbers that are contained in a given interval.

Applied to the task of solving the light transport equation, this means, that even elemen-

tary processes such as the stochastic sampling of a point within a light source for generating Section 6.5

a shadow ray|a process encountered in every Monte Carlo rendering algorithm|cannot

be modeled via the classical Laplacian concept of probability. In order to develop a suf-

�ciently versatile theory with respect to these considerations, it is therefore necessary to

incorporate uncountable base sets Ω into considerations of probability theory.

If one tries to take this na��ve path of classical probability theory, in which probability

measures are de�ned on the whole power set of Ω, one soon encounters di�culties,5 which

5If one chooses the half-open interval [0, 1) ∈ R as the basic set Ω, then there exist no probability

distribution that assigns the sets A ∈ P(Ω) and A + h
def
= {a + h|a ∈ A, a + h ∈ [0, 1)} ∈ P(Ω) the same

probabilities.



162 CHAPTER 2. MATHEMATICAL FOUNDATIONS OF REALISTIC RENDERING

can only be overcome by restricting the domain of probability measures. In so doing, great

care must be taken to ensure the existence of a su�ciently large amount of probability

distributions with additional particular characteristics to prevent the loss of too many

important events.

One way of avoiding these problems is to adopt a measure-theoretical approach based

on the concept of the σ-algebra, as developed by Kolmogorov in 1933. For developing

new and analyzing already existing concepts of probability theory in a reasonable and

feasible manner, we must therefore ourselves �rst acquaint with the fundamental concepts

of general measure and integration theory.Section 2.2

Consequently, before discussing Monte Carlo algorithms|based on probability the-Chapter 6

oretical concepts for �nding solutions of particular integrals|we precede an outline of

the most important concepts and constructions of probability theory, which we most fre-

quently encounter in the analysis of Monte Carlo algorithms. Thereby, the emphasis lies

on techniques and tools, relevant to the study of global illumination algorithms.

The present section is structured as follows: First, we introduce the concept of theSection 2.4.1

probability space as the fundamental building block of probability theory. Afterwards,

we talk about random variables and random vectors, the central point around whichSection 2.4.2

all probability theory is turning. Considered as measurable functions from a probabilitySection 2.4.3

space to a measurable space over R or Rn, random variables and random vectors imply

measures on, in particular probability measures, that describe the probability distribution

of a random variable. We will also present the concepts of the probability density and

the cumulative distribution function in the discrete and the continuous case. Based on

the construct of the random variable, we then dedicate ourselves to the notions of the

expected value and the variance of a random variable, that make statements about the

location of a probability distribution. With the concept of the conditional probability,Section 2.4.4

we present a tool that allows to determine the probability of a complex event via theSection 2.4.5

probabilities of simple events. Afterwards, we discuss the most important limit theoremsSection 2.4.6

of probability theory that makes statements about the limit behavior of a large number of

random variables and we will present, with the concepts of discrete-time Markov chain

and the discrete-time Markov process, the most important types of stochastic processes.Section 2.4.7

2.4.1 PROBABILITY SPACES

Supported by a number of examples, in the preceding section an attempt was made, to

introduce the most important concepts of measure and integration theory. Now, these

concepts are not only useful for deriving solution methods for Fredholm integral equations

of the 2nd kind, but they also play a fundamental role in probability theory. Without the

concept of the measure and the σ-algebra it is not possible to introduce the mathematicalMeasure (79)

model of the probability space, the most fundamental notion in probability theory. It isσ-algebra (828)
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the basic structure for the description and analysis of a random process and can be seen as

a mathematical model of a real-world situation where randomness plays the central role.

Since all Monte Carlo methods for solving the light transport equation need the con- Chapter 6

cepts of the probability space, the random variable, and the probability distribution, we

now focus on introducing the notion of the probability space.

Based on the concept of the measure, we introduce in this section the construct of the

probability space as a particular measure space, de�ned on a base set Ω. Furthermore,

we present a technique, which makes it possible to construct a probability space from a

given abstract measure space. This is the central idea of Monte Carlo integration, where

the domain of an integral is interpreted as the base set of an appropriate probability space.

DEFINITION 2.39 (Probability Space) Let Ω be any arbitrary set, F(Ω) a σ-algebra of σ-algebra (828)

subsets of Ω, and P a measure on F(Ω) such that Measure (79)

P(Ω) = 1, (2.525)

then we call the triple (Ω,F(Ω),P) a probability space with probability measure, in Measure Space (80)

the following referred to as P. The base set Ω is also called the sample set and the

elements of F(Ω) are also denoted as the events of Ω.

REMARK 2.63 (Probability Distribution) Note: In the following, we use the notions of

the probability measure and the probability distribution synonymously.

Dependent on the cardinality of the sample space|�nite or countably in�nite as well Countable Set (827)

as uncountably in�nite|we distinguish between two types of probability spaces: discrete Uncountabe Set (827)

probability spaces and continuous probability spaces.

DEFINITION 2.40 (Discrete Probability Space) Let Ω be a �nite or countably in�nite base Countable Set (827)

set and let P(Ω) be the power set associated with it. Furthermore, let (ωn)n∈N be P(Ω) (828)

a �nite or in�nite sequence of elements of Ω and let (pn)n∈N be a corresponding

sequence of non-negative numbers of R. De�ning a discrete measure P via: Discrete Measure (81)

P(B) def
= P

 ⋃
{ωn∈B|n∈N}

{ωn}

 (2.526)

=
∑

{ωn∈B|n∈N}

P({ωn}) (2.527)

P({ωn})=pn
=

∑
{ωn∈B|n∈N}

pn, (2.528)

where P(Ω) = 1 and B ∈ P(Ω), then the measure space (Ω,P(Ω),P) is referred to as Measure Space (80)

a discrete probability space with probability measure P.
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Let us demonstrate the modeling of discrete probability spaces by means of two simple

random experiments.

EXAMPLE 2.59 (Random Experiment of Flipping a Coin) The sample space of this random

experiment is given by Ω = {0, 1}, that is, the set Ω consists of two elements, ω1 = 0

and ω2 = 1. Obviously, we can choose the power set P(Ω), thus the set of all subsets

of Ω, as the σ-algebra of the associated measure space. De�ning a measure P via:σ-algebra (828)

P(B) =
∑
ωn∈B

P(ωn), B ∈ P(Ω), n = 1, 2 (2.529)

where P(ω1) = P(ω2) = p1 = p2 = 1
2
, then the measure space (Ω,P(Ω),P) becomes aMeasure Space (80)

discrete probability space. You can see this easily, since P satis�es the requirements

to a measure, and additionally ful�lls the normalization property, thus,Measure (79)

P(Ω) = P ({ω1,ω2}) (2.530)

= P({ω1}) + P({ω2}) (2.531)

= p1 + p2 = 1. (2.532)

EXAMPLE 2.60 (Random Experiment of Flipping a Coin s-times) For simulating the ran-

dom experiment of ipping a coin s-times, we choose a discrete probability space

(Ω,P(Ω),P), where Ω = {0, 1}s, P(Ω) is the power set of Ω and the probability dis-

tribution P is given by:

P(B) def
= P

( ⋃
ωi∈B

{ωi}

)
(2.533)

=
∑
ωi∈B

P({ωi}) (2.534)

=
∑
ωi∈B

pi, (2.535)

with P(ωi) ≡ pi = 1
2s
≥ 0 for 1 ≤ i ≤ 2s and B ∈ P(Ω).

Since the sample space Ω consist of 2s elements, where the probability of an

elementary element is 1
2s
, the measure P satis�es the normalization property of a

probability measure in other words: (Ω,P(Ω),P) is a discrete probability space.

EXAMPLE 2.61 (Modeling a Discrete Probability Space via the Dirac Measure) The Dirac

measure, introduced in Example 2.27, can be used to model a discrete probability

space in a convenient way. To show this, we suppose that a discrete probability

space (Ω,P(Ω),P) is given with Ω = {ω1,ω2, . . .} and P(ωi) = pi, i ≥ 1. Then,

the associated probability measure P can be written as an in�nite sum of the Dirac

measure δωi , that is,

P(B) =
∞∑
i=1

piδωi(B) (2.536)



SECTION 2.4. THE MOST IMPORTANT CONCEPTS FROM PROBABILITY THEORY 165

for any B ∈ P(Ω).

Probability spaces, whose underlying probability measure is a Dirac measure,

play a central role for the theoretical analysis of Monte Carlo rendering algorithms,

as we will introduce them in Chapter 9. Since all these algorithms also have to cover

lighting situations under idealized scene conditions, they also take into account light

interaction at perfectly smooth surfaces, where we have ideal specular reection and

refraction. That is, sampling techniques have to be developed which guarantee to

sample the ideal reected or the ideal refracted ray for a given incoming ray. This

can then be done via the usage of a Dirac measure.

In a later chapter we encounter again and again the random experiment of sampling Chapter 6

points or directions from sets that are subsets of Rs. Now, the cardinality of these sets

is uncountably in�nite. As we have seen when introducing the concept of the measure, Uncountability (827)

in cases where we would like to de�ne a measure on an uncountably in�nite base set, the

measure of a countably in�nite set is zero. That would mean that we choose a point or a Countability (827)

direction from a subset of Rs with probability zero, which would not be a good idea. Since

the process of sampling of points and directions over the unit sphere or subsets thereof

may be regarded as one of the cornerstones of every Monte Carlo rendering procedure we

need an extended model of a probability space: the concept of the continuous probability

space.

DEFINITION 2.41 (Continuous Probability Space) Let Ω be an uncountably in�nite set, Uncountable Set (827)

F(Ω) a σ-algebra of subsets of Ω, and P a measure on F(Ω). Then, the measure σ-algebra (828)

space (Ω,F(Ω),P) is called a continuous probability space if it holds: Measure Space (80)

P(Ω) = 1. (2.537)

As in the discrete case, let us also demonstrate the modeling of a continuous proba-

bility space using a very important example, namely the random experiment of drawing a

number from the unit interval I = [0, 1].

EXAMPLE 2.62 (Stochastic Experiment of Drawing a Number from [0, 1]) Obviously, the set

[0, 1] is uncountably in�nite with Lebesgue measure µ([0, 1]) = 1, i.e. the probability Lebesgue Measure (75)

space ([0, 1],B([0, 1]), µ) precisely describes what we mean by this experiment. Since B([0, 1]) (865)

all subintervals of [0, 1] with the same length have equal measure, the probability

measure P is spread uniformly over [0, 1], that is: The probability of drawing a number

from
(
0, 1
4

]
is the same as that of drawing a number from

(
1
4
, 1
2

]
, namely 1

4
, thus, all

intervals of the same length are equally probable, see Figure 2.43.

Contrary to the previous examples, where it was possible to ask for the probability

of an elementary event such as a head or a number, which are elements of the sample

space, this makes no sense in a continuous probability space, because all countably

in�nite, measurable sets are sets of measure zero. Measurable Set (80)
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FIGURE 2.43: DRAWING RANDOM NUMBERS FROM [0, 1] OR [0, 1]2. All shown intervals
have the same length, so, the probability of drawing a random number from one of these
intervals is the same independent on the location of an interval. The same is also true
for 2-dimensional intervals. They have the same area, thus, the probability of drawing a
random number from one of these regions is the same independent on the location of such
a 2-dimensional interval.

EXAMPLE 2.63 (The Canonical Probability Space ([0, 1]s,B([0, 1]s), µs)) Via the LebesgueLebesgue Measure (75)

measure µs the measurable space ([0, 1]s,B([0, 1]s) can be extended to the so-calledB([0, 1]) (865)

canonical probability space ([0, 1]s,B([0, 1]s), µs) since it holds:

µs ([0, 1]s) =

s∏
i=1

µ([0, 1]) = 1. (2.538)

EXAMPLE 2.64 (The Probability Space ([a, b]s,B([a, b]s), µs)) When discussing samplingSection 6.5

methods we will encounter again and again the problem of sampling a random num-

ber, not from the s-dimensional unit interval, but from the interval [a, b]s. To sample

from such an interval, a probability space ([a, b]s,B([a, b]s),P) is required, where theB([a, b]s) (865)

probability distribution is given by:

P(B)
def
=

µs(B)

µs([a, b]s)
(2.539)

=

∏s
i=1 µ(Bi)∏s

i=1 µ([ai, bi])
, (2.540)

with B = B1×. . .×Bs ∈ B([a, b]s). It is straightforward to show, that P is a probability

measure.

We will now present a technique which plays an important role in the theory of

Monte Carlo integration. Based on measure theoretical concepts it allows to construct aChapter 6
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probability space from a given measure space. This makes it possible to substitute the

measure underlying an integral by a probability measure and to represent an integral as

the stochastic expected value of a random variable de�ned on a probability space. Expected Value (196)

CONSTRUCTING A PROBABILITY SPACE FROM A GIVEN MEASURE SPACE. Let (Ω,F(Ω), ν) be Measurable Space (80)

a measure space over an uncountable base setΩ and let q be any measurable, non-negative Uncountable Set (827)

function de�ned on Ω. Now, measure theory says that it is possible to generate a new Measurable Function (98)

measure P by: Measure (79)

P(B) =
∫
B

q(x)dν(x), B ∈ F(Ω). (2.541)

To extend this new generated measure to a probability measure, the measure P must

be normalized, i.e. it must hold P(Ω) = 1. This can be obtained by multiplying the

right-hand side of Equation (2.541) with a normalization factor given by:

1∫
Ω
q(x)dν(x)

. (2.542)

Our original measure space (Ω,F(Ω), ν) then becomes a probability space (Ω,F(Ω),P)
with probability measure P de�ned by Measure Space (80)

P(B) def=
1∫

Ω
q(x)dν(x)

∫
B

q(x)dν(x). (2.543)

Let us show by means of a simple example how this technique of constructing a

probability space works for a given measure space.

EXAMPLE 2.65 Given be the measure space ([0, π],B([0, π]), µ), where B([0, π]) is the B(·) (865)

Borel σ-algebra over [0, π], µ is the Lebesgue measure on R, and q(x) = x2 is a µ (75)

non-negative, measurable function de�ned on the interval [0, π]. To construct the Measurable Function (98)

associated probability space ([0, π],B([0, π]),P), we choose the normalization factor

as:

1∫
[0,π]

x2 dµ(x)
=

1
1
3
x3
∣∣π
0

=
3

π3
, (2.544)

and de�ne the probability measure P via:

P([a, b]) def=
3

π3

∫
[a,b]

x2 dµ(x) =
3

π3
1

3
x3
∣∣b
a
=
b3 − a3

π3
(2.545)

with [a, b] ∈ B([0, π]).

Keep your eyes open for this technique; you will see it used more and more in

Monte Carlo integration. Section 6.2
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2.4.2 RANDOM VARIABLES AND DISTRIBUTION FUNCTIONS

The model of the probability space, as introduced in the previous section, is still always

very abstract and without any relation to practical problems. The question that now

arises: How can we �ll this theoretical concept with life?

For that, we will map the base set Ω of a probability space (Ω,F(Ω),P) into the

Euclidean space R, in such a way, that we can also de�ne events and probabilities in R,
this space is well known to us. Under the condition that these mappings are structure-

preserving, we can them de�ne as random variables which assign any event from F(Ω) a

real number. So, random variables can be used to describe absolute or relative frequencies,

lengths, or weights and so on. As they allow to transfer the concept of probability to the

Borel sets on R, the construct of the random variable extends the Euclidean space R to

a probability space, where the whole mathematical framework of di�erential and integral

calculus is available. The construct of the random variable is the central point around

which all probability theory is turning. Thus, without any quali�cation we can say that

probability theory is the study of random variables as well as that of functions of random

variables. Also, let us introduce them now.

Based on the probability space (Ω,F(Ω),P) we introduce in this section the concept

of the random variable as a measurable function into the measurable space (R,B(R)).Random Variable (168)

We illustrate the di�erence between discrete and continuous random variables and showMeasurable Space (80)

that it is possible to describe the probability distribution of a random variable by means

of a so-called cumulative distribution function. With uniform sampling of points fromCDF (171)

the unit interval and directions from the hemisphere we already presented �rst examples

of a series of sampling techniques used in Monte Carlo rendering algorithms.Section 6.5

RANDOM VARIABLES AND FUNCTIONS OF RANDOM VARIABLES. Let us consider once more

the random experiment of ipping a coin s-times from Example 2.60. It can be modeled

by the probability space ({0, 1}s,P({0, 1}s),P). The outcomes of this random experimentProbability Space (163)

can now be seen from di�erent angles. So for example, we can be interested in the number

of heads that are ipped, thus 0, 1, 2, . . . , s or perhaps in the outcome of only the �rst,

second or third ip, thus 0 and 1. This implies that a new sample space, the set {0, 1, 2, . . .}

or {0, 1}, now forms the basis of our random experiment. The question that arises is: How

can we deduce from our original probability measure P a probability measure for the new

sample space? The idea behind it is the concept of the random variable.

DEFINITION 2.42 (Random Variable) Let (Ω,F(Ω),P) be a probability space and X aProbability Space (163)

measurable functionMeasurable Function (98)

X : (Ω,F(Ω)) −→ (R,B(R)) (2.546)

with

Ω 3 ω 7−→ X(ω) ∈ R, (2.547)
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FIGURE 2.44: DEFINITION OF A RANDOM VARIABLE. Defined as a measurable function
between the measurable spaces (Ω,F(Ω)) and (R,B(R)), a random variable X is a mapping
that assigns any element of F(Ω) an element of the σ-algebra B(R).

then X is called a random variable, see Figure 2.44.

REMARK 2.64 (Discrete and Continuous Random Variables) In probability theory it is dis-

tinguished between discrete and continuous random variables. Thus, a random vari-

able X is called a discrete random variable, if its sample space Ω is �nite or countably Countable Set (827)

in�nite, if Ω is uncountably in�nite, X is called a continuous random variable. Uncountable Set (827)

REMARK 2.65 (Functions of Random Variables) Since the composition of measurable

functions is also measurable, it is clear that with X the composition f ◦ X, where
f : R→ R is a measurable function, will also be a random variable on (Ω,F(Ω),P). Measurable Function (98)

CUMULATIVE DISTRIBUTION FUNCTION OF A RANDOM VARIABLE. Now, as a measurable

function, a random variable can imply a measure onto the Borel σ-algebra B(R), the Borel σ-algebra (865)

so-called image measure PX. The image measure is de�ned as follows: Measure (79)

DEFINITION 2.43 (The Image Measure of a Random Variable) Let (Ω,F(Ω),P) be a probabi-
lity space and let X be a random variable de�ned on (Ω,F(Ω)) with values in (R,B(R)). Probability Space (163)

Then, the random variable X implies a measure PX:

PX : (R,B(R))→ [0, 1] (2.548)
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the so-called image measure. It is de�ned via the probability measure P by:

PX(B)
def
=

(
P ◦ X−1

)
(B), (2.549)

= P
(
X−1(B)

)
(2.550)

= P ({ω ∈ Ω |X(ω) ∈ B}) (2.551)

for any B ∈ B(R).
PX is also denoted as the probability distribution of the random variable X. It

completely characterizes the random variable X in the sense that it provides the

probabilities of all events from B(R). It should also be clear that with the imageEvent (163)

measure PX the triple (R,B(R),PX) becomes a probability space.

REMARK 2.66 Note: PX is a probability distribution over the observation space (R,B(R))
instead of (Ω,F(Ω)).

REMARK 2.67 From Remark 2.65 it is known that the composition of a random variable

X with a measurable function f is also a random variable. Thus, a non-negativeMeasurable Function (98)

function f de�ned on the measurable space (R,B(R)) can be used to construct aMeasurable Space (80)

probability distribution for the random variable f ◦ X, if we de�ne:

Pf◦X(B)
def
=

(
P ◦ (f ◦ X)−1

)
(B) (2.552)

= P
(
X−1

(
f−1(B)

))
(2.553)

= P {ω ∈ Ω | f(X(ω)) ∈ B} (2.554)

with B ∈ B(R).

As we know from the previous section to build a probability measure on a probability

space (Ω,F(Ω),P) we have to assign a probability to all events from F(Ω). In the case

of a �nite or a countably in�nite base set Ω, this makes no problems, since we have to

determine the probabilities for all elementary events from F(Ω). But in the case where Ω

is an interval or an uncountably in�nite set, we have even to determine the probabilities

of all elements of F(Ω). Now, since this set is uncountably in�nite, this is an impossible

task. But via the probability space (R,B(R),PX), induced by a random variable X this

task can easily be accomplished. Here it is su�cient to specify a function, the cumulative

distribution function of a random variable, that describes the probabilities of all of these

events. That is, if we know this function, then we know the probability of any interval

and also the probability of any Borel set. As already mentioned above, the introduction of

the concept of the random variable allows us to leave the abstract probability space and

to move ourself within the well-known Euclidean space R.
Based on the image measure PX, we now introduce the concept of the cumulative

distribution function of a random variable, that describes the probability distribution

of a random variable, or in the language of measure theory, the probability measure on

the σ-algebra B(R).
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DEFINITION 2.44 (Cumulative Distribution Function) Let (Ω,F(Ω),P) be a probability Probability Space (163)

space and let X be a random variable de�ned on (Ω,F(Ω)) with values in (R,B(R)).
The non-descending, right continuous function FX B(R) (865)

FX : R −→ [0, 1] (2.555)

de�ned by:

FX(x)
def
= PX((−∞, x]) (2.556)

(2.551)
= P ({ω ∈ Ω |X(ω) ≤ x}) (2.557)

with the properties

lim
x→−∞ FX(x) = 0 and lim

x→∞ FX(x) = 1 (2.558)

is denoted as the cumulative distribution function of X or briey the distribution func-

tion of X, abbreviated also simply the CDF of X. Obviously, FX describes the probabil-

ity distribution of the random variable X, i.e. FX(x) is interpreted as the probability

that X takes on a value less than or equal to x.

As seen from the de�nition above, the cumulative distribution function is based on

the image measure induced by the involved random variable. Because this measure can be Image Measure (170)

discrete or continuous, we need to de�ne also two di�erent types of CDFs. A cumulative

distribution function for a discrete random variable, as well as a cumulative distribution

function for the continuous case of a random variable.

CUMULATIVE DISTRIBUTION FUNCTION OF A DISCRETE RANDOM VARIABLE. For a discrete

random variable, the above introduced image measure is de�ned as a measurable function

from a discrete probability space (Ω,F(Ω),P) to the measurable space (R,B(R)). This

means that a subset A ∈ F(Ω) is mapped to a null set A′ ∈ B(R) with measure PX(A′) = 0.
To handle this drawback, we adapt the above presented image measure to the discrete Measurable Space (80)

case of a random variable by introducing a so-called probability mass function, which Null Set (80)

determines completely the properties of a discrete random variable.

DEFINITION 2.45 (Probability Mass Function) Let (Ω,F(Ω),P) be a discrete probability Probability Space (163)

space and let X be a discrete random variable de�ned on (Ω,F(Ω)) with values in the

measurable space (R,B(R)), where Ω is a �nite or countably in�nite set. Then, the Measurable Space (80)

probability mass function pX of the random variable X is de�ned as:

pX(x)
def
= PX(X = x) (2.559)

for all x ∈ Im(X). Since pX is de�ned via the probability measure PX, a probability

mass function pX satis�es the following conditions
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FIGURE 2.45: PROBABILITY MASS FUNCTION. Based on the image measure PX, a PMF
satisfies the non-negativity property of a measure, i.e. pX(x) ≥ 0,∀ x ∈ Im(X), illustrated in
the left image, and the normalization property of a probability measure,

∑
x∈Im(X)

pX(x) =

1, shown in the right image.

i) pX(x) ≥ 0

ii)
∑
x∈Im(X) pX(x) = 1

for all x from the image area of X, see Figure 2.45.

REMARK 2.68 Due to the de�nition of the image measure PX, a probability mass func-Image Measure (170)

tion can also be expressed in terms of the probability measure P, that is, we can also

use the formula

pX(x)
def
= P({ω ∈ Ω |X(ω) = x}) (2.560)

for computing the probability distribution of a discrete random variable. This means,

that a PMF can be evaluated on two di�erent ways: via the probability measure P
from (Ω,F(Ω),P) or via the image measure PX of the probability space (R,B(R),PX).

Let us now illustrate the concept of a probability mass function by means of a simple

example.

EXAMPLE 2.66 (Probability Mass Function Induced by a Discrete Random Variable) Let

us consider once more our random experiment of ipping a coin s-times, where we

assume s = 3. If we are only interested in the number of heads, then the associated

random variable must be de�ned as:

X : ({0, 1}3,P({0, 1}3)) −→ (R,B(R)) (2.561)
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with

Ω 3 ω 7−→ X(ω)
def
= #1 ′s in ω, (2.562)

i.e. we count the number of one's in an elementary event.

Obviously, the discrete random variable X is a measurable function as it holds Measurable Function (98)

{
X < a

}
=


∅ if a ≤ 0
{000} if 0 < a ≤ 1
{001, 010, 100} if 1 < a ≤ 2
{011, 101, 110} if 2 < a ≤ 3
Ω if 3 < a.

(2.563)

Due to Relation (2.559), the probability PX(X = 1) can be interpreted as the

occurrence of exactly a single one, whereas this event can be computed with respect

to the probability measure of ({0, 1}3,P({0, 1}3),P), that is,

PX(X = 1)
(2.549)
=

(
P ◦ X−1

)
(X = 1) (2.564)

= P
(
X−1(X = 1)

)
. (2.565)

Now, X−1(X = 1) is the set of elementary events from {0, 1}3 which are mapped

by X onto the outcomes 0 and 1. Mathematically, this can be expressed as:

X−1(X = 1) = {ω |X(ω) = 1} = {001, 010, 100}. (2.566)

Combining these results leads to:

PX(X = 1) = P ({001, 010, 100}) (2.567)

= P
(
X−1(X = 1)

)
(2.568)

= P({001, 010, 100})︸ ︷︷ ︸
3
8

. (2.569)

Let us now show, by means of another interesting example from computer graphics,

how we can construct a probability mass function.

EXAMPLE 2.67 Assume, we have to render a scene, which is illuminated by more than

a single light source. Then, a rendering algorithms can choose samples from all Chapter 8

of these light sources. In particular, it must take more samples from light sources

that contribute more light to the scene than others, that is, we must construct a

probability distribution over all existing light sources depending on the power of the Radiant Power (249)

light sources.

This situation can now be modeled by a probability space (Ω,P(Ω),P), whereas
Ω = {ω1, . . . ,ωn} denotes the set of our light sources, each equipped with a �xed
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power of light, Φ(i), 1 ≤ i ≤ n. We then construct a random variable X de�ned on

(Ω,P(Ω)) via

X(ωi) = i, 1 ≤ i ≤ n, (2.570)

with

pX(i) = PX(X = i) (2.571)

def
=

Φ(X(ωi))∑n
k=1Φ(X(ωk))

. (2.572)

It should be clear that pX(i) corresponds to the probability for sampling from

light source ωi. Provided that all light sources contribute the same amount of powerSection 9.1.2

to the scene then it holds:

pX(i) = PX(X = i) (2.573)

=
Φ(X(ωi))∑n
k=1Φ(X(ωk))

=
1

n
, (2.574)

that is, all light sources are drawn with the same probability.

Based on the probability mass function, we are now ready to de�ne the cumulative

distribution function of a discrete random variable. It makes a statement about the

probability that the value of a random variable is less than or equal to some given real

number.

DEFINITION 2.46 (Cumulative Distribution Function of a Discrete Random Variable) Let

X be a discrete random variable on the discrete probability space (Ω,F(Ω),P) withProbability Space (163)

probability mass function pX. Due to De�nition 2.44 the cumulative distribution

function FX of the discrete random variable X can be written as:

FX(x)
def
= PX(X ≤ x) (2.575)

=
∑
ξ≤x

PX(X = ξ) (2.576)

(2.559)
=

∑
ξ≤x

pX(ξ). (2.577)

See Figure 2.46 for an illustration of the CDF of a discrete random variable.

REMARK 2.69 Due to the de�nition of the image measure PX, the discrete cumulativeImage Measure (170)

distribution function FX can also be expressed in terms of the probability measure P,
that is, we can also use the formula

FX(x)
(2.557)
=

∑
ξ≤x

P ({ω ∈ Ω |X(ω) = ξ}) (2.578)

= P ({ω ∈ Ω |X(ω) ≤ x}) (2.579)
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FIGURE 2.46: CUMULATIVE DISTRIBUTION FUNCTION OF A DISCRETE RANDOM
VARIABLE. As you can easily see from the image, the illustrated CDF satisfies the con-
dition requires to a CDF from Definition 2.44. Thus, the image range of the function lies
within the interval [0, 1] and you can detect the stepwise increasing of function values from
the graph. The function also satisfies the limiting properties required to a CDF, namely
FX(x) → 0 for sufficiently small values and FX(x) → 1 for sufficiently large arguments.
Obviously, FX is a monotonically increasing step function. It has its jumps at those ordi-
nates xi which are the values of the random variable X. At these positions, FX is right
continuous. The magnitudes of the jumps are given by the probability distributions of the
events taking the values of xi. Due to this observation it is possible to compute the prob-
ability that the random variable X lies between two values, e.g., 1 and 3 by computing
PX(1.25 < X ≤ 3) = FX(3) − FX(1.25) = 1

2
.

with x ∈ R. This means, that the CDF of a discrete random variable can be evaluated

on two di�erent ways: via the probability measure P from (Ω,F(Ω),P) or via the

image measure PX of the probability space (R,B(R),PX).

EXAMPLE 2.68 (Cumulative Distribution Function of a Discrete Random Variable) Let us

consider once more our random experiment of ipping a coin 3-times. Based on the

probability space ({0, 1}3,P({0, 1}3),P), e.g. FX(1.7) can be interpreted as the probability Probability Space (163)

that no more than a single one occurs, that is,

FX(1.7)
(2.575)
=

∑
ξ≤1.7

PX(X = ξ) (2.580)

ξ∈{0,1}
= PX(X = 0) + PX(X = 1) (2.581)

ξ∈{0,1}
= P({ω |X(ω) = 0}) + P({ω |X(ω) = 1}) (2.582)

= P({000}) + P({001, 010, 100}) (2.583)

P({ω})= 1
8=

1

2
. (2.584)

CUMULATIVE DISTRIBUTION FUNCTION OF A CONTINUOUS RANDOM VARIABLE. From mea-

sure theory we know that any �nite or countably in�nite set is a null set, i.e. it has measure Countable Set (827)
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zero. Transferred to probability spaces, constructed over uncountably in�nite base sets, Null Set (80)

this means that events, which can occur surely, would be assigned the probability zero.Uncountable Set (827)

This is one of the reasons why we cannot de�ne the distribution function of a continuous

random variable in the same way as we did it with the cumulative distribution functionCDF (174)

of a discrete random variable. Here, we need a further mathematical concept that enables

us to de�ne such a CDF: the construct of the probability density function.

DEFINITION 2.47 (Probability Density Function) Let (Ω,F(Ω),P) be a probability space,Probability Space (163)

X a continuous random variable de�ned on (Ω,F(Ω)), and (R,B(R)) a measurable

space, with two measures PX and µ, where µ is the Lebesgue measure on the real

axis. As a consequence of the Radon-Nikod�ym Theorem6, we can construct a non-Measurable Space (80)

negative, measurable function pX via the Radon-Nikod�ym derivative with respect toMeasurable Function (98)

the measures PX and µ, by:

pX =
dPX
dµ

. (2.585)

The function pX is called the probability density function with respect to the

random variable X, most often also simply denoted as the density, or the PDF of the

random variable X. Since pX is de�ned via the probability measure PX, a probabilityImage Measure (170)

density function pX satis�es the following conditions

i) pX(x) ≥ 0

ii)
∫
(−∞,∞)

pX(x)dµ(x) = 1

for all x ∈ (−∞,∞), see Figure 2.47

REMARK 2.70 As a consequence from De�nition 2.47 we can derive the following useful

relation ∫
B

pX(x)dµ(x) =

∫
B

dPX(x) = PX(B) ∀B ∈ B(R). (2.586)

We will now present two simple probability density functions, which play an import

role in our further considerations, and which we use in the following again and again.

EXAMPLE 2.69 (Uniformly Distributed Random Variables on R) We are interested in

uniformly distributed random numbers from a �nite interval of the real number axis.

How we have to de�ne the associated PDF?

6Assuming (R,R, ν) to be a measure space with a σ-�nite measure ν and ν ′ an absolute continuous
measure ν, then there exist an|apart from a zero set|unique determined integrable function f : R −→ R
with ν ′(B) =

∫
B
f(x)dν(x), ∀B ∈ R.
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FIGURE 2.47: PROBABILITY DENSITY FUNCTION. Based on the image measure PX,
a PDF satisfies the non-negativity property of a measure, i.e. pX(x) ≥ 0,∀ x ∈ Im(X),
illustrated in the left image, and the normalization property of a probability measure,∫
(−∞,∞)

pX(x)dµ(x) = 1, shown in the right image.

For that purpose, let ([0, 1],B([0, 1]), µ) be the canonical probability space, where

the probability measure P corresponds to the Lebesgue measure µ.

i) A random variable X de�ned by X(ω) = ω maps the base set [0, 1] of the

probability space ([0, 1],B([0, 1]), µ) onto [0, 1] ∈ B([0, 1]). Then, the image measure

on the measurable space (R,B(R)) induced by X should be de�ned as: Measurable Space (80)

PX(B)
(2.549)
= P

(
X−1(B)

)︸ ︷︷ ︸
B∩[0,1]

(2.587)

P=µ
= µ(B ∩ [0, 1]) (2.588)

=

∫
B∩[0,1]

dµ(x) (2.589)

for B ∈ B(R). Due to the normalization property of a PDF, we then get:

PX((−∞,∞))
(2.586)
=

∫
(−∞,∞)

pX(x)dµ(x) (2.590)

=

∫
(−∞,∞)∩[0,1]

dµ(x) = 1, (2.591)

from which we conclude that the associated probability density function must be de-

�ned as:

pX(x) =

{
1 : for x ∈ [0, 1]

0 : otherwise.
(2.592)

ii) Let us now consider the random variable Y ≡ f(X) = a+X(b−a) with a, b ∈ R,
then the image of the base set [0, 1] of the probability space ([0, 1],B([0, 1]), µ) under
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FIGURE 2.48: PROBABILITY DENSITY FUNCTIONS FOR UNIFORM SAMPLING FINITE
INTERVALS FROM R. Left, we have a PDF pX(x) = 1 associated with the canonical
probability space ([0, 1],B([0, 1]), µ), right, the PDF pY(y) = 1

b−a
associated with the

canonical probability space ([a, b],B([a, b]), µ).

the mapping Y is the interval [a, b] ∈ B([a, b]). With the same arguments from above,

the image measure PY on the probability space (R,B(R),PY) must be given by:Image Measure (170)

PY(B)
def
= µ(B ∩ [f(0), f(1)]) (2.593)

f(X)=a+X(b−a)
= µ(B ∩ [a, b]) (2.594)

=

∫
B∩[a,b]

dµ(y) (2.595)

for B ∈ B(R), that is, the associated probability density function pY is given by:

pY(y) =

{
1
b−a : for y ∈ [a, b]

0 : otherwise
(2.596)

as it holds: ∫
(−∞,∞)

pY(y)dµ(y)
(2.596)
=

∫
[a,b]

pY(y)dµ(y) (2.597)

=
1

b− a

∫
[a,b]

dµ(y) (2.598)

=
1

b− a
y
∣∣b
a
= 1. (2.599)

For an illustration of pX and pY, see Figure 2.48.

REMARK 2.71 (A Method for Constructing Probability Density Functions) Let (R,B(R), µ)
be a measure space and q a measurable, non-negative function de�ned on a subset BMeasure Space (80)

of R. Then, the function p de�ned by:Measurable Function (98)
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p(x)
def
=

q(x)∫
(−∞,∞)

q(x)dµ(x)
(2.600)

is a probability density function with respect to the Lebesgue measure µ. Measure (79)

DEFINITION 2.48 (Cumulative Distribution Function of a Continuous Random Variable) Let

us assume X be a continuous random variable de�ned on the continuous probability Probability Space (163)

space (Ω,F(Ω),P) with associated probability density function pX. Due to De�nition

2.44 the following holds to the cumulative distribution function FX of the random

variable X

FX(x)
(2.575)
= PX((−∞, x]) (2.601)

=

∫
(−∞,x] dPX(ξ) (2.602)

(2.585)
=

∫
(−∞,x] pX(ξ)dµ(ξ), (2.603)

where µ is the Lebesgue integral on R. That is, if the measure P is µ-di�erentiable

with Radon-Nikod�ym derivative pX, then FX can be computed by integrating pX with

respect to measure µ over the interval (−∞, x].
For an illustration of a CDF associated with a continuous random variable, see

Figure 2.49

REMARK 2.72 Due to the de�nition of the image measure PX, the continuous cumula- Image Measure (170)

tive distribution function FX can also be expressed in terms of the probability measure

P, that is, we can also use the formula

FX(x)
(2.575)
= PX((−∞, x]) (2.604)

(2.551)
= P

(
X−1((−∞, x])) (2.605)

(2.557)
=

∫
ω≤X−1(−∞,x] dP(ω). (2.606)

with x ∈ R. This means, that the CDF of a continuous random variable can be

evaluated on two di�erent ways: via the probability measure P from (Ω,F(Ω),P) or
via the image measure PX of the probability space (R,B(R),PX).

Based on the de�nition of the distribution function FX we can now de�ne the proba-

bility that the value of a continuous random variable X lies between two points a, b ∈ R
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FIGURE 2.49: CUMULATIVE DISTRIBUTION FUNCTION OF A CONTINUOUS RANDOM
VARIABLE. A PDF with associated CDF. As you can easily see from the image, the illus-
trated CDF satisfies the condition required to a CDF from Definition 2.44. So, the image
range of the function corresponds to the interval [0, 1] and you can detect the continuous
increasing of function values from the graph. The function also satisfies the limiting prop-
erties required to a CDF, namely FX(x)→ 0 for sufficiently small values and FX(x)→ 1 for
sufficiently large argumets.

by:

prob(a < X ≤ b) def
= PX((a, b]) (2.607)

=

∫
(a,b]

dPX(x) (2.608)

=

∫
(−∞,b] dPX(x) −

∫
(−∞,a] dPX(x) (2.609)

= FX(b) − FX(a). (2.610)

Now, we demonstrate these newly de�ned concepts with the help of a simple example:

the uniform distribution of a random variable on the interval [a, b].

EXAMPLE 2.70 (CDF of a Uniformly Distributed Random Variable on [a, b]) Let X beSection 6.5

a random variable de�ned on the probability space (Ω,F(Ω),P), whose values are

uniformly distributed within the interval [a, b] ∈ B(R). Since the values of X are

uniformly distributed within [a, b], we call a random variable of this type a uniformly

distributed random variable.

As we know from part ii) of Example 2.69, the probability density function of a

uniformly distributed random variable X on the interval [a, b] with a, b ∈ R is given

by:

pX(x) =

{
1
b−a : for x ∈ [a, b]

0 : otherwise.
(2.611)
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FIGURE 2.50: UNIFORM DISTRIBUTION ON [a, b]. Based on the probability space
([a, b],B([a, b]),P), on the left-hand side the plot of the PDF pX(x) =

1
b−a

and besides the

corresponding CDF FX(x) =
x−a
b−a

.

In terms of the probability density function pX the associated cumulative distri-

bution function FX can then be written as:

FX(x) =

∫
[a,x]

pX(ξ)dµ(ξ) (2.612)

=
1

b− a

∫
[a,x]

dµ(ξ) (2.613)

=
x− a

b− a
, (2.614)

see Figure 2.50.

Based on this CDF, the probability that a point is drawn in an interval (α,β] ⊂
[a, b] can be computed via

prob (α < X ≤ β) =
1

b− a

∫
(α,β]

dµ(x) (2.615)

=
β− α

b− a
(2.616)

=
µ([α,β])

µ([a, b])
. (2.617)

We will obtain the same result if we choose the following approach

(α,β] = (−∞, β] \ (−∞, α] (2.618)
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FIGURE 2.51: IMPORTANT PDFS AND CDFS. Left, PDF and CDF of a uniformly dis-
tributed random variable, in the center, the PDF and CDF of a normally distributed random
variable, and right, the PDF and CDF of an exponentially distributed random variable.

and then compute the corresponding probability via

prob (α < X ≤ β) = PX(α,β) (2.619)

= PX((−∞, β]) − PX((−∞, α]) (2.620)

= FX(β) − FX(α) (2.621)

=
β

b− a
−

α

b− a
(2.622)

=
β− α

(b− a
(2.623)

=
µ([α,β])

µ([a, b])
. (2.624)

REMARK 2.73 (PDF as the Derivative of the CDF, Univariate Case) Setting our focus once

more on the Relations (2.604) - (2.603), then, due to the Fundamental Theorem of

Calculus, we get for the representation of the density pX:[174, Rudin 1998]

pX(x) =
dFX(x)

dµ(x)
, (2.625)

i.e. the probability density function pX is the derivative of the cumulative distribution

function of a continuous random variable with respect to the Lebesgue measure.
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2.4.3 RANDOM VECTORS AND DISTRIBUTION FUNCTIONS

As we will see, Monte Carlo integration is the preferred method for integrating functions Chapter 6

over high-dimensional domains. It requires sampling strategies on probability spaces which Section 6.5

are composed as products of already well-known probability spaces, such as for example: Probability Space (163)

the drawing of random numbers from the unit square or the unit cube, the hemisphere or

the unit sphere. Hence, it makes sense to extend the concepts of the random variable and Random Variable (168)

the distribution function in particular to product probability spaces. Product Measure Space (81)

Based on the probability space (Ω,F,P) we continue our excursion into probability Probability Space (163)

theory. Thus, we introduce the construct of the random vector as a measurable function Measurable Function (98)

of the probability space (Ω,F,P) into the measurable product space (Rs,B(Rs)). Inter-

preting the existence and uniqueness of a measurable function de�ned on Ω as a random

vector, we get the s-dimensional probability density as a consequence of the Radon-

Nikod�ym Theorem. We then de�ne the concept of the probability distribution function Probability Density Function (189)

of a random vector, for the discrete and the continuous case, and show how it can be used Probability Distribution (163)

to choose random points from the unit interval [0, 1]s, as well as the unit sphere and the

upper hemisphere.

RANDOM VECTORS. In analogy to the concept of the random variable from the previous

section, we present now the concept of the random vector as a measurable function de�ned

on a probability space with values in the s-dimensional Euclidean space Rs.

DEFINITION 2.49 (Random Vector) Let (Ω,F(Ω),P) be a probability space and let Xi be Probability Space (163)

measurable functions Measurable Function (98)

Xi : (Ω,F(Ω)) −→ (R,B(R)) (2.626)

with

Ω 3 ω 7−→ Xi(ω) ∈ R, (2.627)

then X = (X1, . . . , Xs) is called a multivariate or an s-dimensional random variable in

the following often also simply denoted as a random vector.

REMARK 2.74 As is easily seen, a random vector can also be interpreted as a measur-

able function Measurable Function (98)

X : (Ω,F(Ω)) −→ (Rs,B(Rs)) (2.628)

with

Ω 3 ω 7−→ X(ω) = (X1(ω), . . . , Xs(ω)) ∈ Rs (2.629)

de�ned on the probability space (Ω,F(Ω),P).



184 CHAPTER 2. MATHEMATICAL FOUNDATIONS OF REALISTIC RENDERING

THE CUMULATIVE DISTRIBUTION FUNCTION OF A RANDOM VECTOR. In accordance with

the de�nition of the image measure of a random variable, now, we are able to de�ne the

image measure PX induced by the random vector X.Image Measure (170)

DEFINITION 2.50 (The Joint Image Measure PX of a Random Vector X) Let (Ω,F(Ω),P)
be a probability space and let X be a random vector from (Ω,F(Ω)) into (Rs,B(Rs)).Probability Space (163)

Then, X implies a measure PX:

PX : (Rs,B(Rs))→ [0, 1] (2.630)

on the measurable space (Rs,B(Rs)), which we denote as the joint image measure ofMeasurable Space (80)

the random vector X. Based on the concept of a probability measure, PX is de�nedProbability Measure (80)

by:

PX(B)
def
=

(
P ◦X−1

)
(B), (2.631)

= P ({ω ∈ Ω |X(ω) ∈ B}) (2.632)

for any B ∈ B(Rs). PX is also denoted as the joint probability distribution of the

random vector X.

REMARK 2.75 Note, that PX is a probability distribution over the observation space

(Rs,B(Rs)) instead of (Ω,F(Ω),P).

REMARK 2.76 In the following, we will often use the notion of the random vector

and the random variable synonymously if it is clear from context which of the two

concepts should be used.

Based on the joint image measure of a random vector, now, we are able to construct

the cumulative distribution function of a random vector in a similar way as we did it for

a random variable.

DEFINITION 2.51 (Joint Cumulative Distribution Function of a Random Vector) Let usProbability Space (163)

assume, that (Ω,F(Ω),P) is a probability space and X = (X1, . . . , Xn) is a measurable

function, thus a random vector from (Ω,F(Ω)) to (Rs,B(Rs)). A non-descending,Measurable Function (98)

right continuous function FX:Continuous Function (869)

FX : Rs −→ [0, 1] (2.633)

de�ned by

FX(x)
def
= PX((−∞,x]) (2.634)

= P({ω ∈ Ω |X(ω) ≤ x}) (2.635)

with (−∞,x] = (−∞, x]s and the properties

lim
x1→−∞,...,xs→−∞ FX(x1, . . . , xs) = 0 (2.636)
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as well as

lim
x1→∞,...,xs→∞ FX(x1, . . . , xs) = 1 (2.637)

is denoted as the joint cumulative distribution function of X, or briey the joint dis-

tribution function of X, abbreviated also simply as the joint CDF of X. Obviously,

FX(x) denotes the probability that the random variable X takes on a value which will

be less than or equal to x.

THE CUMULATIVE DISTRIBUTION FUNCTION OF A DISCRETE RANDOM VECTOR. As in the

univariate case, we also distinguish in the multivariate case between two di�erent types of

random vectors: discrete and continuous random vectors.

DEFINITION 2.52 (Joint Probability Mass Function of a Discrete Random Vector) Let us Discrete Probability Space (163)

assume (Ω,F(Ω),P) be a discrete probability space and X a discrete random vector Discrete Random Vector (185)

de�ned on (Ω,F(Ω)) into the measurable product space (Rs,B(Rs)). Then, we de�ne Measurable Space (80)

the joint probability mass function, pX, of the random vector X by:

pX(x) ≡ pX1,...,Xs(x1, . . . xs) (2.638)
def
= PX(X = x) (2.639)

≡ PX1,...,Xs(X1 = x1, . . . , Xs = xs) (2.640)

for all x ∈ Im(X). Since pX is de�ned via the probability measure P, a joint probability
mass function pX satis�es the following conditions:

i) pX(x) ≥ 0,

ii)
∑

x∈Im(X) pX(x) ≡
∑
x1∈Im(X1)

. . .
∑
xs∈Im(Xs)

pX1,...,Xs(x1, . . . xs) = 1

for all x = (x1, . . . , xs) from the image area of X, see Figure 2.52.

REMARK 2.77 Due to the de�nition of the image measure PX, a joint probability mass Image Measure (170)

function can also be expressed in terms of the probability measure P, that is, we can
also use the formula

pX(x)
def
= P({ω ∈ Ω |X(ω) = x}) (2.641)

= P({ω ∈ Ω |X1(ω) = x1, . . . , Xs(ω) = xs}. (2.642)

for computing the probability distribution of a discrete random variable. This means,

that a joint PMF can be evaluated on two di�erent ways: via the probability measure

P from (Ω,F(Ω),P) or via the image measure PX of the probability space (R,B(R),PX).

Now, let us illustrate the concept of a joint probability mass function by means of a

simple example.
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FIGURE 2.52: JOINT PROBABILITY MASS FUNCTION. Based on the image measure PX,
a joint PMF satisfies the non-negativity property of a measure, i.e., pX(x) ≥ 0, ∀x ∈ Im(X)
and the normalization property of a probability measure,

∑
x∈Im(X)

pX(x) = 1.

EXAMPLE 2.71 (A Joint Probability Mass Function Induced by a Discrete Random Vector)

With respect to our example of ipping a coin 3-times, let us suppose that we are

interested in the number of ones from the �rst two tosses and the number of ones

from the third toss. We can model this experiment by a random vector X = (X1, X2),

where X1 takes on the values Ω1 = {0, 1, 2} and the image range of X2 is the set

ω2 = {0, 1}, that is: X = (X1, X2) is a measurable function from probability spaceMeasurable Function (98)

(Ω,F(Ω),P) with Ω = {0, 1}3 onto (R2,B(R2)), as it holds:

{X1 < a1, X2 < a2} =



∅ if a1 ≤ 0
∅ if a2 ≤ 0
{000} if a1 ≤ 1 and a2 ≤ 1
{00}×Ω2 if a1 ≤ 1 and 1 < a2
{000}, {010}, {100} if a1 ≤ 2 and a2 ≤ 1
{00}×Ω2, {01}×Ω2, {10}×Ω2 if a1 ≤ 2 and 1 < a2
Ω1 × {0} if 2 < a1 and a2 ≤ 1
Ω1 ×Ω2 if 2 < a1 and 1 < a2.

(2.643)

Due to the de�nition of a product measure, the joint image measure PX(X1 =Product Measure (81)

1, X2 = 0)|thus, the probability that exactly a single one occurs in the two �rst tosses
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and no one occurs in the third toss|has the form

PX(X = x) = PX1,X2(X1 = 1, X2 = 0) (2.644)

= P({ω |X1(ω) = 1∧ X2(ω) = 0}) (2.645)

= P({010}, {100}) (2.646)

=
1

4
, (2.647)

where it holds (X = x) = (X1 = 1, X2 = 0).

Based on the probability mass function, we are now ready, to de�ne the cumula-

tive distribution function of a discrete random vector. It makes a statement about the

probability, that the value of a random vector is less than or equal to some real number.

DEFINITION 2.53 (Joint Cumulative Distribution Function of a Discrete Random Vector)

Let X be a discrete random vector on the discrete probability space (Ω,F(Ω),P) Discrete Random Variable (168)

with joint probability mass function pX. Due to De�nition 2.51, the joint cumulative Discrete Probability Space (163)

distribution function FX of the discrete random vector X can be written as:

FX(x)
def
= PX(X ≤ x) (2.648)

=
∑
ξ≤x

PX(X = ξ) (2.649)

≡
∑
ξ1≤x1

. . .
∑
ξs≤xs

PX1,...,Xs(X1 = ξ1, . . . , Xn = ξs) (2.650)

(2.641)
=

∑
ξ≤x

pX(ξ) (2.651)

≡
∑
ξ1≤x1

. . .
∑
ξs≤xs

pX1,...,Xs(ξ1, . . . , ξs). (2.652)

REMARK 2.78 Due to the de�nition of the image measure PX, the discrete cumulative Image Measure (170)

distribution function, FX, can also be expressed in terms of the probability measure

P, that is, we can also use the formula

FX(x) =
∑
ξ1≤x1

. . .
∑
ξs≤xs

P({ω ∈ Ω |X1(ω) = ξ1, . . . , Xs(ω) = ξs}) (2.653)

≡
∑
ξ≤x

P ({ω ∈ Ω |X(ω) = ξ}) (2.654)

= P ({ω ∈ Ω |X(ω) ≤ x}) . (2.655)

with x ∈ Rs. This means, that the CDF of a discrete random vector can be evaluated

on two di�erent ways: via the probability measure P from (Ω,F(Ω),P) or via the

image measure PX of the probability space (Rs,B(Rs),PX).
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EXAMPLE 2.72 (Joint Cumulative Distribution Function of a Discrete Random Vector)

Based on our considerations with respect to the joint image measure of the discreteJoint Image Measure (184)

random vector PX from Example 2.71, the value of the joint cumulative distributionDiscrete Random Variable (168)

function FX1,X2(1.2, 1.7) can be interpreted as the probability that no more than a

single one occurs in the �rst two tosses. In particular FX(1.2, 1.7) can be computed

via:

FX1,X2(1.2, 1.7) =
∑
x1≤1.2

∑
x2≤1.7

PX1,X2(X1 = x1, X2 = x2) (2.656)

= PX1,X2(X1 = 0, X2 = 0) + PX1,X2(X1 = 0, X2 = 1) + (2.657)

PX1,X2(X1 = 1, X2 = 0) + PX1,X2(X1 = 1, X2 = 1) (2.658)

= P({ω |X1(ω) = 0, X2(ω) = 0}) + (2.659)

P({ω |X1(ω) = 0, X2(ω) = 1}) + (2.660)

P({ω |X1(ω) = 1, X2(ω) = 0}) + (2.661)

P({ω |X1(ω) = 1, X2(ω) = 1}) (2.662)

= P({000}) + P({001}) + P({010, 100}) + P({011, 101}) (2.663)

P({ω})= 1
8=

3

4
. (2.664)

Often, we have to sample from complex joint probability mass functions. If it is

possible to isolate a variable in such a complex probability function, then we get samples

distributed according to much a more simpler probability function. Linked with the con-

cept of conditional probability, this technique plays an important role in many sampling

procedures. The concept behind this idea is the construct of the marginal probability mass

function.

REMARK 2.79 (The Marginal Probability Mass Function) Let X = (X1, . . . , Xs) be a dis-

crete s-dimensional random vector and px its associated joint probability mass func-

tion. Then we call the function pXi , 1 ≤ i ≤ s, given by:

xi 7→ pXi(xi)
def
=
∑
ξ1≤∞

. . .
∑

ξi−1≤∞
∑

ξi+1≤∞
. . .
∑
ξs≤∞pX1,...,Xs(ξ1, . . . , xi, . . . ξs), (2.665)

the marginal probability mass function, also briey denoted as the marginal PMF.

For our discussion, the above general case of the marginal probability mass func-

tion of an s-dimensional random vector is not of particularly interest. We are rather

more interested in the case s = 2. Then, the associated marginal PMFs, pX1 and

pX2 , of a random vector X = (X1, X2) are given by the formulas:

pX1(x1) =
∑
ξ2≤∞

pX1,X2(x1, ξ2) (2.666)
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and

pX2(x2) =
∑
ξ1≤∞

pX1,X2(ξ1, x2). (2.667)

THE CUMULATIVE DISTRIBUTION FUNCTION OF A CONTINUOUS RANDOM VECTOR. Due

to the same reasons as in the univariate case, we cannot de�ne a cumulative distribution

function for a continuous random variable in the same way as we did it with the cumulative Section 2.4.2

distribution function for a discrete random variable. CDF (171)

DEFINITION 2.54 (Joint Probability Density Function of a Continuous Random Vector) Let

us assume (Ω,F(Ω),P) be a continuous probability space, X a random vector de�ned Probability Space (165)

on (Ω,F(Ω)) with values in the measurable space (Rs,B(Rs)) equipped with two mea- Continuous Random Vector (185)

sures PX and µs, where µs is the s-dimensional Lebesgue measure. As a consequence Measurable Space (80)

of the Radon-Nikod�ym Theorem we can construct a non-negative, measurable func- Radon-Nikodým Theorem (176)

tion pX via the Radon-Nikod�ym derivative with respect to the measures PX and µs, Radon-Nikodým Derivative (176)

by:

pX =
dPX

dµs
. (2.668)

The function pX is called the probability density function with respect to the

random vector X, most often also simply called the density or the PDF of the random

vector X. Since pX is de�ned via the probability measure, PX, a probability density Image Measure (170)

function, pX, satis�es the following conditions:

i) pX(x) ≥ 0

ii)
∫
(−∞,∞)s

pX(x)dµs(x) = 1

for all x ∈ (−∞,∞)s.

REMARK 2.80 As a consequence from De�nition 2.54 we can derive the following useful

relation: ∫
B

pX(x)dµs(x) =

∫
B

dPX(x) = PX(B) ∀B ∈ B(Rs). (2.669)

We will now present a few probability density functions, which we will use in the

following again and again.

EXAMPLE 2.73 (Uniformly Distributed Random Vectors on Rs) We are interested in uni-

formly distributed random numbers from a �nite s-dimensional interval over Rs.
How we have to de�ne the associated PDF?

For that purpose, let ([0, 1]s,B([0, 1s]), µs) be the canonical probability space, Canonical Probability Space (166)

where the probability measure P corresponds to the Lebesgue measure µs. µs (82)
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i) Let us consider the random variable X(ω) = ω, ∀ω ∈ [0, 1]s, which maps

the base set [0, 1]s of the probability space ([0, 1]s,B([0, 1s]), µs) onto [0, 1]s ∈ B(Rs).
Then, the image measure on the measurable space (Rs,B(Rs)) induced by X should

be de�ned as:

PX(B)
(2.631)
= P

(
X−1(B)

)︸ ︷︷ ︸
B∩[0,1]s

(2.670)

P=µs
= µs(B ∩ [0, 1]s) (2.671)

=

∫
B∩[0,1]s

dµs(x) (2.672)

for B ∈ B(Rs). Due to the normalization property of a PDF, we then get:

PX((−∞,∞)s) =

∫
(−∞,∞)s

pX(x)dµs(x) =

∫
(−∞,∞)s∩[0,1]s

dµs(x) = 1, (2.673)

from which we conclude that the associated probability density function must de�ned

as:

pX(x) =

{
1 : for x ∈ [0, 1]s

0 : otherwise.
(2.674)

ii) Let us now consider the random variable Y ≡ f(X) = a + X(b − a) with

a,b ∈ Rs, then the image of the base set [0, 1]s under the mapping Y is the interval

[a,b] ∈ B([a,b]). With the same arguments as above, the joint image measure PYJoint Image Measure (184)

on the probability space (Rs,B(Rs),PY) must be given by:

PY(B)
def
= µs(B ∩ [f(0), f(1)]) (2.675)

=

∫
B∩[a,b]

dµs(y) (2.676)

for B ∈ B(Rs). Then, the associated probability density function pY is given by:

pY(y) =

{
1∏

s
i=1(bi−ai)

: for y ∈ [a,b]

0 : otherwise
(2.677)

as it holds: ∫
(−∞,∞)s

pY(y)dµs(y) =

∫
[a,b]

pY(y)dµs(y) (2.678)

=
1∏s

i=1(bi − ai)

∫
[a,b]

dµs(y) (2.679)

=
1∏s

i=1(bi − ai)
y
∣∣b
a
= 1. (2.680)
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REMARK 2.81 (A Method for Deriving Probability Density Functions, Multivariate Case)

Let (Rs,B(Rs), µ) be a measure space and q be a measurable, non-negative function

de�ned on a subset B of Rs, then the function p de�ned by:

p(x)
def
=

q(x)∫
(−∞,∞)s

q(x)dµs(x)
(2.681)

is a probability density function with respect to the Lebesgue measure µs. µs (82)

DEFINITION 2.55 (Joint Cumulative Distribution Function of a Continuous Random Vector)

Let us assume X be a continuous random vector on the probability space (Ω,F(Ω),P) Continuous Random Vector (185)

with probability density function pX. Due to De�nition 2.51, the associated joint

cumulative distribution function FX of the continuous random vector X can be written

as:

FX(x)
(2.556)
= PX((−∞,x]) (2.682)

=

∫
(−∞,x] dPX(ξ) (2.683)

(2.668)
=

∫
(−∞,x] pX(ξ) dµs(ξ) (2.684)

≡
∫
(−∞,xs] . . .

∫
(−∞,x1]pX1,...,Xs(ξ1, . . . , ξs)dµ(ξ1) . . . dµ(ξs), (2.685)

where (−∞,x] def= ×si=1(−∞, xi]. That is, if the image measure PX is µ-di�erentiable

with Radon-Nikod�ym derivative pX, then FX can be computed by integrating the Radon-Nikodým Derivative (176)

probability density function over the s-dimensional volume (−∞,x].
Based on the de�niton of the distribution function FX we can now de�ne the proba-

bility that the random vector X lies between a and b with a,b ∈ Rn by:

prob(a < X ≤ b)
def
= PX((a,b]) (2.686)

=

∫
(a,b]

dPX(x) (2.687)

=

∫
(−∞,b] dPX(x) −

∫
(−∞,a] dPX(x) (2.688)

= FX(b) − FX(a). (2.689)

Now, we will demonstrate these newly de�ned concepts with the help of a few simple

examples: the uniform distribution of a random vector on an s-dimensional interval [a,b]

and the uniform distribution on the unit circle as well as on the hemisphere.

EXAMPLE 2.74 (CDF of a Random Vector, Uniformly Distributed on ([a,b]) Let X be a

random vector de�ned on the probability space (Ω,F(Ω),P), whose values are uni-

formly distributed within the interval [a,b] ∈ B(R). The probability density function
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for such a uniformly distributed random vector X on the interval [a,b] with a,b ∈ Rs
is given by:

pX(x) =

{
1∏

s
i=1(bi−ai)

: for x ∈ [a,b]

0 : otherwise.
(2.690)

In terms of the probability density function pX the distribution function FX can

then be written as:

FX(x) =

∫
[a,x]

pX(ξ)dµs(ξ) (2.691)

=
1∏s

i=1(bi − ai)

∫
[as,xs]

. . .

∫
[a1,x1]

dµ(ξ1) . . . dµ(ξs) (2.692)

=

∏s
i=1(xi − ai)∏s
i=1(bi − ai)

. (2.693)

In the case (s=2), i.e. where there is a uniform distribution on a pixel area or

a rectangular surface patch, [α1, β1]× [α2, β2], as required in Monte Carlo rendering

algorithms, the associated probability density function is given by:

pX(x) =
1

(b1 − a1)(b2 − a2)
(2.694)

and the cumulative distribution function can be written as:

FX(x) =
(x1 − a1)(x2 − a2)

(b1 − a1)(b2 − a2)
. (2.695)

Then, the probability that a point is drawn in an interval [α,β] ⊂ [a,b] can be

computed via:

prob (α < X ≤ β) =
1

(b1 − a1)(b2 − a2)

∫
[α,β]

dµ2(x) (2.696)

=
1

(b1 − a1)(b2 − a2)

∫
[α2,β2]

∫
[α1,β1]

dµ(x1)dµ(x2) (2.697)

=
(β1 − α1)(β2 − α2)

(b1 − a1)(b2 − a2)
(2.698)

=
µ2([α,β])

µ2([a,b])
. (2.699)

EXAMPLE 2.75 (A Random Vector, Uniformly Distributed on the Unit Circle) A PDF for

uniformly sampling a random vector R,Θ within the unit circle is given by:Section 6.5

pR,Θ(r, θ) =

{
1
π
r : for r ∈ [0, 1] and θ ∈ [0, 2π)

0 : otherwise,
(2.700)
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where we assume that the unit circle is represented in polar coordinates. Then, the

cumulative distribution function FΘ,Φ can be written as:

FR,Θ(r, θ) =
1

π

∫
[0,θ]

∫
[0,r]

ξ1 dµ(ξ1)dµ(ξ2) (2.701)

=
θ

π

∫
[0,r]

ξ1 dµ(ξ1) (2.702)

=
θ r2

2π
. (2.703)

Now, let us derive another important probability distribution function, which recourse

will be taken repeatedly further below in sampling strategies for �nding approximate solu- Chapter (6)

tions to the global illumination equation by means of probabilistic methods: the uniform

distribution on the hemisphere.

EXAMPLE 2.76 (Random Vectors, Uniformly Distributed on the Upper Hemisphere or the

Unit Sphere) Let us consider the probability space (H2+,B(H2+), σ), where our base set
is given by the set of points on the upper hemisphere, B(H2+) is as usual the Borel Borel-σ Algebra (865)

σ-algebra of subsets of H2+, and σ is the solid angle measure de�ned on B(H2+). Let Solid Angle Measure (87)

Θ,Φ be a random vector on (H2+,B(H2+), σ), due to Relation (2.700), the uniform

density pΘ,Φ is given by:

pΘ,Φ(θ,φ) =
1

2π
sin θ, (2.704)

with 0 ≤ θ ≤ π
2
, 0 ≤ φ < 2π, since it holds:∫
H2+
pω(ω)dσ(ω)

(2.186)
=

1

2π

∫
[0,π2 ]×[0,2π)

sin(θ)dµ2(θ,φ) (2.705)

= 1. (2.706)

Then, the corresponding cumulative distribution function FΘ,Φ can be written

as:

FΘ,Φ(θ,φ)
(2.685)
=

1

2π

∫
[0,φ]

(∫
[0,θ]

sin(ξ1)dµ(ξ1)

)
dµ(ξ2) (2.707)

=
1

2π
φ(1− cos θ). (2.708)

As it is easily seen, the cumulative distribution function of the random vector

(Θ,Φ) uniformly distributed on the unit sphere, with probability density function

pΘ,Φ(ω) = 1
4π
, is then given by:

FΘ,Φ(θ,φ) =
1

4π
φ(1− cos(θ)). (2.709)
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Note the di�erence of the PDFs and CDFs|expressed in terms of directions or

angles|for sampling of directions over one of the hemispheres and the unit sphere:

pω(ω) =
1

2 π
or pΘ,Φ(θ,φ) =

1

2π
sin θ (2.710)

Fω(ω) =
ω

2π
or FΘ,Φ(θ,φ) =

1

2π
φ(1− cos θ) (2.711)

and

pω(ω) =
1

4 π
or pΘ,Φ(θ,φ) =

1

4π
sin θ (2.712)

Fω(ω) =
ω

4π
or FΘ,Φ(θ,φ) =

1

4π
φ(1− cos θ). (2.713)

EXAMPLE 2.77 It is known from the previous example, that the cumulative distribution

function of a uniformly distributed random vector de�ned on the upper hemisphere is

FΘ,Φ(θ,φ) =
1
2π
φ(1 − cos(θ)). The partial derivatives of this function are then given

by:

∂

∂θ
FΘ,Φ(θ,φ) =

1

2π
φ sin(θ) and

∂2

∂θ∂φ
FΘ,Φ(θ,φ) =

1

2π
sin(θ), (2.714)

thus

pΘ,Φ(θ,φ) =
∂2

∂θ∂φ
FΘ,Φ(θ,φ). (2.715)

REMARK 2.82 (The PDF as the Derivative of the CDF, Multivariate Case) Setting our

focus once more on the Relations (2.682) - (2.685), then, due to the Fundamental

Theorem of Calculus, we get for the representation of the density pX:[174, Rudin 1998]

pX(x1, . . . , xs) =
∂sFX(x1, . . . , xs)

∂µ(x1) . . . ∂µ(xs)
, (2.716)

i.e. the probability density function pX is the s-dimensional derivative of the cumu-

lative distribution function of an s-dimensional random vector.

For solving multidimensional integrals, in Monte Carlo integration we often have to

sample from complex joint probability densities. If it is possible to isolate a variable in

such a complex joint probability density, then we get often samples distributed according

to such a density in a simple way. Linked with the concept of conditional probability, thisConditional Probability (205)

technique plays an important role in many sampling procedures in Monte Carlo integration.

The concept behind this idea is the construct of the marginal density.

DEFINITION 2.56 (Marginal Density) Let (Ω,F(Ω),P) be a probability space, X and YProbability Space (163)

random variables de�ned on (Ω,F(Ω)) with values in (R,B(R)) or (Rs,B(Rs)), and let
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pX,Y be the joint probability density function of X,Y. Then, the marginal densities

pX and pY of X,Y are de�ned as:

pX(x) =

∫
Rs
pX,Y(x,y)dµs(y) (2.717)

pY(y) =

∫
Rs
pX,Y(x,y)dµs(x), (2.718)

that is, the marginal distribution of a random variable X is simply the probability

distribution of X averaged over information about Y and vice versa.

Obviously, the marginal densities determine the distributions of the random variables

X and Y since it holds:

PX(B) =

∫
B×(−∞,∞)s

pX,Y(x,y)dµs(y)dµs(x) (2.719)

=

∫
B

(∫
(−∞,∞)s

pX,Y(x,y)dµs(y)

)
dµs(x) (2.720)

(2.717)
=

∫
B

pX(x)dµs(x) (2.721)

and due to the Theorem of Fubini-Tonelli we obtain: Theorem of Fubini-Tonelli (115)

PY(B) =

∫
(−∞,∞)s×B

pX,Y(x,y)dµs1(y)dµ
s
2(x) (2.722)

=

∫
(−∞,∞)s

(∫
B

pX,Y(x,y)dµs1(y)

)
dµs2(x) (2.723)

=

∫
B

(∫
(−∞,∞)s

pX,Y(x,y)dµs1(x)

)
dµs2(y) (2.724)

(2.717)
=

∫
B

pY(y)dµs(y). (2.725)

EXAMPLE 2.78 In one of the following Chapters, we will see that a pinhole camera

creates images where everything is in perfect focus, while a thin lens camera model

makes images with depth-of-�eld e�ects. In such a camera the pinhole is replaced Depth of Field (686)

with a disk-shaped thin lens, which has certain idealized behavior. To simulate depth-

of-�eld e�ects a rendering algorithm has to generate rays passing through the area

of the lens. For that purpose, we need a method for generating uniformly distributed

samples within the unit circle, which then can be transformed on the camera lens.

Representing the unit circle in porlar coordinates, according to Relation (2.700) Polar Coordinates (832)

a PDF for sampling uniformly on the unit disk is given by:

pR,Θ(r, θ) =
1

π
r, (2.726)
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where r ∈ [0, 1] and θ ∈ [0, 2π). In order to sample r and θ, we compute �rst the

marginal density Marginal Density Function (194)

pR(r) =
1

π

∫
[0,2π)

r dµ(θ) =
r

π
θ

∣∣∣∣2π
0

= 2 r. (2.727)

Integrating pR(r) over [0, R], then leads to the CDF

FR(R) = 2

∫
[0,R]

r dµ(r) = 2
1

2
r2
∣∣∣∣R
0

= R2. (2.728)

REMARK 2.83 It should be clear that the concept of the marginal density is not re-

stricted to the case of two random variables X and Y. By applying the Theorem ofTheorem of Fubini-Tonelli (115)

Fubini-Tonelli we get corresponding formulas easily.

2.4.4 EXPECTED VALUE AND VARIANCE OF A RANDOM VARI-
ABLE

As has been shown in a few of our examples, it is not the probability measure itself thatSection 2.4.2

is of interest, but rather a number that may be used to describe particular aspects of a

probability measure. Thus, an important aspect of a probability measure is its location,Probability Measure (80)

that is, the location of the associated probability distribution. It can be described by the

expected value of a random variable associated with a corresponding probability measure.Expected Value (196)

Another interesting concept in connection with a random variable is the variance of

a random variable. While the expected value may be de�ned using a kind of mean valueVariance (201)

and makes a connection between the result of the random experiment and its mathemat-

ical realization, the variance describes how far a set of values of a random variable are

spread out from each other. It describes the extent of the deviation of individual values

of the random variable from its appropriate mean value.

By means of the de�nition of the Lebesgue-integral we will now construct these twoLebesgue Integral (105)

very important concepts of probability theory. Since they permit statements on the qual-

ity of certain probabilistic models, they play a central role in our derivation of stochastic

methods for solving linear integral equations.Chapter 6

THE EXPECTED VALUE OF A RANDOM VARIABLE. Let us start with the de�nition of the

expected value of a random variable de�ned on a given probability space. It is the key

idea behind any stochastic algorithm for solving integrals and integral equations.

DEFINITION 2.57 (The Expected Value of a Random Variable) Let X be a discrete randomDiscrete RV (168)

variable de�ned on the discrete probability space (Ω,F(Ω),P) with �nite or countablyDiscrete Probability Space (163)
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in�nite image range Im(X). Then, the expected value of X is de�ned as

E(X)
def
=

∑
x∈ Im(X)

xP({ω ∈ Ω |X(ω) = x}) (2.729)

PX=P◦X−1

=
∑

x∈ Im(X)

xPX(X = x) (2.730)

(2.559)
=

∑
x∈ Im(X)

xpX(x). (2.731)

In the case where we consider a continuous random variable, de�ned on the Continuous RV (168)

continuous probability space (Ω,F(Ω),P) with associated probability density function Probability Density Function (176)

pX, the expected value of X is de�ned as

E(X)
def
=

∫
Ω

X(ω)dP(ω) (2.732)

P=PX◦X=

∫
Ω

X(ω)d(PX ◦ X)(ω) (2.733)

X(ω)=x
=

∫
R
xdPX(x) (2.734)

dPX=pX(x)dµ(x)
=

∫
R
xpX(x)dµ(x), (2.735)

where PX is the image measure on the measurable space (R,B(R)) induced by X and Measurable Space (80)

µ corresponds to the Lebesgue measure de�ned on the Borel set B(R).

Let us clarify the concept of the expected value of a discrete as well as a continuous

random variable by means of two simple examples.

EXAMPLE 2.79 (The Expected Value of a Discrete Random Variable) Let us consider once

more our random experiment of ipping a coin three times, where we are interested

in the number of one's that can occur. The sample space of this random experiment

is the set {0, 1, 2, 3}. Now, a random variable X that models this experiment has to

map the base set {0, 1}3 onto the set of outcomes {0, 1, 2, 3}. Based on the de�nition

of a discrete random variable from Equation (2.730), the expected value of X can

be calculated via the outcomes xi of the random variable and the probabilities of the

outcomes PX(X = xi). That is, the expected value of the random variable X is given

by

E(X) =

4∑
i=1

xi PX(X = xi) (2.736)

=

4∑
i=1

(i− 1)PX(X = i− 1) (2.737)

= 0PX(X = 0) + 1PX(X = 1) + 2PX(X = 2) + 3PX(X = 3). (2.738)
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With the probability distribution of the random variable X from Example 2.66,

thus

PX(X = 0) = PX(X = 3) = 1
8

(2.739)

PX(X = 1) = PX(X = 2) = 3
8

(2.740)

the expected value of the random variable X is

E(X) = 1
3

8
+ 2

3

8
+ 3

1

8
=
3

2
. (2.741)

EXAMPLE 2.80 (The Expected Value of a Continuous Random Variable) Let us now de-

rive the expected value of a continuous random variable, where we consider the ran-

dom experiment of drawing a random number from [0, 1], as we did it in Example

2.69. There, we de�ned a random variable X on the canonical probability space

([0, 1],B([0, 1]), µ) where our probability measure corresponds to the Lebesgue mea-

sure. The random variable X then maps ω ∈ [0, 1] onto X(ω) = ω ∈ [0, 1]. The

probability density function associated with X is,

pX(x) =

{
1 : for x ∈ [0, 1]

0 : otherwise,
(2.742)

that is, due to the above de�nition the expected value of X is given by

E(X)
(2.735)
=

∫
R
xpX(x)dµ(x) (2.743)

=

∫
[0,1]

xdµ(x) (2.744)

= x2
∣∣∣∣1
0

=
1

2
. (2.745)

Based on the de�nition of the expected value of a random variable, we are now able

to de�ne the expectation of a random vector.

DEFINITION 2.58 (The Expected Value of a Random Vector) Let X be a discrete or aRandom Vector (183)

continuous random vector de�ned on a corresponding probability space (Ω,F(Ω),P).Probability Space (163)

Then, the expected value of the s-dimensional random vector X is simply given by the

vector of the expected values of the component random variables Xi. Mathematically,

this can be expressed as

E(X) = E(X1, . . . , Xs) = (E(X1), . . . , E(Xs)). (2.746)

THE EXPECTED VALUE OF A FUNCTION OF RANDOM VARIABLES. From our discussion about

random variables and random vectors in the previous sections, it is known, that measurable

functions of random variables or random vectors are also random variables. This fact, now

implies the de�nition of the expected value of a function of random variables or random

vectors.
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REMARK 2.84 Since a random variable can be considered as a random vector con-

taining only a single component, we introduce the concept of the expected value of a

function of random variables via the concept of the random vector.

DEFINITION 2.59 (The Expected Value of a Function of Random Vectors) Let X be a Random Vector (183)

discrete or a continuous random vector de�ned on a corresponding probability space Probability Space (163)

(Ω,F(Ω),P), furthermore, let g be a measurable function de�ned on the measurable Measurable Function (98)

space (Rs,B(Rs)) with values in (R,B(R)). In the case that X is a discrete random

vector, the expected value of g(X) is de�ned as

E(g(X))
def
=

∑
i≥1

g(xi)PX(X = xi) (2.747)

≡
∑
is≥1

. . .
∑
i1≥1

g(xi1 , . . . , xis)PX1,...,Xs(X1 = xi1 , . . . , Xs = xis), (2.748)

where we also often express the expected value in terms of the joint probability mass Probability Mass Function (185)

function pX, that is,

E(g(X))
def
=

∑
is≥1

. . .
∑
i1≥1

g(xi1 , . . . , xis)pX1,...,Xs(xi1 , . . . , xis). (2.749)

In the case that we consider a continuous random vector with associated joint Continuous RV (185)

probability density function pX, the expected value of X is de�ned as Probability Density Function (189)

E(g(X))
def
=

∫
Ω

g(X (ω)) dP(ω) (2.750)

P=PX◦X=

∫
Rs
g(x)dPX(x) (2.751)

dPX=pX(X)dµ(x)
=

∫
Rs
g(x)pX(x)dµ(x), (2.752)

where PX is the image measure on (Rs,B(Rs)) induced by X. Image Measure (184)

EXAMPLE 2.81 (The Expected Value of a Function of a Continuous Random Variable)

If we are interested in drawing a random variable from the interval [a, b], where

X(ω) = ω(b − a) + a, thus, g(X) = (b − a)X + a , then the associated expected value

is given by

E(X)
(2.735)
=

∫
R
((b− a)x+ a)

1

b− a
dµ(x) (2.753)

=

∫
[a,b]

x+
a

b− a
dµ(x) (2.754)

=

(
1

2
x2 +

a

b− a
x

) ∣∣∣∣b
a

(2.755)

=
1

2

(
b2 − a2

)
+ a. (2.756)
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Now, let us take a look at Russian Roulette, a technique based on the principle of the

expected value of a continuous random variable. Used as a variance reduction technique,Section 6.6

Russian roulette plays an important role in many Monte Carlo rendering algorithms.Section 9.1

EXAMPLE 2.82 (Russian Roulette) Since light can be reected in�nitely often within

a scene, we have no chance of simulating this behavior in a rendering algorithm

exactly. To solve this problem we need a technique that controls the generation of

paths with respect to its length.Section 9.1

Now, simply cutting o� a path introduces a bias in our images since this lightBias (507)

path might be potentially very important for the �nal color of a pixel. Otherwise most

of the contributions of a path to the �nal image are very small but equally expensive

to evaluate. A technique that can help us to get this problem under control is Russian

roulette, introduced in [11, Arvo & Kirk 1990].

Let us assume, that we have to compute a quantity F that is a sum of in�nitely

many terms Fi thus,

F =

∞∑
i=1

Fi, (2.757)

such as described above in the case of an in�nitely long light path. Let us furthermore

assume that U is a continuous random variable, uniformly distributed on the intervalContinuous RV (168)

Uniform Distribution (180) [0, 1].

The idea behind Russian roulette is to skip most of the terms Fi with small con-

tributions to the �nal value of F, and to compensate this by an appropriate weighting

of the remaining terms. For that purpose, we de�ne additional random variables

fαi(U) by

fαi(U) =

{
1
αi
Fi : if U ≤ αi,

0 : else,
(2.758)

where αi ∈ [0, 1].

Then, the random variable U evaluates Fi with the probability αi and weighting
1
αi

and it discards the evaluation of Fi with probability 1 − αi. With respect to the

expected value of fαi the following clearly applies

E(fαi(U))
(2.730)
= αi ·

1

αi
Fi + (1− αi) · 0 (2.759)

= Fi. (2.760)

Obviously, using Russian roulette allows to skip the computation of terms whose

value is very low but not necessarily zero, while it guarantees the computation of the

correct value on the average.

As will be seen further below, Russian roulette is a highly useful technique when

it is applied in procedures for simulating global illumination e�ects in a scene to beSection 9.1

rendered.
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FIGURE 2.53: THE VARIANCE OF RANDOM VARIABLES. Shown are the densities of
two normally distributed random variables with same expected value. On the left, we have
higher variance than in the right image, since the probability that values of the corresponding
random variable are close to its expected value, is—due to the pdf illustrated in the left
image—lower than in the right image.

THE VARIANCE OF A RANDOM VARIABLE. Based on the probabilistic concept of the

expected value of a random variable, we will now introduce the stochastic construct of

the variance of a random variable. It plays a central role for the development of e�cient

probabilistic algorithms for solving the light transport equation.

DEFINITION 2.60 (The Variance and the Central Moments of a Random Variable or a Ran-

dom Vector) Let X be a random variable or a random vector de�ned on a probability Probability Space (163)

space (Ω,F(Ω),P). The variance or, alternatively, the 2nd moment of X is de�ned as

Var(X)
def
= E((X− E(X))2). (2.761)

Generally, we de�ne the central moment of order n of a random variable or a

random vector by

mn(X)
def
= E((X− E(X))n), (2.762)

i.e the variance of a random variable or random vector corresponds to the 2nd central

moment of X, see Figure 2.53.

EXAMPLE 2.83 (Russian Roulette, Continued) Let us now make a statement about the

variance of the random variable fαi(U) from the foregoing example. Due to Example
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2.82 it holds with E(fαi(U)) = Fi

Var (fαi(U)) = E
(
(fαi(U) − E (fαi(U)))

2
)

(2.763)

E(fαi(U))=Fi
= E

(
(fαi(U) − Fi)

2
)

(2.764)

= E
(
f2αi(U) − 2fαi(U)Fi + F

2
i

)
. (2.765)

Now, from our discussion about measurable functions is known that the classMeasurable Function (98)

of measurable functions de�nes a linear space, that is, the sum of two measurableLinear Space (100)

functions is measurable again. Based on this fact, the term f2αi(U) − 2fαi(U)Fi + F
2
i

also corresponds to a random variable, which is de�ned by

f2αi(U) − 2fαi(U)Fi + F
2
i =


(
1
αi
Fi

)2
− 2 1

αi
F2i + F

2
i : if U ≤ αi,

F2i : else.
(2.766)

For the expected value of this random variable then it holds

E
(
f2αi(U) − 2fαi(U)Fi + F

2
i

)
(2.767)

= αi ·

((
1

αi
Fi

)2
− 2

1

αi
F2i + F

2
i

)
+ (1− αi) · F2i (2.768)

=
1

αi
F2i − F

2
i . (2.769)

Combining the Formula (2.765) with Relation (2.769) leads to

Var(fαi(U)) = F
2
i

(
1

αi
− 1

)
, (2.770)

which means: If the parameter αi is very large, the evaluation of Fi will continue

many times and the approximation will be more accurate. If αi is small, the eval-

uation of Fi will stop soon, but the result will have a higher variance, see Figure

2.54

PROPERTIES OF RANDOM VARIABLES AND RANDOM VECTORS. We �nish this section with

some remarks on properties of random variables and random vectors.

From our discussion about measurable functions as well as the linearity of the LebesgueMeasurable Function (98)

integral, we get obviously in addition toLebesgue Integral (105)

E(aX) = a E(X) (2.771)

Var(aX) = a2 Var(X) (2.772)

also the following useful identity

E

(
N∑
i=1

Xi

)
=

N∑
i=1

E(Xi). (2.773)
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1.0 1.0

FIGURE 2.54: THE CHOICE OF THE PARAMETER α IN RUSSIAN ROULETTE. The plots
of the function f(α) = 1

α
− 1 shows that values of α close to 0 lead to large function values,

see the left image, and values close to 1 lead to high function values of f(α) = 1
α
− 1, see

the right image.

Furthermore, the variance of a random variable or a random vector X may also be

expressed in the following way, highly useful for many calculations:

Var(X) = E
(
(X− E(X))2

)
(2.774)

= E
(
X2 − 2E(X) + E2(X)

)
(2.775)

(2.771)
= E

(
X2
)
− E2

(
X
)
. (2.776)

EXAMPLE 2.84 (Russian Roulette once More) The variance of the random variable fαi(U)

from Example 2.82 can be computed more easily|as we did it in the preceding

example|by using Relation (2.776)

Var(fαi(U)) = E
(
f2αi(U)

)
− E2 (fαi(U)) (2.777)

= αi

(
1

αi
Fi

)2
+ (1− αi) · 0− F2i (2.778)

= F2i

(
1

αi
− 1

)
. (2.779)

Another interesting quantity which arises in the connection of two random variables

or random vectors is the covariance. As we will see, the covariance is a quantity that

makes a statement about the linear connection of two random variables which have the

same distribution. It can be calculated via the variance of random variables.

DEFINITION 2.61 (Covariance of Random Variables or Random Vectors) Let X,Y be two

random variables or random vectors de�ned on a probability space (Ω,F(Ω),P). Probability Space (163)
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Then, the covariance of X and Y is de�ned as

Cov(X,Y)
def
= E ((X− E(X))(Y − E(Y))) . (2.780)

An alternative formula for computing the covariance of X and Y is given by

Cov(X,Y)
def
= E(XY) − E(X)E(Y). (2.781)

Based on De�nition 2.61, the variance of the sum of two random variables or random

vectors X and Y can now also be written as the sum of the single variances and the

covariance

Var(X+Y)
(2.776)
= E((X+Y)2) − E2(X+Y) (2.782)

= E(X2 + 2XY +Y2) − (2.783)

(E2(X) + 2E(X)E(Y) + E2(Y))

= E(X2) − E2(X) + E(Y2) − E2(Y) + (2.784)

2(E(XY) − E(X)E(Y))

(2.781),(2.776)
= Var(X) + Var(Y) + 2Cov(X,Y). (2.785)

A similar formula holds for the sum of n random variables or random vectorsX1, . . . ,Xn,

it is given by

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2

n−1∑
i=1

n∑
j=i+1

Cov(Xi,Xj). (2.786)

A furthermore important property of a random variable or a random vector is inde-

pendence.

DEFINITION 2.62 (Independence of a Random Variable or a Random Vector) Two random

variables or random vectors X and Y are called independent, if the outcome of X

does not inuence the outcome of Y. Mathematically, the independence of X and Y

can be expressed as

P (XY) = P(X) · P(Y). (2.787)

Based on De�nition 2.62 we can now easily derive the following formulae for inde-

pendent random variables or random vectors X1,X2, . . . ,XN

P

(
N∏
i=1

Xi

)
=

N∏
i=1

P (Xi) , (2.788)

E

(
N∏
i=1

Xi

)
=

N∏
i=1

E(Xi), (2.789)
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and with

Cov(Xi,Xj) = E(Xi)E(Xj) − E(Xi)E(Xj) = 0 (2.790)

for the variance of n independent random variables or random vectors also

Var

(
N∑
i=1

Xi

)
=

N∑
i=1

Var(Xi). (2.791)

2.4.5 CONDITIONAL PROBABILITY

One important task of probability theory is to develop procedures with which probabilities

of complex events may be derived from probabilities of simple events. When some partial

information about a random experiment is available, via the concept of conditional prob-

ability and the knowledge of the occurrence of events, information on the probability of

the occurrence of other events may be simply achieved.

DEFINITION 2.63 (Conditional Probability) Let (Ω,F(Ω),P) be a discrete probability Probability Space (163)

space and A,B be two events from the F(Ω), then

P(B|A) ≡ P·|A(B)
def
=

P(A ∩ B)
P(A)

(2.792)

is the probability of some event B, given the occurrence of an other event A, also

briey denoted as the conditional probability of B given A. Since this de�nition

provides us with a measure on the σ-algebra F(Ω), the so-called conditional probability Measure (79)

measure P·|A, the triple (Ω,F(Ω),P·|A) becomes a probability space, more precisely: a σ-algebra (828)

conditional probability space.

Now, the concept of the conditional probability can also be extended to continu-

ous probability spaces. For that purpose, let us assume (Ω,F(Ω),P·|A) be a continuous
probability space with conditional probability measure P·|B, then the conditional prob-

ability of B, given A is de�ned as follows:

P(B|A) def
=

∫
B

dP·|A. (2.793)

In the following, we illustrate the concept of conditional probability with the help of

an example which we use as a spring board for the introduction of two stochastic models of

great interest to the analysis of Monte Carlo rendering algorithms: discrete-time Markov Section 2.4.7.1

chains and discrete-time Markov processes. Section 2.4.7.2
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FIGURE 2.55: TRAVEL OF A PHOTON THROUGH A SCENE. At each hit point of a photon
with a gloss object within the scene, the reflected direction of the photon is depending on
its incoming direction. Thus, we can simulate the travel of a photon through a scene via
the concept of a Markov process over the object surfaces of the environment.

EXAMPLE 2.85 (Markov Property) Let us consider the travel of a photon through a

scene consisting of objects with gloss surfaces, see Figure 2.55. Due to the surface

properties of the objects, the outgoing direction of the photon after its collision with

an object can not be exactly determined. For this, the outgoing direction should be

chosen via the outcome of a random experiment, simulating the reection behavior

at an object surface.

Now, the trip of a photon through the scene can take a long time, theoretically,

it can bounce back and force in�nitely between the objects. Thus, we need in�nitely

many random variables to simulate this process. Because the reected direction ofRandom Variable (168)

a photon at a gloss surface is not only dependent on the material and the surfaceGlossy Reflection (304)

properties of the object that has been hit, but also on the incident direction of the

photon, the travel can be modeled via the probabilistic concept of the discrete-time

Markov process.DT Markov Process (236)

As we will see in Section 2.4.7.2 in more detail, a discrete-time Markov process,

(Xn)n∈N0 , is a sequence of not necessarily independent random variables de�ned over
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a particular probability space (Ω,F(Ω),P). We say that a sequence Xn of random

variables has the Markov property, if it holds:

P(Xn+1 = in+1|Xn = in, . . . ,X0 = i0) = P(Xn+1 = in+1|Xn = in), (2.794)

where (in)n∈N0 is a sequence of values, that can be interpreted as the state set of

Xn. Contrary to the general case, in which the probability of Xn+1 being in state

j depends on all other random variables Xi, 0 ≤ i ≤ n, the Markov property says

that the probability of Xn+1 being in state j depends only on the state of the random

variable Xn.

It can easily be proved by induction that all probabilities are completely �xed by

a so-called initial distribution P(X = i0), that is, the probability that the sequence

starts in state i0, and the conditional distributions P(Xn+1 = in+1|Xn = in). Thus,

for n = 0 we conclude from Equation (2.792):

P(X1 = i1,X0 = i0) = P(X1 = i1|X0 = i0)P(X0 = i0). (2.795)

Due to the de�nition of the conditional probability, the Markov property, and

the induction hypothesis

P(Xn = in, . . . ,X0 = i0) = P(X0 = i0)
n∏
j=1

P(Xj = ij|Xj−1 = ij−1), (2.796)

we then get:

P(Xn+1 = in+1, . . . ,X0 = i0)
(2.792)
= P(Xn+1 = in+1|Xn = in, . . . ,X0 = i0)P(Xn = in, . . . ,X0 = i0)

(2.794)
= P(Xn+1 = in+1|Xn = in)P(Xn = in, . . . ,X0 = i0)

(2.794),(2.796)
= P(X0 = i0)

n+1∏
j=1

P(Xj = ij|Xj−1 = ij−1). (2.797)

CONDITIONAL CUMULATIVE DISTRIBUTION FUNCTION OF A RANDOM VARIABLE. According

to the de�nition of the CDF of a random variable X, we now also de�ne the conditional

cumulative distribution function of a random variable Y given X. Let us begin with the

discrete case.

For de�ning the conditional CDF, it is useful to introduce the concept of the condi-

tional probability mass function, it is de�ned as follows:

DEFINITION 2.64 (Conditional Probability Mass Function) Let X and Y be discrete ran-

dom variables or random vectors on a product probability space (ΩX×ΩY,FX(ΩX)× Product Measure Space (81)

FY(ΩY),PX×PY) with �nite or countably in�nite image range. Then, the conditional Countably Infinite Set (827)
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probability mass function, pY|X, of the random variable Y given X = x is de�ned as:

pY|X(y|X = x)
def
= PY|X(Y = y|X = x) (2.798)

=
PX,Y(X = x,Y = y)

PX(X = x)
(2.799)

=
pX,Y(x,y)

pX(x)
, (2.800)

where pX,Y(x,y) is the joint probability mass function and pX(x) is the associatedJoint PMF (185)

marginal probability mass function of X.Marignal PMF (188)

DEFINITION 2.65 (Discrete Conditional Cumulative Distribution Function) Let X and Y

be discrete random variables or random vectors on a product probability space (ΩX×Product Measure Space (81)

ΩY,FX(ΩX)× FY(ΩY),PX × PY) with �nite or countably in�nite image range. DueCountably Infinite Set (827)

to De�nition 2.46 the discrete conditional cumulative distribution function, FY|X, of

the discrete random variable Y given X = x can be written as:

FY|X(y|X = x)
def
= PY|X(Y ≤ y|X = x) (2.801)

=
∑
yi≤y

PY|X(Y = yi|X = x) (2.802)

(2.798)
=

∑
yi≤y

pY|X(y|X = x) (2.803)

(2.800)
=

∑
yi≤y

pX,Y(x,yi)

pX(x)
. (2.804)

In the following, let X and Y be continuous random variables or random vectors on a

product probability space (ΩX×ΩY,FX(ΩX)×FY(ΩY),PX×PY) with joint probabilityProduct Measure Space (81)

density function pX,Y and marginal density pX. Using the de�nition of the conditionalProbability Density Function (189)

probability from Relation (2.792), then we get:

PY|X(Y ≤ y|X ≤ x)
def
=

PX,Y(X ≤ x,Y ≤ y)

PX(X ≤ x)
(2.805)

=

∫
(−∞,x]×(−∞,y] d (PX × PY) (x,y)∫

(−∞,x] dPX(x)
(2.806)

=

∫
(−∞,x]×(−∞,y] pX,Y(ξ,η)dµs(ξ,η)∫

(−∞,x] pX(ξ)dµs(ξ)
(2.807)

=

∫
(−∞,y]

∫
(−∞,x] pX,Y(ξ,η)dµs(ξ)∫

(−∞,x] pX(ξ)dµs(ξ)︸ ︷︷ ︸
pY|X(η|X≤x)

dµs(η) (2.808)

=

∫
(−∞,y] pY|X(η|X ≤ x)dµs(η). (2.809)
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This now implies to de�ne a conditional probability density function pY|X(y|X ≤ x)

of Y given X via the fraction of the joint probability density pX,Y and the marginal

density pX integrated with respect to x.

DEFINITION 2.66 (Conditional Probability Density Function) Let X and Y be random

variables or random vectors on a product probability space (ΩX × ΩY,FX(ΩX) × Product Measure Space (81)

FY(ΩY),PX × PY) with joint probability density function pX,Y and marginal density Probability Density Function (189)

pX. Then, the conditional probability density function of Y, given that X ≤ x, is

de�ned by:

pY|X(y|X ≤ x)
def
=

∫
(−∞,x] pX,Y(ξ,y)dµs(ξ)∫

(−∞,x] pX(ξ)dµs(ξ)
. (2.810)

For the special case X = x, Relation (2.810) makes no sense, since the denomi-

nator would be zero, thus, we de�ne the conditional probability density function of Y,

given X = x via:

pY|X(y|X = x)
def
=
pX,Y(x,y)

pX(x)
. (2.811)

REMARK 2.85 i) For the sake of simplicity in our formulas, in the following we will

mostly use pY|X(y|x) for describing the conditional densities pY|X(y|X ≤ x) and

pY|X(y|X = x).

ii) On the basis of the Relations (2.810) and (2.811) we then obtain the following

two important identities for the joint probability density function pX,Y:

pX,Y(x,y) = pX|Y(x|y)pY(y) (2.812)

= pY|X(y|x)pX(x). (2.813)

DEFINITION 2.67 (Continuous Conditional Probability Distribution) Let X and Y be ran-

dom variables or random vectors on a product probability space (ΩX×ΩY,FX(ΩX)× Product Measure Space (81)

FY(ΩY),PX × PY) with joint probability density function pX,Y and marginal density Probability Density Function (189)

pX. Then, the conditional probability distribution of Y given X, is de�ned by:

FY|X(y|x)
def
= PY|X(Y ≤ y|X ≤ x) (2.814)

=

∫
(−∞,y] pY|X(η|X ≤ x)dµs(η) (2.815)

=

∫
(−∞,y]

∫
(−∞,x] pX,Y(ξ,η)dµs(ξ)∫

(−∞,x] pX(ξ)dµs(ξ)︸ ︷︷ ︸
pY|X(η|X≤x)

dµs(η). (2.816)

When we know the probability of an event B, given the occurrence of an eventA, often,

we are interested in computing so-called inverse probabilities, such as the conditional
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probability P(A|B). This can be done via Bayes' Theorem involving the so-called prior

or unconditional probabilities of A and B. With the help of De�nition 2.63 we can simply

derive Bayes' theorem :

THEOREM 2.8 (Bayes' Theorem) Let (Ω,F(Ω),P) be a probability space and A,B be two

events from F(Ω), then it holds:

P(B|A)
P(B)

=
P(A|B)
P(A)

. (2.817)

PROOF 2.8 Bayes' theorem can easily be proved via

P(B|A)P(A) (2.792)
= P(A ∩ B) (2.792)

= P(A|B)P(B). (2.818)

The key idea behind Bayes' theorem is that the probability of an event A given an

event B depends not only on the relationship between events A and B but also on the

marginal probability of occurrence of each event. The Bayes' theorem plays an important

role for understanding and analyzing acceptance-rejection sampling.Section 6.5.2

Another important concept, which we will use in our further discussions, is the condi-Section 6.6.1

tional expectation of a random variable or a random vector. It is based on the concept of

the conditional probability density. We will use the results, derived above, to introduce

the concept of the conditional expected value of a continuous random variable.

DEFINITION 2.68 (Conditional Expected Value of a Continuous Random Variable or a Ran-

dom Vector) The conditional expected value of a continuous random variable or a con-Continuous RV (168)

tinuous random vector G = (g(X,Y)) where X and Y are also random variables or

random vectors on (Ω1 ×Ω2,F1(Ω1)× F2(Ω2),P1 × P2) is de�ned as:Product Measure Sace (81)

EY
(
G
)
≡ E

(
G|X

) def
=

∫
Ω2

g(x,y)pY|X(y|x)dµs2(y) (2.819)

(2.813)
=

∫
Ω2

g(x,y)
pX,Y(x,y)

pX(x)
dµs2(y) (2.820)

=

∫
Ω2
g(x,y)pX,Y(x,y)dµs2(y)∫
Ω2
pX,Y(x,y)dµs2(y)

. (2.821)

We conclude this section with a lemma that allows to express the variance of a random

variable or a random vector G = (g(X,Y)) in terms of its conditional expectation. We

use the result of this lemma in Section 6.6.1.

LEMMA 2.4 Let X,Y and G = (g(X,Y)) be random variables or random vectors onContinuous RV (168)

(Ω1 ×Ω2,F1(Ω1)× F2(Ω2),P1 × P2), then it holds:Product Measure Sace (81)

Var(G) = EX(VarY(G)) + VarX(EY(G)). (2.822)
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PROOF 2.4 Due to the Relation (2.776) the variance of G(X,Y) can be written as:

Var(G)

=

∫
Ω1×Ω2

(g(x,y))
2
pX,Y(x,y)dµ2(x,y) − (2.823)(∫

Ω1×Ω2
g(x,y)pX,Y(x,y)dµ2(x,y)

)2
(2.810),(2.811)

=

∫
Ω1

pX(x)

(∫
Ω2

(g(x,y))
2
pY|X(y|x)dµ(y)

)
dµ(x) − (2.824)(∫

Ω1

pX(x)

(∫
Ω2

g(x,y)pY|X(y|x)dµ(y)

)
dµ(x)

)2
(2.819)
=

∫
Ω1

pX(x)EY
(
G2
)
dµ(x) −

(∫
Ω1

pX(x)EY(G)dµ(x)

)2
(2.825)

(2.821)
= EX

(
EY
(
G2
))

− E2X(EY(G)) (2.826)

= EX
(
EY
(
G2
))

− EX
(
EY
(
G2
))

+ EX
(
EY
(
G2
))

− E2X (EY(G)) (2.827)

= EX
(
EY
(
G2
)
− EY

(
G2
))

+ EX
(
EY
(
G2
))

− E2X (EY(G)) (2.828)

(2.776)
= EX (VarY(G)) + VarX(EY(G)). (2.829)

REMARK 2.86 The variance of the random variable G(X,Y) allows the representation

of G as the sum of a conditional expected value and a conditional variance. Relation

(2.829) proves very useful further below in the discussion of sampling techniques, Section 6.5

particularly when analyzing use of expected values, and strati�ed sampling, two so- Section 6.6.1

called variance reduction techniques used in Monte Carlo integration. Section 6.6.4

REMARK 2.87 For simplifying our formulas, in the following we will often neglect the

index in the notation of the conditional probability density function. Therefore, we

will often write p(y|x) instead of pY|X(y|x) respectively p(x|y) instead of pX|Y(x|y).

2.4.6 THE LAWS OF LARGE NUMBERS AND THE CENTRAL
LIMIT THEOREM

In preparation for the de�nition of the Lebesgue integral we presented a series of types of Lebesgue Integral (105)

convergence: the pointwise, and the uniform convergence, already introduced in Section

2.1.1, as well as the ν-almost everywhere convergence and the convergence according to a.e. Convergence (103)

measure. With respect to random variables, all these types of convergence formalize in Convergence in Measure (103)

di�erent ways the convergence behavior of a sequence of random variables towards a par- Random Variable (168)

ticular random variable. This then allows to consider the concept of the random variable

from di�erent perspectives. As a random variable is a measurable function, but can also be

interpreted as a realization of a random experiment endowed with a distribution function,
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we can couple the idea of convergence to the notion of pointwise convergence of a sequence

of measurable functions, but also to properties of random variables such as the expected

value, moments, or other quantities.

Now, in all of our previous discussions, the distributions of a sequence of random

variables were always known, which will not be the case when discussing the realistic

modeling of practical applications. Often, then only very little information|such as the

expected value or other moments|is available about the random variables involved. Here,

it would be useful, if at least information about the behavior of a large sum of random

variables would be available. The limit theorems of probability theory will show, that via

the behavior of the mean value of a large number of random variables, relatively detailed,

approximate statements may be derived about the distribution of the random variables

and the occurring probabilities. But before we will devote our interest to the limit theo-

rems of probability theory, let us start with the famous Chebychev inequality.Chebychev Inequality (212)

THE LAWS OF LARGE NUMBERS. Let us assume f represents a non-negative, real-valued,Measurable Function (98)

measurable function on the measure space (Ω,F, µ), then, with 0 < p < ∞ as well asMeasure Space (80)

0 < ε <∞ and the features of the Lebesgue integral, the following clearly applies:Lebesgue Integral (105)

1

εp

∫
R

fp(x)dµ(x)
R⊃{x|f(x)≥ε}

≥ 1

εp

∫
{x|f(x)≥ε}

fp(x)dµ(x) (2.830)

f(x)≥ε
≥ 1

εp

∫
{x|f(ω)≥ε}

εp dµ(x) (2.831)

= µ{x | f(x) ≥ ε}. (2.832)

If we reformulate this relation as follows:

µ{x|f(x) ≥ ε} ≤ 1

εp

∫
R

fp(x)dµ(x), (2.833)

then we obtain one of the most fundamental inequalities of measure and integration theory:

the Chebyshev Inequality. In probability theory, the Chebyshev Inequality is mostly used

in the following version:

THEOREM 2.9 (The Chebyshev Inequality) Let (Ω,F,P) be any probability space, X aProbability Space (163)

random variable or a random vector de�ned on (Ω,F,P), and 0 < ε < ∞, then itRandom Variable (168)

holds
Expected Value (196)

Variance (201) prob

{∣∣X− E(X)
∣∣ ≥ ε} ≤ Var(X)

ε2
. (2.834)

PROOF 2.9 Replacing the real-valued, measurable function f from Equation (2.833) byMeasurable Function (98)
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FIGURE 2.56: THE CHEBYSHEV INEQUALITY. The values of a random variable with
finite variance are close to the expected value of the random variable. The probability that
a value of the random variable lies outside the ε-strip in the left image is greater than the
probability that it lies outside the double ε-strip in the right image.

the random variable X−E(X) and the Lebesgue measure µ by the probability measure

P, then we obtain for the case p = 2:

prob
{∣∣X− E(X)

∣∣ ≥ ε} (2.607)
= P {ω | |X(ω) − E(X)| ≥ ε} (2.835)

(2.833)

≤ 1

ε2

∫
Ω

(X(ω) − E(X))2 dP(ω) (2.836)

(2.761)
=

Var(X)

ε2
. (2.837)

Evendently, the Chebyshev inequality delivers a tool for estimating the probability

of a non-negative random variable by means of the 2nd moments of this random variable. Moment of a RV (201)

It states that the values of the random variable X, with �nite variance, are close to the Variance (201)

mean value, or a little more precisely: If we choose ε = kσ, k > 0, where σ is the standard

deviation, which is de�ned as the square root of the 2nd central moment of X, thus:

σ
def
=
√
Var(X), (2.838)

then the Chebyshev Inequality can be formulated as:

prob

{∣∣X− E(X)
∣∣ ≥ kσ} ≤ 1

k2
. (2.839)

This means, that for k =
√
2, half of the values of X are no more than

√
2 standard

deviations away from the mean. Following this, a �rst statement on the asymptotical

behavior of a sequence of random variables may be made via Chebyshev's inequality from

Equation (2.834) which in turn leads to Chebyshev's Weak Law of Large Numbers.
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FIGURE 2.57: CHEBYSHEV’S WEAK LAW OF LARGE NUMBERS. Left, the PDF pn1 of∑n1
i=1Xi, right, the PDF pn2 of

∑n2
i=1Xi with n1 � n2. The probability of sampling a

value of the random variable close to its expected value is more likely with pn2 than with
pn1 . The WLLN states that, for a given ε, the area under the graph of the PDF tends to 0
as n grows without limit. In other words, outside the ε-strip, the tails of the PDF become
negligible when n goes to infinity.

THEOREM 2.10 (Chebyshev's Weak Law of Large Numbers, WLLN) Let X,X1, . . . ,Xn
representing independent random variables or random vectors, not all necessarilyIndependent RV (204)

uniformly distributed, with E(Xi) = E(X) and Var(Xi) ≤ Var(X) < ∞ for 1 ≤ i ≤ n,Uniform Distribution (180)

then Equation (2.834) implies:

prob

{∣∣∣∣X1 + . . .+Xn
n

− E(X)

∣∣∣∣ ≥ ε} ≤ Var(X)

nε2
, (2.840)

thus:

X1 + . . .+Xn
n

P−→ E(X), (2.841)

i.e. the random variable X1+...+Xn
n

converges in probability towards the expectedConvergence In Measure (103)

value E(X).

PROOF 2.10 The proof is very easy. From linearity property of the expected value weLinearity of EV (202)

obtain:

E

(∑n
i=1Xi
n

)
(2.773)
=

1

n

n∑
i=1

E(Xi) (2.842)

E(Xi)=E(X)
= E(X). (2.843)
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Since the random variables are independent, we get due to Relation (2.791):

Var

(∑n
i=1Xi
n

)
=

1

n2

n∑
i=1

Var(Xi) (2.844)

Var(Xi)≤Var(X)

≤ 1

n
Var(X). (2.845)

Applying Chebyshev's inequality then leads to:

prob

{∣∣∣∣X1 + . . .+Xn
n

− E(X)

∣∣∣∣ ≥ ε} ≤
Var

(∑n
i=1Xi

n

)
ε2

(2.846)

(2.845)

≤ Var(X)

nε2
. (2.847)

REMARK 2.88 As a consequence of Chebyshev's inequality the Weak Law of Large

Numbers says that the average of a set of random variables converges in probability Convergence In Measure (103)

towards the expected value of the random variables. Thus, if we choose a margin, no Expected Value (196)

matter how small, then there will be a very high probability that with a su�ciently

large sample size the average of observations will be close to its expected value.

As we will see later in a subsequent chapter of our book, often in many practical Chapter 6

situations it is not ever possible to compute the value of an integral directly. Then, the

Weak Law of Large Numbers is the basis of a probabilistic integration method which

gives an approximate solution by random sampling of points, the so-called Monte Carlo Section 6.5

integration. Let us illustrate this technique by means of a simple example.

EXAMPLE 2.86 Let f ∈ L2(R, µ) be an integrable real-valued function de�ned on the Integrable Function (105)

unit interval [0, 1]. Let furthermore X,X1, . . . , Xn be uniformly distributed random Uniform Distribution (180)

variables on [0, 1]. Due to Chebyshev's Weak Law of Large Numbers it can be shown

that the random variable

Sn
def
=

1

n

n∑
i=1

f(Xi) (2.848)

converges in probability towards the integral Convergence In Measure (103)

I def=
∫
[0,1]

f(x)dµ(x). (2.849)

Now, the random variables X,X1, . . . , Xn are uniformly distributed on [0, 1], that Uniform Distribution (180)

is, for the random variable f(X) it holds:

E(f(X))
(2.735)
=

∫
[0,1]

f(x)dPX(x) (2.850)

dPX=dPU=

∫
[0,1]

f(u)dPU(u), (2.851)
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where U is as usual our standardized on [0, 1] uniformly distributed random variable.

With the probability density function pU ≡ 1 this then leads to:PDF (176)

E(f(X)) =

∫
[0,1]

f(u)pU(u)dµ(u) (2.852)

pU≡1
=

∫
[0,1]

f(u)dµ(u). (2.853)

Since X,X1, . . . , Xn ful�lls the requirements of Chebyshev's Weak Law of Large

Numbers|E(X) = E(X1) = . . . = E(Xn) and the variance of f, as a Lebesgue square-

integrable function, is obviously �nite|the random variable Sn then provides theIntegrable Function (105)

desired result

Sn
P−→ ∫

[0,1]

f(x)dµ(x). (2.854)

If in Chebyshev's weak law of large numbers one limits oneself to identically dis-

tributed random numbers, then one obtains| without the variance condition from WLLN

and under as weak conditions as possible|for a large general class of random variables

Kolmogorov's Strong Law of Large Numbers.

THEOREM2.11 (Kolmogorov's Strong Law of Large Numbers) Let us assume X,X1, . . . ,Xn
representing independent, identically distributed random variables or random vectorsUniformly Distributed RV (180)

with E(Xi) = E(X), then the following holds:

X1 + . . .+Xn
n

a.e.−→ E(X). (2.855)

PROOF 2.11 The proof of Kolmogorov's Strong Law of Large Numbers is more complex

than that of Chebyshev's Weak Law of Large Numbers. Because we need only the

result of this theorem, we omit the proof and refer the interested reader to [15, Ash

& Dol�eans-Dade 2000].

With respect to the analysis of algorithms, Kolmogorov's Strong Law of Large Num-

bers implies that the arithmetic mean of a sequence of random variables converges towards

the expected value of the random variables not only according to measure, but in fact P-Expected Value (196)

almost everywhere except for a set of measure zero. This in turn may be interpreted,Convergence a.e. (103)

Measure (79) that every observation sequence gained on the basis of stochastically independent random

variables ultimately leads to the expected value via an appropriate construction of a mean

value.

THE CENTRAL LIMIT THEOREM, 1D CASE. As demonstrated in probability theory, Kol-

mogorov's Strong and Chebyshev's Weak Law of Large Numbers supply information on
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FIGURE 2.58: ILLUSTRATIONS OF KOLMOGOROV’S STRONG LAW OF LARGE NUMBERS.
The left image visualize the rolling of an idealized die, the right image the flipping of an
idealized coin. From both images you can see: if the number of rolls or flips increases, the
average of the values of all results approaches to the value 3.5 for the die and 0.5 for the
coin, and these are the expected values of the associated random variables.

the convergence of the expected value of random variables but they say nothing about

their assigned distributions.

Such approximations are, however, of particularly great importance as the precise

distribution of the arithmetic mean of random variables is not easly to calculate. Re- Random Variable (168)

garding this point, a fundamental statement is provided by the Central Limit Theorem

according to which the arithmetic mean of n independent random variables with arbitrary

distributions is at least approximately normally distributed, if their variances are �nite. If

we limit ourselves to one-dimensional, identically distributed random variables, then the

statement of the Central Limit Theorem may be formulated as follows:

THEOREM 2.12 (The Central Limit Theorem, 1D Case) If X,X1, . . . , Xn are independent

and identically distributed one-dimensional random variables with expected value Random Variable (168)

E(Xi) and �nite variance Var(Xi) < ∞. The following then applies for the random

variable:

Sn
def
=

∑n
i=1 (Xi − E(Xi))√

nσ
(2.856)

as n goes to ∞
prob (Sn ≤ x) −→ 1√

2 π

∫x
−∞ e

− t
2

2 dµ(t), (2.857)

that is, the standardized random variable Sn from above is asymptotically normal

distributed, see Figure 2.59.
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1.0

FIGURE 2.59: 1D NORMAL DISTRIBUTION. PDF and CDF of the 1D normal distribution
N (0, 1), thus with expected value µ = 0 and standard deviation σ = 1. The left figure
confirms, what mathematically can be shown: 68.27% of all values are located in an interval
of standard deviation ±σ around the expected value, 95.45% of all values are located in the
interval [−2σ, 2σ], and 99.73% of all values are located [−3σ, 3σ].

PROOF 2.12 For a proof, see [15, Ash & Dol�eans-Dade 2000] or [84, Hesse 2003].

REMARK 2.89 In probability theory, the central limit theorem can be considered as a set

of weak-convergence statements. Common to all of these statements is that the sum

of a large number of independent and identically distributed random variables will

tend to be normally distributed. Since many processes in real world can be considered

as the average result of many unknown random processes, the CLT also justi�es their

normal distributed character.

2.4.7 STOCHASTIC PROCESSES

As we have seen in the previous sections, random variables are highly useful in modelingRandom Variable (168)

static problems in which randomness plays an important role. When discussing sequences

of random experiments we also observed that the outcome for each random experiment

was not inuenced by the outcomes of previous experiments. The reason for this was that

all these random experiments are based on independent distributed random variables.Independent Distributed RV (168)

Recalling Example 2.85, where we have analyzed the travel of a photon through a

scene consisting of gloss objects. As the scattered direction of the photon at a surface not

only depends on the material and surface properties of the object that has been hit, but

also on the incoming direction, modeling the interaction of a photon at a surface via a

random experiment also requires to account for the outcome of the previous experiment.

An adequate description of such events requires the construction of particular types of
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random variables, so-called stochastic processes. They deliver information how a process

might evolve under time.

In this section, we �rst present the probabilistic model of the stochastic process and

talk about a classi�cation of stochastic processes. Via the Markov property, introduced

in Section 2.4.5, we then de�ne a great class of stochastic processes: Markov chains and Section 2.4.7.1

Markov processes. So, we will develop the most important properties of Markov chains Section 2.4.7.2

and Markov processes and shortly discuss their use in algorithms for solving the light

transport problem.

From now on, we free ourselves from the way of thinking static and focus our attention

on the temporal development of a random experiment. Because of its complexity and due

to the fact that it opposed to the dynamic way of thinking, the set Ω will completely

occur in the background. Our central concept will not be a random experiment, but the

concept of the stochastic process.

DEFINITION 2.69 (Stochastic Process) A stochastic process is a family of random vari- Random Variable (168)

ables (Xt)t∈T de�ned on the probability space (Ω,F(Ω),P), where T is any arbitrary Probability Space (163)

index set. The set of all possible values Xt(ω), which the random variable Xt can

take on, is denoted as the state space or the state set S of a stochastic process. In

particular, Xt(ω) is interpreted as the state of the process at time t.

Let us present a �rst simple example of a stochastic process known from probability

courses in school: The Bernoulli chain.

EXAMPLE 2.87 (Bernoulli Chain) A Bernoulli chain is an example of a stochastic process.

It can be modeled by a �nite or countably in�nite sequence (Xn)n∈N0 of independent

and identically distributed random variables Xn each with two outcomes {0, 1}, where

it holds: P(Xn = 0) = p and P(Xn = 1) = 1− p.

Usually, stochastic processes are classi�ed by its index set and its state space. So

we speak of processes, if the state space S is uncountably in�nite; in the case, where the

state space S is �nite or countably in�nite, a stochastic process is usually called a chain. Countable Set (827)

Via the type of the index set T , we then further specify a process or a chain. If T is

uncountably in�nite, a process is called a continuous-time process and a chain is called a Uncountable Set (827)

continuous-time chain, while in the case where T is �nite or countably in�nite we denote

a process a discrete-time process and a chain is called a discrete-time chain.

EXAMPLE 2.88 (Bernoulli Chain, continued) Obviously, a Bernoulli chain is a discrete-

time, discrete-state stochastic process.

EXAMPLE 2.89 Let T and S be two �nite or countably in�nite sets, then the sequence

of random variables (Xt)t∈T represents a discrete-time chain. In the case where
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T is uncountably in�nite, we speak of a continuous-time chain. If both sets are

uncountably in�nite, (Xt)t∈T is a continuous-time process.

In the following example, we will introduce the concept of the random walk. As we

will see later in our book, the concept of the random walk is the mathematical foundation

of the most-promising ray based rendering algorithms.Section 9

EXAMPLE 2.90 (RandomWalk) Let (Xn)n∈N0 be a discrete-time, continuous-state stoch-

astic process, where Xn = (X1n , . . . , Xsn) ∈ A ⊆ Rs are independent and identically

distributed s-dimensional random variables, then the random variable Sn de�ned by:

Sn
def
=

n∑
i=0

Xi (2.858)

is called a random walk in A. An example of a 2-dimensional random walk is shown

in the left image of Figure 2.60.

Let us assume A = Z2, then a random walk in Z2 can be simulated via a sequence

of independent and identically distributed, random variables (Xn)n∈N0 taking the four

outcomes {0, 1, 2, 3}, where it holds:

P(X = i) =
1

4
, i ∈ {0, 1, 2, 3}. (2.859)

If the random walk is at point Sn−1 = (p, q) ∈ Z2 at time n − 1, then it will be

continued at time n as follows:

Sn = Sn−1 +


(p− 1, q) if X = 0

(p+ 1, q) if X = 1

(p, q− 1) if X = 2

(p, q+ 1) if X = 3.

(2.860)

For an illustration of a random walk in Z2, see the right image in Figure 2.60.

REMARK 2.90 In the following, we do not always explicitly specify the type of a stochas-

tic process or a chain, and we use again and again the synonyms process, for a dis-

crete or a continuous-time process, as well as chain, for a discrete or a continuous-

time chain.

REMARK 2.91 The processes, which we will discuss and analyze in the following, are

all either discrete-time processes or discrete-time chains, as their index set is �-

nite or countably in�nite. That is, the family of random variables associated with

a discrete-time chain are discrete random variables with values in the measurable

space (S,P(S)), and the random variables associated with a discrete-time process areP(·) (828)

continuous with values in the measurable space (S,B(S)).Measurable Space (80)
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FIGURE 2.60: RANDOM WALKS. Left, a continuous random walk is shown. At state
n − 1 the random walk is continued in x- and y-direction via a uniformly distributed, 2-
dimensional random variable X = (X, Y) ∈ [0, 1]2. On the right-hand side a discrete random
walk is shown. At each state, the process makes a step in one of the directions left, right,
top, or bottom.

Let us close this introductory section on stochastic processes with a few examples of

great interest for us. In the �rst example, we show how the travel of an abstract particle

through a small scene can be modeled via a discrete-time random walk.

EXAMPLE 2.91 (Discrete Travel of a Photon Through a Small Scene) Let us consider

the discrete travel of a photon through a small scene consisting of four di�use sur-

faces, where a photon can be reected at each surface only in one of three possible

directions, see Figure 2.61. Let us assume, the photon can start at any of the sur-

faces {s1, s2, s3, s4} and makes a transition from si to sj, denoted by si → sj, for

1 ≤ i, j ≤ 4, i 6= j. Since all surfaces are di�use, we can simulate the travel of

the photon through the scene by a stochastic process of independent and identically

distributed random variables (Xn)n∈N0 , with Xn ∈ {s1, s2, s3, s4}. Obviously, the prob-

ability distribution of the random variables is given by: P(si → sj) =
1
3
for i 6= j and

P(si → sj) = 0 for i = j, where Xn = si and Xn+1 = sj is assumed.

In the next example, we consider a stochastic process where the involved random

variables are identically distributed, but does not take on the same values.

EXAMPLE 2.92 (Transport Paths in a Scene) Let us consider a scene with di�use and

specular objects, labeled by D and S, which are illuminated by light sources L. There
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FIGURE 2.61: DISCRETE TRAVEL OF A PHOTON THROUGH A SMALL SCENE. At any
state of the scene, a photon can make three transitions to one of another state. Since all
surfaces in the scene are diffuse, the probability of a transition is given by 1

3
.

is also an observer E within the scene. We are interested in all possible paths passing

over the objects starting at a light source and ending at the eye of an observer|we

will discuss the concept of the light and eye path in more detail in Section 8.1.

Obviously, there exist a path from a light source to the eye, this is the single path

that has length one. Path of lengths two can be constructed from L, via a di�use

or specular object to the eye. The graph in Figure 2.62 represents all possible paths

between L and E.

Now, the random experiment of constructing of a path between a light source

and the eye can be described by a stochastic process (Xn)n∈N0 with �nite state space

S = {L,D, S, E}, where L corresponds to the starting point of the chain and E is the

end state of the chain. The chain enters in states D, S or E with probability 1
3
.

Transitions from L to L, or E to E occurs with probability zero.

In the following example, now we will present a stochastic process based approach

for solving linear systems of equations. In Section 6.7.3, we will see that this approach

can easily be extended for �nding appropriate approximative solutions to linear integral

equations.Section 2.3

EXAMPLE 2.93 (The Expected Value of a Sequence of Random Variables as Solution to a

Linear System of Equations) Let us consider a system of linear equations, in vector
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FIGURE 2.62: SIMULATION OF TRANSPORT PATHS VIA A STOCHASTIC PROCESS. The
random experiment constructing of a path between a light source and the eye can be
simulated via a stochastic process based on the finite state space S = {L,D, S, E}, where
L is the starting point of the chain and E the end state of the chain. The chain starts
with probability p0 = 1 in state L. It can loop in the states D and S with probability
pDD = pSS = 1

3
.Transition from L to L respectively E and E are not allowed.

form written as:

Mx = b, (2.861)

where the column vectors x,b are from Rn and (mij)1≤i,j≤n is a n× n-dimensional
regular matrix with coe�cients from R.

Replacing the matrix M in Relation (2.861) by (I−A), where I is the identity,

then the system from above may be written similarly to an operator equation as: Linear Operator Equation (61)

x = Ax+ b. (2.862)

Under the condition that the operator A contracts, i.e. ‖A‖ < 1, due to Equation Operator Norm (56)

(2.387) there exists the inverse to (I −A) in form of a Neumann series. The exact Neumann series (135)

solution of Equation (2.861) is then given by:

x = M−1 b = (I−A)−1 b =

∞∑
i=0

Ai b. (2.863)

Now, on a computer it is not possible to compute an exact solution of the Neu-

mann series, which is why we search for an approximation x̃ of Equation (2.863).

After m+ 1 steps such an approximation can be obtained via:

x̃(m+1) =

m∑
i=0

Ai b, (2.864)
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with x̃(0) = 0 and A0 = I. Then, the jth component of x̃(m+1) is equal to:

x̃
(m+1)
j = bj +

n∑
i1=1

aji1bi1 +

n∑
i1=1

n∑
i2=1

aji1ai1i2bi2 (2.865)

+ . . .+

n∑
i1=1

n∑
i2=1

. . .

n∑
im=1

aji1ai1i2 . . . aim−1imbim

or in closed form:

x̃
(m+1)
j = bj +

m∑
k=1

(
n∑
i1=1

. . .

n∑
ik=1

(
aji1

k−1∏
l=1

ailil+1

)
bik

)
.

Obviously, the iterate x̃
(m+1)
j can also be expressed as:

x̃
(m+1)
j = bj +

s∑
i1=1

aji1
pji1

bi1pji1 +

n∑
i1=1

n∑
i2=1

aji1ai1i2
pji1i2

bi2pji1i2 + . . .+ (2.866)

n∑
i1=1

n∑
i2=1

. . .

n∑
im=1

aji1ai1i2 . . . aim−1im

pji1i2...im
bimpji1i2...im

= bj + (2.867)
m∑
k=1

(
n∑
i1=1

. . .

n∑
ik=1

(
aji1
∏k−1
l=1 ailil+1

pji1...ik

)
· bik · pji1...ik

)
.

Under the condition, that pji1 , pji1i2 , . . . , pji1...im are positive real numbers, the

single terms in the representation of x̃
(m+1)
j can be interpreted as the expected values

of discrete random variables Xji1 , . . . ,Xji1...im where it holds:

Xji1 ∈
{
aji1
pji1

bi1

∣∣∣∣1 ≤ i1 ≤ n} (2.868)

...

Xji1...im ∈
{
aji1ai1i2 . . . aim−1im

pji1...im
bim

∣∣∣∣1 ≤ i1, . . . , im ≤ n} . (2.869)

Now, with Xji1 , . . . ,Xji1...im , obviously also the sum of these random variables,

given by:

X
def
= bj +

m∑
k=1

Xji1...ik , (2.870)
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is also a random variable.

Choosing probability distributions, induced by the associated probability mea-

sures, via:

P
(
Xji1 =

aji1
pji1

bi1

)
= pji1

... (2.871)

P
(
Xji1...im =

aji1ai1i2 . . . aim−1im

pji1...im
bim

)
= pji1...im (2.872)

then Xji1 , . . . ,Xji1...im are independent distributed random variables and the expected

value of the sum X of these random variables corresponds to the iterate x̃
(m+1)
j . This

can easily be shown as follows: For computing the expected value of X, we have to Expected Value (197)

multiply each value of Xji1...ik , k ≥ 1 by its probability pji1...ik , that is, the expected

value of the random variable X is then given by:

E(X) = E

(
bj +

m∑
k=1

Xji1...ik

)
(2.873)

= bj + E (Xji1) + . . .+ E (Xji1...im) (2.874)

= bj +

s∑
i1=1

aji1
pji1

bi1pji1 +

n∑
i1=1

n∑
i2=1

aji1ai1i2
pji1i2

bi2pji1i2 + . . .+ (2.875)

n∑
i1=1

n∑
i2=1

. . .

n∑
im=1

aji1ai1i2 . . . aim−1im

pji1...im
bimpji1...im

= bj +

n∑
i1=1

aji1bi1 +

n∑
i1=1

n∑
i2=1

aji1ai1i2bi2 (2.876)

+ . . .+

n∑
i1=1

n∑
i2=1

. . .

n∑
im=1

aji1ai1i2 . . . aim−1imbim (2.877)

= bj +

m∑
k=1

(
n∑
i1=1

. . .

n∑
ik=1

(
aji1

k−1∏
l=1

ailil+1

)
bik

)
. (2.878)

Since the last equation corresponds to the same formula that we have derived

when computing the m + 1th approximation of the jth component of the solution x

of Mx = b, we obtain:

x̃
(m+1)
j = E(X). (2.879)
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Obviously, this example shows that the solution of a linear system of equations can

be interpreted as the expected value of a sum of independent distributed, discrete ran-

dom variables which are not identically distributed. That is, a su�ciently long series of

trials based on an independent random experiment|associated with the above stochastic

process|leads to the solution of Equation (2.861). But how can we model such a random

experiment? Before we can answer this question we have to talk about Markov chains and

Markov processes.

2.4.7.1 DISCRETE-TIME MARKOV CHAINS

In the following we assume that a family of random variables (Xn)n∈N0 , de�ned on the

probability space (Ω,F(Ω),P), is given with values in a �nite or countably in�nite stateProbability Space (163)

space S.Countable Set (827)

DEFINITION 2.70 (Discrete-time Markov Chain) Let i0, . . . , in−1, i, j be a sequence of n+2

points from a �nite or countably in�nite state space S. Furthermore, let us as-

sume that the sequence of discrete random variables (Xn)n∈N0 satis�es the Markov

property, thus,Markov Property (207)

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . ,X0 = i0) = P (Xn+1 = j|Xn = i) . (2.880)

Then, the sequence of random variables (Xn)n∈N0 is called a discrete-time Markov

chain, or simply a Markov chain, in computer graphics one also often speaks of a

random walk. In this case Xn is interpreted as the state of the Markov chain at time

n, and we say, the chain is in state i at time n, if it holds Xn = i.

If we refer to Xn+1 as the future, Xn−1, . . . ,X0 as the past and Xn as the present,

then, due to the Markov property, the probability that a Markov chain will be in the future

in a particular state depends solely on the present state and its index n, not however, on

any states adopted in the past. The characteristic of a Markov chain is its property, that

with knowledge about the prehistory of the chain, the same statements about the future

development are possible as with knowledge about the whole prehistory of the process.

The probabilities from Equation (2.880) are denoted as the transition probabilities,

because they provide information of all the potentially possible transitions of (Xn)n∈N0
from state i into state j, see Figure 2.64. If all these probabilities are independent from

time point n, we denote them as

pij
def
= P (Xn+1 = j|Xn = i) , (2.881)

and we say that the Markov chain is homogeneous.

REMARK 2.92 Unless stated otherwise, we assume in the following that all stochastic

processes in which we are interested are homogeneous.



SECTION 2.4. THE MOST IMPORTANT CONCEPTS FROM PROBABILITY THEORY 227

FIGURE 2.63: DISCRETE TRAVEL OF A PHOTON THROUGH A SMALL SCENE. At any
state of the scene, a photon can make three transitions to one of the other state. At the
three diffuse surfaces, the probability of a transition is given by 1

3
, but at the gloss surface,

the interaction of the photon is predetermined by the incident direction.

EXAMPLE 2.94 (Discrete Travel of a Photon Through a Small Scene, Continued) Let us

consider the discrete travel of a photon through the small scene from Example 2.91.

Now, we will assume, that one of the surfaces, namely the surface S2, is perfectly

specular, see Figure 2.63. Obviously, the reection at the specular surface is depen-

dent on the incident direction of the photon at the surface, that is, the reection at

the specular surface can not be simulated via an independent random variable, as

we did it in Example 2.91. Here, we have to simulate the travel of the photon via a

discrete Markov chain.

The state space S can now be chosen as the set of all directions within Figure

2.63, that is:

S = {ωij | there is an edge between si and sj for i 6= j}, (2.882)

where for the associated probability distribution at di�use surfaces it holds:

P(ωjk|ωij) =
1

3
, (2.883)

and|due to the Law of Reection| the probability distribution at the specular sur- Law of Reflection (300)

face is given by

P(ω23|ω12) = 1 (2.884)

P(ω24|ω42) = 1 (2.885)

P(ω21|ω32) = 1, (2.886)
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FIGURE 2.64: VISUALIZATION OF A MARKOV CHAIN. A discrete-time Markov chain
generated over the state space S = {s0, s1, s2, s3} with associated transition probabilities
pij =

1
4
, 0 ≤ i, j ≤ 3.

all other probabilities, such as the impossible transition from state ω13 into state

ω14, have to be zero.

Via the transition probabilities pij and the initial distribution p0 of the random

variable X0, given by

p0
def
= P (X0 = i0) , (2.887)

then all common distributions of a Markov chain are �xed, since it holds

P (Xn = in, . . . ,X0 = i0)
(2.797)
= P (X0 = i0)

(
n∏
k=1

P
(
Xk = ik

∣∣Xk−1 = ik−1)) (2.888)

= p0

n∏
k=1

pik−1ik . (2.889)

EXAMPLE 2.95 (Transport Paths in a Scene, Continued) Since the chain in Example 2.92

starts at the eye, the initial distribution is given by

p0 = P(X0 = E) = 1. (2.890)

The transition probabilities are given by

pij = P(X1 = j|X0 = i) =
1

3
(2.891)
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for i, j ∈ {L,D, S, E} with i 6= j and

pLL = pEE = 0 and pDD = pSS =
1

3
. (2.892)

Based on these results, the probability that the process is in state E after n-steps-

|thus, a path of length n was generated|corresponds to

P (X3 = E, . . . ,X0 = L) = P (X0 = L) ·

(
n−1∏
k=1

P
(
Xn = ik

∣∣Xk−1 = ik−1)) ·
P
(
Xn = E

∣∣Xn−1 = in−1) (2.893)

= 1 ·
n∏
k=1

1

3
(2.894)

=
1

3n
, (2.895)

with ik ∈ {D, S}.

To get a better overview of a system, whose temporal development can be described

by a Markov chain, we summarize the transition probabilities pij in a so-called transition

matrix M = (pij)i,j∈S of the form Matrix (853)

M
def
=

∥∥∥∥∥∥∥∥∥∥∥∥

p00 p01 p02 . . . p0i p0i+1 . . .

p10 p11 p12 . . . p1i p1i+1 . . .

p20 p21 p22 . . . p2i p2i+1 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...

∥∥∥∥∥∥∥∥∥∥∥∥
. (2.896)

In the special case, where the state space S of the corresponding Markov chain is

�nite, the matrix M is of �nite dimension, otherwise it is in�nitely dimensional. Since M

must satisfy the conditions

pij ≥ 0,
∑
j∈S

pij = 1, i ∈ S, (2.897)

we call M a stochastic matrix.

EXAMPLE 2.96 (Discrete Travel of a Photon Through a Small Scene, Continued) The

stochastic matrix M, associated with the Markov chain from Example 2.94, is obvi-
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ously given by

M
def
=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1
3

1
3

1
3

0 0 0

0 0 0 0 0 0 0 0 0 1
3

1
3

1
3

1
3

1
3

1
3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
3

1
3

1
3

0 0 0

0 0 0 0 0 0 0 0 0 1
3

1
3

1
3

1
3

1
3

1
3

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
3

1
3

1
3

1
3

1
3

1
3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1
3

1
3

1
3

0 0 0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

. (2.898)

Obviously, M can easily be derived from the transition diagram of the Markov

chain from Figure 2.63 by setting a coe�cient pij with the transition probability from

state i into state j.

REMARK 2.93 Any Markov chain, represented in form of a stochastic matrix M, can

also easily be visualized by a corresponding directed graph G = (N,V), where the

node set N is given by the row-numbers 1, 2, . . . and the edge set V is speci�ed via

the transition probabilities, that is, there is an edge in G from node i to node j, if

pij 6= 0.

Based on the transition probabilities, we are now able to de�ne the probabilities that

a Markov chain in state i will be in state j after n additional steps, that is,

pnij
def
= P(Xn+m = j

∣∣Xm = i), (2.899)

for all n,m ∈ N0,m ≥ 1, i, j ∈ S, which we call the n-step transition probabilities pnij.

With p1ij
def
= pij, they can be written recursively as:

pn+mij =
∑
k∈S

pnikp
m
kj (2.900)

and are referred to as the Chapman-Kolmogorov equations. Here the transition from

state i in state j in n + m transitions can be done by going in n steps from state i to

a state k and then from k to state j in m additional steps, where we must sum over all

intermediate states k. In matrix notation formulated, the Chapman-Kolmogorov equations

can be written as the product of the nth and the mth power of the transition matrix M,

also

Mn+m = Mn ·Mm. (2.901)
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EXAMPLE 2.97 (Transport Paths in a Scene, Continued) The stochastic matrix M, asso-

ciated with the Markov chain from Example 2.92, is obviously given by

M
def
=

∥∥∥∥∥∥∥∥
0 1

3
1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3

0 0 0 0

∥∥∥∥∥∥∥∥ . (2.902)

Based on the matrix M, the n-step transition probabilities pnij are the coe�cient

of the matrix:

Mn def=

∥∥∥∥∥∥∥∥∥
0 2n−1

3n
2n−1

3n
2n−1

3n

0 2n−1

3n
2n−1

3n
2n−1

3n

0 2n−1

3n
2n−1

3n
2n−1

3n

0 0 0 0

∥∥∥∥∥∥∥∥∥ . (2.903)

Thus, the transition probability p404 =
8
81

corresponds to the probability for gen-

erating all 8 possible paths L(D|S)3E between L and E. Section 8.1

Let us consider once more Example 2.93 where we have shown, that the expected

value of a stochastic process can be interpreted as solution of a linear system of equations.

EXAMPLE 2.98 (Solving a Linear System of Equations by Simulating a Discrete-time Markov

Chain, Continued) Equation (2.863) has shown that the approximate solution x̃ to the

linear system of equations from (2.861) can be written as:

x̃(m+1) =

m∑
i=0

Ai b, (2.904)

with x̃(0) = 0 and A0 = I, and the jth component of x̃(m+1) was given by:

x̃
(m+1)
j = bj +

n∑
i1=1

aji1bi1 +

n∑
i1=1

n∑
i2=1

aji1ai1i2bi2 (2.905)

+ . . .+

n∑
i1=1

n∑
i2=1

. . .

n∑
im=1

aji1ai1i2 . . . aim−1imbim .

Let us now consider a discrete-time Markov chain (Xn)n∈N0 with initial distri-

bution p0
def
= (0, . . . , 1︸︷︷︸

pj

, . . . , 0) and transition probabilities (pij)1≤i,j≤n:

n∑
j=1

pij = 1, pij > 0 if aij 6= 0, i, j = 1, . . . , n. (2.906)
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We model the chain (Xn)n∈N0 by a random walk j = i0 → i1 → i2 → . . .→ im of

length m starting at state j = i0 that passes through a sequence of states i1, i2, . . . , im.

With such a random walk, then we associate a random variable Xm, given by:

Xm
def
= Xji0 +

m∑
k=1

Xji1...ik , (2.907)

where for Xji1...im for i0 ≤ ij ≤ im it holds:

Xji0 ∈
{
bj

pj

}
(2.908)

Xji1 ∈
{
aji1
pj pji1

bi1

∣∣∣∣1 ≤ i1 ≤ n} (2.909)

...

Xji1...im ∈
{
aji1ai1i2 . . . aim−1im

pj pji1pi1i2 . . . pim−1im

bim

∣∣∣∣1 ≤ i1, . . . , im ≤ n} , (2.910)

and the random variables Xji0 ,Xji1 , Xji1i2 , . . . ,Xji1...im are distributed according to

P
(
Xji0 =

bj

pj

)
= pj (2.911)

P
(
Xji1 =

aji1
pj pji1

bi1

)
= pj pji1

... (2.912)

P
(
Xji1...im =

aji1ai1i2 . . . aim−1im

pj pji1pi1i2 . . . pim−1im

bim

)
= pj pji1pi1i2 . . . pim−1im . (2.913)

Since the the random variable Xm is de�ned along the path j = i0 → i1 → i2 →
. . .→ im we get for the expected value of Xm:

E(Xm) = E

(
Xji0 +

m∑
k=1

Xji1...ik

)
(2.914)

= E(Xji0) + E (Xji1) + . . .+ E (Xji1...im) (2.915)

=
bj

pj
pj +

s∑
i1=1

aji1
pj pji1

bi1pj pji1 +

n∑
i1=1

s∑
i2=1

aji1ai1i2
pj pji1pi1i2

bi2pj pji1pi1i2 + . . .+ (2.916)

n∑
i1=1

s∑
i2=1

. . .

s∑
im=1

aji1ai1i2 . . . aim−1im

pj pji1pi1i2 . . . pim−1im

bimpj pji1pi1i2 . . . pim−1im

= x̃
(m+1)
j . (2.917)
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But this corresponds to the same formula that we have derived when computing

the m+1th approximation of the jth component of the solution x of Mx = b, namely,

x̃
(m+1)
j = E(Xm). (2.918)

Now, the SLLN then implies, that the solution of a linear system of equations SLLN (216)

can be computed via simulating a large number N of independent and identically

distributed random walks j(k) = i
(k)
0 → i

(k)
1 → i

(k)
2 → . . . → i

(k)
m of length m with

1 ≤ k ≤ N, namely via computing the mean

x̃
(m+1)
j ≈ 1

N

N∑
k=1

X(k)
m (2.919)

=
1

N

N∑
k=1

(
X

(k)
ji0

+

m∑
l=1

X
(k)
ji1...il

)
. (2.920)

Keep your eyes open for this technique; you will see it used more and more in

Monte Carlo integration.

2.4.7.2 DISCRETE-TIME MARKOV PROCESSES

Due to the structure of their underlying state spaces, many processes encountered in every-

day life cannot be represented via the model of the discrete Markov chain. Such processes

require uncountable sets as state spaces, in particular, subsets of the s-dimensional Euclid-

ian space Rs. As an example, let us take a short outlook at Monte Carlo path tracing, a Section 9.1

rendering method based on stochastic principles for computing an approximative solution

to the SLTEV, the light transport equation in a vacuum. SLTEV (398)

EXAMPLE 2.99 (A First Short Look at pure-Monte Carlo Path Tracing, pMCPT) Let us

consider the Cornell box from Figure 2.65 consisting of slightly gloss surfaces, two Glossy Reflection (304)

specular spheres illuminated by a single area light source. Pure-Monte Carlo path

tracing, for a detailed discussion see Section 9.1, then works as follows: Starting

at the eye the algorithm shoots a ray randomly into the scene. At the hit point of

the ray with any of the surfaces, pMCPT generates, depending on the material and

the surface properties but also depending on the direction of the incoming ray|for

glossy reection, a new ray near the mirrored direction and for specular reection a

new ray in the mirrored direction|see Figure 2.66. The algorithm repeats this little

random experiment until a light source is hit, the length of the path generated by the

process exceeds a prede�ned value, or the ray leaves the scene.

Since the generation of a new outgoing ray at gloss or specular surfaces also

depends on the direction of the incoming ray, this process of path generation over

the scene objects can not really be modeled by repeated evaluation of independent Random Variable (168)
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FIGURE 2.65: A FIRST SHORT LOOK AT PURE-MONTE CARLO PATH TRACING. At each
hit point of a ray with an object of the scene, a random variable generates, depending on
the material and the surface properties, but also depending on the direction of the incoming
ray, a new ray. The algorithm then traces this ray recursively until a light source is hit, the
current path length exceeds a predefined value, or the ray leaves the scene. Image courtesy
of Zack Waters.

random variables with values from the measurable space (S,P(S)), where S is the

set of all existing surfaces within the scene. Since, the associated sample space

is a continuous state space|obviously, the lobe of directions around the mirrored

direction of the incident direction is uncountably in�nite|a discrete-time Markov

process can be used for sampling the outgoing direction.

To express matters in a simpli�ed manner, a discrete Markov process (Xn)n∈N0
can be de�ned as a discrete Markov chain over the continuous state space S ⊆ Rs. In

analogy to the results obtained in the preceding section, a Markov process may then also

be represented via a random walk. However, in such a case the uncountability of the state

space S requires a corresponding modi�cation of the de�nitions and features describing a

Markov process.

DEFINITION 2.71 (Transition Kernel) Let us assume, (Ω,F) and (Ω ′,F ′) be two measureMeasure Space (80)

spaces. Then, we call a function K, de�ned by

K : Ω× F ′ −→ R≥0 (2.921)

with

i) ∀ω ∈ Ω, K(ω, ·) is a measure on (Ω ′,F ′)
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FIGURE 2.66: SAMPLING A DIRECTION IN MONTE CARLO PATH TRACING. At gloss
surfaces, Monte Carlo path tracing samples the outgoing ray depending on the incident ray
near the mirrored direction. At high gloss surfaces, the outgoing ray is rather chosen near
the mirrored ray, for slightly gloss surfaces the lobe of possible exitant directions is larger,
and the outgoing ray can leave the hit point further away from the mirrored direction of the
incident ray.

ii) ∀B ∈ F ′ K(·, B) is a Ω-Ω′-measurable function,

a transition kernel. In the case where K(ω, ·) is a probability measure, K is also

referred to as a Markov Kernel and one writes in the case of integrating a function

f(ω ′) with respect to the measure K(ω, ·) for B ∈ F ′ simply∫
B

f(ω ′)K(ω,dω ′). (2.922)

Due to the above de�nition, a Markov kernel is a mapping that assigns any element

of the base set Ω a measure and at the same time assigns any measurable set form F a Ω-

Ω′-measurable function. Thus, the Markov kernel K(ω,A) corresponds to the conditional

probability of a random variable X, namely:

K(ω,B) = P(Xn+1 ∈ B|Xn = x), (2.923)

thus the probability that Xn+1 ∈ B given Xn(ω) = x.

In the case where Ω and Ω′ are �nite or countably in�nite sets, the Markov kernel

K(ω,B) corresponds the transition matrix M of a discrete-time Markov chain since it



236 CHAPTER 2. MATHEMATICAL FOUNDATIONS OF REALISTIC RENDERING

holds:

K(ωi, B) = P(Xn+1 ∈ B|Xn = xi) (2.924)

=
∑

{ωj∈B|X(ωj)=xj}

P(Xn+1 = xj|Xn = xi) (2.925)

=
∑
ωj∈B

pij, (2.926)

where it holds
∑
ωj∈Ω pij = 1. Obviously, K(ωi,Ω) then represents the i-th row of a

stochastic matrix M with coe�cients (pij)1≤i,j.M (229)

IfΩ andΩ′ are uncountably in�nite sets, then the Markov kernelK(x, B) corresponds

to a conditional probability density pXn+1|Xn(xn+1|xn) of the transition K(x, B). This

can be written as

P(Xn+1 ∈ B|Xn = xn) =

∫
B

K(xn, dxn+1) (2.927)

=

∫
B

p(xn+1|xn)dµ(xn+1), (2.928)

thus, the probability to get from a particular xn to B. Note: To simplify our equations,

we do not mention the involved random variables in the index of the density function p.

DEFINITION 2.72 (Discrete Markov Process) Let K be a Markov kernel constructed over

the measure spaces (Ω,F) and (Ω ′,F ′), then the stochastic process (Xn)n∈N0 de�ned

over the probability space (Ω,F,P) is referred to as a discrete Markov process, if it

satis�es the Markov property:

P(Xn+1 ∈ B|xn,xn−1, . . . ,x0) = P(Xn+1 ∈ B|xn)

=

∫
B

K(xn, dxn+1) (2.929)

=

∫
B

p(xn+1|xn)dµ(xn+1), (2.930)

where p(xn+1|xn) is a conditional probability density function.

As known from the last section, the construction of a Markov-process is also ex-

haustively de�ned by the Markov kernel, i.e. the probability of the transition from state

xn ∈ Bn into state Xn+1 ∈ Bn+1 and the initial distribution K(x0, dx1), see Figure

2.4.7.2. Mathematically, this can be expressed in terms of

P(Xn+1 ∈ Bn+1, . . . ,X0 ∈ B0)

=

∫
Bn+1

. . .

∫
B1

p(x0)K(x0, dx1) · · ·K(xn−1, dxn)K(xn, dxn+1) (2.931)

=

∫
Bn+1

. . .

∫
B1

p(x0)p(x1|x0) · · ·p(xn+1|xn)dµ(x1) . . . dµ(xn+1). (2.932)
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FIGURE 2.67: TRANSITIONS IN A MARKOV PROCESS. The representation of a possible
transition from the continuous state space Bi into the set Bi+1.

Due to Equation (2.931) we can de�ne the Chapman-Kolmogorov equations for all

n,m ∈ N with B ∈ F ′ in the following form

Km+n(x, B)
def
=

∫
Ω

Kn(y, B)Km(x, dy). (2.933)

The Chapman-Kolmogorov equations state that a transition from x into the set B

in m + n steps has to follows in n steps after passing through any y in the m steps. To

conclude this section, let us take a look at a simple example of a random walk generated

over the model of the discrete Markov process.

EXAMPLE 2.100 (Continuous Travel of a Photon Through a Small Scene) A beam of pho-

tons emitted from a light source is, depending on the material characteristics, either

reected, transmitted, or absorbed at the surfaces of the objects existing in a given

scene. On its trip through the scene such a ray generates a path until it either leaves

the environment or all the photons contained within the beam have been absorbed,

see Figure 2.68.

Such a path can be created via a discrete Markov process (Xn)n∈N0 , based on

the Markov kernel, K, given on (∂V× ∂V,B(∂V× ∂V)) by ∂V (41)
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FIGURE 2.68: A CONTINUOUS RANDOM WALK ASSOCIATED WITH A MARKOV PRO-
CESS. The state space is given by the set ∂V =

⋃3
i=0 ∂Vi of 2-dimensional surfaces within

the scene. The random walk in the above figure starts at state x0 and goes over the surfaces
∂V1, ∂V2 and ∂V3.

K(xn, B) =

∫
B

K(xn, dxn+1) (2.934)

=

∫
B

p(xn+1|xn)dµ(xn+1), (2.935)

with B ∈ B(∂V× ∂V)), thus, the probability to arrive at A when starting in point x.

Assuming the probability of starting in point x0 is given by p(x0) and using the

Chapman-Kolmogorov equations then implies that the path x0x1x2x3, constructed in

Figure 2.68, requires the evaluation of the integral∫
∂V3

∫
∂V2

∫
∂V1

p(x0)K(x0, dx1)K(x1, dx2)K(x2, dx3) (2.936)

respectively∫
∂V3

∫
∂V2

∫
∂V1

p(x0)p(x1|x0)p(x2|x1)p(x3|x2)dµ(x3)dµ(x2)dµ(x1). (2.937)

In Section 6.7.3, we will generalize this approach to an e�cient solution method

for Fredholm integral equations of the 2nd kind.
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2.5 REFERENCE LITERATURE AND FURTHER READ-
ING

Because the mathematics behind ray tracing and radiosity algorithms are the central theme

of this book, we begin our literature survey of this chapter with a list of sources and text

books, which were of great help for us when writing this and the following chapters.

The �rst chapter was written with the intention to cover all the mathematics for

understanding the global illumination equations and already known solution approaches

in a compact manner. Thus, we introduce the fundamental notions of functional analysis,

as well as measure, integration and probability theory. The most important de�nitions

and constructs to be presented here may be found in many textbook on the subject, where

this chapter is mainly based on [213, Taylor & Lay 1986], [22, Berezansky & al. 1996],

[123, Lebedev & al. 2003], [53, Edwards & al. 1965] and [239, Yoshida 1980]. Apart from

these works, emphasizing the theoretical and mathematical nature of functional analysis

and its historical development, [241, Zeidler 1995], [114, Kreyszig 1978], [176, Rynne &

al. 2008] and here, inparticular, [169, Reddy 1998] served also as excellent reference

books on functional analytic concepts, this time from a more practical point of view.

They provide readers, who are unfamiliar or less familiar with the methods of functional

analysis, with a succinct and yet comprehensive outline of this area of activity. With the

help of practical examples, taken mostly from physics, the authors also demonstrate the

fundamental importance of functional analytical concepts and methods in the search for

particular solution methods for integral equations. Our constructs of the ray spaces R∂V
and RVo are based on the ray space R, introduced in [221, Veach 1998].

For our excourse into measure and integration theory [54, Elstrodt 1996] and [22,

Berezansky & al. 1996] were very helpful. For the discussion of speci�c questions with

respect to integration theory, we recommend [111, K�onig 2000]. A brief but concise intro-

duction to the Lebesgue integral of a less general nature is provided in [32, Chae 1995],

[30, Burk 1998] and [31, Capinski & Kopp 2000]. [30, Burk 1998] also serves us as basis

for the intuitive approach to the Lebesgue integral on R.
A part of the presentation of the theoretical bases and the resulting numerical methods

for the solution of integral equations can also be found in [161, Pipkin 1991], [72, Hackbusch

1995], [56, Engl 1997] and [113, Kress 1999]. A less theoretically oriented description of

numerical solution procedures for integral equations written from the viewpoint of the user

is found in [46, Drabek & Kufner 1996]. Short but excellent introductions to the problems

of linear operators and integral equations including, in particular, tips and applications

relating to the problems of global illumination are [7, Arvo 1991], [12, Arvo & al. 1994],

[8, Arvo 1993]. Together with [68, Glassner 1995], consulted particularly for numerical

methods for the solution of Fredholm integral equations, especially the light transport and

the radiosity equation, these works formed the theoretical basis of our discussions.

The de�nitions of the most important concepts and methods of probability theory,

which will be used repeatedly in the development and particularly in the analysis of
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rendering methods based on Monte Carlo procedures can be looked foremost on the works

[15, Ash & Dol�eans-Dade 2000], [86, Ho�mann-J�rgensen 1994], [214, Taylor 1997], [157,

Pfanzagl 1991], [126, Mathar & Pfeifer 1990] and [31, Capi�nski & Kopp 2000]. [31, Capi�nski

& Kopp 2000] is excellent in regard that it introduces the measure theoretical concepts

in connection with their meaning in probabiltiy theory. All these books focus largely on

the measurement theoretical approach to probability theory. In addition, [84, Hesse 2003],

[132, Miller & Miller 1999], [162, Pitman 1999] and [171, Ross 2000] will provide us with a

swift, more application-oriented introduction to probability calculation without touching

upon measure theory. The discussions on the de�nitions of the probabilistic theoretical

model of the Markov chain is based on [172, Rubinstein 1981] and [84, Hesse 2003], while

the analogues relating to Markov processes is taken from [65, Gilks & 1996] and [170,

Robert & Casella 1999]. More about the ergodic theory of Markov chains can be found in

[130, Meyn & Tweedie 1993] or [204, Stroock 2005].



CHAPTER THREE

RADIOMETRY AND A LITTLE BIT OF
PHOTOMETRY

Light is a form of radiation within the electromagnetic spectrum that can be transferred

through space via emission, reection, and absorption processes. As electromagnetic radi-

ation, it can be interpreted both as a sinusoidal wave|consisting of an electrical,
−→
E , and

a magnetic �eld component,
−→
B , perpendicular to each other and the propagation of the

wave,
−→
k , see Figure 3.1|as well as a ow of particles, called photons, carrying a certain

form of energy. This is known as particle-wave duality.

The electromagnetic spectrum, see Figure 3.1, shows the distribution of electromag-

netic radiation within space. It is expressed in terms of frequency or wavelength and runs

from meter-sized radio waves down to picometer scale γ-rays. In this spectrum, the visible

light, perceived as di�erent colors by our eyes, occupies only a small range, namely the

range from [380 nm, 780 nm]. Since it varies from person to person, the spectral range

of visible light cannot exactly be determined. Apart from the sun|it emits light waves

composed by the superposition of wavelengths of the entire visible spectrum at roughly the

same intensities|light can also be produced by many other natural or technical sources.

In every case, electrons are excited via thermal, quantum, and other e�ects, leave their

energy state and emit photons at certain wavelengths before they fallback to their normal

states.

Due to its nature as wave, electromagnetic radiation can also interact among itself

and form interference patterns. Additionally, it can also be polarized, that is, the coupled

electric and magnetic �eld|usually perpendicular to each other and to the propagation

direction of the wave|are correlated. This results in so-called polarization-e�ects seen

as the blue color of the sky. Electromagnetic radiation can also be coherent in phase at

all points in space and time if the wavefront of light stays. For a precise understanding

and a detailed analysis of all these light phenomena the wave model of light, based on the

Maxwell and Kirchhof equations is required [44, Ditchburn], [80, Hecht 2001]. However,

in the following discussions we neglect all wave speci�c properties of light, and consider

light in terms of photons, traveling along rays through space.

241
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FIGURE 3.1: LIGHT AS AN ELECTROMAGNETIC WAVE AND AND THE ELECTROMAG-
NETIC SPECTRUM. The upper image shows the behavior of light as a form of electromag-

netic radiation of wavelength λ, composed of electric and magnetic field components,
−→
E and

−→
B , perpendicular to each other and to the direction of propagation

−→
k . The image below

represents the electromagnetic spectrum it shows the distribution of types of radiation.
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FIGURE 3.2: HIERARCHY OF RADIOMETRIC QUANTITIES. The image is a copy from
the Ocean Optics Book by [28, Boss & all. 2011].

As our eyes are sensitive to light, all rendering techniques must simulate the physical

concept of light and have to compute the distribution of photons in a scene to be rendered.

That is, it is useful|apart from the well-know phenomena of light, such as reection

and refraction of a light beam at a surface|also to study the physical quantities that

characterize light distribution at points and directions in a scene.

Radiometry provides us with this framework for analyzing and understanding the

phenomena occurring when particles are transported through either a vacuum or a partic-

ipating medium. In radiometry the concepts, terminology, and mathematical relationships

are de�ned to describe and measure electromagnetic radiation and its interaction with the

matter, see Figure 3.2. As it is the science that measures electromagnetic radiation, the

most important quantities in this �eld play also a fundamental role for understanding the

principles of realistic rendering.

Because we are concerned with light that is eventually perceived by human eyes, we

should also account for quantities from the psycho-physical �eld of measuring the visual

sensation in humans caused by electromagnetic radiation. The required visual response or

perception by an observer can then be taken into account in a rendering procedure using

the principles of photometry as a post-process such as tone mapping. This is done in

photometry, the �eld of optics that deals with the quanti�cation of the perception of light

energy.

OVERVIEW OF THIS CHAPTER. In this chapter we introduce a series of fundamental radio- Section 3.1

metric quantities, which will serve as basic tools for deriving a mathematical formulation Section 3.2
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of light transport in the next chapter. For that purpose, we introduce the theoreticalSection 3.3

constructs of the particle space and particle space density. Based on the physical con-Section 3.4

cept of the photon, as a particle that carries energy, we then derive the radiometric basicSection 3.5

quantities radiant energy and radiant power, as well as radiance, irradiance, radiosity,Section 3.6

and radiant intensity that are used in the context of computer graphics. We conclude

the chapter with some remarks about photometry.Section 3.7

3.1 ABSTRACT PARTICLES VS PHOTONS

Before we will focus our interest on the complex model of the light quantum we restrict

our considerations to the simpler model of an abstract particle, where we assume that

i) all particles are so small and numerous that their statistical distribution can be

treated as a continuum, and

ii) at any point in time a particle is completely characterized by its position x, velocity

v, and a few internal states, [10, Arvo 1995].

PARTICLE SPACE. Based on the above assumptions, we can now interpret a particle as an

element of a set Ξ, given by:

Ξ
def
= R3 × S2, (3.1)

that is, particles are speci�ed by its position in space and its direction of motion, where

we have also assumed, that all particles move with constant velocity.

On Ξ, we can then de�ne a measure, the so-called particle space measure ξ, based onMeasure (79)

the Lebesgue measure µ3 on R3 and the solid angle measure σ given over the unit sphereµ3 (82)

σ (84) S2 via the concept of the product measure by:

ξ
def
= µ3 × σ. (3.2)

With these de�nitions, the triple (Ξ,B(Ξ×S2), ξ) then declares a measure space, theMeasure Space (80)

so-called particle space.

COUNTING PARTICLES. Based on the concept of the particle space (Ξ,B(Ξ× S2), ξ), now
we want de�ne radiometric quantities by counting the number of particles that are moving

within a given subset from B(Ξ× S2).
It is known from physics, that the concept of ow of any kind of particles is always

speci�ed in connection with a real or hypothetical surface. In detail, the ux of parti-

cles through any surface is de�ned as the number of particles owing across a real or

hypothetical surface or region in space per unit time.
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As particles can cross such a surface at di�erent points coming from di�erent direc-

tions, let us �rstly consider the ow of particles perpendicular through a di�erential surface

dµ2(x) around a point x in time dµ(t), as illustrated in Figure 3.3. Assuming all particles

are moving with the same velocity|that is, same size and same direction|then, all these

particles are contained within a tube with base area µ2(x) and length dµ(s) = v dµ(t),

where v is the velocity of the particles, see the lower image in Figure 3.3. As all particles

outside this tube are not fast enough to reach the surface in time dµ(t), the ow of par-

ticles across this in�nitesimal surface patch can be computed by multiplying the volume

dµ2(x)dµ(s) = dµ2(x) v dµ(t) by a particle space density n.

FIGURE 3.3: FLOW OF PARTICLES THROUGH A REAL OR HYPOTHETICAL SURFACE,
I. The upper left image shows how particles cross a surfaces at different positions coming
from different directions. We restrict our discussion to the flow of particles perpendicular to
the surface area dµ2(x), upper right image. The green part of the tube in the lower image
contains all those particles that cross the surface dµ2(x) in time interval dµ(t).

Assuming n(x, t) delivers the distribution of particles at point x at time t and all

particles are moving perpendicular in direction towards dµ2(x), then we count

n(x, t) dµ(s)︸ ︷︷ ︸
vdµ(t)

dµ2(x) = n(x, t) v dµ(t)dµ2(x) (3.3)

particles, that cross the in�nitesimal patch dµ2(x) in time dµ(t).
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Now, the ow of particles across the base area must not necessarily be perpendicular.

Particles can cross this surface also in directions, that are di�erent from the direction of

the surface normal N(x) at point x. This observation then implies that the number of

particles owing through a surface patch is also dependent on the orientation of the surface

with respect to their ow. Then, all these particles are contained in the tube built by the

di�erential base area 〈N(x),ω〉dµ2(x) and its length v dµ(t), where the base area of this

tube is foreshortened by the factor of cos θ = 〈N(x),ω〉, see Figure 3.4. So, the number〈·, ·〉 (845)

of particles, N, crossing the di�erential surface dµ2(x) is given by

d2N(x, t) = n(x, t) cos θdµ2(x) dµ(s)︸ ︷︷ ︸
vdµ(t)

(3.4)

= vn(x, t)dµ(t) cos θdµ2(x). (3.5)

Let us now generalize our process of counting particles to account for also particles

moving in di�erent directions over the hemisphere. This implies that the particle space

density function n must also be a function of the directional variable ω. In its function-

ality as a density function, n(x,ω, t), measured in units 1
m3·sr·s , delivers the number of

particles per unit volume, per unit solid angle, per unit of time. Now, the particles that

pass through the di�erential area dµ2(x) in directions within a di�erential solid angle

dσ(ω) around the surface normal N(x) in time dµ(t) are contained within the volume

cos θdµ2(x) v dµ(t)dσ(ω). If x is a point within this di�erential volume, then the number

of particles contained is given by

d3N(x, t) = vn(x,ω, t)︸ ︷︷ ︸
ΦP(x,ω,t)

cos θdµ2(x)dσ(ω)dµ(t) (3.6)

= ΦP(x,ω, t) cos θdµ
2(x)dσ(ω)dµ(t), (3.7)

where we call ΦP(x,ω, t) the particle ux through point x in direction ω at time t.

PHOTONS. We no longer want to hold on the theoretical concept of the abstract

particle. Multiplying our particles by the physical quantity of energy, we give them a

physical meaning and can speak of photons, all equipped with a �xed velocity, namely

the speed of light, denoted by c. Although a photon is coupled with both a frequency

and a wavelength, it is not a wave in the sense of classical mechanics. Depending on

measurements performed, a photon can be interpreted as both a particle or a wave. As it

is su�cient for our discussion to envision that light consists of numerous localized packets

of electromagnetic energy, we also abstract from the wave nature of light and only consider

photons.

So, let us interpret a photon as a mathematical point carrying an amount of energy

moving in space. The energy of a photon is, related to its frequency or wavelength, given
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FIGURE 3.4: FLOW OF PARTICLES THROUGH A REAL OR HYPOTHETICAL SURFACE, II.
The total number of particles flowing through the surface patch dµ2(x) depends on both,
the area of the surface and its orientation relative to the flow of the particles. Obviously,
the flow is maximal, if the surface is perpendicular to the direction of flow. No particles flow
across a surface when it is oriented parallel to the flow. The flow across a surface depends
on the cosine between the surface normal and the direction of flow.

by Einstein's relation

E(λ) = hν (3.8)

=
hc

λ
, [W · s] (3.9)

where c = 2.99792458 · 108m
s
denotes the velocity of light within free space, λ ∈ [0,∞) is

the wavelength of a photon, ν ∈ [0,∞) corresponds to its frequency, and h = 6.625·10−34Js
is Planck's constant.

REMARK 3.1 It should be clear that Equation (3.8) implies an inverse relationship be-

tween the frequency of a photon and the wavelength of light. That is, light consisting



248 CHAPTER 3. RADIOMETRY AND A LITTLE BIT OF PHOTOMETRY

of high energy photons has a low wavelength, while light consisting of low energy

photons has a large wavelength.

As the speed of a photon compared with the valid parameters in our environments is

in�nitely large we restrict our interest to the stationary or steady state distribution of

light quanta.

COUNTING OF PHOTONS. Assuming that the energy equilibrium in the environment is

reached almost instantaneously, each volume in space then contains only a �xed number

of photons per direction. That is, the particle space density can be considered as constant

in time, which is why we can abstract from the temporal variable in the particle space

density function n(x,ω, t) and may write n(x,ω) in the future. The number of photons

within the di�erential volume formed by dµ2(x), dσ(ω) and c dµ(t) is then given by

d3N(x,ω t) = cn(x,ω) cos θdµ2(x)dσ(ω)︸ ︷︷ ︸
d2Φ(x,ω,t)

dµ(t) (3.10)

= d2Φ(x,ω, t)dµ(t) (3.11)

where Φ(x,ω, t) is called the ux of photons through point x in direction ω at time t.

3.2 RADIANT POWER

From the previous section it is known that the number of photons contained in a di�erential

volume built by the di�erential base area cos θdµ2(x), the di�erential solid angle dσ(ω),

and cdµ(t) is given by

d3N(x,ω t) = cn(x,ω) cos θdµ2(x)dσ(ω)dµ(t). (3.12)

Now, except of monochromatic light, light consist of photons of the di�erent wave-

length. This means, that we also have to account for the wavelength of photons in the

particle density function n. For simplifying our discussion, here we want to make use of

the RGB-model, known from computer graphics, that is, we di�er between three types of

photons: Photons from the red, green, and blue spectral band. This implies, that we have

also to consider d3N(x,ω t) for each spectral band. This then has the advantage, that we

can assume that all photons contained in one of the volumes to be considered have the

same wavelength or frequency. That is, multiplying the above expression by the energy

hν of a photon, we get the radiant energy, Q, carried by this volume, that is,

d3Q(x,ω, t) = hν cn(x,ω) cos θdµ2(x)dσ(ω)︸ ︷︷ ︸
d2Φ(x,ω)

dµ(t). [J] (3.13)
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FIGURE 3.5: RADIANT POWER. Radiant Power is defined as the energy of particles passing
a surface during a fix time interval. Many of the white particles bounce against the boundary
of the tube, so, they don’t pass through the whole within the tube.

We are now interested at the time-rate at which radiant energy passes through,

emerges from, or hits a real or hypothetical surface. Since this ow of particles can vary

over the surface and its direction, it is a function of position and direction. In radiometry

this quantity is called radiant energy often also denoted as ux:

DEFINITION 3.1 (Radiant Power or Flux, Φ) Let Q(x,ω, t) be the energy carried by a

ow of photons of the same frequency incident at, passing through, or emerging from

point x on a real or hypothetical surface at time t in direction ω, see Figure 3.5.

The radiant power, Φ, also called radiant ux, or simply denoted as ux is de�ned as

the radiant energy incident at, passing through, or emerging from point x per unit

of time, that is:

Φ(x,ω) =
dQ(x,ω, t)

dµ(t)
[W] ≡

[
J

s

]
. (3.14)

REMARK 3.2 Usually, radiant power is, like radiant energy, a time dependent quantity.

As we are mostly concerned with systems in equilibrium, the particle density N does

not change with time, that is, we omit the variable t in our formulas.

3.3 RADIANCE

Based on the concept of radiant power we now de�ne the most important radiometric Radiant Power (249)

quantity: Radiance. Due to the fact that the human eye is sensitive to radiance it is this

quantity that any global illumination algorithm must compute. Sensor Sensitivity (263)
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FIGURE 3.6: THE DEFINITION OF RADIANCE. The radiant power carried by photons
incident at, passing through, or emerging from point x on a real or hypothetical surface in
a given direction ω is denoted as radiance. Physically, radiance is defined as flux per unit
solid angle dσx(ω) per unit projected area dµ2(x)⊥.

DEFINITION 3.2 (Radiance, L) Let Φ(x,ω) be the radiant power carried by photons

incident at, passing through, or emerging from point x on a real or hypothetical

surface in direction ω. Then, radiance, denoted by L, is de�ned as the radiant power

per unit projected area, per unit solid angle, that is,

L(x,ω)
def
=

d2Φ(x,ω)

dµ2(x)⊥ dσx(ω)
(3.15)

(3.13)
= ~ν cn(x,ω), (3.16)

see Figure 3.6.

Obviously, radiance is a �ve-dimensional quantity that varies with position and

direction and is measured in units of
[
W

m2·sr
]
.

Since radiance is a function of position as well as a direction from a surface, it is

important when speaking of radiance to specify the surface, the observation point, and

the direction from it.

REMARK 3.3 Relation (3.16) allows to represent the particle space density in terms of

radiance as well as in terms or particle ux, that is, the number of photons at point
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x ying in direction ω, thus:

n(x,ω) =
1

c

1

~ν
L(x,ω) (3.17)

(3.10)
=

1

c
ΦP(x,ω). (3.18)

This relationship plays an important role, since it builds a bridge between the Particle Transport Equation (286)

particle transport equation expressed in terms of number of particles, and the light

transport equation based on radiance. Light Transport Equation (296)

REMARK 3.4 (Radiant Power.) By integrating radiance over a �nite surface area A and

a �nite solid angle Γ we can simply compute the radiant power incident at, passing Φ (249)

through, or emerging from a real or hypothetical surface A in directions ω ∈ Γ ,
namely:

Φ
(3.15)
=

∫
A

∫
Γ

Li(x,ω)dσ⊥x (ωi)dµ
2(x). (3.19)

Note, we will use this relation very often in our following discussions, in par-

ticular if we choose Γ as one of the hemispheres or the unit sphere.

Depending on the direction of ow, we distinguish between incident radiance , Li, Incident, Exitant Functions (48)

and exitant radiance , Lo, where Li denotes the radiance arriving at a surface and Lo
expresses the radiance leaving a surface patch. From our discussion about incident and

exitant ray functions it is known that the functions Li(x,ωi) and Lo(x,ωo) are elements of

the function space de�ned over R3×S2. As Li and Lo measure di�erent photon events just

before their arrival at and just after their departure from x ∈ R3, we must also strictly

distinguish between these two functions. Due to absorption, emission, and scattering,

as well as reection, or refraction processes at points x ∈ R3, in participating media it

generally holds:

Lo(x,ωo) 6= Li(x,ωi). (3.20)

Only in the case where we consider light in a vacuum we have, as we will see in

Theorem 3.3, the identity:

Li(si,ω
i
i) = Lo(sj,ω

j
o), (3.21)

where si and sj are two not occluded points on di�erent surfaces and it holds: ωii = −ωjo.

Let us now apply the concepts of radiant power and radiance as well as their relation-

ship to an example from computer graphics. In this example we express the radiometric

quantity radiance in terms of radiant power emitted from an area light source used in a Radiant Power (249)

conventional ray tracer.
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EXAMPLE 3.1 (Radiant Power of an Area Light Source) Let us recall Example 2.14 where

we introduced the model of the area light source. Assuming, that an area light source

emanates a number n(sj,ω
j
o) = n photons, all with the same frequency ν in direction

ωo depending on angle 〈N(sj),ω
j
o〉 = | cos θjo| between the outgoing direction and the

surface normal N(sj) at point sj on the light source, see the right images in Figure

3.7. The discussion from above then implies that the exitant radiance Le(sj,ω
j
o) canRadiance (250)

be written as:

Le(sj,ω
j
o)

(3.15)
= Cn(sj,ω

j
o) 〈N(sj),ω

j
o〉 (3.22)

n(sj,ω
j
o)=n= Cn 〈N(sj),ω

j
o〉, (3.23)

with C = c~ν. Due to Relation (3.19) this light source emits a ux of size:

Φ = Cn

∫
☼

∫
H2o(sj)

〈N(sj),ω
j
o〉dσ⊥sj(ωo)dµ

2(sj) (3.24)

= Cnµ2(☼)

∫
H2o(sj)

〈N(sj),ω
j
o〉dσ⊥sj(ω

j
o) (3.25)

| cosθjo|=〈N(sj),ω
j
o〉= CnA

∫2π
0

∫ π
2

0

cos2 θjo sin θjo dθ
j
o dφ

j
o (3.26)

= CnA2π

∫ π
2

0

cos2 θjo sin θjo dθ
j
o (3.27)

=
2

3
CnAπ (3.28)

where we use µ2(☼) = A.

Assuming the light source is a di�use emitter, such as a Lambertian emitter,Lambertian Emitter (349)

then we obtain with Le(sj,ω
j
o) = Cn:

Φ = Cn

∫
A

∫
H2o(sj)

dσ⊥sj(ω
j
o)dµ

2(sj) (3.29)

(2.192)
= CnA

∫
[0,2π)

∫
[0,π2 ]

∣∣cos θjo∣∣ sin θjo dθjo dφjo (3.30)

= Cn︸︷︷︸
Le(sj,ω

j
o)

Aπ. (3.31)

From this result we can now conclude: If constant radiance emitting sources in

a scene are speci�ed via the exitant ux then the radiance Le(sj,ω
j
o) emitted fromRadiant Flux (249)

a point sj in direction ωjo can simply be determined by the quotient of the radiant

power and the product of the area A of the surface as well as the constant π, thus:

Le(sj,ω
j
o) =

Φ

Aπ
. (3.32)
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FIGURE 3.7: AREA LIGHT SOURCES. We can represent an area light source as a set of
same type of point light sources, for example, as a set of Lambertian emitters, or as a set
of point light sources that emit radiance according to a cosine term.

In Section 3.5, we de�ne a new radiometric quantity, radiosity, B, by the quotient

dΦ(x)

dµ2(x)
, (3.33)

where Φ(x) is the ux exitant at point x on a real or hypothetical surface in all direc-

tions over the hemisphere H2o at x. Based on this de�nition, radiance and radiosity Radiosity (264)

can be used interchangeably for characterizing the light leaving di�use surfaces.

RADIANCE INVARIANCE IN A VACUUM. Radiance invariance states that radiance in

direction of a light ray remains constant if it propagates along the ray. This very important

property of radiance is only valid in a vacuum, where no losses due to absorption and

scattering, and no gains due to emission can occur. It is a consequence of the law of

conservation of energy from physics, which says that no more energy can leave a point on Conservation of Energy (332)

a surface than arrives at this point. Mathematically, radiance invariance can be expressed

as follows:

THEOREM 3.1 (Radiance Invariance) Let si and sj be two points on di�erent surfaces
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within a scene, where si is visible from sj. Under vacuum conditions then it holds:

Li(si,ω
i
i) = Lo(γ(si,ω

i
i),−ω

i
i) = Lo(sj,ω

j
o), (3.34)

where sj = γ(si,ω
i
i) and ω

i
i = −ωjo.γ (47)

PROOF 3.1 Let us consider Figure 3.9, where the geometry of two di�erential surface

patches around the points si and sj is shown. Due to De�nition 3.2, the di�erential

ux leaving patch dµ2(sj), and arriving at a di�erential patch dµ2(si) is given byFlux (249)

d2Φo = Lo(sj,ω
j
o)dµ

2(sj)dσ
⊥
sj
(ωjo) (3.35)

= Lo(sj,ω
j
o)dµ

2(sj)
∣∣cos θjo∣∣ dσsj(ωjo), (3.36)

where dσsj(ω
j
o) denotes the di�erential solid angle subtended by the di�erential sur-dσs (87)

face patch dµ2(si) seen from point sj in direction ωjo. In a similar way, the incident

ux at point si can be expressed in terms of incident radiance Li(si,ω
i
i) at the di�er-

ential surface dµ2(si) coming from directions of the di�erential solid angle dσsi(ω
i
i),

that is,

d2Φi = Li(si,ω
i
i)dµ

2(si)dσ
⊥
si
(ωii) (3.37)

= Li(si,ω
i
i)dµ

2(si)
∣∣cos θii∣∣ dσsi(ωii). (3.38)

Transforming the di�erential solid angles dσsj(ω
j
o) and dσsi(ω

i
i) to the corre-

sponding di�erential Lebesgue areas leads to:

dσsj(ω
j
o)

(2.196)
=

dµ2(si)
∣∣cos θii∣∣

‖si − sj‖22
(3.39)

dσsi(ω
i
i)

(2.196)
=

dµ2(sj)
∣∣∣cos θjo∣∣∣

‖sj − si‖22
. (3.40)

Using these relations in the above expressions for the corresponding di�erential

uxes d2Φo and d2Φi then we get:

d2Φo = Lo(sj,ω
j
o)dµ

2(sj)
∣∣cos θjo∣∣ dµ2(si) ∣∣cos θii∣∣‖si − sj‖22

(3.41)

as well as

d2Φi = Li(si,ω
i
i)dµ

2(si)
∣∣cos θii∣∣ dµ2(sj)

∣∣∣cos θjo∣∣∣
‖sj − si‖22

. (3.42)

Since we consider the radiance transport under vacuum conditions, there is

neither an energy loss due to absorption or out-scattering nor an energy gain due to
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FIGURE 3.8: RADIANCE INVARIANCE IN A VACUUM. Radiance does not attenuate
within a vacuum with distance. Since most sensors, such as the human eye or photographic
cameras, are sensitive to radiance, the principle of radiance invariance explains why a given
surface produces the same visual impression due to its emitted radiance at all viewing dis-
tances.

emission or in-scattering processes. According to the law of conservation of energy,

all energy leaving patch dµ2(sj) in direction to dµ2(si) must also arrive at dµ2(si),

that is,

d2Φo = d2Φi (3.43)

or equivalently Conservation of Energy (332)

Lo(sj,ω
j
o)dµ

2(sj)
∣∣∣cos θjo∣∣∣ dµ2(si)|cosθii|‖si−sj‖22

Li(si,ωii)dµ
2(si)

∣∣cos θii∣∣ dµ2(sj)|cosθjo|‖sj−si‖22

= 1,

thus

Lo(sj,ω
j
o) = Li(si,ω

i
i). (3.44)

Obviously from the Theorem of Radiance Invariance, it follows: If the incident or

exitant radiance at all surfaces within a scene is known, then the radiance distribution

for the whole scene is also known. This property of radiance is one of the reasons why

almost all global illumination algorithms work with radiance instead of ux, irradiance,

or radiant intensity. Since radiance in a vacuum does not attenuate with distance, we can

also conclude that the radiance transfer is:
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FIGURE 3.9: RADIANCE INVARIANCE IN A VACUUM. Radiance does not attenuate
within a vacuum with distance. Since most sensors, such as the human eye or photographic
cameras, are sensitive to radiance, the principle of radiance invariance explains why a given
surface produces the same visual impression due to its emitted radiance at all viewing dis-
tances.
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i) directly proportional to the radiance of the emitting surface,

ii) directly proportional to the surface areas of the emitter and the receiver,

iii) inversely proportional to the square of the distance between the emitter and the

receiver, and

iv) dependent on the orientation of the surface normals with respect to the line connect-

ing the two involved surface patches.

The radiance invariance principle plays the central role in rendering algorithms ap-

proximating the global illumination problem in a vacuum, since it guarantees the inversion

of the optical path. Ray Tracing (664)

REMARK 3.5 Usually, all radiometric quantities using radiance are spectral distribu-

tions, but for simplicity in CG, radiance is assumed to be a vector L = (R,G, B),

where R,G, and B are the intensities for the selected wavelengths of the red, green,

and blue wavelength band. Since we use radiance as a scalar quantity in all of our

equations, this means, that an equation using radiance can only be interpreted as it

is valid for a single of the three bands of wavelength.

3.4 IRRADIANCE

Based on the concept of radiant power we now de�ne a further radiometric quantity: Ir- Radiant Power (249)

radiance. Each ray tracing based rendering algorithm must compute irradiance since it is

the quantity that is measured within a pixel of the image plane.

DEFINITION 3.3 (Irradiance, E) Let Φi(x) be the radiant power from all directions over

the hemisphere incident at point x on a real or hypothetical surface A, see Figure

3.10. Then, irradiance, E, is de�ned as:

E(x)
def
=
dΦi(x)

dµ2(x)
. (3.45)

De�ned as radiant power area density, irradiance is a function of the spatial

variable x and is measured in units of
[
W
m2

]
. In the literature it is also known as

incident radiant power area density, or incident radiant ux area density.

Irradiance can easily be computed from incident radiance Li by integration at point Radiance (250)

x about the hemisphere H2i (x), thus via:

E(x) =

∫
H2
i
(x)

Li(x,ωi)dσ
⊥
x (ωi). (3.46)
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FIGURE 3.10: IRRADIANCE. Because the number of photons received at a single point
is zero, we cannot talk about the amount of light received at a single point on a surface.
Instead, we has to talk about the average number of photons in small infinitesimal intervals
of space or time. This means, that radiometric quantities are expressed in terms of photon
densities. Irradiance, defined as the spatial derivative of flux, is the amount of incident light
at a surface point x per unit area.

This relation then implies that irradiance, expressed in terms of di�erential quantities,

can also be treated as a directional quantity, namely:

dE(x,ωi)
(3.15)
= Li(x,ωi)dσ

⊥
x (ωi), (3.47)

where irradiance is interpreted as the radiance that would fall on a small bit of surface

oriented facing the direction ωi.

As already mentioned, irradiance is a one-sided, surface-oriented property, that is,

a function of the position on a speci�c surface. Only in the case where irradiance is

constant at all points, we can neglect from its spatial dependence. We can also talk

about irradiance at a point x in space by specifying a surface normal N and de�ning

the irradiance E(x,N(x)) as the irradiance that falls on a small surface oriented facing

the direction N. As it is the radiometric quantity for describing radiation incident on a

surface, the calculation of irradiance plays an important role in rendering procedures for

shading a pixel.

LEMMA 3.1 (Lambert's Cosine Law) Let us assume that a light beam arrives at point si
at a at surface Ai from direction ωii. Lambert's cosine law states that the irradiance

on the surface varies as the cosine between the incident light direction ωii and the

surface normal N(si) at any point si ∈ Ai, see Figure 3.11. Mathematically, this can
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be expressed as follows:

E(si) =
∣∣〈N(si),ω

i
i〉
∣∣E(s⊥i ) (3.48)

=
∣∣cos θii∣∣ E(s⊥i ), (3.49)

where E(s⊥i ) is the irradiance measured at the projection of point si on the projected

surface patch A⊥i of Ai in direction ωii, thus the irradiance of the cross section of

the light beam.

PROOF 3.1 Let us consider the ux Φ through the surface patch A⊥i caused by the light Radiant Flux (249)

beam, see Figure 3.11. Obviously, this ux is given by

Φ = E(s⊥i )µ
2(A⊥i ). (3.50)

Due to the principle of radiance invariance in free space, the same ux Φ falls Radiance Invariance (253)

as Φi on the larger surface area Ai, producing an irradiance of size:

E(si) =
Φ

µ2(Ai)
(3.51)

(3.50)
=

E(s⊥i )µ
2(A⊥i )

µ2(Ai)
(3.52)

= E(s⊥i )
µ2(Ai)

∣∣cos θii∣∣
µ2(Ai)

(3.53)

=
∣∣cos θii∣∣ E(s⊥i ). (3.54)

The cosine law states that the irradiance falling on any surface varies with the cosine

of the incident angle. The perceived measurement is orthogonal to the incident ux and

is reduced at oblique angles, which causes light to spread out over a wider area than it

would be if the incident directions would be perpendicular to the measurement. Obviously,

irradiance is proportional to the density of incident rays and inversely proportional to the

distance between these rays.

EXAMPLE 3.2 (Irradiance on the Image Plane) From the introductory chapter it is known

that every ray tracing algorithm computes the projection of a scene onto the image

plane of the involved camera system. Now, ray tracing, as a ray-based method, uses

the radiometric concept of radiance while the quantity measured within a pixel of the Radiance (250)

image plane is irradiance. Then, the question arises: How is it possible to express

irradiance to be measured via radiance carried by a ray?

For that purpose let us consider Figure 3.12 where a lens of diameter d is located

at a distance f from the image plane and at distance z from a scene object. Due to

the principle of radiance invariance and the projection property of the lens, the ux Radiance Invariance (253)

incident at the pixel �i with directions from the solid angle subtended by the lens ⊕ Radiant Power (249)
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FIGURE 3.11: GEOMETRY FOR DERIVING LAMBERT’S COSINE LAW. Lambert’s Cosine
Law states that the irradiance on the surface varies as the cosine between the incident light
direction ωii and the surface normal N(si) at any point si ∈ Ai.
The three lower images show that the amount of reflected radiance at surface point s
changes with the angle between the surface normal N(s) and the incident direction ωi due
to Lambert’s Cosine Law.
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FIGURE 3.12: IRRADIANCE ON THE IMAGE PLANE. The irradiance measured at pixel �i
can be evaluated as the quotient of the incident flux at �i and the area µ2(�i).

as seen from the pixel is given by

Φi =

∫
�i

(∫
⊕
Li(si,ω

i
i)dσ

⊥
si
(ωii)

)
dµ2(si), (3.55)

where si ∈ �i, dσ⊥si is the projected solid angle subtended by the lens, ⊕, as seen Projected Solid Angle (88)

from si.

Now, the optical properties of the lens|radiant power ows lossless through the

lens|ensures, that the ux Φi corresponds to the ux exitant from the projection Pk
of the pixel onto a surface object and the solid angle subtended by the lens as seen

from sk ∈ Pk, that is,

Φi = Φo (3.56)

=

∫
Pk

(∫
⊕
Lo(sk,ω

k
o)dσ

⊥
sk
(ωko)

)
dµ2(sk). (3.57)

Under the assumption that the radiance distribution is constant in the scene,
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the exitant radiance Lo can be moved outside the integral and we get:

Φo =

∫
Pk

Lo

(∫
⊕
dσ⊥sk(ω

k
o)

)
dµ2(sk) (3.58)

= µ2(Pk)Lo

∫
⊕
dσ⊥sk(ω

k
o). (3.59)

Transforming the projected solid angle measure into the Lebesgue area measure,

for details see Equation 2.199, leads to:

Φo
(2.186)
= µ2(Pk)Lo

∫
⊕

∣∣∣cos θji cos θko∣∣∣
‖sk − sj‖22

dµ2(sj), (3.60)

where the lens is denoted as ⊕.
Replacing the distance between the points sj and sk via the de�nition of the

cosine of angle cos θji, namely,

z

cos θji
, (3.61)

then the integrand will not be dependent of the integration variable sj, that is, it can

be moved in front of the integral. This implies, that the exitant ux, Φo, can be

written as:

Φo = µ2(Pk)Lo

∣∣∣cos θji cos θko∣∣∣(
z

cosθj
i

)2 ∫
Pj

dµ2(sj) (3.62)

= µ2(Pk)Lo

∣∣∣cos3 θji cos θko∣∣∣
z2

∫
Pj

dµ2(sj) (3.63)

=
π

4

(
d

z

)2
Ak Lo

∣∣∣cos3 θji cos θko∣∣∣ , (3.64)

where we have used µ2(⊕) = πd2

4
and µ2(Pk) =

∫
Pk
dµ2(sk) = Ak.

Due to De�nition (3.3) and the condition that radiant power ows lossless

through the lens, the irradiance to be measured at pixel �i can be written as:

E(si) =
Φi

µ2(�i)
≈ π
4
Lo
Ak

Ai

(
d

z

)2 ∣∣∣cos3 θji cos θko∣∣∣ , (3.65)

where we have assumed that it holds: µ2(�i) = Ai.

Let us now consider the solid angles subtended by the surface patch Pk as well

as the pixel �i a little bit closer. As Pk corresponds to the projection of the pixel �iSolid Angle (83)
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via the lens ⊕ onto a region within the scene, the corresponding solid angles dσsj(ω
j
i)

and dσsj(ω
j
o) are given by

dσsj(ω
j
i) =

Ak
∣∣ cosko∣∣

‖sk − sj‖22
(3.66)

=
Ak

∣∣ cosko∣∣(
z

cosθj
i

)2 (3.67)

and

dσsj(ω
j
o) =

Ai

∣∣∣ cosji∣∣∣
‖si − sj‖22

(3.68)

=
Ai

∣∣∣ cosji∣∣∣(
f

cosθj
i

)2 (3.69)

have the same size. That is, the term Ak
∣∣ cosko∣∣ can then be expressed by

Ak
∣∣ cosko∣∣ = Ai

∣∣∣ cosji∣∣∣
(

z

cosθj
i

)2
(

f

cosθj
i

)2 (3.70)

= Ai

∣∣∣ cosji∣∣∣ (zf)2 . (3.71)

Using this relation in Equation (3.65), then the irradiance E(si) corresponds to

E(si) =
π

4
Lo

(
d

f

)2
cos4 θji. (3.72)

From this formula we conclude that the irradiance E(si) can be measured via the

exitant radiance from Pk inuenced by the geometry of the camera lens system, thus, the Radiance (250)

focal length f, the lens diameter d, and the o�-axis angle cos θji.

REMARK 3.6 (Sensors are Sensitive to Radiance) The above example shows, that, the

irradiance at a pixel is directly proportional to the radiance coming from object sur-

faces, even we say: The image irradiance is proportional to the scene radiance, where

the factor of proportionality is given by the geometry of the optical device. Obviously,

when passing through the lens radiance is transformed into irradiance. This propor-

tionality, together with the property of radiance invariance, implies that radiance

is the quantity that global illumination algorithms must compute and display to the

observer.
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FIGURE 3.13: RADIOSITY. The total power leaving point x on a surface per unit area on
the surface is called radiosity.

3.5 RADIOSITY

A radiometric concept similar to irradiance is radiosity. While irradiance is de�ned as the

radiant power area density incident at a surface, radiosity is de�ned as the radiant power

leaving a surface patch in all directions.Irradiance (257)

DEFINITION 3.4 (Radiosity, B) Let Φo(x) be the radiant power exitant at point x on aRadiant Power (249)

real or hypothetical surface A owing in all directions over the hemisphere about x,

see Figure 3.13. Then, radiosity, B, is de�ned as:

B(x)
def
=
dΦo(x)

dµ2(x)
, (3.73)

that is, radiosity is the exitant radiant power per unit area at a surface.

Radiosity is a function of the spatial variable x and is measured in units of
[
W
m2

]
.

In the literature it is also known as radiant power area density, or radiant exitance,

denoted by M, and it refers to the radiant ux leaving a surface patch from a point

x.

Since radiosity is de�ned as the exitant radiant ux area density, radiosity can also

be computed from radiance, namely viaRadiance (250)
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B(x) =

∫
H2o(x)

Lo(x,ωo)dσ
⊥
x (ωo). (3.74)

This relation then implies that radiosity expressed in terms of di�erential quantities

can also be treated as a directional quantity:

dB(x,ω)
(3.15)
= Lo(x,ωo)dσ

⊥
x (ωo). (3.75)

EXAMPLE 3.3 Let us consider a circular surface patch Pj, illuminated by a point light

source located at point si that reects the constant incoming radiance Li(sjω
j
i) = C

depending on the cosine between the surface normal and the outgoing direction ωjo,

see Figure 3.14. Then, the associated exitant radiance function is given by ‖ · ‖2 (861)

Lo(sj,ω
j
o) = C

∣∣cos θjo∣∣ ∀ sj ∈ Pj, (3.76)

where cos θjo = 〈N(sj),ω
j
o〉 is the angle between the normal at point sj on the surface

patch and the outgoing direction ωjo with C = const. In this case, it holds for the

radiosity at point sj of this surface patch:

B(sj) =

∫
H2o(sj)

Lo(sj,ω
j
o)dσ

⊥
sj
(ωjo) (3.77)

= C

∫
H2o(sj)

∣∣cos θjo∣∣ dσ⊥sj(ωjo) (3.78)

(2.192)
= C

∫
[0,2π)

∫
[0,π2 ]

cos2 θjo sin θjodµ(θ
j
o)dµ(φ

j
o) (3.79)

= C2π
− cos3 θjo

3

∣∣∣∣∣
π
2

0

=
C2π

3
. (3.80)

With C = 100 W
sr·m2 and r = 0.1m then we obtain for the radiosity at point sj of

this surface:

B(sj) =
200π

3

[
W

m2

]
. (3.81)

The power of the patch can now be computed by integrating the radiosity B over Radiant Power (249)

the entire patch, thus,

Φ =

∫
Pj

B(sj)dµ
2(sj) (3.82)

=
200 π

3

1

102
π (3.83)

=
2

3
π2 [W]. (3.84)
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FIGURE 3.14: RADIOSITY. A point light source illuminates a surface patch Pj that reflects
the incoming radiance depending on the cosine between the surface normal at point sj and

the outgoing direction ωjo.

EXAMPLE 3.4 (A First Approach for Deriving the Classical Radiosity Equation) From our

introductory chapter it is known that the stationary light transport equation in free SLTEV (399)

space is a complicated integral equation. One idea for solving this equation is to

simplify the underlying problem. By assuming that all object surfaces in a scene

are Lambertian reectors, the reected radiance at all surfaces is constant in all

directions. Due to Equation (3.32) from Example 3.1 then it holds:

Lo(si,ω
i
o) =

Φ

Aπ

(3.73)
=

B(si)

π
(3.85)

for all points si on an object surface and all directions over the hemisphere aboutLambertian Reflector (349)

point si. Multiplying both sides of the SLTEV from Equation (1.4) by the constant

π yields:

πLo(si,ω
i
o) = πLe(si,ω

i
o) + π

∫
H2
i
(si)

fs(si,ω
i
i → ωio)Li(si,ω

i
i)dσ

⊥
si
(ωii). (3.86)

Since we consider the light transport in free space, the principle of radianceRadiance Invariance (253)

invariance holds and we can express the incident radiance Li(si,ω
i
i) under the integral

by the exitant radiance Lo(sj,ω
j
o), where it holds sj = γ(si,ω

i
i) and ω

j
o = −ωii, so we
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get:

πLo(si,ω
i
o) = πLe(si,ω

i
o) + π

∫
H2
i
(s)

fs(si,ω
i
i → ωio)Lo(sj,ω

j
o)dσ

⊥
si
(ωii). (3.87)

The relationship between radiance and radiosity from Equation (3.85) then leads

to:

B(si) = Be(si) +

∫
H2
i
(s)

fs(si,ω
i
i → ωio)B(sj,ω

j
o)dσ

⊥
si
(ωii). (3.88)

This equation does not correspond to the classical radiosity integral equation as it Radiosity Integral Equation (782)

is known from computer graphics but it shows the idea behind the development of the

radiosity integral equation. We show the exact derivation of the radiosity equation

in Chapter 10.

REMARK 3.7 (Radiant Exitance) Due to [190, Sillion & Puech 1994], the standard quan-

tity used to characterize light sources is exitance. Similar to radiosity, see Equation

(3.74), radiant exitance is also expressed as an integral over the hemisphere, namely

the integral of the emitted radiance,

M(x) =

∫
H2o(x)

Le(x,ωo)dσ
⊥
x (ωo), (3.89)

thus, the portion of radiance due to internal emission.

3.6 RADIANT INTENSITY

Almost all radiometric quantities introduced in the last sections represent area densities,

so, they can not be used to describe the radiant behavior of point light sources. To charac- Point Light Source (50)

terize the energy distribution of a point light source in a scene, we are forced to introduce

a further radiometric quantity: Radiant intensity.

DEFINITION 3.5 (Radiant Intensity, I) Let Φ(ω) be the radiant power incident on, pass- Radiant Power (249)

ing through, or emerging from a point on a real or hypothetical surface A in space

into direction ω, see Figure 3.15. Then, radiant intensity, denoted by I, is de�ned

as:

I(ω)
def
=

dΦ(ω)

dσx(ω)
, (3.90)

that is, radiant intensity is radiant power per unit solid angle.

Radiant intensity is a function of the directional variable ω from or toward the

point x for which it is de�ned and it is measured in units of
[
W
sr

]
. In the literature

it is also known as radiant ux solid angle density. Solid Angle (83)
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FIGURE 3.15: RADIANT INTENSITY. The radiant energy carried by photons leaving from,
passing through or arriving at point x per unit solid angle dσx around a fixed direction ω
per unit time is called radiant intensity.

Since it is de�ned as the radiant ux solid angle density, radiant intensity can also

be computed from radiance, namely via:Radiance (250)

I(ω) =

∫
A

L(x,ω)dµ2(x⊥). (3.91)

We have de�ned radiant intensity in terms of a point in space and a direction arriving

at or leaving this point, that is, it is also important to say what the point is and at which

direction we are interested in. Due to its de�nition as a solid angle density of radiant

ux, radiant intensity is a useful concept for describing the radiant behavior of point lightRadiant Flux (249)

sources, or sources, that are very far away from the observer such as stars at the �rmament.

In the following two examples, we will apply the concept of radiant intensity to derive

the Inverse Square Law and the formulation of radiance in terms of ux emanating from

a point light source.

EXAMPLE 3.5 (The Inverse Square Law) Let us assume an isotropic point light source,Isotropy (335)

that is, an emitter that radiates photons uniformly from a point x ∈ R3 in all direc-

tions ωo, thus I(ωo) = C. The ux emitted by this source is then given by

Φe =

∫
S2(x)

I(ωo)dσ(ωo) (3.92)

I(ωo)=C
= 4 πC, (3.93)
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FIGURE 3.16: THE INVERSE SQUARE LAW. The irradiance on a surface patch decreases
with the square of its distance to a point light source.

that is, our point light source has the radiant intensity

C =
Φe

4 π
. (3.94)

As it is easily seen from Figure 3.16, the irradiance at point si on the surface Irradiance (257)

patch Pi with Lebesgue measure Ai can be evaluated via the ux emitted from point

x into solid angle Γo subtended by the patch Pi as seen from si. As the emitted ux

Φe falls as incident ux Φi at the surface patch Pi, and the patch is small compared

to its distance from x, we get: Radiant Flux (249)

E(si)
(3.45)
=

dΦi(si,ωi)

dµ2(Pi)
(3.95)

(3.93)
=

∫
Γo
I(ωo)dσ(ωo)

µ2(Pi)
(3.96)

(3.94)
=

Φe

4 π

∫
Γo
dσ(ωo)

µ2(Pi)
(3.97)

(2.196)
=

Φe

4 π

∫
Pi

|cosθii|
‖si−x‖2

2

dµ2(si)

µ2(Pi)
(3.98)

=
Φe

4 π

∣∣cos θii∣∣
‖si − x‖22

, (3.99)
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where ‖si − x‖22 is the distance of point x to point si on the surface patch Pi and θ
i
i

is the angle between the surface normal at siand the direction ωii towards the light

source. Relation (3.99) is called the inverse square law,

E(si) = I(ω)

∣∣cos θii∣∣
‖si − x‖22

, (3.100)

since the irradiance on the surface patch decreases with the square of its distance toIrradiance (257)

the point light source.

The statement of the inverse square law should be intuitive since a surface that

is close to a point light source will receive more photons per area than a surface that

subtends the same solid angle but is further away from the light source, see FigureSolid Angle (83)

3.16.

EXAMPLE 3.6 (Radiance from a Point Light Source) In classic ray tracing algorithms,

the light sources illuminating a scene are assumed to be point light sources. In

implementations of such algorithms shadow rays are �red in direction to the lightShadow Ray (14)

sources for estimating the direct illumination. Now, since rays carry radiance, butRadiance (250)

the intensity of point light sources is often given as the power of the source, it is

required to transform the quantity power to radiance.Radiant Power (249)

From the example above it is known that irradiance at point si onto a smallIrradiance (257)

surface patch Pi is given by

E(si) =
Φe

4 π

∣∣cos θii∣∣
‖si − x‖22

, (3.101)

where we assume that the point light source is located at x ∈ R3 and θii is the angle
between the surface normal of Pi at si and the direction ωii towards the light source.

To express the radiance in terms of ux, we can now utilize the concept of theRadiant Flux (249)

Dirac δ-distribution. Based on the Dirac δ-distribution, the radiance incident atDirac δ-distribution (118)

point si from direction ωii = −ωo can be expressed by

E(si)
(3.99)
=

Φe

4 π

∣∣cos θii∣∣
‖si − x‖22

(3.102)

(2.302)
=

∫
H2
i
(si)

Φe

4 π

|cos θi|

‖si − x‖22
δ(θi − θ

i
i)δ(φi − φ

i
i)dµ(θi)dµ(φi) (3.103)

(2.309)
=

∫
H2
i
(si)

Φe

4 π‖si − x‖22
(3.104)

δ(cos θi − cos θii)δ(φi − φ
i
i) |cos θi| sin θi dµ(θi)dµ(φi). (3.105)
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Radiometric Quantity Symbol De�nition Unit

Energy Q − J

Radiant Flux Φ dQ
dt

W

Radiance L dΦ
dµ2dσ⊥

W
m2 sr

Irradiance E dΦ
dµ2

W
m2

Radiosity B dΦ
dµ2

W
m2

Radiant Intensity I dΦ
dσ

W
sr

TABLE 3.1: RADIOMETRIC DEFINITIONS.

Expressing the last equation in terms of incident directions leads to

E(si) =

∫
H2
i
(si)

Φe

4 π ‖si − x‖22
δσ(ωi −ω

i
i)︸ ︷︷ ︸

Li(si,ωii)

dσ⊥si(ωi) (3.106)

=

∫
H2
i
(si)

Li(si,ω
i
i)dσ

⊥
si
(ωi). (3.107)

Due to Equation (3.46) we conclude, that the integrand in (3.106) can be inter-

preted as the incident radiance at point si. This means that the incident radiance

Li at point si coming from direction ωii can be rephrased with the help of the Dirac

δ-distribution as:

Li(si,ω
i
i) =

Φe

4 π‖x− si‖22
δσ(ωi −ω

i
i) (3.108)

(3.101)
= E(si) δσ(ωi −ω

i
i). (3.109)

This relation is fundamental, as it expresses radiance in terms of irradiance of

a light ray and thus builds a bridge between radiometry and geometric optics.

The radiometric de�nitions presented in this section are summarized in Table 3.1.

REMARK 3.8 A great deal of confusion concerns the use and misuse of the term inten-

sity. Some folks use it for W
sr
, some use it for W

m2
and others use it for W

m2·sr . It is

quite clearly de�ned in the SI system, in the de�nition of the base unit of luminous

intensity, the candela. Some attempt to justify alternate uses by adding adjectives

like optical, used for W
m2

, or speci�c, used for W
m2·sr , but this practice only adds to



272 CHAPTER 3. RADIOMETRY AND A LITTLE BIT OF PHOTOMETRY

the confusion. The underlying concept is quantity per unit solid angle [148, Palmer

1999].

3.7 A LITTLE BIT OF PHOTOMETRY

Photometry is the science of measuring visible light in units weighted according to the sen-

sitivity of our visual system. Because the sensitivity of our eye varies with the wavelength,

the perceived brightness of a monochromatic radiation at 550nm is di�erent from that of

700nm, even if the radiances are the same. Thus, a light source emitting a radiance of oneRadiance (250)

watt per square meter per steradiant of green light, for example, appears much brighter

than the same source emitting a radiance of one watt per square meter per steradiant of

red or blue light.

Now, in photometry we do not measure watts of radiant energy, but rather it isRadiant Energy (248)

attempted to determine the subjective impression caused by stimulating the human eye-

brain visual system with radiant power. As the eye is a non linear detector of light, thisRadiant Power (249)

task is very complicated. Light varies not only with wavelength, but also with the amount

of radiant ux, whether the light is constant or ickering, the spatial complexity of the

scene being perceived, the adaptation of the iris and retina, the psychological and phys-

iological state of the observer, and many other variables, [13, Ashdown 1994]. That is,

when we talk about brightness|which can be seen as a psycho-physical sensation|it is

not su�cient only to consider the radiometric quantities radiance, radiosity, or power of a

source.

The foundations of photometry were laid in 1729 by Pierre Bouguer, who discussed

photometric principles in terms of the light source of his time: a wax candle. Thus, the wax

candle also became the basis of the central concept of point light source in photometric

theory. Today, the international standard is a theoretical point light source emitting

a luminous intensity of one candela, that is, it emits monochromatic radiation with a

frequency of 540 THz having a radiant intensity of 1
683

[
W
sr

]
, [48, Dutr�e 2003].

To characterize the average human visual response to light, a standardized spectral

response function, the so-called luminous e�ciency function, V, is used, see Figure 3.7.

It was introduced in 1924 by the Commission Internationale de l'Eclairage, or CIE, after

testing with over one hundred observers to visually match the brightness of monochro-

matic light sources with di�erent wavelengths under certain conditions. As a statistical

model of the human visual response to light, the luminous e�ciency function shows the

photopic luminous e�ciency of the human visual system depending on the wavelength of

light. It provides a weighting function that, together with the candela, can be used to con-

vert radiometric quantities into their photometric analogues. That is, the only di�erence

between radiometry and photometry lies in the units of measurement.

By de�ning a so-called linear, radiometric-photometric transition operator [28,

Boss & al. 2011], with the conversion factor Km = 683, YRP, viaLinear Operator (53)
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1.0
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FIGURE 3.17: 1988 C.I.E. PHOTOPIC LUMINOUS EFFICIENCY FUNCTION V. The
luminous efficiency function quantifies the sensitivity of the human visual system to all
wavelengths of light, thus for example, a light source will appear brighter if it emits light
of wavelength 600nm than the same light source that emits light of 500nm or 650nm
wavelength.

(YRPf) (x,ω)
def
= Km

∫
[0,∞)

V(λ)f(x,ω, λ)dµ(λ),

[
lm

m2 · sr

]
, (3.110)

each radiometric quantity can then be transformed to its corresponding photometric quan-

tity, that is, YRP builds a bridge between radiometry and photometry.

EXAMPLE 3.7 (Luminance) Luminance is the photometric equivalent of radiance. Using Radiance (250)

the radiometric-photometric transition operator YRP, luminance LV(x,ω) can then

be computed via:

LV(x,ω) = (YRPL) (x,ω) (3.111)

def
= Km

∫
[0,∞)

V(λ)L(x,ω, λ)dµ(λ). (3.112)

Based on this formula, a light source emitting a constant spectral radiance

L(x,ω, λ) = C 6= 0 only over a band of wavelength in the range between 300nm

and 800nm has luminance of

LV(x,ω)
def
= CKm

∫
[300nm,800nm)

V(λ)dµ(λ) (3.113)

= C · 683 · 107 = C · 7.30 · 104 lm

m2 · sr
, (3.114)
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Photometric Quantity Symbol De�nition Unit

Luminous Energy QV − talbot

Luminous Flux ΦV
dQV
dt

lm

Luminance LV
dΦV

dµ2dσ⊥
lm
m2 sr

Illuminance EV
dΦV
dµ2

lm
m2

Luminous Exitance BV
dΦV
dµ2

lm
m2

Luminous Intensity IV
dΦV
dσ

lm
sr

TABLE 3.2: PHOTOMETRIC DEFINITIONS.

where the maximum luminous e�cacy, Km = 683 lm
W
, and the value of the integral is

107nm, for more details see [28, Boss & al. 2011].

REMARK 3.9 As all rendering algorithms simulate the light transport in a scene, they

also compute radiances of particular wavelengths at visible points. That is, for com-Radiance (250)

puting an image that is to be displayed on a device, it is not only necessary to map

the radiance value into RGB-values. Here, we also have to account for the capabil-SPD (40)

ity of a device to reproduce the correct perceptual response as well as the brightness

present in the real scene.

In this book, we use radiometry exclusively. The visual response by an observer

can then be added as a post-process, also called tone-mapping.

The photometric de�nitions presented in this section are summarized in Table 3.2.

3.8 REFERENCE LITERATURE AND FURTHER READ-
ING

Our construct of the particle space, introduced in Section 3.1, is based on the concept

of phase space from [10, Arvo 1995]. He uses an approach based on a set of axioms that

corresponds to the observable behavior of photons, and uses concepts from measure theory

to derive some radiometric quantities. In [220, Veach 1997] this approach is extended to a

more general class of radiometric quantities.

Pat Hanrahan's section Transport Theory in [36, Cohen & Wallace 1993] was helpful

for us when counting particles and photons in Section 3.1. A similar, more intuitive
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description of the principle of radiance invariance as we did it in Section 3.3 can be found

in [190, Sillion & Puech 1994] and [50, Dutr�e & al. 2003].

Excellent and easily understandable introductions to radiometry can be found in

[167, Preisendorfer 1958] as well as in the books by [127, McCluney 1994], [147, Palmer &

Grant 2009], and [166, Preisendorfer 1976]. A detailed discussion on light and physically

based lighting and shading models with respect to the concerns of CG is contained in

[37, Comninos 2006]. Many other books about global illumination, such as [36, Cohen &

Wallace 1993], [190, Sillion & Puech 1994], [13, Ashdown 1994 ], [68, Glassner 1995], [95,

Jensen 2001], [50, Dutr�e & al. 2003], [187, Shirley & Morley 2003], [51, Dutr�e & al. 2006],

and [158, Pharr & Humphreys 2004], [159, Pharr & Humphreys 2010] address the most

important radiometric quantities briey in a useful and easily understandable way. Apart

from [191, Slusallek 1995] also [48, Dutr�e & al. 2003] and [1, Akinene-M�oller & al. 2008]

are other good resources on the topics of radiometry and in particular on photometry.

Nice, brief and easily understandable overviews of radiometric quantities and units that

are used in this section can also be found in [148, Palmer 1999] and in [48, Dutr�e & al.

2003]. A number of graphics paper available online provide also good coverage of some of

the material presented here, for example Steve Marschner's lecture notes on radiometry

[125, Marschner 2009], [61, Fleet & Hertzmann 2005], and [168, Preisendorfer & Tyler

1958].

In [165, Preisendorfer 1965] an attempt is made for a strict axiomatic formulation of

radiometric quantities based on the wave nature of light and in [136, Nicodemus 1963] the

concept of basic radiance is introduced, useful when deriving symmetric BSDFs.
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CHAPTER FOUR

MATHEMATICAL FORMULATIONS
OF STATIONARY LIGHT TRANSPORT

The goal of this chapter is to derive generally valid equations that describe the transport of

light particles through participating media or a vacuum. Now, a mathematical description

of the transport of light through a scene, where all properties of light is accounted for,

is, without any restrictions to the underlying particle model, not really possible. So, we

will �rstly consider the transport of abstract particles through a scene with participating

media. This requires the characterization of the most important properties of particles

that can a�ect their motion through a medium or a vacuum, that is, we are forced to

consider all those e�ects which imply changes in the distribution of particles in a scene.

For that, we assume that all these particles subject a series of limitations and can be mod-

eled via elements of the so-called particle space. Our particles are moving collision-free

at a constant velocity and can be described at each moment by their current position as

well as their direction of motion. We also assume that they do not possess any internal

states, such as polarization, frequency, charge, or spin. Nevertheless, the resulting particle

transport equation is an extremely complicated integro-di�erential equation that is not

really usable for the �eld of realistic rendering. That is, it is not su�cient, only to restrict

our discussion with respect to the properties of particles, but we also have to restrict our

consideration to the behavior of particles at participating media or when interacting with

object surfaces in a vacuum. Hence, we will approximate the scattering behavior at mat-

ter particles within participating media and the reection or refraction behavior at object

surfaces by so-called bidirectional scattering and reectance distribution functions. As-

signing the abstract particles photon character, the resulting particle transport equation

is transformed|using the radiometric quantities derived in the previous chapter|into a

mathematical formulation that ultimately explains the photon transport.

OVERVIEW OF THIS CHAPTER. Based on the measure theoretic concept of the particle space

we will describe the transport of abstract particles within participating media in form of Section 4.1

balance equations, resulting in the scalar version of the particle transport equation. By

expressing the reection, transmission, and scattering behavior of light in terms of so- Section 4.2

277
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called bidirectional scattering functions, then we obtain a geometric-physically correct

mathematical formulation of the interaction of light particles with object surfaces in par-

ticipating media and in free space. These functions also work as a basis for a mathematical

description of light processes playing out within participating media and at the bound-

aries of a given scene including also subsurface scattering. Afterwards, we talk about

the most important properties of di�erent light sources. We will derive the stationarySection 4.3

light transport equation in participating media, and in a vacuum, both in scalar form,Section 4.4

i.e. neglecting the polarization properties of light. These equations can be considered as

the mathematical formulations of the global illumination problem in computer graphics

based on geometrical optics. Afterwards, we devote to the dual problem of light transport.Section 4.5

That is, we present the stationary importance transport equation in a vacuum, as the

adjoint equation of the stationary light transport in a vacuum and introduce the concept

of importance as the adjoint quantity to radiance. Finally, we present with the de�nition

of the measurement equation, an elegant mathematical formulation, which simulates theSection 4.6

measurement process of light.

For all these discussions, we have decided to use a notation based on measure theory

for describing phenomena occurring in particle transport, introduced in Chapter 2. Thus,

we will always incorporate the measures we are working with in the given relations in a

mathematically correct manner. Though physicists may be unaccustomed to this, it is

mathematically consistent and appears to us to be advantageous, especially when it comes

to Monte Carlo integration to be introduced in one of the following chapters.

4.1 PARTICLE AND LIGHT TRANSPORT IN PARTICI-
PATING MEDIA AND IN A VACUUM

In participating media particles can be generated at any moment within the media by

chemical or thermal processes, that is, new particles can be injected into the system due

to so-called emission processes. Now, the number of particles in a participating media

can not only be increased by emission, it can also be decreased by absorption processes.

During its travel through a participating medium, a particle can also collide with matter

particles of the medium. As result of such a collision, a particle can change its direction

of motion, so for example, it can be out-scattered from its original ow of direction, or

the particle can be in-scattered from any other direction into a particular direction.

All these processes are not possible in a vacuum. In a vacuum, the number of particles

always remains the same, that is, particles cannot be destroyed or newborn. If we further

assume that particles are moving collision-free, a particle can also change its original di-

rection of motion only due to reection or refraction, if it interacts with existing surfaces

in a scene.
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absorption

in-scattering

out-scattering

emission streaming

FIGURE 4.1: POSSIBLE INTERACTION OF LIGHT WITH PARTICIPATING MEDIA. We
distinguish three categories of particle behavior when light interacts with participating me-
dia: Emission, streaming, and collisions. Collisions are further divided into absorption and
scattering, where particles can be in- and out-scattered.

In the following sections, we will derive equations that describe the transport of ab-

stract particles in participating media and in a vacuum. This requires the characterization

of the particles we are interested in and of all above mentioned interactions of particles

with matter that can a�ect the travel of a particle. That is, we are forced to consider all

those e�ects which implies changes in the distribution of particles in a scene. So, let us

assume that our particles are small and numerous and that they are moving collision-free

with constant velocity through a medium or a vacuum, where at each moment a particle

can be described by its current position x ∈ R3 and its direction of motion ω. The rather

complex nature of the resulting transport equation, along with the fact that in mathe- Section 4.1.1

matics one often �nds solution methods for speci�c cases of integro-di�erential equations,

then suggests to transform this type of equation into a class of equations considerably more

suitable for �nding solution procedures, namely linear integral equations. Formulated in Section 4.1.2

scalar representation the particle transport equation can then be interpreted as a mathe-

matical description of the global illumination problem in a vacuum or participating media,

restricted to geometrical optics. Assigning the abstract particles photon character using

Einstein's formula E = hν, we then transform with the help of radiometric quantities,

the particle transport equation into a mathematical formulation that explains the photon

transport: the so-called stationary light transport equation in scalar form. Later, it Section 4.1.3

serves as a basis for deriving the light transport equation in participating media and

the light transport equation in free space, which for the �eld of computer graphics are
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FIGURE 4.2: A SUBSPACE OF THE PARTICLE SPACE, Ξ. A finite volume V ⊆ V and a finite
solid angle Γ ⊆ S2. The Cartesian product of V ⊆ V and Γ ⊆ S2 results in the 5-dimensional
subspace V × Γ of particle space R3 × S2.

of fundamental importance.

4.1.1 THE STATIONARY PARTICLE TRANSPORT EQUATION IN
INTEGRO-DIFFERENTIAL FORM

Let V× Γ with V ⊆ V and Γ ⊆ S2 be a �xed volume of the particle space Ξ, see Figure 4.2.V (41)

Particle Space (244) Since we are only interested in stationary distributions we can assume that each volume

has a �xed number of particles. This assumption then implies that the particle ux isParticle Flux (246)

independent on time, that is: The ow of particles into and out of V × Γ must exactly

balance.

To derive a balance equation for particle transport we group the processes that are

responsible for changes in the number of particles in V×Γ into gains and losses and equate
these two quantities.

Let us assume that all particle behaviors fall into one of the following categories:

emission, in-scattering, out-scattering, streaming, and absorption, where each of these

processes can change the number of particles in V × Γ . While emission and in-scattering

increase the number of particles in V × Γ , out-scattering and absorption decrease the

number of particles in V × Γ , see Figure 4.3.
For the following discussion, let us denote the number of particles, emitted or ab-

sorbed per unit of time in volume V × Γ , by E and A respectively and the number of

particles owing into and out of V × Γ by Sin as well as Sout. Furthermore, we denote

with Cin and Cout the particles that scatter into V× Γ and those that scatter out of V× Γ ,
see Figure 4.3. Then, the associated balance equation must satisfy the relation

E + Cin + Sin︸ ︷︷ ︸
gains

= A+ Cout + Sout︸ ︷︷ ︸
losses

(4.1)
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absorption

in-scattering

out-scattering

emission streaming

FIGURE 4.3: PHYSICAL PROCESSES RESPONSIBLE FOR CHANGES IN THE NUMBER OF
PARTICLES IN PARTICIPATING MEDIA. We distinguish five types of processes that can
change the number of particles within participating media: Emission, absorption, in- and
out-scattering, as well as streaming.

or equivalently

E + Cin + Sin︸ ︷︷ ︸
gains

−

A+ Cout + Sout︸ ︷︷ ︸
losses

 = 0. (4.2)

Based on the concept of the particle density, n, the number N(t) of particles which Particle Density (245)

are contained at time t in V and which move in directions of Γ is given by: dσ (87)

dµ3 (82)

N(t)
def
=

∫
V

∫
Γ

n(x,ω, t)dσx(ω)dµ3(x). (4.3)

As already mentioned, we are only interested in stationary distributions of particles,

that is, we can assume that the properties of the medium and the sources are time in-

dependent. For the change in number of particles in time interval dµ(t) then it must

hold:

dN(t)

dµ(t)
= 0

[
1

s

]
, (4.4)

or, using Equation (4.2), equivalently:

dN(t)

dµ(t)
= E + Cin −

(Sout − Sin)︸ ︷︷ ︸
S

+A+ Cout

 = 0. (4.5)
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FIGURE 4.4: EMISSION AND ABSORPTION OF ABSTRACT PARTICLES. The particle space
source function q emits abstract particles at point x in direction ω. In contrast to q, the
function σa absorbs particles at point x coming from direction ω.

To formulate a closed mathematical expression that|based on the above balance

equation|characterizes the particle transport, we now need a formal description of the

individual components of Equation (4.5) occurring in a volume of the particle space tak-

ing into account participating media. Therefore, we must mathematically formulate all

above-mentioned processes involved in particle transport and use them in Equation (4.5).

EMISSION. The �rst process we want to analyze is the emission of particles in

participating media. It is responsible for the creation of new particles by one or more

physical processes. Denoted by E , the emission term can simply be described by using a

so-called particle space source function, q,

q : Ξ× T → R≥0 (4.6)

also denoted as an emission function. It returns the number of particles created per unit

volume, per unit solid angle and per unit time. The emission function is measured in units

of 1
m3·sr·s . Based on the emission function q the emission term, E , is then de�ned as:

E def=
∫
V

∫
Γ

q(x,ω)dσx(ω)dµ3(x),

[
1

s

]
(4.7)

it gives the number of particles emitted by all sources within the volume V× Γ , see Figure
4.4.

ABSORPTION. Let us now analyze the absorption term, A, describing the absorption

behavior of particles. Similarly to emission, we now assume an absorption coe�cient,

σa,

σa : Ξ→ [0,∞] (4.8)
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with

(x,ω) 7→ σa(x,ω). (4.9)

Under the condition, that the involved participating medium is isotropic, the absorp-

tion coe�cient is independent of ω, thus, it has units of 1
m

and gives the probability

density function with which the particles at point x, traveling in direction ω, will be Probability Density Function (176)

absorbed. The absorption term, A, is then de�ned via

A def
=

∫
V

∫
Γ

σa(x,ω) vn(x,ω)dσx(ω)dµ3(x)

[
1

s

]
. (4.10)

REMARK 4.1 Usually, the absorption coe�cient is de�ned in transport theory as a

density function and interpreted as the probability with which a photon traveling Probability Density Function (176)

through a participating medium will be absorbed per unit length and per unit solid

angle. Often, the direction from which the photon enters the center of absorption

plays no role, i.e. the medium is assumed to be isotropic. Unfortunately, this is fre-

quently not the case, especially for natural participating media [44, Ditchburn 1991].

So, for example, the blue coloring of the sky results from the fact that the absorp-

tion behavior of a particle demonstrates both direction dependence and wavelength

dependence.

STREAMING. Next, we are interested in the number of particles with directions in Γ that

either escape from or enter into the volume V simply by streaming. The change in N(t)

due to streaming can now be written as the net ow of particles with directions in Γ that

pass through the boundary ∂V of V×Γ . Since the net ow through a surface depends only ∂V (41)

on the component of the particle ow which is normal to the patch, we de�ne a so-called

streaming term, S, by: dσs (87)

S def
=

∫
∂V

∫
Γ

vn(s,ω) 〈ω,N(s)〉dσs(ω)dµ2(s),

[
1

s

]
(4.11)

where N(s) is the normal at point s ∈ ∂V and the inner product 〈N(s),ω〉 indicates the 〈·, ·〉 (845)

direction of the net ow. A positive value signalizes a net ow into the volume V, thus an

increase of N(t), while a negative value signalizes a net ow out of V, thus, a decrease of

N(t).

Now, the streaming term, as de�ned above, is expressed as an integral over ∂V. ∂V (41)

Further below, it will be clear that it is advantageous to convert this surface integral into

a volume integral. Using the Gauss Divergence Theorem,1 the streaming term S can

also be expressed as an integral over the volume V × Γ , namely as: ∇ (53)

1Assume V is a compact subset of Rs with piecewise smooth boundary ∂V. Let furthermore F be a
continuous, di�erentiable, vector-valued function de�ned on a neighborhood of S, then we have∫

V

〈∇,F(x)〉dµ3(x) =
∫
∂V

〈F(s),n(s)〉dµ2(s). (4.12)
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FIGURE 4.5: STREAMING BEHAVIOR OF ABSTRACT PARTICLES. The calculation of the
number of particles streaming through the subset ∂V × Γ of the phase space Ξ by means of
integration over the boundary ∂V ∈M.

S Gauss
=

∫
V

∫
Γ

〈ω,∇〉 vn(x,ω)dσx(ω)dµ3(x). (4.13)

SCATTERING. With the de�nition of the entities E ,A, and S, the only thing that remains

to complete our characterization of particle transport is the analysis of scattering, which,

compared to emission and absorption, turns out to be slightly more complex.

Mathematically, scattering is described by introducing a linear integral kernel κ,Integral Kernel (127)

κ : Vo × S2 × S2 → [0, 1] (4.14)

the so-called volume scattering kernel, κ, with

(x,ω,ω′) 7→ κ(x,ω→ ω′). (4.15)

Its units are 1
m·sr and it gives the probability that a particle at x moving in directionProbability Density Function (176)

ω will be deected into the new direction ω′.

Considering the scattering of a particle more exactly, then we must distinguish be-

tween two scattering processes: in-scattering and out-scattering. By in-scattering we

mean the process in which particles, regardless of their starting point, are transmitted

into the direction of the currently observed stream, whereby out-scattering describes the

change in the particles original path. So, for those particles Cin arriving at point x ∈ V
from all directions ω′ over the unit sphere and scattered into direction ω ∈ Γ the following
expression holds:

Cin
def
=

∫
V

∫
Γ

∫
S2(x)

κ(x,ω′ → ω) vn(x,ω′)dσx(ω
′)dσx(ω)dµ3(x)

[
1

s

]
. (4.16)
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FIGURE 4.6: IN AND OUT-SCATTERING OF ABSTRACT PARTICLES. In-scattering is the
process by which particles at point x flowing from directions ω′ are added to V × Γ . Out-
scattering describes the change in the particles original path at a point x ∈ V in directions
ω′ /∈ Γ .

Obviously, out-scattered particles leave their original direction and are no longer being

relevant for our considerations. We get the number of particles, Cout, that at point x are

forced to change their original direction ω ∈ Γ into any other ω′ ∈ S2 by:

Cout
def
=

∫
V

∫
Γ

vn(x,ω)

∫
S2(x)

κ(x,ω→ ω′)dσx(ω
′)dσx(ω)dµ3(x)

[
1

s

]
. (4.17)

REMARK 4.2 Note that the inner integration in Cin and Cout is over the entire sphere
of directions, which means that we account for particles whose directions lie within Γ

both before and after scattering. Since we are only interested in the net change due

to scattering, that is, the di�erence between Cin and Cout, the unwanted fraction will

be canceled out, since it appears on both sides of our balance equation.

THE STATIONARY PARTICLE TRANSPORT EQUATION IN INTEGRO-DIFFERENTIAL FORM. Let us

consider once more the inner integral in Equation (4.17), thus the integral over the kernel

κ, then it is possible to replace this integral by a function, σs, that is,

σs(x,ω)
def
=

∫
S2(x)

κ(x,ω→ ω′)dσx(ω
′),

[
1

m

]
(4.18)

where σs is called the out-scattering coe�cient. In analogy to the absorption coe�cient

σa, the out-scattering coe�cient gives the probability that a particle will su�er a scattering

collision per unit distance traveled.

Using the out-scattering coe�cient σs in Equation (4.17), the out-scattering term
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Cout can then be simpli�ed described similarly to the absorption term A, as:

Cout
def
=

∫
V

∫
Γ

σs(x,ω) vn(x,ω)dσx(ω)dµ3(x).

[
1

s

]
(4.19)

The Formulas (4.10) and (4.19) of the absorption term and the out-scattering term

now imply the introduction of a so-called extinction coe�cient de�ned by,

σt(x,ω)
def
= σa(x,ω) + σs(x,ω),

[
1

m

]
(4.20)

which is the probability that a particle will be subjected to either kind of collision per

unit distance traveled, i.e. the particle is absorbed or scattered.

Based on the extinction coe�cient σt the balance equation can now be written as:

S + (A+ Cout)︸ ︷︷ ︸
Cext

= E + Cin (4.21)

thus

S + Cext = E + Cin. (4.22)

Because V and Γ have been chosen arbitrarily and the terms of Equation (4.22) all

have the same integration domain, it follows that equality must also hold for the integrands.

Removing the two outer integrals then leads to the stationary particle transport equation

in intego-di�erential form:

〈ω,∇〉vn(x,ω) + σt(x,ω) vn(x,ω) (4.23)

= q(x,ω) +

∫
S2(x)

κ(x,ω′ → ω) vn(x,ω′)dσx(ω
′).

Replacing the particle density n according to Equation (3.18) by the ux ΦP(x,ω)
v

,

where v is the velocity of a particle, we get the stationary particle transport equation in

intego-di�erential form, expressed in terms of particle ux:

〈ω,∇〉ΦP(x,ω) + σt(x,ω)ΦP(x,ω) (4.24)

= q(x,ω) +

∫
S2(x)

κ(x,ω′ → ω)ΦP(x,ω
′) dσx(ω

′).

An equation of this type is denoted as an ordinary integro-di�erential equation. It

is valid only in interior points of the underlying volume. Thus, �nding a solution to the

particle transport equation also requires setting up the boundary conditions, which corre-

spond to a formal description of particle distribution at the surfaces delimiting our system.
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STATIONARY PARTICLE TRANSPORT EQUATIONS WITH BOUNDARY CONDITION. Out of a vari-

ety of possible formulations of boundary conditions we restrict our further considerations

only to the two simplest types: explicit and implicit boundary conditions.

We call a boundary condition explicit if the number of particles leaving a surface

point is independent of the number of incident particles. The case where particles leaving

a point on a surface depends on incident particles is speci�ed as an implicit boundary

condition.

By means of the concept of explicit boundary conditions we can now simply describe

the emission behavior of particle sources at the boundaries of V × Γ by selecting a particle
space source function

ΦP(s,ω) = qb(s,ω) (4.25)

de�ned on ∂V × S2. It returns the number of particles entering in the system that are

created by emission processes on the involved boundaries. An implicit boundary condition

could be de�ned by an integral transformation of the form

ΦP(s,ω) =

∫
S2
κb(s,ω

′ → ω)ΦP(s,ω
′)dσs(ω

′), (4.26)

where κb is the surface scattering kernel measured in units 1
sr
. This construct then

expresses the number of particles reected at surface point s in any direction ω as a

weighted sum of the incoming particles at s, where the weighting can depend on the

incoming and outgoing directions.

Combining an explicit and an implicit boundary condition|where we additionally

integrate over all locations on the boundary ∂V where emission processes can occur|we ∂V (41)

�nally arrive at the stationary particle transport equation with implict and explicit

boundary conditions, also briey called SPTE in integro-di�erential form,

〈ω,∇〉ΦP(x,ω) + σt(x,ω)ΦP(x,ω) (4.27)

= q(x,ω) +

∫
S2(x)

κ(x,ω′ → ω)ΦP(x,ω
′)dσx(ω

′),

where it holds x ∈ Vo in all interior points x of the volume V × Γ , and Vo (41)

ΦP(s,ω) = qb(s,ω) +

∫
S2(s)

κb(s,ω
′ → ω)ΦP(s,ω

′)dσs(ω
′), (4.28)

are the associated boundary conditions. This equation then describes, together with their

boundary condition, the transport of abstract particles in a closed system of the particle

space.
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4.1.2 THE STATIONARY PARTICLE TRANSPORT EQUATION IN
INTEGRAL FORM

As already mentioned, the stationary particle transport equation is an integro-di�erential

equation because it contains the derivative and the integral of the unknown function ΦP.

Compared to the theory of solving di�erential equations and integral equations, the theoryIntegro-differential Equation (127)

for solving such a type of equation is not as well developed. Therefore, for exploring aΦP (246)

variety of solution methods, we will make use of the advantage to transform integro-Section 2.3.3

di�erential equations into di�erential equations or integral equations. Since, it has proven

advantageous to convert our particle transport equation into an integral equation, we will

now present this approach. It allows to involve the boundary conditions into the integral

equation rather than maintaining them separately as a set of constraints.

In the �rst step of the following discussion we convert, by means of appropriate trans-

formations, our particle transport equation into a di�erential equation. Integrating this

di�erential equation then incorporates the boundary conditions and results in our desired

integral equation.

From our discussion in Section A.5 it is known that the operator 〈ω,∇〉 from Equation

(4.27) is a directional derivative in direction ω. Such a derivative can be written asDirectional Derivative (871)

〈ω,∇〉ΦP(x,ω)
(A.30)
=

∂

∂µ(α)
ΦP(x+ αω,ω)

∣∣∣∣
α=0

(4.29)

= −
∂

∂µ(α)
ΦP(x− αω,ω)

∣∣∣∣
α=0

(4.30)

and is interpreted as the change in ux along the ray r = x+ αω,α ∈ R, see Figure 4.7.
With respect to the particle transport equation from Formula (4.27) we are now

interested in what happens along the ray x − αω, that is, in backward direction towards

surface point s. For that purpose, let us replace the operator 〈ω,∇〉 in Equation (4.27)

by the directional derivative from Equation (4.30). Then the stationary particle transport

equation in all inner points x of the volume V × Γ takes on the form

∂ΦP (x+ αω,ω)

∂µ(α)
+ σt (x− αω,ω) ΦP (x− αω,ω) (4.31)

= q (x− αω,ω) +

∫
S2(x−αω)

κ (x− αω,ω′ → ω)ΦP (x− αω,ω′) dσx−αω(ω
′).

This expression can now be interpreted as follows: The number of particles at an innerParticle Space Flux (246)

point x within a participating medium results from scattering, absorption, or emissionScattering (284)

processes that occur on the ray x − αω in backward direction to a surface point s, whileAbsorption (282)

the number of particles at a surface point is predetermined via the boundary conditions,Emission (282)

see Figure 4.8.Boundary Conditions (287)
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FIGURE 4.7: THE CHANGE IN FLUX ALONG THE RAY r = x − αω,α ∈ R. Between
the points x ∈ R3, x − αω,α > 0 and s, the amount of flux can change due to emission,
absorption, and scattering processes.

To further simplify our notation, we de�ne a so-called gain function Q(x,ω) that

combines the emission and the in-scattering term

Q(x− αω,ω) (4.32)

def
= q(x− αω,ω) +

∫
S2(x−αω)

κ(x− αω,ω′ → ω)ΦP(x− αω,ω′)dσx−αω(ω
′).

With the new functions

Φ̂P(α)
def
= ΦP (x− αω,ω) (4.33)

Q̂(α)
def
= Q (x− αω,ω) (4.34)

σ̂t(α)
def
= σt (x− αω,ω) (4.35)

Equation (4.31) can be represented as a linear, �rst-order, ordinary di�erential equation

of the form

−
d

dµ(α)
Φ̂P(α) + Φ̂P(α) σ̂t(α) = Q̂(α) (4.36)

d

dµ(α)
Φ̂P(α) − Φ̂P(α) σ̂t(α) = −Q̂(α), (4.37)
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FIGURE 4.8: PARTICLE FLUX OVER THE RAY r = x + αω. The change in the number of
particles at point x in the Euclidean space R3 is a composite of emission, E , absorption, A,
and scattering, Sin,Sout, processes along the ray r = x − αω, 0 < α ≤ d∂(x, ω).
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that can be solved by means of an integrating factor. For that purpose, �rst we search a

function h(α), which, multiplied with the left-hand side of Equation(4.37), corresponds to

the derivative of Φ̂P(α)h(α), i.e., it should hold:(
d

dµ(α)
Φ̂P(α) − Φ̂P(α) σ̂t(α)

)
h(α) =

(
d

dµ(α)
Φ̂P(α)

)
h(α) + (4.38)

Φ̂P(α)

(
d

dµ(α)
h(α)

)
.

Multiplication on the left shows that the �rst term on each side is equal. This leads

to

− Φ̂P(α) σ̂t(α)h(α) = Φ̂P(α)
d

dµ(α)
h(α). (4.39)

or equivalently

σ̂t(α) = −

d
dµ(α)h(α)

h(α)
. (4.40)

Finally, we integrate this relationship along the ray r = x−αω from 0 to α resulting

in

ln
(
h(α)

)
=

∫
[0,α]

−σ̂t(ξ) dµ(ξ), (4.41)

i.e., the function we are seeking is

h(α) = exp

(∫
[0,α]

−σ̂t(ξ) dµ(ξ)

)
. (4.42)

Now, multiplying Equation (4.37) by h(α) yields(
d

dµ(α)
Φ̂P(α)

)
h(α) − Φ̂P(α) σ̂t(α)h(α) = −Q̂(α)h(α) (4.43)

which|due to the fact that the left-hand side corresponds to the derivative of the product

Φ̂P(α)h(α)|can also be written as

d

dµ(α)

(
Φ̂P(α) · h(α)

)
= −Q̂(α)h(α). (4.44)

Integrating this expression from 0 to α yields∫
[0,α]

d

dµ(ξ)

(
h(ξ)Φ̂P(ξ)

)
dµ(ξ) = −

∫
[0,α]

h(ξ)Q̂(ξ)dµ(ξ) (4.45)
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thus

h(ξ)Φ̂P(ξ)

∣∣∣∣ξ=α
ξ=0

= −

∫
[0,α]

h(ξ)Q̂(ξ)dµ(ξ). (4.46)

Rephrasing Equation (4.46) with h(0) = 1 then leads to

Φ̂P(0) = h(α)Φ̂P(α) +

∫
[0,α]

h(ξ)Q̂(ξ)dµ(ξ). (4.47)

Equation (4.47) describes how we can �nd the number of particles Φ̂P(0) = ΦP(x,ω)

in terms of the number of particles arriving along direction ω towards a point s = x−αω

at a surface. To �nd this point we use the ray-casting function, γ, i.e. we computeγ (47)

s = γ(x,ω), (4.48)

which returns the intersection point s of the ray starting point x in direction ω with any

of the surfaces in the scene. To ensure that the ray-casting function is always well-de�ned,

we assume that the set of object surfaces ∂V encloses the scene to be rendered, such as an∂V (41)

in�nitely large, black, and non-reecting sphere.

To involve the particle number at boundaries into Equation (4.47), we de�ne an

exitant boundary function ΦP,b for any (s,ω) ∈ ∂V × S2 by

ΦP,b(s,ω)
def
= qb(s,ω) +

∫
S2(s)

κb(s,ω
′ → ω)ΦP(s,ω

′)dσs(ω
′), (4.49)

where qb is a surface emission function and ΦP(s,ω
′) is the incident number of particles

at the surface point s coming from directions ω′.

Since it is required to generalize Equation (4.47) back to a form that holds for any

ray, we will introduce several new functions: The optical distance function, τ, is de�ned

by

τ(x,y)
def
=

∫
[0,‖y−x‖]

σt (x− αω,ω) dµ(α) (4.50)

and the path absorption function, β, is given by

β(y,x)
def
= exp(−τ(x,y)). (4.51)

Obviously, the latter is a more general form of the integrating factor h from above

since it holds

β(y,x) = h(α) (4.52)

for y = x− αω.
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FIGURE 4.9: THE INTEGRAL FORM OF THE PARTICLE TRANSPORT EQUATION. The
number of particles at the inner point x ∈ Vo is composed of two components. First,
the particles emanating from point s on a surface that is nearest to x in direction −ω
reduced by possible out-scattering and absorption processes on the way to x. The other
component is found by looking backwards along the ray between x and s. At each point
x − αω, 0 ≤ α < d∂(x, ω), we add to the volumetric emission the in-scattered particles at
that point and we adjust this amount by volumetric effects of out-scattering and absorption
as it travels from that point back to x.

REMARK 4.3 Physically, the optical distance function τ often also called the optical

thickness can be interpreted as a dimensionless cumulative measure of absorption

and out-scattering over distance in the medium, that relates the physical distance to

the optical distance. As a measure of penetration depth it is used to characterize

optically thick layer, τ� 1, and optically thin layers, τ� 1.

Based on the above discussion, the integro-di�erential form of the SPTE from Formula

(4.27) can now be expressed via Equation (4.47) more easily in integral form as

ΦP(x,ω) = β(s,x)ΦP,b(s,ω) + (4.53)∫
[0,‖s−x‖]

β(x− αω,x)Q (x− αω,ω) dµ(α),

see Figure 4.9.

The complete form of the SPTE in integral form is then given by:
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DEFINITION 4.1 (The Stationary Particle Transport Equation in Integral Form, SPTE) Let β

be the path absorption function from Relation (4.51) and qb, q as well as κb, κ denote

particle sources respectively describe the scattering behavior of particles at surfaces or

within participating media, then, the one-speed stationary particle transport equation

in integral form, also briey denoted as SPTE, is de�ned as:

ΦP(x,ω)

(4.49,4.54)
= β(s,x)

(
qb(s,ω) +

∫
S2(s)

κb(s,ω
′ → ω)ΦP(s,ω

′)dσs(ω
′)

)
+

∫
[0,‖s−x‖]

β(x′,x)

(
q(x′,ω) +

∫
S2(x′)

κ(x′,ω′ → ω)ΦP(x
′,ω′)dσx′(ω

′)

)
dµ(α),

where x′ = x− αω.

Physically, the stationary particle transport equation can be interpreted as the num-Stationary PTE (294)

ber of particles at point (x,ω) composed of two components. One of the componentsParticle Space Flux (246)

describes particles emanating from point s on a surface that is nearest to x in direction

−ω reduced by possible out-scattering and absorption processes on the way to x. TheOut-Scattering (284)

Absorption (282) other component is found by looking backwards along the ray between x and s. At each

point we add to the volumetric emission the in-scattered particles at that point and adjustEmission (282)

this amount by volumetric e�ects of out-scattering and absorption as it travels from that

point to x.

REMARK 4.4 The integral form of the stationary particle transport equation is, as our

discussion makes clear, equivalent to the integro-di�erential equation from (4.27).

Furthermore, it o�ers the additional advantage of explicitly including the necessary

boundary conditions rather than requiring a separate equation. In its scalar versionBoundary Conditions (287)

it serves as the basis for deriving all of the integral equations describing the globalSection 4.4

illumination problem based on the principles of geometric optics.Section 4.5

REMARK 4.5 In the �eld of computer graphics we will encounter primarily the sta-

tionary particle transport equation as a fundamental mathematical formulation de-

scribing particle transport albeit in a somewhat altered and considerably simpli�ed

form. As the central formulation describing the global illumination problem we will

encounter the light transport equation in participating media and the light transportSection 4.4

equation in free space as well as the adjoint of the light transport equation in a vac-

uum, the importance equation in a vacuum. In Chapter 6, we then develop for theseSection 4.5

equations solutions techniques that are based on probability theoretical approaches.
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4.1.3 THE STATIONARY LIGHT TRANSPORT EQUATION IN IN-
TEGRAL FORM

The transport equation derived in the previous section is not based on any plausible phys-

ical concept but rather, it is rooted at the model of abstract particles moving through

a medium. Now, however, when we consider particle transport under the assumptions

governing photon transport then the nature of a photon requires to incorporate photon- Photon (246)

speci�c properties into our transport equation, i.e. the speed and energy of light, as well

as the behavior of light quanta at the boundaries of the given scene.

From Equation (3.16) and (3.18) it follows that the relationship between the incident Particle Flux (246)

ux of particles and incident radiance is given by: Radiance (250)

Li(x,ωi) = ~νΦP(x,ωi)
[

W

m2 · sr

]
. (4.54)

Linking not only ΦP, but also the particle source functions q to the physical quantity

of radiant power, then we must replace the surface and volume emission terms qb and q q (282)

from Equation (4.54) by two radiance emitting functions, the volume radiance emission

function, ε, de�ned by:

ε(x,ωo)
def
= ~νq(x,ωo) (4.55)

ν= c
λ=

~c
λ
q(x,ωo)

[
W

m3 · sr

]
(4.56)

and the surface radiance emission function, εb(s,ωo), given by:

εb(s,ωo)
def
= ~νqb(s,ωo) (4.57)

ν= c
λ=

~c
λ
qb(s,ωo)

[
W

m2 · sr

]
. (4.58)

Using the concept of radiance, then the stationary particle transport equation in Radiance (250)

integral form can be expressed as: PTE in Integral Form (294)

DEFINITION 4.2 (The Stationary Light Transport Equation, SLTE) Assume s is a point

on a surfaceM ∈ ∂V, x,x′ ∈ Vo are inner points of a participating medium, Lb(s,ωo) ∂V (41)

Vo (41)and Qo(x
′,ωo) are the outgoing radiance from surface point s, respectively from point

x′ within a participating medium in direction ωo attenuated by the path absorption β (292)

function β, and Li(x,ωi) is the incident radiance at point x from direction ωi, then:

Li(x,ωi) = β(s→ x)Lb(s,ωo) +

∫
[0,‖s−x‖]

β(x′ → x)Qo(x
′,ωo)dµ(α). (4.59)

is called the stationary light transport equation, also briey denoted as the stationary

LTE, or SLTE, for an illustration see Figure 4.10.
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FIGURE 4.10: THE INTEGRAL FORM OF THE STATIONARY LIGHT TRANSPORT
EQUATION. The number of particles at the inner point x ∈ Vo is composed of two
components. First, the particles emanating from point s on a surface that is nearest to
x in direction −ω reduced by possible out-scattering and absorption processes on the
way to x, thus β(s,x)εb(s,−ω). The other component is found by looking backwards
along the ray between x and s. At each point x − αω, 0 ≤ α ≤ d∂(x, ω), we add to
the volumetric emission the in-scattered particles at that point and we adjust this amount
by volumetric effects of out-scattering and absorption as it travels from that point back to x.

The �rst term on the right-hand side of the equal sign describes the radiance coming

from surface point s, which is nearest to an inner volume point x in direction ωo, atten-

uated by possible out-scattering and absorption processes on the way to x. The second

term describes the radiance emitted or scattered in direction ωo at all points x′ between

x and s and attenuated by out-scattering and absorption processes on the way to s.

Writing out the SLTE in full, where we use the boundary radiance function Lb de�ned

in accordance with Equation (4.49) and the gain functionQo from Equation (4.32), then we

can get the stationary light transport equation expressed in terms of incident radiance:

DEFINITION 4.3 (The Stationary Light Transport Equation Expressed in Incident Radiance,

SLTE) Let s be a point on a surface M ∈ ∂V, x,x′ ∈ Vo are inner points of a∂V (41)

Vo (41) participating medium, Li(s,ω
′
i) and Li(x

′,ω′i) are the incident radiance at surface

point s, respectively at point x′ = x − αωo within a participating medium coming

from direction ω′i, attenuated by the path absorption function β, then the stationaryβ (292)
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light transport equation expressed in terms of incident radiance has the form:

Li(x,ωi)

= β(s→ x)

(
εb(s,ωo) +

∫
S2(s)

κb(s,ω
′
i → ωo)Li(s,ω

′
i)dσs(ω

′
i)

)
+ (4.60)

∫
[0,‖s−x‖]

β(x′ → x)

(
ε(x′,ωo) +

∫
S2(x′)

κ(x′,ω′i → ωo)Li(x
′,ω′i)dσx′(ω

′
i)

)
dµ(α)

Using the formulas (4.50) and (4.51), then the stationary light transport equa-

tion can also be written as:

Li(x,ωi)

= e
−
(∫

[0,‖s−x‖] σt(x
′,ωo)dµ(α)

)
εb(s,ωo) +

e
−
(∫

[0,‖s−x‖] σt(x
′,ωo)dµ(α)

) ∫
S2(s)

κb(s,ω
′
i → ωo)Li(s,ω

′
i)dσs(ω

′
i) + (4.61)∫

[0,‖s−x‖]
e
−
(∫

[0,α]
σt(x′,ωo)dµ(α)

)
ε(x′,ωo)dµ(α) +∫

[0,‖s−x‖]
e
−
(∫

[0,α]
σt(x′,ωo)dµ(α)

) (∫
S2(x′)

κ(x′,ω′i → ωo)Li(x
′,ω′i)dσx′(ω

′
i)

)
dµ(α).

4.2 BIDIRECTIONAL DISTRIBUTION FUNCTIONS

Using the particle model we initially discussed the emission, absorption, and scattering Section 4.1.1

behavior of abstract particles at points in the Euclidean space incorporating potential in-

teraction with a participating medium. So, all these phenomena together characterize the

transport of abstract particles in participating media. Mathematically, this was expressed

in form of transport equations, so-called Fredholm integral equations of the 2nd kind. Section 4.1.2

Now, we want to turn our attention more closely to the following two questions: How can Fredholm IE 2nd kind (127)

we mathematically formulate, based on the principles of physics, the process of interaction

of light|thus, reection, refraction, and transmission of light|at surfaces in a vacuum

or in a participating medium? And: How can we involve these results into the abstract

formulas of the light transport equations? Section 4.1.3

For that purpose, we �rst discuss the principles of geometric optics a little bit in Section 4.2.1

more detail, that is, we talk about reection and refraction of light at object surfaces

and discuss its interaction with various materials. In principle, the behavior of light can

mathematically be described by so-called absorption, emission, and scattering func-

tions, characterizing the involved medium or the object surfaces in the scene. Somehow

combined and used as parameters, it is then possible to simulate the interaction of light
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with object surfaces or within participating media in a mathematical way. The only thing

we have to do is, to replace the theoretical scattering kernel in our light transport equa-

tions by these new constructs. The idea behind it is the construction of a high dimensional

function, a so-called bidirectional scattering-surface reectance-distribution function.Section 4.2.2

It should o�er information about the quantity of light arriving at a point of the observed

surface and given o� again at another point due to the scattering properties of the mate-

rial. If we then restrict this model, which not only describes scattering but also subsurface

scattering, further, such that the reected light ray also leaves the surface at the point,

where it arrives, then we ultimately get a simple mathematical formulation of scattering

properties of materials as well: the concept of the BSDF. Finally, we then extend theSection 4.2.3

concept of the BSDF to the case where we also consider light transport in participating

media, which results in the construct of the phase function.Section 4.2.4

4.2.1 PRINCIPLES OF GEOMETRIC OPTICS AS BASIS FOR BIDI-
RECTIONAL DISTRIBUTION FUNCTIONS

Normally you would have to use Maxwell's equations [44, Ditchburn 1991], [27, Born &

Wolf 1999] for plane or spherical waves to explain the propagation of light through a scene,

but there are other much more simpler models. Thus, geometric optics, often also referred

to as ray optics, describes light propagation in terms of so-called light rays. Such a light

ray is a theoretical construct that can be seen as the normal of a wavefront in direction ofRay (11)

the propagation of light, see Figure 4.11. Physically interpreted as an in�nitely thin light

bundle starting at surface point s and going in direction ω ∈ S2(s), a ray r,

r = s+ αω, α ∈ R>0 (4.62)

can be used as an abstraction to approximately model how light will propagate.

Geometric optics provides rules for propagating a ray through a system where the

path taken by the light ray indicates how the associated wave will propagate. Although it

does not work for optical e�ects such as di�raction, interference, or polarization, as well

as scattering of light at particles within a participating medium, the principle of the light

ray is an enormous simpli�cation for describing optical phenomena. Geometric optics is a

good approximation when the wavelength of light is very small compared with the size of

structures with which the light interacts.

For the following discussion of interaction of light at object surfaces, we assume that

light propagates only on straight lines. We will not consider any wave speci�c e�ects such

as di�raction, where light bends around objects. We will also not consider media with

varying indices of refraction. Furthermore, we assume that light travels at in�nite speed
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E

FIGURE 4.11: THE CONCEPT OF LIGHT RAY. A light ray defined as the normal in direction
of a spherical wave. Spherical waves, a sector of a spherical wave, and a plane wave with a
normal in direction of its propagation.

through a medium and that it is not inuenced by other physical factors such as gravity

or magnetic �elds.

We begin this section with a short overview of the interaction of light with various Section 4.2.1.1

materials. Afterwards we devote our interest to the most relevant light phenomenon in

computer graphics, the reection of light at object surfaces, and we discuss the physical Section 4.2.1.2

e�ect of refraction of light at interfaces between to di�erent media. As the interaction of Section 4.2.1.3

light with planar interfaces between two substances is strongly related to the Fresnel equa-

tions, we also introduce the concepts of reectance and transmittance of light which allows

to determine the amount of incident light that is reected or refracted at an object surface.

4.2.1.1 INTERACTION OF LIGHT WITH VARIOUS MATERIALS

From the variety of di�erent lighting phenomena that can be observed in nature, we

are mainly interested in the interaction of light at surfaces, as well as with particles in

participating media, namely: The interaction of light at boundaries between di�erent types

of media and the scattering and absorption of light within media or materials of real world.

Materials and media found in nature can roughly be characterized as being homoge-

nous or non-homogenous. While homogenous substances have a constant composition with

the same optical properties, non-homogenous are composed of two or more di�erent types

of homogenous materials or media. So, non-homogenous substances have di�erent optical

properties, which mainly depend on their composition. We coarsely distinguish between

two classes of homogenous substances: opaque and transparent materials or media.
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Typical opaque materials are conductors, such as iron, copper, or alluminium, but

also some types of plastic or wood, which are bad conductors. A substance is de�ned to be

opaque if it prevents light from passing through the material or the medium. Here, light

is reected in any direction, depending on the incident direction and the material of theReflection (300)

surface, see Figure 4.12. Contrary to opaque substances, light can pass through transparent

materials or media. The phenomenon of light traveling trough the material is called

transmission, and the process of the abrupt change of direction when the beam enters

into the other medium is called refraction. This e�ect can be observed at glass, water,Refraction (305)

or di�erent types of liquids. Transparent materials and media are also called dielectrics,

since they do not conduct electrical currents, see Figure 4.12.

Apart from opaque and transparent substances, there is also a class of materials and

media that allow light to travel through a substance, where the light is di�usely scatteredScattering (375)

in all directions when it collides with particles or atoms in the substance. This type of

material is called translucent. A similar e�ect like scattering in translucent materials

occurs when a light beam travels through a non-homogenous medium. Here, a light beam

is also scattered in all directions if it collides with particles of the medium, resulting in the

di�usion of the light beam. Scattering processes do not only depend on the wavelength

of the individual photons, but they are also dependent on the form and the size of the

suspended particles, for a detailed discussion, see Section 4.2.4. Examples of translucent

substances are paper, wax, snow, and smoke, see Figure 4.12.

Another phenomenon of light that can be observed when light travels through a

material is absorption. Absorption corresponds to the collision of a photon with an atom

of the material where the photon is distracted and its energy is stored as heat in the

material, see Figure 4.12.

4.2.1.2 REFLECTION OF LIGHT

When light strikes the surface of an object it encounters a great network of close-�tting

atoms, where a great amount of the original light ray will be scattered backwards. This

e�ect is called reection. Generally speaking, reection is the change in direction of a

light ray in particular at an interface between two di�erent media so that the ray returns

in its original direction. In computer graphics we distinguish coarsely between �ve types

of reection: specular, di�use, mixed, retro-reective, and gloss reection.

DEFINITION 4.4 (Ideal Specular Reection) Ideal specular reection is the mirror-like

reection of light at a perfectly smooth surface, where a light ray, incoming from a

single direction ωi, is reected into a single outgoing direction MN(ωi). As shown

in Figure 4.13, for the reected ray ωr
def
= MN(ωi) it holds:

MN(ωi) = 2〈N(s),ωi〉N(s) −ωi, (4.63)

where N(s) is the surface normal at point s.
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FIGURE 4.12: INTERACTION OF LIGHT WITH VARIOUS MATERIALS. Depending on
the underlying material or the involved media, in computer graphics we coarsely distinguish
between four different types of light interaction at materials or within participating media:
Reection, refraction or transmission, scattering, and absorption.
Opaque materials prevent light from passing through the material, so, an incident light ray
is reflected at the surface. While light can pass collision free through transparent materials-
—the light ray is refracted when it arrives at an object surface—in translucent materials, a
beam of photons is scattered in all directions when they collide with particles or atoms in the
substance. But a light ray can also be absorbed within a medium, if the involved photons
are distracted from their original direction of motion where their energy is stored as heat in
the material.
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FIGURE 4.13: THE GEOMETRY FOR IDEAL SPECULAR REFLECTION AND THE CAL-
CULATION OF THE REFLECTED RAY. The incident ray, the exitant ray, and the normal
vector at surface point s lie in the same plane. The right image shows like the reflected ray
ωr = ωo can efficiently be computed via the projection of ωi onto the normal vector at
point s and direction ωi.

This property is described by the law of reection, which states that the direction

of the incident ray ωi and the direction of the reected ray ωr ≡ ωo
def
= MN(ωi)

makes the same angle with respect to the surface normal, that is,

θo = θi. (4.64)

An additionally de�ning characteristic of specular reection is that ωi,ωo and

the surface normal N(s) lie in the same plane, i.e. the three vectors are linear

dependent, see Figure 4.13.Linear Dependent (857)

Ideal specular reection occurs at surfaces, that are perfectly smooth, such as mirrors

or very highly polished metals. Such surfaces can be seen as composed of many tiny micro-

facets that are perfectly aligned with surface normals that point in the same direction and

that reect light in a simple, predictable way. At these surfaces, ideal specular reection

generates images that are, due to the reection law, upright and have the same distance

behind the surface as the objects are in front of the surface. Slight reection also occurs at

interfaces between two di�erent media when light travels from a medium such as air into a

medium such as water or glass. Here, as we will see further below, a tiny fraction of light

is reected from the interface while the remainder is refracted. Ideal specular reectionFresnel Equations (306)

is, as the name already expresses, not a real reection behavior of surfaces that occurs in

nature.
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FIGURE 4.14: SURFACE GEOMETRIES FOR DIFFUSE REFLECTION. A light beam falling
on a diffuse surface can bounces off in all directions due to the microscopic irregularities at
a surface. Ideal diffuse reflection can also result of a change of propagation direction of light
rays due to collisions with particles and atoms within the material.

Another type of an ideal reection e�ect is ideal di�use reection.

DEFINITION 4.5 (Ideal Di�use Reection) A material surface is called ideal di�use reec-

tive or simply ideal di�use if it reects light uniformly in all directions with the same

energy.

Di�use reection occurs if light strikes an ideal rough or an ideal granular surface,

that can be seen to be composed of many randomly distributed microfacets with surface

normals that are uniformly distributed over the entire hemisphere, see Figure 4.14. When

a light beam hits such a surface, it is splitted in in�nitely many light rays, which are

reected in a random fashion in all directions due to the microscopic irregularities at the

surface, or they penetrate into the material, where they collide with particles and atoms

and their original direction of motion is changed. This means, that an image can not be

formed. Di�use reection can be seen as the complement to ideal specular reection, i.e.

if a surface is completely non-specular, the reected light will be evenly spread over the

entire hemisphere surrounding the surface, see Figure 4.15.

Di�use reection is the reason why objects illuminate other objects in the surrounding

area. This also ensures that light reected from objects that are not shiny or specular,

such as paper, walls, or ground, reaches areas not directly in view of a light source. An

often used model in computer graphics for simulating di�use reection is the Lambertian Lambert’s Reflection Model (350)

illumination model, in which light is equally reected in all directions.

In real world, reection of light is neither ideal specular nor ideal di�use. Due to [68,
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FIGURE 4.15: IDEAL DIFFUSE REFLECTION AT A SURFACE. A light beam incident at
point s on a diffuse surface is scattered diffusely in all directions over the hemisphere H2i (s).
The reflected light will be evenly spread over the entire hemisphere surrounding a surface
point.

Glassner 1995], it can rather be described as a combination of these di�erent reection

types. Therefore, in the following we will de�ne three such reection e�ects, which are

useful in rendering algorithms.

DEFINITION 4.6 (Mixed Reection) Mixed reection is the combination of ideal specular

reection and ideal di�use reection.

A material that simulates mixed reection behavior can be modeled by a weighted

combination of ideal di�use and ideal specular components.

DEFINITION 4.7 (Retro Reection) The reection behavior of a material is called retro-

reective if the energy of the incident light ray is reected in directions close to itself

over a wide range of incident directions.

Almost all materials are a little bit retro-reective, but we call only those that retro-

reect most of their incident energy as retro-reectors [68, Glassner 1995]. Last but not

least, we present gloss reection, see Figure 4.16.

DEFINITION 4.8 (Gloss Reection) A material surface is referred to as gloss if its re-

ection behavior can be seen as a combination of mixed reection and a mirror-like

appearance of a rough surface. Here, light from an in�nitesimal thin light beam is

scattered and spread into some �nite solid angle typically around the perfect mirrored

reection of the incoming ray.

In the above de�nition, a rough surface can be interpreted as a composition of not

uniformly distributed many micro-facets with surface normals that are distributed around
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FIGURE 4.16: GLOSS AND RETRO-REFLECTIVE REFLECTION. At a gloss surface, an
incident light beam is scattered and spread into some finite solid angle typically around the
perfect reflection direction, where the degree of glossiness determines the lobe of set of
possible reflected directions. At a retro-reflected surface, the reflected ray is close to the
incident ray.

the average surface normal. Gloss reection is generated by higher weighting of the spec-

ular reection compared to the di�use reection part.

4.2.1.3 REFRACTION OF LIGHT

When light strikes the interface between two di�erent media it encounters a great net of

close-�tting atoms. These atoms scatter both a little fraction of light backwards and the

bigger part of light in forward direction where the forward scattered direction is snapped

o� with respect to the original direction of the light ray. This e�ect occurs because the

incident light wave changes its velocity and its wavelength when entering into the new

medium. This deection is referred to as refraction . It is dependent on both the two

media involved and the direction of light transfer.

DEFINITION 4.9 (Ideal Specular Refraction) Ideal specular refraction or simply specular

refraction occurs at interfaces between two media when light travels from a medium

with index of refraction ηi into another medium with index of refraction ηt, where
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FIGURE 4.17: THE GEOMETRY OF SPECULAR REFRACTION. The transmitted ray ωt is
refracted in direction to the surface normal if the refractive index ηt > ηi else, it is refracted
away from the surface normal. Additionally, the transmitted ray ωt and the incoming ray
ωi lie in the same plane as the surface normal N(s).

it holds: ηi 6= ηt. The refracted ray RN(ωi) can be written as:

RN(ωi) = −
ηi

ηt
ωi +N

ηi
ηt
〈N(s),ωi〉−

√
1−

(
ηi

ηt

)2
(1− 〈N(s),ωi〉2)

 , (4.65)

where N(s) is the surface normal at point s in direction to the incident medium, see

Figure 4.17.This property is described by Snell's law, which states that the angle of

the incident ray ωi and the angle of the transmitted ray ωt
def
= RN(ωi) with respect

to N(s) satis�es the following equation

ηt sin(θt) = ηi sin(θi). (4.66)

An additionally de�ning characteristic of specular refraction is that ωi,ωo and

the surface normal N(s) lie in the same plane, i.e. the three vectors are linear

dependent.Linear Dependent (857)

THE FRESNELS EQUATIONS. Even when a smooth surface exhibits only specular reection

or specular refraction not all of the light is necessarily reected or refracted. Solving

Maxwell's equations for a light wave traveling from a medium of a given refractive index ηi
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FIGURE 4.18: FRESNEL EFFECT FOR DIELECTRICA. Two black and opaque spheres made
of a dielectrica. The Fresnel effect reduces the amount of reflected light for normally incident
light. The other sphere uses a constant reflectance with angle. Image courtesy of Stephen
H. Westin, Cornell University.

into another medium with refractive index ηt while striking a polished boundary between

the two media results in the so-called Fresnel equations. These equations can then be used

to predict how much light is reected, and how much is refracted in the situations described

above. The fresnel e�ect, as the visible result of the solution to the Fresnel equations, is

the observation that things get more reective at grazing angles, see Figure 4.18. It can

be interpreted as direct consequence of the electromagnetic nature of light considered as

a wave consisting of an an electric and a magnetic �eld component perpendicular to each

other and the fact that the electric �eld cannot be discontinuous even when the wave meets

a discontinuity in the refractive index at a polished surface.

In physics, the Fresnel equations are derived directly from the continuity conditions of

the electric and the magnetic �eld components of an incident electromagnetic wave as well

as the normal component at the surface boundary between the media, see [27, Born & Wolf

1999] or [80, Hecht 2001]. Due to the fact that the Fresnel equations are solutions of the

Maxwell equations at smooth boundaries, they incorporate the polarization of light, that

is, the orientation of the electric �eld vector with respect to the incident plane, spanned

by the surface normal as well as the incident, and reected wave. It is the Fresnel e�ect

that is responsible for the polarization of the outgoing wave after a specular interaction

with a smooth surface, even if the incoming wave is unpolarized.

Now, the orientation of the electric �eld vector of the incident light wave can be

parallel or perpendicular to the plane of incidence. That is, we have to distinguish be-

tween two forms of Fresnel equations: the Fresnel equations, where the polarization of

the incident light is parallel to the surface, and the Fresnel equations, where the polar-

ization of the incident light is perpendicular to the surface. Additionally, as conductors,

unlike dielectrics, do not transmit light|some of the incident light is absorbed by the
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material and transformed into heat|there are also two types of Fresnel equations: one

for dielectrics and one for conductors. So, we have four equations resulting in four Fres-

nel factors used to de�ne two Fresnel reectance types: the Fresnel reectance and the

Fresnel transmittance.

DEFINITION 4.10 (Fresnel Equations for Dielectrics) Let us assume an incident light wave

coming from direction ωi is reected in direction ωr
def
= MN(ωi) at a smooth non-

conducting surface within a medium with refractive index ηi, where some of the

amount of light is refracted in direction ωt
def
= RN(ωi) in a medium with refractive

index ηt. Then, the Fresnel equations for dielectrics are given by:

r‖ =
ηt cos θi − ηi cos θt
ηt cos θi + ηi cos θt

(4.67)

as well as

r⊥ =
ηi cos θi − ηt cos θt
ηi cos θi + ηt cos θt

, (4.68)

where r‖ is also called the Fresnel reectance for parallel polarized light and r⊥ is the

Fresnel reectance for perpendicular polarized light.

DEFINITION 4.11 (Fresnel Equations for Conductors) Let us assume an incident light

wave coming from direction ωi is reected in direction ωo at a smooth conducting

surface with refractive index η. Let furthermore κ be the absorption coe�cient of the

conductor, thus the amount of incident light that is absorbed, that is, which is not

reected in direction ωo. Then, the Fresnel equations for conductors are given by:

r‖ =

(
η2 + κ2

)
cos θ2i − 2η cos θi + 1

(η2 + κ2) cos θ2i + 2η cos θi + 1
(4.69)

as well as

r⊥ =

(
η2 + κ2

)
− 2η cos θi + cos θ2i

(η2 + κ2) + 2η cos θi + cos θ2i
(4.70)

where r‖ is also called the Fresnel reectance for parallel polarized light and r⊥ is also

called the Fresnel reectance for perpendicular polarized light.

In simple ray tracers, the Fresnel reectance is often controlled by a so-called reec-

tivity parameter, commonly a constant value valid over the entire surface. But as we can

see from the Formulas (4.67) - (4.70), the Fresnel equations are at least directionally de-

pendent on the incident direction. Under the assumption that light is unpolarized, we can

de�ne a quantity, called Fresnel reectance, Fr, by the arithmetic average of the parallel

and perpendicular Fresnel reectance, namely by:



SECTION 4.2. BIDIRECTIONAL DISTRIBUTION FUNCTIONS 309

TABLE 4.1: INDICES OF REFRACTION FOR A VARIETY OF MEDIA. The refractive index,

η, is defined as η
def
= c

cm
, where c is the speed of light in a vacuum and cm is the speed of

light in the medium. Table data are copied from [158, Pharr & Humphreys 2004].

Medium Index of Refraction

Vacuum 1.0

Air at sea level 1.00029

Ice 1.31

Water 1.333

Fused quartz 1.46

Glass 1.5 - 1.6

Sapphire 1.77

Diamond 2.42

TABLE 4.2: REPRESENTATIVE MEASURED VALUES OF η AND κ FOR A FEW CONDUC-
TORS. Table data are copied from [158, Pharr & Humphreys 2004].

Object η κ

Gold 0.370 2.820

Silver 0.177 3.638

Copper 0.167 2.63

Steel 2.485 3.433

DEFINITION 4.12 (The Fresnel Reectance, Fr) Let r‖ and r⊥ denote the parallel, respec-

tively, the perpendicular Fresnel reectance introduced in the De�nitions 4.10 and

4.11, then the Fresnel reectance, Fr, is de�ned as:

Fr : S
2 −→ R≥0 (4.71)

ωi 7−→ Fr(ωi)
def
=
r2⊥ + r2‖

2
. (4.72)

Now, since dielectrica also transmit light and the Fresnel e�ect does not include

absorption, based on the principle of conservation of energy, we can also introduce the Conservation of Energy (332)

so-called Fresnel transmittance for dielectrica by:

DEFINITION 4.13 (The Fresnel Transmittance, Ft) Since dielectrica also transmit light,

due to conservation of energy, we can de�ne the so-called Fresnel transmittance, Ft,

for dielectric by:

Ft : S
2 −→ R≥0 (4.73)
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FIGURE 4.19: SCHLICK’S APPROXIMATION OF FRESNEL FUNCTIONS Fr AND Ft. The
Fresnel functions Fr and Ft with corresponding approximations according to Schlick. The
graphs of the functions show the transition from a vacuum (η1 = 1) to glass (η2 = 1.5) and
respectively diamond (η2 = 2.42).

ωi 7−→ Ft(ωi)
def
= 1− Fr(ωi). (4.74)

REMARK 4.6 (Schlick's Approximation for the Fresnel Equations of Dielectrica) Used in a

rendering algorithm, the computation of Fr and Ft requires, due to the evaluations of

the cosines, enormous costs in computation time. Therefore, in [178, Schlick 1993]

an approximation for Relation (4.72) is suggested as follows:

Fr(θi)
def
= Fr(0) + (1− Fr(0))(1− cos θi)

5. (4.75)

Since the approximation error in Schlick's formula is less than the restriction

to consider unpolarized instead of polarized light, see [141, Olano & al. 2002], the

usage of Formula (4.75) in practice is nearly as good as the real Fresnel equations.

REMARK 4.7 As we know from the phenomenon of ideal reection, also ideal specular

refraction occurs at interfaces, that are perfectly smooth, such as water surfaces, see

Figure 4.20. Even at ideal refractive surface, not all of the incident light is refracted,

but some of the light will be reected in the mirrored directions. So, ideal specular

refraction is, as the name already expresses, not a real refraction behavior of surfaces

that does occurs in nature.

TOTAL INTERNAL REFLECTION. Let us consider once more Formula (4.65) of the refracted

ray RN(ωi) from De�niton 4.9. If the value under the square root is negative, which can
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FIGURE 4.20: SPECULAR REFRACTION AND TOTAL INTERNAL REFLECTION. The
original scene from Turner Whitted for visualizing refraction using ray tracing. Image courtesy
of Paul Solt. The Green turtle, Chelonia mydas and his total internal reflection on the right
hand side is a copy from Wikimedia Commons.

only occurs if ηi > ηt, then the incoming ray is not refracted, it is totally reected into the

incident medium and there can be no transited energy. This e�ect is called total internal

reection.

Total internal reection occurs, when light, coming from a medium with a larger

index of refraction to a material with lower index, arrives at the interface between the two

media at an angle greater than the so-called critical angle, θc, given by:

θc
def
= arcsin

(
ηt

ηi

)
. (4.76)

Under these conditions, the ray is totally reected at the boundary back into the

medium from where it comes. No light can pass through the boundary. A typical situation

where this phenomenon can be observed is, when light passes from glass or water to air,

see Figure 4.20, or when a beam of light passes through a prism.

4.2.2 THE MATHEMATICAL MODEL OF THE BIDIRECTIONAL
REFLECTANCE-DISTRIBUTION FUNCTION

In Section 4.2.1.1 we have seen that, depending on the physical properties of a material or

a medium, light interacts at object surfaces or at interfaces between participating media in

di�erent ways. This complicated light-matter dynamic depends on the physical properties

of light as well as the physical composition and characteristic of the matter.

Considering objects of translucent materials such as skin, marble, snow, or wax then

a light beam striking the surface of such an object enters the material and scatters around

before leaving the surface at another position, see the lower left image in Figure 4.21.

This behavior of a light beam is di�erent from that striking a polished or a rough surface
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FIGURE 4.21: THE GEOMETRY OF INTERACTION OF LIGHT WITH MATERIALS. Light
can be reflected at a surface point and it can be refracted at the same point where it enters
into a material. Furthermore, it can also enter at a point into a material and leave the
material at another point. Last but not least, light can enter into a surface but due to
absorption within the material no light leaves the surface.

of metal, as shown in Section 4.2.1.1. Here, the incident light wave does not penetrate

appreciably into the material but the largest part of incident electromagnetic energy is

reected specularly or di�usely at the same point. Yet another behavior can be observed,

if a light beam interacts at the boundary between two media of di�erent refraction indices,

as for example between air and glass, or glass and water. The incident light wave will thenSection 4.2.1.2

be refracted at the boundary|depending on the refraction indices of the two involvedSection 4.2.1.3

media|and penetrates into the other medium. Apart from these phenomena, it is also

possible, that a light beam on the whole is neither reected nor refracted at an object

surface. This can be observed if a light wave penetrates deep in a material and the largest

part of its energy is absorbed, see Figure 4.21 and Figure 4.22.

Now, to involve all these scattering phenomena of light at the boundaries ∂V of a∂V (41)

participating medium into our stationary light transport equation, we will try to describedSLTEV (4.38)

these phenomena mathematically by so-called bidirectional reectance-distribution func-

tions.
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FIGURE 4.22: INTERACTION OF LIGHT WITH MATERIALS. Simulation of subsurface
scattering in snow. The Killeroo model rendered via pbrt with ideal specular reflection, ideal
diffuse reflection, and ideal specular transmission. Image Courtesy of Matt Pharr and Greg
Humphreys.

As we will see, a bidirectional reectance-distribution function can mathematically

be interpreted as the kernel of a linear integral operator between two function spaces. In Linear Integral Operator (130)

some cases, it is not a function in our usual sense, but rather a distribution, also called a Distribution (117)

generalized function, that makes sense only inside integrals. That is, bidirectional distri-

bution functions will take the job of the theoretically introduced scattering kernels κb in

the light transport equations, such as for example the SLTE from De�nition 4.3.

Based on Nicodemus' de�nition of the bidirectional reectance-distribution func-

tion, we will derive in this section the bidirectional scattering-surface reectance-distri-

bution function. Also referred to as the BSSRDF, it is the fundamental quantity that Section 4.2.2.1

usually characterizes the scattering properties of a material. In its generalized form, it is

an element of a 12-dimensional function space, and can be considered as the most general Function Space (28)

description of light scattering at object surfaces. Due to its complexity|one has to be

evaluated for 12 variables|the generalized BSSRDF is not really applicable in rendering

algorithms. Hence, we present the BSSRDF in a form in which it is also used in many
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rendering algorithms for simulating subsurface scattering, that is, our BSSRDF does not

account for light phenomena such as phosphorescence, uorescence, and the wavelength

of incoming light.

Now, in scenes without subsurface scattering also the simpli�ed 8-dimensional BSS-

RDF is too costly to evaluate, hence, we additionally abstract from further variables

occurring in a BSSRDF. This leads us to the class of the so-called BRDFs and BTDFs,Section 4.2.2.2

thus the class of bidirectional-reectance and bidirectional-transmission distribution

functions. A BRDF and a BTDF can then be taken as the fundamental quantities for the

optical characterization of an object. They are the descriptions of the interaction of light

at object surfaces as well as at boundaries between media that will be used in any render-

ing algorithm. We then discuss the physical properties of BRDF and BTDF and introduceSection 4.2.2.3

the concepts of reectance and transmittance. Finally, we present the most important

BRDF models used in rendering algorithms and show how BRDFs can be measured andSection 4.2.2.4

represented.Section 4.2.2.5

Now, due to [135, Nicodemus & al. 1977], a bidirectional reectance-distribution func-

tion is a derivative, a distribution function, relating the irradiance to its contributionIrradiance (257)

to the reected radiance in another direction.Radiance (250)

Such a function can mathematically be described as follows:

fr(s,ωi → ωo)
def
=
dLo(s,ωo)

dEi(s,ωi)
=

dLo(s,ωo)

Li(s,ωi)dσ⊥s (ωi)
, (4.77)

where s denotes a point on an object surface from ∂V and ωi and ωo correspond to∂V (41)

incident and exitant directions. Note, the illumination comes from the di�erential solid

angle dσ⊥s (ωi), while we are measuring the reected radiance only along a single directiondσ⊥ (89)

ωo.

The questions that now arise are: Why is a BRDF de�ned in this way? Would it

not be better to de�ne a BRDF as the ratio of the reected radiance to incident radiance,

or perhaps as the ratio of the reected irradiance to incident irradiance, as illustrated inIrradiance (257)

Figure 4.23. To answer these questions it is important to know how the physical quantity

of light can be measured.

4.2.2.1 SUBSURFACE SCATTERING AND THE BSSRDF

When light strikes a surface of any non-metallic material some of it penetrates into the

material, and is there absorbed, or scattered hundreds of times around before it leaves

the surface at a di�erent location. Unlike absorption, which changes the light's amount

but not its direction of propagation, scattering changes|due to any discontinuities within

the material, such as air bubbles, other particles, or density variations|the direction

but not the amount of light. This e�ect of light is called subsurface scattering. Typical
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FIGURE 4.23: TWO DIFFERENT MODELS TO DEFINE THE BIDIRECTIONAL
REFLECTANCE-DISTRIBUTION FUNCTION. Due to [135, Nicodemus & al. 1977], a bidi-
rectional reflectance-distribution function is a derivative, a distribution function, relating the
irradiance from direction ωi at surface point s to its contribution to the reflected radiance
in direction ωo. Why is a BRDF defined in this way? Would it not be better to define a
BRDF as the ratio of the reflected radiance to incident radiance, or perhaps as the ratio of
the reflected irradiance to incident irradiance?

materials, where subsurface scattering occurs are translucent materials. Here some incident

light reects o� the �rst surface as gloss, while some enters the material and undergoes

multiple scattering within the material resulting in a di�use pattern of reectance. In a

second interaction, light is scattered and transmitted through the object, emerging on a

side in a di�use pattern. As a result, color can be seen in both di�use reectance and

transmittance, depending on how the object is viewed. Thus, translucent materials often

have soft appearance where light bleeds through thin slabs of the material, see Figure 4.24.

Let us now consider Figure 4.25, it illustrates the geometry underlying the process of

subsurface scattering. From our de�nition of ux it is evident that the incident ux from Flux (249)

direction ωi at a small in�nitesimal surface patch dµ2(si) is given by:

d2Φi(si,ωi)
(3.2)
= Li(si,ωi)dσ

⊥
si
(ωi)dµ

2(si), (4.78)

where dσ⊥so corresponds to the projected solid angle as seen from point si. Projected Solid Angle (89)

Depending on the surface properties, light particles then enter the surface, collide

with the atoms in the material, and are subject to a variety of absorption and scatter-

ing processes in the material. Since absorbed photons leave the system, we are mostly
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FIGURE 4.24: SIMULATION OF SUBSURFACE SCATTERING. These images show how a
face model, milk, and a translucent marble bust can be rendered using the BSSRDF model.
The box scene with a translucent white box, and the Utah teapot consisting of translucent
material. Image courtesy of Henrik Wann Jensen, UCSD.

interested in the scattering processes, that is, we must observe the di�erential scattered

radiance dLo in direction (so,ωo). The exitant radiance Lo(so,ωo) leaving point so in

direction ωo can now be viewed as a composition of contributions dLo(si → so,ωi → ωo)Radiance (250)

from the incident ux from directions ωi within the solid angle dσ⊥si(ωi). A sensor thatdσ⊥ (89)

registers the surface from direction ωo would measure the ux

d3Φo(so,ωo)
(3.2)
= dLo(si → so,ωi → ωo)dσ

⊥
so(ωo)dµ

2(so) (4.79)

from direction ωi, where dσso corresponds to the aperture of the measurement device.

Now, we are interested in de�ning a function that describes the reecting properties

of a surface. Constructing, in accordance with the de�nition of the reection degree from

optics, a function via the ratio of the outgoing ux to the incident ux, i.e.:

d3Φo(s0,ωo)

d2Φi(si,ωi)
=
dLo(si → so,ωi → ωo)dσ

⊥
so(ωo)dµ

2(so)

Li(si,ωi)dσ⊥si(ωi)dµ
2(si)

, (4.80)



SECTION 4.2. BIDIRECTIONAL DISTRIBUTION FUNCTIONS 317

FIGURE 4.25: THE BSSRDF. The bidirectional scattering-surface reflectance-distribution
function serves as a model for subsurface scattering. It is a distribution function, that relates
the irradiance from direction ωi at a surface point si to its contribution to the reflected
radiance in direction ωo at another surface point so.

results in the problem that this term contains three di�erential quantities in the numerator,

but only two in the denominator.

Let us consider Equation (4.80) a little bit more closely. Since the incident radiance

Li and the incident projected solid angle dσ⊥si are directly proportional to dLo|doubling dσ⊥ (89)

the incident radiance respectively the incident solid angle leads to doubling the reected

radiance|the term (4.80) is invariant with respect to these two quantities. It should also

be clear that Relation(4.80) is not invariant with respect to the outgoing solid angle dσso -

|obviously, it not proportional to dσso|since the exitant solid angle only depends on

the measuring device but does not depends on the incident radiance falling on the surface

patch.

From this discussion, we now conclude, that it is not a good idea to de�ne a bidi-

rectional reectance-distribution function as proposed in Relation (4.80). As the exitant

radiance is proportional to the incident irradiance we de�ne, in accordance with [135,

Nicodemus & al. 1977], a BSSRDF as follows:

DEFINITION 4.14 (Bidirectional Scattering-Surface reectance-distribution Function, BSS-

RDF) Let ∂V be the set of all 2-dimensional surfaces of scene objects in R3, si, so be ∂V (41)

points on the same surface A ∈ ∂V, and H2i and H2o denotes the incident and exi-
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tant hemispheres, which refer to the same set of directions. We call the measurableMeasurable Function (98)

function S de�ned by:

S : ∂V × ∂V ×H2i ×H2o → [0,∞] (4.81)

with

S(si → so,ωi → ωo)
def
=

d2Lo(si → so,ωi → ωo)

d2Φi(si,ωi)
(4.82)

=
d2Lo(si → so,ωi → ωo)

dEi(si,ωi)dµ2(si)
(4.83)

=
d2Lo(si → so,ωi → ωo)

Li(si,ωi)dσ⊥si(ωi)dµ
2(si)

(4.84)

the bidirectional scattering-surface reectance-distribution function, also briey denoted

as the BSSRDF.

The BSSRDF is the quantity that can be used to characterize all non-metallic ma-

terials. It has units of
[

1
sr·m2

]
and describes the ratio of exitant radiance Lo at point so

in direction ωo with respect to the entire incident ux Φi coming from direction ωi at

point si. A BSSRDF can also be interpreted as a probability distribution function that forCDF (171)

a given incoming direction at an entering point returns the probability of light outgoing

at some other point in any outgoing direction. As each of the directions ωi and ωo can

be parametrized by the azimuth angle φ and the zenith angle θ, and si as well as so areω = (θ,φ) (834)

points on any surface of ∂V, the BSSRDF is an element of an 8-dimensional function space.Linear Function Space (28)

Usually, a BSSRDF is also dependent on the wavelength of the incoming light, which is in

computer graphics approximated often by de�ning and evaluating the BSSRDF separately

per color channel. Thus, taking into account also the light phenomena of uorescence and

phosphorescence, then a BSSRDF has 12 degrees of freedom, [69, Goesele 2004], [124,

Lensch 2005]. Such a complex function is costly to evaluate even if it does not take the

wavelength of the light and the time into consideration.

REMARK 4.8 It should be clear that measuring a 12-dimensional BSSRDF is not really

possible, hence in practice rendering algorithms make only use of BSSRDFs of the

type de�ned above, i.e. of no more than 8 degrees of freedom. Depending on the

scattering event, which we observe, we can make further simpli�cations with respect

to the representation of the BSSRDF, for this, see Section 4.2.2.2.

Given the description of the incident illumination, via the concept of the BSSRDF,

it is now possible to derive an equation that predict the appearance of a surface. Refor-

mulating Relation (4.82) as follows:

d2Lo(si → so,ωi → ωo) = S(si → so,ωi → ωo)Li(s,ωi)dσ
⊥
si
(ωi)dµ

2(si) (4.85)
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and subsequently integrating patch A(si) over the upper hemispheres about si, we arrive

at the subsurface scattering equation.

DEFINITION 4.15 (Subsurface-Scattering Equation) The subsurface-scattering equation in-

dicates the fraction of incident radiance at all point si ∈ ∂V of a surface patch from

all directions that is scattered only in direction ωo at point so, it is de�ned as

Lsseq(so,ωo)
def
=

∫
A(si)

∫
H2
i
(si)

S(si → so,ωi → ωo)Li(si,ωi)dσ
⊥
si
(ωi)dµ

2(si). (4.86)

4.2.2.2 SCATTERING AT OBJECT SURFACES, THE BRDF AND THE BTDF

For most applications in computer graphics the usage of a BSSDRF makes| due to the

computational e�ort for evaluating a BSSRDF|no sense for describing the reection be-

havior of a surface. So, we are interested in �nding an other function that describes the

interaction of light at surfaces similar to the BSSRDF, but that is easier to evaluate.

Let us assume, we have to render a material such as polished hard metal, glass, or

clear water. Compared with materials such as skin, wood, stone, or snow, as considered

in the foregoing section, these materials posses only inhomogeneities much smaller than

the smallest visible wavelength of light. That is, they can be considered to be optically

homogeneous and hence, the scale of their scattering is extremely small, or they will not

scatter light traveling through it [1, Akinene-M�oller & al.].

Thus, the scattered light is re-emitted from the surface very close to its original entry

point, which means, that the e�ect of subsurface scattering can be neglected. Depending

on the material properties of the surface, the interaction of light can be reduced to a

scattering process at the surface. Under the assumption of a homogeneous material the

BSSRDF is then no more dependent on the spatial parameters si and so but only on the

distance ‖so − si‖2 between these two points. This results in a function parameterized

in terms of two directions and a displacement on the surface, thus 6 degrees of freedom.

Such a kind of a bidirectional distribution function is called a bidirectional subsurface-

scattering distribution function, also denoted as a BSSDF. With respect to the de�nition

of a bidirectional reectance-distribution function, the discussion from above now suggest

to abstract in De�nition 4.14 from the integration over the surface patch. This then leads

to the de�nition of the bidirectional reectance-distribution function.

DEFINITION 4.16 (Bidirectional reectance-distribution Function, BRDF) Let us assume

∂V be a set of 2-dimensional surfaces in R3, s be a point on any surface A ∈ ∂V, ∂V (41)

H2i and H2o be the incident and exitant hemisphere, which refer to the same set of

directions, see Figure 4.26. We call the measurable function, fr, de�ned by: Measurable Function (98)

fr : ∂V ×H2i ×H2o → [0,∞] (4.87)
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FIGURE 4.26: THE BIDIRECTIONAL REFLECTANCE-DISTRIBUTION FUNCTION. The
BRDF is a four-dimensional function, defined on ∂V × H2i × H2o with values in [0,∞]. It
describes how much incident light, coming from direction ωi, is reflected at a surface point
in the outgoing direction ωo.

with

fr(s,ωi → ωo)
def
=
dLo(s,ωi → ωo)

dE(s,ωi)
=
dLo(s,ωi → ωo)

Li(s,ωi)dσ⊥s (ωi)
, (4.88)

the bidirectional reectance-distribution function, also briey denoted as the BRDF.

Let us assume that light striking a point on a surface is reected at the same location

then every BRDF is an approximation of a BSSRDF. Obviously, the BRDF is de�ned as

the ratio of the reected di�erential radiance Lo at point s in direction ωo with respectRadiance (250)

to the di�erential irradiance Ei coming from direction ωi at s. The BRDF can thus beIrradiance (257)

taken as the fundamental quantity for the optical characterization of surfaces. Due to

its de�nition it has units of
[
1
sr

]
. Like the BSSRDF, a BRDF can also be interpreted

as a probability density function that for a given incoming direction at a point returnsPDF (176)

the probability of light emanating in any outgoing direction. Dependent on a spatial

variable and two directions, the BRDF is an element of a 6-dimensional function space. InLinear Function Space (28)

reality, the BRDF is wavelength dependent, which is in computer graphics approximated

usually by de�ning and evaluating the BRDF separately per color channel. Discussing

the reectance behavior at homogeneous surfaces, then also the spatial variable can be

omitted since the reectance properties of the material do not vary with spatial position.

The associated BRDF is then only 4-dimensional. A further simpli�cation of the BRDF
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can be achieved by assuming that the underlying material is isotropic, such as steel and Isotropic BRDF (335)

alluminium. This leads to BRDFs that are only dependent on the zenith angles θi and θo
and the di�erence of the azimuth angle φo − φi, thus 3-dimensional, see Figure 4.27.

Similar to the construction of the subsurface-scattering equation from Relation (4.86),

we can now construct a reectance equation, based on the de�nition of the BRDF that

yields information on the reectance appearance of a surface. Rephrasing Relation (4.88)

with respect to the outgoing radiance and integrating over the positive hemisphere around

observation point s then results in the so-called reectance equation:

DEFINITION 4.17 (Reectance Equation) The reectance equation, often also called reec-

tion equation, indicates the quantity of incident radiance at point s from all directions

that is reected only in direction ωo, it is de�ned as:

Lo(s,ωo)
def
=

∫
H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (4.89)

REMARK 4.9 The reectance equation plays a central role in our rendering algorithms

for solving the stationary light transport equation in free space. It is this quantity

that any Monte Carlo rendering algorithms has to evaluate at each hit point s on Chapter 9

purely reective surfaces, thus surfaces, that are not light sources.

From our discussions in Section 4.2.1.2 we know that optical discontinuities in a mate-

rial are responsible for scattering of light at the interface between two di�erent substances.

Let us now consider the interaction of light at a at, perfectly smooth, and polished sur-

face, whose optical irregularities are much smaller than the smallest wavelength of light.

At such a surface, which is of course not possible in reality, these irregularities have no

e�ect on the light ow. Due to the surface properties, the photons contained in a light

beam from direction ωi incident at point s do not interact with the material, that is, they

can not enter the material, but bounce at the surface according to the law of reection in Law of Reflection (300)

just one direction ωo. Since ideal specular reection occurs without loss of energy, then

the reected radiance is given by the incident radiance, i.e. it must hold:

Lo(s,ωo) = Li(s,ωi), (4.90)

with θo = θi and φo = φi ± π. Under these conditions, now the following theorem is

valid:

THEOREM 4.1 (The Ideal Specular BRDF) Given be a surface A ∈ ∂V which satis�es the ∂V (41)

condition from Equation (4.90) for all s ∈ A. Then, the reection behavior of A can
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Bidirectional Scattering Surface Reflectance 
            Distribution Function-8D

Isotropic Bidirectional Reflectance 
     Distribution Function-3D

General Bidirectional Scattering Surface Reflectance 
                  Distribution Function-12D

ignore subsurface scattering

Spatially-varying Bidirectional Reflectance 
          Distribution Function-6D

ignore depencence on position

ignore time-dependence
ignore fluoroscence
ignore wavelength-dependence

Bidirectional Reflectance 
 Distribution Function-4D

assume isotropy

FIGURE 4.27: TAXONOMY OF APPEARANCE REPRESENTATIONS. Since measuring a
12-dimensional function is not really possible in a rendering algorithm, typically assumptions
about the form of the bidirectional scattering surface reflectance-distribution function are
required. Ignoring fluorescence and time, as well as wavelength-dependence leads to a 8D
function, but also this function is not really suitable for rendering. Neglecting subsurface
scattering, that is, using si = so, results in a BRDF of 6 dimensions. If the reflectance
behavior of a surface is additionally independent on the position, then the associated BRDF
is a four-dimensional function. Last but not least, the scattering at isotropic surfaces can
be simulated via a 3D bidirectional scattering surface reflectance-distribution function.
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FIGURE 4.28: VISUALIZATION OF AN ARTIFICIALLY GENERATED BRDF.

be described by a so-called ideal specular BRDF, f
∨

r , which is given by:

f
∨

r (s,ωi → ωo) (4.91)

= δσ⊥(ωi −ωo) (4.92)

=
δσ(ωi −ωo)

| cos θi|
(4.93)

=
δ(cos θi − cos θo)

| cos θi|
δ(φi − (φo ± π)), (4.94)

where ωo
def
= MN(ωi) corresponds to the mirrored direction of ωi.

PROOF 4.1 Due tue De�nition 4.17, the ideal specular BRDF, which we are seeking,

must satisfy the reectance equation from Relation (4.89), i.e.:

Lo(s,ωo) =

∫
H2
i
(s)

f
∨

r (s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (4.95)

Since we are only interested in ideal specular reection, the integral has to be

evaluated only in direction to the reected ray r(s,ωo), thus ωo = (θo, φo) with
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θo = θi and φo = φi±π. This means that the integral has a singularity at ωo. From
measure theory it is known that the measure of a �nite or countable in�nite set is

zero, that is, it is not possible to �nd a function which satis�es the conditions (4.89)

and (4.90).

Fortunately, both conditions can be satis�ed by the Dirac δ-distribution. FromDirac δ-Distribution (118)

Example 2.49 we know that the exitant radiance Lo can be written in terms of the

incident radiance Li with the help of the Dirac δ-distribution, so we get:

Lo(s,ωo) =

∫
H2
i
(s)

δσ⊥(ωi −ωo)Li(s,ωi)dσ
⊥
s (ωi) (4.96)

=

∫
H2
i
(s)

δσ(ωi −ωo)

| cos θi|
Li(s,ωi) | cos θi|dσs(ωi), (4.97)

which with Relation (2.328) can be written as:

Lo(s,ωo) (4.98)

=

∫
H2
i
(s)

δ(cos θi − cos θo)

| cos θi|
δ(φi − (φo ± π))︸ ︷︷ ︸

f
∨
r (s,ωi→ωo)def=

Li(s,ωi))dσ
⊥
s (ωi)

(2.192)
=

∫
H2
i
(s)

f
∨

r (s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (4.99)

REMARK 4.10 (The Image Range of a BRDF) De�ned as the fraction of two di�eren-

tial quantities, where both, the numerator and the denominator are non-negative

quantities, the BRDF can only assume non-negative values. Furthermore, the repre-

sentation of an ideal specular BRDF as a Dirac δ-distribution implies that a BRDFDirac δ-Distribution (118)

is a mapping, fr:

fr : ∂V ×H2i ×H2o → [0,∞] (4.100)

that is, fr can also assume the value in�nity.

In real world there are no ideal specular surfaces that reect light lossless in only a

single direction. Reection at real surfaces entails always also loss of energy. From Section

4.2.1.2 it is known that the fraction of light, which is reected in the mirrored direction

ωo, is speci�ed by the Fresnel reectance for unpolarized light from Relation (4.72), that

is:

Lo(s,ωo) = Fr(ωi)Li(s,ωi), (4.101)

with θo = θi and φo = φi ± π. A BRDF, describing the specular reectance behavior at

a at and smooth surface, is then given by the following lemma:
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LEMMA 4.1 (The Specular BRDF) Given be a surface A ∈ ∂V, that satis�es for all∂V (41)

s ∈ A the condition from Equation (4.101). Then, the reection behavior of A can

be described by a so-called specular BRDF, f
∨

r , which is given by:

f
∨

r (s,ωi → ωo) = Fr(ωi) δσ⊥(ωi −ωo) (4.102)

= Fr(ωi)
δσ(ωi −ωo)

| cos θi|
(4.103)

= Fr(ωi)
δ(cos θi − cos θo)

| cos θi|
δ(φi − (φo ± π)) (4.104)

with ωo
def
= MN(ωi).

PROOF 4.1 With the same arguments as in the proof to the previous theorem, the

reected radiance Lo(s,ωo) can now be written as:

Lo(s,ωo)

= Fr(ωi)Li(s, (θi, φo ± π)) (4.105)

(2.328)
=

∫
H2
i
(s)

Fr(ωi)
δ(cos θi − cos θo)

| cos θi|
δ(φi − (φo ± π))︸ ︷︷ ︸

f∨r (s,ωi→ωo)def=
Li(s,ωi) | cos θi|dσs(ωi)

(2.192)
=

∫
H2
i
(s)

f
∨

r (s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (4.106)

Now, the most surfaces in real world are not perfectly smooths since they posses

optical irregularities, that are much greater than the smallest wavelength of light. The

photons of a light ray falling at such a surface now interact with these irregularities in

such a way that they are also reected according to the reection law, but now due to the

irregularities and the discontinuities in the material in all directions of the hemisphere.

Although we can only approximate this e�ect under very specially prepared experimental

conditions, this idealization plays a fundamental role in computer graphics, especially in

algorithms based on the �nite element approach. This type of reection is called ideal Chapter 10

di�use reection and the surface underlying them is called a Lambertian reector. Since Lambertian Reflector (349)

reected radiance in any direction is equal, that is,

Lo(s,ωo) = Lo(s,ω
′
o) (4.107)

for all ωo,ω
′
o ∈ H2i (s), a BRDF describing the ideal di�use reectance behavior at such

a perfectly rough surface is then given by the following theorem:

THEOREM 4.2 (The Ideal Di�use BRDF) Given be a surface M ∈ ∂V, that satis�es for ∂V (41)

all s ∈ A the condition from Equation (4.107). Then, the reection behavior of A

can be described by a so-called di�use BRDF, for , which is constant, thus:

for (s,ωi → ωo) = C, (4.108)
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where C is a positive real number that is smaller than in�nity.

PROOF 4.2 From the reection equation we conclude that for a BRDF for , character-Reflection Equation (321)

izing di�use material properties, the following must hold:

0 = Lo(s,ωo) − Lo(s,ω
′
o) (4.109)

=

∫
H2
i
(s)

(for (s,ωi → ωo) − f
o
r (s,ωi → ω′o))︸ ︷︷ ︸

=0

Li(s,ωi)dσ
⊥
s (ωi), (4.110)

as Li(s,ωi) 6= 0. This then implies

for (s,ωi → ωo) = f
o
r (s,ωi → ω′o). (4.111)

This means that the fraction of incident radiance,, reected in directions ωo
and ω′o, is the same for ωi and all ωo,ω

′
o ∈ H2o(s). Therefore we can conclude that

the assigned BRDF is constant and can be written as

for
(4.88)
=

dLo(s,ωi → ωo)

dEi(s,ωi)
= C, (4.112)

and that the reected radiance is proportional to the incident irradiance, since it

holds:

Lo(s,ωo) = for

∫
H2
i
(s)

Li(s,ωi)dσ
⊥
s (ωi) (4.113)

(3.46)
= for E(s). (4.114)

REMARK 4.11 (Isotropic BRDF) Due to [135, Nicodemus & al. 1977] a BRDF, such

as the ideal di�use BRDF, is called isotropic, as the reected radiance is a constantIsotropy (335)

with the same value for all outgoing directions ωo regardless of how it is irradiated.

REMARK 4.12 In the following section, we will pick up the above theorem once more

and derive an exact formula for the di�use BRDF based on the conservation ofConservation Of Energy (332)

energy.

After formulating the reection behavior at surfaces with the help of BRDFs, now it

still remains to formulate the refraction at the interface between two media by a similar

concept: the bidirectional transmission-distribution function.

DEFINITION 4.18 (Bidirectional Transmission-Distribution Function, BTDF) Let us as-

sume ∂V be a set of 2-dimensional surfaces in R3, s be a point on any surface∂V (41)

A ∈ ∂V, H2i and H2t be the incident and transmitted hemisphere, with H2t = −H2i .
We call the measurable function, ft, de�ned by:Measurable Function (98)

ft : ∂V ×H2i (s)×H2t (s)→ [0,∞] (4.115)
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with

ft(s,ωi → ωt)
def
=
dLt(s,ωi → ωt)

dE(s,ωi)
=
dLt(s,ωi → ωt)

Li(s,ωi)dσ⊥s (ωi)
, (4.116)

the bidirectional transmission-distribution function, also briey denoted as the BTDF,

see Figure 4.29.

FIGURE 4.29: BIDIRECTIONAL TRANSMISSION-DISTRIBUTION FUNCTION. The BTDF
is a four-dimensional function defined on ∂V ×H2i ×H2t with values in [0,∞]. It describes
how much incident light, coming from direction ωi, is refracted at a surface point in the
refracted direction ωt.

Let us study the transition of a light ray from a medium with a smaller refractive index

into a medium with a higher refractive index, e.g. from air to glass. Due to Snell's law from

De�nition 4.9 the ray is refracted at the interface between the two media in direction to

the normal. This means that transmitted light coming from the whole incident hemisphere

H2i (s) about any point s no longer �lls the entire hemisphere H2t (s) on the opposite side

of the interface, see Figure 4.30.
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FIGURE 4.30: GEOMETRY FOR DEFINING THE BTDF. The geometry for describing re-
fraction at a surface point. Obviously, the wave incident at point s is refracted in direction

ωt, where it holds: ωt ∈
[
sin−1

(
ηi
ηt

)
, π
]
× [0, 2π].

THEOREM 4.3 (The Ideal Transmitted BTDF) Let A ∈ ∂V be the interface between two∂V (41)

media with refraction indices ηi and ηt. Li(s,ωi) denotes as usual the incidentRefraction Index (305)

radiance at point s coming from direction ωi and Lt(s,ωt) is the radiance refracted

at s in the transmitted direction ωt. The transmission behavior of A can then be

described by a so-called ideal transmitted BTDF, ft, which is given by:

ft(s,ωi → ωt) =
η2t
η2i
δσ⊥(ωi −ωt) (4.117)

=
η2t
η2i

δσ(ωi −ωt)

|cos θi|
(4.118)

=
η2t
η2i

δ(cos θi − cos θt)

|cos θi|
δ(φi − (φt ± π)), (4.119)

with ωt
def
= RN(ωi).

PROOF 4.3 Let us discuss the case where light arrives from a medium with smaller re-

fractive index ηi and enters a medium with a greater refractive index ηt. Discussing
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the phenomenon of ideal loss less refraction as a consequence of the law of conser-

vation of energy and the law of refraction, the light energy coming from the entire

hemisphere around a small surface patch dµ(A) is compressed into a solid angle dσs
over the patch, that occupied only a subset of the exitant hemisphere, see Figure 4.30.

This means that the transmitted radiance increases as light crosses the interface.

Considering the angular parameterization (θ,φ) of ω and using the de�nition (θ,φ, 1) (832)

of the projected solid angle from Equation (2.192) then it holds:

d2Φt(s,ωt)

d2Φi(s,ωi)
=

Lt(s,ωt) | cos θt| sin θt dθt dφt
Li(s,ωi) | cos θi| sin θi dθi dφi

(4.120)

(4.66)
=

Lt(s,ωt)ηi
Li(s,ωi)ηt

| cos θt| dθt dφt
| cos θi|dθi dφi

. (4.121)

Due to the conservation of energy it holds Conservation of Energy (332)

Lt(s,ωt)ηi
Li(s,ωi)ηt

| cos θt| dθt dφt
| cos θi|dθi dφi

= 1 (4.122)

which, slightly reformulated, leads to:

Lt(s,ωt) = Li(s,ωi)
ηt

ηi

| cos θi| dθi dφi
| cos θt|dθt dφt

. (4.123)

Due to [136, Nicodemus 1963], by di�erentiating Snell's law with respect to the

azimuth angle θ, we obtain from

ηi sin θi = ηt sin θt (4.124)

the relation

ηi cos θidθi = ηt cos θtdθt. (4.125)

According to the law of refraction obviously it holds φt = φi+π. Di�erentiating

this relation with respect to φ yields:

dφi = dφt. (4.126)

Using these identities in Equation (4.123), then we get:

Lt(s,ωt) =
η2t
η2i
Li(s,ωi), (4.127)

that is, with respect to Equation (4.123) the transmitted radiance increases by a

factor of
η2t
η2
i

.

In analogy to our explanations to the Dirac δ-distribution, the value of Lt at Dirac δ-Distribution (118)
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point s in direction ωt can be evaluated as:

Lt(s,ωt) (4.128)

(4.127)
=

∫
H2
i
(s)

δσ⊥(ωi −ωt)
η2t
η2i
Li(s,ωi)dσ

⊥
s (ωi),

=

∫
H2
i
(s)

δσ(ωi −ωt)

| cos θi|

η2t
η2i
Li(s,ωi) | cos θi|dσs(ωi),

=

∫
H2
i
(s)

η2t
η2i

δ(cos θi − cos θt)

| cos θi|
δ(φi − (φo ± π)) Li(s,ωi) | cos θi|dσs(ωi),

=

∫
H2
i
(s)

η2t
η2i

δ(cos θi − cos θt)

| cos θi|
δ(φi − (φo ± π))︸ ︷︷ ︸

ft(s,ωi→ωt)def=
Li(s,ωi)dσ

⊥
s (ωi),

which implies the following form of the BTDF:

ft(s,ωi → ωt) =
η2t
η2i

δ(cos θi − cos θt)

|cos θi|
δ(φi − (φo ± π)). (4.129)

Similar to the case of ideal specular surfaces, in real world there are no perfectly

smooth surfaces at which light can be refracted lossless in only a single direction. Like

reection, also refraction at real surfaces entails always loss of energy. To denote the

fraction of incident energy, that is transmitted to the outgoing direction, we can use the

Fresnel reectance for unpolarized light from Relation (4.72), that is:

Lt(s,ωt) = (1− Fr(ωi))Li(s,ωi), (4.130)

with θt = arcsin
(
ηi
ηt

sin θi

)
and φo = φi ± π. A BTDF, describing the specular trans-

mittance behavior at a at and smooth surface is then given by the following lemma.

LEMMA 4.2 (The Transmitted BRDF) Let A ∈ ∂V be the interface between two media∂V (41)

with refraction indices ηi and ηt. Li(s,ωi) denotes as usual the incident radiance atRefraction Index (305)

point s coming from direction ωi and Lt(s,ωt) is the radiance refracted at s in the

transmitted direction ωt. The transmission behavior of A can then be described by

a so-called transmitted BTDF, ft, which is given by:

ft(s,ωi → ωt) = (1− Fr(ωi))
η2t
η2i
δσ⊥(ωi −ωt) (4.131)

= (1− Fr(ωi))
η2t
η2i

δσ(ωi −ωt)

|cos θi|
(4.132)

= (1− Fr(ωi))
η2t
η2i

δ(cos θi − cos θt)

|cos θi|
δ(φi − (φt ± π)), (4.133)

with ωt
def
= RN(ωi).
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PROOF 4.2 The proof is identical to Theorem 4.3, we leave it to the interested reader.

4.2.2.3 PHYSICAL PROPERTIES OF BRDF AND BTDF, AND THE CONCEPTS OF

REFLECTANCE AND TRANSMITTANCE

We mention it once again, BRDFs are approximations to the real interaction of light at

surfaces. To be physically valid, so a BRDF has to satisfy some basic physical properties.

Now, from the Maxwell equations, see [27, Born & Wolf 1999] or [80, Hecht 2001], it

is known, that the energy of light is proportional to the square of the amplitude of the

electric �eld. That is, light is a non-negative physical quantity, and thus, also a BRDF BRDF (320)

must be non-negative, see Remark 4.10. Furthermore, a BRDF must also satisfy two other

properties: Helmholtz reciprocity and conservation of energy. Just in the case, that all

these three properties are satis�ed by a BRDF, we call a BRDF physically plausible.

Note, as we shall see further below using the example of a Lambertian BRDF, a physically Lambertian BRDF (349)

plausible BRDF must not be physically possible or physically correct.

While, the non-negativity of a BRDF is obviously|it is guaranteed by its de�nition

as the fraction of two non-negative radiometric quantities, see Remark 4.10|the two other

properties require to be studied a little more closely.

HELMHOLTZ RECIPROCITY. By Helmholtz reciprocity we mean that as a result of the

symmetry of the Maxwell equations, the value of a BRDF remains the same even when

the incoming and outgoing direction of the involved light waves are swapped. That is,

swapping the direction of light does not change the amount of light that is reected.

The principle of Helmholtz reciprocity is illustrated in Figure 4.31. Mathematically, this

property can be expressed as:

fr(s,ωi → ωo) = fr(s,ωo → ωi) (4.134)

for all ωi ∈ H2i (s),ωo ∈ H2o(s). This is also the reason why we can use the notation

fr(s,ωi ↔ ωo)
def
= fr(s,ωi → ωo) = fr(s,ωo → ωi) (4.135)

in our equations.

As we will see further below, the principle of Helmholtz reciprocity is unique to

reection and is not valid for surfaces that transmit light.

REMARK 4.13 In Section 9.3 we will shown, that it is the property of a BRDF satisfying

the principle of Helmholtz reciprocity why so-called bidirectional algorithms can be

used to solve the global illumination problem. Since such algorithms compute the Radiance (250)

radiance distribution in a scene by constructing paths starting at the eye of the

observer and from the light sources at the same time, it is urgent necessary that the

involved BRDFs, in those cases called BSDFs, satisfy the Helmholtz reciprocity. BSDF (371)
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FIGURE 4.31: THE PRINCIPLE OF THE HELMHOLTZ RECIPROCITY. For all pairs of
directions ωi and ωo it holds: fr(s, ωi → ωo) = fr(s, ωo → ωi), i.e. swapping the
direction of light does not change the amount of light that is reflected.

The example of the Phong BRDF will show, that a reciprocity failure is less Phong BRDF (250)

serious than a failure in the property of conservation of energy. So, ray tracers,

based on the classic principle of ray tracing, use non-reciprocal BRDFs and deliverWhitted-style Ray Tracing (664)

under certain conditions acceptable images.

THE PRINCIPLE OF CONSERVATION OF ENERGY. The principle of conservation of energy

has to do with the scattering of light during the light-matter interaction. As a direct con-

sequence of the second law of thermodynamics, it states that the total energy of reected

light from a surface point always has a positive value and may never exceed the energy of

incident light at that point, see Figure 4.32.

So, a BRDF must satisfy the following inequality for all directions ωi ∈ H2i (s):dσ⊥ (89)

0 ≤
∫
H2o(s)

fr(s,ωi → ωo)dσ
⊥
s (ωo) ≤ 1. (4.136)

The integral between the inequality signs in Inequality (4.136) is also called the

directional-hemisperical reectance of a surface and is denoted by

ρ(ωi → H2o) def= ∫
H2o(s)

fr(s,ωi → ωo)dσ
⊥
s (ωo) (4.137)

with ωi ∈ H2i (s).
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absorption

in-scattering

out-scattering

emission streaming

FIGURE 4.32: THE PRINCIPLE OF CONSERVATION OF ENERGY. The total amount of
energy in an isolated system remains constant over time. Thus, energy can neither be created
nor destroyed, it can only be transformed from one state to another.

THEOREM 4.4 (The Energy Conservation Condition of the BRDF) Let fr be a physically

valid BRDF, then for all ωi ∈ H2i (s) it must hold:

∫
H2o(s)

fr(s,ωi → ωo)dσ
⊥
s (ωo) ≤ 1. (4.138)

PROOF 4.4 Let ωi ∈ H2i (s) be �xed. According to [220, Veach 1997], we assume

that the incident power is concentrated in a single direction ωi. Then, the incident

radiance Li(s,ω) can be written as Li(s,ω) = 1 · δσ⊥(ω−ωi). Dirac δ-distribution (118)

Applying the de�nition of the Dirac δ-distribution and the Property (2.307) then

leads to

E(s) =

∫
H2
i
(s)

Li(s,ω)dσ⊥s (ω) (4.139)

=

∫
H2
i
(s)

δσ⊥(ω−ωi)dσ
⊥
s (ω)

(2.307)
= 1 (4.140)
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and

Lo(s,ωo) =

∫
H2
i
(s)

fr(s,ω→ ωo)Li(s,ω)dσ⊥s (ω) (4.141)

=

∫
H2
i
(s)

fr(s,ω→ ωo) δσ⊥(ω−ωi)dσ
⊥
s (ω) (4.142)

(2.307)
= fr(s,ωi → ωo). (4.143)

Using this relation in the formula for computing the radiant exitance then weRadiant Exitance (267)

get:

M(s) =

∫
H2o(s)

Lo(s,ωo)dσ
⊥
s (ωo) (4.144)

=

∫
H2o(s)

fr(s,ωi → ωo)dσ
⊥
s (ωo). (4.145)

Since the law of conservation of energy implies

0 ≤M ≤ E, (4.146)

so the total amount of energy reected at a surface point over all directions must be

less than or equal to the total amount of incident energy at this point. Applying the

Relations (4.140) and (4.145) then proves our theorem

0 ≤
∫
H2o(s)

fr(s,ωi → ωo)dσ
⊥
s (ωo) ≤ 1. (4.147)

REMARK 4.14 (The Principle of Superposition) As two light rays incident at point s on

a surface has no inuence on each other, reection behaves linearly. That is, the

total amount of light reected by the surface in a speci�c direction ωo is given by the

hemispherical integral over all possible incoming directions ωi around s. This then

results in the reection equation from (4.89), namely:

Lo(s,ωo)
def
=

∫
H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (4.148)

REMARK 4.15 (Fluorescence and Phosphorescence) It should also be mentioned that a

BRDF is generally also dependent on the wavelength of the incident light as well

as the reected light. That is, a physically correct BRDF should also simulate the

light e�ect of uorescence. Now, in computer graphics we can get rid of a further

dimension by discretizing the wavelength in so-called wavelength bands. Since the

human visual system has only three kind of receptors we use the so-called RGB-band,

thus, the three bands red, green, and blue. We then use the BRDF together with

every such band to describe the wavelength dependance of reection.

Additionally, we want also assume that the time between the arrival of the in-

cident light and the emittance of the reected light at a point s is negligible, that is,

also phosphorescence can not be simulated by our BRDFs.
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FIGURE 4.33: REFLECTION PROPERTY OF AN ANISOTROPIC BRDF. The amount of
reflected light may change with rotations of the surface about the normal N(s) due to
anisotropy.

ISOTROPIC AND ANISOTROPIC BRDFS. BRDFs, as the mathematical formulation of the

reection behavior at material surfaces, can be partitioned into two classes: isotropic

BRDFs and anisotropic BRDFs.

The term isotropic describes the reectance properties of a surface, which are invariant

with respect to rotation of the surface underlying the surface normal. That is, the perceived

percentage of light reected at a point does not change if the surface under the viewer is

rotated. Thus, BRDFs simulating light reection at isotropic materials are independent

on the azimuth angle φi and φr. They are, apart of θi, θr only still dependent on the

di�erence φr−φi. This implies, that isotropic BRDFs have only three degrees of freedom

instead of four, as the BRDF was generally de�ned. So, an isotropic BRDF can be written

as:

fr,iso(x, θi → (θr, φr − φi)) (4.149)

with θi, θr ∈
[
0, π
2

]
und φi, φr ∈ [0, 2π). Many materials like at plastic, steel, and

aluminium have isotropic BRDFs.

In general, BRDFs are not isotropic, but rather anisotropic. So, we call a BRDF

anisotropic, if it describes the reection behavior of a material that changes the perceived

percentage of light reected with respect to rotation of the surface around the surface

normal, see Figure 4.33. In practice, most real-world material surfaces are anisotropic to

some degree. This e�ect can be observed in particular by the illumination of brushed

metal, for an exampl, vinyl, compact discs or several types of textiles or hair, see Figure
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4.34.

FIGURE 4.34: COMPARISON OF ISOTROPIC VS. ANISOTROPIC ALUMINUM BRDF. The
spheres are rendered with two different BRDFs for brushed aluminum. Note the different
specular highlight shapes from the anisotropic model in the right image. The surface orien-
tation affects the appearance, revealing the anisotropic behavior of the reflected light. Image
courtesy by Stephen H. Westin, Cornell University.

GENERALIZED REFLECTANCE. The BRDF, de�ned as a derivative, is primarily useful

as a theoretical construct for describing the interaction of light at object surfaces since

in�nitesimal elements such as the solid angle do not include measurable amounts of radiantσ (87)

ux. This can be demonstrated in particular at the example of the ideal specular BRDFFlux (249)

which, in form of a Dirac δ-distribution, can take on values from 0 to in�nity. This meansIdeal Specular BRDF (325)

Dirac δ-distribution (118) that the ideal specular BRDF, formulated as a Dirac δ-distribution, is not suitable for

practical applications.

So, we need a physically concept that describes the process of interaction of light

at surfaces expressed in terms of the BRDF, and which is also useful in practice. This

concept is given in the de�nition of the generalized reectance.

Generally, reectance is a directional quantity, that is, a function of the reected and

incident amount of light at a surface, which is also wavelength and polarization dependent

on the incident and reected light. However, we discuss the reectance in a wavelength

and polarization independent version.

DEFINITION 4.19 (Generalized Reectance, ρ.) The ratio of ux reected from a di�er-

ential surface patch dµ2(s) around a point s ∈ ∂V into direction ωo, respectively a∂V (41)
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�nite solid angle Υo, to the incident ux at dµ
2(s) through direction ωi, respectively a

�nite solid angle Υi, is called the generalized reectance of dµ2(s), commonly denoted

by ρ. It is de�ned as:

ρ(s, Υi → Υo)
def
=
dΦo(s, Υo)

dΦi(s, Υi)
(4.150)

with

dΦo(s, Υo)
def
=

{
dµ2(s)Lo(s,ωo)dσ

⊥
s (ωo) if Υo = ωo

dµ2(s)
∫
Υo
Lo(s,ωo)dσ

⊥
s (ωo) otherwise

(4.151)

and

dΦi(s, Υi)
def
=

{
dµ2(s)Li(s,ωi)dσ

⊥
s (ωi) if Υi = ωi

dµ2(s)
∫
Υi
Li(s,ωi)dσ

⊥
s (ωi) otherwise.

(4.152)

Due to the principle of conservation of energy, for physically valid materials it

has to hold:

0 ≤ ρ(s, Υi → Υo) ≤ 1. (4.153)

We de�ned the reectance in dependence on incident and exitant solid angle Υi and

Υo. Since any of these both solid angles can be chosen as in�nitesimal, �nite, or as the

entire hemisphere, there are nine di�erent reectances. Due to [36, Cohen &. Wallace,

1993], the names of these reectances can be formed by combining the words: directional,

conical, and hemispherical, where directional corresponds to a di�erential solid angle,

conical stands for a �nite solid angle, and hemispherical corresponds to a solid angle over

the entire hemisphere.

The most interesting types of reectance in computer graphics are the directional-

hemispherical reectance, already known from our discussion about the conservation of

energy, as well as the concept of the hemispherical-hemispherical reectance.

LEMMA 4.3 (Hemispherical-hemispherical Reectance) Based on the de�nition of the

generalized reectance, let us assume Υi = H2i and Υo = H2o. Let us further assume,
that the incident radiation is uniform and isotropic within the incident solid angle

Υi, then the hemispherical-hemispherical reectance can be expressed in terms of the

BRDF as:

ρ(s,H2i → H2o) =
1

π

∫
H2
i
(s)

∫
H2o(s)

fr(s,ωi → ωo)dσ
⊥
s (ωi)dσ

⊥
s (ωo), (4.154)

where both, H2i and H2o, correspond to the upper and the lower hemisphere. The

hemispherical-hemispherical reectance is a constant that gives the fraction of inci-

dent light, reected by a surface under the condition that the incident light is the

same from all directions.
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PROOF 4.3 Substituting Υi = H2i (s) and Υo = H2o(s) with s ∈ ∂V in Equation (4.150)

then we get:

ρ(s,H2i → H2o) (4.150)
=

dΦo(s,H2o)
dΦi(s,H2i )

(4.155)

(3.15)
=

dµ2(s)
∫
H2o(s)

Lo(s,ωo)dσ
⊥
s (ωo)

dµ2(s)
∫
H2
i
(s)
Li(s,ωi)dσ⊥s (ωi)

(4.156)

=

∫
H2o(s)

Lo(s,ωo)dσ
⊥
s (ωo)∫

H2
i
(s)
Li(s,ωi)dσ⊥s (ωi)

(4.157)

(4.89)
=

∫
H2o(s)

∫
H2
i
(s)
fr(s,ωi → ωo)Li(s,ωi)dσ

⊥
s (ωi)dσ

⊥
s (ωo)∫

H2
i
(s)
Li(s,ωi)dσ⊥s (ωi)

. (4.158)

Using the condition that the incident radiation is uniform and isotropic within

the incident beam, then Li is constant and can be moved outside the integrals, in

both, the numerator and denominator, so that it cancels out resulting in:

ρ(s,H2i → H2o) =

∫
H2o(s)

∫
H2
i
(s)
fr(s,ωi → ωo)dσ

⊥
s (ωi)dσ

⊥
s (ωo)∫

H2
i
(s)
dσ⊥s (ωi)

(4.159)

(2.300)
=

1

π

∫
H2o(s)

∫
H2
i
(s)

fr(s,ωi → ωo)dσ
⊥
s (ωi)dσ

⊥
s (ωo). (4.160)

Due to [135, Nicodemus &. al. 1977], the condition that Li is constant in all

points and in all directions within the incident angle is fairly well approximated in

any well-designed reectometer, i.e. the hemispherical-hemispherical reectance is

very useful for describing the observed reectance of a surface.

REMARK 4.16 (Further Reectance Concepts) Based on the de�nition of the general-

ized reectance, we can derive|dependent on the choice of the incident and exitant

solid angles Υi and Υo|further reectance concepts. Thus, e.g. the directional-

hemispherical reectance and the hemispherical-directional reectance de�ned by:

ρ(s,ωi → H2o) = ∫
H2o(s)

fr(s,ωi → ωo)dσ
⊥
s (ωo), (4.161)

respectively

ρ(s,H2i → ωo) =
dσ⊥(ωo)

π

∫
H2
i
(s)

fr(s,ωi → ωo)dσ
⊥
s (ωi) (4.162)

as well as the directional-directional reectance:

ρ(s,ωi → ωo) = dσ
⊥(ωo) fr(s,ωi → ωo). (4.163)
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For one thing they give the amount of light arriving at point s from direction ωi
reected in all directions of the hemisphere, see Relation (4.136), and for another the

portion of incident light over the whole hemisphere reected in direction ωo. Together

with the hemispherical-hemispherical reectance, these reectance types are the most

important for our further discussions.

REMARK 4.17 (Shortened Notation of the Four Common Types of Reectance) For abbre-

viation of our future formulas, we use the following shortened notations of reectance

types:

ρdd(s) ≡ ρ(s,ωi → ωo) (4.164)

ρdh(s) ≡ ρ(s,ωi → H2o) (4.165)

ρhd(s) ≡ ρ(s,H2i → ωo) (4.166)

ρhh(s) ≡ ρ(s,H2i → H2o). (4.167)

Based on Theorem 4.2, now, we will derive an exact formula for the ideal di�use

BRDF for , which also shows a relation between our theoretical concept of the BRDF and

the rather practical concept of reectance.

LEMMA 4.4 (The Ideal Di�use and the Di�use BRDF, for ) The ideal di�use BRDF for ,

which satis�es the conservation of energy, is given by the following formula:

for (s,ωi → ωo) =
1

π
. (4.168)

Since there are no ideal di�use surfaces in real world, the BRDF approximating

the reection behavior of light at a real di�use surface is given by:

for (s,ωi → ωo) =
ρhh(s)

π
. (4.169)

PROOF 4.4 We know from Theorem 4.2 that the ideal di�use BRDF for is constant.

Requiring that for also satis�es the conservation of energy then, with the de�nition

of the hemispherical-hemispherical reectance ρhh, from Lemma (4.3), it must hold:

ρhh(s) =
1

π

∫
H2
i
(s)

∫
H2o(s)

for (s,ωi → ωo)dσ
⊥
s (ωi)dσ

⊥
s (ωo) (4.170)

=
1

π
for

∫
H2
i
(s)

∫
H2o(s)

dσ⊥s (ωi)dσ
⊥
s (ωo) (4.171)

=
1

π
for

∫
H2
i
(s)

dσ⊥s (ωi)

∫
H2o(s)

dσ⊥s (ωo) (4.172)

(2.300)
=

1

π
for π

2 (4.173)

= forπ. (4.174)
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With Relation (4.174), we now obtain a formulation for the di�use BRDF for as Lambertian Reflector (349)

a quotient of the hemispherical-hemispherical reectance and the constant π, namely:

for (s,ωi → ωo) =
ρhh(s)

π
. (4.175)

Ignoring any possible absorption of light particles in the underlying reection

process then it even holds:

for (s,ωi → ωo)
ρhh(s)=1

=
1

π
. (4.176)

REMARK 4.18 The result from Lemma 4.4 can also be achieved via the de�nition of the

directional-hemispherical reectance instead using the hemispherical-hemispherical

reectance. Under the assumption, that the ideal di�use BRDF for is constant it

holds:

ρdh(s) =

∫
H2o(s)

fr(s,ωi → ωo)dσ
⊥
s (ωo) (4.177)

= for

∫
H2o(s)

dσ⊥s (ωo) (4.178)

(2.300)
= for π (4.179)

which implies

for (s,ωi → ωo) =
ρdh(s)

π
. (4.180)

GENERALIZED TRANSMITTANCE, τ. Similar to the concept of reectance, we can now

also de�ne the transmittance of a surface. As both concepts are de�ned as the fraction

of outgoing ux to incident ux, we de�ne the transmittance, τ, in terms of the already

known concept of reectance.

DEFINITION 4.20 (Generalized Transmittance) Let A ∈ ∂V be the interface between two

media with refraction indices ηi and ηt. The ratio of ux transmitted from a di�er-

ential surface patch dµ2(s) around a point s ∈ ∂V into direction ωt, respectively a∂V (41)

�nite solid angle Υt, to the incident ux at dµ2(s) through direction ωi, respectively

a �nite solid angle Υi, is called the generalized transmittance of dµ2(s), denoted by τ.

It is de�ned as

τ(s, Υi → Υt)
def
=
dΦt(s, Υt)

dΦi(s, Υi)
(4.181)

with

dΦt(s, Υt)
def
=

{
dµ2(s)Lo(s,ωt)dσ

⊥
s (ωt) if Υt = ωt

dµ2(s)
∫
Υt
Lo(s,ωt)dσ

⊥
s (ωt) otherwise

(4.182)
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and

dΦi(s, Υi)
def
=

{
dµ2(s)Li(s,ωi)dσ

⊥
s (ωi) if Υi = ωi

dµ2(s)
∫
Υi
Li(s,ωi)dσ

⊥
s (ωi) otherwise.

(4.183)

Using Equation (4.127) for expressing the transmitted radiance Lt in terms of

incident radiance Li then the transmittance, τ, can also be expressed in terms of the

reectance ρ, namely by:

τ(s, Υi → Υt) =
η2t
η2i
ρ(s, Υi → Υt). (4.184)

REMARK 4.19 (Reectance and Transmittance of Non-absorbing and Non-emitting Sur-

faces) With our de�nition of reectance and transmittance, obviously it holds:

dΦo(s, Υt)

dΦi(s, Υi)
=

dΦr(s, Υr) + dΦt(s, Υt)

dΦi(s, Υi)
(4.185)

=
dΦr(s, Υr)

dΦi(s, Υi)
+
dΦt(s, Υt)

dΦi(s, Υi)
(4.186)

= ρ(s, Υi → Υt) + τ(s, Υi → Υt). (4.187)

As for non-absorbing and non-emitting surfaces it holds dΦo
dΦi

= 1, we can then

express the reectance of such a kind of surface in terms of transmittance or vice-

versa, thus:

ρ(s, Υi → Υt) = 1− τ(s, Υi → Υt) (4.188)

τ(s, Υi → Υt) = 1− ρ(s, Υi → Υt) (4.189)

as well as in terms of the involved refraction indices, that is:

ρ(s, Υi → Υt)
(4.184)
=

1

1+
η2t
η2
i

(4.190)

=
η2i

η2i + η
2
t

(4.191)

τ(s, Υi → Υt)
(4.184)
=

1

1+
η2
i

η2t

(4.192)

=
η2t

η2t + η
2
i

. (4.193)
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REMARK 4.20 (Shortened Notation of the Four Common Types of Transmittance) For ab-

breviation of our future formulas, we use the following shortened notation of trans-

mittance types:

τdd(s) ≡ τ(s,ωi → ωo) =
η2t
η2i
ρ(s,ωi → ωo) (4.194)

τdh(s) ≡ τ(s,ωi → H2o) = η2t
η2i
ρ(s,ωi → H2o) (4.195)

τhd(s) ≡ τ(s,H2i → ωo) =
η2t
η2i
ρ(s,H2i → ωo) (4.196)

τhh(s) ≡ τ(s,H2i → H2o) = η2t
η2i
ρ(s,H2i → H2o). (4.197)

COMPONENTS OF A BRDF AND A BTDF. The ideal reection types described in this and

the previous section can not be found in nature. In real world, we encounter frequently

a reection type that can be speci�ed to be between these limiting cases: the so-called

directional di�use reection, also referred to as glossy reection. Here, light from anGlossy Reflection (304)

in�nitesimal thin light beam is scattered and spread into some �nite solid angle typically

around the perfect reection direction ωo, see Figure 4.35. Due to [190, Sillion & Puech

1994], a detailed description of directional di�use reection is di�cult, because it requires

accurate statements about the interaction of light with the irregularities of the surface,

which are comparable with the wavelength of light. Since physical optics, thus the �eld

of optics, which considers light as a wave, is outside the scope of this book, we are not

interested in the wave properties of light. Based on the principles of geometric optics, then

an approach to approximate such a type of BRDF is the decomposition of a BRDF intofor (339)

a di�use part, for , a specular part, f
∨

r , and a so-called glossy or directional di�use part,f
∨

r (325)

fglr , that is:

fr = f
o
r + f

∨

r + fglr , (4.198)

see Figure 4.36.

For the most BRDF models|as shown in Section 4.2.2.5|this composition is to

restrictive. So, the ideal specular component f
∨

r is mostly already incorporated in the

glossy component|which we then simply call the specular component fspr |that is, we

can write:

fspr = f
∨

r + fglr . (4.199)

This means that a BRDF is commonly assumed to be the composition of a di�use

and a specular term, namely:

fr = f
o
r + f

sp
r . (4.200)
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FIGURE 4.35: GLOSS OR DIRECTIONAL DIFFUSE REFLECTION. Visualization of a gloss,
or a directional-diffuse reflective surface. Note: The degree of glossiness determines the
lobe of set of possible reflected directions. The surface visualized in the left image is more
gloss than the surface in the right image. This is also the reason why the lobe of outgoing
directions in the left image is smaller than in the image on the right-hand side.

REMARK 4.21 (Composition of a BTDF) Similar to the representation of a BRDF from

Equation (4.198), also a BTDF ft can be composed of three more basic transmission

models, namely: a di�use, a specular, and a glossy refraction model. So, a BTDF

can also be written as

ft = f
o
t + f

∨

t + fglt , (4.201)

where fot , f
∨
t , and f

gl
t are de�ned as the counter parts of for , f

∨
r , and f

gl
r .

4.2.2.4 MEASUREMENTS AND REPRESENTATIONS OF BRDFS

In the last sections we introduced the mathematical construct of the bidirectional distribu-

tion function and presented theoretical constructed BRDFs, which describe the reectance

behavior at idealized smooth and di�use surfaces. One question that now often arises is:

How is it possible to represent the reection behavior at real-world surfaces by means of a

BRDF? In principle, there are mainly two ways to obtain such a BRDF that can be used as

a reection model in realistic image synthesis algorithms. One way is to construct closed-

form mathematical functions derived from analytical models using physical principles, and

the other is based on the resampling of BRDF data, acquired by empirical measurements

of real-world surfaces.
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FIGURE 4.36: COMPOSITION OF A BRDF. As real materials are not perfectly diffuse or
specular, in practice, a BRDF, as shown in the lower image, is often treated as a sum of three
different components: A Lambertian diffuse component, for , an ideal specular component,
f∨r , and a glossy or directional diffuse component, fglr .

BRDF REPRESENTATION VIA ANALYTICAL MODELS. BRDFs, represented by closed-form

functions, are generally derived from some physical theory of how light reects from a

surface. Apart from the incident and exitant directions ωi and ωo they depend on other

parameters, which are used to control the reectance properties and the surface appearanceReflectance (336)

of a material. Such a function can be given by a very simple but also a relatively complex

expression.

Thus, as we will see in the next section, there are actually many simple theoretical

models|such as the Phong or the Blinn-Phong illumination model|which can be usedPhong Model (353)

Blinn-Phong Model (357) to describe a very wide range of visually interesting lighting e�ects. Although they are

rarely based on exact physical properties of light and matters, they can passably model

some materials, in particular plastics. Other, more complex and more physically plausi-

ble BRDF models, such as the Cook-Torrance BRDF or the Ward illumination model

Cook-Torrence Model (361)

attempt to model physical reality.Ward Model (369)
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ACQUIRED BRDF DATA AND MEASURING A BRDF. In many situations, analytical ap-

proaches of a BRDF cannot accurately model the reection of light at a real world surface.

Considering e.g. materials such as leather or hair, it would be a very large challenge to

approximate the reection properties of such complex materials by closed-form BRDFs.

Since in particular organic materials have such a very complex microstructure, which is

hard to simulate theoretically, it is better to measure the light reected by a surface in-

stead of to create a closed-form function to approximate it. A BRDF created in this way is

called a measured BRDF and data produced in this way are often referred to as acquired

BRDF data.

A device used for measuring BRDFs is called a gonioreectometer, see Figure 4.37.

The sample to be measured is placed at the center of the device, while a light source and

detector are moving about the hemisphere above the sample, and measure the reectance

for every few degrees. The output of such a measurement is a list of values, parameterized

by ωi and ωo, which can then be used as a lookup table during rendering. This is the

reason, why we also speak of a tabulated BRDFs. Depending on the sampling rate, ni
incident direction samples and no exitant direction samples, such a table, of size ni · no,
can be very large. Since in a rendering algorithm is often di�cult to determine which

analytical model should be used to simulate certain visual lighting e�ects, it is often

advantageous to use such measured BRDFs.

After discussing, how we obtain a BRDF as a very large set of data, we are now

interested in techniques to store and compute them e�ciently. In [175, Rusinkiewicz 1997]

a variety of such techniques is presented from those one is in particular interesting for us:

the method of storing BRDFs by projecting them onto spherical harmonics.

BRDF REPRESENTATION BY SPHERICAL HARMONICS. Obviously, a radiance distribution, Spherical Harmonics (123)

L, can be interpreted as a function de�ned on the unit sphere or the hemisphere, that is, it

can be expressed as a series expansion using the spherical harmonic basis functions Yl,m. Yl,m (124)

Thus, L can be written as

L(x,ω) =

∞∑
l=0

l∑
m=−l

Cl,mYl,m(ω) (4.202)

i=l(l+1)+m
=

n∑
i

CiYi(ω), (4.203)

where the coe�cients, Cl,m, of the series are determined in an analogous way as the

coe�cients of a Fourier series expansion of a function. If the function L is known, or Fourier Coefficients (38)

at least known at a number of samples, then the coe�cients Cl,m can be computed via

Formula (2.344), or they can be approximated by solving a series of linear equations using

the function values at these samples. Forming a n-dimensional vector C = (C1, . . . , Cn)
T
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FIGURE 4.37: GONIOREFLECTOMETER FOR MEASURING BRDF DATA. Gonioreflec-
tometer devices are expensive. Since they are also quite slow, a full BRDF measurement at
even a low resolution can easily cost thousands of dollars. In addition, due to the number
of moving parts in the device, a gonioreflectometer can produce data, which are quite noisy.

using the coe�cients Cl,m, multiplying C with another vector, Y = (Y1, . . . , Yn)
T , whose

components consist of the basis functions, Yl,m, implies that Equation (4.202) becomes

L(x,ω) = 〈C,Y(ω)〉. (4.204)

Considering the vector C as a function of incident direction, then, due to [92, Kain-

ulainen 2003], a BRDF, fr can be approximated by the dot product

fr(x,ωi → ωo) ≈ 〈C(ωi),Y(ωo)〉. (4.205)

Similar to the theory of the Fourier series, the high-order terms represent the highFourier Series (39)

frequency components of the distribution, the low-order terms the low frequency compo-

nents. That is, while ideal di�use surfaces can be described via Y0,0, the simulation ofY0,0 (124)

glossier or more specular-appearing surfaces demand the calculation of further coe�cients

in the series of expansion of spherical harmonics from Equation (2.343).
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EXAMPLE 4.1 (A First Encounter with Precomputed Radiance Transfer, PRT) Precom-

puted radiance transfer, also briey denoted as PRT, can be interpreted as a global

illumination model, which is well suited for real-time rendering, since the bulk of

computation occurs o�ine. The algorithm separates the light sources in a scene

from the transport properties, projects the transport properties to spherical harmon-

ics, and combines them at run time with the illumination functions, which can be

made unique. On this way, it is possible to compute the shadowing of an illumina-

tion point via evaluation of a dot product, in the case of di�use reection, and a

vector-matrix multiplication for specular reection [122, Lauschke 2006].

Let us consider a scene where all surfaces are assumed to be Lambertian reec- Lambertian Reflector (349)

tors and the existing light sources are far away, then the reection equation can be

written as

Lo(s,ωo) =

∫
H2
i
(s)

for (s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (4.206)

Now, our goal is to express the reection equation as a product of two functions,

which, represented as �nite series of spherical harmonic basis functions, are approx-

imations of the illumination function Li and the transport property for and cos θi,

hidden in the di�erential projected solid angle dσ⊥. As the di�use BRDF for = ρdh
π

is constant, it holds:

Lo(s,ωo) =
ρdh(s)

π

∫
H2
i
(s)

Li(s,ωi)dσ
⊥
s (ωi) (4.207)

=
ρdh(s)

π

∫
H2
i
(s)

Li(s,ωi) | cos θi|dσs(ωi). (4.208)

Let us assume that it holds ρdh
π

= 1
π
, that is, ideal di�use reection occurs at

surface point s, then Relation (4.208) can be written as

Lo(s,ωo)
Y0,0(ωi)=

1√
4π

=
2√
π
Y0,0(ωi)

∫
H2
i
(s)

Li(s,ωi)dσ
⊥
s (ωi) (4.209)

=
2 Y0,0(ωi)√

π

∫
H2
i
(s)

Li(s,ωi) | cos θi|dσs(ωi). (4.210)

Writing now the function Li as a �nite series of spherical harmonic basis func-

tions, thus

Li(s,ωi) =

n∑
l=0

l∑
m=−l

Cl,mYl,m(ωi) (4.211)

with SH coe�cients

Cl,m =

∫
H2
i
(s)

Li(s,ωi)Yl,m(ωi)dσs(ωi) (4.212)
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and substituting the incident radiance Li in Equation (4.208) by the Expression

(4.211), then we obtain

Lo(s,ωo) =
1

π

∫
H2
i
(s)

(
n∑
l=0

l∑
m=−l

Cl,mYl,m(ωi)

)
| cos θi|dσs(ωi) (4.213)

=
1

π

n∑
l=0

l∑
m=−l

∫
H2
i
(s)

Cl,mYl,m(ωi) | cos θi|dσs(ωi) (4.214)

(2.344)
=

1

π

n∑
l=0

l∑
m=−l

Cl,m

∫
H2
i
(s)

Yl,m(ωi) | cos θi|dσs(ωi)︸ ︷︷ ︸
=C′

l,m

(4.215)

=
1

π

n∑
l=0

l∑
m=−l

Cl,mC
′
l,m. (4.216)

The last equation can be considered as the product of 1
π
and the dot product of

the vectors consisting of the SH coe�cients Cl,m and C′l,m.

4.2.2.5 BRDF MODELS

The reection behavior of most materials occurring in nature is so complex that it can not

simply be described by a specular, a di�use, or a glossy BRDF. The BRDFs of such ma-

terials are very complex, and in most cases, an exact simulation of the reection behavior

is not possible. Today, computer graphics distinguishes between four classes of BRDFs

depending on the sources they come from:

� idealized BRDF models,Section 4.2.2.5.1

� phenomenological BRDF models,Section 4.2.2.5.2

� physical-based or physics-inspired BRDF models, andSection 4.2.2.5.3

� BRDF models based on measured data.Section 4.2.2.5.4

Let us now present the most interesting examples from any of these classes of BRDF

models.

4.2.2.5.1 IDEALIZED BRDF MODELS

In Section 4.2.2.2, we have introduced the concept of idealized BRDF. So, we know the

ideal specular BRDF, f∨r , and the ideal di�use BRDF, for . They represent formulas that

describe the behavior of light at idealized surfaces.
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FIGURE 4.38: SPHERES RENDERED WITH THE LAMBERTIAN ILLUMINATION MODEL.
The left image shows a sphere rendered with the Lambertian BRDF. The image on the
right-hand side illustrates the dependence of irradiance on the angle between the surface
normal at an illumination point and the direction towards a light source.

THE LAMBERTIAN ILLUMINATION MODEL. The Lambertian illumination model assumes

that light incident at a surface is scattered in such a way, that the appearance of the surface

is independent of the observer's angle of view, see Figure 4.38. Mathematically expressed,

this means, that light falling on any surface point is uniformly scattered in all directions.

As described in detail in Section 4.2.1.2, there are two reason that are responsible for this

e�ect: the microgeometry of the underlying rough surface or the phenomen of subsurface

scattering of light penetrated into the material. Such a perfectly di�use surface is also

called a Lambertian reector. Although they mathematically conserve energy, Lamber-

tian reectors are impossible in nature due to thermodynamic reasons. A typical example

of a Lambertian reector is un�nished wood.

DEFINITION 4.21 (The Lambertian BRDF) Let for denote the ideal di�use BRDF fur-

thermore let ρdh as well as ρhh denote the directional-hemispherical as well as the ρdh (338)

hemispherical-hemispherical reectance. Then, the Lambertian BRDF fLAr is de�ned ρhh (337)

as:

fLAr (s)
def
= for (s) (4.217)

(4.175)
=

ρhh(s)

π
(4.218)

(4.180)
=

ρdh(s)

π
. (4.219)

REMARK 4.22 Obviously, the Lambertian BRDF is physically plausible, since it satis-
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�es the condition of non-negativity, Helmholtz-reciprocity and energy conservation.

We leave this simple proof to the interested reader.

The de�nition above shows, that the Lambertian BRDF is independent on a direc-

tional variable, which is also the reason, why we can express it without any directional

variable. Based on the Lambertian BRDF, the Lambertian illumination model can now

be de�ned by:

DEFINITION 4.22 (The Lambertian Illumination Model) Let ωi be the direction vector of

the incident radiance at surface point s and N(s) denotes as usual the normal at

surface point s. Then, the Lambertian illumination model is de�ned by:

Lo(s)
def
=

∫
H2
i
(s)

fLAr (s)Li(s,ωi)dσ
⊥
s (ωi) (4.220)

= fLAr (s)

∫
H2
i
(s)

Li(s,ωi)dσ
⊥
s (ωi) (4.221)

(3.46)
= fLAr (s)E(s) (4.222)

= fLAr (s)Li(s) |cos θi| , (4.223)

where cos θi is the angle between the normal at point x and the direction towards the

light source.

Obviously, the reected radiance is proportional to the incident irradiance|it is de-

pendent on the angle between the surface normal and the incident light ray|so, it is

constant and has the same value in all directions. This means, that the surface does not

change brightness as you move your eyes.
The Lambertian illumination is already known since more than 200 years. Since

it is very simple, it is one of the most widely used models in computer graphics. The

Lambertian illumination model is a purely local illumination model that only accounts

for direct light coming from light sources and neglect any reection on other surfaces.

Using the absolute value of the cosine in Formula (4.223) circumvents the problem that

the reected radiance can be negative. Although it is not physically plausible, it is a goodPhysically Plausible BRDF (331)

approximation for many dull, matte surfaces in real world, such as paper and completely

at paint.

REMARK 4.23 (The Di�use Reection Coe�cient) Often, the Lambertian illumination

model is also be expressed in terms of a so-called di�use reection coe�cient kd, a

material constant measured in unit
[
1
sr

]
, which is de�ned by:

kd
def
=
ρdh(s)

π
= fLAr (s), (4.224)

thus,

Lo(s) = kd E(s). (4.225)
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In the following example, we show the use of a Lambertian illumination model in a

small scene illuminated by a point light source.

EXAMPLE 4.2 Given be a di�use surface illuminated by an isotropic point source. Due

to our discussion from Example 3.5, the contribution of the light source at point x

to surface point s is obviously given by:

E(s)
(3.99)
=

Φe

4 π

|〈N(s),ωi〉|
‖s− x‖22

, (4.226)

where θi is the angle between the surface normal at point s and the direction towards

the point light source.

Based on a Lambertian illumination model, the light reected at scene point s

in any direction ωo ∈ H2o is

Lo(s,ωo) = kdE(s) (4.227)

= kd
Φe

4 π

|〈N(s),ωi〉|
‖s− x‖22

(4.228)

(4.224)
=

ρdh(s)Φe
4 π2

|cos θi|

‖s− x‖22
. (4.229)

4.2.2.5.2 PHENOMENOLOGICAL BRDF MODELS

Phenomenological BRDF models are based on scienti�c methods, which attempt to detect

the essential and meaningful in the phenomena of light interaction at object surfaces in a

scene to be rendered. Contrary to practical, empirical approaches, these methods choose

intuitive accesses to the problem to be solved. The most phenomenological BRDFs are

simple equations, controlled by only a few parameters, which are used to describe the

properties of real-world surfaces. Since they are generally simple to evaluate and often

deliver surprisingly good results, phenomenological BRDF models still play a central role

in realistic rendering.

THE PHONG ILLUMINATION MODEL. The still mostly used illumination model in computer

graphics is the Phong model, derived 1975 and named after his founder Bui Tuong Phong

[160, Phong 1975]. The Phong model is phenomenological motivated and tries to reect

the e�ect of gloss observed at surfaces. Since it is represented in a simple mathematical

formula, it is also e�cient to evaluate. The classic Phong Shading Equation is usually

de�ned in terms of a point light source and composed of a di�use and a specular part. It

is not based on any correct de�ned physical quantity, but on intensity values assigned to

light sources and has the form

Sp = Cp (cos i (1− d) + d) +W(i) cosn s, (4.230)
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FIGURE 4.39: CYLINDERS RENDERED WITH THE PHONG ILLUMINATION MODEL. Four
cylinders rendered with specular highlights. All cylinders are shaded with a directional light.
As e increases—from left to right e = 5, 20, 100, 1000—the highlights become smaller and
the cylinders look more shiny. Image courtesy of Kevin Suffern, University of Technology,
Sidney.

where Sp is the shading at point p, d is the environmental di�use reection component,

Cp is the reection coe�cient of the object at point p for a certain wavelength, W(i)

is a function giving the ratio of specularly reected light to incident light as a function

of the incident angle i, s is the angle between the specular direction and the observer,

and n is a power for modelling the specular reected light. The values of W(i) and n are

adjusted as free parameters for the picture, without any physical basis for the adjustments.

Typical values are 0.1 < W(i) < 0.8 and 1 < n < 10. When used strictly as a BRDF

representation, the di�use reection component is zero (d = 0) [160, Phong 1975]. Images

rendered with the Phong model are shown in Figure 4.39.

Expressed in terms of radiance and with a constant ambient term replacing global

illumination, the Phong shading equation can be written as:

Lo(s,ωo)
def
= kaLa +

(
kd 〈N(s),ωi〉+ ks〈ωr,ωo〉ke

)
Li(s,ωi), (4.231)

where ωi denotes the incoming direction of light at point s, ωo is the direction to the

viewer, and ωr is the direction of the reected light. The coe�cient ke is called the Phong

exponent, detailed explained further below, and kd as well as ks are material constants,

which, also under the conditions kd ≤ 1 and ks ≤ 1, not ensure conservation of energy.

As we are interested in BRDFs, we will transform the classic Phong illumination

model into a reection model based on the concept of a bidirectional reectance distribu-

tion function. For this, we de�ne the Phong BRDF by:
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DEFINITION 4.23 (The Phong BRDF) Let ωr be the perfect specular reected direction

vector of the incident radiance at surface point s coming from direction ωi and

ωo be a vector in direction to the viewer. Let furthermore ρdh be the directional- ρdh (338)

hemispherical reectance, and ρdd the so-called directional-directional reectance, ρdd (338)

two material constants commonly chosen from interval [0, 1]. Then, the Phong BRDF,

fPHr , is de�ned as:

fPHr (s,ωi → ωo)
def
=

ρdh(s)

π
+ ρdd(s)

〈ωr,ωo〉ke
〈N(s),ωi〉

(4.232)

=
ρdh(s)

π
+ ρdd(s)

coske θro
|cos θi|

(4.233)

with Phong exponent ke ∈ N and surface normal N(s), see Figure 4.40.

With the di�use reection coe�cient kd
def
= ρdh

π
and the specular reection

coe�cient ks given by ks
def
= ρdd the Phong BRDF can then be written in the more

commonly used form:

fPHr (s,ωi → ωo) = kd + ks
coske θro
|cos θi|

. (4.234)

The specular term in fPHr controls the color and the Phong exponent the expansion

of the gloss. Thus, very glossy surfaces can be modeled by a large Phong exponent,

ke > 100, and more matte surfaces by smaller values of ke, such as 1. Ideal specular

reection can be modeled if ke goes to in�nity. This can be interpreted in such a way that

the specular reection is approximated by a cone centered around the direction ωr with

an exponentially decreasing radiance, see Figure 4.41 and 4.42. Apart from the specular

component, the Phong BRDF contains also a di�use component, which is expressed by the

Lambertian BRDF, that is, the di�use reection coe�cient kd from the foregoing section. kd (350)

REMARK 4.24 Notice the left image from Figure 4.41, where the cosine-lobe of the

Phong BRDF penetrates the surface for grazing incident directions. As we will seen,

when discussing direct illumination this situation makes no problems, but we have a Direct Illumination (410)

problem when discussing indirect illumination, unless we do something about it. Indirect Illumination (410)

Furthermore we note, that for angles between ωo and ωr greater than π
2
, the

dot product 〈ωr,ωo〉 is negative, in these cases we have to clamp 〈ωr,ωo〉 to positive
values in all of our formulas.

Due to the cosine-term in the denominator of the specular part, the Phong BRDF

does not satisfy the Helmholtz reciprocity, this can easily be shown by:

fPHr (s,ωi → ωo) = kd + ks
coske θro
|cos θi|

(4.235)

6= kd + ks
coske θro
|cos θo|

(4.236)

= fPHr (s,ωo → ωi). (4.237)
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FIGURE 4.40: THE GEOMETRY UNDERLYING THE PHONG BRDF. Light incident at a
surface point s from a direction ωi is specularly reflected in direction ωr. The Phong BRDF
approximates the reflected light as a cone around the mirrored directionωr with exponentially
decreasing intensity. This means, that the amount of light reflected in direction ωo to the
viewer is depending on the cone angle cos θro and the roughness ke of the surface.

Reciprocity (331)

In addition, the Phong BRDF also violates the law of conservation of energy, as|dueConservation of Energy (332)

to the cosine in the denominator|the amount of reected light for incident directions near

to the surface will be unbounded. That is, the Phong BRDF is not physically plausible.

REMARK 4.25 (The Reciprocal Phong BRDF) There is an easy way to make the Phong

BRDF symmetric, namely, by canceling the cosine-term from the denominator of the

specular component, f∨r , of the BRDF f
PH
r . This then leads to the so-called reciprocal

Phong BRDF, frPHr :

frPHr
def
= kd + ks cos

ke θro. (4.238)

Based on the Phong BRDF, the Phong illumination model for n light sources is now

de�ned by:

DEFINITION 4.24 (The Phong Illumination Model) Let us assume there are n extended

far away area light sources ☼1, . . . ,☼n in a scene to be rendered, let further more
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FIGURE 4.41: COSINE POWER LOBE. A wide and a narrow Phong lobe produced by a
large respectively a small value of ke. Notice also how the wide Phong lobe penetrates the
surface. For grazing angle, almost half the lobe will be below the surface.

FIGURE 4.42: THE INFLUENCE OF EXPONENT ke ON THE PHONG BRDF. Left, plots of
the function cos θn for n = 1, 2, . . . , 7 in the interval [0, π

2
]. In the right image, the variation

of the reflected radiance at surface point s is shown—as a function of the direction of the
viewing vector ωo, the mirrored direction ωr, and the Phong exponent ke = 1, 2, . . . , 7—as
it rotates in all possible directions about the point of interest.
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fPHr be the Phong BRDF. Then, the Phong illumination model is de�ned as:

Lo(s,ωo)
def
= kaLa +

n∑
j=1

∫
H2
i
(s)

fPHr (s,ωji → ωo)Li(s,ω
j
i)dσ

⊥
s (ω

j
i), (4.239)

= kaLa +

n∑
j=1

∫
H2
i
(s)

fPHr (s,ωji → ωo)Le(lj,−ω
j
i)dσ

⊥
s (ω

j
i), (4.240)

where the constant kaLa is the ambient illumination representing indirect illumination,

and lj are points on the light source ☼j reachable in direction ωji.

REMARK 4.26 (The Phong Illumination Model for Point Light Sources) In the case where

we only consider n point light sources ∗1, . . . , ∗n the Phong illumination model can

be expressed by using Dirac-δ distributions as:Dirac-δ Distribution (118)

Lo(s,ωo) = kaLa +

n∑
j=1

(
kd 〈N(s),ωji〉+ ks〈ωr,ωo〉

ke
)
Li(s,ω

j
i) (4.241)

= kaLa +

n∑
j=1

(
kd
∣∣ cos θji∣∣+ ks ∣∣coske θjor∣∣)Le(∗j,−ωji), (4.242)

with ∗j = γ(s,ωji).
Note, the additional factor

∣∣ cos θji∣∣ at the di�use coe�cient kd respectively the

absence of this factor in the denominator of the specular term. Both changes are

required due to the fact that the associated BRDF must be integrated with respect to

projected solid angle measure σ⊥.σ⊥ (88)

Like the Lambertian reection model, also the Phong illumination model is a purely

local illumination model, which only accounts for direct light coming from light sources

and neglect any reection on other surfaces. Due to its de�nition, the exitant radiance

in direction to the viewer, thus Lo(s,ωo), consist of three components: First an ambient

term kaLa, which simulates the indirect light in the scene. Second, the di�use part, thus

the radiance at s which comes from all directions ωji with respect to the light sources.

And �nally, the specular fraction of light coming from all light sources. The parameter

n, determining the size of the highlight, can be used to control the roughness, n < 2|or

shininess n > 30|of the surface.

REMARK 4.27 (Wavelength Dependance in The Phong Illumination Model) As the radio-

metric quantity radiance is used in the Phong BRDF, and radiance must be con-

sidered as a three-dimensional vector from the RGB-color system, the color of an

object can be controlled by evaluating the Phong illumination model at three wave-

lengths. For that, we only have to replace the reection coe�cients kx, x ∈ {a, d, s}

in the Phong model by three-dimensional vectors kx = (kTxr, k
T
xg, k

T
xb) which are used
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to control the color of the corresponding component. So, for rendering a purely blue

object, we choose: kd = (0, 0, 1)T .

THE BLINN-PHONG MODEL. A widely-used variant of the Phong reection model was

introduced in [25, Blinn 1977]. Its importance does not lie in the fact, that it is physically

more accurate than the Phong illumination model, but because it avoids to compute the

reection vector which makes it faster to compute.

Let us assume, the light source and the viewer are in�nitely far away from the ob-

servation point, then the incident direction ωi of a light ray and the exitant direction ωo
towards the viewer are constant over the whole scene. Since the reected direction ωr is

expensive to calculate, in [25, Blinn 1977] it is suggested to use a vector H which is the

direction to a hypothetical surface that is oriented in direction halfway between the light

vector and the direction towards the viewer:

DEFINITION 4.25 (The Blinn-Phong BRDF, fBPr ) Let ωr be the perfect specular reected

direction vector of the incident radiance at surface point s coming from direction

ωi and ωo be a vector in direction to the viewer. Let furthermore ρdh be the ρdh (338)

directional-hemsipherical reectance and ρdd the directional-directional hemispher- ρdd (338)

ical reectance, both material constants commonly chosen from the interval [0, 1].

Then, the Blinn-Phong BRDF fBPr , see Figure 4.43, is de�ned as:

fBPr (s,ωi → ωo)
def
=

ρdh(s)

π
+ ρdd(s)

〈N(s),H〉ke
〈ωi,N(s)〉

(4.243)

=
ρdh(s)

π
+ ρdd(s)

coske θH
|cos θi|

(4.244)

with Phong exponent ke ∈ N, surface normal N(s) and half vector H = ωo+ωi
2

.

With the di�use reection coe�cient kd = ρdh
π

and the specular reection coef-

�cient ks = ρdd the Blinn-Phong BRDF can then be written in the more commonly

used form

fPHr (s,ωi → ωo) = kd + ks
coske θH
|cos θi|

. (4.245)

Since the half vector H corresponds to the normal of the surface that reects the

incident light ray in the ideal mirrored direction ωo, the closer N and H are, the brighter

the specular highlight will be.

Based on the Blinn-Phong BRDF, the Blinn-Phong illumination model for n light

sources is now de�ned by:

DEFINITION 4.26 (The Blinn-Phong Illumination Model) Let us assume there are n ex-

tended far away area light sources in a scene to be rendered. The Blinn-Phong Illu-
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FIGURE 4.43: THE GEOMETRY UNDERLYING THE BLINN -PHONG BRDF. Light incident
at surface point s from a direction ωi is specularly reflected in direction ωr. The Phong
BRDF approximates the reflected light as a cone around the mirrored direction ωr with
exponentially decreasing intensity. This means, that the amount of light reflected in direction
ωo to the viewer is depending on the cone angle cos θH and the roughness ke of the surface.

mination model is de�ned as:

Lo(s,ωo)
def
= kaLa +

n∑
j=1

∫
H2
i

fBPr (s,ωji → ωo)Li(s,ω
j
i)dσ

⊥
s (ω

j
i), (4.246)

where the constant kaLa is the ambient illumination, representing indirect illumina-

tion, and ωji are directions with respect to light source j.

REMARK 4.28 (The Blinn-Phong Illumination Model for Point Light Sources) In the case

where we only consider point light sources, the Blinn-Phong illumination model can

be expressed by

Lo(s,ωo)
def
= kaLa +

n∑
j=1

(
kd 〈N(s),ωji〉+ ks〈N(s),Hj〉ke

)
Li(s,ω

j
i). (4.247)

Note, the additional factor 〈N(s),ωji〉 at the di�use coe�cient kd respectively

the absence of this factor in the denominator of the specular term. Both changes are
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FIGURE 4.44: IMAGES RENDERED WITH THE BLINN-PHONG ILLUMINATION MODEL.
The above spheres illustrate specular reflections. Here, the Phong exponent, ke representing
the shininess of the surface, is varied from 0, left-upper sphere, to a value of ke > 100, right-
lower sphere. The spheres on the left hand side are rendered using the Phong BRDF, the
images on the right are rendered via the Blinn-Phong illumination model.

required due to the fact that the approriate BRDF must be integrated with respect to

projected solid angle measure σ⊥. σ⊥ (88)

REMARK 4.29 Altough it is neither reciprocal nor energy-conserving, the Blinn-Phong Helmholtz Reciprocity (331)

model plays an important role in a wide range of graphics accelerators as it is the Conservation of Energy (332)

lightning model used in standard OpenGL. Images rendered via the Blinn-Phong

model are shown in Figure 4.44.

Also the Blinn-Phong model can be made symmetric by canceling the cosine-

term from the denominator of the specular component.

THE MODIFIED PHONG MODEL. Since the Phong BRDF is neither reciprocal nor energy Helmholtz Reciprocity (331)

conservative, the Phong BRDF is, as already mentioned above, not physically plausible.

In [117, Lafortune & Willems 1977] these two mayor problems are handled by normalizing

the Phong BRDF. Conservation of Energy (332)

LEMMA 4.5 (The Modi�ed Phong BRDF) Let fPHr be the Phong BRDF from Equation
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(4.232). De�ning

fPH,MODr (s,ωi → ωo)
def
=

ρdh(s)

π
+
ρdd(s) (ke + 2)

2π
〈ωr,ωo〉ke (4.248)

=
ρdh(s)

π
+
ρdd(s) (ke + 2)

2π
coske θro (4.249)

with ρdh + ρdd ≤ 1, which, using the di�use and specular coe�cients kd and ks, can

also be formulated as:

fPH,MODr (s,ωi → ωo) = kd + ks
ke + 2

2
coske θro, (4.250)

then fPH,MODr is a physically plausible BRDF satisfying the Helmholtz reciprocity

and the conservation of energy.

PROOF 4.5 To show that fPHr satis�es the Helmholtz reciprocity is straightforward, and

the conservation of energy condition of fPHr follows from the following discussion:

The maximum of reected energy in the Phong BRDF at point s occurs when ωi
and N(s) are parallel to each other. Obviously, this also implies ωr = N(s), that is:

〈ωr,ωo〉 = 〈N(s),ωo〉 = cos θo.

Computing the directional-hemispherical reectance ρdh then yields

0
(4.153)

≤ ρdh(s,ωi → H2o) (4.251)

(4.161)
=

∫
H2o(s)

fPH,MODr (s,ωi → ωo)dσ
⊥
s (ωo) (4.252)

=

∫
H2o(s)

kd + ks
ke + 2

2
〈N(s),ωo〉ke dσ⊥s (ωo) (4.253)

=

∫
H2o(s)

kd dσ
⊥
s (ωo) +

∫
H2o(s)

ks
ke + 2

2
coske θo dσ

⊥
s (ωo) (4.254)

= kdπ+ ks
ke + 2

2

∫
H2o(s)

coske θo dσ
⊥
s (ωo) (4.255)

= kdπ+ ks
ke + 2

2

∫
[0,π2 ]

∫
[0,2π)

coske+1 θo sin θo dµ(φo)dµ(θo) (4.256)

= kdπ+ ks2π
ke + 2

2

∫
[0,π2 ]

coske+1 θo sin θo dµ(θo) (4.257)

= kdπ+ ksπ(ke + 2)
(−1)

ke + 2
cos θo

∣∣π2
0

(4.258)

= kdπ+ ksπ = ρdh + ρdd. (4.259)

The condition ρdh + ρdd ≤ 1 then proofs the lemma.
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4.2.2.5.3 PHYSICAL-BASED OR PHYSICS-INSPIRED BRDF MODELS

With the Phong illumination model we can simulate plastic-like surfaces well, but it shows

signi�cant de�ciencies when modeling high-gloss, metallic surfaces, or the reection at

rough materials. Here we are forced to go back to reectance models that in some sense

are based, at least in part, on the underlying physics of reection. So, physical-based or

physics-inspired BRDF models can be characterized as to attempt to mimic physical real-

ity. That is, they attempt to use theoretical constructs from geometric and physical optics

to build a reection model that is closer to reality than phenomenological illumination

models.

Since already the simple phenomenon of reection is such a complex process, it also

makes no sense to combine all possible e�ects of light into a single lighting model from

which we expect that it is e�cient and reasonable usable in practice. So, we have to decide

what is important to the application of the model in practice. This means, that physical-

based illumination models in computer graphics can not model the light interaction as it

works in real world.

In the following, we will present a physically based illumination model whose variation

in reectivity is based on microscopically rough surfaces induced by randomly oriented

specular microfacets: The Cook-Torrance Illumination Model, [39, Cook & Torrance

1982]. Although it is physically based, it corresponds to a completely local process, i.e.

the incident and exitant light ray arrive and leave the surface at the same point. Further-

more, e�ects such as multiple scattering and polarization, which would require the study

of the classical electromagnetic wave theory [91, Ishimaru 1997], [27, Born & Wolf 1999],

[217, Tsang & al. 2000], and [216, Tsang & Kung 2001] are neglected in this model.

THE COOK-TORRENCE ILLUMINATION MODEL. The perhaps most important physical-

based illumination model in computer graphics is theCook-Torrance Illumination Model.

It is wavelength dependent and in practice very well to describe metals such as copper and

gold, but it can also be used to render materials with di�erent degree of roughness.

Cook and Torrence picked up the idea of [215, Torrence & Sparrow 1967], that any

rough surface can be composed by many randomly placed tiny v-shaped grooves lined

with at perfectly specular mirrors, called microfacets, see the images in the top row of

Figure 4.45. As with the microfacets also their directions are randomly distributed over a

surface, the surface is statistically described by a distribution function|commonly, with

a strong peak in direction to the macroscopic surface normal|that gives the probability

that a microfacet has a particular orientation. Via this distribution function then we can

model di�erent types of surface roughness: the greater the variation of the microfacet

normals, the rougher the surface is, while smooth surfaces have relatively small variation

in the microfacet normals, see Figure 4.45. This model is only correct if the wavelength

of light is smaller than the roughness of the surface.

The Cook-Torrence model works with a BRDF that is composed of two components:

a specular component, f∨r , for handling the specularly reected light and an ideal di�use f∨r (325)
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FIGURE 4.45: MICROFACETS MODEL. A surface is composed of many randomly placed
small v-shaped grooves lined with flat mirrors, so-called microfacets. So, the roughness of
a surface can statistically be described by a distribution function that gives the probability
that a microfacet has a normal in a particular direction, see the right image in the top
row, it represents the cross section of a rough surface. Obviously it holds: The greater the
variation of the microfacet normals, ωH, the rougher the surface is, this fact is visualized in
the image in the center. The lower image demonstrates a smooth surface, where we have
only a relatively small variation in the microfacet normals.
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component, for , for handling the di�usely reected light, that is, the Cook-Torrance BRDF for (339)

is of the form:

fCTr = kdf
o
r + ksf

∨
r , (4.260)

where we assume|to ensure that the Cook-Torrance BRDF is energy conserving|that kd (350)

the reection coe�cients kd and ks follow the constraint: kd + ks ≤ 1. ks (353)

The di�use component, for , is as usual chosen as the standard constant di�use term:

for
def
=
ρdh

π
. (4.261)

Compared with for , the specular component, f∨r , of the Cook-Torrance BRDF is much

more complex. For an derivation of f∨r , let us consider a light beam incident at a rough

surface, modeled via a large set of microfacets. Since the microfacets are assumed to be

ideal mirrors, only those microfacets, whose surface normal is given by ωH = ωi+ωo
‖ωi+ωo‖2 ,

reect the incident light from direction ωi in the mirrored direction MωH
(ωi) = ωo, see

Figure 4.46. Obviously, the fraction of microfacets that participate in the reection of

light from ωi to ωo is given via the value of the distribution function D at the half vector

ωH, that is, D(ωH).

Then, the di�erential ux dΦi incident on microfacets with surface normal ωH is Φ (249)

given by:

d2Φi(s,ωi) = Li(s,ωi)dσ
⊥
s (ωi)dµ

2(mωH
), (4.262)

where mωH
are all microfacets with surface normal ωH, µ

2 is the Lebesgue area measure, Lebesgue Area Measure (82)

and s are points on these microfacets.

Using the relation dσ⊥s (ωi) = dσs(ωi) cos θH, see Figure 4.46, then we can also write: dσ⊥s (88)

d2Φi(s,ωi) = Li(s,ωi)dσs(ωi) cos θH dµ
2(mωH

). (4.263)

The Lebesgue area measure of all active microfacetsmωH
can now easily be estimated

by the Distribution function D, namely as:

dµ2(mωH
) = D(ωH)dσs(ωH)dµ2(A), (4.264)

where A denotes the surface in which we are interested in and ωH are microfacet normals

lying within the di�erential solid angle dσs(ωH). Inserting this relation into Equation dσs (87)

(4.263) yields:

d2Φi(s,ωi) = Li(s,ωi)dσs(ωi)D(ωH)dσ⊥s (ωH)dµ2(A). (4.265)

As all microfacets are ideal specular reectors, the reected di�erential ux dΦo can

be expressed in terms of the incident ux and the Fresnel reectance Fr by: Fr (309)
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FIGURE 4.46: MICROFACETS GEOMETRY. For perfectly specular microfacets, only those
with normals ωH reflect light incident from direction ωi into direction ωo = MωH(ωi).
Note: The angle between the macroscopic surface normal N and ωH, the surface normal
of a microfacet, is denoted by θ, while the incoming and outgoing angle of the light ray is
denoted by θH.
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d2Φo(s,ωo) = Fr(ωo)d
2Φi(s,ωi) (4.266)

(4.265)
= Fr(ωo)Li(s,ωi)dσs(ωi)D(ωH)dσ⊥s (ωH)dµ2(A). (4.267)

Now, let us consider Figure 4.47. Obviously, all light incident at the microfacet in

the lower right image is also reected in direction to the viewer, which does not hold for

the other two cases. In the upper image, a light source illuminates a microfacet, but a

fraction of the light reected in direction to the viewer is blocked by a part of the opposite

microfacet. This means, that only a fraction of the illumination reaches the viewer. We

call this e�ect masking.

Using the sine law for triangles then due to some trigonometric formulae, we get:

G = 1−
m

l
(4.268)

= 1−
sinm

sin l
(4.269)

= 1−
sin
(
θH + 2θ− π

2

)
sin
(
π
2
− θH

) (4.270)

= 2 · cos θ · cos (θ+ θH)

cos θH
. (4.271)

Setting the angles cosθ = 〈N,ωH〉, cos (θ+ θH) = 〈N,ωo〉, and cos θH = 〈ωo,ωH〉,
then we get for the probability of masking:

G = min

(
1,
2〈N,ωH〉〈N,ωo〉
〈ωo,ωH〉

)
. (4.272)

A similar case is illustrated in the lower left image of Figure 4.47. Here, a part

of the microfacet visible from the viewer lies in the shadow area of another illuminated

microfacet. Also this means that only a part of the illumination reaches the viewer.

The term shadowing is used to describe this interference e�ect due to incident light.

Substituting the direction vectors ωi by ωo in the above formula, leads directly to the

corresponding formula for shadowing, namely:

G = min

(
1,
2〈N,ωH〉〈N,ωi〉
〈ωi,ωH〉

)
. (4.273)

The probability of neither shadowing nor masking taking place can be approximated

by the minimum of these two probabilities, namely:

G(ωi → ωo)
def
= min

{
1,
2〈N,ωH〉〈N,ωo〉
〈ωo,ωH〉

,
2〈N,ωH〉〈N,ωi〉
〈ωi,ωH〉

}
, (4.274)

where N is the macroscopic surface normal through a point illuminated from direction

ωi, and considered from direction ωo and ωH corresponds to the microfacet normal, for

a detailed discussion of the geometry term, see [25, Blinn 1977].
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FIGURE 4.47: GEOMETRICAL ATTENUATION IN THE MICROFACETS MODEL. All three
images show the interaction of light with a microfacet. When the incident direction of a
light beam begins to approach the mean surface, then interference effects come into play.
This can be seen in the upper image where some reflected light is trapped. This effect is
called masking. The degree of masking is dependent on the ratio m

l
which describes the

proportionate amount of a microfacet contributing to reflected light, namely: G = 1 − m
l

.
For shadowing the situation is geometrically identical with the role of the directions ωi and
ωo interchanged, see the lower left image. In the lower right image, all incident light is
reflected in direction to the viewer, this means, there is no attenuation in the reflected light
due to the underlying geometry, so it holds: G = 1.
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Inserting the geometry term into Equation (4.267) yields:

d2Φo(s,ωo) = Fr(ωo)G(ωi → ωo)D(ωH) · (4.275)

Li(s,ωi)dσs(ωi)dσ
⊥
s (ωH)dµ2(A).

Obviously, the radiance exitant at point s on any active microfacet in direction ωo
is given by:

Lo(s,ωo)
(3.15)
=

d2Φo(s,ωo)

dσ⊥(ωo)dµ2(A)
(4.276)

= Fr(ωo)G(ωi → ωo)D(ωH) · (4.277)

Li(s,ωi)dσs(ωi)dσ
⊥
s (ωH)dµ2(A)

dσ⊥(ωo)dµ2(A)

= Fr(ωo)G(ωi → ωo)D(ωH) · Li(s,ωi)dσs(ωi)dσ
⊥
s (ωH)

dσ⊥(ωo)
. (4.278)

Now, due to De�nition 4.88, an associated BRDF is de�ned as:

fr(s,ωi → ωo)
def
=

dLo(s,ωo)

Li(s,ωi)dσ⊥s (ωi)
(4.279)

(4.278)
= Fr(ωo)G(ωi → ωo)P(ωH) · (4.280)

Li(s,ωi)dσs(ωi)dσ
⊥
s (ωH)

dσ⊥(ωo)Li(s,ωi)dσ⊥s (ωi)
(4.281)

=
Fr(ωo)G(ωi → ωo)D(ωH)

cos θi cos θo

dσ⊥s (ωH)

dσ(ωo)
. (4.282)

According to the Law of reection|for an illustration, see Figure 4.46|the polar Law of Reflection (300)

angle θo between ωi and ωo is equal to 2θH, while the azimuthal φo = φH. Using this

two relation, then the second term in Equation (4.282) can be rephrased as:

dσ⊥s (ωH) cos θH
dσ(ωo)

(2.186),(2.192)
=

sin θH cos θH dµ(θH)dµ(φH)

sin θodµ(θo)dµ(φo)
(4.283)

=
sin θH cos θH dµ(θH)dµ(φH)

sin (2θH)dµ(2θH)dµ(φH)
(4.284)

=
sin θH cos θH dµ(θH)

sin (2θH)2 dµ(θH)
(4.285)

=
sin θH cos θH

2 cos θH sin θH · 2
=
1

4
. (4.286)

Using this relation in Equation (4.282) implies the following formulation of the spec-

ular component of the Cook-Torrence BRDF:

fr(s,ωi → ωo) =
Fr(ωo)G(ωi → ωo)D(ωH)

4 cos θi cos θo
. (4.287)
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DEFINITION 4.27 (The Cook-Torrance BRDF, fCTr ) Let Fr be the Fresnel reectance from

Equation (4.72), G, represents the geometrical attenuation factor from above, and

D denotes a probability distribution function of microfacet orientations...

Let furthermore ρdh
π

be the di�use reection coe�cient and ρdd
π

the coe�cientkd (350)

of specular reection, both, material constants commonly chosen from the intervalks (353)

[0, 1]. Then, the Cook-Torrance BRDF, fCTr , is de�ned as:

fCTr (s,ωi → ωo)
def
= kdf

o
r + ksf

∨
r (4.288)

=
ρdh(s)

π
+
ρdd(s)

π

Fr(ωo)G(ωi → ωo)D(ωH)

4 cos θi cos θo
. (4.289)

REMARK 4.30 (The Choice of the Microfacet Distribution Function) There a various pos-

sibilities to model the roughness of the underlying surface. So, in [25, Blinn 1977] a

Gaussian distribution function for D was used:

D(cos θH)
def
= c exp

(
−
θ2H
m2

)
, (4.290)

where c is an arbitrary constant, and m denotes the root mean square slope of the

facets. This distribution function is simple, fast to compute, and is good at matching

reality as well as being pretty fast. But is has the ominous constant c which should

be chosen to normalize the BRDF fCTr .

Another, more accurate, but computationally more complex distribution function

is the Beckmann distribution function. It is one of the most common microfacet

distribution, does not need the ominous constant as in the Blinn model, and it is

de�ned by:

D(cos θH)
def
=

1

m2 cos4 θH
exp

(
−
tan2 θH
m2

)
. (4.291)

When m is small, such as m = 0.1, the microfacet slopes vary only slightly

from macroscopy surface normal, this means, that the reection is highly directional.

Large m, i.e. m near one, imply that the associated v-grooves are deep, resulting in

a rough surface that spreads out the light it reects.

REMARK 4.31 To model surfaces that have multiple scales of roughness, [39, Cook &

Torrance 1982] suggest to use a weighted sum of distribution functions:

D(cos θH) =

n∑
i=j

WjDj(cos θH), (4.292)

where the sum of the weights wj yields one.
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REMARK 4.32 There are a series of other physically based BRDF models, such as the

He-model, the Oren-Nayar BRDF or the Ashikhmin-Shirley reection model.

The He-model, [85, He & al. 1991], is one of the most comprehensive BRDF

models. In literature, it is often also known as the He-Torrance model. It accounts

for example many e�ects such as polarization of light and subsurface scattering as

well as the interaction of light at anisotropic surfaces. But the He-model has the

disadvantage, that it is computationally very intensive. The Oren-Nayar BRDF, [142,

Oren & Nayar 1994], is particularly interesting as it applies microfacet theory to

Lambertian microfacets.

The Ashikhmin-Shirley BRDF incorporates some ideas from the Schlick and the

Lafortune BRDF, introduced in [178, Schlick 1993] and [115, Lafortune & al. 1997].

It is a modern version of the Phong BRDF, or rather of the Blinn-Phong BRDF, that

uses the same exponentiated cosine-lobe. The Ashikhmin-Shirley BRDF is physically

plausible and models a number of physical e�ects, [14, Ashikhmin and Shirley 2000].

4.2.2.5.4 BRDF MODELS BASED ON MEASURED DATA

Finally, we present with the Ward BRDF a further reection model based on empirical

data introduced to �t measured data.

WARD MODEL. In [231, Ward 1992] the approach was made to generate a BRDF which is

not only easily implemented but is also useful for precisely matching the observed behavior

from measurements at most occurring materials. Using only a few simple parameters, the

Ward model is not only easy to control, but can be sampled e�ciently for Monte Carlo

integration. The Ward BRDF is derived for describing the reection behavior of light at

isotropic surfaces, but can be extended in a straightforward way to describe reection at

anisotropic surfaces.

Similar to the Torrance-Sparrow model, also the Ward model uses a Gauss distribution

to describe the irregularities of a surface in a stochastically way. Since the geometry as

well as the Fresnel term|typically involved in physically-based BRDFs|is di�cult to

integrate, in Wards reectance model they are approximated by a term normalizing the

BRDF.

DEFINITION 4.28 (The Isotropic Ward BRDF) The Ward BRDF for isotropic surfaces Isotropy (335)

is de�ned as:

fWr,iso(s,ωi → ωo) =
ρdh(s)

π
+ ρdd(s)

exp− tan2
〈H(s),N(s)〉

α2

4πα2
√
〈ωi,N(s)〉〈ωo,N(s)〉

, (4.293)

where ρdd, and ρdh are the directional-directional as well as the directional-hemi- ρdd (338)

spherical reectances, α is the standard deviation of the microfacet slope, H is the ρdh (338)

half vector between ωi and ωo, and N is the surface normal at point s. Standard Deviation (213)
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Obviously, the isotropic Ward BRDF is the sum of two components. The di�use

term, given by ρdh
π
, and a Gaussian gloss lobe de�ned by two parameters, the directional-

directional reectance ρdd and the microfacet slope α, simulating the roughness of the

underlying surface. While the specular reectance ρdd controls the magnitude of the lobe,

α governs the width of the lobe.

REMARK 4.33 Letting the roughness parameter α go to in�nity, the surface gets per-

fectly di�use, that is, the Ward BRDF is independent of the direction and can be

written as:

fW,or,iso(s,ωi → ωo)
(4.169)
=

ρdh(s)

π
. (4.294)

Ignoring the di�use term and letting the roughness parameter vanish, the Ward

BRDF simulates ideal reection at a smooth surface, and the BRDF is given by

fW,
∨

r,iso(s,ωi → ωo)
(4.104)
= ρdd(s)

δ(ωi −ωo)

| cos θi|
, (4.295)

with ωo =MN(ωi).

Extending the Gaussian distribution in Wards reection model to surfaces with two

perpendicular slope distributions αx and αy, then leads to Wards anisotropic BRDF.

DEFINITION 4.29 (The Anisotropic Ward BRDF) The Ward BRDF for anisotropic sur-Anisotropy (335)

faces is de�ned as:

fWr (s,ωi → ωo) =
ρdh(s)

π
+ ρdd(s)

exp
− tan2 δ

(
cos2 φ

α2x
+ sin2 φ

α2y

)

4παxαy
√
〈ωi,N(s)〉〈ωo,N(s)〉

, (4.296)

where αx and αy are the standard deviations of the microfacet slope in x- and y-Standard Deviation (213)

direction, H is the half vector between ωi and ωo, N is the surface normal at point

s, φ is the azimuth angle of the half vector projected into the surface plane.

As in the isotropic case, the anisotropic Ward BRDF is also a sum of two components.

The di�use term, given by ρdh, a Gaussian anisotropic gloss lobe, now, de�ned by three

parameters, ρdd and the surface slopes in the two orthogonal directions x and y-direction.

While the specular reectance controls the magnitude of the lobe, αx and αy govern the

width of the lobe in the principal directions of anisotropy [229, Walter 2005].

Contrary to the Phong model, the Ward BRDF is physically correct, i.e. it satis�esHelmholtz Reciprocity (331)

the Helmholtz reciprocity and the conservation of energy. Under the assumption, thatConservation of Energy (332)

the reectances ρdh and ρdd together are smaller than one and the values α respectively

αx and αy are not to large, we get a physically correct BRDF. This can be proofed via

comparing of measured data from real materials with the BRDF. Such comparisons then
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FIGURE 4.48: EXAMPLES OF THE ANISOTROPIC WARD BRDFS. Varnished wood com-
parison. On the left shows a photograph of a childs chair. The center shows a simulation of
the chair using the isotropic Gaussian model with a strictly deterministic calculation. On the
right shows a hybrid deterministic and stochastic simulation of the chair using the elliptical
Gaussian model. Courtesy of Greg Ward Larson.

show that the Ward model can be used for modeling many materials, but that there are

also materials that can not be approximated via this model. Images rendered via the

anisotropic Ward model are shown in Figure 4.48.

Another interesting BRDF, similar to the Ward model, was published in [178, Schlick

& al. 1993]. The Schlick BRDF is a combination of an empiric and a theoretical model.

Since the Schlick BRDF uses only a few parameters, it is simple and e�cient to evaluate,

but o�ers possibilities to describe reections in a preferably physical-plausible manner.

This enable the Schlick BRDF to be used in hardware implementations.

4.2.3 BIDIRECTIONAL SCATTERING DISTRIBUTION FUNCTION

In computer graphics the two light phenomena of reection and refraction are more and

more treated together under the synonym of scattering. The mathematical concept behind

scattering is the bidirectional scattering distribution function also briey denoted as

BSDF. Unlike the BRDF and BTDF, the BSDF is not a key concept in radiometry, Chapter (3)

but it plays a major role in computer graphics, and in our future theoretical and practical

considerations, as it frees us to distinguish between reection and transmission at surfaces.

This, then makes our equations easier to handle.

DEFINITION 4.30 (Bidirectional Scattering Distribution Function) Let ∂V be the set of all ∂V (41)
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N (s) ω i

Li (s, ω i )

Lo(s, ω o)

dσs (ω i )θi

θo

φi

ω o

s

φo

Li (s, ω i )

ω i dσs (ω i )

FIGURE 4.49: THE GEOMETRY OF THE BIDIRECTIONAL SCATTERING DISTRIBUTION
FUNCTION. The BSDF is a four-dimensional function, defined on ∂V ×S2i ×S2o with values
in [0,∞]. It describes how much incident light, coming from direction ωi, is reflected at a
surface point in the outgoing direction ωo.

2-dimensional surfaces in R3, s be a point on any surface A ∈ ∂V, furthermore S2i be
the set of all incident directions and S2o be the set of all exitant directions around s.

We call the measurable function fs de�ned onMeasurable Function (98)

fs : ∂V × S2i × S2o → [0,∞] (4.297)

with

fs(s,ωi → ωo)
def
=
dLo(s,ωi → ωo)

dE(s,ωi)
=
dLo(s,ωi → ωo)

Li(s,ωi)dσ⊥s (ωi)
,

[
1

sr

]
(4.298)

the bidirectional scattering distribution function, also briey the BSDF, see Figure

4.49.

Due to its de�nition, the BSDF can be interpreted as the union of an upper and aBRDF (320)
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lower BRDF as well as an upper and a lower BTDF, i.e. instead four, there is only still oneBTDF (330)

single function with which we have to work. The advantage of this construct is that we do

not more need to handle the light behavior at each side of the involved surface separately

by a BRDF and an BTDF, which in the theory leads to more simpler equations.

To be physically valid, a BSDF must satisfy the same properties as a BRDF, that is,

a BSDF should be a non-negative function, satisfy the principle of Helmholtz reciprocity,

fs(s,ωi → ωo) = fs(s,ωo → ωi) (4.299)

and that of conservation of energy, also∫
S2(s)

fs(s,ωi → ωo)Li(s,ωo)dσ
⊥
s (ωo) ≤ 1. (4.300)

For deriving a BSDF that holds for arbitrary physically valid material, let us follow

[221, Veach 1998]:

THEOREM 4.5 Let fs be the BSDF for a physically valid surface, which is either the

boundary of an opaque object or the interface between two non-absorbing media.

Provided that there are no external magnetic �elds, then we have:

fs(s,ωi → ωo)

η2o
=

fs(s,ωo → ωi)

η2i
, (4.301)

where ηo and ηi are functions of the exitant respectively the incident directions ωo
and ωi, [221, Veach 1998].

PROOF 4.5 Let us assume a scene is given in a vacuum or in a participating medium.

Let furthermore A ∈ ∂V be an opaque surface or an interface between two non-

absorbing media. Considering the light, falling on a small area dµ2(s) around point

s from a small di�erential solid angle dσ(ωi) around the direction ωi, which is

scattered|i.e. reected or refracted, specularly or non-specularly|toward another

cone dσ(ωo) around ωo. Then, the di�erential incident ux from ωi, scattered in

directions within dσ(ωo) is equal to

dΦio = Lo(s,ωo)dµ
2(s)dσ⊥s (ωo) (4.302)

= fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi)dµ

2(s)dσ⊥s (ωo), (4.303)

while the ux incident from directions ωo at s scattered in directions from dσ(ωi) is

given by:

dΦoi = Li(s,ωi)dµ
2(s)dσ⊥s (ωi) (4.304)

= fs(s,ωo → ωi)Li(s,ωo)dσ
⊥
s (ωo)dµ

2(s)dσ⊥s (ωi). (4.305)
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Now, in free space as well as in a non-absorbing medium it holds dΦio = dΦoi,

that is,

dΦio = dΦoi (4.306)

fs(s,ωi → ωo)Li(s,ωi) = fs(s,ωo → ωi)Li(s,ωo). (4.307)

Substituting Kirchho�'s equilibrium radiance law, see [221, Veach 1998], that

is,

Li(s,ωi)

η2i
=

Li(s,ωo)

η2o
(4.308)

in the foregoing equation yields:

fs(s,ωi → ωo)

η2o
=

fs(s,ωo → ωi)

η2i
, (4.309)

where ηo and ηi are functions of the exitant respectively the incident directions ωo
and ωi, the so-called refraction indices of the incident and the exitant media.

REMARK 4.34 The result of the above theorem has important consequences for deriving

bidirectional algorithms for solving the global illumination problem.Bidirectional Path Tracing (717)

Bidirectional algorithms, as we will present them in Section 9.3, are based on the

idea to connect two independently generated subpaths, one starting from a light sourceMonte Carlo Light Tracing (710)

and the other starting from the eye. As we have seen above, non-symmetric scatteringMonte Carlo Path Tracing (692)

occurs whenever light is refracted. This means that a bidirectional algorithm that uses

a non-symmetric BSDF has to use di�erent scattering rules depending on weather

paths are started from the eye or from a light source, which �nally results in two

di�erent transport equations.

Let us now reformulate Equation (4.298) as follows, i.e. writing

dLo(s,ωi → ωo) = fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi) (4.310)

and integrating similar to our procedures for deriving the subsurface scattering equationSSEQ (319)

over all incident directions of the unit sphere, then we get the so-called scattering equa-

tion:

DEFINITION 4.31 (Scattering Equation) The scattering equation indicates the fraction of

incident radiance at point s from all directions that is scattered only in direction ωo,

it is given by:

Lo(s,ωo)
def
=

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (4.311)
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The scattering equation can be used to predict the appearance of the surface, given

a description of the incident illumination.

REMARK 4.35 (Reectances De�ned on the Basis of the BSDF) For the sake of complete-Reflectance (336)

ness, we also mention that the concept of reectance, introduced in Section 4.2.2.3

can also be transferred on the BSDF by simply replacing the BRDF in all existing

equations by the BSDF, thus:

ρdd ≡ ρ(ωi → ωo) (4.312)

ρds ≡ ρ(ωi → S2o) (4.313)

ρsd ≡ ρ(S2i → ωo) (4.314)

ρss ≡ ρ(S2i → S2o). (4.315)

Via the notion of the reectance, also the theoretical concept of the BSDF can be

expressed in terms of the rather more practical used concept of reectance.

REMARK 4.36 (Components of a BSDF) Based on the de�nition of the BRDF and the

BTDF, a BSDF can also be seen as composed of a di�use part, fos , a specular part,

f
∨

s , and and a glossy or directional di�use part, fgls , that is, we will often use the

BSDF in the following form

fs = f
o
s + f

∨

s + fgls . (4.316)

4.2.4 PHASE FUNCTIONS

When a light quantum collides with a particle that has an index of refraction di�erent

from its environment, the photon is refracted from its original direction of motion. This

phenomenon of refraction is not only dependent on the size and shape of the particle, but

also on the wavelength and the angle of the incident photon with respect to the viewer.

Thus, the scattering properties of a particle can be described by a so-called scattering

pro�le, [164, Prahl 1988 ], or in other words by a phase function, which di�ers in general

from particle to particle.

In this section, we introduce the concept of the phase function. As a tool for de-

scribing the directional dependent scattering behavior of photons striking particles in a

participating medium. It plays an important role in volume scattering. We also talk

about properties of the phase function and present the most interesting analytical models

of phase functions for the �eld of computer graphics. Let us start with the de�nition of a

phase function.



376 CHAPTER 4. MATHEMATICAL FORMULATIONS OF STATIONARY LIGHT TRANSPORT

FIGURE 4.50: THE GEOMETRY UNDERLYING THE DEFINITION OF THE PHASE FUNC-
TION. For illustrating the scattering behavior of photons at particles in participating media
we go back to the convention commonly used in the scattering literature. The incident direc-
tion ωi always points toward the point where scattering happens and the outgoing direction
ωo points away from it. Obviously, this notation is different from that used for BRDFs. To
conform this notation with that used for BRDFs, we have to replace in our formulas for the
light transport the incident direction ωi in the associated phase function by −ωi.

DEFINITION 4.32 (Phase Function, p) Let us consider a photon coming from direction ωi
which collides with a particle in a participating medium at point x ∈ Vo. Depending Vo (41)

on the shape and size of the particle as well as the incident direction ωi, then the

photon will be refracted in direction ωo, see Figure 4.50. The fraction of light at

point x scattered from direction ωi into direction ωo can now be described by a

function, the so-called phase function p, that is, a mapping

p : Vo × S2i × S2o → [0,∞] (4.317)

with

(x,ωi → ωo) 7→ p(x,ωi → ωo), (4.318)

and the normalization property∫
S2(x)

p(x,ωi → ωo)dσx(ωo) = 1

[
1

sr

]
. (4.319)

REMARK 4.37 From Figure 4.50 it can be seen that we use a di�erent convention for the

direction vectors at a scattering event from the one usually used in computer graphics

when considering scattering at a surface. Instead of facing both directions away from

the scattering e�ect, we have used the widely spread convention for scattering at a

particle, where the incoming direction vector points toward the scattering point.



SECTION 4.2. BIDIRECTIONAL DISTRIBUTION FUNCTIONS 377

Most phase functions are symmetrical around the incident direction ωi depending

only on the angle between the incident and exitant direction, thus 〈ωi,ωo〉 = cos θ, hence

they are often written as functions of the variable cos θ, namely by:

p(cos θ). (4.320)

EXAMPLE 4.3 (1-dimensional Phase Functions) The normalization condition for a 1-

dimensional phase function has the form:∫
S2(x)

p (〈ωi,ωo〉)dσx(ωo)
(2.186)
=

∫
[0,2π)

∫
[0,π]

p(cos θ) sin θdµ(θ)dµ(φ) (4.321)

= 2π

∫
[0,π]

p(cos θ) sin θdµ(θ) (4.322)

= 2π

∫
[π,0]

p(cos θ)dµ(cos θ) (4.323)

= 2π

∫
[cosπ,cos 0]

p(x)dµ(x) (4.324)

= 2π

∫
[−1,1]

p(x)dµ(x)︸ ︷︷ ︸
1

, (4.325)

that is, with the result from Example 2.44, the normalization factor is 1
4π
.

REMARK 4.38 Commonly, we will only consider 1D phase functions depending on the

variable cos θ. Only in rare cases, such as when we have to consider media with a

crystalline structure, it is required to discuss phase functions depending on more, in

particular, two directions.

REMARK 4.39 Due to its de�nition, the phase function can be interpreted as a prob- PDF (176)

ability density function de�ned on the probability space (S2,B(S2),P) in this case Probability Space (163)

it gives the probability that a photon incident at point x from direction ωi will be

scattered in a di�erential solid angle around direction ωo.

PHYSICAL PROPERTIES OF PHASE FUNCTIONS. Considered as a PDF, a phase function must PDF (176)

be a non-negative measurable function, that is, it must hold: Measurable Function (98)

p(x,ωi → ωo) ≥ 0 (4.326)

for all ωi,ωo ∈ S2.
It should also be clear that the normalization condition (4.319) entails energy con-

servation. This is, as we will see further below, an important property which makes it

possible to replace the hypothetical scattering kernel in the stationary particle transport Scattering Kernel (284)

equation, thus the SPTE, by the phase function. SPLTE (294)
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FIGURE 4.51: HELMHOLTZ RECIPROCITY OF THE PHASE FUNCTION. The value of
the function remains unchanged if the direction of light is reversed, that is, the location of
the viewer and the light source can be swapped. This can mathematically by expressed via
p(x, ωi → ωo) = p(x, ωo → ωi).

As known from our concept of the BRDF, also phase functions satisfy the principle BRDF (320)

of Helmholtz reciprocity, that is, the value of a phase function remains equal even if the

incoming and outgoing direction of the involved photons are interchanged. So, reversingHelmholtz Reciprocity (331)

the direction of light does not change the fraction of light that is scattered. The reciprocity

property of the phase function is illustrated in Figure 4.51, mathematically it can be

expressed as:

p(x,ωi → ωo) = p(x,ωo → ωi) (4.327)

for all ωi,ωo ∈ S2(x). This is also the reason why the notation

p(x,ωi ↔ ωo)
def
= p(x,ωi → ωo) = p(x,ωo → ωi) (4.328)

is justi�ed.

EXAMPLE 4.4 (1-dimensional Phase Functions, Continued) The Helmholtz reciprocity of

1-dimensional phase functions can easily be shown by

cos θ = 〈ωi,ωo〉 = 〈ωo,ωi〉 = cos θ (4.329)

thus

p(〈ωi,ωo〉) = p(〈ωo,ωi〉). (4.330)

To specify the preferred scattering direction of a particle, a parameter called the

average cosine, also denoted as the asymmetry parameter is used. In the literature this

parameter is often denoted by g and de�ned as follows:
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DEFINITION 4.33 (The Asymmetry Parameter, g) The asymmetry parameter, g, also

known as the average cosine is de�ned as the integral over all directions of the phase

function multiplied by the cosine of the angle between ωi and ωo, thus:

g
def
=

∫
S2(x)

p(x,ωi → ωo) 〈ωi,ωo〉dσx(ωo) (4.331)

(2.191)
=

∫
S2(x)

p(x,ωi → ωo) cos θdσx(ωo) (4.332)

with cos θ = 〈ωi,ωo〉.

Using the monotonicity of the Lebesgue integral from Lemma 2.2 in the de�nition of

the asymmetry factor, then we can conclude that the average cosine g is a real number

from [−1, 1] since it holds:

− 1
(4.319)
= −

∫
S2(x)

p(x,ωi → ωo)dσx(ωo) (4.333)

−1≤cosθ
≤

∫
S2(x)

p(x,ωi → ωo) cos θdσx(ωo) (4.334)

(4.331)
= g (4.335)

g
(4.331)
=

∫
S2(x)

p(x,ωi → ωo) cos θdσx(ωo) (4.336)

cosθ≤1
≤

∫
S2(x)

p(x,ωi → ωo)dσx(ωo) (4.337)

(4.319)
= 1. (4.338)

This allows us to control the degree of anisotropy of the medium via the asymmetry

factor g in such a way that a negative value of g indicates that particles are scattered

preferably backwards, and g > 0 indicates that particles are scattered rather in forward

direction. The value g = 0 simulates isotropic scattering. Isotropic scattering means, Isotropy (335)

that energy is distributed equally in forward and backward direction. The greater the

value of g, the more scattering occurs close to the incident direction ωi, in the case of

forward-scattering, or −ωi for backward-scattering.

EXAMPLE 4.5 (1-dimensional Phase Functions, Continued) For the asymmetry parameter
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g we get:

g
(4.331)
=

∫
S2(x)

p (〈ωi,ωo〉) 〈ωi,ωo〉dσx(ωo) (4.339)

(2.186)
=

∫
[0,2π]

∫
[0,π)

p(cos θ) cos θ sin θdµ(θ)dµ(φ) (4.340)

= 2π

∫
[0,π)

p(cos θ) cos θ sin θdµ(θ) (4.341)

= 2π

∫
[π,0)

p(cos θ) cos θdµ(cos θ) (4.342)

= 2π

∫
[−1,1)

p(x) xdµ(x). (4.343)

As known from our discussions about BRDFs, so, there are also a variety of di�erentBRDF (320)

phase function models, which range from parametrized models|usually de�ned by a small

number of parameters|over measured data, to analytical models, incorporating the shape

and material of the involved particles. We will now present the most relevant analytical

phase functions, which can be used in the SPTE as scattering kernels.SPLTE (294)

ISOTROPIC PHASE FUNCTION. The simplest example of an analytical phase function is the

isotropic phase function. It is a constant and de�ned by:

piso(x,ωi → ωo) =
1

4π
, (4.344)

where the factor 1
4π

results from the normalization condition (4.319). The isotropic phase

function has units
[
1
sr

]
. It can be seen as the equivalent of di�use reection and can be

interpreted in such a way that a photon, when it collides with a particle, will be scattered

with the same probability in all directions over the unit sphere, see Figure 4.52.

HENYEY-GREENSTEIN PHASE FUNCTION. A commonly used non-isotropic phase function

is the Henyey-Greenstein phase function [83, Henyey & Greenstein 1941]. It is based

on an empirical model for simulating scattering of radiation in the galaxy and can be

used to model a large variety of di�erent scattering types, such as scattering in oceans,

clouds, skin, stone, and much more. The Henyey-Greenstein phase function, see Figure

4.53, is intuitively controlled by the asymmetry parameter g. In its normalized form, the

Henyey-Greenstein phase function is de�ned as:

pHG(x,ωi → ωo)
def
=

1

4π

1− g2

(1+ g2 − 2g〈ωi,ωo〉)
3
2

(4.345)

=
1

4π

1− g2

(1+ g2 − 2g cos θ)
3
2

. (4.346)
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FIGURE 4.52: ISOTROPIC PHASE FUNCTION. The amount of light scattered by particles
does not depend on the direction of the incident light ray and the viewing direction.

An other common non-isotropic phase functions is the modi�ed Henyey-Greenstein

phase function, [164, Prahl 1988 ], it has the form:

p(x,ωi → ωo)
def
=

1

4π

(
β+ (1− β)

1− g2

(1+ g2 − 2g〈ωi,ωo〉)
3
2

)
(4.347)

=
1

4π

(
β+ (1− β)

1− g2

(1+ g2 − 2g cos θ)
3
2

)
, (4.348)

where the �rst term represents the amount of light scattered isotropically and the second

term contains the Henyey-Greenstein function. For β = 0, this phase functions reduces to

the Henyey-Greenstein phase function.

For modeling more complex scattering properties of particles in [95, Jensen 2001]

combinations of Henyey-Greenstein phase functions are suggested, such as:

p(x,ωi → ωo)
def
=

n∑
i=1

wi

 1− g2i

4π
(
1+ g2i − 2gi〈ωi,ωo〉

) 3
2

 (4.349)

=

n∑
i=1

wi

 1− g2i

4π
(
1+ g2i − 2gi cos θ

) 3
2

 , (4.350)

where
∑n
i=1wi = 1 is a sum of weights and gi controls the shape of each lobe. Such

combinations of Henyey-Greenstein phase functions can give very realistic results when

forward scattering, g > 0, and backward scattering lobes, g < 0, are used.

SCHLICK PHASE FUNCTION. Since the shape of the Henyey-Greenstein phase function

is similar to an ellipsoid, [24, Schlick & al. 1993] recommend to approximate it by an
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FIGURE 4.53: HENYEY-GREENSTEIN PHASE FUNCTIONS. The polar plots of the Henyey-
Greenstein phase function for anisotropy parameter g = ±0.2,±0.4,±0.6,±0.8. The plots
show the intensity of scattering as a function ofωi andωo in forward and backward direction.
Higher values of g increase the probability of scattering in forward direction, while smaller
values scatters light more in backward direction.
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FIGURE 4.54: SCHLICK PHASE FUNCTIONS. The polar plots of the Schlick phase func-
tion for anisotropy parameter value g = 0.2, 0.4, 0.6, 0.8. The plots show the intensity of
scattering as a function of ωI and ωo in forward direction. Higher values of g increase the
probability of scattering in forward direction.

ellipsoid which would eliminate the relatively costly computation of the 3
2
exponent in the

denominator of the Henyey-Greenstein phase function, see Figure 4.54. Schlick's phase

function is de�ned as:

p(x,ωi → ωo)
def
=

1− k2

4π(1+ k〈ωi,ωo〉)2
(4.351)

=
1− k2

4π(1+ k cos θ)2
. (4.352)

Here, k ∈] − 1, 1[ acts similarly to the parameter g in the Henyey-Greenstein phase

function, that is, it controls the preferred direction of the scattering. This means: k = 0

corresponds to isotropic scattering, k > 0 is forward scattering, and k < 0 results in

backward scattering. Due to [159, Pharr and Humphreys 2010] an accurate approximation

to the Henyey-Greenstein phase function is given by the polynomial

k ≈ 1.55g− 0.55g3 (4.353)

for intermediate values of k.
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FIGURE 4.55: RAYLEIGH PHASE FUNCTION. When particles are somewhat smaller than
the wavelength of light, the scattering at these particles can be described by the Rayleigh
phase function. The Rayleigh phase function is isotropic around the incident direction.

RAYLEIGH PHASE FUNCTION. Another type of an often used non-isotropic phase function

is the Rayleigh phase function, named after Lord Rayleigh who explained the blue color

of the sky as a result of light scattering predominantly in the blue end of the spectrum

with the help of this function [33, Chandrasekhar 960] and [19, Beckmann & al. 1987].

Rayleigh scattering models the scattering for extremely small spherical particles such

as molecules of the air. It can be extended to scattering from particles up to about a tenth

of the wavelength of the light. The Rayleigh phase function is de�ned as

p(x,ωi → ωo)
def
=

1

4π

3

4

(
1+ 〈ωi,ωo〉2

)
(4.354)

=
1

4π

3

4
(1+ cos2 θ), (4.355)

see Figure 4.55.

REMARK 4.40 (Lorenz-Mie Scattering) In connection with Rayleigh scattering let us also

mention Lorenz-Mie scattering, which is based on a more complex theory. Lorenz-Mie

scattering is derived from Maxwell's equations and can be used to describe scatter-

ing by spherical particles, whose size is comparable to the wavelength of light, such

as water droplets of fog. Lorenz-Mie theory can be used to derive phase functions

for a homogeneous collection of spherical particles where any ratio of diameter to

wavelength is allowed. In [140, Nishita & al. 1987] two empirically derived approx-

imations to the complicated Lorenz-Mie scattering functions for foggy atmospheres
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FIGURE 4.56: LORENZ-MIE PHASE FUNCTIONS. The polar plots of the hazy, left image,
and the murky phase functions on the right side. They are approximations to the behavior
of scattering in foggy atmospheres based on Lorenz-Mie theory.

are presented, one for hazy atmospheres:

PMH(x,ωi → ωo)
def
=

1

4π

(
1

2
+
9

2

(
1+ cos θ

2

)2)
, (4.356)

and one for murky atmospheres:

PMH(x,ωi → ωo)
def
=

1

4π

(
1

2
+
33

2

(
1+ cos θ

2

)32)
, (4.357)

see Figure 4.56.

4.3 LIGHT SOURCES

For rendering a virtual scene, we need light sources that are responsible for illuminating

the existing objects. Now, in Section 2.1.3 we have already meet two di�erent types of

light sources: ideal point light sources and area light sources. In Chapter 3 we then dis-

cussed some properties of these types of light sources. In the current section, we will now

extend our interest in light sources, so we will discuss more properties of point and area

light sources and present some further types of light sources useful for rendering di�erent

light e�ects.

POINT LIGHT SOURCES. In De�nition 2.12 we introduced an ideal point light source as the

center of a spherical �eld of light, where light is uniformly radiated in all directions.
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Point lights are idealized light sources, that do not exist in the real world. They

can rather be considered as abstractions of light sources that are far away compared to

the size of the light sources. Physically, a point light is a source of radiant power, thatRadiant Power (249)

adds, in a given period of time, a certain amount of energy to the environment. Now,

due to the point singularity at the source, it is di�cult to describe the energy distribution

of a point light source via the radiometric concept of radiance. That is, the remainingRadiance (250)

radiometric quantities to describe the illumination behavior of a point light source canIrradiance (257)

only be: irradiance, or radiant intensity. As the Inverse Square Law from Example 3.5Radiant Intensity (267)

shows, the irradiance contribution of a point light source varies inversely to the square

of the distance between the point light source and the illuminated surface. In deed, this

is mathematically correct, but often results in unnatural lighting of a scene. Therefore,

a useful measure for modeling the illumination behavior of a point light source is the

radiometric quantity radiant intensity, introduced in Section 3.6. In contrast to irradiance,Radiant Intensity (267)

radiant intensity, as Equation (3.94) shows, does not change with distance from the light

source.

EXAMPLE 4.6 (Direct Illumination due to Point Light Sources) Let us consider a scene

consisting of opaque surfaces illuminated by a point light source, ∗, located at point

x ∈ R3. Obviously, the direct illumination at surface point s can then be described

by the reectance equation, that is:Reflectance Equation (321)

Lo(s,ωo) =

∫
H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (4.358)

Since the incident radiance at point s only comes from a single direction ωli
towards the point light ∗, instead to integrate over the whole upper hemisphere, we

only has to account for direction ωli. Using a Dirac δ-distribution, the reectedDirac-δ Distribution (117)

radiance can be expressed as:

Lo(s,ωo) =

∫
H2
i
(s)

fr(s,ωi → ωo) δσ⊥(ωi −ω
l
i)Li(s,ωi)dσ

⊥
s (ωi) (4.359)

(2.302)
= fr(s,ω

l
i → ωo)Li(s,ω

l
i) (4.360)

= fr(s,ω
l
i → ωo)Le(x,−ω

l
i) (4.361)

with x = γ(s,ωli). Using Relation (3.99), then the reected radiance at point s in

direction ωo can also be expressed in terms of emitted radiant power of the point

light ∗, namely by:

Lo(s,ωo) = fr(s,ω
l
i → ωo)

Φe(x)

4π ‖s− x‖22

∣∣cos θli∣∣ . (4.362)

Equation (4.362) says that in a conventional implementation of a ray tracer,

where only point light sources are used, the exitant radiance at point s in directionRadiance (250)
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ω can be computed via the radiant power emitted from the light source.Radiant Power (249)

Assuming, that the scene is illuminate by a �nite set of point lights ∗1, . . . , ∗n,
then the reected radiance at point s in direction ωo is given by:

Lo(s,ωo) =

∫
H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi) (4.363)

=

n∑
j=1

fr(s,ω
lj
i → ωo)Li(s,ω

lj
i )
∣∣∣cos θlji ∣∣∣ (4.364)

=

n∑
j=1

fr(s,ω
lj
i → ωo)Le(xj,−ω

lj
i )
∣∣∣cos θlji ∣∣∣ (4.365)

=

n∑
j=1

fr(s,ω
lj
i → ωo)

Φe(xj)

4π ‖xj − s‖22

∣∣∣cos θlji ∣∣∣ , (4.366)

with xj = γ(s,ω
lj
i ) and

∣∣∣cos θlji ∣∣∣ corresponds to the cosine between the surface normal

at point s and direction ω
lj
i towards ∗j. We leave the details of this derivation to the

interested reader as an exercise.

Although the concept of the point light source is an idealization, point lights play a

central role in rendering algorithms as they serve as the basis of a series of other types of

light sources.

AREA LIGHT SOURCES. Based on the concept of the point light source, we introduced in

De�nition 2.13 the type of the area light source as a 2-dimensional surface, whose points

act as ideal point light sources. Since all light sources in real world have some amount

of surface area, area light sources are the real light emitters that should be simulated in

rendering algorithms. In contrast to point light sources that illuminate a surface point

s from only a single direction, area light sources illuminate such a point from a range of

directions, namely, the solid angle subtended by the light source as seen from s. This

implies soft shadows and smooth light e�ects, see Figure 4.57.

EXAMPLE 4.7 (Direct Illumination due to Area Light Sources) A well-known problem in

almost all rendering algorithms is the computation of direct illumination at a surface

point s due to area lights, ☼1, . . . ,☼n, thus, the evaluation of the integral

Lo(s,ωo) =

∫
H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi) (4.367)

=

∫
H2
i
(s)

fr(s,ωi → ωo)Le(γ(s,ωi),−ωi))dσ
⊥
s (ωi), (4.368)

where γ(s,ωi) are points at one of the area light sources ☼1, . . . ,☼n.
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FIGURE 4.57: A SURFACE ILLUMINTATED BY A POINT LIGHT SOURCE AND AN AREA
LIGHT SOURCE. On the left, a point light source illuminates a surface from only a single
direction. In contrast, the illumination of the same surface by an area light source. The
surface point s receives light from directions within the solid angle subtended by the source
and seen from s. Image courtesy of Pharr and Humphreys.

As we will see in Section 4.4.2.2 the integration domain for direct illumination

can be changed from H2i (s) to the union of solid angles of the light sources, that is,

instead of to evaluate the integral over the whole hemisphere, we integrate the re-

ectance equation over
⋃n
j=1☼j or the set of surfaces within the scene. This approach

will lead to more e�cient sampling techniques for computing the direct illumination

at a surface point. Sampling of area light sources is a central point when discussingSection 6.7.4

Monte Carlo path tracing in Section 9.1.

REMARK 4.41 (Approximating an Area Light Source by an Array of Point Light Sources)

The e�ect of an area light can simply be approximated by a set ∗1, . . . , ∗n of point

light sources that are uniformly or randomly distributed on a at or curved shape.

As the light comes from point light sources, the direct light integral from above can
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be captured using Dirac δ-distributions, that is:

Lo(s,ωo) =

∫
H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi) (4.369)

=

∫
⋃
n
j=i ∗j

fr(s,ωi → ωo) δσ⊥(ωi → ω
lj
i )Li(s,ωi))dσ

⊥
s (ωi) (4.370)

=

n∑
j=1

fr(s,ω
lj
i → ωo)Le(γ(s,ω

lj
i ),−ω

lj
i ), (4.371)

where γ(s,ω
lj
i ) are points on one of the area light sources ☼1, . . . ,☼n.

DIRECTIONAL LIGHT SOURCES. Directional lights, often also known as distant light

sources, are a special kind of point light sources, whose light travels only in a single direc-

tion through the whole scene to be rendered. Thus, a directional light can be considered

as an approximation of a point or an area light source, far away compared to the size of

the scene illuminated by the source.

DEFINITION 4.34 (Ideal Directional Light Source) An ideal directional light source, often

also called a distant light source, or a light source at in�nity, corresponds to a point

light source, Le, or an area light source, L∂Ve , that emits its light in a single direction

ωo over the unit sphere or the upper hemisphere.

Due to the property that an ideal directional light source emits light particles only

in a single direction ωo, the emission of a directional light source can be quanti�ed by

measuring the power through a unit area surface perpendicular to direction ωo. That is,

irradiance is the radiometric quantity useful for measuring the emission of an ideal distant Irradiance (257)

light source.

EXAMPLE 4.8 (The Sun, the Prototype of an Ideal Directional Light Source) A typical

example of a distant light is the sun as considered from the earth. Since the solid

angle subtended by the earth as seen from the sun corresponds to a tiny patch within

the spherical �eld of the sun, radial rays emitted from the sun to an object become

closer to parallel at the object gets farther away. That is, in the case of the earth that

is so far away from the sun, the illumination e�ectively arrives in parallel beams.

EXAMPLE 4.9 (Direct Illumination due to Directional Light Sources) Let us now consider

a scene consisting of opaque surfaces, illuminated by a directional light source|with

or without surface area|then, the direct illumination at surface point s is described

by the reectance equation, that is: Reflectance Equation (321)

Lo(s,ωo) =

∫
H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (4.372)
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FIGURE 4.58: A SCENE RENDERED WITH DIRECTIONAL AND POINT LIGHT. On the left,
a scene, consisting of two spheres, a cylinder, an axis-aligned box, and a plane, all rendered
with directional illumination. As you can see, the color of the ground plane is constant, see
Equation (4.374). The reason for that is, that the outgoing radiance is independent of ωo
and ωli is the same at all surface points s. On the right, the same scene rendered with a
point light source. Image Courtesy of Kevin Suffern, University of Technology, Sydney.

Since the incident radiance Li at any point s comes from a single direction ωl
towards the directional light, the reected radiance can be expressed in terms of a

Dirac δ-distribution, namely, by:Dirac δ-Distribution (117)

Lo(s,ωo) =

∫
H2
i
(s)

fr(s,ωi → ωo) δσ⊥(ωi −ω
l
i)Li(s,ωi)dσ

⊥
s (ωi) (4.373)

(2.302)
= fr(s,ω

l
i → ωo)Li(s,ω

l
i). (4.374)

SPOT LIGHT SOURCES. Another type of a light source also based on the concept of the

point light, are spot light sources. Instead to emit their light in all directions, such as a

point light source, or, in a single direction, as in the case of a directional light source, spot

light sources emit light in a cone of directions starting at their locations within a scene.

DEFINITION 4.35 (Spot Light Source) A spot light source, as commonly de�ned in com-

puter graphics, corresponds to a point light source Le at point x ∈ ∂V that emits

its light in directions ωo of a �nite solid angle Γ on the unit sphere or the upperSolid Angle (83)

hemisphere about x.

Since we de�ned spot light sources via the concept of the point light source, they also

generate hard shadows. This disadvantage can be removed, by using an outer solid angle,

Γo, who contains the solid angle Γ , that is, it must hold: Γ ⊂ Γo. Such a spot light then

fully illuminates all objects inside the inner cone of angles, while the region of directions

between Γ and Γo can be considered as a transition zone where the illumination weakens

from full illumination to no illumination, such that points outside Γo are not illuminated
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FIGURE 4.59: A SCENE RENDERED WITH AMBIENT AND POINT LIGHT. On the left, a
scene, consisting of two spheres, a cylinder, an axis-aligned box, and a plane, all rendered
with ambient illumination. As you can see, hopefully, all objects are rendered with constant
colors, where each material can reflect a different fraction of the ambient illumination. On
the right, the same scene rendered with a point light source. Image Courtesy of Kevin
Suffern, University of Technology, Sydney.

at all. The same e�ect can also be achieved by using an area light source L∂Ve instead of

a point light as source of a spot light.

AMBIENT LIGHT SOURCES. Since objects in shadow or facing away from light sources

within a scene are completely black|although just about all surfaces receive a little bit

of light from somewhere|rendered images of such scenes appear highly unrealistic. Even

if it is not approximately not correct for real scenes, the visual quality of such images can

signi�cantly improved by using a very simple model of indirect light, a so-called ambient

light source, see Figure 4.59.

DEFINITION 4.36 (Ambient Light Source) An ambient light source, is a hypothetical light

source, that emits a constant radiance value La(s,ωo) = C,C > 0 at all points and Radiance (250)

directions within a scene to be rendered.

There is no physical analog to an ambient light source in real world. Ambient light

is typically used in computer graphics to approximate global illumination in scenes where

no indirect light exists. Evidently, ambient light increases the level of background illumi-

nation, which implies that e�ects of other light sources are softened.

EXAMPLE 4.10 (Direct Illumination due to Ambient Light Sources) For opaque Lamber- Lambertian Reflectors (349)

tian surfaces the reected radiance due to ambient light at a surface point s in any
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direction ωo is given by:

Lo(s,ωo)
(4.89)
=

∫
H2
i
(s)

fLAr (La(γ(s,ωi),−ωi)) + Li(s,ωi)) dσ
⊥
s (ωi) (4.375)

=

∫
H2
i
(s)

fLAr (C+ Li(s,ωi))dσ
⊥
s (ωi) (4.376)

=
ρdh(s)

π

∫
H2
i
(s)

Cdσ⊥s (ωi) +
ρdh(s)

π

∫
H2
i
(s)

Li(s,ωi)dσ
⊥
s (ωi) (4.377)

=
ρdh(s)

π

(
Cπ+

∫
H2
i
(s)

Li(s,ωi)dσ
⊥
s (ωi)

)
, (4.378)

where fLAr is the Lambertian BRDF and La(γ(s,ωi) −ωi) = C is the ambient lightfLAr (349)

contribution at point s. A similar formula can be derived for an arbitrary BRDF,

namely:

Lo(s,ωo) = C

∫
H2
i
(s)

fr(s,ωi → ωo)dσ
⊥
s (ωi) + (4.379)∫

H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (4.380)

We leave the derivation of this formula to the interested reader as a simple

exercise.

REMARK 4.42 Apart from the types of light sources introduced above, it is possible

to de�ne much more types of light sources in rendering, such as projection, sky,

and textured lights, as well as goniophotometric diagram lights etc., for a detailed

discussion see [158, Pharr & Humphreys 2004] or [1, Akenine-M�oller & al. 2008].

4.4 THE STATIONARY LIGHT TRANSPORT IN PAR-
TICIPATING MEDIA AND IN A VACUUM

In Section 4.1.3 we have derived the stationary light transport equation in participating

media in integral form. It is the governing equation that describes the behavior of light

within a medium that absorbs, emits, and scatters light.

As we have seen, in contrast to the integro-di�erential form, the integral form of the

SLTE also incorporates the interaction of light at the boundaries of the medium. That

is, under certain conditions the SLTE can also be used to describe the light transport in

a vacuum, where there is no absorption, emission, or scattering at all except on surfaces.

To utilize this property of the SLTE for our further concerns with respect to considering

the light transport in a vacuum or participating media, the only thing we have to do
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is: To choose the parameters within the SLTE that describe the absorption, emission, or

scattering behavior of light in an appropriate way.

So, in the next two section, we will �rst consider some of the special cases that the Section 4.4.1

SLTE subsumes. Afterwards, we will devote to the stationary light transport equation

valid in a vacuum, the SLTEV, in computer graphics denoted as the rendering equation,

[98, Kajiya 1986]. It describes the equilibrium distribution of radiance in a scene under

vacuum conditions. We also show that the SLTEV can be expressed exclusively in terms Section 4.4.2

of exitant or incident quantities instead of the above introduced mixed-form of incident and

exitant radiance. Via a change in the integration measure then we transform the spherical

integral within the SLTEV into a surface integral. This will be of great advantage if we

discuss direct illumination at a surface point and opens up several di�erent approaches for

solving the global illumination problem.

4.4.1 THE STATIONARY LIGHT TRANSPORT EQUATION IN PAR-
TICIPATING MEDIA

Recall, the stationary light transport equation has the form SLTE (297)

Li(x,ωi)

= β(s→ x)

(
εb(s,ωo) +

∫
S2(s)

κb(s,ω
′
i → ωo)Li(s,ω

′
i)dσs(ω

′
i)

)
+ (4.381)

∫
[0,‖s−x‖]

β(x′ → x)

(
ε(x′,ωo) +

∫
S2(x′)

κ(x′,ω′i → ωo)Li(x
′,ω′i)dσx′(ω

′
i)

)
dµ(α).

Replacing the theoretically constructed scattering kernels in this equation, thus the

surface scattering kernel κb at point s by the BSDF fs, i.e.:

kb(x,ω
′
i → ωo) = fs(x,ω

′
i → ωo) (4.382)

and the volume scattering kernel κ at x′ by the phase function p multiplied by the scat-

tering coe�cient σs thus,

k(x,ω′i → ωo) = σs(x,ωo)p(x,−ω
′
i → ωo), (4.383)

then the stationary light transport equation can be represented in a form which is much

more useful for the purposes of computer graphics, namely the stationary light transport

equation in participating media.
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DEFINITION 4.37 (The Stationary Light Transport Equation in Participating Media, SLTE)

Let s be a point on a surface M ∈ ∂V, x,x′ ∈ Vo are inner points of a participating ∂V (41)

Vo (41)medium, Li(s,ω
′
i) and Li(x

′,ω′i) describe the incident radiance at surface point s,

respectively at point x′ = x+αωi within a participating medium coming from direction

ω′i, attenuated by the path absorption function β. Then, the fundamental equationβ (292)

of light transport that governs the behavior of light in a medium that absorbs, emits,

and scatters is called the stationary light transport equation in participating media, also

briey denoted as SLTE. It is given by

Li(x,ωi)

= β(s→ x)

(
Le(s,ωo) +

∫
S2(s)

fs(s,ω
′
i → ωo)Li(s,ω

′
i)dσ

⊥
s (ω

′
i)

)
+

∫
[0,‖s−x‖]

β(x′ → x)

(
Le(x

′,ωo) + (4.384)

σs(x
′,ωo)

∫
S2(x′)

p(x′,−ω′i → ωo)Li(x
′,ω′i)dσx′(ω

′
i)

)
dµ(α),

see Figure 4.60

REMARK 4.43 Note, the di�erent integration measures used in the SLTE. While the

integration measure within the �rst integral is with respect to the projected solid angle-

|the BSDF operates on irradiance instead of radiance|we integrate the second termBSDF (371)

with respect to the solid angle measure. Note also the reverse incident direction due

to the de�nition of the direction vectors occurring in the phase function.Phase Function (376)

REMARK 4.44 Using the de�nition of the scattering equation in the �rst term of Equa-Scattering Equation (374)

tion (4.384) of De�nition 4.37, then we get the commonly used form of the light

transport in participating media, see [152, Pauly 1999], namely:

Li(x,ωi)

= β(s→ x)Lo(s,ωo)∫
[0,‖s−x‖]

β(x′ → x)

(
Le(x

′,ωo) + (4.385)

σs(x
′,ωo)

∫
S2(x′)

p(x′,−ω′i → ωo)Li(x
′,ω′i)dσx′(ω

′
i)

)
dµ(α).

Now, �nding a solution to the SLTE|in which every point of the observed volume

may communicate with every point on a boundary of an object as well as any point within a

participating medium|is a very costly and time consuming task. But if we limit the e�ects

considered by simplifying the corresponding equation and lowering its computational costs,
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FIGURE 4.60: THE STATIONARY LIGHT TRANSPORT EQUATION IN PARTICIPATING
MEDIA. The radiance incident at x from direction ωi is the sum of the reduced radiance
from the nearest visible surface point s and the reduced, accumulated, and scattered radiance
Lo along the line connecting x and s.

we can derive procedures for simulating di�erent light e�ects that yield respectable results

with a reasonable amount of e�ort. For that purpose, let us observe the following cases:

EXAMPLE 4.11 (Non-scattering Media) The abstraction of scattering in the integral form

of the stationary light transport equation is a preferred and promising method for

representing participating media such as so-called particle clouds.

Setting the scattering coe�cient σs ≡ 0 implies that the gain function Qo reduces Gain Function (289)

to the volume emission at inner points of the medium, that is, the incident radiance

Li(x,ωi) can be written as:

Li(x,ωi) = β(s→ x)

(
Le(s,ωo) +

∫
S2(s)

fs(s,ω
′
i → ωo)Li(s,ω

′
i)dσ

⊥
s (ω

′
i)

)
+∫

[0,‖s−x‖]
β(x′ → x)Le(x

′,ωo)dµ(α) (4.386)

with ωo = −ωi. This implies that the incident radiance at point x from direction ωi
can easily be calculated by integration over the emissions along all points lying on



396 CHAPTER 4. MATHEMATICAL FORMULATIONS OF STATIONARY LIGHT TRANSPORT

FIGURE 4.61: THE SLTE IN NON-SCATTERING MEDIA. On its way from surface point s
to the volumetric point x ∈ Vo, a beam of photons is only subject to absorption or emission
events. There are no scattering events between the surface points s and x.

the ray from x to s, reduced by any potential occurrence of thermal absorption plus

the attenuated radiance coming from the surface, see Figure 4.61.

EXAMPLE 4.12 (Non-absorbing and Non-emitting Media) Let us now consider the light

transport in non-absorbing and non-emitting media. Setting the emitted radiance

Le ≡ 0 implies, that the gain function Qo reduces to the radiance in-scattered at

inner points of the medium, that is, with β ≡ 1 the incident radiance Li(x,ωi) can

be written as:

Li(x,ωi) = Le(s,ωo) +

∫
S2(s)

fs(s,ω
′
i → ωo)Li(s,ω

′
i)dσ

⊥
s (ω

′
i) + (4.387)∫

[0,‖s−x‖]
σs(x

′,ωo)

∫
S2(x′)

p(x′,−ω′i → ωo)Li(x
′,ω′i)dσx′(ω

′
i)dµ(α)

with ωo = −ωi, see Figure 4.62.

EXAMPLE 4.13 (Non-absorbing and Non-scattering Media) Let us assume we have a

medium, which does not scatter and does not absorb. Setting the scattering coef-

�cient σs ≡ 0 implies, that the gain function Qo reduces to the volume emission

at inner points of the medium, that is, with β ≡ 1, due to the condition of a non-
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absorbing medium, we get:

Li(x,ωi) = Le(s,ωo) +

∫
S2(s)

fs(s,ω
′
i → ωo)Li(s,ω

′
i)dσ

⊥
s (ω

′
i) + (4.388)∫

[0,‖s−x‖]
Le(x

′,ωo)dµ(α)

with ωo = −ωi, see Figure 4.63.

FIGURE 4.62: THE SLTE IN NON-ABSORBING AND NON-EMITTING MEDIA. On its
way from surface point s to the volumetric point x ∈ Vo, a beam of photons is only subject
to scattering events. There are neither absorption nor emission events between the surface
points s and x.

EXAMPLE 4.14 (Non-emitting and Non-scattering Media) Finally, let us discuss the light

transport in non-emitting and non-scattering media, thus neglecting the scattering

coe�cient, σs, as well as the volumetric emission function, Le. The choice of σs ≡
Le ≡ 0 leads to the gain function Qo ≡ 0. Under these conditions, the SLTE reduces

to the interaction of light at the boundaries of the media, that is, the SLTE can be

written as:

Li(x,ωi) = β(s→ x)

(
Le(s,ωo) +

∫
S2(s)

fs(s,ω
′
i → ωo)Li(s,ω

′
i)dσ

⊥
s (ω

′
i)

)
(4.389)
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FIGURE 4.63: THE SLTE IN NON-SCATTERING AND NON-ABSORBING MEDIA. On its
way from surface point s to the volumetric point x ∈ Vo, a beam of photons is only subject
to emission processes. There are no scattering or absorption events between the surface
points s and x.

with ωo = −ωi, see Figure 4.64.

4.4.2 THE STATIONARY LIGHT TRANSPORT EQUATION IN A
VACUUM

Based on the SLTE from (4.384), we will now derive two di�erent but equivalent formula-

tions of the light transport in a vacuum: the stationary light transport equation under

vacuum conditions in its spherical as well as its 3-point form.

THE SPHERICAL FORM OF THE STATIONARY LIGHT TRANSPORT EQUATION IN A VACUUM. Let
us consider the light transport under vacuum conditions in a closed scene composed of a

�nite set ∂V of 2-dimensional surfaces. Then, we can ignore the e�ects of absorption and

scattering as there is no medium involved. Thus, the general equation characterizing light∂V (41)

transport is reduced to the calculation of radiance at the boundaries of object surfaces,

that is to say, to the formulation of the boundary conditions.

DEFINITION 4.38 (The Spherical Form of the SLTE in a Vacuum, SLTEV) Let Lo(s,ωo)

be the exitant radiance at surface point s in direction ωo, Le(s,ωo) be the radiance
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FIGURE 4.64: THE SLTE IN NON-SCATTERING AND NON-EMITTING MEDIA. On its
way from surface point s to the volumetric point x ∈ Vo, a beam of photons is only subject
to absorbing processes. There are no scattering or emission events between the surface
points s and x.

emitted at s in direction ωo, and Li(s,ωi) denotes the incident radiance at point s

coming from directions ωi ∈ S2(s). Then, the equation

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi), (4.390)

that describes the scattering behavior of light at an object surface in a vacuum via

the BSDF fs is called the stationary light transport equation in a vacuum, also briey

denoted as SLTE in a vacuum, or SLTEV, see Figure 4.65.

REMARK 4.45 (The Hemispherical Form of the SLTE in a Vacuum) Under the condition

that all object surfaces in Equation (4.390) are opaque, it su�ces to integrate in

Equation (4.390) over the upper hemisphere instead of the entire unit sphere. Then,

the SLTE in a vacuum can also be written as:

Lo(s,ωo) = Le(s,ωo) +

∫
H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi), (4.391)

see Figure 4.66.

REMARK 4.46 The SLTEV|in its spherical as well as in its hemispherical form|can

also be seen as a result of the conservation of energy from physics. Thus, energy
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FIGURE 4.65: THE SPHERICAL FORM OF THE SLTE IN A VACUUM. The exitant radiance
at point s in direction ωo equals the self-emitted exitant radiance Le(s, ωo) plus any incident
radiance from the illuminating sphere that is reflected at s in direction ωo.

balance on a surface means that exitant radiance must be equal to emitted radiance

plus the fraction of incident radiance which is scattered. That is, the SLTEV must

be composed of two expressions: a self-emitted term Le, describing the energy that

comes from light sources, and a term which looks like the scattering equation from

Relation (4.311). That is, the SLTEV subsumes the quantity of radiance emitted

from point s on a surface A in direction ωo as a sum of an emission term Le related

to point s in direction ωo together with the BSDF fs, which gives information about

radiance incident from all directions and emitted in direction ωo.

REMARK 4.47 (The Rendering Equation, REQ) In the literature, the Equations (4.390)

and (4.391) are also often denoted as the rendering equation in spherical as well as

in hemispherical form. Due to [98, Kajiya 1986], the rendering equation is written
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FIGURE 4.66: THE HEMISPHERICAL FORM OF THE SLTE IN A VACUUM. The exitant
radiance at point s in direction ωo equals the self-emitted exitant radiance Le(s, ωo) plus
any incident radiance from the illuminating hemisphere that is reflected at s in direction ωo.

In its original form as:

I(x,x′) = g(x,x′)

(
ε(x,x′) +

∫
S

ρ(x,x′,x′′) I(x,x′′)dx′′
)

(4.392)

where

I(x,x′) is related to the intensity of light passing from

point x to point x′

g(x,x′) is a geometry term

ε(x,x′) is related to the intensity of light emitted from point

x′ to point x

ρ(x,x′,x′′) is related to the intensity of light scattered

from x′′ to x by a patch of surface x′.

THE 3-POINT FORM OF THE STATIONARY LIGHT TRANSPORT EQUATION IN A VACUUM. In-

stead of projecting the entire scene to the unit sphere, and then integrating with respect

to projected solid angle, it is also possible to use the boundaries of scene objects as inte-

gration domains. That is, we integrate over the surfaces in the scene. If we go this way,
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then, as we have seen in Section 2.3, we obtain the scattering equation as well as the re-

ection equation in a form, that satis�es the requirements to a Fredholm integral equation

of the 2nd kind. Based on this new integration strategy, we get another mathematically

equivalent formulation for the light transport in a vacuum, the so-called 3-point forms of

the SLTEV. It opens up several di�erent approaches for solving the global illumination

problem.

Let us recall Example 2.51, where we performed the process of transforming the

projected solid angle measure σ⊥ to the Lebesgue area measure µ2. Adapted to thisσ⊥ (89)

µ2 (82) derivation, we can de�ne the 3-point form of the SLTE in a vacuum as follows:

FIGURE 4.67: THE 3-POINT FORM OF THE SLTEV. The exitant radiance at point sj in
direction towards point sj−1 equals the self-emitted exitant radiance Le(sj → sj+1) from sj
plus any incident radiance at point sj that comes from all points sj+1 at surfaces of the
scene that are visible from sj.

DEFINITION 4.39 (The 3-point Form of the STLE in a Vacuum) Let us express the exitantExitant Function (48)
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radiance from point sj outgoing in direction ωjo towards point sj−1 by

L(sj → sj−1) ≡ Lo(sj,ωjo), (4.393)

where sj−1 = γ(sj,ω
j
o), see Figure 4.67. Let us furthermore formulate the BSDF at γ (47)

BSDF (371)point sj by

fs(sj+1 → sj → sj−1) ≡ fs(sj,ωji → ωjo) (4.394)

with sj+1 = γ(sj,ω
j
i), and the geometry term, G, by G (129)

G(sj+1 ↔ sj)
def
= V(sj+1 ↔ sj)

∣∣∣cos θj+1o cos θji

∣∣∣
‖sj+1 − sj‖2

dµ2(sj+1), (4.395)

with the visibility function V. Now, the SLTEV can be written as an integral over Visibility Function (45)

all surfaces ∂V, thus:
∂V (41)

L(sj → sj−1) = Le(sj → sj−1) + (4.396)∫
∂V
fs(sj+1 → sj → sj−1)L(sj ← sj+1)G(sj+1 ↔ sj)dµ

2(sj+1).

This Equation is denoted as the 3-point form of the SLTEV, see Figure 4.67.

4.4.2.1 FORMULATIONS OF THE SLTEV BASED ON EXITANT AND INCIDENT

RADIANCE

A closer look at the di�erent forms of the SLTEV from above shows that the outgoing

radiance as well as the incident radiance appear within the corresponding equations. Thus,

in the spherical form of the SLTEV, the exitant radiance from point s in direction ωo is

composed of light emitted from s, and of light that arrives from all direction ωi around s.

We have a similar situation for the 3-point form of the SLTEV. Here the exitant radiance

from point sj towards point sj−1 is composed of the quantity of light emitted from sj in

direction to sj−1, and light that comes from all points sj+1 on surfaces which are visible

from sj.

At this point, we can in turn utilize the principle of radiance invariance along a light Radiance Invariance (253)

ray in a vacuum. Due to this fact, the incident radiance Li(s,ωi) at surface point s can be

replaced by the exitant radiance Lo(s
′,−ωi), where s

′ = γ(s,ωi). Applied to the spherical

form of the SLTE in a vacuum, this results in the spherical form of the SLTEV on the

basis of exitant radiance.

DEFINITION 4.40 (The Spherical Form of the SLTEV Based on Exitant Radiance) Let s and

s′ = γ(s,ωi) be two mutually visible points on di�erent surfaces from ∂V, see Figure
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4.68. Then, the spherical form of the SLTEV expressed in terms of exitant radiance is

given by

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Lo(γ(s,ωi),−ωi)dσ
⊥
s (ωi) (4.397)

= Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Lo(s
′,−ωi)dσ

⊥
s (ωi). (4.398)

FIGURE 4.68: THE SPHERICAL FORM OF THE SLTEV BASED ON EXITANT RADIANCE.
The exitant radiance at point s in direction ωo equals the self-emitted exitant radiance
Le(s, ωo) plus any exitant radiance from the illuminating sphere that is reflected at s in
direction ωo.

This can be interpreted in such a way that the radiance outgoing from point s in

direction ωo consist of a self-emitted contribution from s in direction ωo, as well as

the amount of exitant radiance coming from points γ(s,ωi) reachable about directions

ωi ∈ S2(s).
Applying the principle of radiance invariance also on the 3-point form of the SLTEVRadiance Invariance (253)
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from (4.396), we then obtain the corresponding 3-point form of the SLTEV based on

exitant radiance, see Figure 4.69.

DEFINITION 4.41 (The 3-point form of the SLTEV Based on Exitant Radiance) Suppose

sj−1 is a point lying on a surface M ∈ ∂V visible from point sj on an other surface.

Let us further assume that sj+1 is a point of a surface also visible from sj, see Figure

4.69. Then, the 3-point form of the SLTEV based on exitant radiance is de�ned by

L(sj → sj−1) = Le(sj → sj−1) + (4.399)∫
∂V
fs(sj+1 → sj → sj−1)L(sj+1 → sj)G(sj+1 ↔ sj)dµ

2(sj+1).

FIGURE 4.69: THE 3-POINT FORM OF THE SLTEV BASED ON EXITANT RADIANCE. The
exitant radiance at point sj equals the self-emitted incident radiance Le(sj → sj−1) plus any
exitant radiance coming from visible points sj+1 that is reflected at point sj in direction to
sj−1.

DEFINITION 4.42 (The Spherical Form of the SLTEV Based on Incident Radiance) Let s
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and s′ = γ(s,ωi) be two mutually visible points on di�erent surfaces from ∂V, see

Figure 4.70. Then, the spherical form of the SLTEV expressed in terms of incident

radiance is given by

Li(s,ωi) = Le(s,ωi) + (4.400)∫
S2(γ(s,ωi))

fs(γ(s,ωi),ω
′
i → −ωi)Li(γ(s,ωi),ω

′
i)dσ

⊥
γ(s,ωi)

(ω′i)

= Le(s,ωi) +

∫
S2(s′)

fs(s
′,ω′i → −ωi)Li(s

′,ω′i)dσ
⊥
s′(ω

′
i) (4.401)

This can be interpreted in such a way that the radiance incident at point s from

direction ωi is composed of an emission term in direction ωi, as well as the amount of

incident radiance at points s′ visible from s in directions ωi ∈ S2, which is reected at

surfaces in direction to s.

When we keep this little game going the other way around now, then we obtain the

SLTEV based on incident radiance in 3-point form, thus:

DEFINITION 4.43 (The 3-point form of the SLTEV Based on Incident Radiance) Suppose

sj+1 and sj−1 are points on two di�erent surfaces of ∂V visible from a given point sj,

see Figure 4.71. The 3-point form of the SLTEV based on incident radiance is de�ned

by

L(sj−1 ← sj) = Le(sj−1 ← sj) + (4.402)∫
∂V
fs(sj−1 ← sj ← sj+1)Li(sj ← sj+1)G(sj ↔ sj+1)dµ

2(sj+1).

REMARK 4.48 (The Hemispherical Forms of the Light Transport Equation in a Vacuum)

It should be clear that when rendering scenes consisting only of opaque surfaces, it

makes sense to replace the scattering equation in the above spherical forms of the

SLTEV by the reectance equation. In this cases the integration goes over the upper

hemisphere H2i instead of S2.

REMARK 4.49 The above introduced two approaches to consider the scattering equa-

tion in the di�erent forms of the SLTEV, once as an integral over the areas of the

scene objects and once as an integral over the unit sphere, also lead to two di�erent

strategies for solving the SLTEV in a rendering procedure. Thus, we will see that the

scattering equation in the spherical forms of the SLTEV are solved by Monte Carlo

methods via sampling a number of directions from a distribution of directions on the

unit sphere and casting rays to evaluate the integrand. In contrast to this procedure,

the scattering equation in the 3-point forms of the SLTEV is solved by Monte Carlo

methods, which choose a number of points on surfaces according to distributions over

the surface areas, and making use of the visibility function to compute the coupling of
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FIGURE 4.70: THE SPHERICAL FORM OF THE SLTEV BASED ON INCIDENT RADIANCE.
The incident radiance at point s in direction ωo equals the self-emitted exitant radiance
Le(s, ωo) plus any incident radiance from the illuminating sphere that is reflected at s in
direction ωo.

the points. As we will see, in many Monte Carlo rendering algorithms the spherical

forms of the SLTEV are used for generating paths in a scene to be rendered. While

this is a convenient method of direction sampling, the 3-point forms of the SLTEV

underlies primarily those methods based on �nite element techniques. Here, in par-

ticular radiosity procedures and path-integral formulations, as well as the sampling

of surface light sources are prime usage examples.

4.4.2.2 DIRECT AND INDIRECT ILLUMINATION FORMULATION OF THE SLTEV

Let us consider once more the stationary light transport equation in a vacuum in spherical SLTEV Spherical Form (399)

form. With respect to surface point s it can be written as sum of the emitted radiance at
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FIGURE 4.71: THE 3-POINT FORM OF THE SLTEV BASED ON INCIDENT RADIANCE.
The incident radiance at point sj−1 equals the self-emitted incident radiance Le(sj → sj−1)
from sj plus any incident radiance at sj coming from all points sj+1 at surfaces within the
the scene that are visible from sj.

point s in direction ωo and the scattering equation from (4.311), thus,

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (4.403)

Obviously, the integration domain of the SLTEV can now be split into two disjoint

sets: The projection of all regions of light sources, visible from the center of the unit

sphere, onto the unit sphere, thus the set ☼⊥, and the complement of this set, that is,

☼⊥ = S2 \ ☼⊥, see Figure 4.72. Using this strati�cation of the integration domain of the

SLTEV, then we get due to the linearity property of the Lebesgue integral with respectLebesgue Integral (105)

to the integration domain the following decomposition of the exitant radiance at point s
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in direction ωo:

Lo(s,ωo) = Le(s,ωo) + (4.404)∫
☼⊥∪☼⊥

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi)

= Le(s,ωo) + (4.405)∫
☼⊥

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi) +∫

☼⊥
fs(s,ωi → ωo)Li(s,ωi)dσ

⊥
s (ωi).

FIGURE 4.72: THE PROJECTION OF LIGHT SOURCES ONTO THE UNIT SPHERE S2.
Stratification of the unit sphere about point s in the strata ☼⊥ and S2(s) \ ☼⊥ for
computing the direct and indirect illumination on an opaque surface. As you can easily see
in the figure, the projection of a light source onto the unit sphere can be a more or less
complicated subset of points, in particular if the projections are not disjoint.

Since the incident radiance Li(s,ωi) in the �rst integral comes from points s′ = γ (47)

γ(s,ωi) at light sources, we can also express Li(s,ωi), due to the principle of radiance Radiance Invariance (253)
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invariance in a vacuum, by the emitted radiance at these points, that is, the SLTEV takes

on the form

Lo(s,ωo) = Le(s,ωo) +∫
☼⊥

fs(s,ωi → ωo)Le(γ(s,ωi),−ωi)dσ
⊥
s (ωi)︸ ︷︷ ︸

L←(s,ωo)

+ (4.406)

∫
☼⊥

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi)︸ ︷︷ ︸

L⇔(s,ωo)

.

This means, that the light reected at point s in direction ωo is a composition of an

emission term, Le(s,ωo), a direct illumination component, L←(s,ωo), and an indirect

illumination component, L⇔(s,ωo). Mathematically, this can be expressed as follows:

Lo(s,ωo) = Le(s,ωo) + L
←(s,ωo) + L

⇔(s,ωo). (4.407)

Here, L←(s,ωo) can be interpreted as the radiance that arrives at s directly from

light sources which is reected in direction ωo, and L
⇔(s,ωo) is the radiance emitted by

light sources which arrives at s over surfaces and is reected into direction ωo, see Figure

4.73.

Depending on the number, position, direction, and the shape of the light sources as

well as the object surfaces within a scene, the solid angles subtended by the integrationSolid Angle (83)

domains of the integrals from Equation (4.406) as seen from point s can be very compli-

cated. Evaluating these integrals, represented in spherical-form, means, that just these

projections must be computed. Due to [10, Arvo 1995] this is not a trivial but a very

tricky task. Only in the case where all of our light sources are point light sources, it is

trivial. Let us consider this case in the following example.

EXAMPLE 4.15 Let us assume we have a scene illuminated by n point light sources

{∗1, . . . , ∗n}. Obviuously, the projection ∗⊥ of the point light sources onto the unit

sphere is a null set, that is, due to the properties of the Lebesgue integral, the direct

illumination L←(s,ωo) must be zero.

Now, due to De�nition 2.12 point light sources are locations of in�nitely high

power. As they can be de�ned via the Dirac δ-distribution, we can replace the radi-Dirac δ-distribution (118)

ance incident at point s from direction ωi by the radiance, emitted from point light

source ∗j in direction ωjo, thus,

Le(∗j,ωjo) = δ(ωi → −ωjo)Le(γ(s,ωi),−ωi), (4.408)

where we assume: γ(s,ωi) = ∗j and ωjo = −ωi, see Figure 4.73.

Splitting the incident radiance Li within the SLTEV

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi) (4.409)
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FIGURE 4.73: DIRECT AND INDIRECT ILLUMINATION FORMULATION OF THE SLTEV.
The light reflected at point s in direction ωo is a composition of an emission term, Le(s, ωo),
a direct illumination component, L←(s, ωo) = Le(∗j,−ωi), and an indirect illumination
component, L⇔(s, ωo) = Lo(s,−ωi).

into the emitted radiance Le from point light sources and the incident radiance Li
from non emitting surfaces and using this in the above formula, then we get:

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Le

 n⋃
j=1

∗j,−ωi

 dσ⊥s (ωi) + (4.410)

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi).

Using Relation (4.408) and the fact that ∗⊥ is a null set, then we can write the

SLTEV in the following form:

Lo(s,ωo) = Le(s,ωo) +∫
S2(s)

fs(s,ωi → ωo) δ(ωi → −ωjo)Le(γ(s,ωi),−ωi)dσ
⊥
s (ωi) +(4.411)∫

S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi), (4.412)
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where γ(s,ωi) ∈ {∗1, . . . , ∗n}.
The δ-distribution in the �rst integral then allows to write the �rst integral as

a sum over the set of point light sources, that is,

Lo(s,ωo) = Le(s,ωo) +

n∑
j=1

fs(s,−ω
j
o → ωo)Le(∗j,ωjo)

∣∣ cos θi∣∣+ (4.413)∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi).

Obviously, the radiance exitant at point s in direction ωo is the sum of a self-

emitted fraction, the radiance emitted from all point light sources ∗j in the directions

ωjo towards s and reected to ωo, and the indirect illumination incident at s.

REMARK 4.50 In Example 6.45 we will show the equivalence of the strati�cation of

the integration domain of the SLTEV and next event estimation, a variance reduc-Section 6.7.4

tion technique for solving linear integral equations. This technique is used in manySection 6.6

rendering algorithms based on stochastic principles as a procedure for getting better

images more e�ciently and with only little more e�ort.Section 6.7.4

In Example 6.46 we will illustrate, that the direct illumination can easily be

solved by transforming the spherical integral into a surface integral. This does not3-point Form of SLTEV (402)

require the computation of the projection of the light sources onto the unit sphere.

The integration domain of a surface integral can then easily be sampled using variance

reduction techniques from Monte Carlo integration.Section 6.7.4

4.5 THE IMPORTANCE TRANSPORT EQUATION IN A

VACUUM

In Chapter 10 we will discuss the radiosity method, a �nite element based technique for

solving the light transport problem. Radiosity methods divide the scene to be renderedRadiosity (264)

into a �nite set of surface patches and use the energy that is reected from these patches

to determine the radiosity of a surface point to be shaded.

Now let us assume, that a radiosity algorithm has partitioned a scene into millions of

small patches, where we have to evaluate the stationary light transport equation for eachSLTEV (398)

of those patches. But if we are only interested in a small sector of the scene, then only a

fraction of all surfaces have a signi�cant impact on the �nal image. That is, if can develop

a method that determines just these important surfaces, then we do not need so much

e�ort spent in computing the radiosities of unimportant surfaces. The idea behind such

an algorithm leads to the fundamental concept of importance, �rstly inspired by works in

connection with Monte Carlo simulations for the neutron transport.
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In Section 2.3.2 we have shown, that for a given integral equation, there exists in-

�nitely many adjoint equations, each with a di�erent source term. The solution to an Adjoint Equation (65)

adjoint equation with a source term at the most important part of the function domain is Source Term (127)

called importance since it indicates how much the di�erent parts of the domain contribute

to the solution at the most important part, [35, Christensen 2003].

Let us assume, we are interested in measuring the radiance

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi) (4.414)

with respect to any arbitrary function We, that is, we want to compute the quantity

〈We, Lo〉. (4.415)

We have shown in Section 2.3.2, that to any integral operator of a Fredholm type Integral Operator (130)

integral equation of the 2nd kind, there exists the adjoint operator. Since the integral Fredholm Integral Equation (127)

kernel within the stationary light transport equation in a vacuum is given by the BSDF, SLTEV (398)

the adjoint operator can easily be obtained by switching the involved variables in the BSDF, (371)

BSDF. With respect to the SLTEV this means, that we can de�ne the adjoint integral

operator, f∗s, via:

f∗s(s,ωi → ωo)
def
= fs(s,ωo → ωi), (4.416)

that is, we simply reverse the incident and the exitant direction within the BSDF.

Based on any arbitrary function We and the adjoint operator f∗s we can now de�ne

the adjoint of the stationary light transport equation within a vacuum: SLTEV (398)

DEFINITION 4.44 (The Stationary Importance Transport Equation in a Vacuum) Let We
be any given function from L2(R̃∂V , ζ⊥) and f∗s be a linear integral operator given by L2(R̃∂V , ζ⊥) (111)

f∗s(s,ωi → ωo)
def
= fs(s,ωo → ωi), (4.417)

then there exists a function Wi ∈ L2(R̃∂V , ζ⊥) that satis�es the adjoint equation

Wo(s,ωo) = We(s,ωo) +

∫
S2(s)

f∗s(s,ωi → ωo)Wi(s,ωi)dσ
⊥
s (ωi) (4.418)

= We(s,ωo) +

∫
S2(s)

fs(s,ωo → ωi)Wi(s,ωi)dσ
⊥
s (ωi), (4.419)

the so-called stationary importance transport equation in a vacuum, also briey denoted

as, SITEV, see Figure 4.74.

As you can see, the structure of the stationary light transport and the stationary

importance transport equation in a vacuum is the same. Obviously, the quantities We
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FIGURE 4.74: THE STATIONARY IMPORTANCE TRANSPORT EQUATION IN A VACUUM.
The SITEV can be interpreted as a transport equation for the influence of the detector,
which describes the transport of importance through a scene.

and Wi play the same roles within the importance equation as the emitted radiance Le IncidentFunction (48)

and the incident radiance Li play in the SLTEV. This is also the reason, why we call We Radiance (250)

the emitted importance and Wi the incident importance.

Importance is the adjoint of light. It is transported like light, but in the reverse

direction. While the light sources, described by the source term Le, are the most interested

construct for the SLTEV, for the SITEV, we can consider the eye, a virtual camera, orSource Term (127)

the directly visible parts of a scene, as the most relevant regions. That is, the importance

equation can be interpreted as a transport equation for the inuence of the detector. The

transport rules known from the SLTEV can be applied equally well to the sensors, by

treating the responsivity as an emitted quantity, namely the above mentioned emitted

importance.

REMARK 4.51 In a global illumination algorithms, the concept of importance can be

used as a tool for reducing the computational e�ort needed, since it can be used to

control which parts of scene are relevant for computing an image, thus for example,

We can be de�ned as an exitant function that only takes non-zero values for points

of a pixel and directions from the solid angle subtended by the camera lens as seen

from the pixel.

REMARK 4.52 (Alternative Formulations of the Stationary Importance Transport Equation
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in a Vacuum) Mostly, importance is represented as an exitant directional quantity,

Wo(s,ωo), from a point s in direction ωo. As light and importance are adjoint, it

can easily be shown that the principle of radiance invariance can also be transferred Radiance Invariance (253)

to importance, that is, even importance is invariant along a ray within a vacuum.

This then implies that importance can also be expressed as an incident function Wi,

where it holds: γ(·, ·) (47)

Wi(s,ωi) =Wo(γ(s,ωi),−ωi). (4.420)

Using Relation (4.420) in the SITEV then we get the spherical form of the

SITEV expressed in terms of exitant importance, namely,

Wo(s,ωo) = We(s,ωo) +

∫
S2(s)

fs(s,ωo → ωi)Wo(γ(s,ωi),−ωi)dσ
⊥
s (ωi).(4.421)

Similar to our procedure in Section 4.4.2.1 we can now also derive the remaining

incident and exitant formulations of the stationary importance transport equation in

a vacuum in spherical, hemispherical, or 3-point form. We leave the details of these

derivations to the interested reader as simple exercises.

In [47, Dutr�e 1996] the approach is made, to de�ne importance in a similar manner as

we have introduced radiance in Section 3.3, namely, as the fraction of light that indicates

its contribution to the region of most interest.

REMARK 4.53 (Importance) Let s be a point upon a surface ∂V and ωo any direction ∂V (41)

over the unit sphere around s. Then, the importance or the potential of point s in

direction ω, denoted by W(s,ω), is de�ned as the ux through ∂H × Γ ⊂ ∂V × S2 as Flux (249)

the result of the di�erential ux from point s in direction ωo, thus,

W(s,ωo)
def
=

d2Φ(∂H× Γ)
d2Φ(s,ωo)

(4.422)

=
d2Φ(∂H× Γ)

L(s,ωo)dσ⊥s (ωo)dµ
2(x)

. (4.423)

Obviously, importance is a �ve-dimensional, dimensionless quantity that varies

with position and direction. Often, it is also denoted as potential. [150, Pattanaik

& Mudur 1993].

4.6 THE MEASUREMENT EQUATION

Until now, we were only interested in computing and specifying the radiance distribution

within a scene. Now, let's look at using sensors to measure the incident radiance and to
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generate images.

The main task in computer graphics is to �nd a solution of the global illumination Global Illumination Problem (6)

problem, in other words, the construction of an image that visualize a scene speci�ed

by the global illumination problem. A solution to this can be computed via a two step

process: First, we have to determine the region of the scene, which is relevant for the �nal

image, and then the illumination at all points within this region has to be computed by

solving the corresponding stationary light transport equation. Since an image is stored as

an array of pixels �1, . . . ,�sx·sy , where each pixel covers a �nite subregion of the viewing

frustum, we have to perform a set of real-valued measurements M1, . . . ,Msx·sy . Each

measurement then corresponds to the output of a hypothetical sensor that responds to theRadiance (250)

radiance incident upon it. This is characterized by the emitted importance function, Wj
e,

which varies according to the position and direction at which light strikes the sensor. ItWj
e (416)

speci�es the importance of light arriving along each ray to the corresponding measurement

Mj, 1 ≤ j ≤ sx · sy.
The total response of a sensor can then be determined by integrating the product

of the incident radiance and the emitted importance function, that is, by evaluating the

so-called measurement equation, which is de�ned as follows:

DEFINITION 4.45 (The Measurement Equation) Let s be a point on an object surface

from ∂V, Li(s,ω) be the incident radiance at point s from direction ω and We(s,ω)Radiance (250)

be the exitant importance of s in direction ω. Then, the sensor response M can beImportance (416)

computed by a measurement of the form

M
def
=

∫
∂V

∫
S2(s)

We(s,ω)Li(s,ω)dσ⊥s (ω)dµ2(s) [W] (4.424)

=

∫
∂V

∫
S2(s)

We(s,ω)Li(s,ω) 〈N(s),ω〉︸ ︷︷ ︸
| cosθs|

dσs dµ
2(s) (4.425)

=

∫
∂V

∫
S2(s)

We(s,ω)Li(s,ω) |cos θs|dσs dµ
2(s), (4.426)

where we assumed, that the sensors are part of the scene so that we can integrate over

their surfaces. Due to [137, Nicodemus 1978], we call M the measurement equation.

REMARK 4.54 Using De�nition 2.26 of the throughput measure, the measurement equa-Throughput Measure (94)

tion can also be written in the following form

M
(2.209)
=

∫
∂V×S2(s)

We(r)Li(r)dζ
⊥(r) (4.427)

(2.265)
= 〈We, Li〉, (4.428)

with r = (s,ω) ∈ R∂V, where the linear functional 〈·, ·〉 is de�ned by the inner productLinear Functional (55)
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de�ned on the L2-function space over R∂V with respect to the projected throughputRay Space (44)

measure.

In our discussions, the measurement equation is always be interpreted as the response

of a sensor or a sensor element, such as a pixel �j on the image plane of a camera that

measures the incident radiance upon it. These sensors are usually virtual and do not Radiance (250)

interfere with the light transport in the scene, where the responsivity Wj
e of the sensor �j

is zero almost everywhere, except for points and directions that lie within the solid angle

subtended by the pixel and the camera lens used. We use the measurement equation then

in the form

Mj
def
=

∫
�j

∫
S2(s)

Wj
e(s,ω)Li(s,ω)dσ⊥s (ω)dµ2(s), [W] (4.429)

where
⋃sx·sy
j=1 �j ⊂ ∂V corresponds to the image plane, with sx, sy as the resolution in

x and y-direction. Each measurement Mj works with a di�erent responsivity function

Wj
e, which can be used to model arbitrary lens systems as well as linear �lters used for

antialiasing.

EXAMPLE 4.16 (The Importance Function of a Pinhole Camera Model) The simplest cam-

era model which we can use in a rendering algorithm is the pinhole camera, see

Figure 4.75. This camera type is speci�ed by the eye, e ∈ R3, of an observer or

a virtual camera and a rectangular image plane in front of the eye. An image is

constructed by performing the central projection of the scene objects to the image

plane, which corresponds to a pixel array of dimension sx · sy.
When rendering an image, then we have to determine the radiance passing

through each pixel of the image plane, that is, we have to compute the inner product

〈Wj
e(s,ω), Li(s,ω)〉 for all points s ∈ �j and all directions ω within the solid angle

subtended by the pixel �j as seen from the eye.

Since the aperture of such a camera is a single point, the importance function

underlying a pinhole camera must incorporate a Dirac δ-distribution, that is, it can Dirac δ-distribution (117)

be replaced by a product of the form

Wj
e(s,ω) = δσ(ω−ωe) fj(s) (4.430)

where ωe =
e→s
‖e→s‖2 is the direction outgoing from eye point e through point s within

pixel �j of the image plane and fj is a normalized reconstruction �lter function for

pixel �j.
Replacing the importance function Wj

e in the measurement equation by Relation

(4.430), then we get:

Mj =

∫
�j

∫
S2(s)

δσ(ω−ωe) fj(s)Li(s,ω)dσ⊥s (ω)dµ2(s) (4.431)

=

∫
�j

fj(s)Li(s,ωe) | cos θe|dµ
2(s). (4.432)
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Near plane

Front
plane

FIGURE 4.75: REAL AND VIRTUAL PINHOLE CAMERA MODEL. The image on the left
shows a real pinhole camera, also called camera obscura. The pinhole of a real camera
obscura is located between the scene objects and the film plane. The image is constructed
by a central projection of the scene objects onto the film plane, that is, the image is inverted
about a line through the pinhole and perpendicular to the image plane. On the right, we
have a virtual pinhole camera, as used in CG. Here, the film plane is located in front of the
hole at the near plane, and the hole corresponds to the eye point. Image courtesy of NN.

A more e�cient choice of the importance than that from Equation (4.430) could

be the Dirac distribution δσ⊥ :

Wj
e(s,ω) =

δσ(ω−ωe)

| cos θs|
fj(s) (4.433)

= δσ⊥(ω−ωe) fj(s) (4.434)

then the cosine in the measurement equation can be removed and the measurement

equation can be expressed in a more simpli�ed form, namely by

Mj =

∫
�j

fj(s)Li(s,ωe)dµ
2(s). (4.435)

We will encouter Equation (4.435) when discussing rendering algorithms in

connection with antialiasing.Section 8.4.3

REMARK 4.55 Since the measurement equation measures the ux through a pixel, butFlux (249)

the human eye is sensitive to radiance rather than to ux, the ux through a pixel is

usually converted to an average radiance value Ljavg de�ned as:

Ljavg
def
=

Mj∫
∂V

∫
S2
Wj
e(s,ω)dσ⊥s (ω)dµ2(s)

. (4.436)

REMARK 4.56 (The Pixel Equation) Using more realistic camera models we can enhance

the realism of rendered images. Then, e�ects such as depth of �eld or motion blur can
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be simulated by using a lens camera model and adapting the measurement equationSection 8.4.3.2

to include an integration over a �nite exposure time. The measurement equation, Section 8.4.3.3

then also often called the pixel equation, see [107, Kolb & al, 1995], has the form

Mj
def
=

∫
�j

∫
Γ

∫
Λ

∫
T

L(T(s,ω, λ), λ, t)S(s,ω, t) f(s, λ)dµ(t)dµ(λ)dσ⊥s (ω)dµ2(s), (4.437)

where f is the sensor response on the pixel �j, T corresponds to the lens optics,

S models the behavior of the shutter, T is the exposure time, Γ is the solid angle

subtended by the lens as seen from pixel �j and Λ is the band of wavelength of visible

light.

The pixel equation can also be simpli�ed by putting the above dependencies in

the importance function Wj
e, that is, we can also write:

Mj
def
=

∫
�j

∫
Γ

∫
T

Wj
e(s,ω, t)Li(s,ω, t)dµ(t)dσ

⊥
s (ω)dµ2(s), (4.438)

where Wj
e simulates the behavior of the shutter S and the lens, as well as the pixel

�lter function f from above. This is the form of the measurement we use in Sec-

tion 8.4.3 when extending distribution ray tracing in order to render more realistic

images. Section 8.4

4.7 REFERENCE LITERATURE AND FURTHER READ-
ING

There is a vast literature on a detailed discussion of optics in general, but we give only a

few representative titles, such as [44, Ditchburn 1991], [79, Hecht 1975], [80, Hecht 2001],

[59, Feynman 1985], [155, Perez 1996], and [27, Born & Wolf 1999]. [44, Ditchburn 1991]

presents a single theory of light, integrating two �elds. So, it is shown that quantum

theory is a natural development of wave theory, and that together they constitute a single

valid theory of light. The book is aimed at students with an intermediate-level knowledge

of physics. [59, Feynman 1985] is an adaptation for the general reader of four lectures

on quantum electrodynamics. [80, Hecht 2001] starts with the historical development of

optics, and provides readers with the most up-to-date coverage of optics. This textbook

covers the whole �eld of optics in a comprehensible manner. As typical for a book from

Schaums Outline series, [79, Hecht 1975] is a good reference|with many exercises|for the

rather practical oriented reader. The basic concepts of optics in particular with respect

to the �eld of global illumination are also discussed in detail in [66, Glassner 1989], [67,

Glassner 1995], [68, Glassner 1995-2], [233, Watt 1992], [186, Shirley 2002], [187, Shirley

& Morley 2003], [158, Pharr & Humphreys 2004], and [159, Pharr & Humphreys 2010].
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Our approach for deriving scalar versions of the light transport equation, that is the

whole Section 4.1, is mainly based on [9, Arvo 1993], [68, Glassner 1995], and [191, Slusallek

1995]. There are many other possible approaches for deriving the light transport equations.

So, in [50, Dutr�e & al. 2003], [51, Dutr�e & al. 2006], [95, Jensen 2001], [158, Pharr &

Humphreys 2004], and [159, Pharr & Humphreys 2010] a rather intuitively approach is

chosen, which begins by considering derivatives of ux such as in [33, Chandrasekhar 1960]

and [91, Ishimaru 1997]. [163, Pomraning 1973] describes a Lagrangian approach, and in

[165, Preisendorfer 1965] a rigorous axiomatic derivation of the general transport equation

is presented, which is based on measure theory.

The concept of the bidirectional reectance distribution functions is from [135, Nicode-

mus & al. 1977]. According to [135, Nicodemus & al. 1977], we start with the derivation

of the BSSRDF. The concept of the BSSRDF is also described in [195, Snyder & Wan

1998] and [196, Snyder 1998]. Also [159, Pharr & Humphreys 2010] deals with this topic.

Although the BSSRDF is a time-consuming function in realistic rendering, until today,

a series of papers have dealt with it. One of the �rst papers that deals with subsurface

scattering was [75, Hanrahan & Krueger 1993], this paper presents a model for subsurface

scattering in layered surfaces in terms of one-dimensional linear transport theory. In [94,

Jensen & al. 2001] a simple model for subsurface light transport in translucent materials is

introduced. [93, Jensen & Buhler 2002] present an e�cient two-pass rendering technique

for translucent materials, and in [128, Mertens & al. 2003] a novel approach is presented

to e�ciently render local subsurface scattering e�ects.

We derive the BRDF in accordance to [135, Nicodemus & al. 1977], that is, starting

with the BSSRDF and the assumption, that it is not dependent on the spatial parameters

si and so. Of great help for our presentation of the BRDF were [175, Rusinkiewicz 1997],

[76, Hanrahan & al. 2000], [229, Walter 2005], and [238, Wynn 2006]. Another useful

reference was [141, Olano & al. 2002], where the topic was discussed very beautiful in

detail. The concept of the BSDF was �rstly mentioned in [82, Heckbert 1991]. Unlike the

BRDF and BTDF, the BSDF is not a key concept in radiometry, but it plays a major role

in computer graphics, and in our theoretical and practical considerations, as it frees us to

distinguish between reection and transmission at surfaces.

Easily readable introductory treatments on spherical harmonics are given in [43,

Dempski & al. 2005] and [190, Sillion 1994].

An exhaustive treatment of the concept of the phase function is given by [218, van

de Hulst 1981], [156, Petty 2006], [26, Bohren & al. 2004], and in particular in [33,

Chandrasekhar 1960 ]. [154, Pegoraro 2010] is a good reference for the use of the phase

function in global illumination.

There is a series of graphics textbooks that provided us with a good overview, in

particular, about the di�erent types of light sources and their properties used in computer

graphics. These are [158, Pharr & Humphreys 2004], [205, Su�ern 2007], and [159, Pharr

& Humphreys 2010]. While the books by Pharr and Humphreys discuss the concept of the

light source with the focus on implementing light emitters for a physically based rendering
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system, in [205, Su�ern 2007], also reference is made to the maths describing the direct

illumination at a surface point due to a speci�c light source. We go a similar way, but

we derive our formulas in terms of radiance instead of a radiance scaling factor and a

color as in [205, Su�ern 2007]. Another excellent source with respect to the description

of di�erent types of the various light source was [1, Akenine-M�oller & al. 2008]. We

also remark, that [1, Akinene-M�oller & al. 2008] and [158, Pharr & Humphreys 2004],

[159, Pharr & Humphreys 2010] apart from the light sources introduced in Section 4.3,

present further types of light sources, such as environmental lightning, projection, sky and

textured lights, as well as goniophotometric diagram lights. Last but not least, a nice and

intuitively description of the most important types of light sources for games programming

can be found in [43, Dempski & Viale 2005]. We recommend this text to the reader not

so familiar with calculus and higher mathematics.

Our approach for introducing the importance equation is similar to the approach

chosen in [221, Veach 1998]. We also uses the concept of the adjoint operator, but on

a very low level. So, we have already shown in detail in Chapter 2 that based on an

inner product the solution of an operator equation multiplied by the source function of

the associated adjoint equation can be reduced to the inner product of the solution of the

adjoint equation and the source function of the associated direct problem. In [47, Dutr�e

1996] and [50, Dutr�e & al. 2003] the importance equation is introduced based on the

concept of importance, namely, as the fraction of light that indicates its contribution to

the region of most interest. An overview of the use of importance in speeding up rendering

is given in [35, Christensen 2003]. Here, an attempt is made to clarify the various uses of

adjoints and importance in rendering by unifying them into a single framework.

The concept of the measurement equation is from [137, Nicodemus 1978] and more

realistic camera systems are discussed in [107, Kolb & al. 1995].



422 CHAPTER 4. MATHEMATICAL FORMULATIONS OF STATIONARY LIGHT TRANSPORT



CHAPTER FIVE

MATHEMATICAL MODELS OF LIGHT
AND IMPORTANCE TRANSPORT

In the beginning God created the heavens and the earth. Now

the earth was formless and empty, darkness was over the

surface of the deep, and the Spirit of God was hovering over

the waters. And God said:

∇ ·E =
σ

ε
∇ ·B = 0

∇×E = −
∂

∂t
B

∇×B = µσE + µε
∂

∂t
E

and there was light. God saw that the light was good and he

separated the light from the darkness. God called the light

day and the darkness night. And there was evening, and

there was morrning|the �rst day.

GENESIS 1:3-5

Due to De�nition 1.3, the global illumination problem is given by the quadruple(
V, Le,

n⋃
i=1

fsi ,We

)
, (5.1)

and consists in evaluating the measurement equation, i.e. the linear functional: Measurement Equation (416)

M = 〈We, Li〉 (5.2)

for all pixels of the image plane, that is, it is just this equation which must be solved by Linear Functional (55)

any rendering algorithm.

423
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In this chapter, we present a light transport framework|for the case of light transport

in a vacuum mainly developed in [221, Veach 1998]|that addresses precisely this goal.

Based on mathematical concepts such as measures, function spaces, inner products, and

linear operators, it also serves as the basis to an operator model of light transport in a vac-

uum and in participating media. Due to [221, Veach 1998], many aspects of this framework

are new, since it does not make assumptions about the symmetry of the used BSDFs and

thus, leads to a richer structure than previous approaches. So, it does adequately describe

the relationships between light and importance transport, recursive evaluation, or between

incident and exitant transport quantities. As a result, we get di�erent but equivalent and

symmetrical formulations of the measurement equation. This has the advantage that solu-

tions for the global illumination problem can be derived in various ways: by distributing

radiance from light sources into the scene, and collecting the incident or exitant radiance

at pixel sets that must be visible from the �nal image, or by distributing importance from

sources and collecting them at locations that are illuminated by light sources of the scene.

Based on this framework, it is also possible to distribute radiance and importance into the

scene simultaneously, and to compute their interaction at common points of intersection.

OVERVIEW OF THIS CHAPTER. In this chapter, we talk about operator models for lightSection 5.1

transport in a vacuum and in participating media. Thus, we �rst present the operator

model of light transport in a vacuum developed in [219, Veach 1996] and [221, Veach

1998]. We then use this model as the fundament for a new operator model of the light

transport in participating media. For that purpose we extend the light propagation and

light scattering operators introduced in [219, Veach 1996] by additional multiplication and

integral operators resulting in a light transport model in participating media. Afterwards,

we turn to the dual problem of light transport. We present an operator model of the

importance transport in a vacuum using the stationary importance transport equationSection 5.2

in a vacuum, the adjoint equation of the SLETV. Based on these two models then we

derive four basic transport operator equations which, applied to the measurement equa-

tion, lead to four di�erent but equivalent algorithms for solving the global illuminationSection 5.3

problem. Next, we devote to the construct of the path integral and discuss the path inte-

gral formulation of light transport based on the concept of the continuous path measure.Section 5.4

Endowed with this new measure, we construct a speci�c measurable space, the so-called

path space, that allows to describe the light transport as well as the importance transport,

instead of an integral equation, as a simple integral over all possible paths within a scene.

Here, we restrict our discussion not only to the case of light transport in a vacuum, but

we also consider the light transport in participating media. We conclude this chapter with

a short overview of a further mathematical model of light and importance transport, the

global reectance distribution function. The idea behind the GRDF is the concept ofSection 5.5

the BRDF. But compared with a BRDF, the GRDF is able to compute the behavior of

light in an environment, independent of the initial lighting or viewpoint conditions. Thus,

the concept of the GRDF can be interpreted as a combination of radiance and importance
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transport and allows us to describe the global illumination problem in a very short and

elegant way.

5.1 OPERATOR MODELS FOR LIGHT TRANSPORT

For generating a photorealistic image, a great class of rendering algorithm computes the

radiance distribution at all visible points within a scene, which is obviously a computa- Radiance (250)

tional costly task. This can be done by determining the ux incident at all pixels of the Flux (249)

image plane. For that purpose, we have to solve the SLTE at points visible through the SLTE (394)

pixels of the image plane, and have to evaluate the linear functional, Linear Functional (55)

M
def
= 〈We, Li〉, (5.3)

for these pixel sets. Measurement Equation (416)

In the above inner product,We and Li are functions from the function space L2(R, ζ), Inner Product (859)

where We corresponds to the emitted importance at points and directions from the ray L2(R, ζ) (111)

space R and Li is the unknown incident radiance|thus, solutions of the stationary light Emitted Importance (416)

transport equation in participating media|at all these points and directions, see Figure

5.1. R (44)

From our discussions in Chapter 4, as well as from Figure 5.2 follows that the Emission (282)

light transport in participating media is composed of three processes, an emission, an

absorption, and a scattering process. All these processes can be observed at surfaces of Absorption (282)

objects within a scene and at small particles within eventually involved participating me- Scattering (284)

dia. That is, points at surfaces as well as points within media can serve as emitters,

absorbers, and apart from scattering at a point on a surface, light can also be scattered at

small particles within participating media.

Based on this observation, the SLTE can then be split into four terms: two emission SLTE (394)

terms, one for emission at object surfaces and one for emission at particles within par-

ticipating media, and two scattering terms, even for surfaces and particles within media,

where each emission and scattering term is combined with an absorption term. Slightly

rephrased, and expressed in terms of exitant and incident radiance, the SLTE can then be Exitant & Incident Functions (48)
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FIGURE 5.1: EVALUATING THE MEASUREMENT EQUATION. For all points s within a
pixel, the product of the exitant importance in all directions, We(s, ω), over the unit sphere
about s is multiplied with the incoming radiance Li(s, ω).

written as:

Li(x,ωi)

= β(s→ x)︸ ︷︷ ︸
volume attenuation

Le,o(s,ωo)︸ ︷︷ ︸
emission at surface

+

∫
[0,‖x′−x‖]

β(x′ → x)︸ ︷︷ ︸
volume attenuation

Le,o(x
′,ωo)dµ(α)︸ ︷︷ ︸

emission within volume

+

β(s→ x)︸ ︷︷ ︸
volume attenuation

∫
S2(s)

fs(s,ω
′
i → ωo)Li(s,ω

′
i)dσ

⊥
s (ω

′
i)︸ ︷︷ ︸

scattering at surface

+ (5.4)

∫
[0,‖x′−x‖]

β(x′ → x)︸ ︷︷ ︸
volume attenuation

σs(x
′)

∫
S2(x′)

p(x′,−ω′i → ωo)Li(x
′,ω′i)dσx′(ω

′
i)dµ(α)︸ ︷︷ ︸

scattering within volume

,

where s = γ(x,ωi),x
′ = x + αωi, 0 < α < d∂V(x,ωi). The two �rst terms on thed∂V (47)

right-hand side describe the emission processes and the two last terms describe the scat-

tering processes, all endowed with an attenuation factor, β, due to subsequent absorption

processes within participating media.

Now, integral equations of such a complexity are commonly not analytically solvable,
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FIGURE 5.2: GEOMETRY OF THE SLTE. The light transport in participating media is
composed of three processes, an emission, an absorption, and a scattering process, E,A and
C. All these processes can be observed at surfaces of objects within a scene and at small
particles within media. That is, points at surfaces as well as points within media can serve
as emitters, absorbers, and scatterers. The radiance incident at volumetric point x from
direction ω is the sum of the attenuated and reflected radiance at surface point s as well as
the exitant, attenuated radiance that comes from all volumetric points between x and s

except for very trivial cases. Unfortunately, this also holds for the SLTE. As we know, the SLTE (394)

SLTE is a Fredholm type integral equation, and we also know that integral equations of Fredholm Integral Equation (127)

this type are solvable via the Neumann series approach. That is: If we can formulate the Neumann Series Approach (135)

SLTE from Equation (5.4) as a linear operator equation of the form Linear Operator Equation (61)

Li = Le,i +TLi, (5.5)

we have a chance to compute an approximate solution of Equation (5.4) via the Neumann L2(R, ζ) (111)

series approach. But this requires the identi�cation of the exitant radiance function Le,i Neumann Series Approach (135)

as the source or driving function of an integral equation as well as the incident radiance Driving Function (127)

function Li, and the construction of a linear operator T on the Lebesgue space L2(R, ζ). Linear Operator (53)

Our main goal in the section is precisely to develop a mathematical framework that

serves as the basis to operator models of light transport, in both their incident and exitant
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forms. Before we will derive such a mathematical framework for the general case of light

transport in participating media let us �rst of all simplify our discussion by considering

light transport under vacuum conditions.

5.1.1 AN OPERATOR MODEL FOR LIGHT TRANSPORT IN A
VACUUM

Let us consider the light transport in a closed scene composed of a �nite set ∂V of 2-∂V (41)

dimensional surfaces in the Euclidean space R3 under vacuum conditions. Then, we can

ignore the e�ects of emission, absorption, and scattering at small particles, as there is

no medium involved. That is, the general equation characterizing the light transport is

reduced to the calculation of radiance at the boundaries of object surfaces, so to say, to

the formulation of the boundary conditions.

With respect to Equation (5.4), light transport under vacuum conditions then means

that we have to neglect volumetric scattering, volumetric emission, as well as attenuation

induced by absorption processes within participating media. That is, at all inner points

x′ of a volume Vo we can assume that apart fromVo (41)

Le,o(x
′,ωo) = 0 (5.6)

it also hold

σs(x
′) = 0 (5.7)

and their is no attenuation of radiance between two points x and x′, that is,

β(x→ x′) = 1. (5.8)

Based on these assumptions and the relation ω′o = −ωi in Equation (5.4), then the

stationary light transport equation in a vacuum can be formulated in terms of exitant and

incident radiance as follows

Li(s,ωi) = Le,o(s
′,ω′o) +

∫
S2(s′)

fs(s
′,ω′i → ω′o)Li(s

′,ω′i)dσ
⊥
s′(ω

′
i), (5.9)

where it holds: s′ = γ(s,ωi) for s, s
′ ∈ ∂V, see Figure 5.3.γ (47)

It is just this equation that can be considered as our starting point for the derivation

of an operator model of light transport in a vacuum.
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FIGURE 5.3: GEOMETRY OF THE SLTEV. The light transport in a vacuum is composed of
an emission and a scattering process. Both processes can be observed only at surfaces of
objects within a scene. That is, only points at surfaces can serve as emitters, and light can
also only be scattered at object surfaces.

5.1.1.1 THE LIGHT PROPAGATION AND THE LIGHT SCATTERING OPERATOR IN

A VACUUM

Let us consider the source function Le,o(s
′,ω′o) from the SLTEV a little bit more closely.

Due to the principle of radiance invariance this exitant quantity can also be expressed inRadiance Invariance (253)

terms of incident radiance. Namely, applying the ray casting function γ to the surfaceIncident Functions (48)

point s obviously leads toγ (47)

Le,o(s
′,ω′o)

s′=γ(s,ωi)
= Le,o(γ(s,ωi),ω

′
o) (5.10)

(3.34)
= Le,i(s,ωi), (5.11)

see Figure 5.3.
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Using this relation, then the SLTEV can be expressed only in terms of incidentSLTEV (398)

radiance as

Li(s,ωi) = Le,i(s,ωi)︸ ︷︷ ︸
emission from surface

+

∫
S2(s′)

fs(s
′,ω′i → ω′o)Li(s

′,ω′i)dσ
⊥
s′(ω

′
i)︸ ︷︷ ︸

scattering at surface

(5.12)

where s′ = γ(s,ωi) and s, s′ are points on surfaces from ∂V. That is, the light transport

in free space can be considered as a composition of an emission and a scattering event,

both occurring at object surfaces.∂V (41)

Evidently, this partitioning is a consequence of the principle of radiance invarianceRadiance Invariance (253)

and the behavior of light within a vacuum, since light incident at a surface point is only

inuenced by scattered and emitted light propagated from surfaces. The light transport in

free space can also be considered as a series of alternating light scattering and light prop-

agation processes. The propagation process describes the travel of photons along lines

between surfaces within the vacuum, while the scattering process provides information

about the interactions of photons at the surfaces.

We will now mathematically capture any of these processes by means of linear op-Linear Operator (53)

erators acting on the Lebesgue space L2(R∂V, ζ⊥). With the help of these operators, weL2(R∂V, ζ⊥) (111)

are then in a position to formulate the physical processes of propagation and scattering of

light in a precise mathematical way.

THE LIGHT PROPAGATION OPERATOR IN A VACUUM. It is known that an exitant functionExitant & Incident Functions (48)

Lo(s,ωo)measures the radiance leaving a surface point s in directionωo, while an incident

radiance function Li(s,ωi) measures radiance arriving at this point from direction ωi.

Based on the model of the light ray, geometric optics assumes that light, emitted atLight Ray (11)

surfaces, propagates along straight lines through a vacuum. Compared with the light

transport in participating media, the energy of a light ray is, due to the principle of

radiance invariance, not attenuated in a vacuum. Based on these considerations, a physicalRadiance Invariance (253)

process, such as the propagation or the scattering of light, can be interpreted as a linearLinear Operator (53)

operator, see Example 2.22, where this operator maps an incident radiance function Li
onto an exitant radiance function Lo.

DEFINITION 5.1 (The Light Propagation Operator in a Vacuum, G∂V) Let L2(R∂V, ζ⊥) beL2(R∂V, ζ⊥) (111)

the space of square Lebesgue-integrable functions de�ned on R∂V. Then, the lightR∂V (44)

propagation operator in a vacuum

G∂V : L2(R∂V, ζ⊥) −→ L2(R∂V, ζ⊥)
ho(s

′,ωo) 7→ hi(s,ωi) = (G∂Vho)(s,ωi)

is de�ned by

(G∂Vho)(s,ωi)
def
=


ho(γ(s,ωi),−ωi) if d∂V(s,ωi) <∞
0 else,

(5.13)
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FIGURE 5.4: THE LIGHT PROPAGATION OPERATOR IN A VACUUM. The propagation
operator G∂V maps an exitant function ho(s

′, ωo) onto the incident function hi(s, ωi) =
(G∂Vho)(s, ωi) with γ(s, ωi) = s′.

where s, s′ ∈ ∂V with s′ = γ(s,ωi), ωo = −ωi, and d∂V is the boundary distance d∂V (47)

function of the ray casting function γ, see Figure 5.4. γ (47)

The light propagation operator can now be interpreted in such a way that it maps

an exitant function ho, de�ned on ∂V, onto an incident function hi = (G∂Vho), which ∂V (41)

is also de�ned on points from ∂V.

REMARK 5.1 Applied to an exitant radiance function Lo, the operator G∂V returns

the incident radiance function Li = G∂VLo as result of the propagation of light from

object surfaces. If the function Lo measures photons exitant from points of ∂V, the

function Li obviously measures these photons after propagation incident on surfaces.

Let us now suppose that the emitted radiance in all points of the ∂V × S2 is given

by Le,o(s,ωo). With the help of the light propagation operator G∂V from above, we can

then de�ne an incident emitted radiance function Le,i in terms of Le,o by

Le,i(s,ωi)
(3.34)
= Le,o(γ(s,ωi),−ωi) (5.14)

(5.13)
= (G∂VLe,o)(s,ωi). (5.15)

With respect to Equation (5.12) and the associated operator equation this means

that G∂VLe,o corresponds to the source function of a Fredholm integral equation of the Source Function (127)
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2nd kind, i.e. it plays the role of the constant in the operator equation from Relation (5.5).

THE LOCAL LIGHT SCATTERING OPERATOR. In addition to the surface emission term,

the SLTEV from Equation (5.12) still contains the scattering equation. Similar to theScattering Equation (374)

de�nition of the light propagation operator in a vacuum, we now de�ne a local light

scattering operator by:

DEFINITION 5.2 (The Local Light Scattering Operator, K∂V) Let L2(R∂V, ζ⊥) be the spaceL2(R∂V, ζ⊥) (111)

of square Lebesgue-integrable functions de�ned on ray space R∂V. Then, the localR∂V (44)

light scattering operator in a vacuum

K∂V : L2(R∂V, ζ⊥) −→ L2(R∂V, ζ⊥)
hi(s,ωi) 7→ ho(s,ωo) = (K∂Vhi)(s,ωo)

is de�ned as

(K∂Vhi)(s,ωo)
def
=

∫
S2(s)

fs(s,ωi → ωo)hi(s,ωi)dσ
⊥
s (ωi) (5.16)

where s ∈ ∂V, see Figure 5.5.∂V (41)

The local light scattering operator can be interpreted in such a way that it maps

an incident function hi, de�ned on ∂V, onto an exitant function ho = (G∂Vhi), which

is also de�ned on points from ∂V.

REMARK 5.2 Applied to an incident radiance function Li the operator K∂V returnsExitant & Incident Functions (48)

the exitant radiance function Lo as result from a single scattering operation at an

object surface, thus Lo = K∂VLi. If the function Li measures photons just before their

arrival at a surface point, then Lo measures photons after scattering.

5.1.1.2 THE LIGHT TRANSPORT OPERATOR EQUATION IN A VACUUM

In the previous section we derived the light propagation and the local light scattering

operator, and obtained, with G∂VLe,o as the source function, the �rst component of theSource Function (127)

linear operator equation associated with Equation (5.5). Now, the question that arises is:Linear Operator Equation (61)

How should we construct the operator T?Linear Operator (53)

THE LIGHT TRANSPORT OPERATOR IN A VACUUM. Let us consider the scattering equationScattering Equation (374)

of the SLTEV. Obviously, it can be expressed in form of a linear operator equation bySLTEV (399)

applying the local light scattering operator K∂V on the incident radiance function Li,K∂V (432)
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FIGURE 5.5: THE LOCAL LIGHT SCATTERING OPERATOR IN A VACUUM. The lo-
cal light scattering operator maps an incident function hi(s, ωi) onto the exitant function
ho(s, ωo) = (K∂Vhi)(s, ωo).

thus:∫
S2(s′)

fs(s
′,ω′i → ω′o)Li(s

′,ω′i)dσ
⊥
s′(ω

′
i)

(5.16)
=

(
K∂VLi

)
(s′,ω′o) (5.17)

=
(
K∂VLi

)︸ ︷︷ ︸
Lo

(γ(s,ωi),−ωi) (5.18)

= Lo(γ(s,ωi),−ωi) (5.19)

with ω′o = −ωi and s′ = γ(s,ωi).

Now, Equation (5.19) is of the same form as Equation (5.15), that is: the radiance

after a scattering event can also be expressed in terms of incident radiance by Exitant & Incident Functions (48)

Lo(γ(s,ωi),−ωi)
(5.13)
= (G∂VLo)(s,ωi) (5.20)

(5.19)
= (G∂VK∂VLi)(s,ωi). (5.21)

This means: Applying the propagation operator G∂V to the scattering operator K∂V G∂V (430)

delivers the fraction of light propagated to some point s after scattering at surface point s′ K∂V (432)

in direction −ωi. Inspired by [219, Veach 1996] we denote the compositionG∂VK∂V of the

light propagation and the local light scattering operator as the light transport operator

in a vacuum:
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DEFINITION 5.3 (The Light Transport Operator in a Vacuum, T∂VLi ) Let L
2(R∂V, ζ⊥) be the L2(R∂V, ζ⊥) (111)

space of square Lebesgue-integrable functions de�ned on the ray space R∂V. Then,L(R) (44)

the light transport operator

T∂VLi : L2(R∂V, ζ⊥) −→ L2(R∂V, ζ⊥)
hi(s,ωi) 7→ h′i(s

′,ω′i) = (T∂VLi hi)(s
′,ω′i)

is de�ned by

T∂VLi
def
= G∂VK∂V, (5.22)

where G∂V is the light propagation operator in a vacuum and K∂V is the local lightG∂V (430)

scattering operator, see Figure 5.6K∂V (432)

REMARK 5.3 Applied to an incident radiance function Li, T∂VLi returns the incident

function T∂VLi Li, that is: The light transport operator simulates a single scattering

step followed by a single light propagation step.

THE LIGHT TRANSPORT OPERATOR EQUATION IN A VACUUM. Combining the Expressions

(5.15) and (5.21) results in the following operator formulation for the SLTEV expressed

in incident radiance

Li = G∂VLe,o +G∂VK∂VLi (5.23)

(5.15)
= Le,i +G∂VK∂VLi. (5.24)

With the source function Le,i and the de�nition of the light transport operator, we are

now ready to represent the stationary light transport equation in a vacuum from Equation

(5.12) in a more simpler form, namely as a linear operator equation:Linear Operator Equation (61)

DEFINITION 5.4 (The Incident Light Transport Operator Equation in a Vacuum) Based on

the light propagation operator G∂V and the local light scattering operator K∂V, theG∂V (430)

incident light transport operator equation in a vacuum associated with the SLTEV isK∂V (432)

given bySLTEV (398)

Li = Le,i +T∂VLi Li. (5.25)

Recall, solving the light transport equation in a vacuum is equivalent to �nding a

solution of the light transport operator equation from De�nition 5.4. Under the condition

that the light transport operator is contracting, i.e. ‖T∂VLi ‖ < 1, then it holds|due to our

discussion about the solution of linear operator equations:Linear Operator Equation (61)



SECTION 5.1. OPERATOR MODELS FOR LIGHT TRANSPORT 435

FIGURE 5.6: THE LIGHT TRANSPORT OPERATOR IN A VACUUM. The local light
scattering operator T∂VLi is a composition of the local light scattering operator K∂V and the

light propagation operator G∂V, that is, an incident function hi(s, ωi) is mapped via K∂V

to an exitant function ho(s, ωo). The light propagation operator then maps this function
again to an incident function h′i(s

′, ω′i).

Li = Le,i +T∂VLi Li (5.26)

Li −T∂VLi Li = Le,i (5.27)

(I−T∂VLi )Li = Le,i (5.28)

Li = (I−T∂VLi )
−1︸ ︷︷ ︸

def
= S∂V

Li

Le,i, (5.29)

that is,

S∂VLi Le,i = (I−T∂VLi )
−1Le,i (5.30)

is the exact solution, which we are seeking. According to [221, Veach 1998], we call S∂VLi
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the solution operator of the stationary light transport equation in a vacuum.

Replacing the incident radiance in the measurement equation from Relation (5.3) byMeasurement Equation (416)

the product of the solution operator S∂VLi of the Neumann series and the emitted radianceNeumann Series (135)

Le,i, then the measurement equation can be written as:

M
def
= 〈We, Li〉 (5.31)

(5.29)
= 〈We,S∂VLi Le,i〉. (5.32)

REMARK 5.4 From Equation (2.387) we know that the solution operator S∂VLi can be

expressed in form of a Neumann series, namely:Neumann Series (135)

Li =

∞∑
i=0

T∂VLi
i
Le,i (5.33)

= Le,i +T∂VLi Le,i +T∂VLi
2
Le,i +T∂VLi

3
Le,i + . . . (5.34)

= Le,i +G∂VK∂VLe,i + (G∂VK∂V)2Le,i + (G∂VK∂V)3Le,i + . . . . (5.35)

Obviously, the light transport in a vacuum can be interpreted as composed of two

physical processes: Propagation of light between surfaces and scattering of light at

surfaces, that is, light incident at a scene point comes directly from surface emitters,

Le,i, or indirectly via multiple scattering at surface points, TiLi for i ≥ 1. Hence, for
describing the distribution of light in ray space it su�ces to determine the amountRay Space (44)

of light emitted from existing sources and to formulate the light transport operator

T∂VLi .

Let us �nish this section with an example that illustrates the derivation of an operator

equation for the light transport in an idealized scene, a self-emitting sphere composed of

a di�use material.

EXAMPLE 5.1 Given be a self-emitting sphere composed of di�use material. Then, the

reection behavior of the sphere can be described by a constant BSDF ρdh
π
. TheBSDF (371)

incident radiance at surface point sj on the sphere can be computed by solving the

SLTEV, that is,SLTEV (398)

Li(sj → sj−1) = Le(sj → sj−1) + (5.36)∫
∂V×∂V

fs(sj+1 → sj → sj−1)Li(sj+1 → sj)G(sj+1 ↔ sj)dµ
2(sj+1).

see Figure 5.7.

Due to the fact that in a sphere all points are visible to each other it holds

Li(sj → sj−1) = Le(sj → sj−1) + (5.37)

ρdh

π

∫
∂V×∂V

Li(sj+1 → sj)

∣∣ cos θj+1o cos θji
∣∣

‖sj+1 − sj‖22
dµ2(sj+1).
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FIGURE 5.7: THE GEOMETRY OF A DIFFUSE SELF-EMITTED SPHERE FOR COMPUTING
RADIANCE.

Obviously, we have: cos θj+1o = cos θji =
‖sj+1−sj‖22

2R
, that is,

Li(sj → sj−1) = Le(sj → sj−1) +
ρdh

4πR2

∫
∂V×∂V

Li(sj+1 → sj)dµ
2(sj+1). (5.38)

With, G∂V ≡ 1 and K∂V = ρdh
4πR2

, Equation (5.38) can be written as an operator

equation of the form

Li(sj → sj−1) = Le(sj → sj−1) +

∞∑
j=1

( ρdh
4πR2

)j
Le(sj+1 → sj) (5.39)

|
ρdh
4πR2

|<1
= Le(sj → sj−1) +

ρdh

4πR2
Le(sj+1 → sj) + (5.40)( ρdh

4πR2

)2
Le(sj+2 → sj+1) + . . . (5.41)

Le=C=
1

1− ρdh
4πR2

C.

5.1.2 AN OPERATOR MODEL FOR LIGHT TRANSPORT IN PAR-
TICIPATING MEDIA

Based on the discussion of the derivation of a linear operator equation for the light trans- Linear Operator Equation (61)
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port in a vacuum in Section 5.1.1.2, now we devote our interest to the development of a

linear operator equation for the case of light transport in participating media.

For that purpose, we will split the stationary light transport equation valid in partic-

ipating media into four terms: two emission terms, one for emission at object surfaces and

one for emission at particles within participating media, and two scattering terms, even

for surfaces and particles within media, where each emission and scattering term is com-

bined with an absorption term. With the light propagation operator G∂V, the local light

scattering operator K∂V from our discussion about an operator model for light transport

within a vacuum, and the construction of two new operators G
Vo

and K
Vo

, that describe

the light transport only in participating media, then we can formulate the SLTE as a linear

operator equation. Expressed as a Neumann series, this operator equation can be solved

as it is done in the previous section for the operator equation underlying the stationary

light transport equation within a vacuum.

5.1.2.1 THE LIGHT PROPAGATION AND THE LIGHT SCATTERING OPERATOR IN

PARTICIPATING MEDIA

Let us recall the SLTE from Equation (5.4). Using the light propagation operator inG∂V (430)

vacuum, G∂V, and the local light scattering operator, K∂V, then the SLTE can be written,K∂V (432)

slightly rephrased in the following mixed operator-integral equation formulation:SLTE (296)

Li(x,ωi)

= β(s→ x)︸ ︷︷ ︸
volume attenuation

(
G∂VLe,o +T∂VLi Li

)︸ ︷︷ ︸
SLTEV operator equation

+

∫
[0,‖x′−x‖]

β(x′ → x)︸ ︷︷ ︸
volume attenuation

Le(x
′,ωo)dµ(α)︸ ︷︷ ︸

emission within volume

+ (5.42)

∫
[0,‖x′−x‖]

β(x′ → x)︸ ︷︷ ︸
volume attenuation

σs(x
′)

∫
S2(x′)

p(x′,−ω′i → ωo)Li(x
′,ω′i)dσx′(ω

′
i)dµ(α)︸ ︷︷ ︸

scattering within volume

,

where G∂VLe,o and T∂VLi Li are square-integrable functions from L2(R∂V, ζ⊥).
Obviously, the product of the terms β(s → x) and

(
G∂VLe,o +T∂VLi Li

)
on the right

hand side can be interpreted as the light transport operator equation in a vacuum attenu-

ated by the path absorption function, β, while the two integrals describe the light emission

and scattering processes in volumetric points of a medium combined with absorption pro-

cesses.

Our goal in this section is to express the emission-within-volume-term and the scat-

tering-within-volume-term of the SLTE from Equation (5.4) by two corresponding linear

operators, G
Vo

and K
Vo

, valid in participating media. Combining these two operators

with the light propagation operator G∂V and the local light scattering operator K∂V from
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our discussion of an operator model for light transport within a vacuum then leads to an

operator equation for the SLTE of type

Li = β(s→ x)
(
G∂VLe,o +T∂VLi Li

)
+ G

Vo

Le,o +T
Vo

Li
Li, (5.43)

with the transport operator T
Vo

Li
= G

Vo

K
Vo

, valid within participating media.

Now, since G∂V and K∂V are only valid in a vacuum, we have to extend these two

operators by the path absorption function β, which describes absorption within partici- Path Absorption Function (292)

pating media. As a result, we get a so-called light propagation operator, G
Vo

, and a local

light scattering operator in participating media, K
Vo

. Together with their analogues

from light transport in a vacuum, these constructs then allow to formulate the SLTE from

Relation (5.42) as a linear operator equation of the same form as it is known from the last

section, namely,

Li = β(s→ x)
(
G∂VLe,o +T∂VLi Li

)
+ G

Vo

Le,o +T
Vo

Li
Li (5.44)

= β(s→ x)G∂VLe,o +G
Vo

Le,o + β(s→ x)T∂VLi Li +T
Vo

Li
Li (5.45)

=
(
β(s→ x)G∂V +G

Vo
)
Le,o︸ ︷︷ ︸

Le,i=GLe,o

+
(
β(s→ x)T∂VLi +T

Vo

Li

)
Li︸ ︷︷ ︸

TLiLi

(5.46)

= Le,i +TLiLi. (5.47)

The goal of this and the following section is the exact derivation of the operator

equation 5.47 and all needed mathematical constructs. We begin with the derivation of

the light propagation operators and the local light scattering operators in participating

media.

THE LIGHT PROPAGATION OPERATORS IN PARTICIPATING MEDIA. For modifying the light

propagation operator G∂V and the local light scattering operator K∂V such that they are

also valid in a participating medium, in a �rst step, we have to adapt the underlying

function spaces, and then we have to extend these operators by a so-called multiplication

operator given by the path absorption function β. Absorption Function (292)

Recall, the light propagation operatorG∂V and the local light scattering operatorK∂V

are linear mappings between the space L2(R∂V, ζ), that is, the space of square Lebesgue-
integrable functions de�ned on the ray space R∂V. Now, apart from the interaction of light

at surfaces from ∂V, the light transport in scenes with participating media also takes into

account the interaction of light at small particles from Vo. This means, that the emitted

as well as the incident radiance functions in the SLTE are all together functions de�ned

on the extended ray space R, that is, functions from the Lebesgue space L2(R, ζ), thus, L2(R, ζ) (112)

L2(R, ζ) def=
{
f ∈ L(R)

∣∣ ‖f‖L2 <∞, f = f∂V + fV
o

}
, (5.48)
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where f∂V(x,ω) ≡ 0 for x ∈ R \ ∂V, fV
o ≡ 0 for x ∈ R \ Vo and the volume V = Vo ∪ ∂V.

We can now introduce a so-called surface light propagation operator in participating

media which describes the ow of light from surfaces passing participating media.

DEFINITION 5.5 (The Surface Light Propagation Operator in Participating Media) Given

be the space of square Lebesgue-integrable functions, L2(R, ζ), de�ned on the rayL2(R, ζ) (112)

space R. Then, the surface light propagation operator in participating mediaR (44)

G
∂V

: L2(R, ζ) −→ L2(R, ζ)

ho(x,ωo) 7→ hi(x,ωi) = (G
∂V
ho)(x,ωi)

is de�ned by

(G
∂V
ho)(x,ωi)

def
=


β(s→ x)ho(γ(x,ωi),−ωi) if d∂V(x,ωi) <∞
0 else,

(5.49)

where x ∈ V, s = γ(x,ωi) ∈ ∂V, and ωo = −ωi.γ (47)

REMARK 5.5 The surface light propagation operator G
∂V

can be interpreted as it maps

an exitant function ho to an incident function hi = G
∂V
ho attenuated by the value of

the path absorption function β. Considered a little bit closer, you can say that G
∂V

operates only on the surface-component h∂Vo of the function ho. Due to its de�nition,

it holds

G
∂V

ho︸︷︷︸
∈L2(R,ζ)

= G
∂V
(
h∂Vo + hV

o

o

)
︸ ︷︷ ︸
∈L2(R,ζ)

(5.50)

(5.49)
= G

∂V
h∂Vo +G

∂V
hV

o

o︸ ︷︷ ︸
≡0

(5.51)

= G
∂V
h∂Vo︸ ︷︷ ︸

∈L2(R,ζ)

. (5.52)

Obvioulsy, G
∂V

maps the volume-component hV
o

o of ho to zero. Although it only

operates on the component h∂Vo of ho, nevertheless it returns a function h∂Vi +hV
o

i ∈
L2(R, ζ).

EXAMPLE 5.2 Let us consider an exitant radiance function Le ∈ L2(R, ζ). If it holdL2(R, ζ) (112)

Le(x,ωo) 6= 0 for a �nite set of points from V and directions from S2, then the func-

tion Le can be used to describe point light sources on surfaces and within participating



SECTION 5.1. OPERATOR MODELS FOR LIGHT TRANSPORT 441

media. Applying the operator G
∂V

to Le leads to

G
∂V
Le︸ ︷︷ ︸

∈L2(R,ζ)

= G
∂V
(
L∂Ve + LV

o

e

)
(5.53)

(5.49)
= G

∂V
L∂Ve +G

∂V
LV

o

e︸ ︷︷ ︸
≡0

(5.54)

= G
∂V
L∂Ve︸ ︷︷ ︸

∈L2(R,ζ)

, (5.55)

that is, the operator G
∂V

propagates the light coming from point light sources on

surfaces to points in V that can be reached on straight lines from the surface point

light sources. It does not take into account the light emitted from point light sources

in participating media.

Apart from the process of light propagation at surfaces, the light transport within

participating media is also characterized by light that comes from scattering or emission

events at volumetric points. Also this process can mathematically be captured by a linear

operator, the so-called volume light propagation operator in participating media, G
Vo

,

given on the Lebesgue space L2(R, ζ).

DEFINITION 5.6 (The Volume Light Propagation Operator in Participating Media) Given

be the space of square Lebesgue-integrable functions, L2(R, ζ), de�ned on ray space L2(R, ζ) (112)

R. Then, the volume light propagation operator in participating media R (44)

G
Vo

: L2(R, ζ) −→ L2(R, ζ)

ho(x,ωo) 7→ hi(x,ωi) = (G
Vo

ho)(x,ωi)

is de�ned by

(G
Vo

ho)(x,ωi)
def
=


∫
[0,‖x′−x‖] β(x

′ → x)ho(x
′,−ωi)dµ(α) if x′ = x+ αωi ∈ Vo

0 else,

(5.56)

where x′ is a point within a medium lying on the line from x ∈ V to the closest point

s = γ(x,ωi) on a surface. γ (47)

REMARK 5.6 The volume light propagation operator G
Vo

can be interpreted as it maps

an exitant function ho to an incident function hi = G
∂V
ho attenuated by the value of

the path absorption function β. Contrary to the operator G
∂V
, which only operates

on the surface-component h∂Vo of ho, the volume light propagation operator G
Vo

only
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operates on the volume-component hV
o

o of ho, that is, applied to the exitant function

ho, we get:

G
Vo

ho︸︷︷︸
∈L2(R,ζ)

= G
Vo
(
h∂Vo + hV

o

o

)
︸ ︷︷ ︸
∈L2(R,ζ)

(5.57)

(5.56)
= G

Vo

h∂Vo︸ ︷︷ ︸
≡0

+G
Vo

hV
o

o (5.58)

= G
Vo

hV
o

o︸ ︷︷ ︸
∈L2(R,ζ)

. (5.59)

Thus, G
Vo

maps the surface-component h∂Vo of ho to zero. Although it only

operates on the component hV
o

o of ho, nevertheless it returns a function h∂Vi +hV
o

i ∈
L2(R, ζ).

EXAMPLE 5.3 Let us consider an exitant radiance function Le ∈ L2(R, ζ) once more,

where Le(x,ωo) 6= 0 for a set of points from V and directions from S2. Applying the

operator G
Vo

to Le leads toL2(R, ζ) (112)

G
Vo

Le︸ ︷︷ ︸
∈L2(R,ζ)

= G
Vo
(
L∂Ve + LV

o

e

)
(5.60)

(5.5)
= G

Vo

LV
o

e︸ ︷︷ ︸
∈L2(R,ζ)

, (5.61)

that is, the operator G
Vo

propagates the light coming from point light sources within

participating media to points in V that can be reached on straight lines. It does not

take into account the light emitted from point light sources lying on object surfaces.

Based on these new concepts, we are now able to de�ne the light propagation op-

erator in participating media as sum of the surface light propagation operator and the

volume light propagation operator.

DEFINITION 5.7 (The Light Propagation Operator in Participating Media) Given be the

space of square Lebesgue-integrable functions, L2(R, ζ), de�ned on the ray space R.L2(R, ζ) (112)

Then, the light propagation operator in participating mediaR (44)

G : L2(R, ζ) −→ L2(R, ζ)
ho(x,ωo) 7→ hi(x,ωi) =

(
Gho

)
(x,ωi)

is de�ned as the sum of the surface light propagation operator G
∂V

and the volumeG
∂V

(440)
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light propagation operator G
Vo

, that is, for any x ∈ V it is given byG
Vo

(441)

(Gho)(x,ωi)
def
= (G

∂V
ho)(x,ωi) + (G

Vo

ho)(x,ωi). (5.62)

REMARK 5.7 Applied to an exitant radiance function Lo, the operator G returns the

incident radiance function Li resulting from the propagation of light from points s on

object surfaces and from all points x′ on the line to s within participating media, thus

Li = GLo. If the function Lo measures photons exitant from points of V = ∂V∪Vo, the
function Li obviously returns the fraction of these photons that propagates through

the medium.

Let us show how the concept of the light propagation operator in participating media

works when applied to an exitant radiance function

EXAMPLE 5.4 (Emission in Participating Media Expressed in Incident Radiance) Let us

suppose that the emitted radiance in all scene points x ∈ V is given by Le,o(x,ωo).

Applying the light propagation operator in participating media to Le,o(x,ωo) leads to

(GLe,o)(x,ωi)
def
= ((G

∂V
+G

Vo

)Le,o)(x,ωi) (5.63)

= (G
∂V
Le,o)(x,ωi) + (G

Vo

Le,o)(x,ωi) (5.64)

= β(s→ x)Le,o(s,ωo)︸ ︷︷ ︸
(G
∂V
Le,o)(x,ωi)

+

∫
[0,‖x′−x‖]

β(x′ → x)Le,o(x
′,ωo)dµ(α)︸ ︷︷ ︸

(G
Vo
Le,o)(x,ωi)

, (5.65)

where s is the closest visible surface point reachable from x in direction ωi, and x′

are all points lying on the line starting in x and passing through the medium.

Obviously, the above equation describes the emission processes of the SLTE from SLTE (296)

(5.4), at surface and volumetric points, expressed in incident radiance. Since (GLe,o)

is an incident quantity, we use in the following discussion the identity

Le,i(x,ωi)
def
= (GLe,o)(x,ωi). (5.66)

If the emitted radiance is known in all scene points, then also the function GLe,o is

known, since it can be evaluated via the path absorption function β. This means: GLe,o Path Absorption Function (292)

can be interpreted as the driving function of a Fredholm integral equation of the 2nd kind, Driving Function (127)

and thus can be used as the constant in our operator equation from (5.5).

THE LOCAL SCATTERING OPERATOR IN PARTICIPATING MEDIA. Obviously, light passing

through a medium can come from scattering events at surfaces or from scattering events
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within a medium, thus, similar to the de�nition of the light propagation operator G also

the light scattering operator K must be composed of a surface light scattering operator

and a volume light scattering operator.

DEFINITION 5.8 (The Local Surface Light Scattering Operator in Participating Media) LetL2(R, ζ) (112)

L2(R, ζ) be the space of square Lebesgue-integrable functions de�ned on the ray space

R. Then, the local surface light scattering operator in participating mediaR (44)

K
∂V

: L2(R, ζ) −→ L2(R, ζ)

hi(x,ωi) 7→ ho(x,ωo) = (K
∂V
hi)(x,ωo)

is de�ned by

(K
∂V
hi)(x,ωo)

def
=


∫
S2(s)

fs(s,ωi → ωo)hi(s,ωi)dσ
⊥
s (ωi) if s = x ∈ ∂V

0 else.

(5.67)

REMARK 5.8 The local surface light scattering operator K
∂V

can be interpreted as it

maps an incident function hi to an exitant function ho = G
Vo

ho. Like G
∂V
, so K

∂V

only operates on the surface component h∂Vi of the incident function hi, the volume

component hV
o

i is mapped to zero. Nevertheless, G
∂V

returns an exitant function

from L2(R, ζ).

In a similar way, we now de�ne the local volume light scattering operator in par-

ticipating media, as the operator, that describes only the scattering behavior at points

within a participating medium. This operator only operates on the volume-component of

an incident function hi, and maps the surface-component of hi to zero.

DEFINITION 5.9 (The Local Volume Light Scattering Operator in Participating Media) LetL2(R, ζ) (112)

L2(R, ζ) be the space of square Lebesgue-integrable functions de�ned on the ray space

R. Then, the local surface light scattering operator in participating mediaR (44)

K
Vo

: L2(R, ζ) −→ L2(R, ζ)

hi(x,ωi) 7→ ho(x,ωo) = (K
Vo

hi)(x,ωo)

is de�ned by

(K
Vo

hi)(x,ωo)
def
=


σs(x)

∫
S2(x)

p(x,−ωi → ωo)hi(x,ωi)dσx(ωi) if x ∈ V

0 else.

(5.68)

REMARK 5.9 The volume light scattering operator K
Vo

can be interpreted as it maps

an incident function hi, to an exitant function ho = K
Vo

hi. Although this operator
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reduces the surface-component of hi, it returns an exitant function from the Lebesgue

space L2(R, ζ).

Ultimately, we can now de�ne the local light scattering operator within participating

media as sum of the linear operators K
∂V

and K
Vo

.

DEFINITION 5.10 (The Local Light Scattering Operator in Participating Media) Given be

the space of square Lebesgue-integrable functions, L2(R, ζ), de�ned on the ray space L2(R, ζ) (112)

R. Then, the light scattering operator in participating media R (44)

K : L2(R, ζ) −→ L2(R, ζ)
hi(x,ωi) 7→ ho(x,ωo) =

(
Khi

)
(x,ωo)

is de�ned as the sum of the local surface light scattering operator K
∂V

and the local

volume light scattering operator K
Vo

by

(Kh)(x,ωo)
def
= (K

∂V
hi)(x,ωo) + (K

Vo

hi)(x,ωo). (5.69)

REMARK 5.10 Applied to an incident radiance function Li, the operator K returns the

exitant radiance function Lo as result from a single scattering operation at object

surfaces and within a medium, thus Lo = KLi. If the function Li measures photons

just before their arrival at surfaces or volumetric points, then Lo measures photons

after the scattering.

Let us show how the concept of the local light scattering operator in participating

media works when applied to an incident radiance function

EXAMPLE 5.5 (Scattering in Participating Media Expressed in Incident Radiance) Let us

assume, that Li(x,ωi) denotes the incident radiance at scene points x from direction

ωi. Applying the local light scattering operator in participating media to Li(x,ωi),

then we get:

(KLi)(x,ωi)
(5.69)
= ((K

∂V
+K

Vo

)Li)(x,ωo) (5.70)

= (K
∂V
Li)(x,ωo) + (K

Vo

Li)(x,ωo) (5.71)

(5.67),(5.68)
=

∫
S2(s)

fs(x,ωi → ωo)Li(x,ωi)dσ
⊥
x (ωi) + (5.72)

σs(x)

∫
S2(x)

p(x,−ωi → ωo)Li(x,ωi)dσx(ωi).

Obvioulsy the above equation describes the scattering processes of the SLTE from SLTE (296)

Equation (5.4) expressed in terms of incident radiance.
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5.1.2.2 THE LIGHT TRANSPORT OPERATOR EQUATION IN PARTICIPATING ME-
DIA

In Section 5.1.1.2 we have seen, that the stationary light transport within a vacuum can

be described by an operator equation of type

Li = Le,i +T∂VLi Li, (5.73)

where Le,i corresponds to the emitted radiance within the scene, expressed as an incident

quantity, Li is the unknown incident radiance, and T∂VLi is the associated light transport

operator valid in a vacuum, de�ned on the square Lebesgue-integrable function space

L2(R∂V, ζ⊥).
Now, the structure of the SLTE from Relation (5.4) implies, that also an operator

equation for the stationary light transport in participating media can be written in form

of an operator equation of the type

Li = Le,i +TLiLi, (5.74)

thus, as sum of the emitted radiance within the scene and a linear transport operator valid

in participating media, where Le,i and Li are square Lebesgue-integrable functions from

the function space L2(R, ζ).
From Example 5.4 it is known that the two emission terms of the SLTE from Relation

(5.4) can be expressed via the linear light propagation operator in participating media,

namely by

Le,i
(5.66)
= GLe,o. (5.75)

Thus, to achieve our goal, the only thing that remains is to express the scattering-

at-surface-term and the scattering-within-volume-term from Equation (5.4) via the linear

operatorsG andK. But this can be done easily: Obviously, the composition of the surface

light propagation operator G
∂V

and the local surface light scattering operator K
∂V

andG
∂V

(440)
K
∂V

(444) the application of this new operator to an incident function Li, leads to the scattering-at-

surface-term of the SLTE, thus,(
G
∂V

K
∂V
Li

)
(s,ωi) = β(s→ x)

∫
S2(s)

fs(s,ω
′
i → ωo)Li(s,ω

′
i)dσ

⊥
s (ω

′
i) (5.76)

where ωo = −ωi. On the other side, combining G
Vo

and K
Vo

, applied to an incidentG
Vo

(441)

K
Vo

(444) function Li, leads to the scattering-within-volume-term from Equation (5.4), thus,

(G
Vo

K
Vo

Li)(xωi) = (5.77)∫
[0,‖x′−x‖]

β(x′ → x)σs(x
′)

∫
S2(x′)

p(x′,−ω′i → ωo)Li(x
′,ω′i)dσx′(ω

′
i)dµ(α).
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This then suggest the idea, to de�ne the light transport operator in participating

media as a combination of the light propagation operator G and the local light scatteringG (442)

operator in participating media KK (445)

Obviously, applying the operator G to the operator K delivers the fraction of light G (442)

incident at point x from directions ωi after scattering at a surface point s and at points K (445)

within a medium that lie on a line from x to s in directions ωi. Mathematically, this can

be expressed as follows:

(GKLi)(x,ωi) =
((

G
∂V

+G
Vo
)(

K
∂V

+K
Vo
)
Li

)
(x,ωi) (5.78)

=
(
G
∂V

K
∂V
Li

)
(x,ωi) +

(
G
∂V

K
Vo

Li

)
(x,ωi)︸ ︷︷ ︸

Li≡0

+ (5.79)

(
G

Vo

K
∂V
Li

)
(x,ωi)︸ ︷︷ ︸

Li≡0

+
(
G

Vo

K
Vo

Li

)
(x,ωi). (5.80)

Due to its de�nitions, the operators G
∂V

K
Vo

and G
Vo

K
∂V

each return the function

Li ≡ 0. Intuitively, this should be clear, since K
Vo

maps the surface-component of Li

to zero, and the following application of the operator G
∂V

works only on this surface-

component. The same also holds for G
Vo

K
∂V

vice versa, here, K
∂V

maps the volume-

component of Li to zero, and G
Vo

works only on this component. That is, (GKLi)(x,ωi)

can be written as(
GKLi

)
(x,ωi) =

(
G
∂V

K
∂V
Li

)
(x,ωi) +

(
G

Vo

K
Vo

Li

)
(x,ωi). (5.81)

Compared with the light transport operator T∂VLi in a vacuum, the linear operator(
GKLi

)
(x,ωi) from Equation (5.81) plays the same role in a medium, thus, it can be

interpreted as the light transport operator in participating media.

Together with the emission operator from Equation (5.75) we then get the following

operator formulation for the SLTE

Li = GLe,o +GKLi. (5.82)

As in the previous section, we denote the composition of the light propagation and

the local light scattering operator in participating media as the light transport operator

in participating media.

DEFINITION 5.11 (The Light Transport Operator in Participating Media) Let L2(R, ζ) be L2(R, ζ) (112)

the space of square Lebesgue-integrable functions de�ned on the ray space R. Then, (R, ζ) (44)

the light transport operator

TLi : L
2(R, ζ) −→ L2(R, ζ)

hi(x,ωi) 7→ (
TLihi

)
(x,ωi)
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is de�ned by

TLi
def
= GK (5.83)

= G
∂V

K
∂V

+G
Vo

K
Vo

(5.84)

= T
∂V

Li
+T

Vo

Li
(5.85)

where G is the light propagation operator and K is the local light scattering operator,G (443)

both valid in participating media, see Figure 5.8. The light transport operator TLiK (445)

maps an incident radiance function Li to the incident function TLiLi, that is: The

light transport operator simulates a single scattering step of the light transport in

participating media.

FIGURE 5.8: THE LIGHT TRANSPORT OPERATOR IN PARTICIPATING MEDIA, T. Light

incident at a surface or a volumetric point is scattered via K
∂V

respectively K
Vo

and

propagated via G
∂V

respectively G
Vo

to the point to be shaded.

With the source function GLe,o and the de�nition of the light transport operator

TLi , we are now ready to represent the light transport equation in participating media

from Equation (5.4) in a much simpler form, namely as a linear operator equation.Linear Operator Equation (61)

DEFINITION 5.12 (The Light Transport Operator Equation in Participating Media) Based

on the light propagation operator G and the local light scattering operator K, theG (443)

light transport operator equation associated with the SLTE is given byK (445)

Li = GLe,o +TLiLi (5.86)

= Le,i +TLiLi, (5.87)
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where we use the identity Le,i = GLe,o for the emitted radiance from Equation (5.66).

With the same argumentation as in the case of the light transport in a vacuum|that

is, under the condition that the light transport operator is contracting, i.e. ‖TLi‖ < 1|the

solution operator SLi of the above linear operator equation, given by

SLi =
(
I−TLi

)−1
, (5.88)

can also be written in form of a Neumann series as:

Li =

∞∑
i=0

T
i

Li
Le,i (5.89)

= Le,i +TLiLe,i +T
2

Li
Le,i +T

3

Li
Le,i + . . . . (5.90)

The light transport in participating media can then be interpreted as composed of

two physical processes: Propagation and scattering of light at surfaces as well as at small

particles within media. For describing the distribution of light in ray space it su�ces to

determine the amount of light emitted from surfaces or from volumetric sources and to

formulate the light transport operator TLi .

For a detailed analysis of light transport in participating media, let us write our light

transport operator equation in terms of the surface and volume propagation as well as the

scattering operators, thus:

Li =

∞∑
i=0

(GK)iLe,i (5.91)

= Le,i +GKLe,i + (GK)2Le,i + (GK)3Le,i + · · · (5.92)

(5.81)
= Le,i +

(
G
∂V

K
∂V

+G
Vo

K
Vo
)
Le,i + (5.93)(

G
∂V

K
∂V

+G
Vo

K
Vo
)2
Le,i +

(
G
∂V

K
∂V

+G
Vo

K
Vo
)3

+ · · ·

= Le,i +G
∂V

K
∂V
Le,i +G

Vo

K
Vo

Le,i +G
∂V

K
∂V

G
∂V

K
∂V
Le,i + · · · (5.94)

= Le,i +

G
∂V

K
∂V
Le,i +G

Vo

K
Vo

Le,i + (5.95)

G
∂V

K
∂V

G
∂V

K
∂V
Le,i +G

∂V
K
∂V

G
Vo

K
Vo

Le,i +

G
Vo

K
Vo

G
∂V

K
∂V
Le,i +G

Vo

K
Vo

G
Vo

K
Vo

Le,i + · · · ,

see Figure 5.9. Obviously, the light, incident at a scene point comes directly from surface

and volume emitters, or indirectly over multiple scattering at surfaces and/or volumetric

points.
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FIGURE 5.9: THE LIGHT TRANSPORT OPERATOR IN PARTICIPATING MEDIA. Let us
assume that the black point has to be shaded. The figure illustrates the recursive application

of the light transport operator T = GK, with G = G
∂V

+G
∂V

and K = K
∂V

+K
∂V

for
evaluating the first three terms of the associated Neumann series. The blue and the red
arrow corresponds to light propagation from surface respectively volumetric points and the
red circle as well as the blue brick corresponds to volumetric respectively scattering at surface

points. The yellow labeled path represents the transport path G
∂V

K
∂V

G
Vo

K
Vo

G
∂V

K
∂V

.
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Replacing the incident radiance in the measurement equation from (5.3) by the prod- Measurement Equation (416)

uct of the solution operator S of the Neumann series and the emitted radiance, Le,i, then Neumann Series (135)

a measurement can also be written as the linear functional: Linear Functional (55)

M
def
= 〈We, Li〉 (5.96)

Li=SLiLe,i= 〈We,SLiLe,i〉. (5.97)

5.2 AN OPERATOR MODEL FOR IMPORTANCE TRANS-
PORT IN A VACCUM

The fundamental result from Section 2.1.6, where we discussed adjoint operator equations,

was the identity

〈f(x), i(x)〉 = 〈g(x), h(x)〉 (5.98)

for a pair of adjoint equations

f(x) = g(x) + (Tf)(x) (5.99)

h(x) = i(x) + (T∗h)(x). (5.100)

In Section 2.3.2 then we have transferred this result to the case of Fredholm integral

equations of the 2nd kind. Applied to the incident stationary light transport equation SLTEV (398)

and the incident stationary importance transport equation within a vacuum then identity SITEV (413)

from Equation (5.98) can be written as:

〈Le,o,Wi〉 = 〈We, Li〉. (5.101)

This means, that the measurement equation can not only be solved via computing Measurement Equation (416)

the radiance at important points and directions of the scene, but also via computing the

importance at illuminated points and directions.

In the following two sections, we will now derive shortly the tools that are required

also to formulate an operator model for importance transport in a vacuum. As we will Importance (415)

see in Section 9.2, this will lead to new insights and possibilities to write new rendering

algorithms.

5.2.1 THE IMPORTANCE PROPAGATION AND THE IMPORTANCE
SCATTERING OPERATOR IN A VACUUM

To derive an operator model for importance transport, similar to the model of light trans-

port, we have to construct linear operators on a corresponding function space. Since im-

portance ows in the opposite direction to radiance, this function space has to be de�ned Radiance (250)
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on the reversible ray space R̃∂V introduced in Box 2.3.

Let L(R̃
∂V

) be the space of real-valued functions de�ned on the reversible ray space

R̃∂V. We now equipped this function space with a measure based on the throughput

measure ζ⊥. For this, we have to construct a bijective mapping m between R̃∂V and theζ⊥ (94)

ray space R∂V, byR∂V (44)

m : R̃∂V → R∂V (5.102)

r̃ = (s,ω) 7→ m(s,ω) = (γ(s,ω),−ω), (5.103)

which ensures that any ray of R̃∂V has an image in R∂V, that is, the reversible ray

r̃ = (s,ω) is mapped to its associated ray in R∂V.
Based on the function m, we can now construct a measure ζ̃⊥ on the Borel σ-algebraBorel σ-algebra (865)

B(R̃∂V) de�ned by

ζ̃⊥(B)
def
= (ζ⊥ ◦m)(B) (5.104)

=
(
(µ2 × σ⊥) ◦m

)
(B) (5.105)

for all B ∈ B(R̃∂V).

REMARK 5.11 Obviously, the measure ζ̃⊥ assigns a set B of reversible rays the through-

put measure of its image m(B).

Endowed with the measure ζ̃⊥, we then de�ne the Lebesgue space L2(R̃∂V, ζ̃⊥) by

L2(R̃∂V, ζ̃⊥) def=
{
f ∈ L(R̃∂V)

∣∣ ‖f‖L2 <∞}, (5.106)

where the L2-norm is given by the inner product

‖f‖L2
def
= 〈f, f〉 =

∫
∂V×S2(s)

|f(r̃)|2 dζ̃⊥(r̃) (5.107)

(5.105)
=

∫
∂V

∫
S2(s)

|f(m(s,ω))|2 dµ2(s)dσ⊥s (ω). (5.108)

Thus, L2(R̃∂V, ζ̃⊥) contains all functions which, square-integrated over the unit

sphere at all surface points ∂V, deliver a �nite value.

THE IMPORTANCE PROPAGATION OPERATOR IN A VACUUM. Based on the construct of the

Lebesgue space L2(R̃∂V, ζ̃⊥), we now de�ne|in accordance to the derivation of the light

propagation operator|the importance propagation operator in a vacuum by:

DEFINITION 5.13 (The Importance Propagation Operator in a Vacuum) Let L2(R̃∂V, ζ̃⊥)L2(R̃∂V, ζ̃⊥) (452)

be the space of square Lebesgue-integrable functions de�ned on R̃∂V. Then, the im-R̃∂V (44)
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portance propagation operator in a vacuum

G∂V
∗
: L2(R̃∂V, ζ̃⊥) −→ L2(R̃∂V, ζ̃⊥)

ho(s
′,ω′o) 7→ hi(s,ωi) = (G∂V

∗
ho)(s,ωi)

is de�ned by

(G∂V
∗
ho)(s,ωi)

def
=


ho(γ(s,ωi),−ωi) for (s,ωi) ∈ R̃∂V

0 otherwise,

(5.109)

where s ∈ ∂V, ω′o = −ωi, and γ is the ray casting function with γ(s,ωi) = s′. γ (47)

So, importance propagation operator can be interpreted as a mapping that maps

an exitant function ho, de�ned on surfaces from ∂V, onto an incident function hi = ∂V (41)

(G∂V
∗
ho), which is also de�ned on points from ∂V.

REMARK 5.12 Applied to an exitant radiance function Wo, the operator G∂V
∗
returns

the incident importance function Wi = G∂V
∗
Wo as result of the propagation of im-

portance from object surfaces. If the function Wo measures importons exitant from

any point, the function Wi obviously measures these importons after propagation

incident on surfaces.

REMARK 5.13 Due to the de�nition of the light propagation operator in a vacuum

G∂V and its adjoint, the importance propagation operator in a vacuum G∂V
∗
it is

relatively straightforward to show that it holds:

G∂V = G∂V
∗
, (5.110)

that is, G∂V is self-adjoint. For a detailed proof see [221, Veach 1998].

THE LOCAL IMPORTANCE SCATTERING OPERATOR IN A VACUUM. In addition to the surface

emission term, the SITEV from De�nition (4.44) still contains a scattering term similar

to the scattering equation of the SLTEV. We now de�ne a local importance scattering Scattering Equation (374)

operator by:

DEFINITION 5.14 (The Local Importance Scattering Operator) Let L2(R̃∂V, ζ̃⊥) be the L2(R̃∂V, ζ̃⊥) (452)

space of square Lebesgue-integrable functions de�ned on R̃∂V. Then, the local impor- R̃∂V (44)

tance scattering operator

K∂V
∗
: L2(R∂V, ζ⊥) −→ L2(R∂V, ζ⊥)

hi(s,ωi) 7→ ho(s,ωo) = (K∂V
∗
hi)(s,ωo)

is de�ned as

(K∂V
∗
hi)(s,ωo)

def
=

∫
S2(s)

f∗s(s,ωi → ωo)hi(s,ωi)dσ
⊥
s (ωi), (5.111)
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where s ∈ ∂V. ∂V (41)

The local light scattering operator can be interpreted as it maps an incident

function hi, de�ned on ∂V, onto an exitant function ho = (G∂V
∗
hi), which is also

de�ned on points from ∂V.

REMARK 5.14 Applied to an incident importance function Wi the operator K∂V
∗
re-Exitant & Incident Functions (48)

turns the exitant importance function Wo as result from a single scattering operation

at an object surface, thus Wo = K∂V
∗
Wi. If the function Wi measures importons just

before their arrival at a surface point, then Wo measures importons after scattering.

REMARK 5.15 Obviously, the de�nition of the local importance scattering operator,

K∂V
∗
, is well de�ned, since it holds:

〈h,K∂Vg〉

=

∫
∂V

∫
S2(s)

h(s,ωo)

(∫
S2(s)

fs(s,ωi → ωo)g(s,ωi)dσ
⊥
s (ωi)

)
︸ ︷︷ ︸

K∂Vg

dσ⊥s (ωo)dµ
2(s)

=

∫
∂V

∫
S2(s)

∫
S2(s)

fs(s,ωi → ωo)h(s,ωo)dσ
⊥
s (ωo)g(s,ωi)dσ

⊥
s (ωi)dµ

2(s)

=

∫
∂V

∫
S2(s)

(∫
S2(s)

f∗s(s,ωo → ωi)h(s,ωo)dσ
⊥
s (ωo)

)
︸ ︷︷ ︸

K∂V∗h

g(s,ωi)dσ
⊥
s (ωi)dµ

2(s)

= 〈K∂V∗h, g〉.

Here we have used the adjoint BSDF f∗s, de�ned by,

f∗s(s,ωi → ωo)
def
= fs(s,ωo → ωi), (5.112)

the Helmholtz reciprocity of the adjoint BSDF, and the Theorem of Fubini-TonelliHelmholtz Reciprocity (331)

for iterated integrals to change the order of integration.Theorem of Fubini-Tonelli (115)

5.2.2 THE IMPORTANCE TRANSPORT OPERATOR EQUATION IN
A VACUUM

In analogy to the de�nition of the light transport operator, we can now de�ne the impor-

tance transport operator in a vacuum, T∂VWi , by the composition of the local importance

scattering operator and the importance propagation operator. For that purpose, let us

assume that the BSDF fs is symmetric at all points of ∂V, so that it holds: K∂V = K∂V
∗
.
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DEFINITION 5.15 (The Importance Transport Operator in a Vacuum, T∂V
∗

Wi
) Let L2(R̃∂V, ζ̃⊥)L2(R̃∂V, ζ̃⊥) (452)

be the space of square Lebesgue-integrable functions de�ned on the reversible ray spaceR̃∂V (48)

L(R̃). Then, the importance transport operator in a vaccum

T∂VWi : L
2(R̃∂V, ζ̃⊥) −→ L2(R̃∂V, ζ̃⊥)
hi(s,ωi) 7→ h′i(s,ωi) = (T∂VWihi)(s,ωi)

is de�ned by

T∂VWi
def
= G∂V

∗
K∂V

∗
(5.113)

where G∂V
∗
is the importance propagation operator in a vacuum and K∂V

∗
is the G∂V

∗
(453)

local importance scattering operator in a vacuum. K∂V
∗

(453)

REMARK 5.16 Applied to an incident importance function Wi, the transport operator

T∂VWi returns the incident function T∂VWiWi, that is: The importance transport op-

erator simulates a single scattering step of importance transport at a surface in a

vacuum.

DEFINITION 5.16 (The Importance Transport Operator Equation in a Vaccum) Based on

the importance propagation operator G∂V
∗
and the local importance scattering oper-

ator K∂V
∗
, the incident importance transport operator equation in a vacuum associated

with the SITEV is given by SITEV (413)

Wi = We,i +T∂VWiWi. (5.114)

Analogous to the development of a solution to the light transport operator equation in

a vacuum, the importance transport operator equation can|under the condition that the

importance transport operator T∂VWi is contracting|also be written in form of a Neumann Neumann Series (135)

series. For that, S∂VWi denotes the importance transport solution operator given by

S∂VWi
def
=
(
I−T∂VWi

)−1
(5.115)

then it holds:

Wi = S∂VWiWe,i (5.116)

(5.115)
= (I−T∂VWi)

−1We,i (5.117)

(2.385)
=

∞∑
i=0

T∂VWi
i
We,i (5.118)

= We,i +T∂VWiWe,i +T∂VWi
2
We,i + · · · . (5.119)

Obviously, the importance transport in a vacuum can be interpreted as composed of

two processes: Propagation of importance between surfaces and scattering of importance
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at surfaces, that is, the importance incident at a scene point comes directly from surface

emitters or indirectly via multiple scattering at surface points. Hence, for describing the

distribution of importance in a scene it su�ces to determine the amount of importance

emitted from existing sources and to formulate the importance transport operator T∂VWi .

REMARK 5.17 The requirement of the symmetry of the BSDF is very restrictive, sinceBSDF (371)

already such simple processes like the refraction of light at interfaces can not be

modeled by a symmetric BSDF. As one can see from Lemma 4.2, the term (1 −

Fr(ωi))
η2t
η2
i

in the BTDF does not satisfy the condition of symmetry, that is, theBTDF (330)

scattering operator K∂V can not be self-adjoint.

Using the same rules for scattering in both transport operator equations, [221,

Veach 1998] suggest, as a consequence of Kirchho�s law of thermo dynamics, to

choose the reection operator K∂V as:

(K∂VLi)(s,ωo)
def
=

∫
S2
fs(s,ωi → ωo)Li(s,ωi)dσ

⊥
s (ωi) (5.120)

with the symmetry condition

fs(s,ωi → ωo)

η2o
=
fs(s,ωo → ωi)

η2i
. (5.121)

This property ensures that fs(s,ωi→ωo)
η2o

is a symmetric function, which leads to

the self-adjointness of the reection operator K∂V.

5.3 FOUR BASIC TRANSPORT OPERATOR MODELS

OF LIGHT TRANSPORT IN A VACUUM

Using the light and importance propagation operators G∂V and G∂V
∗
as well as of theG∂V (430)

local scattering operators K∂V and K∂V
∗
within the incident light, respectively, the im-G∂V

∗
(453)

portance transport operator equations leads to four mathematical representations for theK∂V (432)

basic quantities, radiance and importance, namely:K∂V
∗

(453)

Li = G∂V Lo and Wi = G∂V
∗
Wo (5.122)

Lo = K∂V Li and Wo = K∂V
∗
Wi. (5.123)

That is, the light transport operator equation can be expressed in terms of incident

radiance, namely as,

Li
(5.25)
= Le,i +T∂VLi Li (5.124)
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and its adjoint equation, the importance transport operator equation, can be expressed in

terms of exitant importance,

Wo
(5.111)
= K∂V

∗
Wi (5.125)

(5.114)
= K∂V

∗ (
We,i +T∂VWiWi

)
(5.126)

= K∂V
∗
We,i +K∂V

∗
G∂V

∗
K∂V

∗
Wi (5.127)

(5.111)
= We,o +K∂V

∗
G∂V

∗︸ ︷︷ ︸
T∂V
Wo

Wo (5.128)

= We,o +T∂VWoWo. (5.129)

Furthermore, we get the incident importance transport operator equation expressed

in incident importance

Wi
(5.113)
= We,i +T∂VWiWi, (5.130)

and for its adjoint, the exitant light transport operator equation, it holds:

Lo
(5.16)
= K∂VLi (5.131)

(5.24)
= K∂V

(
Le,i +T∂VLi Li

)
(5.132)

= K∂VLe,i +K∂VG∂VK∂VLi (5.133)

(5.16)
= Le,o +K∂VG∂V︸ ︷︷ ︸

T∂V
Lo

Lo (5.134)

= Le,o +T∂VLo Lo. (5.135)

The solution operators to the above equation can now easily be derived. So, it holds

for the solution operator of the incident light transport operator equation within a vacuum:

S∂VLi
(5.32)
=

(
I−T∂VLi

)−1
=
(
I−G∂VK∂V

)−1
(5.136)

and for the incident importance transport operator equation within a vacuum we get:

S∂VWi
(5.115)
=

(
I−T∂VWi

)−1
=
(
I−G∂V

∗
K∂V

∗)−1
, (5.137)

as well as

S∂VLo
(5.32)
=

(
I−T∂VLo

)−1
=
(
I−K∂VG∂V

)−1 (5.137)
= S∂VWi

∗
(5.138)

and

S∂VWo
(5.115)
=

(
I−T∂VWo

)−1
=
(
I−K∂V

∗
G∂V

∗)−1 (5.136)
= S∂VLi

∗
(5.139)
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for the exitant formulations of the light and importance transport operator equation within

a vacuum.

Based on these results, we can now derive four di�erent but equivalent formulations

of the measurement equation: The �rst two of these measurements suggest to solve the Measurement Equation (416)

global illumination problem via solving the incident formulations of the stationary light

transport equation respectively the stationary importance transport equation, thus,

M
(4.428)
= 〈We,o, Li〉 (5.140)

and

M
(4.428)
= 〈We,o, Li〉 (5.141)

(5.32)
= 〈We,o,S∂VLi Le,i〉 (5.142)

= 〈We,o,S∂VLi G
∂VLe,o〉 (5.143)

(2.95)
= 〈G∂V∗S∂VLi

∗
We,o, Le,o〉 (5.144)

(5.139)
= 〈G∂V∗ S∂VWoWe,o︸ ︷︷ ︸

Wo

, Le,o〉 (5.145)

= 〈Wi, Le,o〉. (5.146)

That is, since the incident function Wi can be expressed via the adjoint of the solu-

tion operator of the light operator equation from Equation (5.30) applied to the emitted

importance function We,o, namely by,

Wi = G∂V
∗
S∂VLi

∗
We,o, (5.147)

there are two possibilities to solve the global illumination problem within a vacuum via

incident formulation of the transport equations.

Apart from these both possibilities, there are still two other ways that can be used

to solve the measurement equation. These methods are based on the exitant formulations

of the transport equations, thus, it holds:

M
(5.146)
= 〈Wi, Le,o〉 (5.148)

= 〈G∂V∗Wo, Le,o〉 (5.149)

(2.95)
= 〈Wo,G∂VLe,o〉 (5.150)

= 〈Wo, Le,i〉 (5.151)

and

M
(4.428)
= 〈We,o, Li〉 (5.152)

= 〈We,o,G∂VLo〉 (5.153)

(2.95)
= 〈G∂V∗We,o, Lo〉 (5.154)

= 〈We,i, Lo〉. (5.155)
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REMARK 5.18 Note: The four measurements

M = 〈We,o, Li〉, (5.156)

M = 〈Wo, Le,i〉, (5.157)

M = 〈We,i, Lo〉 (5.158)

M = 〈Wi, Le,o〉, (5.159)

correspond exactly to the quantities which we discuss in Section 2.3.2. Each of these

inner products is composed of the solution of the direct equation and the source

function of the associated adjoint equation or vice versa. Obviously, the concept

of the adjoint operator allows us to evaluate measurements in a variety of ways

leading to new insights and approaches for solving the light transport equation within

a vacuum.

Thus, a possible method for measuring the ux through a sensor could be to Photon Flux (249)

compute the radiance distribution at all points within the scene combined with the Radiance (250)

importance emitted by the sensor. Vice versa, we can also compute the importance Importance (415)

distribution at all points within the scene, and combine it with the radiance emitted

by the light sources. Together, these equations specify many ways in which measure-

ments can be made.

5.4 THE PATH INTEGRAL MODEL OF LIGHT TRANS-
PORT

Usually, the global illumination problem is solved by evaluating the measurement equa- Global Illumination Problem (6)

tion at di�erent points and directions. For that purpose, an in�nite-dimensional linear

integral equation, that describes the light transport in a vacuum, has to be solved. As we Integral Equation (127)

will see in Section 6.7.1, all methods for solving such integral equations comes with the SLTEV (398)

disadvantage, that paths, starting at the eye or from a light source, have to be generated Measurement Equation (416)

and evaluated recursively. This means that we can only �nd the next evaluation point by

locally evaluating the current point.

Instead of solving the global illumination problem by means of the well-known solu- Global Illumination Problem (6)

tion methods for integral equations a new approach was proposed in [221, Veach 1998].

The idea was developed by [198, Spanier & Gelbard] and is based on the concept of the

so-called path integral. Here, the light transport problem is transformed into a simple

integration problem, such, that each measurement can be written in the form

Mj =

∫
P∞ fj(x)dµ∞(x), (5.160)

where P∞ is the set of transport paths of �nite length within a scene, µ∞ is the so-

called continuous path measure de�ned on this space of paths, and fj is a measurement Measure (79)
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contribution function.

Since it describes a measurement via an ordinary integral, the path integral formula-

tion of the light transport problem has also a much simpler structure than the commonly

used form of the measurement equation, de�ned via a dot product on a special function

space. Additionally, it takes a more global view, since paths can now be considered as

samples in the integration domain of all possible paths. This allows to use general-purpose

integration methods for solving this integral such as multiple importance sampling.Section 6.6.9

The path integral formulation of the light transport does not need to know the math-

ematical concepts of the direct and adjoint equation or the di�erences between the ra-Adjoint Equation (131)

diometric quantities of light and importance. Nevertheless, it allows to construct pathsImportance (415)

in arbitrary ways, that is, by starting at any node of a path, and extending the path

outwards in both directions. This then leads to sampling strategies such as bidirectionalSection 9.3

path tracing and the Metropolis light transport, which are often better described using

the path integral formulation.Section 6.5.3.2

In this section, we present the path integral model of light transport in a vacuum,Section 5.4.1

that is, we construct a measure space consisting of the space of all paths of �nite length

between object surfaces P∞, the associated continuous path measure, µ∞, and the con-

cept of the measurement contribution function. All these components are then used to

build the path integral model of the light transport in a vacuum. Afterwards, we extend

the path integral model of the light transport in a vacuum to the path integral model of

the light transport in participating media. This requires to drill the path space P∞, toSection 5.4.2

include also all path of �nite lengths that start, end, or pass through participating media,

which involves also to construct a new extended continuous path measure.

5.4.1 THE PATH INTEGRAL MODEL OF LIGHT TRANSPORT IN
A VACUUM

Our goal in this section is to express each measurementMeasurement Equation (417)

Mj = 〈Wj
e, Li〉 (5.161)

as an integral of type

Mj =

∫
P∞ fj(x)dµ∞(x), (5.162)

where P∞ is the integration domain, fj corresponds to the integrand, and µ∞ is the in-

tegration measure. To do this, let us now derive these constructs with respect to theMeasure (79)

stationary light transport equation in a vacuum.
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THE PATH SPACE AND THE CONTINUOUS PATH MEASURE. For the following discussion

let ∂V = ∪ni=0∂Vi be a �nite set of 2-dimensional surfaces in R3, such as triangles and∂V (41)

rectangles, that can be used to model the objects in a scene to be rendered.

Let us consider the Cartesian product of k+ 1 object surfaces ∂Vij ∈ ∂V, thus, Cartesian Product (829)

Pi0...ik
def
= ∂Vi0 × ∂Vi1 × · · · × ∂Vik , (5.163)

where 0 ≤ ij ≤ k and ∂Vij 6= ∂Vij+1 for 0 ≤ j ≤ k − 1. Obviously, Pi0...ik can be

interpreted as the set of paths x = xi0xi1 . . .xik of length k, starting at ∂Vi0 and ending

at ∂Vik with xij from ∂Vij for 0 ≤ j ≤ k. We can now extend this set to the set Pk, i.e.

the set of all paths of length k starting and ending at any object surface of ∂V by de�ning

Pk
def
=

⋃
i0...ik∈{0,1,...,n}

Pi0...ik , (5.164)

where two neighbored components of the tuple i0 . . . ik must always be di�erent, see Figure

5.10, where a scene is shown consisting of three surfaces.

Based on this construct, we can now de�ne the path space, P∞, that is, the space of
all paths of �nite length over object surfaces from ∂V.

DEFINITION 5.17 (The Path Space of All Paths of Finite Length, P∞) The path space,

P∞, that is, the set of all paths of �nite lengths, is de�ned by

P∞ def
=

∞⋃
k=1

Pk. (5.165)

Let us now consider the set B(∂Vij), 0 ≤ j ≤ k, that is, the set of all subsets of

∂Vij generated by open rectangles of ∂Vij . Since each of the sets B(∂Vij) is a σ-algebra, σ-algebra (828)

namely the Borel σ-algebra over the surface ∂Vij , it follows from measure theory that the

Cartesian product B(·) (865)

B(∂Vi0 × ∂Vi1 × · · · × ∂Vik)
def
= B(∂Vi0)× · · · ×B(∂Vik), (5.166)

0 ≤ k ≤ n, is also a σ-algebra. With the help of the Lebesgue area measure µ2, we can µ2 (82)

then construct the continuous path measure µk on B(∂Vi0 × ∂Vi1 × · · · × ∂Vik) by Measure (79)

µk(B)
def
= µk(B0 × · · · × Bk) (5.167)

= µ2(B0) · . . . · µ2(Bk), (5.168)

where B = B0 × · · · × Bk with Bk ∈ ∂Vik .
Via the construction of the measure µk from Equation (5.167) we now de�ne the

continuous path measure µ∞, which allows to extend the path space P∞ to the measure

space (P∞,B(P∞), µ∞). Measure Space (80)
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FIGURE 5.10: TYPICAL TRANSPORT PATHS IN A VACUUM. Left, a scene consisting of
three object surfaces, it holds: ∂V = {∂V1, ∂V2, ∂V3}. Right, four different sets of paths:
P1323,P131,P32323 and P3231. Thus for example, the set P1323 represents all paths of
length 3 starting at the left wall, running back, via the floor and the back wall to the left
wall. Via the description of a path starting at the root and ending in a leaf, you can recognize
that neighbored nodes correspond to different object surfaces. Note: The sets P1323 and
P3231 are sets of different paths, but all paths within these sets have the same length.
Obviously, the tree of height k + 1 corresponds to Pk, that is, the set of all path of length
k.

DEFINITION 5.18 (The Measure Space (P∞,B(P∞), µ∞) Let P∞ be the space of all paths

of all �nite lengths and let µk be the measure from Equation (5.167) de�ned on the Measure (79)

σ-algebra B(∂Vi0 × ∂Vi1 × · · · × ∂Vik). De�ning B(·) (865)

µ∞(B)
def
= µ∞

(
B ∩

∞⋃
k=1

Pk

)
(5.169)

= µ∞
( ∞⋃
k=1

(B ∩Pk)

)
(5.170)

=

∞∑
k=1

µk (B ∩Pk) , (5.171)

where B = Bi0 × · · · ×Bik ⊆ ∂Vi0 × ∂Vi1 × · · · × ∂Vik is a subset of the set of all paths

of length k, namely Pk, then µ∞ is a measure, the so-called continuous path measure.Measure (79)

Applied to the path space P∞, the triple (P∞,B(P∞), µ∞) is obviously a measure

space.Measure Space (80)
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EXAMPLE 5.6 Let us consider once more the scene from Figure 5.10. We are interested

in the value of µ∞(P131), that is, the path measure of paths of length two that start

at the left wall and go back via the oor to the left wall, thus,

µ∞(P131) =

∞∑
k=1

µk(P131 ∩Pk) (5.172)

= µ2(P131) (5.173)

(5.168)
= µ2(∂V1)µ

2(∂V3)µ
2(∂V1). (5.174)

Similar, we can compute the path measure of the set P3231, thus paths of length

three, starting at the oor, running over the back wall to the oor, and ending at the

left wall. For paths of this characteristic it holds:

µ∞(P3231) =

∞∑
k=1

µk(P3231 ∩Pk) (5.175)

= µ3(P3231) (5.176)

(5.168)
= µ2(∂V3)µ

2(∂V2)µ
2(∂V3)µ

2(∂V1). (5.177)

THE MEASUREMENT CONTRIBUTION FUNCTION. With the path space P∞ as integration

domain and the continuous path measure µ∞ as the integration measure, we have two of

three constructs that are required for formulating the path integral model of light transport

in a vacuum. Now, to represent the measurement equation in form of a path integral, thus, Measurement Equation (416)

Mj =

∫
P∞ fj(x)dµ∞(x), (5.178)

we only have to choose the integrand fj.

We know from our discussions in the previous sections that the measurement equation

can be written as the inner product of two measurable functions Wj
e and Li, thus, Measurable Function (98)

Mj = 〈Wj
e, Li〉 (5.179)

(5.33),(5.31)
=

〈
Wj
e,

∞∑
i=0

T∂VLi
i
Le,i

〉
(5.180)

(5.22)
=

〈
Wj
e,

∞∑
i=0

(G∂VK∂V)iLe,i

〉
(5.181)

=
〈
Wj
e, Le,i

〉
+

〈
Wj
e,

∞∑
i=1

(G∂VK∂V)iLe,i

〉
. (5.182)

Except of the �rst inner product, any other term is the inner product of one or Linear Operator (53)
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more linear operators and the functions Wj
e and Le,i. Obviously, the de�nition of the

inner product 〈·, ·〉 identi�es a measurement Mj as an in�nite series of integrals. While the 〈·, ·〉 (416)

integration domain of these integrals corresponds to the Cartesian product of (∂V×S2)i, i ≥
2, the integrands are given by the products of the emitted importance Wj

e and the singleG∂V (430)

or repeated application of linear operators G∂V and K∂V on the emitted radiance Le,i.K∂V (432)

That is, except of the integrand in the �rst inner product all other integrands are multi-

dimensional integrals, where the dimension of these integrals depends on its position within

the series.

Using the integral representation of the local light scattering operator K∂V and uti-

lizing, with respect to the light propagation operator G∂V, the principle of radiance in-Radiance Invariance (253)

variance in a vacuum, then the measurement equation can be written in the 3-point form

as follows:

Mj
(4.428)
=

∫
∂V2

Le(x0 → x1)G(x0 ↔ x1)W
j
e(x1 → x0)dµ

2(x0)dµ
2(x1) +∫

∂V3
Le(x0 → x1)G(x0 ↔ x1) fs(x0 → x1 → x2)G(x1 ↔ x2) · (5.183)

Wj
e(x2 → x1)dµ

2(x0)dµ
2(x1)dµ

2(x2) + · · · ,

where we have used Le instead of Le,i for expressing the emitted radiance, see Figure 5.11.3-point Form (403)

A closed formula for the measurement contribution function, fj, separately de�ned

for each path length k, then looks like this:

fj(x)
def
= Le(x0 → x1) ·

k−1∏
i=1

G(xi−1 ↔ xi) f(xi−1 → xi → xi+1) · (5.184)

G(xk−1 ↔ xk)W
j
e(xk → xk−1),

whereas G is the so-called geometry term de�ned by

G(xk−1 ↔ xk)
def
= V(xk−1 ↔ xk) ·

∣∣cos θk−1o cos θki
∣∣

‖xk−1 − xk‖22
(5.185)

and V is the visibility function from De�nition 2.1.

EXAMPLE 5.7 Let us consider once more the scene from Figure 5.10 but now extended

by a surface ∂V0 representing a light source. Obviously, the set P0131 from Figure

5.12 corresponds to paths starting at a light source, passing over the left wall and

the oor and ending at the left wall of the scene. The integral associated with these
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FIGURE 5.11: MEASUREMENT CONTRIBUTION FUNCTION IN A VACUUM. Shown, are
paths of lengths 1, 2, 3 and k. The measurement contribution function fj corresponds to
the product of the emitted radiance at the starting point x0 and the emitted importance at
the end points of the paths as well as the geometry term between two consecutive nodes of
each path and the BSDFs at the path nodes between the starting node and the end node.



466 CHAPTER 5. MATHEMATICAL MODELS OF LIGHT AND IMPORTANCE TRANSPORT

integration domain
of path

FIGURE 5.12: INTEGRATION OF THE MEASUREMENT CONTRIBUTION FUNCTION
IN A VACUUM. Left, a scene consisting of four object surfaces, it holds: ∂V =
{∂V0, ∂V1, ∂V2, ∂V3}. Right, a small part of the associated measurement contribution func-
tion. The symbols at a tree node can be interpreted as the integration domains. Thus, the
path P0131 of length 3 requires first to integrate via the light source, the left wall, the floor,
and the left wall once again.

paths then has the form∫
P0131

fj(x)dµ3(x) (5.186)

(5.184)
=

∫
∂V0×∂V1×∂V3×∂V1

Le(x0 → x1)G(x0 ↔ x1) ·

fs(x0 → x1 → x3)G(x1 ↔ x3) fs(x1 → x3 → x′1) ·
G(x3 ↔ x′1)W

j
e(x3 → x′1)dµ

2(x′1)dµ
2(x3)dµ

2(x1)dµ
2(x0),

where x0 ∈ ∂V0,x1 ∈ ∂V1,x3 ∈ ∂V3, and x′1 ∈ ∂V1.
Note: This integral contributes only a small fraction of light to the shading of a

pixel|namely, the fraction of light that reaches the eye via paths from type P0131.

Putting all these things together, then the path integral formulation of the stationary

light transport in a vacuum can be de�ned as follows:

DEFINITION 5.19 (The Path Integral Formulation of Stationary Light Transport in a Vac-

uum) Let P∞ be the space of all paths of �nite lengths and µ∞ the continuous path
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measure, then the path integral formulation of stationary light transport in a vacuum is

given by

Mj =

∫
P∞ fj(x)dµ∞(x) (5.187)

=

∞∑
k=1

∫
∂V

. . .

∫
∂V

Le(x0 → x1) ·
k−1∏
i=1

G(x0 ↔ x1) f(xi−1 → xi → xi+1) ·

G(xk−1 ↔ xk)W
j
e(xk → xk−1)dµ

2(x0) . . . dµ
2(xk).

5.4.2 THE PATH INTEGRAL MODEL OF LIGHT TRANSPORT IN
PARTICIPATING MEDIA

We will now extend our path integral formulation, introduced in the previous section, to

handle participating media. For that purpose, we must also take into account the inter-

action of light with particles at spatial regions of R3 �lled with participating media. This

requires to drill the path space P∞, to include also all path of �nite lengths that start,

end, or pass through participating media, which involves also to construct a new extended

continuous path measure.

THE EXTENDED PATH SPACE AND THE EXTENDED CONTINUOUS PATH MEASURE. For the

following discussion, let ∂V = ∪ni=0∂Vi be a �nite set of surfaces in R3 that can be used to ∂V (41)

model the objects in the scene to be rendered, and Vo = ∪mi=0Voi be a �nite set of spatial Vo (41)

regions of R3, where volumetric interactions of light can occur.

Let us now consider the Cartesian product of k+ 1 object surfaces or spatial regions Cartesian Product (829)

Vij ∈ V = ∂V ∪ Vo, thus,

Pi0...ik
def
= Vi0 × Vi1 × . . .× Vik , (5.188)

where 0 ≤ ij ≤ k and Vij 6= Vij+1 for 0 ≤ j ≤ k− 1. Obviously Pi0...ik can be considered

as the set of paths x = xi0xi1 . . .xik of length k, starting at Vi0 and ending at Vik with

xij from Vij for 0 ≤ j ≤ k. We can now extend this set to the set Pk, i.e. the set of

all paths of length k starting and ending at any object surface or spatial region of V by

de�ning

Pk
def
=

⋃
i0...ik∈{0,1,...,n}

Pi0...ik , (5.189)

where two neighbored components of the tupel i0 . . . ik must always be di�erent.

Based on this construct, we can now de�ne the extended path space, P
∞
, that

is, the space of all paths of �nite lengths over object surfaces or spatial regions within

participating media from V.
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DEFINITION 5.20 (The Extended Path Space of All Paths of Finite Length, P
∞
) The

extended path space, P
∞
, that is, the set of paths of all �nite lengths, is de�ned

by

P
∞ def

=

∞⋃
k=1

Pk. (5.190)

Let us now consider the set B(Vij), 0 ≤ j ≤ k, which is either the set generated over

open rectangles of ∂Vij or the set generated over open cuboids of Voij . Since each of theσ-algebra (828)

sets B(Vij) is a σ-algebra, namely the Borel σ-algebra over Vij , it follows from measureB(·) (865)

theory that also the Cartesian productCartesian Product (829)

B(Vi0 × Vi1 × · · · × Vik)
def
= B(Vi0)× · · · ×B(Vik), (5.191)

0 ≤ k ≤ n, is also a σ-algebra. With the help of the Lebesgue measures µ2 and µ3, weµ2 (82)

can then construct a measure µk on B(Vi0 × Vi1 × · · · × Vik) by

µk(B)
def
= µk(B0 × · · · × Bk) (5.192)

= µ1(B0) · . . . · µ1(Bk), (5.193)

where B = B0 × · · · × Bk and µ1(Bj) is de�ned byMeasure (79)

µ1(Bi)
def
=

{
µ2(Bj) if Bj ∈ ∂Vij
µ3(Bj) if Bj ∈ Voij .

(5.194)

Via the construction of the measure µk from Equation (5.192) we now de�ne the

extended continuous path measure µ∞, which allows to extend the path space P
∞

toMeasure (79)

the measure space (P
∞
,B(P

∞
), µ∞).Measure Space (80)

DEFINITION 5.21 (The Extended Measure Space (P
∞
,B(P

∞
), µ∞)) Let P

∞
be the ex-

tended path space of all paths of all �nite lengths and let µk be the path measureMeasure (79)

from Equation (5.192) de�ned on the σ-algebra B(Vi0 × Vi1 × · · · × Vik). De�ningB(·) (865)

µ∞(B)
def
= µ∞

(
B ∩

∞⋃
k=1

Pk

)
(5.195)

= µ∞
( ∞⋃
k=1

(
B ∩Pk

))
(5.196)

=

∞∑
k=1

µk
(
B ∩Pk

)
, (5.197)

where B = Bi0 × · · · × Bik ⊆ Vi0 × Vi1 × · · · × Vik is a subset of the set of all paths of

length k, Pk, then µ∞ is a measure, the so-called extended continuous path measure.

Applied to the path space P
∞
, the triple (P

∞
,B(P

∞
), µ∞) is obviously a measure

space.Measure Space (80)
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THE MEASUREMENT CONTRIBUTION FUNCTION. With the extend path space P
∞

as

integration domain and the extended continuous path measure µ∞ as the integration

measure, we have two of three constructs that are required to formulate the path integral

model of light transport in participating media. The only thing that we still need to

represent the measurement equation in form of a path integral, that is, Measurement Equation (416)

Mj =

∫
P
∞ fj(x)dµ∞(x), (5.198)

is the choice of the integrand fj.

Now, from our discussion in the previous sections, we know, that the measurement Measurement Equation (416)

equation can be written as the inner product of two measurable functions We and Le,i, Measurable Function (98)

thus,

Mj =
〈
Wj
e,SLe,i

〉
(5.199)

(5.88)
=

〈
Wj
e,

∞∑
i=0

T
i

Li
Le,i

〉
(5.200)

(5.84)
=

〈
Wj
e,

∞∑
i=0

(
T
∂V

Li
+T

Vo

Li

)i
Le,i

〉
. (5.201)

This equation can then be rephrased in the more readable form, namely as,

Mj = 〈Wj
e, Le,i〉+

〈Wj
e,T

∂V

Li
Le,i〉+ 〈Wj

e,T
Vo

Li
Le,i〉+

〈Wj
e,T

∂V

Li
T
∂V

Li
Le,i〉+ 〈Wj

e,T
∂V

Li
T

Vo

Li
Le,i〉+ 〈Wj

e,T
Vo

Li
T
∂V

Li
Le,i〉+ · · · .

In this equation, the �rst inner product describes the light transport between a surface

or a volumetric emitter and the camera lens or another sensor, while the next both inner

products represent the light transport between a light source and the sensor, where a

single scattering event at a surface or within a participating medium occurs. The third

line then describes the contribution of a source whose emitted light arrives at the eye after

two scattering events at surfaces, or within a participating medium, or a scattering event

at a surface followed by a scattering event at a point within a medium, and vice versa.

Similar to our discussion in the previous section, the inner product 〈·, ·〉 identi�es the
measurement Mj as an in�nite series of integrals, where the integration domain is now

given by Cartesian products build over ∂V×V. The integrands are given by the products

of the emitted importanceWj
e and the single or repeated application of the linear transport

operators T∂VLi and TVo

Li
on the emitted radiance Le,i. That is, except of the integrand in

the �rst inner product all other integrands are integrals over (∂V × V)i, i > 2, where the

dimension of the domains depends on its position within the series.
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Using the integral representation of the local light scattering operator K∂V and uti-

lizing, with respect to the light propagation operator G∂V, the principle of radiance in- Radiance Invariance (253)

variance in a vacuum, then the measurement equation can be written in the 3-point form

as follows 3-point Form (403)

Mj
(4.428)
=

∫
(∂V∪V)2

Le(x0 → x1)G(x0 ↔ x1)W
j
e(x1 → x0)dµ1(x0)dµ1(x1) +∫

(∂V∪V)3
Le(x0 → x1)G(x0 ↔ x1) fs(x0 → x1 → x2)G(x1 ↔ x2) (5.202)

·Wj
e(x2 → x1)dµ2(x0)dµ2(x1)dµ2(x2) + . . .

where we have used Le instead of Le,i for expressing the emitted radiance, see Figure 5.13.

Using the integral representations of the involved linear integral operators, then we

get|analog to our discussion for deriving the measurement contribution function of the

stationary light transport in a vacuum|the following relations:

fs(xi−1 → xi → xi+1)
def
=

{
fs(xi−1 → xi → xi+1) if xi ∈ ∂V
σs p(xi−1 → xi → xi+1) if xi ∈ Vo

(5.203)

for the scattering and the phase functions,

Le(x0 → x1)
def
=

{
L∂Ve (x0 → x1) if x0 ∈ ∂V
LV

o

e (x0 → x1) if x0 ∈ Vo
(5.204)

for the emitted radiance from points on object sources or point emitters in participating

media, and

G(xi−1 ↔ xi)
def
= V(xi−1 ↔ xi) · G′(xi−1 ↔ xi) · β(xi−1 ↔ xi) (5.205)

with

G′(xi−1 ↔ xi)
def
=



|cosθi−1o cosθii|
‖xi−1−xi‖2 if xi−1,xi ∈ ∂V
|cosθi−1o |
‖xi−1−xi‖2 if xi−1 ∈ ∂V,xi ∈ Vo

|cosθii|
‖xi−1−xi‖2 if xi−1 ∈ Vo,xi ∈ ∂V

1
‖xi−1−xi‖2 if xi−1,xi ∈ Vo

(5.206)

for the geometry term.

Putting all these things together, then the path integral formulation of stationary

light transport in participating can be de�ned as

DEFINITION 5.22 (Path Integral Formulation of Stationary Light Transport in Participating

Media) Let P
∞

be the extended space of all paths of all �nite lengths and µ∞ the
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FIGURE 5.13: MEASUREMENT CONTRIBUTION FUNCTION IN PARTICIPATING MEDIA.
Shown, are paths of lengths 1, 2 and 3. The measurement contribution function fj corre-
sponds to the product of the emitted radiance at the starting point x0 and the emitted
importance at the end points of the paths as well as the geometric term between two con-
secutive nodes of each path and the BSDFs respectively the phase functions at the path
nodes between the starting node and the end node.
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extended continuous path measure, then the path integral formulation of stationary

light transport in participating media is given by

Mj =

∫
P
∞ fj(x)dµ∞(x), (5.207)

where the extended measurement contribution function fj is given by

fj
def
= Le(x0 → x1) ·

k−1∏
i=1

G(xi−1 ↔ xi) fs(xi−1 → xi → xi+1) · (5.208)

G(xk−1 ↔ xk)W
j
e(xk → xk−1).

5.5 THE GLOBAL REFLECTANCE DISTRIBUTION FUNC-
TION

In the last sections we have presented a series of equivalent mathematical formulations of

the global illumination problem. So, we have seen, that the global illumination problem

can be solved by combining the incident or exitant radiance distribution within the scene

with the importance emitted by a sensor. As light and importance transport are dualSLTEV (398)

recursive formulations, the measurement equation, representing the global illuminationSITEV (413)

problem, can also be solved by combining the importance distribution within the sceneMeasurement Equation (416)

by the radiance emitted from light sources. With the path integral formulation, we then

introduced an elegant mathematical formulation of light transport as a simple integral over

the space of all paths within a scene. We will now shortly present another interesting ap-

proach for evaluating the measurement equation. Similar as the path integral formulation,

it is not of recursive nature, but it is based on a direct function, the so-called global re-

ectance distribution function, GRDF, [116, Lafortune 1996] and [50, Dutr�e & al. 2003].

THE GLOBAL REFLECTANCE DISTRIBUTION FUNCTION. Let us recall, the BRDF was de�nedBRDF (320)

via the ratio of the exitant radiance and the irradiance at a given point. The GRDF is

introduced in a similar way, but in contrast to the BRDF, that speci�es the local behavior

of light reected at a single surface of the environment, the GRDF describes the interaction

of light at all surfaces of the scene. Due to [50, Dutr�e & al. 2003], the global reectance

distribution function can be de�ned as follows:

DEFINITION 5.23 (The Global Reectance Distribution Function, Gr) Let ∂V be a set of∂V (41)

2-dimensional surfaces in R3, si, so be points on two di�erent surfaces A,A′ ∈ ∂V,
and H2i as well as H2o be the incident and exitant hemispheres at the points si, so,

which refer to the same set of directions. Then, we call the measurable function, Gr,Measurable Function (98)
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de�ned by

Gr : ∂V ×H2i × ∂V ×H2o → [0,∞] (5.209)

with

Gr((si,ωi)→ (so,ωo))
def
=

d2Lo(so,ωo)

dE(si,ωi)dµ2(si)
=

d2Lo(so,ωo)

Li(si,ωi)dσ⊥si(ωi)dµ
2(si)

, (5.210)

the global reectance distribution function, also briey denoted as the GRDF.

Obviously, the GRDF gives a measure for the fraction of light emitted at each position

and direction within a scene that is eventually radiated through any other position and

direction. It has units of 1
m2 sr

and only depends on the geometry of the scene and

the material properties of the surfaces within a scene. Due to the principle of radiance Radiance Invariance (253)

invariance in a vacuum, the Helmholtz reciprocity is also valid for the GRDF. Since it is a

function of two points and two directions, the GRDF is, similar as the BSSRDF, a function

of 8 variables, that requires enormous cost of run time if it has to be sampled within a Helmholtz Reciprocity (331)

rendering procedure, or a huge amount of memory is needed if a discretized version is used BSSRDF (318)

as an approximation.

REMARK 5.19 It should be clear that the BRDF can be interpreted as a special case

of the GRDF. Considering the incident radiance at a single point s and identifying

this surface point with so, then De�nition 5.23 is identical to the de�nition of the

BRDF. BRDF (320)

Furthermore, the de�nition of the GRDF is not restricted to the radiometric

quantities radiance and irradiance, but it can also be de�ned via the via incident and

exitant importance, namely by:

Gr((si,ωi)→ (so,ωo))
def
=

d2Wo(so,ωo)

Wi(si,ωi)dσ⊥si(ωi)dµ
2(si)

. (5.211)

THE MEASUREMENT EQUATION EXPRESSED IN TERMS OF THE GRDF. Let us assume that all

surfaces within a scene are opaque, then the measurement equation from Equation (4.45)

can be written in the hemispherical form as:

M =

∫
∂V

∫
H2
i
(s)

We(s,ω)Li(s,ω)dσ⊥s (ω)dµ2(s). (5.212)

As the GRDF describes the entire light transport in the scene between two pairs

(s,ω) and (s′,ω′), the measurement equation can now also be evaluated via computing

M =

∫
∂V

∫
H2
o′(s)

∫
∂V

∫
H2
i
(s)

Le(s,ω)Gr((s,ω)→ (s′,ω′))We(s
′,ω′) (5.213)

dσ⊥s′(ω
′)dµ2(s′)dσ⊥s (ω)dµ2(s)

= 〈Le, 〈G,We〉〉, (5.214)
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where 〈·, ·〉 is the inner product de�ned on the Lebesgue space over ∂V×H2i respectively L2(·, ·) (110)

∂V×H2o.

REMARK 5.20 Obviously, the global illumination problem can be captured via the GRDF

in a very short and elegant form. This formulation is independent of any initial dis-

tributions for self-emitted radiance or importance and, as already mentioned, only

dependent on the geometry and the material properties of the surfaces within a scene.

This then also leads to a simple representation of the measurement equation, namely

as an inner product. For a detailed discussion of the concept of the GRDF and its〈·, ·〉 (859)

properties, see [116, Lafortune 1996] and [50, Dutre & al. 2003 ], [51, Dutre & al.

2006].

In Section 9.3, we will encounter bidirectional path tracing a Monte Carlo algo-

rithm for solving the light transport equation, that can be implemented via use of the

global reectance distribution function, [116, Lafortune 1996].

5.6 REFERENCE LITERATURE AND FURTHER READ-
ING

Our operator model of light and importance transport in a vacuum is based on the corre-

sponding operator models �rstly introduced in [220, Veach 1997]. A similar model, based

on BRDFs is presented in [10, Arvo 1995]. Both approaches are build on linear function

spaces equipped with the necessary formalism from functional analysis as well as measure

and integration theory. Compared to [220, Veach 1997] and [10, Arvo 1995], who consider

the light and importance transport only in a vacuum, our operator model is also valid for

light transport in participating media. A similar, but mathematically less stringent, not

on functional analytically concepts based approach can be found in [152, Pauly 1999].

The light and importance transport is also described with the help of a more intuitive

operator model in [47, Dutr�e 1996], [50, Dutr�e 2003]. We recommend these sources for

the more practical oriented reader since no deeper knowledges from functional analysis

and measure as well as integration theory are required for understanding. In [47, Dutr�e

1996], [50, Dutr�e 2003], you can also �nd a derivation of the GRDF as an extension of the

BRDF to describe multiple scattering e�ects from all surfaces. As another reference to the

GRDF, we recommend [116, Lafortune 1996], where the concept of the global reectance

distribution function was �rstly introduced. It served as a template for Section 5.5.

The operator model of importance as the adjoint of light is discussed in detail in [34,

Christensen 1995]. In [35, Christensen 2003] then an attempt is made to clarify the various

uses of adjoints and importance in rendering by unifying them into a single framework.

The idea to interpret the global illumination problem as an ordinary integral, based

on the concept of the path integral, was developed by [198, Spanier & Gelbard 1969].
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In [220, Veach 1997] this construct is extended to measures that have natural physical

interpretations. We use Eric Veach's construct of the path integral in Section 5.4. Since

the path integral as introduced in [220, Veach 1997] is restricted to the light transport

within a vacuum, we had to extend all necessary constructs as to hold also in participating

media. We have also slightly modi�ed Veach's path measure so that path segments are

not accounted for, if they start and end at the same domain.
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CHAPTER SIX

MONTE CARLO INTEGRATION

In trying to improve the quality of the synthetic images, we

do not expect to be able to display the object exactly as it

would appear in reality, with texture, overcast shadows, etc.

We hope only to display an image that approximates the real

object closely enough to provide a certain degree of realism.

BUI TUONG PHONG, 1975

The term Monte Carlo was �rst mentioned in connection with a mathematical method

in the 1940s during the development of atomic weapons in the laboratories of Los Alamos,

USA. The aim of researchers, in particular John von Neumann, Stanislaw Ulam, and Nick

Metropolis, was to utilize the advantages of the recently completed ENIAC computer for

simulating neutron trajectories using random sampling. In 1949, Metropolis and Ulam

published a paper entitled The Monte Carlo Method, due to the famous Casino in Monte

Carlo, in which the method, which was not entirely new, was presented.

Though the theoretical foundations of the Monte Carlo method had been known for

some time, in the absence of electronic data-processors, large-scale application had not

been possible, as the modeling of random variables by hand demanded too much time and

e�ort. Thus, the development of the Monte Carlo method into a universally applicable

numerical method only became possible as the necessary technical means had been made

available.

In the years to follow an increasing number of papers were published on the new

method, describing its applicability to a seemingly unending variety of problems in statis-

tical mechanics, particle transport as well as to the solution of economical models. As a

result of this popularity, however, the reputation of the Monte Carlo method as a problem

solution methodology gradually declined, as the advantages of the method were lost by

its universal application to virtually every kind of problem. Things changed in the 1960s,

however, when researchers started to examine the kinds of problems to which the Monte

477



478 CHAPTER 6. MONTE CARLO INTEGRATION

Carlo method could be applied most e�ciently. As the ideal application area of the classi-

cal Monte Carlo method has shown the solution of a special kind of integrals and integral

equations.

The classical Newton-Cotes formulas and Gauss quadratures for evaluating high-

dimensional integrals are derived from one-dimensional formulas involving a considerable

amount of calculations of the function values at di�erent locations of the integral domain.

By contrast, Monte Carlo methods are independent on the dimension of the integral do-

main and, in particular, of the properties of the involved functions, as well as, in the

case of integral equations of the allocated kernels be them continuous or discontinuous.

These features, in particular the simplicity of implementation, make Monte Carlo proce-

dures stronger and more e�ective than ordinary quadrature formulas for solving integrals

of higher dimension than six. However, as this method is based on the selection of random

variables it has the disadvantage that all the obtained solutions and error boundaries are

of statistical nature.

The success of a Monte Carlo method depends on the calculation of appropriate ran-

dom numbers, where the term random used here in the sense of randomized. In addition,

as deterministic automata can be used only to generate so-called pseudorandom numbers

but not to generate truly random numbers, appropriate random number generators and

sampling techniques are required.

Compared with other numerical integration methods, Monte Carlo algorithms not

only have advantages. One of it's main disadvantages is that apart from the existence of

merely probabilistic error boundaries, they are highly dependent upon both, convergence

results and error estimations of the involved random numbers. Another disadvantage is

that even su�ciently smooth functions lead to the probabilistically slow convergence be-

havior of order O
(
1√
n

)
, which is typical for Monte Carlo integration.

OVERVIEW OF THIS CHAPTER. We begin this excursion into the theory of Monte Carlo

integration with a brief review of early works in the development of mathematical algo-

rithms, in which deterministic and probabilistic approaches were used for the numericalSection 6.1

solution of integrals. Following this, we formulate an integral given over the integration

domain Qs ⊂ Rs as the expected value of a random variable de�ned on the probability

space generated over the Borel σ-algebra of subsets of Qs. Via the concept of the MonteSection 6.2

Carlo estimator we then get|using the famous Chebychev inequality and as a resultSection 6.3

of the Central Limit Theorem|an approximate representation of the integral to be cal-

culated, which can be interpreted as the arithmetic mean of values of the integrand at

randomly chosen points of the integration domain. Following this, a summary of the most

important statements on convergence behavior and run time behavior of the general MonteSection 6.4

Carlo method will be given. After that, we turn to sampling strategies most frequentlySection 6.5

applied in practice for the choice of points from Qs, which are needed for the estimation of

integrals. Thus, we present in cases of invertible integrands the transformation method

as a good sampling procedure used to generate random samples from given probability
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distributions and illustrate its e�ciency by means of a few important examples. We also

discuss acceptance-rejection sampling and talk about Markov chain Monte Carlo, a

method from computational physics, which is often used for di�cult sampling problems

in high-dimensional spaces and which forms the basis of the Metropolis light transport

algorithm from global illumination theory. After that, we turn to the �eld of variance

reduction techniques, upon which we dwell in some detail. The methods to be presented Section 6.6

here are use of expected values, the highly e�cient procedure of importance sampling,

based on the choice of a density similar to the integrand, control variates, and strati�ed

sampling, a method of stratifying the integration domain underlying a given integral into

a disjoint union of subdomains. Afterwards, we introduce Latin hypercube sampling as a

sampling procedure enjoying high estimation in many ray tracing procedures, followed by

the sampling strategy of jittering, orthogonal array sampling, of strong importance to

Quasi-Monte Carlo procedures, to be discussed in the next chapter, as well as antithetic

variates. We �nish the section about variance reduction techniques with multiple impor-

tance sampling strategies, that are based on the idea of using more than one sampling

technique to evaluate a given integral, and combining the sample values in a provably good

way. At the end of the chapter, we discuss solution methods based on principles of Monte Section 6.7

Carlo integration, which can be used for solving integral equations. So, we introduce with

the successive integral substitution and the Neumann series two analytical approaches,

which can be involved in probabilistic procedures for solving integral equations. Last but

not least, we still present a random walk-solution for Fredholm integral equations based

on a discrete-time Markov process.

6.1 MOTIVATING INTEGRATION VIA MONTE CARLO

METHODS

Let f be a s-dimensional, real-valued, and Lebesgue-integrable function. Then, the best

way to evaluate an integral of type∫
B

f(x)dµs(x), (6.1)

with B ⊂ Rs, would be to solve it analytically, i.e. to express it as some algebraic term

involving functions that can easily be evaluated.

In case of s = 1, the Fundamental Theorem of Calculus delivers for a great class of

functions such a simple evaluable expression by∫
B

f(x)dµ(x) = F(b) − F(a), (6.2)
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where F is any of the in�nitely many antiderivatives of f and the integration domain

B represents an interval enclosed by points a, b ∈ R with a < b. Similar, but more

complex formulas can be derived for the s-dimensional case via iterating the standard

one-dimensional integral or the integral theorems of Gauss, Stokes, and Green, for details,

see [174, Rudin 1998].

Now there are many functions that cannot be integrated analytically or that have

antiderivatives that are given as in�nite series or products of functions. How should we

evaluate the integral of such a function?

Let us for example consider the function f(x) = e−x
2

. Obviously, we have no chance

to �nd an antiderivative that can be written in elementary form. Such integrals cannot

be evaluated exactly. For practical use, they must be approximated by means of methods

from numerical analysis.

For integrating a function, in numerical analysis one looks for algorithms that give

an estimate of the integral together with an estimate of the error from the exact value of

the integral. Additionally, one demands of these algorithms that they should lead to a

good approximate of the result in an reasonable amount of time. So, there is no point in

developing algorithms that try to �nd an exact solution at the expense of run-time. Since

the e�ciency of an algorithm for evaluating the integral from (6.1) depends on the speci�c

problem, there is also no perfect algorithm suitable for all integration problems. In the

following sections we will see, that the more one knows about the speci�c problem, the

higher the chances will be to �nd algorithms which solve the problem e�ciently.

In numerical analysis one distinguishs between two classes of algorithms for integrat-

ing functions:

� deterministic procedures, andSection 6.1.1

� Monte Carlo methods.Section 6.2

While deterministic procedures evaluates integrals via asymptotic approximations or

multiple quadrature techniques, Monte Carlo methods may be described as numerical

methods based on random sampling with strong statistical and probabilistic avor.

6.1.1 APPROXIMATING INTEGRALS VIA DETERMINISTIC METH-
ODS

We know from our discussion in Section 2.3.3.2 that many mathematical problems from

everyday life cannot be solved exactly, in particular those based on integral or di�erential

equations. In those situations there are usually two approaches for solving the resulting

integration problem:

� analytical approximations to solutions using asymptotic expansions, or

� more or less complicated, deterministic algorithms based on quadratures.
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6.1.1.1 ASYMPTOTIC APPROXIMATIONS

A �rst type of deterministic methods for solving integrals are so-called asymptotic meth-

ods. Asymptotic methods for special classes of integrals have long been used to approx-

imate the functions of mathematical physics that have integral representations. Two of

the most common techniques are the Laplace method and the method of steepest descent

or saddle-point method. This methodology can often be implemented without the use

of a computer, and historically an extensive amount of development has gone into these

methods, [57, Evans & Swartz 2000].

One of the oldest and most famous asymptotic approximations is Sterling's formula

for approximating the factorial function n! for large values of n ∈ N0:

n! ∼
(n
e

)n√
2πn, (6.3)

where ∼ is used to denote that two functions are asymptotically, or approximately, equiv-

alent.

The aim of asymptotic methods is to �nd functions that are asymptotically equivalent

to the solution of the given integral. One of the most useful tools for �nding asymptotic

approximations is Taylor's theorem. Thus for example, we can, via the Taylor series of

the exponential function

ex =

∞∑
n=0

xn

n!
, (6.4)

easily approximate the integral∫b
a

e−x
2

dµ(x) =

∫b
a

∞∑
n=0

(−x2)n

n!
dµ(x) (6.5)

by integrating m terms of the Taylor series expansion of e−x
2

, namely:∫b
a

e−x
2

dµ(x) ≈
m∑
n=0

∫b
a

(−1)n
x2n

n!
dµ(x) (6.6)

=

m∑
n=0

[
(−1)n

x2n+1

(2n+ 1)n!

]b
a

. (6.7)

Other ways for �nding the asymptotic expansions for integrals are the method of

integration by parts, as well as Laplace and saddle-point approximations.

While all these methods can be handled very well in the one-dimensional case, their

complexity is greatly increased in the multi dimensional case. The additional complexity

arises partly from the multi-indexing associated with the multivariable Taylor expansions.

In fact some of the expressions become so complicated that calculating these is already a

computational problem itself, [57, Evans & Swartz 2000].
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6.1.1.2 MULTIPLE QUADRATURE RULES

With the advances in computing power, methods of approximate integration based on

quadrature became more and more interesting not only for the evaluation of one but also

for multi-dimensional integrals.

The historically oldest techniques for solving integrals of type∫
B

f(x)dµs(x), (6.8)

where B is any bounded region in Rs, are based on multiple quadrature rules. These

techniques have their origin in the ancient Greek problem of squaring the circle, i.e. the

process of inscribing or circumscribing a circle with rectangles or convex polygons of known

area for estimating the transcendent number π.

A multiple quadrature rule of order n for approximating the integral from (6.8) is

a sum of the form

In =

n∑
i=1

wif(xi), (6.9)

whose terms are products composed of so-called weights, wi, and the values of the function

f at chosen points xi ∈ B. If such a quadrature rule has been developed with respect to

the region B, we can apply the same rule to an integral of the form∫
B′
f(T−1(y))

∣∣∣∣det dT−1(y)dµs(y)

∣∣∣∣dµs(y), (6.10)

where T : B→ B′ is a bijective mapping.Bijective Mapping (840)

Now, since quadrature rules are approximate methods for evaluating the exact value of

an integral, they are only useful if the error between the exact value I and the approximate

value of the integral In is su�ciently small for n → ∞, that is, a quadrature rule must

satis�es the requirement:

|I − In|→ 0. (6.11)

In numerical analysis it is shown that one-dimensional interpolatory rules|as we will

present them in the following|have error bounds of order:

|I − In| ≤ sup
x∈[a,b]

|f(n+1)(x)|

∫b
a

∏n
j=0(x− xj)

(n+ 1)!
dx, (6.12)

where the integration domain of the function f is given by the closed interval [a, b], see

[179, Schmei�er & Schirmeier 1976]. In practice this means that increasing the sample size

generally improves the approximation although this is not guaranteed. Obviously, Formula
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(6.12) implies that in the one-dimensional case quadrature rules have convergence rates of

O(n−r), provided that the integrand has r+ 1 many continuous derivatives.Continuous Function (868)

Let us now consider the basic quadrature rules for approximating de�nite integrals,

the so-called interpolatory rules, and here particularly, the Newton-Cotes type formulae

as well as the Gauss quadrature rules. For a more detailed discussion on quadrature rules,

such as monomial rules, Bayesian quadrature, lattice rules, and the class of adaptive

quadrature rules, we refer to [57, Evans & Swartz 2000].

INTERPOLATORY RULES, THE CASE s = 1. A quadrature formula is called an interpola-

tory rule if it is based on integration an interpolatory formula, such as resulting from

the Lagrange interpolatory problem with polynomials, see [179, Schmei�er & Schirmeier

1976].

Now, a solution approach for approximating a one-dimensional integral, based on

an interpolatory rule, consists in interpolating the function followed by integration the

resulting polynomial. As the interpolation polynomial, p ∈ Pn, in Lagrange form is Pn (58)

given by:

p(x)
def
=

n∑
i=0

qi(x)f(xi), (6.13)

where apart from

qi(x) =

n∏
j=0
j6=i

x− xj
xi − xj

i = 0, 1, . . . , n (6.14)

it also holds

p(xi) = f(xi), i = 0, 1, . . . , n (6.15)

then an associated one-dimensional interpolatory rule, the so-calledNewton-Cotes Quadra-

ture Formula can be de�ned as follows:

DEFINITION 6.1 (Newton-Cotes Quadrature Formula) Let p ∈ Pn be the Lagrange polyno-

mial for interpolating a one-dimensional, real-valued function f. Then, the quadra-

ture formula

Q(r)
n (f)

def
=

∫b
a

f(x)dµ(x) =

∫b
a

p(x)dµ(x) =

n∑
i=0

f(xi)

∫b
a

qi(x)︸ ︷︷ ︸
wi

dµ(x) (6.16)

is called the Newton-Cotes quadrature formula, also briey denoted as the Newton-

Cotes formula, if the function f is evaluated at the equidistant points set {x0, . . . , xn}

given by:

xi = a+ i
b− a

n
i = 0, 1, . . . , n. (6.17)
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Let us now present the two simplest types of Newton-Cotes formula, the Trapezoid

Rule and Simpson's Rule.

EXAMPLE 6.1 (Trapezoid and Simpson's Rule) Let us consider the integral∫
I

f(x)dµ(x), (6.18)

which we want|due to the linearity property of the Lebesgue integral|decompose

into a sum of integrals over equal-sized integration domains I = [a, b] =
⋃N
i=1[xi−1, xi],

resulting in:

N∑
i=1

∫
[xi−1,xi]

f(x)dµ(x). (6.19)

We will now approximate each of these integrals via the Newton-Cotes formula

from De�nition 6.1. The choice of the parameter r = 1 then leads to the so-called

trapezoid rule, that is, the integral over Ii = [xi−1, xi] is estimated via the area of a

trapezoid build from points (xi−1, 0), (xi, 0), (xi, f(xi) and (xi−1, f(xi−1)). With µ(Ii) =

(xi − xi−1) =
µ(I)
n
, the trapezoid rule then approximates the integral (6.18) by:

Q(1)
n (f) =

n∑
i=1

µ(Ii)
f(xi−1) + f(xi))

2
(6.20)

=
µ(I)

2n

n∑
i=1

f(xi−1) + f(xi)), (6.21)

see the left image in Figure 6.1.

The choice r = 2 results in Simpson's rule, thus a weighted average of the function

at the endpoints as well as the midpoint of the interval Ii. Then, an approximation

of the integral from (6.18) via Simpson's rule is given by:

Q(2)
n (f) =

n∑
i=1

µ(Ii)

6

(
f(xi−1) + 4f

(
xi−1 + xi

2

)
+ f(xi)

)
(6.22)

=
µ(I)

6n

n∑
i=1

(
f(xi−1) + 4f

(
xi−1 + xi

2

)
+ f(xi)

)
, (6.23)

see the image on the right-hand side of Figure 6.1.

Finally, let us shortly talk about the error of the trapezoid and Simpson's rule.
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FIGURE 6.1: ONE-DIMENSIONAL NEWTON-COTES FORMULAS. The image on the left
visualizes the trapezoid rule where the area under the graph of the function bounded by
the endpoints of intervals given by [xi−1, xi], 1 ≤ i ≤ N is approximated via the area of a
trapezoid. On the right-hand side, Simpson’s rule, which is similar to the trapezoid rule,
except that we compute the area under a quadratic polynomial approximation instead of a
linear approximation as it is done by the trapezoid rule.

The error estimate from Relation (6.12) implies:

|Q(1)
n f− I | (6.12)

=

n∑
i=1

∫
Ii
(x− xi−1)(x− xi)dx

2!
sup
x∈Ii

f′′(x) (6.24)

=

n∑
i=1

x3i + 3x
2
i xi−1 − 3xix

2
i−1 + x

3
i−1

2! · 6
sup
x∈Ii

f′′(x) (6.25)

=

n∑
i=1

µ(Ii)
3

12
sup
x∈Ii

f′′(x) (6.26)

µ(Ii)=
µ(I)
n

≤ µ(I)3

12n2
sup
x∈I

f′′(x) (6.27)

where I denotes the exact value of the integral from (6.18), and µ(Ii) = µ(Ij), 1 ≤ j ≤
n was assumed. Thus, the error for the trapezoid rule can be estimated as of order

O
(
n−2

)
, provided that f has at least two continuous derivatives on the integration

domain.

A similar error estimation can be derived for Simpson's rule. We leave the

proof to the interested reader as an exercise. The error for Simpson's rule is of

order O
(
n−4

)
, since it can be bounded by the fourth derivative

|Q(2)f− I | = µ(I)5

2880n4
sup
x∈I

fiv(x), (6.28)

for more details see [179, Schmei�er & Schirmeier 1976]. Note: Since it is an

interpolatory rule based on three points, Simpson's rule is exact when integrating

polynomials of degree three or less.



486 CHAPTER 6. MONTE CARLO INTEGRATION

   

FIGURE 6.2: NEWTON-COTES FORMULAS VS GAUSS RULES. Visualization of a
Newton-Cotes and a Gauss quadrature formula for approximating an integral of a real-valued
function. As detailed discussed below, Newton-Cotes formulas are based on equidistant
partitions of the integration domain, while Gauss rules do not subject to restrictions with
respect of the choice of the samples.

As we have seen, the Newton-Cotes type rules approximate an integral by summing

up its function values at a set of equidistant chosen points multiplied by appropriately

chosen weights. Another popular family of interpolatory integration rules are the Gauss

Qudratures. Compared with the Newton-Cotes formulae, Gauss quadratures allow the

free choice of the supporting points {x0, . . . , xn} at which the integrand has to be eval-

uated, see Figure 6.2. The Gauss quadrature rules depend heavily on the properties of

orthogonal polynomials. Since deterministic numerical integration is not the main purpose

of our book, we refer the interested reader for a more detailed discussion on this topic to

[57, Evans & Swartz 2000].

INTERPOLATORY RULES, THE CASE s > 1. Once interpolatory rules had been constructed

for the treatment of one-dimensional problems, the next natural step was also to solve

multidimensional integrals such as∫
B

f(x)dµs(x) =

∫
B

. . .

∫
B

f(x1, . . . , xs)dµ(x1) . . . dµ(xs) (6.29)

over the integration domain B = B× · · · × B︸ ︷︷ ︸
s×times

⊂ Rs.

For developing multi-dimensional integration rules, the integral from (6.29) is|

based on the well-known Theorem of Fubini-Tonelli|considered as an iteration of one-Fubini-Tonelli Theorem (115)

dimensional integrals, where a one-dimensional integration rule is applied in each iteration.

Thus, Relation (6.29) can be approximated by:

n∑
is=1

. . .

n∑
i1=1

wi1 . . . wisf(xi1 , . . . , xis), (6.30)
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FIGURE 6.3: CONVERGENCE RATES FOR INTERPOLATORY INTEGRATION RULES.
Visualization of different convergence rates of an interpolatory integration rule with r = 2,
and s = 4, 8, 16 and s = 32. To halve the error, the sample size has to be multiplied by
4, 16, 32 in the 8, 16 and 32-dimensional case.

with the weights wij , 1 ≤ j ≤ s, 1 ≤ ij ≤ n and the point set {xi1 , . . . , xis } constructed

over the Cartesian product of the one-dimensional point sets.

The convergence speed of multi-dimensional interpolatory rules is thus predetermined

via that of the one-dimensional rules, while the number of samples increases with the

dimension s. Therefore, in the s-dimensional case with N = ns involved samples, the

convergence of this procedure is only of order O
(
N

−r
s

)
. This entails, for large s ≥ 5,

highly complex and time-consuming procedures which are inappropriate for evaluating

de�nite integrals, see Figure 6.3.

Let us �nished this little section with an important result which limits the convergence

rate of any deterministic quadrature rule: Bakhvalov's Theorem [57, Evans & Swartz

2000]. Intuitively Bakhvalov's Theorem says that for any s-dimensional quadrature rule,

there exists a function f with r continuous and bounded derivatives for which the error is

proportional to N
−r
s . Due to [220, Veach 1997], Bakhvalov's Theorem implies:

|In − I | > k ·N− r
s , (6.31)

with a constant k > 0 depending on r. Thus even if f has a bounded, continuous �rst

derivative, no quadrature rule has an error bound better than O(N− 1
s ).
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6.1.2 THE CURSE OF DIMENSIONALITY

Let us consider the problem of evaluating the volume of the s-dimensional unit sphere

Ss−1, which is well known to equal

vol(Ss−1) =

∫
Ss−1

sinφ2 sinφ
2
3 · · · sinφs−1s−2 dµ(φs−1) · · ·dµ(φ1) (6.32)

=
π
s
2

Γ
(
s
2
+ 1
) , (6.33)

where Γ is Euler's gamma function, see [174, Rudin 1998].

As the s-dimensional unit sphere is contained in the s-dimensional cube Is = [−1, 1]
s
,

the integral from (6.33) can be written via a variable transformation as:χ (839)

vol(Ss−1) =

∫
[−1,1]s

χSs−1(x)dµ
s(x). (6.34)

A naive method for approximating this integral could be to construct a sequence

of points that are uniformly distributed over the s-dimensional cube Is and averaging

the integrand over these points. Due to [57, Evans & Swartz 2000], this can be done

by subdividing each axis into n subintervals of equal length and then computing the

approximation:

vol(Ss−1) ≈ 1

ns

n∑
i1=1

· · ·
n∑
is=1

ISs

(
−1+ 2

i1 − 1

n− 1
, . . . ,−1+ 2

ik − 1

n− 1

)
, (6.35)

see Figure 6.4.

Obviously, this approximation leads to an exponential increase in the number of

function evaluations, namely ns. Choosing n = 10, then computing the volume of the

10-dimensional unit sphere requires the evaluation of 10, 000, 000 function values, which

results in enormous costs. Regardless of the accuracy of the approximation, this naive

integration method is due to the cost incurred clearly infeasible even for small dimensions

of the integration problem.

Additionally, in [57, Evans & Swartz 2000] it is shown, that with increasing dimension

the ratio of the volume of the s-dimensional unit sphere to the s-dimensional unit cube is

given by

lim
s→∞ π

s
2

Γ
(
s
2
+ 1
)
· 2s

= 0, (6.36)

this means that the volume of Ss−1 is vanishing small compared to the volume of Is as the

dimension rises. As for s = 2 this proportion is still 7.85 · 10−1, it holds for s = 5 that the
5-dimensional unit sphere is occupying less than 20% of the volume of I5, and for s = 20

the ratio between the unit sphere and the unit cube is less than 2.46 · 10−7.
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FIGURE 6.4: APPROXIMATING THE VOLUME OF THE 2-DIMENSIONAL UNIT SPHERE.
Six different sampling patterns resulting from subdividing each axis into n = 1, 2, 3, 4, 8, 9
subintervals of each length chosen according to Formula for approximating the volume of
the 2-dimensional unit sphere.

We conclude from this observation that not only the number of points increase enor-

mously but also the fact that the integrand ISs−1 for increasing s does not contribute

signi�cantly to the approximation of the integral, since ISs−1 = 0 for most of these points.

This phenomenon is called dimensional e�ect, or the curse of dimesionality. The

curse of dimensionality is central to the integration problem, and it is the reason that

the e�ciency of almost all integration methods decrease as the dimension arises. Note:

The curse of dimensionality can not only be interpreted as the exponentially growth in

the number of operations, but it must also be viewed in connection with the fact that

properties of an integrand which are unproblematic in low dimensions can cause enormous

implications in high-dimensional integration problems.

A promising integration technique, which can help to overcome the dimensional e�ect

of integration problems, is Monte Carlo integration, as we will present them in the following

section. Monte Carlo integration is a class of integration techniques based on probabilistic

approaches which are easily to be constructed and which are independent on the dimension
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of the integration problem. So, they have become the most favored methods for solving

high-dimensional integrals.

6.2 THE INTEGRAL AS EXPECTED VALUE OF A CON-
TINUOUS RANDOM VARIABLE

The principle of Monte Carlo integration is based on the representation of an integral as

expected value of a continuous random variable which must be estimated with the help of

stochastic approximation methods.

To explain the theory behind Monte Carlo integration, assume the integral∫
Qs
f(x) dµs(x) (6.37)

be given over the integration domain Qs ⊂ Rs with 0 < µs(Qs) < ∞, where f is a real-

valued function from Lebesgue space L(Rs, µs), µs is the Lebesgue measure on Rs, andL(Rs, µs) (107)

µs (82) Qs corresponds to a bounded subset of Rs.

THE INTEGRAL AS EXPECTED VALUE OF A CONTINUOUS UNIFORMLY DISTRIBUTED RANDOM

VARIABLE. To represent the integral from (6.37) as expected value of a continuous randomExpected Value of a RV (197)

variable or a random vector, we have to construct a probability space (Ω,F(Ω),P) whereProbability Space (163)

this random variable can be de�ned on.

For that, let us consider the measurable space (Qs,B(Qs)) with basic set Qs and theMeasurable Space (80)

Borel σ-algebra B(Qs) of measurable subsets of Qs. We can easily extend this measurableB(Qs) (865)

space to a probability space (Ω,F(Ω),P) by de�ning a probability measure P via the s-Probability Measure (80)

dimensional Lebesgue measure µs, namely by:

P(B)
def
=

µs(B)

µs(Qs)
=

∫
B
dµs(x)∫

Qs
dµs(x)

. (6.38)

Because P is a measure with P(Qs) = 1, the measure P is a probability measure and(
Qs,B(Qs), µs

µs(Qs)

)
can be interpreted as our wished probability space (Ω,F(Ω),P).

Let us now consider the uniformly distributed random variable U,Uniform Distribution (180)

U : (Ω,F(Ω))→ (Rs,B(Rs)), (6.39)

with

ω 7→ x = U(ω) = ω, (6.40)

which is mapped via the Rs-R-measurable function f : x 7→ f(x) from Rs to R.Measurable Function (98)
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With U, also the composition f ◦ U is a random variable whose expected value is

given by:

E(f ◦U) =

∫
Ω

f(U(ω))dP(ω) (6.41)

=

∫
Ω

f(ω)dP(ω) = E(f). (6.42)

Obviously, reformulating Equation (6.37) leads to∫
Qs
f(x) dµs(x) = µs(Qs)

∫
Qs
f(x)

1

µs(Qs)
dµs(x) (6.43)

which, using the probability density function pU : Rs → R, given by Probability Density Function (176)

pU(x)
def
=

{
1

µs(Qs) x ∈ Qs

0 Rs \Qs
(6.44)

can also be written as:∫
Qs
f(x)dµs(x) = µs(Qs)

∫
Rs
f(x)pU(x) dµs(x) (6.45)

(2.735)
= µs(Qs)

∫
Rs
f(x) dPU(x) (6.46)

x=U(ω)
= µs(Qs)

∫
Ω

f(U(ω)) d
(
P ◦U−1

)
(ω) (6.47)

U(ω)=ω
= µs(Qs)

∫
Ω

f(ω) dP(ω) (6.48)

(6.42)
= µs(Qs)E(f), (6.49)

that is, the integral from (6.37) can be interpreted as expected value of a uniformly dis- Expected Value of a RV (197)

tributed random variable given over Ω = Qs multiplied by the s-dimensional volume of

the bounded set Qs.

EXAMPLE 6.2 (The Integral as Expected Value of a Continuous Uniformly Distributed

Random Variable) As a �rst practical application for Monte Carlo integration let us

represent the following one-dimensional integral∫
[0,π2 ]

cos(x) dµ(x) (6.50)

as expected value of a uniformly distributed random variable de�ned on a probability Uniform Distribution (180)

space over the base set Ω =
[
0, π
2

]
. As underlying probability space of the uniform

random variable U : ω 7→ U(ω) = ω, we choose
([
0, π
2

]
,B(

[
0, π
2

]
),P
)
with P(B) =
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µ(B)

µ([0,π2 ])
for B ∈ B(

[
0, π
2

]
). Based on this settings and the R-R-measurable function f

given by x 7→ f(x) = cos(x) then it holds:

∫
[0,π2 ]

cos(x) dµ(x) =
π

2

∫
R
cos(x)

2

π
dµ(x) (6.51)

pU(x)= 2
π=

π

2

∫
R
cos(x) dPU(x) (6.52)

x=U(ω)
=

π

2

∫
R
cos(x) d

(
P ◦U−1

)
(x) (6.53)

x=U(ω)=ω
=

π

2

∫
Ω

cos(ω) dP(ω) (6.54)

(2.732)
=

π

2
E(cos(U)), (6.55)

that is, the above integral can be interpreted as expected value of the random variableExpected Value of a RV (197)

U multiplied by the length of the closed interval set
[
0, π
2

]
.

EXAMPLE 6.3 (Antialiasing Interpreted as Expected Value of a Continuous Random Vari-

able) The image plane of a real or virtual camera can be considered as a pixel array

of dimension [0, sx] × [0, sy] where µ
2(�j) denotes the Lebesgue measure of the areaLebesgue Measure, µ2 (82)

associated with a pixel �j. Now, a well-know problem in computer graphics is an-

tialiased sampling a pixel of the image plane. For this, the value of a pixel must be

computed via evaluating the integral

∫
�j

w(x)L(x)dµ2(x), (6.56)

where w corresponds to a weighting function de�ned on �j and L(x) is the radiance
incident at point x ∈ �j over the hemisphere H2i (x).Radiance (250)

On the probability space
(
�j,B(�j),

µ2

µ2(�j

)
, where the area of the pixel �j cor-

responds to the base set, B(�j) is as usual the Borel σ-algebra of measurable setsBorel σ-algebra (865)

of �j, and
µ2

µ2(�j)
is a probability measure we then de�ne a uniformly distributedMeasurable Set (80)

random variable U,

U : (�j,B(�j)) → (R2,B(R2)) (6.57)

ω 7→ x = U(ω) = ω, (6.58)

distributed according to the PDF, pU : R2 → R with x 7→ pU(x) = 1
µ2(�j)

.
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Using these settings, the integral from Relation (6.56) can then be written as∫
�j

w(x)L(x)dµ2(x) = µ2(�j)
∫
�j

w(x)L(x)
1

µ2(�j)
dµ2(x) (6.59)

(2.735)
= µ2(�j)

∫
�j

w(x)L(x)dPU(x) (6.60)

(2.732)
= µ2(�j)

∫
�j

w(U(ω))L(U(ω))dP(ω) (6.61)

= µ2(�j)E (w(U)L(U)) . (6.62)

A simple technique for reducing aliasing e�ects is box �ltering, where radiance

values, incident at a pixel, are averaged or weighted averaged. Mathematically, box

�ltering can be described by a weighting function w de�ned by:

w(x)
def
=

{
1

µ2(�j)
if x ∈ �j

0 otherwise
. (6.63)

Using box �ltering as antialiasing strategy reduces the evaluation of the integral

from (6.56) to the computation of the expected value of the random variable U, Expected Value of a RV (197)

namely: ∫
�j

w(x)L(x)dµ2(x) = E(L(U)). (6.64)

THE INTEGRAL AS EXPECTED VALUE OF A CONTINUOUS q-DISTRIBUTED RANDOM VARIABLE.
In the literature, the process of interpreting a de�nite integral as expected value of a

uniformly random variable and approximating this expected value via a Monte Carlo Uniform Distribution (180)

estimator is also called basic Monte Carlo integration. Now, as we will see in Section 6.6.2

basic Monte Carlo strategies are often due to reasons of e�ciency not suitable to estimate

the value of an integral. Here, a much better choice would be to choose a random variable

whose realizations are distributed according to a well chosen probability distribution. To

show that the integral from (6.37) can also be represented as expected value of a q-

distributed random variable let us pursue the following way:

Let us consider the probability space (Ω,F(Ω),P), where we choose Ω as Qs, F(Ω) =

B(Qs) and P = µs

µs(Qs) . We now de�ne on the σ-algebra B(Qs) by means of a measurable, Measurable Function (98)

non-negative function q a new measure λ via: Borel σ-algebra (865)

λ(B)
def
=

∫
B

q(x) dµs(x) (6.65)

with B ∈ B(Qs). After that, we construct in accordance to the Radon-Nikod�ym Theorem Theorem of Radon-Nikodým (176)

a measure PX by

PX(B)
def
=

λ(B)

λ(Qs)
=

∫
B
q(x) dµs(x)

λ(Qs)
. (6.66)
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Because PX is a measure with PX(Qs) = 1, the measure PX is a probability measure

and (Qs,B(Qs),PX

)
becomes to a probability space.

Based on the Lebesgue measure µs and the above constructed probability measure

PX, the function q can be written as the Radon-Nikod�ym derivative, thus,Radon Nykodým Derivative (189)

q = λ(Qs)
dPX

dµs
, (6.67)

where the di�erential measure dµs can be expressed as:

dµs = λ(Qs)
dPX

q
. (6.68)

This means that the original integral can be written as:∫
Qs
f(x) dµs(x) = λ(Qs)

∫
Qs

f(x)

q(x)
dPX(x). (6.69)

In the second step, we now generate a random variable X on the measurable spaceMeasurable Space (80)

(Rs,B(Rs)) distributed according to the PDF pX : Rs → R with

pX(x)
def
=

{
q(x)
λs(Qs) x ∈ Qs

0 Rs \Qs.
(6.70)

As we know, the set of measurable functions is a linear space, that is with X, f andMeasurable Function (98)

q, the function (f◦X)(ω)
(q◦X)(ω) = f(X(ω))

q(X(ω)) is also measurable and the integral from (6.37) can be

formulated as:∫
Qs
f(x) dµs(x) = λ(Qs)

∫
Rs

f(x)

q(x)
dPX(x) (6.71)

x=X(ω)
= λ(Qs)

∫
Ω

f(X(ω))

q(X(ω))
d
(
P ◦X−1

)
(X(ω)) (6.72)

= λ(Qs)

∫
Ω

f(X(ω))

q(X(ω))
dP(ω) (6.73)

(2.732)
= λ(Qs) E

(
f(X)

q(X)

)
. (6.74)

In this fashion, the original calculation of a high-dimensional integral is reduced to the

evaluation of the expected value of the random variable f◦X
q◦X with probability distribution

P including the calculation of the volume λ(Qs).

REMARK 6.1 Obviously the process of generating a probability measure by means of aMeasure (79)

measurable, non-negative function q, as described above, delivers according to Equa-Radon-Nikodým Derivative (176)

tion (2.585) a probability density function pX de�ned by:Probability Density Function (176)

pX(x)
def
=

q(x)

λ(Qs)
, (6.75)

which satis�es the conditions required to a density function, that is,
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i) pX(x) ≥ 0, ∀x ∈ Rs,

ii)
∫
]−∞,∞[s

pX(x)dµs(x) =
∫
Qs

q(x)
λ(Qs)dµ

s(x)
(6.65)
=

∫
Qs
q(x)dµs(x)∫

Qs
q(x)dµs(x)

= 1.

Using Relation (6.75) in Formula (6.74) then leads to:∫
Qs
f(x) dµs(x) = E(f(X)), (6.76)

now, the representation of the integral as expected value of a p-distributed random

variable.

EXAMPLE 6.4 (The Integral as Expected Value of a Continuous Random Variable) Let us

show how Monte Carlo integration works for the following simple integral:∫
[0,π2 ]

cos(x) dµ(x). (6.77)

As basic set of the desired probability space we choose the closed interval
[
0, π
2

]
and as the associated σ-algebra, the Borel σ-algebra B

([
0, π
2

])
. For the construction Borel σ-algebra (865)

of the image measure we can use any measurable, non-negative function. Let x be

such a function then PX is given via:

PX(B)
def
=

λ(B)

λ
([
0, π
2

]) =

∫
B
x dµ(x)∫

[0,π2 ]
x dµ(x)

=

∫
B
x dµ(x)

1
2
x2
∣∣π2
0

=

∫
B
x dµ(x)
1
8
π2

(6.78)

or written as Radon-Nikod�ym derivative: Radon-Nikodým Derivative (176)

x =
π2

8

dPX
dµ

⇔ dµ =
π2

8

dPX
x
. (6.79)

The integral from (6.77) can now be written as:∫
[0,π2 ]

cos(x) dµ(x) =

∫
[0,π2 ]

cos(x)
8
π2
x
dPX(x) (6.80)

=

∫
[0,π2 ]

π2 cos(X(ω))

8X(ω)
dP(ω) (6.81)

=
π2

8
E

(
cos(X)

X

)
, (6.82)

where the random variable cos(X)
8X

π2

is de�ned on
[
0, π
2

]
and distributed with respect to

the probability density function pX = 8x
π2
.

Another possible choice for q could be the constant function 1. According to

Equation (6.75), then a probability density function pX on
[
0, π
2

]
is given by:

pX(x) =
2

π
(6.83)
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and we deduce from Relations (6.67) and (6.68):

pX =
2

π
=
dPX
dµ

or dµ =
dPX
pX

=
dPX
2
π

. (6.84)

Replacing the integrand from (6.77) by these relations, then the integral can be

written as the expected value of the random variable X which is distributed according

to the constant density pX = 2
π
on
[
0, π
2

]
, i.e.:∫

[0,π2 ]
cos(x) dµ(x) =

∫
[0,π2 ]

cos(x)
2
π

dPX(x) (6.85)

=

∫
[0,π2 ]

π cos(X(ω))

2
dP(ω) (6.86)

=
π

2
E(cos(X)), (6.87)

thus, the same formula as in Example 6.6.

EXAMPLE 6.5 (Representing the Measurement Equation as Expected Value of a Continuous

Random Variable) Let now us illustrate the idea behind Monte Carlo integration using

the example of the measurement equation given byMeasurement Equation (416)

Mj
def
=

∫
�j×S2

Wj
e(r)Li(r)dζ

⊥(r). (6.88)

As base set of the underlying probability space we choose the integration domain

�j×S2. Then, an associated probability measure P over the Borel σ-algebra of �j×S2Borel σ-algebra (865)

can be de�ned via the throughput measure ζ⊥ by:Throughput Measure (94)

P(B)
def
=

ζ⊥(B)

ζ⊥(�j × S2)
. (6.89)

Then, an associated probability space for the representing the measurement equa-

tion as expected value of a random variable is given by
(
�j × S2,B(�j × S2),P

)
, and

for a uniformly distributed random variable it holds:

Mj
def
=

∫
�j×S2

Wj
e(r)Li(r)dζ

⊥(r) (6.90)

= ζ⊥(�j × S2) E
(
Wj
e(U)Li(U)

)
. (6.91)

Unfortunately, for representing the integral from (6.37), Formula (6.74) is not always

useful in practice as the calculation of the volume λ(Qs) is often more di�cult than the

calculation of the entire integral. In order to avoid this problem the integral from (6.37)

can also be transformed into one of the form:∫
Is
f(x) dµs(x) (6.92)
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over the s-dimensional unit cube Is = [0, 1]s using change of variables and if necessary

shifting and scaling operations. If we then choose a uniformly distributed random variableUniform Distribution (180)

U on Is, distributed according to the probability density function pU = 1, we obtain with

λ(Is) = 1 and the di�erential measure

dµs = λ(Is)
dPU

pU
= dPU (6.93)

for the above integral:∫
Is
f(x) dµs(x) =

∫
Is
f(x) dPU(x) (6.94)

x=U(ω)=ω
=

∫
Ω

f(ω) dP(ω) (6.95)

= E
(
f
)
. (6.96)

Hence we can conclude that the application of this procedure with density pU = 1

clearly leads to the interpretation of the integral as the expected value of the random

variable f de�ned on the probability space (Is,B(Is), µs).

EXAMPLE 6.6 (The Integral as Expected Value of a Uniformly Distributed Random Variable

on the Canonical Probability Space) Obviously, trivial integration by substitution leads

to: ∫
[0,π2 ]

cos(x) dµ(x) =
π

2

∫
[0,1]

cos
(π
2
x
)
dµ(x). (6.97)

Due to Relation (6.96), then it holds:

π

2

∫
[0,1]

cos
(π
2
x
)
dµ(x) =

π

2

∫
R
cos
(π
2
x
)
χ[0,1](x) dPU(x) (6.98)

(2.732)
=

π

2

∫
[0,1]

cos
(π
2
ω
)
dP(ω), (6.99)

where the random variable U is de�ned on:

U :
([
0,
π

2

]
,B
([
0,
π

2

]))→ (R,B(R)) (6.100)

with ω 7→ x = U(ω) = ω and f is a R-R-measurable function with ω 7→ f(ω) = cos(ω)

and the density pU corresponds to the characteristic function on the closed interval

[0, 1].

REMARK 6.2 (Blind and Informed Monte Carlo Techniques) As already mentioned above,

in the literature, the above technique representing an integral as expected value of a

continuous random variable based on uniform sampling is referred to as basic Monte
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Carlo integration. Because the sample points used in a basic Monte Carlo integration

scheme are generated according to a uniform PDF on the integration domain without

looking at the function itself, basic Monte Carlo integration is also often called a

blind Monte Carlo technique. Compared to blind Monte Carlo, an informed Monte

Carlo technique makes use of some kind of information available about the functionSection 6.6

or its integration domain. Intuitively, one expects more exact results from informed

Monte Carlo than from blind Monte Carlo techniques.

REMARK 6.3 Normally, the principle of Monte Carlo integration is de�ned over the

canonical probability space
(
Is,B(Is), µs

)
often further restricted to the case s = 1.

(
Is,B(Is), µs

)
(166)

The advantage of this is that we can obtain more simpler formulas than those devel-

oped above. Nevertheless, we have decided to take into account in our presentation of

Monte Carlo integration general probability spaces based on the σ-algebra B([a,b]),-

[a,b] ∈ Rs, s ≥ 1. This is advantageous in particular when discussing varianceB([a,b]) (865)

reduction methods where probability spaces are required which are of more generalSection 6.6

nature than the canonical one. We also want to mention that the volume λ(Qs) may

be neglected in all existing formulas where it is possible to construct the underlying

probability measure PX with the help of a probability density function p. Under these

circumstances it becomes possible to express the integral from (6.37) as the expected

value of a continuous random variable X that is distributed on Qs according to the

PDF pX as it holds:∫
Qs
f(x) dµs(x)

dµs=
dPX
pX=

∫
Rs

f(x))

pX(x))
χQs(x) dPX(x) (6.101)

=

∫
Ω

f(X(ω))

pX(X(ω))
dP(ω) (6.102)

(2.732)
= E

(
f(X)

pX(X)

)
. (6.103)

This form is familiar from the literature. It can be used much easier in for-

mulas rather than the expressions that were derived in the main part of our above

discussion.

6.3 MONTE CARLO ESTIMATORS

As we have seen in the preceding section, an integral may be interpreted as the stochasticExpected Value of a RV (197)

expected value of a continuous random variable given over a probability space. Now, weProbability Space (163)

are interested in the numerical computation of this expected value leading to the highly

important concept of theMonte Carlo estimator, a very e�cient method for approximate

solving multi-dimensional integrals.
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DEFINITION 6.2 (Monte Carlo Estimator) A Monte Carlo estimator FN is de�ned as aRandom Variable (168)

function of N random variables or random vectors X1, . . . ,XN, N ∈ N of the form Random Vectors (183)

FN
def
= FN

(
X1, . . . ,XN

)
, (6.104)

where the random variables Xi are distributed according to some convenient prob-

ability density function p. Commonly, these random variables are independent and PDF (176)

identically distributed, also denoted by i.i.d. for short, but in general they can depend Independent RV (204)

on each other and they can have di�erent probability distributions. Probability Distribution (80)

The aim of a Monte Carlo estimator is the approximation of some quantity I, which
has to be calculated. Of particular interest to our discussion is the case where I is the

evaluation of the integral ∫
Qs
f(x) dµs(x), (6.105)

which can be seen as the expected value of a continuous random variable X.

REMARK 6.4 (Primary and Secondary Monte Carlo Estimators) In particular in [190,

Sillion & Puech 1994], [116, Lafortune 1996], and [232, Watt 1999] it is distinguished

between a primary, in the case of N = 1, and a secondary Monte Carlo estimator, if

N� 1.

As the variance of a primary estimator, as we will see in the following section,

is usually unacceptably large, we will reduce the uncertainty by taking more, say

N, samples Xi and averaging their corresponding primary estimators F1(Xi) into a Variance of a RV (201)

secondary estimator, that is,

FN(X1, . . . ,XN)
def
=

1

N

N∑
i=1

F1(Xi). (6.106)

For our further considerations letX1, . . . ,XN be independent and identically, accord-

ing to a probability density function p, distributed random variables and
(
Qs,B(Qs),PX

)
be a probability space, where X is used as a synonym for the identically p-distributed ran-

dom variables X1, . . . ,XN. Because the random variables Xi, 1 ≤ i ≤ N are identical it

holds for the expected value:

E

(
f(X1)

pX(X1)

)
= . . . = E

(
f(XN)

pX(XN)

)
= E

(
f(X)

pX(X)

)
. (6.107)

Under these conditions, the Strong Law of Large Numbers|which says that if a Theorem of SLLN (216)

su�ciently large number of random variables are given, then the arithmetic mean will
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converge to the expected value of these random variables almost surely|yields with respect

to the random variables f(Xi)
pX(Xi)

, 1 ≤ i ≤ N:

prob

{
lim
N→∞

1

N

N∑
i=1

f(Xi)

pX(Xi)
= E

(
f(X)

pX(X)

)}
= 1. (6.108)

From this, we conclude: If we take enough samples, i.e. N� 1, it is guaranteed that

the arithmetic mean of f(Xi)
pX(Xi)

converges to the correct result. As already formulated in

the remark above, this means: If we de�ne a Monte Carlo estimator as the arithmetic

mean of the random variables f(Xi)
pX(Xi)

, or with other words as the arithmetic mean of N

primary estimators F1(Xi) =
f(Xi)
pX(Xi)

by

FN =
1

N

N∑
i=1

f(Xi)

pX(Xi)
, (6.109)

see Figure 6.5, then the sequence of the Monte Carlo estimators (FN)N∈N converges almost

surely towards the expected value E
(
f(X)
pX(X)

)
for N→∞.

If we now replace in Equation (6.108) the expected value by the corresponding inte-

gral, then we get:

prob

{
lim
N→∞

1

N

N∑
i=1

f(Xi)

pX(Xi)
=

∫
Ω

f(X(ω))

pX(X(ω))
dP(ω)

}
= 1. (6.110)

This fact results in that a secondary Monte Carlo estimator FN for approximating

the value of the integral∫
Qs
f(x) dµs(x)

(6.73)
= λ(Qs)

∫
Ω

f(X(ω))

q(X(ω))
dP(ω) (6.111)

has the form:

FN =
λ(Qs)

N

N∑
i=1

F1(Xi) (6.112)

=
λ(Qs)

N

N∑
i=1

f(Xi)

q(Xi)
, (6.113)

=
1

N

N∑
i=1

f(Xi)

pX(Xi)
, (6.114)

where X1, . . . ,XN are independent and identically p-distributed random variables and

pX(Xi) =
q(Xi)
λ(Qs) is a PDF de�ned on the probability space (Qs,B(Qs),PX).
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1 1 1 1  1 1 

1 1 1 1 1 1

FIGURE 6.5: SECONDARY MONTE CARLO ESTIMATOR. The secondary Monte

Carlo estimator F6 = 1
6

∑6
i=1

f(Xi)
pX(Xi)

from Relation (6.109) for evaluating the integral∫
[−1,1]2

e−x
2

dµ(x) using 6 independent and uniformly distributed random variables Xi

drawn from integration domain [−1, 1]. The value of the integral is then approximated by
the average value of the 6 colored areas, constructed over [−1, 1]× [0, f(Xi)], for 1 ≤ i ≤ 6.
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EXAMPLE 6.7 (The Integral as Expected Value of a Continuous Random Variable, contin-

ued) Let us consider once more the evaluation of the integral from (6.77). According

to the Relations (6.82) and (6.87) then it holds:∫
[0,π2 ]

cos(x) dµ(x) =
π

8
E

(
cos(X)

X

)
(6.115)

respectively ∫
[0,π2 ]

cos(x) dµ(x) =
π

2
E(cos(X)). (6.116)

The corresponding Monte Carlo estimators for computing the value of the inte-

gral are given by

FN =
π2

8N

N∑
i=1

cos(Xi)

Xi
, (6.117)

with independent and according to the probability density function pX(x) =
8x
π2

iden-

tically distributed random variables Xi as well as

FN =
π

2N

N∑
i=1

cos(Xi), (6.118)

where the independent random variables Xi are distributed on
[
0, π
2

]
according to

pX = 2
π
. Due to Equation (6.97), it should also be clear, that in the case of uniform

sampling on [0, 1], the corresponding estimator has the form

FN =
π

2N

N∑
i=1

cos
(π
2
Xi

)
, (6.119)

see Figure 6.6.

REMARK 6.5 As a result of the Strong Law of Large Numbers, Monte Carlo integrationTheorem of SLLN (216)

will also converge if the variance of an estimator FN is in�nite, assumed that the

expected value E (FN) exists.

EXAMPLE 6.8 (Approximating the Form Factor Integral Using a Secondary Monte Carlo

Estimator) The approximation of an integral via a Monte Carlo estimator, as shown

in the foregoing example for the one-dimensional case, can easily be extended to a

multi-dimensional integral. For this, let us look at the two-dimensional integral for

computing the di�erential-to-�nite-area form factor between a di�erential surface

patch and a surface patch Pj from Relation (2.207).
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FIGURE 6.6: MONTE CARLO ESTIMATORS. The plots of Monte Carlo estimators for
approximating the integral

∫
[0,π2 ]

cos x dµ(x). The two upper images illustrate the density

pX(x) =
8x
π2

and the associated estimator FN = π2

8N

∑N
i=1

cos(Xi)
Xi

with N = 500 according

to the density distributed random variables. The images in the middle show the uniform
density pX(x) =

2
π

and the estimator FN = π
2N

∑N
i=1 cos(Xi) based on 500 according to pX-

distributed random variables. The two lower images illustrate the transformation of uniformly
distributed random variables from [0, 1] onto the interval

[
0, π
2

]
, where the corresponding

estimator is given by FN = π
2N

∑N
i=1 cos

(
π
2
Xi
)
. From the first two images on the right side

we can conclude: The more a PDF approximates the form of the integrand, the better the
estimator seems to approximate the integral.
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Uniform sampling the density pX = pX1,X2 , de�ned on the base set Pj of the

probability space (Pj,B(Pj),PX), where the density is given by

pX(x) =
1

µ2(Pj)
(6.120)

then leads to the following secondary Monte Carlo estimator for the integral from

(2.207):

F
FsiPj
N =

µ2(Pj)

N

N∑
i=1

∣∣∣cos θii cos θjo∣∣∣ V(Xj ↔ si)

π ‖Xj − si‖22
(6.121)

with X1, . . . ,XN according to pX chosen independent and on Pj uniformly distributed

random variables.

In Example 10.6, we will show that it is also straightforward to extend the

above estimator F
FsiPj
N to approximate the four-dimensional form factor integral from

(10.26).

EXAMPLE 6.9 (Trivial Pixel Sampling Using a Secondary Monte Carlo Estimator, Contin-

ued) Let us consider the probability space (�j,B(�j),PX), where the area of the pixel

�j is the base set, B(�j) is as usual the Borel σ-algebra of measurable sets of �j, asBorel σ-algebra (865)

well as PX is a probability measure. According to the Radon-Nikod�ym Theorem theMeasurable Set (80)

probability measure PX can now be de�ned by means of the Lebesgue area measureRadon Nykodým Theorem (176)

as

PX(B)
def
=

∫
B
pX(x) dµ2(x)∫

�j
pX(x) dµ2(x)

=
λ2(B)

λ2(�j)︸ ︷︷ ︸
=1

= λ2(B), ∀ B ∈ B(�j), (6.122)

where

λ2(B) =

∫
B

pX(x) dµ2(x), (6.123)

and pX is a probability density function on the area of the pixel �j. This means thatPDF (176)

if we choose a two-dimensional random variable X on �j, the probability, that X is

drawn from a subset B of �j, is given by the ratio of the area of B and the area of

the pixel �j.

This means: Replacing the integration measure µ2 within the integral from (??)

with the help of Equations (6.122) and (6.123) by the Radon Nykod�ym derivative,Radon-Nikodým Derivative (176)

µ2
(6.68)
=

dPX

pX
, (6.124)
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leads to: ∫
�j

w(x)L(x)dµ2(x) =

∫
�j

w(x)L(x)

pX(x)
dPX(x) (6.125)

=

∫
�j

w(X(ω))L(X(ω))

pX(X(ω))
dP(ω) (6.126)

= E

(
w(X)L(X)

pX(X)

)
. (6.127)

Following Relation (6.114), then for the secondary Monte Carlo estimator FN,

approximating the color of a pixel, it holds:

FN =
1

N

N∑
i=1

w(Xi)L(Xi)

pX(Xi)
, (6.128)

with N independent and identically, according to the probability density pX, over the

area of the pixel �j distributed samples Xi = (Xi1, Xi2).

Obviously, choosing the weighting function w as probability density function pX
leads to:

FN =
1

N

N∑
i=1

w(Xi)L(Xi)

pX(Xi)

w=pX
=

1

N

N∑
i=1

L(Xi). (6.129)

This means that FN can simply be calculated as the sum of the radiance values

at positions that are drawn independent and identically distributed according to the

density pX over the area of the pixel �j.

The case, where a Monte Carlo estimator uses the density pX = 1
µ2(�j)

is called

box-�ltering, for details see [185, Shirley 2000].

REMARK 6.6 (Advanced Filter Concepts for Pixel Sampling) According to [184, Shirley &

al. 1994], [185, Shirley 2000], the above described box-�ltering is a less appropriate

method with respect to shading a pixel. Applying cubic B-spline blending functions

and triangle �lters, separable and de�ned over the unit square I2, have been found

to be far superior sampling strategies, the latter as they may be conceived of as the

products of two one dimensional functions: 1− |x| and 1− |y|.

Another good choice of a �lter for pixel �ltering is the Gaussian �lter. It is

based on a Gaussian bump symmetrical in x and y-direction with respect to the pixel

center. Since a Gaussian function in two dimensions is separable into the product

of two 1D-Gaussian functions, we can use

f(x) = e−αx
2

− e−
αe2

4 (6.130)
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and

f(y) = e−αy
2

− e−
αe2

4 , (6.131)

where the parameter α controls the fallo� of the �lter, and e is the size of the domain

of the Gaussian where it takes on values unequal zero.

In [133, Mitchell & Netravali, 1988] a family of parametrized �lter functions

is presented, which solve some common artifacts from trivial reconstruction �lters.

Similar to the Gaussian �lter, the Michell-Netravali �lter is also a product of 1D-�lter

functions in x and y direction, composed of two cubic polynomials valid in the closed

interval [−2, 2] and controlled by two parameters A,B. The Mitchell-Netravali �lter

is detailed discussed in [158, Pharr & Humphreys, 2004].

Finally, we still mention the windowed sinc �lter composed of the sinc function

and the Lanczos windowing function, w, de�ned by

w(x)
def
=
sin
(
πx
τ

)
πx
τ

, (6.132)

where the parameter τ is used to control the cycles of the sinc function, for a detailed

discussion see [158, Pharr & Humphreys, 2004].

To summarize, the following conclusions may be obtained from our �rst experiences

with Monte Carlo methods applied to integrals:

REMARK 6.7 Monte Carlo procedures used for evaluating the integral∫
Qs
f(x) dµs(x) (6.133)

have been proven to be easily implementable algorithms. Apart from generating ran-

dom variables X1,X2, . . . ,Xn ∈ Qs, independent distributed according to some prob-

ability density functions, they require no more than the calculation and summing up

of function values at the samples X1,X2, . . . ,Xn.

Because they are independent on the dimension of the problem and the under-

lying topology of the integration domain, this method is by far superior to direct

quadrature methods from numerical analysis. In particular, this holds for integrat-Section 6.1.1

ing functions with singularities and functions of dimension s ≥ 5. Due to the fact

that the method works with a much smaller set of samples than required by quadra-

ture integration rules, Monte Carlo integration has become the most popular method

for integrating multi-dimensional integrals. Unfortunately, this procedure has also

a number of disadvantages, which have to be taken into account when developing

e�cient integration algorithms.

PROPERTIES OF MONTE CARLO ESTIMATORS. Finally, we now de�ne a number of important

features of Monte Carlo estimators, which are useful for the successive derivation of a great

variety of e�cient Monte Carlo procedures.
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DEFINITION 6.3 (Bias of a Monte Carlo Estimator) Let I be some quantity of interest,

normally the value of a given integral, and FN be any Monte Carlo estimator for

approximating the quantity I. Then, we call the quantity FN − I the error, and its

expected value, thus,

β(FN
) def

= E
(
FN − I

)
(6.134)

= E
(
FN
)
− E

(
I
)

(6.135)

= E
(
FN
)
− I, (6.136)

the bias of the estimator FN. In other words, the bias is the di�erence between the

estimator's expected value and the quantity which has to be estimated.

The Monte Carlo estimator FN is called unbiased if for all sample sizes N it

holds:

β(FN
)
= 0, (6.137)

which is equivalent to

E
(
FN) = I. (6.138)

If the bias of a Monte Carlo estimator FN goes to zero with probability one,

where the number of samples N increases then we call FN consistent, mathematically

expressed as:

prob

{
lim
N→∞β

(
FN
)
= 0

}
= 1

(6.136)⇔ prob

{
lim
N→∞E (FN) = I

}
= 1. (6.139)

Let FN be an unbiased secondary Monte Carlo estimator then the following Lemma

holds:

LEMMA 6.1 The secondary Monte Carlo estimator FN from Equation (6.114) for ap-

proximating the integral from (6.37) is an unbiased estimator.

PROOF 6.1 Due to the de�nition from above, FN is unbiased, if the expected value

of FN is equal to the integral from (6.37) for all N ∈ N. To show this, let N be a

non-negative integer, then for E (FN) it holds:

E (FN) = E

(
1

N

N∑
i=1

f(Xi(ω))

pX(Xi(ω))

)
(6.140)

pX= q
λ(Qs)
= E

(
λ(Qs)

N

N∑
i=1

f(Xi(ω))

q(Xi(ω))

)
(6.141)

(2.773)
=

λ(Qs)

N

N∑
i=1

E

(
f(Xi(ω))

q(Xi(ω))

)
. (6.142)
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As the random variables X1, . . .XN are independent and identically distributed

according to the probabiliy denstity function pX, we can use X as a synonym for Xi,

i.e. we can write:

E
(
FN
) Xi=X

=
λ(Qs)

N

N∑
i=1

E

(
f(X(ω))

q(X(ω))

)
(6.143)

=
λ(Qs)

N

N∑
i=1

∫
Ω

f(X(ω))

q(X(ω))
dP(ω) (6.144)

=
λ(Qs)

N

N∑
i=1

∫
Qs

f(x)

q(x)
dPX(x) (6.145)

dµs=λ(Qs)
dPX
q

=
1

N

N∑
i=1

∫
Qs
f(x) dµs(x) (6.146)

=

∫
Qs
f(x) dµs(x), (6.147)

which characterize FN to be an unbiased Monte Carlo estimator to approximate the

value of the integral
∫
Qs
f(x) dµs(x).

REMARK 6.8 From the de�nition above we conclude that any consistent estimator will

ultimately converge towards the right answer if he uses more and more samples.

We conclude furthermore from Relation (6.139) that an estimator is consistent,

if its bias and its variance both goes to zero, as the samples size N is increased, i.e.:Variance (201)

lim
N→∞β

(
FN
)
= lim
N→∞Var

(
FN
)
= 0. (6.148)

This means that an unbiased Monte Carlo estimator is consistent as long as its

variance goes to zero as N goes to in�nity.

Let us now demonstrate the concept of a biased estimator by means of an example

from the �eld of computer graphics [220, Veach 1997].

EXAMPLE 6.10 (A Biased and Consistent Monte Carlo Estimator) Suppose we are inter-

ested in antialiased samples on a pixel �j. For that, we have to estimate a quantity

that is de�ned by an integral of the form∫
�j

w(x)f(x)dµ2(x), (6.149)

where f is the image function on �j and w is a �lter function satisfying the normal-

ization condition ∫
�j

w(x)dµ2(x) = 1. (6.150)
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In sampling theory, a common way to compute the �nal value of a pixel is to

use a weighted interpolation scheme. This results in the following estimator:

FN =

∑N
i=1w(Xi)f(Xi)∑N
i=1w(Xi)

, (6.151)

with uniformly and independent distributed random variables Xi on �j.

As is easily seen, the estimator FN is biased, since it holds:

E(FN) = E

(∑N
i=1w(Xi)f(Xi)∑N
i=1w(Xi)

)
(6.152)

=

N∑
i=1

E

(
w(Xi)f(Xi)∑N
i=1w(Xi)

)
(6.153)

(2.732)
=

N∑
i=1

∫
�j

w(x)∑N
i=1w(x)

f(x)dµ2(x) (6.154)

=
1

N

N∑
i=1

∫
�j

w(x)

w(x)
f(x)dµ2(x) (6.155)

=

∫
�j

f(x)dµ2(x) (6.156)

6=
∫
�j

w(x)f(x)dµ2(x). (6.157)

However, using an estimator FN of the form

FN =
1
N

∑N
i=1w(Xi)f(Xi)

1
N

∑N
i=1w(Xi)

, (6.158)

then due to the Strong Law of Large Numbers we get: SLLN (216)

lim
N→∞

1

N

N∑
i=1

w(Xi)f(Xi)
(2.11)
=

∫
�j

w(x)f(x)dµ2(x). (6.159)

and

lim
N→∞

1

N

N∑
i=1

w(Xi)
(2.11)
=

∫
�j

w(x)dµ2(x). (6.160)

Making use of these two identities in the de�nition of a consistent estimator,
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then we get for FN:

lim
N→∞E (FN) = lim

N→∞E
(
1
N

∑N
i=1w(Xi)f(Xi)

1
N

∑N
i=1w(Xi)

)
(6.161)

= E

(
lim
N→∞

1
N

∑N
i=1w(Xi)f(Xi)

1
N

∑N
i=1w(Xi)

)
(6.162)

= E

(
limN→∞ 1

N

∑N
i=1w(Xi)f(Xi)

limN→∞ 1
N

∑N
i=1w(Xi)

)
(6.163)

= E

(∫
�j
w(x)f(x) dµ2(x)∫
�j
w(x)dµ2(x)

)
(6.164)

(6.150)
=

∫
�j

w(x)f(x)dµ2(x), (6.165)

that is, the estimator FN is consistent.

In [159, Pharr & Humphreys 2010] it is shown that in practice the biased esti-

mator FN from above should be preferred over the unbiased estimator from Relation

(6.128) from Example 6.9, since it results in less variance and the variance in the

unbiased estimator leads to an undesirable result in the �nal image. So, if all radi-

ance values L(Xi) are one, the above biased estimator leads, using f = L in Formula

(6.151), to pixel values which are also one, while the unbiased estimator

FunbiasedN =
1

N

N∑
i=1

w(Xi)

pX(Xi)
(6.166)

pX= 1

µ2(�j)

=
µ2(�j)
N

N∑
i=1

w(Xi) (6.167)

results|due to the variation in the �lter function w|in pixel values which are not all

one, since the sum over the �lter function will generally not be equal to the Lebesgue

measure µ2(�j). Obviously, in this speci�c case we will have undesirable variance in

the image.

Furthermore, [159, Pharr & Humphreys 2010] argue that in more complex im-

ages the variance that would be introduced by the unbiased estimator is a more ob-

jectionable artifact than the bias from Equation (6.151).

So far, we have only talked how an integral can be approximated by a �nite sum of

function values that are evaluated at randomly chosen points. We have not spoken about

the convergence behavior of a Monte Carlo estimator. For that, we now introduce the

concept of the mean square error, also called MSE. It measures the average of the square

of the di�erence between an estimator and the true value of the quantity being estimated.
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DEFINITION 6.4 (Mean Square Error of a Monte Carlo Estimator) The mean square error

of a Monte Carlo estimator FN is de�ned as

MSE(FN)
def
= E

(
(FN − I)2

)
. (6.168)

As the 2nd-moment of the error, the MSE apparently incorporates both the variance nth-moment (201)

of the estimator and its bias. Let us show this in the following lemma.

LEMMA 6.2 For the mean square error of any Monte Carlo estimator FN it holds:

MSE(FN) = Var(FN) + β
2(FN). (6.169)

PROOF 6.2 Let FN be any Monte Carlo estimator for approximating the quantity I,
then we have:

MSE(FN) = E
(
(FN − I)2

)
(6.170)

= E
(
(FN − E (FN) + E (FN) − I)2

)
(6.171)

= E
((
FN − E

(
FN
))2)

+ (6.172)

2E ((FN − E(FN)) (E (FN) − I)) + E
(
(E(FN) − I)2

)
E(E(FN))=E(FN)

= E
(
(FN − E (FN))

2
)
+ E

(
(E(FN) − I)2

)
(6.173)

(6.134)
= Var(FN) + β

2(FN). (6.174)

From the lemma above we conclude: To estimate the error of any estimator, we need,

in addition to the variance of the estimator, an upper bound on the possible bias. Now it is Upper Bound (862)

often very di�cult to �nd such a suitable bound because it requires additional information

about the estimate I, which is mostly not available. It is much easier to estimate the error

of an unbiased estimator FN since the MSE then has the fortunate property to be identical

to the variance, thus,

MSE (FN) = Var (FN) . (6.175)

This is also the main reason why we are interested in �nding unbiased Monte Carlo

estimators for approximating the integral from (6.37). Thus, error estimations with re-

spect to unbiased estimators can be easily indicated via the variance of FN by choosing

independent samples X1,X2, . . . , XN and de�ning

FN =
1

N

N∑
i=1

Xi. (6.176)

Let us now yet take a look at the variance of a secondary Monte Carlo estimator FN.

In the following lemma we will see that it can be expressed in terms of the variance of the

primary estimator.



512 CHAPTER 6. MONTE CARLO INTEGRATION

LEMMA 6.3 Let FN, given by

FN
def
=

1

N

N∑
i=1

f(Xi), (6.177)

be a secondary Monte Carlo estimator based on independent and identically dis-

tributed random variables Xi de�ned on the probability space (Ω,F(Ω),P). Then, the
variance of FN decreases linearly with N, i.e. it holds:

Var (FN) =
1

N
Var (F1) . (6.178)

PROOF 6.3 Let FN be the secondary Monte Carlo estimator from Equation (6.177)

then we obtain for it's variance:

Var (FN) = Var

(
1

N

N∑
i=1

f(Xi)

)
(2.772),(2.791)

=
1

N2

N∑
i=1

Var (f(Xi)) . (6.179)

Since the random variables Xi, 1 ≤ i ≤ N are independent and identically dis-

tributed, we can replace Xi in the above formula by the random variable X which

results in

Var (FN)
Xi=X
=

1

N2
Var

N∑
i=1

(f(X)) (6.180)

=
1

N
Var (f(X)) (6.181)

=
1

N
Var (F1) , (6.182)

where we have used the identity F1 = f(X).

As the variance decreases linearly with N., we can conclude that the error of an

unbiased Monte Carlo estimator can be made as small as desired, provided, we draw

a su�cient large number of samples.

With the following example, let us illustrate how Monte Carlo integration works:

EXAMPLE 6.11 Let us estimate the one-dimensional integral

I =

∫
[0,1]

x2 dµ(x) (6.183)
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using uniformly distributed random variables drawn from [0, 1] via the PDF pX = 1.

Then, a secondary Monte Carlo estimator looks like:

FN =
1

N

N∑
i=1

X2i . (6.184)

Obviously, the estimator FN is unbiased|we leave the proof to the interested

reader as a simple exercise. Since it holds I = 1
3
, the variance of this function can

be analytically computed as follows:

Var(FN)
(6.182)
=

1

N
F1 (6.185)

=
1

N

(∫
[0,1]

x4 dµ(x) −
1

9

)
(6.186)

=
8

9N
. (6.187)

As FN is unbiased, we have for the mean square error of FN:

MSE(FN) =
8

9N
. (6.188)

This means: The estimator FN results in increasingly better approximations for

I as N goes to in�nity.

Now, the above lemma con�rms our �rst results from the foregoing discussion about

the convergence of Monte Carlo estimators, namely, that the variance of an unbiased

Monte Carlo estimator can be made as small as desired, provided, we take su�ciently

many samples. According to [99, Kalos & Whitlock 1986], we can estimate the variance

of any unbiased estimator by means of the following theorem.

THEOREM 6.1 Let FN be an unbiased estimator, given by:

FN
def
=

1

N

N∑
i=1

f(Xi), (6.189)

based on independent and identically distributed random variables Xi de�ned on the

probability space (Ω,F(Ω),P). Then, the quantity F̂N de�ned by:

F̂N
def
=

1

N− 1


(
1

N

N∑
i=1

f2(Xi)

)
−

(
1

N

N∑
i=1

f(Xi)

)2 (6.190)

is an unbiased estimator for Var(FN), that is, it holds:

E(F̂N) = Var(FN). (6.191)
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PROOF 6.1 Let us consider the expected value of E(F̂N) then it holds:

E(F̂N)
def
= E

 1

N− 1


(
1

N

N∑
i=1

f2(Xi)

)
−

(
1

N

N∑
i=1

f(Xi)

)2 ,
 (6.192)

=
1

N− 1

E
(
1

N

N∑
i=1

f2(Xi)

)
− E

( 1
N

N∑
i=1

f(Xi)

)2 , (6.193)

=
1

N− 1

 1NE
(
N∑
i=1

f2(Xi)

)
−
1

N2
E

( N∑
i=1

f(Xi)

)2 (6.194)

=
1

N− 1

1

N


N∑
i=1

E
(
f2(Xi)

)
−
1

N
E

 N∑
i=1

N∑
j=1

f(Xi)f(Xj)

 . (6.195)

Now, the expected value over the double sum of the random variables Xi can be

written as:

E

 N∑
i=1

N∑
j=1

f(Xi)f(Xj)

 =

N∑
i=1

E(f2(Xi)) +

N∑
i=1
i 6=j

N∑
j=1

E(f(Xi)f(Xj)) (6.196)

=

N∑
i=1

E(f2(Xi)) +

N∑
i=1
i 6=j

N∑
j=1

E(f(Xi))E(f(Xj)), (6.197)

where we have used the independence of the random variable Xi,Xj in the second

step. Using this identity in the foregoing Equation then we get:

E(F̂N) =
1

N− 1

1

N

N− 1

N

N∑
i=1

E
(
f2(Xi)

)
−
1

N

N∑
i=1
i 6=j

N∑
j=1

E(f(Xi)E(f(Xj)

 (6.198)

=
1

N− 1

1

N

N− 1

N

N∑
i=1

E
(
f2(Xi)

)
−
1

N

N∑
i=1
i 6=j

N∑
j=1

E(f(Xi)E(f(Xj)

 (6.199)

=
1

N2

N∑
i=1

E
(
f2(Xi)

)
−

1

N− 1

1

N2

N∑
i=1
i 6=j

N∑
j=1

E(f(Xi)E(f(Xj). (6.200)

Now, as we have assumed that the random variables Xi are identically dis-

tributed, it holds: E(Xi) = E(X). So, we can express the expected value of the random

variable f(Xi) in Equation 6.200 via the expected value of the random variable X,
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FIGURE 6.7: VARIANCE ANALYSIS OF THE SECONDARY MONTE CARLO ESTIMATOR∑N
i=1U

2
i . Error and variance estimations of the Monte Carlo estimator FN =

∑N
i=1U

2
i

assigned to the integral
∫
[0,1]

x2 dµ(x) with the random variables U1, U2, . . . , UN, N = 500

independent and uniformly distributed on I = [0, 1]. The expected value E(FN), the MSE-

Error MSE(FN), and the variance Var(FN) of FN =
∑N
i=1U

2
i .

namely:

E(F̂N) =
1

N
E(f2(X)) −

1

N
E2(f(X)) (6.201)

=
1

N
Var(f(X)) (6.202)

=
1

N
Var(F1) (6.203)

Lemma 6.3
= Var(FN). (6.204)

6.4 CONVERGENCE OF THE MONTE CARLO INTE-
GRATION

In the foregoing discussion, we have introduced the principle of Monte Carlo integration.

As a consequence from the Strong Law of Large Numbers, we were able to make statements Theorem of SLLN (216)

on the accuracy of any Monte Carlo computation for estimating an integral. However, un-

til this point nothing could be said on the convergence rate of the method. In order to

shine some light on this feature of Monte Carlo integration, let us apply the estimator FN
from Equation (6.114) in the following discussion on the integral from Equation (6.37).

For that we use random variables Xi, 1 ≤ i ≤ N, which are independent and identically

distributed with respect to a probability density function p given on the probability space

(Qs,B(Qs),PX). First weak statements about the convergence of the Monte Carlo method Probability Space (163)

can be obtained using the Chebychev Inequality. Chebychev Inequality (212)
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Now Chebychev's Inequality requires that the integrand f is an element of the function

space L2(Qs,B(Qs)), which ensures that both E (FN) and Var (FN) exist and are �nite.

Then, applying Chebychev's Inequality to the estimator FN leads to:Monte Carlo Estimator (500)

Expeted Value of RV (196)

Variance of RV (201) prob

{
|FN − E (FN)| ≥

(
Var (FN)

δ

) 1
2

}
≤ δ, (6.205)

where δ ∈ [0, 1]. In [99, Kalos & Whitlock 1986], this inequality is called the First

Fundamental Theorem of Monte Carlo.

Expressed in terms of the standard deviation σ (FN), which also can be considered as aStandard Deviation (213)

measurement of the error|namely, the root mean square error, or RMSE|Chebychev's

inequality has the form:

prob

{
|FN − E (FN)| ≥

σ (FN)√
δ

}
≤ δ, (6.206)

and can interpreted as follows: The probability that FN di�ers from its expected value by

more than 1√
δ
standard deviations is at most δ, i.e. for δ = 1

1000000
, the probability that

FN = E(FN) is very large.

Now, applying Lemma 6.3 to the estimator FN

Var (FN) =
(λ (Qs))

2

N
Var (F1) . (6.207)

and inserting this relation in Chebychev's Inequality, then we get:

prob

{
|FN − E(FN)| ≥

λ(Qs)√
N

(
Var (F1)

δ

) 1
2

}
≤ δ (6.208)

or with F1 =
f(X)
p(X)

prob

|FN − E(FN)| ≥
λ(Qs)√
N

Var
(
f(X)
p(X)

)
δ


1
2

 ≤ δ. (6.209)

As the variance of the estimator decreases with increasing sampling size N, the prob-

ability of getting a large deviation between the exact value and an estimate of the integral

becomes very small. Relation (6.209) also allows to pull conclusions to the convergence

behavior of a Monte Carlo algorithm. Thus, algorithms based on the principle of Monte

Carlo integration for estimating an integral have a convergence rate of the order O
(
1√
N

)
,

i.e. in order to halve the error of an estimate, the number of samples used must be quadru-

pled. This slow convergence behavior of a Monte Carlo algorithm is the classic result of

the Monte Carlo method.
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According to [197, Sobol 1985], stronger error boundaries to those received above

may be obtained by applying the results of the Central Limit Theorem. Thus, the CLTCLT (217)

states that the values of an estimator FN converges to a normal distribution as N goes to

in�nity. Therefore, the estimate lies in a close region around the expected value of the

integral with higher probability.

Furthermore, we note, as N gets larger, the standard deviation decreases with 1√
N

since it holds:

σ (FN)
def
=

√
Var (FN) (6.210)

(6.182)
=

λ(Qs)√
N

√
Var (F1) (6.211)

=
λ(Qs)√
N
σ (F1) . (6.212)

Based on these fact the Central Limit Theorem then states that

lim
N→∞prob

{
FN − E(FN) ≤ t

λ(Qs)σ (F1)√
N

}
=

1√
2π

∫
]−∞,t] e

−x2

2 dµ(x), (6.213)

whereas the expression on the right-hand side is the well-known nomal distribution. Due

to [221, Veach 1998] this equation can also be rearranged to give

prob

{∣∣∣∣FN −

∫
Qs
f(x) dµs(x))

∣∣∣∣ ≥ t σ (FN)} =

√
2

π

∫∞
t

e
−x2

2 dx. (6.214)

Compared with Chebyshev's Inequality, the CLT leads to more powerful statements

on the convergence behavior of the Monte Carlo method. It does not only allow to predict

the probability of deviations measured in units of σ, but also allows a statement on the

distribution of the values of the estimator FN. Note: The CLT applies only asymptotically,

that is, when N is large. How large N must be before the CLT applies is not clear. This

often depends on the given problem. As we assume thatN is large enough in our discussion,

this restriction makes no problems for us. Care must be taken when small values of N are

used.

EXAMPLE 6.12 As the integral on the right decreases very fast, it can be derived for

t = 3 that, if the sample size N is large enough, there is only about a 0.3% chance

that FN will di�er from its expected value by more than three standard deviations.

As a conclusion of this section we can note that Monte Carlo integration compared

with other numerical integration methods not only has advantages. One of it's main

disadvantages is that apart from the existence of merely probabilistic error boundaries,

the method is strongly dependent on both, convergence results and error estimations of

the involved random numbers. Another disadvantage is that even su�ciently smooth

functions lead to the probabilistically slow convergence behavior, typical for Monte Carlo

integration.
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6.5 SAMPLING

Now, Monte Carlo estimators are based on the evaluation of an integral at a large number

of points randomly chosen according to a given probability density function over its inte-

gration domain. In Example 6.7 we have seen that di�erent PDFs can be used to generate

samples from the same integration domain. In Figure 6.6, we have also seen, that di�erent

sets of samples, resulting from sampling di�erent densities, lead to di�erent convergence

behavior of the corresponding estimators. Obviously, this then implies that the process of

sampling random numbers has a crucial role when constructing of e�cient Monte Carlo

algorithms for evaluating integrals.

In the following sections we will present three di�erent techniques for sampling ran-

dom variables: The transformation method, the most well-known and most frequently

used sampling procedure in the theory of Monte Carlo algorithms, acceptance rejection

sampling, and the method of Markov chain Monte Carlo.

The idea behind the transformation method is to map uniformly distributed randomSection 6.5.1

variables to random variables from a desired distribution, whose PDF can be integrated

analytically. As we will see, often it is not possible to derive a formula for the cumula-

tive distribution function via application of the transformation method, in this case the

last resort for independent sampling is acceptance-rejection sampling. Instead of sam-Section 6.5.2

pling directly from a density, which is commonly di�cult or even impossible to sample,

in acceptance-rejection sampling another easily to sample density function|a so-called

proposal density function, that approximates the desired density|is used. The algorithm

then decides if a proposed sample is accepted, or if it should be rejected. Now, the main

drawback of the acceptance-rejection method is that it is often very di�cult to construct

a suitable proposal distribution that leads to an e�cient algorithm. One way to avoid

this problem is to allow the proposed samples depend on the last accepted samples, which

makes it easier to generate a suitable, but now conditional proposal distribution. The

price, we pay for that is to generate samples from a sequence of dependent random vari-

ables instead of a sequence of independent random variables. Such procedures are known

under the notion of Markov chain Monte Carlo algorithms, a class of sampling tech-Section 6.5.3

niques based on the Metropolis algorithm.

6.5.1 THE TRANSFORMATION METHOD

Let us consider the problem of generating a random variable X, distributed according to a

probability density function pX, where the associated cumulative distribution function FX
is known. The problem that we wish to solve is as follows: To a given random variable X

with known probability density function pX and a function T we are seeking the density
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function of the random variable Y = T(X) in terms of pX. This leads us to the trans-

formation method, the most well-known and most frequently used sampling procedure in

the theory of Monte Carlo algorithms. Chapter 9

Let us �rst discuss the simple one-dimensional case, afterwards we will present the

more general, complex multivariate case.

THE ONE-DIMENSIONAL TRANSFORMATION METHOD. In the one-dimensional case, i.e., in

the case where we want to sample a one-dimensional random variable X, the transformation Random Variable (168)

method works as follows: Let (Ω,F(Ω),P) be a probability space, X a random variable Probability Space (163)

de�ned on (Ω,F(Ω)) with cumulative distribution function FX(x), and Y = T(X) is the CDF (171)

image of the random variable X under a bijective, di�erentiable mapping T . Then, the

following applies to the probability measure PY :

PY(Y ≤ y) (2.549)
=

(
P ◦ Y−1

)
(Y ≤ y) (6.215)

Y=T(X)
=

(
P ◦ (T ◦ X)−1

)
(Y ≤ y) (6.216)

=
(
P ◦ X−1 ◦ T−1

)
(Y ≤ y) (6.217)

=
(
P ◦ X−1

)
(T−1(Y) ≤ T−1(y)) (6.218)

=
(
P ◦ X−1

)
(X ≤ T−1(y)) (6.219)

= PX(X ≤ T−1(y)). (6.220)

Based on this result, we conclude due to the de�nition of the cumulative distribution

function for continuous random variables and x = T−1(y) that it holds: CDF (179)∫
(−∞,y] pY(y)dµ(y) =

∫
(−∞,T−1(y)]

pX(x)dµ(x), (6.221)

where pX and pY are the probability density functions of the continuous random variables PDF (176)

X and Y. Changing from variable x to y = T−1(x) in the second integral and applying the

Theorem of Transformation for integrals yields: Theorem of Transformation (117)∫
(−∞,T−1(y)]

pX(x)dµ(x) =

∫
(−∞,y] pX(T

−1(y))

∣∣∣∣dT−1(y)dµ(y)

∣∣∣∣ dµ(y). (6.222)

Obviously it is possible to express the probability density function pY of the random

variable Y in terms of pX, namely by

pY(y) = pX(T
−1(y))

∣∣∣∣dT−1(y)dµ(y)

∣∣∣∣ . (6.223)

Let us illustrate this result by means of an example, namely: Generating a uniformly

distributed random variable on the interval [a, b].
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EXAMPLE 6.13 (Uniform Sampling on the Interval [a, b]) Let U be the uniformly dis- Uniform Distribution (180)

tributed random variable from part i) of Example (2.69) with probability density PDF (176)

function pU = 1. Furthermore, let T be a bijective, di�erentiable function and Y a

random variable with Y = T(U) given by T(U) = a + U(b − a). Obvioulsy, then it

holds:

U =
T(U) − a

b− a
(6.224)

Y=T(U)
=

Y − a

b− a
. (6.225)

Since T is invertible we get:

T−1(Y) = U =
Y − a

b− a
. (6.226)

Due to the above results, the corresponding probability density function pY is

given by

pY(y) = pU(T
−1(y))

∣∣∣∣dT−1(y)dµ(y)

∣∣∣∣ . (6.227)

= pU(u)

∣∣∣∣∣d
(
y−a
b−a

)
dµ(y)

∣∣∣∣∣ . (6.228)

pU(u)=1
=

1

b− a
, (6.229)

that is, the transformation Y = a + U(b − a) of the uniformly distributed random

variable U has the probability density function pY = 1
b−a .

THE ONE-DIMENSIONAL INVERSION METHOD. An algorithm based on the transforma-

tion method used in many algorithms is the so-called inversion method. The goal of

the inversion method is the generation of independent and according to a given density

function p distributed random variables, see Figur 6.8. It supplies a rule for generating

a P-distributed random variable using a random variable U which is independently and

uniformly distributed over the unit interval I.

Setting in the above derivation X = U then we get with Y = T(X) = T(U) for the

probability measure PY :

PY(Y ≤ y) = PU(U ≤ T−1(y)). (6.230)

The corresponding CDFs then have form

FY(y) = FU(T
−1(y)) (6.231)

T−1(y)=u
= FU(u) = u, (6.232)
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FIGURE 6.8: INVERSION METHOD. Generating exponential distributed random numbers
with the help of uniformly distributed random variables on the unit interval [0, 1]. The left
image shows the associated PDF. The image on the right-hand side illustrates the inversion
method.

which, with an invertible CDF FY , can also be written as:CDF (171)

y = F−1Y (FU(u)) = F
−1
Y (u). (6.233)

From this discussion, we conclude that we can draw a sample Y from any arbitrary

PDF pY(y) via the following four steps:

i) compute the CDF FY(y)

ii) compute the inverse F−1Y (y)

iii) draw a uniformly distributed random number U

iv) compute Y = F−1Y (U).

Let us show the use of the inversion method by means of a few interesting examples.

EXAMPLE 6.14 (Sampling from a Discrete Distribution) Suppose X be a discrete random

variable resulting from a Bernoulli random experiment with probability mass function

pX(i) = 1
2i

for i ≥ 1. To draw a sample according to pX via the inversion method,

a canonical uniform random variable U can be plotted on the vertical axis of the

plot of the appropriate CDF, see Figure 6.9. Now, the horizontal extension of U

intersects the box representing the ith outcome with probability pX(i), that is, the

resulting distribution is distributed to the PMF, pX.
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. . .

. . .

FIGURE 6.9: SAMPLING FROM A DISCRETE DISTRIBUTION VIA THE INVERSION METHOD.
Left the probability mass function, right the associated cumulative distribution function.

The inversion method is an important tool, since it allows in a simple way to sample

from non-uniform distributions by applying transformations to uniform distributed ran- Uniform Distribution (180)

dom variables. Compared with the transformation method it has the disadvantage that

it only works with uniform samples. Both methods permit to transform a strati�cation

of [0, 1] generated with uniformly distributed random variables onto a strati�cation of the

integration domain underlying an integral via a selected density, see Figure 6.8. While,

as will been seen in the following paragraph, these methods yield more e�cient sampling

procedures, on the other hand they also have the disadvantage of assuming that the den-

sity is analytically integrable, a feature which in applications of computer graphics is not

always given.

EXAMPLE 6.15 (Sampling According to a Power Distribution) In the Blinn microfacet

model a surface is statistically described by a distribution function D(ωh) de�ned by

D(ωh) ∝ 〈ωh,N(s)〉e, (6.234)

where ωh is the half-angle vector between the incoming light direction ωi and the

exitant direction ωo, and N(s) is the averaged surface normal at point s.

Now, the dot product can also be expressed in terms of a cosine, namely by

cose θh, where cos θh = 〈ωh,N(s)〉, that is, the distribution D(ωh) ∝ cose θh can be

interpreted as a power distribution of the form pX(x) = Cxn, for some constant C.

To sample from pX, we have �rstly to �nd the proportionality constant C, that is,

we have to evaluate the integral∫
[0,1]

Cxn dµ(x) = C
xn+1

n+ 1

∣∣∣∣∣
1

0

= 1, (6.235)
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0.4

FIGURE 6.10: SAMPLING FROM A POWER DISTRIBUTION VIA THE INVERSION METHOD.
Left the probability density function, the right image illustrates the associated process of
generating random variables via the inversion method.

which leads to C = n+ 1.

Obviously, the associated CDF can be obtained by integrating pX, that is,

FX(x) =

∫
[0,x]

pX(ξ)dµ(ξ) = x
n+1. (6.236)

As the inverse function of xn+1 is given by n+1
√
x, samples Xi from the power

distribution can be drawn by Xi =
n+1
√
Ui, where Ui are uniformly distributed random

variables form [0, 1], see Figure 6.10.

EXAMPLE 6.16 (Once more Uniform Sampling on the Interval [a, b]) Compared to the

foregoing example, we will now go the other way: Based on the uniformly distributed

random variable U on [0, 1], we want to generate a random variable X on [a, b] that

is distributed according to the probability density function pX = 1
b−a .

It is easy to seen, that the CDF FX is given by

FX(x)
def
=

∫
[a,x]

1

b− a
dµ(ξ) =

x− a

b− a
. (6.237)

Obviously, now it holds:

u = FU(u)
(6.233)
= FX(x) =

(
x− a

b− a

)
(6.238)
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0.2

2 5

FIGURE 6.11: SAMPLING FROM A UNIFORM DISTRIBUTION VIA THE INVERSION
METHOD. Left the probability density function, the right image illustrates the associated
process of generating random variables via the inversion method.

leading to

Xi = a+Ui(b− a), (6.239)

see Figure 6.11.

EXAMPLE 6.17 (Sampling the Attenuation Part of the Particle Transport Equation) From

Relation (4.54) we know, that the component of the particle transport equation which

describes the attenuation of light as it travels through a medium of constant opacity

is of the form ∫
[0,d∂V(x,ω)]

β(x,x− αω)Q(x− αω,ω′)dµ(α), (6.240)

where β(x,x−αω) is the path absorption function and Q(x−αω,ω′) represents thePath Absorption Function (292)

amount of light sent toward the viewer at a distance x− αω.

Assuming that the participating medium is of constant opacity, then the opticalτ(x,y) (292)

distance function τ(x,y), which occurs in the path absorption function β(x,x−αω),

can be reduced to a linear function of the distance x, i.e.,the integral from Equation

(6.240) can be written as:∫
[0,d∂V(x,ω)]

e−C(x−αω)(x,x− αω)Q(x− αω,ω′, λ′)dµ(α). (6.241)
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To evaluate this integral, we �rst generate random samples α distributed accord-

ing to the probability density

pα(α) = Ce
−Cα, (6.242)

where the constant C is required for normalizing pα. Obviously, the CDF of the

random variable α is given by

Fα(α) =

∫
[0,α]

Ce−Cξ dµ(ξ) (6.243)

= −e−Cξ
∣∣∣∣α
0

(6.244)

= 1− e−Cα. (6.245)

Applying the inversion method and using the fact, that with U also 1 − U is

uniformly distributed on [0, 1], then we obtain:

Fα(α) = U ⇒ 1− e−Cα = U (6.246)⇒ −Cα = ln(1−U) (6.247)

⇒ α = −
1

C
ln(1−U) (6.248)

⇒ α = −
1

C
ln(U), (6.249)

see Figure 6.12.

Afterwards, we transform the random variable α to x − αω. With N random

variables αi sampled according to the above probability density function, then a Monte

Carlo estimator for Equation (6.240) has the form

FN =
1

N

N∑
i=1

e−C(x−αiω)Q(x− αiω,ω
′)

Ce−C(x−αiω)
(6.250)

=
1

CN

N∑
i=1

Q(x− αiω,ω
′). (6.251)

Let us now turn to the multi-dimensional case, where a random vector X is trans- Random Vector (183)

formed via a function T to a random variable T(X) and we are interested in expressing

the density function of Y in terms of the density of X.

THE MULTI-DIMENSIONAL TRANSFORMATION METHOD. In the following X is assumed to

represent an s-dimensional random variable and Y = T(X) be the image of the random

variable X under the di�eomorphism T on Rs. In this case, the following applies to the
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0.0

FIGURE 6.12: SAMPLING FROM AN EXPONENTIAL DISTRIBUTION VIA THE INVERSION
METHOD. Left the probability density function, the right image illustrates the associated
process of generating random variables via the inversion method.

probability measures PX and PY induced by X and Y:

PY(Y ≤ y)
(2.551)
=

(
P ◦Y−1

)
(Y ≤ y) (6.252)

Y=T(X)
=

(
P ◦ (T ◦X)−1

)
(Y ≤ y) (6.253)

=
(
P ◦X−1 ◦T−1

)
(Y ≤ y) (6.254)

=
(
P ◦X−1

)
(T−1(Y) ≤ T−1(y)) (6.255)

=
(
P ◦X−1

)
(X ≤ T−1(y)) (6.256)

= PX(X ≤ T−1(y)). (6.257)

Based on this result, we conclude due to the de�nition of the cumulative distribution

function for continuous random variables that it holds:CDF (179) ∫
(−∞,y] pY(y)dµ(y) =

∫
(−∞,T−1(y)]

pX(x)dµ(x) (6.258)

Changing from variable x to T−1(y) in the second integral and applying the TheoremTheorem of Transformation (117)

of Transformation for s-dimensional integrals yields:∫
(−∞,y] pY(y)dµ(y) =

∫
(−∞,y] pX(T−1(y))

∣∣det (JT−1(y))
∣∣dµ(y). (6.259)

Obviously it is possible to express the probability density function pY of the random

variable Y in terms of pX, namely by

pY(y) = pX(T−1(y))
∣∣det (JT−1(y))

∣∣, (6.260)
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which also can be written as:

pY(y) = pX(x)
1∣∣det (JT(x)) ∣∣ . (6.261)

In higher dimension, the transformation method can be used to map random samples

from one domain to another, thus for example from unit circle to the hemisphere or to

choose samples on a plane using polar coordinates. Let us consider some examples which

should illustrate how the transformation method works.

EXAMPLE 6.18 (Sampling in Di�erent 2-dimensional Coordinate Systems) On and o�, we

are interested in sampling points from a plane according to a probability density

function pR,Θ(r, θ) giving pX,Y(x, y).

Due to the discussion from above, we need a transformation T :

T : R2 → [0, 1]× [0, 2π], (6.262)

which maps a point, given in Cartesian coordinates x and y, to a pair of polar Polar Coordinates (832)

coordinates (r, θ). From Figure 6.13 it can easily be deduced, that T must have the

form

T(x, y) =

(
T1(x, y)

T2(x, y)

)
=

(
r

θ

)
=

( √
x2 + y2

arctan y
x

)
. (6.263)

Due to De�nition A.31, the associated Jacobian matrix JT (x, y) is then given by

JT (x, y) =

(
x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2

)
. (6.264)

Based on Relation (6.261), the density function pR,Θ(r, θ) can now be written

as:

pR,Θ(r, θ) = pX,Y(x, y)
1∣∣det (JT(X, Y)) ∣∣ (6.265)

(A.32)
= pX,Y(x, y)

1
x2√

x2+y2 (x2+y2)
+ y2√

x2+y2 (x2+y2)

(6.266)

= pX,Y(x, y)
√
x2 + y2 (6.267)

= pX,Y(x, y) r. (6.268)

Replacing the variables x and y in pX,Y(x, y) from Equation (6.268) by r cos θ

as well as r sin θ, then we get a probability density function expressed only in the

variables r and θ.
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FIGURE 6.13: CONVERTING BETWEEN CARTESIAN AND POLAR COORDINATES. A
point given in 2-dimensional Cartesian coordinates (x, y) is transformed via the mapping

T(x, y) = (T1(x, y), T2(x, y))
T = (r, θ)T = (

√
x2 + y2, arctan y

x
)T . The inverse of T maps

points given in polar coordinates r, θ to points in 2-dimensional Cartesian coordinates (x =
r cos θ, y = r sin θ)

From Equation (6.268) we can also deduce, that it is possible to sample from

pX,Y(x, y) given pR,Θ(r, θ), since it holds:

pX,Y(x, y) =
1

r
pR,Θ(r, θ) =

1√
x2 + y2

pR,Θ(r, θ), (6.269)

with r =
√
x2 + y2 and θ = arctan y

x
.

To get a relation between the probability density functions pX,Y(x, y) and a given

PDF pR,Θ(r, θ), we have to go the reverse way by �nding a transformation T−1 from

[0, 1]× [0, 2π] to R2. Obviously, T−1 is de�ned as

T−1(r, θ) =

(
T−11 (r, θ)

T−12 (r, θ)

)
=

(
x

y

)
=

(
r cos θ

r sin θ

)
(6.270)

with Jacobian matrix

JT−1(r, θ) =

(
cos θ −r sin θ

sin θ r cos θ

)
. (6.271)

Based on Relation (6.261), the density function pX,Y(x, y) can now be written
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as:

pX,Y(x, y) = pR,Θ(r, θ)
1∣∣det (JT(r, θ)) ∣∣ (6.272)

(A.32)
= p(R,Θ)(r, θ)

1

r cos2 θ+ r sin2 θ
(6.273)

=
1

r
pR,Θ(r, θ) (6.274)

=
1√

x2 + y2
p(R,Θ)(r, θ). (6.275)

Finally, let us briey show how the inversion method can be applied to generate a

s-dimensional random vector X from a given CDF FX.

THE MULTI-DIMENSIONAL INVERSION METHOD. LetX be a random vector composed of the

random variables (X1, . . . , Xs). In case where all these random variables are independent,

the joint probability density function pX is given by the marginal densities pi(xi) of the

random variables Xi, that is,

pX(x) = pX1,...,Xs(x1, . . . , xs) (6.276)

=

s∏
i=1

pi(xi). (6.277)

This then implies, that also the associated CDF ist separable, that is FX1,...,Xs =∏s
i=1 FXi(xi). Thus, the component Xi of the random vector X can be generated by

applying the one-dimensional inversion method to each random variable Xi separately,

that is,

Xi = F
−1
Xi

(Ui) (6.278)

for i = 1, . . . , n.

Let us now illustrate the multi-dimensional inversion method with the help of the

following simple example.

EXAMPLE 6.19 Let us consider the 2-dimensional random vector X = (X1, X2) de�ned

on the unit square [0, 1]2 with PDFs

p1(X1) = x1 and p2(X2) = x
2
2, (6.279)

thus, the joint probability density function pX = pX1,X2 is given by

p(X) = pX1pX2 = x1x
2
2. (6.280)
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Then, the CDF associated with pX has the form

FX1,X2(x1, x2) =
1

2
x21︸︷︷︸

FX1(x1)

1

3
x32︸︷︷︸

FX2(x2)

. (6.281)

Applying the one-dimensional inversion method to the function components 1
2
x21

and 1
3
x32 then leads to:

FX1(X1) = U1 ⇒ 1

2
x21 = U1 (6.282)

⇒ X1 =
√
2U1 (6.283)

and

FX2(X2) = U2 ⇒ 1

3
x32 = U2 (6.284)

⇒ X2 =
3
√
3U2. (6.285)

With the help of the following examples, we will now illustrate the manner in which

the multi-dimensional transformation method may be applied to sample points on one of

the hemispheres around a point at a surface. This method is an often used technique in

ray tracing procedures for generating rays starting at a surface point.Chapter 9

EXAMPLE 6.20 (cosine-weighted Hemisphere Sampling) The reectance equationReflectance Equation (321)

Lo(s, θo, φo) (6.286)

=

∫
[0,2π)

∫
[0,π]

fr(s, (θi, φi) −→ (θo, φo))Li(s, θi, φi) sin θi | cos θi|dµ(θi)dµ(φi),

represented in spherical coordinates, has a cosine-term beneath the integral. So, if

it is possible to sample a direction according to a cosine-weighted probability density

function, a corresponding Monte Carlo estimator can easily be expressed as the sum

of the radiance measured at the sampled points multiplied by the BRDF. That is, aBRDF (320)

clever choice of the PDF eliminates the cosine-term in Equation (6.286) and thus,

reduces the computational costs. Let

pΘi,Φi(θi, φi) =
sin θi | cos θi|

π
(6.287)

be the PDF to be sampled from then we obtain the corresponding CDF by means of

integration by parts

FΘi,Φi(θi, φi) =
1

π

∫
[0,φi]

∫
[0,θi]

sin θ | cos θ|dµ(θ)dµ(φ) (6.288)

=
φi

π

∫
[0,θi]

sin θ | cos θ|dµ(θ) (6.289)

=
φi

2π
(1− cos2 θi). (6.290)
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Obviously, FΘi,Φi is separable, that is, it can be splitted in two independent

functions

FΘi = 1− cos2 θi (6.291)

FΦi =
φi

2π
. (6.292)

Applying the one-dimensional inversion method to each single function provides

us with

FΘi(θi) = U1 ⇒ 1− cos2Θi = U1 (6.293)⇒ Θi = cos−1
√
1−U1 (6.294)

and

FΦi(φi) = U2 ⇒ Φi

2π
= U2 (6.295)⇒ Φi = 2πU2, (6.296)

see Figure 6.14.

Using the fact, that U1, U2 are independent and uniformly distributed random

variables drawn from [0, 1], Equation (6.294) can also be written as:

Θi = cos−1
√
U1. (6.297)

Thus, the random variables Θi and Φi are distributed according to the cosine

weighted PDF from (6.287).

Using cosine-weighted hemisphere samples Θi, Φi, a secondary Monte Carlo es-

timator for the reectance equation is then given by

FN =
π

N

N∑
i=1

fr(s, (Θi, Φi) −→ (θo, φo))Li(s, (Θi, Φi)). (6.298)

EXAMPLE 6.21 (Uniform Sampling on the Hemisphere) A possibility for uniform sampling

on the hemisphere is to sample a direction ωi uniformly according to solid angle, see

Figure 6.15.

From our discussions in Chapter 2 we know that the solid angle of a set of Solid Angle (83)

directions corresponds to the area of a point set on the unit sphere. Let us now

consider the area of a cap of the hemisphere, de�ned by a set of directions, where the

polar angle of direction ωi lies between zero and a �xed angle θi. For the measure



532 CHAPTER 6. MONTE CARLO INTEGRATION

FIGURE 6.14: COSINE-WEIGHTED HEMISPHERE SAMPLING. Left, the hemisphere is
sampled with 1000 points, in the center, the hemisphere is sampled with 2500 points, and
the hemisphere on the right is sampled with 5000 points.

FIGURE 6.15: UNIFORM SAMPLING THE HEMISPHERE WITH RESPECT TO SOLID ANGLE.
Left, the hemisphere is sampled with 1000 points, in the center, the hemisphere is sampled
with 2500 points, and the hemisphere on the right, is sampled with 5000 points.
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of this area, thus the restriction H2+
∣∣
[0,2π)×[0,θi] , holds:

µ2
(
H2+

∣∣
[0,2π)×[0,θi]

)
=

∫
[0,2π)

∫
[0,θi]

sin(θ) dµ2(θ,φ) (6.299)

=

(∫
[0,2π)

dµ(φ)

)(∫
[0,θi]

sin(θ) dµ(θ)

)
(6.300)

= 2π · (− cos θ)
∣∣∣θi
0

(6.301)

= 2π · (1− cos θi). (6.302)

Since we are interested in sampling a direction ωi uniformly with respect to

solid angle, the probability of sampling an angle θi within the cap should be propor-

tional to the area of the cap, thus µ2
(
H2+

∣∣
[0,2π)×[0,θi]

)
. Then the desired cumulative

distribution function for Θi can be obtained by normalizing, that is,

FΘi(θi)
def
=

µ2
(
H2+

∣∣
[0,2π)×[0,θi]

)
µ2
(
H2+
) (6.303)

=
2π · (1− cos θi)

2π
(6.304)

= 1− cos θi. (6.305)

Using the relation z = cos(θi), then the CDF FΘi can be formulated as a function

of the coordinate z, namely

FZ(z) = 1− z. (6.306)

Relation (6.306) then implies, that the area of the hemisphere is uniformly dis-

tributed with respect to Z, or in other words, any two horizontal slices with equal

vertical thickness have the same surface area. Applying the inversion method on two

uniform random variables U1 and U2 provides us

FZ(z) = U1 ⇒ 1− Z = U1 (6.307)⇒ Z = 1−U1 (6.308)⇒ Z = U1 (6.309)

and with FΦi(φi) from Example 6.20

FΦi(φi) = U2 ⇒ Φi

2π
= U2 (6.310)⇒ Φi = 2πU2. (6.311)
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We can then generate a uniform distribution of points (x, y, z) in polar coordinate

representation on the hemisphere with respect to solid angle choosing:

X = sin(Θi) cos(Φi) =
√
1−U21 cos(2πU2), (6.312)

Y = sin(Θi) sin(Φi) =
√
1−U21 sin(2πU2), (6.313)

Z = cos(Θi) = U1. (6.314)

In order to complete the concept of the multi-dimensional inversion method we have

still to consider the case where the random variables, from whose distributions we wish

to sample, are dependent. For that purpose, let X be a random vector composed of

dependent random variables (X1, . . . , Xs). The joint probability density function pX is

then given by the marginal density pX1 and the conditional PDFs, pXi|X1...Xi−1 , of the

dependent random variables Xi for 2 ≤ i ≤ s.
As the joint probability density function pX is given by

pX(x) = pX1,...,Xs(x1, . . . , xs) (6.315)

= p1(x1)

s∏
i=2

pXi|X1...Xi−1(xi|x1 . . . xi−1), (6.316)

the vector X = (X1, . . . , Xs), which is obtained from the solution of the following system

of equations 
FX1(x1) = U1

FX2|X1(x2|x1) = U2
...

FXs|X1...Xs(xs|x1 . . . xs) = Us,

(6.317)

is distributed according to the cumulative distribution function FX.

Thus, for generating a random vector, distributed according to the joint probability

density pX from Equation (6.316), �rst, we have to generate s uniformly independent dis-

tributed random variables Ui from [0, 1] and then we have to solve the system of equations

from Relation (6.317) with respect to pX = (X1, . . . , Xs).

REMARK 6.9 In [172, Rubinstein 1981] it is shown, that the e�ciency of a simulation

is dependent on the order in which random variables Xi, 1 ≤ i ≤ n are taken while

forming the random vector X. Since there are s! possibilities to represent the com-

ponents X1, . . . , Xs of pX, there are also s! possibilities to generate the random vector

X when solving the above system of equations. But a priori, there is no way to �nd

the optimal order of components of the random vector X to minimize the run time.

THE MULTI-DIMENSIONAL INVERSION METHOD, THE CASE s = 2. The idea behind the

multi-dimensional inversion method is to isolate one particular variable via computing
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the marginal density function and to use this density function for computing the required

conditional density functions in the system of equations from Relation (6.317). As this

technique can often be applied in graphics for sampling from 2-dimensional distributions,

let us consider the inversion method for the case s = 2 a little bit more in detail.

Assuming, we have to sample from a probability density function pX,Y(x, y). The

marginal probability density function pX(x) was de�ned as Marginal Density Function (194)

pX(x) =

∫
Ω

pX,Y(x, y)dµ(y), (6.318)

which means, that pX(x) is the PDF for the random variable X. The conditional PDF Conditional Density Function

(209)pY|X(y|x) was given by

pY|X(y|x) =
pX,Y(x, y)

pX(x)
, (6.319)

thus, the probability density function for the random variable Y, where we have �xed a

particular value of x. Afterwards, we have to integrate the two PDF's, that is, we have to

compute

FX(x)
def
=

∫
Ω

pX(x)dµ(x) (6.320)

FY|X(y|X)
def
=

∫
Ω

pY|X(y|x)dµ(y) (6.321)

Applying the inversion method to the uniformly distributed random variables U1 and

U2 then leads to

FX(x) = U1 ⇒ X = F−1X (U1) (6.322)

FY|X(y|x) = U2 ⇒ Y = F−1Y|X(U2). (6.323)

We now demonstrate this technique with the help of an interesting example useful

for our further discussion in Chapter 9.

EXAMPLE 6.22 (Uniform Disk Sampling) It is well known that contrary to a pinhole cam- Pinhole Camera (417)

era, which creates images where everything is in perfect focus, a thin lens camera Thin Lens Camera (686)

model makes images with depth-of-�eld e�ects. In such a camera the pinhole is re-

placed with a disk-shaped thin lens, which has certain idealized behavior. To simulate

depth-of-�eld e�ects we have to integrate over all rays passing through the area of

the lens. For that purpose, we need a method for generating uniformly distributed

samples in the unit circle, which then can be transformed on the camera lens, see

Figure 6.16.

Representing the unit circle in porlar coordinates, then according to Relation

(2.700) a PDF for sampling uniformly on the unit disk is given by

pR,Θ(r, θ) =
1

π
r, (6.324)
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0.5

� 1.0

FIGURE 6.16: UNIFORM DISK SAMPLING. Left, the disk is sampled with 1000 points, in
the center, the disk is sampled with 2500 points, and the disk on the right is sampled with
5000 points.

where r ∈ [0, 1] and θ ∈ [0, 2π).

In Example 2.78 we have already computed the marginal density pR, it holdsMarginal Density Function (194)

pR(r) =
1

π

∫
[0,2π)

r dµ(θ) =
r

π
θ

∣∣∣∣2π
0

= 2 r. (6.325)

Now, the conditional density of θ can be computed viaConditional PDF (209)

pΘ|R(θ|r) =
pR,Θ(r, θ)

pR(r)
=

r

2 r π
=
1

2π
. (6.326)

Integrating pR(r) over [0, R], then leads to the CDF

FR(R) = 2

∫
[0,R]

ξ dµ(ξ) = 2
1

2
ξ2
∣∣∣∣R
0

= R2 (6.327)

and the conditional cumulative distribution function of the random variable Θ givenCDF (179)

R has the form

FΘ|R(θ|r) =
1

2π

∫
[0,θ]

dµ(θ) =
θ

2π
. (6.328)

Applying the one-dimensional inversion method provides us with

FR(R) = U1 ⇒ R2 = U1 (6.329)⇒ R =
√
U1 (6.330)

and

FΘ|R(θ) = U2 ⇒ θ

2π
= U2 (6.331)⇒ θ = 2πU2 (6.332)
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REMARK 6.10 In the above example it would also have been possible to write the PDF

in the form

pR,Θ(r, θ) =
1

2π
2r, (6.333)

and to interpret the factor 1
2π

as the marginal density of the random variable Θ. The

conditional probability density function pR|Θ is then given by 2r. This results in the

same formulas for uniform sampling a disk as we them get from the example.

6.5.2 ACCEPTANCE-REJECTION SAMPLING

In the last section, we presented with the transformation method, the most frequently used

sampling procedure in the theory of Monte Carlo algorithms, where samples are generated

via the CDF of a random variable. Now, in cases, where it is not possible to derive a CDF (171)

formula for the cumulative distribution function of a random variable, the last resort for

independent sampling is: Acceptance-rejection Sampling, [224, von Neumann 1951].

Acceptance-rejection sampling, also known in the literature under the name of the

rejection method, or the hit-miss method, is based on a Bernoulli experiment for simulat-

ing random variables which are distributed according to some arbitrary density function PDF (176)

p. Instead to sample directly from the desired density, which is commonly di�cult or

even impossible, an easily to sample density function q is used. The method only requires

to know the shape of p up to a multiplicative constant, no further information or deep

analytical study of the density p is necessary.

So, acceptance-rejection sampling is based on the idea of a proposal value and subjects

this value to a special kind of test, where it may be either accepted or rejected. If the

value is rejected another sample must be drawn and tested until an acceptable sample is

drawn, see Figure 6.17. Closer scrutiny shows that acceptance-rejection sampling can be

formulated as follows:

Instead of sampling from any given density p one uses a convenient density q as the

upper boundary of p, that is, one chooses a density q with p(x) ≤Mq(x), ∀x ∈ Qs, see

Figure 6.18. Usually, M is greater than 1 and often q is chosen as the uniform density

on Qs. Afterwards one generates, by means of uniformly distributed random variables

Ui ∈ [0, 1], samples Xi according to the density q from Qs until the following holds:

Ui ≤
p(Xi)

Mq(Xi)
. (6.334)

Let us show by means of the two following examples how acceptance-rejection sam-

pling can be applied to sample from a one and a two-dimensional function.
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ACCEPTANCE-REJECTION SAMPLING {
for i = 1 to ∞ do {

Sample Xi according to q

Sample Ui uniformly on [0, 1]

if Ui ≤ p(Xi)
Mq(Xi)

{

accept Yi = Xi

return Yi

g

g

g

FIGURE 6.17: PSEUDOCODE FOR ACCEPTANCE-REJECTION SAMPLING.

EXAMPLE 6.23 Given be the function p(x) = 3x2. To generate samples from p, we use

the uniform density q = 1 on [0, 1] with M = 3 and generate the random variable Xi.

Due to pu = 1 we then generate a uniformly distributed random variable Ui according

to the density pU = 1 from [0, 1]. The sample Yi = Xi is accepted if Ui ≤ 3X2i
3
.

To generate samples from p(x) = 2
πR2

√
R2 − x2 on −R ≤ x ≤ R let us assume

M = 2
πR
. We generate a sample Xi due to the density q = 1 with Xi = −R + 2RUi =

R(2Ui − 1) and a uniformly distributed random variable Ui on [0, 1]. The sample

Yi = Xi is accepted if Ui ≤
2

πR2

√
R2−X2

i

M
=
√
R2 − X2i .

LEMMA 6.4 (Acceptance-rejection Sampling) Let p be a density on Qs, acceptance-

rejection sampling produces samples from a random variable Y that is distributed

according to the density p.

PROOF 6.4 The distribution of Y is given by

P(Y ≤ y) = PX|U

(
X ≤ y|U ≤ p(X)

Mq(X)

)
(6.335)

=
PX|U

(
X ≤ y, U ≤ p(X)

Mq(X)

)
PU
(
U ≤ p(X)

Mq(X)

) . (6.336)

Expressing the probabilities PX|U and PU via the associated conditional and

marginal densities then we get:Marginal Density (194)
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FIGURE 6.18: ILLUSTRATION OF ACCEPTANCE-REJECTION SAMPLING. At first, the
algorithm generates a pair of random variables (Xi, Ui). Then, it tests whether the point
(Xi, UiMqXi) lies under the curve p(x). If this test is successful, open white circle, the
sample Xi is accepted, otherwise, open red circle, a new pair of random variables (Xi, Ui)
is generated and the test is repeated.

P(Y ≤ y)
(2.810)
=

∫
(−∞s,y]

(∫
[0, p(x)

Mq(x) ]
dµ(u)

)
q(x)dµs(x)

∫
(−∞s,−∞s]

(∫
[0, p(x)

Mq(x) ]
dµ(u)

)
q(x)dµs(x)

(6.337)

=

1
M

∫
(−∞s,y] p(x)dµs(x)

1
M

∫
(−∞s,−∞s] p(x)dµs(x) (6.338)

=

∫
(−∞s,y] p(x)dµ

s(x), (6.339)

that is, the random variable is distributed according to the PDF p.

Obviously, acceptance-rejection sampling raises the dimension of the sampling proce-

dure by one, since s+1-dimensional random variables must be drawn overQs×[0, {Mq(x)}],
x ∈ Qs.

In the special case, where the probability density function p, de�ned on the domain

[a, b], satis�es the condition p(x) ≤ M for all x ∈ [a, b], the function q can be chosen

as 1, and the random variables Xi must be drawn from [a, b] × [0,M]. The acceptance

probability for Xi then becomes

p(Xi)

Mq(Xi)
=
p(Xi)

M
. (6.340)

Graphically, this can be interpreted as the ratio of the height of the curve p at the

point Xi and the constant M, see the left image in Figure 6.18.
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FIGURE 6.19: ACCEPTANCE-REJECTION SAMPLING. Approximating the surface area of
the unit circle via acceptance-rejection sampling based on point sets of the sizes 100, 200
und 2000. Left, we have µ2(o) = 0.981748 π, the image in the middle leads to the value
µ2(o) = 1.01342 π and the right-hand image returns the value µ2(o) = 1.00127 π.

Since it can be used with any density function, even those that cannot be integrated

analytically, acceptance-rejection sampling can be seen as the last resort independent

sampling techniques, which can be applied if all other sampling strategies fail. As the

e�ciency of acceptance-rejection sampling is strongly dependent on the choice of constant

M, the form of the sampled density q should be adapted to the density to be sampled as

much as possible. Naively applied, the rejection method is found to be not very e�ective,Stratified Sampling (571)

as the strati�cation of the integral domain, which can prevent sample-clumping and lead

to a reduction of variance, is applied only with di�culty in the procedure.Section 6.19

Acceptance-rejection sampling can also be applied to geometric based problems that

do not correspond exactly to the machinery described above, see Figure 6.18. For it, let

us consider a few examples from �eld of global illumination.

EXAMPLE 6.24 (Generating Cosine-weighted Rays on the Hemisphere by Acceptance-Rejec-

tion Sampling) A typical application of acceptance-rejection sampling in �eld of global

illumination is the generation of a ray r(s,ωo) outgoing from point s on a surface

patch in direction ωo. To implement such a generation of rays in a rendering al-

gorithm, �rst we sample points via the acceptance-rejection method within the unit

circle, project these points orthogonal on the hemisphere and generate, starting at s,

rays through these points on the hemisphere.

For that purpose, we generate 2-dimensional random variables Ui = (Ui1, Ui2),

uniformly distributed on [0, 1]2, and accept the sample Ui if it lies within the unit

circle, i.e. if it holds ‖Ui‖ =
√
U2i1 +U

2
i2 ≤ 1. Afterwards, we determine the function

value f(Ui1, Ui2) =
√
1−U2i1 −U

2
i2. It is obviously, that rays starting in s and passing

trough the point (Ui1, Ui2, f(Ui1, Ui2)) are distributed on the hemisphere, see Figure
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FIGURE 6.20: GENERATING RAYS OVER THE HEMISPHERE VIA ACCEPTANCE-
REJECTION SAMPLING. A sample generated via acceptance-rejection sampling is accepted
if it lies within the unit circle, otherwise it is rejected. Then, accepted samples are projected
orthogonal on the hemisphere. Uniform sampling on the unit circle leads to a distribution
of rays starting in the midpoint of the surrounding hemisphere and passing through the
generated points on the hemisphere. This procedure is also known as Malley's method.

6.20.

EXAMPLE 6.25 (Poisson-disk Sampling) Let Is be the s-dimensional unit cube, Poisson- Poison-disk Sampling (648)

disk sampling pursuits the strategy to generate a set P of randomly chosen points

pi,pj ∈ Is which satisfy the Poisson-disk criterion: No two samples are closer together

than some distance d. Mathematically, the Poisson-disk criterion can be formulated

as:

∀ pi,pj ∈ P ⇒ ∆(pi,pj) ≥ d, (6.341)

with d > 0. Thus, the intersection of each two s-dimensional spheres with the centers

pi and pj and a radius d is disjoint with respect to P.

A rudimentary procedure for constructing a Poisson-disk pattern P|the so-

called dart-throwing method|is based on acceptance-rejection sampling. Here, a

sample pi randomly drawn from Is is added to the set P if, and only if, it satis�es

Relation (6.341) to all points pj already contained in P. Otherwise pi is rejected.

According to [67, Glassner 1995], for reasons of e�ciency, the above described

algorithm is recommended only for the construction of relatively small Poisson-disk

patterns. It also has the disadvantage that so-called holes, i.e. sample-free areas

may exist in Is. In addition, because of the required distance which has to be main-

tained between points, di�culties may be encountered while generating patterns with
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FIGURE 6.21: POISSON-DISK SAMPLING. Three Poisson-disk pattern generated via
acceptance-rejection sampling. In the pattern on the left-hand side you can see a set of
N = 62 points, where each point is surrounded by the circle with radius d = 0.1. The pat-
tern in the center is a Poisson-disk pattern with N = 211 elements, also in this pattern some
of the points are surrounded by circles with radius d = 0.05, indicating that they satisfy the
Poisson-disk criterion. Right, a Poisson-disk pattern with N = 473 points and d = 0.005.

a predetermined number of samples. Nevertheless, Poisson-disk sampling has been

found to be one of the most popular sampling techniques for generating point sets|

especially in pixel sampling as the undesirable e�ect of aliasing is replaced by white

noise, much more pleasant to the observer [104, Keller 1998], [67, Glassner 1995],

[38, Cook 1986]. Figure 6.21 shows three Poisson-disk patterns generated due to the

dart-throwing method using 1000 samples, with the distances d ∈ {0.1, 0.05, 0.025}.

For the above given reasons, the dart-throwing method [40, Cook 1984] described

here for generating Poisson-disk patterns is thus hardly used anymore in general

practice today. It has largely been replaced by two similar procedures, best-candidate-

and decreasing radius algorithm [67, Glassner 1995].

EXAMPLE 6.26 (Poisson-disk-Hemisphere-Sampling) Figure 6.22 illustrates a method for

generating directions over the hemisphere by combining Poisson-disk sampling and

acceptance-rejection sampling. A new point is added to the existing set if it is ac-

cepted, that is, if it lies within the unit circle around a pre-given center, s, and if it

satis�es the Poisson-disk criterion. Surface points are then projected onto the upper

hemisphere H2+(s), where directions starting in s and passing through the projected

points can be generated.

6.5.3 MCMC - MARKOV CHAIN MONTE CARLO

All sampling techniques discussed until now produce independent samples from a given

probability distribution. Now, one problem that comes with Monte Carlo integration is:
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FIGURE 6.22: POISSON-DISK-HEMISPHERE-SAMPLING. Hemisphere sampling based on
Poisson-disk Pattern of the size 64.

Generating independent samples from some complex probability distribution. As we have

seen in the last section, often, the only sampling technique that remains is acceptance-

rejection sampling. Now, the main drawback of the acceptance-rejection method is that it Section 6.5.2

is often very di�cult to construct a suitable proposal distribution that leads to an e�cient

algorithm. One way to avoid this problem is to allow the proposed value depend on the last

accepted value, which makes it easier to generate a suitable, but now conditional proposal.

The price, we pay for that, is to generate samples from a sequence (Xn)n∈N of dependent

random variables instead of a sequence of independent random variables. Such for example, Random Variable (168)

the Metropolis algorithm, which we will introduce in Section 6.5.3.2, generates, instead of

independent, correlated variables from a discrete-time Markov process. DT Markov Process (236)

Now, from the SLLN we know that the expected value of a random variable can be SLLN (216)

computed by averaging the outcomes of a su�cient large number of random experiments,

whose associated random variables are all independent and identically distributed. Un- IID Random Variable (499)

fortunately, a stochastic process simulated by a discrete-time, continuous-space Markov

chain represents a sequence of random variables that are not independent and identically

distributed. That is, the SLLN can not be used to make statements on the convergence

of dependent random variables. This means, that we need a new machinery of theorems

and statements that characterizes the convergence of Markov chains and Markov processes.

The present section can be considered as a quick overview of the mathematical foun-

dations of Markov chain Monte Carlo that are required to understand the convergence of

MCMC methods. As the whole �eld around the concept of the Markov process is often
Section 6.5.3.1

very di�cult, we explain the mathematical foundations of MCMC methods mainly based

on discrete-time, discrete-state Markov chains. Discrete-time, continuous-state Markov

processes have analogous dependencies, but that are of a more technical nature and more DT Markov Process (236)

di�cult to capture. A good account of a generalization of all these concepts is given in

[65, Gilks & al. 1996], full details appear in [130, Meyn & Tweedie 1993] or [170, Robert
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& Casella 1999]. Afterwards, we then introduce the Metropolis algorithm, due to the
Section 6.5.3.2

January-February 2000 issue of Computing in Science & Engineering|a joint publica-

tion of the American Institute of Physics and the IEEE Computer Society|awarded as

one of the Top Ten Algorithms of the Century, with the greatest inuence on the

development and practice of science and engineering in the 20th century.

6.5.3.1 MATHEMATICAL FOUNDATIONS OF MARKOV CHAIN MONTE CARLO

Importance sampling, introduced in Section 6.6.2, has shown that for evaluating the inte-

gral ∫
Qs
f(x)dµs(x) =

∫
Qs

f(x)

p(x)
p(x)dµs(x) (6.342)

it is absolutely not necessary to sample from the density p but that it is also possible toPDF (176)

draw the samples from a function that is close to p on the whole integration domain. In

this section, we will present a somewhat di�erent strategy for evaluating integrals of the

above type. Thus, we will develop a sequence of random variables Xn that are approxi-Random Variables (168)

mately distributed according to a probability density function without directly simulating

the density. The idea underlying this strategy is the probability theoretical concept of the

ergodic Markov process with stationary distribution.DT Markov Process (236)

Let us �rst de�ne what we understand under the notion of a Markov Chain Monte

Carlo method:

DEFINITION 6.5 (Markov Chain Monte Carlo Method) A Markov chain Monte Carlo method,

also called a MCMC-method, for simulating a probability distribution p on the prob-

ability space (Ω,F(Ω),P) is any method that produces an ergodic Markov process

(Xn)n∈N0 , whose stationary distribution corresponds to p.

Now, the concepts of the distribution and the Markov process from the above de�ni-Section 2.4

tion are already known to us, but what is mean with ergodic and a stationary distribution?

To illustrate these new concepts let us �rstly restrict our focus to discrete-state spaces,

thus discrete-time, discrete-state Markov chains.DT Markov Chain (226)

ERGODIC MARKOV CHAINS. As we will see in the following section, we are not so much

interested in the initially dynamic of a process, simulated by a Markov chain, but rather

in the state of the system after the chain has made a larger number of transitions. This

will lead us to the investigation of the transition probabilities pnij for su�cient large n,

respectively the study of the limit

lim
n→∞pnij. (6.343)
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To discuss this behavior of a Markov chain, we have to introduce the concept of the

stationary distribution of a Markov chain.

DEFINITION 6.6 (Stationary Distribution of a Discrete-time Markov Chain) Let (Xn)n∈N0
be a discrete-time, discrete-state Markov chain with stochastic matrix M = (pij)i,j∈S Stochastic Matrix (229)

as introduced in De�nition 2.70. A probability distribution π∗ = (π∗j )j∈S is called a

stationary distribution for (Xn)n∈N0 , if it holds:

π∗i
def
=
∑
j∈S

π∗jpij (6.344)

with ∑
i∈S

π∗i = 1. (6.345)

EXAMPLE 6.27 Given be the stochastic matrix

P =

(
0.6 0.4

0.6 0.4

)
. (6.346)

To compute a stationary distribution for the associated Markov chain, Equation

(6.344) implies that we have to �nd a solution for the following linear system:

π∗P = π∗, (6.347)

thus,

π∗(P−E) = 0. (6.348)

Two di�erent stationary distributions are then given by π∗ = (0.6, 0.4) and π∗ =

(0.2, 0.8) with n ∈ N. Obviously, the above Markov chain has in�nitely many di�erent

stationary distributions that are depending on the initial distribution.

For the distribution of a Markov chain Xn to converge towards a stationary distribu-

tion π∗, the chain has to satisfy three important properties: First, the chain needs to be

irreducible, which means that for any state of the chain, there is a positive probability of

visiting all other states. Second, the chain should be aperiodic, that is, it should not get

trapped in cycles, and �nally, the chain must be positive recurrent, that is, if the initial

value X0 is sampled from π∗, then all subsequent values of Xn must also distributed

according to π∗. Let us now exactly de�ne these properties of a stochastic process via the

concept of the so-called ergodic Markov chain.
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DEFINITION 6.7 (Ergodic Markov Chain) A discrete-time, discrete-state Markov chain

(Xn)n∈N0 is called irreducible, if any set of states can be reached from any other state

in �nite moves, that is, if it holds:

pkij > 0, (6.349)

for some k ≥ 1, otherwise the process is called reducible. An irreducible stochastic

process, (Xn)n∈N0 , is referred to as positive recurrent, if the expected value of the �rst

return to some state i after n steps is �nite, thus,

∞∑
n=1

npnii <∞. (6.350)

Last but not least, we denote the irreducible stochastic process (Xn)n∈N0 as ape-

riodic, if the greatest common divisor of return steps to some state is 1, thus,

gcd
{
k ≥ 1

∣∣pkii > 0} = 1. (6.351)

If a Markov chain satis�es the property of irreducibility, aperiodicity, and positive

recurrence, then it is also called an ergodic Markov chain.

EXAMPLE 6.28 Let M be a stochastic matrix associated with a Markov chain (Xn)n∈N0
given on a �nite state-space. If M has at least one positive diagonal element, then M

is obviously aperiodic. If all entries of M are positive then (Xn)n∈N0 is irreducible.

In deed, the stochastic matrix from Example 6.27 is irreducible and aperiodic,

but it is not positive recurrent. We leave the proof to the interested reader.

As already mentioned above, when considering a Markov chain starting at a given

initial state, we are not interested in the initial dynamics of the chain, but rather in the

state of the system after a large number of transitions, that is, we are interested in the

limiting behavior of the chain. Obviously, the existence of a stationary distribution implies

them to a �rst candidate for the limit distribution of a Markov chain.

As the following theorem shows, the stationary distribution of an ergodic Markov

chain corresponds indeed also to the limiting distribution of successive iterates from the

chain.

THEOREM 6.2 (Ergodic Theorem) Let (Xn)n∈N0 be an ergodic, discrete-time, discrete-

state Markov chain. Then, the stationary distribution π∗ = (π∗j )j∈S of (Xn)n∈N0 is

the unique probability distribution of the chain and the following consequences hold:

i) The limiting behavior of the Markov chain converges to its stationary distribu-

tion π∗, that is,

lim
n→∞pnij = π∗j ∀ i, j ∈ S. (6.352)
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ii) If E(f(Xn)) <∞, then it holds almost surely:

Prob

{
1

N

N∑
n=1

f(Xn)→ E(f(Xn))

}
= 1, (6.353)

where E(f(Xn)) =
∑
i∈S f(i)π

∗
i is the expected value of f(Xn) with respect to π∗. Expected Value (196)

PROOF 6.2 The convergence theorems of Markov chains and in particular of Markov

processes are all together, not surprisingly, extremely di�cult. The proof of the

Ergodic Theorem is beyond the scope of this book. Because we need only the result

of this theorem, we omit the proof and refer the interested reader to [130, Meyn &

Tweedie 1993], [170, Robert & Casella, 1999], or [15, Ash & Dol�eans-Dade, 2000].

Theorem 6.2 establishes a connection between the stationary distribution of a Markov

chain to its asymptotic temporal development. The main consequence that we can draw

from the Ergodic Theorem is, that the ergodicity of the chain guarantees the convergence

of the chain to its stationary distribution, independent of the state, where the chain

starts. Additionally, we have a tool for handling also sequences of random variables that

are not necessarily independent and identically distributed. So, the Ergodic Theorem can

be interpreted in some sense as a generalization of Kolmogorov's Strong Law of Large SLLN (216)

Numbers for dependent distributed random variables.
After a su�ciently long burn-in of M iterations, then the samples Xn, n = M +

1, . . . ,N will be dependent, approximately distributed according to π∗ and they can be

used to construct a Markov chain Monte Carlo estimator for the expected value E(f(Xn)),

namely:

FN
def
=

1

N−M

N∑
n=M+1

f(Xn) ≈ E(f(Xn)). (6.354)

REMARK 6.11 As a consequence of the Ergodic Theorem we conclude, that it is a good

practice to check the ergodicity property of a Markov chain, since neglecting this

issue can lead to samples that do not converge to the desired stationary distribution.

When a non-ergodic Markov chain starts in di�erent initial states, it can converge to

di�erent stationary distributions due to the nonuniqueness of the solution to π∗P =

π∗.

Let us now summarize some of the results of general continuous-state Markov chain

theory as described in [170, Robert & Casella 1999] and [65, Gilks & al. 1996] as they ap-

ply to Markov chain Monte Carlo methods. The most results are analogous to the results

for discrete-time, discrete-state Markov chains, but there are some di�erences.

ERGODIC MARKOV PROCESSES∗. In the discrete case, a Markov chain was de�ned as

irreducible, if all states communicate. In the continuous case, irreducibility must be de�ned

with respect to a distribution ν.
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DEFINITION 6.8 (ν-irreducibility) Given a measure ν, then the discrete-time, continuous-

state Markov process, (Xn)n∈N0 , with transition kernel, K(x,y), is called ν-irreducible,Transition Kernel (234)

if for every set A ∈ B(Ω) with ν(A) > 0, there exists n ∈ N such that Kn(x, A) > 0

for all x ∈ Ω.

REMARK 6.12 Based on the above de�nition, verifying the irreducibility of a Markov

process is often straightforward, since we only have to check, if Kn has a positiveProbability Density Function (176)

density, f, such that Kn(x, A) =
∫
A
f(x,y)dν(x) for all x ∈ Ω and A ⊂ B(Ω). This

is often the case for Metropolis samplers and as we will see for the transition kernel

of Markov processes based rendering algorithms.

REMARK 6.13 If a Markov chain is irreducible, then it has many di�erent irreducibility

distributions. However, it is possible to show that any irreducible chain has a max-

imal irreducibility distribution in the sense that all other irreducibility distributions

are absolutely continuous with respect to the maximal irreducibility distribution [65,

Gilks & al. 1996].

Now, irreducibility is the property of a Markov process Xn that all interesting sets

can be visited, but this property is too weak, it does not ensures that all these sets are

visited often enough. Here, as known from the discrete case, we need the property of

recurrence. The recurrence of a Markov process guarantees that all sets will be reached

in�nitely often, at least from almost all starting points.

DEFINITION 6.9 (Positive Recurrence) A ν-irreducible Markov process, (Xn)n∈N0 , is re-

current if for any set A ⊂ B(Ω) with ν(A) > 0 the following both conditions are

satis�ed:

i) Prob (Xn ∈ A in�nitely often) > 0 for all x

ii) Prob (Xn ∈ A in�nitely often) = 1 for ν-almost all x.

An irreducible, recurrent Markov process is denoted as positive recurrent, if it

has an invariant probability distribution.

REMARK 6.14 Due to [65, Gilks & al. 1996], recurrence is su�cient to ensure that

a law of large numbers holds for a Markov process, but to provide a central limit

theorem, a discrete-time, continuous-state process must satisfy stronger conditions,

such as the ergodicity.

We will stop this incomplete discussion of ergodic Markov processes at this point,

since a more detailed study of the topic, is out of the scope of this book. So, we refer the

interested reader to the books by [65, Gilks & al. 1996], [170, Robert & Casella 1999], and

in particular [130, Meyn and Tweedie 1993] as well as [204, Stroock 2005].
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6.5.3.2 M(RT)2 - METROPOLIS SAMPLING

Suppose we wish to sample from a non-negative function f, which indeed can be evaluated,

but where we have no chance to directly generate a sample from. Acceptance-rejection sam- Section 6.5.2

pling could be used if a trial density q can be found, where f
q
has a reasonable bound. Now,

the main drawback of this sampling strategy is that it is often very di�cult to construct a

suitable proposal distribution, that leads to an e�cient solution algorithm, in particular if

f is high-dimensional. One way to solve this problem is to drop the strict requirement of

generating independent samples and instead to generate a sequence (Xn)n∈N0 of depen- Sequence of RVs (219)

dent random variables such that eachXn is distributed according to the desired function f. Random Variable (168)

In this chapter we will introduce a �rst MCMC method: the Metropolis algorithm,

[129, Metropolis & al. 1953], which goes back to Metropolis, Rosenbluth, Rosenbluth,

Teller and Teller. It can be seen as the only known method of MCMC. All other MCMC

methods, such as the Metropolis-Hastings algorithm, the Gibbs sampler etc. are mutations

of the Metropolis algorithm. Introduced 1953 for handling di�cult sampling problems in

computational physics for obvious reasons it is also called the M(RT)2 algorithm. It is

an advanced sampling technique that can sample any density function in any number of

dimensions.

Similar to the acceptance-rejection method it is based on proposing values sampled

from an instrumental distribution. In an acceptance test then it is checked if the new tenta-

tive sample is kept |which reects how likely it is that it is from the target distribution|or

if the previous sample is furthermore used. So, theM(RT)2 algorithm generates a sequence

of correlated samples from a non-negative function f such, that the samples are distributed

according to f. For that, the algorithms only needs to evaluate f at each generated sample,

M(RT)2 does not need any other information about f or its associated PDF, see Figure 6.23

DETAILED BALANCE AND THE TENTATIVE TRANSITION FUNCTION. In the following, let S

be an uncountable state set, and f be a non-negative function de�ned on S with values

in R. We are also given some initial state X0. The goal of the M(RT)2-algorithm is to

generate a stochastic process (Xn)n∈N0 on the probability space (Ω,F,P) independent

on the initial state, such that the sequence of random variables Xn are approximately DT Markov Process (236)

distributed proportional to f. In other words, we have to generate an ergodic, discrete-

time Markov process (Xn)n∈N0 using a transition kernel K with stationary distribution Transition Kernel (234)

f.The ergodicity of the process then ensures the convergence of Xn to the desired density Ergodic Theorem (546)

f, that is, samples form this process are approximate simulations from f. Stationary Distribution (545)

The Metropolis algorithm precisely follows this idea by constructing a Markov process

with a corresponding transition kernel. But the problem that arises is: How should we

choose the transition kernel such that it ful�lls the requirements from above? Here, the

Metropolis algorithm makes use of an observation from physics, the so-called detailed

balance condition.
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M(RT)2 {
initialize X0

∀ n ∈ {0, 1, . . .} do {
Y ← MUTATE(Xn)

if RANDOM() < A(Xn → Y) {
Xn+1 ← Y

} else {
Xn+1 ← Xn

}
}

}

FIGURE 6.23: PSEUDOCODE FOR THE METROPOLIS SAMPLING ALGORITHM.

Let us consider two boxes, one �lled with gas, the other contains nothing, connected

to each other via a clamped tube. If the tube is unclamped, gas begins to ow from the

�rst box into the second box. After gas is owed into the second box, some of that gas

ows back into the �rst box. This process also continues even if an equilibrium between

the two boxes is reached. That is, even if the system is in equilibrium, the chance that

gas ows from the �rst box into the other is equal to the chance that gas ows from the

second box into the �rst. This condition of a physical system, that guarantees that a

system evolves toward equilibrium and stay there, is called detailed balance. Translated

into the language of Markov processes, the detailed balance condition can be de�ned as

follows:

DEFINITION 6.10 (Detailed Balance Condition) A Markov process with transition kernelTransition Kernel (234)

K satis�es the detailed balance condition if there exists a function f satisfying

K(xn+1 → xn) f(xn+1) = K(xn → xn+1) f(xn) (6.355)

for all xn,xn+1 ∈ S.

Now, in the language of Markov processes, Equation (6.355) can be interpreted in such

a way, that, if a stationary distribution f is reached, then the probability of a transitionStationary Distribution (545)

from state xn+1 into state xn is the same as being in state xn and taking a transition into

state xn+1.

REMARK 6.15 To make our formulas easier readable, we have separate ourselves in

the above de�nition from the commonly used notation for transition kernels, that is,
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in this section, we de�ne:

K(xn → xn+1)
def
= K(xn,xn+1), (6.356)

which strongly clari�es the transition from xn into xn+1.

Now, for constructing the transition kernel K, M(RT)2 uses a so-called tentative

transition function T to propose a transition from the current state into some other state

according to some chosen distribution. So, T(xn → xn+1) is a probability density function

which gives the probability that the state Xn+1 = xn+1 given Xn = xn.

THE ACCEPTANCE PROBABILITY FUNCTION. The tentative sample Xn+1 is then either

accepted or rejected according to a so-called acceptance probability. In order to reach the

stationary distribution as quickly as possible, due to [221, Veach 1998], the best strategy

should be to make A(xn → xn+1) and A(xn+1 → xn) as large as possible. So, the

acceptance probability function, A, is de�ned by:

A(xn → xn+1)
def
= min

(
1,
f(xn+1) T(xn+1 → xn)

f(xn) T(xn → xn+1)

)
, (6.357)

where A(xn → xn+1) denotes the probability with which a move from xn to xn+1 is

accepted. This choice of the acceptance probability function guarantees, that transitions

in one direction are always accepted, while in the other they are sometimes rejected, such

that the expected number of moves each way is the same [221, Veach 1998].

REMARK 6.16 Note: If the transition probability density is the same in both directions,

the acceptance probability function simpli�es to the division of the value of f at the

tentative and the current sample, namely:

A(xn → xn+1) = min

(
1,
f(xn+1)

f(xn)

)
. (6.358)

M(RT)2 then constructs the transition kernel, in this case also denoted as theMetropo-

lis kernel, via the tentative function T and the acceptance function A by:

K(xn → xn+1)
def
= T(xn → xn+1)A(xn → xn+1). (6.359)

In the following lemma we will show that the Metropolis kernel satis�es the detailed

balance condition.

LEMMA 6.5 Let K be the Metropolis kernel from Equation (6.359), then it holds: K

satis�es the detailed balance condition.
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PROOF 6.5 Due to De�nition 6.10 we have to show the validity of Equation (6.355)

for a probability density function f. Let us �rst prove the case, where it holds:

A(xn → xn+1) = 1, (6.360)

which is equivalent to

f(xn+1) T(xn+1 → xn)

f(xn) T(xn → xn+1)
≥ 1. (6.361)

Due to Equation (6.357) then we get:

A(xn+1 → xn) =
f(xn) T(xn → xn+1)

f(xn+1) T(xn+1 → xn)
. (6.362)

Using this relation in Equation (6.359) leads to:

f(xn+1)K(xn+1 → xn)
def
= f(xn+1) T(xn+1 → xn)A(xn+1 → xn) (6.363)

(6.362)
= f(xn+1) T(xn+1 → xn)

f(xn) T(xn → xn+1)

f(xn+1) T(xn+1 → xn)

(6.360)
= f(xn) T(xn → xn+1)A(xn → xn+1) (6.364)
def
= f(xn)K(xn → xn+1). (6.365)

The case where we have

A(xn → xn+1) =
f(xn+1) T(xn+1 → xn)

f(xn) T(xn → xn+1)
(6.366)

can similarly be proofed. We let the details to the interested reader as a simple

exercise.

Ok, the Metropolis kernel satis�es the detailed balance condition. In the following

lemma we will show that, due to the fact that it ful�lls the detailed balance condition, the

Metropolis kernel has a stationary distribution.

LEMMA 6.6 Let (Xn)n∈N0 be a sequence of random variables constructed by theM(RT)2

algorithm with the Metropolis kernel from Relation (6.359). Let us furthermore

assume that pn is the probability density function associated with the random variable

Xn, then the Metropolis kernel has a stationary distribution.

PROOF 6.6 Let pn+1 be the PDF associated with the random variable Xn+1. For the

transition from Xn to Xn+1, there are three possibilities that have to be accounted

for: Namely, either we are already in state xn+1, or we reach state xn+1 via an
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accepted transition from any xn, or we are already in state xn+1 and a transition to

any state xn is rejected. So, pn+1 can easily be computed via:

pn+1(xn+1) = pn(xn+1) +

∫
Ω

pn(xn)K(xn → xn+1)dµ(xn) −∫
Ω

pn(xn+1)K(xn+1 → xn)dµ(xn) (6.367)

(6.355)
= pn(xn+1) +

∫
Ω

pn(xn)K(xn → xn+1)dµ(xn) −∫
Ω

pn(xn)K(xn → xn+1)dµ(xn) (6.368)

= pn(xn+1), (6.369)

but this means, that pn is a stationary distribution of the Markov process.

From the last lemma we conclude: As the Metropolis algorithm is based on a Markov

kernel that satis�es the detailed balance condition, the associated Markov process has a

stationary distribution. Now, M(RT)2 does not only ful�lls the requirement that it con-

structs a stochastic process satisfying the detailed balance condition, but it also guarantees

that the process is ergodic|we omit the proof since it is outside the scope of this book,

for a proof see [170, Robert & Casella 1999]. Then, the Ergodic Theorem ensures that

the stationary distribution converge for any initial distribution to the unique equilibrium

distribution of the process. Since the asymptotic distribution of the Markov process was

assumed to corresponds to f, so, samples Xn from the process will be approximate simu-

lations from f. This can easily bee see by interchanging pn in Equation (6.368) with the

target density, f:

pn+1(xn+1) = f(xn+1) +

∫
Ω

f(xn)K(xn → xn+1)dµ(xn) −∫
Ω

f(xn+1)K(xn+1 → xn)dµ(xn) (6.370)

(6.355)
= f(xn+1) +

∫
Ω

f(xn)K(xn → xn+1)dµ(xn) −∫
Ω

f(xn)K(xn → xn+1)dµ(xn) (6.371)

= f(xn+1). (6.372)

REMARK 6.17 Let us summarize briey: The M(RT)2 algorithm generates a sequence

of correlated samples from a non-negative function f such, that the samples are

distributed according to f. For that, the algorithms only needs to evaluate f at each

generated sample, M(RT)2 does not need any other information on f or its associated

PDF. Furthermore, we can say, that the asymptotic distribution of a Markov process

requires to throw away the �rst M samples until the process approaches the limit
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distribution, where we can make statements about M only in rare cases. Since the

samples are also dependent, the variance of a Monte Carlo estimator using samples

from the Metropolis algorithm will be larger than if the process would be independent.

Finding the ideal proposal distribution is an art. Probably, this is the price we have

to pay for the generality of the M(RT)2 algorithm.

As already mentioned above, the Metropolis sampling algorithm is the only

known method of MCMC. There are a series of other algorithms such as the Metropo-

lis-Hastings algorithm, or the Gibbs-Sampler. They are all special versions of the

M(RT)2 algorithm. So, the Metropolis algorithm is the ideal algorithm to start into

the theory of MCMC.

6.6 VARIANCE REDUCTION TECHNIQUES

The foregoing discussions have shown that with every random variable also comes a vari-

ance which limits the desired precision of the result. We also discovered in Section 6.4 that

with an increasing number of samples, i.e. a longer computation time for an estimator,

more precise results may be expected. We asked now: It is possible to amortize such an

increase in run time by a more e�cient choice of the samples? A quantity that can be

used to measure the quality of a Monte Carlo estimator is the e�ciency. This concept

is of particular importance when developing e�cient algorithms for solving the rendering

equation using Monte Carlo integration. Formally, the e�ciency is de�ned as:Chapter 9

DEFINITION 6.11 (E�ciency of a Monte Carlo Estimator) Let FN be any Monte CarloMonte Carlo Estimator (499)

estimator, the e�ciency ε (FN) is de�ned as:

ε (FN)
def
=

1

Var (FN) · T (FN)
, (6.373)

where T(FN) are the costs of the underlying algorithm, i.e. the time required to

evaluate FN and Var(FN) is the variance of the estimator FN.Variance (201)

A main goal in the theory of Monte Carlo integration is to improve the e�ciency of

a Monte Carlo estimator. This can be reached by applying so-called variance reduction

techniques.

Now, from Lemma 6.3 we know that the error of a secondary Monte Carlo estimatorSecondary Estimator (499)

can be made as small as desired, assumed we take su�ciently many samples. However,

with this linear decrease, by a factor of N, also a linear increase of the run time for

evaluating a secondary Monte Carlo estimator is associated by the same factor.Secondary Estimator (499)

For demonstrating this, let us now consider once more the estimator FN from Equation

(6.114) with independent and identically distributed samplesX1, . . . ,XN selected overQs.Independent RV (204)
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Obviously the following applies to the variance of FN:

Var(FN)
(6.182)
=

1

N
Var(F1), (6.374)

while the run time for evaluating FN satis�es the equation

T(FN) = NT(F1). (6.375)

From these both statements we conclude: Drawing N samples reduces the variance

by a factor of N but increases the computation time by the same factor. So, the estimators

FN and F1 can be regarded as equally e�cient procedures, as it holds:

ε (FN) =
1

Var(FN)T(FN)
(6.376)

(6.374),(6.375)
=

1

Var(F1)T(F1)
(6.377)

= ε (F1) . (6.378)

Now the main objective of Monte Carlo Integration is to maximize e�ciency, i.e. to

construct fast evaluable estimators with a variance as small as possible. For designing

such e�cient estimators it is required to obtain additional information from the problem

to be solved. As already above-mentioned, the techniques with which this objective may

be attained are called variance reduction techniques. Our following discussion will be

limited to the presentation of those variance reduction techniques, which have been proven

most useful for the solution of the global illumination problem.

6.6.1 USE OF EXPECTED VALUES

The �rst variance reduction procedure, which we will present here, Use of Expected Val-

ues, is based on the following unwritten law of Monte Carlo Integration [73, Hammersley

& Handscomp 1964]:

... If there is anything in the integral to be determined that may be analytically

integrated, it should be integrated.

The idea behind this technique lies in the reduction of the dimensionality of the

original problem. For that purpose, let us write our original integration domain of the

integral ∫
Qs
f(x)dµs(x) (6.379)

as a Cartesian product of subspaces of dimension sy and sz, that is, we suppose that Q
s Subspace (855)
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can be split into Qs = Qsy ×Qsz . Then, the integral from (6.379) can be rewritten as:∫
Qs
f(x)dµs(x) =

∫
Qsy

∫
Qsz

f(y, z)dµsz(z)dµsy(y) (6.380)

=

∫
Qsy

∫
Qsz

f(y, z)

pY,Z(y, z)
pY,Z(y, z)dµ

sz(z)dµsy(y), (6.381)

where we assume that pY,Z(y, z) is any joint probability density function with respect to

the random variables Y and Z.

Now, we are not interested in estimators of the form FN(Y,Z) but in estimators ofMonte Carlo Estimator (499)

the form FN(Y), thus, in estimators depending only on the random variable Y. ReducingRandom Variable (168)

the dimensionality of the given problem means that we must be able to integrate both,

the integrand f(y, z) and the density function pY,Z(y, z) with respect to z. IntegratingPDF (176)

f(y, z) with respect to the variable y leads to:

f(y) =

∫
Qsz

f(y, z)dµsz(z) (6.382)

and the marginal density function pY can be written as:Marginal Density Function (194)

pY(y) =

∫
Qsz

pY,Z(y, z)dµ
sz(z). (6.383)

Replacing on the right side of Equation (6.381) the probability density function pY,Z
according to De�nition 2.56 by the product of marginal density pY(y) with respect to the

random variable Y and the conditional density pZ|Y(z|y), then we get:∫
Qs
f(x)dµs(x)

(6.381)
=

∫
Qsy

∫
Qsz

f(y, z)

pY,Z(y, z)
pY,Z(y, z)dµ

sz(z)dµsy(y) (6.384)

=

∫
Qsy

(∫
Qsz

f(y, z)

pY,Z(y, z)
pZ|Y(z|y)dµsz(z)

)
pY(y)dµsy(y).(6.385)

Due to Equation (2.821), we can consider the inner integral as the conditional ex-

pected value of the random variable Z given Y, that is, as EZ

(
f(Y,Z)

pY,Z(Y,Z)

∣∣∣∣Y). Using this
identity, then we obtain for the integral from (6.379):∫

Qs
f(x)dµs(x) =

∫
Qsy

EZ

(
f(Y,Z)

pY,Z(Y,Z)

∣∣∣∣Y)pY(y)dµsy(y). (6.386)

(2.735)
= EY

(
EZ

(
f(Y,Z)

pY,Z(Y,Z)

∣∣∣∣Y)) . (6.387)

Since the integral on the left hand side can be interpreted as the expected value of

the random vector f(X)
pX(X) , we get:

EX

(
f(X)

pX(X)

)
= EY,Z

(
f(Y,Z)

pY,Z(Y,Z)

)
= EY

(
EZ

(
f(Y,Z)

pY,Z(Y,Z)

∣∣∣∣Y)) , (6.388)
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where the indices emphasizes which density function is being integrated. That is, as an

alternative to the above described solution via the determination of the expected value of
f(X)
p(X) , the original integration problem may also be approached by calculating the condi-

tional expected value of the random variable f(Y,Z)
pY,Z(Y,Z) given Y.

We now turn to the question: Why this technique may lead to variance reduction? For

that purpose, let us take a look at the following estimators, where we use the abbreviations

FN =
1

N

N∑
i=1

f(Xi)

pX(Xi)
=
1

N

N∑
i=1

f(Yi,Zi)

pY,Z(Yi,Zi)
(6.389)

and

FN,Z =
1

N

N∑
i=1

EZ

(
f(Yi,Z)

pY,Z(Yi,Z)

∣∣∣∣Yi) . (6.390)

Due to Lemma 2.4, for the variance of the estimator FN it must hold:

Var(FN) = EY(VarZ(FN)) + VarY(EZ(FN)), (6.391)

which is equivalent to the equation

Var(FN) − VarY(EZ(FN)) = EY(VarZ(FN)). (6.392)

Due to its de�nition, the variance of a random variable is always non-negative, Variance (201)

that is, also the expected value of the variance of the estimator FN, thus the quantity

EY(VarZ(FN)), is non-negative. Based on this result, the above equation implies to fol-

lowing inequality:

Var(FN) − VarY(EZ(FN)) ≥ 0. (6.393)

To make a statement about the variance of the new estimator FN,Z, our goal is to

express the quantity VarY(EZ(F)) on the left hand side of the inequality in terms of the

estimator FN,Z. For that purpose, let us consider the quantity EZ(FN), obviously it holds:

EZ(FN) = EZ

(
1

N

N∑
i=1

f(Y,Z)

pY,Z(Y,Z)

)
(6.394)

=
1

N

N∑
i=1

EZ

(
f(Y,Z)

pY,Z(Y,Z)

)
(6.395)

=
1

N

N∑
i=1

∫
Qsz

(
f(y, z)

pY,Z(y, z)
pZ|Y(z|y)dµsz(z)

)
(6.396)

(6.385)
=

1

N

N∑
i=1

EZ

(
f(Yi,Z)

pY,Z(Yi,Z)

∣∣∣∣Yi) (6.397)

(6.390)
= FN,Z. (6.398)
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Using this identity, Inequality (6.393) can then be written as:

Var(FN) − VarY(FN,Z) ≥ 0. (6.399)

Since the estimator FZ is independent on the random variable Y, it holds:

VarY(FN,Z) = Var(FN,Z), (6.400)

which leads to

Var(FN) − Var(FN,Z) ≥ 0. (6.401)

Obviously, the above inequality expresses the fact, that the variance of FN,Z can

never be greater than that of FN, which in turn implies that all analytically integrable

components of the original integrand are to be integrated.

REMARK 6.18 Monte Carlo integration via the reduction of the dimension of the in-

tegration domain is one of the most powerful and frequently used Monte Carlo tech-

niques, particularly in cases where the sampling and evaluation of the analytically

integrated quantities is not overly time- and e�ort-consuming.

6.6.2 IMPORTANCE SAMPLING

Now, we come to Importance Sampling, one of the most promising variance reduction

procedures especially with respect to its applicability to the integral equations of global

illumination theory.

As a motivation for importance sampling, let us consider the high frequency function

f shown in Figure 6.24. We are interested in an estimate of the area under the graph of

this function over the interval [a, b]. If the samples are chosen uniformly, the variance will

obviously be high, since regions, which do not contribute to the estimate, are oversampled,

while other important regions for estimating the integral are undersampled. An appropri-

ate Monte Carlo estimator for approximating the area under the graph of f and limited

by the interval boundaries a and b is based an a probability density function that takes

many more samples in regions where f has high values. This should reduce the variance.

Importance sampling is based on the principle of selecting a probability density func-pX (176)

tion pX over the probability space (Qs,B(Q
s
),PX), which is similar to the integrand f,Probability Space (163)

see Figure 6.25. In this way, the integral from (6.37) may be represented as stochastic

expected value of the random variable f(X)
pX(X) .Expected Value of a RV (196)

DEFINITION 6.12 (Importance Sampling) Let (Qs,B(Q
s
),PX) be a probability space and

X a random variable de�ned on B(Q
s
) with probability density, pX. Let us further-

more assume that f is a square Lebesgue-integrable function from L2(Qs,B(Qs)). IfL2(Qs,B(Qs)) (107)
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FIGURE 6.24: SAMPLING A HIGH FREQUENCY FUNCTION. We are interested in the area
under the graph of a high frequency function over a given interval. If the samples are chosen
uniformly, as in the image on the left, the variance will obviously be high, since regions, which
do not contribute to the final value, are oversampled, while others important regions for the
final value of the integral are undersampled. An appropriate probability density function
for sampling has to take much more samples in regions where the function is large than in
regions were the function has low values. This then leads to variance reduction.

we construct a random variable f(X)
pX(X) on (Qs,B(Q

s
)) then importance sampling is

the method of evaluating the integral

I def=
∫
Qs
f(x)dµs(x) (6.402)

via a secondary unbiased estimator FISN of the form

FISN
def
=

1

N

N∑
i=1

f(Xi)

pX(Xi)
, (6.403)

where X1,X2, . . . ,XN are i.i.d. random variables, which are sampled from parts of

the integration domain that are of most importance to the estimate of the integral

instead of spreading them out evenly in Qs.

It can easily be shown that the estimator FISN is unbiased, thus it holds: Unbiased MC Estimator (507)

E
(
FISN
)
=

∫
Qs
f(x)dµs(x), (6.404)
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FIGURE 6.25: DIFFERENT DENSITIES FOR IMPORTANCE SAMPLING. Three density func-
tions as possible candidates for importance sampling the function f(x) = e−x . A bad choice
of an importance sampling density is shown in the left image. This density does not match
the shape of the function f we want to evaluate. A better choices is the density illustrated in
the image in the center. Obviously, the best result can be expected by using the density on
the right-hand side, since both graphs are equal in a large region of the integration domain.
The variance of the three estimators clearly decreases from left to right.

and the variance of FISN is given by:

Var
(
FISN
)

= Var

(
1

N

N∑
i=1

f(Xi)

pX(Xi)

)
(6.405)

(6.178)
=

1

N

N∑
i=1

Var
(
FIS1
)
. (6.406)

As the variance depends on the PDF used, we now ask how pX must be chosen to

achieve an estimator with smaller variance. The choice of such a PDF is the di�culty

in importance sampling. In the following lemma, we will show that the variance of the

estimator FISN will be minimal, if pX is proportional to |f(x)|.

LEMMA 6.7 Let FISN be the secondary unbiased Monte Carlo estimator

FISN
def
=

1

N

N∑
i=1

f(Xi)

pX(Xi)
, (6.407)

then the minimal variance of FISN is equal to

minVar
(
FISN
)

=
1

N

((∫
Qs

|f(x)| dµs(x)

)2
− I2

)
. (6.408)

PROOF 6.7 The proof of the above statement makes use of the fundamental Cauchy-

Schwartz Inequality from functional analysis. Due to Relation (6.406) it holds forCauchy-Schwartz Inequlity (859)
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the variance of the estimator FISN :

Var
(
FISN
)

=
1

N
Var

(
FIS1
)

(6.409)

=
1

N

(∫
Qs

f2(x)

pX(x)
dµs(x) − I2

)
(6.410)

=
1

N

(∫
Qs

f2(x)

pX(x)
dµs(x)

∫
Qs
pX(x)dµs(x) − I2

)
(6.411)

(A.64)

≥ 1

N

(∫
Qs

|f(x)|

(pX(x))
1
2

(pX(x))
1
2 dµs(x)

)2
− I2

 (6.412)

=
1

N

((∫
Qs

|f(x)|dµs(x)

)2
− I2

)
. (6.413)

Obvioulsy, the lower bound for the variance of the estimator FISN occurs if the involved

random variables are distributed according to

pX(x) =
|f(x)|∫

Qs
|f(x)|dµs(x)

. (6.414)

As a Monte Carlo estimator based on this PDF is unbiased, it has no variance, that Monte Carlo Estimator (499)

is, the PDF pX from Relation (6.414) is the best possible PDF for importance sampling.

But it should also be clear, that this best PDF is of no practical use, since it requires the

value of the integral, which we want to compute, in its denominator.

Nevertheless, variance reduction may still be obtained by choosing appropriate density

functions, which have similar shape as the integrand. With a probability density function

pX similar to the integrand, the above result implies variance reduction. Choosing pX ∝ f,
thus pX = Cf, where C is a constant, then we can deduce:

Var(FISN ) = Var

(
1

N

N∑
i=1

1

C

)
(6.415)

= Var

(
1

C

)
(6.416)

= E

(
1

C2

)
− E2

(
1

C

)
(2.789)
= 0. (6.417)

To achieve an e�cient Monte Carlo strategy on this way, care must be taken to choose

a PDF from where samples can easily be drawn.

When developing Monte Carlo algorithms for solving the light transport problem in

Chapter 9, we will often encounter the problem that the integrands in the corresponding

integrals are very complex. Since it is very di�cult and often also impossible to construct a
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PDF that is similar to the whole integrand, a popular method is to decompose an integrand

f in a product of two or more measurable functions such as, for example: Measurable Function (98)

f(x) = g(x)h(x), (6.418)

where g or h are easily to sample from. If, say, the density function pX can be chosen as

proportional to g, that is:

pX(x) = Cg(x), (6.419)

then this approach leads, based on i.i.d. PX-distributed random samples X,X1, . . . ,XN,

to the following Monte Carlo approach:∫
Qs
g(x)h(x)dµs(x)

pX∝g
=

1

C

∫
Qs
pX(x)h(x)dµs(x) (6.420)

dµs= dP
pX=

1

C

∫
Qs
h(X(ω))dP(ω) (6.421)

≈ 1

CN

N∑
i=1

h(Xi). (6.422)

Now, we will illustrate the technique of importance sampling by means of an example

from theory of global illumination: Estimating the reectance equation.

EXAMPLE 6.29 (Trivial Importance Sampling Applied to the Reectance Equation) A triv-

ial importance sampling approach for estimating the reectance equationReflectance Equation (321)

Lo(s,ωo)
def
=

∫
H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi), (6.423)

is based on a probability density function p⊥ωi de�ned as

p⊥ωi(ωi) = Cfr(s,ωi → ωo) (6.424)

using i.i.d. random variables (ω1, . . . ,ωN), where C is the normalization constant

of p⊥ωi given by:

C =
1∫

H2
i
(s)
fr(s,ωi → ωo)dσ⊥s (ωi)

. (6.425)

Then, the associated secondary Monte Carlo estimator FISN is unbiased and has
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the form

FISN =
1

N

N∑
i=1

fr(s,ωi → ωo)Li(s,ωi)

p⊥ωi(ωi)
(6.426)

=
1

N

N∑
i=1

fr(s,ωi → ωo)Li(s,ωi)

Cfr(s,ωi → ωo)
(6.427)

=
1

CN

N∑
i=1

Li(s,ωi), (6.428)

that is, an approximation for the value of the reectance equation at surface point

s can be achieved by summing up the radiance incident at s via independent and

identically according to the PDF p⊥ωi distributed direction samples.

EXAMPLE6.30 (Importance Sampling Applied to the Reectance Equation, Cosine-weighted

Hemisphere Sampling) Let us now take a look at the reectance equation Reflectance Equation (321)

Lo(s,ωo)
def
=

∫
H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi) | cos θi|dσs(ωi), (6.429)

where we have taken out the cosine-term from the projected solid angle measure. It

is a multi-dimensional integral where the integrand is a product of three real-valued

functions, namely, the BRDF fr, the incident radiance Li, as well as a cosine-term.

A naive Monte Carlo strategy for evaluating the reectance equation could be to

sample a direction uniformly over the hemisphere, but our discussion from above has

shown, that an importance sampling strategy|such as those chosen in the foregoing

example|promises less variance in a corresponding estimator.

Now, due to the cosine-term in the integrand, the contribution of radiance|

incident at surface point s over directions near the equator|to the �nal value is

minuscule or perhaps even zero. Instead tracing such rays, a better strategy would

be to sample directions where the cosine-term is large, that is, sampling directions

near the surface normal. Now, an importance sampling strategy to estimate the

reectance equation could be to use a PDF that is a composition of the BRDF and

the cosine-term, thus:

pωi(ωi) = Cfr(s,ωi → ωo) | cos θi|. (6.430)

where C is the normalization constant of pωi given by:

C =
1∫

H2
i
(s)
fr(s,ωi → ωo) | cos θi|dσs(ωi)

. (6.431)

and it holds: | cos θi| = 〈N(s), cosωi〉.
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Based on identically and independent according to the PDF pωi distributed

random samples ω1, . . . ,ωN, then the secondary unbiased Monte Carlo estimator

FISN has the form:

FISN =
1

N

N∑
i=1

fr(s,ωi → ωo)Li(s,ωi) | cosωi|

pωi(ωi)
(6.432)

=
1

N

N∑
i=1

fr(s,ωi → ωo)Li(s,ωi) | cosωi|

Cfr(s,ωi → ωo) | cosωi|
(6.433)

=
1

CN

N∑
i=1

Li(s,ωi). (6.434)

In the following example we will pick up the technique of cosine-weighted hemisphere

sampling as an importance sampling strategy for the reectance equation, but now we will

use a concrete BRDF.

EXAMPLE6.31 (Importance Sampling Applied to the Reectance Equation, Cosine-weighted

Hemisphere Sampling) Expressed in terms of spherical coordinate the reectance equa-Spherical Coordinates (832)

tion has the form:

Lo(s, φo, θo) (6.435)

=

∫
[0,2π)

∫
[0,π2 ]

fr(s, (φi, θi) −→ (φo, θo))Li(s, φi, θi) sin θi | cos θi|dµ(θi)dµ(φi),

thus, a two-dimensional integral where the integrand is a product of four real-valued

functions, namely, the BRDF fr, the incident radiance Li, as well as a sine and a

cosine-term.

Let us further assume that the involved BRDF describes ideal di�use reection.Ideal Diffuse BRDF (339)

Then, due to Relation (4.180) the BRDF corresponds to for = ρdh
π
, that is, the

reectance equation can be written as:

Lo(s, φo, θo) =

∫
[0,2π)

∫
[0,π2 ]

ρdh

π
Li(s, φi, θi) sin θi | cos θi|dµ(θi)dµ(φi). (6.436)

Due to the fact, that the function Li is unknown, the above approach recommends
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the choice of a density pΦ,Θ ∝ for sin θ| cos θ| leading to:

pΦ,Θ(φ, θ) =
for sin θ | cos θ|∫

[0,2π)

∫
[0,π2 ]

for sin θ | cos θ|dµ(θ)dµ(φ)
(6.437)

for=
ρdh
π=

sin θ | cos θ|

2π
∫
[0,π2 ]

sin θ | cos θ|dµ(θ)
(6.438)

Int. by parts
=

2 sin θ | cos θ|

2π
(
sin2 θ

∣∣π2
0

) (6.439)

=
1

2π
(2 sin θ | cos θ|) . (6.440)

Obviously, the density pΦ,Θ(φ, θ) allows the representation as a product of two

density functions pΦ = 1
2π

and pΘ = 2 sin θ | cos θ| of independent random variables

Φ,Θ. With respect to their distribution functions we obtain CDF (171)

pΦ(φi)
def
=

∫
[0,φi]

1

2π
dµ(φ) =

φi

2π
(6.441)

and

pΘ(θi)
def
=

∫
[0,θi]

2 sin θ | cos θ|dµ(θ) = sin2 θi. (6.442)

Applying the inversion method with respect to the random variables U1 and U2 Inversion Method (520)

uniformly distributed on the unit interval I yields: Uniform Distribution (180)

pΦ(φi) = U1 ⇒ φi

2π
= U1 (6.443)⇒ φi = 2 πU1 (6.444)

and

pΘ(θi) = U2 ⇒ sin2 θi = U2 (6.445)⇒ θi = arcsin
√
U2. (6.446)

From all these considerations, we conclude that the radiance Lo(s,ωo) exitant

from point s into the direction ωo may be approached via the Monte Carlo estimator

F
for ,IS

N =
1

N

N∑
i=1

Li(s, φi, θi) (6.447)

=
1

N

N∑
i=1

Li(s, 2 πU1, arcsin
√
U2) (6.448)

using the probability density functions pΦ and pΘ.
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REMARK 6.19 From a mathematical point of view importance sampling may be con-

ceived of as a procedure based on the transformation method, if the underlying distri- Section 6.5.1

bution is invertible. The selection of an independent random variable U uniformly

distributed over Is together with Xi = P−1
U (U) yields:∫

Qs
f(x)dµs(x)

dµs= dP
pX=

∫
Qs

f(X(ω))

pX(X(ω))
dP(ω) (6.449)

X= P−1
U (U)
=

∫
Is

f
(
P−1
U (U(ω))

)
pU
(
P−1
U (U(ω))

) dP(ω), (6.450)

which suggests a simple and appropriate rule for the implementation of importance

sampling.

REMARK 6.20 Importance Sampling has been found to be a highly e�cient procedure,

particularly with respect to many problem areas in global illumination theory, where

it is the most frequently applied technique for variance reduction. So, importance

sampling is not only used in pixel �ltering [185, Shirley 2000] or for estimating

the incident radiance at surface points emanating from light sources, [188, Shirley

& al. 1996], but also when sampling special BRDFs and small light sources [181,BRDF (320)

Shirley 1990]. In all these cases it has been found to be far superior to other variance

reduction procedures.

REMARK 6.21 Ideal areas of application for importance sampling are Monte Carlo pathSection 9.1

tracing [116, Lafortune 1996], [50, Dutr�e 2003], Monte Carlo light tracing [116, Lafor-Section 9.2

tune 1996], [47, Dutr�e 1996], and bidirectional path tracing [116, Lafortune 1996],Section 9.3

[221, Veach 1998]. As we will see, these are rendering algorithms based on Monte

Carlo methods applied for solving the stationary light transport equation in a vacuum.Section 4.4.2

6.6.3 CONTROL VARIATES

Another variance reduction technique for estimating integrals via Monte Carlo integration

is Control Variates. The idea behind control variates is to �nd a function g similar to the

integrand f that can be integrated analytically, and then subtract it. While g is integrated

analytically, the di�erence between f and g is estimated via a Monte Carlo strategy, where

instead to sample all points independently, control variates makes use of correlated points

in the sampling [99, Kalos & Whitlock 1986].

The mathematical basis for control variates is the linearity property of the Lebesgue

integral, i.e. one attemps to �nd an analytically square Lebesgue-integrable function gLebesgue Integral (105)

from L2(Qs, µs) similar to the integralL1(R, µs) (107) ∫
Qs
f(x)dµs(x), (6.451)
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whereas for a small, non-negative τ ∈ R it holds:‖ · ‖∞ (33)

‖f− g‖∞ < τ. (6.452)

DEFINITION 6.13 (Control Variates) Let (Qs,B(Q
s
),PX) be a probability space and X a

random variable de�ned on (Qs,B(Q
s
) with probability density pX. Let us further-

more assume that f and g are a square Lebesgue-integrable function that satis�es

Condition (6.452), then control variates is the method of evaluating the integral∫
Qs
f(x)dµs(x) (6.453)

via a secondary estimator FCVN of the form

FCVN
def
=

∫
Qs
g(x)dµs(x) +

1

N

N∑
i=1

f(Xi) − g(Xi)

pX(Xi)
, (6.454)

where X1, . . . ,XN are i.i.d. samples drawn from the probability density function pX.

Note that we use the same samples in both function, f and g.

Obviously, the estimator FCVN is well-de�ned, as it holds:∫
Qs
f(x)dµs(x) =

∫
Qs
g(x)dµs(x) +

∫
Qs

(f(x) − g(x))dµs(x) (6.455)

dµs=dP
p

=

∫
Qs
g(x)dµs(x) +

∫
Qs

f(X(ω)) − g(X(ω))

pX(X(ω))
dP(ω)︸ ︷︷ ︸

E
(
f(X)−g(X)
pX(X)

)
. (6.456)

As the function g is known, the integral on the right-hand side can be evaluated

exactly, that is, the variance of FCVN is then given by:

Var
(
FCVN

)
=

1

N2

N∑
i=1

Var

(
f(Xi) − g(Xi)

pX(Xi)

)
. (6.457)

Obviously, variance reduction can only be achieved if the following applies:

Var

(
f(Xi) − g(Xi)

pX(Xi)

)
≤ Var

(
f(Xi)

pX(Xi)

)
. (6.458)

Restricting the integral domain in Equation (6.451) to the s-dimensional unit cube

and assuming f be square Lebesgue-integrable on [0, 1]s, then we obtain via independent

and uniformly distributed random variables U,U1, . . . ,UN: Uniform Distribution (180)
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FIGURE 6.26: CONTROL VARIATES. Evaluation of the integral
∫
[a,b]

ex dµ(x) with the

control variate 1 + x according to Equation (6.455).

Var (f(Ui) − g(Ui)) = E
(
(f(Ui) − g(Ui))

2
)
− E2 (f(Ui) − g(Ui)) (6.459)

≤ E
(
(f(Ui) − g(Ui))

2
)

(6.460)

(2.732)
=

∫
Is
(f(U(ω)) − g(U(ω)))

2
dPU(ω) (6.461)

‖f−g‖∞<τ
< τ2. (6.462)

We conclude from this derivation that the variance of the estimator FCVN can be made

arbitrary small by suited choice of the function g.

REMARK 6.22 Another way to compute the estimator FCVN could be to construct two

separate estimators

FCV,1N =
1

N

N∑
i=1

f(Xi)

pX(Xi)
and FCV,2N =

1

N

N∑
i=1

g(Xi)

pX
(6.463)

and then to construct the estimator FCVN by:

F̂CVN
(2.790)
=

∫
Qs
g(x)dµs(x) + FCV,1N − FCV,2N . (6.464)

Due to the correlated points in the sampling, the variance of FCVN is then given

by:

Var
(
F̂CVN

)
= Var

(
FCV,1N

)
+ Var

(
FCV,2N

)
− 2Cov

(
FCV,1N , FCV,2N

)
, (6.465)

which leads to variance reduction if it holds:

Cov
(
FCV,1N , FCV,2N

)
>
1

2
Var

(
FCV,2N

)
. (6.466)
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Finally, let us shortly discuss the choice of the analytically square Lebesgue-integrable

function g.

Let us assume g be proportional to the probability density function pX, that is

pX(x) = Cg(x). Choosing C as the normalization constant for pX, thus

C =
1∫

Qs
g(x)dµs(s)

, (6.467)

then the function g is a good candidate for both importance sampling and as a control

variate. As in this case the two estimators from Inequality (6.458) di�er only by a constant,

that is, their variance is the same, it makes no sense to use g as control variate if it was

already used for importance sampling.

From another point of view, let us assume g be a good approximation to f. In this

case, we must to decide whether to use it as a density function for importance sampling

or as a control variate. [99, Kalos & Whitlock 1986] have shown that for a nearly constant

quotient f
g
, the function g should be used as a density for importance, while if f− g is a

nearly constant function, then g should be used as a control variate.

Remember, in the last section we have mentioned that the integrands in the light

transport equation are algebraic terms of more than one function, often of the form f(x) =

f1(x) · · · f3(x) or f(x) = f1(x)(f2(x)+f3(x) as well as f(x) = f1(x)f2(x)+f3(x)). We have

also seen that it could be a good importance sampling strategy to generate a PDF that

is proportional to a part of the integrand f, such as the BRDF, the cosine-factor, or the

incident radiance distribution. Unfortunately, this strategy can not be transformed to the

technique of control variates. Thus, it would not make sense in the above representations

of the integrand f to use the function f1(x) alone as a control variate for f, since it is

multiplied at least by a factor f2, and the function f1 must be replaced by f1(x)−1. Thus,

a function g is only useful as a control variate if it takes into account all signi�cant factors

of f.

EXAMPLE 6.32 (Ambient Illumination) Let us consider the stationary light transport SLTEV (398)

equation in terms of exitant and incident radiance and assume that a known amount Radiance (250)

of ambient light La exists in the underlying scene. Due to [118, Lafortune & Willems

1994], [116, Lafortune 1996], it becomes possible to regard La as a control variate in

the reectance part of the SLTEV. This in turn implies: Reflection Equation (321)
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Lo(s,ωo)
(4.89)
= Le(s,ωo) +

∫
H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi) (6.468)

= Le(s,ωo) +

∫
H2
i
(s)

fr(s,ωi → ωo)La dσ
⊥
s (ωi) + (6.469)∫

H2
i
(s)

fr(s,ωi → ωo)
(
Li(s,ωi) − La

)
dσ⊥s (ωi)

(4.162)
= Le(s,ωo) + πρhd(s)La + (6.470)∫

H2
i
(s)

fr(s,ωi → ωo)
(
Li(s,ωi) − La

)
dσ⊥s (ωi).

Then, an associated secondary Monte Carlo estimator FIMP,CVN with N, according

to the density fr(s,ωi → ωo)〈N(s),ωji〉 via importance sampling drawn samples ωji,

has the form:

FIMP,CVN = Le(s,ωo) + πρhd(s)La +
1

N

N∑
j=1

(
Li(s,ω

j
i) − La

)
. (6.471)

Restricting to the reectance equation the estimator FIMP,CVN can be also used to

estimate the direct illumination at surface point s by:

FIMP,CVN = πρhd(s)La +
1

N

N∑
j=1

(
Le(s,ω

j
i) − La

)
, (6.472)

where Le is the known emitted radiance, that is, the sum of the constant ambient term

multiplied by π and the reectance rhohd and an averaged sum over the di�erence

of the emitted radiance and the constant ambient illumination.

6.6.4 STRATIFIED SAMPLING

In Section 6.6.2 we have see that an importance sampling strategy for estimating the

integral ∫
Qs
f(x)dµs(x), (6.473)

results in a Monte Carlo estimator

FISN =
1

N

N∑
I=1

f(Xi)

pX(Xi)
, (6.474)

where the samples Xi are independent and identically distributed random variables drawn

according to a well chosen probability density function p. We have also learned that
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importance sampling can lead to Monte Carlo estimators with small variance and which

are fast to evaluate. But, the strategy of importance sampling, namely to choose random

samples where the integrand is large, can also lead to badly covered domains of integration,

such as for example the clumping of samples in a domain or regions that are not sampled.

Increasing the number of samples can eventually solve this problems but amortize the

e�ciency of the estimator ε(FISN ) at the expense of longer run times. An interesting ε(FN) (554)

technique that avoids these drawbacks of importance sampling and which also guarantees

variance reduction in the resulting Monte Carlo estimators is Strati�ed Sampling.

The idea of strati�ed sampling is to ensure that the chosen samples are well distributed

over the integration domain, with no two sample points too close together and where

no excessively large regions are not sampled. This reduces the clumping of samples in

the integration domain, see Figure 6.27. This goal will be achieved by decomposing the

integration domain Qs of the above integral in n disjoint subdomains Qsi , so-called strata.

The additivity of the Lebesgue integral then allows with

Qs =

n⋃
i=1

Qsi , (6.475)

the following representation of the integral from (6.473):∫
Qs
f(x)dµs(x) =

n∑
i=1

∫
Qs
i

f(x)dµs(x). (6.476)

Now, we can construct probability spaces (Qsi ,B(Qsi ),PXi) over the n strata Qsi , Probability Space (163)

similar to the method from Section 6.2, where the associated probability measures PXi

can be de�ned based on the PDF pX via

dPXi

pi
= µs(Qsi )

dPXi

pX
, (6.477)

Replacing the Lebesgue measure in Equation (6.476) by these probability measures Lebesgue Measure (75)

leads to: Probability Measure (80)

∫
Qs
f(x)dµs(x) =

n∑
i=1

∫
Qs
i

f(x)dµs(x) (6.478)

dµs=
dPXi
pi=

n∑
i=1

∫
Qs
i

f(X)

pi(X)
dPXi(ω) (6.479)

pi=
pX

µs(Qs
i
)

=

n∑
i=1

µs(Qsi )

∫
Qs
i

f(X)

pX(X)
dPX(ω) (6.480)

=

n∑
i=1

µs(Qsi )E

(
f(Xi)

pX(Xi)

)
. (6.481)
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FIGURE 6.27: CLUMPING OF SAMPLES. The images show a high frequency function given
over a set of four intervals of almost the same length. On the left, the samples are not well-
distributed, since some of the intervals contain many more samples than others. Additionally,
in intervals that contain many samples, these are clumped. In the right image the domain
is better stratified. Here all intervals contain almost the same number of samples and the
samples are even well-deistributed.

This shows, that the integral may be represented as sum of expected values of func- Expected Value of RV (196)

tions of independent and identically according to probability density pX distributed ran- Probability Density (176)

dom variables X1, . . . ,Xn. If, in accordance with our preceding discussions, we now

replace the expected values in Equation (6.481) by the secondary Monte Carlo estimatorsMonte Carlo Estimator (499)

F
Qsi ,STRAT
N , constructed on the strata Qsi , then we get:

F
Qsi ,STRAT
N =

µs(Qsi )

ni

ni∑
j=1

f(Xi,j)

pX(Xi,j)
, (6.482)

where Xi,j are ni samples from the strata Qsi . That is, a Monte Carlo estimator FSTRATN

de�ned on Qs can be de�ned as follows:

DEFINITION 6.14 (Strati�ed Sampling) Let
⋃n
i=1Q

s
i be the decomposition of the integra-

tion domain Qs, let furthermore (Qsi ,B(Qsi ),PXi) be probability spaces over the n

strata Qsi , then strati�ed sampling is the evaluation of the integral

∫
Qs
f(x)dµs(x) (6.483)
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FIGURE 6.28: SUPERSAMPLING A PIXEL. A pixel is broken into a n × n grid, where a
random point is chosen from each of these n2 strata. The samples within the left image are
chosen according to a regular grid at the midpoints within the strata. The samples within
the image in the center result from uniformly distributed random variables on the strata.
The pattern within the right image is a Poisson pattern, that is, a point is randomly drawn
within a single strata only if its distance to the boundaries of the strata is greater than a
predefined value.

via a secondary estimator FSTRATN of the form

FSTRATN =

n∑
i=1

F
Qsi ,STRAT
N (6.484)

=

n∑
i=1

µs(Qsi )

ni

ni∑
j=1

f(Xi,j)

pX(Xi,j)
, (6.485)

where Xi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ ni are identical and independent according to the

probability density function pX distributed random samples.

Let us show by means of the following example, how this technique can be used in

computer graphics.

EXAMPLE 6.33 (Supersampling a Pixel) This procedure describes exactly the technique

of supersampling a pixel in computer graphics. Here, the pixel �j is broken into a

n × n grid, where a random point is chosen from each of the n2 strata, see Figure

6.28. Summing up the radiance values at these samples and subsequent averaging

provides the irradiance at the corresponding pixel. Irradiance (257)

Based on the Monte Carlo estimator from Equation (6.485) this trivial form of

supersampling a pixel|broken in N = n×n strata|can be estimated by the following
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strati�ed estimator:

FSTRATN =

N∑
i=1

f(Xi,1)

pi(Xi,1)
(6.486)

=

N∑
i=1

µ2
(
�j
N

)
f(Xi,1)

pX(Xi,1)
, (6.487)

where the random variables Xi,1 are independent and identically in each strata

according to the probability density function pX uniformly distributed samples.Uniform Distribution (180)

Let us now make a �rst statement on the variance of the strati�ed Monte CarloVariance of a RV (201)

estimator FSTRATN using ni according to the PDF pX-distributed random samples in each

stratum. Obviously, it holds:

Var
(
FSTRATN

) (2.772)
=

n∑
i=1

(
µs(Qsi )

ni

)2 ni∑
j=1

Var

(
f(Xi,j)

pX(Xi,j)

)
(6.488)

(2.772)
=

n∑
i=1

µs (Qsi )
2

ni
Var

(
f(Xi,1)

pX(Xi,1)

)
. (6.489)

Note that in we did not take into account the size of the strata relative to each other

as well as the number of samples per stratum in our formula for computing the variance

of FSTRATN . It is also not easy to determine these degrees of freedom, such that the �nal

variance is the smallest possible. But in the following theorem we will prove that the

optimal number of samples in one stratum should be proportional to the variance of the

estimator in the observed stratum relative to the variance of the estimator in all strata.

THEOREM 6.3 Let us consider the strati�ed secondary Monte Carlo estimator FSTRATN

given

FSTRATN =

n∑
i=1

µs(Qsi )

ni

ni∑
j=1

f(Xi,j)

pX(Xi,j)
(6.490)

based on the decomposition (6.475) of the integral from (6.473). Then, for the min-

imal variance of FSTRATN it holds:

minVar
(
FSTRATN

)
=
1

N

(
n∑
i=1

µs(Qsi )

√
Var

(
f(Xi,1)

pX(Xi,1)

))2
(6.491)

where, based on the assumption
∑n
i=1 ni = N, the minimal variance occurs for

ni = N

µs(Qsi )

√
Var

(
f(Xi,1)
pX(Xi,1)

)
∑n
i=1 µ

s(Qsi )

√
Var

(
f(Xi,1)
pX(Xi,1)

) . (6.492)
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PROOF 6.3 The method of Lagrange multipliers allows us to maximize or minimize

functions subject to a constraint, by solving a system of simultaneous equations

∇f(x1, . . . , xn) = λ∇2g(x1, . . . , xn) (6.493)

g(x1, . . . , xn) = C, (6.494)

where the variable λ is a dummy variable, called a Lagrange multiplier.

Setting f identical to the variance of Var
(
FSTRATN

)
, thus

f(n1, . . . , nn)
(6.489)
=

n∑
i=1

(µs(Qsi ))
2
Var

(
f(Xi,1)
pX(Xi,1)

)
ni

(6.495)

and choosing the constraint g(n1, . . . , nn) as

n∑
i=1

ni = N, (6.496)

then di�erentiation with respect to variable ni leads to the following system of equa-

tions:

−
|µs(Qsi )|

2
Var

(
f(Xi,1)
pX(Xi,1)

)
n2i

= λ2 (6.497)

for i = 1, . . . , n.

This equation can now be solved for the variable ni resulting in

ni =

|µs(Qsi )|

√
Var

(
f(Xi,1)
pX(Xi,1)

)
λ

for i = 1, . . . , n. (6.498)

Using the constraint N =
∑n
i=1 ni then we get:

N =

n∑
i=1

|µs(Qsi )|

√
Var

(
f(Xi,1)
pX(Xi,1)

)
λ

(6.499)

and for the Lagrange multiplier λ it holds:

λ =

n∑
i=1

|µs(Qsi )|

√
Var

(
f(Xi,1)
pX(Xi,1)

)
N

. (6.500)

Inserting the expression for λ in Equation (6.498) leads to

ni = N

|µs(Qsi )|

√
Var

(
f(Xi,1)
pX(Xi,1)

)
∑n
i=1 |µ

s(Qsi )|

√
Var

(
f(Xi,1)
pX(Xi,1)

) (6.501)
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Via Relation (6.501) then it is straightforward to proof Formula (6.491) for

minVar
(
FSTRATN

)
. We leave this easy exercise to the interested reader.

The statement of the above theorem can be interpreted in such a way that for pre-

scribed strata the variance of the estimator is minimal when the number of samples in

strata Qsi is proportional to µ
s(Qsi )

√
Var

(
FSTRATN

)
.

Let us now compare the variance of the strati�ed Monte Carlo estimator Var
(
FSTRATN

)
against its unstrati�ed version. For that purpose, let us suppose the sample size ni in Qsi
is proportional to the volume of the corresponding stratum, i.e., ni = µ

s(Qsi )N, where N

is the total number of samples. Then, we obtain:

Var
(
FSTRATN

)
=

1

N

n∑
i=1

µs(Qsi )Var

(
f(Xi)

pX(Xi)

)
, (6.502)

where Xi are independent and identically pX-distributed random variables.

In [220, Veach 1997] it is shown that the variance of the unstrati�ed Monte Carlo

estimator can be represented as the mean of the individual variances plus the variance of

the means, that is it holds:

Var
(
FUNSTRATN

)
(6.503)

=
1

N

(
n∑
i=1

µs(Qsi )Var

(
f(Xi)

pX(Xi)

)
+

n∑
i=1

µs(Qsi )
(
�mQs

i
− �mQs

)2)
,

where Xi,j are independent and identically pX-distributed random samples on Qs, �mQs
i

is the mean value of f in the strata Qsi , thus,

�mQs
i

def
=

1

µs(Qsi )

∫
Qs
i

f(x)dµs(x) (6.504)

and �mQs the mean value of f over the whole domain of integration, that is,

�mQs
def
=

1

µs(Qs)

∫
Qs
f(x)dµs(x). (6.505)

Now, from Equation (6.503) we can conclude that|under the assumption that the

sample size ni is proportional to the volume of the corresponding stratum, i.e., ni =

µs(Qsi )N|the variance of the non-strati�ed estimator can never be smaller than the

one constructed with the help of strati�ed sampling. However, in strati�ed sampling

variance reduction can only be achieved, if the strata Qsi have di�erent means, that is,

in a strati�ed sampling algorithm, the strata should be chosen such that their means are

di�erent as possible, at least when the number of samples in each stratum is proportional

to its volume. In [158, Pharr & Humphreys 2004] it is suggested to choose the strata as
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compact as possible if nothing is known about the integrand f. If the strata are wide, they

will contain more variation and will have means �mQs
i
closer to the true mean �mQs .

We can undoubtedly say that strati�ed sampling his one of the most promising vari-

ance reduction technique in Monte Carlo integration which is also of great importance

in the �eld of Monte Carlo rendering. The method works very well when the number of

samples required is known in advance and the dimension of the underlying problem is

relatively low, that is, s < 20.

REMARK 6.23 A problem that comes with strati�ed sampling is the partition of the

domain of integration into strata. Thus, the decomposition of Qs into strata of equal

size results in a minimum of 2s strata|one split in each dimension provided. This

corresponds to an enormous number of strata, and thus to an enormous number of

samples which must be drawn. Here, several techniques|such as latin hypercube Section 6.6.5

sampling, orthogonal array sampling, and several quasi-Monte Carlo methods|exist Section 6.6.7

that can remedy this problem. Chapter 7

Let us �nally present some di�erent techniques that can be helpful for stratifying

the domains of integration which are subject to the light transport equations of global

illumination theory.

EXAMPLE 6.34 (Voronoi-Diagrams) Let us consider domains of integration of the form

Q2 = I2 as they occur in pixel sampling. If we construct the so-called Hammersley

point set, that is, an N-element set of 2-dimensional points PN = {x1,x2, . . . ,xN}, Hammersley point set (634)

then we can observe that the distance between two element xi,xj from PN satis�es

the condition

‖xi − xj‖2 ≥
1

bn
, (6.506)

whereas N = bn with b ∈ N, b ≥ 2.
Now, the Voronoi area of a point xi in the unit square, denoted as Vor(xi), is

de�ned by

Vor(xi) = {x ∈ I2
∣∣‖xi − x‖2 ≤ ‖xk − x‖2, i 6= k, 1 ≤ k ≤ N}. (6.507)

Thus, the set PN implies a disjoint partition of I2 in the N convex Vornoi areas

Vor(xi), 1 ≤ i ≤ N, namely:

I2 =

N⋃
i=1

Vor(xi), (6.508)

which yields an implicit strati�cation of roughly equally sized integration domains

[67, Glassner 1995]. Figure (6.29) illustrates the above partition for the 4-element,

2-dimensional Hammersley point set P4 whose characteristics will be discussed in

more detail when dealing with quasi-Monte Carlo algorithms.
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FIGURE 6.29: STRATIFICATION OF I2 WITH VORONOI DIAGRAMS. Left, a 64-element
Hammersley point set. The second image shows a Voronoi diagram implied from the Ham-
mersley point set. Next, a 64-element hexagonal grid with the associated Voronoi diagram.

EXAMPLE 6.35 (Strati�cation of [0, 1)2) Let us consider the half-open unit square [0, 1)2,

then the set E =
∏2
j=1

[
aj

b
lj
,
aj+1

b
lj

)
, with lj ≥ 0 and 0 ≤ aj < blj describes the 2-

dimensional elementary intervals of [0, 1) with respect to the base b with Lebesgue mea-Lebesgue Measure (82)

sure µs(E) =
∏2
j=1

1

b
lj

= 1

b
∑2
j=1

lj
. Figure (6.30) demonstrates possible strati�cationsElementary Intervals (641)

of [0, 1)2 into all elementary intervals with Lebesgue measure 1
32
.(t,m, s)-net (641)

EXAMPLE 6.36 (Polar and Concentric Map) Normally, implementations for sampling

camera lenses are based on naive transformations, which maps points sampled within

the unit square I2 onto points within the unit circle C. Indeed, these mappings lead

to useable sampling patterns, but the transformation distorts several beautiful prop-

erties of the original sampling patterns. For example, in [158, Pharr & Humphreys

2004] it is shown that a strati�ed sampling pattern on the unit square is mapped

to an unstrati�ed pattern on the unit circle with less compact strata away from the

center. To preserve good sampling properties, we should be interested in construct-

ing mappings that are robust with respect to the characteristics of the pattern which

should be transformed.

Thus for example, in [107, Kolb 1995 & al.] and [185, Shirley 2000] it is required

that a mapping T : I2 → C should not only ful�ll the condition of area preservation,

i.e.,

µ2(A)

µ2(I2)
=
µ2(T(A))

µ2(D)
, (6.509)

with A ⊂ I2, as well as the continuity of T and T−1, but the mapping should also

satisfy the property of form retention. In [185, Shirley 2000] it is shown that an area

preserved transformation maps a point set drawn on I2 onto a similar one on C and

that the continuity- and form-preserving characteristics will lead to hold the neigh-

borhood relations between point pairs. Thus, Figure 6.31 demonstrates strati�cations
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FIGURE 6.30: STRATIFICATION OF I2 USING ELEMENTARY INTERVALS. The unit square
stratified with elemantary intervals in intervals with Lebesgue measure 1

32
.

of the unit circle incurred by di�erent parameterizations, where the concentric map

is formed through the rotation and reection of the mapping

(
x
πy
4x

)
, x, y ∈ I2.

REMARK 6.24 (Strati�ed Sampling on Is) Applying the technique of strati�ed sampling

to the integral given in (6.473), where the integration domain is the s-dimensional

unit cube, leads with independent, identically, and uniformly distributed samples Uniform Distribution (180)

Ui,1, . . . ,Ui,N, 1 ≤ i ≤ N from Is =
⋃N
i=1Q

s
i to the following form of the secondary

Monte Carlo estimator FI
s,STRAT
2 , well-known from a number of works:

FSTRATN =

n∑
i=1

F
Qsi ,STRAT
N =

n∑
i=1

µs(Qsi )

ni

ni∑
j=1

f(Ui,j). (6.510)

6.6.5 LATIN HYPERCUBE SAMPLING

As already mentioned above, strati�ed sampling is mainly e�ective for low-dimensional Section 6.6.4
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FIGURE 6.31: CARTESIAN, POLAR AND CONCENTRIC MAPS. Cartesian maps and their

polar and concentric maps according to the parameterizations

(
r

φ

)
=

(
U1
2πU2

)
,

(√
U1

2πU2

)
,

with U1, U2 ∈ I, and

(
V1
πV2
4V1

)
, V1, V2 ∈ [−1, 1], as examples for the stratification of the unit

circle.

integration problems, where the integrand is well-behaved. Naively extended to high-

dimensional integration domains, strati�ed sampling is, because of strong increases in the

sampling rate, not very helpful in the avoidance of clumping|the phenomenon that a large

number of points belonging to a set may be packed into little balls. For a s-dimensional

function the number of samples required is Ns, which can prohibitive for large values

of s. Here a procedure related to strati�ed sampling is more useful: Latin Hypercube

Sampling.

Latin hypercube sampling, or briey LHS, slightly modi�ed also known as N-rooks

sampling [181, Shirley 1990], is based on solving a problem in chess, namely, that N rooks

placed on a checker board must not defeat each other in one move.

Extended to s dimensions, this method suggests to transform the original integration

domain Qs onto the unit cube Is and then to split Is into N subintervals along the s

coordinate axes, where each of these N intervals has Lebesgue measure 1
N

and containsLebesgue Measure (82)

exactly one sample.

DEFINITION 6.15 (Latin Hypercube Sampling, LHS) Let Is be the s-dimensional unit

cube. Then, Latin hypercube sampling, also called as LHS, is denoted as the sam-

pling method, where, based on s N-element permutations π1, . . . , πs and uniformlyUniform Distribution (180)
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FIGURE 6.32: LATIN HYPERCUBE SAMPLING. On the left, a 5-element point set sampled
with Latin Hypercube sampling with s = 2,N = 5 the associated permutations are given
by: π1 = (1, 2, 3, 4, 5) and π2 = (3, 1, 5, 4, 2). The right image shows a 15-element point set
sampled with Latin Hypercube sampling.

distributed random variables Uij on [0, 1], sample locations Xi = (Xi,1, . . . , Xi,s) given

by

Xi,j
def
=
πj(i) +Uij

N
, 1 ≤ j ≤ s (6.511)

where Xi,j denotes the j
th coordinate of sample Xi.

This construction results in a uniform probability distribution in each of the subin-

tervals, and therefore in each s-dimensional subcube. For more information on LHS, in

particular a discussion on variance analysis of LHS, see [220, Veach 1997].

EXAMPLE 6.37 Visualization of 5-rooks sampling in the square Q2 = [2, 3] × [1, 2] is

shown in part a) of Figure 6.32. The chosen permutations are π1 = (1, 2, 3, 4, 5) and

π2 = (3, 1, 5, 4, 2). Based on these choice, the resulting samples lie in the subsquares

(1, 3), (2, 1), (3, 5), (4, 4), (5, 2).

EXAMPLE 6.38 (Raytracer Conception) One typical application area of Latin hypercube

sampling is found in the implementation of modern ray tracers. Apart from con-

ventional ray distribution over pixels, the tracing of reective and refractive rays, as

well as the sampling of light sources, modern ray tracers also solve problems such as

aliasing, depth of �eld, and motion blur. This means that in modern ray tracer there

must exist routines for stratifying pixels, camera lenses, as well as, the time. Now,

sampling in higher dimensions requires generating sk rays per pixel for k-strati�ed

dimensions. One possibility to avoid this undesired e�ect is to use the technique of

LHS, where only s of the originally sk rays must be generated to shade a pixel, see
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FIGURE 6.33: LATIN HYPERCUBE SAMPLING FOR RAY TRACER CONCEPTION. Latin
hypercube sampling for pixel-, lens- and light source sampling used in the conception of a
simple ray tracer.

Figure 6.33.

REMARK 6.25 LHS requires storing the involved permutations, which in s-dimensional

cases implies a storage capacity of O(sN). It also has the disadvantage, that the

quality of the generated pattern is highly dependent on the choice of the permutations

used. This is the reason why Latin hypercube sampling is not appropriate for the

solution of a number of integrals given here, under the condition of highly sampled

integration domains [104, Keller 1998].

6.6.6 JITTERED SAMPLING

Let us now take a look at another method of variance reduction: Jittered Sampling.

Jittered sampling may be regarded as a two-step sampling technique. In the �rst step,

jittered sampling constructs a uniform strati�cation of the underlying integration domain,

resulting in a regular or hexagonal grid, a N-rooks pattern, respectively a Voronoi diagram.n-rooks Sampling (580)

Voronoi Diagram (637) Then, the method chooses a single sample in every strata and moves this sample with the

help of a randomly selected displacement [183, Shirley 1991]. Figure 6.34 shows a point

set based on a regular grid with the associated pattern generated by jittering.

[183, Shirley 1991] presents a variant of jittered sampling, half jittered sampling, see

the right image of Figure 6.34. Instead of moving samples in the Voronoi area allocated

to the grid point a sample is placed only in a square selected around the grid point.

According to [104, Keller 1998] ], due to its dimension-dependent characteristics,

jittered sampling has been found to be a less appropriate sampling technique for larger

dimensions s with s > 6.
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FIGURE 6.34: JITTERED SAMPLING. First, the underlying domain is stratified. Then the
algorithm chooses a single sample in every strata and moves this sample with the help of a
randomly selected displacement [183, Shirley 1991]. Figure 6.34 shows a point set based on
a regular grid together with its pattern generated with jittering. Instead of moving samples
in the Voronoi area allocated to the grid point a sample is placed only in a square selected
around the grid point

REMARK 6.26 If we turn once more to the estimator F
Isi ,STRAT
N from Equation (6.510).

Due to the decomposition of Is =
⋃N
i=1 I

s
i , with Lebesgue measure µ2(Isi ) = 1

N
, a

jittered-Monte Carlo estimator based on strati�ed sampling is given by:

FJITN =

N∑
i=1

F
Isi ,STRAT
N . (6.512)

6.6.7 ORTHOGONAL ARRAY SAMPLING

Orthogonal Array Sampling [143, Owen 1992] is a generalized type of Latin hypercube Section 6.6.5

sampling that shares certain desirable properties with LHS and but additionally possess

desirable statistical features. It returns samples that are well-distributed with respect to

any combination of two, three, or more dimensions.

DEFINITION 6.16 (Orthogonal Array) An orthogonal array OA(N, s, b, t) is a N × s ma- Matrix (853)

trix, whose coe�cients are drawn from an alphabet of size b, such that every N × t
submatrix contains exactly the same number of rows with the same permutation of

elements. Let λ be the number of times that each row appears in the submatrix N×t,
then it is obviously to see that the total number of rows in an orthogonal array is

N = λbt. The parameter λ is often called the index of OA and t is denoted as the

strength of the orthogonal array.

EXAMPLE 6.39 Figure 6.35 shows an orthogonal array OA = (8, 4, 2, 3). Obviously, it
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FIGURE 6.35: ORTHOGONAL ARRAY SAMPLING. OA = (8, 4, 2, 3) constructed over the
alphabet {0, 1}. Every permutation of length 3 consisting of coefficients of {0, 1} is contained
exactly once in a 8× 3 submatrix.

is a 8× 4 matrix with coe�cients from the alphabet {0, 1} where every permutation of

{0, 1} appears λ = 1 times in every submatrix constructed from 8 rows and 3 columns.

How can we use such an array for sampling?

Now [220, Veach 1997] argues as follows: Let OA be an N × s orthogonal array of

strength t, whose coe�cients are drawn from the alphabet {0, 1, . . . , b− 1}. In a �rst step,

we randomize the array OA using a permutation πj of the given alphabet to each column,

i.e., we obtain a new orthogonal array

ÔAi,j
def
= πj(OAi,j) ∀ i, j, (6.513)

with the same parameters as the original one, where π1, . . . , πs are random permutations

of the symbols {0, 1, . . . , b− 1}. Obviously this initial step guarantees, that each of the bs

possible rows occurs in ÔA with equal probability.

Let us assume that the domain is the unit cube [0, 1]s. By splitting each of its edges

into b intervals with Lebesgue-measure 1
bs
, we obtain a set of bs s-dimensional subcubes,Lebesgue Measure (75)

where each 1× s row of ÔA can be interpreted as an index into this set of subcubes. The

idea behind orthogonal array sampling is to generate one sample Xi = (Xi1 , . . . , Xis) in

each of the N subcubes speci�ed by the rows of ÔA, where the j-th coordinate of Xi is

given by

Xi,j
def
=
ÔAij +Ui,j

b
, (6.514)

and Ui,j are uniformly distributed random variables on [0, 1]. As the sample Xi is uni-Uniform Distribution (180)

formly distributed in [0, 1]s, an unbiased estimator for the integral from (6.92) is givenUnbiased (507)

Monte Carlo Estimator (499)
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by

FOAN =
1

N

N∑
i=1

f(Xi). (6.515)

If we then consider the projection of these samples onto the subspace spanned by t

coordinate axes, the main property of orthogonal array sampling ensures that these samples

will be uniformly distributed over the bt subcubes which are obtained by stratifying each of

the t axes into intervals of Lebesgue-measure 1
bt
. To see this, observe that the coordinates

of the projected samples are speci�ed by the rows of a particular N× t submatrix. Due to

the de�nition of an orthogonal array, each of the possible bt rows occurs λ times in this

submatrix, so that each of the bt subcubes occurs exactly λ times. Therefore, orthogonal

array sampling generates samples that are strati�ed with respect to every possible subset

of t coordinates.

Due to [143, Owen 1992], [144, Owen 1994], the variance of orthogonal array sampling

can be estimated by

Var
(
FOAN

)
=
1

N

∑
|U|>t

∫
f2U(x

U) dµ(x) + o

(
1

N

)
with U ⊆ P({1, . . . , s}), (6.516)

and f(x) =
∑
U fU(x

U), i.e., the convergence rate is improved with respect to all compo-

nents of the integrand that depend on t coordinates or less.

Of special interest for graphics is the case t = 2. Applied to distribution ray tracing Distribution Ray Tracing (672)

orthogonal array sampling ensures that all 2-dimensional projections are well strati�ed

over the pixel, lens aperture, light source, etc..

6.6.8 ANTITHETIC VARIATES

Usually Monte Carlo methods use random points which are drawn independent of each Independent RV (204)

other. The procedure, which we now introduce, deliberately makes use of correlated

samples taking advantage of the fact that such a correlation may be negative. The idea of

Antithetic Variates, one of the simplest and widely used methods of reducing variance, is

to �nd an estimator F′N having the same expected value as the estimator FN from Equation

(6.109) but which is strongly negatively correlated.

Let us consider the Monte Carlo estimator Monte Carlo Estimator (499)

FAVN
def
=
1

2
(FN + F′N) (6.517)

for approximating the integral∫
Is
f(x)dµs(x) =

∫
Is

1

2
(f(x) − f(1− x)) dµs(x), (6.518)
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where f is a linear, real-valued function.

Obviously, FAVN has the same expected value as FN and F′N, i.e., if FN is unbiased, Expected Value (196)

Unbiasedness (507)then FAVN is also unbiased. We leave the proof of this statement to the interested reader

as an exercise.

Now, our focus is on the variance of the estimator FAVN . If we can arrange to sample
Variance (201)

points such that FN and F′N are su�ciently negatively correlated, then it holds:
Covariance (203)

Var
(
FAVN

) (2.785)
=

1

4
Var (FN) +

1

4
Var(F′N) +

1

2
Cov(FN, F

′
N), (6.519)

i.e., the estimator FAVN will have a lower variance as FN. Assuming that F′N has the same

variance as FN then we may write

Var
(
FAVN

)
=
1

2
(Var(FN) + Cov(FN, F

′
N)) , (6.520)

which|under the condition that Cov(FN, F
′
N) is strongly negative correlated|implies,

that the combined estimator Var
(
FAVN

)
has lower variance as the original one.

EXAMPLE 6.40 (Sampling on the Unit Cube) The simplest way to construct the estimator

F′N on the unit cube [0, 1]s is to use pairs of sample points (X,Y) of the form X =

(U1, . . . , Us) and Y = (1−U1, . . . , 1−Us). If the integrand of the Integral from (6.518)

is a monotone function, then f(X) is large where f(Y) is small and vice versa, i.e.,

the variations will largely cancel each other and the integral from Relation (6.518)

can be written as ∫
[0,1]s

1

2

(
f(x) + f(1− x)

)
dµs(x). (6.521)

Obviously, an associated secondary Monte Carlo estimator has the simple form

FAVN =
1

2N

N∑
i=1

(f(Xi) + f(1−Xi)) . (6.522)

REMARK 6.27 Antithetic variates can also easily be combined with other methods for

reducing the variance of a Monte Carlo estimator such as strati�ed or importance

sampling. Combined with importance sampling, the estimator FAVN looks like this:

FIS,AVN =
1

2N

N∑
i=1

f(Xi) + f(1−Xi)

pX(Xi)
, (6.523)

where pX is a well chosen PDF used for importance sampling, and applied to strati�ed

sampling, where the domain of integration Is is decomposed in the union of the n

disjoint Is1, . . . I
s
n, we get:

FSTRAT,AVN =

n∑
i=1

µs(Isi )

2ni

ni∑
j=1

f(Xi,j) − f(1−Xi,j)

pX(Xi,j)
. (6.524)
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REMARK 6.28 With respect to integral equations underlying the global illumination

problem the technique of antithetic variates is of limited usefulness, since variance

comes mainly from the discontinuities and singularities of the underlying integrands,

so that variance improvements on smooth regions of the integrands are rejected.

6.6.9 MULTIPLE IMPORTANCE SAMPLING

All of our sampling strategies in Monte Carlo integration, introduced until to now, use a

single probability density function to generate samples from given integrands. Now, the Probability Density Function (176)

integrands involved in the SLTEV are usually complex, as they depend on material prop- SLTEV (398)

erties of the objects in the scene, the scene geometry, or since they are often mathematical

expressions of the form

f(x) = f1(x)f2(x) + f3(x) (6.525)

f(x) = (f1(x) + f2(x))f3(x) (6.526)

f(x) = f1(x)f2(x)f3(x), (6.527)

which depend on parameters whose values are not known in advance. In all those circum-

stances, it is di�cult to design a single e�cient sampling strategy that works well.

One hitherto common approach to solve the problem was, to partition the domain of

integration into several regions, and to design separate sampling strategy for each region,

or simply to ignore some of the unknown components and to design sampling strategies

only for known components. Such an approach will be presented in Section 9.1 when

introducingMonte Carlo path tracing, where we use di�erent sampling techniques for the

evaluation of direct and indirect lighting, as well as glossy, di�use, or specular reections. Glossy Reflection (304)

Now, since a best sampling strategy cannot be chosen, in [222, Veach and Guibas

1995] and [221, Veach 1998] the proposal is made, instead to concoct a good sampling

strategy from several bad sampling strategies, to combine the sample values in a provably

good way, so that the strengths of each sampling strategy is preserved. The idea behind

this strategy is to draw samples from multiple distributions in the hope that at least one

of these distributions will match the shape of the integrand in a reasonable manner.

6.6.9.1 THE GLOSSY HIGHLIGHTS PROBLEM

Let us consider the rendering of a glossy surface illuminated by a nearby area light source

☼ ∈ ∂V. Since our scene only exists of a light source and a surface, the scattering part in Scattering Equation (374)

the stationary light transport equation, integrated over the unit sphere S2, has the form∫
S2(sj)

fs(sj,ω
j
i → ωjo)Le,i(sj,ω

j
i)dσ

⊥
sj
(ωji) (6.528)
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FIGURE 6.36: GEOMETRY OF THE GLOSSY HIGHLIGHTS PROBLEM. The integral within
the scattering equation can be evaluated using directional sampling, also called sampling the
BSDF, or integration can be done by area sampling of the light source.

where, integrated via the area of the light source ☼, it looks like this∫
∂V

fs(sj+1 → sj → sj−1)Le(sj+1 → sj)G(sj+1 ↔ sj)dµ
2(sj+1) (6.529)

with sj+1 ∈ ☼.

Now, there are two di�erent sampling strategies for evaluating these integrals, see

Figure 6.36: The �rst integral can be evaluated using directional sampling, also called

sampling the BSDF, or BRDF-sampling, and the second integral can be evaluated by

area sampling of the light source.

With directional sampling, we have to sample incident directions ωjki according to aProbability Density Function (176)

probability density function pσ usually chosen to be proportional to the BSDF fs thus:BSDF (371)

pσ(ω
jk
i ) ∝ fs(sj,ωjki → ωjo) (6.530)

or

pσ(ω
jk
i ) ∝ fs(sj,ωjki → ωjo)

∣∣∣cos θjki ∣∣∣ . (6.531)

Then, an associated secondary Monte Carlo estimator for approximating Equation

(6.528) has the form

1

N

N∑
k=1

fs(sj,ω
jk
i → ωjo)Le(sj,ω

jk
i )

pσ(ω
jk
i )

, (6.532)
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where ωjki are N according to the pdf pσ distributed independent random variables andPDF (176)

Le(sj,ω
jk
i ) is the radiance exitant from point sj in direction ωjki . Note, not all samples

ωjki are important for the computation of the highlight, only those samples that hit the

light source are relevant.

The integral from Equation (6.529) is usually evaluated by a sampling strategy, which

is known as area sampling. A typical strategy with area sampling is to randomly sample

points on ☼ according to a PDF which is uniformly distributed with respect to surface Uniform Distribution (180)

area µ2 (☼) or the emitted power µ(Φ☼), that is,

pµ2(x) =
1

µ2 (☼)
(6.533)

or

pµ(x) =
1

µ(Φ☼)
. (6.534)

Then, an associated secondary Monte Carlo estimator for approximating Equation Monte Carlo Estimator (499)

(6.529) has the form

1

N

N∑
k=1

fs(Xj+1,k → sj → sj−1)Le(Xj+1,k → sj)G(Xj+1,k ↔ sj)

pµ2(Xj+1,k)
, (6.535)

or

1

N

N∑
k=1

fs(Xj+1,k → sj → sj−1)Le(Xj+1,k → sj)G(Xj+1,k ↔ sj)

pµ(Xj+1,k)
, (6.536)

where Xj+1,k are N according to the PDFs pµ2 or pµ distributed random variables.

Due to the more or less recognizable noise in the reections of the light sources on

the glossy plates in Figure 6.37, we can conclude that depending on the size of the light

source and the roughness of the surface, one of these sampling strategies solves the glossy

highlight problem much better than the other.

Obviously, it is relatively unlikely that rays sampled according to the BSDF hit a very

small light source, that is, the second sampling strategy delivers better results in those

cases where the light sources are very small and the material is more di�use, see the lower

left portions of the images in Figure 6.37. In the opposite case, where the light source

is large and the material is highly smooth, sampling the BSDF is far superior than area

sampling, compare the upper right portions of Figure 6.37. The reason for this is that

points, randomly chosen on the light source according to area sampling, will probably not

contribute signi�cantly to the radiance reected along the viewing ray. Radiance (250)

Now, this result should not be surprisingly, as the integrand in the scattering equation

is a product of various unrelated factors|the BSDF fs, the emitted radiance Le, and

several geometric quantities like the visibility and the geometry term|but both sampling
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FIGURE 6.37: THE GLOSSY HIGHLIGHTS PROBLEM. A comparison of two sampling
strategies for glossy highlights from area light sources. The images show a scene model
composed of four rectangular plates of different degrees of surface roughness, and illuminated
by four spherical light sources of varying radii and color that emit the same total power.
Obviously, the different surface roughness controls how sharp or fuzzy the reflections of the
light sources at the plates are. The images are rendered using different sampling techniques:
In the left image, incident directions are sampled proportional to the BSDF, on the right-
hand side, the light sources are sampled and shadow rays are fired in direction to the light
sources. Image courtesy of Eric Veach, Stanford University.

strategies does not take into account all of these factors. While BSDF sampling does not

account for the radiance emitted from the light source, area sampling does not take into

account the BSDF. This can be interpreted in such a way, that a disregarded dominant Visibility Function (45)

factor leads to a weak sampling technique. Thus, an ideal probability density functionGeometry Term (129)

should be proportional to the product of all of these factors.

REMARK 6.29 Let us recall: Both sampling strategies work on the same domain of

integration, which can be interpreted as a set of directions or as a set of surface

points. Therefore, we can also express one of our sampling strategy in terms of the



SECTION 6.6. VARIANCE REDUCTION TECHNIQUES 591

other using the relationships

pµ2(sj+1) =
dPµ2
dµ2

(sj+1) (6.537)

=
dPσ
dσ

(ωji)
dσ(ωji)

dµ2(sj+1)
(6.538)

(2.196)
= pσ(ω

j
i)
dµ2(sj+1)

∣∣∣cos θj+1o ∣∣∣
dµ2(sj+1) ‖sj+1 − sj‖22

(6.539)

= pσ(ω
j
i)

∣∣∣cos θj+1o ∣∣∣
‖sj+1 − sj‖22

(6.540)

as well as

pσ(ω
j
i) =

dPσ
dσ

(ωji) (6.541)

=
dPµ2
dµ2

(sj+1)
dµ2(sj+1)

dσ(ωji)
(6.542)

(2.196)
= pµ2(sj+1)

dµ2(sj+1)‖sj+1 − sj‖22
dµ2(sj+1)

∣∣∣cos θj+1o ∣∣∣ (6.543)

= pµ2(sj+1)
‖sj+1 − sj‖22
| cos θj+1o |

. (6.544)

With the help of these two formulas, we can then convert a directional density

into an area density and vice versa, resulting in two di�erent sampling strategies

given over the same integration domain.

6.6.9.2 COMBINING SAMPLING TECHNIQUES

When designing a Monte Carlo technique for evaluating the SLTEV, we have rarely accu- SLTEV (398)

rate information about the look and the shape of the integrand. The only thing we know

about the integrand are a few parameters, such as the BSDF, the scene, and light source BSDF (371)

geometry, etc., that describe them. As these parameters can vary, it is di�cult to design

a single sampling strategy that works reliably in all situations.

Now, our goal is to design sampling strategies that guarantee low-variance results Variance of a RV (201)

for the whole range of parameter values, thus, for all possible integrands resulting from

changes in the parameters. But this can not be achieved with the hitherto methods as

the integrand is usually a sum or product of many di�erent factors, which can not be

sampled directly. One tries to solve this problem by choosing samples from PDFs that PDF (176)

are proportional to some subsets of factors of the intergrand. But as the glossy highlights

problem shows, this can lead to high variance, when a dominant factor is unconsidered.
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The key for solving this problem is to avoid insu�cient sampling of the integrand f where

its values are large.

To achieve this goal, that is, for solving the integral,∫
Qs
f(x)dµs(x), (6.545)

by constructing estimators that have low variance for a broad class of integrands, in [222,

Veach and Guibas 1995], [221, Veach 1998], the following approach is made:

Design a set of importance sampling techniques on the domain Qs|whose corre-

sponding PDFs are denoted by p1, . . . , pn|where at least one of those sampling tech-

niques must be able to generate samples where the integrand is large, but not every pi
must be able to sample from the entire domain. Finally, we then estimate the integral as a

weighted combination of all the samples. Due to [221, Veach 1998], this approach is called

Multiple Importance Sampling, or MIS.

Let us now introduce a combined estimator that assigns an appropriate weight to

each individual sample, the so-called the multi-sample estimator. It is de�ned as follows:

DEFINITION 6.17 (The Multiple-sample Estimator) Let us consider the integral from

Equation (6.545) and let us assume p1, . . . , pn be probability density functions de�nedProbability Density Function (176)

on the probability space (Qs,B(Qs), µs). Let us furthermore assume that wi, 1 ≤ i ≤ n
are chosen weight functions, which apart from

n∑
i=1

wi(x) = 1 whenever f(x) 6= 0 (6.546)

also must satisfy the condition:

wi(x) = 0 for pi(x) = 0. (6.547)

Let Xi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ ni with
∑n
i=1 ni = N according to the PDF pi

distributed independent random variables on Qs, then we call the expressionRandom Variable (168)

FMISN
def
=

n∑
i=1

1

ni

ni∑
j=1

wi(Xi,j)
f(Xi,j)

pi(Xi,j)
, (6.548)

the multiple-sample estimator.

As already mentioned above, multiple importance sampling is a technique, that at-

tempts to �nd weighting functions wi and PDFs pi that satisfy the condition, that at least

one sampling techniques must be able to generate samples in those regions, where the in-

tegrand is not equal to zero. Contrary to importance sampling, such a technique must not
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be able to draw samples on the whole domain of integration, but it can concentrate on

important regions for the integrand. That is, the condition from Equation (6.546) ensures,

that a sample, drawn from several PDFs, is accounted for exactly once while the second

condition says, that a sample, which cannot be drawn by a certain PDF should evaluate

to zero.

REMARK 6.30 (Simple Examples of Weighting Functions) By choosing the weighting func-

tions wi as constant over the whole domain of integration, we get a multiple-sample

estimator, which can be seen as a weighted combination of separate estimators. On

the other hand, setting wi to one for speci�c subdomains Qsi of Q
s leads to a sepa-

ration of the original domain of integration.

The multiple-sample estimator FMISN from De�nition 6.17 satis�es the following the-

orem:

THEOREM 6.4 The multiple-sample estimator FMISN is unbiased, that is, it holds:

E
(
FMISN

)
=

∫
Qs
f(x)dµs(x). (6.549)

PROOF 6.4 Obviously it holds for the expected value of the multiple-sample estimator:

E
(
FMISN

)
= E

 n∑
i=1

1

ni

ni∑
j=1

wi(Xi,j)f(Xi,j)

pi(Xi,j)

 (6.550)

(2.732)
=

∫
Qs

 n∑
i=1

1

ni

ni∑
j=1

wi(x)f(x)

pi(x)

 dP(x) (6.551)

=

∫
Qs

(
n∑
i=1

wi(x)f(x)

pi(x)

)
dP(x) (6.552)

dµs= dP
pi=

∫
Qs

(
n∑
i=1

wi(x)f(x)

)
dµs(x) (6.553)

(6.546)
=

∫
Qs
f(x)dµs(x). (6.554)

Let us �nally consider an example for the construction of a multiple-sample estimator

for the glossy highlights problem:

EXAMPLE 6.41 (A Multiple-sample Estimator for the Glossy Highlights Problem) Based

on our discussion in Section 6.6.9.1, we can combine the two sampling strategies,

sampling the BSDF and sampling the area light source, to achieve a multiple sample

estimator.
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Let pσ and pµ2 be a BSDF-sampling, respectively, area light source sampling

technique. If we now choose the weighting functions as constant, such as e.g. wi =
1
2

for 1 ≤ i ≤ 2, then a multiple-sample estimator can be written as:

FMISN =
1

ni

ni∑
k=1

1

2

fs(sj,ω
jk
i → ωjo)Le,i(sj,ω

jk
i )

pσ(ω
jk
i )

+ (6.555)

1

ni

ni∑
k=1

1

2

fs(Xj+1,k → sj → sj−1)Le(Xj+1,k → sj)G(Xj+1,k ↔ sj)

pµ2(Xj+1,k)
,

where ωji and Xj+1,k are independent according to the probability density functions

pσ and pµ2 independent distributed random variables.

With ni = 1 the multiple-sample estimator F
MIS
2 can simpli�ed be written as:

FMIS2 =
1

2

(
fs(sj,ω

j
i → ωjo)Le,i(sj,ω

j
i)

pσ(ω
j
i)

+ (6.556)

fs(Xj+1 → sj → sj−1)Le(Xj+1 → sj)G(Xj+1 ↔ sj)

pµ2(Xj+1)

)
.

It should be clear, that the above multiple-sample estimator FMISN |by using the

Formulas (6.540) and (6.544)|can also be completely expressed either with direc-

tional or spatial random variables.

The above choice of the weighting functions wi =
1
2
is not a really good choice.

In the next section, we discuss weighting heuristics that work very well.

EXAMPLE 6.42 (A Multiple-sample Estimator for the Glossy Highlights Problem, continued)

The above multiple-sample estimator FMISN can be drilled, by using the fact that a

BSDF is usually decomposed of a di�use, specular, and a glossy component. Based

on this decomposition, the integrand of the stationary light transport equation can be

written in the form

fs(sj,ω
j
i → ωjo)Li(sj,ω

j
i) =

(
fos (sj,ω

j
i → ωjo) + f

∨

s (sj,ω
j
i → ωjo) + (6.557)

fgls (sj,ω
j
i → ωjo)

)
Li(sj,ω

j
i).

With respect to the glossy highlights problem, we then use three importance-based

BSDF-sampling strategies for sampling the di�erent components of the BSDF and

combine these techniques with our area-sampling strategy for sampling the involved

light source.

Let po, p∨ and pgl denote the corresponding BSDF-sampling techniques and

p� the area-sampling technique. With constant weighting functions wi =
1
4
for l ∈
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{o,∨, gl,�}, then the above multiple-sample estimator can be written as:

FMISN =
∑

l∈{o,∨,gl}

1

4nl

ni∑
k=1

fls(sj,ω
jk
i → ωo)Li(sj,ω

jk
i )

pσl(ω
jk
i )

+ (6.558)

1

4nl

fs(Xj+1,k → sj → sj−1)L(Xj+1,k → sj)G(Xj+1,k ↔ sj)

pµ2(Xj+1,k)
,

where ωjki and Xj+1,k are independent according to the probability density functions

pσl and pµ2 distributed random variables.

With nl = 1 the multiple-sample estimator F
MIS
4 can simpli�ed written as:

FMIS4 =
1

4

∑
l∈{o,∨,gl}

fls(sj,ω
j
i → ωo)Li(sj,ω

j
i)

pσl(ω
j
i)

+ (6.559)

fs(Xj+1 → sj → sj−1)L(Xj+1 → sj)G(Xj+1 ↔ sj)

pµ2(Xj+1)
.

As already mentioned in Remark 6.30, the partition of the integration domain in sub-

domains, as known from strati�ed sampling, can also be modeled via multiple importance Section 6.6.4

sampling. For this, let us consider the following example.

EXAMPLE 6.43 ( Partition of the Integral Domain) By constructing weighting functions

wi, which are de�ned only over subdomains of the original domain of integration,

multiple importance sampling allows the representation of the original integral as the

sum of integrals over disjoint subdomains of Qs, that is, the integral from Equation

(6.545) can be expressed as:∫
Qs
f(x)dµs(x) =

n∑
i=1

∫
Qs
i

f(x)dµs(x) (6.560)

where it holds Qsi ∩Qsj = ∅ for i 6= j, 1 ≤ i, j ≤ n and

wi(x) =

{
1 if x ∈ Qsi
0 otherwise.

(6.561)

The subdomains Qsi can then be sampled separately by techniques pi. This leads

to a multiple-sample estimator of the form

FMISN =

n∑
i=1

1

ni
wi(Xi,k)

f(Xi,k)

pi(Xi,k)
(6.562)

with ni according to the probability density functions pi distributed independent ran-

dom variables drawn from Qsi .

A typical application of this technique is the partitioning of a scene into light

source regions and non-light source region when evaluating the scattering equation, Scattering Equation (374)

as we will encounter them when discussing Monte Carlo path tracing. Section 9.1
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6.6.9.3 WEIGHTING HEURISTICS

For constructing an e�cient Monte Carlo estimator FMISN simple combining the weighting

functions as we did it in Example (6.41) with

FMISN =

n∑
i=1

1

ni

ni∑
j=1

wi(Xi,k)
f(Xi,k)

pi(Xi,k)
(6.563)

wi=
1
n=

1

n

n∑
i=1

FISN,i (6.564)

and FISN,i =
1
ni

∑ni
j=1

f(Xi,k)
pi(Xi,k)

is not a good choice, since the variance of FMISN is dependingVariance (201)

on the variance of the estimators FISN,i. That is, high variance in any of the estimators FISN,i
leads to high variance of FMISN .

THE BALANCE HEURISTIC. Our goal is now to �nd an estimator FMISN with minimum

variance, where the weighting functions wi are chosen appropriately.

DEFINITION 6.18 (Balance Heuristic) Let p1, . . . , pn be strategies for sampling the inte-

gral from Equation (6.545). The balance heuristic is given by the following weighting

functions:

wi(x)
def
=

nipi(x)∑
k nkpk(x)

(6.565)

where , 1 ≤ i, k ≤ n. Due to [221, Veach 1998], there is no other combination which

is much better than the balance heuristic.

Based on the balance heuristic, the multiple-sample estimator can be written as:

FMISN =

n∑
i=1

1

ni

ni∑
j=1

(
nipi(Xi,k)∑
k nkpk(Xi,k)

)
f(Xi,k)

pi(Xi,k)
(6.566)

=

n∑
i=1

ni∑
j=1

f(Xi,k)∑
k nkpk(Xi,k)

(6.567)

=
1

N

n∑
i=1

ni∑
j=1

f(Xi,k)∑
k ckpk(Xi,k)

, (6.568)

where N =
∑n
i=1 ni is the total number of samples and ck = nk

N
corresponds to the

fraction of samples chosen via pk. Expressing the sum in the denominator in terms of a

so-called combined sample density p̂, de�ned by:

p̂(x)
def
=

n∑
k=1

ckpk(x), (6.569)
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the multiple-sample estimator takes on the form of a standard Monte Carlo estimator.

Due to its de�nition, the balance heuristic depends on both, the PDF as well as the

number of samples used. Obviously, the contribution f(Xi,k) of an improbable sample

Xi,k, thus a sample which is drawn with very small probability, to the estimator is large.

As such samples increase the variance of an unweighted estimator, the associated PDF

is not suitable for sampling. In multiple importance sampling, the contributions of these

samples are compensated by the weights wi. That is, if there is another sampling strategy

pi that draws the sample Xi,k with high probability, the sum of the weights wi(Xi,k) in

the denominator becomes large compared to the nominator, and the small weight of this

sample compensates the large unweighted contribution of f(Xi,k)
pi(Xi,k)

. Apart from the PDF

also the number of samples have an inuence on the weights wi, as a sampling strategy,

that uses more samples|and which has therefore a lower variance|works with a larger

weight than a sampling strategy, that uses fewer samples.

ADVANCED HEURISTICS. When no information about the integrand is available, the

balance heuristic is a good choice for constructing a multiple-sample estimator. But in

[221, Veach 1998] it is also shown that there are other heuristics, variations of the bal-

ance heuristic, that have better performance in low-variance problems. These techniques

use a so-called sharpening strategy. Roughly formulated this means that the weighting

functions are modi�ed in such a way that large weights are made closer to one and small

weights are made closer to zero in a certain part of the integration domain.

DEFINITION 6.19 (The Cuto� Heuristic) The cuto� heuristic modi�es the weighting func-

tions by discarding samples with low weight, according to a cuto� threshold α ∈ [0, 1]:

wi(x) =


0 if nipi(x) < αmaxk(nkpk(x))

nipi(x)∑
k{nkpk(x)|nkpk(x)≥αmaxk(nkpk(x))}

otherwise. (6.570)

The threshold α determines how small nipi(x) must be before it is thrown away

[221, Veach 1998].

DEFINITION 6.20 (The Power Heuristic) The power heuristic, [221, Veach 1998], modi�es

the weighting functions in a di�erent way, by raising all of the weights to an exponent

β, and then renormalizing:

wi(x) =
(nipi(x))

β∑
k(nkpk(x))

β
. (6.571)

An exponent β = 2 works well in practice and is most often used. The exponentiation

increases the weight of a sample for those techniques that drawn the sample with a high

probability pi(x).
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DEFINITION 6.21 (The Maximum Heuristic) The maximum heuristic partitions the do-

main into n regions, according to which function qi is largest at each point x:

wi(x) =

{
1 if nipi(x) = maxk(nkpk(x))}

0 otherwise.
(6.572)

REMARK 6.31 Obviously, the balance heuristic is a special case of the cuto� as well

as the power heuristic since due to the choice of α = 0, respectively, β = 1 the

de�nitions of the cuto� and power heuristic lead to the balance heuristic. The same

holds for the maximum heuristic by choosing α = 1, respectively, β = ∞. While the

power heuristic is of a great practical interest, the two other heuristics are rather of

theoretical interest.

REMARK 6.32 The discussion above shows that multiple importance sampling is a

great tool for constructing robust Monte Carlo estimators. Instead of trying to �nd

an ideal PDF that matches the shape of the integrand over the whole domain of

integration, now speci�c PDFs, adapted to the underlying problem, can be used. Due

to the combination strategy of MIS we can then expect good results in the process of

sampling. But it should also be clear that this �ne sampling strategy does not come

for free. Compared with one of our standard variance reduction techniques, multiple

importance sampling requires additional cost for computing the weights wi and the

evaluation of n PDFs at a sample Xi,k.

In Section 9.3, we present bidirectional path tracing, a Monte Carlo rendering

algorithms that makes use of MIS as sampling strategy.

6.7 MONTE CARLO INTEGRATION AND FREDHOLM

INTEGRAL EQUATIONS OF THE 2nd KIND

As already noted, the linear integral equations underlying the global illumination problemFredholm Integral Equations (127)

are Fredholm equations of the 2nd kind, that is, they are all of the form

f(x) = g(x) +

∫
R

k(x,y) f(y)dµ(y), (6.573)

where R is a measurable set, f, g are real-valued functions from L2(R, µ), and the kernelMeasurable Set (80)

L2(R, µ) (110)

Integral Kernel (127)

k is a real-valued function of the two variables x and y from L2(R× R, µ× µ).

In Section 2.3.3 we have already presented deterministic, numerical methods for solv-

ing Fredholm integral equations of the 2nd kind, which are based on functional analytical

concepts. Now, we are interested in solution methods that are subjected to the principles

of probability theory, i.e. we are interested in solving Fredholm equations via Monte Carlo

methods. In this context, we discuss four approaches:
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i) the approach of successive integral substitution,

ii) an approach based on the Neumann series,

iii) an approach based on discrete-time Markov processes, and

iv) next event estimation, a method where the original integral domain is split up into

two separate integration domains.

All four approaches lead to the same result, but are based on di�erent mathematical

constructs, from which a variety to di�erent solution algorithms can be generated.

6.7.1 A MONTE CARLO APPROACH BASED ON THE METHOD
OF SUCCESSIVE INTEGRAL SUBSTITUTION

Our goal in this section is the derivation of a secondary Monte Carlo estimator|using a Monte Carlo Estimator (499)

�nite number of samples drawn from integration domain R|that serves as an approxi-

mate solution to a Fredholm integral equation of the 2nd kind. For that purpose, we have Linear Integral Equation (127)

to generate according to a probability density function distributed random variables or Independence of RV (204)

random vectors from probability space (R,B(R),P).

For the following discussion, let X0 and X0i1 , 1 ≤ i1 ≤ N1 be N1 + 1 independent Random Variable (168)

random variables or random vectors from (R,B(R),P), distributed according to probability Probability Space (163)

densities p0 and p1. Obviously, a �rst simple formula for a coarse approximation of Probability Density Function (176)

f(x) = g(x) +

∫
R

k(x,y) f(y)dµ(y) (6.574)

is given by the secondary Monte Carlo estimator F
f(x)
N : Monte Carlo Estimator (499)

F
f(x)
N =

g(X0)

p0(X0)
+
1

N1

N1∑
i1=1

k(X0,X0i1)

p0(X0)p1(X0i1 |X0)
f(X0i1) (6.575)

with x = X0 and p0(X0) = 1.

As the function f in the above estimator is unknown, only the source function g Source Function (127)

contributes to our approximation F
f(x)
N , i.e. the value returned by F

f(x)
N is not really

usable.

Now, to make use of F
f(x)
N , we have to estimate the values f(X0i1) from Equation

(6.575) by additional N1 secondary Monte Carlo estimators. Under the condition, that

the samples X0i1 are already drawn, each of these estimators uses N2 according to a



600 CHAPTER 6. MONTE CARLO INTEGRATION

conditional density p2(X0i1i2 |X0i1) chosen new random variables X0i1i2 , 1 ≤ i2 ≤ N2

from (R,B(R),P). This then results in the estimator F
f(x)
N given by:

F
f(x)
N =

g(X0)

p0(X0)
+ (6.576)

1

N1

N1∑
i1=1

k(X0,X0i1)

p0(X0)p1(X0i1 |X0)

(
g(X0i1) +

1

N2

N2∑
i2=1

k(X0i1 ,X0i1i2)

p2(X0i1i2 |X0i1)
f(X0i1i2)

)

=
g(X0)

p0(X0)
+

1

N1

N1∑
i1=1

k(X0,X0i1)

p0(X0)p1(X0i1 |X0)
g(X0i1) + (6.577)

1

N1

1

N2

N1∑
i1=1

N2∑
i2=1

k(X0,X0i1)

p0(X0)p1(X0i1 |X0)

k(X0i1 ,X0i1i2)

p2(X0i1i2 |X0i1)
f(X0i1i2).

With the same argumentation from above, this estimator is also not really usable,

as the function f must be estimated by N2 other secondary Monte Carlo estimators for

f(X0i1i2), each of those is in turn using N3 new samples.

The whole process can then be repeated by using further random variables X0i1i2i3 ,

X0i1i2i3i4 , . . . and so on|for an illustration of the construction of these random variables

see Figure 6.38.

If we stop after M steps, then we get a secondary Monte Carlo estimator for Equa-

tion(6.574) given by

F
f(x)
N

=
g(X0)

p0(X0)
+

1

N1

N1∑
i1=1

k(X0,X0i1)

p0(X0)p1(X0i1 |X0)
g(X0i1) +

1

N1

1

N2

N1∑
i1=1

N2∑
i2=1

k(X0,X0i1)

p0(X0)p1(X0i1 |X0)

k(X0i1 ,X0i1i2)

p2(X0i1i2 |X0i1)
g(X0i1i2) + (6.578)

. . .+
M∏
j=1

1

Nj

N1∑
i1=1

. . .

NM∑
iM=1

k(X0,X0i1)

p0(X0)p1(X0i1 |X0)
. . .

k(X0i1...iM−1
,X0i1...iM)

pM(X0i1...iM |X0i1...iM−1
)
g(X0i1...iM),

using N =
∏M
j=1Nj samples in the Mth estimation with x = X0 and p0(X0) = 1.

We call this method for approximating the solution of a Fredholm type integral equa-

tion the method of successive integral substitution, see Figure 6.39.
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FIGURE 6.38: CONSTRUCTION OF THE SAMPLES X0i1...ij . A sample X0i1...ij is starting
point of Nj+1 lines leading to further samples X0i1...ijij+1 but only a single line goes from
point X0i1...ij to its predecessor X0i1...ij−1 .

Obviously, a closed formula for the method of successive integral substitution is then

given by:

F
f(x)
N =

g(X0)

p0(X0)
+ (6.579)

+

M∑
l=1


N1∑
i1=1

. . .

Nl∑
il=1

 l∏
j=1

1

Nj

k(X0i1...ij−1 ,X0i1...ij)

p0(X0)pj(X0i1...ij |X0i1...ij−1)

g(X0i1...il)
 ,

where we have used the identities:

X0i1i0 = X0 and X0i1i1 = X0i1 . (6.580)

Let us illustrate, how these method can be applied to derive an algorithm for solving

the global illumination problem.

EXAMPLE 6.44 (A First Example of a Naive Monte Carlo Rendering Algorithm) Let us Section 8.4

suppose the SLTEV is given in its spherical form, where the radiance is expressed in SLTEV (403)

terms of exitant quantities, namely:

Lo(s,ωo) = Le(s,ωo) +

∫
S2
fs(s,ωi → ωo)Lo(γ(s,ωi),−ωi)dσ

⊥
s (ωi). (6.581)
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+
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FIGURE 6.39: THE METHOD OF SUCCESSIVE SUBSTITUTION. For solving a Fredholm in-
tegral equation of the 2nd kind, the method of successive integral substitution must evaluate
the above computation tree. Due to the contracting property of the kernel function k and
the increasing number of multiplications of k, the nodes, lying on lower levels of the tree,
yield less significant contributions to the overall result than the nodes lying on levels in the
upper region of the tree. Since there are much more nodes deep inside of the tree, we cannot
ignore the contributions induced by these nodes, because they guarantee the unbiasednes of
the estimator. Here, a compromise would be desirable, namely to concentrate more work in
the higher branches of the tree, without ignoring possible contributions from the lower levels
of the tree: Russian roulette. Note, the tree, as shown above, only represents the first two
levels of integral substitution in a Fredholm equation.
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Obviously, this then suggest the following approach for estimating the SLTEV

by the secondary Monte Carlo estimator F
f(x)
N from Equation (6.579):

0) Choose s = X0, with p0(s) = p0(X0) = 1.

i) Evaluate the emitted radiance Le(s,ωo) at sample X0 in direction ωo via

Le(X0,ωo)

p0(X0)
= Le(X0,ωo). (6.582)

ii) To estimate the integral kernel of the SLTEV via the multidimensional sum of

Formula (6.579) do the following:

Generate, according to appropriate probability density functions pj, a tree of

direction samples ω
i1...ij
i , 1 ≤ j ≤ M,1 ≤ ij ≤ Nj with root X0 = s, depending

on the surface and material properties of the objects, where it holds:

γ(X0i1...ij−1 ,ω
i1...ij
i ) = X0i1...ij , (6.583)

see Figure 6.40. Estimate the BSDF at point X0i1...ij−1 in direction ω
i1...ij−1
o

by the fraction of light that arrives from Nj neighboring points via the directions

ω
i1...ij
i , that is, by

fs(X0i1...ij−1 ,ω
i1...ij
i → ω

i1...ij−1
o ). (6.584)

iii) Use the emitted radiance at X0i1...il in direction ωi1...ilo as the source function

g.

Then, a secondary Monte Carlo estimator for estimating Lo(s,ωo) after M suc-

cessive substitutions has the form

F
Lo(s,ωo)
N =

Le(X0,ωo)

p0(X0)
+ (6.585)

M∑
l=1


N1∑
i1=1

. . .

Nl∑
il=1

 l∏
j=1

1

Nj

fs(X0i1...ij−1 ,ω
i1...ij
i → ω

i1...ij−1
o )

∣∣ cosωi1...iji

∣∣
p0(X0)pj(ω

i1...ij
i |ω

i1...ij−1
i )


Le(X0i1...il ,ω

i1...il
o )

}
,

where we have used apart from the identities from Relation (6.580) also

ωi1i0o = ωo, ωi1i1o = ωi1o as well as ωi1i1i = ωi1i (6.586)

with p0(X0) = 1 and p1(ω
i1i1
i |ωi1i0i ) = p1(ω

i1
i ).



604 CHAPTER 6. MONTE CARLO INTEGRATION

FIGURE 6.40: GEOMETRY OF THE BSDF USED IN THE NAIVE MONTE CARLO REN-
DERING ALGORITHM. At point si1...ij−1 the BSDF gathers light contributions from Nj
incident directions ωii1...ij−1ij and forward these contributions, depending on the scatter-

ing behavior of the surface, in the outgoing direction ωoi1...ij−1 to point si1...ij−2 .

Obviously, our naive ray tracing algorithm �res, starting at point s, in a �rst

step rays in a scene. At the hit points of these primary rays with the objects, the

algorithm gathers the light that comes from these points, generates new rays, and also

�res these rays into the scene. Repeated application of this approach then results in a

tree of paths with root at point s that can be explored to compute the light arriving at

s from points within the scene. The entire process will be repeated again and again,

until a ray does not hit an object or the recursion depth of the method is exceeded,

see Figure 6.41.

Usually, the �rst term in Equation (6.585) is zero, since it represents the light

emitted from point s located at a light source. The sum in Formula (6.585) covers

the direct and indirect illumination at point s. While the direct illumination at s

is evaluated via the �rst summation about the index i1, the indirect illumination

component is described by all other summations.

REMARK 6.33 The estimator F
f(x)
N will be used to derive distribution ray tracing andSection 8.4

Monte Carlo path tracing. If we also substitute the emitted radiance by the emittedSection 9.1

importance, then F
f(x)
N also leads to a Monte Carlo estimator for the SITEV.SITEV (413)

As you can see from Equation (6.579), the O
(
1√
N

)
convergence rate of a Monte CarloO

(
1√
N

)
(516)

algorithm leads to high costs for the generation of the samples needed. The number of

samples for evaluating a signi�cant approximation increases according to the dimension

of the involved integral. So, we need
∏k
j=1Nj samples when computing the kth term of
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FIGURE 6.41: A NAIVE MONTE CARLO RENDERING ALGORITHM. Starting at point
sj the algorithm generates a large number of rays depending on the material and surface
properties. At the hit points of these rays with objects of the scene, new rays are generated
recursively until a predefined depth of recursion is achieved. The exitant radiance at point
sj in direction ωjo is the result of incident light coming from visible points on the surfaces,
attenuated by reflection and/or refraction processes on their way to sj.
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the estimator from Equation (6.579). This leads to an evaluation of the integral kernel k

at
∑M
l=1

∏l
j=1Nj = O(N

M) sampling points for computing a partial sum of M members,

where we assume Nj = N. Due to these high costs we conclude that Monte Carlo methods

based on this naive successive substitution converge only very slowly. Without applying

variance reduction techniques they are proper for sampling of only small or very smallSection 6.6

samples sizes. This fact gives us reason to reconsider our strategy for computing a solution

of a Fredholm integral equations, which will lead to a new more simpler and more e�cient

strategy in Section 6.7.3.

Now, let us take a look at the expected value of our Monte Carlo estimator F
f(x)
N ,Expected Value (196)

obviously it holds:

E
(
F
f(x)
N

)
= E

(
g(X0)

p0(X0)

)
+ (6.587)

E

 M∑
l=1


N1∑
i1=1

. . .

Nl∑
il=1

 l∏
j=1

1

Nj

k(X0i1...ij−1 ,X0i1...ij)

pj(X0i1...ij |X0i1...ij−1)

g(X0i1...il)



= E

(
g(X0)

p0(X0)

)
︸ ︷︷ ︸

g(x0)

+

E

(
1

N1

N1∑
i1=1

k(X0,X0i1)

p0(X0)p1(X0i1 |X0)
g(X0i1)

)
︸ ︷︷ ︸∫

R
k(x0,x1)g(x1)dµ(x1)

+

E

 N1∑
i1=1

N2∑
i2=1

 2∏
j=1

1

Nj

k(X0i1...ij−1 ,X0i1...ij)

pj(X0i1...ij |X0i1...ij−1)

 g(X0i1i2)


︸ ︷︷ ︸∫

R

∫
R

k(x0,x1)k(x1,x2)g(x2)dµ(x1)dµ(x2)

+ (6.588)

. . .+

E

 N1∑
i1=1

· · ·
NM∑
i2=1

 M∏
j=1

1

Nj

k(X0i1...ij−1 ,X0i1...ij)

pj(X0i1...ij |X0i1...ij−1)

 g(X0...iM)


︸ ︷︷ ︸∫

R
...
∫
R

k(x0,x1)...k(xM−1,xM)g(xM)dµ(x1)...dµ(xM)

= g(x0) + (6.589)

M∑
j=1

∫
R

. . .

∫
R

(
j∏
k=1

k(xk−1,xk)

)
g(xj)dµ(x1) . . . dµ(xj).

As is easily seen from this result, the estimator F
f(x)
N is unbiased only in the case

where M → ∞. But since we neglect an in�nite number of terms from F
f(x)
N , it can not

be unbiased, that is, it holds:Unbiased (507)
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FIGURE 6.42: COMPUTATION TREE OF f(x). Due to the multiplicity of the kernels, nodes
that lie deep in the interior of the tree for computing f(x) contribute only less to the result

since it holds:
∏l
j=1 k(X0i1...ij−1 ,X0i1...ij) < ‖k‖

l � 1.

E
(
F
f(x)
N

)
6= g(x) +

∫
R

k(x,y) f(y)dµ(y) (6.590)

= f(x). (6.591)

Evidently, the contributions of the terms that are not represented in F
f(x)
N hurt the

unbiased property of the algorithm. So, F
f(x)
N is of limited use for the implementation of an Unbias (507)

approximate solution of the global illumination problem. Now, from Figure 6.42 you can

see, that nodes which lie deep in the interior of the tree for computing f contribute|due

to the multiplicity of the kernels, which we assumed as contracting, thus ‖k‖ < 1|only

less to the �nal result. Fortunately we conclude, due to our discussions in Section 6.3, Operator Norm (56)

that F
f(x)
N is at least consistent if we revert to a su�cient number of terms. Consistent (507)

The question that now arises: How can we avoid the bias, caused due to truncating

the recursion? Now, a solution to this question can be found by applying the technique of

Russian roulette as a stopping condition for evaluating terms of F
f(x)
N . Russian Roulette (200)

For that purpose, we involve into the above process of successive substitution the

sampling of independent on [0, 1] uniformly distributed random variables Ui, i ≥ 1, and Uniform Distribution (180)

stop the recursion for computing new terms, if the random variable Ui does exceeds a

prede�ned value αi, 0 < αi < 1. Now, in the case where we stop the recursion, in�nitely
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many terms are neglected, that is, we have to give the non-absorbed terms a higher weight.

For this, we weight the term, evaluated in the ith step of our process, with the probability

of the drawn random variable Ui. As seen in Example 2.82, the resulting estimator is then

unbiased, that is, it can be used to implement an approximate solver in any rendering

algorithm.Chapter 6

REMARK 6.34 Due to [47, Dutre 1996], the choice of the parameter αi should be taken

carefully. A value of αi close to one implies Monte Carlo estimators with large

number of terms, which must be evaluated, that is, the result shows to be more

reliable. If we choose αi rather small, then the process of naive successive substitution

will terminate rapidly, but due to this fact we must expect a higher variance on theVariance (201)

�nal image.

In Section 9.1 we will encounter the principle of Russian roulette once more

when developing Monte Carlo path tracing.

6.7.2 A MONTE CARLO APPROACH BASED ON THE NEU-
MANN SERIES APPROACH

An alternative method for solving a Fredholm integral equation of the 2nd kind is theSection 2.3

Neumann series approach introduced in Section 2.3.3.1.1. Contrary to the technique of

naive successive substitution from the preceding section, where we replaced the estimated

solution at each step, we will now iterate replacements on the operator. This leads to aLinear Operator (53)

more elegant method leading to the same result, but from a di�erent point of view.

Equation (2.387) of our discussion about the Neumann series approach for solving

Fredholm integral equation of the 2nd kind shows that a solution of a Fredholm type

integral equation is given by:

f(x) =

∞∑
j=0

Kjg(x) (6.592)

= g(x) +Kg(x) +K2 g(x) +K3 g(x) + . . . , (6.593)

where g is the source function, K is a contracting, linear integral operator, and for l > 0Source Function (127)

Linear Integral Operator (130) the lth-term in Equation (6.593) represents the integral∫
R

. . .

∫
R

l∏
k=1

k(xk−1,xk)g(xk)dµ(x1) · . . . · dµ(xk) (6.594)

with g(x) as the 0th-term.

Now, any of these integrals can be estimated by a Monte Carlo estimator F
Kl g(x)
l

Monte Carlo Estimator (499)
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using independent pairs (X0i1...il) of random variables distributed according to probability

densities pl given by:

F
Kl g(x)
l =

N1∑
i1=1

. . .

Nl∑
il=1

 l∏
j=1

1

Nj

k(X0i1...ij−1 ,X0i1...ij)

p0(X0)pj(X0i1...ij)

 g(X0i1...il), (6.595)

with p0(X0) = 1. PDF (176)

A secondary Monte Carlo estimator for approximating a Fredholm integral equation

of the 2nd kind based on M terms of the Neumann series is then given by:

F
f(x)
N =

g(X)

p0(X0)
+

M∑
l=1

F
Kl g(x)
l (6.596)

=
g(X)

p0(X0)
+ (6.597)

M∑
l=1


N1∑
i1=1

. . .

Nl∑
il=1

 l∏
j=1

1

Nl

k(X0i1...ij−1 ,X0i1...ij)

p0(X0)pj(X0i1...ij)

 g(X0i1...il)

 .
From this formula, we can conclude that both approaches, the successive integral

substitution as well as the Neumann series approach, lead to the same result. The di�erence

between these two approaches is that successive integral substitution can be interpreted

to have a rather intuitive and practical background, while the Neumann series approach

is based on theoretical, functional analytical concepts. So, the Neumann series approach,

as a more elegant method, requires also knowledge about linear operator theory from Section 2.1.4

functional analysis, which is not needed in the successive integral substitution. Here, we

have only to estimate the unknown function g by a simple Monte Carlo scheme using

furthermore estimations at many other points.

6.7.3 A PROBABILISTIC APPROACH BASED ON A DISCRETE
MARKOV PROCESS

In Example 2.98 we have shown that a linear system of equations, under certain conditions,

can be solved via a discrete-time Markov chain. In this example, we rephrased the solution DT Markov Chain (226)

of a linear system of type

x = Ax+ b (6.598)

into a Neumann series Neumann Series (135)

x = (I−A)−1b, (6.599)
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where I and A were �nite-dimensional operators, i.e. matrices, and x is a vector, which

was stochastically computed via a discrete-time Markov chain.

Now, since a Fredholm type integral equation can be written as

f(x) = g(x) +Kf(x), (6.600)

it looks just like a linear system of equations, where a solution to this operator equation

is also given in form of a Neumann series. This then suggests to apply the principle ofNeumann Series (135)

the discrete-time stochastic process to operator equations for solving Fredholm integralFredholm Integral Equations (127)

equations of the 2nd kind.

For the following discussion, let us assume that (R,R(R),P) is a probability spaceProbability Space (163)

with uncountable base set R. In analogy to the initial distribution p0 and the stochasticUncountable Set (827)

matrix (pij)1≤i,j≤s from Example 2.98, we now de�ne an initial probability densityStochastic Matrix (229)

function p0 and a transition kernel p, since we are working on a continuous probabilityTransition Kernel (234)

space.

We de�ne the initial probability density function p0 such that it holds:DT Markov Process (236)

p0(x) > 0 (6.601)

with
∫
R
p0(x)dµ(x) = 1, and the probability transition kernel p by:

p(y|x) > 0, if k(x,y) 6= 0, (6.602)

with
∫
R
p(y|x)dµ(y) = 1 for k > 1.

In analogy to Example 2.98, let us then furthermore generate a random walk X0 →
X1 → X2 . . . → Xm with associated random variable Ym via a discrete-time Markov

process de�ned over the continuous state set R by:DT Markov Process (236)

Ym
def
=

g(X0)

p0(X0)
+

m∑
i=1

(
k(X0,X1)

p0(X0)p(X1|X0)

i−1∏
k=1

k(Xk,Xk+1)

p(Xk+1|Xk)

)
g(Xi), (6.603)

where p(Xk+1|Xk) is the conditional probability density that Xk+1 is sampled in step

k+ 1 under the condition that Xk was sampled in step k, see Figure 6.43.

Since this random walk starts at point X0, chosen according to the initial PDF

p0, and p(Xk+1|Xk) is the probability for a transition from point Xk to point Xk+1,

the probability for generating the random walk X0 → X1 → . . . → Xi corresponds to

the product of the initial probability for choosing X0 and the transition probabilities

p(Xk+1|Xk), 1 ≤ k ≤ i− 1, namely:

p0(X0)p(X1|X0)

i−1∏
k=1

p(Xk+1|Xk). (6.604)
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FIGURE 6.43: DISCRETE MARKOV PROCESS FOR APPROXIMATING A FREDHOLM IN-
TEGRAL EQUATION OF THE 2nd KIND. For evaluating a Fredholm integral equation of
the 2nd kind, a Markov process evaluates only a single path of the computation tree starting
at the root. As a single path only contributes very little information to a solution, a Markov
process computes an average value over the information returned by a great number of such
paths. Note, the tree, as shown above, only represents the first two levels of the integral
substitution in a Fredholm equation.
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Now, we can show, that the expected value of Ym for m→∞ converges towards the

proper value of the Neumann series since it holds:Neumann Series (135)

E
(
lim
m→∞Ym

)
= E

(
g(X0)

p0(X0)
+

∞∑
i=1

(
k(X0,X1)

p0(X0)p(X1|X0)

i−1∏
k=1

k(Xk,Xk+1)

p(Xk+1|Xk)

)
g(Xi)

)
(6.605)

= g(X0) +

∞∑
i=1

E

((
k(X0,X1)

p0(X0)pk(X1|X0)

i−1∏
k=1

k(Xk,Xk+1)

pk(Xk+1|Xk)

)
g(Xi)

)
(6.606)

(2.735)
= g(X0) +∞∑

i=1

∫
R

. . .

∫
R

(
k(x0,x1)

i−1∏
k=1

k(xk,xk+1)g(xi)dµ(x2) . . . dµ(xk+1)

)
︸ ︷︷ ︸

Kig(x)

(6.607)

= g(x) +

∞∑
i=1

Kig(x) (6.608)

=

∞∑
i=0

Kig(x). (6.609)

So, the approach for solving a Fredholm integral equation by an algorithm based on

the construction of a discrete-time Markov process is identically to the procedure of solving

the corresponding integral operator equation via the Neumann series approach. Due to

the SLLN we can approximate f(x) by generating and averaging N independent randomSLLN (216)

walks Y
(k)
m , 1 ≤ k ≤ N resulting from a discrete-time Markov process, that is:

f(x) ≈ 1

N

N∑
k=1

Y(k)
m . (6.610)

REMARK 6.35 Such a random walk solution method follows the approach to construct

a path, starting at the root of the computation tree of f where only those terms of

(I −K)−1g(x) are computed that are associated with the currently visited nodes, see

Figure 6.43. Compared to our naive approach for evaluating a Fredholm equation of

the 2nd kind from Section 6.7, a discrete-time Markov process requires the evaluation

of a random variable once only per iteration. This means, that a solution can be

achieved relatively fast, but the quality of a solution is rarely satisfactory. Evidently,

the advantage due to the run time is then compensated by generating and averaging

the contributions from many random walks.

REMARK 6.36 The above random walk technique is not computationally a�ordable,

since in�nitely many terms have to be evaluated. A more e�cient method could be



SECTION 6.7. MONTE CARLO INTEGRATION AND FREDHOLM INTEGRAL EQUATIONS OF THE 2nd KIND 613

to focus the evaluation on terms with small indices in the Neumann series, since

these terms contribute a large amount to the �nal result, while terms with large

indices within the Neumann series contribute relatively small. To guarantee that

the method is at least consistent, these terms can then be weighted more heavily via

Russian roulette. Russian Roulette (200)

For that purpose, the state space of the Markov process must be expanded by a

new element, the so-called absorption state, †, such that the transition from † to any

other state is zero and it must hold: p(†, †) = 1 and P0(†) = p†j = 0 for any state

j 6= †.

6.7.4 NEXT EVENT ESTIMATION

According to our analysis of Monte Carlo estimators, and especially from our consider- Monte Carlo Estimators (499)

ation with respect to variance reduction techniques from Section 6.6, we know that the

probability density, involved in a Monte Carlo estimator, has a strong inuence on the Probability Density Function (176)

variance of the procedure. Hence, to obtain estimators that guarantee small variance, it Variance (201)

is required to choose densities according to variance reduction techniques. With respect

to linear integral equations this means that due to their recursive structure and the fact, Linear Integral Equations (126)

that the integrands contain unknown functions, informed Monte Carlo methods are not

really available as e�cient variance reduction techniques. But there is an other technique

that can help us: Next Event Estimation

Let us consider a Fredholm integral equation of the 2nd kind a little bit closer. Then, Fredholm Integral Equations (127)

we see that it is composed of two parts: the known source function g and an integral over

the unknown function f, namely:

f(x) = g(x) +

∫
R

k(x,x1) f(x1)dµ(x1)︸ ︷︷ ︸
h(x)

. (6.611)

Writing the integral as a new function h in the variable x, then f is the composition

of a known and an unknown function, that is,

f(x) = g(x) + h(x). (6.612)

We can now use the information stored in the driving function g for evaluating the

integral in the Fredholm equation, namely:

h(x) =

∫
R

k(x,x1) f(x1)dµ(x1) (6.613)

=

∫
R

k(x,x1) (g(x1) + h(x1)) dµ(x1) (6.614)

=

∫
R

k(x,x1)g(x1)dµ(x1) +

∫
R

k(x,x1)h(x1)dµ(x1). (6.615)
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EXAMPLE 6.45 (Direct and Indirect Illumination) Let us consider the SLTEV in spherical

form based on exitant radiance. With respect to the surface point s it can be written

as sum of the emitted radiance at point s in direction ωo and the scattering equation

from Relation (4.311), namely:SLTEV (404)

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Lo(γ(s,ωi),−ωi1)dσ
⊥
s (ωi)︸ ︷︷ ︸

ho(s,ωo)

(6.616)

= Le(s,ωo) + ho(s,ωo), (6.617)

where the scattering equation is denoted by the exitant radiance function ho.

Replacing the exitant radiance Lo(γ(s,ωi),−ωi) in ho by the exitant SLTEV in

spherical form at point γ(s,ωi) in direction −ωi, that is,

Lo(γ(s,ωi),−ωi) = Le(γ(s,ωi),−ωi) + ho(γ(s,ωi),−ωi), (6.618)

then h(s,ωo) can be written as:

ho(s,ωo) =

∫
S2(s)

fs(s,ωi → ωo)
(
Le(γ(s,ωi),−ωi) + (6.619)

ho(γ(s,ωi),−ωi)
)
dσ⊥s (ωi)

=

∫
S2(s)

fs(s,ωi → ωo)Le(γ(s,ωi),−ωi)dσ
⊥
s (ωi) +∫

S2(s)

fs(s,ωi → ωo)ho(γ(s,ωi),−ωi)dσ
⊥
s (ωi). (6.620)

In Example 4.15 we discussed direct and indirect illumination at a surface point

s by splitting the unit sphere around s in a disjoint union of two sets: The projection

of all regions of light sources, visible from the center of the unit sphere, onto the unit

sphere, thus the set ☼⊥, and its complement, the set ☼⊥ = S2 \ ☼⊥.

Since the integrand of the �rst integral is nonzero only for light sources, the

integration domain of the �rst integral can be reduced to the set ☼⊥. The integrand
of the second integral describes light that, scattered at least once at surfaces within

the scene, arrives at point s from where it is scattered in direction ωo, see Figure

6.44. Relevant for the evaluation of this integral are only the non-emitting surfaces,

that is, the integration domain of the second integral can be reduced ☼⊥. Applying

these fact to the above two integrals, then the function ho can be written as

ho(s,ωo) =

∫
☼⊥

fs(s,ωi → ωo)Le(γ(s,ωi),−ωi)dσ
⊥
s (ωi) + (6.621)∫

☼⊥
fs(s,ωi → ωo)ho(γ(s,ωi),−ωi)dσ

⊥
s (ωi).
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FIGURE 6.44: DIRECT AND INDIRECT ILLUMINATION AT A SURFACE POINT. Point s is
directly illuminated by a point light source, additionally it receives also light that is scattered
at point γ(s, ωi) in direction −ωi, thus light that comes from surfaces that are not light
sources.

Due to the principle of radiance invariance then the exitant function ho can be

expressed in terms of incident radiance, thus,

ho(γ(s,ωi),−ωi) = hi(s,ωi). (6.622)

Using this relation in the above representation of the function ho then we get: Radiance Invariance (253)

ho(s,ωo) =

∫
☼⊥

fs(s,ωi → ωo)Le(γ(s,ωi),−ωi)dσ
⊥
s (ωi) + (6.623)∫

☼⊥
fs(s,ωi → ωo)hi(s,ωi)dσ

⊥
s (ωi). (6.624)

We know these two integrals from our discussion about the direct and indirect

illumination formulation of the stationary light transport equation in a vacuum from

Section 4.4.2.2. They correspond to the direct illumination, L←(s,ωio), and the in-

direct illumination, L⇔(s,ωio), from Relation (4.407), that is, the technique of next

event estimation is equivalent to the strati�cation of the integration domain of the

SLTEV.
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Provided that it is not analytically solvable, the decomposition of the function h

in the two integrals from Equation (6.615) then suggests to apply a variance reduction

technique to the �rst integral while the second part of Equation (6.615) must be solved

by one of the methods introduced in the previous sections. Both possibilities for solving

the �rst integral in Equation (6.615), analytical solution or variance reduction techniques,

lead to variance reduction in the result. A secondary Monte Carlo estimator for f(x) is

then given by:

F
f(x)
N = g(x) + F

h(x)
N (6.625)

with X0 = x and

F
h(x)
N =

1

N1

N1∑
i1=1

k(X0,X0i1)

p0(X0)p1(X0i1 |X0)

(
g(X0i1) + F

h(X0i1)
N

)
(6.626)

=
1

N1

N1∑
i1=1

k(X0,X0i1)

p0(X0)p1(X0i1 |X0)
g(X0i1) + (6.627)

1

N1

N1∑
i1=1

k(X0,X0i1)

p0(X0)p1(X0i1 |X0)
F
h(X0i1)
N (6.628)

F
h(X0i1)
N =

1

N2

N2∑
i2=1

k(X1,X0i1i2)

p2(X0i1i2 |X0i1)

(
g(X0i1i2) + F

h(X0i1i2)
N

)
(6.629)

...

F
h(X0i1...iM)
N =

1

NM

NM∑
i1=1

k(X0i1...M−1,X0i1...iM)

pM(X0i1...iM |X0i1...iM−1
)

(
g(X0i1...iM) + . . . (6.630)

Going back to the nomenclature of the previous sections a secondary Monte Carlo

estimator for the integral equation from Equation (6.611), based on next event estimation,

is then given by:

F
f(x)
N = g(x) +

1

N1

N1∑
i1=1

k(X0,X0i1)

p0(X0)p1(X0i1 |X0)
g(X0i1) + (6.631)

M∑
l=2


N1∑
i1=1

. . .

Nl∑
il=1

 l∏
j=1

1

Nj

k(X0i1...ij−1 ,X0i1...ij)

p0(X0)pj(X0i1...ij |X0i1...ij−1)

g(X0i1...il)
 .

Next event estimation is an extreme interesting technique that plays an important

role in �eld of global illumination algorithms. We will encounter this technique in Chapter

9 again and again. So, we will show, how we get better, and more e�cient variants of these

algorithms by extending the classic gathering and shooting algorithms by the technique

of next event estimation. A typical example for such an extension of a rendering algorithmSection 4.4.2.2
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is to involve direct illumination into pure-Monte Carlo path tracing. This leads to more

realistic images with no much more e�ort.

EXAMPLE 6.46 (Sampling Direct Illumination) Let us now turn to the problem of com-

puting the direct illumination at a surface point, that is, we are interested in the

evaluation of the integral

L←o (sj,ω
j
o)

(6.623)
=

∫
☼⊥

fs(sj,ω
j
i → ωjo)Le(γ(sj,ω

j
i),−ω

j
i)dσ

⊥
sj
(ωji). (6.632)

For evaluating L←o (sj,ω
j
o) via a Monte Carlo strategy, we have to sample the

integration domain ☼⊥ in a clever and e�cient manner. Now, developing such a

sampling strategy requires a closed formulation of the integration domain, which due

to [10, Arvo 1995] can be a very tricky and complicated task.

Since the position, orientation, and the shape of light sources in a scene are

always known, instead to compute the projections of the light sources onto the unit

sphere, we can also use the set of all surfaces as domain of integration. This then

requires the representation of the direct illumination as a surface integral, that is, we

have to transform the spherical integral, de�ned by L←o (sj,ω
j
o), into its 3-point form.

Replacing the projected solid angle measure in Equation (6.632) by the Lebesgue

area measure|for a detailed derivation see Example 2.51|and using the standard

notation for describing integral equations in 3-point form, the direct illumination at

point sj in direction ωjo can then be written as:

L←(sj → sj−1) =

∫
☼
fs(l→ sj → sj−1)Le(l→ sj)G(l↔ sj), dµ

2(l), (6.633)

where γ(sj,ω
j
o) = sj−1, while the indirect illumination is still written as a spherical

integral.

Based on this integral formulation, we can sample so-called shadow-rays by

choosing points li according to a probability density p☼ on the probability(☼,B(☼), µ2) PDF (176)

space, where, in the simplest case, p☼ corresponds to uniform sampling of light

source area. An associated secondary Monte Carlo estimator for approximating Probability Space (163)

L←o (sj → sj−1) then has the form:

F
L←(sj→s

j−1
)

N =

N∑
i=1

fs(li → sj → sj−1)Le(li → sj)G(li ↔ sj)

p☼(li)
. (6.634)

It should be clear, that the above estimator contains several sources for noise

in the resulting images. Mainly responsible for this is the geometry term G, which G (129)

is composed of the visibility function V, two cosine-terms, and the distance of two

surface points within the denominator. So, we get noise in an image at points lying

in the penumbra region of a shadow areas since some of the shadow rays can hit a
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light source while others does not hit a light source. For points outside of shadow

areas, noise can also be arise due to one of the cosine-terms, or the denominator of

the geometry term.

6.8 REFERENCE LITERATURE AND FURTHER READ-
ING

This chapter about Monte Carlo procedures is mainly based on the known standard works

[73, Hammersley & Handscomp 1964], [172, Rubinstein 1981], [99, Kalos & Whitlock

1986], and [63, Gentle 1998]. For those with a good background knowledge in measure

and probability theory we recommend the books by [60, Fishman 1996] and [170, Robert

& Casella 1999], for newcomers, which are more interested in practical application, [197,

Sobol 1985] should be an ideal starting point. A good source of background information

specially for globillumers are the dissertations of [47, Dutr�e 1996], [116, Lafortune 1996],

[221, Veach 1998], [209, Szirmay-Kalos 2000], and [194, Slusallek 2000]. Many interesting

examples for demonstrating the concept of sampling can be found in Eric Veach's course

CS 448: Topics in Computer Graphics [220, Veach 1997], Philippe Dutr�e's Global

Illumination Compendium [50, Dutr�e 2003], [51, Dutr�e & al. 2006], [185, Shirley 2000],

[187, Shirley and Morley 2003], and in the PBRT-book by [158, Pharr & Humphreys 2004],

[159, Pharr & Humphreys 2010]. All three references were of great help for us. For the

studies of other sampling strategies, not related to the �eld of global illumination, we

recommend [172, Rubinstein 1981], [99, Kalos & Whitlock 1986], and [60, Fishman 1996]

to the interested reader.

We recommend [179, Schmeisser and Schirmeier 1976] and [202, Stoer 1979] as text-

books on numerical mathematics, which treat numerical integration on a high-level. For a

rather advanced insight into the theory of numerical integration, see [57, Evans & Swartz

2000]. This book requires knowledge from measure theory.

Section 6.5.3 is intended as a minimalist refresher on Markov chain Monte Carlo

methods. If you have doubts or want more details about this method, you are strongly

advised to check a more thorough treatment such as [170, Robert & Casella 1999], [65,

Gilks & al. 1996], and in particular [130, Meyn and Tweedie 1993] as well as [204, Stroock

2005], since no theory of convergence is provided in our book.

A beautiful article that describes random walk solutions to Fredholm integral equa-

tions is [41, Daucet & al. 2010]. Random walk solutions to integral equations are also

treated in [172, Rubinstein 1981], [99, Kalos & Whitlock 1986], [68, Glassner 1995], and

[60, Fishman 1996].

Multiple importance sampling is described in detail in [221, Veach 1998].



CHAPTER SEVEN

QUASI-MONTE CARLO
INTEGRATION

As observed in the foregoing chapter Monte Carlo integration su�ers|besides their slow Chapter 6

convergence rate|from the disadvantages that only probabilistic statements on conver-

gence and error boundaries are possible. Additionally, the quality of the process depends Section 6.4

on the random numbers used. So, the success of any Monte Carlo procedure stands or Section 6.6

falls with the quality of these random samples, where we use the notion of quality to

make a statement about the true randomness of the random samples. Now, it is not only

this disadvantage which is inherent in the stochastic nature of the method but also a de-

tailed analysis in [138, Niederreiter 1992] has shown that it is not the true randomness

of the samples which is so relevant, but rather the uniform distribution of the random Uniform Distribution (180)

samples over the integration domain. In addition, this analysis shows that deterministic

error bounds can be formulated if the samples are selected in a deterministic way. In

principle this implies, that it is possible in advance, to generate an integration rule that

yields a given accuracy. This then suggest the idea of generating samples in a deterministic

way with error bounds as small as possible: The fundamental principle of quasi-Monte

Carlo Integration. While ordinary Monte Carlo integration, using n random variables,

yields a convergence rate of O
(
1√
n

)
in any dimension, regardless of the smoothness of

the integrand, quasi-Monte Carlo integration, applied to smooth functions and using low-

discrepancy point sequences, yields convergence rates on the scale of O
(
logs−1 n
n

)
, where

s denotes the dimension of the involved integrand.

Simply spoken, a quasi-Monte Carlo method can be considered as a Monte Carlo

procedure, where the random samples are replaced by well-chosen deterministic points. Random Variable (168)

Instead to draw sequences of random numbers on the integration domain Qs, determin-

istic sequences x1,x2, . . . ,xN ∈ Qs are chosen, that cover the integration domain more

uniformly than the randomly selected samples in Monte Carlo Integration. So, this process

decreases the e�ect of clumping in samples, see Figure 7.1, and it delivers deterministic

error bounds that are simpler to interpret, and in addition, smaller than the stochastic

error bounds from random sampling.

As in Monte Carlo integration, also in quasi-Monte Carlo integration, the integral Lebesgue Integral (105)

619
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FIGURE 7.1: REGULAR AND HEXAGONAL GRID, AS WELL AS A POISSON PATTERN ON
THE UNIT INTERVAL I2 = [0, 1] × [0, 1]. 64 element, 2-dimensional point sets: A regular
grid, a hexagonal grid, and a pattern generated via Poisson sampling.

∫
Qs
f(x) dµs(x), (7.1)

must be evaluated, where, as usual, µs denotes the Lebesgue measure on Rs and theµs (82)

integration domain Qs is a �nite subset of Rs, that is: 0 < µs(Qs) <∞.

Now, this integral can be computed either via a sequence of deterministic points

x1,x2, . . . ,xN ∈ Is, which has to be transformed into a sequence T(x1), T(x2), . . . , T(xN) ∈
Qs for evaluating the sum

1

N

N∑
i=1

f(T(xi)) (7.2)

or by transforming the Integral (7.30) into an integral of type∫
Is
f(x) dµs(x) (7.3)

and evaluating the sum

1

N

N∑
i=1

f(xi) (7.4)

at the deterministically determined points x1,x2, . . . ,xN ∈ Is.

OVERVIEW OF THIS CHAPTER. The point of departure of the following excursion into quasi-

Monte Carlo integration is the concept of discrepancy, which can be interpreted as a quan-Section 7.1

titative measure for the deviation of a given point set from its uniform distribution. Then,

we introduce various types of discrepancy, discuss their basic properties, and present the
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Koksma-Hlawka Inequality, the central result of quasi-Monte Carlo integration. It shows

the path to be taken for the construction of so-called low descrepancy point sequences

as well as low-descrepancy point sets, which, used in quasi-Monte Carlo procedures,

guarantee deterministic and small error bounds. Thereafter, we discuss the construct of

low-discrepancy sequences and present with the s-dimensional Halton Sequence and the Section 7.2

s-dimensional Hammersley Point Set �rst examples of low-discrepancy point sets and

low-discrepancy point sequences. Then, we introduce further examples of low-discrepancy

sequences and we show how it is possible by means of scrambling procedures to remove

the regular structures in low-discrepancy sequences of higher dimensions. Following this,

the theory of the currently most promising low-discrepancy sequences will be introduced:

(t,m, s)-nets and (t, s)-sequences constructions, which were already shortly mentioned in

the discussion of strati�ed sampling. We also throw a glance at the construction of ran-

domised (t,m, s)-nets and randomised (t, s)-sequences. The chapter will be concluded

by demonstrating the importance of the concept of Fourier analysis as a method for an- Section 7.3

alyzing and interpreting the most important sampling processes applied in Monte Carlo

and quasi-Monte Carlo procedures.

7.1 DISCREPANCY

In any procedure for numerical integrating a function, the error between the exact and the

approximated solution should be minimized by a good choice of the used sample points.

Intuitively, this error is based on two independent factors: the choice of the samples in the

integration domain and how quickly the function changes its values between these sample

points.

DISCREPANCY. If the distribution of the sample points is not uniform, then there are large

regions where there are no sample points at all, which can increases the error, see Figure

7.1. Closely related to this is the fact that a smooth function is evaluated at unnecessary

many locations if samples are clumped. So, discussions on uniformly distributed random

numbers in [138, Niederreiter 1992] have shown that it is not randomness but the uniform

distribution of a sequence of samples on an interval, which is necessary for the convergence

of the estimated value. This leads to the idea of selecting samples in a deterministic way

under the condition that the error bound can be made as small as possible. In this context,

uniformly distributed refers to the fact that in a subvolume of the s-dimensional unit cube,

Is, the relation between the samples, contained in this subvolume, and the total number

of samples in Is di�ers only slightly from the fraction of the volume of the sub-domain

and the volume of Is. This condition may be expressed via the concept of discrepancy.

DEFINITION 7.1 (Discrepancy) Let P = {x1,x2, . . . ,xN} with xi ∈ Is, i = 1, . . . ,N be a

point set. The discrepancy of P, denoted as DN(P), is a measure for the deviation
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of a point set from its ideal uniform distribution. The discrepancy of P is de�ned

as:

DN(P) ≡ DN(P,B) (7.5)

def
= sup

B∈B

∣∣∣∣#(P ∩ B)

N
− µs(B)

∣∣∣∣ , (7.6)

where B corresponds to a Lebesgue measurable family of subsets of Is, # correspondsLebesgue Measurable Set (75)

to the counting measure over B with respect to P, µs is, as usual, the Lebesgue#(·) (81)

measure, and B refers to a non empty subset of B.µs (82)

Obviously, the discrepancy gives the maximum di�erence between the fraction of

points from a point set which lie inside subvolumes of the s-dimensional unit cube and

the volume of these subvolumes. Let us demonstrate the concept of discrepancy by means

of a simple example.

EXAMPLE 7.1 Let us consider the regular grid generated over the interval I2 from

Figure 7.1. Obvioulsy, the interval B =
[
0, 3
16

)
×
[
0, 3
16

)
has Lebesgue measure 9

256
. As

the number of points within B is #(P ∩ B) = 1 we conclude that
∣∣∣#(P∩B)

64
− µ2(B)

∣∣∣ =∣∣ 4
256

− 9
256

∣∣ = 5
256

> 1
64
. Since B is only a single element of the family B of subsets of

I2, we can conclude that 1
64

is a lower bound of the discrepancy of this regular grid.Lower Bound (862)

In Remark 7.1 it is shown that the discrepancy of point sets located on regular

s-dimensional grids is of order O
(
1
s√
N

)
, where N is the number of samples.

The basic idea behind the concept of discrepancy is to minimize the e�ect of clumping

in samples. This is done by considering various regions of the domain and comparing the

volume of these regions to the number of samples inside them. Due to the fact, that our

de�nition of discrepancy does not make any statement about the choice of these regions,

we are free in our decision about the choice of B. So, it should also be clear, that the

choice of di�erent families of Lebesgue measurable sets in the de�nition above leads to

di�erent concepts of discrepancy. From the multiplicity of possible discrepancy concepts,

two are important for us: the star discrepancy and the extreme discrepancy.

DEFINITION 7.2 (Star Discrepancy and Extreme Discrepancy, D∗N(P) and DN(P)) Let usLebesgue Measurable Set (75)

replace the Lebesgue measurable set family B given over Is in the above de�nition

by:

I∗ def=

{
B
∣∣B =

s∏
i=1

[0,ui) ⊂ Is

}
, (7.7)

that is, the axis-aligned s-dimensional subvolumes of Is attached to the origin. Then,

we obtain the most important discrepancy concept in the theory of quasi-Monte Carlo
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FIGURE 7.2: STAR DISCREPANCY AND EXTREME DISCREPANCY. Visualization of the
discrepancy concepts—case s=2—introduced in Definition 7.2. The star discrepancy based
on axis-aligned 2-dimensional subareas of I2 attached at the origin, and the extreme discrep-
ancy based on the choice of arbitrary 2-dimensional subvolumes of I2. Further discrepancy
concepts can be consider such as the triangle discrepancy in the right figure, where the
set B are axis-aligned triangle within I2.

integration: the star disrepancy, D∗N(P), de�ned as:

D∗N(P)
def
= DN(P, I∗). (7.8)

Another important concept of discrepancy, the extreme discrepancy, DN(P), is

given by:

DN(P)
def
= DN(P, I), (7.9)

where the set B is based on the choice of arbitrary s-dimensional subvolumes of Is,

thus, B corresponds to I with

I def=

{
B
∣∣B =

s∏
i=1

[ui,vi) ⊂ Is

}
. (7.10)

Obviously, these discrepancies compute how much a N-element point set P deviates

from its ideal distribution, that is, a quasi-Monte Carlo technique attempts to distribute

samples in such a way that every box of size µ(B) contains µ(B) ·N points of P.

EXAMPLE 7.2 Let us consider a one-dimensional point set P = x1, . . . , xN with xi =
i
N
, i = 1, . . . ,N as illustrated in Figure 7.3, [220, Veach 1997]. Now, the following

applies to all intervals of the type
[
0, i
N

)
: #

(
P ∩

[
0, i
N

))
= i−1, with µ

([
0, i
N

))
= i
N
.

So, it follows: µ (75)

D∗N(P) =
1

N
. (7.11)
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FIGURE 7.3: STAR DISCREPANCY OF A POINT SET. The point set P = {x1, . . . , x8} with

xi =
i
8
, i = 1, . . . , 8 and the associated modification P′, with x′i =

i− 1
2
8

, resulting from a

left-shift of P by 1
16

. As one can easily see, the pattern of the sets are equal, but P′ has a
lower discrepancy than the original set P.

Discussing the following slight modi�cation to the above point set where x′i =
i− 1
2

N
, then it holds to all intervals of the type

[
0,
i− 1
2

N

)
: #

(
P ∩

[
0,
i− 1
2

N

))
= i − 1,

with µ
([
0,
i− 1
2

N

))
=
i− 1
2

N
, that is,

D∗N(x
′
1, . . . , x

′
N) = sup

[0,u)∈I∗

∣∣∣∣∣ i− 1N −
i− 1

2

N

∣∣∣∣∣ = 1

2N
. (7.12)

Since the following holds for the star discrepancy of one-dimensional point sets

D∗N(x
′
1, . . . , x

′
N) =

1

2N
+ max
1≤i≤N

∣∣∣∣x′i − 2i− 1

2N

∣∣∣∣ , (7.13)

the point set x′1, . . . , x
′
N has the smallest possible discrepancy.

The point set P from above is one of the few point sets, where we can compute the

discrepancy analytically. For the most higher dimensional point sets or sequences,

we have no chance to compute the discrepancy in such a simple way. Here the

discrepancy must be estimated rather numerically via the construction of a large

number of boxes, computing their discrepancy, and reporting the maximum.

REMARK 7.1 The following bounds apply to the star discrepancy of randomly and

independently selected samples involved in ordinary Monte Carlo procedures:

D∗N(P) ∈ O

(√
log log N

N

)
, (7.14)
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while the star discrepancy of point sequences located on regular s-dimensional grids

implies:

D∗N(P) ∈ O
(
1
s
√
N

)
. (7.15)

REMARK 7.2 (Further Discrepancy Concepts) Apart of the already mentioned Lebesgue

measurable set families I∗ and I in the de�nition above, it is also possible|depending Lebesgue Measurable Set (75)

on the characteristics of the underlying problem|to choose other types for the set

B. Thus, [104, Keller 1998] recommends|especially for the analysis of Monte Carlo

methods involving pixel supersampling|to consider classes formed of sets which re-

ects the basic geometry occurring most frequently in pixels, such as the set of all

triangles contained in I2 or, alternatively, the set of lines obtained by intersections

of half planes with I2.

The de�nitions of all hitherto discussed discrepancies were based on the supre-

mum norm. As alternatives to this, other well known norms may also be applied. Supremum Norm (33)

A discrepancy concept based on the L2-norm, for example, would take the following ‖ · ‖
L2

(110)

form:

D∗2(PN)
def
=

∥∥∥∥#(P ∩ B)

N
− µs

(
B(x)

)∥∥∥∥
L2

(7.16)

whereby B(x) ⊂ Is would correspond to the subcube Πsj=1[0,xj) with µs
(
B(x)

)
= µs (82)

Πsj=1xj.

We can conclude from the de�nition of the discrepancy that we are interested in

generating sequences of samples with low-discrepancy, that is, sequences P where DN(P)

goes to zero as N goes to to in�nity.

Now, the goal of any quasi-Monte Carlo method is to minimize the irregularity of

distribution of the samples with respect to some measure. This means: If we wish to

construct sequences for which the quasi-Monte Carlo estimated value converges towards the

integral, the aspect of discrepancy must be taken into account in their construction. Since

the star discrepancy and the extreme discrepancy are equivalent discrepancy concepts,

that is,

D∗N(P) ≤ DN(P) ≤ 2s D∗N(P), P ⊂ Is (7.17)

it su�ces in our discussions to work with any of these norms, so, we will usually use the

star discrepancy D∗N.

UNIFORMLY DISTRIBUTED SEQUENCE. To generate sequences of low-discrepancy, we need

the notion of the uniformly distributed sequence, which is based on the concept of dis-

crepancy.
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DEFINITION 7.3 (Uniformly Distributed Sequence) Let (xi)i∈N be a sequence of numbers

with values inside the unit cube Is. (xi)i∈N is referred to as uniformly distributed if

the following holds:

lim
N→∞D∗N(xi)i∈N = 0. (7.18)

REMARK 7.3 Due to the equivalence property (7.17), it should also be clear, that the

star discrepancy as well as the extreme discrepancy can be viewed as a quali�cation

of the de�nition of uniformly distributed sequences in In.

As already mentioned at the beginning of this section, the error of a Monte Carlo

integration scheme is also depending on how quickly a function changes its values between

sample points. So, it is obviously that a function, which changes signi�cantly in small

integration regions, involves a quite large error. If the function is smooth between sample

points, then the error will be small. A mathematical concept that provides us information

about changes of a function is the variation of a function. In the case of one-dimensional

functions, the variation in sense of Vitali|de�ned as the sum of the di�erences of

function values at neighboring samples|does a good job. In our case|we are interested

mainly in functions of high dimensions|the variation of Vitali is not a good choice. For

measuring the changes of functions of more than a single variable we need the concept of

the variation in sense of Hardy and Krause.

DEFINITION 7.4 (Variation in the Sense of Hardy and Krause) Let f be a real-valued, s-

dimensional function. The variation in the sense of Hardy and Krause is then given

by:

VHK
def
=

s∑
k=1

∑
1≤i1<...<ik≤s

V(k)(f; i1, . . . , ik), (7.19)

with (f; i1, . . . , ik) = f∣∣(u1,...,us) with uj = 1 for j 6= i1, . . . , ik, where
V(s)(f)

def
= sup

P

∑
A∈P

|∆(f,A)| (7.20)

= sup
P

n∑
i=1

|f(xi) − f(xi−1)| (7.21)

is the variation in the sense of Vitali for P = {x0 < x0 < · · ·xn−1 < xn}. The supremum

is taken over all partitions P of Is and

∆(f,A)
def
=

1∑
i1=0

· · ·
1∑

is=0

(−1)
∑s
k=1 ikf(u

(i1)
1 , . . . , u(is)

s ) (7.22)

for A = Πsk=1[uk, vk), that is, ∆(f,A) denotes an alternating sum of the values of f

at vertices of A.
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We say, f is of bounded variation in the sense of Hardy and Krause, if VHK(f) <∞,

[57, Evans & Swartz 2000].

REMARK 7.4 (A Restricted De�nition of the Variation in the Sense of Hardy and Krause)

Often, the de�nition of the variation in the sense of Hardy and Krause is too weaken,

and can be restricted to apply to a much smaller, but simpler to handle class of

functions. As this version of the variation in the sense of Hardy and Krause is not

so complicated as those given in De�nition 7.4, we formulate them for the sake of

completness:

Let f be a real-valued, s-dimensional function, where it holds: f is a di�erentiable

function from Cs(Is). The variation in the sense of Hardy and Krause, used in Cs(·) (28)

De�nition 7.4, can then be replaced by:

V
(s)
HK(f) =

∫
Is

∣∣∣∣ ∂sf

∂u1 . . . ∂us

∣∣∣∣ du1 . . . dus. (7.23)

EXAMPLE 7.3 For a one-dimensional di�erentiable function, the variation in the sense

of Hardy and Krause is simply de�ned as:

VHK(f)
def
=

∫
[0,1)

|f′(x)|dµ(x). (7.24)

For di�erentiable functions of more than a single variable, induction is used to

determine the variation, that is, for a 2-dimensional function f(x, y) it holds:

VHK(f) =

∫
I2

∣∣∣∣∂2f(x, y)∂x∂y

∣∣∣∣dµ2(x, y) + (7.25)∫
[0,1)

∣∣∣∣∂f(x, 1)∂x

∣∣∣∣dµ(x) + ∫
[0,1)

∣∣∣∣∂f(1, y)∂y

∣∣∣∣dµ(y). (7.26)

REMARK 7.5 Due to [131, Jiang & McNamara 2002], a piecewise di�erentiable func-

tion is of bounded variation in the sense of Hardy and Krause, if the discontinuity is

only located on �nitely many hyperplanes parallel to the sides of the hypercube and

each di�erentiable piece is of bounded variation in the sense of Hardy-Krause. But

discontinuous functions of dimension ≥ 2 are usually not of bounded variation in the

sense of Hardy-Krause.

THE KOKSMA-HLAWKA INEQUALITY. Based on the concept of the variation in the sense of

Hardy and Krause, it is now possible to bound the error of integration by the Koksma-

Hlawka Inequality.

THEOREM 7.1 (The Koksma-Hlawka Inequality) Let {x1, . . . ,xN} be a point set of numbers

from Is, f be a Lebesgue measurable function on Is, and D∗N(x1, . . . ,xN) the star Measurable Function (98)
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discrepancy of the given point set, then it holds:∣∣∣∣ 1N
N∑
n=1

f(xn) −

∫
Is
f(x)dµs(x)

∣∣∣∣ ≤ VHK(f)D∗N(x1, . . . ,xn), (7.27)

where VHK(f) is the variation in the sense of Hardy and Krause.

PROOF 7.1 For a proof of the Koksma-Hlawka Inequality see [138, Niederreiter 1992].

Compared to the error boundaries from theory of Monte Carlo integration, which wereSection (6.4)

all probabilistic, the Koksma-Hlawka inequality provides us with a deterministic bound. It

describes the convergence of any quasi-Monte Carlo procedure depending on the variation

of the integrand, but also inuenced by the choice of the point sequences involved. As long

as the variation of f can be kept within boundaries, i.e. if it is smaller than a constant, it

is the construction of suitable point sequences which provides for a correspondingly rapid

convergence of the method. In one dimension piecewise continuous function satisfy this

condition, that is VHK(f) < ∞. So, the Koksma-Hlawka inequality indicates the path to

be taken for the construction of point sequences whose quasi-Monte Carlo estimated value

will be very good.

REMARK 7.6 Unfortunately, the Koksma-Hlawka inequality is of little support in es-

timating low-discrepancy point sets used to integrate s-dimensional discontinuous

functions (s ≥ 2), since the variation of such a function in the sense of Hardy and

Krause is in�nite. Now, functions of this type appear frequently in problems of com-

puter graphics, e.g. we imagine a diagonal line from (0, 0) to (1, 1) with f = 1 above

and f = 0 below that line. Although the variance is quart, the variation of f in theVariance (201)

sense of Hardy and Krause is in�nite, [104, Keller 1998].

Note: Even if a function has in�nite variation, we can use quasi-Monte Carlo

integration. If the samples are based on a uniformly distributed sequence, we can

assume, that the approximated quasi-Monte Carlo value converges to the exact value

of the integral, although the Koksma-Hlawka can not be applied [210, Szirmay-Kalos

1999].

Due to the equivalence property of the star discrepancy and the extreme discrepancy it

will su�ce to focus our interest with respect to generating uniformly distributed sequences

on sequences with a low-discrepancy, so-called low-discrepancy sequences.

7.2 LOW-DISCREPANCY POINT SETS AND LOW-DIS-
CREPANCY SEQUENCES

The deterministic mode of computers usually does not permit the writing of algorithms

which generate real random numbers, but only allows for the generation of approximations
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thereof, referred to as pseudo random numbers. Discrepancy statements relating to

pseudo random numbers were already introduced in the last section, see Remark 7.1, so

that the question now arises: Can we do it better? Exist point sequences with even lower

discrepancy?

Yes, there are such sequences, so-called low-discrepancy sequences.

DEFINITION 7.5 (Low-discrepancy Point Set) Let P = {x1, . . . ,xN} be a point set of num-

bers from Is. P is referred to as a low-discrepancy point set if it holds:

D∗N(P) = O

(
logs−1 N

N

)
. (7.28)

Now, in practice it is often convenient to be able to change the value N of a low-

discrepancy point set without loosing the previously computed sample values. For this

reason, it should be clever to work with sequences of points and then to take the �rst N

numbers of such a sequence whenever the value of N has been selected. So, N can be

increased and the data from earlier computations can furthermore used. This idea implies

the construction of so-called low-discrepancy sequences.

DEFINITION 7.6 (Low-discrepancy Sequence) Let (xi)i∈N be a s-dimensional sequence of

numbers from Is. (xi)i∈N is referred to as a low-discrepancy sequence, if for each

pre�x P = {x1, . . . ,xN} it holds:

D∗N(P) = O

(
logs N

N

)
. (7.29)

REMARK 7.7 In [138, Niederreiter 1992] it is shown that the above boundaries are the

best which may be expected for s-dimensional point sets and sequences.

DEFINITION 7.7 (Quasi-Monte Carlo Integration) The construction of a low-discrepancy

point set, P ⊂ Is, and the subsequent evaluation of the integral∫
Qs
f(x) dµs(x), (7.30)

from Equation (7.30) as the arithmetic mean of the function values at points of P

is referred to as quasi-Monte Carlo integration.

REMARK 7.8 The elements of a low-discrepancy sequence P are also referred to as

quasi-random numbers, because they have some statistical qualities that make them

acceptable substitutes for real random numbers. Although they are not completely

uniform distributed, however they approximate the property of uniform distribution UD Sequence (626)

of a given point set in an optimal way, and are additionally, due to their deterministic

origin, devoid of probabilistic features.
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Let us now insert the error boundary from Equation (7.29) into the Koksma-Hlawka

Inequality, then we obtain:Koksma-Hlawka inequality (627)

∣∣∣∣ 1N
N∑
n=1

f(xn) −

∫
Is
f(x)dµs(x)

∣∣∣∣ ≤ VHK(f)D
∗
N(x1, . . . ,xN)

= O

(
logs N

N

)
.

This means, that the error of any quasi-Monte Carlo algorithm is at most O
(
logs−1 N

N

)
using a low-discrepancy point set, or O

(
logs N
N

)
using a pre�x of a low-discrepancy se-

quence, provided that the variation of the function f in sense of Hardy and Krause mayHardy and Krause (626)

be limited by a constant. As already mentioned in the previous section this holds for con-

tinuous functions in one-dimension. In cases, in which the functions to be integrated are

high-dimensional and discontinuous, as encountered in integral equations of global illumi-

nation, practicable convergence statements cannot be obtained with the Koksma-Hlawka

inequality. In such cases, considerably weaker error boundaries must be applied.

In the above discussion, the discrepancy boundaries of low-discrepancy point se-

quences and point sets were outlined. We now turn to the question how low-discrepancy

sequences and point sets may be generated.

There are many di�erent low-discrepancy sequences used in quasi-Monte Carlo tech-

niques. We present a few of these sequences in this and the following subsections, where

we will start with low-discrepancy sequences based on the concept of the radical-inverse

function.

DEFINITION 7.8 (Radical-inverse Function) Assuming b ≥ 2, b ∈ N, then the radical-

inverse function is de�ned as:

Φb : N0 ×Sb −→ [0, 1]

with

Φb(i, π)
def
=

∞∑
j=0

π
(
aj(i)

)
b−j−1 with i =

∞∑
j=0

aj(i)b
j, (7.31)

whereby (aj)j∈N0 corresponds to the representation of the number i ∈ N0 with respect

to the basis b and π is a permutation from the symmetric group Sb on {0, . . . , b−1} ⊂
N0.

Based on the radical-inverse function, now a very large number of well-known low-

discrepancy sequences can be generated. As a �rst example, let us consider the van der

Corput sequence.
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EXAMPLE 7.4 (Van der Corput Sequences) The sequence (Φb(i, π))i∈N0 is termed the

general van der Corput sequence. It is a one-dimensional low-discrepancy sequence of

order O
(
logN
N

)
. In particular, if the permutation π is the identity, one obtains the

van der Corput sequence. For

xi = Φ2(i) ≡ Φ2(i, id), (7.32)

it corresponds to the binary representation of i reected at the decimal point, that is,

0.02, 0.12, 0.012, 0.112, 0.0012, 0.1012, 0.0112, . . . (7.33)

0, 1
2
, 1
4
, 3
4
, 1
8
, 5
8
, 3
8
, . . . . (7.34)

To generate a low-discrepancy sequence in several dimensions, we must use di�erent

radical inverse sequences with di�erent bases in each dimension. Thus, a s-dimensional

low-discrepancy sequence (xsi )i∈N0 with relatively prime bases bi has the form

xsi
def
=
(
Φb1(i, π), . . . ,Φbs(i, π)

)
. (7.35)

REMARK 7.9 Note: Our Monte Carlo estimators are de�ned as sums of the type

FN =

N∑
i=1

f(Xi) (7.36)

where {X1, . . . ,XN} is a N-element set of random variables.

Due to the de�nition of the radical inverse function, we have and will construct,

in this and the following sections, our low-discrepancy sequences as functions de�ned

on the domain N0 instead of N. This is not mandatory but, as the construction of

low-discrepancy sequences is strongly coupled to the index set of the radical inverse

function, this will lead to the known formulas for low-discrepancy sequences from the

literature.

7.2.1 THE CLASSICAL CONSTRUCTS: HALTON SEQUENCE AND
HAMMERSLEY POINT SET

In addition to the above introduced van der Corput sequences further low-discrepancy van der Corput Sequence (631)

sequences may be generated on the basis of the radical-inverse function. In the following, Radical-inverse Function (630)

we will focus in more detail on the construction of the most well-known low-discrepancy

sequences, also of greatest importance to the goals of our discussion: the Halton sequence,

the Hammersley point set, and the Zaremba sequence.

HALTON SEQUENCE. The Halton sequence is one of the most easily computable low-

discrepancy sequences.
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FIGURE 7.4: HALTON SEQUENCE. The first 64, 256, and 512 points of the 2-dimensional
Halton sequence P2HAL = (Φ2(i), Φ3(i))i∈N0 .

DEFINITION 7.9 (Halton Sequence) Let the bases of the radical-inverse function be given

by the s prime numbers p1, p2, . . . , ps. Let furthermore π be the identical permutation,

then with

Φb(i)
def
=

∞∑
j=0

aj(i)b
−j−1 (7.37)

andRadical Inverse Function (630)

i =

∞∑
j=0

aj(i)b
j, (7.38)

the s-dimensional Halton Sequence, PsHAL = (xsi )i∈N0 , is given by:

xsi
def
= (Φp1(i), Φp2(i), . . . , Φps(i)) . (7.39)

REMARK 7.10 (Construction of Halton Sequences) The s-dimensional Halton sequence

can be created from s one-dimensional Halton sequences using di�erent bases for each

dimension. For the construction of a one-dimensional Halton sequence see Figure

7.5. Table 7.1 shows the �rst elements of a 2-dimensional Halton sequence in the

bases p1 = 2 and p2 = 3, computed via the procedure in Figure 7.5.

Obviously, the single components of this s-dimensional sequence can be constructed

by repeatedly dividing the unit interval [0, 1] by the bases, that is|if the bases corresponds

to the �rst prime numbers|the �rst component in halves, fourths, eights, the second in

thirds, ninths, twenty-seventh, the third in �fths, twenty-�fths and so on. With other

words, a Halton sequence in more dimensions is created from the one-dimensional Halton

sequences of the bases p1, p2, . . . , ps.
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One-dimensional Halton Sequence in Base p {
∀ i ∈ {0, . . . ,N− 1} {

compute i in base p thus ip = αn−1 . . . α0 via

i =
∑n−1
i=0 αip

i, with αi ∈ {0, . . . , p − 1}

compute ip = 0.α0 · · ·αn−1 by reversing ip around the decimal point

compute Φp(i) =
∑n−1
i=0 αip

−(i+1)

}
}

FIGURE 7.5: ONE-DIMENSIONAL HALTON SEQUENCE IN BASE p. The ith element of
a one-dimensional Halton sequence can be computed in a three step process. First, every
number from {0, . . . , N − 1} is represented as a number in the base p. In the 2nd step the
representation in base p is reversed and attached after the decimal point. In the last step
this member is then converted to base 10.

i p1 = 2 p2 = 3

0 02 → .02 → 0 03 → .03 → 0

1 12 → .12 → 1 · 2−1 = 1
2

13 → .13 → 1 · 3−1 = 1
3

2 102 → .012 → 1 · 2−2 = 1
4

23 → .23 → 2 · 3−1 = 2
3

3 112 → .112 → 1 · 2−1 + 1 · 2−2 = 3
4

103 → .013 → 1 · 3−2 = 1
9

4 1002 → .0012 → 1 · 2−3 = 1
8

113 → .113 → 1 · 3−1 + 1 · 3−2 = 4
9

5 1012 → .1012 → 1 · 2−1 + 1 · 2−3 = 5
8

123 → .213 → 2 · 3−1 + 1 · 3−2 = 7
9

TABLE 7.1: COMPUTATION OF P2HAL =
(
Φ2(i− 1), Φ3(i− 1)

)
i∈N. The first six elements

0 ≤ i ≤ 5 of the 2-dimensional Halton sequence with bases p1 = 2 and p2 = 3.

REMARK 7.11 The following upper bound applies to the star-discrepancy of the s-

dimensional Halton sequence PsHAL:

D∗N(P
s
HAL) <

s

N
+
1

N

s∏
j=1

(
bj − 1

2 log bj
log N+

bj + 1

2

)
∈ O

(
logs N

N

)
. (7.40)

The Halton sequence constructed in this manner is an incremental pattern which im-

plies that it may be expanded if necessary without discarding the samples already drawn.

New samples xsi may be added at incremental cost.

HAMMERSLEY POINT SET. On the other hand, if the number of samples which need to be

calculated for the solution of the problem at hand is known in advance, the discrepancy of

a predetermined sequence is easily improved by focusing exclusively on a �nite number of
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FIGURE 7.6: HAMMERSLEY POINT SET. Three 2-dimensional Hammersley point sets
P2HAM =

(
i
N
, Φ2(i)

)
i∈(0,...,N−1)

of sizes N = 64, 256, and N = 512.

sequence members. If this method is applied to the above constructed Halton sequence,

one obtains the s-dimensional Hammersley point set.

DEFINITION 7.10 (Hammersley Point Set) The s-dimensional Hammersley point set, PsHAM
= (xsi )i∈(0,...,N−1), is de�ned by:

xsi
def
=

(
i

N
,Φp1(i), Φp2(i), Φp3(i), . . . , Φps−1(i)

)
, (7.41)

where the bases of the radical-inverse function are given by the s− 1 prime numbersRadical Inverse Function (630)

p1, p2, . . . , ps−1.

EXAMPLE 7.5 (The Hammersley Point Set on the Euclidean Plane) On the Euclidean

plane, a N-element Hammersley point set can be generated by choosing p1 = 2, that

is,

x2i =

(
i

N
,Φ2(i)

)
(7.42)

= (0, 0) ,

(
1

N
,
1

2

)
,

(
2

N
,
1

4

)
,

(
3

N
,
3

4

)
, . . . (7.43)

with i = 0, . . . ,N− 1, see Figure 7.6.

As shown in Example 7.4, the Hammersley point set (x2i )i∈(0,...,N−1) can be

computed by taking all numbers in the range from 0 to N− 1 and interpreting them

as binary fractions. With reference to Example 7.4 this means: for N = 64, i = 6, we

�rst compute bin(6) = 0001102. Reversing the binary digits results in 0.0110002 =
3
8
,

thus, (x6, y6) =
(
6
64
, 3
8

)
=
(
3
32
, 3
8

)
.
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EXAMPLE 7.6 (The Hammersley Point Set on the Unit Sphere) To generate directions

over the unit sphere, due to [198, Spanier & Gelbard 1969], we can map in a �rst

step the Hammersley point set P2HAM = (x2i )i∈(0,...,N−1) linearly to the cylindrical

domain [0, 2π)× [−1, 1], thus,

x2i =

(
i

N
,Φp(i)

)
7→ (φ, t) =

(
i+ 0.5

N
2π, 2Φp(i) − 1

)
. (7.44)

Then, we use a z-preserving radial projection from the unit cylinder

C = {(x, y, z)|x2 + y2 = 1, |z| ≤ 1} (7.45)

to the unit sphere

(φ, t) 7→ (√
1− t2 cosφ,

√
1− t2 sinφ, t

)
. (7.46)

The result of this procedure is visualized in Figure 7.7.

REMARK 7.12 The following upper bound applies to the star-discrepancy of the s-

dimensional Hammersley point set PsHAM

D∗N(P
s
HAM) <

s

N
+
1

N

s−1∏
j=1

(
bj − 1

2 log bj
log N+

bj + 1

2

)
∈ O

(
(logs−1 N

N

)
. (7.47)

REMARK 7.13 (Adaptive Sampling a Pixel) A similar sampling strategy to supersampling

a pixel is adaptive sampling. In adaptive sampling, a ray is traced through each

corners of a pixel. If the intensity of the four corners varies signi�cantly from

the others, then the pixel is split into four rectangular subdivision. This process of

subdivision is repeated to an arbitrary level until the intensity of the four corners of

a subdivision are not varies signi�cantly.

Obviously, the number of samples needed for adaptive sampling is not known in

advanced. So, the restriction of the Hammersley point set to a pregiven �xed number

N of samples makes it not really usable for adaptive sampling, since all samples that

are generated in a step of the process must be discarded if a further subdivision is

required.

ZAREMBA SEQUENCE. To conclude, we will take a look at a further low-discrepancy

sequence based on the radical inverse function: the Zaremba sequence.

DEFINITION 7.11 (Zaremba-sequence) Replacing aj in the radical-inverse function by Radical Inverse Function (630)

(aj + j) mod b, that is, de�ning

Ψb(i, π)
def
=

∞∑
j=0

π
(
(aj + j) mod b(i)

)
b−j−1, (7.48)
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FIGURE 7.7: HAMMERSLEY POINT SET ON THE UNIT SPHERE. Comparison of a random
pattern on the unit sphere with five Hammersley point set generated with different bases
p1 = 2, p1 = 3, p1 = 5, p1 = 7 and p1 = 11, N = 1000. The Hammersley point set with
p1 = 2 gives a pleasant, less clumped pattern. The points are uniformly distributed without
a perceptible pattern, it gives the best uniformly distribution on the sphere. As p1 increases
(from upper right to lower right), points start to line up and form regular lines on the
sphere. The position of the pole, marked with an arrow, becomes distinguishable from the
pattern. Image courtesey of Tien-Tsin Wong, Pheng-Ann Heng, The Chinese University of
Hong Kong and Wai-Shing Luk, Katholieke Universiteit Leuven.

then we call the sequence PsZAR = (xsi )i∈N0 de�ned by:

xsi
def
=
(
Ψ2(i), Ψ3(i), Ψ5(i), . . . , Ψps(i)

)
(7.49)

the s-dimensional Zaremba sequence. A visualization of the Zaremba sequence is shown

in Figure 7.8.

REMARK 7.14 The Zaremba sequence may be regarded as a bridge to the scrambled

versions of the above discussed low-discrepancy sequences in so far as it representsSection 7.2.2

a �rst attempt to avoid the correlations which occur in the elements generated in a

low-discrepancy sequence.
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FIGURE 7.8: ZAREMBA SEQUENCE. The first 64, 256, and 512 points of the 2-dimensional
Zaremba sequence

(
Ψ2(i), Ψ3(i)

)
i∈N0

.

Let us now consider a few application areas of the above introduced low-discrepancy

sequence with respect to the strati�cation and sampling of integration domains.

EXAMPLE 7.7 (Strati�cation of Is) Let us recall Example 6.34, where we have introduced

the construct of the Voronoi diagram as a method for stratifying the unit square. Voronoi Diagram (577)

Obviously, the set PN, which we observed there, corresponds to the above constructed

N-element 2-dimensional Hammersley point set. The question that takes now is:

Comes with any s-dimensional Hammersley point set also a Voronoi diagram?

Let us contemplate the general case of an s-dimensional low-discrepancy se- LD Sequence (629)

quence. According to [104, Keller 1998] the following applies to the distance of

two points pi,pj, i 6= j, calculated with the radical-inverse function: infi 6=j(φb(i, π) − Radical Inverse Function (630)

φb(j, π)) =
1
N
. If we now determine to a given N all nj ∈ N, with bnj−1j < N ≤ bnjj ,

then the radical-inverse function places the members of such an s-dimensional low-

discrepancy sequence in the lower left corners of a regular 1

b
nj
j

-grid. In the case of

N = b
nj
j , 1 ≤ j ≤ s it also �lls out the j-th dimension of the grid. That is, the grid

structure of the Hammersley point set guarantees a minimal distance of the samples,

which implies a s-dimensional Voronoi diagram as a strati�cation of Is.

EXAMPLE 7.8 (Jittered Low-discrepancy Point Sets) From Figure 7.4 and Figure 7.6, it

can be seen that 2-dimensional low-discrepancy samples are always aligned in the

lower left corner of their intervals. Applied to neighboring pixels this may result in

aliasing e�ects if the sample rate is too low to satis�es Shannon's sampling theorem-

|for a detailed discussion see [68, Glassner 1995]. Therefore it is recommended

to combine the deterministic construction of low-discrepancy samples with a jittered

step. In this operation especially for the avoidance of potential aliasing e�ects, the

involved points are displaced inside their intervals by an amount resulting from draw-



638 CHAPTER 7. QUASI-MONTE CARLO INTEGRATION

FIGURE 7.9: HAMMERSLEY AND JITTERED HAMMERSLEY POINT SETS. The first 16
elements of the 2-dimensional Hammersley point set P2HAM =

(
i
N
, Φ2(i)

)
, 0 ≤ i ≤ 15 and

the jittered Hammersley point set, which simulates 24-rooks sampling.

ing a random variable.

The s-dimensional jittered Hammersley point set Ps,jitHAM = (xs,jiti )i∈(0,...,N−1) is

thus de�ned as:

xs,jiti

def
=

(
i+U1
N

,Φb1(i) +
U2

bn1i
, . . . , Φbs−1(i) +

Us

b
ns−1
s−1

)
, (7.50)

whereby Ui, 1 ≤ i ≤ s represent random numbers uniformly distributed within Is. IfRandom Variable (168)

Uniform Distribution (180) in the 2-dimensional case we choose b = 2 and N = 2n, then P2,jitHAM corresponds to

2n-rooks sampling with deterministically determined permutations π1, π2.2n-rooks sampling (579)

As briey noted above, the jittering of low-discrepancy points forestalls the oc-

currence of aliasing e�ects, representing them following [40, Cook 1984], [67, Glass-

ner 1995], onto the e�ect of high frequency noise, which is markedly more pleasant

for an observer.

7.2.2 SCRAMBLING

As may be clearly seen in Figure 7.10, the choice of π = id in the radical-inverse function

of the above generated 2-dimensional Halton sequences leads to the generation of points

arranged on lines. With respect to the algorithms used in computer graphics these in turn

can lead to aliasing e�ects. In order to avoid this, the corresponding permutations in the

radical-inverse function are chosen according to a procedure introduced by Faure.

DEFINITION 7.12 (Faure's Permutation) Begin with the permutation π2 = (0, 1) for b = 2

and build the permutation πb by:

i) taking the values of 2πb
2
and appending the values from 2πb

2
+ 1 if b is even
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FIGURE 7.10: 2-DIMENSIONAL HALTON SEQUENCES. The first 256 elements of the
2-dimensional Halton sequence with P2HAL =

(
Φ9(i), Φ10(i)

)
, P2HAL =

(
Φ19(i), Φ20(i)

)
and P2HAL =

(
Φ29(i), Φ30(i)

)
, 0 ≤ i ≤ 255. The three patterns illustrate the problem with

Halton sequences: Points in successive dimensions are highly correlated, which can lead to
bad integral estimates. So, Halton sequence of dimension 14 and more are unsatisfactory.
Due the correlation, many people avoid the use of Halton sequence for more than 6 or 8
dimensions in practice.

ii) taking the values of πb−1, inserting the value b−1
2

in the middle of the values

and incrementing each value greater or equal than b−1
2

by one.

The scrambled versions of the 2-dimensional Halton sequence Ps,scrHAL and the 2-

dimensional Hammersley point set Ps,scrHAM may now be formulated as follows:

xsi
def
= (Φ2(i, π2), Φ3(i, π3), Φ5(i, π5), . . . , Φps(i, πps)) , i ∈ N0 (7.51)

and

xsi =

(
i

N
,Φ2(i, π2), Φ3(i, π3), . . . , Φps(i, πps−1)

)
, i ∈ (0, . . . ,N− 1) (7.52)

with

π2 = (0, 1)

π3 = (0, 1, 2)

π4 = (0, 2, 1, 3)

π5 = (0, 3, 2, 1, 4)

π6 = (0, 2, 4, 1, 3, 5)

π7 = (0, 2, 5, 3, 1, 4, 6)

π8 = (0, 4, 2, 6, 1, 5, 3, 7)

...
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FIGURE 7.11: HALTON SEQUENCE AND SCRAMBLED HALTON SEQUENCE, DIMEN-
SIONS 7 AND 8. (a) The first 256 elements of the 2-dimensional Halton sequence
P2HAL =

(
Φ7(i), Φ8(i)

)
and the scrambled versions of dimension 7 and 8 generated ac-

cording to the procedure of Faure.

EXAMPLE 7.9 (Halton and Scrambled Halton Sequence) Figure 7.11 illustrates the e�ect

of scrambling applied to dimensions 7 and 8 of the 2-dimensional Halton sequence

P2HAL =
(
Φ7(i), Φ8(i)

)
i∈N0

with N = 256.

In [138, Niederreiter 1992] it is shown that the coe�cients in the error boundaries

of Halton sequences and Hammersley point sets, as the product of the �rst s and s −

1 factors bi−1
2 log bi

, grow super-exponentially with respect to s. As this in turn means

that the indicated boundaries are of use only for small s, it becomes necessary to search

for procedures and methods able to deliver signi�cantly smaller boundaries than those

indicated in the Equations (7.40) and (7.47).

7.2.3 (t,m, s)-NETS AND (t, s)-SEQUENCES

The currently most promising theory underlying the construction of sequences with much

smaller error bounds than those indicated in the previous section is that of the (t,m, s)-

nets and the (t, s)-sequences.

(t,m, s)-NETS. The de�ning terms of a (t,m, s)-net are best understood in connection

with a practical example from numerical integration. For that purpose, let us assume,

we are interested in evaluating a 2-dimensional integral on the unit interval I2, where

the samples come from a (t,m, s)-net in base b = 2. Since the parameter s in the triple

(t,m, s) stands for the dimension of the space, s is in our case 2, that is, our net is of

the form (t,m, 2). Now, as the length N of the sequence of samples is depending on the

parameter m, we can not choice the number of samples as an arbitrary integer. Due to
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FIGURE 7.12: ELEMENTARY INTERVALS OF A (1, 3, 2)-NET AND (2, 3, 2)-NET. The 4
elementary intervals of the (1, 3, 2)-net and the 2 elementary intervals of the (2, 3, 2)-net
associated with a given point set.

its de�nition, the length of a (t,m, s)-net is prescribed by the relation N = bm, i.e., only

sequences of length of powers of 2 are possible, e.g. 23 = 8, which implies: m = 3. This

results in a net of the form (t, 3, 2) in base 2. Now, we come to the choice of the parameter

t, which is a little bit tricky. A (t,m, s)-net in base b must contain bt points in each

s-dimensional subspace|under the condition, that the subspaces are created by splitting

each dimension into bk segments of length 1
bk

with volume bt−m for some k = 0, 1, . . . ,m.

This means, that we must �nd a partition of each dimension in k elementary intervals

that all contains only bt elements given that the length of an elementary intervals is 1
bk

and its volume is bt−m. With respect to the point set shown in Figure 7.12, it cannot be

a (0, 3, 2)-net as the �rst elementary interval in the left pattern contains 2 points. This

point set can only be a (1, 3, 2)-net or a (2, 3, 2)-net.

DEFINITION 7.13 ((t,m, s)-Net) Let the dimension s ≥ 1, the base b ≥ 2, then for lj ≥ 0
and 0 ≤ aj ≤ blj

E def=
s∏
j=1

[
aj

blj
,
aj + 1

blj

)
⊆ [0, 1)s

is called an elementary interval E in the base b with Lebesgue measure µs (82)

µs(E) = 1

b
∑
s
j=1 lj

. (7.53)
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Based on this de�nition, a �nite, bm-element, s-dimensional point set is termed

a (t,m, s)-net in the base b if every elementary interval E with the Lebesgue measure

µs(E) = bt−m contains exactly bt points for 0 ≤ t ≤ m, t,m ∈ N.
In this connection, the term s relates to the dimension of the net, m is the power

to which the base b is raised to obtain the length of the net, thus bm, and t is a

so-called quality parameter, where smaller values of t guarantee a better uniformUniform Distribution (180)

distribution, i.e. a better strati�cation of the unit cube.Section (6.6.4)

Due to this de�nition, an elementary interval in base b is an axis aligned box where

each dimension of the box must be a negative power of b, and the box must be aligned to

an integer multiple of its size in each dimension. Further, we conclude that a (t,m, s)-net

can only be constructed for lengths that are some power of the net's base, thus in the case

of base 2, a (t,m, s)-net can only have lengths 2, 4, 8, ...; it cannot have a length of, say

100 or 1000. In this sense (t,m, s)-nets are less exible than Halton sequences.Halton Sequence (632)

EXAMPLE 7.10 According to the above de�nition a (0,m, s)-net with respect to the base

b corresponds to a bm element point set, whereby every elementary interval with the

Lebesgue measure µ(E) = 1
bm

contains exactly one point out of P.

This means that the (0, 3, 2)-net with respect to the base 3 de�nes a 33 = 27-

element point set in the unit square. Since t = 0, the number of samples in each

elementary interval is bt = 30 = 1. Obviously, there are bm−t = 33−0 = 27 elementary

intervals of Lebesgue measure 1
27
. These elementary intervals can be constructed by

partitioning I2 in 27 segment in direction of the x-axis, or 9 segment in x and 3

segment in y-direction, 3 segments in x and 9 segments in y-direction, or 27 segments

in direction to the y-axis.

EXAMPLE 7.11 Let us consider the (0, 2n, 2)-net, then it can be shown that this is

identical to the Hammersley points P =
(
i
N
, φ2(i)

)
i∈(0,...,N−1)

with N = (2n)2, whichHammersley Point Set (634)

were introduced in the last section. Here each elementary interval with Lebesgue

measure 1
22n

= 1
N

contains exactly one point out of P. Figure 7.13 illustrates the

above statement for n = 2 with respect the base b = 2.

CONSTRUCTION OF A (t,m, s)-NET IN BASE p. A (t,m, 1)-net, thus a one-dimensional

(t,m, s)-net, can simply be created via the algorithm for computing a one-dimensional

Halton sequence. In this algorithm, as we presented them in Figure 7.5, only an addi-

tionally step has to be inserted after reversing the representation ip = 0.α0α1 . . . αm−1

of a number i ∈ {0, 1, . . . , N − 1} in base p around the decimal point. This new step is a

matrix-vector multiplication, where the m-dimensional vector v is given by the digits of

the representation ip occurring after the decimal point, thus (α0, α1, . . . , αm−1)
T and the

matrix M, with coe�cients of {0, 1, . . . , p − 1} has to be chosen appropriately. Then, the

result of the matrix-vector multiplication, where the arithmetic must be performed mod-

ulo p, has to be attached after the decimal point. Converted in base 10 we get the position
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FIGURE 7.13: ELEMENTARY INTERVALS OF A (0, 4, 2)-NET. The 5 elementary intervals
of the (0, 4, 2)-net defined in the unit cube with respect to the base b = 2 and a possible
distribution of 16 = 24 points that covers all cells of the net. The goal is to place points in
a way that gives the best cover. Note, all points lie on boundaries of elementary intervals.
A slight shift, the same in both directions and applied to all points places the points in the
interior of the elementary intervals.

of the number i in the unit interval [0, 1], The algorithm for computing a (t,m, 1)-net is

shown in Figure 7.14.

Nets in s dimensions are created by using the same base p for all dimensions but apply-

ing di�erent generating matrices M1, . . . ,Ms. For the construction of a two-dimensional

(0, 3, 2)-net and the computation of its elements, see Table 7.2 and Figure 7.15.

REMARK 7.15 Due to the fact that all dimensions of a (t,m, s)-net are de�ned in the

same base|but a Halton sequence uses di�erent bases|we can conclude, from the

above construction of (t,m, s)-nets with generating matrices, that at Halton sequence

can not be a (t,m, s)-net.

REMARK 7.16 Until now, we considered almost exclusively (0,m, s)-nets. Compared to

this simpli�ed case, where every elementary interval contains only a single point, in



644 CHAPTER 7. QUASI-MONTE CARLO INTEGRATION

One-dimensional (t,m, s)-Net in Base p {
∀ i ∈ {0, . . . , pm − 1} {

compute ip = αm−1 . . . α0 with αi ∈ {0, . . . , p − 1} and i =
∑m−1
i=0 αip

i

compute ip = 0.α0 · · ·αm−1 by reversing ip around the decimal point

compute (α′0, · · · , α′m−1) =M · (α0, . . . , αm−1)
T

convert i
′
p = 0.α′0 · · ·α′m−1 in base 10

}
}

FIGURE 7.14: ONE-DIMENSIONAL (t,m, s)-NET IN BASE p. The ith element of a one
-dimensional (t,m, s)-net can be computed in a four step process. First, every number from
{0, . . . , pm − 1} is represented as a number in base p. In the 2nd step the representation
the digits of the number, computed in base p, are reversed and attached after the decimal
point. In the third step, the reversed digits are used to form a m-dimensional vector, which
is multiplied by an appropriated chosen matrix, where the arithmetic is performed modulo
p. The components of the resulting vector then forms the new digits after the decimal
point. Converting the number in base 10 delivers the position of point p in the unit interval
[0, 1].

a general (t,m, s)-net, with t > 0, every box of size bt−m must contain bt > 1 points,

see Figure 7.16.

(t, s)-SEQUENCES. Let us conclude the present discussion on the construction of low-

discrepancy sequences with a short overview of the so-called (t, s)-sequences and theirSection 7.2

randomized versions in the following subsection..

DEFINITION 7.14 ((t, s)-Sequences) An in�nite sequence of numbers (xn)n∈N is referred

to as a (t, s)-sequence with respect to the base b with t ≥ 0, if the partial sequence

xkbm+1, . . . ,x(k+1)bm ∈ Is (7.55)

forms a (t,m, s)-net for all k ≥ 0 and m ≥ t in the base b.

So, we get for the star-discrepancy of a (t,m, s)-netStar Discrepancy (622)

D∗N(P) ≤ B(s, b)bt log
s−1 N

N
+O

(
bt

logs−2 N

N

)
, (7.56)

and for a (t, s)-sequence

D∗N(P) ≤ C(s, b)bt log
s N

N
+O

(
bt

logs−1 N

N

)
(7.57)
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i p1 = 2 i2 M1 M2 (x, y)

0 0002 0.0002 0.0002 0.0002 (0, 0)

1 0012 0.1002 0.1002 0.0012
(
1
2
, 1
8

)
2 0102 0.0102 0.0102 0.0102

(
1
4
, 1
4

)
3 0112 0.1102 0.1102 0.0112

(
3
4
, 3
8

)
4 1002 0.0012 0.0012 0.1002

(
1
8
, 1
2

)
5 1012 0.1012 0.1012 0.1012

(
5
8
, 5
8

)
6 1102 0.0112 0.0112 0.1102

(
3
8
, 6
8

)
7 1112 0.1112 0.1112 0.1112

(
7
8
, 7
8

)

TABLE 7.2: COMPUTATION OF A (0, 3, 2)-NET IN BASE 2. In a first step, the algorithm from

Figure 7.14 computes the binary representation i2 of a number i ∈ {0, . . . , N−1}. Then, the

algorithms reverses all bits of i2 around the decimal point. The digits after the decimal point

in column 4 are then written as a 3-dimensional vector, e.g., 0.1012 is written as (1, 0, 1)T .

This vector is multiplied with matrix M1, and M2, where arithmetic is performed modulo 2

and it holds:

M1 =

 1 0 0

0 1 0

0 0 1

 and M2 =

 0 0 1

0 1 0

1 0 0

 . (7.54)

The result, expressed in base 10, then corresponds to the x-component of the point p ∈ I2.

given the corresponding constants B(s, b) und C(s, b), see [138, Niederreiter 1992].

EXAMPLE 7.12 (i) Van der Corput sequences with respect to the base b correspond to Van der Corput Sequence (631)

(0, 1)-sequences in base b; (ii) If one expands a (t, s)-sequence by the component i
N
,

with N = bm, one receives a (0,m, 2)-net.

7.2.4 RANDOMIZED (t,m, s)-NETS AND (t, s)-SEQUENCES

A signi�cant disadvantage of low-discrepancy sequences is its deterministically distribution LD Sequence (629)

of samples. In computer graphics, this leads to aliasing artifacts in particular in the

application to pixel sampling. Since, in contrast to sequences of random numbers, one does Random Variable (168)

not try to reproduce features, such as the mutual independence of individual members,

estimations of error sizes based on independent individual members are also not possible.

Randomized quasi-Monte Carlo procedures, on the other hand, combine low-discrepancy

sequences with random numbers in order to generate independent estimations on the value LD Sequence (629)

of the integral. With the help of these estimations, empirical standard deviations may be

calculated.

In the following, we will briey present two approaches of randomized (t,m, s)-nets (t,m, s)-net (641)
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FIGURE 7.15: A (0, 3, 2)-NET CONSTRUCTED VIA GENERATING MATRICES. A
2-dimensional (t,m, s)-net with 8 points based on the algorithm for generating one-
dimensional (t,m, s)-nets via generating matrices from Figure 7.14.

and (t, s)-sequences: Cranley-Patterson rotation and Owen scrambling.

In the procedure of Cranley and Patterson, the elements xi of an s-dimensional point

set are shifted by the amount ξs = (ξ1, . . . , ξs) in the corresponding dimension mod 1.

This may lead to the loss of the original structure of a (t,m, s)-net, see Figure 7.17.

In contrast to Cranley-Patterson rotation, Owen scrambling largely retains the

structure of (t,m, s)-nets of the base b. This procedure begins by decomposing the interval

[0, 1)s along each of its s coordinates in b equal size parallelepipeds Q1, . . . ,Qb. These

are permuted in a random and independent manner where this process is then applied

recursively to Qi, 1 ≤ i ≤ b.

7.3 FOURIER ANALYSIS

In the previous sections a number of low-discrepancy sequences have been presented, which

may be used for sampling domains of integral equations. In this section we now present a

method, which makes it possible to formulate statements on the quality of patterns created

by low-discrepancy sequences on Is: the Fourier analysis.

Fourier analysis provides us with a tool for the graphic interpretation of low sampling

patterns resulting from various di�erent sampling processes: the Fourier-transform.-

Transformed in the Fourier domain, an image is represented as a weighted set of spatialFourier Transform (113)

frequencies. In this manner, it is very easy to draw conclusions from composition and

character of an image, whereas high frequencies corresponds to �ne structures in the im-

age and low frequencies reect slower changes in the structure of the image.

With reference to the de�nition of convolution given in Example 2.43, the quasi-Monte

Carlo estimator FQ
s

N approximating the expected value of the integralquasi-Monte Carlo estimator (500)
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FIGURE 7.16: ELEMENTARY INTERVALS OF A (1, 4, 2)-NET. The 5 elementary
intervals of the (1, 4, 2)-net defined in the unit cube with respect to the base b = 2

and a possible distribution of 16 = 24 points that covers all cells of the net. Note,
some points lie on boundaries of elementary intervals. A slight shift, the same in both di-
rections and applied to all points places the points in the interior of the elementary intervals.

∫
Qs
f(x)dµs(x)

may be formulated as a convolution of the integrand f and a sampling function s

s : Rs → R

given by Dirac δ-Distribution (118)

s(x)
def
=
λ(Qs)

N

N∑
i=1

δ(x− xi), xi ∈ {x1,x2, . . . ,xN} (7.58)

whereas δ(x) corresponds to the Dirac δ-distribution. For the quasi-Monte Carlo estimator

FQ
s

N then it holds

FQ
s

N

(6.112)
=

λ(Qs)

N

N∑
i=1

f(Xi)

(2.302)
=

λ(Qs)

N

N∑
i=1

∫
[−∞,∞]s

f(y)δ(y − xi)dµ
s(y)

=

∫
[−∞,∞]s

f(y)

(
λ(Qs)

N

N∑
i=1

δ(y − xi)

)
dµs(y).

Considering the manner in which the above sampling function works, it becomes clear

that important information may be derived from the analysis of the Fourier spectrum of

the pattern resulting from the sampling strategy applied. Thus, if ŝ(t1, t2)
def
= Fs is taken

to de�ne the Fourier-transform of the sampling function s, de�ned with respect to I2, then
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FIGURE 7.17: RANDOMIZED (t,m, s)-NETS. A (0, 4, 2)-net and its randomized version
shifted by ξ = ( 1

4
, 1
4
). Right, a randomized version of the left pattern violating the

(t,m, s)-structure shifted by ξ = ( 1
8
, 1
8
).

according to the above made statements, the following applies

Fs
def
= ŝ(t1, t2)

(2.278)
=

1

(2 π)

∫
I2
exp−i 〈t,x〉 s(x)dµ2(x)

(7.58)
=

1

(2 π)

∫
I2
exp−i 〈t,x〉

(
λ(Qs)

N

N∑
i=1

δ(x− xi)

)
dµ2(x)

≈ λ(Qs)

(2 π)N

N∑
i=1

exp−i(t1x1i+t2x2i), x1i,x2i ∈ R2.

If we choose the samples of s as points of a regular grid, from the Halton sequence or

the Hammersley point set, then, as may be clearly seen in Fig. 7.18, the high frequencies in

their Fourier spectra indicate �ne structures in the underlying pattern. Used in samplingHalton sequence (632)

strategies for pixel �ltering, this results in aliasing e�ects.Hammersley Point Set (634)

REMARK 7.17 (Poisson-Disk Sampling) In the fovea of the human eye the photoreceptorsPoison-disk Sampling (541)

are arranged according to a regular structure, a fact that corrects the aliasing e�ects

created by the sampling process in the eye via the low-pass �ltering features of the

lens. Outside the fovea these are arranged according to Poisson-disk patterns [40,

Cook 1984]. Here, the distance property of the samples replace the aliasing e�ects

created by high frequencies with image noise, which is strictly more pleasant for the

human eye. This clearly makes Poisson-disk sampling the most important sampling

strategy for the objectives aimed at here. It follows, therefore, that in the generation

of suitable sampling procedures e�orts should focus on the construction of patterns

similar to Poisson-disk patterns { providing, of course, that these are easily and

e�ciently calculable.
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0

500

0

500

FIGURE 7.18: 64-ELEMENT POINT SETS WITH CORRESPONDING FOURIER SPECTRA.
Regular grid, hexagonal-grid, Halton sequence, and Hammersley point set with associated
Fourier spectra.

FIGURE 7.19: 64-ELEMENT POINT SETS WITH CORRESPONDING FOURIER SPECTRA.
Jittered, N-rooks, jittered-Hammersley, and via Poisson-disk sampling generated patterns
with associated Fourier spectra.
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As the �nal point, let us contemplate some of the patterns generated according to

jittering or on the basis of the Latin hypercube, shown in 7.19. It is clearly to be seen

that their Fourier-spectra show similarities with the Poisson-disk pattern. In fact, with

respect to the frequency domain, they come relatively close to the ideal Poisson-disk

pattern. Apart from the δ-peak typically found in the centre where it occurs particularly

pronounced, Fig. 7.19 also shows the strong high-frequency noise and the relatively weak

intensities in the low frequency area, phenomena to which the human eye is very sensitive

[67, Glassner 1995].

REMARK 7.18 In computer graphics, a long time low discrepancy sampling only was

applied for pixel supersampling, but our discussions in the last sections have shown,

that, the inherent strati�cation property makes low discrepancy sequences and point

sets also usable in sampling strategies for computing direct or indirect illumination,

the construction of so-called quasi-random walks, or multiple importance sampling,

[106, Keller and Heinrich 1996], [102, Keller 1996], and [109, Kollig and Keller

2002].

7.4 REFERENCE LITERATURE AND FURTHER READ-
ING

Our discussion about quasi-Monte Carlo techniques is mainly based on [138, Niederreiter

1992], the standard work on quasi-Monte Carlo integration and|with respect to the results

of greatest interest to computer graphics|from [104, Keller 1998] and [100, Keller 2002].

Although [67, Glassner 1995], [50, Dutr�e &. al 2003], and [158, Pharr and Humphreys

2004] discuss the topic only incomplete and on a very high mathematical level, all three

books were useful references for our presentation of the quasi-Monte Carlo integration in

Chapter 7.

The team around Keller also wrote a series of papers which show that it can be of great

advantage to use quasi-Monte Carlo integration for di�erent subjects of global illumination.

Here, we mention in particular [105, Keller and Heinrich 1994] and [106, Keller and Heinrich

1996], where quasi-Monte Carlo techniques are proposed and investigated for solving the

radiance equation and the global illumination problem. Also [109, Kollig and Keller 2002]

contains a variety information about the topic. The usage of randomized quasi-Monte

Carlo integration resulting in an e�cient bidirectional path tracing algorithm is discussed

in [108, Kollig & Keller 2002] and quasi-random walk techniques for the approximation

of functionals for solving second kind Fredholm integral equations can be found in [102,

Keller 1996]. With respect to radiosity methods, we mention [101, Keller 1996], where a

fast algorithm is presented for computing form factors, which is based on low discrepancy

samples and which is superior to random sampling.
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An excellent and easily understandable article on quasi-Monte Carlo integration are

the SIGGRAPH 2003 course notes, [146, Owen 2003]. This paper can be considered as a

useful tutorial, that describes in a short and simple manner the way from ordinary Monte

Carlo sampling via strati�cation, jittering, and LHS to di�erent QMC sampling techniques

like digital nets, integration lattices, and randomized quasi-Monte Carlo sampling. The

entire band width of sampling and reconstruction techniques in theory and practice is

also covered in [67, Glassner 1995]. Additionally, we recommend [210, Szirmay-Kalos &

Purgathofer 1999], where the integration of discontinuous functions is examined and it is

explained what kind of improvements can be expected from quasi-Monte Carlo techniques.

The concept of the discrepancy is discussed in many papers, in particular with respect

to sample uniform distributions and patterns. So, in [182, Shirley 1991] it is shown that

the discrepancy concept is a useful metric for examining equidistribution sampling issues

in computer graphics. An arbitrary-edge discrepancy measure, motivated by the edge

aliasing problem from computer graphics, is introduced in [45, Dopkin & al. 1993]. A

comparision of sampling patterns is given in [237, Wong & al. 1997].

Readers interested in the generation of further low-discrepancy sequences are referred

in particular to [138, Niederreiter 1992], [104, Keller 1998] und [197, Sobol 1985]. A

comparison of the Halton, Sobol, and Faure quasi-random sequences with respect to e�ects

on convergence of certain properties of integrals is made in [134, Moroko� and Cal�sh 1995].

A quasi-Monte Carlo Method for integral equations that has the potential to improve

upon the convergence rate of conventional Monte Carlo and quasi-Monte Carlo simulations

is presented in [199, Spanier & Li, 1998] and an interested article that describes the

evaluation of high-dimensional integrals with quasi-Monte Carlo principles is [58, Faure

2009].

The standard reference for useful information on (t,m, s)-nets and (t, s)-sequences is

[138, Niederreiter 1992]. The technique for generating (t,m, s)-nets via generating matri-

ces, presented in Section 7.2.3, is from [242, S�andor & Train, 2004]. In [212, Tan & Boyle

2000] two novel techniques for speeding up the generation of digital (t,s)-sequences are in-

troduced. Based on these results a new algorithm for the construction of Owens randomly

permuted (t, s)-sequences is developed and analyzed. In [23, Bierbauer & Edel 1997] a

series of generating matrices for good ternary (t,m, s)-nets are presented. As the descrip-

tion of explicit constructions of (t, s)-sequences, such as Faure-, Niederreiter- and Sobol

sequences would exceed the scope of this excursion into the generation of low-discrepancy

sequences, the interested reader is referred to Niederreiters standard work on quasi-Monte

Carlo methods [138, Niederreiter 1992]. A beautiful discussion on randomized quasi-Monte

Carlo methods is presented in [145, Owen 1998].

The mathematical principle of Fourier analysis is often described in many books on

Functional Analysis, for this see the Reference Literature and Further Reading Section

in Chapter 2. For the less mathematical oriented reader to this topic, we recommend [62,

Foley & al. 1987], [233, Watt 1992], [67, Glassner 1995], and [55, Encarnacao 1997 & al.]

where Fourier analysis is discussed on high-level introductions.



652 CHAPTER 7. QUASI-MONTE CARLO INTEGRATION



CHAPTER EIGHT

THE CLASSIC RENDERING
ALGORITHMS BASED ON THE
PRINCIPLE OF RAY TRACING

In the previous sections we have studied the most important techniques for generating

algorithms based on Monte Carlo methods for solving the light transport as well as the

importance and the measurement equation. Before we discuss in the next chapter concrete

approaches used in practice and discuss them in the mathematical framework built so far,

it is imperative to give us an overview of the most relevant classic rendering algorithms

based on the principle of ray tracing.

All ray tracing based rendering procedures pursue the same idea: They shoot from

certain sources, such as importance or light emitters, rays into the scene and trace these

rays on their travel over the scene objects. Depending on the starting points of the gen-

erated paths, we distinguish between two great classes of rendering algorithms: shooting

and gathering algorithms. If a path has its origin at the observer, the algorithm is a

gathering algorithm, see Figure 8.1. If it has its origin in one of the light sources of the

scene, we speak of a shooting algorithm, see Figure 8.2. Shooting algorithms approximate

solutions of the importance equation, while gathering methods lead to solutions for the

di�erent light transport equations.

OVERVIEW OF THIS CHAPTER. We begin our summary about the classic rendering algo-

rithms based on the principle of ray tracing by introducing Heckbert's regular expression Section 8.1

notations for paths. It gives us a convenient way for describing what happens if light trav-

els through a scene. The �rst ray tracing algorithm, which we introduce, is Ray Casting, a Section 8.2

technique for fast rendering a 3D scene. Afterwards, we discuss the classic Whitted-style

Ray Tracing. It can be considered as the foundation of all ray-based procedures used in

computer graphics. Finally, we then present the �rst ray tracing algorithm based on prob- Section 8.3

abilistic approaches for solving the light transport equation in free space: Distribution

Ray Tracing. As an early, general, but ine�cient prototype of a Monte Carlo rendering Section 8.4

algorithm, it includes many interesting techniques based on stochastic principles, which

653
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GATHERING ALGORITHMS {
∀ pixel �i ∈ (�1, . . . ,�M) do {
L = 0

∀ j ∈ (1, . . . ,N) {
sample a point pj ∈ �i and a direction ωj ∈ S2

generate an eye-ray r = pj + αωj

L+ = GatherRadiance(r) in scene

}
L = L

N

}
}

FIGURE 8.1: GATHERING ALGORITHMS. Gathering algorithms correspond to solutions of
the light transport equations. They start at the eye or at a virtual camera and gather via
the function GatherRadiance(r) the contributions of light at intersection points of r with
objects surfaces during its travel through the scene. �i corresponds to a pixel on the image
plane, ωj is as usual a direction starting at the eye through pixel �i, and L is the radiance.

SHOOTING ALGORITHMS {
∀ emitters ☼i ∈ (☼, . . . ,☼M) do {
L = 0

∀ j ∈ (1, . . . ,N) {
sample a point lj ∈ ☼i and a direction ωj ∈ S2

generate an light-ray r = lj + αωj

W+ = DepositImportance(r) in scene

}
W = W

N

}
}

FIGURE 8.2: SHOOTING ALGORITHM. Shooting algorithms correspond to solutions of the
adjoint light transport equation. They start at a light source and deposit via the function
DepositImportance(r) the contributions of importance at intersection points of r with objects
surfaces during its travel through the scene. ☼i stands for a light source within the scene,
ωj is as usual a direction starting at the light source ☼i, and W is the importance.
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we will use in our further discussions in Chapter 9.

8.1 HECKBERT’S PATH NOTATION BASED ON REG-
ULAR EXPRESSIONS

Recall, the Neumann series approach, considered as a mathematical model of light and Neumann Series Approach (608)

importance transport, can be physically interpreted as follows: Each application of the

exitant light transport operator T∂VLo corresponds to the interaction of light at a surface T∂VLo (457)

along a path starting at a light source within a scene. So, Le, T
∂V
Lo
Le and T∂VLo

2
Le are

three paths, where light comes directly, via one, as well as two bounces from a light source

to a sensor, see Figure 8.3.

As we know, the reection or refraction behavior of light at a surface can be described

by a BSDF, fs, which himself can be split into an ideal di�use, fos , an ideal specular, f
∨

s , BSDF (371)

and a glossy component, fgls , that is, the BSDF can be written as: Composition of BSDF (375)

fs = f
o
s + f

∨

s + fgls . (8.1)

This splitting then implies also a splitting of the light transport operator T∂VLo given

by:

T∂VLo
def
= T∂Vo +T∂V∨ +T∂Vgl . (8.2)

Applied to the Neumann series representation of the light transport from Equation

(5.33) then it holds:

Lo =

∞∑
j=0

(
T∂Vo +T∂V∨ +T∂Vgl

)j
Le (8.3)

= Le +
(
T∂Vo +T∂V∨ +T∂Vgl

)
Le +

(
T∂Vo +T∂V∨ +T∂Vgl

)2
Le + . . . (8.4)

= Le +T∂Vo Le +T∂V∨ Le +T∂Vgl Le +T∂Vo
2
Le +T∂Vo T∂V∨ Le + . . . (8.5)

with (
T∂Vo Lo

)
(s,ωo)

def
=

∫
S2(s)

fos (s,ωi → ωo)Lo(s,ωo)dσ
⊥
s (ωi) (8.6)

(
T∂V∨ Lo

)
(s,ωo)

def
=

∫
S2(s)

f∨s (s,ωi → ωo)Lo(s,ωo)dσ
⊥
s (ωi) (8.7)

(
T∂Vgl Lo

)
(s,ωo)

def
=

∫
S2(s)

fgls (s,ωi → ωo)Lo(s,ωo)dσ
⊥
s (ωi) (8.8)
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FIGURE 8.3: LIGHT PATHS OF DIFFERENT LENGTH. Light emitted by a source can
directly arrive at the eye, this corresponds to a light path of length one. A light path of
length two goes over the reflective surface s1 to the eye. Light paths of length ≥ 2 arrive
at the eye by reflection at more than a single surface.

for any exitant function Lo ∈ R∂V.
Each term in this representation of the Neumann series corresponds to a path through

the scene starting at a light source and ending at a sensor with di�erent types of scattering

in between. Since the analysis and the comparison of rendering algorithms often requires

information about the chain of events occurring on such paths, the Equations (8.3) - (8.5)

are not suitable to deliver this information.

A convenient way for describing what happens if light travels through a scene is given

in [81, Heckbert 1990]. Heckbert describes a path trough a scene by a short string, which

corresponds to a regular expression generated over a �nite alphabet A as known from

automata theory, see [87, Hopcroft & al. 1979].

The alphabet A = {E,D,G, L, S}, over which we generate our regular expressions, is

prede�ned by the physical phenomena occurring at a surface. Thus,

� L describes the emission of photons from a light source and

� E stands for absorption of photons at a sensor.

The reection and transmission behavior at surfaces is abbreviated by

� D for ideal di�use,

� S for ideal specular, and

� G for glossy reection or refraction,
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FIGURE 8.4: EXTENDED HECKBERT PATH NOTATION. On the left, one light path has
length one, the others are light paths of length 2 over a diffuse or a glossy surface. The

corresponding graph represents paths of characteristic
←−−−−−
E[D|G]L, thus a local illumination

model. The graph in the center describes light paths of characteristic
←−−−−−−
E(D|S)∗L, that is, he

simulates global illumination in a scene consisting of diffuse and specular surfaces. As we
will see in Section 8.3, the graph on the right hand side, simulates classic Whited-style ray
tracing in scenes with specular and diffuse surfaces, thus eye paths of length ≥ 1 of type−−−−−→
ES∗[D]L.

that is, the abbreviations for the individual components of a BSDF.

Furthermore, we use standard regular expression notation as in [87, Hopcroft & al.

1979], that is: Subexpressions may be grouped in parentheses, the superscripts ∗ and +

correspond to 0 or more repetitions, respectively 1 or more repetitions of the substring,

which they superscribe. A term in square brackets is optional and the vertical bar |

between two members indicates a selection among them. We expand Heckbert's original

notation by an arrow over the expression, indicating the direction of computation, that is:

gathering → and shooting ←.

Let us consider some simple regular expressions that classify various transport paths.

EXAMPLE 8.1 (Important Transport Paths Expressed in Expanded Heckbert Notation) i)

The simplest light path in a scene can be described by
←−
EL, that is, light emitted from

a source is transported directly|without interaction with objects in a scene|into

the eye.
←−
EL is a light path of length 1, see Figure 8.4. A scene only rendered with

these paths would be black except for visible light sources.

ii) Obviously, local reection models simulate paths of characteristic
←−−−−−
E[D|G]L

or
−−−−−→
E[D|G]L, since local reection models does not account for indirect illumination.

Paths in local reection models always have length ≤ 2, while paths in global illu-
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mination models are of characteristic
−−−−−−−−→
E(D|S|G)∗L or

←−−−−−−−−
E(D|S|G)∗L with length ≥ 1, see

Figure 8.4.

iii) As we will show in Section 8.3, classic ray tracing generates eye paths of

characteristic
−−−−−−−→
ES∗[D|G]L. That is, the algorithm generates paths starting at the eye

and continuing over none, one, or more specular surfaces until a di�use or a glossy

surface is hit from where they are connected to a light source, see Figure 8.4.

iv) The set of all paths starting at the eye of an observer and ending in a light

source can be described by the regular expression
−−−−−−−−→
E(D|G|S)∗L. This set consists of an

eye path of length 1 or eye paths of length greater than 1 via di�use, specular, or

glossy reection/refraction at object surfaces within the scene.

v) In Chapter 10, we discuss radiosity algorithms. These are procedures based on

�nite element methods for solving the light transport equation in scenes existing of

purely di�use surfaces. Hence, radiosity algorithms generate paths of characteristic←−−→
ED∗L, that is, they only consider di�use reections. So, we have an eye-light or

light-eye path
←→
EL, or eye respectively light paths of length greater than 1 over the

di�use object surfaces within the scene.

vi) A caustic is a light pattern generated by light that is reected or transmitted

at a number of subsequent specular surfaces before interacting with a di�use surface,

such as it occurs onto a table when light passing through a glass �lled with water,

wine, or so. For a long time, caustics were the most di�cult to simulate lightMonte Carlo Light Tracing (710)

phenomena in computer graphics. Such a light pattern is based on eye subpaths of

characteristic
−−−−→
EDS+L or light paths of type

←−−−−
EDS+L.

REMARK 8.1 Since all paths must involve a light source L as well as the eye E, they

have length at least equal to 1. A nice thing about this notation is that it is clear when

certain types of paths are not traced, that is, when certain types of light transport are

not considered by the algorithm. For example, the ray casting algorithm, introduced

in the next section, only traces paths of length ≤ 2, namely
−−−−−→
E[D|G]L, ignoring longer

paths; thus, only direct lighting is considered.

As we will show in Section 8.3, classic Whitted-style ray tracing traces paths of

any length, but all those paths begin with a sequence of zero or more specular reec-

tion and refraction steps. Thus, Whitted's technique accepts paths of characteristic−−−−−−−→
ES∗[D|G]L but ignores paths like

−−−−−−→
EDSDSL or

−−−−−−→
E(D|G)∗L. Monte Carlo path tracing andMonte Carlo Path Tracing (692)

distribution ray tracing can simulate paths where light bounces between non-specularDistribution Ray Tracing (672)

surfaces such as
−−−−−−−−→
E(D|G|S)∗L. However, these methods have di�culties to accept paths

of the form
−−−−−−−→
E(D|G)S∗L|that is, multiple specular bounces from the light source as in

a caustic|since it is often very unlikely to meet a small light source after a specu-

lar reection. Obviously, any technique that ignores whole classes of paths will not

correctly compute the solution to the light transport equation [74, Hanrahan 2001].
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8.2 RAY CASTING

From our considerations concerning the transport of light in free space we know that on Radiance (250)

the one hand radiance along a ray is invariant and, on the other hand physically de�ned BRDF (320)

BRDFs underly the Helmholz principle of reciprocity. Referring to the transport of light Helmholz Reciprocity (331)

this means that it can be described in two ways: First, naturally by photon emission,

where photons are emitted from light sources and arrive at a sensor, but also in the re-

verse direction, i.e. starting from a sensor and �nding its way to a light source. In the

introductory section to this chapter, we called those algorithms gathering algorithms, as Gathering Algorithms (653)

they make use of the reversibility of the propagation of light.

CLASSIC RAY CASTING. Let us start to consider a very simple rendering technique of

purely geometric nature where illumination plays no role: Ray Casting. Ray casting, a

so-called image-precision algorithm, works as a visibility detection tool similar to depth

bu�ering, see [62, Foley & al. 1987] and [78, Hearn & Backer 1994]. The algorithm follows

the idea of shooting a mathematical ray r = e+ αω,α > 0, starting at the camera or the Ray (11)

observer's eye e and passing through a pixel of the image plane in direction ω into the

scene to �nd the closest point on an object visible along this ray. Via the ray casting

function γ the nearest intersection point of such a ray with an object can be computed. γ (47)

If the speci�ed object is a light source, the current pixel is painted with the color of the

light source, otherwise the pixel remains black, see Figure 8.5 and the left image in Figure

8.6. Since the light sources in ray casting algorithms are commonly assumed to be point

light sources, an image rendered via classic ray casting is usually completely black.

RAY CASTING EQUIPPED WITH A LOCAL ILLUMINATION MODEL. A slightly modi�ed ver-

sion of ray casting, above described as a purely visibility detection tool, includes a local

illumination model into the process of visibility detection. The algorithm experiences a

change in such a way that after the collision of a ray with an object, new rays are �red in

direction to the existing light sources. Regardless whether these rays are blocked by other

objects on its ways to the light sources, the corresponding pixel is always colored with

the color of the closest object depending on the contribution of light that comes from the

light sources, see Figure 8.7 and the right image in Figure 8.6. In this modi�ed version

ray casting can also simulate paths of length two, that is, paths of characteristic
−−−−−→
E[D|G]L,

which enables ray casting to produce a very fast preview of a scene.

Based on these considerations, ray casting can be considered as an approximate solver

of a very simple version of the stationary light transport equation in vacuum, thus, SLTEV (398)

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi), (8.9)

where we assume that the BSDF is a composition of a di�use fos , and a glossy component

fgls .
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CLASSIC RAY CASTING {
∀ pixel �i ∈

{
�1, . . . ,�sx·sy

}
do {

choose center p ∈ �i

generate an eye-ray r = e→ p

compute closest hit point s of r with objects ∂V in scene

if s ∈ {☼1, . . . ,☼M} do {
L(s→ e) = Le(s→ e)

} else {
L(s→ e) = 0

}
}

}

FIGURE 8.5: PSEUDOCODE FOR CLASSIC RAY CASTING. The classic ray casting algorithm
shoots an eye-ray through the center of every pixel. If the closest object that has been hit
by this ray is a light source, then the corresponding pixel is shaded with the color of the
light source, otherwise, the pixel remains black.

FIGURE 8.6: CLASSIC RAY CASTING AND RAY CASTING EQUIPPED WITH A LOCAL
ILLUMINATION MODEL. In its classic version, ray casting shoots a ray through the center
of a pixel and determines the hit point of this ray with an object in the scene. If the ray
hits a light source, then the pixel is shaded with the color of the light source, in all other
cases it is colored black. The modified version of ray casting uses a local illumination model
but without to take into account the computation of shadows. If a ray hits an object in
the scene, the algorithms computes shadow rays in direction to all light sources, which are
assumed to be point light sources. The pixel associated with the primary ray gets the color
of the object depending on the contribution of light coming from the light sources.
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RAY CASTING with LOCAL ILLUMINATION {
∀ pixel �i ∈

{
�1, . . . ,�sx·sy

}
do {

choose center p ∈ �i

generate an eye-ray r = e→ p

compute closest hit point s of r with objects ∂V in scene

L(s→ e) = 0

∀ light sources ☼j ∈ (☼1, . . . ,☼M) do {
sample point l ∈ ☼j
L(s→ e)+ = fs(s, l→ s→ e)Le(l→ s)

}
}

}

FIGURE 8.7: PSEUDOCODE FOR RAY CASTING WITH LOCAL ILLUMINATION. If an eye-
ray hits a scene object at point s, the algorithm shoots shadow-rays in direction to all light
sources and shades s depending on the contributions of the light sources and the reflection
behavior of light at hit point s.

The incident radiance Li under the integral is simply replaced by the radiance Le Incident & emitted Function (48)

emitted from a light source, that is, the associated, simpli�ed SLTEV has the form

Lo(s,ωo) = Le(s,ωo)

+

∫
S2(s)

fos (s,ωi → ωo)Le(γ(s,ωi),−ωi)dσ
⊥
s (ωi) (8.10)

+

∫
S2(s)

fgls (s,ωi → ωo)Le(γ(s,ωi),−ωi)dσ
⊥
s (ωi),

where γ(s,ωi) are points on the light sources in direction to s.

Using the Relations (8.6) - (8.8), then Equation (8.10) corresponds to eye paths of

characteristic

Lo = Le +
(
T∂Vo +T∂Vgl

)︸ ︷︷ ︸
[D|G]

Le (8.11)

≡
−−−−−→
E[D|G]L. (8.12)

Evidently, the integrand in Equation (8.10) is determined by the radiance emitted

from the light sources. Instead to integrate over the entire unit sphere, a more e�cient

strategy could be to integrate only over the solid angles of all light sources projected onto

the unit sphere.
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Now, the projection of a countable set of point light sources on the unit sphere

results in a null set, thus a set of measure zero, and the projection of an area light sourceNull Set (80)

onto the sphere is, due to [10, Arvo 1995], a very complex task. But both problems can

be solved in a simple way: The problem of point light sources can be solved by using

Dirac δ-distributions, and the projection of area light sources onto the unit sphere can beDirac δ-distribution (117)

circumvented by formulating the above modi�ed variant of the SLTEV in its 3-point form,3-point form (403)

where the integration domain is given via the area light sources existing in the scene.

RAY CASTING WITH POINT LIGHT SOURCES. In its classic version, ray casting assumes that

the scene to be rendered is illuminated by point light sources. Therefore, let us �rstly

devote to the problem where a scene is only illuminated by m point light sources ∗j,
located at points xj ∈ R3 with 1 ≤ j ≤M.

Due to our derivation in Example 4.6, the factor Le(γ(s,ωi),−ωi) in Equation

(8.10) is then replaced by the product of the Dirac δ-distribution δ(ωi − ω
lj
i ), whereDirac δ-distribution (117)

ω
lj
i ≡

s→∗j
‖s→∗j‖2 is the shadow ray between surface point s and the light source ∗j, and the

irradiance at points s given byIrradiance (257)

E(s) =
Φej(∗j)
4 π

∣∣∣cos θlji ∣∣∣
‖∗j − s‖22

, (8.13)

where cosθ
lj
i is the angle between the surface normal at s and the direction ω

lj
i towards

the light source ∗j. Using this construct in Equation (8.10), then we get:

Lo(s,ωo) = Le(s,ωo) + (8.14)∫
S2(s)

(
fos (s,ωi −→ ωo) + f

gl
s (s,ωi −→ ωo)

)
δ(ωi −ω

lj
i )Le(γ(s,ωi),−ωi)dσ

⊥
s (ωi)

= Le(s,ωo) + (8.15)

M∑
j=1

(
fos (s,ω

lj
i −→ ωo) + f

gl
s (s,ω

lj
i −→ ωo)

) Φej(∗j)
4 π

∣∣∣cos θlji ∣∣∣
‖∗j − s‖22

.

RAY CASTING WITH AREA LIGHT SOURCES. For simulating area light sources in ray casting

we simply transform the spherical form of the above modi�ed SLTEV into its 3-pointSLTEV in 3-point Form (402)

representation. As already mentioned above, this transformation has the advantage that

the integration domain is given via the surface areas of all area light sources ☼j, 1 ≤ j ≤M.

In 3-point form, Equation (8.10) then looks like:
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L(s→ e) = Le(s→ e) + (8.16)∫
☼

(
fos (l→ s→ e) + fgls (l→ s→ e)

)
Le(l→ s)Ĝ(l↔ s)dµ2(l),

= Le(s→ e) +
M∑
j=1

∫
☼j

fos (l→ s→ e)Le(l→ s)Ĝ(l↔ s)dµ2(l) + (8.17)

M∑
j=1

∫
☼j

fgls (l→ s→ e)Le(l→ s)Ĝ(l↔ s)dµ2(l),

where s→ e = ωo and l are points on the area light sources ☼j.

REMARK 8.2 Note, in the above both equations we use a modi�ed geometry term Ĝ G (129)

instead of the geometry term G, which we usually use in our 3-point formulations

of the SLTEV. The reason for this is the fact that a ray casting algorithm does not

account for, whether rays, �red in direction to light sources, are blocked by other

objects. This means that the visibility term in G can be neglected, that is, we can

de�ne:

Ĝ(l↔ s)
def
=

G(l↔ s)

V(l↔ s)
. (8.18)

An e�cient and simple Monte Carlo sampling strategy for estimating L(s → e)

chooses a point lj on each light source, generates a shadow ray from s in direction to

lj, and computes the radiance arriving at s along this ray. For that purpose, we have to

draw a sample from each of the light sources according to probability density functions PDF (176)

p☼j
on the probability spaces (☼j,B(☼j), µ2). This then leads to the primary Monte Probability Space (163)

Carlo estimator FRC1 for approximating L(s→ e), given by:

FRC1 = Le(s→ e) +

1

M

M∑
j=1

fos (lj → s→ e)Le(lj → s) Ĝ(lj ↔ s)

p☼j
(lj)

+ (8.19)

1

M

M∑
j=1

fgls (lj → s→ e)Le(lj → s) Ĝ(lj ↔ s)

p☼j
(lj)

,

where the samples lj are generated according to the probability densities p☼j
on the areas

of the light sources, and Le(s→ e) 6= 0 if and only if s ∈ ☼j for 1 ≤ j ≤M.
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FIGURE 8.8: ONE OF THE FIRST IMAGES RENDERED WITH RAY TRACING. The image is
rendered using a pen plotter, where a halftone pattern is simulated by locating a different
sized +-sign at each pixel of the image plane depending on the pixel’s intensity. Image
courtesy of Arthur Apple.

8.3 CLASSIC WHITTED-STYLE RAY TRACING

We have seen that a ray casting algorithm only generates primary rays, and shadow rays

in its extended version. It does not generate secondary rays after a primary ray has hit

an object within a scene, nor it does account for whether shadow rays, �red in direction

to a light source, are blocked by other objects. As such an algorithm only simulates light

paths of characteristic
−−−−−→
E[D|G]L, it can not reproduces simple light e�ects like shadows let

alone indirect illumination. That is, images generated via a ray casting procedure are very

sterile and unrealistic.

In [5, Apple 1968], the ray casting algorithm was extended to simulate shadows by

taking into account whether a shadow ray is blocked by other objects on its way to one

of the light sources. Therefore, Apple's algorithm can be seen as the �rst ray tracing

algorithm, see Figure 8.8. Based on this technique, in [236, Whitted 1980] then a process

is introduced, which repairs all the cons of ray casting, listed above. Additionally, this

new approach also traces recursive rays in the reection and/or refraction direction for

reective and refractive materials: Classic Whitted-style Ray Tracing was born.

THE CLASSIC WHITTED-STYLE RAY TRACING ALGORITHM. In analogy to ray casting, classic

Whitted-style ray tracing also starts with shooting a primary ray from a sensor|typically

the eye of an observer or a virtual camera|through a pixel of the image plane into the

scene to be rendered. At the �rst hit point of the primary ray with the closest scene object,
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classic Whitted-style ray tracing can|depending on the properties of the material of the

concerned surface|generate up to three new types of rays: a reection ray, a refraction Reflection Ray (300)

ray, and a shadow ray. The algorithm then estimates the incoming light at the intersection Refraction Ray (305)

point of the primary ray with the object, examines the material properties of the object, Shadow Ray (14)

and combines this information to a light contribution for the �nal color of the pixel. The

computation of the light contributions of the reected as well as the refracted ray then

takes place exactly in the same way as for the primary ray until a di�use surface is hit,

the ray does not intersect an object within the scene, or the intensity of the ray is below a

threshold value, respectively, the recursive depth of the ray generation exceeds a prede�ned

value. This is the reason why the method is also called recursive ray tracing, see Figure

8.9.

Now, let us check which types of light transport paths in free space are simulated by

classic Whitted-style ray tracing. As the most part of objects in a scene are assumed to be

specular reective or specular refractive, the BSDF fs, involved in the SLTEV is supposed fs (371)

to be composed of a BRDF fr, and a BTDF ft. Then, the SLTEV simulated by classic ft (330)

Whitted-style ray tracing is of the form: fr (320)

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi) (8.20)

= Le(s,ωo) +∫
H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi) + (8.21)∫

H2
i
(s)

ft(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi).

As the BRDF as well as the BTDF can be written as the sum of a specular, a di�use,

and a glossy component, the SLTEV can also be written as:

Lo(s,ωo)
(4.198)
= Le(s,ωo) +∫

H2
i
(s)

(
for (s,ωi → ωo) + f

∨
r (s,ωi → ωo) + f

gl
r (s,ωi → ωo)

)
Li(s,ωi)dσ

⊥
s (ωi) + (8.22)∫

H2
i
(s)

(
fot (s,ωi → ωo) + f

∨
t (s,ωi → ωo) + f

gl
t (s,ωi → ωo)

)
Li(s,ωi)dσ

⊥
s (ωi).

Now, except of the last interaction of light at an object surface, ray tracing only ac-

counts for ideal specular reection as well as ideal refraction, that is, the specular compo-

nent of the BRDF and the BTDF can be replaced by Dirac δ-distributions in the mirrored Dirac δ-distribution (117)

direction ωr = MN(ωo) as well as the refracted direction ωt = R(ωo). Using the rep-

resentations of the ideal specular BRDF from Equation (4.104) and the ideal transmitted
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FIGURE 8.9: CLASSIC WHITTED-STYLE RAY TRACING. The algorithm starts with generat-
ing a primary ray from a sensor, typically the eye of an observer or a virtual camera, through
a pixel of the image plane. At the first hit point of this ray with the closest scene object,
the algorithm can generate, depending on the properties of the material of the concerned
surface, up to three new types of rays: a reflection ray, a refraction ray, and a shadow ray.
The algorithm estimates the incoming light at the intersection point of the primary ray with
an object and combines this information to a contribution to the final color of the pixel. The
computation of the light contributions of the reflected as well as the refracted ray are taken
recursively until a diffuse surface is hit, the ray doesn’t intersect an object within the scene,
or the intensity of the ray is below a threshold value respectively the recursive depth of ray
generation exceeds a predefined value.
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FIGURE 8.10: RAY TREE FOR LIGHT PATHS. Often, the ray tracing algorithm is
represented in form of a ternary tree. The root of this tree represents the eye or a virtual
camera and each inner node of the tree corresponds to a point where the surface is hit.
At each such point, the algorithm then generates up to three new rays, a reflected and/or
refracted ray, and a shadow ray.

BTDF from Equation (4.133) then implies:

Lo(s,ωo) = Le(s,ωo) +

ρdd(s,ωr → ωo)Li(s,ωr) +

τdd(s,ωt → ωo)Li(s,ωt) + (8.23)∫
S2(s)

(
fos (s,ωi → ωo) + f

gl
s (s,ωi → ωo)

)
Li(s,ωi)dσ

⊥
s (ωi),

where ρdd is the directional-directional reectance as de�ned in Equation (4.163) and τdd
is the directional-directional transmittance from Equation (4.194). Note: The di�use and

glossy components of the BRDF and the BTDF in the above equation are expressed via

the concept of the BSDF.

As in any ray tracing algorithm the recursive ray generation is stopped if a not too

di�use or a glossy surface is hit, the incident radiance in the scattering equation from Equa- Scattering Equation (374)

tion (8.23) is completely determined by the radiance emitted from sources illuminating

the scene. That is, for the incident radiance it must hold: Li(s,ωi) = Le(γ(s,ωi),−ωi),

where γ(s,ωi) is a point on any of the light sources. Obviously, this then implies that γ (47)

classic ray tracing can not compute indirect illumination on di�use or glossy surfaces.

Under these conditions, classic Whitted-style ray tracing only delivers an approximate
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CLASSIC WHITTED-STYLE RAY TRACING {
∀ pixel �i ∈ (�1, . . . ,�sx·sy) do {

sample point p ∈ �i

generate an eye-ray r = e→ p

L(s→ e) = TRACE(r)

}

TRACE(r) {
compute hit point s of r with closest object ∂V in scene

compute normal N(s) at point s

return SHADE(s,N(s))

}

SHADE(s,N(s)) {
L = 0

∀ light sources ☼i ∈ (☼1, . . . ,☼M) do {
sample point l ∈ ☼i
if V(s↔ l) = 1 {
L+ = fs(s, l→ s→ s′)Le(l→ s) where s′ = pred(s) in ray tree

}
}
if ∂V is specular {

generate secondary reflected and/or refracted ray r′

L+ = TRACE(r′)

}
return L

}

FIGURE 8.11: PSEUDOCODE FOR CLASSIC WHITTED-STYLE RAY TRACING. The
classic Whitted-style ray tracing algorithm is only based on two simple methods: After
generating primary rays through pixels on the image plane, the algorithm uses the method
TRACE() recursively—for tracing primary rays through the scene to be rendered—and the
method SHADE(), for coloring the associated pixels.
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solution to the following model of the SLTEV:

Lo(s,ωo) = Le(s,ωo) +∫
S2(s)

(
fos (s,ωi → ωo) + f

gl
s (s,ωi → ωo)

)
Le(γ(s,ωi),−ωi)dσ

⊥
s (ωi) +

ρdd(s,ωr → ωo)Lo(γ(s,ωr),−ωr) + (8.24)

τdd(s,ωt → ωo)Lo(γ(s,ωt),−ωt),

where γ(s,ωr) and γ(s,ωt) are surface points in direction to the reected as well as the

refracted ray, and the incident radiance is expressed in terms of exitant radiance from

emitters within the scene.

With the Relations (8.6) - (8.8), Equation (8.24) then simulates light transport paths

of characteristic:

Lo = Le +

∞∑
i=1

T∂V∨
i
Le +

(
T∂Vo +T∂Vgl

)
Le (8.25)

=


∞∑
i=0

T∂V∨
i

︸ ︷︷ ︸
ES∗

+
(
T∂Vo +T∂Vgl

)︸ ︷︷ ︸
[D|G]

Le (8.26)

≡
−−−−−−−→
ES∗[D|G]L, (8.27)

where the second term corresponds to the direct illumination at di�use or glossy surfaces

and the in�nite sum represents the indirect illumination via ideal specular reective as

well as ideal refractive surfaces.

REMARK 8.3 Obviously, classic Whitted-style ray tracing does not compute any indi-

rect illumination than via specular paths, in particular, it can not compute indirect

illumination via di�use or glossy surfaces, nor caustics, which would be paths of Caustic (658)

characteristic
−−−−→
EDS+L. The fraction of light coming directly from light sources and

calculated by shadow rays is contained within the total energy as a local, di�use-glossy

component. All this means that ray tracing only computes a very coarse approxima-

tion of the original SLTEV. SLTEV (398)

Now, in classic Whitted-style ray tracing, all light sources in a scene are assumed

to be point light sources. Therefore, let us assume that M point light sources ∗j ∈ R3
with 1 ≤ j ≤ M illuminate the scene. Due to our derivation in Example 4.6, the factor

Le(γ(s,ωi),−ωi) in Equation (8.24) is then replaced by the product of the Dirac δ- Dirac δ-distribution (117)

distribution δ(ωi −ω
∗j
i ), where ω

∗j
i ≡

s→∗j
‖s→∗j‖2 is the shadow ray between surface point s

and the light source ∗j, and the irradiance at points s is given by: Irradiance (257)
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FIGURE 8.12: IMAGES RENDERED WITH CLASSIC WHITTED-STYLE RAY TRACING. The
algorithm can render shadows and specular reflections as well as specular refractions, but it
does not simulate indirect illumination of diffuse surfaces. Image courtesy of Henrik Wann
Jensen, UCSD.

E(s) =
Φej(∗j)
4 π

∣∣cos θ∗ji ∣∣
‖∗j − s‖22

. (8.28)

Using this result in Equation (8.24), then we get:

Lo(s,ωo) = Le(s,ωo) +

ρdd(s,ωr → ωo)Lo(γ(s,ωr),−ωr) + (8.29)

ρdd(s,ωt → ωo)Lo(γ(s,ωt),−ωt) +∫
S2(s)

(
fos (s,ωi −→ ωo) + f

gl
s (s,ωi −→ ωo)

)
δ(ωi −ω

∗j
i )Le(γ(s,ωi),−ωi)dσ

⊥
s (ωi)

= Le(s,ωo) +

ρdd(s,ωr → ωo)Lo(γ(s,ωr),−ωr) + (8.30)

ρdd(s,ωt → ωo)Lo(γ(s,ωt),−ωt) +
M∑
j=1

(
fos (s,ω

∗j
i −→ ωo) + f

gl
s (s,ω

∗j
i −→ ωo)

) Φej(∗j)
4 π

∣∣cos θ∗ji ∣∣
‖∗j − s‖22

.

EXTENSIONS OF CLASSIC WHITTED-STYLE RAY TRACING. Due to the fact that classic

ray tracing only accounts for point light sources and reections and/or refractions at

specular surfaces, naively implemented classic Whitted-style ray tracing generates only

little realistic images. This is particularly obvious since the algorithms simulates only

hard shadows and ideal reections on surfaces of brilliant objects, see Figure 8.12.
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The problem of hard shadows in classic Whitted-style ray tracing can easily be solved

by using area light sources. For that purpose, let ☼ = {☼1, . . . ,☼M} be M light sources

existing in our scene. As the integral in Equation (8.24) is determined by the radiance

emitted from light sources, instead to integrate over the entire unit sphere we integrate

only over the set of surface areas of light sources in the scene. For that, we express Equation

(8.24) in its 3-point form, where the integration domain is given by the area light sources,

that is, we reformulate the spherical form of the SLTEV where we can write:

L(s→ e) = Le(s→ e) +

ρdd(sr → s→ e)L(sr → s) +

ρdd(st → s→ e)L(st → s) + (8.31)∫
☼

(
fos (l→ s→ e) + fgls (l→ s→ e)

)
Le(l→ s)G(l↔ s)dµ2(l),

= Le(s→ e) +

ρdd(sr → s→ e)L(sr → s) +

ρdd(st → s→ e)L(st → s) + (8.32)
M∑
j=1

∫
☼j

(
fos (l→ s→ e) + fgls (l→ s→ e)

)
Le(l→ s)G(l↔ s)dµ2(l),

where sr = γ(s,ωr) ∈ ∂V, st = γ(s,ωt) ∈ ∂V and it holds: γ(s,ωo) = e, see Figure 8.13

The choice of a sample on a light source according to the probability density functions PDF (176)

p☼i
over the probability spaces (☼i,B(☼i), µ2) then leads to the following primary Monte Probability Space (163)

Carlo estimator for approximating Formula (8.32):

FcWRT1 = Le(s→ e) +

ρdd(sr → s→ e)L(sr → s) + ρdd(st → s→ e)L(st → s) + (8.33)

1

M

M∑
j=1

(
fos (lj → s→ e) + fgls (lj → s→ e)

)
Le(lj → s)G(lj ↔ s)

p☼j
(lj)

,

where lj are samples chosen at the light sources, and the evaluation of fos , respectively f
gl
s

is depending on the material of the speci�ed object. This then solves the problem of hard

shadows in the resulting images.

REMARK 8.4 However, images rendered with ray tracing algorithms often appear ar-

ti�cial and unrealistic as the underlying procedures miss many important aspects

of light, which limits the realism that could be normally achieved. In view to their

authenticity, these e�ects can be improved by slight modi�cations in the basic ray

tracing algorithm and the associated parameters. Examples for such modi�cations

will be presented in the following section. So, we can, apart from soft shadows, also Depth of Field (685)

simulate depth of �eld, and motion blur e�ects. The undesired aliasing phenomenon Motion Blur (688)
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FIGURE 8.13: CLASSIC WHITTED-STYLE RAY TRACING USING AREA LIGHT SOURCES.
The problem of hard shadows in classic Whitted-style ray tracing can easily be solved using
area light sources. For that purpose, the algorithm generates at a hit point of a ray with
any surface of the scene shadow rays in direction to the existing light sources for computing
the direct illumination at the point to be shaded.

can also be adjusted by simple extension of the algorithm by �ring more than a single

ray into the scene and averaging the radiance which ows along the rays in order to

shade the pixel.

8.4 DISTRIBUTION RAY TRACING

Classic Whitted-style ray tracing, as introduced in the last section, is not a full global

illumination algorithm. Since the algorithm does not samples directions other than the

perfectly specular reected or the perfectly specular refracted directions, it cannot compute

indirect illumination via di�use or glossy surfaces. So, classic Whitted-style ray tracingGlossy Reflection (304)

cannot simulate all the interesting light e�ects, which occur at a point of interest, that is,

the algorithm delivers only a coarse approximate solution to the stationary light transport

equation in vacuum.SLTEV (398)
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In the present section we introduce a more powerful rendering algorithms: Distri-

bution Ray Tracing. Distribution ray tracing is a global illumination algorithms, which

can simulate all possible light e�ects that can occur within a scene. First o� all, we illu-

minate the idea behind distribution ray tracing and show, how it can be applied to solve

the stationary light transport equation within a vacuum. Afterwards, we knit around this

method an algorithm that can be used to render a given scene: the Classic Distribution

Ray Tracing algorithm. Finally, we extend the classic distribution ray tracing algorithm Section 8.4.1

with some features to generate more realistic images, that is, we extend it by strategies

for sampling more dimensions, such as the pixels, the lens of the involved camera system, Section 8.4.2

and last, but not least, also the time. Section 8.4.3

8.4.1 SOLVING THE SLTEV VIA DISTRIBUTING RAYS

Recall our �rst naive Monte Carlo rendering algorithm introduced in Example 6.44. It

is based on the method of successive integral substitution from Section 6.7.1 for solving

Fredholm integral equations of the 2nd kind, and was applied to the SLTEV, given in the

form: SLTEV (398)

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (8.34)

This naive Monte Carlo ray tracing algorithm generates in a �rst step a large number

of rays and shoots these rays, starting at point s, into the scene. At the hit points of

these primary rays with objects of the scene, the algorithm gathers the light that comes

from these points, generates new rays, and shoots also these rays into the scene. Repeated

application of this approach then results in a tree of paths with root at point s which can

be used to compute the light arriving at s from points within the scene reachable via paths

over scene objects. The entire process will be repeated again and again, until a ray does

not hit an object or the recursion depth of the algorithm is exceeded, see Figure 8.14.

As shown in Example 6.44, our naive Monte Carlo algorithm uses the principle of Radiance Invariance (253)

invariance of radiance and expresses the incident radiance Li in Equation (8.34) in terms

of exitant radiance Lo. So, it delivers an approximate solution of the SLTEV expressed in

terms of exitant radiance, namely:

Lo(s,ωo)

= Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi), (8.35)

= Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Lo(γ(s,ωi),−ωi)dσ
⊥
s (ωi). (8.36)
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FIGURE 8.14: SOLVING THE SLTEV VIA DISTRIBUTING RAYS. Starting from point s the

algorithm generates N1 rays in directions ωi1
i . At the intersection points X0i1 of these rays

with object surfaces within the scene the algorithm gathers the light that comes from these

points and generates N2 new rays in directions ωi1i2
i . These directions can intersect the

scene objects in further points X0i1i2 . Repeated application of this approach then results in
a tree of paths with root at point s, which can be explored to compute the light arriving at
s from points on object surfaces of the scene. The entire process will be repeated again and
again, until a ray does not hit an object or the recursion depth of the algorithm is exceeded.
The exitant radiance at point s in direction ωo is the result of incident light that flows along
all paths, originated at s, attenuated by reflection and/or refraction processes.
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FIGURE 8.15: RAY DISTRIBUTION AT HIT POINTS WITHIN A SCENE. The algorithm
can be visualized in form of a multi-branched tree. The root of this tree corresponds
to the point s which we are interested in to compute the exitant radiance in direction
ωo, thus, Lo(s, ωo). From this point, N1 rays are generated resulting in potentially
new points X01, . . . ,X0N1 on object surfaces. At each such point, the algorithm
can then generate many new rays. Note the way we labeled the nodes of the tree: At
node X0i1...ij , the algorithm generatesNj+1 new rays to nodes X0i1...ij1, . . . ,X0i1...ijNJ+1 .

The unknown exitant function Lo, that is, the outgoing radiance and the integral on

the right-hand side can now be approximated by a Monte Carlo estimator|composed of

the known emitted radiance Le, the BSDF fs, and the furthermore unknown integrand

Lo, for a detailed description see Example 6.44 of Section 6.7.1. Using the identities from

the Relations (6.580) and (6.586), a secondary Monte Carlo estimator F
DRT,Lo(s,ωo)
N for

approximating the exitant radiance Lo(s,ωo) is then given by:

F
DRT,Lo(s,ωo)
N =

Le(X0,ωo)

p0(X0)
+ (8.37)

M∑
l=1


N1∑
i1=1

. . .

Nl∑
il=1

 l∏
j=1

1

Nj

fs(X0i1...ij−1 ,ω
i1...ij
i → ω

i1...ij−1
o )

∣∣∣cosωi1...iji

∣∣∣
p0(X0)pj(ω

i1...ij
i |ω

i1...ij−1
i )


Le(X0i1...il ,ω

i1...il
o )

}
.

In the above equation, the numberM corresponds to the maximal recursion depth of

the algorithm, thus, the maximal recursive ray generation, Nj is the number of rays that

are �red from sample points X0i1...ij−1 in new directions ω
i1...ij
i and it holds: p(X0) = 1
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as well as p1(ω
i1i1
i |ωi1i0i ) = p1(ω

i1
i ).

REMARK 8.5 Let us compare the estimator F
DRT,Lo(s,ωo)
N with the estimator derived

from classic Whitted-style ray tracing from Section 8.3: As the new algorithm always

generates a large number of rays at an intersection point of a ray with a scene object,

depending on the scattering properties of the surface, the estimator F
DRT,Lo(s,ωo)
N can

simulate much more light e�ects than the estimator corresponding to Whitted-style

ray tracing. This is particularly evident when approximating of the glossy part of

the BSDF via appropriate probability density functions pj. Additionally, the new

estimator can also take into account that at ideal specular reective or refractive as

well as at di�use surfaces the corresponding components of the involved BSDFs has

to be integrated. All these cases are already covered by F
DRT,Lo(s,ωo)
N . In the �rst

case the BSDFs are δ-distributions and the associated terms in F
DRT,Lo(s,ωo)
N must

be replaced by the product of the directional-directional reectance ρdd respectivelyρdd (338)

the directional-directional transmittance τdd and the radiance. That is, the corre-τdd (342)

sponding sums reduce to single terms in the estimator. For the case where a ray hits

a di�use surface, the estimator approximates the integration over the whole sphere

at the hit point s by the choice of an associated probability density functions pj ac-

cording to the di�use component of the BSDFs. Last, but not least, F
DRT,Lo(s,ωo)
N

can also solve the problem of hard shadows, known from classic Whitted-style raySection 8.4.3

tracing, by choosing PDFs proportional to the solid angles of the visible parts of the

light sources in the scene.

Using the Relations (8.6) - (8.8) then the SLTEV from Equation (8.34) corresponds

to transport paths of characteristic

Lo
(5.135)
= Le +

∞∑
i=1

T∂VLo Le (8.38)

(8.6)−(8.8)
=


∞∑
i=0

(
T∂Vo +T∂V∨ +T∂Vgl

)
︸ ︷︷ ︸

(D|S|G)∗

Le (8.39)

≡
−−−−−−−−→
E(D|S|G)∗L, (8.40)

that is, the algorithm which computes an approximate solution of the SLTEV based on

distributing rays can generate paths of characteristic
−−−−−−−−→
E(D|G|S)∗L. Note, this algorithm

can be used as the core of a full global illumination algorithm.
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8.4.2 CLASSIC DISTRIBUTION RAY TRACING

Due to De�nition 1.3, the global illumination problem consists in evaluating the measure-

ment equation

Mj
(4.429)
=

∫
∂V

∫
S2
Wj
e(s,ω)Li(s,ω)dσ⊥s (ω)dµ2(s) (8.41)

for all pixels �j of the image plane, that is, a full global illumination rendering algorithm

must solve the SLTEV at points within regions, which are visible through the pixel �j.
Additionally, it must combine the solution of the SLTEV at these points with the emitted

importance.

Due to the principle of radiance invariance in a vacuum, the incident radiance Li from Radiance Invariance (253)

the measurement equation can then be written in terms of exitant radiance, namely as:

Li(s,ω) = Lo(γ(s,ω),−ω), (8.42)

where γ(s,ω) are points within the scene visible from pixel �j.

As the exitant radiance Lo(γ(s,ω),−ω) can be approximated via the secondary

Monte Carlo estimator F
DRT,Lo(γ(s,ω),−ω)
N , for shading the pixel �j we only have to esti-

mate Equation (8.41).

Using a pinhole camera model, the measurement equation can obviously be written Pinhole Camera (417)

as:

Mj
(4.432)
=

∫
�j

fj(s)Lo(γ(s,ωe),−ωe)〈N(s),ωe〉dµ2(s), (8.43)

with ωe =
e→s
‖e→s‖2

2

, for details see Example 4.16.

A simple approach to approximate this type of measurement equation is then given

via a primary Monte Carlo estimator F
Mj,DRT

1 using a random variable X0 de�ned on the

pixel area �j, thus:

F
Mj,DRT

1 =
fj(X0)

p(X0)
〈N(X0),ωe〉 FDRT,Lo(γ(X0,ωe),−ωe))N , (8.44)

where F
DRT,Lo(γ(X0,ωe),−ωe)
N is the secondary estimator for estimating the exitant radiance

at sample point γ(X0,ωe) in direction −ωe from the previous section, see Figure 8.16.

This naive Monte Carlo rendering algorithm, �rstly introduced in Example 6.44 and

detailed discussed in the last section, can be seen as the basis of any ray tracing algorithm

based on the distribution of rays. Extended by sampling a point on the pixel �j, and
the construction of a primary ray, starting at the eye e and passing through the sample

X0, it is basis of the classic distribution ray tracing algorithm, �rstly presented in [40,

Cook & al. 1984] under the name distributed ray tracing often also called stochastic ray

tracing, see Figure 8.17. The pseudo-code of classic distribution ray tracing is shown in

Figure 8.18.
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FIGURE 8.16: VISUALIZATION OF F
Mj,DRT

1 . For estimating the measurement equation via a
primary Monte Carlo estimator, first, a point X0 is sampled at a pixel. Due to the principle
of radiance invariance in free space, the importance at X0 can easily be multiplied with
the estimate of the incident radiance Li(X0, ωe), approximated via the reflected radiance
Lo(γ(X0, ωe),−ωe), computed with DRT.

REMARK 8.6 The name distributed ray tracing is based on the fact that the algorithm

distributes rays in a probabilistic way to sample quantities that produce e�ects like

soft shadows, glossy reections, and refractions, as well as depth of �eld and motionSection 8.4.3

blur. In order to avoid confusion with distributed computing, the algorithm is named

distribution ray tracing today. It was the �rst ray tracing algorithm that makes use

of Monte Carlo techniques for solving the light transport equation in free space.

8.4.3 SAMPLING MORE DIMENSIONS: PIXELS, LENS AND TIME

Let us consider Figure 8.19, where we recognize e�ects such as blurred refection, soft shad-

ows, penumbras, depth of �eld, and motion blur. As the radiance value, measured at a

pixel on the image plane, is a function depending on time, pixel region, and lens optics, all

these e�ects can be integrated as additional dimensions in the measurement equation. TheMeasurement Equation (416)

measurement equation itself then mutates to a high-dimensional integral|one dimension

for time, two dimensions for pixel area, respectively, lens aperture, and area light sources.

Although this integral can be tremendously complicated, we can estimate it with the help

of Monte Carlo techniques regardless how complicated it is.
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FIGURE 8.17: CLASSIC DISTRIBUTION RAY TRACING. The algorithm starts with gener-
ating a primary ray via the eye and a point sampled within a pixel �j. At the first hit point
of this ray with the closest scene object, the algorithm can generate a large number of rays,
depending on the properties of the material of the concerned surface. Additionally, a shadow
ray a is also constructed. The algorithm estimates the incoming light at the intersection
point of the primary ray with the object and combines this information to a contribution to
the final color of the pixel. The computation of the light contributions of the distributed
rays are taken recursively until the recursion depth of ray generation exceeds a predefined
value.
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CLASSIC DISTRIBUTION RAY TRACING {
∀ pixel �i ∈ (�1, . . . ,�sx·sy) do {

sample point X0 ∈ �i

generate an eye-ray r = e→ X0

L(s→ e) = TRACE(r)

}

TRACE(r) {
compute hit point s of r with closest object ∂V in scene

compute normal N(s) at point s

return SHADE(s,N(s))

}

SHADE(s,N(s)) {
L = 0

∀ light sources ☼i ∈ (☼1, . . . ,☼M) do {
sample point l ∈ ☼i
if V(s↔ l) = 1 {
L+ = fs(s, l→ s→ s′)Le(l→ s) where s′ = pred(s) in ray tree

}
}
if ∂Vc is specular {

generate secondary reflected and/or refracted ray r′

L+ = TRACE(r′)

} else {
sample directions ωi due to the reflection and/or

refraction behavior of surface ∂V

generate N secondary rays r2i = s + αωi according to

return TRACE(r2i)

}
return L

}

FIGURE 8.18: PSEUDOCODE FOR CLASSIC DISTRIBUTION RAY TRACING. A coarse
framework of distribution ray tracing consist of only three simple methods: one for
generating and tracing of primary rays through pixels of the image plane, the method
TRACE(), which is called for all primary rays, and the method SHADE() for coloring the
corresponding pixels.
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FIGURE 8.19: THE RENDERING OF FUZZY LIGHT PHENOMENA. Within the images, we

recognize effects caused by fuzzy light phenomena, thus, the reflections of the billiard balls

and the room are motion blurred, as are the penumbras. Image courtesy of Robert L. Cook,

Thomas Porter and Loren Carpenter from LucasFilm.
The dragon picture illustrates the effect of depth of fields, where the camera is focused on
the 2nd dragon of the right. Images courtesy of Math Pharr and Greg Humphreys.
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Recall, the goal of any rendering procedure based on principles of ray tracing is the

computation of the ux vector (M1, . . . ,Mn), whereMj is the solution of the measurementFlux (249)

equation for pixel j, 1 ≤ j ≤ n, i.e.

Mj
def
=

∫
∂V

∫
S2
Wj
e(s,ω)Li(s,ω)dσ⊥s (ω)dµ2(s). (8.45)

A more advanced Monte Carlo estimation for computing Mj based on a distributionMonte Carlo Estimator (499)

ray tracing strategy can now be performed by means of the following two step procedure:

i) Since the incident radiance in the measurement equation is unknown, we estimateMj

by a straightforward Monte Carlo method, using a large number of random variablesMonte Carlo Integration (477)

X0k and ωk, and

ii) under the condition, that the samples X0k and ωk are chosen for estimating Mj,

we can start for every pair (X0k ,ωk) an estimation of Li(X0k ,ωk), where we make

use of the principle of radiance invariance in a vacuum and compute an estimationRadiance Invariance (253)

of Lo(γ(X0k ,ωk),−ωk) instead of Li(X0k ,ωk) via distributing rays.

Mathematically, this idea can be converted as follows: Let us choose N identically

and independent, according to the probability density p distributed, random variablesProbability Density Function (176)

X0k ,ωk from probability space (∂V × S2,B(∂V × S2),P). A secondary Monte CarloProbability Space (163)

estimator F
Mj,DRT

N for approximating the measurement equation is then given by:Monte Carlo Estimator (499)

F
Mj,DRT

N =
1

N

N∑
k=1

Wj
e(X0k ,ωk)〈N(X0k),ωk〉

p(X0k ,ωk)
F
DRT,Lo(γ(X0k ,ωk),−ωk)

N , (8.46)

where F
DRT,Lo(γ(X0k ,ωk),−ωk)

N is the secondary Monte Carlo estimator for estimating

Lo(γ(X0k ,ωk),−ωk from the previous section, see also Figure 8.20.

8.4.3.1 PIXEL SAMPLING: ANTIALIASING

Computers are not only deterministic machines but also discrete devices that can only

control displays with a �nite number of pixels and a �nite number of colors. Now, our

rendering procedures are also of discrete nature and sample scenes only at a �nite number

of discrete points. So, the images produced are subject to aliasing, which is reected as

jaggies at the edges of objects, jagged highlights, or Moir�e pattern, see Figure 8.21.

There are many di�erent techniques to tackle this problem, but in most cases|see

[62, Foley & al. 1987], [67, Glassner 1995], [55, Encarnacao & al. 1997], or [158, Pharr &

Humphrys 2004]|the problem of aliasing cannot be avoided with limited frequencies and
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FIGURE 8.20: VISUALIZATION OF F
Mj,DRT

N . A secondary Monte Carlo estimator for the
measurement equation averages—based on the principle of radiance invariance—the incident
radiance, computed at γ(X0k ,ωk) via DRT, with the exitant importance.

FIGURE 8.21: ALIASING EFFECTS. Left, the plot of the function f(x, y) = 1
2
(1+sin (x2 y2),

rendered in the range [0, 10.83]2 at 512 × 512 pixels with one ray per pixel. The image is
littered with so-called Moir�e pattern. The checkerboard is also rendered with one ray per
pixel. You can see how the checkers break up as they approach the horizon. Image Courtesy
of Kevin Suffern, University of Technology, Sydney.
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�nite sampling. Indeed, aliasing artifacts can be reduced via the techniques of supersam-

pling and adaptive sampling, but the problem can not be solved with the help of these

techniques. A very e�cient approach to reduce aliasing bases on stochastic principles:

Convert it to less perceptually disturbing noise, [38, Cook 1986].

Now, it was empirically shown that better images can be achieved by interpreting a

pixel as the average color of a sampled continuous region around the pixel center. With

respect to the measurement equation Mj this means that we can de�ne a �lter function

fj(s) by: ∫
�j

fj(s)dµ
2(s) = 1, (8.47)

which serves to weight the incident radiance value at points s within the pixel �j.

This �lter function is then embedded into the importance function Wj
e, that is, the

anti-aliasing measurement equation has the form

MAA
j

def
=

∫
�j

∫
S2
Wj
e(s,ω)Li(s,ω)dσ⊥s (ω)dµ2(s). (8.48)

Due to its similarity with the measurement equation from Equation (8.45), an associ-

ated estimation is given by the estimator F
Mj,DRT

N from above, where the samples (sk,ωk)

are drawn from �j × S2.

REMARK 8.7 Sampling a continuous image function converts the image into a discrete

set of values, one for each pixel. The goal of the weighting function Wj
e is the

conversion in a such way that, combined with a reconstruction �lter, it leads to the

best possible reconstruction of the original image function. A major issue here is the

exact shape of the reconstruction �lter, which is often not or only roughly known at

rendering time. This is because it includes all e�ects between display of the image

and its perception by the user, such as blurring by a projector, the RGB, subpixel

arrangement on the screen, etc..

EXAMPLE 8.2 (Pixel Sampling with a Box Filter) One of the most commonly used �lters

in CG is the box �lter as introduced in Example 6.9, thus:

fj(s)
def
=

{
1

µ2(�j)
if s ∈ �j

0 otherwise.
(8.49)

With a box �lter all samples within a pixel are weighted by a constant, that

is, the resulting pixel value is simply the average of the continuous image over the

domain �j. Based on fj, we then de�ne the importance function Wj
e as:

Wj
e(s,ω)

(4.430)
= fj(s)δ(ω−ωe), (8.50)
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where ωe = e→s
‖e→s‖2

2

is the direction of a ray r starting at the eye e through point s

within pixel �j. As we have already shown in Equation (4.432), the measurement

equation then reduces to the form

MAA
j =

∫
�j

fj(s)Li(s,ωe) |cos θs| dµ
2(s). (8.51)

Now, in Example 6.9 we have derived a secondary Monte Carlo estimator for

trivial pixel �ltering. With N according to the probability density p(sk) =
1

µ2(�j)
dis-

tributed, independent random variables sk from probability space (�j,B(�j),P) with
P = µ2, Equation (6.128) then implies the following estimator for a measurement

MAA
j :

F
MAA
j

N =
1

N

N∑
k=1

fj(sk)〈N(sk),ωe〉
p(sk)

F
DRT,Lo(γ(sk,ωe),−ωe)
N (8.52)

p=fj

=
1

N

N∑
k=1

〈N(sk),ωe〉 FDRT,Lo(γ(sk,ωe),−ωe)N . (8.53)

In Accordance with Equation (6.129) we then get:

F
MAA
j

N =
1

N

N∑
k=1

〈N(sk),ωk〉 FLi(sk,ωk)N . (8.54)

As shown in Equation (8.53), the choice of a box �lter as sampling strategy is

good with respect to the implementation, but computationally, the choice of a box �lter

is not e�cient, as it allows high-frequency sample data to leak into the reconstructed

values [158, Pharr & Humphreys, 2004].

REMARK 8.8 Advanced �lter concepts, as shortly introduced in Remark 6.6, lead to less

aliasing artifacts. Over and above that, variance reduction methods, such as LHS, LHS (580)

promise considerably increase in convergence speed with respect to the computation

of MAA
j , since the generation of random variables is independent on the dimension

of the measurement equation.

8.4.3.2 SAMPLING THE LENS OF A CAMERA: DEPTH OF FIELD

In all of our previous rendering algorithms, a virtual pinhole camera system is used as Pinhole Camera System (417)

viewing device. Because the lens of a pinhole camera is in�nitely small, every point on

the image plane gets also light from only a single point within the scene. Due to the fact

that the exposure of a point on the image plane is proportional to the light arriving from a

single direction, images, which are made with a pinhole camera, are indeed perfectly sharp
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image plane lens focal plane

FIGURE 8.22: A THIN LENS CAMERA SYSTEM. Cross section through a thin lens camera
system with focal and associated image plane. Rays starting at points on the focal plane
intersect the image plane at the same point, thus they are in focus, while rays starting at
points not lying on the focal plane intersect the image plane at different location. That is,
they map the point on a region of the image plane, the circle of confusion. The above lens
camera system has zero DOF.

but underexposed. To get really good pictures, the exposure of an image requires very

long time. This is one of the reasons why pinhole cameras are rarely used in real world.

In real life, we usually use so-called thin lens camera systems.These are camera

systems, similar to the pinhole camera model, but where the in�nitely thin pinhole is

replaced by a large aperture and a lens is put in it. This means, that a point on the image

plane is not longer illuminated by a single light ray, but by a cone of light rays, see Figure

8.22.

Now, the use of a thin lens camera model instead of a pinhole camera has a big

disadvantage: the generated images are not longer razor sharp. The reason for that is,

that with a thin lens camera model only points lying on the focal plane are mapped to

points on the image plane. All other points are mapped to small circles on the image plane,

the so-called circle of confusion, whose size depends on the distance of the scene point to

the focal plane and on the lens optics, see Figure 8.22. This then results in images, where

only a central part of the image is in focus|we say also, this part is in depth of �eld,

DOF|while the rest of the image appears very blurry. The depth of �eld of a camera is

the range of distances parallel to the focal plane where the scene is in focus.

Now, DOF e�ects can be an unwanted artifact, or it can also be a desirable e�ect. In

a rendering algorithm, DOF e�ects can easily be achieved by a simple modi�cation in the

above measurement equation.

For that, we change the integration domain �j × S2 of the measurement equation to

�j× Γj, where Γj is the solid angle subtended by the lens of the camera as seen from pixel
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�j. With this modi�cation, the measurement equation takes on the form

MAA,DOF
j

def
=

∫
�j

∫
Γj

Wj
e(s,ω)Li(s,ω)dσ⊥s (ω)dµ2(s). (8.55)

Usually, a thin lens has the shape of circle. Because we do not want to limit to a

circular form of a lens, the solid angle subtended by the lens as seen from a pixel can

have any complicated form, that is, sampling from such a solid angle can be di�cult.

Therefore, we choose N identically and independent, according to a probability density

pX,l distributed, pairs of random variables (X0k , l0k) over the probability space (�j × Probability Space (163)

�,B(�j×�),P), where � is the area of the lens, and P corresponds to the Lebesgue area

measure µ2 × µ2.
Now, an estimator for approximating the measurement equation of pixel j based on

the samples (X0k , l0k) obviously requires to express the direction samples ωk|used for

estimating the incident radiance Li(s,ω)|in terms of the samples (X0k , l0k). This can be

done via a measure transform from the Lebesgue area measure to the solid angle measures,

as described in Section 2.2.2.

Let pX,l be the PDF which we sample from. Since pX,l is separable, we can write

pX,l(X0k , l0k) = pX(X0k)pl(l0k) (8.56)

Estimating the incident radiance within the measurement equation then requires that

the PDF pl(l0k) has to be replaced by a PDF in terms of a directional quantity. Let us

denote this PDF as pσ. To transform the spatial PDF pl(l0k) into a directional PDF, we

use the measure transformation from Equation (2.196) and get:

pσ(ω)
(2.47)
=

dP(ω)

dσ(ω)
(8.57)

(2.196)
=

dP(l)
dµ2(l)

‖s− l‖22
| cos θ|

(8.58)

(2.47)
= pl(l)

‖s− l‖22
| cos θ|

. (8.59)

That is, from the samples (X0k , l0k) we generate direction samples ω0k by shooting

a ray starting from pixel sample X0k through the lens sample l0k for 1 ≤ k ≤ N. An

associated Monte Carlo estimator for MAA,DOF
j is then given by

F
MAA,DOF
j

N =
1

N

N∑
k=1

Wj
e(X0k ,ω0k)〈N(X0k),ω0k〉
pX(X0k)pσ(ω0k |X0k)

F
Lo(γ(X0k ,ω0k),−ω0k)

N , (8.60)

where F
Lo(γ(X0k ,ω0k),−ω0k)

N is an estimation for the radiance incident at lens point l0k
coming from sample point X0k from direction −ω0k , thus, the exitant radiance coming

from the hit point, where the ray ω0k =
X0k→l0k
‖X0k→l0k‖2

intersects the focal plane.
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REMARK 8.9 As the direction samples ω0k are constructed from area samples X0k
on the pixel and samples l0k on the lens, a more better sampling strategy would

be to transform the measurement equation into a surface integral, as we did it for

sampling of shadow rays in Example 6.46. The integration domain is then given by

the Cartesian product of ∂V×�, where � corresponds to the area of the lens. This

transformation is possible since Wj
e is unequal zero only for rays starting at the pixel

and going through the lens.

REMARK 8.10 Depending on the type of lens used and the desired method for pixel

�ltering, a series of alternatives are available for the choice of Wj
e as well as the pro-

cedures for pixel and direction sampling which vary on the e�ciency of the estimator

and the accuracy of the result.

REMARK 8.11 Note, in rendering algorithms we assume, that the lens is in�nitely thin,

that is, rays passing the lens are not refracted.

8.4.3.3 SAMPLING THE SHUTTER OPEN TIME: MOTION BLUR

Now, since physical sensors need a �nite size and need to be integrated over a �nite solid

angle, they measure energy and not power. So, we need also to integrate over a �nite

period of time. This can result in motion blur. Motion blur appears in an image, when

objects or the camera itself move during the exposure of an image. Particularly, this phe-

nomenon occurs when the recorded objects are moving fast or when the exposure time is

very long, see the upper image in Figure 8.19.

Motion blur e�ects can be simulated by extending the measurement equation by an

additional integral over time. The associated measurement equation then has the form

MAA,DOF,MB
j

def
=

∫
T

∫
�j

∫
Γj

Wj
e(x,ω, t)Li(x,ω, t)dσ

⊥
x (ω)dµ2(x)dµ(t) (8.61)

where the associated secondary Monte Carlo estimator is of the form:

F
MAA,DOF,MB
j

N =
1

N

N∑
k=1

Wj
e(sk,ωk, tk)〈N(sk),ωk〉

p(sk, lk, tk)
F
Lo(γ(sk,ωk),−ωk,tk)
N . (8.62)

In this formula, F
Lo(γ(sk,ωk),−ωk,tk)
N is an estimate for the radiance incident at lens

point lk coming at time tk from direction ωk, that is, the exitant radiance coming from

hit point of ωk = (lk−sk)

‖lk−sk‖22
with the focal plane, and (sk,ωk, tk) are independent, and

identically distributed random variables drawn from �j ×�× T according to the PDF p,

where it holds: T = [t0, t1].
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REMARK 8.12 Instead of independent sampling each variable, in [185, Shirley 2000] it

is suggested to choose a strategy that leads to a better strati�cation of the samples.

Thus, the pixel, the lens, and the time should be strati�ed into the same number

of strata, from where a triple of samples (sk1 ,ωk2 , tk3), 1 ≤ k1, k2, k3 ≤ n should

randomly be generated.

REMARK 8.13 By temporally as well as spatially distributing rays, we can easily simu-

late motion blur e�ects with distribution ray tracing. For that, we sample a time for

a ray, move the objects accordingly before the ray is shot into the scene, and average

the rays to compute the �nal radiance value. With this technique, the path of motion

doesnt play a role, it can be arbitrarily complex, the only requirement is the ability

to determine the position of an object at a speci�c time.

THE PROBLEM OF EXPONENTIALLY INCREASING NUMBER OF RAYS. Distribution ray tracing

is indeed a full global illumination algorithm, but it has a signi�cant drawback: The

exponentially increasing number of rays. Due to the fact that every ray underlies a series

of processing steps, this leads to huge computation costs. So for example, at level l of

the ray tree the algorithm shoots
∏l
j=1Nj rays into the scene, which corresponds to an

enormous number of rays. As we also know from our discussion of the method of successive

integral substitution for solving Fredholm integral equations of the 2nd, nodes lying deep

in the interior of the computation tree contribute, due to the contracting property of the

kernels, only less to the �nal result. That is, the exponential e�ort for generating new rays

leads to exponentially less contribution to the image.

8.5 REFERENCE LITERATURE AND FURTHER READ-
ING

Even though there are already a series of di�erent notations for transport paths of light

and importance, see [220, Veach 1997], [68, Glassner 1995], or [95, Jensen 2001], all based

on Heckbert's path notation presented �rstly in [81, Heckbert 1990], we have introduced

a new notation for transport paths, that indicates the ow of stu� by an arrow in the

direction of the ow. Speci�cally for capture transport paths in the photon mapping

algorithm, we have also extended the alphabet, used to formulate corresponding transport

paths, by two letters, DG and SG, describing the reection at slightly glossy and high

glossy surfaces. We expect from these two extensions more transparency with respect to

the characteristic of a transport path.

Compared with ray tracing, the number of papers dealing with ray casting is com-

prehensible. The classical ray casting algorithm has its origin in [5, Apple 1968]. In most

books about computer graphics, such as [62, Foley & al. 1987] and [78, Hearn & Backer
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1994], ray casting is primarily presented as a visible detection tool. So, it is often ignored,

that the idea behind ray casting is the real groundwork of all ray tracing based algorithms.

Ray tracing was �rstly introduced in [236, Whitted 1980]. In contrast to ray casting,

there is an enormous list of papers and textbooks dealing with ray tracing and extensions

of the classic ray tracing algorithm. Here, we emphasize �rstly the textbooks by [66,

Glassner 1989] as well as [185, Shirley 2000], [187, Shirley & Morley 2003], and [205,

Su�ern 2007]. Glassner's book was the �rst to cover the whole research area of ray tracing

from beginning to the nineties of the 20th century. Contrary to [185, Shirley 2000], [187,

Shirley & Morley 2003], which also present results of the research until today in a more

formal way|for example the stochastic methods of path tracing|Glassner describes the

ray tracing procedure rather intuitively than formally. Similar to the books by Shirley, also

the textbook by [205, Su�ern 2007] is aimed at students that are interested in implementing

a ray tracer.

Apart from these books, that deal almost exclusively with ray tracing, we suggest the

reading of [67, Glassner 1995], [68, Glassner 1995], [95, Jensen 2001], [50, Dutr�e & al. 2003],

[51, Dutr�e & al. 2006], and [158, Pharr & Humphreys 2004], [159, Pharr & Humphreys

2010]. Except for the typos, Glassner's two volume work is a brilliant reference for the

study of ray tracing. He discusses nearly all interesting problems, from sampling theory

via radiometry to integral equations and their solution methods. [95, Jensen 2001] and [50,

Dutr�e 2003], [51, Dutr�e & al. 2006] are rather tailored to particular techniques for solving

the global illumination equations. While Jensen presents its photon mapping algorithm, in

[50, Dutr�e 2003], [51, Dutr�e & al. 2006] the Monte Carlo based methods of path- and light

tracing are discussed in depth. [158, Pharr & Humphreys 2004], [159, Pharr & Humphreys

2010] is a wonderful work, since, as Per Christensen says, it covers all the marvelous math,

fascinating physics, practical software engineering, and last not but least an enormous set

of clever tricks that are necessary to write state-of-the-art photorealistic renderer. It is a

long literate program, that is, reading this book means reading the full implementation

of the pbrt rendering system, not just a high level description. Therefore, we necessarily

recommended this book due their detailed implementations of the techniques which form

part of ray tracing and, in particular, the interesting sources they provide for application

programmers.

There is also a series of beautiful textbooks on computer graphics, which discuss ray

tracing shortly and on a high level. Here we allude [62, Foley & al. 1987], [233, Watt &

Watt 1992], [78, Hearn & Baker 1994], [232, Watt 1999], and [186, Shirley 2002].

The classic distribution ray tracing algorithm was introduced in [40, Cook & al. 1984]

under the name distributed ray tracing also called stochastic ray tracing. Similar to ray

casting, even distribution ray tracing, the mother of all stochastic ray tracing algorithms,

is rather seldom discussed in literature. The reason for that is obviously the very restricted

applicability of distribution ray tracing in practice. Thus, only in introductory textbooks,

such as [62, Foley & al. 1987], [233, Watt & Watt 1992], [78, Hearn & Baker 1994], [232,

Watt 1999], and [186, Shirley 2002], are devoted a few pages to distribution ray tracing.



CHAPTER NINE

MARKOV PROCESS BASED
RENDERING ALGORITHMS

In the last chapter, we have presented the classic rendering algorithms based on the princi-

ple of ray tracing. With distribution ray tracing we have met a �rst full global illumination

algorithm that makes use of concepts from probability theory. We have also seen that this

technique indeed solves the global illumination problem, but in practice it is not fully

usable due to the problem of exponentially increasing number of rays.

In this chapter, we now present advanced modern rendering algorithms, simple vari-

ants of distribution ray tracing in some sense, that are based on the stochastic concept of

the discrete Markov process. They all make use of the property that the expected value of

a family of random variables can be approximated by the expected value of a large num-

ber of random walks, so-called Markov processes, as introduced in Section 2.4.7.2. This

technique then solves the problem of exponentially increasing number of rays and makes

the algorithms well usable in practice.

OVERVIEW OF THIS CHAPTER. We begin with Monte Carlo Path Tracing, a very general Section 9.1

and powerful method for solving the stationary light transport equation in free space. It

is the standard global illumination algorithm used in computer graphics, which solves the

global illumination problem by generating a large set of random walks starting at the eye.

Afterwards, we present Monte Carlo Light Tracing. As dual to path tracing, Monte Section 9.2

Carlo light tracing solves the global illumination problem via the construction of light

paths that start at the light sources in a scene. We also discuss and analyze Bidirectional

Path Tracing, a technique that combines path and light tracing, up to date, one of the Section 9.3

most powerful methods for generating photorealistic images. With the Metropolis Light

Transport algorithm, based on a Markov chain Monte Carlo approach, we then present Section 9.4

a very powerful rendering algorithm for di�cult sampling problems in high-dimensional

spaces. An other nowadays widely used rendering technique is the Photon-mapping Section 9.5

Concept. It belongs to a class of highly e�cient two-pass algorithm that can be used to

solve the problem that comes often with path algorithms when rendering specular surfaces

in scenes with luminaries that are not large in area. We conclude this chapter with a short

691
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overview of Instant Global Illumination, a rendering algorithm that allows to simulate Section 9.6

the most important illumination e�ects at realtime rates.

9.1 MONTE CARLO PATH TRACING

Distribution ray tracing, as introduced in the last section of the previous chapter, is indeed

a full global illumination algorithm. But DRT has a signi�cant drawback: The algorithm

needs, coupled to the recursion depth, an exponentially increasing number of rays. So,

DRT shoots during the lth recursion step
∏l
k=1Nk rays into the scene, which results in

a very large number of rays and an enormous amount of computational costs. Since all

these rays, in particular, if they are generated deep in the ray tree, does not contribute

much to the shading of a pixel of the �nal image, the strategy to generate many new

rays at a hit point of a ray with a scene object is not a good idea. But, this obviously

drawback of distribution ray tracing can easily be corrected with the help of an elegant

probability theoretical model: a discrete-time Markov process. The underlying algorithmDT Markov Process (236)

is Jim Kajiya's Monte Carlo Path Tracing, [98, Kajiya 1986].

We begin this section with the classic Monte Carlo ray tracing algorithm: pure-MonteSection 9.1.1

Carlo Path Tracing. It can be considered as a special variant of DRT, where, instead

of many new rays, only a single ray is traced through the scene. This simpli�cation then

reects in the quality of the generated images. So, images generated with pure-Monte

Carlo path tracing are very noisy, which makes pure-Monte Carlo path tracing not really

usable in practice. Therefore, we will extend this algorithms by a technique, which helps

to decrease the noise in the rendered images: Monte Carlo Path Tracing with NextSection 9.1.2

Event Estimation. One can say that this algorithm is the standard rendering procedure

for solving the global illumination problem.

9.1.1 PURE-MONTE CARLO PATH TRACING

Let us consider the ray tree from Figure 9.1 as it is typically constructed by distribution

ray tracing. Instead to generate Nj new rays at each inner node of tree level k, k ≥ 1, we
can also generate only a single ray. That is, on each level k, we choose Nk = 1 and trace

this single ray on its travel through the scene. Then you can see, that the original ray

tree shrinks to a path, a so-called random walk, whose state set is given by the objectsRandom Walk (233)

surfaces of the scene that are visited by the path, see Figure 9.2.State Set (219)

PURE-MONTE CARLO PATH TRACING. The construction of a random walk, generated

over the hit points of a ray with objects during its travel through the scene, can be

simulated via the probability theoretical model of the discrete-time Markov process. LetDT Markov Process (236)

X = X0X1 . . .XM be a random walk starting at the eye of an observer or at a virtual



SECTION 9.1. MONTE CARLO PATH TRACING 693

FIGURE 9.1: PATH NOTATION IN PURE-MONTE CARLO PATH TRACING. Compared to
distribution ray tracing, pure-Monte Carlo path tracing generates at each level of the ray
tree only a single ray and traces this ray on its travel through the scene. The original ray
tree then shrinks to a random walk over the objects of the scene. In the above figure, a
part of a random walk is shown whose nodes are marked in red. The starting point of a
path always corresponds to the node X = X0, and the successor of node Xk−2 is Xk−1 for
k ≥ 2. The incident direction at node Xk−1 is ωk−1i , the corresponding outgoing direction
towards Xk−2 is denoted as ωk−1o .

camera that was generated via a Markov process. Let us furthermore assume, that the

process stops if the path X goes over a light source, a ray does not hit any object, or

if the travel of the ray through the scene is stopped via Russian roulette, respectively, Russian Roulette (200)

if the length of the path exceeds a predetermined default value. Under the assumption

that the path ends at a light source, then we can gather the amount of light coming from

the source, and can give back this light contribution over the path to the sensor, where

the path comes from. Obviously, this algorithm only contributes for shading a pixel if

the generated random walk ends at a light source, that is, if the node XM is chosen at

a light source. Since all other light contributions|whether implied by direct or indirect Direct Illumination (410)

illumination|at other nodes of the path are neglected, we call this rendering technique, Indirect Illumination (410)

pure-Monte Carlo path tracing.

Pure-Monte Carlo path tracing, abbreviated pMCPT, often also simply denoted as

path tracing or Monte Carlo ray tracing, was �rstly presented in [98, Kajiya 1986]. As

already mentioned above, we can interpret this algorithm as a discrete-time Markov pro- DT Markov Process (236)

cess solution of the stationary vacuum light transport equation. This stochastic process Section 6.7.3

can be simulated via a random walk whose associated random variable is de�ned as the

sum of random variables given on the measurable spaces (S2,B(S2)), if a direction has Measurable Space (80)
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to be sampled, or (☼,B(☼)) respectively (�,B(�)), if point sampling is done on a light

source or a pixel, for a detailed discussion on continuous random walks see Section 6.7.3.

The pseudocode for pure-Monte Carlo path tracing is shown in Figure 9.3.

A Monte Carlo estimator that computes an approximate solution to the SLTEV based

on pMCPT can now be derived from the secondary estimator F
DRT,Lo(sj,ωo)
N from Equation

(8.37) by a few simple modi�cations: First, we set the number of generated rays Nk = 1

for k ≥ 1. This transforms the secondary estimator F
DRT,Lo(sj,ω

j
o)

N for Lo(sj,ω
j
o) to the

primary estimator F
pMCPT,Lo(sj,ω

j
o)

1 of the following form:

F
pMCPT,Lo(sj,ω

j
o)

1 =
Le(X0,ωo)

p0(X0)
+ (9.1)

M∑
l=1

 l∏
k=1

fs(X0i1...ik−1 ,ω
i1...ik
i → ω

i1...ik−1
o )

∣∣∣cosωi1...iki

∣∣∣
p0(X0)pk(ω

i1...ik
i |ω

i1...ik−1
i )

Le(X0i1...il ,ωi1...ilo ).

Choosing X0 as starting point sj and renaming the path nodes X0i1...ik−1 into Xk−1,

the directions ωi1...iki and ωi1...ik−1o into ωk−1i , respectively, ωk−1o then leads to a more

simpler expression for the estimator F
pMCPT,Lo(sj,ω

j
o)

1 , namely:

F
pMCPT,Lo(sj,ω

j
o)

1 =
Le(X0,ωo)

p0(X0)
+ (9.2)

M∑
l=1

(
l∏
k=1

fs(Xk−1,ω
k−1
i → ωk−1o )

∣∣cosωk−1i

∣∣
pk(ω

k−1
i |ωk−2i )

)
Le(Xl,ω

l
o)

=
Le(X0,ωo)

p0(X0)
+ (9.3)

M−1∑
l=0

(
l∏
k=0

fs(Xk,ω
k
i → ωko)

∣∣cosωki ∣∣
pk(ωki |ω

k−1
i )

)
Le(Xl+1,ω

l+1
o )

with p0(ω
0
i |ω

−1
i ) = p0(ω

0
i ) and p0(X0) = 1.

REMARK 9.1 Let us consider the random variable from Equation (6.603) associated

with the random path X = X0X1 . . .XM for estimating the Neumann series associated

with a Fredholm integral equation of the 2nd kind at sample X0, obviously it holds:

YM
def
=

g(X0)

p0(X0)
+

M∑
l=1

(
k(X0,X1)

p0(X0)p(X1|X0)

l−1∏
k=1

k(Xk,Xk+1)

p(Xk+1|Xk)

)
g(Xl) (9.4)

p0(X0)=1
=

g(X0)

p0(X0)
+

M−1∑
l=0

(
l∏
k=0

k(Xk,Xk+1)

p(Xk+1|Xk)

)
g(Xl+1) (9.5)

Now, replacing the source term g by the emitted radiance Le at the point X0|

sampled according to p0 on a light source|in direction ωo and the transition kernel
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FIGURE 9.2: PURE-MONTE CARLO PATH TRACING. Starting from point s0, usually
the eye of an observer or a virtual camera, pure-Monte Carlo path tracing generates only
one single ray and traces this ray trough the scene to be rendered. At the first intersection
point, s1, of this ray with an object in the scene, pMCPT also generates only a single new
ray in direction ω1i over the unit or the hemisphere about s1 depending on the material and
the surface properties of the object that has been hit. The algorithm then repeats this step
recursively until a ray hits a light source in the scene, a ray does not hit any object, or if
the travel of the ray through the scene is stopped via Russian roulette, respectively, if the
length of the path exceeds a predetermined default value. The incident radiance at point
sj+1 from direction ωj+1i then corresponds to the light emitted from a light source, that
has been hit by the path. As the scattering behavior of an object in a scene is usually not
ideal, the energy of light at the interaction with a surface is attenuated depending on the
material and the surface properties of the object. So, under certain circumstances, only a
small fraction of light emitted by a light source arrives at a sensor.To show how pure-Monte
Carlo path tracing works, we have visualized a path, s = s0 . . . sM, as it could be generated
by pMCPT. The sphere around point s1 indicates diffuse reflection at the surface and the
cosine lobes around the points sj and sj+1 stand for specular and gloss interaction of light
with surfaces. Also note the upper index at the incident and exitant direction at a surface
point.
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PURE-MONTE CARLO PATH TRACING {
∀ pixel �j ∈ (�1, . . . ,�sx·sy) do {

sample point p ∈ �j

generate an eye-ray r = e→ p

L(s1 → e) = TRACE(r)

}

TRACE(r) {
compute hit point s1 of r with object ∂Vc closest in scene

compute normal N(s1) at point s1

return SHADE(s1,N(s1))

}

SHADE(s,N(s)) {
L = 0

if ∂Vc is specular {
generate secondary reflected or refracted ray r∨

L+ = TRACE(r∨)

} else {
sample directions ωi ∈ S2

generate a secondary ray r2 = s + αωi according to the interaction at ∂Vc

L+ = TRACE(r2)

}
return L

}

FIGURE 9.3: PSEUDOCODE FOR PURE-MONTE CARLO PATH TRACING. A coarse
framework of pure-Monte Carlo path tracing consist of only three simple methods: one
for generating and tracing primary rays through pixels of the image plane, the method
TRACE(), which is called for all primary rays, and the method SHADE() for coloring the
corresponding pixels.
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FIGURE 9.4: THE PRIMARY ESTIMATOR F
pMCPT,Lo(sj,ω

j
o)

1 . An approximate of the exitant

radiance at point sj in direction ωjo can be computed via the simulation of a random walk
X = X1 . . .XM, starting at the eye and ending at one of the light sources. Then, the direct
illumination at the sample XM can be used for shading point sj.

k by the BSDF at corresponding samples ωki chosen due to probability distributions

pk(ω
k
i |ω

k−1
i ), then the random variable YM is of the same type as the estimator

F
pMCPT,Lo(sj,ω

j
o)

1 . That is, the algorithm underlying the principle of pure-Monte Carlo

path tracing is based on the stochastic model of the discrete-time, continuous-state

Markov process, where the state space is given over all directions about the unit

sphere centered at an interested surface point.

Due to the emitted radiance terms in Formula (9.3), the estimator F
pMCPT,Lo(sj,ω

j
o)

1

not only accounts for the light contribution of the whole path X, but also the light con-

tributions from subpaths X. As pure-Monte Carlo path tracing stops, if a ray hits a light

source, the only path node that can end at a light source is the node XM, that is, for all

other nodes Xk, 0 ≤ k < M it must hold: Le(Xk,ω
k
o) = 0. Using this fact and assuming

the point sj corresponds to the sample X1 then we get the estimator F
pMCPT,Lo(sj,ω

j
o)

1 in

its �nal formulation, namely as:

F
pMCPT,Lo(sj,ω

j
o)

1 =

M−1∏
k=1

fs(Xk,ω
k
i → ωko)

∣∣cosωki ∣∣
pk(ωki |ω

k−1
i )

Le(XM,ω
M
o ), (9.6)

for an illustration of the estimator F
pMCPT,Lo(sj,ω

j
o)

1 , see Figure 9.4.

Due to this modi�cation, the original drawback of our distribution ray tracing al- Section 8.4
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gorithm is canceled. The construction of a random walk via the probability theoretical

model of the discrete-time Markov process solves the problem of the exponentially in-DT Markov Process (236)

creasing number of secondary rays, which lie deep in the ray tree and which, due to the

multitude of the involved BSDFs, only contribute a small fraction of light to the �nalBSDF (371)

shading of point sj.

Now, to solve the global illumination problem via pure-Monte Carlo path tracing, we

have to evaluate the measurement equation in a similar way as we did it with distributionMeasurement Equation (416)

ray tracing, that is, we solve the measurement equation expressed in terms of exitant

radiance, thus:

Mj =

∫
�j

∫
S2(s0)

Wj
e(s0,ω)Lo(γ(s0,ω),−ω)dσ⊥s0(ω)dµ2(s0), (9.7)

where we have replaced the incident radiance by its equivalent exitant analogue, and

assumed that s0 is a point within pixel �j visible from the eye or a virtual camera.

Using a pinhole camera model|for details see Example 4.16|then a primary MontePinhole Camera (417)

Carlo estimator for pure-Monte Carlo path tracing is given by:

F
Mj,pMCPT

1

=
fj(X0)

p0(X0)
〈N(X0),ωe〉 FpMCPT,Lo(γ(X0,ωe),−ωe)1 (9.8)

=
fj(X0)

p0(X0)

∣∣ cos θe∣∣ ·M−1∏
k=1

fs(Xk,ω
k
i → ωko)

∣∣cosωki ∣∣
pk(ωki |ω

k−1
i )

Le(XM,ω
M
o ), (9.9)

where the sample X0 is chosen within the pixel �j according to the density function, p0,

F
pMCPT,Lo(γ(X0,ωe),−ωe)
1 is the primary estimator for evaluating the exitant radiance at

point γ(X0,ωe) in direction ω
1
o = −ωe, and ωe corresponds to the ray starting at the eye

e and passing through the pixel sample X0. A visualization of the estimator F
Mj,pMCPT

1

is shown in Figure 9.5.

REMARK 9.2 It should be clear, that pure-Monte Carlo path tracing can easily be

adapted to other camera models than the pinhole camera system. Furthermore, the

problem of aliasing can also be reduced and e�ects like depth of �eld or motion blur

can be simulated with pMCPT. The only thing we have to do is to adapt the estimator

F
Mj,pMCPT

1 to the camera model used.

REMARK 9.3 (Pure-Monte Carlo Path Tracing with Russian Roulette) The primary Monte

Carlo estimator F
Mj,pMCPT

1 from above needs a stopping condition to prevent a path

being of in�nite length. Obviously, simply cutting o� a path leads to bias into the

process of image generation, even if we neglect only small contributions to the shading

of a pixel. An unbiased image can be produced by using the technique of RussianRussian Roulette (200)

Roulette. As we have seen in Section 2.4.4, we can handle the problem of keeping
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FIGURE 9.5: THE PRIMARY ESTIMATOR F
Mj,pMCPT

1 . Pure-Monte Carlo path tracing
estimates the measurement equation at pixel �j via the simulation of a random walk starting
at the first hit point, s1, of an eye ray with a surface object. If the associated random walk
ends in one of the light sources, a contribution to the shading of the pixel is made via the
exitant radiance at sample X1 in direction ω1o = −ωe

the lengths of a path manageable with the help of this technique, and additionally, it

does not restrict us to explore all possible paths of any length.

Let αk, k ≥ 1, be continuous random variables de�ned on the canonical proba- ([0, 1],B([0, 1]), P) (166)

bility space ([0, 1],B([0, 1]),P). If we stop the process of recursive path tracing with

the so-called absorption probability (1−αk) at node Xk, then we have to multiply the

corresponding terms in F
Mj,pMCPT

1 with the weight 1
αk
, that is, we get:

F
Mj,pMCPT,RR

1

=
fj(X0)

p0(X0)

∣∣ cos θe∣∣ · ∞∏
k=1

fs(Xk,ω
k
i → ωko)

∣∣cosωki ∣∣
αkpk(ωki |ω

k−1
i )

Le(X∞,ω∞o ). (9.10)

As we have already mentioned, if the absorption probability is large, the recursion

will stop sooner, which leads to a higher variance in the estimator F
Mj,pMCPT,RR

1 . If

it is small, the recursion will continue many times, and F
Mj,pMCPT,RR

1 will be more

accurate. Linked to our path tracing algorithm, this means that we get either accurate

estimates if paths of a long length are generated, or less accurate estimates, if very

short paths are generated. In principle any value for αk can be picked for controlling

the recursive depth and execution time of the algorithm.

In rendering, the reectance of the material of a surface is often used in connec-

tion with Russian Roulette, that is, a path is more easily absorbed at dark surfaces,
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while at lighter surfaces the probability is larger that the path will be continued

REMARK 9.4 The estimator F
Mj,pMCPT

1 computes the radiance arriving at the pixel �j
after performing M steps via pMCPT. Only in the case where the path node XM
corresponds to the intersection of a ray with a light source, the estimator is not

equals zero. In all other cases, that is, if the path generation stops due to Russian

roulette, or if the maximal default length of the path is extended, the pixel remains

black, since it does not get a contribution from any of the existing emitters.

In the following example, we show the derivation of a primary Monte Carlo estimator

for pure-Monte Carlo path tracing in an idealized scene only consisting of di�use surfaces.

EXAMPLE 9.1 (Pure-Monte Carlo Path Tracing with Di�use Surfaces) In scenes only mod-

eled of opaque, di�use surfaces, the Monte Carlo estimator F
pMCPT,Lo(sj,ω

j
o)

1 has a

simple form. Using a BRDF that simulates ideal di�use reection, then this BRDFIdeal Diffuse BRDF (325)

can be expressed in terms of the directional-hemispherical reectance ρdh by:

for (sj,ω
j
i → ωjo)

(4.161)
=

ρdh

π
. (9.11)

Then the estimator F
pMCPT,Lo(sj,ω

j
o)

1 can be formulated as:

F
pMCPT,Lo(sj,ω

j
o)

1 =

M−1∏
k=1

ρdh

π

∣∣ cosωki ∣∣
pk(ωki |ω

k−1
i )

Le(XM,ω
M
o ) (9.12)

=
(ρdh
π

)M−1 M−1∏
k=1

∣∣ cosωki ∣∣
pk(ωki |ωi

k−1)
Le(XM,ω

M
o ), (9.13)

where X1 corresponds to point sj, ω
k
i are according to the PDF pk distributed

random variables drawn over the upper hemisphere H2i about the sample Xk, and

p0(ω
1
i |ω

0
i ) = p0(ω

1
i ).

Using this estimator in the measurement equation then we get:

F
Mj,pMCPT

1 =
fj(X0)

p0(X0)

∣∣ cos θe∣∣ · (ρdh
π

)M−1 M−1∏
k=1

∣∣ cosωki ∣∣
pk(ωki |ωi

k−1)
Le(XM,ω

M
o ). (9.14)

For an illustration of the estimator F
Mj,pMCPT

1 , see Figure 9.6.

Applying a cosine-weighted hemisphere sampling strategy|directions near to the

surface normal are favored over those at oblique angles to the surface|as presented

in Example 6.20, where the involved PDF is of type

pk(ω
k−1
i |ωk−2i ) =

cosωk−1i

π
(9.15)
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FIGURE 9.6: PURE-MONTE CARLO PATH TRACING WITH DIFFUSE SURFACES. The path
X = X0X1 . . .XM, generated via pure-Monte Carlo path tracing, goes over diffuse surfaces.

Since the ideal diffuse BRDF is constant, the estimator F
Mj,pMCPT

1 can be expressed in a
particularly simple form.

then leads to the following form of the estimator:

F
Mj,pMCPT

1 =
fj(X0)

p0(X0)
〈N(X0),ωe〉 ·

(
M−1∏
k=1

ρdh

)
Le(XM,ω

M
o ) (9.16)

=
fj(X0)

p0(X0)

∣∣ cos θe∣∣ · ρM−1
dh Le(XM,ω

M
o ). (9.17)

REMARK 9.5 As pure-Monte Carlo path tracing is based on distribution ray tracing,

the algorithm can also simulate random walks of characteristic
−−−−−−−−→
E(D|G|S)∗L. So, in

principle, it provides us a complete solution of the stationary light transport equation SLTEV (398)

in vacuum, but it su�ers from the fact that the resulting images are very noisy, see

Figure 9.7.

THE PROBLEM OF HITTING A LIGHT SOURCE. Let us consider the images in Figure 9.7,

rendered with pure-Monte Carlo path tracing, a little bit closely. They should show the

Cornell box only modeled with di�use surfaces illuminated by a single spherical light

source. Within the left image, we do not recognize the Cornell box, since this image is

mostly black with some very bright pixels.

Pure-Monte Carlo path tracing renders this image by shooting a single ray from the

eye through a pixel and traces this ray through the scene. As light sources, compared to

other objects within a scene, are mostly small, the probability of hitting a light source is

also very small. This means that most pixels within the image are black, and those pixels

that are starting points of a path ending in a light source gets a large radiance value from
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FIGURE 9.7: IMAGES RENDERED WITH PURE-MONTE CARLO PATH TRACING. The
above images are rendered with pMCPT using eye paths of length ≤ 5. They show
the Cornell box, illuminated by a spherical light source, where all surfaces corresponds
to diffuse objects. The algorithm uses 1, 64 and 1024 samples per pixel. Increasing the
number of samples per pixel also leads to an increasing of the probability that eye-paths
starting at the corresponding pixel hit the light source. This then results in less dark pixels
within the image, and the brightness of colored pixels is scaled down due to averaging the
light contributions of several paths ending at the light source, that is, we perceive colors.
Note: Also the first two images, although different in the quality, are, due to pixels being
very bright, perfectly valid secondary estimators for the correct solution of the SLTEV.
Image courtesy of Hugh McCabe, Department of Computer Science, Trinity College, Dublin.

the light source, attenuated only by a factor smaller than one at the surfaces induced to

the non-ideal di�use BRDFs. This is the reason why the resulting images are often dark

and very noisy.

Now, from probability theory it is known, that the variance|in our case, shown as

noise in an image|can be reduced by taking more samples. With respect to pMCPT

this mean: Generating more random walks starting at a pixel improves the quality of our

images considerably. This can easily be seen at the right image in Figure 9.7, where the

Cornell box is sampled with 1024 paths per pixel. But also this image is still very noisy,

and thus not satisfactory. That is, we must look for another method that can help us

further to reduce the noise in an image. A technique that can be used to approach this

goal is to account for the local, directly incident illumination at a path node. This method

is called Monte Carlo path tracing with next event estimation.

9.1.2 MONTE CARLO PATH TRACING WITH NEXT EVENT ES-
TIMATION

Let X = X0X1 . . .XM be a path generated with pure-Monte Carlo path tracing, where

the sample X0 is chosen in the pixel �j. As the estimator F
Mj,pMCPT

1 from Equation (9.8)

shows, this path only contributes to the shading of the pixel if X ends in one of the light
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sources, that is, if it holds: XM ∈ ☼. In the case where XM /∈ ☼ the considered pixel

remains black.
Now, in Remark 9.1, we have noticed that the foundation of the pMCPT algorithm

can be found in a discrete-time, continuous-state Markov Process associated with a random

variable Ym which was used for estimating a Fredholm integral equation of the 2nd kind

via the Neumann series approach, for details see Section 6.7.3.

Now, the Monte Carlo estimator F
pMCPT,Lo(sj,ω

j
o)

1 for pure-Monte Carlo path tracing

from Equation 9.6 only accounts for a single transport path, namely the path that ends at a

light source, i.e. pMCPT computes even only a single contribution of the random variable

Ym to the shading of a surface point. This also means, that only a single addendum of

the mth term of the Neumann series approach is estimated with pMCPT. Obviously, this

is not a good approach. A much better idea for estimating the illumination of a surface

point is, to account for also the contributions of all subpaths of X. This then corresponds

to the evaluation of a single term of all sums of the Neumann series approach.
Transferred to Monte Carlo path tracing, our discussion from above shows: pMCPT

only accounts for the direct illumination at the last node of the path X, if XM ∈ ☼. As

the direct illumination represents the largest contribution for shading a surface point, Direct Illumination (410)

the direct illumination should be accounted for at every path node of X. This idea

then leads to the following modi�cation of pMCPT: At every node of a random walk

X = X0 . . .X1 . . .XM, generated via pMCPT, our new algorithm shoots one or more

shadow rays in direction to the light sources. The light that directly arrives at a path Shadow Ray (14)

node via a shadow ray can then ow back over the path X to its origin X0 where it is

accumulated for shading a pixel, see Figure 9.8.

MONTE CARLO PATH TRACING WITH NEXT EVENT ESTIMATION. From our discussion in

Section 4.4.2.2 it is known that, the integration domain of the SLTEV, thus the unit SLTEV (398)

sphere around surface point sj can be split into two disjoint, Lebesgue measurable sets: Lebesgue Measurable Set (80)

The projection of all visible light sources onto the unit sphere around surface point sj,

denoted by the set ☼⊥, and the complement of this set ☼⊥ = S2 \ ☼⊥. The linearity

property of the Lebesgue integral with respect to the integration domain then allows to Lebesgue Integral (105)

write the SLTEV as composed of three di�erent types of exitant radiance at point sj, SLTEV (398)

namely:

Lo(sj,ω
j
o)

(4.407)
= Le(sj,ω

j
o) + L

←(sj,ω
j
o) + L

⇔(sj,ω
j
o), (9.18)

where Le(sj,ω
j
o) corresponds to the self-emitted radiance at sj in direction ωjo, L

←(s,ωjo)

represents the direct illumination at point sj reected in direction ωjo, given by: Section 4.4.2.2

L←(sj,ω
j
o)

(4.406)
=

∫
☼⊥

fs(sj,ω
j
i → ωjo)Le(γ(sj,ω

j
i),−ω

j
i)dσ

⊥
sj
(ωji), (9.19)

and L⇔(sj,ω
j
o), de�ned by:

L⇔(sj,ω
j
o)

(4.406)
=

∫
☼⊥

fs(sj,ω
j
i → ωjo)Li(sj,ω

j
i)dσ

⊥
sj
(ωji), (9.20)
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FIGURE 9.8: MONTE CARLO PATH TRACING WITH NEXT EVENT ESTIMATION, MCPT.
Starting from the eye of an observer or the virtual camera, the algorithm generates a ray
and shoots this ray through a pixel into the scene to be rendered. At the first intersection
point, s1, of this ray with an object in the scene, Monte Carlo path tracing with next
event estimation generates—depending on the material and the surface properties of the
object that has been hit—a new ray in direction ω1i over the unit sphere S2, or the
upper respectively the lower hemisphere about s1 . Additionally, the algorithm generates
a so-called shadow ray in direction to one of the light sources in the scene for computing
the direct illumination at point s1. The algorithm then repeats this step recursively until a
ray hits a light source of the scene, a ray does not hit any object of scene, or the process
is stopped via Russian roulette respectively the length of the path exceeds a predetermined
default value. The incident radiance Li(sj, ω

j
i) then corresponds to the contributions due

to direct illumination along the path nodes. Attenuated by the product of the factors
induced by the BSDFs at the intersection points of a path with the objects of scene, it is
accumulated at the origin of the path for shading the considered pixel. If a path ends in
one of the light sources, we must be careful not to account for this light contribution twice.
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FIGURE 9.9: CONTRIBUTIONS TO THE SHADING OF A PIXEL IN MCPT WITH NEXT
EVENT ESTIMATION. At every node of a random walk generated via pMCPT the algorithm
shoots one or more shadow rays in direction to the light sources. The light that directly
arrives at a path node via a shadow ray can then flow back over the path to its origin where
it delivers a contribution for shading a pixel.

corresponds to the indirect illumination component of the SLTEV at point sj from direc-

tion ωji.

Now, let X = X0X1 . . .XM be a random walk generated by pMCPT, where X0 is

a sample on pixel �j. Regardless of whether the last path node XM was sampled on a

light source, MCPT with next event estimation always determines the direct illumination

at each path node Xk, 1 ≤ k ≤M of the path X. For this, the algorithm samples one or

more shadow rays in direction to the light sources, captures the light contribution of the

source and gives it back to the origin of the path for shading the corresponding pixel, see

Figure 9.9. Note, the indirect illumination at node Xk corresponds to the accumulated

light contributions from all successor Xk+1, 1 ≤ k ≤M− 1 of path node Xk.

As shown in Example 6.46, so it is more e�cient to compute the direct illumination

at a path node using the 3-point formulation of the SLTEV instead of to sample shadow SLTEV (398)

rays over the hemisphere. Thus, we transform the spherical integral from Equation (9.19)

into an area integral, where the light surfaces are used as the domain of integration. Then,

the direct illumination at point sj reected in direction ωjo can be formulated as:

L←(sj → sj−1) =

∫
☼
fs(l→ sj → sj−1)Le(l→ sj)G(l↔ sj)dµ

2(l), (9.21)
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FIGURE 9.10: THE GEOMETRY FOR SAMPLING THE DIRECT ILLUMINATION IN MONTE
CARLO PATH TRACING. Since it is more efficient to sample direct illumination using the
3-point formulation of the SLTEV, we transform the spherical integral which describes the
direct illumination at point sj into an area integral.

where l are points at the light sources and sj−1 = γ(sj,ω
j
o) is a surface point visible from

sj in direction ωjo. For an illustration, see Figure 9.10.

Based on this integral formulation, then we sample shadow rays by choosing pointsPDF (176)

lj according to a probability density p☼ on the probability space (☼,B(☼), µ2), as weProbability Space (163)

did it in Example 6.46. An associated primary Monte Carlo estimator for approximatingB(·) (865)

L←(sj → sj−1) then has the form

F
L←(sj→sj−1)
1 =

fs(lj → sj → sj−1)Le(lj → sj)G(lj ↔ sj)

p☼(lj)
; (9.22)

for an implementation of the estimator F
L←(sj→sj−1)
1 see Figure 9.11.

EXAMPLE 9.2 (Uniform Sampling of Light Source Area) The simplest and in praxis mostly

used method for generating shadow rays bases on uniform area sampling of the light

sources existing in a scene. Let us now assume that all those light sources ☼1∪. . .∪☼N
are composed to a single big, fat light source ☼ = ☼1 ∪ . . . ∪ ☼N. Then, µ2(☼)

corresponds to the Lebesgue area measure of this emitter.µ2 (82)

Sampling N points ljk according to the probability density function p☼ = 1

µ2(☼)

on the probability space (☼,B(☼), µ2) leads to a secondary estimator F
L←(sj→sj−1)
N ofB(·) (865)

the form:

F
L←(sj→sj−1)
N =

µ2(☼)

N

N∑
k=1

fs(ljk → sj → sj−1)Le(ljk → sj)G(ljk ↔ sj). (9.23)
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F
L←(sj→sj−1)
1 () {
L←(sj → sj−1) = 0

sample lj ∈ ☼ =
⋃N
j=1☼j according the PDF p☼

L←(sj → sj−1)+ =
fs(lj→sj→sj−1)Le(lj→sj)G(lj↔sj)

p☼(lj)

return L←(sj → sj−1)

}

FIGURE 9.11: IMPLEMENTATION OF DIRECT ILLUMINATION IN MONTE CARLO
PATH TRACING. The secondary estimator F

L←o (sj→sj−1)

N approximated via Monte Carlo
path tracing with next event estimation. In implementations of MCPT with next event
estimation, the number of shadow rays is commonly chosen as N = 1.

As already mentioned in Example 6.46, this naive sampling strategy can lead to

noise in the resulting images, which can easily be reduced using variance reduction Section 6.6

techniques.

If the problem of direct illumination is solved, the problem of sampling directions

over ☼⊥ for computing the indirect illumination can easily be circumvented. Instead of

to sample a direction over the possible complex, Lebesgue measurable set ☼⊥, we sample

a direction over the whole unit sphere according to the involved BSDF. Here, we have to

take care|under the premise that the corresponding path ends at a light source|that we

does not take into account the contribution of a light source, which would mean that we

would count light sources twice. That is, the indirect illumination component L⇔ can be

computed via pure-Monte Carlo path tracing.

Then, a Monte Carlo estimator based on path tracing with next event estimation,

that approximates a solution to the measurement equation, has the following form:

Mj =

∫
�j

∫
S2(s0)

Wj
e(s0,ω)Li(s0,ω)dσ⊥s0(ω)dµ2(s0) (9.24)

(9.18)
=

∫
�j

∫
S2(s0)

Wj
e(s0,ω) (Le(γ(s0,ω),−ω)+ (9.25)

L←(γ(s0,ω),−ω) + L⇔(γ(s0,ω),−ω)
)
dσ⊥s0(ω)dµ2(s0),

where the incident radiance Li was replaced by the equivalent exitant representation of the

SLTEV at point γ(s0,ω) expressed in terms of emitted, direct, and indirect radiance from

Equation (9.18). Furthermore, we have assumed that the �rst hit point of the primary

ray, starting at the eye and going in direction ω, with a scene object corresponds to the

point s1 = γ(s,ω) and the outgoing direction at s1 is given via ω1o = −ω.
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Using a pinhole camera|for details see Example 4.16|then a primary Monte CarloPinhole Camera (417)

estimator based on Monte Carlo path tracing with next event estimation can easily be

derived by combining the estimator from pMCPT, thus F
Mj,pMCPT

1 from Formula (9.8),

and the estimator that approximates the direct illumination at the observation point from

Equation (9.22). Applied to the path X = X0,X1 . . .XM, we get:

F
Mj,MCPT

1 =

fj(X0)

p0(X0)
〈N(X0),ωe〉 ·(

F
L←(X1→X0)
1 +

fs(X1,ω
1
i → ω1o)

∣∣ cosω1i ∣∣
p1(ω1i )

F
L←(X2→X1)
1︸ ︷︷ ︸

F
L⇔(X1→X0)

1

+ (9.26)

fs(X1,ω
1
i → ω1o)

∣∣ cosω1i ∣∣
p1(ω1i )

fs(X2,ω
2
i → ω2o)

∣∣ cosω2i ∣∣
p2(ω2i |ω

0
i )

F
L←(X3→X2)
1︸ ︷︷ ︸

F
L⇔(X2→X0)

1

+ . . .+

M−1∏
k=1

fs(Xk,ω
k
i → ωko)

∣∣ cosωki ∣∣
pk(ωki |ω

k−1
i )

F
L←(Xk+1→Xk)
1

)
,

where X0 is a point chosen on the pixel �j according to the PDF p0, F
L←(Xk→Xk−1)
1 is

the primary estimator for estimating the direct illumination at point Xk in direction to

Xk−1, and ωe is as usually the direction from eye point e through the pixel sample X0.

Using

F
L←(Xk→Xk−1)
1 =

fs(lk → Xk → Xk−1)Le(lk → Xk)G(lk ↔ Xk)

p☼(lk)
, (9.27)

where the sample lk is chosen from one of the existing light sources according to the PDF
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p☼, then we get:

F
Mj,MCPT

1 =

fj(X0)

p0(X0)
〈N(X0),ωe〉 · (9.28)(

fs(l1 → X1 → X0)G(l1 ↔ X1)
Le(l1 → X1)

p☼(l1)
+

fs(X1,ω
1
i → ω1o)

∣∣ cosω1i ∣∣
p1(ω1i |ω

0
i )

fs(l2 → X2 → X1)G(l2 ↔ X2)
Le(l2 → X2)

p☼(l2)
+ . . .+

M−1∏
k=1

fs(Xk,ω
k
i → ωko)

∣∣ cosωki ∣∣
pk(ωki |ω

k−1
i )

fs(lM−1 → XM−1 → XM−2)G(lM ↔ XM−1) ·

Le(lM → XM)

p☼(lM)

)
,

that is, a closed formula for F
Mj,MCPT

1 then looks like this:

F
Mj,MCPT

1 =
fj(X0)

p0(X0)

∣∣ cos θe∣∣· (9.29)M+1∑
j=1

j−1∏
k=1

fs(Xk,ω
k
i → ωko)

∣∣ cosωki ∣∣
pk(ωki |ω

k−1
i )

fs(lj → Xj → Xj−1)G(lj ↔ Xj)
Le(lj → Xj)

p☼(lj)

 ,
where we assume that it holds:

∏0
k=1

fs(Xk,ω
k
i→ωko)∣∣ cosωki ∣∣

pj(ωki |ω
k−1
i

)
= 1, see Figure 9.12.

REMARK 9.6 Note, when evaluating this estimator we must be careful when the chosen

directional sample hits a light source. Since this sample may be associated with a

shadow ray, we may not take into account the contribution of this sample to the �nal

radiance value of the pixel, otherwise we could account for light sources twice.

Care must also be taken when computing direct illumination at specular objects. Law of Reflection (300)

Due to the laws of reection and refraction, only in the case where the BSDF as- Law of Refraction (305)

sociated with a surface has also a small di�use or a glossy component, the direct

illumination can contribute to the shading of a pixel. This then prevents the usually

failures in many ray tracing images, where reection of light sources is fuzzy while

reection of specular objects is hard.

REMARK 9.7 Note: Monte Carlo Path tracing can be considered as the standard algo-

rithm in the �eld of realistic rendering.
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FIGURE 9.12: THE PRIMARY ESTIMATOR F
Mj,MCPT

1 . The jth term of F
Mj,MCPT

1 corre-
sponds to the product of the labels of the path starting at the eye and ending at the light
source labeled with j.

9.2 MONTE CARLO LIGHT TRACING

Let us consider Figure 9.13, where the left image is rendered with Monte Carlo path

tracing. Compared to the image on the right, it is very noisy, in particular the region,Section 9.1

where you can see the caustic. For simulating caustics, MCPT has to trace paths of char-Caustics (658)

acteristic
−−−−→
EDS+L. That is, a ray starting a the eye and reected by a di�use surface hasHeckbert’s Path Notation (655)

to be scattered at least at one specular surface, before it ends in one of the light sources.

Obviously, paths of such type deliver a hight contribution to the �nal image, but the

probability that MCPT generates such paths is very small. One hand, this is connected

with the fact that rays are not necessarily scattered at di�use surfaces in directions to

specular objects, and on the other hand the probability that a specular reected or scat-

tered ray hits a light source is very small, since light sources in a scene are usually small.

Indeed, path tracing is able to simulate eye paths of characteristic
−−−−→
EDS+L, but it has great

problems to generate a large number of such paths for the pixel to be considered.

We can solve this problem by changing our rendering strategy: Instead of tracing

eye paths in directions to the light sources, we simulate the natural propagation of light,

that is, we trace light on its natural way from light sources to the eye of an observer or a

virtual camera. All rendering algorithms that pursue this strategy are summarized under

the term Monte Carlo light tracing, [52, Dutr�e 1993], [116, Lafortune 1996], also shortly
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FIGURE 9.13: CAUSTICS. The image on the left is rendered with Monte Carlo path tracing.
It is pretty noisy due to caustic paths that are poorly sampled by path tracing. Image
courtesy of Simon Brown.

denoted as MCLT, or simply light tracing|often also known in the literature as particle

tracing, [150, Pattanaik and Mudur 1993] and [149, Pattanaik and Mudur 1993].

Now, Monte Carlo path tracing, as discussed in the last section, evaluates the mea-

surement equation, Measurement Equation (416)

Mj = 〈We,o, Li〉, (9.30)

via a straightforward Monte Carlo approach by solving the SLTEV at points visible by the SLTEV (398)

eye and combines the radiance incident at the eye with the exitant importance through

the pixel �j.
As we know from Chapter 5, this is not the only possible way to evaluate the mea-

surement equation. As the Relations (5.157) and (5.159) show, the measurement equation

can also be considered in the dual forms

Mj = 〈Wo, Le,i〉, (9.31)

Mj = 〈Wi, Le,o〉, (9.32)

that is, it can also be evaluated by solving the importance transport equation at points

within a scene combined with the light emitted from light sources. Monte Carlo light

tracing follows exactly this approach, that is, the algorithm tries to solve the dual formu-

lation of the global illumination problem by means of a Markov process via a procedure Discrete Markov Process (236)

simulating the natural propagation of light.
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9.2.1 PURE-MONTE CARLO LIGHT TRACING

Since Monte Carlo light tracing can be interpreted as the dual algorithm to Monte Carlo

path tracing, the only thing we have to do to develop a light tracing algorithm, is to change

the kind of rays and the strategy how we have to trace these rays through a scene. Instead

of generating eye paths, a light tracing algorithm generates so-called light paths, starting

from points at the light sources.

PURE-MONTE CARLO LIGHT TRACING. Generating light paths from emitters and tracing

these paths through the scene until a sensor is hit is called pure-Monte Carlo light

tracing, see Figure 9.14. Mathematically, these light paths can be interpreted as random

walks from a discrete-time Markov process for solving the stationary vacuum importanceMarkov Process (236)

transport equation. Whenever such a random walk passes through the frustum of a pixelSITEV (413)

and ends at a sensor, light is shot from the origin of the path to the pixel and a light

contribution to that pixel can be added. The algorithm stops, if a path ends either at a

sensor, a ray does not hit any object, or if the travel of the ray through the scene is stopped

via Russian roulette, respectively the length of the random walk exceeds a predeterminedRussian Roulette (200)

length.

The SITEV can now easily be estimated via the following primary Monte Carlo

estimator based on pMCLT, namely:

F
pMCLT,Wo(s,ωo)
1 =

M−1∏
k=0

f∗s(Xk,ω
k
i → ωko)

∣∣ cosωki ∣∣
pk(ωki |ω

k−1
i )

We(XM,ω
M
o ). (9.33)

Based on the estimator F
pMCLT,Wo(s,ωo)
1 , a primary estimator for pure-Monte Carlo

light tracing is then given by:

F
Mj,pMCPT

1

=
Le(X0,ωi)

p0(X0,ωi)
〈N(X0),ωl〉 FpMCLT,Wo(γ(X0,ωl),−ωl)1 (9.34)

=
Le(X0,ωi)

p0(X0,ωi)

∣∣ cos θl∣∣ · M∏
k=1

f∗s(Xk,ω
k
i → ωko)

∣∣cosωki ∣∣
pk(ωki |ω

k−1
i )

We(XM+1,ω
M+1
o ), (9.35)

where X0 is a sample chosen at a light source, ωi is the incident direction sampled on

a light source due to the PDF p0, as well as F
pMCLT,Wo(γ(X0,ωi),−ωi
1 is the primary

estimator for estimating the importance incident at the sample X0 from direction ωi.

REMARK 9.8 There are a few essential di�erences between pure-Monte Carlo light

tracing and pure-Monte Carlo path tracing: Thus, a random walk in pMCLT is

independent of a pixel. Instead of considering each pixel in turn in pure-Monte

Carlo light tracing pixels can therefore all be dealt with at the same time. Whenever

a random walk passes through the frustum of a pixel a contribution can be added to

the estimate of any of the pixels.
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FIGURE 9.14: PURE-MONTE CARLO LIGHT TRACING. Starting from point s0 at a light
source, the algorithm generates a single primary ray and shoots this ray into the scene. Then,
MCLT traces this ray through the scene until a pixel of the image plane is hit, the predefined
default length of the random path is exceeded, or the ray does not hit any object in the
scene, respectively the travel of the ray through the scene is stopped via Russian roulette.

REMARK 9.9 Obviously, pure-Monte Carlo light tracing simulates random walks of

characteristic
−−−−−−−−→
L(D|G|S)∗E. Thus, in principle, it provides us a complete solution of Heckberts Path Notation (655)

the stationary light transport equation in vacuum, but it su�ers from the fact that

the resulting images are usually rather noisy, see Figure 9.16.

THE PROBLEM OF HITTING A SENSOR. Recall, pure-Monte Carlo light tracing is dual to

pure-Monte Carlo path tracing, that is, the problem of hitting a light source in pMCPT is

equivalent to the problem of hitting a sensor in pMCLT. Since sensors compared to other

objects within a scene, are mostly small, the probability of hitting a sensor is even very

small. This means, that due to the attenuation of light at object surfaces due to scattering

e�ects, if any, only a vanishing small fraction of light is contributed to the �nal color of

the pixel, thus, the resulting images are often dark and very noisy.



714 CHAPTER 9. MARKOV PROCESS BASED RENDERING ALGORITHMS

9.2.2 MONTE CARLO LIGHT TRACING WITH NEXT EVENT ES-
TIMATION

As the estimator F
Mj,pMCLT

N from Equation (9.8) shows, a random walk, generated by

pure-Monte Carlo light tracing only contributes to the shading of a pixel, if it �nally

reaches the eye of an observer or a virtual camera within the scene. Except of the last

node of a light path, pMCLT ignores the importance of a sensor. As the sensor also has

a direct importance to all other nodes of a light path, Monte Carlo light tracing has to

involve the sensor more strictly in its process of importance evaluation. This can be done

by combining pure-Monte Carlo light tracing also with next event estimation.

The idea behind it: We extend pMCLT in such way, that the algorithm|during the

travel of a ray through the scene|generates so-called contribution rays at the nodes of

a light path, thus rays in direction to the sensor, computes the importance that directly

inuences these surface points and combines the corresponding amounts of importance

with the indirect importance owing along the path back to a light source. As we will see

below, this leads to a powerful variant of pMCLT, called: Monte Carlo light tracing with

next event estimation, see Figure 9.15.

MONTE CARLO LIGHT TRACING WITH NEXT EVENT ESTIMATION. As the importance equa-

tion is dual to the stationary light transport equation, Monte Carlo light tracing with

next event estimation can easily be derived from the Monte Carlo path tracing with next

event estimation algorithm, introduced in the last section. By exchanging the quantities

radiance and importance, as well as the notions of the pixel with that of the light source,

a primary estimator for MCLT with next event estimation can easily be derived from the

estimator F
Mj,MCPT

1 know from Equation (9.28). We leave the derivation of the estimator

F
Mj,MCLT

1 to the interested reader as an exercise.

REMARK 9.10 Note, when estimating the SITEV, we must be care wether the chosen

sample has already hit the sensor. Since this sample may be associated with a con-

tribution ray, we must not take into account the contribution of that sample to the

�nal importance, because it contributes perhaps already to the direct importance at

this point.

REMARK 9.11 It is easily seen that pure-Monte Carlo light tracing, under the condition

that a simple pinhole camera model is used, does not provides us with a reasonably

well solution of the importance equation, since the probability that the corresponding

random walk goes through the pinhole is equal zero.

Due to the fact, that MCPT and MCLT solve the global illumination problem

in di�erent ways, we can also expect that images, rendered with these methods, have

di�erent properties. So, MCPT is the more e�cient method for rendering images

that only shows little sections of an illuminated scene, as the camera determines
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FIGURE 9.15: MONTE CARLO LIGHT TRACING WITH NEXT EVENT ESTIMATION.
Compared to pMCLT, Monte Carlo light tracing generates at each hit point of a ray with
an object of the scene a so-called contribution ray in direction to the sensor.

the view volume, and the algorithm generates random walks depending on the view

volume. On the other hand, light tracing is the better method for simulating caustics.

REMARK 9.12 As already mentioned above, Monte Carlo path tracing and Monte Carlo

light tracing are dual algorithms. While in path tracing the light sources act as sources

of radiance, in light tracing, the image plane serves as an emitter for importance.

The passivity of the light sources in Monte Carlo path tracing confronts to the pas-

sivity of the image plane in Monte Carlo light tracing. Furthermore, the concept of

the shadow ray is dual to the concept of the contribution ray. Thus, all variance

reduction techniques|as the computation of ux via direct or indirect importance

or the embedding of various sampling strategies for approximating a solution of the

importance equation|presented in the previous section for path tracing, can also be

used in an algorithm based on light tracing.

The images in Figure 9.16 are rendered with Monte Carlo light tracing. They show

the Cornell box consisting of only di�use surfaces, illuminated by a single spherical light
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FIGURE 9.16: IMAGES RENDERED WITH PURE-MONTE CARLO LIGHT TRACING.
The images are rendered via pure-Monte Carlo light tracing using 100, 000, 1, 000, 000,
10, 000, 000 and 100, 000, 000 rays. They show the Cornell box consisting of only diffuse
surfaces, illuminated by a single spherical light source. The first two images are mostly
black, with some very brightly pixels. Since sensors compared to other objects within a
scene, are mostly small, the probability of hitting a sensor is also very small. This means,
that due to the attenuation of light at object surfaces due to scattering effects, if any, only
a vanishing small fraction of light is contributed to the final color of the pixel. That is, the
resulting images are often dark and very noisy. Using more light-paths leads to better the
images. Image courtesy of Philippe Dutré, Department of Computer Science, K. U. Leuven.



SECTION 9.3. BIDIRECTIONAL PATH TRACING 717

FIGURE 9.17: A COMPARISON OF BIDIRECTIONAL PATH TRACING AND MONTE CARLO
PATH TRACING. The scene contains a spotlight, a floor lamp, a table, and a large glass
egg. The left image is 500 by 500 and was rendered via Monte Carlo path tracing with 56
samples per pixel. The image on the right was computed with bidirectional path tracing,
using the power heuristic with β = 2 to combine the samples for each path length. The
image is also 500 by 500 with 25 samples per pixel. Both images are rendered in the same
amount of time. Image courtesy of Eric Veach.

source. The �rst two images are mostly black. Note: Although di�erent in quality, even

the �rst two images, are, due to the bright pixels, perfectly valid secondary estimators for

the correct solution of the SITEV. That variance can be reduced by taking more samples,

this can be observed in the lower two images. Here, more random walks are generated,

resulting in images with less noise. But also these results are still noisy, and thus not

satisfactory.

9.3 BIDIRECTIONAL PATH TRACING

Let us consider the scene in the images of Figure 9.17 where a small area on the ceiling of

a room is illuminated by a oor lamp and a spotlight illuminates a small region at the left

wall of the scene, consisting of di�use, gloss, and pure specular surfaces. The rest of the

scene is illuminated indirectly by light reecting from these areas. The image rendered

with Monte Carlo path tracing is very noisy, which is not surprisingly due to the manner

a path tracer works. Obviously, the probability that a path, starting from the camera,

hits the illuminated regions before a shadow ray is generated, is very small. Thus, all

paths, except of a small number, namely those that hit the illuminated regions, does not
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contribute to the shading of a pixel. As a result the image has a hight variance. Scenes

with similar di�cult lighting conditions can be handled more e�ectively by a rendering

method called bidirectional path tracing, or as we will say for short BDPT.

Bidirectional path tracing was at �rst introduced in [119, Lafortune & Willems 1993]

and a year later independently developed in [222, Veach & Guibas 1995]. Although both

variants of bidirectional path tracing lead to similar results, they are based on two dif-

ferent mathematical frameworks. While Eric Lafortune's variant of bidirectional path

tracing starts from the formulation of the global reectance distribution function, EricGRDF (473)

Veach's variant of bidirectional path tracing is based on the path integral formulation ofPath Integral Formulation (466)

the light transport problem. Both algorithms have its origin in [6, Arvo 1986], where the

rendering of caustics was described by means of a ray tracing algorithm, that takes its

starting point in one of the light sources of the environment but not in the eye of the

observer or a virtual camera, as done with path tracing.

We will now present bidirectional path tracing in the variant of Eric Veach and

Leonidas Guibas, that is, based on the formulation of the measurement equation as aMeasurement Equation (416)

path integral over all paths generated on the surfaces within a scene. So, we will show

how the basic bidirectional path tracing algorithm constructs light and eye paths, andSection 9.3.1

how the algorithm can uses these paths to generate so-called transport paths between an

emitter and a sensor for rendering. We discuss the mathematical framework behind this

process and analyze the technique of transport path construction with respect to their

usage as a Monte Carlo rendering algorithm. To improve the performance of the basic

algorithm with respect to the transport paths and the contributions of these paths to an

estimator, we also discuss a re�nement of the basic algorithm: the idea of using a family of

di�erent sampling techniques for transport paths, and combining them using the principle

of multiple importance sampling.Section 9.3.2

REMARK 9.13 A detailed description of Eric Lafortunes variant of bidirectional path

tracing can be found in [119, Lafortune & Willems 1993] and [50, Dutr�e & al. 2003].

9.3.1 GENERATING AND ESTIMATING TRANSPORT PATHS

As we know from the last two sections, some light phenomena can more easily be simulated

via path tracing while others can rather be represented via tracing rays from light sources.

The idea behind bidirectional path tracing is to exploit this fact. Thus, a basic bidirectional

path tracing algorithm combines Monte Carlo path tracing with Monte Carlo light tracing,

that is, instead of just tracing a random walk starting at the eye, a so-called eye path,

additionally a light path, starting at the eye, is also traced into the scene. Both paths are

then joined together at their ends resulting in a set of transport paths.

Let us now discuss in detail how BDPT generates transport paths, and how these

paths can be used in a Monte Carlo estimator for evaluating the path integral, that de-
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scribes the light transport problem in a vacuum.

GENERATING TRANSPORT PATHS. At �rst, bidirectional path tracing generates, in a similar

manner to Monte Carlo light tracing, a light subpath

y = y0 . . .ynL−1 (9.36)

with nL vertices, by choosing a random point y0 on a light source and �nding the points

yj+1, 0 ≤ j ≤ nL − 2 via casting a ray randomly with respect to the BSDF from yj. By a

similar process, the algorithm then constructs an eye subpath

z = znE−1 . . . z0 (9.37)

with nE vertices starting from a random point z0 on the camera lens, where the length of

each subpath is determined by a form of Russian roulette. Russian Roulette (200)

Via the visibility function V the algorithm then determines the visibility of the two V (45)

endpoints ynL−1 and znE−1 and concatenates these two vertices if they are visible to each

other. Thus, we get a complete transport path x of length nL + nE − 1 de�ned by:

x
def
= y z (9.38)

(9.36),(9.37)
= y0 . . .ynL−1 znE−1 . . . z0 (9.39)

= x0 . . .xnL+nE−1 (9.40)

see Figure 9.18. In this case, the vertices ynL−1 and znE−1 are called the connecting

vertices, and the edge between them is denoted as the connecting edge. If the two points

are not visible to each other, or if the BSDF at the connecting vertices does not scatter

light towards the other, then we de�ne the contribution for that path to be zero.

Obviously, paths of this type can be used to estimate the path integral Path Integral (466)

Mj =

∫
P∞ fj(x)dµ∞(x), (9.41)

representing the stationary light transport in a vacuum. Due to De�nition 5.19, the path

integral can be written as in�nite sum of integrals over paths of all �nite length, thus,

Mj =

∫
P∞ fj(x)dµ∞(x) (9.42)

=

∞∑
k=1

∫
Pk
fj(xk)dµk(xk), (9.43)

where xk ∈ Pk is a transport path of length k.

Let xk be a transport path of length nL + nE − 1 generated with bidirectional path

tracing, then, a secondary Monte Carlo estimator based on the path integral of the light
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FIGURE 9.18: A TRANSPORT PATH FROM A LIGHT SOURCE TO THE CAMERA LENS.
A light path y = y0y1y2 of length 2 and an eye path z = z0z1 of length 1 constructed
via bidirectional path tracing. Both paths are joined together at their ends, y2 and z1, to a
transport path x = y0y1y2z1z0 of length 4.

transport and the basic algorithm of BDPT, denoted as bBDPT, is given by:

F
Mj,bBDPT

N

1

N

N∑
k=1

fj(xk)

p(xk)
, (9.44)

where fj is the measurement contribution function, xk are N paths from P∞, and p is thefj (463)

probability density function with which the paths xk are sampled.P∞ (461)

PDF (176)

REMARK 9.14 In [222, Veach & Guibas 1995] the quantities
fj(xk)
p(xk)

in the above es-

timator are denoted as the unweighted contributions. In the following section we

will endow the unweighted contributions with weighting functions wk. Using these

weighted contributions, we are then able to construct a multiple sample estimator forMultiple Sample Estimator (592)

the path integral formulation of the light transport problem.

Obviously, the evaluation of the estimator F
Mj,bBDPT

N requires the computation of

the probabilities p with which the paths xk are sampled and the evaluation of the mea-
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surement contribution function fj applied to the transport paths xk. Let us now show,

how bidirectional path tracing e�ciently mastered this task.

ESTIMATING TRANSPORT PATHS. As already mentioned above, bidirectional path tracing

generates the vertices y0 and z0 of a transport path directly on the surface of a light

source, respectively the lens of the camera, while all other nodes of the path are generated

via tracing a ray through the scene.

Let pµ2(y0) and pµ2(z0) denote the PDFs for sampling the �rst vertices of the cor- PDF (176)

responding subpaths of the transport xk, measured with respect to the Lebesgue area

measure µ2. Bidirectional path tracing then samples the successor yj of a path node yj−1, µ2 (82)

respectively the successor zj of a path node zj−1, of the transport path

xk = y0 . . .ys−1︸ ︷︷ ︸
y

zt−1 . . . z0︸ ︷︷ ︸
z

(9.45)

by choosing a direction and casting a ray from the current subpath node to the new

sampled vertex with respect to the projected solid angle measure σ⊥. σ⊥ (88)

Then, the density for sampling the (j+1)th vertex of one of the subpaths y or z is given

by the conditional density that yj, respectively zj, is chosen given yj−1, respectively zj−1,

multiplied with the PDF for generating the associated subpath y0 . . .yj−1 or z0 . . . zj−1,

that is,

p(y) = pµ2(y0)

nL−1∏
j=1

pµ2(yj|yj−1) (9.46)

= pµ2(y0)

nL−1∏
j=1

(
pσ⊥(yj−1 → yj|yj−2 → yj−1)G(yj−1 ↔ yj)

)
(9.47)

and

p(z) = pµ2(z0)

nE−1∏
j=1

pµ2(zj|zj−1) (9.48)

=

nE−1∏
j=1

(
pσ⊥(zj−1 → zj|zj−2 → zj−1)G(zj−1 ↔ zj)

)
· pµ2(z0), (9.49)

where we have expressed the PDF pµ2 in terms of the probability density function pσ⊥
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according to

pµ2(sj) =
dPµ2
dµ2

(sj) (9.50)

=
dPσ
dσ⊥

(ωj−1i )
dσ⊥(ωj−1i )

dµ2(sj)
(9.51)

(2.196)
= pσ⊥(ω

j−1
i )

dµ2(sj)
∣∣∣cos θj−1i cos θjo

∣∣∣
dµ2(sj) ‖sj − sj−1‖22

(9.52)

= pσ⊥(ω
j−1
i )

∣∣∣cos θj−1i cos θjo

∣∣∣
‖sj − sj−1‖22

(9.53)

= pσ⊥(ω
j−1
i )G(sj−1 ↔ sj), (9.54)

where sj can be identi�ed as the path nodes yj−1 or zj−1 and the directionω
j−1
i = yi−1 →

yi respectively ω
j−1
i = zi−1 → zi. An illustration for computing the path probability of

a transport path is shown in Figure 9.19.

As the current endpoints ynL−1 and znE−1 are connected if they are visible to each

other, the probability for generating the connecting edge ynL−1znE−1 is one, thus, the PDF

for generating the path xk is then given by the product of the densities for generating the

subpaths y and z, and the probability for generating the connecting edge ynL−1znE−1.

That is, the probability density function for sampling xk is given by:

p(xk) = p(y) · Pσ⊥(ynL−1 → znE−1)︸ ︷︷ ︸
=1

·p(z) (9.55)

= pµ2(y0)

nL−1∏
j=1

(
pσ⊥(yj−1 → yj|yj−2 → yj−1)G(yj−1 ↔ yj)

)
· (9.56)

nE−1∏
j=1

(
pσ⊥(zj−1 → zj|zj−2 → zj−1)G(zj−1 ↔ zj)

)
· pµ2(z0).

EXAMPLE 9.3 Let us consider the transport path generated via bidirectional path tracing

passing through an ideal di�use scene with light subpath y = y0y1y2 and eye subpath

z = z1z0 from Figure 9.20. Then, x4 is composed of a light path of length two and

an eye path of length one, that is, it is of the form

x4 = y0y1y2z1z0. (9.57)

As, the starting nodes y0 and z0 are sampled with respect to the Lebesgue area

measure on a light source ☼ respectively, at the lens � of the camera, and the points

y1,y2 and z1 are sampled with respect to projected solid angle, the probability with
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FIGURE 9.19: THE PROBABILITY DENSITY FUNCTION FOR GENERATING A TRANSPORT
PATH. Shown is a transport x7 = y0y1y2y3z3z2z1z0 path of length 7. The probability
of computing the light path y = y0y1y2y3 is given by the product of the probabilities for
sampling the point y0 and the direction ωi, ω

1
i and ω2i . The same holds for the eye path

x = x0x1x2z3. The probability for computing the connecting edge y3 ↔ x3 is one.

which BDPT generates the corresponding transport path is given by:

p(y) = pµ2(y0)︸ ︷︷ ︸
1

µ2(☼)

· (9.58)

pσ⊥(y0 → y1|y0)︸ ︷︷ ︸
|cosθ0i |
π

G(y0 ↔ y1)pσ⊥(y1 → y2|y0 → y1)︸ ︷︷ ︸
|cosθ1i |
π

G(y1 ↔ y2)

=
1

µ2(☼)
· (9.59)∣∣cos θ0i ∣∣

π

∣∣cos θ0i cos θ1o∣∣
‖y0 − y1‖22

∣∣cos θ1i ∣∣
π

∣∣cos θ1i cos θ2o∣∣
‖y1 − y2‖22
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FIGURE 9.20: SAMPLING A TRANSPORT PATH WITH BIDIRECTIONAL PATH TRACING.
The path x = y0y1y2z1z0 is generated via concatenating the light path y = y0y1y2 and
the eye path z = z1z0. The subpaths theirselves are generated by sampling the starting
nodes y0 and z0 on the corresponding surfaces, and the path segments are generated via
sampling a direction with respect to the BSDF valid at the associated surface.

as well as:

p(z) = pσ⊥(z0 → z1|z0)︸ ︷︷ ︸
|cosθ3o|
π

G(z0 ↔ z1) · pµ2(z0)︸ ︷︷ ︸
1

µ2(�)

(9.60)

=

∣∣cos θ4o∣∣
π

∣∣cos θ4o cos θ3i
∣∣

‖z0 − z1‖22
· 1

µ2(�)
, (9.61)

where we have sampled the light source as well as the lens with respect to their surface

areas. That is, BDPT generates the path xk with probability

p(xk) = p(y) · p(z) (9.62)

=
1

µ2(☼)
·
∣∣cos θ0i ∣∣
π

∣∣cos θ0i cos θ1o∣∣
‖y0 − y1‖22

∣∣cos θ1i ∣∣
π

∣∣cos θ1i cos θ2o∣∣
‖y1 − y2‖22

· (9.63)∣∣cos θ4o∣∣
π

∣∣cos θ4o cos θ3i
∣∣

‖z0 − z1‖22
· 1
µ2

(�).

For evaluating the estimator F
Mj,bBDPT

N , apart from computing the densities p(xk)

for generating the transport paths xk, the measurement contribution function fj has alsofj (463)
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FIGURE 9.21: COMPUTING THE MEASUREMENT CONTRIBUTION FUNCTION FOR A
TRANSPORT PATH. The transport path x5 = y0y1y2z2z1z0 is composed of a light and
an eye path of length 2. The measurement contribution function for the path x5 can be
computed via the product of the geometry terms, the BSDFs as well as the emitted radiance
and importance along the transport path.

to be evaluated for the transport path xk. To do this in an e�cient way, let us consider

fj a little bit more closely. Obviously, it holds:

fj(xk) = Le(y0 → y1) · G(y0 ↔ y1) ·
nL−2∏
j=1

(
fs(yj−1 → yj → yj+1) · G(yj ↔ yj+1)

)
·

ck · (9.64)
nE−2∏
j=1

(
G(zj+1 ↔ zj)fs(zj+1 → zj → zj−1)

)
· G(z0 ↔ z1) ·Wj

e(z0 → z1),

where ck depends on the connecting edge ynL−1znE−1,

ck
def
= fs(ynL−2 → ynL−1 → znE−1) ·

G(ynL−1 ↔ znE−1) · (9.65)

fs(znE−2 → znE−1 → ynL−1),

see Figure 9.21.



726 CHAPTER 9. MARKOV PROCESS BASED RENDERING ALGORITHMS

Now, evaluating the emitted radiance Le(y0 → y1) requires to sample the point y0 on

a light source followed by a directional sampling, that is, the emitted radiance Le(y0 → y1)

can be split into a product

Le(y0 → y1) = L
0
e(y0)L

1
e(y0 → y1). (9.66)

Similar to this decomposition we can also split the quantity We(y0 → y1) into the

product

We(z0 → z1) =W
0
e(z0)W

1
e(z0 → z1). (9.67)

Using the conventions

L1e(y0 → y1)
def
= fs(y−1 → y0 → y1) (9.68)

W1
e(z0 → z1)

def
= fs(z−1 → z0 → z1) (9.69)

and the probabilities for generating the paths xk from above, then we get for the un-

weighted contributions C∗k of the paths xk the following formula:

C∗k
def
=

fj(xk)

p(xk)
(9.70)

=
L0e(y0)

pµ2(y0)

fs(y−1 → y0 → y1)

pσ⊥(y0 → y1|y0 → y−1)G(y0 ↔ y1)
· G(y0 ↔ y1) ·

∏nL−2
j=1

(
fs(yj−1 → yj → yj+1)G(yj ↔ yj+1)

)
∏nL−2
j=1

(
pσ⊥(yj → yj+1|yj−1 → yj)G(yj ↔ yj+1)

) ·
ck · (9.71)∏nE−2

j=1

(
G(zj+1 ↔ zj) fs(zj+1 → zj → zj−1)

)
∏nE−2
j=1

(
pσ⊥(zj → zj+1|zj−1 → zj)G(zj ↔ zj+1)

) ·
W0
e(z0)

pµ2(z0)

fs(z−1 → z0 → z1)

pσ⊥(z0 → z1|z0 → z−1)G(z0 ↔ z1)
· G(z0 ↔ z1)·

Evidently, the geometry terms occurring in the nominator as well as in the denom-

inator can be canceled, that is, the formula for the unweighted contributions C∗k can be

simpli�ed to:

C∗k
def
=

L0e(y0)

pµ2(y0)
·
nL−2∏
j=0

fs(yj−1 → yj → yj+1)

pσ⊥(yj → yj+1|yj−1 → yj)
·

ck · (9.72)
nE−2∏
j=0

fs(zj+1 → zj → zj−1)

pσ⊥(zj → zj+1|zj−1 → zj)
· W

0
e(z0)

pµ2(z0)
.
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Using these formulae within the estimator F
Mj,bBDPT

N then we get

F
Mj,bBDPT

N =
1

N

N∑
k=1

fj(xk)

p(xk)
(9.73)

=
1

N

N∑
k=1

C∗k (9.74)

=
1

N

N∑
k=1

 L0e(y0)

pµ2(y0)
·
nL−2∏
j=0

fs(yj−1 → yj → yj+1)

pσ⊥(yj → yj+1|yj−1 → yj)

 · ck ·nE−2∏
j=0

fs(zj+1 → zj → zj−1)

pσ⊥(zj → zj+1|zj−1 → zj)
· W

0
e(z0)

pµ2(z0)

 , (9.75)

where xk is transport path of length k = nL + nE − 1.

REMARK 9.15 (pure-Monte Carlo Path Tracing Based on the Path Integral Formulation)

Setting the length of a light path in the basic bidirectional path tracing algorithm to

zero, i.e. choosing nL = 0, then BDPT generates only eye paths using nE path nodes.

This means, that BDPT simulates pure-Monte Carlo path tracing, as introduced

in Section 9.1.1. A corresponding primary estimator, F
Mj,pMCPT

1 , for solving the

measurement equation via pMCPT based on the path integral formulation, has the Section 5.4.1

following form:

F
Mj,pMCPT

1 =
fj(zk)

p(zk)
(9.76)

=
W0
e(z0 → z1)

pµ2(z0)

nE−1∏
j=0

fs(zj−1 → zj → zj+1)

pσ⊥(zj−1 → zj|zj+1 → zj)
Le(znE → znE−1),(9.77)

where xk = z0 . . . zNE−1 is a transport path of length k = nE−1, and a pinhole camera

model was used.

Obviously, setting the length of an eye path to zero leads to pure-Monte Carlo

light tracing. We leave a detailed derivation to the interested reader as a simple

exercise.

9.3.2 THE PATH REUSE STAGE AND THE MULTIPLE SAMPLE
ESTIMATOR

Except for the type of transport paths that the basic bidirectional path tracing algorithm

generates, the algorithm is not fundamentally di�erent from pure-Monte Carlo path trac-

ing or pure-Monte Carlo light tracing. But also this basic form of BDPT can be extended:
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Namely, by varying the length of the light and the eye paths. The algorithm then provides

a set of techniques for sampling di�erent kind of paths that are responsible for a variety of

lighting e�ects in the resulting image. By combining samples from all of these techniques

via multiple importance sampling we then get a very powerful rendering technique for

solving the global illumination problem.

Let us consider a transport path

xk = y0 . . .ynL−1︸ ︷︷ ︸
y

znE−1 . . . z0︸ ︷︷ ︸
z

, (9.78)

generated by concatenating an existing light subpath y and an eye path z at its endpoints.

By varying the number of vertices from each side of the subpaths y and z, the transport

path xk can be reused to construct a variety of unique paths

xs,t = y0 . . .ys−1 zt−1 . . . z0 (9.79)

from a light source to the camera, with 0 ≤ s ≤ nL, and 0 ≤ t ≤ nE.
Then, these paths xs,t can be interpreted as the results of di�erent sampling strate-

gies, where each of these sampling techniques correspond to a di�erent probability densityPDF (176)

function ps,t on the space of paths P∞. Since all density functions take into accountP∞ (461)

di�erent factors of the measurement contribution function fj, they are all good candidatesfj (463)

for importance sampling, that is, each technique can e�ciently sample a variety of lighting

e�ects. By using multiple importance sampling, samples from all of these techniques can

be combined in a so-called multiple sample estimator F
Mj,MIS

N of the formMultiple Sample Estimator (592)

F
Mj,MIS,BDPT

N =
∑
s≥0

∑
t≥0

ws,t(xs,t)
fj(xs,t)

ps,t(xs,t)︸ ︷︷ ︸
C∗s,t

(9.80)

=
∑
s≥0

∑
t≥0

ws,t(xs,t)C
∗
s,t︸ ︷︷ ︸

Cs,t

(9.81)

=
∑
s≥0

∑
t≥0

Cs,t (9.82)

where ws,t(xs,t) are weighting functions, C∗s,t are the unweighted contributions of theC∗s,t (726)

path xs,t to F
Mj,MIS

N , and Cs,t are the weighted contributions of xs,t to the multiple

sample estimator. That is, bidirectional path tracing evaluates the estimator F
Mj,MIS

N by

computing the weighted contributions of all paths xs,t that can be generated from a given

transport path composed of a light path y and an eye path z.

REMARK 9.16 Note: Described via Equation (9.82), the estimator F
Mj,MIS,BDPT

N cor-

responds to the sum of contributions from paths sampled from an in�nite number of
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techniques. By de�ning the sample xs,t = ε whenever s > nL or t > nE all paths,

except from a �nite number, have contribution zero, that is, their contribution to the

shading of a pixel can be ignored.

Let us now show how bidirectional path tracing determines in an e�cient manner the

components used in the above multiple sample estimator.

THE PATH REUSE STAGE. Let y = y0 . . .ynL−1 and z = z0 . . . znE−1 be a light, respectively,

an eye subpath generated via bBDPT. Then, extended bidirectional path tracing does not

only connect the two endpoints of the subpaths y and z to get a transport path from a

light source to a sensor, but also all endpoints of subpaths y0 . . .ys−1, 0 ≤ s ≤ nL of y

with subpaths zt−1 . . . z0, 0 ≤ t ≤ nE of z. This then results in s+ t+ 1 paths

xs,t = y0 . . .ys−1 zt−1 . . . z0 (9.83)

of length s+ t− 1, consisting of s+ t vertices and s+ t− 1 edges, see Figure 9.22.

EXAMPLE 9.4 (Paths Generated via Bidirectional Path Tracing) Let us consider the light

path y = y0y1y2 consisting of nL = 3 vertices and the eye path z = z1z0 with nE = 2

nodes. Then, the transport path xs,t, composed of y and z, has length nL+nE−1 = 4

and is of the form

xs,t = y0y1y2z1z0. (9.84)

Based on xs,t, the bidirectional path tracing algorithm then generates k+2 trans-

port paths of lengths k:

k = 1 → x0,2 = z1z0

x1,1 = y0z0 (9.85)

x2,0 = y0y1

and

k = 2 → x0,3 = ε

x1,2 = y0z1z0 (9.86)

x2,1 = y0y1z0

x3,0 = y0y1y2

k = 3 → x0,4 = ε

x1,3 = ε (9.87)

x2,2 = y0y1z1z0

x3,1 = y0y1y2z0

x4,0 = ε,
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FIGURE 9.22: A TRANSPORT PATH WITH ASSOCIATED SUBPATHS. By varying the
number of vertices in the light path y = y0y1y2 and in the eye path z = z1z0 bidirectional
path tracing generates a large class of new transport paths. Thus, x3,1 = y0y1y2z0 is
a path of length three connecting the light path y with the point z0 on the light source.
Another path of length three is given by connecting the eye path x with the light subpath
y0y1 resulting in x2,2 = y0y1z1z0. Note: All paths that can be generated by varying in
the number of vertices of y and z have length k, with 1 ≤ k ≤ 4.
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where xs,t
def
= ε is the empty path whenever s > nL or t > nE, see Figure 9.23.

It should be clear, that for paths of length, k = 4, only the path x3,2 has to be

accounted for.

As already mentioned above, each of the transport paths xs,t can now be interpreted

as a sample generated from a sampling strategy ps,t that corresponds to a di�erent density

function on the space of paths of all length P∞. Thus, ps,t is a sampling technique that Path Space (461)

performs s steps via Monte Carlo light tracing and t steps via Monte Carlo path tracing.

In the same way as the basic variant of bidirectional path tracing, the algorithm

samples the subpaths y = y0 . . .ynL−1 and z = z0 . . . znE−1, of the transport path

xs,t = y0 . . .ys−1zt−1 . . . z0. (9.88)

Using the abbreviations

pL1 = pµ2(y0) (9.89)

pE1 = pµ2(z0) (9.90)

and

pLj+1 = pσ⊥(yj−1 → yj|yj−2 → yj−1)G(yj−1 ↔ yj)p
L
j (9.91)

as well as

pEj+1 = pσ⊥(z0)Pσ⊥(zj−1 → zj|zj−2 → zj−1)G(zj−1 ↔ zj)p
E
j (9.92)

for j ≥ 1, then the density for generating the path xs,t is given by:

ps,t(xs,t) = pµ2(y0)︸ ︷︷ ︸
pL
1

s−1∏
j=1

pσ⊥(yj−1 → yj|yj−2 → yj−1)G(yj−1 ↔ yj)︸ ︷︷ ︸
pL
j+1

pL
j

· (9.93)

pµ2(z0)︸ ︷︷ ︸
pE
1

t−1∏
j=1

pσ⊥(zj−1 → zj|zj−2 → zj−1)G(zj−1 ↔ zj)︸ ︷︷ ︸
pE
j+1

pE
j

= pL1

s−1∏
j=1

pLj+1

pLj︸ ︷︷ ︸
pLs

·pE1
t−1∏
k=1

pEj+1

pEj︸ ︷︷ ︸
pEt

(9.94)

= pLs · pEt . (9.95)

Here, we also used the formulas

pσ⊥(y0 → y1|y−1 → y0) = pσ⊥(y0 → y1|y0) (9.96)

pσ⊥(z0 → z1|z−1 → z0) = pσ⊥(z0 → z1|z0) (9.97)
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FIGURE 9.23: GENERATING SAMPLES xs,t FROM A TRANSPORT PATH. The transport
path x4 = y0y1y2z1z0 implies the construction of subpaths of length k = 1, 2, 3 and k = 4.
Note, paths of type xs,t with s > nL or t > nE as well as paths of lengths k = −1 and
k = 0 are empty paths. They deliver no contribution to the multiple sample estimator.
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and assume that it holds: pL0 = pE0 = 1, see Figure 9.24.

As, the geometry terms occurring within the nominator and the denominator of the

unweighted contributions C∗s,t can then be canceled, the formula for C∗s,t can be simpli�ed

in accordance with Equation (9.72) to:

C∗s,t
def
=

L0e(y0)

pµ2(y0)︸ ︷︷ ︸
αL
1

·
s−2∏
j=0

fs(yj−1 → yj → yj+1)

pσ⊥(yj → yj+1|yj−1 → yj)︸ ︷︷ ︸
αL
j+2

αL
j+1

·

cs,t · (9.98)
t−2∏
j=0

fs(zj+1 → zj → zj−1)

pσ⊥(zj → zj+1|zj−1 → zj)︸ ︷︷ ︸
αE
j+2

αE
j+1

· W
0
e(z0)

pµ2(z0)︸ ︷︷ ︸
αE
1

= αLs · cs,t · αEt (9.99)

with

cs,t
def
=


Le(zt−1 → zt−2) if s = 0, t > 0

Wj
e(ys−2 → ys−1) if s > 0, t = 0

fs(ys−2 → ys−1 → zt−1) · G(ys−1 ↔ zt−1)· if s, t > 0

fs(ys−1 → zt−1 → yt−2).

(9.100)

THE MULTIPLE SAMPLE ESTIMATOR. Finally , we consider the computation of the weighting

functions ws,t. For that purpose, let us consider the path xi,(s+t)−i using a light subpath

with i vertices and an eye subpath with s+ t− i vertices, given by:

xi,(s+t)−i = y0 . . .yi−1︸ ︷︷ ︸
x0...xi−1

z(s+t)−i−1z(s+t)−i−2 . . . z0︸ ︷︷ ︸
xixi+1...xs+t

(9.101)

as well as the path xi+1,(s+t)−i−1 using a light subpath with i + 1 vertices and an eye

subpath with s+ t− i− 1 vertices, given by:

xi+1,(s+t)−i−1 = y0 . . .yi−1yi︸ ︷︷ ︸
x0...xi−1xi

z(s+t)−i−2z(s+t)−i−3 . . . z0︸ ︷︷ ︸
xi+1...xs+t

. (9.102)

Let furthermore pi and pi+1 denote the probabilities for generating these paths, then

the ratio pi+1
pi

can be expressed in terms of the probabilities for generating the light and
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FIGURE 9.24: A TRANSPORT PATH WITH ASSOCIATED SAMPLING STRATEGIES. Except
for the first two contributions, the left-most column corresponds to pure-Monte Carlo light
tracing. The second column corresponds to Monte Carlo light tracing with next event
estimation. On the other side, the first row corresponds to pure-Monte Carlo light tracing.
The second row corresponds to Monte Carlo light tracing with next event estimation. All
other contributions are unique to bidirectional path tracing.

eye subpaths of lengths i and i+ 1 from Equations (9.91) and (9.92) given by:

pi+1

pi
=

pLi+1p
E
s+t−i−1

pLi p
E
s+t−i

(9.103)

=
pLi (pσ⊥(xi−1 → xi|xi−2 → xi−1)G(xi−1 ↔ xi))p

E
s+t−i−1

pLi (pσ⊥(xi+1 → xi|xi → xi−1)G(xi+1 ↔ xi))pEs+t−i−1
(9.104)

=
pσ⊥(xi−1 → xi|xi−2 → xi−1)G(xi−1 ↔ xi)

pσ⊥(xi+1 → xi|xi → xi−1)G(xi+1 ↔ xi)
(9.105)

with

p1
def
= pµ2(x0) (9.106)
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and

ps+t
def
= pµ2(xs+t). (9.107)

Obviously, the only di�erence between pi and pi+1 lies in how the vertex xi is chosen:

With respect to sampling strategy pi, it is generated as part of the eye subpath xi . . .xs+t,

while for pi+1 it is generated via the light subpath x0 . . .xi. Bidirectional path tracing can

now uses this result in its combination strategies for computing the weighting functions

wi. Thus, if the samples are combined using the power heuristic with β = 2, we have to Power Heuristic (597)

compute:

ws,t
def
=

p2s∑s+t
i=0 p

2
i

=
1∑s+t

i=0

(
pi
ps

)2 . (9.108)

For evaluating the weighting functions ws,t, BDT requires the probability ps of the

currently generated path xs,t and the probabilities p0, p1, . . . , ps−1, ps+1, . . . , ps+t with

which all other sampling strategies would generate this path. Now, these probabilities can

easily computed via the ratio ps+1
ps

, respectively, the reciprocal ratio ps
ps+1

. Based on these

quantities, then the required probability pi
ps

for evaluating the weighting functions ws,t

can be expressed in terms of
pj
pj+1

. So, we get for i < s:

pi

ps
=

s−1∏
j=i

pj

pj+1
, (9.109)

respectively, for i > s

pi

ps
=

i−1∏
j=s

pj+1

pj
. (9.110)

REMARK 9.17 If we compare bidirectional path tracing with Monte Carlo path tracing,

then we can say, that BDPT performs a lot better. The algorithm is powerful in

particular for many kinds of indoor scenes, with or without strong indirect lighting,

and for scenes containing caustics. A weakness of BDPT arises when rendering

outdoor scene, or scenes where the light sources and the viewer are separated by

di�cult geometry, such as a single room in a large building where the light sources are

far away. In this case, another rendering techniques, should be used: the Metropolis

light transport algorithm. Section 9.4

In [222, Veach & Guibas 1995] bidirectional path tracing was compared against

ordinary path tracing using some test scenes shown in Figure 9.25.
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FIGURE 9.25: THE WEIGHTED CONTRIBUTIONS OF BIDIRECTIONAL SAMPLING
TECHNIQUES ps,t. The pyramid of images has to be seen in connection with the image
in Figure 9.17 rendered with bidirectional path tracing. Except of the first row—which
we have missed, thus the light that is directly visible to eye—each row of the pyramid
contains contributions, weighted via MIS, to the final image from paths with the same
path length. Each row r of the pyramid shows the contributions of the sampling techniques
p1,r+1, . . . , pr+1,1 for paths of length k = r + 1, where the position of an image in the
row indicates how the associated path were generated. Obviously, the images on the left
can interpreted as rendered by Monte Carlo path tracing with next event estimation, while
the images on the right are considered to be rendered via Monte Carlo light tracing with
next event estimation. The sth image from left is constructed via a light subpath with
s vertices, while the tth image from the right uses an eye subpath with t vertices. Thus,
the lower left image is constructed via paths that uses only a single light vertex but six eye
vertices, while the upper right image uses two light vertices but only a single eye vertex.
Note: The images have been over-exposed so that their details can be seen. See this image
in connection with Figure 9.26. Image courtesy of Eric Veach.
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FIGURE 9.26: THE WEIGHTED CONTRIBUTIONS OF BIDIRECTIONAL SAMPLING TECH-
NIQUES ps,t. Visualization of the transport paths associated with the rendered images in
Figure 9.25.

9.4 METROPOLIS LIGHT TRANSPORT

As we have seen in the previous sections of this chapter, so, it is very di�cult to design a

path-based light transport algorithm that is general valid, e�cient, and that simulates all

light e�ects artifact-free. Such an algorithm has to sample all kinds of transport paths be-

tween light sources and a virtual camera or the eye of an observer. One problem that often

arises is: Based on the underlying scene model, many paths do not contribute signi�cantly

to the image to be rendered. If we consider for example a scene where a brightly illumi-

nated room is connected with a dark room via a slightly opened door, then path tracing, Section 9.1

as well as light tracing, have problems to sample paths that contribute signi�cantly to the

�nal image. With the idea of connecting a light and an eye path, bidirectional path tracing Section 9.2
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comes close to this goal, but BDPT su�ers from, that the algorithm can not guaranteeSection 9.3

to generate a large number of such paths that are required to simulate this special illu-

mination situation. Here, there exists another more e�cient method, based on a MCMC

approach, that handles such di�cult sampling problems more e�ciently: the Metropolis

light transport algorithm.

The Metropolis light transport, also briey denoted asMLT, �rstly presented in [223,

Veach & Guibas 1997], is an unbiased algorithm, handles general geometric and scattering

models and uses little storage. It is based on the Metropolis sampling algorithm,M(RT)2.

As shown in Section 6.5.3.2, M(RT)2 generates a sequence of correlated samples from a

non-negative function f such that the samples are distributed according to f. For that, the

algorithms only needs to evaluate f at each generated sample, M(RT)2 does not require

any other information about f or its associated PDF. Thus, this approach is quite di�er-

ent from the sampling strategies of MCPT, MCLT, or BDPT, where samples are chosen

according to a PDF and a function is evaluated at the generated samples.PDF (176)

In the following, we will describe the Metropolis light transport algorithm, as �rstly

introduced in [223, Veach & Guibas 1997] and [221, Veach 1998], where the Metropolis

algorithm is applied to the path integral formulation introduced in Section 5.4.

So, we show how the light transport problem must be formulated that it �ts theSection 9.4.1

M(RT)2 framework and discuss how an image can be computed by sampling a �nite

number of random paths according to some density function. We also present the idea,

how the MLT algorithm can be initialized to avoid the start-up bias that comes with a

Markov process constructed via Metropolis sampling. Finally, we talk about mutation

strategies, the heart of the MLT algorithm, that should help to minimize the error in theSection 9.4.2

�nal image rendered with MLT.

9.4.1 THE METROPOLIS LIGHT TRANSPORT ALGORITHM

Recall from Section 5.4, where we have presented the path integral formulation of light

transport. Based on the path integral formulation, the ux Mj through the pixel �j can
be written as an integral of the form

Mj
def
=

∫
P∞ fj(x)dµ∞(x), (9.111)

where the path spaceP∞ is the integration domain, the measurement contribution functionP∞ (461)

fj corresponds to the integrand, and µ∞ is the path measure de�ned on the path spacefj (463)

P∞.µ∞ (461)

In Section 9.3 we have estimated this integral by a secondary Monte Carlo estimator

associated with the basic bidirectional path tracing algorithm of the form

F
Mj,bBDPT

N =
1

N

N∑
i=1

fj(Xi)

p(Xi)
, (9.112)
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where Xi are paths from P∞ sampled according to the PDF p.

ESTIMATING PIXEL VALUES IN MLT. Let us assume, we have a su�cient large set of random

paths X0,X1, . . . ,XN, instead of sampled from a given PDF such as in bidirectional path

tracing, all paths are samples from an ergodic MCMC process. Then, due to the Ergodic Ergodic MCMC Process (546)

Theorem, a secondary Monte Carlo estimator F
Mj,MCMC

N for measuring the ux through Ergodic Theorem (546)

the pixel �j has the form

F
Mj,MCMC

N

def
= E

(
1

N−M

N∑
i=M

fj(Xi)

p(Xi)

)
. (9.113)

If hj represents the �lter function for pixel �j and f represents all other factors of
the measurement contribution function|the BSDFs, geometry terms, and the emitted

radiance from a light source that has been hit|then the measurement equation can be

estimated by:

Mj = E

(
1

N−M

N∑
i=M

hj(Xi) f(Xi)

p(Xi)

)
. (9.114)

Assuming the PDF where we sample from is chosen, as:

p(x)
def
=

f(x)∫
P∞ f(x)dµ∞(x)

, (9.115)

then the representation of the above estimator simpli�es to

F
Mj,MCMC

N = E

(
1

N−M

N∑
i=M

bhj(Xi)

)
, (9.116)

where b
def
=
∫
P∞ f(x)dµ∞(x).

REMARK 9.18 (Start-up Bias) As we known from our discussion of M(RT)2 the samples

Xi will be distributed according to f only in the limit as i → ∞. This is also the

reason why we discard the �rst M samples in the estimator F
Mj,MCMC

N under the

assumption that the random walk has approximately converged to the equilibrium

distribution. Statements about the choice of M can only be made in rare cases. If we

choose M to small, then the samples will be strongly correlated to the starting sample

X0, which will results in the so-called start-up bias, which is not only unsatisfactorily

since it will bias the result, but also due to the unnecessarily high cost for the discarded

samples.

In [223, Veach & Guibas 1997] and [221, Veach 1998] an unbiased approach is

proposed. Here, it is suggested to sample an initial sample X0 from some convenient
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METROPOLIS LIGHT TRANSPORT {
X← INITIAL-PATH()

image ← {0, . . . , 0}

∀ i ∈ {1, 2, . . . , N} do {
Y ← MUTATE(X)

a ← ACCEPT-PROB(X→ Y)

if RANDOM() < a {
X← Y

}
RECORD-SAMPLE(image, X)

}

FIGURE 9.27: PSEUDOCODE FOR THE METROPOLIS LIGHT TRANSPORT ALGORITHM.

PDF p0. If the density p0 is not the desired equilibrium distribution π∗ = 1
b
f, then

the sample X0 is assigned a weight

W0
def
=

f(X0)

p0(X0)
. (9.117)

According to the M(RT)2 algorithm, then new samples X1,X2, . . . ,XN are gen-

erated via an ergodic MCMC process starting from X0. Also these samples are then

weighted with Wi = W0. As shown in [223, Veach & Guibas 1997] and [221, Veach

1998], the resulting secondary Monte Carlo estimator

F
Mj,MCMC

N = E

(
1

N

N∑
i=1

bhj(Xi)

)
(9.118)

is unbiased.

THE STRUCTURE OF THE MLT ALGORITHM. Let us now consider the basic structure of the

Metropolis light transport algorithm summarized in Figure 9.27. The algorithm begins

with the search for a suitable initial path X0. This path should connect a light source

with a pixel. In the basic MLT algorithm, such a path is constructed by bidirectional pathSection 9.3

tracing via connecting an eye and a light path.

REMARK 9.19 Choosing the right initial path is crucial for the further course. In

principle, each eye path through any point on the image plane can be used. So, only

a single random path X0 has to be generated via BDPT. But for di�erent reasons,
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for details see [223, Veach & Guibas 1997] and [221, Veach 1998], Veach recommend

to generate more than a single initial path X0 and to run copies of the algorithm in

parallel for each initial path, where all samples are accumulated into one image.

Then, the algorithm chooses one of the mutation strategies, which modi�es the given

path according to certain rules|we will discuss the mutation strategies in more detail

in the following section. Depending on the contribution it makes to the ideal image

the new mutation is accepted or rejected with a carefully chosen probability. Based on

these mutation strategies, the Metropolis light transport algorithm generates a sequence

of random paths X0,X1, . . . ,XN, where each Xi, i > 0 is obtained by a random mutation

of the path Xi−1. If a path is accepted, then MLT updates the current image which is

stored in memory as a 2-dimensional array of pixel values. For this, the algorithm has to

�nd the point where the path sample Xi intersect the image plane, and it has to update

all those pixels whose �lter support contains the hit point of Xi with the image plane.

REMARK 9.20 Due to [220, Veach & Guibas 1997], the MLT algorithm is unbiased,

handles general geometric and scattering model and uses little storage. It performs

especially well on problems that are usually considered di�cult, e.g. those involving

bright indirect light, small geometric holes, or glossy surfaces.

9.4.2 MUTATION STRATEGIES

As we have shown in the preceding section, the idea behind the Metropolis light transport

algorithm is quite di�erent from Monte Carlo path tracing and Bidirectional path trac- Section 9.1

ing. Instead to sample from a PDF and to evaluate a function at the generated samples, Section 9.3

MLT generates samples proportional to the unknown function, which, in case of the light PDF (176)

transport equation, corresponds to the unknown radiance distribution in the scene. So the

algorithm explores, if an energetic, hard to �nd, path is found, the neighborhood of this

path, where probably more good paths can be found. Obviously, this strategy is a clever

idea, since MLT concentrates work in the bright regions of a scene. Here, MLT counts

on a series of so-called mutation strategies, resulting in a change of the original path by

slight shifting single vertices or edges, respectively, by adding to or deleting edges from

the original path. There are many illumination situations in a scene where such a local

exploration of the path space can lead to faster convergence as compared to the other ray

based rendering methods.

REQUIREMENTS TO MUTATION STRATEGIES. As the Metropolis light transport algorithm

is based on the M(RT)2 algorithm, consecutive paths generated via MLT are correlated, Section 6.5.3.2

which, compared with a Monte Carlo sampling strategy, can lead to higher variance. To

minimize the error in the �nal image, in [220, Veach 1997] some properties are required to

a good mutation strategy:
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� High Acceptance Probability: Obviously, small acceptance probability leads to a

long series of mutations which are rejected. This then means that the current image

is updated with the same path for a long time, which appears as noise.

� Large Changes to a Path: Even if the acceptance probability is high, mutations

with small changes only implies a bad cover of the image plane.

� Ergodicity: Mutations should not be limited in its average too much. So, the whole

path space can be explored independent on the initial path, and paths are prevented

to stuck in some subregions of the path space.

� Changes to the Image Location: To guarantee a good cover of the image plane, a

mutation strategy should be applied to the �rst edge of an eye path.

� Strati�cation: The contributions of all paths to shading a pixel should be the same

for all pixels.

� Low Cost: Mutations should involve as little as possible computational e�ort and

usage of resources.

In the following, we will describe three di�erent mutation strategies that are imple-

mented in Eric Veach's MLT algorithm: bidirectional mutations, perturbations, and lens

subpath mutations.

BIDIRECTIONAL MUTATIONS. The heart of the MLT algorithm are bidirectional mu-

tations. Let us consider a path Xj = Xj0Xj1 . . .Xjk generated via the Metropolis light

transport algorithm. The idea behind a bidirectional mutation is to choose a subpath

XjlXjl+1 . . .Xjm, 0 < l < m < k with probability

pd[l,m] = p1[l,m] · p2[l,m], (9.119)

where p1[l,m] depends only on the number of the edges of the subpath and the purpose

of p2[l,m] is to avoid mutations with low acceptance. If the algorithm has chosen such

a subpath, it will be deleted from Xj, which leads to two, detached from each other,

subpaths Xj0 . . .Xj1 and Xjm . . .Xjk with one or more vertices.

REMARK 9.21 It should be clear, that we are interested in the deletion of short subpaths,

which are cheap to replace, and whose mutations results from small changes to the

current path.

After deleting the chosen subpath from Xj, the algorithm generates a new subpath.

Since it is desirable that the new subpath is similar to the deleted subpath, which increases

the acceptance probability, MLT choses the new subpath length with high probability pa,1
similar to the length of the deleted subpath, where the number of vertices by which the light

and the eye path of the new subpath must be extended are determined via a probability
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distribution pa,2. Even in this step it should be ensured, that the changes with respect to

deleted subpath are not so large, which leads to high acceptance probability of a mutation.

Afterwards, the light and the eye path of the original path are extended by the number

of vertices determined in the above step. This requires the generation of a ray via sampling

the BSDF and casting the ray into the scene to �nd the �rst surface intersected. If any

of the remaining subpaths was empty, then MLT initially must sample a point on a light

source, respectively, the lens of the involved camera. If the endnotes of the new eye and

light path are visible, the two subpaths are joined together, resulting in a new mutation

Xj+1.

The acceptance probability of Xj+1

a(Xj → Xj+1)
(6.357)
= min

(
1,
f(Xj+1)T(Xj+1 → Xj)

f(Xj)T(Xj → Xj+1)

)
(9.120)

= min

(
1,
Q(Xj+1 → Xj)

Q(Xj → Xj+1)

)
(9.121)

where the term Q(Xj → Xj+1) is de�ned as:

Q(Xj → Xj+1)
def
= pd[l,m]

ka∑
j=1

pa[i− 1, ka − i]

Cbdi
, (9.122)

and Cbdi corresponds to the term C∗s,t, that is, the unweighted contribution of the path,

given via the ith connecting edge between the light and the eye path.

PERTURBATIONS. Let us consider a caustic, as visualized in Figure 9.28. Now, caustics are

generated via small subsets of paths from P∞, where paths contribute much more than P∞ (461)

average to the illuminated region. As bidirectional mutations result in relatively large

changes of a path, such a strategy, applied to a caustic path, attempts to mutate the path

outside the high-contribution region. A solution for preventing this problem, are so-called

perturbations, i.e. slight shifts of one or more vertices or small changes of directions of a

path, while leaving most of the path the same. Eric Veach de�ned three types of pertur-

bations: lens perturbations, caustic perturbations, and multi-chain perturbations.

LENS PERTURBATIONS. Let us consider a path Xj generated via the Metropolis light

transport algorithm. Then, MLT deletes a subpath xjm, . . . ,xjk of the form
−−−−−−−→
ES∗D(D|L)

of Xj|where we are mainly interested in perturbing the lens edge xk−1xk|and replaces

this subpath by a new mutation. The new subpath origins from a perturbation of the old

image location by shifting it a random distance R in a uniformly chosen random direction

φ and tracing a ray, starting at the new image location, through the scene, where it holds:

R = r2 exp

(
− ln

(
r2

r1

)
U

)
(9.123)
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FIGURE 9.28: A CAUSTIC GENERATED VIA LIGHT TRANSPORT PATHS FROM A SMALL
SUBSET OF P∞. A small subset of light transport paths of P∞ are responsible for the caustic
seen on a diffuse surface.

with U is uniformly distributed on [0, 1] and r1, r2 are two values. The path mutation

is accepted, if it reaches the same length as the original path, the specular behavior of

the new mutation has not been changed with respect to the old subpath, and if the new

subpath could be connected successfully with the old part of the transport path, see Figure

9.29.

CAUSTIC PERTURBATIONS. Apart from perturbations of the eye path, also perturbations

of the light path are often useful, such as for example when emphasizing the appearance

of caustics. Here, MLT perturbates a light subpath with su�x xjm, . . . ,xjk of path Xj of

type
←−−−−−−−
EDS∗(D|L). MLT generates a new subpath starting at the vertex xjm and the edge

connecting xjm and xjm+1 is perturbed by a random amount (θ,φ),

θ = θ2 exp

(
− ln

(
θ2

θ1

)
U

)
, (9.124)

where U is uniformly distributed on the unit interval [0, 1], see Figure 9.30. Similar to lens

perturbations, the new mutation is accepted, if it reaches the same length as the original

path, the specular behavior of the new mutation has not been changed with respect to the

old subpath, and if the new subpath could be connected successfully with the old part of

the transport path.
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FIGURE 9.29: LENS PERTURBATION. The image location is perturbed by a moving it a
random distance in a random direction on the image plane. Reprinted, by permission, from
[220, Veach 1997].

REMARK 9.22 (Multi-chain Perturbations) Neither lens nor caustic perturbations can

handle caustics seen through a specular surface, that is, paths of characteristic←−−−−−−−−−−−
ES+DS+D(D|L). This can be handled by a combination of a lens and a caustic per-

turbation, also denoted as a multi-chain perturbation. In this case, the starting point

of a transport path at the image plane is slightly shifted for perturbing the subpath

ES+D, and the �rst edge of the subpath DS+D is changed by a caustic perturbation.

Finally, let us describe lens subpath mutations, whose goal is to stratify the samples

over the image plane, and also to reduce the cost of sampling by re-using subpaths. This

strategy should be stratify lens subpaths across the image plane, such that every pixel

receives the same number of proposed lens subpath mutations.

LENS SUBPATHS PERTURBATIONS. Also generating a large number of bidirectional samples

in the initialization phase of the MLT algorithms does not ensures, that very pixel of the

image plane is connected to a light source by a transport path X0, that is, during the

rendering step, many pixel may remain black. In order to reduce the existing noise in the

image, another mutation strategy is needed, that distributes the mutated paths uniformly

over the image plane. The idea is, to apply a speci�c mutation to the �rst node of an eye-

subpath. For that purpose, MLT deletes a subpath xjm, . . . ,xjk of the form
−−−−−−−→
ES∗D(D|L)
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FIGURE 9.30: CAUSTIC PERTURBATION. A new path is generated by perturbing the
direction of the ray from the light source by a small amount, and then tracing the perturbed
ray through the same sequence of specular reflections and refractions as the original path.
Reprinted, by permission, from [220, Veach 1997].

of a given path Xj, and replaces this subpath by a new mutation. This new eye-subpath

starts at the lens and goes through a new, randomly chosen pixel. The path mutation is

accepted, if the required length of the subpath is reached, the specular behavior of the

new mutation corresponds to that of the original path, and if the new eye path can be

connected successfully with the remaining light subpath of Xj.

REMARK 9.23 In practice, it has been shown, that the Metropolis algorithm is a very ef-

�cient algorithm for rendering images of scenes that include hard-to-�nd light trans-

port paths. Due to [220, Veach 1997], the MLT algorithm handles general geometric

and scattering models, uses little storage, and can be orders of magnitude more ef-

�cient than previous unbiased approaches. It performs especially well on problems

that are usually considered di�cult, e.g. those involving bright indirect light, small

geometric holes, or glossy surfaces. Furthermore, it is competitive with previous un-

biased algorithms even for relatively simple scenes. But as our derivation has also

shown, the implementation of MLT is|due to the complex structure of the mutation

strategies|quite complicated.
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9.5 THE PHOTON-MAPPING CONCEPT

With Monte Carlo path tracing, Monte Carlo light tracing, and bidirectional path tracing Section 9.1

we have presented three global illumination algorithms that are capable to simulate all Section 9.2

light e�ects within a scene to be rendered. As implementations of Markov processes, Section 9.3

all three rendering methods are unbiased algorithms, that can handle arbitrary geometry

without meshing and with low memory consumption. Even if MCPT and MCLT have

problems with the generation of eye respectively light paths for simulating the one or

the other light e�ect, with bidirectional path tracing we have a rendering technique that

uni�es the capability to simulate all those e�ects in a more than a satisfactory manner.

But also BDPT has a non-negligible disadvantage: its e�ciency, i.e. the run-time of the

algorithm.

We will now present another global illumination algorithm called Photon Mapping.

The photon-mapping concept was introduced in [96, Jensen & Christensen 1995]. The al-

gorithm is able to compute some global illumination e�ects|such as, simulating caustics,

di�use intereections, as well as subsurface scattering of light in translucent materials, and

some other light e�ects, such as smoke or water vapor in participating media|in scenes

containing many complex objects of general form and material properties in a more e�-

cient manner as done via MCPT, MCLT, and BDPT. Due to [97, Jensen & Christensen

2000] a photon-mapping algorithm is signi�cantly faster, and the result looks better since

the error in the photon-mapping method is of low frequency which is less noticeable than

the high frequency noise of general Monte Carlo methods. But the photon-mapping con-

cept also has a signi�cant disadvantage: It is a biased algorithm. Since it is a consistent Bias (507)

method, we can theoretically achieve a correct solution by increasing the number of pho- Consistent (507)

tons. The prize we pay for this, is memory. As the method is easy to implement, any ray

tracer could be extended by an e�cient implementation of the photon-mapping concept.

The idea behind the photon-mapping concept is to decouple the geometry of the

scene from the illumination of the scene. By storing the illumination in a global data

structure, the so-called photon map, a renderer|in the classic photon-mapping algorithm Photon Map (751)

a distribution ray tracer|can use these additional data to handle arbitrarily complex Distribution Ray Tracing (672)

geometric scene models, where the photon map works like a cache containing special light

paths existing in the scene. Therefore, global illumination algorithms, based on the concept

of photon-mapping, are so-called two-pass algorithms, where

i) in the 1st pass, the photon tracing pass, the photon map data structures are built Section 9.5.1

by tracing photons from the light sources through the scene. The hit points of a

photon|together with additional information|at di�use or slightly glossy surfaces

are stored in the photon map, and Section 9.5.2

ii) in the 2nd pass, the rendering pass, the scene is then rendered with the help of Section 9.5.3

a Monte Carlo ray tracer, where at di�use or slightly glossy locations, instead of
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Monte Carlo sampling, the information that is stored in the photon map is used for

rendering.

Obvioulsy, the image generation via the photon-mapping concept is done from two

direction: From the eye via a Monte Carlo ray tracing strategy and from the light sources

in a way like Monte Carlo light tracing works.

9.5.1 PHOTON TRACING

Photon tracing can be interpreted as an essential pre-processing step of any rendering

algorithm using the photon-mapping concept. It is the process in which virtual photonsPhoton (246)

are emitted from light sources into the scene. These photons are then traced on their

travel over the objects of the scene like in Monte Carlo light tracing. If a photon hits a

di�use or slightly glossy surface on its paths through the scene, the location where the

photon has hit the object is stored in a global data structure together with a few additional

information. Thus, the photon tracing pass can coarsely be partitioned in three steps, the

emission, scattering, and storing of photons.

PHOTON EMISSION. During the photon tracing pass, any virtual light source within a

scene should|similar to a real light source|also emits a large number of photons into the

scene to be rendered. Thus, we endow any photon with a certain amount of power, where

this power depends on the number of emitted photons and the power of the light source.

DEFINITION 9.1 (Power of a Photon) Let ☼ be a set of light sources emitting n photons

into a scene. Then the power of a photon γhν, denoted as Φγhν , is computed byRadiant Power (249)

dividing the power of all light sources Φ☼ by the number n of all emitted photons,

that is,

Φγhν
def
=
Φ☼
n

[W]. (9.125)

REMARK 9.24 To ensure, that all photons emitted into a scene are roughly provided

with the same power, more photons should be emitted from brighter light sources than

from dim lights.

Due to De�nition 9.1, the power of a photon only depends on the power of the light

sources and the number of emitted photons. The type and form of a light source, whether

di�use point light source, directional light, spherical or squared area light source, or a light

source with any arbitrary shape and emission pro�le, plays no role. These properties of

a light source have only inuence on the way like photons are sent into the scene. While

point light sources and spherical light sources emit photons in all directions, directionalSection 4.3

and area light sources are limited in its possibility to emit photons in all directions.
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The process of emitting photons from any of these light sources can then be simulated

via Monte Carlo sampling strategies. Thus for example, we can use uniform sampling overUniform Sampling S2 (193)

the unit sphere, or use a rejection sampling strategy for emitting photons from di�useSection 6.5.2

point light sources. By �rst sampling a point on the unit sphere or a squared area followed

by sampling a direction from the hemisphere above this point, we can sent photons from

spherical or area lights into a scene. The emission of photons from complex lights with

arbitrary shape and emission pro�le can be simulated via densities proportional to the

distribution of the light source. For a more detailed discussion on photon emission, see

[95, Jensen 2001].

PHOTON SCATTERING. After a photon is emitted by a light source, it is traced through

the scene using photon tracing. In principle, photon tracing works in exactly the same

way as pure-Monte Carlo light tracing. Section 9.2

When a photon hits an object, it can either be reected, transmitted, or absorbed. In

the �rst two cases, the power of the photon should be scaled by the reectivity, respectively,

the transmissivity of the involved surfaces. Obviously, this can lead to photons with

great discrepancy in their power. Additionally we store a photon within a global data

structure, if it hits a non-specular, not too glossy surface. For reasons, which will be

clear in the following, photon-mapping algorithms requires that the stored photons have

approximately the same power, that is, the technique of attenuation the power of a photon

due to scattering at surfaces is not a good choice. A more e�cient strategy here is to use

a form of Russian roulette. Russian Roulette (200)

Via Russian roulette, a photon-mapping algorithm decides if a photon, that hits an

object surface, is scattered or if it is absorbed. The absorption of a photon via Russian

roulette then solves the problem of handling photons with di�erent power. Thus, it makes

no di�erent whether we scatter n photons with the half of the power
Φγhν
2

of the incoming

photons at a surface, or whether we scatter the half of photons with the power Φγhν . The

energy in the system remains the same.
For reducing the computational requirements for the photon tracing pass, a photon-

mapping algorithm works as follows: If a photon hits an ideal specular surface, the photon

tracing algorithm decides via a random variable, U, uniformly distributed on [0, 1], whether Uniform Distribution (180)

the photon is reected in the mirrored direction, U < ρdd, or if it should be absorbed, ρdd (338)

U ≥ ρdd. The same holds for an ideal di�use surface, where U is related to ρdh, except

that the outgoing direction of the photon is randomly chosen over the hemisphere above

the hit point and the photon is additionally stored within a global data structure, see

Figure 9.31. ρdh (338)

In the case where a photon hits a surface whose reectivity, respectively, refractivity

is described by a BSDF composed of a di�use and specular component, a photon-mapping BSDF (375)

algorithm combines Russian roulette with an importance sampling strategy as follows:

U ∈ [0, ρdh] ⇒ di�use reection

U ∈ (ρdh, ρdd + ρdh] ⇒ specular reection

U ∈ (ρdd + ρdh, 1] ⇒ absorption,

(9.126)
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FIGURE 9.31: VISUALIZATION OF PHOTON SCATTERING. The point light source emits
3 photons with power 1

3
Φ☼. The yellow colored photons are stored in the photon map with

power 1
3
Φ☼. The absorbed photon is black-colored, it is also stored in the photon map with

power 1
3
Φ☼. The upper surface is highly glossy, that is, the incident photon is not stored

in the photon map. Recursion depth of the generated photon paths is ≤ 3.

where we assume that it holds: ρdd+ρdh ≤ 1. That is, Russian roulette is used to decide

whether the photon is scattered or absorbed, and via importance sampling we choose the

type of reection.

EXAMPLE 9.5 Let us assume n photons of power Φγhν =
Φ☼
n

hit a surface, whose

BSDF fs is composed of a di�use and a specular component, thus: fs = fos + f∨s .

With the di�use reectance ρdh = 0.5 and the specular reectance ρdd = 0.25, which

implies that the surface is also 25% absorbing, then we get: The half of the photons

are di�usely scattered and are also stored in the photon map, 25% of photons are

scattered in the mirrored directions, and the rest of incoming photons is absorbed

and stored but not propagated.

REMARK 9.25 (Why Russian Roulette?) As already mentioned above, the use of Russian

roulette in a photon-mapping algorithm is very important. Thus, on the one hand,

the unbiased property of Russian roulette guarantees that eliminating work still leadsRussian Roulette (200)

to the correct result. On the other hand, we also circumvent the problem of exponen-

tially increasing number of photons in the scene, since the interaction of a photon at

a surface could lead to generating new photons in di�use and specular directions with
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corresponding less power. This leads to less computation time and to less storage

requirements of the algorithm.

REMARK 9.26 The above selection strategy, discussed at the example of monochromatic

photons, can also easily be extended to handle photons consisting of more than a

single color band, and to BSDFs composed of more than two components. For a

more detailed discussion, see [95, Jensen 2001].

REMARK 9.27 In [96, Jensen & Christensen 1995], the photon-mapping concept is

almost exclusively described via the BRDF. Refraction at surfaces is not explicitly

discussed. We use in our discussion of the photon-mapping the concept of the BSDF

instead of the BRDF, consequently we speak often also of scattering meaning reec-

tion or refraction at a surface.

PHOTON STORING. As known from above, photons are only stored in a global data

structure if they hit di�use, or at least non-specular surfaces that are not too glossy.

Since the probability, that a photon arrives from the mirrored direction of the incoming

ray of a Monte Carlo ray tracer during the rendering pass, is zero, it makes no sense to

record the intersection of a photon with a specular surface. So, no useful new information is

available. Specular reection or refraction can best be done by the involved renderer in the

rendering pass, commonly a ray tracer or, as used in the classic algorithm, a distribution Ray Tracing (664)

ray tracer. As we know from previous sections, these renderers are ideal for simulating Distribution Ray Tracing (672)

specular reections or specular refractions. Therefore, we only store the non-specular

photon-surface interaction in a global data structure, the so-called global photon map.

DEFINITION 9.2 (Photon Map) A photon map is a global data structure that stores the

position s ∈ ∂V, the incoming power Φhν, and the incident direction ωi of the

interaction of a photon at a di�use or slightly glossy surface.

Obviously, the photon map informs about light paths of characteristic
←−−−−−−−−−−
DG(DG|SG)

∗L,

where DG stands for di�use/slightly glossy reection and SG means reection at a specu-

lar/highly glossy surface. The photon map can easily be implemented by an array using

the photon-structure shown in Figure 9.32.

REMARK 9.28 Since a photon can bounce back and forth many times between surfaces

before it is absorbed, it can also be stored several times in the photon map. Due

to the fact that a photon is always stored in the photon map with its hit point,

incident direction, and incoming power, we can use a photon to approximate the

reected illumination at several neighboring points on a surface. This is an important

observation, which we will exploit in the following section where we approximate the Section 9.5.2

reected radiance at di�use surfaces via the information stored in the photon map.

Due to e�ciency reasons, apart from the global photon map, that delivers informa-
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struct photon hit {
// position of a photon hit

float x, y, z;

//power packed as 4 chars

char p[4];

//compressed incident direction

char phi, theta

//flag used in kd-tree

short ag;

}

FIGURE 9.32: DATA STRUCTURE USED IN THE PHOTON MAP. For each photon hit with
a diffuse or slightly glossy surface, the x, y and z coordinates of the hit point, as well as
the incoming power and the incident direction of the photon is stored. Additionally a flag is
also stored. It plays only a role in the representation of the photon map by a kd-tree used
in the rendering step. For representing the power of the photon, Ward’s shared-exponent
RGB-format is used [230, Ward 1991]. If memory is not of concern, the power of the photon
can also be stored using three floats for the red, green, and blue color band.

tion about photon paths of characteristic
←−−−−−−−−−−
DG(DG|SG)

∗L, we also use a so-called caustics

photon map, containing photons, that have been gone through at least one specular re-

ection before hitting a di�use or slightly glossy surface. This corresponds to paths of

characteristic
←−−−−−
DGS

+L. Unlike all other photons, caustics photons are absorbed after en-

tered into the caustics photon map. While the photons stored in the caustics photon map

are speci�cally traced in direction to specular objects using maps of geometry as seen from

the light sources|to reect the e�ect of light bundling as precisely as possible|the paths

cached via the global photon map implies that the corresponding photons were completely

randomly scattered through the scene. The construction of these two photon maps is most

easily achieved using two separate photon tracing steps, see Figure 9.33.

REMARK 9.29 Note: As caustic photons are stored in the caustics photon map as well

as in the global photon map, since they last bounce is at a di�use surface, a photon-

mapping algorithm must ensure not to count caustic photons twice. That is, the

algorithm can not simply add the information at di�use surfaces contained in the

photon maps.

Furthermore, a photon can also be reected at di�use surfaces, but this is not

valid for a caustics photon. A caustics photon is absorbed if it hits a di�use surface.
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FIGURE 9.33: BUILDING THE GLOBAL AND THE CAUSTICS PHOTON MAP. Photon paths

of characteristic
←−−−−−−−−
D(D|G|S)∗L are stored in the global photon map and paths of characteristic←−−−

DS+L are stored in the caustics photon map. Thus, the yellow-colored photons and the
black-colored, absorbed photon are stored in the global data structure. Note the difference
in the distribution of photons in the global and the caustics photon map. While photons in
the global photon map are more coarse distributed, the caustics photon map reveals a dense
distribution of caustics photons.
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9.5.2 RADIANCE ESTIMATE AND PREPARING THE PHOTON
MAP FOR RENDERING

As we have seen, the photon map stores the incoming ux of photons, but the �nal render-

ing pass, where the image is generated with the help of a distribution ray tracer, solves the

SLTEV, which describes the light transport expressed in terms of radiance. Obviously, weSLTEV (398)

have here a discrepancy between the radiometric quantities radiance and ux. As we have

seen in Equation (4.127), this discrepancy is particularly noticeable during refraction at in-

terfaces between two media with di�erent refraction indices. While radiance can change at

an interface when refracted between two di�erent media, ux, respectively power, remains

unchanged. How we can combine these two di�erent radiometric quantities to compute

the reected radiance Lo(s,ωo) at a di�use surface?

RADIANCE ESTIMATE. Now, due to the reectance equation, the exitant radiance at pointReflectance Equation (321)

s onto an opaque surface in direction ωo is given by:

Lo(s,ωo) =

∫
H2
i
(s)

fr(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (9.127)

Interpreting the incident radiance in the scattering equation as the area and solidRadiance (250)

angle density of radiant power then we can write:

Lo(s,ωo)
(3.15)
=

∫
H2
i
(s)

fr(s,ωi → ωo)
d2Φi(s,ωi)

dµ2(s)dσ⊥s (ωi)
dσ⊥s (ωi) (9.128)

=

∫
H2
i
(s)

fr(s,ωi → ωo)
d2Φi(s,ωi)

dµ2(s)
(9.129)

(3.45)
=

∫
H2
i
(s)

fr(s,ωi → ωo)dE(s,ωi). (9.130)

That is, the radiance exitant at point s in direction ωo can be computed via the

di�erential irradiance dE(s,ωi) at point s multiplied with the BRDF. An estimator for

Lo(s,ωo) then has the form

F
Lo(s,ωo)
N =

N∑
j=1

fr(s,ω
j
i → ωo)∆E(s,ω

j
i) (9.131)

=

N∑
j=1

fr(s,ω
j
i → ωo)

∆Φγhνj(s,ω
j
i)

∆A
, (9.132)

where ∆A is a small area around point s on a non-specular surface, ωji is the incident

direction of photon γhνj, and
∆Φγhνj(s,ω

j
i
)

∆A
corresponds to the di�erential irradiance at
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FIGURE 9.34: RADIANCE ESTIMATE. The radiance reflected at point s in direction ωo is
approximated via the local photon density around point s. Therefore, we expand a sphere
with center s until it contains enough photons. The radiance Lo(s, ωo) is then estimated
via the number of photons inside the sphere, their incoming power, and the surface BSDF.

point s. To compute the di�erential irradiance at s, the algorithm has to �nd the N

closest photons to point s within the photon map and has to compute the area density

with respect s. Now, the N closest photons to point s are all contained in a sphere around

s with radius r. That is, the algorithm expands a sphere around s until it contains N

photons. By assuming that the underlying surface is locally at around s, we can project

the sphere onto the surface and approximate the photon ux density around s via the area

of projection of the sphere, that is,

∆Φγhνj(s,ω
j
i)

∆A
=
∆Φγhνj(s,ω

j
i)

πr2
, (9.133)

see Figure 9.34. Using this relation in Equation (9.132), then the estimator F
Lo(s,ωo)
N can

be written as:

F
Lo(s,ωo)
N =

1

πr2

N∑
j=1

fr(s,ω
j
i → ωo)∆Φγhνj(s,ω

j
i). (9.134)

REMARK 9.30 If the choice of radius r in the radiance estimate is too small there will

not be enough photons in the considered sphere which leads to much noise in the

resulting image. If r is chosen too large then many photons are contained in the

sphere, which will blur the features in the lighting.

REMARK 9.31 Assuming that ideal di�use, or at least di�use surfaces exist in the

scene, and all photons γhνj have the same power|due to Russian roulette|the



756 CHAPTER 9. MARKOV PROCESS BASED RENDERING ALGORITHMS

above formula can furthermore be simpli�ed, namely as,

F
Lo(s,ωo)
N =

1

πr2
fr(s,ω

j
i → ωo)

N∑
j=1

∆Φγhνj (9.135)

(4.161)
=

1

πr2
ρdh(s)

N∑
j=1

∆Φγhνj (9.136)

Φγhνj=Φγhν
=

ρdh(s)N

πr2
Φγhν . (9.137)

REMARK 9.32 (Sources of Bias) As every density estimation technique results in a sys-

tematic error, the radiance estimate is the source of bias in a photon-mapping algo-

rithm. Due to [77, Havran & al. 2005] the bias in photon maps can be classi�ed as

follows:

i) Proximity bias, due to a number of observations close to the photon hit point.

Proximity bias causes blurring of edges. This e�ect can be corrected by increas-

ing the number of photons, by using better density estimation techniques, or by

�ltering with higher weights for closer photons.

ii) Boundary bias is caused by a visible underestimation of illumination on the

boundary of objects due to the overestimation of the surface area. Boundary

bias results in darkening edges. The darkening on the visible surfaces is well

visible.

iii) Topological bias is the error due to the assumption that the surface in the neigh-

borhood of the estimated illumination is planar. The underestimation of the

area for the curved surface leads to an overestimated result from the density

estimation.

REMARK 9.33 Indeed, the radiance estimate is the source of bias in a photon-mapping

algorithm, but increasing the photon density obviously results in that the radiance

estimate will converge to the correct solution. This makes photon mapping to a

consistent global illumination algorithm. To ensure the convergence of the radiance

estimate to the correct solution it is necessary to use an in�nite number of photons

in the photon map as well as in the radiance estimate. Additionally, the radius

has to converge to zero. These requirements can theoretically be satis�ed by using

N photons in the photon map, but only Nβ with β ∈]0, 1[ photons in the radiance

estimate. As N becomes in�nite, both N and Nβ, will become in�nite, but Nβ will be

in�nitely smaller than N, which ensures that r will converge to zero, [71, Hachisuka
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& al. 2008]. Then it holds:

lim
Nβ→∞ FLo(s,ωo)Nβ

= lim
Nβ→∞

1

πr2

Nβ∑
j=1

fr(s,ω
j
i → ωo)∆Φγhνj(s,ωi) (9.138)

= Lo(s,ωo). (9.139)

Since in the classic photon mapping algorithm all photons are stored in memory,

it is impossible to obtain a solution with arbitrary precision. In [71, Hachisuka & al.

2008] a new radiance estimate is described that ful�lls the requirements of the above

formula without having to store all the photons in memory.

PREPARING THE PHOTON MAP FOR RENDERING. Since the computation of the radiance

estimate at a surface point s has to �nd the N closest photons to s in the photon map,

a photon-mapping algorithm needs information about neighborhood relations between

photons in the photon map. Now, the photon map is originally constructed in the photon

tracing pass as a at array. Since photons are randomly inserted in this array, we have no

chance for e�ciently locating the nearest photons to the considered surface point. So that

the photon-mapping concept becomes the desirable fast global illumination algorithm, we

need a fast data structure for implementing the photon map.

As photons are commonly not uniformly distributed on surfaces, a data structure

like an octree is not suitable. A good data structure that satis�es these requirements is a

kd-tree, where k stands for the dimension of the tree. In principle, a kd-tree is a binary

search tree in k dimension, that is, in the case of the photon map, a 3-dimensional binary

tree. Each node in a kd-tree contains one photon and has pointers to its left and right

subtree. Additionally, we associate with all inner nodes of a kd-tree one axis-orthogonal

plane that contains the photon stored in the node, and that intersects one of the spatial

dimensions into two half spaces. For more detailed discussion about kd-trees, see [42, de

Berg & al. 1997].

The starting point for building a kd-tree for the photon map is the smallest axis-

aligned bounding box that contains all photons within the scene. In a �rst step, we

determine the dimension with the largest extent. The photons are projected along this

dimension, and the median of points in that dimension is chosen as the root node of the

tree representing the photon set. All photons with corresponding smaller coordinates than

the median are landing in the left subtree, and the photons with larger coordinates than

the median build the right subtree. Based on the bounding boxes for the photons on the

left and the right subtree, this procedure is then recursively repeated until all photons are

stored in the kd-tree. Figure 9.35 shows the procedure for a kd-tree, with k = 2. This

balancing strategy has cost O(n logn), and traversing the tree to �nd the closest photons

costs O(logn), where n is the number of photons contained in the photon map. Look also

at Figure 9.36, where we shown the distribution of photons within a 3d-tree representing

the photon map used for rendering the Cornell Box.
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FIGURE 9.35: BALANCING STRATEGY FOR A 2D-TREE. The photon γhv,7 is the median
in x-direction, the dimension of largest expansion, makes it to the root of the associated 2d-
tree. The left subtree then contains all photons with smaller and the right subtree contains
all photons with larger x-coordinate than γhv,7. Now, γhv,6 and γhv,5 are the medians in
y-direction, the dimension of largest expansion. They are made to childrens of γhv,7, etc.

9.5.3 THE RENDERING PASS

Based on the concept of radiance estimate and supported by a simple ray tracer, we canRadiance Estimate (759)

now start to render our �rst images by visualizing the photon map.

VISUALIZING THE PHOTON MAP. During the photon tracing step, the photon map is �lledSection 9.5.1

with information about the illumination of the scene at non-specular surfaces. Since thePhoton Map (751)

photon map is decoupled from the geometry of the model, this additional information

about the illumination of a scene can be used by a classic Whitted-style ray tracer forSection 8.3

rendering. Thus, the ray tracer handles specular or highly glossy object surfaces as usual,

and at di�use respectively slightly glossy surfaces, instead of tracing shadow rays, the

ray tracer uses the photon map to estimate the irradiance at the shading location. That

is, the reected radiance at di�use materials is approximated via the concept of radiance

estimate.

Evidently, it is possible via this method to construct all paths between a sensor and

the existing light sources in the scene|classic Whitted-style ray tracing simulates paths

of characteristic
−−−−−−−→
ES∗G[DG]L and the photon map simulates paths of type

←−−−−−−−−−−
DG(DG|SG)

∗L,

see Figure 9.37. That is, our simple algorithm for visualizing the photon map based on

classic Whitted-style ray tracing combined with the information contained in the photon

maps is a real global illumination algorithm. But due to the use of radiance estimate, the

algorithm is not unbiased, it is consistent, as shown in the previous section. As you can
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FIGURE 9.36: VISUALIZING THE SEARCH FOR A PHOTON IN THE PHOTON MAP
USED FOR RENDERING THE CORNELL BOX. If the photon is not found in the root, the
search continues in the left or right subtree that contain all photons with smaller or larger
x-coordinate than the photon stored within the root. At nodes of depth 1 photons are
distributed to their y-coordinate, and at nodes of depth 2 they are distributed with respect
to the z-coordinate, and so on. So the left-most subtree—thus the left-most node of the
above tree—contains the fraction of n

8
of all photons stored in the photon map, namely the

photons that are located within in the lower-left front box of the Cornell Box.

see from Figure 9.38, the resulting images are covered with spotted, noisy regions. The

reason for that is the number of photons stored in the photon map and the number of

photons used in the radiance estimate. Therefore, direct visualizing the photon map is

only recommended when blurry results in the images can be tolerated, such as in the case

of fast rendering a scene for previewing.

From Figure 9.38 we also conclude, that more accurate images �rstly require very

large photon maps and a large number of photons in the radiance estimate. This then Radiance Estimate (759)

leads to bigger kd-trees, which requires not only more storage but also lead to more nearest- kd-tree (757)

neighbor queries, that is, longer run-times.

THE CLASSIC PHOTON-MAPPING ALGORITHM. The classic photon-mapping algorithm uses

a distribution ray tracer instead of the simple Whitted-style ray tracer used in the direct Section 8.4

visualizing algorithm of the photon map. As any other global illumination algorithm, the

goal of a photon-mapping algorithms is to �nd a solution of the stationary light transport SLTEV (398)

equation in a vacuum, that is, to solve the Fredholm type integral equation

Lo(s,ωo) = Le(s,ωo) +

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi). (9.140)
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FIGURE 9.37: PATH BETWEEN THE EYE AND LIGHT SOURCES SIMULATED BY A
PHOTON-MAPPING ALGORITHM. The graph in the left image visualizes the path charac-
teristic of the global photon map. The image in the center shows the set of eye paths that
can be generated by Whitted-style ray tracing. Combining these two methods leads to a
global illumination algorithms, which can simulate all light effects more or less well.

FIGURE 9.38: VISUALIZING THE PHOTON MAP. Cornell box with chrome and glass
spheres. Left, direct visualization of the photon map using 10, 000 photons where 100
photons are used in the radiance estimate; right, 500, 000 photons are stored in the photon
map and 500 are used for the radiance estimate. You can recognize spotted, noisy regions in
both images, these are stronger in the left than in the image on the right side, where more
photons are involved. Image courtesy of Henrik Wann Jensen, USCD.
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Compared with the other global illumination algorithms, the photon-mapping concept

now uses, to evaluate the above integral e�ciently, apart from the decomposition of the

BSDF into a di�use and a specular component, also a decomposition of the incoming Composition of BSDF (375)

radiance. Thus, the algorithm assumes that Li is composed of three incoming radiance

types, namely,

Li(s,ωi)
def
= L

i,☼(s,ωi) + Li,c(s,ωi) + Li,d(s,ωi), (9.141)

where

� L
i,☼(s,ωi) is the incident radiance arriving at surface point s directly from light

sources

� Li,c(s,ωi) is the incident caustics radiance arriving at s as a result of one or more

specular reections or transmissions, and

� Li,d(s,ωi) is the incident radiance at s resulting from one or more di�use inter-object

reections or transmissions,

for an illustration see Figure 9.39.

Using the decomposition of a BSDF in a di�use and a specular component and re- Composition of BSDF (375)

placing the incoming radiance Li(s,ωi) in Equation (9.140) by Equation (9.141), then the

scattering equation looks like this:

Lr(s,ωo) =

∫
S2(s)

fs(s,ωi → ωo)Li(s,ωi)dσ
⊥
s (ωi) (9.142)

=

∫
S2(s)

fs(s,ωi → ωo)Li,☼(s,ωi)dσ
⊥
s (ωi)︸ ︷︷ ︸

L
o,☼(s,ωo)

+

∫
S2(s)

f∨s (s,ωi → ωo) (Li,c(s,ωi) + Li,d(s,ωi))dσ
⊥
s (ωi)︸ ︷︷ ︸

Lo,∨(s,ωo)

+ (9.143)

∫
S2(s)

fos (s,ωi → ωo)Li,c(s,ωi)dσ
⊥
s (ωi)︸ ︷︷ ︸

Lo,c(s,ωo)

+

∫
S2(s)

fos (s,ωi → ωo)Li,d(s,ωi)dσ
⊥
s (ωi)︸ ︷︷ ︸

Lo,d(s,ωo)

.

Here, we have split the scattering equation in four di�erent scattering terms: A

scattering term for computing direct illumination, a scattering term for computing indirect
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FIGURE 9.39: EVALUATING THE SCATTERING TERM. The decomposition of the incident
radiance Li in the SLTEV into an incoming direct, an incident caustic, and an incoming
indirect diffuse radiance component—L

i,☼(s, ωi), Li,c(s, ωi) and Li,d(s, ωi)—also implies
the computation of the scattering part of the SLTEV depending on these incident radiance
types.

specular illumination, a scattering term, that speci�es the computation of caustics, and a

scattering term that simulates multiple di�use scattering.

The scattering equation in this form is to evaluated via the involved distribution

ray tracer using information stored in the photon map. But as we have seen in Section

8.4, distribution ray tracing su�ers from the exponentially increase in the number of rays.

Thus, the photon-mapping concept uses a few simpli�cations.

First, the algorithm distinguish between an accurate and an approximate computa-

tion. An accurate computation of Equation (9.143) is only used on the �rst bounce of the

primary ray with an object surface, if the surface is seen via a few specular reections, or

if the distance between the ray-surface interaction is closer to the ray origin than a given

threshold. Equation (9.143) is only approximately evaluated if the ray contributes little

to the pixel radiance or if the ray intersecting a surface has been reected di�usely. It

is clear: the goal of the algorithms is to evaluate the accurate computation of Equation

(9.143) as infrequently as possible.
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FIGURE 9.40: EVALUATING THE SCATTERING TERM FOR COMPUTING DIRECT ILLU-
MINATION. The most largest part to the illumination at a surface point comes frequently
from light sources. This is also the reason why the direct illumination at point s has to be
computed exactly via generating shadow rays.

Let us now discuss the evaluation of each of these scattering terms in more detail.

9.5.3.1 EVALUATING THE SCATTERING TERM FOR COMPUTING DIRECT ILLU-
MINATION

The scattering term for direct illumination, thus the scattered radiance due to direct

illumination, is given by:

L
o,☼(s,ωo)

def
=

∫
S2(s)

fs(s,ωi → ωo)Li,☼(s,ωi)dσ
⊥
s (ωi). (9.144)

This term is frequently the most important part of the scattered radiance, it can

simply be computed via distribution ray tracing by generating shadow rays in direction

to the light sources, see Figure 9.40. As the point of interest is seen directly by the eye,

L
o,☼(s,ωo) has to be evaluated accurately. The approximate evaluation of the direct

illumination results from a radiance estimate based on the photon map, where no shadows

rays are generated.

In [95, Jensen 2001], also an approach is discussed that uses so-called shadow photons.

It can lead to considerable speedups in scenes with large area light sources.
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9.5.3.2 EVALUATING THE SCATTERING TERM FOR COMPUTING INDIRECT SPEC-
ULAR AND GLOSSY ILLUMINATION

The scattering term for indirect specular illumination, thus the scattered radiance at

specular surfaces due to indirect illumination, is given by

Lo,∨(s,ωo)
def
=

∫
S2(s)

f∨s (s,ωi → ωo) (Li,c(s,ωi) + Li,d(s,ωi))dσ
⊥
s (ωi), (9.145)

see Figure 9.41.

This integral is evaluated using distribution ray tracing, where from reasons of e�-

ciency an importance sampling strategy with respect to the involved BSDF can be used

for sampling an incoming direction over the unit sphere. Here, the photon map is not

used, since the integral is strongly dominated by the specular component of the BSDF.

FIGURE 9.41: EVALUATING THE SCATTERING TERM FOR COMPUTING INDIRECT SPEC-
ULAR AND GLOSSY ILLUMINATION. If the primary ray hits a point s at a specular or a
gloss surface, then the exitant radiance in direction ωo is evaluated via Monte Carlo ray
tracing. Due to reasons of efficiency an importance sampling strategy with respect to the
involved BSDF can be used for sampling an incoming direction over the unit sphere. Here,
the photon map is not used, since the integral is strongly dominated by the specular and
gloss component of the BSDF.
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9.5.3.3 EVALUATING THE SCATTERING TERM FOR COMPUTING CAUSTICS

The scattering term for computing caustics, thus the scattered radiance at di�use surfaces

due to scattering at one or more specular surfaces, is given by

Lo,c(s,ωo)
def
=

∫
S2(s)

fos (s,ωi → ωo)Li,c(s,ωi)dσ
⊥
s (ωi), (9.146)

see Figure 9.42.

When an accurate value of Lo,c(s,ωo) is required, the integral is evaluated via ra-

diance estimate using the information from the caustics photon map. An approximate

solution is given by radiance estimate of the global photon map.

FIGURE 9.42: EVALUATING THE SCATTERING TERM FOR COMPUTING CAUSTICS.
Caustics that are seen directly by the eye are rendered using the caustics photon map via a
radiance estimate around surface point s that was hit by the primary ray starting at the eye.

9.5.3.4 EVALUATING THE SCATTERING TERM FOR MULTIPLE DIFFUSE SCAT-
TERING

The scattering term for multiple di�use scattering, thus the scattered radiance at di�use

surfaces due to scattering at one or more di�use surfaces, is given by

Lo,d(s,ωo)
def
=

∫
S2(s)

fos (s,ωi → ωo)Li,d(s,ωi)dσ
⊥
s (ωi), (9.147)
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see Figure 9.43.

An accurately value of the integral can be computed via distribution ray tracing,

while an approximate value is given via the radiance estimate from the global photon

map, which contains the direct, indirect, and caustic illumination contributions.

FIGURE 9.43: EVALUATING THE SCATTERING TERM FOR MULTIPLE DIFFUSE SCATTER-
ING. The scattered radiance Lo(s, ωo) at diffuse surfaces due to scattering at one or more
diffuse surfaces, is exactly evaluated via distribution ray tracing where a number of samples
are used to estimate the incident radiance. For an approximate value a radiance estimate
from the global photon map can be used.

With the use of a distribution ray tracer for computing the direct as well as the

indirect illumination, except for caustics, we circumvent the problem of generating a very

large number of photons which are needed for rendering accurate images.

REMARK 9.34 (Final Gathering) An extension of the classic photon mapping algorithm

is �nal gathering. Final gathering is a technique from computer graphics that is often

used in connection with a global illumination algorithm to enhance the quality of an

image, in particular with respect to indirect di�use illumination. Based on a coarse

precomputed solution of the light distribution in a scene, �nal gathering computes a

more accurate per-pixel illumination value via a Monte Carlo ray tracing strategy.Chapter 8

Starting at the hit point s of a primary ray with an object in the scene, the

algorithm distributes a large number, 200 − 5, 000, of so-called �nal gathering rays,

FGRs, over the strati�ed hemisphere around point s into the scene. At the hit pointSection 6.6.4
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FIGURE 9.44: VISUALIZATION OF THE PHOTON MAP. The Cornell box with glass and
chrome spheres. Left, the ray traced image with direct illumination as well as specular
reflection and transmission. In the right image, the photons are visualized in the associated
photon map. You can recognize the caustic under the glass sphere as a high density of
photons induced by the refraction at the sphere. You can also see that photons at the floor
and the ceiling as well as at the walls are shaded with the corresponding colors. Note: the
reflective and refractive objects are painted black, since they correspond to location in the
scene, for which no photons are stored in the photon map. Image courtesy of Henrik Wann
Jensen, USCD.

of an FGR with a di�use or not too glossy object surface the algorithm then com-

putes a radiance estimate via the global photon map and uses this indirect di�use Section 9.5.2

contribution as the incident indirect light, Li,d(s,ωi), for the evaluation of the exi-

tant radiance, Lo,d(s,ωo), at point s in direction ωo, see Figure 9.45. Usually, �nal

gathering is limited to a single bounce only, but multiple bounces of a �nal gathering

ray is possible, with the consequence of longer run-times. Note: The case where

�nal gathering is limited to paths of length 1 corresponds to the classic algorithm,

where the ray tracer distributes a large number of rays at the hit point of the primary

ray into the scene, and approximates the indirect incident radiance via a radiance

estimate of the secondary rays at di�use hit points.

A better sampling strategy for distributing the �nal gathering rays such as a

strati�cation of the upper hemisphere around point s, indicated above, could be to

sample the incident directions ωi according to a distribution that matches the shape

of the integrand of Equation (9.147), that is, to sample according the involved BSDF

or the incident radiance Li,i or to apply a multiple importance sampling strategy. Section 6.6.9

For di�use scenes where the indirect illumination various slowly, �nal gathering

often improves the quality of the global illumination solution. Here, the algorithm

eliminates photon map artifacts such as low frequency noise and dark corners.
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FIGURE 9.45: FINAL GATHERING IN THE PHOTON-MAPPING ALGORITHM. For evalu-
ating the exitant radiance Lo(s, ωo) at point s, the final gathering step traces a large set of
rays to sample the incident radiance at s. Note, the final gathering rays are not recursively
traced if they hit a surface object. Light contribution from hit points of FGRs with specular
surfaces are not accounted for and contributions from diffuse surfaces are computed via
radiance estimates from the photon map.

REMARK 9.35 (Photon Mapping vs Monte Carlo Path Tracing) The main bene�t of the

photon-mapping concept compared with Monte Carlo path tracing is e�ciency. TheSection 9.1

price we pay for that is the extra memory used to store the photons. For most scenes

photon-mapping algorithms are signi�cantly faster, and the results look better since

the error in the methods are of low frequency which is less noticeable than the high

frequency noise of general Monte Carlo methods.

Unlike path tracing, bidirectional path tracing and Metropolis light transport,

photon mapping is not an unbiased rendering algorithm. The photon-mapping al-

gorithm is biased. If we use to few photons, it will create artifacts, no matter how

long the render time is for the second pass. As already mentioned the algorithm can

be made consistent, that is, it can converges to a correct solution to the renderingConsistent 507

equation under the assumption, that in�nitely many photons are used in the photon

map.

REMARK 9.36 (Photon Mapping vs Finite Element Radiosity Methods) Compared with

�nite element radiosity, photon maps have the advantage that no meshing is required.Chapter 10

The radiosity algorithm is faster for simple di�use scenes but as the complexity of the

scene increases, photon-mapping tends to scale better. Additionally, photon-mapping
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methods also handle non-di�use surfaces and caustics.

9.6 INSTANT GLOBAL ILLUMINATION

Recall from algorithms like Monte Carlo path tracing or bidirectional path tracing, they

all su�er from the fact that for producing noise free or at least noise reduced images an

enormous number of primary rays have to be traced through a pixel. Now tracing these

rays on its travel through a scene leads to long rendering times. This is perhaps acceptable

for applications such as high-quality, o�ine computer graphics, and physically-correct ren-

dering but it is surly not acceptable for interactive graphical applications. The traditional

ray tracing algorithms are completely unsuitable for interactive ray tracing, even if the

illumination of the scenes which we will render is not very complex. Therefore, we now

describe a global illumination algorithm that allows to simulate the most important global

illumination e�ects at realtime rates: Instant global illumination.

Instant global illumination, also abbreviated IGI, [228, Wald & al. 2002], [226, Wald

& al. 2003] and [225, Wald 2004], was developed by the graphics group around Philipp

Slusallek at Saarland University in 2002 for the availability of realtime ray tracing for

achieving interactive global illumination.

Based on the idea of virtual point lights from [103, Keller 1997], instant global illu-

mination generates a small number of light-carrying paths at the light sources and traces

these paths on their travel through the scene. At the hit points of such a light path with

an object, IGI places a so-called virtual point light, VPL, that can now illuminate the

entire scene and not just a single pixel. The scene is then rendered with a conventional ray

tracer, where shadow rays in direction to the VPLs are used to approximate the indirect

radiance distribution in the scene, see Figure 9.46. If a VPL is visible from the point to

be shaded, their contribution is accumulated to the indirect illumination component. The

direct lighting needs to be done in the usual manner, by recursively tracing rays to account

perfect specular reection and refraction. So, IGI can simulate all of the most important

kinds of illumination, thus, hard as well as smooth shadows, direct and indirect illumi-

nation, reections, refraction, and|combined with photon mapping|even some simple

forms of caustics, without the noise that is characteristic for MCPT and BDPT, see Figure

9.47.

CREATING THE VIRTUAL POINT LIGHT SOURCES IN INSTANT GLOBAL ILLUMINATION. In the

following discussion, we describe instant global illumination as a variant of bidirectional

path tracing, where in a �rst step, starting at the eye, z0, an eye path

z = z0z1 (9.148)

of length one is created. This is done as in BDPT, where we sample z0 due to the BDPT (717)
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FIGURE 9.46: TRANSPORT PATHS IN INSTANT GLOBAL ILLUMINATION. An eye path
z = z0z1 and an light path y = y0y1y2. At all nodes of the light path, y, instant global
illumination deposits a virtual point light. Via shadow rays to the virtual point lights, IGI
gathers the contributions from the virtual point lights for shading the surface point z1.

FIGURE 9.47: SCENES RENDERED WITH INSTANT GLOBAL ILLUMINATION. An
animated office scene, where a glass ball is rolling over the table, and a book is moved
towards the light source. Note the caustic due to the glass ball, and the indirect illumination
from the book producing smooth shadows on the wall. All affects are even correctly
reflected in the window. All scenes run interactively at several frames per second. Image
courtesy by Ingo Wald.
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probability density function, pµ2 , uniformly on the pixel area �j with respect to the PDF (176)

Lebesgue area measure µ2 and generate a ray according to the PDF, pσ⊥ , with respect to

the projected solid angle measure σ⊥. Due to Equation (9.49), the density for sampling p
σ⊥ (88)

the eye path z = z0z1 is then given by:

p(z) = pµ2(z0)pσ⊥(z0 → z1|z0)G(z0 ↔ z1). (9.149)

Slightly modi�ed to bidirectional path tracing, IGI then generates a small number m

of light paths,

yi = yi0 . . .yin , 1 ≤ i ≤ m, (9.150)

where yi0 is sampled via the PDF pµ2 at one of the light sources in the scene, and the

successor yij of yij−1 is sampled by choosing and casting a ray from the current subpath

to the new sampled vertex with respect to the projected solid angle measure σ⊥. The

density for sampling the (j + 1)th vertex of one of the subpaths yi is then given by the

conditional density that yij is chosen given yij−1 multiplied with the PDF for generating

the associated subpath yi0 . . .yij−1 , that is,

p(yi)
(9.47)
= pµ2(yi0)

n∏
j=1

(
pσ⊥(yij−1 → yji |yij−2 → yij−1)G(yij−1 ↔ yji)

)
. (9.151)

REMARK 9.37 Instead to sample the starting point yi0 uniformly on the area of a light

source, yi0 should be sampled due to the amount of power emitted by a light source

compared with the existing other light sources. This can improve the e�ciency of

IGI.

Except of generating light paths yi, instant global illumination also places at the

surface location of each vertex yij , 1 ≤ j ≤ n, 1 ≤ i ≤ m a so-called virtual point light.

Connecting the ith light path yi with the eye path z via the edge yinz1 then results in a

transport path

xi = yiz (9.152)

= yi0 . . .yin z1z0. (9.153)

Obviously, the PDF from which xi can be sampled from is given by the product of

p(yi) and p(z), that is,

p(xi) = p(yi) · p(z) (9.154)

= pµ2(yi0)

ni∏
j=1

(
pσ⊥(yij−1 → yji |yij−2 → yij−1)G(yij−1 ↔ yji)

)
·

pµ2(z0)pσ⊥(z0 → z1|z0)G(z0 ↔ z1), (9.155)
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see Figure 9.48, and the associated measurement contribution function fj(xi) has the form

fj(xi) = Le(yi0) · G(yi0 ↔ y1i) ·
in−1∏
j=1

(
fs(yij−1 → yij → yij+1) · G(yij ↔ yij+1)

)
·

fs(yin−1 → yin → z1) · G(yin ↔ z1) · fs(z0 → z1 → yin) · (9.156)

G(z0 ↔ z1) ·Wj
e(z0),

see Figure 9.48, and for details check the discussion in Section 9.3.

FIGURE 9.48: THE PROBABILITY DENSITY FUNCTION FOR GENERATING A TRANSPORT
PATH. Shown is a transport x5 = y0y1y2y3z1z0 path of length 5. The probability of
computing the light path y = y0y1y2y3 is given by the product of the probabilities for
sampling the point y0 and the direction ωi, ω

1
i and ω2i . The same holds for the eye path

x = x0x1. The probability for computing the connecting edge y3 ↔ z1 is one.

Using these two relations, then the contribution of a transport path xi to shading
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FIGURE 9.49: COMPUTING THE MEASUREMENT CONTRIBUTION FUNCTION FOR A
TRANSPORT PATH. The transport path x4 = y0y1y2z1z0 is composed of a light path
of length 2 and an eye path of length 1. The measurement contribution function for the
path x4 can be computed via the product of the geometry terms, the BSDFs as well as the
emitted radiance and importance along the transport path.

the pixel �j is given by

fj(xi)

p(xi)
=

 Le(yi0)

pµ2(yi0)
·
in−1∏
j=1

fs(yij−1 → yij → yij+1)

pσ⊥(yij−1 → yji |yij−2 → yij−1)

 ·
fs(yin−1 → yin → z1) · G(yin ↔ z1) · fs(z0 → z1 → yin) · (9.157)

Wj
e(z0)

pµ2(z0)pσ⊥(z0 → z1|z0)
, (9.158)

where we assume: pσ⊥(y0i → y1i |y−1i → y0i) = pσ⊥(y0i → y1i).

Obviously, the �rst row of
fj(xi)
p(xi)

describes the contributions of all subpaths of yi for

shading the pixel �j. So, a good strategy is, if instant global illumination stores with the

VPL, yik , also the contribution of the subpath yik = yi0 . . .yik , that is, the weight of

the path implied by the emitted radiance, the product of the BSDF terms, and the sam-

pling densities. Approximating the BSDF at the last vertex of a light path by a constant

Lambertian term furthermore simpli�es the formula for the contributions from a virtual Lambertian BRDF (349)

point light. Now, only the BSDF at z1 determines whether the light path y and the eye

path x can be connected.

THE RENDERING STEP IN INSTANT GLOBAL ILLUMINATION. After generating the VPLs,

we are now ready to begin rendering. For that, IGI computes the direct illumination
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FIGURE 9.50: EFFECTS OF THE WEAK SINGULARITY IN INSTANT GLOBAL ILLUMI-
NATION. The weak singularity linked with the geometry term—caused if a VPL and the
point being shaded are close together—can lead to bright splotches in the rendered images,
especially noticeable at the corners of a scene. Bounding the geometry term to be no longer
larger then a fixed value or adding a constant to the denominator, eliminates the splotches
but makes the algorithm biased. The image on the right is slightly darker than that on the
left-hand side. Image courtesy by Simon Brown.

contribution to z1 as usual by recursively tracing rays through the scene to account perfect

specular reection and refraction. Afterwards, the indirect lighting component has to be

computed. This is done via shadow rays in direction to the VPLs of the current involved

light path yi.

One problem of instant global illumination is the weak singularity linked with the

geometry term if a virtual point light source, ∗, and the point being shaded are close

together. Due to the denominator 1
‖∗−s‖2

2

, the geometry term can become very largeGeometry Term (129)

leading to bright splotches in the rendered images, especially noticeable at the corners of

a scene, see Figure 9.50. Indeed this is mathematically correct, but without any practical

use. To circumvent this problem a series of di�erent possibilities are available: a very

simple method is to add a small constant to the denominator, another possibility could be

to clamp the geometry term so that it is no larger than a given upper limit G. Indeed, this

eliminates the artifacts caused, but also introduces bias, since it makes the images slightly

darker than they are really.

REMARK 9.38 Since the algorithm uses the same set of light paths for coloring all pixels

of the image plane, images, rendered with instant global illumination look smoother

and lack the typical noisy character of images produced with bidirectional path tracing

or Monte Carlo path tracing. As shadow rays in IGI can be traced signi�cantly faster

than with BDPT or MCPT, high-quality results can be achieved in seconds even on

single processor machines, see [225, Wald 2004].
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REMARK 9.39 In the mean time, the group around Phillip Slussalek, has extended

the method even to handle massively complex scenes with millions of polygons and

thousands of light sources, [226, Wald & al. 2003] and [225, Wald & al. 2004]

9.7 REFERENCE LITERATURE AND FURTHER READ-
ING

Monte Carlo path tracing was introduced in [98, Kajiya 1986] as a stochastic based ren-

dering algorithm for solving the rendering equation. In his seminal paper, James Kajiya,

derived the rendering equation in terms of intensity instead of radiance, see Remark 4.47.

Commonly, Monte Carlo path tracing is presented in connection with the recursive

ray tracing algorithm, namely, as a stochastic variant of ray tracing where at each hit

point of a ray with an object only a single reected or refracted ray is randomly generated.

The most textbooks about global illumination such as, [95, Jensen 2001], [50, Dutr�e & al.

2003], [187, Shirley & Morley 2003] and [51, Dutr�e & al. 2006] as well as [205, Su�ern

2007] follow also this approach when presenting Monte Carlo path tracing. In [158, Pharr

& Humphreys 2004] and [159, Pharr & Humphreys 2010], Monte Carlo path tracing is

discussed based on the path integral formulation of the stationary light transport.

But we have decided to go another way. Our approach for describing Monte Carlo

path tracing is based on the method of successive integral substitution for solving Fredholm

integral equations of the 2nd kind, introduced in Section 6.7. Applied to the light transport

equation within a vacuum, this method led us in Section 8.4 to the mathematical basis

of the distribution ray tracing algorithm, �rstly introduced in [40, Cook 1984]. Instead

to evaluate the kernel|that is, the BRDF, BTDF, or the BSDF|of the light transport

equation via a large number of rays at the hit point of a ray with any surface object within

a scene, we decided to generate only a single ray depending on the properties of the surface

that has been hit. The resulting algorithm corresponds to a discrete-time Markov process

for solving the light transport equation in free space, also called pure-Monte Carlo path

tracing,

A similar idea to our approach for introducing path tracing is used in [68, Glassner

1995]. Glassner generates a random walk for solving the light transport equation within

a vacuum. In [220, Veach 1997], path tracing is then addressed as a special variant of

the bidirectional path tracing algorithm, where transport paths only start at the eye of

the observer. Other good, brief, and easily understandable references for path tracing are

the master thesis [90, Hutchinson 1993] and the PhD thesises [183, Shirley 1991], [191,

Slusallek 1995] and [116, Lafortune 1996]. In particular Lafortune and [50, Dutr�e & al.

2003], [51, Dutr�e & al. 2006] discusses a series of variance reduction techniques with respect

to their applicability to path tracing for solving the light transport equation, resulting in

various optimizations of the original algorithm.
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Monte Carlo light tracing is discussed in more detail in [52, Dutr�e] and [49, Dutr�e

1994]. The algorithm is based on the potential transport equation, from [150, Pattanaik &

Mudur 1993], [151, Pattanaik & Mudur 1995], as the dual algorithm of Monte Carlo path

tracing. For obtaining a solution to the adjoint equation, they proposed a Monte Carlo

quadrature and random-walk techniques that simulates light propagation starting from

the light sources. An extensive comparison of Monte Carlo path tracing and Monte Carlo

light tracing is done in [116, Lafortune 1996], where the most interesting variance reduction

techniques are applied to both algorithms resulting in a a series of Monte Carlo estimators

for both approaches. We present Monte Carlo light tracing as the dual algorithm to

path tracing based on the method of successive integral substitution for solving Fredholm

integral equations of the 2nd kind, introduced in Section 6.7.

Bidirectional path tracing was at �rst introduced in [116, Lafortune 1996] and a year

later independently developed in [221, Veach 1998]. Although both variants of bidirec-

tional path tracing lead to similar results, they are based on two di�erent mathematical

frameworks. While Eric Lafortune's variant of bidirectional path tracing starts from the

formulation of the global reectance distribution function, Eric Veach's variant of bidirec-

tional path tracing is based on the path integral formulation of the light transport problem.

Both algorithms have its origin in [8, Arvo 1993], where the rendering of caustics was de-

scribed by means of a ray tracing algorithm, that takes its starting point in one of the

light sources. We have decided to present bidirectional path tracing as a Markov process

based rendering method applied to the path integral formulation, that is, Section 9.3 is

exclusively built on [221, Veach 1998]. A very short overview of Veach's BDPT algorithms

can also be read in [95, Jensen 2001], [158, Pharr & Humphreys 2004] and [159, Pharr &

Humphreys 2010], the version of Eric Lafortune is shortly discussed in [50, Dutr�e & al.

2003], [51, Dutr�e & al. 2006].

The photon-mapping concept was introduced in [96, Jensen & Christensen 1995],

which, together with [95, Jensen 2001] can be considered as our main resources for our

presentation of photon mapping in Section 9.5. In a series of papers, Jensen discussed the

applicability of photon mapping in many �elds of computer graphics. For an overview of

the photon mapping algorithm see also [50, Dutr�e & al. 2003], [51, Dutr�e & al. 2006], and

[158, Pharr & Humphreys 2004], and [159, Pharr & Humphreys 2010].

Instant global illumination, [226, Wald & al. 2003] and [225, Wald 2004] was devel-

oped by the graphics group around Philipp Slusallek at Saarland University in 2002 for

the availability of realtime ray tracing for achieving interactive global illumination. The

algorithm is based on the idea of the virtual point light from instant radiosity [103, Keller

1997]. In the mean time, the group around Phillip Slussalek, has extended the method

even to handle massively complex scenes with millions of polygons and thousands of light

sources, [226, Wald & al. 2003] and [227, Wald 2004]. Instant global illumination is also

discussed in [159, Pharr & Humphreys 2010].



CHAPTER TEN

FINITE ELEMENT METHODS BASED
RENDERING ALGORITHMS

Apart from Monte Carlo rendering algorithms, discussed in detail in the last two chapters,

there exists another approach for solving the global illumination problem: the radiosity

method. While Monte Carlo algorithms are based on stochastic principles from probability

theory, radiosity methods are based on a �nite element approach. The idea behind �nite Section 2.3.3.2.3

element methods is to approximate a complex, in�nite-dimensional problem by a simpler,

�nite dimensional problem, for which a solution can easily be found. With respect to the

stationary light transport equations, which are all in�nite-dimensional integral equations,

this means, that we transform an integral equation into a system of linear equations over Linear Integral Equation (127)

a �nite dimensional function space, such as the linear normed space (Rn, ‖ · ‖). Then, fast (Rn, ‖ · ‖) (861)

iterative solvers can be used to solve the corresponding linear system. Since the solution

to a linear system of equations only exists in a �nite-dimensional function space, such a Function Space (28)

solution also represents only an approximate to the real solution of the underlying integral

equation.

Interpreted as 3D rendering algorithms, radiosity methods are global illumination al-

gorithms based on the principle of energy conservation. In its classical variants they work

only on purely di�use surfaces, see Figure 10.1. Unlike Monte Carlo rendering algorithms,

which trace an image pixel by pixel, the radiosity approach is view independent. Instead

of evaluating the SLTEV for directions and locations determined by the position of the SLTEV (398)

camera and the pixels of the image plane, a radiosity algorithm solves the SLTEV at sin-

gle locations distributed over the whole surfaces of the environment. As all surfaces in a

scene are assumed to be di�use, the only information we need to create an image is, how

much light is being reradiated by each surface, and which objects are visible through a

pixel of the image plane. This then allows to e�ciently perform interactive walkthroughs

of simulated environments since the distribution of light on each surface is una�ected by

the movement of the camera, where we only have to recompute which objects are visible

through the pixel under consideration. Compared to ray tracing based methods, this then

takes less work when generating new views from a scene model.

777
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FIGURE 10.1: THE INTERIOR OF LE CORBUSIER’S CHAPEL AT RONCHAMP. The
illumination was computed using radiosity, with the sunbeams added by stochastic ray tracing
during rendering. The model was created by Paul Boudreau, Keith Howie, and Eric Haines
at 3D/EYE, Inc. with Hewlett-Packards ARTCore Radiosity and Ray Tracing library. Image
courtesy of Eric Haines.

OVERVIEW OF THIS CHAPTER. The present chapter is only a high-level introduction to

�nite element methods based rendering algorithms, that is, we mainly discuss the classical

radiosity method and its �nite element approach in more detail. Useful variations of

the basic algorithm for reducing the size and complexity of the problem, such as the

progressive re�nement technique or hierarchical methods, will not be discussed. We also

will not talk about meshing strategies. For all these topics we refer the reader to the books

by [36, Cohen & Wallace 1993], [190, Sillion & Puech 1994], and [68, Glassner 1995].

The chapter is structured as follows: First, we present the classical radiosity formula-Section 10.1

tion based on the assumption that light transport is considered under vacuum conditions

in a scene consisting of purely di�use, opaque surfaces and show how the classical discrete

radiosity equation can be solved via methods from numerical analysis. Afterwards, weSection 10.2

discuss in more detail �nite element approaches|such as the collocation and the Galerkin

method|to solve the global illumination problem under more weaker restrictions as those

given above. We also present the structure of a typical radiosity algorithm for imageSection 10.3

synthesis, and �nally, we will shortly talk about the advantages and disadvantages of ray

tracing and �nite element based algorithms.Section 10.4

10.1 THE CLASSICAL RADIOSITY FORMULATION

The radiosity method has its origin in the 1950s as a method for computing radiant heat

exchange between surfaces [189, Siegel & Howell 1992]. In 1984, then it was speci�cally
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adapted to solve the global illumination problem by researchers at Fukuyama and Hi-

roshima Universities [139, Nishita & Nakamae 1985] and at the Program of Computer

Graphics at Cornell University [70, Goral & al. 1984]. To simplify the method, it was

assumed that all scattering within a scene is perfectly di�use. In contrast to Monte Carlo

rendering algorithms, this assumption then implies, that radiosity algorithms only account

for light transport paths of characteristic
←−−→
ED∗L.

The classical radiosity formulation can be considered as a four step procedure: parti- Section 10.1.1

tioning the scene, discretizing the continuous SLTEV, computing the form factor matrix,

and solving the resulting linear system. In the �rst step of the procedure, the scene to be

rendered has to be partioned into a mesh of disjoint surface patches, typically quadrilateral

or triangular elements that all have constant radiosity. In the next step, the continuous

stationary light transport equation is then transformed into a discrete radiosity equation, Section 10.1.2

that is, a system of linear equations, where the coe�cients of the associated matrix, the

so-called form factors, represent the energy transfer between the patches. They can be

computed via the reectivity of the patches and the scene geometry. As, the heart of a Section 10.1.3

radiosity algorithm is the computation of the form factor matrix we discuss the fundamen-

tal concept of the form factor in more detail, derive properties of form factors, and show

how the computation of the form factors can be done more e�ciently. In the last step of

the classical radiosity formulation, then the discrete linear system is solved by an itera-

tive solver resulting in a �nite dimensional approximate to real solution of the continuous Section 10.1.4

SLTEV.

10.1.1 FROM THE SLTEV TO THE CLASSICAL RADIOSITY IN-
TEGRAL EQUATION

Recall, the hemispherical form of the stationary light transport equation in vacuum, ex- SLTEV (399)

pressed in terms of incident and exitant radiance, has the form

Lo(si,ω
i
o) = Le(si,ω

i
o) +

∫
H2+(si)

fr(si,ω
i
i → ωio)Li(si,ω

i
i)dσ

⊥
si
(ωii), (10.1)

where si is a point at an object surface, and ω
i
i and ω

i
o correspond to incident and exitant

directions over the upper hemisphere about point si, see Figure 10.2.

Based on the radiosity assumption that all surfaces in the scene are Lambertian Lambertian Reflector (349)

di�use reectors, the exitant radiance at surface point si does not depend on the outgoing

direction ωio, that is, the exitant radiance Lo is a function of position si only. So, we can

write:

L(si → si−1) = Lo(si,ω
i
o), (10.2)
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FIGURE 10.2: THE HEMISPHERICAL FORM OF THE STATIONARY LIGHT TRANSPORT
EQUATION IN A VACCUM. The radiance exitant at point si in direction ωio is composed
of the emitted radiance at si in direction ωio and the incident radiance at point si from
direction ωii integrated over the hemisphere about si.

where si−1 = γ(si,ω
i
o) is a point on any surface within the scene visible from si. The

same argument obviously holds for the emitted radiance Le, that is, we get:

Le(si → si−1) = Le(si,ω
i
o) (10.3)

for a surface point si.

Now, apart from the outgoing radiance, also the BRDF is independent of directions

in the case of ideal di�use reectors. Due to Lemma 4.4 and Remark 4.18 the BRDF is

then coupeled to the di�use reectance, that is, the directional-hemispherical reectance,ρdh (338)

ρdh, via:

fr ≡ for =
ρdh(si)

π
. (10.4)

Using these results, then the SLTEV can be reformulated in the following mixed

hemispherical-3-point form:

L(si → si−1) = Le(si → si−1) +
ρdh(si)

π

∫
H2+(si)

Li(si,ω
i
i)dσ

⊥
si
(ωii), (10.5)

where the incident radiance Li still depends on the incident direction ωii. Obviously, the

integral in Equation (10.5) corresponds to the incident ux density, which depends on the
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exitances of all other surfaces. To compute the exitance leaving a surface, it is just the

incident ux density that has to be evaluated.

Now, the principle of radiance invariance in a vacuum says that radiance incident at

point si from direction ωii can be expressed in terms of radiance exitant from point sj in Radiance Invariance (253)

direction ωjo = −ωii, that is,

Li(si,ω
i
i) = Lo(sj,ω

j
o) (10.6)

= L(sj → si), (10.7)

where it holds: sj = γ(si,ω
i
i).

Integrating Equation (10.5) over all surfaces patches ∂V of the scene instead over the

hemisphere about point si then requires to transform the integration measure σ⊥ into the σ⊥ (88)

2-dimensional Lebesgue area measure, µ2. As shown in Equation (2.199), this measure

transform leads to an integral equation where no directional variable appear anymore,

namely,

L(si → si−1) = Le(si → si−1) +
ρdh(si)

π

∫
∂V

L(sj → si)G(sj ↔ si)dµ
2(sj). (10.8)

In this equation, the term G corresponds to the geometry term from Equation (2.353),

thus:

G(sj ↔ si)
def
=

∣∣∣cos θjo cos θii∣∣∣
‖sj − si‖22

V(sj ↔ si), (10.9)

with the visibility function V introduced in Box 2.1.

As radiance on purely di�use surfaces does not depend on the outgoing direction, see

Example 3.4, radiosity and radiance can be used interchangeably to characterize the light

leaving such surfaces. So, we can express the outgoing as well as the emitted radiances in

the SLTEV by the identities,

L(si → si−1)
(3.85)
=

B(si)

π
and L(sj → si)

(3.85)
=

B(sj)

π
(10.10)

as well as

Le(si → si−1)
(3.85)
=

Be(si)

π
. (10.11)

This then leads to the following form of the SLTEV, expressed in terms of radiosities,

namely,

B(si)

π
=
Be(si)

π
+
ρdh(si)

π

∫
∂V

B(sj)

π
G(sj ↔ si)dµ

2(sj). (10.12)

Multiplying both sides of this equation by π results in the so-called radiosity integral

equation:
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FIGURE 10.3: THE CLASSICAL RADIOSITY INTEGRAL EQUATION. The radiosity at
point si is composed of the emittance at point si and the radiosity incident at point si that
comes from all points sj at surfaces visible from point si.

DEFINITION 10.1 (The Classical Radiosity Integral Equation) Let B(si) be the radiosity

leaving surface point si, Be(si) the corresponding radiosity emitted from light sources,

and B(sj) the radiosity at point sj. Then, the equation

B(si) = Be(si) + ρdh(si)

∫
∂V

B(sj)G
′(sj ↔ si)dµ

2(sj), (10.13)

which describes the scattering behavior of light at di�use object surfaces in a vacuum,

is called the classical radiosity integral equation, see Figure 10.3.

The term G′(sj ↔ si) is called the radiosity geometry term, de�ned by:G (129)

G′(sj ↔ si)
def
=

G(sj ↔ si)

π
. (10.14)

Obviously, the radiosity integral equation describes an arbitrary scalar function across

the surfaces. It is a composition of the exitance Be that describes the emission of lightExitance (264)

sources and the directional-hemispherical reectance multiplied by the amount of power

received from the environment.

As in the case of the SLTEV, also the radiosity integral equation is an integral equationIntegral Equation (127)

of type which very rarely has a closed-form analytic solution, that is, to �nd a solution of

the radiosity integral equation, we have to use methods from numerical mathematics.



SECTION 10.1. THE CLASSICAL RADIOSITY FORMULATION 783

10.1.2 DISCRETIZING THE CLASSICAL RADIOSITY INTEGRAL
EQUATION

As we will see in Section 10.2, the radiosity method is based on a �nite element approach.

Now, in Section 2.3.3.2.3 we discussed �nite element strategies for solving linear integral Integral Operator Equation (131)

operator equations. The idea underlying these methods was to approximate an in�nite

dimensional function space|which contains the solution of a Fredholm integral equation

of the 2nd kind|by a �nite-dimensional subspace. In this subspace, we then have to

�nd a function that is in some sense a good approximation to the true solution. From

the multitude of �nite element strategies for solving Fredholm type integral equation, we

presented two di�erent methods: Section 2.3.3.2.2

i) the collocation method, as a �nite basis approach, and

ii) the Galerkin method, a so-called projection method.

In Section 10.2 then we will show, that the classical radiosity equation, which we

derive in this section, can be considered as a simpli�cation of the more general Galerkin

formulation to the SLTEV.

Considered as a �nite element technique, the idea behind the classical radiosity

method is to generate in a �rst step a partition of the surfaces of the scene ∂V into a

collection of n disjoint, so-called surface patches Pj, thus,

∂V =

n⋃
j=1

Pj, (10.15)

where each patch Pj has the Lebesgue measure µ2(Pj) = Aj.

Based on this partition, the classical radiosity integral equation can then be written

as the sum of n integrals over the patches Pj, namely,

B(si) = Be(si) + ρdh(si)

∫
⋃
n
j=1 Pj

B(sj)G
′(sj ↔ si)dµ

2(sj) (10.16)

= Be(si) + ρdh(si)

n∑
j=1

∫
Pj

B(sj)G
′(sj ↔ si)dµ

2(sj), (10.17)

where si is a point on a �x patch Pi and sj are di�erent points on all other patches Pj 6= Pi.
With the additional assumption that the radiosity is constant over each patch Pj, that

is, it holds B(sj) = Bj, the classical radiosity integral equation can further be simpli�ed

by moving the radiosity outside the integral, so, we can write:

B(si)
B(sj)=Bj

= Be(si) + ρdh(si)

n∑
j=1

Bj

∫
Pj

G′(sj ↔ si)dµ
2(sj). (10.18)
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With si ∈ Pi, the constant radiosity value Bi can then be computed via an area-

weighted average of the point-radiosities B(si), namely,

Bi
def
=

1

Ai

∫
Pi

B(si)dµ
2(si) (10.19)

(10.18)
=

1

Ai

∫
Pi

Be(si)dµ
2(si) + (10.20)

1

Ai

∫
Pi

ρdh(si)

 n∑
j=1

Bj

∫
Pj

G′(sj ↔ si)dµ
2(sj)

dµ2(si)
=

1

Ai

∫
Pi

Be(si)dµ
2(si) + (10.21)

n∑
j=1

1

Ai
Bj

∫
Pi

ρdh(si)

∫
Pj

G′(sj ↔ si)dµ
2(sj)dµ

2(si).

Even this equation can furthermore simpli�ed by assuming that the reectance is also

constant across each patch Pi. Setting ρdh(si) = ρi for each si ∈ Pi leads to:

1

Ai

∫
Pi

B(si)dµ
2(si) =

1

Ai

∫
Pi

Be(si)dµ
2(si) + (10.22)

ρi

n∑
j=1

1

Ai
Bj

∫
Pi

∫
Pj

G′(sj ↔ si)dµ
2(sj)dµ

2(si).

Using the indentities

Bi =
1

Ai

∫
Pi

B(si)dµ
2(si) (10.23)

as well as

Bei =
1

Ai

∫
Pi

Be(si)dµ
2(si), (10.24)

then the above equation leads to the so-called classical radiosity equation. It is de�ned

as follows:

DEFINITION 10.2 (The Classical Discrete Radiosity Equation) Let Bi be the radiosity leav-

ing surface patch Pi, Bj the corresponding radiosities leaving surface patches Pj, fur-

thermore, let Bei the exitance from patch Pi into the scene. Then, the equation

Bi = Bei + ρi

n∑
j=1

FijBj, (10.25)
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FIGURE 10.4: THE CLASSICAL RADIOSITY EQUATION. The radiosity of patch Pi
corresponds to the emittance of the patch and the proportion of power leaving patch Pi that
is received by all other patches visible from Pi.

with

Fij
def
=

1

Ai

∫
Pi

∫
Pj

G′(sj ↔ si)dµ
2(sj)dµ

2(si) (10.26)

is called the classical discrete radiosity equation with the classical form factors Fij be-

tween the patches Pi and Pj, see Figure 10.4., where the form factor Fij describes the

fraction of energy leaving patch Pi that reaches patch Pj.

REMARK 10.1 If we try to interprete the classical discrete radiosity equation in a

physical way at this time, we have a problem. Obviously, the �rst term on the right-

hand side of (10.25) is the emitted radiosity of patch Pi. But the second term makes

us problems if we want to give them a physically meaning. Here we have to combine

the reectance of patch Pi with the radiosity from patch patch Pj and the fraction of

light which leaves patch Pi and arrives at patch Pj. Obviously, the classical discrete

radiosity equation given in the above form can physically not really be interpreted.

REMARK 10.2 As they are de�ned as the value of a double integral over the radiosity

geometry term G′ the form factors Fij are only depending on the geometry between G′ (782)

the patches Pi and Pj. That is, only the shape, distance, and orientation as well

as the visibility of the involved surface patches are relevant for computing the form

factors, the energy owing between the patches does not play any role.
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Now, Equation (10.25) is only valid for patch Pi. To �nd an approximate solution to

the stationary light transport problem under the assumption made in the above discussion,

we also have to compute the radiosities of the other n − 1 patches. Thus, the stationary

light transport problem, expressed in terms of radiosities, corresponds to a linear system

of n radiosity equations that couples Bi to Bj, one for each patch Pi, 1 ≤ i ≤ n. The

unknowns of this system of equations, which is given by:

Bi = Bei + ρi

n∑
j=1

FijBj, 1 ≤ i ≤ n, (10.27)

are the n patch-radiosities B1, . . . , Bn of the partition
⋃n
j=1 Pj.

The above linear system of equations can also be expressed in form of a linear operatorLinear Operator Equation (61)

equation, namely as:

B = Be + (ρF)B, (10.28)

whereB = (B1, . . . , Bn)
T is an unknown n-dimensional radiosity vector,Be = (Be1 , . . . , Ben)

T

are the given exitances, ρ is the n× n diagonal matrix of reectances:

ρ
def
=


ρ1 0 . . . 0

0 ρ2 . . . 0
...

. . .
...

0 0 . . . ρn

 (10.29)

and F is the quadratic n× n matrix of the classical form factors, thus,

F
def
=


F11 F12 . . . F1n
F21 F22 . . . F2n
...

. . .
...

Fn1 Fn2 . . . Fnn

 , (10.30)

which plays the role of a transport operator.

In matrix-vector notation, the classical radiosity system can then be written as:
B1
B2
...

Bn

 =


Be1
Be2
...

Ben

+


ρ1F11 ρ1F12 . . . ρ1F1n
ρ2F21 ρ2F22 . . . ρ2F2n
...

. . .
...

ρnFn1 ρnFn2 . . . ρnFnn

 ·

B1
B2
...

Bn

 . (10.31)

As the operator equation from (10.28) shows, we can reformulate this system of

equations as:

Be = B− (ρF)B (10.32)

= (I− ρF)︸ ︷︷ ︸
M

B (10.33)

= MB, (10.34)
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where M is denoted as the classical radiosity matrix given by

M
def
=


1− ρ1F11 −ρ1F12 . . . −ρ1F1n
−ρ2F21 1− ρ2F22 . . . −ρ2F2n

...
. . .

...

−ρnFn1 −ρnFn2 . . . 1− ρnFnn

 . (10.35)

In matrix-vector notation, the classical radiosity equation can then be written in the

form: 
1− ρ1F11 −ρ1F12 . . . −ρ1F1n
−ρ2F21 1− ρ2F22 . . . −ρ2F2n

...
. . .

...

−ρnFn1 −ρnFn2 . . . 1− ρnFnn

 ·

B1
B2
...

Bn

 =


Be1
Be2
...

Ben

 . (10.36)

EXAMPLE 10.1 (Space Considerations for the Classical Radiosity Method) From computer

science it is known that the e�ciency of an algorithm with respect to its run time and

space behavior is measured as a function of the size of the input to the problem. At

this location, let us shortly talk about the space complexity of a radiosity algorithm.

The run time behavior of a radiosity algorithm will then be discussed later, when we

present techniques for solving the radiosity system of equations.

Let us consider a reasonable complex scene consisting of 105 surface patches.

The construction of the radiosity matrix M via a classic radiosity algorithm then re-

quires the computation of 1010 form factors, namely, the coe�cients of M. Allowing

4 bytes per oating-point number for each form factor means that we need 40 GB of

RAM. Obviously, this is not well scalable, but as we will see, there are methods that

work without computing all these form factors.

10.1.3 THE CLASSICAL FORM FACTORS

Let us now discuss the concept of the classical form factor a little bit more closely. Since it is

the most time-consuming part of any radiosity algorithm, we are interested in techniques

that makes it possible to compute the form factors in a simple and e�cient way. For

that purpose, let us �rst derive some properties of the form factors that are useful for

constructing the classical radiosity matrix M. M (787)

The form factor matrix F represents the most important component of the radiosity F (786)

matrix M. Their coe�cients, thus the entries Fij, are central to the radiosity method and M (787)

to understanding the propagation of light within a scene. De�ned via the four-dimensional
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FIGURE 10.5: THE GEOMETRY FOR DEFINING THE CONCEPT OF THE FORM FACTOR.
The form factor describes the fraction of energy which leaves element Pi and arrives at
element Pj. It is a dimensionless quantity, that depends only on the scene geometry.

integral

Fij
def
=

1

Ai

∫
Pi

(∫
Pj

G′(sj ↔ si)dµ
2(sj)

)
dµ2(si) (10.37)

=
1

Ai

∫
Pi

∫
Pj

∣∣∣cos θjo cos θii∣∣∣
π ‖sj − si‖22

V(sj ↔ si)dµ
2(sj)

dµ2(si), (10.38)

see Figure 10.5, where si and sj are points on the surface patches Pi respectively Pj,

form factors are dimensionless constants, which, due to its de�nition, have a very simple

physical interpretation: Fij represents the fraction of energy leaving surface patch Pi
that arrives directly at patch Pj. Here, we have assumed that the set of surfaces ∂V in

the environment was covered with a collection of patches
⋃n
i=1 Pi.

EXAMPLE 10.2 (Three Di�erent Types of Form Factors) In Section 10.1.3.2 we will show,

that the form factor from Equation (10.38) can only be solved analytically for the

simplest geometries, such as opposing and perpendicular rectangles, circles or poly-

gons. A signi�cant simpli�cations for calculating Fij results from the fact if one of

the patches Pi or Pj is small compared with the distance between Pi and Pj. Un-

der these conditions, the cosines occurring in the form factor integral as well as

the distance ‖sj − si‖22 are nearly constant. As the integration over the di�erential

patch dPi reduces to a multiplication with the Lebesgue area measure of dPi then the
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FIGURE 10.6: THE GEOMETRY FOR DEFINING THE DIFFERENTIAL-TO-FINITE ELEMENT
FORM FACTOR.

di�erential-to-�nite element form factor FdPiPj can be written as:

FdPiPj
(2.207)
=

∫
Pj

∣∣∣cos θjo cos θii∣∣∣
π ‖sj − si‖22

V(sj ↔ si)dµ
2(sj), (10.39)

=

∫
Pj

G′(sj ↔ si)dµ
2(sj) (10.40)

see Figure 10.6.

Similar to this derivation, we can also compute the form factor between two

di�erential patches dPi and dPj. For the di�erential-to-di�erential area form factor

FdPidPj it must hold:

FdPidPj
(2.200)
= G′(sj ↔ si) (10.41)

=

∣∣∣cos θjo cos θii∣∣∣
π ‖sj − si‖22

V(sj ↔ si)dµ
2(sj). (10.42)

REMARK 10.3 Usually, the form factor between two surface patches Pi and Pj should

be denoted by FPiPj . We use this notation only in the case, where di�erential patches

are involved, thus FdPiPj , FPidPj or FdPidPj , sometimes we also write FsiPj , FPisj or

Fsisj for si ∈ dPi and sj ∈ dPj. In all other cases, we use the simpli�ed notation, Fij,

to represent the portion of total power leaving patch Pi that is received by patch Pj.



790 CHAPTER 10. FINITE ELEMENT METHODS BASED RENDERING ALGORITHMS

As already mentioned above, due to the de�nition of the radiosity geometry term G′,G′ (782)

a form factor is solely a function of geometry of the scene to be rendered. That is, it does

not depend on the reective or emissive properties of the surfaces, but solely on the shape,

distance, and orientation as well as the visibility of the involved surface patches. This fact

then allows, that surface properties can be changed without repeating the expensive form

factor computation.

REMARK 10.4 In the case where a surface patch is a light source, the form factor itself

represents the direct illumination of the other patch per unit area of emissive power

from the source.

10.1.3.1 PROPERTIES OF THE CLASSICAL FORM FACTORS

As we have seen in Example 10.1, not seldom a complex scene consist of more than 105

surface patches, resulting in a radiosity matrix with several billions of coe�cients. Now,

for each of these coe�cients we have to compute the four-dimensional integral from Rela-

tion (10.26). Integrals of this type can only be solved in a closed form for special geometric

arrangements of the elements, that is, we must often use numerical methods for solving

the form factor integral. So, the construction of the radiosity matrix M can be seen as

the most-time consuming part of any radiosity algorithms. If we can improve this process,

mainly with respect to the number of form factors, then we are well on the way to derive

acceptable algorithms for solving the radiosity equation. For that purpose, we will now

work out a series of useful properties of form factors|mainly based on the fact that a

form factor is de�ned as a Lebesgue integral|that can be used to eliminate unnecessary

work when computing the coe�cients of the radiosity matrix M.

NON-NEGATIVITY OF THE CLASSICAL FORM FACTORS. Due to its de�nition, the integrand

G′(sj ↔ si), de�ned via,

G′(sj ↔ si)
(10.26)
=

∣∣∣cos θjo cos θii∣∣∣
π‖sj − si‖22

V(sj ↔ si) (10.43)

is positive or zero. The non-negativity of the integrand then implies that even the Lebesgue

integral over this term, i.e. the associated form factor Fij, is not negative. Furthermore it

holds, only in the case where the patches Pi and Pj are mutually invisible:

Fij = 0, (10.44)

for i 6= j. Obviously, the non-negativity of the classical form factor for the case i = j, thus

Fii = 0, requires that the patch Pi is planar or convex.

RECIPROCITY OF THE CLASSICAL FORM FACTORS. Another useful property of the classical

form factor is the principle of reciprocity. It is also a consequence from the de�nition of

the form factor as a Lebesgue integral.
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LEMMA 10.1 (Reciprocity Relation of the Classical Form Factors) Let Fij be the classical

form factor between the surface patches Pi and Pj for 1 ≤ i, j ≤ n as introduced in

De�nition 10.2, then Fij satisfy the reciprocity relation:

AiFij = AjFji. (10.45)

PROOF 10.1 Applying the Theorem of Fubini-Tonelli to the de�nition of the form

factor leads to:

AiFij
(10.26)
= Ai

1

Ai

∫
Pi

(∫
Pj

G′(sj ↔ si)dµ
2(sj)

)
dµ2(si) (10.46)

Theorem 2.6
= Aj

1

Aj

∫
Pj

(∫
Pi

G′(sj ↔ si)dµ
2(si)

)
dµ2(sj) (10.47)

G′(sj↔si)=G′(si↔sj)
= Aj

1

Aj

∫
Pj

(∫
Pi

G′(si ↔ sj)dµ
2(si)

)
dµ2(sj) (10.48)

(10.26)
= AjFji. (10.49)

The reciprocity relation of the classical form factor has the beautiful property, that

with the existence of the form factor Fij the form factor Fji is also given, namely via the

relation

Fji =
Ai

Aj
Fij. (10.50)

This means, utilizing of the reciprocity property of the classical form factors reduces

the number of evaluating the form factor integral from (10.26) to the halve.

EXAMPLE 10.3 Let us consider such a complex scene as introduced in Example 10.1,

consisting of 105 surface patches. The associated radiosity matrix M then contains

1010 entries. Assuming that all patches are planar, then it holds: Fii = 0 for 1 ≤
i ≤ 105. Using the property from Equation (10.50), namely Fji = Ai

Aj
Fij, then the

number of from factors which must be evaluated reduces to 105(105 − 1)/2. Even if

this is much smaller then the number of form factors in Example 10.1, a radiosity

algorithms has to evaluate almost 5 billions of form factor integrals.

REMARK 10.5 (A More Intuitive Formulation of the Classical Radiosity Equation) Let us

consider once more the classical radiosity equation from Relation (10.25), namely,

Bi = Bei + ρi

n∑
j=1

FijBj. (10.51)

Multiplying the classical radiosity equation by the area of the surface patch Ai



792 CHAPTER 10. FINITE ELEMENT METHODS BASED RENDERING ALGORITHMS

and using the reciprocity relation of the classical form factor leads to:

AiBi︸ ︷︷ ︸
Φi

= AiBei + ρi

n∑
j=1

FijAiBj (10.52)

(10.50)
= AiBei︸ ︷︷ ︸

Φei

+ρi

n∑
j=1

FjiAjBj︸ ︷︷ ︸
Φj︸ ︷︷ ︸

Φi

, (10.53)

where Φi, Φei is the power leaving respectively emitted by the patch Pi.Φ (249)

Obviously, the classical radiosity equation can now be interpreted as follows: The

power leaving patch Pi is the sum of two terms, namely, the power emitted directlyRadiant Power (249)

by patch Pi, and the power reected at Pi after propagated from all patches Pj visible

to Pi.

The second term then tells us to look around at every patch Pj in the environment

to determine the area power density of that patch. The form factor Fij then makes

a statement about, how much of the power density of Pj reaches patch Pi.The area

power densities from all patches that contribute to patch Pi are then accumulated and

scaled by the reectivity ρi of patch Pi. Adding this amount to the emitted power per

unit area on patch Pi then results in the outgoing radiosity of Pi.

ENERGY CONSERVATION OF THE CLASSICAL FORM FACTORS. Due to the principle of energyLaw of Energy Conservation (332)

conservation, the following lemma holds for any surface patch Pi.

LEMMA 10.2 (Energy Conservation of the Classical Form Factors) Let Fij be the classical

form factor between the surface patches Pi and Pj for 1 ≤ i, j ≤ n in a closed scene.

Then the form factor satisfy the principle of energy conservation from 4.2.2.3, that

is, for all i, with 1 ≤ i ≤ n, it holds:

n∑
j=1

Fij = 1. (10.54)

Note: If the scene is not closed, energy can be lost, that is, the sum of the form

factors is less than 1.

PROOF 10.2 Using the partition ∂V =
⋃n
j=1 Pj then it holds for the form factor Fij
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between the patch Pi and all other patches Pj:

n∑
j=1

Fij
(10.26)
=

1

Ai

n∑
j=1

∫
Pi

(∫
Pj

G′(sj ↔ si)dµ
2(sj)

)
dµ2(si) (10.55)

(2.248)
=

1

Ai

∫
Pi

 n∑
j=1

∫
Pj

G′(sj ↔ si)dµ
2(sj)

dµ2(si) (10.56)

(10.15)
=

1

Ai

∫
Pi

(∫
∂V

G′(sj ↔ si)dµ
2(sj)

)
dµ2(si). (10.57)

Changing the integration measure within the inner integral|from Lebesgue area

measure to the projected solid angle measure|the inner integral can be expressed as

an integral over the upper hemisphere H2+ about si, i.e. we can write:

n∑
j=1

Fij =
1

Ai

n∑
j=1

∫
Pi

(∫
Pj

G′(sj ↔ si)dµ
2(sj)

)
dµ2(si) (10.58)

(2.199)
=

1

Ai

∫
Pi

(
1

π

∫
H2+(si)

dσ⊥si(ωi)

)
dµ2(si) (10.59)

(2.300)
=

1

Ai

∫
Pi

π

π
dµ2(si) = 1, (10.60)

where the factor 1
π

in the second line comes from the de�nition of the classical

radiosity geometry factor, G′, for details see Equation (10.14).

ADDITIVITY OF THE CLASSICAL FORM FACTORS. Let us consider three disjoint patches Pi, Pj
and Pk. Then it should be clear that the power emitted from patch Pi after received from

the patches Pj ∪ Pk is equal to the sum of the power emitted from patch Pi after received

by each of the patches, that is, it holds the following lemma:

LEMMA 10.3 (Additivity of the Classical Form Factors) Let
⋃n
j=1 Pj be a disjoint partition

of a closed scene. Then the classical form factors are additive, that is,

Fi(
⋃
n
j=1 j)

=

n∑
j=1

Fij. (10.61)

PROOF 10.3 The additivity of the form factor is a direct consequence of the countably



794 CHAPTER 10. FINITE ELEMENT METHODS BASED RENDERING ALGORITHMS

additivity of the Lebesgue integral from Lemma 2.2, since it holds:

Fi(
⋃
n
j=1 j)

(10.26)
=

1

Ai

∫
Pi

(∫
⋃
n
j=1 Pj

G′(sj ↔ si)dµ
2(sj)

)
dµ2(si) (10.62)

(2.248)
=

1

Ai

∫
Pi

 n∑
j=1

∫
Pj

G′(sj ↔ si)dµ
2(sj)

dµ2(si) (10.63)

(2.248)
=

n∑
j=1

1

Ai

∫
Pi

(∫
Pj

G′(sj ↔ si)dµ
2(sj)

)
dµ2(si) (10.64)

(10.26)
=

n∑
j=1

Fij. (10.65)

The additivity property of the classical form factor is a useful tool to determine the

full form factor by decomposing surface patches into simpler shapes or sub-elements.

EXAMPLE 10.4 Let us show the additivity of the classical form factors at the example

of three disjoint patches Pi, Pj and Pk as visualized in Figure 10.7. Due to the above

lemma, we get:

Fi(j∪k)
(10.26)
=

1

Ai

∫
Pi

(∫
Pj∪Pk

G′(s↔ si)dµ
2(s)

)
dµ2(si) (10.66)

(2.248)
=

1

Ai

∫
Pi

(∫
Pj

G′(sj ↔ si)dµ
2(sj)

)
dµ2(si) + (10.67)

1

Ai

∫
Pi

(∫
Pk

G′(sk ↔ si)dµ
2(sk)

)
dµ2(si) (10.68)

(10.26)
= Fij + Fik. (10.69)

REMARK 10.6 For a partition
⋃n
j=1 Pj of a closed scene, where the patches are not

required to be disjoint, a slightly modi�ed formula exists:

Fi(
⋃
n
j=1 j)

=

n∑
j=1

Fij −
∑

1≤j<k≤n

Fi(j∩k) (10.70)

where Pj ∩ Pk 6= ∅.

REMARK 10.7 Note: The reverse statement of the above lemma is not true, that is,

F(
⋃
n
j=1 j)i

6=
n∑
j=1

Fji. (10.71)
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FIGURE 10.7: ADDITIVITY OF THE CLASSICAL FORM FACTORS. The form factor Fi(j∪k)
between three patches Pi, Pj and Pk can easily be computed by addition of the form factor,
Fij, between Pi and Pj, and the form factor Fik. Note: The additivity of form factors is only
valid in one direction. Due to Remark 10.7 it does not hold: F(j∪k)i = Fji + Fki.

This can easily be seen by:

F(
⋃
n
j=1 j)i

(10.26)
=

1∑n
j=1Aj

∫
⋃
n
j=1 Pj

(∫
Pi

G′(sj ↔ si)dµ
2(si)

)
dµ2(sj) (10.72)

(2.248)
=

1∑n
j=1Aj

n∑
j=1

∫
Pj

(∫
Pi

G′(sj ↔ si)dµ
2(si)

)
dµ2(sj)︸ ︷︷ ︸

AjFji

(10.73)

(10.26)
=

1∑n
j=1Aj

n∑
j=1

AjFji (10.74)

=

n∑
j=1

Aj∑n
j=1Aj

Fji (10.75)

6=
n∑
j=1

Fji (10.76)

for
Aj∑
n
j=1Aj

6= 1. Thus, the form factor from the union of
⋃n
j=1 Pj to element Pi is

the area average of all individual patches Pj.
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10.1.3.2 CHARACTERIZING THE CLASSICAL FORM FACTOR SOLUTIONS

Let us consider the taxonomy of form factor algorithms, visualized in Figure 10.8. As we

can see from the diagram, there exists two main branches in the tree of solving algorithms

for the form factor integral:

� analytic approaches, and

� numeric methods.

Form Factor Solutions

Analytic Numeric

Special

cases

Diff. area

to polygon

Polygon

to polygon

Diff. area to area

Contour

Area to area

Monte Carlo Hierarchical

Area samplingHemispherical sampling

Hemicube Single plane Monte Carlo Contour Monte Carlo Uniform

FIGURE 10.8: A TAXONOMY OF FORM FACTOR ALGORITHMS. There are two main
branches in the tree of algorithms for computing the form factor integral: analytic and
numerical methods. Closed form factor formulae are only available for various differential and
finite geometries. There is no closed form solution, neither for the general form factor integral
nor for the form factor integral associated with complex shapes. In all these cases, numerical
approaches are required to approximate the resulting form factor integral. Reprinted, by
permission, from [36, Cohen & Wallace 1993].
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As the diagram shows, closed form factor formulae are only available for various dif-

ferential and �nite geometries, such as opposing and perpendicular rectangles, circles or

polygons. Even, via form factor algebra, form factors for the union or di�erence of simple Section 10.1.3.2.1

areas can be computed from the form factors to these individual cases. But there is no

closed form solution, neither for the general form factor integral nor for the form factor

integral associated with complex shapes. In all these cases, numerical approaches are re- Section 10.1.3.2.2

quired to approximate the resulting form factor integral.

10.1.3.2.1 CLOSED FORM SOLUTIONS FOR FORM FACTORS

Successfully solving the radiosity equation requires the accurate computation of the ra-

diosity matrix M, whose entries contain the classical form factor integral from Relation M (787)

(10.26). Thus, the �rst idea for solving the form factor integral was to �nd an analytical

solution.

Since the visibility function V in the form factor integral can usually not be captured

analytically, all algorithms, that tries to solve the form factor integral analytically, assume

that the patches within a scene are all fully visible to each other. This means, that the

visibility term in the form factor integral is equal to one, and the form factor integral can

simpli�ed be expressed as:

Fij
def
=

1

Ai

∫
Pi

(∫
Pj

G′(sj ↔ si)dµ
2(sj)

)
dµ2(si) (10.77)

=
1

Ai

∫
Pi

∫
Pj

∣∣∣cos θjo cos θii∣∣∣
π‖sj − si‖22

dµ2(sj)

dµ2(si). (10.78)

DIRECT INTEGRATION. Now, the integral from Equation (10.78) can be integrated directly,

but, due to its complexity, unfortunately only for very simple arrangements, such as par-

allel and perpendicular rectangles, circles, and hollow tubes [88, Howel 1982]. Although

the patches are assumed to be simple and unoccluded, the resulting formulae are anything

but simple.

As we have seen in Section 10.1.3, a signi�cant simpli�cation for the computation of

form factors results if the area of patch Pi is small compared with the distance to patch

Pj. In this case, the luminous surface emitter Pi can be modeled as a point light source at

point si ∈ Pi, and the associated form factor is given via the unocluded di�erential-to-�nite

element form factor FsiPj from Equation (10.39), namely,

FsiPj
def
=

∫
Pj

∣∣∣cos θjo cos θii∣∣∣
π ‖sj − si‖22

dµ2(sj). (10.79)
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FIGURE 10.9: SIMPLE ARRANGEMENTS FOR COMPUTING CLOSED SOLUTIONS FOR
FORM FACTORS. Left, the geometry for computing the form factor between point si and
a disc with radius r perpendicular to the direction joining si and center sj of the disc.
In the center, the geometry for the form factor between a surface point si and a parallel
rectangle perpendicular to the direction joining si to the lower left corner, and on the right,
the geometry for computing the form factor between two perpendicular rectangles having a
common edge. Reprinted, by permission, from [190, Sillion & Puech 1994].

EXAMPLE 10.5 (Simple Examples for Computing Closed Solutions for Form Factors) Let us

consider the simple arrangements shown in Figure 10.9. The classical form factor

between the surface point si and the disc perpendicular to the direction joining si
and the center sj of the disc Pdisc is given by:

FsiPdisc
(10.39)
=

∫
Pdisc

∣∣∣cos θjo cos θii∣∣∣
π ‖sj − si‖22

dµ2(sj) (10.80)

=
r2

r2 + v2
. (10.81)

The form factor between point si and a parallel rectangle perpendicular to the

direction joining si to the lower left corner corresponds to:

FsiPrect
(2.207)
=

∫
Prect

∣∣∣cos θjo cos θii∣∣∣
π ‖sj − si‖22

dµ2(sj). (10.82)

Due to [190, Sillion & Puech 1994] a closed solution for the form factor FsiPrect
can be computed via:

FsiPrect =
1

2π

{
X√
1+ X2

tan−1
(

Y√
1+ Y2

)
+

X√
1+ X2

tan−1
(

Y√
1+ Y2

)}
(10.83)
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with X = u
w
and Y = v

w
.

For the sake of completeness, we give also the closed form solution of the form

factor Fij between two perpendicular rectangles having a common edge, as seen in

the right image of Figure 10.9. Due to [190, Sillion & Puech 1994] it holds:

Fij =
1

πX

{
X tan−1

(
1

X

)
+ X tan−1

(
1

Y

)
−
√
X2 + Y2 tan−1

(
1√

X2 + Y2

)}
+

1

4πX

{
ln

(
(1+ X2)(1+ Y2)

1+ X2 + Y2

)
+ X2 ln

(
X2(1+ X2 + Y2)(1+ X2)

X2 + Y2

)
+ (10.84)

Y2 ln

(
Y2(1+ X2 + Y2)(1+ Y2)

X2 + Y2

)}
with X = u

w
and Y = v

w
.

REMARK 10.8 In [180, Schr�oder & Hanrahan 1993] a closed form solution for general

polygon-to-polygon form factors is derived. The resulting formula consist of a long

series of complex terms and is based on the contour integral. Contour Integral (803)

Apart from direct integration, another technique that can help us to derive analytical

formulas for form factors is form factor algebra.

FORM FACTOR ALGEBRA. Under the notion of the form factor algebra we understand a

system of rules that can be used to compute new form factors for more complex geometries

from already given formulas for simple form factors. Typical operations of a form factor

algebra are the additivity and the reciprocity relation of the classical form factors, as

introduced in Section 10.1.3.1, thus,

Fi(
⋃
n
j=1 j)

=

n∑
j=1

Fij (10.85)

Fi(
⋃
n
j=1 j)

=

n∑
j=1

Fij −
∑

1≤j<k≤n

Fi(j∩k) (10.86)

Fij =
Aj

Ai
Fji, (10.87)

where the �rst formula only holds for a partition of the scene consisting of disjoint surface

patches
⋃n
j=1 Pj.

Due to [190, Sillion & Puech 1994], the form factor algebra is an interesting alter-

native to the brute force computation of form factors, but it is di�cult to apply them

automatically.

REMARK 10.9 Let us �nally summarize:
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i) When it is known that no occluders are located between two interacting surfaces

then the analytic form factor calculation o�er the best accuracy at reasonable

cost for planar surfaces.

ii) For the partial occlusion case, the analytical formula usually cannot be derived.

iii) Computing visibility in the form factor integral is like solving a hidden surface

problem from the point of view of each patch in the scene, usually the most

costly part of the radiosity computation. It can easily but costly be solved by

ray tracing.Section (664)

10.1.3.2.2 NUMERICAL SOLUTIONS FOR FORM FACTORS

As we have seen in the last section closed form analytical solutions to the form factor inte-

gral, are only be available for various simple di�erential and �nite geometries. Form factor

algebra can also be helpful to produce a closed solution by combining already known form

factor formulae to these individual cases. But there is no closed form solution, neither for

the general form factor integral nor for the form factor integral associated with complex

shapes. In all these cases, numerical approaches are required to approximate the resulting

form factor integral.

NUMERICAL INTEGRATION. In Chapter 6 we have shortly talked about numerical integra-Section ??

tion and we have presented with the Newton-Cotes formulas and theGauss rules the two

most popular numerical procedure for integrating functions. Both procedures are suitable

for an approximative evaluation of the form factor integral. As we have seen, the more

samples are selected to evaluate the kernel, the more accurate is the approximation, where

the cost of the approximation are directly related to the number of kernel evaluations.

MONTE CARLO INTEGRATION. Often, the kernel in the light transport equation is discon-

tinuous and of high dimension. So, we have seen in Section ?? that the convergence of

the Gauss rules is of order O(N
−r
s ). This entails, for large s, s > 5, highly complex and

time-consuming procedures, inappropriate for calculating the integral. As an alternative,

we should use Monte Carlo integration in connection with variance reduction techniques

detailed discussed in Chapter 6.

EXAMPLE 10.6 (A Trivial Monte Carlo Strategy for Form Factor Calculation) The form

factor calculation between two patches Pi and Pj requires to solve a double integral

over the surfaces of the involved patches. This can easily be done by sampling pairs

of uniformly distributed random variables (Xi,Xj) with Xk = (Xk1 , Xk2), k = i, j fromUniform Distributed RV (180)

the probability space (Pi × Pj,B(Pi × Pj),PX). The associated PDF, pXi,Xj , is thenProbability Space (163)
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given by:

pXi,Xj(xi,xj) =
1

µ2(Pi)µ2(Pj)
=

1

AiAj
, (10.88)

where we assume that it holds: µ2(Pk) = Ak for k ∈ {i, j}.

A secondary Monte Carlo estimator F
Fij
N then has the form:

F
Fij
N (Xi,Xj) =

1

N

N∑
i=1

1

Ai

G′(Xj ↔ Xi)

pXi,Xj(Xi,Xj)
(10.89)

=
Aj

N

N∑
i=1

G′(Xj ↔ Xi). (10.90)

10.1.3.2.2.1 HEMISPHERE SAMPLING FOR DIFFERENTIAL-TO-FINITE-AREA FORM FACTORS

In De�nition 10.2, we introduced the classical form factor as a double surface integral,

where the integration domain of the inner integral corresponds to the surface patch Pj and

integration with respect to the outer integral works over the considered patch Pi. Using

the measure transformation from Equation (2.196), then the inner integration within the

form factor integral can be replaced by an integration over the hemisphere, resulting in:

Fij
(2.196)
=

1

Ai

∫
Pi

∫
H2+(si)

∣∣cos θii∣∣
π

V(sj ↔ si)dσsi(ωi)dµ
2(si). (10.91)

The form factor Fij can now easily be evaluated by a Monte Carlo scheme using

uniformly distributed random numbers from probability space (Pi ×Hs+,B(Pi ×Hs+),P).
This form of the form factor integral is often used in algorithms to compute the form

factors from patch Pi to all elements at once.

Often the inner integral in Formula (10.91) is only evaluated for a single point on

patch Pi. An interesting example for this is the Nusselt analog, introduced in Example

2.34. Based on Equation (10.91), the form factor FsPj was derived via:

FsPj
def
=

∫
H2+(si)

∣∣cos θii∣∣
π

V(sj ↔ si)dσsi(ωi) (10.92)

(2.207)
=

∫
Pj

∣∣∣cos θii cos θjo∣∣∣
π‖sj − si‖22

V(sj ↔ si)dµ
2(sj). (10.93)

In Example 2.34, we have derived this formula, by projecting the area of the patch Pj,

visible from the center of the upper hemisphere about point si, onto H2+(si). Dividing the
orthogonal projection of the radial projected patch by the area of base of the hemisphere

then results in the Nusselt analog.

Let us now consider two algorithms that are based on the Nusselt analog:
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EXAMPLE 10.7 Let us discretize the upper hemisphere H2+ about point si into a �nite

set of cells, corresponding to small area patches onto H2+(si). We can then compute

so-called ∆-form factors, Fsi∆j , where ∆j denotes the j
th cell on H2+(si). Obviously,

Fsi∆j can be computed by multiplying its area µ2(∆j) by the cos θjo divided by π, thus,

Fsi∆j =
µ2(∆j) cos θ

j
o

π
. (10.94)

By projecting the patch Pj onto H2+(si) and registering, which of the cells are

covered by the projection of Pj, the di�erential-to-�nite-aera form factor FsiPj can

then easily be approximated by the sum of the ∆-form factors of the covered cells ∆j.

In practice, the above algorithm is not really usable, as there are problems with

the partition of the hemisphere into a �nite set of equal sized patches. But, the

Nusselt analog is the base of an other algorithm, which was the �rst algorithm who

has made the radiosity method applicable: the hemicube method.

EXAMPLE 10.8 (The Hemicube Method) The idea behind the hemicube method is, to

project all surfaces of the scene onto the surface area of a hemicube about the center

si of a di�erential patch, where the surface of the hemicube himself is partitioned into

a �nite net of small rectangular or squared patches, the so-called hemicube-pixels. As

in the previous example, we can then compute the di�erential-to-�nite-area ∆-form

factors. The form factor FsPj can then be approximated by summing up all ∆-form

factors of the hemicube-pixels, that was covered by the projection of the patch Pj onto

the surface area of the hemicube.

10.1.3.2.2.2 AREA SAMPLING FOR DIFFERENTIAL-TO-FINITE-AREA AND FINITE-TO-FINITE-

AREA FORM FACTORS

For computing the di�erential-to-�nite-area form factor, in the previous section we have

transformed the inner surface integral of the form factor integral into a hemispherical

integral. But we can also determine the di�erential-to-�nite-area form factor based on the

form factor integral as a double surface integral. Then, the di�erential-to-�nite-area form

factor has the form:

FsiPj =

∫
Pj

∣∣∣cos θii cos θjo∣∣∣
π‖sj − si‖22

(sj ↔ si)dµ
2(sj) (10.95)

Integrals of this type can easily be evaluated via Monte Carlo methods. Monte carlo

methods are also the preferred numerical procedures for computing the �nite-to-�nite-area

form factor, thus, the double surface integral

Fij =
1

Ai

∫
Pi

∫
Pj

∣∣∣cos θii cos θjo∣∣∣
π‖sj − si‖22

(sj ↔ si)dµ
2(sj)dµ

2(si) (10.96)
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from De�nition 10.2. A naive Monte Carlo methods could be to sample points Xi, which

are uniformly distributed on patch Pi, according a probability density and evaluating the

di�erential-to-�nite-area form factor FXiPj as the average sum of the function evaluated

at the chosen samples.

CONTOUR INTEGRAL. Another strategy that can be useful to �nd solutions for the form

factor integral comes from vector analysis and is based on Stoke's theorem. Using Stokes'

Theorem, the classical form factor integral from Equation (10.78) can be reduced to a

so-called contour integral over the boundaries of the two involved patches Pi and Pj. Due

to [200, Sparrow & Cess 1978] the form factor integral from Equation (10.78) can then be

written as

Fij
def
=

1

2πAi

∮
Ci

∮
Cj

ln(r)〈dµ(xi), dµ(xj)〉, (10.97)

where Ci and Cj are the boundaries of the elements Pi and Pj, r = ‖xj−xi‖2 is the distance
between the points xi = (xi1 , xi2 , xi3) ∈ Ci and xj = (xj1 , xj2 , xj3) on each boundary, and

dµ(xi) and dµ(xj) are the di�erential vectors along the contours of the patches. In the case 〈·, ·〉 (859)

of polygon contours, the integral from Relation (10.97) can be evaluated relatively easily

by means of numerical methods, such as quadrature methods, as introduced in Section ??.

EXAMPLE 10.9 (Unoccluded Form Factor between a Point and a Convex Planar Polygon)

In [139, Nishita & Nakame 1985] the contour integral was applied to the geometry

of a polygon resulting in a surprisingly simple analytic solution for the form factor

between a point and a convex planar Polygon with n vertices, namely,

FsPj =
1

2π

n−1∑
k=0

〈N(s), Γk〉. (10.98)

Here, N(s) corresponds to the normal of surface at point s and Γk is a vector

oriented in the direction of the cross product of the two vectors starting at s and

ending in polygon vertices k and k+ 1, k ≥ 0.

REMARK 10.10 Form factor computation via the contour integral can be done for many

polygons and shapes [189, Siegel & Howel 1992], but it is quite impracticable for our

purposes. The contour integral approach is also used in the paper by [70, Goral &

al. 1984] to simulate the light transport only in simple unoccluded environments. It

cannot be extended to handle complex scenes with occluded polygons.

10.1.4 SOLVING THE CLASSICAL DISCRETE RADIOSITY EQUA-
TION

Solving the discrete formulation of the radiosity integral equation means solving a linear

system of equations. In Section 2.3.3.2.4, we have already presented direct and iterative
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methods for solving linear systems, such as the Gaussian elimination, or the iteration

methods by Jacobi and Gauss-Seidel. In this section, we will pick up these techniques,-

discuss their interpretation when applied to the classical discrete radiosity equation,Section 10.1.4.1

but we will also introduce with the Shouthwell relaxation a new method that generatesSection 10.1.4.2

intermediate solutions that let the user monitor the process of rendering an image.

10.1.4.1 DIRECT METHODS

The radiosity matrix given in the form of Equation (10.35) is an n × n matrix without

any useful properties. But making use of the reciprocity property of the form factor from

Equation (10.45), namely,

Fji =
Ai

Aj
Fji, (10.99)

then the radiosity matrix M can be made symmetric. If we also make use of the energy

conservation of the classical form factors, derived in Section 10.1.3.1, then we ensure that

with ρi ≤ 1 the following inequality holds for all diagonal entries of M:

|mii| = |1− ρiFii| (10.100)

(10.54)
=

∣∣∣∣∣∣
n∑
j=1

Fij − ρiFii

∣∣∣∣∣∣ (10.101)

ρi<1
>

∣∣∣∣∣∣
n∑
j=1

ρiFij − ρiFii

∣∣∣∣∣∣ (10.102)

∆-inequality
≥

n∑
j=1
j6=i

|ρiFij| (10.103)

=

n∑
j=1
j6=i

|mij|, (10.104)

where we have used that the reectivity ρi at the surfaces and the property that form

factors are all non-negative real numbers.

Now, this inequality corresponds just to the strong row sum criterion from LemmaStrong Row Sum Criterion (160)

2.62, which implies, that the radiosity matrix M of the classical radiosity equation system

Be = MB (10.105)

= (I− ρF)B (10.106)

is invertible. So, a �rst idea for solving this system is to �nd the analytic solution

M−1Be = B. (10.107)
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Replacing M by I− ρF, then Equation (10.107) can also be expressed as:

B = M−1Be (10.108)

(10.34)
= (I− ρF)−1Be. (10.109)

But, this form of the solution of the classical radiosity system is known to us from

our discussions in Section 2.3.3.1.1. So, the inverse matrix (I − ρF)−1 can be expressed

via the Neumann series, that is, (I− ρF)−1 can be written as an in�nite series of powers Neumann Series (135)

of the matrix ρF, namely as,

(I− ρF)−1 =

∞∑
i=0

(ρF)i (10.110)

= I+ ρF+ (ρF)2 + (ρF)3 + . . . . (10.111)

Applied to the radiosity system this leads to:

B =

∞∑
i=0

(ρF)iBe (10.112)

= Be + ρFBe + (ρF)2Be + (ρF)3Be + . . . , (10.113)

where each term (ρF)iBe represents the i
th bounce of the initially emitted light. Obvi-

ously, Be corresponds to the direct illumination, ρFBe represents the illumination after

one bounce, (ρF)2Be represents the illumination after two bounces, and so on. Under the

assumption that the operator ρF is contracting|in the case where an operator is a matrix,

we also speak of the spectral radius, that is, the absolute value of its largest eigenvalue

has to be smaller than one|a solution to the classical radiosity system can then easily be

determined by adding up the powers of the product of the matrices ρ and F.

As already shown in Example 10.1, systems of equations underlying radiosity meth-

ods are quite large and relatively full which means that the associated matrices require,

depending on the mesh discretization of the the scene, an enormous amount of storage.

Coupled with this, direct solution methods, such as the Gaussian elimination, require

O(n3) operations to solve a linear system of equations or to compute the inverse of the

associated matrix, where n is the number of unknowns in the system. So, these methods

are not suitable for solving a classical radiosity system. Here, other methods, as detailed

discussed in Section 2.3.3.2.4.2, have been proven to be more e�cient solvers.

10.1.4.2 RELAXATION METHODS

Let us now discuss the application of iteration methods, presented in Section 2.3.3.2.4.2,

to the discrete radiosity equation from De�nition 10.2. In particular, we will physically

interprete the Jacobi and the Gauss-Seidel iteration when applied to the radiosity equation
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system. Furthermore, we will present with the Southwell relaxation, a rather less known

iteration method for solving linear systems of equations that has a signi�cant advantage in

contrast to the two other relaxation methods. It can produce an approximate solution of

the radiosity problem without computing the entire radiosity matrix. Since computing the

form factor matrix is the most costly part in a radiosity algorithms, Southwell relaxation

scheme promises a boost in computation time for solving the classical radiosity equation.

SOLVING THE CLASSICAL RADIOSITY EQUATION VIA JACOBI AND GAUSS-SEIDEL ITERATION.
In the previous section, we have shown, that the classical radiosity matrix satis�es the

strong row sum criterion, that is, the classical radiosity problem can be solved via the

classical iteration methods. As we have seen, the Jacobi iteration is the simplest iterativeJacobi Iteration (155)

technique for solving systems of linear equations. Unfortunately, in practice it does not

play any role as a solver for the radiosity system of equations, but it provides us with

instructive insights into the physics behind the radiosity equation.

Assuming all patches within a scene are planar or convex, then the form factors

Fii, 1 ≤ i ≤ n are zero, which implies, that the diagonal elements of ρF are zero. ThisρF (787)

then allows, that the radiosity matrix M can be decomposed into a diagonal matrix, I, aM (787)

strictly lower diagonal matrix, L, and a strictly upper diagonal matrix, U, resulting in:

M = I− L−U, (10.114)

where (lij)1≤i<j≤n = ρiFij, and (uij)1≤j<i≤n = ρiFij.

As the form factor matrixM can be decomposed in such a way, the radiosity equation

system ful�lls the prerequisites that it can be solved via one of the classical iteration meth-

ods. The ith component of the new iterate B(k+1) for the radiosity vector B, computed

via the Jacobi iteration, then looks like this:

B
(k+1)
i

(2.502)
= Bei − ρi

n∑
j=1
j6=i

FijB
(k)
j (10.115)

and computed via the Gauss-Seidel method it holds:

B
(k+1)
i

(2.514)
= Bei − ρi

i−1∑
j=1

FijB
(k)
j − ρi

n∑
j=i+1

FijB
(k)
j (10.116)

with k ≥ 0, 1 ≤ i ≤ n and B
(0)
e = Be.

PHYSICAL INTERPRETATION OF THE JACOBI AND GAUSS-SEIDEL ITERATION. Let us consider

once more the radiosity equation system from Relation (10.105) and its exact solution

formulated as a Neumann series, namely,

B = Be + ρFBe + (ρF)2Be + (ρF)3Be + . . . , (10.117)
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Now, as the Neumann series can be expressed via a recursive sequence, (Bn)n∈N0 ,

from Rn, where the vector valued function Be is the starting value and the matrix product

ρF corresponds to the operator de�ning the sequence, we get:

Bn+1
def
= Be +

n+1∑
i=1

(ρF)iBe (10.118)

= Be + (ρF)

n∑
i=0

(ρF)iBe (10.119)

(10.118)
= Be + (ρF)Bn, n ≥ 0. (10.120)

Obviously, this sequence converges to the exact solution of the classical discrete radios-

ity equation from De�nition 10.2, that is, the propagation of light through an environment

itself can be interpreted as an iterative method. While the Jacobi iteration simulates the

propagation of light bouncing from surface to surface within a scene, the Gauss-Seidel

iteration tries to anticipate the amount of light that each surface will receive from the

next iteration of reections.

In order to explain these statements more exactly, let us express the computations

of B
(k+1)
i resulting from the classical iteration procedures in terms of radiant power. For Radiant Power (249)

the Jacobi iteration we get, after multiplying the whole equation with the Lebesgue area

measure Ai = µ
2(Pi) of patch Pi:

AiB
(k+1)
i︸ ︷︷ ︸

Φ
(k+1)
i

= AiBei − ρi

n∑
j=1

FijAiB
(k)
j (10.121)

(10.45)
= AiBei︸ ︷︷ ︸

Φei

−ρi

n∑
j=1

FjiAjB
(k)
j︸ ︷︷ ︸

Φ
(k)
j

(10.122)

and for the iterate computed via the Gauss-Seidel iteration it holds:

AiB
(k+1)
i︸ ︷︷ ︸

Φ
(k+1)
i

= AiBei︸ ︷︷ ︸
Φei

−ρi

i−1∑
j=1

FjiAjB
(k)
j︸ ︷︷ ︸

Φ
(k)
j

−ρi

n∑
j=i+1

FjiAjB
(k)
j︸ ︷︷ ︸

Φ
(k)
j

. (10.123)

Based on these representations, the classical iteration methods can be interpreted as

follows: In a single step, both procedures select a patch Pi and compute the emitted power

Φi from this patch into the environment, as the sum of the self emitted power of patch Pi
and the reected fraction of power gathered from all other patches Pj in the scene, that

are visible from patch Pi, see Figure 10.10. Obviously, both procedures compute the dot

product of a vector of radiosities with a column of the radiosity matrix multiplied by the
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FIGURE 10.10: A GATHERING STEP OF THE CLASSICAL ITERATION METHODS. The
radiant power reflected from patch Pi into the environment, is the sum of the self emitted
power of patch Pi and the reflected fraction of power gathered from all other patches Pj
within the scene that are visible from patch Pi.

reectance ρi of patch Pi, see Figure 10.10.

THE SOUTHWELL RELAXATION. In the following, let us consider a linear system of equations

of the form

MB = Be, (10.124)

like the discrete radiosity equation from De�nition 10.2, where M is a n× n matrix with

coe�cients from R and Be is a vector from Rn.
As already mentioned above, the idea behind a relaxation method is that at each step

of the algorithm one of the components of the residual vector r(k+1) will be set to zero.

The Gauss-Seidel iteration satis�es this idea, as it relaxes the components of the residual

vector in turn, that is, at �rst the component r
(k+1)
1 , then r

(k+1)
2 , and �nally r

(k+1)
n . The

Southwell relaxation, which we will present in detail below, goes an other way. Instead to

relax each component of the residual vector in turn, the algorithms selects the ith equation

of the system for which r(k+1) has the largest residual, where we de�ne

max
1≤i≤n

r(k+1)
def
= max

1≤i≤n
r(k+1)

Bei − n∑
j=1

mijB
(k)
j

 . (10.125)

Since a large residual component implies that the associated component of the vector

B has to be updated several times successively, it is di�cult to predict when a particular
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FIGURE 10.11: RADIOSITY SOLUTION VIA THE JACOBI ITERATION. The upper left
image shows the radiosity solution after the first Jacobi iteration, so, the radiosity vector
represents the emittance of the light source. The other images show the radiosity solution
after 2, 3 and 4 Jacobi iterations.Image courtesy by Karol Myszkowski.

variable will be changed in Southwell relaxation. Therefore we can not transfer the con-

cepts of a step and an iteration cycle as introduced with the classical iteration method to

the Southwell algorithm. Here, the superscript k indicates the step number instead as the

iteration cycle like in Jacobi and Gauss-Seidel algorithm.

Let us assume, the ith component of the residual has to vanish at step k+ 1, that is,

it must hold:

0 = r
(k+1)
i (10.126)

= Bei −

n∑
j=1

mijx
(k+1)
j . (10.127)

Since it is the ith component of the vector B that has to be modi�ed, it holds
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B
(k+1)
j = B

(k)
j for all j 6= i. The new value of B

(k+1)
i can then be extracted from Equation

(10.127), namely,

B
(k+1)
i =

1

mii

bi − n∑
j=1
j6=i

mijB
(k)
j

 . (10.128)

Due to Equation (2.505), this equation can also be written in terms of the residual

namely as

B
(k+1)
i = B

(k)
i +

r
(k)
i

mii
, (10.129)

that is, this relaxation not only sets r
(k+1)
i to zero, but also leads to a modi�cation of all

other components of the residual r(k+1).This can easily be shown as follows: As B(k+1)

and B(k) are only di�erent in the ith component, we obtain for the residual r(k+1):

r(k+1) = b−MB(k+1) (10.130)

= r(k) −M(B(k+1) −B(k)) (10.131)

= r(k) −M

(
0, . . . , 0,

r
(k)
i

mii
, 0, . . . , 0

)T
, (10.132)

that is , only one column of matrix M is needed to update all residual values.

In summary, we can say: Using the starting vector Be = 0 and based on an iterate

B(k) as well its associated residual r(k), the Southwell relaxation identi�es the index i

of the residual component with the greatest absolute value. The new iterate B
(k+1)
i is

then computed due to Equation (10.128), and all residual components are updated using

Equation (10.132). As during each iteration, only a single column of the matrix M is

needed even only one row of M has to be computed., see Figure 10.12.

Let us now show why the Southwell relaxation scheme converges for all possible initial

vectors.

LEMMA 10.4 Given be the classical discrete radiosity from De�nition 10.2, where M

is an invertible n × n-matrix, with the property of diagonal dominance. Then, theDiagonal Dominance (156)

Southwell relaxation converge for every starting vector Be towards the exact solution

of Equation (10.25).

PROOF 10.4 In order to prove that Southwell relaxation converges for a diagonal dom-

inant matrix, it su�ces to establish

lim
k→∞ ‖r(k)‖ = 0, (10.133)

where ‖ · ‖ is the 1-norm from De�nition A.20.



SECTION 10.1. THE CLASSICAL RADIOSITY FORMULATION 811

SOUTHWELL RELAXATION {

∀ B
(0)
i ∈ B(0), r

(0)
i ∈ r(0) do {

B
(0)
i = 0

r
(0)
i = Bei

}
while (not converged) {

pick i, with max1≤i≤n

∣∣∣r(k)i ∣∣∣
B
(k+1)
i = B

(k)
i +

r
(k)
i

mii

∀ r
(k+1)
j ∈ r(k+1) do {

r
(k+1)
j = r

(k)
j −

mjir
(k)
i

mii

}
}

FIGURE 10.12: SOUTHWELL RELAXATION.

Expressing Equation (10.132) in terms of the jth component of the residual and

using the fact, that for the relaxed component of the residual it must hold r
(k+1)
i = 0,

then it holds for the 1-norm of the residual:

∥∥∥r(k+1)∥∥∥ =

n∑
j=1
i 6=j

∣∣∣∣r(k)i −
mij

mjj
r
(k)
j

∣∣∣∣ (10.134)

Therefore

‖r(k+1)‖ ≤
n∑
j=1
i 6=j

∣∣∣r(k)i ∣∣∣+ n∑
j=1
i 6=j

∣∣∣∣mijmjj
r
(k)
j

∣∣∣∣ (10.135)

≤ ‖r(k)‖−
∣∣∣r(k)j ∣∣∣+ ∣∣∣r(k)j ∣∣∣ n∑

j=1
i 6=j

∣∣∣∣mijmjj

∣∣∣∣ . (10.136)

Now, due to the strong column sum criterion there exists a scalar value t exists Column sum Criterion (160)

such that it holds:

0 < t < 1 and

n∑
i=1
i 6=j

∣∣∣∣mijmjj

∣∣∣∣ < t for 1 ≤ j ≤ n. (10.137)
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Using this result in Equation (10.136) leads to

‖r(k+1)‖ ≤ ‖r(k)‖− (1− t)
∣∣∣r(k)j ∣∣∣ . (10.138)

If we assume that the jth component r
(k)
j is the largest component of the residual

vector, then it holds

‖r(k)‖ ≤ n ·
∣∣∣r(k)j ∣∣∣ . (10.139)

Multiplying both sides by (1− t) and dividing by n yields

(1− t)
∣∣∣r(k)j ∣∣∣ ≥ 1− t

n
‖r(k)‖. (10.140)

We can now substitute Equation (10.140) into Equation (10.136), which leads

to

‖r(k+1)‖ ≤ ‖r(k)‖− (1− t)
∣∣∣r(k)j ∣∣∣ (10.141)

≤ ‖r(k)‖− 1− t

n
‖r(k)‖ (10.142)

≤
(
1−

1− t

n

)
‖r(k)‖. (10.143)

Choosing

T = 1−
1− t

n
, (10.144)

then we get with obviously

‖r(k+1)‖ ≤ T‖r(k)‖ (10.145)

≤ Tk+1‖r(0)‖. (10.146)

Since T < 1 the above inequality implies limk→∞ Tk+1‖r(0)‖ = 0, which is equiv-

alent to limk→∞ ‖r(0)‖ = 0. But this means, that the sequence (B(k))k∈N0 converges

to a solution of the system MB = Be. As the proof is independent from the choice

of the starting vector Be, we conclude that the Southwell relaxation converges for all

starting vectors.

PHYSICAL INTERPRETATION OF THE SOUTHWELL RELAXATION. From our discussion of the

form factor, we know that the coe�cient Fij of the radiosity matrix M represents the

proportion of the total power leaving patch Pi that is received by patch Pj. Furthermore,

we know from our derivation of the Southwell relaxation that the patch emittances can

physically be interpreted as the �rst guess for the patch radiosities. Due to its De�nition,
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FIGURE 10.13: A SHOOTING STEP OF THE SOUTHWELL RELAXATION. ...

the residual can then be considered as a measure for the di�erence between the emittance of

a patch and its reected radiosity. This implies the idea, that the energy of a patch can be

partitioned into an amount of shot, or already distributed and an amount of unshot or

undistributed energy. The shot radiosity is the power per unit area we can see if we look

at a patch, and the unshot radiosity is the radiosity of the surface patch, that this element

has already received by other patches, but that it has not yet forwarded. In a Southwell

relaxation step we then look for the patch with the largest undistributed radiosity and

sends this radiosity into the scene until the solution is not convered. Compared with Gauss-

Seidel item, where the radiosity of a surface patch is determined by gathering radiosities

from other patches, a Southwell relaxation step can be interpreted as a shooting step,

since energy from a patch is shot towards all other patches, see Figure 10.13.

10.2 THE FINITE ELEMENT RADIOSITY APPROACH

Recall, the classical discrete radiosity equation, as an approximate of the radiosity integral Classical Discrete REQ (784)

equation within a vacuum, is based on strict assumptions. Apart from the assumption, Radiosity Integral Equation (782)

that all existing surfaces in the environment are Lamberitan, in particular the radiosity Lambertian (349)

value was assumed to take a constant value across each patch of the scene. Since solutions

to linear Fredholm integral equations of the 2nd kind live in in�nite-dimensional function Fredholm Integral Equation (127)

spaces, a solution of the discrete radiosity system|as an element of an n-dimensional

function space spanned by a set of constant basis functions|corresponds only to a coarse Function Space (28)

solution of the radiosity integral equation over the object surfaces, ∂V, within a scene. ∂V (41)
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Recall furthermore, constant radiosity meant that the continuous radiosity function

in Equation (10.1) was replaced by a linear combination of step functions with constant

values across the patches. Obviously, due to this trivial replacement, many information

about the radiosity across a patch is lost. This means that the error between the exact

solution, de�ned on the whole function space L2(∂V, µ2), and an approximate, only validL2(·, ·) (107)

across n disjoint patches, can be very high. A better approach would be to approximate

the continuous radiosity function via a set of basis functions, {φ1, . . . , φn}, that are closerBasis (857)

to the radiosity distribution across a patch, such as linear, quadratic, or other polynomial

functions. The �nite element approach, as introduced in Section 2.3.3.2.3, does in this

regard useful services.

For the following discussion let L2(∂V, µ2) be the space of all square Lebesgue-L2(·, ·) (107)

integrable functions de�ned over the set of all surfaces ∂V of a given scene. Furthermore,

(∂V,Pm,Nn) be a �nite element, where the domain ∂V is partitioned into a �nite meshFinite Element (150) ⋃m
i=1 Pi of disjoint surface patches, Nn = {s1, . . . , sn} is the set of nodal points locatedMesh (147)

at the boundaries of the �nite mesh
⋃m
i=1 Pi, and Pm = {N1, . . . , Nn} be a �nite set ofNodal Points (147)

piecewise polynomial basis function of degree m that have small supports, in that they

are nonzero only in a small region, for details see the construction of the basis function

Ni in Section 2.3.3.2.3.

The basis functions N1, . . . , Nn then span a subspace Un ≤ L2(∂V, µ2). EquippedSubspace (855)

with the inner product〈·, ·〉 (860)

〈f, g〉 def=
∫
∂V

f(si)g(si)dµ
2(si), (10.147)

we then could measure the quality of an approximate solution, Bn(si), with respect to the

error

ε(si)
def
= ‖B(si) − Bn(si)‖, (10.148)

where the norm ‖ · ‖ arises from the inner product de�ned in Equation (10.147). Here, the‖ · ‖ (860)

concept of the residual, as known from our discussion about the convergence behavior ofResidual (144)

iterative solvers for linear systems is helpful.

Obviously, the radiosity approximate Bn ∈ Un can be written as a linear combination

of the basis functions Nj, that is,

Bn(si) =

n∑
j=1

BjNj(si). (10.149)

We then de�ne the residual function r that should us give information about the

quality of this approximate, by:

r(si)
def
= Bn(si) − Be(si) −

∫
∂V

Bn(sj)G
′(sj → si)dµ

2(sj). (10.150)
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As the emitted radiosity function Be is an element of the function space L2
(
∂V, µ2

)
,L2(·, ·) (107)

the residual function r can not be of �nite dimension. Due to its de�nition, r is generally

not identically zero. Obviously, the reason for that is, that the approximate Bn, as a �nite

dimensional function, does not satisfy the radiosity integral equation, thus,

Bn(si) 6= Be(si) −
∫
∂V

Bn(sj)G
′(sj → si)dµ

2(sj). (10.151)

Only in the case, where Bn = B, the residual is zero. That is, to �nd a good

approximation Bn the coe�cients of Bn should be chosen, that the residual will be small.

This implies that the residual should be minimized,

min
Bn∈Un

∥∥∥∥Be(si) − ∫
∂V

Bn(sj)G
′(sj → si)dµ

2(sj)

∥∥∥∥ (10.152)

or expressed in other words, we search a function Bn in Un that is closest to the exact

solution.

Now, instead to �nd an approximate Bn in Un that makes the residual small, we can

also go in the other direction, namely, projecting the residual from L2(∂V, µ2) into the

subspace Un spanned by the set of basis function N1, . . . ,Nn. This approach then results

in the Galerkin method, introduced in Section 2.3.3.2.2.

A FINITE ELEMENT RADIOSITY APPROACH BASED ON THE GALERKIN METHOD. Recall at

Equation (2.471), the Galerkin approach for solving a linear Fredholm integral operator

equation results in n equations of the type

n∑
j=1

Bj 〈(I−K)Nj(si), Ni(si)〉︸ ︷︷ ︸
mij

= 〈g(si), Ni(si)〉 , 1 ≤ i ≤ n, (10.153)

where I is the identity-operator andK corresponds to the integral operator in the Fredholm Integral Operator (130)

type equation. Now, this equation can also be written in matrix-vector notation as

MB = b, (10.154)

where B = (B1, . . . , Bn)
T is the vector of unknowns of the system, the right-hand side, b =

(〈Be, N1〉, . . . , 〈Be, Nn〉)T , is the n-dimensional vector, whose ith component corresponds

to the inner product of the emitted radiosity Be and the ith basis function Ni thus:

bi = 〈Be(si), Ni(si)〉 =
∫
∂V

Be(si)Ni(si)dµ
2(si), (10.155)
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and the coe�cients
(
mij

)
1≤i,j≤n are given by:

mij = 〈(I−K)Nj(si), Ni(si)〉 (10.156)

= 〈Ni(si), (I−K)Nj(si)〉 (10.157)

= 〈Ni(si), Nj(si)〉− 〈Ni(si), (KNj)(si)〉 (10.158)

= 〈Ni(si), Nj(si)〉−
〈
Ni(si), ρdh(si)

∫
∂V

Nj(sj)G
′(sj ↔ si)dµ

2(sj)

〉
(10.159)

(10.147)
=

∫
∂V

Ni(si), Nj(si)dµ
2(si) −∫

∂V

Ni(si) ρdh(si)

(∫
∂V

Nj(sj)G
′(sj ↔ si)dµ

2(sj)

)
dµ2(si), (10.160)

where we have used the symmetry and the linearity property of the inner product in theInner Product (859)

second and the third step of the derivation.

Obviously, the �nite element radiosity approach, based on the Galerkin method, at-

tempts to �nd an approximate Bn ∈ Un that leads, due to Equation (10.153), to a residual

function r that is in average zero over the patches of the domain ∂V.

A FINITE ELEMENT RADIOSITY APPROACH BASED ON THE COLLOCATION METHOD. Apart

from the Galerkin method, in Section 2.3.3.2.2 we have also presented the collocation

method as an approximative solver for Fredholm integral equations of the 2nd kind. The

associated linear system, adapted to the radiosity integral equation, was given by:

Be(si) =

n∑
j=1

Bj (I−K)Nj(si)︸ ︷︷ ︸
mij

, 1 ≤ j ≤ n, (10.161)

where I is the identity-operator andK corresponds to the integral operator in the radiosityIntegral Operator (130)

equation.

Rewritten in matrix-vector notation, we get

AB = b, (10.162)

where B = (B1, . . . , Bn)
T is the vector of unknowns of the system, b = (Be(s1), . . . , Be(sn))

T

is the n-dimensional vector, whose ith component corresponds to the the emitted radiosity

Be at collocation point si, and the coe�cients
(
mij

)
1≤i,j≤n are given by:

mij = (I−K)Nj(si) (10.163)

= Nj(si) − (KNj)(si) (10.164)

= Nj(si) − ρdh(si)

∫
∂V

Nj(sj)G
′(sj ↔ si)dµ

2(sj). (10.165)

Obviously, the �nite element radiosity approach, based on the collocation method,

attempts to �nd an approximate Bn ∈ Un that leads, due to Equation (10.161), to a
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residual, function r that is in exactly zero only at the nodal points si. Compared with

the Galerkin approach, where the residual function is in average zero over all patches, we

could expect, that the approximate Bn obtained via the collocation approach is not so

closed to the exact solution B like an approximate obtained via the Galerkin approach.

We can say, that the Galerkin method extracts more information from the kernel, since

it approximates the kernel via an integral, where the collocation method evaluates the

kernel only at the collocation points. However, we pay for a better approximate from the

Galerkin method also with more e�ort for the needed calculation.

REMARK 10.11 (The Classical Radiosity Approach) Let us consider once more the �nite

element approach based on the Galerkin method, where the set of basis functions

{N1, . . . , Nn} are box functions, de�ned by:

Nj(s)
def
=

{
1 if si ∈ Pi
0 if si /∈ Pi.

(10.166)

Due to Equation (10.160) the coe�cients
(
aij
)
1≤i,j≤n are given by:

mij =

∫
∂V

Ni(si)Nj(si)dµ
2(si) − (10.167)∫

∂V

Ni(si) ρdh(si)

(∫
∂V

Nj(sj)G
′(sj ↔ si)dµ

2(sj)

)
dµ2(si), (10.168)

that is, ∫
∂V

Ni(si)Nj(si)dµ
2(si) =

{ ∫
Pi
dµ2(si) if i = j

0 otherwise

}
= δijAi, (10.169)

where δij is the Kronecker symbol and Ai denotes the Lebesgue area measure of the

patch Pi.

In a similar way we get for the ith component of the right-hand side of the linear

system, AB = b:

bi =

∫
∂V

Be(si)Ni(si)dµ
2(si) (10.170)

=

∫
Pi

Be(si)dµ
2(si) = BeiAi, (10.171)

where Bei is the area average emission for patch Pi.

Last but not least, for the second term in Equation (10.160) it holds:∫
∂V

Ni(si) ρdh(si)

(∫
∂V

Nj(sj)G
′(sj ↔ si)dµ

2(sj)

)
dµ2(si) (10.172)

= ρi

∫
Pi

(∫
Pj

G′(sj ↔ si)dµ
2(sj)

)
dµ2(si), (10.173)
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where we have assumed that the reectivity over the patches is constant.

Putting all these things together, then we get:

n∑
j=1

Bj

(
δijAi − ρi

∫
Pi

(∫
Pj

G′(sj ↔ si)dµ
2(sj)

)
dµ2(si)

)
= BeiAi (10.174)

and after dividing both sides by the area of patch Pi:

n∑
j=1

Bj

(
δij − ρi

1

Ai

∫
Pi

(∫
Pj

G′(sj ↔ si)dµ
2(sj)

)
dµ2(si)

)
= Bei. (10.175)

Using the formula for the classical form factor from De�nition (10.2), then leads

to:

n∑
j=1

Bj (δij − ρiFij) = Bei, (10.176)

which is equivalent to Equation (10.25), namely:

Bi = Bei + ρi

n∑
j=1

BjFij. (10.177)

The above derivation shows, that the classical radiosity approach is a special

variant of the �nite element approach based on the Galerkin method, where the set

of basis function are box functions de�ned on the patches Pi, all patches are assumed

to be Lambertian, and the source term Be emits a constant radiosity value.

REMARK 10.12 (A Finite Element Radiosity Approach Based on the Method of Weighted

Residual) As we have seen in the previous remark, the classical radiosity approach

is a special case of the �nite element approach based on the Galerkin method. But

also the Galerkin method is a variant of a more general approach: The method of

weighted residuals, also called the MWR-method.

The idea behind the method of weighted residual is to force the residual to zero

in some average sense over the integration domain using n appropriate weighting

functions wi, that is, solving the equation

〈wi(si), r(si)〉 =
∫
∂V

wi(si)r(si)dµ
2(si) = 0, 1 ≤ i ≤ n. (10.178)

According to the choice of the weighting functions, there are at least four MWR-

algorithms:

i) the collocation method,
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ii) the least squares method,

iii) the method of moments, and

iv) the Galerkin method.

As a result, we get always a system of n linear equations. The Galerkin method

follows this idea. It selects the basis functions, used to approximate the radiosity

function, as weighting functions. With respect to the above formula, the Galerkin

method then leads to a system of linear equations of type

〈Ni(si), r(si)〉 =
∫
∂V

Ni(si)r(si)dµ
2(si) = 0, 1 ≤ i ≤ n. (10.179)

THE FORM FACTOR IN THE FINITE ELEMENT RADIOSITY APPROACH. Before we conclude

this section, let us talk about the role of the form factor in the �nite element radiosity

approach. The form factor in the �nite element radiosity approach is de�ned as:∫
Pi

Ni(si)

(∫
Pj

Nj(sj)G
′(sj ↔ si)dµ

2(sj)

)
dµ2(si). (10.180)

In the case of constant basis functions Ni we can assume that Ni is equal to 1 only

over the patch Pi and otherwise zero, that is, the general form factor corresponds to:∫
Pi

(∫
Pj

G′(sj ↔ si)dµ
2(sj)

)
dµ2(si) (10.181)

= Ai
1

Ai

∫
Pi

(∫
Pj

G′(sj ↔ si)dµ
2(sj)

)
dµ2(si) (10.182)

(10.26)
= AiFij, (10.183)

which can also be written as AiFij.

As we have see in Section 10.1.3, the classical form factor Fij represents the fraction

of energy leaving patch Pi that directly arrives at patch Pj. In the generalized case, where

the basis functions can also be chosen as linear, quadratic, or polynomial functions, the

form factor Fij represents the weighted e�ect of energy leaving patch Pi under the support

of one basis function on the energy of patch Pj of another basis function. That is, the form

factor makes a statement on the strength of the coupling between the two associated basis

function Ni and Nj. It should be clear, that the general form factor|due to the presence

of the basis functions within the integrand|is more di�cult to evaluate than its classical

analogue. Note: The general form factor can not be divided by the area term, as we did

it with the classical form factor.
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10.3 THE RADIOSITY PIPELINE

In the previous sections, we have presented the radiosity method as it applies to computer

graphics. Thus, we have derived the discrete radiosity equation from the continuous sta-

tionary light transport equation in a vacuum, we have talked about methods for computing

the coe�cients of the radiosity matrix, and we have shown how the radiosity equation sys-

tem can easily and e�ciently be solved via procedures from numerical mathematics. As

result, we have get an n-dimensional vector of patch radiosities, but for image synthesis

applications we are interested in generating displayable images. For that purpose, let us

now shortly talk, how this radiosity approach can be used to produce simulations and

images.

A typical simple radiosity algorithm for image synthesis can be modeled via the

three-stage radiosity pipeline from Figure 10.14, that is,

I) building the radiosity matrix

II) solving the radiosity matrix, and

III) visualization.

The radiosity pipeline excepts as input the geometry and the physics of the scene

to be rendered, that is, geometric information about the objects within a scene and the

physical properties of the materials used.

INPUT FOR THE RADIOSITY PIPELINE. As shown in Section 10.1.3, form factor calculation is

build on the discretization of the scene to be rendered. That is, in a preprocessing step

the scene must be modeled|via a �nite element mesh consisting of a disjoint partition

of the object surfaces|into small patches. Then a nodal point si has to be selected on

each patch, commonly the midpoint of the patch, since scenes are mostly discretized in

rectangular meshes. Later, these will become the unknowns Bi of the radiosity equation

system, MB = Be, where discrete radiosity values are stored. Furthermore, we have to

decide how radiosity changes across a surface patch, that is, we have to choose the basis

functions Ni, 1 ≤ i ≤ n representing the radiosity.

BUILDING THE FORM FACTOR MATRIX. The representation of the coe�cients of the radiosity
by mij = I − ρiFij, 1 ≤ i, j ≤ n suggests �rstly to compute the form factors Fij based on

the geometrical information supplied in the scene description. This can be done using the

methods introduced in Section 10.1.3.

BUILDING THE RADIOSITY MATRIX. Based on the form factor matrix F and the identity

matrix, I, the radiosity matrix M,

M = I− ρF, (10.184)
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   Solving the 
Radiosity Matrix

Radiosity Image

   Visualization

   Building the 
Form Facor Matrix

     Input of 
Scene Geometry

     Input of 
Scene Physics

     Viewing Conditions

   Building the 
Radiosity Matrix

FIGURE 10.14: THE RADIOSITY PIPELINE. From the model of the radiosity pipeline, it is
easily recognizable, that after the forma factor matrix is build, the physic of the scene—the
reflectivity’s of the surface patches, the existence of the light sources, and the characteristic
of a patch, light source of not light source—can be changed, without to recompute the
form factor matrix. The same holds for the rendering step, if the radiosity matrix is solved,
the viewing conditions of the scene can be easily changed without to redo all previous
computations.

has to built with the help of the physical properties of the surfaces, given by the diagonal

matrix ρ.

SOLVING THE RADIOSITY MATRIX. After the radiosity matrix M is build, we can set up the

linear system

MB = Be (10.185)

with the help of the exitances Be from the input of the radiosity pipeline. Then, the

system is solved via one of the iteration methods from Section 10.1.4. As result, we obtain

the radiosity vector B of unknown nodal radiosities. Via these nodal radiosities and the

chosen basis functions, Ni, 1 ≤ i ≤ n, then a functional form for the variation of radiosity

across a patch is derived.
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VISUALIZATION. In the �nal stage of the radiosity pipeline, then a rendering step has to be

performed using the functional form for the variation of radiosity across a patch. Another

technique could be to use a variety of shaders, such as a at shader, which shade each

patch with the nodal radiosity associated to the patch. As, rendering via at shading

results in low quality images, we can also use continuous shaders across the patches for

rendering. Thus, simple bilinear interpolation such as Gouraud shading delivers more

better results. For this, the nodal radiosity of neighboring patches has to be distributed

on the vertices of the mesh, which can then be interpolated across the area of the patches.

REMARK 10.13 It should be clear, that the radiosity pipeline, as introduced above,

serves only as a model for the structure of a radiosity algorithm. Thus, the ba-

sic structure of a radiosity algorithm can be diversely extended, see [36, Cohen &

Wallace 1993].

10.4 RAY TRACING VS RADIOSITY

As we have seen in the last three chapters, there are two di�erent approaches for solving

the global illumination problem: Approaches that are based on

� Markov processes, and

� �nite element based algorithms.

Both approaches solve the global illumination problem, but each of these methods

itself has problems that make it unsuitable for rendering all kinds of illumination e�ects.

Let us shortly summarize the most important properties of these both rendering tech-

niques:

MARKOV PROCESS BASED RENDERING ALGORITHMS. As global illumination algorithms,

Markov process based rendering algorithms can simulate all possible light e�ects within a

scene more or less well. Thus, they can handle arbitrary geometries and BSDFs, but often

provide still noisy images even if they use many thousands of primary ray, where this noise

is perceived by the human eye as very disturbing. In particular the simulation of indirect

illumination and the illumination from multiple di�use reections within a Monte Carlo

rendering algorithm is very expensive and prohibitively costly. As, Markov process based

rendering algorithms solve the stationary light transport equation only for those points

that are visible in an image, changing the view position or orientation by more than a

small amount usually requires repeating the entire ray-tracing process from scratch.

FINITE ELEMENT BASED RENDERING ALGORITHMS. The radiosity method is based on a �-

nite element approach for solving the global illumination problem. In its classical version,
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it simulates only the di�use propagation of light through a scene. As the light-transfer

calculations are based solely on the geometry of the environment, radiosity procedures are

view-independent algorithms, which makes them suitable for simulating walk-throughs

through complex scene models. This method requires a meshing of the scene, where the

resolution of the mesh determines the precision of the incident illumination and propa-

gated light. Radiosity algorithms produce noise free images. For the accurate treatment

of complex geometries, or even complex BSDFs these methods, however, bring a very high

computational and storage e�ort. They also tend to visible artifacts in the display.

REMARK 10.14 As mentioned above, each of the previously presented methods has

problems that make it unsuitable for practical use. Therefore, in practice combina-

tions of these methods was used for a time, with the goal to exploit their strengths

and to skip their weaknesses. As the problems of radiosity algorithms|run time

and storage requirements|can not be avoided, today almost combinations of Monte

Carlo ray tracing methods and photon mapping approaches are used. These hybrid

methods o�er all the advantages of Markov process based ray tracing methods and

photon mapping. At the same time, they avoid the artifacts of the photon mapping,

and the noise of the Monte Carlo ray tracing method.

10.5 REFERENCE LITERATURE AND FURTHER READ-
ING

Compared with ray tracing, the number of literature sources that deals with radiosity is

comprehensible. There are three excellent books on radiosity [36, Cohen & Wallace 1993],

[13, Ashdown 1994], and [190, Sillion & Puech 1994]. Starting with radiometric quantities,

over the derivation of the radiosity equation until to algorithms and improvement strate-

gies for solving the radiositiy equation, they leave no question on radiosity unanswered.

While the books by Cohen and Wallace as well as Sillion and Puech are rather mathemat-

ical organized, Ashdown's book is a step-by-step guidance for the development of the fully

functional, radiosity renderer HELIOS for Microsoft WINDOWS. He shows how it is pos-

sible to understand the basic, classical radiosity method, only with knowledge of vectors

and matrices from a basic course on linear algebra. Hence, we recommend [13, Ashdown

1994] to the reader that is interested in a coarse overview of the radiosity method. For

people who want to delve deeper into the topic, [36, Cohen & Wallace 1993] and [190,

Sillion & Puech 1994] are the right references.

Chapter 11 of our book is mainly built on these three sources, where we have attempt

to emphasize the mathematical character of the radiosity method. Thus, when deriving the

�nite element approach of the radiosity method, we have exactly formulated the underlying

mathematical framework, such as the concept of the �nite element, the required function
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spaces, and the numerical approaches for solving Fredholm integral equations of the 2nd

kind.

An excellent modern survey of radiosity is o�ered in [68, Glassner 1995]. For a short

introduction into the topic, we recommend also [55, Encarnacao & al. 1997]. The tutorial

[211, Talbot 1999] is a short review of [36, Cohen &Wallace 1993]. A very nice introduction

to the radiosity methods may also be found in [192, Slusallek & al. 1993]. [193, Slusallek

& al. 1993] also discusses radiosity and relaxation methods and places them in the context

of the literature on solving linear systems of equations. There is also a series of beautiful

textbooks on computer graphics, which discuss the classical radiosity algorithm shortly

and on a very heigh level. Here we allude [62, Foley & al. 1987], [233, Watt & Watt 1992],

[78, Hearn & Baker 1994] and [232, Watt 1999].

Under the aspect that form factors can be interpreted as probabilities, in [50, Dutr�e &

al. 2003], the radiosity problem is discussed with the goal to achieve algorithms that solve

the radiosity equation using stochastic sampling. In the same direction goes [21, Bekaert

& al. 1998], [20, Bekaert 1999], where bridges are build between hierarchical radiosity and

Monte Carlo radiosity.

From the multiplicity of Master and PhD thesises that deals with radiosity methods

let us mentioned only a few of them. First, [82, Heckbert 1991] and [34, Christensen

1995]. Heckbert shows that radiosity is a �nite element method for solving Fredholm in-

tegral equations and Christensen deals with hierarchical techniques for e�cient solution

of the glossy global illumination problem using radiosity methods. For an alternative

Galerkin radiosity formulation based on piecewise smooth illumination functions that in-

corporates curved surfaces directly, see [240, Zatz 1992]. In [64, Gibson 1995] is discussed

how very complex radiosity solutions can be computed quickly and e�ciently. Radiosity

methods was also extended to the light transport in participating media. So, in [177,

Schirmacher 1996], the radiosity method was applied to the volume radiosity equation,

and in [89, Hubeli & al. 1999], the concept of the global cube, as a hardware-accelerated

hierarchical volume radiosity technique is presented. The concept of instant radiosity was

�rstly introduced in [103, Keller 1997] and in [207, Suykens 2002], radiosity is combined

with bidirectional path tracing.



CHAPTER ELEVEN

APPENDIX

A SIMPLE USEFUL MATHEMATICAL CONCEPTS FROM

LINEAR ALGEBRA AND CALCULUS

The present section can be interpreted as a refresher to useful concepts from linear algebra

and calculus which are necessarily needed to understand the mathematical foundations

of realistic rendering. Students familiar with basic calculus and linear algebra can skip

this section since it can be considered as an introductory preparation for the subsequent

sections.

We will start with basics from calculus, that is, sets, relations, and operators and Section A.1

introduce with the Euclidean space R3 a �rst simple example of a linear space of �nite

dimension, well-known form linear algebra. This space is ideal for a descriptive explana- Section A.2

tion of the most important concepts and constructs from linear algebra. Based on the

knowledges about sets and linear algebra, we then penetrate a little deeper into the theory

of abstract linear spaces and afterwards we address ourselves to the �eld of di�erential Section A.3

calculus. We will �nish this section with �rst, few introductory insights into integration Section A.4

theory and the stochastically method of Monte Carlo integration, which we will discuss in Section A.5

more detail in Chapter 2 and Chapter 6.

A.1 SETS AND FUNCTIONS

Commonly, Mathematics takes as its starting point the idea of the existence of collections

of mathematical objects, such as, numbers, vectors, and functions, also known as sets.

Such collections are typically endowed with additional algebraic structures. When this is

done, it becomes possible to elaborate with their properties and to build up a coherent

theory.

825
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As sets are clearly basic to a proper study of mathematics, we start our study of

mathematical concepts from linear algebra and calculus with some introductory aspects of

set theory. After introducing the di�erent sets of numbers, we discuss the mathematical

concepts of the algebra and the σ-algebra, which serve as the fundamental set theoretical

constructs for generating abstract measures in integration and probability theory. Then,Section 2.2

we speak about Cartesian products of sets and introduce the Euclidean spaces R,R2 and
R3 as �rst simple examples of Cartesian products. Since the domains of integral equations

in global illumination are generally the unit sphere, the hemisphere or subsets of these,Section 2.3

we introduce polar and spherical coordinates as alternative representations of points in

R2 and R3. After this, we discuss the concept of the relation, repeat the well-known

de�nition of real and complex valued operators, often also better known as mappings or

functions, and present some examples of useful functions which play an important role in

analyzing realistic rendering methods.

SETS. A set is any well-de�ned collection of objects. These objects|in our context mainly

numbers, vectors, and functions|are called elements or members of a set. Usually, a set

is denoted by a capital letter, for example A. If the object x is a member of A, we write

x ∈ A and read as x is an element of A or x belongs to A. Likewise, the expression x /∈ A
means, that x is not an element of set A. Furthermore, we call a set A the empty set, if

A contains no elements.

Let us assume A and B are two sets, then we say A is a subset of B, if each element

of A is a member of B, this is denoted as A ⊂ B. According to this de�nition every set

is, of course, a subset of itself. We call A a proper subset of B, if A is indeed a subset of

B and if furthermore B also contains elements, that do not belong to A. If it is desirable

to indicate that a non-empty set A is a subset of B, which is possibly the set A itself, we

write A ⊆ B. As a consequence we write A 6⊂ B, if A is not a subset of B. Two sets A

and B are equal, if they contain exactly the same elements, in this case we write A = B.

According to this de�nition, it is clear that two sets A and B are equal, if and only if,

A ⊂ B and B ⊂ A.

REMARK A.1 From now on, we make the assumption, that all sets under discussion

are subsets of a single �xed set called the universe. The universe is denoted by U ,
whereas the de�nition of U varies from one context to another.

UNION, INTERSECTION, DIFFERENCE, AND COMPLEMENT OF SETS. In mathematics there

exist operations, so-called set operation, that allow to construct new sets from given sets:

the union, the intersection, the di�erence, and the complement of a set.

The union of two sets A and B, written as A∪B, is the set consisting of all elements

that are in A or in B, thus A ∪ B def= {x | x ∈ A or x ∈ B}. Under the intersection of the

sets A and B, written as A∩B, we understand the set of all elements that belong to both

A and B, that is: A∩B def= {x | x ∈ A and x ∈ B}. In addition to the union and intersection
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FIGURE A.1: OPERATIONS ON SETS. Visualization of union, A ∪ B, intersection, A ∩ B,
and difference, B\A, of two non empty sets A and B with A,B ⊂ U . The universe is formed
by a rectangle surrounding the sets to be represented whereas its subsets are points or areas
within this rectangle.

of sets, we declare the di�erence of two sets A and B, written as A \ B, as the set of all

elements of A that do not belong to B, that is: A \ B
def
= {x | x ∈ A and x /∈ B}. Based

on the operation of intersection, we call two non-empty sets A,B disjoint, if it holds:

A ∩ B = ∅. Finally the complement of a set A written as A, is the set of all elements not

in A, thus A
def
= {x ∈ U | x /∈ A}. All these operations on sets can visualized graphically in

form of so-called Venn diagrams, see Figure A.1.

SETS OF NUMBERS. Now, mathematics deals with numbers, and thus, numbers are the

most important types of sets. In our following discussion we make again and again use

of the sets of numbers N = {1, 2, 3, . . .},Z,Q, and R, i.e. the set of natural or positive

integers, integers, rational, and real numbers.

It is known that a rational number is a number, that can be expressed as the ratio of

two integers p, q, i.e. the set of rational numbers Q can be written as
{
x | x = p

q
, p, q ∈ Z

}
with q 6= 0. An important property of Q is, that the set of rational numbers is countably

in�nite, i.e. the positive natural numbers can be evenly matched with the rational numbers Section 2.2.1

or in other words any rational numbers can be indexed by a positive integer. This implies,

that N and Q have the same cardinality. The di�erence R\Q is called the set of irrational

numbers. A very important irrational number is
√
2, which cannot be written as fraction

of two integers. It is convenient to think of R as being represented by an in�nitely long

line, called the real axis or the real line, where every real number corresponds to a point

on this line. It should also be known, that R is an uncountable set, that is, the real Section 2.2.1

numbers can not be labeled by numbers of N.
In addition to the the well-known sets of numbers introduced above, the set of com-

plex numbers C plays an import role in many application areas of mathematics and Section 2.1.1

physics. In mathematics, the set of complex numbers C is de�ned to be the set of num-

bers of form z = a+ ib, with i =
√
−1 and a, b ∈ R. Given a complex number z = a+ ib,
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the number a is called the real part of z, in sign <(z), and b is denoted as the imagi-

nary part of z, written as =(z). We de�ne the complex conjugate z of z as the complexInner Product (859)

number a − ib. With the complex conjugate, z, then it holds for a complex number z:

|z|
def
=
√
z · z =

√
a2 + b2.

σ-ALGEBRAS. In probability theory, we are often interested in the outcome of a random

experiment, such as ipping a coin or throwing a die. Thus, for computing the probability

that a die shows a prime number, we have to determine the probability with which the

subset {2, 3, 5} of {1, 2, 3, 4, 5, 6} occurs, that is, we have to deal with collections of subsets of

a given set. With the mathematical concept of the σ-algebra, as an example of a collection

of sets, we now introduce the perhaps most important set theoretical construct in measure

theory. Without the concept of the σ-algebra, it would not be possible to construct theSection 2.2

measure spaces in integration and probability theory on which we are interested to �ndSection 2.2.4

solutions to the global illumination problem.Section 2.4

DEFINITION A.1 (Algebra and σ-algebra) Let U be the universe, a non-empty collection

U of subsets of U is called an algebra, if in addition to U ∈ U, the relations A,B ∈ U

imply that A ∪ B ∈ U and A \ B ∈ U. An algebra of sets is called a σ- algebra, if

together with an arbitrary sequence of sets A1, A2, . . . , An, . . . it contains the union⋃∞
i=1Ai.

In other words, a σ-algebra is a non-empty set, which is closed under the usual set

theoretic operations of countable unions, countable intersections, and countable comple-

ments.

The most simplest σ-algebra over a given set A is the power set , P(A). It is de�nedSection 2.4

as the collection of all subset of A. Evidently, the power set of a �nite set A with n

elements is a σ-algebra consisting of 2n elements.

EXAMPLE A.1 Let Ω be the set consisting of the elements 0 and 1. Evidently, it holds:

P(Ω) = {∅, {0}, {1}, {0, 1}}. It should be clear that P(Ω) is a σ-algebra, consisting of

22 elements. P(Ω) plays an important role in probability theory. There, it can beSection 2.4

interpreted as the events of an experiment with the two outcomes 0 and 1, whereas ∅
is the impossible event, {0} or {1} are the elementary events and {0, 1} is the certain

event, see Figure A.2.

EXAMPLE A.2 Contrary to the previous example, let us now assume that the base set

Ω is countably in�nite, that is, Ω = {ω1,ω2, . . .}. Due to De�nition A.1, the power

set P(Ω) is a σ-algebra consisting of countably in�nite sets. That is, P(Ω) contains

the empty set ∅, the set Ω itself, as well as the one-element sets {ωi}, i ≥ 1, all sets
of size 2, thus {ωi,ωj}, i < j, i ≥ 1, the sets {ωi,ωj,ωk}, i < j < k, i ≥ 1, containing
three elements each other, etc..
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FIGURE A.2: THE POWER SET OF A FINITE SET. Let Ω = {0, 1}. Obviously it holds:
P(Ω) = {∅, {0}, {1}, {0, 1}}, i.e. the power set P(Ω) contains the empty set, the base set Ω,
and all 1-element, and 2-element subsets of Ω. The right image shows the graph of P(Ω)
for the three-element set Ω = {0, 1, 2}.

SUBSETS OF R. Above we introduced the set of numbers N, Z, Q, and R. From all of these

sets, the perhaps almost important set of numbers in mathematics is the set of the real

numbers, R. Now, very often our interest is focused not on the whole real line but only

on a portion of it, called an interval. If a, b ∈ R, such that a ≤ b, then we de�ne:

i) the open interval (a, b)
def
= {x| x ∈ R a < x < b},

ii) the closed interval [a, b]
def
= {x| x ∈ R a ≤ x ≤ b},

iii) the half-open interval (a, b]
def
= {x| x ∈ R a < x ≤ b}, and

iv) the half-open interval [a, b)
def
= {x| x ∈ R a ≤ x < b},

see Figure A.3. In this context, open and closed means, that the endpoints a and b of an

interval are included in or excluded from the set.

EXAMPLE A.3 Let I = [a, b), a, b ∈ R be a �xed half-interval and I be the collection

of all half-intervals [α,β) ⊆ [a, b). Clearly, I is not an σ-algebra because, generally

speaking, neither the union nor the di�erence of two half-intervals is a half-interval.

CARTESIAN PRODUCTS. Apart of the set operation such as the union, the intersection, Section 2.1.3

the di�erence, and the complement of a set, which are usually applied to two ore more
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FIGURE A.3: INTERVALS. Four different types of intervals on the real line. Left, an open
interval, the next two images show half-open intervals, and the image on the right-hand side
visualizes a closed interval.

di�erent sets, new sets can also be constructed via Cartesian products over the same or

di�erent sets.

Let A,B be two arbitrary, non-empty sets, then their Cartesian product, A × B, is
de�ned to be the set of all ordered pairs (a, b), with a ∈ A and b ∈ B, that is,

A× B def= {(a, b) |a ∈ A, b ∈ B}. (A.1)

The idea of the Cartesian product may be extended to products of more than two

sets. For example the Cartesian product A1×A2× . . .×An is de�ned to be the set of allSection 2.4.3

ordered n-tuples (a1, a2, . . . , an), where a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An.

EXAMPLE A.4 (The Euclidean Plane R2 and the Euclidean Space R3) Obviously the well-
known 2-dimensional Euclidean plane can be represented by

R2 = R× R, (A.2)

that is, the Cartesian product of the real line in 2 dimensions. Then any point in

the plane can be written as an ordered pair (x, y) of real numbers.

As one can easily see, the situation just described can generalized to higher

dimensions. So, the set R3 = R×R×R is the set of all ordered triples (x, y, z) of real

numbers, i.e.

R3 def= {x = (x, y, z) | x, y, z ∈ R}. (A.3)

Geometrically, R3 can be interpreted as the Euclidean space, where any element

x ∈ R3 can be interpreted as a point in this space and is identi�ed with coordinates

x, y, and z.

Generally, we can de�ne Rn to be the set of all ordered n-tupels of real numbers,

namely by:

Rn def= R× R× . . .× R︸ ︷︷ ︸
n×times

= {x = (x1, x2, . . . , xn ) | xi ∈ R, 1 ≤ i ≤ n}. (A.4)
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FIGURE A.4: COMPLEX PLANE C = R2. A point z of the complex plane can be represented
by a pair of (x, y), where x is the real part of z and y is the imaginary part.

EXAMPLE A.5 (Complex Plane C = R2) Another example, based on the Cartesian prod-

uct R2, is the complex plane C. The complex plane C can be formulated as the

Cartesian product of the real and imaginary part of complex numbers. So, any com-

plex number z = a+ ib can be represented graphically as a point (a, b) = (<(z), =(z))

of real numbers, in the complex plane, see Figure A.4. According to Euler's formula,

which shows a deep relationship between the trigonometric functions and the com-

plex exponential function, every complex number z can also be written in the form

z = reiθ = r(cos θ+ i sin θ), where cos θ and sin θ are the polar coordinates of z in the

complex plane. Polar Coordinates (832)

We close our discussions about Cartesian products with an important example from

probability theory. It combines the concept of the Cartesian product with the power set,

and the σ-algebra: the stochastic experiment of ipping a coin n-times.

EXAMPLE A.6 (Stochastic Experiment of Flipping a Coin n-times) The outcome of this

experiment is the n-times Cartesian product of {0, 1}, i.e. the set Ω = {0, 1}n of all

ordered n-tuples (ω1, . . . ,ωn) of length n with ωi ∈ {0, 1}. Again, the power set P(Ω)

is the collection of all subsets of Ω, consisting of the empty set, the set Ω, as well

as all 1-element, 2-element, . . ., and n − 1-element sets of elements of Ω, resulting

in 22
n

sets. Obviously, P(Ω) is a σ-algebra. We leave the proof to the interested

reader.

REMARK A.2 (Flipping a Coin In�nitely Times) From our discussion above, we conclude

that the outcome of ipping a coin in�nitely times is the set of all sequences ωn of

in�nite length with ωn ∈ {0, 1}, n ∈ N. We also conclude that the power set P(Ω) is
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FIGURE A.5: FROM CARTESIAN TO POLAR COORDINATES. In the left image, two points
p and q are given via its coordinates (x, y) in a 2-dimensional Cartesian coordinate system.
In the right image, the same points are described in polar coordinates, (r, θ). Points in polar
coordinates can be specified by the pole 0 and a ray starting at the pole in direction to the
point, called the polar axis. The distance form the pole is called the radial coordinate, the
radius or the length and the angle is the angular coordinate, also called the polar angle.

the collection of all subsets of Ω, consisting of the empty set, the set Ω, as well as

all 1-element, 2-element, . . . sets of elements of Ω. Obviously this set has in�nitely

many elements. It is left to the reader to show, that P(Ω) is a σ-algebra.

POLAR AND SPHERICAL COORDINATES. Instead of describing a point p in the

Euclidean plane by its coordinates (x, y) with respect to two perpendicular axes, we can

also represent it as a pair of a distance to the origin of the given coordinate system and an

angle between the horizontal axis and a ray through the point. Thus the point is described

by (r, θ)T with r ≥ 0 and θ ∈ [0, 2π).

Using the usual axes, where x, y are the ordinary coordinates of our point, then it is

easy to see:

x = r cos θ and y = r sin θ (A.5)

with r =
√
x2 + y2. Now, a point (x, y)T on the plane can be represented by its polar

coordinates (r cos θ, r sin θ)T ∈ [0,∞)× [0, 2π), see Figure A.5.

Because the integration domains of the integral equations in global illumination areSection 2.3

generally the unit sphere, the hemisphere, or subsets of these, we present in addition to

the above polar coordinates also spherical coordinates as alternative representations of

points in R3.
From Figure A.6, we conclude, that a 3D point p = (x, y, z)T can be represented by

the direction of a line from the origin trough the point p and a distance from origin to p,
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FIGURE A.6: SPHERICAL COORDINATES. In the left image, a point p is given via its
coordinates (x, y, z) in a 3-dimensional Cartesian coordinate system. In the right image, the
same point is described in spherical coordinates, (r, θ, φ). Points in polar coordinates can
be specified by the pole 0 and a ray starting at pole in direction to the point, called the
polar axis. The distance form the pole is called the radial coordinate, the radius or the
length, the angle θ is the inclination angle or polar angle, and the angle φ is called the
azimuthal angle.

i.e. by a triple of coordinates (r, θ, φ)T with r ≥ 0, 0 ≤ θ ≤ π and 0 ≤ φ < 2π, where
θ and φ indicates the direction and r informs about the distance of p from origin. Here

θ ∈ [0, π] describes the angle made by a line from the origin to p with the z axis of a

left-handed Cartesian coordinate system, and φ ∈ [0, 2π) describes the angle made by the

projection of this line onto the xy plane with the x axis. Obviously it holds:

(x, y, z)T = (r sin θ cosφ, r sin θ sinφ, r cos θ)T (A.6)

with r =
√
x2 + y2 + z2. A point (x, y, z) in Euclidean space can now be represented by

its spherical coordinates (r sin θ cosφ, r sin θ sinφ, r cos θ)T ∈ [0,∞)× [0, π]× [0, 2π).
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BOX A.1 (Directions)

Considering the unit sphere centered around the origin of a 3-dimensional Cartesian coordi-

nate system, then all points on the sphere have the same distance r = 1. In this case any

point p on the sphere can be defined by only two of the three spherical coordinates (r, θ, φ),

namely (θ,φ), dropping the coordinate r. Here θ ∈ [0, π] describes the angle made by a

line from the origin to p with the z axis of a left-handed Cartesian coordinate system, and

φ ∈ [0, 2π) describes the angle made by the projection of this line onto the xy plane with

the x axis, see the Figure below.

As many functions from field of realistic rendering need to be integrated over direc-

tions incident at a given surface point—in other words over points on the unit sphere or

the unit hemisphere—rather than the whole space, we introduce a shortened notation for

directions.Therefore we define a direction ω ∈ [0, π]× [0, 2π) by:

ω
def
= (θ,φ)

def
= (θ,φ, 1). (A.7)

RELATIONS. Before we introduce the concept of the operator as a mapping between

sets, let us shortly speak about relations, the mathematical concept, that surrounds the

concept of the operator as a special case.

Let A,B be two non-empty sets, then a relation R is a subset of the Cartesian product

of A and B, that is: R ⊆ A× B. According to this de�nition, the points (x, x) ∈ R2 lying
on a line through the origin of the Euclidean plane forms a relation.

Now, there are a types of relations that are useful for our further consideration on

measure theory, particularly relations, in which the ordered pairs come from only a singleSection 2.2.3

set, that is: Given a set A, we consider relations on A. Such a relation, in sign ∼, is

reexive, if a ∼ a, it is symmetric, if a ∼ b ⇒ b ∼ a, and it is transitive, if a ∼ b and

b ∼ c ⇒ a ∼ c holds, ∀a, b, c ∈ A. A relation that is reexive, symmetric, and transitive

is called an equivalence relation. Equivalence relations have the beautiful property that

they specify how to partition the set A × A into subsets such that every element of the
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larger set is exactly in one of the subsets. Then, we say two elements of the larger set are

equivalent with respect to a equivalence relation if and only if they are also elements of

the same set. To show that an equivalence relation forms a partition of A×A, we suppose,
that ∼ de�nes an equivalence relation on the set A. Then for each a ∈ A, we can de�ne

the set [a]
def
= {x ∈ A|x ∼ a}, that is, the set of all elements of A, which are equivalent to

a. Because it is easy to see, that [a] ∩ [b] = ∅, an equivalence relation ∼ on A partitions

A into disjoint equivalence classes [a], resulting in A =
⋃
a∈A[a]. If we would suppose Section 2.2.3

that [a] ∩ [b] 6= ∅ holds, then there must be an element c ∈ A with a ∼ c and c ∼ b, hence

a ∼ b, so that [a] = [b].

EXAMPLE A.7 As a simple example, we can construct an equivalence relations ∼ on

R×R, where the equivalence classes are de�ned by [a]
def
= {(x, a)| x ∈ R, a �x}, that is,

the set of all points lying on the horizontal line y = a. As one can easily see, the set

of all equivalence classes {[a] |a ∈ R} de�nes a partition of the Euclidean plane in an

uncountable set of lines parallel to the x-axis.

FUNCTIONS. The perhaps most important concept in mathematics is that of the function,

a special kind of an operator, that describes a rule how elements are mapped from a set

to another set. As the concept of the operator is fundamental in any �eld of mathematics,

we will refresh useful properties of operators and introduce some functions, which play an

important role in our following discussions. For that purpose, let S and T be arbitrary

nonempty sets.

DEFINITION A.2 (Operators) An operator f from the subset Dom(f) ⊆ S into the set T,

written as

f : Dom(f)→ T, (A.8)

is a mapping that assigns each x ∈ Dom(f) a unique element f(x) ∈ T, thus

x 7→ f(x), (A.9)

where f(x) is the image of x under the mapping f. We refer the set T as the image

of the operator and call the set Dom(f), the domain of f. The set Im(f), de�ned by:

Im(f)
def
= {f(x)|x ∈ Dom(f)}, (A.10)

is called the range of f.

We denote an operator f a real or complex valued function, if Im(f) ⊂ K with

K = R or C.

Obviously, all real functions of a single or several variables are operators between the

set R, respectively Rs, and the image area R, with s ≥ 2.
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Dom( )
Dom(f)

Ran(f)

f

FIGURE A.7: OPERATORS. The mathematical concept of an operator as a mapping
between two sets S and T. The set Dom(f) ⊆ S is the domain of the operator, Dom(f) is
called the image, and the set {f(x)|x ∈ Dom(f)} is the range of the operator.

EXAMPLE A.8 i) Let S be the real line and T = {0, 1}, then the function D

D : R −→ T (A.11)

given by:

x 7−→ f(x) =

{
1 if x ∈ Q
0 if x ∈ R \Q (A.12)

is called the Dirichlet function. This function, that maps a rational number to one

and an irrational number to zero, plays an important role in measure theory. TheSection 2.2.3

Dirichlet function is a real valued function de�ned on the real line, which can not be

graphically visualized exactly by a corresponding graph. How we will see shortly, the

Dirichlet function is the most famous example of a function, which is not Riemann-Dirichlet Funktion (106)

but Lebesgue-integrable.Lebesgue-integrable (105)

ii) Now let S be the Euclidean space R3 and T = R, then the function

‖ · ‖2 : R3 −→ R, x 7→√
x21 + x

2
2 + x

2
3 (A.13)

is a real valued function de�ned on R3, which returns the distance of point x from

origin of a three dimensional Cartesian coordinate system.

In one of the following sections about the Euclidean space R3, the function ‖ · ‖2Section A.3

is introduced as the so-called Euclidean norm, a mathematical concept, which allows‖ · ‖2 (861)

us, to measure the length of vectors or the distance between points, vectors, and

functions. Thus, the Euclidean norm is used in all ray tracing algorithms to deter-Section 2.1.3

mine, which hit point of a ray with objects in the scene is closest to the camera. The

construct of the norm also allows to introduce the concept of the limit of sequences,Section 2.1.1
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FIGURE A.8: A FIRST ENCOUNTER WITH THE CONCEPT OF DISCREPANCY. A 256-
element point set within I2 = [0, 1]2. The three colored rectangles have the same Lebesgue

area measure, that is, the term
∣∣∣#(P∩B)

N
− area(B)

∣∣∣ for the two rectangles is equal to∣∣ 59
256

− area(B)
∣∣. For the square we have

∣∣ 65
256

− area(B)
∣∣.

fundamental in linear normed spaces.

iii) A set function is a function de�ned on a system A of sets. It maps any subset

A ∈ A to a real or complex number.

Let A be the collection of all subsets of [a, b]. Then, we can de�ne a set function

l by:

l : A→ R≥0 (A.14)

with

[α,β] 7→ l([α,β]) = β− α (A.15)

for [α,β] ⊆ [a, b]. It is obviously, that the function l assigns an interval [α,β] ⊆ [a, b]

its length. As we shall see, the concept of the set function plays the central role when

de�ning a measure. Measure (79)

iv) Another interesting example of a set function could be the function DN(B)

de�ned by:

DN(B)
def
= max

B⊆[0,1]2

∣∣∣∣#(P ∩ B)

N
− area(B)

∣∣∣∣ , (A.16)

whereas P is a �xed N-element point set form [0, 1]2, B is an axis-aligned rectangle

with lower-left corner at the origin, and # is the so-called counting measure, which # (81)

returns the number of points contained in the intersection of P and B, see Figure

A.8.
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The function DN(B) is a slightly modi�ed, 2-dimensional version of the discrep-

ancy, a mathematical concept for measuring the deviation of a point set from its

ideal distribution, used in quasi-Monte Carlo integration. It returns the maximum

di�erence between the fraction of points of a N-element point set P inside one of theSection 7.1

subrectangles B of the set of all axis-aligned rectangles [0, 1]2.

v) Let us suppose S = [0, π]× [0, 2π) and T = R3, then the function

fω : [0, π]× [0, 2π) −→ R3, ω = (θ,φ) 7→ (sin θ cosφ, sin θ sinφ, cos θ) (A.17)

assigns every line through the origin its intersection point with the unit sphere around

the origin. Here we have a function, which is de�ned on directions around a point.

vi) Now let S =
[
0, π
2

]
× [0, 2π) and T = R, then the function

I :
[
0,
π

2

]
× [0, 2π) −→ R3, ω = (θ,φ) 7→ C

2π
(A.18)

assigns every direction around any point the constant C
2π

with C > 0. In computer

graphics, such a function can be used to describe the physical process of di�use

reection on any surface point, where the reected amount of light in every direction

is C
2π
. Functions of these kind play an important role in radiometry and the �eld ofChapter 3

realistic rendering.

vii) Last but not least, let us consider a mapping T between the three and the

two-dimensional Cartesian product constructed over the real number set R, that is,

T : R3 → R2 (A.19)

x = (x1, x2, x3)
T 7→ Tx = (x1, x2)

T . (A.20)

Obviously, this function maps a triple (x1, x2, x3)
T to the tupel (x1, x2)

T , that is,

the operator T discards the 3rd component of x. Operators of this type, also refers

to as projection operators, will be discussed in more detail in Section 2.1.
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BOX A.2 (The Characteristic Function, χ, and the Concept of Simple Functions)

A very important function in our discussions about measure and integration theory is the

caracteristic function χ, defined over space S with respect to a subset B ⊂ S by:

χB : S −→ {0, 1}, x 7→ χB(x)
def
=

{
1 if x ∈ B
0 otherwise,

(A.21)

see the left Figure below.

When deriving the Lebesgue integral, we need the concept of simple functions, where

we call a function simple, if it takes only finitely different values. If we additionally assume

that all values of a simple function are finite, then the characteristic function from (A.21) is

a trivial example of a simple function.

As it is easy seen from the right Figure shown below, every simple function can be writ-

ten as a sum of characteristic functions of pairwise disjoint sets. Therefore let α1, α2, . . . , αn
be different values of a simple function f. If we set

Ei = {x ∈ S|f(x) = αi} and S =

n⋃
i=1

Ei, with Ei ∩ Ej = ∅, i 6= j (A.22)

then a simple function can formally be defined by:

f(x) =

n∑
i=1

αiχEi(x), (A.23)

where S is any domain and αi ∈ R, 1 ≤ i ≤ n.

Let us consider the function f(x) = ex, with domain Dom(f) = Im(f) = R and

Im(f) = R>0. Obviously, this function has the property, that each image y = f(x) can

be mapped to its preimage x, that is, we get a new function f−1 by reversing the rule

underlying the mapping f : R→ R>0, thus,

f−1 : R>0 → R (A.24)

y 7→ f−1(y). (A.25)
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It should be clear, that the characteristic function χB from above does not share

this property with the exponential function ex. The reason for this is, that the range of

the characteristic function compared with its domain is obviously to small for de�ning a

new mapping. In mathematics, we say also, the characteristic function is not injective.

Obvioulsy, operators can be characterized with respect to the rule, that they describe,

that is, the rule underlying an operator can lead to di�erent types of the operators.

DEFINITION A.3 (Injective, Surjective, and Bijective Operators) Let f be an operator be-

tween the sets S and T. The mapping f is referred to as injective or one-to-one, if no

two distinct elements of Dom(f) are mapped to the same image within Im(f), that is,

x1 6= x2 =⇒ f(x1) 6= f(x2). (A.26)

If the range of f is identical to the image of f, that is, if it holds:

Ran(f) = T, (A.27)

then the operator f is denoted as surjectve and we say: T maps S onto T.

Furthermore, we call an operator bijective, if it is surjective and injective at the

same time.

REMARK A.3 (Invertible Operators) Bijective operators, such as the exponential func-

tion f(x) = ex|we let the proof of the bijectivity of the exponential function as a

simple exercise to the interested reader|have a special property: they are invertible.

Invertibility of an operator f, described by,

f : S → T (A.28)

x 7→ f(x) (A.29)

means, that the rule underlying the operator can also be reversed, that is, the rule

f−1 : Ran(f) → S (A.30)

y 7→ f−1(y) = f−1(f(x)) = x, (A.31)

is an operator too.

The notion of the invertibility of an operator is central for the mathematical

concept of the measurable function used in measure, integration, and probability the-Section 2.2.3

ory. Thus for example, the fundamental notion of the random variable de�ned on a

corresponding probability space is based on the concept of the measurable function.Section 2.4.2

A.2 THE EUCLIDEAN SPACE R3 AS A FIRST SIMPLE EXAMPLE
OF A LINEAR SPACE

The mathematical concept of the linear function space is one of the main concepts in

our discussions about methods for solving the global illumination problem. For de�ning aGlobal Illumination Problem (6)
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linear function space, we need the concept of an abstract linear space from linear algebra

or calculus. To imagine what mathematical constructs underly the concept of the linear

space, it is helpful to introduce the concept of the Euclidean space R3 as a �rst simple

example of a linear space. Because the R3 provides a good intuitive model for the behavior

of elements in more abstract linear spaces| such as functions spaces, that need not to

have a geometric interpretation|we now present the most important concepts of linear

algebra on the basis of the Euclidean space R3.

In mathematics, a vector space, also called a linear space, is de�ned as a collection

of objects, which we call vectors. In the Euclidean spaces vectors can be represented by

ordered pairs or triples of real numbers, and can be visualized by arrows characterized by

a length and a direction. We will show in this section, that, satisfying certain axioms,

vectors can be added using the parallelogram rule and that they can be multiplied by a

real number resulting in changes in direction and in length of the vector. Additionally,

we will present a set of important mathematical constructs, which play a fundamental role

in the theory of vector spaces, such as the constructs of the linear combination, linear

dependance, and that of the basis, as well as the concepts of the norm, orthogonality,

the inner product, and the metric. Finally, we discuss the mathematical construct of a

matrix as an operator between Euclidean spaces over R.

THE LINEAR SPACE R3. In Example A.4 of the last section, we introduced the Euclidean

plane R2 and the Euclidean space R3 as simple examples of Cartesian products over the Cartesian Product (829)

�eld R. Now any triple x ∈ R3 with

x
def
= (x1, x2, x3)

T ≡

 x1
x2
x3

 ∈ R3 (A.32)

is called a point or a vector, whereas the real numbers xi, 1 ≤ i ≤ 3, are denoted as the

components or the coordinates of vector x.

As is easily seen from Figure A.9, any vector x ∈ R3 can be identi�ed with the

directed line segment that has its initial point at the origin and its end point with the

Cartesian coordinates given by the components of x. By identifying vectors with directed

line segments, we shall follow the convention that any line segment with the same direction

and the same length may be used to present the same vector x.

We say two vectors x and y are equal, written x = y, if they have the same number of

components and if corresponding components are equal. The sum of two vectors x and y,

written as x+y, is the vector, which we obtain by adding the corresponding components,

that is, the addition of two vectors x and y is de�ned via:

x+ y
def
= (x1 + y1, x2 + y2, x3 + y3)

T ≡

 x1 + y1
x2 + y2
x3 + y3

 . (A.33)
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FIGURE A.9: VECTORS. The left image shows the representation of a vector in R3 as a
representant of the set to all arrows with the same length and the same direction. On the
right-hand side a vector is shown as the result of the addition of thee other vectors.

Obviously, in the above equation, x+y is the diagonal of a parallelogram, which has

x and y as two adjacent sides. This is illustrated in Figure A.10. The vector x+y can be

drawn by placing the initial point of y at the terminal point of x and then drawing the

directed line segment from the initial point of x to the end point of y. This heads to tails

construction, shown in Figure A.10, is called the parallelogram rule for adding vectors.

We can also multiply a vector x ∈ R3 with a real number α, a so-called scalar, by

multiplying the components of x with α, de�ned by:

α · x def= (αx1, α x2, α x3)
T ≡

 αx1
αx2
αx3

 , (A.34)

where we call the multiplication de�ned by Equation (A.34) the s-multiplication, or theSection A.3

scalar multiplication. From our interpretation above it is clear that all these vectors lie

on a line passing through the origin, for this see Figure A.10.

Multiplying a vector x with −1 results in the vector −x. By de�ning x − y
def
=

x+(−y), we can also subtract two vectors, and conclude that (R3,+) satis�es the axioms

of an Abelean group. That is, the operation of addition is commutative and associative, and

there exist only a single element, the zero element 0, for which it holds: x+0 = 0+x = x

for any x ∈ R3. Additionally, for any vector x ∈ R3 there exist only one vector −x, which

is inverse to x. Equipped with the de�nition of the s-multiplication we call R3, as well as
R2, a linear space or a vector space, if the distributive law, α(x + y) = αx + αy, andSection A.3

the rule α(βx) = (αβ)x even holds.
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FIGURE A.10: VECTOR OPERATIONS. Left, the visualization of the s-multiplication
applied to the blue vector in R3. Multiplication with a scalar α < 1 shortens the vector,
multiplication with α > 1 enlarges the vector. On the right-hand side the visualization
of the parallelogram rule for adding two vectors a,b of R3 resulting in a new vector c ∈ R3.

LINEAR COMBINATION AND LINEAR DEPENDANCE. As is easily seen from Figure A.10,

any vector x = (x1, x2, x3)
T can be represented as sum of multiples of three vectors

e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , and e3 = (0, 0, 1)T , if we write:

x = x1 e1 + x2 e2 + x3 e3 (A.35)

= x1(1, 0, 0)
T + x2(0, 1, 0)

T + x3(0, 0, 1)
T (A.36)

= (x1, 0, 0)
T + (0, x2, 0)

T + (0, 0, x3)
T (A.37)

= (x1, x2, x3)
T . (A.38)

In linear algebra the Relation (A.35) is denoted as a linear combination. As is easily

seen, any vector x ∈ R3 corresponds to the diagonal of a parallelepiped with adjacent

edges (x1, 0, 0)
T , (0, x2, 0)

T , and (0, 0, x3)
T . The parallelogram law along the edges of this

parallelepiped then shows that it holds: x = (x1, x2, x3)
T . The observation then implies

the following de�nition of a linear combination of vectors in R3:

DEFINITION A.4 (Linear Combination in R3) A vector y ∈ R3 is a linear combination of Section A.3

vectors x1,x2,x3 ∈ R3, if there exist scalars α1, α2, α3 ∈ R, such that it holds:

y = α1 x1 + α2 x2 + α3 x3. (A.39)

Closely related to the notion of linear combination is the concept of linear dependance.

DEFINITION A.5 (Linear Dependance in R3) We say the vectors x1,x2,x3 ∈ R3 are

linearly dependent if there exists scalars α1, α2, α3 ∈ R, not all zero, such that it
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FIGURE A.11: LINEAR DEPENDENT AND LINEAR INDEPENDENT VECTORS. Three lin-
ear dependent vectors in the left image in contrast to three linear independent vectors in the
right image. Linear dependence in R3 means that a vector can be described as the addition
of two other vectors. Thus, the vector a in the left image corresponds to the sum of b and
c, but no vector in the right image can be represented as a sum of the two remaining vectors.

holds:

α1 x1 + α2 x2 + α3 x3 = 0, (A.40)

where 0 = (0, 0, 0)T , otherwise we say the vectors are linearly independent, see Figure

A.11.Section A.3

Due to this de�nition the set of vectors E = {e1, e2, e3} are obviously linear indepen-

dent. Additionally we remark, that more than three vectors are always linear dependent,

since any of these vectors can be represented as a linear combination of the three others.

We omit the simple proofs of these statements to the interested reader.

BASIS AND DIMENSION. Taking our focus to the vectors e1, e2, and e3 ∈ R3. As these

vectors are linearly independent, we can conclude, that any vector x = (x1, x2, x3)
T ∈ R3

can be represented as a linear combination of e1, e2, and e3, with αi = xi, 1 ≤ i ≤ 3. A
set of vectors with these properties will be denoted as a basis.

DEFINITION A.6 (Basis in R3) A �nite set B = {b1,b2,b3} of elements of R3 is said toSection A.3

span R3, if every x ∈ R3 can be written in the form

x =

3∑
i=1

αibi (A.41)
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for some real numbers αi, 1 ≤ i ≤ 3. The set B is denoted as a basis of R3, if and
only if the following holds:

i) B spans R3, and

ii) B is a set of linearly independent vectors of R3.

REMARK A.4 (Dimension of R3) The number of elements that forms a basis of a linear

space R3 is called the dimension of R3. Because the set E
def
= {e1, e2, e3} builds a

basis in the Euclidean space R3, we say R3 is a 3-dimensional linear space, and we

write: dimR3 = 3.

INNER PRODUCT. Let us consider the basis E of R3 once more, but now, a little more in

detail. From Figure A.10, we can see, that these vectors are perpendicular to each other.

In mathematics one also says: the vectors are orthogonal. Multiplying, for example, the

components of any two vectors from E and adding the resulting products, then we yield

for ei = (ei1 , ei2 , ei3)
T and ej = (ej1 , ej2 , ej3)

T :

ei1ej1 + ei2ej2 + ei3ej3 = 0, (A.42)

since all products eikejk = 0 for i 6= j and 1 ≤ k ≤ 3.
The product of two vectors from R3, de�ned by multiplying corresponding compo-

nents and adding the resulting products, is called an inner product.

DEFINITION A.7 (Inner Product 〈·, ·〉R3 and Inner Product Space
(
R3, 〈·, ·〉R3

)
) Let 〈·, ·〉R3 Section A.3

be a mapping from R3 × R3 to R, de�ned by:

(x,y) 7→ 〈x,y〉R3 def= 3∑
i=1

xi · yi, (A.43)

then 〈·, ·〉R3 is called an inner product in R3, if 〈·, ·〉R3 satis�es the following axioms:

i) 〈x,x〉R3 ≥ 0 and 〈x,x〉R3 = 0 i� x = 0 (positive-de�niteness)

ii) 〈x,y〉R3 = 〈y,x〉R3 (symmetry)

ii) 〈αx+ βy, z〉R3 = α 〈x, z〉R3 + β 〈y, z〉R3 with α,β ∈ R (bilinearity).

With the inner product 〈·, ·〉R3 the Eucledian space R3 is an inner product space,

denoted by
(
R3, 〈·, ·〉R3

)
.

The positive de�nitness, the symmetry and the bilinearity of the inner product are

the central formal properties of an inner product. As we will see in the next section, all

following statements are consequences of these properties.
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FIGURE A.12: ORTHOGONALITY. The image on the left-hand side shoes the standard
basis E = {e1, e2, e3} of R3, a linear independent set of vectors, where each vector is
orthogonal to all other vectors of E. The image on the right shows a pairs of orthogonal
and a pair of not orthogonal vectors in R3.

REMARK A.5 If it is clear from context, we often not take into account the index in

the notation of an inner product.

From the observation above, we conclude that two vectors x,y ∈ R3 are orthogonal,
if there inner product yields zero. This then implies the following de�nition of the concept

of orthogonality in R3.

DEFINITION A.8 (Orthogonality in R3) Based on the de�nition of an inner product,Section A.3

two vectors x,y ∈ R3 are denoted as orthogonal, if it holds:

〈x,y〉R3 = 0. (A.44)

NORM. It is well known, that many physical quantities, such as velocity or force, can be

represented by vectors. Because vectors are characterized not only by its direction but

also by its length we need the concept of a norm, which provides information about the

length of a vector.

DEFINITION A.9 (The Euclidean Norm ‖ · ‖2 and the Linear Normed Space
(
R3, ‖ · ‖2

)
)Section A.3

Let ‖ · ‖2 be a mapping from R3 to R, de�ned by:

x 7→ ‖x‖2 def=
√√√√ 3∑
i=1

x2i , (A.45)
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FIGURE A.13: NORM OR LENGTH OF A VECTOR. The images show a two and a
three-dimension vector. The norm of the two-dimensional vector can be computed via the
x and the y-coordinates of the vector. For computing the norm of a three-dimensional
vector, also the z-coordinate of the vector is required.

then ‖ · ‖2 is called the length or the Euclidean norm of vector x ∈ R3, if ‖ · ‖2 satis�es
the following axioms:

i) ‖x‖2 ≥ 0 and ‖x‖2 = 0 i� x = 0 (positive-de�niteness)

ii) ‖αx‖2 = α ‖x‖2 with α ∈ R (homogenity)

ii) ‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2 (triangle inequality).

As the space R3 is endowed with the norm ‖·‖2, we call R3 a linear normed space

denoted by the tuple (R3, ‖ · ‖2).

EXAMPLEA.9 It can easily be shown, that all vectors from E have length 1, i.e. ‖ei‖2 =
1 for 1 ≤ i ≤ 3. As any vector with length one is called a unit vector, we can say,

that the basis E of R3 consists of three orthogonal unit vectors. In mathematics

orthogonal unit vectors are also denoted as orthonormal vectors. The basis E is then

also called an orthonormal basis of the Euclidean space R3. Obviously, any vector

x ∈ R3 can be normalized via 1
‖x‖2x.

EXAMPLE A.10 (Normal of a Plane in R3 and the Tangent Space T(x)) Let a and s be

two points and N(s) be a unit vector in R3 starting at s. Then we can de�ne a

plane M passing through a and perpendicular to N(s) as the collection of all points

x, such that the vector x − a is orthogonal to N(s), see Figure A.14. According to



848 CHAPTER 11. APPENDIX

FIGURE A.14: PLANE AND TANGENT SPACE IN R3. Left, the construction of plane
via the vector a and the normal vector N(s) at point s. The tangent space at point x
corresponds to all vectors y that are orthogonal to the normal vector at x.

our de�nition from above, this corresponds to the condition

〈x− a,N(s)〉R3 = 0. (A.46)

In mathematics, Equation (A.46) is also called the Hesse normal equation of a

plane. Instead of saying that N(s) is orthogonal to M, one also says that N(s) is the

normal of the plane M at point s.

If we now de�ne TM(x)
def
=
{
y ∈ R3|〈y,N(x)〉R3 = 0

}
, then TM(x) satis�es the

axioms required to a linear space|we omit the simple proof and leave it to the

interested reader. It is called the tangent space at point x, i.e. the space of all vectors

in R3 that are perpendicular to the surface normal N(x) at x, see Figure A.14.
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BOX A.3 (Lower and Upper Hemisphere as well as the Unit Sphere)

Suppose a surface point s is given on a surface M in R3 and let S2 be the unit sphere

centered around s. Obviously the tangent space TM(s) imposes a partitioning of S2 into two

hemispheres. Let N(s) denote the surface normal at s ∈ M, and ω be a direction. Then

we designate the hemisphere where 〈N(s), ω〉R3 > 0 the positive or upper hemisphere and

define it by the set:

H2+(s)
def
= {ω ∈ R3|〈ω,N(s)〉R3 > 0}. (A.47)

Similarly, we define the lower hemisphere by:

H2−(s)
def
= {ω ∈ R3|〈ω,N(s)〉R3 < 0}. (A.48)

Via H2+(s), H2−(s), and the tangent space TM(x) we can now construct the unit sphere

around the surface point s by:

S2
def
= H2+(s) ∪ TM(s) ∪ H2−(s). (A.49)
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REMARK A.6 (Angle between two Vectors) In the Euclidean space R3 the inner product
〈x,y〉R3 is not only related to the length of a vector, ‖ · ‖2. Applied to two vectors x‖ · ‖2 (846)

and y it can also be used to compute the angle θ between these two vectors, since it

holds:

θ = cos−1
(
〈x,y〉R3
‖x‖2 ‖y‖2

)
. (A.50)

If the vectors x and y are normalized, then the dot product gives the cosine of

the angle between them, thus:

cos θ = 〈x,y〉R3 . (A.51)

Keep your eyes open, we will use this identity in the following over and over

again.

CROSS PRODUCT. Apart from the inner product, there exists another type of a product in

and only in the vector space R3, the so-called cross product.

DEFINITIONA.10 (Cross Product on R3) Let x,y be two vectors of R3. The cross product

is a mapping from R3 × R3 to R3, for which applies:

x× y
def
= (x2y3 − y3x2, x3y1 − x1y3, x1y2 − x2y1)

T (A.52)

= ||x||2||y||2 sin θN(s), (A.53)

where θ is the angle between the two vectors x and y, and N(s) is a unit vector

perpendicular to x and y starting at point s.

Contrary to the inner product, which assigns two given vectors a real number, the

cross product results in a vector, which is orthogonal to the arguments of the mapping. As

easily seen, the vector product of two vectors of E delivers the remaining vector of E, i.e

it holds for example: e1 × e2 = e3. In contrast to the inner product, the algebra de�ned

by the cross product is neither associative nor commutative.

REMARK A.7 (Interpretation of the Cross Product as the Area of a Parallelogram) The

cross product has an interesting practical use: It can be interpreted as the positive

area of a parallelogram lying on a plane spanned by two vectors a,b ∈ R3.
For that, let us consider Figure A.15, where two vectors a and b, attached at

point s span a plane. Obviously, the parallelogram with the sides ||a||2 and ||b||2 has

area

A = ‖a‖2‖b‖2 sin θ
(A.53)
= ‖a× b‖2 (A.54)
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FIGURE A.15: CROSS PRODUCT AND THE AREA OF A PARALLELLOGRAM. The cross
product of two vectors a,b results in a new vector a× b, which is orthogonal to a and b.
The norm of the vector a×b corresponds to the area of a parallelogram spanned by a and b.

where θ is the angle between the two vectors a and b. We leave the proof of this

simple statement to the interested reader as an exercise.

We use this property of the cross product when deriving the solid angle measures.

Thus, we will cover the unit sphere with a net of in�nitesimal small parallelograms Section 2.2.2

and will use this parallelograms|analog to the derivation of the area Lebesgue mea-

sure via rectangles|to de�ne the solid angle and the projected solid angle measure.

METRIC. The �nal geometric property of R3 that we wish to introduce, is the concept of

the metric. In mathematics, a metric is a function, which can be used to determine the

distance between elements of a set. Equipped with a metric, we are able to study the

convergence behavior of sequences of vectors and to decide, if a given sequence of vectors Section A.3

converge towards an element of R3.

DEFINITION A.11 (The Metric ∆ on R3) Let x,y, z be three vectors of R3. A metric on

R3 is a mapping ∆ from R3 × R3 to R, which satis�es the following axioms:

i) ∆(x,x) ≥ 0 and ∆(x,x) = 0 i� x = 0 (positive-de�niteness)

ii) ∆(αx,y) = α∆(x,y) with α ∈ R (homogenity)

ii) ∆(x+ y) ≤ ∆(x,y) + ∆(y, z) (triangle inequality).

A set with a metric ∆ de�ned on it is called a metric space.
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Contrary to the norm or an inner product, a metric requires less structure on the

underlying set for its de�nition. Rather than generating a metric from scratch, we will use

the concept of a norm in order to de�ne a corresponding metric by

∆(x,y)
def
= ‖x− y‖2. (A.55)

When a metric ∆ is generated via a norm, we say that ∆ is generated by the norm

‖ · ‖2. Obviously, if we construct a metric ∆ on R3 in accordance with Equation (A.55),

then
(
R3, ∆

)
will be a metric space, where ∆ is generated by the norm ‖ · ‖2 on R3.

Obviously, the metric from Equation (A.55) provides information about the distance

between two points in R3, that is, in the metric space R3 it is now possible to introduce

the mathematical concept of convergence of sequences with members from R3, whichSection A.3

will be discussed explicitly in one of the following section.Section 2.1.1

LINEAR MAPPINGS. Let us recall the concept of the operator introduced in the last section.Operator (835)

In Example A.8 we constructed an operator T between the Euclidean spaces R3 and R2,
who mapped a triple x = (x1, x2, x3)

T onto the tuple Tx = (x1, x2)
T . Evidently, this

mapping drops the 3rd component of the given vector x = (x1, x2, x3)
T , resulting in a

2-dimensional vector.

With our knowledge about vector spaces from this section, we can now identify the

operator from above as the 2-dimensional projection of a 3-dimensional vector, for an

illustration see Figure A.16. The projection from R3 to R2 is then described by the

following construct, a so-called matrix

T
def
=

(
1 0 0

0 1 0

)
, (A.56)

with

x 7→ Tx, (A.57)

de�ned via the so-called matrix-vector product,

Tx
def
=

(
1 0 0

0 1 0

)
·

 x1
x2
x3

 (A.58)

=

(
1 · x1 + 0 · x2 + 0 · x3
0 · x1 + 1 · x2 + 0 · x3

)
=

(
x1
x2

)
∈ R2. (A.59)

REMARK A.8 Finite element methods for solving the radiosity equations are based onChapter 10

such a type of projection methods described by operators between special linear spaces.

Due to its de�nition, our projection operator T satis�es the property,

T(x+ y) = Tx+Ty, (A.60)
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FIGURE A.16: A PROJECTION OPERATOR. A three-dimensional vector and its projection
onto the xy-plane. One can easily, that the x and y-coordinates of a remains unchanged,
while the z-coordinate of a is dropped.

what can easily be proofed via the de�nition of the matrix-vector product. Operators

satisfying this property are called linear operators|the proof is easy and is left to the

reader as an exercise. As the example of the exponential function f(x) = ex shows|

ex+y = ex ey 6= ex + ey|not all operators are linear operators.

DEFINITION A.12 (Linear Mappings on R2 resepctively R3) In the following, S denotes Section 2.1.4

the linear spaces R2 and R3 resepctively. Let T be a rule, that maps an element x of

S to an element Tx ∈ S, then this rule is called a linear mapping between the linear

space R2 respectively R3, if ∀x,y ∈ S and ∀α ∈ R it holds:

T(αx+ βy) = αTx+ βTy (linearity). (A.61)

In the above de�nition, the operator T is described by a so-called n×m matrix, i.e.,

a scheme of numbers of the form: s11 . . . s1m
... · · ·

...

sn1 . . . snm

 (A.62)

with sij ∈ R, 1 ≤ i ≤ n, 1 ≤ j ≤ m and n,m ∈ {2, 3}.

As already mentioned above, the linearity property of an operator from Equation

(A.61) preserves the operations of vector addition and s-multiplication. Operators, that

satis�es this property, are build the core of functional analysis, since they can be used to Section 2.1

transform very complicated equation resulting from real-world processes, such as di�eren- Section 2.1.4

tial or integral equations, into very simple and easily solvable linear equations. Section 2.1.5
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EXAMPLE A.11 As shown above, the projection operator T from Example A.8 is a

linear operator. But T is not an invertible linear operator, since it is not injective.

So, T maps two di�erent vectors x = (x1, x2, x3)
T and y = (x1, x2, y)

T with y 6= x3
onto the same vector Tx = (x1, x2)

T . Since T is indeed a surjective but not an

injective mapping, T is even not a bijective operator.

A.3 ABSTRACT LINEAR SPACES

In order to make use of the concept of the vector as a directed ray starting at a point inVector Space (842)

a speci�ed direction, and apply it to concrete applications, it was necessary to equip the

set of vectors with additional structures. This results most importantly in the de�nitionNorm (846)

of the vector space, the length, and distance of vectors as well as of the cross product andCross Product (850)

the inner product.Inner Product (845)

However, if we extend our attention from vector sets to include generally arbitrary

sets, then it is likely, that without additional structures the analyst will �nd these very

sterile and rather inappropriate as bases of concrete analytical problems. The question

then follows is: Which properties must be added to these sets in order to enable them

to provide us with a su�ciently interesting and useful theory for the analysis of concrete

applications? The key to this problem is to be found in the concept of the abstract linear

space.

We start in this section by de�ning the mathematical construct of the abstract linear

space and show, that a linear space can represented as a sum of linear subspaces. Based

on the notions of the linear combination, basis, and inner product we introduce or-

thonormal sets and bases in �nite-dimensional and in�nite-dimensional spaces. After

that, we present|via the norm in a linear space|a few useful properties of sets in linear

spaces, which we need for the development of the Lebesgue integral in Section 2.2.4, these

are: bounded, open, and closed sets, covers as well as the supremum and in�mum of a

set, and the concept of the boundary- and accumulation point. Because the mathemati-

cal construct of the sequence is fundamental in functional analysis, we also de�ne metric

spaces, and speak about the limit of sequences in metric spaces.

ABSTRACT LINEAR SPACES. The normed Euclidean vector space R3 has been an intuitiveVector Space (842)

guide in our development thus far. Now, it is not required, that the elements of a linear

space are tuples or triples of numbers from R or C as in the case of R3. Elements of linearR,C (827)

spaces can also be polynomials, solutions of di�erential or integral equations, or general

mappings between given sets. To construct and analyze such linear spaces it is required

to introduce the general concept of the abstract linear space.

DEFINITION A.13 (Abstract Linear Space) Let S be a set, and K be either the set of real

numbers or the set C of complex numbers, which both are being referred to here asR,C (827)
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scalars. Then S is called an abstract linear space, or briey a linear space, if it can

be combined with an operation + called addition and an operation of multiplication

by a scalar, the s-multiplication for short, and satis�es the following axioms:

i) (S,+) is an Abelian group, i.e. the operation + is commutative, associative and

there exists exactly one zero element 0, and for every x of S, there exists exactly

one inverse element −x, with 0+ x = x+ 0 = x and x+ (−x) = (−x) + x = 0

ii) (α · β)x = α (βx), ∀ x ∈ S, α, β ∈ K

iii) (α+ β)x = αx+ βx, ∀ x ∈ S, α, β ∈ K

iii) α(x+ y) = αx+ αy, ∀ x, y ∈ S, α ∈ K

iv) (1 · x) = x, ∀ x ∈ S.

When K is chosen to be the set of real numbers, then we call S a real linear space,

while it is referred to as a complex linear space, if K = C.

EXAMPLEA.12 (The Linear Space Rn) The set Rn is given by {x |x = (x1, x2, . . . , xn) ∈ Rn,
xi ∈ R, 1 ≤ i ≤ n}. Obviously (Rn,+, ·) is a real linear space because (Rn,+, ·) sat-

is�es the axioms of De�nition A.13, with 0 = (0, 0, . . . , 0) as the zero element,

−x = (−x1,−x2, . . . ,−xn) as the inverse to any x ∈ Rn as well as + as the component-

wise addition and · as the component-wise s-multiplication. We leave the proof as

an exercise to the interested reader.

EXAMPLE A.13 (The Linear Space of Polynomials of Degree n − 1 on the Interval [0, 1])

Considering the coordinates of a vector a ∈ Rn as the coe�cients of a polynom of

degree n−1 de�ned on R, then the vector a can be interpreted as a polynomial of the

form
∑n
i=1 aix

i−1 in the variable x ∈ R; thus, the vector a = (1, 2, . . . , n)T represents

the polynomial
∑n
i=1 ix

i−1. Denoting the set of all polynomials of degree n − 1 by

Pn−1, then with (Rn,+, ·) also (Pn−1,+, ·) satis�es the axioms of a real linear space,

where 0 is the zero polynomial and
∑n
i=1−aix

i−1 is the inverse polynomial to the

polynomial
∑n
i=1 aix

i−1, see Figure A.17,

Generally, arbitrary subsets of linear spaces are not linear spaces, but if a subset of a

linear space is closed with respect to additon and s-multiplication, then such a subset is

also a linear subspace.

DEFINITION A.14 (Linear Subspace) A subset S′ of a linear space S, which is also a

linear space, is called a linear subspace and we write S′ ≤ S.

If S′ and S′′ are subspaces of a linear space S, then we can construct the sum S′ + S′′

of these subspaces, to be the set of all elements of S of the form x′ + x′′ with x′ ∈ S′ and

x′′ ∈ S′′. According to this construction, we call the linear space S the direct sum of S′

and S′′, denoted by S′ ⊕ S′′, if it holds S = S′ + S′′ and S′ ∩ S′′ = 0.
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FIGURE A.17: VECTOR SPACE ISOMORPHISM BETWEEN R3 AND P3. A vector represent-
ing an element of space R3. It can be used to represent a polynomial of space P3, where
the basis E = {e1, e2, e3} is replaced by the powers of x, namely: x0, x1, x2.

EXAMPLE A.14 Since R2 is not a subset of R3|the set of all tuples over R is not

contained in the set of all triples over R|it does not hold: R2 ≤ R3. ConsideringR3 (841)

the set R′2 def= {(x1, x2, 0) | xi ∈ R, 1 ≤ i ≤ 2}, thus the set of all points from R3 lying

on the plane x3 = 0 through the origin, see Figure A.18, then it is easily to see, that

R′2 satis�es the axioms of a real linear space. Since R′2 ⊂ R3 we get: R′2 ≤ R3.
Obviously every set R′m def

= {(x1, x2, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
(n−m)−times

) | xi ∈ R, 1 ≤ i ≤ m}, is a

linear subspace of Rn, i.e., R′2 ≤ R′3 ≤ Rn.
Furthermore, any element x ∈ Rn can be written as x′

m

+ x′
n−m

, with x′
m ∈ R′m

and x′
n−m ∈ R′n−m

= {( 0, . . . , 0︸ ︷︷ ︸
(m−times)

, xm+1, . . . , xn) | xi ∈ R,m + 1 ≤ i ≤ n}. Because it

holds R′m ∩ R′n−m

= 0, we can conclude: Rn = R′m ⊕ R′n−m

.

This technique of generating a new linear space from two given linear spaces will

be used in Chapter 5. There we are interested in the development of mathematical

models of light and importance transport over a linear normed function space.Function Space (28)

Now it is possible to generalize many of the fundamental concepts of the Euclidean

space R3 from the preceeding section to abstract linear spaces. For that, we will start

�rst with the concepts of the linear combination, the basis, the inner product, and the

orthogonality, and introduce then, in analogy to the length of a vector, the concept of a

norm, and a metric.

LINEAR COMBINATION AND BASIS. To describe a linear space S economically, we are

interested in the construction of a subset of elements of S, which can be used to specify
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FIGURE A.18: LINEAR SUBSPACES. Planes and lines passing through the origin are
subspaces of Rn, since sums of multiples of points of such a plane or a line also lie on the
plane or the line.

every member of S as a combination of these elements. Such a procedure is based on the

concepts of the linear combination and the basis.

DEFINITION A.15 (Linear Combination) Let B = {b1, b2, . . . , bn} be a �nite set of ele-

ments of a linear space S and x be an element of S. We call x a linear combination of

elements of B, if it may be represented as a weighted sum of the elements bi, 1 ≤ i ≤ n,
that is,

x =

n∑
i=1

αibi, (A.63)

with αi ∈ K and K = R or C.

DEFINITION A.16 (Basis) The set B from above is called a basis of S, if every element

x ∈ S may be represented as a linear combination of elements of B and none of the

elements bi, 1 ≤ i ≤ n may be formulated as a linear combination of bj, 1 ≤ j ≤ n, i 6=
j.

If it holds n < ∞, the linear space S is referred to as a �nite-dimensional linear

space, whereas we write: dim S = n, otherwise it is called an in�nite-dimensional linear Section 2.1.1

space.

EXAMPLE A.15 (The Linear Space Rn) It is easily seen, that the set E = {e1 = (1, 0, Example A.12

. . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1)} forms a basis of Rn, since E is a linearly

independent set of vectors, i.e. 0 = α1e1 + α2e2 + . . . + αnen ⇔ αi = 0, 1 ≤ i ≤ n
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FIGURE A.19: A BASIS FOR THE LINEAR SPACE OF POLYNOMIALS OF DEGREE 3. The
four functions 1, x, x2, and x3 build a basis of the linear space P3 of polynomials of degree 3.

and any element x ∈ Rn can be written as a linear combination of elements of

E. Applying component-wise addition and the multiplication with scalars leads to:

x = (x1, x2, . . . , xn) = x1(1, 0, . . . , 0) + x2(0, 1, . . . , 0) + . . .+ xn(0, 0, . . . , 1). As this basis

consists of n vectors one says the linear space Rn has dimension n, thus dimRn = n.

EXAMPLE A.16 (The Linear Space of Polynomials of Degree n− 1, Pn−1) Suppose p(x) =Example A.13 ∑n
i=1 αix

i−1 ∈ Pn−1, then p can be identi�ed with the vector (α1, α2, . . . , αn) = α1e1+

α2e2+. . .+αnen where ei ∈ E = {1, x, x2, . . . , xn−1}, 1 ≤ i ≤ n. From this, we conclude,

that any polynomial of degree n − 1 can be represented by a linear combination of

elements of set E. Since the set E is linearly independent, E forms a basis of the

linear space Pn−1 and it holds: dimPn−1 = n. For a visualization of the basis

functions of P3, see Figure A.19.

REMARKA.9 If we have a basis of a linear space S, then we can control the linear space,

since the basis already contains all essential information about S. This implies, that

the basis can not be more compressed.

REMARK A.10 As we will see later, the spaces of greatest interest underlying realistic

rendering procedures are in�nite-dimensional function spaces. Further below, we willSection 2.1.1

present with C([0, 1]) a �rst simple example of an in�nite-dimensional linear functionSection 2.1.1

space: the space of all continuous functions over a closed interval. Nevertheless, it

will often be of use to consider �nite-dimensional spaces.Section 2.4

INNER PRODUCT. Now, we turn to the question: Is it possible to adapt the concept ofOrthogonality in R3 (846)

orthogonality|introduced in the last section with respect to the Euclidean space R3|to

general linear spaces, where we cannot argue with its geometrical interpretation? InspiredR3 (841)

by the inner product of the Euclidean space, now we de�ne an inner product valid inInner Product in R3 (845)

general abstract linear spaces.



SECTION A.3. ABSTRACT LINEAR SPACES 859

DEFINITION A.17 (The Inner Product 〈·, ·〉S and the Inner Product Space (S, 〈·, ·〉S)) Let
S be a complex or real linear space, the inner product 〈·, ·〉S on the linear space S is

a mapping from S × S to K = R or C, which satis�es the following axioms for any

member x, y, z ∈ S and α,β ∈ K:

i) 〈x, y〉S ≥ 0 and 〈x, x〉S = 0 i� x = 0 (positive-de�niteness)

ii)

{
〈x, y〉S = 〈y, x〉S if K = C
〈x, y〉S = 〈y, x〉S otherwise

(symmetry)

iii) 〈αx+ βy, z〉S = α〈x, z〉S + β〈y, z〉S (linearity),

where 〈·, ·〉S is the conjugate complex. Conjugate Complex (828)

A linear space S, endowed with an inner product 〈·, ·〉S, is called an inner product

space. We denote an inner product space S by (S, 〈·, ·〉S). Section 2.1.1

Let (S, 〈·, ·〉S) be an inner product space, then a number of important concepts from

vector algebra and calculus may be transferred onto it. Thus, in an inner product space

(S, 〈·, ·〉S), not only the fundamental Cauchy-Schwartz inequality1 holds but also orthog- Orthogonality in R3 (846)

onality, the well-known and important concept from Euclidean space R3, may also be

adapted. Thus, two elements x, y ∈ S are termed orthogonal, if it holds:

〈x, y〉S = 0, (A.65)

in this case we write also x ⊥ y.

EXAMPLE A.17 (The Inner Product 〈·, ·〉Rn and the Inner Product Space (Rn, 〈·, ·〉Rn)) Example (A.12)

The inner product 〈·, ·〉Rn of the linear space Rn is given by:

〈x,y〉Rn = (x1, x2, . . . , xn) ·


y1
y2
...

yn

 def
=

n∑
i=1

xi · yi. (A.66)

If we endow Rn with the inner product 〈·, ·〉Rn it is called an inner product space,

shortly also (Rn, 〈·, ·〉Rn). Due to Equation (A.66) one can easily see, that the vectors

e1, e2, . . . , en ∈ Rn are orthogonal, as it holds:

〈ei, ej〉Rn = 0 (A.67)

for i 6= j, 1 ≤ i, j ≤ n.

1For each two elements x, y of the inner product space (S, 〈·, ·〉S) the following applies:

|〈x, y〉S| ≤ 〈x, x〉
1
2
S
〈y, y〉

1
2
S

(A.64)
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Based on the notion of the inner product, now we can de�ne another important con-

cept: the orthogonal complement of a set. Together with the construct of the orthonor-

mal set as well as the orthonormal basis, which we will also introduce further below,

it plays a central role in the development of numerical solutions methods for Fredholm

integral equations of the 2nd based on projection and �nite basis methods.Section 2.3.3.2.2

DEFINITIONA.18 (Orthogonal Complement) Let (S, 〈·, ·〉S) be an inner product space and

S′ any subspace of S, then the orthogonal complement of S′ is de�ned to be the set

S′
⊥ def

= {x ∈ S | 〈x, x′〉S = 0, ∀x′ ∈ S′}. (A.68)

EXAMPLE A.18 As we have seen in Example A.14, Rn can be written as the direct sum

of the spaces R′m and R′n−m

, i.e., Rn = R′m⊕ R′n−m

. Considering now any members

x′
m

= (x1, . . . , xm, 0, . . . 0) and x
′n−m

= (0, . . . 0, xm+1, . . . , xn), then obviously it holds

for the inner product of two vectors: 〈x′m , x′n−m〉Rn = 0. That is, the space R′m is the

orthogonal complement of R′n−m

and vice versa. Hence we conclude, that the linear

space Rn can be decomposed in two subspaces R′m and R′n−m

, which are orthogonal

to each other, that is, we can write Rn = R′m ⊕ R′n−m

. The proof of this statement

is very easy, hence we leave it as an exercise to the interested reader.

As we will see a little bit later, it is just this property|namely, the decomposition

of a linear space in two mutually orthogonal subspaces|of an inner product space,

which we will extend to arbitrary linear spaces, more precisely speaking to Hilbert

spaces. It provides the mathematical basis for the so-called �nite element methodsSection 2.1.1

underlying radiosity algorithms.Section 10

NORM. To measure the elements of an abstract linear space, now we will introduce in

analogy to the concept of the length of a vector, a real valued non-negative function ‖ · ‖Lenght of a Vector in R3 (846)

over a linear space S, the so-called norm.

As with the de�nition of an inner product, this notation may be abstracted in a

natural way, if we start from scratch with an arbitrary linear space S.

DEFINITION A.19 (The Norm ‖ · ‖ and the Linear Normed Space (S, ‖ · ‖)) A norm ‖ · ‖ on
the linear space S is a mapping from S to K = R or C, which satis�es the following

properties for any member x, y ∈ S, α ∈ K:

i) ‖x‖ ≥ 0 and ‖x‖ = 0 i� x = 0 (positive-de�niteness)

ii) ‖αx‖ = α‖x‖ (homogenity)

iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

Endowed with the norm ‖ · ‖ the linear space S is called a linear normed space,

also written as (S, ‖ · ‖).
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Obviously, apart positive-de�niteness and homogenity, a norm satis�es the triangle

equation, which abstracts the situation, that results from the parallelogram law for addition

of vectors. Parallelogram Law (842)

EXAMPLEA.19 (The Linear Normed Space (Rn, ‖ · ‖2)) Let us consider the inner product Example A.17

space (Rn, 〈·, ·〉Rn) from Example (A.17), then a norm on Rn can be de�ned according

to:

‖x‖2
def
=
√
〈x,x〉 =

√√√√ n∑
i=1

x2i . (A.69)

‖ · ‖2 is called the Euclidean norm on Rn. It serves to measure the length of

a vector. With this norm, the linear space Rn will become a linear normed space,

which we will denote as (Rn, ‖ · ‖2).

EXAMPLE A.20 (The Family of Norms ‖ ·‖p in Rn) Apart from the Euclidean norm ‖ ·‖2,
we can de�ne a whole family of norms in the space Rn by:

‖x‖p
def
=

(
n∑
i=1

|xi|
p

) 1
p

, (A.70)

where 1 ≤ p <∞.

Obviously, the case p = 2 corresponds to the Euclidean norm from Example

A.19. Another important norm is the case p = 1, thus,

‖x‖1
def
=

n∑
i=1

|xi|
p. (A.71)

We leave the proof, that ‖·‖p ful�lls the requirements to a norm, to the interested
reader.

The concept of the norm can now be used to de�ne an other useful mathematical

construct: the notion of the orthonormal set and the orthonormal basis. In Section

2.3.3.2.2, we will use these concepts to construct functions|de�ned in �nite-dimensional

linear function spaces|that are in some sense good approximations to solutions of Fred-

holm integral equations of the 2nd kind.

DEFINITION A.20 (Orthonormal Set and Orthonormal Basis) Let (S, 〈·, ·〉S) be an inner

product space. We call the set Bφ = {φ1, φ2, . . . , φn, . . .} of members of S an or-

thonormal set, if it holds:

〈φi, φj〉S = 0 (A.72)
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FIGURE A.20: A BOUNDED SET. The set A as the union of the open intervals (a, b), (b, c)
and the half-open intervals (d, e] and (f, g]. Obviously, A is a bounded set with inf A = a
and supA = maxA = g. While the set of lower bounds is given by all reals equals or
smaller than a, the upper bounds are all numbers equals or greater than the maximum of
A, namely g.

for i 6= j with ‖φi‖ = 1 for all i, j ≥ 1.
If S is of �nite dimension, thus dim S = n, then we call the orthonormal set

Bφ = {φ1, . . . , φn} an orthonormal basis of S. As a basis, the elements of Bφ span

the space S, such that any element of S can be written as a linear combination of

orthonormal members of Bφ.Section 2.1.1

EXAMPLE A.21 (Orthonormal Basis of Rn) A trivial orthonormal basis of the innerExample A.15

product space (Rn, 〈·, ·〉Rn) is the basis E introduced in Example A.15. We have seen

in Example A.17, that in each case, two members of E are orthogonal. Since it holds

‖ei‖2 = 1, 1 ≤ i ≤ n, the set E is also a collection of orthonormal vectors, which

spans Rn.

SOME USEFUL PROPERTIES OF SETS BASED ON THE NORM. Many properties of sets, which

are relevant in our discussions, are based on the norm. In the following we will introduce

the most important for our interest, where we always assume, that A is any arbitrary

non-empty subset of a linear normed space (S, || · ||).

DEFINITIONA.21 (Bounded Set, Supremum and In�mum of a Set) We say A is a boundedSection 2.2

set, if for all elements x of A there exists a positive real number S, such that ‖x‖ ≤ S.
In that case, S is called an upper bound, and −S is referred to as a lower bound of

A, see Figure A.20. For the least upper and the greatest lower bound of a set A, we

will use the well-known notions of the supremum, sup A, and the in�mum, inf A.

It should be known, that the supremum and the in�mum of a bounded set A, must
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FIGURE A.21: BOUNDED FUNCTIONS. The real-valued function f(x) = 1
x

in the left
image is unbounded on its domain R \ {0}. The restrictions f|R+ and f|R− , visualized on the
right are bounded above respectively bounded below with infR+ f = supR− f = 0.

not be necessarily elements of A. But if it holds, that these quantities are contained in

the set A, then we call sup A, the maximum of A, i.e. max A = sup A, and inf A, the

minimum of A, thus min A = sup A.

EXAMPLE A.22 (Bounded Intervals in R) Let us consider the open interval (a, b), a, b ∈ Intervals in R (829)

R. Obviously (a, b) is a bounded set, with a
2
as a lower and 2b as an upper bound.

The in�mum of (a, b) is the element a /∈ (a, b) and for the supremum it holds:

sup (a, b) = b, that is, inf (a, b) /∈ (a, b) as well as sup(a, b) /∈ (a, b). Contrary to

this, it holds for the closed interval [a, b]: inf [a, b] = min [a, b] = a and sup [a, b] =

max [a, b] = b.

DEFINITION A.22 (Bounded Function) In the special case, that the set A is the range of Section 2.1.4

a function f, we say f is a bounded function, if and only if A = Ran(f) is a bounded

set.

EXAMPLE A.23 (Bounded Functions) i) Obviously, the characteristic function χB is a χB (839)

bounded function, as it holds: ‖χB(x)‖ ≤ 1⇔ −1 ≤ χB(x) ≤ 1 with supχB = 1 as well

as inf χB = 0.

ii) On the other side, it's also quite plain, that the function f : R \ {0} → R \ {0}

which maps x to 1
x
has neither a minimum nor a maximum on its domain, see

Figure A.21. If we restrict our considerations only to the negative real line, then f is

bounded above by all non-negative real numbers, that is: supR− f = 0. Something near

it occurs, if we restrict our considerations to the positive real line. Here, the function

f is bounded below by all non-positive real numbers, and it holds: infR+ f = 0. Even

though 0 /∈ Ran(f), we have infR+ f = supR− f = 0.
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FIGURE A.22: OPEN, CLOSED AND BOUNDED SETS. The left image shows an open
set A ⊂ R2 with two labeled inner points. The image on the right-hand side represents a
closed and bounded set B with labeled inner and boundary points. Obviously, the set A
is bounded, because there exists a bound S—select S to be the radius of a circle, which
contains A—such that ∀x ∈ A it holds: ‖x‖2 =

√
x21 + x

2
2 < S.

DEFINITION A.23 (Interior Points and Boundary Points of a Set) A point x of A isSection 2.1.2

referred to as an interior point of A, if there exists a ball around x with radius ε > 0,

which lies completly in A. That is, in addition to x the ball contains only points of

A, for which the following holds:{
a ∈ A

∣∣‖x− a‖ < ε
}
⊂ A. (A.73)

The point x is denoted as a boundary point of A, if every ball around x contains

at least one point out of the complement of A.Complement of a Set (827)

Based on the de�nition of the interior point, we are now ready, to address ourselves

to the topological concept of open and closed sets. They are the basis for the de�nition of

the concept of the Borel2 σ-algebra, which is fundamental for measure, integration, and

probability theory.Borel σ-algebra (865)

DEFINITION A.24 (Open and Closed Set) A non-empty set A is denoted as open, if theSection 2.2.2

set contains only interior points. The set A is referred to as closed, if its complement

is open, see Figure A.22.

2Named after �Emile Borel, who implicitly introduced 1898 in his Le�con sur la th�eorie des fonctions

the Borel subsets of the unit interval and denoted, that it is possible to de�ne the notion of length for
these sets, which possesses the fundamental property of a σ-algebra.
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REMARK A.11 An equivalent de�nition for closed sets is based on the concept of the

point of accumulation. Therefore, we say a point a of a non-empty set A is denoted

as a point of accumulation, if every open ball around a, no matter how small, contains

at least one point of A, which is di�erent from a. If a non-empty set A contains all

of its points of accumulation, then we call A closed.

DEFINITION A.25 (Borel σ-Algebra) Let R be the collection of all σ-algebras containing Section 2.2.1

all open intervals of R, then the intersection of these σ-algebras, written as: σ-algebra (828)

B(R) def=
⋂

R, (A.74)

is denoted as the Borel σ-algebra generated by all open intervals of R. The elements
of B(R) are called the Borel sets of real numbers.

As one can see by means of the construction of B(R), all open intervals belong to

B(R), and since B(R) is a σ-algebra, all open sets|as countable union of open intervals- Countability (827)

|are Borel sets. With open sets, closed sets as complements of open sets are also Borel

sets, etc. Since each countable set is a countable union of closed intervals of the form

[a, a], a ∈ R, countable sets are as well Borel sets. Similarly we can argue for half-

open and closed intervals, they are all Borel sets since it holds: [a, b) = {a} ∪ (a, b) and

[a, b] = {a}∪(a, b)∪ {b}. In particular N,Z and Q are the Borel sets of natural, integer and

rational numbers. It is easily seen, that the set of irrational numbers|as the complement

of Q|is also a Borel set.

EXAMPLEA.24 (The Borel σ-algebras: B([0, 1]),B([a, b]),B([a, b]n), andB(Rn)) Similar
to the De�nition of the Borel σ-algebra B(R), we de�ne the Borel σ-algebras B([0, 1]),

B([a, b]), B([a, b]n),and B(Rn), as the σ-algebras generated by all open intervals of

[0, 1], [a, b], [a, b]n as well as Rn. They play, in particular, a central role in our Section 2.4.2

further considerations about random variables and random vectors. Section 2.4.3

REMARK A.12 The de�nition of the Borel σ-algebra is very exible; as long as we

start with all intervals of a particular type, these collections generate the same Borel

σ-algebra.

As σ-algebras may normally not be indicated by directly writing down their ele-

ments, they are often de�ned by indicating a so-called generator. In the case of the

Borel σ-algebra the set of open subsets O ⊂ R has pointed out as the generator, which

means that B(R) may be regarded as the smallest σ-algebra generated by open subsets

O ∈ O using ∪,∩ and complement operations.

Another important notion useful for understanding the concept of a measure, is the Measure (79)

mathematical construct of an open cover.

DEFINITIONA.26 (Open Cover) In mathematics, an open cover of a set A is a collection Section 2.2.1
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FIGURE A.23: OPEN COVER. An open cover of a closed 2-dimensional set by a finite set
of open circles with different radii.

of open sets {Oi|i ∈ I}, I ⊆ N, such that A is a subset of the union of Oi, that is:

A ⊆
⋃
i∈I

Oi. (A.75)

For an illustration of an open cover, see Figure A.23.

EXAMPLE A.25 (Open and Closed Sets, as well as Open Covers) Let us consider the setSection 7.2

of primes, a subset of the real numbers. It is easily seen, that this set is not open in

R, because all balls around a prime, with radius smaller then 1, contains no other

prime. On the other side, the set of primes is closed, because the set has no points

of accumulation, which implies, that it contains all of its points of accumulation.

According to the de�nition above, the set of primes is closed. We can cover the set

of primes by open intervals of the form (p− ε, p+ ε), where p is a prime and ε is a

positive real number.

An other interesting example is the set U =
⋃
n∈N

(
n,n+ 1

n

)
, i.e. a countableSection 7.2

union of open intervals of the real line. As countable union of open sets, U is open.

U is not closed, because U does not contains any of its points of accumulation, which

are given by the set
{
n,n+ 1

n

∣∣n ∈ N
}
. Obviously a cover for U can be constructed via

the countable union of open intervals of the form
(
n− 1

n
, n+ 2

n

)
, n ∈ N, see Figure

A.24.

SEQUENCES IN METRIC SPACES. If we now declare, as consequence of the norm on the

linear normed space (S, ‖ · ‖), a real valued function ∆S on S× S with

∆S(x, y)
def
= ‖x− y‖ for all x, y ∈ S, (A.76)

then ∆S clearly satis�es the characteristics of a metric, where a metric is de�ned as a∆ (851)
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FIGURE A.24: AN OPEN SET WITH ASSOCIATED OPEN COVER. The set
U =

⋃
n∈N

(
n, n + 1

n

)
from Example A.25 with an associated open cover.

distance function ∆S de�ned on the space S, that is:

∆S : S× S→ R≥0 (A.77)

with

∆S(x, y) ≥ 0, x, y ∈ S. (A.78)

In addition to non-negativity and symmetry, that is, ∆S(x, y) ≥ 0 and ∆S(x, y) =

∆S(y, x) a metric also satis�es the triangle inequality ∆S(x, z) ≤ ∆S(x, y) + ∆S(y, z), and

the uniqueness ∆S(x, y) = 0⇔ x = y, where x, y, z ∈ S.

SEQUENCES. Obviously, ‖x− y‖ describes the distance between two elements of S. Thus,

a linear normed space equipped with the metric ∆S as its distance function, (S, ‖ · ‖)
permits the de�nition of the limit of a sequence (xn)n∈N of elements of S. This in turn

implies, that the sequence (xn)n∈N converges towards x, which must not be an element

of S. This behavior of a sequence is symbolized by xn → x and must be read as follows: Section 2.1.1

∀ ε > 0, ε ∈ R, there exists an index N(ε), such that ‖xn − x‖ < ε,∀n ≥ N(ε). Another, Section 2.1.5

more informal way of declaring this behavior could be: Pick any positive number ε, then

the sequence (xn)n∈N is said to converge towards x, if it is always possible to make the

di�erence between xn and x smaller than ε by choosing n large enough, larger than some

number N.

REMARK A.13 Clearly it is possible to de�ne di�erent norms over a linear space, each

of which also induces a di�erent topology, thus providing us with various di�erent

de�nitions of the size and distance of elements or of the convergence of sequences of

elements out of S.

EXAMPLE A.26 (Convergence Behavior of Monte Carlo Methods) As we will see in more

detail in a later chapter the convergence behavior of Monte Carlo methods for evalu- Chapter 6
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FIGURE A.25: CONVERGENCE BEHAVIOR OF MONTE CARLO METHODS. The more
work is put in a Monte Carlo algorithm, the smaller is the resulting error. Although we
will always be able to improve the result, we newer exactly reach it in general. Due to the

convergence behavior of O
(
1√
n

)
quadrupling the work of the algorithm will only halve the

error.

ating integrals is of order O
(
1√
n

)
, for this see Figure A.25. This statement means,

that quadrupling the work of the algorithm will only halve the error. As easily seen,

the sequence xn = 1√
n
converges towards 0, since

∣∣∣ 1√
n

∣∣∣ < ε, ∀n ≥ N(ε), if N(ε) = 1
ε2

Section 6.4

holds and | · |, the absolute value of a real number, represents the norm on R. As a
result, we conclude: The more work is put in a Monte Carlo algorithm, the smaller is

the resulting error. Although we will always be able to improve the result, we newer

exactly reach it in general.

CONTINUITY. In physics, many natural phenomena will be modeled by quantities, whichC(Λ) (28)

may be represented by continuous functions. Informally, a real valued function can be

declared to be continuous, if it is possible to draw the graph of the function without

lifting one's pen. With this intuitive de�nition, a function is discontinuous, if its graph

has a break or if it is an interrupted curve, perhaps unbounded at some points of its

domain.

Now, for our subsequent work, this intuitive de�nition of continuity is insu�cient.

Therefore, we need a de�nition of continuity, that agrees with our intuition and which is

also robust enough to be used in all mathematical situation.

DEFINITION A.27 (Continuity of a Function) Let f be a function de�ned on a metric

space (S, ∆S) with values in another metric space (T, ∆T). The function f is called

continuous at a point x0 ∈ S, if for any positive real number ε, there exists a positive

real number δ, such that ∀ x ∈ S holds:

∆S(x, x0) < δ ⇒ ∆T(f(x), f(x0)) < ε, (A.79)
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FIGURE A.26: CONTINUOUS AND DISCONTINUOUS REAL VALUED FUNCTIONS. Two
countinuous and a discontinuous functions. The discontinuous functions has a break in its
graph. Note, the function in the center image is continuous, although it has a singularity,
i.e., an infinite value at the point x0 = 0.

that is,

‖x− x0‖S < δ ⇒ ‖f(x) − f(x0)‖T < ε. (A.80)

If the function f is continuous at every point x0 of a set A ⊂ S, then f is said to

be continuous on A.

EXAMPLE A.27 The Dirichlet function from Example A.8 is one of the most famous Dirichlet Function (836)

discontinuous functions in mathematics. To show this, we assume x0 be an irrational

number. Independent of a horizontal ε-strip around 0, there is no choice of δ, such

that in the vertical δ-strip around x0 there are only irrational numbers. Obviously,

the same argument holds for the continuity at a point x0 ∈ Q and a horizontal δ-strip

around 1.

A.4 A BIT OF DIFFERENTIAL CALCULUS

Calculus is the �eld in mathematics that is focused on the discussion of limits, in�nite

series, functions, derivatives, and integrals. It can be partitioned into two major branches,

di�erential calculus and integral calculus.

Since it plays a central role in our further discussions, we repeat in this section the

well known concept of the derivative from di�erential calculus and discuss classical inte-

gral calculus shortly in the following section.
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DERIVATIVES. In particular in Chapter 3, we will often encounter mathematical notations

of the form

d

dµ(x)
Φ,

d

dx
Φ,

dΦ

dµ(x)
, or

dΦ

dx
, (A.81)

the so-called Leibniz notation of di�erential calculus. They all symbolize the mathemat-

ical construct of a derivative.

The derivative of a function at a point is a way of interpreting the small-scale behavior

of this function near that point. It provides information about the change of a quantity in

response to changes in some other quantity. With respect to the notations from Equation

(A.81), a quotient like dΦ
dx

means, that a �nite, measurable di�erence ∆Φ = Φ(x+∆x) −

Φ(x) of a quantity Φ is to be divided by a di�erence ∆x in some other quantity.

The derivative of the function Φ with respect to x is then described by the process

of continuously shrinking down the quantities ∆Φ and ∆x until they are immeasurably

small, mathematically this can be expressed by:

dQ(x)

dx

def
= lim

∆x→0
∆Q

∆x
. (A.82)

Even if the denominator on the right in the above equation goes to zero, the quotient

will not be increased but will be remain �nite, as the numerator also shrinks down.

Since derivatives are in�nitesimally small quantities, they don't play an important

role in practice. In practice one measures �nite amount of or change in some physical

quantity, such as ∆Φ and divides by a �nite amount of or change of the other quantity ∆x.

The smaller the quantity in the denominator can be made the better will be the quality

of the measurement [127, McCluney 1994].

DEFINITION A.28 (Derivative) Let f be a function de�ned on an open interval ]a, b[⊂ ROpen Interval (829)

with values in R and h ∈ R. Provided, that the limit(
d

dx
f

)
(x0)

def
= lim

h→0
f(x0 + h) − f(x0))

h
(A.83)

exists for any x0 ∈]a, b[, then we call it the derivative of f at point x0.

Obviously, the derivative d
dx
f is a function whose domain is the set of all points

x ∈]a, b[ where the limit from Equation (A.83) exists.

PARTIAL DERIVATIVE. Now, the most functions that we are encounter in our discussions

on light transport problems, such as the radiometric quantities, are not functions of aChapter 3

single variable, but functions of several variables. With respect to the derivative of these

functions, we are mainly interested in their partial derivatives.[174, Rudin 1998]

A partial derivative of a function of several variables is its derivative with respect to

one of its variables, where all other variables as treated as constant.
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DEFINITION A.29 (Partial Derivative) Let f be a function de�ned on an open set E ⊂ Rn
with values in R and h ∈ R. Furthermore let (e1, . . . , en) be the basis of Rn. Provided, Basis (857)

that the limit Open Set (864)(
∂

∂xi
f

)
(x0)

def
= lim

h→0
f(x0 + hei) − f(x0))

h
(A.84)

= lim
h→0

f(x01 , . . . , x0i + h, . . . x0n) − f(x01 , . . . , x0n)

h
. (A.85)

exists, then
(
∂
∂xi
f
)
(x0) is called the ith partial derivative of f at point x0.

REMARK A.14 If we choose s = 1 in the above de�nition, then De�nition A.29 also

covers the derivative of a real-valued function of a single variable, thus(
d

dx
f

)
(x)

def
= lim

h→0
f(x0 + h) − f(x0)

h
(A.86)

Partial derivatives play a fundamental role in vector calculus and di�erential geome-

try.

DIRECTIONAL DERIVATIVE. An other type of a derivative of functions of several variables is

the directional derivative. It represents the instantaneous rate of change of the function

with respect to the direction of a given vector. Obviously, the directional derivative

generalizes the concept of the partial derivative, which can be interpreted as a direction

derivative in one of the coordinate axes.

DEFINITION A.30 (Directional Derivative) Let α ∈ R, ω be a vector and x a point from

Rn. Let furthermore f be a function de�ned on an open set E ⊂ Rn with values in Open Set (864)

R, then the directional derivative of f in direction ω is de�ned as:

∂

∂α
f(x+ αω)

∣∣∣
α=0

def
=

〈(
∂

∂x1
f, . . . ,

∂

∂xn
f

)
, (ω1, . . . ,ωn)

〉
, (A.87)

where 〈·, ·〉 is the standard inner product of Rn. Inner Product (859)

When deriving the integral form of the stationary particle transport equation, we need Section 4.1.3

the concept of the directional derivative in the special case n = 3. Here the directional

derivative is given by

∂

∂α
f(x+ αω)

∣∣∣
α=0

def
=

〈(
∂

∂x1
f,
∂

∂x2
f,
∂

∂x3
f

)
︸ ︷︷ ︸

∇ f

, (ω1,ω2,ω3)

〉
(A.88)

= 〈∇ f,ω〉, (A.89)

whereas ∇f is called the gradient of f. Gradient (53)
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THE JACOBIAN MATRIX. All functions considered until now in this section were mappings

into the real numbers. Let us now study the local change of real, vector-valued functions

with images in the Euclidean space Rr. The derivative of such functions, including also theRr (830)

one-dimensional case, are described by the Jacobian matrix, often also shortly called theMatrix (853)

Jacobian. The Jacobian is a matrix, whose coe�cients are given by the partial derivatives

of all component functions of a vector-valued function.

DEFINITION A.31 (The Jacobian Matrix) Let f be a vector-valued function de�ned on

an open set E ⊂ Rn with values in Rr. Furthermore let (e1, . . . , en) and (e′1, . . . , e
′
r)Open Set (864)

be the bases of Rn and Rr, the components of the r-dimensional function f are givenBasis (857)

by the real-valued functions f1, . . . , fr, whereas it holds:

f(x) =

r∑
i=1

fi(x) e
′
i. (A.90)

Provided, that the limits (
∂

∂xj
fi

)
1≤i≤r,1≤j≤n

, (A.91)

exists, then we de�ne the Jacobian of f by:

Jf(x0)
def
=

(
∂

∂xj
fi

)
1≤i≤r,1≤j≤n

(A.92)

=


∂
∂x1

f1(x0)
∂
∂x2

f1(x0) · · · ∂
∂xn

f1(x0)
∂
∂x1

f2(x0)
∂
∂x2

f2(x0) · · · ∂
∂xn

f2(x0)
...

...
...

...
∂
∂x1

fr(x0)
∂
∂x2

fr(x0) · · · ∂
∂xn

fr(x0)

 , (A.93)

that is, we de�ne the Jacobian as the matrix of all partial derivatives.

In Monte Carlo integration we encounter again and again the problem of sampling

random variables distributed according to density functions that can be computed via theRandom Variable (168)

transformation of known probability distributions. A typical example in this context is theProbability Distribution (80)

transformation of uniformly on [0, 1]2 distributed random variables to random variablesUniform Distribution (180)

which are uniformly distributed on the unit circle or the unit sphere. Such a process needs

the computation of the Jacobian for the polar coordinate transformation.

EXAMPLE A.28 (The Polar Coordinate Transformation) Let us consider the function f

that maps the polar coordinates (r, θ) to the Cartesian coordinates (x, y), it is given

by:

f : [0,∞)× [0, 2π)→ R2 (A.94)
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with

(r, θ) 7→ f(r, θ)
def
= (x, y) (A.95)

= (r cos θ, r sin θ). (A.96)

Due to De�nition A.31 the Jacobian Jf is given by:

Jf =

(
d
dr
x d

dθ
x

d
dr
y d

dθ
y

)
(A.97)

=

(
d
dr
r cos θ d

dθ
r cos θ

d
dr
r sin θ d

dθ
r sin θ

)
(A.98)

=

(
cos θ −r sin θ

sin θ r cos θ

)
. (A.99)

Another interesting example is the spherical coordinate transformation, it is not only

important for the representation of directions (r, θ, φ) as points (x, y, z), but it plays also

an important role in our sampling theory.

EXAMPLE A.29 (The Spherical Coordinate Transformation) Let us consider the function

f that maps the spherical coordinates (r, θ, φ) to the Cartesian coordinates (x, y, z),

it is given by:

f : [0,∞)× [0, π]× [0, 2π)→ R3 (A.100)

with

(r, θ, φ) 7→ f(r, θ, φ)
def
= (x, y, z) (A.101)

= (r sin θ cosφ, r sin θ sinφ, r cos θ). (A.102)

Due to De�nition A.31 the Jacobian Jf is given by:

Jf =


d
dr
x d

dθ
x d

dφ
x

d
dr
y d

dθ
y d

dφ
y

d
dr
z d

dθ
z d

dφ
z

 (A.103)

=


d
dr
r sin θ cosφ d

dθ
r sin θ cosφ d

dφ
r sin θ cosφ

d
dr
r sin θ sinφ d

dθ
r sin θ sinφ d

dφ
r sin θ sinφ

d
dr
r cos θ d

dθ
r cos θ d

dφ
r cos θ

 (A.104)

=

 sin θ cosφ r cos θ cosφ −r sin θ sinφ

sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0

 . (A.105)
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THE JACOBIAN DETERMINANT. Considering real, vector-valued function from Rn to Rn,
then the Jacobian matrix is a square matrix, that means, we can build its determinant,

the so-called Jacobian determinant, often also simply denoted as the Jacobian. The

Jacobian determinant plays a central role when we transform a multidimensional integral

from one integration domain into another.

DEFINITION A.32 (The Jacobian Determinant) Let f be a vector-valued function de�ned

on an open set E ⊂ Rn with values in Rn. Provided, that the limitsOpen Set (864) (
∂

∂xj
fi

)
1≤i≤n,1≤j≤n

, (A.106)

exist, then we de�ne the Jacobian determinat of f by:

det (Jf(x))
def
= det

(
∂

∂xj
fi

)
1≤i≤n,1≤j≤n

. (A.107)

EXAMPLE A.30 Obviously, for the Jacobian determinant of the Jacobian matrix Jf
from Example A.28 we have

det (Jf) = r cos
2 θ+ r sin2 θ = r (A.108)

and for the Jacobian determinant of the Jacobian matrix Jf from Example A.29 we

get:

det (Jf) = r2 sin θ. (A.109)

A.5 A FIRST ENCOUNTER WITH THE LEBESGUE INTEGRAL
AND MONTE CARLO INTEGRATION

Integrals are not only of importance for evaluating the length of curves, the area of sur-

faces, and the volume of n-dimensional abstract mathematical constructs or for solving

di�erential equation, but they also provide the basis for describing many laws of nature

by means of integral equations.

Now, in mathematics there exists many di�erent types of integrals. The two most

relevant are the Riemann integral, known from school, and the Lebesgue integral, which

is the notion of integral in functional analysis and modern mathematics. Applied to com-

putation of lengths, areas, and volumes, we will detect nearly no di�erence between the

two types of integrals, except in advanced applications particularly with regard to func-

tional analysis. Because the Lebesgue integral is more general and powerful as the ordinary

Riemann integral, it is used as the fundamental basis of the theory of integral equations,

which we need for a deeper understanding of the equations describing the global illumi-

nation problem.
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This section serves as a review of the well-known concept of the Riemann integral

as well as a �rst short encounter with the Lebesgue integral. We start in this section

by motivating the integral as the area of a region between the graph of a function over a

given integration domain. We will speak about integration domains|in particular those

used in the integral equations of global illumination theory|and we will make some re- Section 2.3

marks about the historical development of the integral. That is, we present the way from

Cauchy's de�nition of the integral to the integral notion by Lebesgue, which is of partic-

ular interest for us. Afterwards, we demonstrate on low-level the di�erences between the

two widely-used types of integrals: the Riemann and the Lebesgue integral and we will Section 2.2.4

conclude the section with a short insight into the world of Monte Carlo integration, where Chapter 6

probabilistic approaches were used for the numerical solution of integrals.

AREAS AND INTEGRATION DOMAINS. In mathematics the integral of a real-valued,

continuous function f over the integration domain [a, b] is denoted by Continuous Function (869)

∫b
a

f(x) dx. (A.110)

This integral has an elementary geometrical meaning, in that it describes the area

of the region in the xy-plane bounded by the function f, the x-axis and the vertical lines

x = a and x = b. In multivariable calculus, it is shown, that the choice of intervals as

domains of integrals is not mandatory. It is also possible to integrate functions of several

variables over regions other than intervals on the real line, for example over bounded or Bounded Set (862)

unbounded areas in the xy-plane, volumes in R3, or higher dimensions.

In the following, we are interested in domains of integrals, which occur in so-called

integral equations, as we will introduced them in the �rst chapter in form of the render- Rendering Equation (400)

ing and the radiosity equation. The integration domains of these integrals are always of Radiosity Equation (782)

a special kind. Instead o� to integrate over a simple interval or an area, often we have to

evaluate an integral over Cartesian products of subsets of R2 and the unit sphere as well

as the upper or lower hemisphere.
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BOX A.4 (Integration Domains)

A common problem in computer graphics is the computation of the flux of any kind of stuff

through a surface patch coming from or going in a given range of directions. As we will see

in Chapter 3, we can solve this problem by computing the particles, which go out or come

from any direction of the lower or upper hemisphere over any point on the patch.

Mathematically, this can be formulated as an integral over an integration domain, which

can be constructed via the Cartesian product of the surface patch A and
[
0, π
2

]
× [0, 2π) or[

π
2
, π
]
× [0, 2π), that is, A×

[
0, π
2

]
× [0, 2π) and A×

[
π
2
, π
]
× [0, 2π) respectively.

Due to our notation from Box (A.3) we can formulate the integration domains over a

surface patch A and the upper or lower hemisphere, centered around a surface point s, in

the future as:

A×H2+(s) ≡ A×
[
0,
π

2

]
× [0, 2π) (A.111)

and

A×H2−(s) ≡ A×
[π
2
, π
]
× [0, 2π). (A.112)

SOME HISTORICAL REMARKS TO INTEGRATION THEORY. Augustin-Louis Cauchy can be

considered as the intrinsic founder of the concept of the integral. Based on Cavalieri's

and Fermat's approaches, Cauchy formulated a constructive de�nition of the integral of

any arbitrary function, which is continuous on a closed interval [a, b] ⊂ R. FormingContinuous Function (869)

a partition a = x0 < x1 < . . . < xn = b of the integration domain with equidistant

subintervals [xi−1, xi], i = 1, . . . , n, Cauchy's idea was to take the left endpoints of the

subinterval [xi−1, xi] and considering the limit of the sum

lim
n→∞

n∑
i=0

f(xi−1)(xi − xi−1). (A.113)

If the limit of these sum exists, he called it the integral of f over the integration

domain [a, b].

Based on Cauchy's procedure, Bernhard Riemann asked the question: "In which

cases is a function integrable and in which it is not integrable?" resulting in a weaker

requirement than Cauchy's requirement of continuity. Riemann showed, that Cauchy's

integral exists, if the function f is bounded on [a, b], for this see Figure A.27. InformallyBounded Function (863)

spoken, a function f is Riemann-integrable on [a, b], if and only if f does oscillate large

only on very small sets. Until today, the Riemann integral, de�ned as the limit of the

upper and lower Riemann-Darboux integral∫b
a

f(x) dx
def
=

∫b
a

f(x) dx =

∫b
a

f(x) dx, (A.114)
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FIGURE A.27: CAUCHY’S AND RIEMANN’S CONSTRUCTION OF THE INTEGRAL.
Left Cauchy’s definition of the integral restricted to continuous functions. On the
right, Riemann’s definition of the integral—as the limit of the upper and lower Rieman-
Darboux integral—based on a weaker requirement than Cauchy’s requirement of continuity.

where the corresponding Riemann-Darboux integrals are given by:

∫b
a

f(x) dx
def
= lim

n→∞
n∑
i=1

sup
x∈[xi−1,xi]

f(x) (xi − xi−1) (A.115)

∫b
a

f(x) dx
def
= lim

n→∞
n∑
i=1

inf
x∈[xi−1,xi]

f(x) (xi − xi−1), (A.116)

is the most widely-used integral notion in mathematics.

It were Camille Jordan and Emile Borel, which introduced as the �rst, the concept

of the measure in the theory of integration. Contrary to the previous investigations in Measure (79)

integration theory, they partitioned an interval [a, b] in so-called measurable sets instead Measurable Set (80)

of subintervals. With its strict description of a measure, �nally Emile Borel clears the

way to the introduction of a new type of integral, which is more universally valid as the

common Riemann integral: the Lebesgue integral. Lebesgue Integral (105)

Resulting from a constructive process based on countably in�nite covers, the Lebesgue Countable Inifinite Set (827)

integral, named after the french mathematician Henri Lebesgue, can be seen as the result Cover (865)

of the fusion of the mathematical concepts of measure and integration.
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BOX A.5 (The Flux Through a Surface Patch Formulated as Lebesgue Integral)

As we will see later, the flux through any patch M can be computed via:∫
M×H2+(s)

L(x, ω)dµ(x, ω) =

∫
M

(∫
H2+(s)

L(x, ω)dσ⊥(ω)

)
dµ(x) (A.117)

and in case of integration over the lower hemisphere, it holds:∫
M×H2−(s)

L(x, ω)dµ(x, ω) =

∫
M

(∫
H2−(s)

L(x, ω)dσ⊥(ω)

)
dµ(x). (A.118)

In the equations above, already we use the notation of the Lebesgue integral. Here dµ and
dσ⊥ denote so-called measures. As we will see in Section 2.2, the notion of the measure
will be fundamental in derivating the Lebesgue integral, which we will present in Section
2.2.4.

SHORT REVIEW: RIEMANN VS LEBESGUES INTEGRAL. The Lebesgue integral is the typeLebesgue Integral (105)

of integral used in modern mathematics, which makes it possible to de�ne lengths, areas,

and volumes in arbitrary abstract measure spaces. In the special case of real numbers, theMeasure Space (80)

Lebesgue integral, based on the Lebesgue measure, represents a real generalization of the

ordinary Riemann integral.

Contrary to the Riemann integral, which is de�ned by the limit of the area of a

sequence of step functions, the Lebesgue integral is based on the limit of the area of aSequence of Functions (30)

sequence of simple functions. Graphically this means: the Riemann integral can be visu-Simple Function (839)

alized by vertical strips of the area under the graph of a function, the Lebesgue integral

by horizontal strips of the area under the graph of a function, for this, see the �gures in

Box (A.6).
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BOX A.6 (Riemann Integral vs Lebesgues Integral)

Let (S, ‖ · ‖) be a linear, normed space. The Riemann integral of a real-valued function

f is based on the idea of splitting the integration domain S ⊂ S into a finite number

n of subdomains, where the k-th subdomain has the area measure ∆xi = ‖xi − xi−1‖,
and then considering so-called Riemann-sums of the form limn→∞∑n

i=1 f(ξi) ∆xi with

ξi ∈ [xi−1, xi] ∫
S

f(x)dx
def
= lim

n→∞
n∑
i=1

f(ξi) ∆xi. (A.119)

In contrast to the Riemann integral, the Lebesgues integral of a function f is based not on

the idea by further subdivisons of the integration domain, but by refining the approximation of

f by very simple functions, i.e. by functions that take on a finite number of values. Provided,

that we have no problems with the subsets Mi on which the functions take their constant

values, the integral of f can be approximated by a sum of the form limn→∞∑n
i=1 yi dµi,

where dµi
def
= µ(f−1(Mi)) denotes the measure of the subdomain Mi:∫

S

f(x)dµ(x)
def
= lim

n→∞
n∑
i=1

yi dµi. (A.120)

A SHORT PREVIEW TO MONTE CARLO INTEGRATION. Monte Carlo integration is a technique Chapter 6

for the approximate evaluation of de�nite, multidimensional integrals. A Monte Carlo

algorithm evaluates the integrand at randomly chosen points of the integration domain.

Summing up this values provides us|in dependance of the number of randomly points|a

good approximation of the proper value of the integral.
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BOX A.7 (Monte Carlo Integration)

Let f(x) be a 1D function, which we wish to integrate over a 1-dimensional domain [a, b],

i.e., ∫
[a,b]

f(x)dx. (A.121)

The basic idea behind Monte Carlo integration, detailed discussed in Chapter 6, is

to evaluate this integral by computing the mean value of f(x) over the intervall [a, b], and

then multiply this mean by the area of the intervall (b−a). For this purpose we generate N

independent and uniformly distributed random variables X1, X2, . . . , XN in [a, b] and average

the values of f(x) at this N locations. This gives:

FN
def
= (b − a)

1

N

N∑
i=1

f(Xi), (A.122)

where FN is called the Monte Carlo estimator of the intergral. Inceasing the number of

samples, N, this estimator becomes more accurate and in the limit we will find that it holds:

lim
N→∞ FN =

∫
[a,b]

f(x)dx. (A.123)

The drawback of Monte Carlo integration is its slow convergence. As we will see in

Section 6.4, the convergence rate of Monte Carlo integration ist 1√
N

, i.e., to halve the error

we must quadruple the number of samples.

Let us show with the help of a simple example how Monte Carlo integration works. For

that purpose, we compute the following 1D integral via 6 independent, uniformly distributed

random variables Xi, drawn from [−1, 1], we get:∫
[−1,1]

e−x
2

dx =⇒ F6
def
=
1

2

6∑
i=1

e−X
2
i . (A.124)

1 1 1 1  1 1 

1 1 1 1 1 1
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B LIST OF SYMBOLS

For radiosity methods we suggest [36, Cohen & Wallace 1993], [13, Ashdown 1994], and

[190, Sillion & Puech 1994], they can be classi�ed as the standard works about radios-

ity. While [13, Ashdown 1994] quali�es for beginners, which are not familiar with the

mathematics behind the global illumination equations, the other two require a deeper

mathematical background for their comprehension.

C REFERENCE LITERATURE AND FURTHER READ-
ING

The appendix can be considered as a preparatory section for Chapter 2. It was written for

the reader unfamiliar with calculus or basic linear algebra. Here, we present, in a short

manner, the most important concepts from these areas. For the reader who is interested in

a low-level introduction into these �elds, we also recommend the undergraduate textbooks

[120, Lang 1968], [121, Lang 1987] and Schaum's outline series [201, Spiegel 1995]. There

is an endless list of literature which deals with calculus and linear algebra, such as: [18,

Barner & Flohr 19989], [17, Barner & Flohr 1991], [110, K�onig 1984], [173, Rudin 1976],

[174, Rudin 1998], [2, Amann & Escher 1998], [3, Amann & Escher 1999], [4, Amann &

Escher 2001] and [112, Kowalsky 1979].
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GLOSSARY

L, radiance... 25

σ, solid angle measure... 25

name beschreibung... 25
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- BASIS FUNCTION, 149
- ILLUMINATION EQUATION, 7
- ILLUMINATION MODEL, 5
- ILLUMINATION PROBLEM, 6
- REFLECTANCE DISTRIBUTION FUNCTION,

472
GONIREFLECTOMETER, 345
GRADIENT

- OPERATOR, 53
GRDF, 472
GROUP

- ABELEAN, 824
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HALF JITTERED

- SAMPLING, 563
HALTON

- SEQUENCE, s-DIMENSIONAL, 614
- SEQUENCE, SCRAMBLED, 621

HAMMERSLEY

- POINT SET, s-DIMENSIONAL JITTERED,
620

- POINT SET, SCRAMBLED, 621
- POINTSET, s-DIMENSIONAL, 616

HELMHOLTZ

- RECIPROCITY, 331
HEMICUBE

- METHOD, 784
HEMISPHERE

- LOWER, 831
- SAMPLING, 528
- SAMPLING, UNIFORM, 520
- UPPER, 831

HEMISPHERICAL

- DIRECTIONAL REFLECTANCE, 338
HENYEY-GREENSTEIN

- PHASE FUNCTION, 380
HESSE

- NORMAL EQUATION, 829
HEURISTIC

- BALANCE, 577
- CUTOFF, 578
- MAXIMUM, 579
- POWER, 578

HILBERT

- SPACE, 36
HIT-MISS

- METHOD, 525
HOMOGENEOUS

- MARKOV CHAIN, 226
- INTEGRAL EQUATION, 127

IDEAL

- POINT LIGHT SOURCE, 50
ILLUMINATION

- MODEL, GLOBAL, 5

- MODEL, LOCAL, 4
- DIRECT, 410
- EQUATION, GLOBAL, 7
- INDIRECT, 410
- MODEL, LAMBERT, 350

IMAGE

- MEASURE, 169
- OF AN OPERATOR, 817

IMAGINARY PART

- OF A COMPLEX NUMBER, 810
IMPORTANCE, 416

- EMITTED, 414
- INCIDENT, 414
- INVARIANCE, 415
- PROPAGATION OPERATOR, VACUUM, 452
- SAMPLING, 547
- SCATTERING OPERATOR, 453
- TRANSPORT EQUATION, STATIONARY, VAC-

UUM, 413
- TRANSPORT OPERATOR, 455

IN-SCATTERING, 284
INCIDENT

- FUNCTION, 48
- IMPORTANCE, 414
- LIGHT TRANSPORT VACUUM EQUATION,

3-POINT, 406
- LIGHT TRANSPORT VACUUM EQUATION,

SPHERICAL, 405
- RADIANCE, 251

INDEPENDENT

- RANDOM VARIABLE, 204
- RANDOM VECTOR, 204

INDEX

- REFRACTION, 374
INDIRECT

- ILLUMINATION, 410
INEQUALITY

- CAUCHY-SCHWARTZ, 841
INFIMUM, 844
INHOMOGENEOUS

- INTEGRAL EQUATION, 127
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INITIAL

- DISTRIBUTION, 228
INJECTIVE

- OPERATOR, 822
INNER PRODUCT, 841

- SPACE, 841
INTEGRABLE

- LEBESGUE, 105
- RIEMANN, 858

INTEGRAL

- LEBESGUE, 105
- CONTOUR, 785
- EQUATION, 1st, 127
- EQUATION, 2nd, 127
- EQUATION, 3rd, 127
- EQUATION, FREDHOLM, 127
- EQUATION, FREDHOLM, 2nd KIND, 127
- EQUATION, VOLTERRA, 127
- EQUATION, HOMOGENEOUS, 127
- EQUATION, INHOMOGENEOUS, 127
- EQUATION, LINEAR, 127
- FORM, PARTICLE TRANSPORT EQUATION,

STATIONARY, 294
- OPERATOR EQUATION, ADJOINT, 132
- OPERATOR EQUATION, LINEAR, 131
- OPERATOR, INVERSE, 135
- OPERATOR, LINEAR, 130
- PATH, FORMULATION, 470
- PATH, FORMULATION, VACUUM, 466
- SUBSTITUTION, METHOD OF SUCCESSIVE,

582
INTEGRATION

- QUASI-MONTE CARLO, 611
INTEGRO-DIFFERENTIAL FORM

- STATIONARY, PARTICLE TRANSPORT EQUA-
TION, 286

- STATIONARY PARTICLE TRANSPORT EQUA-
TION, 287

INTENSITY

- RADIANT, 267
INTERIOR POINT, 846

INTERVAL, 811
- CLOSED, 811
- ELEMENTARY, 623
- HALF-OPEN, 811
- OPEN, 811

INVARIANCE

- IMPORTANCE, 415
- RADIANCE, 253

INVARIANT

- TRANSLATION, 68
INVERSE

- SQUARE LAW, 268
- VECTOR, 824

INVERSION

- METHOD, 509
INVERTIBLE

- OPERATOR, 822
IRRADIANCE, 257
ISOTROPIC

- WARD BRDF, 369
- PHASE, FUNCTION, 380

ITERATION

- GAUSS-SEIDEL, 158
- JACOBI, 155
- METHOD, 62

JACOBI

- ITERATION, 155
JACOBIAN, 854, 856

- DETERMINANT, 856
- MATRIX, 854

JITTERED

- SAMPLING, 563
JOINT

- CDF, 184
- CUMULATIVE DISTRIBUTION FUNCTION,

184
- DISCRETE CDF, 187
- DISCRETE CUMULATIVE DISTRIBUTION FUNC-

TION, 187
- DISCRETE DISTRIBUTION FUNCTION, 187
- DISTRIBUTION FUNCTION, 184
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- PROBABILITY DISTRIBUTION, 184
- PROBABILITY MEASURE, 184

KERNEL, 127
- MARKOV, 234, 236
- SURFACE, SCATTERING, 287
- TRANSITION, 234, 236
- VOLUME SCATTERING, 284

LAMBERTIAN

- BRDF, 349
- ILLUMINATION, MODEL, 350
- REFLECTOR, 325, 349

LATIN HYPERCUBE

- SAMPLING, 562
LAW

- LAMBERT’S COSINE, 258
- INVERSE SQUARE, 268
- REFLECTION OF, 300
- STRONG, OF LARGE NUMBERS, 216
- WEAK, OF LARGE NUMBERS, 214

LEBESGUE

- AREA MEASURE, 82
- INTEGRABLE, 105
- INTEGRABLE, FUNCTION, 105
- INTEGRAL, 105
- MEASURABLE, 74
- MEASURABLE FUNCTION, 97
- MEASURABLE SET, 75
- MEASURE, ON R, 75, 77
- MEASURE, ON Rn, 82
- MEASURE, OUTER, 73
- SPACE, 107

LEGENDRE

- POLYNOMIALS, 124
LENS

- PERTURBATION, 725
LHS, 562
LIGHT

- PATH, 700
- PROPAGATION OPERATOR, 442
- PROPAGATION OPERATOR, SURFACE, 440

- PROPAGATION OPERATOR, VACUUM, 430
- PROPAGATION OPERATOR, VOLUME, 441
- SCATTERING OPERATOR, 432, 445
- SCATTERING OPERATOR, SURFACE, 444
- SCATTERING OPERATOR, VOLUME, 444
- SOURCE AMBIENT, 391
- SOURCE AREA, 51
- SOURCE, DIRECTIONAL, 389
- SOURCE, POINT IDEAL, 50
- SOURCE, SPOT, 390
- TRACING, PURE, 694
- TRANSPORT EQUATION, STATIONARY, 295
- TRANSPORT EQUATION, STATIONARY, IN-

CIDENT RADIANCE, 296
- TRANSPORT EQUATION, STATIONARY, PAR-

TICIPATING MEDIUM, 394
- TRANSPORT OPERATOR, 434
- TRANSPORT OPERATOR, EQUATION, 434,

448
- TRANSPORT OPERATOR, PARTICIPATING

MEDIA, 447
- TRANSPORT VACUUM EQUATION, 3-POINT,

402
- TRANSPORT VACUUM EQUATION, EXI-

TANT, 3-POINT, 405
- TRANSPORT VACUUM EQUATION, EXI-

TANT, SPHERICAL, 403
- TRANSPORT VACUUM EQUATION, INCI-

DENT, 3-POINT, 406
- TRANSPORT VACUUM EQUATION, INCI-

DENT, SPHERICAL, 405
- TRANSPORT VACUUM EQUATION, SPHER-

ICAL, 398
LIMIT

- FUNCTION, 30
LINEAR

- FUNCTIONAL, 55
- BOUNDED FUNCTIONAL, 56
- COMBINATION, 839
- COMBINATION, R3, 825
- DEPENDANCE, R3, 825
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- INTEGRAL EQUATION, 127
- MAPPING, 834, 835
- NORMED SPACE, 842
- OPERATOR, 53
- OPERATOR ADJOINT, 60
- OPERATOR SELF-ADJOINT, 60
- OPERATOR, BOUNDED, 55
- OPERATOR, INTEGRAL, 130
- OPERATOR, PROJECTION, 58
- SPACE, 824, 836
- SPACE, Rn, 837
- SUBSPACE, 837

LOCAL

- BASIS FUNCTION, 149
- ILLUMINATION MODEL, 4

LORENZ-MIE

- SCATTERING, 384
LOW-DISCREPANCY

- POINT SET, 611
- POINT SET, JITTERED, 619
- SEQUENCE, 611

LOWER

- BOUND, 844
- HEMISPHERE, 831

MAPPING

- LINEAR, 834, 835
- PHOTON, 729

MARGINAL

- PMF, 188
- DENSITY, 194, 195

MARKOV

- CHAIN, 226
- CHAIN MONTE CARLO, 533
- CHAIN, DISCRETE-TIME, 226
- CHAIN, HOMOGENEOUS, 226
- KERNEL, 234, 236
- PROPERTY, 207
- PROCESS, DISCRETE, 236

MASKING, 365
MASS

- FUNCTION, CONDITIONAL DISCRETE PROB-
ABILITY, 207

- FUNCTION, PROBABILITY, 171
- FUNCTION, PROBABILITY JOINT, 185

MATRIX, 835
- JACOBIAN, 854
- RADIOSITY, 769
- TRANSITION, 229
- VECTOR PRODUCT, 834
- STOCHASTIC, 229

MAXIMUM, 844
- HEURISTIC, 579

MCMC, 533
MEAN SQUARE ERROR, 500
MEASURABLE

- LEBESGUE, 74
- FUNCTION, 97
- FUNCTION, BOREL, 97
- FUNCTION, LEBESGUE, 97
- SET, 80
- SET, LEBESGUE, 75
- SPACE, 80

MEASURE, 79
- σ-FINITE, 80
- DIRAC, 79
- LEBESGUE ON R, 75
- LEBESGUE, AREA, 82
- LEBESGUE, ON R, 77
- LEBESGUE, ON Rn, 82
- LEBESGUE, OUTER, 73
- ABSOLUT CONTINUOUS, 80
- COMPLETE, 80
- CONDITIONAL PROBABILITY, 205
- CONTINUOUS PATH MEASURE, 461
- CONTINUOUS PATH MEASURE, EXTENDED,

468
- COUNTING, 81
- DISCRETE, 81
- FINITE, 80
- JOINT PROBABILITY, 184
- OUTER, 73
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- PARTICLE SPACE, 244
- PATH SPACE, 462
- PATH, CONTINUOUS, 461
- PATH, CONTINUOUS, EXTENDED, 468
- PRODUCT, 81
- SOLID ANGLE, 87
- SOLID ANGLE, PROJECTED, 88
- SPACE, 80
- THROUGHPUT, 94

MEASUREMENT

- CONTRIBUTION FUNCTION, 464
- EQUATION, 416

MESH

- FINITE ELEMENT, 146, 147
METHOD

- GALERKIN, 144
- NYSTRÖM, 141
- COLLOCATION, 141
- DART-THROWING, 529
- FINITE BASIS, 141
- HEMICUBE, 784
- HIT-MISS, 525
- INVERSON, 509
- ITERATION, 62
- OF SUCCESSIVE INTEGRAL SUBSTITUTION,

582
- PROJECTION, 141
- QUADRATURE, 139
- RELAXATION, 155
- TRANSFORMATION, 507
- WEIGHTED RESIDUAL, 800

METRIC, 848
- IN R3, 833
- SPACE, 848
- SPACE, R3, 833

MICROFACET, 361
- DISTRIBUTION FUNCTION, 368

MINIMUM, 844
MODEL

- ILLUMINATION, GLOBAL, 5
- ILLUMINATION, LOCAL, 4

- BLINN-PHONG, 357
- BLINN-PHONG, ILLUMINATION, 357
- COOK-TORRANCE, 368
- PHONG, 353
- PHONG, ILLUMINATION, 354
- ILLUMINATION, LAMBERT, 350

MOMENT

- 2nd, 201
MONOTONIC, 68
MONTE CARLO

- MARKOV CHAIN, 533
- ESTIMATOR, 489
- ESTIMATOR, BIAS, 497
- ESTIMATOR, CONSISTENT, 497
- ESTIMATOR, COST, 543
- ESTIMATOR, PRIMARY, 490
- ESTIMATOR, SECONDARY, 490
- ESTIMATOR, UNBIASED, 497
- INTEGRATION

- CONVERGENCE, 506
- INTEGRATION, QUASI, 611
- LIGHT TRACING, PURE, 694

MSE, 500
MULTI-CHAIN

- PERTURBATION, 727
MULTIPLE

- IMPORTANCE SAMPLING, 573
- SAMPLE ESTIMATOR, 573

MULTIPLICATION

- SCALAR, 824
MUTATION

- BIDIRECTIONAL, 724

NEUMANN

- SERIES, 135
NEXT EVENT

- ESTIMATION, 594
NODAL

- POINTS, 147
NODES, 147
NORM, 842

- R3, 828
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- Lp, 107
- EUCLIDEAN, 828
- LINEAR SPACE, R3, 828
- OPERATOR, 56
- SUPREMUM, 33

NORMAL

- DISTRIBUTION, 217, 506
- EQUATION, HESSE, 829
- OF A PLANE, 829

NULL

- SET, 71, 80
NUSSELT ANALOG, 92

ONE-TO-ONE

- OPERATOR, 822
OPEN

- COVER, 847
- INTERVAL, 811
- SET, 846

OPERATOR, 817
- BIJECTIVE, 822
- COMPACT, 58
- DEGENERATED, 53
- DIFFERENTIAL, 53
- DOMAIN, 817
- EQUATION LIGHT TRANSPORT, 434, 448
- EQUATION, ADJOINT INTEGRAL, 132
- EQUATION, LINEAR INTEGRAL, 131
- EVALUATION, 54
- GRADIENT, 53
- IMAGE, 817
- IMPORTANCE PROPAGATION, VACUUM,

452
- IMPORTANCE SCATTERING, 453
- IMPORTANCE TRANSPORT, 455
- INJECTIVE, 822
- INTEGRAL, INVERSE , 135
- INTEGRAL, LINEAR, 130
- INVERTIBLE, 822
- KERNEL, 130
- LIGHT PROPAGATION, 442
- LIGHT PROPAGATION, SURFACE, 440

- LIGHT PROPAGATION, VACUUM, 430
- LIGHT PROPAGATION, VOLUME, 441
- LIGHT SCATTERING, 432, 445
- LIGHT SCATTERING, SURFACE, 444
- LIGHT SCATTERING, VOLUME, 444
- LIGHT TRANSPORT, 434
- LIGHT TRANSPORT, PARTICIPATING ME-

DIA, 447
- LINEAR, 53
- LINEAR, ADJOINT, 60
- LINEAR, BOUNDED, 55
- LINEAR, EQUATION, 61
- MULTIPLICATION, 54
- NORM, 56
- ONE-TO-ONE, 822
- PROJECTION, LINEAR, 58
- PROJECTION, ORTHOGONAL, 58
- RANGE, 817
- SELF-ADJOINT, LINEAR, 60
- SOLUTION, 436
- SURJECTIVE, 822

OPTICAL

- DISTANCE, FUNCTION, 292
- THICKNESS, 293

ORTHOGONAL, 841
- ARRAY, 565
- ARRAY, SAMPLING, 565
- COMPLEMENT, 842
- PROJECTION OPERATOR, 58

ORTHOGONALITY, 37, 841
- R3, 828

ORTHONORMAL

- BASIS, 37
- BASIS, FINITE DIMENSIONAL, 843
- BASIS, OF R3, 829
- SET, 843

OUT-SCATTERING, 284
- COEFFICIENT, 285

OUTER

- LEBESGUE MEASURE, 73
OWEN
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- SCRAMBLING, 628

PARALLELOGRAM

- RULE, 824
PARAMETER

- ASYMMETRY, 379
PARTIAL

- DERIVATIVE, 853
PARTICLE

- SPACE, 244
- SPACE MEASURE, 244
- SPACE SOURCE FUNCTION, 282
- TRANSPORT EQUATION STATIONARY, IN

INTEGRO-DIFFERENTIAL FORM, 287
- TRANSPORT EQUATION, STATIONARY, IN

INTEGRO-DIFFERENTIAL FORM, 286
- TRANSPORT EQUATION, STATIONARY, IN-

TEGRAL FORM, 294
- TRANSPORT EQUATION, STATIONARY, INTEGRO-

DIFFERENTIAL FORM, 286
PATH

- ABSORPTION, FUNCTION, 292
- EYE, 700
- INTEGRAL, FORMULATION, 470
- INTEGRAL, FORMULATION, VACUUM, 466
- LIGHT, 700
- MEASURE, CONTINUOUS, 461
- MEASURE, CONTINUOUS, EXTENDED, 468
- SPACE, 461
- SPACE, EXTENDED, 468
- SPACE, MEASURE, 462

PDF, 179
- CONDITIONAL, 209

PERTURBATION, 725
- CAUSTIC, 726
- LENS, 725
- LENS, SUBPATH, 727
- MULTI-CHAIN, 727

PHASE

- FUNCTION, 376
- FUNCTION, HENYEY-GREENSTEIN, 380
- FUNCTION, RAYLEIGH, 384

- FUNCTION, SCHLICK, 383
- FUNCTION, ISOTROPIC, 380

PHONG

- BRDF, 353
- ILLUMINATION MODEL, 354
- MODEL, 353

PHOTON

- MAP, 733
- MAPPING, 729
- POWER, 730
- TRACING, 730

PINHOLE

- CAMERA, 417
PIXEL

- EQUATION, 419
- FILTERING, 493

PLANE

- EUCLIDEAN, 812
- COMPLEX, 813
- NORMAL, 829

PMCLT, 694
POINT

- ACCUMULATION, 847
- BOUNDARY, 846
- INTERIOR, 846
- LIGHT SOURCE, IDEAL, 50
- LIGHT, VIRTUAL, 753
- SET, HAMMERSLEY, s-DIMENSIONAL, JIT-

TERED, 620
- SET, LOW-DISCREPANCY, 611
- SET, LOW-DISCREPANCY, JITTERED, 619

POINTWISE

- CONVERGENT, 31
POISSON-DISK

- HEMISPHERE-SAMPLING, 530
- SAMPLING, 529, 630

POLAR

- COORDINATES, 814
POLYNOMIALS

- LEGENDRE, 124
- SPACE OF DEGREE n− 1, 837
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POWER

- HEURISTIC, 578
- PHOTON, OF A, 730
- RADIANT, 249
- SET, 810

PRE-HILBERT

- SPACE, 36
PRECOMPUTED

- RADIANCE, TRANSFER, 347
PROBABILITY

- ABSORPTION, 681
- ACCEPTANCE, 540
- ACCEPTANCE FUNCTION, 540
- CONDITIONAL, 205
- DENSITY FUNCTION, 176, 179, 189, 486
- DENSITY FUNCTION, CONDITIONAL, 209
- DISCRETE, FUNCTION, CONDITIONAL, 207
- DISTRIBUTION OF A RANDOM VARIABLE,

169
- DISTRIBUTION, JOINT, 184
- MASS FUNCTION, 171
- MASS FUNCTION, JOINT, 185
- MEASURE, CONDITIONAL, 205
- MEASURE, JOINT, 184
- SPACE, 80, 163
- SPACE, CONTINUOUS, 165
- SPACE, DISCRETE, 163
- TRANSITION, 226

PROBLEM

- DUAL, 65
- FIXPOINT, 62
- GLOBAL ILLUMINATION, 6

PROCESS

- MARKOV, DISCRETE, 236
- STOCHASTIC, 219
- STOCHASTIC, CONTINUOUS, 219
- STOCHASTIC, DISCRETE, 219

PRODUCT

- CARTESIAN, 811
- CROSS, 832
- INNER, 841

- INNER, R3, 827
- MATRIX-VECTOR, 834
- MEASURE, 81
- MEASURE SPACE, 81
- VECTOR, 832

PROJECTION

- METHOD, 141
- OPERATOR, LINEAR, 58
- OPERATOR, ORTHOGONAL, 58

PROPAGATION

- OPERATOR SURFACE, LIGHT, 440
- OPERATOR VACUUM, IMPORTANCE, 452
- OPERATOR VACUUM, LIGHT, 430
- OPERATOR VOLUME, LIGHT, 441
- OPERATOR, LIGHT, 442

PROPERTY

- ν-ALMOST EVERYWHERE, 101
PRT, 347

QUADRATURE

- METHOD, 139
QUASI

- MONTE CARLO INTEGRATION, 611

RADIANCE, 250
- EXITANT, 251
- INCIDENT, 251
- INVARIANCE, 253
- TRANSFER, PRECOMPUTED, 347

RADIANT

- ENERGY, 248
- INTENSITY, 267
- POWER, 249

RADICAL-INVERSE

- FUNCTION, 612
RADIOSITY, 264

- EQUATION, CLASSICAL, 766
- INTEGRAL EQUATION, CLASSICAL, 764
- MATRIX, 769

RADON-NIKODÝM

- THEOREM, 176
RANDOM
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- VARIABLE, 168
- VARIABLE, n-VARIATE, 183
- VARIABLE, CONTINUOUS, 168
- VARIABLE, DISCRETE, 168
- VARIABLE, I.I.D, 490
- VARIABLE, INDEPENDENT, 204
- VARIABLE, UNIFORMLY DISTRIBUTED, 180
- VECTOR, 183
- VECTOR, INDEPENDENT, 204
- VECTOR, UNIFORMLY DISTRIBUTED, 191
- WALK, 220, 226

RANGE

- OF AN OPERATOR, 817
RAY, 11

- CASTING, 641
- CASTING FUNCTION, 47, 48
- SHADOW, 14, 598
- SPACE, 44
- SPACE , IN A VACUUM, 44
- SPACE , IN PARTICIPATING MEDIA, 44
- TRACING, CLASSIC, WHITTED-STYLE, 646
- TRACING, RECURSIVE, 647

RAYLEIGH

- PHASE FUNCTION, 384
REAL PART

- OF A COMPLEX NUMBER, 810
REFLECTANCE

- FRESNEL, 309
- DIRECTIONAL-DIRECTIONAL, 338
- DIRECTIONAL-HEMISPHERICAL, 332, 338
- DISTRIBUTION FUNCTION, GLOBAL, 472
- EQUATION, 321
- GENERALIZED, 336
- HEMISPHERICAL-DIRECTIONAL, 338

REFLECTION, 300
- COEFFICIENT, SPECULAR, 353
- DIFFUSE, IDEAL, 303
- EQUATION, 321
- IDEAL DIFFUSE, 325
- LAW OF, 300
- MODEL, SPECULAR, 120

- SPECULAR, IDEAL, 300
- TOTAL, INTERNAL, 310

REFLECTOR

- LAMBERTIAN, 349
REFRACTION, 305

- INDEX, 374
- SPECULAR, IDEAL, 305

REJECTION METHOD, 525
RELATION, 816

- EQUIVALENCE, 816
- REFLEXIVE, 816
- SYMMETRIC, 816
- TRANSITIVE, 816

RELAXATION

- METHOD, 155
RENDERING

- EQUATION, 400
RESIDUAL

- FUNCTION, 144
- WEIGHTED, METHOD, 800

RETRO-REFLECTIVE, 304
RIEMANN

- INTEGRABLE, 858
RMSE, 505
ROOT MEAN SQUARE

- ERROR, 505
ROULETTE

- RUSSIAN, 680
ROW

- SUM CRITERION, STRONG, 160
RULE

- PARALLELOGRAM, 824
RUSSIAN

- ROULETTE, 200, 680

SAMPLE

- ESTIMATOR, MULTIPLE, 573
- SPACE, 163

SAMPLING

- N-ROOKS, 562
- BRDF, DIFFUSE, 550
- POISSON-DISK, 529, 630
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- POISSON-DISK HEMISPHERE, 530
- ACCEPTANCE-REJECTION, 525
- COSINE-WEIGHTED, 519
- FUNCTION, 629
- HALF JITTERED, 563
- HEMISPHERE, 528
- HEMISPHERE, UNIFORM, 520
- IMPORTANCE, 547
- JITTERED, 563
- LATIN HYPERCUBE, 562
- MULTIPLE IMPORTANCE, 573
- ORTHOGONAL, ARRAY, 565
- STRATIFIED, 554, 556
- UNIFORM DISK, 524

SCALAR, 824
SCATTERING, 284

- LORENZ-MIE, 384
- EQUATION, SUBSURFACE, 319
- IN, 284
- KERNEL, VOLUME, 284
- OPERATOR SURFACE, LIGHT, 444
- OPERATOR VOLUME, LIGHT, 444
- OPERATOR, IMPORTANCE, 453
- OPERATOR, LIGHT, 432, 445
- OUT, 284
- SUBSURFACE, 314

SCHLICK

- PHASE, FUNCTION, 383
SELF-ADJOINT

- LINEAR OPERATOR, 60
SEQUENCE

- CAUCHY, 35
- HALTON, s-DIMENSIONAL, 614
- LOW-DISCREPANCY, 611
- UNIFORMLY DISTRIBUTED, 608
- VAN DER CORBUT, 613
- VAN DER CORBUT, GENERAL, 613
- ZAREMBA, s-DIMENSIONAL, 617

SERIES

- NEUMANN, 135
SET, 808

- BOUNDED, 844
- CLOSED, 846
- COMPLEMENT, 809
- DIFFERENCE, 809
- DISJOINT, 809
- ELEMENT, 808
- EMPTY, 808
- FUNCTION, 819
- INTERSECTION, 808
- MEASURABLE, 80
- MEASURABLE, LEBESGUE, 75
- MEMBER, 808
- NULL, 71, 80
- OPEN, 846
- POWER, 810
- UNION, 808

SHADOW

- RAY, 14, 598
SIMPLE

- FUNCTION, 821
SLTE, 394
SLTEV

- 3-POINT, 402
- EXITANT RADIANCE, 3-POINT, 405
- EXITANT RADIANCE, SPHERICAL, 403
- INCIDENT RADIANCE, 3-POINT, 406
- INCIDENT RADIANCE, SPHERICAL, 405
- SPHERICAL, 398

SOLID ANGLE, 83
- DIFFERENTIAL, 87
- DIFFERENTIAL, PROJECTED, 88
- MEASURE, 87
- MEASURE, PROJECTED, 88

SOLUTION

- OPERATOR, 436
SPACE

- Lp, 107
- BANACH, 35
- EUCLIDEAN, 812
- HILBERT, 36
- LEBESGUE, 107
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- COMPLETE, LINEAR NORMED, 35
- DUAL, 56
- FUNCTION, 28
- INNER PRODUCT, 841
- INNER PRODUCT, R3, 827
- LINEAR, 824, 836
- LINEAR NORMED, 842
- LINEAR, Rn, 837
- MEASURABLE, 80
- MEASURE, 80
- METRIC, 848
- METRIC, R3, 833
- NORMED LINEAR, R3, 828
- OF POLYNOMIALS OF DEGREE n− 1, 837
- PARTICLE, 244
- PATH, 461
- PATH, EXTENDED, 468
- PRE-HILBERT, 36
- PROBABILITY, 80, 163
- PROBABILITY, CONTINUOUS, 165
- PROBABILITY, DISCRETE, 163
- PRODUCT MEASURE, 81
- RAY, IN A VACUUM, 44
- RAY, IN PARTICIPATING MEDIA, 44
- SAMPLE, 163
- STATE, 219
- TANGENT, 829
- VECTOR, 824

SPECTRAL

- POWER DISTRIBUTION, 28, 40
SPECTRUM

- FOURIER, 114
SPECULAR

- BRDF, 325
- BRDF, IDEAL, 321
- REFLECTION COEFFICIENT, 353
- REFLECTION, IDEAL, 300
- REFLECTION, MODEL, 120
- REFRACTION, IDEAL, 305

SPHERE

- LOWER AND UPPER, 831

- UNIT, 831
SPHERICAL

- SLTEV, 398
- SLTEV, EXITANT RADIANCE, 403
- SLTEV, INCIDENT RADIANCE, 405
- COORDINATES, 814
- HARMONIC BASIS FUNCTIONS, 124
- LIGHT TRANSPORT VACUUM EQUATION,

EXITANT, 403
- LIGHT TRANSPORT VACUUM EQUATION,

INCIDENT, 405
SPOT

- LIGHT SOURCE, 390
SPTE, 287
STANDARD DEVIATION, 213
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- BEST APPROXIMATION, 38
- CENTRAL LIMIT, 217
- ERGODIC, 535
- TRANSFORMATION, 117

THICKNESS

- OPTICAL, 293
THROUGHPUT

- MEASURE, 94
TRACING

- PHOTON, 730
- RAY CLASSIC, WHITTED-STYLE, 646
- RAY RECURSIVE, 647

TRANSFER

- RADIANCE, PRECOMPUTED, 347
TRANSFORM

- FOURIER, 113
- FOURIER, INVERSE, 113

TRANSFORMATION

- METHOD, 507
- THEOREM, 117

TRANSITION

- FUNCTION, TENTATIVE, 540
- KERNEL, 234, 236
- MATRIX, 229
- PROBABILITY, 226

TRANSLATION

- INVARIANT, 68
TRANSMITTANCE

- FRESNEL, 309
- GENERALIZED, 340

TRANSMITTED

- BRDF, 330
- BTDF, IDEAL, 328

TRANSPORT

- OPERATOR EQUATION, LIGHT, 434, 448
- OPERATOR, IMPORTANCE, 455



922 INDEX

- OPERATOR, LIGHT, 434
- OPERATOR, LIGHT, PARTICIPATING ME-

DIA, 447
TREE

- kD, 739

UNBIASED

- MONTE CARLO ESTIMATOR, 497
UNIFORM

- DISTRIBUTION, 180
- DISTRIBUTION CIRCLE, 192
- DISTRIBUTION ON [a, b]s, 191
- SAMPLING, HEMISPHERE, 520
- SAMPLING, DISK, 524

UNIFORMLY

- DISTRIBUTED RANDOM VARIABLE, 180
- DISTRIBUTED RANDOM VECTOR, 191
- DISTRIBUTED SEQUENCE, 608

UNIT

- SPHERE, 831
- VECTOR, 829

UNIVERSE, 808
UPPER

- BOUND, 844
- HEMISPHERE, 831

USE OF EXPECTED VALUES, 544

VAN DER CORPUT

- SEQUENCE, 613
- SEQUENCE, GENERAL, 613

VARIABLE

- RANDOM, n-VARIATE, 183
VARIANCE

- RANDOM VARIABLE, 201
- RANDOM VECTOR, 201
- REDUCTION TECHNIQUES, 543

VARIATES

- ANTITHETIC, 567
- CONTROL, 552

VARIATION

- IN SENSE OF HARDY AND KRAUSE, 608
VECTOR, 823

- ADDITION, 823
- INVERSE, 824
- ORTHONORMAL, 829
- PRODUCT, 832
- RANDOM, 183
- SPACE, 824
- STARTING, 153
- UNIT, 829

VENN DIAGRAM, 809
VIRTUAL

- POINT LIGHT, 753
VISIBILITY

- FUNCTION, 45
VOLTERRA

- INTEGRAL EQUATION, 127
VOLUME

- EMISSION FUNCTION, 295
- SCATTERING KERNEL, 284

VORONOI

- DIAGRAM, 558, 619
VPL, 753

WALK

- RANDOM, 220, 226
WARD

- BRDF, 369
- BRDF, ANISOTROPIC, 370
- BRDF, ISOTROPIC, 369

WEAK LAW OF LARGE NUMBERS, 214
WEIGHTED

- RESIDUAL METHOD, 800

ZAREMBA

- SEQUENCE s-DIMENSIONAL, 617


	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Realistic Rendering
	A Bit about Local and Global Illumination
	The Global Illumination Problem
	Ray Tracing - A First Deterministic Approach for Solving the Global Illumination Problem

	Functional Analytical Approaches for Solving the Global Illumination Problem
	The Neumann Series Approach
	A Finite Element Approach

	Monte Carlo Ray Tracing and Radiosity Methods for Solving the Light Transport Equations
	Monte Carlo Path Tracing - A Probabilistic Approach Based on the Neumann Series
	The Radiosity Method — A Finite Element Approach


	Mathematical Foundations of Realistic Rendering
	Principles of Functional Analysis 
	Linear Function Spaces
	The Scene Model in Rendering Algorithms
	Ray Spaces and Function Spaces on Rays 
	Linear Operators and their Adjoints 
	Linear Operator Equations
	Adjoint Equations

	A Bit of Measure and Integration Theory
	An Intuitive Approach to the Lebesgue Measure on R
	General Measures
	Measurable Functions
	The Lebesgue Integral and the Lp Spaces
	The Lebesgue Integral in Global Illumination Theory

	Linear Integral Equations
	Linear Integral Operator Equations
	Adjoint Integral Equations
	Analytical Approaches and Numerical Methods for Solving Integral Operator Equations of the 2nd Kind
	Analytical Approaches for Solving Integral Operator Equations of the 2nd Kind
	The Neumann Series Approach
	The Method of Successive Substitution

	Numerical Methods for Solving Integral Operator Equations of the 2nd Kind
	Quadrature Method
	Finite Basis and Projection Methods
	The Finite Element Method for Solving Fredholm Integral Equations of the Second Kind
	Solution Methods for Linear Systems of Equations 
	Direct Methods for Solving Linear System of Equations 
	Iterative Methods for Solving Linear Systems of Equations 




	The Most Important Concepts from Probability Theory
	Probability Spaces
	Random Variables and Distribution Functions
	Random Vectors and Distribution Functions
	Expected Value and Variance of a Random Variable
	Conditional Probability 
	The Laws of Large Numbers and the Central Limit Theorem
	Stochastic Processes
	Discrete-time Markov Chains
	Discrete-time Markov Processes


	Reference Literature and Further Reading

	Radiometry and a Little Bit of Photometry
	Abstract Particles vs Photons
	Radiant Power
	Radiance
	Irradiance
	Radiosity
	Radiant Intensity
	A Little Bit of Photometry
	Reference Literature and Further Reading

	Mathematical Formulations of Stationary Light Transport
	Particle and Light Transport in Participating Media and in a Vacuum
	The Stationary Particle Transport Equation in Integro-differential Form
	The Stationary Particle Transport Equation in Integral Form
	The Stationary Light Transport Equation in Integral Form

	Bidirectional Distribution Functions
	Principles of Geometric Optics as Basis for Bidirectional Distribution Functions
	Interaction of Light with Various Materials
	Reflection of Light
	Refraction of Light

	The Mathematical Model of the Bidirectional Reflectance-Distribution Function
	Subsurface Scattering and the BSSRDF
	Scattering at Object Surfaces, the BRDF and the BTDF
	Physical Properties of BRDF and BTDF, and the Concepts of Reflectance and Transmittance
	Measurements and Representations of BRDFs
	BRDF Models
	Idealized BRDF Models
	Phenomenological BRDF Models
	Physical-based or Physics-inspired BRDF Models
	BRDF Models Based on Measured Data


	Bidirectional Scattering Distribution Function
	Phase Functions

	Light Sources
	The Stationary Light Transport in Participating Media and in a Vacuum
	The Stationary Light Transport Equation in Participating Media
	The Stationary Light Transport Equation in a Vacuum
	Formulations of the SLTEV Based on Exitant and Incident Radiance
	Direct and Indirect Illumination Formulation of the SLTEV


	The Importance Transport Equation in a Vacuum
	The Measurement Equation
	Reference Literature and Further Reading

	Mathematical Models of Light and Importance Transport
	Operator Models for Light Transport
	An Operator Model for Light Transport in a Vacuum
	The Light Propagation and the Light Scattering Operator in a Vacuum
	The Light Transport Operator Equation in a Vacuum

	An Operator Model for Light Transport in Participating Media
	The Light Propagation and the Light Scattering Operator in Participating Media
	The Light Transport Operator Equation in Participating Media


	An Operator Model for Importance Transport in a Vaccum
	The Importance Propagation and the Importance Scattering Operator in a Vacuum
	The Importance Transport Operator Equation in a Vacuum

	Four Basic Transport Operator Models of Light Transport in a Vacuum
	The Path Integral Model of Light Transport
	The Path Integral Model of Light Transport in a Vacuum
	The Path Integral Model of Light Transport in Participating Media

	The Global Reflectance Distribution Function
	Reference Literature and Further Reading

	Monte Carlo Integration
	Motivating Integration via Monte Carlo Methods
	Approximating Integrals via Deterministic Methods
	Asymptotic Approximations
	Multiple Quadrature Rules

	The Curse of Dimensionality

	The Integral as Expected Value of a Continuous Random Variable
	Monte Carlo Estimators
	Convergence of the Monte Carlo Integration 
	Sampling
	The Transformation Method
	Acceptance-Rejection Sampling
	MCMC - Markov Chain Monte Carlo
	Mathematical Foundations of Markov Chain Monte Carlo
	M(RT)2 - Metropolis Sampling


	Variance Reduction Techniques
	Use of Expected Values
	Importance Sampling
	Control Variates
	Stratified Sampling
	Latin Hypercube Sampling
	Jittered Sampling
	Orthogonal Array Sampling
	Antithetic Variates
	Multiple Importance Sampling
	The Glossy Highlights Problem
	Combining Sampling Techniques
	Weighting Heuristics


	Monte Carlo Integration and Fredholm Integral Equations of the 2nd Kind
	A Monte Carlo Approach Based on the Method of Successive Integral Substitution
	A Monte Carlo Approach Based on the Neumann Series Approach
	A Probabilistic Approach Based on a Discrete Markov Process
	Next Event Estimation

	Reference Literature and Further Reading

	Quasi-Monte Carlo Integration
	Discrepancy
	Low-discrepancy Point Sets and Low-discrepancy Sequences
	The Classical Constructs: Halton Sequence and Hammersley Point Set
	Scrambling
	(t, m, s)-Nets and (t,s )-Sequences
	Randomized (t,m,s)-Nets and (t,s)-Sequences

	Fourier Analysis
	Reference Literature and Further Reading

	The Classic Rendering Algorithms Based on the Principle of Ray Tracing
	Heckbert's Path Notation Based on Regular Expressions
	Ray Casting
	Classic Whitted-style Ray Tracing
	Distribution Ray Tracing
	Solving the SLTEV via Distributing Rays
	Classic Distribution Ray Tracing
	Sampling More Dimensions: Pixels, Lens and Time
	Pixel Sampling: Antialiasing
	Sampling the Lens of a Camera: Depth of Field
	Sampling the Shutter Open Time: Motion Blur


	Reference Literature and Further Reading

	Markov Process Based Rendering Algorithms
	Monte Carlo Path Tracing
	Pure-Monte Carlo Path Tracing
	Monte Carlo Path Tracing with Next Event Estimation

	Monte Carlo Light Tracing
	Pure-Monte Carlo Light Tracing
	Monte Carlo Light Tracing with Next Event Estimation

	Bidirectional Path Tracing
	Generating and Estimating Transport Paths
	The Path Reuse Stage and the Multiple Sample Estimator

	Metropolis Light Transport
	The Metropolis Light Transport Algorithm
	Mutation Strategies

	The Photon-Mapping Concept
	Photon Tracing
	Radiance Estimate and Preparing the Photon Map for Rendering
	The Rendering Pass
	Evaluating the Scattering Term for Computing Direct Illumination
	Evaluating the Scattering Term for Computing Indirect Specular and Glossy Illumination
	Evaluating the Scattering Term for Computing Caustics
	Evaluating the Scattering Term for Multiple Diffuse Scattering


	Instant Global Illumination
	Reference Literature and Further Reading

	Finite Element Methods Based Rendering Algorithms
	The Classical Radiosity Formulation
	From the SLTEV to the Classical Radiosity Integral Equation
	Discretizing the Classical Radiosity Integral Equation
	The Classical Form Factors
	Properties of the Classical Form Factors
	Characterizing the Classical Form Factor Solutions
	Closed Form Solutions for Form Factors
	Numerical Solutions for Form Factors
	Hemisphere Sampling for Differential-to-Finite-Area Form Factors
	Area Sampling for Differential-to-Finite-Area and Finite-to-Finite-Area Form Factors



	Solving the Classical Discrete Radiosity Equation
	Direct Methods
	Relaxation Methods


	The Finite Element Radiosity Approach
	The Radiosity Pipeline
	Ray Tracing vs Radiosity
	Reference Literature and Further Reading

	Appendix
	Simple Useful Mathematical Concepts from Linear Algebra and Calculus
	Sets and Functions
	The Euclidean Space R3 as a First Simple Example of a Linear Space
	Abstract Linear Spaces
	A Bit of Differential Calculus
	A First Encounter with the Lebesgue Integral and Monte Carlo Integration

	List of Symbols
	Reference Literature and Further Reading

	Bibliography

