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Summary

In an online uni-directional conversion problem, an online player wants to convert
an asset D to a desired asset Y . The objective of the player is to obtain the
maximum amount of the desired asset. Competitive analysis is used as a tool for
the design, and analysis of online algorithms for conversion problems. Although
widely used, competitive analysis has its own set of drawbacks when the applica-
bility of online algorithms in real world is considered. In this work, we investigate
online uni-directional conversion problems with the objective to suggest measures
for improving the applicability of online conversion algorithms in real world. The
work is based on four different aspects, each examining online conversion problems
with a different perspective.

First we investigate the use of competitive ratio as a coherent risk measure. In
the last decade coherent measures of risk meeting a set of four desirable properties
gained considerable importance. It is deemed important for a risk measure to be
coherent in order to be in line with the basic risk paradigms and thus used in
practice. We discuss competitive ratio as a risk measure and show that it can be
used in practice as it satisfies all the required properties of a coherent measure of
risk.

Secondly, we evaluate a selected set of online algorithms on the real world data
to highlight the gap between theoretically guaranteed and experimentally achieved
competitive ratio. In order to avoid the data snooping bias, we also use artificial
data generated using the bootstrap procedure. From the experimental study, we
observe a wide gap between theoretically guaranteed and experimentally achieved
performance. The algorithms perform much better on the real world data as the
worst case inputs are not (frequently) observed in real world.

The third aspect of the study deals with generating synthetic data that are true
representation of all possible scenarios. It was found in the experimental study that
although bootstrap can be used to generate artificial data sets, the procedure fails
to replicate all possible scenarios such as market crashes. The bootstrap procedure
omits the extreme values as outliers and the worst cases are not represented in the
resultant synthetic data. In order to generate the test instances that have the
ability to replicate all possible scenarios, we suggest the use of Extreme Value
Theory (EVT) approach. Using EV T approach, we generate synthetic data and

iii



iv

execute a selected set of non-preemptive uni-directional online algorithms on it.
In the fourth and final part, we propose risk aware non-preemptive algorithms

for uni-directional and bi-directional conversion problems. The proposed algo-
rithms are flexible to accommodate the risk level of the online player whereas
guaranteeing a bounded worst case competitive ratio as well. We evaluate our al-
gorithms using the competitive analysis approach as well as testing the algorithms
on the real world data. We observe that risk aware algorithms perform better than
risk mitigating algorithms on the real world data.

The results are presented in the form of research papers and will help to improve
the applicability of online conversion algorithms in real world. We conclude the
work by discussing a number of open questions that will provide new directions
for future research.



Zusammenfassung

In einem Online-uni-directional-conversion-Problem, möchte ein Online-Spieler ein
Asset D in ein gewünschtes Asset Y konvertieren. Das Ziel des Spielers ist es, den
maximalen Wert des gewünschten Assets zu erhalten. Die competitive analysis
wird als Hilfsmittel verwendet, um Online-Algorithmen für Conversion-Probleme
zu entwerfen und zu analysieren. Obwohl die competitve analysis weit verbreitet
ist, besitzt sie mehrere Nachteile wenn ihre Anwendbarkeit auf Online-Algorithmen
in der realen Welt betrachtet wird. In dieser Arbeit werden wir online Uni-
directional-conversion-Probleme betrachten, mit dem Ziel, Kennzahlen zu erar-
beiten, um die Anwendbarkeit von Online-Conversion-Algorithmen in der realen
Welt zu verbessern. In einem ersten Schritt untersuchen wir die competitive ratio
als kohärentes Risikomaß und schließen, wenn es alle notwendigen Kohärenzax-
iome erfüllt wurden, dass die competitive ratio in der Praxis eingesetzt werden
kann. In einem zweiten Schritt evaluieren wir eine ausgewählte Menge an Online-
Algorithmen in der realen Welt. Außerdem werden die Daten gebootstrapped, um
den Unterschied zwischen der theoretisch garantierten und empirisch erreichten
competitive ratio. Der dritte Aspekt dieser Arbeit betrachtet das Generieren von
synthetischen Daten, welche alle möglichen Szenarien, wie beispielsweise einen
Marktcrash, repräsentieren. Wir empfehlen dafür den Einsatz der Extreme-Value-
Theorie (EVT). Mit der EVT generieren wir synthetische Daten und führen eine
ausgewählte Menge an nicht-präemptiven Uni-directionalen-Online-Algorithmen
über diesen aus. Der vierte Beitrag dieser Arbeit beinhaltet das Design und die
Analyse von risk-aware Reservationspreis-Algorithmen für Conversion-Probleme.
Die vorgeschlagenen Algorithmen können das Risikoniveau des Online-Spielers
aufnehmen und garantieren eine begrenzte Worst-Case-Competitive-Ratio. Wir
evaluieren unsere Algorithmen mit Hilfe des competitive-analysis-Ansatzes sowie
dem Testen der Algorithmen auf realen Daten. Die Resultate werden in Form
von Forschungsarbeiten präsentiert und helfen, die Anwendbarkeit von Online-
Conversion-Algorithmen in der realen Welt zu verbessern. Wir schließen die Arbeit
mit einer Diskussion über eine Reihe offener Fragen, welche neue Forschungsrich-
tungen für die Zukunft eröffnen.
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1
Introduction

With rapid development of information technology, new possibilities emerged for
individual as well as corporate business users. One such area which observed
considerable growth in the aftermath of digital outbreak is the electronic financial
market. The main objective of a financial market is to bring buyers and the sellers
closer [28, 29]. The introduction of high speed communication networks which
also proves to be highly reliable, has provided a novel marketplace for sellers and
buyers in the form of e-financial markets [29, 40]. An example of such venture
is Forex - Foreign Currency Exchange. In forex a player has a fixed amount of
currency D and wants to exchange it to a desired currency Y . The purpose of
the player may vary as she can do it for profit or for personal need. Irrespective
of the purpose, the objective of the player is to maximize the amount of Y . In
an e-commerce domain, the player is interested in the automation of the process
that is carried out without (or with minimum) human intervention. Thus the need
for an algorithm arises. In simple words, the player is interested to convert when
the exchange rate of D to Y is the highest. However, there are some real issues
that need to be considered when an algorithm is designed for the forex problem.
For example, the player (and therefore the algorithm) has no knowledge about the
future prices. Similarly, if the player rejects an exchange rate, she cannot revisit
the past and accept the exchange rate as the offer expires after a fixed interval of
time, i.e., all decisions are irrevocable.

Theoretical computer science answer to forex problem is in the form of online
algorithms [27]. Online algorithms are designed based on rigorous mathematical
proofs. The resultant algorithms are therefore guaranteed to be valid and are
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CHAPTER 1. INTRODUCTION 2

ensured to work as described. For the design of such algorithms, assumptions are
made. These assumptions are necessary as otherwise the mathematical formulation
of problems is not possible. If the assumptions are not valid, the results and proofs
are invalidated as well. A natural question thus arises “Can we circumvent the
assumptions?”. Unfortunately, the answer to the questions is not entirely to our
liking as assumptions are like “necessary evils”. We do not like them but we cannot
do away with them entirely either. For example, El-Yaniv et al. [27] assumed a
priori information about the minimum and the maximum offered price in order
to design an algorithm with bounded competitive ratio. The assumption seems
unrealistic, but without this assumption, it is not possible to derive an online
algorithm with bounded competitive ratio. Therefore, assumptions are important
to formulate a problem via a mathematical model which in turn provide a well
defined algorithm for the problem. The deviation of real world scenarios from
the assumed settings of model can render the results invalid. Thus a gap exists
between the formulation and solution of problems via mathematical models and
their application in real world.

We consider online conversion problem [27] - a generalization of forex. We
analyze the applicability of online algorithms in real world and discuss measures
to improve the adaptability of such algorithms in practice. In the following, we
present online conversion problem and discuss the various types of the problem.
We then proceed to present open questions and discuss our approach and the
obtained results.

1.1 Online Conversion Problem

An online conversion problem deals with the scenario of converting an asset D
into another asset Y with the objective to obtain the maximum amount of Y after
time T . The process can be repeated in both directions, i.e., converting asset D
into asset Y , and Y back to asset D. In a typical problem setting, on each day
t, the player is offered a price qt to convert D to Y , the player may accept the
price qt or may decide to wait for a better price. The game ends when the player
converts whole of the asset D to Y . The player is not restricted to maximize the
terminal wealth in form asset Y but she can also maximize the terminal wealth in
D. This allows the conversion from D to Y and Y back to D. Formally, we have
the following problem setting;
Problem Setting:
Consider a player who wants to convert an asset D into another asset Y . Assume
that the player starts with D0 = 1 and Y0=0. At each time t = 1, 2, . . . , T the
player is offered a price qt, and must immediately make an irrevocable decision
whether to accept the offered price qt or not. If the player decides to accept the
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price, she can convert a portion or the whole amount of asset D at the offered price
qt. The game ends when the player has converted D completely into Y . If there
is still some amount of asset D remaining on the last day T , it must be converted
at the last offered price qT which might be the worst (lowest) offered price.

Based on the objective of the player, a conversion problem is classified either
as uni-directional or bi-directional.

Definition 1.1 Uni-directional Conversion;
In a uni-directional conversion problem the online player is allowed to convert D
into Y only and conversion back from Y into D is forbidden. The online player may
either perform a max-search or min-search, depending on the objective function of
the player.

Max-search is synonym for selling, i.e., a profit maximization problem whereas
min-search refers to buying and can be classified as cost minimization problem.

Definition 1.2 Bi-directional Conversion;
In a bi-directional conversion problem the online player converts D into Y back
and forth with the objective to maximize the terminal wealth D.

A variety of online algorithms are proposed for conversion problem [16, 20, 21, 27,
36, 39, 47, 69]. These algorithms can broadly be categorized in two classes, based
on the amount of wealth st they invest at any given time t. The two classes are
non-preemptive and preemptive algorithms and are defined as follows;

Definition 1.3 Non-preemptive Algorithm;
Non-preemptive algorithm invests either none or all when offered a price qt, i.e.,
st ∈ {0, 1}.

Definition 1.4 Preemptive Algorithm;
Preemptive algorithm divides the wealth into small portions and based on pre-
defined criterion invests a portion of wealth when offered a price qt, i.e., st ∈ [0, 1].

Optimum offline algorithm is used as benchmark to measure the performance of
an online algorithm. Unlike an online algorithm, optimum offline algorithm OPT
knows the entire input sequence in advance and always makes an optimum decision.
Optimum offline algorithm is non-preemptive as it invests at one point of time.
The performance of an online algorithm is compared against the optimum offline
algorithm and the resultant ratio is called “competitive ratio”. Competitive ratio
is defined as following;

Definition 1.5 Let ON be an online algorithm for some maximization problem
P and I be the set of problem instances. Let ON(I) be the performance of ON on
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input sequence I and OPT (I) be the performance of optimum offline algorithm.
The algorithm ON is c-competitive if ∀I ∈ I

ON(I) ≥ 1

c
OPT (I). (1.1)

Online algorithms for conversion problems are designed with the objective to
achieve a lower competitive ratio [16, 20, 26, 27, 25, 39]. Despite the wide spread
use of competitive analysis as a standard tool for the design and analysis of online
algorithms for conversion problems, there is a considerable gap between the the-
oretical settings and real world scenario. A major drawback is the dependence of
competitive analysis on single input instance which may occur very rarely in real
world. It means that in real world it is highly unlikely (though not impossible)
that worst case will occur and measuring the performance of an online algorithm
based on single input instance is not an “ideal” choice.

1.2 Research Questions and Contributions

We focus on online uni-directional conversion problems under the competitive anal-
ysis paradigm. We contribute towards the design and analysis of algorithms for
online conversion problems by identifying a number of open questions from the
literature and answer them with the objective to improve the applicability of on-
line conversion algorithms in real world. In the following, we present the research
questions and short description of our results.

Question 1 Is the competitive ratio a coherent measure of risk?

A variety of methods are used to measure the risk of an investment strategy such as
standard deviation (σ), value at risk (V aR) and conditional value at risk (CV aR).
However, some of these measures are not consistent with basic risk paradigm. A
risk measure should ideally satisfy the basic properties of risk. The fulfillment of
these properties makes a risk measure suitable for use in real world. For example,
one such desired property is diversification, referring to the phenomenon of invest-
ing in more than one assets to reduce the risk. If an investor diversify by splitting
the total wealth and invests in two assets, then the risk measure should report
that the combined risk of the portfolio is no more than the sum of individual risks.
However, not all risk measures satisfy this property. V aR is one such example of
risk measure which does not conform to the risk principle of diversification. In
order to define the desirable properties of a risk measure, Artzner et al. [7] intro-
duced an axiomatic definition of risk measure. Any risk measure that satisfies the
axioms is termed as “coherent risk measure”. Each axiom refers to one desirable
property of risk measure. We consider competitive ratio as measure of risk and
show that it satisfies all the required axioms of Artzner et al. [7].
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Publication 1 I. Ahmad, E. Mohr and G. Schmidt: Competitive Ratio as Co-
herent Measure of Risk, Selected Papers of the Annual International Conference
of the German Operations Research Society (GOR e.V.), University of Hanover,
September 4-7, 2012, Springer-Verlag Berlin Heidelberg 2013, in press.

Question 2 How to evaluate the performance of a selected set of algorithms on
the real world data and identify the gap between theoretically guaranteed and ex-
perimentally achieved performance?

We answer the question by considering a set of algorithms for uni-directional con-
version problem and evaluate them on two different sets of real world as well as
synthetically produced data sets. The real world data considered is daily closing
prices of DAX30 and S&P500 indices for ten years from 1-Jan-2001 to 31-Dec-
2010. In addition, we employ bootstrap method to generate synthetic data sets. In
order to simulate a real world scenario, we consider transaction cost of 0.025% of
the volume transacted. We observe a considerable gap between theoretically guar-
anteed worst case and experimentally achieved competitive ratios. Algorithms
perform much better than the worst case competitive ratio guarantees. It was also
found that algorithms that invest prudently by taking into account the offered
price perform better than those who do not consider the offered price. We use
variance as measure to calculate the consistency of performance of algorithms.

Publication 2 I. Ahmad and G. Schmidt: An Experimental Analysis of Online
Unidirectional Conversion Problem, In: C. Huemer and P. Lops (Eds.): EC-Web
2012, Lecture Notes in Business Information Processing, Vol. 123, pp. 176-187,
2012. Springer-Verlag Berlin Heidelberg 2012.

Question 3 How can we generate test instances that truly represent both worst
case as well as non-worst case input?

The classical backtesting approach to validate algorithms on real data from the
past with the assumption that if an algorithm performs better on the past data
will perform well in the future as well is fraught with perils. The main reason is the
limited availability of past data and the data snooping bias [15]. This originates
the need of synthetic data sets. Bootstrap methods are used to generate test
instances, however, the bootstrap method inherits one basic flaw from backtesting.
The bootstrap data is generated from the real data. The limited availability of the
real world data means that rare market events such as periods of unusually high or
low returns and market crashes are not sufficiently represented in bootstrap data
as well. Extreme Value Theory (EV T ) deals with the events that deviate from the
natural course of action and is used in a number of disciplines to deal with rare
and extreme events. We use the EV T approach to generate test instances and
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evaluate a selected set of non-preemptive uni-directional algorithms. We report
our findings on the basis of disparity between the observed competitive ratio and
expected worst case competitive ratio.

Publication 3 E. Mohr, I. Ahmad and G. Schmidt: Solving Uni-directional Con-
version Problems by Online Algorithms under an Extreme Value Distribution.
DSOR Contributions to Information Systems, Band 8: Applied Mathematical
Optimization and Modelling, L. Suhl, G. Mitra, C. Lucas, A. Koberstein, L. Beck-
mann (Eds.), pp. 459-470, 2012.

Question 4 How to design risk aware reservation price algorithms?

Online algorithms for conversion problems are designed based on competitive anal-
ysis. Competitive analysis assumes worst case future and the resultant algorithms
are designed with guaranteed worst case performance. Therefore, online algorithms
are risk averse in nature but in a real world scenario, investors want the flexibility
to manage their risk level. Al-binali [4] extended the classical competitive ratio
to risk-reward framework. We design reservation price algorithms that takes into
account the risk level of the player and thus provide the flexibility to manage the
risk. The proposed algorithms achieve a better (lower) competitive ratio than the
reservation price algorithm of El-Yaniv et al. [27] when an improved (positive)
outcome is observed. Similarly, the algorithms maintain a worst case competitive
ratio in case the observed outcome is not favorable.

Publication 4 I. Ahmad and G. Schmidt: Risk Aware Reservation Price Algo-
rithms, Submitted to:OMEGA - The International Journal of Management Science.

1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we discuss differ-
ent measures for the performance evaluation of online algorithms. We discuss
both theoretical measures (competitive analysis, Bayesian analysis and risk reward
framework etc) as well as experimental measures (backtesting, bootstrapping, EVT
approach). In addition, a short description of different risk measures is also pre-
sented. Chapter 3 presents a literature review of state of the art. The classification
of online conversion algorithm based on nature of search and the amount of wealth
invested is discussed. Chapter 3 answers Question 1 by discussing competitive ra-
tio as coherent measure of risk. Chapter 5 answers the Question 2 by discussing
the results of an extensive experimental study. Chapter 6 is based on Question 3
and provides methodological solution for generating test instances using EV T ap-
proach. Chapter 7 discusses Question 4 and presents risk aware reservation price
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algorithms for uni-directional and bi-directional conversion problems. It is shown
that the proposed algorithms achieve a competitive ratio better than guaranteed
competitive ratio for an improved outcome whereas maintain a bounded worst case
competitive ratio for a worst outcome. Chapter 8 concludes the work by discussing
a number of open questions for future research directions.



2
Performance Evaluation and Risk

Measures

In this chapter, we discuss how to evaluate the performance of online algorithms
and cover both theoretical and experimental measures used to evaluate the perfor-
mance of online algorithms. As conversion problems are studied in the context of
financial trading, where risk plays an important role, we cover different measures
of risk as well.

2.1 Performance Evaluation Measure

Online algorithms are evaluated by a variety of methods. Broadly we can clas-
sify them into two main categories i) theoretical measures and ii) experimental
measures. The theoretical measures evaluate the performance of online algorithms
using rigorous mathematical techniques [14, 62] whereas the experimental mea-
sures use data (both real world and synthetic) to evaluate the performance of
online algorithms [2, 37, 51, 59]. In the following we discuss the theoretical as
well as experimental measures. As in this thesis, we will mostly deal with the
worst case competitive analysis, risk-reward framework and experimental evalua-
tion, therefore we will describe the aforementioned measures in greater detail. For
the sake of completeness other performance evaluation measures will be presented
in brief.

8
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2.1.1 Theoretical Evaluation

A variety of literature discusses theoretical performance evaluation measures of
online algorithms [27, 33, 57, 62]. We provide an overview of a subset of evaluation
methods from the literature.

Bayesian Analysis

Bayesian analysis assumes that the player knows the probability distribution from
which the input is drawn [57]. The online algorithm is analyzed with respect
to the optimum offline algorithm assuming the known probability distribution.
Likewise, the result of the analysis is valid as long as the input is limited to the
assumed probability distribution. If the input is drawn from outside the assumed
probability distribution the performance measure is rendered invalid [49].

The online conversion problem is studied under Bayesian analysis by a number
of authors including Chou et al. [17] and Fujiwara et al. [33] among others. The
work of Chou et al. [17] is based on the statistical adversary model introduced
by Raghavan [57]. Chou et al. [17] strategy performs better than the standard
benchmark of buy-and-hold. Fujiwara et al. [33] considered the threat based strat-
egy of El-Yaniv et al. [27] and presented average case threat based algorithms
based on different objective functions. The objective functions considered were
E[OPT/ON ] and E[OPT ]/E[ON ]. Fujiwara et al. [33] showed that changing the
performance measures leads to different optimal strategies.

Bayesian analysis provides good performance measure under “typical input”
assuming the knowledge of probability distribution of the input data. However, the
knowledge of exact probability distribution itself is hard to know in a real world.
Similarly, it is realistically not possible to model the input on some probability
distribution. Even if the input follows a particular distribution, the construction
of a stochastic model that represents the underlying probability distribution is hard
to envisage [49]. Bayesian analysis relies heavily on known probability distribution
and any deviation of input data from the assumed distribution will nullify the
results.

Worst Case Competitive Analysis

The worst case competitive analysis addresses the drawback of Bayesian analy-
sis by circumventing the need of known probability distribution. The worst case
competitive analysis does not assume any known probability distribution of input
data [27, 62] and the adversary is free to draw the input data without the limi-
tation of restricting to a specific probability distribution. This leads to simplified
assumptions and easy analysis of algorithms. The performance of online algorithm
is measured against an optimum offline algorithm with the objective to find the



CHAPTER 2. PERFORMANCE EVALUATION AND RISK MEASURES 10

worst performance ratio of online algorithm to that of optimum offline algorithm.
Formally we define the worst case competitive analysis as given in [27];

Definition 2.1 Worst Case Competitive Analysis
Let P = (I, F, U) be a profit maximization problem. I be the set of all possible
inputs; ∀I ∈ I, F (I) is the set of feasible outputs; U is a utility function such that
∀I and O ∈ F (I), U(I, O) ∈ R. Consider an algorithm ON for P. Given an input
I ∈ I, ON computes a feasible output O ∈ F (I). ON(I) = U(I, O) denotes the
performance of ON on I ∈ I. Each input I can be represented as a finite sequence
such that I = i1, i2, . . . , iT and a feasible output O can also be represented as finite
sequence O = O1, O2, . . . , OT .

ON computes online if for each j = 1, . . . , T − 1, ON must compute oj before
ij+1 is revealed. ON is called c-competitive if ∀I ∈ I,

ON(I) ≥ 1

c
OPT (I). (2.1)

OPT (I) is the performance of optimum offline algorithm on I and T is the length
of the input sequence.

Online conversion algorithms are mainly studied under the worst case competi-
tive analysis. Since the seminal work of El-Yaniv et al. [26], there is a considerable
body of literature devoted to online conversion algorithms under the worst case
competitive analysis [16, 20, 47, 69, 70].

Although the worst case competitive analysis is a strong tool for the design and
analysis of online algorithms, it suffers from a number of drawbacks. For instance,
only a single input sequence determines the performance ratio of an algorithm. In
addition, if two algorithms have the same worst case competitive ratio, it is hard
to distinguish which algorithm is superior? For example, Torng [67] showed for
cache problem that every marking algorithm is k-competitive (k being the size of
cache). However, a number of studies [5, 54] shown that empirical performance
differs widely from the theoretical bounds. Least-Recently-Used (LRU) outper-
forms Flush-When-Full (FWF ) and First-In-First-Out(FIFO) and the empirical
competitive ratio of LRU was found significantly smaller than k.

Another significant limitation of the worst case competitive analysis in relation
to online conversion algorithm is the lack of risk management [4]. Worst case com-
petitive analysis assumes a worst case input in future and attempts to safeguard
itself against the worst possible scenario. This leads to a conservative approach,
i.e., in term of online conversion algorithms, the competitive analysis omits the
risk. The approach is thus based on risk-mitigation rather than risk-management.
But in a real world the player (investor) is more interested to manage the risk
rather than mitigate it and the classical worst case competitive analysis fails to
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address it. Al-binali [4] extended the classical competitive analysis to incorporate
risk and reward. The approach enables the player to manage her risk level. In
the following we discuss how competitive analysis is extended to incorporate risk
management.

Risk Reward Framework

In order to address the risk management aspect of online conversion algorithms,
Al-binali [4] extended the classical competitive analysis approach to a risk-reward
framework. Al-binali argued that algorithms developed under the competitive
analysis paradigm are based on risk-mitigation principle and are therefore risk
averse in nature [4]. For a decision making problem such as currency conversion,
there are two possible ways, to take i)a risk-free decision and ii)a risky decision.
Former leads to a fixed outcome where as the outcome of the latter varies. In
latter, the player can either achieves a better performance than risk-free decision
if the outcome of the risk is positive, otherwise a a sub-optimal performance than
guaranteed by risk-free decision is observed. Fig. (2.1) is a schematic representa-
tion of the possible outcomes. In terms of competitive ratio, the risk-free decision
will achieve an optimal worst case competitive ratio. For the risky decision, the
achieved competitive ratio can either be better (lower) than the optimal compet-
itive ratio (when the outcome is positive) or a sub-optimal competitive ratio is
achieved (when the outcome is negative). Consider an online algorithm A for

Risk-free
Choice

Risky
Choice

Positive Outcome
Performance Improved

Negative Outcome
Performance Degraded

Risk-free Outcome
Optimal
competitive ratio

Better than optimal
competitive ratio

Sub-optimal
comeptitive ratio

Figure 2.1: Schematic view of risk reward framework [4]
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a profit maximization problem P . For the set of all problem instances I, the
competitive ratio achieved by A is;

cA = supI∈I
OPT (I)

A(I)
, (2.2)

where OPT is optimum offline algorithm. The optimal competitive ratio for the
same problem P is;

c∗ = inf
A
cA. (2.3)

Now we define risk, forecast and reward - the three pillars of Al-binali’s framework.

Definition 2.2 Risk
Risk is the maximum opportunity cost that algorithm A may occur over the optimal
online algorithm, i.e.,

R =
cA
c∗
. (2.4)

Definition 2.3 Forecast
A forecast is a subset of problem instances, i.e., F ∈ I. An example of forecast is
that after time t∗ the offered price will be at least M ′.

A forecast f ∈ F can either be true or false. A true forecast results in a positive
outcome and a false forecast results in a negative outcome (see Fig. 2.1). The
reward is based on the outcome of the forecast. If the forecast is true only then
we can calculate the reward [4].

Definition 2.4 Reward
Reward of A is an improvement in competitive ratio over the optimal competitive
ratio, i.e.,

fA =
c∗

ĉA
. (2.5)

Note that ĉA is the competitive ratio achieved by A when the forecast is true. Let
σ ∈ F be the input instances where the forecast is true, then;

ĉA = sup
σ∈F

OPT (σ)

A(σ)
.

Recall that α is the risk level of the player, we define a set of algorithm Sα that
respects the player’s level of risk as;

Sα = {A|cA ≤ αc∗}.
In other words, Sα is the set of risk aware algorithms that achieve a competitive
ratio no worse than αc∗. The objective is to design online risk aware algorithms
where the player is assumed to have knowledge of the forecast F . The restriction is
that any risk-aware algorithm Â ∈ Sα with a risk level α must achieve a competitive
ratio no worse than αc∗ (even if the forecast is false).
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Bijective Analysis

In competitive analysis, we compare the performance of an online algorithm against
an optimum offline algorithm. Online algorithm does not have any knowledge
about the future inputs whereas optimum offline algorithm knows the entire input
sequence in advance. The decision of the offline algorithm is always optimum
for the conversion problem. Therefore, comparing an online algorithm against an
optimum offline algorithm produces highly skewed results. Competitive ratio is of
minimal help when comparing two algorithms A and B that have the same worst
case competitive ratio. In addition, while comparing A and B, it is redundant
to compare A and B with optimum offline algorithm. Bijective analysis [6] omits
the need of an optimum offline algorithm and provides a mechanism for the direct
comparison of A and B. The intuition behind bijective analysis is to compare the
performance of two algorithms A and B on all possible inputs of a specific length.
This approach does not rely on a single worst case but considers all inputs of a
certain length. Let IT be the set of all input sequences of length T . We use the
formal definition given by Angelopoulos et al. [6] modifying it for a maximization
problem.

Definition 2.5 Bijective Analysis
An online algorithm A is no worse than an online algorithm B if there exists an
integer n ≥ 1 such that for each T ≥ n, there is a bijection b : IT ↔ IT satisfying
A(I) ≥ B(b(I)) for each I ∈ I. This is denoted by A �b B, otherwise A �b B.
Likewise A and B are equal under bijective analysis if A �b B and B �b A. This
is denoted by A ≡b B. A is better than B if A �b B and B �b A denoted by
A ≺b B.

Random Order Analysis

Kenyon [41] proposed a new analysis tool for online algorithms called random or-
der analysis. The analysis method is proposed to address the drawbacks of the
worst case competitive analysis and average-case analysis. Kenyon argued that
worst case sequences are very “contrived” i.e., they are artificially created and
do not represent the real world inputs. Kenyon [41] considered the bin packing
problem and remarked that the performance of Best-Fit algorithm is much better
than given by the worst case competitive ratio. Thus the worst case competitive
analysis is too strict of a measure to replicate real world. Similarly average-case
analysis is criticized for being too lenient and hugely dependent on particular dis-
tribution. Real life distributions are not as “nice” as the uniform distribution [41]
and therefore the results of average-case analysis are skewed against real world.
Random order analysis computes the average performance behavior of online al-
gorithms by considering the expected results of a random ordering of an input
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sequence. The result obtained is compared to the performance of OPT on the
same input sequence. For online conversion problem, we present the definition as
given by Boyar et al. [14].

Definition 2.6 Random Order Analysis
The random order ratio RC(A) of an online conversion algorithm A is

RC(A) = lim sup
n→∞

OPT (I)

Eσ[A(σ(I))]
, (2.6)

where σ(I) is the permuted list.

The Diffuse Adversary Model

In order to avoid the pitfalls of Bayesian analysis, competitive ratio circumvent the
need of known distribution of input. Koutsoupias and Papadimitriou [42] argued
that by omitting the reliance on known distribution and absolutely no knowledge
of input, competitive analysis takes the the argument way too far. They criticized
the assumption of competitive analysis of “knowing nothing” by calling it far
from reality. The argument is based on the fact that in practice, we know or
can learn “something” about the distribution. Therefore such powerlessness is
unrealistic [42].

Koutsoupias and Papadimitriou [42] presented the diffuse adversary model. In
relation to competitive analysis, the presented model removes the assumption that
nothing is known about the distribution. At the same time, it also avoid the pit-
fall of knowing everything about it. The diffused adversary selects a probability
distribution δ from a family of distributions ∆. ∆ represents all acceptable proba-
bility distributions and is not restricted to a specific probability distribution (as in
average-case analysis). An algorithm A is c-competitive against a known ∆ class
of input distributions such that

Eδ[A(I)] ≥ 1

c
Eδ[OPT (I)]. (2.7)

Other Measures

Beside the discussed measures for the design and analysis of online algorithms, a
number of other measures are discussed in the literature as well. The complete
review is beyond the scope of this work. Some of these measures are Smoothed
Complexity [63], Relative Worst Order Analysis [13], Relative Interval Analysis [23]
and the Max/Max Ratio [11].
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2.1.2 Experimental Evaluation

Theoretical measures provide a good indication about the performance level of
an algorithm. As these measures are based on solid mathematical foundations,
they are valid under the assumed settings. For example, if an online maximization
algorithm is shown to be c-competitive under the worst case competitive analysis,
it is guaranteed to return at least 1/c of the total return of the optimum offline
algorithm on all input instances. However, the main purpose of algorithm design
and analysis is to facilitate the real world applications. For example a scheduling
algorithm is of little use if it does not work in the real world scenario. Further,
the design of algorithms is often based on simplistic assumptions which may or
may not hold entirely true in real world. For instance, for online uni-directional
conversion problems, it is often assumed that there is no transaction cost [27]. In
addition, the player is also assumed to have knowledge about the lower and upper
bound of offered prices [25, 27]. These assumptions are very unrealistic as in real
world every transaction has an associated cost. Similarly, the exact knowledge
of lower and upper bounds of prices is also not realistically possible. Therefore,
it is possible that an online algorithm which is guaranteed to be c-competitive
in the worst case scenario achieves an experimental case competitive ratio worse
than c. In uni-directional conversion problem, this is possible in scenario when the
player has error-prone estimates of lower and upper bounds of prices. Therefore,
experimental evaluation is necessary to evaluate the algorithms in a real world
where the settings can deviate to a greater extent than the assumed settings in
theory.

Beielstein et al. [9] observed that algorithms are mathematical abstractions and
only a formal approach for the analysis of algorithms is appreciated in computer
science community. The emphasize is more on the theoretical analysis of algo-
rithms and theoretical findings are not often tested with experimental results [9].
Beielstein et al. [9] put forth the idea that theoretical and experimental results
can co-exist and can inspire each other. The suggested approach is useful in many
ways, for instance an experimental evaluation of algorithms will highlight the gap
between theory and practice. In addition, the results of the experimental approach
can show that not all assumptions are valid and can motivate the design of algo-
rithms to address the needs of a real world. Thus a dual approach of theoretical
analysis followed by experimental evaluation will ensure that algorithms are prop-
erly tested both on standard mathematical models as well as in the real world
scenarios.

There are a variety of methods to evaluate the algorithms via experimental
methods. In the following, we discuss some of the important techniques in relation
to online conversion algorithms.
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Backtesting

Backtesting refers to testing the algorithms on real world historical data set. The
idea is to perform the experiments on the real world data from the past and observe
the performance of algorithm [49, 53]. The concept is based on the premise that if
an algorithm has performed well on the past day, it is more probable that the same
algorithm will perform better in the future as well. However, a good performance
on past data is not a guarantee of future success [53].

A number of studied evaluated the performance of online algorithms for con-
version problems using the backtesting approach. Schmidt et al. [59] evaluated
two online algorithms (namely reservation price policy [25] and threat based algo-
rithm [27]) on the real world data of DAX30 (1998-2007). The online algorithms
are compared against optimal offline algorithm, average price trading policy and
buy-and-hold. The study focused on the experimentally achieved competitive ratio
of online algorithms. However, the study is restricted to the real world data only
and no experiments are conducted on synthetically produced data sets. The work
assumes no transaction cost which is one of the main limitation. In addition, the
study does not record the number of transactions as well.

Mohr and Schmidt [51, 52] compared the performance of reservation price al-
gorithm (called as Market Timing) against buy-and-hold, rand (a randomized
algorithm [51, 52]) and optimum offline algorithm (called as Market). The study
is conducted on DAX30 for the year 2007 only (1.Jan.2007 to 31.Dec.2007). The
studies considered transaction cost of 0.0048% of the market value. The drawback
of the studies is that only the real world data is considered (no synthetic data)
and the number of algorithm are very limited as well.

Iqbal et al. [37] answered the question “Can online trading algorithms beat the
market?”. The purpose of the study is to investigate if the online trading algo-
rithms can outperform the benchmark algorithm buy-and-hold. The study consid-
ers both non-preemptive and preemptive algorithms and execute them on the real
world data of DAX30 over ten years of prices (1.Jan.2001 to 31.Dec.2010). The
set of preemptive algorithms include reservation price policy [25], online difference
maximization [39] and the benchmark buy-and-hold. For preemptive algorithm,
the authors chose the threat based policy [27], multi-reservation price policy [47]
and dollar average strategy. A transaction cost of 0.0048% of volume traded is
considered. The selected set of algorithms are evaluated on a number of crite-
ria which include geometric returns, average period returns and experimentally
achieved competitive ratio. The study also focused on recording the number of
transactions. It was found that for DAX30 data set, the online algorithms were
able to the beat market. However, the study is limited to only DAX30 and no
synthetic data was considered.

Other miscellaneous studies includes Chen et al. [16] and Hu et al. [36]. Both
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of these studies are limited to comparing their proposed online algorithms with
buy-and-hold only. Beside these studies, a more in depth analysis of heuristic
trading algorithms is performed in literature. However, we limit our focus to
online conversion algorithms under competitive analysis, therefore, the details of
heuristic trading algorithms are beyond the scope of this work. We refer the reader
to [15, 44, 58, 60, 66].

The experimental evaluation of online trading algorithms suffers from a ma-
jor drawback of “data snooping”. Data snooping is the phenomenon of using a
given set of data more than once to make deductions or inferences [64]. In their
seminal work, Brock et al. [15] has warned of the danger of data snooping. All
the experiments performed in [37, 51, 52, 59] uses the same data set (DAX30).
The data set slightly changes with Iqbal et al. [37] considers ten years data from
1.Jan.2001 to 31.Dec.2010, where as Schmidt et al. [59] considers DAX30 data
from 1.Jan.1998 to 31.Dec.2007. The studies [37, 51, 52, 59] do not use any other
data sets to validate their findings. Similarly no synthetically produced data is
used for evaluation. The reliance on single data set and the lack of synthetic data
are, therefore, the main drawbacks of these studies.

The experimental analysis has mostly focused on bi-directional conversion (or
trading) and there is no evidence of any study related to the experimental eval-
uation of uni-directional conversion problem. Although, bi-directional conversion
might seem just an extension of uni-directional conversion, the experimental stud-
ies mostly used uni-directional conversion algorithms for testing trading strategies.
For example, the reservation price algorithm of El-Yaniv [25] is specifically design
for uni-directional conversion, however it is used in [37] and [59] for trading pur-
poses.

The Bootstrap Method

As the real world data alone is not sufficient to evaluate online algorithms via
experimental analysis, the need for synthetic data arises. The synthetic data can
be useful in situations where the original real world data is not sufficiently large
and/or we want to avoid the ‘data snooping’ pitfall. Bootstrap procedure is one of
the techniques to produce synthetic data [45]. The procedure considers an original
sample of data and and generates new synthetic data from the original sample. The
number of required samples is user dependent, however, the size of each sample is
the same as that of the original sample.

We employ “Block Bootstrap (BB)” technique in Ahmad and Schmidt [2] and
limit our review of bootstrapping techniques to it only. For other variant of boot-
strapping, we refer the reader to [12, 24, 31, 46, 56, 68]. We use the definition of
Lahiri [45] to define BB. Let Xn = {X1, X2, . . . , Xn} be the original time series.

Definition 2.7 Block Bootstrap
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Let l be the length of the expected block size for the block boot strap method, such
that 1 < l < n. Given Xn, a new time series {X0i}i≥1 is generated by periodic
extension where for i ≥ 1, X0i = Xj if i = mn + j for some integers m ≥ 0 and
1 ≤ j ≤ n.

Let B(i, k) = (X0i, . . . , X0,ik−1), i ≥ 1, k ≥ 1 defines the blocks of length k on
the time series X01, X02, . . . . Different versions of block bootstrap methods can be
obtained by re-sampling from all observable blocks {B(i, k) : i ≥ 1, k ≥ 1}.

Bootstrap of time series data posses a far greater challenge than ordinary
data [61]. For instance, unlike other data, time series data has serial dependence,
i.e., observation Xt is co-related with Xt−1 and Xt+1. Therefore, considering each
observation Xt independently may produce erroneous data samples. Consider the
example of daily exchange rate offer over a period of one year. Assume that the
minimum exchange rate during the time period is m = 10 and the maximum ex-
change rate during the same time period is M = 100. Taking each observation
independently may result m followed by M or vice versa, which is highly unlikely
in a real world scenario. Therefore, instead of individual observations, a continuous
block of observations are drawn in order to preserve the underlying relationship
between data [61].

Extreme Value Theory (EVT)

Scenario generation (or test case generation) is a critical issue for evaluation of al-
gorithms. The scenario generation must satisfy (almost) all the possible situations.
For example, for a trading algorithm, the scenario generation must encapsulate not
only the returns of normal trading days but that of the rare events such as the
days where a player achieves higher returns than the average as well as where the
player observes far greater losses than expected.

Financial markets are highly volatile and exhibit an uncertain and unpre-
dictable behavior. The uncertain and volatile behavior makes it challenging to
model the behavior of these markets. Therefore, the quest for identifying the
exact modeling of stock price has produced a set of different results [19]. The
Black-Scholes model is among several such attempts. The model is based on the
normal distribution assumption of returns and a Geometric Brownian Motion for
the stock price. The underlying assumption of normal distribution has left an
inherent flaw in the Black-Scholes model . The assumed distribution omits the
modeling of rare events such as the possibility of greater losses and stock mar-
ket meltdown. In order to encapsulate the rare extreme events, “Extreme Value
Theory” (EVT) is used in literature [19]. EVT has several applications in the
fields of hydrology, meteorology,geology, insurance, finance, structural engineer-
ing, telecommunications and bio-statistics [10, 22]. In financial markets EVT can
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be use to model the extreme nature such as the behavior of M and m, referred to
as tails of the distribution [8]. In order to find the correct limit distribution of the
lower and upper bounds of prices in online conversion problem, two classes of EVT
are used, namely generalized extreme value (GEV) distribution [38] and general-
ized Pareto distribution (GPD) [55]. GEV encapsulates three standard extreme
value distributions: Gumbel (type I), Fréchet (type II) and Weibull (type III).
For online conversion problems in domain of finance such as currency conversion
GEV is preferred to GPD for a number of reasons, including the availability of the
minimum and maximum prices as the only reliable measurements. Other factor
includes the better computational cost of GEV [22]. The better computational
cost is valuable as a high number of time series has to be analyzed in order to
avoid the data snooping bias. Let X = {x1, x2, . . . , xn} be sample data of size n.
We present a basic set of definitions used later to describe the different types of
distributions.

Definition 2.8 Arithmetic Mean
Arithmetic mean is computed by first summing all elements of a times series and
dividing it by the number of observations. Let µ represents the arithmetic mean,
then

µ =
1

n

n∑

t=1

xt. (2.8)

Definition 2.9 Standard Deviation
Standard deviation refers to the average variation or dispersion from the arithmetic
mean. Let σ be the standard deviation, then

σ =

√√√√ 1

n

n∑

t=1

(xt − µ)2. (2.9)

Definition 2.10 Skewness
Skewness describes the symmetry of a probability distribution. Let γ be the skew-
ness of a probability distribution, then

γ =
n

(n− 1)(n− 2)

T∑

t=1

(
xt − µ
σ

)3

. (2.10)

Definition 2.11 Kurtosis
Kurtosis describe the “peakedness” of a probability distribution. Let β represents
the kurtosis, then

β =

[
n(n+ 1)

(n− 1)(n− 2)(n− 3)

n∑

t=1

(
xt − µ
σ

)4
]
− 3(n− 1)2

(n− 2)(n− 3)
. (2.11)



CHAPTER 2. PERFORMANCE EVALUATION AND RISK MEASURES 20

The three different types of GEV distribution can be distinguished from one other
based on the value of µ (location parameter), σ (scale parameter) and γ (shape
parameter), using;

G(x;σ, γ, µ) =

{
exp

(
−{1 + γ x−µ

σ
}−1/γ

)
, if 1 + x−µ

σ
> 0, γ 6= 0,

exp
(
− exp{−x−µ

σ
}
)
, if x ∈ R, γ = 0.

(2.12)

Fixing µ ∈ R and σ > 0, we can differentiate between different types of GEV
distribution based on the value of γ. γ = 0 corresponds to type I distribution,
γ > 0 corresponds to type II and γ < 0 corresponds to type III distribution.

Synthetic data can be produced by analyzing the given data set and using EVT
to estimate µ, σ and γ. The weighted movement method of Hosking et al. [35] or
likelihood-based procedures [18] can be used to estimate the parameters. Using
the estimated parameters, the synthetic data (test instances) can be generated for
the required distribution type (type I, II or III) 1.

2.2 Risk Measures

Risk can be defined as the possibility that the actual outcome (or return) of a
strategy may be different from the expected outcome (return). Online algorithms
for conversion problems are designed based on unknown future and thus the deci-
sions are based on uncertainty in the future ahead. The online algorithms under
competitive analysis are designed to avoid the risk taking aspect of decision mak-
ing and provide a guaranteed solution in unforeseen scenarios. However, in real
world, risk is an unavoidable phenomenon and investors want the flexibility to
measure and manage their risk. A variety of measures exist in the literature to
measure the risk in decision making such as “Standard deviation”, “Value at Risk”
and “Conditional Value at Risk” et cetera.

2.2.1 Standard deviation

Standard deviation measures how much the actual return can vary from the ex-
pected returns? Standard deviation can be calculated based on the past observed
performance or using the probable future returns. If standard deviation is based
on the historical returns over a specific period of length, we find the mean of the
observed return and then calculate the average deviation from the mean. The re-
sultant value reflects the possibility of future returns deviation from the expected
returns. An alternate approach to measure the risk in form of standard deviation

1For implementation purposes, the ‘fExtreme’ package of statistical software R (www.r-
project.org) can be use to generate test instance of a specific distribution type (I,II,III)
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is based on the probabilities of future returns. We elaborate this with the help of
an example.

Example 2.1 Consider an asset “A” has the following possible returns in the
future with the associated probabilities. Assume that the expected return E[R] is
20%.

Block i Probability ρi Return Ri

1 10% -5%
2 15% 10%
3 25% 15%
4 30% 25%
5 15% 30%
6 5% 40%

Table 2.1: Probabilities of expected returns

Standard deviation (σ) is calculated by taking square root of the variance (V ).
We calculate the variance using the following formula.

V =
N∑

i=1

ρi (Ri − E[R])2 (2.13)

Where;
N = The number of blocks.
ρi = The probability of return of block i.
Ri = Return in block i.
E[R] = Expected return of the algorithm.
The standard deviation (σ) is calculated by taking the square root of variance,
i.e.,

σ =
√
V (2.14)

Using Eq. (2.13), we calculate the variance as following;

V ar =0.1(−0.05− 0.2)2 + 0.15(0.1− 0.2)2 + 0.25(0.15− 0.2)2

+ 0.30(0.25− 0.2)2 + 0.15(0.30− 0.2)2 + 0.05(0.4− 0.2)2

= 0.012625

The standard deviation σ is

σ =
√
V =

√
0.012625 = 0.112361



CHAPTER 2. PERFORMANCE EVALUATION AND RISK MEASURES 22

2.2.2 Value at Risk (VaR)

Standard deviation provides a simple and elegant way to measure the risk; however,
the definition of the standard deviation has a basic problem. Standard deviation
is a measure of the average distance of each observation from the mean of the
observations. If an asset return is increasing over time or jumps to a higher level,
it negatively affects the associated risk of the asset. Although investors will be
happy to observe the sudden increase in returns, the standard deviation of the
asset increases and thus the potential risk in term of standard deviation. Value at
Risk (V aR) is used as an alternative measure to measure the risk. Let X be the
financial position of an asset. The V aR at α% confidence level is defined as the
risk of X as the amount that can be lost with probability no more than α% over
a given time period of fixed length [43]. For a general representation, we use the
representation given in [43]. Let α be the confidence level, V aR as the α-quantile
of the probability distribution FX of X as;

V aRα(X) = − inf{z|P{X ≤ z} > α}. (2.15)

Despite its widespread use in financial institutions [34], V aR suffers from a
number of short comings. From methodological point of view, V aR does not con-
sider losses beyond the α-quantile level [43]. Similarly, V aRα(X) is discontinuous
with respect to α, i.e., a small change in α results significant variation in the risk
estimates of V aR. A major drawback of the V aR is its inability to conform with
the fundamental risk principle of diversification [7].

2.2.3 Conditional Value at Risk (CVaR)

In order to address the drawbacks of V aR, an alternate measure of risk called
conditional value at risk (CV aR) is used. CV aR reports the expected return in the
worst α% of the cases. For a random payoff X (having a continuous distribution),
CV aR is defined as [43];

CV aRα(X) = −E[X|X ≤ −V aRα(X)]. (2.16)

where α is the confidence level and V aRα(X) is the variance of X with confidence
level α. In other words, we can say that CV aRα(X) is the conditional expectation
losses that exceed the V aRα(X). CV aR is also known as expected shortfall (ES),
average value at risk (AV aR) and expected tail loss (ETL).

Example 2.2 Consider Table 2.2 as possible returns of an asset after a fixed time
period. Table 2.3 is the resultant table of CV aR for different confidence level α.
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Probability ρi Return Ri

5% -100%
15% 0%
30% 20%
20% 30%
15% 40%
10% 45%
5% 55%

Table 2.2: Probabilities and expected returns

α CV aRα Calculations
10% -50% [0.05(−100) + 0.05(0)] /0.1
25% -16% [0.05(−100) + 0.15(0) + 0.05(20)] /0.25
35% -5.715% [0.05(−100) + 0.15(0) + 0.15(20)] /0.35
60% 6.667% [0.05(−100) + 0.15(0) + 0.30(20) + 0.1(30)] /0.60

100% 0.25%
[0.05(−100) + 0.15(0) + 0.30(20) + 0.2(30)
+0.15(40) + 0.10(45) + 0.05(55)] /1.0

Table 2.3: Calculating CVaR

2.2.4 Coherent Measure of Risk

Markowitz introduced the notion of measuring the risk of an investment by calcu-
lating the deviation from the mean of the distribution [65]. The idea lead to the
development of new risk measures such as V aR. However, V aR and other mea-
sures of risk have certain limitations and were at odds against the well-established
principles of risk. For example, V aR does not adhere to the basic risk principle
of diversification. Diversification refers to the concept of investing in a portfolio
of assets rather than a single asset. The whole wealth is thus invested in more
than one assets and the combined risk level is reduced. V aR also does not take
into account any risk beyond the α quantile. Further, the risk models developed
under the Markowitz risk-reward framework are application driven, resulting in
some risk models lacking the fundamental features of risk paradigm [43]. In order
to standardize Artzner et al. [7] presented an axiomatic set of rules that a measure
of risk must satisfy to be in line with the basic risk paradigm. Any measure of
risk that satisfy the Artzner et al. [7] axiomatic definition is called as Coherent
Measure of Risk.

Artzner et al. [7] used an axiomatic approach to determine a set of properties
that a “good” measure of risk must satisfy [43, 65]. Let, X be any given (or
desired) position of an investor when he invests in a certain asset (or portfolio of
assets) and ρ be a risk measure. ρ[X] is assigned by ρ to X and represents the risk
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of position X as measured by ρ. In other words, ρ[X] can be interpreted as the
minimum extra cash (investment) required by the investor to achieve X at some
point of time in future [7].

Definition 2.12 A risk measure ρ assigns a random variable X a non-negative
real number R, i.e., ρ : X → R.

Here X is a random variable representing the position or return and viewed as an
element of a linear space X of a measurable function, defined over an appropriate
sample space. According to [3, 7, 65] a function ρ : X → R is coherent measure of
risk if it satisfies the following set of axioms.

Axiom 2.1 Translation Invariance
For all X ∈ X , risk free returns r and α ∈ R;

ρ[X + r] = ρ[X]− α. (2.17)

Axiom 2.1 means that the addition of risk free investment reduces the risk. In
other words, if a position X with a risk level ρ[X] > 0 is not acceptable, it can
be made acceptable by the addition of a risk free return r such that the risk free
return balances the ρ[X], i.e., ρ[X + ρ[X]] = 0.

Axiom 2.2 Subadditivity
For all X1, X2 ∈ X ,

ρ[X1 +X2] ≤ ρ[X1] + ρ[X2]. (2.18)

Axiom 2.2 is based on the notion that “a merger does not create extra risk” [7].
Alternatively it can also be described as “diversification does not hurt”. Consider
a situation, where a risk measure fails to follow the subadditivity property. This
means that an investor will prefer to invest in two assets separately (from two
different accounts) rather than investing in a portfolio of same two assets via a
single account [7].

Axiom 2.3 Positive Homogeneity
For all X ∈ X , if λ ≥ 0 then

ρ[λX] = λρ[X]. (2.19)

Positive homogeneity states that if a positionX is changed by λ then the associated
risk must also increase by the same factor, i.e., risk scales proportionally with the
size of the position [48].

Axiom 2.4 Monotonicity
For all X1, X2 ∈ X , if X1 ≥ X2

ρ[X1] ≥ ρ[X2]. (2.20)
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The axiom implies that if X1 is greater than X2, the associated risk of X1 must
also be greater than corresponding risk of X2.

Based on these axioms, a number of further studied has been performed [1,
30, 32, 65]. These studies focused on the extension of Artzner et al. [7] axiomatic
definition of coherent measures of risk. Föllmer and Schied [30] argued that in
contrast to positive homogeneity (Axiom 2.3) of Artzner et al. [7], the risk of a
position might increase in a non-linear way with the size of the position. Föllmer
and Schied [30] relaxed the positive homogeneity and subadditivity constraints to
a weaker property of “convexity”, modeled as;

ρ[λX + (1− λ)Y ] ≤ λρ[X] + (1− λ)ρ[Y ] for λ ∈ [0, 1]. (2.21)

Eq. (2.21) states that the risk associated with a diversified position λX+ (1−λ)Y
is no more than the weighted average of individual risks. Independently of [30],
Frittelli and Gianin [32] also discussed the convex risk measure by weakening the
axioms of coherence of Artzner et al. [7].



3
Online Algorithms for Conversion

Problems

Summary of Results

A variety of online algorithms are presented in the literature to address online
conversion problems. The problem is covered from different perspectives and on
the basis of various objective functions. Similarly the assumptions and settings
of each problem differ. For instance, some algorithms are designed based on the
assumption that expected lower and upper bounds of offered prices are known to
the player [27], whereas other algorithms assume the knowledge of upper bound of
prices and length of the investment horizon [20]. A number of algorithms invest all
wealth at one point of time [25, 39] whereas others divide the whole wealth in parts
and invest little by little [16]. Another discrepancy in the existing work is the non-
coherent and non standardized terminology to describe the ideas and assumptions.

In this work, we attempt to unify online algorithms for conversion problems
under a unified and coherent set of nomenclature. We classify them based on the
nature of search, the nature of investment strategy and the a-priori assumptions.
Further, we provide a comprehensive review of the literature addressing online
conversion problems. The survey of the literature covers both uni-directional (Sec-
tion 3.3) and bi-directional (Section 3.4) conversion algorithms. We restrict the
literature review to competitive search algorithms in the context of online financial

26
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markets. Further applications like algorithmic trading and online auctions are not
considered.
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1. Introduction1

1.1. Motivation2

A great deal of literature is devoted to the study of online algorithms for3

conversion problems. In addressing the problem, various aspects are covered4

and many different settings are assumed [1]. In addition, the terminology5

used is not coherent and standardized. The great variety of existing algo-6

rithms, and the non-adherence to standards might lead to misconception7

on part of the reader. As each author assumes different problem settings,8

assumptions and nomenclature it is difficult to evaluate the suggested al-9

gorithms on existing methods, or to compare them on a mutual basis. We10
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attempt to unify the terminology and the notation, while introducing the ex-11

isting fruitful results. We restrict the literature review to online algorithms in12

the context of conversion in financial markets, i.e. the search for best prices in13

order to buy and/or sell assets. Further applications like algorithmic trading,14

market clearing and online auctions are not considered; the reader is referred15

to [2, 3, 4]. Moreover, we limit to works analyzing an online algorithms’16

worst-case performance. Works considering other performance bounds are17

excluded; the reader is referred to [5] and the references therein.18

1.2. Basic Definitions19

A conversion problem deals with the scenario of converting an asset D20

into another asset Y with the objective to get the maximum amount of Y21

after time T . The process of conversion can be repeated in both directions,22

i.e. converting asset D into asset Y , and asset Y back into asset D.23

In a typical problem setting, an investment horizon is considered and24

possibly divided into n = 1, . . . , N subsets. Each subset is comprised of25

t = 1, . . . , T data points, e.g. days. On each day t, an algorithm ALG is26

offered a price qt to convert asset D into asset Y , and ALG may accept the27

price qt or may decide to wait for a better price. The game ends either when28

ALG converts whole of the asset D into Y , or on the last day T where qT29

must be accepted.30

Based on the context of decision making, algorithms can broadly be clas-31

sified in two categories. In an offline scenario full information about the32

future is assumed, and so an optimal offline algorithm (OPT ) is carried out.33

In an online scenario at each point of time ALG must take a decision based34

only on past information, i.e. with no knowledge about the future. Typically,35

the quality of ALG is determined by the ratio between the result generated36

by ALG and OPT . This technique is called competitive analysis and the37

resulting worst-case competitive ratio c is an information theoretic measure38

[6].39

We use the formal definition of the competitive ratio of [7, p. 104]. Let40

P = (I, F, U) be a profit maximization problem, where I is a set of possible41

inputs, and for each I ∈ I, F (I) is the set of feasible outputs. U is a42

utility function such that for all I and O ∈ F (I), U(I, O) ∈ R. Consider43

any algorithm ALG for problem P . Given any input I, ALG computes a44

feasible output O ∈ F (I). The return of ALG on instance I we denote by45

ALG(I) = U(I, O). Typically, each input can be represented as a finite46

2
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sequence I with t = 1, . . . , T elements, and a feasible output can also be47

represented as a finite sequence with T elements.48

An algorithm ALG computes online if for each t = 1, . . . , T − 1, ALG49

must compute an output for t before the input for t+1 is given. An algorithm50

OPT computes offline if it can compute a feasible output given the entire51

input sequence I in advance. By definition, for each I the return of OPT is52

OPT (I) = supO∈F (I) U(O, I). An online algorithm is c-competitive (attains53

a competitive ratio c) if for any input I ∈ I54

ALG(I) ≥ 1

c
·OPT (I). (1)

Any c-competitive algorithm is guaranteed at least the fraction 1/c of the55

optimal offline return OPT (I) no matter how unfortunate or uncertain the56

future will be.57

We limit to online conversion algorithms (ON) and consider conversion58

as a maximization problem, i.e. c ≥ 1. The smaller c the more effective is59

ON . Based on their design pattern ON can broadly be classified as:60

1. Guaranteeing conversion algorithms – developed to give a performance61

guarantee under worst-case conditions, and evaluated analytically using62

competitive analysis [8].63

2. Heuristic conversion algorithms – developed to achieve a preferably64

high average-case performance, and evaluated experimentally mainly65

based on data from technical analysis [9].66

Both classes work without any knowledge of future input, and only differ in67

their design pattern. Thus, both classes are referred to as online conversion68

algorithms.69

The remainder of this paper is organized as follows. In the next section70

we provide a novel scheme to classify online algorithms for conversion prob-71

lems based on the problem setting they are using, and define a standard72

nomenclature for the terms used in the work related. In Section 3 and 473

we introduce and classify existing results. In addition, we show how heuris-74

tic conversion algorithms can be evaluated using competitive analysis. The75

worst-case competitive ratio of three well known algorithms from the liter-76

ature, namely Moving Average Crossover (MA), Trading Range Breakout77

(TRB), and Momentum (MM) is derived. The lower bound proof is the78

main technical contribution. The paper concludes presenting open questions79

and potential future research directions.80

3
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2. Classification Scheme81

Our proposed novel classification scheme is based on two pillars, a) the82

nomenclature – a standardized set of definitions, and b) the classification83

factors – parameters that affect the class of problems. First we give some84

basic definitions, and second three factors relevant for our novel scheme are85

given.86

2.1. Nomenclature87

The standard nomenclature defines the terms used in relation to online88

conversion problems. The objective is to adhere to a standard set of defini-89

tions, and to avoid ambiguity.90

i. Transaction: A transaction is either the selling or the buying of an asset.91

ii. Trade: Each trade consists of two transactions; buying and selling. The92

number of trades is p, with i = 1, . . . , p93

iii. Investment Horizon: The total time duration in which all trades must94

be carried out. The investment horizon can be divided into n = 1 . . . , N95

subsets of length t = 1, . . . , T .96

iv. Duration (T ): The length (finite number of data points) of subset n,97

e.g. seconds, minutes or days in the discrete case.98

v. Threat Duration (k): The number of data points k ≤ T after which the99

offered price might drop to some minimum level and stays there until T .100

vi. Length (l): The length of an increasing sequence of prices, with l ≤ T .101

vii. Offered Price (qt): Possible transaction prices presented to the player at102

time t from subset n, i.e. n = {q1, q2, . . . , qT}.103

viii. Upper Bound (M): The (predicted) upper bound on the qt in subset n.104

ix. Lower Bound (m): The (predicted) lower bound on the qt in subset n.105

x. Fluctuation Ratio (φ): The (predicted) maximum fluctuation of the qt106

in subset n, calculated by M/m.107

xi. Return Bound (b): A set of constants limiting the maximum fluctuation108

between prices, e.g. qt−1 and qt.109

4
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xii. Return Function (f(qt)): The return rt for accepting a price qt is a110

(family of) function(s) of the price. For example accepted price minus111

the accumulated sampling costs for observing the qt in subset n.112

xiii. Risk-tolerance Factor (a): The acceptable level of risk the player is will-113

ing to take for a higher return.114

xiv. Uni-directional search (uni): Searching for maximum (max-search) or115

minimum (min-search) price(s) to carry out either a selling or a buying116

transaction within one subset n.117

xv. Bi-directional search (bi): Searching for maximum (max-search) and118

minimum (min-search) price(s) to carry out both a buying and a selling119

transaction within one subset n, i.e. bi-directional search is synonym for120

trading.121

xvi. Preemptive conversion (pmtn): Search for more than one price in each122

subset n in order to convertD (Y ). ON is allowed to convert sequentially123

in parts at different prices qt, i.e. the whole available amount is converted124

‘little by little’. Typically, the number of prices considered for conversion125

is determined by ON . Except in one special case where ON desires to126

convert at a specific number of prices, denoted by u. This referred to as127

u-preemptive (u-pmtn).1128

xvii. Non-Preemptive conversion (non-pmtn): Search for one single price in129

each subset n in order to convert D (Y ). ON is allowed to convert ‘all130

or nothing’, i.e. the whole available amount is converted at one price qt.
2

131

Non-preemptive conversion is a special case of preemptive conversion.132

xviii. Amount to be converted (st): The fraction of the whole amount available133

to be converted at price qt, with 0 ≤ st ≤ 1. In the preemptive case134

st ∈ [0, 1] while in the non-preemptive case st ∈ {0, 1}.135

1In the work related algorithms for preemptive conversion are denoted as constant
rebalancing algorithms, dollar-cost averaging or threat-based algorithms.

2In the work related algorithms for non-preemptive conversion are denoted as reserva-
tion price algorithms.

5
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2.2. Classification Factors136

By using the above definitions, the following factors are used to classify137

online conversion problems:138

1. Nature of search139

i. uni : The player converts asset D into another asset Y , but con-140

version back from Y into D is forbidden. There is no restriction141

on the number of transactions.142

ii. bi : The player converts asset D back and forth, i.e. D into Y143

and Y back into D, etc. There is no restriction on the number of144

transactions.145

2. Nature of conversion146

i. non-pmtn: Search for one single price in each subset n to convert147

asset D. Typically, the whole amount available is converted in one148

single transaction, i.e. st ∈ {0, 1}.149

ii. pmtn: Search for more than one price in each subset n to convert150

asset D. Typically, only a fraction of the whole amount available151

is converted in one transaction, i.e. st ∈ [0, 1].152

3. Given information153

The (collection of) possible information (about the future) given to ON154

a-priori. Parameters assumed to be known are155

i. upper bound M ,156

ii. lower bound m,157

iii. fluctuation ratio φ,158

iv. duration T ,159

v. threat duration k ≤ T ,160

vi. length l,161

vii. return bound b,162

viii. return function f(qt),163

ix. risk tolerance a.164

6
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Based on the three factors nature of search|nature of conversion|given infor-165

mation we classify the existing work related in the following. We give the166

worst-case competitive ratios c as well as the amount to be converted st –167

the essential parameters for conversion.168

3. Uni-directional Search169

The main focus of the work related is on uni-directional search. We relate170

our discussion w.l.o.g. to max-search, and classify these problems in two main171

categories based on the amount to be converted (st).172

3.1. Uni-directional Non-preemptive Conversion173

The player is allowed to convert D into Y in one single transaction, based174

on a pre-calculated reservation price (RP ). ON concerning this scenario is175

either based on one single RP , denoted by q∗, or on a time varying RP ,176

denoted by q∗t . In both cases, each qt is checked against the pre-calculated177

RP : If qt ≥ (≤) RP then qt is accepted, and search is closed. Otherwise178

the search continues until the last price qT . At this point, asset D must be179

converted at price qT , which might be m in the worst-case.180

Problems from the literature addressing the uni-directional non-preemptive181

scenario are discussed in the following.182

3.1.1. Problem: uni|non-pmtn|M,m183

[10] provide an algorithm called ‘Reservation Price Policy’ (RPP ). Let184

the RP be q∗.185

Algorithm 1.186

Rule (1). Accept the first price greater than or equal to q∗.187

Rule (2). If no qt ≥ q∗ occurs, the player must accept the last price qT , which188

is possibly m.189

Rule (2) only holds if the computed RP is too high, i.e. all qt < q∗. A clever190

adversary with complete knowledge of the future, including the RP , can use191

this information making the player perform worse.192

Theorem 1. Let M and m be given. Then the worst-case competitive ratio193

equals [10, p. 35]194

c(m,M) =
√
M/m. (2)

7
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Proof.195

Case 1 : If q∗ is too low, then the adversary provides an input sequence in196

such format that the ‘maximum possible price’ qmax ∈ [q∗,M ], and thus the197

player may suffer from the so called ‘too early error’: The player could have198

achieved M but gets q∗ in the worst-case. The competitive ratio achieved199

thus will be c1 = M/q∗.200

Case 2 : If q∗ is too high, then the adversary provides an input sequence in201

such format that qmax ∈ [m, q∗], and thus the player may suffer from the ‘too202

late error’: The player could have achieved q∗, and gets m in the worst-case.203

The competitive ratio achieved thus will be c2 = q∗/m.204

The player must choose a q∗ while balancing the two errors, i.e. to ensure205

that206

c1 = c2 (3)

M/q∗ = q∗/m

q∗ =
√
M ·m

As OPT will choose M we get an overall competitive ratio of
√
M/m.207

[11] extend Algorithm 1 and present an algorithm using two RP to sell208

a finite number of (stored) products. The values m, M and the storage209

limitation K are assumed to be known. Each time t the player receives one210

new product with price qt, and may either sell it together with some stored211

products if qt ≥ q∗ or save it in the storage and sell none [11, p. 931].212

3.1.2. Problem: uni|non-pmtn|M,T213

[12] derive a q∗ for Algorithm 1. The model assumes that qt ∈ [M/T,M/t]214

with t = 1 . . . T [12, p. 622]. Let qmax ≤ M be the highest price selected215

by the adversary. Again, if no qt ≥ q∗ occurs, the player must accept the216

‘minimum possible price’ qmin ≥ m in the worst-case. This happens if the217

computed RP is too low, or the computed RP is too high.218

Theorem 2. Let M and T be given. Then the worst-case competitive ratio219

equals [12, p. 625]220

c(M,T ) =
√
T . (4)

Proof.221

Case 1 : If q∗ is too high, the adversary will choose qmax < q∗. As no222

offered price qt will satisfy the condition qt ≥ q∗ during T , the player must223
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accept qmin = M/T on day T in the worst-case. Thus, the competitive ratio224

in this case equals225

c1 =
qmax

(M/T )
(5)

<
q∗

(M/T )
.

Case 2 : If q∗ is too low, the adversary will offer q∗ as the first price q1.226

The player will accept q1, and the game ends. Afterwards, the adversary227

increases the prices up to qmax = M . Thus, the competitive ratio in this case228

equals229

c2 = M/q∗. (6)

The player must choose a q∗ while balancing c1 and c2, i.e. to ensure that230

c1 = c2 (7)
qmax

(M/T )
= M/q∗

q∗ = M/
√
T .

As OPT will choose M we get an overall competitive ratio of
√
T .231

3.1.3. Problem: uni|non-pmtn|M,m,ft(q
′)232

[13] extend Algorithm 1 by introducing sampling costs for observing233

prices. Let q′ be the accepted price. Choosing q′ results in some return,234

which is modeled by a family of functions ft(q
′). The basic assumptions of235

[13] are:236

i. ft(q
′) with t = 1, 2, . . . , T is continuous and increasing in q′.237

ii. For any q′ the return is the higher the earlier q′ is accepted, as less238

sampling costs occur: f1(q
′) ≥ f2(q

′) ≥ · · · ≥ fT (q
′) > 0.239

iii. After accepting one specific q′ the game ends.240

In contrast to [10, 12] the considered RP varies with time, and thus is denoted241

by q∗t .242

Algorithm 2.243

Rule (1). Accept the first price greater than or equal to q∗t .244
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Rule (2). If no qt ≥ q∗t occurs, the player must accept the last price qT , which245

is possibly m resulting in fT (m).246

The RP is derived in the following. [13] focus on the case where ft+1(M) >247

ft(m) for t ∈ [1, T − 1], because if ft+1(M) ≤ ft(m) the game ends on or248

before day t as the player achieves a return of fj(qj) ≥ ft(m) when accepting249

qj at day j ∈ [1, t].250

For T = 1 the unique price q1 = q′ with the same return is accepted.251

Thus, the case where T ≥ 2 is of main interest. For each (unknown) duration252

L ∈ [1, T ] let253

ZL = min

{{
max

{
ft+1(M)

ft(m)
,

√
f2(M)

ft(m)

}
, t = 1, . . . , L− 1

}
,

√
f2(M)

fL(m)

}

(8)
with ZL ≥ 1 since ft+1(M) > ft(m), and f2(M) > fL(m). Let254

L′ = max

{
L|L = arg max

2≤L≤T
ZL

}
. (9)

This means that ZL′ ≥ ZL for every L ∈ [2, T ]. By definition of ZL′ there255

exists a natural number x, such that256

Z ′L′ =
fx+1(M)

fx(m)
for x ≤ L′ − 1, or (10)

Z ′′L′ =

√
f2(M)

fx(m)
for x ≤ L′,

with

ZL′ = min {Z ′L′ , Z ′′L′} .

From (10) q∗t is derived by the following cases:257

Case 1 : ZL′ = Z ′L′ . For t ∈ [1, x] let q∗t either be the solution of258

ZL′ft(q
∗
t ) = ft+1(M), or (11)

q∗t = m if no solution exists.

Case 2 : ZL′ = Z ′′L′ . Let t
∗ = max{t|ft+1(M) ≥

√
f2(M) · fx(m)}.259

Case 2.1 : For min{t∗, x− 1} < t ≤ x,260

q∗t = m. (12)
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Case 2.2 : For 1 ≤ t < min{t∗, x− 1} let q∗t be either the solution of261

ZL′ft(q
∗
t ) = ft+1(M), or (13)

q∗t = m if no solution exists.

262

Theorem 3. Let M , m and ft(q
′) be given. Then the worst-case competitive263

ratio equals ZL′ [13, p. 196].264

For the proof, discussing several cases and worst-case time series, the reader265

is referred to [13, Section 4.2].266

For the problem considering different return functions, an extension of267

the current work can possibly be to design randomized algorithms to achieve268

a smaller competitive ratio.269

3.1.4. Problem: uni|non-pmtn|M,m,T,ft(q
′)270

[13] derive a second q∗ for Algorithm 2 based on the additional knowledge271

of T . The assumptions are identical, only the calculation of the RP differs.272

For each (known) duration T , let273

Z = min

{{
max

{
ft+1(M)

ft(m)
,

√
f2(M)

ft(m)

}
, t = 1, . . . , T − 1

}
,

√
f2(M)

fT (m)

}

(14)
with T ≥ 1 as ft+1(M) > ft(m) and f2(M) > ft(m). By definition of Z274

there exists a natural number y, such that275

Z ′ =
fy+1(M)

fy(m)
for y ≤ T − 1, or (15)

Z ′′ =

√
f2(M)

fy(m)
for y ≤ T, or

Z = min {Z ′, Z ′′} .

From (15) q∗t is derived by the following cases:276

Case 1 : Z = Z ′. For t ∈ [1, y] let q∗t either be the solution of277

Zft(q
∗
t ) = ft+1(M), or (16)

q∗t = m if no solution exists.
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Case 2 : Z = Z ′′. Let t∗ = max{t|ft+1(M) ≥
√

f2(M) · fy(m)}.278

Case 2.1 : For min{t∗, y − 1} < t ≤ y,279

q∗t = m. (17)

Case 2.2 : For 1 ≤ t < min{t∗, y − 1} let q∗t be either the solution of280

Zft(q
∗
t ) = ft+1(M), or (18)

q∗t = m if no solution exists.

281

Theorem 4. Let M , m, T and ft(q
′) be given. Then the worst-case com-282

petitive ratio equals Z [13, p. 194].283

For the proof, discussing several cases and worst-case time series, the reader284

is referred to [13, Section 3.2].285

3.1.5. Problem: uni|non-pmtn|b,T286

[14] use the framework of the bounded daily return model, namely return287

bound b, and consider a set b = {Θ1,Θ2} assuming for each qt ∈ [1, T − 1]288

the qt+1 ∈ [qtΘ1, qtΘ2] where 0 < Θ1 ≤ Θ2. Further, [14] focus on the case289

where 0 < Θ1 < 1 < Θ2. The following algorithm [14, p. 162] is given:290

Algorithm 3.291

Rule (1). Accept the t∗-th price with return rt∗.292

Rule (2). If no such price occurs, the player must accept the last price qT ,293

which is possibly m.294

With t∗ = argmint∗∈[1,T ] {ct} and ct = max
{
Θ1−t

1 ,ΘT−t
2

}
is a time-varying295

competitive ratio recalculated for each t.296

Theorem 5. Let Θ1,Θ2 and T be given. Then the worst-case competitive297

ratio equals [14, p. 164]298

cT (Θ1,Θ2) =
max

{
Θ1−t∗

1 rt∗ ,Θ
T−t∗
2 rt∗

}

rt∗
(19)

= max
{
Θ1−t∗

1 ,ΘT−t∗
2

}
.

For the proof the reader is referred to [14, Theorem 1].299
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3.2. Uni-directional Preemptive Conversion300

In uni-directional preemptive conversion D can be converted sequentially301

in parts, i.e. st ∈ [0, 1]. The only restriction is that within subset n the302

player must convert D into Y completely, i.e.
∑T

t=1 st = 1.303

A great deal of literature addresses the problem uni|pmtn. [15, 7, 16]304

introduce a genre of algorithms based on the assumption that there exists a305

threat that at some stage during the time interval, namely on day k ≤ T , the306

offered price qt ∈ [m,M ] will drop to some minimum level, and will remain307

there until the last day T . The algorithm proposed is commonly referred to308

as the threat-based, and the basic rules are [7, p. 109]:309

Algorithm 4.310

Rule (1). Consider a conversion from D into Y only when the current price311

is the highest seen so far.312

Rule (2). Whenever converting D into Y , convert just enough D to ensure313

that a competitive ratio c would be obtained if an adversary dropped the price314

to the ‘minimum possible price’, and kept it there throughout the game.3315

Rule (3). On the last trading day, all remaining D must be converted into316

Y , possibly at the ‘minimum possible price’.317

[15, 7, 16] discuss five variants of Algorithm 4, each assuming a different318

knowledge about the future. [15, 7] consider:319

• known duration T with m and M known,320

• unknown duration with m and M known,321

• known duration T with known φ,322

• unknown duration with known φ,323

and [16] consider:324

• unknown duration with initial price q1, m and M known.325

3The ‘minimum possible price’ is defined with respect to the information known to the
player. Which is m if m is known and is qt/φ if only φ = M/m is known, and qt is highest
price seen so far.
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For each of the five variants [15, 7, 16] give a competitive ratio based on the326

assumed a-priori information. Based on these parameters, ON determines st327

such that c holds in the worst-case. [17] conclude that this ratio seems to be328

appropriate to generate a reasonable ordering of the algorithms investigating329

the worth of future information available.330

3.2.1. Problem: uni|pmtn|M,m,k331

In this variant of Algorithm 4 it is assumed that m and M , as well as332

k ≤ T , are known a-priori [7].333

Theorem 6. Let m, M and T be given. Then cT (m,M) is the worst-case334

competitive ratio, and is the solution, c, of [7, (26), p. 118]335

c = T ·
[
1−

(
m · (c− 1)

M −m

)1/T
]
. (20)

For the known duration case cT (m,M) is the best competitive ratio that an336

uni|pmtn algorithm can achieve [7, Theorem 5, p. 118]. For the proof the337

reader is referred to [7].338

Let yt be the number of Y accumulated, and dt the amount ofD remaining339

after day t. ON starts with d0 = 1 of D, and y0 = 0 of Y . Then the amount340

to be converted [7, p. 111]341

st = dt−1 − dt ⇒ dt = dt−1 − st, (21)

and342

qt · st = yt − yt−1. (22)

From Rule (2) of Algorithm 4 we know [7, (5), p. 112]343

yt + dt · ‘minimum possible price’ =
qt
c
, (23)

and344

yt−1 + dt−1 · ‘minimum possible price’ =
qt−1
c

. (24)

For t > 1 by subtracting (24) from (23) and applying (21) and (22) we get345

[7, (10), p. 112]346

st =
1

c
· qt − qt−1
qt −m

. (25)
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3.2.2. Problem: uni|pmtn|M,m347

In this variant of Algorithm 4 the number of days k ≤ T is not given to348

the player. An arbitrarily large number of days T →∞ must be considered349

in the worst-case. From [7, p. 121] we know350

c∞(m,M) = lim
T→∞

cT (m,M). (26)

351

Theorem 7. Let m and M be given. Then c∞(M,m) is the worst-case com-352

petitive ratio, and is the solution, c, of [7, (29), p. 122]353

c = ln
M −m

m · (c− 1)
. (27)

For the proof the reader is referred to [7]. In order to meet the ratio c354

the dt must be determined such that the whole (remaining) amount of D is355

converted in case the highest possible price M occurs on day t. From this356

follows [15, p. 329, Case 1]357

dt = 1− 1

c
· ln M −m

m · (c− 1)
(28)

with st = dt−1 − dt and d0 = 1.358

[16] improve the lower bound given in (27). The claim is that a player359

using the Algorithm 4 assumes a much greater threat than actually faced by360

the player. It is shown that Algorithm 4 does not convert unless the price is361

as large as c ·m, i.e. the threat is at most c ·m ≥ m, and shall not go beyond362

this point. Thus, from (27) we get363

c = ln
M
c·m − 1

c− 1
, (29)

and Rule (2) of Algorithm 4 is modified by [16]: the ‘minimum possible price’364

is defined with respect to the information known to the player. Which is cm365

if m is known, i.e. replacing m by cm. For the proof the reader is referred366

to [16, Theorem 4].367
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3.2.3. Problem: uni|pmtn|M,m,q1368

In this variant of Algorithm 4 an arbitrary number of days T →∞ must369

be considered as k ≤ T is not known.370

Theorem 8. Let m, M and q1 be given. Then c∞(m,M, q1) is the worst-371

case competitive ratio, and is the solution, c, of [16, p. 29] and [15, p. 329,372

Case 1 and 2]373

c =

{
ln

M
m
−1

c−1 q1 ∈ [m, c ·m]

1 + q1−m
q1

· ln M−m
q1−m q1 ∈ [c ·m,M ] .

(30)

Hence (27) only holds for the case q1 is unknown, or q1 ≤ c ·m. In this case374

the pessimistic assumption q1 = m must be made, cf. [15, p. 329].375

Further, depending on the value of q1 the amount of D remaining equals376

[15, p. 329, Case 1 and 2]377

dt =

{
1− 1

c
· ln qt−m

c·m−m q1 ∈ [m, c ·m]
q1−(q1/c)
q1−m − 1

c
· ln qt−m

q1−m q1 ∈ [c ·m,M ]
(31)

with st = dt−1 − dt and d0 = 1.378

3.2.4. Problem: uni|pmtn|φ,k379

In this variant of Algorithm 4 the information about the ‘minimum pos-380

sible price’ available to the player varies online: at the t-th day the minimum381

possible price is qt
φ
.382

Theorem 9. Let φ and T be given. Then cT (φ) is the worst-case competitive383

ratio, and equals [7, Theorem 6, p. 126]384

cT (φ) = φ ·
(
1− (φ− 1)T

(φT/(T−1) − 1)T−1

)
. (32)

The worst-case competitive ratio in (32) can be derived as in the analysis of385

Problem: uni|pmtn|M,m,k by specializing to the case in which the ‘minimum386

possible price’ is qt
φ
[7, p. 122]. For the proof the reader is referred to [7].387
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3.2.5. Problem: uni|pmtn|φ388

In this variant of Algorithm 4 an arbitrarily large number of days T →∞389

must be considered as k ≤ T is not given. Thus, [7, p. 126] define390

c∞(φ) = lim
T→∞

cT (φ). (33)

391

Theorem 10. Let φ be given. Then c∞(φ) is the worst-case competitive392

ratio, and equals [7, p. 126]393

c∞(φ) = φ− φ− 1

φ1/(φ−1) . (34)

For the proof the reader is referred to [7].394

It remains to compute st for Problem: uni|pmtn|φ,k and Problem: uni|pmtn|φ.395

For both [15, 7] observe that the minimum price offered to ON on day t is396

at least qt
φ
. By replacing m by qt

φ
from (23) we know397

yt + dt
qt
φ

=
qt
c

⇒ dt = φ(
1

c
− yt

qt
). (35)

From [7, (4), p. 111], we get [7, (31), p. 122]398

st =
qt − c(yt−1 + dt−1 · qt/φ)

c(qt − qt/φ)
. (36)

3.2.6. Problem: uni|pmtn|M(t),m,T,l399

This variant of Algorithm 4 is based on the assumption that the upper400

bound is not constant but varies with time: M(t) = M/t. Let l ≤ T be the401

length of an increasing sequence of prices m ≤ q1 < q2 · · · < ql ≤ M . For402

example n = {1, 2, 4, 3, 7, 5, 6} (T = 7), then l = 4 with prices {1, 2, 4, 7}.403

Theorem 11. Let M(t), m, l and T be given. Then the worst-case compet-404

itive ratio equals [12, (7), p. 663]405

c(M(t),m, T, l) = max
l=2,...,T



c|c = l


1−

(
c− 1

M(l)
m
− 1

)1/l




 (37)
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where qt is modeled as m ≤ qt ≤M(t), and M(t) is a decreasing function of406

time (constant m).407

Let st be the amount to be converted at time t, then [12, (9), p. 634]408

st =





1
c

(
qt−cm
qt−m

)
t = 1

1
c

(
qt−qt−1

qt−m

)
t ∈ [2, T ].

(38)

3.2.7. Problem: uni|pmtn|b,T409

[18] use the framework of the bounded daily return model, namely return410

bound b, and assume a set b = {α, β}. The two fixed constants α and β411

(α, β > 1) determine the range of qt with qt ∈
[
qt−1

β
, α · qt−1

]
. The following412

buy-and-hold algorithm is given [18, p. 448]:413

Algorithm 5.414

Rule (1). For each observed qt convert D into Y according to st ∈ [0, 1].415

Rule (2). On the last trading day, all remaining D must be converted into416

Y , possibly at m.417

Based on a worst-case input sequence scenario [18, p. 543]418

st =





α(β−1)
Tαβ−(T−1)(α+β)+(T−2) t = 1

(α−1)(β−1)
Tαβ−(T−1)(α+β)+(T−2) t ∈ [2, T − 1]

β(α−1)
Tαβ−(T−1)(α+β)+(T−2) t = T.

(39)

419

Theorem 12. Let α, β and T be given. Then the worst-case competitive420

ratio equals [18, p. 454]421

cT (α, β) =
T · αβ − (T − 1) (α + β) + (T − 2)

αβ − 1
. (40)

For the proof the reader is referred to [18, Theorem 3.4].422

An open question is to replace the constants α and β by a (known) prob-423

ability distribution. Further, the scenario of a continuous cash (wealth) flow424

could be investigated.425

[19] use Algorithm 5 but consider one fixed constant γ < 1, i.e. set426

b = {γ}. For example if γ = 0.1 the maximum possible price change is427
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10%. Here, each current price qt depends on yesterday’s days price qt−1428

where qt ∈ [(1− γ)qt−1, (1 + γ)qt−1]. [19, p. 225] present two strategies429

to determine st, namely the Static Mixed Strategy and the Dynamic Mixed430

Strategy.431

i. Static Mixed Strategy : Based on a worst-case input sequence scenario [19,432

(9), p. 228]433

st =





1+γ
(T−1)γ+2

t = 1
γ

(T−1)γ+2
t ∈ [2, T − 1]

1
(T−1)γ+2

t = T.

(41)

with
∑T

t=1 st = 1.434

Theorem 13. Let γ and T be given. Then the worst-case competitive ratio435

equals [19, p. 227]436

cT (γ) = 1 +
γ

2
(T − 1) . (42)

For the proof the reader is referred to [19, Theorem 1].437

ii. Dynamic Mixed Strategy : Based on the remaining number of days T ′ =438

T − t+ 1 in subset n [19, (12), p. 229]439

st =





(
1+γ

(T ′−1)γ+2

)
dt−1 t = 1(

γ
(T ′−1)γ+2

)
dt−1 t ∈ [2, T ′ − 1](

1
(T ′−1)γ+2

)
dt−1 t = T ′

(43)

where dt−1 the amount of D (capital) remaining after day t − 1 with initial440

amount do = 1 and
∑T

t=1 st = 1.441

Theorem 14. Let γ and T ′ be given. Then the worst-case competitive ratio442

equals [19, p. 229]443

cT ′(γ) = 1 +
γ

2
(T ′ − 1) . (44)

For the proof the reader is referred to [19, Theorem 2]. Note that (44)444

only holds when T is not extended to infinity. Therefore, a strategy for445

T →∞ is an open question. [20] study the same setting in a framework with446

commission and interest rate, and [21] conversion against a weak statistical447

adversary.448
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Remark 1. Under worst-case assumptions the competitive ratios cT (α, β)449

(of [18]) and cT (γ) (Static Mixed Strategy of [19]) are identical.450

Using the bounded daily return model [18] assume451

qt−1
β
≤ qt ≤ αqt−1, (45)

whereas [19] assume452

(1− γ)qt−1 ≤ qt ≤ (1 + γ)qt−1. (46)

Proof.453

Let T and b = {α, β, γ} be given. Using elementary calculus from (45) and454

(46) we obtain455

β =
1

1− γ
and, (47)

α = (1 + γ).

By applying (47) to (40) we get456

cT (α, β) = 1 +
Tγ

2
− γ

2
(48)

= 1 +
γ

2
(T − 1)

= cT (γ)

where γ < 1.457

Further, the worst-case competitive ratio of the Dynamic Mixed Strategy458

of [19], cT ′(γ), can also be represented in terms of α and β, using459

γ =
2(αβ − α− β + 1)

αβ − 1
(49)

where α, β > 1.460

[14] use Algorithm 5 and consider a set b = {Θ1,Θ2} assuming for each461

qt ∈ [1, T − 1] the qt+1 ∈ [qtΘ1, qtΘ2] where 0 < Θ1 ≤ Θ2. Further, [14] focus462

on the case where 0 < Θ1 < 1 < Θ2.463
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Let s1
Θt−1

2

+ s2
Θt−2

2

+· · ·+ st−1

Θ2
+st+st+1Θ1+· · ·+sTΘ

T−t
1 be Ft (s1, . . . , sT ). To464

compute st the following linear program with variables {c, s1, . . . , sT} must465

be solved for t ∈ [1, T ]:466

min c (50)

s.t. Ft(s1, . . . , sT ) ≥
1

c
T∑

t=1

st ≤ 1

st ≥ 0

The optimal solution is {c∗, s∗1, . . . , s∗T}, i.e. the amount to be converted by467

Algorithm 5 on each day t equals s∗t [14, p. 164].468

Theorem 15. Let Θ1,Θ2 and T be given. Then the worst-case competitive469

ratio equals [14, p. 164]470

cT (Θ1,Θ2) =
1

Ft (s∗1, . . . , s
∗
T )

(51)

= c∗.

For the proof the reader is referred to [14, Theorem 3].471

3.2.8. Problem: uni|pmtn|M,m,a472

The threat-based algorithm is risk-averse: Algorithm 4 attempts to safe473

guard against a clever adversary who might drop the price to the lowest level474

and keep it there for the rest of the game. [22] include a flexible risk man-475

agement mechanism to competitive analysis. The main idea of the proposed476

framework is to allow the player to manage risk for some kind of reward. Let477

the risk-tolerance factor a ∈ [1, c], where a can be controlled by the player478

and c is the worst-case competitive ratio c∞(M,m) of Algorithm 4 assuming479

M and m known, cf. (27).480

A forecast is the minimum/maximum value of a future price that is at481

least expected in subset n. If, for example, the forecasted upper bound is482

M1 then all possible maxima qmax ∈ [M1,M ]. The work of [22] limits to483

max-search, and is based on the simple assumption that a forecast can either484

be true or false.485

If the forecast comes true, then a competitive ratio c1 =
c
a
better (smaller)486

than c is achieved. This is optimal under the following condition: If the487
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forecast does not come true, the worst-case competitive ratio is not worse488

than c · a, i.e. c holds, where c1 ≤ c. This results in an algorithm with489

bounded loss within a pre-specified risk tolerance.490

Let the initial price q0 ≥ c ·m, and M1 ≤M is the possible upper bound.491

The algorithm proposed is commonly referred to as the risk-rewarded threat-492

based. Rule (2) of Algorithm 4 is extended by two stages [22, p. 106]:493

Algorithm 6.494

Rule (1). Consider a conversion from D into Y only when the current price495

is the highest seen so far.496

Rule (2). Whenever you convert D into Y , convert just enough D to ensure497

that a competitive ratio c would be obtained if an adversary dropped the price498

to m, and kept it there throughout the game, where499

c =

{
a · c, qt ∈ [q0,M1] Stage (1)

c1, qt ∈ [M1,M ] Stage (2)
(52)

with c1 ≤ c.500

Rule (3). On the last trading day, all remaining D must be converted into501

Y , possibly at m.502

In Stage (1) Algorithm 6 converts under the threat that the forecast is incor-503

rect, i.e. converts just enough D into Y to guarantee a competitive ratio of504

at most a · c; if a = 1 the risk-averse player achieves c of Algorithm 4. This505

is the conservative stage, ‘saving’ dollars for when the forecast comes true.506

Then Stage (2) begins: First, the new minimum achievable competitive ratio507

c1 is computed. Second, Algorithm 6 converts just to enough ensure c1 under508

the threat that the price drops to m and remains there until T . Algorithm509

6 has ‘more’ D left to spend than Algorithm 4, and will convert at higher510

prices. Thus on day T , the accumulated Y are greater.511

Theorem 16. Let M ,m and a be given. In case the forecast comes true, the512

worst-case competitive ratio equals [23, (19), p. 414]513

c1 =
M1 −m

(M1 −m)
(
1− 1

ac
ln M1−m

acm−m
)
+ M1

ac

(
M1

M1 −m
+ ln

M −m

M1 −m

)
. (53)
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For the proof the reader is referred to [23, Section 3.2]. Note that in case of514

incorrect forecasts the worst-case competitive ratio equals a · c with c from515

(27).516

It remains to compute the amount to be converted st for Stage (1) and517

Stage (2). Let t∗ ∈ [1, T ] be the first day where the forecast comes true.518

Then [22, p. 107]519

s2t =

{
do

qt−m

(
qt
c1
− qt−1

a·c

)
, t = t∗

do
c

qt−qt−1

qt−m , else with c from (52).
(54)

[23] generalize the work of [22] in two ways: i) [22] limits a forecast to520

the assumption that the price will reach at least some level. [23] also allow521

the opposite, i.e. for example if the forecasted lower bound is m1 then all522

possible minima qmin ∈ [m,m1]. ii) Algorithm 6 is based on the scenario523

where one single forecast is assumed. [23] provide a scheme which enables to524

include several forecasts. ON can ‘update’ a forecast by a second forecast,525

etc. Results show that the suggested algorithms are not optimal for the entire526

investment horizon considered but for certain subsets n. In this regard, [24]527

show c to be a (so far not established) coherent risk measure. Using c the528

risk associated can be monitored, as it measures the expected regret [25].529

However, in practice, forecasts often have an associated probability ρ to530

come true. An open question is to represent the reward as a function of ρ.531

3.2.9. Problem: uni|u-pmtn|M,m532

Typically, the number of prices considered for preemptive conversion533

within subset n is determined by ON . [26] consider the special case where534

the player desires to convert u units of asset D into asset Y at u prices, re-535

ferred to as u-preemptive (u-pmtn). The proposed algorithm is based on two536

pre-calculated reservation prices (RP ): One for buying and one for selling.537

Let q∗i = (q∗1, q
∗
2, . . . , q

∗
u) be the RP where i ∈ [1, u], equaling538

q∗i =




m
[
1 + (c− 1)

(
1 + c

u

)i−1]
, for max-search

M
[
1−

(
1− 1

c

) (
1 + 1

u·c
)i−1]

, for min-search
(55)

and c equals the worst-case competitive ratio [26, (5), p. 316 resp. (8), p.539

318].540

Algorithm 7.541
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Rule (1). For each unit i accept the first price greater (smaller) than or equal542

to q∗i for selling (buying).543

Rule (2). On the last trading day, all remaining units of D must be converted544

into Y , possibly at m.545

For i ≥ 1 ON accepts u different RP which are at least q∗i . Note that i = 1546

is a special case where Algorithm 7 equals Algorithm 1: The first price which547

is at least q∗1 is accepted and the game ends.548

Theorem 17. Let m, M and u ∈ N be given with M
m

= φ. Then c∞(φ, u)549

is the worst-case competitive ratio for max-search, and is the solution, c, of550

[26, (1), p. 313]551

(φ− 1)

(c− 1)
=
(
1 +

c

u

)u
. (56)

Theorem 18. Let m, M and u ∈ N be given with M
m

= φ. Then cmin
∞ (φ, u)552

is the worst-case competitive ratio for min-search, and is the solution, c, of553

[26, (2), p. 314]554 (
1− 1

φ

)

(
1− 1

c

) =

(
1 +

1

c · u

)u

. (57)

For the proofs the reader is referred to [26].555

3.2.10. Problem: uni|u-pmtn|M,m,T556

[27] extend the work of [26] by assuming the additional knowledge of T .557

Algorithm 7 is allowed to convert at most one unit at one price. In the558

model of [27] the player is allowed to convert up to u units at one price.559

The proposed (max-search) algorithm is based on the idea to first specify560

u, and then to determine the units u ≥ 1 to be converted at time t. Let561

q∗i = (q∗0, q
∗
1, . . . , q

∗
u) be the RP where i ∈ [0, u]. Then the number of units is562

determined by the relationship between qt and the matching q∗i [27, DET, p.563

679]. Let the RP be564

q∗i =

[(
1 +

c

u

)i−1
(c− 1) + 1

]
, (58)

and at time t price qt is observed. Let the observed prices qt ∈
[
q∗i , q

∗
i+1

)
.565

Algorithm 8.566
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Rule (1). If q∗i > max {q1, . . . , qt−1} convert just enough units of D into Y567

that the accumulated amount of units converted is exactly i.568

Rule (2). If q∗i ≤ max {q1, . . . , qt−1} do not convert.569

Rule (3). On the last trading day, all remaining units of D must be converted570

into Y , possibly at m.571

Assume Algorithm 8 has converted exactly j ∈ [1, u] units at time T − 1.572

From Rule (1) follows that then there has been a qt ∈
[
q∗j , q

∗
j+1

)
while all573

other qt < qj+1, cf. [27, Table 1]. At least one of the j units is converted at574

a price of at least q∗j , thus the overall amount converted is at least
∑j

i=0 q
∗
i575

for j ≤ u assets [27, Lemma 1].576

Theorem 19. Let m, M , T and u ∈ N be given. Then c∞(m,M, u) is the577

worst-case competitive ratio for max-search, and is the solution, c, of [27, p.578

680]579

c =




max

{
uq∗j+1∑j

i=0 q
∗
i +(u−j)m , uM∑j

i=0 q
∗
i +(u−j)M

}
, u < T

minj∈[T−1,u] max
{

uq∗j∑j
i=1 q

∗
i +(u−j)m , uM∑j

i=1 q
∗
i +(u−j)M

}
, u ≥ T.

(59)

For the proof the reader is referred to [27, Theorem 1 and 2].580

[28] investigate the practical applicability of the reviewed uni-directional581

algorithms of [10, 12, 7, 18, 19, 26] in an experimental study. Results show582

that the algorithms of [7] outperform the other algorithms on real world583

datasets (DAX30 and S&P500).584

4. Bi-directional Search585

Only a small amount of work is related to bi-directional search. The586

player is allowed to convert D back and forth. We assume w.l.o.g. that the587

objective is to maximize the amount of D at day T . We classify the problems588

in two main categories based on the amount to be converted (st).589

4.1. Bi-directional Non-Preemptive590

The player is allowed to convert D (Y ) in one single transaction, based591

on a pre-calculated reservation price (RP ). ON concerning this scenario are592

either based on one single RP , denoted by q∗, or on a time varying RP ,593

denoted by q∗t . In both cases, each qt is checked against the pre-calculated594
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RP : If qt ≥ (≤) RP then qt is accepted, and search is closed. This implies595

exactly two transactions (one single trade). Search continues until the last596

price qT . At this point of time Y must be converted into D, possibly at price597

m. Problems from the literature addressing the bi|non-pmtn scenario are598

discussed in the following.599

4.1.1. Problem: bi|non-pmtn| –600

[1] address a problem closely related to the secretary problem, cf. [29, 30].601

The aim is to select pairs of prices in such way as to maximize their difference602

in ranks. For each price a xt (t = 1, . . . , T ) is computed representing the rank603

of qt in the already observed sequence of prices. The xt form a permutation604

of subset {1, 2, . . . , T}. The aim is to achieve a possibly high profit while605

maximizing the difference (in ranks) between buying and selling price(s).606

Two scenarios are addressed, i) single high/low pair selection (one trade)607

and ii) multiple high/low pair selections (p > 1 trades). We limit to i) as608

to solve ii) the algorithm for i) is repeated p times. A low (high) selection609

refers to picking a buying (selling) price.610

Let q∗t (H) be the RP for high selection, equaling [1, p. 3]611

q∗t (H) =

⌈
t+ 1

n+ 1
X∗

t+1

⌉
(60)

where X∗
t is the expected final rank of a high selection if an optimal strategy612

for high selection is followed starting at time t [1, p. 4]613

X∗
t =

{
T+1
2

t = T,
q∗t (H)−1

t

(
X∗

t+1 − T+1
2(t+1)

q∗t (H)
)
+ T+1

2
t < T.

(61)

Note that all permutations of final ranks are equally likely. Let q∗t (L) be the614

RP for low selection, equaling [1, p. 4]615

q∗t (L) =

{
0 t = T,⌊

t+1
T+1

(
X∗

t+1 −R∗t+1

)⌋
t < T

(62)

where R∗t is the expected high/low difference (return) if an optimal strategy616

for making the high/low selection(s) is followed starting at time t:617

R∗t =

{
0 t = T,

R∗t+1 +
q∗t (L)

t

(
X∗

t+1 −R∗t+1 − T+1
i+1

q∗t (L)+1

2

)
t < T.

(63)

[1, Section 2] provide the following algorithm:618
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Algorithm 9.619

Rule (1) – Low Selection. Select qt at time t iff xt ≤ q∗t (L).620

Rule (2) – High Selection. Select qt at time t iff xt ≥ q∗t (H).621

Rule (3). If no selection is made until T , qT has to be accepted with rank622

X∗
T = T+1

2
.623

Theorem 20. The worst-case competitive ratio equals624

c =

{
1, for single pair selection,
4
3
, for multiple pair selection.

(64)

For the proof the reader is referred to [1, Section 3].625

An open question is to investigate maximizing quantities (volumes) in-626

stead of differences in ranks.627

As stated in Section 1, heuristic conversion algorithms are commonly628

evaluated through experiments (simulation) using historical data. However,629

they work without any knowledge of future input. In the following we present630

the competitive analysis of three well known and widely used heuristic con-631

version algorithms [31], namely Moving Average Crossover (MA), Trading632

Range Breakout (TRB), and Momentum (MM).633

Let ON ∈ {MA,TRB,MM}, and assume for each i-th trade a worst-634

case time series containing only minimum prices m(i) and maximum prices635

M(i). At best ON buys at price m(i), and sells at price M(i) resulting in636

an optimum return OPT = M(i)/m(i). But in the worst-case ON achieves637

a return of ON = m(i)/M(i) = 1/OPT .638

Theorem 21. The competitive ratio of MA, TRB and MM equals (cf. (1))639

640

c =

p∏

i=1

(
M(i)

m(i)

)2

, (65)

and in case m(i) and M(i) are constant641

c =

(
M

m

)2p

. (66)

To prove (65) we assume p = 1, i.e. ON is allowed to trade once.642
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Algorithm 10.643

Rule (1). Buy on day t if MA(S)t > uB(L)t and MA(S)t−1 ≤ uB(L)t−1.644

Rule (2). Sell on day t if MA(S)t < lB(L)t and MA(S)t−1 ≥ lB(L)t−1.645

Where MA(S)t is a short moving average, MA(L)t a long moving average646

(S < L), and the value n ∈ {L, S} defines the number of previous data points647

(days) considered to calculate MA(n)t =
∑t

i=t−n+1 qi
n

. Prices qt are lagged by648

bands, the upper band is uB(L)t = MA(L)t · (1 + b), and the lower band is649

lB(L)t = MA(L)t · (1− b) with b ∈ [0.00,∞].650

Assume a worst-case time series {m, . . . ,m,M,m, . . . ,m}. Hence, prices651

q1, . . . , qt∗−1 = m, qt∗ = M , and qt∗+1, . . . , qT = m. Let S = 1, L ≤ (t∗ − 1)652

and b = 0.00. We have to show that Algorithm 10 buys on day t∗ at price653

qt∗ = M and sells on day t∗ + 1 at price qt∗+1 = m.654

Proof.655

Rule (1).:656

MA(1)t∗ = qt∗ = M

> uB(t∗ − 1)t∗ = MA(t∗ − 1)t∗ =
(t∗ − 2)m+M

(t∗ − 1)︸ ︷︷ ︸
<M

(67)

and657

MA(1)t∗−1 = qt∗−1 = m

≤ uB(t∗ − 1)t∗−1 = MA(t∗ − 1)t∗−1 =
(t∗ − 1)m

(t∗ − 1)︸ ︷︷ ︸
=m

.

(68)
Rule (2).:658

MA(1)t∗+1 = qt∗+1 = m

< lB(t∗ − 1)t∗+1 = MA(t∗ − 1)t∗+1 =
(t∗ − 3)m+M +m

(t∗ − 1)︸ ︷︷ ︸
>m

(69)
and659

MA(1)t∗ = qt∗ = M

≥ lB(t∗ − 1)t∗ = MA(t∗ − 1)t∗ =
(t∗ − 2)m+M

(t∗ − 1)︸ ︷︷ ︸
<M

. (70)
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Taking these decisions into account Algorithm 10 achieves a return of m/M660

in the worst-case resulting in c =
(
M
m

)2
.661

Algorithm 11.662

Rule (1). Buy on day t if qt > uB(n)t and qt−1 ≤ uB(n)t−1.663

Rule (2). Sell on day t if qt < lB(n)t and qt−1 ≥ lB(n)t−1.664

Where lower band lB(n)t = qmin
t (n)·(1−b) with qmin

t (n) = min {qi|i = t− n, . . . , t− 1},665

and upper band uB(n)t = qmax
t (n)·(1−b) with qmax

t (n) = max {qi|i = t− n, . . . , t− 1}666

For b ∈ [0.00,∞]. The value n < t is the number of previous data points667

(days) considered by TRB.668

Assume a worst-case time series {m+ ǫ, . . . ,m+ ǫ,M,m, . . . ,m}. Hence,669

prices q1, . . . , qt∗−1 = m+ǫ, qt∗ = M , and qt∗+1, . . . , qT = m. Let n ≤ (t∗−2),670

and b = 0.00.671

Algorithm 12.672

Rule (1). Buy on day t if MMt(n) ≥ 0 and MMt−1(n) < 0.673

Rule (2). Sell on day t if MMt(n) ≤ 0 and MMt−1(n) > 0.674

Where the momentum MMt(n) = qt − qt−n+1, and n ≤ t is the number of675

previous data points (days) considered.676

Assume a worst-case time series {m+ ǫ,m, . . . ,m,M,m, . . . ,m}. Hence,677

prices q1 = m + ǫ, q2, . . . , qt∗−1 = m, qt∗ = M , and qt∗+1, . . . , qT = m. Let678

n ≤ (t∗ − 1) and 0 < m < M .679

We again have to show that Algorithm 11 and 12 buy on day t∗ at price680

qt∗ = M and sell on day t∗ + 1 at price qt∗+1 = m. The proofs are not given681

as they can be done in the same manner as for Algorithm 10, cf. [32].682

4.1.2. Problem: bi|non-pmtn|M,m683

[33] extend the uni-directionalRPP of [10] (cf. Problem: uni|non-pmtn|M,m)684

to buying and selling within each subset n, i.e. introduce a rule for min-685

search.686

Algorithm 13. Buy at the first price smaller or equal, and sell at the first687

price greater or equal to reservation price q∗ =
√
M ·m.688
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Theorem 22. Let M and m be given. Then for constant bounds the worst-689

case competitive ratio equals690

c =

(
M

m

)p

, (71)

otherwise691

c =

p∏

i=1

(
M(i)

m(i)

)
(72)

with upper (lower) bounds M(i) (m(i)) and overall number of trades p (i =692

1, . . . , p).693

For the proof the reader is referred to [32, Theorem 2].694

4.2. Bi-directional preemptive695

In bi-directional preemptive conversionD can be converted back and forth696

sequentially in parts, i.e. st ∈ [0, 1]. The only restriction is that within each697

subset n the player must convert D into Y completely, i.e.
∑T

t=1 st = 1.698

4.2.1. bi|pmtn|M,m699

[15] suggest an algorithm that divides the sequence of prices into upward700

and downward runs and then repeats Algorithm 4. Asset D is converted into701

Y (max-search) if the price is on an upward trend (run). Y is converted into702

D (min-search) if the price is on a downward trend (run). Let there be p/2703

upward runs and p/2 downward runs.704

Theorem 23. Let M and m be given. Then for constant bounds cp∞(M,m)705

is the worst-case competitive ratio, and is the solution, c, of (cf. (27))706

c =

(
ln

(M
m
− 1)

(c− 1)

)p

(73)

with overall number of trades p (i = 1, . . . , p).707

For the proof the reader is referred to [15, Section 4].708

[16] show that Algorithm 4 does not convert unless the price is as large709

as c ·m, i.e. the threat is at most c ·m ≥ m, and shall not go beyond this710

point.711
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Theorem 24. Let M and m be given. Then for constant bounds cp∞(M, cm)712

is the worst-case competitive ratio, and is the solution, c, of (cf. (29))713

c =

(
ln

( M
c·m − 1)

(c− 1)

)p

(74)

with number of trades p (i = 1, . . . , p).714

Again, Rule (2) of Algorithm 4 is modified, replacing m by cm. For the proof715

the reader is referred to [16, Theorem 7].716

Note that the bi-directional variant of Algorithm 4 is not optimal. The717

challenge of designing an optimal algorithm for bi-directional search remains718

[16, p. 33].719

[34] investigate the practical applicability of the reviewed bi-directional720

algorithms of [33, 15, 1, 26] in an experimental study. Buy-and-hold (BH)721

as well as dollar-cost averaging (DCA) [35] are used as benchmark. Results722

show that the algorithms can beat the market, i.e. outperform BH. The723

results for DCA are inconsistent.724

Figure 1 gives an overview on the reviewed existing work on online algo-725

rithms for conversion problems. The worst-case competitive ratios c depend726

on the parameters assumed to be known a-priori to ON .

Conversion Problem

uni bi

non-pmtn pmtn non-pmtn pmtn

M,T m,M,ft(q‘),T Φ,kb,T

m,M,ft(q‘)

T � ∞

m,M

ft(q‘) = qt

Φ

k � T � ∞

m,M,k

k � T � ∞

m,M

m,M,a
a = 1

m,M,q1

q1 � cm, or
q1 unkown

u-pmtn

u unknown

m,M,T

m,M

T � ∞

b,T m,M(t),l,T m,M- m,M

Figure 1: Conversion problems addressed

727
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5. Conclusions728

This survey provides a novel scheme to classify online algorithms for con-729

version problems based on their problem setting, and defines a standard730

nomenclature for the terms used. The three factors nature of search|nature731

of conversion|given information are used to classify existing work related and732

the essential parameters for conversion are given: the worst-case competitive733

ratio c as well as the amount to be converted st. In addition, we show how734

heuristic conversion algorithms can be evaluated using competitive analy-735

sis. Though a considerable amount of work addresses online algorithms for736

conversion problems, a number of questions are still unanswered and require737

further consideration.738

The review highlights a number of open questions that need further con-739

sideration. Particularly, the applicability of the reviewed algorithms to prac-740

tical problems is to be verified. The gap between a theoretically guaranteed741

and an experimentally achieved competitive ratio is to be investigated. A742

significant drawback of preemptive algorithms is the large number of con-743

versions that might be carried out, namely T in the worst-case. The risk of744

a high number of transactions is not a feasible option when applying these745

algorithms as each conversion has an associated fee. Therefore, designing a746

preemptive algorithm that aims to reduce the number of conversions while747

maintaining a certain competitive ratio is an open problem. Online algo-748

rithms require information about the future. These parameters assumed to749

be known a-priori might either not be available or bound to errors in esti-750

mates. It is of interest to analyze online conversion algorithms under incorrect751

estimates addressing theoretical and practical aspects.752
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4
Competitive Ratio as Coherent Measure

of Risk

Summary of Results

Risk is an unavoidable phenomenon in financial markets. Therefore, it is paramount
to measure the associated risk of a financial position in order to make sound invest-
ment decisions. Ever since the “Modern Portfolio Theory” (MPT) of Markowitz,
there is a considerable amount of literature devoted to measure the risk of a fi-
nancial position. One such measure of risk is value at risk (VAR). V AR measures
potential losses with a certain confidence level over a specific period of time. How-
ever, V AR has one inherent flaw, it fails to address the basic risk principle of
diversification. In order to properly define a risk measure, Artzner et al. [7] put
forth an axiomatic definition of coherent risk measure. The idea is that a risk
measure is coherent if it is in line with basic risk principles defined in the form of
axioms. The axioms were named as Translation Invariance, Subadditivity, Positive
Homogeneity, and Monotonicity.

In this work, we consider the competitive ratio as risk measure and show that
it satisfies all the required axioms of coherence. We discuss risk management in
online conversion problems, and conclude that competitive ratio can be used as a
risk measure as it is sensitive to diversification and takes into account worst case
scenarios like market crashes or situation of extreme rarity.
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Competitive Ratio as Coherent Measure of Risk

Iftikhar Ahmad and Esther Mohr and Günter Schmidt

Abstract A risk measure determines the quantity of an asset that needs to be kept
in reserve in order to make the risk taken by an investor acceptable. In the last
decade coherent measures of risk meeting a set of four desirable properties gain in
importance. We prove the Competitive Ratio to be coherent since it satisfies the four
required axioms. We explain risk management in online conversion problems, and
show how the Competitive Ratio can be used to manage the risk.

1 Introduction

Investors in financial markets are naturally exposed to risk. It is therefore useful
to quantify the risk of a financial position in order to decide if it is acceptable or
not. Among several risk measures proposed in literature Value-at-Risk (VaR) and
coherent risk measures are most commonly used [1–3]. VaR is the most popular risk
measure, especially in practice, but there are several criticisms (see, for example,
[4]). The main critics are that (1) VaR is not sensitive to diversification, and (2) VaR
disregards any loss beyond the VaR level. This led [1] to introduce an axiomatic
definition of coherent measures of risk. The VaR turns out to be not coherent since
it does not decrease when an investor diversifies [2, p. 10].

Recently only Expected Shortfall is suggested as practicable and sound alterna-
tive to VaR as it is coherent and takes into account losses beyond the VaR level [3,
p. 1519]. We prove the Competitive Ratio to be a further alternative as it satisfies the
axioms of a coherent measure of risk.

The rest of the paper is organized as follows. Section 2 defines the concepts of
online algorithms and risk management. In Section 3 it is shown that the Competitive
Ratio is a coherent measure of risk. Section 4 concludes the paper.
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2 Online Algorithms and Risk Management

In their work [5] present a basic risk paradigm, and classify action under two cat-
egories, (1) a risk-free action which produces a certain outcome, and (2) a risky
action where the outcome is not certain. Based on [5] we interpret the risk-free ac-
tion as the one which guarantees a specific return. Similarly, a risky action does not
guarantee some return.

Competitive Analysis

Competitive analysis is the main tool when analyzing online algorithms, and com-
pares the performance of an online algorithm (ON) to that of an adversary, the opti-
mal offline algorithm (OPT ).

ON computes online if for each t = 1, . . . ,T − 1, ON must compute an output
for t before the input for t + 1 is given. OPT computes offline if it can compute a
feasible output given the entire input sequence I in advance. By definition, the return
of OPT is OPT (I) = supO∈F(I)U(O, I), where I is a set of possible inputs I, and
F(I) is the set of feasible outputs O. U is a utility function such that for all I and
O ∈ F(I), U(I,O) ∈ R. ON is c-competitive if for any input I ∈I [6, p. 104]

ON(I)≥ 1
c
·OPT (I). (1)

Any c-competitive ON is guaranteed at least the fraction 1
c of the optimal offline

return OPT (I) no matter how (un)fortunate the future will be. We consider a maxi-
mization problem, i.e. c≥ 1. The smaller c the more effective is ON.

If the Competitive Ratio is related to a performance guarantee it must be a worst-
case measure. This certain (risk-free) value is denoted as worst-case competitive
ratio c throughout the paper. When c is derived it is commonly assumed ON is
confronted with the worst possible sequence of prices for each I ∈ I , and thus
achieves the worst possible return rON on each I. Whereas OPT achieves the best
possible return rOPT .

But in a real world scenario, an investor in a financial market might be willing
to take some risk in order to gain a return X ∈ [rON ,rOPT ]. To incorporate risk man-
agement to online algorithms [7] proposed a risk-reward framework based on the
competitive ratio. The framework allows an investor to take risk for a (possibly)
higher return (lower competitive ratio). The model is based on forecasts on future
price movements. In case the forecast is true the investor obtains a competitive ratio
c1 < c. However, in case the forecast is not true the investor obtains competitive
ratio c2 > c. Further, assume the risk taken can be controlled by a certain factor.
Let the acceptable level of risk for an investor be a ∈ [1,c]. Hence, a defines the
minimum and maximum bound of returns where a = 1 reflects no risk and a = c
the maximum risk. If the forecast is true, the investor can thus achieve a competitive
ratio of c1 = c/a. If the forecast is not true, the investor is guaranteed a competitive
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ratio not worse than c2 = a ·c. Note that even if the assumptions based on which the
investor is willing to take some risk are not true, the worst (possible) competitive
ratio c2 is still guaranteed.

Let the desired return of an investor be X , and the associated level of risk to
achieve X be a. Consider an investor is willing to take some risk a to achieve a
return X ∈ [rON ,rOPT ]. Then the desired competitive ratio equals (cf. (1))

cX ≤
rOPT

X
, (2)

and the level of risk the investor is willing to take equals

a =
X

rON
(3)

=
c

cX
,

where a ∈ [1,c]. Thus, the resultant investor return can vary in a range of [ rON
a ,a ·

rON ].

Coherent Risk Measures

A risk measure determines the quantity of an asset that needs to be kept in reserve in
order to make the risk taken by an investor acceptable. The notion of coherent risk
measures arose from an axiomatic approach for quantifying the risk of a financial
position, presented in the seminal paper of [1].

Definition 1. A risk measure ρ assigns a random variable X a non-negative real
number R, i.e. ρ : X → R.

Consider a random return X viewed as an element of a linear space X of measurable
functions, defined on an appropriate sample space. According to [1, 2, 8] a function
ρ : X → R is said to be a coherent risk measure for X if it satisfies the following
set of axioms.

Axiom M: Monotonicity. For all random returns {X1,X2} ∈X , if X1 ≥ X2 then

ρ[X1]≥ ρ[X2]. (4)

Monotonicity implies that if a random return X1 is always higher than a random
return X2, then the risk of X1 should be greater than the risk of X2.

Axiom S: Subadditivity. For all random returns {X1,X2} ∈X

ρ[X1 +X2]≤ ρ[X1]+ρ[X2]. (5)

Subadditivity implies that the risk of two investments together cannot get any
worse than adding the two risks separately.
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Axiom PH: Positive Homogeneity. For all random returns X ∈X , if λ > 0 then

ρ[λX ] = λρ[X ]. (6)

Positive Homogeneity implies that if a random return X is increased by λ , then
the risk associated is also increased by λ .

Axiom TI: Translational Invariance. For all random returns X ∈X , risk-free
returns r, and α ∈ R

ρ[X + r] = ρ[X ]−α. (7)

Translational Invariance implies that by adding a risk-free return r to a random
return X the risk associated decreases by α .

A widely used coherent (and moreover a spectral) measure of financial portfolio
risk is the Conditional VaR (for a formal definition see [8, p. 227]). The Conditional
VaR defines the expected loss of portfolio value given that a loss is occurring at or
below a certain quantile-level q. Its effectiveness, however, depends on the accuracy
of estimation [4, p. 999]. In contrast, the (desired) competitive ratio does not depend
on any estimates (cf. (1) and (2)).

3 Competitive Ratio as Coherent Measure of Risk

While considering Competitive Ratio as coherent risk measure, it is pertinent to
note that the nature of the Competitive Ratio varies a great deal from the Expected
Shortfall. The Competitive Ratio quantifies the maximum regret (possible loss) un-
der worst-case assumptions. The Expected Shortfall quantifies the expected return
in the worst q% of the cases.

Let us consider ON with return rON , and OPT with return rOPT . As rON is risk-
free, ON is guaranteed to achieve minimum rON . Further, consider an investor is
willing to take some risk a ≥ 1 for a higher reward, and wants to achieve a return
X ≥ rON . Then, the desired competitive ratio equals cX = rOPT

X (cf.(2)), and the level
of risk to achieve X , ρ[X ], equals a = c

cX
(cf. (3)).

Axiom M: Monotonicity. From (4) we know for higher returns an investor has
a higher risk level, and potentially greater losses: If desired return X1 is greater
than desired return X2 ∀X1,X2 ∈ [rON ,rOPT ], then the associated risk (and thus
the potential loss) of X1 will be at least as high as that of X2.

Proof. If X1 = X2, it is trivial to show that ρ[X1] = ρ[X2]. If X1 > X2, using (3),
we get

X1

rON
>

X2

rON
(8)

c
cX1

>
c

cX2

ρ[X1] = a1 > a2 = ρ[X2]. ut
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Axiom S: Subadditivity. From (5) we know diversification never increases risk:
If an investor wants to achieve a higher return (X1 +X2) such that rON <
(X1 +X2) ≤ rOPT , then risk associated is never greater than the sum of the in-
dividual risks associated with X1 and X2.

Proof. For {X1,X2} ∈X , using (3), we get

ρ[X1 +X2] = a1 +a2 (9)

=
c

cX1

+
c

cX2

= ρ[X1]+ρ[X2]. ut

Axiom PH: Positive Homogeneity. From (6) we know that if a random return X
is increased, then the risk associated is increased by the same factor: For a desired
return λX , such that rON < λX ≤ rOPT , the risk associated with λX is λ times
greater than the associated risk for X .

Proof. For X ∈X , if λ > 0, from (3) we get

ρ[λX ] = λa (10)

= λ
(

c
cX

)

= λρ[X ]. ut

Axiom TI: Translational Invariance. From (7) we know that the introduction of
a risk-free investment does never increase the level of risk.
When considering the Competitive Ratio as a risk measure, Axiom TI needs to
be redefined. We can state that in a risk-free environment there is no additional
capital requirement to assure an investment decision since there is no uncertainty.
Assume an investor diversifies, and invests some amount risk-free. Then the de-
sired return equals Y = X + r, and from (7) we get

ρ[Y ] = ρ[X ]−α. (11)

Further, let the risky return be r′ be X , i.e. Y = r′+ r. From (11), we get

ρ[Y ] = ρ[r′]−α. (12)

Since a risky investment, resulting in r′, never decreases the level of risk α = 0.
Thus, we have to show that

ρ[Y ]≤ ρ[r′]. (13)

Proof. For all random returns X ∈X , risk-free returns r, and risky returns r′

ρ[Y ] = ρ[X + r] (14)
= ρ[r′+ r]
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by using Axiom S

ρ[Y ] = ρ[r′]+ρ[r].

As a = 1 reflects no risk, and r is risk-free

ρ[Y ] = ρ[r′]. ut (15)

4 Concluding Remarks

Two risk measures are well established and widely used: VaR and Expected Short-
fall. As VaR is not coherent, it may underestimate risk under extreme asset price
fluctuations or an extreme dependence structure of assets [4]. Information provided
by VaR may mislead investors. In search for a suitable alternative to VaR, Expected
Shortfall has been characterized as the smallest coherent risk measure to dominate
VaR [3].

In this paper we showed the Competitive Ratio to be coherent. It is sensitive to
diversification and thus also dominates VaR. Unfortunately, the Competitive Ratio
is so far not established as a measure of risk, or even unknown to practitioners. But
a risk measure that takes into account worst-case scenarios like crashes or situations
of extreme stress on investor portfolios is essential.

We conclude that the use of a single risk measure should not dominate finan-
cial risk management, and suggest the Competitive Ratio as a further alternative to
VaR. Existing coherent risk measures could complement one another to provide an
effective way to facilitate a more comprehensive risk monitoring.
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5
An Experimental Analysis of Online
Unidirectional Conversion Problem

Summary of Results

Online algorithms for conversion problems are studied under the worst case com-
petitive analysis. This work presents an extensive experimental study of uni-
directional conversion algorithms. The objective of the work is to investigate;

1. How algorithms perform on the real world and synthetic data sets?

2. How the experimentally observed performance differs from theoretically worst
case competitive ratio?

3. Which algorithms perform better than others and what affects the perfor-
mance of an algorithm?

We consider a set of non-preemptive as well as preemptive algorithms [16, 20,
25, 27, 36, 47] and experiments are conducted on the real world as well as synthet-
ically produced data sets. For the real world data we considered the daily closing
prices of DAX30 and S&P500 indices from 1-Jan-2001 to 31-Dec-2010. The arti-
ficial data were produced from the real world data using bootstrap procedure. In
order to simulate real world conditions, we consider transaction fee of 0.025% of
the volume transacted.
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We observe that all algorithms perform significantly better than their worst
case competitive ratio. The threat based algorithm of El-Yaniv et al. [27] out
performs other algorithms and constantly achieves a lower competitive ratio on
both real world as well as synthetically produced data set. The main reason for
the stand out performance of the threat based algorithm of El-Yaniv et al. [27]
is the intrinsic investment behavior of the algorithm. The threat based algorithm
does not invest at every point of time, it invests only when the current price is the
highest seen so far. Similarly, the amount of wealth invested also depends on the
offered price.
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Abstract. Financial markets are highly volatile and decision making in
these markets is highly risky. With the introduction of automated trad-
ing, a number of techniques are developed to facilitate the automation
of financial markets. We consider a set of preemptive as well as non-
preemptive online algorithms and evaluate them on real world as well as
synthetically produced data. We present extensive computational results
based on the observed performance of algorithms in terms of experimen-
tally achieved competitive ratio, number of transactions performed and
consistency of the results. We also investigate the gap between the worst
case competitive ratio and experimentally achieved competitive ratio and
conclude that algorithms perform better than their performance guaran-
tee suggest. We conclude by highlighting a number of open questions.

Keywords: Online algorithms, Experimental evaluation, Gap between
theory and practice.

1 Introduction

With the rapid development of e-commerce technologies, a number of techniques
are developed to facilitate automated trading in financial markets. We consider
the methods proposed in theoretical computer science and evaluate their ap-
plicability in financial markets. These strategies are called online algorithms
for conversion problem. Unlike other approaches (such as Artificial Neural Net-
works), online algorithms do not rely on past data. Thus the performance of
online algorithms are not effected by the choice of parameters such as past data
or forecasts.

In an online unidirectional conversion problem, the aim is to convert an asset
D into another asset Y with the objective to maximize the amount of Y after
time T . On each day t, the player is offered a price qt; the player either accepts
the offered price and converts whole/portion of her remaining wealth at offered
price or alternatively rejects the offered price and waits for a better price. The
game ends when the player converts her whole wealth D into Y .
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A number of online algorithms are proposed to address the unidirectional
conversion problem [4,5,6,7,9]. Online algorithms are evaluated using competi-
tive ratio. Competitive ratio measures the performance of an online algorithm
against optimum offline algorithm. Let ON be an online algorithm for some
maximization problem P and I be the set of problem instances. Let ON(I) be
the performance of ON on input sequence I and OPT (I) be the performance of
optimum offline algorithm. The algorithm ON is c-competitive if ∀ I ∈ I

ON(I) ≥ 1

c
· OPT (I). (1)

1.1 Motivation

Although a number of solutions are proposed to solve unidirectional conversion
problems [4,5,6,7,9], there are very few studies to investigate the applicability of
these solutions to real world problems - for instance trading in financial markets.
Similarly, the variety of solutions proposed are all based on different assumptions
such as a priori knowledge about the upper bound of offered prices or fluctuation
ratio etc. Chen et al. [4] and Hu et al. [7] compared their proposed solutions to clas-
sical buy and hold and dollar average strategy. Mohr and Schmidt [10] compared
only a single online algorithm to classical techniques like moving average and buy
and hold. To our knowledge, there is no comprehensive study in literature that
investigates the applicability of online algorithms to real world problems.

Our aim is to conduct an extensive experimental study to evaluate the per-
formance of online algorithms for unidirectional conversion problem and report
the findings based on the competitive ratio. Our focus is to find out, how these
algorithms fit in the real world scenario. We will identify a set of algorithms that
performs better than others and will reason about their performance edge. More-
over we identify a set of problems that needs to be addressed in order to improve
the applicability of online conversion algorithms in real world applications.

2 Related Work

Experimental analysis of online conversion algorithms has not received much
attention, so far. Mohr and Schmidt [10] investigated the empirical and worst
case performance of reservation price policy [6] and compared it with buy and
hold. Chen et al. [4] and Hu et al.[7] compared their proposed solutions to buy
and hold and dollar average strategy. Schmidt, Mohr and Kersch [12] compared
threat based algorithm of El-Yaniv et al. [6] to reservation price algorithm, av-
erage price algorithm and buy and hold.

In contrast to experimental study of online algorithms, there is a significant
amount of experimental studies on heuristic trading algorithms like Moving Av-
erage Crossover and Trading Range Breakout (TRB). Buy and hold (BH) is used
as benchmark in these studies. Brock et al. [2] conducted an extensive experi-
mental study of Dow Jones Industrial Index (DJIA) from 1897 to 1986. They
introduced Moving Average Cross over and Trading Range Breakout (TRB),
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which are of great interest in literature. They compared the returns of buy
(sell) signal on DJIA to that generated by autoregressive (AR), generalized au-
toregressive conditional heteroskedasticity in mean (GARCH-M) and an expo-
nential GARCH. The results found that technical trading rules are superior to
BH, AR(1), generalized autoregressive conditional heteroskedasticity in mean
(GARCH-M) and an exponential GARCH. Kwon and Kish [8] extended Brock
et al. [2] work by studying the predictive ability of Variable Moving Average
(VMA), Fixed Moving Average (FMA) and TRB on New York Stock Exchange
as well as NASDAQ indices. Other related works include [3,11,13,14].

3 Basic Definitions

We define a set of standard definitions which are used in the remaining of this
paper:

i. Duration (T): The length of the investment horizon in which all transactions
must be carried out.

ii. Upper Bound (M) : The upper bound of prices in the investment horizon.
iii. Lower Bound (m) : The lower bound of prices in the investment horizon.
iv. Fluctuation Ratio (φ): The predicted maximum fluctuation of prices that

can possibly be observed during the time interval, calculated by M/m.
v. Threat Duration (k) : Number of days after which the adversary may drop

the offered price to some minimum level m and will keep the offered price
at minimum level for the rest of the investment horizon, k ≤ T.

vi. Amount converted (st) : Specifies which fraction of the amount available is
converted at price qt on day t, 0 ≤ st ≤ 1.

vii. Price Function (g(qt)) : Models price qt based on some predefined function,
e.g., the current price qt is a function of previous price, i.e; qt = g(qt−1).

4 The Implemented Algorithms

In the following, we provide an overview of the algorithms selected for our exper-
imental study. We briefly describe the algorithms and their competitive ratios.
For proof of the competitive ratio the reader is referred to the respective paper.

4.1 Unidirectional Non-preemptive

In unidirectional non-preemptive solution (also called as Reservation Price al-
gorithms), the player converts only once in an investment horizon. The player
computes a reservation price q∗ and compares each offered price qt with q∗.
The player accepts the first offered price qt which is at least q∗ and converts
whole of D into Y in one transaction. We consider two such algorithms for our
experimental study namely RPMm [6] and RPMT [5].

Algorithm 1. (RPMm)
Accept the first price greater than or equal to q∗ =

√
M ·m.
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Theorem 1. Algorithm 1 is
√
M/m competitive.

Algorithm 2. (RPMT)
Accept the first price greater than or equal to q∗ = M/

√
T .

Theorem 2. Algorithm 2 is
√
T competitive.

4.2 Unidirectional Preemptive

In unidirectional preemptive solution, the player does not convert only once in the
investment horizon but depending on the priced offered qt (or time t) converts a
portion st ofD into Y . For our experiments, we consider the algorithms proposed
by El-Yaniv et al. [6], Hu et al. [7], Chen et al. [4] and Lorenz et al. [9]. We briefly
describe each algorithm and the competitive ratio as follows;
El-Yaniv et al [6] Threat based Algorithm: El-Yaniv et al. [6] proposed a
threat based algorithm based on the assumption that there exists a threat that
on day k ≤ T , the adversary may drop the offered price to minimum level m
and keep it there for the remaining period of the investment horizon.

Algorithm 3. The basic rules of the threat-based algorithm are:

1. Consider a conversion from asset D to asset Y only if the price offered is
the highest seen so far.

2. Whenever convert asset D to asset Y , convert just enough D to ensure that
a competitive ratio c would be obtained if an adversary drops the price to the
minimum possible price m, and keeps it there afterwards.

3. On the last trading day T , all remaining D must be converted to Y , possibly
at price m.

El-Yaniv et al [6] presented four variants of Algorithm 3, each assuming different
a priori knowledge. We restrict our study to two variants of Algorithm 3.

i. Variant 1 (YFKTMm): With known M and m

Theorem 3. Variant 1 of Algorithm 3 has a competitive ratio c as:

c = ln

(
M
m − 1

c− 1

)
. (2)

ii. Variant 2 (YFKTMmk) : With known M , m and k

Theorem 4. Variant 2 of Algorithm 3 has a competitive ratio c of:

c = k

(
1−

(
m(c− 1)

M −m

)1/k
)
. (3)
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Hu et al [7] with known g(qt) and T : Hu et al. [7] presented two algorithms to
achieve optimal competitive ratio under worst case assumptions, namely Static
Mixed Strategy and Dynamic Mixed Strategy, where the player has the knowledge
of length of investment horizon T and price function g(qt). Hu et al. [7] assumed
that the current day price qt satisfies (1 − γ)qt−1 ≤ qt ≤ (1 + γ)qt−1 , where
γ ≤ 1

Static Mixed Strategy: The static mixed strategy allocates the amount to be
converted based on the worst-case input sequence of prices.

Algorithm 4. (HGLSMS): Amount converted on day t is determined by the
following rules;

st =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
1+γ

(T−1)γ+2

)
t = 1,(

γ
(T−1)γ+2

)
t ∈ [2, T − 1],(

1
(T−1)γ+2

)
t = T.

(4)

Theorem 5. The competitive ratio c achieved by Algorithm 4 is

c = 1 +
γ

2
(T − 1) . (5)

Dynamic Mixed Strategy: The worst-case scenario does not occur that fre-
quently as assumed by the static mixed strategy. The dynamic mixed strategy
allocates st based on the remaining number of days T ′ in the time interval.

Algorithm 5. (HGLDMS): Amount converted on day t is determined by the
following rules;

st =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
1+γ

(T ′−1)γ+2

)
W ′

t t = 1,(
γ

(T ′−1)γ+2

)
W ′

t t ∈ [2, T − 1],(
1

(T ′−1)γ+2

)
W ′

t t = T.

(6)

where W ′
t denotes the remaining amount of wealth at day t and T ′ = T − t+1.

Theorem 6. The competitive ratio c achieved by Algorithm 5 based on the re-
maining number of days T ′ is

c = 1 +
(T ′ − 1)γ

2
. (7)

Chen et al [4] with known g(qt) and T : Chen et al. [4] assume prior
knowledge of the duration T , and the price function g(qt). The constants α
and β (α, β ≥ 1) determine the prices offered on a day t, and qt satisfies
qt−1/β ≤ qt ≤ α · qt−1. The algorithm and the amount invested st on day t
is described as follows:

Algorithm 6. (CKLW): Determine the amount to be converted at time t by
the following rules

st =

⎧
⎪⎨
⎪⎩

α(β−1)
Tαβ−(T−1)(α+β)+(T−2) t = 1,

(α−1)(β−1)
Tαβ−(T−1)(α+β)+(T−2) t ∈ [2, T − 1],

(α−1)β
Tαβ−(T−1)(α+β)+(T−2) t = T.

(8)
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Theorem 7. The competitive ratio c achieved by Algorithm 6 is

c =
Tαβ − (T − 1) (α+ β) + (T − 2)

αβ − 1
. (9)

Lorenz et al [9] with known m and φ: Lorenz et al [9] proposed an algorithm
with known m and φ. We discuss the strategy for max search (selling).

Algorithm 7. (LPS): Max-search Problem: At the start of the game com-
pute reservation prices q∗i = (q∗1 , q

∗
2 , ...q

∗
u),where i = 1, .., u. As the adversary

unfolds the prices, the algorithm accepts the first price which is at least q∗1 . The
player then waits for the next price which is at least q∗2 , and so on. If there are
still some units of asset left on day T , then all remaining units must be sold at
the last offered price, which may be at the lowest price m.

q∗i = m

[
1 + (c− 1)

(
1 +

c

u

)i−1
]
. (10)

Where c is the competitive ratio for the max-search problem.

Theorem 8. Let u ∈ N , φ > 1, there exists a c-competitive deterministic al-
gorithm for u max-search problem where c = c(u, φ) is the unique solution of

(φ− 1)

(c− 1)
=
(
1 +

c

u

)u
. (11)

5 Experiments

We consider the set of algorithms as described in Section 4 and execute them
on two different types of dataset, real world data and synthetic data (bootstrap
data). We evaluate performance and the consistency of performance. The per-
formance of algorithms is measured in terms of competitive ratio and variance
of competitive ratio is used as consistency measure. We also record the number
of transactions performed by each algorithm. In the following we describe the
dataset, experimental settings and results.

5.1 Dataset

We consider the following two types of datasets for our experiments.

Real World Data: Two datasets DAX30 (1.1.2001 to 31.12.2010) and S&P500
(1.1.2001 to 31.12.2010) are considered.

Synthetic Data: We employed bootstrap method to generate additional
datasets. Bootstrap is useful technique to produce additional data where original
data sample size is small [14]. Using the moving block bootstrap, we generated 15
additional samples for each year for DAX30 and S&P500 (2001-2010) datasets.
So, for each dataset, we generate 150 synthetic time series.
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5.2 Experimental Settings

Each algorithm is executed on yearly data of DAX30 and S&P500. Compet-
itive ratio for all algorithms on yearly data is calculated. Variance is used as
consistency measure. Further, we recorded the number of transactions by each
algorithm, as in real world each transaction has an associated cost, it will be
helpful to identify if an algorithm performing well on the basis of competitive
ratio also has fewer number of transaction or vice versa.

Assumptions. For the sake of simplicity, we make the following assumptions.

i. Each transaction has associated cost of 0.025% of volume transacted.
ii. The yearly interest rate is zero.
iii. The prices considered are all closing day prices.
iv. Any amount of wealth left on last trading day is converted at the last day

offered price. This is inline with the rules of threat based algorithms [6] and
reservation price algorithms [5,6].

v. For algorithm Y FKTMmk, we consider k = T , similarly for LPS, we
assume u = T .

vi. For all algorithms, required a priori parameters such as m, M and/or φ
etc are derived from the time series before execution of algorithm begins.
This is inline with the working of algorithms as every algorithm assumes
the exact a priori information about the future.

5.3 Results

Real World Data
DAX30 (2001-2010)
Table 1 summarizes the results for the DAX30 and S&P500 datasets for the
years 2001 to 2010. The column “Ave CR” represents the average of the com-
petitive ratio calculated over the yearly data for DAX30 (2001-2010) and the
column “Var” shows the variance of the competitive ratio. An average compet-
itive ratio closer to 1 reflects the better performance of algorithms while a low
variance shows the consistency of the algorithm.

In our experiments, we observed that unidirectional preemptive algorithm
Y FKTMm suggested by El-Yaniv et al [6] performs the best among all set of
algorithms considered with an average competitive ratio of 1.0873. The worst
performance is observed for HGLSMS [7] with an average competitive ratio of
1.1771. The most consistent algorithm is Y FKTMm which has a variance of
2.91 ∗ 10−3, whereas the most inconsistent performance behavior is observed for
LPS which has a variance of 12.79 ∗ 10−3. The next closest (worst) algorithm in
terms of consistency is reservation price algorithm RPMT by Damaschke et al
[5] with variance of 10.13 ∗ 10−3.

S&P500 (2001-2010)
The unidirectional preemptive algorithm Y FKTMm of El-Yaniv et al. [6] with
known M and m performance is found the best with an average competitive
ratio of 1.0606 and is the most consistently performing algorithm as well with
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Table 1. Avg CR ,Variance and number of transactions on real world data

Algorithm
DAX30 S&P500

AveCR V ar(10−3) #Tx AveCR V ar(10−3) #Tx

RPMm 1.1178 6.32 1 1.0844 4.28 1

RPMT 1.1848 10.13 1 1.1297 5.59 1

YFKT Mm 1.0873 2.91 24.2 1.0606 2.14 23

YFKT Mmk 1.1651 3.46 24.6 1.1256 2.14 23.6

HGL SMS 1.1771 6.34 254.2 1.1192 2.86 251.5

HGL DMS 1.1729 7.53 254.2 1.1162 3.23 251.5

CKLW 1.1766 6.47 254.2 1.1192 2.87 251.5

LPS 1.1532 12.79 158 1.099 4.18 150.5

variance of 2.14 ∗ 10−3. The worst competitive ratio is observed for CKLW
[4] and HGLSMS [7] with an average competitive ratio of 1.1192. The most
inconsistent algorithm is reservation price policy RPMT of Damaschke et al. [5]
with variance of 5.59 ∗ 10−3. Table 1 summarizes the results.

Synthetic Datasets: Table 2 summarizes the results on bootstrap data. Al-
though the individual performance on algorithm varies on different datasets, (for
instance, on bootstrap DAX30 dataset, the average competitive ratio of RPMm
is 1.14 whereas on bootstrap S&P500 the average competitive ratio is 1.09) there
is little change in overall performance order. For example, Y FKTMm is the best
performing algorithm on both datasets. Similarly, the algorithms’ behavior re-
mains the same in terms of performance consistency as well, as depicted by
Fig. 1(b). The performance consistency of Y FKTMm is found the best among
all algorithms on both synthetic datasets, whereas the performance of RPMT
is found the most inconsistent. Fig. 1 depicts the performance and consistency
pattern of algorithms on bootstrap data.

Number of Transactions: As each transaction has an associated cost, thus
an algorithm with large number of transactions may not be a viable option.
We discuss the number of transactions for each algorithm on both DAX30 and

Table 2. Avg CR, Variance and number of transactions on bootstrap data

Algorithm
DAX30 S&P500

AveCR V ar(10−3) #Tx AveCR V ar(10−3) #Tx

RPMm 1.1495 14.4 1 1.099 4.8 1

RPMT 1.3045 81.8 1 1.1982 22.1 1

YFKT Mm 1.1044 5.7 21.25 1.071 2.0 18.48

YFKT Mmk 1.1784 8.05 21.6 1.1436 6.77 18.94

HGL SMS 1.2420 23.0 254.1 1.169 12 251.5

HGL DMS 1.2391 24.4 254.1 1.167 13.1 251.5

CKLW 1.2420 23.1 254.1 1.17 12.1 251.5

LPS 1.2099 37.3 135.96 1.149 22.4 130.67
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(a) Performance - bootstrap data (b) Consistency - bootstrap data

Fig. 1. Performance and consistency on bootstrap data

S&P500. Table 1 indicates that the non-preemptive algorithms carry only a single
transaction in each investment horizon. This holds true for all unidirectional non-
preemptive strategies as they convert at a single point of time in the investment
horizon, but not for unidirectional preemptive solutions, where the conversion
amount is calculated based on the price offered and time in the investment
horizon. Table 1 reflects that for DAX30, the algorithm Y FKTMm by El-Yaniv
et al. [6] has the least number of transactions in all unidirectional preemptive
solutions, as the algorithm only invests when the price offered is the highest seen
so far, thus the algorithm does not convert at all offered prices but does so on
local maxima. HGL [7] and CKLW [4] have the highest number of transactions,
which is the same as the number of days in the investment horizon, as they
invest on each day of the investment horizon. The same pattern is found when
transactions on bootstrap data are considered. Table 2 also summarizes the
resultant number of transactions on bootstrap data.

6 Discussion

From the outcome of the experiments and based on the criterion of competitive
ratio, we observe that unidirectional preemptive algorithm Y FKTMm [6] per-
forms better than other algorithms. On DAX30 and S&P500 datasets,Y FKTMm
performs 6% and 4% better than the average performance of the remaining al-
gorithms, whereas on bootstrap data the corresponding numbers are 9% and
7% respectively. Similarly, the Y FKTMm also proves to be more consistent in
terms of variance in the competitive ratio. On DAX30 and S&P500 datasets,
the variance of Y FKTMm is on average 62% and 67% less than the average
variance of all other considered algorithms. Y FKTMm remains the most con-
sistent algorithm on bootstrap data as well. There is no clear worst performing
algorithm as a number of algorithms perform poorly on different datasets. For
instance on DAX30 dataset, HGLSMS, HGLDMS and CKLW performance
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are among the worst three, they have an average competitive ratio of approx-
imately 1.17, the same holds for S&P500. On DAX30 and S&P500 bootstrap
data, the worst performing algorithm is RPMT with an average competitive
ratio of 1.3 and 1.19 respectively.

The reason for the better performance of Y FKTMm [6] is that the algo-
rithm converts only when it finds a new maximum, this not only results in
better performance but also reduces the number of transactions. Although LPS
[9] also converts only when it encounters a new maximum, it is not as compet-
itive as Y FKTMm, this can be attributed to the amount of wealth converted.
Y FKTMm considers the offered price qt when calculating st but LPS does not
consider the offered price. Another significant result, we observed, is the perfor-
mance of non-preemptive algorithm of El-Yaniv et al. [6]. On dataset S&P500,
the average competitive ratio of non-preemptive algorithm of El-Yaniv et al [6]
is 1.0844 which is second only to Y FKTMm, the same results holds for DAX30
dataset and for bootstrap data (DAX30, S&P500). Another aspect of the study
is that intuitively, the more information available to (use by) an algorithm, the
better it must perform, but this however may not happen. On both datasets
DAX30 and S&P500, the preemptive algorithm Y FKTMm performs better
than Y FKTMmk, this can be attributed to the ‘luckily behaving data’ which
results in better performance of Y FKTMm.

An important consideration of any experimental study is to observe the gap
between theory and practice. For all algorithms and for each yearly dataset, we
calculate the worst case competitive ratio (cwc) that an algorithm can achieve
with the given setting and after the algorithm is executed on yearly data, we
record the experimental competitive ratio (cec). For instance, consider yearly
data of DAX30 for 2001 and algorithm Y FKTMm, before the algorithm begins
execution, we calculate the cwc using Theorem 3, similarly when the algorithm
is executed on data, we record the cec achieved by algorithm. The process is
repeated for all algorithms and for all real world data of DAX30 and S&P500
datasets. We limit it only to real world data and do not include the bootstrap
data as we are investigating the gap between theory and practice, hence syn-
thetic (bootstrap) data is not considered. It can be seen from Table 3 that the
algorithms suggested by El-Yaniv et al. [6] (RPMm, Y FKTMm, Y FKTMmk)
have the least gap between cwc and cec whereas other algorithms have consider-
able gap between cwc and cec. For instance, RPMT [5] on DAX30 dataset, has
(average) cwc of 387.19 whereas the cec is 1.155, this is because of the reservation
price calculation of RPMT (Theorem 2) which only considers M and T and not
the relative fluctuation in the prices. For HGL, CKLW and LPS, the gap is not
as wide as of RPMT but is considerably more than that of El-Yaniv et al. [6].
The gap between cwc and cec of HGLSMS, HGLDMS and CKLW is based
on the fact that length of investment horizon T has significant contribution in
determining the worst case competitive ratio (see Theorem 5 and 7). For LPS
the gap is the result of our choice of parameter u, as we consider u = T , thus it
results in higher cwc. It is interesting to see that the performance of HGLSMS,
HGLDMS and CKLW does not differ a great deal, it is because of the fact
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Table 3. Gap between theory and practice

Algorithm
DAX30 S&P500

cwc cec cwc cec

RPMm 1.2403 1.1178 1.1660 1.0844

RPMT 387.1989 1.1848 81.8012 1.1297

YFKTMm 1.188 1.0873 1.1408 1.0606

YFKTMmk 1.1812 1.1651 1.1382 1.1256

HGLSMS 8.3821 1.1771 6.8383 1.1192

HGLDMS 8.3821 1.1729 6.8383 1.1162

CKLW 8.3821 1.1766 6.8383 1.1192

LPS 7.6397 1.1532 6.5921 1.099

that these algorithms considers only price function (g(qt)) and the length of in-
vestment horizon T . In addition, the price function considered by Hu et al. [7] is
identical to that of Chen et al. [4] (only the mathematical formulation differs),
thus resulting in similar performance behavior. Considering the performance of
LPS, it is important to mention that for u = 1, the algorithm is similar to
unidirectional preemptive algorithm RPMm but as we consider u = T thus the
performance varies.

A major drawback in preemptive algorithms is the large number of trans-
actions. On yearly real world data, with approximately 250 trading days, the
least number of transactions performed by pre-emptive algorithms is 24 by
Y FKTMm. Although the number of transaction of Y FKTMm are less than
other pre-emptive algorithms like HGLSMS, HGLDMS and CKLW , which
trades on every day, it still is significantly higher number when the impact of
transaction cost on performance is considered. However, the ideal number of
transactions per year is hard to envisage and depends on the amount of wealth
available to the player.

7 Future Work and Conclusion

We presented an extensive experimental study to evaluate the applicability of
online conversion algorithms in real world scenario such as trading in financial
markets. We observed that although, a good number of algorithms are proposed
to deal with unidirectional conversion problem, there are still a considerable
number of open questions. An important factor for the designing new conversion
algorithms must be to reduce the number of transactions, as in real world each
transaction has an associated cost, thus reducing the number of transactions
can be useful. However, the optimum number of transactions cannot explicitly
be defined. Another open question will be to develop algorithms that provide
risk management for the investors, as in real world the investors want to manage
risk but online algorithms are designed based on risk mitigation paradigm. Al-
binali [1] proposed a risk-reward framework, which can be used to incorporate
risk management in online conversion problems.
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6
Experimental Analysis of Online

Uni-directional Conversion Algorithms
using EVT Approach

Summary of Results

Using the backtesting approach for evaluation of online algorithms on the past
real world data has significant drawbacks. For instance, the data might be very
limited to draw valid conclusions. Similarly, if an algorithm performs well on the
past data, it is not a guaranteed success of algorithm on unforeseen data in the
future. Therefore, the need for the synthetic data arises in order to validate the
findings on a larger set of data and to draw conclusion with a reasonable confidence
level.

Bootstrap method is used to generate artificial data. However, the bootstrap
method depends on the original data and fails to replicate all scenarios. Simi-
larly, the bootstrap method omits the extreme values as outliers. For instance,
the bootstrap method may fail to replicate market crashes. In order to improve
the scenario generation for algorithm evaluation, we recommend using Extreme
Value Theory (EVT) approach. Extreme Value Theory (EVT) provides a solid
probabilistic foundation for studying the distribution of extreme events in order to
quantify the stochastic behavior. When applied to financial markets EVT is useful
for modeling the impact of market crashes or situations of extreme stress on in-
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vestor portfolios. Thus, EVT approach ensures that extreme and rare events such
as market crashes (worst case scenarios) are also represented in the test instances.

We consider three sets of DAX30 index, each set representing a different market
trend. The first set contains daily closing prices from 13-Mar-2003 to 10-Mar-2006
representing an increasing trend of the market. The second set representing the
decreasing trend of the market contains data from 7-Mar-2000 to 6-Jun-2003. The
third set exhibits “no trend” representing a time period from 2-Jan-1979 to 30-Dec-
1981. After computing stylized facts for each set of data, we use the estimated
parameters as input data and generate synthetic data set that fits the extreme
value distribution. We then consider a set of non-preemptive algorithms namely
RP (m,M), RP (M,T ), RP (m,M, f(qt)) and RP (m,M, f(qt), T ) (see Chapter 3,
Section 3.1.1) and study i) the worst case competitive ratio, ii) the expected ex-
perimental case competitive ratio of each algorithm. We observe that worst case
competitive ratio of RP (m,M) < RP (m,M, f(qt)) (and RP (m,M, f(qt), T )) <
RP (M,T ) whereas the experimental results observe a different ordering where the
experimentally achieved competitive ratio ofRP (m,M, f(qt)) (andRP (m,M, f(qt), T )) <
RP (m,M) < RP (M,T ).
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1. Introduction

A uni-directional conversion problem deals with the scenario of converting an asset
D into another asset Y with the objective to get the maximum amount of Y after time
T . Non-preemptive conversion algorithms convert the whole amount available at one
price qt (t = 1, . . . , T ).

A number of online algorithms (ON ) are proposed in the literature to solve the
uni-directional (uni) non-preemptive (npmtn) conversion problem [1–3]. When con-
sidering the uni|npmtn online conversion problem, ON does not know the whole set
of prices qt in advance. On any day t, ON must take a decision whether or not to accept
qt without any knowledge about qt+1, and so on. Moreover, the decision to convert at
any offered qt is irreversible.

In competitive analysis (which was first applied to online algorithms by [4]), the
performance of ON is compared with that of an optimal offline algorithm (OPT ). It
is assumed that OPT has full knowledge of future events, and thus acts optimally. In
contrast, ON incrementally receives one observation (the input) in each time period,
i.e. generates an output without any knowledge of future events. Let I be the set of
all input instances, and let ON(I) be the performance of ON on input instance I ∈ I.
ON is called c-competitive if ∀ I ∈ I

ON(I) ≥ 1

c
·OPT (I). (1)

When considering worst-case scenarios, any c-competitive algorithm is guaranteed a
value of at least the fraction 1

c of the optimal offline result, no matter how uncertain
the future will be [5, p. 104]. Note that within this paper we differ the worst-case
competitive ratio cwc and the expected competitive ratio cex.

The worst-case competitive ratio is a theoretical performance measure used in
Computer Science. In Finance, to evaluate the practical applicability of ON to real
world data, backtesting is used. Backtesting is the concept of taking an algorithm
X ∈ {OPT,ON} and going back in time in order to see what would have happened if
X had been followed [6]. The assumption is that if X has (not) performed well in the
past, it has a great (but not certain) chance of (not) performing well again in the future.

In the classical backtesting approach, data collection is followed by the imposition
of a specific stochastic model (assumed) to fit the input data presented to X [7]. The
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experimental analysis that follows is focused on the parameters of that model. The
objective is to compute and analyze the empirical-case performance of X under ‘typical
inputs’ with respect to these stochastic assumptions. When considering financial data,
for example, a common a-priori assumption is that data is normal distributed [8, 9,
p. 123]. Unfortunately, most existing models fail to reproduce the underlying data
structure [10, p. 233]. Thus, this approach is criticized from both a technical, and a
conceptual perspective. Technically, for many real-life problems, an adequate stochastic
model is extremely difficult or costly to devise [11, p. xxiii]. Conceptually, the validity
of the conclusions on the performance of X becomes dependent on the validity of
the underlying (distributional) assumptions [12]. Worse yet, the exact underlying
assumptions may be unknown, or if known, untested. For instance, a great deal of
effort has been invested in attempt to identify the probability distributions of currency
exchange rates but there is still no evidence that an appropriate stochastic model exists
[13].

As a result, some research attempts focus on identifying the properties of input
data under consideration rather than on assuming underlying properties using statis-
tical models. Several methods based on statistical techniques are recently applied in
Empirical Finance [10, 14–16]. The goal is to ‘let the data speak for themselves’ as
much as possible. This approach is also known as Exploratory Data Analysis (EDA)
[17]. In terms of statistical methods, analysis is done by using so-called non-parametric
methods which make only qualitative assumptions about the properties of the stochastic
process generating the data. They do not assume a-priori that the input data belongs to
any prespecified parametric family [10, p. 223]. These qualitative properties are called
empirical ‘stylized facts’, and characterize a dataset from a statistical point of view.
When considering financial datasets stylized facts are summary statistics calculated by
daily logarithmic returns

rt = ln
qt
qt−1

, (2)

where qt equal daily (closing) prices within a time interval of length T (t = 1, . . . T )
[10, p. 224]. Stylized facts at least contain 1) Arithmetic mean, 2) standard deviation,
3) skewness, and 4) kurtosis of the dataset under consideration [18, p. 1737].1 The

1See [8, (5-12) to (5-14)] for a formal definition of 1) to 4).
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arithmetic mean r̄T (X) (of returns rt achieved by X within T ) is commonly used
as the estimator for the (unknown) return to be expected from ON in the future.
The standard deviation σ shows the variation from r̄T (X): A low σ indicates that
the observed rt tend to be very close to r̄T (X), whereas a high σ indicates that the
observed rt are spread out over a large range of values. The skewness γ measures the
(a)symmetry in the probability distribution of the observed rt. The kurtosis β measures
with which probability extremely low or extremely high rt might occur. In case β > 3
(leptokurtosis) both tails of the probability distribution are ‘fat’, i.e. the mass of the
distribution is concentrated on the left and on the right. Relatively many high and
low rt exist. These ‘fat-tailed’ distributions are commonly known as extreme value
distributions, and are often used to describe (or model) financial data [16, 19, 20].

2. Our contribution

Within this work we contribute to the experimental analysis of (online) conversion
algorithms as follows. In contrast to the classical backtesting approach we omit the
imposition of a specific stochastic model (assumed) to fit the input data presented
to X . First, we compute stylized facts of different datasets of the German DAX30,
i.e. using the underlying rt we estimate the ‘true’ stochastic properties of the dataset
under consideration. We use the weighted moment method of [19], and find that the rt
follow an extreme value distribution. Second, using the estimated parameters as input
data, we generate synthetic datasets (based on original DAX30 data) also fitting an
extreme value distribution. Third, we investigate the worst-case and the empirical-case
performance of known ON on these ‘typical datasets’. Simulation runs with four
uni|npmtn algorithms from the literature are performed. Based on the experimental
data, we calculate 1) the worst-case competitive ratio cwc taking the data of the problem
instance into account, and 2) the expected competitive ratio cex = E[OPTON ] using
the returns achieved by X ∈ {OPT,ON}. We report a great disparity between the
worst-case and the empirical-case results.

We extend former works by using more than one time series, and thus our results are
less effected by randomness in terms of ‘luckily’ behaving data. Further, we empirically
show that an extreme value distribution is proper to model a realistic volatility. Our
results are consistent with several results from the literature, an overview can be found
in [20, p. 6].
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3. Algorithms, Experiments and Results

We limit our experimental study to uni|npmtn online conversion algorithms. Non-
preemptive algorithms define limit price(s) (the market participant is willing to accept) to
avoid a conversion at a price higher (lower) than a specific level. When converting assets,
that is the highest (lowest) price per asset ON might accept for buying (selling) [21].
Such limit prices are commonly known as reservation prices (RP ), withRP ∈ {q∗, q∗t }.
We consider ON that 1) solve the max-search problem (sell an asset), and 2) convert
‘all or nothing’, i.e. the first qt ≥ RP must be accepted within T . Note that if no such
qt exists the last price qT must be accepted.

3.1. Algorithms

Table 1 presents the four uni|npmtn algorithms considered in our experiments,
and their worst-case competitive ratios cwc are given. The proofs for the respective
cwc, discussing several cases and worst-case time series, are not given here due to their
length. The reader is referred to [1–3], especially the definition of α (resp. αl) can be
found in [3, p. 3, eq (1)] (resp. [3, p. 4, eq (2)]).

Algorithm Reference RP cwc

RP (M,m) [1] q∗ =
√
M ·m

√
M
m

RP (M,T ) [2] q∗ = M√
T

√
T

RP (M,m, f(qt)) [3] q∗t = f−1
t

(
ft+1(M)

αl

)
αl

RP (M,m, f(qt), T ) [3] q∗t = f−1
t

(
ft+1(M)

α

)
α

Table 1. Overview on the algorithms considered

Solving an online problem, each decision must be made based on the already
appeared data of the problem instance, and without any knowledge about future data
[22]. Though, the considered ON require some a-priori knowledge about the future.
In order to compute a result, some ‘amount of information’ (about the future) must be
known to ON . The algorithms differ in their assumed a-priori knowledge. To compute
a RP ∈ {q∗, q∗t }

• RP (M,m) requires the upper and lower bounds of prices m and M ,
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• RP (M,T ) requires M , and the length of the time interval T ,

• RP (M,m, f(qt)) requires m, M , and a return function f(qt),2

• RP (M,m, T, f(qt)) requires m, M , f(qt), and T .

For the algorithms of [3] we use the f(qt) given in [23, p. 987].

3.2. Experiments
To identify the underlying distribution(s), historical DAX30 datasets are used

representing 1) an increasing market, 2) a decreasing market, and 3) a market without
trend. Table 2 gives an overview. Instead of assuming stochastic parameters, we

Market Increasing Decreasing No trend
First day 13.03.2003 07.03.2000 02.01.1979
Last day 10.03.2006 06.03.2003 30.12.1981

Starting value 2354.31 8064.97 581.14
Final value 5804.92 2437.51 490.39

Table 2. Overview on the time series chosen for identifying distribution parameters

determine the stylized facts of each dataset by the weighted moment method of [19].
We find that the underling rt of each dataset 1) to 3) follow an extreme value distribution.
Using the stylized facts as input (to the package ‘fExtremes’ of the statistic software R)
synthetic datasets also fitting an extreme value distribution are generated.3 Representing
the three different market types given in Table 2, datasets of different length T ∈
{750, 250, 100} days are compiled by R. With this setting we run the algorithms
presented in Table 1 on overall 9.000 different datasets (1.000 datasets for each market
1) to 3) and T ).

The performance of the algorithms is measured by the average terminal wealth
w̄T (X) achieved by X ∈ {OPT,ON}. Let w0 be the initial wealth to be invested by
X . Further, let rt be the daily log returns for each day X holds an asset; calculated

2The return rt for accepting a qt is not exactly the price itself but a function of the price. For example,
the accepted qt minus the costs for observing T − t prices during T .

3The R Project for Statistical Computing: www.r-project.org
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by eq (2). Daily log returns are time additive. Thus, for each of the 9.000 datasets
considered the overall return achieved by X equals

rT (X) =

T∑

t=1

rt, (3)

and thus the terminal wealth wT (X) = rT (X) · w0.
To estimate the (unknown) return to be expected from X in the future, we use

the average terminal wealth w̄T (X). As each X is run on N = 1.000 datasets (i =
1, . . . , N ) of equal length T ∈ {750, 250, 100}

w̄T (X) =
1

N

N∑

i=1

wT (X). (4)

Further, the (unknown) return to be expected from X in the future E[X] is estimated
by (cf. eq (4))

E[X] =
w̄T (X)

w0
(5)

= r̄T (X),

and the so-called ratio of expectations is calculated by E[OPT ]
E[ON ] [16, p. 85]. Several

authors use this ratio, cf. [24–27]. But [25] showed that E
[
OPT
ON

]
measures perfor-

mance more adequately than E[OPT ]
E[ON ] . Further, [16, p. 85] showed when converting

‘all or nothing’ the so-called expectation of ratios E
[
OPT
ON

]
must be used: Instead of

using averages, for each i-th dataset of length T ∈ {750, 250, 100}, the empirical-case
return ratio achieved by ON (cf. eq (1) and eq (3))

cexT =
rT (OPT )

rT (ON)
(6)
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is required. As each ON is run on N = 1.000 datasets (i = 1, . . . , N ) of equal length
T ∈ {750, 250, 100}

E

[
OPT

ON

]
=

1

N

N∑

i=1

cexT . (7)

We name E
[
OPT
ON

]
the overall expected competitive ratio, and denote it by cex. Simi-

larly, the overall worst-case competitive ratio cwc of ON equals

cwc =
1

N

N∑

i=1

cwcT , (8)

where cwcT denotes the worst-case return ratio for each i-th dataset of length T ∈
{750, 250, 100}, and is calculated using the equations given in column 4 of Table 1.
The average deviation from the worst-case

δ =

(
9∏

i=1

cwc

cex

) 1
9

(9)

is calculated using eq (7) and eq (8).

3.3. Results
On each dataset of length T the four RP algorithms presented in Section 3.1 and

OPT are run. As performance measure we consider the worst-case competitive ratio
cwc (cf. eq (8)), and the expected competitive ratio cex (cf. eq (7)). In addition, the
average deviation from the worst-case δ is given (cf. eq (9)). Clearly, theRP algorithms
cannot outperform OPT , i.e. c ≥ 1, and c ∈ {cwc, cex} (cf. eq (1)). For each
dataset of length T we determine the parameters required to calculate the possible cwc

of ON ∈ {RP (M,m), RP (M,T ), RP (M,m, f(qt)), RP (M,m, f(qt), T )}. When
calculating the cex the empirical-case return which actually was achieved by ON is
compared to OPT . Results are shown in Tables 3 and 4.

In increasing (decreasing) markets the best-case is to convert on the last (first) day.
We observed that the q∗ =

√
M ·m of RP (M,m) is too low. In an increasing

market RP (M,m) converts too early at a price close to the minimum m, and the worst-
case almost occurs as cex is very close to cwc. Similarly, due to the price movement
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Algorithm RP (M,m) RP (M,T ) RP (M,m, f(qt))
RP (M,m, f(qt), T )

Market T cwc cex cwc cex cwc cex

Decreasing 100 1.1744 1.0721 10.0000 1.0953 1.3804 1.0279
250 1.3510 1.0980 15.8114 1.1161 1.8257 1.0627
750 2.0595 1.1224 27.3861 1.1268 2.9083 1.1067

Increasing 100 1.1043 1.0923 10.0000 1.1757 1.2171 1.0124
250 1.2111 1.2001 15.8114 1.4105 1.4715 1.1060
750 1.6644 1.6529 27.3861 2.7142 2.3377 1.9620

No trend 100 1.0544 1.0303 10.0000 1.0441 1.1076 1.0022
250 1.0936 1.0487 15.8114 1.0670 1.1954 1.0094
750 1.1879 1.0721 27.3861 1.0902 1.4151 1.0305

Table 3. Worst-case and expected competitive ratios of the RP algorithms

Algorithm δ

RP (M,m) 13.00%
RP (M,T ) 1202.40%
RP (M,m, f(qt)) 40.08%
RP (M,m, f(qt), T ) 40.08%

Table 4. Average deviation from the worst-case

RP (M,m) converts (too) early in a decreasing market which leads to cex << cwc.
Overall, in the experiments RP (M,m) achieves a result δ=13.00% better than the
worst-case. In practice, to calculate the q∗ of RP (M,m) precise estimates of M and
m are required. But the better the estimates, the smaller δ – especially in an increasing
market. We conclude the cwc is too optimistic.

In case of RP (M,T ) the cwc equals
√
T , i.e. the longer T the greater cwc gets. In

case of RP (M,T ) the longer T the greater cwc gets. This finding is contradictionary
to the findings in Finance, as longer datasets are considered to be advantageous in the
sense that they generate more reliable results. Experiments show that the cwc is too
pessimistic as on average the cex is 1202.40% better than the worst-case. In addition the

CHAPTER 6. RESULTS OF MOHR, AHMAD AND SCHMIDT (2012) 95



468 E. Mohr, I. Ahmad, G. Schmidt

q∗ = M√
T

gets the smaller the longer T gets. Similarly to RP (M,m) the q∗ calculated
by RP (M,T ) is too low, and RP (M,T ) converts too early.

Surprisingly,RP (M,m, f(qt)) andRP (M,m, f(qt), T ) generate identical results.
The q∗t used by both algorithms only differs in the denominator. Due to the f(qt) of
[23] αl and α are monotone increasing, i.e. when searching for the minimum only
t = 1 must be considered. We find αl equals α in this setting, resulting in identical q∗t ,
i.e. the algorithms convert at identical prices. Similarly to RP (M,m) and RP (M,T )
the calculated q∗t is too low, and the algorithms convert too early. On average, the
algorithms of [3] achieve a result δ=40.08% better than the worst-case. In markets
without trend results are biased for all RP algorithms, and they also tend to convert too
early.

4. Conclusions

In case the input data processed by an online algorithm does not represent the
worst-case scenario, their performance is considerably better than the worst-case
competitive ratio tells. This result is consistent with [21], as we report a great dis-
parity between the worst-case and the empirical-case results. We could strictly or-
der the algorithms based on their results. In terms of cex RP (M,m, f(qt)) (resp.
RP (M,m, f(qt), T )) < RP (M,m) < RP (M,T ). In contrast, in terms of cwc

RP (M,m) < RP (M,m, f(qt)) (resp. RP (M,m, f(qt), T )) < RP (M,T ). The
algorithms of [3] require a return function, and their performance strongly depends
on f(qt). It would be of interest if the algorithms still outperform in case another
return function is used, and whether or not the knowledge of T improves the result of
RP (M,m, f(qt), T ).

From the practical point of view, the considered RP algorithms are only favorable
in decreasing markets as they tend to convert (too) early. All the computed RP are too
small, and the so-called too-early-error occurs in non-decreasing markets where the
underlying rt follow an extreme value distribution. The algorithms could have achieved
M but get the RP in the worst-case (cf. [1]).

We extend former works by using more than one time series, and thus our results
are less effected by randomness in terms of ‘luckily’ behaving data. Our results show
that an extreme value distribution is proper to model a realistic volatility as it includes
crashes, or situations of extreme stress on investor portfolios.
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7
Risk Aware Reservation Price Algorithms

Summary of Results

As risk is an unavoidable phenomenon in financial markets, an investor prefers a
strategy that provides the flexibility to manage her risk level. Online algorithms
under classical competitive analysis are risk averse in nature as the algorithms
guarantee a worst case competitive ratio, eliminating the risk. The worst case
scenario does not occur on a regular basis and the investor always has some in-
formation about the trends of the market. This information may not necessarily
be true but can be used by the investor. In case the assumed information is true,
the investor earns a higher reward (a lower competitive ratio), otherwise a loss is
observed (a higher competitive ratio).

Al-binali [4] extended the classical competitive analysis approach to a risk-
reward framework, allowing the investor to manage her risk level. We consider
the non-preemptive, reservation price algorithm of El-Yaniv [25] and extend it to
incorporate risk management. The proposed algorithms (for uni and bi-directional
conversion ) achieve an improved competitive ratio when the outcome is favorable;
otherwise the observed competitive ratio is worsened. In either case, the resul-
tant competitive ratio depends on the risk level of the player. In order to satisfy
Al-binali’s condition, we show that the worst case competitive ratio is not arbi-
trarily bad but is bounded. We also perform an experimental study to compare
our proposed algorithms with non-preemptive reservation price algorithms of El-
Yaniv [25]. We report that as the risk level increases the performance of algorithms
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is improved. However, when the risk level goes beyond 1.24, the performance de-
grades and thus the competitive ratio is increased.
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Abstract

Online algorithms for conversion problems are designed under the competitive analysis
paradigm. The drawback of competitive analysis is the lack of risk management aspect
required in financial markets. We consider the reservation price algorithm of El-Yaniv et
al. (2001) and extend it to incorporate risk and reward. We present risk-aware algorithms
for both uni-directional conversion and bi-directional conversion problems. We show that
our proposed algorithms achieve a better (lower) competitive ratio when an improved
outcome is observed, otherwise a competitive ratio inferior to the optimal competitive
ratio is achieved. However, the inferior competitive ratio is not arbitrarily bad and is
bounded based on the risk level of the player.

Keywords: Operational/OR, Online Algorithms, Competitive Analysis, Risk Reward Frame-
work, Risk

1 Introduction

Financial markets are highly volatile and risky. The investor (henceforth called as player) in
these markets is subjected to take decisions under a high degree of uncertainty and is exposed
to high level of risk. An example of such financial market is currency exchange. In order to
assist the player a number of algorithms and tools have been developed to facilitate the decision
making under uncertain circumstances [2, 5]. Online algorithms for conversion problems are
among a number of proposed solutions to solve such problems [1, 5].

In theoretical computer science, competitive analysis is a standard tool for the design and
analysis of online algorithms [2, 5]. Although competitive analysis is a strong tool, it has one
inherent drawback. Online algorithms designed under competitive analysis paradigm assume
a worst case scenario and attempt to achieve an optimal performance for the unforeseen worst
case. This approach leads to conservative decision making which in turn results in algorithms
that are based on risk mitigation rather than risk management [2]. Therefore, in real world
the classical competitive analysis is not an ideal tool to design online algorithms for financial
problems.

In this paper, we consider online conversion problem [5] and discuss how we can design risk-
aware algorithms? The proposed solution is a simple and an elegant way of introducing risk
management in reservation price algorithms. The resultant algorithms are flexible enough to
provide the player an opportunity to earn higher reward as well as ensuring that performance is
never degraded below a fixed threshold. To the best of our knowledge this is the first attempt
to introduce risk management in reservation price algorithms. This work will bridge the gap
between theoretical computer science and its application domain in business and finance.

∗corresponding author
†ia@orbi.uni-saarland.de
‡gs@orbi.uni-saarland.de
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The rest of the paper is organized as follows. In Section 2 we discuss the conversion
problem [5] and define competitive analysis. This is followed by the introduction of risk-
reward framework in Section 3. In Section 4 we present the online algorithm of El-Yaniv
et al. [5] and the competitive analysis is discussed in the same section. Section 5 discusses
how we can design risk-aware online algorithms for conversion problems and the competitive
analysis is performed to show the reward gained by the online algorithms under the risk-reward
framework. Section 6 reports the findings of an experimental study to compare our proposed
algorithms with that of El-Yaniv et al. [5]. Section 7 concludes the work by highlighting the
application of proposed idea and discusses some open questions.

2 Problem Formulation

In an online conversion problem, a player has a fixed amount of initial currency D at the start
of the game. On each day t (t = 1, 2, . . . , T ) the player is offered a price qt. Without any
knowledge about future prices qj (j = t+ 1, t+ 2, . . . , T ), the player has to make a conversion
decision. The player may accept an offered price qt and convert the whole of D to the desired
currency Y or may reject qt and wait for a better price. The decision taken is irrevocable. The
game ends when the player accepts a price or on the last day T when D must be converted into
Y at the last offered price qT . The player can have two objectives, i) to maximize the amount
of Y or ii) to maximize the amount of D at the end of the game. i) is called uni-directional con-
version and forbids the conversion of Y back to D whereas ii) is called bi-directional conversion
and allows the player to convert Y back to D. In uni-directional conversion, there is a single
investment horizon in which all the transactions must be carried out whereas in bi-directional
conversion the total time T is divided into two investment horizons of equal lengths T/2. In
the first period D is converted into Y and in the second period Y is converted back into D. In
either case the objective of the player is to maximize the terminal wealth in form of D or Y .

A number of online algorithms are proposed to solve online conversion problems [1, 5].
These algorithms are classified in to two classes based on the investment pattern, namely non-
preemptive and preemptive algorithms. Non-preemptive algorithms invest the whole wealth at
one point of time whereas preemptive algorithms divide the wealth in to small portions and in-
vest a portion of the wealth when an investment decision is made. Assume that the total wealth
of the player is normalized to 1 unit and let st be the amount of wealth invested at any given
time t, then for non-preemptive algorithms st ∈ {0, 1} and for preemptive algorithms st ∈ [0, 1].

Competitive analysis measures the performance of an online algorithm against an optimum
offline algorithm. Unlike an online algorithm, an optimum offline algorithm OPT knows the
whole input in advance and always makes an optimum decision. Competitive ratio can formally
be defined as [5]; let P = (I,F ,U) be a maximization problem where I is the set of all possible
inputs; ∀I ∈ I,F(I) is the set of feasible outputs; U is a utility function such that ∀I ∈ I
and O ∈ F(I),U(I,O) ∈ R. Let ON be an online algorithm for P, given an input I, ON
computes a feasible solution O ∈ F . Let ON(I) denotes the performance of ON on I ∈ I
and the performance of OPT on I ∈ I is denoted by OPT (I) = supO∈F(I)U(I,O). ON is
c-competitive iff ∀I ∈ I,

ON(I) ≥ 1

c
OPT (I) (1)

A c-competitive online algorithm for a maximization problem guarantees a return of 1/c to
that of an optimum offline algorithm.

Al-binali [2] extended the classical approach of competitive analysis to the risk-reward
framework. The framework is based on the principle that the player must be able to decide
his risk tolerance level (the maximum level of risk that he is willing to take) and implement an
algorithm that respects the risk tolerance level. In the next section, we present the basic risk
principle and the framework of Al-binali [2].
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3 Risk Reward Framework

A decision making problem can lead to two possible outcomes, i) a risk-free outcome, based
on risk-free selection made by the player and ii) a risky outcome, based on the risk level of
the player [2]. A risk-free outcome leads to a certain fixed outcome whereas a risky outcome
can lead to one of the following two outcomes. An improved outcome - the player return is
greater than the risk-free action and a worse outcome - the player return is less than the risk-
free outcome. Fig. 1 is a schematic representation of the risk-free and risky outcomes. The
classical competitive analysis corresponds to risk-free selection as it does not give any selection
choice to the player and employs a risk-free strategy to ensure a guaranteed competitive ratio.

Better than GCR

Worse than GCR

Riskless outcome

Imporved Outcome

Worse Outcome

Ri
sk
les
s C

ho
ice

R
isky

C
hoice

Guaranteed Competitive
Ratio (GCR)

Figure 1: A view of risk and reward comprising of different outcomes based on the player’s
choice [2]

Al-binali [2] pointed out that classical competitive analysis is an inflexible approach for
online algorithms in financial markets. The classical competitive analysis leads to the develop-
ment of algorithms that reduces the uncertainty and risk. However, in the real world investors
are keener to manage their level of risk. Al-binali [2] proposed a risk-reward framework which
extends the classical competitive analysis to enable the design of risk-aware algorithms. Let A
be an online algorithm for a maximization problem P , from Eq. (1), we know that competitive
ratio cA

cA = sup
I∈I

OPT (I)

A(I)
. (2)

The optimal competitive ratio for the problem is

c∗ = inf
A
cA. (3)

Risk of algorithm A can be defined as
cA
c∗
.

Al-binali [2] referred to the risk from investor’s point of view as the maximum opportunity cost
that algorithm A may incur over optimal online algorithm. Let α is the risk tolerance level of
the investor such that α ≥ 1, then

Sα = {A|cA ≤ αc∗} (4)

be the set of all algorithms that respect the investors risk tolerance level. Based on the outcome
there are two possible scenarios, i) the risk taken by the player results in an improved outcome
and the performance is improved ii) the worse outcome where the performance is degraded.
Therefore, based on the outcome either the player is rewarded or the performance is degraded
(see Fig: 1).
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For the positive outcome the reward of the investor is defined as an improvement over the
optimal online competitive ratio and is given as

RA =
c∗

ĉA
(5)

Where ĉA is the competitive ratio of A (without using risk tolerance level) in cases where an
improved outcome is observed.

Remark 1. The reward RA of an online risk-aware algorithm A is bounded below by 1 and
above by c∗, i.e., RA ∈ [1, c∗] [2].

Remark 2. From Eq. (4), we can see that any risk-aware algorithm must not perform worse
than αc∗.

Remark 2 upper bounds the performance of risk-aware algorithm, i.e., if a worse outcome is
observed, the competitive ratio must not be greater than αc∗. All risk-aware algorithms must
respect this condition.

Al-binali [2] used the framework for the design of risk aware preemptive algorithms. The
work in based on the assumption that the player has some piece of information about the future
in the form of forecast. For example, a forecast may state that in the future the prices will
reach some minimum level. The forecast may or may not be true. The idea is to invest more
prudently by investing less at the start of the investment horizon so that comparatively more
wealth is left to invest when the forecast becomes true. As the framework is mainly designed
for preemptive algorithms, there is no work to design risk aware non-preemptive algorithms.

Behavioral finance divides an investor into different categories based on their tendency to
invest in risky assets [3]. Bailard et al. [3] classified investors into five different categories
based on the personality characteristics. Bailard et al. [3] suggested that each category uses a
different approach to risk and thus prefers different risk levels. The five categories are;

i Adventurers : The investors who are willing to take high risks. They are willing to invest
in assets where the returns are expected to be high although such investment can be highly
risky.

ii Celebrity : The people who do not have real knowledge of the market but wants to invest
in assets that are popular in the market. As they have no real working knowledge, they
rely on others for their investment decisions.

iii Individualists: The people who are confident, methodical and take their own decisions on
investment strategies. They take risk where appropriate but are not tempted by higher
risks for higher returns .

iv Guardian: The group of people who are worried about their investments and do not prefer
to take risks. Their preferred choice of investment includes securities where fixed returns
are guaranteed.

v Straight Arrows : The group of people who do not fit in the above mentioned four classes.
Generally they are willing to take medium amount of risk but can be conservative in their
choices as well.

The classical competitive ratio is a good tool for guardian as they are mainly risk averse in
nature. The guaranteed competitive ratio can be an ideal tool for such class as the returns
are guaranteed. Risk-reward framework can be used by individualists. As this group is more
methodical in their decision making, and are not extravagant risk takers as well, the risk-reward
framework is more suited to such individuals. The framework allows them the flexibility to set
an appropriate level of risk.

We proceed to discuss the non-preemptive reservation price algorithm presented by El-
Yaniv et al. [5] and discuss how to modify the algorithm for incorporating the risk-reward
framework.

4
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4 Reservation Price Algorithm (RP)

A reservation price algorithm computes a threshold price q∗ and compares each offered price
against q∗. For max-search (sell) the algorithm accepts a price qt if qt ≥ q∗ and invests the
whole wealth at one point of time. Contrary to non-preemprive algorithms, preemptive threat
based algorithms [5] do not invest at one point of time but instead invest a portion of wealth
when the offered price is acceptable. The criterion for price acceptability varies and the reader
is referred to [5].
El-Yaniv et al. [5] presented a reservation price algorithm assuming that the player knows the
value of possible lower bound m and upper bound M of prices. It is pertinent to note that
if the online player does not assume the a priori knowledge of m and M , it is not possible to
derive an online algorithm with bounded competitive ratio [5]. It is not mandatory that these
bounds are observed, however all prices must be in this range, i.e., qt ∈ [m,M ].

4.1 Reservation Price Algorithm for Uni-directional Conversion

Algorithm 1. RP (Uni|m,M)

• Accept the first offered price qt, such that qt ≥ q∗ =
√
Mm.

El-Yaniv et al. [5] showed that RP (Uni|m,M) is
√
M/m competitive. In order to make

the paper self-contained, we present the result in Theorem 1.

Theorem 1. RP (Uni|m,M) is
√
M/m competitive.

Proof. We need to show that the reservation price q∗ calculated by RP (Uni|m,M) is optimal.
The online player can commit either of the following two types of errors when calculating q∗.
q∗ is too low : If the reservation price q∗ calculated by the player is too low, the adversary
offers q∗ early in the input sequence and later raises the offered price to maximum M . The
input sequence is of the following form;

q1 = q∗, . . . , qT = M.

The online player could have converted at M but instead converts at q∗, the competitive ratio
achieved by the online algorithm ON (Algorithm 1) is

c1 =
OPT

ON

=
M

q∗
(6)

q∗ is too high: If the q∗ is too high, the adversary offers a price sequence such that the
maximum observed price is less than q∗. The input sequence is of the following form;

q1 = q∗ − ε, . . . , qT = m.

The online player will convert on the last offered price m whereas OPT will convert on q∗− ε.
The competitive ratio achieved is

c2 =
OPT

ON

=
q∗ − ε
m

(0 < ε << 1)

≤ q∗

m
(7)

In order to calculate a balanced q∗, we use the error-balancing technique [5] such that compet-
itive ratio in both cases holds.

c1 = c2

M

q∗
=
q∗

m

q∗ =
√
Mm (8)

5
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Considering q∗ =
√
Mm, RP (Uni|m,M) achieves a competitive ratio

√
M/m in both “too

low” and “too high” errors. Therefore, the resultant competitive ratio cw(Uni|m,M) =√
M/m.

4.2 Reservation Price Algorithm for Bi-directional Conversion

For bi-directional conversion, we divide the investment horizon of length T in two equal parts,
one each for buying and selling. In the first part we execute the algorithm for buying and in
the second part we execute the algorithm for selling.

Algorithm 2. RP (Bi|m,M)

• Buy: Buy at the first offered price qt such that qt ≤ q∗ =
√
Mm.

• Sell: Sell at the first offered price qt such that qt ≥ q∗ =
√
Mm.

Theorem 2. The competitive ratio achieved by RP (Bi|m,M) is M/m.

Proof. In order to prove the theorem, we construct a worst case sequence. As the time horizon is
divided into two equal parts of length K = T/2, therefore in the first K days a buy transaction
must be performed whereas on K + 1 the search for a sell price begins. Following is the worst
case input sequence;

q1 = q∗, . . . , qK = m, qK+1 = q∗, . . . , qT = M.

ON (Algorithm 2) will buy at the first price q1 = q∗ and OPT will buy at qK = m, similarly,
ON will sell on qK+1 = q∗ whereas OPT will sell on the maximum offered price qT = M .
The return of OPT (rOPT ) is thus M/m whereas the return of ON (rON ) is q∗/q∗ = 1. The
competitive ratio achieved by the online bi-directional algorithm is

cw(Bi|m,M) =
rOPT
rON

=
M/m

1

=
M

m
(9)

5 Risk Aware Reservation Price Algorithms

Iwama and Yonezwama [6] presented risk-aware online uni-directional currency conversion
algorithms using the framework of Al-binali [2]. The work extended the threat based algorithm
of El Yaniv et al. [5]. To the best of our knowledge, there is no significant work to design risk-
aware non-preemptive reservation price algorithms and our work is the first such attempt.

The work of Al-binali [2] is based on forecast. A forecast is a piece of information about
the future prices. The forecast can either be true or false. Instead of considering the forecast,
we use a more generalized term “knowledge” of the player. Knowledge of the player may be
based on some forecast mechanism or may stem from the experience of the player. Similarly
it can be based on the intuition of the player as well. Knowledge is a more coherent term as
it encompasses not only the available forecast but also includes others factors that are hard
to quantify e.g., intuition and experience. Irrespective of the source of knowledge, the player
gains the insight that the worst case scenario may not occur that frequently. The player is
willing to take risk in order to achieve higher returns. If the knowledge (trend) that he predicts
is true, a higher return than optimal online algorithm is gained otherwise a lower return than
optimal online algorithm is observed.

In this section we extend Algorithm 1 and Algorithm 2 to incorporate risk management
based on the proposed framework of Al-binali [2]. We show that competitive ratio achieved by
the modified algorithms satisfy the Al-binali’s condition as given in Eq. (4).
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5.1 Risk Aware Uni-directional Algorithm

In the following we present a reservation price algorithm for uni-directional conversion incor-
porating risk-reward framework. Let α ≥ 1 be the acceptable level of risk that the player is
willing to take for a better performance.

Algorithm 3. RP (Uni|m,M,α)

• Accept the first offered price qt, such that qt ≥ α
√
Mm.

Theorem 3. RP (Uni|m,M,α) is α
√
M/m competitive.

Proof. We have already shown in Theorem 1 that
√
M/m is the optimal competitive ratio;

therefore, we only need to construct a worst case sequence where RP (Uni|m,M,α) achieves a
competitive ratio of α

√
M/m. We consider the following two cases;

Case 1 : qt ∈ [m,α
√
Mm− ε] : The adversary knows that the online player is searching for a

reservation price which is at least α
√
Mm. The adversary offers a price sequence in which the

maximum offered price is less than α
√
Mm. The sequence is of the following form;

α
√
Mm− ε, . . . ,m

ON (RP (Uni|m,M,α)) does not find a price which is at least α
√
Mm and converts on the

last offered price m, whereas optimum offline algorithm OPT converts at α
√
Mm − ε. The

competitive ratio is;

c′1 =
OPT

ON

=
α
√
Mm− ε
m

≤ α
√
M

m
(10)

Case 2 : qt ∈ [α
√
Mm,M ] : In this case, the adversary offers a price sequence in which

α
√
Mm appears early in the input sequence so that conversion is made at α

√
Mm. Later the

adversary raises the offered price to M . The worst case sequence is of the following form;

α
√
Mm, . . . , . . . ,M

The competitive ratio achieved by the online player is;

c′2 =
OPT

ON

=
M

α
√
Mm

=
1

α

√
M

m
(11)

The resultant competitive ratio cw(Uni|m,M,α) can be derived from the maximum of c′1 and
c′2. Therefore, cw(Uni|m,M,α) = max{c′1, c′2} = c′1 ≤ α

√
M/m.

Case 1 represents the competitive ratio when the outcome is not improved whereas Case
2 represent the competitive ratio when the outcome is favorable.

Corollary 1. RP (Uni|m,M,α) satisfies Al-binali’s condition by achieving a competitive ra-
tio cw(Uni|m,M,α) such that cw(Uni|m,M,α) ≤ αc. Here c is the competitive ratio of
RP (Uni|m,M) and α is the acceptable level of risk tolerance of the player.

Proof. In order to maximize the loss of the online algorithm, the adversary offers all prices
less than the reservation price α

√
Mm. On the last day, the adversary offers the minimum

price m. As the online algorithm does not find an offered price which is at least α
√
Mm, she

is forced to convert on the last offered price m. The resultant competitive ratio is α
√
M/m.

The competitive ratio is worsened by a factor α, which also bounds the loss of the online
algorithm.

7
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Lemma 1. When the outcome is improved, the minimum reward of RP (Uni|m,M,α) is α.

Proof. If an improved outcome is observed and with a risk tolerance level of α, suggests that the
algorithm observes at least one price qt such that qt ≥ α

√
Mm (see Case 2). The algorithm

converts on α
√
Mm. In order to maximize the competitive ratio, the adversary will raise

the price to M , the competitive ratio achieved will be c′ = M/(α
√
Mm) = (1/α)

√
M/m.

Recall, c∗ =
√
M/m is the optimal competitive ratio achieved by reservation price algorithm

(RP (Uni|m,M)). The reward R of RP (Uni|m,M,α) is;

R =
c∗

c′

=

√
M/m

1/α
√
M/m

= α (12)

5.2 Risk Aware Bi-directional Algorithm

In this section, we extend RP (Bi|m,M) to introduce the risk management aspect. Recall that
α is the acceptable level of risk tolerance of the online player. The algorithm works as follows;

Algorithm 4. RP (Bi|m,M,α)

• Buy: Buy at the first offered price qt such that qt ≤ 1√
α

√
Mm.

• Sell: Sell at the first offered price qt such that qt ≥
√
α
√
Mm.

Theorem 4. RP (Bi|m,M,α) is αMm competitive.

Proof. We construct a worst case sequence to demonstrate that RP (Bi|m,M,α) cannot achieve
a competitive ratio better than αMm . As for bi-directional, we consider an investment horizon
of length T and divide it in two equal parts each of length K = T/2. In the first period, search
for a buy price is made whereas in the second period a sell price is sought. The worst case
sequence is of the following form;

q1 =
1√
α

√
Mm+ ε, . . . , qK = M, qK+1 =

√
α
√
Mm− ε, . . . , qT = m. (13)

In the first K days the online player is searching for a buy price which is not greater than
(1/
√
α)
√
Mm. On the first day, the adversary offers q1 > (1/

√
α)
√
Mm , after day 1, all the

prices offered are more than q1. On the last day K of the buying period, the adversary offers M ,
that must be accepted by the online player as K is the last day of the “buying period”. Thus,
online algorithm buys on M whereas optimum offline algorithm buys on (1/

√
α)
√
Mm+ ε.

Likewise in the selling period, the online player searches for a price which is at least
√
α
√
Mm.

However, the adversary offers α
√
Mm− ε on day K + 1 and all the subsequent prices are less

than qK+1. On the last day T the adversary reveals the last price m which the online player
must accept. Thus the online player sells at m whereas the optimum offline algorithm sells at
α
√
Mm − ε. Let rOPT be the return of optimum offline algorithm and rON be the return of

the online algorithm (Algorithm 4).

rOPT =

√
α
√
Mm− ε

1/
√
α
√
Mm+ ε

(0 < ε << 1)

= α (14)

rON =
m

M
(15)
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Thus the competitive ratio cw(Bi|m,M,α) is;

cw(Bi|m,M,α) =
rOPT
rON

,

=
α

m/M
,

= α
M

m
. (16)

Corollary 2. RP (Bi|m,M,α) respects Al-binali’s condition by achieving a competitive ra-
tio cw(Bi|m,M,α) such that cw(Bi|m,M,α) ≤ αcw(Bi|m,M). The maximum loss is thus
bounded by α.

Proof. From the worst case sequence given in Eq. (13), the return of OPT is α where as the re-
turn of online algorithm (RP (Bi|m,M,α)) is m/M . Therefore, the competitive ratio achieved
by online algorithm is α(M/m). The maximum loss is therefore bounded by α observed in a
case when the outcome is worsened.

6 Experimental Evaluation

Ahmad and Schmidt [1] performed an extensive experimental evaluation of online uni-directional
conversion problems. The study considered a variety of algorithms and evaluated the selected
set of algorithms on real world data of DAX30 and S&P500 indices. The set of algorithms
also included reservation price algorithm of El-Yaniv et al. [5] (RP (Uni|m,M), Algorithm 1).
However, the study did not consider any risk-aware algorithms. In the following, we consider
the same experimental setting as in Ahmad and Schmidt [1] and compare RP (Uni|m,M) and
RP (Bi|m,M) to our proposed risk-aware algorithms RP (Uni|m,M,α), and RP (Bi|m,M,α).
We consider the following experimental set up.

Experimental Setup

i We consider the real world data of DAX30 and S&P500 for ten years from 1.Jan.2001 to
31.Dec.2010.

ii We consider a transaction fee (or commission) of 0.025% of the volume transacted.

iii The yearly interest rate is zero.

iv Algorithms have a priori information about m and M .

v For risk-aware reservation price algorithm RP (Uni|m,M,α) and RP (Bi|m,M,α), we con-
sider risk level of α = {1.1, 1.2}.

vi The experiments are run on the subset of data such that the length of each sub set corre-
sponds to one year of investment horizon.

vii For each subset of data (of length one year), we record the worst case competitive ratio cw

and the experimentally observed competitive ratio ce.

Results

Uni-directional Results

Considering DAX30 data set, we observed that the average performance of RP (Uni|m,M,α)
is better than that of RP (Uni|m,M). For risk level α = {1.1, 1.2}, RP (Uni|m,M,α) achieves
an average competitive ratio 1.06 and 1.03. For the same data set RP (Uni|m,M) achieves a
competitive of 1.1178. RP (Uni|m,M,α) improves the competitive ratio by 5% (for α = 1.1)
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(c) Performance - DAX30 α = 1.2
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(d) Performance - S&P500 α = 1.2

Figure 2: Performance on DAX30 and S&P500 for Uni-directional Conversion

and 8% (for α = 1.2) respectively. RP (Uni|m,M,α) outperforms RP (Uni|m,M) on S&P500
as well. The corresponding improvement in the competitive ratio is 3.7% (for α = 1.1) and
3.8% (for α = 1.2). Fig 2 is a pictorial representation of the competitive ratio over DAX30 and
S&P500 data sets. It can be seen that for α = 1.1, RP (Uni|m,M,α) performs better than
RP (Uni|m,M) on both DAX30 and S&P500 data sets, except for the years 2001, 2002 and
2008. Similarly, for α = 1.2, we observe the same performance except for S&P500 where on
2001 data, RP (Uni|m,M,α) performs better than RP (Uni|m,M).

For risk level α = {1.1, 1.2}, we observe that on both data sets (DAX30 and S&P500),
RP (Uni|m,M,α) outperforms RP (Uni|m,M). We do not observe any case where the perfor-
mance of RP (Uni|m,M,α) is inferior to that of RP (Uni|m,M) except on S&P500 for α = 1.2
and year 2002. Therefore, we considered the risk level α = {1.01, 1.02, . . . , 1.5} and record
the worst case cw(Uni|m,M,α) and experimental case ce(Uni|m,M,α) competitive ratios of
RPU (m,M,α).

For DAX30, we observe a consistent improvement in competitive ratio of RP (Uni|m,M,α)
to that RP (Uni|m,M) (see Fig 3(a)) for risk level α ∈ [1.01, 1.33]. However, there is a sudden

drop in the improvement factor ( ce(m,M)
ce(m,M,α) ) when α = 1.34. At α = 1.33, the improvement

factor is 1.1049 which is the maximum improvement, at α = 1.34, the improvement factor is
reduced to 1.0724 and from there on it decreases. At α = 1.46, the improvement factor is
below 1.0, which means that RP (Uni|m,M) outperforms RP (Uni|m,M,α). Fig 3(b) models
the performance of RP (Uni|m,M,α) based on cw(Uni|m,M,α) and ce(Uni|m,M,α). The
worst case competitive ratio cw(Uni|m,M,α) = α

√
M/m steadily increases with the increase

in risk level α. In contrast to cw(Uni|m,M,α) , ce(Uni|m,M,α) decreases with increasing
risk level till α = 1.34. Afterward the gap between cw(Uni|m,M,α) and ce(Uni|m,M,α) is
reduced for α = [1.34, 1.5].

S&P500 exhibits the same behavior as DAX30. Comparing the performance ofRP (Uni|m,M,α)
toRP (Uni|m,M), we observe a steady improvement for risk level α = [1.01, 1.29] (see Fig 4(a)).
The maximum improvement is observed at α = 1.29. The performance of RP (Uni|m,M,α) is
inferior to RP (Uni|m,M) for α = [1.39, 1.5]. Likewise, we observe the same level of disparity
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Figure 3: Improvement Factor and Disparity on DAX30 for Uni-directional Conversion
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(b) S&P500: Disparity between cw and ce of
RP (Uni|m,M,α)

Figure 4: Improvement Factor and Disparity on S&P500 for Uni-directional Conversion

between cw(Uni|m,M,α) and ce(Uni|m,M,α) for S&P500. This is depicted in Fig 4(b)

Bi-directional Results

For bi-directional scenario, we observe that our proposed algorithm RP (Bi|m,M,α) using
the risk-reward principle performs better than RP (Bi|m,M). For both data sets (DAX30,
S&P500) and risk level α = {1.1, 1.2}, RP (Bi|m,M,α) achieves an average ce(Bi|m,M,α)
better than ce(Bi|m,M). For data set DAX30 and α = 1.1, we observe that ce(Bi|m,M,α) is
6% better (lower) than ce(Bi|m,M), whereas for α = 1.2 the corresponding improvement is 8%.
The same pattern in improvement is observed for S&P500 data set where the improvement
using RP (Bi|m,M,α) is 5% and 7% respectively for α = {1.1, 1.2}. Fig 5 compares the
performance of ce(Bi|m,M,α) and ce(Bi|m,M) on DAX30 and S&P500.

In order to observe the improvement of RP (Bi|m,M,α) over RP (Bi|m,M) and the dispar-
ity between cw(Bi|m,M,α) and ce(Bi|m,M,α), we consider risk level α = {1.01, 1.02, . . . , 1.5}.

For DAX30, the improvement factor ce(Bi|m,M)
ce(Bi|m,M,α) and the disparity between cw(Bi|m,M,α)

and ce(Bi|m,M,α) is summarized in Fig 6. We observe that improvement factor increases
with increase in α , the maximum improvement factor 1.1 is observed at α = 1.25. For
α = {1.25, 1.26, . . . 1.5} an irregular pattern in the performance is observed, although the
main trend is decreasing after α = 1.25 (see Fig 6(a)). We observe a wide gap between
cw(Bi|m,M,α) and ce(Bi|m,M,α) for DAX30. The disparity is illustrated in Fig 6(b).

We observe an identical pattern for the improvement factor on S&P500. There is a steady
increase in improvement factor as α increases. The maximum improvement is observed at
α = 1.24 after which a steady decrease in the improvement factor is observed. The same
pattern for the disparity between cw(Bi|m,M,α) and ce(Bi|m,M,α) is observed for S&P500
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(d) Performance - S&P500 α = 1.2

Figure 5: Performance on DAX30 and S&P500 for bi-directional conversion

as is seen on DAX30. Fig 7 illustrates the improvement factor (Fig 7(a)) and the disparity
(Fig 7(b)) on S&P500 data set.

From the experimental results, we observe that the improvement factor ce(Bi|m,M)
ce(Bi|m,M,α) , achieves

its maximum value on DAX30 when α = 1.25, for S&P500 the maximum improvement factor is
observed for α = 1.24. Although no conclusive decision can be drawn as the data is limited to
two indices only, risk level α = [1.20, 1.25] seems to be the optimal risk level where maximum
improvement can be gained.
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Figure 6: Improvement Factor and Disparity on DAX30 for bi-directional conversion
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Figure 7: Improvement Factor and Disparity on S&P500 for bi-directional conversion

7 Conclusion

We studied online conversion problem under the competitive analysis and presented risk-aware
algorithms for uni-directional conversion and bi-directional conversion problems. Our proposed
approach is the first attempt to introduce risk management in non-preemptive reservation price
algorithms. The proposed approach can be applied to other algorithms for conversion problems
such as the algorithms proposed in technical analysis [4]. Examples of such algorithms are
moving averages and trading range break out et cetera. Moving average also behaves likes
a reservation price algorithm as it invests at one point of time. The other resemblance that
moving average has with reservation price is inherent lack of risk management. Our proposed
approach can be applied to algorithms of technical analysis [4] and other reservation price
algorithms.

In this work, we considered the assumption that the outcome of the risk based strategy is
either improved or worsened. The outcome is forecast dependent, which can either be true or
false. It will be of interest to design reservation price risk-aware online algorithms which are
based on the probability function of the forecast rather than boolean values of the forecast,
i.e., we assign a probability ρ to forecast being true. For example, how the reservation price
can be adjusted based on the value of ρ and what is the impact of ρ on the competitive ratio?

References

[1] I. Ahmad and G. Schmidt. An experimental analysis of online unidirectional conversion
problem. In Ch. Huemer and P. Lops, editors, E-Commerce and Web Technologies, volume
123 of Lecture Notes in Business Information Processing, pages 176–187. Springer, 2012.

[2] S. Al-Binali. A risk-reward framework for the competitive analysis of financial games.
Algorithmica, 25:99–115, 1999.

[3] T. E. Bailard, D.L. Biehl, and R.W. Kaiser. Personal Money Management. Chicago Science
Research Associates, Inc., 5 edition, 1986.

[4] W.A. Brock, J. Lakonishok, and B. LeBaron. Simple technical trading rules and the stochas-
tic properties of stock returns. Journal of Finance, 47:1731–1764, 1992.

[5] R. El-Yaniv, A. Fiat, R.M. Karp, and G. Turpin. Optimal search and one-way trading
algorithm. Algorithmica, 30:101–139, 2001.

[6] K. Iwama and K. Yonezawa. Using generalized forecasts for online currency conversion. In
T. Asano and et al., editors, Computing and Combinatorics, volume 1627 of Lecture Notes
in Computer Science, pages 409–421. Springer, 1999.

13

CHAPTER 7. RESULTS OF AHMAD AND SCHMIDT (2013) 113



8
Conclusion and Future Work

This chapter concludes the work by summarizing the thesis and provides future
directions for new research.

8.1 Conclusion

Online algorithms for conversion problems designed under competitive analysis
paradigm face a number of problems when the applicability of such algorithms in
real world is considered. The objective of the work was to perform an analysis of
online uni-directional conversion problems and discuss methods and measures to
improve their adaptability in real world.

A drawback of using competitive analysis as a design tool for online algorithms
is the lack of risk management aspect. As competitive analysis guarantees a risk
free outcome in the worst unforeseen future, the resulting algorithm is risk miti-
gating in nature. However, in a real world, an online player will like to manage her
risk level rather than mitigate it. In order to bridge this gap, we show that com-
petitive ratio can be used as a risk measure as it satisfies all the required axioms
of a Coherent Risk Measure suggested by Artzner et al. [7].

We evaluated a selected set of preemptive as well non-preemptive online con-
version algorithms on the real world data using the backtesting technique. The
objective was to find how algorithms perform on the real world data and to discuss
the disparity between the worst case and experimentally achieved competitive ra-
tio. We observed that preemptive algorithm of El-Yaniv et al. [27] with a priori
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knowledge of lower and upper bounds of offered prices out performs other algo-
rithms on both DAX30 and S&P500 data sets. The main reason for better per-
formance of aforementioned algorithm is the investing technique. The algorithm
invests only when it observes a price which is the highest seen so far. Similarly,
the amount of wealth invested also depends on the offered price. This results in
an improved performance of the algorithm. We also observed a significant gap
between the worst case and experimentally achieved competitive ratio.

The problem with backtesting is relying on limited data and thus the results
might suffer from “data snooping” bias. In order to avoid the data snooping bias,
we also employed bootstrap method to generate artificial data sets for algorithm’s
evaluation in Ahmad and Schmidt [2]. However the bootstrap method does not
replicate all possible real world scenarios. In order to address the drawback of
bootstrap method, we propose to use Extreme Value Theory (EV T ) approach to
generate test instances in Mohr, Ahmad and Schmidt [50]. The proposed EV T
approach encapsulates extreme scenarios such as market crash as well as normal
trading scenarios.

Competitive analysis results in algorithms that are risk averse in nature. How-
ever, in real world an online player (investor) wants the flexibility to manage the
risk rather than mitigate it. In order to empower the investor to manage her risk
level we propose risk aware reservation price algorithms that allow the online player
to manage the risk. If a positive outcome is observed, the online player achieves
a better competitive ratio than the worst case competitive ratio otherwise a sub-
optimal competitive ratio is observed. However, the sub-optimal competitive ratio
is bounded and is not arbitrarily bad.

8.2 Future Works

Online algorithms for conversion problems are mostly designed with worst case
competitive analysis [20, 47, 27]. Fujiwara et al. [33] used average case competitive
analysis to design a threat based algorithm. It will be of interest to design online
algorithms for conversion problems using other methods such as using diffuse ad-
versary and comparative analysis approach [42] or using the smoothed complexity
approach suggested by Spielman and Teng [63]. Boyar et al. [14] considered the
reservation price algorithm of El-Yaniv et al. [27] and analyzed it under different
performance evaluation measures such as average analysis, random order analysis
and relative worst order analysis. A challenging research prospect will be to com-
pare the threat based algorithm of El-Yaniv et al. [27] with that of Fujiwara et
al. [33] using bijective analysis, random order analysis, relative worst order analysis
and other performance measures.

Online algorithms for conversion problems are designed assuming different a
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priori information about the future such as information about lower and upper
bound of offered prices. In real world, these informations’ are based on estimated
values which are error prone. As there are errors in the assumed information, it
will be of interest to perform the competitive analysis of online conversion algo-
rithms assuming errors in estimation. It should be investigated how the errors in
estimation affect the guaranteed competitive ratio. Another drawback of the as-
sumed information of lower and upper bound of prices is that bounds are assumed
to be static and does not change with time. A possible research prospect will be
to consider the initial estimated values and update them using a price function.
As more and more prices are observed the initial estimates can be improved and
the reservation price can thus be modified.

Al-binali [4] extended the classical competitive analysis approach to risk-reward
framework. The objective is to allow online player the flexibility to manage her
risk level for a higher reward. The idea behind the work is that worst cases do not
occur frequently and in real world online player has information about future in the
form of forecasts. Based on the forecast, the online player can invest prudently,
i.e., investing less at the start so as to save more for later when prices will be
favorable. Al-binali [4] assumed that forecasts can either be true or false, but in
real world each forecast is assigned a probability. An open question is to design
online algorithms where forecasts assume some probability rather than boolean
values.

Lorenz et al. [47] proposed k-max search algorithm for a scenario where an
online player wants to sell k units of an asset. The online player calculates k
reservation prices q∗1, q

∗
2, . . . , q

∗
k. As the price sequence is unfolded, the online player

waits for the first offered price which is at least q∗1 and sells one unit. Similarly,
the online player sells another unit when the offered price is at least q∗2 and so on.
The player is restricted to sell only one unit even when the observed price is good
enough to warrant the selling of more units. Zhang et al. [71] extended Lorenz et
al. [47] max search by allowing the player to sell more than one unit when the price
is favorable. An open question will be to extend Zhang et al. [71] to incorporate
risk-reward framework. The online player should be allowed to choose a risk level
and depending on risk level, reservation prices and number of units sold can be
modified.
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equivalence of paging strategies. In Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, SODA ’07, pages 229–237,
Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathemat-
ics.

[7] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk.
Mathematical Finance, 9(3):203–228, July 1999.

[8] T.G. Bali. The generalized extreme value distribution. Economics Letters,
79(3):423–427, June 2003.

[9] T. B. Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors. Experi-
mental Methods for the Analysis of Optimization Algorithms. Springer-Verlag,
Berlin Heidelberg, 2010.

117



BIBLIOGRAPHY 118

[10] J. Beirlant, F. Caeiro, and M.I. Gomes. An overview and open research topics
in statistics of univariate extremes. REVSTAT - Statistical Journal, 10(1):1–
31, March 2012.

[11] S. Ben-David and A. Borodin. A new measure for the study of on-line algo-
rithms. Algorithmica, 11:73–91, 1994.

[12] J. Berkowitz and L. Kilian. Recent developments in bootstrapping time series.
Econometric Reviews, 19(1):1–48, 2000.

[13] J. Boyar and L. M. Favrholdt. The relative worst order ratio for online algo-
rithms. ACM Trans. Algorithms, 3(2), May 2007.

[14] J. Boyar, K. Larsen, and A. Maiti. A comparison of performance measures via
online search. In J. Snoeyink, P. Lu, K. Su, and L. Wang, editors, Frontiers
in Algorithmics and Algorithmic Aspects in Information and Management,
volume 7285 of Lecture Notes in Computer Science, pages 303–314. Springer
Berlin Heidelberg, 2012.

[15] W.A. Brock, J. Lakonishok, and B. LeBaron. Simple technical trading rules
and the stochastic properties of stock returns. Journal of Finance, 47(5):1731–
1764, 1992.

[16] G.-H. Chen, M.-Y. Kao, Y.-D. Lyuu, and H.-K. Wong. Optimal buy-and-hold
strategies for financial markets with bounded daily returns. SIAM Journal
on Computing, 31(2):447–459, 2001.

[17] A. Chou, J. Cooperstock, R. El-Yaniv, M. Klugerman, and T. Leighton. The
statistical adversary allows optimal money-making trading schemes. In Pro-
ceedings of the sixth annual ACM-SIAM Symposium on Discrete Algorithms,
pages 467–476, 1995.

[18] S.G. Coles and M.J. Dixon. Likelihood-based inference of extreme value mod-
els. Extremes, 2(1):5–23, 1999.

[19] C. Combes and A. Dussauchoy. Generalized extreme value distribution for
fitting opening/closing asset prices and returns in stock-exchange. Operational
Research, 6(1):3–26, 2006.

[20] P. Damaschke, P.H. Ha, and P. Tsigas. Online search with time-varying price
bounds. Algorithmica, 55(4):619–642, 2009.

[21] E. Dannoura and K. Sakurai. An improvement on El-Yaniv-Fiat-Karp-
Turpin’s money-making bi-directional trading strategy. Information Process-
ing Letters, 66(1):27–33, 1998.



BIBLIOGRAPHY 119

[22] J. Diebolt, A. Guillou, P. Naveau, and P. Ribereau. Improving probability-
weighted moment methods for the generalized extreme value distribution.
REVSTAT - Statistical Journal, 6(1):33–50, March 2008.
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