
Saarland University

Faculty of Natural Sciences and Technology I

Department of Computer Science

Formal Verification of
Cryptographic Security Proofs

Matthias Berg

Dissertation

zur Erlangung des Grades
des Doktors der Naturwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

Saarbrücken, 2013

Tag des Kolloquiums: 9. August 2013

Dekan: Prof. Dr. Mark Groves

Prüfungsausschuss
Vorsitzender: Prof. Dr. Sebastian Hack
Berichterstattende: Prof. Dr. Michael Backes

Prof. Dr. Christian Hammer
akademischer Mitarbeiter: Dr. Dario Fiore

ii

Zusammenfassung

Kryptographische Sicherheitsbeweise manuell zu überprüfen ist mühsam
und fehleranfällig. Spielbasierte Beweistechniken ermöglichen einen modu-
laren Beweisaufbau, wobei kryptographische Programme – sog. Spiele –
schrittweise so modifiziert werden, dass jeder Schritt einzeln überprüfbar
ist. Dieser code-basierte Ansatz erlaubt die computergestützte Verifikation
solcher Beweise.

Im ersten Teil dieser Dissertation präsentieren wir Verypto: ein System
zur computergestützten formalen Verifikation spielbasierter kryptographi-
scher Sicherheitsbeweise. Auf Grundlage des Theorembeweisers Isabelle ent-
wickelt, bietet Verypto eine formale Sprache, mit der sich kryptographische
Eigenheiten wie probabilistisches Verhalten, Orakelzugriffe und polynomielle
Laufzeit ausdrücken lassen. Wir beweisen die Korrektheit verschiedener
Spieltransformationen und belegen deren Anwendbarkeit durch die Verifika-
tion von Beispielen: Wir zeigen, dass Kompositionen von 1-1 Einwegfunk-
tionen auch einweg sind und dass die ElGamal Verschlüsselung IND-CPA
sicher ist.

In einem ähnlichen Projekt entwickelten Barthe et al. das EasyCrypt Sys-
tem, welches Spieltransformationen mit Methoden der Programmanalyse
validiert. Im zweiten Teil dieser Dissertation verwenden wir EasyCrypt und
verifizieren die Sicherheit der Merkle-Damg̊ard Konstruktion – ein Design-
prinzip, das vielen Hashfunktionen zugrunde liegt. Wir zeigen die Kollisions-
resistenz der Konstruktion und verifizieren, dass sie sich wie ein Zufallsorakel
verhält.

iii

iv

Abstract

Verifying cryptographic security proofs manually is inherently tedious
and error-prone. The game-playing technique for cryptographic proofs ad-
vocates a modular proof design where cryptographic programs called games
are transformed stepwise such that each step can be analyzed individually.
This code-based approach has rendered the formal verification of such proofs
using mechanized tools feasible.

In the first part of this dissertation we present Verypto: a framework
to formally verify game-based cryptographic security proofs in a machine-
assisted manner. Verypto has been implemented in the Isabelle proof as-
sistant and provides a formal language to specify the constructs occurring
in typical cryptographic games, including probabilistic behavior, the usage
of oracles, and polynomial-time programs. We have verified the correct-
ness of several game transformations and demonstrate their applicability by
verifying that the composition of 1-1 one-way functions is one-way and by
verifying the IND-CPA security of the ElGamal encryption scheme.

In a related project Barthe et al. developed the EasyCrypt toolset, which
employs techniques from automated program verification to validate game
transformations. In the second part of this dissertation we use EasyCrypt to
verify the security of the Merkle-Damg̊ard construction – a general design
principle underlying many hash functions. In particular we verify its collision
resistance and prove that it is indifferentiable from a random oracle.

v

vi

Background of this Dissertation

This dissertation builds on the following papers that I co-authored as
well as the following bachelor’s and master’s theses that were conducted
under my guidance. I contributed to the elaboration of all of them.

• Michael Backes, Matthias Berg, and Dominique Unruh. A formal
language for cryptographic pseudocode. In Logic for Programming,
Artificial Intelligence, and Reasoning – LPAR 2008, volume 5330 of
Lecture Notes in Computer Science, pages 353–376. Springer, 2008.

• Jonathan Driedger. Formalization of game-transformations. Bache-
lor’s thesis, Saarland University, 2010.

• Malte Skoruppa. Formal verification of ElGamal encryption using a
probabilistic lambda-calculus. Bachelor’s thesis, Saarland University,
2010.

• Michael Backes, Gilles Barthe, Matthias Berg, Benjamin Grégoire,
César Kunz, Malte Skoruppa, and Santiago Zanella Béguelin. Ver-
ified security of Merkle-Damg̊ard. In Computer Security Foundations
Symposium – CSF 2012, pages 354–368. IEEE, 2012.

• Malte Skoruppa. Verifiable security of prefix-free Merkle-Damg̊ard.
Master’s thesis, Saarland University, 2012.

vii

Acknowledgments

First of all, I wish to express my deep gratitude to Michael Backes. As
my advisor, he introduced me to this exciting topic whose elaboration I truly
enjoyed. He provided excellent guidance whenever necessary and created the
inspiring working atmosphere that is present in his group.

I also want to thank Dominique Unruh for countless discussions and for
answering my numerous questions. His support was indispensable to the
development of our tool.

I also thank my students Jonathan Driedger and Malte Skoruppa for
working out sample applications for our tool. Thank you Malte, for cleaning
up the Isabelle code after me and for spending endless nights hacking in Coq.

Thanks go to my co-authors Gilles Barthe, Benjamin Grégoire, César
Kunz, and Santiago Zanella Béguelin for a fruitful collaboration. In partic-
ular I want to thank Gilles for inviting us to Madrid when we launched our
project, and I thank Santiago for his profound advice during the project.

I wish to thank my former and current colleagues at Saarland University
for a vibrant environment that made working here so inspiring. Here, my
former office mate Cătălin Hriţcu often provided useful comments. Special
thanks go to Bettina Balthasar for her dedication to managing all the bits
and pieces that keep the group alive.

Besides work, I am grateful to my friends who always helped to clear
my mind through sports and occasional distractions. Last but not least, I
deeply thank my family for the steady support throughout my entire life.
Thank you for everything!

viii

Contents

Introduction 1

1 Verypto - Formally Verifying Cryptographic Proofs 3

1.1 Introduction to Game-based Proofs 3

1.2 Contribution of this Chapter 4

1.3 Design Decisions for Verypto 6

1.4 Background on Isabelle/HOL 7

1.4.1 Higher-Order Logic . 8

1.5 Mathematical Background . 9

1.5.1 Notation . 9

1.5.2 A Primer in Probability theory 9

1.5.3 Limits of Kernels . 10

1.6 Syntax of the Language . 14

1.6.1 De Bruijn Notation . 15

1.7 Semantics of the Language . 20

1.8 Typing the Language . 23

1.8.1 Typing Contexts . 27

1.9 Embedding the Type System in HOL 27

1.9.1 Embedding Programs into HOL 28

1.9.2 Embedding Values into Programs 31

1.9.3 Embedding Contexts into HOL 32

1.9.4 Syntactic Sugar . 33

1.10 Program Relations . 33

1.10.1 Denotational Equivalence 34

1.10.2 Observational Equivalence 34

1.10.3 Polynomial Runtime 37

1.10.4 Computational Indistinguishability 39

1.11 Fundamental Properties of the Language 40

1.11.1 Type Safety . 40

1.11.2 Evaluation Contexts and Redexes 40

1.11.3 A Chaining Rule for Denotations 41

1.11.4 The CIU Theorem . 43

1.11.5 Proof of the CIU Theorem 46

ix

Contents

1.12 Program Transformations . 56

1.12.1 Using ≈obs to Transform Programs 56

1.12.2 Transformations based on Computation Rules 57

1.12.3 Expression Propagation 60

1.12.4 Inlining let Statements 62

1.12.5 Line Swapping . 64

1.13 Sample Applications . 68

1.13.1 Composition of One-way Functions 68

1.13.2 IND-CPA Security of ElGamal 72

2 EasyCrypt - Verified Security of Merkle-Damg̊ard 81

2.1 Background on CertiCrypt/EasyCrypt 81

2.2 Contribution of this Chapter 82

2.3 A Primer on EasyCrypt . 82

2.3.1 Input Language . 83

2.3.2 Probabilistic Relational Hoare Logic 84

2.3.3 Reasoning about Probabilities 87

2.4 The Merkle-Damg̊ard Construction 89

2.5 Collision Resistance . 91

2.6 Indifferentiability . 93

3 Discussion 103

3.1 Related Work on Verification 103

3.2 SHA-3 and Related Work on Hash Security 105

3.3 Conclusion . 108

I Formalization of Verypto in Isabelle/HOL 109

I.1 Probability theory . 109

I.2 Program Terms . 113

I.2.1 Basic Values, Program Terms, and (Pure) Values . . . 113

I.2.2 Function Definitions 115

I.2.3 Sigma Algebras . 117

I.2.4 Lemmas . 118

I.3 Contexts and Redexes . 119

I.3.1 Definitions . 119

I.3.2 Lemmas . 122

I.4 Semantics . 123

I.4.1 The Reduction Relation and the Denotation 123

I.4.2 Lemmas . 125

I.5 Typing the Language . 125

I.5.1 Definitions . 125

I.5.2 Lemmas . 127

I.5.3 Progress and Preservation 128

I.5.4 Typing Contexts . 128

x

Contents

I.6 Embedding the Type System in HOL 129
I.6.1 Embedding Types, Environments, and Programs . . . 129
I.6.2 Embedding HOL Objects into the Language 130
I.6.3 Representations of Programs in HOL 132
I.6.4 Typed Contexts and Context Functions 137
I.6.5 Syntax for Typed Programs 139

I.7 Program Relations . 140
I.7.1 Denotational Equivalence 140
I.7.2 Observational Equivalence 141
I.7.3 Polynomial Runtime 142
I.7.4 Computational Indistinguishability 145

I.8 The CIU Theorem . 145
I.8.1 Generalized Program Terms 145
I.8.2 The Instantiation Operator 152
I.8.3 Definition of CIU Relations 156
I.8.4 CIU Counterexamples 157
I.8.5 Uniformity . 158
I.8.6 Finishing the Proof . 159

I.9 Program Transformations . 160
I.9.1 Transformations based on Computation Rules 160
I.9.2 Expression Propagation 162
I.9.3 Line Swapping . 162

I.10 Composing 1-1 One-way Functions 163
I.10.1 Definitions . 163
I.10.2 The Sequence of Games 163

I.11 IND-CPA Security of ElGamal 165
I.11.1 Definitions . 165
I.11.2 Cyclic Groups . 166
I.11.3 The Sequence of Games 167

xi

xii

Introduction

The security of cryptographic constructions such as encryption schemes, sig-
natures, and hash functions is crucial for the confidentiality, authenticity,
and integrity of data. However, the secure design of cryptographic construc-
tions is inherently difficult to accomplish and many flaws in constructions
were indeed only found long after they were deployed and believed to be
correct [112, 90, 53].

Provable security [82] addresses this problem and advocates to use rig-
orous mathematical reasoning to infer security properties of cryptographic
constructions. Here, constructions and their interaction with a possibly
adverse, untrusted environment are explicitly modeled together with the
pursued security properties. Proofs are typically conducted by means of a
reduction, i.e., the task of breaking the security of a construction is reduced
to another objective that is assumably hard to achieve. Such proofs provide
solid guarantees on the security of a construction, as they show that the secu-
rity merely depends on the complexity of – usually well-understood – concise
problems. Nevertheless the proofs themselves tend to be quite involved and
cumbersome. Often they span tens of pages containing intricate arguments
about probability distributions, complexity theory, and the interaction be-
tween non-trivial algorithms. Completing such a proof is error-prone as one
can easily overlook mistakes or fail to consider special cases [113, 77, 78].

The game-playing technique [42, 114] improves this situation by propos-
ing a general design principle to structure cryptographic proofs. This tech-
nique follows a code-based approach where security properties are formu-
lated in terms of probabilistic programs – so-called games. The security re-
duction in the proof is then performed by stepwise transforming these games
into a final game that corresponds to the assumably hard problem. Here
each step preserves the probabilistic behavior of the game or only changes it
insignificantly, thereby allowing to relate the initial game to the final game
in this sequence. The advantage of this technique is that each modification
step in this sequence can be analyzed on its own, which enables a modular
treatment of the proof.

However, this advantage is diminished by the style in which the games
are expressed in practice. Mostly the games are described using words or
some pseudo-code which lacks a formal semantics. While this approach
helps structuring a proof, it also gives rise to errors resulting from impre-

1

Introduction

cise, ambiguous formulations. However, formalizing every tiny detail is also
problematic as this entails many mundane proof obligations that distract
from the creative parts of the proof. Noticing this nuisance, Halevi [83] calls
for the development of a computer-aided tool to take care of these mundane
parts of cryptographic proofs. He argues that games should be expressed
using a fully specified programming language so that a tool can validate the
code modifications that the proof steps perform.

In the first part of this thesis we present our solution to Halevi’s problem
and introduce Verypto, a formal framework to express cryptographic security
proofs. In Verypto, cryptographic games are expressed in a formal language,
namely a probabilistic lambda calculus. This language aims at maximal
generality in order to express all objects and reasoning patterns that occur
in typical cryptographic proofs. It can handle probabilistic behavior, state-
ful higher-order objects such as oracles, arbitrary data types, and supports
event-based reasoning patterns. The formal semantics of the language has
been implemented in the proof assistant Isabelle/HOL [102] where we also
developed techniques to reason about equivalences and relations between
games. This enables us to formally specify security properties of crypto-
graphic constructions and to employ game transformations to verify them.
We demonstrate the feasibility of this approach in two case studies. First,
we show that the self-composition of an injective one-way function yields
another one-way function. Second, we verify that the ElGamal encryption
scheme is IND-CPA secure.

In parallel to our development of Verypto another group pursued a simi-
lar goal of providing a formal framework for cryptographic proofs and devel-
oped CertiCrypt [29, 32], which has been implemented in the proof assistant
Coq [63]. It follows a less general approach and sacrifices some expressive-
ness in comparison to our framework. E.g., it employs a simpler probability
model and the language in which the games are formalized is not higher-
order. This simpler approach resulted in a fast development of CertiCrypt

and the creation of a subsequent framework called EasyCrypt [30], which
automates the reasoning behind CertiCrypt using program verification tools.

In the second part of this thesis – motivated by the increased interest in
hash security during the selection process of the new SHA-3 algorithm – we
use EasyCrypt to formally verify security properties of the Merkle-Damg̊ard
construction – a general design principle underlying many hash functions.
First, we establish its collision resistance, i.e., we verify that it is hard to find
distinct messages that hash to the same value, provided that finding colliding
inputs to the compression function of the construction is difficult. Second,
assuming an ideal compression function, we verify that the Merkle-Damg̊ard
construction is indifferentiable from a random oracle. Indifferentiability is
a strong security property which states that one cannot distinguish the con-
struction from a random oracle, even if given access to internal components
of the construction such as the employed compression function.

2

Chapter 1

Verypto -
Formally Verifying
Cryptographic Proofs

1.1 Introduction to Game-based Proofs

Cryptographic security properties are typically formulated in the form of
so-called games. A game is a probabilistic process that models the potential
interaction between an adversary and a cryptographic construction, and the
output of the game is used to determine whether the adversary was successful
in attacking the construction. Hence, by analyzing the probabilistic behavior
of the game, we can deduce security properties of the construction. E.g., if
we can show that the game allows no attacks, then the construction is secure
with respect to the interaction that is modeled in the game.

A common technique to prove the security of a cryptographic construc-
tion is to start with an initial game that models the considered security
property and then to modify this game in a sequence of steps such that each
step introduces at most a negligible change in the probabilistic behavior
of the game. This allows us to relate the behavior of the initial game to
the behavior of the final game in this sequence. The goal of this so-called
game-playing technique [42, 114] is to reach a final game that corresponds to
a complexity hardness assumption or trivially allows no attacks and hence
allows us to infer the security of the construction under consideration.

Proofs based on sequences of games have several advantages compared
to direct proofs, because the game-based technique leads to well-structured
proofs. In contrast to direct proofs, they follow a modular design, i.e., ideally,
each step can be verified individually without having to reason about other
steps in the sequence. This simplifies the detection of potential mistakes in
the proof and helps to determine where these mistakes occur. Furthermore,
since the individual steps are typically very simple and since the correctness

3

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

of each step can be proven independently, the game-based proof technique
is ideally suited for the formal verification of cryptographic security proofs.

In practice, however, the advantages of game-based proofs are diminished
by the following limitation: In cryptographic publications, the games are
usually described in words, or at best in some ad-hoc pseudo-code. In both
cases, no formal semantics of the language used are specified. This leads to
several grave disadvantages:

Ambiguity of definitions. As cryptographic games are also used to define
security notions, the lack of a formal semantics may result in different inter-
pretations of the details of a given game, and hence in an ambiguous security
definition. For example, if a subroutine representing an adversary is invoked
twice, it might be unclear whether the adversary may keep state between
these two invocations. The author of the security definition may explicitly
point out these ambiguities and resolve them; this, however, assumes that
the author is aware of all possible interpretations.

Mistakes may be hidden. An error in a proof step may be hard to identify:
Since the correctness of a step usually depends on the precise definition of
the games, the reader of the proof may not be sure whether the performed
modification is indeed incorrect or whether the reader just misinterpreted
the definition of the games. Moreover, it may happen that for a sequence of
three games A,B,C, depending on the exact definition of B, either the step
from A to B, or that from B to C is incorrect. However, if the steps are
verified individually, in each case there is some interpretation of the meaning
of B that lets the corresponding proof step seem correct.

Unsuited for machine-assisted verification. Finally, if we are inter-
ested in machine-assisted verification of cryptographic security proofs, the
semantics of the games need to be defined precisely since a computer will
not be able to reason about a pseudo-code without semantics.

1.2 Contribution of this Chapter

To overcome these limitations we present Verypto:1 A formal framework for
machine-assisted verification of game-based cryptographic security proofs.
We have implemented Verypto in the proof assistant Isabelle/HOL [102]. It
provides a language with a formal semantics to express cryptographic games,
which yields the following properties:

Expressiveness. The language can express all constructs that usually oc-
cur in the specification of cryptographic games, including probabilistic be-
haviors, the usage of oracles, and potentially continuous probability mea-

1For this purpose, this dissertation builds on work published in [14] that I co-authored
and on the bachelor’s theses [74, 115] which were conducted under my guidance. I con-
tributed to the elaboration of all of them.

4

1.2. Contribution of this Chapter

sures for reasoning about, e.g., an infinitely long random tape for establish-
ing information-theoretic security guarantees. From a language perspective,
oracles are higher-order arguments that are passed to a program. Conse-
quently we have implemented a higher-order functional probabilistic lan-
guage to deal with sophisticated objects such as oracles. We chose a func-
tional language, because such languages deal with higher-order objects much
more naturally than imperative languages. A purely functional language,
however, would have been insufficient, because functional reasoning would
not allow oracles to keep state between their invocations (and passing on
state as explicit inputs would result in secrecy violations, e.g., an oracle
would output its secret key to the adversary). Therefore we have included
ML-style references in the language. Finally, events constitute a common
technique in game-based cryptographic proofs for identifying undesirable
behavior. Thus we explicitly support events in the language. The seman-
tics is operational in order to be able to introduce the notion of polynomial
runtime.

Simplicity. The definition of the language is kept as simple as possible so
that researchers without a strong background in the theory of programming
languages can understand at least its intuitive meaning. In particular, the
language has a syntax that is readable without a detailed introduction into
the language.

Mechanization. We have implemented the language in the proof assistant
Isabelle/HOL. Therefore we can use the power of Isabelle’s logic to reason
about the language itself and to formally verify cryptographic proofs that are
written in this language. Moreover, we have formalized several common rela-
tions between games in Isabelle/HOL, such as denotational equivalence, ob-
servational equivalence, and computational indistinguishability. Using these
relations we have verified a set of game transformations with which one can
modify games in order to perform a step from one game to another.

Hence using Verypto, one can express game-based cryptographic security
proofs in a readable form and formally verify their correctness in a machine-
assisted manner. To illustrate Verypto’s applicability we have used it to
verify the following examples:

We have used Verypto to verify that the composition of a 1-1 one-way
function with itself yields another one-way function. This proof heavily
employs a game transformation that propagates terms in the language and
thereby can move code that is bound to a variable to the site where this
variable is used.

Moreover we have used Verypto to verify the IND-CPA security of the
ElGamal encryption scheme. This proof uses a combination of game trans-
formations dealing with the reordering of program code, the inlining of code
of sub-programs, as well as specialized transformations to model the deci-

5

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

sional Diffie-Hellman assumption and to establish properties of randomly
selected group elements.

1.3 Design Decisions for Verypto

We strive for defining a language that is powerful enough to express and
reason about the constructions and the definitions that are used in cryptog-
raphy. Since cryptography heavily relies on the use of probabilism, the lan-
guage necessarily needs to be probabilistic. Moreover, the language should
not be restricted to discrete probability measures, since discrete probability
measures are not sufficient for reasoning about infinite constructions such
as the random selection of an infinitely long random tape, e.g., to reason
about information-theoretic security guarantees. Oracles, i.e., objects that
can be queried in order to perform tasks such as computing the hash of some
string or computing the decryption of some ciphertext, constitute another
salient concept in modern cryptography. From a language perspective, or-
acles are higher-order arguments that are passed to a program. We hence
strive for a higher-order functional language – higher-order to deal with
sophisticated objects such as oracles, functional since functional languages
deal with higher-order objects more naturally than imperative languages.

A purely functional language, however, is insufficient, because functional
reasoning would, e.g., not allow oracles to keep state between its invocations.
While one can rewrite every program that uses state into a purely functional,
equivalent program without state by passing the state around as an explicit
object, this approach fails in our setting because it inadequately deals with
secrecy properties: Consider an adversary that accesses a decryption oracle
which, upon its first query, generates a secret key and subsequently decrypts
the queries obtained from the adversary using that key. A purely functional
setting with an explicit encoding of state would cause the oracle to return
its state, i.e., its secret key, and the adversary had to additionally provide
the key in its next query to the oracle. Clearly, this violates the intended
secrecy of the key, and there is moreover not even a guarantee that the
adversary provides the same, correct state in all of its queries. We remedy
this problem by including ML-style references in the language.

To make the language efficiently usable from a programmer’s perspective,
we need a way to express data structures like lists and trees. Since we do not
want to commit ourselves to specific data structures, we include mechanisms
that are sufficient for the programmer to define his own type constructors.
More precisely, the language has an iso-recursive type system [108] that
includes product and sum types. This is enough to express arbitrary data
types.

The use of events is a common technique in game-based cryptographic
proofs. A game raises an event whenever some – usually unwanted – con-

6

1.4. Background on Isabelle/HOL

dition occurs. One can then use this event to identify program branches
that show this unwanted condition and transform the game based on the
probability that the event occurs. For conveniently reflecting this reasoning,
we explicitly include events in the language.

As a result of these design choices that we presented above, we have
equipped Verypto with a probabilistic higher-order functional language with
references, iso-recursive types, and events. By this Verypto is able to ex-
press the constructs that typically occur in cryptographic specifications and
security proofs.

1.4 Background on Isabelle/HOL

Isabelle [102] is an interactive proof assistant, i.e., a framework in which
one can state mathematical formulas and then interactively manipulate the
formulas in order to eventually prove their validity. Since all manipulations
are checked by Isabelle, we obtain exceptionally high guarantees in the cor-
rectness of such proofs. Isabelle consists of a small core that is used to check
the manipulations and of a large tool set from which one can draw in order
to perform such manipulations. Since incorrect manipulations are rejected
by the core, only the relatively small code base of the core has to be trusted.

Isabelle is generic in the sense that it can handle different object logics.
For our purpose we employ Isabelle/HOL, which is Isabelle in the setting of
higher-order logic. See Section 1.4.1 below for a brief introduction to higher-
order logic. Furthermore, since our formalization of Verypto extensively
builds upon concepts from measure theory, we base our implementation on
the formalization given in [109], which provides basic concepts from measure
theory including the Lebesgue integral.

The formalization of Verypto in Isabelle/HOL consists of approximately
40000 lines of code. A selection of important definitions, lemmas, and the-
orems can be found in Appendix I. In order to enable the reader to relate
the content of this chapter to its formal development in Appendix I, we an-
notate definitions and statements with a reference to their corresponding
formalization in Isabelle.

Disclaimer. Even though formally verified proofs provide high guaran-
tees on their correctness, Isabelle provides mechanisms to selectively skip
the verification of parts of a proof. While this mechanism may introduce
errors in a proof, it also allows for a faster development, because trivial but
cumbersome proof steps can be skipped.

Since Verypto builds upon measure theory, proofs in our development
often require us to establish the measurability of the involved mathematical
objects. We have regularly skipped the verification of measurability in order
to continue with the more interesting parts in our development. Even though

7

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

these gaps in the proofs may give rise to errors in our formalization, we
believe that this problem can be safely ignored. Most mathematical objects
are indeed measurable and it is unlikely to construct non-measurable objects
by accident.

1.4.1 Higher-Order Logic

In (simply typed) higher-order logic (HOL) every value in a statement has
to be assigned some type. Types may be elementary types (e.g., Booleans,
integers) or higher-order types. Examples of higher-order types are α set,
which denotes the type of sets of elements of type α (where α may again be
an elementary or higher-order type), α→ β, which is the type of all functions
taking values of type α to values of type β, or α × β, which is the type of
all pairs in which the first component has type α and the second has type β.
For example, in the expression 1 ∈ N, we have that 1 has type nat (naturals),
N has type nat set, and ∈ is a function of type nat→ nat set→ bool (written
in infix notation). An example for a statement that does not typecheck
is M ∈ M , as ∈ necessarily has type α → α set → bool for some α, and
thus M needs to have types α and α set simultaneously for some α. Major
advantages of HOL are its quite simple logic as well as the possibility to
automatically infer types of expressions. Statements written in HOL are
usually shorter and easier to read than their counterparts in untyped logics.
HOL also allows to state and prove theorems in a polymorphic way: Instead
of giving a concrete type to each variable, we can use type variables α, β, . . .
in the statement of the theorem; the intended meaning is that this theorem
holds for any instantiation of these type variables with concrete types.

An addition to the type system of HOL there are also Haskell-style type
classes implemented in Isabelle/HOL. A type class introduces constants and
constraints that a type has to satisfy. For example, a type class semigroup

might require that for a type α, there is a constant ◦ of type α → α → α
and it holds that ◦ fulfills the semigroup axioms. A type α that fulfills the
constraints of a type class is called an instance of that type class. Namely,
the type nat is an instance of the type class semigroup. The advantage
of type classes comes into play when considering polymorphic statements.
The type variables in these statements can then be restricted to a given
type class; the statement is then expected to hold for all instantiations of
the type variables that satisfy the constraints of the type class. Consider the
statement x ◦ (x ◦x) = (x ◦x) ◦x, where x may have any type α. In general,
this statement is wrong as there are types in which ◦ is not associative. If
we restrict α to the type class semigroup, however, the statement becomes
true. The main advantage of type classes is that important side conditions
(as being a semigroup) can be captured automatically using type inference
and do not need to be stated explicitly, leading to shorter and more readable
statements.

8

1.5. Mathematical Background

1.5 Mathematical Background

1.5.1 Notation

Let N be the natural numbers including 0, R the real numbers, R+ the
non-negative real numbers including 0, B the set of Booleans, and let U
denote the unit set containing the single element unit . The powerset of
X is denoted by 2X . X × Y is the Cartesian product of X and Y , and
X → Y is the function space from X to Y . For a set Y , we write f -1(Y) for
{x | f(x) ∈ Y }. By λx. p(x) we denote the anonymous function mapping
x to p(x). We write [a1, . . . , an] for lists (finite sequences) and [] for the
empty list. Given lists a, b, by a@b we denote the concatenation of a and b.
By x::a we denote the list a with the element x prepended, and |a| denotes
the length of list a. Given a list a with |a| > n, we write an for the n-th
element (counting from 0) in a and a[n := x] for replacing the n-th element
in a with x.

We further summarize the notation introduced in Section 1.5.2 below:
We write ΣX for the canonical σ-algebra overX and A∁ for the corresponding
set complement X \A. With f(µ) we denote the projection of distribution µ
using function f , and ∀x←µ. P (x) denotes the fact that P (x) holds almost
surely with respect to the distribution µ. The unit kernel is written as δ,
where δ(x) is the Dirac measure of x. L ◦ K denotes the composition of
two kernels, and L · µ denotes the application of kernel L to distribution µ.
The kernel ↓E is used to restrict distributions to the event E and f is the
deterministic kernel constructed from function f .

1.5.2 A Primer in Probability theory

We give a compact overview of measures and probability theory in this sec-
tion. For a detailed overview, we refer to a standard textbook on probability
theory, e.g., [84]. A σ-algebra over a set X is a set ΣX ⊆ 2X such that the
empty set ∅ ∈ ΣX , and A ∈ ΣX ⇒ (A∁) ∈ ΣX , and for any sequence (Ai)i∈N
with Ai ∈ ΣX we have that

⋃
iAi ∈ ΣX . The smallest σ-algebra containing

all A ∈ G for some set G is called the σ-algebra generated by G. We assume
that there is some canonical σ-algebra ΣX associated with each set X and I.1, p.109
call the sets A ∈ ΣX measurable sets. For countable X, ΣX = 2X . Σ

R

is I.8, p.109
generated by all intervals [a, b] with a, b ∈ R (Borel-algebra); Σ

R

+ is defined
analogously. We assume that ΣX×Y is generated by all A×B with A ∈ ΣX , I.9, p.109
B ∈ ΣY . ΣX→Y is generated by all sets {f | f(x) ∈ A} for x ∈ X, A ∈ ΣY . I.12, p.110

A measure over X is a function µ : ΣX → R

+ with the following prop-
erties: µ(∅) = 0 and for a pairwise disjoint sequence (Ai)i∈N with Ai ∈ ΣX ,
we have µ(

⋃
iAi) =

∑
i µ(Ai) (countable additivity). We call µ a subprob-

ability measure if µ(X) ≤ 1. Intuitively, µ(E) denotes the probability that I.14, p.110
some value x ∈ E is chosen. A subprobability measure can be used to model
the output of a program that does not terminate with probability 1; then

9

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

µ(X) is the probability of termination. Abusing notation, we write 0 for the
measure λE. 0. The words measure and distribution are synonyms.

A function X → Y is called measurable if for all E ∈ ΣY , we haveI.15, p.110
f -1(E) ∈ ΣX . We can apply a measurable function f to a measure µ by
defining f(µ)(E) def

=µ(f -1(E)). Intuitively, f(µ) is the distribution of f(x)I.22, p.110
when x is chosen according to µ.

If µ is a measure over X and P : X → B is a measurable function, we
write ∀x←µ. P (x) to denote ∃A ∈ ΣX . µ(A∁) = 0 ∧ ∀x ∈ A.P (x). In thisI.26, p.110
case we also say that P (x) holds for almost all x ∈ µ. Intuitively, this means
a value x sampled according to µ satisfies P (x).

For any measurable function f : X → R and any distribution µ over
X, we write

∫
f(x) dµ(x) for the Lebesgue integral. Intuitively,

∫
f(x) dµ(x)I.42, p.111

is the expected value of f(x) if x is chosen according to the distribution µ.
The integral over a measurable set A is written as

∫
A f(x) dµ(x). We refer

to [84] for the formal definition of the integral. If f is bounded from below
and above, then the integral always exists (and is finite).

A function K : X → (ΣY → R

+) is called a kernel from X to Y , if for
all x ∈ X we have that K(x) is a measure and if for all E ∈ ΣY we have
that the function KE : X → R+, KE(x)

def
=K(x)(E) is measurable. See [39]

for a detailed introduction to kernels. Intuitively, a kernel is a probabilistic
function from X to Y that assigns every input x ∈ X a distribution over
outputs in Y . We call K a submarkov kernel if K(x) is a subprobabilityI.31, p.111
measure for all x ∈ X. The unit kernel δ is defined as δ(x)(E) def

=1 if x ∈
E, and δ(x)(E) def

=0 otherwise. The measure δ(x) is also called the DiracI.38, p.111
measure of x, which assigns probability 1 to x. We say a kernelK is invariant
on V if for all v ∈ V , K(v) = δ(v). Given a set V , we define the restriction
kernel ↓V by ↓V (x)

def
= δ(x) if x ∈ V and ↓V (x)

def
=0 if x /∈ V . Given a functionI.41, p.111

f : X → Y , the deterministic kernel f is defined as f(x) def
= δ(fx).I.55, p.112

Given a kernel L from Y to Z and a measure µ on Y , we can apply
L to µ by defining (L · µ)(E) def

=
∫
L(x)(E)dµ(x). Intuitively, L · µ is theI.43, p.112

distribution resulting from choosing x according to µ and then applying the
probabilistic function L. E.g, the application ↓V · µ sets the probability of
all events outside V to 0, i.e., (↓V · µ)(A) = µ(A ∩ V). Given a kernel KI.52, p.112
from X to Y , we can define the (kernel) composition L ◦K by (L ◦K)(x) def

=
L · (K(x)). If L and K are submarkov kernels, then so is their compositionI.44, p.112
L ◦K.

For distributions µ, ν, we write µ ≤ ν iff for all E, µ(E) ≤ ν(E) (i.e., ≤I.24, p.110
is defined pointwise). For kernels, ≤ is also defined pointwise.I.36, p.111

1.5.3 Limits of Kernels

In this section we will investigate properties of the repeated self-composition
of submarkov kernels. In particular, given a set of specific conditions, we
will see in Theorem 1.9 how to split the limit of the self-composition of some

10

1.5. Mathematical Background

kernel M into a composition of limits of self-compositions of some kernels L
and K. The sole purpose of this rather specific theorem is to prove another
theorem in Section 1.11.3, in which we deal with the consecutive evaluation
of programs (Theorem 1.48).

Note that we have skipped the verification of Theorem 1.9 in Isabelle
due to its heavy usage of measure theoretic concepts (see the disclaimer in
Section 1.4 for a discussion). Instead we will present a detailed manual proof
of Theorem 1.9 in the following.

Lemma 1.1. Fix a set A ∈ ΣX and kernels K and L from X to Y with
K(x) ∼ L(x) for all x ∈ A where ∼ ∈ {≤,≥,=}. Then K · µ ∼ L · µ for all
distributions µ with µ(A∁) = 0.

Proof. Let E ∈ ΣY . It holds

(K · µ)(E) =

∫

A
K(x)(E)dµ(x) +

∫

A∁

K(x)(E)dµ(x)

︸ ︷︷ ︸
=0

∼

∫

A
L(x)(E)dµ(x) +

︷ ︸︸ ︷∫

A∁

L(x)(E)dµ(x)

= (L · µ)(E)

Lemma 1.2. If K is invariant on V , then ↓V ◦K ≥ ↓V .

Proof. For v ∈ V , (↓V ◦ K)(v) = ↓V (v). For v /∈ V , (↓V ◦ K)(v) ≥ 0 =
↓V (v).

Let Kn denote the composition K ◦K ◦ . . . ◦K (n-times). The previous
lemma entails that ↓V ◦Kn is monotonically increasing in n and, given that
K is a submarkov kernel, it also has an upper bound. Hence the following
limit exists:

Definition 1.3 (Kernel-Limit). Let a submarkov kernel K with domain I.61, p.113
and range Ω be given where K is invariant on V ⊆ Ω, and let Kn denote
the n-times composition K ◦K ◦ . . . ◦K. We define limV K def

= limn ↓V ◦Kn.

Condition 1.4 (Conditions for Theorem 1.9). Let K and L be submarkov
kernels with domain and range Ω. Let U, V,DK ⊆ Ω be measurable sets.
Assume:

• U ⊆ DK .

• V ∩DK = ∅.

• K is invariant on U .

• L is invariant on V .

• For all x, K(x)(D∁K) = 0.

11

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

• For all x, L(x)(DK) = 0.

• For all x ∈ DK \ U , L(x) = 0.

• For all x ∈ D∁K , K(x) = 0.

Let M(x) def
=

{
K(x) if x ∈ DK \ U,

L(x) otherwise.
.

Lemma 1.5. Under Condition 1.4, we have L ◦K = L ◦ ↓U ◦K.

Proof. Fix an x ∈ Ω. Let µ1
def
=K(x). Then µ1(D

∁
K) = 0. Since ↓U (x′) =

↓D∁
K
∪U (x

′) for all x′ ∈ DK , by Lemma 1.1 it holds ↓U · µ1 = ↓D∁
K
∪U · µ1.

Furthermore, for any x′ ∈ D∁K ∪ U , it holds L ◦ ↓D∁
K
∪U (x

′) = L(x′), and

for any x′ ∈ DK \ U , it holds L ◦ ↓D∁
K
∪U (x

′) = L · 0 = 0 = L(x′). Hence

L ◦ ↓D∁
K
∪U = L and

(L ◦K)(x) = L · (↓D∁
K
∪U · µ1) = L · (↓U · µ1) = (L ◦ ↓U ◦K)(x).

Lemma 1.6. Under Condition 1.4, we have limV L ◦ limU K = limn ↓V ◦
Ln ◦Kn.

Proof. We calculate as follows:

lim
V

L ◦ lim
U

K(x) = (lim
n
↓V ◦ L

n) ◦ (lim
m
↓U ◦K

m)(x)

= lim
n
↓V ◦ L

n · lim
m

(↓U ◦K
m(x))

= lim
n

lim
m
↓V ◦ L

n · (↓U ◦K
m(x))

= (lim
n

lim
m
↓V ◦ L

n ◦ ↓U ◦K
m)(x)

Hence limV L ◦ limU K = limn limmNn,m with Nn,m
def
= ↓V ◦ Ln ◦ ↓U ◦ Km.

By Lemma 1.2, Nn,m is increasing in n and m. Hence limn limmNn,m =

limnNn,n = limn ↓V ◦ Ln ◦ ↓U ◦Kn 1.5
= limn ↓V ◦ Ln ◦Kn.

Lemma 1.7. Under Condition 1.4, we have ↓V ◦M2n ≥ ↓V ◦ Ln ◦Kn for
all n ∈ N.

Proof. The case n = 0 is trivial, so we can assume n ≥ 1. By Condition 1.4,
we have M(x) = K(x) for x ∈ DK \ U and K(x) = 0 for x ∈ D∁K . Hence

M(x) ≥ K(x) for x ∈ U ∁ and hence (↓V ◦M i+1)(x) ≥ (↓V ◦M i ◦K)(x) for
all x ∈ U ∁ and i ≥ 0.

As K is invariant on U , for u ∈ U we have (↓V ◦M i ◦ K)(u) = (↓V ◦
M i)(u)

1.2

≤(↓V ◦M i+1)(u). Together, we have ↓V ◦M i ◦K ≤ ↓V ◦M i+1 for all
i ≥ 0. Hence ↓V ◦M i ◦Kj+1 ≤ ↓V ◦M i+1 ◦Kj for all i, j ≥ 0. By induction,
↓V ◦M2n ≥ ↓V ◦Mn ◦Kn follows.

Furthermore, by Condition 1.4, M(x) = L(x) for x ∈ D∁K ∪ U , and
L(x) = 0 for x ∈ DK \ U . Hence M(x) ≥ L(x) for all x. Thus ↓V ◦M2n ≥
↓V ◦Mn ◦Kn ≥ ↓V ◦ Ln ◦Kn.

12

1.5. Mathematical Background

Lemma 1.8. Under Condition 1.4, (↓V ◦Mn)(x) ≤ (↓V ◦ Ln ◦Kn)(x) for
all x ∈ DK and n ∈ N.

Proof. Let X def
=((DK \U)× {0}) ∪ (U ×N). We define the kernel K ′ on X

as

K ′(a, i) def
=

{
(λa.(a, 0))(K(a)) if (a, i) ∈ (DK \ U)× {0},

δ(a, i+ 1) if (a, i) ∈ U ×N.

Further, we define L∗(a, n) def
=Ln(a) and π(a, n) = δ(a).

For u ∈ U , we have (M ◦ L∗)(u, 0) = M(u) = L(u) = L∗(u, 1) = (L∗ ◦
K ′)(u, 0). Also, for u ∈ U and i ≥ 1, we have (M ◦ L∗)(u, i) = (M ◦ Li)(u).
Since M(x) = L(x) for x ∈ D∁K and Li(u)(DK) = 0, by Lemma 1.1 we have
(M ◦ Li)(u) = (L ◦ Li)(u) = L∗(u, i+ 1) = (L∗ ◦K ′)(u, i).

For x ∈ DK \U , we have (M ◦L∗)(x, 0) = M(x) = K(x) = (π ◦K ′)(x, 0).
Moreover, L∗(x, 0) = π(x, 0), and K ′(x, 0)((DK × {0})∁) = 0, hence by
Lemma 1.1 we have (π ◦K ′)(x, 0) = (L∗ ◦K ′)(x, 0).

Summarizing, we have (M ◦ L∗)(x) = (L∗ ◦K ′)(x) for all x ∈ X. Fur-
thermore, for all y ∈ X and all i ≥ 0, K ′i(y)(X∁) = 0. Hence, by Lemma 1.1
we have (M ◦ L∗ ◦ K ′i)(y) = (L∗ ◦ K ′ ◦ K ′i)(y) = (L∗ ◦ K ′i+1)(y). Hence,
(M j+1 ◦ L∗ ◦K ′i)(y) = (M j ◦ L∗ ◦K ′i+1)(y) for all i, j ≥ 0. By induction,
we get (Mn ◦ L∗)(y) = (L∗ ◦K ′n)(y) for y ∈ X. Hence for any x ∈ DK , we
have (↓V ◦Mn)(x) = (↓V ◦Mn ◦ L∗)(x, 0) = (↓V ◦ L∗ ◦K ′n)(x, 0).

Let Xj
def
= {(x, i) ∈ X : i ≤ j}. By definition of K ′, for x ∈ Xj we

have that K ′(x)(X∁j+1) = 0. By induction and using Lemma 1.1, we have

K ′n(x, 0)(X∁n) = 0.

For (x, i) ∈ Xn, we have (↓V ◦ L∗)(x, i) = (↓V ◦ Li)(x)
1.2

≤ (↓V ◦ Ln)(x) =
(↓V ◦Ln ◦π)(x, i). Together with K ′n(x, 0)(X∁n) = 0 and Lemma 1.1 we have
(↓V ◦ L∗ ◦K ′n)(x, 0) ≤ (↓V ◦ Ln ◦ π ◦K ′n)(x, 0).

We have (π ◦K ′)(x, i) = K(x) = (K ◦ π)(x, i), hence (π ◦K ′n)(x, i) =
(Kn◦π)(x, i), and therefore (↓V ◦Ln◦π◦K ′n)(x, 0) = (↓V ◦Ln◦Kn◦π)(x, 0) =
(↓V ◦ Ln ◦Kn)(x).

Combining the results above, we get (↓V ◦Mn)(x) ≤ (↓V ◦ Ln ◦Kn)(x)
for all x ∈ DK .

Theorem 1.9. Under Condition 1.4, M is a submarkov kernel invariant I.62, p.113
on V and limV M(x) = (limV L) ◦ (limU K) (x) for all x ∈ DK .

Proof. Fix x ∈ DK . Then

lim
V

M(x)
1.8

≤ lim
n
(↓V ◦ L

n ◦Kn) (x)

1.7

≤ lim
n
(↓V ◦M

2n)(x)

= lim
V

M(x).

Hence limV M(x) = limn(↓V ◦ Ln ◦Kn) (x)
1.6
= (limV L) ◦ (limU K)(x).

13

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

1.6 Syntax of the Language

We now introduce the syntax of the language used by Verypto. To express
elementary objects in our language, we assume a set B of basic values. ItI.63, p.113
contains the basic types we expect to need, but should not be considered
fixed, as it can easily be extended in order to support other elementary
objects. It includes the type U with a single element unit , the type of real
numbers R, but also functions of type N→ B mapping natural numbers to
Booleans, which can be used to encode infinite random tapes.

Following the considerations of Section 1.3, the syntax models a prob-
abilistic higher-order lambda calculus with references and events in an iso-
recursive setting. We first give the syntax in the following definition and
then proceed with explanatory comments on the syntax.

Definition 1.10 (Programs). We define programs P , pure values V0, andI.67, p.113
I.68, p.114
I.69, p.114

values V by the following grammar, where n ∈ N, v ∈ B, s denotes strings,
and f denotes submarkov kernels from V0 to V0:

P ::= value v | var n | λP | PP | fun(f, P) |

locn | ref P | !P | P := P | event s | eventlist |

(P, P) | fstP | sndP | inlP | inrP | case P P P | foldP | unfoldP

V0 ::= value v | (V0, V0) | inlV0 | inr V0 | foldV0

V ::= value v | (V, V) | inlV | inr V | foldV | var n | λP | locn

The construct value v is used to introduce an element v ∈ B in programs.
Programs use de Bruijn notation [72] for variables. With var n we denote
variables with de Bruijn index n, i.e., variables belonging to the (n + 1)-
st enclosing λ-binder and with λP we denote the function with body P .2

See Section 1.6.1 for more details on the de Bruijn notation. Function ap-
plication is written P1P2 where P1 is the function and P2 is its argument.
Store locations are denoted by locn, reference creation by ref P , derefer-
encing by !P , and assignment by P1 := P2. Events are raised using the
construct event s. The list of previously raised events is accessible using
eventlist. The language also provides pairs (P1, P2) and their projections
fstP and sndP . Sums are constructed using inlP and inrP and destructed
using the case P1 P2 P3 construct. In an iso-recursive setting (in contrast
to an equi-recursive setting) the folding and unfolding of recursive types are
made explicit using the constructions foldP and its inverse unfoldP [108].
See Section 1.8 for further details.

Programs of the form value v, var n, λP , and locn are considered values.
If V1 and V2 are values, then so are (V1, V2), inlV1, inr V1, and foldV1. Pure

2Note that we use a different lambda symbol when expressing anonymous mathematical
functions as in λx. x; functions in our language use the lambda symbol as in λP .

14

1.6. Syntax of the Language

values V0 are used to represent data structures in the language. Pure values
are values that do not contain variables, λ-abstractions, or locations.

Probabilism is introduced by the construct fun(f, P), where f is a sub-
markov kernel from V0 to V0. It is interpreted as applying f to P , yielding a
(sub-)probability measure on pure values. This construct is truly expressive:
It allows for expressing every (deterministic) mathematical function f by
using the deterministic kernel f = λx. δ(fx), but also every probabilistic
function such as a coin-toss; moreover, it is not even limited to discrete
probability measures. Using this construct we can, for example, express the
random selection of infinite random tapes. We implemented the language
in the proof assistant Isabelle/HOL [102]. The restriction to submarkov
kernels on pure values is due to the fact that the datatype for P must
not contain functions with argument type P in Isabelle/HOL. The exten-
sion Isabelle/HOLCF [101] which includes Scott’s logic for computable func-
tions allows such datatypes, but we decided not to introduce this additional
domain-theoretic complexity.

We define the σ-algebra over programs ΣP as the σ-algebra generated by
the set of program rectangles

�

P , where
�

P is defined inductively by including I.99, p.117
{value v | v ∈ B} for all B ∈ ΣB, {var n} for all n ∈ N, {event s} for
all strings s, {eventlist}, {fun(f, P) | P ∈ A ∧ f ∈ F} for all A ∈

�

P and
arbitrary F , {P1P2 | P1 ∈ A1 ∧P2 ∈ A2} for all A1, A2 ∈

�

P , {(P1, P2) | P1 ∈
A1 ∧ P2 ∈ A2} for all A1, A2 ∈

�

P , and analogously for the other cases.
We define the set of contexts C similarly to the set of programs. A

context is a program that may contain holes, denoted by �. These holes
mark places where a program or another context can be inserted.

Definition 1.11 (Contexts). The syntax of contexts C is defined by the I.114, p.119
following grammar, where n ∈ N, v ∈ B, s denotes strings, and f denotes
submarkov kernels from V0 to V0:

C ::= � | value v | var n | λC | CC | fun(f, C) |

locn | ref C |!C | C := C | event s | eventlist |

(C,C) | fstC | sndC | inlC | inrC | case C C C | foldC | unfoldC

Given contexts C1 and C2, we write C1[C2] to denote the term resulting from
replacing every hole � in C1 with C2.

Note that programs P can be seen as contexts without holes. We will
also use the notation C[P] to denote the replacement of every hole � in C I.116, p.120
with program P .

1.6.1 De Bruijn Notation

The language introduced in Definition 1.10 uses a nameless representation
for terms [72], i.e., variables are not named and binders do not introduce

15

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

FV(var n) = {var n}
FV(λP) = {var (n− 1) | var n ∈ FV(P) ∧ n > 0}
FV(value v) = {}
FV(locn) = {}
FV(event s) = {}
FV(eventlist) = {}
FV(ref P) = FV(P)
FV(fun(f, P)) = FV(P)
FV(!P) = FV(P)
FV(fstP) = FV(P)
FV(sndP) = FV(P)
FV(inlP) = FV(P)
FV(inrP) = FV(P)
FV(foldP) = FV(P)
FV(unfoldP) = FV(P)
FV(P1P2) = FV(P1) ∪ FV(P2)
FV((P1, P2)) = FV(P1) ∪ FV(P2)
FV(P1 := P2) = FV(P1) ∪ FV(P2)
FV(case P1 P2 P3) = FV(P1) ∪ FV(P2) ∪ FV(P3)

Figure 1.12: The definition of the set of the free variables of a term.

new names either. Instead, variables are represented by a natural number n
called a de Bruijn index. This index refers to the binder associated with the
variable. Namely, variable var n refers to the (n+1)-st enclosing λ-binder in
the syntax tree. For example, the term λ(var 0) denotes the identity function.

Using a nameless representation for terms circumvents the cumbersome
treatment of α-equivalent terms, i.e., terms that are equal up to the renam-
ing of bound variables. For example the named terms λx. x and λy. y both
denote the identity function, but use different variable names. Usually such
terms that only differ in the names of bound variables are treated as equal.
By using a nameless representation as explained above, this treatment is
made explicit as both terms are represented by the same nameless term
λ(var 0).

In the following we will give a series of definitions and operators related
to the nameless representation of terms. In particular, a variable in some
term is called free, if there is no associated λ-binder in its enclosing syntax
tree. This is the case if the number of λ-binders enclosing the variable is
smaller or equal than its de Bruijn index. A variable that is not free is
called bound. Note that if a term contains multiple instances of the same
variable, these instances might have different de Bruijn indices. For example
the term λ((λ(var 3))var 2) contains two instances of the same free variable.
Therefore we identify free variables by the number of additional λ-binders
that are necessary to bind them. Namely, if variable var n in term P is

16

1.6. Syntax of the Language

↑k(var n) =

{
var (n+ 1) if n ≥ k

var n otherwise

↑k(λP) = λ(↑k+1P)
↑k(P1P2) = (↑kP1)(↑kP2)
↑k(fun(f, P)) = fun(f, ↑kP)
↑k(value v) = value v
↑k(locn) = locn
↑k(ref P) = ref (↑kP)
↑k(!P) = !(↑kP)
↑k(P1 := P2) = (↑kP1) := (↑kP2)
↑k(event s) = event s
↑k(eventlist) = eventlist

↑k(foldP) = fold (↑kP)
↑k(unfoldP) = unfold (↑kP)
↑k((P1, P2)) = (↑kP1, ↑kP2)
↑k(fstP) = fst (↑kP)
↑k(sndP) = snd (↑kP)
↑k(inlP) = inl (↑kP)
↑k(inrP) = inr (↑kP)
↑k(case P1 P2 P3) = case (↑kP1) (↑kP2) (↑kP3)

Figure 1.13: The definition of the operator ↑k to lift free variables of a term.

enclosed by m λ-binders where m ≤ n, we say that variable var (n −m) is
free in P . We write FV(P) for the set of free variables of term P . For the I.92, p.117
example above this means that FV (λ((λ(var 3))var 2)) = {var 1}. A formal
definition of FV(P) is given in Figure 1.12. Note that only the first two
rules in this definition are non-trivial. Namely, the set of free variables of
variable var n contains the variable itself, and the set of free variables of a
λ-term contains the free variables of the function’s body (except for var 0)
with their corresponding de Bruijn indices decreased by one. The other rules
just descend. We call a term P variable closed, iff FV(P) = {}, i.e., it has
no free variables.

When substituting a term P for a variable in some other term, the
de Bruijn indices of the free variables of P may need to be increased in order
to avoid capturing. Namely, if the variable to be substituted is enclosed by
λ-binders, we must lift the free variables of P so that they remain free after
the substitution. The operator ↑k as defined in Figure 1.13 lifts all free I.86, p.115
variables with de Bruijn index ≥ k in some term by one. Again, only the
first two rules in this definition are non-trivial. A variable var n is only lifted
if n ≥ k and to lift a λ-term, we lift all free variables of the function’s body
with de Bruijn index ≥ k + 1. The other rules just descend.

In a named λ-calculus the term (λx. P)V usually reduces to the term

17

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

(var n){P/k} =





var n− 1 if n > k

P if n = k

var n if n < k

(λP1){P/k} = λ(P1{↑0P/k+1})
(P1P2){P/k} = (P1{P/k})(P2{P/k})

(fun(f, P1)){P/k} = fun(f, P1{P/k})
(value v){P/k} = value v
(locn){P/k} = locn
(ref P1){P/k} = ref (P1{P/k})

(!P1){P/k} = !(P1{P/k})
(P1 := P2){P/k} = (P1{P/k}) := (P2{P/k})
(event s){P/k} = event s

(eventlist){P/k} = eventlist

(foldP1){P/k} = fold (P1{P/k})
(unfoldP1){P/k} = unfold (P1{P/k})
((P1, P2)){P/k} = (P1{P/k}), (P2{P/k})

(fstP1){P/k} = fst (P1{P/k})
(sndP1){P/k} = snd (P1{P/k})
(inlP1){P/k} = inl (P1{P/k})
(inrP1){P/k} = inr (P1{P/k})

(case P1 P2 P3){P/k} = case (P1{P/k}) (P2{P/k}) (P3{P/k})

Figure 1.14: The definition of the operator {·/k} to substitute free variables
with a term.

18

1.6. Syntax of the Language

P{V/x}, i.e., the occurrences of variable x in P are substituted with the
value V . Such a step is called a β-reduction. For our nameless representation
of terms, we introduce a substitution operator {·/k} which can be used I.88, p.115
analogously, i.e., the operator is defined such that the nameless term (λP)V
will β-reduce to the term P{V /0}. Since the β-reduction removes the λ-
binder enclosing P , the substitution operator must adapt the free variables
of P accordingly. The formal definition of {·/k} is given in Figure 1.14. As
before, only the first two rules in this definition are non-trivial. Namely,
the operator {P/k} substitutes the free variable var k with term P , while
decreasing free variables with greater de Bruijn indices by one. To substitute
the free variable var k in a λ-term, we substitute the variable var (k + 1) in
the function’s body. Because the function’s body is enclosed by a λ-binder,
we additionally need to lift all free variables of P in order to avoid their
capturing. The other rules just descend.

Many statements about programs involve the lift operator ↑k and the
substitution operator {·/k}. Therefore we need rules that allow us to reason
about combinations of these two operators. The following lemma introduces
several such rules that allow us to commute the order in which these opera-
tors are applied to programs.

Lemma 1.15. Let P1, P2, P3 be programs and assume k ≤ l. Then the
following properties hold:

• ↑k(↑lP1) = ↑l+1(↑kP1) I.103, p.118

• (↑kP1){P2/k} = P1 I.104, p.118

• ↑k(P1{P2/l}) = (↑kP1){↑kP2/l+1} I.105, p.118

• ↑l(P1{P2/k}) = (↑l+1P1){↑lP2/k} I.106, p.118

• (P1{P2/l+1}){P3/k} = (P1{↑lP3/k}){P2{P3/k}/l} I.107, p.118

• (P1{P2/k}){P3/l} = (P1{↑kP3/l+1}){P2{P3/l}/k} I.108, p.118

To handle contexts, we will use the same notation as above to denote the
lifting and substitution of free variables in contexts, i.e., we define the oper-
ators ↑k and {·/k} analogously for contexts by introducing additional rules
for holes �: The lifting of a hole is defined as ↑k(�)

def
=� and the substitution I.119, p.121

of a hole is defined as �{C/k}
def
=�. Note that there is a fundamental differ- I.120, p.121

ence between inserting into a context C[P] and substituting into a context
C{P/k}. Namely, the operator {P/k} performs a capture avoiding substitu-
tion, i.e., the free variables of P are lifted as needed so that they remain
free after the substitution, whereas the insertion C[P] is a mere syntactical
replacement of every hole � in C with P , i.e., λ-binders that enclose holes in
C might capture free variables of P . In case P contains no free variables, we
show the following connection between context insertion and substitution:

Lemma 1.16. Let P and P ′ be programs with FV(P) = {}. We define the I.126, p.123
context CP ′

def
=P ′{�/0}. Then it holds CP ′ [P] = P ′{P/0}.

19

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

1.7 Semantics of the Language

We now define the semantics of our language. In order to handle the notion
of polynomial runtime, the semantics is operational, based on a small-step
reduction relation . Since the language contains references and is prob-
abilistic, this relation maps program states to distributions over program
states. Here, a program state also includes a list of previously raised events.

Definition 1.17 (Program State and Reduction). A program state is aI.134, p.123
triple P |σ|η of a program P , a list σ of values (the store), and a list η of
strings (the events raised so far). If the program P is a value, we also call
the triple a value state. We denote the set of all program states by Ω and
the set of all value states by Val.

The reduction relation is a relation between program states and sub-
probability measures over program states. It is defined by the inference rules
given in Figure 1.18.

The inference rules in the lower part of Figure 1.18 have no real compu-
tational content, they merely define which subterm should be evaluated first.
Such rules are called congruence rules [108]. They enforce that a term’s sub-
terms are evaluated from left to right until they are values. E.g., the rule
App1 formalizes that a state P1P2|σ|η containing the application P1P2 can
be reduced by reducing the state P1|σ|η, which contains only the term P1,
to a measure µ. The function λ(P ′1|σ

′|η′). P ′1P2|σ′|η′ is then used to project
the measure µ, i.e., this function reintroduces the application of P2 in the
states of µ. Similarly, the rule App2 formalizes that it is also possible to
reduce the latter part of an application, but only if its former part is a value.
Note that there is no rule to reduce a value. Hence, the rules App1 and
App2 enforce that applications must be evaluated from left to right.

In contrast to these congruence rules, the rules in the upper half of
Figure 1.18 define the computational behavior of the language, i.e., instead
of determining where to perform a reduction step, they specify how this
step is performed. They characterize a set of reducible expressions, so-called
redexes, and the corresponding measure they reduce to. Such rules are called
computation rules [108]. Together with the congruence rules they enforce a
call-by-value evaluation strategy for the language.

The rule Beta defines the β-reduction using the substitution operator
{·/k} we introduced in Figure 1.14. Namely, a state containing an application
of a λ-term λP to a value V reduces to the Dirac measure of the state with
the substituted term P{V /0}. The function construct fun(f, V0)|σ|η, where
V0 is a pure value, is reduced using rule Fun. The distribution is obtained
by applying f to V0 and projecting the state into the resulting measure,
namely we reduce to (λx. x|σ|η)(f(V0)). This is the only computation rule
that introduces probabilistic behavior. All other rules are deterministic in
the sense that they reduce to Dirac measures.

20

1.7. Semantics of the Language

(λP)V |σ|η δ(P{V /0}|σ|η) Beta

fun(f, V0)|σ|η (λx. x|σ|η)(f(V0)) Fun

ref V |σ|η δ(loc (|σ|)|σ@[V]|η) Ref

!(locn)|σ|η δ(σn|σ|η) if n < |σ| Deref

locn := V |σ|η δ(value unit |σ[n := V]|η) if n < |σ| Ass

event s|σ|η δ(value unit |σ|η@[s]) Ev

eventlist|σ|η δ(η|σ|η) EvList

fst (V1, V2)|σ|η δ(V1|σ|η) Fst

snd (V1, V2)|σ|η δ(V2|σ|η) Snd

case (inlV) V1 V2|σ|η δ(V1V |σ|η) CaseL

case (inr V) V1 V2|σ|η δ(V2V |σ|η) CaseR

unfold (foldV)|σ|η δ(V |σ|η) Fold

App1: P1|σ|η µ

P1P2|σ|η (λ(P ′1|σ
′|η′). P ′1P2|σ

′|η′)µ

Fold1: P |σ|η µ

foldP |σ|η (λ(P ′|σ′|η′). foldP ′|σ′|η′)µ

App2: P |σ|η µ

V P |σ|η (λ(P ′|σ′|η′). V P ′|σ′|η′)µ

Unfold1: P |σ|η µ

unfoldP |σ|η (λ(P ′|σ′|η′). unfoldP ′|σ′|η′)µ

Ref1: P |σ|η µ

ref P |σ|η (λ(P ′|σ′|η′). ref P ′|σ′|η′)µ

Pair1: P1|σ|η µ

(P1, P2)|σ|η (λ(P ′1|σ
′|η′). (P ′1, P2)|σ

′|η′)µ

Deref1: P |σ|η µ

!P |σ|η (λ(P ′|σ′|η′). !P ′|σ′|η′)µ

Pair2: P |σ|η µ

(V, P)|σ|η (λ(P ′|σ′|η′). (V, P ′)|σ′|η′)µ

Ass1: P1|σ|η µ

P1 := P2|σ|η (λ(P ′1|σ
′|η′). P ′1 := P2|σ

′|η′)µ

Fst1: P |σ|η µ

fstP |σ|η (λ(P ′|σ′|η′). fstP ′|σ′|η′)µ

Ass2: P |σ|η µ

V := P |σ|η (λ(P ′|σ′|η′). V := P ′|σ′|η′)µ

Snd1: P |σ|η µ

sndP |σ|η (λ(P ′|σ′|η′). sndP ′|σ′|η′)µ

Inl1: P |σ|η µ

inlP |σ|η (λ(P ′|σ′|η′). inlP ′|σ′|η′)µ

Inr1: P |σ|η µ

inrP |σ|η (λ(P ′|σ′|η′). inrP ′|σ′|η′)µ

Fun1: P |σ|η µ

fun(f, P)|σ|η (λ(P ′|σ′|η′). fun(f, P ′)|σ′|η′)µ

Case1: P1|σ|η µ

case P1 P2 P3|σ|η (λ(P ′1|σ
′|η′). case P ′1 P2 P3|σ

′|η′)µ

Case2: P2|σ|η µ

case V P2 P3|σ|η (λ(P ′2|σ
′|η′). case V P ′2 P3|σ

′|η′)µ

Case3: P |σ|η µ

case V1 V2 P |σ|η (λ(P ′|σ′|η′). case V1 V2 P ′|σ′|η′)µ

Figure 1.18: The small-step reduction rules of the language. The computa-
tion rules are defined in the upper part, whereas the congruence rules of the
language are given below.

21

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

The rules concerning the store are Ref, Deref, and Assign. The state
ref V |σ|η reduces to δ(loc (|σ|)|σ@[V]|η), i.e., the value V is appended to
the store and its location |σ| is returned. Assuming n < |σ|, the state
!(locn)|σ|η reduces to the n-th element of σ, namely δ(σn|σ|η) and the
assignment locn := V |σ|η replaces the n-th element of σ by V and returns
the value unit , namely δ(value unit |σ[n := V]|η).

If an event is raised, as in event s|σ|η, the event is appended to the event
list η and the unit value is returned (rule Ev), namely δ(value unit |σ|η@[s]).
The program state eventlist|σ|η returns the list of previously raised events η
(rule EvList), namely it reduces to δ(η|σ|η). Here η is the representation
of η in the program syntax, i.e., a list of strings.

The pair destructors fst (V1, V2)|σ|η and snd (V1, V2)|σ|η reduce to the
first and the second component of the pair, respectively, namely δ(V1|σ|η)
(rule Fst) and δ(V2|σ|η) (rule Snd). The rules CaseL and CaseR specify
the behavior of the case-construct. If the case-construct is applied to a value
inlV as in case (inlV) V1 V2|σ|η, then the value V is given as an argument
to V1, namely δ(V1V |σ|η). Likewise the program state case (inr V) V1 V2|σ|η
reduces to δ(V2V |σ|η). Finally, rule Fold states that an unfold applied to
a fold cancels out, namely the program state unfold (foldV)|σ|η reduces to
δ(V |σ|η).

Note that the rules in Figure 1.18 are mutually exclusive, i.e., for each
term at most one rule applies. The following lemma captures that a program
state cannot reduce to two different measures.

Lemma 1.19 (Unique Reduction). Let P |σ|η be a program state. ThenI.143, p.125
there exists at most one measure µ such that P |σ|η µ.

Since there is at most one measure that a program state can reduce to,
we can define the kernel step which, given a state P |σ|η, returns the measure
µ the state reduces to, or, if the state cannot be reduced, returns the Dirac
measure δ(P |σ|η).

step(P |σ|η) def
=

{
µ if P |σ|η µ,

δ(P |σ|η) otherwise.
I.135, p.124

Since the relation does not reduce value states, the kernel step is
invariant on the set of value states Val . Hence the limit limVal step exists and
we use it to define the denotation of a program state P |σ|η: By restricting
the measure stepn(P |σ|η) to value states, we only consider program paths
that terminate after at most n steps. The denotation of P |σ|η is given by
the limit of such measures, i.e., the measure after all terminating paths have
been evaluated.

Definition 1.20 (Denotation). Let P |σ|η be a program state and let ValI.137, p.124
be the set of all value states. We define the denotation of P |σ|η as

JP |σ|ηK def
= (lim

Val
step)(P |σ|η).

22

1.8. Typing the Language

1.8 Typing the Language

Type systems characterize a set of well-behaving programs. E.g., the prop-
erty of type safety (see Section 1.11.1) states that well-typed programs that
are not values are not “stuck” and can be reduced using such that almost
all programs in the resulting distribution are also well-typed. Requiring pro-
grams to be well-typed can prevent many kinds of implementation errors;
also, it leads to more concise statements as undesired behavior is excluded.
We now introduce the type system of our language which is iso-recursive
in order to allow the user to construct arbitrary data types. First we will
define the set of types T and the set of pure types T0. Then we will proceed
by specifying the rules of a typing relation that assigns types to programs.

Definition 1.21 (Types). We define types T and pure types T0 by the I.152, p.125
I.153, p.126following grammars, where X ∈ ΣB and n ∈ N:

T ::= ValueX | T × T | T + T | T → T | Ref T | µT | Tvar n

T0 ::= ValueX | T0 × T0 | T0 + T0 | µT0 | Tvar n

For a measurable set X, the type of basic values in that set is denoted
ValueX . For types T1 and T2, T1 × T2 and T1 + T2 denote the pair type
and the sum type of T1 and T2, respectively. T1 → T2 denotes the type of
functions from T1 to T2, and Ref T denotes the type of references of type T .
Recursive types are expressed by µT which introduces a binder in de Bruijn
notation and Tvar n denotes the type variable with de Bruijn index n. Free
type variables are defined analogously to free variables of terms. Using the
same notation as in Section 1.6.1, we define an operator ↑k to lift the free I.160, p.126
type variables with de Bruijn index ≥ k by one and an operator {·/k} to I.161, p.126
substitute a type into another type (see Figure 1.23). Intuitively the type
µT represents the infinite type that is obtained by recursively substituting
Tvar 0 with µT in T . The set of pure types T0 consists of the types that do
not contain function or reference types.

Using pairs, sums, and recursive types we can define other types such
as the unit type, Booleans, lists, and natural numbers. E.g., we set Unit def

= I.154, p.126
Value

U

for the unit type and Bool
def
=Unit + Unit for Booleans. We then de- I.155, p.126

fine true def
= inl (value unit) and false

def
= inr (value unit), and introduce syntactic I.75, p.114

sugar for conditionals via if P1 then P2 else P3
def
= case P1 (λ ↑0P2) (λ ↑0P3). I.87, p.115

We set ListT def
=µ(Unit+ (T ×Tvar 0)) for lists over type T , where the usual I.156, p.126

constructors for lists are defined by nil def
= fold (inl (value unit)) and P1::P2

def
= I.72, p.114

fold (inr (P1, P2)). Assuming a binary representation of natural numbers I.73, p.114
(with a special treatment of 0), we define Nat

def
=Unit + List Bool. We fur- I.157, p.126

ther assume the definition of a type Char of characters and a type String
def
= I.158, p.126

List Char.
We now introduce the typing rules of the language. We model type

environments as lists of program types. In the following, let Γ be a type

23

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

environment that is used to assign types to variables (by giving var n the
n-th type in Γ, counting from 0) and let Θ be a type environment to assign
types to store locations (by giving locn the n-th type in Θ). Let T ::Γ denote
the environment Γ with the type T prepended.

Definition 1.22 (Program Typing). A program P has type T under theI.162, p.126
type environments Γ and Θ, iff Γ|Θ ⊢ P : T can be inferred from the rules
given in Figure 1.24. We say that a program P is of type T , iff []|[] ⊢ P : T .

Most of the typing rules presented in Figure 1.24 are straightforward.
The interesting rules are the following ones: Programs of the form value v
have type ValueX , provided that v ∈ X (rule Val). The program event e
has type Unit (rule Ev). The type assigned to eventlist is List String (rule
EvList), because it returns a list of previously raised events. The case

construct expects a sum of type T1+T2 as first argument, a function of type
T1 → T as second argument (which is applied to the first argument, if it is
a T1), and a function of type T2 → T as third argument (which is applied to
the first argument, if it is a T2). The overall type of the construct is T (rule
Case). If P has pure type T ′0, and for all v the measure f(v) (where f is a
submarkov kernel on pure values) contains only programs of pure type T0,
then fun(f, P) has type T0 (rule Fun). If P has type T{µT/0}, then foldP
has type µT (rule Fold), where T1{T/0} denotes the substitution of Tvar 0
in T1 with T (see Figure 1.23). Likewise, if P has type µT , then unfoldP
has type T{µT/0} (rule Unfold).

Recursive types are very expressive. To illustrate their power, consider
the following term ω def

= λ((unfold (var 0)) var 0). We can define the programI.147, p.125
⊥ def
=ω(foldω) which folds the term ω and applies it to itself [108]. TheI.148, p.125

program ⊥ has the interesting property that it reduces to itself in two steps:

⊥|σ|η δ((unfold (foldω))(foldω)|σ|η), and thenI.149, p.125

(unfold (foldω))(foldω)|σ|η δ(⊥|σ|η)I.150, p.125

In particular, this means that the term ⊥ diverges. It never reduces to
a value, and hence its denotation is the 0 distribution: J⊥|σ|ηK = 0. In aI.151, p.125
simply typed calculus such a self-applying term cannot be typed, but using
our recursive type system ⊢ the programs ω and ⊥ are typeable [108]. For
this, note that ω is a function which applies var 0 to itself (after unfolding
it), i.e., we need to give var 0 a function type T ′ → T where T ′ = T ′ →
T . In a simply typed calculus, this equation is not satisfiable, but we can
resolve this by instantiating T ′ with the recursive type µ(Tvar 0 → T). By
unfolding T ′, i.e., by substituting T ′ into its body, we obtain (Tvar 0 →
T){T ′/0} = T ′ → T . Using the rules from Figure 1.24, we can infer Γ|Θ ⊢
ω : (µ(Tvar 0→ T))→ T . Conversely, by folding the type again, we can giveI.167, p.127
program ⊥ the type T , namely Γ|Θ ⊢ ⊥ : T . Note that this means that weI.168, p.127
can assign ⊥ an arbitrary type T . The only restriction is that T must not

24

1.8. Typing the Language

↑k(Tvar n) =

{
Tvar (n+1) if n≥k

Tvar n if n<k

↑k(µT) =µ(↑k+1T)
↑k(ValueX) =ValueX
↑k(T1 × T2) =↑kT1 × ↑kT2

↑k(T1 + T2) =↑kT1 + ↑kT2

↑k(T1 → T2)=↑kT1 → ↑kT2

↑k(Ref T) =Ref (↑kT)

(Tvar n){T/k}=





Tvar n−1 if n>k

T if n=k

Tvar n if n<k

(µT1){T/k}=µ(T1{↑0T/k+1})
(ValueX){T/k}=ValueX
(T1 × T2){T/k}=T1{T/k} × T2{T/k}
(T1 + T2){T/k}=T1{T/k}+ T2{T/k}
(T1 → T2){T/k}=T1{T/k} → T2{T/k}
(Ref T1){T/k}=Ref (T1{T/k})

Figure 1.23: Left: The definition of the operator ↑k to lift free type variables.
Right: The definition of the operator {·/k} to substitute free type variables.

v ∈ X

Γ|Θ ⊢ value v : ValueX
Val

T ::Γ|Θ ⊢ var 0 : T
Var0

Γ|Θ ⊢ var n : T

T ′::Γ|Θ ⊢ var (n+ 1) : T
Var1

Γ|Θ ⊢ P : T ′0 ∀v.∀t←f(v). []|[] ⊢ t : T0

Γ|Θ ⊢ fun(f, P) : T0

Fun

Γ|Θ ⊢ P1 : T1 Γ|Θ ⊢ P2 : T2

Γ|Θ ⊢ (P1, P2) : T1 × T2

Pair
T1::Γ|Θ ⊢ P : T2

Γ|Θ ⊢ λP : T1 → T2

Lam

Γ|Θ ⊢ P1 : T1 → T2 Γ|Θ ⊢ P2 : T1

Γ|Θ ⊢ P1P2 : T2

App
Γ|T ::Θ ⊢ loc 0 : T

Loc0

Γ|Θ ⊢ locn : T

Γ|T ′::Θ ⊢ loc (n+ 1) : T
Loc1

Γ|Θ ⊢ P : T

Γ|Θ ⊢ ref P : Ref T
Ref

Γ|Θ ⊢ P : Ref T

Γ|Θ ⊢ !P : T
Deref

Γ|Θ ⊢ P1 : Ref T Γ|Θ ⊢ P2 : T

Γ|Θ ⊢ P1 := P2 : Unit
Ass

Γ|Θ ⊢ event e : Unit
Ev

Γ|Θ ⊢ eventlist : List String
EvList

Γ|Θ ⊢ P : T1 × T2

Γ|Θ ⊢ fstP : T1

Fst
Γ|Θ ⊢ P : T1 × T2

Γ|Θ ⊢ sndP : T2

Snd

Γ|Θ ⊢ P : T{µT/0}

Γ|Θ ⊢ foldP : µT
Fold

Γ|Θ ⊢ P : µT

Γ|Θ ⊢ unfoldP : T{µT/0}
Unfold

Γ|Θ ⊢ P : T

Γ|Θ ⊢ inlP : T + T ′
Inl

Γ|Θ ⊢ P : T

Γ|Θ ⊢ inrP : T ′ + T
Inr

Γ|Θ ⊢ P1 : T1 + T2 Γ|Θ ⊢ P2 : T1 → T Γ|Θ ⊢ P3 : T2 → T

Γ|Θ ⊢ case P1 P2 P3 : T
Case

Figure 1.24: Typing rules

25

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

contain free type variables, as this would interfere with the folding/unfolding
of T ′. This example of a diverging term ⊥ can be generalized to a fixed-point
combinator which allows us to define recursive functions in our language. WeI.79, p.114
refer to [108] for details and for further applications of recursive types.

We now define the type of program states. Intuitively, a program state
P |σ|η has type T under the environments Γ and Θ if P has type T , σ
contains only values, and every value in σ has the type required by Θ.

Definition 1.25 (Type of Program State). A program state P |σ|η has typeI.165, p.127
T under the environments Γ and Θ, iff Γ|Θ � P |σ|η : T can be inferred by
the rule

Γ|Θ ⊢ P : T |Θ| = |σ| σ ⊆ V ∀n < |Θ| .Γ|Θ ⊢ σ!n : Θ!n

Γ|Θ � P |σ|η : T
.

If a program state P |σ|η has a type T under the environments Γ and
Θ, the rules Loc0 and Loc1 in Figure 1.24 ensure that the state contains
no dangling locations, i.e., for each location locn in P and σ it holds that
n < |σ|. We call such a state store closed. Furthermore the rules Var0 andI.93, p.117
Var1 in Figure 1.24 ensure that P and all terms in σ have no free variables,
if the environment Γ is empty; i.e., the state is variable closed. We say thatI.94, p.117
a state P |σ|η is fully closed, iff it is store closed and variable closed.

Definition 1.26 (Fully Closed). We call a program state P |σ|η fully closed,I.95, p.117
iff P and all elements of σ have no free variables, and for all locations locn
in P and σ, it holds n < |σ|.

Lemma 1.27. Let P |σ|η be a program state, Θ an environment, and T a
type. The following two properties hold:

• Variable closed: If []|Θ ⊢ P : T , then FV(P) = {}.I.172, p.128

• Fully closed: If []|Θ � P |σ|η : T , then P |σ|η is fully closed.I.175, p.128

Given a program P that has type T under the environments Γ and Θ,
it is easy to see that P also has type T under the weakened environments
Γ@Γ′ and Θ@Θ′.

Lemma 1.28 (Weakening). Let P be a program, T be a type, and Γ, Γ′, Θ,I.176, p.128
and Θ′ be type environments. If Γ|Θ ⊢ P : T , then also Γ@Γ′|Θ@Θ′ ⊢ P : T .

26

1.9. Embedding the Type System in HOL

1.8.1 Typing Contexts

When typing the program C[P], where a program P has been inserted into
a context C, the type of C[P] depends on the type of program P . Assuming
that P has type T ′ under the environments Γ′ and Θ′, we can try to infer
a type T for C[P] under the environments Γ and Θ as follows: We apply
the rules from Figure 1.24 in order to infer Γ|Θ ⊢ C : T with the addition
that, whenever we need to infer some type T ′′ for a hole � under some
environments Γ′′ and Θ′′, we check whether T ′′ = T ′, Γ′ is a prefix of Γ′′

and Θ′ is a prefix of Θ′′. Using Lemma 1.28 we know that in this case
Γ′′|Θ′′ ⊢ P : T ′′.

We can use the observation from the previous paragraph and extend the
typing relation ⊢ in order to give types to contexts C. For this, we define the
relation Γ′|Θ′|T ′|Γ|Θ ⊢ C : T which is defined analogously to the relation I.181, p.128
⊢ from Figure 1.24 with the addition that it assumes that all holes � have
type T ′ under the environments Γ′ and Θ′:

Γ = Γ′@Γ′′ Θ = Θ′@Θ′′

Γ′|Θ′|T ′|Γ|Θ ⊢ � : T ′
Hole

The other rules are as in Figure 1.24: They are independent of Γ′, Θ′

and T ′ and just carry them over, e.g., the rules for λ-abstractions and appli-
cations are as follows:

Γ′|Θ′|T ′|T1::Γ|Θ ⊢ C : T2

Γ′|Θ′|T ′|Γ|Θ ⊢ λC : T1 → T2
Lam

Γ′|Θ′|T ′|Γ|Θ ⊢ C1 : T1 → T2 Γ′|Θ′|T ′|Γ|Θ ⊢ C2 : T1

Γ′|Θ′|T ′|Γ|Θ ⊢ C1C2 : T2
App

Assuming a context C with Γ′|Θ′|T ′|Γ|Θ ⊢ C : T , the rule Hole requires
that all holes in context C have the type T ′ under the environments Γ′ and
Θ′. Therefore we can insert any program P with Γ′|Θ′ ⊢ P : T ′ into context
C with the result that C[P] has type T under the environments Γ and Θ.
Note that if the environments Γ and Θ are empty, this furthermore implies
that the state C[P]|[]|[] is fully closed. I.183, p.129

Lemma 1.29. Let P be a program, C be a context, T and T ′ be types, I.182, p.129
and Γ, Γ′, Θ, and Θ′ be type environments. Given that Γ′|Θ′ ⊢ P : T ′ and
Γ′|Θ′|T ′|Γ|Θ ⊢ C : T , it holds Γ|Θ ⊢ C[P] : T .

1.9 Embedding the Type System in HOL

In Section 1.8 we presented the typing rules of the language as they are
implemented in Isabelle/HOL. The implementation allows for using the in-
ference rules of the typing relation ⊢ to prove that some program P has

27

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

a certain type T . While this proof has to be done interactively, Isabelle
provides automatic type inference for its own higher-order logic (HOL); i.e.,
it is not even possible to write an ill-typed HOL term without being re-
jected by Isabelle’s type checker. For example, it is not possible to write
the application f f in HOL, since f cannot have type α → β and type α
simultaneously (See Section 1.4.1 for a brief review of higher-order logic).
Yet, writing the application PP for some program P in our language is not
rejected by Isabelle: The application PP of two (equal) programs is a valid
program term, even though it is not typeable with respect to the typing
relation ⊢.

In the following section we depict how our typing system can be em-
bedded into HOL. Such an embedding allows us to benefit from Isabelle’s
automatic type checking, because it prevents us from accidentally writing
ill-typed programs. Moreover, the embedding permits more crisp formula-
tions of theorems and definitions, because we do not need to specify all the
side conditions that require the used programs to be well-typed. Instead,
these conditions come for free. We proceed by showing how our programs
can be embedded into this logic.

1.9.1 Embedding Programs into HOL

After implementing programs as described in Definition 1.10 in HOL, all
programs are of the same HOL-type. When writing down a program imme-
diately in HOL, we have to explicitly ensure that the program is well-typed
with respect to the typing relation ⊢, i.e., we lose the advantage of auto-
matic type inference and type checking as supported in HOL. To leverage
the power of HOL to our programs, we define the type classes program type

and environment, and a new type program in order to embed our notion of
types, environments and programs into HOL:

Embedding Types

The class program type for a HOL type α introduces the constant prog typeαI.184, p.129
of type T , where T denotes the HOL type of the program types in our lan-
guage. Furthermore, the class has the constraint that the type prog typeα
must by inhabited, i.e., there must exist a program P such that []|[] ⊢
P : prog typeα. E.g., for the unit set we define prog type

U

def
=Unit, forI.219, p.132

Booleans we define prog type
B

def
=Bool, and for natural numbers we defineI.228, p.132

prog type
N

def
=Nat. Given types α and β of type class program type, we defineI.233, p.132

prog typeα list
def
= List prog typeα and prog typeα∼β

def
= prog typeα ∼ prog typeβ ,I.195, p.130

where ∼ ∈ {×,+,→}. Furthermore we introduce a (dummy) HOL typeI.193, p.130
α ref and define prog typeα ref

def
=Ref (prog typeα).I.197, p.130

28

1.9. Embedding the Type System in HOL

Embedding Environments

The type class environment embeds the notion of type environments. Since I.185, p.129
environments are lists of program types, the class introduces the constant
env types of type T list. We model two instances of environment. First we
define env nil which embeds empty environments and hence has env types I.187, p.129
implemented as the empty list []. Second, to build non-empty environments, I.188, p.130
we define the type (α, γ)env cons, for which env types is implemented as I.189, p.130
prog typeα::env typesγ , where α is of type class program type and γ is of I.190, p.130
type class environment.

Embedding Programs

We now define the main type of the embedding. The type (γ, α)program rep- I.191, p.130
resents the set of all programs that have type prog typeα under the variable
type environment env typesγ and the empty store type environment. It is
defined as the set {P | env typesγ |[] ⊢ P : prog typeα}. Here γ is of type
class environment and α is of type class program type.

Using the HOL type (γ, α)program it is possible to define typed program
term constructors. For instance we can define the constant Var0, whose I.238, p.132
representation is the variable var 0. This variable representation only types
in non-empty environments and has the first element in the environment
as type. In particular, the HOL type of Var0 is ((α, γ)env cons, α)program.
For variables representing larger de Bruijn indices, we introduce the function
Var Suc, which given a variable representing index k returns a representa- I.239, p.132
tion of a variable for the succeeding index k + 1; i.e., given a variable repre-
sentation of type (γ, β)program, it returns a variable representation of type
((α, γ)env cons, β)program. Similarly we can define a constant Abstract I.240, p.133
that embeds the λP construct. It expects an argument P that types in a non-
empty environment, i.e., P should have the type ((α, γ)env cons, β)program,
and has the return type (γ, α → β)program. The constant Apply takes I.241, p.133
two programs of types (γ, α→ β)program and (γ, α)program and represents
their application of type (γ, β)program. Likewise we define a constructor
Pair which takes two arguments of type (γ, α)program and (γ, β)program I.242, p.133
and returns a program of type (γ, α×β)program. When applied to such pro-
grams, the destructors Fst and Snd again return the respective components I.243, p.133

I.244, p.133of type (γ, α)program and (γ, β)program. Analogously for sum types and ref-
erences, we define constants Inl, Inr, Case, Ref, Deref and Assign.
Using this paradigm it is even possible to define constructs that are not
present in the underlying language. For instance we can define a program
Nil of type (γ, α list)program which represents empty lists, and a corre- I.255, p.134
sponding list constructor Cons of type (γ, α)program→ (γ, α list)program→ I.256, p.134
(γ, α list)program. Furthermore it is possible to define typed variants of the
operators ↑k and {·/k}. In particular, the operator Lift represents the oper- I.262, p.134

29

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

ation ↑0 which lifts all free variables and hence has the type (γ, β)program→
((α, γ)env cons, β)program; the operator Substitute represents the oper-I.264, p.134
ation {·/0} and has type ((α, γ)env cons, β)program → (γ, α)program →
(γ, β)program. Exploiting these newly introduced constants for writing pro-
grams, the type-checker of Isabelle will ensure that we cannot write ill-typed
programs.

In the present section, we have shown how to embed programs as defined
in Section 1.6 into the type system of HOL. That is, we have defined a single
HOL type P containing all programs, then we have defined a type system
⊢ on P, and finally we have defined the HOL-type (γ, α)program as the
type of all programs of type prog typeα. The question arises whether it is
necessary to perform this three-step approach. Instead, one might want to
directly define a HOL-type α program of programs of type α in terms of
smaller types. For example, the type α×β program might be defined as the
type containing all terms (P1, P2) with P1 having type α program and P2

having type β program. Unfortunately, this approach does not work as, e.g.,
the type α×β program also has to contain program applications P1P2 with
P1 of type γ → α×β program and P2 of type γ program (for any type γ).
Hence the definition of the HOL-type α×β program has to depend (i) on an
infinite number of other types and (ii) on larger types. Such constructions
are not supported by HOL and would need much more elaborate (and thus
more complicated) type systems than HOL.

Stretching the Limitations of the Embedding

Note that the operators Lift and Substitute only operate on the de Bruijn
index 0. We can also define more general operators Liftk and SubstitutekI.263, p.134

I.265, p.134 which take an additional argument k, but here we reach a limitation in the
capabilities of HOL: For the lifting of all variables with index ≥ k we would
like to specify the type

((α1, . . . (αn, γ)env cons) . . . env cons, β)program

→((α1, . . . (αk−1, (α, (αk, . . . (αn, γ)env cons) . . . env cons, β)program,
(1.30)

where we insert an α of type class program type at the k-th position into the
environment of the return type of Liftk. But this means that the type of
the operator Liftk depends on the value of its argument k. Such dependent
types are not supported by HOL. Instead we have to sacrifice type precision
and specify the general type nat → (γ1, β)program → (γ2, β)program for
Liftk. The same problem occurs for Substitutek for which we specify the
general type nat→ (γ1, β1)program→ (γ2, β2)program→ (γ2, β1)program.

Because of this loss of precision, the automatic type inference of Isabelle
might infer too general type constraints for statements involving these op-
erators, in which case the statements may become unprovable. If a state-

30

1.9. Embedding the Type System in HOL

ment only deals with concrete values of k, we can resolve this problem by
adding the precise type annotations to the statement. However, for state-
ments involving arbitrary operator arguments k, such type annotations are
not possible as this would require dependent types. E.g., for any concrete
value k we can prove the lemma Liftk kVark = Vark+1, where Vark and
Vark+1 represent the variables var k and var (k + 1) respectively. This is
possible, because here we can annotate Liftk with the respective type as
in Equation 1.30. However, the statement ∀k.Liftk kVark = Vark+1 is
unprovable in HOL as this would require a dependent type annotation for
Liftk.

We mitigate this problem as follows: For concrete values of k, proofs
of lemmas of the form Liftk kVark = Vark+1 all follow the same design
pattern. Therefore it is possible to implement a simplification procedure
in Isabelle that automatically generates proofs for lemmas of this form for
arbitrary k. Therefore, even though we cannot prove the general state-
ment ∀k.Liftk kVark = Vark+1, the simplification machinery of Isabelle
behaves as if such a lemma had been proven.

We have implemented similar procedures for the cases where Liftk is
applied to other typed programs built from constants like Abstract or
Apply as introduced above. For the operator Substitutek we have imple-
mented similar simplification procedures as well. The result is that Isabelle
can simplify statements involving the (precisely) typed operators Liftk and
Substitutek just as it can simplify corresponding statements involving the
untyped operators ↑k and {·/k}.

1.9.2 Embedding Values into Programs

So far we have seen how to embed our language into the type system of
HOL. Conversely, it is also possible to embed objects from HOL into our
language. For this we introduce another type class embeddable which in- I.199, p.130
troduces a constant prog embeddingα of type α → P, where P denotes the
HOL type of the program terms of our language. Furthermore we require
that such embeddings are well-typed with respect to ⊢, i.e., we require
for any x of type α that []|[] ⊢ prog embeddingα(x) : prog typeα. Note
that it is straightforward to embed the typed variant of our language back
into our language given an empty environment. For this we simply define
prog embedding(env nil,α)program(P) as the program that P represents in our I.207, p.131
language and let prog type(env nil,α)program

def
= prog typeα. I.206, p.131

We introduce another type class to model the embedding of HOL values
into the language. The class embeddable val adds the constraint that for I.200, p.130
all x the embedding prog embeddingα(x) should be a value. There are two
conceptually different ways to embed HOL values into our language:

First, we can use the construct value v to embed basic values v ∈ B into
the language. In combination with the constructors for pairs, sums, and

31

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

recursive types, we can then also embed compound values like pairs, sums,
Booleans, lists, and natural numbers. We introduce a special type class
embeddable pure for such types that are compounds built from basic values.I.201, p.130
This class also assumes a constant inv prog embeddingα of type P → α
which is the inverse of prog embeddingα. Furthermore this class assumes
that prog embeddingα(x) is a pure value ∈ V0 for any x. Also we require
prog embeddingα and inv prog embeddingα to be measurable.

Second, we can use the fun(·, ·) construct and even embed higher-order
functions f : α1 → . . . → αn from HOL into our language where the types
αi are of type class embeddable pure. For this, let kernel of(f) be the deter-I.209, p.131
ministic kernel of the uncurried form of f , i.e., kernel of(f) is a kernel from
α1 × . . . × αn−1 to αn. We embed f into our language using the construct
prog embedding(f) def

= λ . . . λ︸ ︷︷ ︸
n−1 times

fun(kernel of(f), (var (n− 2), . . . , var 0)).I.210, p.131

1.9.3 Embedding Contexts into HOL

Similarly to the techniques from Section 1.9.1, we can also define a HOL
type consisting of all well-typed contexts according to the ⊢ relation as
introduced in Section 1.8.1: We define the type (γ′, α′, γ, α)typed context asI.300, p.137
the set {C | env typesγ′ |[]|prog typeα′ |env typesγ |[] ⊢ C : prog typeα}.

As we have seen in Lemma 1.29, if we insert a (γ′, α′)program into a
(γ′, α′, γ, α)typed context, the result will be a (γ, α)program. Therefore, such
a context behaves like a function of type (γ′, α′)program → (γ, α)program.
The definition of context functions captures this observation:

Definition 1.31 (Typed Context Function). Given a function F of typeI.302, p.137
(γ′, α′)program → (γ, α)program, we call F a (typed) context function, iff
there exists a (γ′, α′, γ, α)typed context C, such that F (P) = C[P] for all P
of type (γ′, α′)program.

Context functions and their corresponding contexts are closely related,
but context functions have one big advantage over their corresponding coun-
terparts: Isabelle has a built-in unification machinery which can match func-
tional symbols against subgoals when applying tactics. Using context func-
tions we can take advantage of this unification implemented in Isabelle. In-
stead of having to construct cumbersome contexts by hand while conducting
a proof, we can let Isabelle automatically infer the corresponding context
functions. This allows for much shorter and more direct formalizations of
proof scripts.

Since not all functions of type (γ′, α′)program → (γ, α)program are con-
text functions, the unification as explained above can also infer functions
that are not context functions. In order to guide the unification when ap-
plying a tactic, we have implemented a series of introductory rules. E.g.,
we have shown that the identity function is a context function; the cor-I.303, p.137

32

1.10. Program Relations

responding context is the hole �. Also the constant function λx. P is
a context function. Let F1 and F2 be context functions; we can show I.304, p.137
that λP.Abstract(F1(P)), and λP.Apply(F1(P))(F2(P)) are also context I.305, p.137

I.306, p.138functions. We have shown analogous results concerning the other constants
Pair, Fst, etc., that were introduced in Section 1.9.1 as well.

1.9.4 Syntactic Sugar

The HOL-embedding explained above offers automatic type checking, but
it is still not very convenient to actually write programs in this language.
For example, one does not want to write AbstractVar0 for the identity
function. We overcome this problem by implementing parse and print trans-
lations in Isabelle; this allows us to program in an ML-style syntax. We
are able to hide the de Bruijn implementation of variables and use named
abstractions instead. For example the identity function above is written as
¨λx. x¨. We are also able to express syntactic sugar for constructs that are
not present in the underlying language. E.g., we introduce the syntax of
a let construct ¨let x1 ← P1 in P¨ as a synonym for ¨(λx. P)P1¨, together
with a sequenced variant ¨let x1 ← P1; . . . xn ← Pn in P¨ which is a short-
hand for ¨let x1 ← P1 in . . . let xn ← Pn in P¨. Furthermore we introduce
pattern matching for tuples in order to write, e.g., ¨λ(x, y). x¨, and an equal-
ity symbol = that is the program embedding of the equality in HOL. The
quotes in ¨P¨ inform Isabelle that P should be parsed as a program and
not as a mathematical expression. We also introduce the antiquotations :P :
and v̂. The syntax :P : tells Isabelle that P is to be parsed using the normal
mathematical syntax and is supposed to evaluate to a closed program, i.e.,
:P : is of type (env nil, α)program. The syntax v̂ denotes the program repre-
senting prog embedding(v), i.e., the embedding of the HOL value v into the
language. Finally, to capture a common pattern in cryptographic definitions,
for Boolean programs P of type (env nil,B)program we define Pr[P] as the
probability that P reduces to true.

Pr[P] def
= Jprog embedding(P)|[]|[]K {(inlP ′|σ|η) | (P ′|σ|η) ∈ Ω} I.268, p.135

1.10 Program Relations

Game-based proofs are conducted by transforming games, i.e., programs,
such that a game and its transformation are in some sense equivalent or
indistinguishable. In this section, we show how several such relations can
be formalized in our framework. We start with the notion of denotational
equivalence, proceed with the notion of observational equivalence, and by
defining polynomial-time programs we conclude with the notion of compu-
tational indistinguishability.

33

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

1.10.1 Denotational Equivalence

Among the relations we consider, denotational equivalence constitutes the
strongest such relation. Two programs are denotationally equivalent, if their
denotations are the same for all stores and event lists.

Definition 1.32 (Denotational Equivalence). Two programs P1 and P2 areI.321, p.140
called denotationally equivalent, iff for all stores σ and event lists η it holds
JP1|σ|ηK = JP2|σ|ηK.

This relation is too strong in many cases, since many game transforma-
tions do not preserve the denotation completely and introduce small errors.
Consider for example two programs P1 and P2, where P1 selects a bitstring
uniformly at random from {0, 1}n and P2 from {0, 1}n \ {0n}. It is clear
that P1 and P2 are denotationally different, but their statistical difference
is very small. The following definition introduces the notion of denotational
equivalence up to some error.

Definition 1.33 (Denotational Equivalence up to Error). Two programs P1I.322, p.140
and P2 are called denotationally equivalent up to error ǫ, iff for all stores σ
and event lists η it holds

max
S∈Σ
{|JP1|σ|ηK (S)− JP2|σ|ηK (S)|} ≤ ǫ,

where Σ is the canonical σ-algebra over the set of program states.

Denotational equivalence is also too strong from another perspective:
Since it compares programs based on the distribution over program states
they compute, these states also contain store allocations that may be in-
accessible after the execution. Consequently, two programs that compute
the same function are denotationally different if, e.g., the first program uses
references while the second one does not. Moreover the terms in the distri-
butions have to be equal syntactically. Consider the values λx. (λy. y)x and
λx. x. Both compute the identity function, but they are denotationally differ-
ent. To overcome these problems, we introduce the notion of observational
equivalence.

1.10.2 Observational Equivalence

Instead of comparing programs based on their denotation, we can also com-
pare them based on their behavior. This yields the notion of observational
equivalence. The idea is that when used as part of a larger program P ,
two observationally equivalent programs should be replaceable with each
other without affecting the computation of P , since it is impossible for P
to observe which program it contains. Two programs P1 and P2 are obser-
vationally equivalent, if their behavior is equivalent in every context C and

34

1.10. Program Relations

state ·|σ|η. Here we restrict the set of contexts to those that capture all
free variables of P1 and P2 and that do not contain locations outside the
store. More formally, we require C[P1]|σ|η and C[P2]|σ|η to be fully closed.
If these states terminate with the same probability, we call the programs
observationally equivalent.

Definition 1.34 (Observational Equivalence). Two programs P1 and P2 I.336, p.141
are observationally equivalent, iff for all contexts C, stores σ, and event
lists η such that C[P1]|σ|η and C[P2]|σ|η are fully closed, we have that
JC[P1]|σ|ηK (Ω) = JC[P2]|σ|ηK (Ω). Here Ω is the set of all program states.
We write P1 ≈obs P2 to denote that programs P1 and P2 are observationally
equivalent.

Observational equivalence is the main relation that we will use when
connecting games in individual steps of a game-based proof. Such a sequence
of steps allows us to deduce the observational equivalence of the initial and
the final game. This is possible because the relation ≈obs is transitive. More
precisely, ≈obs is an equivalence relation.

Lemma 1.35. The relation ≈obs is an equivalence relation. I.347, p.142

Proof. Reflexivity and symmetry follow directly from Definition 1.34. To
prove transitivity, assume three programs P1, P2, and P3 where P1 ≈obs P2

and P2 ≈obs P3. Furthermore let C be a context, σ a store, and η and event
list such that C[P1]|σ|η and C[P3]|σ|η are fully closed. We need to show
that JC[P1]|σ|ηK (Ω) = JC[P3]|σ|ηK (Ω).

Note that we cannot use Definition 1.34 directly to prove the transitivity
of ≈obs , since C[P2]|σ|η is not necessarily fully closed. In particular, C[P2]
might contain free variables and locations locn with n ≥ |σ|. Let i be
the maximal de Bruijn index such that var (i − 1) is free in C[P2] (or i =
0 if no such i exists) and let l be the maximal location index such that
loc (l−1) occurs in C[P2] (or l = 0 if no such l exists). We consider the state
Ci[C[P2]]|σ@σ′|η, where σ′ = [value unit , . . . , value unit] such that |σ@σ′| ≥ l
and Ci is defined recursively as C0

def
=� and Ci+1

def
=(λCi)(value unit). This

state is fully closed: The context Ci captures all free variables of C[P2]
and for all locations locn in C[P2] it holds n < |σ@σ′|. Furthermore the
states Ci[C[P1]]|σ@σ′|η and Ci[C[P3]]|σ@σ′|η are fully closed, too. Since
P1 ≈obs P2 and P2 ≈obs P3, it holds

q
Ci[C[P1]]|σ@σ′|η

y
(Ω) =

q
Ci[C[P2]]|σ@σ′|η

y
(Ω) =

q
Ci[C[P3]]|σ@σ′|η

y
(Ω).

We can reduce the state Ci[C[P1]]|σ@σ′|η by applying the rule Beta

i times. Since C[P1] has no free variables, it holds stepi(Ci[C[P1]]|σ@σ′|η) =
δ(C[P1]|σ@σ′|η), and hence JCi[C[P1]]|σ@σ′|ηK (Ω) = JC[P1]|σ@σ′|ηK (Ω).

Since extending the store of a fully closed state does not affect its prob-
ability of termination, we also have JC[P1]|σ@σ′|ηK (Ω) = JC[P1]|σ|ηK (Ω).

35

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

Analogously for C[P3], it holds JCi[C[P3]]|σ@σ′|ηK (Ω) = JC[P3]|σ|ηK (Ω).
We conclude as follows:

JC[P1]|σ|ηK (Ω) =
q
Ci[C[P1]]|σ@σ′|η

y
(Ω)

=
q
Ci[C[P3]]|σ@σ′|η

y
(Ω)

= JC[P3]|σ|ηK (Ω)

In a game-based proof, one often modifies only a small part of the game
in each step. In our setting this corresponds to replacing a program P1

in a game C[P1] with another program P2 where C can be an arbitrary
context. If P1 ≈obs P2 then it also holds C[P1] ≈obs C[P2]. This is an
important property of observational equivalence, as it allows us to focus on
the programs P1 and P2 rather than to deal with the possibly much larger
games C[P1] and C[P2]. As explained in Section 1.9.3, this process can
be even be further simplified by using context functions, which Isabelle’s
unification machinery can automatically infer.

Lemma 1.36 (Composability of ≈obs). Assume programs P1, P2 and aI.349, p.142
context C. If P1 ≈obs P2, then also C[P1] ≈obs C[P2].

Proof. Let C ′ be a context, σ a store, and η an event list such that the states
C ′[C[P1]]|σ|η and C ′[C[P2]]|σ|η are fully closed. Consider the context C0

def
=

C ′[C]. It holds

q
C ′[C[P1]]|σ|η

y
(Ω) = JC0[P1]|σ|ηK (Ω)

= JC0[P2]|σ|ηK (Ω) (since P1 ≈obs P2)

=
q
C ′[C[P2]]|σ|η

y
(Ω)

Cryptographic games often return a Boolean value which is used to deter-
mine whether an adversary was successful in attacking a system. Therefore
we are interested in the probability Pr[P] of a game P returning true. Ob-
servational equivalence preserves this probability and hence can be used to
relate the probabilities of programs P1 and P2 returning true.

Lemma 1.37. Assume programs P1 and P2 without free variables andI.340, p.141
locations such that P1 ≈obs P2. Then it holds Pr[P1] = Pr[P2].

Proof. The expression Pr[P] denotes the probability of true in the denotation
of a program P , while observational equivalence is about the termination
probability of C[P] for contexts C. In order to relate Pr[P] and observational
equivalence, we construct a context C for which C[P] terminates if and only
if P returns a value inlV , i.e, the value true assuming that P returns a
Boolean. We use the diverging term ⊥ that was introduced in Section 1.8
and define the context

C def
= case � (λinl (var 0)) (λ⊥).

36

1.10. Program Relations

For values inlV , the denotation JC[inlV]|σ|ηK is δ(inlV |σ|η), while for
all other values V it holds JC[V]|σ|ηK = 0. This means that the context C
behaves like the restriction kernel ↓{(inlP ′|σ|η)|(P ′|σ|η)∈Ω}. Using this observa-
tion, we can show that for program P ∈ {P1, P2} it holds

JC[P]|[]|[]KΩ (∗)
= (↓{(inlP ′|σ|η)|(P ′|σ|η)∈Ω} · JP |[]|[]K)Ω
= JP |[]|[]K {(inlP ′|σ|η) | (P ′|σ|η) ∈ Ω}

= Pr[P],

where (∗) uses a chaining property of the denotation which we will prove
later in Theorem 1.48.

Since P1 and P2 contain no free variables and locations, the program
states C[P1]|[]|[] and C[P2]|[]|[] are fully closed. From P1 ≈obs P2 it follows
that JC[P1]|[]|[]KΩ = JC[P2]|[]|[]KΩ and hence Pr[P1] = Pr[P2].

1.10.3 Polynomial Runtime

Cryptographic proofs often only assert security if the runtime of the adver-
sary is bounded polynomially in the security parameter. In this section, we
give a formal definition of such polynomial-time programs in our language.
Since it is unclear what polynomial time means for programs handling non-
computational objects such as reals or arbitrary kernels, we exclude such pro-
grams from our definition of polynomial-time programs. More precisely, we
only allow programs handling unit , Booleans (or bits), and kernels perform-
ing bit-operations. Furthermore, the notion of polynomial-time programs
shall not depend on whether events have been raised or not.

Definition 1.38 ((Non)Computational/Eventless). A program is a non- I.374, p.144
computational atom iff it is of the form eventlist, value v, where v 6= unit, or
fun(f, P), where f does not compute a coin-toss or one of the bit-operations
¬,∧,∨. A program is called computational, iff it does not contain any non- I.375, p.144
computational atoms. A program is called eventless, iff it does not contain I.377, p.144
any programs of the form eventlist or event s.

Since the definition of polynomial-time programs should be able to deal
with oracles, we have to exclude the time that is spent for executing the
oracles, i.e., the notion of polynomial-time shall not depend on the running-
time of the oracles the program under consideration calls. We express this by
transforming the program such that it raises a distinguished step event for
every step it takes. If the oracles do not raise events themselves, the running
time of the program is defined as the number of step events it raises. Given
a program P , the step-annotated program P ! is constructed by replacing I.360, p.143
every sub-term t of P by (λ↑0t)(event step).

In cryptographic games, one often calls adversaries by giving them the
security parameter k as a first argument in unary form and then requires

37

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

them to be polynomial-time in the size of this input. Such adversaries are
called uniform, because they use the same implementation for all security
parameters. In contrast, a non-uniform adversary A = {Ak}k∈N is a fam-
ily of programs and uses a (possibly) different implementation Ak for each
security parameter k. In cryptographic games involving non-uniform adver-
saries, it is not necessary to supply the security parameter as an argument,
as one can call the respective implementation Ak directly, instead.

In the uniform case, if a program takes a pair (V0, P1) as argument, we
define polynomial-time in the size |V0| of the first component. Here V0 is
a pure value, e.g., the security parameter. The argument P1 may contain
other arguments that potentially include oracles. A program is defined to
be polynomial-time if the number of step events it raises while running P !
on (V0, P1) is polynomial in |V0|.

Definition 1.39 (Uniform Polynomial-time). A program P of type (T0 ×I.379, p.144
T) → U is (uniform) polynomial-time, iff it is computational, T0 is a pure
type, and there is a polynomial q such that for all inputs (V0, P1) where V0

is of type T0 and P1 of type T is eventless, it holds

∀n. ∀(P ′|σ|η)←stepn(P ! (V0, P1)|[]|[]).#step(η) ≤ q(|V0|),

where #step(η) denotes the number of step events in the event list η.

For programs of type T0 → U that should be polynomial-time in the
size of their input, where T0 is a pure type (i.e., they do not use oracles),
we define the notion of first-order polynomial-time: A program P of type
T0 → U is first-order polynomial time, iff the program λx.(↑0P)(fstx) isI.380, p.145
polynomial-time. We call a program an efficient algorithm, iff it is first-I.381, p.145
order polynomial time, eventless and does not use references. A function f
is efficiently computable if there is an efficient algorithm P , such that P andI.382, p.145
the embedding f̂ of the function are observationally equivalent.

In the non-uniform case, we define polynomial-time analogously to the
uniform Definition 1.39. The main difference is that the allowed runtime
does not depend on the first argument given to the program. Instead, the
runtime depends on the choice of the respective implementation from the
program family.

Definition 1.40 (Non-uniform Polynomial-time). A family of programsI.383, p.145
P = {Pk}k∈N of type T → U is (non-uniform) polynomial-time, iff each Pk

is computational and there is a polynomial q such that for all k and inputs P
where P is of type T and eventless, it holds

∀n. ∀(P ′|σ|η)←stepn(Pk!P |[]|[]).#step(η) ≤ q(k),

where #step(η) denotes the number of step events in the event list η.

38

1.10. Program Relations

1.10.4 Computational Indistinguishability

We finally define the notion of computational indistinguishability for families
of (closed) programs. Intuitively, two families {Pk}k∈N and {P ′k}k∈N are
computationally indistinguishable if every polynomial-time program family
D distinguishes Pk and P ′k with at most negligible probability in k. Here a
function f : N → R is called negligible [81], if for every c ∈ N there is an I.353, p.142
N ∈ N such that |f(n)| ≤ 1

nc for all n ≥ N .

Definition 1.41 (Computational Indistinguishability). Given two fami- I.384, p.145
lies of (closed) programs P = {Pk}k∈N and P ′ = {P ′k}k∈N, we call P and
P ′ computationally indistinguishable, written P ≈ind P

′, iff for all non-
uniform polynomial-time families {Dk}k∈N it holds that

∣∣Pr[Dk(Pk)]− Pr[Dk(P
′
k)]

∣∣ is negligible in k.

Lemma 1.42. The relation ≈ind is an equivalence relation. I.388, p.145

Proof. Symmetry holds trivially and reflexivity follows from the fact that the
zero function λk. 0 is negligible. To prove transitivity, assume three program I.354, p.142
families P = {Pk}k∈N, P

′ = {P ′k}k∈N, and P
′′ = {P ′′k }k∈N where P ≈ind P

′

and P ′ ≈ind P
′′. Assuming a non-uniform polynomial-time family {Dk}k∈N,

we obtain that |Pr[Dk(Pk)]− Pr[Dk(P
′
k)]| and |Pr[Dk(P

′
k)]− Pr[Dk(P

′′
k)]|

are negligible in k. We calculate as follows:

0 ≤
∣∣Pr[Dk(Pk)]− Pr[Dk(P

′′
k)]

∣∣
=

∣∣Pr[Dk(Pk)]− Pr[Dk(P
′
k)] + Pr[Dk(P

′
k)]− Pr[Dk(P

′′
k)]

∣∣
≤

∣∣Pr[Dk(Pk)]− Pr[Dk(P
′
k)]

∣∣+
∣∣Pr[Dk(P

′
k)]− Pr[Dk(P

′′
k)]

∣∣

Since the sum of two negligible terms is negligible, the last line of the I.355, p.142
previous calculation is negligible in k. Therefore, the (positive) expression
|Pr[Dk(Pk)]− Pr[Dk(P

′′
k)]| is bounded from above by a negligible function

and hence must also be negligible in k. Hence it holds P ≈ind P
′′. I.356, p.142

We can show that the observational equivalence of corresponding pro-
grams of two program families implies the computational indistinguishability
of these families.

Lemma 1.43. Assume program families P = {Pk}k∈N and P ′ = {P ′k}k∈N. I.389, p.145
Given that Pk ≈obs P

′
k for all k ∈ N, it holds P ≈ind P

′.

Proof. Assume a non-uniform polynomial-time family {Dk}k∈N. Using the
composability of ≈obs (Lemma 1.36), the observational equivalence Pk ≈obs

P ′k implies Dk(Pk) ≈obs Dk(P
′
k) for all k ∈ N. From Lemma 1.37 we obtain

the equality Pr[Dk(Pk)] = Pr[Dk(P
′
k)] for all k ∈ N, and hence P ≈ind

P ′.

39

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

1.11 Fundamental Properties of the Language

1.11.1 Type Safety

Given a fully closed program state of type T , we can show that the reduction
relation can progress (if we are not already in a value state), and that
the relation preserves the type. Namely, the states in the resulting measure
are also of type T .

Theorem 1.44 (Progress and Preservation). Let P |σ|η be a program state,
Γ and Θ environments, and T a type. Then the following properties hold:

• Progress: If []|Θ � P |σ|η : T and P is not a value, then there is aI.177, p.128
measure µ over program states such that P |σ|η µ.

• Preservation – untyped: If P |σ|η is fully closed, then for almost allI.180, p.128
P ′|σ′|η′ ∈ step(P |σ|η), the state P ′|σ′|η′ is fully closed.

• Preservation – typed: If Γ|Θ � P |σ|η : T and P |σ|η µ for someI.178, p.128
measure µ, then there exists an environment Θ′ such that

∀(P ′|σ′|η′)←µ.Γ|Θ@Θ′ � P ′|σ′|η′ : T .

1.11.2 Evaluation Contexts and Redexes

The computation rules in Figure 1.18 characterize a set of reducible expres-
sions – so-called redexes – whereas the congruence rules locate the redex for
the current step. An alternative method to express this localization is to
use so-called evaluation contexts. These are contexts with a single hole � at
the position where the next reduction step should be performed. The sets
of redexes and of evaluation contexts are defined as follows.

Definition 1.45 (Redexes and Evaluation Contexts). The sets of redexesI.123, p.122
I.122, p.121 R and of evaluation contexts E are defined by the following grammar, where

s denotes strings and f denotes submarkov kernels from V0 to V0:

R ::= V V | fun(f, V) | ref V |!V | V := V |

event s | eventlist | fstV | sndV | case V V V | unfoldV

E ::= � | fun(f,E) | EP | V E | ref E |!E | E := P | V := E |

foldE | unfoldE | (E,P) | (V,E) | fstE | sndE |

inlE | inrE | case E P P | case V E P | case V V E

Note that each syntactic case for evaluation contexts (except for the
case �) corresponds to one of the congruence rules in Figure 1.18. For
example the case EP specifies that applications can be reduced in their
first component, which corresponds to rule App1; the case V E specifies
that applications can be reduced in their second component, if the first

40

1.11. Fundamental Properties of the Language

component is a value, which corresponds to the rule App2. Furthermore we
can show that each term P that is not a value can be decomposed into an I.129, p.123
evaluation context E and a redex R. This leads to an alternative formulation
of the reduction relation based on evaluation contexts and redexes.

Lemma 1.46 (Reduction on Redexes). Let P |σ|η be a program state and I.146, p.125
µ a measure over program states. The relation P |σ|η µ holds, if and only
if there is an evaluation context E, a redex R, and a measure over program
states µR, such that

• P = E[R],

• R|σ|η µR, and

• µ = (λ(P ′|σ′|η′). E[P ′]|σ′|η′)µR

Lemma 1.47. Let E[P]|σ|η be a program state where E is an evaluation I.145, p.125
context and P is not a value. Then it holds

step(E[P]|σ|η) = (λ(P ′|σ′|η′). (E[P ′]|σ′|η′)) (step(P |σ|η))

1.11.3 A Chaining Rule for Denotations

The formulation of the step kernel in Lemma 1.47 suggests that, when eval-
uating a program E[P] where E is an evaluation context, first P is reduced
until it is a value V ′, and then the reduction proceeds with E[V ′]. Consider-
ing that the program P may branch probabilistically and execute a different
number of steps in the different branches, we will start evaluating E[V ′] for
some values V ′ after a different number of steps in different branches. In gen-
eral there is no n ∈ N such that stepn(E[P]|σ|η) is a distribution over states
of the form E[V ′]|σ′|η′ for some values V ′. However, we can establish the
following result in the limit of n: If we compute the denotation JP |σ|ηK and
apply to this measure the kernel that maps V ′|σ′|η′ to E[V ′]|σ′|η′ and then
computes its denotation, the result is equal to the denotation JE[P]|σ|ηK.
This lemma is a powerful tool for reasoning about denotational equivalence.
In particular, it directly entails that if P1 and P2 are denotationally equiva-
lent then E[P1] and E[P2] are denotationally equivalent as well.

Theorem 1.48 (Chaining denotations). Let E be an evaluation context, P I.328, p.140
a program, σ a store and η an event list. Then it holds

JE[P]|σ|ηK = (λ(V ′|σ′|η′).
q
E[V ′]|σ′|η′

y
) · JP |σ|ηK.

Proof. We will use Theorem 1.9 in order to prove this theorem. For this
purpose let Ω be the set of all tuples (P, σ, η, b) where P is a program, σ is
a store, η is an event list, and b is a Boolean. We define the sets U , DK , V ,

41

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

the functions f , g, and the kernels K, L, M from Ω to Ω as

U def
= {(E[P ′], σ′, η′, true) | P ′ is a value} ⊆ Ω

DK
def
= {(E[P ′], σ′, η′, true) | true} ⊆ Ω

V def
= Val × {false} = {(P ′, σ′, η′, false) | P ′ is a value} ⊆ Ω

g def
= λ(P ′|σ′|η′). (E[P ′], σ′, η′, true)

f def
= λ(P ′, σ′, η′, b). (P ′|σ′|η′)

K(x) def
=

{
g(step(P ′|σ′|η′)) if x=(E[P ′], σ′, η′, true)∈DK

0 if x/∈DK

L(x) def
=

{
(λs. (s, false))(step(P ′|σ′|η′)) if x=(P ′, σ′, η′, b′)∈D∁K ∪ U

0 if x∈DK \ U

M(x) def
=

{
K(x) if x∈DK \ U

L(x) otherwise.

Since step is invariant on Val , K is invariant on U and L is invariant
on V . Furthermore V ∩ DK = ∅, U ⊆ DK and for all x ∈ Ω, we have
K(x)(D∁K) = 0 and L(x)(DK) = 0. For all x ∈ DK \ U we have L(x) = 0,

and for all x ∈ D∁K , we have K(x) = 0. Thus Condition 1.4 is satisfied, and
by Theorem 1.9 we have that M is invariant on V and for all x ∈ DK it
holds

lim
n
(↓V ◦M

n)x = (lim
n
(↓V ◦ L

n)) ◦ (lim
n
(↓U ◦K

n))x. (1.49)

Fix some x ∈ Ω. If x ∈ DK \ U , it is of the form x = (E[P ′], σ′, η′, true)
where P ′ is not a value. Then we have

step(f(x)) = step(E[P ′]|σ′|η′)

= (λ(P ′|σ′|η′). (E[P ′]|σ′|η′))step(P ′|σ′|η′) (Lemma 1.47)

= f(K(E[P ′], σ′, η′, true))

= f(M(E[P ′], σ′, η′, true)).

If x = (P ′, σ′, η′, b) ∈ D∁K ∪ U , we have step(f(x)) = step(P ′|σ′|η′) =
f(L(x)) = f(M(x)). Hence, for all x ∈ Ω we have that step(f(x)) =
f(M(x)). Also, it holds for all states P ′|σ′|η′ that g(step(P ′|σ′|η′)) =
K(g(P ′|σ′|η′)). Let f and g denote the deterministic kernels λx. δ(fx) and

42

1.11. Fundamental Properties of the Language

λx. δ(gx), respectively. We calculate as follows:

JE[P]|σ|ηK = lim
n
(↓Val ◦ step

n)(f(g(P |σ|η)))

= lim
n
(↓Val ◦ f ◦M

n)(g(P |σ|η))

= f ◦ lim
n
(↓V ◦M

n)(g(P |σ|η))

(1.49)
= f ◦ (lim

n
(↓V ◦ L

n)) ◦ (lim
n
(↓U ◦K

n)) (g(P |σ|η))

= lim
n
(↓Val ◦ f ◦ L

n) ◦ lim
n
(↓U ◦ g ◦ step

n) (P |σ|η)

= lim
n
(↓Val ◦ step

n) ◦ f ◦ g ◦ lim
n
(↓Val ◦ step

n) (P |σ|η)

= (λ(V ′|σ′|η′).
q
E[V ′]|σ′|η′

y
) · JP |σ|ηK

The following lemma follows:

Lemma 1.50. J(λP ′)P |σ|ηK = (λ(V ′|σ′|η′). JP ′{V ′/0}|σ′|η′K) · JP |σ|ηK I.330, p.140

1.11.4 The CIU Theorem

Establishing observational equivalence of two programs P1 and P2 can be
difficult in general. Since it is defined using an arbitrary context C it is
challenging to argue about all possible interactions of C with P1 and P2.
Following the ideas of [93], we can show that it suffices to only consider
evaluation contexts E for all closing instantiations of P1 and P2’s variables
in order to show their observational equivalence.

The Instantiation Operation

Definition 1.51 (Instantiation Operation). Given a program P and a list I.416, p.152
of values v, we define the instantiation of P ’s variables with v, written P v,
recursively as

P [] def
= P

P V ::v def
= (P v){V /0}.

This operation has several interesting properties. For example, since
the list v contains only values, the instantiation V v is also a value for all I.418, p.152
values V . Hence it follows that for programs P and values V , the program
((λP)V)v reduces to (P{V /0})v.

Lemma 1.52. Given a program P , a value V , a store σ, an event list η, I.422, p.152
and a list of values v, it holds that ((λP)V)v|σ|η δ((P{V /0})v|σ|η).

If the instantiation P v contains no free variables, then the instantiation
operation is idempotent. This also holds, if the instantiation is performed
in combination with substitution:

43

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

Lemma 1.53. Let P and P ′ be programs and let v be a list of values. If P vI.423, p.152
contains no free variables, then it holds (P ′{P v/0})v = (P ′{P/0})v.

Given fully closed states P v
1 |σ|η and P v

2 |σ|η, it is possible to construct a
list of values v′ that yields the same instantiations for P and Q, but contains
only values without free variables and without locations ≥ |σ|.

Lemma 1.54. Assume programs P1, P2, a store σ, an event list η, and aI.428, p.153
list of values v, such that P v

1 |σ|η and P v
2 |σ|η are fully closed. Then there

exists a list of values v′ for which P v
1 = P v′

1 and P v
2 = P v′

2 such that v′

contains no free variables and no locations locn with n ≥ |σ|.

Proof. We prove this by induction over v. The case v = [] is trivial, so let v =

vs@[V] where P
vs@[V]
1 |σ|η and P

vs@[V]
2 |σ|η are fully closed. Since P

vs@[V]
1 =

(P1{V /0})vs and P
vs@[V]
2 = (P2{V /0})vs , we can assume by induction that

(P1{V /0})vs = (P1{V /0})vs
′

and (P2{V /0})vs = (P2{V /0})vs
′

for some list of
closed values vs ′ without locations ≥ |σ|.

If var 0 /∈ FV(P1) ∪ FV(P2), then the substitution operation on P1 and
P2 is independent on the value that it substitutes with. In particular, it
holds P1{V /0} = P1{value unit/0} and P2{V /0} = P2{value unit/0}. SinceI.112, p.119
value unit is closed and contains no locations, we set v′ def= vs ′@[value unit]. It
holds P v

1 = (P1{V /0})vs = (P1{V /0})vs
′

= (P1{value unit/0})vs
′

= P v′
1 and

analogously for P2 it holds P v
2 = P v′

2 .

If var 0 ∈ FV(P1) ∪ FV(P2), we know that V occurs in P1{V /0} or in
P2{V /0}. Since both terms contain no locations ≥ |σ|, value V also contains
no locations ≥ |σ|. Likewise, because (P1{V /0})vs

′

and (P2{V /0})vs
′

contain
no free variables, value V does not contain free variables ≥ |vs ′|. Therefore
V vs′ contains no free variables and no locations ≥ |σ|. We set v′ def= vs ′@[V vs′].

Thus P v
1 = (P1{V /0})vs = (P1{V /0})vs

′ (∗)
= (P1{V vs′/0})vs

′

= P v′
1 , where (∗)

follows from Lemma 1.53.

Given a list of values v, we can construct a substituting context Cv which,
when inserted a program P , instantiates the variables of P with v when
reducing Cv[P]. We define Cv recursively as

C[]
def
=�I.417, p.152

CV ::v
def
=(λCv)V.

When reducing Cv[P], each step substitutes one de Bruijn index accord-
ing to the rule Beta of the relation (Figure 1.18). Therefore, Cv[P]
reduces eventually to P v. In particular, we can show that the denotation
JCv[P]|σ|ηK equals the denotation JP v|σ|ηK. We can combine this result withI.424, p.152
Lemma 1.54. Given fully closed states P v

1 |σ|η and P v
2 |σ|η, there is a corre-

sponding list of values v′ for which the states Cv′ [P1]|σ|η and Cv′ [P2]|σ|η are
also fully closed:

44

1.11. Fundamental Properties of the Language

Lemma 1.55. Assume programs P1, P2, a store σ, an event list η, and a I.429, p.153
list of values v, such that P v

1 |σ|η and P v
2 |σ|η are fully closed. Then there

exists a list of values v′ for which Cv′ [P1]|σ|η and Cv′ [P2]|σ|η are fully closed,
JCv′ [P1]|σ|ηK = JP v

1 |σ|ηK, and JCv′ [P2]|σ|ηK = JP v
2 |σ|ηK.

CIU Equivalence

We call two programs CIU equivalent,3 if no evaluation context can distin-
guish closed instantiations of the programs.

Definition 1.56 (CIU Equivalence). Let P1 and P2 be programs. We call I.461, p.157
P1 and P2 CIU equivalent, iff for all evaluation contexts E, all stores σ,
all event lists η, and all lists of closed values v without locations locn with
n ≥ |σ|, the following holds: If the program states E[P v

1]|σ|η and E[P v
2]|σ|η

are fully closed, then JE[P v
1]|σ|ηK (Ω) = JE[P v

2]|σ|ηK (Ω) where Ω is the set
of all program states. We write P1 ≈ciu P2 to denote that programs P1 and
P2 are CIU equivalent.

CIU equivalence is much easier to handle than observational equivalence
(Definition 1.34). Nevertheless, CIU equivalent programs are also observa-
tionally equivalent, as we will see later. To demonstrate the practicability of
the CIU equivalence, assume two programs P1 and P2 that are denotation-
ally equivalent for all lists of values and states that close them. It is easy to
verify that P1 and P2 are CIU equivalent as stated by the following lemma.

Lemma 1.57. Let P1 and P2 be programs. Assume that for all lists of I.490, p.160
values v, stores σ, and event lists η such that P v

1 |σ|η and P v
2 |σ|η are fully

closed it holds JP v
1 |σ|ηK = JP v

2 |σ|ηK. Then it holds P1 ≈ciu P2.

Proof. Let v be a list of values, σ a store, and η an event list such that
E[P v

1]|σ|η and E[P v
2]|σ|η are fully closed. Using Theorem 1.48 it holds

JE[P v
1]|σ|ηK = f · JP v

1 |σ|ηK = f · JP v
2 |σ|ηK = JE[P v

2]|σ|ηK ,

where f def
=λ(V ′|σ′|η′). JE[V ′]|σ′|η′K. Hence P1 and P2 are CIU equivalent.

The following theorem states that CIU equivalence implies observational
equivalence. It plays a central role when proving the observational equiva-
lence of programs.

Theorem 1.58 (CIU Theorem). Let P1 and P2 be programs. The CIU I.489, p.160
equivalence P1 ≈ciu P2 implies the observational equivalence P1 ≈obs P2.

3In [93] the acronym CIU stands for “all closed instantiations of all uses.”

45

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

1.11.5 Proof of the CIU Theorem

In this section we will prove the CIU Theorem 1.58. The proof follows the
ideas of [93] with some extensions to cope with the probabilistic nature of
our language. [93] performs an induction over the length of the computation
of a terminating program. For probabilistic programs, this length is not
necessarily bounded.

We introduce the following notation: T (P |σ|η) denotes the probabil-
ity that the program state P |σ|η terminates, i.e., we define T (P |σ|η) def

=
JP |σ|ηK (Val), where Val is the set of all value states. By Tn(P |σ|η) we de-
note the probability of termination after n steps, i.e., we define Tn(P |σ|η)

def
=

stepn(P |σ|η)(Val). Moreover, we define the following asymmetric variants of
observational equivalence and CIU equivalence where the left term is allowed
to have a smaller probability of termination than the right term.

Definition 1.59 (Observational Approximation). Let P1 and P2 be programI.337, p.141
terms. Then P1 �obs P2, iff for all contexts C, stores σ, and event lists η
such that C[P1]|σ|η and C[P2]|σ|η are fully closed it holds T (C[P1]|σ|η) ≤
T (C[P2]|σ|η).

Definition 1.60 (CIU Approximation). Let P1 and P2 be programs. ThenI.460, p.156
P1 �ciu P2, iff for all evaluation contexts E, all stores σ, all event lists
η, and all lists of closed values v without locations locn with n ≥ |σ|, the
following holds: If the program states E[P v

1]|σ|η and E[P v
2]|σ|η are fully

closed, then T (E[P v
1]|σ|η) ≤ T (E[P v

2]|σ|η).

It is easy to see that we can express observational and CIU equivalence
using their respective approximate variants:

Lemma 1.61. Let P1 and P2 be programs. Then P1 ≈obs P2, iff P1 �obs P2I.338, p.141
and P2 �obs P1.

Lemma 1.62. Let P1 and P2 be programs. Then P1 ≈ciu P2, iff P1 �ciu P2I.462, p.157
and P2 �ciu P1.

Proof Outline

In order to prove the CIU Theorem 1.58, we are going to prove that P1 �ciu

P2 implies P1 �obs P2. On a high level, the proof works as follows: First we
generalize the notion of program terms in order to define a set of conditions
we call a CIU counterexample. We show that such a CIU counterexample
must exist, if P1 �ciu P2 but not P1 �obs P2. Then we proceed by showing
that each CIU counterexample can be transformed into a smaller one with
respect to a well-founded order relation. This implies that CIU counterex-
amples cannot exist as the well-foundedness would also require the existence
of minimal CIU counterexamples.

46

1.11. Fundamental Properties of the Language

Generalized Terms

The definition of observational equivalence considers arbitrary contexts C
whereas CIU equivalence is defined using evaluation contexts where the hole
� can only appear at positions that will be evaluated first. When evaluating
the term C[P], the program P may be subject to a sequence of substitution
and lift operations before it is evaluated. In order to relate observational and
CIU equivalence, we need a way to track these operations that happen at the
positions of the holes in C while evaluating C[P]. The problem is that the
term C[P] contains no holes any more and thus the position information has
been lost. Therefore, we generalize the notion of programs by introducing
a new symbol εȧ which plays a similar role as a hole � in contexts, but is
additionally annotated with a list ȧ consisting of pending substitution and
lift operations. For readability, generalized terms will always by marked
with a dot on top. Similar to a hole � in contexts, we can replace all εȧ

that occur in a generalized Ċ with a program P , written Ċ[P/ε]. This has
the additional effect of applying the annotated operations ȧ to P . We will
now give the generalized definitions of programs, values, redexes, contexts,
evaluation contexts, and stores, as well as the recursive definition of the
ε-insertion operation Ċ[P/ε].

Definition 1.63 (Generalized Terms). The sets of generalized programs I.394, p.146
Ṗ , of generalized instantiations ȧ, and of generalized values V̇ are defined
mutually inductively as follows:

• The set of generalized programs Ṗ is defined inductively by the same
introduction rules as programs, except that the rules refer to generalized
programs instead of programs plus the following rule:

ȧ is a generalized instantiation

εȧ ∈ Ṗ

where ε is a special symbol.

• A generalized instantiation ȧ is a list with entries of the form {V̇ /k}
and ↑k where k ∈ N and V̇ is a generalized value.

• The set of generalized values V̇ is defined inductively by the same
introduction rules as values, except that the rules refer to generalized
programs and generalized values instead of programs and values.

Definition 1.64 (Generalized Contexts). The set of generalized contexts I.395, p.147
Ċ is defined inductively by the same introduction rules as contexts, except
that the rules refer to generalized contexts instead of contexts plus the fol-
lowing rule:

ȧ is a generalized instantiation

εȧ ∈ Ċ

47

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

Definition 1.65 (Generalized Evaluation Contexts). The set of general-I.396, p.147
ized evaluation contexts Ė is defined inductively by the same introduction
rules as the set of evaluation contexts, except that the rules refer to gen-
eralized evaluation contexts, generalized programs, and generalized values
instead of evaluation contexts, programs, and values.

Definition 1.66 (Generalized Redexes). The set of generalized redexes ṘI.397, p.148
is defined inductively by the same introduction rules as the set of redexes,
except that the rules refer to generalized values instead of values.

Definition 1.67 (Generalized Store). A generalized store σ̇ is a list of
generalized values.

Definition 1.68 (ε-Insertion). Given a generalized term Ċ and a programI.403, p.149
P , we recursively define Ċ[P/ε] by the rules

ε[][P/ε]
def
= P

ε{V̇ /k}::ȧ[P/ε]
def
=

(
εȧ[P/ε]

)
{V̇ [P/ε]/k}

ε↑k::ȧ[P/ε]
def
= ↑k(ε

ȧ[P/ε]),

and for all other generalized terms Ċ, Ċ[P/ε] recursively descends into the
subterms (E.g., (Ċ1Ċ2)[P/ε]

def
= (Ċ1[P/ε])(Ċ2[P/ε])). For generalized stores

σ̇ and event lists η, we define σ̇[P/ε] element-wise and (Ċ, σ̇, η)[P/ε] as
(Ċ[P/ε] | σ̇[P/ε] | η). For generalized instantiation ȧ, we define ȧ[P/ε] byI.437, p.154

[][P/ε]
def
= []

(↑k::ȧ)[P/ε]
def
= ↑k::(ȧ[P/ε])

({V̇ /k}::ȧ)[P/ε]
def
= {V̇ [P/ε]/k}::(ȧ[P/ε]).

Furthermore we extend the definitions of the lift operator ↑k and the
substitution operator {·/k} to generalized terms. For ε-terms, these oper-
ators simply add their respective operation to the annotated generalized
instantiation:

↑kε
ȧ def
= ε↑k::ȧI.405, p.149

εȧ{V̇ /k}
def
= ε{V̇ /k}::ȧI.406, p.150

Note that the extended definitions of these operators fulfill the following
homomorphic properties with respect to ε-insertion:

Lemma 1.69. Given a program term P , generalized terms Ċ and V̇ , and
k ∈ N, it holds

(↑kĊ)[P/ε] = ↑k(Ċ[P/ε])I.410, p.151

(Ċ{V̇ /k})[P/ε] = (Ċ[P/ε]){V̇ [P/ε]/k}I.411, p.151

48

1.11. Fundamental Properties of the Language

Similarly to Definition 1.51, where we introduced the instantiation op-
eration P v for lists of values v, we can define a generalized instantiation
operation Ṗ ȧ for generalized instantiations ȧ as follows: I.407, p.150

Ṗ [] def
= Ṗ

Ṗ ↑k::ȧ def
= ↑kṖ

ȧ

Ṗ {V̇ /k}::ȧ def
= Ṗ ȧ{V̇ /k}

Instantiation Operation P v vs. Generalized Instantiation Ṗ ȧ

There is a close connection between the instantiation operation P v for lists
of values v and the generalized instantiation operation Ṗ ȧ for generalized
instantiations ȧ. For example, we can transform a list of values v into a gen-
eralized instantiation v̇ by mapping each V in v to the entry {V /0}. In this I.435, p.154
case it is easy to see that P v̇ = P v for arbitrary programs P . The converse di- I.436, p.154
rection is also possible, i.e., we can transform generalized instantiations into
corresponding lists of values under certain conditions. This direction is more
complicated, because generalized instantiations can include lift operations
and handle arbitrary de Bruijn indices, for which there is no direct represen-
tation as a list of values. We will now sketch a process that can transform
generalized instantiations ȧ into lists of values v such that P v = P ȧ.

One requirement for this process to work is that the generalized instanti-
ation ȧ must not contain ε-terms, because such terms do not exist in normal
programs and hence cannot be represented as a value. We call a general-
ized instantiation ȧ a programterm instantiation, if for all entries of ȧ of the I.430, p.153
form {V̇ /k} it holds that V̇ is a non-generalized program, i.e., it contains no
ε-terms. Note that for programterm instantiations ȧ it holds εȧ[P/ε] = P ȧ. I.434, p.154
Also note that ȧ[P/ε] (see Definition 1.68) is a programterm instantiation I.447, p.155

and it holds that εȧ[P/ε] = P ȧ[P/ε]. I.449, p.155

There is another requirement for the transformation of a programterm
instantiation ȧ to a list of values v such that P v = P ȧ. Namely, we require
P ȧ to have no free variables. In this case we can construct a programterm
instantiation ȧc that contains no free variables, i.e., for all substitution en-
tries {V /k} in ȧc, it holds FV(V) = {}. Such programterm instantiations
are called closed instantiations. I.431, p.153

We construct ȧc as follows: Note that the leftmost substitution operation
{V /k} in ȧ is performed last when computing P ȧ. Since P ȧ has no free
variables, the value V in the leftmost substitution operation must also be
closed.4 Now we employ the following trick: Analogously to Lemma 1.15
there are rules to swap the ordering of consecutive elements in the list ȧ
without changing P ȧ. Therefore we can push {V /k} towards the right end of I.438, p.154

4If var k is not free in P , then V is not necessarily closed, but in this case we can simply
drop the operation {V /k} completely, as it has no effect.

49

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

the list. During this process the value V is substituted into other elements in
the list and we finally obtain a new leftmost substitution operation {V ′/k′}
which, for the same reason as before, must also be closed. We apply this
process repeatedly until all the substitution operations have been closed.I.442, p.154
The result is the closed instantiation ȧc. Since the reordering of the list doesI.453, p.156
not change the result of the instantiation, we can show that P ȧc = P ȧ.I.451, p.155

Starting from this closed instantiation ȧc, we again reorder the instanti-I.443, p.155
ation using rules as in Lemma 1.15. This time we sort the list such that liftI.444, p.155
operations only occur at the beginning of the list and for consecutive substi-I.457, p.156
tution operations {V /k}, {V

′/k′} we have that k ≥ k′. We call instantiations
with such an ordering normalized instantiations. As before, we can showI.433, p.154
that the instantiation ȧn we obtain from this reordering fulfills P ȧn = P ȧc .I.455, p.156

We will now see how to transform closed, normalized instantiations ȧn
into lists of values v such that P v = P ȧn . Note that the list ȧn is ordered such
that, when computing P ȧn , smaller de Bruijn indices are substituted first.
The same happens when a non-generalized instantiation P v is evaluated.
Here we always substitute the index 0 which causes higher indices in P to
be decreased by one in each step. We can exploit this decrease in order
to emulate the first substitution operation {V /k} by using a sequence of
k dummy values: Let uk be the list consisting of the k-times repetition
of value unit , then the list of values V ::uk instantiates var k with V when
computing P V ::uk

. Similarly, we insert between consecutive substitution
operations {V /k}, {V

′/k′} the list uk−k
′

. The result is a list of values v forI.445, p.155
which P v = P ȧn .I.458, p.156

We finally combine the steps that we outlined above with Lemma 1.54 in
order to show that, given a fully closed state, we can transform programterm
instantiations into lists of values without free variables and without locations
outside the store.

Lemma 1.70. Assume programs P1, P2, a store σ, an event list η, and aI.459, p.156
programterm instantiation ȧ (i.e., elements of ȧ contain no ε-terms), such
that P ȧ

1 |σ|η and P ȧ
2 |σ|η are fully closed. Then there exists a list of values v

for which P v
1 = P ȧ

1 and P v
2 = P ȧ

2 such that v contains no free variables and
no locations locn with n ≥ |σ|.

CIU Counterexamples

We will now define the notion of a CIU counterexample. It consists of a set
of conditions that can be fulfilled, if for two programs P1 and P2 it holds
that P1 �ciu P2, but not P1 �obs P2. The main idea is that in this case we
can find a generalized program Ċ and an n ∈ N for which the probability of
termination of program Ċ[P1/ε] after n steps is higher than the probability
of termination of program Ċ[P2/ε] after arbitrarily many steps. We use this
fact to construct a contradiction as follows: We show that we can always

50

1.11. Fundamental Properties of the Language

find a smaller CIU counterexample that uses an n′ < n or a Ċ ′ containing
less not λ-protected ε-terms. Since this ordering on CIU counterexamples is
well-founded, this leads to a contradiction. As a side condition, we require
all ε-terms to fulfill the following closedness condition:

Definition 1.71 ([S/ε]-closed). Given a generalized program term Ċ, a I.464, p.157
generalized store σ̇, and a set of program terms S, the pair (Ċ, σ̇) is called
[S/ε]-closed, iff for every P ∈ S and for every subterm of Ċ and σ̇ of the
form εȧ it holds that for every entry in ȧ of the form {V̇ /k} we have that
V̇ [P/ε] is closed and does not contain locations locn with n ≥ |σ|.

Definition 1.72 (CIU Counterexample). Given programs P1 and P2, a I.466, p.158
generalized program Ċ, a generalized store σ̇, an event list η, and an n ∈ N,
the tuple (P1, P2, Ċ, σ̇, η, n) is called a CIU counterexample, iff

• P1 �ciu P2,

• Tn

(
(Ċ, σ̇, η)[P1/ε]

)
> T

(
(Ċ, σ̇, η)[P2/ε]

)
,

• (Ċ, σ̇, η)[P1/ε] and (Ċ, σ̇, η)[P2/ε] are fully closed, and

• (Ċ, σ̇) is [{P1, P2}/ε]-closed.

We call a CIU counterexample minimal, iff (n,#εĊ) is minimal with respect I.467, p.158
to the lexicographic order on N × N. Here, #εĊ denotes the number of I.409, p.151
occurrences of ε-terms in Ċ that are not inside a λ-abstraction.

Lemma 1.73. If there are program terms P1 and P2 such that P1 �ciu P2 I.468, p.158
but not P1 �obs P2, then there exists a CIU counterexample.

Proof. Since not P1 �obs P2, there exists a context C, a store σ and an event
list η such that C[P1]|σ|η and C[P2]|σ|η are fully closed and T (C[P1]|σ|η) >
T (C[P2]|σ|η). Since T (C[P1]|σ|η) = limn Tn(C[P1]|σ|η), there exists an n
such that Tn(C[P1]|σ|η) > T (C[P2]|σ|η). Therefore (P1, P2, C[ε[]], σ, η, n) is
a CIU counterexample.

Given a CIU counterexample (P1, P2, Ċ, σ̇, η, n), note that Ċ cannot be
a generalized value, as in this case Ċ[P2/ε] would be a value which im-
plies T ((Ċ, σ̇, η)[P2/ε]) = 1 in contradiction to the second condition of
Definition 1.72. Therefore we can use the following lemma to distinguish
two cases where Ċ is split into a generalized evaluation context Ė and a gen-
eralized redex Ṙ or into a generalized evaluation context Ė and an ε-term.

Lemma 1.74. Any generalized program term that is not a generalized value I.414, p.151
can be written as Ė[Ṗ] where Ė is a generalized evaluation context and Ṗ is
either a generalized redex or of the form εȧ for some generalized instantia-
tion ȧ.

51

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

We will show that in both cases we can find a smaller CIU counterexam-
ple according to the lexicographic order presented in Definition 1.72. First
we consider the case where Ċ can be split into a generalized evaluation con-
text Ė and a generalized redex Ṙ. We will show that in this case we can
find a smaller CIU counterexample as follows: By reducing (Ċ, σ̇, η)[P1/ε]
and (Ċ, σ̇, η)[P2/ε] one step we can obtain a generalized program term Ċ ′ for
which the second condition of Definition 1.72 is already fulfilled after n− 1
steps. For this argument to work, we need to show that the step relation
preserves the properties of a CIU counterexample. In particular, such a Ċ ′

can only exist, if the ε-insertion of P1 and P2 can be factored out of the
distributions resulting from reducing (Ċ, σ̇, η)[P1/ε] and (Ċ, σ̇, η)[P2/ε]. This
property is captured by the definition of CIU uniformity.

Definition 1.75 (CIU Uniformity). We call a triple (Ċ, σ̇, η) uniform, iffI.469, p.158
there is a distribution µ̇ such that

• for all programs P we have step((Ċ, σ̇, η)[P/ε]) = µ̇[P/ε],

• if Ċ is a generalized program and σ̇ is a generalized store, then for
almost all (Ċ ′, σ̇′, η′) ∈ µ̇ it holds that Ċ ′ is generalized program and
σ̇′ is a generalized store, and

• for all sets of programs S, it holds that, if (Ċ, σ̇) is [S/ε]-closed and for
all P ∈ S, (Ċ, σ̇, η)[P/ε] is fully closed, then for almost all (Ċ ′, σ̇′, η′) ∈
µ̇, it holds that (Ċ ′, σ̇′) is [S/ε]-closed and |σ̇′| ∈ {|σ̇| , |σ̇|+ 1}.

Lemma 1.76. Assume that Ė is a generalized evaluation context and Ṙ isI.482, p.159
a generalized redex. Then (Ė[Ṙ], σ̇, η) is uniform.

Proof. We first show that (Ṙ, σ̇, η) is uniform. By Definition 1.66 of redexes,
Ṙ has one of the following forms: V̇1V̇2, fun(f, V̇), ref V̇ , !V̇ , V̇1 := V̇2, event s,
eventlist, fst V̇ , snd V̇ , case V̇1 V̇2 V̇3, or unfold V̇ . We examine the two cases
of Ṙ = V̇1V̇2 and Ṙ = fun(f, V̇). The other cases are analogous and have
also been verified using Isabelle.

• Considering Ṙ = V̇1V̇2, we distinguish the two cases V̇1 = λĊ1 andI.471, p.158
V̇1 6= λĊ1. In case V̇1 = λĊ1, Lemma 1.69 implies that for any
program P , any generalized store σ̇ and any event list η, it holds
that step((V̇1V̇2, σ̇, η)[P/ε]) = δ(Ċ1{V̇2/0}, σ̇, η)[P/ε]. Furthermore,
Ċ1{V̇2/0} is a generalized program, if Ċ1 and V̇2 are generalized pro-
grams. Also, assuming that (V̇1V̇2, σ̇, η)[P/ε] is fully closed for all
P ∈ S and that (V̇1V̇2, σ̇) is [S/ε]-closed, we substitute with the closed
term V̇2[P/ε] and (Ċ1{V̇2/0}, σ̇) is [S/ε]-closed, too. If V̇1 6= λĊ1,
then the evaluation is stuck and for any program P , it holds that
step((V̇1V̇2, σ̇, η)[P/ε]) = δ(V̇1V̇2, σ̇, η)[P/ε] and the other conditions in
Definition 1.75 hold trivially.

52

1.11. Fundamental Properties of the Language

• In case Ṙ = fun(f, V̇), since V̇ is a generalized value, so is V̇ [P/ε] I.470, p.158
for any program P . If V̇ contains an ε, then (as V̇ is a generalized
value) it necessarily contains a λ-abstraction. Thus V̇ [P/ε] contains a
λ-abstraction and is not a pure value. If V̇ contains no ε and is not a
pure value, then V̇ [P/ε] = V̇ is not a pure value. If V̇ contains no ε and
is a pure value, then V̇ [P/ε] = V̇ is a pure value. Thus either V̇ [P/ε]
is a pure value for all programs P or for no program P . If V̇ [P/ε] is
a pure value for no program P , we have step((fun(f, V̇), σ̇, η)[P/ε]) =
δ(fun(f, V̇), σ̇, η)[P/ε] and the other conditions in Definition 1.75 hold
trivially. If V̇ [P/ε] is a pure value for all programs P , we have that
step((fun(f, V̇), σ̇, η)[P/ε]) = ((λx. (x, σ̇, η))(f(V̇)))[P/ε] (Note that in
this case, V̇ is a pure value and thus in the domain of kernel f).

Hence in each case, for all programs P , it holds that step((Ṙ, σ̇, η)[P/ε]) =
µ̇′[P/ε] for some distribution µ̇′. Because Ṙ is not a generalized value and Ė
is a generalized evaluation context, Ṙ[P/ε] is not a value and Ė[P/ε] is an eval-
uation context. Thus from Lemma 1.47 we have step((Ė[Ṙ], σ̇, η)[P/ε]) =
step((Ė[P/ε])[Ṙ[P/ε]], σ̇[P/ε], η) = µ̇[P/ε] where the distribution µ̇ is given
by µ̇ def

=(λ(Ċ, σ̇, η). (Ė[Ċ], σ̇, η)) µ̇′. In order to show that µ̇ is [S/ε]-closed we
use the property that |σ̇′| ∈ {|σ̇| , |σ̇|+ 1} for almost all stores σ̇′ ∈ µ̇′.

Lemma 1.77. Let (P1, P2, Ė[Ṙ], σ̇, η, n) be a CIU counterexample where Ė I.483, p.159
is a generalized evaluation context and Ṙ is a generalized redex. Then there
exists a smaller CIU counterexample (P1, P2, Ċ

′, σ̇′, η′, n− 1).

Proof. Let ḞC denote the set of all (Ċ ′, σ̇′, η) where Ċ ′ is a generalized
program term and σ̇′ is a generalized store such that (Ċ ′, σ̇′, η)[P1/ε] and
(Ċ ′, σ̇′, η)[P2/ε] are fully closed and (Ċ ′, σ̇′) is [{P1, P2}/ε]-closed. Using
Lemma 1.76, we obtain a distribution µ̇ such that step((Ė[Ṙ], σ̇, η)[P/ε]) =
µ̇[P/ε] for all program terms P . Since (P1, P2, Ė[Ṙ], σ̇, η, n) is a CIU coun-
terexample, it furthermore holds for almost all (Ċ ′, σ̇′, η′) ∈ µ̇ that Ċ ′

is a generalized program term, σ̇′ is a generalized store, and (Ċ ′, σ̇′) is
[{P1, P2}/ε]-closed. Also, by Theorem 1.44 we obtain that (Ċ ′, σ̇′, η′)[P1/ε]
and (Ċ ′, σ̇′, η′)[P2/ε] are fully closed for almost all (Ċ ′, σ̇′, η′) ∈ µ̇. Therefore
we obtain that

for almost all (Ċ ′, σ̇′, η′) ∈ µ̇, it holds that (Ċ ′, σ̇′, η′) ∈ ḞC. (1.78)

Since Ṙ is a generalized redex, and Ė is a generalized evaluation con-
text, we have that Ė[P1/ε] and Ṙ[P1/ε] are an evaluation context and a
redex, respectively. Thus (Ė[Ṙ])[P1/ε] is not a value. Therefore, we have
T0((Ė[Ṙ], σ̇, η)[P1/ε]) = 0 and thus n > 0 by Definition 1.72. Thus for

53

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

P ∈ {P1, P2} we have

Tn((Ė[Ṙ], σ̇, η)[P/ε]) =

∫
Tn−1(C|σ|η) d(step((Ė[Ṙ], σ̇, η)[P/ε]))(C|σ|η)

=

∫
Tn−1((Ċ, σ̇, η)[P/ε]) dµ̇(Ċ, σ̇, η)

(1.78)
=

∫

ḞC
Tn−1((Ċ, σ̇, η)[P/ε]) dµ̇(Ċ, σ̇, η) (1.79)

and by taking the limit of n on both sides we get

T ((Ė[Ṙ], σ̇, η)[P/ε]) =

∫

ḞC
T ((Ċ, σ̇, η)[P/ε]) dµ̇(Ċ, σ̇, η) (1.80)

Assume that for all (Ċ ′, σ̇′, η′) ∈ ḞC we have Tn−1((Ċ
′, σ̇′, η′)[P1/ε]) ≤

T ((Ċ ′, σ̇′, η′)[P2/ε]). By (1.79) and (1.80), it holds Tn((Ė[Ṙ], σ̇, η)[P1/ε]) ≤
T ((Ė[Ṙ], σ̇, η)[P2/ε]) which contradicts the fact that (P1, P2, Ė[Ṙ], σ̇, η, n) is
a CIU counterexample.

Thus there is a (Ċ ′, σ̇′, η′) ∈ ḞC such that Tn−1((Ċ
′, σ̇′, η′)[P1/ε]) >

T ((Ċ ′, σ̇′, η′)[P2/ε]). Hence (P1, P2, Ċ
′, σ̇′, η′, n−1) is a CIU counterexample.

Now we consider the case where Ċ can be split into a generalized evalu-
ation context Ė and an ε-term εȧ for some generalized instantiation ȧ. We
will see that in this case we can also find a smaller CIU counterexample.
For this, we consider the term Ḋ def

= Ė[P ȧ
1] and show that (P1, P2, Ḋ, σ̇, η, n)

is also a CIU counterexample. If P1 is a value, this is already a smaller
CIU counterexample, as then #εP

ȧ
1 = 0 and hence #εḊ < #εĊ. If P1 is

not a value, then Ḋ can be split into a generalized evaluation context and
a generalized redex and we can use Lemma 1.77 to obtain a smaller CIU
counterexample.

Lemma 1.81. Let (P1, P2, Ċ, σ̇, η, n) be a CIU counterexample where Ċ =I.485, p.159
Ė[εȧ] for some generalized evaluation context Ė and some generalized in-
stantiation ȧ. Then there exists a CIU counterexample (P1, P2, Ċ

′, σ̇′, η′, n′)
where n′ < n or n′ = n ∧#εĊ

′ < #εĊ.

Proof. Let X def
=(P1, P2, Ċ, σ̇, η, n). Since X is a CIU counterexample, it

holds that (Ċ, σ̇, η)[P1/ε] and (Ċ, σ̇, η)[P2/ε] are fully closed and (Ċ, σ̇) is
[{P1, P2}/ε]-closed. Thus, in P1, P2, Ċ, and σ̇, no locations loc l with l ≥ |σ̇|

occur. Furthermore Ė, P
ȧ[P1/ε]
1 , P

ȧ[P2/ε]
2 , and σ̇ contain no free variables.

Since (Ċ, σ̇) is [{P1, P2}/ε]-closed, ȧ[P1/ε] and ȧ[P2/ε] substitute only with
closed values. Therefore both instantiations substitute the same indices with

closed values, and hence P
ȧ[P2/ε]
1 contains no free variables as well.I.484, p.159

Thus (P
ȧ[P2/ε]
1 | σ̇[P2/ε] | η) and (P

ȧ[P2/ε]
2 | σ̇[P2/ε] | η) are fully closed.

Since ȧ[P2/ε] is a programterm instantiation, we can use Lemma 1.70 to

54

1.11. Fundamental Properties of the Language

obtain a list v of closed values without locations loc l with l ≥ |σ̇| such that

P
ȧ[P2/ε]
1 = P v

1 and P
ȧ[P2/ε]
2 = P v

2 .
Thus (Ė[P v

1], σ̇, η)[P2/ε] and (Ė[P v
2], σ̇, η)[P2/ε] are fully closed and since

P1 �ciu P2 we obtain T ((Ė[P v
1], σ̇, η)[P2/ε]) ≤ T ((Ė[P v

2], σ̇, η)[P2/ε]) and
hence

T (Ė[P2/ε][P
ȧ[P2/ε]
1] | σ̇[P2/ε] | η) ≤ T (Ė[P2/ε][P

ȧ[P2/ε]
2] | σ̇[P2/ε] | η).

(1.82)

Consider the term Ḋ def
= Ė[P ȧ

1]. Note that Ḋ[P1/ε] = Ċ[P1/ε] and Ḋ[P2/ε] =

Ė[P2/ε][P
ȧ[P2/ε]
1]. Then it holds

Tn((Ḋ, σ̇, η)[P1/ε])

= Tn((Ċ, σ̇, η)[P1/ε])
(∗)

> T ((Ċ, σ̇, η)[P2/ε])

= T (Ė[P2/ε][P
ȧ[P2/ε]
2] | σ̇[P2/ε] | η)

(1.82)

≥ T (Ė[P2/ε][P
ȧ[P2/ε]
1] | σ̇[P2/ε] | η)

= T ((Ḋ, σ̇, η)[P2/ε])

where (∗) holds because X is a CIU counterexample.
Since Ḋ contains no new ε-terms, (Ḋ, σ̇) is [{P1, P2}/ε]-closed. Further-

more (Ḋ, σ̇, η)[P1/ε] and (Ḋ, σ̇, η)[P2/ε] are fully closed, and hence Y def
=

(P1, P2, Ḋ, σ̇, η, n) is a CIU counterexample. To finish the proof we consider
the following two cases:

• If P1 is a value, then P ȧ
1 is a generalized value and hence #εP

ȧ
1 = 0. I.412, p.151

Therefore we have #εḊ = #εĖ[P ȧ
1] < #εĖ[εȧ] = #εĊ. Thus Y is a

smaller counterexample than X.

• If P1 is not a value, then P1 = E1[R1] where E1 is an evaluation context
and R1 is a redex. Then Eȧ

1 is a generalized evaluation context and
Rȧ

1 is a generalized redex. Hence, by Lemma 1.77, there is a smaller
CIU counterexample (P1, P2, Ċ

′, σ̇′, η′, n− 1).

Lemma 1.83. There is no minimal CIU counterexample. I.486, p.159

Proof. For contradiction, let X = (P1, P2, Ċ, σ̇, η, n) be a minimal CIU coun-
terexample. If Ċ is a generalized value then Ċ[P2/ε] is a value and thus
Tn((Ċ, σ̇, η)[P1/ε]) ≤ 1 = T ((Ċ, σ̇, η)[P2/ε]), which contradicts the fact that
X is a CIU counterexample.

Therefore Ċ is not a generalized value and using Lemma 1.74, Ċ = Ė[Ṗ]
where Ė is a generalized evaluation context and Ṗ is either a generalized
redex or Ṗ = εȧ for some generalized instantiation ȧ.

55

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

If Ṗ is a generalized redex, using Lemma 1.77 we obtain a smaller coun-
terexample which contradicts the minimality of X.

Likewise, if Ṗ = εȧ for some generalized instantiation ȧ, by Lemma 1.81
there also exists a smaller counterexample which contradicts the minimality
of X.

Using the previous Lemma 1.83 and Lemma 1.73 it is straightforward to
prove the following theorem:

Theorem 1.84. Let P1 and P2 be programs. If P1 �ciu P2, then P1 �obs P2.I.488, p.159

Proof. Assume for contradiction that P1 �ciu P2 but not P1 �obs P2, then
by Lemma 1.73 there exists a CIU counterexample. Since the lexicographic
order on CIU counterexamples from Definition 1.72 is well-founded, there
also exists a minimal CIU counterexample. This contradicts Lemma 1.83.I.487, p.159

Proving the CIU Theorem 1.58 is now straightforward. It follows directly
from Theorem 1.84 and the lemmas 1.61 and 1.62.

1.12 Program Transformations

Game-based proofs consist of a sequence of games or programs where con-
secutive programs in this sequence are connected by some relation as ob-
servational equivalence or computational indistinguishability. In this sec-
tion we will present a set of rules that can be used to transform programs
into equivalent ones. The rules themselves are based on the observational
equivalence of small concise programs that are matched against subterms
of the game to be transformed. We prove the correctness of the rules by
verifying their corresponding statements of observational equivalence. The
proofs heavily rely on properties of the language that were presented in
Section 1.11, in particular the chaining rule for denotations (Theorem 1.48)
and the CIU Theorem 1.58.

1.12.1 Using ≈obs to Transform Programs

In a typical step of a game-based proof, we need to establish the observa-
tional equivalence of two programs, or games, G1 and G2. In order to show
G1 ≈obs G2, we can transform the games in an observationally equivalent
manner, e.g., game G1 into G′1, given that G1 ≈obs G

′
1. This leaves us with

the, hopefully easier, task of proving the equivalence G′1 ≈obs G2. We call
rules of the following form program transformations:

G′1 ≈obs G′2

G1 ≈obs G2

56

1.12. Program Transformations

Program transformations are usually based on the observational equiv-
alence of small concise programs by exploiting the composability of ≈obs

(Lemma 1.36). For example, given the equivalence P ≈obs P ′, we can eas-
ily construct the following transformations for arbitrary contexts C and
games G:

C[P ′] ≈obs G

C[P] ≈obs G

G ≈obs C[P ′]

G ≈obs C[P]

These transformations allow us to match a subterm of a game against pro-
gram P and to replace it with the program P ′. This process can be further
simplified by using context functions (Definition 1.31) instead of contexts,
as this allows us to take advantage of Isabelle’s unification machinery to
automatically infer the context function and to match the program P .

Since statements of observational equivalence and program transforma-
tions are so closely related, in the following we will only present the observa-
tional equivalences and omit their corresponding program transformations.

1.12.2 Transformations based on Computation Rules

A useful class of transformations deals with the evaluation of subterms of
a program. For example given a program containing the redex (λP)V , we
would like to replace this redex with the program P{V /0}, i.e., the redex is
replaced with the program it reduces to according to the rule Beta of the
relation (Figure 1.18). This is a valid transformation and the transformed
program is observationally equivalent to the original program containing the
redex (λP)V . We will now present the required steps to prove the validity
of this transformation.

First, we will prove that two programs are observationally equivalent, if
one reduces to the other for all instantiations of their variables. Namely, we
prove the following lemma:

Lemma 1.85 (Observationally Equivalent Reduction). Given two programs I.491, p.160
P and P ′, assume that for all lists of values v, stores σ and event lists η it
holds P v|σ|η δ(P ′v|σ|η). Then it holds P ≈obs P

′.

Proof. Using the CIU Theorem 1.58, it suffices to show that P ≈ciu P ′. In
particular, it suffices to show that for all evaluation contexts E, lists of values
v, stores σ and event lists η it holds JE[P v]|σ|ηK = JE[P ′v]|σ|ηK. Given the
assumption, we can infer from the definition of the denotation that JP v|σ|ηK
and JP ′v|σ|ηK are equal for all lists of values v, stores σ and event lists η.
Using the chaining rule for denotations (Theorem 1.48), we conclude the
proof as follows:

JE[P v]|σ|ηK = (λ(V ′|σ′|η′).
q
E[V ′]|σ′|η′

y
) · JP v|σ|ηK

= (λ(V ′|σ′|η′).
q
E[V ′]|σ′|η′

y
) ·

q
P ′

v
|σ|η

y

=
q
E[P ′

v
]|σ|η

y

57

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

This lemma entails that the programs (λP)V and P{V /0} are observa-
tionally equivalent. Note that the lemma applies, because ((λP)V)v reduces
to (P{V /0})v, as we have seen in Lemma 1.52.

Lemma 1.86 (Beta Transformation). Given a program P and a value V ,I.493, p.160
we have the equivalence (λP)V ≈obs P{V /0}.

This lemma implies the validity of the following transformation: Given a
program containing the redex (λP)V , we can replace the redex with P{V /0}.
The resulting program will be observationally equivalent to the original pro-
gram.

Analogously, we can use Lemma 1.85 to show that, given two values V1

and V2, the programs fst (V1, V2) and V1 are observationally equivalent. Note
that the lemma applies, because for all values V and lists of values v it holds
that V v is also a value, and therefore (fst (V1, V2))

v|σ|η δ(V1
v|σ|η).

Lemma 1.87. Given values V1 and V2, it holds fst (V1, V2) ≈obs V1.I.495, p.160

The corresponding program transformation which replaces the redex
fst (V1, V2) with V1 is already quite useful, as it allows to simplify sub-
terms of a program, but the transformation can still be improved. Con-
sider the program fst (P, V), where V is a value and P is an arbitrary pro-
gram. To evaluate this program, one first evaluates P and whenever one of
its evaluation branches has evaluated to a value V ′ one performs the step
(fst (V ′, V))|σ|η δ(V ′|σ|η). This means that the programs fst (P, V) and
P evaluate to the same distribution. In fact, the programs fst (P, V) and
P are observationally equivalent, which gives us a more general program
transformation, as we only require the second component of the pair to be
a value.

To prove the observational equivalence fst (P, V) ≈obs P , we first prove
a generalized statement which we can reuse to validate similar transforma-
tions as well. We will prove a theorem that uses evaluation contexts to lift
observational equivalence from values V to arbitrary programs P .

Theorem 1.88. Let E1 and E2 be evaluation contexts such that for allI.492, p.160
values V it holds E1[V] ≈obs E2[V]. Then for all programs P it holds
E1[P] ≈obs E2[P].

Proof. Using the CIU Theorem 1.58, it suffices to show the equivalence
E1[P] ≈ciu E2[P]. So let E be an evaluation context, σ a store, η an event
list, and v a list of values without free variables and without locations ≥ |σ|,
such that E[(E1[P])v]|σ|η and E[(E2[P])v]|σ|η are fully closed. To complete
the proof, we need to show JE[(E1[P])v]|σ|ηK (Ω) = JE[(E2[P])v]|σ|ηK (Ω).
Using the chaining rule, we obtain the following two equalities:

JE[(E1[P])v]|σ|ηK (Ω) = (λ(V |σ′|η′).
q
E[Ev

1 [V]]|σ′|η′
y
) · JP v|σ|ηK(Ω)

JE[(E2[P])v]|σ|ηK (Ω) = (λ(V |σ′|η′).
q
E[Ev

2 [V]]|σ′|η′
y
) · JP v|σ|ηK(Ω)

58

1.12. Program Transformations

The right hand sides only differ in the terms Ev
1 [V] and Ev

2 [V]. Therefore, to
show the equality JE[(E1[P])v]|σ|ηK (Ω) = JE[(E2[P])v]|σ|ηK (Ω), it suffices
to show that Ev

1 [V] ≈obs Ev
2 [V], where V is a value and Ev

1 [V], Ev
2 [V],

and V contain no free variables. As before, we use the CIU Theorem and
prove Ev

1 [V] ≈ciu Ev
2 [V]. So let E′ be an evaluation context, σ′ a store,

η′ an event list, and v′ a list of values, such that E′[(Ev
1 [V])v

′

]|σ′|η′ and
E′[(Ev

2 [V])v
′

]|σ′|η′ are fully closed. Note that since Ev
1 [V] and Ev

2 [V] are
closed, the instantiation with v′ has no effect on them. Using Lemma 1.55
let Cv be a substituting context such that Cv[E1[V]]|σ′|η′ and Cv[E2[V]]|σ′|η′

are fully closed, JCv[E1[V]]|σ′|η′K = JEv
1 [V]|σ′|η′K, and JCv[E2[V]]|σ′|η′K =

JEv
2 [V]|σ′|η′K. Using the chaining rule, we conclude the proof as follows:

q
E′[Ev

1 [V]]|σ′|η′
y
(Ω)

= (λ(V ′′|σ′′|η′′).
q
E′[V ′′]|σ′′|η′′

y
) ·

q
Ev

1 [V]|σ′|η′
y
(Ω)

= (λ(V ′′|σ′′|η′′).
q
E′[V ′′]|σ′′|η′′

y
) ·

q
Cv[E1[V]]|σ′|η′

y
(Ω)

= (λ(V ′′|σ′′|η′′).
q
E′[V ′′]|σ′′|η′′

y
) ·

q
Cv[E2[V]]|σ′|η′

y
(Ω)

(since E1[V] ≈obs E2[V])

= (λ(V ′′|σ′′|η′′).
q
E′[V ′′]|σ′′|η′′

y
) ·

q
Ev

2 [V]|σ′|η′
y
(Ω)

=
q
E′[Ev

2 [V]]|σ′|η′
y
(Ω)

Validating the transformation that replaces fst (P, V) with P is now
straightforward. The observational equivalence follows from Theorem 1.88
and Lemma 1.87 by using the evaluation contexts E1 = fst (�, V) and
E2 = �.

Lemma 1.89. Given a program P and a value V , it holds I.496, p.160

fst (P, V) ≈obs P.

Analogously to Lemma 1.89, we can deduce the validity of further trans-
formations. In particular, we can state similar observational equivalences
for the operators snd and unfold and for the case construct.

Lemma 1.90. Given a value V and a program P , it holds I.498, p.160

snd (V, P) ≈obs P.

Lemma 1.91. Given a program P , it holds I.505, p.161

unfold (foldP) ≈obs P.

Lemma 1.92. Given a program P and values V1 and V2, it holds I.501, p.161

case (inlP) V1 V2 ≈obs V1P.

Lemma 1.93. Given a program P and values V1 and V2, it holds I.503, p.161

case (inrP) V1 V2 ≈obs V2P.

59

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

1.12.3 Expression Propagation

In Lemma 1.86 we presented a transformation that is able to reduce pro-
grams according to the rule Beta of the relation (Figure 1.18). It can
transform programs of the form (λP)V by substituting the value V into the
program P , yielding program P{V /0}. This is a very useful transformation,
but it is only able to substitute values. We will now present a transforma-
tion that can, given certain assumptions, transform programs of the form
(λP ′)P by substituting program P into P ′, yielding P ′{P/0}.

Note that we do not require P to be a value. Nevertheless, this general-
ization comes at a cost: The programs (λP ′)P and P ′{P/0} are not observa-
tionally equivalent in general. For instance, program P ′{P/0} may contain
several instances of program P . If this is the case and P has probabilistic
behavior, then different instances might evaluate to different values, whereas
in program (λP ′)P this cannot happen, since program P is evaluated only
once. A similar problem occurs, if P has side-effects which would occur
only once in program (λP ′)P but multiple times in program P ′{P/0}. The
definition of propagatable programs takes these considerations into account.

Definition 1.94 (Propagatable Programs). We call a program P propa-I.512, p.162
gatable, iff for all lists of closed values v such that P v is closed, it either
holds that

• there exists a value V such that for all stores σ and event lists η
such that P v|σ|η is fully closed, it holds that V |σ|η is fully closed and
JP v|σ|ηK = δ(V |σ|η), or

• for all stores σ and event lists η such that P v|σ|η is fully closed, it
holds JP v|σ|ηK = 0.

The first condition in Definition 1.94 handles the considerations we men-
tioned above: It requires the program P to be deterministic without showing
side-effects that affect the store or the event list. The condition requires this
behavior for all instantiations v of the free variables in P . Because this may
include instantiations resulting in an ill-typed program P v, the evaluation of
P v might get stuck. Therefore we cannot require that P v always evaluates
to a value V . The second condition in Definition 1.94 relaxes this require-
ment by allowing P v to not terminate at all. In Lemma 1.96 below we give
two examples of propagatable programs.

The relaxation to non-terminating programs P raises another issue that
can lead to different termination behaviors of (λP ′)P and P ′{P/0}. For
instance, if P does not occur in P ′{P/0} at all, then P ′{P/0} might terminate
while (λP ′)P does not. Therefore in our transformation we require that
P ′{P/0} does not terminate whenever P does not terminate. A manual
proof of this transformation has been prepared in [74]. We will now present
its formal verification in Isabelle/HOL.

60

1.12. Program Transformations

Lemma 1.95 (Expression Propagation). Let P and P ′ be programs such I.513, p.162
that P is propagatable. Assume that for all lists of closed values v, stores σ,
and event lists η such that P v is closed, it holds that, if JP v|σ|ηK = 0 then
also J(P ′{P/0})v|σ|ηK = 0. Then it holds that

(λP ′)P ≈obs P ′{P/0}.

Proof. Using the CIU Theorem 1.58, we will prove (λP ′)P ≈ciu P ′{P/0}.
So let E be an evaluation context, σ a store, η an event list, and v a list
of closed values without locations ≥ |σ|, such that E[((λP ′)P)v]|σ|η and
E[(P ′{P/0})v]|σ|η are fully closed. To complete the proof, we need to show
JE[((λP ′)P)v]|σ|ηK (Ω) = JE[(P ′{P/0})v]|σ|ηK (Ω). Since program P is prop-
agatable, we distinguish two cases:

Case 1: Assume there exists a value V such that for all stores σ′ and event
lists η′ such that P v|σ′|η′ is fully closed, it holds that V |σ′|η′ is fully
closed and JP v|σ′|η′K = δ(V |σ′|η′) = JV |σ′|η′K. Using Lemma 1.57 and
the CIU Theorem 1.58, it follows that P v ≈obs V .

Since E[((λP ′)P)v]|σ|η is fully closed, P v|σ|η is fully closed. There-
fore V |σ|η is also fully closed. Together with the fully closedness of
E[(P ′{P/0})v]|σ|η it then follows that (P ′{V /0})v|σ|η is fully closed
and Lemma 1.53 implies that (P ′{P v/0})v|σ|η is fully closed as well.

Therefore Lemma 1.55 applies and there is a substituting context Cv′

such that the states Cv′ [P
′{V /0}]|σ|η and Cv′ [P

′{P v/0}]|σ|η are fully
closed with the property that JCv′ [P

′{V /0}]|σ|ηK = J(P ′{V /0})v|σ|ηK
and JCv′ [P

′{P v/0}]|σ|ηK = J(P ′{P v/0})v|σ|ηK. We conclude as follows:

q
E[((λP ′)P)v]|σ|η

y
Ω

=
(
(λ(V ′|σ′|η′).

q
E[(λP ′)vV ′]|σ′|η′

y
) · JP v|σ|ηK

)
Ω (Theorem 1.48)

=
(
(λ(V ′|σ′|η′).

q
E[(λP ′)vV ′]|σ′|η′

y
) · JV |σ|ηK

)
Ω (by assumption)

=
(
(λ(V ′|σ′|η′).

q
E[V ′]|σ′|η′

y
) ·

q
(λP ′)vV |σ|η

y)
Ω (Theorem 1.48)

=
(
(λ(V ′|σ′|η′).

q
E[V ′]|σ′|η′

y
) ·

q
((λP ′)V)v|σ|η

y)
Ω (V is closed)

=
(
(λ(V ′|σ′|η′).

q
E[V ′]|σ′|η′

y
) ·

q
(P ′{V /0})

v|σ|η
y)

Ω (Lemma 1.52)

=
(
(λ(V ′|σ′|η′).

q
E[V ′]|σ′|η′

y
) ·

q
Cv′ [P

′{V /0}]|σ|η
y)

Ω

=
(
(λ(V ′|σ′|η′).

q
E[V ′]|σ′|η′

y
) · JCv′ [CP ′ [V]]|σ|ηK

)
Ω (Lemma 1.16)

=
(
(λ(V ′|σ′|η′).

q
E[V ′]|σ′|η′

y
) · JCv′ [CP ′ [P v]]|σ|ηK

)
Ω (P v ≈obs V)

=
(
(λ(V ′|σ′|η′).

q
E[V ′]|σ′|η′

y
) ·

q
Cv′ [P

′{P v/0}]|σ|η
y)

Ω (Lemma 1.16)

=
(
(λ(V ′|σ′|η′).

q
E[V ′]|σ′|η′

y
) ·

q
(P ′{P v/0})

v|σ|η
y)

Ω

=
(
(λ(V ′|σ′|η′).

q
E[V ′]|σ′|η′

y
) ·

q
(P ′{P/0})

v|σ|η
y)

Ω (Lemma 1.53)

=
q
E[(P ′{P/0})

v]|σ|η
y
Ω (Theorem 1.48)

61

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

Case 2: Assume it holds JP v|σ|ηK = 0, then by assumption it also holds
J(P ′{P/0})v|σ|ηK = 0 = JP v|σ|ηK. We conclude the lemma as follows:

q
E[((λP ′)P)v]|σ|η

y
(Ω)

= (λ(V ′|σ′|η′).
q
E[(λP ′)vV ′]|σ′|η′

y
) · JP v|σ|ηK

= (λ(V ′|σ′|η′).
q
E[(λP ′)vV ′]|σ′|η′

y
) ·

q
(P ′{P/0})

v|σ|η
y

=
q
E[(P ′{P/0})

v]|σ|η
y
(Ω)

To give an example application of this transformation, consider the fol-
lowing program with free variable x, where the operator fst is applied to x.

(λx′. P ′)(fstx)

We would like to propagate the expression fstx into program P ′. Note
that Lemma 1.86 (the transformation based on rule Beta of the relation)
does not apply here, because fstx is not a value. But assuming that the
preconditions of our new transformation from Lemma 1.95 are fulfilled, we
can propagate the expression fstx into P ′. In fact, we can show that the
expression fstx is propagatable: If x is instantiated with a pair (V1, V2), then
fst (V1, V2)|σ|η evaluates to δ(V1|σ|η). If x is instantiated with any value but
a pair, then the expression fstx is stuck and its denotation is 0. Analogously,
we can also show that the expression sndx is propagatable.

Lemma 1.96. Given an index n ∈ N, the expressions fst (var n) andI.515, p.162
snd (var n) are propagatable.I.516, p.162

1.12.4 Inlining let Statements

Many programs we encounter have a linear structure, i.e., they consist of
a sequence of let statements, where programs Pi are evaluated and their
results are bound to variables xi:

let x1←P1;
x2←P2;
...
xn←Pn

in P

If such a linear program is used inside another program, the overall
structure is not linear anymore. This situation is depicted in the left-hand
side of Figure 1.97. We will now present a program transformation that can
stepwise inline this program into the enclosing one. For this, each step moves
one line from the inner program to the enclosing program until the inner
program has been completely inlined. This inlining process is illustrated in

62

1.12. Program Transformations

let x′1 ←P ′1;

x′2 ← let x1←P1;
x2←P2;
...
xn←Pn

in P ;

...
x′m←P ′m

in P ′

≈obs

let x′1 ←P ′1;
x1 ←P1;

x′2 ← let x2←P2;
...
xn←Pn

in P ;

...
x′m←P ′m

in P ′

≈obs

· · ·

let x′1 ←P ′1;
x1 ←P1;
x2 ←P2;
...
xn ←Pn;
x′2 ←P ;
...
x′m←P ′m

in P ′

Figure 1.97: Illustration of the inlining of let statements.

Figure 1.97, where the program resulting from this inlining transformation
is depicted in the right-hand side.

To prove the validity of this transformation, it is enough to consider the
case where the inner program and the enclosing one only contain a single
line: Using the composability of the observational equivalence (Lemma 1.36),
each step in Figure 1.97 is an instance of the equivalence

let x2 ← (let x1 ← P1 in P2) in P3 ≈obs let x1 ← P1; x2 ← P2 in P3.
(1.98)

Note that the scope of variable x1 differs on both sides of Equation 1.98.
On the right-hand side P3 is in the scope of x1 whereas on the left-hand side
it is not. Because the underlying language uses nameless de Bruijn indices,
the transformation will have to lift the free variables of P3 accordingly in
order to adapt to the changed scope. The following lemma states the validity
of Equation 1.98 in its nameless representation.

Lemma 1.99 (Inlining let Statements). Given programs P1, P2, and P3, I.506, p.161
the following equivalence holds

(λP3) ((λP2) P1) ≈obs (λ(λ ↑1P3) P2) P1.

Proof. We define the evaluation contexts E1
def
=(λP3) ((λP2) �) and E2

def
=

(λ(λ ↑1P3) P2) �. Using Theorem 1.88 we prove the lemma by showing
that E1[V] ≈obs E2[V] for all values V . We apply the Beta Transforma-
tion from Lemma 1.86 on both sides of the equivalence and obtain the goal
(λP3) (P2{V /0}) ≈obs ((λ ↑1P3) P2){V /0}. We have seen in Lemma 1.15 that
the operators ↑k and {·/k} cancel out for equal indices k, and hence it holds
that (↑1P3){V ′/1} = P3 for arbitrary V ′. The lemma follows from

((λ ↑1P3) P2){V /0} = (λ(↑1P3){↑0V /1}) (P2{V /0}) = (λP3) (P2{V /0}).

63

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

1.12.5 Line Swapping

In order to apply a specific transformation, it is often necessary to regroup
the subterms of a program. Therefore one often needs to reorder the evalua-
tion sequence of a program. We will now present a transformation that can
alter the order in which a program evaluates its subterms. In particular, we
identify a simple condition under which it is possible to swap the evaluation
order of two programs.

Swapping the evaluation order of two programs is only possible, if the
programs are independent of each other, i.e., the evaluation of one program
must not affect the evaluation of the other; neither through the use of vari-
ables nor through accessing the state. For our transformation we exclude the
use of variables by lifting the programs accordingly, and we exclude depen-
dencies through the state by requiring one of the programs to be completely
independent of the state.

Definition 1.100 (State Independent Programs). A program P is calledI.519, p.162
state independent, iff for all stores σ, event lists η, and lists of closed val-
ues v without locations ≥ |σ| such that P v|σ|η is fully closed, it holds that
JP v|σ|ηK = (λ(V ′|σ′|η′). (V ′|σ|η)) JP v|[]|[]K

In the following we assume two programs P1 and P2 where P1 is state
independent. We will first show how to swap the evaluation order of P1 and
P2 in a simple program and later see how to generalize this result. We first
consider the following programs P1;2 and P2;1:

P1;2
def
=

let x1←P1;
x2←↑0P2

in (x1, x2)
P2;1

def
=

let x2←P2;
x1←↑0P1

in (x1, x2)

Note that in both P1;2 and P2;1, we lift the program in the second line
so that it is independent of the variable bound in the first line. The fol-
lowing lemma states the observational equivalence of P1;2 and P2;1 in their
corresponding nameless representations.

Lemma 1.101. Given programs P1 and P2 where P1 is state independent,I.520, p.162
let the program P1;2

def
=(λ(λ(var 1, var 0))(↑0P2))P1 and the program P2;1

def
=

(λ(λ(var 0, var 1))(↑0P1))P2. Then it holds that P1;2 ≈obs P2;1.

Proof. Using the CIU Theorem 1.58, we will prove P1;2 ≈ciu P2;1. So let E
be an evaluation context, σ a store, η an event list, and v a list of closed
values without locations ≥ |σ|, such that E[P v

1;2]|σ|η and E[P v
2;1]|σ|η are

fully closed. To complete the proof, we need to show
q
E[P v

1;2]|σ|η
y
(Ω) =q

E[P v
2;1]|σ|η

y
(Ω). Using the chaining rule (Theorem 1.48), it suffices to

64

1.12. Program Transformations

show that
q
P v
1;2|σ|η

y
=

q
P v
2;1|σ|η

y
. We calculate as follows:

q
P v
1;2|σ|η

y

= J(λ(λ(var 1, var 0))(↑0P2))
vP v

1 |σ|ηK
= (λ(V1|σ1|η1). J((λ(V1, var 0))P

v
2)|σ1|η1K) · JP v

1 |σ|ηK (Lemma 1.50)

= (λ(V1|σ1|η1). ((λ(V2|σ2|η2). J(V1, V2)|σ2|η2K) · JP v
2 |σ1|η1K)) · JP v

1 |σ|ηK
(Lemma 1.50)

= (λ(V1|σ1|η1). ((λ(V2|σ2|η2). J(V1, V2)|σ2|η2K) · JP v
2 |σ|ηK)) · JP v

1 |σ|ηK
(P1 state indep.)

= (λ(V2|σ2|η2). ((λ(V1|σ1|η1). J(V1, V2)|σ2|η2K) · JP v
1 |σ|ηK)) · JP v

2 |σ|ηK
(swap indep. kernels)

(∗)
= (λ(V2|σ2|η2). ((λ(V1|σ1|η1). J(V1, V2)|σ1|η1K) · JP v

1 |σ2|η2K)) · JP v
2 |σ|ηK

(P1 state indep.)

= (λ(V2|σ2|η2). J((λ(var 0, V2))P
v
1)|σ2|η2K) · JP v

2 |σ|ηK (Lemma 1.50)

= J(λ(λ(var 0, var 1))(↑0P1))
vP v

2 |σ|ηK (Lemma 1.50)

=
q
P v
2;1|σ|η

y

For equation (∗) to hold, we need that P v
1 |σ2|η2 is fully closed. This is the

case because the store σ2 is sampled from JP v
2 |σ|ηK and hence |σ2| ≥ |σ|.

The previous result shows how to swap two lines in a simple program
where the program following these two lines just consists of a pair of variables
(x1, x2). We will now see how to extend this result to arbitrary programs P .
Namely, we will prove the following observational equivalence:

let x1←P1;
x2←↑0P2

in P
≈obs

let x2←P2;
x1←↑0P1

in lP
(1.102)

The swapping of the two lines results in swapped de Bruijn indices of the
corresponding variables. The variable swap operator l swaps all occurrences
of the free variables var 0 and var 1 in program P in order to account for the
changed indices. The operator is defined as lP def

=(↑0P){var 0/2}, i.e., it I.90, p.116
lifts all free variables of P and then substitutes variable var 2 with var 0.
The following theorem states the validity of Equation 1.102 in its nameless
representation.

Theorem 1.103 (Line Swapping). Let P1, P2, and P be programs where I.524, p.163
P1 is state independent. Then it holds

(λ(λP)(↑0P2))P1 ≈obs (λ(λ lP)(↑0P1))P2.

65

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

Proof. We want to use Lemma 1.101 to prove the theorem, therefore we need
to transform the games so that they match the form of P1;2 and P2;1. For
this we first transform program P into an uncurried form uncurry P where
the variables var 0 and var 1 are bound using λ-binders and the program
uncurry P expects a pair of variables (x1, x2) as argument. The program is
defined as follows:

uncurry P def
= λ↑1↑1

((
λ(λ↑2P)

) (
fst (var 0)

) (
snd (var 0)

))
.I.521, p.162

When program uncurry P is applied to a pair of variables (x1, x2), then
these variables are substituted for the variables var 1 and var 0 in program
P during evaluation. In particular, using lemmas 1.86, 1.89, 1.90, and ele-
mentary properties of the operators ↑k and {·/k}, we can prove the following
equivalences:

(uncurry P)(var 1, var 0) ≈obs P (1.104)I.522, p.163

(uncurry P)(var 0, var 1) ≈obs lP (1.105)I.523, p.163

After applying these transformations, we are left to prove the following
equivalence in order to complete the proof of Theorem 1.103:

(λ(λ(uncurry P)(var 1, var 0))(↑0P2))P1

≈obs

(λ(λ (uncurry P)(var 0, var 1))(↑0P1))P2

(1.106)

The difference between Equation 1.106 and the transformation that is
given in Lemma 1.101 is the occurrence of the program uncurry P . We can
use the transformation for inlining let statements from Lemma 1.99 so that
Lemma 1.101 becomes applicable. The required proof steps to complete the
proof are illustrated in Figure 1.107.

66

1.12. Program Transformations

let x1←P1;
x2←↑0P2

in P

let x2←P2;
x1←↑0P1

in lP

≈obs (Equivalence 1.104) ≈obs (Equivalence 1.105)

let x1←P1;
x2←↑0P2

in (uncurry P)(x1, x2)

let x2←P2;
x1←↑0P1

in (uncurry P)(x1, x2)

= =

let x1←P1;
x2←↑0P2;
x ← (x1, x2)

in ↑1↑1
((

λ(λ↑2P)
)
(fstx) (sndx)

)

let x2←P2;
x1←↑0P1;
x ← (x1, x2)

in ↑1↑1
((

λ(λ↑2P)
)
(fstx) (sndx)

)

≈obs (Lemma 1.99) ≈obs (Lemma 1.99)

let x1←P1;
x ← let x2←↑0P2

in (x1, x2)
in ↑1

((
λ(λ↑2P)

)
(fstx) (sndx)

)

let x2←P2;
x ← let x1←↑0P1

in (x1, x2)
in ↑1

((
λ(λ↑2P)

)
(fstx) (sndx)

)

≈obs (Lemma 1.99) ≈obs (Lemma 1.99)

let x← let x1←P1;
x2←↑0P2

in (x1, x2)

in
(

λ(λ↑2P)
)
(fstx) (sndx)

let x← let x2←P2;
x1←↑0P1

in (x1, x2)

in
(

λ(λ↑2P)
)
(fstx) (sndx)≈obs

(Lemma 1.101)

Figure 1.107: Proof steps of the line swapping Theorem 1.103 using inlining
of let statements.

67

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

1.13 Sample Applications

In this section we will demonstrate the applicability of Verypto by verifying
some example proofs.5 The first example we are going to verify is that
the self-composition of an injective one-way function yields another one-way
function. This example makes extensive use of the expression propagation
transformation we introduced in Lemma 1.95. In the second example we
verify the IND-CPA security of the ElGamal encryption scheme. This proof
employs several transformations including the line swapping transformation
from Theorem 1.103, the inlining of let statements from Lemma 1.99, as well
as specialized transformations to deal with the Diffie-Hellman assumption
and properties of randomly selected group elements.

1.13.1 Composition of One-way Functions

We demonstrate the applicability of Verypto by verifying that, given a 1-1
one-way function f , the self-composition g def

= f ◦f is also one-way. A function
f is called one-way, if it is efficiently computable, but no polynomial-time
program can invert the function with non-negligible probability. We define a
game G

f,A
ow which implements a corresponding challenge for an adversary A:I.528, p.163

Sampling a random value x, this game checks whether the adversary can
produce a preimage for f(x).

Gf,A
ow

def
=

let x←{0, 1}n;

y← f̂ x;
x′←A(1n, y)

in f̂ x = f̂ x′

Here, f̂ denotes the program embedding of function f and {0, 1}n denotes
a program computing the uniform distribution over bitstrings of length n.

Definition 1.108 (One-way Function). Let f : {0, 1}∗ → {0, 1}∗ be anI.529, p.163
efficiently computable function. f is called one-way, iff for any polynomial-
time program A, we have that Pr[Gf,A

ow] is negligible in n. An injective one-
way function is also called a 1-1 one-way function.

In the following let f be a 1-1 one-way function and let f̂ be the program
embedding of f . Furthermore let ĝ denote the program embedding of g def

=
f ◦ f . We will show that the function g is also one-way. For this, we
start from the initial game G

g,A
ow where an adversary A tries to invert the

function g. Then we give a sequence of games connecting game G
g,A
ow to a

final game G
f,B
ow where a suitable adversary B tries to invert the function f .

5Manual proofs of these examples have been prepared in the bachelor’s theses [74] and
[115] under my guidance. This dissertation presents their formal verification in Verypto

using Isabelle/HOL.

68

1.13. Sample Applications

G
g,A
ow =

let x←{0, 1}n;
y← ĝ x;
x′←A(1n, y)

in ĝ x = ĝ x′

let x←{0, 1}n;

z← f̂ x;
x′←B(1n, z)

in f̂ x = f̂ x′

= G
f,B
ow

≈obs (step 1) (step 5) ≈obs

G
f,A
1

def
=

let x←{0, 1}n;

y← f̂(f̂ x);
x′←A(1n, y)

in (f̂ ◦ f)x = (f̂ ◦ f)x′

let x←{0, 1}n;

z← f̂ x;

x′← (λy′.A y′)(1n, f̂ z)

in f̂ x = f̂ x′

def
=G

f,A
4

≈obs (step 2) (step 4) ≈obs

G
f,A
2

def
=

let x←{0, 1}n;

z← f̂ x;

y← f̂ z;
x′←A(1n, y)

in (f̂ ◦ f)x = (f̂ ◦ f)x′

≈obs

(step 3)

let x←{0, 1}n;

z← f̂ x;

y← f̂ z;
x′← (λy′.A y′)(1n, y)

in (f̂ ◦ f)x = (f̂ ◦ f)x′

def
=G

f,A
3

Figure 1.109: Game sequence connecting the initial game G
g,A
ow to the final

game G
f,B
ow .

We prove consecutive games in this sequence to be observationally equivalent
and thereby reduce the one-way property of g for adversary A to the one-
way property of f for adversary B. The sequence of the games is given in
Figure 1.109.

We will now describe the single steps of this sequence. In step 1 of I.530, p.163
Figure 1.109 we replace the program ĝ x with two applications of f̂ and un-
fold the definition of function g. The resulting game G

f,A
1 is observationally

equivalent to the initial game G
g,A
ow .

Lemma 1.110 (Step 1). For the initial game G
g,A
ow and the game G

f,A
1 as I.537, p.164

defined in Figure 1.109, it holds that Gg,A
ow ≈obs G

f,A
1 .

Proof. Using the CIU Theorem 1.58, we can show (f̂ ◦ f)x ≈obs f̂(f̂ x): I.536, p.164
Either the variable x is instantiated with a pure value V0, in which case both
programs evaluate to the same distribution; or x is instantiated with a non-
pure value V , in which case both programs are stuck and their denotations
are 0.

In step 2, we introduce the line z← f̂ x and use variable z instead of the I.531, p.164
inner application of f̂(f̂ x). Using the expression propagation Lemma 1.95

we can show that the resulting game G
f,A
2 is observationally equivalent to

game G
f,A
1 .

69

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

Lemma 1.111 (Step 2). Let the games G
f,A
1 and G

f,A
2 be defined as inI.538, p.164

Figure 1.109. Then it holds that Gf,A
1 ≈obs G

f,A
2 .

Proof. The step is justified by the expression propagation Lemma 1.95: If
we propagate program f̂ x in game G

f,A
2 and thereby substitute variable z

with f̂ x, we obtain game G
f,A
1 . We still need to show that the assumptions

required for Lemma 1.95 are fulfilled:

• Program f̂ x is propagatable: Either the variable x is instantiatedI.518, p.162
with a non-pure value V , in which case the program is stuck and its
denotation is 0; or x is instantiated with a pure value V0, in which case

the program evaluates to the Dirac measure δ(f̂(V̌0)|σ|η) for all stores
σ and event lists η. Here V̌0 denotes the inverse program embedding
of V0.

• Assume J(f̂ x)a|σ|ηK = 0. We use the chaining rule (Theorem 1.48)
to show that J((λy. P)(f̂(f̂ x)))a|σ|ηK = 0 for arbitrary programs P
(that is the format of the program resulting from the application of

the expression propagation transformation, which matches Gf,A
1):

J((λy. P)(f̂(f̂ x)))a|σ|ηK
= (λ(V ′|σ′|η′).

q
(λy. P)a(f̂ V ′)|σ′|η′

y
) · J(f̂ x)a|σ|ηK = 0

Step 3 just prepares the game for the succeeding step. In game G
f,A
3 ,I.532, p.164

the adversary is wrapped with a λ-binder and applied to the corresponding
variable. The resulting program λy′.A y′ is a value, which is a property we
will use to prove the succeeding step.

Lemma 1.112 (Step 3). Let the games G
f,A
2 and G

f,A
3 be defined as inI.539, p.164

Figure 1.109. Then it holds that Gf,A
2 ≈obs G

f,A
3 .

Proof. Since the pair (1n, y) is a value the lemma follows directly from
Lemma 1.86, which yields A(1n, y) ≈obs (λy′.A y′)(1n, y)

In step 4 we use the expression propagation Lemma 1.95 to propagateI.533, p.164
the program f̂ z, i.e., in game G

f,A
4 the line y← f̂ z has been removed and

variable y has been substituted with program f̂ z instead. Furthermore,
the equality test in the last line now uses the function f instead of its
composition f ◦ f ; this step requires the 1-1 property of function f .

Lemma 1.113 (Step 4). Let the games G
f,A
3 and G

f,A
4 be defined as inI.540, p.164

Figure 1.109 and assume that f is injective. Then it holds G
f,A
3 ≈obs G

f,A
4 .

Proof. We first show that the change in the equality test in the last line pre-
serves the observational equivalence. For this we show that for an arbitrary
function h : {0, 1}∗ → {0, 1}∗ the following equivalence holds:

70

1.13. Sample Applications

(
ĥ x = ĥ x′

)
≈obs (λ̂x1x2. h(x1) = h(x2))xx

′ (1.114) I.535, p.164

Equation 1.114 can be proven using the CIU Theorem 1.58: Either the
variables x and x′ are instantiated with pure values V0 and V ′0 , in which case

both programs evaluate to the Dirac measure δ(ĥ(V̌0) = h(V̌ ′0)|σ|η) for all
stores σ and event lists η; or the variables x and x′ are not both instantiated
with pure values, in which case both programs are stuck and their denota-
tions are 0. We use Equation 1.114 and the injectivity of function f to show
the observational equivalence of the last lines of the games Gf,A

3 and G
f,A
4 :

(
(f̂ ◦ f)x = (f̂ ◦ f)x′

)

≈obs (λ̂x1x2. (f ◦ f)(x1) = (f ◦ f)(x2))xx
′ (Equation 1.114)

= (λ̂x1x2. f(x1) = f(x2))xx
′ (f is injective)

≈obs

(
f̂ x = f̂ x′

)
(Equation 1.114)

As mentioned above, we can finish the proof by propagating the line
y← f̂ z using the expression propagation Lemma 1.95. We only need to
show that the assumptions required for Lemma 1.95 are fulfilled:

• Program f̂ z is propagatable: This was already shown in the proof of
Lemma 1.111.

• Under the assumption that J(f̂ z)a|σ|ηK = 0, we need to show that
J((λx′. P)((λy′.A y′)(1n, f̂ z)))a|σ|ηK = 0 for arbitrary programs P (that
is the format of the program resulting from the application of the
expression propagation transformation). We define the evaluation
context6 E def

=(λx′. P)((λy′.A y′)(1n,�)) and conclude the proof using
Theorem 1.48:

J(E[f̂ z])a|σ|ηK = (λ(V ′|σ′|η′).
q
Ea[V ′]|σ′|η′

y
) · J(f̂ z)a|σ|ηK = 0

For step 5 we define the adversary B
def
= λz′. (λy′.A y′)(fst z′, f̂ (snd z′)). I.534, p.164

This final step of our sequence of games introduces adversary B such that
the resulting game matches the challenge game from the one-way function
Definition 1.108. In fact it is easy to show that the games Gf,A

4 and G
f,B
ow are

observationally equivalent.

Lemma 1.115 (Step 5). For the final game G
f,B
ow and the game G

f,A
4 as I.541, p.164

defined in Figure 1.109, it holds that Gf,A
4 ≈obs G

f,B
ow .

6This is why we wrapped the adversary with a λ-binder in step 3. The context
(λx′. P)(A(1n,�)) is not necessarily an evaluation context, as A might not be a value.

71

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

Proof. Using the lemmas 1.86, 1.89, and 1.90, the lemma follows from

B(1n, z) = (λz′. (λy′.A y′) (fst z′, f̂ (snd z′))) (1n, z) ≈obs (λy′.A y′)(1n, f̂ z).

We have proved all steps of the sequence of games in Figure 1.109. We
can piece these steps together, which yields the following theorem:

Theorem 1.116. Assuming an injective function f : {0, 1}∗ → {0, 1}∗I.542, p.164
and an adversary A, let function g def

= f ◦ f and let adversary B be defined as
λz′. (λy′.A y′)(fst z′, f̂ (snd z′)). Then it holds

Pr[Gg,A
ow] = Pr[Gf,B

ow].

Proof. From the lemmas 1.110, 1.111, 1.112, 1.113, and 1.115 we obtain
G
g,A
ow ≈obs G

f,B
ow , because ≈obs is transitive (Lemma 1.35). The theorem

then follows from Lemma 1.37.

1.13.2 IND-CPA Security of ElGamal

In this section we will demonstrate another applicability of Verypto. We will
verify that the ElGamal encryption scheme [79] has indistinguishable cipher-
texts under chosen-plaintext attacks (IND-CPA). We model public-key en-
cryption schemes ES as families of three programs {(Genn,Encn,Decn)}n∈N
that are indexed by the security parameter n. Here, the key generation Genn
computes a distribution over pairs consisting of public keys e and private
keys d. The encryption algorithm Encn takes a public key e and a plaintext
m as argument and produces a distribution over ciphertexts c. The decryp-
tion algorithm Decn takes a private key d and a ciphertext c as argument
and produces the corresponding plaintext m. We denote the set of possible
plaintexts for security parameter n by domn(ES).

IND-CPA Security

IND-CPA security is defined using a challenge where an adversary has to
distinguish the encryptions of two plaintext messages of his choosing. More
precisely, the (non-uniform) adversary is given a randomly selected public
key and outputs a tuple consisting of two plaintext messages and an auxiliary
value. For the challenge one of the plaintexts is encrypted and the resulting
ciphertext is presented to the adversary together with the auxiliary value.
The goal of the adversary is to distinguish whether the first or the second
plaintext has been encrypted.

Since during the challenge the adversary is called twice, we model ad-
versaries A as families of pairs of programs {(An,Bn)}n∈N, i.e., program
An is given a public key and outputs a tuple consisting of two plaintext
messages and an auxiliary value, whereas program Bn expects a ciphertext

72

1.13. Sample Applications

and an auxiliary value and outputs a Boolean. Here the auxiliary value is
used to enable communication from An to Bn, which models that the adver-
sary may maintain state between its invocations. We define separate games
for the two settings where the first plaintext message or where the second
plaintext message is encrypted. In particular, given an encryption scheme
ES = {(Genn,Encn,Decn)}n∈N and an adversary A = {(An,Bn)}n∈N, we
define the following IND-CPA games CPA1ES,An and CPA2ES,An :

CPA1ES,An
def
=

let (e, d) ←Genn;
(m1,m2, a)←An e;
c ←Encn e m1

in Bn(c, a)

CPA2ES,An
def
=

let (e, d) ←Genn;
(m1,m2, a)←An e;
c ←Encn e m2

in Bn(c, a)

I.545, p.165
I.546, p.165

In order to prevent that A can distinguish these two settings trivially,
we need to restrict the allowed behavior of A. In particular we require that
for almost all (m1,m2, a) output by An it holds that m1,m2 ∈ domn(ES).
Furthermore we require the programs An and Bn to have a polynomial run-
time. Such adversaries A are called IND-CPA adversaries for encryption
scheme ES.

Definition 1.117 (IND-CPA Adversary). Given an encryption scheme ES I.547, p.165
and an adversary A = {(An,Bn)}n∈N, we call A an IND-CPA adversary
for ES, iff {An}n∈N and {Bn}n∈N are polynomial-time and for all values V ,
stores σ, event lists η, n ∈ N, and for almost all t|σ′|η′ ∈ JAnV |σ|ηK, it
holds that t = (m̂1,m2, a) for some m1,m2 ∈ domn(ES).

Definition 1.118 (IND-CPA Security). An encryption scheme ES is IND- I.548, p.165
CPA secure, iff for all IND-CPA adversaries A for ES it holds that

∣∣Pr
[
CPA1ES,An

]
− Pr

[
CPA2ES,An

]∣∣ is negligible in n.

Cyclic Groups

The ElGamal encryption scheme operates on cyclic groups. Thus, for the
remainder of this section we assume a family of cyclic groups G def

= {Gn}n∈N
where group Gn is of order qn and let gn denote a generator for Gn. Further-
more let multn, pown, and invn denote the multiplication, the exponentia-
tion, and the inverse operations on Gn. Since gn is a generator, it holds that
Gn = {pown(gn, z) | z ∈ {1 . . . qn}}. Furthermore, since the multiplication
with a group element is injective, it also holds for all m ∈ Gn that

Gn = {multn(m, pown(gn, z)) | z ∈ {1 . . . qn}}. (1.119) I.558, p.166

Therefore, the multiplication of an element m ∈ Gn with a group ele-
ment that has been selected uniformly at random behaves like a one-time

73

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

pad, i.e., the result is distributed uniformly in Gn. We will use this fact
in our security proof of the ElGamal encryption scheme. In particular, we
define the sampling algorithm

Rm
n

def
=

let z ←{1 . . . qn};
gz← p̂own(ĝn, z)

in m̂ultn(m̂, gz);

where, abusing notation, {1 . . . qn} denotes a program computing the uni-
form distribution over the set {1 . . . qn}. We can prove that the denotation
of Rm

n is independent of the choice of m.

Lemma 1.120. The Programs Rm1
n and Rm2

n are denotationally equivalentI.559, p.166
for all m1,m2 ∈ Gn.

Proof. Let U(S) denote the uniform distribution over set S. Assume a store
σ and an event list η. We prove the lemma by calculating as follows:

JRm1
n |σ|ηK

=
(
λ(z|σ′|η′).

r
(λgz . m̂ultn(m̂1, gz)) (p̂own(ĝn, z))|σ

′|η′
z)
· J{1 . . . qn}|σ|ηK

=
(
λ(z|σ′|η′).

r
(λgz . m̂ultn(m̂1, gz)) (p̂own(ĝn, z))|σ

′|η′
z)
·

(λz. ẑ|σ|η)(U{1 . . . qn})

=
(
λz.

r
(λgz . m̂ultn(m̂1, gz)) (p̂own(ĝn, ẑ))|σ|η

z)
· U{1 . . . qn}

=
(
λz. m̂ultn(m1, pown(gn, z))|σ|η

)
(U{1 . . . qn})

(1.119)
= U{(m̂|σ|η) | m ∈ Gn}

= · · · = JRm2
n |σ|ηK

Decisional Diffie-Hellman Assumption

The decisional Diffie-Hellman assumption states the computational indis-
tinguishability of two particular settings; namely, no polynomial-time dis-
tinguisher D = {Dn}n∈N can distinguish the following two settings with a
non-negligible probability: For security parameter n, in the first setting Dn

is called with a tuple of the form (gxn, g
y
n, g

xy
n), where x and y are selected

uniformly at random from the set {1 . . . qn}. In the second setting Dn is pro-
vided a tuple of random group elements, i.e., a tuple of the form (gxn, g

y
n, gzn),

where x, y, and z are selected uniformly at random from the set {1 . . . qn}.
Corresponding to these settings, we define the games DDHxyn and DDHzn.

74

1.13. Sample Applications

DDHxyn
def
=

let x ←{1 . . . qn};
gx ← p̂own(ĝn, x);
y ←{1 . . . qn};
gy ← p̂own(ĝn, y);
gxy← p̂own(gx , y)

in (gx , gy , gxy)

DDHzn
def
=

let x ←{1 . . . qn};
gx← p̂own(ĝn, x);
y ←{1 . . . qn};
gy← p̂own(ĝn, y);
z ←{1 . . . qn};
gz ← p̂own(ĝn, z)

in (gx , gy , gz)

I.553, p.166
I.554, p.166

Definition 1.121 (DDH Assumption). We say that the decisional Diffie- I.555, p.166
Hellman assumption holds for G, iff {DDHxyn}n∈N ≈ind {DDHzn}n∈N.

The ElGamal Encryption Scheme

The ElGamal encryption scheme EG = {(GenEGn ,EncEGn ,DecEGn)}n∈N consists
of the key generation GenEGn , the encryption algorithm EncEGn , and the decryp-
tion algorithm DecEGn where domn(EG) = Gn. The algorithms are defined as
follows:

GenEGn
def
=

let x ←{1 . . . qn};
gx← p̂own(ĝn, x)

in (gx , x)

EncEGn
def
=

λgx . λm.
let y ←{1 . . . qn};

gy ← p̂own(ĝn, y);
gxy ← p̂own(gx , y);

mgxy← m̂ultn(m, gxy)
in (gy ,mgxy)

DecEGn
def
=

λx . λ(gy ,mgxy).
let gxy ← p̂own(gy , x);

igxy← învn gxy

in m̂ultn(mgxy , igxy)

I.549, p.165
I.550, p.165
I.551, p.165

The Sequence of Games

In the following we present a sequence of games connecting CPA1EG,An and
CPA2EG,An for an IND-CPA adversary A which establishes the IND-CPA se-
curity of ElGamal; see Figure 1.122 for the full sequence. The proof follows
the outline found in [114]. Starting from CPA1EG,An , we first inline the defi-
nitions of GenEGn and EncEGn in CPA1EG,An and arrive at game G1aAn : I.560, p.167

G1aAn
def
=

let x ←{1 . . . qn};
gx ← p̂own(ĝn, x);
(m1,m2, a)←An gx ;
y ←{1 . . . qn};
gy ← p̂own(ĝn, y);
gxy ← p̂own(gx , y);

mgxy ← m̂ultn(m1, gxy);
c ← (gy ,mgxy)

in Bn(c, a)

75

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

CPA1EG,An CPA2EG,An

≈obs (Step 1-1a) (Step 2-2a) ≈obs

let x ←{1 . . . qn};
gx ← p̂own(ĝn, x);
(m1,m2, a)←An gx ;
y ←{1 . . . qn};
gy ← p̂own(ĝn, y);
gxy ← p̂own(gx , y);

mgxy ← m̂ultn(m1, gxy);
c ← (gy ,mgxy)

in Bn(c, a)

let x ←{1 . . . qn};
gx ← p̂own(ĝn, x);
(m1,m2, a)←An gx ;
y ←{1 . . . qn};
gy ← p̂own(ĝn, y);
gxy ← p̂own(gx , y);

mgxy ← m̂ultn(m2, gxy);
c ← (gy ,mgxy)

in Bn(c, a)

≈obs (Step 1a-1b) (Step 2a-2b) ≈obs

let x ←{1 . . . qn};
gx ← p̂own(ĝn, x);
y ←{1 . . . qn};
gy ← p̂own(ĝn, y);
gxy ← p̂own(gx , y);
(m1,m2, a)←An gx ;

mgxy ← m̂ultn(m1, gxy);
c ← (gy ,mgxy)

in Bn(c, a)

let x ←{1 . . . qn};
gx ← p̂own(ĝn, x);
y ←{1 . . . qn};
gy ← p̂own(ĝn, y);
gxy ← p̂own(gx , y);
(m1,m2, a)←An gx ;

mgxy ← m̂ultn(m2, gxy);
c ← (gy ,mgxy)

in Bn(c, a)

≈obs (Step 1b-1c) (Step 2b-2c) ≈obs

let (gx , gy , gxy)←DDHxyn;
(m1,m2, a) ←An gx ;

mgxy ← m̂ultn(m1, gxy);
c ← (gy ,mgxy)

in Bn(c, a)

let (gx , gy , gxy)←DDHxyn;
(m1,m2, a) ←An gx ;

mgxy ← m̂ultn(m2, gxy);
c ← (gy ,mgxy)

in Bn(c, a)

≈ind (Step 1c-1d) (Step 2c-2d) ≈ind

let (gx , gy , gxy)←DDHzn;
(m1,m2, a) ←An gx ;

mgxy ← m̂ultn(m1, gxy);
c ← (gy ,mgxy)

in Bn(c, a)

let (gx , gy , gxy)←DDHzn;
(m1,m2, a) ←An gx ;

mgxy ← m̂ultn(m2, gxy);
c ← (gy ,mgxy)

in Bn(c, a)

≈obs (Step 1d-1e) (Step 2d-2e) ≈obs

let x ←{1 . . . qn};
gx ← p̂own(ĝn, x);
y ←{1 . . . qn};
gy ← p̂own(ĝn, y);
(m1,m2, a) ← An gx ;

mgz← let z ←{1 . . . qn};
gz← p̂own(ĝn, z)

in m̂ultn(m1, gz);

c ← (gy ,mgz)
in Bn(c, a)

≈obs

(1e-2e)

let x ←{1 . . . qn};
gx ← p̂own(ĝn, x);
y ←{1 . . . qn};
gy ← p̂own(ĝn, y);
(m1,m2, a) ← An gx ;

mgz← let z ←{1 . . . qn};
gz← p̂own(ĝn, z)

in m̂ultn(m2, gz);

c ← (gy ,mgz)
in Bn(c, a)

Figure 1.122: The sequence of games to prove ElGamal IND-CPA secure

76

1.13. Sample Applications

Lemma 1.123 (Step 1-1a). For the games CPA1EG,An and G1aAn as defined I.562, p.167
above the equivalence CPA1EG,An ≈obs G1aAn holds.

Proof. The lemma mainly follows from the transformation to inline let state-
ments (Lemma 1.99) and the Beta transformation (Lemma 1.86).

For the next step we use the line swapping Theorem 1.103 in order to
move the call to An as far down as possible, i.e., the call is moved before the
multiplication operation, where the result of the call to An is used first. We
call the resulting game G1bAn . I.564, p.167

G1bAn
def
=

let x ←{1 . . . qn};
gx ← p̂own(ĝn, x);
y ←{1 . . . qn};
gy ← p̂own(ĝn, y);
gxy ← p̂own(gx , y);
(m1,m2, a)←An gx ;

mgxy ← m̂ultn(m1, gxy);
c ← (gy ,mgxy)

in Bn(c, a)

Lemma 1.124 (Step 1a-1b). For the games G1aAn and G1bAn as defined I.566, p.167
above the equivalence G1aAn ≈obs G1bAn holds.

Proof. The lemma follows from the line swapping Theorem 1.103. For this,
note that all lines that are swapped with the call to An are state independent.

Game G1bAn almost fits the setup of the decisional Diffie-Hellman as-
sumption. In fact we can easily wrap the lines starting from the call to
An in a distinguisher DA def

= {DAn }n∈N in order to arrive at game G1cAn
def
=

DAn (DDHxyn), where DAn is defined as I.570, p.168
I.568, p.168

DAn
def
=

λ(gx , gy , gxy).
let (m1,m2, a)←An gx ;

mgxy ← m̂ultn(m1, gxy);
c ← (gy ,mgxy)

in Bn(c, a)

.

Lemma 1.125 (Step 1b-1c). For the games G1bAn and G1cAn as defined I.572, p.168
above the equivalence G1bAn ≈obs G1cAn holds.

Proof. The lemma follows from the transformation to inline let statements
(Lemma 1.99) and the Beta transformation (Lemma 1.86).

77

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

Assuming that the decisional Diffie-Hellman assumption holds for G and
that the distinguisher DA is polynomial-time, the step to the game G1dAn

def
=

DAn (DDHzn) follows directly from Definition 1.121.I.574, p.168

Lemma 1.126 (Step 1c-1d). If the decisional Diffie-Hellman assumptionI.576, p.168
holds for G and the distinguisher DA is polynomial-time, then

∣∣Pr
[
G1cAn

]
− Pr

[
G1dAn

]∣∣ is negligible in n.

For the next step we transform the game G1dAn as follows: First, we
unwrap the definition of the distinguisher and move the call to An before
the sampling of z. Then we employ the inlining of let statements in order
to wrap the three lines starting at the sampling of z in a new program. We
obtain game G1eAn which is given below. Analogously, we also define theI.578, p.168
game G2eAn where the usage of variable m1 has been replaced with variableI.579, p.169
m2.

G1eAn
def
= G2eAn

def
=

let x ←{1 . . . qn};
gx ← p̂own(ĝn, x);
y ←{1 . . . qn};
gy ← p̂own(ĝn, y);
(m1,m2, a) ← An gx ;

mgz← let z ←{1 . . . qn};
gz← p̂own(ĝn, z)

in m̂ultn(m1, gz);

c ← (gy ,mgz)
in Bn(c, a)

let x ←{1 . . . qn};
gx ← p̂own(ĝn, x);
y ←{1 . . . qn};
gy ← p̂own(ĝn, y);
(m1,m2, a) ← An gx ;

mgz← let z ←{1 . . . qn};
gz← p̂own(ĝn, z)

in m̂ultn(m2, gz);

c ← (gy ,mgz)
in Bn(c, a)

Lemma 1.127 (Step 1d-1e). For the games G1dAn and G1eAn as definedI.580, p.169
above the equivalence G1dAn ≈obs G1eAn holds.

Proof. The lemma follows from the Beta transformation (Lemma 1.86), the
line swapping Theorem 1.103, and the transformation to inline let state-
ments (Lemma 1.99).

Note that the three lines that we wrapped in a new program fit the setup
for Lemma 1.120. We will use this lemma in order to verify the step from
game G1eAn to G2eAn . For this, we require the fact that A is an IND-CPA
adversary for EG. This is because Lemma 1.120 is only applicable if the
variables m1 and m2 are instantiated with group elements from Gn.

Lemma 1.128 (Step 1e-2e). Let A be an IND-CPA adversary for EG andI.582, p.169
let the games G1eAn and G2eAn be defined as above. Then the equivalence
G1eAn ≈obs G2eAn holds.

78

1.13. Sample Applications

Proof. Using the composability of observational equivalence (Lemma 1.36)
and the CIU Theorem 1.58, it suffices to prove the following equivalence:

let (m1,m2, a) ← An gx ;

mgz← let z ←{1 . . . qn};
gz← p̂own(ĝn, z)

in m̂ultn(m1, gz);

c ← (gy ,mgz)
in Bn(c, a)

≈ciu

let (m1,m2, a) ← An gx ;

mgz← let z ←{1 . . . qn};
gz← p̂own(ĝn, z)

in m̂ultn(m2, gz);

c ← (gy ,mgz)
in Bn(c, a)

The proof works as follows: Using the chaining rule for denotations
(Theorem 1.48) we separate the denotation of the call to An from the de-
notations of the games. Since A is an IND-CPA adversary, for almost all
t|σ′|η′ in this denotation there are group elements m1,m2 ∈ Gn such that
t = (m̂1,m2, a). Therefore, when reducing both games further, the inner let
expressions in the games are instantiated to the sampling algorithms Rm1

n

and Rm2
n . These algorithms are denotationally equivalent (Lemma 1.120),

which concludes the proof.

So far, we have presented a sequence of games connecting the initial game
CPA1EG,An to game G2eAn , which completes the first half of our sequence of
steps. Analogously to the sequence of steps 1-1a-1b-1c-1d-1e, we can define
corresponding games G2aAn , G2b

A
n , G2c

A
n , G2d

A
n that use variable m2 instead

of variable m1. The lemmas corresponding to the sequence of steps 2-2a-
2b-2c-2d-2e then connect the game CPA2EG,An to game G2eAn . Since this
second half of the sequence is performed analogously we omit the details here
and proceed with the verification of the IND-CPA security of the ElGamal
encryption scheme.

Theorem 1.129 (IND-CPA Security of ElGamal). Assume that the deci- I.583, p.169
sional Diffie-Hellman assumption holds for G. Then the ElGamal encryption
scheme EG is IND-CPA secure.

Proof. Let A be an IND-CPA adversary for EG. Combining Lemma 1.37
and the lemmas of this section, we obtain the following equalities:

Pr
[
CPA1EG,An

]
= Pr

[
G1cAn

]

Pr
[
CPA2EG,An

]
= Pr

[
G2cAn

]

Pr
[
G1dAn

]
= Pr

[
G2dAn

]

We calculate as follows:

0 ≤
∣∣Pr

[
CPA1EG,An

]
− Pr

[
CPA2EG,An

]∣∣
=

∣∣Pr
[
G1cAn

]
− Pr

[
G1dAn

]
+ Pr

[
G2dAn

]
− Pr

[
G2cAn

]∣∣
≤

∣∣Pr
[
G1cAn

]
− Pr

[
G1dAn

]∣∣+
∣∣Pr

[
G2cAn

]
− Pr

[
G2dAn

]∣∣

79

Chapter 1. Verypto - Formally Verifying Cryptographic Proofs

Since A is an IND-CPA adversary, it is polynomial-time. Hence the distin-
guisher DA is also polynomial-time.7 Since the decisional Diffie-Hellman
assumption holds for G, Lemma 1.126 applies. Therefore we have that∣∣Pr

[
G1cAn

]
− Pr

[
G1dAn

]∣∣ and, analogously,
∣∣Pr

[
G2cAn

]
− Pr

[
G2dAn

]∣∣ are neg-
ligible. Therefore, the (positive) expression

∣∣Pr
[
CPA1EG,An

]
− Pr

[
CPA2EG,An

]∣∣
is bounded from above by a negligible function and hence must also be neg-
ligible in n.

7Here we assume that the distinguisher DA as defined above is polynomial-time, if the
adversary A is polynomial-time. The verification of this fact is often omitted in hand-
written proofs, because it is considered obvious or not an integral part of the reduction.
In our formalization we also skipped its verification.

80

Chapter 2

EasyCrypt -
Verified Security of
Merkle-Damg̊ard

2.1 Background on CertiCrypt/EasyCrypt

Independent of our development of Verypto, Barthe et al. developed the tool
CertiCrypt [29, 32] which also enables the formal verification of cryptographic
proofs. CertiCrypt has been implemented in the proof assistant Coq [63] and
models games using a formal language called pWhile, for which game trans-
formation are proven correct with respect to a probabilistic relational Hoare
logic (pRHL). In contrast to the higher-order language of Verypto which we
presented in Chapter 1, pWhile is imperative and only supports discrete
measure spaces. On the one hand, this design has some limitations in terms
of expressiveness compared to Verypto, e.g., with discrete probability distri-
butions one cannot express the random sampling of infinite random tapes;
also, since pWhile is not higher-order, oracles cannot be treated as first-
class objects in the language. On the other hand, the pRHL for pWhile is
a powerful tool to reason about randomized algorithms.

Indeed, CertiCrypt has proved itself expressive enough to handle several
cryptographic constructions [29, 32, 33, 125, 34, 36, 28], which motivated the
design of another framework called EasyCrypt [30] with the goal to automate
the handling of CertiCrypt’s game transformations in a dedicated tool. For
this, EasyCrypt uses state-of-the-art verification tools, such as SMT solvers,
automated theorem provers, and interactive proof assistants. EasyCrypt aims
for making formally verified security accessible to cryptographers with a lim-
ited background in formal methods; it has been successfully applied to verify
exact security bounds of several digital signature schemes and encryption
schemes.

81

Chapter 2. EasyCrypt - Verified Security of Merkle-Damg̊ard

2.2 Contribution of this Chapter

In this chapter, we present the application of EasyCrypt to build and verify
exact security proofs of the Merkle-Damg̊ard construction [96, 70], which
underlies the design of many cryptographic hash functions.1 In its simplest
formulation, Merkle-Damg̊ard iterates a compression function f : {0, 1}k ×
{0, 1}n → {0, 1}n over the blocks of an input message that has been padded
to a block boundary. For a fixed public initialization vector IV, the digest
of a padded message with blocks x1, . . . , xℓ is computed as

f(xℓ, f(xℓ−1, . . . f(x1, IV) . . .)).

We verify in EasyCrypt that the Merkle-Damg̊ard construction preserves
the collision resistance of its underlying compression function, i.e., finding
two colliding messages for the above iterated construction is at least as
hard as finding two colliding inputs for the compression function f . Our
proof requires that the padding function is suffix-free, i.e., the padding of a
message m is not a suffix of the padding of any other message m′. This is
a generalization of the seminal works of Merkle [96] and Damg̊ard [70] who
assumed that messages are padded in some specific way.

Furthermore, we verify in EasyCrypt that the Merkle-Damg̊ard construc-
tion is indifferentiable from a random oracle when the compression func-
tion f is assumed to be ideal. The indifferentiability framework [94] pro-
vides a rigorous simulation-based definition which captures that the con-
struction behaves like a random oracle [41] when the compression function,
or some other lower-level building block, is assumed to be ideal. Indiffer-
entiability implies a strong composability result: Glossing over technical
subtleties [110], a hash function H that is indifferentiable from a random or-
acle can be plugged into a cryptosystem proven secure in the random oracle
model for H without compromising the security of the cryptosystem. Our
proof, which follows the proof of [66], applies when the padding function is
prefix-free, i.e., the padding of a message m is not a prefix of the padding
of any other message m′.

Our work was motivated by the increased interest in hash function se-
curity during the selection process of the new SHA-3 cryptographic hash
algorithm. We discuss the applicability of our results to SHA-3 and some of
its competitors in Section 3.2.

2.3 A Primer on EasyCrypt

Building a cryptographic proof in EasyCrypt is a process that can be decom-
posed in the following steps:

1This work has been published in [13] which I co-authored and also has been presented
in the master’s thesis [116] which was conducted under my guidance. I contributed to the
elaboration of both.

82

2.3. A Primer on EasyCrypt

• Defining a formal context, including types, constants and operators,
and giving it meaning by declaring axioms and stating derived lemmas.

• Defining a number of games, each of them composed of a collection of
procedures (written in the probabilistic imperative language pWhile

described in Section 2.3.1) and adversaries declared as abstract proce-
dures with access to oracles.

• Proving logical judgments that establish equivalences between games.
This may be done fully automatically, with the help of hints from the
user in the form of relational invariants, or interactively using basic
tactics and automated strategies.

• Deriving inequalities between probabilities of events in games, either
by using previously proven logical judgments or by direct computation.

In the following, we overview some key aspects of the process of building
an EasyCrypt proof. In particular we introduce the input language pWhile

in Section 2.3.1, define the probabilistic relational Hoare logic which is used
to reason about games in Section 2.3.2, and show how to derive probability
claims from it in Section 2.3.3.

2.3.1 Input Language

Probabilistic experiments are defined as programs in pWhile, a strongly-
typed imperative probabilistic programming language. The grammar of
pWhile commands is defined as follows:

C ::= skip nop
| V ← E deterministic assignment
| V $← DE probabilistic assignment
| if E then C else C conditional
| while E do C loop
| V ← P(E , . . . , E) procedure call
| C; C sequence

The only non-standard feature of the language are probabilistic assign-
ments; an assignment x $← d evaluates the expression d in the current state
to a distribution µ on values, samples a value according to µ and assigns it to
variable x. The key to the flexibility of EasyCrypt is that the base language
of expressions and distribution expressions can be extended by the user to
suit the needs of the verification task. The rich base language includes ex-
pressions over Booleans, integers, fixed-length bitstrings, lists, finite maps,
and option, product, and sum types. User-defined operators can be axioma-
tized or defined in terms of other operators. In the following, we let {0, 1}ℓ

denote the uniform distribution on bitstrings of length ℓ.
A program, i.e., a game in EasyCrypt is represented as a set of global

variables together with a collection of procedures. Some of these procedures

83

Chapter 2. EasyCrypt - Verified Security of Merkle-Damg̊ard

are concrete and given a definition as a command c ∈ C, while some others
may be abstract and left undefined. Quantification over adversaries in cryp-
tographic proofs is achieved by representing them as abstract procedures
parametrized by a set of oracles; these oracles must be instantiated as other
procedures in the program.

Commands operate on program memories, which map local and global
variables to values; we letM denote the set of memories. The semantics of
a command c ∈ C is a function JcK :M→D(M) from program memories to
subprobability distributions on program memories. Note that programs that
do not terminate with probability 1 generate subprobability distributions
with total probability less than 1. We refer the reader to [30] for a detailed
description of the semantics of pWhile as it has been formalized in the Coq
proof assistant. In what follows, we denote by Pr [c,m : A] the probability
of event A with respect to the distribution JcK m and often omit the initial
memory m when it is not relevant.

Although EasyCrypt is not tied to any particular cryptographic model,
it provides good support to reason about proofs developed in the random
oracle model. Random oracles [41] are functions that map values from their
input domain into uniformly and independently distributed values in their
output domain. In EasyCrypt a random oracle O : X → Y is modeled as a
stateful procedure that maps values in X into uniformly and independently
distributed values in Y . The state of a random oracle can be represented as a
global finite map L that is initially empty. Queries are answered consistently
so that identical queries are given the same answer:

Oracle O(x) :
if x /∈ dom(L) then L[x] $← Y
return L[x]

2.3.2 Probabilistic Relational Hoare Logic

The foundation of EasyCrypt is a probabilistic Relational Hoare Logic (pRHL),
whose judgments are quadruples of the form

⊢ c1 ∼ c2 : Ψ =⇒ Φ

where c1, c2 are programs and Ψ, Φ are first-order relational formulae. Re-
lational formulae are defined by the grammar

Ψ,Φ ::= e | ¬Φ | Ψ ∧ Φ | Ψ ∨ Φ | Ψ⇒ Φ | ∀x.Φ | ∃x.Φ

where e stands for a Boolean expression over logical variables and program
variables tagged with either 〈1〉 or 〈2〉 to denote their interpretation in the
left or right-hand side program; the only restriction is that logical variables
must not occur free. The special keyword res denotes the return value of

84

2.3. A Primer on EasyCrypt

a procedure and can be used in the place of a program variable. We write
e〈i〉 for the expression e in which all program variables are tagged with 〈i〉.
A relational formula is interpreted as a relation on program memories. For
example, the formula x〈1〉+ 1 ≤ y〈2〉 is interpreted as the relation

R = {(m1,m2) | m1(x) + 1 ≤ m2(y)}.

The validity of a pRHL judgment is defined in terms of a lifting operator
L : 2M×M → 2D(M)×D(M). Concretely,

|= c1 ∼ c2 : Ψ⇒ Φ def
=

∀m1,m2. m1 Ψ m2 ⇒ (Jc1K m1) L(Φ) (Jc2K m2).

Formally, let µ1, µ2 ∈ D(M) be distributions on memories. The lifting
µ1 L(R)µ2 of a relation R ⊆M×M to µ1 and µ2 is defined by the clause

∃µ ∈ D(M×M). π1(µ) = µ1 ∧ π2(µ) = µ2 ∧ supp(µ) ⊆ R

where π1(µ) (resp. π2(µ)) denotes the projection of µ on its first (resp.
second) component and supp(µ) is the support of µ as a subprobability
measure – if µ is discrete, this is just the set of pairs with positive probability.

Figure 2.1 shows some selected rules that can be used to derive valid
pRHL judgments. There are two kinds of rules: two-sided rules, which re-
quire that the related programs have the same syntactic form, and one-sided
rules, which do not impose this requirement. One-sided rules are symmetric
in nature and admit a left and a right variant annotated with 〈1〉 and 〈2〉
respectively. We briefly comment on some rules. The two-sided rule Rnd for
random assignments requires the distributions from where values are sam-
pled be uniform on some set X; to apply the rule one must exhibit a function
f : X → X that may depend on the state and is bijective if the precondition
holds. The one-sided rule Rnd〈1〉 for random assignments simply requires
that the post-condition is established for all possible outcomes; in effect, this
rule treats a random assignment as a non-deterministic assignment.

Similarly to Hoare logic, the rules for while loops require to exhibit an
appropriate relational invariant Φ. The two-sided rule While applies when
the loops execute in lockstep and thus requires proving that the guards
are equivalent. The one-sided rule While〈1〉 further requires exhibiting a
decreasing variant v and a lower bound m. The premises ensure that the
loop is absolutely terminating, which is crucial for the soundness of the rule.

The relational Hoare logic also allows capturing the well-known cryp-
tographic argument “x is uniformly distributed and independent of the ad-
versary’s view”, which is certainly one of the most difficult to formalize.
This argument is formalized in EasyCrypt by requiring that re-sampling x
preserves the semantics of the program. Suppose we want to prove that
in a program c, a variable x that is used in an oracle O is uniformly dis-
tributed and independent of the view of an adversary AO. Let O′ be the

85

Chapter 2. EasyCrypt - Verified Security of Merkle-Damg̊ard

⊢ c1 ∼ c2 : Φ =⇒ Φ′ ⊢ c′1 ∼ c′2 : Φ
′ =⇒ Φ′′

⊢ c1; c
′
1 ∼ c2; c

′
2 : Φ =⇒ Φ′′

Seq

Ψ⇒ bijective(f) Ψ⇒ ∀v ∈ X. Φ {v, f(v)/x〈1〉, y〈2〉}

⊢ x $← X ∼ y $← X : Ψ =⇒ Φ
Rnd

Ψ⇒ ∀v ∈ supp(d). Φ {v/x〈1〉}

⊢ x $← d ∼ skip : Ψ =⇒ Φ
Rnd〈1〉

⊢ x← e ∼ skip : Φ {e〈1〉/x〈1〉} =⇒ Φ
Asn〈1〉

⊢ skip ∼ x← e : Φ {e〈2〉/x〈2〉} =⇒ Φ
Asn〈2〉

⊢ c1 ∼ c2 : Ψ ∧ e〈1〉 =⇒ Φ ⊢ c′1 ∼ c2 : Ψ ∧ ¬e〈1〉 =⇒ Φ

⊢ if e then c1 else c′1 ∼ c2 : Ψ =⇒ Φ
Cond〈1〉

⊢ c1 ∼ c2 : Φ ∧ b1〈1〉 =⇒ Φ Φ⇒ b1〈1〉 = b2〈2〉

⊢ while b1 do c1 ∼ while b2 do c2 : Φ =⇒ Φ ∧ ¬b1〈1〉
While

⊢ c1 ∼ skip : Φ ∧ (b1 ∧ v = n)〈1〉 =⇒ Φ ∧ v〈1〉 < n Φ ∧ v〈1〉 ≤ m⇒ ¬b〈1〉

⊢ while b1 do c1 ∼ skip : Φ =⇒ Φ ∧ ¬b1〈1〉
While〈1〉

Ψ⇒ Ψ′ ⊢ c1 ∼ c2 : Ψ
′ =⇒ Φ′ Φ′ ⇒ Φ

⊢ c1 ∼ c2 : Ψ =⇒ Φ
Sub

⊢ c1 ∼ c2 : Ψ ∧Ψ′ =⇒ Φ ⊢ c1 ∼ c2 : Ψ ∧ ¬Ψ
′ =⇒ Φ

⊢ c1 ∼ c2 : Ψ =⇒ Φ
Case

Figure 2.1: Selected pRHL rules

86

2.3. A Primer on EasyCrypt

same as O except that it re-samples x when needed. We identify a condi-
tion used that holds whenever A obtained some information about x (and
thus, re-sampling would not preserve the semantics). We then prove that
the conditional statement c′ def= if ¬used then x $← X can swap with calls to
O and O′, i.e.,

⊢ c′; y ← O(~e) ∼ y ← O′(~e); c′ : Φ =⇒ Φ

where Φ implies equality over all global variables. From this, we can conclude
that c′ can also swap with calls to AO and AO

′

, and hence that the semantics
of the program c is preserved when O is replaced by O′ [33]. The advantage
of using such kind of reasoning is that it is generally much easier to reason
about a game where x is sampled lazily, since its distribution is locally
known.

We conclude with some observations on the mechanization of reasoning
in pRHL. EasyCrypt provides several variants of two-sided and one-sided
rules of pRHL in the form of tactics that can be applied in a goal-oriented
fashion to prove the validity of judgments. For instance, instead of applying
rule Rnd〈1〉, one can use the following combination with the Seq rule which
is more easily applicable:

⊢ c1 ∼ c2 : Ψ =⇒ ∀v ∈ supp(d). Φ {v/x〈1〉}

⊢ c1; x $← d ∼ c2 : Ψ =⇒ Φ

The application of a tactic may generate additional verification subgoals,
and logical side conditions that are checked using SMT solvers, automated
theorem provers and, as a last recourse, interactive proof assistants. De-
pending on their nature, application of the tactics can be fully automated
or require user input. For instance, applying the tactics that mechanize the
rules for while loops, requires the user to provide an adequate invariant. In
the case of the two-sided rule, a new subgoal is generated to prove the cor-
rectness of the user-provided invariant, whereas the equivalence of the loop
guards is checked automatically as a logical side-condition.

In addition to tactics that mechanize basic rules of pRHL, EasyCrypt
implements automated strategies that combine the application of a weak-
est precondition transformer wp with heuristics to apply basic tactics. The
wp transformer operates on deterministic loop-free programs. These strate-
gies can often be used to deal automatically with large fragments of proofs,
letting the user focus on the parts that require ingenuity.

2.3.3 Reasoning about Probabilities

Since cryptographic results are stated as inequalities on probabilities rather
than pRHL judgments, it is important to derive probability claims from

87

Chapter 2. EasyCrypt - Verified Security of Merkle-Damg̊ard

pRHL judgments. This can be done mechanically by applying rules in the
style of

m1Ψm2 ⊢ c1 ∼ c2 : Ψ =⇒ Φ Φ⇒A〈1〉⇒B〈2〉

Pr [c1,m1 : A] ≤ Pr [c2,m2 : B]
.

Game-based proofs often argue that two programs c1 and c2 behave
identically unless a failure event F is triggered. This is used to conclude
that the difference in probability of any event between the two programs
is bounded by the probability of F in one of them. Although a syntactic
characterization of this lemma is often used (in which failure is represented
by a Boolean flag), it can be conveniently expressed and implemented in
EasyCrypt in a more general form using pRHL.

Lemma 2.2 (Fundamental Lemma). Let c1 and c2 be two terminating com-
mands and A,B, F events such that

⊢ c1∼c2 : Ψ =⇒F 〈1〉⇔F 〈2〉∧(¬F 〈1〉 ⇒ A〈1〉⇔B〈2〉).

Then, if the initial memories of both games satisfy Ψ,

|Pr [c1 : A]− Pr [c2 : B]| ≤ Pr [c1 : F] = Pr [c2 : F] .

In most applications of the above lemma, the failure event F can only be
triggered in oracle queries made by an adversary. When the adversary can
only make a known bounded number of queries, the following lemma, which
is implemented in EasyCrypt, provides means to bound the probability of
failure. We describe its hypotheses informally, but note that most of them
can be captured by pRHL judgments.

Lemma 2.3 (Failure event lemma). Consider a program c1; c2, an integer
expression i, an event F , and u ∈ R. Assume the following:

• Free variables in F and i are only modified by c1 or oracles in some
set O;

• After executing c1, F does not hold and 0 ≤ i;

• Oracles O ∈ O do not decrease i and strictly increase i when F is
triggered;

• For every oracle O in O, ¬F ⇒ Pr [O : F] ≤ u

Then, Pr [c1; c2 : F ∧ i ≤ q] ≤ q · u.

Finally, EasyCrypt implements a simple mechanism to directly compute
bounds for the probability of an event in a program. This mechanism can
establish, for instance, that the probability that a value uniformly chosen
from a set X equals an independent expression is exactly 1/ |X|, or that the
probability that this value belongs to an independent list of length n is at
most n/ |X|.

88

2.4. The Merkle-Damg̊ard Construction

2.4 The Merkle-Damg̊ard Construction

Merkle-Damg̊ard is a method for building a variable input-length (VIL) hash
function from a fixed input-length (FIL) compression function. In its sim-
plest form, the digest of a message is computed by first padding it to a
block boundary and then iterating a compression function f over the result-
ing blocks starting from an initial chaining value IV. To be more precise, a
padding function pad converts a message of arbitrary length into a list of
bitstrings of block size k, while a compression function f maps a pair of
bitstrings of length k and n to a bitstring of length n:

pad : {0, 1}∗ → ({0, 1}k)∗

f : {0, 1}k × {0, 1}n → {0, 1}n

Definition 2.4 (Merkle-Damg̊ard). Let f be a compression function and
pad a padding function as above, and let IV ∈ {0, 1}n be a public value,
known as the initialization vector. The Merkle-Damg̊ard hash function MD

is defined as
MD : {0, 1}∗ → {0, 1}n

MD(m) def
= f∗(pad(m), IV)

where f∗ : ({0, 1}k)∗ × {0, 1}n → {0, 1}n is defined recursively as

f∗(nil, y) def
= y

f∗(x::xs, y) def
= f∗(xs , f(x, y)).

The security properties of the Merkle-Damg̊ard construction greatly de-
pend on an adequate choice of the used padding function to thwart cer-
tain types of attacks. In the remainder, we consider prefix- and suffix-free
padding functions.

Definition 2.5 (Prefix- and suffix-free padding). A padding function pad is
prefix-free (resp. suffix-free) iff for any distinct messages m,m′, there is no
xs such that pad(m′) = pad(m) ‖ xs (resp. pad(m′) = xs ‖ pad(m)), where ‖
denotes the concatenation of bitstrings.

Security properties of hash functions are stated as claims about the dif-
ficulty of an attacker in achieving certain goals. Given a hash function H,
collision resistance states that it is hard to find distinct messages m1,m2

with the same digest H(m1) = H(m2). Preimage resistance states that
given a digest h, it is hard to find a message m such that H(m) = h. Sec-
ond preimage resistance states that given a message m1, it is hard to find a
message m2 6= m1 such that H(m1) = H(m2). Finally, resistance to length-
extension attacks states that it is hard to compute H(m1 ‖ m2) from H(m1).
The precise formulation of these notions and their relationship is addressed
in detail in [111].

89

Chapter 2. EasyCrypt - Verified Security of Merkle-Damg̊ard

An established method for proving the security of domain extenders, as
MD above, is to show that they are property-preserving: For instance, the
seminal works of Merkle [96] and Damg̊ard [70] show that if the compression
function f is collision resistant, then the hash functionMD with some specific
padding function is also collision resistant. Property preservation also ap-
plies for other notions; a representative panorama of property preservation
for collision resistance, preimage and second preimage resistance appears
in [10]. In Section 2.5 we use EasyCrypt to reduce the collision resistance of
MD with a suffix-free padding rule to the collision resistance of the underly-
ing compression function.

An alternative method for proving the security of domain extenders is
to show that they preserve ideal functionalities, i.e., that when applied to
ideal functionalities they yield an ideal functionality. The notion of indiffer-
entiability of [94] provides an appropriate framework.

Definition 2.6 (Indifferentiability). A procedure C with oracle access to
an ideal primitive G is (tS , q, ǫ)-indifferentiable from F iff there exists a
simulator S with oracle access to F and executing within time tS , such that
for any distinguisher D that makes at most q oracle queries, the following
inequality holds:

∣∣Pr
[
b← DC,G() : b

]
− Pr

[
b← DF ,S() : b

]∣∣ ≤ ǫ

Intuitively this means that the goal of D is to distinguish between the
following two scenarios: In the real scenario the distinguisher is given access
to CG and G, and in the ideal scenario it is given access to F and SF

as illustrated below. If the probability that it succeeds in differentiating
between the real scenario and the ideal scenario is small, we say that C is
indifferentiable from F .

C G F S

D

In the setting considered here, C represents the Merkle-Damg̊ard con-
struction, G represents the compression function and F represents an ideal-
ized hash function, i.e., a random oracle. Thus, the role of S is to simulate
the behavior of the compression function, namely, it should behave towards
F as G behaves towards the Merkle-Damg̊ard construction. In Section 2.6,
we use EasyCrypt to define such a simulator S and verify the indifferentia-
bility of MD from a VIL random oracle when the compression function G is
modeled as a FIL random oracle. See Section 2.3.1 for a precise definition
of random oracles.

90

2.5. Collision Resistance

We conclude this section with two observations about proofs of indiffer-
entiability and property preservation. First, indifferentiability from a ran-
dom oracle provides weaker guarantees than initially anticipated (see [57]
and [110] respectively for discussions on the random oracle model and on the
notion of indifferentiability), but nevertheless remains a useful heuristics in
the design of hash functions. Second, the two methods are complementary.
On the one hand, indifferentiability from a VIL random oracle entails re-
sistance against collision, preimage, second preimage, and length-extension
attacks. Thus, preservation of ideal functionalities apparently yields stronger
guarantees than property preservation. On the other hand, however, prop-
erty preservation is typically established under weaker hypotheses and ex-
act security bounds derived from indifferentiability proofs generally deliver
looser bounds than direct proofs based on property preservation.

2.5 Collision Resistance

We verify that finding collisions for MD with a suffix-free padding is at least
as hard as finding collisions for its compression function f , where a collision
for f consists of two input pairs (x1, y1), (x2, y2) satisfying the predicate

coll((x1, y1), (x2, y2))
def
= (x1, y1) 6= (x2, y2) ∧ f(x1, y1) = f(x2, y2).

Theorem 2.7. Let MD be a Merkle-Damg̊ard hash function with compres-
sion function f and a suffix-free padding pad. For any algorithm A finding
collisions for MD of at most length ℓ with probability p, there exists an al-
gorithm B that finds collisions for f with probability at least p and with a
time overhead of O(ℓ tf), where tf is a bound on the time needed for one
evaluation of f .

Consider the experiment CRMD below, in which an adversary A performs
a collision attack against MD:

Game CRMD :
(m1,m2)← A();
h1 ← F(m1);
h2 ← F(m2);
return (m1 6= m2 ∧ h1 = h2)

Oracle F(m) :
xs ← pad(m); y ← IV;
while xs 6= nil do

y ← f(hd(xs), y);
xs ← tl(xs);

return y

Using A, we construct a collision-finder B for the compression function f .
For this, algorithm B obtains from A a pair of messages m1,m2, pads them,
and iterates the compression function over the first blocks of the longer
padded message until the remaining suffix is the same length as the other
padded message. It then performs the remaining iterations needed to com-
pute MD(m1) and MD(m2) in parallel. If m1 and m2 form a collision for

91

Chapter 2. EasyCrypt - Verified Security of Merkle-Damg̊ard

MD, a collision for f must occur during one of these iterations. Algorithm B
stops as soon as it detects one such collision, returning the colliding inputs
as a result:

Game CRf :
(xy1, xy2)← B();
return coll(xy1, xy2)

Adversary B() :
(m1,m2)← A();
xs1 ← pad(m1); y1 ← IV;
xs2 ← pad(m2); y2 ← IV;
while |xs1| > |xs2| do
y1 ← f(hd(xs1), y1); xs1 ← tl(xs1);

while |xs1| < |xs2| do
y2 ← f(hd(xs2), y2); xs2 ← tl(xs2);

while ¬coll((hd(xs1), y1), (hd(xs2), y2)) ∧ xs1 6= nil do

y1 ← f(hd(xs1), y1); xs1 ← tl(xs1);
y2 ← f(hd(xs2), y2); xs2 ← tl(xs2);

return ((hd(xs1), y1), (hd(xs2), y2))

We prove in EasyCrypt that the algorithm B depicted above finds colli-
sions for f in the experiment CRf with at least the same probability as A
finds collisions for MD in CRMD:

Pr
[
CRMD : res

]
≤ Pr

[
CRf : res

]
(2.8)

Recall here that res is a keyword that stands for the value returned by
the main procedure of the games. In order to show (2.8) it suffices to prove
the relational judgment:

⊢ CRMD ∼ CRf : true =⇒ res〈1〉 ⇒ res〈2〉 (2.9)

Proving this judgment involves non-trivial relational reasoning because
equivalent computations in the related games are not performed in lockstep.
Namely, in game CRMD the messages m1, m2 are hashed sequentially, while
algorithm B hashes their suffixes in parallel. We begin by inlining the call
to B in CRf and show that the relational post-condition

(m1,m2)〈1〉 = (m1,m2)〈2〉 ∧ (h1 = MD(m1) ∧ h2 = MD(m2))〈1〉

holds after the two calls to F in CRMD and the call to A in CRf . To show
this, we prove that oracle F correctly implements function MD using the
one-sided rule for loops – the needed invariant is simply f∗(xs , y) = MD(m).
At this point, note that if m1 = m2 or MD(m1) 6= MD(m2), judgment (2.9)
holds trivially (we only have to check that B terminates). We are left with
the case where m1 6= m2 and MD(m1) = MD(m2). Assume w.l.o.g. that
|pad(m2)| ≤ |pad(m1)|, in which case B never enters its second loop and the
following invariant holds for the first:

f∗(xs1, y1) = MD(m1) ∧ f∗(xs2, y2) = MD(m2) ∧
m1 6= m2 ∧ |xs2| ≤ |xs1| ∧ xs2 = pad(m2) ∧
∃xs ′. xs ′ ‖ xs1 = pad(m1)

(2.10)

92

2.6. Indifferentiability

We prove that if the messages m1,m2 output by A collide, the last loop
necessarily exits because a collision is found. This can be shown by means
of the following loop invariant:

f∗(xs1, y1) = MD(m1) ∧ f∗(xs2, y2) = MD(m2) ∧
|xs2| = |xs1| ∧
(xs1 = xs2 ⇒ y1 6= y2)

Note that (2.10) and the negation of the guard of the first loop imply that
the above invariant holds initially. In particular, the last implication holds
because if xs1 and xs2 were equal, there would exist a prefix xs ′ such that
xs ′ ‖ pad(m2) = pad(m1), contradicting the fact that pad is suffix-free. Fi-
nally, observe that the last loop can exit either because a collision for f is
found or because xs1 = nil. In this latter case, it also holds that xs2 = nil

and therefore y1 = MD(m1) = MD(m2) = y2. However, from the last impli-
cation in the invariant we also have y1 6= y2, which leads to a contradiction
and renders this case trivial.

2.6 Indifferentiability

We verify the indifferentiability of the MD construction from a VIL random
oracle in {0, 1}∗ → {0, 1}n when its compression function f is modeled as a
FIL random oracle in {0, 1}k × {0, 1}n → {0, 1}n and its padding function
is prefix-free. Our proof is based on [66].

Theorem 2.11 (Indifferentiability of MD). The Merkle-Damg̊ard construc-
tion MD with an ideal compression function f , prefix-free padding pad, and
initialization vector IV is (tS , qD, ǫ)-indifferentiable from a variable input-
length random oracle F : {0, 1}∗ → {0, 1}n, where

ǫ =
3ℓ2 q2D
2n

tS = O(ℓ q2D)

and ℓ is an upper bound on the block-length of pad(m) for any message m
appearing in a query of the distinguisher.

On the one hand, in the real scenario, a distinguisher D has access to
an oracle Fq which implements the Merkle-Damg̊ard construction MD and
to a random oracle fq : {0, 1}k × {0, 1}n → {0, 1}n which models the com-
pression function. On the other hand, in the ideal scenario, D has access to
a random oracle Fq : {0, 1}∗ → {0, 1}n and fq is simulated. See Figure 2.12
for a formulation of these two scenarios as games Greal and Gideal.

To prevent D from making more than q oracle queries, we enforce a
bound q = ℓ qD on the counter qf , that counts the number of evaluations of
the compression function in game Greal. Note that this is more permissive
than the proof of [66], as it allows the distinguisher to trade queries to Fq

93

Chapter 2. EasyCrypt - Verified Security of Merkle-Damg̊ard

Game Greal :
qf ← 0;
T ← ∅;
b← DFq,fq ();
return b

Oracle f(x, y) :
if (x, y) /∈ dom(T) then
z $← {0, 1}n;
T [x, y]← z

return T [x, y]

Oracle Fq(m) :
xs ← pad(m);
y ← IV;
if qf + |xs| ≤ q then

qf ← qf + |xs|;
while xs 6= nil do

y ← f(hd(xs), y);
xs ← tl(xs)

return y

Oracle fq(x, y) :
if qf + 1 ≤ q then

qf ← qf + 1
z ← f(x, y);

else z ← IV

return z

Game Gideal :
qf ← 0;
R,T ′ ← ∅;
b← DFq,fq ();
return b

Oracle F (m) :
if m /∈ dom(R) then
z $← {0, 1}n;
R[m]← z

return R[m]

Oracle Fq(m) :
xs ← pad(m);
y ← IV;
if qf + |xs| ≤ q then

qf ← qf + |xs|;
z ← F (m)

else z ← IV

return z

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (x, y) /∈ dom(T ′) then
xs ← findseq((x, y),T ′)
if xs 6= ⊥ then

T
′[x, y]←F (pad-1(xs‖x))

else

T
′[x, y] $← {0, 1}n

z ← T
′[x, y]; qf ← qf + 1

else z ← IV

return z

Figure 2.12: The games Greal and Gideal

for queries to fq. Indeed, if D makes nf queries to fq and nF queries to Fq,
we require

qf ≤ nf + ℓ nF ≤ ℓ (nf + nF) ≤ ℓ qD = q.

We show that the simulator fq in Gideal behaves consistently with a
random oracle. Whenever the distinguisher makes a query (x, y) to oracle
fq, the simulator looks among all previous queries for a sequence that could
be the chain of inputs to the compression function used to compute the hash
of some message m, for which x is the last block of pad(m). We call such a
sequence a complete chain, and we define it formally below. When such a
sequence is found, the simulator queries the random oracle F for the hash
of message m and forwards the answer to the distinguisher. Otherwise, the
simulator answers with a uniformly distributed random value. Figure 2.13
shows how this simulator would react to a sequence of fresh queries

y2 ← fq(x1, IV); y3 ← fq(x2, y2); y4 ← fq(x3, y3); y5 ← fq(x4, y4)

where x1‖x2‖x3 = pad(m) for some message m. Note that since pad is
prefix-free, no message can have the padding x1, x1‖x2, or x1‖x2‖x3‖x4.
Therefore only the third query completes a chain and hence is answered by
forwarding pad-1(x1‖x2‖x3) = m to F in order to maintain consistency with

94

2.6. Indifferentiability

(x1, IV)︸ ︷︷ ︸
T

′[x1,IV]←y2

incomplete chain

y2 $← {0, 1}n

(x2, y2)︸ ︷︷ ︸
T

′[x2,y2]←y3

incomplete chain

y3 $← {0, 1}n

(x3, y3)︸ ︷︷ ︸
T

′[x3,y3]←y4

complete chain

y4 ← F (m)

(x4, y4)︸ ︷︷ ︸
T

′[x4,y4]←y5

incomplete chain

y5 $← {0, 1}n

Figure 2.13: The simulator queries the random oracle F for complete chains.

the real scenario. The other queries are just answered with random values.
The same holds for any other query that extends this chain further.

Definition 2.14 (Complete chain). Let T : {0, 1}k × {0, 1}n → {0, 1}n be
a map. A complete chain in T is a sequence (x1, y1) . . . (xi, yi) such that
y1 = IV and

1. ∀j = 1 . . . i− 1. (xj , yj) ∈ dom(T) ∧ T [xj , yj] = yj+1

2. x1 ‖ . . . ‖ xi is in the domain of pad-1

The function findseq((x, y),T ′) used by the simulator searches in T
′ for

a complete chain of the form (x1, y1) . . . (xi, yi)(x, y) and returns x1‖ . . . ‖xi,
or ⊥ to indicate that no such chain exists.

In our proofs, we needed to derive several auxiliary lemmas to help the
SMT solvers and automated provers to check the validity of arising logical
side-conditions; e.g., if a finite map T is injective and does not map any
entry to the value IV, every complete chain is determined by its last element
– that is, for any given (x, y), the value of findseq((x, y),T ′) is uniquely
determined. All of these lemmas have been mechanically verified based solely
on the axiomatization and definitions of elementary operations. In many
cases, EasyCrypt is able to verify the validity of these lemmas automatically.
The more involved lemmas have been manually verified in the Coq proof
assistant.

The proof proceeds by stepwise transforming the game Greal into the
game Gideal, upper-bounding the probability that the outcomes of consec-
utive games differ. By summing up over these probabilities, we obtain a
concrete bound for the advantage of the distinguisher in telling apart the
initial and final games. Specifically, we prove in EasyCrypt:

|Pr [Greal : b]− Pr [Gideal : b]| ≤
3q2

2n
(2.15)

We begin by considering the game Greal′ as defined in Figure 2.16. We
introduce events bad1, bad2, and bad3 that will be needed and explained
later. First, we introduce a copy of oracle f , which we call fbad. Both
use the same map T to store previously answered queries, the difference is
that fbad may trigger events bad1 and bad2. We also introduce the lists

95

Chapter 2. EasyCrypt - Verified Security of Merkle-Damg̊ard

Game Greal′ :
qf ← 0;
T ,T ′ ← ∅;
Y ← nil;
Z ← IV::nil;
bad1 ← false;
bad2 ← false;
bad3 ← false;
b← DFq,fq ();
return b

Oracle f(x, y) :
if (x, y) /∈ dom(T) then
z $← {0, 1}n;
Z ← z::Z; Y ← y::Y ;
T [x, y]← z

return T [x, y]

Oracle fbad(x, y) :
if (x, y) /∈ dom(T) then
z $← {0, 1}n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
T [x, y]← z

return T [x, y]

Oracle Fq(m) :
xs ← pad(m); y ← IV;
if qf + |xs | ≤ q then

qf ← qf + |xs |;
while |xs| > 1 do

y ← fbad(hd(xs), y);
xs ← tl(xs)

y ← fbad(hd(xs), y)
return y

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (x, y) /∈ dom(T ′) then
xs ← findseq((x, y),T ′)
if xs 6= ⊥ then

T
′[x, y]← fbad(x, y)

else

if set bad3(y,T ′,T) then
bad3 ← true;
T

′[x, y]← f(x, y)
else

T
′[x, y]← fbad(x, y)

z ← T
′[x, y]; qf ← qf + 1

else z ← IV

return z

Figure 2.16: The game Greal′

Y and Z that allow us to appropriately detect when these events occur.
In addition, we modify the simulator fq to maintain a map T

′ of queries
known to the distinguisher. Observe that T

′ ⊆ T , because queries to Fq

result in entries being added only to T , whereas queries to fq result in the
same entries being added to both T and T

′. Additionally, the simulator fq
behaves in two different ways depending on whether findseq((x, y),T ′) 6= ⊥.
If this condition holds, there is a complete chain in map T

′ ending in (x, y).
In this case, in game Gideal the simulator must call oracle F to maintain
consistency with the random oracle; otherwise, the simulator can just sample
a fresh random value. In this game, oracle fq returns the same answer in
both cases, but sets bad{1,2,3} accordingly. Lastly, we also unroll the last
iteration of the loop in Fq.

Note that the introduction of the additional map T
′ and the failure

events bad{1,2,3} does not change the observable behavior of the game.
Therefore,

Pr [Greal : b] = Pr [Greal′ : b] .

In game GrealF, defined in Fig. 2.17, we introduce a VIL random oracle F
and replace every call fbad(x, y) in game Greal′ where (x, y) ends a complete
chain in T with a call to F (m, y) where m is the unpadded message of
the chain; i.e., in oracle fq we call F if findseq is successful and in oracle
Fq we call F instead of the last call to fbad. We also introduce the map
I : N → {0, 1}n × B which enumerates all sampled chaining values and
includes a tainted flag to keep track of values known to the distinguisher.

96

2.6. Indifferentiability

We introduce an indirection in map T and T
′ through the use of map I.

This allows us to keep track of the order in which queries were made and to
know which answers we could re-sample without introducing inconsistencies
in the view of the distinguisher.

The failure events that were introduced in the last step capture certain
dependencies on previous queries that the distinguisher might exploit to tell
games Greal′ and GrealF apart. We prove in EasyCrypt that games Greal′ and
GrealF behave equivalently provided that these failure events do not occur.

1. bad1 is triggered whenever oracle fbad samples a random value that
is either IV or has already been sampled for a distinct query before.
The role of this event is twofold: on the one hand, if IV is sampled as
a random value, then there could exist a complete chain in T that is a
suffix of another complete chain in T as illustrated in the first example
of Figure 2.18 (here T [x2, y2] = IV). The problem is that oracle Fq in
the game Greal will generate the same values for the two messages
corresponding to these two chains, while Fq in the game Gideal most
likely will not. On the other hand, if a value is sampled that has been
sampled for another query before, then there could exist two complete
chains in T that collide at some point and are identical from that point
on as illustrated in the second example of Figure 2.18. Again the two
corresponding messages would yield the same answer in Greal but most
likely not in Gideal on queries to Fq. By requiring that event bad1 does
not occur, we guarantee that in game Greal′ the map T is injective and
does not map any value to IV.

2. bad2 is triggered whenever oracle fbad samples a random value that
has already been used as a chaining value in a previous query. This
means that this query may be part of a chain for which the distin-
guisher has already queried later points (x, y). This newly introduced
connection might, for instance, cause (x, y) to become the end of a
complete chain. Since T [x, y] has already been sampled, the result for
querying the corresponding message in Greal has already been fixed,
whereas querying this message in Gideal will most likely produce a dif-
ferent result. The event also captures that no fixed-points (i.e., entries
of the form T [x, y] = y) should be sampled. In this case a message
could repeat the block x arbitrarily often without changing the corre-
sponding hash value in Greal.

3. We use bad3 to ensure that the distinguisher constructs chains only
in the right order; i.e., the distinguisher should not be able to query
points in a chain without having queried all previous points of the
chain. Formally, bad3 is triggered whenever a chaining value y in a
query has already been sampled as a random value and hence is in the
range of T for some previous point (x′, y′), but (x′, y′) does not appear

97

Chapter 2. EasyCrypt - Verified Security of Merkle-Damg̊ard

Game GrealF :
qf ← 0;
q′
f ← 1;

T ,T ′,T ′

i
,R, I ← ∅;

I[0]← (IV, false);
Y ← nil;
Z ← IV::nil;
bad1 ← false;
bad2 ← false;
bad3 ← false;
b← DFq,fq ();
return b

Oracle F (m, y) :
if m /∈ dom(R) then
z $← {0, 1}n;
bad1 ← bad1∨z∈Z;
Z ← z::Z;
Y ← y::Y ;
bad2 ← bad2∨z∈Y ;
R[m]← (z,q′

f)

I[q′
f]← (z, false)

q′
f ← q′

f + 1

return R[m]

Oracle Fq(m) :
xs ← pad(m); y ← IV;
i← 0;
if qf + |xs | ≤ q then

qf ← qf + |xs|;
while |xs| > 1∧
(hd(xs), y) ∈ dom(T ′) do
i← T

′

i
[hd(xs), y];

y ← T
′[hd(xs), y];

xs ← tl(xs);
while |xs| > 1∧
(hd(xs), i) ∈ dom(T) do
i← T [hd(xs), i];
y ← fst(I[i]);
xs ← tl(xs);
while |xs| > 1 do

z $← {0, 1}n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
T [hd(xs), i]← q′

f ;

I[q′
f]← (z, true);

i← q′
f ;

y ← z;
q′
f ← q′

f + 1;

xs ← tl(xs)
y ← fst(F (m, y))
return y

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (x, y) /∈ dom(T ′) then
xs ← findseq((x, y),T ′)
if xs 6= ⊥ then

m ← pad-1(xs ‖ x);
(z, j)← F (m, y);
T

′[x, y]← z;
T

′

i
[x, y]← j;

else

found , found b3 ← false;
j, k′ ← 0;
while k′ < q′

f do

if snd(I[k′]) then
if fst(I[k′]) = y then

found b3 ← true;
else if ¬found∧

fst(I[k′])=y∧
(x, k′) ∈ dom(T)∧
snd(I[T [x, k′]]) then

found ← true;
j ← T [x, k′];
k′ ← k′ + 1;
if found then

z ← fst(I[j]);
I[j]← (z, false);
T

′[x, y]← z;
T

′

i
[x, y]← j;

else

if found b3 then

bad3 ← true;
z $← {0, 1}n;
I[q′

f]← (z, false);

T
′[x, y]← z;

T
′

i
[x, y]← q′

f ;

q′
f ← q′

f + 1;

else

z $← {0, 1}n;
bad1 ← bad1 ∨ z ∈ Z;
Z ← z::Z; Y ← y::Y ;
bad2 ← bad2 ∨ z ∈ Y ;
I[q′

f]← (z, false);

T
′[x, y]← z;

T
′

i
[x, y]← q′

f ;

q′
f ← q′

f + 1

z ← T
′[x, y]; qf ← qf + 1

else z ← IV

return z

Figure 2.17: The game GrealF

98

2.6. Indifferentiability

(x1, IV) (x2, y2) (x3, IV) (x4, y4) (x5, y5)

(x3, IV) (x4, y4) (x5, y5)

(x1, IV) (x2, y2) (x3, y3)

(x′1, IV) (x′2, y
′
2) (x′3, y

′
3)

(x4, y4) (x5, y5)

Figure 2.18: Two examples illustrating the necessity of event bad1

in the domain of T ′ and (x′, y′) is not the last element of a complete
chain in T . Intuitively, this means that y was never returned to the
distinguisher by fq or Fq and hence the distinguisher managed to guess
a random value.

In order to relate games Greal′ and GrealF in case that findseq((x, y),T ′)
in fq succeeds in both games, we need to show that the call fbad(x, y) in
Greal′ and the call F (m, y) in GrealF behave similarly. For this we show
that the following invariant is preserved in both games: For all complete
chains c in the map T of game Greal′ with last(c) ∈ dom(T), it holds that
c’s associated message is in dom(R) of game GrealF and, vice versa, every
message in dom(R) of game GrealF has a corresponding complete chain c
in the map T of game Greal′ with last(c) ∈ dom(T). This invariant allows
EasyCrypt to prove this case by inferring that (x, y) ∈ dom(T) in game Greal′

if and only if m ∈ dom(R) in game GrealF.

Proving that the aforementioned invariant is preserved in the games
requires several other invariants. Most of them merely relate the represen-
tation of maps in both games; we omit these technical details. The essential
invariant is that the distinguisher queries fq for points in a chain only if it
has already queried the preceding part of the chain. This is important as it
implies that each chain will be completed by a query for its last element, in
which case findseq will detect this query and the corresponding message will
be added to R. In game Greal′ , the predicate set bad3 enforces this ordering
by triggering event bad3. The probability of this event is negligible, because
it means that y was never output by fq or Fq and hence is not known to the
distinguisher. In game GrealF, we use the map I to iterate over all chaining
values in order to check for the ordering mentioned above.

In oracle Fq of game GrealF, the computation of the Merkle-Damg̊ard
construction is split into three stages due to the different usage of the maps
T

′, T ′

i
, and T . The first loop computes the construction for values that were

already queried by the distinguisher and are therefore in dom(T ′). The
restriction that the distinguisher may only query chains in order implies
that such values occur only in the prefix of a chain. The second loop handles
values that were already used before by oracle Fq, and the third loop samples
fresh chaining values. Relating the final call to fbad in game Greal′ and the

99

Chapter 2. EasyCrypt - Verified Security of Merkle-Damg̊ard

final call to F in game GrealF is similar to this case in oracle fq. Overall, we
are able to prove in EasyCrypt that the advantage in differentiating between
games Greal′ and GrealF is upper bounded by the probability of any of the
events bad1, bad2, bad3 occurring in game GrealF:

|Pr [Greal′ : b]− Pr [GrealF : b]| ≤ Pr [GrealF : bad1 ∨ bad2 ∨ bad3]

To finish the proof, one has to relate Pr [GrealF : b] with Pr [Gideal : b] and
bound the probability of the failure events in game GrealF. Focusing on
the probability of bad1,2, note that event bad1 (resp. bad2) is set when a
freshly sampled value z is in the list Z (resp. Y). Since the size of both lists
is bounded by q, this occurs with probability ≤ q 2−n for each query.

Note that oracles Fq, F , and fq in game GrealF use the same code to
detect the failure events bad1 and bad2 when sampling a fresh value z. By
wrapping this code in a new oracle, Lemma 2.3 becomes applicable using
the parameters u = q 2−n and i = |Z| − 1 (resp. |Y |). This yields

Pr [GrealF : bad1] ≤
q2

2n
Pr [GrealF : bad2] ≤

q2

2n
.

It remains to bound the probability of bad3 and to relate the game
Pr [GrealF : b] with Pr [Gideal : b]. On the one hand, note that in game GrealF

chaining values are sampled eagerly, i.e., for a query m, oracle Fq samples
chaining values z that are independent of the distinguisher’s view (their
associated flag is set to true). These values might later on become known
to the distinguisher if it recomputes the Merkle-Damg̊ard construction for
m using oracle fq (this case is identified by setting found = true). On
the other hand, in game Gideal chaining values are sampled lazily, i.e., not
before they are queried by the distinguisher. Hence game GrealF must be
transformed so that chaining values are sampled lazily (as in game Gideal).
The same kind of argument can be used for bad3. This event is set whenever
the distinguisher makes a query (x, y) to fq with y coinciding with a value
uniformly and independently distributed w.r.t. its view.

To prepare for this transition from eagerly to lazily sampled chaining
values, game GrealF is transformed into game GidealEager (see Figure 2.19).
The body of this game contains a loop that re-samples all chaining values
that are unknown to the adversary, i.e., the values for which the second com-
ponent in the range of map I is set to true. Furthermore, game GidealEager

drops the failure events bad{1,2,3}, but introduces a new failure event bad4.
It holds that if bad3 is triggered in game GrealF, then in GidealEager bad4 is
set to true or there exists an i such that I[i] = (v, true) with v ∈ Y :

Pr [GrealF : b] = Pr [GidealEager : b]

Pr [GrealF : bad3] ≤ Pr [GidealEager : bad4 ∨ I∃]

where I∃ = ∃i. 0 ≤ i ≤ q′f ∧ snd(I[i]) ∧ fst(I[i]) ∈ Y .

100

2.6. Indifferentiability

Game GidealEager :

Game GidealLazy :

qf ← 0;
q′
f ← 1;

T ,T ′,T ′

i
,R, I ← ∅;

I[0]← (IV, false);
Y ← nil;
bad4 ← false;

l← 0;
while l < q′

f do

if snd(I[l]) then
z $← {0, 1}n;
I[l]← (z, true);
l← l + 1;

b← DFq,fq ();

l← 0;
while l < q′

f do

if snd(I[l]) then
z $← {0, 1}n;
I[l]← (z, true);
l← l + 1;

return b

Oracle F (m) :
if m /∈ dom(R) then
z $← {0, 1}n;
R[m]← (z,q′

f)

I[q′
f]← (z, false)

q′
f ← q′

f + 1;

return R[m]

Oracle Fq(m) :
xs ← pad(m); y ← IV;
i← 0;
if (0 < q′

f ∧
qf + |xs | ≤ q) then
qf ← qf + |xs|;
while |xs| > 1∧
(hd(xs), y) ∈ dom(T ′) do
i← T

′

i
[hd(xs), y];

y ← T
′[hd(xs), y];

xs ← tl(xs);
while |xs| > 1∧
(hd(xs), i) ∈ dom(T) do
i← T [hd(xs), i];
xs ← tl(xs);
while |xs| > 1 do

z $← {0, 1}n;
T [hd(xs), i]← q′

f ;

I[q′
f]← (z, true);

i← q′
f ;

q′
f ← q′

f + 1;

xs ← tl(xs);
y ← fst(F (m));
return y

Oracle fq(x, y) :
if qf + 1 ≤ q then

if (0 < q′
f ∧

(x, y) /∈ dom(T ′)) then
xs ← findseq((x, y),T ′)
if xs 6= ⊥ then

m ← pad−1(xs ‖ x);
(z, j)← F (m);
T

′[x, y]← z;
T

′

i
[x, y]← j;

else

found ← false; j, k′ ← 0;
while (k′<q′

f ∧¬found) do
if (I[k′] = (y, false)∧
(x, k′) ∈ dom(T)∧
snd(I[T [x, k′]])∧
k′ < T [x, k′]∧
T [x, k′] < q′

f) then

found ← true;
j ← T [x, k′];
else

k′ ← k′ + 1;
if found then

z ← fst(I[j]);

z $← {0, 1}n;

bad4 ← bad4 ∨ z ∈ Y ;
I[j]← (z, false);
T

′[x, y]← z;
T

′

i
[x, y]← j;

else

z $← {0, 1}n;
I[q′

f]← (z, false);

T
′[x, y]← z;

T
′

i
[x, y]← q′

f ;

q′
f ← q′

f + 1;

Y ← y::Y ;
z ← T

′[x, y];
qf ← qf + 1;
else

z ← IV;
return z

Figure 2.19: The games GidealEager (including code in solid frames) and
GidealLazy (including code in dashed frames)

101

Chapter 2. EasyCrypt - Verified Security of Merkle-Damg̊ard

In game GidealLazy (see Figure 2.19), the loop that was introduced in
the last game is swapped with the call to the distinguisher and oracle fq
samples the chaining values lazily (the branch found re-samples the value of
z). As explained in Section 2.3.2, in order to prove the equivalence with the
previous game one needs to show that the loop that resamples the values
unknown to the adversary can swap with calls to oracles Fq and fq in games
GidealEager and GidealLazy. This yields

Pr [GidealEager : b] = Pr [GidealLazy : b]

Pr [GidealEager : bad4 ∨ I∃] = Pr [GidealLazy : bad4 ∨ I∃] .

It is easy to see that games GidealLazy and Gideal are equivalent w.r.t. b; the
global variable qf and the maps R and T

′ are equivalent in both games.
The other variables in game GidealLazy and its loops do not influence the
behavior of its oracles. Namely, it holds

Pr [GidealLazy : b] = Pr [Gideal : b] .

It remains to bound the probability of bad4 ∨ I∃ in game GidealLazy. To
do this, the while loop in the code of the game is modified by replacing the
instruction z $← {0, 1}n with

z $← {0, 1}n;bad4 ← bad4 ∨ z ∈ Y .

This leads to a game GidealLazy′ , for which it holds

Pr [GidealLazy : bad4 ∨ I∃] ≤ Pr
[
GidealLazy′ : bad4

]
.

Using the same technique as for bad1,2 to bound the probability of bad4 in
game GidealLazy′ (taking u = q 2−n and i = |Y |) gives

Pr
[
GidealLazy′ : bad4

]
≤

q2

2n
.

Putting the (in-)equalities proved above together proves Inequality (2.15)
which completes the proof of Theorem 2.11.

102

Chapter 3

Discussion

3.1 Related Work on Verification

There are two fundamentally different approaches when analyzing crypto-
graphic protocols: The computational and the symbolic model. Our work
resides in the computational model, which deals with the bit-level repre-
sentation of cryptographic primitives including probabilistic behavior and
complexity-theoretic conditions such as polynomial-time adversaries and er-
ror probabilities. In contrast to the computational model, the symbolic
model uses a term algebra to abstract away from such lower level details of
cryptographic primitives and instead employs a deduction system on these
terms to model the capabilities of an adversary [73, 75, 97]. These so-called
Dolev-Yao models constitute a drastic simplification w.r.t. the computa-
tional model. On the one hand, this has lead to a line of work to automate
the analysis of such models of cryptographic protocols [99, 95, 86, 90, 106,
119, 1, 47, 38, 11]; see [50] for a survey. On the other hand, the guarantees
provided by these approaches are somewhat limited, since they only hold
with respect to the simplifications of the symbolic model.

There has been a substantial amount of work on carrying these results
over to the computational model for passive and active adversaries, provid-
ing abstractions for several cryptographic primitives including encryption,
signatures, hash functions, as well as sophisticated objects such as zero-
knowledge proofs [2, 88, 24, 89, 98, 21, 68, 58, 118, 25, 15, 19]; see [67] for
a survey. Even though such computational soundness proofs can provide
security guarantees on the computational level, this process usually restricts
the usage of the employed primitives and requires them to satisfy stronger
properties than direct proofs in the computational model.

Another approach to provide computational security guarantees is to
abstract cryptographic protocols using ideal functionalities for, e.g., secure
channels, commitment schemes, zero-knowledge proofs, or multi-party func-
tion evaluation [107, 55, 56, 59, 60, 17, 24, 117, 18]. Here, one shows that

103

Chapter 3. Discussion

each attack on a real protocol can be simulated against ideal functional-
ities in an indistinguishable manner. Since this kind of abstraction also
preserves properties such as liveness, integrity, non-interference, and key se-
crecy [23, 16, 20, 22], proofs of these properties for ideal functionalities carry
over to the real protocol. Nevertheless, the computational security guaran-
tees that one obtains through this process still rely on intricate hand-written
simulation proofs.

Our work pursues the more recent approach of verifying security prop-
erties directly in the computational model, where the game-playing tech-
nique [42, 114] has paved the ground for formal verification techniques.
Halevi noticed this possibility and called for the development of a formal
verification tool in [83].

The work that comes closest to our Verypto framework is CertiCrypt [29,
32, 124], which is a framework for reasoning about game-based cryptographic
proofs in the Coq proof assistant and – like its progeny EasyCrypt [30] –
uses the relational Hoare logic on the pWhile language to reason about
games. Compared to the language implemented in Verypto, pWhile is not
higher-order and only supports discrete measure spaces. Despite these lim-
itations in expressiveness, CertiCrypt has been used to verify several cryp-
tographic results such as the IND-CPA security of the ElGamal encryption
scheme [29, 32], the PRP/PRF switching lemma [32, 33], the unforgeability
of Full Domain Hash (FDH) signatures [125], zero-knowledge proofs based
on Σ-protocols [34], the IND-CCA Security of OAEP [31], semantic security
of the Boneh-Franklin identity-based encryption scheme [36], and a construc-
tion for indifferentiable hashing into elliptic curves [28]. In addition to our
work on the Merkle-Damg̊ard construction, EasyCrypt has been used to verify
the IND-CPA security of the (hashed) ElGamal encryption scheme [30, 26],
the IND-CCA security of the Cramer-Shoup encryption scheme [30], and
the IND-CCA security of a novel variation of OAEP [37]. Other extensions
of CertiCrypt have been developed to reason about differential privacy [35]
and zero-knowledge proofs of knowledge [4].

CryptoVerif [48] is another tool that supports game-based cryptographic
proofs. It has been used to assert the unforgeability of the FDH signature
scheme [52], the security of the Kerberos protocol [51], and the OEKE key-
exchange protocol [49]. CryptoVerif differs substantially from our work in
that it aims at generating the sequence of games itself, based on a collection
of manually proven transformations, while we aim at checking whether a
sequence of games provided by the user is computationally sound. These
approaches should thus be considered complementary instead of competing.

A non-relational probabilistic Hoare logic to reason about game-based
proofs is presented in [65]. While this logic is used to infer the security of the
ElGamal encryption, its formalism is not powerful enough to fully express
the security properties of interest, e.g., notions such as negligible probability
or polynomial-time adversaries cannot be expressed.

104

3.2. SHA-3 and Related Work on Hash Security

In [85], Impagliazzo and Kapron prove the soundness of a logic for com-
putational indistinguishability. They use it to prove properties of pseudoran-
dom generators, but cannot handle adaptive adversaries. The same holds
for [126], where Zhang uses a probabilistic polynomial-time calculus to rea-
son about computational indistinguishability.

In another approach, Nowak establishes the security of ElGamal in [103]
and gives proofs for the Blum-Blum-Shub pseudorandom generator and the
Goldwasser-Micali scheme in [104]. For this, he models adversaries imme-
diately as Coq functions and hence is only capable of offering limited sup-
port for proof automation because there is no special syntax for writing
games that could be conveniently used to mechanize syntactic transforma-
tions. Moreover, the formalism ignores complexity-theoretic issues such as
defining a polynomial-time adversary. This issue is addressed in [105] by us-
ing the calculus of Zhang [126], but without providing tool support. In [3],
Affeldt et al. give a game-based proof of the PRP/PRF switching lemma
in Coq. Their formalism is custom-made for this example which impedes a
general application of their framework.

In [69], Courant et al. develop a specialized Hoare logic to infer IND-
CPA security in the random oracle model and implement it in a tool. Then
they use a syntactic criterion to further deduce the IND-CCA security of
encryption schemes.

The Computational Indistinguishability Logic (CIL) of [27] uses a sys-
tem of oracles to model cryptographic games with adaptive adversaries and
supports reasoning based on simulations and reductions. CIL has been used
to prove unforgeability for the Probabilistic Signature Scheme (PSS) as well
as FDH, and the IND-CCA security of OAEP. A Coq formalization of CIL
appears in [64] and an extension of CIL has been used to manually prove
the indifferentiability of hash designs [71].

3.2 SHA-3 and Related Work on Hash Security

Despite their widespread use, the formal verification of hash functions has
received little attention. To our best knowledge, Toma and Borrione [120]
were the first to use theorem provers to formally verify properties of SHA-1,
but their focus is on functional properties, rather than security properties.
Mironov and Zhang [100] use a SAT solver to construct collisions for MD4
and MD5. The first machine-checked proof of security for a hash design
appears in [28], where the authors use the CertiCrypt framework to verify that
the construction from Brier et al. [54] yields a hash function indifferentiable
from a random oracle into ordinary elliptic curves. In [71] Daubignard et al.
develop an extension of CIL to permute dependencies between oracles in a
game, and apply their method to prove hash designs indifferentiable from
random oracles. Their method is not implemented, although the underlying

105

Chapter 3. Discussion

framework has been machine-checked [64].
In response to the discovery of differential collision attacks and weak-

nesses for several hash algorithms including MD5 [122] and SHA-1 [121, 92],
the U.S. National Institute of Standards and Technology (NIST) launched
the so-called SHA-3 competition in November 2007 with the objective of
selecting a new cryptographic hash function to augment the set specified
by the U.S. Federal Information Processing Standard (FIPS) 180-4, which
includes the SHA-1 and SHA-2 algorithms. After receiving 64 entries, NIST
selected 51 candidates for the first round, further narrowed down the list to
just 14 candidates for the second round, and announced 5 finalists in Decem-
ber 2010: BLAKE [12], Grøstl [80], JH [123], Keccak [43], and Skein [76]. Out
of these Keccak was announced as the winner of the competition in October
2012 and is henceforth the new SHA-3 cryptographic hash algorithm.

Due to the growing interest in cryptographic hash functions during the
course of the competition, the security of all SHA-3 finalists, and of many sec-
ond round candidates, has been thoroughly scrutinized. Two survey articles
summarize known results [7, 9]. Even though the algorithmic descriptions of
the finalists and their exact security bounds fit in one page (see [9]), the cor-
responding security proofs are technically involved and need to be cautiously
adapted to account for the specificities of each function. As a consequence,
it is difficult to assess the validity of security claims for individual candi-
dates and machine checking their proofs is an appealing perspective, which
also motivated our work on the Merkle-Damg̊ard construction in Chapter 2.
Therefore, in the remainder of this section we discuss the applicability of
the proofs presented in Sections 2.5 and 2.6 to the SHA-3 finalists.

To avoid inheriting structural weaknesses in the original Merkle-Damg̊ard
construction, many hash functions employ instead slight variants of it. One
well-known variant is the wide-pipe design, which uses an internal state
larger than the final output [91, 66]. Also the five SHA-3 finalists are based
on the iterated design that underlies the Merkle-Damg̊ard construction, but
incorporate some variations such as round-dependent tweaks, counters, final
transformations, and chopping. We observe that, in a more or less con-
trived way, all the finalists can be considered as variants of the generalized
Merkle-Damg̊ard construction which, as a final transformation, uses a sepa-
rate compression function to process the last message block and chops off a
number of least significant bits before producing the final output.

The compression functions of the finalists are either block-cipher based
(BLAKE, Skein) or permutation-based (Grøstl, JH, Keccak). Moreover, all
finalists use suffix-free padding rules, while the padding rules of BLAKE and
Skein are additionally prefix-free [9].

Our formalization models compression functions as functions of two ar-
guments: a message block and a chaining value. This represents a devia-
tion with respect to the compression functions of BLAKE and Skein. The
compression function of BLAKE additionally takes a counter and a random

106

3.2. SHA-3 and Related Work on Hash Security

salt value, whereas the compression function of Skein builds on a tweakable
block cipher and takes as additional input a round-specific tweak. The ad-
ditional arguments of the compression functions of BLAKE and Skein can
be formalized as an integral part of the padding rule to match the model-
ing of compression functions that we use in our results about the MD hash
function: The padding function can compute the appropriate round-specific
values and append them to the message blocks. However, all finalists except
BLAKE use chopping or a final transformation, which are formalized neither
in our proof of collision resistance nor in our proof of indifferentiability. This
rules out a direct application of our results, with the exception of BLAKE,
for which the Theorem 2.7 on collision resistance does apply.

NIST requirements for the SHA-3 competition included collision resis-
tance, preimage resistance and second preimage resistance. All the candi-
dates selected as finalists satisfy these properties and (in most cases) even
achieve optimal bounds for them when the underlying block-ciphers or per-
mutations used to build their compression functions are assumed to be
ideal [9]. Although the original NIST requirements did not include the prop-
erty of indifferentiability from a random oracle, this notion has also been con-
sidered in the literature and is achieved by all five finalists [5, 62, 6, 45, 44, 40].
Generalizations of the sponge construction that underlies Keccak and JH

have been shown to be indifferentiable [8] as well as sponges restricted to
single round extraction phases [61], which includes the standardized variants
of SHA-3.

These indifferentiability proofs hold in an idealized model for some of the
building blocks of the hash function – the ideal-cipher model for block-cipher
based hash functions, or the ideal-permutation model for permutation-based
hash functions. Indifferentiability seems to be an excellent target for security
proofs because it ensures that the high-level design of the hash function has
no structural weaknesses, but also because it implies bounds for all of the
classical properties enumerated above. Unfortunately, the assumption that
some underlying primitive is ideal is at best unrealistic and at worst plainly
wrong. Proofs of indifferentiability should be taken only as an indication for
the security and as a palliative for the lack of proofs in the standard model.

Compared to our result of Theorem 2.11, which assumes that the com-
pression function is ideal, the indifferentiability of all the finalists has been
proved in an ideal model for lower building blocks. We point out that assum-
ing ideality of a lower building block is weaker than assuming ideality of the
entire compression function and thus these results are stronger. Indeed, as-
suming ideality of the entire compression function seems to be inappropriate
for all the finalists:

• The compression functions of Keccak and JH are trivially non-random,
as collisions and preimages can be found in only one query to the
underlying permutation [46, 9].

107

Chapter 3. Discussion

• Finding fixed-points for the compression function of Grøstl is triv-
ial [80].

• The compression function of BLAKE has been shown to exhibit non-
random behavior [5, 62].

• Non-randomness has been shown for reduced-round versions of Three-
fish, the block-cipher underlying Skein [87].

The only two finalists that use a prefix-free padding rule, and for which
our indifferentiability proof can apply, are BLAKE and Skein. However, our
proof of indifferentiability of prefix-free Merkle-Damg̊ard relies on the as-
sumption that the underlying compression function behaves like an ideal
primitive. Thus, it cannot be applied to BLAKE, as this assumption has
been invalidated; for Skein, the assumption that its compression function is
ideal is seriously weakened by the attacks on Threefish mentioned above.

3.3 Conclusion

In Chapter 1 we conceptually designed Verypto and presented its implemen-
tation in Isabelle/HOL. For this, we developed a probabilistic higher-order
functional language with recursive types, references, and events that is able
to express the constructs that typically occur in cryptographic proofs. Its
semantics is expressive but yet simple enough to be understandable with-
out a strong background in the theory of programming languages. Using
a collection of verified game transformations, Verypto is capable of verify-
ing game-based cryptographic security proofs in a machine-assisted manner,
which we demonstrated in two example proofs. Namely, we showed that the
self-composition of a 1-1 one-way function is also one-way, and we verified
the IND-CPA security of the ElGamal encryption scheme.

The prevailing method for building hash functions is to iterate a com-
pression function on a pre-processed input message. In Chapter 2 we have
considered the Merkle-Damg̊ard construction, which pioneered this design,
and verified that the resulting hash function preserves collision resistance
and is indifferentiable from a random oracle. Our work demonstrates that
state-of-the-art verification tools can be used for proving the security of hash
designs. Furthermore, our work constitutes a non-trivial result about the
Merkle-Damg̊ard construction and is a good starting point for formalizing
more general security proofs that apply to a wider range of hash functions, in-
cluding the new SHA-3 algorithm Keccak. Indeed, indifferentiability proofs
based on weaker assumptions that apply to SHA-3 as in [8, 61] are not sig-
nificantly different from the proof we have formalized and use essentially the
same techniques. We see no impediment to formalizing them in EasyCrypt.

108

Appendix I

Formalization of Verypto in
Isabelle/HOL

I.1 Probability theory

(1) class measurable_space = Section 1.5.2
page 9fixes Σ :: "’a set set"

assumes sigma [simp]: "sigma_algebra Σ"

(2) typedef ’a measurableset = "Σ::’a::measurable_space set set"

(3) class discrete_measurable_space = measurable_space +
assumes univ: "Σ = UNIV"

(4) class countable_measurable_space = discrete_measurable_space + countable

instantiation bool :: measurable_space
(5) definition sigma_bool_def[simp]: "(Σ::bool set set) == UNIV"

instantiation bool :: countable_measurable_space

instantiation nat :: measurable_space
(6) definition sigma_nat_def[simp]: "(Σ::nat set set) == UNIV"

instantiation nat :: countable_measurable_space

instantiation unit :: measurable_space
(7) definition sigma_unit_def[simp]: "(Σ::unit set set) == UNIV"

instantiation unit :: countable_measurable_space

instantiation real :: measurable_space
(8) definition sigma_real_def: "(Σ::real set set) == IB" Section 1.5.2

page 9
instantiation "*" :: (measurable_space, measurable_space) measurable_space
(9) definition sigma_prod_def: Section 1.5.2

page 9"(Σ::((’a::measurable_space)×(’b::measurable_space)) set set)
== sigma {a×b | a b. a∈Σ ∧ b∈Σ}"

instantiation "+" :: (measurable_space, measurable_space) measurable_space

109

Appendix I. Formalization of Verypto in Isabelle/HOL

(10) definition sigma_sum_def:
"(Σ::((’a::measurable_space)+(’b::measurable_space)) set set)
== sigma {a<+>b | a b. a∈Σ ∧ b∈Σ}"

instantiation "list" :: (measurable_space) measurable_space
(11) definition sigma_list_def:

"(Σ::((’a::measurable_space)list) set set)
== sigma {listset sl | sl::’a set list. set sl ⊆ Σ}"

instantiation "fun" :: (type,measurable_space) measurable_space
(12) definition sigma_fun_def:Section 1.5.2

page 9 "(Σ::(’a⇒(’b::measurable_space)) set set)
== sigma {{f. f x : B} | B x. B : Σ}"

(13) definition
subprobability_space:: "(’a set set * (’a set ⇒ real)) ⇒ bool" where
"subprobability_space M ≡ measure_space M ∧ probability M UNIV ≤ 1"

(14) definitionSection 1.5.2
page 9 "is_sub_pr_measure M ==

subprobability_space (Σ::(’a::measurable_space) set set, M)"

(15) definitionSection 1.5.2
page 10 "is_measurable (f::(’a::measurable_space)⇒(’b::measurable_space)) ==

f ∈ measurable Σ Σ"

(16) lemma fst_measurable: "is_measurable fst"

(17) lemma snd_measurable: "is_measurable snd"

(18) typedef ’a subprobability =
"{µ::(’a::measurable_space) set ⇒ real. is_sub_pr_measure µ ∧ (∀ E∈(-Σ).µ(E)=0)}"

(19) definition
"probability_of (µ::’a::measurable_space subprobability) M
== glb {Rep_subprobability µ A | A. A:Σ & A⊇M}"

(20) definition
"mk_subprobability f == Abs_subprobability (λE.(if E∈Σ then f E else 0))"

instantiation subprobability :: (measurable_space)zero
(21) definition "0 = mk_subprobability (λE. 0)"

(22) definitionSection 1.5.2
page 10 "project_measure f (µ::_ subprobability) ==

mk_subprobability (λA∈Σ. probability_of µ(f-‘A))"

(23) lemma probability_of_mono:
assumes "A⊆B"
shows "probability_of µ A ≤ probability_of µ B"

instantiation subprobability :: (measurable_space)order
(24) definitionSection 1.5.2

page 10 le_subprobability_def: "µ ≤ ν == probability_of µ ≤ probability_of ν"
(25) definition

less_subprobability_def: "(µ::’a subprobability) < ν ≡ µ ≤ ν ∧ ¬ µ ≥ ν"

(26) definitionSection 1.5.2
page 10 SPall_def: "SPall µ P == (∃ S∈Σ. probability_of µ (-S) = 0 ∧ (∀ x∈S. P x))"

syntax (xsymbols)
"_SPall" :: "pttrn => (’a::measurable_space subprobability) => bool => bool"

110

I.1. Probability theory

("(3∀ _←_./ _)")

(27) lemma SPall_True[simp]: "∀ x←µ. True"

(28) lemma probability_of_project_measure:
assumes "S∈Σ" and "is_measurable f"
shows "probability_of (project_measure f A) S = probability_of A (f -‘ S)"

(29) lemma project_measure_comp:
assumes "is_measurable f"
assumes "is_measurable g"
shows "project_measure f (project_measure g µ) = project_measure (f o g) µ"

(30) lemma SPall_simps[simp]:
"!!A P Q. (ALL x<-A. P x | Q) = ((ALL x<-A. P x) | Q)"
"!!A P Q. (ALL x<-A. P | Q x) = (P | (ALL x<-A. Q x))"
"!!A P Q. (ALL x<-A. P --> Q x) = (P --> (ALL x<-A. Q x))"
"!!A P Q. (ALL x<-A. P x --> Q) = ((~(ALL x<-A. ~(P x))) --> Q)"
"!!P. (ALL x<-0. P x) = True"
"!!A P f. [[is_measurable f; ALL x<-project_measure f A. P x]] =⇒

(ALL x<-A. P (f x))"
"!!A P f. [[is_measurable f; is_measurable P]] =⇒

(ALL x<-project_measure f A. P x) = (ALL x<-A. P (f x))"
"!!A P f. [[is_measurable f; ∀ S∈Σ. f ‘ S ∈ Σ]] =⇒

(ALL x<-project_measure f A. P x) = (ALL x<-A. P (f x))"
(31) typedef (’a,’b) submarkov_kernel = "{K. ∀ B∈Σ. is_measurable Section 1.5.2

page 10(λw::’a::measurable_space. probability_of (K w) (B::’b::measurable_space set))}"

(32) definition
"apply_kernel == Rep_submarkov_kernel"

(33) definition
"kernel_prob_of K x == probability_of (apply_kernel K x)"

(34) definition
"mk_kernel == Abs_submarkov_kernel"

(35) definition
"mk_kernel2 (f::(’a::measurable_space,’b::measurable_space) kernelT) =
mk_kernel (λx. mk_subprobability (f x))"

instantiation submarkov_kernel :: (measurable_space,measurable_space)order
(36) definition le_submarkov_kernel_def: Section 1.5.2

page 10"K ≤ L == apply_kernel K ≤ apply_kernel L"
(37) definition less_submarkov_kernel_def:

"(K::(’a,’b)submarkov_kernel) < L ≡ K ≤ L ∧ ¬ K ≥ L"

(38) definition Section 1.5.2
page 10"unitkernel == mk_kernel2 (λx E. if x:E then 1 else 0)"

(39) definition
"constant_dist_kernel µ == mk_kernel (λx. µ)"

(40) definition
"constant_kernel c == constant_dist_kernel (apply_kernel unitkernel c)"

(41) definition Section 1.5.2
page 10"restriction_kernel A ==

mk_kernel (λx. if x:A then apply_kernel unitkernel x else 0)"

(42) definition Section 1.5.2
page 10integral2:: "((’a::measurable_space) ⇒ real) ⇒ (’a subprobability) ⇒ real"

("
∫

_ ∂∂_") where

111

Appendix I. Formalization of Verypto in Isabelle/HOL

"
∫

f ∂∂ µ ==
∫

f ∂(Σ,probability_of µ)"

(43) definitionSection 1.5.2
page 10 "lift_kernel K == λµ. mk_subprobability (λA.

∫
(λw. kernel_prob_of K w A) ∂∂ µ)"

(44) definitionSection 1.5.2
page 10 compose_kernel :: "(’b::measurable_space,’c::measurable_space) submarkov_kernel

⇒ (’a::measurable_space,’b) submarkov_kernel ⇒ (’a,’c) submarkov_kernel"
(infixl "oo" 55)
where
"K oo L == mk_kernel ((lift_kernel K) ◦ (apply_kernel L))"

(45) lemma mono_compose_kernel1:
assumes "K1 ≤ K2"
shows "compose_kernel K1 L ≤ compose_kernel K2 L"

(46) lemma mono_compose_kernel2:
assumes "L1 ≤ L2"
shows "compose_kernel K L1 ≤ compose_kernel K L2"

(47) lemma compose_kernel_assoc:
"K oo (L oo M) == (K oo L) oo M"

(48) definition
"uniform_distribution == λM.
if finite M ∧ M6={} then (λE. real_of_nat(card(E∩M)) / real_of_nat(card M))
else (λx. 0)"

(49) lemma SPall_unitkernel[intro]:
assumes xS: "{x}∈Σ"
and Px: "P x"
shows "∀ y←(apply_kernel unitkernel x). P y"

(50) lemma compose_kernel_unitkernel_left[simp]:
"unitkernel oo K = K"

(51) lemma compose_kernel_unitkernel_right[simp]:

shows "K oo unitkernel = K"

(52) lemma probability_of_restriction_kernel:Section 1.5.2
page 10 assumes "A∈Σ"

assumes "S∈Σ"
shows "probability_of (lift_kernel (restriction_kernel S) m) A

= probability_of m (A∩S)"

(53) lemma Inl_measurable: "is_measurable Inl"

(54) lemma Inr_measurable: "is_measurable Inr"

(55) definition "deterministic_kernel f ==Section 1.5.2
page 10 mk_kernel2 (λx E. if f x : E then 1 else 0)"

(56) lemma deterministic_kernel_prob:
"is_measurable f =⇒
apply_kernel (deterministic_kernel f) x = apply_kernel unitkernel (f x)"

(57) lemma lift_deterministic_kernel:
fixes f :: "(’a::measurable_space)⇒(’b::singleton_measurable_space)"
assumes measurablef: "is_measurable f"
shows "lift_kernel (deterministic_kernel f) = project_measure f"

(58) lemma project_unitkernel:
assumes "is_measurable f"

112

I.2. Program Terms

shows "project_measure f (apply_kernel unitkernel x) =
apply_kernel unitkernel (f x)"

(59) lemma kernel_lift_compose_comm:
fixes K::"(’b::measurable_space,’c::measurable_space)submarkov_kernel"
and L::"(’a::measurable_space,’b)submarkov_kernel"
shows "lift_kernel (K oo L) = (lift_kernel K) o (lift_kernel L)"

(60) lemma apply_compose_kernel:
"apply_kernel (A oo B) x = lift_kernel A (apply_kernel B x)"

(61) definition "kernel_limit V K == mk_kernel2 (λps m. lim (λn. kernel_prob_of Definition 1.3
page 11((restriction_kernel V)oo(foldr compose_kernel (replicate n K) unitkernel)) ps m))"

(62) theorem double_kernel_limit: Theorem 1.9
page 13fixes K :: "(’a::singleton_measurable_space,’a)submarkov_kernel"

and L :: "(’a,’a)submarkov_kernel"
and U::"’a set" and V::"’a set" and DK::"’a set"

assumes "U:Σ" "V:Σ" "DK:Σ"
and "U⊆DK"
and "V∩DK={}"
and "∀ u∈U. apply_kernel K u = apply_kernel unitkernel u"
and "∀ v∈V. apply_kernel L v = apply_kernel unitkernel v"
and "∀ x. kernel_prob_of K x (-DK) = 0"
and "∀ x. kernel_prob_of L x DK = 0"
and "∀ x∈(DK-U). apply_kernel L x = 0"
and "∀ x∈(-DK). apply_kernel K x = 0"
defines "M == mk_kernel (λx. if x:DK-U then apply_kernel K x else apply_kernel L x)"
shows "∀ x∈DK. apply_kernel (kernel_limit V M) x

= apply_kernel (kernel_limit V L oo kernel_limit U K) x"

I.2 Program Terms

I.2.1 Basic Values, Program Terms, and (Pure) Values

(63) datatype basicvalue = Section 1.6
page 14bvBool bool

| bvUnit
| bvReal real
| bvChar char
| bvTape "nat ⇒ bool"

(64) types eventT = string

(65) types bitstring = "bool list"

(66) datatype pureterm =
ptValue basicvalue

| ptPair pureterm pureterm
| ptInl pureterm
| ptInr pureterm
| ptFold pureterm

(67) datatype programterm = Definition 1.10
page 14Var nat

| Value basicvalue
| Function "(pureterm, pureterm) submarkov_kernel" programterm
| PairP programterm programterm
| Abstraction programterm
| Application programterm programterm
| Location nat
| Ref programterm
| Deref programterm

113

Appendix I. Formalization of Verypto in Isabelle/HOL

| Assign programterm programterm
| Event eventT
| EventList
| Fst programterm
| Snd programterm
| Fold programterm
| Unfold programterm
| InlP programterm
| InrP programterm
| CaseP programterm programterm programterm

(68) inductive set purevalues :: "programterm set" whereDefinition 1.10
page 14 "Value v : purevalues"

| "[[a : purevalues; b : purevalues]] =⇒ PairP a b : purevalues"
| "a : purevalues =⇒ InlP a : purevalues"
| "a : purevalues =⇒ InrP a : purevalues"
| "a : purevalues =⇒ Fold a : purevalues"

(69) inductive set "values" :: "programterm set" whereDefinition 1.10
page 14 values_Value: "Value v : values"

| values_PairP: "p1 : values ∧ p2 : values =⇒ PairP p1 p2 : values"
| values_Abstraction: "Abstraction p : values"
| values_Location: "Location n : values"
| values_Var: "Var n : values"
| values_Fold: "p : values =⇒ Fold p : values"
| values_InlP: "p : values =⇒ InlP p : values"
| values_InrP: "p : values =⇒ InrP p : values"

(70) types store = "programterm list"

(71) types state = "store × eventT list"

(72) definition "Nil’P = Fold (InlP (Value bvUnit))"Section 1.8
page 23 (73) definition "List’P x xs = Fold (InrP (PairP x xs))"

Section 1.8
page 23

(74) definition "value_unit = Value bvUnit"
(75) definition "value_true = InlP value_unit"

Section 1.8
page 23

(76) definition "value_false = InrP value_unit"

(77) definition LetP :: "programterm ⇒ programterm ⇒ programterm" where
"LetP p1 p2 == Application p2 p1"

(78) definition "omegaf = Abstraction(Fold(Abstraction (Application
(Var(Suc 0)) (Abstraction (Application
(Application (Unfold (Var(Suc 0))) (Var(Suc 0))) (Var 0))))))"

(79) definition "Fix = Abstraction (ApplicationSection 1.8
page 26 (Unfold (Application omegaf (Var 0))) (Application omegaf (Var 0)))"

(80) definition SequenceP :: "programterm ⇒ programterm ⇒ programterm" where
"SequenceP p1 p2 ==
Application (Application (Abstraction (Abstraction (Var 0))) p1) p2"

(81) definition
"uncurry p ==
Application (Abstraction (Abstraction (Application (Application
(Var (Suc 0)) (Fst (Var 0))) (Snd (Var 0))))) p"

114

I.2. Program Terms

I.2.2 Function Definitions

(82) function pureterm_to_term :: "pureterm ⇒ programterm" where
"pureterm_to_term (ptValue v) = Value v"

| "pureterm_to_term (ptPair x y) =
PairP (pureterm_to_term x) (pureterm_to_term y)"

| "pureterm_to_term (ptInl x) = InlP (pureterm_to_term x)"
| "pureterm_to_term (ptInr x) = InrP (pureterm_to_term x)"
| "pureterm_to_term (ptFold x) = Fold (pureterm_to_term x)"

(83) fun term_to_pureterm :: "programterm ⇒ pureterm" where
"term_to_pureterm (Value v) = ptValue v"

| "term_to_pureterm (PairP x y) =
ptPair (term_to_pureterm x) (term_to_pureterm y)"

| "term_to_pureterm (InlP x) = ptInl (term_to_pureterm x)"
| "term_to_pureterm (InrP x) = ptInr (term_to_pureterm x)"
| "term_to_pureterm (Fold x) = ptFold (term_to_pureterm x)"

(84) fun is_value :: "programterm ⇒ bool" where
"is_value (Value _) = True"

| "is_value (PairP p1 p2) = ((is_value p1) ∧ (is_value p2))"
| "is_value (Abstraction _) = True"
| "is_value (Location _) = True"
| "is_value (Var _) = True"
| "is_value (Fold p) = is_value p"
| "is_value (InlP p) = is_value p"
| "is_value (InrP p) = is_value p"
| "is_value _ = False"

(85) definition "are_values l = (set l ⊆ values)"

(86) function lift_vars :: "nat ⇒ programterm ⇒ programterm" where Section 1.6.1
page 17"lift_vars k (Var i) = (if i < k then Var i else Var (Suc i))"

| "lift_vars k (Abstraction p) = Abstraction (lift_vars (Suc k) p)"
| "lift_vars k (Application p q) = Application (lift_vars k p) (lift_vars k q)"
| "lift_vars k (Value v) = Value v"
| "lift_vars k (Function f p) = Function f (lift_vars k p)"
| "lift_vars k (PairP p1 p2) = PairP (lift_vars k p1) (lift_vars k p2)"
| "lift_vars k (Location n) = Location n"
| "lift_vars k (Ref p) = Ref (lift_vars k p)"
| "lift_vars k (Deref p) = Deref (lift_vars k p)"
| "lift_vars k (Assign p1 p2) = Assign (lift_vars k p1) (lift_vars k p2)"
| "lift_vars k (Event e) = Event e"
| "lift_vars k EventList = EventList"
| "lift_vars k (Fst p) = Fst (lift_vars k p)"
| "lift_vars k (Snd p) = Snd (lift_vars k p)"
| "lift_vars k (CaseP p1 p2 p3) =

CaseP (lift_vars k p1) (lift_vars k p2) (lift_vars k p3)"
| "lift_vars k (InlP p) = InlP (lift_vars k p)"
| "lift_vars k (InrP p) = InrP (lift_vars k p)"
| "lift_vars k (Fold p) = Fold (lift_vars k p)"
| "lift_vars k (Unfold p) = Unfold (lift_vars k p)"

(87) definition IfThenElse’ :: Section 1.8
page 23"programterm ⇒ programterm ⇒ programterm ⇒ programterm" where

"IfThenElse’ p1 p2 p3 == CaseP p1 (Abstraction (lift_vars 0 p2))
(Abstraction (lift_vars 0 p3))"

(88) function substitute’ :: "[nat, programterm, programterm] ⇒ programterm" where Section 1.6.1
page 19"substitute’ k (Var i) p =

(if k < i then Var (i - 1) else if i=k then p else Var i)"
| "substitute’ k (Abstraction p1) p =

Abstraction (substitute’ (Suc k) p1 (lift_vars 0 p))"
| "substitute’ k (Application s t) p =

Application (substitute’ k s p) (substitute’ k t p)"

115

Appendix I. Formalization of Verypto in Isabelle/HOL

| "substitute’ k (Value v) p = Value v"
| "substitute’ k (Function f p1) p = Function f (substitute’ k p1 p)"
| "substitute’ k (PairP p1 p2) p =

PairP (substitute’ k p1 p) (substitute’ k p2 p)"
| "substitute’ k (Location n) p = Location n"
| "substitute’ k (Ref p1) p = Ref (substitute’ k p1 p)"
| "substitute’ k (Deref p1) p = Deref (substitute’ k p1 p)"
| "substitute’ k (Assign p1 p2) p =

Assign (substitute’ k p1 p) (substitute’ k p2 p)"
| "substitute’ k (Event e) p = Event e"
| "substitute’ k EventList p = EventList"
| "substitute’ k (Fst p1) p = Fst (substitute’ k p1 p)"
| "substitute’ k (Snd p1) p = Snd (substitute’ k p1 p)"
| "substitute’ k (CaseP p1 p2 p3) p =

CaseP (substitute’ k p1 p) (substitute’ k p2 p) (substitute’ k p3 p)"
| "substitute’ k (InlP p1) p = InlP (substitute’ k p1 p)"
| "substitute’ k (InrP p1) p = InrP (substitute’ k p1 p)"
| "substitute’ k (Fold p1) p = Fold (substitute’ k p1 p)"
| "substitute’ k (Unfold p1) p = Unfold (substitute’ k p1 p)"

(89) function swap_vars :: "[nat, nat, programterm] ⇒ programterm" where
"swap_vars n m (Var i) =

(if i=n then Var m else if i=m then Var n else Var i)"
| "swap_vars n m (Abstraction p1) = Abstraction (swap_vars (Suc n) (Suc m) p1)"
| "swap_vars n m (Application s t) = Application (swap_vars n m s) (swap_vars n m t)"
| "swap_vars n m (Value v) = Value v"
| "swap_vars n m (Function f p1) = Function f (swap_vars n m p1)"
| "swap_vars n m (PairP p1 p2) = PairP (swap_vars n m p1) (swap_vars n m p2)"
| "swap_vars n m (Location l) = Location l"
| "swap_vars n m (Ref p1) = Ref (swap_vars n m p1)"
| "swap_vars n m (Deref p1) = Deref (swap_vars n m p1)"
| "swap_vars n m (Assign p1 p2) = Assign (swap_vars n m p1) (swap_vars n m p2)"
| "swap_vars n m (Event e) = Event e"
| "swap_vars n m EventList = EventList"
| "swap_vars n m (Fst p1) = Fst (swap_vars n m p1)"
| "swap_vars n m (Snd p1) = Snd (swap_vars n m p1)"
| "swap_vars n m (CaseP p1 p2 p3) =

CaseP (swap_vars n m p1) (swap_vars n m p2) (swap_vars n m p3)"
| "swap_vars n m (InlP p1) = InlP (swap_vars n m p1)"
| "swap_vars n m (InrP p1) = InrP (swap_vars n m p1)"
| "swap_vars n m (Fold p1) = Fold (swap_vars n m p1)"
| "swap_vars n m (Unfold p1) = Unfold (swap_vars n m p1)"

(90) lemma swap_vars_def2: "swap_vars n (Suc n) P =Section 1.12.5
page 65 substitute’ (Suc (Suc n)) (lift_vars n P) (Var n)"

(91) function locations_of :: "programterm ⇒ nat set" where
"locations_of (Location n) = {n}"

| "locations_of (Var _) = {}"
| "locations_of (Value _) = {}"
| "locations_of (Event _) = {}"
| "locations_of (EventList) = {}"
| "locations_of (Function _ p) = locations_of p"
| "locations_of (Abstraction p) = locations_of p"
| "locations_of (Ref p) = locations_of p"
| "locations_of (Deref p) = locations_of p"
| "locations_of (Fst p) = locations_of p"
| "locations_of (Snd p) = locations_of p"
| "locations_of (InlP p) = locations_of p"
| "locations_of (InrP p) = locations_of p"
| "locations_of (Fold p) = locations_of p"
| "locations_of (Unfold p) = locations_of p"
| "locations_of (PairP p1 p2) = (locations_of p1) ∪ (locations_of p2)"
| "locations_of (Application p1 p2) = (locations_of p1) ∪ (locations_of p2)"
| "locations_of (Assign p1 p2) = (locations_of p1) ∪ (locations_of p2)"

116

I.2. Program Terms

| "locations_of (CaseP p1 p2 p3) =
(locations_of p1) ∪ (locations_of p2) ∪ (locations_of p3)"

(92) function freevars :: "programterm ⇒ nat set" where Section 1.6.1
page 17"freevars (Var i) = {i}"

| "freevars (Abstraction s) = {n - 1 | n. n : freevars s ∧ n > 0}"
| "freevars (Value v) = {}"
| "freevars (Location n) = {}"
| "freevars (Event e) = {}"
| "freevars EventList = {}"
| "freevars (Ref p) = freevars p"
| "freevars (Function f p) = freevars p"
| "freevars (Deref p) = freevars p"
| "freevars (Fst p) = freevars p"
| "freevars (Snd p) = freevars p"
| "freevars (InlP p) = freevars p"
| "freevars (InrP p) = freevars p"
| "freevars (Fold p) = freevars p"
| "freevars (Unfold p) = freevars p"
| "freevars (Application p1 p2) = freevars p1 ∪ freevars p2"
| "freevars (PairP p1 p2) = freevars p1 ∪ freevars p2"
| "freevars (Assign p1 p2) = freevars p1 ∪ freevars p2"
| "freevars (CaseP p1 p2 p3) = freevars p1 ∪ freevars p2 ∪ freevars p3"

(93) definition storageclosed :: "programterm × state ⇒ bool" where Section 1.8
page 26"storageclosed == λ(p,σ,η). (∀ n∈(locations_of p). n<length σ) ∧

(∀ p’∈set σ. ∀ n∈(locations_of p’). n<length σ)"
(94) definition varclosed :: "programterm × state ⇒ bool" where Section 1.8

page 26"varclosed == λ(p,σ,η). freevars p = {} ∧ (∀ p’∈set σ. freevars p’ = {})"
(95) definition

Definition 1.26
page 26

"fullyclosed pse == storageclosed pse ∧ varclosed pse"

(96) function event_embedding :: "eventT ⇒ programterm" where
"event_embedding [] = Nil’P"

| "event_embedding (c#cs) = List’P (Value (bvChar c)) (event_embedding cs)"

(97) function event_list_embedding :: "eventT list ⇒ programterm" where
"event_list_embedding [] = Nil’P"

| "event_list_embedding (e#es) =
List’P (event_embedding e) (event_list_embedding es)"

I.2.3 Sigma Algebras

instantiation basicvalue :: measurable_space
(98) definition sigma_basicvalue_def: "Σ::basicvalue set set

== sigma (
{{bvUnit}}∪
(image (image bvBool) Σ) ∪
(image (image bvReal) Σ) ∪
(image (image bvChar) Σ) ∪
(image (image bvTape) Σ))"

(99) inductive set programterm_rects :: "programterm set set" where Section 1.6
page 15"{Var n} ∈ programterm_rects"

|"V ∈ Σ =⇒ Value‘V ∈ programterm_rects"
|"[[A ∈ programterm_rects]] =⇒

{Function f a|a f. a∈A ∧ f∈F} ∈ programterm_rects"
|"[[A ∈ programterm_rects; B ∈ programterm_rects]] =⇒

{PairP a b|a b. a∈A∧b∈B} ∈ programterm_rects"
|"A ∈ programterm_rects =⇒

{Abstraction a|a. a∈A} ∈ programterm_rects"
|"[[A ∈ programterm_rects; B ∈ programterm_rects]] =⇒

{Application a b|a b. a∈A ∧ b∈B} ∈ programterm_rects"

117

Appendix I. Formalization of Verypto in Isabelle/HOL

|"{Location n} ∈ programterm_rects"
|"A ∈ programterm_rects =⇒

{Ref a|a. a∈A} ∈ programterm_rects"
|"A ∈ programterm_rects =⇒

{Deref a|a. a∈A} ∈ programterm_rects"
|"[[A ∈ programterm_rects; B ∈ programterm_rects]] =⇒

{Assign a b|a b. a∈A ∧ b∈B} ∈ programterm_rects"
|"{Event ev} ∈ programterm_rects"
|"{EventList} ∈ programterm_rects"
|"A ∈ programterm_rects =⇒

{Fst a|a. a∈A} ∈ programterm_rects"
|"A ∈ programterm_rects =⇒

{Snd a|a. a∈A} ∈ programterm_rects"
|"A ∈ programterm_rects =⇒

{Fold a|a. a∈A} ∈ programterm_rects"
|"A ∈ programterm_rects =⇒

{Unfold a|a. a∈A} ∈ programterm_rects"
|"A ∈ programterm_rects =⇒

{InlP a|a. a∈A} ∈ programterm_rects"
|"A ∈ programterm_rects =⇒

{InrP a|a. a∈A} ∈ programterm_rects"
|"[[A ∈ programterm_rects; B ∈ programterm_rects; C ∈ programterm_rects]] =⇒

{CaseP a b c |a b c. a∈A ∧ b∈B ∧ c∈C} ∈ programterm_rects"

instantiation programterm :: measurable_space
(100) definition "Σ == sigma programterm_rects"

instantiation pureterm :: measurable_space
(101) definition "Σ == (vimage pureterm_to_term) ‘ Σ"

I.2.4 Lemmas

(102) lemma is_value_substitute:
assumes "is_value p"
assumes "is_value q"
shows "is_value (substitute’ k p q)"

(103) lemma lift_vars_commute:Lemma 1.15
page 19 assumes "n≤m"

shows "lift_vars n (lift_vars m p) = lift_vars (Suc m) (lift_vars n p)"

(104) lemma substitute_lift_vars_id [simp]:Lemma 1.15
page 19 "substitute’ n (lift_vars n p) q = p"

(105) lemma substitute_lift_vars_le:Lemma 1.15
page 19 assumes "m≤n"

shows "lift_vars m (substitute’ n p a) =
substitute’ (Suc n) (lift_vars m p) (lift_vars m a)"

(106) lemma substitute_lift_vars_ge:Lemma 1.15
page 19 assumes "m≥n"

shows "lift_vars m (substitute’ n p a) =
substitute’ n (lift_vars (Suc m) p) (lift_vars m a)"

(107) lemma substitute’_commute_le:Lemma 1.15
page 19 assumes "m≤n"

shows "substitute’ m (substitute’ (Suc n) p q) a =
substitute’ n (substitute’ m p (lift_vars n a)) (substitute’ m q a)"

(108) lemma substitute’_commute_ge:Lemma 1.15
page 19 assumes "m≥n"

shows "substitute’ m (substitute’ n p q) a =
substitute’ n (substitute’ (Suc m) p (lift_vars n a)) (substitute’ m q a)"

118

I.3. Contexts and Redexes

(109) lemma lift_not_freevars:
assumes "∀ n∈freevars p. n<L"
shows "lift_vars L p = p"

(110) lemma lift_closed:
assumes "freevars p = {}"
shows "lift_vars n p = p"

(111) lemma substitute_closed:
assumes "freevars p = {}"
shows "substitute’ n p q = p"

(112) lemma substitute_not_freevars: Section 1.11.4
page 44assumes "k/∈freevars p"

shows "substitute’ k p q1 = substitute’ k p q2"

(113) lemma locations_of_substitute’:
"locations_of (substitute’ k P a) ∪ locations_of a =
locations_of P ∪ locations_of a"

I.3 Contexts and Redexes

I.3.1 Definitions

(114) datatype "context" = Definition 1.11
page 15CHole

| CVar nat
| CValue basicvalue
| CLocation nat
| CEvent eventT
| CEventList
| CFunction "(pureterm, pureterm) submarkov_kernel" "context"
| CPairP "context" "context"
| CAbstraction "context"
| CApplication "context" "context"
| CRef "context"
| CDeref "context"
| CAssign "context" "context"
| CFst "context"
| CSnd "context"
| CFold "context"
| CUnfold "context"
| CCase "context" "context" "context"
| CInl "context"
| CInr "context"

(115) function programterm_to_context :: "programterm ⇒ context" where
"programterm_to_context (Var n) = CVar n"

| "programterm_to_context (Value v) = CValue v"
| "programterm_to_context (Location l) = CLocation l"
| "programterm_to_context (Event e) = CEvent e"
| "programterm_to_context (EventList) = CEventList"
| "programterm_to_context (Function f v) =

CFunction f (programterm_to_context v)"
| "programterm_to_context (PairP p1 p2) =

CPairP (programterm_to_context p1) (programterm_to_context p2)"
| "programterm_to_context (Abstraction p) =

CAbstraction (programterm_to_context p)"
| "programterm_to_context (Application p1 p2) =

CApplication (programterm_to_context p1) (programterm_to_context p2)"
| "programterm_to_context (Ref p) = CRef (programterm_to_context p)"
| "programterm_to_context (Deref p) = CDeref (programterm_to_context p)"

119

Appendix I. Formalization of Verypto in Isabelle/HOL

| "programterm_to_context (Assign p1 p2) =
CAssign (programterm_to_context p1) (programterm_to_context p2)"

| "programterm_to_context (Fst p) = CFst (programterm_to_context p)"
| "programterm_to_context (Snd p) = CSnd (programterm_to_context p)"
| "programterm_to_context (Fold p) =

CFold (programterm_to_context p)"
| "programterm_to_context (Unfold p) =

CUnfold (programterm_to_context p)"
| "programterm_to_context (CaseP p1 p2 p3) =

CCase (programterm_to_context p1) (programterm_to_context p2)
(programterm_to_context p3)"

| "programterm_to_context (InlP p) = CInl (programterm_to_context p)"
| "programterm_to_context (InrP p) = CInr (programterm_to_context p)"

(116) function applycontext :: "context ⇒ programterm ⇒ programterm" whereSection 1.6
page 15 "applycontext CHole p = p"

| "applycontext (CFunction f c1) p = Function f (applycontext c1 p)"
| "applycontext (CPairP c1 c2) p = PairP (applycontext c1 p) (applycontext c2 p)"
| "applycontext (CAbstraction c) p = Abstraction (applycontext c p)"
| "applycontext (CApplication c1 c2) p =

Application (applycontext c1 p) (applycontext c2 p)"
| "applycontext (CRef c) p = Ref (applycontext c p)"
| "applycontext (CDeref c) p = Deref (applycontext c p)"
| "applycontext (CAssign c1 c2) p = Assign (applycontext c1 p) (applycontext c2 p)"
| "applycontext (CFst c) p = Fst (applycontext c p)"
| "applycontext (CSnd c) p = Snd (applycontext c p)"
| "applycontext (CVar v) p = Var v"
| "applycontext (CValue v) p = Value v"
| "applycontext (CLocation l) p = Location l"
| "applycontext (CEvent e) p = Event e"
| "applycontext CEventList p = EventList"
| "applycontext (CFold c) p = Fold (applycontext c p)"
| "applycontext (CUnfold c) p = Unfold (applycontext c p)"
| "applycontext (CInl c) p = InlP (applycontext c p)"
| "applycontext (CInr c) p = InrP (applycontext c p)"
| "applycontext (CCase c1 c2 c3) p =

CaseP (applycontext c1 p) (applycontext c2 p) (applycontext c3 p)"

(117) function concatcontext :: "context ⇒ context ⇒ context" where
"concatcontext CHole c’ = c’"

| "concatcontext (CFunction f c1) c’ = CFunction f (concatcontext c1 c’)"
| "concatcontext (CPairP c1 c2) c’ =

CPairP (concatcontext c1 c’) (concatcontext c2 c’)"
| "concatcontext (CAbstraction c) c’ = CAbstraction (concatcontext c c’)"
| "concatcontext (CApplication c1 c2) c’ =

CApplication (concatcontext c1 c’) (concatcontext c2 c’)"
| "concatcontext (CRef c) c’ = CRef (concatcontext c c’)"
| "concatcontext (CDeref c) c’ = CDeref (concatcontext c c’)"
| "concatcontext (CAssign c1 c2) c’ =

CAssign (concatcontext c1 c’) (concatcontext c2 c’)"
| "concatcontext (CFst c) c’ = CFst (concatcontext c c’)"
| "concatcontext (CSnd c) c’ = CSnd (concatcontext c c’)"
| "concatcontext (CVar v) c’ = CVar v"
| "concatcontext (CValue v) c’ = CValue v"
| "concatcontext (CLocation l) c’ = CLocation l"
| "concatcontext (CEvent e) c’ = CEvent e"
| "concatcontext CEventList c’ = CEventList"
| "concatcontext (CFold c) c’ = CFold (concatcontext c c’)"
| "concatcontext (CUnfold c) c’ = CUnfold (concatcontext c c’)"
| "concatcontext (CInl c) c’ = CInl (concatcontext c c’)"
| "concatcontext (CInr c) c’ = CInr (concatcontext c c’)"
| "concatcontext (CCase c1 c2 c3) c’ =

CCase (concatcontext c1 c’) (concatcontext c2 c’) (concatcontext c3 c’)"

(118) lemma concatcontext_apply:

120

I.3. Contexts and Redexes

"applycontext C1 (applycontext C2 p) = applycontext (concatcontext C1 C2) p"

(119) function lift_vars_context :: "nat ⇒ context ⇒ context" where Section 1.6.1
page 19"lift_vars_context k (CHole) = CHole"

| "lift_vars_context k (CVar i) = (if i < k then CVar i else CVar (Suc i))"
| "lift_vars_context k (CAbstraction s) = CAbstraction (lift_vars_context (Suc k) s)"
| "lift_vars_context k (CApplication s t) =

CApplication (lift_vars_context k s) (lift_vars_context k t)"
| "lift_vars_context k (CValue v) = CValue v"
| "lift_vars_context k (CFunction f p) = CFunction f (lift_vars_context k p)"
| "lift_vars_context k (CPairP p1 p2) =

CPairP (lift_vars_context k p1) (lift_vars_context k p2)"
| "lift_vars_context k (CLocation n) = CLocation n"
| "lift_vars_context k (CRef p1) = CRef (lift_vars_context k p1)"
| "lift_vars_context k (CDeref p1) = CDeref (lift_vars_context k p1)"
| "lift_vars_context k (CAssign p1 p2) =

CAssign (lift_vars_context k p1) (lift_vars_context k p2)"
| "lift_vars_context k (CEvent e) = CEvent e"
| "lift_vars_context k CEventList = CEventList"
| "lift_vars_context k (CFst p1) = CFst (lift_vars_context k p1)"
| "lift_vars_context k (CSnd p1) = CSnd (lift_vars_context k p1)"
| "lift_vars_context k (CFold p1) = CFold (lift_vars_context k p1)"
| "lift_vars_context k (CUnfold p1) = CUnfold (lift_vars_context k p1)"
| "lift_vars_context k (CCase p1 p2 p3) =

CCase (lift_vars_context k p1) (lift_vars_context k p2) (lift_vars_context k p3)"
| "lift_vars_context k (CInl p1) = CInl (lift_vars_context k p1)"
| "lift_vars_context k (CInr p1) = CInr (lift_vars_context k p1)"

(120) function substitute’_context :: "[nat, context, context] ⇒ context" where Section 1.6.1
page 19"substitute’_context k CHole c = CHole"

| "substitute’_context k (CVar i) c =
(if k < i then CVar (i - 1) else if i=k then c else CVar i)"

| "substitute’_context k (CAbstraction c1) c =
CAbstraction (substitute’_context (Suc k) c1 (lift_vars_context 0 c))"

| "substitute’_context k (CApplication s t) c =
CApplication (substitute’_context k s c) (substitute’_context k t c)"

| "substitute’_context k (CValue v) c = CValue v"
| "substitute’_context k (CFunction f c1) c =

CFunction f (substitute’_context k c1 c)"
| "substitute’_context k (CPairP c1 c2) c =

CPairP (substitute’_context k c1 c) (substitute’_context k c2 c)"
| "substitute’_context k (CLocation n) c = CLocation n"
| "substitute’_context k (CRef c1) c = CRef (substitute’_context k c1 c)"
| "substitute’_context k (CDeref c1) c = CDeref (substitute’_context k c1 c)"
| "substitute’_context k (CAssign c1 c2) c =

CAssign (substitute’_context k c1 c) (substitute’_context k c2 c)"
| "substitute’_context k (CEvent e) c = CEvent e"
| "substitute’_context k CEventList c = CEventList"
| "substitute’_context k (CFst c1) c = CFst (substitute’_context k c1 c)"
| "substitute’_context k (CSnd c1) c = CSnd (substitute’_context k c1 c)"
| "substitute’_context k (CCase c1 c2 c3) c = CCase (substitute’_context k c1 c)

(substitute’_context k c2 c) (substitute’_context k c3 c)"
| "substitute’_context k (CInl c1) c = CInl (substitute’_context k c1 c)"
| "substitute’_context k (CInr c1) c = CInr (substitute’_context k c1 c)"
| "substitute’_context k (CFold c1) c = CFold (substitute’_context k c1 c)"
| "substitute’_context k (CUnfold c1) c = CUnfold (substitute’_context k c1 c)"

(121) fun closingcontext :: "nat ⇒ context" where
"closingcontext 0 = CHole" |
"closingcontext (Suc n) =

CApplication (CAbstraction (closingcontext n)) (programterm_to_context value_unit)"

(122) inductive set evaluationcontext :: "context set" where Definition 1.45
page 40"CHole ∈ evaluationcontext"

|"[[E : evaluationcontext]] =⇒ (CFunction f E) ∈ evaluationcontext"
|"[[E : evaluationcontext; q = programterm_to_context p]] =⇒

121

Appendix I. Formalization of Verypto in Isabelle/HOL

(CPairP E q) ∈ evaluationcontext"
|"[[E : evaluationcontext; is_value v; cv = programterm_to_context v]] =⇒

(CPairP cv E) ∈ evaluationcontext"
|"[[E : evaluationcontext; q = programterm_to_context p]] =⇒

(CApplication E q) ∈ evaluationcontext"
|"[[E : evaluationcontext; is_value v; cv = programterm_to_context v]] =⇒

(CApplication cv E) ∈ evaluationcontext"
|"[[E : evaluationcontext]] =⇒ (CRef E) ∈ evaluationcontext"
|"[[E : evaluationcontext]] =⇒ (CDeref E) ∈ evaluationcontext"
|"[[E : evaluationcontext; q = programterm_to_context p]] =⇒

(CAssign E q) ∈ evaluationcontext"
|"[[E : evaluationcontext; is_value v; cv = programterm_to_context v]] =⇒

(CAssign cv E) ∈ evaluationcontext"
|"[[E : evaluationcontext]] =⇒ (CFst E) ∈ evaluationcontext"
|"[[E : evaluationcontext]] =⇒ (CSnd E) ∈ evaluationcontext"
|"[[E : evaluationcontext]] =⇒ (CFold E) ∈ evaluationcontext"
|"[[E : evaluationcontext]] =⇒ (CUnfold E) ∈ evaluationcontext"
|"[[E : evaluationcontext; q1 = programterm_to_context p1;

q2 = programterm_to_context p2]] =⇒ (CCase E q1 q2) ∈ evaluationcontext"
|"[[E : evaluationcontext; is_value v; cv = programterm_to_context v;

q = programterm_to_context p]] =⇒ (CCase cv E q) ∈ evaluationcontext"
|"[[E : evaluationcontext; is_value v1; is_value v2;

cv1 = programterm_to_context v1;
cv2 = programterm_to_context v2]] =⇒ (CCase cv1 cv2 E) ∈ evaluationcontext"

|"[[E : evaluationcontext]] =⇒ (CInl E) ∈ evaluationcontext"
|"[[E : evaluationcontext]] =⇒ (CInr E) ∈ evaluationcontext"

(123) inductive set redexes :: "programterm set" whereDefinition 1.45
page 40 "[[is_value v]] =⇒ Function f v ∈ redexes"

| "[[is_value v1; is_value v2]] =⇒ Application v1 v2 ∈ redexes"
| "[[is_value v]] =⇒ Ref v : redexes"
| "[[is_value v]] =⇒ Deref v : redexes"
| "[[is_value v1; is_value v2]] =⇒ Assign v1 v2 : redexes"
| "Event e : redexes"
| "EventList : redexes"
| "[[is_value v]] =⇒ Fst v : redexes"
| "[[is_value v]] =⇒ Snd v : redexes"
| "[[is_value v]] =⇒ Unfold v : redexes"
| "[[is_value v1; is_value v2; is_value v3]] =⇒ CaseP v1 v2 v3 : redexes"

(124) inductive set contextfuns :: "(programterm ⇒ programterm) set" where
"(λx. x) ∈ contextfuns"
|"(λt. u) ∈ contextfuns"
|"[[C : contextfuns]] =⇒ (λt. Function f (C t)) ∈ contextfuns"
|"[[C : contextfuns; C’ : contextfuns]] =⇒ (λt. PairP (C t) (C’ t)) ∈ contextfuns"
|"[[C : contextfuns]] =⇒ (λt. Abstraction (C t)) ∈ contextfuns"
|"[[C : contextfuns; C’ : contextfuns]] =⇒ (λt. Application (C t) (C’ t)) ∈ contextfuns"
|"[[C : contextfuns]] =⇒ (λt. Ref (C t)) ∈ contextfuns"
|"[[C : contextfuns]] =⇒ (λt. Deref (C t)) ∈ contextfuns"
|"[[C : contextfuns; C’ : contextfuns]] =⇒ (λt. Assign (C t) (C’ t)) ∈ contextfuns"
|"[[C : contextfuns]] =⇒ (λt. Fst (C t)) ∈ contextfuns"
|"[[C : contextfuns]] =⇒ (λt. Snd (C t)) ∈ contextfuns"
|"[[C : contextfuns]] =⇒ (λt. Fold (C t)) ∈ contextfuns"
|"[[C : contextfuns]] =⇒ (λt. Unfold (C t)) ∈ contextfuns"
|"[[C : contextfuns; C’ : contextfuns; C’’ : contextfuns]] =⇒

(λt. CaseP (C t) (C’ t) (C’’ t)) ∈ contextfuns"
|"[[C : contextfuns]] =⇒ (λt. InlP (C t)) ∈ contextfuns"
|"[[C : contextfuns]] =⇒ (λt. InrP (C t)) ∈ contextfuns"

I.3.2 Lemmas

(125) lemma concat_evaluationcontext:
assumes "C1 : evaluationcontext" and "C2 : evaluationcontext"

122

I.4. Semantics

shows "concatcontext C1 C2 : evaluationcontext"

(126) lemma applycontext_substitute_CHole: Lemma 1.16
page 19assumes "freevars P = {}"

shows "applycontext (substitute’_context k (programterm_to_context Q) CHole) P
= substitute’ k Q P"

(127) lemma freevars_closingcontext:
assumes "∀ x∈freevars p. x < n"
shows "freevars (applycontext (closingcontext n) p) = {}"

(128) lemma ex_closingconfiguration:
assumes "are_values s"
assumes "∀ p’∈set s. freevars p’ = {}"
shows "∃ n l. fullyclosed (applycontext (closingcontext n) p,

s@(replicate l value_unit), e)"

(129) lemma evaluationcontext_redex_split: Section 1.11.2
page 41"¬ is_value p =⇒ (∃ E∈evaluationcontext. ∃ R∈redexes. p=applycontext E R)"

(130) lemma evaluationcontext_redexes_split_unique’:
assumes conceq:"applycontext E1 R1 = applycontext E2 R2"
assumes E1eval:"E1∈evaluationcontext"
assumes E2eval:"E2∈evaluationcontext"
assumes R1red: "R1∈redexes"
assumes R2red: "R2∈redexes"
shows "E1 = E2" and "R1 = R2"

(131) lemma fullyclosed_eval_ctxD:
assumes "E ∈ evaluationcontext"
assumes "fullyclosed (applycontext E P, σ, η)"
shows "fullyclosed (P, σ, η)"

(132) lemma fullyclosed_eval_ctx:
assumes "E ∈ evaluationcontext"
assumes "fullyclosed (applycontext E P, σ, η)"
assumes "fullyclosed (Q, σ, η)"
shows "fullyclosed (applycontext E Q, σ, η)"

(133) lemma range_applycontext_eq_contextfuns:
"range applycontext = contextfuns"

I.4 Semantics

I.4.1 The Reduction Relation and the Denotation

(134) inductive steps_to :: "(programterm × state) ⇒ Definition 1.17
page 20(programterm × state) subprobability ⇒ bool" (infix " " 200)

where
steps_to_Function:
"(Function f (pureterm_to_term v), state) project_measure (λres. (pureterm_to_term

res, state)) (apply_kernel f v)"
| steps_to_Functiond: "[[(p, state) µ]] =⇒

(Function f p, state) project_measure (λ(p’, s). (Function f p’, s)) µ"
| steps_to_Beta: "[[is_value v]] =⇒

(Application (Abstraction p) v, state) apply_kernel unitkernel (substitute’ 0 p v,
state)"
| steps_to_Applicationdl: "[[(p1, state) µ]] =⇒

(Application p1 p2, state) project_measure (λ(p1’, s). (Application p1’ p2, s)) µ"
| steps_to_Applicationdr: "[[is_value v; (p, state) µ]] =⇒

(Application v p, state) project_measure (λ(p’, s). (Application v p’, s)) µ"
| steps_to_Ref: "[[is_value v]] =⇒

(Ref v, store, evs) apply_kernel unitkernel (Location (length store), store@[v], evs)"
| steps_to_Refd: "[[(p, state) µ]] =⇒

123

Appendix I. Formalization of Verypto in Isabelle/HOL

(Ref p, state) project_measure (λ(p’, s). (Ref p’, s)) µ"
| steps_to_Deref: "[[l < length store]] =⇒

(Deref (Location l), store, evs) apply_kernel unitkernel (store!l, store, evs)"
| steps_to_Derefd: "[[(p, state) µ]] =⇒

(Deref p, state) project_measure (λ(p’,s). (Deref p’, s)) µ"
| steps_to_Assign: "[[is_value v; l < length store]] =⇒

(Assign (Location l) v, store, evs) apply_kernel unitkernel (value_unit, store[l:=v],
evs)"
| steps_to_Assigndl: "[[(p1, state) µ]] =⇒

(Assign p1 p2, state) project_measure (λ(p1’, s). (Assign p1’ p2, s)) µ"
| steps_to_Assigndr: "[[is_value v; (p, state) µ]] =⇒

(Assign v p, state) project_measure (λ(p’, s). (Assign v p’, s)) µ"
| steps_to_Event:
"(Event e, store, evs) apply_kernel unitkernel (value_unit, store, evs@[e])"

| steps_to_Eventlist:
"(EventList, store, evs) apply_kernel unitkernel (event_list_embedding evs, store,
evs)"
| steps_to_Fst: "[[is_value v1; is_value v2]] =⇒

(Fst (PairP v1 v2), state) apply_kernel unitkernel (v1, state)"
| steps_to_Fstd: "[[(p, state) µ]] =⇒

(Fst p, state) project_measure (λ(p’,s). (Fst p’, s)) µ"
| steps_to_Snd: "[[is_value v1; is_value v2]] =⇒

(Snd (PairP v1 v2), state) apply_kernel unitkernel (v2, state)"
| steps_to_Sndd: "[[(p, state) µ]] =⇒

(Snd p, state) project_measure (λ(p’,s). (Snd p’, s)) µ"
| steps_to_Pairdl: "[[(p1, state) µ]] =⇒

(PairP p1 p2, state) project_measure (λ(p1’, s). (PairP p1’ p2, s)) µ"
| steps_to_Pairdr: "[[is_value p1; (p2, state) µ]] =⇒

(PairP p1 p2, state) project_measure (λ(p2’, s). (PairP p1 p2’, s)) µ"
| steps_to_Unfold: "[[is_value v]] =⇒

(Unfold (Fold v), state) apply_kernel unitkernel (v, state)"
| steps_to_Foldd: "[[(p, state) µ]] =⇒

(Fold p, state) project_measure (λ(p’, s). (Fold p’, s)) µ"
| steps_to_Unfoldd: "[[(p, state) µ]] =⇒

(Unfold p, state) project_measure (λ(p’, s). (Unfold p’, s)) µ"
| steps_to_Casedl: "[[(p1, state) µ]] =⇒

(CaseP p1 p2 p3, state) project_measure (λ(p1’, s). (CaseP p1’ p2 p3, s)) µ"
| steps_to_Casedm: "[[is_value v; (p2, state) µ]] =⇒

(CaseP v p2 p3, state) project_measure (λ(p2’, s). (CaseP v p2’ p3, s)) µ"
| steps_to_Casedr: "[[is_value v; is_value vl; (p3, state) µ]] =⇒

(CaseP v vl p3, state) project_measure (λ(p3’, s). (CaseP v vl p3’, s)) µ"
| steps_to_CaseInl: "[[is_value v; is_value vl; is_value vr]] =⇒

(CaseP (InlP v) vl vr, state) apply_kernel unitkernel (Application vl v, state)"
| steps_to_CaseInr: "[[is_value v; is_value vl; is_value vr]] =⇒

(CaseP (InrP v) vl vr, state) apply_kernel unitkernel (Application vr v, state)"
| steps_to_Inld: "[[(p, state) µ]] =⇒

(InlP p, state) project_measure (λ(p’,s). (InlP p’, s)) µ"
| steps_to_Inrd: "[[(p, state) µ]] =⇒

(InrP p, state) project_measure (λ(p’,s). (InrP p’, s)) µ"

(135) definitionSection 1.7
page 22 "step == mk_kernel (λps. if (∃ ps’. ps ps’)

then (THE ps’. ps ps’) else (apply_kernel unitkernel ps))"

(136) fun nsteps :: "nat ⇒ (programterm × state, programterm × state) submarkov_kernel"
where

"nsteps 0 = unitkernel"
| "nsteps (Suc n) = step oo (nsteps n)"

(137) definitionDefinition 1.20
page 22 "denotation = kernel_limit (values×UNIV) step"

(138) lemma denotation_def2:
"denotation = mk_kernel2 (λps m. lim (λn.

kernel_prob_of ((restriction_kernel (values×UNIV)) oo (nsteps n)) ps m))"

124

I.5. Typing the Language

I.4.2 Lemmas

(139) lemma steps_to_no_value_NEW:
assumes "(p,s) µ"
shows "p /∈ values"

(140) lemma step_stuck_on_values_NEW:
assumes "is_value v"
shows "apply_kernel step (v,s) = apply_kernel unitkernel (v,s)"

(141) lemma denotation_value:
assumes "is_value v"
shows "apply_kernel denotation (v,σ) = apply_kernel unitkernel (v,σ)"

(142) lemma denotation_contains_values:
"∀ v←apply_kernel denotation pse. (fst v) ∈ values"

(143) lemma steps_to_unique: Lemma 1.19
page 22assumes "ps µ1"

and "ps µ2"
shows "µ1 = µ2"

(144) lemma steps_to_step:
"ps µ =⇒ apply_kernel step ps = µ"

(145) lemma step_evalctx’: Lemma 1.47
page 41assumes "E : evaluationcontext"

and "P /∈ values"
shows "project_measure(λ(P’,st’).(applycontext E P’,st’))(apply_kernel step (P,sta))

= apply_kernel step (applycontext E P, sta)"

(146) lemma step_eq_evalctx_step: Lemma 1.46
page 41"(p,s) µ =

(∃ E∈evaluationcontext. ∃ r∈redexes. ∃µr.
p = applycontext E r ∧
(r,s) µr ∧
µ = project_measure (λ(r’,s’). (applycontext E r’, s’)) µr)"

(147) definition "omega = Abstraction (Application (Unfold (Var 0)) (Var 0))" Section 1.8
page 24

(148) definition "diverge = Application omega (Fold omega)" Section 1.8
page 24

(149) lemma diverge_step1:
Section 1.8
page 24

"apply_kernel step (diverge,s,e)
= apply_kernel unitkernel (Application (Unfold (Fold omega)) (Fold omega), s, e)"

(150) lemma diverge_step2: Section 1.8
page 24"apply_kernel (step oo step) (diverge,s,e)

= apply_kernel unitkernel (diverge,s,e)"

(151) lemma diverge_denotation: Section 1.8
page 24"apply_kernel denotation (diverge,s,e) = 0"

I.5 Typing the Language

I.5.1 Definitions

(152) datatype programtype = Definition 1.21
page 23ValueT "basicvalue measurableset"

| PairT programtype programtype
| SumT programtype programtype
| FunT programtype programtype
| RefT programtype

125

Appendix I. Formalization of Verypto in Isabelle/HOL

| TypeVarT nat
| MuT programtype

(153) inductive set puretypes :: "programtype set" whereDefinition 1.21
page 23 "ValueT T ∈ puretypes"

| "[[a ∈ puretypes; b ∈ puretypes]] =⇒ PairT a b ∈ puretypes"
| "[[a ∈ puretypes; b ∈ puretypes]] =⇒ SumT a b ∈ puretypes"
| "a ∈ puretypes =⇒ MuT a ∈ puretypes"
| "TypeVarT n ∈ puretypes"

(154) definition "UnitT = ValueT (Abs_measurableset {bvUnit})"Section 1.8
page 23

(155) definition "Bool’T = SumT UnitT UnitT"Section 1.8
page 23

(156) definition "List’T T = MuT (SumT UnitT (PairT T (TypeVarT 0)))"
Section 1.8

page 23
(157) definition "Nat’T = SumT UnitT (List’T Bool’T)"

Section 1.8
page 23 (158) definition "CharT = ValueT (Abs_measurableset (range bvChar))"

Section 1.8
page 23 (159) types typeenvironment = "programtype list"

(160) function mu_lift_vars :: "nat ⇒ programtype ⇒ programtype" whereSection 1.8
page 23 "mu_lift_vars k (TypeVarT i) = (if i < k then TypeVarT i else TypeVarT (Suc i))"

| "mu_lift_vars k (MuT t) = MuT (mu_lift_vars (Suc k) t)"

| "mu_lift_vars k (ValueT X) = ValueT X"
| "mu_lift_vars k (FunT t1 t2) = FunT (mu_lift_vars k t1) (mu_lift_vars k t2)"
| "mu_lift_vars k (PairT t1 t2) = PairT (mu_lift_vars k t1) (mu_lift_vars k t2)"
| "mu_lift_vars k (SumT t1 t2) = SumT (mu_lift_vars k t1) (mu_lift_vars k t2)"
| "mu_lift_vars k (RefT t) = RefT (mu_lift_vars k t)"

(161) function mu_substitute’ :: "[nat,programtype,programtype] ⇒ programtype"Section 1.8
page 23 where

"mu_substitute’ k (TypeVarT i) p =
(if k < i then TypeVarT (i - 1) else if i=k then p else TypeVarT i)"

| "mu_substitute’ k (MuT t) p =
MuT (mu_substitute’ (Suc k) t (mu_lift_vars 0 p))"

| "mu_substitute’ k (ValueT X) p = ValueT X"
| "mu_substitute’ k (FunT t1 t2) p =

FunT (mu_substitute’ k t1 p) (mu_substitute’ k t2 p)"
| "mu_substitute’ k (PairT t1 t2) p =

PairT (mu_substitute’ k t1 p) (mu_substitute’ k t2 p)"
| "mu_substitute’ k (SumT t1 t2) p =

SumT (mu_substitute’ k t1 p) (mu_substitute’ k t2 p)"
| "mu_substitute’ k (RefT t) p = RefT (mu_substitute’ k t p)"

(162) inductive program_typing ::Definition 1.22
page 24 "[typeenvironment, typeenvironment, programterm, programtype] ⇒ bool" ("_|_⊢_:_")

where
program_typing_Var0: "(T#Γ)|Θ ⊢ Var 0 : T"

| program_typing_Varn: "Γ|Θ ⊢ Var n : T =⇒
(U#Γ)|Θ ⊢ Var (Suc n) : T"

| program_typing_Value: "x ∈ Rep_measurableset T =⇒
Γ|Θ ⊢ Value x : ValueT T"

| program_typing_Function: "[[T : puretypes; U : puretypes; Γ|Θ ⊢ p : U;
(∀ x. ∀ y←apply_kernel f x. ([]|[]⊢pureterm_to_term y:T))]] =⇒
Γ|Θ ⊢ Function f p : T"

| program_typing_Pair: "[[Γ|Θ ⊢ p1 : T1; Γ|Θ ⊢ p2 : T2]] =⇒
Γ|Θ ⊢ PairP p1 p2 : (PairT T1 T2)"

| program_typing_Abstraction: "(T1#Γ)|Θ ⊢ p : T2 =⇒
Γ|Θ ⊢ Abstraction p : (FunT T1 T2)"

| program_typing_Application: "[[Γ|Θ ⊢ p1 : (FunT T1 T2); Γ|Θ ⊢ p2 : T1]] =⇒

126

I.5. Typing the Language

Γ|Θ ⊢ Application p1 p2 : T2"
| program_typing_Location0: "Γ|T#Θ ⊢ Location 0 : RefT T"
| program_typing_Locationn: "Γ|Θ ⊢ Location l : RefT T =⇒

Γ|U#Θ ⊢ Location (Suc l) : RefT T"
| program_typing_Ref: "Γ|Θ ⊢ p : T =⇒

Γ|Θ ⊢ Ref p : (RefT T)"
| program_typing_Deref: "Γ|Θ ⊢ p : (RefT T) =⇒

Γ|Θ ⊢ Deref p : T"
| program_typing_Assign: "[[Γ|Θ ⊢ p1 : (RefT T); Γ|Θ ⊢ p2 : T]] =⇒

Γ|Θ ⊢ Assign p1 p2 : UnitT"
| program_typing_Event: "Γ|Θ ⊢ Event e : UnitT"
| program_typing_EventList: "Γ|Θ ⊢ EventList : List’T (List’T CharT)"
| program_typing_Fst: "Γ|Θ ⊢ p : (PairT T1 T2) =⇒

Γ|Θ ⊢ Fst p : T1"
| program_typing_Snd: "Γ|Θ ⊢ p : (PairT T1 T2) =⇒

Γ|Θ ⊢ Snd p : T2"
| program_typing_Fold: "Γ|Θ ⊢ p : (mu_substitute’ 0 T (MuT T)) =⇒

Γ|Θ ⊢ Fold p : MuT T"
| program_typing_Unfold:"[[Γ|Θ ⊢ p : MuT T; (mu_substitute’ 0 T (MuT T)) = T’]] =⇒

Γ|Θ ⊢ Unfold p : T’"
| program_typing_Inl: "Γ|Θ ⊢ p : T =⇒

Γ|Θ ⊢ InlP p : SumT T U"
| program_typing_Inr: "Γ|Θ ⊢ p : U =⇒

Γ|Θ ⊢ InrP p : SumT T U"
| program_typing_Case:

"[[Γ|Θ ⊢ p1 : SumT T U; Γ|Θ ⊢ p2 : (FunT T V); Γ|Θ ⊢ p3 : (FunT U V)]] =⇒
Γ|Θ ⊢ CaseP p1 p2 p3 : V"

(163) definition of_type :: "programterm ⇒ programtype ⇒ bool" where
"of_type == program_typing [] []"

(164) definition "welltyped_programs == {P. ∃ T. of_type P T}"

(165) definition configuration_typing :: Definition 1.25
page 26"[typeenvironment, typeenvironment, programterm×state, programtype] ⇒ bool"

("_|_|=_:_") where
"configuration_typing ≡
λΓ Θ (p,s,e) T. ((length Θ = length s) ∧

(are_values s) ∧
(∀ n<length Θ. (Γ|Θ⊢(s!n):(Θ!n))) ∧
(Γ|Θ⊢p:T))"

I.5.2 Lemmas

(166) inductive max_typevar :: "nat ⇒ programtype ⇒ bool" where
"l<k =⇒ max_typevar k (TypeVarT l)"

| "max_typevar (Suc k) p1 =⇒ max_typevar k (MuT p1)"

| "max_typevar k (ValueT X)"
| "[[max_typevar k p1; max_typevar k p2]] =⇒ max_typevar k (PairT p1 p2)"
| "[[max_typevar k p1; max_typevar k p2]] =⇒ max_typevar k (SumT p1 p2)"
| "[[max_typevar k p1; max_typevar k p2]] =⇒ max_typevar k (FunT p1 p2)"
| "[[max_typevar k p1]] =⇒ max_typevar k (RefT p1)"

(167) lemma program_typing_omega: Section 1.8
page 24assumes "max_typevar 0 T"

shows "Γ|Θ ⊢ omega : FunT (MuT(FunT(TypeVarT 0)T)) T"

(168) lemma program_typing_diverge: Section 1.8
page 24assumes "max_typevar 0 T"

shows "Γ|Θ ⊢ diverge: T"

(169) lemma liftn_typing:

127

Appendix I. Formalization of Verypto in Isabelle/HOL

assumes "(Γ@Γ’)|Θ⊢ p : T"
and "length Γ = n"
shows "(Γ@t#Γ’)|Θ⊢ lift_vars n p : T"

(170) lemma substitute_typing:
"[[(Γ@[a]@Γ’)|Θ⊢p:T; (Γ@Γ’)|Θ⊢q:a]] =⇒ (Γ@Γ’)|Θ⊢(substitute’ (length Γ) p q):T"

(171) lemma freevars_in_gamma: "Γ|Θ⊢ P : T =⇒ ∀ n∈freevars P. n<length Γ"

(172) lemma empty_typing_program_closed: "[]|Θ⊢ P : T =⇒ freevars P = {}"Lemma 1.27
page 26

(173) lemma locations_of_in_theta: "Γ|Θ⊢ P : T =⇒ ∀ n∈locations_of P. n < length Θ"

(174) lemma empty_typing_fullyclosed:
"[]|[]⊢P:T =⇒ fullyclosed (P,[],e)"

(175) lemma configuration_typing_fullyclosed: "[]|Θ|=pse:T =⇒ fullyclosed pse"Lemma 1.27
page 26

(176) lemma weakening:
Lemma 1.28

page 26
assumes "Γ|Θ⊢ p : T"
shows "(Γ@Γ’)|(Θ@Θ’)⊢ p : T"

I.5.3 Progress and Preservation

(177) theorem progress:Theorem 1.44
page 40 assumes "[]|Θ|= ps : T"

and "¬ is_value (fst ps)"
shows "∃µ. ps µ"

(178) theorem preservation:Theorem 1.44
page 40 assumes "Γ|Θ|= ps : T"

and "ps µ"
shows "∃Θ’. (ALL ps’<-µ. (Γ|Θ@Θ’|= ps’ : T))"

(179) lemma fullyclosed_preservation:
assumes "fullyclosed pse"
assumes "pse µ"
shows "∀ vse←µ. fullyclosed vse ∧ length (fst(snd pse)) ≤ length (fst(snd vse))"

(180) lemma fullyclosed_preservation_step:Theorem 1.44
page 40 assumes "fullyclosed pse"

assumes "µ = apply_kernel step pse"
shows "∀ vse←µ. fullyclosed vse"

I.5.4 Typing Contexts

(181) inductive context_typing :: "[typeenvironment, typeenvironment, programtype,Section 1.8.1
page 27 typeenvironment, typeenvironment, context, programtype] ⇒ bool" where

context_typing_Hole: "context_typing Γ’ Θ’ T’ (Γ’@Γ) (Θ’@Θ) CHole T’"
| context_typing_Var0: "context_typing Γ’ Θ’ T’ (T#Γ) Θ (CVar 0) T"
| context_typing_Varn: "context_typing Γ’ Θ’ T’ Γ Θ (CVar n) T =⇒

context_typing Γ’ Θ’ T’ (U#Γ) Θ (CVar (Suc n)) T"
| context_typing_Value: "x ∈ Rep_measurableset T =⇒

context_typing Γ’ Θ’ T’ Γ Θ (CValue x) (ValueT T)"
| context_typing_Function: "[[T : puretypes; U : puretypes;

context_typing Γ’ Θ’ T’ Γ Θ p U;
(∀ x. ∀ y←apply_kernel f x. ([]|[]⊢pureterm_to_term y:T))]] =⇒
context_typing Γ’ Θ’ T’ Γ Θ (CFunction f p) T"

| context_typing_Pair: "[[context_typing Γ’ Θ’ T’ Γ Θ p1 T1;
context_typing Γ’ Θ’ T’ Γ Θ p2 T2]] =⇒
context_typing Γ’ Θ’ T’ Γ Θ (CPairP p1 p2) (PairT T1 T2)"

| context_typing_Abstraction: "[[context_typing Γ’ Θ’ T’ (T1#Γ) Θ p T2]] =⇒

128

I.6. Embedding the Type System in HOL

context_typing Γ’ Θ’ T’ Γ Θ (CAbstraction p) (FunT T1 T2)"
| context_typing_Application: "[[context_typing Γ’ Θ’ T’ Γ Θ p1 (FunT T1 T2);

context_typing Γ’ Θ’ T’ Γ Θ p2 T1]] =⇒
context_typing Γ’ Θ’ T’ Γ Θ (CApplication p1 p2) T2"

| context_typing_Location0: "context_typing Γ’ Θ’ T’ Γ (T#Θ) (CLocation 0) (RefT T)"
| context_typing_Locationn: "context_typing Γ’ Θ’ T’ Γ Θ (CLocation l) (RefT T) =⇒

context_typing Γ’ Θ’ T’ Γ (U#Θ) (CLocation (Suc l)) (RefT T)"
| context_typing_Ref: "[[context_typing Γ’ Θ’ T’ Γ Θ p T]] =⇒

context_typing Γ’ Θ’ T’ Γ Θ (CRef p) (RefT T)"
| context_typing_Deref: "[[context_typing Γ’ Θ’ T’ Γ Θ p (RefT T)]] =⇒

context_typing Γ’ Θ’ T’ Γ Θ (CDeref p) T"
| context_typing_Assign: "[[context_typing Γ’ Θ’ T’ Γ Θ p1 (RefT T);

context_typing Γ’ Θ’ T’ Γ Θ p2 T]] =⇒
context_typing Γ’ Θ’ T’ Γ Θ (CAssign p1 p2) UnitT"

| context_typing_Event: "context_typing Γ’ Θ’ T’ Γ Θ (CEvent e) UnitT"
| context_typing_EventList:

"context_typing Γ’ Θ’ T’ Γ Θ CEventList (List’T (List’T CharT))"
| context_typing_Fst: "[[context_typing Γ’ Θ’ T’ Γ Θ p (PairT T1 T2)]] =⇒

context_typing Γ’ Θ’ T’ Γ Θ (CFst p) T1"
| context_typing_Snd: "[[context_typing Γ’ Θ’ T’ Γ Θ p (PairT T1 T2)]] =⇒

context_typing Γ’ Θ’ T’ Γ Θ (CSnd p) T2"
| context_typing_Fold: "context_typing Γ’ Θ’ T’ Γ Θ p (mu_substitute’ 0 T (MuT T)) =⇒

context_typing Γ’ Θ’ T’ Γ Θ (CFold p) (MuT T)"
| context_typing_Unfold: "[[context_typing Γ’ Θ’ T’ Γ Θ p (MuT T);

(mu_substitute’ 0 T (MuT T)) = T’’]] =⇒
context_typing Γ’ Θ’ T’ Γ Θ (CUnfold p) T’’"

| context_typing_Inl: "context_typing Γ’ Θ’ T’ Γ Θ p T =⇒
context_typing Γ’ Θ’ T’ Γ Θ (CInl p) (SumT T U)"

| context_typing_Inr: "context_typing Γ’ Θ’ T’ Γ Θ p U =⇒
context_typing Γ’ Θ’ T’ Γ Θ (CInr p) (SumT T U)"

| context_typing_Case: "[[context_typing Γ’ Θ’ T’ Γ Θ p1 (SumT T U);
context_typing Γ’ Θ’ T’ Γ Θ p2 (FunT T V);
context_typing Γ’ Θ’ T’ Γ Θ p3 (FunT U V)]] =⇒
context_typing Γ’ Θ’ T’ Γ Θ (CCase p1 p2 p3) V"

(182) lemma typing_applycontext: Lemma 1.29
page 27assumes "Γ|Θ⊢P:T"

and "context_typing Γ Θ T Γ’ Θ’ C T’"
shows "Γ’|Θ’⊢applycontext C P : T’"

(183) lemma applycontext_fullyclosed: Section 1.8.1
page 27assumes "Γ|Θ⊢P:T"

and "context_typing Γ Θ T [] [] C T’"
shows "fullyclosed (applycontext C P, [], [])"

I.6 Embedding the Type System in HOL

I.6.1 Embedding Types, Environments, and Programs

(184) class program_type = Section 1.9.1
page 28fixes prog_type :: "’a itself ⇒ programtype"

assumes inhabited: "∃ p. ([]|[]⊢p:(prog_type TYPE(’a)))"
assumes closed_type: "max_typevar 0 (prog_type TYPE(’a))"

(185) class environment = Section 1.9.1
page 29fixes env_types :: "’a itself ⇒ programtype list"

(186) class empty_environment = environment +
assumes empty_environment: "env_types TYPE(’a) == []"

(187) typedef env_nil = "{()}" Section 1.9.1
page 29instantiation env_nil :: empty_environment

129

Appendix I. Formalization of Verypto in Isabelle/HOL

(188) definition env_types_nil:
Section 1.9.1

page 29
"env_types (T::env_nil itself) == []"

(189) typedef (’a,’b) env_cons = "{()}"Section 1.9.1
page 29 instantiation env_cons :: (program_type,environment)environment

(190) definition env_types_cons:
Section 1.9.1

page 29
"env_types (_::(’a::program_type,’b::environment) env_cons itself)
== prog_type(TYPE(’a)) # env_types(TYPE(’b))"

(191) typedef (program) (’e,’t) "[[]]" =Section 1.9.1
page 29 "{p. env_types(TYPE(’e::environment))|[]⊢p:(prog_type(TYPE(’t::program_type)))}"

syntax (xsymbols)
"_program_type" :: "[types,type,type] ⇒ type" ("([[(_ . . . _) /⊢ (_)]])")
"_program_type" :: "[type,type] ⇒ type" ("([[(. . . _) /⊢ (_)]])")
"_program_type_nil" :: "[types,type] ⇒ type" ("([[_/⊢ (_)]])")
"_program_type_nil" :: "[type] ⇒ type" ("([[/⊢ (_)]])")
"_program_type_nil" :: "[type] ⇒ type" ("([[(_)]])")

instantiation "fun" :: (program_type,program_type)program_type
(192) definition prog_type_fun:

"prog_type == λ(_::(’a::program_type⇒’b::program_type) itself).
FunT (prog_type TYPE(’a)) (prog_type TYPE(’b))"

instantiation "*" :: (program_type,program_type)program_type
(193) definition prog_type_prod:Section 1.9.1

page 28 "prog_type == λ(_::(’a::program_type × ’b::program_type) itself).
PairT (prog_type TYPE(’a)) (prog_type TYPE(’b))"

instantiation "+" :: (program_type,program_type)program_type
(194) definition prog_type_sum:

"prog_type == λ(_::(’a::program_type + ’b::program_type) itself).
SumT (prog_type TYPE(’a)) (prog_type TYPE(’b))"

instantiation "list" :: (program_type)program_type
(195) definition prog_type_list:Section 1.9.1

page 28 "prog_type == λ(_::(’a::program_type) list itself).
List’T (prog_type TYPE(’a))"

(196) datatype ’a reference = Reference ’a

instantiation "reference" :: (program_type)program_type
(197) definition prog_type_ref: "prog_type ==Section 1.9.1

page 28 λ(_::(’a::program_type) reference itself). RefT (prog_type TYPE(’a))"

instantiation "[[]]" :: (environment,program_type)measurable_space
(198) definition "Σ == (vimage Rep_program) ‘ Σ"

I.6.2 Embedding HOL Objects into the Language

(199) class embeddable = program_type + default +Section 1.9.2
page 31 fixes prog_embedding :: "’a ⇒ programterm"

assumes prog_embedding_welltyped: "[]|[]⊢(prog_embedding x):(prog_type TYPE(’a))"

(200) class embeddable_val = embeddable +Section 1.9.2
page 31 assumes prog_embedding_value: "prog_embedding x : values"

fixes kernel_of :: "’a ⇒ (pureterm,pureterm)submarkov_kernel"

(201) class embeddable_pure = embeddable_val + measurable_space +Section 1.9.2
page 32 fixes inv_prog_embedding :: "programterm ⇒ ’a"

assumes pure_prog_embedding: "prog_embedding x : purevalues"

130

I.6. Embedding the Type System in HOL

and has_pure_type: "prog_type TYPE(’a) : puretypes"
and inv_prog_embedding: "!!x. inv_prog_embedding (prog_embedding x) = x"
and kernel_of_pure:

"kernel_of v = constant_kernel (term_to_pureterm (prog_embedding v))"
and prog_embedding_measurable: "prog_embedding : measurable Σ Σ"
and inv_prog_embedding_measurable: "inv_prog_embedding : measurable Σ Σ"
assumes pure_prog_embedding_surjective:

"[]|[]⊢p:(prog_type TYPE(’a)) =⇒ p : values =⇒ (∃ x. p = prog_embedding x)"

(202) fun split_fun_type :: "programtype ⇒ (programtype list × programtype)"
where

"split_fun_type (FunT a b) = (a#(fst (split_fun_type b)),snd (split_fun_type b))"
| "split_fun_type a = ([],a)"

(203) class embeddable_kernel = embeddable_val +
assumes kernel_of:
"∀ v←apply_kernel(deterministic_kernel pureterm_to_term oo (kernel_of f))x.

[]|[]⊢v:(snd (split_fun_type (prog_type TYPE(’a))))"
assumes pk_args_puretype:
"set (fst (split_fun_type (prog_type TYPE(’a)))) ⊆ puretypes"
assumes pk_out_puretype:
"snd (split_fun_type (prog_type TYPE(’a))) ∈ puretypes"

(204) fun pk_invoke :: "programtype list ⇒ programterm ⇒ programterm" where
"pk_invoke [] X = X"

| "pk_invoke (a#args) X = Abstraction (pk_invoke args X)"

(205) fun pk_construct_arg :: "programtype list ⇒ programterm" where
"pk_construct_arg [] = value_unit"

| "pk_construct_arg (a#args) = PairP (Var (length args)) (pk_construct_arg args)"

subclass (in embeddable_pure) embeddable_kernel

instantiation "[[]]"::(empty_environment,program_type)embeddable

(206) definition prog_type_program: Section 1.9.2
page 31"prog_type == λ(_::[[. . . ’a::empty_environment⊢’b]] itself). prog_type TYPE(’b)"

(207) definition prog_embedding_program: "prog_embedding == Rep_program"
Section 1.9.2
page 31instantiation "fun" :: (embeddable_pure,embeddable_kernel)embeddable_kernel

(208) definition default_fun: "default == λx. default"
(209) definition kernel_of_fun: "kernel_of f = Section 1.9.2

page 32mk_kernel (λxy::pureterm. case xy of (ptPair x y) ⇒
apply_kernel (kernel_of (f (inv_prog_embedding (pureterm_to_term x)))) y
| _ ⇒ 0)"

(210) definition prog_embedding_fun: "prog_embedding (f::’a⇒’b) == Section 1.9.2
page 32let args = (fst (split_fun_type (prog_type TYPE(’a⇒’b)))) in

pk_invoke args (Function (kernel_of f) (pk_construct_arg args))"

instantiation "*" :: (embeddable,embeddable) embeddable
(211) definition "default == (default,default)"
(212) definition "prog_embedding == λ(x,y). PairP (prog_embedding x) (prog_embedding y)"

instantiation "*" :: (embeddable_val,embeddable_val) embeddable_val
(213) definition "kernel_of (v::’a*’b) =

constant_kernel (term_to_pureterm (prog_embedding v))"

instantiation "*" :: (embeddable_pure,embeddable_pure)embeddable_pure
(214) definition "inv_prog_embedding ==

inv_default prog_embedding default :: programterm ⇒ (’a*’b)"

instantiation "+" :: (embeddable,embeddable) embeddable
(215) definition "default == Inl default"

131

Appendix I. Formalization of Verypto in Isabelle/HOL

(216) definition "prog_embedding == λx. case x of Inl x ⇒ InlP (prog_embedding x) | Inr
x ⇒ InrP (prog_embedding x)"

instantiation "+" :: (embeddable_val,embeddable_val) embeddable_val
(217) definition "kernel_of (v::’a+’b) =

constant_kernel (term_to_pureterm (prog_embedding v))"

instantiation "+" :: (embeddable_pure,embeddable_pure)embeddable_pure
(218) definition "inv_prog_embedding ==

inv_default prog_embedding default :: programterm ⇒ (’a+’b)"

instantiation unit :: embeddable_pure
(219) definition prog_type_unit: "prog_type == λ(_::unit itself). UnitT"Section 1.9.1

page 28 (220) definition "prog_embedding == λx::unit. Value bvUnit"
(221) definition "inv_prog_embedding ==

inv_default prog_embedding default :: programterm ⇒ unit"
(222) definition "kernel_of (v::unit) =

constant_kernel (term_to_pureterm (prog_embedding v))"

(223) function list_to_programterm ::
"(’a::embeddable) list ⇒ programterm"

where
"list_to_programterm [] = Nil’P"

| "list_to_programterm (x#xs) = List’P (prog_embedding x) (list_to_programterm xs)"

instantiation list :: (embeddable)embeddable
(224) definition default_list: "default == []"
(225) definition prog_embedding_list: "prog_embedding == list_to_programterm"

instantiation list :: (embeddable_val)embeddable_val
(226) definition "kernel_of (v::’a list) =

constant_kernel (term_to_pureterm (prog_embedding v))"

instantiation list :: (embeddable_pure)embeddable_pure
(227) definition inv_prog_embedding_list: "inv_prog_embedding ==

(inv_default prog_embedding default) :: programterm ⇒ ’a list"

instantiation bool :: embeddable_pure
(228) definition prog_type_bool: "prog_type == λ(_::bool itself). Bool’T"Section 1.9.1

page 28 (229) definition default_bool: "default == False"
(230) definition prog_embedding_bool: "prog_embedding ==

λb. if b then value_true else value_false"
(231) definition inv_prog_embedding_bool: "inv_prog_embedding ==

inv_default prog_embedding default :: programterm ⇒ bool"
(232) definition "kernel_of (v::bool) =

constant_kernel (term_to_pureterm (prog_embedding v))"

instantiation nat :: embeddable_pure
(233) definition prog_type_nat: "prog_type == λ(_::nat itself). Nat’T"Section 1.9.1

page 28 (234) definition "default == 0 :: nat"
(235) definition "prog_embedding == λx. prog_embedding (nat_to_bitstring2 x)"
(236) definition "inv_prog_embedding ==

λx. bitstring_to_nat2 (inv_prog_embedding x)"
(237) definition "kernel_of (v::nat) =

constant_kernel (term_to_pureterm (prog_embedding v))"

I.6.3 Representations of Programs in HOL

(238) definitionSection 1.9.1
page 29 "VAR0 == Abs_program (Var 0) :: [[’a::program_type. . . ’e::environment⊢’a]]"

(239) definitionSection 1.9.1
page 29

132

I.6. Embedding the Type System in HOL

"VAR_SUC (b::[[. . . ’e::environment⊢’a::program_type]]) ==
(case Rep_program b of Var n ⇒ Abs_program (Var (Suc n))

| _ ⇒ Abs_program (SOME p. []|[]⊢p:(prog_type(TYPE(’a)))))
:: [[’b::program_type. . . ’e⊢’a]]"

(240) definition Section 1.9.1
page 29"ABSTRACT (name::string) (p::[[’a::program_type. . . ’e::environment⊢’b::program_type]])

==
(Abs_program (Abstraction (Rep_program p))) :: [[. . . ’e⊢’a⇒’b]]"

(241) definition Section 1.9.1
page 29"APPLY (p1::[[. . . ’e::environment⊢’t1::program_type⇒’t2::program_type]])

(p2::[[. . . ’e⊢’t1::program_type]]) ==
(Abs_program (Application (Rep_program p1) (Rep_program p2))) :: [[. . . ’e⊢’t2]]"

(242) definition Section 1.9.1
page 29"PAIR (p1::[[. . . ’e::environment⊢’t1::program_type]])

(p2::[[. . . ’e::environment⊢’t2::program_type]]) ==
(Abs_program (PairP (Rep_program p1) (Rep_program p2))) :: [[. . . ’e⊢’t1×’t2]]"

(243) definition Section 1.9.1
page 29"FST (p::[[. . . ’e::environment⊢(’a::program_type)×(’b::program_type)]]) ==

(Abs_program (Fst (Rep_program p))) :: [[. . . ’e⊢’a]]"

(244) definition Section 1.9.1
page 29"SND (p::[[. . . ’e::environment⊢(’a::program_type)×(’b::program_type)]]) ==

(Abs_program (Snd (Rep_program p))) :: [[. . . ’e⊢’b]]"

(245) definition
"CASE (p1::[[. . . ’e::environment⊢’t1::program_type + ’t2::program_type]])

(p2::[[. . . ’e::environment⊢’t1 ⇒ ’t::program_type]])
(p3::[[. . . ’e::environment⊢’t2 ⇒ ’t]]) ==

(Abs_program (CaseP (Rep_program p1) (Rep_program p2) (Rep_program p3))) :: [[. . . ’e⊢’t]]"

(246) definition
"INL (p::[[. . . ’e::environment⊢’a::program_type]]) ==
(Abs_program (InlP (Rep_program p))) :: [[. . . ’e⊢’a+’b::program_type]]"

(247) definition
"INR (p::[[. . . ’e::environment⊢’b::program_type]]) ==
(Abs_program (InrP (Rep_program p))) :: [[. . . ’e⊢’a::program_type+’b]]"

(248) definition
"VALUE (v::’a::embeddable) ==
(Abs_program (prog_embedding v)) :: [[. . . ’e::environment⊢’a]]"

(249) definition "kernel2puretermkernel f ==
deterministic_kernel (term_to_pureterm o prog_embedding) oo
f oo deterministic_kernel (inv_prog_embedding o pureterm_to_term)"

(250) definition
"FUNCTION (f::(’a,’b)submarkov_kernel)

(p::[[. . . ’e::environment⊢’a::embeddable_pure]]) ==
(Abs_program (Function (kernel2puretermkernel f) (Rep_program p)))
:: [[. . . ’e⊢’b::embeddable_pure]]"

(251) definition
"REF (p::[[. . . ’e::environment⊢’t::program_type]]) ==
(Abs_program (Ref (Rep_program p))) :: [[. . . ’e⊢’t reference]]"

(252) definition
"DEREF (p::[[. . . ’e::environment⊢(’t::program_type) reference]]) ==

133

Appendix I. Formalization of Verypto in Isabelle/HOL

(Abs_program (Deref (Rep_program p))) :: [[. . . ’e⊢’t]]"

(253) definition
"ASSIGN (p1::[[. . . ’e::environment⊢(’t::program_type) reference]]) (p2::[[. . . ’e⊢’t]]) ==
(Abs_program (Assign (Rep_program p1) (Rep_program p2))) :: [[. . . ’e⊢unit]]"

(254) definition
"EVENT (e::eventT) == (Abs_program (Event e)) :: [[. . . ’e::environment⊢unit]]"

(255) definitionSection 1.9.1
page 29 "NIL == Abs_program Nil’P :: [[. . . ’e::environment⊢’t::program_type list]]"

(256) definitionSection 1.9.1
page 29 "CONS (p::[[. . . ’e⊢’t]]) (ps::[[. . . ’e::environment⊢(’t::program_type) list]]) ==

Abs_program (List’P (Rep_program p) (Rep_program ps)) :: [[. . . ’e⊢’t list]]"

(257) definition
"IFTHENELSE (c::[[. . . ’e::environment⊢bool]])

(p1::[[. . . ’e::environment⊢’t::program_type]])
(p2::[[. . . ’e::environment⊢’t]]) ==

(Abs_program (IfThenElse’ (Rep_program c) (Rep_program p1) (Rep_program p2)))
:: [[. . . ’e⊢’t]]"

(258) definition
"FIX == Abs_program Fix ::
[[. . . ’e::environment⊢((’a::program_type ⇒ ’b::program_type)⇒(’a ⇒ ’b))⇒(’a ⇒ ’b)]]"

(259) definition
"LET (p1::[[. . . ’e1::environment⊢(’t1::program_type)]])

(p2::[[. . . ’e1::environment⊢’t1 ⇒ (’t2::program_type)]]) ==
(Abs_program (LetP (Rep_program p1) (Rep_program p2))) :: [[. . . ’e1::environment⊢’t2]]"

(260) definition
"SEQUENCE (p1::[[. . . ’e::environment⊢’t1::program_type]])

(p2::[[. . . ’e::environment⊢’t2::program_type]]) ==
(Abs_program (SequenceP (Rep_program p1) (Rep_program p2)))
:: [[. . . ’e::environment⊢’t2]]"

(261) definition
"UNCURRY
(p::[[. . . ’e::environment⊢(’t1::program_type ⇒ ’t2::program_type ⇒ ’t::program_type)]])
== Abs_program (uncurry (Rep_program p))
:: [[. . . ’e::environment⊢(’t1::program_type × ’t2::program_type) ⇒ ’t::program_type]]"

(262) definitionSection 1.9.1
page 29 "LIFT (p::[[. . . ’e::environment⊢(’t::program_type)]]) ==

(Abs_program (lift_vars 0 (Rep_program p)))
:: [[’a::program_type. . . (’e::environment)⊢’t]]"

(263) definitionSection 1.9.1
page 30 "LIFTk n (p::[[. . . ’e1::environment⊢’t]]) ==

(Abs_program (lift_vars n (Rep_program p)))
:: [[. . . ’e2::environment⊢(’t::program_type)]]"

(264) definitionSection 1.9.1
page 30 "SUBSTITUTE (p::[[’a . . . ’e⊢(’t::program_type)]]) (q::[[. . . ’e⊢(’a::program_type)]]) ==

(Abs_program (substitute’ 0 (Rep_program p) (Rep_program q)))
:: [[. . . (’e::environment)⊢’t]]"

(265) definitionSection 1.9.1
page 30 "SUBSTITUTEk n (p::[[. . . ’e1::environment⊢’t1::program_type]])

(q::[[. . . ’e2::environment⊢’t2::program_type]]) ==

134

I.6. Embedding the Type System in HOL

(Abs_program (substitute’ n (Rep_program p) (Rep_program q)))
:: [[. . . ’e2::environment⊢’t1::program_type]]"

(266) definition
"SWAPn n ((p::[[. . . ’e1::environment⊢’t::program_type]])) ==
(Abs_program (swap_vars n (Suc n) (Rep_program p))) :: [[. . . ’e2::environment⊢’t]]"

(267) definition
"WEAKEN (p::[[. . . env_nil⊢(’t::program_type)]]) ==
(Abs_program (Rep_program p)) :: [[. . . (’e::environment)⊢’t]]"

(268) definition Section 1.9.4
page 33"prog_probability (P::[[bool]]) ==

kernel_prob_of denotation (prog_embedding P,[],[]) (InlP‘UNIV × UNIV)"

Program Representation Rules

(269) lemma Rep_program_type:
"(env_types TYPE(’e))|[] ⊢ (Rep_program (p::[[. . . ’e::environment⊢’t::program_type]]))

: (prog_type TYPE(’t))"

(270) lemma Rep_program_rule_VAR0: "Rep_program VAR0 == Var 0"

(271) lemma Rep_program_rule_VAR_SUC:
assumes "Rep_program B == Var n"
shows "Rep_program (VAR_SUC B::[[’a::program_type. . . ’e::environment⊢’t::program_type]])

== Var (Suc n)"

(272) lemma Rep_program_rule_ABSTRACT:
fixes p :: "[[’in::program_type. . . ’e::environment⊢’out::program_type]]"
shows "Rep_program (ABSTRACT n p) == Abstraction (Rep_program p)"

(273) lemma Rep_program_rule_APPLY:
fixes p1 :: "[[. . . ’e::environment⊢’in::program_type⇒’out::program_type]]"
and p2 :: "[[. . . ’e⊢’in]]"
shows "Rep_program (APPLY p1 p2) == Application (Rep_program p1) (Rep_program p2)"

(274) lemma Rep_program_rule_PAIR:
fixes p1 :: "[[. . . ’e::environment⊢’t1::program_type]]"
and p2 :: "[[. . . ’e⊢’t2::program_type]]"
shows "Rep_program (PAIR p1 p2) == PairP (Rep_program p1) (Rep_program p2)"

(275) lemma Rep_program_rule_FST:
fixes p :: "[[. . . ’e::environment⊢(’a::program_type)×(’b::program_type)]]"
shows "Rep_program (FST p) == Fst (Rep_program p)"

(276) lemma Rep_program_rule_SND:
fixes p :: "[[. . . ’e::environment⊢(’a::program_type)×(’b::program_type)]]"
shows "Rep_program (SND p) == Snd (Rep_program p)"

(277) lemma Rep_program_rule_CASE:
fixes p1 :: "[[. . . ’e::environment⊢’t1::program_type + ’t2::program_type]]"
and p2 :: "[[. . . ’e⊢’t1 ⇒ ’t::program_type]]"
and p3 :: "[[. . . ’e⊢’t2 ⇒ ’t::program_type]]"
shows "Rep_program (CASE p1 p2 p3) ==

CaseP (Rep_program p1) (Rep_program p2) (Rep_program p3)"

(278) lemma Rep_program_rule_INL:
fixes p :: "[[. . . ’e::environment⊢’a::program_type]]"
shows "Rep_program ((INL p)::[[. . . ’e⊢(’a)+(’b::program_type)]]) ==

InlP (Rep_program p)"

135

Appendix I. Formalization of Verypto in Isabelle/HOL

(279) lemma Rep_program_rule_INR:
fixes p :: "[[. . . ’e::environment⊢’b::program_type]]"
shows "Rep_program ((INR p)::[[. . . ’e⊢(’a::program_type)+(’b)]]) ==

InrP (Rep_program p)"

(280) lemma Rep_program_rule_VALUE:
fixes v :: "’a::embeddable"
shows "Rep_program ((VALUE v)::[[. . . ’e::environment⊢_]]) == prog_embedding v"

(281) lemma Rep_program_VALUE:
fixes v :: "[[’a::program_type]]"
shows "Rep_program ((VALUE v)::[[. . . ’e::environment⊢_]]) = Rep_program v"

(282) lemma Rep_program_rule_FUNCTION:
fixes f :: "(’a::embeddable_pure,’b::embeddable_pure)submarkov_kernel"
and p :: "[[. . . ’e::environment⊢’a::embeddable_pure]]"
shows "Rep_program (FUNCTION f p) ==

Function (kernel2puretermkernel f) (Rep_program p)"

(283) lemma Rep_program_rule_REF:
fixes p :: "[[. . . ’e::environment⊢’t::program_type]]"
shows "Rep_program (REF p) == Ref (Rep_program p)"

(284) lemma Rep_program_rule_DEREF:
fixes p :: "[[. . . ’e::environment⊢(’t::program_type) reference]]"
shows "Rep_program (DEREF p) == Deref (Rep_program p)"

(285) lemma Rep_program_rule_ASSIGN:
fixes p1 :: "[[. . . ’e::environment⊢(’t::program_type) reference]]"
and p2 :: "[[. . . ’e⊢’t]]"
shows "Rep_program (ASSIGN p1 p2) == Assign (Rep_program p1) (Rep_program p2)"

(286) lemma Rep_program_rule_EVENT:
shows "Rep_program ((EVENT ev) :: [[. . . ’e::environment⊢unit]]) == Event ev"

(287) lemma Rep_program_rule_NIL:
shows "Rep_program (NIL::[[. . . ’e::environment⊢’t::program_type list]]) == Nil’P"

(288) lemma Rep_program_rule_CONS:
fixes p1 :: "[[. . . ’e::environment⊢’t1::program_type]]"
and p2 :: "[[. . . ’e⊢’t1 list]]"
shows "Rep_program (CONS p1 p2) == List’P (Rep_program p1) (Rep_program p2)"

(289) lemma Rep_program_rule_IFTHENELSE:
fixes c :: "[[. . . ’e::environment⊢bool]]"
and p1 :: "[[. . . ’e⊢’t::program_type]]"
and p2 :: "[[. . . ’e⊢’t]]"
shows "Rep_program (IFTHENELSE c p1 p2) ==

IfThenElse’ (Rep_program c) (Rep_program p1) (Rep_program p2)"

(290) lemma Rep_program_rule_FIX:
shows "Rep_program (FIX::
[[. . . ’e::environment⊢((’a::program_type ⇒ ’b::program_type)⇒(’a ⇒ ’b))⇒(’a ⇒ ’b)]])

== Fix"

(291) lemma Rep_program_rule_LET:
fixes p1 :: "[[. . . ’e::environment⊢’in::program_type]]"
and p2 :: "[[. . . ’e⊢’in⇒’out::program_type]]"
shows "Rep_program (LET p1 p2) == LetP (Rep_program p1) (Rep_program p2)"

(292) lemma Rep_program_rule_SEQUENCE:
fixes p1 :: "[[. . . ’e::environment⊢’t1::program_type]]"
and p2 :: "[[. . . ’e⊢’t2::program_type]]"
shows "Rep_program (SEQUENCE p1 p2) == SequenceP (Rep_program p1) (Rep_program p2)"

136

I.6. Embedding the Type System in HOL

(293) lemma Rep_program_rule_UNCURRY:
fixes p ::

"[[. . . ’e::environment⊢(’t1::program_type⇒’t2::program_type⇒’t::program_type)]]"
shows "Rep_program (UNCURRY p) == uncurry (Rep_program p)"

(294) lemma Rep_program_rule_LIFT:
fixes p :: "[[. . . ’e::environment⊢’t::program_type]]"
shows "Rep_program (LIFT p::[[’a::program_type. . . ’e⊢’t]]) ==

lift_vars 0 (Rep_program p)"

(295) lemma Rep_program_rule_SUBSTITUTE:
fixes p :: "[[’a::program_type. . . ’e::environment⊢’t::program_type]]"
and q :: "[[. . . ’e::environment⊢’a]]"
shows "Rep_program (SUBSTITUTE p q) == substitute’ 0 (Rep_program p) (Rep_program q)"

(296) lemma Rep_program_rule_SWAP:
fixes p :: "[[’a::program_type,’b::program_type. . . ’e::environment⊢’t::program_type]]"
shows "Rep_program (SWAP p::[[’b,’a. . . ’e⊢’t]]) == swap_vars 0 1 (Rep_program p)"

(297) lemma Rep_program_rule_WEAKEN:
fixes p :: "[[. . . env_nil⊢(’t::program_type)]]"
shows "Rep_program (WEAKEN p::[[. . . (’e::environment)⊢’t]]) == (Rep_program p)"

(298) lemma Rep_program_rule_LIFT_WEAKEN:
"Rep_program (LIFT (WEAKEN P::[[. . . ’e::environment ⊢ ’t::program_type]])) ==
Rep_program P"

(299) lemma progress_typed:
assumes "¬ is_value (Rep_program (P::[[’a::program_type]]))"
shows "∃µ. (Rep_program P,[],[]) µ"

I.6.4 Typed Contexts and Context Functions

(300) typedef (’ein,’tin,’eout,’tout) "typed_context" = Section 1.9.3
page 32"{c. context_typing (env_types(TYPE(’ein::environment))) []

(prog_type TYPE(’tin::program_type)) (env_types(TYPE(’eout::environment))) []
c (prog_type(TYPE(’tout::program_type)))}"

(301) definition applycontext_typed ::
"(’ein::environment,’tin::program_type,

’eout::environment,’tout::program_type) typed_context
⇒ [[. . . ’ein::environment⊢’tin::program_type]]
⇒ [[. . . ’eout::environment⊢’tout::program_type]]" where
"applycontext_typed C P =
Abs_program (applycontext (Rep_typed_context C) (Rep_program P))"

(302) definition is_contextfun_typed :: Definition 1.31
page 32"([[. . . ’ein::environment ⊢ ’tin::program_type]]

⇒ [[. . . ’eout::environment ⊢ ’tout::program_type]]) ⇒ bool" where
"is_contextfun_typed F = (∃ C. applycontext_typed C = F)"

(303) lemma is_contextfun_typed_id: Section 1.9.3
page 32"is_contextfun_typed (λx. x::[[. . . ’e::environment⊢’t::program_type]])"

(304) lemma is_contextfun_typed_const: Section 1.9.3
page 33"is_contextfun_typed (λx. u)"

(305) lemma is_contextfun_typed_ABSTRACT: Section 1.9.3
page 33assumes "is_contextfun_typed F"

shows "is_contextfun_typed (λx. ABSTRACT n (F x))"

137

Appendix I. Formalization of Verypto in Isabelle/HOL

(306) lemma is_contextfun_typed_APPLY:Section 1.9.3
page 33 assumes "is_contextfun_typed F1"

assumes "is_contextfun_typed F2"
shows "is_contextfun_typed (λx. APPLY (F1 x) (F2 x))"

(307) lemma is_contextfun_typed_PAIR:
assumes "is_contextfun_typed F1"
assumes "is_contextfun_typed F2"
shows "is_contextfun_typed (λx. PAIR (F1 x) (F2 x))"

(308) lemma is_contextfun_typed_FST:
assumes "is_contextfun_typed F"
shows "is_contextfun_typed (λx. FST (F x))"

(309) lemma is_contextfun_typed_SND:
assumes "is_contextfun_typed F"
shows "is_contextfun_typed (λx. SND (F x))"

(310) lemma is_contextfun_typed_CASE:
assumes "is_contextfun_typed F1"
assumes "is_contextfun_typed F2"
assumes "is_contextfun_typed F3"
shows "is_contextfun_typed (λx. CASE (F1 x) (F2 x) (F3 x))"

(311) lemma is_contextfun_typed_INL:
assumes "is_contextfun_typed F"
shows "is_contextfun_typed ((λx. INL (F x))::

[[. . . ’ein⊢’tin]] ⇒ [[. . . ’eout⊢(’t1out+’t2out::program_type)]])"

(312) lemma is_contextfun_typed_INR:
assumes "is_contextfun_typed F"
shows "is_contextfun_typed ((λx. INR (F x))::

[[. . . ’ein⊢’tin]] ⇒ [[. . . ’eout⊢(’t1out::program_type+’t2out)]])"

(313) lemma is_contextfun_typed_FUNCTION:
assumes "is_contextfun_typed F"
assumes "∀ x. ∀ y←apply_kernel (kernel2puretermkernel f) x.

[]|[]⊢pureterm_to_term y:(prog_type TYPE(’fout))"
shows "is_contextfun_typed (λx. FUNCTION f (F x))"

(314) lemma is_contextfun_typed_REF:
assumes "is_contextfun_typed F"
shows "is_contextfun_typed (λx. REF (F x))"

(315) lemma is_contextfun_typed_DEREF:
assumes "is_contextfun_typed F"
shows "is_contextfun_typed (λx. DEREF (F x))"

(316) lemma is_contextfun_typed_ASSIGN:
assumes "is_contextfun_typed F1"
assumes "is_contextfun_typed F2"
shows "is_contextfun_typed (λx. ASSIGN (F1 x) (F2 x))"

(317) lemma is_contextfun_typed_CONS:
assumes "is_contextfun_typed F1"
and "is_contextfun_typed F2"
shows "is_contextfun_typed (λx. CONS (F1 x) (F2 x))"

(318) lemma is_contextfun_typed_LET:
assumes "is_contextfun_typed F1"
assumes "is_contextfun_typed F2"
shows "is_contextfun_typed (λx. LET (F1 x) (F2 x))"

138

I.6. Embedding the Type System in HOL

(319) lemma is_contextfun_typed_UNCURRY:
assumes "is_contextfun_typed F"
shows "is_contextfun_typed (λx. UNCURRY (F x))"

(320) lemma is_contextfun_typed_SEQUENCE:
assumes "is_contextfun_typed F1"
assumes "is_contextfun_typed F2"
shows "is_contextfun_typed (λx. SEQUENCE (F1 x) (F2 x))"

I.6.5 Syntax for Typed Programs

syntax (xsymbols)
"_pretty_program" :: "pretty_program ⇒ [[. . . ’e⊢’a]]" ("¨ _¨ ")
"_program_pretty" :: "([[. . . env_nil⊢’a]]) ⇒ pretty_program" (":_:")

"" :: "pretty_program ⇒ pretty_program" ("’(_’)")
"_NamedVAR" :: "id ⇒ pretty_program" ("_")
"_VALUE" :: "’a ⇒ pretty_program" ("^_")
"_FUNCTION" :: "[(’a, ’b) submarkov_kernel, pretty_program] ⇒ pretty_program" ("[_]

_")
"_CONS" :: "[pretty_program,pretty_program] ⇒ pretty_program" ("_ :: _")
"_NIL" :: "pretty_program" ("nil")
"_ABSTRACT" :: "[pttrn,pretty_program] ⇒ pretty_program" ("λ_. (_)")
"_APPLY" :: "[pretty_program,pretty_program] ⇒ pretty_program" ("_ _")
"_LOCATION" :: "nat ⇒ pretty_program" ("loc _")
"_REF" :: "[pretty_program] ⇒ pretty_program" ("ref _")
"_DEREF" :: "[pretty_program] ⇒ pretty_program" ("! _")
"_ASSIGN" :: "[pretty_program,pretty_program] ⇒ pretty_program" ("_ := _")
"_FIX" :: "[pretty_program] ⇒ pretty_program" ("fix _")
"_IFTHENELSE" :: "[pretty_program,pretty_program,pretty_program] ⇒ pretty_program" ("if

(_) then (_) else (_)")
"_EVENT" :: "eventT ⇒ pretty_program" ("event _")
"_EVENTLIST" :: "pretty_program" ("eventlist")
"_FST" :: "[pretty_program] ⇒ pretty_program" ("#1 _")
"_SND" :: "[pretty_program] ⇒ pretty_program" ("#2 _")
"_SPLITLIST" :: "[pretty_program,pretty_program,pretty_program] ⇒ pretty_program" ("case

(_) of (_) (_)")
"_SEQUENCE" :: "[pretty_program,pretty_program] ⇒ pretty_program" ("_; _")
"_LIFT" :: "[pretty_program] ⇒ pretty_program" ("⌈_⌉")

"_programbind":: "[pttrn, pretty_program] => programletbind" ("(2_ ←/ _)")
"_programsetbind" :: "[pttrn, pretty_program] => programletbind" ("(2_ ←$/ _)")
"" :: "programletbind => programletbinds" ("_")
"_programbinds" :: "[programletbind, programletbinds] => programletbinds" ("_;/ _")
"_programLet" :: "[programletbinds, pretty_program] => pretty_program" ("(let (_)/ in

(_))")

"_programtuple" :: "pretty_program => programtuple_args => pretty_program" ("(1’(_,/
_’))")

"_programtuple_arg" :: "pretty_program => programtuple_args" ("_")
"_programtuple_args" :: "pretty_program=> programtuple_args => programtuple_args" ("_,/

_")

"_prog_probability" :: "pretty_program ⇒ real" ("Pr[(_)]")
"_prog_letprobability" :: "pretty_program ⇒ programletbinds ⇒ real" ("Pr[(_) : (_)]")
"_OPEQ" :: "pretty_program ⇒ pretty_program ⇒ pretty_program" (infixl "=")

139

Appendix I. Formalization of Verypto in Isabelle/HOL

I.7 Program Relations

I.7.1 Denotational Equivalence

Definitions

(321) definitionDefinition 1.32
page 34 "denotationally_equivalent p p’ ==

∀σ η. apply_kernel denotation (p,σ,η) = apply_kernel denotation (p’,σ,η)"

(322) definitionDefinition 1.33
page 34 "denotationally_equivalent_upto ε A B ==

∀σ η. ∀ pset∈Σ. |kernel_prob_of denotation (A,σ,η) pset
- kernel_prob_of denotation (B,σ,η) pset| ≤ ε"

(323) definition applycontext_kernel_def_raw:
"applycontext_kernel C = deterministic_kernel (λ(P,σ,η). (applycontext C P, σ, η))"

(324) lemma applycontext_kernel_def:
"apply_kernel (applycontext_kernel C) x =
apply_kernel unitkernel ((λ(P,σ,η). (applycontext C P, σ, η)) x)"

Lemmas

(325) lemma denotationally_equivalent_upto_refl:
assumes "ε ≥ 0"
shows "denotationally_equivalent_upto ε A A"

(326) lemma denotationally_equivalent_upto_sym:
assumes "denotationally_equivalent_upto ε A B"
shows "denotationally_equivalent_upto ε B A"

(327) lemma denotationally_equivalent_upto_trans:
assumes "denotationally_equivalent_upto ε1 A B"
assumes "denotationally_equivalent_upto ε2 B C"
shows "denotationally_equivalent_upto (ε1+ε2) A C"

(328) theorem denot_equiv_eval_ctx’:Theorem 1.48
page 41 fixes E P σ η

assumes Eeval: "E : evaluationcontext"
shows "apply_kernel denotation (applycontext E P, σ, η) =
lift_kernel(mk_kernel(λ(V’,σ’,η’). apply_kernel denotation(applycontext E V’,σ’,η’)))

(apply_kernel denotation (P,σ,η))"

(329) theorem denot_equiv_eval_ctx:
fixes E P σ η
assumes "E : evaluationcontext"
shows "apply_kernel denotation (applycontext E P, σ, η) =
lift_kernel denotation (lift_kernel (applycontext_kernel E)

(apply_kernel denotation (P,σ,η)))"

(330) lemma chaining_denotation_beta:Lemma 1.50
page 43 shows "(apply_kernel denotation (Application (Abstraction P’) P,se))

= lift_kernel denotation (lift_kernel
(deterministic_kernel (λ(v,se). (substitute’ 0 P’ v,se)))
(apply_kernel denotation (P,se)))"

(331) lemma chaining_denotation_beta’:
"apply_kernel denotation (Application (Abstraction P’) P,σ,η) =
lift_kernel(mk_kernel(λ(V’,σ’,η’). apply_kernel denotation(substitute’ 0 P’ V’,σ’,η’)))

(apply_kernel denotation (P,σ,η))"

140

I.7. Program Relations

(332) lemma denot_equiv_stepsto_unitkernel:
assumes Punit: "pse apply_kernel unitkernel pse’"
shows "apply_kernel denotation pse = apply_kernel denotation pse’"

(333) lemma termination_equivalent_closingcontext:
assumes "freevars p = {}"
shows "kernel_prob_of denotation (applycontext (closingcontext n) p, se) UNIV

= kernel_prob_of denotation (p, se) UNIV"

(334) lemma termination_equivalent_extend_store:
assumes "storageclosed (p, s, e)"
shows "kernel_prob_of denotation (p, s @ replicate l value_unit, e) UNIV

= kernel_prob_of denotation (p, s, e) UNIV"

(335) lemma termination_equivalent_closingconfiguration:
assumes fc: "fullyclosed (p, s, e)"
shows "kernel_prob_of denotation (applycontext (closingcontext n) p,

s@(replicate l value_unit), e) UNIV
= kernel_prob_of denotation (p, s, e) UNIV"

I.7.2 Observational Equivalence

Definitions

(336) definition "observationally_equivalent_untyped P Q == Definition 1.34
page 35∀ C s e. are_values s ∧

fullyclosed (applycontext C P, s, e) ∧ fullyclosed (applycontext C Q, s, e)
−→ kernel_prob_of denotation (applycontext C P, s, e) UNIV

= kernel_prob_of denotation (applycontext C Q, s, e) UNIV"

(337) definition Definition 1.59
page 46"observationally_approximated_untyped P Q ==

∀ C s e. are_values s ∧
fullyclosed (applycontext C P, s, e) ∧ fullyclosed (applycontext C Q, s, e)

−→ kernel_prob_of denotation (applycontext C P, s, e) UNIV
≤ kernel_prob_of denotation (applycontext C Q, s, e) UNIV"

(338) lemma observationally_equivalent_untyped_def2: Lemma 1.61
page 46"observationally_equivalent_untyped P Q ==

observationally_approximated_untyped P Q ∧ observationally_approximated_untyped Q P"

(339) definition "observationally_equivalent
(P::[[. . . ’e::environment⊢’t::program_type]]) (Q::[[. . . ’e⊢’t]]) =
observationally_equivalent_untyped (Rep_program P) (Rep_program Q)"

(340) lemma obseq_imp_probeq: Lemma 1.37
page 36assumes "observationally_equivalent P Q"

shows "prog_probability P = prog_probability Q"

All Variants are Equivalence Relations

(341) lemma observationally_equivalent_untyped_refl[simp]:
"observationally_equivalent_untyped P P"

(342) lemma observationally_equivalent_refl[simp]:
"observationally_equivalent P P"

(343) lemma observationally_equivalent_untyped_sym:
"observationally_equivalent_untyped P Q = observationally_equivalent_untyped Q P"

141

Appendix I. Formalization of Verypto in Isabelle/HOL

(344) lemma observationally_equivalent_sym:
"observationally_equivalent P Q = observationally_equivalent Q P"

(345) lemma observationally_equivalent_untyped_trans:
assumes "observationally_equivalent_untyped P Q"
and "observationally_equivalent_untyped Q R"
shows "observationally_equivalent_untyped P R"

(346) lemma observationally_equivalent_trans:
assumes "observationally_equivalent P Q"
and "observationally_equivalent Q R"
shows "observationally_equivalent P R"

(347) lemma observationally_equivalent_untyped_equiv:Lemma 1.35
page 35 "equiv UNIV (split observationally_equivalent_untyped)"

(348) lemma observationally_equivalent_equiv:
"equiv UNIV (split observationally_equivalent)"

Composability

(349) lemma obseq_untyped_applycontext:Lemma 1.36
page 36 assumes eqAB: "observationally_equivalent_untyped A B"

shows "observationally_equivalent_untyped (applycontext C A) (applycontext C B)"

(350) lemma obseq_untyped_contextfuns:
assumes eqAB: "observationally_equivalent_untyped A B"
and conF: "F : contextfuns"
shows "observationally_equivalent_untyped (F A) (F B)"

(351) lemma obseq_contextfun_typed:
assumes eqAB: "observationally_equivalent A B"
and conF: "is_contextfun_typed F"
shows "observationally_equivalent (F A) (F B)"

I.7.3 Polynomial Runtime

Asymptotics

(352) definition
"polynomially_bounded (p::nat⇒nat) == ∃ (a::nat) (b::nat). ∀ n. p n ≤ (n^a)+b"

(353) definitionSection 1.10.4
page 39 "negligible (f::nat⇒real) ==

(∀ (c::nat).∃ (N::nat).∀ n≥N. abs (f n) < 1/(real(n^c)))"

(354) lemma negligible_zero: "negligible (λn.0)"Section 1.10.4
page 39

(355) lemma negligible_add:
Section 1.10.4

page 39
"[[negligible f; negligible g]] =⇒ negligible (λn.(f n + g n))"

(356) lemma negligible_pos_le:Section 1.10.4
page 39

assumes "negligible f"
assumes "!!n. g n ≤ f n"
assumes "!!n. 0 ≤ g n"
shows "negligible g"

(357) lemma negligible_mul:
assumes neglf: "negligible f"
assumes neglg: "negligible g"
shows "negligible (λn.(f n * g n))"

142

I.7. Program Relations

Definitions

(358) definition "stepname == ’’step’’"

(359) definition eventstep :: "programterm ⇒ programterm" where
"eventstep p = Application (Abstraction (lift_vars 0 p)) (Event stepname)"

(360) function annotate_eventsteps :: "programterm ⇒ programterm" where Section 1.10.3
page 37"annotate_eventsteps (Function fun p) =

eventstep(Function fun (annotate_eventsteps p))"
| "annotate_eventsteps (PairP p1 p2) =

eventstep(PairP (annotate_eventsteps p1) (annotate_eventsteps p2))"
| "annotate_eventsteps (Abstraction p) =

eventstep(Abstraction (annotate_eventsteps p))"
| "annotate_eventsteps (Application p1 p2) =

eventstep(Application (annotate_eventsteps p1) (annotate_eventsteps p2))"
| "annotate_eventsteps (Ref p) = eventstep(Ref (annotate_eventsteps p))"
| "annotate_eventsteps (Deref p) = eventstep(Deref (annotate_eventsteps p))"
| "annotate_eventsteps (Assign p1 p2) =

eventstep(Assign (annotate_eventsteps p1) (annotate_eventsteps p2))"
| "annotate_eventsteps (Fst p) = eventstep(Fst (annotate_eventsteps p))"
| "annotate_eventsteps (Snd p) = eventstep(Snd (annotate_eventsteps p))"
| "annotate_eventsteps (Var n) = eventstep(Var n)"
| "annotate_eventsteps (Value b) = eventstep(Value b)"
| "annotate_eventsteps (Location l) = eventstep(Location l)"
| "annotate_eventsteps (Event e) = eventstep(Event e)"
| "annotate_eventsteps (EventList) = eventstep(EventList)"
| "annotate_eventsteps (Fold p) = eventstep(Fold (annotate_eventsteps p))"
| "annotate_eventsteps (Unfold p) = eventstep(Unfold (annotate_eventsteps p))"
| "annotate_eventsteps (CaseP p1 p2 p3) = eventstep(CaseP (annotate_eventsteps p1)

(annotate_eventsteps p2) (annotate_eventsteps p3))"
| "annotate_eventsteps (InlP p) = eventstep(InlP (annotate_eventsteps p))"
| "annotate_eventsteps (InrP p) = eventstep(InrP (annotate_eventsteps p))"

(361) lemma annotate_type_preservation:
assumes "Γ|Θ⊢p:T"
shows "Γ|Θ⊢ (annotate_eventsteps p):T"

(362) definition
"ANNOTATE_EVENTSTEPS (p::[[. . . ’e::environment⊢’t::program_type]])
==
(Abs_program (annotate_eventsteps (Rep_program p))
::
[[. . . ’e⊢’t]])"

(363) lemma Rep_program_rule_ANNOTATE_EVENTSTEPS:
fixes p :: "[[. . . ’e::environment⊢’t::program_type]]"
shows "Rep_program (ANNOTATE_EVENTSTEPS p) == annotate_eventsteps (Rep_program p)"
(is "?DEF == ?def")

(364) definition count_eventsteps :: "eventT list ⇒ nat" where
"count_eventsteps l = length (filter (λe. e=stepname) l)"

(365) definition max_eventsteps ::"(programterm×state)measureT ⇒ nat ⇒ bool" where
"max_eventsteps M n = (M {(p,s,e). count_eventsteps e ≤ n} = 1)"

(366) fun unary_parameter :: "nat ⇒ [[. . . ’e::environment⊢bitstring]]" where
"unary_parameter 0 = NIL"

| "unary_parameter (Suc n) = CONS (VALUE True) (unary_parameter n)"

(367) fun programterm_size :: "programterm ⇒ nat" where
"programterm_size (Value v) = 1"

| "programterm_size (PairP p1 p2) = programterm_size p1 + programterm_size p2"
| "programterm_size (InlP p) = programterm_size p"

143

Appendix I. Formalization of Verypto in Isabelle/HOL

| "programterm_size (InrP p) = programterm_size p"
| "programterm_size (Fold p) = programterm_size p"

(368) function subterms :: "programterm ⇒ programterm set" where
"subterms (Var n) = {Var n}"

| "subterms (Value v) = {Value v}"
| "subterms (Function f p) = {Function f p} ∪ subterms p"
| "subterms (PairP p1 p2) = {PairP p1 p2} ∪ subterms p1 ∪ subterms p2"
| "subterms (Abstraction p) = {Abstraction p} ∪ subterms p"
| "subterms (Application p1 p2) = {Application p1 p2} ∪ subterms p1 ∪ subterms p2"
| "subterms (Location i) = {Location i}"
| "subterms (Ref p) = {Ref p} ∪ subterms p"
| "subterms (Deref p) = {Deref p} ∪ subterms p"
| "subterms (Assign p1 p2) = {Assign p1 p2} ∪ subterms p1 ∪ subterms p2"
| "subterms (Event e) = {Event e}"
| "subterms (EventList) = {EventList}"
| "subterms (Fst p) = {Fst p} ∪ subterms p"
| "subterms (Snd p) = {Snd p} ∪ subterms p"
| "subterms (CaseP p1 p2 p3) =

{CaseP p1 p2 p3} ∪ subterms p1 ∪ subterms p2 ∪ subterms p3"
| "subterms (InlP p) = {InlP p} ∪ subterms p"
| "subterms (InrP p) = {InrP p} ∪ subterms p"
| "subterms (Fold p) = {Fold p} ∪ subterms p"
| "subterms (Unfold p) = {Unfold p} ∪ subterms p"

(369) definition subterm_filter :: "programterm set ⇒ programterm set" where
"subterm_filter M = {p. subterms p ∩ M = {}}"

(370) definition "not_kernel == deterministic_kernel (λb. ¬ b)"

(371) definition "and_kernel == deterministic_kernel (λ(b1,b2). b1 ∧ b2)"

(372) definition "or_kernel == deterministic_kernel (λ(b1,b2). b1 ∨ b2)"

(373) definition "cointoss == mk_kernel2 (λu::unit. uniform_distribution {True, False})"

(374) definitionDefinition 1.38
page 37 "non_computational_atoms ==

{Value x| x. x /∈ {bvBool True, bvBool False, bvUnit}} ∪ {EventList} ∪
{Function f t| f t. f /∈ {(kernel2puretermkernel not_kernel),

(kernel2puretermkernel and_kernel),
(kernel2puretermkernel or_kernel),
(kernel2puretermkernel cointoss)}}"

(375) definitionDefinition 1.38
page 37 "is_computational_program p ==

Rep_program p : subterm_filter non_computational_atoms"

(376) definition
"storeless_programs =
subterm_filter {p | p p1 p2. p=Ref p1 ∨ p=Deref p1 ∨ p=Assign p1 p2}"

(377) definitionDefinition 1.38
page 37 "eventless_programs = subterm_filter {p | p e. p=EventList ∨ p=Event e}"

(378) definition
"stateless_programs = storeless_programs ∩ eventless_programs"

(379) definition polynomial_time ::Definition 1.39
page 38 "([[. . . env_nil⊢(’a::embeddable_pure) × (’b::program_type) ⇒ (’c::program_type)]])

⇒ bool" where
"polynomial_time prog ==
(is_computational_program prog) ∧

144

I.8. The CIU Theorem

(∃ p. (polynomially_bounded p) ∧
(∀ (pt::’a) (B::[[. . . env_nil⊢’b]]). Rep_program B : eventless_programs −→
(∀ n. max_eventsteps (kernel_prob_of (nsteps n)

(Rep_program (¨ :ANNOTATE_EVENTSTEPS prog:(^pt, :B:)¨ ::[[. . . env_nil⊢_]]),[],[]))

(p (programterm_size (prog_embedding pt))))))"

(380) definition first_order_polynomial_time :: Section 1.10.3
page 38"([[. . . env_nil⊢(’a::embeddable_pure) ⇒ (’c::program_type)]]) ⇒ bool" where

"first_order_polynomial_time prog ==
polynomial_time (¨λxu. :prog: (#1 xu)¨ :: [[. . . env_nil⊢’a × unit ⇒ ’c]])"

(381) definition Section 1.10.3
page 38"efficient_algorithm f ==

(first_order_polynomial_time f) ∧ (Rep_program f : stateless_programs)"

(382) definition Section 1.10.3
page 38"efficiently_computable f == ∃ f’.

(efficient_algorithm f’) ∧
(observationally_equivalent f’ (VALUE f))"

(383) definition nonuniform_polynomial_time :: Definition 1.40
page 38"(nat ⇒ [[. . . env_nil⊢(’b::program_type) ⇒ (’c::program_type)]]) ⇒ bool" where

"nonuniform_polynomial_time prog ==
(∀ k. is_computational_program (prog k)) ∧
(∃ p. (polynomially_bounded p) ∧
(∀ k (B::[[. . . env_nil⊢’b]]). Rep_program B : eventless_programs −→
(∀ n. max_eventsteps (kernel_prob_of (nsteps n)

(Rep_program (¨ :ANNOTATE_EVENTSTEPS (prog k): :B:¨ ::[[. . . env_nil⊢_]]),[],[]))
(p k))))"

I.7.4 Computational Indistinguishability

(384) definition "computationally_indistinguishable P Q == Definition 1.41
page 39∀ D. nonuniform_polynomial_time D −→ negligible

(λk. |Pr[:D k: (:P k:)] - Pr[:D k: (:Q k:)]|)"

(385) lemma computationally_indistinguishable_refl:
"computationally_indistinguishable P P"

(386) lemma computationally_indistinguishable_sym:
assumes "computationally_indistinguishable P Q"
shows "computationally_indistinguishable Q P"

(387) lemma computationally_indistinguishable_trans:
assumes "computationally_indistinguishable P Q"
assumes "computationally_indistinguishable Q R"
shows "computationally_indistinguishable P R"

(388) lemma computationally_indistinguishable_equiv: Lemma 1.42
page 39"equiv UNIV (split computationally_indistinguishable)"

(389) lemma obseq_imp_comp_indist: Lemma 1.43
page 39assumes "!!n. observationally_equivalent (P n) (Q n)"

shows "computationally_indistinguishable P Q"

I.8 The CIU Theorem

I.8.1 Generalized Program Terms

Definitions

(390) datatype ’a gp_epsinstruction =

145

Appendix I. Formalization of Verypto in Isabelle/HOL

GPESubst nat ’a
| GPELift nat

(391) datatype generalized_programtermT =
GPEpsilon "(generalized_programtermT gp_epsinstruction) list"

| GPHole
| GPVar nat
| GPValue basicvalue
| GPLocation nat
| GPEvent eventT
| GPEventList
| GPFunction "(pureterm, pureterm) submarkov_kernel" "generalized_programtermT"
| GPPairP "generalized_programtermT" "generalized_programtermT"
| GPAbstraction "generalized_programtermT"
| GPApplication "generalized_programtermT" "generalized_programtermT"
| GPRef "generalized_programtermT"
| GPDeref "generalized_programtermT"
| GPAssign "generalized_programtermT" "generalized_programtermT"
| GPFst "generalized_programtermT"
| GPSnd "generalized_programtermT"
| GPFold "generalized_programtermT"
| GPUnfold "generalized_programtermT"
| GPCase "generalized_programtermT" "generalized_programtermT" "generalized_programtermT"
| GPInl "generalized_programtermT"
| GPInr "generalized_programtermT"

(392) types generalized_instantiationT = "(generalized_programtermT gp_epsinstruction)
list"

(393) types generalized_configurationT =
"generalized_programtermT × programterm × generalized_programtermT list × eventT list"

(394) inductive setDefinition 1.63
page 47 generalized_programterm :: "generalized_programtermT set"

and generalized_value :: "generalized_programtermT set"
and generalized_instantiation :: "generalized_instantiationT set" where
— generalized programterms
gp_GPEpsilon: "p : generalized_instantiation =⇒ GPEpsilon p : generalized_programterm"

| gp_GPVar: "GPVar n : generalized_programterm"
| gp_GPValue: "GPValue basicvalue : generalized_programterm"
| gp_GPLocation: "GPLocation n : generalized_programterm"
| gp_GPEvent: "GPEvent eventT : generalized_programterm"
| gp_GPEventList: "GPEventList : generalized_programterm"
| gp_GPFunction: "p : generalized_programterm =⇒

GPFunction f p : generalized_programterm"
| gp_GPPairP: "[[p1 : generalized_programterm; p2 : generalized_programterm]] =⇒

GPPairP p1 p2 : generalized_programterm"
| gp_GPAbstraction: "[[p : generalized_programterm]] =⇒

GPAbstraction p : generalized_programterm"
| gp_GPApplication: "[[p1 : generalized_programterm; p2 : generalized_programterm]] =⇒

GPApplication p1 p2 : generalized_programterm"
| gp_GPRef: "[[p : generalized_programterm]] =⇒ GPRef p : generalized_programterm"
| gp_GPDeref: "[[p : generalized_programterm]] =⇒ GPDeref p : generalized_programterm"
| gp_GPAssign: "[[p1 : generalized_programterm; p2 : generalized_programterm]] =⇒

GPAssign p1 p2 : generalized_programterm"
| gp_GPFst: "[[p : generalized_programterm]] =⇒ GPFst p : generalized_programterm"
| gp_GPSnd: "[[p : generalized_programterm]] =⇒ GPSnd p : generalized_programterm"
| gp_GPFold: "p : generalized_programterm =⇒ GPFold p : generalized_programterm"
| gp_GPUnfold: "p : generalized_programterm =⇒ GPUnfold p : generalized_programterm"
| gp_GPCase: "[[p1 : generalized_programterm; p2 : generalized_programterm;

p3 : generalized_programterm]] =⇒ GPCase p1 p2 p3 : generalized_programterm"
| gp_GPInl: "p : generalized_programterm =⇒ GPInl p : generalized_programterm"
| gp_GPInr: "p : generalized_programterm =⇒ GPInr p : generalized_programterm"

— generalized values
| gv_GPValue: "GPValue v : generalized_value"

146

I.8. The CIU Theorem

| gv_GPPairP: "[[v1 : generalized_value; v2 : generalized_value]] =⇒
GPPairP v1 v2 : generalized_value"

| gv_GPAbstraction: "p : generalized_programterm =⇒
GPAbstraction p : generalized_value"

| gv_GPLocation: "GPLocation n : generalized_value"
| gv_GPVar: "GPVar n : generalized_value"
| gv_GPFold: "v : generalized_value =⇒ GPFold v : generalized_value"
| gv_GPInl: "v : generalized_value =⇒ GPInl v : generalized_value"
| gv_GPInr: "v : generalized_value =⇒ GPInr v : generalized_value"

— generalized instantiations
| ga_nil: "[] : generalized_instantiation"
| ga_subst: "[[v : generalized_value; p : generalized_instantiation]] =⇒

(GPESubst n v)#p : generalized_instantiation"
| ga_lift: "p : generalized_instantiation =⇒ (GPELift n)#p : generalized_instantiation"

(395) inductive set gp_context :: "generalized_programtermT set" Definition 1.64
page 47where

gc_GPHole: "GPHole : gp_context"
| gc_GPEpsilon: "p : generalized_instantiation =⇒ GPEpsilon p : gp_context"
| gc_GPVar: "GPVar n : gp_context"
| gc_GPValue: "GPValue basicvalue : gp_context"
| gc_GPLocation: "GPLocation n : gp_context"
| gc_GPEvent: "GPEvent eventT : gp_context"
| gc_GPEventList: "GPEventList : gp_context"
| gc_GPFunction: "c : gp_context =⇒ GPFunction f c : gp_context"
| gc_GPPairP: "[[c1 : gp_context; c2 : gp_context]] =⇒ GPPairP c1 c2 : gp_context"
| gc_GPAbstraction: "[[c : gp_context]] =⇒ GPAbstraction c : gp_context"
| gc_GPApplication: "[[c1 : gp_context; c2 : gp_context]] =⇒

GPApplication c1 c2 : gp_context"
| gc_GPRef: "[[c : gp_context]] =⇒ GPRef c : gp_context"
| gc_GPDeref: "[[c : gp_context]] =⇒ GPDeref c : gp_context"
| gc_GPAssign: "[[c1 : gp_context; c2 : gp_context]] =⇒ GPAssign c1 c2 : gp_context"
| gc_GPFst: "[[c : gp_context]] =⇒ GPFst c : gp_context"
| gc_GPSnd: "[[c : gp_context]] =⇒ GPSnd c : gp_context"
| gc_GPFold: "c : gp_context =⇒ GPFold c : gp_context"
| gc_GPUnfold: "c : gp_context =⇒ GPUnfold c : gp_context"
| gc_GPCase: "[[c1 : gp_context; c2 : gp_context; c3 : gp_context]] =⇒

GPCase c1 c2 c3 : gp_context"
| gc_GPInl: "c : gp_context =⇒ GPInl c : gp_context"
| gc_GPInr: "c : gp_context =⇒ GPInr c : gp_context"

(396) inductive set generalized_evalcontext :: "generalized_programtermT set" Definition 1.65
page 48where

ge_GPHole: "GPHole ∈ generalized_evalcontext"
| ge_GPFunction: "[[e ∈ generalized_evalcontext]] =⇒

(GPFunction f e) ∈ generalized_evalcontext"
| ge_GPPairPl: "[[e ∈ generalized_evalcontext; p : generalized_programterm]] =⇒

(GPPairP e p) ∈ generalized_evalcontext"
| ge_GPPairPr: "[[e ∈ generalized_evalcontext; v : generalized_value]] =⇒

(GPPairP v e) ∈ generalized_evalcontext"
| ge_GPApplicationl: "[[e ∈ generalized_evalcontext; p : generalized_programterm]] =⇒

(GPApplication e p) ∈ generalized_evalcontext"
| ge_GPApplicationr: "[[e ∈ generalized_evalcontext; v : generalized_value]] =⇒

(GPApplication v e) ∈ generalized_evalcontext"
| ge_GPRef: "[[e ∈ generalized_evalcontext]] =⇒ (GPRef e) ∈ generalized_evalcontext"
| ge_GPDeref: "[[e ∈ generalized_evalcontext]] =⇒ (GPDeref e) ∈ generalized_evalcontext"
| ge_GPAssignl: "[[e ∈ generalized_evalcontext; p : generalized_programterm]] =⇒

(GPAssign e p) ∈ generalized_evalcontext"
| ge_GPAssignr: "[[e ∈ generalized_evalcontext; v : generalized_value]] =⇒

(GPAssign v e) ∈ generalized_evalcontext"
| ge_GPFst: "[[e ∈ generalized_evalcontext]] =⇒ (GPFst e) ∈ generalized_evalcontext"
| ge_GPSnd: "[[e ∈ generalized_evalcontext]] =⇒ (GPSnd e) ∈ generalized_evalcontext"
| ge_GPFold: "e : generalized_evalcontext =⇒ (GPFold e) : generalized_evalcontext"
| ge_GPUnfold: "e : generalized_evalcontext =⇒ (GPUnfold e) : generalized_evalcontext"
| ge_GPCasel: "[[e ∈ generalized_evalcontext; p1 : generalized_programterm;

147

Appendix I. Formalization of Verypto in Isabelle/HOL

p2 : generalized_programterm]] =⇒ (GPCase e p1 p2) ∈ generalized_evalcontext"
| ge_GPCasem: "[[e ∈ generalized_evalcontext; v : generalized_value;

p : generalized_programterm]] =⇒ (GPCase v e p) ∈ generalized_evalcontext"
| ge_GPCaser: "[[e ∈ generalized_evalcontext; v1 : generalized_value;

v2 : generalized_value]] =⇒ GPCase v1 v2 e ∈ generalized_evalcontext"
| ge_GPInl: "e : generalized_evalcontext =⇒ (GPInl e) : generalized_evalcontext"
| ge_GPInr: "e : generalized_evalcontext =⇒ (GPInr e) : generalized_evalcontext"

(397) inductive set generalized_redex :: "generalized_programtermT set"Definition 1.66
page 48 where

gr_GPFunction: "[[v : generalized_value]] =⇒ GPFunction f v ∈ generalized_redex"
| gr_GPApplication: "[[v1 : generalized_value; v2 : generalized_value]] =⇒

GPApplication v1 v2 ∈ generalized_redex"
| gr_GPRef: "[[v : generalized_value]] =⇒ GPRef v : generalized_redex"
| gr_GPDeref: "[[v : generalized_value]] =⇒ GPDeref v : generalized_redex"
| gr_GPAssign: "[[v1 : generalized_value; v2 : generalized_value]] =⇒

GPAssign v1 v2 : generalized_redex"
| gr_GPEvent: "GPEvent e : generalized_redex"
| gr_GPEventList: "GPEventList : generalized_redex"
| gr_GPFst: "[[v : generalized_value]] =⇒ GPFst v : generalized_redex"
| gr_GPSnd: "[[v : generalized_value]] =⇒ GPSnd v : generalized_redex"
| gr_GPUnfold: "v : generalized_value =⇒ GPUnfold v : generalized_redex"
| gr_GPCase: "[[v : generalized_value; p1 : generalized_value; p2 : generalized_value]]

=⇒ GPCase v p1 p2 : generalized_redex"

(398) inductive set gp_epsilon :: "generalized_programtermT set"
where
"a : generalized_instantiation =⇒ GPEpsilon a : gp_epsilon"

Sigma Algebras

(399) inductive set gp_rects :: "generalized_programtermT set set"
and gpa_rects :: "generalized_instantiationT set set"
where
— gpa-rects
gpa_rects_nil: "{[]} : gpa_rects"

| gpa_rects_scons: "[[P : gp_rects; A : gpa_rects]] =⇒
{(GPESubst n p)#a | p a n. p:P ∧ a:A ∧ n:N} : gpa_rects"

| gpa_rects_lcons: "[[A : gpa_rects]] =⇒ {(GPELift n)#a | a n. a:A ∧ n:N} : gpa_rects"
— gp-rects

| gp_rects_Epsilon: "A : gpa_rects =⇒ GPEpsilon ‘ A : gp_rects"
| gp_rects_Hole: "{GPHole} ∈ gp_rects"
| gp_rects_Var: "{GPVar n} ∈ gp_rects"
| gp_rects_Value: "V ∈ Σ =⇒ GPValue‘V ∈ gp_rects"
| gp_rects_Function: "[[A ∈ gp_rects]] =⇒ {GPFunction f a|a f. a∈A ∧ f∈F} ∈ gp_rects"
| gp_rects_PairP: "[[A ∈ gp_rects; B ∈ gp_rects]] =⇒

{GPPairP a b|a b. a∈A∧b∈B} ∈ gp_rects"
| gp_rects_Abstraction: "A ∈ gp_rects =⇒ {GPAbstraction a|a. a∈A} ∈ gp_rects"
| gp_rects_Application: "[[A ∈ gp_rects; B ∈ gp_rects]] =⇒

{GPApplication a b|a b. a∈A ∧ b∈B} ∈ gp_rects"
| gp_rects_Location: "{GPLocation n} ∈ gp_rects"
| gp_rects_Ref: "A ∈ gp_rects =⇒ {GPRef a|a. a∈A} ∈ gp_rects"
| gp_rects_Deref: "A ∈ gp_rects =⇒ {GPDeref a|a. a∈A} ∈ gp_rects"
| gp_rects_Assign: "[[A ∈ gp_rects; B ∈ gp_rects]] =⇒

{GPAssign a b|a b. a∈A ∧ b∈B} ∈ gp_rects"
| gp_rects_Event: "{GPEvent ev} ∈ gp_rects"
| gp_rects_EventList: "{GPEventList} ∈ gp_rects"
| gp_rects_Fst: "A ∈ gp_rects =⇒ {GPFst a|a. a∈A} ∈ gp_rects"
| gp_rects_Snd: "A ∈ gp_rects =⇒ {GPSnd a|a. a∈A} ∈ gp_rects"
| gp_rects_Fold: "A ∈ gp_rects =⇒ {GPFold a|a. a∈A} ∈ gp_rects"
| gp_rects_Unfold: "A ∈ gp_rects =⇒ {GPUnfold a|a. a∈A} ∈ gp_rects"
| gp_rects_CaseP: "[[A ∈ gp_rects; B ∈ gp_rects; C ∈ gp_rects]] =⇒

{GPCase a b c |a b c. a∈A ∧ b∈B ∧ c∈C} ∈ gp_rects"

148

I.8. The CIU Theorem

| gp_rects_InlP: "A ∈ gp_rects =⇒ {GPInl a|a. a∈A} ∈ gp_rects"
| gp_rects_InrP: "A ∈ gp_rects =⇒ {GPInr a|a. a∈A} ∈ gp_rects"

instantiation "generalized_programtermT" :: measurable_space
(400) definition "Σ = sigma gp_rects"

(401) inductive set gp_epsinstr_rects ::
"(’a::measurable_space) gp_epsinstruction set set" where
gp_epsinstr_rects_subst: "[[A∈Σ]]=⇒{GPESubst n a|n a. n∈N∧a∈A}∈gp_epsinstr_rects"

| gp_epsinstr_rects_lift: "{GPELift n|n. n∈N} ∈ gp_epsinstr_rects"

instantiation "gp_epsinstruction" :: (measurable_space)measurable_space
(402) definition "Σ = sigma gp_epsinstr_rects"

Function Definitions

(403) function insert_programterm :: "[generalized_programtermT, context] ⇒ context" Definition 1.68
page 48where

"insert_programterm (GPEpsilon []) p = p"
| "insert_programterm (GPEpsilon ((GPESubst k q)#l)) p =

substitute’_context k (insert_programterm (GPEpsilon l) p) (insert_programterm q p)"
| "insert_programterm (GPEpsilon ((GPELift k)#l)) p =

lift_vars_context k (insert_programterm (GPEpsilon l) p)"
| "insert_programterm GPHole p = CHole"
| "insert_programterm (GPFunction f c1) p = CFunction f (insert_programterm c1 p)"
| "insert_programterm (GPPairP c1 c2) p =

CPairP (insert_programterm c1 p) (insert_programterm c2 p)"
| "insert_programterm (GPAbstraction c) p = CAbstraction (insert_programterm c p)"
| "insert_programterm (GPApplication c1 c2) p =

CApplication (insert_programterm c1 p) (insert_programterm c2 p)"
| "insert_programterm (GPRef c) p = CRef (insert_programterm c p)"
| "insert_programterm (GPDeref c) p = CDeref (insert_programterm c p)"
| "insert_programterm (GPAssign c1 c2) p =

CAssign (insert_programterm c1 p) (insert_programterm c2 p)"
| "insert_programterm (GPFst c) p = CFst (insert_programterm c p)"
| "insert_programterm (GPSnd c) p = CSnd (insert_programterm c p)"
| "insert_programterm (GPVar v) p = CVar v"
| "insert_programterm (GPValue v) p = CValue v"
| "insert_programterm (GPLocation l) p = CLocation l"
| "insert_programterm (GPEvent e) p = CEvent e"
| "insert_programterm GPEventList p = CEventList"
| "insert_programterm (GPFold c) p = CFold (insert_programterm c p)"
| "insert_programterm (GPUnfold c) p = CUnfold (insert_programterm c p)"
| "insert_programterm (GPCase c1 c2 c3) p =

CCase (insert_programterm c1 p) (insert_programterm c2 p) (insert_programterm c3 p)"
| "insert_programterm (GPInl c) p = CInl (insert_programterm c p)"
| "insert_programterm (GPInr c) p = CInr (insert_programterm c p)"

(404) definition insert_programterm’ ::
"[generalized_programtermT, programterm] ⇒ programterm" where
"insert_programterm’ P A =
context_to_programterm (insert_programterm P (programterm_to_context A))"

(405) function gp_lift_vars :: Section 1.11.5
page 48"nat ⇒ generalized_programtermT ⇒ generalized_programtermT" where

"gp_lift_vars k (GPEpsilon l) = GPEpsilon ((GPELift k)#l)"
| "gp_lift_vars k (GPVar i) = (if i < k then GPVar i else GPVar (Suc i))"
| "gp_lift_vars k (GPHole) = GPHole"
| "gp_lift_vars k (GPAbstraction p)= GPAbstraction (gp_lift_vars (Suc k) p)"
| "gp_lift_vars k (GPApplication p q) =

GPApplication (gp_lift_vars k p) (gp_lift_vars k q)"
| "gp_lift_vars k (GPValue v) = GPValue v"
| "gp_lift_vars k (GPFunction f p) = GPFunction f (gp_lift_vars k p)"

149

Appendix I. Formalization of Verypto in Isabelle/HOL

| "gp_lift_vars k (GPPairP p1 p2) = GPPairP (gp_lift_vars k p1) (gp_lift_vars k p2)"
| "gp_lift_vars k (GPLocation n) = GPLocation n"
| "gp_lift_vars k (GPRef p) = GPRef (gp_lift_vars k p)"
| "gp_lift_vars k (GPDeref p) = GPDeref (gp_lift_vars k p)"
| "gp_lift_vars k (GPAssign p1 p2) = GPAssign (gp_lift_vars k p1) (gp_lift_vars k p2)"
| "gp_lift_vars k (GPEvent e) = GPEvent e"
| "gp_lift_vars k GPEventList = GPEventList"
| "gp_lift_vars k (GPFst p) = GPFst (gp_lift_vars k p)"
| "gp_lift_vars k (GPSnd p) = GPSnd (gp_lift_vars k p)"
| "gp_lift_vars k (GPFold p) = GPFold (gp_lift_vars k p)"
| "gp_lift_vars k (GPUnfold p) = GPUnfold (gp_lift_vars k p)"
| "gp_lift_vars k (GPCase p1 p2 p3)=

GPCase (gp_lift_vars k p1) (gp_lift_vars k p2) (gp_lift_vars k p3)"
| "gp_lift_vars k (GPInl p) = GPInl (gp_lift_vars k p)"
| "gp_lift_vars k (GPInr p) = GPInr (gp_lift_vars k p)"

(406) function gp_substitute’ ::Section 1.11.5
page 48 "[nat,generalized_programtermT,generalized_programtermT] ⇒ generalized_programtermT"

where
"gp_substitute’ k (GPEpsilon l) p = GPEpsilon ((GPESubst k p)#l)"

| "gp_substitute’ k (GPVar i) p =
(if k < i then GPVar (i - 1) else if i=k then p else GPVar i)"

| "gp_substitute’ k (GPAbstraction p1) p =
GPAbstraction (gp_substitute’ (Suc k) p1 (gp_lift_vars 0 p))"

| "gp_substitute’ k GPHole p = GPHole"
| "gp_substitute’ k (GPApplication s t) p =

GPApplication (gp_substitute’ k s p) (gp_substitute’ k t p)"
| "gp_substitute’ k (GPValue v) p = GPValue v"
| "gp_substitute’ k (GPFunction f p1) p = GPFunction f (gp_substitute’ k p1 p)"
| "gp_substitute’ k (GPPairP p1 p2) p =

GPPairP (gp_substitute’ k p1 p) (gp_substitute’ k p2 p)"
| "gp_substitute’ k (GPLocation n) p = GPLocation n"
| "gp_substitute’ k (GPRef p1) p = GPRef (gp_substitute’ k p1 p)"
| "gp_substitute’ k (GPDeref p1) p = GPDeref (gp_substitute’ k p1 p)"
| "gp_substitute’ k (GPAssign p1 p2) p =

GPAssign (gp_substitute’ k p1 p) (gp_substitute’ k p2 p)"
| "gp_substitute’ k (GPEvent e) p = GPEvent e"
| "gp_substitute’ k GPEventList p = GPEventList"
| "gp_substitute’ k (GPFst p1) p = GPFst (gp_substitute’ k p1 p)"
| "gp_substitute’ k (GPSnd p1) p = GPSnd (gp_substitute’ k p1 p)"
| "gp_substitute’ k (GPFold p1) p = GPFold (gp_substitute’ k p1 p)"
| "gp_substitute’ k (GPUnfold p1) p = GPUnfold (gp_substitute’ k p1 p)"
| "gp_substitute’ k (GPCase p1 p2 p3) p =

GPCase (gp_substitute’ k p1 p) (gp_substitute’ k p2 p) (gp_substitute’ k p3 p)"
| "gp_substitute’ k (GPInl p1) p = GPInl (gp_substitute’ k p1 p)"
| "gp_substitute’ k (GPInr p1) p = GPInr (gp_substitute’ k p1 p)"

(407) function apply_instantiation ::Section 1.11.5
page 49 "[generalized_programtermT,generalized_instantiationT]⇒generalized_programtermT" where

"apply_instantiation A [] = A"
| "apply_instantiation A (GPESubst k P#a) = gp_substitute’ k (apply_instantiation A a)
P"
| "apply_instantiation A (GPELift k#a) = gp_lift_vars k (apply_instantiation A a)"

(408) function gp_concatcontext ::
"[generalized_programtermT,generalized_programtermT]⇒generalized_programtermT" where
"gp_concatcontext GPHole p = p"

| "gp_concatcontext (GPEpsilon a) p = GPEpsilon a"
| "gp_concatcontext (GPFunction f c1) p = GPFunction f (gp_concatcontext c1 p)"
| "gp_concatcontext (GPPairP c1 c2) p =

GPPairP (gp_concatcontext c1 p) (gp_concatcontext c2 p)"
| "gp_concatcontext (GPAbstraction c) p = GPAbstraction (gp_concatcontext c p)"
| "gp_concatcontext (GPApplication c1 c2) p =

GPApplication (gp_concatcontext c1 p) (gp_concatcontext c2 p)"

150

I.8. The CIU Theorem

| "gp_concatcontext (GPRef c) p = GPRef (gp_concatcontext c p)"
| "gp_concatcontext (GPDeref c) p = GPDeref (gp_concatcontext c p)"
| "gp_concatcontext (GPAssign c1 c2) p =

GPAssign (gp_concatcontext c1 p) (gp_concatcontext c2 p)"
| "gp_concatcontext (GPFst c) p = GPFst (gp_concatcontext c p)"
| "gp_concatcontext (GPSnd c) p = GPSnd (gp_concatcontext c p)"
| "gp_concatcontext (GPVar v) p = GPVar v"
| "gp_concatcontext (GPValue v) p = GPValue v"
| "gp_concatcontext (GPLocation l) p = GPLocation l"
| "gp_concatcontext (GPEvent e) p = GPEvent e"
| "gp_concatcontext GPEventList p = GPEventList"
| "gp_concatcontext (GPFold c) p = GPFold (gp_concatcontext c p)"
| "gp_concatcontext (GPUnfold c) p = GPUnfold (gp_concatcontext c p)"
| "gp_concatcontext (GPCase c1 c2 c3) p =

GPCase (gp_concatcontext c1 p) (gp_concatcontext c2 p) (gp_concatcontext c3 p)"
| "gp_concatcontext (GPInl c) p = GPInl (gp_concatcontext c p)"
| "gp_concatcontext (GPInr c) p = GPInr (gp_concatcontext c p)"

(409) function unprotected_epsilons :: "generalized_programtermT ⇒ nat" Definition 1.72
page 51where

"unprotected_epsilons (GPEpsilon a) = 1"
| "unprotected_epsilons GPHole = 0"
| "unprotected_epsilons (GPVar n) = 0"
| "unprotected_epsilons (GPValue v) = 0"
| "unprotected_epsilons (GPLocation l) = 0"
| "unprotected_epsilons (GPEvent e) = 0"
| "unprotected_epsilons GPEventList = 0"
| "unprotected_epsilons (GPFunction f p) = unprotected_epsilons p"
| "unprotected_epsilons (GPPairP p q) =

unprotected_epsilons p + unprotected_epsilons q"
| "unprotected_epsilons (GPAbstraction P)= 0" — We do not descend into abstractions
| "unprotected_epsilons (GPApplication p q) =

unprotected_epsilons p + unprotected_epsilons q"
| "unprotected_epsilons (GPRef p) = unprotected_epsilons p"
| "unprotected_epsilons (GPDeref p) = unprotected_epsilons p"
| "unprotected_epsilons (GPAssign p q) =

unprotected_epsilons p + unprotected_epsilons q"
| "unprotected_epsilons (GPFst p) = unprotected_epsilons p"
| "unprotected_epsilons (GPSnd p) = unprotected_epsilons p"
| "unprotected_epsilons (GPFold p) = unprotected_epsilons p"
| "unprotected_epsilons (GPUnfold p) = unprotected_epsilons p"
| "unprotected_epsilons (GPCase p1 p2 p3)=

unprotected_epsilons p1 + unprotected_epsilons p2 + unprotected_epsilons p3"
| "unprotected_epsilons (GPInl p) = unprotected_epsilons p"
| "unprotected_epsilons (GPInr p) = unprotected_epsilons p"

(410) lemma gp_lift_vars_insert_programterm: Lemma 1.69
page 48"lift_vars_context k (insert_programterm p a) =

insert_programterm (gp_lift_vars k p) a"

(411) lemma gp_substitute’_insert_programterm: Lemma 1.69
page 48"substitute’_context k (insert_programterm p a) (insert_programterm q a) =

insert_programterm (gp_substitute’ k p q) a"

(412) lemma unprotected_epsilons_value: Section 1.11.5
page 55assumes "V : generalized_value"

shows "unprotected_epsilons V = 0"

(413) lemma unprotected_epsilons_decrease:
assumes v: "unprotected_epsilons V = 0"
and e: "E : generalized_evalcontext"
shows "unprotected_epsilons (gp_concatcontext E (GPEpsilon p)) >

unprotected_epsilons (gp_concatcontext E V)"

(414) lemma gp_evaluationcontext_redex_split: Lemma 1.74
page 51

151

Appendix I. Formalization of Verypto in Isabelle/HOL

assumes "p : generalized_programterm"
assumes "p /∈ generalized_value"
shows "∃ E∈generalized_evalcontext.

∃ R∈(generalized_redex ∪ gp_epsilon).
p = gp_concatcontext E R"

(415) lemma gp_evaluationcontext_redex_split_unique’:
assumes conceq:"gp_concatcontext E1 R1 = gp_concatcontext E2 R2"
assumes E1eval:"E1∈generalized_evalcontext"
assumes E2eval:"E2∈generalized_evalcontext"
assumes R1red: "R1∈generalized_redex∪gp_epsilon"
assumes R2red: "R2∈generalized_redex∪gp_epsilon"
shows "E1 = E2" and "R1 = R2"

I.8.2 The Instantiation Operator

(416) definitionDefinition 1.51
page 43 "substituteLr n == (λp vl. foldr (λv p. substitute’ n p v) vl p)"

(417) function substituting_context :: "programterm list ⇒ context" whereSection 1.11.4
page 44 "substituting_context [] = CHole"

| "substituting_context (v#vs) =
CApplication (CAbstraction (substituting_context vs)) (programterm_to_context v)"

(418) lemma substituteLr_preserves_value:Section 1.11.4
page 43 assumes "is_value v"

assumes "are_values vl"
shows "is_value (substituteLr 0 v vl)"

(419) lemma lift_substituteLr_le:
assumes "m≤n"
shows "lift_vars m (substituteLr n p vl)

= substituteLr (Suc n) (lift_vars m p) (map (lift_vars m) vl)"

(420) lemma substituteLr_commute:
shows "substituteLr k p (vl@[v])

= substitute’ k (substituteLr (Suc k) p (map (lift_vars k) vl))
(substituteLr k v vl)"

(421) lemma substituteLr_commute_ge:
assumes "m≥n"
assumes "freevars q = {}"
assumes "∀ x∈set a. freevars x = {}"
shows "substitute’ m (substituteLr n p a) q

= substituteLr n (substitute’ (m + length a) p q) a"

(422) lemma substituteLr_beta:Lemma 1.52
page 43 assumes "is_value v"

assumes "are_values vl"
shows "(substituteLr 0 (Application (Abstraction p) v) vl,state)

 apply_kernel unitkernel (substituteLr 0 p (vl@[v]), state)"

(423) lemma substituteLr_substitute_closed:Lemma 1.53
page 44 assumes "freevars (substituteLr l P a) = {}"

shows "substituteLr l (substitute’ u Q (substituteLr l P a)) a
= substituteLr l (substitute’ u Q P) a"

(424) lemma denotation_substituting_context_substituteLr:Section 1.11.4
page 44 assumes "set as ⊆ values"

shows "apply_kernel denotation (applycontext (substituting_context as) P, σ, η)
= apply_kernel denotation (substituteLr 0 P as, σ, η)"

(425) lemma freevars_substituting_context:
assumes "∀ v∈set a. freevars v ={}"

152

I.8. The CIU Theorem

assumes "∀ x∈freevars p. x < length a"
shows "freevars (applycontext (substituting_context a) p) = {}"

(426) lemma fullyclosed_substituting_context:
assumes "∀ v∈set a. freevars v ={}"
assumes "∀ v∈set a. (∀ n∈(locations_of v). n<length s)"
assumes "∀ x∈freevars p. x < length a"
assumes "∀ p’∈set s. freevars p’ = {}"
assumes "storageclosed (p, s, e)"
shows "fullyclosed (applycontext (substituting_context a) p, s, e)"

(427) lemma freevars_substituteLr:
assumes "∀ n∈freevars p. n<length a"
assumes "∀ v∈set a. freevars v ={}"
shows "freevars (substituteLr 0 p a) = {}"

(428) lemma ex_closed_substitutionlist: Lemma 1.54
page 44assumes "fullyclosed (substituteLr 0 P a, σ, η)"

assumes "fullyclosed (substituteLr 0 Q a, σ, η)"
shows "∃ vl. substituteLr 0 P vl = substituteLr 0 P a

∧ substituteLr 0 Q vl = substituteLr 0 Q a
∧ length vl = length a
∧ (∀ v∈set vl. freevars v ={} ∧ (∀ l∈locations_of v. l<length σ))
∧ (set a ⊆ values −→ set vl ⊆ values)"

(429) lemma ex_closed_substituting_context: Lemma 1.55
page 45assumes aval: "set a ⊆ values"

assumes fcPa: "fullyclosed (substituteLr 0 P a, σ, η)"
assumes fcQa: "fullyclosed (substituteLr 0 Q a, σ, η)"
shows "∃ vl. set vl ⊆ values

∧ substituteLr 0 P a = substituteLr 0 P vl
∧ substituteLr 0 Q a = substituteLr 0 Q vl
∧ length a = length vl
∧ (∀ v∈set vl. freevars v ={}
∧ (∀ l∈locations_of v. l<length σ))

∧ fullyclosed (applycontext (substituting_context vl) P, σ, η)
∧ fullyclosed (applycontext (substituting_context vl) Q, σ, η)
∧ apply_kernel denotation (substituteLr 0 P a, σ, η)
=apply_kernel denotation (applycontext (substituting_context vl) P,σ,η)
∧ apply_kernel denotation (substituteLr 0 Q a, σ, η)
=apply_kernel denotation (applycontext (substituting_context vl) Q,σ,η)"

Generalized Instantiations and Substitution Lists

(430) function programterm_instantiation :: Section 1.11.5
page 49"generalized_instantiationT ⇒ bool" where

"programterm_instantiation [] = True"
| "programterm_instantiation (GPELift k # a) = programterm_instantiation a"
| "programterm_instantiation (GPESubst k P # a) =

((∃ p. P=programterm_to_gp p) ∧ programterm_instantiation a)"

(431) function closed_instantiation :: "generalized_instantiationT ⇒ bool" where Section 1.11.5
page 49"closed_instantiation [] = True"

| "closed_instantiation (GPELift k # a) = closed_instantiation a"
| "closed_instantiation (GPESubst k P # a) =

((∃ p. freevars p = {} ∧ P=programterm_to_gp p) ∧ closed_instantiation a)"

(432) function normalized_instantiation :: "generalized_instantiationT ⇒ bool" where
"normalized_instantiation [] = True"

| "normalized_instantiation (GPELift k # a) = normalized_instantiation a"
| "normalized_instantiation [GPESubst k p] = True"
| "normalized_instantiation (GPESubst l p # GPELift k # a) = False"
| "normalized_instantiation (GPESubst l p # GPESubst k q # a) =

(if l<k then False else normalized_instantiation (GPESubst k q # a))"

153

Appendix I. Formalization of Verypto in Isabelle/HOL

(433) lemma normalized_instantiation_def2:Section 1.11.5
page 50 "normalized_instantiation a =

(∀ a1 l p k q aa. (a 6= a1 @ GPESubst l p # GPELift k # aa)
∧ (a 6= a1 @ GPESubst l p # GPESubst (l + Suc k) q # aa))"

(434) lemma insert_programterm_instantiation_apply_instantiation:Section 1.11.5
page 49 assumes "a ∈ generalized_instantiation"

assumes "programterm_instantiation a"
shows "programterm_to_gp (insert_programterm’ (GPEpsilon a) A)

= apply_instantiation (programterm_to_gp A) a"

(435) definition list_to_gp_instantiation ::Section 1.11.5
page 49 "programterm list ⇒ generalized_instantiationT" where

"list_to_gp_instantiation l = map (λv. GPESubst 0 (programterm_to_gp v)) l"

(436) lemma list_to_gp_instantiation_substituteLr:Section 1.11.5
page 49 assumes "set l ⊆ values"

shows "apply_instantiation (programterm_to_gp p) (list_to_gp_instantiation l)
= programterm_to_gp (substituteLr 0 p l)"

(437) function map_insert_programterm’ ::Definition 1.68
page 48 "programterm ⇒ generalized_instantiationT ⇒ generalized_instantiationT" where

"map_insert_programterm’ A [] = []"
| "map_insert_programterm’ A (GPELift k # a) =

(GPELift k # map_insert_programterm’ A a)"
| "map_insert_programterm’ A (GPESubst k p # a) =

(GPESubst k (programterm_to_gp (insert_programterm’ p A)) # map_insert_programterm’
A a)"

(438) function substitute_instantiation ::Section 1.11.5
page 49 "[nat,generalized_instantiationT,generalized_programtermT]⇒generalized_instantiationT"

where
"substitute_instantiation m [] A = [GPESubst m A]"

| "substitute_instantiation m (GPESubst n Q # a) A =
(if n≤m then GPESubst n (gp_substitute’ m Q A) # substitute_instantiation (Suc m) a

A
else GPESubst (n- 1)(gp_substitute’ m Q A) # substitute_instantiation m a A)"

| "substitute_instantiation m (GPELift n # a) A =
(if n=m then a else
if n<m then GPELift n # substitute_instantiation (m- 1) a A

else GPELift (n- 1) # substitute_instantiation m a A)"

(439) function open_prefix_length :: "generalized_instantiationT ⇒ nat" where
"open_prefix_length [] = 0"

| "open_prefix_length (i # a) = (if closed_instantiation (i # a) then 0
else Suc (open_prefix_length a))"

(440) lemma open_prefix_length_closed_instantiation:
assumes "closed_instantiation a"
shows "open_prefix_length a = 0"

(441) lemma open_prefix_length_substitute_instantiation_less:
assumes p_cl: "freevars p = {}"
assumes "a ∈ generalized_instantiation"
shows "open_prefix_length (substitute_instantiation k a (programterm_to_gp p))

< Suc (open_prefix_length a)"

(442) function close_instantiation ::Section 1.11.5
page 50 "[programterm,programterm,generalized_instantiationT]⇒generalized_instantiationT"

where
"close_instantiation A B [] = []"

| "close_instantiation A B (GPELift k # a) = close_instantiation A B a"
| "close_instantiation A B (GPESubst k P # a) =

(if closed_instantiation (GPESubst k P # a)
∨ (GPESubst k P # a) /∈ generalized_instantiation

154

I.8. The CIU Theorem

∨ ¬ programterm_instantiation (GPESubst k P # a)
∨ ¬ freevars (insert_programterm’ (GPEpsilon (GPESubst k P # a)) A) = {}
∨ ¬ freevars (insert_programterm’ (GPEpsilon (GPESubst k P # a)) B) = {}

then (GPESubst k P # a) else
if k ∈ freevars (insert_programterm’ (GPEpsilon a) A)
∨ k ∈ freevars (insert_programterm’ (GPEpsilon a) B)

then close_instantiation A B (substitute_instantiation k a P)
else close_instantiation A B a)"

(443) function insert_epsinstruction :: "generalized_instantiationT Section 1.11.5
page 50⇒ generalized_programtermT gp_epsinstruction ⇒ generalized_instantiationT" where

"insert_epsinstruction [] eps = [eps]"
| "insert_epsinstruction a (GPELift k) = GPELift k # a"
| "insert_epsinstruction (GPELift m # a) (GPESubst n p) =

(if m<n then GPELift m # (insert_epsinstruction a (GPESubst (n - 1) p))
else if m>n then GPELift (m - 1) # (insert_epsinstruction a (GPESubst n p))
else a)"

| "insert_epsinstruction (GPESubst m q # a) (GPESubst n p) =
(if n≥m then GPESubst n p # GPESubst m q # a
else GPESubst (m - 1) q # insert_epsinstruction a (GPESubst n p))"

(444) definition Section 1.11.5
page 50"normalize_instantiation a = foldr (λeps acc. insert_epsinstruction acc eps) a []"

(445) function normalized_instantiation_to_list :: Section 1.11.5
page 50"generalized_instantiationT ⇒ programterm list" where

"normalized_instantiation_to_list [] = []"
| "normalized_instantiation_to_list (GPELift k # a) =

normalized_instantiation_to_list a"
| "normalized_instantiation_to_list [GPESubst k P] =

(THE p. P=programterm_to_gp p) # replicate k value_unit "
| "normalized_instantiation_to_list (GPESubst k P # GPESubst l Q # a) =

(THE p. P=programterm_to_gp p)
replicate (k-l) value_unit
@ normalized_instantiation_to_list (GPESubst l Q # a)"

| "normalized_instantiation_to_list (GPESubst k P # GPELift l # a) = undefined"

(446) lemma map_insert_programterm’_generalized_instantiation:
assumes aass: "a ∈ generalized_instantiation"
shows "map_insert_programterm’ A a ∈ generalized_instantiation"

(447) lemma programterm_instantiation_map_insert_programterm’: Section 1.11.5
page 49"programterm_instantiation (map_insert_programterm’ A a)"

(448) lemma insert_programterm’_map_insert_programterm’:
assumes aass: "a ∈ generalized_instantiation"
shows "insert_programterm’ (GPEpsilon a) A
= insert_programterm’ (GPEpsilon (map_insert_programterm’ A a)) A"

(449) lemma apply_instantiation_map_insert_programterm’: Section 1.11.5
page 49assumes aass: "a ∈ generalized_instantiation"

shows "programterm_to_gp (insert_programterm’ (GPEpsilon a) A)
=apply_instantiation (programterm_to_gp A) (map_insert_programterm’ A a)"

(450) lemma insert_programterm’_substitute_instantiation:
assumes fv_p: "freevars p = {}"
assumes valp: "p ∈ values"
assumes "a ∈ generalized_instantiation"
assumes "programterm_instantiation a"
shows "insert_programterm’(GPEpsilon(GPESubst k (programterm_to_gp p) # a))A
= insert_programterm’(GPEpsilon(substitute_instantiation k a (programterm_to_gp p)))A"

(451) lemma insert_programterm’_close_instantiation: Section 1.11.5
page 50assumes "a∈generalized_instantiation"

155

Appendix I. Formalization of Verypto in Isabelle/HOL

assumes "programterm_instantiation a"
assumes "freevars (insert_programterm’ (GPEpsilon a) A) = {}"
assumes "freevars (insert_programterm’ (GPEpsilon a) B) = {}"
shows "insert_programterm’ (GPEpsilon a) A

= insert_programterm’ (GPEpsilon (close_instantiation A B a)) A"
and "insert_programterm’ (GPEpsilon a) B

= insert_programterm’ (GPEpsilon (close_instantiation A B a)) B"

(452) lemma close_instantiation_is_instantiation:
assumes "a∈generalized_instantiation"
assumes "programterm_instantiation a"
assumes "freevars (insert_programterm’ (GPEpsilon a) A) = {}"
shows "close_instantiation A B a ∈ generalized_instantiation"

(453) lemma close_instantiation_is_closed:Section 1.11.5
page 50 assumes "a∈generalized_instantiation"

assumes "programterm_instantiation a"
assumes "freevars (insert_programterm’ (GPEpsilon a) A) = {}"
assumes "freevars (insert_programterm’ (GPEpsilon a) B) = {}"
shows "closed_instantiation (close_instantiation A B a)"

(454) lemma apply_instantiation_insert_epsinstruction:
assumes "closed_instantiation (eps#a)"
shows "apply_instantiation (programterm_to_gp p) (insert_epsinstruction a eps)

= apply_instantiation (programterm_to_gp p) (eps#a)"

(455) lemma apply_instantiation_normalize_instantiation:Section 1.11.5
page 50 assumes "closed_instantiation a"

shows "apply_instantiation (programterm_to_gp p) (normalize_instantiation a)
= apply_instantiation (programterm_to_gp p) a"

(456) lemma normalized_instantiation_insert_epsinstruction:
assumes "normalized_instantiation a"
shows "normalized_instantiation (insert_epsinstruction a eps)"

(457) lemma normalized_instantiation_normalize_instantiation:Section 1.11.5
page 50 "normalized_instantiation (normalize_instantiation a)"

(458) lemma instantiation_to_list:Section 1.11.5
page 50 assumes "a∈generalized_instantiation"

assumes "normalized_instantiation a"
assumes "closed_instantiation a"
assumes "freevars (THE p. (apply_instantiation (programterm_to_gp P) a)

= programterm_to_gp p) = {}"
shows "apply_instantiation (programterm_to_gp P) a

= programterm_to_gp (substituteLr 0 P (normalized_instantiation_to_list a))"

(459) lemma generalized_instantiation_to_closed_list:Lemma 1.70
page 50 assumes a_ass: "a∈generalized_instantiation"

assumes a_pass: "programterm_instantiation a"
assumes Afc: "fullyclosed (insert_programterm’ (GPEpsilon a) A, σ, η)"
assumes Bfc: "fullyclosed (insert_programterm’ (GPEpsilon a) B, σ, η)"
shows "∃ vl∈{l | l. are_values l ∧

(∀ v∈set l. freevars v = {} ∧ (∀ l∈locations_of v. l<length σ))}.
insert_programterm’ (GPEpsilon a) A = substituteLr 0 A vl ∧
insert_programterm’ (GPEpsilon a) B = substituteLr 0 B vl"

I.8.3 Definition of CIU Relations

(460) definitionDefinition 1.60
page 46 "ciu_approx A B ==

∀ E∈evaluationcontext.
∀σ∈{l | l. are_values l}.
∀ vl∈{l | l. are_values l

156

I.8. The CIU Theorem

∧ (∀ v∈set l. freevars v = {} ∧ (∀ l∈locations_of v. l<length σ))}.
∀ η::eventT list.
let EA = (applycontext E (substituteLr 0 A vl), σ, η) in
let EB = (applycontext E (substituteLr 0 B vl), σ, η) in
fullyclosed EA ∧ fullyclosed EB −→
kernel_prob_of denotation EA UNIV ≤ kernel_prob_of denotation EB UNIV
"

(461) definition Definition 1.56
page 45"ciu_equiv A B ==

∀ E∈evaluationcontext.
∀σ∈{l | l. are_values l}.
∀ vl∈{l | l. are_values l

∧ (∀ v∈set l. freevars v = {} ∧ (∀ l∈locations_of v. l<length σ))}.
∀ η::eventT list.
let EA = (applycontext E (substituteLr 0 A vl), σ, η) in
let EB = (applycontext E (substituteLr 0 B vl), σ, η) in
fullyclosed EA ∧ fullyclosed EB −→
kernel_prob_of denotation EA UNIV = kernel_prob_of denotation EB UNIV"

(462) lemma ciu_equiv_def2: Lemma 1.62
page 46"ciu_equiv A B == ciu_approx A B ∧ ciu_approx B A"

I.8.4 CIU Counterexamples

(463) inductive epsclosed ::
"(programterm set) ⇒ nat ⇒ (generalized_programtermT set)" where
"[[epsclosed S n q;
∀ p∈S. freevars (insert_programterm’ q p)={}

∧ (∀ l∈locations_of (insert_programterm’ q p). l<n);
epsclosed S n (GPEpsilon a)]]

=⇒ epsclosed S n (GPEpsilon (GPESubst k q # a))"
| "epsclosed S n (GPEpsilon [])"
| "epsclosed S n (GPEpsilon a) =⇒ epsclosed S n (GPEpsilon (GPELift k # a))"
| "epsclosed S n (GPVar k)"
| "epsclosed S n (GPValue basicvalue)"
| "epsclosed S n (GPLocation l)"
| "epsclosed S n (GPEvent e)"
| "epsclosed S n GPEventList"
| "epsclosed S n P =⇒ epsclosed S n (GPFunction f P)"
| "[[epsclosed S n P1; epsclosed S n P2]] =⇒ epsclosed S n (GPPairP P1 P2)"
| "epsclosed S n P =⇒ epsclosed S n (GPAbstraction P)"
| "[[epsclosed S n P1; epsclosed S n P2]] =⇒ epsclosed S n (GPApplication P1 P2)"
| "epsclosed S n P =⇒ epsclosed S n (GPRef P)"
| "epsclosed S n P =⇒ epsclosed S n (GPDeref P)"
| "[[epsclosed S n P1; epsclosed S n P2]] =⇒ epsclosed S n (GPAssign P1 P2)"
| "epsclosed S n P =⇒ epsclosed S n (GPFst P)"
| "epsclosed S n P =⇒ epsclosed S n (GPSnd P)"
| "epsclosed S n P =⇒ epsclosed S n (GPFold P)"
| "epsclosed S n P =⇒ epsclosed S n (GPUnfold P)"
| "[[epsclosed S n P1; epsclosed S n P2; epsclosed S n P3]] =⇒

epsclosed S n (GPCase P1 P2 P3)"
| "epsclosed S n P =⇒ epsclosed S n (GPInl P)"
| "epsclosed S n P =⇒ epsclosed S n (GPInr P)"

(464) definition epsclosed_state :: Definition 1.71
page 51"[programterm set,generalized_programtermT,generalized_programtermT list] ⇒ bool"

where "epsclosed_state S C σ =
(epsclosed S (length σ) C ∧ (∀ p∈set σ. epsclosed S (length σ) p))"

(465) types ciu_counterexampleT =
"programterm × programterm × generalized_programtermT
× generalized_programtermT list × char list list × nat"

157

Appendix I. Formalization of Verypto in Isabelle/HOL

(466) definition "ciu_counterexample::ciu_counterexampleT set ==Definition 1.72
page 51 λ(A, B, C, σ, η, n).

let CA = insert_programterm’ C A in
let CB = insert_programterm’ C B in
let σA = map (λp. insert_programterm’ p A) σ in
let σB = map (λp. insert_programterm’ p B) σ in
(C : generalized_programterm ∧
set σ ⊆ generalized_value ∧
(* set σ ⊆ generalized_programterm ∧ *)
ciu_approx A B ∧
kernel_prob_of ((restriction_kernel (values×UNIV)) oo nsteps n) (CA,σA,η) UNIV
> kernel_prob_of denotation (CB,σB,η) UNIV ∧
fullyclosed (CA,σA,η) ∧
fullyclosed (CB,σB,η) ∧
epsclosed_state {A,B} C σ)"

(467) definition "minimal_ciu_counterexample == λ(A,B,C,σ,η,n).Definition 1.72
page 51 (ciu_counterexample (A,B,C,σ,η,n) ∧ (∀ (A’,B’,C’,σ’,η’,n’)∈ciu_counterexample.

(n < n’ ∨ (n = n’ ∧ unprotected_epsilons C ≤ unprotected_epsilons C’))))"

(468) lemma ciu_ex:Lemma 1.73
page 51 assumes ciu: "ciu_approx A B"

and nobs: "¬ observationally_approximated_untyped A B"
shows "∃ X. ciu_counterexample X"

I.8.5 Uniformity

(469) definitionDefinition 1.75
page 52 "ciu_uniform pse =

(∃µ. (∀ X. lift_kernel step (apply_kernel (gp_insert_kernel X) pse) =
lift_kernel (gp_insert_kernel X) µ) ∧
(fst pse ∈ generalized_programterm ∧
set(fst(snd(pse)))⊆ generalized_value
−→ (∀ pse’←µ. fst pse’ ∈ generalized_programterm ∧

set(fst(snd(pse’)))⊆ generalized_value)) ∧
(∀ X. epsclosed_state X (fst pse) (fst(snd(pse))) ∧

(∀ x∈X. fullyclosed(insert_programterm’ (fst pse) x,
map (λp. insert_programterm’ p x) (fst(snd(pse))),
snd(snd(pse))))

−→ (∀ pse’←µ. epsclosed_state X (fst pse’) (fst(snd(pse’))) ∧
length(fst(snd(pse’))) ∈ {length(fst(snd(pse))),Suc(length(fst(snd(pse))))})))"

(470) lemma function_uniform:Section 1.11.5
page 53 assumes v: "v : generalized_value"

shows "ciu_uniform (GPFunction f v,σ,η)"

(471) lemma application_uniform:Section 1.11.5
page 52 assumes v: "v : generalized_value"

and w: "w : generalized_value"
shows "ciu_uniform (GPApplication w v,σ,η)"

(472) lemma ref_uniform:
assumes v: "v : generalized_value"
shows "ciu_uniform (GPRef v,σ,η)"

(473) lemma deref_uniform:
assumes w: "w : generalized_value"
shows "ciu_uniform (GPDeref w, σ, η)"

(474) lemma assign_uniform:
assumes v: "v : generalized_value"
assumes w: "w : generalized_value"
shows "ciu_uniform (GPAssign w v,σ,η)"

158

I.8. The CIU Theorem

(475) lemma event_uniform: "ciu_uniform (GPEvent e, σ, η)"

(476) lemma eventlist_uniform: "ciu_uniform (GPEventList, σ, η)"

(477) lemma fst_uniform:
assumes z: "z : generalized_value"
shows "ciu_uniform (GPFst z,σ,η)"

(478) lemma snd_uniform:
assumes z: "z : generalized_value"
shows "ciu_uniform (GPSnd z,σ,η)"

(479) lemma unfold_uniform:
assumes z: "z : generalized_value"
shows "ciu_uniform (GPUnfold z,σ,η)"

(480) lemma case_uniform:
assumes v: "v : generalized_value"
assumes w: "w : generalized_value"
assumes u: "u : generalized_value"
shows "ciu_uniform (GPCase v w u,σ,η)"

(481) lemma redex_uniform:
assumes "R : generalized_redex"
shows "ciu_uniform (R,σ,η)"

(482) lemma evalctx_redex_uniform: Lemma 1.76
page 52assumes "R : generalized_redex"

and "E : generalized_evalcontext"
shows "ciu_uniform (gp_concatcontext E R,σ,η)"

I.8.6 Finishing the Proof

(483) lemma ciu_uniform_step: Lemma 1.77
page 53assumes Eeval: "E : generalized_evalcontext"

and Rredex: "R : generalized_redex"
and ciuex: "ciu_counterexample (A,B,gp_concatcontext E R,σ,η,n)"
shows "∃ C’ σ’ η’ n’. n=Suc n’ ∧ ciu_counterexample(A,B,C’,σ’,η’,n’)"

(484) lemma freevars_map_insert_programterm’: Section 1.11.5
page 54assumes "a∈generalized_instantiation"

assumes "epsclosed {A,B} n (GPEpsilon a)"
shows "freevars (insert_programterm’ (GPEpsilon (map_insert_programterm’ A a)) P)

= freevars (insert_programterm’ (GPEpsilon (map_insert_programterm’ B a)) P)"

(485) lemma eps_no_minimal: Lemma 1.81
page 54assumes Eeval: "E : generalized_evalcontext"

and aass: "a∈generalized_instantiation"
and C_def: "C = gp_concatcontext E (GPEpsilon a)"
and ciuex: "ciu_counterexample (A,B,C,σ,η,n)"
shows "∃ C’ σ’ η’ n’. ciu_counterexample(A,B,C’,σ’,η’,n’) ∧

(n’ < n ∨ (n’ = n ∧ unprotected_epsilons C’ < unprotected_epsilons C))"

(486) lemma no_minimal_ciu_ex: "¬ (∃ X. minimal_ciu_counterexample X)" Lemma 1.83
page 55

(487) lemma ciu_counterexample_imp_minimal:
Section 1.11.5
page 56

assumes "ciu_counterexample (A,B,C,σ,η,n)"
shows "∃ mC. minimal_ciu_counterexample mC"

(488) theorem ciu_approx_imp_obs_approx: Theorem 1.84
page 56assumes "ciu_approx A B"

shows "observationally_approximated_untyped A B"

159

Appendix I. Formalization of Verypto in Isabelle/HOL

(489) theorem ciu_equiv_imp_obs_equiv:Theorem 1.58
page 45 assumes "ciu_equiv A B"

shows "observationally_equivalent_untyped A B"

(490) lemma closed_denot_equiv_imp_ciu_equiv:Lemma 1.57
page 45 assumes "∀ vl σ η. are_values vl

∧ (∀ v∈set vl. freevars v = {} ∧ (∀ l∈locations_of v. l<length σ))
∧ are_values σ
∧ fullyclosed (substituteLr 0 A vl, σ, η)
∧ fullyclosed (substituteLr 0 B vl, σ, η)

−→ apply_kernel denotation (substituteLr 0 A vl, σ, η)
= apply_kernel denotation (substituteLr 0 B vl, σ, η)"

shows "ciu_equiv A B"

I.9 Program Transformations

I.9.1 Transformations based on Computation Rules

(491) lemma obs_equiv_stepsto_unitkernel:Lemma 1.85
page 57 assumes "∀ vl. (are_values vl −→ (∀ se.

(substituteLr 0 A vl,se) apply_kernel unitkernel (substituteLr 0 B vl,se)))"
shows "observationally_equivalent_untyped A B"

(492) theorem obs_equiv_evaluationcontexts:Theorem 1.88
page 58 assumes "E1 ∈ evaluationcontext"

assumes "E2 ∈ evaluationcontext"
assumes "∀ v. v∈values −→

observationally_equivalent_untyped (applycontext E1 v) (applycontext E2 v)"
shows "observationally_equivalent_untyped (applycontext E1 p) (applycontext E2 p)"

(493) lemma obseq_untyped_beta:Lemma 1.86
page 58 assumes "is_value v"

shows "observationally_equivalent_untyped (Application (Abstraction M) v)
(substitute’ 0 M v)"

(494) lemma obseq_untyped_rule_beta:
assumes "F : contextfuns ∧ is_value v"
assumes "observationally_equivalent_untyped (F (substitute’ 0 M v)) S"
shows "observationally_equivalent_untyped (F (Application (Abstraction M) v)) S"

(495) lemma obseq_untyped_Fst_PairP’:Lemma 1.87
page 58 assumes "is_value v1"

and "is_value v2"
shows "observationally_equivalent_untyped (Fst (PairP v1 v2)) v1"

(496) lemma obseq_untyped_Fst_PairP:Lemma 1.89
page 59 assumes "is_value v"

shows "observationally_equivalent_untyped (Fst (PairP p v)) p"

(497) lemma obseq_untyped_rule_Fst_PairP:
assumes "F : contextfuns ∧ is_value v"
assumes "observationally_equivalent_untyped (F p) S"
shows "observationally_equivalent_untyped (F (Fst (PairP p v))) S"

(498) lemma obseq_untyped_Snd_PairP:Lemma 1.90
page 59 assumes "is_value v"

shows "observationally_equivalent_untyped (Snd (PairP v p)) p"

(499) lemma obseq_untyped_rule_Snd_PairP:
assumes "F : contextfuns ∧ is_value v"
assumes "observationally_equivalent_untyped (F p) S"
shows "observationally_equivalent_untyped (F (Snd (PairP v p))) S"

160

I.9. Program Transformations

(500) lemma obseq_untyped_Function_deterministic_kernel:
assumes "v ∈ purevalues"
and "is_measurable f"
shows "observationally_equivalent_untyped (Function (deterministic_kernel f) v)

(pureterm_to_term (f (term_to_pureterm v)))"

(501) lemma obseq_untyped_CaseP_InlP: Lemma 1.92
page 59assumes "is_value vl"

and "is_value vr"
shows "observationally_equivalent_untyped (CaseP (InlP p) vl vr) (Application vl p)"

(502) lemma obseq_untyped_rule_CaseP_InlP:
assumes "F : contextfuns ∧ is_value vl ∧ is_value vr"
assumes "observationally_equivalent_untyped (F (Application vl p)) S"
shows "observationally_equivalent_untyped (F (CaseP (InlP p) vl vr)) S"

(503) lemma obseq_untyped_CaseP_InrP: Lemma 1.93
page 59assumes "is_value vl"

and "is_value vr"
shows "observationally_equivalent_untyped (CaseP (InrP p) vl vr) (Application vr p)"

(504) lemma obseq_untyped_rule_CaseP_InrP:
assumes "F : contextfuns ∧ is_value vl ∧ is_value vr"
assumes "observationally_equivalent_untyped (F (Application vr p)) S"
shows "observationally_equivalent_untyped (F (CaseP (InrP p) vl vr)) S"

(505) lemma obseq_untyped_Unfold_Fold: Lemma 1.91
page 59shows "observationally_equivalent_untyped (Unfold (Fold p)) p"

(506) lemma obseq_untyped_LET_flatten: Lemma 1.99
page 63assumes "C’ = lift_vars (Suc 0) C"

shows "observationally_equivalent_untyped
(Application (Abstraction C) (Application (Abstraction B) A))
(Application (Abstraction (Application (Abstraction C’) B)) A)"

(507) lemma obseq_untyped_rule_LET_flatten:
assumes "F : contextfuns ∧ (F (Var 0) 6= F (Var 1))"
assumes "observationally_equivalent_untyped
(F (Application (Abstraction (Application (Abstraction (lift_vars(Suc 0)Y))X))A)) S"
shows "observationally_equivalent_untyped
(F (Application (Abstraction Y) (Application (Abstraction X) A))) S"

(508) lemma obseq_rule_beta_left:
assumes "is_contextfun_typed F ∧ is_value (Rep_program v)"
assumes "observationally_equivalent (F (SUBSTITUTEk 0 p v)) S"
shows "observationally_equivalent (F (APPLY (ABSTRACT x p) v)) S"

(509) lemma obseq_rule_FST_PAIR_left:
assumes "is_contextfun_typed F ∧ is_value (Rep_program v)"
assumes "observationally_equivalent (F p) S"
shows "observationally_equivalent (F (FST (PAIR p v))) S"

(510) lemma obseq_rule_SND_PAIR_left:
assumes "is_contextfun_typed F ∧ is_value (Rep_program v)"
assumes "observationally_equivalent (F p) S"
shows "observationally_equivalent (F (SND (PAIR v p))) S"

(511) lemma obseq_rule_LET_flatten_left:
assumes "is_contextfun_typed F"
assumes "observationally_equivalent

(F (LET A (ABSTRACT a (LET B (ABSTRACT b (LIFTk 1 C)))))) S"
shows "observationally_equivalent (F (LET (LET A (ABSTRACT a B)) (ABSTRACT b C))) S"

161

Appendix I. Formalization of Verypto in Isabelle/HOL

I.9.2 Expression Propagation

(512) definition "propagatable W ==Definition 1.94
page 60 ∀ a. are_values a −→

(∀ v∈set a. freevars v = {}) −→
freevars (substituteLr 0 W a) = {} −→
(∃ w. is_value w ∧ (∀σ η. (are_values σ ∧ fullyclosed(substituteLr 0 W a,σ,η))

−→ (fullyclosed (w, σ, η)
∧ apply_kernel denotation (substituteLr 0 W a, σ, η)
=apply_kernel unitkernel (w, σ, η))))

∨ (∀σ η. (are_values σ ∧ fullyclosed (substituteLr 0 W a, σ, η)) −→
apply_kernel denotation (substituteLr 0 W a, σ, η) = 0)"

(513) lemma exp_propagation:Lemma 1.95
page 61 assumes "propagatable W"

assumes "∀ a σ η. are_values a ∧ (∀ v∈set a. freevars v = {}) ∧ are_values σ ∧
fullyclosed (substituteLr 0 W a, σ, η) ∧
apply_kernel denotation(substituteLr 0 W a, σ, η) = 0 −→
apply_kernel denotation(substituteLr 0 (substitute’ 0 Q W) a,σ,η)=0"

shows "observationally_equivalent_untyped (Application (Abstraction Q) W)
(substitute’ 0 Q W)"

(514) lemma obseq_untyped_rule_exp_propagation:
assumes "F : contextfuns ∧ (propagatable W) ∧

(∀ a σ η. are_values a ∧ (∀ v∈set a. freevars v = {}) ∧ are_values σ ∧
fullyclosed (substituteLr 0 W a, σ, η) ∧
apply_kernel denotation(substituteLr 0 W a, σ, η) = 0 −→
apply_kernel denotation(substituteLr 0 (substitute’ 0 Q W) a,σ,η)=0)"

assumes "observationally_equivalent_untyped (F (substitute’ 0 Q W)) S"
shows "observationally_equivalent_untyped (F (Application (Abstraction Q) W)) S"

(515) lemma propagatable_Fst_Var: "propagatable (Fst (Var n))"Lemma 1.96
page 62

(516) lemma propagatable_Snd_Var: "propagatable (Snd (Var n))"
Lemma 1.96

page 62 (517) lemma propagatable_Fst_Snd_Var: "propagatable (Fst (Snd (Var n)))"

(518) lemma propagatable_prog_embedding_app:Section 1.13.1
page 70 fixes f :: "(’a::embeddable_pure) ⇒ (’b::embeddable_pure)"

shows "propagatable (Application (prog_embedding f) (Var n))"

I.9.3 Line Swapping

(519) definitionDefinition 1.100
page 64 "state_independent P =

(∀ s e a. (are_values a ∧
(∀ v∈set a. freevars v = {} ∧ (∀ l∈locations_of v. l < length s)) ∧
fullyclosed(substituteLr 0 P a,s,e)) −→
(apply_kernel denotation (substituteLr 0 P a,s,e)
=project_measure (λ(V,se). (V,s,e))
(apply_kernel denotation (substituteLr 0 P a,[],[]))))"

(520) lemma state_independent_line_swapping:Lemma 1.101
page 64 assumes "state_independent A"

shows "observationally_equivalent_untyped
(Application (Abstraction(Application (Abstraction(PairP (Var (Suc 0)) (Var 0)))

(lift_vars 0 B))) A)
(Application (Abstraction(Application (Abstraction(PairP (Var 0) (Var (Suc 0))))

(lift_vars 0 A))) B)"

(521) definitionSection 1.12.5
page 66 "uncurry2 P = Abstraction (lift_vars (Suc 0) (lift_vars (Suc 0)

(Application (Application

162

I.10. Composing 1-1 One-way Functions

(Abstraction (Abstraction (lift_vars (Suc(Suc 0)) P)))
(Fst (Var 0))) (Snd (Var 0)))))"

(522) lemma obseq_untyped_uncurry2_apply: Section 1.12.5
page 66assumes "P’ = uncurry2 P"

shows "observationally_equivalent_untyped P
(Application P’ (PairP (Var (Suc 0)) (Var 0)))"

(523) lemma obseq_untyped_swap_uncurry2: Section 1.104
page 66assumes "P’ = uncurry2 P"

shows "observationally_equivalent_untyped (swap_vars 0 (Suc 0) P)
(Application P’ (PairP (Var 0) (Var (Suc 0))))"

(524) theorem obseq_state_independent_line_swapping: Theorem 1.103
page 65assumes "state_independent (Rep_program A)"

shows "observationally_equivalent
(LET A (ABSTRACT xa (LET (LIFT B) (ABSTRACT xb C))))
(LET B (ABSTRACT xb (LET (LIFT A) (ABSTRACT xa (SWAPn 0 C)))))"

(525) lemma obseq_rule_state_independent_line_swapping_left:
assumes "is_contextfun_typed F ∧ state_independent (Rep_program A) ∧ LIFTk 0 B = LB"
assumes "observationally_equivalent

(F (LET B (ABSTRACT xb (LET (LIFTk 0 A) (ABSTRACT xa (SWAPn 0 C)))))) S"
shows "observationally_equivalent

(F (LET A (ABSTRACT xa (LET (LB) (ABSTRACT xb C))))) S"

(526) lemma state_independent_Function_v:
assumes "v ∈ values"
shows "state_independent (Function f v)"

(527) lemma state_independent_beta:
assumes "is_value v"
assumes "state_independent (substitute’ 0 p v)"
shows "state_independent (Application (Abstraction p) v)"

I.10 Composing 1-1 One-way Functions

I.10.1 Definitions

(528) definition Section 1.13.1
page 68"one_way_game f A n ==

¨ let x ← [mk_kernel2 (λn. uniform_distribution {w. length w = n})] ^n;
y ← ^f x;
x’← :A: (:unary_parameter n:, y)

in ^f x = ^f x’¨ "

(529) definition strongly_oneway :: "(bitstring ⇒ bitstring) ⇒ bool" where Definition 1.108
page 68"strongly_oneway f == efficiently_computable f ∧

(∀ A. polynomial_time A −→ negligible (λn. prog_probability (one_way_game f A n)))"

I.10.2 The Sequence of Games

(530) definition Section 1.13.1
page 69"fof_game1 f A n ==

¨ let x ← [mk_kernel2 (λn. uniform_distribution {w. length w = n})] ^n;
y ← ^f(^f x);
x’← :A: (:unary_parameter n:, y)

in ^(f o f) x = ^(f o f) x’¨ "

163

Appendix I. Formalization of Verypto in Isabelle/HOL

(531) definitionSection 1.13.1
page 69 "fof_game2 f A n ==

¨ let x ← [mk_kernel2 (λn. uniform_distribution {w. length w = n})] ^n;
z ← ^f x;
y ← ^f z;
x’← :A: (:unary_parameter n:, y)

in ^(f o f) x = ^(f o f) x’¨ "

(532) definitionSection 1.13.1
page 70 "fof_game3 f A n ==

¨ let x ← [mk_kernel2 (λn. uniform_distribution {w. length w = n})] ^n;
z ← ^f x;
y ← ^f z;
x’← (λy’. :A: y’) (:unary_parameter n:, y)

in ^(f o f) x = ^(f o f) x’¨ "

(533) definitionSection 1.13.1
page 70 "fof_game4 f A n ==

¨ let x ← [mk_kernel2 (λn. uniform_distribution {w. length w = n})] ^n;
z ← ^f x;
x’← (λy’. :A: y’) (:unary_parameter n:, ^f z)

in ^f x = ^f x’¨ "

(534) definition "adversary_o_f A f = ¨λnz. (λy’. :A: y’) (#1 nz, ^f (#2 nz))¨ "Section 1.13.1
page 71

(535) lemma obseq_opeq_f: shows "observationally_equivalent_untypedSection 1.13.1
page 71

(Application
(Application (prog_embedding (op = :: ’b⇒’b⇒bool))

(Application (prog_embedding f) (Var m)))
(Application (prog_embedding f) (Var n)))

(Application
(Application (prog_embedding (λx x’. f x = f x’))

(Var m))
(Var n))"

(536) lemma obseq_app_fof:Section 1.13.1
page 69 shows "observationally_equivalent_untyped

(Application (prog_embedding (f ◦ f)) (Var n))
(Application (prog_embedding f) (Application (prog_embedding f) (Var n)))"

(537) lemma fof_step1:Lemma 1.110
page 69 shows "observationally_equivalent (one_way_game (f o f) A n) (fof_game1 f A n)"

(538) lemma fof_step2:Lemma 1.111
page 70 shows "observationally_equivalent (fof_game1 f A n) (fof_game2 f A n)"

(539) lemma fof_step3:Lemma 1.112
page 70 shows "observationally_equivalent (fof_game2 f A n) (fof_game3 f A n)"

(540) lemma fof_step4:Lemma 1.113
page 70 assumes "inj f"

shows "observationally_equivalent (fof_game3 f A n) (fof_game4 f A n)"

(541) lemma fof_step5:Lemma 1.115
page 71 shows "observationally_equivalent

(fof_game4 f A n) (one_way_game f (adversary_o_f A f) n)"

(542) theorem fof_reduction:Theorem 1.116
page 72 assumes "inj f"

shows "prog_probability (one_way_game (f o f) A n)
= prog_probability (one_way_game f (adversary_o_f A f) n)"

(543) theorem fof_oneway:
assumes "inj f"
assumes "strongly_oneway f"

164

I.11. IND-CPA Security of ElGamal

assumes "efficiently_computable (f o f)"
assumes "!!A::[[bitstring × bitstring ⇒ bitstring]].

polynomial_time A =⇒ polynomial_time (adversary_o_f A f)"
shows "strongly_oneway (f o f)"

I.11 IND-CPA Security of ElGamal

I.11.1 Definitions

(544) record (’e,’d,’m,’c) encryption_scheme =
encGen :: "[[’e × ’d]]"
encEnc :: "[[’e ⇒ ’m ⇒ ’c]]"
encDec :: "[[’d ⇒ ’c ⇒ ’m]]"
encDom :: "’m set"

(545) definition "IND_CPA_Game1 ES A (B::nat⇒[[’e::program_type × bitstring ⇒ bool]]) n Section 1.13.2
page 73== ¨ let ed ← :encGen (ES n):;

m12a ← :A n: (#1 ed);
c ← :encEnc (ES n): (#1 ed) (#1 m12a)

in :B n: (c,#2(#2 m12a))¨ "

(546) definition "IND_CPA_Game2 ES A (B::nat⇒[[’e::program_type × bitstring ⇒ bool]]) n Section 1.13.2
page 73== ¨ let ed ← :encGen (ES n):;

m12a ← :A n: (#1 ed);
c ← :encEnc (ES n): (#1 ed) (#1(#2 m12a))

in :B n: (c,#2(#2 m12a))¨ "

(547) definition Definition 1.117
page 73"IND_CPA_adversary ES A B ==

nonuniform_polynomial_time A ∧ nonuniform_polynomial_time B ∧
(∀ n v s e. is_value v −→

(∀ vse ← apply_kernel denotation (Application (Rep_program (A n)) v,s,e).
∃ m12a ∈ (encDom (ES n) × encDom (ES n) × (UNIV::bitstring set)).
(fst vse) = (prog_embedding m12a)))"

(548) definition "IND_CPA_secure ES == Definition 1.118
page 73∀ A B. IND_CPA_adversary ES A B −→

negligible (λn. | Pr[:IND_CPA_Game1 ES A B n:] - Pr[:IND_CPA_Game2 ES A B n:]|)"

(549) definition "ElGamal_Gen G g (q::nat) == Section 1.119
page 75¨ let x ← [mk_kernel2 (λu. uniform_distribution {1 .. q})] ^();

gx ← [deterministic_kernel (λ(a,b). (pow G a b))] (^g,x)
in (gx,x)¨ "

(550) definition "ElGamal_Enc G g (q::nat) == Section 1.119
page 75¨λgx. λm. (let y ← [mk_kernel2 (λu. uniform_distribution {1 .. q})] ^();

gy ← [deterministic_kernel (λ(a,b). (pow G a b))] (^g,y);
gxy ← [deterministic_kernel (λ(a,b). (pow G a b))] (gx,y);
mgxy ← [deterministic_kernel (λ(a,b). (mult G a b))] (m,gxy)

in (gy,mgxy))¨ "

(551) definition "ElGamal_Dec G g (q::nat) == Section 1.119
page 75¨λx. λgymgxy . (let gxy ← [deterministic_kernel (λ(a,b). (pow G a b))](#1 gymgxy,x);

igxy ← [deterministic_kernel (λa. (m_inv G a))] gxy
in [deterministic_kernel (λ(a,b). (mult G a b))] (#2 gymgxy,igxy))¨ "

(552) definition "ElGamal G g q (n::nat) ==
(|encGen = ElGamal_Gen (G n) (g n) (q n),
encEnc = ElGamal_Enc (G n) (g n) (q n),
encDec = ElGamal_Dec (G n) (g n) (q n),
encDom = carrier (G n)

165

Appendix I. Formalization of Verypto in Isabelle/HOL

|)"

(553) definitionSection 1.119
page 75 "DDHxy G g (q::nat⇒nat)n ==

¨ let x ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();
gx ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),x);
y ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();
gy ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),y);

gxy ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (gx,y)
in (gx,gy,gxy)¨ "

(554) definitionSection 1.119
page 75 "DDHz G g (q::nat⇒nat) n ==

¨ let x ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();
gx ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),x);
y ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();
gy ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),y);
z ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();
gz ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),z)

in (gx,gy,gz)¨ "

(555) definition "Diffie_Hellman G g q ==Definition 1.121
page 75 computationally_indistinguishable (DDHxy G g q) (DDHz G g q)"

I.11.2 Cyclic Groups

(556) lemma project_uniform_distribution:
assumes "finite S ∧ S 6= {}"
assumes "is_measurable f"
assumes "inj_on f S"
shows "project_measure f (mk_subprobability (uniform_distribution S))

= mk_subprobability (uniform_distribution (f ‘ S))"

(557) lemma cyclic_mult_inj:
assumes mG: "monoid G"
assumes gen: "carrier G = (pow G g) ‘ {Suc 0 .. q}"
assumes injp: "inj_on (pow G g) {Suc 0 .. q}"
assumes gG: "g ∈ carrier G"
assumes aG: "a ∈ carrier G"
shows "inj_on (mult G a) (carrier G)"

(558) lemma cyclic_mult_carrier:Section 1.13.2
page 73 assumes mG: "monoid G"

assumes gen: "carrier G = (pow G g) ‘ {Suc 0 .. q}"
assumes injp: "inj_on (pow G g) {Suc 0 .. q}"
assumes gG: "g ∈ carrier G"
assumes aG: "a ∈ carrier G"
shows "(λx. mult G a (pow G g x)) ‘ {Suc 0 .. q} = (carrier G)"

(559) lemma mult_with_random_element:Lemma 1.120
page 74 assumes mG: "monoid (G n)"

assumes gen: "carrier (G n) = (pow (G n) (g n)) ‘ {Suc 0 .. (q n)}"
assumes injp: "inj_on (pow (G n) (g n)) {Suc 0 .. (q n)}"
assumes gG: "g n ∈ carrier (G n)"
assumes fG: "(fst m12a) ∈ carrier (G n)"
assumes sG: "(fst(snd m12a)) ∈ carrier (G n)"
shows "denotationally_equivalent
(Rep_program
¨ let z ← [mk_kernel2 (λu. uniform_distribution {1 .. ((q::nat⇒nat) n)})] ^();

gz ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),z)
in [deterministic_kernel (λ(a,b). (mult(G n) a b))] (#1 ^m12a,gz)¨)
(Rep_program
¨ let z ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();

166

I.11. IND-CPA Security of ElGamal

gz ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),z)
in [deterministic_kernel (λ(a,b). (mult(G n) a b))] (#1(#2 ^m12a),gz)¨)"

I.11.3 The Sequence of Games

(560) definition Section 1.119
page 75"ElGamal_Game1a G g q A B n ==

¨ let x ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();
gx ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),x);

m12a ← :A n: gx;
y ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();

gy ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),y);
gxy ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (gx,y);

mgxy ← [deterministic_kernel (λ(a,b). (mult(G n) a b))] (#1 m12a,gxy);
c ← (gy,mgxy)

in :B n: (c,#2(#2 m12a))¨ "

(561) definition
"ElGamal_Game2a G g q A B n ==
¨ let x ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();

gx ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),x);
m12a ← :A n: gx;

y ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();
gy ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),y);
gxy ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (gx,y);

mgxy ← [deterministic_kernel (λ(a,b). (mult(G n) a b))] (#1 (#2 m12a),gxy);
c ← (gy,mgxy)

in :B n: (c,#2(#2 m12a))¨ "

(562) lemma ElGamal_step1a: Lemma 1.123
page 77"observationally_equivalent (IND_CPA_Game1 (ElGamal G g q) A B n)

(ElGamal_Game1a G g q A B n)"

(563) lemma ElGamal_step2a:
"observationally_equivalent (IND_CPA_Game2 (ElGamal G g q) A B n)

(ElGamal_Game2a G g q A B n)"

(564) definition Section 1.119
page 77"ElGamal_Game1b G g q A B n ==

¨ let x ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();
gx ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),x);
y ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();

gy ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),y);
gxy ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (gx,y);

m12a ← :A n: gx;
mgxy ← [deterministic_kernel (λ(a,b). (mult(G n) a b))] (#1 m12a,gxy);

c ← (gy,mgxy)
in :B n: (c,#2(#2 m12a))¨ "

(565) definition
"ElGamal_Game2b G g q A B n ==
¨ let x ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();

gx ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),x);
y ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();

gy ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),y);
gxy ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (gx,y);

m12a ← :A n: gx;
mgxy ← [deterministic_kernel (λ(a,b). (mult(G n) a b))] (#1 (#2 m12a),gxy);

c ← (gy,mgxy)
in :B n: (c,#2(#2 m12a))¨ "

(566) lemma ElGamal_step1b: Lemma 1.124
page 77"observationally_equivalent (ElGamal_Game1a G g q A B n)

167

Appendix I. Formalization of Verypto in Isabelle/HOL

(ElGamal_Game1b G g q A B n)"

(567) lemma ElGamal_step2b:
"observationally_equivalent (ElGamal_Game2a G g q A B n)

(ElGamal_Game2b G g q A B n)"

(568) definitionSection 1.119
page 77 "DDH_adversary1 G A B n == ¨λx.

(let m12a ← :A n: (#1 x);
mgxy ← [deterministic_kernel(λ(a,b).(mult(G n) a b))](#1 m12a,#2(#2 x));

c ← (#1(#2 x),mgxy)
in :B n: (c,#2(#2 m12a)))¨ "

(569) definition
"DDH_adversary2 G A B n == ¨λx.
(let m12a ← :A n: (#1 x);

mgxy ← [deterministic_kernel(λ(a,b).(mult(G n) a b))] (#1 (#2 m12a),#2(#2 x));
c ← (#1(#2 x),mgxy)

in :B n: (c,#2(#2 m12a)))¨ "

(570) definitionSection 1.119
page 77 "ElGamal_Game1c G g q A B n == (¨ :DDH_adversary1 G A B n: :DDHxy G g q n:¨)"

(571) definition
"ElGamal_Game2c G g q A B n == (¨ :DDH_adversary2 G A B n: :DDHxy G g q n:¨)"

(572) lemma ElGamal_step1c:Lemma 1.125
page 77 "observationally_equivalent (ElGamal_Game1b G g q A B n)

(ElGamal_Game1c G g q A B n)"

(573) lemma ElGamal_step2c:
"observationally_equivalent (ElGamal_Game2b G g q A B n)

(ElGamal_Game2c G g q A B n)"

(574) definitionSection 1.119
page 78 "ElGamal_Game1d G g q A B n == (¨ :DDH_adversary1 G A B n: :DDHz G g q n:¨)"

(575) definition
"ElGamal_Game2d G g q A B n == (¨ :DDH_adversary2 G A B n: :DDHz G g q n:¨)"

(576) lemma ElGamal_step1d:Lemma 1.126
page 78 assumes "Diffie_Hellman G g q"

assumes "nonuniform_polynomial_time (DDH_adversary1 G A B)"
shows "negligible (λn. | prog_probability (ElGamal_Game1c G g q A B n)

- prog_probability (ElGamal_Game1d G g q A B n) |)"

(577) lemma ElGamal_step2d:
assumes "Diffie_Hellman G g q"
assumes "nonuniform_polynomial_time (DDH_adversary2 G A B)"
shows "negligible (λn. | prog_probability (ElGamal_Game2c G g q A B n)

- prog_probability (ElGamal_Game2d G g q A B n) |)"

(578) definitionSection 1.119
page 78 "ElGamal_Game1e G g q A B n ==

¨ let x ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();
gx ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),x);
y ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();
gy ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),y);

m12a ← :A n: gx;
mgz ← (let z ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();

gz ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),z)
in [deterministic_kernel (λ(a,b). (mult(G n) a b))] (#1 m12a,gz));

c ← (gy,mgz)
in :B n: (c,#2(#2 m12a))¨ "

168

I.11. IND-CPA Security of ElGamal

(579) definition Section 1.119
page 78"ElGamal_Game2e G g (q::nat⇒nat) A B n ==

¨ let x ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();
gx ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),x);
y ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();

gy ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),y);
m12a ← :A n: gx;
mgz ← (let z ← [mk_kernel2 (λu. uniform_distribution {1 .. (q n)})] ^();

gz ← [deterministic_kernel (λ(a,b). (pow (G n) a b))] (^(g n),z)
in [deterministic_kernel (λ(a,b). (mult(G n) a b))] (#1(#2 m12a),gz));

c ← (gy,mgz)
in :B n: (c,#2(#2 m12a))¨ "

(580) lemma ElGamal_step1e: Lemma 1.127
page 78"observationally_equivalent (ElGamal_Game1d G g q A B n)

(ElGamal_Game1e G g q A B n :: [[bool]])"

(581) lemma ElGamal_step2e:
"observationally_equivalent (ElGamal_Game2d G g q A B n)

(ElGamal_Game2e G g q A B n :: [[bool]])"

(582) lemma ElGamal_step12: assumes mG: "monoid (G n)" Lemma 1.128
page 78assumes gen: "carrier (G n) = (pow (G n) (g n)) ‘ {Suc 0 .. (q n)}"

assumes injp: "inj_on (pow (G n) (g n)) {Suc 0 .. ((q::nat⇒nat) n)}"
assumes gG: "g n ∈ carrier (G n)"
assumes cpaadv: "IND_CPA_adversary (ElGamal G g q) A B"
shows "observationally_equivalent (ElGamal_Game1e G g q A B n)

(ElGamal_Game2e G g q A B n)"

(583) theorem ElGamal_IND_CPA: Theorem 1.129
page 79assumes mG: "!!n. monoid (G n)"

assumes gen: "!!n. carrier (G n) = (pow (G n) (g n)) ‘ {Suc 0 .. (q n)}"
assumes injp:"!!n. inj_on (pow (G n) (g n)) {Suc 0 .. ((q::nat⇒nat) n)}"
assumes gG: "!!n. g n ∈ carrier (G n)"
assumes DDH: "Diffie_Hellman G g q"
assumes poly:"!!(A::nat⇒[[’a⇒’a×’a×bitstring]])

(B::nat ⇒ [[(’a × ’a) × bitstring ⇒ bool]]).
nonuniform_polynomial_time A ∧ nonuniform_polynomial_time B

=⇒ (nonuniform_polynomial_time (DDH_adversary1 G A B) ∧
nonuniform_polynomial_time (DDH_adversary2 G A B))"

shows "IND_CPA_secure (ElGamal G g q)"

169

170

Bibliography

[1] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:
The spi calculus. Information and Computation, 148(1):1–70, 1999.

[2] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography:
The computational soundness of formal encryption. In Theoretical Computer
Science – IFIP TCS 2000, volume 1872 of Lecture Notes in Computer Science,
pages 3–22. Springer, 2000.

[3] Reynald Affeldt, Miki Tanaka, and Nicolas Marti. Formal proof of provable
security by game-playing in a proof assistant. In Provable Security – ProvSec
2007, volume 4784 of Lecture Notes in Computer Science, pages 151–168.
Springer, 2007.

[4] José Bacelar Almeida, Manuel Barbosa, Endre Bangerter, Gilles Barthe,
Stephan Krenn, and Santiago Zanella Béguelin. Full proof cryptography:
verifiable compilation of efficient zero-knowledge protocols. In Computer and
Communications Security – CCS 2012, pages 488–500. ACM, 2012.

[5] Elena Andreeva, Atul Luykx, and Bart Mennink. Provable security of BLAKE
with non-ideal compression function. In Selected Areas in Cryptography –
SAC 2012, volume 7707 of Lecture Notes in Computer Science, pages 321–
338. Springer, 2013.

[6] Elena Andreeva, Bart Mennink, and Bart Preneel. On the indifferentiabil-
ity of the Grøstl hash function. In Security in Communication Networks –
SCN 2010, volume 6280 of Lecture Notes in Computer Science, pages 88–105.
Springer, 2010.

[7] Elena Andreeva, Bart Mennink, and Bart Preneel. Security reductions of
the second round SHA-3 candidates. In Information Security Conference –
ISC 2010, volume 6531 of Lecture Notes in Computer Science, pages 39–53.
Springer, 2011.

[8] Elena Andreeva, Bart Mennink, and Bart Preneel. The parazoa family: gen-
eralizing the sponge hash functions. International Journal of Information
Security, 11(3):149–165, 2012.

[9] Elena Andreeva, Bart Mennink, Bart Preneel, and Marjan Škrobot. Security
analysis and comparison of the SHA-3 finalists BLAKE, Grøstl, JH, Keccak,
and Skein. In Progress in Cryptology – AFRICACRYPT 2012, volume 7374
of Lecture Notes in Computer Science, pages 287–305. Springer, 2012.

171

Bibliography

[10] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton.
Seven-property-preserving iterated hashing: ROX. In Advances in Cryptol-
ogy – ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer Science,
pages 130–146. Springer, 2007.

[11] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuéllar, and
M. Llanos Tobarra. Formal analysis of SAML 2.0 web browser single sign-on:
Breaking the SAML-based single sign-on for Google apps. In Formal Methods
in Security Engineering – FMSE 2008, pages 1–10. ACM, 2008.

[12] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W.
Phan. SHA-3 proposal BLAKE, 2010.

[13] Michael Backes, Gilles Barthe, Matthias Berg, Benjamin Grégoire, César
Kunz, Malte Skoruppa, and Santiago Zanella Béguelin. Verified security of
Merkle-Damg̊ard. In Computer Security Foundations Symposium – CSF 2012,
pages 354–368. IEEE, 2012.

[14] Michael Backes, Matthias Berg, and Dominique Unruh. A formal language for
cryptographic pseudocode. In Logic for Programming, Artificial Intelligence,
and Reasoning – LPAR 2008, volume 5330 of Lecture Notes in Computer
Science, pages 353–376. Springer, 2008.

[15] Michael Backes, Dennis Hofheinz, and Dominique Unruh. CoSP: a general
framework for computational soundness proofs. In Computer and Communi-
cations Security – CCS 2009, pages 66–78. ACM, 2009.

[16] Michael Backes and Christian Jacobi. Cryptographically sound and machine-
assisted verification of security protocols. In Symposium on Theoretical As-
pects of Computer Science – STACS 2003, volume 2607 of Lecture Notes in
Computer Science, pages 675–686. Springer, 2003.

[17] Michael Backes, Christian Jacobi, and Birgit Pfitzmann. Deriving crypto-
graphically sound implementations using composition and formally verified
bisimulation. In Formal Methods Europe – FME 2002, volume 2391 of Lecture
Notes in Computer Science, pages 310–329. Springer, 2002.

[18] Michael Backes and Peeter Laud. Computationally sound secrecy proofs by
mechanized flow analysis. In Computer and Communications Security – CCS
2006, pages 370–379. ACM, 2006.

[19] Michael Backes, Matteo Maffei, and Dominique Unruh. Computationally
sound verification of source code. In Computer and Communications Security
– CCS 2010, pages 387–398. ACM, 2010.

[20] Michael Backes and Birgit Pfitzmann. Computational probabilistic non-
interference. In European Symposium on Research in Computer Security –
ESORICS 2002, volume 2502 of Lecture Notes in Computer Science, pages
1–23. Springer, 2002.

[21] Michael Backes and Birgit Pfitzmann. Symmetric encryption in a simulatable
Dolev-Yao style cryptographic library. In Computer Security Foundations
Workshop – CSFW 2004, pages 204–218. IEEE Computer Society, 2004.

172

Bibliography

[22] Michael Backes and Birgit Pfitzmann. Relating cryptographic und sym-
bolic key secrecy. IEEE Transactions on Dependable and Secure Computing,
2(2):109–123, 2005.

[23] Michael Backes, Birgit Pfitzmann, Michael Steiner, and Michael Waidner.
Polynomial fairness and liveness. In Computer Security Foundations Work-
shop – CSFW 2002, pages 160–174. IEEE Computer Society, 2002.

[24] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryp-
tographic library with nested operations. In Computer and Communications
Security – CCS 2003, pages 220–230. ACM, 2003.

[25] Michael Backes and Dominique Unruh. Computational soundness of sym-
bolic zero-knowledge proofs against active attackers. In Computer Security
Foundations Symposium – CSF 2008, pages 255–269. IEEE Computer Society,
2008.

[26] Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, and
Santiago Zanella Béguelin. Computer-aided cryptographic proofs. In Interac-
tive Theorem Proving – ITP 2012, volume 7406 of Lecture Notes in Computer
Science, pages 12–27. Springer, 2012.

[27] Gilles Barthe, Marion Daubignard, Bruce M. Kapron, and Yassine Lakhnech.
Computational indistinguishability logic. In Computer and Communications
Security – CCS 2010, pages 375–386. ACM, 2010.

[28] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, Federico Olmedo, and San-
tiago Zanella Béguelin. Verified indifferentiable hashing into elliptic curves.
In Principles of Security and Trust – POST 2012, volume 7215 of Lecture
Notes in Computer Science, pages 209–228. Springer, 2012.

[29] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella
Béguelin. Formal certification of ElGamal encryption. A gentle introduction
to CertiCrypt. In Formal Aspects in Security and Trust – FAST 2008, volume
5491 of Lecture Notes in Computer Science, pages 1–19. Springer, 2009.

[30] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella
Béguelin. Computer-aided security proofs for the working cryptographer. In
Advances in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in
Computer Science, pages 71–90. Springer, 2011.

[31] Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech, and Santiago Zanella
Béguelin. Beyond provable security. Verifiable IND-CCA security of OAEP.
In Topics in Cryptology – CT-RSA 2011, volume 6558 of Lecture Notes in
Computer Science, pages 180–196. Springer, 2011.

[32] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal cer-
tification of code-based cryptographic proofs. In Principles of Programming
Languages – POPL 2009, pages 90–101. ACM, 2009.

[33] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Program-
ming language techniques for cryptographic proofs. In Interactive Theorem
Proving – ITP 2010, volume 6172 of Lecture Notes in Computer Science,
pages 115–130. Springer, 2010.

173

Bibliography

[34] Gilles Barthe, Daniel Hedin, Santiago Zanella Béguelin, Benjamin Grégoire,
and Sylvain Heraud. A machine-checked formalization of Sigma-protocols.
In Computer Security Foundations Symposium – CSF 2010, pages 246–260.
IEEE Computer Society, 2010.

[35] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin.
Probabilistic reasoning for differential privacy. In Principles of Programming
Languages – POPL 2012, pages 97–110. ACM, 2012.

[36] Gilles Barthe, Federico Olmedo, and Santiago Zanella Béguelin. Verifiable
security of Boneh-Franklin identity-based encryption. In Provable Security
– ProvSec 2011, volume 6980 of Lecture Notes in Computer Science, pages
68–83. Springer, 2011.

[37] Gilles Barthe, David Pointcheval, and Santiago Zanella Béguelin. Verified
security of redundancy-free encryption from Rabin and RSA. In Computer
and Communications Security – CCS 2012, pages 724–735. ACM, 2012.

[38] David Basin, Sebastian Mödersheim, and Luca Viganò. OFMC: A symbolic
model checker for security protocols. International Journal of Information
Security, 4(3):181–208, 2005.

[39] Heinz Bauer. Wahrscheinlichkeitstheorie. de Gruyter, fourth edition, 1991.

[40] Mihir Bellare, Tadayoshi Kohno, Stefan Lucks, Niels Ferguson, Bruce
Schneier, Doug Whiting, Jon Callas, and Jesse Walker. Provable security
support for the Skein hash family, 2009.

[41] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm
for designing efficient protocols. In Computer and Communications Security
– CCS 1993, pages 62–73. ACM, 1993.

[42] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Advances in Cryptology
– EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science,
pages 409–426. Springer, 2006.

[43] Guido Bertoni, Joan Daemen, Michaël Peeters, Assche, and Gilles Van. The
keccak reference, 2011.

[44] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the indifferentiability of the sponge construction. In Advances in Cryptology
– EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 181–197. Springer, 2008.

[45] Rishiraj Bhattacharyya, Avradip Mandal, and Mridul Nandi. Security analy-
sis of the mode of JH hash function. In Fast Software Encryption – FSE 2010,
volume 6147 of Lecture Notes in Computer Science, pages 168–191. Springer,
2010.

[46] John Black, Martin Cochran, and Thomas Shrimpton. On the impossibility
of highly-efficient blockcipher-based hash functions. Journal of Cryptology,
22(3):311–329, 2009.

[47] Bruno Blanchet. An efficient cryptographic protocol verifier based on prolog
rules. In Computer Security Foundations Workshop – CSFW 2001, pages
82–96. IEEE Computer Society, 2001.

174

Bibliography

[48] Bruno Blanchet. A computationally sound mechanized prover for security
protocols. In IEEE Symposium on Security & Privacy – S&P 2006, pages
140–154. IEEE Computer Society, 2006.

[49] Bruno Blanchet. Automatically verified mechanized proof of one-encryption
key exchange. In Computer Security Foundations Symposium – CSF 2012),
pages 325–339. IEEE, 2012.

[50] Bruno Blanchet. Security protocol verification: Symbolic and computational
models. In Principles of Security and Trust – POST 2012, volume 7215 of
Lecture Notes in Computer Science, pages 3–29. Springer, 2012.

[51] Bruno Blanchet, Aaron D. Jaggard, Andre Scedrov, and Joe-Kai Tsay. Com-
putationally sound mechanized proofs for basic and public-key Kerberos. In
ACM Symposium on Information, Computer and Communications Security
– ASIACCS 2008, pages 87–99. ACM, 2008.

[52] Bruno Blanchet and David Pointcheval. Automated security proofs with
sequences of games. In Advances in Cryptology – CRYPTO 2006, volume
4117 of Lecture Notes in Computer Science, pages 537–554. Springer, 2006.

[53] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS #1. In Advances in Cryptology –
CRYPTO 1998, volume 1462 of Lecture Notes in Computer Science, pages
1–12. Springer, 1998.

[54] Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Ran-
driam, and Mehdi Tibouchi. Efficient indifferentiable hashing into ordinary
elliptic curves. In Advances in Cryptology – CRYPTO 2010, volume 6223 of
Lecture Notes in Computer Science, pages 237–254. Springer, 2010.

[55] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In Foundations of Computer Science – FOCS 2001, pages
136–145. IEEE Computer Society, 2001.

[56] Ran Canetti and Marc Fischlin. Universally composable commitments. In
Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 19–40. Springer, 2001.

[57] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle method-
ology, revisited. Journal of the ACM, 51(4):557–594, 2004.

[58] Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis
of mutual authentication and key exchange protocols. In Theory of Cryptog-
raphy Conference – TCC 2006, volume 3876 of Lecture Notes in Computer
Science, pages 380–403. Springer, 2006.

[59] Ran Canetti and Hugo Krawczyk. Universally composable notions of key
exchange and secure channels. In Advances in Cryptology – EUROCRYPT
2002, volume 2332 of Lecture Notes in Computer Science, pages 337–351.
Springer, 2002.

[60] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In Symposium
on Theory of Computing – STOC 2002, pages 494–503. ACM, 2002.

175

Bibliography

[61] Anne Canteaut, Thomas Fuhr, Maŕıa Naya-Plasencia, Pascal Paillier, Jean-
René Reinhard, and Marion Videau. A unified indifferentiability proof
for permutation- or block cipher-based hash functions. Cryptology ePrint
Archive, Report 2012/363, 2012.

[62] Donghoon Chang, Mridul Nandi, and Moti Yung. Indifferentiability of the
hash algorithm BLAKE. Cryptology ePrint Archive, Report 2011/623, 2011.

[63] The Coq development team. The Coq proof assistant reference manual, Ver-
sion 8.3. http://coq.inria.fr, 2010.

[64] Pierre Corbineau, Mathilde Duclos, and Yassine Lakhnech. Certified security
proofs of cryptographic protocols in the computational model: An application
to intrusion resilience. In Certified Programs and Proofs – CPP 2011, volume
7086 of Lecture Notes in Computer Science, pages 378–393. Springer, 2011.

[65] Ricardo Corin and J. den Hartog. A probabilistic hoare-style logic for game-
based cryptographic proofs. In International Colloquium on Automata, Lan-
guages and Programming – ICALP 2006, volume 4052 of Lecture Notes in
Computer Science, pages 252–263. Springer, 2006.

[66] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. Merkle-Damg̊ard revisited: How to construct a hash function. In
Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in
Computer Science, pages 430–448. Springer, 2005.

[67] Véronique Cortier, Steve Kremer, and Bogdan Warinschi. A survey of sym-
bolic methods in computational analysis of cryptographic systems. Journal
of Automated Reasoning, 46(3–4):225–259, 2011.

[68] Véronique Cortier and Bogdan Warinschi. Computationally sound, auto-
mated proofs for security protocols. In European Symposium on Programming
– ESOP 2005, volume 3444 of Lecture Notes in Computer Science, pages 157–
171. Springer, 2005.

[69] Judicaël Courant, Marion Daubignard, Cristian Ene, Pascal Lafourcade, and
Yassine Lakhnech. Towards automated proofs for asymmetric encryption
schemes in the random oracle model. In Computer and Communications
Security – CCS 2008, pages 371–380. ACM, 2008.

[70] Ivan Damg̊ard. A design principle for hash functions. In Advances in Cryp-
tology – CRYPTO 1989, volume 435 of Lecture Notes in Computer Science,
pages 416–427. Springer, 1990.

[71] Marion Daubignard, Pierre-Alain Fouque, and Yassine Lakhnech. Generic
indifferentiability proofs of hash designs. In Computer Security Foundations
Symposium – CSF 2012, pages 340–353. IEEE, 2012.

[72] Nicolas G. de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the Church-
Rosser theorem. Indagationes Mathematicæ, 34:381–392, 1972.

[73] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key pro-
tocols. IEEE Transactions on Information Theory, 29(2):198–208, 1983.

[74] Jonathan Driedger. Formalization of game-transformations. Bachelor’s thesis,
Saarland University, 2010.

176

http://coq.inria.fr

Bibliography

[75] Shimon Even and Oded Goldreich. On the security of multi-party ping-pong
protocols. In Symposium on Foundations of Computer Science – FOCS 1983,
pages 34–39. IEEE Computer Society, 1983.

[76] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whithing, Mihir Bellare,
Tadayoshi Kohno, Jon Callas, and Jesse Walker. The Skein hash function
family, 2008.

[77] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern.
RSA-OAEP is secure under the RSA assumption. In Advances in Cryptology
– CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
260–274. Springer, 2001.

[78] David Galindo. Boneh-Franklin identity based encryption revisited. In In-
ternational Colloquium on Automata, Languages and Programming – ICALP
2005, volume 3580 of Lecture Notes in Computer Science, pages 791–802.
Springer, 2005.

[79] Taher El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Advances in Cryptology – CRYPTO 1984, volume
196 of Lecture Notes in Computer Science, pages 10–18. Springer, 1985.

[80] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian
Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
Grøstl – a SHA-3 candidate, 2011.

[81] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge
University Press, 2001.

[82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270–299, 1984.

[83] Shai Halevi. A plausible approach to computer-aided cryptographic proofs.
Cryptology ePrint Archive, Report 2005/181, 2005.

[84] Paul R. Halmos. Measure Theory, volume 18 of Graduate Texts in Mathe-
matics. Springer-Verlag, 1974.

[85] Russell Impagliazzo and Bruce M. Kapron. Logics for reasoning about crypto-
graphic constructions. Journal of Computer and System Sciences, 72(2):286–
320, 2006.

[86] Richard Kemmerer. Analyzing encryption protocols using formal verification
techniques. IEEE Journal on Selected Areas in Communications, 7(4):448–
457, 1989.

[87] Dmitry Khovratovich, Ivica Nikolić, and Christian Rechberger. Rotational
rebound attacks on reduced Skein. In Advances in Cryptology – ASIA-
CRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pages
1–19. Springer, 2010.

[88] Peeter Laud. Semantics and program analysis of computationally secure infor-
mation flow. In European Symposium on Programming – ESOP 2001, volume
2028 of Lecture Notes in Computer Science, pages 77–91. Springer, 2001.

177

Bibliography

[89] Peeter Laud. Symmetric encryption in automatic analyses for confidentiality
against active adversaries. In IEEE Symposium on Security & Privacy – S&P
2004, pages 71–85. IEEE Computer Society, 2004.

[90] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key proto-
col using FDR. In Tools and Algorithms for Construction and Analysis of
Systems – TACAS 1996, volume 1055 of Lecture Notes in Computer Science,
pages 147–166. Springer, 1996.

[91] Stefan Lucks. A failure-friendly design principle for hash functions. In Ad-
vances in Cryptology – ASIACRYPT 2005, volume 3788 of Lecture Notes in
Computer Science, pages 474–494. Springer, 2005.

[92] Stéphane Manuel. Classification and generation of disturbance vectors for
collision attacks against SHA-1. Designs, Codes and Cryptography, 59(1–
3):247–263, 2011.

[93] Ian Mason and Carolyn Talcott. Equivalence in functional languages with
effects. Journal of Functional Programming, 1(3):287–327, 1991.

[94] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
impossibility results on reductions, and applications to the random oracle
methodology. In Theory of Cryptography Conference – TCC 2004, volume
2951 of Lecture Notes in Computer Science, pages 21–39. Springer, 2004.

[95] Catherine Meadows. Using narrowing in the analysis of key management
protocols. In IEEE Symposium on Security & Privacy – S&P 1989, pages
138–147. IEEE Computer Society, 1989.

[96] Ralph Merkle. One way hash functions and DES. In Advances in Cryptology
– CRYPTO 1989, volume 435 of Lecture Notes in Computer Science, pages
428–446. Springer, 1990.

[97] Michael Merritt. Cryptographic Protocols. PhD thesis, Georgia Institute of
Technology, 1983.

[98] Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption
in the presence of active adversaries. In Theory of Cryptography Conference –
TCC 2004, volume 2951 of Lecture Notes in Computer Science, pages 133–151.
Springer, 2004.

[99] Jonathan K. Millen. The interrogator: A tool for cryptographic protocol
security. In IEEE Symposium on Security & Privacy – S&P 1984, pages
134–141. IEEE Computer Society, 1984.

[100] Ilya Mironov and Lintao Zhang. Applications of SAT solvers to cryptanalysis
of hash functions. In Theory and Applications of Satisfiability Testing – SAT
2006, volume 4121 of Lecture Notes in Computer Science, pages 102–115.
Springer, 2006.

[101] Olaf Müller, Tobias Nipkow, David von Oheimb, and Oskar Slotosch. HOLCF
= HOL + LCF. Journal of Functional Programming, 9(2):191–223, 1999.

[102] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL –
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

178

Bibliography

[103] David Nowak. A framework for game-based security proofs. In Informa-
tion Security and Cryptology – ICISC 2007, volume 4861 of Lecture Notes in
Computer Science, pages 319–333. Springer, 2008.

[104] David Nowak. On formal verification of arithmetic-based cryptographic prim-
itives. In Information Security and Cryptology – ICISC 2008, volume 5461 of
Lecture Notes in Computer Science, pages 368–382. Springer, 2009.

[105] David Nowak and Yu Zhang. A calculus for game-based security proofs. In
Provable Security – ProvSec 2010, volume 6402 of Lecture Notes in Computer
Science, pages 35–52. Springer, 2010.

[106] Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6(1):85–128, 1998.

[107] Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive
systems and its application to secure message transmission. In IEEE Sym-
posium on Security & Privacy – S&P 2001, pages 184–200. IEEE Computer
Society, 2001.

[108] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[109] Stefan Richter. Integration theory and random variables. Archive of Formal
Proofs, 2004.

[110] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with
composition: Limitations of the indifferentiability framework. In Advances in
Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer
Science, pages 487–506. Springer, 2011.

[111] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics:
Definitions, implications, and separations for preimage resistance, second-
preimage resistance, and collision resistance. In Fast Software Encryption –
FSE 2004, volume 3017 of Lecture Notes in Computer Science, pages 371–388.
Springer, 2004.

[112] Adi Shamir. A polynomial-time algorithm for breaking the basic
Merkle-Hellman cryptosystem. IEEE Transactions on Information Theory,
30(5):699–704, 1984.

[113] Victor Shoup. OAEP reconsidered. In Advances in Cryptology – CRYPTO
2001, volume 2139 of Lecture Notes in Computer Science, pages 239–259.
Springer, 2001.

[114] Victor Shoup. Sequences of games: a tool for taming complexity in security
proofs. Cryptology ePrint Archive, Report 2004/332, 2004.

[115] Malte Skoruppa. Formal verification of ElGamal encryption using a proba-
bilistic lambda-calculus. Bachelor’s thesis, Saarland University, 2010.

[116] Malte Skoruppa. Verifiable security of prefix-free Merkle-Damg̊ard. Master’s
thesis, Saarland University, 2012.

[117] Christoph Sprenger, Michael Backes, David A. Basin, Birgit Pfitzmann, and
Michael Waidner. Cryptographically sound theorem proving. In Computer
Security Foundations Workshop – CSFW 2006, pages 153–166. IEEE Com-
puter Society, 2006.

179

Bibliography

[118] Christoph Sprenger and David A. Basin. Cryptographically-sound protocol-
model abstractions. In Computer Security Foundations Symposium – CSF
2008, pages 115–129. IEEE Computer Society, 2008.

[119] F. Javier Thayer Fabrega, Jonathan C. Herzog, and Joshua D. Guttman.
Strand spaces: Why is a security protocol correct? In IEEE Symposium
on Security & Privacy – S&P 1998, pages 160–171. IEEE Computer Society,
1998.

[120] Diana Toma and Dominique Borrione. Formal verification of a SHA-1 circuit
core using ACL2. In Theorem Proving in Higher Order Logics – TPHOLs
2005, volume 3603 of Lecture Notes in Computer Science, pages 326–341.
Springer, 2005.

[121] Xiaoyun Wang, Yiqun Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture
Notes in Computer Science, pages 17–36. Springer, 2005.

[122] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
In Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture
Notes in Computer Science, pages 19–35. Springer, 2005.

[123] Hongjun Wu. The hash function JH, 2011.

[124] Santiago Zanella Béguelin. Formal Certification of Game-Based Crypto-
graphic Proofs. PhD thesis, École Nationale Supérieure des Mines de Paris,
2010.

[125] Santiago Zanella Béguelin, Benjamin Grégoire, Gilles Barthe, and Federico
Olmedo. Formally certifying the security of digital signature schemes. In
IEEE Symposium on Security & Privacy – S&P 2009, pages 237–250. IEEE
Computer Society”, 2009.

[126] Yu Zhang. The computational SLR: a logic for reasoning about computa-
tional indistinguishability. Mathematical Structures in Computer Science,
20(5):951–975, 2010.

180

	Introduction
	Verypto - Formally Verifying Cryptographic Proofs
	Introduction to Game-based Proofs
	Contribution of this Chapter
	Design Decisions for Verypto
	Background on Isabelle/HOL
	Higher-Order Logic

	Mathematical Background
	Notation
	A Primer in Probability theory
	Limits of Kernels

	Syntax of the Language
	De Bruijn Notation

	Semantics of the Language
	Typing the Language
	Typing Contexts

	Embedding the Type System in HOL
	Embedding Programs into HOL
	Embedding Values into Programs
	Embedding Contexts into HOL
	Syntactic Sugar

	Program Relations
	Denotational Equivalence
	Observational Equivalence
	Polynomial Runtime
	Computational Indistinguishability

	Fundamental Properties of the Language
	Type Safety
	Evaluation Contexts and Redexes
	A Chaining Rule for Denotations
	The CIU Theorem
	Proof of the CIU Theorem

	Program Transformations
	Using obs to Transform Programs
	Transformations based on Computation Rules
	Expression Propagation
	Inlining let Statements
	Line Swapping

	Sample Applications
	Composition of One-way Functions
	IND-CPA Security of ElGamal

	EasyCrypt - Verified Security of Merkle-Damgård
	Background on CertiCrypt/EasyCrypt
	Contribution of this Chapter
	A Primer on EasyCrypt
	Input Language
	Probabilistic Relational Hoare Logic
	Reasoning about Probabilities

	The Merkle-Damgård Construction
	Collision Resistance
	Indifferentiability

	Discussion
	Related Work on Verification
	SHA-3 and Related Work on Hash Security
	Conclusion

	Formalization of Verypto in Isabelle/HOL
	Probability theory
	Program Terms
	Basic Values, Program Terms, and (Pure) Values
	Function Definitions
	Sigma Algebras
	Lemmas

	Contexts and Redexes
	Definitions
	Lemmas

	Semantics
	The Reduction Relation and the Denotation
	Lemmas

	Typing the Language
	Definitions
	Lemmas
	Progress and Preservation
	Typing Contexts

	Embedding the Type System in HOL
	Embedding Types, Environments, and Programs
	Embedding HOL Objects into the Language
	Representations of Programs in HOL
	Typed Contexts and Context Functions
	Syntax for Typed Programs

	Program Relations
	Denotational Equivalence
	Observational Equivalence
	Polynomial Runtime
	Computational Indistinguishability

	The CIU Theorem
	Generalized Program Terms
	The Instantiation Operator
	Definition of CIU Relations
	CIU Counterexamples
	Uniformity
	Finishing the Proof

	Program Transformations
	Transformations based on Computation Rules
	Expression Propagation
	Line Swapping

	Composing 1-1 One-way Functions
	Definitions
	The Sequence of Games

	IND-CPA Security of ElGamal
	Definitions
	Cyclic Groups
	The Sequence of Games

