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Kurzzusammenfassung

Diese Arbeit stellt ein neues schnelles explizites Diffusionsschema (FED)
vor, das wechselnde Zeitschrittweiten nutzt, um parabolische Probleme ef-
fizient zu lösen. Für die effiziente Lösung von elliptischen Problemen bauen
wir FED und auch einen auf FED basierenden Löser für lineare Gleichungs-
systeme, das schnelle Jacobi-Verfahren, in ein kaskadiertes Mehrgitterver-
fahren ein. Sowohl FED als auch das schnelle Jacobi-Verfahren sind sehr
gut für einfache parallele Implementierungen geeignet.

FED wird durch eine Zerlegung von aus der Signalverarbeitung bekann-
ten Mittelwertfiltern im Sinne von expliziten Schemata für eindimensionale
lineare Diffusionsprobleme motiviert. Die entsprechenden Zeitschrittweiten
verletzen die Stabilitätsbedingungen gewöhnlicher expliziter Schemata in
bis zu 50 Prozent der Fälle. Anders als das bekannte Superzeitschrittver-
fahren (STS) benötigt es dank der auf der Signalverarbeitung basierenden
Herleitung keinen zusätzlichen Dämpfungsparameter.

Zur Verbesserung der numerischen Stabilität präsentieren wir ein FED
Runge-Kutta Schema und eine semi-iterative Version des schnellen Jacobi-
Verfahrens. Im Bezug auf nichtlineare Probleme erlauben diese Verfahren
Updatestrategien, die sowohl die Genauigkeit als auch die Effizienz weiter
verbessern können.

Schließlich zeigen wir, dass FED mit Extrapolationsverfahren kombi-
niert werden kann. Dies liefert stabile explizite Schemata höherer Ordnung
zur Lösung parabolischer Probleme.
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Short Abstract

This thesis introduces a novel fast explicit diffusion (FED) scheme that
uses varying time step sizes to efficiently solve parabolic problems. For the
efficient solution of elliptic problems, we embed FED as well as an FED-
based solver for linear systems of equations, the Fast-Jacobi method, in
a cascadic coarse-to-fine approach. Both FED and Fast-Jacobi are very
well-suited for simple, parallel implementations.

FED is motivated from a decomposition of box filters, which is a well-
known signal processing tool, in terms of explicit schemes for one-dim-
ensional linear diffusion problems. The corresponding time step sizes violate
the stability restrictions of usual explicit schemes in up to 50 percent of all
cases. Unlike the known Super Time Stepping (STS) approach, it does not
require an additional damping parameter due to the derivation based on
signal processing.

To improve the numerical stability, we present an FED Runge-Kutta
scheme and a semi-iterative version of the Fast-Jacobi method. Regard-
ing nonlinear problems, these approaches allow update strategies that can
further improve both the accuracy and efficiency.

Finally, we show that FED can be combined with extrapolation meth-
ods. This yields stable, higher order explicit schemes for the solution of
parabolic problems.
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Abstract

The main topic of this thesis is the efficient numerical solution of partial
differential equations (PDEs) in the context of image analysis. Many tech-
niques in this field use diffusion processes that require the solution of linear
or nonlinear heat equations. With an increasing amount of data, this can
become very cumbersome.

To this end, we introduce a novel Fast Explicit Diffusion (FED) scheme.
It is as simple as an usual explicit scheme, but uses cycles with varying time
step sizes that violate stability restrictions in up to 50 percent of all cases.
Compared to the related and known Super Time Stepping (STS) method,
the time step sizes do not have to be modified by an additional damping
parameter. However, the FED time steps can be very large and thus FED
can reach large stopping times with a relatively small number of steps. More
precisely, in contrast to the linear dependence between the stopping time
and the number of time steps for usual explicit schemes with constant time
step size, the stopping time of an FED cycle depends quadratically on the
number of explicit steps.

For elliptic problems, we propose to embed FED in a cascadic coarse-to-
fine approach. Moreover, we introduce a Fast-Jacobi method with varying
relaxation parameters that are based on the FED time steps. This method
can also be used in combination with a cascadic approach.

FED schemes are derived with the help of an interesting connection be-
tween linear, symmetric filters and one-dimensional explicit linear diffusion
schemes. In this context, we prove a theorem stating that each linear, sym-
metric filter can be interpreted as an explicit linear diffusion scheme, where
the time step sizes may vary. Thus, we can relate the STS approach to
a specific linear filter that has problems with high frequency components
such as noise, and derive the FED scheme from the well-known box filter
kernel.

Since the box filter has much fewer problems concerning higher frequen-
cies, the FED scheme does not require additional parameters improving
the behaviour with respect to such frequency components. The transfer of
FED to arbitrary diffusion problems is straightforward. One only has to
take care of the corresponding time step size limits. The implementation is
very easy and requires marginal additional effort compared to usual explicit
schemes. Moreover, it is very well suited for parallel computing. However,
because of numerical rounding errors, we have to apply techniques for re-
arranging the sequence of the time step sizes. In this thesis, we consider
so-called κ-cycles that have been already proposed in the context of STS,
the rearrangement using Leja ordering, and another method proposed by
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Lebedev and Finogenov. These approaches are known to work well for
rearrangements of varying parameters.

Fortunately, the problem regarding this rearrangement can be solved by
rewriting FED in terms of a recursive box filter scheme or, in other words,
a Runge-Kutta scheme. To this end, we present a recurrence relation for
box filters that avoids the decomposition into explicit linear diffusion steps.
On the one hand this requires more computational effort, but on the other
hand provides robustness against numerical rounding errors without any
requirement for rearrangements. Furthermore, in contrast to FED, it is
possible to perform updates within a cycle, which can improve both the
accuracy and the efficiency. Such inner updates are also useful for efficient
predictor-corrector strategies, because they require good approximations
with respect to the predictor.

Finally, we combine FED schemes with the so-called Richardson extrap-
olation that allows the construction of higher order schemes. We show that
the resulting FED extrapolation scheme is stable, whereas the stability of
an STS extrapolation method depends on the above mentioned damping
parameter.

Our numerical experiments cover comparisons with popular solvers for
nonlinear diffusion problems such as additive operator splitting (AOS) for
isotropic or semi-implicit schemes for anisotropic processes, and demon-
strate the state-of-the-art performance of FED. For the elliptic case it turns
out that the Fast-Jacobi method can be more efficient than a parabolic FED
approach. Furthermore, we discuss the advantages of having no damping
parameter anymore. Overall, these experiments shall illustrate the univer-
sality of the proposed methods in the context of PDE-based image analysis.
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Chapter 1

Introduction

There are things known
and things unknown,

and in between are the doors.

Jim Morrison (The Doors)

1.1 Motivation

In recent years, digital image processing has become, and still becomes,
increasingly important for industrial as well as medical applications, and of
course in our daily life. The main task of image processing is the quality
enhancement of images such that they are more useful to a human observer
or a computer vision system. In this context, enhancement means for in-
stance the removal of noise, smoothing an image or the filling-in of missing
(corrupted) data.

If we consider, for example, the development of digital compact cam-
eras, a maximum resolution larger than 10 megapixels is today’s standard,
which means that one has to store and process lots of data. Thus, the
software used for the enhancement of the recorded images requires a better
and better hardware. Besides these higher requirements with respect to the
camera chips, it is essential to develop fast and clever algorithms that pro-
vide good filtering results within a reasonable time. They should be simple
to implement and well-suited for parallel computing, due to the widespread
availability of low cost parallel computing hardware such as GPUs.

Two important classes of methods for image processing that we are going
to consider in this thesis are linear filters and diffusion filtering. They both

1



2 CHAPTER 1. INTRODUCTION

enhance images by computing weighted averages of grey or colour values.
In contrast to linear filters, diffusion filters are based on partial differential
equations (PDEs) and can be adapted to the local image structure. Thus,
they are able to preserve e.g. image edges that are very important for
our visual system. However, these filter classes are not disjoint, since the
convolution with the Gaussian function is a linear filter and at the same
time equivalent to a diffusion process.

Besides the direct calculation of the above mentioned Gaussian convolu-
tion, it is also popular to iteratively apply linear filters as an approximation.
A well-known example for such an iterative application is the so-called box
or mean filter that simply computes mean values of symmetric neighbour-
hoods with a fixed size. It has nice properties that allow a fast computation
independent of the size of the neighbourhood, even in higher dimensions.
On the other hand, multi-dimensional diffusion filtering can get very ex-
pensive, since large linear systems of equations with band matrices, whose
bandwidths increase with the number of dimensions, must be solved. Fur-
thermore, if one wants to avoid linear systems, the alternative, i.e. explicit
numerical schemes, suffers from smaller time step size restrictions. There-
fore, explicit schemes can be less efficient. However, they are much easier to
implement and are well-suited for parallel computing. Moreover, one does
not have to take care of iterative solvers for linear systems of equations
and their corresponding stopping criteria or other parameters, which makes
explicit approaches less parameter-sensitive.

As we have mentioned above, box filtering is easy to implement and
represents a very efficient linear filter. Actually, we are looking for the
same in the case of PDE-based problems, i.e. easy and efficient numerical
schemes. Concerning linear diffusion or equivalently Gaussian convolution,
we can use an iterative application of the box filter. On the other hand, the
numerical solution of linear diffusion processes can be seen as an iterative
application of a numerical scheme with a fixed time step size. This gives
rise to the questions whether a box filter or, in general, a linear filter is in
some sense related to numerical diffusion schemes, and if yes, how can we
build the bridge between them.

The first goal of the thesis is it to build such a bridge and shed some light
on this connection. With the help of this, we are going to encounter a
special class of explicit diffusion schemes, introduce a novel scheme that
is based on discrete box filtering and has some advantages compared to
existing methods of the class. In this context, the second goal is to extend
the novel numerical scheme to solve arbitrary parabolic problems in PDE-
based image analysis. Since many applications in image analysis like e.g.
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inpainting require the solution of elliptic problems, we also look for methods
that allow the efficient treatment of these tasks.

The following sections will give a short overview about diffusion filtering
and linear filters. Furthermore, we deal with the representation of con-
tinuous linear filters in terms of differential operators. At the end of this
introductory chapter, we conclude with an outline.

1.2 Diffusion Filtering

Diffusion filtering is widely used in digital image processing and a well-
understood technique for image simplification, denoising or interpolation.
Actually, it is a physical process that equilibrates concentration differences
and at the same time preserves mass.

One main ingredient is Fick’s law, which states that the flux j depends
on the concentration gradient ∇u in terms of

j = −D∇u , (1.1)

where the so-called diffusion tensor D describes the relation between j and
the spatial gradient ∇u. It is a symmetric positive definite matrix. We
distinguish between the isotropic case, where j and ∇u are parallel, and
the anisotropic one without this parallelism. Note that in the isotropic case,
D can be replaced by a positive real-valued diffusivity.

To guarantee the preservation of mass, we also require the well-known
continuity equation

∂tu = − div j , (1.2)

with the time variable t. The divergence on the right hand side is a spatial
operator. Putting Fick’s law and the continuity equation together yields
the diffusion equation

∂tu = div (D∇u) . (1.3)

In image processing, we identify the concentration with grey or colour val-
ues. If the diffusion tensor D is constant over the whole image domain,
the corresponding process is called homogeneous diffusion. In the case of
a space-dependent tensor, we speak of inhomogeneous. Nonlinear diffusion
processes require a diffusion tensor that depends on the evolving image
itself. However, at first, we want to discuss linear diffusion, where the dif-
fusion tensor does not depend on the evolving image. Since we present just
a short overview, we recommend e.g. [147] for a more detailed discussion of
diffusion filters including the Gaussian scale space [78, 79, 152, 153, 158].
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1.2.1 Linear Diffusion

One of the simplest methods for smoothing images is linear diffusion filter-
ing. Here, the diffusion tensor is the identity matrix, which means D = I.
Eq. (1.3) then simplifies to the linear diffusion equation

∂tu = div (∇u) = ∆u , (1.4)

with the spatial Laplacian ∆. If our initial data is given by f , i.e. we assume
u(x, 0) = f(x), then the solution u of the linear diffusion process is (see
e.g. [73])

u(x, t) =

{
f(x) , t = 0
(G√

2t ∗ f)(x) , t > 0 ,
(1.5)

where Gσ denotes the d-dimensional Gaussian with the standard deviation
σ > 0,

Gσ(x) := (2πσ2)−
d
2 · exp

(

−|x|2
2σ2

)

, (1.6)

and the symbol ∗ means the continuous convolution

(g ∗ h)(x) =

∫

Rd

g(x− y) · h(y) dy . (1.7)

Note that the stopping time T of the diffusion process is related to the
standard deviation σ of the Gaussian via

T =
1

2
σ2 . (1.8)

The preceding theory is completely continuous. However, images or data
are given in a discrete form. To this end, we have to discretise the diffusion
process and apply numerical schemes.

Basic Numerical Schemes

Using a spatial discretisation, i.e. the Laplacian is replaced by a discrete
version, transforms the partial differential equation (PDE) (1.4) into a time-
continuous system of ordinary differential equations (ODEs)

du

dt
= Au , (1.9)

where u ∈ RN is the spatial discretisation of u and the symmetric negative
semi-definite matrix A ∈ RN×N represents the discrete Laplacian. This is
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the so-called method of lines [116, 120], which we will discuss later in more
detail. If the original image is given by u0 ∈ RN , the exact solution of
Eq. (1.9) corresponds to

u(t) = exp(t ·A)u0 , (1.10)

with the matrix exponential exp(·).
To approximate this solution, one often uses first order explicit or implicit
schemes. In both cases, the left hand side of Eq. (1.9) is discretised by a

first order finite difference uk+1−uk

τ
with the approximation um ≈ u(m · τ)

and a time step size τ > 0. If the right hand side is approximated by Auk,
this yields the explicit finite difference scheme

uk+1 = uk + τ ·Auk = (I + τ A)uk , (1.11)

where τ is limited with respect to the largest modulus of the eigenvalues
of A. Thus, the explicit scheme corresponds to a simple matrix-vector
multiplication. Using Auk+1 instead yields the implicit method

(I − τ A)uk+1 = uk . (1.12)

It is stable for all time step sizes τ > 0, but requires the solution of a linear
system.

1.2.2 Nonlinear Isotropic Diffusion

The main disadvantage of linear diffusion filtering is the delocalisation and
blurring of image edges that are important for human vision. To this end,
Perona and Malik have proposed a nonlinear diffusion method that avoids
these problems [105, 106]. Their proposed inhomogeneous process reduces
the diffusivity at locations that have a large likelihood to be image edges.
This likelihood depends on the magnitude of the image gradient |∇u|2.
The larger this magnitude is, the more likely is the existence of an edge
at the corresponding location. The underlying diffusion equation uses a
diagonal tensor D = g (|∇u|2) · I with a diffusivity function such as

g
(
s2
)

=
1

1 + s2

λ2

(λ > 0) . (1.13)

Thus, they consider

∂tu = div
(
g
(
|∇u|2

)
∇u
)
. (1.14)
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The parameter λ > 0 is called contrast parameter. It separates smoothing
forward diffusion from edge-enhancing backward diffusion. The resulting
forward-backward diffusion behaviour can also appear for other diffusivities
than (1.13). An overview of several common diffusivities for the nonlinear
isotropic Perona-Malik model can be found e.g. in [11].

Unfortunately, the Perona-Malik filter has theoretical problems with respect
to well-posedness. For the continuous setting, Kichenassamy has shown that
it is not well-posed [81]. However, a former result discovered by Höllig has
already indicated problems with forward-backward diffusion processes [75]:
He has found a forward-backward process (different from Perona-Malik)
that has infinitely many solutions.

To overcome such problems, Catté et al. [25] have proposed to replace
the diffusivity g (|∇u|2) by a Gaussian-smoothed version g (|∇uσ|2) with
uσ := Gσ ∗ u :

∂tu = div
(
g
(
|∇uσ|2

)
∇u
)
. (1.15)

They have proved existence, uniqueness and regularity of a solution for
σ > 0 [25]. Besides these nice theoretical results, the Gaussian convolution
yields more robustness against noise. However, one should mention that
spatial discretisations of the original Perona-Malik filter also work like a
regularisation and give well-posedness, which has been shown by Weickert
and Benhamouda [151].

Numerical Schemes

The construction of schemes for the solution of the regularised nonlinear
diffusion equation (1.15) is actually very similar to the linear case. We also
perform a spatial discretisation yielding the ODE system

du

dt
= A(u)u . (1.16)

If we just replace A in the linear schemes by A
(
uk
)
for each time step,

we get the explicit scheme

uk+1 =
(
I + τ A

(
uk
))

uk , (1.17)

as well as the semi-implicit method
(
I − τ A

(
uk
))

uk+1 = uk . (1.18)

For multi-dimensional problems, the semi-implicit method requires the so-
lution of huge linear systems with more than three non-zero entries per
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row. In this case, the popular Thomas algorithm (tridiagonal matrix algo-
rithm) [131], whose complexity is linear in the number of unknowns, can
not be applied. Thus, so-called additive operator splitting (AOS) schemes
have been proposed [93, 155]. The main idea is to decompose the multi-
dimensional problem into several 1-D problems, which yields linear systems
of equations with tridiagonal matrices. As mentioned above, these sys-
tems can be solved very efficiently with the help of the Thomas algorithm.
Concerning a d-dimensional problem, the inverse matrix of (I − τA) is
replaced by a first order Taylor approximation:

(
I − τ A

(
uk
))−1 ≈ 1

d

d∑

ℓ=1

(
I − d · τ Aℓ

(
uk
))−1

, (1.19)

where the matrices Aℓ(·) represent the 1-D problems and A(·) =
d∑

ℓ=1

Aℓ(·).
The AOS scheme is more efficient than explicit and usual semi-implicit ap-
proaches. Furthermore, it works well together with parallelisation strate-
gies [17, 149, 156]. However, it induces a splitting error that increases with
the magnitude of the time step size τ .

So far, we have only discussed isotropic diffusion processes, where the flux is
parallel to the gradient. If one wants to bias the flux towards the orientation
of interesting features, the introduction of an anisotropic model is necessary.

1.2.3 Nonlinear Anisotropic Diffusion

Nonlinear anisotropic diffusion filters have been proposed by Cottet and
Germain [34] as well as Weickert [145]. Since the flux does not have to
be parallel to the image gradient, these filters allow not only to steer the
amount of diffusion, but also its direction. Thus, anisotropic diffusion filters
can yield a better edge enhancement than their isotropic counterparts, and
may also be employed to enhance flow-like structures.

Now we review two specific 2-D anisotropic diffusion filters that we are
going to use for the numerical experiments in this thesis.

Edge-Enhancing Diffusion (EED)

Edge-enhancing anisotropic diffusion [146] inhibits diffusion across edges
and instead prefers smoothing within the image regions. It follows the
evolution equation

∂tu = div (D (∇uσ)∇u) , (1.20)
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where D ∈ R
2×2 is the symmetric positive definite diffusion tensor, and uσ

is the image u convolved with a 2-D Gaussian of standard deviation σ > 0.
Since we want to inhibit diffusion across edges, i.e. parallel to the gradient
∇uσ, the corresponding eigenvalue should be very small at image edges,
which means that we consider the value g (|∇uσ|2). For the diffusion along
the image edge, i.e. perpendicular to the image gradient, we assume the
eigenvalue to be equal to 1. Thus, the diffusion tensor can be written as

D (∇uσ) = g
(
|∇uσ|2

)
· ∇uσ∇u⊤

σ

|∇uσ|2
+ 1 · ∇u⊥

σ∇u⊥⊤
σ

|∇u⊥
σ |2

, (1.21)

where ·⊤ means the usual matrix transposition and
(
a
b

)⊥
:=
(−b

a

)
, i.e.

the corresponding orthogonal vector. In fact, besides the regularisation,
the Gaussian convolution is important to achieve anisotropy. Without the
convolution, we would have

D (∇u)∇u = g
(
|∇u|2

)
· ∇u∇u⊤

|∇u|2 ∇u + 1 · ∇u⊥
∇u⊥⊤

|∇u⊥|2 ∇u

= g
(
|∇u|2

)
∇u · ∇u⊤

∇u

|∇u|2
︸ ︷︷ ︸

=1

+ ∇u⊥ · ∇u⊥⊤
∇u

|∇u⊥|2
︸ ︷︷ ︸

=0

= g
(
|∇u|2

)
∇u , (1.22)

which corresponds to an isotropic diffusion process.

In our experiments we shall use EED with the so-called Charbonnier diffu-
sivity function [29]

g
(
s2
)

=
(

1 + s2

λ2

)−1/2

. (1.23)

It has proven to be highly useful for image interpolation purposes such as
the compression method in [54].

Coherence-Enhancing Diffusion (CED)

Coherence-enhancing diffusion filtering [148] enhances line- and flow-like
structures. Its diffusion tensor has the same eigenvectors as the so-called
structure tensor [51]

Jρ (∇uσ) := Gρ ∗
(
∇uσ∇u⊤

σ

)
, (1.24)
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with the 2-D Gaussian Gρ of standard deviation ρ, and its eigenvalues are
given by

λ1 := α (1.25)

λ2 :=

{

α, if µ1 = µ2 ,

α + (1− α) exp
(

−λ
(µ1−µ2)2

)

, else
, (1.26)

where µ1 and µ2 are the eigenvalues of the structure tensor. We assume
that they satisfy µ1 ≥ µ2. For further details we refer to [147, 148]. As a
space discretisation for CED, we have used the one in [157], which has low
dissipativity.

Numerical Schemes

The system of ODEs resulting from the spatial discretisation is very similar
to the isotropic Eq. (1.16). Since the averaging neighbourhood is larger due
to the mixed derivatives, the system matrix A(u) is less sparse. Unfortu-
nately, there is no efficient full operator splitting like AOS in the general
anisotropic case. Instead, there has been a number of proposals for numer-
ical schemes for anisotropic diffusion processes (cf. e.g. [31, 41, 107, 108,
154, 157]), although probably the two most popular ways to implement
anisotropic diffusion filters are explicit and semi-implicit finite difference
schemes as described above for the isotropic case.

However, in contrast to the isotropic case, we use a modified semi-implicit
scheme that is numerically more robust [150]. To this end, we introduce

the vector v := uk+1−uk

τ
and rewrite the scheme

(
I − τ A

(
uk
))

uk+1 = uk (1.27)

by means of the new linear system

(
I − τ A

(
uk
))

v = A
(
uk
)
uk . (1.28)

Following the definition of v, the solution uk+1 is then given by uk + τ v.

1.3 Linear Filtering

In this section we want to consider linear filters Lk that are convolutions
with appropriate kernel functions k : Rd → R. However, the definition of
the function k indicates that we first restrict ourselves to the continuous
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setting. Given an arbitrary function f : Rd → R, we compute a filtered
version Lk[f ] via

Lk[f ](x) := (k ∗ f)(x) =

∫

Rd

k(x− y) · f(y) dy . (1.29)

Note that we have already presented a special case of a linear filter in the
last section: Linear diffusion filtering corresponds to a convolution with the
Gaussian from Eq. (1.6), i.e. k = Gσ [73].

Actually, continuous convolutions can be replaced by so-called pseudo-
differential operators, which means that the continuous linear filtering is
equivalent to the application of a pseudo-differential operator [38]. In or-
der to clarify this, we need some technical details like e.g. the popular
Fourier transform. It has many nice properties that we shortly discuss in
the following.

1.3.1 Fourier Transform and Convolution Theorem

At first, we want to introduce some function spaces, namely the Schwartz
space (see e.g. [129, 130]), on which the Fourier transform can be declared,
and the space of p-integrable functions. Therefore, we need the multi-index
notation:

Definition 1.1. For a d-dimensional multi-index α = (α1, . . . αd) ∈ Nd
0

and x = (x1, . . . , xd)
T ∈ Rd we define the power

xα := xα1
1 · xα2

2 · · · · · xαd
d , (1.30)

and the higher order partial derivative

Dα :=
∂|α|

∂α1
x1 ∂

α2
x2 . . . ∂

αd
xd

, (1.31)

with |α| :=
d∑

i=1

αi .

With the help of this notation, we are able to define the above mentioned
function spaces:
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Definition 1.2. The Schwartz space or the space of rapidly decreas-

ing functions S = S
(
Rd
)
on Rd is the function space

S =

{

f ∈ C∞ (
R

d
)
| ‖f‖α,β := sup

x∈Rd

|xα · Dβf(x)| < ∞ ∀α,β

}

, (1.32)

where α,β are multi-indices and C∞ (Rd
)
the set of smooth functions from

Rd to C.

Furthermore we define the space of p-integrable functions on Rd for
p ≥ 1,

Lp

(
R

d
)

=

{

f : Rd → C | ‖f‖p :=

(∫

Rd

|f(x)|p dx
) 1

p

< ∞
}

. (1.33)

Such spaces are very important, if one wants to define operators like for
instance integral transformations with a kernel Ψ,

A[f ](x) =

∫

E

Ψ(x,y) · f(y) dy , x ∈ G ⊂ R
d , (1.34)

where E ⊂ Rd. It is clear that the domain of the operator A depends on
the kernel Ψ : G × E → R. In the case of a bounded kernel |Ψ| ≤ c, the
integral in Eq. (1.34) exists for f ∈ L1. A very popular integral transform
with a bounded kernel is the Fourier transform (see e.g. [13, 20, 159] for
further details):

Definition 1.3. Let f ∈ S
(
Rd
)
or f ∈ L1

(
Rd
)
and ξ ∈ Rd. Then

F [f ](ξ) = f̂(ξ) = (2π)−
d
2

∫

Rd

f(x) · exp(−ixTξ) dx (1.35)

is the Fourier transform of f .

The inverse Fourier transform is given by

f(x) = F−1
[
f̂
]
(x) = (2π)−

d
2

∫

Rd

f̂(ξ) · exp(ixTξ) dξ . (1.36)

The Fourier transform decomposes the function f(x) into its frequency

components
{

f̂(ξ) | ξ ∈ Rd
}

. In the multi-dimensional case, the frequency

ξ ∈ Rd\{0} can be interpreted as a normal vector of a hyperplane on which
the kernel function wξ(x) = exp(−ixTξ) is constant. This can be seen as
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follows: If x is on a hyperplane with normal vector ξ 6= 0, i.e. x = α ·ξ+η

with ηTξ = 0, we have

wξ(x) = exp(−i (αξ + η)Tξ) = exp(−i α |ξ|2) . (1.37)

For ξ = 0, the Fourier transform simplifies to a scaled mean value of the
function f :

F [f ](0) = (2π)−
d
2

∫

Rd

f(x) dx . (1.38)

Since f̂(ξ) ∈ C, we can express it in the (complex) polar coordinate system:

f̂(ξ) = |f̂(ξ)| · exp(i θ(ξ)) . (1.39)

The magnitude |f̂(ξ)| denotes the so-called Fourier spectrum and θ(ξ) the
phase angle. This Fourier spectrum describes the importance or influence of
the frequency ξ for the function f . Hence, it is often used for visualisation
purposes.

At this point, we want to compute the Fourier transform of a 1-D Gaussian
and another popular function that is also very important for signal as well
as image processing applications, namely a box function with finite support.

Examples

(1) 1-D Gaussian with σ > 0, Gσ(x) = 1√
2πσ

exp
(

− x2

2σ2

)

∈ S(R) :

F [Gσ](ξ) =
1

2πσ

∫

R

exp
(

− x2

2σ2

)

· exp(−i xξ) dx

=
1

2πσ
exp

(

−σ2ξ2

2

) ∫

R

exp
(

− (x+i σ2ξ)2

2σ2

)

dx

=
1

2πσ
exp

(

−σ2ξ2

2

)∫

R

exp
(

− x2

2σ2

)

dx

︸ ︷︷ ︸

=
√
2πσ

=
1√
2π

exp
(

−σ2ξ2

2

)

= σ−1 ·Gσ−1(ξ) . (1.40)
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(2) Normalised 1-D box function (or characteristic function) with the ra-
dius r > 0, br(x) = 1

2r
· χ[−r,r](x) ∈ L1(R) :

F [br](ξ) =
1√
2π

· 1

2r

r∫

−r

exp(−i xξ) dx =
1√
8πr

r∫

−r

cos(xξ) dx

=
1√
2πr

r∫

0

cos(xξ) dx =
1√
2π

· 1

rξ
sin(rξ)

=
1√
2π

· sinc(rξ) , (1.41)

where we have used the definition of the sinc-function, i.e.

sinc(x) =
sin(x)

x
. (1.42)

These two examples are very interesting from a theoretical point of view.
The first one shows that the Fourier transform of a one-dimensional Gaus-
sian remains a Gaussian, but with inverse standard deviation. This is also
valid for higher dimensions. For the special case σ = 1, the Gaussian does
not change at all. Hence, it is an eigenfunction of the Fourier transform
with eigenvalue 1. The second example with the box function demonstrates
that the Fourier transform of a function with finite support can have an
infinite support.

Another important property is that derivatives of f in the spatial domain
correspond to multiplications with polynomials in the Fourier domain:

Proposition 1.4 (Derivative Property of Fourier Transform). Let
f ∈ S

(
Rd
)
. Then we have

F [Dαf ](ξ) = i|α| · ξα · F [f ](ξ) (1.43)

for all multi-indices α ∈ N
d
0.

This can be very useful for the solution of linear differential equations, since
they correspond to polynomial equations in the Fourier domain. Having
computed a solution of the polynomial equation, the application of the
inverse transform yields the solution of the differential equation.
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Besides this differentiation rule, one of the main results regarding the con-
nection between operations in the spatial and Fourier domain is the well-
known convolution theorem. It states that the spatial convolution of two
functions corresponds to a pointwise multiplication of their Fourier trans-
forms:

Theorem 1.5 (Convolution Theorem). Let f, g ∈ S
(
Rd
)
. The Fourier

transform of a convolution fulfils

F [f ∗ g](ξ) = (2π)
d
2 · F [f ](ξ) · F [g](ξ) . (1.44)

Proof. With the substitution z = x− y we obtain

F [f ∗ g](ξ) = (2π)−
d
2

∫

Rd

∫

Rd

f(x− y) · g(y) · exp(−ixT ξ) dy dx

= (2π)
d
2 · (2π)− d

2

∫

Rd

f(z) · exp(−i zTξ) dz

· (2π)− d
2

∫

Rd

g(y) · exp(−iyTξ) dy

= (2π)
d
2 · F [f ](ξ) · F [g](ξ) . (1.45)

Such a convolution theorem also exists in the discrete case and hence allows
us to avoid expensive discrete convolutions with large filter kernels. If the
Fourier transforms are known, one can use the cheap multiplication and
apply the inverse Fourier transform to get the result of the convolution.

Now we have all necessary ingredients in order to represent convolutions as
pseudo-differential operators.

1.3.2 Filter Kernels and Pseudo-Differential
Operators

We have already mentioned that the convolution with e.g. a Gaussian kernel
is an important smoothing operator in digital signal or image processing.
It can improve the corresponding data by removing noise or artifacts. We
distinguish mainly between three different basic types: Lowpass, highpass
and bandpass filters.
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Lowpass filters are designed as convolutions with averaging kernels. They
attenuate high frequency components like noise. Typical examples are the
above mentioned convolutions with a Gaussian or a box function.

In contrast to lowpass filters, highpass filters amplify high frequencies and
attenuate low frequencies. The goal is to remove low-frequent background
perturbations or to sharpen blurry structures. They can be easily con-
structed by computing the difference between the original data and a low-
pass filtered version. Concerning image processing, an important class of
highpass filters consists of derivative filters that can be used for detecting
edges within an image.

To keep structures within a specific frequency band, one applies so-called
bandpass filters. These filters are less important for image enhancement.
Nevertheless, they can be useful for the extraction of interesting structures
on certain scales. Their construction is possible by subtracting two lowpass
filters.

The following thoughts are based on the work by Didas and Weickert [38].
Let us assume we have given a filter kernel k whose Fourier transform exists
and want to convolve it with a function f ∈ S(R). If k̂ is additionally
analytic, then it has a power series representation

k̂(ξ) =

∞∑

m=0

am ξm . (1.46)

Using this together with the convolution theorem, we get

F [k ∗ f ](ξ) =
√
2π ·

∞∑

m=0

am ξm · f̂(ξ) . (1.47)

Considering Proposition 1.4, this can be seen as a sum of arbitrary or-
der derivatives of f in the Fourier domain. The application of the inverse
transform yields

k ∗ f =
√
2π · F−1

[ ∞∑

m=0

am ξm · f̂(ξ)
]

. (1.48)

Under the assumption of sufficient convergence conditions for the power
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series, we may interchange the sum and the inverse Fourier transform:

F−1

[ ∞∑

m=0

am ξm · f̂(ξ)
]

=

∞∑

m=0

am · F−1
[

ξmf̂(ξ)
]

=

∞∑

m=0

am

(

−i
d

dx

)m

f . (1.49)

Using the pseudo-differential operator

k̂

(

−i
d

dx

)

:=
∞∑

m=0

am

(

−i
d

dx

)m

, (1.50)

the convolution with the kernel k, i.e. the application of the linear filter
Lk[f ], can finally be written as [38]

Lk[f ] = k ∗ f =
√
2π · k̂

(

−i
d

dx

)

f . (1.51)

After the description of the general idea, we now want to show two exam-
ples of filter kernels: The first example is a Gaussian kernel, which means
that we rewrite linear diffusion filtering as a pseudo-differential operator.
Another basic operation in image processing is to take the mean of a sym-
metric neighbourhood of pixels. This corresponds to a convolution with a
normalised box kernel that is part of our second example. Further examples
are given in [38].

Examples

(1) Convolution with a Gaussian Gσ (linear diffusion): We have shown
that the Fourier transform is again a Gaussian. With the help of the
exponential series we have

σ−1 ·Gσ−1(ξ) =
1√
2π

·
∞∑

m=0

(−1)m
︸ ︷︷ ︸

=i2m

(σξ)2m

2mm!

=
1√
2π

·
∞∑

m=0

σ2m

2mm!
(i ξ)2m . (1.52)
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Hence, we write the convolution in terms of a pseudo-differential op-
erator [38]

f ∗Gσ = exp

(
σ2

2
· d2

dx2

)

f =

∞∑

m=0

σ2m

2mm!
· d2m

dx2m
f

= f +
σ2

2
· f ′′ +

σ4

8
· f ′′′′ + . . . . (1.53)

(2) Convolution with a box kernel: As mentioned above, the Fourier
transform of br(x) is given by

b̂r(ξ) =
1√
2π

· sinc(rξ) . (1.54)

With the Taylor expansion of the sinc-function we obtain

b̂r(ξ) =
1√
2π

·
∞∑

m=0

(−1)m
(rξ)2m

(2m+ 1)!

=
1√
2π

·
∞∑

m=0

r2m

(2m+ 1)!
(i ξ)2m . (1.55)

Thus, we can represent the convolution with the box kernel br without
any integral [38]:

f ∗ br = sinc

(

−i r · d

dx

)

f =

∞∑

m=0

r2m

(2m+ 1)!
· d2m

dx2m
f

= f +
r2

6
· f ′′ +

r4

120
· f ′′′′ + . . . . (1.56)

If we reconsider the second example, it is also possible to write the sinc
function as an infinite product [55]:

sinc

(

−i r · d

dx

)

=
∞∏

m=1

(

1 +
r2

(mπ)2
d2

dx2

)

. (1.57)

On the other hand, an explicit time discretisation of the 1-D linear diffusion
equation

∂tu(x, t) = ∂xxu(x, t) (1.58)
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with a time step size τ > 0 yields the scheme

u(x, (ℓ+ 1)τ) = u(x, ℓτ) + τ
d2

dx2
u(x, ℓτ)

=

(

1 + τ
d2

dx2

)

u(x, ℓτ) . (1.59)

Thus, a convolution with a box kernel can be represented as an infinite
series of discrete explicit time steps with the varying step sizes τm = r2

(mπ)2

(m = 1, 2, . . . ). Interestingly, the step sizes depend quadratically on the
radius r of the box function and become arbitrarily small for m → ∞.

1.4 Outline of the Thesis

We have seen that the concept of pseudo-differential operators allows us to
see a connection between the continuous convolution with a box kernel and
a time-discrete diffusion process using infinitely many varying time steps.

However, our actual goal is to find such a representation in the discrete
setting. To this end, we are going to develop a similar concept to pseudo-
differential operators for discrete linear filters in Chapter 2. It will help us to
express them in terms of numerical diffusion schemes with cycles of varying
explicit time steps that partially violate stability restrictions. Fortunately,
in contrast to the continuous case, the number of the time steps within a
cycle is finite. Chapter 3 focuses in particular on the novel cyclic diffusion
scheme that is based on 1-D discrete box filters. We are going to analyse the
scheme with respect to theoretical as well as numerical stability, and show
how it can be used to solve arbitrary parabolic problems. Based on this
scheme, we construct a Jacobi-like linear system solver for elliptic problems.
In Chapter 4, we present a recursion formula for box filters that helps us
to improve the numerical stability of the novel methods. In this context,
we also examine the relation to Runge-Kutta schemes and use it for the
development of further schemes. We will also see that the recursion relation
can be transferred to the Fast-Jacobi method. Afterwards, Chapter 5 shows
that the novel cyclic explicit scheme can be used for time extrapolation,
which is a way to construct second order methods. The thesis is concluded
in Chapter 6, and we also give an outlook that contains some aspects for
further research.



Chapter 2

A New Perspective on
Discrete Linear Filters

Everything we hear is an opinion, not a fact.
Everything we see is a perspective, not the truth.

Marcus Aurelius

We are now going to derive and analyse the equivalence between 1-D lin-
ear symmetric filters and explicit diffusion schemes with varying time step
sizes. The derivation makes use of a factorisation of one-dimensional linear
symmetric filter kernels. To this end, we first consider the series expansions
of such filters, which means that we represent them as a sum of discrete
derivatives, i.e. finite differences. This chapter is mainly based on [165] and
provides a more detailed analysis.

2.1 Discrete Linear Filters

Let f = (fi)i∈Z and g = (gi)i∈Z be discrete real-valued 1-D signals given
on an equidistant grid with mesh size h > 0. The discrete convolution of
the two signals is declared as

(f ∗h g)i :=
∑

k∈Z
fk · gi+k . (2.1)

19
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It is well-defined for f , g ∈ ℓ2(Z) with

ℓ2(Z) :=

{

a = (aj)j∈Z | ‖a‖2 :=
(∑

j∈Z
a2j

) 1
2
< ∞

}

, (2.2)

or if one of the two signals, w.l.o.g. g, is finite. This means that there exists
an index i0 ∈ N with g−i = gi = 0 for i ≥ i0. In this case, the existence
of a constant C > 0 with |fi| ≤ C for all i ∈ Z is sufficient.

When it comes to discrete linear filtering, the discrete convolution plays a
very important role. Actually, a discrete linear filter is a transformation L
that maps a signal to another one, e.g. L(f ) = g. It satisfies the so-called
superposition principle

L(α · f + β · g) = α · L(f ) + β · L(g) (2.3)

for all signals f , g and α, β ∈ R. Additionally, we assume that the filter
is shift invariant, i.e.

LTm(f ) = TmL(f ) , (2.4)

with m ∈ Z and the shift operator Tm(f ) := f̃ = (fi−m)i∈Z . If we define
the signal δ := (δ0,i)i∈Z with the Kronecker delta

δi,j =

{
1 , i = j
0 , else

, (2.5)

the resulting signal L(δ) is called impulse response. Since the signal f can
be written as

f =
∑

i∈Z
fi · Ti(δ) , (2.6)

we get with the help of the superposition principle and the shift invariance

L(f ) =
∑

i∈Z
fi · TiL(δ) . (2.7)

This means that L is completely characterised by its impulse response L(δ).
It can be shown that a linear shift invariant filter always performs a con-
volution [80]. The corresponding convolution kernel (mask) is given by the
impulse response.

Therefore, we define a discrete filter Lh
2n+1 of length (2n+1)h with

n ∈ N in terms of the discrete convolution

(
Lh
2n+1(f )

)

i
:=

n∑

k=−n

wk · fi+k , (2.8)
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where wk ∈ R are the so-called weights of the convolution kernel. We
should mention that the definition of the length comes from the support
[
−(n + 1

2
)h , (n + 1

2
)h
]
of the continuous version W (x) of the discrete ker-

nel, which we obtain by sampling at the points xk = k ·h, i.e. wk = W (xk).
Note that the points xk are the midpoints of the corresponding intervals
[
(k − 1

2
)h , (k + 1

2
)h
]
. Since we initially focus on diffusion processes, i.e.

symmetric kernels, we assume w−k = wk for k ≥ 1. More details about
discrete linear filters can be found for instance in [24, 80, 103].

2.2 Examples for Symmetric Filters

In this subsection, we present some well-known examples for discrete, sym-
metric filter kernels and show how they are related to linear diffusion. As
we have already mentioned, a linear diffusion process is equivalent to a con-
volution of the original signal data with a Gaussian. Instead of discretising
the Gaussian and computing the corresponding discrete convolution, we can
also apply arbitrary filter kernels with non-negative weights that sum up to
1. This is possible due to the well-known central limit theorem [49]. To this
end, the filter kernels are interpreted as probability density functions. The
convolution of k ≥ 2 density functions belonging to independent random
variables X1, . . . , Xk corresponds to the probability density function of the
sum X1 + ...+Xk. Then the central limit theorem states that this density
function converges to a Gaussian for k → ∞.

Our first example is actually a direct approximation for a Gaussian con-
volution, whereas the other three examples require an iterative application.

Binomial Kernel

A popular way for the approximation of Gaussians are binomial kernels.
Their weights are given by

wk =
1

4n
·
(

2n

n+ k

)

(2.9)

for a filter kernel with length (2n+1)h. The factor 1
4n

ensures that the
weights sum up to 1. Binomial kernels have some nice properties: They
can be used even in integer arithmetics, because the normalisation factors
are powers of two and the division corresponds to bit shifts. Moreover, the
composition of two binomial kernels with length (2n1+1)h and (2n2+1)h
respectively is again a binomial kernel that has the length (2(n1+n2)+1)h.
Hence, they are also suitable for an iterative application. Since the variance
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σ2 of a symmetric filter kernel with the weights wk, k ∈ {−n, . . . , n}, is given
by the sum

σ2 = h2 ·
n∑

k=−n

k2 · wk , (2.10)

one can show that a binomial kernel of length (2n+1)h has the variance
σ2 = h2 · n

2
. Therefore, the standard deviation σ can not be tuned con-

tinuously. Since σ is proportional to
√
n, in particular very large standard

deviations require a substantial computational effort.
Figure 2.1 illustrates an example regarding the binomial kernel with unit

grid size. Using a kernel of length five, we iterate it three times. Actually,
this corresponds to a binomial kernel with length 13. We compare this
kernel to a 1-D Gaussian with the same standard deviation σ =

√
3. As

one can see, the approximation given by the (iterated) binomial kernel is
very good.

Discrete Filter with Maximum Variance

If we assume non-negative weights that sum up to 1 and reconsider the
formula in Eq. (2.10), the maximum variance for the length (2n+1)h is
σ2 = h2 · n2. It is reached for the kernel defined by the weights

wk =

{
1
2

, k = ±n

0 , else .
(2.11)

We denote the corresponding linear filter kernel by V h
2n+1. Obviously, the

standard deviation σ can not be tuned continuously neither. While the
variance of the binomial kernel depends linearly on the width n, we have
in this case a quadratic dependency. It means that even a small number of
iterations of this filter yields an approximation for a Gaussian with a large
standard deviation. However, in contrast to the binomial kernel, it lacks in
accuracy even for a large number of iterative applications. Hence, we have
some kind of a trade-off between the variance σ2 and the accuracy of the
approximation.

In Fig. 2.1 we see, for example, that the three times iterated kernel
with length five provides a very poor approximation for the Gaussian with
standard deviation σ =

√
12.

Discrete Box Filter

At this point we consider some kind of a compromise between the two
previous filter kernels, namely a box filter. It is well-known that iterated
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box filtering yields a good approximation for Gaussian kernels [77]. The
corresponding 1-D filter kernel for the length (2n+1)h consists of the
uniform weights

wk =
1

2n+ 1
. (2.12)

Concerning the variance, we obtain

σ2 =
h2

2n + 1
·

n∑

k=−n

k2 =
2h2

2n+ 1
·

n∑

k=1

k2

︸ ︷︷ ︸

=
n(n+1)(2n+1)

6

= h2 · n
2 + n

3
. (2.13)

Thus, it also grows quadratically in n and covers only a discrete set of vari-
ances like the two previous examples. We denote a discrete box filter of
length (2n+1)h by Bh

2n+1. Since box filters for multi-dimensional problems
are separable, i.e. each direction can be treated as a convolution with a
1-D box kernel, they are also very efficient for multi-dimensional applica-
tions. Moreover, there exist very efficient ways for the evaluation of the
convolution like for instance the sliding-window approach [167] that uses
the relation

(
Bh

2n+1(f )
)

i
=
(
Bh

2n+1(f )
)

i−1
− 1

2n+ 1
·fi−1−n +

1

2n+ 1
·fi+n . (2.14)

Hence, except for the initialisation, the complexity is independent of the
filter width and grows linearly in the signal length.

Although the variance grows quadratically in n, the example in Fig. 2.1
illustrates that iterated box filtering yields a good approximation. It is
much better than the result of the filter with maximum variance.

Extended Box Filter

To overcome the problem of the discrete distribution with respect to the
box filter variances, Gwosdek et al. have proposed the so-called Extended
Box Filter [167]. This approach allows to generate arbitrary variances. The
main idea for an extended filter Eh

2n+1 with length (2n+1)h is to consider
a scaled box filter whose length is (2n−1)h and add an additional weight
at the boundaries such that all weights sum up to 1. More precisely, an
extended box filter Eh

2n+1 is a convex combination of a discrete box filter
Bh

2n−1 and the filter with maximum variance V h
2n+1, i.e.

Eh
2n+1 = γ · Bh

2n−1 + (1− γ) · V h
2n+1 , (2.15)
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with γ ∈ (0, 1). The choice γ = 2n−1
2n+1

yields the usual box filter Bh
2n+1,

which means that the extended filter can be seen as a generalisation. Its
variance is just the convex sum of the variances of the two previous filters.
Thus, it is given by

σ2 = h2 ·
(

γ · n
2 − n

3
+ (1− γ) · n2

)

= h2 ·
(

n2 − γ · 2n
2 + n

3

)

. (2.16)

Since γ is a real-valued number, the variance σ2 can be tuned in a con-
tinuous way. Therefore, the filter allows a more accurate approximation
for Gaussian kernels with arbitrary standard deviations. Furthermore, the
extended version shares some nice properties with the usual box filter: It is
also separable and can be computed efficiently in a sliding-window manner.
For further details, see [167]. As for the other filters, an example for the
iterative application is shown in Fig. 2.1 with γ = 3/4. One can see that
the approximation quality is comparable to the usual box filter.

2.3 Representation as Discrete

Pseudo-Differential Operators

In Chapter 1 we have seen that a continuous convolution can be repre-
sented as a weighted infinite sum of arbitrary order derivatives, a pseudo-
differential operator. Now we want to show that every discrete linear, sym-
metric 1-D filter Lh

2n+1 can be written as a weighted sum of discrete even
order derivatives, i.e. a finite series expansion like

Lh
2n+1 =

n∑

m=0

α(n)
m ·∆m

h , (2.17)

with the discrete 1-D Laplacian defined by means of the finite difference

(∆hf )i :=
fi+1 − 2 fi + fi−1

h2
, (2.18)

and real-valued coefficients α
(n)
m . Note that this finite difference is equivalent

to a convolution with the symmetric kernel 1
h2 (1,−2, 1). For m = 0, ∆m

h

is just the identity operator and for m > 1 the m-times composition of the
discrete Laplacian, which corresponds to a finite difference approximating
the derivative of order 2m. The following proposition states a closed-form
expression for these finite differences.
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Figure 2.1: Examples for filter kernels with unit grid size. Each example
consists of the original kernel with length 5 (grey), the three times iterated
kernel (black), and the corresponding Gaussian to be approximated (red).

Proposition 2.1 (Closed-form expression for ∆m
h ). Let f be a discrete

signal and m ≥ 1. Then the m-times composition of the discrete Laplacian
∆h fulfils

(∆m
h f )i =

1

h2m
·

m∑

k=−m

(−1)m+k

(
2m

m+ k

)

· fi+k . (2.19)

Proof. We use a proof by induction: The above equation is obviously valid
for m = 1. If we assume that it holds for an arbitrary m ≥ 1, this yields
for m+1:
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(
∆m+1

h (f )
)

i
=

(

∆m
h

(
f·+1 − 2 f· + f·−1

h2

))

i

(2.19)
=

1

h2m
·

m∑

k=−m

(−1)m+k

(
2m

m+ k

)

·
(
fi+1+k − 2fi+k + fi−1+k

h2

)

=
1

h2(m+1)

(

fi+1+m +
m−1∑

k=−m

(−1)m+k

(
2m

m+ k

)

· fi+1+k

− 2 ·
m∑

k=−m

(−1)m+k

(
2m

m+ k

)

· fi+k

+

m∑

k=−m+1

(−1)m+k

(
2m

m+ k

)

· fi−1+k

+ fi−1−m

)

. (2.20)

We perform a change of indices for both the first (k → k−1) and the third
sum (k → k + 1). Furthermore, we use the fact that

(
2m

−1

)

=

(
2m

2m+ 1

)

= 0 . (2.21)

Thus, we get

1

h2(m+1)

(

fi+1+m +
m∑

k=−m

(−1)m+k−1

(
2m

m+ k − 1

)

· fi+k

− 2 ·
m∑

k=−m

(−1)m+k

(
2m

m+ k

)

· fi+k

+
m∑

k=−m

(−1)m+k+1

(
2m

m+ k + 1

)

· fi+k + fi−1−m

)

=
1

h2(m+1)

(

fi+(m+1) + fi−(m+1) +
m∑

k=−m

(−1)m+k+1 fi+k ·
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·
[(

2m

m+ k + 1

)

+ 2

(
2m

m+ k

)

+

(
2m

m+ k − 1

)])

.

(2.22)

Because of
(

2m

m+ k + 1

)

+ 2

(
2m

m+ k

)

+

(
2m

m+ k − 1

)

=

(
2m

m+ k + 1

)

+

(
2m

m+ k

)

+

(
2m

m+ k

)

+

(
2m

m+ k − 1

)

=

(
2m+ 1

m+ k + 1

)

+

(
2m+ 1

m+ k

)

=

(
2m+ 2

m+ k + 1

)

, (2.23)

Eq. (2.22) finally results in

1

h2(m+1)





m+1∑

k=−(m+1)

(−1)(m+1)+k

(
2(m+ 1)

(m+ 1) + k

)

· fi+k



 . (2.24)

Proposition 2.1 is very useful in order to show that Eq. (2.17) is valid. The

coefficients α
(n)
m are unique and therefore the representation of a symmetric

filter Lh
2n+1 as a weighted sum of the discrete even-order derivatives ∆m

h is
also unique. In this context, we are going to prove the following proposition:

Proposition 2.2 (Unique representation as discrete pseudo-differ-
ential operator). Every linear symmetric 1-D filter Lh

2n+1 has a unique

set of coefficients {α(n)
m | 0 ≤ m ≤ n} that fulfils Eq. (2.17).

Proof. If we replace ∆m
h by its explicit formula given in Prop. 2.1, then we

have for the right hand side of Eq. (2.17):

n∑

m=0

α(n)
m (∆m

h (f ))i =
n∑

m=0

α
(n)
m

h2m
·

m∑

k=−m

(−1)m+k

(
2m

m+ k

)

· fi+k . (2.25)

On the other hand, we have the symmetric filter

(
Lh
2n+1(f )

)

i
=

n∑

k=−n

w|k| · fi+k , (2.26)
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with the weights w0, . . . , wn ∈ R. The comparison of the last two equations
yields a system of linear equations with the n+1 unknowns α

(n)
m and n+1

equations:

n∑

m=k

(−1)m+k · 1

h2m

(
2m

m+ k

)

· α(n)
m = wk ∀ k ∈ {0, ..., n} . (2.27)

The corresponding matrix-vector notation of Eq. (2.27) is

Bα(n) = w , (2.28)

where B = (bk,m)
n
k,m=0 ∈ R

(n+1)×(n+1) with the entries

bk,m = (−1)m+k · 1

h2m

(
2m

m+ k

)

, (2.29)

the unknown solution α(n) =
(
α
(n)
0 , . . . , α

(n)
n

)T ∈ R
n+1 and the given

vector w = (w0, . . . , wn)
T ∈ R

n+1. Since bk,m = 0 for k > m and
bk,k = 1

h2k 6= 0 , B is a regular upper triangular matrix and the unique

solution is given by α(n) = B−1w.

Since we have proven the existence and uniqueness of the representation in
Eq. (2.17), we can state that the set

Bn := {∆m
h | 0 ≤ m ≤ n } (2.30)

of the finite differences ∆m
h is a basis for the set of all symmetric filters

with length (2n+1)h. The dimension is obviously equal to n+1. Hence,
the multiplication with the matrix B−1 is a change of basis, i.e. the filter
Lh
2n+1 is expressed in terms of the new basis Bn. The next proposition gives

an explicit formula for the inverse matrix B−1. Then we can compute
the representation coefficients with respect to Bn by a simple matrix-vector
multiplication.

Proposition 2.3 (Change-of-basis matrix B−1). The entries of the
inverse matrix B−1 =

(
b−1
k,m

)n

k,m=0
∈ R(n+1)×(n+1) are given by

b−1
k,m = h2k

((
m+ k

2k

)

+
(
1 − δ(m+k),0

)
·
(
m+ k − 1

2k

))

, (2.31)

with the Kronecker delta δi,j from Eq. (2.5).
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Proof. We have to show that

n∑

p=0

b−1
k,p · bp,m = δk,m . (2.32)

Since B is an upper triangular matrix, its inverse B−1 is also an upper
triangular matrix. Therefore the summation is only necessary for the indices
p ∈ {k, ..., m}. Thus, the above equation can be simplified to

m∑

p=k

b−1
k,p · bp,m = δk,m . (2.33)

This equation obviously holds for the case k > m because of an empty
sum. If k = m, then it is also valid, since b−1

k,k = h2k = 1
bk,k

.

Let now m > k ≥ 0. Then the sum is equal to

h2(k−m) ·
m∑

p=k

((
p+ k

2k

)

+
(
1− δ(p+k),0

)
(
p + k − 1

2k

))

· (−1)m+p

(
2m

m+ p

)

.

(2.34)
We first consider the case k > 0, i.e. δ(p+k),0 = 0. The 2k-degree polynomial

s(p) :=

(
p+ k

2k

)

+

(
p+ k − 1

2k

)

=

2k∏

j=1

p+ (k + 1− j)

j
+

2k∏

j=1

p+ (k − j)

j
(2.35)

fulfils the symmetry condition s(p) = s(−p) and regarding its roots we
have s(p) = 0 for the indices p ∈ {−k+1, ..., k−1}. With the help of
these facts we obtain

0
(2.37)
=

m∑

p=−m

s(p) · (−1)m+p

(
2m

m+ p

)

=

−k∑

p=−m

s(p) · (−1)m+p

(
2m

m+ p

)

+

m∑

p=k

s(p) · (−1)m+p

(
2m

m+ p

)

= 2 ·
m∑

p=k

s(p) · (−1)m+p

(
2m

m+ p

)

, (2.36)
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where we have used a well-known property of binomial coefficients:

r∑

j=0

(−1)j P (j)

(
r

j

)

= 0 (2.37)

for any polynomial P (j) with degree less than r ∈ N. Here s(p) has degree
2k < 2m and thus satisfies Eq. (2.37).

In the case of k = 0, we have b−1
0,0 = 1 and b−1

0,p = 2 for p 6= 0. Hence,

m∑

p=0

b−1
0,p · (−1)m+p

(
2m

m+ p

)

= (−1)m
(
2m

m

)

+ 2 ·
m∑

p=1

(−1)m+p

(
2m

m+ p

)

= (−1)m
(
2m

m

)

+

m∑

p=−m
p 6=0

(−1)m+p

(
2m

m+ p

)

=

m∑

p=−m

(−1)m+p

(
2m

m+ p

)
(2.37)
= 0 . (2.38)

Considering the equations (2.36) and (2.38), it follows that

m∑

p=k

b−1
k,p · bp,m = 0 (2.39)

for m > k. This concludes the proof.

With this proposition we have established an explicit connection between
the filter weights w0, ..., wn and the coefficients α

(n)
0 , ..., α

(n)
n of the discrete

pseudo-differential operator. Thus, we can formulate the central theorem
of this subsection:

Theorem 2.4 (Coefficients of the Expansion). Let wk ∈ R with k =
0, . . . , n be the weights of the symmetric filter kernel. Then the coeffcients
of its expansion in Eq. (2.17) are given by

α(n)
m =

n∑

k=m

b−1
m,k · wk

= h2m
n∑

k=m

((
k +m

2m

)

+
(
1 − δ(k+m),0

)
(
k +m− 1

2m

))

wk . (2.40)
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2.4 The Symbol of Discrete Linear Filters

We have shown that a discrete symmetric filter Lh
2n+1 can be represented as a

series expansion. It consists of finite differences that approximate even order
derivatives. As mentioned in the previous chapter, a derivative in the spatial
domain corresponds to a multiplication with a monomial in the Fourier
domain. The degree of the monomial depends on the corresponding order
of the derivative. Having applied the Fourier transform on a filter kernel,
one can analyse its behaviour regarding different frequency components.

The symbol or amplification factor (see e.g. [126]) is a similar concept: We
replace the operator, here the discrete 1-D Laplacian ∆h, by the variable
-z reflecting the spectrum or the eigenvalues of this operator. Then we get
the symbol of Lh

2n+1 ,

p
[n]
L (z) :=

n∑

m=0

α(n)
m (−z)m , (2.41)

where z ∈ [0 , 4
h2 ] in the case of the discrete 1-D Laplacian. This can be

seen as follows: A signal g is an eigensignal to the eigenvalue λ ∈ C, if we
have for any arbitrary index i ∈ Z

(∆h g)i =
gi+1 − 2gi + gi−1

h2
= λ · gi . (2.42)

Using the well-known theorem of Gerschgorin [58, 139] for arbitrary linear
operators [84], we can state that the eigenvalue λ fulfils

λ ∈
{
a ∈ C :

∣
∣a + 2

h2

∣
∣ ≤ 2

h2

}
. (2.43)

Due to the symmetry, or self-adjointness, of ∆h, the eigenvalues have to be
real-valued and hence we obtain λ ∈ [− 4

h2 , 0].

The graph of the symbol illustrates the behaviour of the filter concerning
the frequency components. More precisely, the value p

[n]
L (z0) indicates how

the filter Lh
2n+1 modifies the frequency component vz0 of the initial signal

belonging to z0, since the corresponding component of the filtered signal
is equal to p

[n]
L (z0) · vz0 . To this end, the condition |p[n]L (z0)| ≤ 1 for all

eigenvalues z0 ensures that the frequency components are not amplified and
one can show stability in the Euclidean norm [126]. Low frequencies refer to
small values z0 ≈ 0, where larger eigenvalues near 4

h2 represent the highest
frequency components. This can be seen, for example, if we consider two
different eigensignals: The constant signal v0 = (. . . , 1, 1, 1, 1, . . . ) corre-
sponds to frequency 0 and is an eigensignal of ∆h with eigenvalue 0. On
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the other hand, the high frequency eigensignal v4/h2 = (. . . ,−1, 1,−1, 1, . . . )
corresponds to the eigenvalue − 4

h2 . Some examples are depicted in Fig. 2.2.
Since the analytic solution of the ODE system (1.9) for linear diffusion is
given by a matrix exponential, the ideal symbols should be similar to the
exponential functions exp(−T · z), where the real number T > 0 is the
stopping time of the diffusion process. This ensures that the higher the fre-
quency, the stronger is the damping, because higher frequency components
are multiplied with smaller values. If we take a look at the symbols shown
in Fig. 2.2, the binomial kernel has the best and the maximum variance
kernel V h

7 the worst amplification factor. Even the iterative application
of the maximum variance kernel does not yield a significant improvement,
as we have already seen in the example shown in Fig. 2.1. The symbol
of the iterated version is illustrated in Fig. 2.3 and is obviously far from
approximating an exponential function.

Actually, the problem is that the amplification factor p
[3]
V (z) of V h

7 takes
the values ±1 for z > 0. If we iterate V h

7 m times, the corresponding sym-

bol is
(
p
[3]
V (z)

)m
and still takes the values ±1 for odd m or only 1 for even

m. Thus, even a large number of iterations does not yield better approxi-
mations, and higher frequency components might be preserved due to the
multiplication with ±1. However, in the case of the box or extended box
filtering, Fig. 2.3 demonstrates how the iterative application achieves ampli-
fication factors that hardly differ from an exponential function. Therefore,
the corresponding iterated kernels yield a significantly better behaviour with
respect to the higher frequency components. In fact, this has already been
indicated by the good results in Fig. 2.1.

For the following sections we just use the notation pL instead of p
[n]
L , which

means that we assume the kernel length to be (2n+1)h.

2.5 Connection to Fourier Analysis

Concerning the definition of the symbol, we replace the operator ∆h by
a real-valued, non-positive variable. As we have mentioned above, this
concept is similar to a Fourier transform. More precisely, it can be seen as
a modification of the so-called Z-transform [103]. It is defined by

G(z) =
∑

j∈Z
gj · z−j , (2.44)
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binomial kernel maximum variance kernel

box kernel extended box kernel (γ = 4/5)

Figure 2.2: Examples for the symbols of the filter kernels with unit grid
size and length 7.

where g = (gj)j∈Z denotes a signal or a filter kernel. The Z-transform D(z)
of ∆h, i.e. the kernel (. . . , 0, 1

h2 ,− 2
h2 ,

1
h2 , 0, . . . ), is given by

D(z) =
1

h2
·
(
1

z
− 2 + z

)

. (2.45)

For arbitrary z̃ ≥ 0 we obtain

−D

(

2+h2·z̃
2

±
√

(2+h2·z̃)2
4

− 1

)

= −z̃ , (2.46)

which shows that we implicitly apply a modified Z-transform when we re-
place ∆h by a non-positive variable. To establish the connection between
the symbol and the Fourier analysis, we now consider the definition of the
well-known Discrete Time Fourier Transform [103]:
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binomial kernel maximum variance kernel

box kernel extended box kernel (γ = 4/5)

Figure 2.3: Examples for the symbols of the three times iterated filter
kernels with unit grid size and length 7.

Definition 2.5. The Discrete Time Fourier Transform (DTFT) of
a discrete signal f = (fj)j∈Z is defined by the function

f̂ (ω) =
∑

j∈Z
fj · exp(−i ω j) , (2.47)

with the complex number i and the continuous normalised radian frequency
variable ω ∈ [−π, π).

As one can see, it is a special case of the Z-transform with z = exp(i ω) ∈ C,
and therefore implies the connection of the symbol to the Fourier analysis.
Moreover, the DTFT can be seen as a continuous generalisation of the
popular Discrete Fourier Transform (DFT), because the DFT corresponds
to the evaluation of the DTFT f̂(ω) at discrete frequencies ω = ωk. It
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is also well-known that there exists a discrete convolution theorem for the
DTFT [103]:

Theorem 2.6 (Convolution Theorem for DTFT). Let f = (fj)j∈Z
and g = (gj)j∈Z be two discrete real-valued 1-D signals such that their
convolution (f ∗h g) exists. Then the DTFT fulfils the equation

(f ∗h g)̂ (ω) = f̂ (ω) · ĝ(ω) . (2.48)

With the help of this theorem, we can analyse the behaviour of a filter
Lh
2n+1 in the Fourier domain by computing the DTFT with respect to the

finite, symmetric filter kernel w = (wk)
n
k=−n. Because of the symmetry, the

complex sine part vanishes, and we have

ŵ(ω) =
n∑

k=−n

wk · exp(−i ω k) = w0 + 2 ·
n∑

k=1

wk · cos(k ω) . (2.49)

At this point, we are going to introduce the famous Chebyshev polynomials
of first kind [1, 30, 97]. This helps us to get a better comprehension of
Eq. (2.49).

Definition 2.7. The Chebyshev polynomials of the first kind are
defined by the recursion







T0(x) = 1 ,

T1(x) = x ,

Tn+1(x) = 2x · Tn(x) − Tn−1(x) .

(2.50)

A closed-form representation is given by [1]

Tn(x) =
n

2
·
⌊n/2⌋
∑

m=0

(−1)m

n−m

(
n−m

m

)

(2x)n−2m . (2.51)
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If x ∈ [−1, 1], i.e. x = cos(φ) with φ ∈ [−π, π), the Chebyshev polynomi-
als Tn can be written in terms of a cosine function:

Tn(x) = Tn(cos(φ)) = cos(n · φ) . (2.52)

Thus, Eq. (2.49) can be rewritten as

ŵ(ω) = w0 + 2 ·
n∑

k=1

wk · Tk(cos(ω)) , (2.53)

which means that the DTFT of w is a linear combination of Chebyshev
polynomials. Therefore, ŵ(ω) corresponds to a polynomial in s := cos(ω)
with degree n.

Assume we have given a symmetric filter Lh
2n+1 with the filter weights

w0, . . . , wn. Since we can rewrite the filter in terms of Eq. (2.17), the ap-
plication of the DTFT on both sides of this equation yields

w0 + 2 ·
n∑

k=1

wk · Tk(cos(ω)) =
n∑

m=0

α(n)
m · (∆m

h )̂ (ω) , (2.54)

where we have used the linearity of the DTFT. Regarding the right hand
side, we have to evaluate the DTFT of the finite difference operators ∆m

h .
This will be done by the following proposition.

Proposition 2.8 (DTFT of ∆m
h ). Let m ≥ 0. Then the following holds:

(∆m
h )̂ (ω) =

(
2
h2 cos(ω) − 2

h2

)m
. (2.55)

Proof. The case m = 0 is obviously true, because the DTFT of the identity
operator is just a constant function with the value 1. Hence, we can assume
that Eq. (2.55) is valid for an arbitrary m ≥ 0. For the induction step
m → m+1, we can state that the operator ∆m+1

h is a discrete convolution
between the symmetric kernel mask of ∆m

h (cf. Prop. 2.1) and the mask
of ∆h, (

1
h2 , − 2

h2 ,
1
h2 ). In the case of the operator ∆h, the corresponding

DTFT is

(∆h)̂ (ω) =
1

h2
exp(i ω) − 2

h2
+

1

h2
exp(−i ω)

= − 2

h2
+

2

h2
cos(ω) . (2.56)
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Using the convolution theorem 2.6, we obtain for m+1
(
∆m+1

h

)
(̂ω) = (∆m

h )̂ (ω) · (∆h)̂ (ω)

(2.55)
=
(

2
h2 cos(ω) − 2

h2

)m ·
(
− 2

h2 + 2
h2 cos(ω)

)

=
(

2
h2 cos(ω) − 2

h2

)m+1
. (2.57)

This concludes the proof.

Thus, by means of Eq. (2.55) we can rewrite Eq. (2.54) with s = cos(ω) as
follows:

w0 + 2
n∑

k=1

wk · Tk(s) =
n∑

m=0

α(n)
m ·

(
2
h2 s − 2

h2

)m

= pL
(

2
h2 (1− s)

)
. (2.58)

Since the right hand side of this equation is the above mentioned polynomial
qL(s), the substitution s = (1− h2

2
z) finally results in

pL(z) = w0 + 2 ·
n∑

k=1

wk · Tk

(

1− h2

2
z
)

. (2.59)

Hence, the symbol pL(z) can also be represented in terms of a linear com-
bination of Chebyshev polynomials. Moreover, one should mention that
if Lh

2n+1 is a symmetric filter with positive weights that sum up to 1,
Eq. (2.59) represents a convex combination. Since all Chebyshev poly-

nomials Tk

(

1− h2

2
z
)

are bounded in absolute value by 1, all convex com-

binations also fulfil this constraint, i.e. we have in this case |pL(z)| ≤ 1.
On the other hand, there are filters Lh

2n+1 with negative weights satisfying
|pL(z)| ≤ 1 for z ∈ [0 , 4

h2 ].
As an example we consider the filter mask (1/3, 1/4,−1/6, 1/4, 1/3). It

can be written as a discrete convolution of the two explicit diffusion ker-
nels (1/4, 1/2, 1/4), which corresponds to the time step size τ = 1/4, and
(4/3, −5/3, 4/3), where we have τ = 4/3. The corresponding amplification fac-
tor (1 − 1

4
z) · (1 − 4

3
z) is bounded in absolute value by 1, as shown in

Fig. 2.4.

Overall, we can state that the symbol is related to Chebyshev polynomials
of the first kind. This will be very helpful for the next section, where
we want to show and analyse the equivalence of Lh

2n+1 and explicit linear
diffusion schemes.
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Figure 2.4: Symbol of the filter (1/3, 1/4,−1/6, 1/4, 1/3) with unit grid size.

2.6 Diffusion Interpretation of Linear

Filters

Having computed the coefficients α
(n)
0 , ..., α

(n)
n according to Eq. (2.40), we

can reconsider the symbol of the filter Lh
2n+1. If the weights of the filter

Lh
2n+1 are non-negative, which means the coefficients α

(n)
m are also non-

negative, then pL(z) ≥ α
(n)
0 for z ≤ 0. Thus, the real-valued roots of pL

have to be non-negative. According to the fundamental theorem of algebra,
pL(z) has n roots z0, ..., zn−1 ∈ C. Hence, it can be written as a product of
n linear factors,

pL(z) = c ·
n−1∏

m=0

(zm − z) , (2.60)

where c ∈ R is the normalisation factor. In the case of pL(0) = α
(n)
0 > 0,

we have zm 6= 0 for all m and therefore this factor has to fulfil

c = α
(n)
0 ·

(
n−1∏

m=0

zm

)−1

. (2.61)

In the following, we assume that the weights w−n, ..., wn sum up to 1. Using
the symmetry constraint w−k = wk, this yields

α
(n)
0 =

n∑

k=0

((
k

0

)

+ (1 − δk,0)

(
k − 1

0

))

wk

= w0 + 2 ·
n∑

k=1

wk = 1 . (2.62)
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Since pL(0) = α
(n)
0 = 1, the symbol pL(z) can be rewritten as follows:

pL(z) =

n−1∏

m=0

(

1 − z

zm

)

. (2.63)

Replacing (−z) by the discrete Laplacian ∆h and interpreting the corre-
sponding product as a composition of operators finally shows

Lh
2n+1 =

n−1∏

m=0

(
I + z−1

m ∆h

)
, (2.64)

where I denotes the identity operator, i.e. I f = f .

1-D Explicit Diffusion Scheme

Since the goal of this section is to show the equivalence of 1-D linear sym-
metric filters and 1-D explicit diffusion schemes, we are going to spend some
words about such explicit methods. To this end, we consider the linear 1-D
diffusion equation on a real interval [a, b] with a < b :

∂tu(x, t) = ∂xxu(x, t) , (2.65)

where (x, t) ∈ (a, b)× (0,∞). For t = 0 we have a given bounded function
u(x, 0) = u0(x), x ∈ [a, b]. Moreover, we assume homogeneous Neumann
boundary conditions

∂xu(a, t) = ∂xu(b, t) = 0 (2.66)

for t ∈ (0,∞). It can be shown that this problem is well-posed and has a
unique solution [32].

In order to solve this problem numerically, we define a spatiotemporal grid
G with the spatial grid size h > 0 and the time step size τ > 0,

G :=
{
(xi , tk) ∈ [a, b]× [0, T ]

∣
∣ xi = a+

(
i− 1

2

)
h , tk = kτ

}
, (2.67)

with suitable indices i, k. Usually, one has h = b−a
N

with the number of
spatial grid points N and τ = T

M
, where M is the number of time step

sizes. Then we use 1 ≤ i ≤ N and 0 ≤ k ≤ M . The numerical solution is
described by the approximations uk

i ≈ u(xi, tk). Concerning the boundary
conditions, we use so-called dummy variables uk

0 := uk
1 and uk

N+1 := uk
N
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that model vanishing first order derivatives at the boundaries x = a and
x = b respectively. The explicit discretisation of the evolution equation

∂tu(x, t) = ∂xxu(x, t) (2.68)

on the spatiotemporal grid yields

uk+1
i − uk

i

τ
=

uk
i+1 − 2 uk

i + uk
i−1

h2
, (2.69)

with a forward finite difference discretising the time derivative and a central
finite difference for the second order spatial derivative. This discretisation
uses solely already known values for the right hand side. An implicit dis-
cretisation would use new unknown values from the next time step k+1,
which implies the necessity for solving a linear system. If we define the
finite signal uk := (uk

0, . . . , u
k
N+1) including the dummy variables at the

boundaries, we can rewrite the above equation with the help of the discrete
Laplacian ∆h and the identity operator I:

uk+1
i = uk

i + τ · u
k
i+1 − 2 uk

i + uk
i−1

h2

=
(
(I + τ∆h)u

k
)

i
(i = 1, . . . , N), (2.70)

Hence, the representation of the linear filter Lh
2n+1 in Eq. (2.64) can be seen

as a composition of n explicit linear diffusion steps with the varying time
step sizes z−1

m , m = 0, . . . , n−1. The (total) cycle time θn that corresponds
to the stopping time of this diffusion process is given by

θn =

n−1∑

m=0

z−1
m = α

(n)
1

= h2 ·
n∑

k=1

((
k + 1

2

)

+

(
k

2

))

wk = h2 ·
n∑

k=1

k2wk , (2.71)

where we have used Eq. (2.40). We summarise these results in the following
theorem:

Theorem 2.9 (Filter Factorisation into Explicit Diffusion Steps).
Let Lh

2n+1 be an arbitrary linear, symmetric 1-D filter kernel whose weights
w−n, ..., wn sum up to 1. Then Lh

2n+1 is equivalent to a cycle of n explicit
1-D linear diffusion steps, i.e.

Lh
2n+1 =

n−1∏

m=0

(I + τm∆h) , (2.72)
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with the time step sizes
τm = z−1

m ∈ C , (2.73)

where zm ∈ C \ {0} are the roots of the symbol pL(z). The cycle time θn is
given by

θn = h2 ·
n∑

k=1

k2wk . (2.74)

Note that the right hand side of Eq. (2.74) is just 1
2
times the variance σ2 of

the discrete filter Lh
2n+1. It shows the well-known proportionality between

the variance and the stopping time of the corresponding diffusion process.
In this context, it makes sense to assume weights such that the variance is
positive. This is in particular satisfied for filters having only non-negative
weights.

2.7 Practical Examples

In this section, we discuss the application of Theorem 2.9 by means of the
four discrete filters that we have presented above. To this end, we rewrite
them as explicit diffusion schemes and analyse the corresponding symbols.

2.7.1 Binomial Kernel

Since we can represent the binomial kernel of length (2n+1)h as a com-
position of n kernels with length 3h, it is sufficient to consider only this
special kernel. Equation (2.59) is the simplest way to compute the symbol.
The weights are w0 = 1/2 , w−1 = w1 = 1/4 and thus the symbol is given by

p
[3]
Bin(z) =

1

2
+

1

2
· T1

(

1− h2

2
z
)

= 1 − h2

4
z . (2.75)

If we consider the general case with length (2n+1)h, then we obtain

p
[n]
Bin(z) =

(

1 − h2

4
z
)n

. (2.76)

Because of z ≤ 4
h2 , the symbol takes only non-negative values, which means

that all frequency components do not change their sign or orientation and
oscillations are impossible from the theoretical point of view.

Concerning the equivalence to explicit schemes, we can decompose a bino-
mial kernel with arbitrary length (2n+1)h into n explicit steps with the
constant time step size τ = h2

4
,
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1 step 2 steps 3 steps 4 steps

5 steps 6 steps 7 steps full cycle

Figure 2.5: Evolution of the binomial kernel with n = 8 diffusion steps.

Binh
2n+1 =

(

I + h2

4
∆h

)n

. (2.77)

Hence, the cycle time θn grows linearly in the width n and is given by h2

4
·n.

The evolution of the binomial kernel with respect to the time steps of the
explicit scheme is illustrated in Fig. 2.5. Actually, after each explicit time
step we get a binomial kernel with increasing width.

2.7.2 Discrete Maximum Variance Kernel

Our second example is the linear filter V h
2n+1, whose kernel reaches the

maximum variance. Its weights are given by wk = 0 for |k| ≤ n−1 and

w−n = wn = 1/2. According to Eq. (2.40), the coefficients α
(n)
m satisfy

α(n)
m =

h2m

2
·
((

n +m

2m

)

+

(
n+m− 1

2m

))

=
h2m

2
·
(
n+m

2m

)(

1 +
n−m

n+m

)

= h2m · n

n+m

(
n +m

2m

)

. (2.78)
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Therefore, the symbol is

p
[n]
V (z) =

n∑

m=0

h2m · n

n +m

(
n+m

2m

)

(−z)m , (2.79)

and it is related to the Chebyshev polynomial T2n. This can be seen as
follows:

p
[n]
V (z) = n ·

n∑

m=0

(−1)m

n+m

(
n+m

2m

)

(h2 · z)m

= n ·
n∑

m=0

(−1)n−m

2n−m

(
2n−m

2(n−m)

)
(
h2 · z

)n−m

= (−1)n · 2n
2

·
⌊2n/2⌋
∑

m=0

(−1)m

2n−m

(
2n−m

m

)
(
h ·

√
z
)2n−2m

(2.51)
= (−1)n · T2n

(
h
√
z

2

)

. (2.80)

Note that we have changed the order of summation (m → n−m) in the
second step. This result verifies Eq. (2.59):

p
[n]
V (z) = Tn

(

1− h2

2
z
)

= Tn

(

−T2

(
h
√
z

2

))

= (−1)n ·T2n

(
h
√
z

2

)

, (2.81)

where we have used the two well-known calculation rules

Tn(−x) = (−1)n · Tn(x) (2.82)

and
Tn (Tm(x)) = Tn·m(x) (2.83)

for arbitrary n,m ∈ N0.

In order to construct the corresponding explicit scheme, we have to compute

the roots of the Chebyshev polynomial T2n

(
h
√
z

2

)

. The zeros of T2n(x) are

known and given by

xi = cos
(
π · 2i+1

4n

)
(i = 0, . . . , 2n−1). (2.84)

Using the relation z = 4
h2 · x2, the n roots zm of the polynomial T2n

(
h
√
z

2

)

are given by the formula

zm =
4

h2
· cos2

(
π · 2m+1

4n

)
(m = 0, . . . , n−1). (2.85)
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τ3 τ4 τ5

Figure 2.6: Unstable diffusion kernels of the scheme corresponding to V h
13.

According to Theorem 2.9, the time step sizes τm for the corresponding
cycle consisting of n explicit diffusion steps fulfil

τm = z−1
m =

h2

4
· 1

cos2
(
π · 2m+1

4n

) (m = 0, . . . , n−1). (2.86)

The cycle time is, due to Eq. (2.74), given by

θn =
h2

2
· n2 , (2.87)

and therefore grows quadratically in the number of time step sizes n. This
is n times the maximum diffusion time that a stable explicit scheme with
constant time step size τ = h2

2
can reach. Hence, some of the time step sizes

in Eq. (2.86) have to violate stability restrictions, though the whole cycle is
stable. In this context, Fig. 2.6 illustrates the unstable convolution kernels
(
τm
h2 , 1− 2 · τm

h2 ,
τm
h2

)
, m ≥ 3, belonging to V h

13. The negative centre weights

imply the violation of the stability restriction: τm > h2

2
. However, the

final result is a stable filter with non-negative weights. Figure 2.7 shows an
example for the evolution of the filter kernel from step to step. Surprisingly,
all eight intermediate kernels consist solely of non-negative weights.

Since we have p
[n]
V (z) = ±1 for some z 6= 0, this explicit scheme might

have problems with higher frequencies, as we have already mentioned. It
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1 step 2 steps 3 steps 4 steps

5 steps 6 steps 7 steps full cycle

Figure 2.7: Evolution of the filter kernel for the explicit scheme using a
cycle that ends up with the filter V h

17 .

can happen that such frequency components are not damped (|p[n]V (z)| = 1)

and additionally switch their orientation, i.e. are oscillating (p
[n]
V (z) = −1).

Later, we see that an explicit scheme using the time step sizes τm has already
been introduced, but by means of another derivation.

Due to the above described problems with oscillations or insufficient damp-
ing, a so-called damping parameter ν > 0 can be used. It ensures that the
symbol of the method takes the value 1 only for z = 0. The corresponding
modified polynomial is then given by

p
[n]
V,ν(z) :=

Tn

(

1 + ν − h2

4
(2 + ν) · z

)

Tn (1 + ν)
, (2.88)

with the roots

zm(ν) =
4

h2
· ν + 2 cos2

(
π · 2m+1

4n

)

2 + ν
(m = 0, . . . , n−1). (2.89)

Regarding the time step sizes of the damped explicit scheme, we have

τm(ν) =
h2

4
· 2 + ν

ν + 2 cos2
(
π · 2m+1

4n

) (m = 0, . . . , n−1). (2.90)
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Because of

ν + 2 cos2
(
π · 2m+1

4n

)
= (ν + 2) · cos2

(
π · 2m+1

4n

)

+ ν ·
(
1− cos2

(
π · 2m+1

4n

))

≥ (ν + 2) · cos2
(
π · 2m+1

4n

)
, (2.91)

the step sizes fulfil

τm(ν) ≤ h2

4
· 1

cos2
(
π · 2m+1

4n

)
(2.86)
= τm . (2.92)

However, a larger damping parameter makes the method more robust with
respect to higher frequencies. Thus, the damping parameter ν > 0 can
be seen as a trade-off between stability and the magnitude of the reached
cycle time or variance. In this context, ν allows a continuous adjustment of
the cycle time. For ν → ∞, the time step sizes τm(ν) tend to h2

4
, i.e. the

corresponding modified filter approximates a binomial kernel.

The influence of the damping parameter is illustrated in Fig. 2.8. It demon-
strates two filter kernel evolutions with different damping parameters. As
before, the intermediate kernels have non-negative weights. However, by
introducing the damping parameter, the final results seem to be better ap-
proximations for Gaussians, in particular for larger ν. One can see that an
increasing ν reduces the influence of the boundary weights, and thus makes
the other weights larger.

2.7.3 Discrete Box Filter

Let us now reconsider the box filter Bh
2n+1 with length (2n+1)h. As men-

tioned above, the weights are uniform and sum up to 1, wk = 1
2n+1

for all
k ∈ {−n, . . . , 0, . . . n}. To compute the coefficients of the symbol, we use

again Eq. (2.40): We have α
(n)
0 = 1 and for m > 0:

α(n)
m =

h2m

2n + 1
·

n∑

k=m

((
k +m

2m

)

+

(
k +m− 1

2m

))

=
h2m

2n + 1
·
(

n+m∑

k=2m

(
k

2m

)

+

n+m−1∑

k=2m

(
k

2m

))

=
h2m

2n + 1
·
((

n+m+ 1

2m+ 1

)

+

(
n +m

2m+ 1

))
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2 steps 4 steps 6 steps full cycle

Figure 2.8: Evolution of filter kernels for the damped scheme with n = 8
explicit diffusion steps. Top row: ν = 1/20 . Bottom row: ν = 1/10 .

=
h2m

2n + 1
·
(
n+m+ 1

2m+ 1

(
n +m

2m

)

+
n−m

2m+ 1

(
n+m

2m

))

=
h2m

2n + 1
· 2n+ 1

2m+ 1

(
n +m

2m

)

=
h2m

2m+ 1
·
(
n+m

2m

)

. (2.93)

Thus, the symbol p
[n]
B (z) of the box filter Bh

2n+1 is given by the polynomial

p
[n]
B (z) =

n∑

m=0

h2m

2m+ 1

(
n +m

2m

)

(−z)m . (2.94)

Using Eq. (2.59) yields

p
[n]
B (z) =

1

2n + 1
·
(

1 + 2 ·
n∑

i=1

Ti

(

1− h2

2
z
)
)

(2.95)

as a representation for the symbol. However, we can write this equation
without any sum. To this end, we consider the closed-form representation
of the Chebyshev polynomial T2n+1(x):

T2n+1(x) =
2n+ 1

2
·

n∑

m=0

(−1)m

2n+ 1−m

(
2n+ 1−m

2(n−m) + 1

)

(2x)2(n−m)+1

=
2n+ 1

2
·

n∑

m=0

(−1)n−m

n+m+ 1

(
n +m+ 1

2m+ 1

)

(2x)2m+1
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τ4 τ5 τ6 τ7

Figure 2.9: Unstable diffusion kernels of the box filter scheme (n = 8).

= (−1)n (2n+ 1)x ·
n∑

m=0

(−1)m

2m+ 1

(
n+m

2m

)
(
4x2
)m

. (2.96)

With x = h
√
z

2
we obtain for z > 0

p
[n]
B (z) = (−1)n · 2

2n+ 1
·
T2n+1

(
h
√
z

2

)

h
√
z

, (2.97)

which is related to the so-called Dirichlet kernel [39]. Note that this repre-
sentation also makes sense for z = 0, because the limit value of the right
hand side for z → 0 exists and is equal to 1. Compared to the filter V h

2n+1,
the symbol of the box filter does not take the values ±1 for z ∈ (0, 4

h2 ].
This can be seen with the help of the representation in Eq. (2.95). The
smallest negative value that the symbol could take is − 2n−1

2n+1
> −1, as-

suming all Ti would take simultaneously the value −1. If we assume that
the symbol takes the value 1, this can only happen if all Chebyshev poly-
nomials Ti take the value 1 at the same point. Considering in particular

T1

(

1− h2

2
z
)

gives us only z = 0. Thus, z > 0 implies

|p[n]B (z)| < 1 , (2.98)

and an additional damping parameter is not necessary.
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The n positive roots z0, . . . , zn−1 of p
[n]
B (z) coincide with the roots of the

Chebyshev polynomial T2n+1

(
h
√
z

2

)

, which means they have to satisfy

h
√
zm
2

= cos
(
π · 2m+1

4n+2

)
(m = 0, . . . , n−1). (2.99)

This yields

zm =
4

h2
· cos2

(
π · 2m+1

4n+2

)
(m = 0, . . . , n−1), (2.100)

and therefore the time step sizes of the corresponding explicit scheme are
given by

τm =
h2

4
· 1

cos2
(
π · 2m+1

4n+2

) (m = 0, . . . , n−1). (2.101)

The stopping time of a cycle with n time steps

θn =
h2

2n+ 1
·

n∑

k=1

k2

=
h2

2n+ 1
· n(n + 1)(2n+ 1)

6
= h2 · n

2 + n

6
(2.102)

also grows quadratically in n and is n+1
3

times the maximum stopping time

of a stable explicit scheme with the constant stable time step size τ = h2

2
.

Thus, some of the time step sizes in Eq. (2.101) have to be larger than the
1-D stability limit h2

2
. Actually, we show in Chapter 3 that half of these

time step sizes are unstable, which means that every stable step allows
an unstable one. An example with four unstable time steps is illustrated
in Fig. 2.9. The four convolution kernels have negative centre weights that
correspond to unstable explicit time steps. Figure 2.10 shows the respective
kernel evolution. Despite the four unstable time steps, all intermediate
kernels have non-negative weights.

To conclude this subsection, we analyse the interesting question whether
the time step sizes in Eq. (2.101) can be reproduced by choosing a suitable
damping factor ν > 0 in Eq. (2.90). More precisely, this would mean
that the box filter corresponds to a damped maximum variance filter. By
equating the formulas Eq. (2.101) and Eq. (2.90) for the time step sizes, we
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1 step 2 steps 3 steps 4 steps

5 steps 6 steps 7 steps full cycle

Figure 2.10: Evolution of the filter kernel for the box filter scheme with
n = 8 explicit diffusion steps.

obtain

ν =
cos2

(
π · 2m+1

4n

)
− cos2

(
π · 2m+1

4n+2

)

cos2
(
π · 2m+1

4n+2

)
− 1

=
sin2

(
π · 2m+1

4n

)

sin2
(
π · 2m+1

4n+2

) − 1 , (2.103)

with m = 0, . . . , n−1. This can only be valid, if the right hand side does
not depend on m, i.e. is constant. In particular, the case n = 1 (m = 0)
allows the choice of a suitable damping parameter such that the damped
maximum variance filter is a box filter. However, for n > 1 the right
hand side is not constant with respect to m, which means that there is no
damping parameter such that the damped maximum variance kernel turns
into a box kernel. Hence, the explicit schemes corresponding to the box
filter with cycle length n ≥ 2 do not belong to the class of schemes implied
by damped maximum variance filters.

2.7.4 Extended Box Filter

Our last example is the extended box filter (EBF) Eh
2n+1 of Gwosdek et

al. [167]. It is just a convex combination of the two previous examples.
Depending on the parameter γ ∈ (0, 1), the weights of the filter Eh

2n+1



2.7. PRACTICAL EXAMPLES 51

τ5 τ6 τ7

Figure 2.11: Unstable diffusion kernels of the extended box filter scheme
(γ = 0.94, n = 8).

satisfy

wk =

{ γ
2n−1

, |k| ≤ n− 1

1−γ
2

, k = ±n
. (2.104)

The representation from Eq. (2.59) yields for the symbol p
[n]
E (z):

p
[n]
E (z) =

γ

2n− 1
·
(

1 + 2 ·
n−1∑

i=1

Ti

(

1− h2

2
z
)
)

+ (1− γ) · Tn

(

1− h2

2
z
)

(2.105)

= γ ·
(−1)n−1 2 · T2n−1

(
h
√
z

2

)

(2n− 1)h
√
z

+ (1− γ) · (−1)n T2n

(
h
√
z

2

)

.

Actually, the extended box filter can be seen as a convex combination of two
different explicit schemes with n−1 and n varying time steps, respectively.
The corresponding cycle time is also a convex combination of two quadratic
polynomials in n and thus grows quadratically in n. Moreover, it depends
on the parameter γ and so it can be tuned in a continuous way. However,
the computation is more expensive than before, since we now have 2n−1
time steps for the two cycles. To this end, the question is whether we can
reduce the effort. In this context, the following proposition states that the
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1 step 2 steps 3 steps 4 steps

5 steps 6 steps 7 steps full cycle

Figure 2.12: Evolution of the filter kernel for the extended box filter scheme
(γ = 0.94) with n = 8 explicit diffusion steps.

combination of both schemes is even equivalent to a cheaper cyclic scheme
with n time steps.

Proposition 2.10 (Existence of Cyclic Scheme for EBF). The symbol

p
[n]
E (z) of an EBF Eh

2n+1 has n real-valued roots z0, . . . , zn−1, i.e. the EBF
can be written as one cycle:

Eh
2n+1 =

n−1∏

m=0

(
I + z−1

m ∆h

)
. (2.106)

Proof. Let γ ∈ (0, 1) and n ≥ 2, because the case n = 1 is trivial.

According to Eq. (2.105), the polynomial p
[n]
E (z) fulfils

p
[n]
E (z) = γ · qn−1(z) + (1− γ) · rn(z) , (2.107)

with the n − 1 degree polynomial qn−1(z) and the n degree polynomial
rn(z). We know that both polynomials have only real-valued zeros: The
roots of qn−1 are related to the n−1 positive roots of the Chebyshev poly-
nomial T2n−1 and the zeros of rn to the n positive roots of T2n. They are
given by

z
(q)
k =

4

h2
· cos2

(
π · 2k+1

4n−2

)
(k = 0, . . . , n−2) (2.108)
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for qn−1 and

z(r)m =
4

h2
· cos2

(
π · 2m+1

4n

)
(m = 0, . . . , n−1) (2.109)

in the case of rn. For 0 ≤ j ≤ n−2 we have

1

2
>

2j + 3

4n
>

2j + 1

4n− 2
>

2j + 1

4n
> 0 , (2.110)

and by applying the monotonically decreasing squared cosine function
cos2 :

[
0, π

2

]
→ [0, 1] , we obtain

cos2
(
π · 2j+3

4n

)
< cos2

(
π · 2j+1

4n−2

)
< cos2

(
π · 2j+1

4n

)
. (2.111)

This is equivalent to
z
(r)
j+1 < z

(q)
j < z

(r)
j (2.112)

for j ∈ {0, . . . , n−2}. Since the multiplicity of all roots is equal to one,
the graphs of both qn−1 and rn change their sign only at those points. We
have qn−1(0) = rn(0) = 1, which means that they have the same sign in the

interval [0, z
(r)
n−1). If we consider the interval (z

(r)
n−1, z

(q)
n−2), rn is negative and

qn−1 still positive. However, for z ∈ (z
(q)
n−2 , z

(r)
n−2) both rn(z) and qn−1(z)

are negative. By continuing these thoughts, we observe that rn(z) as well as

qn−1(z) have the same sign for z ∈ (z
(q)
j , z

(r)
j ) and it is equal to (−1)n−j−1.

This is also valid for any convex combination of rn and qn−1, in particular

for the symbol p
[n]
E (z). Hence, its sign changes n−1 times. Because of

the continuity, p
[n]
E (z) has at least n−1 real-valued zeros. However, the

polynomial p
[n]
E (z) has degree n, and therefore it has an additional root.

Due to the real-valued coefficients of p
[n]
E (z), this root has to be also real-

valued. Thus, the proposition is proven.

The biggest advantage of this explicit scheme is the continuous tuning of the
cycle time. As we have mentioned above, it depends quadratically on n, i.e.
unstable time steps have to exist within a cycle. However, it is very difficult
to compute the time step sizes, because there seems to be no closed-form
representation for the zeros of p

[n]
E (z). Figure 2.11 depicts the three unstable

explicit diffusion kernels for the case n = 8 and γ = 0.94. In contrast to
the box filter, we have one more stable kernel with respect to this parameter
setting. The corresponding kernel evolution is depicted in Fig. 2.12. Also
here, the intermediate filter kernels consist solely of non-negative weights.

Finally, we show a comparison of the explicit diffusion kernels for the last
step of a cycle with 8 steps to visualise the different magnitudes of the neg-
ative centre weights in Fig. 2.13. As expected, the kernel of the maximum
variance filter V h

17 is the most unstable one.
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Figure 2.13: Explicit diffusion kernels with respect to the largest time step
size (n = 8). From left to right: Maximum variance, damped maximum
variance (ν = 0.1), box filter and extended box filter kernel (γ = 0.94).

2.8 Summary

In this chapter, we have reached our first goal: We have shown for the
discrete setting that 1-D linear, symmetric filters are equivalent to 1-D
explicit diffusion schemes. To reach this goal, we have rewritten the filters in
terms of a sum of discrete even order derivatives, or better said, polynomials
in the discrete Laplacian ∆h. The factorisation of these polynomials yields
linear factors that correspond to 1-D explicit diffusion steps. More precisely,
we have found a suprising access to a class of explicit schemes for solving
diffusion processes by means of a signal processing background.

Replacing the discrete operator ∆h by −z, which is related to a Z-
transform, allows us to analyse the behaviour of the filter with respect to
different frequency components by means of the symbol or amplification
factor. Since this approach is very similar to Fourier analysis, we have
shown a connection that has helped us to find closed-form expressions for
the symbols: They are related to Chebyshev polynomials of the first kind.

With the help of this theory, we have decomposed four linear filters
into explicit diffusion steps. Interestingly, three of them use unstable time
step sizes within their corresponding explicit schemes. The first filter kernel
V h
2n+1 reaches the maximum variance of a stable, symmetric filter with the

length (2n+1)h, but it is very sensitive regarding higher frequency com-
ponents of the input signal. Furthermore, we have seen that it is not very
suited for an iterative approximation of a Gaussian convolution. That is
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why it requires an additional damping parameter ν > 0 that improves the
behaviour of the filter with respect to high frequencies and the accuracy
for the iterative application. On the other hand, it decreases the variance
of the Gaussian, or equivalently, the cycle time θn of the diffusion process.
In this context, the parameter ν can also be used to reach arbitrary θn.
However, the filtering results depend on this parameter, because different
damping parameters ν yield different filter kernels. An increasing damping
parameter decreases the weights at the boundaries of the filter kernel and
improves the influence of the other weights. For ν → ∞ , the maximum
variance kernel tends to the well-known binomial kernel that corresponds
to an explicit scheme using a constant, stable time step size.

In contrast to V h
2n+1, the explicit scheme related to the box filter kernel

Bh
2n+1 does not need such a damping parameter. It also uses unstable time

step sizes to reach a cycle time that grows quadratically in the number of
time steps. However, the iterative application yields good approximations
for a Gaussian convolution, and they are much better than the results with
V h
2n+1. Actually, the signal processing background has helped us here to

get rid of the above mentioned damping parameter. This shows that the
proposed access has a big advantage in contrast to the classical derivation
which is presented in the following chapter.

The convex combination of both V h
2n+1 and Bh

2n−1 yields the extended
box filter kernel Eh

2n+1. Here, the weight γ ∈ (0, 1) can be seen as some kind
of a damping parameter. Moreover, the extended box filter kernel allows the
cycle time to be tuned continuously, since it depends on γ. Unfortunately,
the corresponding time step sizes of the extended box filter scheme can be
very difficult to determine, if one wants to use a more efficient cycle with
n explicit steps instead of two cycles with a total of 2n−1 time steps.
However, in the next chapter, we are going to present a solution for the box
filter that can yield arbitrary cycle times.





Chapter 3

Fast Explicit Diffusion
(FED)

If everything seems under control,
you’re just not going fast enough.

Mario Andretti

Similar to the last chapter, the current chapter is also based on our publica-
tions [164, 165]. Its goal is a detailed theoretical and experimental analysis
of the explicit scheme representing the box filter kernel Bh

2n+1. It is a good
choice, since it is more accurate than V h

2n+1, does not need any additional
damping or weighting parameter, and in contrast to the extended box fil-
ter kernel Eh

2n+1 we know an easy closed-form representation for the time
step sizes. The only disadvantage is the quantisation of the cycle times.
However, we are going to propose a strategy for the solution of this prob-
lem. Furthermore, we show that the corresponding cyclic explicit scheme
is useful for the solution of arbitrary time-dependent parabolic (diffusion-
like) problems such as image enhancement. We also present cyclic methods
for elliptic PDEs related to image reconstruction (inpainting) or the min-
imisation of energy functionals that can appear in the context of image
regularisation or computer vision problems.

Actually, the idea of using varying parameters within explicit schemes
can build upon existing research. Thus, we first discuss some related work.

57
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3.1 Related Work

We have introduced explicit schemes that come from decompositions of lin-
ear filters. They use varying time step sizes, where some of them violate
the theoretical stability limit. A similar method for parabolic problems has
been proposed by Yuan’Chzhao-Din [162], Saul’jev [117], Franklin [53], and
Guillou and Lago [64]. Later, Gentzsch and Schlüter [56, 57] have used this
idea under the name Super Time Stepping (STS). Contrary to our deriva-
tion, they have used a direct approach for explicit schemes: Find a set of
different time step sizes, which keeps stability after each cycle, and at the
same time maximises the stopping time of such a cycle. Instead of fac-
torising a box filter, their method can be interpreted as the factorisation of
V h
2n+1, i.e. (1/2, 0, . . . , 0, 1/2), which we have already presented and analysed

in Chapter 2.

Actually, the basic concepts that Yuan’Chzhao-Din, Saul’yev, Franklin and
Guillou and Lago made use of, come from iterative methods for the solution
of linear systems

Bx = c , (3.1)

with B ∈ CN×N , the known right hand side c ∈ CN and the unknown
solution x ∈ CN . In 1910, L.F. Richardson [111] proposed to use a simple,
explicit fixed point iteration for the equivalent system

x = x + c − Bx . (3.2)

It is given by

xk+1 = xk +
(
c − Bxk

)
= (I − B)xk + c (k ≥ 0) , (3.3)

where I ∈ RN×N denotes the identity matrix and x0 ∈ CN is an arbitrary
initial vector. We now assume that the eigenvalues of B are real-valued and
positive. Then the convergence of the fixed point iteration is guaranteed if
the moduli of the eigenvalues of I−B are smaller than 1. This means that
the largest eigenvalue λmax of B must be smaller than 2. To speed up the
convergence, Richardson proposed to use so-called relaxation parameters
ωk ∈ R that may vary from one iteration to another:

xk+1 = xk + ωk ·
(
c − Bxk

)
(k ≥ 0) . (3.4)

For a constant relaxation parameter ωk = ω, Eq. (3.4) is stable with

0 ≤ ω ≤ 2

λmax

. (3.5)
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If the smallest eigenvalue of B is given by λmin > 0, it has been shown e.g.
in [115] that the optimal convergence with a constant relaxation parameter
is reached for

ω =
2

λmin + λmax

. (3.6)

However, varying parameters allow even a much better convergence. In this
context, Richardson considered the homogeneous system

Bx = 0 (3.7)

with the zero vector 0 ∈ RN . The fixed point iteration in Eq. (3.4) then
reads as

xk+1 = xk − ωk ·Bxk = (I − ωk B)xk

=

(
k∏

i=0

(I − ωi B)

)

x0 , (3.8)

If x0 is an eigenvector vm of B, then the product at the right hand side is
a polynomial of degree k+1 in the corresponding eigenvalue λm, i.e.

q(λm) :=

k∏

i=0

(1 − ωi λm) (m = 1, . . . , N) . (3.9)

An optimal convergence to the solution x = 0 means that the polynomial
q(·) should be as small as possible for all eigenvalues.

In his paper, Richardson proposed to choose the relaxation parameters ωi in
a way such that the inverse values (ωi)

−1 are quite uniformly distributed.
However, this choice might not be optimal for the convergence. It seems to
be very likely that he was not aware of the works done by Chebyshev [30]
in 1854 and Markoff [97] in 1892 about polynomials deviating least from
zero. We have already introduced such polynomials, namely the Chebyshev
polynomials of the first kind, in the previous chapter. In 1950, Flanders and
Shortley [50] made use of Chebyshev polynomials to obtain better conver-
gence for the solution of eigenvalue problems. They used an approach simi-
lar to Richardson’s method. A few years later, the optimality of Chebyshev
polynomials was applied to the solution of linear systems by Lanczos [86],
Shortley [125] and Young [160]. In contrast to Shortley and Young, Lanc-
zos presented an approach that differs from Richardson’s method and is
more complicated. Shortley proposed to use slightly modified Chebyshev
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polynomials Sk+1(B) of degree k+1, i.e.

xk+1 = Sk+1(B)x0 =

(
k+1∑

i=0

Ci ·Bi

)

x0 , (3.10)

with the coefficients Ci ∈ R, C0 = 1. The main disadvantage of this
method is that one has to compute all k+1 matrix powers Bi and store
the results of the matrix-vector products Bix0. However, the polynomial
Sk+1(z) has k+1 positive zeros z0, . . . , zk and therefore Sk+1(B) can be
written as a product of matrices

Sk+1(B) =
k∏

i=0

(
I − z−1

i B
)
. (3.11)

Hence, Eq. (3.10) is equivalent to Richardson’s cyclic method (3.8) if one
chooses the relaxation parameters ωi = z−1

i like Young in [160]. This means
we do not have to compute and store the matrix powers Bi anymore.

Young considered linear systems (3.1) with a symmetric and positive defi-
nite matrix B ∈ R

N×N whose eigenvalues λm range in [λmin, λmax], where
λmax ≥ λmin > 0. For λmax > λmin, the bijective function

Φλmin,λmax(z) :=
λmax + λmin − 2z

λmax − λmin

(3.12)

maps the eigenvalues on the interval [−1, 1], in which the Chebyshev poly-
nomials are bounded by ±1. Moreover, the polynomial Sk+1(z) must fulfil
Sk+1(0) = 1, in order to satisfy the factorisation property in Eq. (3.11). If
we define for z ∈ [λmin, λmax]

Sk+1(z) :=
Tk+1 (Φλmin,λmax(z))

Tk+1

(
λmax+λmin

λmax−λmin

) , (3.13)

then Sk+1(0) = 1 and |Sk+1(λm)| < 1 for all eigenvalues λm. More
precisely, the upper bound is given by

max
m=1,...,N

|Sk+1(λm)| ≤ 1
∣
∣
∣Tk+1

(
λmax+λmin

λmax−λmin

)∣
∣
∣

< 1 . (3.14)

The roots zi of Sk+1(z) fulfil

Φλmin,λmax (zi) = cos
(
π · 2i+1

2k+2

)
(i = 0, . . . , k). (3.15)
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This is equivalent to

zi =
λmax + λmin

2
− λmax − λmin

2
· cos

(
π · 2i+1

2k+2

)
. (3.16)

Thus, the optimal relaxation parameters are given by

ωi =
2

λmax + λmin − (λmax − λmin) · cos
(
π · 2i+1

2k+2

) . (3.17)

The convergence behaviour follows from the estimation (3.14). We obtain

λmax + λmin

λmax − λmin
=

λmax

λmin
+ 1

λmax

λmin
− 1

=
1

2





√
λmax

λmin
+ 1

√
λmax

λmin
− 1

+

√
λmax

λmin
− 1

√
λmax

λmin
+ 1



 , (3.18)

and because of

Tk+1

(
1
2

(
s + 1

s

))
=

1

2

(

sk+1 +
1

sk+1

)

, (3.19)

we finally have

1
∣
∣
∣Tk+1

(
λmax+λmin

λmax−λmin

)∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

2










√
λmax

λmin
+ 1

√
λmax

λmin
− 1





k+1

+





√
λmax

λmin
− 1

√
λmax

λmin
+ 1





k+1





−1
∣
∣
∣
∣
∣
∣
∣
∣

≤ 2





√
λmax

λmin
− 1

√
λmax

λmin
+ 1





k+1

. (3.20)

In the case of λmax = λmin, the optimal relaxation parameter is constant
and it is given by ωi = 1

λmax
. This leads to the polynomial

q(z) =
(

1 − 1
λmax

z
)k+1

, (3.21)

which satisfies

max
m=1,...,N

|q(λm)| = 0 = 2





√
λmax

λmin
− 1

√
λmax

λmin
+ 1





k+1

. (3.22)
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Note that the ratio λmax

λmin
corresponds to the so-called condition number of

B [115, 132]
κ2(B) := ‖B‖2 ·

∥
∥B−1

∥
∥
2
≥ 1 (3.23)

with respect to the standard Euclidean norm ‖·‖2. Linear systems with a
small condition number are called well-conditioned and are easier to solve
than ill-conditioned systems with very large condition numbers. According
to Eq. (3.22) the convergence rate of Richardson’s cyclic method with the
optimal relaxation parameters depends on the square root of the condition
number,

2

(√

κ2(B) − 1
√

κ2(B) + 1

)k+1

. (3.24)

It is the same upper bound as for the well-known conjugate gradient method
proposed by Hestenes and Stiefel [74].

The transfer to the parabolic case can be seen as follows [117] : Instead
of solving an elliptic problem like Eq. (3.7) with a symmetric, positive
definite matrix B, one introduces an artificial time variable t transforming
the problem into its parabolic analogon

dx

dt
= −Bx , (3.25)

where the vector x = x(t) is now time-dependent. An explicit time dis-
cretisation with the time step size τ > 0, i.e.

xj+1 − xj

τ
= −Bxj , (3.26)

with xj ≈ x(j τ) yields the scheme

xj+1 = (I − τ B)xj (j ≥ 0) . (3.27)

It can be seen as Richardson’s method for the homogeneous linear sys-
tem (3.7) with the relaxation parameter τ . By using varying time step sizes
τi, i = 0, . . . , j , we obtain

xj+1 =

(
j
∏

i=0

(I − τi B)

)

x0 . (3.28)

This is equivalent to Richardson’s cyclic method (3.8) with j iterations.
According to Eq. (3.17) we can use the time step sizes

τi =
2

(λmax + λmin) − (λmax − λmin) · cos
(

π · 2i+1
2j+2

) (i = 0, . . . , j) ,

(3.29)
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and end up with the scheme proposed in [53, 64, 117, 162]. For the time
step sizes it holds that

τi =
1

λmax − λmin
· 2

λmax+λmin

λmax−λmin
− cos

(

π · 2i+1
2j+2

)

=
1

λmax
·

2·λmax

λmax−λmin

1 + 2·λmin

λmax−λmin
− cos

(

π · 2i+1
2j+2

)

=
1

λmax

·
2 + 2·λmin

λmax−λmin

2·λmin

λmax−λmin
+ 1 − cos

(

π · 2i+1
2j+2

)

=
1

λmax
·

2 + 2·λmin

λmax−λmin

2·λmin

λmax−λmin
+ 2 cos2

(

π · 2i+1
j+1

) . (3.30)

With j = n−1, λmax = 4
h2 and the damping factor ν = 2·λmin

λmax−λmin
, we

reobtain Eq. (2.90) that describes the time step sizes of the damped explicit
scheme derived from the maximum variance filter V h

2n+1. The case λmin = 0
means ν = 0 and yields the time step sizes of the undamped method given
by Eq. (2.86).

Very detailed experimental evaluations for the Super Time Stepping (STS)
scheme have been given e.g. by Alexiades et al. [3, 4], and it has also been
used to solve practical problems, for example, in [42, 92]. To improve the
stability for non-symmetric parabolic problems, Gurski and O’Sullivan have
proposed a modified STS scheme [65, 66, 67].

The application of Richardson’s method to arbitrary linear systems, e.g.
for indefinite, non-symmetric or complex matrices whose eigenvalues can be
negative or range in the complex domain, has been discussed for instance
in [22, 48, 102].

3.2 From Box Filtering to Fast Explicit

Diffusion

This section deals with explicit linear diffusion schemes using the varying
time step sizes that were motivated by the 1-D box filter kernel. We call
one cycle with n varying time steps of this scheme a Fast Explicit Diffusion
(FED) cycle. It has been proposed by Grewenig et al. [164, 165]. Because of
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its equivalence to 1-D box filtering, FED represents a stable explicit linear
diffusion scheme.

Assume we have given a finite signal f 0 := (f 0
0 , . . . , f

0
N+1) with dummy

variables f 0
0 = f 0

1 and f 0
N+1 = fN (cf. Sec. 2.6). An explicit linear diffusion

step with the time step size τ reads

f 1
k = f 0

k + τ · f
0
k+1 − 2 f 0

k + f 0
k−1

h2
(k = 1, . . . , N) . (3.31)

We define the vectors

f̃ i =






f i
1
...
f i
N




 ∈ R

N , (3.32)

with i ≥ 0 and the symmetric, tridiagonal matrix

Ah =
1

h2
·












−1 1 0
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
0 1 −1












∈ R
N×N . (3.33)

With the help of Gershgorin’s theorem [58, 139], we can state that the N
eigenvalues of the matrix Ah range in the real interval

[
− 4

h2 , 0
]
. Here, the

eigenvalue 0 exists in fact, and its multiplicity is one [128].

Using these definitions, we can consider Eq. (3.31) as a matrix-vector mul-
tiplication

f̃ 1 = (I + τ Ah) f̃
0 . (3.34)

Thus, an FED cycle with n varying time step sizes τi is given by

f̃n =

(
n−1∏

i=0

(I + τi Ah)

)

f̃ 0 . (3.35)

However, it is important to understand that we do not explictly evaluate
the product of n matrices. Instead, Eq. (3.35) means the scheme

f̃ i+1 = (I + τi Ah) f̃
i (i = 0, . . . , n−1) . (3.36)
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The Euclidean norm of the vector f̃n satisfies

∥
∥
∥f̃n

∥
∥
∥
2
=

∥
∥
∥
∥
∥

(
n−1∏

i=0

(I + τi Ah)

)

f̃ 0

∥
∥
∥
∥
∥
2

≤
∥
∥
∥
∥
∥

(
n−1∏

i=0

(I + τi Ah)

)∥
∥
∥
∥
∥
2

·
∥
∥
∥f̃

0
∥
∥
∥
2

= max
z∈[0 , 4

h2
]

∣
∣
∣
∣
∣

n−1∏

i=0

(1 − τi z)

∣
∣
∣
∣
∣
·
∥
∥
∥f̃ 0

∥
∥
∥
2

≤
∥
∥
∥f̃ 0

∥
∥
∥
2
, (3.37)

since we know that the symbol of a box filter Bh
2n+1 is given by

p
[n]
B (z) =

n−1∏

i=0

(1 − τi z) =

n∑

m=0

h2m

2m+ 1

(
n +m

2m

)

(−z)m , (3.38)

and fulfils |p[n]B (z)| ≤ 1 for all z ∈
[
0 , 4

h2

]
. Moreover, we have used that the

Euclidean norm of a symmetric matrix corresponds to the largest modulus
of its eigenvalues. Thus, an FED cycle is in particular stable with respect
to the Euclidean norm. The substitution −z → Ah in Eq. (3.38) enables
us to rewrite Eq. (3.35) as a matrix polynomial in Ah:

f̃n =

(
n∑

m=0

h2m

2m+ 1

(
n+m

2m

)

Am
h

)

f̃ 0 . (3.39)

Such a series expansion can be very helpful for e.g. the analysis of the
approximation order.

The main goal of this section is to show that FED can be applied to arbi-
trary multi-dimensional nonlinear diffusion processes, although it has been
motivated in the 1-D setting with linear diffusion. As a first step, we anal-
yse the distribution of the time step sizes with regard to their stability
properties. Afterwards, we deal with some theoretical as well as numerical
stability issues, and present common strategies to improve the robustness
with respect to numerical rounding errors. Besides these stability issues,
we also discuss the consistency and approximation quality of the proposed
FED scheme.

3.2.1 Time Step Sizes

We have shown in the previous chapter that for a box kernel with length
(2n+1)h the time step sizes are given by
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τi =
h2

2
· 1

2 cos2
(
π · 2i+1

4n+2

) (i = 0, . . . , n−1). (3.40)

Interestingly, the time step sizes τi partially violate the stability condition
τ ≤ h2

2
. This is due to the acceleration factor 1/

(
2 cos2

(
π · 2i+1

4n+2

))
that

can be larger than 1. Table 3.1 shows both the smallest and largest three
time step sizes for different n. Obviously, very large time steps are possible.
For example with n = 1000, the largest inner time step size of an FED
cycle is about 330000 times larger than the usual stability limit. Thus, it
is not really surprising that the cycle time θn with n explicit time steps
grows quadratically in n. As mentioned in the previous chapter, it is equal
to h2

6
· (n2 + n). An explicit scheme using only stable time steps can reach

the maximum diffusion time h2

2
· n. Hence, the speed-up factor is

h2

6
(n2 + n)
h2

2
· n

=
1

3
(n + 1) , (3.41)

and it is larger than 1 for n ≥ 3.

Since we use a composition of stable and unstable time steps sizes within
an FED cycle, it would be nice to know the ratio between them. In this
context, the following proposition about the distribution of the time step
sizes states an interesting rule: Use a stable time step and get an unstable
step for free. This means that the proportion of the unstable steps is about
50%, and for even n equal to 50%. Note that ⌈x⌉, where x ∈ R, denotes
the next largest integer k ≥ x.

Proposition 3.1 (Distribution of the Time Step Sizes). One FED
cycle with n inner time steps consists of

⌈
n−1
2

⌉
unstable steps.

Proof. The unstable time step sizes within one FED cycle satisfy τi >
h2

2
,

which is equivalent to

cos
(
π · 2i+1

4n+2

)
<

√

1

2
. (3.42)

Because of π · 2i+1
4n+2

∈
(
0, π

2

)
for all i ∈ {0, ..., n−1} and the monotonicity

of the cosine function in
(
0, π

2

)
, the index i should meet the inequality

π · 2i+ 1

4n+ 2
>

π

4
. (3.43)
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Table 3.1: First three and last three step sizes of FED (1-D) with h = 1.

n 50 100 250 500 1000

τ0 0.250060 0.250015 0.250002 0.250001 0.250000
τ1 0.250545 0.250137 0.250022 0.250006 0.250001
τ2 0.251518 0.250382 0.250061 0.250015 0.250004
...

...
...

...
...

...
τn−3 28.79 113.79 706.52 2820.19 11269.25
τn−2 64.68 255.93 1589.57 6345.33 25355.72
τn−1 258.48 1023.45 6358.01 25381.06 101422.61

θn 425.00 1683.33 10458.33 41750.00 166833.33

This means

i >
n

2
− 1

4
, (3.44)

i.e. the number of unstable step sizes is equal to n
2
for even n and for odd

n we obtain n−1
2
. The combination of both cases yields the above stated

number
⌈
n−1
2

⌉
.

We have already seen that the unstable time step sizes can be very large.
Actually, the largest time step τn−1 tends to infinity for n → ∞ :

τ−1
n−1 =

4

h2
· cos2

(
π · 2n−1

4n+2

)

︸ ︷︷ ︸

→ cos2(π
2 )=0

→ 0 . (3.45)

To this end, it is necessary to clarify theoretical as well as numerical stability
issues.

3.2.2 Theoretical Aspects of Stability

We only know that 1-D FED schemes reproduce 1-D box filtering and thus
have to be stable after a whole cycle with n time steps. However, in Chap-
ter 2, we have presented an exemplary evolution of a box filter with in-
creasing number of explicit diffusion steps and we have seen that it is stable
after all inner time steps. So the question is whether this example is just
an exception or there is a general theoretical result that can be proven. We
now analyse the stability regarding such theoretical issues.
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Figure 3.1: Inner symbols of FED with n = 11 and unit grid size h = 1.
(a) Left: Original sequence. (b) Right: Rearranged sequence.

Inner Stability

At first, we want to prove a result concerning the inner stability and show
that the inner symbols

p
[k,n]
B (z) :=

k−1∏

i=0

(1 − τi z) (k = 1, . . . , n) (3.46)

are bounded in absolute value by 1, provided that the time steps τi are used
in their natural order. An example is illustrated in Fig. 3.1(a).

Proposition 3.2 (Inner Stability of FED). Let n ∈ N be the length of
an FED cycle with the time step sizes τ0 < τ1 < . . . < τn−1 given by

Eq. (3.40), and let p
[k,n]
B (z) be the inner symbol of the k-th time step. Then

these symbols satisfy for all k ≤ n and z ∈
[
0 , 4

h2

]
:

|p[k,n]B (z)| ≤ 1 . (3.47)

Proof. We prove the proposition by contradiction: Assume we have found
n0 ∈ N, k0 < n0 and z0 ∈

[
0, 4

h2

]
with |p[k0,n0]

B (z0)| > 1. This can happen,
if and only if at least one unstable time step has been used. Actually, this
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implies n0 > k0 > ⌈n0

2
⌉ and thus n0 ≥ 4. Furthermore, we have

|p[k0,n0]
B (z0)| =

k0−1∏

i=0

|1 − τi z0|

=

⌈n0

2 ⌉−1
∏

i=0

|1 − τi z0|
︸ ︷︷ ︸

≤ 1

·
k0−1∏

i=⌈n0

2 ⌉
|1 − τi z0| > 1 , (3.48)

and it follows that there exists at least one index i0 ≥ ⌈n0

2
⌉ fulfilling the

inequality |1 − τi0 z0| > 1. Since i0 ≤ k0 − 1, we obtain

z0 >
2

τi0
≥ 2

τk0−1
. (3.49)

For the indices i ≥ k0 it holds that τi > τk0−1, and therefore

|1 − τi z0| >

∣
∣
∣
∣
1 − τi

2

τk0−1

∣
∣
∣
∣
=

∣
∣
∣
∣
1 − 2

τi
τk0−1

∣
∣
∣
∣

> 1 . (3.50)

This yields for the symbol corresponding to the whole stable cycle:

|p[n0]
B (z0)| = |p[n0,n0]

B (z0)|

= |p[k0,n0]
B (z0)|
︸ ︷︷ ︸

> 1

·
n0−1∏

i=k0

|1 − τi z0|
︸ ︷︷ ︸

> 1

> 1 , (3.51)

which is a contradiction, and thus the statement is proven.

Actually, the sequence of the stable time steps does not matter for the
proof. However, it is very important that the unstable steps come after the
stable ones and are sorted by value. In the case of an arbitrary sequence, it
might happen that the inner symbols p

[k,n]
B take values with moduli much

larger than 1. This is illustrated in Fig. 3.1(b). As a consequence, the
corresponding inner filter kernels with length (2k+1)h can have negative
weights. On the other hand, the sorted sequence of unstable time steps
only guarantees stability in the Euclidean norm. This can not exclude
the appearance of negative filter weights. We know that such negative
weights can only come from unstable steps and have to disappear at the
end, because the box kernel consists of positive uniform weights. However,
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we conjecture that all inner filter kernels have positive weights as we have
seen for example in Fig. 2.10. Now we give a formula for the weights of the
inner filter kernels. It yields some interesting theoretical results.

Proposition 3.3 (Weights of the Inner Kernels). Let n ∈ N be the
length of an FED cycle, let

w
(0)
k =

{
1 , k = 0

0 , k > 0
, (3.52)

and τm , m ∈ {0, . . . , n−1}, be the FED time step sizes. Moreover, we
define the weights of the inner kernels by means of

w
(m+1)
k =

(

1 − 2
τm
h2

)

· w(m)
k +

τm
h2

· w(m)
k−1 +

τm
h2

· w(m)
k+1 , (3.53)

and let w
(m)
−1 := w

(m)
1 . Then w

(m)
k fulfils

w
(m)
k =

1

2n+ 1
+

2

2n+ 1
·
n−m∑

s=1

p
[m,n]
B

(
1

τn−s

)

· Tk

(

1 − h2

2τn−s

)

. (3.54)

Proof. First we show that Eq. (3.54) is valid for m = 0. In this case, the

inner symbol is constant, i.e. p
[0,n]
B = 1. For k = 0 we have T0 = 1 and

thus

w
(0)
0 =

1

2n+ 1
+

2

2n+ 1
· n = 1 . (3.55)

Let now k > 0. Since

1 − h2

2τn−s

= cos
(

2π·s
2n+1

)
, (3.56)
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we obtain with q :=
(
exp

(
i 2π·k
2n+1

))
∈ C :

n∑

s=1

Tk

(

1 − h2

2τn−s

)

=

n∑

s=1

cos
(
2π·k·s
2n+1

)

=
1

2
·

n∑

s=1

(
exp

(
i 2π·k
2n+1

))s
+
(
exp

(
−i 2π·k

2n+1

))s

=
1

2
·
(

n∑

s=0

(qs + q̄ s) − 2

)

= −1 +
1

2
·
(
1− qn+1

1− q
+

1− q̄ n+1

1− q̄

)

= −1 +
1 − cos

(
2π·k(n+1)

2n+1

)

− cos
(

2π·k
2n+1

)

+ cos
(

2π·k·n
2n+1

)

2 − 2 cos
(

2π·k
2n+1

)

= −1

2
+

cos
(

2π·k·n
2n+1

)

− cos
(

2π·k·(n+1)
2n+1

)

2 − 2 cos
(

2π·k
2n+1

)

︸ ︷︷ ︸

=0

, (3.57)

where we have used

cos
(

2π·k·n
2n+1

)

= cos
(

2π·k·(n+1)
2n+1

)

. (3.58)

This verifies w
(0)
k = 0 for k > 0. Hence, Eq. (3.54) is valid for the level

m = 0. Moreover, we have for w
(m+1)
k :

(
1 − 2 τm

h2

)
· w(m)

k +
τm
h2

· w(m)
k−1 +

τm
h2

· w(m)
k+1

=
1

2n+ 1
+

2

2n+ 1
·
n−m∑

s=1

p
[m,n]
B

(
1

τn−s

)

·
((

1− 2 τm
h2

)
· Tk

(

1− h2

2τn−s

)

+
τm
h2

· Tk−1

(

1 − h2

2τn−s

)

+
τm
h2

· Tk+1

(

1 − h2

2τn−s

))

=
1

2n+ 1
+

2

2n+ 1
·
n−m∑

s=1

p
[m,n]
B

(
1

τn−s

)

·
((

1− 2 τm
h2

)
· Tk

(

1− h2

2τn−s

)
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+ 2
τm
h2

· T1

(

1 − h2

2τn−s

)

· Tk

(

1 − h2

2τn−s

))

=
1

2n+ 1
+

2

2n+ 1
·
n−m∑

s=1

p
[m,n]
B

(
1

τn−s

)

·
((

1− 2 τm
h2

)
· Tk

(

1− h2

2τn−s

)

+ 2
τm
h2

·
(

1 − h2

2τn−s

)

· Tk

(

1 − h2

2τn−s

))

=
1

2n+ 1
+

2

2n+ 1
·
n−m∑

s=1

p
[m,n]
B

(
1

τn−s

)

·
(

1− τm
τn−s

)

︸ ︷︷ ︸

= p
[m+1,n]
B

(

1
τn−s

)

· Tk

(

1− h2

2τn−s

)

=
1

2n+ 1
+

2

2n + 1
·
n−m−1∑

s=1

p
[m+1,n]
B

(
1

τn−s

)

· Tk

(

1 − h2

2τn−s

)

. (3.59)

This concludes the proof.

As we have mentioned above, Eq. (3.54) helps us with the derivation of some
theoretical facts that we are going to summarise in the following corollary.

Corollary 3.4. Let n ∈ N be the length of an FED cycle and w
(m)
k with

m ≤ n the weights of the inner filter kernels. Then the following holds:

(a) w
(m)
0 > 1

2n+1
> 0 and w

(m+1)
0 < w

(m)
0 for m ∈ {0, . . . , n−1}.

(b) max
0≤k≤n

|w(m)
k | = w

(m)
0 .

(c) w
(n−1)
k > 0 and w

(n−1)
k > w

(n−1)
k+1 for k ∈ {0, . . . , n−1}.

Proof. (a): According to Eq. (3.54) we have

w
(m)
0 =

1

2n+ 1
+

2

2n+ 1
·
n−m∑

s=1

p
[m,n]
B

(
1

τn−s

)

. (3.60)

Since the symbol satisfies

0 < p
[m,n]
B

(
1

τn−s

)

< 1 (3.61)
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for s ∈ {1, . . . , n−m} with m < n, the sum is positive and therefore the

centre weight satisfies w
(m)
0 > 1

2n+1
. If m = n, one has the box filter

weight w
(n)
0 = 1

2n+1
. The monotonicity follows from the fact that

p
[m+1,n]
B

(
1

τn−s

)

=
(

1 − τm
τn−s

)

︸ ︷︷ ︸

∈ [0,1)

· p[m,n]
B

(
1

τn−s

)

< p
[m,n]
B

(
1

τn−s

)

(3.62)

for s = 1, . . . , n−m and therefore

n−(m+1)
∑

s=1

p
[m+1,n]
B

(
1

τn−s

)

<

n−m∑

s=1

p
[m,n]
B

(
1

τn−s

)

. (3.63)

(b): Because of |w(m)
0 | = w

(m)
0 , the maximum satisfies

max
0≤k≤n

|w(m)
k | ≥ w

(m)
0 . (3.64)

For an arbitrary index k ≥ 0, we use the triangle inequality:

|w(m)
k | =

∣
∣
∣
∣
∣

1

2n + 1
+

2

2n+ 1
·
n−m∑

s=1

p
[m,n]
B

(
1

τn−s

)

· Tk

(

1 − h2

2τn−s

)
∣
∣
∣
∣
∣

≤ 1

2n+ 1
+

2

2n+ 1
·
n−m∑

s=1

p
[m,n]
B

(
1

τn−s

)

·
∣
∣
∣Tk

(

1 − h2

2τn−s

)∣
∣
∣

︸ ︷︷ ︸

≤ 1

≤ 1

2n+ 1
+

2

2n+ 1
·
n−m∑

s=1

p
[m,n]
B

(
1

τn−s

)

= w
(m)
0 . (3.65)

Thus,
max
0≤k≤n

|w(m)
k | ≤ w

(m)
0 , (3.66)

and the statement (b) is true.

(c): Proposition 3.3 yields

w
(n−1)
k =

1

2n+ 1
+

2

2n+ 1
· p[n−1,n]

B

(
1

τn−1

)

· Tk

(

1 − h2

2τn−1

)

=
1

2n+ 1
+ 2

2n+1
· p[n−1,n]

B

(
1

τn−1

)

· cos
(

2π·k
2n+1

)
, (3.67)
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and because of
cos
(

2π·k
2n+1

)

> cos
(

2π·(k+1)
2n+1

)

(3.68)

for k ∈ {0, . . . , n−1}, we get

w
(n−1)
k > w

(n−1)
k+1 . (3.69)

It is w
(n−1)
n = 0, and therefore (c) is proven.

Corollary 3.4 states that the centre weights are positive for all time steps
and decrease monotonically to the value 1

2n+1
. Moreover, the centre weight

is the largest one for each step and if negative weights should appear, then
their moduli are bounded by the corresponding centre weight. Another
very interesting fact is the behaviour after the second last explicit step.
The weights are positive and satisfy a monotonicity condition: The farther
away from the centre, the smaller are the weights. However, the same
condition is definitely fulfilled for all stable time steps. This gives rise to the
conjecture that the condition is also satisfied for all unstable steps. Overall,
this would mean that negative weights do not appear. Unfortunately, we
have not found a proof yet.

At this point, we would like to mention another representation of the symbol
that will be useful for further considerations. It involves the Chebyshev
polynomials of the second kind:

Definition 3.5. The Chebyshev polynomials of the second kind are defined
by the recursion







U0(x) = 1 ,

U1(x) = 2x ,

Un+1(x) = 2x · Un(x) − Un−1(x) .

(3.70)

A closed-form representation for n ≥ 1 is given by

Un(x) =

⌊n/2⌋
∑

m=0

(−1)m
(
n−m

m

)

(2x)n−2m . (3.71)

The Chebyshev polynomials Un have the nice property that they can be
written as a sum of Chebyshev polynomials of the first kind, i.e.

U2k+1(x) = 2 ·
k∑

m=0

T2m+1(x) , (3.72)
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and

U2k(x) = 2 ·
k∑

m=0

T2m(x) − 1 . (3.73)

Thus, we obtain

p
[n]
B (z) =

1

2n+ 1
·
[

1 + 2 ·
n∑

m=1

Tm

(

1− h2

2
z
)
]

=
1

2n+ 1
·
[

1 + 2 ·
n∑

m=1

Tm

(

T2

(√

1− h2

4
z

))]

=
1

2n+ 1
·
[

1 + 2 ·
n∑

m=1

T2m

(√

1− h2

4
z

)]

=
1

2n+ 1
·
[

2 ·
n∑

m=0

T2m

(√

1− h2

4
z

)

− 1

]

=
1

2n+ 1
· U2n

(√

1− h2

4
z

)

, (3.74)

where z ∈
[
0 , 4

h2

]
. The advantage of this representation is the vanishing

of a special treatment for the case z = 0. It also simplifies the description
of the stability domain.

Stability Domain

The stability domain of an FED scheme with n explicit diffusion steps is
given by the set [71]

S(n) :=
{

z ∈ C :
∣
∣
∣p

[n]
B (−z)

∣
∣
∣ ≤ 1

}

. (3.75)

Since the values −z represent eigenvalues, the set S(n) specifies the spectra
of matrices P for which the matrix product

∏

i (I + τi P ) of the FED
scheme has eigenvalues in the complex unit circle and is therefore stable.
With the help of the above representation, we can state

S(n) =

{

z ∈ C :

∣
∣
∣
∣
U2n

(√

1 + h2

4
z

)∣
∣
∣
∣
≤ 2n+ 1

}

. (3.76)

Figure 3.2 illustrates four different stability domains. Besides the above
mentioned real interval, they also cover complex-valued numbers with an
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n = 5 n = 10

n = 15 n = 20

Figure 3.2: Stability domains S(n) for different n (h = 1).

imaginary part up to about ±1. This means that the matrix P may have
complex-valued eigenvalues. However, if n increases, the corresponding
imaginary part decreases.

In the literature [71], it is also common to define the stability domain with
the help of a modified amplification factor p̃[n](z) that is given by

p̃[n](z) := 1 − z +
n∑

m=2

cm · (−z)m . (3.77)

Note that the coefficient of −z is normalised to 1. In our case, the normal-
isation requires the division by the cycle time θn = h2

6
· (n2+n) :

p̃
[n]
B (z) = p

[n]
B

(
z
θn

)

. (3.78)

Its corresponding stability domain reads

S̃(n) =
{

z ∈ C :
∣
∣
∣U2n

(√

1 + 3
2 (n2+n)

z
)∣
∣
∣ ≤ 2n+ 1

}

. (3.79)

The real part of S̃(n) grows quadratically in n, whereas the size of the
real domain for a usual explicit scheme is proportional to n. Figure 3.3
depicts some examples and illustrates the quadratic and linear dependency,
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n = 4 n = 8

Figure 3.3: Stability domains S̃(4) and S̃(8) (h = 1) for FED (solid line,
black) and the usual explicit scheme (dashed, red).

respectively. We observe that the imaginary part seems to increase only
proportionally to n in both cases, although the variable z is divided by
n2+n in the case of FED. However, this explains the decay with O( 1

n
) of

the imaginary part within S(n) in Fig. 3.2.

3.2.3 Numerical Stability

Although the amplification factor of FED is bounded in theory, a rear-
rangement of the natural sequence of the time step sizes is necessary in
practice due to numerical rounding errors. This can be seen as follows: Let
λi, i = 1, . . . , N , be the eigenvalues of Ah ∈ RN×N from Eq. (3.33) with
their corresponding normalised eigenvectors vi. Due to the symmetry of
Ah, they form an orthonormal basis of RN . Moreover, they can be seen as
frequency components, where smaller frequencies correspond to eigenvalues
with small moduli and higher frequencies to larger absolute values. Refer-
ring to the FED scheme in Eq. (3.35), the initial vector f̃ 0 can be written
in terms of this basis, which means

f̃ 0 =

N∑

i=1

Ci · vi , (3.80)

with the coefficients Ci = vT
i f̃

0 ∈ R. If we apply the FED scheme and
use only the ⌊n+1

2
⌋ stable time steps, the corresponding solution satisfies

f̃⌊n+1
2 ⌋ =

( ⌊n−1
2 ⌋
∏

i=0

(I + τi Ah)
)

f̃ 0 =
N∑

k=1

Ck ·
( ⌊n−1

2 ⌋
∏

i=0

(I + τi Ah)
)

vk
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=
N∑

k=1

Ck ·
( ⌊n−1

2 ⌋
∏

i=0

(1 + τi λk)
)

vk =
N∑

k=1

C̃k · vk , (3.81)

where

C̃k := Ck ·
⌊n−1

2 ⌋
∏

i=0

(1 + τi λk) . (3.82)

For stable time step sizes τi and λk < 0 we have qi,k := |1 + τi λk| < 1,
i.e. |C̃k| < |Ck|. We assume w.l.o.g. that λ1 = 0 and the eigenvalues are
arranged such that λN < λN−1 < · · · < λ2 < λ1. Thus, C̃1 = C1 and

qi,k ≤ max
{∣
∣
∣1 + h2

4
λ2

∣
∣
∣ ,
∣
∣
∣1 + h2

2
λN

∣
∣
∣

}

=: qN < 1 , (3.83)

since for i = 0, . . . , ⌊n−1
2
⌋ and k = 2, . . . , N it holds that

1 > 1 +
h2

4
λ2 ≥ 1 + τi λk (3.84)

as well as

− 1 < 1 +
h2

2
λN ≤ 1 + τi λk . (3.85)

Note that the maximum qN does not depend on the time step sizes and the
cycle length n. According to [128], the eigenvalues of Ah are given by

λk =
1

h2
·
(
2 cos

(
π · k−1

N

)
− 2

)
(k = 1, . . . , N) . (3.86)

For N ≥ 3 we obtain

1 +
h2

4
λ2 =

1

2
·
(
1 + cos

(
π
N

))
> cos

(
π
N

)
> 0 , (3.87)

and

1 +
h2

2
λN = − cos

(
π
N

)
. (3.88)

Hence, we can simplify the maximum by

qN =
1

2
·
(
1 + cos

(
π
N

))
< 1 . (3.89)

Overall, the coefficients C̃k with k ≥ 2 fulfil

∣
∣
∣C̃k

∣
∣
∣ = |Ck| ·

⌊n−1
2 ⌋
∏

i=0

|1 + τi λk| ≤ |Ck| · q⌊
n+1
2

⌋
N , (3.90)
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and therefore C̃k → 0 for n → ∞. This means an increasing cycle length
n scales down the moduli of the coefficients C̃k. However, regarding the nu-
merical computations, finite precision arithmetic does not allow arbitrary
small coefficients and produces numerical rounding errors. For sufficiently
large n, this means that there exists an ε > 0 such that some numer-
ical results C̃ r

k belonging to the exact coefficients C̃k with C̃k 6= 0 sat-
isfy |C̃ r

k | ≥ ε, although the exact coefficient is smaller: |C̃k| < ε with
|C̃ r

k |
|C̃k|

≫ 1.

If we use the unstable time steps and assume again a sufficiently large
n, then there exists for each eigenvalue λk with k ≥ 2 an index i0(k) with
qi,k > 1 for i ≥ i0(k). In this case, the absolute values of the k-th coefficient
will increase from step to step and may become as large as

ε ·
n−1∏

i=i0(k)

|1 + τi λk| . (3.91)

This can lead to severe inaccuracies right up to exceedance of the machine
precision, because we work with huge time step sizes, i.e. qi,k ≫ 1. To
illustrate these thoughts, we now present an example.

Example

We consider an oscillatory 1-D signal (vector) with length N = 7,

g0 = (1,−1, 1,−1, 1,−1, 1)T ∈ R
7 , (3.92)

and apply the FED scheme (3.35) using the matrix Ah ∈ R
7×7 with unit

grid size h = 1. The length of the FED cycle is defined by n = 32 and
therefore corresponds to the box filter B1

65. Due to the reflecting boundary
condition, this yields the result

g32 =
1

65
· (9, 9, 9, 11, 9, 9, 9)T . (3.93)

Using the seven orthonormal eigenvectors v1, . . . , v7 of Ah, we can express
each intermediate result gi in terms of these basis vectors, i.e.

gi :=

(
i−1∏

ℓ=0

(I + τℓ Ah)

)

g0 =
7∑

k=1

C
(i)
k · vk (i = 0, . . . , 32) . (3.94)

In this numerical experiment, we focus on the coefficients C
(i)
7 of the highest

frequency component v7 and observe their absolute values for different i
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Figure 3.4: Evolution of |C(·)
7 | with respect to the number of time steps for

float and long double precision.

with respect to both float (4 bytes) and long double (12 bytes) precision.
The final results for float (fl) and long double (ld) precision are given by

g32
fl = 105 ·(0.654,−1.833, 2.649,−2.940, 2.649,−1.833, 0.654)T , (3.95)

and

g32
ld = (0.1385, 0.1385, 0.1385, 0.1692, 0.1385, 0.1385, 0.1385)T , (3.96)

respectively. We see that g32
ld is a very good approximation for the exact

solution g32, whereas g32
fl yields a huge numerical error. This error occurs

mainly due to the behaviour of the coefficients C
(i)
7 in float precision, which

is illustrated in Fig. 3.4. During the first five time steps, there is virtually no
difference between float and long double precision. However, the next time
steps make |C(i)

7 | too small for float precision and numerical rounding errors
appear, whereas the curve of the long double precision is as we would expect
it for the exact coefficients: The absolute values decrease for all stable steps,
and then increase again when unstable steps come into play. In absolute
terms, the numerical rounding errors are very small, but the large unstable
time steps amplify them up to multiple orders of magnitudes. This induces
the highly inaccurate result.

The example indicates that Prop. 3.2 is not sufficient for stability in prac-
tical applications. To make FED more robust with respect to numerical
rounding errors, we have to take care of the sequence of the time step sizes.
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However, if we use a rearranged sequence, it might happen that some in-
termediate results are unstable, which has been shown in Fig. 3.1(b). This
is very important with regard to nonlinear problems, where the correct
numerical solution requires stable intermediate results. Hence, there is a
trade-off between theoretical and numerical stability issues.

In the context of Super Time Stepping (STS), the problem with numerical
rounding errors has been addressed e.g. by Gentzsch and Schlüter [57].
However, in the case of Richardson’s method, Young already mentioned
this problem in 1954 and proposed an intuitive ordering that makes the
method more robust with respect to rounding errors [160]. Later, Lebedev
and Finogenov have presented a detailed rounding error analysis and have
constructed an ordering that guarantees a computationally stable form of
Richardson’s method [89]. Unfortunately, this rearrangement only works
for cycle lengths n ∈ {2p | p ∈ N0}. Anderssen and Golub [5] have per-
formed some numerical experiments and compared the strategies of Young
as well as Lebedev and Finogenov. They state that Young’s rearrangement
of the time step sequence has problems with large n (in their experiment:
n = 128), whereas the method of Lebedev and Finogenov performs well.
Another strategy has been proposed by Reichel [110]. He considered the
so-called Leja points [43, 90]. The main advantage of this algorithm is that
it can be applied to arbitrary sets of varying parameters, i.e. n ∈ N and
the parameters can also be complex-valued. Given a set, the original se-
quence of the elements is rearranged such that they fulfil certain constraints.
This Leja ordering has been successfully applied not only to Richardson’s
method [21, 22, 110], but also to other problems like Newton interpolation
or evaluation of polynomial coefficients [23, 109].

For our FED method, we want to use three different strategies that we
have mentioned above: The first is similar to the ideas of Gentzsch and
Schlüter, which means that we use so-called κ-cycles. Our second option is
the Leja ordering. We have chosen these methods, since they allow arbitrary
cycle lengths n and have already been successfully applied to improve the
robustness with respect to numerical rounding errors. The third strategy
is the Lebedev-Finogenov ordering. As mentioned above, it allows only
specific cycle lengths, but it has a nice theoretical foundation and an elegant
derivation. Since Lebedev and Finogenov have proven that their approach
works well with Super Time Stepping (even without any damping), we
conjecture that there might also exist a proof for FED. This is due to the
fact that the FED time step sizes are smaller, and therefore less critical.
Unfortunately, we have not found a proof yet.
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Figure 3.5: Example for the rearrangement with κ-cycles for n = 11 and
κ = 3. The unstable time steps are white.

κ-Cycles

The rearrangement of the time step sequence with κ-cycles has been used
by Gentzsch and Schlüter to improve the robustness of STS [57]. Since
FED is a similar scheme, it is natural to use these κ-cycles also in our case.
An example with n = 11 and κ = 3 is illustrated in Fig. 3.5. The first
six time steps are stable, whereas steps with indices larger than five are
beyond the stability restriction. As one can see, the sequence is in this case
subdivided into four smaller cycles, where all cycles contain at least two
stable time steps. In general, this idea can be formulated as follows: Let
p be the smallest prime number with p ≥ n and τi , i ∈ {0, . . . , n−1},
the time step sizes ordered in their natural sequence. We decompose the
set of all τi into κ-cycles with 1 < κ < n, and introduce a new sequence
τ̃0, . . . , τ̃n−1. Therefore, we set a counter variable ℓ = 0 and define the
mapping

Φκ(m) :=
(
m · κ

)
mod p . (3.97)

For all m = 0, . . . , p−1 , we compute the values Φκ(m). If Φκ(m) ≤ n−1,
then τ̃ℓ := τΦκ(m) and ℓ := ℓ+1. In the case of Φκ(m) ≥ n, we just drop
this value. Then we get a feasible rearrangement of the original sequence.
The algorithm is summarised in Fig. 3.6.

Unfortunately, there is no panacea for the choice of κ. However, it is
possible to create a look-up table with suitable values κ = κ(n) that ensure
robustness regarding numerical rounding errors. To this end, we consider a
1-D test problem with an oscillatory signal s of a certain length m·h that is
defined by si := (−1)i−1 for i ∈ {1, . . . , m}. If i < 1 or i > m we assume
reflecting boundary conditions. Note that it makes sense to consider high
frequency signals, since they provide the biggest challenge with respect to
numerical rounding errors, as shown in our above example. To find suitable



3.2. FROM BOX FILTERING TO FAST EXPLICIT DIFFUSION 83

κ-values, we first compute the box filtered signal

(
Bh

2n+1(s)
)

i
=

1

2n+ 1

n∑

k=−n

si+k . (3.98)

It represents the exact solution of an FED scheme with n time steps. Hence,
finding a good value for κ < n is equivalent to the minimisation of the
error between the numerical result s̃nκ ∈ Rm of the FED scheme using the
corresponding sequence τ̃0, . . . , τ̃n−1 and the box filtered signal Bh

2n+1(s).
As a measure, we use the absolute error

m∑

i=1

∣
∣(s̃nκ)i −

(
Bh

2n+1(s)
)

i

∣
∣ . (3.99)

To create a look-up table for the numerical experiments, we have used a
signal length with m = 50 and performed all computations in float pre-
cision. In the experimental section, we are going to see how this specific
look-up table works in practice.

If we reconsider the above presented example, where we have analysed the
behaviour of the result with respect to different numerical precisions, we
can also examine the evolution of the coefficient for a rearranged sequence
of time steps. This is illustrated in Fig. 3.7. As we can see, the numerical
precision does not matter anymore, because there is no visible difference
between the two curves, and the numerical results are both very accurate.
The mix of stable and unstable steps prevents that the coefficient becomes
too small or too large for computations with float precision. In the case
of the original sequence, the absolute values range from 1.7 · 10−16 to 2.4.
With the rearranged sequence, they lie in [8 · 10−4 , 10], and are suited for
float precision.

Leja Ordering

Since suitable κ-cycles can only be found experimentally and therefore de-
pend on the setting of the test problems, we want to discuss another op-
tion, namely the Leja points [43, 90]. They have already been used to make
Richardson’s cyclic method more robust with respect to numerical rounding
errors [21, 22, 110]. The corresponding algorithm works as follows: Assume
that we have given an arbitrary finite set of m+1 real-valued (or complex-
valued) numbers. In the case of Richardson’s method, Reichel used the
reciprocals of the relaxation parameters to construct this initial set [110].
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1. Input:
natural sequence of the time step sizes τ0, . . . , τn−1 and 2 ≤ κ < n

2. Initialisation:
Compute the smallest prime number p with p ≥ n and set ℓ := 0.

3. Reordering: for m = 0, 1, . . . , p−1

(a) Compute Φκ(m) =
(
m · κ

)
mod p.

(b) If Φκ(m) ∈ {0, . . . , n−1}:
∗ τ̃ℓ := τΦκ(m)

∗ ℓ := ℓ+1

∗ If ℓ < n, increase m by 1 and go back to (a).

(c) If Φκ(m) /∈ {0, . . . , n−1}, then increase m and go to (a).

4. Output:
rearranged sequence τ̃0, . . . , τ̃n−1

Figure 3.6: Algorithm for the rearrangement with κ-cycles.

The application of the Leja algorithm yields a set S := {x0, . . . , xm} which
is arranged such that

j
∏

k=0

|xj+1 − xk| = max
x∈S

j
∏

k=0

|x − xk| (j = 0, ..., m−1) , (3.100)

and |x0| = max
x∈S

|x|. It might happen that two or more numbers satisfy

the maximum condition. In such a case, we just take the number with the
smallest modulus to get a unique result. To rearrange the sequence of n
FED time step sizes, we consider the set Kn := {z0, . . . , zn−1} with the
scaled reciprocals of the time step sizes

zi :=
h2

4
· τ−1

i = cos2
(

π · 2i+ 1

4n+ 2

)

∈ (0, 1) (i = 0, . . . , n−1) (3.101)

and apply the Leja algorithm. This yields the rearranged set K̃n :=
{z̃0, . . . , z̃n−1}. We know that z̃0 = z0, i.e. τ̃0 = τ0. The next numbers
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Figure 3.7: Evolution of |C(·)
7 | with respect to the number of time steps

for float and long double precision. The sequence of the time step sizes
(n = 32) has been rearranged using a κ-cycle with κ = 10.

with j > 0 have to satisfy

j
∏

k=0

|z̃j+1 − z̃k| = max
z∈Kn

j
∏

k=0

|z − z̃k|

=

j
∏

ℓ=0

z̃ℓ · max
z∈Kn

∣
∣
∣
∣
∣

j
∏

k=0

(

1 − z

z̃k

) ∣∣
∣
∣
∣

=

j
∏

ℓ=0

z̃ℓ · max
z∈Kn

∣
∣
∣
∣
∣

j
∏

k=0

(1 − τ̃k z)

∣
∣
∣
∣
∣
. (3.102)

Actually, the second product represents the inner symbol after j+1 time
steps with respect to the reordered sequence. This means the next point
z̃j+1 > 0 is an extremum point of the inner symbol in Kn. By choosing z̃j+1

in the next step, the corresponding extremum vanishes, since z̃j+1 is a root
of the inner symbol after j+2 steps. A summary of the whole algorithm is
given in Fig. 3.10.

The main advantage compared to κ-cycles is that the rearrangement given
by the Leja ordering only depends on the input set Kn. We do not need
any test problem, where we have to adjust some parameters. Concerning
our example, the evolution of the coefficient with Leja ordering is shown in
Fig. 3.8. Here, the absolute values range from about 10−2 to 48, which is
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Figure 3.8: Evolution of |C(·)
7 | with respect to the number of time steps

for float and long double precision. The sequence of the time step sizes
(n = 32) has been rearranged by the Leja algorithm.

up to two orders of magnitude larger than with κ-cycles. However, both
curves have a zigzag-like course that avoids, as mentioned above, too small
or too large values exceeding the numerical precision.

A disadvantage of the Leja ordering is the evaluation of the products.
If some factors |x − xk| are almost equal to zero, it might happen that
the whole product is wrongly evaluated due to rounding errors. The larger
j is, the smaller are the single factors |x − xk|. Moreover, the number of
these factors increases at the same time, which means that the product
is extremely small. Such problems appear in particular for large n and j.
The maximum of the products can not be correctly determined and hence
one has to take care that the precision is sufficient to ensure a correct Leja
ordering. In our experiments, differences between float and long double
precision already appear for n = 81 and indices j ≥ 78. The experimental
section will show that the precision is very important in the case of Leja
ordering.

Lebedev-Finogenov Ordering

The last rearrangement that we want to discuss has been introduced by
Lebedev and Finogenov [89]. It has also been developed in the context of
STS. This reordering procedure is based on a recursion relation and only
works for cycle lengths that are powers of two. Let us assume that we
have given the permutation with length 2p−1 (p ≥ 1), i.e. (j1, . . . , j2p−1),
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Figure 3.9: Evolution of |C(·)
7 | with respect to the number of time steps

for float and long double precision. The sequence of the time step sizes
(n = 32) has been rearranged by the Lebedev-Finogenov ordering.

where jℓ ∈ {0, . . . , 2p−1−1} for ℓ = 1, . . . , 2p−1. Then the permutation
with length 2p reads

(j1 , 2
p − 1− j1 , j2 , 2

p − 1− j2 , . . . , j2p−1 , 2p − 1− j2p−1) . (3.103)

As one can see, the algorithm for creating such a permutation is very easy.
However, the computational effort for an FED cycle might be increased by a
factor of about two. More precisely, instead of e.g. a cycle length n = 65 we
would have to use a cycle with 128 explicit steps for the Lebedev-Finogenov
ordering.

Fortunately, our example indicates that this ordering works also with
FED. This is shown in Fig. 3.9. Thus, the example supports the above men-
tioned conjecture that there might exist a theoretical result for FED. Sim-
ilarly to the other rearrangements, the Lebedev-Finogenov ordering mixes
stable and unstable steps such that the absolute values of the coefficient
C

(·)
7 range in the interval [5 · 10−3 , 48], where float precision is sufficient.

Actually, all three strategies work well up to a certain cycle length, as
we are going to see in the numerical experiments. At this point, we can
hardly say that one of the algorithms is clearly better than the other one.
Since Leja ordering is very expensive for problems with n ≫ 1000, we
recommend to use a look-up table. However, we need to store the whole
optimal permutation, whereas in the case of κ-cycles, the permutation is
defined only via the integer κ. On the other hand, both the Leja and
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1. Input:
natural sequence of the time step sizes τ0, . . . , τn−1

2. Initialisation:
Compute the scaled reciprocals zi := h2

4
· τ−1

i , and z̃0 := z0.

3. Leja algorithm: for j = 1, 2, . . . , n−1

– Compute z̃j := max
z

j−1∏

k=0

|z − z̃k|

with z ∈ {z0, . . . , zn−1} \ {z̃0, . . . , z̃j−1}.

4. Time step sizes:
Compute the new sequence of time step sizes via τ̃i =

h2

4
· z̃−1

i .

5. Output:
rearranged sequence τ̃0, . . . , τ̃n−1

Figure 3.10: Algorithm for the rearrangement with Leja points.

the Lebedev-Finogenov ordering have, in contrast to the κ-cycles, a better
theoretical foundation. Moreover, the construction of a Lebedev-Finogenov
sequence is much cheaper than the Leja ordering. A comparison of the three
strategies can be found in the experimental section.

3.2.4 Consistency and Convergence

In this subsection, we want to analyse the consistency and the convergence
properties of the linear FED scheme. To this end, we reconsider the linear
1-D diffusion equation

∂tu(x, t) = ∂xxu(x, t) (3.104)

with (x, t) ∈ (a, b)× (0,∞), a given function u(x, 0) = u0(x) for x ∈ [a, b],
and the unknown solution u. Note that we assume homogeneous Neumann
boundary conditions

∂xu(a, t) = ∂xu(b, t) = 0 (3.105)

for t ∈ (0,∞). As we have mentioned in Chapter 1, this PDE can be
formulated as an ODE system, if we discretise it with respect to the spatial
domain, i.e. apply the method of lines [116, 120]. We use a spatial grid
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with N nodes, i.e.
{
xi = a+

(
i− 1

2

)
· h
∣
∣ 1 ≤ i ≤ N

}
⊂ [a, b] , (3.106)

and the mesh size h := b−a
N

. The corresponding system of ODEs reads [147]

du

dt
= Ahu , (3.107)

where Ah ∈ RN×N is defined in Eq. (3.33) and

u = u(t) =
(
u(x1, t), . . . , u(xN , t)

)T ∈ R
N . (3.108)

With the initial value u0 = u(0) the exact solution of the ODE system is
given by the matrix exponential

u(t) = exp (t ·Ah) u
0

=

( ∞∑

i=0

(t ·Ah)
i

i!

)

u0 . (3.109)

Instead of computing the matrix exponential (cf. [100]), we want to apply
the FED scheme in order to approximate it. To this end, we introduce an
equidistant time grid

{
tk = k

M
· T

∣
∣ 0 ≤ k ≤ M

}
⊂ [0, T ] , (3.110)

with M ≥ 1 and a stopping time T > 0. Then we have for k ≥ 1

u(tk) = exp (tk ·Ah) u
0

= exp (tk−1 ·Ah) · exp
(

T
M

·Ah

)
u0

︸ ︷︷ ︸

= u(t1)...

= exp
(

T
M

·Ah

)
u(tk−1) . (3.111)

Thus, each cycle of an FED scheme with a total of M cycles should approx-
imate the matrix exponential

exp
(

T
M

·Ah

)
=

∞∑

i=0

T i

M i · i! ·A
i
h , (3.112)

to be consistent. Usual first order approximations are, for example,

exp
(

T
M

·Ah

)
≈ I + T

M
·Ah , (3.113)
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which corresponds to an explicit scheme, where the stability is ensured for
T
M

≤ h2

2
, and the implicit method

exp
(

T
M

·Ah

)
≈
(
I − T

M
·Ah

)−1
. (3.114)

Concerning one FED cycle with n time steps, the comparison of the series
expansion from Eq. (3.39), i.e.

I +
h2

3

(
n + 1

2

)

Ah +
n∑

m=2

h2m

2m+ 1

(
n+m

2m

)

Am
h , (3.115)

and the exponential series (3.112) yields

h2

3

(
n + 1

2

)

=
T

M
. (3.116)

However, this condition can not be fulfilled for arbitrary T > 0, since the
left hand side does not cover all positive real-valued numbers. Therefore
we have to incorporate a real-valued adjustment factor q ∈ (0, 1] for the
time step sizes of an FED cycle. More precisely, we determine the smallest
integer n0 such that the cycle time fulfils

θn0 =
h2

3

(
n0 + 1

2

)

≥ T

M
. (3.117)

This integer is given by

n0 =

⌈√

2

h2
· 3 T
M

+
1

4
− 1

2

⌉

, (3.118)

and we define

q :=
T

M · θn0

≤ 1 . (3.119)

If we perform an FED cycle with the time step sizes q · τi, i = 0, . . . , n0−1 ,
we obtain

n0−1∏

i=0

(I + q · τi Ah) = I +
T

M
Ah +

n0∑

m=2

(qh2)
m

2m+ 1

(
n0 +m

2m

)

Am
h . (3.120)

Thus, the coefficient of Ah is now the same as for the exponential series,
and the FED scheme is consistent with at least first order. Note that we do
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not have any problems with the stability: The multiplication with q ≤ 1
can also be seen as a scaling of the matrix Ah, i.e.

I + q · τi Ah = I + τi (q ·Ah) , (3.121)

and the eigenvalues of this matrix range in

[
−q · 4

h2 , 0
]
⊆
[
− 4

h2 , 0
]
. (3.122)

Since the symbol satisfies |p[n0]
B (z)| ≤ 1 for z ∈ [0 , 4

h2 ], this is also valid
in particular for z ∈ [0 , q · 4

h2 ].

To determine whether the approximation order is larger than one, we com-
pute the coefficient corresponding to A2

h and compare it to the exact one

of the exponential series, i.e. T 2

2M2 . Using Eq. (3.120), we have for this
coefficient

q2 h4

5
·
(
n0 + 2

4

)

=
q h2

3
·
(
n0 + 1

2

)

· q h2

20
· (n0 + 2)(n0 − 1)

=
T

M
· q h2

20
· (n0 + 2)(n0 − 1)

=
T

M
· q h2

20
·
(
(n0 + 1)n0 − 2

)

=
T

M
·
(

3

10
· T

M
− q h2

10

)

. (3.123)

Thus, the condition for a second order approximation is

3

10
· T

M
− q h2

10
=

T

2M
, (3.124)

or equivalently

− 1

5
· T

M
=

q h2

10
. (3.125)

Since the left hand side is negative and the right hand side larger than zero,
the condition for second order approximation can not be fulfilled.

To obtain a closed-form expression of the error and to show convergence, we
want to rewrite the right hand side of Eq. (3.120) such that all coefficients
of the series expansion are expressed in terms of T

M
. For the coefficient of
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Ak
h with arbitrary k ≥ 2 we have

(q h2)
k

2k + 1

(
n0 + k

2k

)

=
(qh2)

k

(2k + 1)!
·
k−1∏

j=0

(n0 + k − j) (n0 − (k − j) + 1)

=
6k

(2k + 1)!
·
k−1∏

j=0

q h2

6

(
n0(n0 + 1)− (k − j − 1)(k − j)

)

=
6k

(2k + 1)!
·
k−1∏

j=0

(
T

M
− q h2

6
(k − j − 1)(k − j)

)

=
6k

(2k + 1)!
·
k−2∏

j=0

(

1 −
(
k−j
2

)

(
n0+1
2

)

)

·
(

T

M

)k

. (3.126)

Thus, the error concerning one cycle is given by

exp
(

T
M

·Ah

)
−

n0−1∏

i=0

(I + q · τi Ah)

=

∞∑

m=2

(

1

m!
− 6m

(2m+ 1)!
·
m−2∏

j=0

(

1 −
(
m−j
2

)

(
n0+1
2

)

))

(
T
M

·Ah

)m

=
n0∑

m=2

(

1

m!
− 6m

(2m+ 1)!
·
m−2∏

j=0

(

1 −
(
m−j
2

)

(
n0+1
2

)

))

(
T
M

·Ah

)m

+
∞∑

m=n0+1

1

m!

(
T
M

·Ah

)m
. (3.127)

For the estimation of the error, we use the standard Euclidean norm, and
consider the difference of the symbols, i.e.

exp
(
− T

M
· z
)
− p

[n0]
B (q · z) , (3.128)

with z ∈
[
0 , 4

h2

]
. Using the Lagrange remainder of the Taylor series and
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with suitable ξ1, ξ2 ∈
[
0 , 4

h2

]
we get

∣
∣
∣exp

(
− T

M
· z
)
− p

[n0]
B (q · z)

∣
∣
∣

≤
∣
∣exp

(
− T

M
· z
)
−
(
1− T

M
· z
)∣
∣ +

∣
∣
∣p

[n0]
B (q · z) −

(
1− T

M
· z
)
∣
∣
∣

≤ 1
2

(
T
M

)2 · exp
(
− T

M
· ξ1
)
· z2 + 1

2
·

∣
∣
∣
∣
∣
∣

d2 p
[n0]
B (q · z)
dz2

∣
∣
∣
∣
∣
z=ξ2

∣
∣
∣
∣
∣
∣

· z2

≤ 1
2

(
T
M

)2 · z2 + q2

2
· max
ξ∈

[

0 , q· 4
h2

]

∣
∣
∣
∣

(

p
[n0]
B

)′′
(ξ)

∣
∣
∣
∣
· z2

≤ 1
2

(
T
M

)2 · z2 + q2

2
· max
ξ∈

[

0 ,
4
h2

]

∣
∣
∣
∣

(

p
[n0]
B

)′′
(ξ)

∣
∣
∣
∣
· z2 . (3.129)

In order to estimate the maximum of the second order derivative we use a
result from Markoff [97]: If a polynomial p with degree n fulfils

max
x∈[−1 , 1]

|p(x)| ≤ 1 , (3.130)

then its derivatives p(k) satisfy

max
x∈[−1 , 1]

|p(k)(x)| ≤ n2 (n2 − 1) . . . (n2 − (k − 1)2)

1 · 3 · . . . · (2k − 1)
. (3.131)

Since we have

max
ξ∈

[

0 ,
4
h2

]

∣
∣
∣p

[n0]
B (ξ)

∣
∣
∣ = max

ξ̃∈[−1 , 1]

∣
∣
∣p

[n0]
B

(

(ξ̃ + 1) · 2
h2

)∣
∣
∣ ≤ 1 , (3.132)

the above result yields

4

h4
· max
ξ̃∈[−1 , 1]

∣
∣
∣
∣

(

p
[n0]
B

)′′(
(ξ̃ + 1) · 2

h2

)
∣
∣
∣
∣
≤ n2

0 (n
2
0 − 1)

3
, (3.133)

or equivalently

max
ξ∈

[

0 ,
4
h2

]

∣
∣
∣
∣

(

p
[n0]
B

)′′
(ξ)

∣
∣
∣
∣
≤ h4 · n

2
0 (n

2
0 − 1)

12
= 3 · (θn0)

2 · n0 − 1

n0 + 1
︸ ︷︷ ︸

≤ 1

. (3.134)
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Thus, we obtain

1
2

(
T
M

)2 · z2 + q2

2
· max
ξ∈

[

0 ,
4
h2

]

∣
∣
∣
∣

(

p
[n0]
B

)′′
(ξ)

∣
∣
∣
∣
· z2

≤ 1
2

(
T
M

)2 · z2 + 3
2
(q · θn0)

2

︸ ︷︷ ︸

=

(

T
M

)2

· z2 = 2 z2 ·
(

T
M

)2
. (3.135)

Because of z ∈
[
0 , 4

h2

]
, we finally have the upper bound C(h) ·

(
T
M

)2
with

C(h) := 32
h4 , i.e.

∥
∥
∥
∥
∥
exp

(
T
M

·Ah

)
−

n0−1∏

i=0

(I + q · τi Ah)

∥
∥
∥
∥
∥
2

≤ C(h) ·
(

T
M

)2
. (3.136)

Now we want to estimate the global error after M FED cycles. To this end,
we define for k = 1, . . . ,M the numerical solutions after k cycles by

uk :=

(
n0−1∏

i=0

(I + q · τi Ah)

)k

u0 , (3.137)

and the ones after a cycle with exact data u(tk−1) by

ũk :=

(
n0−1∏

i=0

(I + q · τi Ah)

)

u(tk−1) (k = 1, . . . ,M) , (3.138)

where tk−1 := (k − 1) · T
M
. To estimate the global error, we use that

∥
∥u (tM ) − ũM

∥
∥
2

=

∥
∥
∥
∥
∥

(

exp
(

T
M

·Ah

)
−

n0−1∏

i=0

(I + q · τi Ah)

)

u (tM−1)

∥
∥
∥
∥
∥
2

≤
∥
∥
∥
∥
∥
exp

(
T
M

·Ah

)
−

n0−1∏

i=0

(I + q · τi Ah)

∥
∥
∥
∥
∥
2

· ‖u (tM−1)‖2

(3.136)

≤
(

T
M

)2 · C(h) · ‖u (tM−1)‖2 , (3.139)
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as well as

∥
∥ũM − uM

∥
∥
2

=

∥
∥
∥
∥
∥

(
n0−1∏

i=0

(I + q · τi Ah)

)
(

u (tM−1) − uM−1
)
∥
∥
∥
∥
∥
2

≤
∥
∥
∥
∥
∥

n0−1∏

i=0

(I + q · τi Ah)

∥
∥
∥
∥
∥
2

︸ ︷︷ ︸

≤ 1

·
∥
∥u (tM−1) − uM−1

∥
∥
2

≤
∥
∥u (tM−1) − uM−1

∥
∥
2
, (3.140)

and

‖u (tk)‖2 =
∥
∥exp (tk ·Ah) u

0
∥
∥
2

≤ ‖exp (tk ·Ah)‖2
︸ ︷︷ ︸

≤ 1

·
∥
∥u0

∥
∥
2
≤
∥
∥u0

∥
∥
2
. (3.141)

Then the global error satisfies

∥
∥u (tM ) − uM

∥
∥
2

≤
∥
∥u (tM) − ũM

∥
∥
2
+
∥
∥ũM − uM

∥
∥
2

≤
(

T
M

)2 · C(h) · ‖u (tM−1)‖2 +
∥
∥u (tM−1) − uM−1

∥
∥
2

≤
(

T
M

)2 · C(h) ·
∥
∥u0

∥
∥
2
+
∥
∥u (tM−1) − uM−1

∥
∥
2

≤ 2
(

T
M

)2 · C(h) ·
∥
∥u0

∥
∥
2
+
∥
∥u (tM−2) − uM−2

∥
∥
2

...

≤ M
(

T
M

)2 · C(h) ·
∥
∥u0

∥
∥
2
+
∥
∥u (t0) − u0

∥
∥
2

︸ ︷︷ ︸

= 0

= T 2

M
· C(h) ·

∥
∥u0

∥
∥
2
. (3.142)

We can summarise the results in the following theorem:
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Theorem 3.6 (Error Estimation for FED Scheme). Let the function
u : (0,∞) → RN be the exact solution of the system of ODEs (3.107) with
initial data u0 = u(0), T > 0 and M ∈ N the number of FED cycles. If
the cycle length n0 ∈ N and q ∈ (0, 1] are given according to Eq. (3.118)
and Eq. (3.119), respectively, then the numerical solution after M FED
cycles,

uM :=

(
n0−1∏

i=0

(I + q · τi Ah)

)M

u0 , (3.143)

fulfils
∥
∥u(T ) − uM

∥
∥
2
≤ 32

h4
· T

2

M
·
∥
∥u0

∥
∥
2
. (3.144)

Using this theorem, we can show that the FED scheme converges to the
exact solution. If one increases the number of cycles M , then Eq. (3.144)
yields

lim
M→∞

∥
∥u(T ) − uM

∥
∥
2
= 0 . (3.145)

Thus, we have the convergence

uM M→∞−→ u(T ) . (3.146)

Since the error is proportional to 1
M
, the corresponding approximation order

is one with respect to the number of cycles M .

3.2.5 Extension to Arbitrary Diffusion Problems

The FED scheme has been motivated in the 1-D setting with explicit linear
diffusion filtering. However, in this case, it does not have any practical
use, since a direct computation of box filtering by means of e.g. the sliding-
window approach from Eq. (2.14) is much more efficient than a factorisation.
To this end, we want to show that it is actually a general paradigm which
can be applied e.g. to multidimensional, nonlinear, isotropic or anisotropic
diffusion processes. This can be seen as follows.

We consider the general d-dimensional diffusion equation [147]

∂tu(x, t) = div (D∇u(x, t)) , (3.147)

where x ∈ Ω ⊂ Rd, u : Ω × (0,∞) → R is the unknown solution,
D ∈ Rd×d a symmetric, positive definite diffusion tensor. Note that we
assume a rectangular region

Ω = [a1, b1] × . . . × [ad, bd] , (3.148)
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with ak, bk ∈ R. If D depends on u, e.g. D = D (∇uσ(x, t)), we call
the equation nonlinear. As before, uσ is the convolution of u and a d-
dimensional Gaussian with standard deviation σ, uσ = Gσ ∗ u. Further-
more, we denote the given initial function by u0(x) = u(x, 0) and have to
impose boundary conditions for x ∈ ∂Ω. We consider again homogeneous
Neumann boundary conditions:

nT
(
D∇u(x, t)

)
= 0 , (x, t) ∈ ∂Ω× (0,∞) (3.149)

with the outer unit normal vector n of ∂Ω.

To solve Eq. (3.147), we proceed as in the linear 1-D case, and use again
the method of lines. Therefore, we introduce 1-D spatial grids

Gk :=
{
ak +

(
ik − 1

2

)
· hk

∣
∣ 1 ≤ ik ≤ Nk

}
(k = 1, . . . d) , (3.150)

with the corresponding mesh sizes

hk =
bk − ak

Nk
(k = 1, . . . d) , (3.151)

and the number of nodes Nk. Using these grids, we can construct a d-
dimensional grid by means of

G1 × · · · × Gd ⊂ Ω . (3.152)

Each node xi is determined by its indices i = (i1, . . . , id). However, for the
spatial discretisation we want to use a so-called single-index notation for
d ≥ 2. To this end, we identify such a node xm by the index

m(i) = i1 + (i2−1)·N1 + (i3−1)·N1 ·N2 +· · ·+ (id−1) ·
d−1∏

k=1

Nk , (3.153)

and define the time-dependent vector u(t) ∈ RN with N =
d∏

k=1

Nk :

(u(t))m ≈ u (xm, t) (m = 1, . . . , N) . (3.154)

Then we rewrite the PDE (3.147) taking into account the boundary condi-
tions as the time-dependent ODE system

du

dt
= Pu , (3.155)
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with a negative semi-definite system matrix P ∈ R
N×N that represents

the spatial discretisation of the divergence operator. Usually, P is a sym-
metric (sparse) band matrix, where the number of off-diagonals depends
on the discretisation. More precisely, it corresponds to the number of spa-
tial neighbours of a node that are used with respect to the discretisation
scheme. In the case of nonlinear problems, the entries of P depend on u,
i.e. P = P (u).

Our goal is to construct an FED scheme for the solution of Eq. (3.155). To
this end, we have to consider the eigenvalues of P . Since P is assumed to
be symmetric and negative semi-definite, all eigenvalues are real-valued and
non-positive. We denote the largest modulus of the eigenvalues by µmax. If
we would apply one FED cycle with length n and use the time step sizes τi
from Eq. (3.40), the stability in the Euclidean norm is only guaranteed for
µmax ≤ 4

h2 . For µmax > 4
h2 , it might happen that
∥
∥
∥
∥
∥

n−1∏

i=0

(I + τi P )

∥
∥
∥
∥
∥
2

> 1 , (3.156)

which yields an unstable scheme. To ensure that the norm of this matrix
product is bounded by 1, we can decrease the time step sizes by multipli-
cation with a suitable factor c < 1. This is similar to the time adjustment
that we have used in the last subsection. Here we adjust the time step sizes
to the eigenvalues of P . We define

c :=
4

h2 · µmax
, (3.157)

such that c · µmax = 4
h2 , and the time step sizes are

τ ′i := c · τi =
2

µmax
· 1

2 cos2
(
π · 2i+1

4n+2

) (i = 0, . . . , n−1) . (3.158)

Actually, the constant 2
µmax

is the time step size limit for the usual explicit
scheme. Hence, we have just replaced the limit in the linear 1-D case,
τ = h2

2
, by the new limit τlim := 2

µmax
. Overall, we end up with a stable

matrix product
n−1∏

i=0

(I + τ ′i P ) . (3.159)

The corresponding cycle time is given by

θPn = τlim · n(n + 1)

3
. (3.160)
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Note that we can also have factors c > 1 for matrices P with µmax < 4
h2 ,

i.e. τlim > h2

2
.

So far, we have only clarified stability issues for one FED cycle. How-
ever, we have seen in the linear 1-D case that increasing the number of
cycles improves the accuracy of FED. This can simply be transferred to
the d-dimensional linear case, since the matrix P remains constant. Con-
cerning nonlinear parabolic problems, it is necessary to update the matrix
P , because it depends on u(t). We have seen that a rearrangement of
the time step sizes can lead to instabilities within a cycle. Thus, updating
the nonlinearities within a cycle might be risky and yield bad results. To
guarantee reasonable results, we should update the matrix P only at those
points, where we can expect a stable and useful intermediate result. These
requirements are met, in particular, after a whole FED cycle. Actually, this
means we keep the matrix P constant over one complete cycle, update it
afterwards and perform another cycle with the new P . Since the range of
the eigenvalues might change after each update, we have to take care of the
stability and adjust the time step sizes for each cycle. However, in many
cases it is possible to estimate a spectrum that is independent of u(t). This
has the advantage that the set of time step sizes has to be computed only
once and the stability is guaranteed for every FED cycle. In our numerical
experiments, we will use this solution.

According to our notation in Eq. (3.137), the k-th cycle with k ≥ 1 of
the FED scheme then reads

uk =

(
n−1∏

i=0

(

I + q · τ ′i P
(
uk−1

))
)

uk−1 , (3.161)

with a suitable time adjustment factor q ≤ 1. This approach can be seen
as a linearisation, similar to so-called lagged diffusivity fixed point meth-
ods [28, 143, 144]. More precisely, with uk, 0 := uk−1 the k-th cycle can be
written as

uk, i+1 =
(

I + q · τ ′i P
(
uk−1

))

uk, i (i = 0, . . . , n−1), (3.162)

and results in uk := uk,n, where the matrix P (uk−1) does not change
during the inner iterations i = 0, . . . , n−1. In the sense of e.g. [56, 57],
we may interpret such an FED cycle as a single super time step with the
nonlinearities P (uk−1).
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L∞-Stability for Isotropic Processes

So far, we have analysed the stability of FED by means of the Euclidean
norm. However, when it comes to isotropic parabolic processes, it can be
shown that usual semi-implicit or explicit schemes satisfy stability con-
straints referring to the infinity norm ‖u‖∞ := max i |ui| [147], i.e. L∞-
stability. More precisely, given the current numerical solution uk, the appli-
cation of an L∞-stable scheme yields uk+1 fulfilling the maximum-minimum
principle

min
i

uk
i ≤ uk+1

j ≤ max
i

uk
i (3.163)

for all j. In the context of FED, we want to find out whether the constraint

∥
∥
∥
∥
∥

n−1∏

i=0

(I + τ ′i P )

∥
∥
∥
∥
∥
∞

≤ 1 (3.164)

is valid for matrices P discretising an isotropic divergence operator, or if
there exists a counter example.

Unfortunately, we could find some 1-D counter examples. To present
such a counter example, we choose N = 6, because the case N ≤ 5 does
not seem to violate the above constraint. Our example matrix P ∈ R6×6

is given by











−0.8564 0.8564 0 0 0 0
0.8564 −1.8357 0.9793 0 0 0

0 0.9793 −1.1773 0.1980 0 0
0 0 0.1980 −0.3196 0.1216 0
0 0 0 0.1216 −0.9721 0.8506
0 0 0 0 0.8506 −0.8506











. (3.165)

Furthermore, we use an FED cycle with length n = 7 and the usual
time step sizes given in Eq. (3.40). This method is stable with respect
to the Euclidean norm. However, the fourth diagonal entry of the matrix
∏6

i=0 (I + τi P ) is negative (≈ −0.0029), which means that the vector
v = (1, 1, 1,−1, 1, 1)T fulfils ‖v‖∞ = 1, but the resulting matrix-vector
product yields

∥
∥
∥
∥
∥

6∏

i=0

(I + τi P ) v

∥
∥
∥
∥
∥
∞

≈ 1.0058 > 1 . (3.166)

Thus, this example demonstrates that FED can violate the L∞-stability
criterion for isotropic problems.
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3.2.6 Implementation

Now we want to give a summary of the general FED algorithm that is shown
in Fig. 3.11. It basically works like in the linear 1-D case, but one has to
consider the actual time step limit τlim. According to this limit, we compute
the cycle length n and the time factor q such that the given stopping time
T > 0 of the diffusion process is reached with the desired number M of
FED cycles.

If there already exists an explicit code, one has to add only a few code
lines: The computation of the cycle length n, the factor q and the time step
sizes for one FED cycle. Concerning the rearrangement of the step sizes,
one could use an external database. For nonlinear problems, the existing
update procedure can be used, but one has to take care that it is used only
after complete FED cycles.

Thus, FED is essentially an explicit scheme with some overhead that is
not time critical. It is very easy to implement and moreover, if one uses
multicore architectures or GPU’s, well-suited for parallel computing.

3.3 Cascadic FED (CFED)

Our FED scheme was designed for diffusion-like problems where we are
interested in the temporal evolution. They correspond to parabolic PDEs.
However, let us now explain how we can use FED ideas also for elliptic
PDEs. They can appear e.g. as Euler–Lagrange equations for variational
image analysis methods, or as nontrivial steady state of parabolic evolutions
with additional reaction terms. We have basically two possibilities: We
can approximate a solution by means of a parabolic process with a large
stopping time, or we directly solve the corresponding elliptic equation.

In this section, we consider the first choice that implies the application of
a parabolic FED scheme. To reach this steady state as quickly as possible,
we embed our FED method into a coarse-to-fine strategy [12, 37], i.e. we
use results computed on a coarse level as an initialisation for a finer scale.
This can be regarded as a simple multigrid approach [14, 16, 68]. It saves
a lot of computational effort, since a small or medium stopping time is
already sufficient on each level. Therefore, we scale down the image data
via linear interpolation to a certain coarse level and apply the FED scheme
on this image. Afterwards we interpolate the corresponding solution to the
next finer level and apply again FED. We use this procedure recursively
until the finest (original) level is reached. We call this the Cascadic Fast
Explicit Diffusion (CFED) approach.
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1. Input Data:
image f , stopping time T , number M of FED cycles, and explicit
step size limit τlim

2. Initialisation:

(a) Compute the length n of one FED cycle (for Lebedev-
Finogenov: n = 2p),

n =

⌈√

1

τlim
· 3 T
M

+
1

4
− 1

2

⌉

,

and the corresponding time adjustment factor

q =
T

M · θPn
≤ 1 .

(b) Compute the time step sizes q · τ ′i (cf. Eq. (3.158)).
(c) Choose a suitable ordering for the step sizes (e.g. with

κ-cycles, Leja ordering or Lebedev-Finogenov ordering), i.e.
{
q · τ̃ ′0, . . . , q · τ̃ ′n−1

}
.

(d) If the diffusivity or diffusion tensor is constant in time, com-
pute the corresponding matrix P .

3. Filtering Loop: (M times)

(a) If the diffusivity or diffusion tensor is time-variant, update it
and compute the corresponding matrix P .

(b) Perform one FED cycle with the above ordering of the n
explicit time steps.

Figure 3.11: General FED algorithm for diffusion filtering.

However, for inpainting and PDE-based compression problems [54], the
cascadic approach is a bit more complicated. This is due to the fact that
besides the image data, we have to scale down also a so-called confidence
map or inpainting mask that specifies Dirichlet boundary data.

Let us now discuss this problem in detail. The elliptic PDE for image
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inpainting is given by [54]

div (D (∇vσ(x))∇v(x)) = 0 , (3.167)

where we want to have the solution v : Ω → R. As above, the domain Ω
is assumed to be rectangular, i.e. Ω = [a1, b1] × . . . × [ad, bd]. The trivial
solution of Eq. (3.167) is v ≡ 0. Thus, we specify a set (not a null set)
Z ⊂ Ω with the Dirichlet condition

v(x) = f(x) (3.168)

for all x ∈ Z, where f : Ω → R represents the given data. If the confi-
dence map is c : Ω → [0, 1], we can formulate the problem in the single
equation [54]

c(x)·(v(x)− f(x)) − (1− c(x))· div (D (∇vσ(x))∇v(x)) = 0 . (3.169)

The Dirichlet condition implies c(x) = 1 for x ∈ Z and in the case of
e.g. c(x) = 0 this function allows to fill in new data at the corresponding
locations x. Hence, the value c(x) should reflect e.g. the quality of the
given image data f(x).

We can discretise Eq. (3.169) on a spatial grid in the same manner as above
(single-index notation) and get a nonlinear system of equations

C (v − f ) − (I − C)P (v) v = 0 , (3.170)

with the (diagonal) confidence matrix

C =










c(x1) 0 0 . . . 0
0 c(x2) 0 . . . 0

0 0
. . .

. . .
...

...
...

. . . 0
0 0 . . . 0 c(xN)










∈ R
N×N , (3.171)

and the vectors v = (v(xm))
N
m=1 ∈ R

N as well as f = (f(xm))
N
m=1 ∈ R

N .
In the following, we assume that the entries of the confidence matrix are
always in {0, 1}.
We solve the nonlinear equation (3.170) using an explicit scheme that is
based on a parabolic evolution with the time step size τ > 0

vk+1 = vk + τ ·
(

C
(
f − vk

)
+ (I − C)P

(
vk
)
vk
)

, (3.172)
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with k ≥ 0 and v0 := f . Actually, if we use this initialisation, then

Cvk = Cv0 = Cf (3.173)

for all k. Thus, the scheme simplifies to

vk+1 = vk + τ · (I − C)P
(
vk
)
vk (3.174)

Applying the results from [104], the spectral radius of (I − C)P (·) is
bounded by the maximum absolute value µmax of the eigenvalues of P (·).
Therefore, τ is limited by the parabolic time step size limit τlim = 2

µmax
.

Since we want to reach the steady state

v := lim
k→∞

vk (3.175)

as quickly as possible, we use the CFED scheme. To this end, let us now
discuss the corresponding coarse-to-fine strategy.

3.3.1 Coarse-to-Fine Strategy for Inpainting

More precisely, we consider the image data f (0) := f as well as the con-
fidence map c(0) := c on the original grid with mesh sizes h

(0)
k := hk,

k = 1, . . . , d , and the number of grid points N (0) =
∏

N
(0)
k . At grid points

x
(0)
i := xi with c(0)(x

(0)
i ) = 0, we assume that f (0)(x

(0)
i ) = 0. Then we

scale down both the image f (0) → f (1) and the confidence map c(0) → c(1)

with the help of a suitable restriction operator. The corresponding coarser
grid consists of N

(1)
k = ⌈1

2
· N (0)

k ⌉ nodes in each direction k and the mesh
sizes according to Eq. (3.151) are given by

h
(1)
k =

bk − ak

N
(1)
k

> h
(0)
k (k = 1, . . . , d) . (3.176)

After the application of the restriction operator, the values of the coarser
confidence map c(1) do not have to be limited to the set {0, 1}. Thus, we
introduce a normalised map c̃(1) via

c̃(1)(x
(1)
i ) :=







1 , c(1)(x
(1)
i ) > 0

0 , c(1)(x
(1)
i ) = 0

, (3.177)

and a corresponding normalised coarser image

f̃ (1)(x
(1)
i ) :=







f (1)(x
(1)
i )

c(1)(x
(1)
i )

, c(1)(x
(1)
i ) > 0

f (1)(x
(1)
i ) , c(1)(x

(1)
i ) = 0

. (3.178)
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Then these normalised data are restricted to the next coarser level, after-
wards again normalised and so on, until the desired or coarsest level L is
reached. On this level, we applyML FED cycles with length nL and suitable
time step sizes τ

(L)
i , i = 0, . . . , nL−1. They are adapted to the spectrum

of the matrix coming from the discretisation of the divergence operator on
the coarsest grid, P (L)(f̃ (L)) ∈ RN(L)×N(L)

:

u(L) :=

(
nL−1∏

i=0

(

I + τ
(L)
i ·

(
I − C(L)

)
P (L)(f̃ (L))

)
)ML

f̃ (L) . (3.179)

We still use the single index notation f̃ (L) =
(
f̃ (L)(x

(L)
m )
)N(L)

m=1
∈ RN(L)

, and

the confidence matrix C(L) ∈ RN(L)×N(L)
is derived from the confidence

map c̃(L). Having computed the vector u(L) and the corresponding image
data u(L), we interpolate it to next finer level with a suitable prolongation
operator, u(L) → v(L−1). Afterwards we adapt v(L−1) to the corresponding
confidence map c̃(L−1) and the image data f̃ (L−1) via

ṽ(L−1)(x
(L−1)
i ) :=







f̃ (L−1)(x
(L−1)
i ) , c̃(L−1)(x

(L−1)
i ) = 1

v(L−1)(x
(L−1)
i ) , c̃(L−1)(x

(L−1)
i ) = 0

. (3.180)

Using the single index notation for ṽ(L−1) ∈ RN(L−1)
we can compute the

matrix P (L−1)(ṽ(L−1)) ∈ R
N(L−1)×N(L−1)

and with the nL−1 adjusted time

step sizes τ
(L−1)
i the FED scheme on level L−1 reads

u(L−1) :=

(
nL−1−1
∏

i=0

(

I + τ
(L−1)
i ·

(
I −C(L−1)

)
P (L−1)(ṽ(L−1))

)
)ML−1

ṽ(L−1) .

(3.181)
By repeating the above procedure for all further levels L−2, . . . , 0 , we end
up with u(0), which is an approximation for the steady state v. For sim-
plicity, the above schemes keep the matrices P (L)(·) and P (L−1)(·) constant
during all ML and ML−1 cycles, respectively. However, to improve the ac-
curacy for nonlinear problems, we recommend to update the nonlinearities
before a new cycle starts. This would correspond to an overall number of
ML +ML−1 + · · ·+M0 updates.

3.3.2 Implementation

A summary of the cascadic FED algorithm for inpainting is shown in
Fig. 3.12. Note that existing FED routines can be used straightforward.
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1. Input Data:
image f and confidence map c, number of coarser levels L, and
numbers Mj (j = 0, . . . , L) of FED cycles with the corresponding
lengths nj

2. Initialisation:

(a) Compute initial image f (0) by f (0)(x) = f(x) · c(x).
(b) f̃ (0) := f (0) and c̃(0) := c.

(c) For j = 0, . . . , L−1:

∗ Interpolate both f̃ (j) and c̃(j) to the next coarser grid
level, f̃ (j) → f (j+1) and c̃(j) → c(j+1).

∗ Normalise f (j+1) and c(j+1), such that the normalised
confidence map c̃(j+1) has got values in {0, 1}, i.e.

f̃ (j+1)(x) := f(j+1)(x)

c(j+1)(x)
and c̃(j+1)(x) = 1 for the case

c(j+1)(x) > 0.

∗ Store f̃ (j+1) and c̃(j+1).

3. Filtering Loop: (initialise j = L)

(a) Determine the time step size limit τ
(j)
lim of the level j and

compute the confidence matrix C(j).

(b) Apply the FED algorithm (cf. Fig. 3.11) with the image data

f̃ (j), cycle length nj , Mj cycles and step size limit τ
(j)
lim. Note

that the divergence matrix is multiplied with I −C(j).

(c) If j > 0, interpolate the FED solution to the next finer grid
j−1 and adapt it to the map c̃(j−1) and the data f̃ (j−1). Go
back to (a) with j−1, if j > 0.

(d) If j = 0, the original level is reached.

Figure 3.12: CFED algorithm for inpainting.

The most difficult part is the embedding of FED in the coarse-to-fine frame-
work, in particular the implementation of the restriction and prolongation
operators. In our case, we use the ones presented in [18] (see page 4).
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3.4 Fast-Jacobi Solver

In Sec. 3.1 we have seen that the ideas for explicit schemes with varying
time step sizes originally come from linear system solvers using varying
relaxation parameters. Thus, it is natural to transfer the FED method
from the explicit diffusion framework to the solution of linear systems, i.e.
we introduce the so-called Fast-Jacobi (FJ) method [165].

3.4.1 Basic Idea

We consider a linear system

Bx = c , (3.182)

with an invertible matrix B ∈ CN×N and c,x ∈ CN , where c is the
known right hand side. We assume that B has non-zero diagonal entries
and require that the eigenvalues’ moduli of the matrix

M := D−1
B (DB − B) = I − D−1

B B (3.183)

are smaller than 1, where the diagonal matrix DB ∈ CN×N represents
the diagonal part of B. Under these assumptions, the well-known Jacobi
method

xk+1 = Mxk + D−1
B c = xk + D−1

B

(
c − Bxk

)
(k ≥ 0) , (3.184)

converges for each initial vector x0 towards the unique solution of (3.182):
x = B−1c [98, 115]. It is also possible to incorporate a relaxation parameter
ω > 0, and we obtain the Jacobi over-relaxation (JOR) method [115]

xk+1 = xk + ω ·D−1
B

(
c − Bxk

)

=
(
I − ω ·D−1

B B
)

︸ ︷︷ ︸

:=M(ω)

xk + ω ·D−1
B c . (3.185)

If all eigenvalues −1 < µ1 ≤ · · · ≤ µN < 1 of the Jacobi iteration matrixM

are real-valued, then one can show that the optimal relaxation parameter
of the JOR method is given by [115]

ωopt =
2

2 − µ1 − µN
. (3.186)

Instead of using a constant (optimal) relaxation parameter ω ∈ R+, we
want to use varying parameters that are based on the time step sizes of the
FED scheme. Since the eigenvalues of M lie in [µ1 , µN ], the matrix

D−1
B B = I − M (3.187)
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has eigenvalues in [1− µN , 1− µ1]. The relaxation parameter has to be
chosen such that the eigenvalues’ moduli of M(ω) are smaller than 1. Thus,
the JOR method converges for

ω <
2

1− µ1
, (3.188)

where 2
1−µ1

can be seen as a stability limit. We define a constant ωlim via

2

2 − µ1 − µN
≤ ωlim <

2

1− µ1
, (3.189)

and according to the time step sizes of an FED cycle with length n, we
consider the relaxation parameters

ωi = ωlim · 1

2 cos2
(
π · 2i+1

4n+2

) (i = 0, . . . , n−1) . (3.190)

The resulting Fast-Jacobi cycle is then given by the explicit iterations

xi+1 =
(
I − ωi ·D−1

B B
)
xi + ωi ·D−1

B c (i = 0, . . . , n−1) , (3.191)

with a given initial vector x0.

3.4.2 Convergence

To show the convergence, we consider the exact solution x of Eq. (3.182)
and the fact that

x − xi+1 = x −
(
I − ωi ·D−1

B B
)
xi − ωi ·D−1

B c
︸︷︷︸

=Bx

=
(
I − ωi ·D−1

B B
) (

x − xi
)
. (3.192)

Thus, the error
ei := x − xi (3.193)

after one Fast-Jacobi cycle with n iterations fulfils

en =

n−1∏

i=0

(
I − ωi ·D−1

B B
)
e0 (3.194)

with the initial error e0. We know that the eigenvalues of D−1
B B are real-

valued and larger than 1 − µN > 0. Since the relaxation parameters are
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related to roots of Chebyshev polynomials, we can represent the matrix
product as the matrix polynomial

n−1∏

i=0

(
I − ωi ·D−1

B B
)

=
1

2n+ 1
· U2n

(√

I − ωlim

2
·D−1

B B

)

. (3.195)

The eigenvalues of this polynomial lie in the set

{
1

2n+ 1
· U2n

(√

1 − ωlim

2
· z
)
∣
∣
∣
∣
z ∈ [1− µN , 1− µ1]

}

, (3.196)

and because of √

1 − ωlim

2
· z 6= 0 , (3.197)

we have

∣
∣
∣
∣

1

2n+ 1
· U2n

(√

1 − ωlim

2
· z
)
∣
∣
∣
∣
< 1 (3.198)

for z ∈ [1− µN , 1− µ1]. Hence, the absolute values of the eigenvalues are
smaller than 1, i.e.

ρ

(
n−1∏

i=0

(
I − ωi ·D−1

B B
)

)

< 1 , (3.199)

where ρ(·) denotes the largest modulus of the eigenvalues (spectral radius).
For the convergence we need the following well-known theorem from linear
algebra. A proof of this theorem can be found for instance in [98].

Theorem 3.7 (Existence of a Norm). Let F ∈ C
N×N be an arbitrary

matrix and ε > 0. Then there exists a norm ‖·‖ that satisfies

‖F ‖ ≤ ρ(F ) + ε . (3.200)

The inequality (3.199) is also valid, if one adds a sufficiently small ε > 0
to the left hand side. Using Theorem 3.7, there exists a norm fulfilling

∥
∥
∥
∥
∥

n−1∏

i=0

(
I − ωi ·D−1

B B
)

∥
∥
∥
∥
∥

< 1 , (3.201)
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which yields ‖en‖ < ‖e0‖. Multiple cycles further decrease the norm of
the error, i.e., it tends to zero. More precisely the error em,n := xm,n − x,
where xm,n denotes the result after m cycles, can be estimated by

‖em,n‖ =

∥
∥
∥
∥
∥

(
n−1∏

i=0

(
I − ωi ·D−1

B B
)

)m

e0

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

n−1∏

i=0

(
I − ωi ·D−1

B B
)

∥
∥
∥
∥
∥

m

︸ ︷︷ ︸
m→∞−→ 0

·
∥
∥e0
∥
∥ . (3.202)

This shows em,n → 0 for m → ∞, where 0 is the zero vector, and the series
of the vectors xm,n, m ≥ 1, converges to the unique solution x of (3.182).
Thus, we can state the following theorem:

Theorem 3.8 (Convergence of Fast-Jacobi). Let Bx = c be a lin-
ear system with an invertible matrix B ∈ CN×N such that the eigenvalues
µ1, . . . , µN of I −D−1

B B are real-valued with moduli smaller than 1. Fur-
thermore, we define the relaxation parameters

ωi = ωlim · 1

2 cos2
(
π · 2i+1

4n+2

) (i = 0, . . . , n−1) , (3.203)

with the cycle length n and the constant ωlim < 2
1−µ1

. Then the result xm,n

of the Fast-Jacobi method using m ≥ 1 cycles converges with m → ∞ for
any arbitrary initial vector x0 ∈ CN to the unique solution x = B−1c of
the linear system.

Unfortunately, the norm that we use depends on ε and one has to compute
a Schur decomposition for the description of this norm. In this context,
Saad [115] considers a so-called general convergence factor that is simply
equal to the spectral radius of the iteration matrix of an iterative method.
This means we consider M for the usual Jacobi, M(ω) for JOR, or the
matrix product

∏

i

(
I − ωi ·D−1

B B
)
for Fast-Jacobi. In this context, we

want to estimate the (relatively abstract) global convergence factor of Fast-
Jacobi,

max
z∈[1−µN , 1−µ1]

∣
∣
∣
∣

1

2n+ 1
· U2n

(√

1 − ωlim

2
· z
)
∣
∣
∣
∣
, (3.204)

which would allow us to express it without the Chebyshev polynomial of the
second kind. This can e.g. simplify the optimisation of the parameters n
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andm. To this end, we replace the polynomial by the original representation
with the Chebyshev polynomials of the first kind given in Eq. (2.97) :

(−1)n · 1

2n + 1
· T2n+1

(√
ωlim

2
· z
)

√
ωlim

2
· z . (3.205)

Since the value 1 is an absolute upper bound of T2n+1(·) and z ≥ 1 − µN ,
the absolute value of this expression is bounded by

1

2n+ 1
· 1
√

ωlim

2
· (1− µN)

=
1

2n + 1
·
√

2

ωlim (1− µN)
. (3.206)

If ωlim ≈ 2
1−µ1

, then

√

2

ωlim (1− µN)
≈

√
1− µ1

1− µN
. (3.207)

Thus, the convergence factor depends on the square root of the ratio be-
tween the largest and the smallest eigenvalue of D−1

B B. In the case of
ωlim = ωopt we obtain

√

2

ωlim (1− µN)
=

√

1 +
1− µ1

1− µN

>

√
1− µ1

1− µN

, (3.208)

and therefore this choice could degrade the convergence. To this end, we
recommend to use a larger parameter ωlim > ωopt .

We should mention that the estimated upper bound for the eigenvalues
might be too coarse for smaller n. As an example, we consider the eigen-
values µ1 = − 99/100 and µN = −µ1. With ωlim = 1 the upper bound is√

200
2n+1

and this is larger than 1 for n ≤ 6. However, for increasing n, the
Chebyshev polynomial T2n+1 strongly oscillates between −1 and 1, which
means that the estimation with the upper bound is more appropriate.

Let us now compare the convergence factors of the different Jacobi-like
methods. For the usual Jacobi with the iteration matrix M we have the
spectral radius max {|µ1| , |µN |}, and in the case of JOR the spectral radius
of M(ω) is equal to maxi |1−ω+ω ·µi|. If one uses the optimal relaxation
parameter ωopt in Eq. (3.186), its spectral radius is given by the absolute
value |1− ωopt + ωopt · µ1|, i.e. a JOR cycle with length n yields

|1− ωopt + ωopt · µ1|n =

∣
∣
∣
∣

µ1 − µN

2 − µ1 − µN

∣
∣
∣
∣

n

. (3.209)
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At first sight, the exponential term of the JOR method seems to be better
than the upper bound of the Fast-Jacobi cycle that decreases only linearly
in the cycle length n. However, instead of increasing the cycle length n,
it is recommendable to use multiple Fast-Jacobi cycles, because this mas-
sively improves the convergence. More precisely, the error can also decrease
exponentially, but only in the number of cycles. Let us illustrate this by
means of the above example.

Example

We assume again µ1 = − 99/100, µN = −µ1 and ωlim = 1. In order to
compare the corresponding estimated convergence factors, we use an overall
number of 200 JOR or Fast-Jacobi iterations. Regarding the JOR method
with ωopt, we have

∣
∣
∣
∣

µ1 − µN

2 − µ1 − µN

∣
∣
∣
∣

200

=

(
99

100

)200

≈ 0.134 . (3.210)

Note that the optimal parameter is ωopt = 1, i.e. it is actually a usual
Jacobi solver. The convergence of Fast-Jacobi depends on both the length
n of a cycle and the number m of cycles. As mentioned above, the estimated

factor is given by
(√

200
2n+1

)m

. Some values for different n and m are shown

in Table 3.2. The best convergence is reached with m = 10 Fast-Jacobi
cycles of length n = 20. For this setting the convergence factor is almost
four orders of magnitude better than in the case of JOR. To reach such
a result with the Jacobi method, one needs about 1060 iterations. This
means that the effort is more than five times larger.

However, for problems with a more well-posed distribution of the eigenval-
ues like e.g. µ1 = 1/5 and µN = 4/5 , the convergence factor of JOR with
the optimal parameter ωopt = 2 and 20 iterations is about one order of
magnitude smaller than the Fast-Jacobi method with its best configura-
tion. Hence, the Fast-Jacobi method seems to be well-suited for problems
with µN ≈ 1, as shown in the above example.

If we reconsider Table 3.2, we can see that there is an optimal parameter
setting (n,m) with respect to the convergence factor. In order to find this
optimal setting, we have to determine

min
m∈J

(

1

2 · k
m
+ 1

·
√

2

ωlim (1− µN)

)m

, (3.211)
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Table 3.2: Estimated convergence factors of Fast-Jacobi with different cycle
lengths n and number of cycles m such that n ·m = 200.

n m factor

8 25 0.0100381
10 20 0.0003681
20 10 0.0000238
25 8 0.0000350
40 5 0.0001622
50 4 0.0003844
100 2 0.0049504
200 1 0.0352672

with the set J :=
{
m ∈ N | k

m
∈ N

}
and the overall number of iterations k.

To this end, we define the real-valued, continuous function f : R+ → R+,

f(x) :=

(

C

2 · k
x
+ 1

)x

, (3.212)

with C :=
√

2
ωlim(1−µN )

> 1. We have the first derivative

f ′(x) =

(

C

2 · k
x
+ 1

)x

︸ ︷︷ ︸

= f(x)

·
(

ln

(
Cx

2k + x

)

+
2k

2k + x

)

, (3.213)

and thus the necessary condition for a local extremum yields the fixed point
equation

x =
2k + x

C
· exp

(

− 2k

2k + x

)

︸ ︷︷ ︸

:= g(x)

. (3.214)

Because of

g′(x) =
1

C
·
(

1 +
2k

2k + x

)

· exp
(

− 2k

2k + x

)

≤ 1

C
< 1 (3.215)

for x ≥ 0, g : R
+
0 → R

+
0 is a contraction mapping with the Lipschitz

constant 1
C

< 1. Hence, according to the Banach fixed point theorem [159],
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there exists a unique solution x∗ of the fixed point equation. It can be
approximated by the fixed point iteration xi+1 = g(xi), with e.g. x0 = 1.
Note that x∗ > 0, since g(x) > 0 for all x ≥ 0. The second derivative of
the function f is given by

f ′′(x) = f(x) ·
((

ln

(
Cx

2k + x

)

+
2k

2k + x

)2

+
4k2

x(2k + x)2

)

, (3.216)

and fulfils f ′′(x) > 0 for x > 0, which is the sufficient condition for local
minima. Thus, f(x∗) is the unique local minimum, and the two candidates
of the set J are m− ≤ x∗ and m+ > x∗ with minimum distance to x∗.
The decision between m− and m+ can be made based on the evaluation
of the estimated factors for both m− and m+, or the cycle length. If one
prefers, for example, a smaller cycle length because of stability issues, then
m+ would be the right choice. Unfortunately, x∗ can not be evaluated
directly, because a closed-form expression would require the Lambert W
function [33]. However, we can give an approximation by rewriting the
fixed point equation. At first, we replace x

2k
by y, which yields

y =
1

C
· (1 + y) · exp

(

− 1

1 + y

)

. (3.217)

Since the solution of this equation does not depend on the number k, the
ratio x

2k
is constant, i.e. x∗ is proportional to k. As we have mentioned

above, the solution of this equation requires the Lambert W function. It
inverts the function x · exp(x). The ansatz

ỹ =
exp(−1)

C − exp(−1)
(3.218)

yields for the right hand side

1

C
· C

C − exp(−1)
· exp

(
exp(−1)− C

C

)

︸ ︷︷ ︸

= −1+
exp(−1)

C

≈ exp(−1)

C − exp(−1)
, (3.219)

and is thus an approximative solution whose approximation quality in-
creases for large C. Overall, we get

x∗ ≈ 2k · exp(−1)

C − exp(−1)
. (3.220)

The proportionality between x∗ and k means that the length of a cycle
actually does not depend on k. It can only change slightly because of the
divisibility with respect to k.
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To verify these theoretical results, we reconsider the above example with
µ1 = − 99/100, µN = −µ1, ωlim = 1 and k = 200. In this case, we obtain
C =

√
200, and therefore

x∗ ≈ 400 · exp(−1)√
200 − exp(−1)

≈ 10.68 . (3.221)

This confirmes the result in Table 3.2, where the optimal number of cycles
is m = 10.

3.4.3 Implementation

After the theoretical analysis of the Fast-Jacobi method, we give a summary
of the algorithm. It is shown in Fig. 3.13. The design is very similar to FED.
One has to compute the relaxation parameters and find a stable sequence.
Fortunately, the stable rearrangements of the time step sequences for FED
work also well with the relaxation parameters. If we know or have a good
estimation for the eigenvalue µN , then Eq. (3.220) yields a good parameter
setting for the cycle length n and the number m of Fast-Jacobi cycles.

To improve the convergence, we can combine the Fast-Jacobi method with
a coarse-to-fine strategy. This means, we approximate the solution of a
linear system on a coarse scale and can use the prolongated result as an
initialisation for the next finer level.

3.4.4 Fast-Jacobi for Parabolic Problems

We reconsider the ODE system

du

dt
= Pu , (3.222)

with a negative semi-definite system matrix P ∈ RN×N and initial data
u0 = u(0). Instead of solving it with an explicit scheme, we use an implicit
scheme

(I − τ P )uk+1 = uk (k ≥ 0). (3.223)

It requires the solution of a linear system in each time step. Note that
such systems can also appear in the context of variational regularisation
methods [119]. In contrast to a usual explicit scheme, there exists no limit
for the time step size τ > 0, because all eigenvalues of the symmetric system
matrix are larger than or equal to 1. Thus, it is an invertible matrix for all
τ > 0 and the eigenvalues of the inverse matrix are smaller than or equal



116 CHAPTER 3. FAST EXPLICIT DIFFUSION (FED)

1. Input Data:
linear system of equations Bx = c, Fast-Jacobi cycle length n,
number m of Fast-Jacobi cycles, feasible ωlim > 0

2. Initialisation:

(a) Compute the relaxation parameters ωi from Eq. (3.190):

ωi = ωlim · 1

2 cos2
(
π · 2i+1

4n+2

) (i = 0, . . . , n−1).

(b) Choose a suitable ordering for the relaxation parameters:
{ω̃0, . . . , ω̃n−1}.

(c) Define an initial vector x0.

3. Outer Loop: (k = 1, . . . , m)

(a) xk, 0 := xk−1.

(b) Perform one Fast-Jacobi cycle with the above ordering of the
n relaxation parameters (i = 0, . . . , n−1):

xk, i+1 =
(
I − ω̃i ·D−1

B B
)
xk, i + ω̃i ·D−1

B c .

(c) xk := xk, n.

Figure 3.13: Fast-Jacobi algorithm.

to 1, which implies stability in the Euclidean norm. More details can be
found for example in [147].

Concerning isotropic diffusion processes, it has already been shown that the
above system matrix is strictly diagonally dominant [147], i.e.

1 − τ · pj,j > τ ·
N∑

k=1
k 6=j

|pj,k| ≥ 0 (j = 1, . . . , N) . (3.224)

Thus, according to e.g. [98, 115], JOR and in particular Fast-Jacobi can be
applied to solve the linear system (3.223). Let Dτ ∈ RN×N be the diagonal
matrix representing the diagonal entries of I−τ P . A Fast-Jacobi iteration
step with suitable relaxation parameters ωi from Eq. (3.190) is then given
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by

xi+1 = xi + ωi ·D−1
τ

(
uk − (I − τ P )xi

)

=
(
I + ωi · τ D−1

τ P
)
xi + ωi ·D−1

τ

(
uk − xi

)
. (3.225)

To find optimal cycle parameters, we are going to analyse the eigenvalues
of the matrix

Gτ := D−1
τ (I − τ P ) . (3.226)

The Gershgorin cycle with respect to the j-th diagonal entry of Gτ reads
as

{

z ∈ C : |z − 1| ≤
N∑

k=1
k 6=j

τ · |pj,k|
1− τ · pj,j

}

. (3.227)

In the isotropic case, one has pj,k ≥ 0 for j 6= k and

N∑

k=1

pj,k = 0 (3.228)

for all j. Since Gτ is similar to a symmetric matrix, i.e.

Gτ = D
− 1

2
τ

(

D
− 1

2
τ (I − τ P )D

− 1
2

τ

)

D
1
2
τ , (3.229)

its eigenvalues are real-valued and range in
[

1−max
j

τ · |pj,j|
1 + τ · |pj,j|

, 1 + max
j

τ · |pj,j|
1 + τ · |pj,j|

]

⊂ (0, 2) . (3.230)

Thus, the eigenvalues of Mτ := I −Gτ are included in
[

−max
j

τ · |pj,j|
1 + τ · |pj,j|

, max
j

τ · |pj,j|
1 + τ · |pj,j|

]

⊂ (−1, 1) . (3.231)

Because of the monotonicity, we can rewrite the fraction by means of

max
j

τ · |pj,j|
1 + τ · |pj,j|

=
τ · pmax

1 + τ · pmax
, (3.232)

where we have used the notation pmax := max
j

|pj,j|. For Fast-Jacobi, we

have to consider that

ωlim <
2

1 + τ ·pmax

1+τ ·pmax

=
2 + 2τ · pmax

1 + 2τ · pmax
< 2 . (3.233)
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If this condition is satisfied, the Fast-Jacobi method converges according to
Theorem 3.8. Note that the choice ωlim = 1 works for all time step sizes
τ > 0. To find the optimal number of cycles, we need the largest eigenvalue
of Mτ and use the approximation in Eq. (3.220).

In the case of a nonlinear problem, i.e. P = P (u), one uses the semi-
implicit scheme

(
I − τ P

(
uk
))

uk+1 = uk (k ≥ 0) . (3.234)

The application of the Fast-Jacobi method is as straightforward as for the
linear implicit scheme. However, pmax and thus the optimal number of
cycles might vary. Therefore, the application of the method can be very
difficult in practice.

If we additionally consider an anisotropic diffusion process, the condition
pi,j ≥ 0 for i 6= j can not be guaranteed [147]. Since P is still symmet-
ric and negative semi-definite, the eigenvalues of the corresponding matrices
Gτ as well as Mτ are real-valued. Unfortunately, the interval in Eq. (3.231)
is not valid for the anisotropic case. However, using Gershgorin’s theorem,
we can estimate the eigenvalues and adjust the parameters of Fast-Jacobi
according to this estimation. In general, it might happen that the estima-
tion with Gershgorin circles yields eigenvalues of Mτ with moduli larger
than or equal to 1. Since D−1

τ is positive definite with eigenvalues that
are bounded by 1, the matrix product Gτ has positive eigenvalues which
can not exceed the maximum eigenvalue of I − τP [104]. Thus, Mτ has
eigenvalues smaller than 1, i.e. µN < 1, and it can only happen that the
smallest eigenvalue µ1 is smaller than or equal to −1. In this case, ωlim is,
in contrast to the isotropic process, smaller than 1. This means that the
number of iteration steps with under-relaxation ωi < 1 increases. How-
ever, Eq. (3.198) and the upper bound in Eq. (3.206) are still valid. Hence,
Fast-Jacobi converges and one can use the error estimation in Theorem 3.8.

This consideration shows that the condition µ1 > −1 is not necessary for
the convergence, since ωlim is adapted to µ1 such that the convergence is
guaranteed. However, a small ωlim yields more under-relaxation steps and
hence a slower convergence.

3.4.5 Fast-Jacobi for Inpainting Problems

In Sec. 3.3 we have presented the cascadic FED (CFED) method in order
to solve elliptic inpainting problems. It is based on a parabolic evolution.
However, besides this parabolic ansatz, we could also solve the problem
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directly. To this end, we reconsider Eq. (3.167) and its spatial discretisation

C (v − f ) − (I − C)P (v) v = 0 , (3.235)

where we use the notation from Sec. 3.3. We rewrite this equation and
obtain the nonlinear equation system

(

C − (I − C)P (v)
)

v = Cf . (3.236)

The corresponding system matrix has only positive diagonal entries. In
order to have a linear system, we linearise the problem via

(

C − (I − C)P
(
vk
))

vk+1 = Cf , (3.237)

with k ≥ 0 and the initial vector v0 := Cf . To show that JOR or Fast-
Jacobi can be applied, we are going to prove the following theorem about
the system matrix:

Theorem 3.9 (Eigenvalues of C − (I − C)Q). Let Q ∈ RN×N be
a symmetric, negative semi-definite matrix with rank N − 1 and zero row
sum. If C ∈ {0, 1}N×N is a diagonal matrix with at least one non-zero
entry, then the eigenvalues of the matrix C − (I − C)Q are real-valued
and positive.

Proof. The case C = I is trivial, and hence we assume C 6= I. We define
two linear subspaces of CN :

C :=
{
Cy | y ∈ C

N
}

6= ∅ (3.238)

and its orthogonal complement regarding the standard inner product of CN :

C⊥ :=
{
(I − C)y | y ∈ C

N
}

6= ∅ . (3.239)

Thus, each vector z ∈ CN can be written as z = v + w with unique
v ∈ C and w ∈ C⊥. Note that v ∈ C implies Cv = v and w ∈ C⊥

implies (I −C)w = w. Putting this into the eigenvector equation

(
C − (I − C)Q

)
z = λ · z (3.240)

yields:

v
︸︷︷︸

∈ C
− (I − C)Q(v +w)
︸ ︷︷ ︸

∈ C⊥

= λ · v
︸︷︷︸

∈ C
+ λ ·w
︸ ︷︷ ︸

∈ C⊥

. (3.241)
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If there exits an eigenvector v+w with v 6= 0, this equation immediately
states that the eigenvalue has to satisfy λ = 1.

In the case of v = 0 and w 6= 0 we get

− (I − C)Qw = λ ·w , (3.242)

and because of w = (I −C)w it follows that

(I − C)Q(I − C)w = −λ ·w . (3.243)

The matrix Q̃ := (I − C)Q(I − C) is symmetric and since Q is negative
semi-definite, we have for any z ∈ CN

z∗ Q̃ z = z̃∗ Q z̃ ≤ 0 , (3.244)

where z̃ := (I − C)z ∈ C⊥ and z∗ denotes the conjugate transpose
of z. Thus, there exists a set of N orthonormal eigenvectors of Q̃ with
non-positive eigenvalues. Since Q has exactly one eigenvalue equal to zero
(rank N−1) and the corresponding eigenvector s = (1, 1, . . . , 1)T (zero row
sum) is not an element of C⊥, the above inequality is actually strict for
z̃ ∈ C⊥ \ {0}, and Eq. (3.243) can only be satisfied for real-valued λ > 0.
This concludes the proof.

Regarding the linear case, it can be even shown that the unique solution
v of Eq. (3.236) satisfies a maximum-minimum principle with respect to
fC := Cf [95]:

min
j=1,...,N
cj,j 6=0

fC
j ≤ vi ≤ max

j=1,...,N
cj,j 6=0

fC
j (i = 1, . . . , N) . (3.245)

The iteration with JOR and a suitable relaxation parameter ω > 0 follows
the rule

xm+1 =
(

I − ω ·D−1
k

(
C + (C − I)P

(
vk
)))

xm + ω ·D−1
k Cf , (3.246)

where m ≥ 0, Dk is the diagonal matrix with the diagonal entries of the
system matrix C+(C−I)P (vk), and x0 an arbitrary initial vector. These
entries are either 1 (if ci,i = 1) or −pi,i > 0 (if ci,i = 0). Hence, we can

compute D
1/2
k as well as D

−1/2
k , and it holds that

CD
− 1

2

k = D
− 1

2

k C = C . (3.247)
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Regarding the eigenvalues of D−1
k

(
C + (C − I)P

(
vk
))

we obtain

D−1
k

(
C + (C − I)P

(
vk
))

= D
− 1

2
k

(

D
− 1

2
k CD

− 1
2

k D
1
2
k + D

− 1
2

k (C − I)P
(
vk
)
D

− 1
2

k D
1
2
k

)

= D
− 1

2
k

(

C + (C − I)D
− 1

2
k P

(
vk
)
D

− 1
2

k

)

D
1
2
k , (3.248)

which is a similarity transformation and means that they are equal to
the eigenvalues of C + (C − I)D

−1/2
k P

(
vk
)
D

−1/2
k . The matrix Q :=

D
−1/2
k P

(
vk
)
D

−1/2
k is symmetric, negative semi-definite, and its rank cor-

responds to the one of P (vk) and is equal to N−1. Moreover, its eigenvector

corresponding to the eigenvalue 0 is given by D
1/2
k s, where s has been de-

fined in the proof of Theorem 3.9. Since the vector D
1/2
k s is not contained

in the set C⊥, the proof also works in this case. Thus, Theorem 3.9 implies
positive eigenvalues for D−1

k

(
C + (C − I)P

(
vk
))
. As a consequence, the

eigenvalues of the iteration matrix I − ω ·D−1
k

(
C + (C − I)P (vk)

)
are

bounded in absolute value by a constant r < 1, provided that a suitable
ω > 0 is used. Therefore, the convergence of both JOR and Fast-Jacobi to
the unique solution is guaranteed.

Now we simplify the above JOR iteration in order to get a better under-
standing of it. Multiplying the linear system (3.237) with C and using
C2 = C yields

Cvk+1 = Cf . (3.249)

To ensure this property for the approximate solution after a finite number
of iterations, we use an initialisation x0 with Cx0 = Cf . By multiplying
the above calculation rule of JOR with C, we get

Cxm+1 = (1− ω) ·Cxm + ω ·Cf , (3.250)

where we have used Eq. (3.247), but with D−1
k . Because of the relation

Cx0 = Cvk = Cf , it follows that Cx1 = Cf and Cxm = Cf for all
m ≥ 2. Thus, the above property is satisfied for each iteration. With

D−1
k = C + (C − I)D−1

P (vk)
, (3.251)
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where DP (vk) := diag(P (vk)), we can state that

D−1
k (C − I)P

(
vk
)

=
(
C + (C − I)D−1

P (vk)

)
(C − I)P

(
vk
)

= (C − I)D−1
P (vk)

(C − I)P
(
vk
)

= D−1
P (vk)

(C − I)2P
(
vk
)

= −D−1
P (vk)

(C − I)P
(
vk
)

= D−1
P (vk)

(I − C)P
(
vk
)
. (3.252)

Thus, we can simplify the JOR method by means of

xm+1 =
(

I − ω ·D−1
P (vk)

(I − C)P
(
vk
))

xm , (3.253)

and one Fast-Jacobi cycle with length n reads

xn =

n−1∏

i=0

(

I − ωi ·D−1
P (vk)

(I − C)P
(
vk
))

x0 . (3.254)

After m > 1 cycles, we have the result xm,n that is an approximation for
the solution vk+1.

The iterations look very similar to the parabolic explicit scheme that is
formulated in Eq. (3.174), and the main difference is the multiplication
with an inverse diagonal matrix. It can be seen as a local adjustment of
the relaxation parameters. Thus, the method decides, depending on the
diagonal entry, whether it uses more over- or under-relaxation steps. On
the other hand, the multiplication with D−1

P (·) can also be interpreted as a
preconditioning step that improves the convergence. In this context, we are
going to analyse how Fast-Jacobi is related to Richardson’s method.

To improve the convergence of the Fast-Jacobi solver for inpainting prob-
lems, it can be used within a coarse-to-fine strategy already presented in
Sec. 3.3.1. We can reuse the existing explicit code and have to include only
the diagonal preconditioning.

3.4.6 Relation to Richardson’s Method

Let us the reconsider the linear system in Eq. (3.182) with an invertible
matrix B ∈ CN×N that has non-zero diagonal entries. The JOR method
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for this linear system corresponds to Richardson’s method for the equivalent
system

D−1
B Bx = D−1

B c , (3.255)

where DB again denotes the diagonal part of B. As we have mentioned
in the last subsection, this matrix multiplication is some kind of a pre-
conditioning step. If B is symmetric and positive definite, its condition
number concerning the Euclidean norm corresponds to the ratio between
the largest and the smallest eigenvalue. In this case, the matrix product
D−1

B B has positive eigenvalues, but it is not necessarily symmetric, which
means that we can not compute its condition number by the above ratio.
Moreover, it depends on the matrix B how the diagonal preconditioning
reduces the condition number. To this end, we consider three easy 1-D
diffusion examples.

Diagonal Preconditioning

The condition number of system matrices associated to diffusion processes
depends on the time step size τ and the process itself. Therefore, we try
different step sizes as well as processes, and show the corresponding impact
of the diagonal preconditioning in Table 3.3. Our examples for the diffusion
processes are:

(a) Linear homogeneous diffusion:

We consider the system matrix I − τ ·A1 ∈ R5×5 (h = 1), where Ah

is defined in Eq. (3.33).

(b) Inhomogeneous (spatially varying) diffusion (1) :

Here, we analyse I − τ · P1 ∈ R5×5 where P1 is given by

P1 =










−3
4

3
4

0 0 0
3
4

−5
4

1
2

0 0

0 1
2

−5
8

1
8

0

0 0 1
8

−3
8

1
4

0 0 0 1
4

−1
4










. (3.256)
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(c) Inhomogeneous (spatially varying) diffusion (2) :

If we allow a diffusivity function that takes values larger than 1, this
could imply a system matrix I − τ · P2 ∈ R5×5 with

P2 =










−1
2

1
2

0 0 0
1
2

−3 5
2

0 0

0 5
2

−55
2

25 0

0 0 25 −34 9

0 0 0 9 −9










. (3.257)

These results allow the assumption that the diagonal preconditioning is
better for nonlinear diffusion processes, which imply a larger range of varia-
tion regarding the diagonal entries. The corresponding improvement of the
condition number is up to almost five times larger than for homogeneous
diffusion. Furthermore, the best improvement is reached for the diffusion
process using strongly varying coefficients. A well-known example for such
a process is the so-called total variation (TV) diffusion [6, 7]. Its diffusivity
is given by

g
(
|∇u|2

)
=

1

|∇u| . (3.258)

It is unbounded, but in practice we use the regularised version

gε
(
|∇u|2

)
=

1
√

ε2 + |∇u|2
(3.259)

with a small regularisation parameter ε > 0. Unfortunately, the limit time
step size for an explicit diffusion scheme is proportional to ε, i.e. can be
very small. Thus, the cycle times of FED are also much smaller than in the
case of a diffusivity that is bounded by e.g. 1. For elliptic problems, where
a steady-state solution has to be approximated with a huge stopping time,
we would require many cycles.

In the experimental section, we will show that the solution by means of the
Fast-Jacobi method performs much better than a parabolic FED scheme
for elliptic problems with strongly varying coefficients. We also apply a
modified Richardson method, which means that we include a diagonal pre-
conditioning. More precisely, we consider the Fast-Jacobi algorithm, but
we use the Richardson-based relaxation parameters from Eq. (3.17).

Besides the preconditioning step, there is another interesting difference be-
tween Richardson’s method and Fast-Jacobi: The convergence properties if
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Table 3.3: Impact of the diagonal preconditioning for the exemplary dif-
fusion processes. The difference between the condition number κ2 of the
original, and κ∗

2 of the preconditioned matrix is computed by the relative

value
κ2 −κ∗

2

κ2
.

τ 5 10 50 100 500

(a)
κ2 19.09 37.18 181.90 362.80 1810.02
κ∗

2 17.96 35.08 172.39 344.07 1717.59

diff. 5.9% 5.6% 5.2% 5.2% 5.1%

(b)
κ2 10.62 20.23 97.17 193.34 962.72
κ∗

2 9.32 17.09 77.71 153.79 764.46

diff. 12.3% 15.5% 20.0% 20.5% 20.6%

(c)
κ2 285.88 570.76 2849.79 5698.58 28488.91
κ∗

2 218.82 435.17 2174.34 4350.29 21760.16

diff. 23.5% 23.8% 23.7% 23.7% 23.6%

an eigenvalue of the system matrix B is equal to 0, which in fact means
that the matrix is not invertible. Let us now reconsider the homogeneous
system (3.7) with a system matrix B that has real-valued non-negative
eigenvalues. In this case, the estimation in Eq. (3.20) for the convergence
rate of Richardson’s method with cycle length k+1 does not work any-
more (λmin = 0) and the maximum in Eq. (3.14) is 1. If this maximum
is not only reached for the eigenvalue 0, but also for another λj > 0,
Sk+1(λj) = ±1, the convergence to a feasible solution of the homogeneous
system can not be guaranteed. More precisely, let the initial vector x0

satisfy |vT
j x

0| =: r > 0, where vj is the eigenvector corresponding to λj .
Having applied m ≥ 1 cycles of length k+1 with Richardson’s method, the
result xm, k+1 fulfils

∣
∣vT

j x
m, k+1

∣
∣ = |Sk+1(λj)|m · r = r . (3.260)

A feasible solution of the homogeneous system has to be a linear combina-
tion of eigenvectors corresponding to the eigenvalue 0. Moreover, it should
be orthogonal to all other eigenvectors with positive eigenvalues, which
means in particular orthogonal to vj . However, since the vector x

m, k+1 can
never satisfy this property, there is no converge to m→∞. Thus, to yield
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convergence, one should ensure that vT
i x

0 = 0 for all eigenvectors vi whose
eigenvalues λi > 0 fulfil Sk+1(λi) = ±1.

Since the value 0 can not be excluded as a diagonal entry ofB, it might hap-
pen that the Fast-Jacobi method can not be applied. In this case, we could
use for instance Richardson’s method with suitable FED-based relaxation
parameters. However, let us assume firstly that the Jacobi method works.
Since the inequality (3.198) is valid for z > 0, the result of m Fast-Jacobi
cycles with length n, i.e. xm,n, satisfies the estimation

∣
∣vT

j x
m,n
∣
∣ < Cm

j ·
∣
∣vT

j x
0
∣
∣ , (3.261)

where vj is an arbitrary eigenvector corresponding to the eigenvalue λj > 0,
and Cj < 1 a suitable positive constant that depends on the eigenvalue.
Thus,

∣
∣vT

j x
m,n
∣
∣→ 0 for m→∞, and the convergence to a feasible solution

of the homogeneous system is guaranteed.

These theoretical results are important for the elliptic inpainting case. The
Fast-Jacobi iteration in Eq. (3.254) can also be interpreted as an iteration
for the homogeneous system

(C − I)P
(
vk
)
x = 0 . (3.262)

This system matrix has real-valued non-negative eigenvalues. However, at
least one of the diagonal entries has to be equal to zero. To this end, the
Fast-Jacobi iteration in Eq. (3.254) implicitly proposes to use the inverse
diagonal entries of −P (vk) instead of (C − I)P (vk).

If we would apply a cycle of length p with Richardson’s method using the
relaxation parameters (cf. Eq. (3.17) with λmin = 0)

ωi =
2

λmax − λmax · cos
(

π · 2i+1
2p

) (i = 0, . . . , p−1) , (3.263)

where λmax is the largest eigenvalue of (C − I)P
(
vk
)
, i.e.

xm,p =

(
p−1∏

i=0

(

I − ωi · (C − I)P
(
vk
))
)m

x0 , (3.264)

then the convergence is not guaranteed, as we have shown above. To enforce
convergence, one has to regularise the problem and to compute the relax-
ation parameters with λmin > 0, although the smallest eigenvalue is in fact
equal to 0. This strategy is equivalent to the use of a damping parameter
ν > 0 in the parabolic case.
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3.5 FED for Hyperbolic Problems

So far, we have considered the application of FED in the context of problems
whose discretisations yield symmetric matrices. Now we want to analyse
whether our fast explicit scheme can be also used to solve hyperbolic equa-
tions and whether it is able to improve the efficiency of standard numerical
solvers. As an example, we consider the d-dimensional linear transport
equation

∂u(x, t)

∂t
+ bT

∇u(x, t) = 0 ∀ (x, t) ∈ R
d × (0,∞) ,

(3.265)

u(x, 0) = g(x) ∀ x ∈ R
d ,

where g : Rd → R represents the given initial data, b ∈ Rd describes the
velocity and u : Rd × [0,∞) → R is the unknown solution. However, there
exists a closed-form solution:

u(x, t) = g(x − t · b) . (3.266)

More details about further theoretical results can be found for example
in [91]. In the following, we consider the case d = 1 and assume a scalar-
valued velocity b > 0.

We discretise Eq. (3.265) on a spatiotemporal grid with the spatial mesh
size h > 0 and the time step size τ > 0, uk

i ≈ u(ih , kτ). If we discretise
the spatial derivative with the help of a backward difference and the time
derivative using a forward difference, we get

uk+1
i − uk

i

τ
+ b · u

k
i − uk

i−1

h
= 0 , (3.267)

which can be written as an explicit scheme, a so-called upwind scheme:

uk+1
i = uk

i − b · τ
h
·
(
uk
i − uk

i−1

)
. (3.268)

The constant c := b · τ
h

is the well-known Courant number [35]. One
can show that the upwind scheme is stable for c ∈ [0, 1]. Assuming a fi-
nite number N of spatial grid points and homogeneous Dirichlet boundary
conditions, we can rewrite the scheme in terms of a matrix-vector multipli-
cation,

uk+1 = (I + τ Bh)u
k , (3.269)
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with the unsymmetric matrix

Bh =
b

h
·










−1 0 . . . 0 0
1 −1 0 . . . 0

. . .
. . .

...
0 . . . 1 −1 0
0 . . . 0 1 −1










∈ R
N×N . (3.270)

Although it is unsymmetric, the eigenvalues are real-valued and given by
the diagonal entries − b

h
. Since the stability condition for an usual explicit

scheme is τ ≤ h
b
, we might use an FED cycle

un =

(
n−1∏

i=0

(I + τi Bh)

)

u0 , (3.271)

with the time step sizes

τi =
h

b
· 1

2 cos2
(
π · 2i+1

4n+2

) (i = 0, . . . , n−1) . (3.272)

Such a cycle yields the time

θn =
h

3 · b
(
n2 + n

)
(3.273)

for the transport process. From Eq. (3.266) we know that the analytical
solution regarding this point in time is given by

u (x, θn) = g (x − θn · b) = g
(
x − h

3

(
n2 + n

))
, (3.274)

or with x = ih,

u (ih , θn) = g
((

i − n2+n
3

)

h
)

. (3.275)

Using a cycle length n such that n2+n
3

∈ N, we can rewrite this equation in
terms of the numerical solutions uk,

un
i = u0

i− n2+n
3

. (3.276)

On the other hand, the cycle matrix
∏

i (I + τi ·Bh) is a lower triangular
matrix with bandwidth n, which means that un

i is connected to u0
i− (n2+n)/3

only if n2+n
3

≤ n or equivalently n ≤ 2. The problem is that the cycle
time θn implies a shift which grows quadratically in n, but the FED or in
general an explicit scheme can only connect values with the maximum shift
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n. In particular for large n, the actual solution u0
i− (n2+n)/3 is replaced by

a combination of the values u0
i−k , k = 0, . . . , n. They have a large spatial

distance to the actual solution. Thus, the numerical solution of the FED
cycle in Eq. (3.271) might be a bad approximation.

However, the biggest problem is the stability in the Euclidean norm of
Eq. (3.271). Since Bh is not symmetric, the Euclidean norm of the cycle
matrix does not correspond to its largest eigenvalue. Actually, we have to
consider the square root of the maximum eigenvalue of the matrix product

n−1∏

i=0

(I + τi ·Bh)
T ·

n−1∏

i=0

(I + τi ·Bh) . (3.277)

Assuming for example b = 1, h = 1, N = 7 and a very small cycle length
n = 2, we already have an Euclidean norm that is larger than 1. Larger
cycle or signal lengths make it even worse. Note that Theorem 3.7 provides
a norm for which Eq. (3.271) is stable. However, due to the bad approxi-
mation with respect to the closed-form solution, it is questionable whether
the corresponding stability concept makes sense.

Since Bh is unsymmetric, the skew-symmetric part 1
2
· (BT

h −Bh) is non-
zero. Its eigenvalues are imaginary and the largest modulus scales with the
ratio b

h
. Moreover, assuming other boundary conditions like e.g. periodic

boundary conditions, the corresponding discretisation matrix B̃h can have
also complex eigenvalues with large imaginary parts. To this end, we are
interested in methods having a large imaginary stability boundary. As
shown in Fig. 3.3, FED prefers to maximise the real stability boundary.

In fact, there are methods with symbols or amplification factors that are
optimised with respect to the imaginary stability boundary [82, 83, 134].
In contrast to the parabolic case, a result proven by Vichnevetsky [142]
states that there can be only a linear dependence between the maximum
imaginary boundary and the cycle length n. Despite the use of symbols
optimised for such hyperbolic problems, a quadratic dependence can not
be reached. Thus, a speed-up like in the parabolic case is impossible, no
matter which method one uses.

3.6 Numerical Experiments

In the following numerical experiments, we want to show that the proposed
cyclic methods can be applied for the efficient solution of parabolic and
elliptic problems in PDE-based image analysis.
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Figure 3.14: Nonlinear isotropic diffusion filtering. (a) Left: Original noisy
image (128 × 128). (b) Right: Filtered with the AOS scheme (τ = 0.02)
using the parameters λ = 5/2 , σ = 3/2 and stopping time T = 100.

The error measure we are going to use in the experiments is the so-called
mean squared error (MSE). Given two images u1 and u2 with N pixels, it
is defined by

MSE(u1,u2) :=
1

N
·

N∑

i=1

(u1,i − u2,i)
2 . (3.278)

All experiments are conducted on an Intel Xeon 3.2 GHz with up to four
cores. The methods are implemented in C with float precision.

3.6.1 Isotropic Diffusion Filtering

At first we consider nonlinear isotropic diffusion filtering [106]. The corre-
sponding evolution equation is

∂tu = div
(
g
(
|∇uσ|2

)
∇u
)
, (3.279)

where we use the Perona-Malik diffusivity given by Eq. (1.13). For the
spatial discretisation we assume unit grid sizes hx = hy = 1.

Our first experiment is about the rearrangement of the time step sequence.
To this end, we filter a noisy image by applying one FED cycle with length
n = 35 such that we reach a stopping time T = 100. The original image
and a filtered version are illustrated in Fig. 3.14(a) and (b), respectively.

If we use the natural sequence, the FED cycle performs 18 stable time
steps τi ≤ 1

4
followed by 17 unstable ones. The two largest steps are given

by τ33 ≈ 15.24 and τ34 ≈ 60.84, which is more than 60 and 240 times
the stability limit, respectively. Some intermediate results can be found in
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Figure 3.15: Intermediate results of the FED cycle using the natural se-
quence of the time steps (float precision). From left to right: After 10,
20, 34 and 35 steps (final result).

Fig. 3.15. As mentioned above, all computations are performed with float
precision. The intermediate result after 20 time steps, i.e. two unstable
steps, is still stable, since the unstable steps are relatively small and hence
not critical. However, the depicted results after 34 and 35 steps are not
stable anymore, due to numerical rounding errors and the very large step
sizes. Note that negative grey values are set to 0 and values exceeding the
limit 255 to 255. This example shows that a rearrangement of the sequence
is indispensable in practice. However, some parts of the final result seem
to be reasonable. If we consider the numerical scheme, the filtering result
u satisfies

u =

(
34∏

i=0

(
I + τi · P (f )

)

)

f , (3.280)

where f ∈ R1282 is the vector whose entries are the grey values of the
original image. Rewriting f as a linear combination of the eigenvectors vk,
k = 1, . . . , 16384 , of the symmetric matrix P (f ), which means

f =

16384∑

k=1

Ck · vk , (3.281)

with the coefficients Ck ∈ R, yields for the final result

u =

16384∑

k=1

34∏

i=0

(1 + τi · µk · Ck)

︸ ︷︷ ︸

=: C̃k

· vk . (3.282)

Here the eigenvalues λk ≤ 0 correspond to the eigenvectors vk. Obvi-
ously, the reasonable parts of the image correspond to eigenvectors or fre-
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Figure 3.16: Intermediate results of the FED cycle, where the sequence
of the time steps has been rearranged by κ-cycles (κ = 7). Top row:
Without any inner update of the nonlinearities. Bottom row: With one
inner update after 10 steps. From left to right: After 10, 20, 34 and 35
time steps (final result).

quency components whose coefficients C̃k are not or less affected by nu-
merical rounding errors. On the other hand, the unstable parts come from
frequency components whose numerically evaluated coefficients are much
larger than the actual coefficients C̃k (cf. e.g. Fig. 3.4). If we perform
the computations with long double precision, the final result is stable and
in fact, the grey values of this result match many values in the reasonable
parts of the result with float precision.

Some intermediate results using the rearrangement by a κ-cycle with
κ = 7 are depicted in Fig. 3.16. Here the final result is stable, but we also
see that there might be unstable solutions within a cycle. If we consider, for
example, the result after ten explicit time steps, the minimum grey value is
about −135 and the maximum one is around 338. This shows that updating
the nonlinearities within a cycle can be very dangerous: Unstable inner
results yield very bad nonlinearities which misdirect the evolving image.
The bottom row in Fig. 3.16 shows the evolution with an inner update
after 10 explicit time steps. In this case, the grey values of the final result
still range in [0, 255], but there is more noise.

For the rearrangement with Leja ordering we have similar observations.
The final result of the top row in Fig. 3.17 is stable and equal to the one of
Fig. 3.16. However, the intermediate result after 10 steps is very unstable
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Figure 3.17: Intermediate results of the FED cycle using the Leja-ordered
sequence of the time steps. Top row: Without any inner update. Bottom
row: With one inner update after 10 steps. From left to right: After 10,
20, 34 and 35 time steps (final result).

and an update yields now even an unstable final result. It can be seen in
the bottom row of Fig. 3.17.

Now we consider the Lebedev-Finogenov ordering. Since the cycle length
reaching the stopping time T = 100 must be larger than 34, we now have
to work with the length 28 = 64. Actually, this allows the maximum
stopping time T ≈ 346.67, and therefore we have to use a relatively small
time adjustment factor q ≈ 0.29 yielding only 15 unstable time steps.
However, the largest time step τ63 ≈ 60.81 is approximately as large as the
maximum step size of the cycle with length 35. Although the cycle contains
much more stable steps, a rearrangement is necessary. This is illustrated
in Fig. 3.18. It demonstrates that the method of Lebedev and Finogenov
works also well with FED. However, the main disadvantage of this approach
is the limitation of the cycle lengths. As already mentioned, this can cause
a duplication of the computational effort in the worst case.

Our last experiment with respect to the reordering strategies is about their
limitation, i.e. we want to find out the maximum cycle length that yields
a stable method. To this end, we perform one FED cycle with the above
mentioned parameters λ = 5/2 and σ = 3/2.

Regarding the rearrangement with the κ-cycles, we use the look-up table
whose parameters are mentioned in Sec. 3.2.3. This table yields stable
results up to the length n = 1200, which corresponds to the maximum
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Figure 3.18: Intermediate results of the FED cycle with length 64. Top
row: Natural sequence. Bottom row: Rearrangement of Lebedev and
Finogenov. From left to right: After 20, 40, 63 and 64 time steps (final
result).

stopping time T = 120100. However, larger cycle lengths are possible, if
one uses other values for κ that differ from the ones in the look-up table.
Moreover, increasing the signal length (cf. Sec. 3.2.3) further improves
the maximum cycle length. This shows that the stability is very sensitive
regarding the choice for κ. Thus, this strategy is more suited for cycle
lengths up to about n = 1000.

In contrast to the κ-cycles, the Leja ordering does not need an optimi-
sation of a parameter, because the sequence only depends on the set of the
reciprocals of the time step sizes. However, as mentioned in Sec. 3.2.3, the
stability of the Leja sequence massively depends on the numerical precision.
If we compute it by means of float precision, then this already yields unsta-
ble cycles for small lengths n ≥ 124. The computation of the sequence with
long double precision significantly improves the stability. In this case, the
maximum cycle length is about n = 8300 yielding the time θn = 5741525.
Thus, it is much better than the κ-cycles for cycle lengths larger than 1000.
However, in contrast to κ-cycles, a look-up table requires O(n2) entries.

The Lebedev-Finogenov ordering allows reasonable, stable results up to
the cycle length n = 16834. Actually, this means that it is possible to
reach a maximum cycle time θn ≈ 22370987. Hence, it seems to be the
most robust strategy, and very well-suited for very huge stopping times.

For the following experiments we use solely κ-cycles to reorder the time
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Table 3.4: MSE-Comparison of FED and AOS for the testbed in Fig. 3.14.

cycles/steps MSE

FED AOS

1 41.296 241.788
2 5.743 75.906
3 2.363 34.065
4 1.355 18.972
5 0.891 12.175

10 0.255 3.321
25 0.044 0.623
50 0.011 0.170

steps, because the cycle lengths do not exceed n = 1000 and we would
like to have an optimal behaviour with respect to the computational effort,
which means we want to use all cycle lengths from 1 to 1000.

At this point, we want to analyse the FED scheme for nonlinear isotropic
diffusion filtering with respect to accuracy and efficiency. As we have
mentioned in the introductory chapter, an efficient scheme for nonlinear
isotropic diffusion filtering is the AOS scheme [93, 155]. It is also well-suited
for parallel computing, which has been shown for instance in [17, 149, 156].

To evaluate the accuracy of both FED and AOS, we take the reference
image r in Fig. 3.14(b) with stopping time T = 100 and compare it to
filtering results u computed with different numbers of time steps by means
of the errors MSE(r,u). We shall note that the grey values of both r

and u are given in float precision. The corresponding results can be found
in Table 3.4. Obviously, FED clearly outperforms the AOS scheme with
respect to the MSE. The mean squared errors of FED are up to about
15 times smaller, although the reference image has been filtered with AOS.
This is due to the fact that FED produces no splitting error, which increases
for larger time step sizes or equivalently for a smaller number of AOS time
steps.

The table also confirms the theoretical results about the approximation
order of the FED scheme, which means that doubling the number of FED
cycles should asymptotically decrease the Euclidean norm ‖u− r‖2 by a
factor of two. If we consider the MSEs for both 25 and 50 FED cycles, the
error with 50 cycles is about four times smaller than for 25. This means
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Figure 3.19: Defect detection in a wood surface with nonlinear isotropic
diffusion filtering. (a) Left: Original image (256 × 256). (b) Middle:
Filtered with the AOS scheme (τ = 0.05) using λ = 3/2, σ = 1 and stopping
time T = 800. (c) Right: Rescaled to [0, 255] for better visualisation.

that the square root of the MSE is two times smaller and since the square
root of the MSE is related to the Euclidean norm (or distance), the decrease
of the MSE perfectly corresponds to the doubling of the number of FED
cycles.

In our second example, nonlinear isotropic diffusion filtered is used to detect
some defects in a wood surface. This is illustrated in Fig. 3.19. Here we
have both a larger image and a bigger stopping time.

We again compare the filtering results of FED and AOS to the reference
solution shown in Fig. 3.19(b). The MSEs are given in Table 3.5. Like
before, the errors of the FED scheme are significantly smaller with a factor
up to 25, and we recognize the connection between the decrease of the MSE
and the number of FED cycles.

So far, we have seen that the MSEs for the AOS scheme are much larger
than for FED. Thus, we can state that the FED scheme is more accurate,
but in this context, it is also interesting to look into the efficiency of the
methods. More precisely, we want to measure the computing times that
are necessary to reach certain MSEs. To this end, we apply both FED and
AOS with different numbers of cycles or time steps, compute the MSE with
respect to the reference solution and determine the corresponding comput-
ing time. Since both schemes are well-suited for parallelisation, we use
OpenMP1 to show the benefit of parallel computing with four cores. Note
that the additional effort is just one code line. However, in Sec. 3.6.5 we
will also present an experiment with GPUs to fully exploit the parallelism

1see ’openmp.org’ for details
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Table 3.5: MSE-Comparison between FED and AOS for the defect detection
depicted in Fig. 3.19.

cycles/steps MSE

FED AOS

1 123.578 268.027
2 24.110 148.356
3 8.214 91.093
5 2.932 40.922

10 0.904 10.910
25 0.146 2.092
50 0.037 0.660

100 0.009 0.188
200 0.002 0.050

of our proposed methods. In the case of FED, we just have matrix-vector
multiplications that are very easy to parallelise, because each entry of the
resulting vector can be treated separately. For the AOS scheme, we use the
so-called mid grain parallelism (see e.g. [17]), which means that the linear
systems of equations for each direction are decomposed into many small
independent systems. For simplicity, all other components of the methods
like, for example, the computation of the nonlinearities are not parallelised.

The results for the test setting in Fig. 3.14 are shown in Fig. 3.20(a). Here
the number of the cycles or steps ranges from 1 to 50. As one can see,
the curves for FED contain some jags that come from the time adjustment
factor q: If the stopping time T = 100 has to be reached, for example,
with 28 FED cycles, the overall step size of one cycle is about 3.57, which
means that the corresponding cycle length is n = 7 with a relative small
adjustment factor q ≈ 0.765. The overall number of explicit time step is
28 · 7 = 196 in this case. Increasing the number of FED cycles to 29 means
one more update of the nonlinearities, but a smaller cycle length n = 6 is
sufficient, and q ≈ 0.985. Thus, we have 29 ·6 = 174 time steps, i.e. 22 less
than before. If the additional update is cheaper than 22 explicit time steps,
the computing time is reduced and there is a smaller MSE because of the
extra cycle. Furthermore, we shall note that the computation of the time
step sizes and the rearrangement by κ-cycles are included in the computing
time of the FED scheme. Thus, the compilation of a database with the
rearranged sequences could further decrease the running time. However, we
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Figure 3.20: Computing time (milliseconds/seconds) versus MSE for both
the AOS and FED scheme with one or four CPUs. The y-axis is log-
scaled. (a) Left: Test setting in Fig. 3.14. (b) Right: Defect detection in
Fig. 3.19.

can see that FED is much more efficient than the AOS scheme. Assuming
the same computing time, the MSE of FED is up to more than one order of
magnitude smaller. If we suppose an MSE smaller than 10, the FED scheme
using one CPU core is even more efficient than AOS with four CPU cores.
Overall, both schemes benefit from the parallelisation, and the improvement
of the computing time is at least 30%.

Figure 3.20(b) illustrates the results for our second example. The number of
cycles or steps ranges from 1 to 200. Because of both the larger image size
and the larger diffusion time, the corresponding computing times increase
compared to the last test setting. However, the courses of the curves look
pretty similar. Like before, the FED scheme with one core can be much
more efficient than AOS using the mid grain parallelism. This shows that
the splitting error of AOS is very disadvantageous.

After the comparison with the widely used AOS scheme, we want to look
into nonlinear isotropic diffusion filtering with Super Time Stepping (STS).
Some results for both test settings are given in Table 3.6. As expected, the
method without a damping factor, i.e. ν = 0, has big problems with the
noise removal and yields, in particular for the noisy image, a much larger
MSE than its damped variant. Even with 50 cycles, the MSE is still larger
than 1. However, in the case of the defect detection, a larger number of
cycles can yield better results than damped STS or FED, because there is
almost no noise in the original image. Due to the smaller cycle lengths of
the undamped STS, it allows a faster computation. Therefore, it can be
more efficient for a larger number of cycles. Regarding STS with ν > 0,
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Table 3.6: MSEs for STS without and with a damping factor.

cycles MSE (Fig. 3.14) MSE (Fig. 3.19)

STS (ν = 0) STS STS (ν = 0) STS

1 2490.590 44.713 308.494 122.748
2 1226.769 5.690 134.962 23.679
3 628.415 2.465 68.145 8.699
5 178.374 0.928 16.237 3.201

10 29.941 0.269 1.662 1.019
25 3.263 0.048 0.132 0.176
50 1.076 0.012 0.028 0.044

100 0.494 0.002 0.006 0.011
200 0.001 0.000 0.001 0.002

we have chosen the damping parameters such that the cycle lengths n and
the diffusion times per cycle coincide with FED. Because of ν > 0, the
noise removal is much better, even for smaller numbers of cycles. However,
the MSEs of FED are mostly better than the ones of the damped STS,
although both methods have the same cycle length and overall step size per
cycle. This is due to the better smoothing properties of FED. An example
is illustrated in Fig. 3.21. One can see that the result of one cycle with
undamped STS is still very noisy. Introducing a damping factor ν > 0
significantly improves the image, but there is still more noise than in the
FED result, which might explain the larger MSE. On the other hand, the
edges within the image computed with the damped STS are a bit sharper
due to the weaker smoothing effect.

Therefore, a damping factor ν > 0 should be used for STS. However,
it is very difficult to determine an appropriate factor. If it is too small,
one might have problems with noisy images and yield bad results. On the
other hand, a large parameter decreases the cycle time and hence reduces
the efficiency of the method. Thus, it seems to be very difficult to find an
optimal damping parameter. Table 3.7 shows some damping parameters
for both test settings with different numbers of cycles. They are chosen
such that STS has the same cycle length and cycle time as FED. Obviously,
the damping parameter does not seem to obey a certain rule. Neverthe-
less, we can only state that a larger number of cycles, i.e. a smaller cycle
length, also requires a larger damping parameter and that the order of mag-
nitude depends on the stopping times (here: T = 100 or T = 800) of the



140 CHAPTER 3. FAST EXPLICIT DIFFUSION (FED)

Table 3.7: Damping parameters (rounded) for STS.

cycles 1 5 10 25 50 100

ν
3.14 0.0038 0.0175 0.0382 0.0996 0.2149 0.3127
3.19 0.0005 0.0023 0.0047 0.0122 0.0240 0.0497

corresponding diffusion processes.

In conclusion, our experiments show that for isotropic parabolic problems,
FED is more efficient than AOS and has better smoothing properties than
STS, regardless whether one applies it with ν = 0 or a positive damping
parameter.

3.6.2 Anisotropic Diffusion and Inpainting Problems

As already mentioned in the introduction, a numerically more challenging
scenario is given by anisotropic problems. Such processes are based on the
nonlinear anisotropic diffusion equation

∂tu = div (D (∇uσ)∇u) (3.283)

with a symmetric, positive definite diffusion tensor D ∈ R
2×2. It can be

seen as a generalisation of isotropic processes that assume a diagonal matrix.
In the introductory chapter, we have already reviewed two specific filters,
namely the edge-enhancing anisotropic diffusion (EED) and the coherence-
enhancing diffusion (CED) filter [147].

Parabolic Problems

To evaluate FED for anisotropic diffusion problems, we first enhance a
fingerprint test image with CED. As a space discretisation for CED, we
have used the one in [157]. The test setting is depicted in Fig. 3.22, where
the filtered reference result has been computed by the semi-implicit scheme.
This scheme permits to use large time step sizes and can be more efficient
than the usual explicit approach. Moreover, there is no efficient operator
splitting scheme in the general anisotropic case. Thus, we want to compare
FED and the semi-implicit scheme.

Since the semi-implicit method requires the solution of large, sparse linear
systems of equations with positive definite system matrices, we use the
conjugate gradient (CG) method [74]. It is an easy and fast iterative solver
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Figure 3.21: 32 × 32 detail of the filtering results for the noisy image with
one cycle (T = 100). (a) Left: FED. (b) Middle: STS, ν = 0.0038. (c)
Right: STS, ν = 0.

that is well-suited for parallel computing. Moreover, unlike e.g. the method
of successive over-relaxation (SOR), the values at each iteration of the CG
method do not depend on the order of the equations or, in terms of the
implementation, the processing order of the pixels. This is very important
regarding for instance rotational invariance. Another nice property is the
possible preservation of the average grey value in each iteration, which
means that this is independent of any stopping criteria. To guarantee the
preservation, the initial vector for the CG method has to be e.g. equal to the
corresponding right hand side of the linear system being solved. Concerning
our numerical scheme from Eq. (1.28), we start with v = 0.

We dispense with the preconditioned conjugate gradient (PCG) method,
because common preconditioners like, for instance, the symmetric Gauss-
Seidel or the symmetric SOR depend on the order of the equations and, in
the latter case, can require additional parameters that have to be optimised.
Moreover, these optimal values depend on the used time step size. On
the other hand, the Jacobi preconditioner is an example that does not
depend on the order of the equations or additional parameters, but it can
not improve the efficiency for the values of the diffusion times used within
the experiments. Moreover, unlike CG, the PCG method does not directly
evaluate the Euclidean norm of the residuals. Thus, this evaluation requires
additional computational effort.

At first, we apply FED as well as the semi-implicit scheme with different
numbers of cycles or time steps, and compute the errors between the filtering
results and the reference image in Fig. 3.22. Some MSEs are given in
Table 3.8. For a small number of cycles or steps, the semi-implicit scheme
has clearly better MSEs, and FED can beat it only for example with 50 or
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Figure 3.22: Fingerprint enhancement with CED. (a) Left: Original image
(300×300). (b) Middle: Filtered with the semi-implicit scheme (τ = 0.05)
using the model parameters λ = 1, σ = 1/2, ρ = 4, α = 10−3 and stopping
time T = 300. (c) Right: Rescaled to [0, 255] for better visualisation.

100 cycles.

Now the question is whether FED has, in spite of the lower accuracy, a
better efficiency than the semi-implicit scheme. However, the comparison
is not so easy as in the case of AOS, since the CG method requires a stopping
criterion that influences the efficiency. There are mainly two criteria: One
can limit the number of iterations or give an error tolerance ǫ > 0. More
precisely, given the linear system Bx = c, the CG method stops if the
residual with respect to the current iteration x̃ satisfies

‖Bx̃ − c‖2 < ǫ · ‖c‖2 . (3.284)

However, the condition numbers of the system matrices (I − τ P ) depend
on the time step size τ > 0, i.e. they increase for larger step sizes. On the
other hand, the convergence of the CG method depends on the magnitude of
the condition number. Actually, this means that a stopping criterion which
only includes a limit for the number of iterations is not suitable. If the limit
is too small, linear systems with a large step size τ are solved inaccurately,
and by using bigger limits one spends too much time for the solution of
linear systems with small time step sizes. Thus, we are going to use the
residual criterion. It is flexible with respect to the different magnitudes of
the time step sizes.

In Fig. 3.23 we have depicted the trade-off between the CPU time and
the MSE for one as well as four CPUs. The number of FED cycles and
semi-implicit time steps varies from 1 to 100, respectively. For the semi-
implicit method we have used ǫ = 10−4 and ǫ = 10−3 as stopping criteria.
Regarding the efficiency, the latter choice should be preferred. However,
FED is still more efficient. Larger values like, for example, ǫ = 10−2 do not
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Table 3.8: MSE-Comparison between FED and the semi-implicit scheme.

cycles/steps MSE

FED semi-imp.

1 88.382 48.402
2 39.429 27.809
3 27.448 20.448
4 21.758 16.670
5 18.239 14.241

10 11.093 8.304
25 3.841 2.938
50 0.943 1.114

100 0.260 0.381

allow a reasonable numerical solution of the linear systems anymore, and
smaller values would worsen the efficiency.

Besides a matrix-vector product in each iteration, the CG method requires
the computation of at least two inner products, which we have also par-
allelised. Both FED and the semi-implicit scheme are faster, whereas the
latter one benefits more from the parallel computing. This is due to the
fact that the proportion of the CG method in the whole scheme is larger
than the one of the FED cycles, and we do not have parallelised other com-
ponents like, for instance, the update of the nonlinearities or the Gaussian
convolution. Nevertheless, we can state that FED still outperforms the
semi-implicit scheme with respect to the efficiency.

Elliptic Inpainting Problems

Let us now consider an elliptic inpainting problem that we are going to solve
first by computing the steady-state of a parabolic evolution. As a testbed
we use an inpainting problem that is relevant for image compression with
EED [54, 121]. The corresponding test setting is depicted in Fig. 3.24. In
this example, we store about 10% of the original image data and use this to
compute a good reconstruction of the original image with the help of edge-
enhancing anisotropic diffusion filtering. As mentioned in the introduction,
we use the Charbonnier diffusivity given in Eq. (1.23) within the model.

In order to have a faster convergence to the steady-state of the parabolic
evolution, we apply the cascadic FED scheme (CFED) and compare it with
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Figure 3.23: Computing time (seconds) versus MSE for FED and semi-
implicit schemes with different stopping criteria. (a) Left: With one CPU.
(b) Right: With four CPUs.

a cascadic semi-implicit approach. To simplify matters, we always use the
same number M of FED cycles with length n for the diffusion process on
each level of the Gaussian pyramid. Since we start with the unit grid sizes
hx = hy = 1 and the image size 256 × 256, the coarser levels ℓ ≥ 1 have

the mesh sizes h
(ℓ)
x = h

(ℓ)
y = 2ℓ and the corresponding image sizes are

28−ℓ × 28−ℓ. In this case, the restriction operator just averages two neigh-
bouring pixels to get the values with respect to the coarser grid (linear inter-
polation), and the prolongation operator corresponds to nearest-neighbour

interpolation. Note that the time step size limit τ
(ℓ)
lim at level ℓ is given by

τ
(ℓ)
lim =

1
2

(

h
(ℓ)
x

)2 + 2
(

h
(ℓ)
y

)2

= 4ℓ−1 , (3.285)

which is 4ℓ times the limit on the original level. Thus, we adapt the time step
sizes of the FED cycle to each level’s limit. However, the increasing limit for
the explicit scheme means also an improvement for the condition numbers
of the linear systems appearing in the semi-implicit scheme. Therefore the
adaptation of the time steps also makes sense for the semi-implicit method,
where we use the same factor as for CFED, i.e. 4ℓ.

For our experiments we apply a cascadic approach incorporating four
levels: 256× 256, 128× 128, 64× 64 and 32× 32. In the case of 16× 16,
the downsampled inpainting mask already contains 254 of the 256 pixels,
and other coarser levels do not require any inpainting process. We use two
different stopping times T = 250 and T = 1000 that refer to the original
level. Given the number of FED cycles, we can compute the correspond-
ing cycle length n to reach these stopping times on the original grid. As
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Figure 3.24: EED-based image reconstruction. (a) Left: Original image
(trui, 256× 256). (b) Middle: Inpainting mask with 10% specified pixels.
(c) Right: Reconstruction with EED-based inpainting in the unspecified
regions (semi-implicit, T = 100000, τ = 0.2, λ = 0.1, σ = 2).

mentioned above, the stopping times on the coarse levels increase by the
factor 4ℓ, because we keep the number of time steps constant on each level
and only increment the step sizes. We compare the results to the reference
reconstruction depicted in Fig. 3.24(c). The errors for both CFED and the
cascadic semi-implicit scheme are shown in Table 3.9. In contrast to the
parabolic case, the MSEs of the cascadic FED method are smaller than the
ones of the semi-implicit counterpart, especially for the smaller stopping
time T = 250. However, the use of such relatively small stopping times
requires good initialisations from the coarse levels. One can see this, for
instance, in the row referring to two FED cycles. Here, the MSE increases
from 2.09 to 2.19 despite the larger stopping time, which probably comes
from a worse initialisation in the case of T = 1000.

The efficiency of both cascadic approaches with four levels is illustrated
in Fig. 3.25, where the number of cycles or time steps ranges from 1 to
50. As before, the semi-implicit scheme is combined with a CG solver that
uses, due to efficiency constraints, the larger residual tolerance ǫ = 10−3.
Overall, the CFED method is more efficient, and it can be even better than
a parallelised version of the cascadic semi-implicit scheme.

So far, we have solved the inpainting problem by a parabolic evolution with
nonlinear diffusion filtering. For explicit schemes or FED, this is related to
the direct solution of the corresponding elliptic problem. In this context,
we could replace CFED by a cascadic Fast-Jacobi method that refers to the
direct solution of the elliptic equation. We have already seen that the Fast-
Jacobi solver can be interpreted as some kind of a preconditioned explicit
scheme.
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Table 3.9: MSE-Comparison of CFED and the cascadic semi-implicit
scheme with four levels for the stopping times T = 250 and T = 1000.

cycles/steps MSE

per level CFED casc. semi-imp.

T = 250 T = 1000 T = 250 T = 1000

1 7.60 7.50 8.43 7.81
2 2.09 2.19 2.69 2.28
5 0.84 0.65 1.05 0.72

10 0.64 0.35 0.77 0.42
25 0.54 0.21 0.62 0.26
50 0.52 0.19 0.56 0.20

To this end, we now apply the Fast-Jacobi solver in a cascadic approach
(CFJ). The relaxation parameters are given by

ωi = ωlim · 1

2 cos2
(
π · 2i+1

4n+2

) (i = 0, . . . , n−1) , (3.286)

where we have to define the parameter ωlim > 0. Following the thoughts
in Sec. 3.4.4, this parameter should be chosen smaller than 1. In our ex-
periment we use ωlim = 0.95, which implies a stable method. Because of
the additional diagonal preconditioning, we might use smaller cycle lengths
compared to CFED. To compare the methods, we apply them using the
same cycle length, increase the number of cycles, and consider the MSEs
with respect to the reference solution.

The results of this comparison are given in Table 3.10. For the smaller
cycle length n = 20, the cascadic Fast-Jacobi outperforms CFED with
respect to accuracy. Since the additional effort is only marginal, we can
also expect a better efficiency. Note that an FED cycle with the length
n = 20 corresponds to the very small stopping time 35 on the original
grid. However, if one uses n = 100, the stopping time is about 25 time
larger. This improves the results for CFED. On the other hand, this cycle
length is not optimal for the cascadic Fast-Jacobi (CFJ) algorithm, and
both methods yield similar results.

Overall, we have seen that the solution of anisotropic elliptic problems
with Fast-Jacobi can be more efficient. However, as we have mentioned
in Sec. 3.4.5, we expect that the diagonal preconditioning is less efficient
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Figure 3.25: Computing time (seconds) versus MSE for CFED and the
cascadic semi-implicit scheme using four levels. (a) Left: With stopping
time 250 on the original level. (b) Right: Stopping time 1000.

for (linear) problems with constant coefficients. To this end, we show that
a parabolic approach with CFED is already well-suited for such tasks.

3.6.3 Elliptic Problems with Constant Coefficients

As a prototype for an elliptic problem with constant coeffcients, we consider
linear biharmonic image inpainting. This means we consider the problem in
Eq. (3.169) and replace the divergence term by the (negative) biharmonic
or bilaplacian operator :

c(x) · (v(x) − f(x)) − (1 − c(x)) · (−∆2 v(x)) = 0 . (3.287)

The corresponding spatial discretisation on a grid with N nodes yields the
linear system

C (v − f ) − (I − C)P v = 0 , (3.288)

where P ∈ RN×N is the discrete version of −∆2. In the 1-D case, we have
P = −A2

h with the symmetric, negative semi-definite matrix Ah given
in Eq. (3.33). Thus, P is also symmetric, negative semi-definite and has
the same rank as the matrix discretising the Laplacian operator, namely
N−1. Thus, Theorem 3.9 states that the above linear system has a unique
solution v ∈ RN . This is also valid for the multi-dimensional case.

The solution of Eq. 3.288 with the help of an explicit parabolic evolution
reads

vk+1 =
(

I + τ · (I − C)P
)

vk . (3.289)

Since the eigenvalues corresponding to P are the negative squares of the
eigenvalues of the discrete Laplacian, the explicit time step size limit of the
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Table 3.10: MSE-Comparison between CFED and CFJ using four levels for
the cycle lengths n = 20 and n = 100.

length n number of cycles (per level)

1 2 3 4 5 10

20
CFED 8.64 2.65 1.53 1.21 1.00 0.51

CFJ 7.72 2.31 1.30 0.97 0.78 0.39

100
CFED 7.55 2.16 1.14 0.81 0.64 0.35

CFJ 7.62 2.18 1.15 0.82 0.65 0.35

2-D case is now given by

τlim =
2

(
4
h2
x
+ 4

h2
y

)2 . (3.290)

It can be much smaller than in the case of the Laplacian, in particular for
small mesh sizes hx ≈ 0 and hy ≈ 0. To this end, it is interesting to analyse
whether a direct solution of Eq. (3.288) with the help of Fast-Jacobi is more
efficient.

However, we have to take care of the parameter ωlim > 0 that is neces-
sary for the computation of the relaxation parameters. The eigenvalues of
the matrix D−1

P (I −C)P can be estimated with the help of Gershgorin’s
theorem. For hx = hy we have the upper bound 10/3 and can work with
ωlim = 3/5 in order to guarantee stability as well as convergence to the
unique solution. Since the minimum eigenvalue of D−1

P (I −C)P is equal
to 0, the relaxation parameters of the modified Richardson method would
have to be computed with λmin = 0 and λmax = 10/3 . However, the results
for λmin = 0 are very bad such that we prefer better damping properties
with λmin = 10−3.

Our test setting is shown in Fig. 3.26. The reference solution has been
computed with the above explicit parabolic scheme using the small stable
step size τ = 0.025 and 40 million time steps. For our experiment we apply
both CFED and CFJ as well as a cascadic modified Richardson (CMR),
where the cascadic approach covers four levels from 256× 256 to 32× 32.
The level 16× 16 has only one unspecified pixel and the inpainting masks
corresponding to coarser levels specify all pixels. Note that we use again
hx = hy = 1 on the original level.
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Figure 3.26: Biharmonic inpainting for trui. (a) Left: Inpainting mask
with 10% specified pixels. (b) Right: Reconstruction with biharmonic
inpainting (explicit scheme, T = 1000000, τ = 0.025).

We assume an overall number of 1000 FED time steps or solver iterations on
each level, and try different cycle lengths in our experiment. With one CPU,
both FED and the Jacobi-type methods need about 0.63 seconds and the
parallel versions on four CPUs finish their computations after 0.17 seconds.
This corresponds to an expected speed-up factor around four. Some results
are given in Table 3.11. The optimal cycle length for both FED and Fast-
Jacobi seems to be 250, because the results with other cycle lengths are
worse. Moreover, both methods yield almost the same small errors. For all
numbers of cycles, the difference is always smaller than 2.1 · 10−4, and FED
provides better results in most instances. This shows that there is virtually
no benefit with respect to a diagonal preconditioning. Interestingly, the
cascadic modified Richardson method is more robust with respect to the
cycle lengths, since the MSE is almost constant. However, the results are
very sensitive with respect to the choice of λmin. With λmin = 0 the MSE
varies from about 203 (one cycle) to 8.56 (twenty cycles), which is up to
four orders of magnitude larger than the MSEs of the damped method with
λmin = 10−3. Thus, cascadic methods with Richardson-based relaxation
parameters should be only applied in combination with a positive λmin.
Overall, this example shows that cascadic parabolic approaches work well
for elliptic problems with constant coefficients, and the direct solution with
Jacobi-like methods does not pay off in this case.

3.6.4 Elliptic Problems with Strongly Varying

Coefficients

In Sec. 3.4.5 we have seen that the diagonal preconditioning performs best
for problems with strongly varying coefficients. We show that in this case
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Table 3.11: MSE-Comparison between CFED, CFJ and cascadic modified
Richardson (CMR) with 1000 time steps/iterations per level for biharmonic
inpainting.

cycles per level MSE (· 10−3)

CFED CFJ CMR

1 3.39 3.60 17.19
2 0.62 0.62 17.18
4 0.35 0.32 17.23
5 1.35 1.32 17.17

10 12.25 12.46 17.26
20 42.62 44.30 19.49

Jacobi methods such as Fast-Jacobi are more efficient than FED.

Our prototypical scenario is given by an isotropic nonlinear image regulari-
sation method. It computes a denoised version u(x), x ∈ Ω, of the original
image f(x) by minimising an energy functional with a quadratic data term
and with the subquadratic regulariser of Charbonnier et al. [29]:

E(u) =

∫

Ω

(

(u− f)2 + α · 2β2
√

1 + |∇u|2/β2
)

dx . (3.291)

The number α > 0 denotes the regularisation weight, and β > 0 is a
contrast parameter. For the minimisation of E(u), we consider its Euler-
Lagrange equation

u− f − α div
(
g(|∇u|2)∇u

)
= 0 (3.292)

with the Charbonnier diffusivity function

g(s2) :=
1

√

1 + s2/β2
. (3.293)

It is also possible to obtain a solution of Eq. (3.292) as the steady state
solution of the parabolic gradient descent equation

∂tu = div
(
g(|∇u|2)∇u

)
+

f − u

α
. (3.294)

FED Scheme. An explicit discretisation of Eq. (3.294) with time step size
τ > 0 and implicitly stabilised fidelity term yields

uk+1 − uk

τ
= P (uk)uk +

f − uk+1

α
. (3.295)
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It can be rewritten as

uk+1 =
α
(
I + τ P (uk)

)
uk + τf

α + τ
. (3.296)

Note that this equation uses the expression vk+1 := (I + τ P (uk))uk. It
can be seen as an explicit scheme for a diffusion equation without data
fidelity term. Since (3.296) only performs a convex combination of vk+1

and f , it has the same stability limit as this explicit diffusion scheme,
namely τlim = 0.25. With uk+1, 0 := uk an FED version of the explicit
scheme (3.296) is given by

uk+1, i+1 =
α
(
I + τi P (uk)

)
uk, i + τi f

α + τi
(i = 0, . . . , n−1) , (3.297)

where the time step sizes τi are chosen according to Eq. (3.158).

Richardson’s Method. Instead of a parabolic evolution, we now want to
solve the Euler-Lagrange equation (3.292) by means of direct approaches.
Our first approach is Richardson’s method from Eq. (3.4) with varying
relaxation parameters. The discretisation of Eq. (3.292) yields a nonlinear
system of equations:

(
I − αP (u)

)
u = f . (3.298)

It can be solved by the fixed point iteration

(
I − αP (uk)

)

︸ ︷︷ ︸

:=M(uk)

uk+1 = f (k ≥ 0) . (3.299)

Since the system matrix M(uk) is symmetric and positive definite, we can
apply Richardson’s method: With uk+1, 0 := uk we obtain

uk+1, i+1 = uk+1, i + ωi

(

f − M(uk)uk+1, i
)

=
(

I + ωi αP (uk)
)

uk+1, i + ωi

(
f − uk+1, i

)
, (3.300)

where the relaxation parameters are given by

ωi =
2

λmax + λmin − (λmax − λmin) · cos
(
π · 2i+1

2n

) (i = 0, . . . , n−1) .

(3.301)
We have λmin = 1, and with the help of Gershgorin’s theorem we can
estimate λmax of M(·) by 1+8α. After the complete cycle with length
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Figure 3.27: Test setting for Charbonnier regularisation. (a) Left: Original
image (monarch, 256 × 256). (b) Middle: Noisy image (additive white
Gaussian noise, σ = 40). (c) Right: Charbonnier regularisation of the
noisy image with β = 10−3 and α = 30000.

n, we can set uk+1 := uk+1, n and update the nonlinearities P (uk) by
P (uk+1).

Fast-Jacobi Method. The second approach is our proposed Fast-Jacobi
method. Here we get

uk+1, i+1 = uk+1, i + ωi D
−1
(

f − M(uk)uk+1, i
)

=
(

I + ωi αD−1P (uk)
)

uk+1, i + ωi D
−1
(
f − uk+1, i

)
,

(3.302)

and we use the FED-based relaxation parameters from Eq. (3.190). Note
that we can safely estimate ωlim by 1 (see Sec. 3.4.4).

Our testbed is depicted in Fig. 3.27. We have degraded our test image
monarch by additive Gaussian noise with standard deviation σ = 40. To
denoise it with Charbonnier regularisation, we use the smoothness weight
α = 30000 and the contrast parameter β = 10−3. The corresponding
reference solution in Fig. 3.27(c) has been computed by means of the Jacobi
method with 100000 iterations and nonlinear updates after each iteration.

The first experiment in Fig. 3.28 deals with the comparison of the parabolic
FED scheme, Richardson’s cyclic method, Jacobi, and the Fast-Jacobi ap-
proach. All approaches use a cycle length of 50. Since τlim = 0.25, this cor-
responds to the diffusion time T = 0.25 · 50·51

3
= 212.5 per FED cycle. As

one can see in Fig. 3.28(a), the speed of convergence is significantly higher
for Fast-Jacobi than for the parabolic FED approach. This shows that for
elliptic problems with strongly varying coefficients, Jacobi-type methods



3.6. NUMERICAL EXPERIMENTS 153

 0.1

 1

 10

 100

 1000

 0  0.1  0.2  0.3

M
S

E

Computing time [s]

Fast-Jacobi

FED

 0.1

 1

 10

 100

 1000

 0  0.1  0.2  0.3

M
S

E

Computing time [s]

Fast-Jacobi

Jacobi

Richardson

Figure 3.28: Computing time (seconds) versus MSE for FED, Richardson’s
method, Jacobi, and Fast-Jacobi with cycle length 50. (a) Left: Fast-
Jacobi and FED. (b) Right: Fast-Jacobi, Jacobi and Richardson’s method.

like Fast-Jacobi should be preferred over the parabolic FED scheme. More-
over, Fig. 3.28(b) illustrates that Fast-Jacobi is significantly better than
Richardson’s method which suffers from the lack of diagonal scaling that is
inherent in Jacobi-like schemes. The comparison between Fast-Jacobi and
Jacobi with the constant relaxation parameter ω = 1 shows the usefulness
of varying relaxation parameters.

For our second experiment we compare the Jacobi-type methods with the
FED-based and the Richardson-based relaxation parameters, respectively.
The results are given in Fig. 3.29. We have applied all methods without and
with a cascadic strategy involving the three levels 64× 64, 128× 128 and
256 × 256. More precisely, we solve the problem on a coarse level and use
the result as an initialisation for the next finer level. Similarly to image in-
painting, this can yield a better convergence to the reference solution. If we
compare, in particular, Fast-Jacobi and the modified Richardson method
with an optimised damping parameter λmin = 10−3, we see that Fast-Jacobi
can benefit from the cascadic strategy, whereas the worse damping proper-
ties of the Richardson-based parameters deteriorate the improvement by a
cascadic approach. Although the modified Richardson algorithm is still a
bit better, the figure illustrates that a suboptimal choice (e.g. λmin = 10−2)
of the damping parameter yield results which are worse than the ones com-
puted with the Fast-Jacobi method. Thus, we can state that the Fast-Jacobi
method has a similar performance compared to the modified Richardson
scheme with an optimised damping parameter. This shows the advantage
of the damping parameter-free relaxation parameters that are related to
FED.
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Figure 3.29: Iterations versus MSE for different Jacobi-like solvers with cy-
cle length 50. (a) Left: Without a cascadic strategy. (b) Right: Cascadic
strategy with three levels.

So far, we have considered a positive contrast parameter β. This is very im-
portant for the application of the above algorithms, since β > 0 implies a
bounded diffusivity function in the Euler-Lagrange equation (3.292). How-
ever, we can rewrite the energy functional (3.291) by means of

E(u) =

∫

Ω

(

(u− f)2 + 2 · α̃
√

β2 + |∇u|2
)

dx , (3.303)

where we have replaced α · β by a new constant α̃. Thus, the singular
case β = 0 is equivalent to total variation (TV) regularisation [114] which
minimises the functional

ETV (u) =

∫

Ω

(

(u− f)2 + 2 · α̃ |∇u|
)

dx . (3.304)

In this case, the above algorithms can not be applied. However, there is an-
other class of efficient algorithms that solve the TV regularisation problem,
namely primal-dual methods. Recently, they have become very popular in
image processing [9, 26, 27, 59] although they actually have a long history
that is presented e.g. in [47]. For our comparison with Fast-Jacobi, we
use the fast iterative shrinkage-thresholding algorithm (FISTA) [9, 101],
because it does not require an optimisation of a parameter set. However,
primal-dual methods are more complicated to implement, and converge to
a solution that is different from the one with a contrast parameter β > 0.
To this end, we have to compute a further reference solution that is de-
picted in Fig. 3.30(a). Here we have also used 100000 iterations to deter-
mine this reference result. Note that we consider the regularisation weight
α̃ = 30000 · 10−3 = 30. In order to compare the methods, we analyse the
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Figure 3.30: Comparison with FISTA. (a) Left: Reference solution for
primal-dual methods with α̃ = 30. (b) Right: Computing time (millisec-
onds) versus MSE for a cascadic (three levels) Fast-Jacobi with cycle length
20 or 50, and FISTA.

trade-off between the MSE (distance to the corresponding reference) and
the computing time. Although one iteration of FISTA is more expensive
than a Jacobi step, FISTA benefits from a better convergence, which can
be seen in Fig. 3.30(b). Even with a cascadic strategy, Fast-Jacobi can not
outperform FISTA using only the original level.

3.6.5 GPU Implementations

By means of 2-D optic flow computations, it has already been demonstrated
that FED is very well-suited for parallelisation on GPUs [168]. Now we
illustrate that this is also the case for Fast-Jacobi in three dimensions. As
an example application we have chosen range image integration, which aims
at acquiring a single 3-D model from multiple range images. A range image
is also referred to as depth map or 2.5-D image. It specifies the distance
from the camera centre to points in the scene. Therefore it represents the
visible part of the surface of a scene, which will be referred to as range
surface in the remainder of this subsection. There are multiple ways how
range images can be acquired. For example using devices such as the Kinect
camera or time-of-flight cameras. By using stereo algorithms [118], range
image integration can also be employed in a multiview stereo setting.

As range images will contain measurement errors in practice, integrating
them is a difficult task. Curless and Levoy [36] have presented a very
promising volumetric approach that can be divided into three steps. First,
for each range surface the signed distance is computed within an axis aligned
bounding box enclosing all range surfaces. In the second step, a cumulative
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Figure 3.31: Test setting for anisotropic range image integration. (a) Left:
One rendered image of Stanford Bunny. (b) Middle: Noisy range image.
(c) Right: Reference reconstruction (JOR, ω = 0.3, n = 50, 2000 cycles).

signed distance field is found by a simple averaging scheme combining all
input fields. In the third and final step, the surface of the object can be
found by extracting the zero level-line of the cumulative signed distance
function.

Zach et al. [163] have improved this approach by computing the cumu-
lative signed distance field as the minimiser u : Ω ⊂ R3 → R of a suitable
energy functional:

E(u) =

∫

Ω

(
m∑

i=1

wi ΨD((u− fi)
2) + α ΨS(|∇u|2)

)

dx . (3.305)

Here fi : Ω → R and wi : Ω → {0, 1} denote the input signed distance
fields and the reliability of the measurements, respectively. The number of
range images is given by m. For simplicity and to focus on the regulari-
sation, let us choose ΨD(s

2) = s2 and ΨS(s
2) = |s|. The corresponding

Euler-Lagrange equation is given by

p u− q − α div (Ψ′
S(|∇u|)∇u) = 0 , (3.306)

where the functions

p :=

m∑

i=1

wi and q :=

m∑

i=1

wi · fi (3.307)

have been introduced to simplify the notation. They just denote the num-
ber of reliable measurements and the sum of the signed distance values,
respectively.
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In [123], the isotropic smoothing behaviour is replaced by an anisotropic
one. This is achieved by modifying the Euler-Lagrange equation (3.306)
accordingly:

p u− q − α div
(
Ψ′

S(J)∇u
)

= 0 . (3.308)

Here J ∈ R3×3 is the 3-D structure tensor and the matrix valued function
Ψ′

S can be understood as an extension of a scalar valued function that is
applied only to the eigenvalues of J . More details can be found in [123].

After the discretisation this corresponds to a nonlinear system of equa-
tions

(P − αA(u)) u = q , (3.309)

where P = diag(p) is a simple diagonal matrix. The vectors p, q,u ∈ RN

are obtained by discretising the functions p(x), q(x) and u(x), respectively.
The matrix A ∈ RN×N is the 3-D discrete divergence operator with a
diffusion tensor Ψ′

S(J), where N is the number of voxels. The nonlinear
system of equations can be solved in terms of a fixed-point iteration with a
series of linear problems

(
P − αA(uk)

)
uk+1 = q . (3.310)

By introducting the abbreviation

M (k) :=
(
P − αA(uk)

)
, (3.311)

a Fast-Jacobi cycle for computing the solution uk+1 can be expressed as

xℓ+1 = xℓ + ωℓD
−1
M(k)

(
q − M (k)xℓ

)
(ℓ = 0, . . . , n−1) , (3.312)

where the relaxation parameters ωℓ are chosen according to Eq. (3.190),
and x0 := uk. To get stable results, we use ωlim = 3/10 .

As an experiment, we have rendered several images of the well-known Stan-
ford Bunny (taken from the Stanford 3-D scanning repository) shown in
Fig. 3.31(a), and used them to estimate range images based on the varia-
tional method presented by Valgaerts et al. [133]. This way, range images
with a realistic amount of noise and outliers are obtained, as can be seen
in Fig. 3.31(b). Although the model performs well with a huge number of
range images, we have only used 15. Due to this low number of noisy range
images, the reconstruction requires a high amount of smoothing, which
makes it more challenging. This allows us to better illustrate the behaviour
of the different solvers. Figure 3.31(c) depicts our reference reconstruction
that has been computed with the JOR solver using the constant relaxation
parameter ω = 3/10, cycle length 50 and 2000 cycles.
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mod. Richardson JOR Fast-Jacobi

Figure 3.32: Results for the three different Jacobi-like methods with cycle
length n = 50. First row: 5 cycles. Second row: 10 cycles. Third row:
100 cycles.

Figure 3.32 shows the results of the different Jacobi-like solvers with cy-
cle length n = 50: The modified Richardson method, Jacobi over-relaxation
(JOR) and Fast-Jacobi. As one can see, the modified Richardson method
has big problems with high frequency components and thus the worst con-
vergence to the reference reconstruction. Even with 100 cycles, it has not
converged and the difference to the reference solution is clearly visible. By
introducing a positive damping parameter it is likely that one can improve
the results. However, as we have already seen in previous examples, the
convergence can be very sensitive with respect to this parameter. The JOR
solver exhibits a better convergence behaviour, but it requires more than
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Table 3.12: Computing times for the sequential CPU and the parallel GPU
implementation of Fast-Jacobi with 10 cycles (n = 50).

data size CPU [s] GPU [s] speed-up factor

643 28.16 0.34 82.8
1283 226.70 1.68 134.9
2563 1900.82 13.54 140.4

10 cycles to close the hole above the paws of the bunny (see red circles).
Fast-Jacobi yields the best convergence to the reference reconstruction as
it manages to close the previously mentioned hole with only 5 cycles, and
is almost completely converged.

To conclude our experiment, we compare the running times of a sequen-
tial CPU and a parallel GPU implementation of the Fast-Jacobi method.
This comparison is shown in Table 3.12, where we use the above mentioned
3.2 GHz Intel Xeon processor and a single GPU of the NVIDIA GeForce
GTX 690, respectively. Since we are specifically interested in the solu-
tion of the nonlinear system in Eq. (3.309), the timings refer to this. Note
that the number of unknowns in our example varies from 643 ≈ 2.6 · 105
to 2563 ≈ 16 · 106, and we apply 10 cycles with length n = 50. As we
can see in Table 3.12, the parallel implementation is up to 140 times faster,
which shows that the GPU implementation is well-suited for huge data sets.
The speed-up is very rewarding when considering that the parallelisation is
extremely straightforward.

3.7 Summary

In this chapter we have given a detailed theoretical and experimental anal-
ysis of the explicit scheme motivated by the decomposition of the box filter:
Fast Explicit Diffusion (FED). It is very easy to implement, because one
can use an existing explicit method and add a few code lines. Moreover, it
is well suited for parallel computing. Compared to the related known Su-
per Time Stepping (STS) scheme, it does not need an additional damping
parameter that influences the filtering results.

Since up to half of the time step sizes exceed the stability limit, the main
theoretical focus has been the inner stability of the scheme. From a theoret-
ical point of view, the natural sequence of the time step sizes allows stable
intermediate solutions. However, as we have shown, this does not work
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in practice due to numerical rounding errors. To this end, we have rec-
ommended three different strategies for the rearrangement of the sequence
that have already been used successfully in the literature to make STS and
Richardson’s method more robust with respect to numerical rounding er-
rors. Unfortunately, such rearranged sequences can yield highly unstable
intermediate solutions, as we have illustrated in the experimental section.

Besides these stability issues, we have analysed the convergence of the
linear FED scheme, and have shown that the approximation order is one
with respect to the number of FED cycles.

Furthermore, we have described the generalisation of the FED scheme to
arbitrary multi-dimensional, nonlinear diffusion problems. Unfortunately,
FED schemes for isotropic diffusion processes can violate the maximum-
minimum principle that is valid for usual explicit, semi-implicit or additive
operator splitting (AOS) methods. To solve some elliptic problems in an
efficient way, we have embedded the FED scheme in a cascadic coarse-to-fine
approach. Apart from a parabolic evolution, it is also possible to directly
solve the elliptic equation in order to obtain the steady-state. To this end,
we have proposed the so-called Fast-Jacobi method. It is a Jacobi-type
solver with varying relaxation parameters that are based on the time step
sizes of the FED scheme. Also in the case of Fast-Jacobi we have shown
some theoretical results about the convergence.

However, when it comes to hyperbolic problems like for example the
transport equation, schemes like STS or FED show their limitations. The
main problem is that the stability condition for unsymmetric matrices can
refer to Chebyshev polynomials with complex arguments. If the correspond-
ing imaginary part is too large, the stability polynomials can take values
with moduli larger than 1.

To confirm some theoretical results and analyse the practicability of both
the FED scheme and the Fast-Jacobi method, we have presented a compre-
hensive experimental evaluation.

For nonlinear isotropic diffusion filtering, we have illustrated how the re-
arrangements with Leja ordering, κ-cycles and the strategy of Lebedev and
Finogenov make the method much more robust with respect to numerical
rounding errors. In this context, examples have shown how inner updates
can deteriorate the final result of a cycle. Thus, we recommend to keep the
nonlinearities fixed during a cycle.

When it comes to the efficient solution of isotropic parabolic prob-
lems, one usually applies the AOS scheme. However, our experiments have
demonstrated that the FED scheme is much more efficient. It benefits
from the omission of the splitting error. A comparison with the known
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STS scheme has revealed the problems induced by the additional damping
factor. On the one hand this parameter allows an optimisation, but on
the other hand an optimised damping parameter again depends on other
parameters such as the stopping time or the number of cycles.

For anisotropic diffusion problems, we have done a comparison between
the popular semi-implicit and our FED scheme. Although the semi-implicit
approach yields more accurate results with the same number of time steps
(cycles), FED is faster and thus can be more efficient. This is also valid,
if we embed the parabolic schemes in a cascadic coarse-to-fine approach
to efficiently solve elliptic problems like for example image inpainting with
edge-enhancing anisotropic diffusion. However, a cascadic Fast-Jacobi that
directly solves the elliptic problem can further improve the accuracy and
efficiency of cascadic FED.

Furthermore, we have applied our cyclic methods to elliptic problems
with constant coefficients. As an example, we have solved an inpainting
problem with the biharmonic operator. This also shows that the proposed
methods are not restricted to second order PDEs: Since the discretisation
of this operator yields a symmetric matrix, the transfer to such higher order
PDEs is straightforward. In contrast to the anisotropic inpainting process,
CFED can perform better than a cascadic Fast-Jacobi method, which means
that the diagonal preconditioning is not so beneficial for elliptic problems
with constant coeffcients.

However, the situation substantially changes for elliptic problems with
strongly varying coefficients like e.g. Charbonnier regularisation with a
small contrast parameter. In such cases, the proposed Fast-Jacobi method
can provide a significantly better efficiency than a parabolic FED scheme
or Richardsons’s iterative method without a diagonal preconditioning. Un-
like these Richardson-based approaches, the incorporation of a damping
parameter is not necessary. However, as we have seen in the singular case
with TV regularisation, primal-dual methods such as FISTA can provide a
better convergence than Fast-Jacobi for non-singular problems.

In our last experiment, we have demonstrated the potential of a GPU
implementation for the Fast-Jacobi method by means of (3-D) anisotropic
range image integration. Although the parallelisation is very straightfor-
ward, we have experienced large speed-up factors up to 140 compared to a
sequential CPU implementation.





Chapter 4

Recursive Fast Explicit
Scheme

Study the past if you would define the future.

Confucius

So far, we have considered the decomposition of a box filter into explicit
linear diffusion steps, which means that we have rewritten the box filter
in terms of convolutions with stable and unstable explicit diffusion kernels.
Since these unstable steps cause some problems concerning the numerical
stability, we have to rearrange the sequence of all steps. In fact, this is the
most crucial point.

To avoid the necessity of this rearrangement, we are going to show that
there is another representation for box filters: It is based on a recursion
relation. With the help of this, we propose another FED scheme that is
robust against numerical rounding errors and does not require any rear-
rangement of time steps. Interestingly, the resulting scheme is related to
a very famous class of methods for the numerical solution of differential
equations: Runge-Kutta schemes.

4.1 Box Filter Recursion

In this section, we want to show that a box kernel of length (2n+1)h can
be represented as a combination of an explicit diffusion step, and two box
kernels with the lengths (2n−1)h and (2n−3)h, respectively. To this end,

163
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we derive a recursion relation for box filters.

4.1.1 Recursion Formula

Let us assume that n ≥ 2. Given a one-dimensional signal f = (fi)i∈Z on
a grid with mesh size h > 0 that has been filtered with a box kernel of
length (2n−1)h,

(
Bh

2n−1(f )
)

i
:=

1

2n− 1
·

n−1∑

k=−n+1

fi+k , (4.1)

we additionally convolve it with the kernel mask (1/2 , 0 , 1/2). This yields
for the resulting signal f̃ :

f̃i =
1

2n− 1
·

n−1∑

k=−n+1

1

2
(fi+k+1 + fi+k−1)

=
1

4n− 2
·
(

n−1∑

k=−n+1

fi+k+1 +

n−1∑

k=−n+1

fi+k−1

)

=
1

4n− 2
·
(

n∑

k=−n+2

fi+k +
n−2∑

k=−n

fi+k

)

=:
(
Rh

2n+1(f )
)

i
. (4.2)

The corresponding filter kernel Rh
2n+1 with length (2n+1)h can be de-

composed into a sum of two kernels having uniform weights with lengths
(2n+1)h and (2n−3)h, respectively:

(
Rh

2n+1(f )
)

i
=

1

4n− 2
·

n∑

k=−n

fi+k +
1

4n− 2
·

n−2∑

k=−n+2

fi+k . (4.3)

Since such filter kernels differ from box kernels only with respect to a mul-
tiplicative constant, we can transform the latter equation into

(
Rh

2n+1(f )
)

i
=

2n + 1

4n− 2
·
(
Bh

2n+1(f )
)

i
+

2n− 3

4n− 2
·
(
Bh

2n−3(f )
)

i
. (4.4)

If we solve that equation for the box kernel Bh
2n+1, then we obtain

Bh
2n+1 =

4n− 2

2n+ 1
· Rh

2n+1 − 2n− 3

2n+ 1
· Bh

2n−3 . (4.5)
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The convolution with the mask (1/2 , 0 , 1/2) corresponds to a 1-D explicit
linear diffusion step with the limit time step size h2

2
, and this finally yields

for n ≥ 2 :

Bh
2n+1 = αn ·

(

I + h2

2
∆h

)

Bh
2n−1 + (1− αn) · Bh

2n−3 , (4.6)

with αn := 4n−2
2n+1

. Note that Eq. (4.6) is also valid for n = 1, if one defines

Bh
1 = Bh

−1 := I. We summarise the results in the following theorem:

Theorem 4.1 (Box Filter Recursion). A discrete 1-D box filter kernel
Bh

2n+1 fulfils the recursion relation

Bh
2n+1 =







I if n < 1,

αn ·
(

I + h2

2
∆h

)

Bh
2n−1 + (1− αn) ·Bh

2n−3 if n ≥ 1.
(4.7)

If we define the filtered signals

f (k) := Bh
2k+1(f ) , (4.8)

we can compute them by

f (1) =
(

I + h2

3
∆h

)

(f ) and

f (k) = αk ·
(

I + h2

2
∆h

) (
f (k−1)

)
+ (1− αk) · f (k−2) , (4.9)

for k ≥ 2. To reach a box filtered signal using a filter length (2n+1)h, we
have to perform an explicit linear diffusion step for each k ≤ n and simply
compute a sum of two signals. At this point, we want to analyse how this
relation can be useful for the improvement of FED.

4.1.2 Application to FED

In Chapter 2 we have shown that 1-D box filters can be written in terms of
explicit schemes with varying time step sizes. If we assume that the filter
has length (2n+1)h, we denote the corresponding time step sizes now by

τ
(n)
i :=

h2

2
· 1

2 cos2
(
π · 2i+1

4n+2

) (i = 0, ..., n−1) . (4.10)
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An FED cycle with n ≥ 1 inner time steps for the numerical solution of
the ODE system

du

dt
= Ahu (4.11)

with the initial data u0 ∈ R
N then reads

un =

(
n−1∏

i=0

(

I + τ
(n)
i Ah

)
)

u0 . (4.12)

We can state that the recursion relation in Eq. (4.9) implies an equivalent
closed-form expression

un = αn ·
(

I + h2

2
Ah

)

un−1 + (1− αn)u
n−2 (4.13)

with n ≥ 2. Note that for n = 1 we have

u1 =
(

I + h2

3
Ah

)

u0 . (4.14)

Equation (4.13) means that we can compute the result after n time steps
by using the results after cycles with length n−1 and n−2, respectively.
We only have to perform one explicit diffusion step that is applied to un−1.
The application of the recursion relation to un−1, un−2 and so on yields the
scheme

uk = αk ·
(

I + h2

2
Ah

)

uk−1 + (1− αk)u
k−2 (k = 2, . . . , n) , (4.15)

where the first iteration step with k = 1 is shown in Eq. (4.14). Compared
to the cyclic FED scheme, we have the same amount of explicit steps to
reach the final result un. However, the storage of additional predecessor
signals uk−2 and the computation of the sum of two signals is necessary
for k ≥ 2. After a complete scheme with n iteration steps, both the recur-
sive method (4.15) and the usual FED scheme (4.12) yield the same (box
filtered) result un.

We can see that the recursive method is also well-suited for parallel
computing. Besides the explicit diffusion step, we have to parallelise the
computation of the sum of two vectors.

4.1.3 Recursion with the Symbol

Before we finish this section, we want to present another way for the deriva-
tion of the recursion relation in Eq. (4.6). To this end, we will use the symbol
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p
[n]
B (z) of a box filter Bh

2n+1 and compute a recursion formula. We know
that the symbol is related to a Chebyshev polynomial of second kind,

p
[n]
B (z) =

1

2n+ 1
· U2n

(√

1− h2

4
z

)

, (4.16)

where z ∈
[
0 , 4

h2

]
. It is a well-known result that Chebyshev polynomials

satisfy the relation

Tm(x) · Uk(x) =
1

2
· (Uk+m(x) + Uk−m(x)) , (4.17)

or in particular for n ≤ 2

T2

(√

1− h2

4
z

)

· U2(n−1)

(√

1− h2

4
z

)

=
(

1− h2

2
z
)

· U2(n−1)

(√

1− h2

4
z

)

=
1

2
·
(

U2n

(√

1− h2

4
z

)

+ U2(n−2)

(√

1− h2

4
z

))

. (4.18)

Thus, we obtain

(

1− h2

2
z
)

· p[n−1]
B (z) =

1

2
·
(
2n+ 1

2n− 1
· p[n]B (z) +

2n− 3

2n− 1
· p[n−2]

B (z)

)

, (4.19)

which can be written as the recursion formula

p
[n]
B (z) =

4n− 2

2n+ 1
·
(

1− h2

2
z
)

· p[n−1]
B (z) − 2n− 3

2n+ 1
· p[n−2]

B (z) . (4.20)

Since the multiplication with
(

1− h2

2
z
)

corresponds to an explicit linear

diffusion step with τ = h2

2
and the symbols are, according to Proposi-

tion 2.2, unique, it immediately follows that Eq. (4.20) is equivalent to the
recursion relation (4.6).

4.2 Connection to Runge-Kutta Schemes

In this section, we want to show that the recursive FED scheme (4.13) is
related to the well-known class of the Runge-Kutta methods [19, 70]. To
this end, we shortly describe the basic idea of Runge-Kutta methods and
give a definition for the explicit case.
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Let M ⊂ R × R
d, d ∈ N, be an open set. We consider the initial value

problem with the function g : M → Rd,

y′(x) = g(x,y(x)) , y(x0) = y0 ∈ R
d , (4.21)

where we look for the unknown solution y : [x0,∞) → R
d. If the function

g depends only on x, we can write the solution y in terms of

y(x1) = y0 +

x1∫

x0

g(x) dx , (4.22)

with x1 > x0. The integral can be approximated, for example, with the
help of the midpoint rule, which means

y(x1) ≈ y0 + (x1 − x0)
︸ ︷︷ ︸

:=Θ

· g
(
x1 + x0

2

)
. (4.23)

For the above initial value problem, we would get

y1 := y(x1) ≈ y0 + Θ · g
(
x1 +x0

2
, y
(
x1 + x0

2

))
, (4.24)

with the unknown vector y
(
1
2
· (x1 + x0)

)
. However, with the help of its

Taylor expansion

y
(
x1 +x0

2

)
= y(x0) + y′(x0)

︸ ︷︷ ︸

= g(x0,y(x0))

· Θ

2
+ O

(
Θ2
)

(4.25)

we can approximate it by using an explicit Euler step

y
(
x1 +x0

2

)
≈ y(x0) +

Θ

2
· g (x0,y(x0)) . (4.26)

Thus, we end up with the method






k1 = g (x0,y0)

k2 = g
(
x0 + Θ

2
, y0 + Θ

2
k1

)

y1 = y0 + Θ · k2 .

(4.27)

This is an explicit Runge-Kutta scheme using two stages. Since the mid-
point rule is a better approximation (higher order) than an Euler step, this
method yields better results in general. By using more accurate quadrature
formulas, the number of stages can increase and the results can be further
improved. We now give a general definition for such schemes:
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Definition 4.2. (cf. [70]) Let s ∈ N be the number of stages and a2,1,
a3,1, a3,2,. . . , as,1,. . . , as,s−1, b1,. . . ,bs, c2,. . . ,cs be real-valued coefficients.
Then the method with step size Θ > 0 given by







k1 = g (x0,y0)

k2 = g
(
x0 + c2 ·Θ,y0 + Θ · a2,1k1

)

k3 = g
(
x0 + c3 ·Θ,y0 + Θ · (a3,1k1 + a3,2k2)

)

...

ks = g

(

x0 + cs ·Θ,y0 + Θ ·
s−1∑

i=1

as,i ki

)

y1 = y0 + Θ ·
s∑

i=1

biki

(4.28)

is called an s-stage explicit Runge-Kutta method.

Usually, the coefficients are chosen such that

ci =

i−1∑

j=1

ai,j , (4.29)

and
s∑

i=1

bi = 1 . (4.30)

More details about (explicit) Runge-Kutta methods can be found, for in-
stance, in [2, 19, 70, 71].

In the case of the ODE system (4.11), we have the so-called integration
steps

k1 = g (x0,y0) = Ahy0 , (4.31)

as well as

k2 = Ahy0 + Ah (Θ · a2,1k1)

= Ahy0 + Θ · a2,1A2
hy0 , (4.32)

and in general

ki =

(
i∑

ℓ=1

β
(i)
ℓ ·Aℓ

h

)

︸ ︷︷ ︸

=: qi(Ah)

y0 , (4.33)
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with real-valued coefficients β
(i)
ℓ . Actually, ki is a matrix-vector multiplica-

tion with a matrix polynomial qi(Ah) of degree i and the vector y0. Since
the matrix polynomials are linearly independent, the set {q1, q2, . . . , qs} is
a basis, and we can choose unique coefficients b1, . . . , bs that satisfy

y1 = y0 + Θ ·
s∑

i=1

bi ki

=

(

I +
s∑

ℓ=1

h2ℓ

2ℓ+ 1

(
s+ ℓ

2ℓ

)

Aℓ
h

)

y0 . (4.34)

Thus, the parameters of the s-stage explicit Runge-Kutta method can be
tuned such that it is equivalent to an FED cycle with length s. However,
the determination of the parameters can become complicated. To this end,
we consider a scheme that is based on the above recursion relation:







k1 = y0 + τ · α1 · 3
s(s+1)

g (x0,y0)

k2 = α2 ·
(

k1 + τ · 3
s(s+1)

g (x0 + c2 · τ,k1)
)

+ (1− α2) · y0

...

ks = αs ·
(

ks−1 + τ · 3
s(s+1)

g (x0 + cs · τ,ks−1)
)

+ (1− αs) · ks−2

y1 = ks ,

(4.35)

where τ > 0 is the total step size of the method, similar to Θ > 0 in
the definition. The parameters αi are already known from the box filter
recursion, i.e.

αi =
4i− 2

2i+ 1
(i ≥ 1) . (4.36)

Furthermore, we have c0 = c1 = 0 and

ci = αi−1 ·
(

ci−1 +
3

s(s+ 1)

)

+ (1− αi−1) · ci−2 , (4.37)

with i ≥ 2. This yields the points in time c1 ·τ, . . . , cs ·τ , where the function
g has to be evaluated. If we apply the above method to the ODE system in
Eq. (4.11), i.e. g(x,y) = Ahy , with the time step size τ = h2

6
· s(s + 1) ,

then we obtain, due to the recursion relation,

ki =

(

I +

i∑

ℓ=1

h2ℓ

2ℓ+ 1

(
i+ ℓ

2ℓ

)

Aℓ
h

)

y0 (i ≤ s). (4.38)

Thus, ki corresponds to the result of an FED cycle with length i.
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4.2.1 Stability Analysis

For the usual FED scheme, we have seen that large cycle lengths lead to
numerical instabilities. This is due to the fact that FED uses unstable
inner time steps. On the other hand, explicit Runge-Kutta methods with
many stages can also suffer from numerical instabilities. To this end, we
analyse the stability of the scheme (4.35) with g(x,y) = Ahy , and focus in
particular on the internal stability of all stages, because the final result y1 =
ks is already stable. According to van der Houwen and Sommeijer [137],
we consider the roots of the equations

ξ = 1 − α1 · 3
s(s+1)

· z
(4.39)

ξi = αi ·
(

1− 3
s(s+1)

· z
)

· ξi−1 + (1− αi) · ξi−2 (s ≥ i ≥ 2) ,

where z ∈ [0 , τ · 4
h2 ] reflects the eigenvalues of −τ · Ah. Actually, we

have replaced the internal results ki by a complex-valued number ξi. If the
roots of the above equations are bounded in absolute value by 1, then each
integration step of the FED Runge-Kutta method (4.35) is stable. Now we
show that this is the case for suitable τ > 0 :

Proposition 4.3 (Location of the Roots). If the step size τ > 0 satisfies

τ ≤ h2

2
· s(s+ 1)

3
, (4.40)

then the roots of Eq. (4.39) lie within the complex unit circle
D := {w ∈ C | |w| ≤ 1}.

Proof. For i = 1 we have α1 = 2/3 and because of

z ≤ τ · 4

h2
≤ 2

3
· s(s+ 1) , (4.41)

it holds that

α1 ·
3

s(s+ 1)
· z ≤ 4

3
. (4.42)

Thus, −1
3
≤ ξ ≤ 1 .

Let us now consider the case i ≥ 2, i.e. we have to solve

ξi−2 ·
(

ξ2 − αi ·
(

1 − 3
s(s+1)

z
)

· ξ + αi − 1
)

= 0 . (4.43)
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Besides ξ3 = 0, we get the two solutions

ξ1,2 =
αi · r(z)

2
±

√

(αi · r(z))2
4

− αi + 1 , (4.44)

with r(z) := 1 − 3
s(s+1)

z. Now we assume that τ ≤ h2

12
· s(s + 1) or

equivalently z ≤ 1
3
· s(s + 1), which means r(z) ∈ [0, 1]. Since i ≥ 2, the

coefficient αi fulfils
6

5
≤ αi ≤ 2 . (4.45)

Let us first assume that the roots are complex-valued, i.e. ξ1 = ξ̄2, where
the bar denotes the complex conjugate. We obtain

ξ1 · ξ2 = |ξ1|2 = |ξ2|2 = αi − 1 < 1 , (4.46)

and hence ξ1, ξ2 ∈ D.
For real-valued ξ1, ξ2 we have, due to the non-negativity of the square root
in Eq. (4.44), r(z) ≥ 2 ·

√
αi−1
αi

> 0 and

√

(αi · r(z))2
4

− αi + 1 =
r(z)

2
·
√

α2
i − 4αi

r2(z)
+

4

r2(z)

r(z)≤ 1

≤ r(z)

2
·
√

α2
i − 4αi

r(z)
+

4

r2(z)

=
r(z)

2
·
(

2

r(z)
− αi

)

= 1 − αi · r(z)
2

. (4.47)

Combining this result with Eq. (4.44) yields

0 <
αi · r(z)

2
≤ ξ1 ≤ 1 (4.48)

and

− 1 < αi · r(z)− 1 ≤ ξ2 ≤ αi · r(z)
2

< 1 . (4.49)

Because of ξ1 · ξ2 = αi − 1 > 0 and ξ1 > 0, we can even state that ξ2 > 0.
Overall, we have ξ1, ξ2 ∈ D.

The case τ > h2

12
· s(s+ 1) , which implies r(z) ∈ [−1, 0) , can be discussed

analogously, because only the signs of both ξ1 and ξ2 change.
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As mentioned above, we can formulate the following stability theorem by
means of Proposition 4.3 and [137]:

Theorem 4.4 (Inner stability of the Runge-Kutta method (4.35)).
Let the time step size τ > 0 fulfil the inequality (4.40). Then each integra-
tion step of the FED Runge-Kutta scheme (4.35) is stable.

This theorem is a stronger statement than Proposition 3.2 about the inner
stability of the usual FED scheme. From a theoretical point of view, both
methods yield stable intermediate results, provided that FED uses the un-
stable time steps in their natural order. However, in contrast to the FED
scheme, the Runge-Kutta method uses only stable time integration steps.
This means that we have

‖y1‖2 = ‖ks‖2 ≤ ‖ks−1‖2 ≤ . . . ≤ ‖k1‖2 ≤ ‖y0‖2 . (4.50)

Therefore, it is robust against numerical instabilities and we do not have to
take care of the sequence of the time steps. Using the notation

y
(i)
1 :=

(
i−1∏

ℓ=0

(

I + τ
(s)
ℓ Ah

)
)

y0 (i ≤ s), (4.51)

with the time step sizes τ
(s)
ℓ from Eq. (4.10), Prop. 3.2 only guarantees that

the inner results y
(i)
1 of the cyclic scheme satisfy

∥
∥
∥y

(i)
1

∥
∥
∥
2

≤ ‖y0‖2 (i ≤ s). (4.52)

The unstable steps can produce an increasing norm, i.e. there might exist
indices i0 with ∥

∥
∥y

(i0+1)
1

∥
∥
∥
2

>
∥
∥
∥y

(i0)
1

∥
∥
∥
2
. (4.53)

This makes the cyclic method sensitive to numerical rounding errors, as we
have shown in the last chapter.

4.2.2 Related Work

We know that the symbol or amplification factor of the Super Time Step-
ping method is a Chebyshev polynomial of the first kind. Because of their
recursive structure, it is also possible to construct a corresponding recursive
Runge-Kutta method that provides internal stability. They were developed
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by P. J. van der Houwen and B. P. Sommeijer in 1980 under the name
Runge-Kutta-Chebyshev schemes [137], and allow to update possible non-
linearities after each integration step. As mentioned above, their derivation
is based on the amplification factor of STS, but for the 1-D linear case,
this scheme can also be seen as a recursive construction of the linear filter
kernels V h

· (with maximum variance) that we have already introduced and
discussed in the previous chapters. Unfortunately, the method still needs
a damping parameter ν > 0 that influences the numerical results. Besides
the above publication, van der Houwen, Sommeijer and their colleagues
have done a lot of research in this field, which can be found, for exam-
ple, in [71, 127, 134, 135, 140, 141]. A nice historical overview about the
development of explicit Runge-Kutta methods is given in [136].

In [137], the usual Super Time Stepping method is interpreted as a
Runge-Kutta method, namely a so-called factorized scheme. Thus, the
usual FED method can also be seen as a factorized Runge-Kutta scheme.

4.2.3 Extension to Arbitrary Diffusion Problems

According to Sec. 3.2.5, we consider the nonlinear time-dependent system
of ODEs

du

dt
= P (u)u , (4.54)

where P (·) ∈ RN×N is an arbitrary symmetric, negative semi-definite ma-
trix. Let us assume that we know the time step size limit τlim of the usual
explicit scheme

uk =
(
I + τ P

(
uk−1

))
uk−1 (k ≥ 1) . (4.55)

In the FED Runge-Kutta scheme (4.35) we already use a framework allow-
ing nonlinear functions g. To compute a numerical solution of the ODE
system (4.54), we set

g (t, v) := P (v) v , (4.56)

where v = v(t) denotes an approximation of u(t). If we replace the sta-
bility condition in Eq. (4.40) by

τ ≤ τlim · s(s+ 1)

3
, (4.57)

then we have r(z) ∈ [−1, 1] (see the proof of Prop. 4.3). Thus, we can guar-
antee stability in the Euclidean norm for the corresponding FED Runge-
Kutta scheme with s stages and a total time step size τ satisfying Eq. (4.57).
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Although we are now able to perform inner updates with respect to
nonlinear problems [137], it is recommendable to use the FED Runge-Kutta
scheme in an iterative manner instead of only increasing the number of
stages s. Similar to the box filter or the cyclic FED scheme, we have first
order consistency, and increasing the number of outer iterations significantly
improves the accuracy. In particular for nonlinear problems, the distance of
the points in time where the nonlinearities have to be evaluated significantly
grows with s. Thus, only increasing the number of stages can not improve
the results. According to (4.35), the k-th outer iteration step of the FED
Runge-Kutta scheme reads

uk, 1 =
(
I + 2

3
· τ̃ P

(
uk, 0

))
uk, 0 ,

(4.58)

uk, i = αi ·
(
I + τ̃ P

(
uk, i−1

))
uk, i−1

+ (1− αi) · uk, i−2 (i = 2, . . . , s) ,

where τ̃ := 3
s(s+1)

· τ and uk, 0 := uk−1. It results in uk := uk, s.

4.2.4 Predictor-Corrector Scheme

If we reconsider the Runge-Kutta scheme (4.27) that is based on the mid-
point rule, we can see that the idea is related to predictor-corrector strate-
gies [40]. Actually, the first step is the computation of an intermediate
solution, the so-called predictor. The second step, i.e. the corrector step,
uses the nonlinearities corresponding to the predictor in order to yield a
more accurate result.

Regarding the proposed method, this means we can use the FED Runge-
Kutta method (4.58) to a compute a predictor, and to perform a corrector
step. More precisely, given uk−1 ≈ u(t0) and the total time step size
τ > 0, we use (4.58) with a suitable number of stages to reach the diffusion
time t0 +

τ
2
. This yields a predictor uk−1/2, and we evaluate the matrix

P
(
uk−1/2

)
. For the corrector step, we apply a modified version of (4.58),

which means that we keep the nonlinearities fixed and replace P
(
uk, i−1

)

for all i = 1, . . . , s by P
(
uk−1/2

)
.

Although the predictor-corrector strategy does not increase the first
order consistency, we will see that it can improve the efficiency.

4.2.5 Implementation

The implementation of the FED Runge-Kutta (FEDRK) schemes needs a
bit more effort than the usual FED scheme. In addition to an explicit time
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1. Input Data:
image f , stopping time T , number M of outer FED Runge-Kutta
steps, and explicit step size limit τlim

2. Initialisation:

(a) Compute the minimum number of stages s, such that the
step size τ = T

M
satisfies the condition (4.57).

(b) If the diffusivity or diffusion tensor is constant in time, com-
pute the corresponding matrix P .

3. Filtering Loop: (k = 1, . . . ,M)

– Apply the scheme (4.58). For a constant diffusivity or dif-
fusion tensor, one simply has to replace P (·) by a constant
matrix P . If the problem is time-variant, it is also possible
to use the above-mentioned predictor-corrector strategy.

Figure 4.1: General FED Runge-Kutta algorithm for parabolic problems.

step, we have to store one more predecessor result, and compute a sum
of vectors. However, the computation and rearrangement of the varying
time step sizes is not necessary anymore. Moreover, in contrast to the FED
scheme, we can update the nonlinearities on each stage or inner step. In the
experimental section, we will analyse different update strategies, including
the predictor-corrector method. A summary of the algorithm is given in
Fig. 4.1.

Given the stopping time T and the desired number M of outer Runge-Kutta
time steps, the corresponding number of stages s can be computed similarly
to the cycle length from Chapter 3 via

s =

⌈√

1

τlim
· 3 T
M

+
1

4
− 1

2

⌉

. (4.59)

4.3 Semi-Iterative Methods for Linear

Systems

The idea for the construction of Runge-Kutta-Chebyshev schemes comes
from the so-called Chebyshev semi-iterative method or Richardson’s method
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of second degree for the solution of linear systems [52, 60, 138, 161]. Such
semi-iterative methods have also been used e.g. to accelerate the Landweber
iteration [87] in the context of ill-posed problems [72].

Let us reconsider the homogeneous linear system

Bx = 0 (4.60)

with a symmetric, positive definite system matrix B ∈ R
N×N and the zero

vector 0 ∈ RN . If the eigenvalues of the matrix B range in [λmin, λmax],
λmax > λmin > 0, and we apply Richardson’s cyclic method with the relax-
ation parameters ωi from Eq. (3.17), then

xj+1 = Sj+1(B)x0 , (4.61)

where j+1 is the length of the cycle, x0 ∈ RN an arbitrary initial vector
and Sj+1(·) a modified Chebyshev polynomial with degree j+1. Actually,
we have constructed this polynomial with the help of linear factors, where
each of the factors corresponds to a step of Richardson’s method with a
certain relaxation parameter:

Sj+1(B) =

j
∏

i=0

(I − ωiB) . (4.62)

The idea of semi-iterative methods is to avoid the decomposition into linear
factors or steps of Richardson’s method by using the recurrence relation of
the Chebyshev polynomials Sj+1(·). From Sec. 3.1, we know that

Sj+1(z) =
Tj+1

(

µ − 2z
λmax −λmin

)

Tj+1 (µ)
, (4.63)

where

µ :=
λmax + λmin

λmax − λmin

. (4.64)
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Thus, we have

Sj+1(z) =
2
(

µ− 2z
λmax−λmin

)

Tj

(

µ− 2z
λmax−λmin

)

− Tj−1

(

µ − 2z
λmax−λmin

)

Tj+1 (µ)

= 2
(

µ − 2z
λmax −λmin

)

· Tj (µ)

Tj+1 (µ)
· Sj(z) − Tj−1 (µ)

Tj+1 (µ)
· Sj−1(z)

= 2µ · Tj (µ)

Tj+1 (µ)

(

1 − 2z
λmax +λmin

)

· Sj(z)

− 2µ · Tj (µ) − Tj+1 (µ)

Tj+1 (µ)
· Sj−1(z)

= dj ·
(

1 − 2
λmax +λmin

z
)

· Sj(z) + (1− dj) · Sj−1(z) , (4.65)

with the coefficients

dj := 2µ · Tj (µ)

Tj+1 (µ)
. (4.66)

Putting this result into Eq. (4.61) yields

xj+1 = dj ·
(

I − 2
λmax +λmin

B
)

· Sj(B)x0 + (1− dj) · Sj−1(B)x0

= dj ·
(

I − 2
λmax +λmin

B
)

xj + (1− dj) · xj−1 , (4.67)

where we denote x−1 := x0. This means that we not only use the last
intermediate result xj, but also its predecessor xj−1. Interestingly, the
matrix-vector multiplication in the recursion formula corresponds to an
optimal iteration step of Richardson’s method with the constant relaxation
parameter ω = 2

λmax+λmin
. As for the Runge-Kutta-Chebyshev methods,

the additional effort includes the storage of xj−1 and the computation of
a vector sum. Moreover, we do not have any problems with the numerical
stability, because we do not use a sequence of varying relaxation parameters
anymore. We should mention that in the case of the linear system Bx = c

with an arbitrary right hand side c ∈ RN , the iteration reads

xj+1 = dj ·
(

xj + 2
λmax +λmin

·
(
c − Bxj

))

+ (1− dj) · xj−1 . (4.68)

It is also possible to construct semi-iterative methods for linear systems
with unsymmetric matrices, which is shown, for example, in [44, 45].
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4.3.1 Semi-Iterative Fast-Jacobi

At this point, we want to transfer the idea to the Fast-Jacobi method pre-
sented in Chapter 3. Assuming a cycle length j+1, we get, according to
Sec. 3.4,

ej+1 =
1

2j + 3
· U2j+2

(√

I − ωlim

2
D−1

B B

)

e0 , (4.69)

with the errors eℓ = x − xℓ between the exact solution x = B−1c and
the current iteration xℓ. The constant ωlim > 0 has already been defined
in Sec. 3.4.1. Using the recursion formula Eq. (4.20) presented in Sec. 4.1.3
yields with the coefficients αj+1 from Eq. (4.36) the following result:

ej+1 = αj+1 ·
(
I − ωlimD−1

B B
)
ej + (1− αj+1) · ej−1 , (4.70)

or in terms of xj+1 :

xj+1 = αj+1 ·
(
xj + ωlimD−1

B

(
c − Bxj

))
+ (1− αj+1) · xj−1 . (4.71)

Thus, Eq. (4.71) is the semi-iterative version of the proposed Fast-Jacobi
method (3.191). This semi-iterative scheme shares all convergence prop-
erties with the usual Fast-Jacobi method, but is much more robust with
respect to numerical rounding errors, due to the stable recursion.

4.3.2 Implementation

Figure 4.2 illustrates the implementation of the proposed semi-iterative
Fast-Jacobi (SIFJ). It is based on the iteration in Eq. (4.71). In contrast
to the usual algorithm shown in Fig. 3.13, the computation of the varying
relaxation parameters and the reordering have been dropped. As before for
FED Runge-Kutta schemes, inner updates of nonlinearities are possible. In
this context, we refer to the experimental section.

4.4 Numerical Experiments

The two main advantages of both the FEDRK scheme (4.58) and the semi-
iterative Fast-Jacobi solver (4.71) are the abolition of a rearrangement and
the stability of each inner step or iteration, which allows more flexibility
with respect to update strategies. Since the computational effort per inner
step or iteration is a bit larger than for the usual FED or Fast-Jacobi,
the question is whether the novel schemes benefit from additional updates.
As testbeds we use from Chapter 3 the fingerprint enhancement for the
parabolic, and the Charbonnier regularisation for the elliptic case.
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1. Input Data:
linear system of equations Bx = c, number of inner iterations
n, number m of outer iterations, feasible ωlim > 0

2. Initialisation:

– Define an initial vector x0.

3. Outer Iteration Loop: (k = 1, . . . , m)

(a) xk,−1 = xk, 0 := xk−1.

(b) Perform n inner iterations (j = 0, . . . , n−1):

xk, j+1 = αj+1 ·
(

xk, j + ωlimD−1
B

(
c − Bxk, j

))

+ (1− αj+1) · xk, j−1 .

(c) xk := xk, n.

Figure 4.2: Semi-iterative Fast-Jacobi algorithm.

4.4.1 Parabolic Problems

The MSEs for the fingerprint enhancement with the coherence-enhancing
diffusion filtering can be seen in Table 4.1. Besides the original FEDRK
scheme that updates the nonlinearities after each inner step, we also show
the results of a modified scheme that performs only a fixed number of up-
dates within an outer FEDRK step. More precisely, given the number s
of stages and the fixed number ℓ < s, the inner updates are made after⌊

k · s
(ℓ+1)

⌋

steps, where k = 1, . . . , ℓ. This means that we keep the nonlin-

earities in the matrix P fixed between two updates. It is not surprising that
the original FEDRK scheme is the best, because it uses the largest possible
number of updates. However, even the modified schemes with only one or
two inner updates per outer step yield significantly better results than the
cyclic method. Regarding the MSEs in Table 3.8, all three FEDRK schemes
outperform the semi-implicit method with respect to accuracy. This shows
how useful these inner updates can be. In the context of efficiency, the orig-
inal FEDRK method should not be used. On the one hand it is the most
accurate method, but on the other hand it requires, due to many updates,
much more computational effort. If we assume, for example, one outer
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Table 4.1: MSE-Comparison between FED and FED Runge-Kutta schemes
for the fingerprint enhancement with CED (Fig. 3.22).

cycles or MSE

outer steps FED FEDRK FEDRK (1) FEDRK (2)

1 88.382 17.683 54.576 37.578
2 39.429 3.146 22.701 15.438
3 27.448 1.995 15.812 9.934
4 21.758 1.579 12.987 8.176
5 18.239 1.146 10.541 6.421

10 11.093 0.536 4.855 2.330
25 3.841 0.197 1.038 0.588
50 0.943 0.089 0.315 0.239
100 0.260 0.030 0.083 0.062

FEDRK step, its running time is about one second, whereas the modified
schemes with one and two intermediate updates require only around 0.08
and 0.1 seconds, respectively. To reach or fall below the corresponding MSE
of the original FEDRK method with one outer step, the modified schemes
require indeed two or three cycles, but are nevertheless still more than five
times faster.

The efficiency of some methods is illustrated in Fig. 4.3. A comparison
between FED and the equivalent FEDRK scheme without any inner up-
date (i.e. only one update per complete outer step) is given in Fig. 4.3(a).
As expected, this Runge-Kutta method is a bit more expensive, but the
incorporation of inner updates improves the efficiency; see Fig. 4.3(b). If
one wants to apply only a few outer steps or cycles, i.e. more inner steps,
they even provide a better efficiency. However, for small numbers of inner
steps, updates might be not so beneficial anymore, which deteriorates the
efficiency.

Now we want to consider the FED Runge-Kutta scheme (4.58) combined
with the above proposed predictor-corrector strategy. The accuracy and ef-
ficiency of this method are mainly influenced by the computation of the pre-
dictor. Its approximation quality depends on the number of outer Runge-
Kutta steps and possible inner updates. If we assume e.g. three updates
for the computation of the predictor, we could perform three Runge-Kutta
steps without any inner updates or only one step including two inner up-
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Figure 4.3: Computing time versus MSE for FED and FED Runge-Kutta
(FEDRK) schemes with different numbers of updates. (a) Left: FED and
FEDRK without inner updates. (b) Right: With inner updates.

dates. Note that the latter option needs less computational effort.

The results for different update strategies with an overall number of two
or three updates per predictor step are shown in Table 4.2. As expected,
increasing the number of updates improves the quality of both the predictor
and the overall result. Moreover, the less expensive update strategy with
one cycle yields smaller MSEs in almost all cases. Compared to the modi-
fied FED Runge-Kutta schemes in Table 4.1, we have much better results.
However, the computation of the predictor requires additional effort. Thus,
it is very interesting to look into the efficiency of these methods.

In Fig. 4.4 one can find some comparisons with respect to the efficiency.
We have used the predictor-corrector scheme with one Runge-Kutta step
for the computation of the predictor. The graph in Fig. 4.4(a) illustrates
the benefit of additional inner updates. They clearly improve the efficiency
of the scheme. A comparison with the usual FED scheme is shown in
Fig. 4.4(b). Obviously, the predictor-corrector FED Runge-Kutta schemes
can outperform the usual cyclic method with respect to the efficiency, i.e. it
is up to two times faster. Note that the predictor-corrector method without
any inner update could also be computed with the help of the usual FED
scheme from Chapter 3, which would be also a reasonable extension of FED.
Regarding the efficiency, we recommend to use not more than three inner
updates per outer step.

4.4.2 Elliptic Problems

Our second experiment deals with the example for Charbonnier regular-
isation from Fig. 3.27. The main question is whether the semi-iterative
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Table 4.2: MSE-Comparison between predictor-corrector FED Runge-
Kutta schemes (PRK) with different update strategies (number of outer
steps, inner updates) for the computation of the predictor.

outer steps MSE

PRK (2,0) PRK (1,1) PRK (3,0) PRK (1,2)

1 35.474 34.827 29.420 28.585
2 12.547 12.186 9.623 8.374
3 8.275 8.126 5.634 3.905
4 5.401 4.563 2.562 2.036
5 3.393 2.670 1.407 1.233
10 0.569 0.493 0.254 0.289
25 0.078 0.080 0.063 0.056

Fast-Jacobi solver also benefits from inner updates. More precisely, we can
compare, for example, a solver with an even cycle length n and one in-
ner update to another one that uses the cycle length n

2
without any inner

update.
In Chapter 3 we have seen that the cycle length n = 50 yields an ef-

ficient Fast-Jacobi solver. Thus, we also use 50 inner iterations for our
semi-iterative Fast-Jacobi method. If we do not use any inner update, the
semi-iterative Fast-Jacobi method is equivalent to its cyclic counterpart.
Unfortunately, the semi-iterative version requires about 20% more compu-
tational effort. However, we compare it to the solvers with one and two inner
updates per outer iteration, respectively. This comparison is illustrated in
Fig. 4.5(a). Since the methods have different computational efforts, due
to the varying numbers of updates, we consider the computing time. The
figure shows that the semi-iterative method can significantly benefit from
inner updates, in particular for smaller numbers of outer iterations. More
precisely, the semi-iterative methods can be more than two times faster.

Another comparison is shown in Fig. 4.5(b): Here we consider the semi-
iterative Fast-Jacobi method with three different values for n, but use the
same update strategy. This means we update the nonlinearities every 50
iterations. Thus, all methods have the same computational effort per it-
eration, and we can consider the number of iterations instead of the CPU
time. The method with n = 100 inner iterations has the best performance.
If n is further increased, the convergence can become worse, which is illus-
trated with n = 200. On the other hand, the method with only 50 inner
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Figure 4.4: Computing time versus MSE for predictor-corrector FED
Runge-Kutta schemes using one cycle for computing the predictor. (a)
Left: With different update strategies. (b) Right: Comparison with the
usual FED scheme.

iterations, i.e. inner updates are not necessary, also yields a suboptimal
convergence speed. Hence, we have to optimise both n and the number of
inner updates. However, the experiments suggest that up to three inner
updates per outer iteration are sufficient. As before in the parabolic case,
too many inner updates can deteriorate the efficiency.

4.5 Summary

This chapter has mainly dealt with a modified FED scheme. In contrast
to Chapter 3, where we have decomposed the 1-D box filter into explicit
diffusion steps, it is based on a recursion relation for box filters. On the
one hand this implies more effort, because we have to go one step further
in the past and consider the last two intermediate results instead of only
one. However, on the other hand there is the major advantage that a
rearrangement of the time step sizes is not necessary anymore. Moreover,
this modified FED scheme is also well-suited for parallel computing.

In the context of inner stability we have shown that each inner time
step is stable. To this end, it is possible to perform updates within an outer
time step, which can improve the accuracy as well as the efficiency with
respect to the solution of nonlinear problems. This modified FED scheme
is related to the well-known class of explicit Runge-Kutta methods. In the
corresponding literature one can also find Runge-Kutta methods that are
related to Super Time Stepping. However, they still need an additional
damping parameter.

Based on a Runge-Kutta scheme that uses the midpoint rule for numer-
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Figure 4.5: Computational effort versus MSE for the semi-iterative Fast-
Jacobi (SIFJ) applied to Charbonnier regularisation. (a) Left: With n =
100 inner iterations and different numbers of inner updates. (b) Right:
With different n and updates after every 50 iterations.

ical integration, we have proposed a predictor-corrector FED Runge-Kutta
method that can further improve the accuracy.

Besides the parabolic FED scheme, we have also modified the Fast-
Jacobi method such that there is no need for a rearrangement of varying
relaxation parameters. Such methods are called semi-iterative, and also
require the last two intermediate results, i.e. there is more computational
effort than for usual iterative (cyclic) methods. However, similar to the
parabolic case, this additional effort allows inner updates that can improve
the convergence.

In the experimental section we have analysed the proposed methods with
respect to their accuracy and efficiency.

For the Runge-Kutta methods we have seen that the most accurate
approach is the original scheme which updates the nonlinearities after each
inner time step. However, it is very expensive because of the large number
of updates and therefore yields a poor efficiency. To this end, we have
considered modified methods that only use a small, fixed number of inner
updates per cycle. As demonstrated, even only one or two inner updates are
sufficient to outperform the cyclic FED scheme from Chapter 3, provided
that the cycle length or the number of inner time steps is not too small.

However, the efficiency of the FED Runge-Kutta schemes can be further
improved by using a predictor-corrector strategy. It clearly outperforms
the usual FED scheme, though the predictor-corrector strategy does not
increase the first order consistency. We have seen that the accuracy and
efficiency mainly depends on the predictor, whose quality can increase with
the help of, for example, one or two inner updates per outer time step.
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Since the approaches without any inner updates for the computation of the
predictor could be also used in combination with the usual FED scheme, the
predictor-corrector strategy is also a reasonable option for cyclic methods.

Moreover, inner updates are also very helpful in the context of the
semi-iterative Fast-Jacobi method. They can improve the convergence and
thus compensate the additional effort of semi-iterative methods, as we have
shown in our example with Charbonnier regularisation. Similarly to the
parabolic case, up to three inner updates are sufficient to obtain efficient
algorithms.



Chapter 5

FED Extrapolation Methods

Fast is fine, but accuracy is everything.

Xenophon

In the last chapter, we have constructed a more accurate FED method with
the help of the Runge-Kutta framework and a predictor-corrector strategy.
Another way to create more accurate, or higher order, methods is the so-
called extrapolation of numerical schemes. The idea is quite simple: Using
a suitable linear combination of two or more low order numerical solutions,
one can achieve a higher order approximation. The coefficients of this linear
combination are usually determined by comparing the Taylor series of the
low order numerical and the analytic solution. Since the extrapolation is
based on the numerical scheme that provides the low order solutions, it is
very easy to implement, provided that the code for the underlying numerical
method already exists.

Ideas of this type have a long tradition and have already been men-
tioned by Huygens in 1654 [76], where he proposed an algorithm for the
approximation of the number π. There are also works in the context of im-
age processing like e.g. [8]. A detailed historical overview for extrapolation
methods can be found in [15].

The goal of this chapter is to show that the combination of extrapolation
methods and the FED scheme is possible and yields stable schemes. To this
end, we consider an existing extrapolation framework that will serve as an
example.

187
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5.1 Richardson Extrapolation

Our example is the well-known Richardson extrapolation, which was intro-
duced in 1927 by Richardson and Gaunt [112]. It is used e.g. in Romberg’s
method for numerical integration [113] and has also become popular for the
solution of partial or ordinary differential equations [61, 62, 85, 88].

Let us again consider the linear 1-D diffusion equation and the correspond-
ing time-continuous linear ODE system

du

dt
= Ahu , (5.1)

with the vector-valued function u and the matrix Ah ∈ RN×N discretising
the Laplacian operator. To solve this system of ODEs numerically, we
discretise it in the temporal domain with a time step size τ > 0 and use
the scheme

uk+1 = Qτ u
k , (5.2)

where uk ≈ u(k ·τ) and Qτ ∈ RN×N is a matrix that depends on the time
step size τ as well as the matrix Ah. The numerical scheme is for example
explicit in the case of Qτ = I + τ Ah and implicit for Qτ = (I − τ Ah)

−1.
Assuming that Qτ implies a scheme with first order accuracy in time, the
Richardson extrapolation method works as follows: One has to compute
the first order approximations

uk+1
1 = Qτ u

k (5.3)

with one time step of size τ ,

uk+1
2 = Q τ

2
Q τ

2
uk (5.4)

with two steps using the time step size τ
2
and combine them via

uk+1 = 2 · uk+1
2 − uk+1

1 . (5.5)

This extrapolated result has second order accuracy. More details including
higher order schemes are given, for example, in [61, 62, 63, 88].

5.1.1 FED Extrapolation Scheme

Now we want to construct a second order FED scheme based on the above
described extrapolation method. This means we have

Qτ =
n−1∏

ℓ=0

(I + τℓ Ah) (5.6)
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with the time step sizes

τℓ =
h2

2
· q

2 cos2
(
π · 2ℓ+1

4n+2

) (ℓ = 0, . . . , n−1) . (5.7)

The cycle length n and the factor q ≤ 1 are chosen such that

n−1∑

ℓ=0

τℓ = τ , (5.8)

which means that the cycle time is given by τ . Moreover, we define the
matrix of the cycle with stopping time τ

2
:

Q τ
2

=
n−1∏

ℓ=0

(
I + τℓ

2
Ah

)
. (5.9)

Thus, the Richardson extrapolation of the FED scheme reads







uk+1
1 =

(
n−1∏

ℓ=0

(I + τℓ Ah)

)

uk

uk+1
2 =

(
n−1∏

ℓ=0

(
I + τℓ

2
Ah

)
)2

uk

uk+1 = 2 · uk+1
2 − uk+1

1 .

(5.10)

The extrapolation framework states that this scheme has second order accu-
racy in time. However, the computation of uk+1 is based on a nonconvex
linear combination of two numerical solutions. Hence, the stability can
not be directly guaranteed. Therefore, our goal is to prove that the above
extrapolation method is stable.

5.1.2 Stability Analysis

To show the stability of the FED extrapolation scheme (5.10), we consider
the Euclidean norm. This means we want to prove that

∥
∥uk+1

∥
∥
2
≤
∥
∥uk

∥
∥
2

(5.11)
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for k ≥ 0. Because of

∥
∥uk+1

∥
∥
2
=

∥
∥
∥
∥
∥
∥



2 ·
(

n−1∏

ℓ=0

(
I + τℓ

2
Ah

)

)2

−
n−1∏

ℓ=0

(I + τℓ Ah)



uk

∥
∥
∥
∥
∥
∥
2

(5.12)

≤

∥
∥
∥
∥
∥
∥

2 ·
(

n−1∏

ℓ=0

(
I + τℓ

2
Ah

)

)2

−
n−1∏

ℓ=0

(I + τℓ Ah)

∥
∥
∥
∥
∥
∥
2

·
∥
∥uk

∥
∥
2
,

we have to ensure that the real-valued eigenvalues of the symmetric matrix

2 ·
(
Q τ

2

)2 −Qτ are bounded in absolute value by 1. This is equivalent to
the boundedness of the corresponding amplification factor that is given by

2 ·
(

1

2n + 1
U2n

(√

1− q h2

4
· z
2

))2

− 1

2n+ 1
U2n

(√

1− q h2

4
· z
)

(5.13)

with z ∈ [0, 4
h2 ]. Thus, it remains to show that this polynomial takes values

only in [−1, 1] for z ∈ [0, 4
h2 ]. Before we prove the corresponding theorem,

we first show a lemma that will help us with the proof of the boundedness.

Lemma 5.1 (Estimation for Polynomials). Let {α0, α1, . . . , αn−1} be
an arbitrary finite set of real-valued positive numbers, where the minimum
value of the set is denoted by α > 0. Then the n-degree polynomial

qn(x) :=

n−1∏

i=0

(

1 − x

αi

)

(5.14)

fulfils for x ∈ [0, 2α) :

− 1 < 2 · q2n
(
x
2

)
− qn(x) ≤ 1 . (5.15)

Proof. We prove Eq. (5.15) by induction over the degree n ≥ 0. The case
n = 0 is trivial. For the inductive step, we reconsider the above set and
add a positive number αn > 0. A new possible minimum α′ > 0 satisfies
α′ ≤ α. Thus, we can assume that Eq. (5.15) holds in particular for x < 2α′.
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We obtain for n+1 :

2 · q2n+1

(
x
2

)
− qn+1(x)

= 2 ·
(

1− x

2αn

)2

q2n
(
x
2

)
−
(

1− x

αn

)

qn(x)

= 2 ·
(

1− x

2αn

)2

q2n
(
x
2

)
−
((

1− x

2αn

)2

− x2

4α2
n

)

qn(x)

=

(

1− x

2αn

)2
(
2 · q2n

(
x
2

)
− qn(x)

)

︸ ︷︷ ︸

(5.15)

≤ 1

+
x2

4α2
n

qn(x)
︸ ︷︷ ︸

≤ 1

≤
(

1− x

2αn

)2

+
x2

4α2
n

= 1 − x

αn

+
x2

2α2
n

≤ 1 , (5.16)

where we have used in the last step that x
αn

< 2α′

αn
≤ 2. Since 1− x

αn
> −1

for x < 2α′, the left inequality holds because of

(

1− x

2αn

)2
(
2 · q2n

(
x
2

)
− qn(x)

)
+

x2

4α2
n

qn(x)

=

(

1− x

αn

)
(
2 · q2n

(
x
2

)
− qn(x)

)

︸ ︷︷ ︸

> −1

+
x2

2α2
n

q2n
(
x
2

)
> −1 . (5.17)

Equation (5.16) means for all n ≥ 1 that the value 1 is reached only for
x = 0. This avoids that some high frequency components are not damped.
Now we are going to prove the theorem about the stability of the FED
extrapolation scheme (5.10).

Theorem 5.2 (Stability of FED Extrapolation Scheme). The FED
extrapolation scheme (5.10) is stable in the sense of the Euclidean norm.



192 CHAPTER 5. FED EXTRAPOLATION METHODS

Proof. Without loss of generality, we consider for n ∈ N and z ∈ [0, 1] the
amplification factor

2 ·
(

1

2n+ 1
U2n

(√

1 − z
2

))2

− 1

2n + 1
U2n

(√
1 − z

)
. (5.18)

The polynomial

1

2n+ 1
U2n

(√
1 − z

)
=

n−1∏

i=0

(

1 − z

αi

)

(5.19)

has the roots
αi = cos2

(
π · 2i+1

4n+2

)
> 0 . (5.20)

The smallest value of these roots is αn−1 and, according to Lemma 5.1,
it follows that the amplification factor is bounded in absolute value by 1
for z < 2αn−1. Let us now consider the case z ≥ 2αn−1. By means of the
estimation in Eq. (3.206) we have

∣
∣
∣
∣

1

2n+ 1
U2n

(√
1 − z

)
∣
∣
∣
∣
≤ 1

2n+ 1

1√
z

≤ 1

(2n+ 1)
√
2αn−1

. (5.21)

Furthermore, we get

1√
2αn−1

=
1√
2
· 1

cos
(
π
2
− π · 2

4n+2

)

=
1√
2
· 1

sin
(
π · 1

2n+1

)

≤ 1√
2
· 1

3 · 1
2n+1

· sin
(
π
3

) =
2n+ 1

3
·
√

2

3
, (5.22)

where we have used the inequality sin(π · x) ≥ 3x · sin(π
3
) for x ∈

[
0 , 1

3

]
,

which follows from the concavity of the sine function in the interval
[
0 , π

3

]
.

Putting these results together, we obtain the estimation

∣
∣
∣
∣

1

2n + 1
U2n

(√
1 − z

)
∣
∣
∣
∣
≤
√

2

27
, (5.23)

for z ≥ 2αn−1 and analogously

∣
∣
∣
∣

1

2n + 1
U2n

(√

1 − z
2

)
∣
∣
∣
∣
≤
√

4

27
. (5.24)
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Thus, the symbol fulfils

∣
∣
∣
∣
∣
2 ·
(

1

2n+ 1
U2n

(√

1 − z
2

))2

− 1

2n + 1
U2n

(√
1 − z

)

∣
∣
∣
∣
∣

≤ 2 ·
(√

4

27

)2

+

√

2

27
=

8

27
+

√

2

27
≈ 0.5685 < 1 . (5.25)

Overall, it is bounded in absolute value by 1 for z ∈ [0, 1], which yields the
stability of the FED extrapolation scheme.

Interestingly, the stability of the Richardson extrapolation with the Super
Time Stepping (STS) scheme depends on the damping factor ν. Although
the STS method itself yields stable results with ν = 0, the correspond-
ing extrapolation is highly unstable. With ν = 0, the symbol of an STS
extrapolation scheme is given by

2 ·
(
Tn (1− z)

)2 − Tn (1− 2z)
(
z ∈ [0, 1]

)
, (5.26)

where we have just replaced the FED by the STS symbol. Figure 5.2 shows
an example for n = 10. As one can see, this exemplar symbol takes values
between −1 and 3. In order to enforce stability, one has to use a damping
factor ν > 0. Thus, the damping factor decides not only about the quality,
but also now about the stability of the result. This is a clear disadvantage
compared to the damping parameter-free FED extrapolation scheme.

5.1.3 Accuracy

Besides the stability, another important issue is the accuracy for large time
step sizes τ ≫ 0, because a higher order scheme might be only better
for very small step sizes τ ≈ 0. Since some applications might require
large stopping times, it is useful to have schemes that provide a reasonable
accuracy also for larger time step sizes. To this end, we consider the Taylor
expansion of the FED extrapolation scheme (5.10). For uk+1

1 we have the
usual Taylor expansion of an FED cycle,

uk+1
1 =

(
n∑

m=0

h2m

2m+ 1

(
n+m

2m

)

Am
h

)

uk , (5.27)
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Figure 5.1: Symbol of Richardson extrapolation with FED for n = 10.

and uk+1
2 satisfies

uk+1
2 =

(
n∑

m=0

h2m

2m+ 1

(
n+m

2m

)
1

2m
Am

h

)2

uk

=

(
2n∑

m=0

h2m

2m

(
m∑

k=0

(
n+k
2k

)(
n+m−k
2(m−k)

)

(2k + 1)(2(m− k) + 1)

)

Am
h

)

uk . (5.28)

Overall, we obtain

uk+1 =

(
2n∑

m=0

cm ·Am
h

)

uk , (5.29)

with the coefficients

cm := h2m

(

1

2m−1

m∑

k=0

(
n+k
2k

)(
n+m−k
2(m−k)

)

(2k + 1)(2(m− k) + 1)
−

(
n+m
2m

)

2m+ 1

)

. (5.30)

Because of the second order accuracy, the coefficients fulfil

c1 =
h2

3
·
(
n+ 1

2

)

(5.31)
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Figure 5.2: Symbol of Richardson extrapolation with STS for n = 10.

and

c2 =
h4

18
·
(
n+ 1

2

)2

=
1

2
· c21 . (5.32)

Note that the exact coefficients of the matrix exponential exp (c1 ·Ah) are
given by

c̃m =
1

m!
· cm1 . (5.33)

In order to analyse the accuracy, we compute the relative deviation

dm =
|c̃m − cm|

c̃m
. (5.34)

Since dm = 0 for m ∈ {0, 1, 2}, we consider the case m > 2. Some results
are shown in Table 5.1. The behaviour of the higher order coefficients seems
to be reasonable, in particular the deviation of the third order coefficient
is only about 23%, which means that c3 and c̃3 are in the same order of
magnitude. Thus, we can expect reasonable results even for larger time
step sizes.
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Table 5.1: Relative deviations dm for m ∈ {3, 4, 5, 6} and different n.

n d3 d4 d5 d6

5 0.2560 0.6016 0.8447 0.9555

10 0.2357 0.5542 0.7938 0.9218

50 0.2289 0.5379 0.7749 0.9074

100 0.2286 0.5373 0.7742 0.9069

500 0.2286 0.5372 0.7740 0.9068

1000 0.2286 0.5371 0.7740 0.9068

5.2 Nonlinear Problems

So far, we have considered extrapolation schemes for the linear case. For
the numerical solution of the general problem

du

dt
= P (u)u , (5.35)

we have to take care of the nonlinearities. To this end, we use again the
predictor-corrector strategy similar to the Runge-Kutta scheme (4.27) that
is based on the midpoint rule. This strategy has already been successfully
used, e.g. in [63], for isotropic diffusion problems. According to the Runge-
Kutta scheme (4.27), we obtain with the given data u0

u1 = u0 + τ P
(
u

1/2
)
u

1/2

= u0 + τ P
(
u

1/2
)
u0 +

τ 2

2
P
(
u

1/2
)
P
(
u0
)
u0

= u0 + τ P
(
u

1/2
)
u0 +

τ 2

2
P
(
u

1/2
)
P
(
u

1/2 +O(τ)
)

︸ ︷︷ ︸

=P(u1/2)+O(τ)

u0

= u0 + τ P
(
u

1/2
)
u0 +

τ 2

2
P 2
(
u

1/2
)
u0 + O

(
τ 3
)

=

(

I + τ P
(
u

1/2
)
+

1

2
· τ 2P 2

(
u

1/2
)
)

u0 + O
(
τ 3
)
, (5.36)
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where we have used the predictor

u
1/2 = u0 +

τ

2
· P
(
u0
)
u0 . (5.37)

Note that we have assumed

P
(
u

1/2 +O(τ)
)

= P
(
u

1/2
)
+ O(τ) , (5.38)

which is equivalent to the differentiability of P (u) with respect to u.

Thus, a second order approximation can be achieved, if we apply an ex-
trapolation scheme with the matrix P

(
u

1/2
)
. More precisely, based on the

given data uk, we have to compute an intermediate solution uk+1/2, evaluate
the corresponding matrix, and then use the scheme (5.10) with P

(
uk+1/2

)

instead of Ah.

5.3 Implementation

The summary of the general FED extrapolation scheme is illustrated in
Fig. 5.3. As mentioned above, it is based on a predictor-corrector method
by means of the midpoint rule. To this end, we have to compute two
different sequences of time step sizes. The first one is used in an FED cycle
that yields the predictor solution. After the evaluation of the corresponding
nonlinearities, we apply the FED extrapolation scheme with the second
sequence of the time step sizes to get a more accurate solution. Since the
scheme is completely based on FED, it is also suited for parallel computing.
However, in this context, a problem is that the computation of u·

2 requires
more effort and one has to wait for the extrapolation step.

5.4 Numerical Experiments

We reconsider the fingerprint enhancement illustrated in Fig. 3.22 for the
numerical experiments. Our goal is to find out whether the predictor-
corrector FED extrapolation scheme performs better than the already pre-
sented numerical methods. On the one hand it should be more accurate
because of the higher order approximation, but on the other hand it requires
a higher computational effort, since we have to compute both a predictor
and two further results for the linear combination. As we have already
stated in the previous Chapter 4, the accuracy of the predictor is very im-
portant. To this end, it is likely that the whole extrapolation scheme can
be improved if we replace the FED scheme computing the predictor by the
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1. Input Data:

– image f , stopping time T , number Mc of outer cycles, and
explicit step size limit τlim

– for the predictor steps: number Mp of outer cycles

2. Initialisation:

(a) Compute the smallest integer nc and define the time adjust-
ment factor qc ≤ 1 such that the diffusion time of one cycle
is equal to T

Mc
.

(b) For the predictor steps: Determine np ∈ N as well as qp to
reach the overall step size T

2McMp
for one cycle.

(c) Choose suitable orderings for the time step sizes.

(d) Define the initial value u0 := f .

3. Filtering Loop (k = 0, ...,Mc−1) :

(a) Compute the predictor uk+1/2 with an FED scheme using Mp

cycles.

(b) Evaluate the diffusion matrix P
(
uk+1/2

)
.

(c) Perform the corrector step by applying the FED extrapolation
scheme (5.10) with P

(
uk+1/2

)
to obtain uk+1.

Figure 5.3: Predictor-corrector FED extrapolation scheme.

FED Runge-Kutta method that allows inner updates. Some results are
given in Table 5.2. Note that we have used a strategy with only one outer
step for the computation of the predictor. Indeed, the use of some inner
updates for the predictor computation massively improves the accuracy of
the extrapolation scheme, due to the improvement of the quality of the pre-
dictor. Table 5.2 shows that e.g. two inner updates can reduce the MSE by
a factor of up to seven compared to the standard method without any inner
update. In this context, Fig. 5.4(a) also illustrates the superior efficiency
of the approaches that use inner updates.

Compared to the results of the predictor-corrector FED Runge-Kutta
schemes in Table 4.2, the extrapolation schemes are mostly better. How-
ever, the difference is not so large despite the better approximation. This
might be due to the numerical error that appears for the replacement of
P (u0) by P

(
u

1/2
)
in the Taylor expansion from Eq. (5.36). Figure 5.4(b)
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Table 5.2: MSE-Comparison of predictor-corrector FED extrapolation
(PCE) schemes with different numbers of updates for the predictor compu-
tation.

cycles MSE

PCE (1,0) PCE (1,1) PCE (1,2)

1 29.950 19.679 15.319
2 14.756 9.330 5.705
3 10.735 6.137 2.885
4 8.698 3.362 1.705
5 7.313 2.162 1.099
10 2.040 0.542 0.309
25 0.214 0.070 0.044

shows a comparison with respect to the efficiency. On the one hand the
extrapolation scheme with two inner updates for the predictor computation
outperforms the usual FED scheme, but on the other hand it is less efficient
than the predictor-corrector FED Runge-Kutta scheme with two inner up-
dates. Thus, the additional effort for the extrapolation step unfortunately
does not pay off.

5.5 Summary

In this chapter we have successfully embedded the FED scheme in an ex-
trapolation framework based on the well-known Richardson extrapolation.
It is easy to understand, and the additional implementation effort is only
marginal, because one has to compute a linear combination of two first
order solutions, i.e. existing code can be used.

However, this linear combination is nonconvex, which means that its
stability can not derived from the stability of the first order results. To this
end, we have shown that the FED extrapolation scheme is stable in the
Euclidean norm. Moreover, we have presented an example demonstrating
the difficulties regarding an STS extrapolation scheme, where the stability
depends on the choice of the damping parameter.

For nonlinear problems we have considered the predictor-corrector strat-
egy that we have also used in Chapter 4. In this context, it is interesting
to compare such an extrapolation method to the predictor-corrector FED
Runge-Kutta scheme.
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Figure 5.4: Computing time versus MSE for predictor-corrector FED ex-
trapolation schemes. (a) Left: With different update strategies. (b)
Right: Comparison with the usual FED and the predictor-corrector FED
Runge-Kutta scheme.

This comparison has been done in the experimental section. Although the
FED extrapolation scheme is more accurate, it can not beat the efficiency
of the predictor-corrector method from Chapter 4. However, as before, it
is possible to improve both the accuracy and efficiency, if we increase the
number of inner updates for the predictor step. With the help of this, the
extrapolation method becomes more efficient than the usual cyclic FED
approach.



Chapter 6

Conclusions and Outlook

A conclusion is the place where you get tired of thinking.

Arthur Bloch

In this chapter, we conclude the thesis and discuss some aspects for future
work.

6.1 Conclusions

This thesis has dealt with efficient explicit methods for solving parabolic
and elliptic problems in PDE-based image analysis. They have been de-
rived in the context of an interesting connection between linear, symmetric
filters and explicit diffusion schemes with varying time step sizes. In this
context, we have applied our theory by means of some examples like e.g.
the binomial, the maximum variance or the box filter kernel. While 1-D bi-
nomial filters can be interpreted as an explicit linear diffusion scheme with
a specific, constant time step size, the maximum variance kernel implies a
method with very efficient cycles of varying time step sizes. They are related
to the roots of Chebyshev polynomials, and some of them significantly vio-
late the stability restriction for 1-D explicit linear diffusion schemes. This
allows diffusion times that depend quadratically on the cycle length. How-
ever, the high efficiency is achieved at the cost of a poor approximation for
Gaussian kernels. The cycles of the box filter also consist of unstable time
step sizes that are related to roots of Chebyshev polynomials. Although
this box filter factorisation is less efficient, its diffusion time depends also
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quadratically on the length of the cycle, and the approximation quality
with respect to Gaussian kernels is much better. Thus, the box filter fac-
torisation provides a good trade-off between efficiency and approximation
quality.

To this end, we have decided to consider the Fast Explicit Diffusion (FED)
scheme that corresponds to the box filter kernel. It can be transferred to
arbitrary parabolic scenarios, and provides schemes that are stable in the
Euclidean norm. Furthermore, FED is very easy to implement, i.e. existing
explicit schemes have to be modified with only few additional code lines.

By means of our filter factorisation, we have found out that the already
existing Super Time Stepping (STS) method is related to the maximum
variance filter kernel. Because of its sensitivity concerning high frequency
components such as noise, STS requires the optimisation of an additional
damping parameter, whereas FED does not need such a parameter. This
means that we have eliminated the damping parameter by means of our
signal processing approach.

Moreover, the idea of varying time step sizes has led us to a Jacobi
over-relaxation (JOR) method with varying relaxation parameters that are
based on the FED time step sizes: Fast-Jacobi. It is related to Richard-
son’s cyclic method and can provide a much better convergence than the
usual JOR with a constant relaxation parameter. Similarly to FED, the
implementation is easy, since the underlying JOR method can be used as a
black box solver.

However, due to the unstable time step sizes or large relaxation param-
eters, the methods require rearrangements of the step size or relaxation pa-
rameter sequences. Such strategies have already been proposed in the con-
text of STS and Richardson’s method. We have chosen three approaches
that also work well with both FED and Fast-Jacobi: κ-cycles, Leja, and
Lebedev-Finogenov ordering. Since these rearrangements yield unstable in-
termediate results, the solution of nonlinear problems is only reasonable if
the nonlinearities are not updated during a cycle.

Our numerical experiments have demonstrated that FED is very efficient
and outperforms additive operator splitting (AOS) as well as semi-implicit
schemes for the solution of nonlinear parabolic problems. To efficiently solve
elliptic problems like e.g. image inpainting by means of a parabolic evolu-
tion, we have used FED in combination with a cascadic coarse-to-fine strat-
egy (CFED). This works well for problems with constant coefficients such as
biharmonic inpainting. However, for elliptic problems with (strongly) vary-
ing coeffcients, the Fast-Jacobi method is more efficient than a parabolic
approach with t → ∞. To show the benefit of parallel implementations,
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we have presented a GPU implementation for 3-D anisotropic range image
integration. In our case, it is up to 140 times faster than a sequential CPU
implementation of the Fast-Jacobi method.

Besides the filter factorisation, we have derived a recursion relation for box
filters. This allows us to rewrite both the cyclic FED scheme and the Fast-
Jacobi method such that a rearrangement of time steps or relaxation param-
eters is not necessary. In this context, the new FED Runge-Kutta scheme
and the semi-iterative Fast-Jacobi method additionally achieve stable in-
termediate results that guarantee reasonable inner updates for nonlinear
problems.

Our numerical experiments have demonstrated the possible advantages
of these updates with respect to accuracy. Together with a predictor-
corrector strategy for nonlinear parabolic problems, they can improve the
efficiency in a way such that the usual cyclic FED scheme is inferior. We
should mention that the predictor-corrector strategy could also be used
in combination with cyclic FED schemes to improve the efficiency, which
means that they are not limited to FED Runge-Kutta schemes. Moreover,
the semi-iterative Fast-Jacobi solver can also benefit from inner updates
during an outer iteration step. However, for both parabolic and elliptic
problems, up to three updates are already sufficient, and further updates
might deteriorate the efficiency.

To improve the first order consistency of FED schemes, one can combine
them with the well-known Richardson extrapolation that yields second or-
der consistency. We have proven that the resulting FED extrapolation
scheme is stable in the Euclidean norm. In this context, we have found out
that the stability of a corresponding STS extrapolation scheme depends on
the damping parameter. This is a clear disadvantage compared to FED.

Although the consistency order of the FED extrapolation scheme is
higher, the experiments have demonstrated the inferior efficiency with re-
spect to the first order predictor-corrector methods. This is mainly due to
the additional computational effort coming from the extrapolation frame-
work.

6.2 Outlook

In this thesis, we have applied the cyclic methods FED as well as Fast-
Jacobi to solve some parabolic and elliptic problems. However, FED or
Fast-Jacobi can also be used to solve other problems that are beyond the
scope of this work. Meanwhile, they have been used to speed-up an optic
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flow method with the help of a GPU-based implementation [168]: Although
a full multigrid solver is about 20% faster than FED on the CPU, a parallel
FED algorithm on the GPU can be more than 10 times faster and is addi-
tionally much less complicated to implement. Other efficient parallel FED
schemes have been introduced in the context of medical applications, i.e.
the modelling of tumour growth [96], biomedical image registration [122], or
for variational depth-from-defocus [10]. Because of their simplicity, cyclic
methods can be easily implemented as well as optimised on mobile plat-
forms, as it has been done in [94]. Moreover, the idea of FED-based varying
parameters has been employed for gradient descent reprojection in convex
optimisation [124]. These publications indicate that the proposed cyclic
methods already cover a variety of applications, and it is likely that they
will be used in the context of further applications, due to their simplicity
as well as suitability for parallel processing.

Regarding the dimension of the data for image enhancement, we have
restricted ourselves to grey value images. However, it is possible to apply
FED to colour images or matrix-valued data sets coming from e.g. diffusion
tensor magnetic resonance imaging that is important for medical applica-
tions. Since semi-implicit schemes or, in general, the solution of equation
systems can become cumbersome for higher-dimensional tasks due to the
possible large neighbourhood structure, the benefit of explicit approaches
such as FED is expected to increase even further. Moreover, instead of
using only finite differences, it would be also interesting to see how FED
works in combination with finite element methods (cf. e.g. [107]).

In the numerical experiments, we have observed that the rearrangement
proposed by Lebedev and Finogenov [89] provides the largest robustness
with respect to numerical rounding errors. However, it is tailored to cycle
lengths n = 2p. To avoid that the computational effort is possibly doubled,
one could think about strategies with varying cycle lengths ni that satisfy
ni = 2pi. More precisely, if a certain stopping time requires e.g. the min-
imum cycle length n = 65, one could apply two cycles with n1 = 64 and
n2 = 16, respectively, instead of one cycle with length 128. In this context,
it would be also interesting to compare the accuracy of cyclic methods with
and without varying cycle lengths.

Besides these practical aspects, we would like to mention some interest-
ing theoretical issues for future work: In Chapter 2 we have considered only
filters whose amplification factors are related to Chebyshev polynomials.
Recently, the so-called Legendre polynomials have been used to construct
novel explicit methods [99]. Moreover, there is also the possibility to avoid
orthogonal polynomials [46]. With the help of our proposed framework, one
could derive the corresponding linear filters and analyse them with respect
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to e.g. approximation quality. For our cyclic scheme, we have shown that
the natural sequence of FED time steps yields intermediate results being
stable in the sense of the Euclidean norm. However, for the usual 1-D lin-
ear case, we have the conjecture that they are even stable with respect to a
stronger stability criterion, namely the maximum-minimum principle which
requires non-negative filter weights. For more general problems, we have
already seen by means of a counter example for the L∞-stability criterion in
Chapter 3 that FED can violate the positivity of the filter weights. In this
context, it would be interesting to analyse whether there are diffusivity func-
tions that guarantee L∞-stable isotropic diffusion processes. Another issue
is the application of FED to problems that are related to non-symmetric
matrices like for instance osmosis processes [69]. In this case, it is necessary
to modify the methods such that they guarantee stability and reasonable
results. Such approaches have been developed for STS in e.g. [66, 67]. Thus,
one could try to transfer these ideas to the FED scheme.

Overall, we are optimistic that our proposed explicit methods become widely
accepted in the field of PDE-based image analysis. In the past, these ap-
proaches have never been the most popular methods for the numerical so-
lution of PDEs. With the advent of low cost parallel computing hardware
and the growing demand for simple and widely applicable algorithms, the
situation has changed substantially. It seems that explicit methods inspired
by Richardson’s seminal work [111] finally get the merits they deserve.





List of Abbreviations

AOS additive operator splitting

CED coherence-enhancing diffusion

CFED cascadic Fast Explicit Diffusion

CFJ cascadic Fast-Jacobi

CG conjugate gradient

CMR cascadic modified Richardson

CPU central processing unit

DFT discrete Fourier transform

DTFT discrete time Fourier transform

EBF extended box filter

EED edge-enhancing diffusion

FED Fast Explicit Diffusion

FJ Fast-Jacobi

FEDRK FED Runge-Kutta

GPU graphics processing unit

JOR Jacobi over-relaxation

MSE mean squared error

ODE ordinary differential equation

PCE predictor-corrector FED extrapolation

PCG preconditioned conjugate gradient

PDE partial differential equation

PRK predictor-corrector FED Runge-Kutta
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208 LIST OF ABBREVIATIONS

SIFJ semi-iterative Fast-Jacobi

SOR successive over-relaxation

STS Super Time Stepping

TV total variation
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[58] S. Gerschgorin. Über die Abgrenzung der Eigenwerte einer Matrix.
Izvestiya Akademii Nauk SSSR, 7:749–754, 1931. (in German).

[59] T. Goldstein and S. Osher. The Split Bregman method for L1-
regularized problems. SIAM Journal on Imaging Sciences, 2(2):323–
343, 2009.

[60] G. H. Golub and R. S. Varga. Chebyshev semi-iterative methods, suc-
cessive overrelaxation iterative methods, and second order Richard-
son iterative methods, Part I. Numerische Mathematik, 3(1):147–156,
1961.

[61] A. R. Gourlay and J. Morris. The extrapolation of first order meth-
ods for parabolic partial differential equations II. SIAM Journal on
Numerical Analysis, 17(5):641–655, 1980.

[62] A. R. Gourlay and J. Morris. Linear combinations of generalized
Crank–Nicolson schemes. IMA Journal of Numerical Analysis, 1:347–
357, 1981.

[63] S. Grewenig. Extrapolationsverfahren für nichtlineare zwei-
dimensionale Diffusionsprobleme. Diploma Thesis, Department of
Mathematics, Saarland University, 2008. (in German).

[64] A. Guillou and B. Lago. Domaine de stabilité associé aux formules
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