

AppGuard — Fine-grained Policy
Enforcement for Untrusted Android

Applications

Michael Backes, Sebastian Gerling,
Christian Hammer, Matteo Maffei,
and Philipp von Styp-Rekowsky

Technischer Bericht Nr. A/02/2013

AppGuard – Fine-grained Policy Enforcement
for Untrusted Android Applications

Michael Backes1,2, Sebastian Gerling1, Christian Hammer1, Matteo Maffei1,
and Philipp von Styp-Rekowsky1

1 Saarland University, Saarbrücken, Germany
2 Max Planck Institute for Software Systems (MPI-SWS)

Abstract Android’s success makes it a prominent target for malicious
software. However, the user has very limited control over security-relevant
operations. This work presents AppGuard, a powerful and flexible secu-
rity system that overcomes these deficiencies. It enforces user-defined
security policies on untrusted Android applications without requiring
any changes to a smartphone’s firmware, root access, or the like. Fine-
grained and stateful security policies are expressed in a formal specifi-
cation language, which also supports secrecy requirements. Our system
offers complete mediation of security-relevant methods based on callee-
site inline reference monitoring and supports widespread deployment. In
the experimental analysis we demonstrate the removal of permissions
for overly curious apps as well as how to defend against several recent
real-world attacks on Android phones. Our technique exhibits very little
space and runtime overhead. The utility of AppGuard has already been
demonstrated by more than 1,000,000 downloads.

1 Introduction

The rapidly increasing number of mobile devices creates a vast potential for
misuse. Mobile devices store a plethora of information about our personal lives,
and their sensors, GPS, camera, or microphone – just to name a few – offer the
ability to track us at all times. The always-online nature of mobile devices makes
them a clear target for overly curious or maliciously spying apps and Trojan
horses. Social network apps, for instance, were recently criticized for silently
uploading the user’s entire contacts onto external servers [18, 45]. While this
behavior became publicly known, users are most often not even aware of what an
app actually does with their data. Additionally, fixes for security vulnerabilities
in the Android OS often take months until they are integrated into vendor-
specific OSs. Between Google’s fix with a public vulnerability description and the
vendor’s update, an unpatched system becomes the obvious target for exploits.

Android’s security concept is based on isolation of third-party apps and access
control [1]. Access to personal information has to be explicitly granted at install
time: When installing an app a list of permissions is displayed, which have to
be granted in order to install the app. Users can neither dynamically grant and
revoke permissions at runtime, nor add restrictions according to their personal

needs. Further, users (and often even developers, cf. [24,28]) usually do not have
enough information to judge whether a permission is indeed required to fulfill a
certain task.

1.1 Contributions

To overcome the aforementioned limitations of Android’s security system, we
present a novel policy-based security framework for Android called AppGuard.
– AppGuard takes an untrusted app and user-defined security policies as input

and embeds the security monitor into the untrusted app, thereby delivering
a secured self-monitoring app.

– Security policies are formalized in an automata-based language and displayed
to the user in a convenient graphical interface. Security policies may specify
restrictions on method invocations as well as secrecy requirements.

– AppGuard is built upon a novel approach for callee-site inline reference mon-
itoring (IRM). The fundamental idea is to redirect method calls to the em-
bedded security monitor and check whether executing the call is allowed by
the security policy. Technically, this is achieved by altering method references
in the Dalvik VM. This approach does not require root access or changes
to the underlying Android architecture and, therefore, supports widespread
deployment as a stand-alone app. Furthermore, it can handle even Java re-
flection (cf. section 4.6) and dynamically loaded code.

– Secrecy requirements are enforced by storing the secret within the security
monitor. Apps are just provided with a handle to that secret. This mechanism
is general enough to enforce the confidentiality of data persistently stored on
the device (e.g., address book entries or geolocation) as well as of dynamically
received data (e.g., user-provided passwords or session tokens received in a
single sign-on protocol). The monitor itself is protected against manipulation
of its internal state and forceful extraction of stored secrets.

– We support fully-automatic on-the-phone instrumentation (no root required)
of third-party apps and automatic updates of rewritten apps such that no
app data is lost. Our system has been downloaded by about 1,000,000 users
so far and will be soon released to the Samsung Apps market after an explicit
invitation from Samsung.

– Our evaluation on typical Android apps has shown very little overhead in
terms of space and runtime. The case studies demonstrate the effectiveness
of our approach: we successfully revoked permissions of excessively curious
apps, demonstrate complex policies that do not necessarily involve system
calls, and prevent several recent real-world attacks on Android phones, both
due to in-app and OS vulnerabilities. We finally show that for the vast ma-
jority of 25,000 real-world apps, our instrumentation does not break func-
tionality, thus demonstrating the robustness of our approach.

1.2 Key Design Decisions & Closely Related Work

Researchers have proposed several approaches to overcome the limitations of
Android’s security system, most of which require modifications to the Android
platform. While there is hope that Google will eventually introduce a more fine-
grained security system, we decided to directly integrate the security monitor
within the apps, thereby requiring no change to the Android platform. The
major drawback of modifying the firmware and platform code is that it requires
rooting the device, which may void the user’s warranty and affect the system
stability. Besides, there is no general Android system but a plethora of vendor-
specific variants that would need to be supported and maintained across OS
updates. Finally, laymen users typically lack the expertise to conduct firmware
modifications, and, therefore, abstain from installing modified Android versions.

Aurasium [49], a recently proposed tool for enforcing security policies in An-
droid apps, rewrites low-level function pointers of the libc library in order to
intercept interactions between the app and the OS. A lot of the functionality
that is protected by Android’s permission system depends on such system calls
and thus can be intercepted at this level. A limitation of this approach is that
the parameters of the original Java requests need to be recovered from the sys-
tem calls’ low-level byte arrays in order to differentiate malicious requests from
benign ones, which “is generally difficult to write and test” [49] and may break in
the next version of Android at Google’s discretion. Similarly, mock return values
are difficult to inject at this low level. In contrast, we designed our system to
intercept high-level Java calls, which allows for more flexible policies. In partic-
ular we are able to inject arbitrary mock return values, e.g. a proxy object that
only gives access to certain data, in case of policy violations. Additionally, we
are able to intercept security-relevant methods that do not depend on the libc
library. As an example consider the policy that systematically replaces MD5,
which is nowadays widely considered an insecure hashing algorithm, by SHA-1.
Since the implementation of MD5 does not use any security-relevant function-
ality of the libc library, this policy cannot be expressed in Aurasium. Finally,
it is worth to mention that both Aurasium and AppGuard offer only limited
guarantees for apps incorporating native code. Aurasium can detect an app that
tries to perform security-relevant operations directly from native code, under the
assumption, however, that the code does not re-implement the libc functionality.
Our approach can monitor Java methods invoked from native code, although it
cannot monitor system calls from native code.

Jeon et al. [38] advocate to place the reference monitor into a separate ap-
plication. Their approach removes all permissions from the monitored app, as
all calls to sensitive functionality are done in the monitoring app. This is fail-
safe by default as it prevents both reflection and native code from executing
such functionality. However, it has some drawbacks: If a security policy depends
on the state of the monitored app, this approach incurs high complexity and
overhead as all relevant data must be marshaled to the monitor. Besides, the
monitor may not yet be initialized when the app attempts to perform security-
relevant operations. Finally, this approach does not follow the principle of least

Table 1. Comparison of Android IRM approaches

Fea
tur

e
No

Firm
war

e M
od.

On
Pho

ne I
nstr

./U
pda

tes

Monit
or

Nat
ive

Meth
ods

Refl
ecti

on

Pol
icy

Lan
g.

Dat
a S

ecre
cy

Par
ame

tric
Join

poi
nts

Run
tim

e O
verh

ead

Aurasium [49] X – I G# X – – – 14-35%
Dr. Android [38] X – E G# G# – – – 10-50%
I-ARM-Droid [15] X – I – G# – – X 16%
AppGuard X X I G# X X X X 1-21%

privilege since the monitor must have the permissions of all monitored apps.
We propose a different approach: Although the security policies are specified
and stored within AppGuard, the policy enforcement mechanism is directly in-
tegrated and performed within the monitored apps. The policy configuration
file is passed as input to the security monitor embedded in each app, thereby
enabling dynamic policy configuration updates. This approach does not involve
any inter-procedure calls and obeys the principle of least privilege, as AppGuard
requires no special permissions.

Table 1 compares AppGuard with the most relevant related work that does
not modify the firmware. Up to now, no other system can instrument an app
and update apps directly on the phone. Dr. Android has an external monitor
accessed via IPC; the other three approaches use internal monitors. Aurasium
can monitor security-relevant native methods, Dr. Android only removes their
permissions, which may lead to unexpected program termination, whereas our
tool can prevent calls to sensitive Java APIs from native code. Both Aurasium
and AppGuard handle reflection; Dr. Android does not handle it; I-ARM-Droid
handles reflection and detects native calls. In case of native calls, however, the
rewriting process is only aborted and the user notified. AppGuard is the only
system that offers a high-level specification language for policies and supports
hiding of secret data from, e.g., untrusted components in the monitored app.
Both Aurasium and Dr. Android only support a fixed set of joinpoints where
a security policy can be attached to. In contrast, I-ARM-Droid and AppGuard
can instrument calls to any Java method. The last column displays the runtime

App
Monitor

App

Rewriter

Policies

logging

configManage-
ment

Figure 1. Schematics of AppGuard

overhead incurred in micro-benchmarks as reported by the respective authors.
AppGuard is competitive in terms of runtime overhead with respect to concur-
rent efforts. For reasons of readability we postpone the discussion of further, less
closely related work to section 6.

2 AppGuard

Runtime policy enforcement for third-party apps is challenging on unmodified
Android systems. Android’s security concept strictly isolates different apps in-
stalled on the same device. Communication between apps is only possible via
Android’s inter-process communication (IPC) mechanism. However, such com-
munication requires both parties to cooperate, rendering this channel unsuitable
for a generic runtime monitor. Furthermore, apps cannot gain elevated privileges
that allow for observing the behavior of other apps.

AppGuard tackles this problem by following an approach pioneered by Er-
lingsson and Schneider [22] called inline reference monitor (IRM). The basic
idea is to rewrite an untrusted app such that the code that monitors the app
is directly embedded into its code. To this end, IRM systems incorporate a
rewriter or inliner component, that injects additional security checks at criti-
cal points into the app’s bytecode. This enables the monitor to observe a trace
of security-relevant events, which typically correspond to invocations of trusted
system library methods from the untrusted app. To actually enforce a security
policy, the monitor controls the execution of the app by suppressing or altering
calls to security-relevant methods, or even terminating the program if necessary.

In the IRM context, a policy is typically specified by means of a security
automaton that defines which sequences of security-relevant events are accept-
able. Such policies have been shown to express exactly the policies enforceable
by runtime monitoring [46]. Ligatti et al. differentiate security automata by their
ability to enforce policies by manipulating the trace of the program [40]. Some
IRM systems [16,22] implement truncation automata, which can only terminate
the program if it deviates from the policy. However, this is often undesirable in
practice. Edit automata [40] transform the program trace by inserting or sup-
pressing events. Monitors based on edit automata are able to react gracefully to
policy violations, e.g., by suppressing an undesired method call and returning a
mock value, thus allowing the program to continue.

AppGuard is an IRM system for Android with the transformation capabilities
of an edit automaton. Figure 1 provides a high-level overview of our system. We
distinguish three main components:
1. A set of security policies. On top of user-defined and app-specific policies (see

section 3), AppGuard provides various generic security policies that govern
access to platform API methods which are protected by coarse-grained An-
droid permissions. These methods comprise, e.g., methods for reading per-
sonal data, creating network sockets, or accessing device hardware like the
GPS or the camera. As a starting point for the security policies, we used the
mapping from API methods to permissions from Song et al. [24].

2. The program rewriter. Android apps run within a custom register-based Java
VM called Dalvik. Our rewriter manipulates Dalvik executable (dex) byte-
code of untrusted Android apps and embeds the security monitor into the
untrusted app. The references of the Dalvik VM are altered so as to redirect
the method calls to the security monitor.

3. A management component. AppGuard offers a graphical user interface that
allows the user to set individual policy configurations on a per-app basis.
In particular, policies can be turned on or off and parameterized. In addi-
tion, the management component keeps a detailed log of all security-relevant
events, enabling the user to monitor the behavior of an app.

3 Policies

Our policy language is a direct encoding of policy automata and allows us to
express constraints on the execution of method calls as well as on the pro-
cessing of confidential data. Intuitively, we represent security policies by edit
automata [40], which we augment so as to specify whether or not the result of
a method call is confidential. The method calls specified in the automaton are
monitored and subject to the constraints imposed therein, while other method
calls may be freely executed. Confidential data may only be processed as indi-
cated by the edit automata, any other operation is forbidden: this allows us to
uniformly reason about the confidentiality of persistent data (e.g., address book
entries or geolocation) and dynamically received data (e.g., user-provided pass-
words or session tokens received in a single sign-on protocol). Even though there
is no taint tracking outside the monitor, this mechanism allows information flow
control policies. Data can be labeled as confidential and declassification policies
can make the result of a function public even if its parameters contain confiden-
tial data (cf. Figure 4). As long as no equality tests are permitted, also implicit
information flows are prevented. Otherwise, the result would be essentially de-
classified and thus may leak some information. A typical confidentiality policy,
however, will be of the form “send this data only to this address” and, thus, not
permit boolean tests.

Using our policy language, we can specify, for instance, an upper bound on the
number of times the android.telephony.SmsManager.sendTextMessage() method
may be called by an app or declare that the password provided by the user
in a certain input box can only be sent to a specific IP address in encrypted
form and cannot be processed by the app in any other way.

Our policy language is based on the SPoX policy language introduced by
Hamlen et al. [34, 35], which was originally designed for specifying declarative
aspect-oriented security policies. SPoX defines a security automaton where nodes
correspond to security states and edges are labeled with conditions under which
a certain method call is allowed. We extended the language to express the con-
fidentiality of values and on-the-fly replacement of method calls (e.g., we can
require that http connections are systematically replaced by https connections).
We refer to the extended version as Security-Oriented SPoX (SOSPoX).

3.1 SOSPoX

The syntax of SOSPoX is reviewed in Table 2 (for the syntax of SPoX, we refer
to [35]). We extended the language to support both labeling return values of
function calls as secret, as well as to support rewriting existing function calls
with new function calls.

The new nodes statement in Table 2 is used to either label a return value as
secret, or to remove such a secret label. The return value is referenced via the
object identifier oid, which, in order to change the secrecy label, is either added
or removed to the list SI that keeps track of all object identifiers that are labeled
as secret.

The pointcut syntax of SOSPoX is shown in Table 3. The call -statement has
been extended by two additional identifiers: oid is an object identifier that refers
to the object returned by a method call (oid is an equivalence class for all objects
returned by a particular type of method call), whereas cid is an identifier for a
particular method call.

In order to react gracefully to a policy violation (e.g., to prevent an app from
crashing), most cases require a change in the control flow of a program. This
is reflected by security automata that provide the transformation capabilities
of an edit automaton. To that end, we introduce the rewrite-statement that
allows to specify how a method call is replaced by new method calls: the newly
introduced methods define the alternative control flow of the program that is to
be executed in case of a policy violation. Notice that predicates that are applied
in conjunction with new methods (second argument of the rewrite-statement)
are to be considered as conditions that need to be fulfilled by the concrete
implementation of the policy. We modified the argval- and the argtype-statement
to include also the call-identifiers such that it is possible to express conditions
related to the arguments of arbitrary method calls inside rewrite statements.
The order pointcut allows to specify the order in which a series of new method
calls introduced by the rewrite statement are supposed to be executed.

3.2 Policy Examples

In the following we present some policy examples, first by their automaton and
afterwards how they can be expressed in SOSPoX. The automaton in Fig. 2
controls the usage of contacts: the app is authorized to access the contact list so
as to publish a hash of each contact’s phone number, but the contacts themselves
are kept secret. This functionality is crucial to implement messaging apps (e.g.,
WhatsApp), which have to check for the presence of a certain entry in the contact
list, in a privacy-preserving manner. The first edge declares that the cursor id1
returned by the method call CR.query(Contacts,PhoneNumber) is to be regarded
as a secret. A node is defined as a set of bindings between variables and values.
In particular, each node maps a special variable SI to the list of secret identifiers.
For instance, the second node maps SI to [id1].

The looping edge in the second node allows for processing the id1 object
via the id1.moveToNext() method call, which moves the cursor forward by one

Table 2. SOSPoX policy syntax. Additions to SPoX are marked by †.

n ∈ Z integers
c ∈ C class names

sv ∈ SV state variables
† oid ∈ ID, OID ⊆ SV object identifier

x ::= c | oid callee identifier
† cid ∈ CID call identifier

iv ∈ IV iteration vars
en ∈ EN edge names
pn ∈ PCN pointcut names
pol ::= np∗sd∗e∗ policies
np ::= (pointcut name = "pn" pcd) named pointcuts
sd ::= (state name = "sv") state declarations
e ::= edges

(edge name = "en" [after] pcd ep∗) edgesets
| (forall "iv" from a1 to a2 e∗) iteration

ep ::= edge endpoints
| (nodes "sv" a1, a2) state transitions
| (nodes "sv" a1, #) policy violations

† | (nodes oid [+,-]) setting secrecy-level of object identifiers
a ::= a1 + a2 | a1 − a2 | b arithmethic
b ::= n | iv | b1 ∗ b2 | b1/b2 | (a)

position. Notice that the security state does not change, i.e., the cursor is still
secret. Furthermore, the boolean value returned by the method call is not marked
as secret and, thus, is freely accessible by the app. The outgoing edge in the
second node permits reading the phone number at the cursor into id3, which is
also marked as secret. In the third node, the cursor can either be moved forward
via the left looping edge, the phone number at the current position of the cursor
can be requested via the right looping edge, or the phone number can be encoded
into a secret byte array id4 via the method call id4=call byte [] id3.getBytes().
Notice that for the looping edges the security state does not change. Finally,
the loop at the fourth node enables the hashing of id4. As the resulting hash
id5 is not marked as a secret, it can be freely processed and, e.g., sent over the
Internet.

As previously mentioned, the policy language further supports on-the-fly
replacement of method calls. The automaton in Fig. 3, for instance, declares
that secret data can only be sent using https and not http. Whenever the method
Net.Connect is called with secret data (issec (Data)) and the http parameter, this
method call is replaced by the corresponding call using https.

We exemplify the syntax of SOSPoX in Fig. 4 and Fig. 5 by providing the
actual policies that created the security automata presented in Fig. 2 and Fig. 3,
respectively. Notice that the edge labels in the earlier automaton were simplified
for demonstration. The full version of edge labels is provided in the policies in
Fig. 4 and Fig. 5, respectively.

Table 3. SOSPoX pointcut syntax. Additions and modifications to SPoX are marked
by † and ‡, respectively.

re ∈ RE regular expressions
md ∈ MD method names
fd ∈ FD field names

pcd ::= pointcuts
‡ | (cid : oid = call mo∗ rt x.md) method calls
‡ | (argval cid n vp) stack args (values)
‡ | (argtyp cid n c) stack args (types)
| (and pcd∗) conjunction
| (or pcd∗) disjunction
| (not pcd) negation

† | (rewrite pcd pcd) rewriting
† | (order cid∗) call order

mo ::= public | private | . . . modifiers
rt ::= c | void | . . . return types
vp ::= (true) value predicates

† | (secret) secrecy predicate
| (isnull) object predicates
| (inteq n) | ((intne n) integer predicates
| (intle n) | ((intge n)
| (intlt n) | ((intgt n)
| (streq re) string equality

† | (argeq cid n) argument equality

4 Architecture

AppGuard3 is a stand-alone Android app written in Java and C that comprises
about 9000 lines of code. It builds upon the dexlib library, which is part of the
smali disassembler for Android by Ben Gruver [33], for manipulating dex files.
The size of the app package is roughly 2 Mb.

4.1 Instrumentation

A key aspect of any IRM system is to instrument the target app such that
the control flow of the program is diverted to the security monitor whenever a
security-relevant method is about to be invoked. There are two strategies for
passing control to the monitor: Either at the call-site in the app code, right be-
fore the invocation of the security-relevant method, or at the callee-site, i.e. at
the beginning of the security-relevant method. The latter strategy is simpler and
more efficient, because callee sites are easily identified and less in number [5].
Furthermore, callee-site rewriting can handle obfuscated apps as it does not
require to “understand” the untrusted code. Unfortunately, in our setting, stan-
dard callee-site rewriting is not feasible for almost all security-relevant methods,
as they are defined in Android system libraries, which cannot be modified.
3 http://www.srt-appguard.com/en/

SI=[id1]

SI=[id1,id3]

SI=[id1,id3,id4]

id1=call Cursor CR.query(Contacts,PhoneNumber)
setsec (id1)

id2=call boolean id1.moveToNext()

id3=call String id1.getPhoneNumber()
setsec (id3)

id
2=

ca
ll
b
oo

l
id
1
.m

ov
eT

oN
ex
t(
)

id3=call String id1.getPhoneNumber()

id4=call byte [] id3.getBytes()
setsec (id4)

id5=call byte [] messageDigest.digest(id4)

Figure 2. Security automaton for reading contacts

rewrite
(call Net.Connect(Scheme,URL,Data) && Scheme==HTTP && issec(Data))
(call Net.Connect(Scheme,URL,Data) && Scheme==HTTPS)

Figure 3. Security automaton for replacing http connections with https connections
(Net.Connect is a shortcut for Ljava/net/URL;->openConnection()).

In order to achieve the same effect as callee-site rewriting, AppGuard employs
a novel dynamic call-interposition approach [47]. This approach diverts calls
to security-relevant methods to functions in the monitor (called guards) that
perform a security check. In order to divert the control flow we replace the
reference to a method’s bytecode in the VM’s internal representation (e.g., a
virtual method table) with the reference to our security guard. The security
guards reside in an external library that is dynamically loaded on app startup.
Therefore, we do not need to reinstrument the app when a security policy is
modified. Additionally, we store the original reference in order to access the
original function later on, e.g., in case the security check grants the permission
to execute the security-critical method. This procedure also reduces the risk
of accidentally introducing infinite loops by a policy, since we usually call the
original method.

With this approach, invocations of security-relevant methods do not need to
be rewritten statically. Instead, we use Java Native Interface (JNI) calls at run-
time to replace the references to each of the monitored functions. More precisely,
we call the JNI method GetMethodID() which takes a method’s signature, and

(edge name="SecretCursor"
(and (cid1:id1=call "Cursor ContentResolver.query(URI,Content)")

(argval cid1 1 (streq "Contacts"))
(argval cid1 2 (streq "PhoneNumber")))
(nodes id1 +))

(edge name="MoveToNode"
(cid2:id2=call "boolean id1.moveToNext()))

(edge name="SecretPhoneNumber"
(cid3:id3=call "String id1.getPhoneNumber()")
(nodes id3 +))

(edge name="MoveToNode2"
(cid4:id2=call "boolean id1.moveToNext()))

(edge name="SecretPhoneNumber2"
(cid5:id3=call "String id1.getPhoneNumber()"))

(edge name="SecretByte"
(cid6:id4=call "byte [] id3.getBytes()")
(nodes id4 +))

(edge name="Declassification"
(cid7:id5=call "byte [] MessageDigest.digest(id4)"))

Figure 4. Policy for enforcing secrecy of Contacts

(edge name="EnforceHTTPS"
(rewrite (and (cid1:id1=call "Net.Connect(Scheme,URL,Data)")

(argval cid1 1 (streq http))
(argval cid2 3 (secret)))

(and (cid2:id2 = call "Net.Connect(Scheme,URL,Data)")
(argval cid2 1 (streq https)))))

Figure 5. Policy for enforcing https for secret data

returns a pointer to the internal data structure describing that method. This
data structure contains a reference to the bytecode instructions associated with
the method, as well as metadata such as the method’s argument types or the
number of registers. In order to redirect the control flow to our guard method, we
overwrite the reference to the instructions such that it points to the instructions
of the security guard’s method instead. Additionally, we adjust the intercepted
method’s metadata (e.g., number of registers) to be compatible with the guard
method’s code. This approach works both for pure Java methods and methods
with a native implementation.

Figure 6 illustrates how to redirect a method call using the functionality pro-
vided by our instrumentation library. Calling Instrumentation.replaceMethod()
replaces the instruction reference of method foo() of class com.test.A with the
reference to the instructions of method bar() of class com.test.B. It returns the
original reference, which we store in a variable A_foo. Calling A.foo() will now in-
voke B.bar() instead. The original method can still be invoked by Instrumentation.
callOriginalMethod(A_foo). Note that the handle A_foo will be a secret of the

public class Main {
public static void main(String[] args) {

A.foo() ; // calls A.foo()
MethodHandle A_foo = Instrumentation.replaceMethod(

"Lcom/test/A;->foo()", "Lcom/test/B;->bar()");
A.foo() ; // calls B.bar()
Instrumentation.callOriginalMethod(A_foo); // calls A.foo()

}}

Figure 6. Example illustrating the functionality of the instrumentation library

class InternetPolicy extends Policy {
@MapSignatures({"Ljava/net/URL;->openConnection()"})
public void checkConnection(URL url) throws Exception {

if (! "wetter.com".equals(url.getHost())) throw new IOException();
}}

Figure 7. Example policy protecting calls to java .net.URL.openConnection(). The
callback method checkConnection(URL) allows connections to one host only.

security monitor in practice. Therefore the original method can no longer be
invoked directly by the instrumented app.

4.2 Policies

We transform the high-level policy descriptions in SOSPoX into their concrete
Java counterparts. For each policy, we generate a Java class which declares
security-relevant method signatures and corresponding guard methods. We use
a custom method annotation MapSignatures to map guard methods to a set of
method signatures. Security state variables are stored in instance fields of the re-
spective policy class, such that the values of these variables are preserved across
guard method invocations.

Consider Fig. 7 as a basic example. This policy implementation controls ac-
cess to the openConnection() method in the java .net.URL class and only allows
connections to the host “wetter.com”. The guard method has access to the argu-
ments of the original method call by declaring a compatible list of parameters.
In the example, the guard method uses the url parameter to decide whether a
connection should be allowed. If allowed, the guard method will simply return,
indicating that the original method call should proceed. If the connection is
not allowed, an exception is thrown. The guard method throws an IOException,
which bubbles up to the surrounding app code, imitating the behavior of the
original URL->openConnection() method in case a connection error occurs.

As a second example, consider the policy presented in Fig. 3 that intercepts
http connections and relays them to encrypted https. Fig. 8 presents an excerpt
from the corresponding implementation. After calling the original method with
the new arguments, the guard method needs to return an alternative return

value to the app code. To this end, it throws a special MonitorException that is
caught by a handler in the monitor and returned to the app.

The guard methods declared in the policies can not be used directly as
call-diversion targets by our instrumentation library. In the following we will
explain why we generate a utility class called MonitorInterface, which serves
as a bridge between app code and security guards. For each security-relevant
method specified in the policies, we generate a static trampoline method in the
MonitorInterface class (cf. Fig. 9). The purpose of this trampoline method is
fourfold: First, the trampoline method is always signature-compatible4 to the
security-relevant method (including the instance object for virtual calls, which
is passed as the first method argument, if available.) A compatible method signa-
ture is required to successfully divert the control flow using our dynamic instru-
mentation approach. Second, guard methods of different policies may be defined
for a single security-relevant method. Thus, the trampoline method invokes all
guards associated with this method signature. Third, the trampoline method
contains a try/catch block around the calls to the security guards. This block
enables guard methods to pass an alternative return value back to the app via
a MonitorException5 (cf. Fig. 8, a viable alternative would be to simply return a
value instead of using Exceptions.) Fourth, if none of the guard methods throws
an exception, the trampoline method invokes the original function and returns
its return value, if available.

The generated policy classes, the MonitorInterface class, and the instrumen-
tation library are stored into a monitor package, which is dynamically loaded
into the target app at runtime.

4.3 Rewriter

The task of the rewriter component is to insert code into the target app, which
dynamically loads the monitor package into the app’s virtual machine. To en-
sure instrumentation of security-sensitive methods before their execution, we
4 For technical reasons we use static methods instead of instance methods.
5 Policies can only throw checked exceptions that are handled by the surrounding code
or a MonitorException, which is handled by the monitor. The goal is to keep the
program running even in case of a policy violation.

class HttpsRedirectPolicy extends Policy {
@MapSignatures({"Ljava/net/URL;->openConnection()"})
public void checkConnection(URL url) throws Exception {

if (redirectToHttps(url)) {
URL httpsUrl = new URL("https", url.getHost(), url.getFile());
URLConnection returnValue = httpsUrl.openConnection();
throw new MonitorException(returnValue);

}}}

Figure 8. Example policy that redirects http connections to https.

public class MonitorInterface {
public static URLConnection java_net_URL__openConnection(URL _this)

throws Exception {
try {
InternetPolicy . instance .checkConnection(_this);
HttpsRedirectPolicy.instance.checkConnection(_this);

} catch (MonitorException e) {
return (URLConnection) e.getValue();

}
return (URLConnection) Instrumentation.callOriginalMethod(
java_net_URL__openConnection, _this);

}}

Figure 9. Example of a trampoline method in the MonitorInterface

create an application class that becomes the superclass of the existing applica-
tion class6. Our new class contains a static initializer, which becomes the very
first code executed upon app startup. The initializer uses a custom class loader
to load our monitor package. Afterwards, it calls an initializer method in the
monitor that uses the instrumentation library to rewrite the method references.

4.4 Separation of Secrets

Policies in our system can specify that the return values of certain functions
are to be kept secret. In order to prevent an app from leaking secret values, we
control access to these secrets. To this end, the monitor intercepts all calls to
methods that the policy annotates as “secret-carrying”, i.e. methods that can
produce secret output or receive secret input. Whenever the invocation of such
a method produces a new secret output, the monitor returns a dummy value,
which serves as a reference to the secret for further processing. If such a secret
reference is passed to a method that supports secret parameters, the trampoline
method invokes the original method with the corresponding secret instead and
returns either the actual result or a new secret reference, in case the return value
was marked as secret in the policy. The dummy reference values do not contain
any information about the secret itself and are thus innocuous if processed by
any method that is not annotated in the policy.

4.5 Management

The management component of AppGuard monitors the behavior of instru-
mented apps and allows to configure policies at runtime. The policy configu-
ration is provided to the instrumented app as a world-readable file. Its location
is hardcoded into the monitor code during the rewriting process. This is moti-
vated by the fact that invocations of security-relevant methods can occur before
6 In case no application class exists, we register our class as the application class.

Figure 10. Screenshot of our management app. The left shows permission revocation
policies, the right an extract of the event log.

the management app is fully initialized and able to react on Android IPC. The
management component provides a log of all security-relevant method invoca-
tions for each app, which enables the user to make informed decisions about the
current policy configuration. We report these invocations to the management
app using a standard Android Service component. The asynchronous nature of
Android IPC is not an issue, since security-relevant method invocations that oc-
cur before the service connection is established are buffered locally. A screenshot
of a policy configuration and a log are shown in Fig. 10.

4.6 Monitor Protection

In our system, the inlined monitor is part of the monitored app. A malicious
app might try to circumvent the monitor by tampering with its internal state.
Furthermore, an app could try to subvert secrecy policies by directly extract-
ing stored secrets from the monitor. Since the monitor package containing se-
cret data and pointers to the original methods is unknown at compile time

and due to strong typing, a malicious app would need to rely on reflection to
access the monitor. To thwart such attacks, we implement a ReflectionPolicy
that intercepts function calls to the Reflection API. In particular, we moni-
tor operations that access Java classes and fields like java .lang.Class->forName()
or java .lang.Class->getField() and prevent thereby effectively the access to the
monitor package.

4.7 Deployment

On unmodified Android systems, app sandboxing prevents direct modifications
of the code of other apps installed on the device. AppGuard leverages the fact
that the app packages of installed third-party apps are stored at a world-readable
location in the filesystem. This allows to inline the monitor into any app installed
on the device by processing the corresponding apk file. In the end, AppGuard
produces a self-monitoring app package that replaces the original version. Since
stock Android does not allow automatic (un)installation of other apps, the user
is prompted to confirm both the removal of the original app as well as the
installation of the instrumented app. Moreover, we ask the user to enable the
OS-option “Unknown sources: Allow installation of apps from sources other than
the Play Store”. Due to these two user interactions, no root privileges are required
for AppGuard.

All Android apps need to be signed with a developer key. Since our rewriting
process breaks the original signature, we sign the modified app with a new key.
However, apps signed with the same key can access each other’s data if they
declare so in their manifests. Thus, rewritten apps are signed with keys based on
their original signatures in order to preserve the intended behavior. In particular,
two apps that were originally signed with the same key, are signed with the same
new key after the rewriting process.

Finally, due to the different signature, instrumented apps would no longer
receive automatic updates, which may negatively impact device security. There-
fore, AppGuard assumes the role of the Play Store app and checks for updates of
instrumented apps. If a new version is found, AppGuard prompts to download
the app package, instrument it, and replace the existing version of the app.

5 Experimental Evaluation

In this section we present the results of our experimental evaluation. It reports
robustness and performance results of our instrumentation and evaluates the
effectiveness of AppGuard in different case studies. For the evaluation we used a
Google Galaxy Nexus smartphone with Android 4.1.2, a dual-core 1.2 GHz ARM
CPU from Texas Instruments (OMAP 4460), and 1GB RAM. The off-the-phone
evaluation was conducted on a notebook with an Intel Core i5-2520M CPU (2.5
GHz, two cores, hyper-threading) and 8GB RAM.

Table 4. Robustness of rewriting and monitoring

App Market Apps Stable Dex verified Stable Instr.

Google Play 9508 8783 9508 (100%) 8744 (99.6%)
SlideMe 15974 14590 15974 (100%) 14469 (99.1%)

Total 25482 23373 25482 (100%) 23213 (99.3%)

5.1 Robustness

To evaluate the robustness of our approach, we tested AppGuard on more than
25,000 apps from two different app markets and report the results in Table 4. The
stability of the original apps is tested using the UI/Application Exerciser Monkey
provided by the Android framework with a random seed and 1000 injected events
(third column). To evaluate the robustness of the rewriting process we check the
validity of the generated dex file (fourth column) and test the stability of the
instrumented app using the UI Monkey with the random seed (fifth column).
Note that we only consider the stability of instrumented apps where the original
version did not crash.

The reported numbers indicate a very high reliability of the instrumentation
process: we found no illegal dex file and over 99% of the stable apps were also
stable after the instrumentation. The majority of the remaining 1% does not
handle checked exceptions gracefully (e.g. IOException), which may be thrown
by AppGuard when suppressing a function call. This bad coding style is not
found in popular apps. Other apps terminate when they detect a different app
signature. In rare cases, the mock values returned by suppressed function calls
violate an invariant of the program. Note, however, that our test with the UI
Monkey does not check for semantic equivalence.

5.2 Performance

AppGuard modifies apps installed on an Android device by adding code at the
bytecode level. We analyze the time it takes to rewrite an app and its impact on
both size and execution time of the modified app.

Table 5 provides an overview of our performance evaluation for the rewriting
process. We tested AppGuard with 15 apps and list the following results for each
of the apps: size of the original app package (Apk), size of the classes .dex file,
and the duration of the rewriting process both on the laptop and smartphone
(PC and Phone, respectively).

The size of the classes .dex file increases on average by approximately 3.7 Kb.
This increase results from merging code that loads the monitor package into the
app. Since we perform callee-site rewriting and load the our external policies
dynamically, we only have this static and no proportional increase of the original
dex file.

For a few apps (e.g. Angry Birds) the instrumentation time is dominated
by re-building and compressing the app package file (which is essentially a zip

Table 5. Sizes of apk and dex files with rewriting time on PC and phone.

App (Version) Size [Kb] Time [sec]
Apk Dex PC Phone

Angry Birds (2.0.2) 15018 994 5.8 39.3
APG (1.0.8) 1064 1718 0.7 10.1
Barcode Scanner (4.0) 508 352 0.1 2.6
Chess Free (1.55) 2240 517 0.3 4.2
Dropbox (2.1.1) 3252 869 0.5 10.2
Endomondo (7.0.2) 3263 1635 0.7 16.6
Facebook (1.8.3) 4013 2695 1.2 26.4
Instagram (1.0.3) 12901 3292 3.0 44.3
Post mobil (1.3.1) 858 1015 0.2 5.8
Shazam (3.9.0) 3904 2642 1.2 26.1
Tiny Flashlight (4.7) 1287 485 0.1 2.9
Twitter (3.0.1) 2218 764 0.3 8.9
Wetter.com (1.3.1) 4296 958 0.4 10.7
WhatsApp (2.7.3581) 5155 3182 0.8 27.7
Yuilop (1.4.2) 4879 1615 0.8 19.7

Table 6. Runtime comparison with micro-benchmarks for normal function calls and
guarded function calls with policies disabled as well as the introduced runtime overhead.

Function Call Original Call Guarded Call Overhead

Socket-><init>() 0.0186 ms 0.0212 ms 21.4%
ContentResolver->query() 19.5229 ms 19.4987 ms 0.8%
Camera->open() 74.498 ms 79.476 ms 6.4%

archive). The evaluation also clearly reveals the difference in computing power
between the laptop and the phone. While the rewriting process takes consider-
ably more time on the phone than on the laptop, we argue that this should not
be a major concern as the rewriter is only run once per app.

The runtime overhead introduced by the inline reference monitor is mea-
sured through micro-benchmarks (cf. Table 6 .) We compare the execution time
of single function calls in three different settings: the original code with no instru-
mentation, the instrumented code with disabled policies (i.e. policy enforcement
turned off.), and the incurred overhead. We list the average execution time for
each function call.

For all function calls the instrumentation adds a small runtime overhead due
to additional code. If we enabled policies, the changed control flow usually leads
to shorter execution times and renders them incomparable. Even with disabled
policies the incurred runtime overhead is negligible and does not adversely affect
the app’s performance.

5.3 Case Study Evaluation

The conceptual design of AppGuard focuses on flexibility and introduces a va-
riety of possibilities to enhance Android’s security features. In this section, we
evaluate our framework on several case studies by applying different policies to
real world apps from Google’s app market Google Play [30]. As a disclaimer, we
would like to point out that we use apps from the market for exemplary purposes
only, without implications regarding their security unless we state this explicitly.

For our evaluation, we implemented 9 different policies. Five of them are de-
signed to revoke critical Android platform permissions, in particular the Internet
permission (InternetPolicy), access to camera and audio hardware (CameraPolicy,
AudioPolicy), and permissions to read contacts and calendar entries (ContactsPolicy,
CalendarPolicy). Furthermore, we introduce a complex policy that tracks possi-
ble fees incurred by untrusted applications (CostPolicy). The HttpsRedirectPolicy
and MediaStorePolicy address security issues in third-party apps and the OS. Fi-
nally, the ReflectionPolicy described in section 4.6 monitors invocations of Java’s
Reflection API and an app-specific policy. In the following case studies, we high-
light 7 of these policies and evaluate them in detail on real-world apps.

Our case studies focus on (a) the possibility to revoke standard Android
permissions. Additionally, it is possible to (b) enforce fine-grained permissions
that are not supported by Android’s existing permission system, and, (c) to
enforce complex and stateful policies based on the current execution trace. Our
framework provides quick-fixes and mitigation for vulnerabilities both in (d)
third-party apps and (e) the operating system7. Finally, we present a general
security policy that is completely independent of Android’s permission system.

(a) Revoking Android permissions. Many Android applications request
more permissions than necessary for achieving the intended functionality. A
prominent example is the Internet permission android.permission.INTERNET,
which allows sending and receiving arbitrary data to and from the Internet. Al-
though the majority of apps request this permission, it is not required for the core
functionality of an app in many cases. Instead, it is often just used for providing
in-app advertisements. At the same time, overly curious apps that, e.g., upload
the user’s entire contact list to their servers, and even Trojan horses are recently
reported on a regular basis. Unfortunately, users cannot simply add, revoke, or
configure permissions dynamically at a fine-grained level. Instead, users have to
decide at installation time whether they accept the installation of the app with
the listed permissions or they reject them with the consequence that the app
cannot be installed at all.

AppGuard overcomes this unsatisfactory all-or-nothing situation by giving
users the chance to safely revoke permissions at any time at a fine-grained level.
We aim at a “safe” revocation of permissions, so that applications with revoked

7 By providing policy recommendations based on a crowdsourcing approach, even
laymen users can enforce complex policies (e.g. to fix OS vulnerabilities)

permissions will not be terminated by a runtime exception. To this end, we care-
fully provide proper mock return values instead of just blocking unsafe function
calls [37]. We tested the revocation of permissions on several apps, of which we
highlight two in the following.
Case study: Twitter. As an example for the revocation of permissions, we chose
the official app of the popular micro-blogging service Twitter. It attracted atten-
tion in the media [45] for secretly uploading phone numbers and email addresses
stored in the user’s address book to the Twitter servers. While the app “offi-
cially” requests the permissions to access both Internet and the user’s contact
data, it did not indicate that this data would be copied off the phone. As a result
of the public disclosure, the current version of the app now explicitly informs
the user before uploading any personal information.

We can stop the Twitter app from leaking any private information by com-
pletely blocking access to the user’s contact list. The contact data is used as part
of Twitter’s “Find friends” feature that makes friend suggestions to new users
based on information from their address book. Since friends can also be added
manually, AppGuard leverages the ContactsPolicy to protect the user’s privacy
at the cost of losing only minor convenience functionality. The actual policy
enforcement is done by monitoring queries to the ContentResolver, which serves
as a centralized access point to Android’s various databases. Data is identified
by a URI, which we examine to selectively block queries to the contact list by
returning a mock result object. Our tests were carried out on an older version
of the Twitter app, which was released prior to their fix.
Case study: Tiny Flashlight. The core functionality of the Tiny Flashlight app
is to provide a flashlight, either using the camera’s LED flash, or by turning
the whole screen white. At installation time, the app requests the permissions
to access the Internet and the camera. Manual analysis indicates that the In-
ternet permission is only required to display online advertisements. However, in
combination with the camera permission this could in principle be abused for
spying purposes, which would be hard to detect without further detailed code
or traffic analysis. AppGuard can block the Internet access of the app with the
InternetPolicy(cf. section 4.2 and Fig. 7), which, in this particular case, has the
effect of an ad-blocker. We monitor constructor calls of the various Socket classes,
the java .net.url .openConnection() method as well as several other network I/O
functions, and throw an IOException if access to the Internet is forbidden.

Apart from the Internet permission, users might not easily see why the cam-
era permission is required for this app. Here, our analysis indicates that – de-
pending on the actual smartphone hardware – the flashlight can in some cases
be accessed directly, while in others only via the camera interface. Although re-
questing this permission seems to be benign for this app, our approach offers the
possibility to revoke camera access. We enforce the CameraPolicy by monitor-
ing the android.hardware.Camera.open() method. The policy simulates hardware
without a camera by returning a null value. The Tiny Flashlight app gracefully
handles the revocation of the camera permission by falling back to the screen-
based flashlight solution.

(b) Enforcing fine-grained permissions. Besides the revocation of existing
permissions, it is also possible to design fine-grained permissions that restrict
the access of third-party apps. These permissions can add new restrictions to a
functionality that is not yet limited by the current permission system and to a
functionality that is already protected, but not in the desired way. Here, again,
the Internet permission is a good example. From the user’s point of view, most
apps should only communicate with a limited set of servers.

The wetter.com app provides weather information and should only commu-
nicate with its servers to query weather information. The InternetPolicy of App-
Guard provides fine grained Internet access enabling a consequent white-listing
of web servers on a per-app basis. For this particular app we restrict Internet
access with regular-expression-based white-listing: ^(.+\.)?wetter\.com$. Similar
to the Tiny Flashlight app, no more advertisements are shown while the app’s
core functionality is preserved. White-listing can be configured in the manage-
ment interface by selecting from a list of hosts the app has attempted to connect
to in the past.

(c) Enforcing complex and stateful policies. Using AppGuard it is also
possible to implement complex stateful policies, e.g. to limit the number of text
messages or phone calls to premium numbers, or to block Internet access after
sensitive information like contacts or calendar entries has been accessed.

The Post mobil app provided by the German postal service offers the pos-
sibility to buy stamps online via premium service calls or text messages. To
limit cost incurred by this app, AppGuard tracks these numbers and provides
the CostPolicy that limits the number of possible charges. We monitor the rel-
evant function calls for sending text messages and for making phone calls,
e.g. android.telephony.SmsManager.sendTextMessage(). In order to monitor phone
calls, it is necessary to track so-called Intents, Android’s message format for
inter- and intra-app communication. Intents contain two parts, an action to be
performed and parameter data encoded as URI. For example, intents that start
phone calls have the action ACTION_CALL. We track intents by monitoring
intent dispatch methods like android.app.Activity. startActivity (Intent).

(d) Quick-fixes for vulnerabilities in third-party apps. Some applica-
tions still transmit sensitive information over the Internet via the http protocol.
Although most apps use encrypted https for the login procedures to web servers,
there are still some applications that return to unencrypted http after success-
ful login, thereby transmitting their authentication tokens in plain text over
the Internet. Attackers could eavesdrop on the connection to impersonate the
user [39].

The Endomondo Sports Tracker uses the https protocol for the login pro-
cedure only and returns to the http protocol afterwards, thereby leaking the
unencrypted authentication token. As the Web server supports https for the
whole session, the HttpsRedirectPolicy of AppGuard enforces the usage of https

connections throughout the session (cf. Fig. 8), which protects the user’s ac-
count and data from identity theft. Depending on the monitored function, we
either return the redirected https connection, or the content from the redirected
connection.

(e) Mitigation for operating system vulnerabilities. We also found our
tool useful to mitigate operating system vulnerabilities. As we cannot change
the operating system itself, we instrument all applications with a global security
policy to prevent exploits.
Case study: Access to photos without permission. A recent example of an oper-
ating system vulnerability is the lack of protection of user photos on Android
phones. Any app can access these photos on the phone without any permission
check [10]. Together with the Internet permission, an app could copy all photos
to arbitrary servers on the Internet. This was demonstrated by a proof-of-concept
exploit that – disguised as an inconspicuous timer app [31] – uploads the user’s
personal photos to a public photo sharing site.

Android stores photos in a central media store, that can be accessed via the
ContentResolver object, similar to contact data in the first case study. Leveraging
the MediaStorePolicy, we block access to the stored photos, thereby successfully
preventing the exploit.
Case study: Local cross-site scripting attack. Similar to the mitigation of the
photo access bug, it is also possible to fix security vulnerabilities in core applica-
tions that cannot be instrumented directly. The Android browser that comes with
all devices is vulnerable to a local cross-site scripting attack [3] up to Android
version 2.3.4. If the Android browser receives VIEW intents with a javascript :
URI, they are loaded in the currently active window. Consequently, the Java-
Script code given in the intent will be executed in the context of the current web
site, which leads to a local cross-site scripting vulnerability.

This attack can be mitigated by disallowing this combination of intents. The
InternetPolicy monitors startActivity (Intent) calls and throws an exception if
the particular intent is not allowed. The same approach can be leveraged to
preclude third-party apps with no Internet permission from using intents with
an http/https URI to send data to arbitrary servers on the Internet.

(f) Enforcing secure passphrases. APG is a public key encryption tool for
Android that is capable of encrypting/decrypting files and emails via OpenPGP.
It also offers the option to generate the key pairs used for encryption. While the
tool prevents the user from generating keys without a passphrase, it does allow
any non-empty passphrase to be used. AppGuard is able to enforce a policy that
puts security requirements on the passphrase, such as having a minimum length
or being comprised of a certain set of characters. To this end, we intercept the
method responsible for creating new key pairs, check whether the passphrase
entered meets the minimum requirements specified in the policy, and show an
error message if the requirements are not met. Thus, the user can only complete
the key generation step if he provides a passphrase allowed by the policy. Note

Table 7. Ratio of apps using native code

App Market Overall Games No games
Apps Nat. code Apps Nat. code Apps Nat. code

Google Play 9508 2212 (23%) 2838 1110 (39%) 6670 1102 (16%)
SlideMe 15974 1693 (10%) 5920 1244 (21%) 10054 449 (4.5%)

Total 25482 3905 (15%) 8758 2354 (26%) 16724 1551 (9.2%)

that this is an app-specific policy that defines joinpoints in the app code and not
in the Android libraries as did the policies discussed before. In a similar fashion,
we could enforce other security properties for the key pairs generated by APG,
e.g. a minimum key size or the use of a specific algorithm.

5.4 Threats to Validity
Like in any IRM system, AppGuard’s monitor runs within the same process as
the target app. This makes it vulnerable to attacks from malicious apps that
try to bypass or disable the security monitor. Our instrumentation technique
is robust against attacks from Java code, as this code is strongly typed. It can
handle cases like reflection or dynamically loaded libraries. However, a malicious
app could use native code to disable the security monitor by altering the refer-
ences we modified or tamper with the AppGuard’s bytecode instructions or data
structures. To prevent this, we could block the execution of any untrusted native
code by intercepting calls to System.loadLibrary(), which is, however, not a viable
solution in practice. Currently, AppGuard warns the user if an app attempts to
execute untrusted native code.

In order to assess the potential impact of native code on our approach, we
wanted to confirm our assumption that only a small percentage of apps rely on it.
Our evaluation on 25,000 apps revealed that about 15% include native libraries
(cf. Table 7), which is high compared to the 5% of apps reported in [50]. We
conjecture that this difference is due to the composition of our sample. It consists
of 30% games, which on Android frequently build upon native code based game
engines (e.g., libGDX or Unity) to improve performance. Ignoring games, we
found only 9% of the apps to be using native code, which makes AppGuard a
safe solution for over 90% of these apps.

AppGuard monitors the invocation of security-relevant methods, which are
typically part of the Android framework API. By reimplementing parts of this
API and directly calling into lower layers of the framework, a malicious app
could circumvent the security monitor. This attack vector is always available
to attackers in IRM systems that monitor method invocations. Furthermore,
AppGuard is not designed to be stealthy: due to the resigning of apps, instru-
mentation transparency cannot be guaranteed. There are many apps that verify
their own signature (e.g. from the Amazon AppStore). If they rely on Android
API to retrieve their own signature, however, AppGuard can hook these func-
tions to return the original signature, thus concealing its presence. An app could

also detect the presence of AppGuard by looking for the presence of AppGuard
classes in the virtual machine. In the end, both of these attacks boil down to an
arms race, that a determined attacker will win. Up to now, we did not detect
any app that tried to explicitly circumvent AppGuard.

Our instrumentation approach relies only on the layout of Dalvik’s internal
data structure for methods, which has not changed since the initial version of
Android. However, our instrumentation system could easily be adapted if the
layout were to change in future versions of Android.

5.5 Discussion

The presented framework solves a pressing security problem of the Android
platform. Coarse-grained and static policies like the access control mechanism
of Android open the door for silent privacy violations and Trojan horses, as the
user never sees what an app actually does with the requested permissions. Our
fine-grained dynamic policies can be used to restrict the permissions of an app to
those required to achieve the expected app behavior. As AppGuard denies access
to certain functionality according to security policies, it may prevent proper
functionality of an app. Policies use a best-effort approach to keep the program
running even if security policies are violated by returning dummy values instead
of e.g. null. We cannot guarantee, however, that security-breaking programs
maintain their expected behavior.

AppGuard’s log informs about all denied method calls and may contain the
value of significant parameters. Granting access to those calls that are necessary
with restrictions on parameters (like accessible host names) will eventually lead
to a minimal set of permissions that fulfills the privacy and security needs of
a user while at the same time retaining the intended functionality. On top of
generic policies for permission-revocation we offer app-specific policies that can
even specify secret values to be kept inaccessible. We are currently implementing
the automatic conversion of policies specified in SOSPoX into Java classes that
monitor the app.

We demonstrate that our solution is practical, as the runtime overhead and
the increase in package sizes are negligible. The actual runtime overhead obvi-
ously depends on the complexity of the policy. However, when a policy denies
access, the program will in general take a different execution path that usually
leads to shorter times. The user experience does not suffer from rewriting the
app. In particular, we did not notice any delays using the rewritten app. The
rewriting process proceeds fast even on the limited hardware of a mobile phone.
The rewriting time is already reasonable, but we still see a large potential for
reducing this time with some optimizations.

Android programs are multi-threaded by default. Issues of thread safety could
therefore arise in the monitor when considering stateful policies that take the
relative timing of events in different threads into account. While we did not yet
experiment with such policies, we plan to extend our system to support race-free
policies [13] in the future. In contrast, policies that atomically decide whether
to permit a method call are also correct in the multithreaded setting.

6 Further Related Work

Since the release of Android in 2008, researchers have worked on various security
aspects of this operating system and proposed many security enhancements.

One line of research [9, 19, 20, 29, 44] targets the detection of privacy leaks
and malicious third-party apps. Another line of work analyzed Android’s per-
mission based access control system. Barrera et al. [4] conducted an empirical
analysis of Android’s permission system on 1,100 Android apps and suggested
improvements to its granularity. Felt et al. [25] analyzed the effectiveness of app
permissions using case studies on Google Chrome extensions and Android apps.
The inflexible and coarse-grained permission system of Android inspired many
researchers to propose extensions [21, 32, 41–43]. Conti et al. [12] integrate a
context-related policy enforcement mechanism to the Android software stack.
Fragkaki et al. [27] recently presented an external reference monitor approach to
enforce coarse grained secrecy and integrity policies called SORBET. In contrast,
our intention was to deploy the system to unmodified stock Android phones.

Another open problem of the Android system is the lack of completeness of its
documentation. Using automated testing techniques Felt et al. [24] show that the
mapping of permissions to API-calls is only insufficiently documented. Even for
honest developers it is quite difficult to implement apps according to the principle
of least privilege. Their analysis showed that roughly one-third of the tested
apps were over-privileged. Vidas et al. [48] assist Eclipse developers to follow
the principle of least privilege when programming Android apps. Further, some
papers focus on problems arising from inter-app communication like privilege
escalation attacks and the confused deputy problem [7,8, 14,17,26].

The concept of inlined reference monitors has received considerable attention
in the literature. It was first formalized by Erlingsson and Schneider in the devel-
opment of the SASI/PoET/PSLang systems [22,23], which implement IRM’s for
x86 assembly code and Java bytecode. Several other IRM implementations for
Java followed. Polymer [6] is a IRM system based on edit automata, which sup-
ports composition of complex security policies from simple building blocks. The
Java-MOP [11] system offers a rich set of formal policy specification languages.
IRM systems have also been developed for other platforms. Mobile [36] is an
extension to Microsoft’s .NET Common Intermediate Language (CIL) that sup-
ports certified inlined reference monitoring. Finally, the S3MS.NET Run Time
Monitor [16] enforces security policies expressed in a variety of policy languages
for .NET desktop and mobile applications on Windows phones.

In our previous work [47] we presented the initial idea for diverting method
calls in the Dalvik VM with a rudimentary implementation for micro-benchmarks
only. It did not support a policy language, secrecy requirements, and on-the-
phone instrumentation. Further, it did not include case studies. A recent tool
paper [2] presented a previous version of AppGuard based on caller-site instru-
mentation.

7 Conclusions

We presented a practical approach to enforce high-level, fine-grained security
policies on stock android phones. It is built upon a novel approach for callee-
site inline reference monitoring and provides a powerful framework for enforc-
ing arbitrary security and secrecy policies. Our system instruments directly on
the phone and allows automatic updates without losing user data. Most promi-
nently, the system curbs the pervasive overly curious behavior of Android apps.
We enforce complex stateful security policies and mitigate vulnerabilities of both
third-party apps and the OS. AppGuard goes even one step beyond and allows
efficient protection of secret data from misuse in untrusted apps. Our experi-
mental analysis demonstrates the robustness of the approach and shows that
the overhead in terms of space and runtime are negligible. The case studies illus-
trate how AppGuard prevents several real-world attacks on Android. A recent
release of AppGuard has already been downloaded by more than 1,000,000 users.

8 Acknowledgments

This work was supported by the German Ministry for Education and Research
(BMBF) through funding for the Center for IT-Security, Privacy and Account-
ability (CISPA) and both the initiative for excellence and the Emmy Noether
program of the German federal government. Further, we would like to thank
Bastian Könings for pointing us to interesting Android apps.

References

1. Android.com: Security and Permissions (2012), http://developer.android.com/
guide/topics/security/security.html

2. Backes, M., Gerling, S., Hammer, C., Maffei, M., von Styp-Rekowsky, P.: App-
Guard - Enforcing User Requirements on Android Apps. In: Proc. 19th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2013) (2013), to appear.

3. Backes, M., Gerling, S., von Styp-Rekowsky, P.: A Local Cross-Site Scripting
Attack against Android Phones (2011), http://www.infsec.cs.uni-saarland.de/
projects/android-vuln/android_xss.pdf

4. Barrera, D., Kayacık, H.G., van Oorschot, P.C., Somayaji, A.: A Methodology
for Empirical Analysis of Permission-Based Security Models and its Application
to Android. In: Proc. 17th ACM Conference on Computer and Communication
Security (CCS 2010). pp. 73–84 (2010)

5. Bauer, L., Ligatti, J., Walker, D.: A Language and System for Composing Security
Policies. Tech. Rep. TR-699-04, Princeton University (January 2004)

6. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with polymer. In:
Proc. ACM SIGPLAN 2005 Conference on Programming Language Design and
Implementation (PLDI 2005). pp. 305–314 (2005)

7. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R.: XManDroid: A
New Android Evolution to Mitigate Privilege Escalation Attacks. Tech. Rep. TR-
2011-04, Technische Universität Darmstadt - Cased (2011)

http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://www.infsec.cs.uni-saarland.de/projects/android-vuln/android_xss.pdf
http://www.infsec.cs.uni-saarland.de/projects/android-vuln/android_xss.pdf

8. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.: To-
wards Taming Privilege-Escalation Attacks on Android. In: Proc. 19th Annual
Network and Distributed System Security Symposium (NDSS 2012) (2012)

9. Chaudhuri, A., Fuchs, A., Foster, J.: SCanDroid: Automated Security Certification
of Android Applications. Tech. Rep. CS-TR-4991, University of Maryland (2009),
http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf

10. Chen, B.X., Bilton, N.: Et Tu, Google? Android Apps Can Also Secretly Copy
Photos (2012), http://bits.blogs.nytimes.com/2012/03/01/android-photos/

11. Chen, F., Roşu, G.: Java-MOP: A Monitoring Oriented Programming Environment
for Java. In: Proc. 11th International Conference on Tools and Algorithms for
the construction and analysis of systems (TACAS 2005). vol. 3440, pp. 546–550.
Springer-Verlag (2005)

12. Conti, M., Nguyen, V.T.N., Crispo, B.: CRePE: Context-Related Policy Enforce-
ment for Android. In: Proc. 13th International Conference on Information Security
(ISC 2010). pp. 331–345 (2010)

13. Dam, M., Jacobs, B., Lundblad, A., Piessens, F.: Security Monitor Inlining and
Certification for Multithreaded Java. Mathematical Structures in Computer Sci-
ence (2011)

14. Davi, L., Dmitrienko, A., Sadeghi, A.R., Winandy, M.: Privilege Escalation Attacks
on Android. In: Proc. 13th International Conference on Information Security (ISC
2010). pp. 346–360 (2010)

15. Davis, B., Sanders, B., Khodaverdian, A., Chen, H.: I-ARM-Droid: A Rewriting
Framework for In-App Reference Monitors for Android Applications. In: Mobile
Security Technologies 2012 (MoST 12) (2012)

16. Desmet, L., Joosen, W., Massacci, F., Naliuka, K., Philippaerts, P., Piessens, F.,
Vanoverberghe, D.: The S3MS.NET Run Time Monitor. Electron. Notes Theor.
Comput. Sci. 253(5), 153–159 (Dec 2009)

17. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: QUIRE: Lightweight
Provenance for Smart Phone Operating Systems. In: Proc. 20th Usenix Security
Symposium (2011)

18. von Eitzen, C.: Apple: Future iOS release will require user permission for apps to
access address book (February 2012), http://h-online.com/-1435404

19. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: An Information-Flow Tracking System for Realtime Privacy Moni-
toring on Smartphones. In: Proc. 9th Usenix Symposium on Operating Systems
Design and Implementation (OSDI 2010). pp. 393–407 (2010)

20. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A Study of Android Applica-
tion Security. In: Proc. 20th Usenix Security Symposium (2011)

21. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: Proc. 16th ACM Conference on Computer and Communication
Security (CCS 2009). pp. 235–245 (2009)

22. Erlingsson, Ú., Schneider, F.B.: IRM Enforcement of Java Stack Inspection. In:
Proc. 2002 IEEE Symposium on Security and Privacy (Oakland 2002). pp. 246–
255 (2000)

23. Erlingsson, U., Schneider, F.B.: SASI enforcement of security policies: a retrospec-
tive. In: Proc. of the 1999 workshop on New security paradigms (NSPW 1999). pp.
87–95 (2000)

24. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android Permissions Demys-
tified. In: Proc. 18th ACM Conference on Computer and Communication Security
(CCS 2011) (2011)

http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf
http://bits.blogs.nytimes.com/2012/03/01/android-photos/
http://h-online.com/-1435404

25. Felt, A.P., Greenwood, K., Wagner, D.: The Effectiveness of Application Permis-
sions. In: Proc. 2nd Usenix Conference on Web Application Development (Web-
Apps 2011) (2011)

26. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission Re-
Delegation: Attacks and Defenses. In: Proc. 20th Usenix Security Symposium. pp.
Want to prevent permission re–delegation attacks. (2011)

27. Fragkaki, E., Bauer, L., Jia, L., Swasey, D.: Modeling and Enhancing Android’s
Permission System. In: Proc. 17th European Symposium on Research in Computer
Security (ESORICS 2012) (2012)

28. Gibler, C., Crussel, J., Erickson, J., Chen, H.: AndroidLeaks: Detecting Privacy
Leaks in Android Applications. Tech. Rep. CSE-2011-10, University of California
Davis (2011)

29. Gilbert, P., Chun, B.G., Cox, L.P., Jung, J.: Vision: Automated Security Validation
of Mobile Apps at App Markets. In: Proc. 2nd International Workshop on Mobile
Cloud Computing and Services (MCS 2011 (2011)

30. Google Play (2012), https://play.google.com/store
31. Gootee, R.: Evil Tea Timer (2012), https://github.com/ralphleon/EvilTeaTimer
32. Grace, M., Zhou, Y., Wang, Z., Jiang, X.: Systematic Detection of Capability Leaks

in Stock Android Smartphones. In: Proc. 19th Annual Network and Distributed
System Security Symposium (NDSS 2012) (2012)

33. Gruver, B.: Smali: A assembler/disassembler for Android’s dex format, http://
code.google.com/p/smali/

34. Hamlen, K.W., Jones, M.: Aspect-oriented in-lined reference monitors. In: Proc.
3rd ACM SIGPLAN Workshop on Programming Languages and Analysis for Se-
curity (PLAS 2008). pp. 11–20 (2008)

35. Hamlen, K.W., Jones, M.M., Sridhar, M.: Chekov: Aspect-oriented Runtime Moni-
tor Certification via Model-checking. Tech. Rep. UTDCS-16-11, University of Texas
at Dallas (May 2011)

36. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Certified In-lined Reference Mon-
itoring on .NET. In: Proc. 1st ACM SIGPLAN Workshop on Programming Lan-
guages and Analysis for Security (PLAS 2006). pp. 7–16 (2006)

37. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: ”These Aren’t the
Droids You’re Looking For”: Retrofitting Android to Protect Data from Imperious
Applications. In: Proc. 18th ACM Conference on Computer and Communication
Security (CCS 2011) (2011)

38. Jeon, J., Micinski, K.K., Vaughan, J.A., Reddy, N., Zhu, Y., Foster, J.S., Mill-
stein, T.: Dr. Android and Mr. Hide: Fine-grained security policies on unmodified
Android. Tech. Rep. CS-TR-5006, University of Maryland (December 2011)

39. Könings, B., Nickels, J., Schaub, F.: Catching AuthTokens in the Wild - The Inse-
curity of Google’s ClientLogin Protocol. Tech. rep., Ulm University (2011), http:
//www.uni-ulm.de/in/mi/mi-mitarbeiter/koenings/catching-authtokens.html

40. Ligatti, J., Bauer, L., Walker, D.: Edit Automata: Enforcement Mechanisms for
Run-time Security Policies. International Journal of Information Security 4(1–2),
2–16 (2005)

41. Nauman, M., Khan, S., Zhang, X.: Apex: Extending Android Permission Model
and Enforcement with User-defined Runtime Constraints. In: Proc. 5th ACM Sym-
posium on Information, Computer and Communication Security (ASIACCS 2010).
pp. 328–332 (2010)

42. Ongtang, M., Butler, K.R.B., McDaniel, P.D.: Porscha: policy oriented secure con-
tent handling in Android. In: Proc. 26th Annual Computer Security Applications
Conference (ACSAC 2010). pp. 221–230 (2010)

https://play.google.com/store
https://github.com/ralphleon/EvilTeaTimer
http://code.google.com/p/smali/
http://code.google.com/p/smali/
http://www.uni-ulm.de/in/mi/mi-mitarbeiter/koenings/catching-authtokens.html
http://www.uni-ulm.de/in/mi/mi-mitarbeiter/koenings/catching-authtokens.html

43. Ongtang, M., McLaughlin, S.E., Enck, W., McDaniel, P.: Semantically Rich
Application-Centric Security in Android. In: Proc. 25th Annual Computer Security
Applications Conference (ACSAC 2009). pp. 340–349 (2009)

44. Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H.: Paranoid Andoird: Ver-
satile Protection For Smartphones. In: Proc. 26th Annual Computer Security Ap-
plications Conference (ACSAC 2010). pp. 347–356 (2010)

45. Sarno, D.: Twitter stores full iPhone contact list for 18 months, af-
ter scan (February 2012), http://articles.latimes.com/2012/feb/14/business/
la-fi-tn-twitter-contacts-20120214

46. Schneider, F.B.: Enforceable Security Policies. ACM Transactions on Information
and System Security 3(1), 30–50 (2000)

47. von Styp-Rekowsky, P., Gerling, S., Backes, M., Hammer, C.: Callee-site Rewriting
of Sealed System Libraries. In: International Symposium on Engineering Secure
Software and Systems (ESSoS’13). LNCS, Springer (2013), to appear.

48. Vidas, T., Christin, N., Cranor, L.F.: Curbing Android Permission Creep. In: Proc.
Workshop on Web 2.0 Security and Privacy 2011 (W2SP 2011) (2011)

49. Xu, R., Saïdi, H., Anderson, R.: Aurasium – Practical Policy Enforcement for
Android Applications. In: Proc. 21st Usenix Security Symposium (2012)

50. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, You, Get Off of My Market: De-
tecting Malicious Apps in Official and Alternative Android Markets. In: Proc. 19th
Annual Network and Distributed System Security Symposium (NDSS 2012) (Feb
2012)

http://articles.latimes.com/2012/feb/14/business/la-fi-tn-twitter-contacts-20120214
http://articles.latimes.com/2012/feb/14/business/la-fi-tn-twitter-contacts-20120214

	AppGuard – Fine-grained Policy Enforcement for Untrusted Android Applications
	Introduction
	AppGuard
	Policies
	Architecture
	Experimental Evaluation
	Further Related Work
	Conclusions
	Acknowledgments

