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Abstract

The main subject of this thesis is the geometry of the Hurwitz space Hg,k. We
give a computer-aided proof of the unirationality of Hg,k in the cases k = 6
and 5 ≤ g ≤ 31 or g = 34, 35, 36, 39, 40, 45 and k = 7 and 6 ≤ g ≤ 12. We show
along examples for small values of g that our approach also covers the clas-
sically known cases of the unirationality of Hg,k for k ≤ 5. As an immediate
conclusion from our result we obtain the unirationality of the Severi variety
Vg,d for g ≤ 13 and d = d2/3g + 2e.
We consider two applications of this result for k = 6. First we study hexago-
nal curves with a view towards the theory of Gorenstein ideals of codimen-
sion 4. In the cases covered by the unirationality construction we consider
the general hexagonal canonical curve as subvariety of the rational normal
scroll of dimension 5 which is spanned by the special linear series and show
that it has the expected syzygies.
In the second application we utilize the unirationality construction for the
case g = 10 to prove the existence of stable Ulrich bundles of rank 3 on a
general cubic hypersurface in P4. In this context we give a computer-aided
proof of the vanishing of cohomology groups of certain extensions.

Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Geometrie des Hurwitzraumes
Hg,k. Wir geben einen computergestützten Beweis der Unirationalität von
Hg,k in den Fällen k = 6 und 5 ≤ g ≤ 31 oder g = 34, 35, 36, 39, 40, 45 sowie
k = 7 und 6 ≤ g ≤ 12 und zeigen exemplarisch an kleinen Werten für g,
dass unser Ansatz auch die klassischen Fälle der Unirationalität von Hg,k für
k ≤ 5 abdeckt. Als unmittelbare Folgerung unseres Ergebnisses erhalten wir
die Unirationalität der Severi-Varietät Vg,d für g ≤ 13 und d = d2/3g + 2e.
Wir betrachten zwei Anwendungen des Resultates für k = 6. Zunächst unter-
suchen wir die hexagonalen Kurven im Hinblick auf die Theorie von Goren-
stein Idealen von Kodimension 4. Wir zeigen in den durch die Konstruk-
tion abgedeckten Fällen, dass die allgemeine hexagonale kanonische Kurve,
aufgefasst als Untervarietät des 5-dimensionalen rationalen Scrolls, welcher
von der speziellen Linearschar aufgespannt wird, die erwarteten Syzygien
besitzt.
In der zweiten Anwendung nutzen wir die Unirationalitätskonstruktion für
g = 10 zum zum Nachweis der Existenz stabiler Ulrichbündel von Rang 3
auf einer allgemeinen kubischen Hyperfläche in P4. Weiterhin geben wir
in diesem Zusammenhang einen computergestüzten Beweis zur Verschwin-
dung von Kohomologiegruppen von bestimmten Extensionen.
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1 Introduction and Outline of the Results

The Hurwitz Space

The main subject of this thesis is the study of the geometry of the Hurwitz
space Hg,k. This space parametrizes simply branched k-sheeted covers of
the projective line P1 by smooth curves of genus g.

It was Riemann in his famous work [Rie57] who developed the idea to ex-
press curves in this way in order to count their number of moduli. Since then
the Hurwitz spaces played a crucial role in the understanding of the moduli
of curves.
A simply branched cover f : C → P1(C) has precisely ω = 2g + 2k + 2
distinct branch points Q1, . . . , Qω which together with the monodromy ac-
tion of the fundamental group π1(P1(C) r {Q1, . . . , Qω}) on the sheets de-
termine f uniquely. Hurwitz [Hur91] showed that the resulting finite map
Hg,k → Symω(P1(C)) r ∆ is an unramified covering. Together with a com-
binatorial study of the fibers by Clebsch [Cle72] this shows that Hg,k is a
smooth and connected hence irreducible quasi-projective variety. This re-
sult was later generalized to any characteristic p > g + 1 by Fulton [Ful69].
The natural forgetful map π : Hg,k →Mg relates the geometry of the Hurwitz
space to the one of the moduli space Mg of curves of genus g. A particularly
interesting case is when this map is dominant which happens as soon as
k ≥ (g + 2)/2. An immediate consequence is that Mg is also irreducible and
Riemanns count can be regarded as determining the dimension of Hg,k and
the fiber dimension of π. On the other hand, for k < d(g + 2)/2e, a general
element in Hg,k admits exactly one special pencil, hence Hg,k maps bira-
tionally onto the locus M 1

g,k of k-gonal curves in Mg These subvarieties form
a stratification of the moduli space, see [Far01]:

M 1
g,2 ⊂M 1

g,3 ⊂ . . . ⊂Mg.

Recall that a variety V unirational if there is a dominant rational map from
some projective space PN 99K V . It is desirable to have a unirational moduli
space since this allows a parametrization of the objects in free parameters in
terms of the rational map. A classical result due to B. Segre [Seg28] asserts
that for k ≥ 3 the general k-gonal curve of genus g can be realized as a plane
curve of certain degree n with an (n − k)-fold point and δ ordinary double
points and no other singularities. In [AC81] Arbarello and Cornalba proved
that in the cases where the linear system L(n; (n − k)p, 2q1, . . . , 2qδ) is not

1



INTRODUCTION AND OUTLINE OF THE RESULTS

empty for a general choice of points p, q1, . . . , qδ the general curve in this
system is irreducible and has precisely the singularities as desired. With the
well-known result on hyperelliptic curves understood they obtain in this way
that

Hg,k is unirational for


k ≤ 5 and g ≥ k − 1,

k = 6 and 5 ≤ g ≤ 10 or g = 12,

k = 7 and g = 7.

(1.1)

As a consequence, Mg is also unirational for g ≤ 10. We want to mention
that the unirationality of Mg was in stages extended with different methods
by Sernesi, Chan and Ran and finally Verra to all cases g ≤ 14.

For a projective algebraic variety V the Kodaira dimension κ(V ) is a bi-
rational invariant that measures ”how rational” V is. It is defined to be the
largest dimension of the image of a desingularization Ṽ of V under the pluri-
canonical map |nKṼ | for n� 0. If V is a unirational variety then this implies
κ(V ) = −∞. On the other extreme when κ(V ) equals the dimension of V
which is the maximal possible value then V is said to be of general type and
there is no rational curve through a general point of V .

In [HM82] Mumford and Harris constructed the space of admissible covers
H g,k which is a modular compactification of the Hurwitz space and enjoys
the property that there is a map π : H g,k → M g extending the map π to
the moduli space M g of stable curves of genus g. In a sequence of papers
Mumford and Harris [HM82], Harris [Har84], Eisenbud and Harris [EH87]
and Farkas [Far09] showed that M g is of general type for g = 22 or g ≥ 24.
This implies that

H g,k is not unirational for g = 22 or g ≥ 24 and k ≥ [(g + 2)/2] . (1.2)

In the light of these classical results it is an interesting question to determine
in the range between (1.1) and (1.2) the birational type of Hg,k, resp. M 1

g,k,
and moreover, to ask when this space is unirational.

The Main Result

The main result of this work is the following theorem.

Theorem 1.3. Hg,k is unirational for

(i) k = 6 and 5 ≤ g ≤ 31 or g = 33, 34, 35, 36, 39, 40, 45,

(ii) k = 7 and 6 ≤ g ≤ 12.

Our basic strategy is to consider a curve C in Hg,k under the embedding
C → P1 × P2 which is given by the special pencil of degree k and a linear
series g2

d of certain degree d and to study this algebro-geometric situation.
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For most of the cases in (i) our parametrization is based on the observation
that a general 6-gonal curve inP1×P2 can be linked in two steps to the union
of a rational curve and a collection of lines. It turns out that for small genera
this process can be reversed by starting with a general rational curve and
general lines. The remaining cases are constructed in a different way. Under
some reasonable assumptions the truncated vanishing ideal has a resolution
of length 3 and the curve can be recovered from a module associated to this
resolution. In a similar way we also regain, in principle, the classical results
for curves of gonality k = 3, 4, 5.

In many unirationality proofs the laborious part is usually to show that the
parametrization in focus is dominant. We simplify this step by the use of
computer algebra. To show that the described constructions yield a domi-
nant map to the Hurwitz space, we only need to carry out the construction
for a single curve over a finite field. This computation is passed to Macaulay2
[GS]. Semicontinuity then ensures that all assumptions we made actually
hold for an open dense subset of Hg,k in characteristic zero.

The unirationality of the 7-gonal curves of genera 11 and 12 yields another
proof of the unirationality of Mg for theses cases. Taking also into account
the result by Chang and Ran [CR84] on the existence of a unirational com-
ponent in the Hilbert scheme of spatial models of genus 13 curves which
dominates M13 and using that the embedding line bundle is Brill-Noether
dual to a plane model, we obtain the following statement.

Corollary 1.4. The Severi-Variety Vd,g of plane irreducible nodal curves of
genus g and degree d =

⌈
2
3g + 2

⌉
is unirational for g ≤ 13.

The main result is presented in the first two chapters of this thesis.

Unirational Subvarieties of Hg,6.

There is an intrinsic way to express elements in Hg,k as Gorenstein ideals
of codimension k + 1 which arises as follows. For k ≥ 3 and an element
f : C → P1 in Hg,k, C not hyperelliptic, we consider the canonical embed-
dingC ⊂ Pg−1. The divisors in the pencilH0(f∗OP1(1)) sweep out a rational
normal scrollX ⊂ Pg−1 containing the curve. The well understood structure
theory for Gorenstein ideals of codimension≤ 3 allows an alternate proof of
the unirationality of Hg,k for k ≤ 5, see [Sch86]. For example, in the case
k = 5 the resolution of IC/X is described by the Buchsbaum-Eisenbud com-
plex [BE77]. The unirational parametrization is given by the free choice of
the entries of a certain skew-symmetric matrix whose pfaffians form a set of
generators of IC/X .

Although there is no general structure theory for Gorenstein Ideals of codi-
mension ≥ 4, one is led to ask whether an analogous construction can be
found at least for curves of higher gonality.
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INTRODUCTION AND OUTLINE OF THE RESULTS

We consider for k = 6 the Gulliksen-Negard complex [GN72] which re-
solves certain Gorenstein ideals of codimension 4. The explicit description
of hexagonal curves in computer algebra allows the study of the curves on
the scroll in the canonical embedding. We obtain the following computa-
tional result

Theorem 1.5. For g as in Theorem 1.3 (i), the general 6-gonal curve, consid-
ered as curve on the associated rational normal scroll, does not admit a reso-
lution by a Gulliksen-Negard complex.

Restricting to direct sums of line bundles, we obtain the following state-
ment.

Theorem 1.6. For g = 2m + 1, m ≥ 2 there is a unirational subvariety of
V ⊂ Hg,6 of dimension 3m + 9 with the property that the generic element,
considered as curve on the associated rational normal scroll, is resolved by a
Gulliksen-Negard complex.

Stable Ulrich Bundles on Cubic Threefolds

The last chapter of this work focusses on ACM bundles. These are vector
bundles with no intermediate cohomology groups. More precisely, we focus
on such ACM bundles which have the maximal possible number of global
sections, called Ulrich bundles. Horrocks theorem characterizes the ACM
bundles on projective space as precisely those bundles that split as a direct
sum of line bundles. Thus, it is interesting to ask for Ulrich bundles as they
are – informally speaking – the ”simplest” vector bundles a projective variety
can have.

There are numerous results on the existence of Ulrich sheaves (possibly
of high rank) on certain classes of varieties, e.g. arbitrary curves, Veronese
embeddings, del Pezzo surfaces and Segre products of varieties that admit
Ulrich sheaves [ESW03], complete intersections [HUB91] and Fano varieties
[PL10]. However, in general the following problem remains unsolved.

Problem 1.7. Does every variety X ⊂ Pn have an Ulrich sheaf? If so, what is
the smallest possible rank for such a sheaf?

We want to mention that Eisenbud and Schreyer conjecture that the an-
swer to the first part of this problem is affirmative. This is motivated by Boij-
Soederberg theory as the existence of an Ulrich sheaf implies that the cone
of cohomology tables of coherent sheaves of the variety equals the one of the
projective space. The connection between Ulrich bundles and curves is es-
tablished by the Serre correspondence. It is classically known that a general
cubic threefold X ⊂ P4 contains an elliptic normal curve which yields the
existence of rank 2 stable Ulrich bundles on X. We utilize our construction
for k = 6 and g = 10 to prove the following theorem.

4



Theorem 1.8. On the general cubic threefold Y ⊂ P4 there exists a stable
Ulrich bundle of rank 3.

Moreover, the unirationality enters in the proofs of a number of vanish-
ing theorems for certain cohomology groups for curves on the general cu-
bic threefold which are rather technical so we do not formulate them here.
These results are a crucial ingredient to the proof of the following theorem.

Theorem 1.9 (Casanellas, G., Hartshorne, Schreyer). For any r ≥ 2, the mod-
uli space of stable rank r Ulrich bundles on a general cubic threefold Y in P4

is non-empty and smooth of dimension r2 + 1. Furthermore, it has an open
subset for which the restriction to a hyperplane section gives an unramified
dominant map to the moduli of stable bundles on the cubic surface.

Publications and Software Packages

The first two chapters are in parts based on the paper

• F. Geiß: The Unirationality of Hurwitz Spaces of 6-gonal curves of small
genus, Doc. Math. 17 (2012), 627 – 661.

The last chapter is based on

• F. Geiß and F.-O. Schreyer: ACM curves of small degree on cubic three
folds, Appendix to the paper M. Casanellas, R. Hartshorne: Stable Ul-
rich bundles. Int. J. Math. 23.

The software for Macaulay2 developed in the course of this work will be
part of the randomCurves-packages which implements various unirational-
ity constructions for moduli spaces of curves. This package will be available
through upcoming releases of Macaulay2.

• H.C. von Bothmer, F. Geiß and F.-O. Schreyer: Random Curves. A collec-
tion of Macaulay2 packages for the construction of curves, manuscript
in preparation.

A current version of these packages is also available at [vBGS13].

Notation

If not otherwise mentioned, we work over an arbitrary field k of characteris-
tic 0 with emphasis on the case of complex numbers. In our computational
approaches we will also work over some finite fields which, by semicontinu-
ity arguments, will lead to analogous results in characteristic 0.

5





2 Preliminaries

This chapter is devoted to the development and presentation of the theory
required to formulate and prove our main results. Section 1 sketches the
construction of the Hurwitz space, the main object in focus. In Section 2
we summarize important results from Brill-Noether theory on linear series
on algebraic curves and develop a criterium for the irreducibility of certain
plane curves. In Section 3 we turn to our setup in multiprojective space and
consider multigraded free resolutions. In Section 4 we turn to the construc-
tion of modules over standard multigraded rings. Section 5 reviews the re-
quired theory of linkage in the setting of curves in P1 ×P2.

2.1 The Hurwitz Space: Construction and Properties.

Let us recall the construction of the Hurwitz space and its elementary prop-
erties. We follow [ACG11, § 21.11]. We will work in this section over the com-
plex numbers.

Simply Branched Covers. Let C be a smooth curves of genus g. A k-sheeted
covering

f : C → P1

is called simply branched if for every ramification point P ∈ C the ramifica-
tion index eP = length(ΩC/P1)P + 1 = 2 and no two ramification points lie
over the same point of P1. The divisor

Rf =
∑
P∈C

(eP − 1).P ∈ Div(C)

is called the ramification divisor of f and the divisor

Bf = f∗(Rf ) ∈ Div(P1)

is called the branch divisor of f . By the Riemann-Hurwitz formula

w := deg(Bf ) = 2k + 2g − 2.

As f is simply branchedBf is the sum ofw distinct points. Thus we can think
of Bf as an element in the open subscheme Pw = Symw(P1) r ∆ where

7



PRELIMINARIES

Q

Q1

Q2

Qw

σ1

σ2

σw

Figure 2.1: Generators of the fundamental group π1(Q,P1 r {Q1 . . . , Qw}).

∆ denotes the closed subscheme of points in Symw(P1) with at least two
identical summands.

The Hurwitz Space. The key idea in the construction of the Hurwitz space
is to identify a simply branched covering with its branch divisor and some
additional combinatorial data. For an element B = Q1 + . . .+Qw ∈ Pw let

Hg,k(B) = {f : C → P1k-sheeted simply branched with Bf = B}/ ∼

where two simply branched coverings f ∼ f ′ if there is an isomorphism of
curves φ : C → C ′ such that the following diagram commutes:

C C ′

P1

φ

f f ′

For a fixed point Q ∈ P1 outside of the support of B we consider the system
of generators σ1, . . . , σw of π = π1(Q,P1r{Q1 . . . , Qw}) as sketched in Figure
2.1. For a simply branched k-sheeted covering f : C → P1 with Bf = B the
fiber f−1(Q) is a reduced scheme of length k. For a point P ∈ f−1(Q) a loop
σ ∈ π has a unique lifting to C r Rf with starting point P and endpoint
Pσ ∈ f−1(Q). In this way we define the monodromy action

µf : π →
〈

Permutations of f−1(Q)
〉
, σ 7→ {P 7→ Pσ}.

8



The Hurwitz Space: Construction and Properties.

Thus, fixing a numeration of the points in the fiber f−1(Q) we can associate
to an element f ∈ Hg,k(B) a group homomorphism from π into the sym-
metric group Sn. This map is canonical up to inner automorphism (i.e. up
to enumerating the points in a different way). Hence, we obtain a map

Hg,k(B)→ Homext(π,Sn). (2.1)

where the right hand side is the group of homomorphisms π → Sn up to
conjugation with elements in Sn.

Theorem 2.2 (Riemanns Existence Theorem). The map (2.1) is injective. Its
image consists of those classes which are induced by irreducible representa-
tions ξ such that τi = ξ(σi) is a transposition for i = 1, . . . , w and

∏
τi = 1.

Hence, Hg,k(B) can be identified with the subset Gg,k of Sn consisting of
tuples of conjugacy classes (τ1, . . . , τw) of transpositions τi which generate a
transitive subgroup of Sn and satisfy

∏
τi = 1. We define the Hurwitz space

on the level of sets as
Hg,k :=

∐
B∈Pw

Hg,k(B).

In other words, the fibers of the natural map Hg,k → Pw can be identified
with the finite set Gg,k. Hence, Hg,k can be equipped with structure of a
smooth complex manifold.

Theorem 2.3 (Lüroth, Clebsch, Hurwitz). Hg,k is connected.

Sketch of Proof. The idea of the proof is to show that for a given branch divi-
sorB = b1 + . . .+ bw ∈ Pw the fundamental group π1(Pw, B) acts transitively
on the fiber Hg,k(B) under the map Hg,k → Pw. More precisely, we consider
the subgroup generated by the paths

Γi = b1 + . . .+ bi−1 + γi(t) + γ′i(t) + bi+2 + . . .+ bw

in Pw where γi, γ′i : [0, 1] → P1 r {b1, . . . , bi−1, bi+2, . . . , bw} are paths with
γi(0) = γ′i(1) = bi and γi(1) = γ′i(0) = bi+1. It is easy to see that Γi acts on
elements in Gg,k in the following way:

Γi · (τ1, . . . , τw) = (τ1, . . . , τi−1, τiτi+1τi, τi, τi+2, . . . τw).

Finally, a combinatorial calculation shows that the orbit of any element un-
der the actions of the Γi contains the element

((12), (12), . . . , (12)︸ ︷︷ ︸
2g+2 times

, (23), (23), (34), (34), . . . , (k − 1 k), (k − 1 k)).

9



PRELIMINARIES

Corollary 2.4. The Hurwitz space Hg,k is a smooth quasi-projective variety of
dimension 2g + 2k − 5.

2.2 Brill-Noether Theory

In this section we resume the central facts of the theory of linear series on
algebraic curves. In our exposition we follow [ACGH85].

The Brill-Noether Loci. Let C be a smooth curve of genus g. A linear series
grd on C is a datum (L , V ) consisting of a line bundle L ∈ Picd(C) on C
of degree d together with a vector space V ⊂ H0(C,L ) of dimension r + 1.
A grd is base point free if the sections in V do not have a common zero. In
this case the grd gives rise to a map C → Pr = PV by mapping a point x ∈
C to the hyperplane of all sections vanishing in x. The Brill-Noether locus
parametrizes those line bundles on C that admit a grd. It can be defined on
the level of sets as

W r
d (C) = {L ∈ Picd(C) | h0(L ) ≥ r + 1}.

We can equip this set with a scheme structure as follows. We fix a Poincaré
line bundle L of degree d for C, i.e. a universal line bundle on C × Picd(C),
and an effective divisor E on C of sufficiently large degree m. We denote
with ν : C × Picd(C) → Picd(C) the projection onto the second factor. By
[ACGH85, Ch. IV §3], the Brill-Noether locus can be realized as the degener-
acy locus of the natural map of vector bundles

γ : ν∗L(E × Picd(C))→ ν∗(L(E × Picd(C))/L)

where ν∗L(E × Picd(C)) and ν∗(L(E × Picd(C))/L) are of rank d+m− g + 1
and m, respectively. Thus, we have a natural scheme structure

W r
d (C) = Xm+d−g−r(γ).

From this definition, we see that the ”expected dimension” of W r
d (C) is the

Brill-Noether number

ρ(g, r, d) = g − (r + 1)(g − d+ r). (2.5)

Moreover, a study of the local geometry of the Brill-Noether locus yields the
following accessible criterion for smoothness at a given point L .

Theorem 2.6. Let C be a smooth curve of genus g.

(i) Let L ∈W r
d (C) rW r+1

d (C). The tangent space to W r
d (C) at L is

TLW
r
d (C) = (im µL )⊥

10



Brill-Noether Theory

where
µL : H0(C,L )⊗H0(C,ωC ⊗L −1)→ H0(C,ωC)

is the Petri-map. Hence, W r
d (C) is smooth of dimension ρ at L if and

only if µL is injective.

(ii) Let L be a point of W r+1
d (C). Then

TLW
r
d (C) = TL Picd(C).

In particular, if W r
d (C) has the expected dimension ρ and r > d−g then

L is a singular point of W r
d (C).

Proof. [ACGH85, Proposition 4.2].

The definition of W r
d (C) allows also to determine its fundamental class in

Picd(C) using Porteous formula. Let θ denote the class of the theta divisor in
the cohomology ring of Picd(C) ∼= J(C).

Theorem 2.7. Let C be a smooth curve of genus g such that W r
d (C) is either

empty or of expected dimension ρ. Then its fundamental class is given by

[W r
d (C)] =

r∏
α=0

α!

(g − d+ r + α)!
θ(r+1)(g−d+r).

Proof. [ACGH85, Ch. VII, Proposition 4.4].

Linear Series on the k-gonal Curve. Let us note that in most cases the presence
of a special pencil on the curve does not affect the geometry of the Brill-
Noether loci in a pathological way.

Theorem 2.8 (Coppens, Martens). Let C be a general k-gonal curve of genus
g and r, d positive integers such that d − g < r ≤ k − 2 and ρ(g, r, d) ≥ 0.
Then the Brill-Noether locusW r

d (C) has an irreducible component of expected
dimension ρ(g, r, d). A general element of this component is base point free.

Proof. [CM99].

In particular, we see that for k ≥ 4 the general k-gonal curve of genus g has
an expected plane model of degree d =

⌈
2
3g + 2

⌉
.

Plane Models of Curves. We recall the following result on minimal resolu-
tions of points in the plane.

Proposition 2.9. Let ∆ be a collection of δ general points in P2 and let k be
maximal under the condition ε = δ −

(
k+1

2

)
≥ 0. Then the minimal free

resolution of O∆ is of the form

0→ G → F → OP2 → O∆ → 0

11



PRELIMINARIES

with locally free sheaves

(i) F = O(−k)k+1−ε and G = O(−k − 1)k−2ε ⊕ O(−k − 2)ε if 2ε ≤ k,

(ii) F = O(−k)k+1−ε ⊕ O(−k − 1)2ε−k and G = O(−k − 2)ε else.

Proof. [Gae51].

We also note the following simple but useful criterion for the irreducibility
of plane curves. For this, recall that a variety over a field k is called absolutely
irreducible if it is irreducible as a variety over the algebraic closure k.

Proposition 2.10. Let C be a reduced plane curve of degree d with δ ≤ d(d−3)
2

ordinary double points and no other singularities. If the singular locus ∆ ofC
has a resolution as in Proposition 2.9 then C is absolutely irreducible.

Proof. Assume that C decomposes into two curves C1 and C2 of degree d1

and d2 defined by homogeneous polynomials f1 and f2. By assumption, C1

andC2 intersect transversely in d1·d2 distinct points and we have δ−d1d2 ≥ 0.
First, we reduce to the case d1, d2 ≤ k + 1 where k =

⌈
(
√

9 + 8δ − 3)/2
⌉

is the
minimal degree of generators of I∆.

Assume f1, say, has degree strictly larger than k + 1. As C1 ∩ C2 ⊂ ∆ we
have I∆ ⊂ (f1, f2). Since I∆ is minimally generated in degree k and k + 1 we
already have I∆ ⊂ (f2) which would imply C2 ⊂ ∆, absurd.

Now, to exclude the case d1, d2 ≤ k + 1 we compute a lower bound for
dimension of the space of homogeneous polynomials of degree k passing
through ∆. A polynomial of the form sf1 + tf2 of degree k lies in I∆ if it
vanishes at the remaining δ − d1d2 points. Hence,

h0(I∆(k)) ≥
(
k − d1 + 2

2

)
+

(
k − d2 + 2

2

)
− δ + d1d2

=

(
k + 2

2

)
− δ +

[(
k + 2

2

)
+

(
d− 1

2

)
− (dk + 1)

]

On the other hand, h0(I∆(k)) = k + 1− ε =
(
k+2

2

)
− δ. The assumption on δ

and d implies d ≥ k + 3. Setting d = k + 3 + r we compute(
k + 2

2

)
+

(
d− 1

2

)
− (dk + 1) =

1

2
r2 +

3

2
r + 1 ≥ 1,

contradiction.

Proposition 2.11. Let C be a smooth curve of genus g ≥ 3 with |D| a base
point free g2

d, d =
⌈

2g
3 + 2

⌉
, such that the image of C under the associated

map is a plane curve with δ =
(
d−1

2

)
− g ordinary double points and no other

singularities. If the singular locus ∆ has a resolution as in Proposition 2.9 then
|D| is a smooth point in W 2

d (C).

12
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Proof. By adjunction, the Petri map for O(D) can be identified with

H0(P2,O(1))⊗H0(P2,I∆(d− 4))→ H0(P2,I∆(d− 3)).

Under the given assumptions the minimal degree of generators of I∆ is pre-
cisely k = d − 4. As 2ε = 4

⌈
2g
3

⌉
− 2g − 2 ≥

⌈
2g
3

⌉
− 2 = k we are in case

(ii) of (2.9). It follows that the Petri map is injective since there are no linear
relations among the generators I∆ of degree k.

2.3 Resolutions in Multiprojective Space

We turn to resolutions of sheaves and modules in multiprojective space. In
analogy to graded free resolutions in projective space we can study multi-
graded resolutions of modules over the Cox ring of cartesian products of pro-
jective spaces. We answer the question which line bundles should occur in
a multigraded resolution of a coherent sheaf by writing down a generating
set of the bounded derived category using Beilinson’s monads. We will make
use of this when studying linkage and resolutions of ideal sheaves of curves
in P1 ×P2 in forthcoming sections.

Line Bundles and Cohomology. Let n1, . . . , nk be a list of positive integers. We
abbreviate

P := Pn1 × . . .×Pnk = P(V1)× . . .×P(Vk).

Let πi : P → Pni denote the projection onto the i-th factor. For an integer
vector a := (a1, . . . ak) we set

OP(a) := OPn1 (a1)� . . .� OPnk (ak) = π∗1OPn1 (a1)⊗ . . .⊗ π∗nOPnk (ak).

Then Pic(P) = {OP(a) | a ∈ Zk} = Zk. The cohomology of the line bundles
on P can be computed with the Künneth formula.

Proposition 2.12 (Künneth Formula). Let F and G be coherent sheaves on
projective schemes X and Y , respectively. Then

Hk(X × Y,F � G ) =
⊕
i+j=k

Hi(X,F )⊗Hj(Y,G ).

Proof. [Kem80, Section 4].

Remark 2.13. We note for later reference that the intermediate cohomology
groups of a line bundle on P = P1 ×P2 decompose as

H1(P,OP(a, b)) = H1(P1,OP1(a))⊗H0(P2,OP2(b))

13
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and
H2(P,OP(a, b)) = H0(P1,OP1(a))⊗H2(P2,OP2(b)).

We also need the following formulation for locally free sheaves.

Corollary 2.14. Let F1,G1 be locally free sheaves onX and let F2,G2 be locally
free sheaves on Y . Then

Extk(F1 � G1,F2 � G2) ∼=
⊕
i+j=k

Exti(F1,G1)⊗ Extj(F2,G2)

Proof. As the projections onto the factors are flat we have

Extk(F1 �F2,G1 � G2) = Extk(OX×Y , (F
∨
1 ⊗ G1)� (F∨2 ⊗ G2)).

Multigraded Beilinson Monads. Recall that the objects of the bounded de-
rived category Db(X) of a scheme X are bounded complexes of coherent
sheaves on X and the morphisms are maps of complexes which are iden-
tified if homotopic. Two complexes are isomorphic if there exists a quasi-
isomorphism between them. Thus a coherent sheaf F on X (considered
as complex concentrated in a single cohomological degree) and any finite
resolution or monad of F are isomorphic objects in Db(X). For a rigorous
definition and a proof of the existence ofDb(X) we refer to [GM03].

Definition 2.15. A collection (E0, . . . ,En) of coherent sheaves on X is called a
full strongly exceptional collection if the following conditions are satisfied

1. Hom(Ek,Ej) = 0 for j < k and Exti(Ek,Ej) = 0 for all k, j and i ≥ 1,

2. E0, . . . ,En generateDb(X).

In general, it is a challenging question to determine whether there is a fully
strong exceptional sequence for a given scheme X, see for example [Kap88].
Beilinson’s classical result [Beı̆78] asserts that {OPn(−i)}ni=1 and {ΩiPn(i)}ni=1

are full strongly exceptional sequences for Pn. We can generalize this result
to multiprojective space. To this end, note that ΩP = π∗1ΩPn1 ⊗ . . .⊗π∗nΩPnk ,
so it makes sense to define similarly

Ωa
P(a) := Ωa1Pn1 (a1)� . . .� ΩanPnk (an)

for any vector a = (a1, . . . , ak) of non-negative integers.

Lemma 2.16. Let a,b ∈ Zk with 0 ≤ ai, bi ≤ ni for all i = 1, . . . , k and let
j > 0. Then

Hom(OP(−a),OP(−b)) =
⊗k

i=1 Symai−bi(Vi)

Extj(OP(−a),OP(−b)) = 0

14
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and
Hom(Ωa

P(a),Ωb
P(b)) =

⊗k
i=1

∧ai−bi(V ∗i )

Extj(Ωa
P(a),Ωb

P(b)) = 0.

Proof. We use Corollary 2.14 to reduce the statements to a single factor. Let
Pn = P(V ). The statements for the sheaves OPn(−a) are trivial to check. For
the remaining statements consider the short exact sequences

0→ Ωa(a)→
a∧
V ⊗ OPn → Ωa−1(a)→ 0

arising from the Koszul complex (see [Eis95, Chapter 17.5]).

Proposition 2.17 (Resolution of the Diagonal). The diagonal ∆ in P×P has
the following locally free resolution

0→ OP(n)�Ωn
Pn(n)→ . . .→

⊕
|a|=j
a≥0

OP(a)�Ωa
Pn(a)→ . . .→ OP×P → O∆ → 0

where n = (n1, . . . , nk).

Proof. Recall that the diagonal O∆i on Pni ×Pni has a locally free resolution

0→ OPni (−ni)� Ωni

Pni (ni)→ . . .

. . .→ OPni (−1)� Ω1
Pni (1)→ OPni×Pni → O∆i

→ 0

If ρi : P×P→ Pni ×Pni denotes the projection then

O∆ = ρ∗1O∆1 ⊗ . . .⊗ ρ∗nO∆r .

Hence, the product of the pullbacks of the resolutions of the O∆i resolves
O∆. Reordering of the factors completes the proof.

Theorem 2.18 (Beilinson). The sequences

BI = { OP,OP(−1, 0, . . . , 0), . . . ,OP(−n1, 0 . . . , 0),
. . .
OP(0,−n2, . . . ,−nk), . . . ,OP(−n1,−n2, . . . ,−nk) }

and

BII = { ΩP,Ω
(1,0,...,0)
P (1, 0, . . . , 0), . . . ,Ω

(n1,0,...,0)
P (n1, 0 . . . , 0),

. . .

Ω
(0,n2,...,nk)
P (0, n2, . . . , nk), . . . ,Ω

(n1,n2,...,nk)
P (n1, n2, . . . , nk) }

form full strongly exceptional collections for P, respectively.

15
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Proof. By Lemma 2.16, it remains only to show that BI and BII generate
Db(P). From the resolution of the diagonal we see that O∆ and thus any
object of the form O∆ ⊗ Lπ∗2F for F ∈ Ob(Db(P)) lies in the fully triangu-
lated subcategory of Db(P × P) which is generated by sheaves of the form
Ωa(a)�G for G ∈ Ob(Db(P)). Applying the projection formula we see that

F = Rπ1∗(O∆ ⊗ Lπ∗2F ).

Thus F belongs to the subcategory generated by the Ωa(a). An analogous
argument for objects O∆ ⊗ Lπ∗1F yields the result for BI .

Let F be a coherent sheaf on P. Recall that a monad for F is a bounded
complex of coherent sheaves K• : . . . → K−1 → K0 → K1 → . . . with coho-
mology

Hi(K•) =

{
F if i = 0

0 else.

Theorem 2.18 states that there are monads for F whose terms are direct
sums of elements in BI and BII respectively. Let us turn this in a more ex-
plicit statement by identifying the Betti numbers of these monads with cer-
tain cohomology groups associated to F .

Theorem 2.19 (Beilinson Monads). For any coherent sheaf F on P there exist
monadsK•I andK•II which are unique up to homotopy with terms

KiI ∼=
⊕
j∈Z

⊕
|a|=j

Hi+j(P,F ⊗ Ωa
P(a))⊗ OP(−a)

and
KiII ∼=

⊕
j∈Z

⊕
|a|=j

Hi+j(P,F ⊗ OP(−a))⊗ Ωa(a).

Proof. We will prove the statement forK•I and leave the analogous argument
for the second monad to the interested reader. Clearly, by what has been
shown before, there is a monad K•I for F whose terms are direct sums of
copies of OP, . . . ,OP(−n1, . . . ,−nk), i.e. KiI =

⊕
a∈Zk O(−a)βi,a . To identify

the Betti numbers βi,a of K•I we consider the spectral sequences ′E and ′′E
which approximate the hypercohomology of the complex K•I ⊗ Ωa

P(a), see
[GM03, Ch. III.7]. These spectral sequences have E2 pages

′Epq2 = Hp(P, Hq(K•I ⊗ Ωa(a)))
′′Epq2 = Hq(Hp(P,K•I ⊗ Ωa(a)))

As Ωa
P(a) is locally free the only non vanishing cohomology of the tensored

complex is H0(K•I ⊗ Ωa(a)) = F ⊗ Ωa
P(a). Thus ′E collapses on the second
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page with

′Epq2 = ′Epq∞ =

{
Hp(P,F ⊗ Ωa

P(a)) if q = 0

0 else.

Next, note that by the Künneth formula we have

dimkH
p(P,KiI ⊗ Ωa(a)) =

{
βi,a if p = |a|
0 else.

We can assume that all maps of the form OP(−a)βi,a → OP(−a)βi+1,a in K•I
are zero. Indeed, if this is not the case we obtain by Gaussian elimination a

direct sum of trivial complexes 0 → OP(−a)
1−→ OP(−a) → 0. The quotient

K̃•I ofK•I by these complexes is again a monad for F . Thus, ′′E also collapses
on the second page with

′′Epq∞ = ′′Epq2 =

{
Hp(KqI ⊗ Ωa(a)) if p = |a|
0 else

Finally, we get hp(F ⊗ Ωa(a)) = hj(Kp−j ⊗ Ωa(a)) = βp−j,a which concludes
the proof.

Remark 2.20. The Beilinson monads for a coherent sheaf F on Pn = P(V )
can be obtained by applying certain functors on a doubly infinite complex
T(F ) defined over the exterior algebra

∧
(V ∗). T(F ) is called the Tate res-

olution of F and it turns out to be suitable object for the construction of
F in many cases, see [EFS03] and [DE02]. However, there seems to be no
straightforward generalization to multigraded cases.

Problem 2.21. Find an appropriate counterpart of the Tate resolution for the
cases of coherent sheaves on weighted projective space and multiprojective
space.

Multigraded Hilbert Series. We denote by

R =
⊕
a∈Zk

H0(P,OP(a)) ∼= k[x10, . . . , x1n1
, . . . , xk0, . . . , xknk

]

the Cox ring of P. R is naturally Zk-graded with deg(xij) = ei ∈ Zk for all 1 ≤
i ≤ k and 0 ≤ j ≤ ni. Let M =

⊕
a∈Zn Ma be a finitely generated Zk-graded

module over R. Then M admits a multigraded minimal free resolution

0→ Fr → . . .→ F1 →M → 0

with finitely generated free modules Fi =
⊕

a∈Zk R(−a)βi,a . The minimal
resolution F• is uniquely determined up to isomorphisms of graded com-

17
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plexes. Thus, the dimensions of the graded pieces βi,a depend only on M .
They are called the (multigraded) Betti numbers of M . The formal Laurent
series

HM :=
∑
a∈Zk

dimk(Ma) · sa ∈ Q[[s1, . . . , sk]][s−1
1 , . . . , s−1

k ].

is called multigraded Hilbertseries of M . The following well-known result
shows in which way HM encodes the Betti numbers of M .

Lemma 2.22. The Hilbert series factors as

HM =
HNM∏k

i=1(1− si)ni+1

with numerator

HNM =
∑
a∈Zn

(
r∑
i=0

(−1)iβi,a

)
sa.

The Laurent polynomial HNM is called the Hilbert numerator of M .

Proof. The Hilbert series of R is

∑
a∈Zk

≥0

(
k∏
i=1

(
ni + ai
ni

))
sa =

1∏k
i=1(1− si)ni+1

.

and for a free module F =
⊕m

i=j R(−aj)βaj we have

HF =

m∑
i=j

βaj
HR(−aj) =

∑m
j=1 βaj

saj∏k
i=1(1− si)ni+1

.

From the definition of the Hilbert series it is easy to see that

HM =

r∑
i=1

(−1)iHFi

where HFi
denotes the Hilbert series of the i-th term in the minimal free

resolution of M . From this the result follows immediately.

As M is finitely generated, we may assume by shifting degrees that M is
generated in non-negative degrees in which case HNM is a polynomial. Un-
der the assumption that M has a natural resolution, i.e. for all a ∈ Zn there
is at most one i with βi,a 6= 0, we can read off the Betti numbers from the
Hilbert numerator. In particular, it is then possible to explicitly compute the
Betti numbers if the Hilbert function hM of M is known. To this end, we

18
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consider for a sufficiently large r � 0 the polynomial

H̃M =
∑

a∈Zk,|a|≤r

hM (a)sa.

The product of H̃M with the denominator of HM can be written as

H̃M ·
k∏
i=1

(1− si)ni+1 = HNM + P

where P involves only terms of degree strictly larger than r.

2.4 Divided Powers and Macaulays Inverse System

Macaulay [Mac94] introduced the concept of describing modules over the
polynomial ring as annihilators under the partial derivative or contraction
action. In this section we develop the theory of inverse systems for modules
over standard multigraded rings. In our treatment we follow the descriptions
of Eisenbud [Eis95], Iarrobino and Kanev [IK99] and Kunte [Kun08].

Divided Power Algebra. As before, let R = k[x10, . . . , x1n1
, . . . , xk0, . . . , xknk

]
denote the multigraded Cox ring ofP = Pn1×. . .×Pnk with degrees deg(xij) =
ei ∈ Zk for i = 1, . . . , k and j = 1, . . . , nk. Let D denote the graded dual of R,
that is

D =
⊕
a∈Zk

Homk(Ra,k) =
⊕
a∈Zk

D−a.

Let us fix some notation. For a multi-tuple of non-negative integers A =
(A1, . . . , Ak) = ((a10, . . . , a1n1), . . . , (ak0, . . . , aknk

)) we write

|A| = (|A1|, . . . , |Ak|) = (

n1∑
j=0

a1,j , . . . ,

nk∑
j=0

ak,j)

and abbreviate xA = xa1010 · · ·x
a1n1
1n1
· · ·xaknk

knk
. For the k-basis {xA | |A| = a}

of Ra we denote by {X [A] | |A| = a} the dual basis of D−a. Moreover, we
extend the notation to arbitrary integer values by setting X [A] = 0 if one
of the aij < 0. If char(k) = 0 then a ring structure on D is given by the
multiplication

X [A] ·X [B] =
(A+B)!

A!B!
X [A+B].

Equipped with this multiplication D is called the divided power algebra.

Remark 2.23. Eisenbud [Eis95, Appendix A2] gives a more conceptual ap-
proach to the algebra structure which allows to extend the algebra structure
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to any field.

Definition 2.24. For all a,b ∈ Nk
0 we define the contraction map

◦ : Ra ×D−b → D−b+a, (ϕ, f) 7→ ϕ ◦ f =

{
0 for b < a,

ψ 7→ f(ϕψ) else.

The contraction map equips the divided power algebra D with the struc-
ture of a graded R-module, hence the negativ grading. Note that D is not
finitely generated as an R-module.

Example 2.25. Let R = k[x0, x1] be the coordinate ring of P1 and consider
ϕ = x0 + 2x1 and f = X2

0 +X0X1 +X2
1 . Then ϕ ◦ f = 3X0 + 3X1.

Remark 2.26. If char k = 0 then the contraction map is up to scalars equiv-
alent to the action of R on D as higher partial differential operators, i.e. for
ϕ ∈ R and f ∈ D we consider the action given by ϕ( ∂

∂X10
, . . . , ∂

∂Xknk

)f . In

more detail, for any multivectors A,B with aij ≥ bij we have

xB ◦X [A] = X [A−B] =
1∏

ij(aij − bij)!
· ∂b10

∂b10X10
. . .

∂bnnk

∂bnnkXnnk

X [A].

Macaulays Inverse System. We now turn to the description of modules. To
this end we extend the contraction map to a pairing of modules in the fol-
lowing way.

Definition 2.27. Let a1, . . . ,ar ∈ Zk be a collection of degrees and consider
the modules F =

⊕r
i=1D(ai) and G =

⊕r
i=1R(−ai).

(i) We define the pairing of R-modules

F ×G→ D, f, ϕ 7→ 〈f, ϕ〉 :=

n∑
i=1

ϕi ◦ fi.

(ii) For a submodule N ⊂ F we define the annihilator of N in R as

AnnR(N) := {ϕ ∈ G | 〈f, ϕ〉 = 0 for all f ∈ N} ⊂ G.

(iii) For a submodule M ⊂ G we define the inverse system of M as

M⊥ := {f ∈ F | 〈f, ϕ〉 = 0 for all ϕ ∈M} ⊂ F.

As the pairing defined in (i) is R-linear, the annihilator AnnR(N) is a R-
module. AssumeN ⊂ F is finitely generated as aR-module. Then a minimal
system of generators P 1, . . . , P s ∈ F of N can be regarded as the columns of
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a matrix P ∈ HomR

(⊕r
j=1R(bj), G

)
with P (ej) = P j . In this case we also

write AnnR(P ) := AnnR(N).

Modules of Finite Length. If M is a module over R of finite length, then the
graded dual Homk(M,k) is finitely generated as an R-module. Following
Kunte [Kun08], we consider minimal systems of generators

r⊕
i=1

R(ai)
α−→M → 0

and
s⊕
j=1

R(−bj)
β−→ Homk(M,k)→ 0

for M and Homk(M,k) respectively. We apply grHomk(—,k) to the latter to
obtain a commutative diagram

0 M
⊕r

i=1D(ai)

0 M
⊕s

j=1R(bj)

id

β∗

α

P

where P is defined as the composition of β∗ and α. In summation, we get the
following proposition.

Proposition 2.28. LetM be a gradedR-module of finite length. Then there are
degrees a1, . . . ,as,b1, . . . ,br ∈ Zk and a matrixP ∈ HomR(

⊕
R(bj),

⊕
D(ai))

such that B
M ∼= M(P ) :=

⊕
R(bj)

/
AnnR(P ).

Other Modules. In general it is not possible to set up an equivalence as above
if M is not of finite length. However, we are in good shape if we can ”split
up” M into a part of finite length and one of infinite length which is easy to
describe.

Proposition 2.29. LetM be a finitely generated gradedR-module with mini-
mal free presentation

s⊕
j=1

R(−bj)
A−→

r⊕
j=1

R(−cj)→M → 0.

Assume that there is a degree a ∈ Zk such that bi − cj ≥ a for all i, j and
such that the quotient M/M≥a is of finite length. Then there is a collection
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d1, . . . ,dt ∈ Zk of degrees and a matrix P ∈ Hom(⊕R(cj),⊕R(dj)) such that
AnnR(P )bj

is generated by the columns of A in these degrees.

Proof. By (2.28) there is a P ∈ Hom(⊕R(cj),⊕R(dj)) with M(P ) = M/M≥a.
Now by the assumption on the degrees of the minimal presentation, we see
that Hilbert functions of AnnR(P ) and imA coincide in the degrees bj .

Remark 2.30. (i) The existence of a degree a ∈ Zk such that the quotient
M/M≥a is of finite length is trivially fulfilled when k = 1 but not oth-
erwise. A remedy is to form the quotient by a sufficiently large sum of
modules of the form Ma1 + . . . + Maj , but we will not need this gener-
alisation.

(ii) The critical point of reversing (2.28) and (2.29) in order to construct a
certain module M is of course to find a suitable matrix P in the first
place. We will be concerned with this construction in section 3.2.

Example 2.31. LetR = k[x0, x1, y0, y1, y2] be the bigraded Cox Ring ofP1×P2

with degrees deg xi = (1, 0) and deg yi = (0, 1) and consider the module given
by the presentation

R(−1, 0)⊕3 ⊕R(0,−1)⊕5 (A|B)
−−−−−−−→R3 →M → 0

with

(A|B) =

 x0 0 0 y0 y1 y2 0 0
0 x1 0 0 y0 y1 y2 0
0 0 x0 + x1 0 0 y0 y1 y2

 .

The Hilbert function hM (i, j) of M has nonzero values

3 3 3 . . .
4 1

3

i

j

where the dots indicate that hM (i, 0) = 3 for all i ≥ 3. In particular, M is
not a finite module but M≥(0,1) is. N = M≥(2,0). Informally speaking, the
module N encodes essentially the information of A as can be seen from its
presentation

R(−3, 0)⊕3 ⊕R(−2,−1)⊕9 (A|Id·y0|Id·y1|Id·y2)−−−−−−−−−−−−−→ R(−2, 0)⊕3 → N → 0.
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Divided Powers and Macaulays Inverse System

The Hilbert function of M0 = M/N is

3 3

4 1

3

i

j

On the other hand, we can express M0 = R⊕3/AnnR(P ) where

P =

 X1Y2 Y
[2]
1 Y1Y2 Y

[2]
2

−X0Y1 −Y0Y1 −2Y
[2]
1 − Y0Y2 −Y1Y2

X0Y0 −X1Y0 Y
[2]
0 Y0Y1 Y

[2]
1

 .

Note that the colums of P correspond to the socle elements of M in de-
grees (1, 1) and (0, 2). We see that the columns both A and of B can be re-
covered (up to k-linear combinations) as the k-bases of AnnR(P )(1,0) and of
AnnR(P )(0,1).

The computation of the annihilator and the inverse system can be imple-
mented in Macaulay2.

Code 2.32. We illustrate the calculations along the previous example. We
start by loading the package and the define the Cox ring.

i1 : loadPackage"RandomGonalCurves";

R=QQ[x_0,x_1,y_0..y_2,Degrees=>{2:{1,0},3:{0,1}}];

Note that we will use this ring also to express elements in divided power
algebra. We define module M via the presentation by (A|B) and compute
the Hilbert function:

i2 : A=matrix{{x_0,0,0},{0,x_1,0},{0,0,x_0+x_1}};

B=matrix{{y_0,y_1,y_2,0,0},{0,y_0,y_1,y_2,0},{0,0,y_0,y_1,y_2}};

M=coker(A|B);

matrix apply(4,i->apply(4,j->hilbertFunction({i,j},M)))

o2 = | 3 4 3 0 |

| 3 1 0 0 |

| 3 0 0 0 |

| 3 0 0 0 |

We compute bases of M⊥ in bidegrees (1, 1) and (0, 2):

i3 : P1=getComplementBasis({1,1},A|B);

P2=getComplementBasis({0,2},A|B);

P=P1|P2
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o3 = {-1, -1} | -x_1y_2 y_1^2 y_1y_2 y_2^2 |

{-1, -1} | x_0y_1 -y_0y_1 -2y_1^2-y_0y_2 -y_1y_2 |

{-1, -1} | -x_0y_0+x_1y_0 y_0^2 y_0y_1 y_1^2 |

We can recover A and B (up to k-linear combinations of the columns) by
computing AnnR(P ) in degrees (1, 0) and (0, 1):

i4 : P’=transpose sum(rank source P,i->homomorphism(P_{i}));

getAnnihilatorBasis({1,0},P’)|getAnnihilatorBasis({0,1},P’)

o4 = {-1, 0} | x_0 0 0 y_0 y_1 0 0 y_2 0 0 |

{-1, 0} | 0 x_1 0 0 0 y_0 y_2 y_1 0 0 |

{-1, 0} | 0 0 x_0+x_1 0 0 0 0 y_0 y_1 y_2 |

2.5 Liaison Theory

In this section we collect the tools for our liaison construction.

Notation. We start by precising the objects in consideration. By a curve in
P1 × P2 we mean an equidimensional subschema of codimension 2 which
is locally a complete intersection.

Definition 2.33. A curve C is geometrically linked to a curve C ′ in P1 × P2

by a complete intersection X if C and C ′ have no common component and
C ∪ C ′ = X on the level of schemes.

Geometric linkage is a specialization of algebraic linkage:

Definition 2.34. Two curves C and C ′ are algebraically linked by a complete
intersection X if the following holds

1. IC/IX
∼= HomOP

(OC′ ,OX).

2. IC′/IX
∼= HomOP

(OC ,OX).

Indeed it is not hard to see that if C and C ′ are linked geometrically then
they are also linked algebraically. Conversely, if the schemes C and C ′ are
algebraically linked and have no common components then they are also
linked geometrically.

Numerics. We can compute the degree and genus of linked curves as follows.

Proposition 2.35 (Exact sequence of Liaison). Let C be a curve of bidegree
(d1, d2) linked to C ′ by a complete intersection X. Let (a1, b1) and (a2, b2) de-
note the bidegrees of the forms defining X and let a = a1 + a2 and b = b1 + b2.
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Liaison Theory

(i) There is a short exact sequence

0→ ωC → ωX → OC(a− 2, b− 3)→ 0.

(ii) C ′ has bidegree

(d′1, d
′
2) = (b1b2 − d1, a1b2 + a2b1 − d2)

and for arithmetic genus we have the equation

pa(C ′)− pa(C) = (d1 − d′1)(a− 2) + (d′2 − d2)(b− 3).

Proof. Consider the long exact sequence arising from the standard exact se-
quence

0→ IC/X → OX → OC → 0

by applyingHom(–, ωP). Clearly, Ext1(IC , ωP) = 0 and we obtain

0→ ωC → ωX → Ext2(IC , ωP)→ 0

As C is linked to C ′ via X we have Ext2(IC , ωP) = OC′(a − 2, b − 3). The
formula for the genus follows immediately. For α the class of the pullback of
a point inP1 and β the pullback of the class of a line inP2 we have [C]+[C ′] =
[X] = (b1b2)β2 + (a1b2 + a2b1)αβ in the Chow ring of P.

The Mapping Cone Construction. The classical mapping cone construction
[PS74] for a resolution of the linked curve works in our setting only under
certain additional assumptions. We recall the following local result.

Proposition 2.36. Let R be regular local ring, I ⊂ R an ideal such that R/I
is a Cohen-Macaulay ring of codimension d. Let f = (f1, . . . , fd) be a regular
sequence contained in I. Let F• be a projective resolution ofR/I andG• a pro-
jective resolution of R/f and let α : F• → G• be the morphism of complexes
induced by the inclusion f ⊂ I. Let I ′ be the ideal obtained under linkage of
I via f . Then a projective resolution of R/I ′ is given by the mapping cone of
α∨ : G∨• → F∨• .

Proof. This is [PS74, Proposition 2.6]. For the convenience of the reader we
give the proof here. Consider the commutative diagram

H0(F∨) H0(G∨)

ExtdR(R/I,R) ExtdR(R/f,R)

ϕ

ExtdR(p,R)

∼

25



PRELIMINARIES

with the map between the Ext groups is induced by the projection p : R/f →
R/I. There is an isomorphism of functors ExtdR(•, R) ∼= HomR/f (•, R/f) on
the category of finitely generated R/f modules. Hence we obtain a commu-
tative diagram

H0(F∨) H0(G∨)

Hom(R/I,R/f) Hom(R/f,R/f)

ϕ

Hom(p,R/f)

∼ ∼

which proves the result.

Let us introduce one more bit of notation. For a sheaf F on P and some
bidegree (a, b) we set Hi

≥(a,b)(F ) :=
⊕

i≥a,j≥bH
i(F (i, j)).

Proposition 2.37 (Mapping Cone). Let C be a curve in P linked to a curve
C ′ via a complete intersection X defined by forms of bidegrees (ai, bi). We set
a0 = min(a1, a2) and b0 = min(b1, b2). Suppose

0→ F2 → F1 → OP → OC → 0

is a resolution of OC by locally free sheaves such that the map F1 → IC is
onto on global sections in bidegree (a0, b0). Let G• denote the minimal free
resolution of OX . Then the mapping cone [F∨(−a,−b)• → G ∨(−a,−b)•] is a
(in general not minimal) locally free resolution of OC′ .

Proof. By assumption, the truncated vanishing ideal IC,≥(a0,b0) has the lo-
cally free resolution

0→ Γ≥(a0,b0)(F2)→ Γ≥(a0,b0)(F1)→ IC,≥(a0,b0) → 0.

By the projectivity of Γ∗(G1) and Γ∗(G2) the inclusion ι : IX → IC,≥(a0,b0)

extends to a map of sheafified complexes ι : G• → F•. The twisted dual
mapping cone M• = [F∨• ⊗ OP(−a,−b) → G ∨• ⊗ OP(−a,−b)] yields a long
exact homology sequence

. . .→ H1(M•)→ H0(F∨• (−a,−b))→ H0(G ∨• (−a− b))→ H0(M•)→ 0

As F resolves OC we have

H0(F∨(−a,−b)) = Ext2(OC ,OP(a, b)) = ωC(2− a, 3− b) = IC′/IX

and H0(G ∨(−a,−b)) = ωX(2 − a, 3 − b) = OX as X is a complete intersec-
tion (and hence Gorenstein). Finally, Proposition 2.36 shows that the map
IC′/X → OX coming from the homology sequence is the canonical inclu-
sion.
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3 Unirationality Results

In this chapter we present the main result of this thesis. Our method of proof
is to show for each case (k, g) the existence of a unirational componentH of a
Hilbert scheme of curves C of genus g and bidegree

(
k,
⌈

2g
3 + 2

⌉)
in the mul-

tiprojective space P = P1 × P2 and satisfying certain Zariski-open ”good”
properties. We then show that H dominates the Hurwitz space Hg,k.

The unirationality is established by giving a construction in free parame-
ters of the general curve C with ”good” properties. This is done in two dif-
ferent ways depending on the particular case (k, g). Our first construction
relies on linkage of curves in P and covers the cases k = 6 and 5 ≤ g ≤ 28
and g = 30, 31, 33, 35, 36, 40, 45. The second construction expresses the curve
C as the dependency locus of a vector bundle on P which in turn can be con-
structed from a certain deficiency module. This construction yields for k = 6
the cases 5 ≤ g ≤ 25 and g = 27, 28, 29, 30, 33, 34, 39. Moreover, we obtain for
k = 7 the cases 6 ≤ g ≤ 12. Basically, we also recover the classical cases of the
unirationality for 3 ≤ k ≤ 5 and g ≥ k − 1. Despite some redundancy in the
outcome we want to outline both constructions as they are rather different
in nature and may serve as a basis for future work extending the presented
results.

We establish a posteriori the existence of curves with ”good” properties by
implementing the construction in Macaulay2 and computing a single curve
over a finite field. We remark that in this point our approach differs substan-
tially from many classical unirationality proofs for moduli spaces. The ad-
vantage of this implementation to us is that we can easily produce a general
curve in order to study applications.

3.1 Construction via Liaison

For g ≥ 5, let f : C → P1 be an element of Hg,6 and let O(D1) = f∗OP1(1)
be the 6-gonal bundle. We assume that C has a line bundle O(D2) such that
|D2| is a complete base point free g2

d with d = d(g) =
⌈

2g
3 + 2

⌉
minimal under

the condition that the Brill-Noether number ρ(g, 2, d) ≥ 0. Suppose further
that the map

ϕ : C
|D1|,|D2|−−−−−−→ PH0(O(D1))×PH0(O(D2)) = P

is an embedding. In particular, this is the case when we assume that the
plane model has only ordinary double points and no other singularities and
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for any node p the points in the preimage of p under C → P2 are not iden-
tified under the map to P1. Hence, we will identify C with its image under
ϕ. Furthermore, we assume that the map H0(OP(a, 3)) → H0(OC(a, 3)) is of
maximal rank for all a ≥ 1. To simplify matters, assume g ≡ 0 (12) for the
moment. By the maximal rank assumption, we have

aCubic := min{a |H0(IC(a, 3)) 6= 0} =
g

4

and h0(IC(aCubic, 3)) = 3. Let X = V (f1, f2) be the complete intersection
defined by two general sections fi ∈ H0(IC(ai, bi)) of bidegrees (a1, b1) =
(a2, b2) = (aCubic, 3). The curve C ′, obtained by liaison of C by X, is smooth
of bidegree (3, 5

6g − 2) and genus g′ = g
2 − 3 with h0(IC′(aCubic, 3)) ≥ 2.

The geometric situation is understood best when thinking of C as a family
of collections of plane points over P1. We expect the general fiber of C to be
a collection of 6 points in P2 which are cut out by 4 cubics. We expect a finite
number ` of distinguished fibers where the points lie on a conic as this is a
codimension 1 condition on the points. Since the residual three points under
liaison are collinear exactly in the distinguished fibers we can compute ` by
examining the geometry of C ′. The projection of C ′ to P2 yields a divisor D′2
of degree d′ > g′ + 2. Our claim is that ` = d′ − (g′ + 2). Indeed, the image of
C ′ under the associated map

ψ : C ′ → P1 ×PH0(C ′,O(D′2)) = P1 ×Pd
′−g′

lies on the graph of the projection S → P1 where S is a 3-dimensional scroll
of degree d′ − g′ − 2 swept out by the 3-gonal series |D′1|, i.e.

ψ(C ′) ⊂ P1 × S =
⋃

D∈|D′1|

{D} ×D.

See [Sch86] for a proof of this fact. C ′ is obtained from ψ(C ′) by projection
from a linear subspace P1 × V ⊂ P1 × Pd

′−g′ of codimension 3. A general
space V intersects S in precisely d′− g′− 2 points lying in distinct fibers over
P1. Clearly, under the projection the points of D ∈ |D′1| are mapped to 3
collinear points if and only if V meets the corresponding fiber of S.

To keep things neat, we consider again the case g ≡ 0 (12) which implies
` = 1

3g − 1. Suppose further that ` ≡ 1 (3). If we assume that H0(OP(a, 2))→
H0(OC′(a, 2)) is of maximal rank for all a ≥ 1 then

aConic = min{a |H0(IC′(a, 2)) 6= 0} =
g′ + 2`+ 1

3

and h0(IC′(aConic, 2)) = 2. Let X ′ = V (f ′1, f
′
2) be defined by two general

forms f ′i ∈ H0(I (a′i, b
′
i)) of bidegrees (a′1, b

′
1) = (a′2, b

′
2) = (aConic, 2) and

let C ′′ denote the curve that is linked to C ′ via X ′. The general fiber of C ′′
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Construction via Liaison

←→

Figure 3.1: Liaison in the general fiber.

←→

Figure 3.2: Liaison in a special fiber.

consists of a single point. In a distinguished fiber the conics of the complete
intersection are reducible and have the line spanned by the points of the
fiber of C ′ as a common factor. Hence, C ′′ is a rational curve together with `
lines. The rational curve has degree

d′′ =
g′ + 2`− 2

3
=

7

18
g − 7

3
.

Turning things around we see that the difficulty lies in reversing the first
linkage step. Indeed, a simple counting argument shows that for any g, the
union of ` general lines in P and the graph of a general rational normal curve
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of degree d′′ we have

min{a ∈ Z|H0(IC′′(a, 2)) 6= 0} =

⌈
2d′′ + 3`

5

⌉
− 1 ≤ aConic.

Hence, we always obtain a trigonal curve C ′ as desired. For general choices
ofC ′′ andX ′ we expect that the mapH0(OP(a, 3))→ H0(OC′(aCubic, 3)) is of
maximal rank. In the case g ≡ 0(12), this yields h0(IC′(aCubic, 3)) = − g4 + 12,
hence g < 48. Checking all congruency classes of g, we expect C ′ can be
linked to a general curve C exactly in the cases

5 ≤ g ≤ 28 or g = 30, 31, 33, 35, 36, 40, 45. (3.1)

Table 3.1 lists the appearing numbers for all values of g in (3.1).
Summarizing, we obtain for g among (3.1) the following unirational con-

struction for curves in Hg,6:

Construction Method 3.2.

1. We start with a general rational curve of degree d′′ in P together with a
collection of ` general lines. Call the union C ′′.

2. We choose two general forms f ′i ∈ H0(IC′′(a
′
i, b
′
i)), i = 1, 2, that define

a complete intersection X ′ and obtain a trigonal curve C ′ = X ′ r C ′′

of degree d′ and genus g′.

3. We choose two general forms fi ∈ H0(IC′(ai, bi)), i = 1, 2, that define
a complete intersection X and obtain a 6-gonal curve C = X r C ′.

It remains to show that the construction actually yields a parametrization
of the Hurwitz spaces.

3.2 Proof of The Dominance

Theorem 3.3. For all (g, d) as in Table 3.1, there is a unirational component
Hg of the Hilbert scheme Hilb(6,d),g(P) of curves in P of bidegree (6, d) and
genus g. The generic point of Hg corresponds to a smooth absolutely irre-
ducible curve C such that the map H0(OP(a, 3)) → H0(OC(a, 3)) is of maxi-
mal for all a > 1.

Proof. The crucial part is to prove the existence of a curve with the desired
properties. Code 3.5 implements the construction above for any given value
of g in (3.1) and establishes the existence of a smooth and absolutely irre-
ducible curve Cp of given genus and bidegree defined over a prime field Fp.
This computation can be regarded as the reduction of a computation over
Q which yields some curve C0. This curve is already defined over the ratio-
nals, since all construction steps invoke only Groebner basis computations.
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g d (a1, b1), (a2, b2) g′ d′ (a′1, b
′
1), (a′2, b

′
2) ` d′′

5 6 (2, 3), (2, 3) 2 6 (3, 2), (2, 2) 2 2
6 6 (2, 3), (1, 3) 0 3 (1, 2), (1, 2) 1 0
7 7 (2, 3), (2, 3) 1 5 (2, 2), (2, 2) 2 1
8 8 (3, 3), (2, 3) 2 7 (3, 2), (3, 2) 3 2
9 8 (2, 3), (2, 3) 0 4 (2, 2), (2, 2) 2 2

10 9 (3, 3), (3, 3) 4 9 (4, 2), (4, 2) 3 4
11 10 (3, 3), (3, 3) 2 8 (4, 2), (4, 2) 4 4
12 10 (3, 3), (3, 3) 3 8 (4, 2), (3, 2) 3 3
13 11 (4, 3), (3, 3) 4 10 (5, 2), (4, 2) 4 4
14 12 (4, 3), (4, 3) 5 12 (6, 2), (5, 2) 5 5
15 12 (4, 3), (4, 3) 6 12 (5, 2), (5, 2) 4 4
16 13 (4, 3), (4, 3) 4 11 (5, 2), (5, 2) 5 4
17 14 (5, 3), (5, 3) 8 16 (7, 2), (7, 2) 6 6
18 14 (5, 3), (4, 3) 6 13 (6, 2), (6, 2) 5 6
19 15 (5, 3), (5, 3) 7 15 (7, 2), (7, 2) 6 7
20 16 (6, 3), (5, 3) 8 17 (8, 2), (8, 2) 7 8
21 16 (5, 3), (5, 3) 6 14 (7, 2), (6, 2) 6 6
22 17 (6, 3), (6, 3) 10 19 (9, 2), (8, 2) 7 8
23 18 (6, 3), (6, 3) 8 18 (9, 2), (8, 2) 8 8
24 18 (6, 3), (6, 3) 9 18 (8, 2), (8, 2) 7 7
25 19 (7, 3), (6, 3) 10 20 (9, 2), (9, 2) 8 8
26 20 (7, 3), (7, 3) 11 22 (10, 2), (10, 2) 9 9
27 20 (7, 3), (7, 3) 12 22 (10, 2), (10, 2) 8 10
28 21 (7, 3), (7, 3) 10 21 (10, 2), (10, 2) 9 10
30 22 (8, 3), (7, 3) 12 23 (11, 2), (10, 2) 9 10
31 23 (8, 3), (8, 3) 13 25 (12, 2), (11, 2) 10 11
33 24 (8, 3), (8, 3) 12 24 (11, 2), (11, 2) 10 10
35 26 (9, 3), (9, 3) 14 28 (13, 2), (13, 2) 12 12
36 26 (9, 3), (9, 3) 15 28 (13, 2), (13, 2) 11 13
40 29 (10, 3), (10, 3) 16 31 (15, 2), (14, 2) 13 14
45 32 (11, 3), (11, 3) 18 34 (16, 2), (16, 2) 14 16

Table 3.1: Numerical data for all cases of the linkage construction
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By semicontinuity, C0 is also smooth, absolutely irreducible and of maximal
rank.

Again, by semicontinuity, there exists a nonempty Zariski open neighbor-
hood U ⊂ Hilb(6,d),g(P) of points corresponding to smooth absolutely irre-
ducible curves that fulfill the maximal rank condition. Let AN be the space
of parameters for all the choices made in the construction, i.e. the space of
coefficients of the polynomials defining C ′′ and the complete intersections
X and X ′. The construction then translates to a rational map AN 99K U
defined over Q and we set Hg to be the closure of the image of this map.

It remains to show that Hg parametrizes the Hurwitz space.

Theorem 3.4. For g among (3.1) andHg as in Theorem 3.3 there is a dominant
rational map

Hg 99KHg,6.

This implies that Hg,6 is unirational.

Proof. Using Code 3.5 again, we check for any given value of g in (3.1) there is
a point in Hg corresponding to a smooth absolutely irreducible curve C ⊂ P
such that the projection onto P1 is simply branched and the bundle L2 =
ϕ∗OP(0, 1) is a smooth point in the corresponding W 2

d (C). By semicontinu-
ity, the locus of curves with this property is open and dense in Hg. Hence,
we have a rational map Hg 99K Hg,6. The locus of curves in Hg,6 having a
smooth component of the Brill-Noether locus of expected dimension is also
open and contains the image of [C] under this map. Since Hg,6 is irreducible
this locus is dense. This proves the theorem.

3.3 Computational Verification

The following Code for Macaulay2 [GS] realizes the unirational construction
of a 6-gonal curve of genus g as in (3.1) over a finite field with random choices
for all parameters.

In order to explain the single steps in the computation, we also print the
most relevant parts of the output for the example case g = 24.

Code 3.5. We start with the following initialization:

i1 : Fp=ZZ/32009; -- a finite field

S=Fp[x_0,x1,y_0..y_2,Degrees=>{2:{1,0},3:{0,1}}];

-- Cox-ring of P^1 x P^2

m=ideal basis({1,1},S);

-- irrelevant ideal

setRandomSeed("HurwitzSpaces");

-- initialization of the random number generator

The following functions handle the numerics of the construction:
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i2 : expHilbFuncIdealSheaf=(g,d,a)->

max(0,(a_0+1)*(a_1+2)*(a_1+1)/2-(a_0*d_0+a_1*d_1+1-g))

-- expected number of sections of the ideal sheaf

linkedGenus=(g,d,F,G)->(

pX:=binomial(F_0+G_0-1,1)*binomial(F_1+G_1-1,2)-

(F_0-1)*binomial(F_1-1,2)-(G_0-1)*binomial(G_1-1,2);

-- genus of the complete intersection

pX-d_0*(F_0+G_0-2)-d_1*(F_1+F_1-3)-1+g)

-- genus of the linked curve

linkedDegree=(g,d,F,G)->{F_1*G_1-d_0,F_0*G_1+G_0*F_1-d_1}

-- bidegree of the linked curve

The first step is to determine the degree d′′ of the rational curve and the
number of lines `. We start by computing the bidegrees of the forms that
define the complete intersection for the linkage to the trigonal curve:

i3 : g=24;

d={6,ceiling(-g/3+g+2)};

-- choose the second degree Brill-Noether general

a=for i from 0 do

if expHilbFuncIdealSheaf(g,d,{i,3})!=0 then break i;

-- find the minimal value a s.t. H^0(IC(a,3)) nonzero

if expHilbFuncIdealSheaf(g,d,{a,3})==1 then

fX={{a+1,3},{a,3}} else fX={{a,3},{a,3}};

-- choose bidegrees of forms for the complete intersection

(d,fX)

o3 = ({6, 18}, {{6, 3}, {6, 3}})

The genus and degree of the trigonal curve and the number of lines:

i4 : g’=linkedGenus(g,d,fX_0,fX_1);

d’=linkedDegree(g,d,fX_0,fX_1);

l=d’_1-g’-2;

(g’,d’,l)

o4 = (9,{3,18},7)

We compute the bidegrees for the complete intersection for the linkage to
the rational curve

i5 : b=for i from 0 do

if expHilbFuncIdealSheaf(g’,d’,{i,2})!=0 then break i;

if expHilbFuncIdealSheaf(g’,d’,{b,2})==1 then

fX’={{b+1,2},{b,2}} else fX’={{b,2},{b,2}};

d’’=linkedDegree(g’+2*l,d’+{0,l},fX’_0,fX’_1);

dRat={{ceiling(d’’_1/2),1},{floor(d’’_1/2),1}};

(d’’,fX’)

o5 = ({1, 7},{{8, 2}, {8, 2}})
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The second step is the actual construction: First, we choose a rational
curve and random lines and compute the saturated vanishing ideal IC′′ of
their union:

i6 : ICrat=saturate(ideal random(S^1,S^(-dRat)),m);

ILines=apply(l,i->ideal random(S^1,S^{{-1,0},{0,-1}}));

time IC’’=saturate(intersect(ILines|{ICrat}),ideal(x_0*y_0));

-- used 1.29537 seconds

Next, we choose random forms in IC′′ of degree b (resp. of b+1) that define
the complete intersection X ′ and compute the saturated vanishing ideal IC′
of the trigonal curve C ′.

i7 : IX’=ideal(gens IC’’ * random(source gens IC’’,S^(-fX’)));

IC’=IX’:ICrat;

time scan(l,i->IC’=IC’:ILines_i);

time IC’sat=saturate(IC’,ideal(x_0*y_0));

-- used 2.06236 seconds

-- used 23.7319 seconds

In the final step, we compute the vanishing ideal of the 6-gonal curveC by
linking C ′ with a complete intersection X given by random forms in IC′ of
degree a (resp. a+ 1).

i8 : IX=ideal(gens IC’sat * random(source gens IC’sat,S^(-fX)));

time IC=IX:IC’;

time ICsat=saturate(IC,ideal(x_0*y_0));

-- used 15.7815 seconds

-- used 3.84807 seconds

We check that C is of maximal rank in the degrees (a, 3) by looking at
the minimal generators of the saturated vanishing ideal: For h0(IC(a, 3))
we expect under maximal rank the values (0, 0, 0, 0, 0, 0, 3, 7, 15, . . .). Since
h0(IC(a, 2)) = 0 for all a we expect 3 minimal generators in degree (6, 3)
and 1 generator in degree (7, 3):

i9 : tally degrees ideal mingens gb ICsat

o9 = Tally{{0, 18} => 1}

{1, 14} => 5

{1, 15} => 4

{2, 8} => 2

{2, 9} => 8

{3, 6} => 9

{4, 4} => 2

{4, 5} => 8

{5, 4} => 7

{6, 3} => 3

{7, 3} => 1

In order to check irreducibility, we compute the plane model Γ of C:
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i10 : Sel=Fp[x_0,x_1,y_0..y_2,MonomialOrder=>Eliminate 2];

-- eliminination order

R=Fp[y_0..y_2]; -- coordinate ring of P^2

IGammaC=sub(ideal selectInSubring(1,gens gb sub(ICsat,Sel)),R);

-- ideal of the plane model

We check that Γ is a curve of desired degree and genus and its singular locus
∆ consists only of ordinary double points:

i11 : distinctPoints=(J)->(

singJ:=minors(2,jacobian J)+J;

codim singJ==3)

i12 : IDelta=ideal jacobian IGammaC + IGammaC; -- singular locus

distinctPoints(IDelta)

o12 = true

i13 : delta=degree IDelta;

dGamma=degree IGammaC;

gGamma=binomial(dGamma-1,2)-delta;

(dGamma,gGamma)==(d_1,g)

o13 = true

We compute the free resolution of I∆:

i14 : time IDelta=saturate IDelta;

betti res IDelta

-- used 55.063 seconds

0 1 2

o14 = total: 1 8 7

0: 1 . .

1: . . .

2: . . .

3: . . .

4: . . .

5: . . .

6: . . .

7: . . .

8: . . .

9: . . .

10: . . .

11: . . .
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12: . . .

13: . 8 .

14: . . 7

This is the resolution as expected. Hence, C is absolutely irreducible by (2.9)
and O(D2) is a smooth point of the Brill-Noether locus by (2.11).
It remains to verify thatC is actually smooth and simply branched. We com-
pute the vanishing ideal IB ⊂ K[x0, x1] of the locus B in P1 of points with
non-reduced fiber.

i15 : gensICsat=flatten entries mingens ICsat;

Icubics=ideal select(gensICsat,f->(degree f)_1==3);

-- select the cubic forms

Jacobian=diff(matrix{{y_0}..{y_2}},gens Icubics);

-- compute the jacobian w.r.t. to vars of P^2

IGraphB=minors(2,Jacobian)+Icubics;

time IGraphBsat=saturate(IGraphB,ideal(x_0*y_0));

-- used 60.2963 seconds

We check that the fibers overB are disjoint from the preimages of the dou-
ble points of the plane model. This shows that C is smooth. To speed up the
computation we compute only the saturation at (x0, y0) instead of the full ir-
relevant ideal of P. All that remains to check for this is that we do not remove
points that lie in V (x0, y0).

i16 : dim(sub(IDelta,S)+IGraphBsat)==0

ISing0=sub(IDelta,S)+IGraphBsat;

time ISing=saturate(ISing0,ideal(S_0*S_2));

degree ISing==0

o16 = true

i17 : dim(ISing0+ideal(S_0*S_2))<=1

-- the ideal of a point in R has dimension 2.

o17 = true

Finally, we verify that B is reduced of expected degree 2g + 10 and hence
that C is simply branched.

i18 : time IGraphBsat=saturate(IGraphB,ideal(x_0*y_0));

gensIGraphBsat=flatten entries mingens IGraphBsat;

IB=ideal select(gensIGraphBsat,f->(degree f)_1==0);

degree radical IB==2*g+10

o18 = true

It takes approximately 5 hours CPU-time on a 2.4 GHz processor to check
all cases.
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Remark 3.6. We want to point out two issues concerning the computational
verification:

(i) The restriction to finite fields in the Macaulay2 computation in the ap-
pendix is only due to limitations in computational power. For very
small values of g, i.e. g ≤ 15, it is still possible to compute examples
over the rationals if all coefficients are chosen among integers of small
absolute value.

(ii) The reduction of C0 modulo p gives a curve Cp with desired properties
for p in an open part of Spec(Z). Hence, the main theorem is also true
in almost all characteristics p. One way to extend it to all prime num-
bers would be to keep track of all denominators in a computation over
the rationals and check case by case the primes where a bad reduction
happens. This is computationally also out of reach at the moment.

3.4 Constructions via Free Resolutions and Deficiency
Modules

In [CR84] Chang and Ran prove the unirationality of the moduli space Mg

in the cases g = 11, 12, 13 by exploiting the fact that the general curve C of
genus g can be recovered from a module associated to a spatial model of C.
More precisely, for a curveC inP3 they consider the Hartshorne-Rao module
M =

⊕
i∈ZH

1(P3,IC/P3(i)). The unirationality of Mg then follows from
the observation that in the considered cases the space of Hartshorne-Rao
modules is unirational. This seminal result motivates to establish a similar
theory for curves in P1 × P2 to prove unirationality for Hg,k. It turns out
that a certain submodule of the dual of the Hartshorne-Rao module is an
appropriate substitute.

Resolutions of Curves in P1 × P2. As in the preceeding section we impose a
number of conditions on our curve. Let k ≥ 5. Let C ∈ Hg,k and let O(D1)
denote the special pencil. Assume that C satisfies the condition

(G1) Let d be the smallest integer subject to the condition that the Brill-
Noether number ρ(g, 2, d) ≥ 0. There is a line bundle O(D2) on C of
degree d such that |D2| is a complete base point free g2

d and such that
the map

C
|D1|,|D2|−−−−−−→ P1 ×P2

is an embedding.

We want to use Theorem 2.19 to compute a resolution of IC/P. To this end
we compute the Beilinson monad K•I for the ideal sheaf twisted by some
OP(s, t). To obtain a resolution we need to twist in such a way that all terms
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KiI = 0 for i > 0. The following assumptions allow us to derive a fairly simple
resolution of IC .

(G2) For a general point P = V (f) ∈ P1 the fiber Cp = Z ⊂ P2 is a reduced
scheme of length k with minimal free resolution as in (2.9).

(G3) C is of maximal rank.

The minimal degree of generators of IZ is t =
⌈
(
√

9 + 8k − 3)/2
⌉

. Let s be
minimal under the condition that the Hilbert function

h0(IC/P(s, t)) =

(
s+ 1

1

)(
t+ 2

2

)
− (sk + td+ 1− g) > 0.

We also require the following vanishing of cohomology groups

(G4) H0(IZ(s− 1, t)⊗ π∗2Ω1
P2(1)) = H0(IZ(s, t)⊗ π∗2Ω1

P2(1)) = 0.

Definition 3.7. A curve C ∈Hg,k that satisfies (G1)–(G4) is a good curve.

As before the conditions above are Zariski-open and hence the existence of
single good curve implies that the set of good curves is dense in Hg,k.

Proposition 3.8. Let C ∈ Hg,k be a good curve of genus g and I ′C = IC(s, t)
with s and t as above. Then

0→ F3 → F2 → F1 → I ′C → 0 (3.9)

with
F1 = H0(I ′C)⊗ OP ⊕H1(I ′C(−1, 0))⊗ OP(−1, 0)

⊕H1(I ′C ⊗ π∗2Ω1
P2(1))⊗ OP(0,−1)

F2 = H1(I ′C(−1, 0)⊗ π∗2Ω1
P2(1))⊗ OP(−1,−1)

⊕H1(I ′C(0,−1))⊗ OP(0,−2)

F3 = H1(I ′C(−1,−1))⊗ OP(−1,−2)

is a minimal free resolution of I ′C .

Proof. We consider the monad K•I (I ′C) from (2.19). As (3.9) is a subcomplex
of this monad and we only need to show the vanishing of all cohomology
groups not occurring in the resolution. An elementary but lengthly compu-
tation which we omit at this point shows that the divisor D = sD1 + tD2

has degree > 2g − 2 for k ≥ 5. Thus D is non special which implies the
vanishing Hi(I ′C ⊗ F ) = 0 for i = 2, 3 and any sheaf F ∈ BI . Moreover,
H1(I ′C) = 0 by the assumption of maximal rank. Thus, KiI(I ′C) = 0 for
i > 0 and K0

I
∼= F1. Furthermore, from the choice of s and t we see that also

H0(I ′C(−1, 0)) = H0(I ′C(0,−1)) = H0(I ′C(−1,−1)) = 0. Condition (G4)
states precisely the vanishing of the remaining groups.
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In practice it is more feasible to determine the Betti numbers βi,(j,k) of this
resolution by computing the Hilbert numerator of the truncated ideal sheaf

IC,≥(s,t) =
⊕

s≥a,t≥b

H0(IC(a, b))

as illustrated in the following example.

Example 3.10. Let C ⊂ P1 ×P2 be a good curve of bidegree d = (6, 14) and
genus g = 17. Then (s, t) = (5, 3). The Hilbert numerator of the truncated
vanishing ideal I ′ := I≥(5,3) of C is given by

HNI≥(5,3)
= (s1

5s2)3(6s1s
2
2 − 11s1s2 − 6s2

2 + 8s2 + 4).

Hence, the minimal free resolution F• of I ′ is of the form

0→ R(−1,−2)⊕6 → R(−1,−1)⊕11⊕R(0,−2)⊕6 → R4⊕R(0,−1)⊕8 → I ′ → 0.

The Truncated Deficiency Module. Let us now introduce the key object for the
second unirationality construction.

Definition 3.11. Let C be a good curve and let

0→ F3 → F2 → F1 → I≥(s,t) → 0

be the minimal free resolution of the truncated vanishing ideal obtained by
applying Γ≥(s,t) on (3.9). We call the module

K := coker(F∨2 → F∨3 )

the truncated deficiency module of C.

Sheafifying the minimal free resolution and twisting with O(s, t) we obtain
again (3.9). Let E = coker(F3 → F2). Then, by Serre’s duality

K = Ext1
∗(E ,OP) ∼= Homk(H2

∗ (E (−2,−3)),k).

Now let M = H1
∗ (IC/P) be the Hartshorne-Rao module of C. As F1 is a

direct sum of copies of the line bundles OP, OP(−1, 0) and OP(0,−1) we have
H2(E (a, b)) ∼= H1(I ′C(a, b)) for (a, b) ≤ (−1,−1) and thus

K ∼= (Homk(M,k)(2− s, 3− t))≥(−1,−2) . (3.12)

As we will see in a minute the module K will be a somewhat ”simpler” ob-
ject than the Hartshorne-Rao module M . Nevertheless, the curve C can be
recovered from K.
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Proposition 3.13. E ∨ is the second sheafified syzygy module of K. For a gen-
eral map ϕ ∈ Hom(F∨1 ,E

∨) the associated Eagon-Northcott complex defined
by the minors of ϕ the resolves the twisted ideal sheaf IC′(s, t) of a codimen-
sion 2-subscheme C ′ in P with Hilbert polynomial pC′(s, t) = sk + td+ 1− g.

Proof. The presentation of K extends to a free resolution of K which can
easily be seen to be minimal. Thus the second syzygy module fits into the
exact sequence

0→ N → R(−1, 0)β1,(0,2) ⊕R(0,−1)β1,(1,1) → Rβ2,(1,2) → K → 0

Sheafifying and dualizing shows that Ñ∨ = E . The Eagon-Northcott com-
plex [Eis05, Appendix B] associated to a random map is of the form

0→ E ⊗L → F1 ⊗L → IC′ → 0

where L =
∧rkF1 F∨1 ⊗

∧rkE E = O(−s,−t).

We want to relate this object to the preceding construction by studying
how the deficiency modules behave under linkage: Assume for simplicity
that C is linked to C ′ by a complete intersection X defined by two forms of
the same bidegree (s, t). By (2.37), the twisted mapping cone of the dual of
following map of complexes

0 E (−s,−t) F1(−s,−t) OP

0 OP(−2s,−2t) OP(−s,−t)⊕2 OP

yields a projective resolution of IC′ . We can partially minimalize this reso-
lution and end up with

0→ F∨1 (−s,−t)→ E ∨(−s,−t)⊕ O(−s,−t)⊕2 → IC′ → 0.

Twisting back with OP(s, t) and considering the corresponding long exact
sequence in cohomology, we see that

H2(E (a− 2, b− 3)) = H1(E ∨(a, b))∨ = H1(IC′(s+ a, t+ b))

for (a, b) ≥ (s− 1, t− 2) or (a, b) ≤ (s− 2, t− 2). If M ′ denotes the deficiency
module of C ′ then

K ∼= M ′(s, t)≥(−1,−2). (3.14)

Structure of the Deficiency Module. From the identification (3.12) we see that

hK(i, j) = h1(IC(s− 2− i, t− 3− j)) for i, j ≥ 0.

40



Constructions via Free Resolutions and Deficiency Modules

Evaluating this expression under the assumption of maximal rank immedi-
ately yields the following numerical information about the Hilbert function
of the deficiency module of a good curve C.

Proposition 3.15. With the notation from above, the Hilbert function of the
deficiency module K of a good curve C is of following the form.

(i) Binomial Coefficient Case. For k =
(
t+1

2

)
the Hilbert function of K has

nonzero values hi,j at the following positions

` ` . . . . . . ` . . .

h0,1 . . . hi1,1

h0,2 . . . hi2,2

...

h0,r . . . hir,r

i

j

with r ≤ r0 where r0 only depends on k, ` = h0,0 = hi,0 for all i and i1 >
. . . > ir ≥ 0 is a strictly decreasing sequence of integers. Furthermore,
for a fixed j = 1, . . . , r the difference functions ∂hi,j are constant.

(ii) Non Binomial Coefficient Case. If k =
(
t+1

2

)
+ ε for t + 1 > ε > 0 the

Hilbert function of K has nonzero values hi,j at most at the following
positions

h0,0 . . . hi0,0

h0,2 . . . hi1,1

...

h0,r . . . hir,r

i

j

where hi+1,0 − hi,0 = ε for i = 0, . . . , i0 − 1. where j1 > . . . > jr ≥ 0 is
a strictly decreasing sequence of integers. The difference functions ∂hi,j
are constant for a fixed j = 1, . . . , r.

Remark 3.16. (i) We see that the truncated deficiency module K is of fi-
nite length if k is not a binomial coefficient of the form

(
t+1

2

)
.

(ii) If k is a binomial coefficient then the nonfinite part of K is supported
only on (x0, x1). Note that in this case ` is just number of special fibers
as discussed in the liaison construction. This can be seen as follows.
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Let F• → I ′C be the resolution (3.9). For a point inP ∈ P1 the complex
F•⊗k(P ) resolves the twisted ideal sheaf ICp/P2(t) of the fiber. Now if
k =

(
t+1

2

)
then β2,(1,2) = β1,(0,2) = ` and the differential OP(−1,−2)` →

OP(0,−2)` in F• is represented by a ` × `-square matrix AT with lin-
ear entries in x0, x1. Thus, if P lies in the scheme V (det(A)) which has
length ` then AT drops rank which in turn implies that H0(ICP /P2(t))
has a nontrivial section.

Example 3.17. We consider the curveC ⊂ P from Example 3.10. The Hilbert
function of the module M = H1

∗ (IC) is

6

12

16

6

8

7

1 4

6

4

3

7

6

8

10

6

6

13

13

6

12

18

16

6 . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

i

j

and the Hilbert function of K ⊗R(1, 2) is

6

7

3

6

4

6

1

6 6 . . .
i

j

Construction of the Deficiency Module via Divided Powers. The truncated de-
ficiency module K is determined by the morphisms

R(−1, 0)β1,(0,2) ⊕R(0,−1)β1,1,1
(A,B)−−−−→ Rβ2,(1,2) → K → 0

of the minimal presentation (3.11). Our construction aims for choosing A
and B in free parameters such that K has the desired Hilbert function. With
the exception of only a few cases, a generic choice of A and B will not do.

We use Macaulays inverse system to find A and B as desired. More pre-
cisely, we construct a matrix P in divided powers such that imA + imB ⊂
AnnR(P ). The following dimension count indicates that chances are better
when we pick the matrixA first, then try to construct P subject to the condi-
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tion imA ⊂ AnnR(P ) and finally construct B. Indeed, for a general element
P ∈ Hom(R(−a,−b), D`) we have

hAnnR(P )(i, j) = max(0, `

(
i+ 1

1

)(
j + 2

2

)
−
(
a− i+ 1

1

)(
b− j + 2

2

)
).

Thus for b = 1 we have hAnnR(P )(1, 0) = max(0, 2`−3a) but on the other hand
hAnnR(P )(0, 1) = max(0, 3` − a − 1). In many cases we will have 2` − 3a < `
thus we will not be able to write down a matrix A in free parameters such
that condition imR(A) ⊂ AnnR(P ) is satisfied. In other words, for the inci-
dence correspondence Z of triples (C,A,B) of good curves C and matrices
A and B forming a minimal presentation of the deficiency module of C with
projections

Z Hom(R(−1, 0)`, R`)(0,0)

Hom(R(0,−1)β1,(1,1) , R`)(0,0)

πA

πB

we expect πA to be surjective but not πB . Thus, we apply (2.29) on K with
the degree a = (i1, 0). By what was just said, this choice of a is close at hand
as the socle elements in degrees (ij , j) for j > 1 generate the corresponding
module in divided powers.

Lemma 3.18. A and B are uniquely determined up to k-linear transforma-
tions by a matrix P ∈ Hom(

⊕r
j=1R(ij , j)

hij ,j , Dh00) with

Rh00/AnnR(P ) ∼= K/K≥(i1,0).

Example 3.19. LetC ⊂ P be as in Example 3.10. For a general choice of mor-
phisms A and B the cokernel of (A,B) : F∨2 → F∨3 has the Hilbert function

6 6 6 6 6 . . .
7 0 0

3

i

j

Thus, a general choice forA andB does not lead to a curve as desired. In the
language of Macaulays inverse system the condition for A and B to satisfy is
the existence of a morphism P ∈ Hom(R(−1,−1)⊕2 ⊕ R(−1,−2), D6) such
that AnnR(P ) ⊂ imR(A) ∩ imR(B).

Putting everything together, we obtain the following construction method.

Construction Method 3.20.
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1. Construct a deficiency moduleK with Hilbert function hK as described
in Proposition 3.15:

(a) Pick a general element A ∈ Hom(R(−1, 0)β1,(0,2) , Rβ2,(1,2)).

(b) For bidegrees (ai, bi) and integers mi suitable, construct a matrix
P ∈ Hom

(⊕r
i=1R(−ai,−bi)mi , Dβ2,(1,2)

)
in free parameters such

that AnnR(P ) ⊂ imR(A).

(c) We pick a general morphism B ∈ Hom(R(0,−1)β1,(1,1) , Rβ2,(1,2))
under the conditions that AnnR(P ) ⊂ imR(B).

2. Compute the beginning of a minimal free resolution

. . .→ F
ψ−→ F∨2 (−1,−2)→ F∨3 (−1,−2)→ K → 0

and choose a random element ϕ ∈ Hom(F∨1 (−1,−2), F ). By (3.13) we

have ker(F∨1
ψ◦φ−−→ F∨2 ) ∼= R1 and the entries of the syzygies of ψ ◦ φ

generate the ideal I of a codimension 2 subscheme of P.

3. Verify that the resulting curve defined by the saturation of I is an ele-
ment in Hg,k.

Clearly, Step 2 is staightforward and Step 3 is equivalent to the verification
in Code 3.5 so we will only focus on Step 1 in the following.

3.4.1 Hexagonal Curves

Let us start by considering the construction of K in the setting of curves of
gonality k = 6 and small values of g. The expected Hilbert function of the
module K is of the form

` . . . . . .
n+ 3a . . . . . . n+ 3

`

n

`

m+ 5b . . . m+ 5 m

ab
i

j

with integers 1 ≤ n ≤ 3, 1 ≤ m ≤ 5 and b ≤ a depending on g. Table 3.2 lists
the values of these numbers as well as hK for 5 ≤ g ≤ 49. The difficulty of
the construction of the deficiency modules of 6-gonal curves increases with
the genus g of the curve. We recover the cases 5 ≤ g ≤ 25, g = 27, 28, 30, 33
obtained by the linkage approach of Section 3.1 and obtain the additional
cases g = 29, 34, 39. Let us discuss the cases grouped by the difficulty of their
construction of K:
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The cases 5 ≤ g ≤ 12 or g = 18. In these cases we have a = b = m = 0. Thus
the Hilbert function of K has the form

` ` ` . . .

n

i

j

We see that P is trivial and the construction ofK is unconstrained, i.e. a gen-
eral choice for the matrices A and B yields a deficiency module as desired.

The cases g = 15, 16, 17, 20, 21, 22, 25, 27, 30. We have b = 0 and m = 3(n +
3a− `). Accordingly hK has nonzero values

` . . . . . .
n+ 3a . . . n+ 3

`

n

`

m

a i

j

with n ∈ {1, 2, 3}. We start with a general matrix A and construct P by
picking general elements P1, . . . , Pn ∈ Ann(imA)(−n,−1) and P ′1 . . . , P

′
3−n ∈

Ann(imA)(−n−1,−1). The module in divided powers generated by these ele-
ments will have Hilbert function

`. . .

n+ 3a. . .n+ 3

`

n

`

−ai

j

We see thatB is uniquely determined (up to k-linear transformations) by the
(n + 3a) elements in AnnR(P )(0,−1). Note that we expect that for a general
B the expected Hilbert function of coker(B) as a module over k[y0, y1, y2] is
(`, n + 3a,m, 0, 0 . . .). Thus it remains only to verify the open condition that
a general choice for B actually has this Hilbert function which can be done
utilizing Macaulay2.

The cases g = 14, 19, 23, 24, 28, 29, 33, 34, 39. Let us sketch the constraints
for a construction of K in the general case first. Assume K is a module with
presentation matrix (A,B) as desired. Let M := (imA)⊥ and let

P1, . . . , Pn ∈M(a,1), P
′
1, . . . , P

′
(3−n) ∈M(a−1,1)
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and
Q1, . . . , Qm ∈M(b,2), Q

′
1, . . . , Q

′
(5−m) ∈M(b−1,2)

be generators corresponding to the socle elements of K and let N be the R-
module generated by these elements. Then, in particular, the Hilbert func-
tion of N takes values

hN (−a+ b,−1) = n+ 3(a− b) and hN (−a+ b+ 1,−1) = n+ 3(a− b+ 1).

Hence, there are relations among the generators in these degrees, i.e. matri-
ces Ψ1 ∈ k(n+3(m+a−b))×3m such that[

y0Q1, . . . , y2Qm, x
a−b
0 P1, . . . , x

a−b
1 P1, . . . , x

a−b−1
1 P ′n−3

]
·Ψ1 = 0 (3.21)

and Ψ2 ∈ k(n+3(a−b+1))×(15−3m) with[
y0Q

′
1, . . . , y2Q

′
5−m, x

a−b+1
0 P1, . . . , x

a−b+1
1 P1, . . . , x

a−b
1 P ′n−3

]
·Ψ2 = 0. (3.22)

At the moment, the only way we know how to write down such modules in
free parameters is by choosing Ψ1 and Ψ2 generic and picking the elements
Pi, P

′
i and Qi, Q′i subject to these relations. But already (3.21) constrains the

cases which can be constructed in this way. To count parameters we think of
the tuples ((P, P ′, Q),Ψ1) satisfying (3.21) as elements of an incidence corre-
spondence Z1 with natural projections

Z1 G(3m, 3(m+ a− b))

G(n, 3`)×G(3− n, 3`− 2n)×G(m, 6`)

π2

π1

The fiber over a point Ψ1 ∈ G(m, 6`) is a linear space of expected dimension

dimπ−1
2 (Ψ1) = dimG(n, 3`) + dimG(3− n, 3`− 2n) + dimG(m, 6`)− 9m`

= 9`− 9− 3m`−m2

which can only be positive when m ≤ 2. Now taking into account the addi-
tional restriction (3.22), an analogous computation shows that the we expect
the fiber over a general pair (Ψ1,Ψ2) to be empty. This leaves us with the
cases m ≤ 2 and either b = 0 or m ≤ 2, b = 1 and 5m + 1 = 3(n + 3a − `)
which are precisely the ones listed above. We demonstrate the construction
in Macaulay2 in one example case.

Code 3.23. We construct the truncated deficiency module in the case g = 39.
We start by choosing a generic matrix A ∈ Hom(R(0,−1)12, R12).

i1 : loadPackage"RandomGonalCurves";

S=(ZZ/10007)[x_0,x_1,y_0..y_2,Degrees=>{2:{1,0},3:{0,1}}];
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i2 : A:=random(S^12,S^{12:{-1,0}});

We compute k-bases of the involved graded parts of (im(A)⊥).

i3 : V41=getComplementBasis({4,1},A);

V31=getComplementBasis({3,1},A);

V12=getComplementBasis({1,2},A);

For the sake of simplicity, we introduce a ring of coefficients parametriz-
ing the k-vector spaces (im(A)⊥)(4,1), (im(A)⊥)(3,1) and (im(A)⊥)(1,2) which
allows us to conveniently write down the generic elements in these spaces.

i4 : C=Fp[a_0..a_35,b_0..b_35,c_0..c_35,d_0..d_71];

CS=C**S;

P1gen=sum(36,i->a_i*sub(homomorphism(V41_{i}),CS));

P2gen=sum(36,i->b_i*sub(homomorphism(V41_{i}),CS));

P1’gen=sum(36,i->c_i*sub(homomorphism(V31_{i}),CS));

Q1gen=sum(72,i->d_i*sub(homomorphism(V12_{i}),CS));

Next, we choose a random matrix Ψ and solve for elements satisfying equa-
tion (3.21):

i5 : M=contract(basis({0,3,0},CS),P1gen)|

contract(basis({0,3,0},CS),P2gen)|

contract(basis({0,2,0},CS),P1’gen)|

contract(basis({0,0,1},CS),Q1gen);

Psi=random(Fp^14,Fp^3);

N=M*Psi;

rel0=ideal apply(flatten entries N, f->contract(basis({0,1,1},CS),f));

rel1=transpose mingens sub(rel0,C);

sols=transpose syz sub(contract(vars C,rel1),Fp);

We pick a random solution and construct the corresponding module K:

i6 : sol=random(Fp^1,Fp^(rank target sols))*sols;

P=map(S^{2:{4,1},1:{3,1},1:{1,2}},S^12,

transpose sub(P1gen|P2gen|P1’gen|Q1gen,sol|vars S));

B0=getAnnihilatorBasis({0,1},P);

B:=getRandomSubspace(22,B0);

K:=coker(A|B);

matrix apply(toList(0..5),i->

apply(toList(0..2),j->hilbertFunction({i,j},K)))

o6 = | 12 14 6 |

| 12 11 1 |

| 12 8 0 |

| 12 5 0 |

| 12 2 0 |

| 12 0 0 |

We construct the curve from K. This is Step 2 from (3.20):
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i7 : resK:=res K;

tally degrees resK_2

F0=S^{19:{-1,-1},4:{-1,-2}};

IC=ideal syz(resK.dd_2 *random(resK_2,F0));

time ICsat=saturate(IC,ideal(S_0*S_2));

-- used 26.2516 seconds

Clearly, in terms of computational resources the bottle neck is Step 3 from
(3.20), the verification of the curve:

i8 : time certifyGonalCurve(ICsat,6,39,S)

-- used 716.015 seconds

o8 = true

3.4.2 Heptagonal Curves.

The cases 6 ≤ g ≤ 10 or g = 12. The construction of the deficiency module
works analogous to the 6-gonal cases. We note that for g = 12 the construc-
tion is again unconstrained.

The case g = 11. We want to discuss this case in more detail as the construc-
tion slightly differs from the previous cases. We will give a construction in
terms of the strands of a bigraded free resolution which arises from a differ-
ent truncation. From a Hilbert numerator computation analogous to (3.10)
we expect that the truncated vanishing ideal I ′ := IC,≥(3,3) has the minimal
free natural resolution

0→ S(−2,−3)→ S(−2,−2)⊕3 ⊕ F2 → S(−2,−1)⊕3 ⊕ F1

→ S(−2, 0)⊕ F0 → I ′ → 0

with free modules

F0 = S(−1, 0)⊕2 ⊕ S(0,−1)⊕9

F1 = S(−1,−1)⊕7 ⊕ S(0,−2)⊕4 ⊕ S(0,−3)⊕1

F2 = S(−1,−3)⊕2.

It suffices to construct

0→ F2
ψ−→ F1

ϕ−→ F0 → I ′′ → 0.

as the sheafifications Ĩ ′ and Ĩ ′′ will coincide. This follows from the fact that
the Koszul complex resolves the ideal (y0, y1, y2) which is supported on an
irrelevant part in P. For the deficiency module K = coker(F∨1 → F∨2 ) we
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g c hK g c hK c g hK

5 u 2 2 . . .
2

20 u 7 7 7 . . .
6 3

35 o 12 12 12 12 12 . . .
13 10 7 4 1

5

6 u 1 1 . . .
1

21 u 6 6 6 . . .
5 2

36 o 11 11 11 11 11 . . .
12 9 6 3

4

7 u 2 2 . . .
1

22 u 7 7 7 . . .
8 5 2

3

37 o 12 12 12 12 12 . . .
12 9 6 3

3

8 u 3 3 . . .
1

23 u 8 8 8 . . .
8 5 2

2

38 o 13 13 13 13 13 . . .
15 12 9 6 3

7 2

9 u 2 2 . . . 24 u 7 7 7 . . .
7 4 1

1

39 u 12 12 12 12 12 . . .
14 11 8 5 2

6 1

10 u 3 3 . . .
3

25 u 8 8 8 . . .
7 4 1

40 o 13 13 13 13 13 . . .
14 11 8 5 2

5

11 u 4 4 . . .
3

26 o 9 9 9 . . .
10 7 4 1

4

41 o 14 14 14 14 14 14 . . .
17 14 11 8 5 2

9 4

12 u 3 3 . . .
2

27 u 8 8 8 . . .
9 6 3

3

42 o 13 13 13 13 13 13 . . .
13 10 7 4 1

3

13 u 4 4 . . .
2

28 u 9 9 9 . . .
9 6 3

2

43 o 14 14 14 14 14 14 . . .
16 13 10 7 4 1

7 2

14 u 5 5 . . .
5 2

1

29 u 10 10 10 10 10 . . .
12 9 6 3

6 1

44 o 15 15 15 15 15 15 . . .
16 13 10 7 4 1

6 1

15 u 4 4 . . .
4 1

30 u 9 9 9 9 9 . . .
8 5 2

45 o 14 14 14 14 14 14 . . .
15 12 9 6 3

5

16 u 5 5 . . .
4 1

31 o 10 10 10 10 10 . . .
11 8 5 2

4

46 o 15 15 15 15 15 15 . . .
18 15 12 9 6 3

9 4

17 u 6 6 6 . . .
7 4 1

3

32 o 11 11 11 11 11 . . .
11 8 5 2

3

47 o 16 16 16 16 16 16 . . .
18 15 12 9 6 3

8 3

18 u 5 5 5 . . .
3

33 u 10 10 10 10 10 . . .
10 7 4 1

2

48 o 15 15 15 15 15 15 . . .
17 14 11 8 5 2

7 2

19 u 6 6 6 . . .
6 3

1

34 u 11 11 11 11 11 . . .
13 10 7 4 1

6 1

49 o 16 16 16 16 16 16 . . .
17 14 11 8 5 2

6 1

Table 3.2: Expected Hilbert functions of the deficiency modules of 6-gonal
curves for 5 ≤ g ≤ 49 with labels u for understood cases and o for
open cases of the construction of K.

49



UNIRATIONALITY RESULTS

expect the Hilbert function

2 3 4 5 6 7 . . .
6 5 4 3 2 1
5 1
1

i

j

To start with, we consider the strand

S(−1,−3)⊕2 ψ1−−→ S(−1,−1)⊕7 ϕ1−→ S(−1, 0)⊕2.

For a general choice of the map ϕ1 we expect 3 = 3 · 7 − 6 · 3 linear syzy-
gies. Choosing a 2-dimensional subspace among them gives ψ1. The map
S(−1,−3)⊕2 → S(0,−3) is just (x0, x1) up to a linear change of coordinates.
Hence, it remains to find the differential S(−1,−3)⊕2 → S(0,−2)⊕4. We pro-
ceed as before and select a general matrixP ∈ Hom(R(−1,−2)⊕R(0,−3), D2)
subject to the relation AnnR(P ) ⊂ im(ψ1, ψ2)T. The columns of the transpose
of ψ3 are chosen from AnnR(P )(1,1).

Corollary 3.24. The Severi variety Vd,g of plane irreducible nodal curves of
genus g and degree d =

⌈
2
3g + 2

⌉
is unirational for g ≤ 13.

Proof. The result is classical for g ≤ 10, see for instance [ST02]. As an interim
result, Chang and Ran [CR84] show that for g = 12, 13 there is a unirational
component of the Hilbert scheme of curves in P3 of degree d = g which
dominates the moduli space. For these cases, the residual linear series are of
degree deg(ωC ⊗OC(−H)) = 2g− 2− g = g− 2 =

⌈
2
3g + 2

⌉
As h1(OC(H)) = 3

the bundle ωC ⊗ OC(−H) yields and a map to P2.
Finally, the unirational component of the Hilbert scheme in Hilb(7,10),11(P)

we obtain in the course of the unirationality proof above also dominates
V10,11.

3.4.3 Classical Cases

For the sake of completeness we also want to show that , in principle, the
unirationality of Hg,k for 3 ≤ k ≤ 5 can also be covered by our approach.

Trigonal Curves. Note that a curve C ∈ H3,g has no plane model as de-
manded in (G1). However, from the discussion in Section 3.1 it is clear that
a generic projection from an embedding given by a divisor of degree g + 3
yields plane model of the same degree. With this being understood the con-
struction is straightforward. For the twist (s, t) = (d(g+ 2)/3e, 2) the minimal
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free resolution of a good trigonal curve C is

0→ R(−1,−2)
(A|B)−−−−→ R(0,−2)⊕R(−1,−1)s+2+ε →

→ R2−ε ⊕R(−1, 0)1+ε ⊕R(0,−1)s+ε → IC,≥(s,t) → 0

where ε ∈ {−1, 0, 1} with ε ≡ g (3). The for a generic choice of (A|B) the
curve constructed via the syzygies is trigonal and smooth.

Tetragonal Curves. In this section we construct curves with a g1
4. Along the

lines of the proof of Proposition 3.9 we find that a good tetragonal curveC of
genus g has a minimal bigraded free resolution

0→ G → F → IC → 0

with
F ∼= H0(I ′C)⊗ OP

⊕H1(I ′C(−1, 0))⊗ OP(−1, 0)
⊕H1(I ′C ⊗ π∗2Ω1

P2(1))⊗ OP(0,−1)
⊕H2(I ′C(0,−1))⊗ OP(0,−2)

G ∼= H2(I ′C(−1,−1))⊗ OP(−1,−2)
⊕H1(I ′C(−1, 0)⊗ Ω1

P2(1))⊗ OP(−1,−1)

Thus, the minimal free resolution is described by the theorem of Hilbert-
Burch [Eis95, Theorem 20.15].

Pentagonal Curves. Let C be a good curve in Hg,5. The Hilbert function of
the deficiency module K ′ = K ⊗R(1, 2) of C for g � 0 has nonzero values

. . . . . .n+ 2a . . . . . . n+ 2 n

m+ 5b . . . m+ 5 m

ab
i

j

with m ∈ {1, 2, 3, 4} and n ∈ {0, 1}. The construction is completely analogue
to the 6-gonal case.

In conclusion, we obtain the following result:

Corollary 3.25. Assume that for 3 ≤ k ≤ 5 and g ≥ k− 1 there is a good curve
in Hg,k. Then Hg,k is unirational.

Remark 3.26. As before, we can check computationally the existence of good
curves for small values of g. A verification has been done for all cases in
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the range 3 ≤ k ≤ 5 and g ≤ 40 and the author conjectures that there is a
good curve for any (k, g) with g ≥ k − 1, independently of the existence of a
unirational description.

3.5 Outlook

Before turning to applications we want to make a few remarks. The pre-
sented result motivates to further investigate the birational geometry of Hur-
witz spaces which, at the moment seems to be a far open problem. A conjec-
tural picture of the birational type of Hg,k based on divisor class calculations
due to Farkas (unpublished) asserts that Hg,k is of general type for g � 0
and k ≥ κg with κg

g →
1
3 as g → ∞. But even with curves of large gonality

understood, the cases of small gonality remain very interesting.

Problem 3.27. Is Hg,k unirational for g
3 � k ≥ 6?

The least one could hope for is that the ”gaps” in our list are only due to our
method. Hence, as a first step towards an extension of the presented result
one might pursue the following

Conjecture 3.28. Hg,6 unirational for all g ≤ 45.

The unirationality Hg,k for fixed gonality k ≥ 6 and any g ≥ k − 1 would
also be an indicator for a structure theorem of Gorenstein ideals of codimen-
sion k − 2, as discussed in the next section.
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4 Subvarieties of the Hurwitz Space of
Hexagonal Covers

In this chapter we study 6-gonal curves in their canonical embedding. The
union of the linear spans of the divisors in the special pencil of such a curve
C ⊂ Pg−1 forms a rational normal scrollX. We compile the background ma-
terial in Section 1. In Section 2 we describe a resolution of the structure sheaf
OC by locally free sheaves on X. In the cases covered by the unirationality
constructions, we compute the Betti numbers of the resolution of the gen-
eral curve using Macaulay2. Motivated by recent results of Erman and Wood
[Obe10] we examine the variety of 6-gonal curves whose resolution on the
scroll is a Gulliksen-Negard complex.

4.1 Canonical Curves on Rational Normal Scrolls

We start by briefly resuming the necessary material on rational scrolls and
their subvarieties. We follow in this section the lucid presentations in [Sch86]
and [Har81].

Rational Normal Scrolls. Let E = OP1(e1)⊕ . . .⊕OP1(ed) with e1 ≥ . . . ed ≥ 0
be a locally free sheaf of rank d on P1 and let

π : P(E )→ P1

be the corresponding Pd−1-bundle. For f =
∑d
i=1 ei ≥ 2 consider the image

of P(E ) under the map associated to the tautological bundle OP(E )(1):

j : P(E )→ X ⊂ Pr

with r = f + d − 1. The variety X is called a rational normal scroll of type
S(e1, . . . , ed). X is a nondegenerate irreducible variety of minimal degree

degX = f = r − d+ 1 = codimX + 1.

If all ei > 0 then X is smooth and j : P(E ) → X is an isomorphism. Oth-
erwise X is singular and j : P(E ) → X is a resolution of singularities. The
singularities of X are rational, i.e.

j∗OP(E ) = OX and Rij∗OP(E ) = 0 for i > 0.
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Therefore it is no problem to replaceX by P(E ) for most cohomological con-
siderations, even if X is singular. In the following, let H = [j∗OPr (1)] denote
the hyperplane class and R = [π∗OP1(1)] the class of the ruling on X.

Proposition 4.1. For X as above the following holds:

(i) Pic(X) = ZH ⊕ ZR with the relations

Hd = f, Hd−1 ·R = 1, R2 = 0.

(ii) We have the identification

H0(P(E ),OP(E )(aH + bR)) ∼= H0(P1, (SymaE )(b))

where SymaE denotes the symmetric product of E .

(iii) For a, b such that
∑
i αiei + b ≥ 0 for all α with |α| = a the number of

global sections is given by

h0(P(E ),OP(E )(aH + bR)) = f

(
a+ d− 1

d

)
+ (b+ 1)

(
a+ d− 1

d− 1

)
.

(iv) The dualizing sheaf of X is ωX = OX(−dH + (f − 2)R).

Proof. See [Sch86]. We note that (iii) was only shown for b ≥ −1 but general-
izes immediately to our situation.

Remark 4.2. The identification in part (ii) can be written down explicitly. Let
k[s, t] denote the homogeneous polynomial ring of P1. Then we can identify
sections Ψ ∈ H0(P(E ),OP(E )(aH + bR)) with homogeneous polynomials of
the form

Ψ =
∑
α

Pα(s, t)ϕα1
1 · . . . · ϕ

αd

d

of degree a =
∑
i αi in theϕi with coefficients Pα homogeneous polynomials

in k[s, t] of degree Pα =
∑
i αiei + b.

Rational normal scrolls are determinantal varieties.

Proposition 4.3. For X as above, consider the basis

zij = tjsei−jϕi for i = 1, . . . , d, j = 0, . . . , ei

of H0(O(H)) ∼= H0(OPr (1)). Then X is the vanishing loci of the 2× 2-minors
of the matrix

Φ =

(
z10 . . . z1e1−1 z20 . . . z2e2−1 . . . . . . zded−1

z11 . . . z1e1 z21 . . . z2e2 . . . . . . zded

)
consisting of d catalecticant blocks of size 2× e1, . . . , 2× ed.
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Proof. [Sch86].

Proposition 4.4. LetX ∼= P(E ) be a smooth rational normal scroll of dimen-
sion d and type S(e1, . . . , ed). Then the automorphism group Aut(P(E )) fits in
a short exact sequence

0→ PAut(E )→ Aut(P(E ))→ Aut(P1)→ 0.

In particular,

dim Aut(P(E )) = 2 +

(
d+ 1

2

)
+
∑
j≥i

(ej − ei) + #{(i, j) |i < j, ei = ej}.

Proof. See [Har81]. The only divisors in P(E ) which are isomorphic to Pd−2

are the fibers of the projection π : P(E ) → P1 and thus, any automorphism
of P(E) preserves these fibers. In this way we obtain a map Aut(P(E )) →
Aut(P1) which is actually onto. In fact, for every ϕ ∈ Aut(P1) we have
ϕ∗E ∼= E . Let F denote the kernel of this morphism so that we have the
exact sequence

0→ F → Aut(P(E ))→ Aut(P1)→ 0.

The subgroup F consists of those automorphisms which leave P1 fixed and
carry every fiber to itself. Thus F = PAut(E ). The automorphisms of E form
the open set of invertible elements in End(E ) = H0(E ⊗ E ∨). An element in
the latter group is given by a collection of sections {σij ∈ H0(OP1(ei − ej))}.
Hence,

dim Aut(E ) = h0(E ⊗ E ∨) =

(
d+ 1

2

)
+
∑
j≥i

(ej − ei) + #{(i, j) |i < j, ei = ej}.

Scrolls and Pencils. Let V be a smooth variety together with a linearly normal
map

j : V → Pr = P(H0(V,OV (H))).

Let X ⊂ Pr be a scroll of degree f containing j(V ). Then the ruling R on
X cuts out on V a pencil of divisors (Dλ)λ∈P1 ⊂ |D|. As the sections of
H0(X,OX(H −R)) restrict to V , we have h0(V,OV (H −D)) = f .

Conversely, a pencil of divisors (Dλ)λ∈P1 on V with h0(V,OV (H − D)) =

f ≥ 2 yields a scroll of degree f as follows. Let Dλ denote the linear span of
the image in Pr of Dλ under j. Then the scroll X is the variety swept out by
these linear spaces:

X =
⋃
λ∈P1

Dλ ⊂ Pr
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In more algebraic terms X can be described as follows: We denote with G ⊂
H0(V,OV (D)) the 2-dimensional subspace which defines the pencil. Then
the multiplication map

G⊗H0(V,OV (H −D))→ H0(V,OV (D))

yields a 2× f matrix Φ with linear entries whose 2×2 minors vanish on j(V ).
The varietyX defined by these minors contains j(V ) and is a scroll of degree
f .

The type S(e1, . . . , ed) of the scroll can be determined as follows. We can
decompose the scroll in its fixed and moving part Dλ = F + Eλ for λ ∈ P1

and consider the partition of r + 1 defined by

d0 := h0(OV (H))− h0(OV (H −D))
d1 := h0(OV (H −D))− h0(OV (H − F − 2E)

...
di := h0(OV (H − F − iE)− h0(H − F − (i+ 1)E)

...

The dual partition (i.e. the partition which is obtained by reflecting the cor-
responding Young tableaux along the diagonal) defines then the numbers ei:

ei = ]{j | dj ≥ 1} − 1.

Theorem 4.5 (Harris, Bertini). With the notation from above, X is a scroll of
dimension d0 and type S(e1, . . . , ed0).

Proof. [Har81].

We recall from [Sch86] the family of complexes C b, b ≥ −1, of locally free
sheaves on V which resolve the bth-symmetric power of the cokernel of a
map Φ : F → G of locally free sheaves of rank f and g, f ≥ g, on V :

C b
j =

{∧j
F ⊗ Symb−jG for 0 ≤ j ≤ b,∧j+g−1

F ⊗Dj−b−1G
∗ ⊗

∧g
G∗ for j ≥ b+ 1.

The differentials C b
j → C b

j−1 are induced by the multiplication with Φ resp.∧g
Φ in the appropriate term of the exterior, symmetric or divided power

algebra.

Syzygies of Canonical Curves. We restrict to the case of curves. Let C ⊂ Pg−1

be a canonical curve of genus g and {Dλ}λ∈P1 a complete basepoint free
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pencil of divisors of degree k ≤ g − 1 on C. Then

X =
⋃
λ∈P1

Dλ ⊂ P1

is a (k − 1)-dimensional rational normal scroll of degree f = g − k + 1. Let
P(E ) denote the corresponding P1 bundle.

Proposition 4.6. With C as above the following holds:

(i) OC has a resolution F• as OP(E )-module of the form

0→ OP(E )(−kH + (f − 2)R)→
βk−2⊕
j=1

OP(E )(−(k + 2)H + bjk−2R)→ . . .

. . .→
β1⊕
j=1

OP(E )(−2H + bj1R)→ OP(E ) → OC → 0

where βi = i(k−2−i)
k−1

(
k
i+1

)
.

(ii) F• is self dual, i.e. Hom(F•,OP(E )(−kH + (f − 2)R)) ∼= F•.

(iii) If all bji ≥ −1 then an iterated mapping cone. . .→
C f−2(−k)→

βk−3⊕
j=1

C b
(j)
k−3(−k + 2)

→ . . .

→ C 0

is a not necessarily minimal resolution of OC as OPg−1-module.

Proof. [Sch86].

Theorem 4.7 (Ballico). Let C be a general k-gonal curve of genus g and let g1
k

be the unique pencil of degree k on C. Then dim |rg1
k| = r for r ≤

⌊
g
k−1

⌋
.

Proof. [Bal89].

We say that a rational normal scroll X of dimension d and degree f of is
of generic type if it is of type S(e1, . . . , ed) with e1 = . . . = er = q + 1 and
er+1 = . . . = ed = q where f = q · d+ r and 0 ≤ r < d.

Corollary 4.8. Let C ⊂ Pg−1 be a general k-gonal canonical curve and let X
be the scroll swept out by the special pencil. Then X is of generic type.

Proof. Let D be a divisor of the special pencil and let s =
⌊

g
k−1

⌋
. We apply

Riemann-Roch to obtain

h0(K − iD) =

{
g − i(k − 1) for i ≤ s,
0 else.
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Correspondly, the partition of g defined by di = h0(K−iD)−h0(K−(i+1)D)
is of the form (d1, . . . , ds) = (k−1, . . . , k−1, g−s(k−1)) and the dual partition
is generic.

This motivates to fix a scroll X of generic type and to study the Hilbert
scheme Hilbg,k(X) of curves of genus g and degree 2g−2 contained inX and
its rational map to the Hurwitz scheme. Note that the ruling of X cuts out
a g1

k on such a curve if smooth, hence the notation. We need the following
lemma, see also [GV06].

Lemma 4.9. There is a unique generically reduced componentH ⊂ Hilbg,k(X)
of dimension dim(H) = k2 + 2g − 2 which dominates Hg,k. The fiber of the
corresponding map H 99KHg,k over a point [C] is precisely Aut(X)/Aut(C).

Proof. If [C] ∈ Hilbg,k(X) is the point corresponding to a curve C then the
Zariski tangent space to Hilbg,k(X) at [C] is T[C](Hilbg,k(X)) = H0(C,NC/X).
This allows to determine the following upper bound for the dimension of the
Hilbert scheme. From the conormal exact sequence

0→ N ∨
C/X → ΩX ⊗ OC → ΩC → 0

we obtain deg(NC/X) = (d+ 1)(2g − 2)− (f − 2)k. Riemann-Roch yields

χ(NC/X) = deg(NC/X)− rk(NC/X)(g − 1) = k2 + 2g − 2.

Let us now show that H1(NC/X) = H0(N ∨
C/X ⊗ ωC) = 0 for a sufficiently

general curve C. For this let π : X → P1 the natural map to P1. Considering
the conormal exact sequences of π : X → P1 and π : C → P1 we obtain the
commutative diagram

0 π∗ΩP1 ⊗ ωC Ω1
C ⊗ ωC ΩC/P1 ⊗ ωC 0

0 π∗ΩP1 ⊗ ωC Ω1
X ⊗ ωC ΩX/P1 ⊗ ωC 0

N ∨
C/X ⊗ ωC

We show that ϕ : H0(C, π∗ΩP1 ⊗ ωC) → H0(Ω1
X ⊗ ωC) is an isomorphism

which implies H0(N ∨
C/X ⊗ ωC) = 0, as desired. First observe that π∗ΩP1 ⊗

ωC ∼= OC(K − 2D), hence h0(C, π∗ΩP1) = −2k − 1 + g + 3 = g − 2k + 2, by
Ballico’s theorem. Moreover, by Riemann-Roch

h0(ΩX ⊗ ωC)− h1(ΩX ⊗ ωC) = (f − 2)k − k(g − 1) = −k2 + g − 1.
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Next, we note that H0(TX ⊗ IC/X) = 0 as this group can be intepreted as
the group of vector fields of X which vanish along C but C has only finitely
many automorphisms. Thus, we have

h1(ΩX ⊗ ωC) = h0(TX ⊗ OC) = h0(TX) = dim Aut(X) = k2 − 2k + 3

and hence h0(ΩX ⊗ωC) = g− 2k+ 2. We conclude ϕ is an injection of vector
spaces of the same dimension and hence an isomorphism.

Let H denote the component of Hilbg,k(X) containing C. The fiber of a
general point, e.g. of C, under the projection π : Hilbg,k(X) → Hg,k is
precisely Aut(X). Counting dimensions we see that H dominates Hg,k. As
the general k-gonal curve has a unique pencil of degree k we see that H is
unique.

Unirationality of k-gonal Curves for k ≤ 5. For 3 ≤ k ≤ 5 and any g ≥ k+1 the
resolution in Proposition 4.6 (i) is described by structure theorems of Goren-
stein ideals of codimension k−2 and yields another proof of the unirational-
ity of Hg,k, see [Sch86, Section 6]. Let us briefly summarize the situation for
these cases:

k=3. A trigonal canonical curve C lies on a two dimensional scroll X and
from Proposition 4.6 one sees that C is a divisor onX defined by a sec-
tion in H0(OP(E )(3H − (f − 2)R)).

k=4. A tetragonal canonical curve C is contained in a three dimensional
scroll and is a complete intersection defined by a pair of global sections
in H0(2H − biR) with b1 + b2 = g − 5.

k=5. A pentagonal canonical curve C is contained in a four dimensional
scroll and has a resolution

0→ OP(E )(−5H + (f − 2)R)→
5⊕
i=1

OP(E )(−3H + biR)

ψ−→
5⊕
i=1

OP(E )(−2H + aiR)→ OP(E ) → OC → 0

The Buchsbaum-Eisenbud structure theorem [BE77] states that ψ is
skewsymmetric and its 5 Pfaffians generate the vanishing ideal of C
in P(E ). Hence, C can be described by a collection of sections ψij ∈
H0(OP(E )(H + (ai − bj)R).
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4.2 Hexagonal curves...

Let C be a curve of genus g with a g1
6. The pencil sweeps out a scroll

C ⊂ X =
⋃
D∈g1

6

D ⊂ Pg−1

of type S(e1, . . . , e5) with 2g−2
6 ≥ e1 ≥ . . . e5 ≥ 0 and degree f =

∑
i ei =

g − 5. If P(E ) denotes the corresponding projective bundle over P1. From
Proposition 4.6 we see that the resolution of OC as OP(E )-bundle is of the
form

0→ OP(E )(−6H + (f − 2)R)→
⊕9

i=1 OP(E )(−4H + ((f − 2)− αi)R)

→
⊕16

i=1 OP(E )(−3H + βiR)→
⊕9

i=1 OP(E )(−2H + αiR)

→ OP(E ) → OC → 0.
(4.10)

Twisting with appropriate powers of OP(E )(H) and considering Hilbert func-
tions, we see that α1, . . . , α9 and β1, . . . , β16 are subject to the relations

9∑
i=1

αi = 3g − 21

and
16∑
i=1

βi = 8g − 56.

Under the assumption that all maps are of maximal rank, we see that the
degrees (α1, . . . , α9) and (β1, . . . , β16) form generic partitions of 3g − 21 and
8g − 56, respectively. We can computationally verify this in the cases where
Hg,6 has a unirational parametrization.

Proposition 4.11. For g among the values covered by our unirationality con-
structions, the general 6-gonal curveC lies on a scroll of generic type and has a
resolution of the form (4.10) with generic degrees (α1, . . . , α9) and (β1, . . . , β16).

Proof. Having generic syzygy numbers is an open condition. It remains to
verify the existence of a curve with these properties. We do this computa-
tionally using the Macaulay2 code below.

Code 4.12. We explain the computation along the example case g = 15. Ini-
tialization:

i1 : Fp=ZZ/32009; -- a finite field

S=Fp[x_0,x1,y_0..y_2,Degrees=>{2:{1,0},3:{0,1}}];

-- Cox-ring of P^1 x P^2
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Sel=Fp[x_0,x_1,y_0..y_2,MonomialOrder=>Eliminate 2];

-- elimination order

R2=Fp[y_0..y_2]; -- coordinate ring of P^2

m=ideal basis({1,1},S);

-- irrelevant ideal

setRandomSeed("HurwitzSpaces");

-- initialization of the random number generator

We compute the vanishing ideal ofC in the rational normal scroll by using
the plane model Γ ⊂ P2 and adjunction.

i2 : ICsat=construction6Gonal(g);

IGammaC=sub(ideal selectInSubring(1,gens gb sub(ICsat,Sel)),R2);

time IDelta=saturate ideal jacobian IGammaC + IGammaC;

-- compute the singular locus

Let d = deg(Γ). Using the identificationH0(KC) ∼= H0(I∆(d−3)) we com-
pute a collection of polynomials ω1, . . . , ωg ∈ Fp[y0, y1, y2] which correspond
to a basis of H0(KC). To this end, we pick two points P1 = (1 : 0), P2 = (0 :
1) ∈ P1 and consider the associated divisors Di = π−1

1 (Pi) for i = 1, 2 on Γ
which also correspond to the choice of a basis s1, s2 of H0(D).

i3 : P1=matrix{{1_Fp,0}};

D1=ideal (mingens substitute(ICsat,P1|vars R2));

P2=matrix{{0,1_Fp}};

D2=ideal (mingens substitute(ICsat,P2|vars R2));

The following function computes a basis of H0(K − nD1) considered as a
subspace of H0(K).

i2 : H0K=(mingens IDelta)*

random(source mingens IDelta, R2^{g:-(d-3)});

-- the canonical system

H0KnD=n->H0K*constantSyz(H0K

% mingens saturate ideal mingens(D1^n+IGammaC))

We compute the type of the scroll by computing the differences in the
numbers of global section h0(OC(K− iD1))−h0(K− (i+ 1)D1) as discussed
in section 4.1.

i4 : eDual={}; -- the dual partition

time for i from 0 do (

Dual0:=rank source H0KnD(i) - rank source H0KnD(i+1);

if eDual0==0 then break else (eDual=eDual|{eDual0}));

-- used 9.66583 seconds

e=apply(5,i->#select(eDual,e0->e0>=i+1)-1)

o4 = {2, 2, 2, 2, 2}

We now search for a Fp-rational point on Γ and compute its value under
the projection to P1. We will make us of this in the next step to rescale the
basis elements in H0(K).
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i5 : use R2

time while (

while (Q=random(Fp^1,Fp^3);

Q==0 or sub(IGammaC,Q)!=0) do ();

-- find a point Q on C

st=sub(transpose syz contract(matrix{{x_0,x_1}},

transpose mingens sub(ICsat,matrix{{x_0,x_1}}|Q)),Fp);

-- the value under the map to PP^1

st_(0,0)==0 or st_(0,1)==0) do ();

r=st_(0,0)/st_(0,1)

-- the value of the map to PP^1

We identify H0(K − nD1 − mD2) with the image of H0(K − (n + m)D)
in H0(K) under the multiplication with sn1 s

m
2 , i.e. with the subspace of ele-

ments in 〈ω1, . . . , ωg〉which vanish in D1 with order at least n and in D2 with
order at least m. As we want to produce a basis xij = sei−j1 sj2ϕi we have to
determine for an element ϕi ∈ H0(K − eiD) its images under the multipli-
cation maps sei−j1 sj2 for j = 0, . . . , ei. On Γ the element corresponding to
sei1 ϕi cuts out the divisors 2∆ and nD1 as well as a residual divisor Ei only
depending on ϕi. Hence, sj1s

ei−j
2 ϕi can be identified as the unique element

(up to scalars) in H0(K − (ei − j)D1 − jD2) that vanishes along Ei.

i6 : PHI0=apply(e,n->(

H0KnD1:=H0KnD(n);

phi:=H0KnD1*random(Fp^(rank source H0KnD1),Fp^1);

E0:=saturate(ideal phi+IGammaC,IDelta);

E:=saturate(E0,D1);

b0:=apply(n+1,i->(

EDs:=intersect(E,D1^(n-i),D2^i);

rels:=mingens saturate ideal mingens(EDs+IGammaC);

(H0K*constantSyz(H0K%rels))_(0,0)));

apply(n+1,i->

(sub(b0_0,Q)/(r^i*sub(b0_i,Q)))*b0_i)));

PHI=matrix{flatten PHI0};

In the next step we compute the vanishing ideal IC,can of the canonical
embedding of C.

i7 : Z=Fp[z_0..z_(g-1)]; -- the ring for the canonical embedding

phi=map(R2,Z,PHI);

time ICcan=saturate(preimage_phi(IGammaC));

(dim ICcan, degree ICcan, genus ICcan)

o7 = (2, 28, 15)

As pointed out in Remark 4.2, the Cox-Ring RX =
⊕

a,b∈ZH
0(OX(aH +

bR)) ofX is a subring of the polynomial ring T = Fp[s, t, ϕ1, . . . , ϕ5] equipped
with the bigrading deg(s) = deg(t) = (0, 1) and deg(ϕi) = (1, e1− ei). In order
to obtain the Betti numbers we compute the image J ⊂ T of the ideal of the
canonical curve IC,can under the natural map ψ : Z/IX → T .
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i8 : degs={apply(0..#e-1, i->{1,max e-e_i}),2:{0,1}};

T=Fp[p_0..p_4,s,t,Degrees=>degs];

PSI=matrix{flatten

apply(#e,i->flatten entries (basis({0,e_i},T)*p_i))};

psi=map(T,Z,PSI); -- the parametrization of the scroll

Scroll=preimage_psi(ideal 0_T);

Z’=Z/Scroll;

psi’=map(T,Z’,PSI);

J=psi’(ideal mingens sub(ICcan,Z’));

-- the vanishing ideal of the scroll

J1=saturate(J,ideal basis({0,1},T));

We obtain the generators of IC/X in J and all the Betti numbers by picking the
degrees.

i9 : J2=ideal select(flatten entries gens J1,f->(degree f)_0 == 2);

degsH={3,4,6};

resX={gens J2};

scan(#degsH,i->(

M0=syz (resX_i);

cols:=toList(0..rank source M0-1);

M=M0_(select(cols,j->

((degrees source M0)_j)_0==degsH_i));

resX=resX|{M}));

betti chainComplex resX

0 1 2 3 4

o9 = total: 1 9 16 9 1

0: 1 . . . .

1: . . . . .

2: . 6 . . .

3: . 3 16 3 .

4: . . . 6 .

5: . . . . .

6: . . . . 1

4.3 ...with a View Toward Gorenstein Ideals of
Codimension 4

We examine in the following to which extent the hexagonal curves consid-
ered as subvarieties of the associated scroll have a determinantal structure.

The Gulliksen-Negard complex. Let X be a scheme, F and G be two vector
bundles on X of rank m and α : F → G a morphism. The degeneracy loci

Xr(α) := {x ∈ X | rk(α) ≤ r} ⊂ X
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has a natural structure of a closed subscheme of X. In the case r = 2 we
consider the line bundle L =

∧m E ⊗
∧m F∨ and the Gulliksen-Negard

complex GN(α)

0→ L 2 → F ⊗ G ∨ ⊗L → det(F )⊗ Le−1,1G ∨ ⊕ det G ∨ ⊗ Le−1,1G

→
∧e−1 F ⊗

∧e−1 G ∨ → 0

where Le−1,1 is the Schur functor associated to the partition (e− 1, 1). From
the definitions of Schur functors, see [Wey03, Ch. 2], one sees that for a bun-
dle E the resulting bundle Le−1,1E is the cokernel of

∧e E →
∧e−1 E ⊗ E .

Theorem 4.13 (Gulliksen-Negard). In the situation as above the following
holds:

(i) If X(α) is of codimension 4 then GN(α) is a resolution of X2(α).

(ii) If in addition X is Gorenstein, then X2(α) is subcanonical with

ωX2(α)
∼= ωX ⊗L −2

∣∣
X
.

Proof. This theorem was originally proved in [GN72]. See [Wey03, (6.1.8)] for
a more conceptual proof.

Let us turn to the situation of canonical curves on rational normal scrolls.
Assume that there is a 6-gonal curve C ⊂ X ⊂ Pg−1 of genus g and a map
α : F → G of vector bundles of rank 3 on X such that C = X2(α). Then by
Theorem 4.13 the complex GN(α) resolves the curve. The equality

2∧
F ⊗

2∧
G ∨ =

9⊕
i=1

OX(−2H + αiR)

implies−18H+(3g−21)R = 6(c1(F )−c1(G )) and we see that g must be odd
independently of the bundles F and G . In this case, say g = 2m+ 1, we have

c1(F )− c1(G ) = −3H +
g − 7

2
R = −3H + (m− 3)R.

Moreover, the determinant det(α) which is a section of the line bundle

3∧
F∨ ⊗

3∧
G = OX(3H − g − 7

2
R)

vanishes with multiplicity at least two along C. However, the following cal-
culation shows that, in general, we do not expect to have such a form.

Lemma 4.14. Let g = 2m + 1 and assume C is a sufficiently general 6-gonal
curve of genus g such that
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(i) C is of maximal rank in the associated scroll X and

(ii) H0(IC/X(3H− (m−3)R))→ H0(N ∨
C/X(3H− (m−3)R)) is of maximal

rank.

Then H0(I 2
C/X(3H − (m− 3)R)) = 0.

Proof. We abbreviateE = 3H− (m−3)R. Consider standard exact sequence

0→ IC/X → OX → OC → 0

to compute the number of global sections of the twisted ideal sheaf. First
note that deg(OC(E) = 3 · (2g − 2)− 6 · (m− 3) = 6m+ 18 > 2g − 2. Hence,
χ(OC(E)) = h0(OC(E)) = 4m + 18 by Riemann-Roch. By Ballico’s theo-
rem the scroll is balanced and we can use Proposition 4.1 (iii) to compute
h0(OX(E)) = 7m + 56. Under the assumption of maximal rank, we obtain
h0(IC(E)) = 3m+ 38.

Again, by Riemann-Roch, we obtain χ(N ∨
C/X(E)) = 4m + 36 and hence

h0(N ∨
C/X(E) = χ(N ∨

C/X(E)) + h1(N ∨
C/X(E)) ≥ 4m+ 36. Hence, considering

the exact sequence

0→ I 2
C/X → IC/X → N ∨

C/X → 0

and using (ii), we see H0(I 2
C/X(E)) = 0.

In the cases covered by the unirationality constructions we can compute
the saturated vanishing ideal in the Cox ring of the scroll to check whether
there is a determinant or not.

Code 4.15. Continuing the computation for g = 15 from Code 4.12 we com-
pute the saturated square of the vanishing ideal

i121 : time J2sat=saturate(J2^2,ideal basis({1,1},T));

-- used 1316.76 seconds

o121 : Ideal of T

i122 : tally degrees J2sat

o122 = Tally{{3, 4} => 5 }

{4, 2} => 21

{4, 3} => 18

{5, 1} => 12

{6, 0} => 1

{6, 1} => 40

{7, 0} => 41

A section in H0(I 2
C/X(3H − 4R)) would have been represented by a poly-

nomial of bidegree (3, 2 · 3− 4) = (3, 2).
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Unirational Subvarieties of Hg,6. As shown above the resolution of a general
6-gonal curve of genus g is not described by a Gulliksen-Negard complex for
small g (and conjecturally not for any g).

However, if we consider for g = 2m + 1 a fixed rational normal scroll
X ⊂ Pg−1 of generic type S(e1, . . . , e5) and restrict to the case that F and
G split as a direct sum of line bundles, we can determine the dimension of
the obtained unirational subvariety.

Theorem 4.16. For g = 2m + 1, m ≥ 2, there is a unirational subvariety V ⊂
Hg,6 of dimension 3m+9 = 2/3(g+5) (and hence codimensionm = (g−1)/2).

Proof. After twisting with an appropriate power of OX(H) we can assume
that

F =

3⊕
i=1

OP(E )(−H + siR) and G =

3⊕
j=1

OP(E )(tjR).

Let rij = si − tj and consider an arbitrary but fixed ordering of the 2 × 2
minors. We then have a system of equations of the form

ri1,j1 + ri2,j2 = ri1,j2 + ri2,j1 = αk, k = 1, . . . , 9

with
∑
αi = 3g−21. It is easy to see that this implies

∑
ij rij = 3m−9 and for

any solution we have most two different values among the rij depending on
the congruence class of m modulo 3. In particular, for m = 3n or m = 3n+ 2
the only solution for αk is the generic partition. For m = 3n+ 1 we have two
solutions, one leading to a unirational variety of strictly smaller dimension
which we omit.

We discuss the case m = 3n (leaving the other cases to the reader). Then
rij = n − 1. A morphism of bundles ψ : F → G is given by a collection of
global sections ψij ∈ H0(OX(H − rijR)). Thus we have a rational map

Ψ : G(3, H0(OX(H − (n− 1)R))⊕3)/SL(3) 99K Hilbg,6(X), [ψ]→
[
X2(ψ)

]
.

From min{e1, . . . , e5} =
⌊

f
k−1

⌋
≥ n− 1 we conclude that the sheaf

H om(F ,G ) ∼= OP(E )(H − (n− 1)R)⊕9

is generated by global sections. Thus, by a Bertini-type theorem, see e.g.
[Ott95, Teorema 2.8], it follows that for the general morphism ψ : F → G
the associated scheme X2(ψ) is a smooth curve. Hence, Ψ factors over the
component H of Hilbg,6(X). Note that for any automorphism ϕ ∈ Aut(X)
the induced map ϕ∗F → ϕ∗G defines a curve isomorphic to C = X2(ψ).
From this we see that the image of Ψ already contains the fiber of C under
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the projection H 99KHg,6. We count dimensions

dimV = dimG(3, H0(OX(H − (n− 1)R))⊕3)− dim SL(3)− dim Aut(X)
= 3 · (3(n+ 6)− 3)− 9− (36− 2 · 6 + 3)
= 9n+ 9 = 2/3(g + 5).
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5 Ulrich Bundles on Cubic Threefolds

In this chapter we apply the unirationality construction of the preceeding
part to prove the existence of stable ACM bundles of any rank on the cu-
bic threefold. This is joint work with M. Casanellas, R. Hartshorne and F.-O.
Schreyer which is published in [CH11b]. The main result of the author are
Propositions 5.35 and 5.45.

We start by collecting the necessary informations about ACM sheaves and
Ulrich sheaves and their moduli from [CH11a], [CH11b] and [HL10] in Sec-
tion 1 of this chapter. Section 2 is devoted to the proof of the central theorem
of this chapter stating that the general cubic threefold has stable Ulrich bun-
dles of every possible rank.

5.1 ACM Sheaves and Ulrich Sheaves

ACM Sheaves. Let F be a coherent sheaf of rank r on a projective variety
X ⊂ Pn of dimension m and degree d and let S = k[x0, . . . , xn] be the
homogeneous coordinate ring of Pn. The sheaf F is called locally Cohen-
Macaulay if for every point x ∈ X the stalk Fx is a Cohen-Macaulay module
over the local ring OX,x, i.e. depth(Fx) = dim(Fx).

Definition 5.1. F is called arithmetically Cohen-Macaulay or ACM if the
module of global sections Γ∗(F ) =

⊕
i∈ZH

0(F (i)) is a Cohen-Macaulay
Module over S.

We can also characterize ACM sheaves as follows.

Proposition 5.2. F is ACM if and only if F is locally Cohen-Macaulay and
all intermediate cohomology groups of F vanish, i.e. Hi(F (k)) = 0 for all
1 ≤ i ≤ m− 1 and all k.

Proof. We consider the sheafification of a minimal free resolution of F :=
Γ∗(F ) by free S-Modules

0→ Fr
ϕr−−→ Fr−1 → . . .→ F1

ϕ1−→ F0
ϕ0−→ F → 0 (5.3)

and set Ej = kerϕj for j = 0, . . . , r − 1. Then Hi+1(Ej(k)) ∼= Hi(Ej−1(k)) for
1 ≤ i ≤ n − 2 and 0 ≤ i ≤ r and any k. Hence Hi(F (k)) ∼= Hi+r(Fr(k)) for
1 ≤ i ≤ n− r − 1.
Now assume that F is ACM. Then for every point x ∈ X the module Fx is
also Cohen-Macaulay. By the Auslander-Buchsbaum formula [Eis95, p. 479],
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the minimal free resolution (5.3) has length r = n −m and the vanishing of
the cohomology groups follows.

Conversly, assume that the minimal free resolution (5.3) has length n−m+
1. As F is locally Cohen-Macaulay, we see that the ideal of maximal minors
I(ϕn−m+1) can be only supported on m = (x0, . . . , xn). Hence, it remains
to show that Fm is Cohen-Macaulay. But this follows from the identification
of local cohomology with sheaf cohomology, see [Eis95, Theorem A 4.1]. In-
deed, from Hi

m(F ) ∼=
⊕

k∈ZH
i−1(F (k)) for i ≥ 2 one deduces that the local

cohomology groupsHi
Smm(Fm) = 0 for i ≤ m. But for δ = depth(Smm, Fm) we

have Hd
Smm(Fm) 6= 0 by [Eis95, Theorem A 4.3] and thus δ = m+ 1 = dimFm.

We conclude that the support of I(ϕn−m+1) is empty in contradiction to the
minimality of the resolution of F .

Corollary 5.4. If X is nonsingular then any ACM sheaf is locally free.

Proof. Since X is smooth for any point x ∈ X the local ring OX,x is regular,
thus gl dim OX,x = dim OX,x = depth OX,x. For an ACM sheaf F the stalk Fx

is a Cohen-Macaulay module over OX,x and by the Auslander-Buchsbaum
formula we see that pr dim Fx = 0. Thus, Fx is a projective module over a
local ring and hence free.

Corollary 5.5 (Horrocks Theorem). A locally free sheaf F on Pn with vanish-
ing intermediate cohomology splits as a direct sum of line bundles.

Proof. The module Γ∗(F ) is ACM of dimension n and hence has projective
dimension 0. It follows from the graded version of the Auslander-Buchsbaum
formula [Eis95, Exercise 19.8] that the minimal free resolution of Γ∗(F ) has
only one term F0. Thus Γ∗(F ) is free.

Horrocks theorem indicates that ACM bundles should be in some sense
the simplest bundles on a projective variety.

Proposition 5.6. The number of minimal generators µ(F ) of the S-Module
Γ∗(F ) for an ACM sheaf F on X is bounded by

h0(F ) ≤ µ(F ) ≤ dr. (5.7)

Proof. This is [CH11a, Theorem 3.1]. Consider a noether normalization T =
k[y0, . . . , ym] ⊂ S/IX and the corresponding finite projection π : X → Pm.
ThenHi(π∗F (k)) = Hi(F (k)) as π is finite. Hence π∗F is locally free of rank
dr and has no intermediate cohomology. By Horrocks theorem π∗F splits
into a direct sum of line bundles: π∗F = OPk(e1) ⊕ . . . ⊕ OPk(edr). Hence
Γ∗(F ) = Γ∗(π∗(F )) is minimally generated by dr elements over T . Γ∗(F ) is
also generated by these elements as S-Module, but they do not necessarily
form a minimal system of generators any more.
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Ulrich Sheaves. We call a sheaf F on a projective variety normalized if the
cohomology groups H0(F ) 6= 0 and H0(F (−1)) = 0. If not otherwise men-
tioned, we will consider all sheaves as normalized.

Definition 5.8. An ACM sheaf F is called Ulrich sheaf or maximally ACM
sheaf if µ(F ) = dr.

Proposition 5.9. Let F be an sheaf on X ⊂ Pn. F is Ulrich if and only if
Γ∗(F ) is a Cohen-Macaulay S-module with a linear free resolution

0→ OPn(n− k)⊕dr → . . .→ OPn(−i)⊕dr(
n−k

i ) → . . .→ O⊕drPn → F → 0.
(5.10)

Proof. This is [BHU87, Proposition 1.5].

Corollary 5.11. If F is an Ulrich bundle of rank r on a nonsingular projective
variety X of degree d and dimension N then its Hilbert polynomial is

PE (n) = rd

(
n+N

N

)
. (5.12)

Existence of Ulrich Sheaves. In this paragraph we briefly survey known re-
sults on the existence of Ulrich sheaves. In general, it seems to be a delicate
question to determine whether a variety has an Ulrich sheaf.

Conjecture 5.13 (Eisenbud, Schreyer). Every variety has an Ulrich sheaf.

Remark 5.14. The conjecture was originally stated in [ESW03] and a strong
motivation for this conjecture arises from Boij-Soederberg theory [ES11]. The
existence of an Ulrich sheaf F on a varietyX of dimension k implies that the
cone of cohomology tables of coherent sheaves

Pos
(
γ(E ) = {hi(E (j))}ij | E coherent sheaf on X

)
⊂

k⊕
i=0

∏
j∈Z

Q

of X equals the corresponding cone of Pk. Indeed, for a finite projection
π : X → Pn we have γ(G ) = γ(π∗(G )) for any sheaf G on X. Conversely, for
any sheaf E on Pn we consider the sheaf G = F ⊗ π∗(E ). The projection
formula implies γ(G ) = γ(π∗G ) = drγ(E ) since π∗E = Odr

Pk .

Remark 5.15. We collect a number of existence results.

1. On a smooth embedded projective curveC ⊂ Pn of genus g a line bun-
dle L is Ulrich if and only if L (−1) has degree g − 1 and no global
sections. Eisenbud and Schreyer show in [ESW03, Corollary 4.5] that
for arbitrary curves over arbitrary fields it is still possible to find higher
rank Ulrich sheaves.
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2. The existence of Ulrich bundles on hypersurfaces is a classical topic:
From Proposition 5.9 we see immediately that a smooth hypersurface
X = V (F ) ⊂ Pn has an Ulrich line bundle if and only if F can be
expressed as determinant of matrix with linear entries. This generally
possible only for plane curves and surfaces of degree≤ 3.
A fact of which we will make use later is thatX has a rank 2 Ulrich bun-
dle if F can be expressed as the pfaffian of skew-symmetric matrix with
linear entries. Beauville [Bea00] gives a complete treatment of this.

3. Eisenbud [Eis80] showed that Ulrich bundles on hypersurfaces corre-
spond to linear matrix factorizations. This leads to the fact that every
smooth hypersurface has an Ulrich bundle of rank r � 0 due to Back-
elin, Herzog and Sanders [BHS88].

Serre Correspondence. Our main tool for the construction of the Ulrich bun-
dles will be the following adaption of the well-known Serre correspondence
[HL10, Section 5.1] between locally free sheaves and certain classes of sub-
schemes.

Lemma 5.16. Let X ⊂ P4 be a smooth hypersurface of degree d and let F be
an Ulrich bundle of rank r on X. Then deg(F ) = r

(
d
2

)
.

Proof. See [CH11b, Lemma 2.4]. The minimal free resolution of F is given
by

0→ Odr
P4(−1)→ Odr

P4 → F → 0 (5.17)

from which we see that χ(F ) = dr and χ(F (1)) = 4dr. By Bertinis theorem
the general hyperplane section ofX is a smooth surface S of degree d and we
have a short exact sequence

0→ F → F (1)→ FH(1)→ 0 (5.18)

From the long exact sequence in cohomology we see that the bundle FH is
ACM and h0(FH) = h0(F ) = dr, hence FH is Ulrich or rank r.

The general hyperplane section of S is a smooth plane curve C of genus
g =

(
d−1

2

)
. Repeating the argument we obtain an Ulrich bundle FH2 on C

and by Riemann-Rochχ(FH2(1)) = deg(FH2(1))+r(1−g). As deg(FH2(1)) =
deg(FH2)+rH and deg(FH2) = deg(F ) we deduce deg(F ) = r(d+g−1).

A coherent sheaf F on a scheme X is called torsion-free if Fx is a torsion-
free OX,x-module for all x ∈ X. If rk(F ) = r then F locally embeds into
Or
X .

Lemma 5.19. Let X ⊂ P4 be a smooth hypersurface of degree d.

(i) Let F be an Ulrich bundle of rank r on X. Then, there is an exact se-
quence

0→ Or−1
X → F → IC/X(r(d− 1)/2)→ 0 (5.20)

72



ACM Sheaves and Ulrich Sheaves

with C a smooth ACM curve of genus

g(C) = 1 + r ·
(
d

2

)
· 2r2(d− 1)2 + r(d− 11)(d− 1)− 2(d− 3)2

24
(5.21)

and degree

deg(C) = r ·
(
d

2

)
· 3r(d− 1)− 2(d− 2)

12
(5.22)

with the additional property that the canonical module H0
∗ (ωC) is gen-

erated by exactly r − 1 sections in degree α = 10−(2+r)d+r
2 .

(ii) Conversly, let C be an ACM curve of genus g(C) and degree d(C) as in (i)
such that H0

∗ (ωC) is generated by r − 1 sections. Then, there is an exact
sequence

0→ Or−1
X → F → IC/X(r(d− 1)/2)→ 0

where F is an Ulrich bundle of rank r on X.

Proof. The sheaf F is generated by global sections and a generic collection
of r− 1 sections gives rise to a map F∨ → Or−1

X . The Eagon-Northcott com-
plex associated to this the map is of the form

0→ Or−1 ⊗L → F ⊗L → IC → 0

with L =
∧r F = O(D) for a divisor D of degree degD = deg c1(F ). The

codimension 2 subschemeC represents c2(F ) and is smooth and irreducible,
by Bertini. We compute the Hilbert polynomial of C to obtain the formulas
for the degree and genus:

χ(OC(t)) = χ(OX(t))− χ(IC/X(t))
= χ(OX(t))− χ(F (t− r)) + χ(Or−1

X (t− r)).

Evaluating this expression yields the claimed formulas. As we assumed X
to be general, we have Pic(X) = ZH and we see that D = mH with m =
r(d− 1)/2. Finally, the dual of the sequence (5.20) is

0→ OX(−m)→ F∨ → Or−1
X → ωC(α)→ 0 (5.23)

and taking global sections shows that H0
∗ (ωC) is generated by r − 1 sections

in degree α.

Conversely, the generators of H0(ωC(α)) ∼= Ext1(IC(m),OX) give rise to
an extension

0→ Or−1
X → F → IC/X(m)→ 0. (5.24)

As C is ACM, we have H1
∗ (F ) ∼= H1

∗ (IC) = 0. From the dual sequence of
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(5.24) which is again (5.23) we obtain

H1
∗ (F

∨) = H2(F ⊗ ωX) = H2
∗ (F (−d)) ∼= 0.

Hence, F is an ACM bundle. It remains to show that F is a normalized Ul-
rich bundle. Moreover, h0IC/X(m − 1) = h0OX(m − 1) which implies that
h0(IC/X(m − 1)) = 0 because C is ACM. This shows that h0(F (−1)) = 0.
Similarly, we obtain h0(IC/X(m)) = dr− r+ 1 and hence h0(F ) = dr. Thus,
F is Ulrich.

Remark 5.25. From the above computation we see that due to numerical
conditions, on a smooth threefold X in P4 of even degree there can only
exist Ulrich bundles of even rank.

Moduli of Ulrich Bundles. For the construction of the moduli space of vector-
bundles with given Hilbertpolynomial on a given projective varietyX as GIT-
Quotient of the Quot-scheme we need to restrict to the class of semistable
vectorbundles. We recall from [HL10] the definition of stability for vector
bundles.

Definition 5.26 (Stability of Vectorbundles). Let X be a smooth polarized
projective variety and let F be a vector bundle on X.

(i) F is semistable if for every subsheaf E of F

pE

rk(E )
≤ pF

rk(F )
(5.27)

F is called stable if the inequality is strict.

(ii) For a sheaf E we define the slope µ(E ) := deg(c1E )/rk(E ). F is µ-
semistable if for every subsheaf E of F with 0 < rk(E ) < rk(F ) we
have

µ(E ) ≤ µ(F ). (5.28)

F is called µ-stable if the above inequality is strict.

Theorem 5.29. Let X ⊂ Pn be a nonsingular projective variety and let F be
an Ulrich bundle on X. Then

(i) F is semistable and µ-semistable.

(ii) If 0 → E → F → G → 0 is an exact sequence of coherent sheaves where
G torsion-free and µ(E ) = µ(F ) then F and G are both Ulrich bundles.

(iii) If F is stable then it is also µ-stable.

Proof. [CH11b, Theorem 2.9].
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Let M ss(P,X) denote the moduli space of semistable vectorbundles onX
with HilbertpolynomialP . Recall that the Zariski tangent space to M ss(P,X)
at the isomorphism class [E ] is given by

T[E ]M
ss(P,X) = Ext1(E ,E ).

We also want to very briefly resume the concept of Mumford’s modular fam-
ilies which can be considered as a remedy to the lack of a tautological family
of a coarse moduli space.

Definition 5.30 (Modular family). A modular family of bundles is a flat fam-
ily E on X × S/S with S a scheme of finite type such that

(i) Each isomorphism class of bundles occurs at least once, and at most
finitely many times in the family,

(ii) For each s ∈ S the local ring OS,s together with the induced family pro
represents the local deformation functor,

(iii) For any other flat family E ′ on X × S′/S′ of such bundles there exists
a surjective etale map S′′ → S′ for some scheme S′′, and a morphism
S′′ → S such that E ′ ×S′ S′′/X × S′′ ∼= E ×S S′′/X × S′′.

Under mild additional assumptions on can show that modular families ex-
ist, see [Har10, §28] and [CH11b].

Proposition 5.31. On a nonsingular projective varietyX any bounded family
of simple bundles E with given rank and Chern classes and H2(E ⊗ E ∨) = 0
has a smooth modular family.

Proof. This is [CH11b, Proposition 2.10].

5.2 Ulrich Bundles on the Cubic Threefold

Ulrich Bundles of Rank 2. We start by examining the smallest possible rank
r = 2. The main result of this paragraph is the following.

Proposition 5.32. Let E ⊂ X ⊂ P4 be a general pair of an elliptic normal
curve on a general cubic threefold over an algebraically closed field of charac-
teristic 0. Then the twisted normal bundle of E in X splits as

NE/X(−1) = L ⊕L −1

with L ∈ Pic0(E), L 6∼= OE . In particular, H1(NE/X(−1)) = 0.

Proof. [CH11b, Proposition A.2]. First, we check the corresponding state-
ment for a general pair E ⊂ X ⊂ P4 defined over a finite field Fp by compu-
tation in Macaulay2. Initialization:
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i1: p=101 -- a fairly small prime number

Fp=ZZ/p -- a finite ground field

R=Fp[x_0..x_4] -- coordinate ring of P^4

setRandomSeed("beta")

We start by randomly choosing a smooth cubic threefold X and a smooth
quintic elliptic curve E on it.

i2 : m1=random(R^6,R^{6:-1});

m=m1-transpose m1;

-- a random skew symmetric 6x6 matrix of linear forms

I=pfaffians(4,m_{0..4}^{0..4});

-- the ideal of an elliptic normal curve E

singE=minors(codim I,jacobian I)+I;

(codim I==3, degree I==5, genus I==1, codim singE==5)

o2 = (true, true, true, true)

i3 : f=pfaffians(6,m) -- ideal of X

singf=ideal jacobian f;

(codim f==1, degree f==3, codim singf == 5)

o3 = (true, true, true)

Next, we compute the normal bundle and the first values of its Hilbert func-
tion:

i4 : I2=saturate(I^2+f);

coN=prune (image( gens I)/ image gens I2);

-- a module whose sheafification is the conormal sheaf

-- of E in X

N=Hom(coN,R^1/I); -- the module of global sections

-- of the normal bundle

apply(toList(-1..2),i->hilbertFunction(i,N))

o4 = {0, 10, 20, 30}

Hence, NE/X(−1) has no sections, and since det NE/X(−1) ∼= OE has degree
0, we have H1(NE/X(−1)) = 0 as well. There are two possibilities for the
rank 2 vector bundle NE/X(−1) according to the Atiyah classification [Ati57].
Either

NE/X(−1) ∼= L1 ⊕L2

with L2
∼= L −1

1 ∈ Pic0(E) or NE/X(−1) is an extension

0→ L → NE/X(−1)→ L → 0

with L ∈ Pic0(E) is 2-torsion. We check that we are in the first case:
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i5 : Nminus1 = N**R^{-1};

time betti(EndN=Hom(Nminus1,Nminus1))

0 1

o5 = total: 12 40

0: 2 .

1: 10 40

Thus, H0(E nd(NE/X(−1))) is two-dimensional. We compute the character-
istic polynomial and the eigenvalues of this pencil of endomorphisms. The
command SetRandomSeed(”beta”) above was chosen such that the charac-
teristic polynomial decomposes completely over Fp in this step of the com-
putation.

i6 : h0=homomorphism EndN_{0};

h0a=map(R^10,R^10,h0)

h1=homomorphism EndN_{1};

h1a=map(R^10,R^10,h1) -- the corresponding matrices

i7 : T=Fp[t] -- an extra ring

chiA=det(sub(h0a,T)-t*sub(h1a,T));

-- the characteristic polynomial

chiAFactors = factor chiA

5 5

o7 = (t - 47) (t - 14)

i8 : -- We compute the eigenvalues and eigenspaces

eigenValues=apply(2,c-> -((chiAFactors#c)#0)%ideal t)

betti (N1=syz(h0a-eigenValues_0*h1a)

betti (N2=syz(h0a-eigenValues_1*h1a)) -- the eigenspaces

betti N

L1=prune coker(presentation N|N1)**R^{-1};

L2=prune coker(presentation N|N2)**R^{-1};

-- the corresponding line bundles

betti res L1 -- L1 (and L2) has a linear resolution

0 1 2 3

o8 = total: 5 15 15 5

1: 5 15 15 5

Finally, we check that L1 ⊕L2
∼= NE/X(−1).

i9 : time betti (homL1L2=Hom(L1**L2,R^1/I)) -- used 32.25 seconds

-- => L1 tensor L2 = O_E

annihilator homL1L2==I -- check
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o9 = true

i10 : time betti(iso=Hom(L1++L2,N)) -- used 9.22 seconds

iso0=homomorphism iso_{0}

iso1=homomorphism iso_{1}

o10 = | 0 0 0 0 0 10 42 31 7 -9 |

| 0 0 0 0 0 16 -27 -30 -21 -35 |

| 0 0 0 0 0 6 -13 -19 -5 -29 |

| 0 0 0 0 0 38 9 41 22 -30 |

| 0 0 0 0 0 -3 -9 34 -31 1 |

| 0 0 0 0 0 20 -4 -19 -5 6 |

| 0 0 0 0 0 17 -2 -37 -6 -19 |

| 0 0 0 0 0 -46 -18 -31 -26 -20 |

| 0 0 0 0 0 43 -23 -47 -33 -43 |

| 0 0 0 0 0 34 41 -35 -13 1 |

i11 : det map(R^10,R^10,iso0+iso1)=!=0

-- N(-1) is isomorphic to L1++L2

o11 = true

i12 : prune ker(iso0+iso1)==0 and prune coker(iso0+iso1)==0

-- kernel and cokernel are zero

o12 = true

Since L1 ∈ Pic0(E)(Fp) it has finite order. We compute the order, just for
fun, in the most naive way. If the prime p is larger a better method is neces-
sary.

i13 : time betti(twoL1=prune Hom(L2,L1))

k=2;

kL1=twoL1;

time while (rank target gens kL1=!=1) do (k=k+1;

kL1=prune Hom(L2,kL1)); -- used 29 seconds

-- in a case where the order k=52

k -- the order of L1 in Pic E.

o13 = 52

i15 : betti kL1;

kL1==R^1/I

o15 = true
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To conclude from these computations the desired result in characteristic
zero, we argue that the computation above can be seen as the reduction mod
p of computation over Z. By semi-continuity the vanishing

H0(NEQ/XQ
(−1)) = H1(NEQ/XQ

(−1)) = 0

holds for the corresponding pair (EQ, XQ) defined over Q as well. The split-
ting into line bundles will be defined over a quadratic extension field K of Q
and the line bundle most likely will have infinite order in Pic0(EQ)(K).

Theorem 5.33. On the general cubic threefold X there exist stable rank 2 Ul-
rich bundles with first Chern class c1 = 2H , where H is the hyperplane class,
and c2 = 5. The moduli space of these bundles is smooth of dimension 5.

Proof. We make use of the Serre correspondence (5.19) to to obtain an Urlich
bundle F as extension

0→ OX → F → IC(2)→ 0 (5.34)

where C is an elliptic normal curve in X as (5.32). F is stable as there are no
bundles of rank 1 on X.

Ulrich Bundles of Rank 3. In this section we prove the following

Proposition 5.35. The space of pairs C ⊂ X ⊂ P4 of smooth arithmetically
Cohen-Macaulay curves C of degree 12 and genus 10 on a cubic threefold X
has a component which dominates the moduli space M10. This component
is defined over Q and unirational (over Q) and dominates the Hilbert scheme
of cubic threefolds in P4 as well. Moreover, for a general pair C ⊂ X in this
component the following holds:

(i) The line bundle OC(1) is a smooth isolated point of the Brill-Noether
space W 4

12(C) ⊂ Pic14(C).

(ii) The module of global sections H0
∗ (ωC(n)) of the dualizing sheaf ωC is

generated by its two sections in degree−1 as anS =
∑
n∈ZH

0(P4,O(n))-
module.

(iii) The twisted normal bundle of C in X satisfies H1(NC/X(−1)) = 0.

As in the preceding paragraph, we will prove the result by a computation
over a finite field and semi-continuity. We utilize the unirational parametriza-
tion of 6-gonal curves as depicted in Chapter 3. We want to describe the
construction in detail for this case: Suppose C is a smooth projective curve
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of genus 10 defined over a field k together with line bundles L1, L2 with |L1|
a g1

6 and |L2| a g2
9. Let C ′ denote the image under the map

C
|L1|,|L2|−−−−−−→ PH0(C,L1)×PH0(C,L2) = P1 ×P2.

We say thatC is of maximal rank if the mapH0OP2(n,m)→ H0(L⊗n1 ⊗L⊗m2 )
is of maximal rank for all n,m ≥ 1. Under the assumption of maximal rank
of C the image C ′ is isomorphic to C and the Hilbert series of the truncated
vanishing ideal

Itrunc =
⊕

n≥3,m≥3

H0(IC′(n,m))

in the Cox-Ring S = k[x0, x1, y0, y1, y2] of P1 ×P2 is

HItrunc
(s, t) =

3s4t5 − 6s4t4 − 3s3t5 + 3s3t4 + 4s3t3

(1− s)2(1− t)3
.

In other words, we expect a bigraded free resolution of type

0→ F2 → F1 → F0 → Itrunc → 0

with modules F0 = S(−3,−3)4 ⊕ S(−3,−4)3, F1 = S(−3,−5)3 ⊕ S(−4,−4)6

and F2 = S(−4,−5)3.
Turning things around, we find the following unirational construction for
such curves: For a general map M : F2 → F1 let K be the cokernel of the
dual map M∗ : F ∗1 → F ∗2 . For the first terms of a minimal free resolution of
K we expect

. . .→ G
N ′−−→ F ∗1 → F ∗2 → K → 0

with G = S(2, 4)3 ⊕ S(3, 3)9 ⊕ S(3, 4)3 ⊕ S(4, 2)6 . Composing N ′ with a gen-
eral map F ∗0 → G and dualizing again yields a map N : F1 → F0. Finally,

ker(F ∗0
N∗−−→ F ∗1 ) ∼= S and the entries of the matrix S → F ∗0 generate Itrunc.

The following Code for Macaulay2 [GS] realizes this construction over an ar-
bitrary field, here in particular for random choices over a finite field Fp:

i1 : setRandomSeed"I am feeling lucky"; -- initiate random generator

p=32009; -- a prime number

Fp=ZZ/p; -- a prime field

S=Fp[x_0,x_1,y_0..y_2, Degrees=>{2:{1,0},3:{0,1}}];

-- Cox ring of P^1 x P^2

m=ideal basis({1,1},S); -- irrelevant ideal

i2 : randomCurveGenus10Withg16=(S)->(

M:=random(S^{6:{-4,-4},3:{-3,-5}},S^{3:{-4,-5}});

-- a random map F1 <--M-- F2
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N’:=syz transpose M; -- syzygy-matrix of the dual of M

N:=transpose(N’*random(source N’,S^{3:{3,4},4:{3,3}}));

ideal syz transpose N) -- the vanishing ideal of the curve

i3 : IC’=saturate(randomCurveGenus10Withg16(S),m);

As being of maximal rank is an open condition this computation proves the
existence of a nonempty unirational component H in the Hilbert scheme
Hilb(6,9),10(P1 ×P2) of curves of bidegree (6, 9) and genus 10.

By semi-continuity we get the first half of the following proposition.

Proposition 5.36. The Hilbert scheme Hilb(6,9),10(P1 ×P2) has a unirational
component H over Q that dominates the moduli space M10.

Proof. The main missing ingredient is to prove that in our example above the
line bundles L1 and L2 will be behave like general line bundles in W 1

6 (C)
and W 2

9 (C) for a general curve C. According to Theorem 2.6 for a general
smooth curve C of genus g the Brill-Noether loci W r

d (C) are non-empty and
smooth away from W r+1

d (C) of dimension ρ if and only if ρ = ρ(g, r, d) =
g − (r + 1)(g − d + r) ≥ 0. Moreover, W r

d (C) is connected if ρ > 0 and the
tangent space at a linear series L ∈ W r

d (C) r W r+1
d (C) is the dual of the

cokernel of the Petri-map

H0(C,L )⊗H0(C,ωC ⊗L −1)→ H0(C,ωC).

Now let η : C → C ′ be a normalization of our given pointC ′ ∈ H . η will be an
isomorphism, but we do not know this yet. We can check computationally
that the linear systems L1 = η∗OP1(1) and L2 = η∗OP2(1) are smooth points
in the respective W ri

di
(C) for i = 1, 2:

In order to check L2, we start by computing the plane model Γ ⊂ P2 of C ′:

i4 : Sel=Fp[x_0,x_1,y_0..y_2,MonomialOrder=>Eliminate 2];

-- eliminination order

R=Fp[y_0..y_2]; -- coordinate ring of P^2

IGammaC=sub(ideal selectInSubring(1,gens gb sub(IC’,Sel)),R);

-- ideal of the plane model

We check that Γ is a curve of desired degree and genus and its singular locus
∆ consists only of ordinary double points:

i5 : distinctPoints=(J)->(

singJ:=minors(2,jacobian J)+J;

codim singJ==3)
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i6 : IDelta=ideal jacobian IGammaC + IGammaC; -- singular locus

distinctPoints(IDelta)

o6 = true

i7 : delta=degree IDelta;

d=degree IGammaC;

g=binomial(d-1,2)-delta;

(d,g,delta)==(9,10,18)

o7 = true

We compute the free resolution of I∆:

i8 : IDelta=saturate IDelta;

betti res IDelta

0 1 2

o8 = total: 1 4 3

0: 1 . .

1: . . .

2: . . .

3: . . .

4: . 3 .

5: . 1 3

From Proposition 2.10 we conclude that C is irreducible. Proposition 2.11
then shows that L2 ∈W 3

9 (C) is a smooth point of dimension ρ2 = 1. Thus C
the normalization of Γ is isomorphic to a smooth irreducible curve of genus
g = 10, and C ′ is smooth because 10 = g ≤ paC ′ ≤ 10.

Turning to L1, we compute the embedding C → PH0(C,ωC ⊗ L−1
1 ) = P4

as follows

i9 : LK=(mingens IDelta)*random(source mingens IDelta, R^{10:{-6}});

-- compute a basis of the Riemann-Roch space L(Omega_C)

Pt=random(Fp^1,Fp^2); -- random point in P^1

L1=substitute(IC’,Pt|vars R); -- L1 is the fiber over Pt

KD=LK*(syz(LK % gens L1))_{0..4};

-- compute a basis of those elements in L(Omega_C) that

-- vanish in L1

T=Fp[z_0..z_4]; -- coordinate ring of P^4

phiKD=map(R,T,KD); -- embedding

IC=preimage_phiKD(IGammaC);

degree IC==12 and genus IC==10

o9 = true
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i10 : betti(FC=res IC)

0 1 2 3

o10 = total: 1 8 9 2

0: 1 . . .

1: . . . .

2: . 8 9 .

3: . . . 2

From the length of the resolutionFC we see that the image ofC in P4 is arith-
metically Cohen-Macaulay. The dual complex HomS(FC , S(−5)) is a resolu-
tion of

⊕
n∈ZH

0(ωC(n)). Thus this module is generated by its two sections
in degree −1 and h0(L1) = h0(C,ωC(−1)) = 2. The Petri map for L2 can be
identified with

H0(C,ωC(−1))⊗H0(P4,OP4(1))→ H0(C,ωC).

Here, this map is an isomorphism, because there is no linear relation among
the two generators, and L1 is a smooth isolated point in W 1

6 (C). Thus our
random example over the finite field is as expected, and semi-continuity
proves that the same is true for the triple (C,L1,L2) defined over an open
part of SpecZ whose reduction mod p is the given randomly selected curve.

The map H → M10 factors over Z = W 1
6 ×M10

W 2
9 and the fiber of H →

Z for a triple (C,L1,L2) (without automorphisms) with h0(C,L1) = 2 and
h0(C,L2) = 3 is PGL(2) × PGL(3). The fiber dimension of Z → Mg is ρ1 +
ρ2 = 0 + 1 = 1, as expected.

Proof of Proposition 5.35. We are nearly done. The embedding of

C ↪→ PH0(C,ωC ⊗L −1
1 ) ∼= P4

is a curve which satisfies (i) and (ii). Since L1 and equivalently OC(1) ∈
W 4

12(C) is Petri general this proves the existence of a unirational component

H ′ ⊂ Hilb12t+1−10(P4).

Since the Hurwitz scheme H6,10 is irreducible, we can conclude that the in-
duced rational map H ′//PGL(5)→M10 is generically finite of degree

g!

r∏
i=0

i!

(g − d+ r + i)!
= 42 = degW 1

6 (C),

see Theorem 2.7. Choosing a cubic threefold containing C is the same as
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choosing a point in the projective space PH0(P4,IC(3)). Hence,

V = {(C,X) | C ∈ H ′ ACM and X ∈ PH0(P4,IC(3)) smooth }

is unirational as well. For a random pair (C,X) ∈ V we compute the normal
sheaf NC/X of C in X and check that Hi(NC/X(−1)) = 0 for i = 0, 1:

i11 : IX=ideal((mingens IC)*random(source mingens IC,T^{1:-3}));

IC2=saturate(IC^2+X);

cNCX=image gens IC/ image gens IC2; -- the conormal sheaf in X

NCX=sheaf Hom(cNCX,T^1/IC); -- the normal sheaf in X

i12 : HH^0 NCX(-1)==0 and HH^1 NCX(-1)==0

o12 = true

i14 : HH^0 NCX==Fp^24 and HH^1 NCX==0

o14 = true

With a similar computation for NC/P4 we check thatH ′ is a generically smooth
component of the Hilbert scheme Hilb12t+1−10(P4) of expected dimension
51 and C is a smooth point in H ′.

i15 : cNCP= prune(image (gens IC)/ image gens saturate(IC^2));

NCP=sheaf Hom(cNCP,T^1/IC);

HH^1 (NCP)==0 and HH^0 (NCP)==Fp^51

o15 = true

Consider the maps

V
π2 //

π1

��

PH0(P4,OP4(3)) ∼= P34

H ′

The fibre of π1 over a point C is exactly PH0(P4,IC(3)) ∼= P7, hence V is ir-
reducible of dimension 58. The map π2 is smooth of dimensionh0(C,NC/X) =
24 at (C,X). Thus π2 is surjective. By semicontinuity the desired vanishing
holds for the general curve on a general cubic.
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Proposition 5.37. On a general cubic threefold X ⊂ P4, there exist stable
Ulrich bundles of rank 3.

Proof. We apply the Serre correspondence (5.19) on a curve C as in (5.35) to
establish the existence of a rank 3 Ulrich bundle F on X. F is necessarily
stable as there are no rank 1 Ulrich bundles on X.

Ulrich Bundles of Higher Rank. We can now formulate the main theorem of
this chapter.

Theorem 5.38. For any r ≥ 2 the moduli space of stable rank rUlrich bundles
on a general cubic threefold Y ⊂ P4 is non-empty and smooth of dimension
r2 + 1.

Proof. We recall the proof from [CH11b, Theorem 5.7]. To prove the exis-
tence we proceed by induction on r. For r = 2 and r = 3 this is already
shown. For r ≥ 4 let E ′ and E ′′ be stable Ulrich bundles of rank 2 and
r − 2, respectively (we choose E ′ different from E ′′ in the case r = 4). Then
dimk Ext1(E ′′,E ′) = h1(E ′ ⊗ E ′′∨) = 2(r − 2). Hence, there exist non split
extensions

0→ E ′ → E → E ′′ → 0 (5.39)

and E will be a simple Ulrich bundle of rank r. It remains to show that there
are stable bundles of rank r. If the general element of the modular family of
simple Ulrich bundles of rank r onX is not stable then it must have the same
splitting type as any non-split extension (5.39). However, the family of these
bundles has dimension

dim{E ′}+ dim{E ′′}+ dimk Ext1(E ′′,E ′)− 1
= 22 + 1 + (r − 2)2 + 1 + 2(r − 2)− 1
= r2 − 2r + 5.

which is strictly less than r2 + 1 for r ≥ 4. Hence, there are stable Ulrich
bundles or rank r.

Remark 5.40. In order to apply this method to prove the existence of Ulrich
sheaves on higher degree 3-folds we would need to establish the existence of
ACM curves with very high genus, e.g. to a rank 3 Ulrich bundle on a quintic
threefold corresponds a curve C of degree d(C) = 75 and genus g(C) = 261.
At the moment we do not have a method to prove existence of such curves.

Cohomology of Extensions and Restriction to Hyperplane Sections. The goal of
the remainder of the chapter is prove the following

Theorem 5.41. For each r ≥ 2 there is a nonempty open set of a modular fam-
ily of stable rank r Ulrich bundles on the general cubic threefold Y restricting
by an étale dominant map to a modular family of stable rank r bundles on a
hyperplane section H .
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Some propositions are in order.

Proposition 5.42. Suppose that E is a stable Ulrich bundle of rank r on Y
with the property that Hi(E ⊗ E ∨(−1)) = 0 for all i (in which case we say
E ⊗ E ∨(−1) has no cohomology). Then the restriction map from bundles on
Y to bundles on the general hyperplane section H induces an étale dominant
map from an open subset of a modular family of stable rank r Ulrich bundles
on Y to a modular family of stable rank r Ulrich bundles on H .

Proof. [CH11b, Proposition 5.8].

Lemma 5.43 (Lemma 5.9). Let E be a rank r Ulrich bundle on Y correspond-
ing to a nonsingular curve C via the exact sequence

0→ Or−1
Y → E → IC(r)→ 0

Then

(i) Hi(E ⊗ E ∨(−1)) = 0 for i = 0, 3,

(ii) Hi(E ⊗ E ∨) ∼= Hi−1(NC/Y (−1)) for i = 1, 2.

Proof. [CH11b, Lemma 5.9].

Corollary 5.44. There exist rank 2 and rank 3 stable Ulrich bundles E on a
general cubic threefold Y such that E ⊗ E ∨(−1) has no cohomology.

Proof. Using Lemma 5.43 this follows immediately from Proposition 5.32
and 5.35.

To extend this result to bundles of rank r ≥ 4 the following computational
result is needed.

Proposition 5.45. Let k be an algebraically closed field of characteristic 0.
There is an open subset U of the space of triples C,E ⊂ X with C and ACM
curve of genus 10 and degree 12, E an elliptic normal curve of degree 5 not
meeting C and X a smooth cubic threefold over k with the following proper-
ties:

(i) U dominates the spacePH0(P4,OP4(3)) of cubic threefolds and the spaces
of pairs E ⊂ X and C ⊂ X. In particular the pair E ⊂ X and the pair
C ⊂ X satisfy all assertions of Proposition 5.32 and 5.35 respectively.

(ii) For every tripleC,E ⊂ X inU the extension group Ext1
OX

(IE/X(2),OX)
is 1-dimensional and for the non-trivial extension

0→ OX → F → IE/X(2)→ 0

we have the vanishing H1(F ⊗IC/X) = H2(F ⊗IC/X) = 0.
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Proof. Again, our strategy is to construct a triple C,E ⊂ X over a finite field
with the help of Macaulay2 and then establishing the theorem in character-
istic 0 with semi-continuity.

The bottleneck of this approach is to construct E and C such that there
is a cubic threefold which contains both curves. Since H0(OP4(3)) is 35-
dimensional, for a general pair (E,C) the 20-dimensional subspace WE =
H0(IE/P4(3)) and the 8-dimensional subspace WC = H0(IE/P4(3)) will
have a trivial intersection. More precisely, the locus M of pairs (E,C) with
WE ∩WC 6= 0 has expected codimension 8 in H = H1 ×H2 ⊂ Hilb5t(P

4) ×
Hilb12t−9(P4) whereH1 is the subscheme whose points correspond to smooth
elliptic normal curves and H2 the subscheme whose points correspond to
smooth ACM curves.

One way to find points inM is by searching over a small finite field. Heuris-
tically, the probability for a random point (E,C) ∈ H(Fp) to lie in M(Fp) is

#M(Fp)

#H(Fp)
≈ 1

p8
.

From the Weil formula [Har77, Appendix C] we see that this approximation
is asymptotically correct as p → ∞. Practice shows that it is a reasonable
heuristic even for small p in many cases. However, over very small fields
(p = 2, 3) most hypersurfaces are singular, see [vBS05]. Hence we must not
choose p too small in order to minimize the total runtime. Empirically, p = 5
is a good choice. Turning to the construction, we start with a random smooth
arithmetically Cohen-Macaulay curve C of genus 10 and degree 12 in P4. To
keep things clear we capsulated the construction of the preceding section in
a function that returns the vanishing ideal of such a curve:

i1 : load"UlrichBundlesOnCubicThreefolds.m2";

Fp=ZZ/5;

T=Fp[z_0..z_4];

setRandomSeed("gamma");

i2 : time IC=randomCurveGenus10Degree12(T);

-- used 32.4096 seconds

For the sake of replicability we write down the curve used in our example.
To do this is in a space-saving way, we write down the 9 × 8 matrix mC with
linear entries in the free resolution of IC . From mC the curve can easily be
regained:

i3 : mC= transpose((res IC).dd_2);

i4 : IC==ideal syz mC

-- regain the curve from mC

o4 : true
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In our example, we have

mC =



−2z3 2z1 − 2z3 − z4 −2z0 − z1 − 2z3 + 2z4 z0 + z3 − 2z4
2z1 − z2 + z3 − 2z4 −2z0 + 2z1 + 2z4 −2z0 + 2z4 z3 − z4

−2z1 + z3 2z0 − z1 − z2 − 2z3 z0 + 2z3 + z4 2z3 − z4
−z1 − z3 − z4 z0 − z1 − 2z3 z0 − z3 − z4 −2z3 + 2z4

2z3 2z1 + z3 + z4 −2z0 − z2 − 2z4 z3 − z4
−z1 − z3 + 2z4 z0 + z3 + 2z4 2z3 −2z3

z1 + 2z3 −z0 − 2z1 + 2z3 + z4 2z0 − 2z3 − 2z4 −z2
2z1 + 2z3 − z4 −2z0 − 2z1 − 2z4 2z0 + 2z3 − z4 z4

z1 − 2z3 −z0 − z1 + z3 − z4 z0 − z3 − 2z4 −z3 + 2z4

−2z3 z2 − 2z3 − z4 −2z4 −z2 + z3 − z4
z0 − z3 2z2 + 2z3 − z4 2z2 − z3 + 2z4 −z2 + z3 − 2z4
z1 + 2z4 −2z2 − 2z3 − z4 −z2 − z3 − 2z4 2z2 + 2z3
−z1 − z3 z0 + 2z2 + z3 + 2z4 z3 + 2z4 z2 + 2z3 + 2z4

z3 z1 + 2z2 + z3 −2z3 − z4 z3 + z4
−z3 + 2z4 −z1 − 2z2 + 2z3 − z4 z0 − z4 2z3 − 2z4

0 z2 + z3 z1 + z2 + 2z3 − z4 −z2 − z3 + 2z4
−z2 − z3 − 2z4 2z2 −z2 + z3 + z4 z0 − 2z2 + 2z3 + 2z4
−z3 − z4 z2 − z3 z3 − 2z4 z1 − z2 + z4


.

In the next step we search for an elliptic normal curve E such that C and
E lie on a common cubic threefold X. Picking E at random and check-
ing whether there is a relation between the generators of H0(IC/P4(3)) and
H0(IE/P4(3)) takes about 0.01 seconds a time on a 2.4 GHz processor. Hence
we expect to find a such an E within a span of about one hour.

i5 : getEllipticWithCommonThreefold=(IC)->(

max3:=ideal basis(3,T);

-- third power of the maximal ideal

for attemptsHS from 1 do (

mEtmp:=random(T^5,T^{5:-1});

mE:=mEtmp-transpose mEtmp;

-- the 5x5 skew-symmetric matrix

IE:=pfaffians(4,mE);

-- the elliptic curve E

if rank source gens intersect(IE+IC,max3)<28 then (

rltn:=(syz(gens IC|gens intersect(IE,max3)))_{0};

-- the relation between the generators

X:=ideal (gens IC*rltn^{0..7});

-- the cubic threefold

<<"attempts hypersurface = "<<attemptsHS;

-- print number of attempts

return(mE,X))))

We also have to check that the cubic hypersurface X is smooth and that
the twisted normal bundles NE/X(−1) has no global sections, as expected.

i6 : normalSheaf=(I,X)->(

I2:=saturate(I^2+X);

cNIX:=image gens I/ image gens I2;

sheaf Hom(cNIX,(ring I)^1/I))

i7 : sectionsTwistedNormalBundle=(mE,X)->(

IE:=pfaffians(4,mE);

NEX:=normalSheaf(IE,X);

HH^0(NEX(-1)))
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Recall from [Eis80], that OE has an eventually 3-periodic free resolution as
an OX-module

. . .
q−→ OX(−6)6 m−→ OX(−5)6 q−→ OX(−3)6 → OX(−2)5 → OX → OE → 0

whose higher syzygy modules are independent of choice of the section s ∈
H0(F ) defining E. Thus the number of sections

NE/X(−1) ∼= IE/X/I
2
E/X(1) ∼= F ⊗ OE(−1)

depends only on F but not on s ∈ H0(F ): Tensoring the perodic resolution
with F (−1) and the fact that F has no intermediate cohomology yields

H0(NE/X(−1)) ∼= ker(H3(F (−1))⊗K3)→ H3(F 6(−4)),

and K3 = ker(OX(−3)6 → OX(−2)5) ∼= im(OX(−4)6 q−→ OX(−3)6) is inde-
pendent of E. So if H0(NE/X(−1)) = 0 then for any other elliptic curve E′

corresponding to a global section of F the cohomology H0(NE′/X(−1)) is
also vanishing. Putting everything together, we have the following search
routine:

i8 : time for attemptsN from 1 do (

time for attemptsS from 1 do (

time (mE,X)=getEllipticWithCommonThreefold(IC);

if isSmooth X then (

<<"attempts smooth = "<<attemptsS;

break));

if sectionsTwistedNormalBundle(mE,X)==0 then (

<<"attempts normalbundle = "<<attemptsN;

break));

-- the output:

attempts hypersurface = 25831 -- used 221.619 seconds

attempts hypersurface = 206719 -- used 1825.24 seconds

attempts hypersurface = 132506 -- used 1154.79 seconds

attempts smooth = 3 -- used 3201.66 seconds

attempts normalbundle = 1 -- used 3202.02 seconds

The extension is given as the cokernel ofmwhich is accessible through the
resolution of OE :

i9 : m0=sub((res sub(pfaffians(4,mE),T/X)).dd_4,T);

-- the matrix in the resolution

baseChange=Hom(coker m0,coker transpose m0);

b=map(T^6,T^6,homomorphism baseChange_{0});

-- we compute a skewsymmetrization of m0

m=b*m0;
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pfaffians(6,m)==X

o9 = true

In our example, we have

m =


0 −2z1 − z2 + 2z4 −2z3 − z4

2z1 + z2 − 2z4 0 z0 + 2z2 − 2z3 + z4
2z3 + z4 −z0 − 2z2 + 2z3 − z4 0

2z2 − 2z3 − 2z4 −2z0 + 2z1 − z2 + 2z3 − 2z4 −2z2 + 2z3 + z4
−z2 + z3 + z4 2z0 − z2 − z3 − 2z4 z0 + 2z2 − z4
−2z0 + z2 − z4 z0 + 2z1 + z2 + 2z3 + 2z4 −z1 − z2 + 2z3 + 2z4

−2z2 + 2z3 + 2z4 z2 − z3 − z4 2z0 − z2 + z4
2z0 − 2z1 + z2 − 2z3 + 2z4 −2z0 + z2 + z3 + 2z4 −z0 − 2z1 − z2 − 2z3 − 2z4

2z2 − 2z3 − z4 −z0 − 2z2 + z4 z1 + z2 − 2z3 − 2z4
0 2z1 − z2 − z3 − 2z4 −z0 + z1 + z2 + 2z4

−2z1 + z2 + z3 + 2z4 0 −z0 + z1 − 2z2
z0 − z1 − z2 − 2z4 z0 − z1 + 2z2 0

 .

A smooth random section E′ of the bundle F can also be obtained very
easily:

i10 : IE’=for i from 1 do (

b:=random(T^6,T^6);

m’:=b*m*transpose b;

IE’:=pfaffians(4,m’_{0..4}^{0..4});

if isSmooth IE’ and dim(IC+IE’)==0 then break(IE’));

In order to check that C and E′ are smooth points in Hilb12t−9(X) and
Hilb5t(X), respectively, we compute the cohomology groups of the normal
sheaves:

i11 : NE’X=normalSheaf(IE’,X);

HH^0(NE’X)==Fp^10 and HH^1(NE’X)==0

o11 = true

i12 : NCX=normalSheaf(IC,X);

HH^0(NCX)==Fp^24 and HH^1(NCX)==0

o12 = true

Finally, we compute the cohomology groups of F ⊗IC/X :

i13 : M=coker sub(m,T/X);

-- this is a module whose sheafification is an extension

sheafMIC=sheaf(M)**sheaf(module sub(IC,T/X));

HH^1 sheafMIC==0 and HH^2 sheafMIC==0

o13 = true

Proposition 5.46. For each r ≥ 2 there is a stable rank r Ulrich bundle E on
the general cubic threefold Y such that E ⊗ E ∨(−1) has no cohomology.
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Proof. We recall the proof from [CH11b, Proposition 5.11]. Let E0 be a stable
rank 2 Ulrich bundle such that E0⊗E ∨0 (−1) has no cohomology. We will prove
by induction the following statement

(*) For each r ≥ 2 there is a stable rank r Ulrich bundle F on Y , F 6∼= E0

such that F ⊗F∨(−1) and F ⊗ E ∨0 (−1) have no cohomology.

The condition of having no cohomology is an open condition, so for r =
2 we can take F to be a deformation of E0. Then by semicontinuity, both
F ⊗F∨(−1) and F ⊗ E ∨0 (−1) will have no cohomology.

For r = 3, we make use of Proposition 5.45 which shows that on a general
cubic threefold Y , there are curvesE andC as in the earlier Propositions 5.32
and 5.35 respectively, such that if E0 (changing notation) is the rank 2 bundle
corresponding to E:

0→ OY → E0 → IE/Y (2)→ 0

then we have also the additional property thatHi(E0⊗IC/Y ) = 0 for i = 1, 2.
Let F be a stable rank 3 bundle corresponding to C (as in Proposition 5.35):

0→ O2
Y → F → IC/Y (3)→ 0

Tensoring with E ∨0 (−1) we have

0→ E ∨0 (−1)⊕ 2→ F ⊗ E ∨0 (−1)→ E ∨0 (−1)⊗IC/Y (3)→ 0.

Now E0 has rank 2, so E ∨0
∼= E0(−2). Thus E ∨0 (−1) ∼= E0(−3), which has no

cohomology. Furthermore, since F and E0 are distinct stable bundles, al-
ready H0(F ⊗ E ∨0 ) = 0, so also H0(F ⊗ E ∨0 (−1)) = 0, and by duality also
H3(F ⊗ E ∨(−1)) = 0. To show therefore that F ⊗ E ∨0 has no cohomology,
we have only to check the vanishing ofHi for i = 1, 2. SinceE∨0 has no coho-
mology, the groups on question are isomorphic to Hi(E0(−1) ⊗IC/Y (3)) =
Hi(E0 ⊗ IC/Y (3)), and these are zero by Proposition 5.45. We have shown
that F ⊗F∨(−1) has no cohomology earlier in Corollary 5.44. (Note that at
this step we have redefined the rank 2 bundle E0 chosen before, but we can
just as well use this one from the beginning.) For r ≥ 4, choose by the in-
duction hypothesis a stable bundle F0 of rank r − 2, different from E0, such
that F0 ⊗F∨0 (−1) and F0 ⊗ E ∨0 (−1) have no cohomology. As in the proof of
existence of stable bundles, consider an extension

0→ E0 → G → F0 → 0

Then G will be simple of rank r. Tensoring with E ∨0 (−1) and using our hy-
potheses on E0 and F0, we see that G ⊗E ∨0 (−1) has no cohomology. Similarly
tensoring with F∨0 (−1) we find that G ⊗F∨0 (−1) has no cohomology. (Note
that E0 ⊗F∨0 (−1) = (F0 ⊗ E ∨0 (−1))∨ ⊗ ωY so by Serre duality it has also no
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cohomology.) Now tensor G (−1) with the dual sequence

0→ F∨0 → G ∨ → E ∨0 → 0

to see that G ⊗ G ∨(−1) has no cohomology. Finally, as in Theorem 5.38 we
can deform G into a stable bundle, call it F , and by semicontinuity it will
satisfy F ⊗F∨(−1) and F ⊗ E ∨0 (−1) have no cohomology.
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[PL10] Rosa M. Miró-Roig Joan Pons-Llopis. n-dimensional fano vari-
eties of wild representation type. 11 2010.

[PS74] C. Peskine and L. Szpiro. Liaison des variétés algébriques. I. In-
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